IM: im_color.h Source File

IM - Imaging Libray

im_color.h

Go to the documentation of this file.
00001 /** \file
00002  * \brief Color Manipulation
00003  *
00004  * See Copyright Notice in im_lib.h
00005  * $Id: Exp $
00006  */
00007 
00008 #ifndef __IM_COLOR_H
00009 #define __IM_COLOR_H
00010 
00011 #include "im_math.h"
00012 
00013 /** \defgroup color Color Manipulation
00014  *
00015  * \par
00016  * Functions to convert from one color space to another, 
00017  * and color gammut utilities.
00018  * \par
00019  * See \ref im_color.h
00020  *
00021  * \section s1 Some Color Science
00022  * \par
00023  * Y is luminance, a linear-light quantity. 
00024  * It is directly proportional to physical intensity
00025  * weighted by the spectral sensitivity of human vision.
00026  * \par
00027  * L* is lightness, a nonlinear luminance
00028  * that aproximates the perception of brightness. 
00029  * It is nearly perceptual uniform.
00030  * It has a range of 0 to 100.
00031  * \par
00032  * Y' is luma, a nonlinear luminance that aproximates lightness.
00033  * \par
00034  * Brightness is a visual sensation according to which an area
00035  * apears to exhibit more or less light. 
00036  * It is a subjective quantity and can not be measured.
00037  * \par
00038  * One unit of euclidian distante in CIE L*u*v* or CIE L*a*b* corresponds
00039  * roughly to a just-noticeable difference (JND) of color.
00040  * \par
00041 \verbatim
00042  ChromaUV = sqrt(u*u + v*v)       
00043  HueUV = atan2(v, u)
00044  SaturationUV = ChromaUV / L      (called psychometric saturation) 
00045  (the same can be calculated for Lab)
00046 \endverbatim
00047  * \par
00048  * IEC 61966-2.1 Default RGB colour space - sRGB
00049  * \li ITU-R Recommendation BT.709 (D65 white point).
00050  * \li D65 White Point (X,Y,Z) = (0.9505 1.0000 1.0890)
00051  * \par
00052  * Documentation extracted from  Charles Poynton - Digital Video and HDTV - Morgan Kaufmann - 2003.
00053  *
00054  * \section Links
00055  * \li www.color.org - ICC
00056  * \li www.srgb.com - sRGB
00057  * \li www.poynton.com - Charles Poynton
00058  * \li www.littlecms.com - A free Color Management System (use this if you need precise color conversions)
00059  *
00060  * \section cci Color Component Intervals
00061  * \par
00062  * All the color components are stored in the 0-max interval, even the signed ones. \n
00063  * Here are the pre-defined intervals for each data type. These values are used for standard color conversion.
00064  * You should normalize data before converting betwwen color spaces.
00065  * \par
00066 \verbatim
00067  byte   [0,255]      or [-128,+127]          (1 byte)
00068  ushort [0,65535]    or [-32768,+32767]      (2 bytes)
00069  int    [0,16777215] or [-8388608,+8388607]  (3 bytes)
00070  float  [0,1]        or [-0.5,+0.5]          (4 bytes)
00071 \endverbatim
00072  * \ingroup util */
00073 
00074 /** Returns the zero value for color conversion porpouses. \n
00075  * This is a value to be compensated when the data_type is unsigned and component is signed. \n
00076  * \ingroup color */
00077 inline float imColorZero(int data_type)
00078 {
00079   float zero[] = {128.0f, 32768.0f, 8388608.0f, 0.5f};
00080   return zero[data_type];
00081 }
00082 
00083 /** Returns the maximum value for color conversion porpouses. \n
00084  * \ingroup color */
00085 inline int imColorMax(int data_type)
00086 {
00087   int max[] = {255, 65535, 16777215, 1};
00088   return max[data_type];
00089 }
00090 
00091 /** Quantize 0-1 values into 0-max. \n
00092  * q = r * (max + 1) \n
00093  * Divide by the size of each interval 1/(max+1),
00094  * then the value is rounded down in the typecast. \n
00095  * But 0 is mapped to 0, and 1 is mapped to max.
