CD Damping Ratio and Natural Frequency VI

Control Design VI and Function

CD Damping Ratio and Natural Frequency VI

Owning Palette: Dynamic Characteristics VIs

Installed With: Control Design and Simulation Module

Gives the damping ratios and natural frequencies of the poles of the input system. The data type you wire to the State-Space Model input determines the polymorphic instance to use.

Details  

Use the pull-down menu to select an instance of this VI.

 Place on the block diagram  Find on the Functions palette

CD Damping Ratio and Natural Frequency (State-Space)

State-Space Model contains a mathematical representation of and information about the system of which this VI determines damping ratio and natural frequency.
error in describes error conditions that occur before this VI or function runs. The default is no error. If an error occurred before this VI or function runs, the VI or function passes the error in value to error out. This VI or function runs normally only if no error occurred before this VI or function runs. If an error occurs while this VI or function runs, it runs normally and sets its own error status in error out. Use the Simple Error Handler or General Error Handler VIs to display the description of the error code. Use exception control to treat what is normally an error as no error or to treat a warning as an error. Use error in and error out to check errors and to specify execution order by wiring error out from one node to error in of the next node.
status is TRUE (X) if an error occurred before this VI or function ran or FALSE (checkmark) to indicate a warning or that no error occurred before this VI or function ran. The default is FALSE.
code is the error or warning code. The default is 0. If status is TRUE, code is a nonzero error code. If status is FALSE, code is 0 or a warning code.
source specifies the origin of the error or warning and is, in most cases, the name of the VI or function that produced the error or warning. The default is an empty string.
Damping Ratios returns the damping ratios for each pole in the system.
Natural Frequencies returns the natural frequencies for each pole in the system.
Poles returns the eigenvalues of state matrix A in state-space models.
error out contains error information. If error in indicates that an error occurred before this VI or function ran, error out contains the same error information. Otherwise, it describes the error status that this VI or function produces. Right-click the error out front panel indicator and select Explain Error from the shortcut menu for more information about the error.
status is TRUE (X) if an error occurred or FALSE (checkmark) to indicate a warning or that no error occurred.
code is the error or warning code. If status is TRUE, code is a nonzero error code. If status is FALSE, code is 0 or a warning code.
source describes the origin of the error or warning and is, in most cases, the name of the VI or function that produced the error or warning.

CD Damping Ratio and Natural Frequency (Transfer Function)

Transfer Function Model contains a mathematical representation of and information about the system of which this VI determines damping ratio and natural frequency.
error in describes error conditions that occur before this VI or function runs. The default is no error. If an error occurred before this VI or function runs, the VI or function passes the error in value to error out. This VI or function runs normally only if no error occurred before this VI or function runs. If an error occurs while this VI or function runs, it runs normally and sets its own error status in error out. Use the Simple Error Handler or General Error Handler VIs to display the description of the error code. Use exception control to treat what is normally an error as no error or to treat a warning as an error. Use error in and error out to check errors and to specify execution order by wiring error out from one node to error in of the next node.
status is TRUE (X) if an error occurred before this VI or function ran or FALSE (checkmark) to indicate a warning or that no error occurred before this VI or function ran. The default is FALSE.
code is the error or warning code. The default is 0. If status is TRUE, code is a nonzero error code. If status is FALSE, code is 0 or a warning code.
source specifies the origin of the error or warning and is, in most cases, the name of the VI or function that produced the error or warning. The default is an empty string.
Damping Ratios returns the damping ratios for each pole in the system.
Natural Frequencies returns the natural frequencies for each pole in the system.
Poles returns the roots of the denominator in transfer function models.
error out contains error information. If error in indicates that an error occurred before this VI or function ran, error out contains the same error information. Otherwise, it describes the error status that this VI or function produces. Right-click the error out front panel indicator and select Explain Error from the shortcut menu for more information about the error.
status is TRUE (X) if an error occurred or FALSE (checkmark) to indicate a warning or that no error occurred.
code is the error or warning code. If status is TRUE, code is a nonzero error code. If status is FALSE, code is 0 or a warning code.
source describes the origin of the error or warning and is, in most cases, the name of the VI or function that produced the error or warning.

CD Damping Ratio and Natural Frequency (Zero-Pole-Gain)

Zero-Pole-Gain Model contains a mathematical representation of and information about the system of which this VI determines damping ratio and natural frequency.
error in describes error conditions that occur before this VI or function runs. The default is no error. If an error occurred before this VI or function runs, the VI or function passes the error in value to error out. This VI or function runs normally only if no error occurred before this VI or function runs. If an error occurs while this VI or function runs, it runs normally and sets its own error status in error out. Use the Simple Error Handler or General Error Handler VIs to display the description of the error code. Use exception control to treat what is normally an error as no error or to treat a warning as an error. Use error in and error out to check errors and to specify execution order by wiring error out from one node to error in of the next node.
status is TRUE (X) if an error occurred before this VI or function ran or FALSE (checkmark) to indicate a warning or that no error occurred before this VI or function ran. The default is FALSE.
code is the error or warning code. The default is 0. If status is TRUE, code is a nonzero error code. If status is FALSE, code is 0 or a warning code.
source specifies the origin of the error or warning and is, in most cases, the name of the VI or function that produced the error or warning. The default is an empty string.
Damping Ratios returns the damping ratios for each pole in the system.
Natural Frequencies returns the natural frequencies for each pole in the system.
Poles returns the poles in zero-pole-gain models.
error out contains error information. If error in indicates that an error occurred before this VI or function ran, error out contains the same error information. Otherwise, it describes the error status that this VI or function produces. Right-click the error out front panel indicator and select Explain Error from the shortcut menu for more information about the error.
status is TRUE (X) if an error occurred or FALSE (checkmark) to indicate a warning or that no error occurred.
code is the error or warning code. If status is TRUE, code is a nonzero error code. If status is FALSE, code is 0 or a warning code.
source describes the origin of the error or warning and is, in most cases, the name of the VI or function that produced the error or warning.

CD Damping Ratio and Natural Frequency Details

This VI does not support delays unless the delays are part of the mathematical model that represents the dynamic system. To account for the delays when calculating the dynamic characteristics of a system, you must incorporate the delays into the mathematical model of the dynamic system using the CD Convert Delay with Pade Approximation VI (continuous models) or the CD Convert Delay to Poles at Origin VI (discrete models). Refer to the LabVIEW Control Design User Manual for more information about delays and the limitations of Pade Approximation.