FSimulatorBalun

M9370A / M9371A / M9372A / M9374A / M9375A

Calculate:FSimulator:Balun Commands


CALCulate:FSIMulator:BALun:

BPORt

     | OFFSet

          | PHASe

          | POWer

     | SWEep

          | PHASe

               | STARt

               | STOP

CZConversion

     | BPOrt

          | IMAG

          | REAL

          | Z0

               | R

     | STATe

     | LPOrt

          | IMAG

          | REAL

          | Z0

               | R

DEVice

DMCircuit

     | BPOrt

          | PARameters

               | C

               | G

               | L

               | R

          | TYPE

          | USER

               | FILename

     | LPOrt

          | PARameters

               | C

               | G

               | L

               | R

          | TYPE

          | USER

               | FILename

     | STATe

DZConversion

     | BPOrt

          | IMAG

          | REAL

          | Z0

               | R

     | STATe

     | LPOrt

          | IMAG

          | REAL

          | Z0

               | R

FIXTure

     | OFFSet

          | PHASe

          | POWer

     | SWEep

          | PHASe

PARameter

     | BALSended

          | [:DEFine]

     | BBALanced

          | [DEFine]

     | SBALanced

          | [DEFine]

     | SSBalLanced

          | [DEFine]

PHASe

     | SWEep

          | STATe

STIMulus

     | MODE

TOPology

     | BALSended

          | [PPorts]

     | BBALanced

          | [PPorts]

     | SBALanced

          | [PPorts]

     | SSBalanced

          | [PPorts]

Click on a keyword to view the command details.

See Also

Notes:

Critical Note: CALCulate commands act on the selected measurement. You can select one measurement for each channel using Calc:Par:MNUM or Calc:Par:Select. Learn more.

  • CALC:PAR:CAT? alone can NOT be used to return a balanced measurement parameter. If a balanced measurement transform is being performed, then additional querying of the CALC:FSIM system is required to determine the balanced parameter type. See an example.

  • BPORt versus LPORt commands - For each command in this subsystem that includes a BPORt keyword, there is an LPORt equivalent. The commands are identical except for the way in which the balanced / logical port numbers are specified:

    • The BPORt commands refer to the Balanced port number. There can only be up to two balanced ports. This method is compatible with the ENA network analyzer.

    • The LPORt commands refer to the Logical port number. A balanced port can appear as either logical port 1, 2, or 3. These are the references as they appear in the front-panel user interface.

Topology

Logical Port

Balanced Port

Single-Bal

1

N/A

2

1

Single-Single-Bal

1

N/A

2

N/A

3

1

Bal-Bal

1

1

2

2

Learn more about logical ports.


CALCulate<cnum>:FSIMulator:BALun:BPORt<pnum>:OFFSet:PHASe <value>

(Read-Write) Sets the phase offset between the two balanced stimulus ports. This command only applies when CALC:FSIM:BAL:STIM:MOD is set to a True Mode - Not Single-Ended. Requires Opt 460. Learn more about iTMSA Power and Phase offset.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<pnum>

Balanced port number. Choose from ports 1 or 2.

<value>

Phase offset value in degrees.

Examples

CALC:FSIM:BAL:BPOR:OFFS:PHAS 10
calculate2:fsimulator:balun:bport:offset:phase 300

See example iTMSA program

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:BPORt<pnum>:OFFSet:PHASe?

Return Type

Numeric

Default

0


CALCulate<cnum>:FSIMulator:BALun:BPORt<pnum>:OFFSet:POWer <value>

(Read-Write) Sets the phase offset between the two balanced stimulus ports. This command only applies when CALC:FSIM:BAL:STIM:MOD is set to a True Mode - Not Single-Ended. Requires Opt 460. Learn more about iTMSA Power and Phase offset.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<pnum>

Balanced port number. Choose from ports 1 or 2.

<value>

Power offset value in dB.

Examples

CALC:FSIM:BAL:BPOR:OFFS:POW 2
calculate2:fsimulator:balun:bport:offset:power .2

See example iTMSA program

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:BPORt<pnum>:OFFSet:POWer?

Return Type

Numeric

Default

0


CALCulate<cnum>:FSIMulator:BALun:BPORt<pnum>:SWEep:PHASe:STARt <value>

(Read-Write) Sets the start value for a phase sweep.

Learn more about Phase Sweep.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<pnum>

Balanced port number. Choose any PNA port. Only one port can have phase sweep.

<value>

Phase sweep start value in degrees. Choose a value between 0 and 360.

Examples

CALC:FSIM:BAL:BPOR:SWE:PHAS:STAR 10

calculate2:fsimulator:balun:bport:sweep:phase:start 5

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:BPORt<pnum>:SWEep:PHASe:STARt?

Return Type

Numeric

Default

0


CALCulate<cnum>:FSIMulator:BALun:BPORt<pnum>:SWEep:PHASe:STOP <value>

(Read-Write) Sets the stop value for a phase sweep.

