Source file src/pkg/fmt/print.go
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 package fmt
6
7 import (
8 "errors"
9 "io"
10 "os"
11 "reflect"
12 "sync"
13 "unicode/utf8"
14 )
15
16 // Some constants in the form of bytes, to avoid string overhead.
17 // Needlessly fastidious, I suppose.
18 var (
19 commaSpaceBytes = []byte(", ")
20 nilAngleBytes = []byte("<nil>")
21 nilParenBytes = []byte("(nil)")
22 nilBytes = []byte("nil")
23 mapBytes = []byte("map[")
24 missingBytes = []byte("(MISSING)")
25 panicBytes = []byte("(PANIC=")
26 extraBytes = []byte("%!(EXTRA ")
27 irparenBytes = []byte("i)")
28 bytesBytes = []byte("[]byte{")
29 widthBytes = []byte("%!(BADWIDTH)")
30 precBytes = []byte("%!(BADPREC)")
31 noVerbBytes = []byte("%!(NOVERB)")
32 )
33
34 // State represents the printer state passed to custom formatters.
35 // It provides access to the io.Writer interface plus information about
36 // the flags and options for the operand's format specifier.
37 type State interface {
38 // Write is the function to call to emit formatted output to be printed.
39 Write(b []byte) (ret int, err error)
40 // Width returns the value of the width option and whether it has been set.
41 Width() (wid int, ok bool)
42 // Precision returns the value of the precision option and whether it has been set.
43 Precision() (prec int, ok bool)
44
45 // Flag returns whether the flag c, a character, has been set.
46 Flag(c int) bool
47 }
48
49 // Formatter is the interface implemented by values with a custom formatter.
50 // The implementation of Format may call Sprintf or Fprintf(f) etc.
51 // to generate its output.
52 type Formatter interface {
53 Format(f State, c rune)
54 }
55
56 // Stringer is implemented by any value that has a String method,
57 // which defines the ``native'' format for that value.
58 // The String method is used to print values passed as an operand
59 // to a %s or %v format or to an unformatted printer such as Print.
60 type Stringer interface {
61 String() string
62 }
63
64 // GoStringer is implemented by any value that has a GoString method,
65 // which defines the Go syntax for that value.
66 // The GoString method is used to print values passed as an operand
67 // to a %#v format.
68 type GoStringer interface {
69 GoString() string
70 }
71
72 // Use simple []byte instead of bytes.Buffer to avoid large dependency.
73 type buffer []byte
74
75 func (b *buffer) Write(p []byte) (n int, err error) {
76 *b = append(*b, p...)
77 return len(p), nil
78 }
79
80 func (b *buffer) WriteString(s string) (n int, err error) {
81 *b = append(*b, s...)
82 return len(s), nil
83 }
84
85 func (b *buffer) WriteByte(c byte) error {
86 *b = append(*b, c)
87 return nil
88 }
89
90 func (bp *buffer) WriteRune(r rune) error {
91 if r < utf8.RuneSelf {
92 *bp = append(*bp, byte(r))
93 return nil
94 }
95
96 b := *bp
97 n := len(b)
98 for n+utf8.UTFMax > cap(b) {
99 b = append(b, 0)
100 }
101 w := utf8.EncodeRune(b[n:n+utf8.UTFMax], r)
102 *bp = b[:n+w]
103 return nil
104 }
105
106 type pp struct {
107 n int
108 panicking bool
109 erroring bool // printing an error condition
110 buf buffer
111 // field holds the current item, as an interface{}.
112 field interface{}
113 // value holds the current item, as a reflect.Value, and will be
114 // the zero Value if the item has not been reflected.
115 value reflect.Value
116 runeBuf [utf8.UTFMax]byte
117 fmt fmt
118 }
119
120 // A cache holds a set of reusable objects.
121 // The slice is a stack (LIFO).
122 // If more are needed, the cache creates them by calling new.
123 type cache struct {
124 mu sync.Mutex
125 saved []interface{}
126 new func() interface{}
127 }
128
129 func (c *cache) put(x interface{}) {
130 c.mu.Lock()
131 if len(c.saved) < cap(c.saved) {
132 c.saved = append(c.saved, x)
133 }
134 c.mu.Unlock()
135 }
136
137 func (c *cache) get() interface{} {
138 c.mu.Lock()
139 n := len(c.saved)
140 if n == 0 {
141 c.mu.Unlock()
142 return c.new()
143 }
144 x := c.saved[n-1]
145 c.saved = c.saved[0 : n-1]
146 c.mu.Unlock()
147 return x
148 }
149
150 func newCache(f func() interface{}) *cache {
151 return &cache{saved: make([]interface{}, 0, 100), new: f}
152 }
153
154 var ppFree = newCache(func() interface{} { return new(pp) })
155
156 // Allocate a new pp struct or grab a cached one.
