IM: im_process_pon.h Source File

IM - An Imaging Tool

im_process_pon.h

Go to the documentation of this file.
00001 /** \file
00002  * \brief Image Processing - Pontual Operations
00003  *
00004  * See Copyright Notice in im_lib.h
00005  * $Id: im_process_pon.h,v 1.8 2006/11/22 19:55:32 scuri Exp $
00006  */
00007 
00008 #ifndef __IM_PROCESS_PON_H
00009 #define __IM_PROCESS_PON_H
00010 
00011 #include "im_image.h"
00012 
00013 #if defined(__cplusplus)
00014 extern "C" {
00015 #endif
00016 
00017 
00018 
00019 /** \defgroup arithm Arithmetic Operations 
00020  * \par
00021  * Simple math operations for images.
00022  * \par
00023  * See \ref im_process_pon.h
00024  * \ingroup process */
00025 
00026 /** Unary Arithmetic Operations.
00027  * Inverse and log may lead to math exceptions.
00028  * \ingroup arithm */
00029 enum imUnaryOp {
00030   IM_UN_EQL,    /**< equal             =     a        */
00031   IM_UN_ABS,    /**< abssolute         =    |a|       */
00032   IM_UN_LESS,   /**< less              =    -a        */
00033   IM_UN_INC,    /**< increment        +=     a        */
00034   IM_UN_INV,    /**< invert            =   1/a       (#) */
00035   IM_UN_SQR,    /**< square            =     a*a      */
00036   IM_UN_SQRT,   /**< square root       =     a^(1/2)  */
00037   IM_UN_LOG,    /**< natural logarithm =  ln(a)      (#) */
00038   IM_UN_EXP,    /**< exponential       = exp(a)       */
00039   IM_UN_SIN,    /**< sine              = sin(a)       */
00040   IM_UN_COS,    /**< cosine            = cos(a)       */
00041   IM_UN_CONJ,   /**< complex conjugate =     ar - ai*i                   */
00042   IM_UN_CPXNORM /**< complex normalization by magnitude = a / cpxmag(a)  */
00043 };
00044 
00045 /** Apply an arithmetic unary operation. \n
00046  * Can be done in place, images must match size, does not need to match type.
00047  *
00048  * \verbatim im.ProcessUnArithmeticOp(src_image: imImage, dst_image: imImage, op: number) [in Lua 5] \endverbatim
00049  * \verbatim im.ProcessUnArithmeticOpNew(image: imImage, op: number) -> new_image: imImage [in Lua 5] \endverbatim
00050  * \ingroup arithm */
00051 void imProcessUnArithmeticOp(const imImage* src_image, imImage* dst_image, int op);
00052 
00053 /** Binary Arithmetic Operations.
00054  * Inverse and log may lead to math exceptions.
00055  * \ingroup arithm */
00056 enum imBinaryOp {
00057   IM_BIN_ADD,    /**< add         =    a+b            */
00058   IM_BIN_SUB,    /**< subtract    =    a-b            */
00059   IM_BIN_MUL,    /**< multiply    =    a*b            */
00060   IM_BIN_DIV,    /**< divide      =    a/b            (#) */
00061   IM_BIN_DIFF,   /**< difference  =    |a-b|          */
00062   IM_BIN_POW,    /**< power       =    a^b            */
00063   IM_BIN_MIN,    /**< minimum     =    (a < b)? a: b  */
00064   IM_BIN_MAX     /**< maximum     =    (a > b)? a: b  */
00065 };
00066 
00067 /** Apply a binary arithmetic operation. \n
00068  * Can be done in place, images must match size. \n
00069  * Source images must match type, destiny image can be several types depending on source: \n
00070  * \li byte -> byte, ushort, int, float
00071  * \li ushort -> ushort, int, float
00072  * \li int -> int, float
00073  * \li float -> float
00074  * \li complex -> complex
00075  * One exception is that you can combine complex with float resulting complex.
00076  *
00077  * \verbatim im.ProcessArithmeticOp(src_image1: imImage, src_image2: imImage, dst_image: imImage, op: number) [in Lua 5] \endverbatim
00078  * \verbatim im.ProcessArithmeticOpNew(image1: imImage, image2: imImage, op: number) -> new_image: imImage [in Lua 5] \endverbatim
00079  * The New function will create a new image of the same type of the source images.
00080  * \ingroup arithm */
00081 void imProcessArithmeticOp(const imImage* src_image1, const imImage* src_image2, imImage* dst_image, int op);
00082 
00083 /** Apply a binary arithmetic operation with a constant value. \n
00084  * Can be done in place, images must match size. \n
00085  * Destiny image can be several types depending on source: \n
00086  * \li byte -> byte, ushort, int, float
00087  * \li ushort -> byte, ushort, int, float
00088  * \li int -> byte, ushort, int, float
00089  * \li float -> float
00090  * \li complex -> complex
00091  * The constant value is type casted to an apropriate type before the operation.
00092  *
00093  * \verbatim im.ProcessArithmeticConstOp(src_image: imImage, src_const: number, dst_image: imImage, op: number) [in Lua 5] \endverbatim
00094  * \verbatim im.ProcessArithmeticConstOpNew(image: imImage, src_const: number, op: number) -> new_image: imImage [in Lua 5] \endverbatim
00095  * \ingroup arithm */
00096 void imProcessArithmeticConstOp(const imImage* src_image, float src_const, imImage* dst_image, int op);
00097 
00098 /** Blend two images using an alpha value = [a * alpha + b * (1 - alpha)]. \n
00099  * Can be done in place, images must match size and type. \n
00100  * alpha value must be in the interval [0.0 - 1.0].
