26.1. typing
— Support for type hints
New in version 3.5.
Source code: Lib/typing.py
This module supports type hints as specified by PEP 484. The most
fundamental support consists of the type Any
, Union
,
Tuple
, Callable
, TypeVar
, and
Generic
. For full specification please see PEP 484. For
a simplified introduction to type hints see PEP 483.
The function below takes and returns a string and is annotated as follows:
def greeting(name: str) -> str:
return 'Hello ' + name
In the function greeting
, the argument name
is expected to be of type
str
and the return type str
. Subtypes are accepted as
arguments.
26.1.1. Type aliases
A type alias is defined by assigning the type to the alias:
Vector = List[float]
26.1.2. Callable
Frameworks expecting callback functions of specific signatures might be
type hinted using Callable[[Arg1Type, Arg2Type], ReturnType]
.
For example:
from typing import Callable
def feeder(get_next_item: Callable[[], str]) -> None:
# Body
def async_query(on_success: Callable[[int], None],
on_error: Callable[[int, Exception], None]) -> None:
# Body
It is possible to declare the return type of a callable without specifying
the call signature by substituting a literal ellipsis
for the list of arguments in the type hint: Callable[..., ReturnType]
.
None
as a type hint is a special case and is replaced by type(None)
.
26.1.3. Generics
Since type information about objects kept in containers cannot be statically inferred in a generic way, abstract base classes have been extended to support subscription to denote expected types for container elements.
from typing import Mapping, Sequence
def notify_by_email(employees: Sequence[Employee],
overrides: Mapping[str, str]) -> None: ...
Generics can be parametrized by using a new factory available in typing
called TypeVar
.
from typing import Sequence, TypeVar
T = TypeVar('T') # Declare type variable
def first(l: Sequence[T]) -> T: # Generic function
return l[0]
26.1.4. User-defined generic types
A user-defined class can be defined as a generic class.
from typing import TypeVar, Generic
from logging import Logger
T = TypeVar('T')
class LoggedVar(Generic[T]):
def __init__(self, value: T, name: str, logger: Logger) -> None:
self.name = name
self.logger = logger
self.value = value
def set(self, new: T) -> None:
self.log('Set ' + repr(self.value))
self.value = new
def get(self) -> T:
self.log('Get ' + repr(self.value))
return self.value
def log(self, message: str) -> None:
self.logger.info('{}: {}'.format(self.name, message))
Generic[T]
as a base class defines that the class LoggedVar
takes a
single type parameter T
. This also makes T
valid as a type within the
class body.
The Generic
base class uses a metaclass that defines
__getitem__()
so that LoggedVar[t]
is valid as a type:
from typing import Iterable
def zero_all_vars(vars: Iterable[LoggedVar[int]]) -> None:
for var in vars:
var.set(0)
A generic type can have any number of type variables, and type variables may be constrained:
from typing import TypeVar, Generic
...
T = TypeVar('T')
S = TypeVar('S', int, str)
class StrangePair(Generic[T, S]):
...
Each type variable argument to Generic
must be distinct.
This is thus invalid:
from typing import TypeVar, Generic
...
T = TypeVar('T')
class Pair(Generic[T, T]): # INVALID
...
You can use multiple inheritance with Generic
:
from typing import TypeVar, Generic, Sized
T = TypeVar('T')
class LinkedList(Sized, Generic[T]):
...
When inheriting from generic classes, some type variables could be fixed:
from typing import TypeVar, Mapping
T = TypeVar('T')
class MyDict(Mapping[str, T]):
...
In this case MyDict
has a single parameter, T
.
Subclassing a generic class without specifying type parameters assumes
Any
for each position. In the following example, MyIterable
is
not generic but implicitly inherits from Iterable[Any]
:
from typing import Iterable
class MyIterable(Iterable): # Same as Iterable[Any]
The metaclass used by Generic
is a subclass of abc.ABCMeta
.
A generic class can be an ABC by including abstract methods or properties,
and generic classes can also have ABCs as base classes without a metaclass
conflict. Generic metaclasses are not supported.
26.1.5. The Any
type
A special kind of type is Any
. Every type is a subtype of
Any
. This is also true for the builtin type object. However, to the
static type checker these are completely different.
When the type of a value is object
, the type checker will reject
almost all operations on it, and assigning it to a variable (or using it as a
return value) of a more specialized type is a type error. On the other hand,
when a value has type Any
, the type checker will allow all operations
on it, and a value of type Any
can be assigned to a variable (or used
as a return value) of a more constrained type.
