IM: im_process_loc.h Source File

IM - An Imaging Tool

im_process_loc.h

Go to the documentation of this file.
00001 /** \file
00002  * \brief Image Processing - Local Operations
00003  *
00004  * See Copyright Notice in im_lib.h
00005  */
00006 
00007 #ifndef __IM_PROCESS_LOC_H
00008 #define __IM_PROCESS_LOC_H
00009 
00010 #include "im_image.h"
00011 
00012 #if defined(__cplusplus)
00013 extern "C" {
00014 #endif
00015 
00016 
00017 
00018 /** \defgroup resize Image Resize
00019  * \par
00020  * Operations to change the image size.
00021  * \par
00022  * See \ref im_process_loc.h
00023  * \ingroup process */
00024 
00025 /** Only reduze the image size using the given decimation order. \n
00026  * Supported decimation orders:
00027  * \li 0 - zero order (mean) 
00028  * \li 1 - first order (bilinear decimation)
00029  * Images must be of the same type. If image type is IM_MAP or IM_BINARY, must use order=0. \n
00030  * Returns zero if the counter aborted.
00031  *
00032  * \verbatim im.ProcessReduce(src_image: imImage, dst_image: imImage, order: number) -> counter: boolean [in Lua 5] \endverbatim
00033  * \verbatim im.ProcessReduceNew(image: imImage, order: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00034  * \ingroup resize */
00035 int imProcessReduce(const imImage* src_image, imImage* dst_image, int order);
00036 
00037 /** Change the image size using the given interpolation order. \n
00038  * Supported interpolation orders:
00039  * \li 0 - zero order (near neighborhood) 
00040  * \li 1 - first order (bilinear interpolation) 
00041  * \li 3 - third order (bicubic interpolation)
00042  * Images must be of the same type. If image type is IM_MAP or IM_BINARY, must use order=0. \n
00043  * Returns zero if the counter aborted.
00044  *
00045  * \verbatim im.ProcessResize(src_image: imImage, dst_image: imImage, order: number) -> counter: boolean [in Lua 5] \endverbatim
00046  * \verbatim im.ProcessResizeNew(image: imImage, order: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00047  * \ingroup resize */
00048 int imProcessResize(const imImage* src_image, imImage* dst_image, int order);
00049 
00050 /** Reduze the image area by 4 (w/2,h/2). \n
00051  * Images must be of the same type. Destiny image size must be source image width/2, height/2.
00052  * Can not operate on IM_MAP nor IM_BINARY images.
00053  *
00054  * \verbatim im.ProcessReduceBy4(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00055  * \verbatim im.ProcessReduceBy4New(image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00056  * \ingroup resize */
00057 void imProcessReduceBy4(const imImage* src_image, imImage* dst_image);
00058 
00059 /** Extract a rectangular region from an image. \n
00060  * Images must be of the same type. Destiny image size must be smaller than source image width-xmin, height-ymin. \n
00061  * ymin and xmin must be >0 and <size.
00062  *
00063  * \verbatim im.ProcessCrop(src_image: imImage, dst_image: imImage, xmin: number, ymin: number) [in Lua 5] \endverbatim
00064  * \verbatim im.ProcessCropNew(image: imImage, xmin: number, xmax: number, ymin: number, ymax: number) -> new_image: imImage [in Lua 5] \endverbatim
00065  * \ingroup resize */
00066 void imProcessCrop(const imImage* src_image, imImage* dst_image, int xmin, int ymin);
00067 
00068 /** Insert a rectangular region in an image. \n
00069  * Images must be of the same type. Region image size can be larger than source image. \n
00070  * ymin and xmin must be >0 and <size. \n
00071  * Source and destiny must be of the same size. Can be done in place.
00072  *
00073  * \verbatim im.ProcessInsert(src_image: imImage, region_image: imImage, dst_image: imImage, xmin: number, ymin: number) [in Lua 5] \endverbatim
00074  * \verbatim im.ProcessInsertNew(image: imImage, region_image: imImage, xmin: number, ymin: number) -> new_image: imImage [in Lua 5] \endverbatim
00075  * \ingroup resize */
00076 void imProcessInsert(const imImage* src_image, const imImage* region_image, imImage* dst_image, int xmin, int ymin);
00077 
00078 /** Increase the image size by adding pixels with zero value. \n
00079  * Images must be of the same type. Destiny image size must be greatter than source image width+xmin, height+ymin.
