Calculation Parameters
Calculation Parameters — Resource properties available for use by commands and output
Description
Parameters are named resource properties that can be used to obtain data for use by Mission Sequence commands or by output resources. Some parameters, such as the Altitude parameter of Spacecraft, are calculated values that can only be used to retrieve data. They cannot be set directly. Others, such as the Element1 parameter of ImpulsiveBurn, share the same name as a resource field and can be used both to set data and retrieve it. Parameters are distinguished from resource fields by their extra functionality: fields are static resource properties that are usually set in initialization (or in the GUI Resources tree), while parameters can be calculated on the fly and used in plots, reports, and mathematical expressions.
Parameters are classified as one of four types:
central-body-dependent parameters, coordinate-system-dependent parameters,
attached-hardware parameters, and standalone parameters. Standalone
parameters are the simplest type, as they have no dependencies. The
ElapsedSecs parameter of
Spacecraft is an example of this; it is simply
referenced as
Spacecraft
.ElapsedSecs.
Central-body-dependent parameters, as the name suggests, have a
value that is dependent on the chosen celestial body. The
Altitude parameter of Spacecraft
is an example of this. To reference this parameter, you must specify a
central body, such as
Spacecraft
.Mars.Altitude.
Any built-in central body or user-defined Asteroid,
Comet, Moon, or
Planet is valid as a dependency.
Likewise, coordinate-system-dependent parameters have a value that
is dependent on the chosen coordinate system. The DEC
parameter of Spacecraft is an example of this. To
reference this parameter, you must specify the name of a
CoordinateSystem resource, such as
Spacecraft
.EarthFixed.DEC.
Any default or user-defined CoordinateSystem resource
is valid as a dependency.
If a dependency is used when retrieving the value of the parameter,
as in the following line, the value of Altitude is
calculated at Mars before setting it to the variable x
.
If the dependency is omitted, Earth and
EarthMJ2000Eq are assumed unless noted
otherwise.
x = DefaultSC.Mars.Altitude
If a dependency is used when setting the value of a parameter, the
value of the parameter is first converted based on the value of the
dependency, then the value is set. For example, in the following line, the
value of SMA is first calculated at Mars, then it is
set to the value 10000
in that context. If the
dependency is omitted when setting the value, the default is assumed to be
the central body or coordinate system of the parent resource (in this
case, DefaultSC).
DefaultSC.Mars.SMA = 10000
Attached-hardware parameters have no dependencies, but are
themselves dependent on being attached to a
Spacecraft. ChemicalTank and
ChemicalThruster parameters are examples of this. The
FuelMass parameter of
ChemicalTank cannot be referenced without first
attaching the ChemicalTank to a
Spacecraft. Then, the parameter can be referenced as:
Spacecraft
.FuelTank.FuelMass.
The individual parameters are resource-specific, and are documented in the tables below. The GUI has a parameter selection interface that is common to all parameters. This interface is documented in GUI, below.
See Also: Array, ChemicalTank, ImpulsiveBurn, FiniteBurn, Spacecraft, String, ChemicalThruster, Variable
GUI
Parameters can be used as input in several places throughout GMAT, such as the ReportFile and XYPlot resources and the If/Else, Propagate, and Report commands. In the GUI, all of these use a common interface called the ParameterSelectDialog that allows for interactive parameter selection. A basic ParameterSelectDialog window looks like the following:
The ParameterSelectDialog window is used to build a parameter, along with any dependencies, for use in a command or resource. Some resources and commands have different requirements for the types of parameters that can be used, so the ParameterSelectDialog can take slightly different forms, depending on where it's used. This section will describe the generic interface, then mention any resource- or command-specific exceptions.
General Usage
The first step in choosing a parameter is to select the object (or resource) type from the Object Type list in the upper left. Seven types can appear in this list: Spacecraft, SpacePoint, ImpulsiveBurn, FiniteBurn, Variable, Array, and String.
Once you've selected a type, The Object List box is populated with all existing resources of that type. Use this list to choose the specific resource you'd like to reference.
If the Spacecraft type is selected, the Attached Hardware List appears below the Object List. This list displays any hardware (such as ChemicalTank or ChemicalThruster resources) attached to the selected Spacecraft. If the Array type is selected, Row and Col boxes appear. Use these to specify a row and column to select an individual array element, or check Select Entire Object to choose the entire array.
Once a resource is selected, the Object Properties list is populated with all available parameters provided by that resource. Some resources, such as instances of Variable or Array, are themselves parameters, so this list remains empty.
