#include <FractureToolsAPI.h>
Public Member Functions | |
virtual FractureTools::CutoutSet * | createCutoutSet ()=0 |
virtual void | buildCutoutSet (FractureTools::CutoutSet &cutoutSet, const uint8_t *pixelBuffer, uint32_t bufferWidth, uint32_t bufferHeight, float snapThreshold, bool periodic)=0 |
virtual bool | calculateCutoutUVMapping (const nvidia::ExplicitRenderTriangle &triangle, PxMat33 &theMapping)=0 |
virtual bool | calculateCutoutUVMapping (nvidia::ExplicitHierarchicalMesh &hMesh, const PxVec3 &targetDirection, PxMat33 &theMapping)=0 |
virtual bool | createVoronoiSplitMesh (nvidia::ExplicitHierarchicalMesh &hMesh, nvidia::ExplicitHierarchicalMesh &iHMeshCore, bool exportCoreMesh, int32_t coreMeshImprintSubmeshIndex, const FractureTools::MeshProcessingParameters &meshProcessingParams, const FractureTools::FractureVoronoiDesc &desc, const CollisionDesc &collisionDesc, uint32_t randomSeed, nvidia::IProgressListener &progressListener, volatile bool *cancel=NULL)=0 |
virtual uint32_t | createVoronoiSitesInsideMesh (nvidia::ExplicitHierarchicalMesh &hMesh, PxVec3 *siteBuffer, uint32_t *siteChunkIndices, uint32_t siteCount, uint32_t *randomSeed, uint32_t *microgridSize, BSPOpenMode::Enum meshMode, nvidia::IProgressListener &progressListener, uint32_t chunkIndex=0xFFFFFFFF)=0 |
virtual uint32_t | createScatterMeshSites (uint8_t *meshIndices, PxMat44 *relativeTransforms, uint32_t *chunkMeshStarts, uint32_t scatterMeshInstancesBufferSize, nvidia::ExplicitHierarchicalMesh &hMesh, uint32_t targetChunkCount, const uint16_t *targetChunkIndices, uint32_t *randomSeed, uint32_t scatterMeshAssetCount, nvidia::RenderMeshAsset **scatterMeshAssets, const uint32_t *minCount, const uint32_t *maxCount, const float *minScales, const float *maxScales, const float *maxAngles)=0 |
virtual void | visualizeVoronoiCells (nvidia::RenderDebugInterface &debugRender, const PxVec3 *sites, uint32_t siteCount, const uint32_t *cellColors, uint32_t cellColorCount, const PxBounds3 &bounds, uint32_t cellIndex=0xFFFFFFFF)=0 |
virtual bool | buildExplicitHierarchicalMesh (nvidia::ExplicitHierarchicalMesh &iHMesh, const nvidia::ExplicitRenderTriangle *meshTriangles, uint32_t meshTriangleCount, const nvidia::ExplicitSubmeshData *submeshData, uint32_t submeshCount, uint32_t *meshPartition=NULL, uint32_t meshPartitionCount=0, int32_t *parentIndices=NULL, uint32_t parentIndexCount=0)=0 |
virtual void | setBSPTolerances (float linearTolerance, float angularTolerance, float baseTolerance, float clipTolerance, float cleaningTolerance)=0 |
virtual void | setBSPBuildParameters (float logAreaSigmaThreshold, uint32_t testSetSize, float splitWeight, float imbalanceWeight)=0 |
virtual bool | buildExplicitHierarchicalMeshFromRenderMeshAsset (nvidia::ExplicitHierarchicalMesh &iHMesh, const nvidia::RenderMeshAsset &renderMeshAsset, uint32_t maxRootDepth=UINT32_MAX)=0 |
virtual bool | buildExplicitHierarchicalMeshFromDestructibleAsset (nvidia::ExplicitHierarchicalMesh &iHMesh, const nvidia::DestructibleAsset &destructibleAsset, uint32_t maxRootDepth=UINT32_MAX)=0 |
virtual bool | createHierarchicallySplitMesh (nvidia::ExplicitHierarchicalMesh &hMesh, nvidia::ExplicitHierarchicalMesh &iHMeshCore, bool exportCoreMesh, int32_t coreMeshImprintSubmeshIndex, const FractureTools::MeshProcessingParameters &meshProcessingParams, const FractureTools::FractureSliceDesc &desc, const CollisionDesc &collisionDesc, uint32_t randomSeed, nvidia::IProgressListener &progressListener, volatile bool *cancel=NULL)=0 |
