Source file src/pkg/math/cmplx/tan.go
1 // Copyright 2010 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 package cmplx
6
7 import "math"
8
9 // The original C code, the long comment, and the constants
10 // below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
11 // The go code is a simplified version of the original C.
12 //
13 // Cephes Math Library Release 2.8: June, 2000
14 // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
15 //
16 // The readme file at http://netlib.sandia.gov/cephes/ says:
17 // Some software in this archive may be from the book _Methods and
18 // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
19 // International, 1989) or from the Cephes Mathematical Library, a
20 // commercial product. In either event, it is copyrighted by the author.
21 // What you see here may be used freely but it comes with no support or
22 // guarantee.
23 //
24 // The two known misprints in the book are repaired here in the
25 // source listings for the gamma function and the incomplete beta
26 // integral.
27 //
28 // Stephen L. Moshier
29 // [email protected]
30
31 // Complex circular tangent
32 //
33 // DESCRIPTION:
34 //
35 // If
36 // z = x + iy,
37 //
38 // then
39 //
40 // sin 2x + i sinh 2y
41 // w = --------------------.
42 // cos 2x + cosh 2y
43 //
44 // On the real axis the denominator is zero at odd multiples
45 // of PI/2. The denominator is evaluated by its Taylor
46 // series near these points.
47 //
48 // ctan(z) = -i ctanh(iz).
49 //
50 // ACCURACY:
51 //
52 // Relative error:
53 // arithmetic domain # trials peak rms
54 // DEC -10,+10 5200 7.1e-17 1.6e-17
55 // IEEE -10,+10 30000 7.2e-16 1.2e-16
56 // Also tested by ctan * ccot = 1 and catan(ctan(z)) = z.
57
58 // Tan returns the tangent of x.
59 func Tan(x complex128) complex128 {
60 d := math.Cos(2*real(x)) + math.Cosh(2*imag(x))
61 if math.Abs(d) < 0.25 {
62 d = tanSeries(x)
63 }
64 if d == 0 {
65 return Inf()
66 }
67 return complex(math.Sin(2*real(x))/d, math.Sinh(2*imag(x))/d)
68 }
69
70 // Complex hyperbolic tangent
71 //
72 // DESCRIPTION:
73 //
74 // tanh z = (sinh 2x + i sin 2y) / (cosh 2x + cos 2y) .
75 //
76 // ACCURACY:
77 //
78 // Relative error:
79 // arithmetic domain # trials peak rms
80 // IEEE -10,+10 30000 1.7e-14 2.4e-16
81
82 // Tanh returns the hyperbolic tangent of x.
83 func Tanh(x complex128) complex128 {
84 d := math.Cosh(2*real(x)) + math.Cos(2*imag(x))
85 if d == 0 {
86 return Inf()
87 }
88 return complex(math.Sinh(2*real(x))/d, math.Sin(2*imag(x))/d)
89 }
90
91 // Program to subtract nearest integer multiple of PI
92 func reducePi(x float64) float64 {
93 const (
94 // extended precision value of PI:
95 DP1 = 3.14159265160560607910E0 // ?? 0x400921fb54000000
96 DP2 = 1.98418714791870343106E-9 // ?? 0x3e210b4610000000
97 DP3 = 1.14423774522196636802E-17 // ?? 0x3c6a62633145c06e
98 )
99 t := x / math.Pi
100 if t >= 0 {
101 t += 0.5
102 } else {
103 t -= 0.5
104 }
105 t = float64(int64(t)) // int64(t) = the multiple
106 return ((x - t*DP1) - t*DP2) - t*DP3
107 }
108
109 // Taylor series expansion for cosh(2y) - cos(2x)
110 func tanSeries(z complex128) float64 {
111 const MACHEP = 1.0 / (1 << 53)
112 x := math.Abs(2 * real(z))
113 y := math.Abs(2 * imag(z))
114 x = reducePi(x)
115 x = x * x
116 y = y * y
117 x2 := 1.0
118 y2 := 1.0
119 f := 1.0
120 rn := 0.0
121 d := 0.0
122 for {
123 rn += 1
124 f *= rn
125 rn += 1
126 f *= rn
127 x2 *= x
128 y2 *= y
129 t := y2 + x2
130 t /= f
131 d += t
132
133 rn += 1
134 f *= rn
135 rn += 1
136 f *= rn
137 x2 *= x
138 y2 *= y
139 t = y2 - x2
140 t /= f
141 d += t
142 if math.Abs(t/d) <= MACHEP {
143 break
144 }
145 }
146 return d
147 }
148
149 // Complex circular cotangent
150 //
151 // DESCRIPTION:
152 //
153 // If
154 // z = x + iy,
155 //
156 // then
157 //
158 // sin 2x - i sinh 2y
159 // w = --------------------.
160 // cosh 2y - cos 2x
161 //
162 // On the real axis, the denominator has zeros at even
163 // multiples of PI/2. Near these points it is evaluated
164 // by a Taylor series.
165 //
166 // ACCURACY:
167 //
168 // Relative error:
169 // arithmetic domain # trials peak rms
170 // DEC -10,+10 3000 6.5e-17 1.6e-17
171 // IEEE -10,+10 30000 9.2e-16 1.2e-16
172 // Also tested by ctan * ccot = 1 + i0.
173
174 // Cot returns the cotangent of x.
175 func Cot(x complex128) complex128 {
176 d := math.Cosh(2*imag(x)) - math.Cos(2*real(x))
177 if math.Abs(d) < 0.25 {
178 d = tanSeries(x)
179 }
180 if d == 0 {
181 return Inf()
182 }
183 return complex(math.Sin(2*real(x))/d, -math.Sinh(2*imag(x))/d)
184 }