Source file src/pkg/compress/flate/huffman_code.go
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 package flate
6
7 import (
8 "math"
9 "sort"
10 )
11
12 type huffmanEncoder struct {
13 codeBits []uint8
14 code []uint16
15 }
16
17 type literalNode struct {
18 literal uint16
19 freq int32
20 }
21
22 type chain struct {
23 // The sum of the leaves in this tree
24 freq int32
25
26 // The number of literals to the left of this item at this level
27 leafCount int32
28
29 // The right child of this chain in the previous level.
30 up *chain
31 }
32
33 type levelInfo struct {
34 // Our level. for better printing
35 level int32
36
37 // The most recent chain generated for this level
38 lastChain *chain
39
40 // The frequency of the next character to add to this level
41 nextCharFreq int32
42
43 // The frequency of the next pair (from level below) to add to this level.
44 // Only valid if the "needed" value of the next lower level is 0.
45 nextPairFreq int32
46
47 // The number of chains remaining to generate for this level before moving
48 // up to the next level
49 needed int32
50
51 // The levelInfo for level+1
52 up *levelInfo
53
54 // The levelInfo for level-1
55 down *levelInfo
56 }
57
58 func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxInt32} }
59
60 func newHuffmanEncoder(size int) *huffmanEncoder {
61 return &huffmanEncoder{make([]uint8, size), make([]uint16, size)}
62 }
63
64 // Generates a HuffmanCode corresponding to the fixed literal table
65 func generateFixedLiteralEncoding() *huffmanEncoder {
66 h := newHuffmanEncoder(maxLit)
67 codeBits := h.codeBits
68 code := h.code
69 var ch uint16
70 for ch = 0; ch < maxLit; ch++ {
71 var bits uint16
72 var size uint8
73 switch {
74 case ch < 144:
75 // size 8, 000110000 .. 10111111
76 bits = ch + 48
77 size = 8
78 break
79 case ch < 256:
80 // size 9, 110010000 .. 111111111
81 bits = ch + 400 - 144
82 size = 9
83 break
84 case ch < 280:
85 // size 7, 0000000 .. 0010111
86 bits = ch - 256
87 size = 7
88 break
89 default:
90 // size 8, 11000000 .. 11000111
91 bits = ch + 192 - 280
92 size = 8
93 }
94 codeBits[ch] = size
95 code[ch] = reverseBits(bits, size)
96 }
97 return h
98 }
99
100 func generateFixedOffsetEncoding() *huffmanEncoder {
101 h := newHuffmanEncoder(30)
102 codeBits := h.codeBits
103 code := h.code
104 for ch := uint16(0); ch < 30; ch++ {
105 codeBits[ch] = 5
106 code[ch] = reverseBits(ch, 5)
107 }
108 return h
109 }
110
111 var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding()
112 var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding()
113
114 func (h *huffmanEncoder) bitLength(freq []int32) int64 {
115 var total int64
116 for i, f := range freq {
117 if f != 0 {
118 total += int64(f) * int64(h.codeBits[i])
119 }
120 }
121 return total
122 }
123
124 // Return the number of literals assigned to each bit size in the Huffman encoding
125 //
126 // This method is only called when list.length >= 3
127 // The cases of 0, 1, and 2 literals are handled by special case code.
128 //
129 // list An array of the literals with non-zero frequencies
130 // and their associated frequencies. The array is in order of increasing
131 // frequency, and has as its last element a special element with frequency
132 // MaxInt32
133 // maxBits The maximum number of bits that should be used to encode any literal.
134 // return An integer array in which array[i] indicates the number of literals
135 // that should be encoded in i bits.
136 func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 {
137 n := int32(len(list))
138 list = list[0 : n+1]
139 list[n] = maxNode()
140
141 // The tree can't have greater depth than n - 1, no matter what. This
142 // saves a little bit of work in some small cases
143 if maxBits > n-1 {
144 maxBits = n - 1
145 }
146
147 // Create information about each of the levels.
148 // A bogus "Level 0" whose sole purpose is so that
149 // level1.prev.needed==0. This makes level1.nextPairFreq
150 // be a legitimate value that never gets chosen.
151 top := &levelInfo{needed: 0}
152 chain2 := &chain{list[1].freq, 2, new(chain)}
153 for level := int32(1); level <= maxBits; level++ {
154 // For every level, the first two items are the first two characters.
155 // We initialize the levels as if we had already figured this out.
156 top = &levelInfo{
157 level: level,
158 lastChain: chain2,
159 nextCharFreq: list[2].freq,
160 nextPairFreq: list[0].freq + list[1].freq,
161 down: top,
162 }
163 top.down.up = top
164 if level == 1 {
165 top.nextPairFreq = math.MaxInt32
166 }
167 }
168
169 // We need a total of 2*n - 2 items at top level and have already generated 2.
170 top.needed = 2*n - 4
171
172 l := top
173 for {
174 if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 {
175 // We've run out of both leafs and pairs.
176 // End all calculations for this level.
177 // To m sure we never come back to this level or any lower level,
178 // set nextPairFreq impossibly large.
