Source file src/pkg/strconv/decimal.go
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 // Multiprecision decimal numbers.
6 // For floating-point formatting only; not general purpose.
7 // Only operations are assign and (binary) left/right shift.
8 // Can do binary floating point in multiprecision decimal precisely
9 // because 2 divides 10; cannot do decimal floating point
10 // in multiprecision binary precisely.
11
12 package strconv
13
14 type decimal struct {
15 d [800]byte // digits
16 nd int // number of digits used
17 dp int // decimal point
18 neg bool
19 trunc bool // discarded nonzero digits beyond d[:nd]
20 }
21
22 func (a *decimal) String() string {
23 n := 10 + a.nd
24 if a.dp > 0 {
25 n += a.dp
26 }
27 if a.dp < 0 {
28 n += -a.dp
29 }
30
31 buf := make([]byte, n)
32 w := 0
33 switch {
34 case a.nd == 0:
35 return "0"
36
37 case a.dp <= 0:
38 // zeros fill space between decimal point and digits
39 buf[w] = '0'
40 w++
41 buf[w] = '.'
42 w++
43 w += digitZero(buf[w : w+-a.dp])
44 w += copy(buf[w:], a.d[0:a.nd])
45
46 case a.dp < a.nd:
47 // decimal point in middle of digits
48 w += copy(buf[w:], a.d[0:a.dp])
49 buf[w] = '.'
50 w++
51 w += copy(buf[w:], a.d[a.dp:a.nd])
52
53 default:
54 // zeros fill space between digits and decimal point
55 w += copy(buf[w:], a.d[0:a.nd])
56 w += digitZero(buf[w : w+a.dp-a.nd])
57 }
58 return string(buf[0:w])
59 }
60
61 func digitZero(dst []byte) int {
62 for i := range dst {
63 dst[i] = '0'
64 }
65 return len(dst)
66 }
67
68 // trim trailing zeros from number.
69 // (They are meaningless; the decimal point is tracked
70 // independent of the number of digits.)
71 func trim(a *decimal) {
72 for a.nd > 0 && a.d[a.nd-1] == '0' {
73 a.nd--
74 }
75 if a.nd == 0 {
76 a.dp = 0
77 }
78 }
79
80 // Assign v to a.
81 func (a *decimal) Assign(v uint64) {
82 var buf [50]byte
83
84 // Write reversed decimal in buf.
85 n := 0
86 for v > 0 {
87 v1 := v / 10
88 v -= 10 * v1
89 buf[n] = byte(v + '0')
90 n++
91 v = v1
92 }
93
94 // Reverse again to produce forward decimal in a.d.
95 a.nd = 0
96 for n--; n >= 0; n-- {
97 a.d[a.nd] = buf[n]
98 a.nd++
99 }
100 a.dp = a.nd
101 trim(a)
102 }
103
104 // Maximum shift that we can do in one pass without overflow.
105 // Signed int has 31 bits, and we have to be able to accommodate 9<<k.
106 const maxShift = 27
107
108 // Binary shift right (* 2) by k bits. k <= maxShift to avoid overflow.
109 func rightShift(a *decimal, k uint) {
110 r := 0 // read pointer
111 w := 0 // write pointer
112
113 // Pick up enough leading digits to cover first shift.
114 n := 0
115 for ; n>>k == 0; r++ {
116 if r >= a.nd {
117 if n == 0 {
118 // a == 0; shouldn't get here, but handle anyway.
119 a.nd = 0
120 return
121 }
122 for n>>k == 0 {
123 n = n * 10
124 r++
125 }
126 break
127 }
128 c := int(a.d[r])
129 n = n*10 + c - '0'
130 }
131 a.dp -= r - 1
132
133 // Pick up a digit, put down a digit.
134 for ; r < a.nd; r++ {
135 c := int(a.d[r])
136 dig := n >> k
137 n -= dig << k
138 a.d[w] = byte(dig + '0')
139 w++
140 n = n*10 + c - '0'
141 }
142
143 // Put down extra digits.
144 for n > 0 {
145 dig := n >> k
146 n -= dig << k
147 if w < len(a.d) {
148 a.d[w] = byte(dig + '0')
149 w++
150 } else if dig > 0 {
151 a.trunc = true
152 }
153 n = n * 10
154 }
155
156 a.nd = w
157 trim(a)
158 }
159
160 // Cheat sheet for left shift: table indexed by shift count giving
161 // number of new digits that will be introduced by that shift.
162 //
163 // For example, leftcheats[4] = {2, "625"}. That means that
164 // if we are shifting by 4 (multiplying by 16), it will add 2 digits
165 // when the string prefix is "625" through "999", and one fewer digit
166 // if the string prefix is "000" through "624".
167 //
168 // Credit for this trick goes to Ken.
169
170 type leftCheat struct {
171 delta int // number of new digits
172 cutoff string // minus one digit if original < a.
173 }
174
175 var leftcheats = []leftCheat{
176 // Leading digits of 1/2^i = 5^i.
177 // 5^23 is not an exact 64-bit floating point number,
178 // so have to use bc for the math.
