Source file src/pkg/math/lgamma.go
1 // Copyright 2010 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 package math
6
7 /*
8 Floating-point logarithm of the Gamma function.
9 */
10
11 // The original C code and the long comment below are
12 // from FreeBSD's /usr/src/lib/msun/src/e_lgamma_r.c and
13 // came with this notice. The go code is a simplified
14 // version of the original C.
15 //
16 // ====================================================
17 // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
18 //
19 // Developed at SunPro, a Sun Microsystems, Inc. business.
20 // Permission to use, copy, modify, and distribute this
21 // software is freely granted, provided that this notice
22 // is preserved.
23 // ====================================================
24 //
25 // __ieee754_lgamma_r(x, signgamp)
26 // Reentrant version of the logarithm of the Gamma function
27 // with user provided pointer for the sign of Gamma(x).
28 //
29 // Method:
30 // 1. Argument Reduction for 0 < x <= 8
31 // Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
32 // reduce x to a number in [1.5,2.5] by
33 // lgamma(1+s) = log(s) + lgamma(s)
34 // for example,
35 // lgamma(7.3) = log(6.3) + lgamma(6.3)
36 // = log(6.3*5.3) + lgamma(5.3)
37 // = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
38 // 2. Polynomial approximation of lgamma around its
39 // minimum (ymin=1.461632144968362245) to maintain monotonicity.
40 // On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
41 // Let z = x-ymin;
42 // lgamma(x) = -1.214862905358496078218 + z**2*poly(z)
43 // poly(z) is a 14 degree polynomial.
44 // 2. Rational approximation in the primary interval [2,3]
45 // We use the following approximation:
46 // s = x-2.0;
47 // lgamma(x) = 0.5*s + s*P(s)/Q(s)
48 // with accuracy
49 // |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
50 // Our algorithms are based on the following observation
51 //
52 // zeta(2)-1 2 zeta(3)-1 3
53 // lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
54 // 2 3
55 //
56 // where Euler = 0.5772156649... is the Euler constant, which
57 // is very close to 0.5.
58 //
59 // 3. For x>=8, we have
60 // lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
61 // (better formula:
62 // lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
63 // Let z = 1/x, then we approximation
64 // f(z) = lgamma(x) - (x-0.5)(log(x)-1)
65 // by
66 // 3 5 11
67 // w = w0 + w1*z + w2*z + w3*z + ... + w6*z
68 // where
69 // |w - f(z)| < 2**-58.74
70 //
71 // 4. For negative x, since (G is gamma function)
72 // -x*G(-x)*G(x) = pi/sin(pi*x),
73 // we have
74 // G(x) = pi/(sin(pi*x)*(-x)*G(-x))
75 // since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
76 // Hence, for x<0, signgam = sign(sin(pi*x)) and
77 // lgamma(x) = log(|Gamma(x)|)
78 // = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
79 // Note: one should avoid computing pi*(-x) directly in the
80 // computation of sin(pi*(-x)).