157 func newPrinter() *pp {
158 p := ppFree.get().(*pp)
159 p.panicking = false
160 p.erroring = false
161 p.fmt.init(&p.buf)
162 return p
163 }
164
165 // Save used pp structs in ppFree; avoids an allocation per invocation.
166 func (p *pp) free() {
167 // Don't hold on to pp structs with large buffers.
168 if cap(p.buf) > 1024 {
169 return
170 }
171 p.buf = p.buf[:0]
172 p.field = nil
173 p.value = reflect.Value{}
174 ppFree.put(p)
175 }
176
177 func (p *pp) Width() (wid int, ok bool) { return p.fmt.wid, p.fmt.widPresent }
178
179 func (p *pp) Precision() (prec int, ok bool) { return p.fmt.prec, p.fmt.precPresent }
180
181 func (p *pp) Flag(b int) bool {
182 switch b {
183 case '-':
184 return p.fmt.minus
185 case '+':
186 return p.fmt.plus
187 case '#':
188 return p.fmt.sharp
189 case ' ':
190 return p.fmt.space
191 case '0':
192 return p.fmt.zero
193 }
194 return false
195 }
196
197 func (p *pp) add(c rune) {
198 p.buf.WriteRune(c)
199 }
200
201 // Implement Write so we can call Fprintf on a pp (through State), for
202 // recursive use in custom verbs.
203 func (p *pp) Write(b []byte) (ret int, err error) {
204 return p.buf.Write(b)
205 }
206
207 // These routines end in 'f' and take a format string.
208
209 // Fprintf formats according to a format specifier and writes to w.
210 // It returns the number of bytes written and any write error encountered.
211 func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) {
212 p := newPrinter()
213 p.doPrintf(format, a)
214 n64, err := w.Write(p.buf)
215 p.free()
216 return int(n64), err
217 }
218
219 // Printf formats according to a format specifier and writes to standard output.
220 // It returns the number of bytes written and any write error encountered.
221 func Printf(format string, a ...interface{}) (n int, err error) {
222 return Fprintf(os.Stdout, format, a...)
223 }
224
225 // Sprintf formats according to a format specifier and returns the resulting string.
226 func Sprintf(format string, a ...interface{}) string {
227 p := newPrinter()
228 p.doPrintf(format, a)
229 s := string(p.buf)
230 p.free()
231 return s
232 }
233
234 // Errorf formats according to a format specifier and returns the string
235 // as a value that satisfies error.
236 func Errorf(format string, a ...interface{}) error {
237 return errors.New(Sprintf(format, a...))
238 }
239
240 // These routines do not take a format string
241
242 // Fprint formats using the default formats for its operands and writes to w.
243 // Spaces are added between operands when neither is a string.
244 // It returns the number of bytes written and any write error encountered.
245 func Fprint(w io.Writer, a ...interface{}) (n int, err error) {
246 p := newPrinter()
247 p.doPrint(a, false, false)
248 n64, err := w.Write(p.buf)
249 p.free()
250 return int(n64), err
251 }
252
253 // Print formats using the default formats for its operands and writes to standard output.
254 // Spaces are added between operands when neither is a string.
255 // It returns the number of bytes written and any write error encountered.
256 func Print(a ...interface{}) (n int, err error) {
257 return Fprint(os.Stdout, a...)
258 }
259
260 // Sprint formats using the default formats for its operands and returns the resulting string.
261 // Spaces are added between operands when neither is a string.
262 func Sprint(a ...interface{}) string {
263 p := newPrinter()
264 p.doPrint(a, false, false)
265 s := string(p.buf)
266 p.free()
267 return s
268 }
269
270 // These routines end in 'ln', do not take a format string,
271 // always add spaces between operands, and add a newline
272 // after the last operand.
273
274 // Fprintln formats using the default formats for its operands and writes to w.
275 // Spaces are always added between operands and a newline is appended.
276 // It returns the number of bytes written and any write error encountered.
277 func Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
278 p := newPrinter()
279 p.doPrint(a, true, true)
280 n64, err := w.Write(p.buf)
281 p.free()
282 return int(n64), err
283 }
284
285 // Println formats using the default formats for its operands and writes to standard output.
286 // Spaces are always added between operands and a newline is appended.
287 // It returns the number of bytes written and any write error encountered.
288 func Println(a ...interface{}) (n int, err error) {
289 return Fprintln(os.Stdout, a...)
290 }
291
292 // Sprintln formats using the default formats for its operands and returns the resulting string.
