Source file src/pkg/encoding/asn1/asn1.go
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 // Package asn1 implements parsing of DER-encoded ASN.1 data structures,
6 // as defined in ITU-T Rec X.690.
7 //
8 // See also ``A Layman's Guide to a Subset of ASN.1, BER, and DER,''
9 // http://luca.ntop.org/Teaching/Appunti/asn1.html.
10 package asn1
11
12 // ASN.1 is a syntax for specifying abstract objects and BER, DER, PER, XER etc
13 // are different encoding formats for those objects. Here, we'll be dealing
14 // with DER, the Distinguished Encoding Rules. DER is used in X.509 because
15 // it's fast to parse and, unlike BER, has a unique encoding for every object.
16 // When calculating hashes over objects, it's important that the resulting
17 // bytes be the same at both ends and DER removes this margin of error.
18 //
19 // ASN.1 is very complex and this package doesn't attempt to implement
20 // everything by any means.
21
22 import (
23 "fmt"
24 "math/big"
25 "reflect"
26 "time"
27 )
28
29 // A StructuralError suggests that the ASN.1 data is valid, but the Go type
30 // which is receiving it doesn't match.
31 type StructuralError struct {
32 Msg string
33 }
34
35 func (e StructuralError) Error() string { return "ASN.1 structure error: " + e.Msg }
36
37 // A SyntaxError suggests that the ASN.1 data is invalid.
38 type SyntaxError struct {
39 Msg string
40 }
41
42 func (e SyntaxError) Error() string { return "ASN.1 syntax error: " + e.Msg }
43
44 // We start by dealing with each of the primitive types in turn.
45
46 // BOOLEAN
47
48 func parseBool(bytes []byte) (ret bool, err error) {
49 if len(bytes) != 1 {
50 err = SyntaxError{"invalid boolean"}
51 return
52 }
53
54 return bytes[0] != 0, nil
55 }
56
57 // INTEGER
58
59 // parseInt64 treats the given bytes as a big-endian, signed integer and
60 // returns the result.
61 func parseInt64(bytes []byte) (ret int64, err error) {
62 if len(bytes) > 8 {
63 // We'll overflow an int64 in this case.
64 err = StructuralError{"integer too large"}
65 return
66 }
67 for bytesRead := 0; bytesRead < len(bytes); bytesRead++ {
68 ret <<= 8
69 ret |= int64(bytes[bytesRead])
70 }
71
72 // Shift up and down in order to sign extend the result.
73 ret <<= 64 - uint8(len(bytes))*8
74 ret >>= 64 - uint8(len(bytes))*8
75 return
76 }
77
78 // parseInt treats the given bytes as a big-endian, signed integer and returns
79 // the result.
80 func parseInt(bytes []byte) (int, error) {
81 ret64, err := parseInt64(bytes)
82 if err != nil {
83 return 0, err
84 }
85 if ret64 != int64(int(ret64)) {
86 return 0, StructuralError{"integer too large"}
87 }
88 return int(ret64), nil
89 }
90
91 var bigOne = big.NewInt(1)
92
93 // parseBigInt treats the given bytes as a big-endian, signed integer and returns
94 // the result.
95 func parseBigInt(bytes []byte) *big.Int {
96 ret := new(big.Int)
97 if len(bytes) > 0 && bytes[0]&0x80 == 0x80 {
98 // This is a negative number.
99 notBytes := make([]byte, len(bytes))
100 for i := range notBytes {
101 notBytes[i] = ^bytes[i]
102 }
103 ret.SetBytes(notBytes)
104 ret.Add(ret, bigOne)
105 ret.Neg(ret)
106 return ret
107 }
108 ret.SetBytes(bytes)
109 return ret
110 }
111
112 // BIT STRING
113
114 // BitString is the structure to use when you want an ASN.1 BIT STRING type. A
115 // bit string is padded up to the nearest byte in memory and the number of
116 // valid bits is recorded. Padding bits will be zero.
117 type BitString struct {
118 Bytes []byte // bits packed into bytes.
119 BitLength int // length in bits.
120 }
121
122 // At returns the bit at the given index. If the index is out of range it
123 // returns false.
