25.4.1 The Stats Class
Stats objects have the following methods:
- This method for the Stats class removes all leading path information from file names. It is very useful in reducing the size of the printout to fit within (close to) 80 columns. This method modifies the object, and the stripped information is lost. After performing a strip operation, the object is considered to have its entries in a ``random'' order, as it was just after object initialization and loading. If strip_dirs() causes two function names to be indistinguishable (they are on the same line of the same filename, and have the same function name), then the statistics for these two entries are accumulated into a single entry.
- This method of the Stats class accumulates additional profiling information into the current profiling object. Its arguments should refer to filenames created by the corresponding version of profile.run() or cProfile.run(). Statistics for identically named (re: file, line, name) functions are automatically accumulated into single function statistics.
- Save the data loaded into the Stats object to a file named filename. The file is created if it does not exist, and is overwritten if it already exists. This is equivalent to the method of the same name on the profile.Profile and cProfile.Profile classes. New in version 2.3.
-
This method modifies the Stats object by sorting it according
to the supplied criteria. The argument is typically a string
identifying the basis of a sort (example:
'time'
or'name'
).When more than one key is provided, then additional keys are used as secondary criteria when there is equality in all keys selected before them. For example,
sort_stats('name', 'file')
will sort all the entries according to their function name, and resolve all ties (identical function names) by sorting by file name.Abbreviations can be used for any key names, as long as the abbreviation is unambiguous. The following are the keys currently defined:
Valid Arg Meaning 'calls'
call count 'cumulative'
cumulative time 'file'
file name 'module'
file name 'pcalls'
primitive call count 'line'
line number 'name'
function name 'nfl'
name/file/line 'stdname'
standard name 'time'
internal time Note that all sorts on statistics are in descending order (placing most time consuming items first), where as name, file, and line number searches are in ascending order (alphabetical). The subtle distinction between
'nfl'
and'stdname'
is that the standard name is a sort of the name as printed, which means that the embedded line numbers get compared in an odd way. For example, lines 3, 20, and 40 would (if the file names were the same) appear in the string order 20, 3 and 40. In contrast,'nfl'
does a numeric compare of the line numbers. In fact,sort_stats('nfl')
is the same assort_stats('name', 'file', 'line')
.For backward-compatibility reasons, the numeric arguments
-1
,0
,1
, and2
are permitted. They are interpreted as'stdname'
,'calls'
,'time'
, and'cumulative'
respectively. If this old style format (numeric) is used, only one sort key (the numeric key) will be used, and additional arguments will be silently ignored.
- This method for the Stats class reverses the ordering of the basic list within the object. Note that by default ascending vs descending order is properly selected based on the sort key of choice.
-
This method for the Stats class prints out a report as described
in the profile.run() definition.
The order of the printing is based on the last sort_stats() operation done on the object (subject to caveats in add() and strip_dirs()).
The arguments provided (if any) can be used to limit the list down to the significant entries. Initially, the list is taken to be the complete set of profiled functions. Each restriction is either an integer (to select a count of lines), or a decimal fraction between 0.0 and 1.0 inclusive (to select a percentage of lines), or a regular expression (to pattern match the standard name that is printed; as of Python 1.5b1, this uses the Perl-style regular expression syntax defined by the re module). If several restrictions are provided, then they are applied sequentially. For example:
print_stats(.1, 'foo:')
would first limit the printing to first 10% of list, and then only print functions that were part of filename .*foo:. In contrast, the command:
print_stats('foo:', .1)
would limit the list to all functions having file names .*foo:, and then proceed to only print the first 10% of them.
-
This method for the Stats class prints a list of all functions
that called each function in the profiled database. The ordering is
identical to that provided by print_stats(), and the definition
of the restricting argument is also identical. Each caller is reported on
its own line. The format differs slightly depending on the profiler that
produced the stats:
- With profile, a number is shown in parentheses after each
caller to show how many times this specific call was made. For
convenience, a second non-parenthesized number repeats the cumulative
time spent in the function at the right.
- With cProfile, each caller is preceeded by three numbers: the number of times this specific call was made, and the total and cumulative times spent in the current function while it was invoked by this specific caller.
- With profile, a number is shown in parentheses after each
caller to show how many times this specific call was made. For
convenience, a second non-parenthesized number repeats the cumulative
time spent in the function at the right.
- This method for the Stats class prints a list of all function that were called by the indicated function. Aside from this reversal of direction of calls (re: called vs was called by), the arguments and ordering are identical to the print_callers() method.
See About this document... for information on suggesting changes.