virtual bool | createChippedMesh (nvidia::ExplicitHierarchicalMesh &hMesh, const FractureTools::MeshProcessingParameters &meshProcessingParams, const FractureTools::FractureCutoutDesc &desc, const FractureTools::CutoutSet &iCutoutSet, const FractureTools::FractureSliceDesc &sliceDesc, const FractureTools::FractureVoronoiDesc &voronoiDesc, const CollisionDesc &collisionDesc, uint32_t randomSeed, nvidia::IProgressListener &progressListener, volatile bool *cancel=NULL)=0 |
virtual bool | hierarchicallySplitChunk (nvidia::ExplicitHierarchicalMesh &hMesh, uint32_t chunkIndex, const FractureTools::MeshProcessingParameters &meshProcessingParams, const FractureTools::FractureSliceDesc &desc, const CollisionDesc &collisionDesc, uint32_t *randomSeed, nvidia::IProgressListener &progressListener, volatile bool *cancel=NULL)=0 |
virtual bool | voronoiSplitChunk (nvidia::ExplicitHierarchicalMesh &hMesh, uint32_t chunkIndex, const FractureTools::MeshProcessingParameters &meshProcessingParams, const FractureTools::FractureVoronoiDesc &desc, const CollisionDesc &collisionDesc, uint32_t *randomSeed, nvidia::IProgressListener &progressListener, volatile bool *cancel=NULL)=0 |
virtual bool | buildSliceMesh (nvidia::IntersectMesh &intersectMesh, nvidia::ExplicitHierarchicalMesh &referenceMesh, const PxPlane &slicePlane, const FractureTools::NoiseParameters &noiseParameters, uint32_t randomSeed)=0 |
virtual nvidia::ExplicitHierarchicalMesh * | createExplicitHierarchicalMesh ()=0 |
virtual nvidia::ExplicitHierarchicalMesh::ConvexHull * | createExplicitHierarchicalMeshConvexHull ()=0 |
Detailed Description
Fracture tools API
Member Function Documentation
virtual void nvidia::apex::FractureToolsAPI::buildCutoutSet | ( | FractureTools::CutoutSet & | cutoutSet, |
const uint8_t * | pixelBuffer, | ||
uint32_t | bufferWidth, | ||
uint32_t | bufferHeight, | ||
float | snapThreshold, | ||
bool | periodic | ||
) | [pure virtual] |
Builds a cutout set (which must have been initially created by createCutoutSet()). Uses a bitmap described by pixelBuffer, bufferWidth, and bufferHeight. Each pixel is represented by one byte in the buffer.
- Parameters:
-
cutoutSet the CutoutSet to build pixelBuffer pointer to be beginning of the pixel buffer bufferWidth the width of the buffer in pixels bufferHeight the height of the buffer in pixels snapThreshold the pixel distance at which neighboring cutout vertices and segments may be fudged into alignment. periodic whether or not to use periodic boundary conditions when creating cutouts from the map
virtual bool nvidia::apex::FractureToolsAPI::buildExplicitHierarchicalMesh | ( | nvidia::ExplicitHierarchicalMesh & | iHMesh, |
const nvidia::ExplicitRenderTriangle * | meshTriangles, | ||
uint32_t | meshTriangleCount, | ||
const nvidia::ExplicitSubmeshData * | submeshData, | ||
uint32_t | submeshCount, | ||
uint32_t * | meshPartition = NULL , |
||
uint32_t | meshPartitionCount = 0 , |
||
int32_t * | parentIndices = NULL , |
||
uint32_t | parentIndexCount = 0 |
||
) | [pure virtual] |
Builds a new ExplicitHierarchicalMesh from an array of triangles.