124 func (b BitString) At(i int) int {
125 if i < 0 || i >= b.BitLength {
126 return 0
127 }
128 x := i / 8
129 y := 7 - uint(i%8)
130 return int(b.Bytes[x]>>y) & 1
131 }
132
133 // RightAlign returns a slice where the padding bits are at the beginning. The
134 // slice may share memory with the BitString.
135 func (b BitString) RightAlign() []byte {
136 shift := uint(8 - (b.BitLength % 8))
137 if shift == 8 || len(b.Bytes) == 0 {
138 return b.Bytes
139 }
140
141 a := make([]byte, len(b.Bytes))
142 a[0] = b.Bytes[0] >> shift
143 for i := 1; i < len(b.Bytes); i++ {
144 a[i] = b.Bytes[i-1] << (8 - shift)
145 a[i] |= b.Bytes[i] >> shift
146 }
147
148 return a
149 }
150
151 // parseBitString parses an ASN.1 bit string from the given byte slice and returns it.
152 func parseBitString(bytes []byte) (ret BitString, err error) {
153 if len(bytes) == 0 {
154 err = SyntaxError{"zero length BIT STRING"}
155 return
156 }
157 paddingBits := int(bytes[0])
158 if paddingBits > 7 ||
159 len(bytes) == 1 && paddingBits > 0 ||
160 bytes[len(bytes)-1]&((1<<bytes[0])-1) != 0 {
161 err = SyntaxError{"invalid padding bits in BIT STRING"}
162 return
163 }
164 ret.BitLength = (len(bytes)-1)*8 - paddingBits
165 ret.Bytes = bytes[1:]
166 return
167 }
168
169 // OBJECT IDENTIFIER
170
171 // An ObjectIdentifier represents an ASN.1 OBJECT IDENTIFIER.
172 type ObjectIdentifier []int
173
174 // Equal returns true iff oi and other represent the same identifier.
175 func (oi ObjectIdentifier) Equal(other ObjectIdentifier) bool {
176 if len(oi) != len(other) {
177 return false
178 }
179 for i := 0; i < len(oi); i++ {
180 if oi[i] != other[i] {
181 return false
182 }
183 }
184
185 return true
186 }
187
188 // parseObjectIdentifier parses an OBJECT IDENTIFIER from the given bytes and
189 // returns it. An object identifier is a sequence of variable length integers
190 // that are assigned in a hierarchy.
191 func parseObjectIdentifier(bytes []byte) (s []int, err error) {
192 if len(bytes) == 0 {
193 err = SyntaxError{"zero length OBJECT IDENTIFIER"}
194 return
195 }
196
197 // In the worst case, we get two elements from the first byte (which is
198 // encoded differently) and then every varint is a single byte long.
199 s = make([]int, len(bytes)+1)
200
201 // The first byte is 40*value1 + value2:
202 s[0] = int(bytes[0]) / 40
203 s[1] = int(bytes[0]) % 40
204 i := 2
205 for offset := 1; offset < len(bytes); i++ {
206 var v int
207 v, offset, err = parseBase128Int(bytes, offset)
208 if err != nil {
209 return
210 }
211 s[i] = v
212 }
213 s = s[0:i]
214 return
215 }
216
217 // ENUMERATED
218
219 // An Enumerated is represented as a plain int.
220 type Enumerated int
221
222 // FLAG
223
224 // A Flag accepts any data and is set to true if present.
225 type Flag bool
226
227 // parseBase128Int parses a base-128 encoded int from the given offset in the
228 // given byte slice. It returns the value and the new offset.
229 func parseBase128Int(bytes []byte, initOffset int) (ret, offset int, err error) {
230 offset = initOffset
231 for shifted := 0; offset < len(bytes); shifted++ {
232 if shifted > 4 {
233 err = StructuralError{"base 128 integer too large"}
234 return
235 }
236 ret <<= 7
237 b := bytes[offset]
238 ret |= int(b & 0x7f)
239 offset++
240 if b&0x80 == 0 {
241 return
242 }
243 }
244 err = SyntaxError{"truncated base 128 integer"}
245 return
246 }
247
248 // UTCTime
249
250 func parseUTCTime(bytes []byte) (ret time.Time, err error) {
251 s := string(bytes)
252 ret, err = time.Parse("0601021504Z0700", s)
253 if err != nil {
254 ret, err = time.Parse("060102150405Z0700", s)
255 }
256 if err == nil && ret.Year() >= 2050 {
257 // UTCTime only encodes times prior to 2050. See https://tools.ietf.org/html/rfc5280#section-4.1.2.5.1
258 ret = ret.AddDate(-100, 0, 0)
259 }
260
261 return
262 }
263
264 // parseGeneralizedTime parses the GeneralizedTime from the given byte slice
265 // and returns the resulting time.