26.1.6. Classes, functions, and decorators
The module defines the following classes, functions and decorators:
-
class
typing.
Any
Special type indicating an unconstrained type.
-
class
typing.
TypeVar
Type variable.
Usage:
T = TypeVar('T') # Can be anything A = TypeVar('A', str, bytes) # Must be str or bytes
Type variables exist primarily for the benefit of static type checkers. They serve as the parameters for generic types as well as for generic function definitions. See class Generic for more information on generic types. Generic functions work as follows:
def repeat(x: T, n: int) -> Sequence[T]: """Return a list containing n references to x.""" return [x]*n def longest(x: A, y: A) -> A: """Return the longest of two strings.""" return x if len(x) >= len(y) else y
The latter example’s signature is essentially the overloading of
(str, str) -> str
and(bytes, bytes) -> bytes
. Also note that if the arguments are instances of some subclass ofstr
, the return type is still plainstr
.At runtime,
isinstance(x, T)
will raiseTypeError
. In general,isinstance()
andissubclass()
should not be used with types.Type variables may be marked covariant or contravariant by passing
covariant=True
orcontravariant=True
. See PEP 484 for more details. By default type variables are invariant. Alternatively, a type variable may specify an upper bound usingbound=<type>
. This means that an actual type substituted (explicitly or implicitly) for the type variable must be a subclass of the boundary type, see PEP 484.
-
class
typing.
Union
Union type;
Union[X, Y]
means either X or Y.To define a union, use e.g.
Union[int, str]
. Details:The arguments must be types and there must be at least one.
Unions of unions are flattened, e.g.:
Union[Union[int, str], float] == Union[int, str, float]
Unions of a single argument vanish, e.g.:
Union[int] == int # The constructor actually returns int
Redundant arguments are skipped, e.g.:
Union[int, str, int] == Union[int, str]
When comparing unions, the argument order is ignored, e.g.:
Union[int, str] == Union[str, int]
If
Any
is present it is the sole survivor, e.g.:Union[int, Any] == Any
You cannot subclass or instantiate a union.
You cannot write
Union[X][Y]
.You can use
Optional[X]
as a shorthand forUnion[X, None]
.
-
class
typing.
Optional
Optional type.
Optional[X]
is equivalent toUnion[X, type(None)]
.Note that this is not the same concept as an optional argument, which is one that has a default. An optional argument with a default needn’t use the
Optional
qualifier on its type annotation (although it is inferred if the default isNone
). A mandatory argument may still have anOptional
type if an explicit value ofNone
is allowed.
-
class
typing.
Tuple
Tuple type;
Tuple[X, Y]
is the type of a tuple of two items with the first item of type X and the second of type Y.Example:
Tuple[T1, T2]
is a tuple of two elements corresponding to type variables T1 and T2.Tuple[int, float, str]
is a tuple of an int, a float and a string.To specify a variable-length tuple of homogeneous type, use literal ellipsis, e.g.
Tuple[int, ...]
.
-
class
typing.
Callable
Callable type;
Callable[[int], str]
is a function of (int) -> str.The subscription syntax must always be used with exactly two values: the argument list and the return type. The argument list must be a list of types; the return type must be a single type.
There is no syntax to indicate optional or keyword arguments, such function types are rarely used as callback types.
Callable[..., ReturnType]
could be used to type hint a callable taking any number of arguments and returningReturnType
. A plainCallable
is equivalent toCallable[..., Any]
.
-
class
typing.
Generic
Abstract base class for generic types.
A generic type is typically declared by inheriting from an instantiation of this class with one or more type variables. For example, a generic mapping type might be defined as:
class Mapping(Generic[KT, VT]): def __getitem__(self, key: KT) -> VT: ... # Etc.
This class can then be used as follows:
X = TypeVar('X') Y = TypeVar('Y') def lookup_name(mapping: Mapping[X, Y], key: X, default: Y) -> Y: try: return mapping[key] except KeyError: return default
-
class
typing.
Iterable
(Generic[T_co]) A generic version of the
collections.abc.Iterable
.
-
class
typing.
Iterator
(Iterable[T_co]) A generic version of the
collections.abc.Iterator
.
-
class
typing.
SupportsInt
An ABC with one abstract method
__int__
.
-
class
typing.
SupportsFloat
An ABC with one abstract method
__float__
.
-
class
typing.
SupportsAbs
An ABC with one abstract method
__abs__
that is covariant in its return type.
-
class
typing.
SupportsRound
An ABC with one abstract method
__round__
that is covariant in its return type.