00096  * \ingroup color */
00097 template <class T> 
00098 inline T imColorQuantize(const float& value, const T& max)
00099 {
00100   if (max == 1) return (T)value; // to allow a dummy quantize
00101   if (value >= 1) return max;
00102   if (value <= 0) return 0;
00103   return (T)(value*(max + 1));  
00104 }                               
00105 
00106 /** Reconstruct 0-max values into 0-1. \n
00107  * r = (q + 0.5)/(max + 1)  \n
00108  * Add 0.5 to set the same origin, then multiply by the size of each interval 1/(max+1). \n
00109  * But 0 is mapped to 0, and max is mapped to 1.
00110  * \ingroup color */
00111 template <class T> 
00112 inline float imColorReconstruct(const T& value, const T& max)
00113 {
00114   if (max == 1) return (float)value;  // to allow a dummy reconstruct
00115   if (value <= 0) return 0;
00116   if (value >= max) return 1;
00117   return (((float)value + 0.5f)/((float)max + 1.0f));
00118 }
00119 
00120 /** Converts Y'CbCr to R'G'B' (all nonlinear). \n
00121  * ITU-R Recommendation 601-1 with no headroom/footroom.
00122 \verbatim
00123  0 <= Y <= 1 ; -0.5 <= CbCr <= 0.5 ; 0 <= RGB <= 1 
00124 
00125  R'= Y' + 0.000 *Cb + 1.402 *Cr
00126  G'= Y' - 0.344 *Cb - 0.714 *Cr
00127  B'= Y' + 1.772 *Cb + 0.000 *Cr
00128 \endverbatim
00129  * \ingroup color */
00130 template <class T> 
00131 inline void imColorYCbCr2RGB(const T Y, const T Cb, const T Cr, 
00132                              T& R, T& G, T& B,
00133                              const T& zero, const T& max)
00134 {
00135   float r = float(Y                        + 1.402f * (Cr - zero));
00136   float g = float(Y - 0.344f * (Cb - zero) - 0.714f * (Cr - zero));
00137   float b = float(Y + 1.772f * (Cb - zero));
00138 
00139   // now we should enforce 0<= rgb <= max
00140 
00141   R = (T)IM_CROPMAX(r, max);
00142   G = (T)IM_CROPMAX(g, max);
00143   B = (T)IM_CROPMAX(b, max);
00144 }
00145 
00146 /** Converts R'G'B' to Y'CbCr (all nonlinear). \n
00147  * ITU-R Recommendation 601-1 with no headroom/footroom.
00148 \verbatim
00149  0 <= Y <= 1 ; -0.5 <= CbCr <= 0.5 ; 0 <= RGB <= 1 
00150 
00151  Y' =  0.299 *R' + 0.587 *G' + 0.114 *B'
00152  Cb = -0.169 *R' - 0.331 *G' + 0.500 *B'
00153  Cr =  0.500 *R' - 0.419 *G' - 0.081 *B'
00154 \endverbatim
00155  * \ingroup color */
00156 template <class T> 
00157 inline void imColorRGB2YCbCr(const T R, const T G, const T B, 
00158                              T& Y, T& Cb, T& Cr,
00159                              const T& zero)
00160 {
00161   Y  = (T)( 0.299f *R + 0.587f *G + 0.114f *B);
00162   Cb = (T)(-0.169f *R - 0.331f *G + 0.500f *B + (float)zero);
00163   Cr = (T)( 0.500f *R - 0.419f *G - 0.081f *B + (float)zero);
00164 
00165   // there is no need for cropping here, YCrCr is already at the limits
00166 }
00167 
00168 /** Converts C'M'Y'K' to R'G'B' (all nonlinear). \n
00169  * This is a poor conversion that works for a simple visualization.
