DotNetMatrix

DotNetMatrix

An NDoc Documented Class Library

DotNetMatrix Namespace

Classes

Class Description
CholeskyDecomposition Cholesky Decomposition. For a symmetric, positive definite matrix A, the Cholesky decomposition is an lower triangular matrix L so that A = L*L'. If the matrix is not symmetric or positive definite, the constructor returns a partial decomposition and sets an internal flag that may be queried by the isSPD() method.
EigenvalueDecomposition Eigenvalues and eigenvectors of a real matrix. If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal and the eigenvector matrix V is orthogonal. I.e. A = V.Multiply(D.Multiply(V.Transpose())) and V.Multiply(V.Transpose()) equals the identity matrix. If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The columns of V represent the eigenvectors in the sense that A*V = V*D, i.e. A.Multiply(V) equals V.Multiply(D). The matrix V may be badly conditioned, or even singular, so the validity of the equation A = V*D*Inverse(V) depends upon V.cond().
GeneralMatrix
LUDecomposition
Maths
QRDecomposition QR Decomposition. For an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n orthogonal matrix Q and an n-by-n upper triangular matrix R so that A = Q*R. The QR decompostion always exists, even if the matrix does not have full rank, so the constructor will never fail. The primary use of the QR decomposition is in the least squares solution of nonsquare systems of simultaneous linear equations. This will fail if IsFullRank() returns false.
SingularValueDecomposition