Parameters with different dependency types are commingled in the Object Properties list. When you select one, the appropriate dependency (if any) appears below the list. For example, after selecting the Spacecraft AOP parameter, a CoordinateSystem list appears. After selecting the Spacecraft Apoapsis parameter, a Central Body list appears. And after selecting the Spacecraft Cd parameter, no dependency list appears. To select a range of parameters from the Object Properties list, hold down the Shift key while selecting the second endpoint of the range. To select multiple individual parameters, hold down the Ctrl key while making each selection.
To select a parameter, select the appropriate Object Type, the specific resource from the Object List or Attached Hardware List, the desired parameter from the Object Properties list, and the required dependency, and add it to the Selected Value(s) list on the right. There are six buttons available to control this list:
-
UP: Move the selected item in the Selected Value(s) list up one position (if allowed).
-
DN: Move the selected item in the Selected Value(s) list down one position (if allowed).
-
->: Add the selected item in the Object Properties list to the Selected Value(s) list.
-
<-: Remove the selected item in the Selected Value(s) list.
-
=>: Add all items to the Selected Value(s) list.
-
<=: Remove all items from the Selected Value(s) list.
When finished, the Selected Value(s) list contains the final selected parameters. Click OK to accept the selection.
The ordering of the Selected Value(s) list is significant in certain circumstances (such as in the Add field of ReportFile), but not in others. See the documentation for each resource or command for details.
Special Considerations
Some resources and commands (such as the Propagate command Parameter argument) only accept a single parameter as input; in this context the ParameterSelectDialog only allows one parameter in the Selected Value(s) list and does not allow use of the UP, DN, and => buttons.
In some instances (such as in the Vary command), only parameters that are also fields (and so can be set in the Mission Sequence) can be used. In this case only the allowed parameters will be shown in the Object Properties list.
In the Propagate command Parameter argument, only parameters of Spacecraft can be used. In this case only Spacecraft will be shown in the Object Type list.
Parameters
Spacecraft
Parameter | Settable | Plottable | Description | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A1Gregorian | Y | N |
Spacecraft epoch in the A.1 system and the Gregorian format.
|
||||||||
A1ModJulian | Y | Y |
Spacecraft epoch in the A.1 system and the Modified Julian format.
|
||||||||
Acceleration | N | Y |
The total acceleration with respect to the inertial system computed using the ForceModel selected for the dependency.
|
||||||||
AccelerationX | N | Y |
The x-component of acceleration with respect to the inertial system computed using the ForceModel selected for the dependency.
|
||||||||
AccelerationY | N | Y |
The y-component of acceleration with respect to the inertial system computed using the ForceModel selected for the dependency.
|
||||||||
AccelerationZ | N | Y |
The z-component of acceleration with respect to the inertial system computed using the ForceModel selected for the dependency.
|
||||||||
AltEquinoctialP | Y | Y |
See Spacecraft.AltEquinoctialP
|
||||||||
AltEquinoctialQ | Y | Y |
See Spacecraft.AltEquinoctialQ
|
||||||||
Altitude | N | Y |
Distance to the plane tangent to the surface of the specified celestial body at the sub-satellite point. GMAT assumes the body is an ellipsoid.
|
||||||||
AngularVelocityX | Y | Y |
See Spacecraft.AngularVelocityX
|
||||||||
AngularVelocityY | Y | Y |
See Spacecraft.AngularVelocityY
|
||||||||
AngularVelocityZ | Y | Y |
See Spacecraft.AngularVelocityZ
|
||||||||
AOP | Y | Y |
See Spacecraft.AOP
|
||||||||
Apoapsis | N | Y |
A parameter that equals zero when the spacecraft is at orbit apoapsis. This parameter can only be used as a stopping condition in the Propagate command.
|
||||||||
AtmosDensity | N | Y |
The atmospheric density at the current Spacecraft epoch and location computed using the ForceModel selected for the dependency.
|
||||||||
AZI | Y | Y |
See Spacecraft.AZI
|
||||||||
BdotR | N | Y |
B-plane B·R magnitude. GMAT computes the B-plane coordinates in the coordinate system specified in the dependency. In many implementations, the B-plane coordinates are computed in a pseudo-rotating coordinate system where the ω×r term is not applied when transforming velocity vectors. GMAT does apply the ω×r term in the velocity transformation. When computing B-plane coordinates in inertial systems, this term is identically zero. For rotating systems such as the Sun-Earth body-body rotating system, the effect of including ω×r is small but noticeable when comparing results between systems. When the rotation of the selected coordinate system is "fast", the values may differ significantly.