00080  *
00081  * \verbatim im.ProcessAddMargins(src_image: imImage, dst_image: imImage, xmin: number, ymin: number) [in Lua 5] \endverbatim
00082  * \verbatim im.ProcessAddMarginsNew(image: imImage, xmin: number, xmax: number, ymin: number, ymax: number) -> new_image: imImage [in Lua 5] \endverbatim
00083  * \ingroup resize */
00084 void imProcessAddMargins(const imImage* src_image, imImage* dst_image, int xmin, int ymin);
00085 
00086 
00087 
00088 /** \defgroup geom Geometric Operations
00089  * \par
00090  * Operations to change the shape of the image.
00091  * \par
00092  * See \ref im_process_loc.h
00093  * \ingroup process */
00094 
00095 /** Calculates the size of the new image after rotation.
00096  *
00097  * \verbatim im.ProcessCalcRotateSize(width: number, height: number, cos0: number, sin0: number) [in Lua 5] \endverbatim
00098  * \ingroup geom */
00099 void imProcessCalcRotateSize(int width, int height, int *new_width, int *new_height, double cos0, double sin0);
00100 
00101 /** Rotates the image using the given interpolation order (see \ref imProcessResize). \n
00102  * Images must be of the same type. The destiny size can be calculated using \ref imProcessCalcRotateSize to fit the new image size, 
00103  * or can be any size, including the original size. The rotation is relative to the center of the image. \n
00104  * Returns zero if the counter aborted.
00105  *
00106  * \verbatim im.ProcessRotate(src_image: imImage, dst_image: imImage, cos0: number, sin0: number, order: number) -> counter: boolean [in Lua 5] \endverbatim
00107  * \verbatim im.ProcessRotateNew(image: imImage, cos0: number, sin0: number, order: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00108  * \ingroup geom */
00109 int imProcessRotate(const imImage* src_image, imImage* dst_image, double cos0, double sin0, int order);
00110 
00111 /** Rotates the image using the given interpolation order (see \ref imProcessResize). \n
00112  * Images must be of the same type. Destiny can have any size, including the original size. \n
00113  * The rotation is relative to the reference point. But the result can be shifted to the origin. \n
00114  * Returns zero if the counter aborted.
00115  *
00116  * \verbatim im.ProcessRotateRef(src_image: imImage, dst_image: imImage, cos0: number, sin0: number, x: number, y: number, to_origin: boolean, order: number) -> counter: boolean [in Lua 5] \endverbatim
00117  * \verbatim im.ProcessRotateRefNew(image: imImage, cos0: number, sin0: number, x: number, y: number, to_origin: boolean, order: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00118  * \ingroup geom */
00119 int imProcessRotateRef(const imImage* src_image, imImage* dst_image, double cos0, double sin0, int x, int y, int to_origin, int order);
00120 
00121 /** Rotates the image in 90 degrees counterclockwise or clockwise. Swap columns by lines. \n
00122  * Images must be of the same type. Destiny width and height must be source height and width. \n
00123  * Direction can be clockwise (1) or counter clockwise (-1).
00124  *
00125  * \verbatim im.ProcessRotate90(src_image: imImage, dst_image: imImage, dir_clockwise: boolean) [in Lua 5] \endverbatim
00126  * \verbatim im.ProcessRotate90New(image: imImage, dir_clockwise: boolean) -> new_image: imImage [in Lua 5] \endverbatim
00127  * \ingroup geom */
00128 void imProcessRotate90(const imImage* src_image, imImage* dst_image, int dir_clockwise);
00129 
00130 /** Rotates the image in 180 degrees. Swap columns and swap lines. \n
00131  * Images must be of the same type and size.
00132  *
00133  * \verbatim im.ProcessRotate180(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00134  * \verbatim im.ProcessRotate180New(image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00135  * \ingroup geom */
00136 void imProcessRotate180(const imImage* src_image, imImage* dst_image);
00137 
00138 /** Mirror the image in a horizontal flip. Swap columns. \n
00139  * Images must be of the same type and size.
00140  * Can be done in-place.
00141  *
00142  * \verbatim im.ProcessMirror(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00143  * \verbatim im.ProcessMirrorNew(image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00144  * \ingroup geom */
00145 void imProcessMirror(const imImage* src_image, imImage* dst_image);
00146 
00147 /** Apply a vertical flip. Swap lines. \n
00148  * Images must be of the same type and size.