Learn more about Phase Sweep.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<pnum>

Balanced port number. Choose any PNA port. Only one port can have phase sweep.

<value>

Phase sweep stop value in degrees. Choose a value between 0 and 360.

Examples

CALC:FSIM:BAL:BPOR:SWE:PHAS:STOP 10

calculate2:fsimulator:balun:bport:sweep:phase:stop 5

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:BPORt<pnum>:SWEep:PHASe:STOP?

Return Type

Numeric

Default

0


CALCulate<cnum>:FSIMulator:BALun:CZConversion:BPORt<pnum>:IMAG <value>

(Read-Write) Sets the imaginary part of the impedance value for the common port impedance conversion function.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<pnum>

Balanced port number. Choose from ports 1 or 2.

Note: The numbering of logical ports is different from balanced ports. This command works the same as the ENA network analyzer. If there is only one balanced port, it is Balanced Port 1, regardless of the port mapping assignment. Learn more.

<value>

Imaginary part of the Impedance value in Units. Choose a number between 0 and 1E18.

Examples

CALC:FSIM:BAL:CZC:BPOR:IMAG 0
calculate2:fsimulator:balun:czconversion:bport:imag 300

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:CZConversion:BPORt<pnum>:IMAG?

Return Type

Numeric

Default

0


CALCulate<cnum>:FSIMulator:BALun:CZConversion:BPORt<pnum>:REAL <value>

(Read-Write) Sets the real part of the impedance value for the common port impedance conversion function.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<pnum>

Balanced port number. Choose from ports 1 or 2.

Note: The numbering of logical ports is different from balanced ports. This command works the same as the ENA network analyzer. If there is only one balanced port, it is Balanced Port 1, regardless of the port mapping assignment. Learn more.

<value>

Real part of the Impedance value in Units. Choose a number between 0 and 1E18.

Examples

CALC:FSIM:BAL:CZC:BPOR:REAL 25
calculate2:fsimulator:balun:czconversion:bport:real 50

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:CZConversion:BPORt<pnum>:REAL?

Return Type

Numeric

Default

See Common Mode Port Z Conversion Default


CALCulate<cnum>:FSIMulator:BALun:CZConversion:BPORt<pnum>:Z0[:R] <value>

(Read-Write) Sets the real part of the impedance value for the common port impedance conversion function.  Set either this single value or set the real and imaginary parts separately. The imaginary part is set to 0.0 using this command.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<pnum>

Balanced port number. Choose from ports 1 or 2.

Note: The numbering of logical ports is different from balanced ports. This command works the same as the ENA network analyzer. If there is only one balanced port, it is Balanced Port 1, regardless of the port mapping assignment. Learn more.

<value>

Impedance value in ohms. Choose a number between 0 to 1E7.

Examples

CALC:FSIM:BAL:CZC:BPOR:Z0 50
calculate2:fsimulator:balun:czconversion:bport:z0:r 75

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:CZConversion:BPORt<pnum>:Z0[:R]?

Return Type

Numeric

Default

See Common Mode Port Z Conversion Default


CALCulate<cnum>:FSIMulator:BALun:CZConversion:STATe <bool>

(Read-Write)  Sets the common port impedance conversion function ON/OFF. Must also set the fixture simulator function to ON using CALC:FSIM:STAT.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<bool>

State of common port impedance conversion function. Choose from

OFF (or 0) Conversion OFF

ON (or 1) Conversion ON

Examples

CALC:FSIM:BAL:CZC:STAT 1
calculate2:fsimulator:balun:czconversion:state off

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:CZConversion:STATe?

Return Type

Boolean

Default

Off


CALCulate<cnum>:FSIMulator:BALun:CZConversion:LPORt<pnum>:IMAG <value>

(Read-Write) Sets the imaginary part of the impedance value for the common port impedance conversion function.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<pnum>

Logical port number. Choose from logical ports 1, 2, or 3.

Note: See Balanced port versus Logical port.

<value>

Imaginary part of the Impedance value in Units. Choose a number between 0 and 1E18.

Examples

CALC:FSIM:BAL:CZC:LPOR:IMAG 0
calculate2:fsimulator:balun:czconversion:lport:imag 300

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:CZConversion:LPORt<pnum>:IMAG?

Return Type

Numeric

Default

0


CALCulate<cnum>:FSIMulator:BALun:CZConversion:LPORt<pnum>:REAL <value>

(Read-Write) Sets the real part of the impedance value for the common port impedance conversion function.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<pnum>

Logical port number. Choose from logical ports 1, 2, or 3.

Note: See Balanced port versus Logical port.

<value>

Real part of the Impedance value in Units. Choose a number between 0 and 1E18.

