Source file src/pkg/reflect/value.go
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 package reflect
6
7 import (
8 "math"
9 "runtime"
10 "strconv"
11 "unsafe"
12 )
13
14 const bigEndian = false // can be smarter if we find a big-endian machine
15 const ptrSize = unsafe.Sizeof((*byte)(nil))
16 const cannotSet = "cannot set value obtained from unexported struct field"
17
18 // TODO: This will have to go away when
19 // the new gc goes in.
20 func memmove(adst, asrc unsafe.Pointer, n uintptr) {
21 dst := uintptr(adst)
22 src := uintptr(asrc)
23 switch {
24 case src < dst && src+n > dst:
25 // byte copy backward
26 // careful: i is unsigned
27 for i := n; i > 0; {
28 i--
29 *(*byte)(unsafe.Pointer(dst + i)) = *(*byte)(unsafe.Pointer(src + i))
30 }
31 case (n|src|dst)&(ptrSize-1) != 0:
32 // byte copy forward
33 for i := uintptr(0); i < n; i++ {
34 *(*byte)(unsafe.Pointer(dst + i)) = *(*byte)(unsafe.Pointer(src + i))
35 }
36 default:
37 // word copy forward
38 for i := uintptr(0); i < n; i += ptrSize {
39 *(*uintptr)(unsafe.Pointer(dst + i)) = *(*uintptr)(unsafe.Pointer(src + i))
40 }
41 }
42 }
43
44 // Value is the reflection interface to a Go value.
45 //
46 // Not all methods apply to all kinds of values. Restrictions,
47 // if any, are noted in the documentation for each method.
48 // Use the Kind method to find out the kind of value before
49 // calling kind-specific methods. Calling a method
50 // inappropriate to the kind of type causes a run time panic.
51 //
52 // The zero Value represents no value.
53 // Its IsValid method returns false, its Kind method returns Invalid,
54 // its String method returns "<invalid Value>", and all other methods panic.
55 // Most functions and methods never return an invalid value.
56 // If one does, its documentation states the conditions explicitly.
57 //
58 // A Value can be used concurrently by multiple goroutines provided that
59 // the underlying Go value can be used concurrently for the equivalent
60 // direct operations.
61 type Value struct {
62 // typ holds the type of the value represented by a Value.
63 typ *commonType
64
65 // val holds the 1-word representation of the value.
66 // If flag's flagIndir bit is set, then val is a pointer to the data.
67 // Otherwise val is a word holding the actual data.
68 // When the data is smaller than a word, it begins at
69 // the first byte (in the memory address sense) of val.
70 // We use unsafe.Pointer so that the garbage collector
71 // knows that val could be a pointer.
72 val unsafe.Pointer
73
74 // flag holds metadata about the value.
75 // The lowest bits are flag bits:
76 // - flagRO: obtained via unexported field, so read-only
77 // - flagIndir: val holds a pointer to the data
78 // - flagAddr: v.CanAddr is true (implies flagIndir)
79 // - flagMethod: v is a method value.
80 // The next five bits give the Kind of the value.
81 // This repeats typ.Kind() except for method values.
82 // The remaining 23+ bits give a method number for method values.
83 // If flag.kind() != Func, code can assume that flagMethod is unset.
84 // If typ.size > ptrSize, code can assume that flagIndir is set.
85 flag
86
87 // A method value represents a curried method invocation
88 // like r.Read for some receiver r. The typ+val+flag bits describe
89 // the receiver r, but the flag's Kind bits say Func (methods are
90 // functions), and the top bits of the flag give the method number
91 // in r's type's method table.
92 }
93
94 type flag uintptr
95
96 const (
97 flagRO flag = 1 << iota
98 flagIndir
99 flagAddr
100 flagMethod
101 flagKindShift = iota
102 flagKindWidth = 5 // there are 27 kinds
103 flagKindMask flag = 1<<flagKindWidth - 1
104 flagMethodShift = flagKindShift + flagKindWidth
105 )
106
107 func (f flag) kind() Kind {
108 return Kind((f >> flagKindShift) & flagKindMask)
109 }
110
111 // A ValueError occurs when a Value method is invoked on
112 // a Value that does not support it. Such cases are documented
113 // in the description of each method.
114 type ValueError struct {
115 Method string
116 Kind Kind
117 }
118
119 func (e *ValueError) Error() string {
120 if e.Kind == 0 {
121 return "reflect: call of " + e.Method + " on zero Value"
122 }
123 return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"
124 }
125
126 // methodName returns the name of the calling method,
127 // assumed to be two stack frames above.
128 func methodName() string {
129 pc, _, _, _ := runtime.Caller(2)
130 f := runtime.FuncForPC(pc)
131 if f == nil {
132 return "unknown method"
133 }
134 return f.Name()
135 }
136
137 // An iword is the word that would be stored in an
138 // interface to represent a given value v. Specifically, if v is
139 // bigger than a pointer, its word is a pointer to v's data.
140 // Otherwise, its word holds the data stored
141 // in its leading bytes (so is not a pointer).
142 // Because the value sometimes holds a pointer, we use
143 // unsafe.Pointer to represent it, so that if iword appears
144 // in a struct, the garbage collector knows that might be
145 // a pointer.
146 type iword unsafe.Pointer
147
148 func (v Value) iword() iword {
149 if v.flag&flagIndir != 0 && v.typ.size <= ptrSize {
150 // Have indirect but want direct word.
151 return loadIword(v.val, v.typ.size)
152 }
153 return iword(v.val)
154 }
155
156 // loadIword loads n bytes at p from memory into an iword.
157 func loadIword(p unsafe.Pointer, n uintptr) iword {
158 // Run the copy ourselves instead of calling memmove
159 // to avoid moving w to the heap.
160 var w iword
161 switch n {
162 default:
163 panic("reflect: internal error: loadIword of " + strconv.Itoa(int(n)) + "-byte value")
164 case 0:
165 case 1:
166 *(*uint8)(unsafe.Pointer(&w)) = *(*uint8)(p)
167 case 2:
168 *(*uint16)(unsafe.Pointer(&w)) = *(*uint16)(p)
169 case 3:
170 *(*[3]byte)(unsafe.Pointer(&w)) = *(*[3]byte)(p)
171 case 4:
172 *(*uint32)(unsafe.Pointer(&w)) = *(*uint32)(p)
173 case 5:
174 *(*[5]byte)(unsafe.Pointer(&w)) = *(*[5]byte)(p)
175 case 6:
176 *(*[6]byte)(unsafe.Pointer(&w)) = *(*[6]byte)(p)
177 case 7:
178 *(*[7]byte)(unsafe.Pointer(&w)) = *(*[7]byte)(p)
179 case 8:
180 *(*uint64)(unsafe.Pointer(&w)) = *(*uint64)(p)
181 }
182 return w
183 }
184
185 // storeIword stores n bytes from w into p.
186 func storeIword(p unsafe.Pointer, w iword, n uintptr) {
187 // Run the copy ourselves instead of calling memmove
188 // to avoid moving w to the heap.
189 switch n {
190 default:
191 panic("reflect: internal error: storeIword of " + strconv.Itoa(int(n)) + "-byte value")
192 case 0:
193 case 1:
194 *(*uint8)(p) = *(*uint8)(unsafe.Pointer(&w))
195 case 2:
196 *(*uint16)(p) = *(*uint16)(unsafe.Pointer(&w))
197 case 3:
198 *(*[3]byte)(p) = *(*[3]byte)(unsafe.Pointer(&w))
199 case 4:
200 *(*uint32)(p) = *(*uint32)(unsafe.Pointer(&w))
201 case 5:
202 *(*[5]byte)(p) = *(*[5]byte)(unsafe.Pointer(&w))
203 case 6:
204 *(*[6]byte)(p) = *(*[6]byte)(unsafe.Pointer(&w))
205 case 7:
206 *(*[7]byte)(p) = *(*[7]byte)(unsafe.Pointer(&w))
207 case 8:
208 *(*uint64)(p) = *(*uint64)(unsafe.Pointer(&w))
209 }
210 }
211
212 // emptyInterface is the header for an interface{} value.
213 type emptyInterface struct {
214 typ *runtimeType
215 word iword
216 }
217
218 // nonEmptyInterface is the header for a interface value with methods.
