Source file src/pkg/crypto/elliptic/p224.go
1 // Copyright 2012 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 package elliptic
6
7 // This is a constant-time, 32-bit implementation of P224. See FIPS 186-3,
8 // section D.2.2.
9 //
10 // See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background.
11
12 import (
13 "math/big"
14 )
15
16 var p224 p224Curve
17
18 type p224Curve struct {
19 *CurveParams
20 gx, gy, b p224FieldElement
21 }
22
23 func initP224() {
24 // See FIPS 186-3, section D.2.2
25 p224.CurveParams = new(CurveParams)
26 p224.P, _ = new(big.Int).SetString("26959946667150639794667015087019630673557916260026308143510066298881", 10)
27 p224.N, _ = new(big.Int).SetString("26959946667150639794667015087019625940457807714424391721682722368061", 10)
28 p224.B, _ = new(big.Int).SetString("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4", 16)
29 p224.Gx, _ = new(big.Int).SetString("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21", 16)
30 p224.Gy, _ = new(big.Int).SetString("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34", 16)
31 p224.BitSize = 224
32
33 p224FromBig(&p224.gx, p224.Gx)
34 p224FromBig(&p224.gy, p224.Gy)
35 p224FromBig(&p224.b, p224.B)
36 }
37
38 // P224 returns a Curve which implements P-224 (see FIPS 186-3, section D.2.2)
39 func P224() Curve {
40 initonce.Do(initAll)
41 return p224
42 }
43
44 func (curve p224Curve) Params() *CurveParams {
45 return curve.CurveParams
46 }
47
48 func (curve p224Curve) IsOnCurve(bigX, bigY *big.Int) bool {
49 var x, y p224FieldElement
50 p224FromBig(&x, bigX)
51 p224FromBig(&y, bigY)
52
53 // y² = x³ - 3x + b
54 var tmp p224LargeFieldElement
55 var x3 p224FieldElement
56 p224Square(&x3, &x, &tmp)
57 p224Mul(&x3, &x3, &x, &tmp)
58
59 for i := 0; i < 8; i++ {
60 x[i] *= 3
61 }
62 p224Sub(&x3, &x3, &x)
63 p224Reduce(&x3)
64 p224Add(&x3, &x3, &curve.b)
65 p224Contract(&x3, &x3)
66
67 p224Square(&y, &y, &tmp)
68 p224Contract(&y, &y)
69
70 for i := 0; i < 8; i++ {
71 if y[i] != x3[i] {
72 return false
73 }
74 }
75 return true
76 }
77
78 func (p224Curve) Add(bigX1, bigY1, bigX2, bigY2 *big.Int) (x, y *big.Int) {
79 var x1, y1, z1, x2, y2, z2, x3, y3, z3 p224FieldElement
80
81 p224FromBig(&x1, bigX1)
82 p224FromBig(&y1, bigY1)
83 z1[0] = 1
84 p224FromBig(&x2, bigX2)
85 p224FromBig(&y2, bigY2)
86 z2[0] = 1
87
88 p224AddJacobian(&x3, &y3, &z3, &x1, &y1, &z1, &x2, &y2, &z2)
89 return p224ToAffine(&x3, &y3, &z3)
90 }
91
92 func (p224Curve) Double(bigX1, bigY1 *big.Int) (x, y *big.Int) {
93 var x1, y1, z1, x2, y2, z2 p224FieldElement
94
95 p224FromBig(&x1, bigX1)
96 p224FromBig(&y1, bigY1)
97 z1[0] = 1
98
99 p224DoubleJacobian(&x2, &y2, &z2, &x1, &y1, &z1)
100 return p224ToAffine(&x2, &y2, &z2)
101 }
102
103 func (p224Curve) ScalarMult(bigX1, bigY1 *big.Int, scalar []byte) (x, y *big.Int) {
104 var x1, y1, z1, x2, y2, z2 p224FieldElement
105
106 p224FromBig(&x1, bigX1)
107 p224FromBig(&y1, bigY1)
108 z1[0] = 1
109
110 p224ScalarMult(&x2, &y2, &z2, &x1, &y1, &z1, scalar)
111 return p224ToAffine(&x2, &y2, &z2)
112 }
113
114 func (curve p224Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) {
115 var z1, x2, y2, z2 p224FieldElement
116
117 z1[0] = 1
118 p224ScalarMult(&x2, &y2, &z2, &curve.gx, &curve.gy, &z1, scalar)
119 return p224ToAffine(&x2, &y2, &z2)
120 }
121
122 // Field element functions.