266 func parseGeneralizedTime(bytes []byte) (ret time.Time, err error) {
267 return time.Parse("20060102150405Z0700", string(bytes))
268 }
269
270 // PrintableString
271
272 // parsePrintableString parses a ASN.1 PrintableString from the given byte
273 // array and returns it.
274 func parsePrintableString(bytes []byte) (ret string, err error) {
275 for _, b := range bytes {
276 if !isPrintable(b) {
277 err = SyntaxError{"PrintableString contains invalid character"}
278 return
279 }
280 }
281 ret = string(bytes)
282 return
283 }
284
285 // isPrintable returns true iff the given b is in the ASN.1 PrintableString set.
286 func isPrintable(b byte) bool {
287 return 'a' <= b && b <= 'z' ||
288 'A' <= b && b <= 'Z' ||
289 '0' <= b && b <= '9' ||
290 '\'' <= b && b <= ')' ||
291 '+' <= b && b <= '/' ||
292 b == ' ' ||
293 b == ':' ||
294 b == '=' ||
295 b == '?' ||
296 // This is technically not allowed in a PrintableString.
297 // However, x509 certificates with wildcard strings don't
298 // always use the correct string type so we permit it.
299 b == '*'
300 }
301
302 // IA5String
303
304 // parseIA5String parses a ASN.1 IA5String (ASCII string) from the given
305 // byte slice and returns it.
306 func parseIA5String(bytes []byte) (ret string, err error) {
307 for _, b := range bytes {
308 if b >= 0x80 {
309 err = SyntaxError{"IA5String contains invalid character"}
310 return
311 }
312 }
313 ret = string(bytes)
314 return
315 }
316
317 // T61String
318
319 // parseT61String parses a ASN.1 T61String (8-bit clean string) from the given
320 // byte slice and returns it.
321 func parseT61String(bytes []byte) (ret string, err error) {
322 return string(bytes), nil
323 }
324
325 // UTF8String
326
327 // parseUTF8String parses a ASN.1 UTF8String (raw UTF-8) from the given byte
328 // array and returns it.
329 func parseUTF8String(bytes []byte) (ret string, err error) {
330 return string(bytes), nil
331 }
332
333 // A RawValue represents an undecoded ASN.1 object.
334 type RawValue struct {
335 Class, Tag int
336 IsCompound bool
337 Bytes []byte
338 FullBytes []byte // includes the tag and length
339 }
340
341 // RawContent is used to signal that the undecoded, DER data needs to be
342 // preserved for a struct. To use it, the first field of the struct must have
343 // this type. It's an error for any of the other fields to have this type.
344 type RawContent []byte
345
346 // Tagging
347
348 // parseTagAndLength parses an ASN.1 tag and length pair from the given offset
349 // into a byte slice. It returns the parsed data and the new offset. SET and
350 // SET OF (tag 17) are mapped to SEQUENCE and SEQUENCE OF (tag 16) since we
351 // don't distinguish between ordered and unordered objects in this code.
352 func parseTagAndLength(bytes []byte, initOffset int) (ret tagAndLength, offset int, err error) {
353 offset = initOffset
354 b := bytes[offset]
355 offset++
356 ret.class = int(b >> 6)
357 ret.isCompound = b&0x20 == 0x20
358 ret.tag = int(b & 0x1f)
359
360 // If the bottom five bits are set, then the tag number is actually base 128
361 // encoded afterwards
362 if ret.tag == 0x1f {
363 ret.tag, offset, err = parseBase128Int(bytes, offset)
364 if err != nil {
365 return
366 }
367 }
368 if offset >= len(bytes) {
369 err = SyntaxError{"truncated tag or length"}
370 return
371 }
372 b = bytes[offset]
373 offset++
374 if b&0x80 == 0 {
375 // The length is encoded in the bottom 7 bits.