00101  *
00102  * \verbatim im.ProcessBlend(src_image1: imImage, src_image2: imImage, dst_image: imImage, alpha: number) [in Lua 5] \endverbatim
00103  * \verbatim im.ProcessBlendNew(image1: imImage, image2: imImage, alpha: number) -> new_image: imImage [in Lua 5] \endverbatim
00104  * \ingroup arithm */
00105 void imProcessBlendConst(const imImage* src_image1, const imImage* src_image2, imImage* dst_image, float alpha);
00106 
00107 /** Blend two images using an alpha channel = [a * alpha + b * (1 - alpha)]. \n
00108  * Can be done in place, images must match size and type. \n
00109  * alpha_image must have the same data type except for complex images that must be float, and color_space must be IM_GRAY.
00110  * integer alpha values must be:
00111 \verbatim 
00112 0 - 255        IM_BYTE  
00113 0 - 65535      IM_USHORT
00114 0 - 2147483647 IM_INT
00115 \endverbatim
00116  * that will be normalized to 0 - 1.
00117  * \verbatim im.ProcessBlend(src_image1: imImage, src_image2: imImage, alpha_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00118  * \verbatim im.ProcessBlendNew(image1: imImage, image2: imImage, alpha_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00119  * \ingroup arithm */
00120 void imProcessBlend(const imImage* src_image1, const imImage* src_image2, const imImage* alpha_image, imImage* dst_image);
00121 
00122 /** Split a complex image into two images with real and imaginary parts \n
00123  * or magnitude and phase parts (polar). \n
00124  * Source image must be IM_CFLOAT, destiny images must be IM_FLOAT.
00125  *
00126  * \verbatim im.ProcessSplitComplex(src_image: imImage, dst_image1: imImage, dst_image2: imImage, do_polar: boolean) [in Lua 5] \endverbatim
00127  * \verbatim im.ProcessSplitComplexNew(image: imImage, do_polar: boolean) -> dst_image1: imImage, dst_image2: imImage [in Lua 5] \endverbatim
00128  * \ingroup arithm */
00129 void imProcessSplitComplex(const imImage* src_image, imImage* dst_image1, imImage* dst_image2, int do_polar);
00130 
00131 /** Merges two images as the real and imaginary parts of a complex image, \n
00132  * or as magnitude and phase parts (polar = 1). \n
00133  * Source images must be IM_FLOAT, destiny image must be IM_CFLOAT.
00134  *
00135  * \verbatim im.ProcessMergeComplex(src_image1: imImage, src_image2: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00136  * \verbatim im.ProcessMergeComplexNew(image1: imImage, image2: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00137  * \ingroup arithm */
00138 void imProcessMergeComplex(const imImage* src_image1, const imImage* src_image2, imImage* dst_image, int polar);
00139 
00140 /** Calculates the mean of multiple images. \n
00141  * Images must match size and type.
00142  *
00143  * \verbatim im.ProcessMultipleMean(src_image_list: table of imImage, dst_image: imImage) [in Lua 5] \endverbatim
00144  * \verbatim im.ProcessMultipleMeanNew(src_image_list: table of imImage) -> new_image: imImage [in Lua 5] \endverbatim
00145  * \ingroup arithm */
00146 void imProcessMultipleMean(const imImage** src_image_list, int src_image_count, imImage* dst_image);
00147 
00148 /** Calculates the standard deviation of multiple images. \n
00149  * Images must match size and type. Use \ref imProcessMultipleMean to calculate the mean_image.
00150  *
00151  * \verbatim im.ProcessMultipleStdDev(src_image_list: table of imImage, mean_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00152  * \verbatim im.ProcessMultipleStdDevNew(src_image_list: table of imImage, mean_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00153  * \ingroup arithm */
00154 void imProcessMultipleStdDev(const imImage** src_image_list, int src_image_count, const imImage *mean_image, imImage* dst_image);
00155 
00156 /** Calculates the auto-covariance of an image with the mean of a set of images. \n
00157  * Images must match size and type. Returns zero if the counter aborted.
00158  *
00159  * \verbatim im.ProcessAutoCovariance(src_image: imImage, mean_image: imImage, dst_image: imImage) -> counter: boolean [in Lua 5] \endverbatim
00160  * \verbatim im.ProcessAutoCovarianceNew(src_image: imImage, mean_image: imImage) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00161  * \ingroup arithm */
00162 int imProcessAutoCovariance(const imImage* src_image, const imImage* mean_image, imImage* dst_image);
00163 
00164 /** Multiplies the conjugate of one complex image with another complex image. \n
00165  * Images must match size. Conj(img1) * img2 \n
00166  * Can be done in-place.
00167  *
00168  * \verbatim im.ProcessMultiplyConj(src_image1: imImage, src_image2: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00169  * \verbatim im.ProcessMultiplyConjNew(src_image1: imImage, src_image2: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00170  * \ingroup arithm */
00171 void imProcessMultiplyConj(const imImage* src_image1, const imImage* src_image2, imImage* dst_image);
00172 
00173 
00174 
00175 /** \defgroup quantize Additional Image Quantization Operations
00176  * \par
00177  * Additionally operations to the \ref imConvertColorSpace function.
00178  * \par
00179  * See \ref im_process_pon.h
00180  * \ingroup process */
00181 
00182 /** Converts a RGB image to a MAP image using uniform quantization 
00183  * with an optional 8x8 ordered dither. The RGB image must have data type IM_BYTE.