219 type nonEmptyInterface struct {
220 // see ../runtime/iface.c:/Itab
221 itab *struct {
222 ityp *runtimeType // static interface type
223 typ *runtimeType // dynamic concrete type
224 link unsafe.Pointer
225 bad int32
226 unused int32
227 fun [100000]unsafe.Pointer // method table
228 }
229 word iword
230 }
231
232 // mustBe panics if f's kind is not expected.
233 // Making this a method on flag instead of on Value
234 // (and embedding flag in Value) means that we can write
235 // the very clear v.mustBe(Bool) and have it compile into
236 // v.flag.mustBe(Bool), which will only bother to copy the
237 // single important word for the receiver.
238 func (f flag) mustBe(expected Kind) {
239 k := f.kind()
240 if k != expected {
241 panic(&ValueError{methodName(), k})
242 }
243 }
244
245 // mustBeExported panics if f records that the value was obtained using
246 // an unexported field.
247 func (f flag) mustBeExported() {
248 if f == 0 {
249 panic(&ValueError{methodName(), 0})
250 }
251 if f&flagRO != 0 {
252 panic(methodName() + " using value obtained using unexported field")
253 }
254 }
255
256 // mustBeAssignable panics if f records that the value is not assignable,
257 // which is to say that either it was obtained using an unexported field
258 // or it is not addressable.
259 func (f flag) mustBeAssignable() {
260 if f == 0 {
261 panic(&ValueError{methodName(), Invalid})
262 }
263 // Assignable if addressable and not read-only.
264 if f&flagRO != 0 {
265 panic(methodName() + " using value obtained using unexported field")
266 }
267 if f&flagAddr == 0 {
268 panic(methodName() + " using unaddressable value")
269 }
270 }
271
272 // Addr returns a pointer value representing the address of v.
273 // It panics if CanAddr() returns false.
274 // Addr is typically used to obtain a pointer to a struct field
275 // or slice element in order to call a method that requires a
276 // pointer receiver.
277 func (v Value) Addr() Value {
278 if v.flag&flagAddr == 0 {
279 panic("reflect.Value.Addr of unaddressable value")
280 }
281 return Value{v.typ.ptrTo(), v.val, (v.flag & flagRO) | flag(Ptr)<<flagKindShift}
282 }
283
284 // Bool returns v's underlying value.
285 // It panics if v's kind is not Bool.
286 func (v Value) Bool() bool {
287 v.mustBe(Bool)
288 if v.flag&flagIndir != 0 {
289 return *(*bool)(v.val)
290 }
291 return *(*bool)(unsafe.Pointer(&v.val))
292 }
293
294 // Bytes returns v's underlying value.
295 // It panics if v's underlying value is not a slice of bytes.
296 func (v Value) Bytes() []byte {
297 v.mustBe(Slice)
298 if v.typ.Elem().Kind() != Uint8 {
299 panic("reflect.Value.Bytes of non-byte slice")
300 }
301 // Slice is always bigger than a word; assume flagIndir.
302 return *(*[]byte)(v.val)
303 }
304
305 // CanAddr returns true if the value's address can be obtained with Addr.
306 // Such values are called addressable. A value is addressable if it is
307 // an element of a slice, an element of an addressable array,
308 // a field of an addressable struct, or the result of dereferencing a pointer.
309 // If CanAddr returns false, calling Addr will panic.
310 func (v Value) CanAddr() bool {
311 return v.flag&flagAddr != 0
312 }
313
314 // CanSet returns true if the value of v can be changed.
315 // A Value can be changed only if it is addressable and was not
316 // obtained by the use of unexported struct fields.
317 // If CanSet returns false, calling Set or any type-specific
318 // setter (e.g., SetBool, SetInt64) will panic.
319 func (v Value) CanSet() bool {
320 return v.flag&(flagAddr|flagRO) == flagAddr
321 }
322
323 // Call calls the function v with the input arguments in.
324 // For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]).
325 // Call panics if v's Kind is not Func.
326 // It returns the output results as Values.
327 // As in Go, each input argument must be assignable to the
328 // type of the function's corresponding input parameter.
329 // If v is a variadic function, Call creates the variadic slice parameter
330 // itself, copying in the corresponding values.
331 func (v Value) Call(in []Value) []Value {
332 v.mustBe(Func)
333 v.mustBeExported()
334 return v.call("Call", in)
335 }
336
337 // CallSlice calls the variadic function v with the input arguments in,
338 // assigning the slice in[len(in)-1] to v's final variadic argument.
339 // For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]...).
340 // Call panics if v's Kind is not Func or if v is not variadic.
341 // It returns the output results as Values.
342 // As in Go, each input argument must be assignable to the
343 // type of the function's corresponding input parameter.
344 func (v Value) CallSlice(in []Value) []Value {
345 v.mustBe(Func)
346 v.mustBeExported()
347 return v.call("CallSlice", in)
348 }
349
350 func (v Value) call(method string, in []Value) []Value {
351 // Get function pointer, type.
352 t := v.typ
353 var (
354 fn unsafe.Pointer
355 rcvr iword
356 )
357 if v.flag&flagMethod != 0 {
358 i := int(v.flag) >> flagMethodShift
359 if v.typ.Kind() == Interface {
360 tt := (*interfaceType)(unsafe.Pointer(v.typ))
361 if i < 0 || i >= len(tt.methods) {
362 panic("reflect: broken Value")
363 }
364 m := &tt.methods[i]
365 if m.pkgPath != nil {
366 panic(method + " of unexported method")
367 }
368 t = toCommonType(m.typ)
369 iface := (*nonEmptyInterface)(v.val)
370 if iface.itab == nil {
371 panic(method + " of method on nil interface value")
372 }
373 fn = iface.itab.fun[i]
374 rcvr = iface.word
375 } else {
376 ut := v.typ.uncommon()
377 if ut == nil || i < 0 || i >= len(ut.methods) {
378 panic("reflect: broken Value")
379 }
380 m := &ut.methods[i]
381 if m.pkgPath != nil {
382 panic(method + " of unexported method")
383 }
384 fn = m.ifn
385 t = toCommonType(m.mtyp)
386 rcvr = v.iword()
387 }
388 } else if v.flag&flagIndir != 0 {
389 fn = *(*unsafe.Pointer)(v.val)
390 } else {
391 fn = v.val
392 }
393
394 if fn == nil {
395 panic("reflect.Value.Call: call of nil function")
396 }
397
398 isSlice := method == "CallSlice"
399 n := t.NumIn()
400 if isSlice {
401 if !t.IsVariadic() {
402 panic("reflect: CallSlice of non-variadic function")
403 }
404 if len(in) < n {
405 panic("reflect: CallSlice with too few input arguments")
406 }
407 if len(in) > n {
408 panic("reflect: CallSlice with too many input arguments")
409 }
410 } else {
411 if t.IsVariadic() {
412 n--
413 }
414 if len(in) < n {
415 panic("reflect: Call with too few input arguments")
416 }
417 if !t.IsVariadic() && len(in) > n {
418 panic("reflect: Call with too many input arguments")
419 }
420 }
421 for _, x := range in {
422 if x.Kind() == Invalid {
423 panic("reflect: " + method + " using zero Value argument")
424 }
425 }
426 for i := 0; i < n; i++ {
427 if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(targ) {
428 panic("reflect: " + method + " using " + xt.String() + " as type " + targ.String())
429 }
430 }
431 if !isSlice && t.IsVariadic() {
432 // prepare slice for remaining values
433 m := len(in) - n
434 slice := MakeSlice(t.In(n), m, m)
435 elem := t.In(n).Elem()
436 for i := 0; i < m; i++ {
437 x := in[n+i]
438 if xt := x.Type(); !xt.AssignableTo(elem) {
439 panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + method)
440 }
441 slice.Index(i).Set(x)
442 }
443 origIn := in
444 in = make([]Value, n+1)
445 copy(in[:n], origIn)
446 in[n] = slice
447 }
448
449 nin := len(in)
450 if nin != t.NumIn() {
451 panic("reflect.Value.Call: wrong argument count")
452 }
453 nout := t.NumOut()
454
455 // Compute arg size & allocate.
456 // This computation is 5g/6g/8g-dependent
457 // and probably wrong for gccgo, but so
458 // is most of this function.