00149  * Can be done in-place.
00150  *
00151  * \verbatim im.ProcessFlip(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00152  * \verbatim im.ProcessFlipNew(image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00153  * \ingroup geom */
00154 void imProcessFlip(const imImage* src_image, imImage* dst_image);
00155 
00156 /** Apply a radial distortion using the given interpolation order (see imProcessResize). \n
00157  * Images must be of the same type and size. Returns zero if the counter aborted.
00158  *
00159  * \verbatim im.ProcessRadial(src_image: imImage, dst_image: imImage, k1: number, order: number) -> counter: boolean [in Lua 5] \endverbatim
00160  * \verbatim im.ProcessRadialNew(image: imImage, k1: number, order: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00161  * \ingroup geom */
00162 int imProcessRadial(const imImage* src_image, imImage* dst_image, float k1, int order);
00163 
00164 /** Apply a swirl distortion using the given interpolation order (see imProcessResize). \n
00165  * Images must be of the same type and size. Returns zero if the counter aborted.
00166  *
00167  * \verbatim im.ProcessSwirl(src_image: imImage, dst_image: imImage, k: number, order: number) -> counter: boolean [in Lua 5] \endverbatim
00168  * \verbatim im.ProcessSwirlNew(image: imImage, k: number, order: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00169  * \ingroup geom */
00170 int imProcessSwirl(const imImage* src_image, imImage* dst_image, float k1, int order);
00171 
00172 /** Split the image in two images, one containing the odd lines and other containing the even lines. \n
00173  * Images must be of the same type. Height of the output images must be half the height of the input image.
00174  * If the height of the input image is odd then the first image must have height equals to half+1.
00175  *
00176  * \verbatim im.ProcessInterlaceSplit(src_image: imImage, dst_image1: imImage, dst_image2: imImage) [in Lua 5] \endverbatim
00177  * \verbatim im.ProcessInterlaceSplitNew(image: imImage) -> new_image1: imImage, new_image2: imImage [in Lua 5] \endverbatim
00178  * \ingroup geom */
00179 void imProcessInterlaceSplit(const imImage* src_image, imImage* dst_image1, imImage* dst_image2);
00180 
00181 
00182 
00183 /** \defgroup morphgray Morphology Operations for Gray Images
00184  * \par
00185  * See \ref im_process_loc.h
00186  * \ingroup process */
00187 
00188 /** Base gray morphology convolution. \n
00189  * Supports all data types except IM_CFLOAT. Can be applied on color images. \n
00190  * Kernel is always IM_INT. Use kernel size odd for better results. \n
00191  * Use -1 for don't care positions in kernel. Kernel values are added to image values, then \n
00192  * you can use the maximum or the minimum within the kernel area. \n
00193  * No border extensions are used. 
00194  * All the gray morphology operations use this function. \n
00195  * If the kernel image attribute "Description" exists it is used by the counter.
00196  *
00197  * \verbatim im.ProcessGrayMorphConvolve(src_image: imImage, dst_image: imImage, kernel: imImage, ismax: boolean) -> counter: boolean [in Lua 5] \endverbatim
00198  * \verbatim im.ProcessGrayMorphConvolveNew(image: imImage, kernel: imImage, ismax: boolean) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00199  * \ingroup morphgray */
00200 int imProcessGrayMorphConvolve(const imImage* src_image, imImage* dst_image, const imImage* kernel, int ismax);
00201 
00202 /** Gray morphology convolution with a kernel full of "0"s and use minimum value.
00203  *
00204  * \verbatim im.ProcessGrayMorphErode(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5] \endverbatim
00205  * \verbatim im.ProcessGrayMorphErodeNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00206  * \ingroup morphgray */
00207 int imProcessGrayMorphErode(const imImage* src_image, imImage* dst_image, int kernel_size);
00208 
00209 /** Gray morphology convolution with a kernel full of "0"s and use maximum value.
00210  *
00211  * \verbatim im.ProcessGrayMorphDilate(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5] \endverbatim
00212  * \verbatim im.ProcessGrayMorphDilateNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00213  * \ingroup morphgray */
00214 int imProcessGrayMorphDilate(const imImage* src_image, imImage* dst_image, int kernel_size);
00215 
00216 /** Erode+Dilate.
