guiqwt.widgets.fit

guiqwt

Source code for guiqwt.widgets.fit

#
# Copyright © 2009-2010 CEA
# Pierre Raybaut
# Licensed under the terms of the CECILL License
# (see guiqwt/__init__.py for details)

# pylint: disable=C0103

"""
guiqwt.widgets.fit
------------------

The `fit` module provides an interactive curve fitting widget/dialog allowing:
    * to fit data manually (by moving sliders)
    * or automatically (with standard optimization algorithms 
      provided by :py:mod:`scipy`).

Example
~~~~~~~

.. literalinclude:: ../guiqwt/tests/fit.py
   :start-after: SHOW
   :end-before: Workaround for Sphinx v0.6 bug: empty 'end-before' directive

.. image:: images/screenshots/fit.png

Reference
~~~~~~~~~

.. autofunction:: guifit

.. autoclass:: FitDialog
   :members:
   :inherited-members:
.. autoclass:: FitParam
   :members:
   :inherited-members:
.. autoclass:: AutoFitParam
   :members:
   :inherited-members:
"""

from __future__ import division

from guidata.qt.QtGui import (QGridLayout, QLabel, QSlider, QPushButton,
                              QLineEdit, QDialog, QVBoxLayout, QHBoxLayout,
                              QWidget, QDialogButtonBox)
from guidata.qt.QtCore import Qt, SIGNAL, QObject, SLOT

import numpy as np
from numpy import inf # Do not remove this import (used by optimization funcs)

import guidata
from guidata.utils import update_dataset, restore_dataset
from guidata.qthelpers import create_groupbox
from guidata.configtools import get_icon
from guidata.dataset.datatypes import DataSet
from guidata.dataset.dataitems import (StringItem, FloatItem, IntItem,
                                       ChoiceItem, BoolItem)

# Local imports
from guiqwt.config import _
from guiqwt.builder import make
from guiqwt.plot import CurveWidgetMixin
from guiqwt.signals import SIG_RANGE_CHANGED