00170 \verbatim
00171   0 <= CMYK <= 1 ; 0 <= RGB <= 1 
00172 
00173   R = (1 - K) * (1 - C)
00174   G = (1 - K) * (1 - M)
00175   B = (1 - K) * (1 - Y)
00176 \endverbatim
00177  * \ingroup color */
00178 template <class T>
00179 inline void imColorCMYK2RGB(const T C, const T M, const T Y, const T K, 
00180                             T& R, T& G, T& B, const T& max)
00181 {
00182   T W = max - K;
00183   R = (T)((W * (max - C)) / max);
00184   G = (T)((W * (max - M)) / max);
00185   B = (T)((W * (max - Y)) / max);
00186 
00187   // there is no need for cropping here, RGB is already at the limits
00188 }
00189 
00190 /** Converts CIE XYZ to Rec 709 RGB (all linear). \n
00191  * ITU-R Recommendation BT.709 (D65 white point). \n
00192 \verbatim
00193   0 <= XYZ <= 1 ; 0 <= RGB <= 1    
00194 
00195   R =  3.2406 *X - 1.5372 *Y - 0.4986 *Z
00196   G = -0.9689 *X + 1.8758 *Y + 0.0415 *Z
00197   B =  0.0557 *X - 0.2040 *Y + 1.0570 *Z
00198 \endverbatim
00199  * \ingroup color */
00200 template <class T>
00201 inline void imColorXYZ2RGB(const T X, const T Y, const T Z, 
00202                            T& R, T& G, T& B, const T& max)
00203 {
00204   float r =  3.2406f *X - 1.5372f *Y - 0.4986f *Z;
00205   float g = -0.9689f *X + 1.8758f *Y + 0.0415f *Z;
00206   float b =  0.0557f *X - 0.2040f *Y + 1.0570f *Z;
00207 
00208   // we need to crop because not all XYZ colors are visible
00209 
00210   R = (T)IM_CROPMAX(r, max);
00211   G = (T)IM_CROPMAX(g, max);
00212   B = (T)IM_CROPMAX(b, max);
00213 }
00214 
00215 /** Converts Rec 709 RGB to CIE XYZ (all linear). \n
00216  * ITU-R Recommendation BT.709 (D65 white point). \n
00217 \verbatim
00218   0 <= XYZ <= 1 ; 0 <= RGB <= 1    
00219 
00220   X = 0.4124 *R + 0.3576 *G + 0.1805 *B
00221   Y = 0.2126 *R + 0.7152 *G + 0.0722 *B
00222   Z = 0.0193 *R + 0.1192 *G + 0.9505 *B
00223 \endverbatim
00224  * \ingroup color */
00225 template <class T>
00226 inline void imColorRGB2XYZ(const T R, const T G, const T B, 
00227                            T& X, T& Y, T& Z)
00228 {
00229   X = (T)(0.4124f *R + 0.3576f *G + 0.1805f *B);
00230   Y = (T)(0.2126f *R + 0.7152f *G + 0.0722f *B);
00231   Z = (T)(0.0193f *R + 0.1192f *G + 0.9505f *B);
00232 
00233   // there is no need for cropping here, XYZ is already at the limits
00234 }
00235 
00236 #define IM_FWLAB(_w) (_w > 0.008856f?               \
00237                         powf(_w, 1.0f/3.0f):        \
00238                         7.787f * _w + 0.16f/1.16f)
00239 
00240 /** Converts CIE XYZ (linear) to CIE L*a*b* (nonlinear). \n
00241  * The white point is D65. \n
00242 \verbatim
00243   0 <= L <= 1 ; -0.5 <= ab <= +0.5 ; 0 <= XYZ <= 1 
00244 
00245   if (t > 0.008856)
00246     f(t) = pow(t, 1/3)
00247   else
00248     f(t) = 7.787*t + 16/116
00249 
00250   fX = f(X / Xn)      fY = f(Y / Yn)      fZ = f(Z / Zn)