459 size := uintptr(0)
460 if v.flag&flagMethod != 0 {
461 // extra word for receiver interface word
462 size += ptrSize
463 }
464 for i := 0; i < nin; i++ {
465 tv := t.In(i)
466 a := uintptr(tv.Align())
467 size = (size + a - 1) &^ (a - 1)
468 size += tv.Size()
469 }
470 size = (size + ptrSize - 1) &^ (ptrSize - 1)
471 for i := 0; i < nout; i++ {
472 tv := t.Out(i)
473 a := uintptr(tv.Align())
474 size = (size + a - 1) &^ (a - 1)
475 size += tv.Size()
476 }
477
478 // size must be > 0 in order for &args[0] to be valid.
479 // the argument copying is going to round it up to
480 // a multiple of ptrSize anyway, so make it ptrSize to begin with.
481 if size < ptrSize {
482 size = ptrSize
483 }
484
485 // round to pointer size
486 size = (size + ptrSize - 1) &^ (ptrSize - 1)
487
488 // Copy into args.
489 //
490 // TODO(rsc): revisit when reference counting happens.
491 // The values are holding up the in references for us,
492 // but something must be done for the out references.
493 // For now make everything look like a pointer by pretending
494 // to allocate a []*int.
495 args := make([]*int, size/ptrSize)
496 ptr := uintptr(unsafe.Pointer(&args[0]))
497 off := uintptr(0)
498 if v.flag&flagMethod != 0 {
499 // Hard-wired first argument.
500 *(*iword)(unsafe.Pointer(ptr)) = rcvr
501 off = ptrSize
502 }
503 for i, v := range in {
504 v.mustBeExported()
505 targ := t.In(i).(*commonType)
506 a := uintptr(targ.align)
507 off = (off + a - 1) &^ (a - 1)
508 n := targ.size
509 addr := unsafe.Pointer(ptr + off)
510 v = v.assignTo("reflect.Value.Call", targ, (*interface{})(addr))
511 if v.flag&flagIndir == 0 {
512 storeIword(addr, iword(v.val), n)
513 } else {
514 memmove(addr, v.val, n)
515 }
516 off += n
517 }
518 off = (off + ptrSize - 1) &^ (ptrSize - 1)
519
520 // Call.
521 call(fn, unsafe.Pointer(ptr), uint32(size))
522
523 // Copy return values out of args.
524 //
525 // TODO(rsc): revisit like above.
526 ret := make([]Value, nout)
527 for i := 0; i < nout; i++ {
528 tv := t.Out(i)
529 a := uintptr(tv.Align())
530 off = (off + a - 1) &^ (a - 1)
531 fl := flagIndir | flag(tv.Kind())<<flagKindShift
532 ret[i] = Value{tv.common(), unsafe.Pointer(ptr + off), fl}
533 off += tv.Size()
534 }
535
536 return ret
537 }
538
539 // Cap returns v's capacity.
540 // It panics if v's Kind is not Array, Chan, or Slice.
541 func (v Value) Cap() int {
542 k := v.kind()
543 switch k {
544 case Array:
545 return v.typ.Len()
546 case Chan:
547 return int(chancap(v.iword()))
548 case Slice:
549 // Slice is always bigger than a word; assume flagIndir.
550 return (*SliceHeader)(v.val).Cap
551 }
552 panic(&ValueError{"reflect.Value.Cap", k})
553 }
554
555 // Close closes the channel v.
556 // It panics if v's Kind is not Chan.
557 func (v Value) Close() {
558 v.mustBe(Chan)
559 v.mustBeExported()
560 chanclose(v.iword())
561 }
562
563 // Complex returns v's underlying value, as a complex128.
564 // It panics if v's Kind is not Complex64 or Complex128
565 func (v Value) Complex() complex128 {
566 k := v.kind()
567 switch k {
568 case Complex64:
569 if v.flag&flagIndir != 0 {
570 return complex128(*(*complex64)(v.val))
571 }
572 return complex128(*(*complex64)(unsafe.Pointer(&v.val)))
573 case Complex128:
574 // complex128 is always bigger than a word; assume flagIndir.
575 return *(*complex128)(v.val)
576 }
577 panic(&ValueError{"reflect.Value.Complex", k})
578 }
579
580 // Elem returns the value that the interface v contains
581 // or that the pointer v points to.
582 // It panics if v's Kind is not Interface or Ptr.
583 // It returns the zero Value if v is nil.
584 func (v Value) Elem() Value {
585 k := v.kind()
586 switch k {
587 case Interface:
588 var (
589 typ *commonType
590 val unsafe.Pointer
591 )
592 if v.typ.NumMethod() == 0 {
593 eface := (*emptyInterface)(v.val)
594 if eface.typ == nil {
595 // nil interface value
596 return Value{}
597 }
598 typ = toCommonType(eface.typ)
599 val = unsafe.Pointer(eface.word)
600 } else {
601 iface := (*nonEmptyInterface)(v.val)
602 if iface.itab == nil {
603 // nil interface value
604 return Value{}
605 }
606 typ = toCommonType(iface.itab.typ)
607 val = unsafe.Pointer(iface.word)
608 }
609 fl := v.flag & flagRO
610 fl |= flag(typ.Kind()) << flagKindShift
611 if typ.size > ptrSize {
612 fl |= flagIndir
613 }
614 return Value{typ, val, fl}
615
616 case Ptr:
617 val := v.val
618 if v.flag&flagIndir != 0 {
619 val = *(*unsafe.Pointer)(val)
620 }
621 // The returned value's address is v's value.
622 if val == nil {
623 return Value{}
624 }
625 tt := (*ptrType)(unsafe.Pointer(v.typ))
626 typ := toCommonType(tt.elem)
627 fl := v.flag&flagRO | flagIndir | flagAddr
628 fl |= flag(typ.Kind() << flagKindShift)
629 return Value{typ, val, fl}
630 }
631 panic(&ValueError{"reflect.Value.Elem", k})
632 }
633
634 // Field returns the i'th field of the struct v.
635 // It panics if v's Kind is not Struct or i is out of range.
636 func (v Value) Field(i int) Value {
637 v.mustBe(Struct)
638 tt := (*structType)(unsafe.Pointer(v.typ))
639 if i < 0 || i >= len(tt.fields) {
640 panic("reflect: Field index out of range")
641 }
642 field := &tt.fields[i]
643 typ := toCommonType(field.typ)
644
645 // Inherit permission bits from v.
646 fl := v.flag & (flagRO | flagIndir | flagAddr)
647 // Using an unexported field forces flagRO.
648 if field.pkgPath != nil {
649 fl |= flagRO
650 }
651 fl |= flag(typ.Kind()) << flagKindShift
652
653 var val unsafe.Pointer
654 switch {
655 case fl&flagIndir != 0:
656 // Indirect. Just bump pointer.
657 val = unsafe.Pointer(uintptr(v.val) + field.offset)
658 case bigEndian:
659 // Direct. Discard leading bytes.
660 val = unsafe.Pointer(uintptr(v.val) << (field.offset * 8))
661 default:
662 // Direct. Discard leading bytes.
663 val = unsafe.Pointer(uintptr(v.val) >> (field.offset * 8))
664 }
665
666 return Value{typ, val, fl}
667 }
668
669 // FieldByIndex returns the nested field corresponding to index.
670 // It panics if v's Kind is not struct.
671 func (v Value) FieldByIndex(index []int) Value {
672 v.mustBe(Struct)
673 for i, x := range index {
674 if i > 0 {
675 if v.Kind() == Ptr && v.Elem().Kind() == Struct {
676 v = v.Elem()
677 }
678 }
679 v = v.Field(x)
680 }
681 return v
682 }
683
684 // FieldByName returns the struct field with the given name.
685 // It returns the zero Value if no field was found.
686 // It panics if v's Kind is not struct.
687 func (v Value) FieldByName(name string) Value {
688 v.mustBe(Struct)
689 if f, ok := v.typ.FieldByName(name); ok {
690 return v.FieldByIndex(f.Index)
691 }
692 return Value{}
693 }
694
695 // FieldByNameFunc returns the struct field with a name
696 // that satisfies the match function.
697 // It panics if v's Kind is not struct.
698 // It returns the zero Value if no field was found.
699 func (v Value) FieldByNameFunc(match func(string) bool) Value {
700 v.mustBe(Struct)
701 if f, ok := v.typ.FieldByNameFunc(match); ok {
702 return v.FieldByIndex(f.Index)
703 }
704 return Value{}
705 }
706
707 // Float returns v's underlying value, as a float64.