376 ret.length = int(b & 0x7f)
377 } else {
378 // Bottom 7 bits give the number of length bytes to follow.
379 numBytes := int(b & 0x7f)
380 if numBytes == 0 {
381 err = SyntaxError{"indefinite length found (not DER)"}
382 return
383 }
384 ret.length = 0
385 for i := 0; i < numBytes; i++ {
386 if offset >= len(bytes) {
387 err = SyntaxError{"truncated tag or length"}
388 return
389 }
390 b = bytes[offset]
391 offset++
392 if ret.length >= 1<<23 {
393 // We can't shift ret.length up without
394 // overflowing.
395 err = StructuralError{"length too large"}
396 return
397 }
398 ret.length <<= 8
399 ret.length |= int(b)
400 if ret.length == 0 {
401 // DER requires that lengths be minimal.
402 err = StructuralError{"superfluous leading zeros in length"}
403 return
404 }
405 }
406 }
407
408 return
409 }
410
411 // parseSequenceOf is used for SEQUENCE OF and SET OF values. It tries to parse
412 // a number of ASN.1 values from the given byte slice and returns them as a
413 // slice of Go values of the given type.
414 func parseSequenceOf(bytes []byte, sliceType reflect.Type, elemType reflect.Type) (ret reflect.Value, err error) {
415 expectedTag, compoundType, ok := getUniversalType(elemType)
416 if !ok {
417 err = StructuralError{"unknown Go type for slice"}
418 return
419 }
420
421 // First we iterate over the input and count the number of elements,
422 // checking that the types are correct in each case.
423 numElements := 0
424 for offset := 0; offset < len(bytes); {
425 var t tagAndLength
426 t, offset, err = parseTagAndLength(bytes, offset)
427 if err != nil {
428 return
429 }
430 // We pretend that GENERAL STRINGs are PRINTABLE STRINGs so
431 // that a sequence of them can be parsed into a []string.
432 if t.tag == tagGeneralString {
433 t.tag = tagPrintableString
434 }
435 if t.class != classUniversal || t.isCompound != compoundType || t.tag != expectedTag {
436 err = StructuralError{"sequence tag mismatch"}
437 return
438 }
439 if invalidLength(offset, t.length, len(bytes)) {
440 err = SyntaxError{"truncated sequence"}
441 return
442 }
443 offset += t.length
444 numElements++
445 }
446 ret = reflect.MakeSlice(sliceType, numElements, numElements)
447 params := fieldParameters{}
448 offset := 0
449 for i := 0; i < numElements; i++ {
450 offset, err = parseField(ret.Index(i), bytes, offset, params)
451 if err != nil {
452 return
453 }
454 }
455 return
456 }
457
458 var (
459 bitStringType = reflect.TypeOf(BitString{})
460 objectIdentifierType = reflect.TypeOf(ObjectIdentifier{})
461 enumeratedType = reflect.TypeOf(Enumerated(0))
462 flagType = reflect.TypeOf(Flag(false))
463 timeType = reflect.TypeOf(time.Time{})
464 rawValueType = reflect.TypeOf(RawValue{})
465 rawContentsType = reflect.TypeOf(RawContent(nil))
466 bigIntType = reflect.TypeOf(new(big.Int))
467 )
468
469 // invalidLength returns true iff offset + length > sliceLength, or if the
470 // addition would overflow.
471 func invalidLength(offset, length, sliceLength int) bool {
472 return offset+length < offset || offset+length > sliceLength
473 }
474
475 // parseField is the main parsing function. Given a byte slice and an offset
476 // into the array, it will try to parse a suitable ASN.1 value out and store it
477 // in the given Value.
478 func parseField(v reflect.Value, bytes []byte, initOffset int, params fieldParameters) (offset int, err error) {
479 offset = initOffset
480 fieldType := v.Type()
481
482 // If we have run out of data, it may be that there are optional elements at the end.
483 if offset == len(bytes) {
484 if !setDefaultValue(v, params) {
485 err = SyntaxError{"sequence truncated"}
486 }
487 return
488 }
489
490 // Deal with raw values.
