IM: im_process_pon.h Source File

IM - An Imaging Tool

im_process_pon.h

Go to the documentation of this file.
00001 /** \file
00002  * \brief Image Processing - Pontual Operations
00003  *
00004  * See Copyright Notice in im_lib.h
00005  * $Id: im_process_pon.h,v 1.6 2005/12/12 20:29:00 scuri Exp $
00006  */
00007 
00008 #ifndef __IM_PROCESS_PON_H
00009 #define __IM_PROCESS_PON_H
00010 
00011 #include "im_image.h"
00012 
00013 #if defined(__cplusplus)
00014 extern "C" {
00015 #endif
00016 
00017 
00018 
00019 /** \defgroup arithm Arithmetic Operations 
00020  * \par
00021  * Simple math operations for images.
00022  * \par
00023  * See \ref im_process_pon.h
00024  * \ingroup process */
00025 
00026 /** Unary Arithmetic Operations.
00027  * Inverse and log may lead to math exceptions.
00028  * \ingroup arithm */
00029 enum imUnaryOp {
00030   IM_UN_EQL,    /**< equal             =     a        */
00031   IM_UN_ABS,    /**< abssolute         =    |a|       */
00032   IM_UN_LESS,   /**< less              =    -a        */
00033   IM_UN_INC,    /**< increment        +=     a        */
00034   IM_UN_INV,    /**< invert            =   1/a       (#) */
00035   IM_UN_SQR,    /**< square            =     a*a      */
00036   IM_UN_SQRT,   /**< square root       =     a^(1/2)  */
00037   IM_UN_LOG,    /**< natural logarithm =  ln(a)      (#) */
00038   IM_UN_EXP,    /**< exponential       = exp(a)       */
00039   IM_UN_SIN,    /**< sine              = sin(a)       */
00040   IM_UN_COS,    /**< cosine            = cos(a)       */
00041   IM_UN_CONJ,   /**< complex conjugate =     ar - ai*i                   */
00042   IM_UN_CPXNORM /**< complex normalization by magnitude = a / cpxmag(a)  */
00043 };
00044 
00045 /** Apply an arithmetic unary operation. \n
00046  * Can be done in place, images must match size, does not need to match type.
00047  *
00048  * \verbatim im.ProcessUnArithmeticOp(src_image: imImage, dst_image: imImage, op: number) [in Lua 5] \endverbatim
00049  * \verbatim im.ProcessUnArithmeticOpNew(image: imImage, op: number) -> new_image: imImage [in Lua 5] \endverbatim
00050  * \ingroup arithm */
00051 void imProcessUnArithmeticOp(const imImage* src_image, imImage* dst_image, int op);
00052 
00053 /** Binary Arithmetic Operations.
00054  * Inverse and log may lead to math exceptions.
00055  * \ingroup arithm */
00056 enum imBinaryOp {
00057   IM_BIN_ADD,    /**< add         =    a+b            */
00058   IM_BIN_SUB,    /**< subtract    =    a-b            */
00059   IM_BIN_MUL,    /**< multiply    =    a*b            */
00060   IM_BIN_DIV,    /**< divide      =    a/b            (#) */
00061   IM_BIN_DIFF,   /**< difference  =    |a-b|          */
00062   IM_BIN_POW,    /**< power       =    a^b            */
00063   IM_BIN_MIN,    /**< minimum     =    (a < b)? a: b  */
00064   IM_BIN_MAX     /**< maximum     =    (a > b)? a: b  */
00065 };
00066 
00067 /** Apply a binary arithmetic operation. \n
00068  * Can be done in place, images must match size. \n
00069  * Source images must match type, destiny image can be several types depending on source: \n
00070  * \li byte -> byte, ushort, int, float
00071  * \li ushort -> ushort, int, float
00072  * \li int -> int, float
00073  * \li float -> float
00074  * \li complex -> complex
00075  * One exception is that you can combine complex with float resulting complex.
00076  *
00077  * \verbatim im.ProcessArithmeticOp(src_image1: imImage, src_image2: imImage, dst_image: imImage, op: number) [in Lua 5] \endverbatim
00078  * \verbatim im.ProcessArithmeticOpNew(image1: imImage, image2: imImage, op: number) -> new_image: imImage [in Lua 5] \endverbatim
00079  * The New function will create a new image of the same type of the source images.
00080  * \ingroup arithm */
00081 void imProcessArithmeticOp(const imImage* src_image1, const imImage* src_image2, imImage* dst_image, int op);
00082 
00083 /** Apply a binary arithmetic operation with a constant value. \n
00084  * Can be done in place, images must match size. \n
00085  * Destiny image can be several types depending on source: \n
00086  * \li byte -> byte, ushort, int, float
00087  * \li ushort -> byte, ushort, int, float
00088  * \li int -> byte, ushort, int, float
00089  * \li float -> float
00090  * \li complex -> complex
00091  * The constant value is type casted to an apropriate type before the operation.
00092  *
00093  * \verbatim im.ProcessArithmeticConstOp(src_image: imImage, src_const: number, dst_image: imImage, op: number) [in Lua 5] \endverbatim
00094  * \verbatim im.ProcessArithmeticConstOpNew(image: imImage, src_const: number, op: number) -> new_image: imImage [in Lua 5] \endverbatim
00095  * \ingroup arithm */
00096 void imProcessArithmeticConstOp(const imImage* src_image, float src_const, imImage* dst_image, int op);
00097 
00098 /** Blend two images using an alpha value = [a * alpha + b * (1 - alpha)]. \n
00099  * Can be done in place, images must match size and type.