293 // Spaces are always added between operands and a newline is appended.
294 func Sprintln(a ...interface{}) string {
295 p := newPrinter()
296 p.doPrint(a, true, true)
297 s := string(p.buf)
298 p.free()
299 return s
300 }
301
302 // Get the i'th arg of the struct value.
303 // If the arg itself is an interface, return a value for
304 // the thing inside the interface, not the interface itself.
305 func getField(v reflect.Value, i int) reflect.Value {
306 val := v.Field(i)
307 if val.Kind() == reflect.Interface && !val.IsNil() {
308 val = val.Elem()
309 }
310 return val
311 }
312
313 // Convert ASCII to integer. n is 0 (and got is false) if no number present.
314 func parsenum(s string, start, end int) (num int, isnum bool, newi int) {
315 if start >= end {
316 return 0, false, end
317 }
318 for newi = start; newi < end && '0' <= s[newi] && s[newi] <= '9'; newi++ {
319 num = num*10 + int(s[newi]-'0')
320 isnum = true
321 }
322 return
323 }
324
325 func (p *pp) unknownType(v interface{}) {
326 if v == nil {
327 p.buf.Write(nilAngleBytes)
328 return
329 }
330 p.buf.WriteByte('?')
331 p.buf.WriteString(reflect.TypeOf(v).String())
332 p.buf.WriteByte('?')
333 }
334
335 func (p *pp) badVerb(verb rune) {
336 p.erroring = true
337 p.add('%')
338 p.add('!')
339 p.add(verb)
340 p.add('(')
341 switch {
342 case p.field != nil:
343 p.buf.WriteString(reflect.TypeOf(p.field).String())
344 p.add('=')
345 p.printField(p.field, 'v', false, false, 0)
346 case p.value.IsValid():
347 p.buf.WriteString(p.value.Type().String())
348 p.add('=')
349 p.printValue(p.value, 'v', false, false, 0)
350 default:
351 p.buf.Write(nilAngleBytes)
352 }
353 p.add(')')
354 p.erroring = false
355 }
356
357 func (p *pp) fmtBool(v bool, verb rune) {
358 switch verb {
359 case 't', 'v':
360 p.fmt.fmt_boolean(v)
361 default:
362 p.badVerb(verb)
363 }
364 }
365
366 // fmtC formats a rune for the 'c' format.
367 func (p *pp) fmtC(c int64) {
368 r := rune(c) // Check for overflow.
369 if int64(r) != c {
370 r = utf8.RuneError
371 }
372 w := utf8.EncodeRune(p.runeBuf[0:utf8.UTFMax], r)
373 p.fmt.pad(p.runeBuf[0:w])
374 }
375
376 func (p *pp) fmtInt64(v int64, verb rune) {
377 switch verb {
378 case 'b':
379 p.fmt.integer(v, 2, signed, ldigits)
380 case 'c':
381 p.fmtC(v)
382 case 'd', 'v':
383 p.fmt.integer(v, 10, signed, ldigits)
384 case 'o':
385 p.fmt.integer(v, 8, signed, ldigits)
386 case 'q':
387 if 0 <= v && v <= utf8.MaxRune {
388 p.fmt.fmt_qc(v)
389 } else {
390 p.badVerb(verb)
391 }
392 case 'x':
393 p.fmt.integer(v, 16, signed, ldigits)
394 case 'U':
395 p.fmtUnicode(v)
396 case 'X':
397 p.fmt.integer(v, 16, signed, udigits)
398 default:
399 p.badVerb(verb)
400 }
401 }
402
403 // fmt0x64 formats a uint64 in hexadecimal and prefixes it with 0x or
404 // not, as requested, by temporarily setting the sharp flag.
405 func (p *pp) fmt0x64(v uint64, leading0x bool) {
406 sharp := p.fmt.sharp
407 p.fmt.sharp = leading0x
408 p.fmt.integer(int64(v), 16, unsigned, ldigits)
409 p.fmt.sharp = sharp
410 }
411
412 // fmtUnicode formats a uint64 in U+1234 form by
413 // temporarily turning on the unicode flag and tweaking the precision.
414 func (p *pp) fmtUnicode(v int64) {
415 precPresent := p.fmt.precPresent
416 sharp := p.fmt.sharp
417 p.fmt.sharp = false
418 prec := p.fmt.prec
419 if !precPresent {
420 // If prec is already set, leave it alone; otherwise 4 is minimum.