00184  *
00185  * \verbatim im.ProcessQuantizeRGBUniform(src_image: imImage, dst_image: imImage, do_dither: boolean) [in Lua 5] \endverbatim
00186  * \verbatim im.ProcessQuantizeRGBUniformNew(src_image: imImage, do_dither: boolean) -> new_image: imImage [in Lua 5] \endverbatim
00187  * \ingroup quantize */
00188 void imProcessQuantizeRGBUniform(const imImage* src_image, imImage* dst_image, int do_dither);
00189 
00190 /** Quantizes a gray scale image in less that 256 grays using uniform quantization. \n
00191  * Both images must be IM_BYTE/IM_GRAY. Can be done in place. 
00192  *
00193  * \verbatim im.ProcessQuantizeGrayUniform(src_image: imImage, dst_image: imImage, grays: number) [in Lua 5] \endverbatim
00194  * \verbatim im.ProcessQuantizeGrayUniformNew(src_image: imImage, grays: number) -> new_image: imImage [in Lua 5] \endverbatim
00195  * \ingroup quantize */
00196 void imProcessQuantizeGrayUniform(const imImage* src_image, imImage* dst_image, int grays);
00197 
00198 
00199 
00200 /** \defgroup histo Histogram Based Operations
00201  * \par
00202  * See \ref im_process_pon.h
00203  * \ingroup process */
00204 
00205 /** Performs an histogram expansion based on a percentage of the number of pixels. \n
00206  * Percentage defines an amount of pixels to include at the lowest level and at the highest level.
00207  * If its is zero only empty counts of the histogram will be considered. \n
00208  * Images must be IM_BYTE/(IM_RGB or IM_GRAY). Can be done in place. \n
00209  * To expand the gammut without using the histogram, by just specifing the lowest and highest levels
00210  * use the \ref IM_GAMUT_EXPAND tone gammut operation (\ref imProcessToneGamut).
00211  *
00212  * \verbatim im.ProcessExpandHistogram(src_image: imImage, dst_image: imImage, percent: number) [in Lua 5] \endverbatim
00213  * \verbatim im.ProcessExpandHistogramNew(src_image: imImage, percent: number) -> new_image: imImage [in Lua 5] \endverbatim
00214  * \ingroup histo */
00215 void imProcessExpandHistogram(const imImage* src_image, imImage* dst_image, float percent);
00216 
00217 /** Performs an histogram equalization. \n
00218  * Images must be IM_BYTE/(IM_RGB or IM_GRAY). Can be done in place. 
00219  *
00220  * \verbatim im.ProcessEqualizeHistogram(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00221  * \verbatim im.ProcessEqualizeHistogramNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00222  * \ingroup histo */
00223 void imProcessEqualizeHistogram(const imImage* src_image, imImage* dst_image);
00224 
00225 
00226 
00227 /** \defgroup colorproc Color Processing Operations
00228  * \par
00229  * Operations to change the color components configuration.
00230  * \par
00231  * See \ref im_process_pon.h
00232  * \ingroup process */
00233 
00234 /** Split a RGB image into luma and chroma. \n
00235  * Chroma is calculated as R-Y,G-Y,B-Y. Source image must be IM_RGB/IM_BYTE. \n
00236  * luma image is IM_GRAY/IM_BYTE and chroma is IM_RGB/IM_BYTE. \n
00237  * Source and destiny must have the same size. 
00238  *
00239  * \verbatim im.ProcessSplitYChroma(src_image: imImage, y_image: imImage, chroma_image: imImage) [in Lua 5] \endverbatim
00240  * \verbatim im.ProcessSplitYChromaNew(src_image: imImage) -> y_image: imImage, chroma_image: imImage [in Lua 5] \endverbatim
00241  * \ingroup colorproc */
00242 void imProcessSplitYChroma(const imImage* src_image, imImage* y_image, imImage* chroma_image);
00243 
00244 /** Split a RGB image into HSI planes. \n
00245  * Source image must be IM_RGB/IM_BYTE,IM_FLOAT. Destiny images are all IM_GRAY/IM_FLOAT. \n
00246  * Source images must normalized to 0-1 if type is IM_FLOAT (\ref imProcessToneGamut can be used). See \ref hsi for a definition of the color conversion.\n
00247  * Source and destiny must have the same size. 
00248  *
00249  * \verbatim im.ProcessSplitHSI(src_image: imImage, h_image: imImage, s_image: imImage, i_image: imImage) [in Lua 5] \endverbatim
00250  * \verbatim im.ProcessSplitHSINew(src_image: imImage) -> h_image: imImage, s_image: imImage, i_image: imImage [in Lua 5] \endverbatim
00251  * \ingroup colorproc */
00252 void imProcessSplitHSI(const imImage* src_image, imImage* h_image, imImage* s_image, imImage* i_image);
00253 
00254 /** Merge HSI planes into a RGB image. \n
00255  * Source images must be IM_GRAY/IM_FLOAT. Destiny image can be IM_RGB/IM_BYTE,IM_FLOAT. \n
00256  * Source and destiny must have the same size. See \ref hsi for a definition of the color conversion.
00257  *
00258  * \verbatim im.ProcessMergeHSI(h_image: imImage, s_image: imImage, i_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00259  * \verbatim im.ProcessMergeHSINew(h_image: imImage, s_image: imImage, i_image: imImage) -> dst_image: imImage [in Lua 5] \endverbatim
00260  * \ingroup colorproc */
00261 void imProcessMergeHSI(const imImage* h_image, const imImage* s_image, const imImage* i_image, imImage* dst_image);
00262 
00263 /** Split a multicomponent image into separate components.\n
00264  * Destiny images must be IM_GRAY. Size and data types must be all the same.\n
00265  * The number of destiny images must match the depth of the source image.