Examples

CALC:FSIM:BAL:CZC:LPOR:REAL 25
calculate2:fsimulator:balun:czconversion:lport:real 50

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:CZConversion:LPORt<pnum>:REAL?

Return Type

Numeric

Default

See Common Mode Port Z Conversion Default


CALCulate<cnum>:FSIMulator:BALun:CZConversion:LPORt<pnum>:Z0[:R] <value>

(Read-Write) Sets the real part of the impedance value for the common port impedance conversion function.  Set either this single value or set the real and imaginary parts separately. The imaginary part is set to 0.0 using this command.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<pnum>

Logical port number. Choose from logical ports 1, 2, or 3.

Note: See Balanced port versus Logical port.

<value>

Impedance value in ohms. Choose a number between 0 to 1E7.

Examples

CALC:FSIM:BAL:CZC:LPOR:Z0 50
calculate2:fsimulator:balun:czconversion:lport:z0:r 75

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:CZConversion:LPORt<pnum>:Z0[:R]?

Return Type

Numeric

Default

See Common Mode Port Z Conversion Default


CALCulate<cnum>:FSIMulator:BALun:DEVice <char>

(Read-Write) Selects the device type for the balanced measurement.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<char>

BBALanced - Balanced - Balanced device (4 ports).

BALSended - Balanced - Single-ended device (3 ports).

SBALanced - Single-ended - Balanced device (3 ports).

SSBalanced - Single-ended - Single-ended - Balanced device (4 ports).

Examples

CALC:FSIM:BAL:DEV SSB
calculate2:fsimulator:balun:device bbal

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:DEVice?

Return Type

Character

Default

SBALanced


CALCulate<cnum>:FSIMulator:BALun:DMCircuit:BPORt<pnum>:PARameters:C <value>

(Read-Write) Sets the Capacitance value of the differential matching circuit.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<pnum>

Balanced port number. Choose from ports 1 or 2.

Note: The numbering of logical ports is different from balanced ports. This command works the same as the ENA network analyzer. If there is only one balanced port, it is Balanced Port 1, regardless of the port mapping assignment. Learn more.

<value>

Capacitance value in farads. Choose a number between -1E18 to 1E18

Examples

CALC:FSIM:BAL:DMC:BPOR:PARameters:C 10E-6
calculate2:fsimulator:balun:dmcircuit:bport:parameters:c 1E-9

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:DMCircuit:BPORt<pnum>:PARameters:C?

Return Type

Numeric

Default

0


CALCulate<cnum>:FSIMulator:BALun:DMCircuit:BPORt<pnum>:PARameters:G <value>

(Read-Write) Sets the Conductance value of the differential matching circuit.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<pnum>

Balanced port number. Choose from ports 1 or 2.

Note: The numbering of logical ports is different from balanced ports. This command works the same as the ENA network analyzer. If there is only one balanced port, it is Balanced Port 1, regardless of the port mapping assignment. Learn more.

<value>

Conductance value in siemens. Choose a  number between -1E18 to 1E18.

Examples

CALC:FSIM:BAL:DMC:BPOR:PARameters:G 1E3
calculate2:fsimulator:balun:dmcircuit:bport:parameters:g 1E-3

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:DMCircuit:BPORt<pnum>:PARameters:G?

Return Type

Numeric

Default

0


CALCulate<cnum>:FSIMulator:BALun:DMCircuit:BPORt<pnum>:PARameters:L <value>

(Read-Write) Sets the Inductance value of the differential matching circuit.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<pnum>

Balanced port number. Choose from ports 1 or 2.

Note: The numbering of logical ports is different from balanced ports. This command works the same as the ENA network analyzer. If there is only one balanced port, it is Balanced Port 1, regardless of the port mapping assignment. Learn more.

<value>

Inductance value in henries. Choose a  number between -1E18 to 1E18.

Examples

CALC:FSIM:BAL:DMC:BPOR:PARameters:L 3E-3
calculate2:fsimulator:balun:dmcircuit:bport:parameters:lE-10

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:DMCircuit:BPORt<pnum>:PARameters:L?

Return Type

Numeric

Default

0


CALCulate<cnum>:FSIMulator:BALun:DMCircuit:BPORt<pnum>:PARameters:R <value>

(Read-Write) Sets the Resistance value of the differential matching circuit.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<pnum>

Balanced port number. Choose from ports 1 or 2.

Note: The numbering of logical ports is different from balanced ports. This command works the same as the ENA network analyzer. If there is only one balanced port, it is Balanced Port 1, regardless of the port mapping assignment. Learn more.

<value>

Resistance value in ohms. Choose a  number between -1E18 to 1E18.

Examples

CALC:FSIM:BAL:DMC:BPOR:PARameters:R 100
calculate2:fsimulator:balun:dmcircuit:bport:parameters:r 4E3

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:DMCircuit:BPORt<pnum>:PARameters:R?