123 //
124 // The field that we're dealing with is ℤ/pℤ where p = 2**224 - 2**96 + 1.
125 //
126 // Field elements are represented by a FieldElement, which is a typedef to an
127 // array of 8 uint32's. The value of a FieldElement, a, is:
128 // a[0] + 2**28·a[1] + 2**56·a[1] + ... + 2**196·a[7]
129 //
130 // Using 28-bit limbs means that there's only 4 bits of headroom, which is less
131 // than we would really like. But it has the useful feature that we hit 2**224
132 // exactly, making the reflections during a reduce much nicer.
133 type p224FieldElement [8]uint32
134
135 // p224Add computes *out = a+b
136 //
137 // a[i] + b[i] < 2**32
138 func p224Add(out, a, b *p224FieldElement) {
139 for i := 0; i < 8; i++ {
140 out[i] = a[i] + b[i]
141 }
142 }
143
144 const two31p3 = 1<<31 + 1<<3
145 const two31m3 = 1<<31 - 1<<3
146 const two31m15m3 = 1<<31 - 1<<15 - 1<<3
147
148 // p224ZeroModP31 is 0 mod p where bit 31 is set in all limbs so that we can
149 // subtract smaller amounts without underflow. See the section "Subtraction" in
150 // [1] for reasoning.
151 var p224ZeroModP31 = []uint32{two31p3, two31m3, two31m3, two31m15m3, two31m3, two31m3, two31m3, two31m3}
152
153 // p224Sub computes *out = a-b
154 //
155 // a[i], b[i] < 2**30
156 // out[i] < 2**32
157 func p224Sub(out, a, b *p224FieldElement) {
158 for i := 0; i < 8; i++ {
159 out[i] = a[i] + p224ZeroModP31[i] - b[i]
160 }
161 }
162
163 // LargeFieldElement also represents an element of the field. The limbs are
164 // still spaced 28-bits apart and in little-endian order. So the limbs are at
165 // 0, 28, 56, ..., 392 bits, each 64-bits wide.
166 type p224LargeFieldElement [15]uint64
167
168 const two63p35 = 1<<63 + 1<<35
169 const two63m35 = 1<<63 - 1<<35
170 const two63m35m19 = 1<<63 - 1<<35 - 1<<19
171
172 // p224ZeroModP63 is 0 mod p where bit 63 is set in all limbs. See the section
173 // "Subtraction" in [1] for why.
174 var p224ZeroModP63 = [8]uint64{two63p35, two63m35, two63m35, two63m35, two63m35m19, two63m35, two63m35, two63m35}
175
176 const bottom12Bits = 0xfff
177 const bottom28Bits = 0xfffffff
178
179 // p224Mul computes *out = a*b
180 //
181 // a[i] < 2**29, b[i] < 2**30 (or vice versa)
182 // out[i] < 2**29
183 func p224Mul(out, a, b *p224FieldElement, tmp *p224LargeFieldElement) {
184 for i := 0; i < 15; i++ {
185 tmp[i] = 0
186 }
187
188 for i := 0; i < 8; i++ {
189 for j := 0; j < 8; j++ {
190 tmp[i+j] += uint64(a[i]) * uint64(b[j])
191 }
192 }
193
194 p224ReduceLarge(out, tmp)
195 }
196
197 // Square computes *out = a*a
198 //
199 // a[i] < 2**29
200 // out[i] < 2**29
201 func p224Square(out, a *p224FieldElement, tmp *p224LargeFieldElement) {
202 for i := 0; i < 15; i++ {
203 tmp[i] = 0
204 }
205
206 for i := 0; i < 8; i++ {
207 for j := 0; j <= i; j++ {
208 r := uint64(a[i]) * uint64(a[j])
209 if i == j {
210 tmp[i+j] += r
211 } else {
212 tmp[i+j] += r << 1
213 }
214 }
215 }
216
217 p224ReduceLarge(out, tmp)
218 }
219
220 // ReduceLarge converts a p224LargeFieldElement to a p224FieldElement.
