IM: im_color.h Source File

IM - An Imaging Tool

im_color.h

Go to the documentation of this file.
00001 /** \file
00002  * \brief Color Manipulation
00003  *
00004  * See Copyright Notice in im_lib.h
00005  */
00006 
00007 #ifndef __IM_COLOR_H
00008 #define __IM_COLOR_H
00009 
00010 #include "im_math.h"
00011 
00012 /** \defgroup color Color Manipulation
00013  *
00014  * \par
00015  * Functions to convert from one color space to another, 
00016  * and color gammut utilities.
00017  * \par
00018  * See \ref im_color.h
00019  *
00020  * \section s1 Some Color Science
00021  * \par
00022  * Y is luminance, a linear-light quantity. 
00023  * It is directly proportional to physical intensity
00024  * weighted by the spectral sensitivity of human vision.
00025  * \par
00026  * L* is lightness, a nonlinear luminance
00027  * that aproximates the perception of brightness. 
00028  * It is nearly perceptual uniform.
00029  * It has a range of 0 to 100.
00030  * \par
00031  * Y' is luma, a nonlinear luminance that aproximates lightness.
00032  * \par
00033  * Brightness is a visual sensation according to which an area
00034  * apears to exhibit more or less light. 
00035  * It is a subjective quantity and can not be measured.
00036  * \par
00037  * One unit of euclidian distante in CIE L*u*v* or CIE L*a*b* corresponds
00038  * roughly to a just-noticeable difference (JND) of color.
00039  * \par
00040 \verbatim
00041  ChromaUV = sqrt(u*u + v*v)       
00042  HueUV = atan2(v, u)
00043  SaturationUV = ChromaUV / L      (called psychometric saturation) 
00044  (the same can be calculated for Lab)
00045 \endverbatim
00046  * \par
00047  * IEC 61966-2.1 Default RGB colour space - sRGB
00048  * \li ITU-R Recommendation BT.709 (D65 white point).
00049  * \li D65 White Point (X,Y,Z) = (0.9505 1.0000 1.0890)
00050  * \par
00051  * Documentation extracted from  Charles Poynton - Digital Video and HDTV - Morgan Kaufmann - 2003.
00052  *
00053  * \section Links
00054  * \li www.color.org - ICC
00055  * \li www.srgb.com - sRGB
00056  * \li www.poynton.com - Charles Poynton
00057  * \li www.littlecms.com - A free Color Management System (use this if you need precise color conversions)
00058  *
00059  * \section cci Color Component Intervals
00060  * \par
00061  * All the color components are stored in the 0-max interval, even the signed ones. \n
00062  * Here are the pre-defined intervals for each data type. These values are used for standard color conversion.
00063  * You should normalize data before converting betwwen color spaces.
00064  * \par
00065 \verbatim
00066  byte   [0,255]      or [-128,+127]          (1 byte)
00067  ushort [0,65535]    or [-32768,+32767]      (2 bytes)
00068  int    [0,16777215] or [-8388608,+8388607]  (3 bytes)
00069  float  [0,1]        or [-0.5,+0.5]          (4 bytes)
00070 \endverbatim
00071  * \ingroup util */
00072 
00073 /** Returns the zero value for color conversion porpouses. \n
00074  * This is a value to be compensated when the data_type is unsigned and component is signed. \n
00075  * \ingroup color */
00076 inline float imColorZero(int data_type)
00077 {
00078   float zero[] = {128.0f, 32768.0f, 8388608.0f, 0.5f};
00079   return zero[data_type];
00080 }
00081 
00082 /** Returns the maximum value for color conversion porpouses. \n
00083  * \ingroup color */
00084 inline int imColorMax(int data_type)
00085 {
00086   int max[] = {255, 65535, 16777215, 1};
00087   return max[data_type];
00088 }
00089 
00090 /** Quantize 0-1 values into 0-max. \n
00091  * q = r * (max + 1) \n
00092  * Divide by the size of each interval 1/(max+1),
00093  * then the value is rounded down in the typecast. \n
00094  * But 0 is mapped to 0, and 1 is mapped to max.