00251 
00252   L = 1.16 * fY - 0.16
00253   a = 2.5 * (fX - fY)
00254   b = (fY - fZ)
00255 
00256 \endverbatim
00257  * \ingroup color */
00258 inline void imColorXYZ2Lab(const float X, const float Y, const float Z, 
00259                            float& L, float& a, float& b)
00260 {
00261   float fX = X / 0.9505f;  // white point D65
00262   float fY = Y / 1.0f;
00263   float fZ = Z / 1.0890f;
00264 
00265   fX = IM_FWLAB(fX);
00266   fY = IM_FWLAB(fY);
00267   fZ = IM_FWLAB(fZ);
00268 
00269   L = 1.16f * fY - 0.16f;
00270   a = 2.5f * (fX - fY);
00271   b = (fY - fZ);
00272 }
00273 
00274 #define IM_GWLAB(_w)  (_w > 0.20689f?                     \
00275                          powf(_w, 3.0f):                  \
00276                          0.1284f * (_w - 0.16f/1.16f))
00277 
00278 /** Converts CIE L*a*b* (nonlinear) to CIE XYZ (linear). \n
00279  * The white point is D65. \n
00280  * 0 <= L <= 1 ; -0.5 <= ab <= +0.5 ; 0 <= XYZ <= 1 
00281  * \ingroup color */
00282 inline void imColorLab2XYZ(const float L, const float a, const float b, 
00283                            float& X, float& Y, float& Z)
00284 
00285 {
00286   float fY = (L + 0.16f) / 1.16f;
00287   float gY = IM_GWLAB(fY);
00288 
00289   float fgY = IM_FWLAB(gY);
00290   float gX = fgY + a / 2.5f;
00291   float gZ = fgY - b;
00292   gX = IM_GWLAB(gX);
00293   gZ = IM_GWLAB(gZ);
00294 
00295   X = gX * 0.9505f;     // white point D65
00296   Y = gY * 1.0f;
00297   Z = gZ * 1.0890f;
00298 }
00299 
00300 /** Converts CIE XYZ (linear) to CIE L*u*v* (nonlinear). \n
00301  * The white point is D65. \n
00302 \verbatim
00303   0 <= L <= 1 ; -1 <= uv <= +1 ; 0 <= XYZ <= 1
00304 
00305   Y = Y / 1.0      (for D65)
00306   if (Y > 0.008856)
00307     fY = pow(Y, 1/3)
00308   else
00309     fY = 7.787 * Y + 0.16/1.16
00310   L = 1.16 * fY - 0.16
00311 
00312   U(x, y, z) = (4 * x)/(x + 15 * y + 3 * z)
00313   V(x, y, z) = (9 * x)/(x + 15 * y + 3 * z)
00314   un = U(Xn, Yn, Zn) = 0.1978      (for D65)
00315   vn = V(Xn, Yn, Zn) = 0.4683      (for D65)
00316   fu = U(X, Y, Z) 
00317   fv = V(X, Y, Z) 
00318 
00319   u = 13 * L * (fu - un)
00320   v = 13 * L * (fv - vn)
00321 \endverbatim
00322  * \ingroup color */
00323 inline void imColorXYZ2Luv(const float X, const float Y, const float Z, 
00324                            float& L, float& u, float& v)
00325 {
00326   float XYZ = (float)(X + 15 * Y + 3 * Z);
00327   float fY = Y / 1.0f;
00328 
00329   if (XYZ != 0)
00330   {
00331     L = 1.16f * IM_FWLAB(fY) - 0.16f;
00332     u = 6.5f * L * ((4 * X)/XYZ - 0.1978f);
00333     v = 6.5f * L * ((9 * Y)/XYZ - 0.4683f);
00334   }
00335   else
00336   {
00337     L = u = v = 0;
00338   }
00339 }
00340 
00341 /** Converts CIE L*u*v* (nonlinear) to CIE XYZ (linear). \n
00342  * The white point is D65.