221 //
222 // in[i] < 2**62
223 func p224ReduceLarge(out *p224FieldElement, in *p224LargeFieldElement) {
224 for i := 0; i < 8; i++ {
225 in[i] += p224ZeroModP63[i]
226 }
227
228 // Eliminate the coefficients at 2**224 and greater.
229 for i := 14; i >= 8; i-- {
230 in[i-8] -= in[i]
231 in[i-5] += (in[i] & 0xffff) << 12
232 in[i-4] += in[i] >> 16
233 }
234 in[8] = 0
235 // in[0..8] < 2**64
236
237 // As the values become small enough, we start to store them in |out|
238 // and use 32-bit operations.
239 for i := 1; i < 8; i++ {
240 in[i+1] += in[i] >> 28
241 out[i] = uint32(in[i] & bottom28Bits)
242 }
243 in[0] -= in[8]
244 out[3] += uint32(in[8]&0xffff) << 12
245 out[4] += uint32(in[8] >> 16)
246 // in[0] < 2**64
247 // out[3] < 2**29
248 // out[4] < 2**29
249 // out[1,2,5..7] < 2**28
250
251 out[0] = uint32(in[0] & bottom28Bits)
252 out[1] += uint32((in[0] >> 28) & bottom28Bits)
253 out[2] += uint32(in[0] >> 56)
254 // out[0] < 2**28
255 // out[1..4] < 2**29
256 // out[5..7] < 2**28
257 }
258
259 // Reduce reduces the coefficients of a to smaller bounds.
260 //
261 // On entry: a[i] < 2**31 + 2**30
262 // On exit: a[i] < 2**29
263 func p224Reduce(a *p224FieldElement) {
264 for i := 0; i < 7; i++ {
265 a[i+1] += a[i] >> 28
266 a[i] &= bottom28Bits
267 }
268 top := a[7] >> 28
269 a[7] &= bottom28Bits
270
271 // top < 2**4
272 mask := top
273 mask |= mask >> 2
274 mask |= mask >> 1
275 mask <<= 31
276 mask = uint32(int32(mask) >> 31)
277 // Mask is all ones if top != 0, all zero otherwise
278
279 a[0] -= top
280 a[3] += top << 12
281
282 // We may have just made a[0] negative but, if we did, then we must
283 // have added something to a[3], this it's > 2**12. Therefore we can
284 // carry down to a[0].
285 a[3] -= 1 & mask
286 a[2] += mask & (1<<28 - 1)
287 a[1] += mask & (1<<28 - 1)
288 a[0] += mask & (1 << 28)
289 }
290
291 // p224Invert calculates *out = in**-1 by computing in**(2**224 - 2**96 - 1),
292 // i.e. Fermat's little theorem.
293 func p224Invert(out, in *p224FieldElement) {
294 var f1, f2, f3, f4 p224FieldElement
295 var c p224LargeFieldElement
296
297 p224Square(&f1, in, &c) // 2
298 p224Mul(&f1, &f1, in, &c) // 2**2 - 1
299 p224Square(&f1, &f1, &c) // 2**3 - 2
300 p224Mul(&f1, &f1, in, &c) // 2**3 - 1
301 p224Square(&f2, &f1, &c) // 2**4 - 2
302 p224Square(&f2, &f2, &c) // 2**5 - 4
303 p224Square(&f2, &f2, &c) // 2**6 - 8
304 p224Mul(&f1, &f1, &f2, &c) // 2**6 - 1
305 p224Square(&f2, &f1, &c) // 2**7 - 2
306 for i := 0; i < 5; i++ { // 2**12 - 2**6
307 p224Square(&f2, &f2, &c)
308 }
309 p224Mul(&f2, &f2, &f1, &c) // 2**12 - 1
310 p224Square(&f3, &f2, &c) // 2**13 - 2
311 for i := 0; i < 11; i++ { // 2**24 - 2**12
312 p224Square(&f3, &f3, &c)
313 }
314 p224Mul(&f2, &f3, &f2, &c) // 2**24 - 1
315 p224Square(&f3, &f2, &c) // 2**25 - 2
316 for i := 0; i < 23; i++ { // 2**48 - 2**24
317 p224Square(&f3, &f3, &c)
318 }
319 p224Mul(&f3, &f3, &f2, &c) // 2**48 - 1
320 p224Square(&f4, &f3, &c) // 2**49 - 2
321 for i := 0; i < 47; i++ { // 2**96 - 2**48
322 p224Square(&f4, &f4, &c)
323 }
324 p224Mul(&f3, &f3, &f4, &c) // 2**96 - 1
325 p224Square(&f4, &f3, &c) // 2**97 - 2
326 for i := 0; i < 23; i++ { // 2**120 - 2**24
327 p224Square(&f4, &f4, &c)
328 }
329 p224Mul(&f2, &f4, &f2, &c) // 2**120 - 1
330 for i := 0; i < 6; i++ { // 2**126 - 2**6
331 p224Square(&f2, &f2, &c)
332 }
333 p224Mul(&f1, &f1, &f2, &c) // 2**126 - 1
334 p224Square(&f1, &f1, &c) // 2**127 - 2
335 p224Mul(&f1, &f1, in, &c) // 2**127 - 1
336 for i := 0; i < 97; i++ { // 2**224 - 2**97
337 p224Square(&f1, &f1, &c)
338 }
339 p224Mul(out, &f1, &f3, &c) // 2**224 - 2**96 - 1
340 }
341
342 // p224Contract converts a FieldElement to its unique, minimal form.