00095  * \ingroup color */
00096 template <class T> 
00097 inline T imColorQuantize(const float& value, const T& max)
00098 {
00099   if (max == 1) return (T)value; // to allow a dummy quantize
00100   if (value >= 1) return max;
00101   if (value <= 0) return 0;
00102   return (T)(value*(max + 1));  
00103 }                               
00104 
00105 /** Reconstruct 0-max values into 0-1. \n
00106  * r = (q + 0.5)/(max + 1)  \n
00107  * Add 0.5 to set the same origin, then multiply by the size of each interval 1/(max+1). \n
00108  * But 0 is mapped to 0, and max is mapped to 1.
00109  * \ingroup color */
00110 template <class T> 
00111 inline float imColorReconstruct(const T& value, const T& max)
00112 {
00113   if (max == 1) return (float)value;  // to allow a dummy reconstruct
00114   if (value <= 0) return 0;
00115   if (value >= max) return 1;
00116   return (((float)value + 0.5f)/((float)max + 1.0f));
00117 }
00118 
00119 /** Converts Y'CbCr to R'G'B' (all nonlinear). \n
00120  * ITU-R Recommendation 601-1 with no headroom/footroom.
00121 \verbatim
00122  0 <= Y <= 1 ; -0.5 <= CbCr <= 0.5 ; 0 <= RGB <= 1 
00123 
00124  R'= Y' + 0.000 *Cb + 1.402 *Cr
00125  G'= Y' - 0.344 *Cb - 0.714 *Cr
00126  B'= Y' + 1.772 *Cb + 0.000 *Cr
00127 \endverbatim
00128  * \ingroup color */
00129 template <class T> 
00130 inline void imColorYCbCr2RGB(const T Y, const T Cb, const T Cr, 
00131                              T& R, T& G, T& B,
00132                              const T& zero, const T& max)
00133 {
00134   float r = float(Y                        + 1.402f * (Cr - zero));
00135   float g = float(Y - 0.344f * (Cb - zero) - 0.714f * (Cr - zero));
00136   float b = float(Y + 1.772f * (Cb - zero));
00137 
00138   // now we should enforce 0<= rgb <= max
00139 
00140   R = (T)IM_CROPMAX(r, max);
00141   G = (T)IM_CROPMAX(g, max);
00142   B = (T)IM_CROPMAX(b, max);
00143 }
00144 
00145 /** Converts R'G'B' to Y'CbCr (all nonlinear). \n
00146  * ITU-R Recommendation 601-1 with no headroom/footroom.
00147 \verbatim
00148  0 <= Y <= 1 ; -0.5 <= CbCr <= 0.5 ; 0 <= RGB <= 1 
00149 
00150  Y' =  0.299 *R' + 0.587 *G' + 0.114 *B'
00151  Cb = -0.169 *R' - 0.331 *G' + 0.500 *B'
00152  Cr =  0.500 *R' - 0.419 *G' - 0.081 *B'
00153 \endverbatim
00154  * \ingroup color */
00155 template <class T> 
00156 inline void imColorRGB2YCbCr(const T R, const T G, const T B, 
00157                              T& Y, T& Cb, T& Cr,
00158                              const T& zero)
00159 {
00160   Y  = (T)( 0.299f *R + 0.587f *G + 0.114f *B);
00161   Cb = (T)(-0.169f *R - 0.331f *G + 0.500f *B + (float)zero);
00162   Cr = (T)( 0.500f *R - 0.419f *G - 0.081f *B + (float)zero);
00163 
00164   // there is no need for cropping here, YCrCr is already at the limits
00165 }
00166 
00167 /** Converts C'M'Y'K' to R'G'B' (all nonlinear). \n
00168  * This is a poor conversion that works for a simple visualization.