Return Type

Numeric

Default

0


CALCulate<cnum>:FSIMulator:BALun:DMCircuit:BPORt<pnum>[:TYPE] <char>

(Read-Write) Sets the differential matching circuit type. To select a user-defined circuit, specify IN ADVANCE the 2-port touchstone filename with CALC:FSIM:BAL:DMC:BPOR:USER:FILename. If you do not specify the appropriate file and you select USER, an error occurs and NONE is automatically selected.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<pnum>

Balanced port number. Choose from ports 1 or 2.

Note: The numbering of logical ports is different from balanced ports. This command works the same as the ENA network analyzer. If there is only one balanced port, it is Balanced Port 1, regardless of the port mapping assignment. Learn more.

<char>

Circuit type. Choose from:

NONE - Specifies no-circuit.

PLPC - Specifies the circuit that consists of shunt L and shunt C.

USER - Specifies the user-defined circuit.

Examples

CALC:FSIM:BAL:DMC:BPOR2 PLPC
calculate2:fsimulator:balun:dmcircuit:bport1:type none

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:DMCircuit:BPORt<pnum>:TYPE?

Return Type

Character

Default

PLPC


CALCulate<cnum>:FSIMulator:BALun:DMCircuit:BPORt<pnum>:USER:FILename <string>

(Read-Write) Specifies the 2-port touchstone file in which the information on the user-defined differential matching circuit is saved. Following this command, send CALC:FSIM:BAL:DMC:BPOR2 USER. If the specified file does not exist, an error occurs when you set the type of differential matching circuit to USER.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<pnum>

Balanced port number. Choose from ports 1 or 2.

Note: The numbering of logical ports is different from balanced ports. This command works the same as the ENA network analyzer. If there is only one balanced port, it is Balanced Port 1, regardless of the port mapping assignment. Learn more.

<string>

File name and extension (.s2P) of the differential matching circuit. Files are stored in the default folder "C:/Program Files/Keysight/Network Analyzer/Documents". To recall from a different folder, specify the full path name.

Examples

CALC:FSIM:BAL:DMC:BPOR:USER:FIL 'myfile.s2p'
calculate2:fsimulator:balun:dmcircuit:bport:user:filename "C:/Program Files/Keysight/Network Analyzer/Documents/myFile.s2P"

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:DMCircuit:BPORt<pnum>:USER:FILename?

Return Type

String

Default

Not Applicable


CALCulate<cnum>:FSIMulator:BALun:DMCircuit:STATe <bool>

(Read-Write) Sets the differential matching circuit embedding function ON/OFF. Must also set the fixture simulator function to ON using CALC:FSIM:STAT.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<bool>

State of differential matching circuit embedding function. Choose from

OFF (or 0) Matching circuit OFF

ON (or 1) Matching circuit ON

Examples

CALC:FSIM:BAL:DMC:STAT 1
calculate2:fsimulator:balun:dmcircuit:state off

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:DMCircuit:STATe?

Return Type

Boolean

Default

Off


CALCulate<cnum>:FSIMulator:BALun:DMCircuit:LPORt<pnum>:PARameters:C <value>

(Read-Write) Sets the Capacitance value of the differential matching circuit.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<pnum>

Logical port number. Choose from logical ports 1, 2, or 3.

Note: See Balanced port versus Logical port.

<value>

Capacitance value in farads. Choose a number between -1E18 to 1E18

Examples

CALC:FSIM:BAL:DMC:LPOR:PARameters:C 10E-6
calculate2:fsimulator:balun:dmcircuit:lport:parameters:c 1E-9

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:DMCircuit:LPORt<pnum>:PARameters:C?

Return Type

Numeric

Default

0


CALCulate<cnum>:FSIMulator:BALun:DMCircuit:LPORt<pnum>:PARameters:G <value>

(Read-Write) Sets the Conductance value of the differential matching circuit.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<pnum>

Logical port number. Choose from logical ports 1, 2, or 3.

Note: See Balanced port versus Logical port.

<value>

Conductance value in siemens. Choose a  number between -1E18 to 1E18.

Examples

CALC:FSIM:BAL:DMC:LPOR:PARameters:G 1E3
calculate2:fsimulator:balun:dmcircuit:lport:parameters:g 1E-3

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:DMCircuit:LPORt<pnum>:PARameters:G?

Return Type

Numeric

Default

0


CALCulate<cnum>:FSIMulator:BALun:DMCircuit:LPORt<pnum>:PARameters:L <value>

(Read-Write) Sets the Inductance value of the differential matching circuit.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<pnum>

Logical port number. Choose from logical ports 1, 2, or 3.

Note: See Balanced port versus Logical port.

<value>

Inductance value in henries. Choose a  number between -1E18 to 1E18.

Examples

CALC:FSIM:BAL:DMC:LPOR:PARameters:L 3E-3
calculate2:fsimulator:balun:dmcircuit:lport:parameters:lE-10

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:DMCircuit:LPORt<pnum>:PARameters:L?