81 //
82 // 5. Special Cases
83 // lgamma(2+s) ~ s*(1-Euler) for tiny s
84 // lgamma(1)=lgamma(2)=0
85 // lgamma(x) ~ -log(x) for tiny x
86 // lgamma(0) = lgamma(inf) = inf
87 // lgamma(-integer) = +-inf
88 //
89 //
90
91 var _lgamA = [...]float64{
92 7.72156649015328655494e-02, // 0x3FB3C467E37DB0C8
93 3.22467033424113591611e-01, // 0x3FD4A34CC4A60FAD
94 6.73523010531292681824e-02, // 0x3FB13E001A5562A7
95 2.05808084325167332806e-02, // 0x3F951322AC92547B
96 7.38555086081402883957e-03, // 0x3F7E404FB68FEFE8
97 2.89051383673415629091e-03, // 0x3F67ADD8CCB7926B
98 1.19270763183362067845e-03, // 0x3F538A94116F3F5D
99 5.10069792153511336608e-04, // 0x3F40B6C689B99C00
100 2.20862790713908385557e-04, // 0x3F2CF2ECED10E54D
101 1.08011567247583939954e-04, // 0x3F1C5088987DFB07
102 2.52144565451257326939e-05, // 0x3EFA7074428CFA52
103 4.48640949618915160150e-05, // 0x3F07858E90A45837
104 }
105 var _lgamR = [...]float64{
106 1.0, // placeholder
107 1.39200533467621045958e+00, // 0x3FF645A762C4AB74
108 7.21935547567138069525e-01, // 0x3FE71A1893D3DCDC
109 1.71933865632803078993e-01, // 0x3FC601EDCCFBDF27
110 1.86459191715652901344e-02, // 0x3F9317EA742ED475
111 7.77942496381893596434e-04, // 0x3F497DDACA41A95B
112 7.32668430744625636189e-06, // 0x3EDEBAF7A5B38140
113 }
114 var _lgamS = [...]float64{
115 -7.72156649015328655494e-02, // 0xBFB3C467E37DB0C8
116 2.14982415960608852501e-01, // 0x3FCB848B36E20878
117 3.25778796408930981787e-01, // 0x3FD4D98F4F139F59
118 1.46350472652464452805e-01, // 0x3FC2BB9CBEE5F2F7
119 2.66422703033638609560e-02, // 0x3F9B481C7E939961
120 1.84028451407337715652e-03, // 0x3F5E26B67368F239
121 3.19475326584100867617e-05, // 0x3F00BFECDD17E945
122 }
123 var _lgamT = [...]float64{
124 4.83836122723810047042e-01, // 0x3FDEF72BC8EE38A2
125 -1.47587722994593911752e-01, // 0xBFC2E4278DC6C509
126 6.46249402391333854778e-02, // 0x3FB08B4294D5419B
127 -3.27885410759859649565e-02, // 0xBFA0C9A8DF35B713
128 1.79706750811820387126e-02, // 0x3F9266E7970AF9EC
129 -1.03142241298341437450e-02, // 0xBF851F9FBA91EC6A
130 6.10053870246291332635e-03, // 0x3F78FCE0E370E344
131 -3.68452016781138256760e-03, // 0xBF6E2EFFB3E914D7
132 2.25964780900612472250e-03, // 0x3F6282D32E15C915
133 -1.40346469989232843813e-03, // 0xBF56FE8EBF2D1AF1
134 8.81081882437654011382e-04, // 0x3F4CDF0CEF61A8E9
135 -5.38595305356740546715e-04, // 0xBF41A6109C73E0EC
136 3.15632070903625950361e-04, // 0x3F34AF6D6C0EBBF7
137 -3.12754168375120860518e-04, // 0xBF347F24ECC38C38
138 3.35529192635519073543e-04, // 0x3F35FD3EE8C2D3F4
139 }
140 var _lgamU = [...]float64{
141 -7.72156649015328655494e-02, // 0xBFB3C467E37DB0C8
142 6.32827064025093366517e-01, // 0x3FE4401E8B005DFF
143 1.45492250137234768737e+00, // 0x3FF7475CD119BD6F
144 9.77717527963372745603e-01, // 0x3FEF497644EA8450
145 2.28963728064692451092e-01, // 0x3FCD4EAEF6010924
146 1.33810918536787660377e-02, // 0x3F8B678BBF2BAB09
147 }
148 var _lgamV = [...]float64{
149 1.0,
150 2.45597793713041134822e+00, // 0x4003A5D7C2BD619C
151 2.12848976379893395361e+00, // 0x40010725A42B18F5
152 7.69285150456672783825e-01, // 0x3FE89DFBE45050AF
153 1.04222645593369134254e-01, // 0x3FBAAE55D6537C88
154 3.21709242282423911810e-03, // 0x3F6A5ABB57D0CF61
155 }
156 var _lgamW = [...]float64{
157 4.18938533204672725052e-01, // 0x3FDACFE390C97D69
158 8.33333333333329678849e-02, // 0x3FB555555555553B
159 -2.77777777728775536470e-03, // 0xBF66C16C16B02E5C
160 7.93650558643019558500e-04, // 0x3F4A019F98CF38B6
161 -5.95187557450339963135e-04, // 0xBF4380CB8C0FE741
162 8.36339918996282139126e-04, // 0x3F4B67BA4CDAD5D1
163 -1.63092934096575273989e-03, // 0xBF5AB89D0B9E43E4
164 }
165
166 // Lgamma returns the natural logarithm and sign (-1 or +1) of Gamma(x).