00169 \verbatim
00170   0 <= CMYK <= 1 ; 0 <= RGB <= 1 
00171 
00172   R = (1 - K) * (1 - C)
00173   G = (1 - K) * (1 - M)
00174   B = (1 - K) * (1 - Y)
00175 \endverbatim
00176  * \ingroup color */
00177 template <class T>
00178 inline void imColorCMYK2RGB(const T C, const T M, const T Y, const T K, 
00179                             T& R, T& G, T& B, const T& max)
00180 {
00181   T W = max - K;
00182   R = (T)((W * (max - C)) / max);
00183   G = (T)((W * (max - M)) / max);
00184   B = (T)((W * (max - Y)) / max);
00185 
00186   // there is no need for cropping here, RGB is already at the limits
00187 }
00188 
00189 /** Converts CIE XYZ to Rec 709 RGB (all linear). \n
00190  * ITU-R Recommendation BT.709 (D65 white point). \n
00191 \verbatim
00192   0 <= XYZ <= 1 ; 0 <= RGB <= 1    
00193 
00194   R =  3.2406 *X - 1.5372 *Y - 0.4986 *Z
00195   G = -0.9689 *X + 1.8758 *Y + 0.0415 *Z
00196   B =  0.0557 *X - 0.2040 *Y + 1.0570 *Z
00197 \endverbatim
00198  * \ingroup color */
00199 template <class T>
00200 inline void imColorXYZ2RGB(const T X, const T Y, const T Z, 
00201                            T& R, T& G, T& B, const T& max)
00202 {
00203   float r =  3.2406f *X - 1.5372f *Y - 0.4986f *Z;
00204   float g = -0.9689f *X + 1.8758f *Y + 0.0415f *Z;
00205   float b =  0.0557f *X - 0.2040f *Y + 1.0570f *Z;
00206 
00207   // we need to crop because not all XYZ colors are visible
00208 
00209   R = (T)IM_CROPMAX(r, max);
00210   G = (T)IM_CROPMAX(g, max);
00211   B = (T)IM_CROPMAX(b, max);
00212 }
00213 
00214 /** Converts Rec 709 RGB to CIE XYZ (all linear). \n
00215  * ITU-R Recommendation BT.709 (D65 white point). \n
00216 \verbatim
00217   0 <= XYZ <= 1 ; 0 <= RGB <= 1    
00218 
00219   X = 0.4124 *R + 0.3576 *G + 0.1805 *B
00220   Y = 0.2126 *R + 0.7152 *G + 0.0722 *B
00221   Z = 0.0193 *R + 0.1192 *G + 0.9505 *B
00222 \endverbatim
00223  * \ingroup color */
00224 template <class T>
00225 inline void imColorRGB2XYZ(const T R, const T G, const T B, 
00226                            T& X, T& Y, T& Z)
00227 {
00228   X = (T)(0.4124f *R + 0.3576f *G + 0.1805f *B);
00229   Y = (T)(0.2126f *R + 0.7152f *G + 0.0722f *B);
00230   Z = (T)(0.0193f *R + 0.1192f *G + 0.9505f *B);
00231 
00232   // there is no need for cropping here, XYZ is already at the limits
00233 }
00234 
00235 #define IM_FWLAB(_w) (_w > 0.008856f?               \
00236                         powf(_w, 1.0f/3.0f):        \
00237                         7.787f * _w + 0.16f/1.16f)
00238 
00239 /** Converts CIE XYZ (linear) to CIE L*a*b* (nonlinear). \n
00240  * The white point is D65. \n
00241 \verbatim
00242   0 <= L <= 1 ; -0.5 <= ab <= +0.5 ; 0 <= XYZ <= 1 
00243 
00244   if (t > 0.008856)
00245     f(t) = pow(t, 1/3)
00246   else
00247     f(t) = 7.787*t + 16/116
00248 
00249   fX = f(X / Xn)      fY = f(Y / Yn)      fZ = f(Z / Zn)