00100  *
00101  * \verbatim im.ProcessBlend(src_image1: imImage, src_image2: imImage, dst_image: imImage, alpha: number) [in Lua 5] \endverbatim
00102  * \verbatim im.ProcessBlendNew(image1: imImage, image2: imImage, alpha: number) -> new_image: imImage [in Lua 5] \endverbatim
00103  * \ingroup arithm */
00104 void imProcessBlend(const imImage* src_image1, imImage* src_image2, imImage* dst_image, float alpha);
00105 
00106 /** Split a complex image into two images with real and imaginary parts \n
00107  * or magnitude and phase parts (polar). \n
00108  * Source image must be IM_CFLOAT, destiny images must be IM_FLOAT.
00109  *
00110  * \verbatim im.ProcessSplitComplex(src_image: imImage, dst_image1: imImage, dst_image2: imImage, do_polar: boolean) [in Lua 5] \endverbatim
00111  * \verbatim im.ProcessSplitComplexNew(image: imImage, do_polar: boolean) -> dst_image1: imImage, dst_image2: imImage [in Lua 5] \endverbatim
00112  * \ingroup arithm */
00113 void imProcessSplitComplex(const imImage* src_image, imImage* dst_image1, imImage* dst_image2, int do_polar);
00114 
00115 /** Merges two images as the real and imaginary parts of a complex image, \n
00116  * or as magnitude and phase parts (polar = 1). \n
00117  * Source images must be IM_FLOAT, destiny image must be IM_CFLOAT.
00118  *
00119  * \verbatim im.ProcessMergeComplex(src_image1: imImage, src_image2: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00120  * \verbatim im.ProcessMergeComplexNew(image1: imImage, image2: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00121  * \ingroup arithm */
00122 void imProcessMergeComplex(const imImage* src_image1, const imImage* src_image2, imImage* dst_image, int polar);
00123 
00124 /** Calculates the mean of multiple images. \n
00125  * Images must match size and type.
00126  *
00127  * \verbatim im.ProcessMultipleMean(src_image_list: table of imImage, dst_image: imImage) [in Lua 5] \endverbatim
00128  * \verbatim im.ProcessMultipleMeanNew(src_image_list: table of imImage) -> new_image: imImage [in Lua 5] \endverbatim
00129  * \ingroup arithm */
00130 void imProcessMultipleMean(const imImage** src_image_list, int src_image_count, imImage* dst_image);
00131 
00132 /** Calculates the standard deviation of multiple images. \n
00133  * Images must match size and type. Use \ref imProcessMultipleMean to calculate the mean_image.
00134  *
00135  * \verbatim im.ProcessMultipleStdDev(src_image_list: table of imImage, mean_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00136  * \verbatim im.ProcessMultipleStdDevNew(src_image_list: table of imImage, mean_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00137  * \ingroup arithm */
00138 void imProcessMultipleStdDev(const imImage** src_image_list, int src_image_count, const imImage *mean_image, imImage* dst_image);
00139 
00140 /** Calculates the auto-covariance of an image with the mean of a set of images. \n
00141  * Images must match size and type. Returns zero if the counter aborted.
00142  *
00143  * \verbatim im.ProcessAutoCovariance(src_image: imImage, mean_image: imImage, dst_image: imImage) -> counter: boolean [in Lua 5] \endverbatim
00144  * \verbatim im.ProcessAutoCovarianceNew(src_image: imImage, mean_image: imImage) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00145  * \ingroup arithm */
00146 int imProcessAutoCovariance(const imImage* src_image, const imImage* mean_image, imImage* dst_image);
00147 
00148 /** Multiplies the conjugate of one complex image with another complex image. \n
00149  * Images must match size. Conj(img1) * img2 \n
00150  * Can be done in-place.
00151  *
00152  * \verbatim im.ProcessMultiplyConj(src_image1: imImage, src_image2: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00153  * \verbatim im.ProcessMultiplyConjNew(src_image1: imImage, src_image2: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00154  * \ingroup arithm */
00155 void imProcessMultiplyConj(const imImage* src_image1, const imImage* src_image2, imImage* dst_image);
00156 
00157 
00158 
00159 /** \defgroup quantize Additional Image Quantization Operations
00160  * \par
00161  * Additionally operations to the \ref imConvertColorSpace function.
00162  * \par
00163  * See \ref im_process_pon.h
00164  * \ingroup process */
00165 
00166 /** Converts a RGB image to a MAP image using uniform quantization 
00167  * with an optional 8x8 ordered dither. The RGB image must have data type IM_BYTE.
00168  *
00169  * \verbatim im.ProcessQuantizeRGBUniform(src_image: imImage, dst_image: imImage, do_dither: boolean) [in Lua 5] \endverbatim
00170  * \verbatim im.ProcessQuantizeRGBUniformNew(src_image: imImage, do_dither: boolean) -> new_image: imImage [in Lua 5] \endverbatim
00171  * \ingroup quantize */
00172 void imProcessQuantizeRGBUniform(const imImage* src_image, imImage* dst_image, int do_dither);
00173 
00174 /** Quantizes a gray scale image in less that 256 grays using uniform quantization. \n
00175  * Both images must be IM_BYTE/IM_GRAY. Can be done in place. 
