Source file src/pkg/math/big/rat.go
1 // Copyright 2010 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 // This file implements multi-precision rational numbers.
6
7 package big
8
9 import (
10 "encoding/binary"
11 "errors"
12 "fmt"
13 "strings"
14 )
15
16 // A Rat represents a quotient a/b of arbitrary precision.
17 // The zero value for a Rat represents the value 0.
18 type Rat struct {
19 a Int
20 b nat // len(b) == 0 acts like b == 1
21 }
22
23 // NewRat creates a new Rat with numerator a and denominator b.
24 func NewRat(a, b int64) *Rat {
25 return new(Rat).SetFrac64(a, b)
26 }
27
28 // SetFrac sets z to a/b and returns z.
29 func (z *Rat) SetFrac(a, b *Int) *Rat {
30 z.a.neg = a.neg != b.neg
31 babs := b.abs
32 if len(babs) == 0 {
33 panic("division by zero")
34 }
35 if &z.a == b || alias(z.a.abs, babs) {
36 babs = nat(nil).set(babs) // make a copy
37 }
38 z.a.abs = z.a.abs.set(a.abs)
39 z.b = z.b.set(babs)
40 return z.norm()
41 }
42
43 // SetFrac64 sets z to a/b and returns z.
44 func (z *Rat) SetFrac64(a, b int64) *Rat {
45 z.a.SetInt64(a)
46 if b == 0 {
47 panic("division by zero")
48 }
49 if b < 0 {
50 b = -b
51 z.a.neg = !z.a.neg
52 }
53 z.b = z.b.setUint64(uint64(b))
54 return z.norm()
55 }
56
57 // SetInt sets z to x (by making a copy of x) and returns z.
58 func (z *Rat) SetInt(x *Int) *Rat {
59 z.a.Set(x)
60 z.b = z.b.make(0)
61 return z
62 }
63
64 // SetInt64 sets z to x and returns z.
65 func (z *Rat) SetInt64(x int64) *Rat {
66 z.a.SetInt64(x)
67 z.b = z.b.make(0)
68 return z
69 }
70
71 // Set sets z to x (by making a copy of x) and returns z.
72 func (z *Rat) Set(x *Rat) *Rat {
73 if z != x {
74 z.a.Set(&x.a)
75 z.b = z.b.set(x.b)
76 }
77 return z
78 }
79
80 // Abs sets z to |x| (the absolute value of x) and returns z.
81 func (z *Rat) Abs(x *Rat) *Rat {
82 z.Set(x)
83 z.a.neg = false
84 return z
85 }
86
87 // Neg sets z to -x and returns z.
88 func (z *Rat) Neg(x *Rat) *Rat {
89 z.Set(x)
90 z.a.neg = len(z.a.abs) > 0 && !z.a.neg // 0 has no sign
91 return z
92 }
93
94 // Inv sets z to 1/x and returns z.
95 func (z *Rat) Inv(x *Rat) *Rat {
96 if len(x.a.abs) == 0 {
97 panic("division by zero")
98 }
99 z.Set(x)
100 a := z.b
101 if len(a) == 0 {
102 a = a.setWord(1) // materialize numerator
103 }
104 b := z.a.abs
105 if b.cmp(natOne) == 0 {
106 b = b.make(0) // normalize denominator
107 }
108 z.a.abs, z.b = a, b // sign doesn't change
109 return z
110 }
111
112 // Sign returns:
113 //
114 // -1 if x < 0
115 // 0 if x == 0
116 // +1 if x > 0
117 //
118 func (x *Rat) Sign() int {
119 return x.a.Sign()
120 }
121
122 // IsInt returns true if the denominator of x is 1.
123 func (x *Rat) IsInt() bool {
124 return len(x.b) == 0 || x.b.cmp(natOne) == 0
125 }
126
127 // Num returns the numerator of x; it may be <= 0.
128 // The result is a reference to x's numerator; it
129 // may change if a new value is assigned to x.
130 func (x *Rat) Num() *Int {
131 return &x.a
132 }
133
134 // Denom returns the denominator of x; it is always > 0.
135 // The result is a reference to x's denominator; it
136 // may change if a new value is assigned to x.
137 func (x *Rat) Denom() *Int {
138 if len(x.b) == 0 {
139 return &Int{abs: nat{1}}
140 }
141 return &Int{abs: x.b}
142 }
143
144 func gcd(x, y nat) nat {
145 // Euclidean algorithm.
