Source file src/pkg/math/cmplx/asin.go
1 // Copyright 2010 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 package cmplx
6
7 import "math"
8
9 // The original C code, the long comment, and the constants
10 // below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
11 // The go code is a simplified version of the original C.
12 //
13 // Cephes Math Library Release 2.8: June, 2000
14 // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
15 //
16 // The readme file at http://netlib.sandia.gov/cephes/ says:
17 // Some software in this archive may be from the book _Methods and
18 // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
19 // International, 1989) or from the Cephes Mathematical Library, a
20 // commercial product. In either event, it is copyrighted by the author.
21 // What you see here may be used freely but it comes with no support or
22 // guarantee.
23 //
24 // The two known misprints in the book are repaired here in the
25 // source listings for the gamma function and the incomplete beta
26 // integral.
27 //
28 // Stephen L. Moshier
29 // [email protected]
30
31 // Complex circular arc sine
32 //
33 // DESCRIPTION:
34 //
35 // Inverse complex sine:
36 // 2
37 // w = -i clog( iz + csqrt( 1 - z ) ).
38 //
39 // casin(z) = -i casinh(iz)
40 //
41 // ACCURACY:
42 //
43 // Relative error:
44 // arithmetic domain # trials peak rms
45 // DEC -10,+10 10100 2.1e-15 3.4e-16
46 // IEEE -10,+10 30000 2.2e-14 2.7e-15
47 // Larger relative error can be observed for z near zero.
48 // Also tested by csin(casin(z)) = z.
49
50 // Asin returns the inverse sine of x.
51 func Asin(x complex128) complex128 {
52 if imag(x) == 0 {
53 if math.Abs(real(x)) > 1 {
54 return complex(math.Pi/2, 0) // DOMAIN error
55 }
56 return complex(math.Asin(real(x)), 0)
57 }
58 ct := complex(-imag(x), real(x)) // i * x
59 xx := x * x
60 x1 := complex(1-real(xx), -imag(xx)) // 1 - x*x
61 x2 := Sqrt(x1) // x2 = sqrt(1 - x*x)
62 w := Log(ct + x2)
63 return complex(imag(w), -real(w)) // -i * w
64 }
65
66 // Asinh returns the inverse hyperbolic sine of x.
67 func Asinh(x complex128) complex128 {
68 // TODO check range
69 if imag(x) == 0 {
70 if math.Abs(real(x)) > 1 {
71 return complex(math.Pi/2, 0) // DOMAIN error
72 }
73 return complex(math.Asinh(real(x)), 0)
74 }
75 xx := x * x
76 x1 := complex(1+real(xx), imag(xx)) // 1 + x*x
77 return Log(x + Sqrt(x1)) // log(x + sqrt(1 + x*x))
78 }
79
80 // Complex circular arc cosine
81 //
82 // DESCRIPTION:
83 //
84 // w = arccos z = PI/2 - arcsin z.
85 //
86 // ACCURACY:
87 //
88 // Relative error:
89 // arithmetic domain # trials peak rms
90 // DEC -10,+10 5200 1.6e-15 2.8e-16
91 // IEEE -10,+10 30000 1.8e-14 2.2e-15
92
93 // Acos returns the inverse cosine of x.
94 func Acos(x complex128) complex128 {
95 w := Asin(x)
96 return complex(math.Pi/2-real(w), -imag(w))
97 }
98
99 // Acosh returns the inverse hyperbolic cosine of x.
100 func Acosh(x complex128) complex128 {
101 w := Acos(x)
102 if imag(w) <= 0 {
103 return complex(-imag(w), real(w)) // i * w
104 }
105 return complex(imag(w), -real(w)) // -i * w
106 }
107
108 // Complex circular arc tangent
109 //
110 // DESCRIPTION:
111 //
112 // If
113 // z = x + iy,
114 //
115 // then
116 // 1 ( 2x )
117 // Re w = - arctan(-----------) + k PI
118 // 2 ( 2 2)
119 // (1 - x - y )
120 //
121 // ( 2 2)
122 // 1 (x + (y+1) )
123 // Im w = - log(------------)
124 // 4 ( 2 2)
125 // (x + (y-1) )
126 //
127 // Where k is an arbitrary integer.
128 //
129 // catan(z) = -i catanh(iz).
130 //
131 // ACCURACY:
132 //
133 // Relative error:
134 // arithmetic domain # trials peak rms
135 // DEC -10,+10 5900 1.3e-16 7.8e-18
136 // IEEE -10,+10 30000 2.3e-15 8.5e-17
137 // The check catan( ctan(z) ) = z, with |x| and |y| < PI/2,
138 // had peak relative error 1.5e-16, rms relative error
139 // 2.9e-17. See also clog().
140
141 // Atan returns the inverse tangent of x.
142 func Atan(x complex128) complex128 {
143 if real(x) == 0 && imag(x) > 1 {
144 return NaN()
145 }
146
147 x2 := real(x) * real(x)
148 a := 1 - x2 - imag(x)*imag(x)
149 if a == 0 {
150 return NaN()
151 }
152 t := 0.5 * math.Atan2(2*real(x), a)
153 w := reducePi(t)
154
155 t = imag(x) - 1
156 b := x2 + t*t
157 if b == 0 {
158 return NaN()
159 }
160 t = imag(x) + 1
161 c := (x2 + t*t) / b
162 return complex(w, 0.25*math.Log(c))
163 }
164
165 // Atanh returns the inverse hyperbolic tangent of x.
166 func Atanh(x complex128) complex128 {
167 z := complex(-imag(x), real(x)) // z = i * x
168 z = Atan(z)
169 return complex(imag(z), -real(z)) // z = -i * z
170 }