00176  *
00177  * \verbatim im.ProcessQuantizeGrayUniform(src_image: imImage, dst_image: imImage, grays: number) [in Lua 5] \endverbatim
00178  * \verbatim im.ProcessQuantizeGrayUniformNew(src_image: imImage, grays: number) -> new_image: imImage [in Lua 5] \endverbatim
00179  * \ingroup quantize */
00180 void imProcessQuantizeGrayUniform(const imImage* src_image, imImage* dst_image, int grays);
00181 
00182 
00183 
00184 /** \defgroup histo Histogram Based Operations
00185  * \par
00186  * See \ref im_process_pon.h
00187  * \ingroup process */
00188 
00189 /** Performs an histogram expansion. \n
00190  * Percentage defines an amount of pixels to include at start and end.
00191  * If its is zero only empty counts of the histogram will be considered. \n
00192  * Images must be IM_BYTE/(IM_RGB or IM_GRAY). Can be done in place. 
00193  *
00194  * \verbatim im.ProcessExpandHistogram(src_image: imImage, dst_image: imImage, percent: number) [in Lua 5] \endverbatim
00195  * \verbatim im.ProcessExpandHistogramNew(src_image: imImage, percent: number) -> new_image: imImage [in Lua 5] \endverbatim
00196  * \ingroup histo */
00197 void imProcessExpandHistogram(const imImage* src_image, imImage* dst_image, float percent);
00198 
00199 /** Performs an histogram equalization. \n
00200  * Images must be IM_BYTE/(IM_RGB or IM_GRAY). Can be done in place. 
00201  *
00202  * \verbatim im.ProcessEqualizeHistogram(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00203  * \verbatim im.ProcessEqualizeHistogramNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00204  * \ingroup histo */
00205 void imProcessEqualizeHistogram(const imImage* src_image, imImage* dst_image);
00206 
00207 
00208 
00209 /** \defgroup colorproc Color Processing Operations
00210  * \par
00211  * Operations to change the color components configuration.
00212  * \par
00213  * See \ref im_process_pon.h
00214  * \ingroup process */
00215 
00216 /** Split a RGB image into luma and chroma. \n
00217  * Chroma is calculated as R-Y,G-Y,B-Y. Source image must be IM_RGB/IM_BYTE. \n
00218  * luma image is IM_GRAY/IM_BYTE and chroma is IM_RGB/IM_BYTE. \n
00219  * Source and destiny must have the same size. 
00220  *
00221  * \verbatim im.ProcessSplitYChroma(src_image: imImage, y_image: imImage, chroma_image: imImage) [in Lua 5] \endverbatim
00222  * \verbatim im.ProcessSplitYChromaNew(src_image: imImage) -> y_image: imImage, chroma_image: imImage [in Lua 5] \endverbatim
00223  * \ingroup colorproc */
00224 void imProcessSplitYChroma(const imImage* src_image, imImage* y_image, imImage* chroma_image);
00225 
00226 /** Split a RGB image into HSI planes. \n
00227  * Source image must be IM_RGB/IM_BYTE,IM_FLOAT. Destiny images are all IM_GRAY/IM_FLOAT. \n
00228  * Source images must normalized to 0-1 if type is IM_FLOAT (\ref imProcessToneGamut can be used). See \ref hsi for a definition of the color conversion.\n
00229  * Source and destiny must have the same size. 
00230  *
00231  * \verbatim im.ProcessSplitHSI(src_image: imImage, h_image: imImage, s_image: imImage, i_image: imImage) [in Lua 5] \endverbatim
00232  * \verbatim im.ProcessSplitHSINew(src_image: imImage) -> h_image: imImage, s_image: imImage, i_image: imImage [in Lua 5] \endverbatim
00233  * \ingroup colorproc */
00234 void imProcessSplitHSI(const imImage* src_image, imImage* h_image, imImage* s_image, imImage* i_image);
00235 
00236 /** Merge HSI planes into a RGB image. \n
00237  * Source images must be IM_GRAY/IM_FLOAT. Destiny image can be IM_RGB/IM_BYTE,IM_FLOAT. \n
00238  * Source and destiny must have the same size. See \ref hsi for a definition of the color conversion.
00239  *
00240  * \verbatim im.ProcessMergeHSI(h_image: imImage, s_image: imImage, i_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00241  * \verbatim im.ProcessMergeHSINew(h_image: imImage, s_image: imImage, i_image: imImage) -> dst_image: imImage [in Lua 5] \endverbatim
00242  * \ingroup colorproc */
00243 void imProcessMergeHSI(const imImage* h_image, const imImage* s_image, const imImage* i_image, imImage* dst_image);
00244 
00245 /** Split a multicomponent image into separate components.\n
00246  * Destiny images must be IM_GRAY. Size and data types must be all the same.\n
00247  * The number of destiny images must match the depth of the source image.
00248  *
00249  * \verbatim im.ProcessSplitComponents(src_image: imImage, dst_image_list: table of imImage) [in Lua 5] \endverbatim
00250  * \verbatim im.ProcessSplitComponentsNew(src_image: imImage) -> dst_image_list: table of imImage [in Lua 5] \endverbatim
00251  * \ingroup colorproc */
00252 void imProcessSplitComponents(const imImage* src_image, imImage** dst_image_list);
00253 
00254 /** Merges separate components into a multicomponent image.\n
00255  * Source images must be IM_GRAY. Size and data types must be all the same.\n
00256  * The number of source images must match the depth of the destiny image.