Return Type

Numeric

Default

0


CALCulate<cnum>:FSIMulator:BALun:DMCircuit:LPORt<pnum>:PARameters:R <value>

(Read-Write) Sets the Resistance value of the differential matching circuit.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<pnum>

Logical port number. Choose from logical ports 1, 2, or 3.

Note: See Balanced port versus Logical port.

<value>

Resistance value in ohms. Choose a  number between -1E18 to 1E18.

Examples

CALC:FSIM:BAL:DMC:LPOR:PARameters:R 100
calculate2:fsimulator:balun:dmcircuit:lport:parameters:r 4E3

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:DMCircuit:LPORt<pnum>:PARameters:R?

Return Type

Numeric

Default

0


CALCulate<cnum>:FSIMulator:BALun:DMCircuit:LPORt<pnum>[:TYPE] <char>

(Read-Write) Sets the differential matching circuit type. To select a user-defined circuit, specify IN ADVANCE the 2-port touchstone filename with CALC:FSIM:BAL:DMC:LPOR:USER:FILename. If you do not specify the appropriate file and you select USER, an error occurs and NONE is automatically selected.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<pnum>

Logical port number. Choose from logical ports 1, 2, or 3.

Note: See Balanced port versus Logical port.

<char>

Circuit type. Choose from:

NONE - Specifies no-circuit.

PLPC - Specifies the circuit that consists of shunt L and shunt C.

USER - Specifies the user-defined circuit.

Examples

CALC:FSIM:BAL:DMC:LPOR2 PLPC
calculate2:fsimulator:balun:dmcircuit:lport1:type none

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:DMCircuit:LPORt<pnum>:TYPE?

Return Type

Character

Default

PLPC


CALCulate<cnum>:FSIMulator:BALun:DMCircuit:LPORt<pnum>:USER:FILename <string>

(Read-Write) Specifies the 2-port touchstone file in which the information on the user-defined differential matching circuit is saved. Following this command, send CALC:FSIM:BAL:DMC:BPOR2 USER. If the specified file does not exist, an error occurs when you set the type of differential matching circuit to USER.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<pnum>

Logical port number. Choose from logical ports 1, 2, or 3.

Note: See Balanced port versus Logical port.

<string>

File name and extension (.s2P) of the differential matching circuit. Files are stored in the default folder "C:/Program Files/Keysight/Network Analyzer/Documents". To recall from a different folder, specify the full path name.

Examples

CALC:FSIM:BAL:DMC:LPOR:USER:FIL 'myfile.s2p'
calculate2:fsimulator:balun:dmcircuit:lport:user:filename "C:/Program Files/Keysight/Network Analyzer/Documents/myFile.s2P"

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:DMCircuit:LPORt<pnum>:USER:FILename?

Return Type

String

Default

Not Applicable


CALCulate<cnum>:FSIMulator:BALun:DZConversion:BPORt<pnum>:IMAG <value>

(Read-Write) Sets the imaginary part of the impedance value for the differential port impedance conversion function.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<pnum>

Balanced port number. Choose from ports 1 or 2.

Note: The numbering of logical ports is different from balanced ports. This command works the same as the ENA network analyzer. If there is only one balanced port, it is Balanced Port 1, regardless of the port mapping assignment. Learn more.

<value>

Imaginary part of the Impedance value in Units. Choose a number between 0 and 1E18.

Examples

CALC:FSIM:BAL:DZC:BPOR:IMAG 0
calculate2:fsimulator:balun:dczconversion:bport:imag 300

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:DZConversion:BPORt<pnum>:IMAG?

Return Type

Numeric

Default

0


CALCulate<cnum>:FSIMulator:BALun:DZConversion:BPORt<pnum>:REAL <value>

(Read-Write) Sets the real part of the impedance value for the differential port impedance conversion function.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<pnum>

Balanced port number. Choose from ports 1 or 2.

Note: The numbering of logical ports is different from balanced ports. This command works the same as the ENA network analyzer. If there is only one balanced port, it is Balanced Port 1, regardless of the port mapping assignment. Learn more.

<value>

Real part of the Impedance value in Units. Choose a number between 0 and 1E18

Examples

CALC:FSIM:BAL:DZC:BPOR:REAL 50
calculate2:fsimulator:balun:dzconversion:bport:real 75

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:DZConversion:BPORt<pnum>:REAL?

Return Type

Numeric

Default

See Differential Port Z Conversion Default


CALCulate<cnum>:FSIMulator:BALun:DZConversion:BPORt<pnum>:Z0[:R] <value>

(Read-Write) Sets the impedance value for the differential port impedance conversion function.  Set either this single value or set the real and imaginary parts separately. The imaginary part is set to 0.0 using this command.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<pnum>

Balanced port number. Choose from ports 1 or 2.