167 //
168 // Special cases are:
169 // Lgamma(+Inf) = +Inf
170 // Lgamma(0) = +Inf
171 // Lgamma(-integer) = +Inf
172 // Lgamma(-Inf) = -Inf
173 // Lgamma(NaN) = NaN
174 func Lgamma(x float64) (lgamma float64, sign int) {
175 const (
176 Ymin = 1.461632144968362245
177 Two52 = 1 << 52 // 0x4330000000000000 ~4.5036e+15
178 Two53 = 1 << 53 // 0x4340000000000000 ~9.0072e+15
179 Two58 = 1 << 58 // 0x4390000000000000 ~2.8823e+17
180 Tiny = 1.0 / (1 << 70) // 0x3b90000000000000 ~8.47033e-22
181 Tc = 1.46163214496836224576e+00 // 0x3FF762D86356BE3F
182 Tf = -1.21486290535849611461e-01 // 0xBFBF19B9BCC38A42
183 // Tt = -(tail of Tf)
184 Tt = -3.63867699703950536541e-18 // 0xBC50C7CAA48A971F
185 )
186 // special cases
187 sign = 1
188 switch {
189 case IsNaN(x):
190 lgamma = x
191 return
192 case IsInf(x, 0):
193 lgamma = x
194 return
195 case x == 0:
196 lgamma = Inf(1)
197 return
198 }
199
200 neg := false
201 if x < 0 {
202 x = -x
203 neg = true
204 }
205
206 if x < Tiny { // if |x| < 2**-70, return -log(|x|)
207 if neg {
208 sign = -1
209 }
210 lgamma = -Log(x)
211 return
212 }
213 var nadj float64
214 if neg {
215 if x >= Two52 { // |x| >= 2**52, must be -integer
216 lgamma = Inf(1)
217 return
218 }
219 t := sinPi(x)
220 if t == 0 {
221 lgamma = Inf(1) // -integer
222 return
223 }
224 nadj = Log(Pi / Abs(t*x))
225 if t < 0 {
226 sign = -1
227 }
228 }
229
230 switch {
231 case x == 1 || x == 2: // purge off 1 and 2
232 lgamma = 0
233 return
234 case x < 2: // use lgamma(x) = lgamma(x+1) - log(x)
235 var y float64
236 var i int
237 if x <= 0.9 {
238 lgamma = -Log(x)
239 switch {
240 case x >= (Ymin - 1 + 0.27): // 0.7316 <= x <= 0.9
241 y = 1 - x
242 i = 0
243 case x >= (Ymin - 1 - 0.27): // 0.2316 <= x < 0.7316
244 y = x - (Tc - 1)
245 i = 1
246 default: // 0 < x < 0.2316
247 y = x
248 i = 2
249 }
250 } else {
251 lgamma = 0
252 switch {
253 case x >= (Ymin + 0.27): // 1.7316 <= x < 2
254 y = 2 - x
255 i = 0
256 case x >= (Ymin - 0.27): // 1.2316 <= x < 1.7316
257 y = x - Tc
258 i = 1
259 default: // 0.9 < x < 1.2316
260 y = x - 1
261 i = 2
262 }
263 }
264 switch i {
265 case 0:
266 z := y * y
267 p1 := _lgamA[0] + z*(_lgamA[2]+z*(_lgamA[4]+z*(_lgamA[6]+z*(_lgamA[8]+z*_lgamA[10]))))
268 p2 := z * (_lgamA[1] + z*(+_lgamA[3]+z*(_lgamA[5]+z*(_lgamA[7]+z*(_lgamA[9]+z*_lgamA[11])))))
269 p := y*p1 + p2
270 lgamma += (p - 0.5*y)