179 /*
180 seq 27 | sed 's/^/5^/' | bc |
181 awk 'BEGIN{ print "\tleftCheat{ 0, \"\" }," }
182 {
183 log2 = log(2)/log(10)
184 printf("\tleftCheat{ %d, \"%s\" },\t// * %d\n",
185 int(log2*NR+1), $0, 2**NR)
186 }'
187 */
188 {0, ""},
189 {1, "5"}, // * 2
190 {1, "25"}, // * 4
191 {1, "125"}, // * 8
192 {2, "625"}, // * 16
193 {2, "3125"}, // * 32
194 {2, "15625"}, // * 64
195 {3, "78125"}, // * 128
196 {3, "390625"}, // * 256
197 {3, "1953125"}, // * 512
198 {4, "9765625"}, // * 1024
199 {4, "48828125"}, // * 2048
200 {4, "244140625"}, // * 4096
201 {4, "1220703125"}, // * 8192
202 {5, "6103515625"}, // * 16384
203 {5, "30517578125"}, // * 32768
204 {5, "152587890625"}, // * 65536
205 {6, "762939453125"}, // * 131072
206 {6, "3814697265625"}, // * 262144
207 {6, "19073486328125"}, // * 524288
208 {7, "95367431640625"}, // * 1048576
209 {7, "476837158203125"}, // * 2097152
210 {7, "2384185791015625"}, // * 4194304
211 {7, "11920928955078125"}, // * 8388608
212 {8, "59604644775390625"}, // * 16777216
213 {8, "298023223876953125"}, // * 33554432
214 {8, "1490116119384765625"}, // * 67108864
215 {9, "7450580596923828125"}, // * 134217728
216 }
217
218 // Is the leading prefix of b lexicographically less than s?
219 func prefixIsLessThan(b []byte, s string) bool {
220 for i := 0; i < len(s); i++ {
221 if i >= len(b) {
222 return true
223 }
224 if b[i] != s[i] {
225 return b[i] < s[i]
226 }
227 }
228 return false
229 }
230
231 // Binary shift left (/ 2) by k bits. k <= maxShift to avoid overflow.
232 func leftShift(a *decimal, k uint) {
233 delta := leftcheats[k].delta
234 if prefixIsLessThan(a.d[0:a.nd], leftcheats[k].cutoff) {
235 delta--
236 }
237
238 r := a.nd // read index
239 w := a.nd + delta // write index
240 n := 0
241
242 // Pick up a digit, put down a digit.
243 for r--; r >= 0; r-- {
244 n += (int(a.d[r]) - '0') << k
245 quo := n / 10
246 rem := n - 10*quo
247 w--
248 if w < len(a.d) {
249 a.d[w] = byte(rem + '0')
250 } else if rem != 0 {
251 a.trunc = true
252 }
253 n = quo
254 }
255
256 // Put down extra digits.
257 for n > 0 {
258 quo := n / 10
259 rem := n - 10*quo
260 w--
261 if w < len(a.d) {
262 a.d[w] = byte(rem + '0')
263 } else if rem != 0 {
264 a.trunc = true
265 }
266 n = quo
267 }
268
269 a.nd += delta
270 if a.nd >= len(a.d) {
271 a.nd = len(a.d)
272 }
273 a.dp += delta
274 trim(a)
275 }
276
277 // Binary shift left (k > 0) or right (k < 0).
278 func (a *decimal) Shift(k int) {
279 switch {
280 case a.nd == 0:
281 // nothing to do: a == 0
282 case k > 0:
283 for k > maxShift {
284 leftShift(a, maxShift)
285 k -= maxShift
286 }
287 leftShift(a, uint(k))
288 case k < 0:
289 for k < -maxShift {
290 rightShift(a, maxShift)
291 k += maxShift
292 }
293 rightShift(a, uint(-k))
294 }
295 }
296
297 // If we chop a at nd digits, should we round up?
298 func shouldRoundUp(a *decimal, nd int) bool {
299 if nd < 0 || nd >= a.nd {
300 return false
301 }
302 if a.d[nd] == '5' && nd+1 == a.nd { // exactly halfway - round to even
303 // if we truncated, a little higher than what's recorded - always round up
304 if a.trunc {
305 return true
306 }
307 return nd > 0 && (a.d[nd-1]-'0')%2 != 0
308 }
309 // not halfway - digit tells all
310 return a.d[nd] >= '5'
311 }
312
313 // Round a to nd digits (or fewer).
314 // If nd is zero, it means we're rounding
315 // just to the left of the digits, as in
316 // 0.09 -> 0.1.
317 func (a *decimal) Round(nd int) {
318 if nd < 0 || nd >= a.nd {
319 return
320 }
321 if shouldRoundUp(a, nd) {
322 a.RoundUp(nd)
323 } else {
324 a.RoundDown(nd)
325 }
326 }
327
328 // Round a down to nd digits (or fewer).
329 func (a *decimal) RoundDown(nd int) {
330 if nd < 0 || nd >= a.nd {
331 return
332 }
333 a.nd = nd
334 trim(a)
335 }
336
337 // Round a up to nd digits (or fewer).
338 func (a *decimal) RoundUp(nd int) {
339 if nd < 0 || nd >= a.nd {
340 return
341 }
342
343 // round up
344 for i := nd - 1; i >= 0; i-- {
345 c := a.d[i]
346 if c < '9' { // can stop after this digit
347 a.d[i]++
348 a.nd = i + 1
349 return
350 }
351 }
352
353 // Number is all 9s.
354 // Change to single 1 with adjusted decimal point.
355 a.d[0] = '1'
356 a.nd = 1
357 a.dp++
358 }
359
360 // Extract integer part, rounded appropriately.
361 // No guarantees about overflow.
362 func (a *decimal) RoundedInteger() uint64 {
363 if a.dp > 20 {
364 return 0xFFFFFFFFFFFFFFFF
365 }
366 var i int
367 n := uint64(0)
368 for i = 0; i < a.dp && i < a.nd; i++ {
369 n = n*10 + uint64(a.d[i]-'0')
370 }
371 for ; i < a.dp; i++ {
372 n *= 10
373 }
374 if shouldRoundUp(a, a.dp) {
375 n++
376 }
377 return n
378 }