Note: The numbering of logical ports is different from balanced ports. This command works the same as the ENA network analyzer. If there is only one balanced port, it is Balanced Port 1, regardless of the port mapping assignment. Learn more.

<value>

Impedance value in ohms. Choose a number between 0 to 1E7

Examples

CALC:FSIM:BAL:DZC:BPOR:Z0 50
calculate2:fsimulator:balun:dzconversion:bport:z0:r 75

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:DZConversion:BPORt<pnum>:Z0[:R]?

Return Type

Numeric

Default

See Differential Port Z Conversion Default


CALCulate<cnum>:FSIMulator:BALun:DZConversion:STATe <bool>

(Read-Write) Sets the differential port impedance conversion function ON/OFF. Must also set the fixture simulator function to ON using CALC:FSIM:STAT.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<bool>

State of the differential port impedance conversion function. Choose from

OFF (or 0) Differential port impedance conversion OFF

ON (or 1) Differential port impedance conversion ON

Examples

CALC:FSIM:BAL:DZC:STAT 1
calculate2:fsimulator:balun:dzconversion:state off

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:DZConversion:STATe?

Return Type

Boolean

Default

Off


CALCulate<cnum>:FSIMulator:BALun:DZConversion:LPORt<pnum>:IMAG <value>

(Read-Write) Sets the imaginary part of the impedance value for the differential port impedance conversion function.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<pnum>

Logical port number. Choose from logical ports 1, 2, or 3.

Note: See Balanced port versus Logical port.

<value>

Imaginary part of the Impedance value in Units. Choose a number between 0 and 1E18.

Examples

CALC:FSIM:BAL:DZC:LPOR:IMAG 0
calculate2:fsimulator:balun:dczconversion:lport:imag 300

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:DZConversion:LPORt<pnum>:IMAG?

Return Type

Numeric

Default

0


CALCulate<cnum>:FSIMulator:BALun:DZConversion:LPORt<pnum>:REAL <value>

(Read-Write) Sets the real part of the impedance value for the differential port impedance conversion function.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<pnum>

Logical port number. Choose from logical ports 1, 2, or 3.

Note: See Balanced port versus Logical port.

<value>

Real part of the Impedance value in Units. Choose a number between 0 and 1E18

Examples

CALC:FSIM:BAL:DZC:LPOR:REAL 50
calculate2:fsimulator:balun:dzconversion:lport:real 75

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:DZConversion:LPORt<pnum>:REAL?

Return Type

Numeric

Default

See Differential Port Z Conversion Default


CALCulate<cnum>:FSIMulator:BALun:DZConversion:LPORt<pnum>:Z0[:R] <value>

(Read-Write) Sets the impedance value for the differential port impedance conversion function.  Set either this single value or set the real and imaginary parts separately. The imaginary part is set to 0.0 using this command.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<pnum>

Logical port number. Choose from logical ports 1, 2, or 3.

Note: See Balanced port versus Logical port.

<value>

Impedance value in ohms. Choose a number between 0 to 1E7

Examples

CALC:FSIM:BAL:DZC:LPOR:Z0 50
calculate2:fsimulator:balun:dzconversion:lport:z0:r 75

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:DZConversion:LPORt<pnum>:Z0[:R]?

Return Type

Numeric

Default

See Differential Port Z Conversion Default


CALCulate<cnum>:FSIMulator:BALun:FIXTure:OFFSet:PHASe <bool>

(Read-Write)  Sets and reads the state of "Phase Offset - Offset as Fixture" with True Mode balanced measurements.

Learn more about iTMSA phase and power offset.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected true mode balanced measurement on that channel. If unspecified, <cnum> is set to 1.

<bool>

State of phase Offset as Fixture.

OFF (or 0)  Offset is applied but is NOT included  as a fixture in the output calculations.

ON (or 1)  Offset is applied and included as a fixture in the output calculations.

Examples

CALC:FSIM:BAL:FIXT:OFFS:PHAS 0
calculate2:fsimulator:balun:fixture:offset:phase on

See example iTMSA program

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:FIXTureOFFSet:PHASe?

Return Type

Boolean

Default

Off


CALCulate<cnum>:FSIMulator:BALun:FIXTure:OFFSet:POWer <bool>

(Read-Write)  Sets and reads the state of "Power Offset - Offset as Fixture" with True Mode balanced measurements.

Learn more about iTMSA phase and power offset.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected true mode balanced measurement on that channel. If unspecified, <cnum> is set to 1.

<bool>

State of power Offset as Fixture.

OFF (or 0)  Offset is applied but is NOT included as a fixture in the output calculations.

ON (or 1)  Offset is applied and included as a fixture in the output calculations.

Examples

CALC:FSIM:BAL:FIXT:OFFS:POW 0
calculate2:fsimulator:balun:fixture:offset:power on

See example iTMSA program

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:FIXTureOFFSet:POWer?

