SFML - Simple and Fast Multimedia Library

SMFL 2.3.2

Shader class (vertex and fragment) More...

#include <Shader.hpp>

Inheritance diagram for sf::Shader:
sf::GlResource sf::NonCopyable

Classes

struct  CurrentTextureType
 Special type that can be passed to setParameter, and that represents the texture of the object being drawn. More...
 

Public Types

enum  Type { Vertex, Fragment }
 Types of shaders. More...
 

Public Member Functions

 Shader ()
 Default constructor. More...
 
 ~Shader ()
 Destructor. More...
 
bool loadFromFile (const std::string &filename, Type type)
 Load either the vertex or fragment shader from a file. More...
 
bool loadFromFile (const std::string &vertexShaderFilename, const std::string &fragmentShaderFilename)
 Load both the vertex and fragment shaders from files. More...
 
bool loadFromMemory (const std::string &shader, Type type)
 Load either the vertex or fragment shader from a source code in memory. More...
 
bool loadFromMemory (const std::string &vertexShader, const std::string &fragmentShader)
 Load both the vertex and fragment shaders from source codes in memory. More...
 
bool loadFromStream (InputStream &stream, Type type)
 Load either the vertex or fragment shader from a custom stream. More...
 
bool loadFromStream (InputStream &vertexShaderStream, InputStream &fragmentShaderStream)
 Load both the vertex and fragment shaders from custom streams. More...
 
void setParameter (const std::string &name, float x)
 Change a float parameter of the shader. More...
 
void setParameter (const std::string &name, float x, float y)
 Change a 2-components vector parameter of the shader. More...
 
void setParameter (const std::string &name, float x, float y, float z)
 Change a 3-components vector parameter of the shader. More...
 
void setParameter (const std::string &name, float x, float y, float z, float w)
 Change a 4-components vector parameter of the shader. More...
 
void setParameter (const std::string &name, const Vector2f &vector)
 Change a 2-components vector parameter of the shader. More...
 
void setParameter (const std::string &name, const Vector3f &vector)
 Change a 3-components vector parameter of the shader. More...
 
void setParameter (const std::string &name, const Color &color)
 Change a color parameter of the shader. More...
 
void setParameter (const std::string &name, const Transform &transform)
 Change a matrix parameter of the shader. More...
 
void setParameter (const std::string &name, const Texture &texture)
 Change a texture parameter of the shader. More...
 
void setParameter (const std::string &name, CurrentTextureType)
 Change a texture parameter of the shader. More...
 
unsigned int getNativeHandle () const
 Get the underlying OpenGL handle of the shader. More...
 

Static Public Member Functions

static void bind (const Shader *shader)
 Bind a shader for rendering. More...
 
static bool isAvailable ()
 Tell whether or not the system supports shaders. More...
 

Static Public Attributes

static CurrentTextureType CurrentTexture
 Represents the texture of the object being drawn. More...
 

Static Private Member Functions

static void ensureGlContext ()
 Make sure that a valid OpenGL context exists in the current thread. More...
 

Detailed Description

Shader class (vertex and fragment)

Shaders are programs written using a specific language, executed directly by the graphics card and allowing to apply real-time operations to the rendered entities.

There are two kinds of shaders:

  • Vertex shaders, that process vertices
  • Fragment (pixel) shaders, that process pixels

A sf::Shader can be composed of either a vertex shader alone, a fragment shader alone, or both combined (see the variants of the load functions).

Shaders are written in GLSL, which is a C-like language dedicated to OpenGL shaders. You'll probably need to learn its basics before writing your own shaders for SFML.

Like any C/C++ program, a shader has its own variables that you can set from your C++ application. sf::Shader handles 5 different types of variables:

  • floats
  • vectors (2, 3 or 4 components)
  • colors
  • textures
  • transforms (matrices)

The value of the variables can be changed at any time with the various overloads of the setParameter function:

shader.setParameter("offset", 2.f);
shader.setParameter("point", 0.5f, 0.8f, 0.3f);
shader.setParameter("color", sf::Color(128, 50, 255));
shader.setParameter("matrix", transform); // transform is a sf::Transform
shader.setParameter("overlay", texture); // texture is a sf::Texture
shader.setParameter("texture", sf::Shader::CurrentTexture);

The special Shader::CurrentTexture argument maps the given texture variable to the current texture of the object being drawn (which cannot be known in advance).

