Source file src/pkg/math/j1.go
1 // Copyright 2010 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 package math
6
7 /*
8 Bessel function of the first and second kinds of order one.
9 */
10
11 // The original C code and the long comment below are
12 // from FreeBSD's /usr/src/lib/msun/src/e_j1.c and
13 // came with this notice. The go code is a simplified
14 // version of the original C.
15 //
16 // ====================================================
17 // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
18 //
19 // Developed at SunPro, a Sun Microsystems, Inc. business.
20 // Permission to use, copy, modify, and distribute this
21 // software is freely granted, provided that this notice
22 // is preserved.
23 // ====================================================
24 //
25 // __ieee754_j1(x), __ieee754_y1(x)
26 // Bessel function of the first and second kinds of order one.
27 // Method -- j1(x):
28 // 1. For tiny x, we use j1(x) = x/2 - x**3/16 + x**5/384 - ...
29 // 2. Reduce x to |x| since j1(x)=-j1(-x), and
30 // for x in (0,2)
31 // j1(x) = x/2 + x*z*R0/S0, where z = x*x;
32 // (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 )
33 // for x in (2,inf)
34 // j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
35 // y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
36 // where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
37 // as follow:
38 // cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
39 // = 1/sqrt(2) * (sin(x) - cos(x))
40 // sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
41 // = -1/sqrt(2) * (sin(x) + cos(x))
42 // (To avoid cancellation, use
43 // sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
44 // to compute the worse one.)
45 //
46 // 3 Special cases
47 // j1(nan)= nan
48 // j1(0) = 0
49 // j1(inf) = 0
50 //
51 // Method -- y1(x):
52 // 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
53 // 2. For x<2.
54 // Since
55 // y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x**3-...)
56 // therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
57 // We use the following function to approximate y1,
58 // y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x**2
59 // where for x in [0,2] (abs err less than 2**-65.89)
60 // U(z) = U0[0] + U0[1]*z + ... + U0[4]*z**4
61 // V(z) = 1 + v0[0]*z + ... + v0[4]*z**5
62 // Note: For tiny x, 1/x dominate y1 and hence
63 // y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
64 // 3. For x>=2.
65 // y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
66 // where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
67 // by method mentioned above.
68
69 // J1 returns the order-one Bessel function of the first kind.
70 //
71 // Special cases are:
72 // J1(±Inf) = 0
73 // J1(NaN) = NaN
74 func J1(x float64) float64 {
75 const (
76 TwoM27 = 1.0 / (1 << 27) // 2**-27 0x3e40000000000000
77 Two129 = 1 << 129 // 2**129 0x4800000000000000
78 // R0/S0 on [0, 2]
79 R00 = -6.25000000000000000000e-02 // 0xBFB0000000000000
80 R01 = 1.40705666955189706048e-03 // 0x3F570D9F98472C61
81 R02 = -1.59955631084035597520e-05 // 0xBEF0C5C6BA169668
82 R03 = 4.96727999609584448412e-08 // 0x3E6AAAFA46CA0BD9
83 S01 = 1.91537599538363460805e-02 // 0x3F939D0B12637E53
84 S02 = 1.85946785588630915560e-04 // 0x3F285F56B9CDF664
85 S03 = 1.17718464042623683263e-06 // 0x3EB3BFF8333F8498
86 S04 = 5.04636257076217042715e-09 // 0x3E35AC88C97DFF2C
87 S05 = 1.23542274426137913908e-11 // 0x3DAB2ACFCFB97ED8
88 )
89 // special cases
90 switch {
91 case IsNaN(x):
92 return x
93 case IsInf(x, 0) || x == 0:
94 return 0
95 }
96
97 sign := false
98 if x < 0 {
99 x = -x
100 sign = true
101 }
102 if x >= 2 {
103 s, c := Sincos(x)
104 ss := -s - c
105 cc := s - c
106
107 // make sure x+x does not overflow
108 if x < MaxFloat64/2 {
109 z := Cos(x + x)
110 if s*c > 0 {
111 cc = z / ss
112 } else {
113 ss = z / cc
114 }
115 }
116
117 // j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
118 // y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
119
120 var z float64
121 if x > Two129 {
122 z = (1 / SqrtPi) * cc / Sqrt(x)
123 } else {
124 u := pone(x)
125 v := qone(x)
126 z = (1 / SqrtPi) * (u*cc - v*ss) / Sqrt(x)
127 }
128 if sign {
129 return -z
130 }
131 return z
132 }
133 if x < TwoM27 { // |x|<2**-27
134 return 0.5 * x // inexact if x!=0 necessary
135 }
136 z := x * x
137 r := z * (R00 + z*(R01+z*(R02+z*R03)))
138 s := 1.0 + z*(S01+z*(S02+z*(S03+z*(S04+z*S05))))
139 r *= x
140 z = 0.5*x + r/s
141 if sign {
142 return -z
143 }
144 return z
145 }
146
147 // Y1 returns the order-one Bessel function of the second kind.