343 //
344 // On entry, in[i] < 2**29
345 // On exit, in[i] < 2**28
346 func p224Contract(out, in *p224FieldElement) {
347 copy(out[:], in[:])
348
349 for i := 0; i < 7; i++ {
350 out[i+1] += out[i] >> 28
351 out[i] &= bottom28Bits
352 }
353 top := out[7] >> 28
354 out[7] &= bottom28Bits
355
356 out[0] -= top
357 out[3] += top << 12
358
359 // We may just have made out[i] negative. So we carry down. If we made
360 // out[0] negative then we know that out[3] is sufficiently positive
361 // because we just added to it.
362 for i := 0; i < 3; i++ {
363 mask := uint32(int32(out[i]) >> 31)
364 out[i] += (1 << 28) & mask
365 out[i+1] -= 1 & mask
366 }
367
368 // We might have pushed out[3] over 2**28 so we perform another, partial,
369 // carry chain.
370 for i := 3; i < 7; i++ {
371 out[i+1] += out[i] >> 28
372 out[i] &= bottom28Bits
373 }
374 top = out[7] >> 28
375 out[7] &= bottom28Bits
376
377 // Eliminate top while maintaining the same value mod p.
378 out[0] -= top
379 out[3] += top << 12
380
381 // There are two cases to consider for out[3]:
382 // 1) The first time that we eliminated top, we didn't push out[3] over
383 // 2**28. In this case, the partial carry chain didn't change any values
384 // and top is zero.
385 // 2) We did push out[3] over 2**28 the first time that we eliminated top.
386 // The first value of top was in [0..16), therefore, prior to eliminating
387 // the first top, 0xfff1000 <= out[3] <= 0xfffffff. Therefore, after
388 // overflowing and being reduced by the second carry chain, out[3] <=
389 // 0xf000. Thus it cannot have overflowed when we eliminated top for the
390 // second time.
391
392 // Again, we may just have made out[0] negative, so do the same carry down.
393 // As before, if we made out[0] negative then we know that out[3] is
394 // sufficiently positive.
395 for i := 0; i < 3; i++ {
396 mask := uint32(int32(out[i]) >> 31)
397 out[i] += (1 << 28) & mask
398 out[i+1] -= 1 & mask
399 }
400
401 // Now we see if the value is >= p and, if so, subtract p.
402
403 // First we build a mask from the top four limbs, which must all be
404 // equal to bottom28Bits if the whole value is >= p. If top4AllOnes
405 // ends up with any zero bits in the bottom 28 bits, then this wasn't
406 // true.
407 top4AllOnes := uint32(0xffffffff)
408 for i := 4; i < 8; i++ {
409 top4AllOnes &= (out[i] & bottom28Bits) - 1
410 }
411 top4AllOnes |= 0xf0000000
412 // Now we replicate any zero bits to all the bits in top4AllOnes.
413 top4AllOnes &= top4AllOnes >> 16
414 top4AllOnes &= top4AllOnes >> 8
415 top4AllOnes &= top4AllOnes >> 4
416 top4AllOnes &= top4AllOnes >> 2
417 top4AllOnes &= top4AllOnes >> 1
418 top4AllOnes = uint32(int32(top4AllOnes<<31) >> 31)
419
420 // Now we test whether the bottom three limbs are non-zero.