708 // It panics if v's Kind is not Float32 or Float64
709 func (v Value) Float() float64 {
710 k := v.kind()
711 switch k {
712 case Float32:
713 if v.flag&flagIndir != 0 {
714 return float64(*(*float32)(v.val))
715 }
716 return float64(*(*float32)(unsafe.Pointer(&v.val)))
717 case Float64:
718 if v.flag&flagIndir != 0 {
719 return *(*float64)(v.val)
720 }
721 return *(*float64)(unsafe.Pointer(&v.val))
722 }
723 panic(&ValueError{"reflect.Value.Float", k})
724 }
725
726 // Index returns v's i'th element.
727 // It panics if v's Kind is not Array or Slice or i is out of range.
728 func (v Value) Index(i int) Value {
729 k := v.kind()
730 switch k {
731 case Array:
732 tt := (*arrayType)(unsafe.Pointer(v.typ))
733 if i < 0 || i > int(tt.len) {
734 panic("reflect: array index out of range")
735 }
736 typ := toCommonType(tt.elem)
737 fl := v.flag & (flagRO | flagIndir | flagAddr) // bits same as overall array
738 fl |= flag(typ.Kind()) << flagKindShift
739 offset := uintptr(i) * typ.size
740
741 var val unsafe.Pointer
742 switch {
743 case fl&flagIndir != 0:
744 // Indirect. Just bump pointer.
745 val = unsafe.Pointer(uintptr(v.val) + offset)
746 case bigEndian:
747 // Direct. Discard leading bytes.
748 val = unsafe.Pointer(uintptr(v.val) << (offset * 8))
749 default:
750 // Direct. Discard leading bytes.
751 val = unsafe.Pointer(uintptr(v.val) >> (offset * 8))
752 }
753 return Value{typ, val, fl}
754
755 case Slice:
756 // Element flag same as Elem of Ptr.
757 // Addressable, indirect, possibly read-only.
758 fl := flagAddr | flagIndir | v.flag&flagRO
759 s := (*SliceHeader)(v.val)
760 if i < 0 || i >= s.Len {
761 panic("reflect: slice index out of range")
762 }
763 tt := (*sliceType)(unsafe.Pointer(v.typ))
764 typ := toCommonType(tt.elem)
765 fl |= flag(typ.Kind()) << flagKindShift
766 val := unsafe.Pointer(s.Data + uintptr(i)*typ.size)
767 return Value{typ, val, fl}
768 }
769 panic(&ValueError{"reflect.Value.Index", k})
770 }
771
772 // Int returns v's underlying value, as an int64.
773 // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
774 func (v Value) Int() int64 {
775 k := v.kind()
776 var p unsafe.Pointer
777 if v.flag&flagIndir != 0 {
778 p = v.val
779 } else {
780 // The escape analysis is good enough that &v.val
781 // does not trigger a heap allocation.
782 p = unsafe.Pointer(&v.val)
783 }
784 switch k {
785 case Int:
786 return int64(*(*int)(p))
787 case Int8:
788 return int64(*(*int8)(p))
789 case Int16:
790 return int64(*(*int16)(p))
791 case Int32:
792 return int64(*(*int32)(p))
793 case Int64:
794 return int64(*(*int64)(p))
795 }
796 panic(&ValueError{"reflect.Value.Int", k})
797 }
798
799 // CanInterface returns true if Interface can be used without panicking.
800 func (v Value) CanInterface() bool {
801 if v.flag == 0 {
802 panic(&ValueError{"reflect.Value.CanInterface", Invalid})
803 }
804 return v.flag&(flagMethod|flagRO) == 0
805 }
806
807 // Interface returns v's current value as an interface{}.
808 // It is equivalent to:
809 // var i interface{} = (v's underlying value)
810 // If v is a method obtained by invoking Value.Method
811 // (as opposed to Type.Method), Interface cannot return an
812 // interface value, so it panics.
813 // It also panics if the Value was obtained by accessing
814 // unexported struct fields.
815 func (v Value) Interface() (i interface{}) {
816 return valueInterface(v, true)
817 }
818
819 func valueInterface(v Value, safe bool) interface{} {
820 if v.flag == 0 {
821 panic(&ValueError{"reflect.Value.Interface", 0})
822 }
823 if v.flag&flagMethod != 0 {
824 panic("reflect.Value.Interface: cannot create interface value for method with bound receiver")
825 }
826
827 if safe && v.flag&flagRO != 0 {
828 // Do not allow access to unexported values via Interface,
829 // because they might be pointers that should not be
830 // writable or methods or function that should not be callable.
831 panic("reflect.Value.Interface: cannot return value obtained from unexported field or method")
832 }
833
834 k := v.kind()
835 if k == Interface {
836 // Special case: return the element inside the interface.
837 // Empty interface has one layout, all interfaces with
838 // methods have a second layout.
839 if v.NumMethod() == 0 {
840 return *(*interface{})(v.val)
841 }
842 return *(*interface {
843 M()
844 })(v.val)
845 }
846
847 // Non-interface value.
848 var eface emptyInterface
849 eface.typ = v.typ.runtimeType()
850 eface.word = v.iword()
851
852 if v.flag&flagIndir != 0 && v.typ.size > ptrSize {
853 // eface.word is a pointer to the actual data,
854 // which might be changed. We need to return
855 // a pointer to unchanging data, so make a copy.
856 ptr := unsafe_New(v.typ)
857 memmove(ptr, unsafe.Pointer(eface.word), v.typ.size)
858 eface.word = iword(ptr)
859 }
860
861 return *(*interface{})(unsafe.Pointer(&eface))
862 }
863
864 // InterfaceData returns the interface v's value as a uintptr pair.
865 // It panics if v's Kind is not Interface.
866 func (v Value) InterfaceData() [2]uintptr {
867 v.mustBe(Interface)
868 // We treat this as a read operation, so we allow
869 // it even for unexported data, because the caller
870 // has to import "unsafe" to turn it into something
871 // that can be abused.
872 // Interface value is always bigger than a word; assume flagIndir.
873 return *(*[2]uintptr)(v.val)
874 }
875
876 // IsNil returns true if v is a nil value.
877 // It panics if v's Kind is not Chan, Func, Interface, Map, Ptr, or Slice.
878 func (v Value) IsNil() bool {
879 k := v.kind()
880 switch k {
881 case Chan, Func, Map, Ptr:
882 if v.flag&flagMethod != 0 {
883 panic("reflect: IsNil of method Value")
884 }
885 ptr := v.val
886 if v.flag&flagIndir != 0 {
887 ptr = *(*unsafe.Pointer)(ptr)
888 }
889 return ptr == nil
890 case Interface, Slice:
891 // Both interface and slice are nil if first word is 0.
892 // Both are always bigger than a word; assume flagIndir.
893 return *(*unsafe.Pointer)(v.val) == nil
894 }
895 panic(&ValueError{"reflect.Value.IsNil", k})
896 }
897
898 // IsValid returns true if v represents a value.
899 // It returns false if v is the zero Value.
900 // If IsValid returns false, all other methods except String panic.
901 // Most functions and methods never return an invalid value.
902 // If one does, its documentation states the conditions explicitly.
903 func (v Value) IsValid() bool {
904 return v.flag != 0
905 }
906
907 // Kind returns v's Kind.
908 // If v is the zero Value (IsValid returns false), Kind returns Invalid.
909 func (v Value) Kind() Kind {
910 return v.kind()
911 }
912
913 // Len returns v's length.
914 // It panics if v's Kind is not Array, Chan, Map, Slice, or String.
915 func (v Value) Len() int {
916 k := v.kind()
917 switch k {
918 case Array:
919 tt := (*arrayType)(unsafe.Pointer(v.typ))
920 return int(tt.len)
921 case Chan:
922 return int(chanlen(v.iword()))
923 case Map:
924 return int(maplen(v.iword()))
925 case Slice:
926 // Slice is bigger than a word; assume flagIndir.
927 return (*SliceHeader)(v.val).Len
928 case String:
929 // String is bigger than a word; assume flagIndir.
930 return (*StringHeader)(v.val).Len
931 }
932 panic(&ValueError{"reflect.Value.Len", k})
933 }
934
935 // MapIndex returns the value associated with key in the map v.
936 // It panics if v's Kind is not Map.