|
||||||||
BdotT | N | Y |
B-plane B·T magnitude. See the BdotR parameter for notes on this calculation.
|
||||||||
BetaAngle | N | Y |
Beta angle (or phase angle) between the orbit normal vector and the vector from the celestial body to the sun.
|
||||||||
BrouwerLongAOP | Y | Y |
See Spacecraft.BrouwerLongAOP.
|
||||||||
BrouwerLongECC | Y | Y |
See Spacecraft.BrouwerLongECC.
|
||||||||
BrouwerLongINC | Y | Y |
See Spacecraft.BrouwerLongINC.
|
||||||||
BrouwerLongMA | Y | Y |
|
||||||||
BrouwerLongRAAN | Y | Y |
See Spacecraft.BrouwerLongRAAN.
|
||||||||
BrouwerLongSMA | Y | Y |
See Spacecraft.BrouwerLongSMA.
|
||||||||
BrouwerShortAOP | Y | Y |
See Spacecraft.BrouwerShortAOP.
|
||||||||
BrouwerShortECC | Y | Y |
See Spacecraft.BrouwerShortECC.
|
||||||||
BrouwerShortINC | Y | Y |
See Spacecraft.BrouwerShortINC.
|
||||||||
BrouwerShortMA | Y | Y |
See Spacecraft.BrouwerShortMA.
|
||||||||
BrouwerShortRAAN | Y | Y |
See Spacecraft.BrouwerShortRAAN.
|
||||||||
BrouwerShortSMA | Y | Y |
See Spacecraft.BrouwerShortSMA.
|
||||||||
BVectorAngle | N | Y |
B-plane angle between the B vector and the T unit vector. See the BdotR parameter for notes on this calculation.
|
||||||||
BVectorMag | N | Y |
B-plane B vector magnitude. See the BdotR parameter for notes on this calculation.
|
||||||||
C3Energy | N | Y |
C3 (characteristic) energy.
|
||||||||
Cd | Y | Y |
See Spacecraft.Cd
|
||||||||
Cr | Y | Y |
See Spacecraft.Cr
|
||||||||
CurrA1MJD | Y | Y |
Deprecated. Spacecraft epoch in the A.1 system and the Modified Julian format.
|
||||||||
DCM11 | Y | Y |
See Spacecraft.DCM11
|
||||||||
DCM12 | Y | Y |
See Spacecraft.DCM12
|
||||||||
DCM13 | Y | Y |
See Spacecraft.DCM13
|
||||||||
DCM21 | Y | Y |
See Spacecraft.DCM21
|
||||||||
DCM22 | Y | Y |
See Spacecraft.DCM22
|
||||||||
DCM23 | Y | Y |
See Spacecraft.DCM23
|
||||||||
DCM31 | Y | Y |
See Spacecraft.DCM31
|
||||||||
DCM32 | Y | Y |
See Spacecraft.DCM32
|
||||||||
DCM33 | Y | Y |
See Spacecraft.DCM33
|
||||||||
DEC | Y | Y |
See Spacecraft.DEC
|
||||||||
DECV | Y | Y |
See Spacecraft.DECV
|
||||||||
Delaunayg | Y | Y |
See Spacecraft.Delaunayg.
|
||||||||
DelaunayG | Y | Y |
See Spacecraft.DelaunayG.
|
||||||||
Delaunayh | Y | Y |
See Spacecraft.Delaunayh.
|
||||||||
DelaunayH | Y | Y |
See Spacecraft.DelaunayH.
|
||||||||
Delaunayl | Y | Y |
See Spacecraft.Delaunayl.
|
||||||||
DelaunayL | Y | Y |
See Spacecraft.DelaunayL.
|
||||||||
DLA | N | Y |
Declination of the outgoing hyperbolic asymptote.
|
||||||||
DragArea | Y | Y |
|
||||||||
DryMass | Y | Y |
|
||||||||
EA | N | Y |
Eccentric anomaly.
|
||||||||
ECC | Y | Y |
See Spacecraft.ECC
|
||||||||
ElapsedDays | N | Y |
|
||||||||
ElapsedSecs | N | Y |
|
||||||||
Energy | N | Y |
Specific orbital energy.