- Parameters:
-
iHMesh the ExplicitHierarchicalMesh to build meshTriangles pointer to array of ExplicitRenderTriangles which make up the mesh meshTriangleCount the size of the meshTriangles array submeshData pointer to array of ExplicitSubmeshData, describing the submeshes submeshCount the size of the submeshData array meshPartition if not NULL, an array of size meshPartitionCount, giving the end elements of contiguous subsets of meshTriangles. If meshPartition is NULL, one partition is assumed. When there is one partition, these triangles become the level 0 part. When there is more than one partition, these triangles become level 1 parts, the behavior is determined by firstPartitionIsDepthZero (see below). meshPartitionCount if meshPartition is not NULL, this is the size of the meshPartition array. parentIndices if not NULL, the parent indices for each chunk (corresponding to a partition in the mesh partition). parentIndexCount the size of the parentIndices array. This does not need to match meshPartitionCount. If a mesh partition has an index beyond the end of parentIndices, then the parentIndex is considered to be 0. Therefore, if parentIndexCount = 0, all parents are 0 and so all chunks created will be depth 1. This will cause a depth 0 chunk to be created that is the aggregate of the depth 1 chunks. If parentIndexCount > 0, then the depth-0 chunk must have a parentIndex of -1. To reproduce the effect of the old parameter 'firstPartitionIsDepthZero' = true, set parentIndices to the address of a int32_t containing the value -1, and set parentIndexCount = 1. To reproduce the effect of the old parameter 'firstPartitionIsDepthZero' = false, set parentIndexCount = 0. Note: if parent indices are given, the first one must be -1, and *only* that index may be negative. That is, there may be only one depth-0 mesh and it must be the first mesh.
virtual bool nvidia::apex::FractureToolsAPI::buildExplicitHierarchicalMeshFromDestructibleAsset | ( | nvidia::ExplicitHierarchicalMesh & | iHMesh, |
const nvidia::DestructibleAsset & | destructibleAsset, | ||
uint32_t | maxRootDepth = UINT32_MAX |
||
) | [pure virtual] |
Builds the root ExplicitHierarchicalMesh from an DestructibleAsset. Since an DestructibleAsset contains hierarchy information, the explicit mesh formed will have this hierarchy structure.
- Parameters:
-
iHMesh the ExplicitHierarchicalMesh to build destructibleAsset input Destructible asset maxRootDepth cap the root depth at this value. Re-fracturing of the mesh will occur at this depth. Default = UINT32_MAX
virtual bool nvidia::apex::FractureToolsAPI::buildExplicitHierarchicalMeshFromRenderMeshAsset | ( | nvidia::ExplicitHierarchicalMesh & | iHMesh, |
const nvidia::RenderMeshAsset & | renderMeshAsset, | ||
uint32_t | maxRootDepth = UINT32_MAX |
||
) | [pure virtual] |
Builds the root ExplicitHierarchicalMesh from an RenderMeshAsset. Since an DestructibleAsset contains no hierarchy information, the input mesh must have only one part.
- Parameters:
-
iHMesh the ExplicitHierarchicalMesh to build renderMeshAsset input RenderMesh asset maxRootDepth cap the root depth at this value. Re-fracturing of the mesh will occur at this depth. Default = UINT32_MAX
virtual bool nvidia::apex::FractureToolsAPI::buildSliceMesh | ( | nvidia::IntersectMesh & | intersectMesh, |
nvidia::ExplicitHierarchicalMesh & | referenceMesh, | ||
const PxPlane & | slicePlane, | ||
const FractureTools::NoiseParameters & | noiseParameters, | ||
uint32_t | randomSeed | ||
) | [pure virtual] |
Builds a mesh used for slice fracturing, given the noise parameters and random seed. This function is mostly intended for visualization - to give the user a "typical" slice surface used for fracturing.
virtual bool nvidia::apex::FractureToolsAPI::calculateCutoutUVMapping | ( | nvidia::ExplicitHierarchicalMesh & | hMesh, |
const PxVec3 & | targetDirection, | ||
PxMat33 & | theMapping | ||
) | [pure virtual] |
Uses the passed-in target direction to find the best triangle in the root mesh with normal near the given targetDirection. If triangles exist with normals within one degree of the given target direction, then one with the greatest area of such triangles is used. Otherwise, the triangle with normal closest to the given target direction is used. The resulting triangle is used to calculate a UV mapping as in the function calculateCutoutUVMapping (above).
The assumption is that there exists a single mapping for all triangles on a specified face, for this feature to be useful.
