00001 /** \file
00002 * \brief Image Processing - Local Operations
00003 *
00004 * See Copyright Notice in im_lib.h
00005 */
00006
00007 #ifndef __IM_PROCESS_LOC_H
00008 #define __IM_PROCESS_LOC_H
00009
00010 #include "im_image.h"
00011
00012 #if defined(__cplusplus)
00013 extern "C" {
00014 #endif
00015
00016
00017
00018 /** \defgroup resize Image Resize
00019 * \par
00020 * Operations to change the image size.
00021 * \par
00022 * See \ref im_process_loc.h
00023 * \ingroup process */
00024
00025 /** Only reduze the image size using the given decimation order. \n
00026 * Supported decimation orders:
00027 * \li 0 - zero order (mean)
00028 * \li 1 - first order (bilinear decimation)
00029 * Images must be of the same type. If image type is IM_MAP or IM_BINARY, must use order=0. \n
00030 * Returns zero if the counter aborted.
00031 *
00032 * \verbatim im.ProcessReduce(src_image: imImage, dst_image: imImage, order: number) -> counter: boolean [in Lua 5] \endverbatim
00033 * \verbatim im.ProcessReduceNew(image: imImage, order: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00034 * \ingroup resize */
00035 int imProcessReduce(const imImage* src_image, imImage* dst_image, int order);
00036
00037 /** Change the image size using the given interpolation order. \n
00038 * Supported interpolation orders:
00039 * \li 0 - zero order (near neighborhood)
00040 * \li 1 - first order (bilinear interpolation)
00041 * \li 3 - third order (bicubic interpolation)
00042 * Images must be of the same type. If image type is IM_MAP or IM_BINARY, must use order=0. \n
00043 * Returns zero if the counter aborted.
00044 *
00045 * \verbatim im.ProcessResize(src_image: imImage, dst_image: imImage, order: number) -> counter: boolean [in Lua 5] \endverbatim
00046 * \verbatim im.ProcessResizeNew(image: imImage, order: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00047 * \ingroup resize */
00048 int imProcessResize(const imImage* src_image, imImage* dst_image, int order);
00049
00050 /** Reduze the image area by 4 (w/2,h/2). \n
00051 * Images must be of the same type. Destiny image size must be source image width/2, height/2.
00052 * Can not operate on IM_MAP nor IM_BINARY images.
00053 *
00054 * \verbatim im.ProcessReduceBy4(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00055 * \verbatim im.ProcessReduceBy4New(image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00056 * \ingroup resize */
00057 void imProcessReduceBy4(const imImage* src_image, imImage* dst_image);
00058
00059 /** Extract a rectangular region from an image. \n
00060 * Images must be of the same type. Destiny image size must be smaller than source image width-xmin, height-ymin. \n
00061 * ymin and xmin must be >0 and <size.
00062 *
00063 * \verbatim im.ProcessCrop(src_image: imImage, dst_image: imImage, xmin: number, ymin: number) [in Lua 5] \endverbatim
00064 * \verbatim im.ProcessCropNew(image: imImage, xmin: number, xmax: number, ymin: number, ymax: number) -> new_image: imImage [in Lua 5] \endverbatim
00065 * \ingroup resize */
00066 void imProcessCrop(const imImage* src_image, imImage* dst_image, int xmin, int ymin);
00067
00068 /** Insert a rectangular region in an image. \n
00069 * Images must be of the same type. Region image size can be larger than source image. \n
00070 * ymin and xmin must be >0 and <size. \n
00071 * Source and destiny must be of the same size. Can be done in place.
00072 *
00073 * \verbatim im.ProcessInsert(src_image: imImage, region_image: imImage, dst_image: imImage, xmin: number, ymin: number) [in Lua 5] \endverbatim
00074 * \verbatim im.ProcessInsertNew(image: imImage, region_image: imImage, xmin: number, ymin: number) -> new_image: imImage [in Lua 5] \endverbatim
00075 * \ingroup resize */
00076 void imProcessInsert(const imImage* src_image, const imImage* region_image, imImage* dst_image, int xmin, int ymin);
00077
00078 /** Increase the image size by adding pixels with zero value. \n
00079 * Images must be of the same type. Destiny image size must be greatter than source image width+xmin, height+ymin.