421 bottom3NonZero := out[0] | out[1] | out[2]
422 bottom3NonZero |= bottom3NonZero >> 16
423 bottom3NonZero |= bottom3NonZero >> 8
424 bottom3NonZero |= bottom3NonZero >> 4
425 bottom3NonZero |= bottom3NonZero >> 2
426 bottom3NonZero |= bottom3NonZero >> 1
427 bottom3NonZero = uint32(int32(bottom3NonZero<<31) >> 31)
428
429 // Everything depends on the value of out[3].
430 // If it's > 0xffff000 and top4AllOnes != 0 then the whole value is >= p
431 // If it's = 0xffff000 and top4AllOnes != 0 and bottom3NonZero != 0,
432 // then the whole value is >= p
433 // If it's < 0xffff000, then the whole value is < p
434 n := out[3] - 0xffff000
435 out3Equal := n
436 out3Equal |= out3Equal >> 16
437 out3Equal |= out3Equal >> 8
438 out3Equal |= out3Equal >> 4
439 out3Equal |= out3Equal >> 2
440 out3Equal |= out3Equal >> 1
441 out3Equal = ^uint32(int32(out3Equal<<31) >> 31)
442
443 // If out[3] > 0xffff000 then n's MSB will be zero.
444 out3GT := ^uint32(int32(n<<31) >> 31)
445
446 mask := top4AllOnes & ((out3Equal & bottom3NonZero) | out3GT)
447 out[0] -= 1 & mask
448 out[3] -= 0xffff000 & mask
449 out[4] -= 0xfffffff & mask
450 out[5] -= 0xfffffff & mask
451 out[6] -= 0xfffffff & mask
452 out[7] -= 0xfffffff & mask
453 }
454
455 // Group element functions.
456 //
457 // These functions deal with group elements. The group is an elliptic curve
458 // group with a = -3 defined in FIPS 186-3, section D.2.2.
459
460 // p224AddJacobian computes *out = a+b where a != b.
461 func p224AddJacobian(x3, y3, z3, x1, y1, z1, x2, y2, z2 *p224FieldElement) {
462 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-p224Add-2007-bl
463 var z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v p224FieldElement
464 var c p224LargeFieldElement
465
466 // Z1Z1 = Z1²
467 p224Square(&z1z1, z1, &c)
468 // Z2Z2 = Z2²
469 p224Square(&z2z2, z2, &c)
470 // U1 = X1*Z2Z2
471 p224Mul(&u1, x1, &z2z2, &c)
472 // U2 = X2*Z1Z1
473 p224Mul(&u2, x2, &z1z1, &c)
474 // S1 = Y1*Z2*Z2Z2
475 p224Mul(&s1, z2, &z2z2, &c)
476 p224Mul(&s1, y1, &s1, &c)
477 // S2 = Y2*Z1*Z1Z1
478 p224Mul(&s2, z1, &z1z1, &c)
479 p224Mul(&s2, y2, &s2, &c)
480 // H = U2-U1
481 p224Sub(&h, &u2, &u1)
482 p224Reduce(&h)
483 // I = (2*H)²
484 for j := 0; j < 8; j++ {
485 i[j] = h[j] << 1
486 }
487 p224Reduce(&i)
488 p224Square(&i, &i, &c)
489 // J = H*I
490 p224Mul(&j, &h, &i, &c)
491 // r = 2*(S2-S1)
492 p224Sub(&r, &s2, &s1)
493 p224Reduce(&r)
494 for i := 0; i < 8; i++ {
495 r[i] <<= 1
496 }
497 p224Reduce(&r)
498 // V = U1*I
499 p224Mul(&v, &u1, &i, &c)
500 // Z3 = ((Z1+Z2)²-Z1Z1-Z2Z2)*H
501 p224Add(&z1z1, &z1z1, &z2z2)
502 p224Add(&z2z2, z1, z2)
503 p224Reduce(&z2z2)
504 p224Square(&z2z2, &z2z2, &c)
505 p224Sub(z3, &z2z2, &z1z1)
506 p224Reduce(z3)
507 p224Mul(z3, z3, &h, &c)
508 // X3 = r²-J-2*V
509 for i := 0; i < 8; i++ {
510 z1z1[i] = v[i] << 1
511 }
512 p224Add(&z1z1, &j, &z1z1)
513 p224Reduce(&z1z1)
514 p224Square(x3, &r, &c)
515 p224Sub(x3, x3, &z1z1)
516 p224Reduce(x3)
517 // Y3 = r*(V-X3)-2*S1*J
518 for i := 0; i < 8; i++ {
519 s1[i] <<= 1
520 }
521 p224Mul(&s1, &s1, &j, &c)
522 p224Sub(&z1z1, &v, x3)
523 p224Reduce(&z1z1)
524 p224Mul(&z1z1, &z1z1, &r, &c)
525 p224Sub(y3, &z1z1, &s1)
526 p224Reduce(y3)
527 }
528
529 // p224DoubleJacobian computes *out = a+a.