class AutoFitParam(DataSet):
[docs] xmin = FloatItem("xmin") xmax = FloatItem("xmax") method = ChoiceItem(_("Method"), [ ("simplex", "Simplex"), ("powel", "Powel"), ("bfgs", "BFGS"), ("l_bfgs_b", "L-BFGS-B"), ("cg", _("Conjugate Gradient")), ("lq", _("Least squares")), ], default="lq") err_norm = StringItem("enorm", default=2.0, help=_("for simplex, powel, cg and bfgs norm used " "by the error function")) xtol = FloatItem("xtol", default=0.0001, help=_("for simplex, powel, least squares")) ftol = FloatItem("ftol", default=0.0001, help=_("for simplex, powel, least squares")) gtol = FloatItem("gtol", default=0.0001, help=_("for cg, bfgs")) norm = StringItem("norm", default="inf", help=_("for cg, bfgs. inf is max, -inf is min")) class FitParamDataSet(DataSet):
name = StringItem(_("Name")) value = FloatItem(_("Value"), default=0.0) min = FloatItem(_("Min"), default=-1.0) max = FloatItem(_("Max"), default=1.0).set_pos(col=1) steps = IntItem(_("Steps"), default=5000) format = StringItem(_("Format"), default="%.3f").set_pos(col=1) logscale = BoolItem(_("Logarithmic"), _("Scale")) unit = StringItem(_("Unit"), default="").set_pos(col=1) class FitParam(object):
[docs] def __init__(self, name, value, min, max, logscale=False, steps=5000, format='%.3f', size_offset=0, unit=''): self.name = name self.value = value self.min = min self.max = max self.logscale = logscale self.steps = steps self.format = format self.unit = unit self.prefix_label = None self.lineedit = None self.unit_label = None self.slider = None self.button = None self._widgets = [] self._size_offset = size_offset self._refresh_callback = None self.dataset = FitParamDataSet(title=_("Curve fitting parameter")) def copy(self):
[docs] """Return a copy of this fitparam""" return self.__class__(self.name, self.value, self.min, self.max, self.logscale, self.steps, self.format, self._size_offset, self.unit) def create_widgets(self, parent, refresh_callback):
self._refresh_callback = refresh_callback self.prefix_label = QLabel() font = self.prefix_label.font() font.setPointSize(font.pointSize()+self._size_offset) self.prefix_label.setFont(font) self.button = QPushButton() self.button.setIcon(get_icon('settings.png')) self.button.setToolTip( _("Edit '%s' fit parameter properties") % self.name) QObject.connect(self.button, SIGNAL('clicked()'), lambda: self.edit_param(parent)) self.lineedit = QLineEdit() QObject.connect(self.lineedit, SIGNAL('editingFinished()'), self.line_editing_finished) self.unit_label = QLabel(self.unit) self.slider = QSlider() self.slider.setOrientation(Qt.Horizontal) self.slider.setRange(0, self.steps-1) QObject.connect(self.slider, SIGNAL("valueChanged(int)"), self.slider_value_changed) self.update(refresh=False) self.add_widgets([self.prefix_label, self.lineedit, self.unit_label, self.slider, self.button]) def add_widgets(self, widgets): self._widgets += widgets def get_widgets(self): return self._widgets def set_scale(self, state): self.logscale = state > 0 self.update_slider_value() def set_text(self, fmt=None): style = "<span style=\'color: #444444\'><b>%s</b></span>" self.prefix_label.setText(style % self.name) if self.value is None: value_str = '' else: if fmt is None: fmt = self.format value_str = fmt % self.value self.lineedit.setText(value_str) self.lineedit.setDisabled( self.value == self.min and self.max == self.min) def line_editing_finished(self): try: self.value = float(self.lineedit.text()) except ValueError: self.set_text() self.update_slider_value() self._refresh_callback() def slider_value_changed(self, int_value): if self.logscale: total_delta = np.log10(1+self.max-self.min) self.value = self.min+10**(total_delta*int_value/(self.steps-1))-1 else: total_delta = self.max-self.min self.value = self.min+total_delta*int_value/(self.steps-1) self.set_text() self._refresh_callback() def update_slider_value(self): if (self.value is None or self.min is None or self.max is None): self.slider.setEnabled(False) if self.slider.parent() and self.slider.parent().isVisible(): self.slider.show() elif