Returnerer den hyperbolske sinus til et tall.
Syntaks
SINH(tall)
Tall er ethvert reelt tall.
Kommentarer
Formelen for den hyperbolske sinus er:
Eksempel 1
Det kan være enklere å forstå eksemplet hvis du kopierer det til et tomt regneark.
- Opprett en tom arbeidsbok eller et tomt regneark.
- Velg eksemplet i hjelpeemnet. Ikke merk rad- eller kolonneoverskriftene.
Velge et eksempel fra Hjelp
- Trykk CTRL+C.
- I regnearket merker du celle A1, og trykker CTRL+V.
- Hvis du vil veksle mellom å vise resultatene og vise formlene som returnerer resultatene, trykker du CTRL+` (grav aksent), eller velg Formelrevisjon på Verktøy-menyen, og velger deretter Formelrevisjonsmodus.
|
|
Eksempel 2
Bruk denne funksjonen når du vil anslå en kumulativ sannsynlighetsfordeling. La oss si at en testverdi i et laboratorium varierer mellom 0 og 10 sekunder. En empirisk analyse av resultatene av eksperimenter viser at sannsynligheten for å oppnå et resultat x som er mindre enn t sekunder, kan anslås med følgende ligning:
P(x<t) = 2,868 * SINH(0,0342 * t), der 0<t<10
For å kunne beregne hvor stor sannsynligheten er for at resultatet blir mindre enn 1,03 sekunder, setter vi inn 1,03 i stedet for t i ligningen.
Det kan være enklere å forstå eksemplet hvis du kopierer det til et tomt regneark.
- Opprett en tom arbeidsbok eller et tomt regneark.
- Velg eksemplet i hjelpeemnet. Ikke merk rad- eller kolonneoverskriftene.
Velge et eksempel fra Hjelp
- Trykk CTRL+C.
- I regnearket merker du celle A1, og trykker CTRL+V.
- Hvis du vil veksle mellom å vise resultatene og vise formlene som returnerer resultatene, trykker du CTRL+` (grav aksent), eller velg Formelrevisjon på Verktøy-menyen, og velger deretter Formelrevisjonsmodus.
|
|
Vi kan altså forvente at dette resultatet vil oppstå ca. 101 ganger i løpet av 1000 eksperimenter.