|
||||||||
EquinoctialH | Y | Y |
|
||||||||
EquinoctialK | Y | Y |
|
||||||||
EquinoctialP | Y | Y |
|
||||||||
EquinoctialQ | Y | Y |
|
||||||||
EulerAngle1 | Y | Y |
|
||||||||
EulerAngle2 | Y | Y |
|
||||||||
EulerAngle3 | Y | Y |
|
||||||||
EulerAngleRate1 | Y | Y |
See Spacecraft.EulerAngleRate1
|
||||||||
EulerAngleRate2 | Y | Y |
See Spacecraft.EulerAngleRate2
|
||||||||
EulerAngleRate3 | Y | Y |
See Spacecraft.EulerAngleRate3
|
||||||||
FPA | Y | Y |
See Spacecraft.FPA
|
||||||||
HA | N | Y |
Hyperbolic anomaly.
|
||||||||
HMAG | N | Y |
Magnitude of the angular momentum vector.
|
||||||||
HX | N | Y |
X component of the angular momentum vector.
|
||||||||
HY | N | Y |
Y component of the angular momentum vector.
|
||||||||
HZ | N | Y |
Z component of the angular momentum vector.
|
||||||||
INC | Y | Y |
See Spacecraft.INC
|
||||||||
IncomingBVAZI | Y | Y |
|
||||||||
IncomingC3Energy | Y | Y |
See Spacecraft.IncomingC3Energy.
|
||||||||
IncomingDHA | Y | Y |
|
||||||||
IncomingRadPer | Y | Y |
|
||||||||
IncomingRHA | Y | Y |
|
||||||||
Latitude | N | Y |
Planetodetic latitude.
|
||||||||
Longitude | N | Y |
Planetodetic longitude.
|
||||||||
LST | N | Y |
Local sidereal time of the spacecraft from the celestial body's inertial x-axis.
|
||||||||
MA | N | Y |
Mean anomaly.
|
||||||||
MHA | N | Y |
Angle between celestial body's body-fixed and inertial axes. For Earth, this is the Greenwich Hour Angle.
|
||||||||
MLONG | Y | Y |
See Spacecraft.MLONG
|
||||||||
MM | N | Y |
Mean motion.
|
||||||||
ModEquinoctialF | Y | Y |
See Spacecraft.ModEquinoctialF
|
||||||||
ModEquinoctialG | Y | Y |
See Spacecraft.ModEquinoctialG
|
||||||||
ModEquinoctialH | Y | Y |
See Spacecraft.ModEquinoctialH
|
||||||||
ModEquinoctialK | Y | Y |
See Spacecraft.ModEquinoctialK
|
||||||||
MRP1 | Y | Y |
See Spacecraft.MRP1
|
||||||||
MRP2 | Y | Y |
See Spacecraft.MRP2
|
||||||||
MRP3 | Y | Y |
See Spacecraft.MRP3
|
||||||||
OrbitPeriod | N | Y |
Osculating orbit period.
|
||||||||
OrbitSTM | N | N |
State transition matrix with respect to the origin-independent MJ2000Eq axes.
|
||||||||
OrbitSTMA | N | N |
Upper-left quadrant of the state transition matrix, with respect to the origin-independent MJ2000Eq axes.
|
||||||||
OrbitSTMB | N | N |
Upper-right quadrant of the state transition matrix, with respect to the origin-independent MJ2000Eq axes.
|
||||||||
OrbitSTMC | N | N |
Lower-left quadrant of the state transition matrix, with respect to the origin-independent MJ2000Eq axes.
|
||||||||
OrbitSTMD | N | N |
Lower-right quadrant of the state transition matrix, with respect to the origin-independent MJ2000Eq axes.
|
||||||||
OutgoingBVAZI | Y | Y |
|
||||||||
OutgoingC3Energy | Y | Y |
See Spacecraft.OutgoingC3Energy.
|
||||||||
OutgoingDHA | Y | Y |
|
||||||||
OutgoingRadPer | Y | Y |
|
||||||||
OutgoingRHA | Y | Y |
|
||||||||
Periapsis | N | Y |
A parameter that equals zero when the spacecraft is at orbit periapsis. This parameter can only be used as a stopping condition in the Propagate command.
|
||||||||
PlanetodeticAZI | Y | Y |
See Spacecraft.PlanetodeticAZI. This parameter must be used with a CoordinateSystem with BodyFixed axes.
|
||||||||
PlanetodeticHFPA | Y | Y |
See Spacecraft.PlanetodeticHFPA. This parameter must be used with a CoordinateSystem with BodyFixed axes.