00257  *
00258  * \verbatim im.ProcessMergeComponents(src_image_list: table of imImage, dst_image: imImage) [in Lua 5] \endverbatim
00259  * \verbatim im.ProcessMergeComponentsNew(src_image_list: table of imImage) -> dst_image: imImage [in Lua 5] \endverbatim
00260  * \ingroup colorproc */
00261 void imProcessMergeComponents(const imImage** src_image_list, imImage* dst_image);
00262 
00263 /** Normalize the color components by their sum. Example: c1 = c1/(c1+c2+c3). \n
00264  * Destiny image must be IM_FLOAT. 
00265  *
00266  * \verbatim im.ProcessNormalizeComponents(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00267  * \verbatim im.ProcessNormalizeComponentsNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00268  * \ingroup colorproc */
00269 void imProcessNormalizeComponents(const imImage* src_image, imImage* dst_image);
00270 
00271 /** Replaces the source color by the destiny color. \n
00272  * The color will be type casted to the image data type. \n
00273  * The colors must have the same number of components of the images. \n
00274  * Supports all color spaces and all data types except IM_CFLOAT.
00275  *
00276  * \verbatim im.ProcessReplaceColor(src_image: imImage, dst_image: imImage, src_color: table of numbers, dst_color: table of numbers) [in Lua 5] \endverbatim
00277  * \verbatim im.ProcessReplaceColorNew(src_image: imImage, src_color: table of numbers, dst_color: table of numbers) -> new_image: imImage [in Lua 5] \endverbatim
00278  * \ingroup colorproc */
00279 void imProcessReplaceColor(const imImage* src_image, imImage* dst_image, float* src_color, float* dst_color);
00280 
00281 
00282 
00283 /** \defgroup logic Logical Arithmetic Operations 
00284  * \par
00285  * Logical binary math operations for images.
00286  * \par
00287  * See \ref im_process_pon.h
00288  * \ingroup process */
00289 
00290 /** Logical Operations.
00291  * \ingroup logic */
00292 enum imLogicOp {
00293   IM_BIT_AND,   /**< and  =   a & b   */
00294   IM_BIT_OR,    /**< or   =   a | b   */
00295   IM_BIT_XOR    /**< xor  = ~(a | b)  */
00296 };
00297 
00298 /** Apply a logical operation.\n
00299  * Images must have data type IM_BYTE, IM_USHORT or IM_INT. Can be done in place. 
00300  *
00301  * \verbatim im.ProcessBitwiseOp(src_image1: imImage, src_image2: imImage, dst_image: imImage, op: number) [in Lua 5] \endverbatim
00302  * \verbatim im.ProcessBitwiseOpNew(src_image1: imImage, src_image2: imImage, op: number) -> new_image: imImage [in Lua 5] \endverbatim
00303  * \ingroup logic */
00304 void imProcessBitwiseOp(const imImage* src_image1, const imImage* src_image2, imImage* dst_image, int op);
00305 
00306 /** Apply a logical NOT operation.\n
00307  * Images must have data type IM_BYTE, IM_USHORT or IM_INT. Can be done in place. 
00308  *
00309  * \verbatim im.ProcessBitwiseNot(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00310  * \verbatim im.ProcessBitwiseNotNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00311  * \ingroup logic */
00312 void imProcessBitwiseNot(const imImage* src_image, imImage* dst_image);
00313 
00314 /** Apply a bit mask. \n
00315  * The same as imProcessBitwiseOp but the second image is replaced by a fixed mask. \n
00316  * Images must have data type IM_BYTE. It is valid only for AND, OR and XOR. Can be done in place.
00317  *
00318  * \verbatim im.ProcessBitMask(src_image: imImage, dst_image: imImage, mask: string, op: number) [in Lua 5] \endverbatim
00319  * \verbatim im.ProcessBitMaskNew(src_image: imImage, mask: string, op: number) -> new_image: imImage [in Lua 5] \endverbatim
00320  * In Lua, mask is a string with 0s and 1s, for example: "11001111".
00321  * \ingroup logic */
00322 void imProcessBitMask(const imImage* src_image, imImage* dst_image, unsigned char mask, int op);
00323 
00324 /** Extract or Reset a bit plane. For ex: 000X0000 or XXX0XXXX (plane=3).\n
00325  * Images must have data type IM_BYTE. Can be done in place. 
00326  *
00327  * \verbatim im.ProcessBitPlane(src_image: imImage, dst_image: imImage, plane: number, do_reset: boolean) [in Lua 5] \endverbatim
00328  * \verbatim im.ProcessBitPlaneNew(src_image: imImage, plane: number, do_reset: boolean) -> new_image: imImage [in Lua 5] \endverbatim
00329  * \ingroup logic */
00330 void imProcessBitPlane(const imImage* src_image, imImage* dst_image, int plane, int do_reset);
00331 
00332 
00333 
00334 /** \defgroup render Synthetic Image Render
00335  * \par
00336  * Renders some 2D mathematical functions as images. All the functions operates in place 
00337  * and supports all data types except IM_CFLOAT.
00338  * \par
00339  * See \ref im_process_pon.h
00340  * \ingroup process */
00341 
00342 /** Render Funtion.
00343  * \verbatim render_func(x: number, y: number, d: number, param: table of number) -> value: number [in Lua 5] \endverbatim
00344  * \ingroup render */
00345 typedef float (*imRenderFunc)(int x, int y, int d, float* param);
00346 
00347 /** Render Conditional Funtion.
