This section describes group (aggregate) functions that operate
on sets of values. Unless otherwise stated, group functions
ignore NULL
values.
If you use a group function in a statement containing no
GROUP BY
clause, it is equivalent to grouping
on all rows.
The SUM()
and AVG()
aggregate functions do not work with temporal values. (They
convert the values to numbers, which loses the part after the
first non-numeric character.) To work around this problem, you
can convert to numeric units, perform the aggregate operation,
and convert back to a temporal value. Examples:
SELECT SEC_TO_TIME(SUM(TIME_TO_SEC(time_col
))) FROMtbl_name
; SELECT FROM_DAYS(SUM(TO_DAYS(date_col
))) FROMtbl_name
;
-
Returns the average value of
expr
. TheDISTINCT
option can be used as of MySQL 5.0.3 to return the average of the distinct values ofexpr
.AVG()
returnsNULL
if there were no matching rows.mysql>
SELECT student_name, AVG(test_score)
->FROM student
->GROUP BY student_name;
-
Returns the bitwise
AND
of all bits inexpr
. The calculation is performed with 64-bit (BIGINT
) precision.This function returns
18446744073709551615
if there were no matching rows. (This is the value of an unsignedBIGINT
value with all bits set to 1.) -
Returns the bitwise
OR
of all bits inexpr
. The calculation is performed with 64-bit (BIGINT
) precision.This function returns
0
if there were no matching rows. -
Returns the bitwise
XOR
of all bits inexpr
. The calculation is performed with 64-bit (BIGINT
) precision.This function returns
0
if there were no matching rows. -
Returns a count of the number of non-
NULL
values in the rows retrieved by aSELECT
statement. The result is aBIGINT
value.COUNT()
returns0
if there were no matching rows.mysql>
SELECT student.student_name,COUNT(*)
->FROM student,course
->WHERE student.student_id=course.student_id
->GROUP BY student_name;
COUNT(*)
is somewhat different in that it returns a count of the number of rows retrieved, whether or not they containNULL
values.COUNT(*)
is optimized to return very quickly if theSELECT
retrieves from one table, no other columns are retrieved, and there is noWHERE
clause. For example:mysql>
SELECT COUNT(*) FROM student;
This optimization applies only to
MyISAM
tables only, because an exact row count is stored for this storage engine and can be accessed very quickly. For transactional storage engines such asInnoDB
andBDB
, storing an exact row count is more problematic because multiple transactions may be occurring, each of which may affect the count. -
COUNT(DISTINCT
expr
,[expr
...])Returns a count of the number of different non-
NULL
values.COUNT(DISTINCT)
returns0
if there were no matching rows.mysql>
SELECT COUNT(DISTINCT results) FROM student;
In MySQL, you can obtain the number of distinct expression combinations that do not contain
NULL
by giving a list of expressions. In standard SQL, you would have to do a concatenation of all expressions insideCOUNT(DISTINCT ...)
. -
This function returns a string result with the concatenated non-
NULL
values from a group. It returnsNULL
if there are no non-NULL
values. The full syntax is as follows:GROUP_CONCAT([DISTINCT]
expr
[,expr
...] [ORDER BY {unsigned_integer
|col_name
|expr
} [ASC | DESC] [,col_name
...]] [SEPARATORstr_val
])mysql>
SELECT student_name,
->GROUP_CONCAT(test_score)
->FROM student
->GROUP BY student_name;
Or:
mysql>
SELECT student_name,
->GROUP_CONCAT(DISTINCT test_score
->ORDER BY test_score DESC SEPARATOR ' ')
->FROM student
->GROUP BY student_name;
In MySQL, you can get the concatenated values of expression combinations. You can eliminate duplicate values by using
DISTINCT
. If you want to sort values in the result, you should useORDER BY
clause. To sort in reverse order, add theDESC
(descending) keyword to the name of the column you are sorting by in theORDER BY
clause. The default is ascending order; this may be specified explicitly using theASC
keyword.SEPARATOR
is followed by the string value that should be inserted between values of result. The default is a comma (‘,
’). You can eliminate the separator altogether by specifyingSEPARATOR ''
.You can set a maximum allowed length with the
group_concat_max_len
system variable. (The default value is 1024.) The syntax to do this at runtime is as follows, whereval
is an unsigned integer:SET [SESSION | GLOBAL] group_concat_max_len =
val
;If a maximum length has been set, the result is truncated to this maximum length.