- Parameters:
-
hMesh the explicit mesh with well rectangle-shaped faces targetDirection the target face's normal theMapping resulted mapping, composed by an affine transformation and a rotation
virtual bool nvidia::apex::FractureToolsAPI::calculateCutoutUVMapping | ( | const nvidia::ExplicitRenderTriangle & | triangle, |
PxMat33 & | theMapping | ||
) | [pure virtual] |
Calculate the mapping between a cutout fracture map and a given triangle. The result is a 3 by 3 matrix M composed by an affine transformation and a rotation, we can get the 3-D projection for a texture coordinate pair (u,v) with such a formula: (x,y,z) = M*PxVec3(u,v,1)
- Parameters:
-
triangle the target face's normal theMapping resulted mapping, composed by an affine transformation and a rotation
virtual bool nvidia::apex::FractureToolsAPI::createChippedMesh | ( | nvidia::ExplicitHierarchicalMesh & | hMesh, |
const FractureTools::MeshProcessingParameters & | meshProcessingParams, | ||
const FractureTools::FractureCutoutDesc & | desc, | ||
const FractureTools::CutoutSet & | iCutoutSet, | ||
const FractureTools::FractureSliceDesc & | sliceDesc, | ||
const FractureTools::FractureVoronoiDesc & | voronoiDesc, | ||
const CollisionDesc & | collisionDesc, | ||
uint32_t | randomSeed, | ||
nvidia::IProgressListener & | progressListener, | ||
volatile bool * | cancel = NULL |
||
) | [pure virtual] |
Chips the mesh in chunk[0], forming a hierarchy of fractured meshes in chunks[1...]
- Parameters:
-
hMesh the mesh to split meshProcessingParams describes generic mesh processing directives desc describes the slicing surfaces (see FractureCutoutDesc) iCutoutSet the cutout set to use for fracturing (see CutoutSet) sliceDesc used if desc.chunkFracturingMethod = SliceFractureCutoutChunks voronoiDesc used if desc.chunkFracturingMethod = VoronoiFractureCutoutChunks collisionDesc convex hulls will be generated for each chunk using the method. See CollisionDesc. randomSeed seed for the random number generator, to ensure reproducibility. progressListener The user must instantiate an IProgressListener, so that this function may report progress of this operation cancel if not NULL and *cancel is set to true, the root mesh will be restored to its original state, and the function will return at its earliest opportunity. Meant to be set from another thread.
- Returns:
- returns true if successful.
virtual FractureTools::CutoutSet* nvidia::apex::FractureToolsAPI::createCutoutSet | ( | ) | [pure virtual] |
Instantiates a blank CutoutSet
virtual nvidia::ExplicitHierarchicalMesh* nvidia::apex::FractureToolsAPI::createExplicitHierarchicalMesh | ( | ) | [pure virtual] |
Instantiates an ExplicitHierarchicalMesh
virtual nvidia::ExplicitHierarchicalMesh::ConvexHull* nvidia::apex::FractureToolsAPI::createExplicitHierarchicalMeshConvexHull | ( | ) | [pure virtual] |
Instantiates an ExplicitHierarchicalMesh::ConvexHull
virtual bool nvidia::apex::FractureToolsAPI::createHierarchicallySplitMesh | ( | nvidia::ExplicitHierarchicalMesh & | hMesh, |
nvidia::ExplicitHierarchicalMesh & | iHMeshCore, | ||
bool | exportCoreMesh, | ||
int32_t | coreMeshImprintSubmeshIndex, | ||
const FractureTools::MeshProcessingParameters & | meshProcessingParams, | ||
const FractureTools::FractureSliceDesc & | desc, | ||
const CollisionDesc & | collisionDesc, | ||
uint32_t | randomSeed, | ||
nvidia::IProgressListener & | progressListener, | ||
volatile bool * | cancel = NULL |
||
) | [pure virtual] |
Splits the mesh in chunk[0], forming a hierarchy of fractured meshes in chunks[1...]
- Parameters:
-
hMesh the mesh to split iHMeshCore if this mesh is not empty, chunk 0 will be used as an indestructible "core" of the fractured mesh. That is, it will be subtracted from hMesh, and placed at level 1 of the hierarchy. The remainder of hMesh will be split as usual, creating chunks at level 1 (and possibly deeper). exportCoreMesh if true, a core mesh chunk will be created from iHMeshCore coreMeshImprintSubmeshIndex if this is < 0, use the core mesh materials (was applyCoreMeshMaterialToNeighborChunks). Otherwise, use the given submesh meshProcessingParams describes generic mesh processing directives desc describes the slicing surfaces (see FractureSliceDesc) collisionDesc convex hulls will be generated for each chunk using the method. See CollisionDesc. randomSeed seed for the random number generator, to ensure reproducibility. progressListener The user must instantiate an IProgressListener, so that this function may report progress of this operation cancel if not NULL and *cancel is set to true, the root mesh will be restored to its original state, and the function will return at its earliest opportunity. Meant to be set from another thread.