00348  * \verbatim render_cond_func(x: number, y: number, d: number, param: table of number) -> value: number, cond: boolean [in Lua 5] \endverbatim
00349  * \ingroup render */
00350 typedef float (*imRenderCondFunc)(int x, int y, int d, int *cond, float* param);
00351 
00352 /** Render a synthetic image using a render function. \n
00353  * plus will make the render be added to the current image data, 
00354  * or else all data will be replaced. All the render functions use this or the conditional function. \n
00355  * Returns zero if the counter aborted.
00356  *
00357  * \verbatim im.ProcessRenderOp(image: imImage, render_func: function, render_name: string, param: table of number, plus: boolean) -> counter: boolean [in Lua 5] \endverbatim
00358  * \ingroup render */
00359 int imProcessRenderOp(imImage* image, imRenderFunc render_func, char* render_name, float* param, int plus);
00360 
00361 /** Render a synthetic image using a conditional render function. \n
00362  * Data will be rendered only if the condional param is true. \n
00363  * Returns zero if the counter aborted.
00364  *
00365  * \verbatim im.ProcessRenderCondOp(image: imImage, render_cond_func: function, render_name: string, param: table of number) -> counter: boolean [in Lua 5] \endverbatim
00366  * \ingroup render */
00367 int imProcessRenderCondOp(imImage* image, imRenderCondFunc render_cond_func, char* render_name, float* param);
00368 
00369 /** Render speckle noise on existing data. Can be done in place.
00370  *
00371  * \verbatim im.ProcessRenderAddSpeckleNoise(src_image: imImage, dst_image: imImage, percent: number) -> counter: boolean [in Lua 5] \endverbatim
00372  * \verbatim im.ProcessRenderAddSpeckleNoiseNew(src_image: imImage, percent: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00373  * \ingroup render */
00374 int imProcessRenderAddSpeckleNoise(const imImage* src_image, imImage* dst_image, float percent);
00375 
00376 /** Render gaussian noise on existing data. Can be done in place.
00377  *
00378  * \verbatim im.ProcessRenderAddGaussianNoise(src_image: imImage, dst_image: imImage, mean: number, stddev: number) -> counter: boolean [in Lua 5] \endverbatim
00379  * \verbatim im.ProcessRenderAddGaussianNoiseNew(src_image: imImage, mean: number, stddev: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00380  * \ingroup render */
00381 int imProcessRenderAddGaussianNoise(const imImage* src_image, imImage* dst_image, float mean, float stddev);
00382 
00383 /** Render uniform noise on existing data. Can be done in place.
00384  *
00385  * \verbatim im.ProcessRenderAddUniformNoise(src_image: imImage, dst_image: imImage, mean: number, stddev: number) -> counter: boolean [in Lua 5] \endverbatim
00386  * \verbatim im.ProcessRenderAddUniformNoiseNew(src_image: imImage, mean: number, stddev: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00387  * \ingroup render */
00388 int imProcessRenderAddUniformNoise(const imImage* src_image, imImage* dst_image, float mean, float stddev);
00389 
00390 /** Render random noise.
00391  *
00392  * \verbatim im.ProcessRenderRandomNoise(image: imImage) -> counter: boolean [in Lua 5] \endverbatim
00393  * \ingroup render */
00394 int imProcessRenderRandomNoise(imImage* image);
00395 
00396 /** Render a constant. The number of values must match the depth of the image.
00397  *
00398  * \verbatim im.ProcessRenderConstant(image: imImage, value: table of number) -> counter: boolean [in Lua 5] \endverbatim
00399  * \ingroup render */
00400 int imProcessRenderConstant(imImage* image, float* value);
00401 
00402 /** Render a centered wheel.
00403  *
00404  * \verbatim im.ProcessRenderWheel(image: imImage, internal_radius: number, external_radius: number) -> counter: boolean [in Lua 5] \endverbatim
00405  * \ingroup render */
00406 int imProcessRenderWheel(imImage* image, int internal_radius, int external_radius);
00407 
00408 /** Render a centered cone.
00409  *
00410  * \verbatim im.ProcessRenderCone(image: imImage, radius: number) -> counter: boolean [in Lua 5] \endverbatim
00411  * \ingroup render */
00412 int imProcessRenderCone(imImage* image, int radius);
00413 
00414 /** Render a centered tent.
00415  *
00416  * \verbatim im.ProcessRenderTent(image: imImage, tent_width: number, tent_height: number) -> counter: boolean [in Lua 5] \endverbatim
00417  * \ingroup render */
00418 int imProcessRenderTent(imImage* image, int tent_width, int tent_height);
00419 
00420 /** Render a ramp. Direction can be vertical (1) or horizontal (0).
00421  *
00422  * \verbatim im.ProcessRenderRamp(image: imImage, start: number, end: number, vert_dir: boolean) -> counter: boolean [in Lua 5] \endverbatim
00423  * \ingroup render */
00424 int imProcessRenderRamp(imImage* image, int start, int end, int vert_dir);
00425 
00426 /** Render a centered box.
00427  *
00428  * \verbatim im.ProcessRenderBox(image: imImage, box_width: number, box_height: number) -> counter: boolean [in Lua 5] \endverbatim
00429  * \ingroup render */
00430 int imProcessRenderBox(imImage* image, int box_width, int box_height);
00431 
00432 /** Render a centered sinc.