00266  *
00267  * \verbatim im.ProcessSplitComponents(src_image: imImage, dst_image_list: table of imImage) [in Lua 5] \endverbatim
00268  * \verbatim im.ProcessSplitComponentsNew(src_image: imImage) -> dst_image_list: table of imImage [in Lua 5] \endverbatim
00269  * \ingroup colorproc */
00270 void imProcessSplitComponents(const imImage* src_image, imImage** dst_image_list);
00271 
00272 /** Merges separate components into a multicomponent image.\n
00273  * Source images must be IM_GRAY. Size and data types must be all the same.\n
00274  * The number of source images must match the depth of the destiny image.
00275  *
00276  * \verbatim im.ProcessMergeComponents(src_image_list: table of imImage, dst_image: imImage) [in Lua 5] \endverbatim
00277  * \verbatim im.ProcessMergeComponentsNew(src_image_list: table of imImage) -> dst_image: imImage [in Lua 5] \endverbatim
00278  * \ingroup colorproc */
00279 void imProcessMergeComponents(const imImage** src_image_list, imImage* dst_image);
00280 
00281 /** Normalize the color components by their sum. Example: c1 = c1/(c1+c2+c3). \n
00282  * Destiny image must be IM_FLOAT. 
00283  *
00284  * \verbatim im.ProcessNormalizeComponents(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00285  * \verbatim im.ProcessNormalizeComponentsNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00286  * \ingroup colorproc */
00287 void imProcessNormalizeComponents(const imImage* src_image, imImage* dst_image);
00288 
00289 /** Replaces the source color by the destiny color. \n
00290  * The color will be type casted to the image data type. \n
00291  * The colors must have the same number of components of the images. \n
00292  * Supports all color spaces and all data types except IM_CFLOAT.
00293  *
00294  * \verbatim im.ProcessReplaceColor(src_image: imImage, dst_image: imImage, src_color: table of numbers, dst_color: table of numbers) [in Lua 5] \endverbatim
00295  * \verbatim im.ProcessReplaceColorNew(src_image: imImage, src_color: table of numbers, dst_color: table of numbers) -> new_image: imImage [in Lua 5] \endverbatim
00296  * \ingroup colorproc */
00297 void imProcessReplaceColor(const imImage* src_image, imImage* dst_image, float* src_color, float* dst_color);
00298 
00299 
00300 
00301 /** \defgroup logic Logical Arithmetic Operations 
00302  * \par
00303  * Logical binary math operations for images.
00304  * \par
00305  * See \ref im_process_pon.h
00306  * \ingroup process */
00307 
00308 /** Logical Operations.
00309  * \ingroup logic */
00310 enum imLogicOp {
00311   IM_BIT_AND,   /**< and  =   a & b   */
00312   IM_BIT_OR,    /**< or   =   a | b   */
00313   IM_BIT_XOR    /**< xor  = ~(a | b)  */
00314 };
00315 
00316 /** Apply a logical operation.\n
00317  * Images must have data type IM_BYTE, IM_USHORT or IM_INT. Can be done in place. 
00318  *
00319  * \verbatim im.ProcessBitwiseOp(src_image1: imImage, src_image2: imImage, dst_image: imImage, op: number) [in Lua 5] \endverbatim
00320  * \verbatim im.ProcessBitwiseOpNew(src_image1: imImage, src_image2: imImage, op: number) -> new_image: imImage [in Lua 5] \endverbatim
00321  * \ingroup logic */
00322 void imProcessBitwiseOp(const imImage* src_image1, const imImage* src_image2, imImage* dst_image, int op);
00323 
00324 /** Apply a logical NOT operation.\n
00325  * Images must have data type IM_BYTE, IM_USHORT or IM_INT. Can be done in place. 
00326  *
00327  * \verbatim im.ProcessBitwiseNot(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00328  * \verbatim im.ProcessBitwiseNotNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00329  * \ingroup logic */
00330 void imProcessBitwiseNot(const imImage* src_image, imImage* dst_image);
00331 
00332 /** Apply a bit mask. \n
00333  * The same as imProcessBitwiseOp but the second image is replaced by a fixed mask. \n
00334  * Images must have data type IM_BYTE. It is valid only for AND, OR and XOR. Can be done in place.
00335  *
00336  * \verbatim im.ProcessBitMask(src_image: imImage, dst_image: imImage, mask: string, op: number) [in Lua 5] \endverbatim
00337  * \verbatim im.ProcessBitMaskNew(src_image: imImage, mask: string, op: number) -> new_image: imImage [in Lua 5] \endverbatim
00338  * In Lua, mask is a string with 0s and 1s, for example: "11001111".
00339  * \ingroup logic */
00340 void imProcessBitMask(const imImage* src_image, imImage* dst_image, unsigned char mask, int op);
00341 
00342 /** Extract or Reset a bit plane. For ex: 000X0000 or XXX0XXXX (plane=3).\n
00343  * Images must have data type IM_BYTE. Can be done in place. 
00344  *
00345  * \verbatim im.ProcessBitPlane(src_image: imImage, dst_image: imImage, plane: number, do_reset: boolean) [in Lua 5] \endverbatim
00346  * \verbatim im.ProcessBitPlaneNew(src_image: imImage, plane: number, do_reset: boolean) -> new_image: imImage [in Lua 5] \endverbatim
00347  * \ingroup logic */
00348 void imProcessBitPlane(const imImage* src_image, imImage* dst_image, int plane, int do_reset);
00349 
00350 
00351 
00352 /** \defgroup render Synthetic Image Render
00353  * \par
00354  * Renders some 2D mathematical functions as images. All the functions operates in place 
00355  * and supports all data types except IM_CFLOAT.