00250 
00251   L = 1.16 * fY - 0.16
00252   a = 2.5 * (fX - fY)
00253   b = (fY - fZ)
00254 
00255 \endverbatim
00256  * \ingroup color */
00257 inline void imColorXYZ2Lab(const float X, const float Y, const float Z, 
00258                            float& L, float& a, float& b)
00259 {
00260   float fX = X / 0.9505f;  // white point D65
00261   float fY = Y / 1.0f;
00262   float fZ = Z / 1.0890f;
00263 
00264   fX = IM_FWLAB(fX);
00265   fY = IM_FWLAB(fY);
00266   fZ = IM_FWLAB(fZ);
00267 
00268   L = 1.16f * fY - 0.16f;
00269   a = 2.5f * (fX - fY);
00270   b = (fY - fZ);
00271 }
00272 
00273 #define IM_GWLAB(_w)  (_w > 0.20689f?                     \
00274                          powf(_w, 3.0f):                  \
00275                          0.1284f * (_w - 0.16f/1.16f))
00276 
00277 /** Converts CIE L*a*b* (nonlinear) to CIE XYZ (linear). \n
00278  * The white point is D65. \n
00279  * 0 <= L <= 1 ; -0.5 <= ab <= +0.5 ; 0 <= XYZ <= 1 
00280  * \ingroup color */
00281 inline void imColorLab2XYZ(const float L, const float a, const float b, 
00282                            float& X, float& Y, float& Z)
00283 
00284 {
00285   float fY = (L + 0.16f) / 1.16f;
00286   float gY = IM_GWLAB(fY);
00287 
00288   float fgY = IM_FWLAB(gY);
00289   float gX = fgY + a / 2.5f;
00290   float gZ = fgY - b;
00291   gX = IM_GWLAB(gX);
00292   gZ = IM_GWLAB(gZ);
00293 
00294   X = gX * 0.9505f;     // white point D65
00295   Y = gY * 1.0f;
00296   Z = gZ * 1.0890f;
00297 }
00298 
00299 /** Converts CIE XYZ (linear) to CIE L*u*v* (nonlinear). \n
00300  * The white point is D65. \n
00301 \verbatim
00302   0 <= L <= 1 ; -1 <= uv <= +1 ; 0 <= XYZ <= 1
00303 
00304   Y = Y / 1.0      (for D65)
00305   if (Y > 0.008856)
00306     fY = pow(Y, 1/3)
00307   else
00308     fY = 7.787 * Y + 0.16/1.16
00309   L = 1.16 * fY - 0.16
00310 
00311   U(x, y, z) = (4 * x)/(x + 15 * y + 3 * z)
00312   V(x, y, z) = (9 * x)/(x + 15 * y + 3 * z)
00313   un = U(Xn, Yn, Zn) = 0.1978      (for D65)
00314   vn = V(Xn, Yn, Zn) = 0.4683      (for D65)
00315   fu = U(X, Y, Z) 
00316   fv = V(X, Y, Z) 
00317 
00318   u = 13 * L * (fu - un)
00319   v = 13 * L * (fv - vn)
00320 \endverbatim
00321  * \ingroup color */
00322 inline void imColorXYZ2Luv(const float X, const float Y, const float Z, 
00323                            float& L, float& u, float& v)
00324 {
00325   float XYZ = (float)(X + 15 * Y + 3 * Z);
00326   float fY = Y / 1.0f;
00327 
00328   if (XYZ != 0)
00329   {
00330     L = 1.16f * IM_FWLAB(fY) - 0.16f;
00331     u = 6.5f * L * ((4 * X)/XYZ - 0.1978f);
00332     v = 6.5f * L * ((9 * Y)/XYZ - 0.4683f);
00333   }
00334   else
00335   {
00336     L = u = v = 0;
00337   }
00338 }
00339 
00340 /** Converts CIE L*u*v* (nonlinear) to CIE XYZ (linear). \n
00341  * The white point is D65.