00433  *
00434  * \verbatim im.ProcessRenderSinc(image: imImage, x_period: number, y_period: number) -> counter: boolean [in Lua 5] \endverbatim
00435  * \ingroup render */
00436 int imProcessRenderSinc(imImage* image, float x_period, float y_period);
00437 
00438 /** Render a centered gaussian.
00439  *
00440  * \verbatim im.ProcessRenderGaussian(image: imImage, stddev: number) -> counter: boolean [in Lua 5] \endverbatim
00441  * \ingroup render */
00442 int imProcessRenderGaussian(imImage* image, float stddev);
00443 
00444 /** Render the laplacian of a centered gaussian.
00445  *
00446  * \verbatim im.ProcessRenderLapOfGaussian(image: imImage, stddev: number) -> counter: boolean [in Lua 5] \endverbatim
00447  * \ingroup render */
00448 int imProcessRenderLapOfGaussian(imImage* image, float stddev);
00449 
00450 /** Render a centered cosine.
00451  *
00452  * \verbatim im.ProcessRenderCosine(image: imImage, x_period: number, y_period: number) -> counter: boolean [in Lua 5] \endverbatim
00453  * \ingroup render */
00454 int imProcessRenderCosine(imImage* image, float x_period, float y_period);
00455 
00456 /** Render a centered grid.
00457  *
00458  * \verbatim im.ProcessRenderGrid(image: imImage, x_space: number, y_space: number) -> counter: boolean [in Lua 5] \endverbatim
00459  * \ingroup render */
00460 int imProcessRenderGrid(imImage* image, int x_space, int y_space);
00461 
00462 /** Render a centered chessboard.
00463  *
00464  * \verbatim im.ProcessRenderChessboard(image: imImage, x_space: number, y_space: number) -> counter: boolean [in Lua 5] \endverbatim
00465  * \ingroup render */
00466 int imProcessRenderChessboard(imImage* image, int x_space, int y_space);
00467 
00468 
00469 
00470 /** \defgroup tonegamut Tone Gamut Operations
00471  * \par
00472  * Operations that try to preserve the min-max interval in the output (the dynamic range).
00473  * \par
00474  * See \ref im_process_pon.h
00475  * \ingroup process */
00476 
00477 
00478 /** Tone Gamut Operations.
00479  * \ingroup tonegamut */
00480 enum imToneGamut {
00481   IM_GAMUT_NORMALIZE, /**< normalize = (a-min) / (max-min)     (destiny image must be IM_FLOAT)   */
00482   IM_GAMUT_POW,       /**< pow       = ((a-min) / (max-min))^gamma * (max-min) + min                  \n
00483                                        param[0]=gamma                                             */
00484   IM_GAMUT_LOG,       /**< log       = log(K * (a-min) / (max-min) + 1))*(max-min)/log(K+1) + min     \n
00485                                        param[0]=K     (K>0)                                       */
00486   IM_GAMUT_EXP,       /**< exp       = (exp(K * (a-min) / (max-min)) - 1))*(max-min)/(exp(K)-1) + min \n
00487                                        param[0]=K                                                 */
00488   IM_GAMUT_INVERT,    /**< invert    = max - (a-min)                                              */
00489   IM_GAMUT_ZEROSTART, /**< zerostart = a - min                                                    */
00490   IM_GAMUT_SOLARIZE,  /**< solarize  = a < level ?  a:  (level * (max-min) - a * (level-min)) / (max-level) \n
00491                                        param[0]=level percentage (0-100) relative to min-max      \n
00492                                        photography solarization effect. */
00493   IM_GAMUT_SLICE,     /**< slice     = start < a || a > end ?  min:  binarize?  max: a                     \n
00494                                        param[0]=start,  param[1]=end,  param[2]=binarize          */
00495   IM_GAMUT_EXPAND,    /**< expand    = a < start ?  min: a > end ? max :  (a-start)*(max-min)/(end-start) + min  \n
00496                                        param[0]=start,  param[1]=end                              */
00497   IM_GAMUT_CROP,      /**< crop      = a < start ?  start: a > end ? end : a                                        \n
00498                                        param[0]=start,  param[1]=end                              */
00499   IM_GAMUT_BRIGHTCONT /**< brightcont = a < min ?  min:  a > max ?  max:  a * tan(c_a) + b_s + (max-min)*(1 - tan(c_a))/2  \n
00500                                         param[0]=bright_shift (-100%..+100%),  param[1]=contrast_factor (-100%..+100%)     \n
00501                                         change brightness and contrast simultaneously. */
00502 };
00503 
00504 /** Apply a gamut operation with arguments. \n
00505  * Supports all data types except IM_CFLOAT. \n
00506  * The linear operation do a special convertion when min > 0 and max < 1, it forces min=0 and max=1. \n
00507  * IM_BYTE images have min=0 and max=255 always. \n
00508  * Can be done in place. When there is no extra params use NULL.
00509  *
00510  * \verbatim im.ProcessToneGamut(src_image: imImage, dst_image: imImage, op: number, param: table of number) [in Lua 5] \endverbatim
00511  * \verbatim im.ProcessToneGamutNew(src_image: imImage, op: number, param: table of number) -> new_image: imImage [in Lua 5] \endverbatim
00512  * \ingroup tonegamut */
00513 void imProcessToneGamut(const imImage* src_image, imImage* dst_image, int op, float* param);
00514 
00515 /** Converts from (0-1) to (0-255), crop out of bounds values. \n
00516  * Source image must be IM_FLOAT, and destiny image must be IM_BYTE.