530 func p224DoubleJacobian(x3, y3, z3, x1, y1, z1 *p224FieldElement) {
531 var delta, gamma, beta, alpha, t p224FieldElement
532 var c p224LargeFieldElement
533
534 p224Square(&delta, z1, &c)
535 p224Square(&gamma, y1, &c)
536 p224Mul(&beta, x1, &gamma, &c)
537
538 // alpha = 3*(X1-delta)*(X1+delta)
539 p224Add(&t, x1, &delta)
540 for i := 0; i < 8; i++ {
541 t[i] += t[i] << 1
542 }
543 p224Reduce(&t)
544 p224Sub(&alpha, x1, &delta)
545 p224Reduce(&alpha)
546 p224Mul(&alpha, &alpha, &t, &c)
547
548 // Z3 = (Y1+Z1)²-gamma-delta
549 p224Add(z3, y1, z1)
550 p224Reduce(z3)
551 p224Square(z3, z3, &c)
552 p224Sub(z3, z3, &gamma)
553 p224Reduce(z3)
554 p224Sub(z3, z3, &delta)
555 p224Reduce(z3)
556
557 // X3 = alpha²-8*beta
558 for i := 0; i < 8; i++ {
559 delta[i] = beta[i] << 3
560 }
561 p224Reduce(&delta)
562 p224Square(x3, &alpha, &c)
563 p224Sub(x3, x3, &delta)
564 p224Reduce(x3)
565
566 // Y3 = alpha*(4*beta-X3)-8*gamma²
567 for i := 0; i < 8; i++ {
568 beta[i] <<= 2
569 }
570 p224Sub(&beta, &beta, x3)
571 p224Reduce(&beta)
572 p224Square(&gamma, &gamma, &c)
573 for i := 0; i < 8; i++ {
574 gamma[i] <<= 3
575 }
576 p224Reduce(&gamma)
577 p224Mul(y3, &alpha, &beta, &c)
578 p224Sub(y3, y3, &gamma)
579 p224Reduce(y3)
580 }
581
582 // p224CopyConditional sets *out = *in iff the least-significant-bit of control
583 // is true, and it runs in constant time.
584 func p224CopyConditional(out, in *p224FieldElement, control uint32) {
585 control <<= 31
586 control = uint32(int32(control) >> 31)
587
588 for i := 0; i < 8; i++ {
589 out[i] ^= (out[i] ^ in[i]) & control
590 }
591 }
592
593 func p224ScalarMult(outX, outY, outZ, inX, inY, inZ *p224FieldElement, scalar []byte) {
594 var xx, yy, zz p224FieldElement
595 for i := 0; i < 8; i++ {
596 outZ[i] = 0
597 }
598
599 firstBit := uint32(1)
600 for _, byte := range scalar {
601 for bitNum := uint(0); bitNum < 8; bitNum++ {
602 p224DoubleJacobian(outX, outY, outZ, outX, outY, outZ)
603 bit := uint32((byte >> (7 - bitNum)) & 1)
604 p224AddJacobian(&xx, &yy, &zz, inX, inY, inZ, outX, outY, outZ)
605 p224CopyConditional(outX, inX, firstBit&bit)
606 p224CopyConditional(outY, inY, firstBit&bit)
607 p224CopyConditional(outZ, inZ, firstBit&bit)
608 p224CopyConditional(outX, &xx, ^firstBit&bit)
609 p224CopyConditional(outY, &yy, ^firstBit&bit)
610 p224CopyConditional(outZ, &zz, ^firstBit&bit)
611 firstBit = firstBit & ^bit
612 }
613 }
614 }
615
616 // p224ToAffine converts from Jacobian to affine form.