00080 *
00081 * \verbatim im.ProcessAddMargins(src_image: imImage, dst_image: imImage, xmin: number, ymin: number) [in Lua 5] \endverbatim
00082 * \verbatim im.ProcessAddMarginsNew(image: imImage, xmin: number, xmax: number, ymin: number, ymax: number) -> new_image: imImage [in Lua 5] \endverbatim
00083 * \ingroup resize */
00084 void imProcessAddMargins(const imImage* src_image, imImage* dst_image, int xmin, int ymin);
00085
00086
00087
00088 /** \defgroup geom Geometric Operations
00089 * \par
00090 * Operations to change the shape of the image.
00091 * \par
00092 * See \ref im_process_loc.h
00093 * \ingroup process */
00094
00095 /** Calculates the size of the new image after rotation.
00096 *
00097 * \verbatim im.ProcessCalcRotateSize(width: number, height: number, cos0: number, sin0: number) [in Lua 5] \endverbatim
00098 * \ingroup geom */
00099 void imProcessCalcRotateSize(int width, int height, int *new_width, int *new_height, double cos0, double sin0);
00100
00101 /** Rotates the image using the given interpolation order (see \ref imProcessResize). \n
00102 * Images must be of the same type. The destiny size can be calculated using \ref imProcessCalcRotateSize to fit the new image size,
00103 * or can be any size, including the original size. The rotation is relative to the center of the image. \n
00104 * Returns zero if the counter aborted.
00105 *
00106 * \verbatim im.ProcessRotate(src_image: imImage, dst_image: imImage, cos0: number, sin0: number, order: number) -> counter: boolean [in Lua 5] \endverbatim
00107 * \verbatim im.ProcessRotateNew(image: imImage, cos0: number, sin0: number, order: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00108 * \ingroup geom */
00109 int imProcessRotate(const imImage* src_image, imImage* dst_image, double cos0, double sin0, int order);
00110
00111 /** Rotates the image using the given interpolation order (see \ref imProcessResize). \n
00112 * Images must be of the same type. Destiny can have any size, including the original size. \n
00113 * The rotation is relative to the reference point. But the result can be shifted to the origin. \n
00114 * Returns zero if the counter aborted.
00115 *
00116 * \verbatim im.ProcessRotateRef(src_image: imImage, dst_image: imImage, cos0: number, sin0: number, x: number, y: number, to_origin: boolean, order: number) -> counter: boolean [in Lua 5] \endverbatim
00117 * \verbatim im.ProcessRotateRefNew(image: imImage, cos0: number, sin0: number, x: number, y: number, to_origin: boolean, order: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00118 * \ingroup geom */
00119 int imProcessRotateRef(const imImage* src_image, imImage* dst_image, double cos0, double sin0, int x, int y, int to_origin, int order);
00120
00121 /** Rotates the image in 90 degrees counterclockwise or clockwise. Swap columns by lines. \n
00122 * Images must be of the same type. Destiny width and height must be source height and width. \n
00123 * Direction can be clockwise (1) or counter clockwise (-1).
00124 *
00125 * \verbatim im.ProcessRotate90(src_image: imImage, dst_image: imImage, dir_clockwise: boolean) [in Lua 5] \endverbatim
00126 * \verbatim im.ProcessRotate90New(image: imImage, dir_clockwise: boolean) -> new_image: imImage [in Lua 5] \endverbatim
00127 * \ingroup geom */
00128 void imProcessRotate90(const imImage* src_image, imImage* dst_image, int dir_clockwise);
00129
00130 /** Rotates the image in 180 degrees. Swap columns and swap lines. \n
00131 * Images must be of the same type and size.
00132 *
00133 * \verbatim im.ProcessRotate180(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00134 * \verbatim im.ProcessRotate180New(image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00135 * \ingroup geom */
00136 void imProcessRotate180(const imImage* src_image, imImage* dst_image);
00137
00138 /** Mirror the image in a horizontal flip. Swap columns. \n
00139 * Images must be of the same type and size.
00140 * Can be done in-place.
00141 *
00142 * \verbatim im.ProcessMirror(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00143 * \verbatim im.ProcessMirrorNew(image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00144 * \ingroup geom */
00145 void imProcessMirror(const imImage* src_image, imImage* dst_image);
00146
00147 /** Apply a vertical flip. Swap lines. \n
00148 * Images must be of the same type and size.
00149 * Can be done in-place.