00517  *
00518  * \verbatim im.ProcessUnNormalize(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00519  * \verbatim im.ProcessUnNormalizeNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00520  * \ingroup tonegamut */
00521 void imProcessUnNormalize(const imImage* src_image, imImage* dst_image);
00522 
00523 /** Directly converts IM_USHORT, IM_INT and IM_FLOAT into IM_BYTE images. \n
00524  * This can also be done using \ref imConvertDataType with IM_CAST_DIRECT.
00525  *
00526  * \verbatim im.ProcessDirectConv(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00527  * \verbatim im.ProcessDirectConvNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00528  * \ingroup tonegamut */
00529 void imProcessDirectConv(const imImage* src_image, imImage* dst_image);
00530 
00531 /** A negative effect. Uses \ref imProcessToneGamut with IM_GAMUT_INVERT for non MAP images. \n
00532  * Supports all color spaces and all data types except IM_CFLOAT.
00533  *
00534  * \verbatim im.ProcessNegative(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00535  * \verbatim im.ProcessNegativeNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00536  * \ingroup tonegamut */
00537 void imProcessNegative(const imImage* src_image, imImage* dst_image);
00538 
00539 
00540 
00541 /** \defgroup threshold Threshold Operations
00542  * \par
00543  * Operations that converts a usually IM_GRAY/IM_BYTE image into a IM_BINARY image using several threshold techniques.
00544  * \par
00545  * See \ref im_process_pon.h
00546  * \ingroup process */
00547 
00548 /** Apply a manual threshold. \n
00549  * threshold = a <= level ? 0: value \n
00550  * Normal value is 1 but another common value is 255. Can be done in place for IM_BYTE source. \n
00551  * Supports all integer IM_GRAY images as source, and IM_BINARY as destiny.
00552  *
00553  * \verbatim im.ProcessThreshold(src_image: imImage, dst_image: imImage, level: number, value: number) [in Lua 5] \endverbatim
00554  * \verbatim im.ProcessThresholdNew(src_image: imImage, level: number, value: number) -> new_image: imImage [in Lua 5] \endverbatim
00555  * \ingroup threshold */
00556 void imProcessThreshold(const imImage* src_image, imImage* dst_image, int level, int value);
00557 
00558 /** Apply a threshold by the difference of two images. \n
00559  * threshold = a1 <= a2 ? 0: 1   \n
00560  * Can be done in place. 
00561  *
00562  * \verbatim im.ProcessThresholdByDiff(src_image1: imImage, src_image2: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00563  * \verbatim im.ProcessThresholdByDiffNew(src_image1: imImage, src_image2: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00564  * \ingroup threshold */
00565 void imProcessThresholdByDiff(const imImage* src_image1, const imImage* src_image2, imImage* dst_image);
00566 
00567 /** Apply a threshold by the Hysteresis method. \n
00568  * Hysteresis thersholding of edge pixels. Starting at pixels with a
00569  * value greater than the HIGH threshold, trace a connected sequence
00570  * of pixels that have a value greater than the LOW threhsold. \n
00571  * Note: could not find the original source code author name.
00572  *
00573  * \verbatim im.ProcessHysteresisThreshold(src_image: imImage, dst_image: imImage, low_thres: number, high_thres: number) [in Lua 5] \endverbatim
00574  * \verbatim im.ProcessHysteresisThresholdNew(src_image: imImage, low_thres: number, high_thres: number) -> new_image: imImage [in Lua 5] \endverbatim
00575  * \ingroup threshold */
00576 void imProcessHysteresisThreshold(const imImage* src_image, imImage* dst_image, int low_thres, int high_thres);
00577 
00578 /** Estimates hysteresis low and high threshold levels. \n
00579  * Usefull for \ref imProcessHysteresisThreshold.
00580  *
00581  * \verbatim im.ProcessHysteresisThresEstimate(image: imImage) -> low_level: number, high_level: number [in Lua 5] \endverbatim
00582  * \ingroup threshold */
00583 void imProcessHysteresisThresEstimate(const imImage* image, int *low_level, int *high_level);
00584 
00585 /** Calculates the threshold level for manual threshold using an uniform error approach. \n
00586  * Extracted from XITE, Copyright 1991, Blab, UiO \n
00587  * http://www.ifi.uio.no/~blab/Software/Xite/
00588 \verbatim
00589   Reference:
00590     S. M. Dunn & D. Harwood & L. S. Davis:
00591     "Local Estimation of the Uniform Error Threshold"
00592     IEEE Trans. on PAMI, Vol PAMI-6, No 6, Nov 1984.
00593   Comments: It only works well on images whith large objects.
00594   Author: Olav Borgli, BLAB, ifi, UiO
00595   Image processing lab, Department of Informatics, University of Oslo
00596 \endverbatim
00597  * Returns the used level.
00598  *
00599  * \verbatim im.ProcessUniformErrThreshold(src_image: imImage, dst_image: imImage) -> level: number [in Lua 5] \endverbatim
00600  * \verbatim im.ProcessUniformErrThresholdNew(src_image: imImage)  -> level: number, new_image: imImage [in Lua 5] \endverbatim
00601  * \ingroup threshold */
00602 int imProcessUniformErrThreshold(const imImage* src_image, imImage* dst_image);
00603 
00604 /** Apply a dithering on each image channel by using a difusion error method. \n
00605  * It can be applied on any IM_BYTE images. It will "threshold" each channel indivudually, so
00606  * source and destiny must be of the same depth.