Beginning with MySQL 5.0.19, the type returned by
GROUP_CONCAT()
is alwaysVARCHAR
unlessgroup_concat_max_len
is greater than 512, in which case, it returns aBLOB
. (Previously, it returned aBLOB
withgroup_concat_max_len
greater than 512 only if the query included anORDER BY
clause.)See also
CONCAT()
andCONCAT_WS()
: Section 12.3, “String Functions”. -
MIN([DISTINCT]
expr
),MAX([DISTINCT]
expr
)Returns the minimum or maximum value of
expr
.MIN()
andMAX()
may take a string argument; in such cases they return the minimum or maximum string value. See Section 7.4.5, “How MySQL Uses Indexes”. TheDISTINCT
keyword can be used to find the minimum or maximum of the distinct values ofexpr
, however, this produces the same result as omittingDISTINCT
.MIN()
andMAX()
returnNULL
if there were no matching rows.mysql>
SELECT student_name, MIN(test_score), MAX(test_score)
->FROM student
->GROUP BY student_name;
For
MIN()
,MAX()
, and other aggregate functions, MySQL currently comparesENUM
andSET
columns by their string value rather than by the string's relative position in the set. This differs from howORDER BY
compares them. This is expected to be rectified in a future MySQL release. -
Returns the population standard deviation of
expr
. This is an extension to standard SQL. TheSTDDEV()
form of this function is provided for compatibility with Oracle. As of MySQL 5.0.3, the standard SQL functionSTDDEV_POP()
can be used instead.These functions return
NULL
if there were no matching rows. -
Returns the population standard deviation of
expr
(the square root ofVAR_POP()
). This function was added in MySQL 5.0.3. Before 5.0.3, you can useSTD()
orSTDDEV()
, which are equivalent but not standard SQL.STDDEV_POP()
returnsNULL
if there were no matching rows. -
Returns the sample standard deviation of
expr
(the square root ofVAR_SAMP()
. This function was added in MySQL 5.0.3.STDDEV_SAMP()
returnsNULL
if there were no matching rows. -
Returns the sum of
expr
. If the return set has no rows,SUM()
returnsNULL
. TheDISTINCT
keyword can be used in MySQL 5.0 to sum only the distinct values ofexpr
.SUM()
returnsNULL
if there were no matching rows. -
Returns the population standard variance of
expr
. It considers rows as the whole population, not as a sample, so it has the number of rows as the denominator. This function was added in MySQL 5.0.3. Before 5.0.3, you can useVARIANCE()
, which is equivalent but is not standard SQL.VAR_POP()
returnsNULL
if there were no matching rows. -
Returns the sample variance of
expr
. That is, the denominator is the number of rows minus one. This function was added in MySQL 5.0.3.VAR_SAMP()
returnsNULL
if there were no matching rows. -
Returns the population standard variance of
expr
. This is an extension to standard SQL. As of MySQL 5.0.3, the standard SQL functionVAR_POP()
can be used instead.VARIANCE()
returnsNULL
if there were no matching rows.
The GROUP BY
clause allows a WITH
ROLLUP
modifier that causes extra rows to be added to
the summary output. These rows represent higher-level (or
super-aggregate) summary operations. ROLLUP
thus allows you to answer questions at multiple levels of
analysis with a single query. It can be used, for example, to
provide support for OLAP (Online Analytical Processing)
operations.
Suppose that a table named sales
has
year
, country
,
product
, and profit
columns for recording sales profitability:
CREATE TABLE sales ( year INT NOT NULL, country VARCHAR(20) NOT NULL, product VARCHAR(32) NOT NULL, profit INT );
The table's contents can be summarized per year with a simple
GROUP BY
like this:
mysql> SELECT year, SUM(profit) FROM sales GROUP BY year;
+------+-------------+
| year | SUM(profit) |
+------+-------------+
| 2000 | 4525 |
| 2001 | 3010 |
+------+-------------+
This output shows the total profit for each year, but if you also want to determine the total profit summed over all years, you must add up the individual values yourself or run an additional query.