491 if fieldType == rawValueType {
492 var t tagAndLength
493 t, offset, err = parseTagAndLength(bytes, offset)
494 if err != nil {
495 return
496 }
497 if invalidLength(offset, t.length, len(bytes)) {
498 err = SyntaxError{"data truncated"}
499 return
500 }
501 result := RawValue{t.class, t.tag, t.isCompound, bytes[offset : offset+t.length], bytes[initOffset : offset+t.length]}
502 offset += t.length
503 v.Set(reflect.ValueOf(result))
504 return
505 }
506
507 // Deal with the ANY type.
508 if ifaceType := fieldType; ifaceType.Kind() == reflect.Interface && ifaceType.NumMethod() == 0 {
509 var t tagAndLength
510 t, offset, err = parseTagAndLength(bytes, offset)
511 if err != nil {
512 return
513 }
514 if invalidLength(offset, t.length, len(bytes)) {
515 err = SyntaxError{"data truncated"}
516 return
517 }
518 var result interface{}
519 if !t.isCompound && t.class == classUniversal {
520 innerBytes := bytes[offset : offset+t.length]
521 switch t.tag {
522 case tagPrintableString:
523 result, err = parsePrintableString(innerBytes)
524 case tagIA5String:
525 result, err = parseIA5String(innerBytes)
526 case tagT61String:
527 result, err = parseT61String(innerBytes)
528 case tagUTF8String:
529 result, err = parseUTF8String(innerBytes)
530 case tagInteger:
531 result, err = parseInt64(innerBytes)
532 case tagBitString:
533 result, err = parseBitString(innerBytes)
534 case tagOID:
535 result, err = parseObjectIdentifier(innerBytes)
536 case tagUTCTime:
537 result, err = parseUTCTime(innerBytes)
538 case tagOctetString:
539 result = innerBytes
540 default:
541 // If we don't know how to handle the type, we just leave Value as nil.
542 }
543 }
544 offset += t.length
545 if err != nil {
546 return
547 }
548 if result != nil {
549 v.Set(reflect.ValueOf(result))
550 }
551 return
552 }
553 universalTag, compoundType, ok1 := getUniversalType(fieldType)
554 if !ok1 {
555 err = StructuralError{fmt.Sprintf("unknown Go type: %v", fieldType)}
556 return
557 }
558
559 t, offset, err := parseTagAndLength(bytes, offset)
560 if err != nil {
561 return
562 }
563 if params.explicit {
564 expectedClass := classContextSpecific
565 if params.application {
566 expectedClass = classApplication
567 }
568 if t.class == expectedClass && t.tag == *params.tag && (t.length == 0 || t.isCompound) {
569 if t.length > 0 {
570 t, offset, err = parseTagAndLength(bytes, offset)
571 if err != nil {
572 return
573 }
574 } else {
575 if fieldType != flagType {
576 err = StructuralError{"Zero length explicit tag was not an asn1.Flag"}
577 return
578 }
579 v.SetBool(true)
580 return
581 }
582 } else {
583 // The tags didn't match, it might be an optional element.
584 ok := setDefaultValue(v, params)
585 if ok {
586 offset = initOffset
587 } else {
588 err = StructuralError{"explicitly tagged member didn't match"}
589 }
590 return
591 }
592 }
593
594 // Special case for strings: all the ASN.1 string types map to the Go
595 // type string. getUniversalType returns the tag for PrintableString
596 // when it sees a string, so if we see a different string type on the
597 // wire, we change the universal type to match.
598 if universalTag == tagPrintableString {
599 switch t.tag {
600 case tagIA5String, tagGeneralString, tagT61String, tagUTF8String:
601 universalTag = t.tag
602 }
603 }
604
605 // Special case for time: UTCTime and GeneralizedTime both map to the
606 // Go type time.Time.
607 if universalTag == tagUTCTime && t.tag == tagGeneralizedTime {
608 universalTag = tagGeneralizedTime
609 }
610
611 expectedClass := classUniversal
612 expectedTag := universalTag
613
614 if !params.explicit && params.tag != nil {
615 expectedClass = classContextSpecific
616 expectedTag = *params.tag
617 }
618
619 if !params.explicit && params.application && params.tag != nil {
620 expectedClass = classApplication
621 expectedTag = *params.tag
622 }
623
624 // We have unwrapped any explicit tagging at this point.