Return Type

Boolean

Default

Off


CALCulate<cnum>:FSIMulator:BALun:FIXTure:PHASe <bool>

(Read-Write)  Sets and reads the state of "Phase Sweep - Offset as Fixture" (labeling on GUI).

Learn more about iTMSA Phase Sweep.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected true mode balanced measurement on that channel. If unspecified, <cnum> is set to 1.

<bool>

State of phase sweep offset as a fixture:

OFF (or 0)  Phase Sweep offset disabled.

ON (or 1)  Phase Sweep offset enabled.

Examples

CALC:FSIM:BAL:FIXT:PHAS 0

calculate2:fsimulator:balun:fixture:phase on

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:FIXTure:PHASe?

Return Type

Boolean

Default

Off


CALCulate<cnum>:FSIMulator:BALun:PARameter<n>:BALSended[:DEFine] <char>

(Read-Write) For a Balanced-Single-ended device type, selects the measurement parameter for the specified trace. Set device type using CALC:FSIM:BAL:DEV

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<n>

Trace number on the specified channel <cnum>

<char>

Balanced - Single-ended Measurement parameter. Choose from:

 

Sdd11

Sdc11

Sds12

Scd11

Scc11

Scs12

Ssd21

Ssc21

Sss22

Imb

CMRR1
(Ssd21/Ssc21)

CMRR2
(Sds12/Scs12)

 

Examples

CALC:FSIM:BAL:PAR:BALS SDC11

calculate1:fsimulator:balun:parameter2:balsended:define imb

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:PARameter<n>:BALSended[:DEFine]?

Return Type

Character

Default

Sdd11


CALCulate<cnum>:FSIMulator:BALun:PARameter<n>:BBALanced[:DEFine] <char>

(Read-Write) For a Balanced - Balanced device type, selects the measurement parameter for the specified trace. Set device type using CALC:FSIM:BAL:DEV

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<n>

Trace number on the specified channel <cnum>

<char>

Balanced- Balanced Measurement parameter. Choose from:

 

Sdd11

Sdd12

Sdc11

Sdc12

Sdd21

Sdd22

Sdc21

Sdc22

Scd11

Scd12

Scc11

Scc12

Scd21

Scd22

Scc21

Scc22

Imb1

Imb2

CMRR -(Sdd21/Scc21)

Examples

CALC:FSIM:BAL:PAR:BBAL SDD12

calculate1:fsimulator:balun: parameter2:bbalanced:define cmrr

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:PARameter<n>:BBALanced[:DEFine]?

Return Type

Character

Default

Sdd11


CALCulate<cnum>:FSIMulator:BALun:PARameter<n>:SBALanced[:DEFine] <char>

(Read-Write) For a Single-ended - Balanced device type, selects the measurement parameter for the specified trace. Set device type using CALC:FSIM:BAL:DEV

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<n>

Trace number on the specified channel <cnum>

<char>

Single-ended - Balanced Measurement parameter. Choose from:

 

Sss11

Ssd12

Ssc12

Sds21

Sdd22

Sdc22

Scs21

Scd22

Scc22

Imb

CMRR1

(Sds21/Scs21)

CMRR2

(Ssd12/Ssc12)

Examples

CALC:FSIM:BAL:PAR:SBAL SSD12

calculate1:fsimulator:balun: parameter2:sbalanced:define imb

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:PARameter<n>:SBALanced[:DEFine]?

Return Type

Character

Default

Sss11


CALCulate<cnum>:FSIMulator:BALun:PARameter<n>:SSBalanced[:DEFine] <char>

(Read-Write) For a Single-ended - Single-ended - Balanced device type, selects the measurement parameter for the specified trace. Set device type using CALC:FSIM:BAL:DEV

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<n>

Trace number on the specified channel <cnum>

<char>

Single-ended - Single-ended - Balanced Measurement parameter. Choose from:

 

Sss11

Sss12

Ssd13

Ssc13

Sss21

Sss22

Ssd23

Ssc23

Sds31

Sds32

Sdd33

Sdc33

Scs31

Scs32

Scd33

Scc33

Imb1

Imb2

CMRR1

(Sds31/Scs31)

CMRR2

(Sds32/Scs32)

Examples

CALC:FSIM:BAL:PAR:SSB SSD23

calculate1:fsimulator:balun: parameter2:ssbalanced:define imb1

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:PARameter<n>:SSBalanced[:DEFine]?

Return Type

Character

Default

Sss11


CALCulate<cnum>:FSIMulator:BALun:PARameter:STATe <bool>

(Read-Write)  Turns balanced transform ON and OFF.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<bool>

State of balanced transform. Choose from

OFF (or 0) Balanced Transform OFF

ON (or 1) Balanced Transform ON

Examples

CALC:FSIM:BAL:PAR:STAT 1

calculate1:fsimulator:balun:parameter:state off

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:PARameter:STATe?