00356  * \par
00357  * See \ref im_process_pon.h
00358  * \ingroup process */
00359 
00360 /** Render Funtion.
00361  * \verbatim render_func(x: number, y: number, d: number, param: table of number) -> value: number [in Lua 5] \endverbatim
00362  * \ingroup render */
00363 typedef float (*imRenderFunc)(int x, int y, int d, float* param);
00364 
00365 /** Render Conditional Funtion.
00366  * \verbatim render_cond_func(x: number, y: number, d: number, param: table of number) -> value: number, cond: boolean [in Lua 5] \endverbatim
00367  * \ingroup render */
00368 typedef float (*imRenderCondFunc)(int x, int y, int d, int *cond, float* param);
00369 
00370 /** Render a synthetic image using a render function. \n
00371  * plus will make the render be added to the current image data, 
00372  * or else all data will be replaced. All the render functions use this or the conditional function. \n
00373  * Returns zero if the counter aborted.
00374  *
00375  * \verbatim im.ProcessRenderOp(image: imImage, render_func: function, render_name: string, param: table of number, plus: boolean) -> counter: boolean [in Lua 5] \endverbatim
00376  * \ingroup render */
00377 int imProcessRenderOp(imImage* image, imRenderFunc render_func, char* render_name, float* param, int plus);
00378 
00379 /** Render a synthetic image using a conditional render function. \n
00380  * Data will be rendered only if the condional param is true. \n
00381  * Returns zero if the counter aborted.
00382  *
00383  * \verbatim im.ProcessRenderCondOp(image: imImage, render_cond_func: function, render_name: string, param: table of number) -> counter: boolean [in Lua 5] \endverbatim
00384  * \ingroup render */
00385 int imProcessRenderCondOp(imImage* image, imRenderCondFunc render_cond_func, char* render_name, float* param);
00386 
00387 /** Render speckle noise on existing data. Can be done in place.
00388  *
00389  * \verbatim im.ProcessRenderAddSpeckleNoise(src_image: imImage, dst_image: imImage, percent: number) -> counter: boolean [in Lua 5] \endverbatim
00390  * \verbatim im.ProcessRenderAddSpeckleNoiseNew(src_image: imImage, percent: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00391  * \ingroup render */
00392 int imProcessRenderAddSpeckleNoise(const imImage* src_image, imImage* dst_image, float percent);
00393 
00394 /** Render gaussian noise on existing data. Can be done in place.
00395  *
00396  * \verbatim im.ProcessRenderAddGaussianNoise(src_image: imImage, dst_image: imImage, mean: number, stddev: number) -> counter: boolean [in Lua 5] \endverbatim
00397  * \verbatim im.ProcessRenderAddGaussianNoiseNew(src_image: imImage, mean: number, stddev: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00398  * \ingroup render */
00399 int imProcessRenderAddGaussianNoise(const imImage* src_image, imImage* dst_image, float mean, float stddev);
00400 
00401 /** Render uniform noise on existing data. Can be done in place.
00402  *
00403  * \verbatim im.ProcessRenderAddUniformNoise(src_image: imImage, dst_image: imImage, mean: number, stddev: number) -> counter: boolean [in Lua 5] \endverbatim
00404  * \verbatim im.ProcessRenderAddUniformNoiseNew(src_image: imImage, mean: number, stddev: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
00405  * \ingroup render */
00406 int imProcessRenderAddUniformNoise(const imImage* src_image, imImage* dst_image, float mean, float stddev);
00407 
00408 /** Render random noise.
00409  *
00410  * \verbatim im.ProcessRenderRandomNoise(image: imImage) -> counter: boolean [in Lua 5] \endverbatim
00411  * \ingroup render */
00412 int imProcessRenderRandomNoise(imImage* image);
00413 
00414 /** Render a constant. The number of values must match the depth of the image.
00415  *
00416  * \verbatim im.ProcessRenderConstant(image: imImage, value: table of number) -> counter: boolean [in Lua 5] \endverbatim
00417  * \ingroup render */
00418 int imProcessRenderConstant(imImage* image, float* value);
00419 
00420 /** Render a centered wheel.
00421  *
00422  * \verbatim im.ProcessRenderWheel(image: imImage, internal_radius: number, external_radius: number) -> counter: boolean [in Lua 5] \endverbatim
00423  * \ingroup render */
00424 int imProcessRenderWheel(imImage* image, int internal_radius, int external_radius);
00425 
00426 /** Render a centered cone.
00427  *
00428  * \verbatim im.ProcessRenderCone(image: imImage, radius: number) -> counter: boolean [in Lua 5] \endverbatim
00429  * \ingroup render */
00430 int imProcessRenderCone(imImage* image, int radius);
00431 
00432 /** Render a centered tent.
00433  *
00434  * \verbatim im.ProcessRenderTent(image: imImage, tent_width: number, tent_height: number) -> counter: boolean [in Lua 5] \endverbatim
00435  * \ingroup render */
00436 int imProcessRenderTent(imImage* image, int tent_width, int tent_height);
00437 
00438 /** Render a ramp. Direction can be vertical (1) or horizontal (0).
00439  *
00440  * \verbatim im.ProcessRenderRamp(image: imImage, start: number, end: number, vert_dir: boolean) -> counter: boolean [in Lua 5] \endverbatim
00441  * \ingroup render */
00442 int imProcessRenderRamp(imImage* image, int start, int end, int vert_dir);
00443 
00444 /** Render a centered box.