00217  *
00218  * \verbatim im.ProcessGrayMorphOpen(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5] \endverbatim
00219  * \verbatim im.ProcessGrayMorphOpenNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00220  * \ingroup morphgray */
00221 int imProcessGrayMorphOpen(const imImage* src_image, imImage* dst_image, int kernel_size);
00222 
00223 /** Dilate+Erode.
00224  *
00225  * \verbatim im.ProcessGrayMorphClose(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5] \endverbatim
00226  * \verbatim im.ProcessGrayMorphCloseNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00227  * \ingroup morphgray */
00228 int imProcessGrayMorphClose(const imImage* src_image, imImage* dst_image, int kernel_size);
00229 
00230 /** Open+Difference.
00231  *
00232  * \verbatim im.ProcessGrayMorphTopHat(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5] \endverbatim
00233  * \verbatim im.ProcessGrayMorphTopHatNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00234  * \ingroup morphgray */
00235 int imProcessGrayMorphTopHat(const imImage* src_image, imImage* dst_image, int kernel_size);
00236 
00237 /** Close+Difference.
00238  *
00239  * \verbatim im.ProcessGrayMorphWell(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5] \endverbatim
00240  * \verbatim im.ProcessGrayMorphWellNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00241  * \ingroup morphgray */
00242 int imProcessGrayMorphWell(const imImage* src_image, imImage* dst_image, int kernel_size);
00243 
00244 /** Difference(Erode, Dilate).
00245  *
00246  * \verbatim im.ProcessGrayMorphGradient(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5] \endverbatim
00247  * \verbatim im.ProcessGrayMorphGradientNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00248  * \ingroup morphgray */
00249 int imProcessGrayMorphGradient(const imImage* src_image, imImage* dst_image, int kernel_size);
00250 
00251 
00252 
00253 /** \defgroup morphbin Morphology Operations for Binary Images
00254  * \par
00255  * See \ref im_process_loc.h
00256  * \ingroup process */
00257 
00258 /** Base binary morphology convolution. \n
00259  * Images are all IM_BINARY. Kernel is IM_INT, but values can be only 1, 0 or -1. Use kernel size odd for better results. \n
00260  * Hit white means hit=1 and miss=0, or else hit=0 and miss=1. \n
00261  * Use -1 for don't care positions in kernel. Kernel values are simply compared with image values. \n
00262  * The operation can be repeated by a number of iterations. 
00263  * The border is zero extended. \n
00264  * Almost all the binary morphology operations use this function.\n
00265  * If the kernel image attribute "Description" exists it is used by the counter.
00266  *
00267  * \verbatim im.ProcessBinMorphConvolve(src_image: imImage, dst_image: imImage, kernel: imImage, hit_white: boolean, iter: number) -> counter: boolean [in Lua 5] \endverbatim
00268  * \verbatim im.ProcessBinMorphConvolveNew(image: imImage, kernel: imImage, hit_white: boolean, iter: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00269  * \ingroup morphbin */
00270 int imProcessBinMorphConvolve(const imImage* src_image, imImage* dst_image, const imImage* kernel, int hit_white, int iter);
00271 
00272 /** Binary morphology convolution with a kernel full of "1"s and hit white.
00273  *
00274  * \verbatim im.ProcessBinMorphErode(src_image: imImage, dst_image: imImage, kernel_size: number, iter: number) -> counter: boolean [in Lua 5] \endverbatim
00275  * \verbatim im.ProcessBinMorphErodeNew(image: imImage, kernel_size: number, iter: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00276  * \ingroup morphbin */
00277 int imProcessBinMorphErode(const imImage* src_image, imImage* dst_image, int kernel_size, int iter);
00278 
00279 /** Binary morphology convolution with a kernel full of "0"s and hit black.
00280  *
00281  * \verbatim im.ProcessBinMorphDilate(src_image: imImage, dst_image: imImage, kernel_size: number, iter: number) -> counter: boolean [in Lua 5] \endverbatim
00282  * \verbatim im.ProcessBinMorphDilateNew(image: imImage, kernel_size: number, iter: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00283  * \ingroup morphbin */
00284 int imProcessBinMorphDilate(const imImage* src_image, imImage* dst_image, int kernel_size, int iter);
00285 
00286 /** Erode+Dilate.
00287  * When iteration is more than one it means Erode+Erode+Erode+...+Dilate+Dilate+Dilate+...