self.value == self.min and self.max == self.min: self.slider.hide() else: self.slider.setEnabled(True) if self.slider.parent() and self.slider.parent().isVisible(): self.slider.show() if self.logscale: value_delta = max([np.log10(1+self.value-self.min), 0.]) total_delta = np.log10(1+self.max-self.min) else: value_delta = self.value-self.min total_delta = self.max-self.min intval = int(self.steps*value_delta/total_delta) self.slider.blockSignals(True) self.slider.setValue(intval) self.slider.blockSignals(False) def edit_param(self, parent): update_dataset(self.dataset, self) if self.dataset.edit(parent=parent): restore_dataset(self.dataset, self) if self.value > self.max: self.max = self.value if self.value < self.min: self.min = self.value self.update() def update(self, refresh=True): self.unit_label.setText(self.unit) self.slider.setRange(0, self.steps-1) self.update_slider_value() self.set_text() if refresh: self._refresh_callback() def add_fitparam_widgets_to(layout, fitparams, refresh_callback, param_cols=1):
row_contents = [] row_nb = 0 col_nb = 0 for i, param in enumerate(fitparams): param.create_widgets(layout.parent(), refresh_callback) widgets = param.get_widgets() w_colums = len(widgets)+1 row_contents += [(widget, row_nb, j+col_nb*w_colums) for j, widget in enumerate(widgets)] col_nb += 1 if col_nb == param_cols: row_nb += 1 col_nb = 0 for widget, row, col in row_contents: layout.addWidget(widget, row, col) if fitparams: for col_nb in range(param_cols): layout.setColumnStretch(1+col_nb*w_colums, 5) if col_nb > 0: layout.setColumnStretch(col_nb*w_colums-1, 1) class FitWidgetMixin(CurveWidgetMixin): def __init__(self, wintitle="guiqwt plot", icon="guiqwt.svg", toolbar=False, options=None, panels=None, param_cols=1, legend_anchor='TR', auto_fit=True): if wintitle is None: wintitle = _('Curve fitting') self.x = None self.y = None self.fitfunc = None self.fitargs = None self.fitkwargs = None self.fitparams = None self.autofit_prm = None self.data_curve = None self.fit_curve = None self.legend = None self.legend_anchor = legend_anchor self.xrange = None self.show_xrange = False self.param_cols = param_cols self.auto_fit_enabled = auto_fit self.button_list = [] # list of buttons to be disabled at startup self.fit_layout = None self.params_layout = None CurveWidgetMixin.__init__(self, wintitle=wintitle, icon=icon, toolbar=toolbar, options=options, panels=panels) self.refresh() # QWidget API -------------------------------------------------------------- def resizeEvent(self, event): QWidget.resizeEvent(self, event) self.get_plot().replot() # CurveWidgetMixin API ----------------------------------------------------- def setup_widget_layout(self): self.fit_layout = QHBoxLayout() self.params_layout = QGridLayout() params_group = create_groupbox(self, _("Fit parameters"), layout=self.params_layout) if self.auto_fit_enabled: auto_group = self.create_autofit_group() self.fit_layout.addWidget(auto_group) self.fit_layout.addWidget(params_group) self.plot_layout.addLayout(self.fit_layout, 1, 0) vlayout = QVBoxLayout(self) vlayout.addWidget(self.toolbar) vlayout.addLayout(self.plot_layout) self.setLayout(vlayout) def create_plot(self, options): CurveWidgetMixin.create_plot(self, options) for plot in self.get_plots(): self.connect(plot, SIG_RANGE_CHANGED, self.range_changed) # Public API --------------------------------------------------------------- def set_data(self, x, y, fitfunc=None, fitparams=None, fitargs=None, fitkwargs=None): if self.fitparams is not None and fitparams is not None: self.clear_params_layout() self.x = x self.y = y if fitfunc is not None: self.fitfunc = fitfunc if fitparams is not None: self.fitparams = fitparams if fitargs is not None: self.fitargs = fitargs if fitkwargs is not None: self.fitkwargs = fitkwargs self.autofit_prm = AutoFitParam(title=_("Automatic fitting options")) self.autofit_prm.xmin = x.min() self.autofit_prm.xmax = x.max() self.compute_imin_imax() if self.fitparams is not None and fitparams is not None: self.populate_params_layout() self.refresh() def