148 //
149 // Special cases are:
150 // Y1(+Inf) = 0
151 // Y1(0) = -Inf
152 // Y1(x < 0) = NaN
153 // Y1(NaN) = NaN
154 func Y1(x float64) float64 {
155 const (
156 TwoM54 = 1.0 / (1 << 54) // 2**-54 0x3c90000000000000
157 Two129 = 1 << 129 // 2**129 0x4800000000000000
158 U00 = -1.96057090646238940668e-01 // 0xBFC91866143CBC8A
159 U01 = 5.04438716639811282616e-02 // 0x3FA9D3C776292CD1
160 U02 = -1.91256895875763547298e-03 // 0xBF5F55E54844F50F
161 U03 = 2.35252600561610495928e-05 // 0x3EF8AB038FA6B88E
162 U04 = -9.19099158039878874504e-08 // 0xBE78AC00569105B8
163 V00 = 1.99167318236649903973e-02 // 0x3F94650D3F4DA9F0
164 V01 = 2.02552581025135171496e-04 // 0x3F2A8C896C257764
165 V02 = 1.35608801097516229404e-06 // 0x3EB6C05A894E8CA6
166 V03 = 6.22741452364621501295e-09 // 0x3E3ABF1D5BA69A86
167 V04 = 1.66559246207992079114e-11 // 0x3DB25039DACA772A
168 )
169 // special cases
170 switch {
171 case x < 0 || IsNaN(x):
172 return NaN()
173 case IsInf(x, 1):
174 return 0
175 case x == 0:
176 return Inf(-1)
177 }
178
179 if x >= 2 {
180 s, c := Sincos(x)
181 ss := -s - c
182 cc := s - c
183
184 // make sure x+x does not overflow
185 if x < MaxFloat64/2 {
186 z := Cos(x + x)
187 if s*c > 0 {
188 cc = z / ss
189 } else {
190 ss = z / cc
191 }
192 }
193 // y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
194 // where x0 = x-3pi/4
195 // Better formula:
196 // cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
197 // = 1/sqrt(2) * (sin(x) - cos(x))
198 // sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
199 // = -1/sqrt(2) * (cos(x) + sin(x))
200 // To avoid cancellation, use
201 // sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
202 // to compute the worse one.
203
204 var z float64
205 if x > Two129 {
206 z = (1 / SqrtPi) * ss / Sqrt(x)
207 } else {
208 u := pone(x)
209 v := qone(x)
210 z = (1 / SqrtPi) * (u*ss + v*cc) / Sqrt(x)
211 }
212 return z
213 }
214 if x <= TwoM54 { // x < 2**-54
215 return -(2 / Pi) / x
216 }
217 z := x * x
218 u := U00 + z*(U01+z*(U02+z*(U03+z*U04)))
219 v := 1 + z*(V00+z*(V01+z*(V02+z*(V03+z*V04))))
220 return x*(u/v) + (2/Pi)*(J1(x)*Log(x)-1/x)
221 }
222
223 // For x >= 8, the asymptotic expansions of pone is
224 // 1 + 15/128 s**2 - 4725/2**15 s**4 - ..., where s = 1/x.