00288  *
00289  * \verbatim im.ProcessBinMorphOpen(src_image: imImage, dst_image: imImage, kernel_size: number, iter: number) -> counter: boolean [in Lua 5] \endverbatim
00290  * \verbatim im.ProcessBinMorphOpenNew(image: imImage, kernel_size: number, iter: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00291  * \ingroup morphbin */
00292 int imProcessBinMorphOpen(const imImage* src_image, imImage* dst_image, int kernel_size, int iter);
00293 
00294 /** Dilate+Erode.
00295  *
00296  * \verbatim im.ProcessBinMorphClose(src_image: imImage, dst_image: imImage, kernel_size: number, iter: number) -> counter: boolean [in Lua 5] \endverbatim
00297  * \verbatim im.ProcessBinMorphCloseNew(image: imImage, kernel_size: number, iter: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00298  * \ingroup morphbin */
00299 int imProcessBinMorphClose(const imImage* src_image, imImage* dst_image, int kernel_size, int iter);
00300 
00301 /** Erode+Difference. \n
00302  * The difference from the source image is applied only once.
00303  *
00304  * \verbatim im.ProcessBinMorphOutline(src_image: imImage, dst_image: imImage, kernel_size: number, iter: number) -> counter: boolean [in Lua 5] \endverbatim
00305  * \verbatim im.ProcessBinMorphOutlineNew(image: imImage, kernel_size: number, iter: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00306  * \ingroup morphbin */
00307 int imProcessBinMorphOutline(const imImage* src_image, imImage* dst_image, int kernel_size, int iter);
00308 
00309 /** Thins the supplied binary image using Rosenfeld's parallel thinning algorithm. \n
00310  * Reference: \n
00311  * "Efficient Binary Image Thinning using Neighborhood Maps" \n
00312  * by Joseph M. Cychosz, [email protected]              \n
00313  * in "Graphics Gems IV", Academic Press, 1994
00314  *
00315  * \verbatim im.ProcessBinMorphThin(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00316  * \verbatim im.ProcessBinMorphThinNew(image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00317  * \ingroup morphbin */
00318 void imProcessBinMorphThin(const imImage* src_image, imImage* dst_image);
00319 
00320 
00321 
00322 /** \defgroup rank Rank Convolution Operations
00323  * \par
00324  * All the rank convolution use the same base function. Near the border the base function 
00325  * includes only the real image pixels in the rank. No border extensions are used.
00326  * \par
00327  * See \ref im_process_loc.h
00328  * \ingroup process */
00329 
00330 /** Rank convolution using the median value. \n
00331  * Returns zero if the counter aborted. \n
00332  * Supports all data types except IM_CFLOAT. Can be applied on color images.
00333  *
00334  * \verbatim im.ProcessMedianConvolve(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5] \endverbatim
00335  * \verbatim im.ProcessMedianConvolveNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00336  * \ingroup rank */
00337 int imProcessMedianConvolve(const imImage* src_image, imImage* dst_image, int kernel_size);
00338 
00339 /** Rank convolution using (maximum-minimum) value. \n
00340  * Returns zero if the counter aborted. \n
00341  * Supports all data types except IM_CFLOAT. Can be applied on color images.
00342  *
00343  * \verbatim im.ProcessRangeConvolve(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5] \endverbatim
00344  * \verbatim im.ProcessRangeConvolveNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00345  * \ingroup rank */
00346 int imProcessRangeConvolve(const imImage* src_image, imImage* dst_image, int kernel_size);
00347 
00348 /** Rank convolution using the closest maximum or minimum value. \n
00349  * Returns zero if the counter aborted. \n
00350  * Supports all data types except IM_CFLOAT. Can be applied on color images.
00351  *
00352  * \verbatim im.ProcessRankClosestConvolve(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5] \endverbatim
00353  * \verbatim im.ProcessRankClosestConvolveNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00354  * \ingroup rank */
00355 int imProcessRankClosestConvolve(const imImage* src_image, imImage* dst_image, int kernel_size);
00356 
00357 /** Rank convolution using the maximum value. \n
00358  * Returns zero if the counter aborted. \n
00359  * Supports all data types except IM_CFLOAT. Can be applied on color images.
00360  *
00361  * \verbatim im.ProcessRankMaxConvolve(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5] \endverbatim
00362  * \verbatim im.ProcessRankMaxConvolveNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00363  * \ingroup rank */
00364 int imProcessRankMaxConvolve(const imImage* src_image, imImage* dst_image, int kernel_size);
00365 
00366 /** Rank convolution using the minimum value. \n
00367  * Returns zero if the counter aborted. \n
00368  * Supports all data types except IM_CFLOAT. Can be applied on color images.
