modules_evapD (04/09/09)

CRHM Borland

evapD (Granger, 1989; Granger and Pomeroy, 1997)

This module defined in ClassevapD, calculates the evapotranspiration using daily values from after snowmelt to fall snow cover. 

Other evaporation algorithm available is Priestley-Taylor.

Observations

  • none

Variables

  • hru_evapD (mm/d) - average depth of evaporation from an HRU.
  • hru_cum_evap (mm) - cumulative evaporation – calculated as the sum of the daily estimates of hru_evap.
  • evap_G () - relative evaporation from Granger.
  • evap_D () - relative drying power from Granger.
  • hru_actet (mm/int) - actual evapotranspiration over the HRU.  Evaporation and evapotranspiration are limited by the amount of soil moisture available.
  • hru_cum_actet (mm) - cumulative actual evapotranspiration over the HRU.

Parameters

  • evap_type (flag) - Evaporation method for HRU, 0 - Granger, 1 - Priestley Taylor.
  • Ht (m) - crop height.
  • hru_elev (m) - altitude.
  • basin_area (km^2) - basin area.
  • hru area (km^2) - HRU area.
  • F_Qg () - fraction to ground flux.  Qg = F_Qg*Rn.
  • inhibit_evap (flag) - 0/1 enable/inhibit.

Variable Inputs

  • hru_tmean (obs) (°C)
  • hru_umean (*) (°C)
  • hru_eamean (obs) (°C)
  • RnD (*) (mm/m^2*d)

Granger Daily calculation

  • Ea = fdaily(u, Ht)*(e*-ea)
  • D = Ea/(Ea+(Rn-Qg-Qs))
  • G = 1/(0.793 + 0.2*exp(4.902*D) + 0.006*D
  • E = (delta(t)*G*(Rn-Qg-Qs) + gamma(Pa, t)*G*Ea)/( delta(t)*G +  gamma(Pa, t))

where t, u and ea are the mean of interval values and e* is calculated using the mean daily temperature t.

Priestley Taylor

  • 1.26*delta(t)*(Rn-Qg-Qs)/(( delta(t) +  gamma(Pa, t))f or positive incoming net radiation,

where values are interval.  Evaporation is zero when  incoming net radiation is <= 0.0.

Atmospheric Pressure

  • P = P0*exp((293.0-0.0065*elevation)/293.0, 5.26),

where P0 = 101.3.