00445  *
00446  * \verbatim im.ProcessRenderBox(image: imImage, box_width: number, box_height: number) -> counter: boolean [in Lua 5] \endverbatim
00447  * \ingroup render */
00448 int imProcessRenderBox(imImage* image, int box_width, int box_height);
00449 
00450 /** Render a centered sinc.
00451  *
00452  * \verbatim im.ProcessRenderSinc(image: imImage, x_period: number, y_period: number) -> counter: boolean [in Lua 5] \endverbatim
00453  * \ingroup render */
00454 int imProcessRenderSinc(imImage* image, float x_period, float y_period);
00455 
00456 /** Render a centered gaussian.
00457  *
00458  * \verbatim im.ProcessRenderGaussian(image: imImage, stddev: number) -> counter: boolean [in Lua 5] \endverbatim
00459  * \ingroup render */
00460 int imProcessRenderGaussian(imImage* image, float stddev);
00461 
00462 /** Render the laplacian of a centered gaussian.
00463  *
00464  * \verbatim im.ProcessRenderLapOfGaussian(image: imImage, stddev: number) -> counter: boolean [in Lua 5] \endverbatim
00465  * \ingroup render */
00466 int imProcessRenderLapOfGaussian(imImage* image, float stddev);
00467 
00468 /** Render a centered cosine.
00469  *
00470  * \verbatim im.ProcessRenderCosine(image: imImage, x_period: number, y_period: number) -> counter: boolean [in Lua 5] \endverbatim
00471  * \ingroup render */
00472 int imProcessRenderCosine(imImage* image, float x_period, float y_period);
00473 
00474 /** Render a centered grid.
00475  *
00476  * \verbatim im.ProcessRenderGrid(image: imImage, x_space: number, y_space: number) -> counter: boolean [in Lua 5] \endverbatim
00477  * \ingroup render */
00478 int imProcessRenderGrid(imImage* image, int x_space, int y_space);
00479 
00480 /** Render a centered chessboard.
00481  *
00482  * \verbatim im.ProcessRenderChessboard(image: imImage, x_space: number, y_space: number) -> counter: boolean [in Lua 5] \endverbatim
00483  * \ingroup render */
00484 int imProcessRenderChessboard(imImage* image, int x_space, int y_space);
00485 
00486 
00487 
00488 /** \defgroup tonegamut Tone Gamut Operations
00489  * \par
00490  * Operations that try to preserve the min-max interval in the output (the dynamic range).
00491  * \par
00492  * See \ref im_process_pon.h
00493  * \ingroup process */
00494 
00495 
00496 /** Tone Gamut Operations.
00497  * \ingroup tonegamut */
00498 enum imToneGamut {
00499   IM_GAMUT_NORMALIZE, /**< normalize = (a-min) / (max-min)     (destiny image must be IM_FLOAT)   */
00500   IM_GAMUT_POW,       /**< pow       = ((a-min) / (max-min))^gamma * (max-min) + min                  \n
00501                                        param[0]=gamma                                             */
00502   IM_GAMUT_LOG,       /**< log       = log(K * (a-min) / (max-min) + 1))*(max-min)/log(K+1) + min     \n
00503                                        param[0]=K     (K>0)                                       */
00504   IM_GAMUT_EXP,       /**< exp       = (exp(K * (a-min) / (max-min)) - 1))*(max-min)/(exp(K)-1) + min \n
00505                                        param[0]=K                                                 */
00506   IM_GAMUT_INVERT,    /**< invert    = max - (a-min)                                              */
00507   IM_GAMUT_ZEROSTART, /**< zerostart = a - min                                                    */
00508   IM_GAMUT_SOLARIZE,  /**< solarize  = a < level ?  a:  (level * (max-min) - a * (level-min)) / (max-level) \n
00509                                        param[0]=level percentage (0-100) relative to min-max      \n
00510                                        photography solarization effect. */
00511   IM_GAMUT_SLICE,     /**< slice     = start < a || a > end ?  min:  binarize?  max: a                     \n
00512                                        param[0]=start,  param[1]=end,  param[2]=binarize          */
00513   IM_GAMUT_EXPAND,    /**< expand    = a < start ?  min: a > end ? max :  (a-start)*(max-min)/(end-start) + min  \n
00514                                        param[0]=start,  param[1]=end                              */
00515   IM_GAMUT_CROP,      /**< crop      = a < start ?  start: a > end ? end : a                                        \n
00516                                        param[0]=start,  param[1]=end                              */
00517   IM_GAMUT_BRIGHTCONT /**< brightcont = a < min ?  min:  a > max ?  max:  a * tan(c_a) + b_s + (max-min)*(1 - tan(c_a))/2  \n
00518                                         param[0]=bright_shift (-100%..+100%),  param[1]=contrast_factor (-100%..+100%)     \n
00519                                         change brightness and contrast simultaneously. */
00520 };
00521 
00522 /** Apply a gamut operation with arguments. \n
00523  * Supports all data types except IM_CFLOAT. \n
00524  * The linear operation do a special convertion when min > 0 and max < 1, it forces min=0 and max=1. \n
00525  * IM_BYTE images have min=0 and max=255 always. \n
00526  * Can be done in place. When there is no extra params use NULL.