937 // It returns the zero Value if key is not found in the map or if v represents a nil map.
938 // As in Go, the key's value must be assignable to the map's key type.
939 func (v Value) MapIndex(key Value) Value {
940 v.mustBe(Map)
941 tt := (*mapType)(unsafe.Pointer(v.typ))
942
943 // Do not require key to be exported, so that DeepEqual
944 // and other programs can use all the keys returned by
945 // MapKeys as arguments to MapIndex. If either the map
946 // or the key is unexported, though, the result will be
947 // considered unexported. This is consistent with the
948 // behavior for structs, which allow read but not write
949 // of unexported fields.
950 key = key.assignTo("reflect.Value.MapIndex", toCommonType(tt.key), nil)
951
952 word, ok := mapaccess(v.typ.runtimeType(), v.iword(), key.iword())
953 if !ok {
954 return Value{}
955 }
956 typ := toCommonType(tt.elem)
957 fl := (v.flag | key.flag) & flagRO
958 if typ.size > ptrSize {
959 fl |= flagIndir
960 }
961 fl |= flag(typ.Kind()) << flagKindShift
962 return Value{typ, unsafe.Pointer(word), fl}
963 }
964
965 // MapKeys returns a slice containing all the keys present in the map,
966 // in unspecified order.
967 // It panics if v's Kind is not Map.
968 // It returns an empty slice if v represents a nil map.
969 func (v Value) MapKeys() []Value {
970 v.mustBe(Map)
971 tt := (*mapType)(unsafe.Pointer(v.typ))
972 keyType := toCommonType(tt.key)
973
974 fl := v.flag & flagRO
975 fl |= flag(keyType.Kind()) << flagKindShift
976 if keyType.size > ptrSize {
977 fl |= flagIndir
978 }
979
980 m := v.iword()
981 mlen := int32(0)
982 if m != nil {
983 mlen = maplen(m)
984 }
985 it := mapiterinit(v.typ.runtimeType(), m)
986 a := make([]Value, mlen)
987 var i int
988 for i = 0; i < len(a); i++ {
989 keyWord, ok := mapiterkey(it)
990 if !ok {
991 break
992 }
993 a[i] = Value{keyType, unsafe.Pointer(keyWord), fl}
994 mapiternext(it)
995 }
996 return a[:i]
997 }
998
999 // Method returns a function value corresponding to v's i'th method.
1000 // The arguments to a Call on the returned function should not include
1001 // a receiver; the returned function will always use v as the receiver.
1002 // Method panics if i is out of range.
1003 func (v Value) Method(i int) Value {
1004 if v.typ == nil {
1005 panic(&ValueError{"reflect.Value.Method", Invalid})
1006 }
1007 if v.flag&flagMethod != 0 || i < 0 || i >= v.typ.NumMethod() {
1008 panic("reflect: Method index out of range")
1009 }
1010 fl := v.flag & (flagRO | flagAddr | flagIndir)
1011 fl |= flag(Func) << flagKindShift
1012 fl |= flag(i)<<flagMethodShift | flagMethod
1013 return Value{v.typ, v.val, fl}
1014 }
1015
1016 // NumMethod returns the number of methods in the value's method set.
1017 func (v Value) NumMethod() int {
1018 if v.typ == nil {
1019 panic(&ValueError{"reflect.Value.NumMethod", Invalid})
1020 }
1021 if v.flag&flagMethod != 0 {
1022 return 0
1023 }
1024 return v.typ.NumMethod()
1025 }
1026
1027 // MethodByName returns a function value corresponding to the method
1028 // of v with the given name.
1029 // The arguments to a Call on the returned function should not include
1030 // a receiver; the returned function will always use v as the receiver.
1031 // It returns the zero Value if no method was found.
1032 func (v Value) MethodByName(name string) Value {
1033 if v.typ == nil {
1034 panic(&ValueError{"reflect.Value.MethodByName", Invalid})
1035 }
1036 if v.flag&flagMethod != 0 {
1037 return Value{}
1038 }
1039 m, ok := v.typ.MethodByName(name)
1040 if !ok {
1041 return Value{}
1042 }
1043 return v.Method(m.Index)
1044 }
1045
1046 // NumField returns the number of fields in the struct v.
1047 // It panics if v's Kind is not Struct.
1048 func (v Value) NumField() int {
1049 v.mustBe(Struct)
1050 tt := (*structType)(unsafe.Pointer(v.typ))
1051 return len(tt.fields)
1052 }
1053
1054 // OverflowComplex returns true if the complex128 x cannot be represented by v's type.
1055 // It panics if v's Kind is not Complex64 or Complex128.
1056 func (v Value) OverflowComplex(x complex128) bool {
1057 k := v.kind()
1058 switch k {
1059 case Complex64:
1060 return overflowFloat32(real(x)) || overflowFloat32(imag(x))
1061 case Complex128:
1062 return false
1063 }
1064 panic(&ValueError{"reflect.Value.OverflowComplex", k})
1065 }
1066
1067 // OverflowFloat returns true if the float64 x cannot be represented by v's type.
1068 // It panics if v's Kind is not Float32 or Float64.
1069 func (v Value) OverflowFloat(x float64) bool {
1070 k := v.kind()
1071 switch k {
1072 case Float32:
1073 return overflowFloat32(x)
1074 case Float64:
1075 return false
1076 }
1077 panic(&ValueError{"reflect.Value.OverflowFloat", k})
1078 }
1079
1080 func overflowFloat32(x float64) bool {
1081 if x < 0 {
1082 x = -x
1083 }
1084 return math.MaxFloat32 <= x && x <= math.MaxFloat64
1085 }
1086
1087 // OverflowInt returns true if the int64 x cannot be represented by v's type.
1088 // It panics if v's Kind is not Int, Int8, int16, Int32, or Int64.
1089 func (v Value) OverflowInt(x int64) bool {
1090 k := v.kind()
1091 switch k {
1092 case Int, Int8, Int16, Int32, Int64:
1093 bitSize := v.typ.size * 8
1094 trunc := (x << (64 - bitSize)) >> (64 - bitSize)
1095 return x != trunc
1096 }
1097 panic(&ValueError{"reflect.Value.OverflowInt", k})
1098 }
1099
1100 // OverflowUint returns true if the uint64 x cannot be represented by v's type.
1101 // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
1102 func (v Value) OverflowUint(x uint64) bool {
1103 k := v.kind()
1104 switch k {
1105 case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64:
1106 bitSize := v.typ.size * 8
1107 trunc := (x << (64 - bitSize)) >> (64 - bitSize)
1108 return x != trunc
1109 }
1110 panic(&ValueError{"reflect.Value.OverflowUint", k})
1111 }
1112
1113 // Pointer returns v's value as a uintptr.
1114 // It returns uintptr instead of unsafe.Pointer so that
1115 // code using reflect cannot obtain unsafe.Pointers
1116 // without importing the unsafe package explicitly.
1117 // It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer.
1118 func (v Value) Pointer() uintptr {
1119 k := v.kind()
1120 switch k {
1121 case Chan, Func, Map, Ptr, UnsafePointer:
1122 if k == Func && v.flag&flagMethod != 0 {
1123 panic("reflect.Value.Pointer of method Value")
1124 }
1125 p := v.val
1126 if v.flag&flagIndir != 0 {
1127 p = *(*unsafe.Pointer)(p)
1128 }
1129 return uintptr(p)
1130 case Slice:
1131 return (*SliceHeader)(v.val).Data
1132 }
1133 panic(&ValueError{"reflect.Value.Pointer", k})
1134 }
1135
1136 // Recv receives and returns a value from the channel v.
1137 // It panics if v's Kind is not Chan.
1138 // The receive blocks until a value is ready.
1139 // The boolean value ok is true if the value x corresponds to a send
1140 // on the channel, false if it is a zero value received because the channel is closed.
1141 func (v Value) Recv() (x Value, ok bool) {
1142 v.mustBe(Chan)
1143 v.mustBeExported()
1144 return v.recv(false)
1145 }
1146
1147 // internal recv, possibly non-blocking (nb).
1148 // v is known to be a channel.