To apply a shader to a drawable, you must pass it as an additional parameter to the Draw function:

window.draw(sprite, &shader);

... which is in fact just a shortcut for this:

states.shader = &shader;
window.draw(sprite, states);

In the code above we pass a pointer to the shader, because it may be null (which means "no shader").

Shaders can be used on any drawable, but some combinations are not interesting. For example, using a vertex shader on a sf::Sprite is limited because there are only 4 vertices, the sprite would have to be subdivided in order to apply wave effects. Another bad example is a fragment shader with sf::Text: the texture of the text is not the actual text that you see on screen, it is a big texture containing all the characters of the font in an arbitrary order; thus, texture lookups on pixels other than the current one may not give you the expected result.

Shaders can also be used to apply global post-effects to the current contents of the target (like the old sf::PostFx class in SFML 1). This can be done in two different ways:

  • draw everything to a sf::RenderTexture, then draw it to the main target using the shader
  • draw everything directly to the main target, then use sf::Texture::update(Window&) to copy its contents to a texture and draw it to the main target using the shader

The first technique is more optimized because it doesn't involve retrieving the target's pixels to system memory, but the second one doesn't impact the rendering process and can be easily inserted anywhere without impacting all the code.

Like sf::Texture that can be used as a raw OpenGL texture, sf::Shader can also be used directly as a raw shader for custom OpenGL geometry.

... render OpenGL geometry ...
sf::Shader::bind(NULL);

Definition at line 51 of file Shader.hpp.

Member Enumeration Documentation

Types of shaders.

Enumerator
Vertex 

Vertex shader.

Fragment 

Fragment (pixel) shader.

Definition at line 59 of file Shader.hpp.

Constructor & Destructor Documentation

sf::Shader::Shader ( )

Default constructor.

This constructor creates an invalid shader.

sf::Shader::~Shader ( )

Destructor.

Member Function Documentation

static void sf::Shader::bind ( const Shader shader)
static

Bind a shader for rendering.

This function is not part of the graphics API, it mustn't be used when drawing SFML entities. It must be used only if you mix sf::Shader with OpenGL code.

sf::Shader s1, s2;
...
sf::Shader::bind(&s1);
// draw OpenGL stuff that use s1...
// draw OpenGL stuff that use s2...
// draw OpenGL stuff that use no shader...
Parameters
shaderShader to bind, can be null to use no shader
unsigned int sf::Shader::getNativeHandle ( ) const

Get the underlying OpenGL handle of the shader.

You shouldn't need to use this function, unless you have very specific stuff to implement that SFML doesn't support, or implement a temporary workaround until a bug is fixed.

Returns
OpenGL handle of the shader or 0 if not yet loaded
static bool sf::Shader::isAvailable ( )
static

Tell whether or not the system supports shaders.

This function should always be called before using the shader features. If it returns false, then any attempt to use sf::Shader will fail.

Note: The first call to this function, whether by your code or SFML will result in a context switch.

Returns
True if shaders are supported, false otherwise
bool sf::Shader::loadFromFile ( const std::string &  filename,
Type  type 
)

Load either the vertex or fragment shader from a file.

This function loads a single shader, either vertex or fragment, identified by the second argument. The source must be a text file containing a valid shader in GLSL language. GLSL is a C-like language dedicated to OpenGL shaders; you'll probably need to read a good documentation for it before writing your own shaders.

Parameters
filenamePath of the vertex or fragment shader file to load
typeType of shader (vertex or fragment)
Returns
True if loading succeeded, false if it failed
See also
loadFromMemory, loadFromStream
bool sf::Shader::loadFromFile ( const std::string &  vertexShaderFilename,
const std::string &  fragmentShaderFilename 
)

Load both the vertex and fragment shaders from files.

This function loads both the vertex and the fragment shaders. If one of them fails to load, the shader is left empty (the valid shader is unloaded). The sources must be text files containing valid shaders in GLSL language. GLSL is a C-like language dedicated to OpenGL shaders; you'll probably need to read a good documentation for it before writing your own shaders.