|
||||||||
PlanetodeticLAT | Y | Y |
See Spacecraft.PlanetodeticLAT. This parameter must be used with a CoordinateSystem with BodyFixed axes.
|
||||||||
PlanetodeticLON | Y | Y |
See Spacecraft.PlanetodeticLON. This parameter must be used with a CoordinateSystem with BodyFixed axes.
|
||||||||
PlanetodeticRMAG | Y | Y |
See Spacecraft.PlanetodeticRMAG. This parameter must be used with a CoordinateSystem with BodyFixed axes.
|
||||||||
PlanetodeticVMAG | Y | Y |
See Spacecraft.PlanetodeticVMAG. This parameter must be used with a CoordinateSystem with BodyFixed axes.
|
||||||||
Q1 | N | Y |
See Spacecraft.Q1
|
||||||||
Q2 | N | Y |
See Spacecraft.Q2
|
||||||||
Q3 | N | Y |
See Spacecraft.Q3
|
||||||||
Q4 | N | Y |
See Spacecraft.Q4
|
||||||||
Quaternion | Y | N |
Attitude quaternion.
|
||||||||
RA | Y | Y |
See Spacecraft.RA
|
||||||||
RAAN | Y | Y |
See Spacecraft.RAAN
|
||||||||
RadApo | Y | Y |
|
||||||||
RadPer | Y | Y |
|
||||||||
RAV | Y | Y |
See Spacecraft.RAV
|
||||||||
RLA | N | Y |
Right ascension of the outgoing hyperbolic asymptote.
|
||||||||
RMAG | Y | Y |
See Spacecraft.RMAG
|
||||||||
SemilatusRectum | Y | Y |
See Spacecraft.SemilatusRectum
|
||||||||
SemilatusRectum | N | Y |
Semilatus rectum of the osculating orbit.
|
||||||||
SMA | Y | Y |
See Spacecraft.SMA
|
||||||||
SRPArea | Y | Y |
|
||||||||
TA | Y | Y |
See Spacecraft.TA.
|
||||||||
TAIGregorian | Y | N |
Spacecraft epoch in the TAI system and the Gregorian format.
|
||||||||
TAIModJulian | Y | Y |
Spacecraft epoch in the TAI system and the Modified Julian format.
|
||||||||
TDBGregorian | Y | N |
Spacecraft epoch in the TDB system and the Gregorian format.
|
||||||||
TDBModJulian | Y | Y |
Spacecraft epoch in the TDB system and the Modified Julian format.
|
||||||||
TLONG | Y | Y |
See Spacecraft.TLONG
|
||||||||
TotalMass | N | Y |
Total mass, including fuel mass from attached ChemicalTank resources.
|
||||||||
TTGregorian | Y | N |
Spacecraft epoch in the TT system and the Gregorian format.
|
||||||||
TTModJulian | Y | Y |
Spacecraft epoch in the TT system and the Modified Julian format.
|
||||||||
UTCGregorian | Y | N |
Spacecraft epoch in the UTC system and the Gregorian format.
|
||||||||
UTCModJulian | Y | Y |
Spacecraft epoch in the UTC system and the Modified Julian format.
|
||||||||
VelApoapsis | N | Y |
Scalar velocity at apoapsis.
|
||||||||
VelPeriapsis | N | Y |
Scalar velocity at periapsis.
|
||||||||
VMAG | Y | Y |
See Spacecraft.VMAG
|
||||||||
VX | Y | Y |
See Spacecraft.VX
|
||||||||
VY | Y | Y |
See Spacecraft.VY
|
||||||||
VZ | Y | Y |
See Spacecraft.VZ
|
||||||||
X | Y | Y |
See Spacecraft.X
|
||||||||
Y | Y | Y |
See Spacecraft.Y
|
||||||||
Z | Y | Y |
See Spacecraft.Z
|
FuelTank
ChemicalTank parameters are accessible only after attaching the ChemicalTank resource to a Spacecraft, like so:
Create FuelTank aTank
Create Spacecraft aSat
aSat.Tanks = {aTank}
Then, ChemicalTank parameters are accessible by specifying the ChemicalTank name as the parameter dependency:
Create ReportFile aReport
aReport.Add = {aSat.aTank.FuelMass}
Parameter | Settable | Plottable | Description | ||||||
---|---|---|---|---|---|---|---|---|---|
FuelDensity | Y | Y |
|
||||||
FuelMass | Y | Y |
|
||||||
Pressure | Y | Y |
|
||||||
RefTemperature | Y | Y |
See ChemicalTank.RefTemperature
|
||||||
Temperature | Y | Y |
|
||||||
Volume | Y | Y |
|
Space Point Parameters
All Resources that have coordinates in space have Cartesian position and velocity parameters, so you can access ephemeris information. This includes all built-in solar system bodies and other Resources such as CelestialBody,Planet, Moon, Asteroid, Comet, Barycenter, LibrationPoint, and GroundStation :
-
CelestialBody
.CoordinateSystem
.X -
CelestialBody
.CoordinateSystem
.Y -
CelestialBody
.CoordinateSystem
.Z -
CelestialBody
.CoordinateSystem
.VX -
CelestialBody
.CoordinateSystem
.VY -
CelestialBody
.CoordinateSystem
.VZ
Warning
Note that to use these parameters, you must first set the epoch of the Resource to the desired epoch at which you want the data. Additionally, the epoch should be set after the BeginMissionSequence Command. See the following example.