1149 func (v Value) recv(nb bool) (val Value, ok bool) {
1150 tt := (*chanType)(unsafe.Pointer(v.typ))
1151 if ChanDir(tt.dir)&RecvDir == 0 {
1152 panic("recv on send-only channel")
1153 }
1154 word, selected, ok := chanrecv(v.typ.runtimeType(), v.iword(), nb)
1155 if selected {
1156 typ := toCommonType(tt.elem)
1157 fl := flag(typ.Kind()) << flagKindShift
1158 if typ.size > ptrSize {
1159 fl |= flagIndir
1160 }
1161 val = Value{typ, unsafe.Pointer(word), fl}
1162 }
1163 return
1164 }
1165
1166 // Send sends x on the channel v.
1167 // It panics if v's kind is not Chan or if x's type is not the same type as v's element type.
1168 // As in Go, x's value must be assignable to the channel's element type.
1169 func (v Value) Send(x Value) {
1170 v.mustBe(Chan)
1171 v.mustBeExported()
1172 v.send(x, false)
1173 }
1174
1175 // internal send, possibly non-blocking.
1176 // v is known to be a channel.
1177 func (v Value) send(x Value, nb bool) (selected bool) {
1178 tt := (*chanType)(unsafe.Pointer(v.typ))
1179 if ChanDir(tt.dir)&SendDir == 0 {
1180 panic("send on recv-only channel")
1181 }
1182 x.mustBeExported()
1183 x = x.assignTo("reflect.Value.Send", toCommonType(tt.elem), nil)
1184 return chansend(v.typ.runtimeType(), v.iword(), x.iword(), nb)
1185 }
1186
1187 // Set assigns x to the value v.
1188 // It panics if CanSet returns false.
1189 // As in Go, x's value must be assignable to v's type.
1190 func (v Value) Set(x Value) {
1191 v.mustBeAssignable()
1192 x.mustBeExported() // do not let unexported x leak
1193 var target *interface{}
1194 if v.kind() == Interface {
1195 target = (*interface{})(v.val)
1196 }
1197 x = x.assignTo("reflect.Set", v.typ, target)
1198 if x.flag&flagIndir != 0 {
1199 memmove(v.val, x.val, v.typ.size)
1200 } else {
1201 storeIword(v.val, iword(x.val), v.typ.size)
1202 }
1203 }
1204
1205 // SetBool sets v's underlying value.
1206 // It panics if v's Kind is not Bool or if CanSet() is false.
1207 func (v Value) SetBool(x bool) {
1208 v.mustBeAssignable()
1209 v.mustBe(Bool)
1210 *(*bool)(v.val) = x
1211 }
1212
1213 // SetBytes sets v's underlying value.
1214 // It panics if v's underlying value is not a slice of bytes.
1215 func (v Value) SetBytes(x []byte) {
1216 v.mustBeAssignable()
1217 v.mustBe(Slice)
1218 if v.typ.Elem().Kind() != Uint8 {
1219 panic("reflect.Value.SetBytes of non-byte slice")
1220 }
1221 *(*[]byte)(v.val) = x
1222 }
1223
1224 // SetComplex sets v's underlying value to x.
1225 // It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false.
1226 func (v Value) SetComplex(x complex128) {
1227 v.mustBeAssignable()
1228 switch k := v.kind(); k {
1229 default:
1230 panic(&ValueError{"reflect.Value.SetComplex", k})
1231 case Complex64:
1232 *(*complex64)(v.val) = complex64(x)
1233 case Complex128:
1234 *(*complex128)(v.val) = x
1235 }
1236 }
1237
1238 // SetFloat sets v's underlying value to x.
1239 // It panics if v's Kind is not Float32 or Float64, or if CanSet() is false.
1240 func (v Value) SetFloat(x float64) {
1241 v.mustBeAssignable()
1242 switch k := v.kind(); k {
1243 default:
1244 panic(&ValueError{"reflect.Value.SetFloat", k})
1245 case Float32:
1246 *(*float32)(v.val) = float32(x)
1247 case Float64:
1248 *(*float64)(v.val) = x
1249 }
1250 }
1251
1252 // SetInt sets v's underlying value to x.
1253 // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false.
1254 func (v Value) SetInt(x int64) {
1255 v.mustBeAssignable()
1256 switch k := v.kind(); k {
1257 default:
1258 panic(&ValueError{"reflect.Value.SetInt", k})
1259 case Int:
1260 *(*int)(v.val) = int(x)
1261 case Int8:
1262 *(*int8)(v.val) = int8(x)
1263 case Int16:
1264 *(*int16)(v.val) = int16(x)
1265 case Int32:
1266 *(*int32)(v.val) = int32(x)
1267 case Int64:
1268 *(*int64)(v.val) = x
1269 }
1270 }
1271
1272 // SetLen sets v's length to n.
1273 // It panics if v's Kind is not Slice or if n is negative or
1274 // greater than the capacity of the slice.
1275 func (v Value) SetLen(n int) {
1276 v.mustBeAssignable()
1277 v.mustBe(Slice)
1278 s := (*SliceHeader)(v.val)
1279 if n < 0 || n > int(s.Cap) {
1280 panic("reflect: slice length out of range in SetLen")
1281 }
1282 s.Len = n
1283 }
1284
1285 // SetMapIndex sets the value associated with key in the map v to val.
1286 // It panics if v's Kind is not Map.
1287 // If val is the zero Value, SetMapIndex deletes the key from the map.
1288 // As in Go, key's value must be assignable to the map's key type,
1289 // and val's value must be assignable to the map's value type.
1290 func (v Value) SetMapIndex(key, val Value) {
1291 v.mustBe(Map)
1292 v.mustBeExported()
1293 key.mustBeExported()
1294 tt := (*mapType)(unsafe.Pointer(v.typ))
1295 key = key.assignTo("reflect.Value.SetMapIndex", toCommonType(tt.key), nil)
1296 if val.typ != nil {
1297 val.mustBeExported()
1298 val = val.assignTo("reflect.Value.SetMapIndex", toCommonType(tt.elem), nil)
1299 }
1300 mapassign(v.typ.runtimeType(), v.iword(), key.iword(), val.iword(), val.typ != nil)
1301 }
1302
1303 // SetUint sets v's underlying value to x.
1304 // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false.
1305 func (v Value) SetUint(x uint64) {
1306 v.mustBeAssignable()
1307 switch k := v.kind(); k {
1308 default:
1309 panic(&ValueError{"reflect.Value.SetUint", k})
1310 case Uint:
1311 *(*uint)(v.val) = uint(x)
1312 case Uint8:
1313 *(*uint8)(v.val) = uint8(x)
1314 case Uint16:
1315 *(*uint16)(v.val) = uint16(x)
1316 case Uint32:
1317 *(*uint32)(v.val) = uint32(x)
1318 case Uint64:
1319 *(*uint64)(v.val) = x
1320 case Uintptr:
1321 *(*uintptr)(v.val) = uintptr(x)
1322 }
1323 }
1324
1325 // SetPointer sets the unsafe.Pointer value v to x.
1326 // It panics if v's Kind is not UnsafePointer.
1327 func (v Value) SetPointer(x unsafe.Pointer) {
1328 v.mustBeAssignable()
1329 v.mustBe(UnsafePointer)
1330 *(*unsafe.Pointer)(v.val) = x
1331 }
1332
1333 // SetString sets v's underlying value to x.
1334 // It panics if v's Kind is not String or if CanSet() is false.
1335 func (v Value) SetString(x string) {
1336 v.mustBeAssignable()
1337 v.mustBe(String)
1338 *(*string)(v.val) = x
1339 }
1340
1341 // Slice returns a slice of v.
1342 // It panics if v's Kind is not Array or Slice.
1343 func (v Value) Slice(beg, end int) Value {
1344 var (
1345 cap int
1346 typ *sliceType
1347 base unsafe.Pointer
1348 )
1349 switch k := v.kind(); k {
1350 default:
1351 panic(&ValueError{"reflect.Value.Slice", k})
1352 case Array:
1353 if v.flag&flagAddr == 0 {
1354 panic("reflect.Value.Slice: slice of unaddressable array")
1355 }
1356 tt := (*arrayType)(unsafe.Pointer(v.typ))
1357 cap = int(tt.len)
1358 typ = (*sliceType)(unsafe.Pointer(toCommonType(tt.slice)))
1359 base = v.val
1360 case Slice:
1361 typ = (*sliceType)(unsafe.Pointer(v.typ))
1362 s := (*SliceHeader)(v.val)
1363 base = unsafe.Pointer(s.Data)
1364 cap = s.Cap
1365
1366 }
1367 if beg < 0 || end < beg || end > cap {
1368 panic("reflect.Value.Slice: slice index out of bounds")
1369 }
1370
1371 // Declare slice so that gc can see the base pointer in it.