-
class
typing.
Reversible
An ABC with one abstract method
__reversed__
returning anIterator[T_co]
.
-
class
typing.
Container
(Generic[T_co]) A generic version of
collections.abc.Container
.
-
class
typing.
AbstractSet
(Sized, Iterable[T_co], Container[T_co]) A generic version of
collections.abc.Set
.
-
class
typing.
MutableSet
(AbstractSet[T]) A generic version of
collections.abc.MutableSet
.
-
class
typing.
Mapping
(Sized, Iterable[KT], Container[KT], Generic[VT_co]) A generic version of
collections.abc.Mapping
.
-
class
typing.
MutableMapping
(Mapping[KT, VT]) A generic version of
collections.abc.MutableMapping
.
-
class
typing.
Sequence
(Sized, Iterable[T_co], Container[T_co]) A generic version of
collections.abc.Sequence
.
-
class
typing.
MutableSequence
(Sequence[T]) A generic version of
collections.abc.MutableSequence
.
-
class
typing.
ByteString
(Sequence[int]) A generic version of
collections.abc.ByteString
.This type represents the types
bytes
,bytearray
, andmemoryview
.As a shorthand for this type,
bytes
can be used to annotate arguments of any of the types mentioned above.
-
class
typing.
List
(list, MutableSequence[T]) Generic version of
list
. Useful for annotating return types. To annotate arguments it is preferred to use abstract collection types such asMapping
,Sequence
, orAbstractSet
.This type may be used as follows:
T = TypeVar('T', int, float) def vec2(x: T, y: T) -> List[T]: return [x, y] def slice__to_4(vector: Sequence[T]) -> List[T]: return vector[0:4]
-
class
typing.
Set
(set, MutableSet[T]) A generic version of
builtins.set
.
-
class
typing.
MappingView
(Sized, Iterable[T_co]) A generic version of
collections.abc.MappingView
.
-
class
typing.
KeysView
(MappingView[KT_co], AbstractSet[KT_co]) A generic version of
collections.abc.KeysView
.
-
class
typing.
ItemsView
(MappingView, Generic[KT_co, VT_co]) A generic version of
collections.abc.ItemsView
.
-
class
typing.
ValuesView
(MappingView[VT_co]) A generic version of
collections.abc.ValuesView
.
-
class
typing.
Dict
(dict, MutableMapping[KT, VT]) A generic version of
dict
. The usage of this type is as follows:def get_position_in_index(word_list: Dict[str, int], word: str) -> int: return word_list[word]
-
class
typing.
Generator
(Iterator[T_co], Generic[T_co, T_contra, V_co])
-
class
typing.
io
Wrapper namespace for I/O stream types.
This defines the generic type
IO[AnyStr]
and aliasesTextIO
andBinaryIO
for respectivelyIO[str]
andIO[bytes]
. These representing the types of I/O streams such as returned byopen()
.
-
class
typing.
re
Wrapper namespace for regular expression matching types.
This defines the type aliases
Pattern
andMatch
which correspond to the return types fromre.compile()
andre.match()
. These types (and the corresponding functions) are generic inAnyStr
and can be made specific by writingPattern[str]
,Pattern[bytes]
,Match[str]
, orMatch[bytes]
.
-
typing.
NamedTuple
(typename, fields) Typed version of namedtuple.
Usage:
Employee = typing.NamedTuple('Employee', [('name', str), ('id', int)])
This is equivalent to:
Employee = collections.namedtuple('Employee', ['name', 'id'])
The resulting class has one extra attribute: _field_types, giving a dict mapping field names to types. (The field names are in the _fields attribute, which is part of the namedtuple API.)
-
typing.
cast
(typ, val) Cast a value to a type.
This returns the value unchanged. To the type checker this signals that the return value has the designated type, but at runtime we intentionally don’t check anything (we want this to be as fast as possible).
-
typing.
get_type_hints
(obj) Return type hints for a function or method object.
This is often the same as
obj.__annotations__
, but it handles forward references encoded as string literals, and if necessary addsOptional[t]
if a default value equal to None is set.
-
@
typing.
no_type_check
(arg) Decorator to indicate that annotations are not type hints.
The argument must be a class or function; if it is a class, it applies recursively to all methods defined in that class (but not to methods defined in its superclasses or subclasses).
This mutates the function(s) in place.
-
@
typing.
no_type_check_decorator
(decorator) Decorator to give another decorator the
no_type_check()
effect.This wraps the decorator with something that wraps the decorated function in
no_type_check()
.