Source file src/pkg/math/cmplx/sqrt.go
1 // Copyright 2010 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 package cmplx
6
7 import "math"
8
9 // The original C code, the long comment, and the constants
10 // below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
11 // The go code is a simplified version of the original C.
12 //
13 // Cephes Math Library Release 2.8: June, 2000
14 // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
15 //
16 // The readme file at http://netlib.sandia.gov/cephes/ says:
17 // Some software in this archive may be from the book _Methods and
18 // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
19 // International, 1989) or from the Cephes Mathematical Library, a
20 // commercial product. In either event, it is copyrighted by the author.
21 // What you see here may be used freely but it comes with no support or
22 // guarantee.
23 //
24 // The two known misprints in the book are repaired here in the
25 // source listings for the gamma function and the incomplete beta
26 // integral.
27 //
28 // Stephen L. Moshier
29 // [email protected]
30
31 // Complex square root
32 //
33 // DESCRIPTION:
34 //
35 // If z = x + iy, r = |z|, then
36 //
37 // 1/2
38 // Re w = [ (r + x)/2 ] ,
39 //
40 // 1/2
41 // Im w = [ (r - x)/2 ] .
42 //
43 // Cancellation error in r-x or r+x is avoided by using the
44 // identity 2 Re w Im w = y.
45 //
46 // Note that -w is also a square root of z. The root chosen
47 // is always in the right half plane and Im w has the same sign as y.
48 //
49 // ACCURACY:
50 //
51 // Relative error:
52 // arithmetic domain # trials peak rms
53 // DEC -10,+10 25000 3.2e-17 9.6e-18
54 // IEEE -10,+10 1,000,000 2.9e-16 6.1e-17
55
56 // Sqrt returns the square root of x.
57 func Sqrt(x complex128) complex128 {
58 if imag(x) == 0 {
59 if real(x) == 0 {
60 return complex(0, 0)
61 }
62 if real(x) < 0 {
63 return complex(0, math.Sqrt(-real(x)))
64 }
65 return complex(math.Sqrt(real(x)), 0)
66 }
67 if real(x) == 0 {
68 if imag(x) < 0 {
69 r := math.Sqrt(-0.5 * imag(x))
70 return complex(r, -r)
71 }
72 r := math.Sqrt(0.5 * imag(x))
73 return complex(r, r)
74 }
75 a := real(x)
76 b := imag(x)
77 var scale float64
78 // Rescale to avoid internal overflow or underflow.
79 if math.Abs(a) > 4 || math.Abs(b) > 4 {
80 a *= 0.25
81 b *= 0.25
82 scale = 2
83 } else {
84 a *= 1.8014398509481984e16 // 2**54
85 b *= 1.8014398509481984e16
86 scale = 7.450580596923828125e-9 // 2**-27
87 }
88 r := math.Hypot(a, b)
89 var t float64
90 if a > 0 {
91 t = math.Sqrt(0.5*r + 0.5*a)
92 r = scale * math.Abs((0.5*b)/t)
93 t *= scale
94 } else {
95 r = math.Sqrt(0.5*r - 0.5*a)
96 t = scale * math.Abs((0.5*b)/r)
97 r *= scale
98 }
99 if b < 0 {
100 return complex(t, -r)
101 }
102 return complex(t, r)
103 }