00527  *
00528  * \verbatim im.ProcessToneGamut(src_image: imImage, dst_image: imImage, op: number, param: table of number) [in Lua 5] \endverbatim
00529  * \verbatim im.ProcessToneGamutNew(src_image: imImage, op: number, param: table of number) -> new_image: imImage [in Lua 5] \endverbatim
00530  * \ingroup tonegamut */
00531 void imProcessToneGamut(const imImage* src_image, imImage* dst_image, int op, float* param);
00532 
00533 /** Converts from (0-1) to (0-255), crop out of bounds values. \n
00534  * Source image must be IM_FLOAT, and destiny image must be IM_BYTE.
00535  *
00536  * \verbatim im.ProcessUnNormalize(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00537  * \verbatim im.ProcessUnNormalizeNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00538  * \ingroup tonegamut */
00539 void imProcessUnNormalize(const imImage* src_image, imImage* dst_image);
00540 
00541 /** Directly converts IM_USHORT, IM_INT and IM_FLOAT into IM_BYTE images. \n
00542  * This can also be done using \ref imConvertDataType with IM_CAST_DIRECT.
00543  *
00544  * \verbatim im.ProcessDirectConv(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00545  * \verbatim im.ProcessDirectConvNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00546  * \ingroup tonegamut */
00547 void imProcessDirectConv(const imImage* src_image, imImage* dst_image);
00548 
00549 /** A negative effect. Uses \ref imProcessToneGamut with IM_GAMUT_INVERT for non MAP images. \n
00550  * Supports all color spaces and all data types except IM_CFLOAT. \n
00551  * Can be done in place. 
00552  *
00553  * \verbatim im.ProcessNegative(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00554  * \verbatim im.ProcessNegativeNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00555  * \ingroup tonegamut */
00556 void imProcessNegative(const imImage* src_image, imImage* dst_image);
00557 
00558 
00559 
00560 /** \defgroup threshold Threshold Operations
00561  * \par
00562  * Operations that converts a usually IM_GRAY/IM_BYTE image into a IM_BINARY image using several threshold techniques.
00563  * \par
00564  * See \ref im_process_pon.h
00565  * \ingroup process */
00566 
00567 /** Apply a manual threshold. \n
00568  * threshold = a <= level ? 0: value \n
00569  * Normal value is 1 but another common value is 255. Can be done in place for IM_BYTE source. \n
00570  * Supports all integer IM_GRAY images as source, and IM_BINARY as destiny.
00571  *
00572  * \verbatim im.ProcessThreshold(src_image: imImage, dst_image: imImage, level: number, value: number) [in Lua 5] \endverbatim
00573  * \verbatim im.ProcessThresholdNew(src_image: imImage, level: number, value: number) -> new_image: imImage [in Lua 5] \endverbatim
00574  * \ingroup threshold */
00575 void imProcessThreshold(const imImage* src_image, imImage* dst_image, int level, int value);
00576 
00577 /** Apply a threshold by the difference of two images. \n
00578  * threshold = a1 <= a2 ? 0: 1   \n
00579  * Can be done in place. 
00580  *
00581  * \verbatim im.ProcessThresholdByDiff(src_image1: imImage, src_image2: imImage, dst_image: imImage) [in Lua 5] \endverbatim
00582  * \verbatim im.ProcessThresholdByDiffNew(src_image1: imImage, src_image2: imImage) -> new_image: imImage [in Lua 5] \endverbatim
00583  * \ingroup threshold */
00584 void imProcessThresholdByDiff(const imImage* src_image1, const imImage* src_image2, imImage* dst_image);
00585 
00586 /** Apply a threshold by the Hysteresis method. \n
00587  * Hysteresis thersholding of edge pixels. Starting at pixels with a
00588  * value greater than the HIGH threshold, trace a connected sequence
00589  * of pixels that have a value greater than the LOW threhsold. \n
00590  * Note: could not find the original source code author name.
00591  *
00592  * \verbatim im.ProcessHysteresisThreshold(src_image: imImage, dst_image: imImage, low_thres: number, high_thres: number) [in Lua 5] \endverbatim
00593  * \verbatim im.ProcessHysteresisThresholdNew(src_image: imImage, low_thres: number, high_thres: number) -> new_image: imImage [in Lua 5] \endverbatim
00594  * \ingroup threshold */
00595 void imProcessHysteresisThreshold(const imImage* src_image, imImage* dst_image, int low_thres, int high_thres);
00596 
00597 /** Estimates hysteresis low and high threshold levels. \n
00598  * Usefull for \ref imProcessHysteresisThreshold.
00599  *
00600  * \verbatim im.ProcessHysteresisThresEstimate(image: imImage) -> low_level: number, high_level: number [in Lua 5] \endverbatim
00601  * \ingroup threshold */
00602 void imProcessHysteresisThresEstimate(const imImage* image, int *low_level, int *high_level);
00603 
00604 /** Calculates the threshold level for manual threshold using an uniform error approach. \n
00605  * Extracted from XITE, Copyright 1991, Blab, UiO \n
00606  * http://www.ifi.uio.no/~blab/Software/Xite/
00607 \verbatim
00608   Reference:
00609     S. M. Dunn & D. Harwood & L. S. Davis:
00610     "Local Estimation of the Uniform Error Threshold"
00611     IEEE Trans. on PAMI, Vol PAMI-6, No 6, Nov 1984.
00612   Comments: It only works well on images whith large objects.
00613   Author: Olav Borgli, BLAB, ifi, UiO
00614   Image processing lab, Department of Informatics, University of Oslo
00615 \endverbatim
00616  * Returns the used level.