146 var a, b nat
147 a = a.set(x)
148 b = b.set(y)
149 for len(b) != 0 {
150 var q, r nat
151 _, r = q.div(r, a, b)
152 a = b
153 b = r
154 }
155 return a
156 }
157
158 func (z *Rat) norm() *Rat {
159 switch {
160 case len(z.a.abs) == 0:
161 // z == 0 - normalize sign and denominator
162 z.a.neg = false
163 z.b = z.b.make(0)
164 case len(z.b) == 0:
165 // z is normalized int - nothing to do
166 case z.b.cmp(natOne) == 0:
167 // z is int - normalize denominator
168 z.b = z.b.make(0)
169 default:
170 if f := gcd(z.a.abs, z.b); f.cmp(natOne) != 0 {
171 z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f)
172 z.b, _ = z.b.div(nil, z.b, f)
173 }
174 }
175 return z
176 }
177
178 // mulDenom sets z to the denominator product x*y (by taking into
179 // account that 0 values for x or y must be interpreted as 1) and
180 // returns z.
181 func mulDenom(z, x, y nat) nat {
182 switch {
183 case len(x) == 0:
184 return z.set(y)
185 case len(y) == 0:
186 return z.set(x)
187 }
188 return z.mul(x, y)
189 }
190
191 // scaleDenom computes x*f.
192 // If f == 0 (zero value of denominator), the result is (a copy of) x.
193 func scaleDenom(x *Int, f nat) *Int {
194 var z Int
195 if len(f) == 0 {
196 return z.Set(x)
197 }
198 z.abs = z.abs.mul(x.abs, f)
199 z.neg = x.neg
200 return &z
201 }
202
203 // Cmp compares x and y and returns:
204 //
205 // -1 if x < y
206 // 0 if x == y
207 // +1 if x > y
208 //
209 func (x *Rat) Cmp(y *Rat) int {
210 return scaleDenom(&x.a, y.b).Cmp(scaleDenom(&y.a, x.b))
211 }
212
213 // Add sets z to the sum x+y and returns z.
214 func (z *Rat) Add(x, y *Rat) *Rat {
215 a1 := scaleDenom(&x.a, y.b)
216 a2 := scaleDenom(&y.a, x.b)
217 z.a.Add(a1, a2)
218 z.b = mulDenom(z.b, x.b, y.b)
219 return z.norm()
220 }
221
222 // Sub sets z to the difference x-y and returns z.
223 func (z *Rat) Sub(x, y *Rat) *Rat {
224 a1 := scaleDenom(&x.a, y.b)
225 a2 := scaleDenom(&y.a, x.b)
226 z.a.Sub(a1, a2)
227 z.b = mulDenom(z.b, x.b, y.b)
228 return z.norm()
229 }
230
231 // Mul sets z to the product x*y and returns z.
232 func (z *Rat) Mul(x, y *Rat) *Rat {
233 z.a.Mul(&x.a, &y.a)
234 z.b = mulDenom(z.b, x.b, y.b)
235 return z.norm()
236 }
237
238 // Quo sets z to the quotient x/y and returns z.
239 // If y == 0, a division-by-zero run-time panic occurs.
240 func (z *Rat) Quo(x, y *Rat) *Rat {
241 if len(y.a.abs) == 0 {
242 panic("division by zero")
243 }
244 a := scaleDenom(&x.a, y.b)
245 b := scaleDenom(&y.a, x.b)
246 z.a.abs = a.abs
247 z.b = b.abs
248 z.a.neg = a.neg != b.neg
249 return z.norm()
250 }
251
252 func ratTok(ch rune) bool {
253 return strings.IndexRune("+-/0123456789.eE", ch) >= 0
254 }
255
256 // Scan is a support routine for fmt.Scanner. It accepts the formats
257 // 'e', 'E', 'f', 'F', 'g', 'G', and 'v'. All formats are equivalent.
258 func (z *Rat) Scan(s fmt.ScanState, ch rune) error {
259 tok, err := s.Token(true, ratTok)
260 if err != nil {
261 return err
262 }
263 if strings.IndexRune("efgEFGv", ch) < 0 {
264 return errors.New("Rat.Scan: invalid verb")
265 }
266 if _, ok := z.SetString(string(tok)); !ok {
267 return errors.New("Rat.Scan: invalid syntax")
268 }
269 return nil
270 }
271
272 // SetString sets z to the value of s and returns z and a boolean indicating
273 // success. s can be given as a fraction "a/b" or as a floating-point number
274 // optionally followed by an exponent. If the operation failed, the value of
275 // z is undefined but the returned value is nil.
276 func (z *Rat) SetString(s string) (*Rat, bool) {
277 if len(s) == 0 {
278 return nil, false
279 }
280
281 // check for a quotient
282 sep := strings.Index(s, "/")
283 if sep >= 0 {
284 if _, ok := z.a.SetString(s[0:sep], 10); !ok {
285 return nil, false
286 }
287 s = s[sep+1:]
288 var err error
289 if z.b, _, err = z.b.scan(strings.NewReader(s), 10); err != nil {
290 return nil, false
291 }
292 return z.norm(), true
293 }
294
295 // check for a decimal point
296 sep = strings.Index(s, ".")