271 case 1:
272 z := y * y
273 w := z * y
274 p1 := _lgamT[0] + w*(_lgamT[3]+w*(_lgamT[6]+w*(_lgamT[9]+w*_lgamT[12]))) // parallel comp
275 p2 := _lgamT[1] + w*(_lgamT[4]+w*(_lgamT[7]+w*(_lgamT[10]+w*_lgamT[13])))
276 p3 := _lgamT[2] + w*(_lgamT[5]+w*(_lgamT[8]+w*(_lgamT[11]+w*_lgamT[14])))
277 p := z*p1 - (Tt - w*(p2+y*p3))
278 lgamma += (Tf + p)
279 case 2:
280 p1 := y * (_lgamU[0] + y*(_lgamU[1]+y*(_lgamU[2]+y*(_lgamU[3]+y*(_lgamU[4]+y*_lgamU[5])))))
281 p2 := 1 + y*(_lgamV[1]+y*(_lgamV[2]+y*(_lgamV[3]+y*(_lgamV[4]+y*_lgamV[5]))))
282 lgamma += (-0.5*y + p1/p2)
283 }
284 case x < 8: // 2 <= x < 8
285 i := int(x)
286 y := x - float64(i)
287 p := y * (_lgamS[0] + y*(_lgamS[1]+y*(_lgamS[2]+y*(_lgamS[3]+y*(_lgamS[4]+y*(_lgamS[5]+y*_lgamS[6]))))))
288 q := 1 + y*(_lgamR[1]+y*(_lgamR[2]+y*(_lgamR[3]+y*(_lgamR[4]+y*(_lgamR[5]+y*_lgamR[6])))))
289 lgamma = 0.5*y + p/q
290 z := 1.0 // Lgamma(1+s) = Log(s) + Lgamma(s)
291 switch i {
292 case 7:
293 z *= (y + 6)
294 fallthrough
295 case 6:
296 z *= (y + 5)
297 fallthrough
298 case 5:
299 z *= (y + 4)
300 fallthrough
301 case 4:
302 z *= (y + 3)
303 fallthrough
304 case 3:
305 z *= (y + 2)
306 lgamma += Log(z)
307 }
308 case x < Two58: // 8 <= x < 2**58
309 t := Log(x)
310 z := 1 / x
311 y := z * z
312 w := _lgamW[0] + z*(_lgamW[1]+y*(_lgamW[2]+y*(_lgamW[3]+y*(_lgamW[4]+y*(_lgamW[5]+y*_lgamW[6])))))
313 lgamma = (x-0.5)*(t-1) + w
314 default: // 2**58 <= x <= Inf
315 lgamma = x * (Log(x) - 1)
316 }
317 if neg {
318 lgamma = nadj - lgamma
319 }
320 return
321 }
322
323 // sinPi(x) is a helper function for negative x
324 func sinPi(x float64) float64 {
325 const (
326 Two52 = 1 << 52 // 0x4330000000000000 ~4.5036e+15
327 Two53 = 1 << 53 // 0x4340000000000000 ~9.0072e+15
328 )
329 if x < 0.25 {
330 return -Sin(Pi * x)
331 }
332
333 // argument reduction
334 z := Floor(x)
335 var n int
336 if z != x { // inexact
337 x = Mod(x, 2)
338 n = int(x * 4)
339 } else {
340 if x >= Two53 { // x must be even
341 x = 0
342 n = 0
343 } else {
344 if x < Two52 {
345 z = x + Two52 // exact
346 }
347 n = int(1 & Float64bits(z))
348 x = float64(n)
349 n <<= 2
350 }
351 }
352 switch n {
353 case 0:
354 x = Sin(Pi * x)
355 case 1, 2:
356 x = Cos(Pi * (0.5 - x))
357 case 3, 4:
358 x = Sin(Pi * (1 - x))
359 case 5, 6:
360 x = -Cos(Pi * (x - 1.5))
361 default:
362 x = Sin(Pi * (x - 2))
363 }
364 return -x
365 }