421 p.fmt.prec = 4
422 p.fmt.precPresent = true
423 }
424 p.fmt.unicode = true // turn on U+
425 p.fmt.uniQuote = sharp
426 p.fmt.integer(int64(v), 16, unsigned, udigits)
427 p.fmt.unicode = false
428 p.fmt.uniQuote = false
429 p.fmt.prec = prec
430 p.fmt.precPresent = precPresent
431 p.fmt.sharp = sharp
432 }
433
434 func (p *pp) fmtUint64(v uint64, verb rune, goSyntax bool) {
435 switch verb {
436 case 'b':
437 p.fmt.integer(int64(v), 2, unsigned, ldigits)
438 case 'c':
439 p.fmtC(int64(v))
440 case 'd':
441 p.fmt.integer(int64(v), 10, unsigned, ldigits)
442 case 'v':
443 if goSyntax {
444 p.fmt0x64(v, true)
445 } else {
446 p.fmt.integer(int64(v), 10, unsigned, ldigits)
447 }
448 case 'o':
449 p.fmt.integer(int64(v), 8, unsigned, ldigits)
450 case 'q':
451 if 0 <= v && v <= utf8.MaxRune {
452 p.fmt.fmt_qc(int64(v))
453 } else {
454 p.badVerb(verb)
455 }
456 case 'x':
457 p.fmt.integer(int64(v), 16, unsigned, ldigits)
458 case 'X':
459 p.fmt.integer(int64(v), 16, unsigned, udigits)
460 case 'U':
461 p.fmtUnicode(int64(v))
462 default:
463 p.badVerb(verb)
464 }
465 }
466
467 func (p *pp) fmtFloat32(v float32, verb rune) {
468 switch verb {
469 case 'b':
470 p.fmt.fmt_fb32(v)
471 case 'e':
472 p.fmt.fmt_e32(v)
473 case 'E':
474 p.fmt.fmt_E32(v)
475 case 'f':
476 p.fmt.fmt_f32(v)
477 case 'g', 'v':
478 p.fmt.fmt_g32(v)
479 case 'G':
480 p.fmt.fmt_G32(v)
481 default:
482 p.badVerb(verb)
483 }
484 }
485
486 func (p *pp) fmtFloat64(v float64, verb rune) {
487 switch verb {
488 case 'b':
489 p.fmt.fmt_fb64(v)
490 case 'e':
491 p.fmt.fmt_e64(v)
492 case 'E':
493 p.fmt.fmt_E64(v)
494 case 'f':
495 p.fmt.fmt_f64(v)
496 case 'g', 'v':
497 p.fmt.fmt_g64(v)
498 case 'G':
499 p.fmt.fmt_G64(v)
500 default:
501 p.badVerb(verb)
502 }
503 }
504
505 func (p *pp) fmtComplex64(v complex64, verb rune) {
506 switch verb {
507 case 'e', 'E', 'f', 'F', 'g', 'G':
508 p.fmt.fmt_c64(v, verb)
509 case 'v':
510 p.fmt.fmt_c64(v, 'g')
511 default:
512 p.badVerb(verb)
513 }
514 }
515
516 func (p *pp) fmtComplex128(v complex128, verb rune) {
517 switch verb {
518 case 'e', 'E', 'f', 'F', 'g', 'G':
519 p.fmt.fmt_c128(v, verb)
520 case 'v':
521 p.fmt.fmt_c128(v, 'g')
522 default:
523 p.badVerb(verb)
524 }
525 }
526
527 func (p *pp) fmtString(v string, verb rune, goSyntax bool) {
528 switch verb {
529 case 'v':
530 if goSyntax {
531 p.fmt.fmt_q(v)
532 } else {
533 p.fmt.fmt_s(v)
534 }
535 case 's':
536 p.fmt.fmt_s(v)
537 case 'x':
538 p.fmt.fmt_sx(v, ldigits)
539 case 'X':
540 p.fmt.fmt_sx(v, udigits)
541 case 'q':
542 p.fmt.fmt_q(v)
543 default:
544 p.badVerb(verb)
545 }
546 }
547
548 func (p *pp) fmtBytes(v []byte, verb rune, goSyntax bool, depth int) {
549 if verb == 'v' || verb == 'd' {
550 if goSyntax {
551 p.buf.Write(bytesBytes)
552 } else {
553 p.buf.WriteByte('[')
554 }
555 for i, c := range v {
556 if i > 0 {
557 if goSyntax {
558 p.buf.Write(commaSpaceBytes)
559 } else {
560 p.buf.WriteByte(' ')
561 }
562 }
563 p.printField(c, 'v', p.fmt.plus, goSyntax, depth+1)
564 }
565 if goSyntax {
566 p.buf.WriteByte('}')
567 } else {
568 p.buf.WriteByte(']')
569 }
570 return
571 }
572 s := string(v)
573 switch verb {
574 case 's':
575 p.fmt.fmt_s(s)
576 case 'x':
577 p.fmt.fmt_sx(s, ldigits)
578 case 'X':
579 p.fmt.fmt_sx(s, udigits)
580 case 'q':
581 p.fmt.fmt_q(s)
582 default:
583 p.badVerb(verb)
584 }
585 }
586
587 func (p *pp) fmtPointer(value reflect.Value, verb rune, goSyntax bool) {
588 switch verb {
589 case 'p', 'v', 'b', 'd', 'o', 'x', 'X':
590 // ok
591 default:
592 p.badVerb(verb)
593 return
594 }
595
596 var u uintptr
597 switch value.Kind() {