00342  * 0 <= L <= 1 ; -0.5 <= uv <= +0.5 ; 0 <= XYZ <= 1 \n
00343  * \ingroup color */
00344 inline void imColorLuv2XYZ(const float L, const float u, const float v, 
00345                            float& X, float& Y, float& Z)
00346 
00347 {
00348   float fY = (L + 0.16f) / 1.16f;
00349   Y = IM_GWLAB(fY) * 1.0f;
00350 
00351   float ul = 0.1978f, vl = 0.4683f;
00352   if (L != 0)
00353   {
00354     ul = u / (6.5f * L) + 0.1978f;
00355     vl = v / (6.5f * L) + 0.4683f;
00356   }
00357 
00358   X = ((9 * ul) / (4 * vl)) * Y;
00359   Z = ((12 - 3 * ul - 20 * vl) / (4 * vl)) * Y;
00360 }
00361 
00362 /** Converts nonlinear values to linear values. \n
00363  * We use the sRGB transfer function. sRGB uses ITU-R 709 primaries and D65 white point. \n
00364 \verbatim
00365   0 <= l <= 1 ; 0 <= v <= 1 
00366 
00367   if (v < 0.03928)
00368     l = v / 12.92
00369   else
00370     l = pow((v + 0.055) / 1.055, 2.4)
00371 \endverbatim
00372  * \ingroup color */                           
00373 inline float imColorTransfer2Linear(const float& nonlinear_value)
00374 {
00375   if (nonlinear_value < 0.03928f)
00376     return nonlinear_value / 12.92f;
00377   else
00378     return powf((nonlinear_value + 0.055f) / 1.055f, 2.4f);
00379 }
00380 
00381 /** Converts linear values to nonlinear values. \n
00382  * We use the sRGB transfer function. sRGB uses ITU-R 709 primaries and D65 white point. \n
00383 \verbatim
00384   0 <= l <= 1 ; 0 <= v <= 1 
00385 
00386   if (l < 0.0031308)
00387     v = 12.92 * l
00388   else
00389     v = 1.055 * pow(l, 1/2.4) - 0.055
00390 \endverbatim
00391  * \ingroup color */                           
00392 inline float imColorTransfer2Nonlinear(const float& value)
00393 {
00394   if (value < 0.0031308f)
00395     return 12.92f * value;
00396   else
00397     return 1.055f * powf(value, 1.0f/2.4f) - 0.055f;
00398 }
00399 
00400 /** Converts RGB (linear) to R'G'B' (nonlinear).
00401  * \ingroup color */
00402 inline void imColorRGB2RGBNonlinear(const float RL, const float GL, const float BL,
00403                                     float& R, float& G, float& B)
00404 {
00405   R = imColorTransfer2Nonlinear(RL);
00406   G = imColorTransfer2Nonlinear(GL);
00407   B = imColorTransfer2Nonlinear(BL);
00408 }
00409 
00410 /** Converts R'G'B' to Y' (all nonlinear). \n
00411 \verbatim
00412  Y'  =  0.299 *R' + 0.587 *G' + 0.114 *B'
00413 \endverbatim
00414  * \ingroup color */
00415 template <class T> 
00416 inline T imColorRGB2Luma(const T R, const T G, const T B)
00417 {
00418   return (T)((299 * R + 587 * G + 114 * B) / 1000);
00419 }
00420 
00421 /** Converts Luminance (CIE Y) to Lightness (CIE L*) (all linear). \n
00422  * The white point is D65.
00423 \verbatim
00424   0 <= Y <= 1 ; 0 <= L* <= 1
00425 
00426   Y = Y / 1.0      (for D65)
00427   if (Y > 0.008856)
00428     fY = pow(Y, 1/3)
00429   else
00430     fY = 7.787 * Y + 0.16/1.16
00431   L = 1.16 * fY - 0.16
00432 \endverbatim
00433  * \ingroup color */
00434 inline float imColorLuminance2Lightness(const float& Y)
00435 {
00436   return 1.16f * IM_FWLAB(Y) - 0.16f;
00437 }
00438 
00439 /** Converts Lightness (CIE L*) to Luminance (CIE Y) (all linear). \n
00440  * The white point is D65.
00441 \verbatim
00442   0 <= Y <= 1 ; 0 <= L* <= 1
00443 
00444   fY = (L + 0.16)/1.16
00445   if (fY > 0.20689)
00446     Y = pow(fY, 3)
00447   else
00448     Y = 0.1284 * (fY - 0.16/1.16)
00449   Y = Y * 1.0      (for D65)
00450 \endverbatim
00451  * \ingroup color */
00452 inline float imColorLightness2Luminance(const float& L)
00453 {
00454   float fY = (L + 0.16f) / 1.16f;
00455   return IM_GWLAB(fY);
00456 }
00457 
00458 #undef IM_FWLAB
00459 #undef IM_GWLAB
00460 #undef IM_CROPL
00461 #undef IM_CROPC
00462 
00463 #endif