00607  *
00608  * \verbatim im.ProcessDifusionErrThreshold(src_image: imImage, dst_image: imImage, level: number) [in Lua 5] \endverbatim
00609  * \verbatim im.ProcessDifusionErrThresholdNew(src_image: imImage, level: number) -> new_image: imImage [in Lua 5] \endverbatim
00610  * \ingroup threshold */
00611 void imProcessDifusionErrThreshold(const imImage* src_image, imImage* dst_image, int level);
00612 
00613 /** Calculates the threshold level for manual threshold using a percentage of pixels
00614  * that should stay bellow the threshold. \n
00615  * Returns the used level.
00616  *
00617  * \verbatim im.ProcessPercentThreshold(src_image: imImage, dst_image: imImage, percent: number) -> level: number [in Lua 5] \endverbatim
00618  * \verbatim im.ProcessPercentThresholdNew(src_image: imImage, percent: number) -> level: number, new_image: imImage [in Lua 5] \endverbatim
00619  * \ingroup threshold */
00620 int imProcessPercentThreshold(const imImage* src_image, imImage* dst_image, float percent);
00621 
00622 /** Calculates the threshold level for manual threshold using the Otsu approach. \n
00623  * Returns the used level. \n
00624  * Original implementation by Flavio Szenberg.
00625  *
00626  * \verbatim im.ProcessOtsuThreshold(src_image: imImage, dst_image: imImage) -> level: number [in Lua 5] \endverbatim
00627  * \verbatim im.ProcessOtsuThresholdNew(src_image: imImage) -> level: number, new_image: imImage [in Lua 5] \endverbatim
00628  * \ingroup threshold */
00629 int imProcessOtsuThreshold(const imImage* src_image, imImage* dst_image);
00630 
00631 /** Calculates the threshold level for manual threshold using (max-min)/2. \n
00632  * Returns the used level. \n
00633  * Supports all integer IM_GRAY images as source, and IM_BINARY as destiny.
00634  *
00635  * \verbatim im.ProcessMinMaxThreshold(src_image: imImage, dst_image: imImage) -> level: number [in Lua 5] \endverbatim
00636  * \verbatim im.ProcessMinMaxThresholdNew(src_image: imImage) -> level: number, new_image: imImage [in Lua 5] \endverbatim
00637  * \ingroup threshold */
00638 int imProcessMinMaxThreshold(const imImage* src_image, imImage* dst_image);
00639 
00640 /** Estimates Local Max threshold level for IM_BYTE images.
00641  *
00642  * \verbatim im.ProcessLocalMaxThresEstimate(image: imImage) -> level: number [in Lua 5] \endverbatim
00643  * \ingroup threshold */
00644 void imProcessLocalMaxThresEstimate(const imImage* image, int *level);
00645 
00646 /** Apply a manual threshold using an interval. \n
00647  * threshold = start_level <= a <= end_level ? 1: 0 \n
00648  * Normal value is 1 but another common value is 255. Can be done in place for IM_BYTE source. \n
00649  * Supports all integer IM_GRAY images as source, and IM_BINARY as destiny.
00650  *
00651  * \verbatim im.ProcessSliceThreshold(src_image: imImage, dst_image: imImage, start_level: number, end_level: number) [in Lua 5] \endverbatim
00652  * \verbatim im.ProcessSliceThresholdNew(src_image: imImage, start_level: number, end_level: number) -> new_image: imImage [in Lua 5] \endverbatim
00653  * \ingroup threshold */
00654 void imProcessSliceThreshold(const imImage* src_image, imImage* dst_image, int start_level, int end_level);
00655 
00656 
00657 /** \defgroup effects Special Effects
00658  * \par
00659  * Operations to change image appearance.
00660  * \par
00661  * See \ref im_process_pon.h
00662  * \ingroup process */
00663 
00664 
00665 /** Generates a zoom in effect averaging colors inside a square region. \n
00666  * Operates only on IM_BYTE images.
00667  *
00668  * \verbatim im.ProcessPixelate(src_image: imImage, dst_image: imImage, box_size: number) [in Lua 5] \endverbatim
00669  * \verbatim im.ProcessPixelateNew(src_image: imImage, box_size: number) -> new_image: imImage [in Lua 5] \endverbatim
00670  * \ingroup effects */
00671 void imProcessPixelate(const imImage* src_image, imImage* dst_image, int box_size);
00672 
00673 /** A simple Posterize effect. It reduces the number of colors in the image eliminating 
00674  * less significant bit planes. Can have 1 to 7 levels. See \ref imProcessBitMask. \n
00675  * Image data type must be integer.
00676  *
00677  * \verbatim im.ProcessPosterize(src_image: imImage, dst_image: imImage, level: number) [in Lua 5] \endverbatim
00678  * \verbatim im.ProcessPosterizeNew(src_image: imImage, level: number) -> new_image: imImage [in Lua 5] \endverbatim
00679  * \ingroup effects */
00680 void imProcessPosterize(const imImage* src_image, imImage* dst_image, int level);
00681 
00682 
00683 
00684 #if defined(__cplusplus)
00685 }
00686 #endif
00687 
00688 #endif