00343  * 0 <= L <= 1 ; -0.5 <= uv <= +0.5 ; 0 <= XYZ <= 1 \n
00344  * \ingroup color */
00345 inline void imColorLuv2XYZ(const float L, const float u, const float v, 
00346                            float& X, float& Y, float& Z)
00347 
00348 {
00349   float fY = (L + 0.16f) / 1.16f;
00350   Y = IM_GWLAB(fY) * 1.0f;
00351 
00352   float ul = 0.1978f, vl = 0.4683f;
00353   if (L != 0)
00354   {
00355     ul = u / (6.5f * L) + 0.1978f;
00356     vl = v / (6.5f * L) + 0.4683f;
00357   }
00358 
00359   X = ((9 * ul) / (4 * vl)) * Y;
00360   Z = ((12 - 3 * ul - 20 * vl) / (4 * vl)) * Y;
00361 }
00362 
00363 /** Converts nonlinear values to linear values. \n
00364  * We use the sRGB transfer function. sRGB uses ITU-R 709 primaries and D65 white point. \n
00365 \verbatim
00366   0 <= l <= 1 ; 0 <= v <= 1 
00367 
00368   if (v < 0.03928)
00369     l = v / 12.92
00370   else
00371     l = pow((v + 0.055) / 1.055, 2.4)
00372 \endverbatim
00373  * \ingroup color */                           
00374 inline float imColorTransfer2Linear(const float& nonlinear_value)
00375 {
00376   if (nonlinear_value < 0.03928f)
00377     return nonlinear_value / 12.92f;
00378   else
00379     return powf((nonlinear_value + 0.055f) / 1.055f, 2.4f);
00380 }
00381 
00382 /** Converts linear values to nonlinear values. \n
00383  * We use the sRGB transfer function. sRGB uses ITU-R 709 primaries and D65 white point. \n
00384 \verbatim
00385   0 <= l <= 1 ; 0 <= v <= 1 
00386 
00387   if (l < 0.0031308)
00388     v = 12.92 * l
00389   else
00390     v = 1.055 * pow(l, 1/2.4) - 0.055
00391 \endverbatim
00392  * \ingroup color */                           
00393 inline float imColorTransfer2Nonlinear(const float& value)
00394 {
00395   if (value < 0.0031308f)
00396     return 12.92f * value;
00397   else
00398     return 1.055f * powf(value, 1.0f/2.4f) - 0.055f;
00399 }
00400 
00401 /** Converts RGB (linear) to R'G'B' (nonlinear).
00402  * \ingroup color */
00403 inline void imColorRGB2RGBNonlinear(const float RL, const float GL, const float BL,
00404                                     float& R, float& G, float& B)
00405 {
00406   R = imColorTransfer2Nonlinear(RL);
00407   G = imColorTransfer2Nonlinear(GL);
00408   B = imColorTransfer2Nonlinear(BL);
00409 }
00410 
00411 /** Converts R'G'B' to Y' (all nonlinear). \n
00412 \verbatim
00413  Y'  =  0.299 *R' + 0.587 *G' + 0.114 *B'
00414 \endverbatim
00415  * \ingroup color */
00416 template <class T> 
00417 inline T imColorRGB2Luma(const T R, const T G, const T B)
00418 {
00419   return (T)((299 * R + 587 * G + 114 * B) / 1000);
00420 }
00421 
00422 /** Converts Luminance (CIE Y) to Lightness (CIE L*) (all linear). \n
00423  * The white point is D65.
00424 \verbatim
00425   0 <= Y <= 1 ; 0 <= L* <= 1
00426 
00427   Y = Y / 1.0      (for D65)
00428   if (Y > 0.008856)
00429     fY = pow(Y, 1/3)
00430   else
00431     fY = 7.787 * Y + 0.16/1.16
00432   L = 1.16 * fY - 0.16
00433 \endverbatim
00434  * \ingroup color */
00435 inline float imColorLuminance2Lightness(const float& Y)
00436 {
00437   return 1.16f * IM_FWLAB(Y) - 0.16f;
00438 }
00439 
00440 /** Converts Lightness (CIE L*) to Luminance (CIE Y) (all linear). \n
00441  * The white point is D65.
00442 \verbatim
00443   0 <= Y <= 1 ; 0 <= L* <= 1
00444 
00445   fY = (L + 0.16)/1.16
00446   if (fY > 0.20689)
00447     Y = pow(fY, 3)
00448   else
00449     Y = 0.1284 * (fY - 0.16/1.16)
00450   Y = Y * 1.0      (for D65)
00451 \endverbatim
00452  * \ingroup color */
00453 inline float imColorLightness2Luminance(const float& L)
00454 {
00455   float fY = (L + 0.16f) / 1.16f;
00456   return IM_GWLAB(fY);
00457 }
00458 
00459 #undef IM_FWLAB
00460 #undef IM_GWLAB
00461 #undef IM_CROPL
00462 #undef IM_CROPC
00463 
00464 #endif