297 // check for an exponent
298 e := strings.IndexAny(s, "eE")
299 var exp Int
300 if e >= 0 {
301 if e < sep {
302 // The E must come after the decimal point.
303 return nil, false
304 }
305 if _, ok := exp.SetString(s[e+1:], 10); !ok {
306 return nil, false
307 }
308 s = s[0:e]
309 }
310 if sep >= 0 {
311 s = s[0:sep] + s[sep+1:]
312 exp.Sub(&exp, NewInt(int64(len(s)-sep)))
313 }
314
315 if _, ok := z.a.SetString(s, 10); !ok {
316 return nil, false
317 }
318 powTen := nat(nil).expNN(natTen, exp.abs, nil)
319 if exp.neg {
320 z.b = powTen
321 z.norm()
322 } else {
323 z.a.abs = z.a.abs.mul(z.a.abs, powTen)
324 z.b = z.b.make(0)
325 }
326
327 return z, true
328 }
329
330 // String returns a string representation of z in the form "a/b" (even if b == 1).
331 func (x *Rat) String() string {
332 s := "/1"
333 if len(x.b) != 0 {
334 s = "/" + x.b.decimalString()
335 }
336 return x.a.String() + s
337 }
338
339 // RatString returns a string representation of z in the form "a/b" if b != 1,
340 // and in the form "a" if b == 1.
341 func (x *Rat) RatString() string {
342 if x.IsInt() {
343 return x.a.String()
344 }
345 return x.String()
346 }
347
348 // FloatString returns a string representation of z in decimal form with prec
349 // digits of precision after the decimal point and the last digit rounded.
350 func (x *Rat) FloatString(prec int) string {
351 if x.IsInt() {
352 s := x.a.String()
353 if prec > 0 {
354 s += "." + strings.Repeat("0", prec)
355 }
356 return s
357 }
358 // x.b != 0
359
360 q, r := nat(nil).div(nat(nil), x.a.abs, x.b)
361
362 p := natOne
363 if prec > 0 {
364 p = nat(nil).expNN(natTen, nat(nil).setUint64(uint64(prec)), nil)
365 }
366
367 r = r.mul(r, p)
368 r, r2 := r.div(nat(nil), r, x.b)
369
370 // see if we need to round up
371 r2 = r2.add(r2, r2)
372 if x.b.cmp(r2) <= 0 {
373 r = r.add(r, natOne)
374 if r.cmp(p) >= 0 {
375 q = nat(nil).add(q, natOne)
376 r = nat(nil).sub(r, p)
377 }
378 }
379
380 s := q.decimalString()
381 if x.a.neg {
382 s = "-" + s
383 }
384
385 if prec > 0 {
386 rs := r.decimalString()
387 leadingZeros := prec - len(rs)
388 s += "." + strings.Repeat("0", leadingZeros) + rs
389 }
390
391 return s
392 }
393
394 // Gob codec version. Permits backward-compatible changes to the encoding.
395 const ratGobVersion byte = 1
396
397 // GobEncode implements the gob.GobEncoder interface.
398 func (x *Rat) GobEncode() ([]byte, error) {
399 buf := make([]byte, 1+4+(len(x.a.abs)+len(x.b))*_S) // extra bytes for version and sign bit (1), and numerator length (4)
400 i := x.b.bytes(buf)
401 j := x.a.abs.bytes(buf[0:i])
402 n := i - j
403 if int(uint32(n)) != n {
404 // this should never happen
405 return nil, errors.New("Rat.GobEncode: numerator too large")
406 }
407 binary.BigEndian.PutUint32(buf[j-4:j], uint32(n))
408 j -= 1 + 4
409 b := ratGobVersion << 1 // make space for sign bit
410 if x.a.neg {
411 b |= 1
412 }
413 buf[j] = b
414 return buf[j:], nil
415 }
416
417 // GobDecode implements the gob.GobDecoder interface.
418 func (z *Rat) GobDecode(buf []byte) error {
419 if len(buf) == 0 {
420 return errors.New("Rat.GobDecode: no data")
421 }
422 b := buf[0]
423 if b>>1 != ratGobVersion {
424 return errors.New(fmt.Sprintf("Rat.GobDecode: encoding version %d not supported", b>>1))
425 }
426 const j = 1 + 4
427 i := j + binary.BigEndian.Uint32(buf[j-4:j])
428 z.a.neg = b&1 != 0
429 z.a.abs = z.a.abs.setBytes(buf[j:i])
430 z.b = z.b.setBytes(buf[i:])
431 return nil
432 }