Return Type

Boolean

Default

OFF


CALCulate<cnum>:FSIMulator:BALun:PHASe:SWEep:STATe <bool>

(Read-Write)  Sets and reads the state of phase sweep.

Learn more about iTMSA Phase Sweep.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected true mode balanced measurement on that channel. If unspecified, <cnum> is set to 1.

<bool>

State of phase sweep:

OFF (or 0)  Phase Sweep disabled.

ON (or 1)  Phase Sweep enabled.

Examples

CALC:FSIM:BAL:PHAS:SWE:STAT 0

calculate2:fsimulator:balun:phase:sweep:state on

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:PHASe:SWEep:STATe?

Return Type

Boolean

Default

Off


CALCulate<cnum>:FSIMulator:BALun:STIMulus:MODE <value>

(Read-Write) Sets the stimulus mode of the PNA source. True Mode settings requires Opt 460.

Learn more about iTMSA.

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<value>

Stimulus mode. When a True-Mode is selected, the Balanced port powers are automatically uncoupled. Choose from:

SE - Single-Ended stimulus

TM - True-Mode stimulus

FTM - Forward only True-Mode stimulus

RTM - Reverse only True-Mode stimulus

Examples

CALC:FSIM:BAL:STIM:MODE SE
calculate2:fsimulator:balun:stimulus:mode rtm

See example program

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:STIMulus:MODE?

Return Type

Character

Default

SE


CALCulate<cnum>:FSIMulator:BALun:TOPology:BALSended[:PPORts] <bPos>,<bNeg>,<se>

(Read-Write) For a Balanced - Single-ended device type, maps the PNA ports to the DUT ports.

Set the Balanced - Single-ended device type using CALC:FSIM:BAL:DEV

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<bPos>

<bNeg>

<se>

 

PNA port number that connects to each of the following DUT ports:

Examples

CALC:FSIM:BAL:TOP:BALS 1,2,3

calculate1:fsimulator:balun:topology:balsended:pports 4,3,2

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:TOPology:BALSended[:PPORts]?

Return Type

Numeric - Returns three numbers separated by commas.

Default

Not Applicable


CALCulate<cnum>:FSIMulator:BALun:TOPology:BBALanced[:PPORts] <p1Pos>,<p1Neg>,<p2Pos>,<p2Neg>

(Read-Write) For a Balanced - Balanced device type, maps the PNA ports to the DUT ports.

Set the Balanced - Balanced device type using CALC:FSIM:BAL:DEV

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<p1Pos>

<p1Neg>

<p2Pos>

<p2Neg>

 

PNA port number that connects to each of the following DUT ports:

Examples

CALC:FSIM:BAL:TOP:BBAL 1,2,3,4

calculate1:fsimulator:balun: topology:bbalanced:pports 4,3,2,1

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:TOPology:BBALanced[:PPORts]?

Return Type

Numeric - Returns four numbers separated by commas.

Default

Not Applicable


CALCulate<cnum>:FSIMulator:BALun:TOPology:SBALanced[:PPORts] <se>,<bPos>,<bNeg>

(Read-Write) For a Single-ended - Balanced device type, maps the PNA ports to the DUT ports.

Set the Single-ended - Balanced device type using CALC:FSIM:BAL:DEV

See Critical Note

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<se>

<bPos>

<bNeg>

 

PNA port number that connects to each of the following DUT ports:

Examples

CALC:FSIM:BAL:TOP:SBAL 1,2,3

calculate1:fsimulator:balun: topology:sbalanced:pports 4,3,2

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:TOPology:SBALanced[:PPORts]?

Return Type

Numeric - Returns three numbers separated by commas.

Default

Not Applicable


CALCulate<cnum>:FSIMulator:BALun:TOPology:SSBalanced[:PPORts] <se1>,<se2>,<bPos>,<bNeg>

(Read-Write) For a Single-ended - Single-ended - Balanced device type, maps the PNA ports to the DUT ports.

Set the Single-ended - Single-ended - Balanced device type using CALC:FSIM:BAL:DEV

See Critical

Parameters

 

<cnum>

Channel number of the measurement. There must be a selected measurement on that channel. If unspecified, <cnum> is set to 1.

<se1>

<se2>

<bPos>

<bNeg>

 

PNA port number that connects to each of the following DUT ports:

Examples

CALC:FSIM:BAL:TOP:SSB 1,2,3,4

calculate1:fsimulator:balun:topology:ssbalanced:pports 4,3,2,1

Query Syntax

CALCulate<cnum>:FSIMulator:BALun:TOPology:SSBalanced[:PPORts]?

Return Type

Numeric - Returns four numbers separated by commas.

Default

Not Applicable


Last Modified:

25-Apr-2012

Added SE>Bal top (9.70)

3-Jun-2008

Added iTMSA commands