00150 *
00151 * \verbatim im.ProcessFlip(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00152 * \verbatim im.ProcessFlipNew(image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00153 * \ingroup geom */
00154 void imProcessFlip(const imImage* src_image, imImage* dst_image);
00155
00156 /** Apply a radial distortion using the given interpolation order (see imProcessResize). \n
00157 * Images must be of the same type and size. Returns zero if the counter aborted.
00158 *
00159 * \verbatim im.ProcessRadial(src_image: imImage, dst_image: imImage, k1: number, order: number) -> counter: boolean [in Lua 5] \endverbatim
00160 * \verbatim im.ProcessRadialNew(image: imImage, k1: number, order: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00161 * \ingroup geom */
00162 int imProcessRadial(const imImage* src_image, imImage* dst_image, float k1, int order);
00163
00164 /** Apply a swirl distortion using the given interpolation order (see imProcessResize). \n
00165 * Images must be of the same type and size. Returns zero if the counter aborted.
00166 *
00167 * \verbatim im.ProcessSwirl(src_image: imImage, dst_image: imImage, k: number, order: number) -> counter: boolean [in Lua 5] \endverbatim
00168 * \verbatim im.ProcessSwirlNew(image: imImage, k: number, order: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00169 * \ingroup geom */
00170 int imProcessSwirl(const imImage* src_image, imImage* dst_image, float k1, int order);
00171
00172 /** Split the image in two images, one containing the odd lines and other containing the even lines. \n
00173 * Images must be of the same type. Height of the output images must be half the height of the input image.
00174 * If the height of the input image is odd then the first image must have height equals to half+1.
00175 *
00176 * \verbatim im.ProcessInterlaceSplit(src_image: imImage, dst_image1: imImage, dst_image2: imImage) [in Lua 5] \endverbatim
00177 * \verbatim im.ProcessInterlaceSplitNew(image: imImage) -> new_image1: imImage, new_image2: imImage [in Lua 5] \endverbatim
00178 * \ingroup geom */
00179 void imProcessInterlaceSplit(const imImage* src_image, imImage* dst_image1, imImage* dst_image2);
00180
00181
00182
00183 /** \defgroup morphgray Morphology Operations for Gray Images
00184 * \par
00185 * See \ref im_process_loc.h
00186 * \ingroup process */
00187
00188 /** Base gray morphology convolution. \n
00189 * Supports all data types except IM_CFLOAT. Can be applied on color images. \n
00190 * Kernel is always IM_INT. Use kernel size odd for better results. \n
00191 * Use -1 for don't care positions in kernel. Kernel values are added to image values, then \n
00192 * you can use the maximum or the minimum within the kernel area. \n
00193 * No border extensions are used.
00194 * All the gray morphology operations use this function. \n
00195 * If the kernel image attribute "Description" exists it is used by the counter.
00196 *
00197 * \verbatim im.ProcessGrayMorphConvolve(src_image: imImage, dst_image: imImage, kernel: imImage, ismax: boolean) -> counter: boolean [in Lua 5] \endverbatim
00198 * \verbatim im.ProcessGrayMorphConvolveNew(image: imImage, kernel: imImage, ismax: boolean) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00199 * \ingroup morphgray */
00200 int imProcessGrayMorphConvolve(const imImage* src_image, imImage* dst_image, const imImage* kernel, int ismax);
00201
00202 /** Gray morphology convolution with a kernel full of "0"s and use minimum value.
00203 *
00204 * \verbatim im.ProcessGrayMorphErode(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5] \endverbatim
00205 * \verbatim im.ProcessGrayMorphErodeNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00206 * \ingroup morphgray */
00207 int imProcessGrayMorphErode(const imImage* src_image, imImage* dst_image, int kernel_size);
00208
00209 /** Gray morphology convolution with a kernel full of "0"s and use maximum value.
00210 *
00211 * \verbatim im.ProcessGrayMorphDilate(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5] \endverbatim
00212 * \verbatim im.ProcessGrayMorphDilateNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00213 * \ingroup morphgray */
00214 int imProcessGrayMorphDilate(const imImage* src_image, imImage* dst_image, int kernel_size);
00215
00216 /** Erode+Dilate.
00217 *
00218 * \verbatim im.ProcessGrayMorphOpen(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5] \endverbatim
00219 * \verbatim im.ProcessGrayMorphOpenNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00220 * \ingroup morphgray */
00221 int imProcessGrayMorphOpen(const imImage* src_image, imImage* dst_image, int kernel_size);
00222
00223 /** Dilate+Erode.
