Source file src/pkg/regexp/exec.go
1 // Copyright 2011 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 package regexp
6
7 import (
8 "io"
9 "regexp/syntax"
10 )
11
12 // A queue is a 'sparse array' holding pending threads of execution.
13 // See http://research.swtch.com/2008/03/using-uninitialized-memory-for-fun-and.html
14 type queue struct {
15 sparse []uint32
16 dense []entry
17 }
18
19 // A entry is an entry on a queue.
20 // It holds both the instruction pc and the actual thread.
21 // Some queue entries are just place holders so that the machine
22 // knows it has considered that pc. Such entries have t == nil.
23 type entry struct {
24 pc uint32
25 t *thread
26 }
27
28 // A thread is the state of a single path through the machine:
29 // an instruction and a corresponding capture array.
30 // See http://swtch.com/~rsc/regexp/regexp2.html
31 type thread struct {
32 inst *syntax.Inst
33 cap []int
34 }
35
36 // A machine holds all the state during an NFA simulation for p.
37 type machine struct {
38 re *Regexp // corresponding Regexp
39 p *syntax.Prog // compiled program
40 q0, q1 queue // two queues for runq, nextq
41 pool []*thread // pool of available threads
42 matched bool // whether a match was found
43 matchcap []int // capture information for the match
44
45 // cached inputs, to avoid allocation
46 inputBytes inputBytes
47 inputString inputString
48 inputReader inputReader
49 }
50
51 func (m *machine) newInputBytes(b []byte) input {
52 m.inputBytes.str = b
53 return &m.inputBytes
54 }
55
56 func (m *machine) newInputString(s string) input {
57 m.inputString.str = s
58 return &m.inputString
59 }
60
61 func (m *machine) newInputReader(r io.RuneReader) input {
62 m.inputReader.r = r
63 m.inputReader.atEOT = false
64 m.inputReader.pos = 0
65 return &m.inputReader
66 }
67
68 // progMachine returns a new machine running the prog p.
69 func progMachine(p *syntax.Prog) *machine {
70 m := &machine{p: p}
71 n := len(m.p.Inst)
72 m.q0 = queue{make([]uint32, n), make([]entry, 0, n)}
73 m.q1 = queue{make([]uint32, n), make([]entry, 0, n)}
74 ncap := p.NumCap
75 if ncap < 2 {
76 ncap = 2
77 }
78 m.matchcap = make([]int, ncap)
79 return m
80 }
81
82 func (m *machine) init(ncap int) {
83 for _, t := range m.pool {
84 t.cap = t.cap[:ncap]
85 }
86 m.matchcap = m.matchcap[:ncap]
87 }
88
89 // alloc allocates a new thread with the given instruction.
90 // It uses the free pool if possible.
91 func (m *machine) alloc(i *syntax.Inst) *thread {
92 var t *thread
93 if n := len(m.pool); n > 0 {
94 t = m.pool[n-1]
95 m.pool = m.pool[:n-1]
96 } else {
97 t = new(thread)
98 t.cap = make([]int, len(m.matchcap), cap(m.matchcap))
99 }
100 t.inst = i
101 return t
102 }
103
104 // free returns t to the free pool.
105 func (m *machine) free(t *thread) {
106 m.inputBytes.str = nil
107 m.inputString.str = ""
108 m.inputReader.r = nil
109 m.pool = append(m.pool, t)
110 }
111
112 // match runs the machine over the input starting at pos.
113 // It reports whether a match was found.
114 // If so, m.matchcap holds the submatch information.
115 func (m *machine) match(i input, pos int) bool {
116 startCond := m.re.cond
117 if startCond == ^syntax.EmptyOp(0) { // impossible
118 return false
119 }
120 m.matched = false
121 for i := range m.matchcap {
122 m.matchcap[i] = -1
123 }
124 runq, nextq := &m.q0, &m.q1
125 r, r1 := endOfText, endOfText
126 width, width1 := 0, 0
127 r, width = i.step(pos)
128 if r != endOfText {
129 r1, width1 = i.step(pos + width)
130 }
131 var flag syntax.EmptyOp
132 if pos == 0 {
133 flag = syntax.EmptyOpContext(-1, r)
134 } else {
135 flag = i.context(pos)
136 }
137 for {
138 if len(runq.dense) == 0 {
139 if startCond&syntax.EmptyBeginText != 0 && pos != 0 {
140 // Anchored match, past beginning of text.
141 break
142 }
143 if m.matched {
144 // Have match; finished exploring alternatives.
145 break
146 }
147 if len(m.re.prefix) > 0 && r1 != m.re.prefixRune && i.canCheckPrefix() {
148 // Match requires literal prefix; fast search for it.
149 advance := i.index(m.re, pos)
150 if advance < 0 {
151 break
152 }
153 pos += advance
154 r, width = i.step(pos)
155 r1, width1 = i.step(pos + width)
156 }
157 }
158 if !m.matched {
159 if len(m.matchcap) > 0 {
160 m.matchcap[0] = pos
161 }
162 m.add(runq, uint32(m.p.Start), pos, m.matchcap, flag, nil)
163 }
164 flag = syntax.EmptyOpContext(r, r1)
165 m.step(runq, nextq, pos, pos+width, r, flag)
166 if width == 0 {
167 break
168 }
169 if len(m.matchcap) == 0 && m.matched {
170 // Found a match and not paying attention
171 // to where it is, so any match will do.