625 if t.class != expectedClass || t.tag != expectedTag || t.isCompound != compoundType {
626 // Tags don't match. Again, it could be an optional element.
627 ok := setDefaultValue(v, params)
628 if ok {
629 offset = initOffset
630 } else {
631 err = StructuralError{fmt.Sprintf("tags don't match (%d vs %+v) %+v %s @%d", expectedTag, t, params, fieldType.Name(), offset)}
632 }
633 return
634 }
635 if invalidLength(offset, t.length, len(bytes)) {
636 err = SyntaxError{"data truncated"}
637 return
638 }
639 innerBytes := bytes[offset : offset+t.length]
640 offset += t.length
641
642 // We deal with the structures defined in this package first.
643 switch fieldType {
644 case objectIdentifierType:
645 newSlice, err1 := parseObjectIdentifier(innerBytes)
646 v.Set(reflect.MakeSlice(v.Type(), len(newSlice), len(newSlice)))
647 if err1 == nil {
648 reflect.Copy(v, reflect.ValueOf(newSlice))
649 }
650 err = err1
651 return
652 case bitStringType:
653 bs, err1 := parseBitString(innerBytes)
654 if err1 == nil {
655 v.Set(reflect.ValueOf(bs))
656 }
657 err = err1
658 return
659 case timeType:
660 var time time.Time
661 var err1 error
662 if universalTag == tagUTCTime {
663 time, err1 = parseUTCTime(innerBytes)
664 } else {
665 time, err1 = parseGeneralizedTime(innerBytes)
666 }
667 if err1 == nil {
668 v.Set(reflect.ValueOf(time))
669 }
670 err = err1
671 return
672 case enumeratedType:
673 parsedInt, err1 := parseInt(innerBytes)
674 if err1 == nil {
675 v.SetInt(int64(parsedInt))
676 }
677 err = err1
678 return
679 case flagType:
680 v.SetBool(true)
681 return
682 case bigIntType:
683 parsedInt := parseBigInt(innerBytes)
684 v.Set(reflect.ValueOf(parsedInt))
685 return
686 }
687 switch val := v; val.Kind() {
688 case reflect.Bool:
689 parsedBool, err1 := parseBool(innerBytes)
690 if err1 == nil {
691 val.SetBool(parsedBool)
692 }
693 err = err1
694 return
695 case reflect.Int, reflect.Int32:
696 parsedInt, err1 := parseInt(innerBytes)
697 if err1 == nil {
698 val.SetInt(int64(parsedInt))
699 }
700 err = err1
701 return
702 case reflect.Int64:
703 parsedInt, err1 := parseInt64(innerBytes)
704 if err1 == nil {
705 val.SetInt(parsedInt)
706 }
707 err = err1
708 return
709 // TODO(dfc) Add support for the remaining integer types
710 case reflect.Struct:
711 structType := fieldType
712
713 if structType.NumField() > 0 &&
714 structType.Field(0).Type == rawContentsType {
715 bytes := bytes[initOffset:offset]
716 val.Field(0).Set(reflect.ValueOf(RawContent(bytes)))
717 }
718
719 innerOffset := 0
720 for i := 0; i < structType.NumField(); i++ {
721 field := structType.Field(i)
722 if i == 0 && field.Type == rawContentsType {
723 continue
724 }
725 innerOffset, err = parseField(val.Field(i), innerBytes, innerOffset, parseFieldParameters(field.Tag.Get("asn1")))
726 if err != nil {
727 return
728 }
729 }
730 // We allow extra bytes at the end of the SEQUENCE because
731 // adding elements to the end has been used in X.509 as the
732 // version numbers have increased.
