15.2 thread -- Multiple threads of control
This module provides low-level primitives for working with multiple threads (a.k.a. light-weight processes or tasks) -- multiple threads of control sharing their global data space. For synchronization, simple locks (a.k.a. mutexes or binary semaphores) are provided.
The module is optional. It is supported on Windows, Linux, SGI IRIX, Solaris 2.x, as well as on systems that have a POSIX thread (a.k.a. ``pthread'') implementation. For systems lacking the thread module, the dummy_thread module is available. It duplicates this module's interface and can be used as a drop-in replacement.
It defines the following constant and functions:
- Raised on thread-specific errors.
- This is the type of lock objects.
- Start a new thread and return its identifier. The thread executes the function function with the argument list args (which must be a tuple). The optional kwargs argument specifies a dictionary of keyword arguments. When the function returns, the thread silently exits. When the function terminates with an unhandled exception, a stack trace is printed and then the thread exits (but other threads continue to run).
- Raise a KeyboardInterrupt exception in the main thread. A subthread can use this function to interrupt the main thread. New in version 2.3.
- Raise the SystemExit exception. When not caught, this will cause the thread to exit silently.
- Return a new lock object. Methods of locks are described below. The lock is initially unlocked.
- Return the `thread identifier' of the current thread. This is a nonzero integer. Its value has no direct meaning; it is intended as a magic cookie to be used e.g. to index a dictionary of thread-specific data. Thread identifiers may be recycled when a thread exits and another thread is created.
- Return the thread stack size used when creating new threads. The optional size argument specifies the stack size to be used for subsequently created threads, and must be 0 (use platform or configured default) or a positive integer value of at least 32,768 (32kB). If changing the thread stack size is unsupported, a ThreadError is raised. If the specified stack size is invalid, a ValueError is raised and the stack size is unmodified. 32kB is currently the minimum supported stack size value to guarantee sufficient stack space for the interpreter itself. Note that some platforms may have particular restrictions on values for the stack size, such as requiring a minimum stack size > 32kB or requiring allocation in multiples of the system memory page size - platform documentation should be referred to for more information (4kB pages are common; using multiples of 4096 for the stack size is the suggested approach in the absence of more specific information). Availability: Windows, systems with POSIX threads. New in version 2.5.
Lock objects have the following methods:
-
Without the optional argument, this method acquires the lock
unconditionally, if necessary waiting until it is released by another
thread (only one thread at a time can acquire a lock -- that's their
reason for existence). If the integer
waitflag argument is present, the action depends on its
value: if it is zero, the lock is only acquired if it can be acquired
immediately without waiting, while if it is nonzero, the lock is
acquired unconditionally as before. The
return value is
True
if the lock is acquired successfully,False
if not.
- Releases the lock. The lock must have been acquired earlier, but not necessarily by the same thread.
-
Return the status of the lock:
True
if it has been acquired by some thread,False
if not.
In addition to these methods, lock objects can also be used via the with statement, e.g.:
from __future__ import with_statement import thread a_lock = thread.allocate_lock() with a_lock: print "a_lock is locked while this executes"
Caveats:
- Threads interact strangely with interrupts: the
KeyboardInterrupt exception will be received by an
arbitrary thread. (When the signal
module is available, interrupts always go to the main thread.)
- Calling sys.exit() or raising the SystemExit
exception is equivalent to calling exit().
- Not all built-in functions that may block waiting for I/O allow other
threads to run. (The most popular ones (time.sleep(),
file.read(), select.select()) work as
expected.)
- It is not possible to interrupt the acquire() method on a lock
-- the KeyboardInterrupt exception will happen after the
lock has been acquired.
- When the main thread exits, it is system defined whether the other
threads survive. On SGI IRIX using the native thread implementation,
they survive. On most other systems, they are killed without
executing try ... finally clauses or executing
object destructors.
- When the main thread exits, it does not do any of its usual cleanup
(except that try ... finally clauses are honored),
and the standard I/O files are not flushed.