00224 *
00225 * \verbatim im.ProcessGrayMorphClose(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5] \endverbatim
00226 * \verbatim im.ProcessGrayMorphCloseNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00227 * \ingroup morphgray */
00228 int imProcessGrayMorphClose(const imImage* src_image, imImage* dst_image, int kernel_size);
00229
00230 /** Open+Difference.
00231 *
00232 * \verbatim im.ProcessGrayMorphTopHat(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5] \endverbatim
00233 * \verbatim im.ProcessGrayMorphTopHatNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00234 * \ingroup morphgray */
00235 int imProcessGrayMorphTopHat(const imImage* src_image, imImage* dst_image, int kernel_size);
00236
00237 /** Close+Difference.
00238 *
00239 * \verbatim im.ProcessGrayMorphWell(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5] \endverbatim
00240 * \verbatim im.ProcessGrayMorphWellNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00241 * \ingroup morphgray */
00242 int imProcessGrayMorphWell(const imImage* src_image, imImage* dst_image, int kernel_size);
00243
00244 /** Difference(Erode, Dilate).
00245 *
00246 * \verbatim im.ProcessGrayMorphGradient(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5] \endverbatim
00247 * \verbatim im.ProcessGrayMorphGradientNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00248 * \ingroup morphgray */
00249 int imProcessGrayMorphGradient(const imImage* src_image, imImage* dst_image, int kernel_size);
00250
00251
00252
00253 /** \defgroup morphbin Morphology Operations for Binary Images
00254 * \par
00255 * See \ref im_process_loc.h
00256 * \ingroup process */
00257
00258 /** Base binary morphology convolution. \n
00259 * Images are all IM_BINARY. Kernel is IM_INT, but values can be only 1, 0 or -1. Use kernel size odd for better results. \n
00260 * Hit white means hit=1 and miss=0, or else hit=0 and miss=1. \n
00261 * Use -1 for don't care positions in kernel. Kernel values are simply compared with image values. \n
00262 * The operation can be repeated by a number of iterations.
00263 * The border is zero extended. \n
00264 * Almost all the binary morphology operations use this function.\n
00265 * If the kernel image attribute "Description" exists it is used by the counter.
00266 *
00267 * \verbatim im.ProcessBinMorphConvolve(src_image: imImage, dst_image: imImage, kernel: imImage, hit_white: boolean, iter: number) -> counter: boolean [in Lua 5] \endverbatim
00268 * \verbatim im.ProcessBinMorphConvolveNew(image: imImage, kernel: imImage, hit_white: boolean, iter: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00269 * \ingroup morphbin */
00270 int imProcessBinMorphConvolve(const imImage* src_image, imImage* dst_image, const imImage* kernel, int hit_white, int iter);
00271
00272 /** Binary morphology convolution with a kernel full of "1"s and hit white.
00273 *
00274 * \verbatim im.ProcessBinMorphErode(src_image: imImage, dst_image: imImage, kernel_size: number, iter: number) -> counter: boolean [in Lua 5] \endverbatim
00275 * \verbatim im.ProcessBinMorphErodeNew(image: imImage, kernel_size: number, iter: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00276 * \ingroup morphbin */
00277 int imProcessBinMorphErode(const imImage* src_image, imImage* dst_image, int kernel_size, int iter);
00278
00279 /** Binary morphology convolution with a kernel full of "0"s and hit black.
00280 *
00281 * \verbatim im.ProcessBinMorphDilate(src_image: imImage, dst_image: imImage, kernel_size: number, iter: number) -> counter: boolean [in Lua 5] \endverbatim
00282 * \verbatim im.ProcessBinMorphDilateNew(image: imImage, kernel_size: number, iter: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00283 * \ingroup morphbin */
00284 int imProcessBinMorphDilate(const imImage* src_image, imImage* dst_image, int kernel_size, int iter);
00285
00286 /** Erode+Dilate.
00287 * When iteration is more than one it means Erode+Erode+Erode+...+Dilate+Dilate+Dilate+...
00288 *
00289 * \verbatim im.ProcessBinMorphOpen(src_image: imImage, dst_image: imImage, kernel_size: number, iter: number) -> counter: boolean [in Lua 5] \endverbatim
00290 * \verbatim im.ProcessBinMorphOpenNew(image: imImage, kernel_size: number, iter: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00291 * \ingroup morphbin */
00292 int imProcessBinMorphOpen(const imImage* src_image, imImage* dst_image, int kernel_size, int iter);
00293
00294 /** Dilate+Erode.