1372 var x []byte
1373
1374 // Reinterpret as *SliceHeader to edit.
1375 s := (*SliceHeader)(unsafe.Pointer(&x))
1376 s.Data = uintptr(base) + uintptr(beg)*toCommonType(typ.elem).Size()
1377 s.Len = end - beg
1378 s.Cap = cap - beg
1379
1380 fl := v.flag&flagRO | flagIndir | flag(Slice)<<flagKindShift
1381 return Value{typ.common(), unsafe.Pointer(&x), fl}
1382 }
1383
1384 // String returns the string v's underlying value, as a string.
1385 // String is a special case because of Go's String method convention.
1386 // Unlike the other getters, it does not panic if v's Kind is not String.
1387 // Instead, it returns a string of the form "<T value>" where T is v's type.
1388 func (v Value) String() string {
1389 switch k := v.kind(); k {
1390 case Invalid:
1391 return "<invalid Value>"
1392 case String:
1393 return *(*string)(v.val)
1394 }
1395 // If you call String on a reflect.Value of other type, it's better to
1396 // print something than to panic. Useful in debugging.
1397 return "<" + v.typ.String() + " Value>"
1398 }
1399
1400 // TryRecv attempts to receive a value from the channel v but will not block.
1401 // It panics if v's Kind is not Chan.
1402 // If the receive cannot finish without blocking, x is the zero Value.
1403 // The boolean ok is true if the value x corresponds to a send
1404 // on the channel, false if it is a zero value received because the channel is closed.
1405 func (v Value) TryRecv() (x Value, ok bool) {
1406 v.mustBe(Chan)
1407 v.mustBeExported()
1408 return v.recv(true)
1409 }
1410
1411 // TrySend attempts to send x on the channel v but will not block.
1412 // It panics if v's Kind is not Chan.
1413 // It returns true if the value was sent, false otherwise.
1414 // As in Go, x's value must be assignable to the channel's element type.
1415 func (v Value) TrySend(x Value) bool {
1416 v.mustBe(Chan)
1417 v.mustBeExported()
1418 return v.send(x, true)
1419 }
1420
1421 // Type returns v's type.
1422 func (v Value) Type() Type {
1423 f := v.flag
1424 if f == 0 {
1425 panic(&ValueError{"reflect.Value.Type", Invalid})
1426 }
1427 if f&flagMethod == 0 {
1428 // Easy case
1429 return v.typ
1430 }
1431
1432 // Method value.
1433 // v.typ describes the receiver, not the method type.
1434 i := int(v.flag) >> flagMethodShift
1435 if v.typ.Kind() == Interface {
1436 // Method on interface.
1437 tt := (*interfaceType)(unsafe.Pointer(v.typ))
1438 if i < 0 || i >= len(tt.methods) {
1439 panic("reflect: broken Value")
1440 }
1441 m := &tt.methods[i]
1442 return toCommonType(m.typ)
1443 }
1444 // Method on concrete type.
1445 ut := v.typ.uncommon()
1446 if ut == nil || i < 0 || i >= len(ut.methods) {
1447 panic("reflect: broken Value")
1448 }
1449 m := &ut.methods[i]
1450 return toCommonType(m.mtyp)
1451 }
1452
1453 // Uint returns v's underlying value, as a uint64.
1454 // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
1455 func (v Value) Uint() uint64 {
1456 k := v.kind()
1457 var p unsafe.Pointer
1458 if v.flag&flagIndir != 0 {
1459 p = v.val
1460 } else {
1461 // The escape analysis is good enough that &v.val
1462 // does not trigger a heap allocation.
1463 p = unsafe.Pointer(&v.val)
1464 }
1465 switch k {
1466 case Uint:
1467 return uint64(*(*uint)(p))
1468 case Uint8:
1469 return uint64(*(*uint8)(p))
1470 case Uint16:
1471 return uint64(*(*uint16)(p))
1472 case Uint32:
1473 return uint64(*(*uint32)(p))
1474 case Uint64:
1475 return uint64(*(*uint64)(p))
1476 case Uintptr:
1477 return uint64(*(*uintptr)(p))
1478 }
1479 panic(&ValueError{"reflect.Value.Uint", k})
1480 }
1481
1482 // UnsafeAddr returns a pointer to v's data.
1483 // It is for advanced clients that also import the "unsafe" package.
1484 // It panics if v is not addressable.
1485 func (v Value) UnsafeAddr() uintptr {
1486 if v.typ == nil {
1487 panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid})
1488 }
1489 if v.flag&flagAddr == 0 {
1490 panic("reflect.Value.UnsafeAddr of unaddressable value")
1491 }
1492 return uintptr(v.val)
1493 }
1494
1495 // StringHeader is the runtime representation of a string.
1496 // It cannot be used safely or portably.
1497 type StringHeader struct {
1498 Data uintptr
1499 Len int
1500 }
1501
1502 // SliceHeader is the runtime representation of a slice.
1503 // It cannot be used safely or portably.
1504 type SliceHeader struct {
1505 Data uintptr
1506 Len int
1507 Cap int
1508 }
1509
1510 func typesMustMatch(what string, t1, t2 Type) {
1511 if t1 != t2 {
1512 panic(what + ": " + t1.String() + " != " + t2.String())
1513 }
1514 }
1515
1516 // grow grows the slice s so that it can hold extra more values, allocating
1517 // more capacity if needed. It also returns the old and new slice lengths.
1518 func grow(s Value, extra int) (Value, int, int) {
1519 i0 := s.Len()
1520 i1 := i0 + extra
1521 if i1 < i0 {
1522 panic("reflect.Append: slice overflow")
1523 }
1524 m := s.Cap()
1525 if i1 <= m {
1526 return s.Slice(0, i1), i0, i1
1527 }
1528 if m == 0 {
1529 m = extra
1530 } else {
1531 for m < i1 {
1532 if i0 < 1024 {
1533 m += m
1534 } else {
1535 m += m / 4
1536 }
1537 }
1538 }
1539 t := MakeSlice(s.Type(), i1, m)
1540 Copy(t, s)
1541 return t, i0, i1
1542 }
1543
1544 // Append appends the values x to a slice s and returns the resulting slice.
1545 // As in Go, each x's value must be assignable to the slice's element type.
1546 func Append(s Value, x ...Value) Value {
1547 s.mustBe(Slice)
1548 s, i0, i1 := grow(s, len(x))
1549 for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
1550 s.Index(i).Set(x[j])
1551 }
1552 return s
1553 }
1554
1555 // AppendSlice appends a slice t to a slice s and returns the resulting slice.
1556 // The slices s and t must have the same element type.
1557 func AppendSlice(s, t Value) Value {
1558 s.mustBe(Slice)
1559 t.mustBe(Slice)
1560 typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem())
1561 s, i0, i1 := grow(s, t.Len())
1562 Copy(s.Slice(i0, i1), t)
1563 return s
1564 }
1565
1566 // Copy copies the contents of src into dst until either
1567 // dst has been filled or src has been exhausted.
1568 // It returns the number of elements copied.
1569 // Dst and src each must have kind Slice or Array, and
1570 // dst and src must have the same element type.
1571 func Copy(dst, src Value) int {
1572 dk := dst.kind()
1573 if dk != Array && dk != Slice {
1574 panic(&ValueError{"reflect.Copy", dk})
1575 }
1576 if dk == Array {
1577 dst.mustBeAssignable()
1578 }
1579 dst.mustBeExported()
1580
1581 sk := src.kind()
1582 if sk != Array && sk != Slice {
1583 panic(&ValueError{"reflect.Copy", sk})
1584 }
1585 src.mustBeExported()
1586
1587 de := dst.typ.Elem()
1588 se := src.typ.Elem()
1589 typesMustMatch("reflect.Copy", de, se)
1590
1591 n := dst.Len()
1592 if sn := src.Len(); n > sn {
1593 n = sn
1594 }
1595
1596 // If sk is an in-line array, cannot take its address.
1597 // Instead, copy element by element.
1598 if src.flag&flagIndir == 0 {
1599 for i := 0; i < n; i++ {
1600 dst.Index(i).Set(src.Index(i))
1601 }
1602 return n
1603 }
1604
1605 // Copy via memmove.