Parameters
vertexShaderFilenamePath of the vertex shader file to load
fragmentShaderFilenamePath of the fragment shader file to load
Returns
True if loading succeeded, false if it failed
See also
loadFromMemory, loadFromStream
bool sf::Shader::loadFromMemory ( const std::string &  shader,
Type  type 
)

Load either the vertex or fragment shader from a source code in memory.

This function loads a single shader, either vertex or fragment, identified by the second argument. The source code must be a valid shader in GLSL language. GLSL is a C-like language dedicated to OpenGL shaders; you'll probably need to read a good documentation for it before writing your own shaders.

Parameters
shaderString containing the source code of the shader
typeType of shader (vertex or fragment)
Returns
True if loading succeeded, false if it failed
See also
loadFromFile, loadFromStream
bool sf::Shader::loadFromMemory ( const std::string &  vertexShader,
const std::string &  fragmentShader 
)

Load both the vertex and fragment shaders from source codes in memory.

This function loads both the vertex and the fragment shaders. If one of them fails to load, the shader is left empty (the valid shader is unloaded). The sources must be valid shaders in GLSL language. GLSL is a C-like language dedicated to OpenGL shaders; you'll probably need to read a good documentation for it before writing your own shaders.

Parameters
vertexShaderString containing the source code of the vertex shader
fragmentShaderString containing the source code of the fragment shader
Returns
True if loading succeeded, false if it failed
See also
loadFromFile, loadFromStream
bool sf::Shader::loadFromStream ( InputStream stream,
Type  type 
)

Load either the vertex or fragment shader from a custom stream.

This function loads a single shader, either vertex or fragment, identified by the second argument. The source code must be a valid shader in GLSL language. GLSL is a C-like language dedicated to OpenGL shaders; you'll probably need to read a good documentation for it before writing your own shaders.

Parameters
streamSource stream to read from
typeType of shader (vertex or fragment)
Returns
True if loading succeeded, false if it failed
See also
loadFromFile, loadFromMemory
bool sf::Shader::loadFromStream ( InputStream vertexShaderStream,
InputStream fragmentShaderStream 
)

Load both the vertex and fragment shaders from custom streams.

This function loads both the vertex and the fragment shaders. If one of them fails to load, the shader is left empty (the valid shader is unloaded). The source codes must be valid shaders in GLSL language. GLSL is a C-like language dedicated to OpenGL shaders; you'll probably need to read a good documentation for it before writing your own shaders.

Parameters
vertexShaderStreamSource stream to read the vertex shader from
fragmentShaderStreamSource stream to read the fragment shader from
Returns
True if loading succeeded, false if it failed
See also
loadFromFile, loadFromMemory
void sf::Shader::setParameter ( const std::string &  name,
float  x 
)

Change a float parameter of the shader.

name is the name of the variable to change in the shader. The corresponding parameter in the shader must be a float (float GLSL type).

Example:

uniform float myparam; // this is the variable in the shader
shader.setParameter("myparam", 5.2f);
Parameters
nameName of the parameter in the shader
xValue to assign
void sf::Shader::setParameter ( const std::string &  name,
float  x,
float  y 
)

Change a 2-components vector parameter of the shader.

name is the name of the variable to change in the shader. The corresponding parameter in the shader must be a 2x1 vector (vec2 GLSL type).

Example:

uniform vec2 myparam; // this is the variable in the shader
shader.setParameter("myparam", 5.2f, 6.0f);
Parameters
nameName of the parameter in the shader
xFirst component of the value to assign
ySecond component of the value to assign
void sf::Shader::setParameter ( const std::string &  name,
float  x,
float  y,
float  z 
)

Change a 3-components vector parameter of the shader.

name is the name of the variable to change in the shader. The corresponding parameter in the shader must be a 3x1 vector (vec3 GLSL type).

Example:

uniform vec3 myparam; // this is the variable in the shader
shader.setParameter("myparam", 5.2f, 6.0f, -8.1f);
Parameters
nameName of the parameter in the shader
xFirst component of the value to assign
ySecond component of the value to assign
zThird component of the value to assign
void sf::Shader::setParameter ( const std::string &  name,
float  x,
float  y,
float  z,
float  w 
)

Change a 4-components vector parameter of the shader.

name is the name of the variable to change in the shader. The corresponding parameter in the shader must be a 4x1 vector (vec4 GLSL type).