Create ReportFile rf
BeginMissionSequence
Luna.Epoch.A1ModJulian = 21545
Report rf Luna.EarthMJ2000Eq.X Luna.EarthMJ2000Eq.Y Luna.EarthMJ2000Eq.Z ...
Luna.EarthMJ2000Eq.VX Luna.EarthMJ2000Eq.VY Luna.EarthMJ2000Eq.VZ
Note
Spacecraft parameters are treated slightly different than Space Point parameters primarly because Spacecraft Cartesian state parameters are settable, and all other Space Point Cartesian parameters are only gettable. When requesting state information for Space Points other than Spacecraft, the coordinates are computed based on the model configured for that Resource. Additionally, not all epoch configuration options supported for Spacecraft are supported for Space Points (i.e. Epoch and DateFormat).
Parameter | Settable | Plottable | Description | ||||||
---|---|---|---|---|---|---|---|---|---|
A1Gregorian | Y | N |
Resource epoch in the A.1 system and the Gregorian format.
|
||||||
A1ModJulian | Y | Y |
Resource epoch in the A.1 system and the Modified Julian format.
|
||||||
TAIGregorian | Y | N |
Resource epoch in the TAI system and the Gregorian format.
|
||||||
TAIModJulian | Y | Y |
Resource epoch in the TAI system and the Modified Julian format.
|
||||||
TDBGregorian | Y | N |
Resource epoch in the TDB system and the Gregorian format.
|
||||||
TDBModJulian | Y | Y |
Resource epoch in the TDB system and the Modified Julian format.
|
||||||
TTGregorian | Y | N |
Resource epoch in the TT system and the Gregorian format.
|
||||||
TTModJulian | Y | Y |
Resource epoch in the TT system and the Modified Julian format.
|
||||||
UTCGregorian | Y | N |
Resource epoch in the UTC system and the Gregorian format.
|
||||||
UTCModJulian | Y | Y |
Resource epoch in the UTC system and the Modified Julian format.
|
||||||
VX | N | Y |
The x-component of velocity with respect to the CoordinateSystem chosen as the dependency. When no dependency is selected, EarthMJ2000Eq is used.
|
||||||
VY | N | Y |
The y-component of velocity with respect to the CoordinateSystem chosen as the dependency. When no dependency is selected, EarthMJ2000Eq is used.
|
||||||
VZ | N | Y |
The z-component of velocity with respect to the CoordinateSystem chosen as the dependency. When no dependency is selected, EarthMJ2000Eq is used.
|
||||||
X | N | Y |
The x-component of position with respect to the CoordinateSystem chosen as the dependency. When no dependency is selected, EarthMJ2000Eq is used.
|
||||||
Y | N | Y |
The y-component of position with respect to the CoordinateSystem chosen as the dependency. When no dependency is selected, EarthMJ2000Eq is used.
|
||||||
Z | N | Y |
The z-component of position with respect to the CoordinateSystem chosen as the dependency. When no dependency is selected, EarthMJ2000Eq is used.