Or you can use ROLLUP
, which provides both
levels of analysis with a single query. Adding a WITH
ROLLUP
modifier to the GROUP BY
clause causes the query to produce another row that shows the
grand total over all year values:
mysql> SELECT year, SUM(profit) FROM sales GROUP BY year WITH ROLLUP;
+------+-------------+
| year | SUM(profit) |
+------+-------------+
| 2000 | 4525 |
| 2001 | 3010 |
| NULL | 7535 |
+------+-------------+
The grand total super-aggregate line is identified by the value
NULL
in the year
column.
ROLLUP
has a more complex effect when there
are multiple GROUP BY
columns. In this case,
each time there is a “break” (change in value) in
any but the last grouping column, the query produces an extra
super-aggregate summary row.
For example, without ROLLUP
, a summary on the
sales
table based on year
,
country
, and product
might
look like this:
mysql>SELECT year, country, product, SUM(profit)
->FROM sales
->GROUP BY year, country, product;
+------+---------+------------+-------------+ | year | country | product | SUM(profit) | +------+---------+------------+-------------+ | 2000 | Finland | Computer | 1500 | | 2000 | Finland | Phone | 100 | | 2000 | India | Calculator | 150 | | 2000 | India | Computer | 1200 | | 2000 | USA | Calculator | 75 | | 2000 | USA | Computer | 1500 | | 2001 | Finland | Phone | 10 | | 2001 | USA | Calculator | 50 | | 2001 | USA | Computer | 2700 | | 2001 | USA | TV | 250 | +------+---------+------------+-------------+
The output indicates summary values only at the
year/country/product level of analysis. When
ROLLUP
is added, the query produces several
extra rows:
mysql>SELECT year, country, product, SUM(profit)
->FROM sales
->GROUP BY year, country, product WITH ROLLUP;
+------+---------+------------+-------------+ | year | country | product | SUM(profit) | +------+---------+------------+-------------+ | 2000 | Finland | Computer | 1500 | | 2000 | Finland | Phone | 100 | | 2000 | Finland | NULL | 1600 | | 2000 | India | Calculator | 150 | | 2000 | India | Computer | 1200 | | 2000 | India | NULL | 1350 | | 2000 | USA | Calculator | 75 | | 2000 | USA | Computer | 1500 | | 2000 | USA | NULL | 1575 | | 2000 | NULL | NULL | 4525 | | 2001 | Finland | Phone | 10 | | 2001 | Finland | NULL | 10 | | 2001 | USA | Calculator | 50 | | 2001 | USA | Computer | 2700 | | 2001 | USA | TV | 250 | | 2001 | USA | NULL | 3000 | | 2001 | NULL | NULL | 3010 | | NULL | NULL | NULL | 7535 | +------+---------+------------+-------------+
For this query, adding ROLLUP
causes the
output to include summary information at four levels of
analysis, not just one. Here's how to interpret the
ROLLUP
output:
-
Following each set of product rows for a given year and country, an extra summary row is produced showing the total for all products. These rows have the
product
column set toNULL
. -
Following each set of rows for a given year, an extra summary row is produced showing the total for all countries and products. These rows have the
country
andproducts
columns set toNULL
. -
Finally, following all other rows, an extra summary row is produced showing the grand total for all years, countries, and products. This row has the
year
,country
, andproducts
columns set toNULL
.
Other Considerations When using
ROLLUP
The following items list some behaviors specific to the MySQL
implementation of ROLLUP
:
When you use ROLLUP
, you cannot also use an
ORDER BY
clause to sort the results. In other
words, ROLLUP
and ORDER BY
are mutually exclusive. However, you still have some control
over sort order. GROUP BY
in MySQL sorts
results, and you can use explicit ASC
and
DESC
keywords with columns named in the
GROUP BY
list to specify sort order for
individual columns. (The higher-level summary rows added by
ROLLUP
still appear after the rows from which
they are calculated, regardless of the sort order.)