Example:

uniform vec4 myparam; // this is the variable in the shader
shader.setParameter("myparam", 5.2f, 6.0f, -8.1f, 0.4f);
Parameters
nameName of the parameter in the shader
xFirst component of the value to assign
ySecond component of the value to assign
zThird component of the value to assign
wFourth component of the value to assign
void sf::Shader::setParameter ( const std::string &  name,
const Vector2f vector 
)

Change a 2-components vector parameter of the shader.

name is the name of the variable to change in the shader. The corresponding parameter in the shader must be a 2x1 vector (vec2 GLSL type).

Example:

uniform vec2 myparam; // this is the variable in the shader
shader.setParameter("myparam", sf::Vector2f(5.2f, 6.0f));
Parameters
nameName of the parameter in the shader
vectorVector to assign
void sf::Shader::setParameter ( const std::string &  name,
const Vector3f vector 
)

Change a 3-components vector parameter of the shader.

name is the name of the variable to change in the shader. The corresponding parameter in the shader must be a 3x1 vector (vec3 GLSL type).

Example:

uniform vec3 myparam; // this is the variable in the shader
shader.setParameter("myparam", sf::Vector3f(5.2f, 6.0f, -8.1f));
Parameters
nameName of the parameter in the shader
vectorVector to assign
void sf::Shader::setParameter ( const std::string &  name,
const Color color 
)

Change a color parameter of the shader.

name is the name of the variable to change in the shader. The corresponding parameter in the shader must be a 4x1 vector (vec4 GLSL type).

It is important to note that the components of the color are normalized before being passed to the shader. Therefore, they are converted from range [0 .. 255] to range [0 .. 1]. For example, a sf::Color(255, 125, 0, 255) will be transformed to a vec4(1.0, 0.5, 0.0, 1.0) in the shader.

Example:

uniform vec4 color; // this is the variable in the shader
shader.setParameter("color", sf::Color(255, 128, 0, 255));
Parameters
nameName of the parameter in the shader
colorColor to assign
void sf::Shader::setParameter ( const std::string &  name,
const Transform transform 
)

Change a matrix parameter of the shader.

name is the name of the variable to change in the shader. The corresponding parameter in the shader must be a 4x4 matrix (mat4 GLSL type).

Example:

uniform mat4 matrix; // this is the variable in the shader
sf::Transform transform;
transform.translate(5, 10);
shader.setParameter("matrix", transform);
Parameters
nameName of the parameter in the shader
transformTransform to assign
void sf::Shader::setParameter ( const std::string &  name,
const Texture texture 
)

Change a texture parameter of the shader.

name is the name of the variable to change in the shader. The corresponding parameter in the shader must be a 2D texture (sampler2D GLSL type).

Example:

uniform sampler2D the_texture; // this is the variable in the shader
sf::Texture texture;
...
shader.setParameter("the_texture", texture);

It is important to note that texture must remain alive as long as the shader uses it, no copy is made internally.

To use the texture of the object being draw, which cannot be known in advance, you can pass the special value sf::Shader::CurrentTexture:

shader.setParameter("the_texture", sf::Shader::CurrentTexture).
Parameters
nameName of the texture in the shader
textureTexture to assign
void sf::Shader::setParameter ( const std::string &  name,
CurrentTextureType   
)

Change a texture parameter of the shader.

This overload maps a shader texture variable to the texture of the object being drawn, which cannot be known in advance. The second argument must be sf::Shader::CurrentTexture. The corresponding parameter in the shader must be a 2D texture (sampler2D GLSL type).

Example:

uniform sampler2D current; // this is the variable in the shader
shader.setParameter("current", sf::Shader::CurrentTexture);
Parameters
nameName of the texture in the shader

Member Data Documentation

CurrentTextureType sf::Shader::CurrentTexture
static

Represents the texture of the object being drawn.

See also
setParameter(const std::string&, CurrentTextureType)

Definition at line 80 of file Shader.hpp.


The documentation for this class was generated from the following file: