#
# Copyright © 2009-2010 CEA
# Pierre Raybaut
# Licensed under the terms of the CECILL License
# (see guiqwt/__init__.py for details)
# pylint: disable=C0103
"""
guiqwt.widgets.fit
------------------
The `fit` module provides an interactive curve fitting widget/dialog allowing:
* to fit data manually (by moving sliders)
* or automatically (with standard optimization algorithms
provided by :py:mod:`scipy`).
Example
~~~~~~~
.. literalinclude:: ../guiqwt/tests/fit.py
:start-after: SHOW
:end-before: Workaround for Sphinx v0.6 bug: empty 'end-before' directive
.. image:: images/screenshots/fit.png
Reference
~~~~~~~~~
.. autofunction:: guifit
.. autoclass:: FitDialog
:members:
:inherited-members:
.. autoclass:: FitParam
:members:
:inherited-members:
.. autoclass:: AutoFitParam
:members:
:inherited-members:
"""
from __future__ import division
from guidata.qt.QtGui import (QGridLayout, QLabel, QSlider, QPushButton,
QLineEdit, QDialog, QVBoxLayout, QHBoxLayout,
QWidget, QDialogButtonBox)
from guidata.qt.QtCore import Qt, SIGNAL, QObject, SLOT
import numpy as np
from numpy import inf # Do not remove this import (used by optimization funcs)
import guidata
from guidata.utils import update_dataset, restore_dataset
from guidata.qthelpers import create_groupbox
from guidata.configtools import get_icon
from guidata.dataset.datatypes import DataSet
from guidata.dataset.dataitems import (StringItem, FloatItem, IntItem,
ChoiceItem, BoolItem)
# Local imports
from guiqwt.config import _
from guiqwt.builder import make
from guiqwt.plot import CurveWidgetMixin
from guiqwt.signals import SIG_RANGE_CHANGED
class AutoFitParam(DataSet):
[docs] xmin = FloatItem("xmin")
xmax = FloatItem("xmax")
method = ChoiceItem(_("Method"),
[ ("simplex", "Simplex"), ("powel", "Powel"),
("bfgs", "BFGS"), ("l_bfgs_b", "L-BFGS-B"),
("cg", _("Conjugate Gradient")),
("lq", _("Least squares")), ],
default="lq")
err_norm = StringItem("enorm", default=2.0,
help=_("for simplex, powel, cg and bfgs norm used "
"by the error function"))
xtol = FloatItem("xtol", default=0.0001,
help=_("for simplex, powel, least squares"))
ftol = FloatItem("ftol", default=0.0001,
help=_("for simplex, powel, least squares"))
gtol = FloatItem("gtol", default=0.0001, help=_("for cg, bfgs"))
norm = StringItem("norm", default="inf",
help=_("for cg, bfgs. inf is max, -inf is min"))
class FitParamDataSet(DataSet):
name = StringItem(_("Name"))
value = FloatItem(_("Value"), default=0.0)
min = FloatItem(_("Min"), default=-1.0)
max = FloatItem(_("Max"), default=1.0).set_pos(col=1)
steps = IntItem(_("Steps"), default=5000)
format = StringItem(_("Format"), default="%.3f").set_pos(col=1)
logscale = BoolItem(_("Logarithmic"), _("Scale"))
unit = StringItem(_("Unit"), default="").set_pos(col=1)
class FitParam(object):
[docs] def __init__(self, name, value, min, max, logscale=False,
steps=5000, format='%.3f', size_offset=0, unit=''):
self.name = name
self.value = value
self.min = min
self.max = max
self.logscale = logscale
self.steps = steps
self.format = format
self.unit = unit
self.prefix_label = None
self.lineedit = None
self.unit_label = None
self.slider = None
self.button = None
self._widgets = []
self._size_offset = size_offset
self._refresh_callback = None
self.dataset = FitParamDataSet(title=_("Curve fitting parameter"))
def copy(self):
[docs] """Return a copy of this fitparam"""
return self.__class__(self.name, self.value, self.min, self.max,
self.logscale, self.steps, self.format,
self._size_offset, self.unit)
def create_widgets(self, parent, refresh_callback):
self._refresh_callback = refresh_callback
self.prefix_label = QLabel()
font = self.prefix_label.font()
font.setPointSize(font.pointSize()+self._size_offset)
self.prefix_label.setFont(font)
self.button = QPushButton()
self.button.setIcon(get_icon('settings.png'))
self.button.setToolTip(
_("Edit '%s' fit parameter properties") % self.name)
QObject.connect(self.button, SIGNAL('clicked()'),
lambda: self.edit_param(parent))
self.lineedit = QLineEdit()
QObject.connect(self.lineedit, SIGNAL('editingFinished()'),
self.line_editing_finished)
self.unit_label = QLabel(self.unit)
self.slider = QSlider()
self.slider.setOrientation(Qt.Horizontal)
self.slider.setRange(0, self.steps-1)
QObject.connect(self.slider, SIGNAL("valueChanged(int)"),
self.slider_value_changed)
self.update(refresh=False)
self.add_widgets([self.prefix_label, self.lineedit, self.unit_label,
self.slider, self.button])
def add_widgets(self, widgets):
self._widgets += widgets
def get_widgets(self):
return self._widgets
def set_scale(self, state):
self.logscale = state > 0
self.update_slider_value()
def set_text(self, fmt=None):
style = "<span style=\'color: #444444\'><b>%s</b></span>"
self.prefix_label.setText(style % self.name)
if self.value is None:
value_str = ''
else:
if fmt is None:
fmt = self.format
value_str = fmt % self.value
self.lineedit.setText(value_str)
self.lineedit.setDisabled(
self.value == self.min and self.max == self.min)
def line_editing_finished(self):
try:
self.value = float(self.lineedit.text())
except ValueError:
self.set_text()
self.update_slider_value()
self._refresh_callback()
def slider_value_changed(self, int_value):
if self.logscale:
total_delta = np.log10(1+self.max-self.min)
self.value = self.min+10**(total_delta*int_value/(self.steps-1))-1
else:
total_delta = self.max-self.min
self.value = self.min+total_delta*int_value/(self.steps-1)
self.set_text()
self._refresh_callback()
def update_slider_value(self):
if (self.value is None or self.min is None or self.max is None):
self.slider.setEnabled(False)
if self.slider.parent() and self.slider.parent().isVisible():
self.slider.show()
elif self.value == self.min and self.max == self.min:
self.slider.hide()
else:
self.slider.setEnabled(True)
if self.slider.parent() and self.slider.parent().isVisible():
self.slider.show()
if self.logscale:
value_delta = max([np.log10(1+self.value-self.min), 0.])
total_delta = np.log10(1+self.max-self.min)
else:
value_delta = self.value-self.min
total_delta = self.max-self.min
intval = int(self.steps*value_delta/total_delta)
self.slider.blockSignals(True)
self.slider.setValue(intval)
self.slider.blockSignals(False)
def edit_param(self, parent):
update_dataset(self.dataset, self)
if self.dataset.edit(parent=parent):
restore_dataset(self.dataset, self)
if self.value > self.max:
self.max = self.value
if self.value < self.min:
self.min = self.value
self.update()
def update(self, refresh=True):
self.unit_label.setText(self.unit)
self.slider.setRange(0, self.steps-1)
self.update_slider_value()
self.set_text()
if refresh:
self._refresh_callback()
def add_fitparam_widgets_to(layout, fitparams, refresh_callback, param_cols=1):
row_contents = []
row_nb = 0
col_nb = 0
for i, param in enumerate(fitparams):
param.create_widgets(layout.parent(), refresh_callback)
widgets = param.get_widgets()
w_colums = len(widgets)+1
row_contents += [(widget, row_nb, j+col_nb*w_colums)
for j, widget in enumerate(widgets)]
col_nb += 1
if col_nb == param_cols:
row_nb += 1
col_nb = 0
for widget, row, col in row_contents:
layout.addWidget(widget, row, col)
if fitparams:
for col_nb in range(param_cols):
layout.setColumnStretch(1+col_nb*w_colums, 5)
if col_nb > 0:
layout.setColumnStretch(col_nb*w_colums-1, 1)
class FitWidgetMixin(CurveWidgetMixin):
def __init__(self, wintitle="guiqwt plot", icon="guiqwt.svg",
toolbar=False, options=None, panels=None, param_cols=1,
legend_anchor='TR', auto_fit=True):
if wintitle is None:
wintitle = _('Curve fitting')
self.x = None
self.y = None
self.fitfunc = None
self.fitargs = None
self.fitkwargs = None
self.fitparams = None
self.autofit_prm = None
self.data_curve = None
self.fit_curve = None
self.legend = None
self.legend_anchor = legend_anchor
self.xrange = None
self.show_xrange = False
self.param_cols = param_cols
self.auto_fit_enabled = auto_fit
self.button_list = [] # list of buttons to be disabled at startup
self.fit_layout = None
self.params_layout = None
CurveWidgetMixin.__init__(self, wintitle=wintitle, icon=icon,
toolbar=toolbar, options=options,
panels=panels)
self.refresh()
# QWidget API --------------------------------------------------------------
def resizeEvent(self, event):
QWidget.resizeEvent(self, event)
self.get_plot().replot()
# CurveWidgetMixin API -----------------------------------------------------
def setup_widget_layout(self):
self.fit_layout = QHBoxLayout()
self.params_layout = QGridLayout()
params_group = create_groupbox(self, _("Fit parameters"),
layout=self.params_layout)
if self.auto_fit_enabled:
auto_group = self.create_autofit_group()
self.fit_layout.addWidget(auto_group)
self.fit_layout.addWidget(params_group)
self.plot_layout.addLayout(self.fit_layout, 1, 0)
vlayout = QVBoxLayout(self)
vlayout.addWidget(self.toolbar)
vlayout.addLayout(self.plot_layout)
self.setLayout(vlayout)
def create_plot(self, options):
CurveWidgetMixin.create_plot(self, options)
for plot in self.get_plots():
self.connect(plot, SIG_RANGE_CHANGED, self.range_changed)
# Public API ---------------------------------------------------------------
def set_data(self, x, y, fitfunc=None, fitparams=None,
fitargs=None, fitkwargs=None):
if self.fitparams is not None and fitparams is not None:
self.clear_params_layout()
self.x = x
self.y = y
if fitfunc is not None:
self.fitfunc = fitfunc
if fitparams is not None:
self.fitparams = fitparams
if fitargs is not None:
self.fitargs = fitargs
if fitkwargs is not None:
self.fitkwargs = fitkwargs
self.autofit_prm = AutoFitParam(title=_("Automatic fitting options"))
self.autofit_prm.xmin = x.min()
self.autofit_prm.xmax = x.max()
self.compute_imin_imax()
if self.fitparams is not None and fitparams is not None:
self.populate_params_layout()
self.refresh()
def set_fit_data(self, fitfunc, fitparams, fitargs=None, fitkwargs=None):
if self.fitparams is not None:
self.clear_params_layout()
self.fitfunc = fitfunc
self.fitparams = fitparams
self.fitargs = fitargs
self.fitkwargs = fitkwargs
self.populate_params_layout()
self.refresh()
def clear_params_layout(self):
for i, param in enumerate(self.fitparams):
for widget in param.get_widgets():
if widget is not None:
self.params_layout.removeWidget(widget)
widget.hide()
def populate_params_layout(self):
add_fitparam_widgets_to(self.params_layout, self.fitparams,
self.refresh, param_cols=self.param_cols)
def create_autofit_group(self):
auto_button = QPushButton(get_icon('apply.png'), _("Run"), self)
self.connect(auto_button, SIGNAL("clicked()"), self.autofit)
autoprm_button = QPushButton(get_icon('settings.png'), _("Settings"),
self)
self.connect(autoprm_button, SIGNAL("clicked()"), self.edit_parameters)
xrange_button = QPushButton(get_icon('xrange.png'), _("Bounds"), self)
xrange_button.setCheckable(True)
self.connect(xrange_button, SIGNAL("toggled(bool)"), self.toggle_xrange)
auto_layout = QVBoxLayout()
auto_layout.addWidget(auto_button)
auto_layout.addWidget(autoprm_button)
auto_layout.addWidget(xrange_button)
self.button_list += [auto_button, autoprm_button, xrange_button]
return create_groupbox(self, _("Automatic fit"), layout=auto_layout)
def get_fitfunc_arguments(self):
"""Return fitargs and fitkwargs"""
fitargs = self.fitargs
if self.fitargs is None:
fitargs = []
fitkwargs = self.fitkwargs
if self.fitkwargs is None:
fitkwargs = {}
return fitargs, fitkwargs
def refresh(self, slider_value=None):
"""Refresh Fit Tool dialog box"""
# Update button states
enable = self.x is not None and self.y is not None \
and self.x.size > 0 and self.y.size > 0 \
and self.fitfunc is not None and self.fitparams is not None \
and len(self.fitparams) > 0
for btn in self.button_list:
btn.setEnabled(enable)
if not enable:
# Fit widget is not yet configured
return
fitargs, fitkwargs = self.get_fitfunc_arguments()
yfit = self.fitfunc(self.x, [p.value for p in self.fitparams],
*fitargs, **fitkwargs)
plot = self.get_plot()
if self.legend is None:
self.legend = make.legend(anchor=self.legend_anchor)
plot.add_item(self.legend)
if self.xrange is None:
self.xrange = make.range(0., 1.)
plot.add_item(self.xrange)
self.xrange.set_range(self.autofit_prm.xmin, self.autofit_prm.xmax)
self.xrange.setVisible(self.show_xrange)
if self.data_curve is None:
self.data_curve = make.curve([], [],
_("Data"), color="b", linewidth=2)
plot.add_item(self.data_curve)
self.data_curve.set_data(self.x, self.y)
if self.fit_curve is None:
self.fit_curve = make.curve([], [],
_("Fit"), color="r", linewidth=2)
plot.add_item(self.fit_curve)
self.fit_curve.set_data(self.x, yfit)
plot.replot()
plot.disable_autoscale()
def range_changed(self, xrange_obj, xmin, xmax):
self.autofit_prm.xmin, self.autofit_prm.xmax = xmin, xmax
self.compute_imin_imax()
def toggle_xrange(self, state):
self.xrange.setVisible(state)
plot = self.get_plot()
plot.replot()
if state:
plot.set_active_item(self.xrange)
self.show_xrange = state
def edit_parameters(self):
if self.autofit_prm.edit(parent=self):
self.xrange.set_range(self.autofit_prm.xmin, self.autofit_prm.xmax)
plot = self.get_plot()
plot.replot()
self.compute_imin_imax()
def compute_imin_imax(self):
self.i_min = self.x.searchsorted(self.autofit_prm.xmin)
self.i_max = self.x.searchsorted(self.autofit_prm.xmax, side='right')
def errorfunc(self, params):
x = self.x[self.i_min:self.i_max]
y = self.y[self.i_min:self.i_max]
fitargs, fitkwargs = self.get_fitfunc_arguments()
return y - self.fitfunc(x, params, *fitargs, **fitkwargs)
def autofit(self):
meth = self.autofit_prm.method
x0 = np.array([p.value for p in self.fitparams])
if meth == "lq":
x = self.autofit_lq(x0)
elif meth=="simplex":
x = self.autofit_simplex(x0)
elif meth=="powel":
x = self.autofit_powel(x0)
elif meth=="bfgs":
x = self.autofit_bfgs(x0)
elif meth=="l_bfgs_b":
x = self.autofit_l_bfgs(x0)
elif meth=="cg":
x = self.autofit_cg(x0)
else:
return
for v,p in zip(x, self.fitparams):
p.value = v
self.refresh()
for prm in self.fitparams:
prm.update()
def get_norm_func(self):
prm = self.autofit_prm
err_norm = eval(prm.err_norm)
def func(params):
err = np.linalg.norm(self.errorfunc(params), err_norm)
return err
return func
def autofit_simplex(self, x0):
prm = self.autofit_prm
from scipy.optimize import fmin
x = fmin(self.get_norm_func(), x0, xtol=prm.xtol, ftol=prm.ftol)
return x
def autofit_powel(self, x0):
prm = self.autofit_prm
from scipy.optimize import fmin_powell
x = fmin_powell(self.get_norm_func(), x0, xtol=prm.xtol, ftol=prm.ftol)
return x
def autofit_bfgs(self, x0):
prm = self.autofit_prm
from scipy.optimize import fmin_bfgs
x = fmin_bfgs(self.get_norm_func(), x0, gtol=prm.gtol,
norm=eval(prm.norm))
return x
def autofit_l_bfgs(self, x0):
prm = self.autofit_prm
bounds = [(p.min, p.max) for p in self.fitparams]
from scipy.optimize import fmin_l_bfgs_b
x, _f, _d = fmin_l_bfgs_b(self.get_norm_func(), x0, pgtol=prm.gtol,
approx_grad=1, bounds=bounds)
return x
def autofit_cg(self, x0):
prm = self.autofit_prm
from scipy.optimize import fmin_cg
x = fmin_cg(self.get_norm_func(), x0, gtol=prm.gtol,
norm=eval(prm.norm))
return x
def autofit_lq(self, x0):
prm = self.autofit_prm
def func(params):
err = self.errorfunc(params)
return err
from scipy.optimize import leastsq
x, _ier = leastsq(func, x0, xtol=prm.xtol, ftol=prm.ftol)
return x
def get_values(self):
"""Convenience method to get fit parameter values"""
return [param.value for param in self.fitparams]
class FitWidget(QWidget, FitWidgetMixin):
def __init__(self, wintitle=None, icon="guiqwt.svg", toolbar=False,
options=None, parent=None, panels=None,
param_cols=1, legend_anchor='TR', auto_fit=False):
QWidget.__init__(self, parent)
FitWidgetMixin.__init__(self, wintitle, icon, toolbar, options, panels,
param_cols, legend_anchor, auto_fit)
class FitDialog(QDialog, FitWidgetMixin):
[docs] def __init__(self, wintitle=None, icon="guiqwt.svg", edit=True,
toolbar=False, options=None, parent=None, panels=None,
param_cols=1, legend_anchor='TR', auto_fit=False):
QDialog.__init__(self, parent)
self.edit = edit
self.button_layout = None
FitWidgetMixin.__init__(self, wintitle, icon, toolbar, options, panels,
param_cols, legend_anchor, auto_fit)
self.setWindowFlags(Qt.Window)
def setup_widget_layout(self):
FitWidgetMixin.setup_widget_layout(self)
if self.edit:
self.install_button_layout()
def install_button_layout(self):
bbox = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel)
self.connect(bbox, SIGNAL("accepted()"), SLOT("accept()"))
self.connect(bbox, SIGNAL("rejected()"), SLOT("reject()"))
self.button_list += [bbox.button(QDialogButtonBox.Ok)]
self.button_layout = QHBoxLayout()
self.button_layout.addStretch()
self.button_layout.addWidget(bbox)
vlayout = self.layout()
vlayout.addSpacing(10)
vlayout.addLayout(self.button_layout)
def guifit(x, y, fitfunc, fitparams, fitargs=None, fitkwargs=None,
[docs] wintitle=None, title=None, xlabel=None, ylabel=None,
param_cols=1, auto_fit=True, winsize=None, winpos=None):
"""GUI-based curve fitting tool"""
_app = guidata.qapplication()
# win = FitWidget(wintitle=wintitle, toolbar=True,
# param_cols=param_cols, auto_fit=auto_fit,
# options=dict(title=title, xlabel=xlabel, ylabel=ylabel))
win = FitDialog(edit=True, wintitle=wintitle, toolbar=True,
param_cols=param_cols, auto_fit=auto_fit,
options=dict(title=title, xlabel=xlabel, ylabel=ylabel))
win.set_data(x, y, fitfunc, fitparams, fitargs, fitkwargs)
if winsize is not None:
win.resize(*winsize)
if winpos is not None:
win.move(*winpos)
if win.exec_():
return win.get_values()
# win.show()
# _app.exec_()
# return win.get_values()
if __name__ == "__main__":
x = np.linspace(-10, 10, 1000)
y = np.cos(1.5*x)+np.random.rand(x.shape[0])*.2
def fit(x, params):
a, b = params
return np.cos(b*x)+a
a = FitParam("Offset", 1., 0., 2.)
b = FitParam("Frequency", 1.05, 0., 10., logscale=True)
params = [a, b]
values = guifit(x, y, fit, params, auto_fit=True)
print values
print [param.value for param in params]