- Returns:
- returns true if successful.
virtual uint32_t nvidia::apex::FractureToolsAPI::createScatterMeshSites | ( | uint8_t * | meshIndices, |
PxMat44 * | relativeTransforms, | ||
uint32_t * | chunkMeshStarts, | ||
uint32_t | scatterMeshInstancesBufferSize, | ||
nvidia::ExplicitHierarchicalMesh & | hMesh, | ||
uint32_t | targetChunkCount, | ||
const uint16_t * | targetChunkIndices, | ||
uint32_t * | randomSeed, | ||
uint32_t | scatterMeshAssetCount, | ||
nvidia::RenderMeshAsset ** | scatterMeshAssets, | ||
const uint32_t * | minCount, | ||
const uint32_t * | maxCount, | ||
const float * | minScales, | ||
const float * | maxScales, | ||
const float * | maxAngles | ||
) | [pure virtual] |
Creates scatter mesh sites randomly distributed on the mesh.
- Parameters:
-
meshIndices user-allocated array of size scatterMeshInstancesBufferSize which will be filled in by this function, giving the scatter mesh index used relativeTransforms user-allocated array of size scatterMeshInstancesBufferSize which will be filled in by this function, giving the chunk-relative transform for each chunk instance chunkMeshStarts user-allocated array which will be filled in with offsets into the meshIndices and relativeTransforms array. For a chunk indexed by i, the corresponding range [chunkMeshStart[i], chunkMeshStart[i+1]-1] in meshIndices and relativeTransforms is used. NOTE*: chunkMeshStart array must be of at least size N+1, where N is the number of chunks in the base explicit hierarchical mesh. scatterMeshInstancesBufferSize the size of meshIndices and relativeTransforms array. scatterMeshInstancesBufferSize the size of meshIndices and relativeTransforms array. hMesh the mesh in which to distribute sites targetChunkCount how many chunks are in the array targetChunkIndices targetChunkIndices an array of chunk indices which are candidates for scatter meshes. The elements in the array chunkIndices will come from this array randomSeed pointer to a seed for the random number generator, to ensure reproducibility. If NULL, the random number generator will not be re-seeded. scatterMeshAssetCount the number of different scatter meshes (not instances). Should not exceed 255. If scatterMeshAssetCount > 255, only the first 255 will be used. scatterMeshAssets an array of size scatterMeshAssetCount, of the render mesh assets which will be used for the scatter meshes minCount an array of size scatterMeshAssetCount, giving the minimum number of instances to place for each mesh maxCount an array of size scatterMeshAssetCount, giving the maximum number of instances to place for each mesh minScales an array of size scatterMeshAssetCount, giving the minimum scale to apply to each scatter mesh maxScales an array of size scatterMeshAssetCount, giving the maximum scale to apply to each scatter mesh maxAngles an array of size scatterMeshAssetCount, giving a maximum deviation angle (in degrees) from the surface normal to apply to each scatter mesh
return value the number of instances placed in indices and relativeTransforms (will not exceed scatterMeshInstancesBufferSize)
virtual uint32_t nvidia::apex::FractureToolsAPI::createVoronoiSitesInsideMesh | ( | nvidia::ExplicitHierarchicalMesh & | hMesh, |
PxVec3 * | siteBuffer, | ||
uint32_t * | siteChunkIndices, | ||
uint32_t | siteCount, | ||
uint32_t * | randomSeed, | ||
uint32_t * | microgridSize, | ||
BSPOpenMode::Enum | meshMode, | ||
nvidia::IProgressListener & | progressListener, | ||
uint32_t | chunkIndex = 0xFFFFFFFF |
||
) | [pure virtual] |
Generates a set of uniformly distributed points in the interior of the root mesh.
- Parameters:
-
hMesh the mesh in which to distribute sites siteBuffer an array of PxVec3, at least the size of siteCount siteChunkIndices if not NULL, then must be at least the size of siteCount. siteCount indices will be written to this buffer, associating each site with a chunk that contains it. siteCount the number of points to write into siteBuffer randomSeed pointer to a seed for the random number generator, to ensure reproducibility. If NULL, the random number generator will not be re-seeded. microgridSize pointer to a grid size used for BSP creation. If NULL, the default settings will be used. meshMode Open mesh handling. Modes: Automatic, Closed, Open (see BSPOpenMode) progressListener The user must instantiate an IProgressListener, so that this function may report progress of this operation chunkIndex If this is a valid index, the voronoi sites will only be created within the volume of the indexed chunk. Otherwise, the sites will be created within each of the root-level chunks. Default value is an invalid index.