00295 *
00296 * \verbatim im.ProcessBinMorphClose(src_image: imImage, dst_image: imImage, kernel_size: number, iter: number) -> counter: boolean [in Lua 5] \endverbatim
00297 * \verbatim im.ProcessBinMorphCloseNew(image: imImage, kernel_size: number, iter: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00298 * \ingroup morphbin */
00299 int imProcessBinMorphClose(const imImage* src_image, imImage* dst_image, int kernel_size, int iter);
00300
00301 /** Erode+Difference. \n
00302 * The difference from the source image is applied only once.
00303 *
00304 * \verbatim im.ProcessBinMorphOutline(src_image: imImage, dst_image: imImage, kernel_size: number, iter: number) -> counter: boolean [in Lua 5] \endverbatim
00305 * \verbatim im.ProcessBinMorphOutlineNew(image: imImage, kernel_size: number, iter: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00306 * \ingroup morphbin */
00307 int imProcessBinMorphOutline(const imImage* src_image, imImage* dst_image, int kernel_size, int iter);
00308
00309 /** Thins the supplied binary image using Rosenfeld's parallel thinning algorithm. \n
00310 * Reference: \n
00311 * "Efficient Binary Image Thinning using Neighborhood Maps" \n
00312 * by Joseph M. Cychosz, [email protected] \n
00313 * in "Graphics Gems IV", Academic Press, 1994
00314 *
00315 * \verbatim im.ProcessBinMorphThin(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00316 * \verbatim im.ProcessBinMorphThinNew(image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00317 * \ingroup morphbin */
00318 void imProcessBinMorphThin(const imImage* src_image, imImage* dst_image);
00319
00320
00321
00322 /** \defgroup rank Rank Convolution Operations
00323 * \par
00324 * All the rank convolution use the same base function. Near the border the base function
00325 * includes only the real image pixels in the rank. No border extensions are used.
00326 * \par
00327 * See \ref im_process_loc.h
00328 * \ingroup process */
00329
00330 /** Rank convolution using the median value. \n
00331 * Returns zero if the counter aborted. \n
00332 * Supports all data types except IM_CFLOAT. Can be applied on color images.
00333 *
00334 * \verbatim im.ProcessMedianConvolve(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5] \endverbatim
00335 * \verbatim im.ProcessMedianConvolveNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00336 * \ingroup rank */
00337 int imProcessMedianConvolve(const imImage* src_image, imImage* dst_image, int kernel_size);
00338
00339 /** Rank convolution using (maximum-minimum) value. \n
00340 * Returns zero if the counter aborted. \n
00341 * Supports all data types except IM_CFLOAT. Can be applied on color images.
00342 *
00343 * \verbatim im.ProcessRangeConvolve(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5] \endverbatim
00344 * \verbatim im.ProcessRangeConvolveNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00345 * \ingroup rank */
00346 int imProcessRangeConvolve(const imImage* src_image, imImage* dst_image, int kernel_size);
00347
00348 /** Rank convolution using the closest maximum or minimum value. \n
00349 * Returns zero if the counter aborted. \n
00350 * Supports all data types except IM_CFLOAT. Can be applied on color images.
00351 *
00352 * \verbatim im.ProcessRankClosestConvolve(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5] \endverbatim
00353 * \verbatim im.ProcessRankClosestConvolveNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00354 * \ingroup rank */
00355 int imProcessRankClosestConvolve(const imImage* src_image, imImage* dst_image, int kernel_size);
00356
00357 /** Rank convolution using the maximum value. \n
00358 * Returns zero if the counter aborted. \n
00359 * Supports all data types except IM_CFLOAT. Can be applied on color images.
00360 *
00361 * \verbatim im.ProcessRankMaxConvolve(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5] \endverbatim
00362 * \verbatim im.ProcessRankMaxConvolveNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00363 * \ingroup rank */
00364 int imProcessRankMaxConvolve(const imImage* src_image, imImage* dst_image, int kernel_size);
00365
00366 /** Rank convolution using the minimum value. \n
00367 * Returns zero if the counter aborted. \n
00368 * Supports all data types except IM_CFLOAT. Can be applied on color images.
