Source file src/pkg/math/cmplx/sin.go
1 // Copyright 2010 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 package cmplx
6
7 import "math"
8
9 // The original C code, the long comment, and the constants
10 // below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
11 // The go code is a simplified version of the original C.
12 //
13 // Cephes Math Library Release 2.8: June, 2000
14 // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
15 //
16 // The readme file at http://netlib.sandia.gov/cephes/ says:
17 // Some software in this archive may be from the book _Methods and
18 // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
19 // International, 1989) or from the Cephes Mathematical Library, a
20 // commercial product. In either event, it is copyrighted by the author.
21 // What you see here may be used freely but it comes with no support or
22 // guarantee.
23 //
24 // The two known misprints in the book are repaired here in the
25 // source listings for the gamma function and the incomplete beta
26 // integral.
27 //
28 // Stephen L. Moshier
29 // [email protected]
30
31 // Complex circular sine
32 //
33 // DESCRIPTION:
34 //
35 // If
36 // z = x + iy,
37 //
38 // then
39 //
40 // w = sin x cosh y + i cos x sinh y.
41 //
42 // csin(z) = -i csinh(iz).
43 //
44 // ACCURACY:
45 //
46 // Relative error:
47 // arithmetic domain # trials peak rms
48 // DEC -10,+10 8400 5.3e-17 1.3e-17
49 // IEEE -10,+10 30000 3.8e-16 1.0e-16
50 // Also tested by csin(casin(z)) = z.
51
52 // Sin returns the sine of x.
53 func Sin(x complex128) complex128 {
54 s, c := math.Sincos(real(x))
55 sh, ch := sinhcosh(imag(x))
56 return complex(s*ch, c*sh)
57 }
58
59 // Complex hyperbolic sine
60 //
61 // DESCRIPTION:
62 //
63 // csinh z = (cexp(z) - cexp(-z))/2
64 // = sinh x * cos y + i cosh x * sin y .
65 //
66 // ACCURACY:
67 //
68 // Relative error:
69 // arithmetic domain # trials peak rms
70 // IEEE -10,+10 30000 3.1e-16 8.2e-17
71
72 // Sinh returns the hyperbolic sine of x.
73 func Sinh(x complex128) complex128 {
74 s, c := math.Sincos(imag(x))
75 sh, ch := sinhcosh(real(x))
76 return complex(c*sh, s*ch)
77 }
78
79 // Complex circular cosine
80 //
81 // DESCRIPTION:
82 //
83 // If
84 // z = x + iy,
85 //
86 // then
87 //
88 // w = cos x cosh y - i sin x sinh y.
89 //
90 // ACCURACY:
91 //
92 // Relative error:
93 // arithmetic domain # trials peak rms
94 // DEC -10,+10 8400 4.5e-17 1.3e-17
95 // IEEE -10,+10 30000 3.8e-16 1.0e-16
96
97 // Cos returns the cosine of x.
98 func Cos(x complex128) complex128 {
99 s, c := math.Sincos(real(x))
100 sh, ch := sinhcosh(imag(x))
101 return complex(c*ch, -s*sh)
102 }
103
104 // Complex hyperbolic cosine
105 //
106 // DESCRIPTION:
107 //
108 // ccosh(z) = cosh x cos y + i sinh x sin y .
109 //
110 // ACCURACY:
111 //
112 // Relative error:
113 // arithmetic domain # trials peak rms
114 // IEEE -10,+10 30000 2.9e-16 8.1e-17
115
116 // Cosh returns the hyperbolic cosine of x.
117 func Cosh(x complex128) complex128 {
118 s, c := math.Sincos(imag(x))
119 sh, ch := sinhcosh(real(x))
120 return complex(c*ch, s*sh)
121 }
122
123 // calculate sinh and cosh
124 func sinhcosh(x float64) (sh, ch float64) {
125 if math.Abs(x) <= 0.5 {
126 return math.Sinh(x), math.Cosh(x)
127 }
128 e := math.Exp(x)
129 ei := 0.5 / e
130 e *= 0.5
131 return e - ei, e + ei
132 }