617 func p224ToAffine(x, y, z *p224FieldElement) (*big.Int, *big.Int) {
618 var zinv, zinvsq, outx, outy p224FieldElement
619 var tmp p224LargeFieldElement
620
621 isPointAtInfinity := true
622 for i := 0; i < 8; i++ {
623 if z[i] != 0 {
624 isPointAtInfinity = false
625 break
626 }
627 }
628
629 if isPointAtInfinity {
630 return nil, nil
631 }
632
633 p224Invert(&zinv, z)
634 p224Square(&zinvsq, &zinv, &tmp)
635 p224Mul(x, x, &zinvsq, &tmp)
636 p224Mul(&zinvsq, &zinvsq, &zinv, &tmp)
637 p224Mul(y, y, &zinvsq, &tmp)
638
639 p224Contract(&outx, x)
640 p224Contract(&outy, y)
641 return p224ToBig(&outx), p224ToBig(&outy)
642 }
643
644 // get28BitsFromEnd returns the least-significant 28 bits from buf>>shift,
645 // where buf is interpreted as a big-endian number.
646 func get28BitsFromEnd(buf []byte, shift uint) (uint32, []byte) {
647 var ret uint32
648
649 for i := uint(0); i < 4; i++ {
650 var b byte
651 if l := len(buf); l > 0 {
652 b = buf[l-1]
653 // We don't remove the byte if we're about to return and we're not
654 // reading all of it.
655 if i != 3 || shift == 4 {
656 buf = buf[:l-1]
657 }
658 }
659 ret |= uint32(b) << (8 * i) >> shift
660 }
661 ret &= bottom28Bits
662 return ret, buf
663 }
664
665 // p224FromBig sets *out = *in.
666 func p224FromBig(out *p224FieldElement, in *big.Int) {
667 bytes := in.Bytes()
668 out[0], bytes = get28BitsFromEnd(bytes, 0)
669 out[1], bytes = get28BitsFromEnd(bytes, 4)
670 out[2], bytes = get28BitsFromEnd(bytes, 0)
671 out[3], bytes = get28BitsFromEnd(bytes, 4)
672 out[4], bytes = get28BitsFromEnd(bytes, 0)
673 out[5], bytes = get28BitsFromEnd(bytes, 4)
674 out[6], bytes = get28BitsFromEnd(bytes, 0)
675 out[7], bytes = get28BitsFromEnd(bytes, 4)
676 }
677
678 // p224ToBig returns in as a big.Int.
679 func p224ToBig(in *p224FieldElement) *big.Int {
680 var buf [28]byte
681 buf[27] = byte(in[0])
682 buf[26] = byte(in[0] >> 8)
683 buf[25] = byte(in[0] >> 16)
684 buf[24] = byte(((in[0] >> 24) & 0x0f) | (in[1]<<4)&0xf0)
685
686 buf[23] = byte(in[1] >> 4)
687 buf[22] = byte(in[1] >> 12)
688 buf[21] = byte(in[1] >> 20)
689
690 buf[20] = byte(in[2])
691 buf[19] = byte(in[2] >> 8)
692 buf[18] = byte(in[2] >> 16)
693 buf[17] = byte(((in[2] >> 24) & 0x0f) | (in[3]<<4)&0xf0)
694
695 buf[16] = byte(in[3] >> 4)
696 buf[15] = byte(in[3] >> 12)
697 buf[14] = byte(in[3] >> 20)
698
699 buf[13] = byte(in[4])
700 buf[12] = byte(in[4] >> 8)
701 buf[11] = byte(in[4] >> 16)
702 buf[10] = byte(((in[4] >> 24) & 0x0f) | (in[5]<<4)&0xf0)
703
704 buf[9] = byte(in[5] >> 4)
705 buf[8] = byte(in[5] >> 12)
706 buf[7] = byte(in[5] >> 20)
707
708 buf[6] = byte(in[6])
709 buf[5] = byte(in[6] >> 8)
710 buf[4] = byte(in[6] >> 16)
711 buf[3] = byte(((in[6] >> 24) & 0x0f) | (in[7]<<4)&0xf0)
712
713 buf[2] = byte(in[7] >> 4)
714 buf[1] = byte(in[7] >> 12)
715 buf[0] = byte(in[7] >> 20)
716
717 return new(big.Int).SetBytes(buf[:])
718 }