Source file src/pkg/math/pow.go
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 package math
6
7 func isOddInt(x float64) bool {
8 xi, xf := Modf(x)
9 return xf == 0 && int64(xi)&1 == 1
10 }
11
12 // Special cases taken from FreeBSD's /usr/src/lib/msun/src/e_pow.c
13 // updated by IEEE Std. 754-2008 "Section 9.2.1 Special values".
14
15 // Pow returns x**y, the base-x exponential of y.
16 //
17 // Special cases are (in order):
18 // Pow(x, ±0) = 1 for any x
19 // Pow(1, y) = 1 for any y
20 // Pow(x, 1) = x for any x
21 // Pow(NaN, y) = NaN
22 // Pow(x, NaN) = NaN
23 // Pow(±0, y) = ±Inf for y an odd integer < 0
24 // Pow(±0, -Inf) = +Inf
25 // Pow(±0, +Inf) = +0
26 // Pow(±0, y) = +Inf for finite y < 0 and not an odd integer
27 // Pow(±0, y) = ±0 for y an odd integer > 0
28 // Pow(±0, y) = +0 for finite y > 0 and not an odd integer
29 // Pow(-1, ±Inf) = 1
30 // Pow(x, +Inf) = +Inf for |x| > 1
31 // Pow(x, -Inf) = +0 for |x| > 1
32 // Pow(x, +Inf) = +0 for |x| < 1
33 // Pow(x, -Inf) = +Inf for |x| < 1
34 // Pow(+Inf, y) = +Inf for y > 0
35 // Pow(+Inf, y) = +0 for y < 0
36 // Pow(-Inf, y) = Pow(-0, -y)
37 // Pow(x, y) = NaN for finite x < 0 and finite non-integer y
38 func Pow(x, y float64) float64 {
39 switch {
40 case y == 0 || x == 1:
41 return 1
42 case y == 1:
43 return x
44 case y == 0.5:
45 return Sqrt(x)
46 case y == -0.5:
47 return 1 / Sqrt(x)
48 case IsNaN(x) || IsNaN(y):
49 return NaN()
50 case x == 0:
51 switch {
52 case y < 0:
53 if isOddInt(y) {
54 return Copysign(Inf(1), x)
55 }
56 return Inf(1)
57 case y > 0:
58 if isOddInt(y) {
59 return x
60 }
61 return 0
62 }
63 case IsInf(y, 0):
64 switch {
65 case x == -1:
66 return 1
67 case (Abs(x) < 1) == IsInf(y, 1):
68 return 0
69 default:
70 return Inf(1)
71 }
72 case IsInf(x, 0):
73 if IsInf(x, -1) {
74 return Pow(1/x, -y) // Pow(-0, -y)
75 }
76 switch {
77 case y < 0:
78 return 0
79 case y > 0:
80 return Inf(1)
81 }
82 }
83
84 absy := y
85 flip := false
86 if absy < 0 {
87 absy = -absy
88 flip = true
89 }
90 yi, yf := Modf(absy)
91 if yf != 0 && x < 0 {
92 return NaN()
93 }
94 if yi >= 1<<63 {
95 return Exp(y * Log(x))
96 }
97
98 // ans = a1 * 2**ae (= 1 for now).
99 a1 := 1.0
100 ae := 0
101
102 // ans *= x**yf
103 if yf != 0 {
104 if yf > 0.5 {
105 yf--
106 yi++
107 }
108 a1 = Exp(yf * Log(x))
109 }
110
111 // ans *= x**yi
112 // by multiplying in successive squarings
113 // of x according to bits of yi.
114 // accumulate powers of two into exp.
115 x1, xe := Frexp(x)
116 for i := int64(yi); i != 0; i >>= 1 {
117 if i&1 == 1 {
118 a1 *= x1
119 ae += xe
120 }
121 x1 *= x1
122 xe <<= 1
123 if x1 < .5 {
124 x1 += x1
125 xe--
126 }
127 }
128
129 // ans = a1*2**ae
130 // if flip { ans = 1 / ans }
131 // but in the opposite order
132 if flip {
133 a1 = 1 / a1
134 ae = -ae
135 }
136 return Ldexp(a1, ae)
137 }