00369  *
00370  * \verbatim im.ProcessRankMinConvolve(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5] \endverbatim
00371  * \verbatim im.ProcessRankMinConvolveNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00372  * \ingroup rank */
00373 int imProcessRankMinConvolve(const imImage* src_image, imImage* dst_image, int kernel_size);
00374 
00375 /** Threshold using a rank convolution with a range contrast function. \n
00376  * Supports all integer IM_GRAY images as source, and IM_BINARY as destiny. \n
00377  * Local variable threshold by the method of Bernsen. \n
00378  * Extracted from XITE, Copyright 1991, Blab, UiO \n
00379  * http://www.ifi.uio.no/~blab/Software/Xite/
00380 \verbatim
00381   Reference:  
00382     Bernsen, J: "Dynamic thresholding of grey-level images"
00383     Proc. of the 8th ICPR, Paris, Oct 1986, 1251-1255.
00384   Author:     Oivind Due Trier
00385 \endverbatim
00386  * Returns zero if the counter aborted.
00387  *
00388  * \verbatim im.ProcessRangeContrastThreshold(src_image: imImage, dst_image: imImage, kernel_size: number, min_range: number) -> counter: boolean [in Lua 5] \endverbatim
00389  * \verbatim im.ProcessRangeContrastThresholdNew(image: imImage, kernel_size: number, min_range: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00390  * \ingroup threshold */
00391 int imProcessRangeContrastThreshold(const imImage* src_image, imImage* dst_image, int kernel_size, int min_range);
00392 
00393 /** Threshold using a rank convolution with a local max function.  \n
00394  * Returns zero if the counter aborted. \n
00395  * Supports all integer IM_GRAY images as source, and IM_BINARY as destiny.
00396  *
00397  * \verbatim im.ProcessLocalMaxThreshold(src_image: imImage, dst_image: imImage, kernel_size: number, min_level: number) -> counter: boolean [in Lua 5] \endverbatim
00398  * \verbatim im.ProcessLocalMaxThresholdNew(image: imImage, kernel_size: number, min_level: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00399  * \ingroup threshold */
00400 int imProcessLocalMaxThreshold(const imImage* src_image, imImage* dst_image, int kernel_size, int min_level);
00401 
00402 
00403 
00404 /** \defgroup convolve Convolution Operations
00405  * \par
00406  * See \ref im_process_loc.h
00407  * \ingroup process */
00408 
00409 /** Base Convolution with a kernel. \n
00410  * Kernel can be IM_INT or IM_FLOAT, but always IM_GRAY. Use kernel size odd for better results. \n
00411  * Supports all data types. The border is mirrored. \n
00412  * Returns zero if the counter aborted. Most of the convolutions use this function.\n
00413  * If the kernel image attribute "Description" exists it is used by the counter.
00414  *
00415  * \verbatim im.ProcessConvolve(src_image: imImage, dst_image: imImage, kernel: imImage) -> counter: boolean [in Lua 5] \endverbatim
00416  * \verbatim im.ProcessConvolveNew(image: imImage, kernel: imImage) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00417  * \ingroup convolve */
00418 int imProcessConvolve(const imImage* src_image, imImage* dst_image, const imImage* kernel);
00419 
00420 /** Base convolution when the kernel is separable. Only the first line and the first column will be used. \n
00421  * Returns zero if the counter aborted.\n
00422  * If the kernel image attribute "Description" exists it is used by the counter.
00423  *
00424  * \verbatim im.ProcessConvolveSep(src_image: imImage, dst_image: imImage, kernel: imImage) -> counter: boolean [in Lua 5] \endverbatim
00425  * \verbatim im.ProcessConvolveSepNew(image: imImage, kernel: imImage) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00426  * \ingroup convolve */
00427 int imProcessConvolveSep(const imImage* src_image, imImage* dst_image, const imImage* kernel);
00428 
00429 /** Base Convolution with two kernels. The result is the magnitude of the result of each convolution. \n
00430  * Kernel can be IM_INT or IM_FLOAT, but always IM_GRAY. Use kernel size odd for better results. \n
00431  * Supports all data types. The border is mirrored. \n
00432  * Returns zero if the counter aborted. Most of the convolutions use this function.\n
00433  * If the kernel image attribute "Description" exists it is used by the counter.