|
Thruster
ChemicalThruster parameters are accessible only after attaching the ChemicalThruster resource to a Spacecraft, like so:
Create Thruster aThruster
Create Spacecraft aSat
aSat.Thrusters = {aThruster}
Then, ChemicalThruster parameters are accessible by specifying the ChemicalThruster name as the parameter dependency:
Create ReportFile aReport
aReport.Add = {aSat.aThruster.DutyCycle}
The table below shows reportable thruster based parameters:
Parameter | Settable | Plottable | Description | ||||||
---|---|---|---|---|---|---|---|---|---|
C1 | Y | Y |
|
||||||
C2 | Y | Y |
|
||||||
C3 | Y | Y |
|
||||||
C4 | Y | Y |
|
||||||
C5 | Y | Y |
|
||||||
C6 | Y | Y |
|
||||||
C7 | Y | Y |
|
||||||
C8 | Y | Y |
|
||||||
C9 | Y | Y |
|
||||||
C10 | Y | Y |
|
||||||
C11 | Y | Y |
|
||||||
C12 | Y | Y |
|
||||||
C13 | Y | Y |
|
||||||
C14 | Y | Y |
|
||||||
C15 | Y | Y |
|
||||||
C16 | Y | Y |
|
||||||
DutyCycle | Y | Y |
See ChemicalThruster.DutyCycle
|
||||||
GravitationalAccel | Y | Y |
See ChemicalThruster.GravitationalAccel
|
||||||
Isp | Y | Y |
Specific impulse of an individual thruster. When thruster(s) is not turned on, GMAT will report zeros to a report file.
|
||||||
K1 | Y | Y |
|
||||||
K2 | Y | Y |
|
||||||
K3 | Y | Y |
|
||||||
K4 | Y | Y |
|
||||||
K5 | Y | Y |
|
||||||
K6 | Y | Y |
|
||||||
K7 | Y | Y |
|
||||||
K8 | Y | Y |
|
||||||
K9 | Y | Y |
|
||||||
K10 | Y | Y |
|
||||||
K11 | Y | Y |
|
||||||
K12 | Y | Y |
|
||||||
K13 | Y | Y |
|
||||||
K14 | Y | Y |
|
||||||
K15 | Y | Y |
|
||||||
K16 | Y | Y |
|
||||||
MassFlowRate | N | Y |
Mass flow rate from an individual thruster. When thruster(s) is not turned on, GMAT will report zeros to a report file.
|
||||||
ThrustDirection1 | Y | Y |
See ChemicalThruster.ThrustDirection1
|
||||||
ThrustDirection2 | Y | Y |
See ChemicalThruster.ThrustDirection2
|
||||||
ThrustDirection3 | Y | Y |
See ChemicalThruster.ThrustDirection3
|
||||||
ThrustMagnitude | Y | Y |
Magnitude of the thrust from an individual thruster. When thruster(s) is not turned on, GMAT will report zeros to a report file.
|
||||||
ThrustScaleFactor | Y | Y |
See ChemicalThruster.ThrustScaleFactor
|
ImpulsiveBurn
To compute ImpulsiveBurn parameters, GMAT requires that an ImpulsiveBurn has been executed using a Maneuver command like this:
Maneuver myImpulsiveBurn(mySat)
In the case that an ImpulsiveBurn has not been applied, GMAT will output zeros for the ImpulsiveBurn components and issue a warning.
We recommended that you evaluate ImpulsiveBurn parameters immediately after the ImpulsiveBurn is applied using the Maneuver command like this:
Maneuver myImpulsiveBurn(mySat)
myVar = mySat.MyCoordinateSystem.Element1
The above usage avoids issues that may occur if the ImpulsiveBurn coordinate system is time varying, and the ImpulsiveBurn parameters are requested after further manipulation of the participants using other commands (such as Propagate). In that case, it is possible that the participants are no longer at the epoch of the maneuver, and unexpected results can occur due to epoch mismatches.