set_fit_data(self, fitfunc, fitparams, fitargs=None, fitkwargs=None): if self.fitparams is not None: self.clear_params_layout() self.fitfunc = fitfunc self.fitparams = fitparams self.fitargs = fitargs self.fitkwargs = fitkwargs self.populate_params_layout() self.refresh() def clear_params_layout(self): for i, param in enumerate(self.fitparams): for widget in param.get_widgets(): if widget is not None: self.params_layout.removeWidget(widget) widget.hide() def populate_params_layout(self): add_fitparam_widgets_to(self.params_layout, self.fitparams, self.refresh, param_cols=self.param_cols) def create_autofit_group(self): auto_button = QPushButton(get_icon('apply.png'), _("Run"), self) self.connect(auto_button, SIGNAL("clicked()"), self.autofit) autoprm_button = QPushButton(get_icon('settings.png'), _("Settings"), self) self.connect(autoprm_button, SIGNAL("clicked()"), self.edit_parameters) xrange_button = QPushButton(get_icon('xrange.png'), _("Bounds"), self) xrange_button.setCheckable(True) self.connect(xrange_button, SIGNAL("toggled(bool)"), self.toggle_xrange) auto_layout = QVBoxLayout() auto_layout.addWidget(auto_button) auto_layout.addWidget(autoprm_button) auto_layout.addWidget(xrange_button) self.button_list += [auto_button, autoprm_button, xrange_button] return create_groupbox(self, _("Automatic fit"), layout=auto_layout) def get_fitfunc_arguments(self): """Return fitargs and fitkwargs""" fitargs = self.fitargs if self.fitargs is None: fitargs = [] fitkwargs = self.fitkwargs if self.fitkwargs is None: fitkwargs = {} return fitargs, fitkwargs def refresh(self, slider_value=None): """Refresh Fit Tool dialog box""" # Update button states enable = self.x is not None and self.y is not None \ and self.x.size > 0 and self.y.size > 0 \ and self.fitfunc is not None and self.fitparams is not None \ and len(self.fitparams) > 0 for btn in self.button_list: btn.setEnabled(enable) if not enable: # Fit widget is not yet configured return fitargs, fitkwargs = self.get_fitfunc_arguments() yfit = self.fitfunc(self.x, [p.value for p in self.fitparams], *fitargs, **fitkwargs) plot = self.get_plot() if self.legend is None: self.legend = make.legend(anchor=self.legend_anchor) plot.add_item(self.legend) if self.xrange is None: self.xrange = make.range(0., 1.) plot.add_item(self.xrange) self.xrange.set_range(self.autofit_prm.xmin, self.autofit_prm.xmax) self.xrange.setVisible(self.show_xrange) if self.data_curve is None: self.data_curve = make.curve([], [], _("Data"), color="b", linewidth=2) plot.add_item(self.data_curve) self.data_curve.set_data(self.x, self.y) if self.fit_curve is None: self.fit_curve = make.curve([], [], _("Fit"), color="r", linewidth=2) plot.add_item(self.fit_curve) self.fit_curve.set_data(self.x, yfit) plot.replot() plot.disable_autoscale() def range_changed(self, xrange_obj, xmin, xmax): self.autofit_prm.xmin, self.autofit_prm.xmax = xmin, xmax self.compute_imin_imax() def toggle_xrange(self, state): self.xrange.setVisible(state) plot = self.get_plot() plot.replot() if state: plot.set_active_item(self.xrange) self.show_xrange = state def edit_parameters(self): if self.autofit_prm.edit(parent=self): self.xrange.set_range(self.autofit_prm.xmin, self.autofit_prm.xmax) plot = self.get_plot() plot.replot() self.compute_imin_imax() def compute_imin_imax(self): self.i_min = self.x.searchsorted(self.autofit_prm.xmin) self.i_max = self.x.searchsorted(self.autofit_prm.xmax, side='right') def errorfunc(self, params): x = self.x[self.i_min:self.i_max] y = self.y[self.i_min:self.i_max] fitargs, fitkwargs = self.get_fitfunc_arguments() return y - self.fitfunc(x, params, *fitargs, **fitkwargs) def autofit(self): meth = self.autofit_prm.method x0 = np.array([p.value for p in self.fitparams]) if meth == "lq": x = self.autofit_lq(x0) elif meth=="simplex": x = self.autofit_simplex(x0) elif meth=="powel": x = self.autofit_powel(x0) elif meth=="bfgs": x = self.autofit_bfgs(x0) elif meth=="l_bfgs_b": x = self.autofit_l_bfgs(x0) elif meth=="cg": x = self.autofit_cg(x0) else: return