598 case reflect.Chan, reflect.Func, reflect.Map, reflect.Ptr, reflect.Slice, reflect.UnsafePointer:
599 u = value.Pointer()
600 default:
601 p.badVerb(verb)
602 return
603 }
604
605 if goSyntax {
606 p.add('(')
607 p.buf.WriteString(value.Type().String())
608 p.add(')')
609 p.add('(')
610 if u == 0 {
611 p.buf.Write(nilBytes)
612 } else {
613 p.fmt0x64(uint64(u), true)
614 }
615 p.add(')')
616 } else if verb == 'v' && u == 0 {
617 p.buf.Write(nilAngleBytes)
618 } else {
619 p.fmt0x64(uint64(u), !p.fmt.sharp)
620 }
621 }
622
623 var (
624 intBits = reflect.TypeOf(0).Bits()
625 floatBits = reflect.TypeOf(0.0).Bits()
626 complexBits = reflect.TypeOf(1i).Bits()
627 uintptrBits = reflect.TypeOf(uintptr(0)).Bits()
628 )
629
630 func (p *pp) catchPanic(field interface{}, verb rune) {
631 if err := recover(); err != nil {
632 // If it's a nil pointer, just say "<nil>". The likeliest causes are a
633 // Stringer that fails to guard against nil or a nil pointer for a
634 // value receiver, and in either case, "<nil>" is a nice result.
635 if v := reflect.ValueOf(field); v.Kind() == reflect.Ptr && v.IsNil() {
636 p.buf.Write(nilAngleBytes)
637 return
638 }
639 // Otherwise print a concise panic message. Most of the time the panic
640 // value will print itself nicely.
641 if p.panicking {
642 // Nested panics; the recursion in printField cannot succeed.
643 panic(err)
644 }
645 p.buf.WriteByte('%')
646 p.add(verb)
647 p.buf.Write(panicBytes)
648 p.panicking = true
649 p.printField(err, 'v', false, false, 0)
650 p.panicking = false
651 p.buf.WriteByte(')')
652 }
653 }
654
655 func (p *pp) handleMethods(verb rune, plus, goSyntax bool, depth int) (wasString, handled bool) {
656 if p.erroring {
657 return
658 }
659 // Is it a Formatter?
660 if formatter, ok := p.field.(Formatter); ok {
661 handled = true
662 wasString = false
663 defer p.catchPanic(p.field, verb)
664 formatter.Format(p, verb)
665 return
666 }
667 // Must not touch flags before Formatter looks at them.
668 if plus {
669 p.fmt.plus = false
670 }
671
672 // If we're doing Go syntax and the field knows how to supply it, take care of it now.
673 if goSyntax {
674 p.fmt.sharp = false
675 if stringer, ok := p.field.(GoStringer); ok {
676 wasString = false
677 handled = true
678 defer p.catchPanic(p.field, verb)
679 // Print the result of GoString unadorned.
680 p.fmtString(stringer.GoString(), 's', false)
681 return
682 }
683 } else {
684 // If a string is acceptable according to the format, see if
685 // the value satisfies one of the string-valued interfaces.
686 // Println etc. set verb to %v, which is "stringable".
687 switch verb {
688 case 'v', 's', 'x', 'X', 'q':
689 // Is it an error or Stringer?
690 // The duplication in the bodies is necessary:
691 // setting wasString and handled, and deferring catchPanic,
692 // must happen before calling the method.
693 switch v := p.field.(type) {
694 case error:
695 wasString = false
696 handled = true
697 defer p.catchPanic(p.field, verb)
698 p.printField(v.Error(), verb, plus, false, depth)
699 return
700
701 case Stringer:
702 wasString = false
703 handled = true
704 defer p.catchPanic(p.field, verb)
705 p.printField(v.String(), verb, plus, false, depth)
706 return
707 }
708 }
709 }
710 handled = false
711 return
712 }
713
714 func (p *pp) printField(field interface{}, verb rune, plus, goSyntax bool, depth int) (wasString bool) {
715 if field == nil {
716 if verb == 'T' || verb == 'v' {
717 p.buf.Write(nilAngleBytes)
718 } else {
719 p.badVerb(verb)
720 }
721 return false
722 }
723
724 p.field = field
725 p.value = reflect.Value{}
726 // Special processing considerations.