00369 *
00370 * \verbatim im.ProcessRankMinConvolve(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5] \endverbatim
00371 * \verbatim im.ProcessRankMinConvolveNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00372 * \ingroup rank */
00373 int imProcessRankMinConvolve(const imImage* src_image, imImage* dst_image, int kernel_size);
00374
00375 /** Threshold using a rank convolution with a range contrast function. \n
00376 * Supports all integer IM_GRAY images as source, and IM_BINARY as destiny. \n
00377 * Local variable threshold by the method of Bernsen. \n
00378 * Extracted from XITE, Copyright 1991, Blab, UiO \n
00379 * http://www.ifi.uio.no/~blab/Software/Xite/
00380 \verbatim
00381 Reference:
00382 Bernsen, J: "Dynamic thresholding of grey-level images"
00383 Proc. of the 8th ICPR, Paris, Oct 1986, 1251-1255.
00384 Author: Oivind Due Trier
00385 \endverbatim
00386 * Returns zero if the counter aborted.
00387 *
00388 * \verbatim im.ProcessRangeContrastThreshold(src_image: imImage, dst_image: imImage, kernel_size: number, min_range: number) -> counter: boolean [in Lua 5] \endverbatim
00389 * \verbatim im.ProcessRangeContrastThresholdNew(image: imImage, kernel_size: number, min_range: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00390 * \ingroup threshold */
00391 int imProcessRangeContrastThreshold(const imImage* src_image, imImage* dst_image, int kernel_size, int min_range);
00392
00393 /** Threshold using a rank convolution with a local max function. \n
00394 * Returns zero if the counter aborted. \n
00395 * Supports all integer IM_GRAY images as source, and IM_BINARY as destiny.
00396 *
00397 * \verbatim im.ProcessLocalMaxThreshold(src_image: imImage, dst_image: imImage, kernel_size: number, min_level: number) -> counter: boolean [in Lua 5] \endverbatim
00398 * \verbatim im.ProcessLocalMaxThresholdNew(image: imImage, kernel_size: number, min_level: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00399 * \ingroup threshold */
00400 int imProcessLocalMaxThreshold(const imImage* src_image, imImage* dst_image, int kernel_size, int min_level);
00401
00402
00403
00404 /** \defgroup convolve Convolution Operations
00405 * \par
00406 * See \ref im_process_loc.h
00407 * \ingroup process */
00408
00409 /** Base Convolution with a kernel. \n
00410 * Kernel can be IM_INT or IM_FLOAT, but always IM_GRAY. Use kernel size odd for better results. \n
00411 * Supports all data types. The border is mirrored. \n
00412 * Returns zero if the counter aborted. Most of the convolutions use this function.\n
00413 * If the kernel image attribute "Description" exists it is used by the counter.
00414 *
00415 * \verbatim im.ProcessConvolve(src_image: imImage, dst_image: imImage, kernel: imImage) -> counter: boolean [in Lua 5] \endverbatim
00416 * \verbatim im.ProcessConvolveNew(image: imImage, kernel: imImage) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00417 * \ingroup convolve */
00418 int imProcessConvolve(const imImage* src_image, imImage* dst_image, const imImage* kernel);
00419
00420 /** Base convolution when the kernel is separable. Only the first line and the first column will be used. \n
00421 * Returns zero if the counter aborted.\n
00422 * If the kernel image attribute "Description" exists it is used by the counter.
00423 *
00424 * \verbatim im.ProcessConvolveSep(src_image: imImage, dst_image: imImage, kernel: imImage) -> counter: boolean [in Lua 5] \endverbatim
00425 * \verbatim im.ProcessConvolveSepNew(image: imImage, kernel: imImage) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00426 * \ingroup convolve */
00427 int imProcessConvolveSep(const imImage* src_image, imImage* dst_image, const imImage* kernel);
00428
00429 /** Base Convolution with two kernels. The result is the magnitude of the result of each convolution. \n
00430 * Kernel can be IM_INT or IM_FLOAT, but always IM_GRAY. Use kernel size odd for better results. \n
00431 * Supports all data types. The border is mirrored. \n
00432 * Returns zero if the counter aborted. Most of the convolutions use this function.\n
00433 * If the kernel image attribute "Description" exists it is used by the counter.