225 // We approximate pone by
226 // pone(x) = 1 + (R/S)
227 // where R = pr0 + pr1*s**2 + pr2*s**4 + ... + pr5*s**10
228 // S = 1 + ps0*s**2 + ... + ps4*s**10
229 // and
230 // | pone(x)-1-R/S | <= 2**(-60.06)
231
232 // for x in [inf, 8]=1/[0,0.125]
233 var p1R8 = [6]float64{
234 0.00000000000000000000e+00, // 0x0000000000000000
235 1.17187499999988647970e-01, // 0x3FBDFFFFFFFFFCCE
236 1.32394806593073575129e+01, // 0x402A7A9D357F7FCE
237 4.12051854307378562225e+02, // 0x4079C0D4652EA590
238 3.87474538913960532227e+03, // 0x40AE457DA3A532CC
239 7.91447954031891731574e+03, // 0x40BEEA7AC32782DD
240 }
241 var p1S8 = [5]float64{
242 1.14207370375678408436e+02, // 0x405C8D458E656CAC
243 3.65093083420853463394e+03, // 0x40AC85DC964D274F
244 3.69562060269033463555e+04, // 0x40E20B8697C5BB7F
245 9.76027935934950801311e+04, // 0x40F7D42CB28F17BB
246 3.08042720627888811578e+04, // 0x40DE1511697A0B2D
247 }
248
249 // for x in [8,4.5454] = 1/[0.125,0.22001]
250 var p1R5 = [6]float64{
251 1.31990519556243522749e-11, // 0x3DAD0667DAE1CA7D
252 1.17187493190614097638e-01, // 0x3FBDFFFFE2C10043
253 6.80275127868432871736e+00, // 0x401B36046E6315E3
254 1.08308182990189109773e+02, // 0x405B13B9452602ED
255 5.17636139533199752805e+02, // 0x40802D16D052D649
256 5.28715201363337541807e+02, // 0x408085B8BB7E0CB7
257 }
258 var p1S5 = [5]float64{
259 5.92805987221131331921e+01, // 0x404DA3EAA8AF633D
260 9.91401418733614377743e+02, // 0x408EFB361B066701
261 5.35326695291487976647e+03, // 0x40B4E9445706B6FB
262 7.84469031749551231769e+03, // 0x40BEA4B0B8A5BB15
263 1.50404688810361062679e+03, // 0x40978030036F5E51
264 }
265
266 // for x in[4.5453,2.8571] = 1/[0.2199,0.35001]
267 var p1R3 = [6]float64{
268 3.02503916137373618024e-09, // 0x3E29FC21A7AD9EDD
269 1.17186865567253592491e-01, // 0x3FBDFFF55B21D17B
270 3.93297750033315640650e+00, // 0x400F76BCE85EAD8A
271 3.51194035591636932736e+01, // 0x40418F489DA6D129
272 9.10550110750781271918e+01, // 0x4056C3854D2C1837
273 4.85590685197364919645e+01, // 0x4048478F8EA83EE5
274 }
275 var p1S3 = [5]float64{
276 3.47913095001251519989e+01, // 0x40416549A134069C
277 3.36762458747825746741e+02, // 0x40750C3307F1A75F
278 1.04687139975775130551e+03, // 0x40905B7C5037D523
279 8.90811346398256432622e+02, // 0x408BD67DA32E31E9
280 1.03787932439639277504e+02, // 0x4059F26D7C2EED53
281 }
282
283 // for x in [2.8570,2] = 1/[0.3499,0.5]
284 var p1R2 = [6]float64{
285 1.07710830106873743082e-07, // 0x3E7CE9D4F65544F4
286 1.17176219462683348094e-01, // 0x3FBDFF42BE760D83
287 2.36851496667608785174e+00, // 0x4002F2B7F98FAEC0
288 1.22426109148261232917e+01, // 0x40287C377F71A964
289 1.76939711271687727390e+01, // 0x4031B1A8177F8EE2
290 5.07352312588818499250e+00, // 0x40144B49A574C1FE
291 }
292 var p1S2 = [5]float64{
293 2.14364859363821409488e+01, // 0x40356FBD8AD5ECDC
294 1.25290227168402751090e+02, // 0x405F529314F92CD5
295 2.32276469057162813669e+02, // 0x406D08D8D5A2DBD9
296 1.17679373287147100768e+02, // 0x405D6B7ADA1884A9
297 8.36463893371618283368e+00, // 0x4020BAB1F44E5192
298 }
299
300 func pone(x float64) float64 {
301 var p [6]float64
302 var q [5]float64
303 if x >= 8 {
304 p = p1R8
305 q = p1S8
306 } else if x >= 4.5454 {
307 p = p1R5
308 q = p1S5
309 } else if x >= 2.8571 {
310 p = p1R3
311 q = p1S3
312 } else if x >= 2 {
313 p = p1R2
314 q = p1S2
315 }
316 z := 1 / (x * x)
317 r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))
318 s := 1.0 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))))
319 return 1 + r/s
320 }
321
322 // For x >= 8, the asymptotic expansions of qone is
323 // 3/8 s - 105/1024 s**3 - ..., where s = 1/x.