179 l.lastChain = nil
180 l.needed = 0
181 l = l.up
182 l.nextPairFreq = math.MaxInt32
183 continue
184 }
185
186 prevFreq := l.lastChain.freq
187 if l.nextCharFreq < l.nextPairFreq {
188 // The next item on this row is a leaf node.
189 n := l.lastChain.leafCount + 1
190 l.lastChain = &chain{l.nextCharFreq, n, l.lastChain.up}
191 l.nextCharFreq = list[n].freq
192 } else {
193 // The next item on this row is a pair from the previous row.
194 // nextPairFreq isn't valid until we generate two
195 // more values in the level below
196 l.lastChain = &chain{l.nextPairFreq, l.lastChain.leafCount, l.down.lastChain}
197 l.down.needed = 2
198 }
199
200 if l.needed--; l.needed == 0 {
201 // We've done everything we need to do for this level.
202 // Continue calculating one level up. Fill in nextPairFreq
203 // of that level with the sum of the two nodes we've just calculated on
204 // this level.
205 up := l.up
206 if up == nil {
207 // All done!
208 break
209 }
210 up.nextPairFreq = prevFreq + l.lastChain.freq
211 l = up
212 } else {
213 // If we stole from below, move down temporarily to replenish it.
214 for l.down.needed > 0 {
215 l = l.down
216 }
217 }
218 }
219
220 // Somethings is wrong if at the end, the top level is null or hasn't used
221 // all of the leaves.
222 if top.lastChain.leafCount != n {
223 panic("top.lastChain.leafCount != n")
224 }
225
226 bitCount := make([]int32, maxBits+1)
227 bits := 1
228 for chain := top.lastChain; chain.up != nil; chain = chain.up {
229 // chain.leafCount gives the number of literals requiring at least "bits"
230 // bits to encode.
231 bitCount[bits] = chain.leafCount - chain.up.leafCount
232 bits++
233 }
234 return bitCount
235 }
236
237 // Look at the leaves and assign them a bit count and an encoding as specified
238 // in RFC 1951 3.2.2
239 func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) {
240 code := uint16(0)
241 for n, bits := range bitCount {
242 code <<= 1
243 if n == 0 || bits == 0 {
244 continue
245 }
246 // The literals list[len(list)-bits] .. list[len(list)-bits]
247 // are encoded using "bits" bits, and get the values
248 // code, code + 1, .... The code values are
249 // assigned in literal order (not frequency order).
250 chunk := list[len(list)-int(bits):]
251 sortByLiteral(chunk)
252 for _, node := range chunk {
253 h.codeBits[node.literal] = uint8(n)
254 h.code[node.literal] = reverseBits(code, uint8(n))
255 code++
256 }
257 list = list[0 : len(list)-int(bits)]
258 }
259 }
260
261 // Update this Huffman Code object to be the minimum code for the specified frequency count.
262 //
263 // freq An array of frequencies, in which frequency[i] gives the frequency of literal i.
264 // maxBits The maximum number of bits to use for any literal.
265 func (h *huffmanEncoder) generate(freq []int32, maxBits int32) {
266 list := make([]literalNode, len(freq)+1)
267 // Number of non-zero literals
268 count := 0
269 // Set list to be the set of all non-zero literals and their frequencies
270 for i, f := range freq {
271 if f != 0 {
272 list[count] = literalNode{uint16(i), f}
273 count++
274 } else {
275 h.codeBits[i] = 0
276 }
277 }
278 // If freq[] is shorter than codeBits[], fill rest of codeBits[] with zeros
279 h.codeBits = h.codeBits[0:len(freq)]
280 list = list[0:count]
281 if count <= 2 {
282 // Handle the small cases here, because they are awkward for the general case code. With
283 // two or fewer literals, everything has bit length 1.
284 for i, node := range list {
285 // "list" is in order of increasing literal value.
286 h.codeBits[node.literal] = 1
287 h.code[node.literal] = uint16(i)
288 }
289 return
290 }
291 sortByFreq(list)
292
293 // Get the number of literals for each bit count
294 bitCount := h.bitCounts(list, maxBits)
295 // And do the assignment
296 h.assignEncodingAndSize(bitCount, list)
297 }
298
299 type literalNodeSorter struct {
300 a []literalNode
301 less func(i, j int) bool
302 }
303
304 func (s literalNodeSorter) Len() int { return len(s.a) }
305
306 func (s literalNodeSorter) Less(i, j int) bool {
307 return s.less(i, j)
308 }
309
310 func (s literalNodeSorter) Swap(i, j int) { s.a[i], s.a[j] = s.a[j], s.a[i] }
311
312 func sortByFreq(a []literalNode) {
313 s := &literalNodeSorter{a, func(i, j int) bool {
314 if a[i].freq == a[j].freq {
315 return a[i].literal < a[j].literal
316 }
317 return a[i].freq < a[j].freq
318 }}
319 sort.Sort(s)
320 }
321
322 func sortByLiteral(a []literalNode) {
323 s := &literalNodeSorter{a, func(i, j int) bool { return a[i].literal < a[j].literal }}
324 sort.Sort(s)
325 }