for v,p in zip(x, self.fitparams): p.value = v self.refresh() for prm in self.fitparams: prm.update() def get_norm_func(self): prm = self.autofit_prm err_norm = eval(prm.err_norm) def func(params): err = np.linalg.norm(self.errorfunc(params), err_norm) return err return func def autofit_simplex(self, x0): prm = self.autofit_prm from scipy.optimize import fmin x = fmin(self.get_norm_func(), x0, xtol=prm.xtol, ftol=prm.ftol) return x def autofit_powel(self, x0): prm = self.autofit_prm from scipy.optimize import fmin_powell x = fmin_powell(self.get_norm_func(), x0, xtol=prm.xtol, ftol=prm.ftol) return x def autofit_bfgs(self, x0): prm = self.autofit_prm from scipy.optimize import fmin_bfgs x = fmin_bfgs(self.get_norm_func(), x0, gtol=prm.gtol, norm=eval(prm.norm)) return x def autofit_l_bfgs(self, x0): prm = self.autofit_prm bounds = [(p.min, p.max) for p in self.fitparams] from scipy.optimize import fmin_l_bfgs_b x, _f, _d = fmin_l_bfgs_b(self.get_norm_func(), x0, pgtol=prm.gtol, approx_grad=1, bounds=bounds) return x def autofit_cg(self, x0): prm = self.autofit_prm from scipy.optimize import fmin_cg x = fmin_cg(self.get_norm_func(), x0, gtol=prm.gtol, norm=eval(prm.norm)) return x def autofit_lq(self, x0): prm = self.autofit_prm def func(params): err = self.errorfunc(params) return err from scipy.optimize import leastsq x, _ier = leastsq(func, x0, xtol=prm.xtol, ftol=prm.ftol) return x def get_values(self): """Convenience method to get fit parameter values""" return [param.value for param in self.fitparams] class FitWidget(QWidget, FitWidgetMixin): def __init__(self, wintitle=None, icon="guiqwt.svg", toolbar=False, options=None, parent=None, panels=None, param_cols=1, legend_anchor='TR', auto_fit=False): QWidget.__init__(self, parent) FitWidgetMixin.__init__(self, wintitle, icon, toolbar, options, panels, param_cols, legend_anchor, auto_fit) class FitDialog(QDialog, FitWidgetMixin):
[docs] def __init__(self, wintitle=None, icon="guiqwt.svg", edit=True, toolbar=False, options=None, parent=None, panels=None, param_cols=1, legend_anchor='TR', auto_fit=False): QDialog.__init__(self, parent) self.edit = edit self.button_layout = None FitWidgetMixin.__init__(self, wintitle, icon, toolbar, options, panels, param_cols, legend_anchor, auto_fit) self.setWindowFlags(Qt.Window) def setup_widget_layout(self): FitWidgetMixin.setup_widget_layout(self) if self.edit: self.install_button_layout() def install_button_layout(self): bbox = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel) self.connect(bbox, SIGNAL("accepted()"), SLOT("accept()")) self.connect(bbox, SIGNAL("rejected()"), SLOT("reject()")) self.button_list += [bbox.button(QDialogButtonBox.Ok)] self.button_layout = QHBoxLayout() self.button_layout.addStretch() self.button_layout.addWidget(bbox) vlayout = self.layout() vlayout.addSpacing(10) vlayout.addLayout(self.button_layout) def guifit(x, y, fitfunc, fitparams, fitargs=None, fitkwargs=None,
[docs] wintitle=None, title=None, xlabel=None, ylabel=None, param_cols=1, auto_fit=True, winsize=None, winpos=None): """GUI-based curve fitting tool""" _app = guidata.qapplication() # win = FitWidget(wintitle=wintitle, toolbar=True, # param_cols=param_cols, auto_fit=auto_fit, # options=dict(title=title, xlabel=xlabel, ylabel=ylabel)) win = FitDialog(edit=True, wintitle=wintitle, toolbar=True, param_cols=param_cols, auto_fit=auto_fit, options=dict(title=title, xlabel=xlabel, ylabel=ylabel)) win.set_data(x, y, fitfunc, fitparams, fitargs, fitkwargs) if winsize is not None: win.resize(*winsize) if winpos is not None: win.move(*winpos) if win.exec_(): return win.get_values() # win.show() # _app.exec_() # return win.get_values() if __name__ == "__main__":
x = np.linspace(-10, 10, 1000) y = np.cos(1.5*x)+np.random.rand(x.shape[0])*.2 def fit(x, params): a, b = params return np.cos(b*x)+a a = FitParam("Offset", 1., 0., 2.) b = FitParam("Frequency", 1.05, 0., 10., logscale=True) params = [a, b] values = guifit(x, y, fit, params, auto_fit=True) print values print [param.value for param in params]