00434 *
00435 * \verbatim im.ProcessConvolveDual(src_image: imImage, dst_image: imImage, kernel1, kernel2: imImage) -> counter: boolean [in Lua 5] \endverbatim
00436 * \verbatim im.ProcessConvolveDualNew(image: imImage, kernel1, kernel2: imImage) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00437 * \ingroup convolve */
00438 int imProcessConvolveDual(const imImage* src_image, imImage* dst_image, const imImage *kernel1, const imImage *kernel2);
00439
00440 /** Repeats the convolution a number of times. \n
00441 * Returns zero if the counter aborted.\n
00442 * If the kernel image attribute "Description" exists it is used by the counter.
00443 *
00444 * \verbatim im.ProcessConvolveRep(src_image: imImage, dst_image: imImage, kernel: imImage, count: number) -> counter: boolean [in Lua 5] \endverbatim
00445 * \verbatim im.ProcessConvolveRepNew(image: imImage, kernel: imImage, count: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00446 * \ingroup convolve */
00447 int imProcessConvolveRep(const imImage* src_image, imImage* dst_image, const imImage* kernel, int count);
00448
00449 /** Convolve with a kernel rotating it 8 times and getting the absolute maximum value. \n
00450 * Kernel must be square. \n
00451 * The rotation is implemented only for kernel sizes 3x3, 5x5 and 7x7. \n
00452 * Supports all data types except IM_CFLOAT.
00453 * Returns zero if the counter aborted.\n
00454 * If the kernel image attribute "Description" exists it is used by the counter.
00455 *
00456 * \verbatim im.ProcessCompassConvolve(src_image: imImage, dst_image: imImage, kernel: imImage) -> counter: boolean [in Lua 5] \endverbatim
00457 * \verbatim im.ProcessCompassConvolveNew(image: imImage, kernel: imImage) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00458 * \ingroup convolve */
00459 int imProcessCompassConvolve(const imImage* src_image, imImage* dst_image, imImage* kernel);
00460
00461 /** Utility function to rotate a kernel one time.
00462 *
00463 * \verbatim im.ProcessRotateKernel(kernel: imImage) [in Lua 5] \endverbatim
00464 * \ingroup convolve */
00465 void imProcessRotateKernel(imImage* kernel);
00466
00467 /** Difference(Gaussian1, Gaussian2). \n
00468 * Supports all data types,
00469 * but if source is IM_BYTE or IM_USHORT destiny image must be of type IM_INT.
00470 *
00471 * \verbatim im.ProcessDiffOfGaussianConvolve(src_image: imImage, dst_image: imImage, stddev1: number, stddev2: number) -> counter: boolean [in Lua 5] \endverbatim
00472 * \verbatim im.ProcessDiffOfGaussianConvolveNew(image: imImage, stddev1: number, stddev2: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00473 * \ingroup convolve */
00474 int imProcessDiffOfGaussianConvolve(const imImage* src_image, imImage* dst_image, float stddev1, float stddev2);
00475
00476 /** Convolution with a laplacian of a gaussian kernel. \n
00477 * Supports all data types,
00478 * but if source is IM_BYTE or IM_USHORT destiny image must be of type IM_INT.
00479 *
00480 * \verbatim im.ProcessLapOfGaussianConvolve(src_image: imImage, dst_image: imImage, stddev: number) -> counter: boolean [in Lua 5] \endverbatim
00481 * \verbatim im.ProcessLapOfGaussianConvolveNew(image: imImage, stddev: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00482 * \ingroup convolve */
00483 int imProcessLapOfGaussianConvolve(const imImage* src_image, imImage* dst_image, float stddev);
00484
00485 /** Convolution with a kernel full of "1"s inside a circle. \n
00486 * Supports all data types.
00487 *
00488 * \verbatim im.ProcessMeanConvolve(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5] \endverbatim
00489 * \verbatim im.ProcessMeanConvolveNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00490 * \ingroup convolve */
00491 int imProcessMeanConvolve(const imImage* src_image, imImage* dst_image, int kernel_size);
00492
00493 /** Convolution with a float gaussian kernel. \n
00494 * If sdtdev is negative its magnitude will be used as the kernel size. \n
00495 * Supports all data types.