00434  *
00435  * \verbatim im.ProcessConvolveDual(src_image: imImage, dst_image: imImage, kernel1, kernel2: imImage) -> counter: boolean [in Lua 5] \endverbatim
00436  * \verbatim im.ProcessConvolveDualNew(image: imImage, kernel1, kernel2: imImage) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00437  * \ingroup convolve */
00438 int imProcessConvolveDual(const imImage* src_image, imImage* dst_image, const imImage *kernel1, const imImage *kernel2);
00439 
00440 /** Repeats the convolution a number of times. \n
00441  * Returns zero if the counter aborted.\n
00442  * If the kernel image attribute "Description" exists it is used by the counter.
00443  *
00444  * \verbatim im.ProcessConvolveRep(src_image: imImage, dst_image: imImage, kernel: imImage, count: number) -> counter: boolean [in Lua 5] \endverbatim
00445  * \verbatim im.ProcessConvolveRepNew(image: imImage, kernel: imImage, count: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00446  * \ingroup convolve */
00447 int imProcessConvolveRep(const imImage* src_image, imImage* dst_image, const imImage* kernel, int count);
00448 
00449 /** Convolve with a kernel rotating it 8 times and getting the absolute maximum value. \n
00450  * Kernel must be square. \n
00451  * The rotation is implemented only for kernel sizes 3x3, 5x5 and 7x7. \n
00452  * Supports all data types except IM_CFLOAT.
00453  * Returns zero if the counter aborted.\n
00454  * If the kernel image attribute "Description" exists it is used by the counter.
00455  *
00456  * \verbatim im.ProcessCompassConvolve(src_image: imImage, dst_image: imImage, kernel: imImage) -> counter: boolean [in Lua 5] \endverbatim
00457  * \verbatim im.ProcessCompassConvolveNew(image: imImage, kernel: imImage) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00458  * \ingroup convolve */
00459 int imProcessCompassConvolve(const imImage* src_image, imImage* dst_image, imImage* kernel);
00460 
00461 /** Utility function to rotate a kernel one time.
00462  *
00463  * \verbatim im.ProcessRotateKernel(kernel: imImage) [in Lua 5] \endverbatim
00464  * \ingroup convolve */
00465 void imProcessRotateKernel(imImage* kernel);
00466 
00467 /** Difference(Gaussian1, Gaussian2). \n
00468  * Supports all data types, 
00469  * but if source is IM_BYTE or IM_USHORT destiny image must be of type IM_INT.
00470  *
00471  * \verbatim im.ProcessDiffOfGaussianConvolve(src_image: imImage, dst_image: imImage, stddev1: number, stddev2: number) -> counter: boolean [in Lua 5] \endverbatim
00472  * \verbatim im.ProcessDiffOfGaussianConvolveNew(image: imImage, stddev1: number, stddev2: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00473  * \ingroup convolve */
00474 int imProcessDiffOfGaussianConvolve(const imImage* src_image, imImage* dst_image, float stddev1, float stddev2);
00475 
00476 /** Convolution with a laplacian of a gaussian kernel. \n
00477  * Supports all data types, 
00478  * but if source is IM_BYTE or IM_USHORT destiny image must be of type IM_INT.
00479  *
00480  * \verbatim im.ProcessLapOfGaussianConvolve(src_image: imImage, dst_image: imImage, stddev: number) -> counter: boolean [in Lua 5] \endverbatim
00481  * \verbatim im.ProcessLapOfGaussianConvolveNew(image: imImage, stddev: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00482  * \ingroup convolve */
00483 int imProcessLapOfGaussianConvolve(const imImage* src_image, imImage* dst_image, float stddev);
00484 
00485 /** Convolution with a kernel full of "1"s inside a circle. \n
00486  * Supports all data types.
00487  *
00488  * \verbatim im.ProcessMeanConvolve(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5] \endverbatim
00489  * \verbatim im.ProcessMeanConvolveNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00490  * \ingroup convolve */
00491 int imProcessMeanConvolve(const imImage* src_image, imImage* dst_image, int kernel_size);
00492 
00493 /** Convolution with a float gaussian kernel. \n
00494  * If sdtdev is negative its magnitude will be used as the kernel size. \n
00495  * Supports all data types.