727 // %T (the value's type) and %p (its address) are special; we always do them first.
728 switch verb {
729 case 'T':
730 p.printField(reflect.TypeOf(field).String(), 's', false, false, 0)
731 return false
732 case 'p':
733 p.fmtPointer(reflect.ValueOf(field), verb, goSyntax)
734 return false
735 }
736
737 if wasString, handled := p.handleMethods(verb, plus, goSyntax, depth); handled {
738 return wasString
739 }
740
741 // Some types can be done without reflection.
742 switch f := field.(type) {
743 case bool:
744 p.fmtBool(f, verb)
745 case float32:
746 p.fmtFloat32(f, verb)
747 case float64:
748 p.fmtFloat64(f, verb)
749 case complex64:
750 p.fmtComplex64(complex64(f), verb)
751 case complex128:
752 p.fmtComplex128(f, verb)
753 case int:
754 p.fmtInt64(int64(f), verb)
755 case int8:
756 p.fmtInt64(int64(f), verb)
757 case int16:
758 p.fmtInt64(int64(f), verb)
759 case int32:
760 p.fmtInt64(int64(f), verb)
761 case int64:
762 p.fmtInt64(f, verb)
763 case uint:
764 p.fmtUint64(uint64(f), verb, goSyntax)
765 case uint8:
766 p.fmtUint64(uint64(f), verb, goSyntax)
767 case uint16:
768 p.fmtUint64(uint64(f), verb, goSyntax)
769 case uint32:
770 p.fmtUint64(uint64(f), verb, goSyntax)
771 case uint64:
772 p.fmtUint64(f, verb, goSyntax)
773 case uintptr:
774 p.fmtUint64(uint64(f), verb, goSyntax)
775 case string:
776 p.fmtString(f, verb, goSyntax)
777 wasString = verb == 's' || verb == 'v'
778 case []byte:
779 p.fmtBytes(f, verb, goSyntax, depth)
780 wasString = verb == 's'
781 default:
782 // Need to use reflection
783 return p.printReflectValue(reflect.ValueOf(field), verb, plus, goSyntax, depth)
784 }
785 p.field = nil
786 return
787 }
788
789 // printValue is like printField but starts with a reflect value, not an interface{} value.
790 func (p *pp) printValue(value reflect.Value, verb rune, plus, goSyntax bool, depth int) (wasString bool) {
791 if !value.IsValid() {
792 if verb == 'T' || verb == 'v' {
793 p.buf.Write(nilAngleBytes)
794 } else {
795 p.badVerb(verb)
796 }
797 return false
798 }
799
800 // Special processing considerations.
801 // %T (the value's type) and %p (its address) are special; we always do them first.
802 switch verb {
803 case 'T':
804 p.printField(value.Type().String(), 's', false, false, 0)
805 return false
806 case 'p':
807 p.fmtPointer(value, verb, goSyntax)
808 return false
809 }
810
811 // Handle values with special methods.
812 // Call always, even when field == nil, because handleMethods clears p.fmt.plus for us.
813 p.field = nil // Make sure it's cleared, for safety.
814 if value.CanInterface() {
815 p.field = value.Interface()
816 }
817 if wasString, handled := p.handleMethods(verb, plus, goSyntax, depth); handled {
818 return wasString
819 }
820
821 return p.printReflectValue(value, verb, plus, goSyntax, depth)
822 }
823
824 // printReflectValue is the fallback for both printField and printValue.
825 // It uses reflect to print the value.