Parameter | Settable | Plottable | Description | ||||||
---|---|---|---|---|---|---|---|---|---|
B | Y | Y |
See ImpulsiveBurn.B
|
||||||
Element1 | Y | Y |
|
||||||
Element2 | Y | Y |
|
||||||
Element3 | Y | Y |
|
||||||
N | Y | Y |
See ImpulsiveBurn.N
|
||||||
V | Y | Y |
See ImpulsiveBurn.V
|
FiniteBurn
To compute FiniteBurn parameters, GMAT requires that a FiniteBurn has been executed using a BeginFiniteBurn command like this:
BeginFiniteBurn Maneuver myFiniteBurn(mySat)
In the case that a FiniteBurn has not been applied, GMAT will output zeros for all reportable FiniteBurn parameters to a report file. All finite burn parameters will report zeros whenever a finite burn is not turned on. The table below shows reportable finite burn parameters:
Parameter | Settable | Plottable | Description | ||||||
---|---|---|---|---|---|---|---|---|---|
TotalAcceleration1 | N | Y |
First component of the total acceleration from all thrusters in the three coordinate directions of a J2000 system. Zero is reported whenever thruster is not turned on
|
||||||
TotalAcceleration2 | N | Y |
Second component of the total acceleration from all thrusters in the three coordinate directions of a J2000 system. Zero is reported whenever thruster is not turned on
|
||||||
TotalAcceleration3 | N | Y |
Third component of the total acceleration from all thrusters in the three coordinate directions of a J2000 system. Zero is reported whenever thruster is not turned on
|
||||||
TotalMassFlowRate | N | Y |
Total mass flow rate from all thrusters. Zero is reported whenever thruster is not turned on
|
||||||
TotalThrust1 | N | Y |
First component of the total thrust from all thrusters in the three coordinate directions of a J2000 system. Zero is reported whenever thruster is not turned on
|
||||||
TotalThrust2 | N | Y |
Second component of the total thrust from all thrusters in the three coordinate directions of a J2000 system. Zero is reported whenever thruster is not turned on
|
||||||
TotalThrust3 | N | Y |
Third component of the total thrust from all thrusters in the three coordinate directions of a J2000 system. Zero is reported whenever thruster is not turned on
|
Solver
Solver parameters allow you to query a Solver for its convergence state to determine if the Solver converged. There are both string and numeric parameters which are described in further detail in the table below the following usage example using solver parameters before and after a Target sequence.
Create Spacecraft aSat
Create Propagator aPropagator
Create ImpulsiveBurn aBurn
Create DifferentialCorrector aDC
Create OrbitView EarthView
EarthView.Add = {Earth,aSat}
EarthView.ViewScaleFactor = 5
Create ReportFile aReport
BeginMissionSequence
Report aReport aDC.SolverStatus aDC.SolverState
Target aDC
Vary aDC(aBurn.Element1 = 1.0, {Upper = 3})
Maneuver aBurn(aSat)
Propagate aPropagator(aSat,{aSat.Apoapsis})
Achieve aDC(aSat.RMAG = 42164)
EndTarget
Report aReport aDC.SolverStatus aDC.SolverState
Parameter | Settable | Plottable | Description | ||||||
---|---|---|---|---|---|---|---|---|---|
SolverStatus | N | N |
The SolverStatus parameter contains the state of a Solver. If the Solver has not executed, SolverStatus is Initialized. If the Solver has executed and converged, SolverStatus is Converged. If the Solver is iterating, SolverStatus is Running. If the Solver has executed and reached the maximum number of iterations before convergence, SolverStatus is ExceededIterations. If the Solver has executed and failed to converge, but did not exceed the maximum iterations, SolverStatus is DidNotConverge.
|
||||||
SolverState | N | Y |
The SolverState parameter contains the state of a Solver. If the solver has not executed, SolverState is 0. If the Solver has executed and converged, SolverState is 1. If the Solver is iterating, SolverState is 0. If the Solver has executed and reached the maximum number of iterations before convergence, SolverState is -1. If the Solver has executed and failed to converge, but did not exceed the maximum iterations, SolverState is -2.
|
Examples
Using parameters in the Mission Sequence:
Create Spacecraft aSat
Create Propagator aProp
Create ReportFile aReport
Create Variable i
BeginMissionSequence
% propagate for 100 steps
For i=1:100
Propagate aProp(aSat)
% write four parameters (one standalone, three coordinate-system-dependent) to a file
Report aReport aSat.TAIGregorian aSat.EarthFixed.X aSat.EarthFixed.Y aSat.EarthFixed.Z
EndFor
Using parameters as plot data:
Create Spacecraft aSat
Create Propagator aProp
Create XYPlot aPlot
aPlot.XVariable = aSat.TAIModJulian
aPlot.YVariables = {aSat.Earth.Altitude, aSat.Earth.ECC}
Create Variable i
BeginMissionSequence
% propagate for 100 steps
For i=1:100
Propagate aProp(aSat)
EndFor
Using parameters as stopping conditions:
Create Spacecraft aSat
aSat.SMA = 6678
Create ForceModel anFM
anFM.Drag.AtmosphereModel = MSISE90
Create Propagator aProp
aProp.FM = anFM
BeginMissionSequence
Propagate aProp(aSat) {aSat.Earth.Altitude = 100, aSat.ElapsedDays = 365}