00496 *
00497 * \verbatim im.ProcessGaussianConvolve(src_image: imImage, dst_image: imImage, stddev: number) -> counter: boolean [in Lua 5] \endverbatim
00498 * \verbatim im.ProcessGaussianConvolveNew(image: imImage, stddev: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00499 * \ingroup convolve */
00500 int imProcessGaussianConvolve(const imImage* src_image, imImage* dst_image, float stddev);
00501
00502 /** Convolution with a barlett kernel. \n
00503 * Supports all data types.
00504 *
00505 * \verbatim im.ProcessBarlettConvolve(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5] \endverbatim
00506 * \verbatim im.ProcessBarlettConvolveNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00507 * \ingroup convolve */
00508 int imProcessBarlettConvolve(const imImage* src_image, imImage* dst_image, int kernel_size);
00509
00510 /** Magnitude of the sobel convolution. \n
00511 * Supports all data types.
00512 *
00513 * \verbatim im.ProcessSobelConvolve(src_image: imImage, dst_image: imImage) -> counter: boolean [in Lua 5] \endverbatim
00514 * \verbatim im.ProcessSobelConvolveNew(image: imImage) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00515 * \ingroup convolve */
00516 int imProcessSobelConvolve(const imImage* src_image, imImage* dst_image);
00517
00518 /** Magnitude of the prewitt convolution. \n
00519 * Supports all data types.
00520 *
00521 * \verbatim im.ProcessPrewittConvolve(src_image: imImage, dst_image: imImage) -> counter: boolean [in Lua 5] \endverbatim
00522 * \verbatim im.ProcessPrewittConvolveNew(image: imImage) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00523 * \ingroup convolve */
00524 int imProcessPrewittConvolve(const imImage* src_image, imImage* dst_image);
00525
00526 /** Spline edge dectection. \n
00527 * Supports all data types.
00528 *
00529 * \verbatim im.ProcessSplineEdgeConvolve(src_image: imImage, dst_image: imImage) -> counter: boolean [in Lua 5] \endverbatim
00530 * \verbatim im.ProcessSplineEdgeConvolveNew(image: imImage) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00531 * \ingroup convolve */
00532 int imProcessSplineEdgeConvolve(const imImage* src_image, imImage* dst_image);
00533
00534 /** Finds the zero crossings of IM_INT and IM_FLOAT images. Crossings are marked with non zero values
00535 * indicating the intensity of the edge. It is usually used after a second derivative, laplace. \n
00536 * Extracted from XITE, Copyright 1991, Blab, UiO \n
00537 * http://www.ifi.uio.no/~blab/Software/Xite/
00538 *
00539 * \verbatim im.ProcessZeroCrossing(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00540 * \verbatim im.ProcessZeroCrossingNew(image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00541 * \ingroup convolve */
00542 void imProcessZeroCrossing(const imImage* src_image, imImage* dst_image);
00543
00544 /** First part of the Canny edge detector. Includes the gaussian filtering and the nonmax suppression. \n
00545 * After using this you could apply a Hysteresis Threshold, see \ref imProcessHysteresisThreshold. \n
00546 * Image must be IM_BYTE/IM_GRAY. \n
00547 * Implementation from the book:
00548 \verbatim
00549 J. R. Parker
00550 "Algoritms for Image Processing and Computer Vision"
00551 WILEY
00552 \endverbatim
00553 *
00554 * \verbatim im.ProcessCanny(src_image: imImage, dst_image: imImage, stddev: number) [in Lua 5] \endverbatim
00555 * \verbatim im.ProcessCannyNew(image: imImage, stddev: number) -> new_image: imImage [in Lua 5] \endverbatim
00556 * \ingroup convolve */
00557 void imProcessCanny(const imImage* src_image, imImage* dst_image, float stddev);
00558
00559 /** Calculates the kernel size given the standard deviation. \n
00560 * If sdtdev is negative its magnitude will be used as the kernel size.
00561 *
00562 * \verbatim im.GaussianStdDev2KernelSize(stddev: number) -> kernel_size: number [in Lua 5] \endverbatim
00563 * \ingroup convolve */
00564 int imGaussianStdDev2KernelSize(float stddev);
00565
00566 /** Calculates the standard deviation given the kernel size.
00567 *
00568 * \verbatim im.GaussianKernelSize2StdDev(kernel_size: number) -> stddev: number [in Lua 5] \endverbatim
00569 * \ingroup convolve */
00570 float imGaussianKernelSize2StdDev(int kernel_size);
00571
00572
00573 #if defined(__cplusplus)
00574 }
00575 #endif
00576
00577 #endif