826 func (p *pp) printReflectValue(value reflect.Value, verb rune, plus, goSyntax bool, depth int) (wasString bool) {
827 oldValue := p.value
828 p.value = value
829 BigSwitch:
830 switch f := value; f.Kind() {
831 case reflect.Bool:
832 p.fmtBool(f.Bool(), verb)
833 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
834 p.fmtInt64(f.Int(), verb)
835 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
836 p.fmtUint64(uint64(f.Uint()), verb, goSyntax)
837 case reflect.Float32, reflect.Float64:
838 if f.Type().Size() == 4 {
839 p.fmtFloat32(float32(f.Float()), verb)
840 } else {
841 p.fmtFloat64(float64(f.Float()), verb)
842 }
843 case reflect.Complex64, reflect.Complex128:
844 if f.Type().Size() == 8 {
845 p.fmtComplex64(complex64(f.Complex()), verb)
846 } else {
847 p.fmtComplex128(complex128(f.Complex()), verb)
848 }
849 case reflect.String:
850 p.fmtString(f.String(), verb, goSyntax)
851 case reflect.Map:
852 if goSyntax {
853 p.buf.WriteString(f.Type().String())
854 if f.IsNil() {
855 p.buf.WriteString("(nil)")
856 break
857 }
858 p.buf.WriteByte('{')
859 } else {
860 p.buf.Write(mapBytes)
861 }
862 keys := f.MapKeys()
863 for i, key := range keys {
864 if i > 0 {
865 if goSyntax {
866 p.buf.Write(commaSpaceBytes)
867 } else {
868 p.buf.WriteByte(' ')
869 }
870 }
871 p.printValue(key, verb, plus, goSyntax, depth+1)
872 p.buf.WriteByte(':')
873 p.printValue(f.MapIndex(key), verb, plus, goSyntax, depth+1)
874 }
875 if goSyntax {
876 p.buf.WriteByte('}')
877 } else {
878 p.buf.WriteByte(']')
879 }
880 case reflect.Struct:
881 if goSyntax {
882 p.buf.WriteString(value.Type().String())
883 }
884 p.add('{')
885 v := f
886 t := v.Type()
887 for i := 0; i < v.NumField(); i++ {
888 if i > 0 {
889 if goSyntax {
890 p.buf.Write(commaSpaceBytes)
891 } else {
892 p.buf.WriteByte(' ')
893 }
894 }
895 if plus || goSyntax {
896 if f := t.Field(i); f.Name != "" {
897 p.buf.WriteString(f.Name)
898 p.buf.WriteByte(':')
899 }
900 }
901 p.printValue(getField(v, i), verb, plus, goSyntax, depth+1)
902 }
903 p.buf.WriteByte('}')
904 case reflect.Interface:
905 value := f.Elem()
906 if !value.IsValid() {
907 if goSyntax {
908 p.buf.WriteString(f.Type().String())
909 p.buf.Write(nilParenBytes)
910 } else {
911 p.buf.Write(nilAngleBytes)
912 }
913 } else {
914 wasString = p.printValue(value, verb, plus, goSyntax, depth+1)
915 }
916 case reflect.Array, reflect.Slice:
917 // Byte slices are special.
918 if f.Type().Elem().Kind() == reflect.Uint8 {
919 // We know it's a slice of bytes, but we also know it does not have static type
920 // []byte, or it would have been caught above. Therefore we cannot convert
921 // it directly in the (slightly) obvious way: f.Interface().([]byte); it doesn't have
922 // that type, and we can't write an expression of the right type and do a
923 // conversion because we don't have a static way to write the right type.
924 // So we build a slice by hand. This is a rare case but it would be nice
925 // if reflection could help a little more.
926 bytes := make([]byte, f.Len())
927 for i := range bytes {
928 bytes[i] = byte(f.Index(i).Uint())
929 }
930 p.fmtBytes(bytes, verb, goSyntax, depth)
931 wasString = verb == 's'
932 break
933 }
934 if goSyntax {
935 p.buf.WriteString(value.Type().String())
936 if f.Kind() == reflect.Slice && f.IsNil() {
937 p.buf.WriteString("(nil)")
938 break
939 }
940 p.buf.WriteByte('{')
941 } else {
942 p.buf.WriteByte('[')
943 }
944 for i := 0; i < f.Len(); i++ {
945 if i > 0 {
946 if goSyntax {
947 p.buf.Write(commaSpaceBytes)
948 } else {
949 p.buf.WriteByte(' ')
950 }
951 }
952 p.printValue(f.Index(i), verb, plus, goSyntax, depth+1)
953 }
954 if goSyntax {
955 p.buf.WriteByte('}')
956 } else {
957 p.buf.WriteByte(']')
958 }
959 case reflect.Ptr:
960 v := f.Pointer()
961 // pointer to array or slice or struct? ok at top level
962 // but not embedded (avoid loops)
963 if v != 0 && depth == 0 {
964 switch a := f.Elem(); a.Kind() {
965 case reflect.Array, reflect.Slice:
966 p.buf.WriteByte('&')
967 p.printValue(a, verb, plus, goSyntax, depth+1)
968 break BigSwitch
969 case reflect.Struct:
970 p.buf.WriteByte('&')
971 p.printValue(a, verb, plus, goSyntax, depth+1)
972 break BigSwitch
973 }
974 }
975 fallthrough
976 case reflect.Chan, reflect.Func, reflect.UnsafePointer:
977 p.fmtPointer(value, verb, goSyntax)
978 default:
979 p.unknownType(f)
980 }
981 p.value = oldValue
982 return wasString
983 }
984
985 // intFromArg gets the fieldnumth element of a. On return, isInt reports whether the argument has type int.