172 break
173 }
174 pos += width
175 r, width = r1, width1
176 if r != endOfText {
177 r1, width1 = i.step(pos + width)
178 }
179 runq, nextq = nextq, runq
180 }
181 m.clear(nextq)
182 return m.matched
183 }
184
185 // clear frees all threads on the thread queue.
186 func (m *machine) clear(q *queue) {
187 for _, d := range q.dense {
188 if d.t != nil {
189 // m.free(d.t)
190 m.pool = append(m.pool, d.t)
191 }
192 }
193 q.dense = q.dense[:0]
194 }
195
196 // step executes one step of the machine, running each of the threads
197 // on runq and appending new threads to nextq.
198 // The step processes the rune c (which may be endOfText),
199 // which starts at position pos and ends at nextPos.
200 // nextCond gives the setting for the empty-width flags after c.
201 func (m *machine) step(runq, nextq *queue, pos, nextPos int, c rune, nextCond syntax.EmptyOp) {
202 longest := m.re.longest
203 for j := 0; j < len(runq.dense); j++ {
204 d := &runq.dense[j]
205 t := d.t
206 if t == nil {
207 continue
208 }
209 if longest && m.matched && len(t.cap) > 0 && m.matchcap[0] < t.cap[0] {
210 // m.free(t)
211 m.pool = append(m.pool, t)
212 continue
213 }
214 i := t.inst
215 add := false
216 switch i.Op {
217 default:
218 panic("bad inst")
219
220 case syntax.InstMatch:
221 if len(t.cap) > 0 && (!longest || !m.matched || m.matchcap[1] < pos) {
222 t.cap[1] = pos
223 copy(m.matchcap, t.cap)
224 }
225 if !longest {
226 // First-match mode: cut off all lower-priority threads.
227 for _, d := range runq.dense[j+1:] {
228 if d.t != nil {
229 // m.free(d.t)
230 m.pool = append(m.pool, d.t)
231 }
232 }
233 runq.dense = runq.dense[:0]
234 }
235 m.matched = true
236
237 case syntax.InstRune:
238 add = i.MatchRune(c)
239 case syntax.InstRune1:
240 add = c == i.Rune[0]
241 case syntax.InstRuneAny:
242 add = true
243 case syntax.InstRuneAnyNotNL:
244 add = c != '\n'
245 }
246 if add {
247 t = m.add(nextq, i.Out, nextPos, t.cap, nextCond, t)
248 }
249 if t != nil {
250 // m.free(t)
251 m.pool = append(m.pool, t)
252 }
253 }
254 runq.dense = runq.dense[:0]
255 }
256
257 // add adds an entry to q for pc, unless the q already has such an entry.
258 // It also recursively adds an entry for all instructions reachable from pc by following
259 // empty-width conditions satisfied by cond. pos gives the current position
260 // in the input.
261 func (m *machine) add(q *queue, pc uint32, pos int, cap []int, cond syntax.EmptyOp, t *thread) *thread {
262 if pc == 0 {
263 return t
264 }
265 if j := q.sparse[pc]; j < uint32(len(q.dense)) && q.dense[j].pc == pc {
266 return t
267 }
268
269 j := len(q.dense)
270 q.dense = q.dense[:j+1]
271 d := &q.dense[j]
272 d.t = nil
273 d.pc = pc
274 q.sparse[pc] = uint32(j)
275
276 i := &m.p.Inst[pc]
277 switch i.Op {
278 default:
279 panic("unhandled")
280 case syntax.InstFail:
281 // nothing
282 case syntax.InstAlt, syntax.InstAltMatch:
283 t = m.add(q, i.Out, pos, cap, cond, t)
284 t = m.add(q, i.Arg, pos, cap, cond, t)
285 case syntax.InstEmptyWidth:
286 if syntax.EmptyOp(i.Arg)&^cond == 0 {
287 t = m.add(q, i.Out, pos, cap, cond, t)
288 }
289 case syntax.InstNop:
290 t = m.add(q, i.Out, pos, cap, cond, t)
291 case syntax.InstCapture:
292 if int(i.Arg) < len(cap) {
293 opos := cap[i.Arg]
294 cap[i.Arg] = pos
295 m.add(q, i.Out, pos, cap, cond, nil)
296 cap[i.Arg] = opos
297 } else {
298 t = m.add(q, i.Out, pos, cap, cond, t)
299 }
300 case syntax.InstMatch, syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
301 if t == nil {
302 t = m.alloc(i)
303 } else {
304 t.inst = i
305 }
306 if len(cap) > 0 && &t.cap[0] != &cap[0] {
307 copy(t.cap, cap)
308 }
309 d.t = t
310 t = nil
311 }
312 return t
313 }
314
315 // empty is a non-nil 0-element slice,
316 // so doExecute can avoid an allocation
317 // when 0 captures are requested from a successful match.
318 var empty = make([]int, 0)
319
320 // doExecute finds the leftmost match in the input and returns
321 // the position of its subexpressions.
322 func (re *Regexp) doExecute(r io.RuneReader, b []byte, s string, pos int, ncap int) []int {
323 m := re.get()
324 var i input
325 if r != nil {
326 i = m.newInputReader(r)
327 } else if b != nil {
328 i = m.newInputBytes(b)
329 } else {
330 i = m.newInputString(s)
331 }
332 m.init(ncap)
333 if !m.match(i, pos) {
334 re.put(m)
335 return nil
336 }
337 if ncap == 0 {
338 re.put(m)
339 return empty // empty but not nil
340 }
341 cap := make([]int, ncap)
342 copy(cap, m.matchcap)
343 re.put(m)
344 return cap
345 }