LIMIT
can be used to restrict the number of
rows returned to the client. LIMIT
is applied
after ROLLUP
, so the limit applies against
the extra rows added by ROLLUP
. For example:
mysql>SELECT year, country, product, SUM(profit)
->FROM sales
->GROUP BY year, country, product WITH ROLLUP
->LIMIT 5;
+------+---------+------------+-------------+ | year | country | product | SUM(profit) | +------+---------+------------+-------------+ | 2000 | Finland | Computer | 1500 | | 2000 | Finland | Phone | 100 | | 2000 | Finland | NULL | 1600 | | 2000 | India | Calculator | 150 | | 2000 | India | Computer | 1200 | +------+---------+------------+-------------+
Using LIMIT
with ROLLUP
may produce results that are more difficult to interpret,
because you have less context for understanding the
super-aggregate rows.
The NULL
indicators in each super-aggregate
row are produced when the row is sent to the client. The server
looks at the columns named in the GROUP BY
clause following the leftmost one that has changed value. For
any column in the result set with a name that is a lexical match
to any of those names, its value is set to
NULL
. (If you specify grouping columns by
column number, the server identifies which columns to set to
NULL
by number.)
Because the NULL
values in the
super-aggregate rows are placed into the result set at such a
late stage in query processing, you cannot test them as
NULL
values within the query itself. For
example, you cannot add HAVING product IS
NULL
to the query to eliminate from the output all but
the super-aggregate rows.
On the other hand, the NULL
values do appear
as NULL
on the client side and can be tested
as such using any MySQL client programming interface.
MySQL extends the use of GROUP BY
so that you
can use non-aggregated columns or calculations in the
SELECT
list that do not appear in the
GROUP BY
clause. You can use this feature to
get better performance by avoiding unnecessary column sorting
and grouping. For example, you do not need to group on
customer.name
in the following query:
SELECT order.custid, customer.name, MAX(payments) FROM order,customer WHERE order.custid = customer.custid GROUP BY order.custid;
In standard SQL, you would have to add
customer.name
to the GROUP
BY
clause. In MySQL, the name is redundant.
Do not use this feature if the columns you
omit from the GROUP BY
part are not constant
in the group. The server is free to return any value from the
group, so the results are indeterminate unless all values are
the same.
A similar MySQL extension applies to the
HAVING
clause. The SQL standard does not
allow the HAVING
clause to name any column
that is not found in the GROUP BY
clause if
it is not enclosed in an aggregate function. MySQL allows the
use of such columns to simplify calculations. This extension
assumes that the non-grouped columns will have the same
group-wise values. Otherwise, the result is indeterminate.
If the ONLY_FULL_GROUP_BY
SQL mode is
enabled, the MySQL extension to GROUP BY
does
not apply. That is, columns not named in the GROUP
BY
clause cannot be used in the
SELECT
list or HAVING
clause if not used in an aggregate function.
The select list extension also applies to ORDER
BY
. That is, you can use non-aggregated columns or
calculations in the ORDER BY
clause that do
not appear in the GROUP BY
clause. This
extension does not apply if the
ONLY_FULL_GROUP_BY
SQL mode is enabled.
In some cases, you can use MIN()
and
MAX()
to obtain a specific column value even
if it isn't unique. The following gives the value of
column
from the row containing the smallest
value in the sort
column:
SUBSTR(MIN(CONCAT(RPAD(sort,6,' '),column)),7)
See Section 3.6.4, “The Rows Holding the Group-wise Maximum of a Certain Field”.
Note that if you are trying to follow standard SQL, you can't
use expressions in GROUP BY
clauses. You can
work around this limitation by using an alias for the
expression:
SELECT id,FLOOR(value/100) AS val
FROM tbl_name
GROUP BY id, val;
MySQL does allow expressions in GROUP BY
clauses. For example:
SELECT id,FLOOR(value/100)
FROM tbl_name
GROUP BY id, FLOOR(value/100);