986 func intFromArg(a []interface{}, end, i, fieldnum int) (num int, isInt bool, newi, newfieldnum int) {
987 newi, newfieldnum = end, fieldnum
988 if i < end && fieldnum < len(a) {
989 num, isInt = a[fieldnum].(int)
990 newi, newfieldnum = i+1, fieldnum+1
991 }
992 return
993 }
994
995 func (p *pp) doPrintf(format string, a []interface{}) {
996 end := len(format)
997 fieldnum := 0 // we process one field per non-trivial format
998 for i := 0; i < end; {
999 lasti := i
1000 for i < end && format[i] != '%' {
1001 i++
1002 }
1003 if i > lasti {
1004 p.buf.WriteString(format[lasti:i])
1005 }
1006 if i >= end {
1007 // done processing format string
1008 break
1009 }
1010
1011 // Process one verb
1012 i++
1013 // flags and widths
1014 p.fmt.clearflags()
1015 F:
1016 for ; i < end; i++ {
1017 switch format[i] {
1018 case '#':
1019 p.fmt.sharp = true
1020 case '0':
1021 p.fmt.zero = true
1022 case '+':
1023 p.fmt.plus = true
1024 case '-':
1025 p.fmt.minus = true
1026 case ' ':
1027 p.fmt.space = true
1028 default:
1029 break F
1030 }
1031 }
1032 // do we have width?
1033 if i < end && format[i] == '*' {
1034 p.fmt.wid, p.fmt.widPresent, i, fieldnum = intFromArg(a, end, i, fieldnum)
1035 if !p.fmt.widPresent {
1036 p.buf.Write(widthBytes)
1037 }
1038 } else {
1039 p.fmt.wid, p.fmt.widPresent, i = parsenum(format, i, end)
1040 }
1041 // do we have precision?
1042 if i < end && format[i] == '.' {
1043 if format[i+1] == '*' {
1044 p.fmt.prec, p.fmt.precPresent, i, fieldnum = intFromArg(a, end, i+1, fieldnum)
1045 if !p.fmt.precPresent {
1046 p.buf.Write(precBytes)
1047 }
1048 } else {
1049 p.fmt.prec, p.fmt.precPresent, i = parsenum(format, i+1, end)
1050 if !p.fmt.precPresent {
1051 p.fmt.prec = 0
1052 p.fmt.precPresent = true
1053 }
1054 }
1055 }
1056 if i >= end {
1057 p.buf.Write(noVerbBytes)
1058 continue
1059 }
1060 c, w := utf8.DecodeRuneInString(format[i:])
1061 i += w
1062 // percent is special - absorbs no operand
1063 if c == '%' {
1064 p.buf.WriteByte('%') // We ignore width and prec.
1065 continue
1066 }
1067 if fieldnum >= len(a) { // out of operands
1068 p.buf.WriteByte('%')
1069 p.add(c)
1070 p.buf.Write(missingBytes)
1071 continue
1072 }
1073 field := a[fieldnum]
1074 fieldnum++
1075
1076 goSyntax := c == 'v' && p.fmt.sharp
1077 plus := c == 'v' && p.fmt.plus
1078 p.printField(field, c, plus, goSyntax, 0)
1079 }
1080
1081 if fieldnum < len(a) {
1082 p.buf.Write(extraBytes)
1083 for ; fieldnum < len(a); fieldnum++ {
1084 field := a[fieldnum]
1085 if field != nil {
1086 p.buf.WriteString(reflect.TypeOf(field).String())
1087 p.buf.WriteByte('=')
1088 }
1089 p.printField(field, 'v', false, false, 0)
1090 if fieldnum+1 < len(a) {
1091 p.buf.Write(commaSpaceBytes)
1092 }
1093 }
1094 p.buf.WriteByte(')')
1095 }
1096 }
1097
1098 func (p *pp) doPrint(a []interface{}, addspace, addnewline bool) {
1099 prevString := false
1100 for fieldnum := 0; fieldnum < len(a); fieldnum++ {
1101 p.fmt.clearflags()
1102 // always add spaces if we're doing println
1103 field := a[fieldnum]
1104 if fieldnum > 0 {
1105 isString := field != nil && reflect.TypeOf(field).Kind() == reflect.String
1106 if addspace || !isString && !prevString {
1107 p.buf.WriteByte(' ')
1108 }
1109 }
1110 prevString = p.printField(field, 'v', false, false, 0)
1111 }
1112 if addnewline {
1113 p.buf.WriteByte('\n')
1114 }
1115 }