00496  *
00497  * \verbatim im.ProcessGaussianConvolve(src_image: imImage, dst_image: imImage, stddev: number) -> counter: boolean [in Lua 5] \endverbatim
00498  * \verbatim im.ProcessGaussianConvolveNew(image: imImage, stddev: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00499  * \ingroup convolve */
00500 int imProcessGaussianConvolve(const imImage* src_image, imImage* dst_image, float stddev);
00501 
00502 /** Convolution with a barlett kernel. \n
00503  * Supports all data types.
00504  *
00505  * \verbatim im.ProcessBarlettConvolve(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5] \endverbatim
00506  * \verbatim im.ProcessBarlettConvolveNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00507  * \ingroup convolve */
00508 int imProcessBarlettConvolve(const imImage* src_image, imImage* dst_image, int kernel_size);
00509 
00510 /** Magnitude of the sobel convolution. \n
00511  * Supports all data types.
00512  *
00513  * \verbatim im.ProcessSobelConvolve(src_image: imImage, dst_image: imImage) -> counter: boolean [in Lua 5] \endverbatim
00514  * \verbatim im.ProcessSobelConvolveNew(image: imImage) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00515  * \ingroup convolve */
00516 int imProcessSobelConvolve(const imImage* src_image, imImage* dst_image);
00517 
00518 /** Magnitude of the prewitt convolution. \n
00519  * Supports all data types.
00520  *
00521  * \verbatim im.ProcessPrewittConvolve(src_image: imImage, dst_image: imImage) -> counter: boolean [in Lua 5] \endverbatim
00522  * \verbatim im.ProcessPrewittConvolveNew(image: imImage) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00523  * \ingroup convolve */
00524 int imProcessPrewittConvolve(const imImage* src_image, imImage* dst_image);
00525 
00526 /** Spline edge dectection. \n
00527  * Supports all data types.
00528  *
00529  * \verbatim im.ProcessSplineEdgeConvolve(src_image: imImage, dst_image: imImage) -> counter: boolean [in Lua 5] \endverbatim
00530  * \verbatim im.ProcessSplineEdgeConvolveNew(image: imImage) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00531  * \ingroup convolve */
00532 int imProcessSplineEdgeConvolve(const imImage* src_image, imImage* dst_image);
00533 
00534 /** Finds the zero crossings of IM_INT and IM_FLOAT images. Crossings are marked with non zero values
00535  * indicating the intensity of the edge. It is usually used after a second derivative, laplace. \n
00536  * Extracted from XITE, Copyright 1991, Blab, UiO \n
00537  * http://www.ifi.uio.no/~blab/Software/Xite/
00538  *
00539  * \verbatim im.ProcessZeroCrossing(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00540  * \verbatim im.ProcessZeroCrossingNew(image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00541  * \ingroup convolve */
00542 void imProcessZeroCrossing(const imImage* src_image, imImage* dst_image);
00543 
00544 /** First part of the Canny edge detector. Includes the gaussian filtering and the nonmax suppression. \n
00545  * After using this you could apply a Hysteresis Threshold, see \ref imProcessHysteresisThreshold. \n
00546  * Image must be IM_BYTE/IM_GRAY. \n
00547  * Implementation from the book:
00548  \verbatim
00549     J. R. Parker
00550     "Algoritms for Image Processing and Computer Vision"
00551     WILEY
00552  \endverbatim
00553  *
00554  * \verbatim im.ProcessCanny(src_image: imImage, dst_image: imImage, stddev: number) [in Lua 5] \endverbatim
00555  * \verbatim im.ProcessCannyNew(image: imImage, stddev: number) -> new_image: imImage [in Lua 5] \endverbatim
00556  * \ingroup convolve */
00557 void imProcessCanny(const imImage* src_image, imImage* dst_image, float stddev);
00558 
00559 /** Calculates the kernel size given the standard deviation. \n
00560  * If sdtdev is negative its magnitude will be used as the kernel size.
00561  *
00562  * \verbatim im.GaussianStdDev2KernelSize(stddev: number) -> kernel_size: number [in Lua 5] \endverbatim
00563  * \ingroup convolve */
00564 int imGaussianStdDev2KernelSize(float stddev);
00565 
00566 /** Calculates the standard deviation given the kernel size.
00567  *
00568  * \verbatim im.GaussianKernelSize2StdDev(kernel_size: number) -> stddev: number [in Lua 5] \endverbatim
00569  * \ingroup convolve */
00570 float imGaussianKernelSize2StdDev(int kernel_size);
00571 
00572 
00573 #if defined(__cplusplus)
00574 }
00575 #endif
00576 
00577 #endif