00617  *
00618  * \verbatim im.ProcessUniformErrThreshold(src_image: imImage, dst_image: imImage) -> level: number [in Lua 5] \endverbatim
00619  * \verbatim im.ProcessUniformErrThresholdNew(src_image: imImage)  -> level: number, new_image: imImage [in Lua 5] \endverbatim
00620  * \ingroup threshold */
00621 int imProcessUniformErrThreshold(const imImage* src_image, imImage* dst_image);
00622 
00623 /** Apply a dithering on each image channel by using a difusion error method. \n
00624  * It can be applied on any IM_BYTE images. It will "threshold" each channel indivudually, so
00625  * source and destiny must be of the same depth.
00626  *
00627  * \verbatim im.ProcessDifusionErrThreshold(src_image: imImage, dst_image: imImage, level: number) [in Lua 5] \endverbatim
00628  * \verbatim im.ProcessDifusionErrThresholdNew(src_image: imImage, level: number) -> new_image: imImage [in Lua 5] \endverbatim
00629  * \ingroup threshold */
00630 void imProcessDifusionErrThreshold(const imImage* src_image, imImage* dst_image, int level);
00631 
00632 /** Calculates the threshold level for manual threshold using a percentage of pixels
00633  * that should stay bellow the threshold. \n
00634  * Returns the used level.
00635  *
00636  * \verbatim im.ProcessPercentThreshold(src_image: imImage, dst_image: imImage, percent: number) -> level: number [in Lua 5] \endverbatim
00637  * \verbatim im.ProcessPercentThresholdNew(src_image: imImage, percent: number) -> level: number, new_image: imImage [in Lua 5] \endverbatim
00638  * \ingroup threshold */
00639 int imProcessPercentThreshold(const imImage* src_image, imImage* dst_image, float percent);
00640 
00641 /** Calculates the threshold level for manual threshold using the Otsu approach. \n
00642  * Returns the used level. \n
00643  * Original implementation by Flavio Szenberg.
00644  *
00645  * \verbatim im.ProcessOtsuThreshold(src_image: imImage, dst_image: imImage) -> level: number [in Lua 5] \endverbatim
00646  * \verbatim im.ProcessOtsuThresholdNew(src_image: imImage) -> level: number, new_image: imImage [in Lua 5] \endverbatim
00647  * \ingroup threshold */
00648 int imProcessOtsuThreshold(const imImage* src_image, imImage* dst_image);
00649 
00650 /** Calculates the threshold level for manual threshold using (max-min)/2. \n
00651  * Returns the used level. \n
00652  * Supports all integer IM_GRAY images as source, and IM_BINARY as destiny.
00653  *
00654  * \verbatim im.ProcessMinMaxThreshold(src_image: imImage, dst_image: imImage) -> level: number [in Lua 5] \endverbatim
00655  * \verbatim im.ProcessMinMaxThresholdNew(src_image: imImage) -> level: number, new_image: imImage [in Lua 5] \endverbatim
00656  * \ingroup threshold */
00657 int imProcessMinMaxThreshold(const imImage* src_image, imImage* dst_image);
00658 
00659 /** Estimates Local Max threshold level for IM_BYTE images.
00660  *
00661  * \verbatim im.ProcessLocalMaxThresEstimate(image: imImage) -> level: number [in Lua 5] \endverbatim
00662  * \ingroup threshold */
00663 void imProcessLocalMaxThresEstimate(const imImage* image, int *level);
00664 
00665 /** Apply a manual threshold using an interval. \n
00666  * threshold = start_level <= a <= end_level ? 1: 0 \n
00667  * Normal value is 1 but another common value is 255. Can be done in place for IM_BYTE source. \n
00668  * Supports all integer IM_GRAY images as source, and IM_BINARY as destiny.
00669  *
00670  * \verbatim im.ProcessSliceThreshold(src_image: imImage, dst_image: imImage, start_level: number, end_level: number) [in Lua 5] \endverbatim
00671  * \verbatim im.ProcessSliceThresholdNew(src_image: imImage, start_level: number, end_level: number) -> new_image: imImage [in Lua 5] \endverbatim
00672  * \ingroup threshold */
00673 void imProcessSliceThreshold(const imImage* src_image, imImage* dst_image, int start_level, int end_level);
00674 
00675 
00676 /** \defgroup effects Special Effects
00677  * \par
00678  * Operations to change image appearance.
00679  * \par
00680  * See \ref im_process_pon.h
00681  * \ingroup process */
00682 
00683 
00684 /** Generates a zoom in effect averaging colors inside a square region. \n
00685  * Operates only on IM_BYTE images.
00686  *
00687  * \verbatim im.ProcessPixelate(src_image: imImage, dst_image: imImage, box_size: number) [in Lua 5] \endverbatim
00688  * \verbatim im.ProcessPixelateNew(src_image: imImage, box_size: number) -> new_image: imImage [in Lua 5] \endverbatim
00689  * \ingroup effects */
00690 void imProcessPixelate(const imImage* src_image, imImage* dst_image, int box_size);
00691 
00692 /** A simple Posterize effect. It reduces the number of colors in the image eliminating 
00693  * less significant bit planes. Can have 1 to 7 levels. See \ref imProcessBitMask. \n
00694  * Image data type must be integer.
00695  *
00696  * \verbatim im.ProcessPosterize(src_image: imImage, dst_image: imImage, level: number) [in Lua 5] \endverbatim
00697  * \verbatim im.ProcessPosterizeNew(src_image: imImage, level: number) -> new_image: imImage [in Lua 5] \endverbatim
00698  * \ingroup effects */
00699 void imProcessPosterize(const imImage* src_image, imImage* dst_image, int level);
00700 
00701 
00702 
00703 #if defined(__cplusplus)
00704 }
00705 #endif
00706 
00707 #endif