- Returns:
- returns the number of sites actually created (written to siteBuffer and siteChunkIndices). This may be less than the number of sites requested if site placement fails.
virtual bool nvidia::apex::FractureToolsAPI::createVoronoiSplitMesh | ( | nvidia::ExplicitHierarchicalMesh & | hMesh, |
nvidia::ExplicitHierarchicalMesh & | iHMeshCore, | ||
bool | exportCoreMesh, | ||
int32_t | coreMeshImprintSubmeshIndex, | ||
const FractureTools::MeshProcessingParameters & | meshProcessingParams, | ||
const FractureTools::FractureVoronoiDesc & | desc, | ||
const CollisionDesc & | collisionDesc, | ||
uint32_t | randomSeed, | ||
nvidia::IProgressListener & | progressListener, | ||
volatile bool * | cancel = NULL |
||
) | [pure virtual] |
Splits the mesh in chunk[0], forming fractured pieces chunks[1...] using Voronoi decomposition fracturing.
- Parameters:
-
hMesh the mesh to split iHMeshCore if this mesh is not empty, chunk 0 will be used as an indestructible "core" of the fractured mesh. That is, it will be subtracted from hMesh, and placed at level 1 of the hierarchy. The remainder of hMesh will be split as usual, creating chunks at level 1 (and possibly deeper). exportCoreMesh if true, a core mesh chunk will be created from iHMeshCore coreMeshImprintSubmeshIndex if this is < 0, use the core mesh materials (was applyCoreMeshMaterialToNeighborChunks). Otherwise, use the given submesh meshProcessingParams describes generic mesh processing directives desc describes the voronoi splitting parameters surfaces (see FractureVoronoiDesc) collisionDesc convex hulls will be generated for each chunk using the method. See CollisionDesc. randomSeed seed for the random number generator, to ensure reproducibility. progressListener The user must instantiate an IProgressListener, so that this function may report progress of this operation cancel if not NULL and *cancel is set to true, the root mesh will be restored to its original state, and the function will return at its earliest opportunity. Meant to be set from another thread.
- Returns:
- true if successful.
virtual bool nvidia::apex::FractureToolsAPI::hierarchicallySplitChunk | ( | nvidia::ExplicitHierarchicalMesh & | hMesh, |
uint32_t | chunkIndex, | ||
const FractureTools::MeshProcessingParameters & | meshProcessingParams, | ||
const FractureTools::FractureSliceDesc & | desc, | ||
const CollisionDesc & | collisionDesc, | ||
uint32_t * | randomSeed, | ||
nvidia::IProgressListener & | progressListener, | ||
volatile bool * | cancel = NULL |
||
) | [pure virtual] |
Splits the chunk in chunk[chunkIndex], forming a hierarchy of fractured chunks using slice-mode fracturing. The chunks will be rearranged so that they are in breadth-first order.
- Parameters:
-
hMesh the ExplicitHierarchicalMesh to act upon chunkIndex index of chunk to be split meshProcessingParams used to create a BSP for this chunk desc describes the slicing surfaces (see FractureSliceDesc) collisionDesc convex hulls will be generated for each chunk using the method. See CollisionDesc. randomSeed pointer to a seed for the random number generator, to ensure reproducibility. If NULL, the random number generator will not be re-seeded. progressListener The user must instantiate an IProgressListener, so that this function may report progress of this operation cancel if not NULL and *cancel is set to true, the root mesh will be restored to its original state, and the function will return at its earliest opportunity. Meant to be set from another thread.
- Returns:
- returns true if successful.
virtual void nvidia::apex::FractureToolsAPI::setBSPBuildParameters | ( | float | logAreaSigmaThreshold, |
uint32_t | testSetSize, | ||
float | splitWeight, | ||
float | imbalanceWeight | ||
) | [pure virtual] |
Set the parameters used in BSP building operations.