1606 var da, sa unsafe.Pointer
1607 if dk == Array {
1608 da = dst.val
1609 } else {
1610 da = unsafe.Pointer((*SliceHeader)(dst.val).Data)
1611 }
1612 if sk == Array {
1613 sa = src.val
1614 } else {
1615 sa = unsafe.Pointer((*SliceHeader)(src.val).Data)
1616 }
1617 memmove(da, sa, uintptr(n)*de.Size())
1618 return n
1619 }
1620
1621 /*
1622 * constructors
1623 */
1624
1625 // implemented in package runtime
1626 func unsafe_New(Type) unsafe.Pointer
1627 func unsafe_NewArray(Type, int) unsafe.Pointer
1628
1629 // MakeSlice creates a new zero-initialized slice value
1630 // for the specified slice type, length, and capacity.
1631 func MakeSlice(typ Type, len, cap int) Value {
1632 if typ.Kind() != Slice {
1633 panic("reflect.MakeSlice of non-slice type")
1634 }
1635 if len < 0 {
1636 panic("reflect.MakeSlice: negative len")
1637 }
1638 if cap < 0 {
1639 panic("reflect.MakeSlice: negative cap")
1640 }
1641 if len > cap {
1642 panic("reflect.MakeSlice: len > cap")
1643 }
1644
1645 // Declare slice so that gc can see the base pointer in it.
1646 var x []byte
1647
1648 // Reinterpret as *SliceHeader to edit.
1649 s := (*SliceHeader)(unsafe.Pointer(&x))
1650 s.Data = uintptr(unsafe_NewArray(typ.Elem(), cap))
1651 s.Len = len
1652 s.Cap = cap
1653
1654 return Value{typ.common(), unsafe.Pointer(&x), flagIndir | flag(Slice)<<flagKindShift}
1655 }
1656
1657 // MakeChan creates a new channel with the specified type and buffer size.
1658 func MakeChan(typ Type, buffer int) Value {
1659 if typ.Kind() != Chan {
1660 panic("reflect.MakeChan of non-chan type")
1661 }
1662 if buffer < 0 {
1663 panic("reflect.MakeChan: negative buffer size")
1664 }
1665 if typ.ChanDir() != BothDir {
1666 panic("reflect.MakeChan: unidirectional channel type")
1667 }
1668 ch := makechan(typ.runtimeType(), uint32(buffer))
1669 return Value{typ.common(), unsafe.Pointer(ch), flag(Chan) << flagKindShift}
1670 }
1671
1672 // MakeMap creates a new map of the specified type.
1673 func MakeMap(typ Type) Value {
1674 if typ.Kind() != Map {
1675 panic("reflect.MakeMap of non-map type")
1676 }
1677 m := makemap(typ.runtimeType())
1678 return Value{typ.common(), unsafe.Pointer(m), flag(Map) << flagKindShift}
1679 }
1680
1681 // Indirect returns the value that v points to.
1682 // If v is a nil pointer, Indirect returns a zero Value.
1683 // If v is not a pointer, Indirect returns v.
1684 func Indirect(v Value) Value {
1685 if v.Kind() != Ptr {
1686 return v
1687 }
1688 return v.Elem()
1689 }
1690
1691 // ValueOf returns a new Value initialized to the concrete value
1692 // stored in the interface i. ValueOf(nil) returns the zero Value.
1693 func ValueOf(i interface{}) Value {
1694 if i == nil {
1695 return Value{}
1696 }
1697
1698 // TODO(rsc): Eliminate this terrible hack.
1699 // In the call to packValue, eface.typ doesn't escape,
1700 // and eface.word is an integer. So it looks like
1701 // i (= eface) doesn't escape. But really it does,
1702 // because eface.word is actually a pointer.
1703 escapes(i)
1704
1705 // For an interface value with the noAddr bit set,
1706 // the representation is identical to an empty interface.
1707 eface := *(*emptyInterface)(unsafe.Pointer(&i))
1708 typ := toCommonType(eface.typ)
1709 fl := flag(typ.Kind()) << flagKindShift
1710 if typ.size > ptrSize {
1711 fl |= flagIndir
1712 }
1713 return Value{typ, unsafe.Pointer(eface.word), fl}
1714 }
1715
1716 // Zero returns a Value representing a zero value for the specified type.
1717 // The result is different from the zero value of the Value struct,
1718 // which represents no value at all.
1719 // For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0.
1720 func Zero(typ Type) Value {
1721 if typ == nil {
1722 panic("reflect: Zero(nil)")
1723 }
1724 t := typ.common()
1725 fl := flag(t.Kind()) << flagKindShift
1726 if t.size <= ptrSize {
1727 return Value{t, nil, fl}
1728 }
1729 return Value{t, unsafe_New(typ), fl | flagIndir}
1730 }
1731
1732 // New returns a Value representing a pointer to a new zero value
1733 // for the specified type. That is, the returned Value's Type is PtrTo(t).
1734 func New(typ Type) Value {
1735 if typ == nil {
1736 panic("reflect: New(nil)")
1737 }
1738 ptr := unsafe_New(typ)
1739 fl := flag(Ptr) << flagKindShift
1740 return Value{typ.common().ptrTo(), ptr, fl}
1741 }
1742
1743 // NewAt returns a Value representing a pointer to a value of the
1744 // specified type, using p as that pointer.
1745 func NewAt(typ Type, p unsafe.Pointer) Value {
1746 fl := flag(Ptr) << flagKindShift
1747 return Value{typ.common().ptrTo(), p, fl}
1748 }
1749
1750 // assignTo returns a value v that can be assigned directly to typ.
1751 // It panics if v is not assignable to typ.
1752 // For a conversion to an interface type, target is a suggested scratch space to use.
1753 func (v Value) assignTo(context string, dst *commonType, target *interface{}) Value {
1754 if v.flag&flagMethod != 0 {
1755 panic(context + ": cannot assign method value to type " + dst.String())
1756 }
1757
1758 switch {
1759 case directlyAssignable(dst, v.typ):
1760 // Overwrite type so that they match.
1761 // Same memory layout, so no harm done.
1762 v.typ = dst
1763 fl := v.flag & (flagRO | flagAddr | flagIndir)
1764 fl |= flag(dst.Kind()) << flagKindShift
1765 return Value{dst, v.val, fl}
1766
1767 case implements(dst, v.typ):
1768 if target == nil {
1769 target = new(interface{})
1770 }
1771 x := valueInterface(v, false)
1772 if dst.NumMethod() == 0 {
1773 *target = x
1774 } else {
1775 ifaceE2I(dst.runtimeType(), x, unsafe.Pointer(target))
1776 }
1777 return Value{dst, unsafe.Pointer(target), flagIndir | flag(Interface)<<flagKindShift}
1778 }
1779
1780 // Failed.
1781 panic(context + ": value of type " + v.typ.String() + " is not assignable to type " + dst.String())
1782 }
1783
1784 // implemented in ../pkg/runtime
1785 func chancap(ch iword) int32
1786 func chanclose(ch iword)
1787 func chanlen(ch iword) int32
1788 func chanrecv(t *runtimeType, ch iword, nb bool) (val iword, selected, received bool)
1789 func chansend(t *runtimeType, ch iword, val iword, nb bool) bool
1790
1791 func makechan(typ *runtimeType, size uint32) (ch iword)
1792 func makemap(t *runtimeType) (m iword)
1793 func mapaccess(t *runtimeType, m iword, key iword) (val iword, ok bool)
1794 func mapassign(t *runtimeType, m iword, key, val iword, ok bool)
1795 func mapiterinit(t *runtimeType, m iword) *byte
1796 func mapiterkey(it *byte) (key iword, ok bool)
1797 func mapiternext(it *byte)
1798 func maplen(m iword) int32
1799
1800 func call(fn, arg unsafe.Pointer, n uint32)
1801 func ifaceE2I(t *runtimeType, src interface{}, dst unsafe.Pointer)
1802
1803 // Dummy annotation marking that the value x escapes,
1804 // for use in cases where the reflect code is so clever that
1805 // the compiler cannot follow.
1806 func escapes(x interface{}) {
1807 if dummy.b {
1808 dummy.x = x
1809 }
1810 }
1811
1812 var dummy struct {
1813 b bool
1814 x interface{}
1815 }