324 // We approximate qone by
325 // qone(x) = s*(0.375 + (R/S))
326 // where R = qr1*s**2 + qr2*s**4 + ... + qr5*s**10
327 // S = 1 + qs1*s**2 + ... + qs6*s**12
328 // and
329 // | qone(x)/s -0.375-R/S | <= 2**(-61.13)
330
331 // for x in [inf, 8] = 1/[0,0.125]
332 var q1R8 = [6]float64{
333 0.00000000000000000000e+00, // 0x0000000000000000
334 -1.02539062499992714161e-01, // 0xBFBA3FFFFFFFFDF3
335 -1.62717534544589987888e+01, // 0xC0304591A26779F7
336 -7.59601722513950107896e+02, // 0xC087BCD053E4B576
337 -1.18498066702429587167e+04, // 0xC0C724E740F87415
338 -4.84385124285750353010e+04, // 0xC0E7A6D065D09C6A
339 }
340 var q1S8 = [6]float64{
341 1.61395369700722909556e+02, // 0x40642CA6DE5BCDE5
342 7.82538599923348465381e+03, // 0x40BE9162D0D88419
343 1.33875336287249578163e+05, // 0x4100579AB0B75E98
344 7.19657723683240939863e+05, // 0x4125F65372869C19
345 6.66601232617776375264e+05, // 0x412457D27719AD5C
346 -2.94490264303834643215e+05, // 0xC111F9690EA5AA18
347 }
348
349 // for x in [8,4.5454] = 1/[0.125,0.22001]
350 var q1R5 = [6]float64{
351 -2.08979931141764104297e-11, // 0xBDB6FA431AA1A098
352 -1.02539050241375426231e-01, // 0xBFBA3FFFCB597FEF
353 -8.05644828123936029840e+00, // 0xC0201CE6CA03AD4B
354 -1.83669607474888380239e+02, // 0xC066F56D6CA7B9B0
355 -1.37319376065508163265e+03, // 0xC09574C66931734F
356 -2.61244440453215656817e+03, // 0xC0A468E388FDA79D
357 }
358 var q1S5 = [6]float64{
359 8.12765501384335777857e+01, // 0x405451B2FF5A11B2
360 1.99179873460485964642e+03, // 0x409F1F31E77BF839
361 1.74684851924908907677e+04, // 0x40D10F1F0D64CE29
362 4.98514270910352279316e+04, // 0x40E8576DAABAD197
363 2.79480751638918118260e+04, // 0x40DB4B04CF7C364B
364 -4.71918354795128470869e+03, // 0xC0B26F2EFCFFA004
365 }
366
367 // for x in [4.5454,2.8571] = 1/[0.2199,0.35001] ???
368 var q1R3 = [6]float64{
369 -5.07831226461766561369e-09, // 0xBE35CFA9D38FC84F
370 -1.02537829820837089745e-01, // 0xBFBA3FEB51AEED54
371 -4.61011581139473403113e+00, // 0xC01270C23302D9FF
372 -5.78472216562783643212e+01, // 0xC04CEC71C25D16DA
373 -2.28244540737631695038e+02, // 0xC06C87D34718D55F
374 -2.19210128478909325622e+02, // 0xC06B66B95F5C1BF6
375 }
376 var q1S3 = [6]float64{
377 4.76651550323729509273e+01, // 0x4047D523CCD367E4
378 6.73865112676699709482e+02, // 0x40850EEBC031EE3E
379 3.38015286679526343505e+03, // 0x40AA684E448E7C9A
380 5.54772909720722782367e+03, // 0x40B5ABBAA61D54A6
381 1.90311919338810798763e+03, // 0x409DBC7A0DD4DF4B
382 -1.35201191444307340817e+02, // 0xC060E670290A311F
383 }
384
385 // for x in [2.8570,2] = 1/[0.3499,0.5]
386 var q1R2 = [6]float64{
387 -1.78381727510958865572e-07, // 0xBE87F12644C626D2
388 -1.02517042607985553460e-01, // 0xBFBA3E8E9148B010
389 -2.75220568278187460720e+00, // 0xC006048469BB4EDA
390 -1.96636162643703720221e+01, // 0xC033A9E2C168907F
391 -4.23253133372830490089e+01, // 0xC04529A3DE104AAA
392 -2.13719211703704061733e+01, // 0xC0355F3639CF6E52
393 }
394 var q1S2 = [6]float64{
395 2.95333629060523854548e+01, // 0x403D888A78AE64FF
396 2.52981549982190529136e+02, // 0x406F9F68DB821CBA
397 7.57502834868645436472e+02, // 0x4087AC05CE49A0F7
398 7.39393205320467245656e+02, // 0x40871B2548D4C029
399 1.55949003336666123687e+02, // 0x40637E5E3C3ED8D4
400 -4.95949898822628210127e+00, // 0xC013D686E71BE86B
401 }
402
403 func qone(x float64) float64 {
404 var p, q [6]float64
405 if x >= 8 {
406 p = q1R8
407 q = q1S8
408 } else if x >= 4.5454 {
409 p = q1R5
410 q = q1S5
411 } else if x >= 2.8571 {
412 p = q1R3
413 q = q1S3
414 } else if x >= 2 {
415 p = q1R2
416 q = q1S2
417 }
418 z := 1 / (x * x)
419 r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))
420 s := 1 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))))
421 return (0.375 + r/s) / x
422 }