733 return
734 case reflect.Slice:
735 sliceType := fieldType
736 if sliceType.Elem().Kind() == reflect.Uint8 {
737 val.Set(reflect.MakeSlice(sliceType, len(innerBytes), len(innerBytes)))
738 reflect.Copy(val, reflect.ValueOf(innerBytes))
739 return
740 }
741 newSlice, err1 := parseSequenceOf(innerBytes, sliceType, sliceType.Elem())
742 if err1 == nil {
743 val.Set(newSlice)
744 }
745 err = err1
746 return
747 case reflect.String:
748 var v string
749 switch universalTag {
750 case tagPrintableString:
751 v, err = parsePrintableString(innerBytes)
752 case tagIA5String:
753 v, err = parseIA5String(innerBytes)
754 case tagT61String:
755 v, err = parseT61String(innerBytes)
756 case tagUTF8String:
757 v, err = parseUTF8String(innerBytes)
758 case tagGeneralString:
759 // GeneralString is specified in ISO-2022/ECMA-35,
760 // A brief review suggests that it includes structures
761 // that allow the encoding to change midstring and
762 // such. We give up and pass it as an 8-bit string.
763 v, err = parseT61String(innerBytes)
764 default:
765 err = SyntaxError{fmt.Sprintf("internal error: unknown string type %d", universalTag)}
766 }
767 if err == nil {
768 val.SetString(v)
769 }
770 return
771 }
772 err = StructuralError{"unsupported: " + v.Type().String()}
773 return
774 }
775
776 // setDefaultValue is used to install a default value, from a tag string, into
777 // a Value. It is successful is the field was optional, even if a default value
778 // wasn't provided or it failed to install it into the Value.
779 func setDefaultValue(v reflect.Value, params fieldParameters) (ok bool) {
780 if !params.optional {
781 return
782 }
783 ok = true
784 if params.defaultValue == nil {
785 return
786 }
787 switch val := v; val.Kind() {
788 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
789 val.SetInt(*params.defaultValue)
790 }
791 return
792 }
793
794 // Unmarshal parses the DER-encoded ASN.1 data structure b
795 // and uses the reflect package to fill in an arbitrary value pointed at by val.
796 // Because Unmarshal uses the reflect package, the structs
797 // being written to must use upper case field names.
798 //
799 // An ASN.1 INTEGER can be written to an int, int32, int64,
800 // or *big.Int (from the math/big package).
801 // If the encoded value does not fit in the Go type,
802 // Unmarshal returns a parse error.
803 //
804 // An ASN.1 BIT STRING can be written to a BitString.
805 //
806 // An ASN.1 OCTET STRING can be written to a []byte.
807 //
808 // An ASN.1 OBJECT IDENTIFIER can be written to an
809 // ObjectIdentifier.
810 //
811 // An ASN.1 ENUMERATED can be written to an Enumerated.
812 //
813 // An ASN.1 UTCTIME or GENERALIZEDTIME can be written to a time.Time.
814 //
815 // An ASN.1 PrintableString or IA5String can be written to a string.
816 //
817 // Any of the above ASN.1 values can be written to an interface{}.
818 // The value stored in the interface has the corresponding Go type.
819 // For integers, that type is int64.
820 //
821 // An ASN.1 SEQUENCE OF x or SET OF x can be written
822 // to a slice if an x can be written to the slice's element type.
823 //
824 // An ASN.1 SEQUENCE or SET can be written to a struct
825 // if each of the elements in the sequence can be
826 // written to the corresponding element in the struct.
827 //
828 // The following tags on struct fields have special meaning to Unmarshal:
829 //
830 // optional marks the field as ASN.1 OPTIONAL
831 // [explicit] tag:x specifies the ASN.1 tag number; implies ASN.1 CONTEXT SPECIFIC
832 // default:x sets the default value for optional integer fields
833 //
834 // If the type of the first field of a structure is RawContent then the raw
835 // ASN1 contents of the struct will be stored in it.
836 //
837 // Other ASN.1 types are not supported; if it encounters them,
838 // Unmarshal returns a parse error.
839 func Unmarshal(b []byte, val interface{}) (rest []byte, err error) {
840 return UnmarshalWithParams(b, val, "")
841 }
842
843 // UnmarshalWithParams allows field parameters to be specified for the
844 // top-level element. The form of the params is the same as the field tags.
845 func UnmarshalWithParams(b []byte, val interface{}, params string) (rest []byte, err error) {
846 v := reflect.ValueOf(val).Elem()
847 offset, err := parseField(v, b, 0, parseFieldParameters(params))
848 if err != nil {
849 return nil, err
850 }
851 return b[offset:], nil
852 }