- Parameters:
-
logAreaSigmaThreshold At each step in the tree building process, the surface with maximum triangle area is compared to the other surface triangle areas. If the maximum area surface is far from the "typical" set of surface areas, then that surface is chosen as the next splitting plane. Otherwise, a random test set is chosen and a winner determined based upon the weightings below. The value logAreaSigmaThreshold determines how "atypical" the maximum area surface must be to be chosen in this manner. Default value = 2.0. testSetSize Larger values of testSetSize may find better BSP trees, but will take more time to create. testSetSize = 0 is treated as infinity (all surfaces will be tested for each branch). Default value = 10. splitWeight How much to weigh the relative number of triangle splits when searching for a BSP surface. Default value = 0.5. imbalanceWeight How much to weigh the relative triangle imbalance when searching for a BSP surface. Default value = 0.0.
virtual void nvidia::apex::FractureToolsAPI::setBSPTolerances | ( | float | linearTolerance, |
float | angularTolerance, | ||
float | baseTolerance, | ||
float | clipTolerance, | ||
float | cleaningTolerance | ||
) | [pure virtual] |
Set the tolerances used in CSG calculations with BSPs.
- Parameters:
-
linearTolerance relative (to mesh size) tolerance used with angularTolerance to determine coplanarity. Default = 1.0e-4. angularTolerance used with linearTolerance to determine coplanarity. Default = 1.0e-3 baseTolerance relative (to mesh size) tolerance used for spatial partitioning clipTolerance relative (to mesh size) tolerance used when clipping triangles for CSG mesh building operations. Default = 1.0e-4. cleaningTolerance relative (to mesh size) tolerance used when cleaning the out put mesh generated from the toMesh() function. Default = 1.0e-7.
virtual void nvidia::apex::FractureToolsAPI::visualizeVoronoiCells | ( | nvidia::RenderDebugInterface & | debugRender, |
const PxVec3 * | sites, | ||
uint32_t | siteCount, | ||
const uint32_t * | cellColors, | ||
uint32_t | cellColorCount, | ||
const PxBounds3 & | bounds, | ||
uint32_t | cellIndex = 0xFFFFFFFF |
||
) | [pure virtual] |
Utility to visualize Voronoi cells for a given set of sites.
debugRender rendering object which will receive the drawing primitives associated with this cell visualization sites an array of Voronoi cell sites, of length siteCount siteCount the number of Voronoi cell sites (length of sites array) cellColors an optional array of colors (see RenderDebug for format) for the cells. If NULL, the white (0xFFFFFFFF) color will be used. If not NULL, this (of length cellColorCount) is used to color the cell graphics. The number cellColorCount need not match siteCount. If cellColorCount is less than siteCount, the cell colors will cycle. That is, site N gets cellColor[NcellColorCount]. cellColorCount the number of cell colors (the length of cellColors array) bounds defines an axis-aligned bounding box which clips the visualization, since some cells extend to infinity cellIndex if this is a valid index (cellIndex < siteCount), then only the cell corresponding to sites[cellIndex] will be drawn. Otherwise, all cells will be drawn.
virtual bool nvidia::apex::FractureToolsAPI::voronoiSplitChunk | ( | nvidia::ExplicitHierarchicalMesh & | hMesh, |
uint32_t | chunkIndex, | ||
const FractureTools::MeshProcessingParameters & | meshProcessingParams, | ||
const FractureTools::FractureVoronoiDesc & | desc, | ||
const CollisionDesc & | collisionDesc, | ||
uint32_t * | randomSeed, | ||
nvidia::IProgressListener & | progressListener, | ||
volatile bool * | cancel = NULL |
||
) | [pure virtual] |
Splits the chunk in chunk[chunkIndex], forming fractured chunks using Voronoi decomposition fracturing. The chunks will be rearranged so that they are in breadth-first order.
- Parameters:
-
hMesh the ExplicitHierarchicalMesh to act upon chunkIndex index of chunk to be split meshProcessingParams,: describes generic mesh processing directives desc describes the voronoi splitting parameters surfaces (see FractureVoronoiDesc) collisionDesc convex hulls will be generated for each chunk using the method. See CollisionDesc. randomSeed pointer to a seed for the random number generator, to ensure reproducibility. If NULL, the random number generator will not be re-seeded. progressListener The user must instantiate an IProgressListener, so that this function may report progress of this operation cancel if not NULL and *cancel is set to true, the root mesh will be restored to its original state, and the function will return at its earliest opportunity. Meant to be set from another thread.
- Returns:
- returns true if successful.
The documentation for this class was generated from the following file:
Generated on Fri Dec 15 2017 13:58:22
Copyright © 2012-2017 NVIDIA Corporation, 2701 San Tomas Expressway, Santa Clara, CA 95050 U.S.A. All rights reserved.