HDR
High Dynamic Range | Широкий динамический диапазонОписание цвета реальными физическими величинами.
Привычной моделью описания изображения является RGB, когда все цвета представлены в виде суммы основных цветов: красного, зеленого и синего, с разной интенсивностью в виде возможных целочисленных значений от 0 до 255 для каждого, закодированных восемью битами на цвет. Отношение максимальной интенсивности к минимальной, доступной для отображения конкретной моделью или устройством, называется динамическим диапазоном. Так, динамический диапазон модели RGB составляет 256:1 или 100:1 cd/m2 (два порядка). Эта модель описания цвета и интенсивности общепринято называется Low Dynamic Range (LDR).
Возможных значений LDR для всех случаев явно недостаточно, человек способен видеть гораздо больший диапазон, особенно при малой интенсивности света, а модель RGB слишком ограничена в таких случаях (да и при больших интенсивностях тоже). Динамический диапазон зрения человека от 10-6 до 108 cd/m2, то есть 100000000000000:1 (14 порядков). Одновременно весь диапазон мы видеть не можем, но диапазон, видимый глазом в каждый момент времени, примерно равен 10000:1 (4 порядка). Зрение приспосабливается к значениям из другой части диапазона освещенности постепенно, при помощи так называемой адаптации, которую легко описать ситуацией с выключением света в комнате в темное время суток - сначала глаза видят очень мало, но со временем адаптируются к изменившимся условиям освещения и видят уже намного больше. То же самое случается и при обратной смене темной среды на светлую.
Итак, динамического диапазона модели описания RGB недостаточно для представления изображений, которые человек способен видеть в реальности, эта модель значительно уменьшает возможные значения интенсивности света в верхней и нижней части диапазона. Самый распространенный пример, приводимый в материалах по HDR, - изображение затемненного помещения с окном на яркую улицу в солнечный день. С RGB моделью можно получить или нормальное отображение того, что находится за окном, или только того, что внутри помещения. Значения больше 100 cd/m 2 в LDR вообще обрезаются, это является причиной тому, что в 3D-рендеринге трудно правильно отображать яркие источники света, направленные прямо в камеру.
Сами устройства отображения данных пока что серьезно улучшить нельзя, но отказ от LDR при расчетах имеет смысл. Можно использовать реальные физические величины интенсивности и цвета (или линейно пропорциональные), а на монитор выводить максимум того, что он сможет. Суть представления HDR в использовании значений интенсивности и цвета в реальных физических величинах или линейно пропорциональных и в том, чтобы использовать не целые числа, а числа с плавающей запятой с большой точностью (например, 16 или 32 бита). Это снимет ограничения модели RGB, а динамический диапазон изображения серьезно увеличится. Затем любое HDR изображение можно вывести на любом средстве отображения (том же RGB мониторе), с максимально возможным качеством для него при помощи специальных алгоритмов tone mapping.
HDR рендеринг позволяет изменять экспозицию уже после того, как мы отрендерили изображение, дает возможность имитировать эффект адаптации человеческого зрения (перемещение из ярких открытых пространств в темные помещения и наоборот), позволяет выполнять физически правильное освещение, а также является унифицированным решением для применения эффектов постобработки (glare, flares, bloom, motion blur). Алгоритмы обработки изображения, цветокоррекцию, гамма-коррекцию, motion blur, bloom и другие методы постобработки качественней выполнять в HDR представлении.
В приложениях 3D рендеринга реального времени (играх, в основном) HDR рендеринг начали использовать относительно недавно, ведь это требует вычислений и поддержки render target в форматах с плавающей точкой, которые впервые стали доступны только на видеочипах с поддержкой DirectX 9. Обычный путь HDR рендеринга в играх таков: рендеринг сцены в буфер формата с плавающей точкой, постобработка изображения в расширенном цветовом диапазоне (изменение контраста и яркости, цветового баланса, эффекты glare и motion blur, lens flare и подобные), применение tone mapping для вывода итоговой HDR картинки на LDR-экран. Иногда используются карты среды (environment maps) в HDR форматах, для статических отражений на объектах, весьма интересны применения HDR в имитации динамических преломлений и отражений, для этого также могут использоваться динамические карты в форматах с плавающей точкой. К этому можно добавить еще лайтмапы (light maps), заранее рассчитанные и сохраненные в HDR формате. Многое из перечисленного сделано, например, в Half-Life 2: Lost Coast.
HDR рендеринг очень полезен для комплексной постобработки более высокого качества, по сравнению с обычными методами. Тот же bloom будет выглядеть реалистичнее при расчетах в HDR модели представления.
К сожалению, в некоторых случаях разработчики игр могут скрывать под названием HDR просто фильтр bloom, рассчитываемый в обычном LDR-диапазоне. И хотя большая часть в том, что сейчас делают в играх с HDR рендерингом, как раз и есть bloom лучшего качества, выгода от HDR рендеринга не ограничивается одним этим постэффектом, просто его сделать легче всего.