Description of the X-ray Database (adapted from NIST documentation by C. Fiori)

EPMA Xtreme Probe

Description of the X-ray Database (adapted from NIST documentation by C. Fiori)

The NIST x-ray database is based on 4985 (1st order) entries and includes all the  measurable x-ray  lines,  satellites  and  absorption edges from under 100 eV to over 120 keV. Additionally, most of the x-ray  lines  and  satellites are  assigned  a  relative intensity (relative to the alpha-1 line in each family).  The  data  base  was  assembled  primarily  from  four sources:

 

1.)  B.L.  Doyle, W.F. Chambers, T.M. Christensen, J.M. Hall and G.H. Pepper "SINE THETA SETTINGS FOR X-RAY SPECTROMETERS", Atomic Data and Nuclear Data Tables Vol. 24, No 5, 1979.

 

2.)  E.W. White, G.V. Gibbs, G.G. Johnson Jr. and G.R. Zechman "X-RAY WAVELENGTHS AND CRYSTAL INTERCHANGE SETTINGS  FOR  WAVELENGTH  GEARED CURVED CRYSTAL SPECTROMETERS" Report of the Pennsylvania State Univ., 1964.

 

3.) J.A. Bearden "X-RAY WAVELENGTHS AND X-RAY ATOMIC  ENERGY  LEVELS" Rev. Mod. Phys., Vol. 39, No. 78, 1967.

 

4.)  J.A  Bearden  and A.F. Burr,"REEVALUATION OF X-RAY ATOMIC ENERGY LEVELS", Rev. Mod. Phys., Vol. 31, No. 1, 1967.

 

Each x-ray line or edge series as a function of atomic number was fit to  a  fourth  degree  polynomial.   The  fit was subtracted from the appropriate data and the residuals plotted and examined. In this way rogue entries could be identified and corrected. The resulting data base is considered to be sufficiently accurate  for  any  application involving  the  Si (Li)  x-ray  detector and single crystal wavelength spectrometers.

Note that the last entry in the x-ray database window gives a  code  for the  source of the entry.  If  the column is blank the source is reference 2.  If the column contains the letter  "C"  the  source  is reference  1.  If the letters "BB" appear, the source is reference 4. The letters "W,F" mean that reference 2 was  used  but  the  relative transition  probability  has been adjusted by Fiori.  Reference 3 was used as a check since it is the source of  many of  the entries  of reference 1.

 

In column 3 the notation KA1,2 means the entry is the weighted sum of the KA1 and KA2 in the ratio 2 to 1. For  low  atomic  number  the entries  are  not  self  consistent  since the data is from different sources.  If the column begins with the capital  letter  S  then  the entry  is a satellite line due to doubly ionized atoms.   The relative transition values for these  entries  are  only  valid  for  electron excited specimens, and are, at best, estimates.

The following  are Siegbahn  to shell-transition notation conversions:

KA   = KA1+KA2+KA3

KA1,2 = (2*KA1+KA2)/3

KA1  = K-L3

KA2  = K-L2

KA3  = K-L1

KB   = SUM(KBn)

KBX  = Metal

KB1  = K-M3

KB1' = KB1+KB3+KB5

KB2  = (K-N3)+(K-N2)

KB2' = K-N3

KB2'' = K-N2

KB3  = K-M2

KB4  = (K-N4)+(K-N5)

KB5  = (K-M4)+(K-M5)

KB5' = K-M5

KB5'' = K-M4

Kd1  = K-O3

Kd2  = K-O2

LA   = LA1+LA2

LA1  = L3-M5

LA2  = L3-M4

LB1  = L2-M4

LB10 = L1-M4

LB15 = L3-N4

LB17 = L2-M3

LB2  = L3-N5

LB3  = L1-M3

LB4  = L1-M2

LB5  = (L3-O4)+(L3-O5)

LB6  = L3-N1

LB7  = L3-O1

LB9  = L1-M5

LG1  = L2-N4

LG11 = L1-N5

LG2  = L1-N2

LG3  = L1-N3

LG4  = L1-O3

LG4' = L1-O2

LG6  = L2-O4

LG8  = L2-O1

Ll   = L3-M1

Ln   = L2-M1

Ls   = L3-M3

Lt   = L3-M2

Lu   = (L3-N6)+(L3-N7)

Lv   = L2-N6

MA1  = M5-N7

MA2  = M5-N6

MB   = M4-N6

MG   = M3-N5

MG2  = M3-N4

MZ1  = M5-N3

MZ2  = M4-N2

Md   = M2-N4

Me   = M3-O5