
XML	and	Internet	Support

XML	and	Internet	Support	Overview
Microsoft®	SQL	Server™	2000	introduces	new	features	that	support	XML
functionality.	The	combination	of	these	features	makes	SQL	Server	2000	an
XML-enabled	database	server.	These	new	features	include:

The	ability	to	access	SQL	Server	using	HTTP.

Support	for	XDR	(XML-Data	Reduced)	schemas	and	the	ability	to
specify	XPath	queries	against	these	schemas.

The	ability	to	retrieve	and	write	XML	data:

Retrieve	XML	data	using	the	SELECT	statement	and	the	FOR
XML	clause.

Write	XML	data	using	OPENXML	rowset	provider.

Retrieve	XML	data	using	the	XPath	query	language.

Enhancements	to	the	Microsoft	SQL	Server	2000	OLE	DB	provider
(SQLOLEDB)	that	allow	XML	documents	to	be	set	as	command	text
and	to	return	result	sets	as	a	stream.

For	the	latest	updates	relating	to	SQL	Server	support	for	XML,	see	the	XML
Developer	Center	on	MSDN®	at	Microsoft	Web	site.

Note		The	Msxml2.dll	is	installed	with	SQL	Server	2000,	but	additional	tools	are
not	installed.	For	example,	Xmlinst.exe,	the	tool	used	to	configure	Microsoft
Internet	Explorer	to	use	MSXML2,	is	not	installed.	The	full	MSXML2	package
must	be	installed	to	obtain	this	functionality.	MSXML2	can	be	downloaded	from
the	XML	Developer	Center	on	MSDN	at	Microsoft	Web	site.

Getting	Started	with	XML
To	use	the	XML	functionality	that	Microsoft	SQL	Server	2000	provides,	you

http://www.Microsoft.com/isapi/redir.dll?Prd=XML
http://www.Microsoft.com/isapi/redir.dll?Prd=XML

must	have	a	working	knowledge	of	XML,	URL	syntax,	and	HTTP	methods.	You
should	also	be	familiar	with	these	terms:

XML	document

Is	a	document	that	contains	XML	elements	and	attributes.

Document	Type	Definition	(DTD)

Defines	the	elements	and	attributes	that	can	be	used	in	an	XML	document.

Style	sheet

Describes	the	way	data	is	to	be	formatted	or	displayed.	The	Extensible
Stylesheet	Language	(XSL)	is	the	language	that	is	commonly	used	with
XML	documents.

Form

Is	a	structured	document	used	to	collect	and	submit	data	for	processing.

Template

A	concept	introduced	in	SQL	Server	2000,	a	template	is	a	valid	XML
document	containing	one	or	more	SQL	statements.	The	template	files	are
used	to	specify	queries	(SQL	and	XPath	queries).	Instead	of	specifying
queries	in	the	URL,	template	files	containing	the	queries	are	specified	in	the
URL.

Virtual	root

A	concept	introduced	by	Microsoft	Internet	Information	Services	(IIS),	the
virtual	root	is	usually	administered	as	part	of	IIS.

See	Also

Using	IIS	Virtual	Directory	Management	for	SQL	Server	Utility

Accessing	SQL	Server	Using	HTTP

Creating	XML	Views	Using	Annotated	XDR	Schemas

Using	XPath	Queries

Retrieving	and	Writing	XML	Data

XML	and	Internet	Support

IIS	Virtual	Directory	Management	for	SQL	Server
The	IIS	Virtual	Directory	Management	for	SQL	Server	utility	is	provided	to
create	a	virtual	root	specific	to	Microsoft®	SQL	Server™	2000.	You	can	interact
with	the	IIS	Virtual	Directory	Management	for	SQL	Server	application	in	two
ways:

Graphically,	using	the	IIS	Virtual	Directory	Management	for	SQL
Server	utility.

Programmatically,	using	the	IIS	Virtual	Directory	Management	for	SQL
Server	object	model.

See	Also

Accessing	SQL	Server	Using	HTTP

XML	and	Internet	Support

System	Requirements	for	IIS	Virtual	Directory
Management
The	IIS	Virtual	Directory	Management	for	SQL	Server	utility	can	run	on	a
computer	running	any	edition	of	Microsoft®	Windows	NT®	4.0	or	Microsoft
Windows®	2000.	Computers	running	Windows	NT	4.0	require:

Microsoft	Internet	Information	Server	4.0	or	higher	(or	Peer	Web
Services	4.0	or	higher	on	Windows	NT	Workstation	4.0).	

Microsoft	Management	Console	1.2	(installed	by	the	Windows	NT
Option	Pack	and	by	SQL	Server	2000	Setup).

For	computers	running	Microsoft	Windows	2000	Professional,	the
Administrative	Tools	pack	(Adminpak.msi)	must	be	installed.	This	file	is	located
in	the	%windir%\System32	folder	of	the	Windows	2000	Server	editions.

XML	and	Internet	Support

Using	IIS	Virtual	Directory	Management	for	SQL
Server	Utility
Before	accessing	a	Microsoft®	SQL	Server™	2000	database	using	HTTP,	you
must	set	up	an	appropriate	virtual	directory.	Use	the	IIS	Virtual	Directory
Management	for	SQL	Server	utility	(click	Configure	SQL	XML	Support	in	IIS
in	the	SQL	Server	Tools	program	group)	to	define	and	register	a	new	virtual
directory,	also	known	as	the	virtual	root,	on	the	computer	running	Microsoft
Internet	Information	Services	(IIS).	This	utility	instructs	IIS	to	create	an
association	between	the	new	virtual	directory	and	an	instance	of	Microsoft	SQL
Server.	For	information	about	the	user	interface	for	this	utility,	see	IIS	Virtual
Directory	Management	Utility.

The	name	of	the	IIS	server	and	the	virtual	directory	must	be	specified	as	part	of
the	URL.	The	information	in	the	virtual	directory	(including	login,	password,
and	access	permissions)	is	used	to	establish	a	connection	to	a	specific	database
and	execute	the	query.

The	URL	can	be	specified	to:

Directly	access	the	database	objects,	such	as	tables.

In	this	case,	the	URL	would	include	a	virtual	name	of	dbobject	type.

Execute	template	files.

A	template	is	a	valid	XML	document	consisting	of	one	or	more	SQL
statements.	When	a	template	file	is	specified	at	the	URL,	the	SQL
commands	stored	in	the	template	file	are	executed.	SQL	queries	can	be
directly	specified	at	the	URL,	but	this	is	not	recommended	for	security
reasons.

Execute	XPath	queries.

The	XPath	queries	are	executed	against	an	annotated	mapping	schema
file	specified	as	part	of	the	URL.

Virtual	Names

JavaScript:hhobj_1.Click()

To	allow	a	template	file,	mapping	schema	file,	or	a	database	object	(such	as	a
table	or	view)	as	part	of	the	URL,	virtual	names	of	type	template,	schema,	and
dbobject	must	be	created.	The	virtual	name	is	specified	as	part	of	the	URL	to
execute	a	template	file,	an	XPath	query	against	a	mapping	schema	file,	or	to
access	a	database	object	directly.

The	type	(template,	schema,	dbobject)	of	the	virtual	name	specified	at	the	URL
is	also	used	to	determine	the	file	type	specified	at	the	URL	(template	file	or	a
mapping	schema	file).	For	example,	this	URL	accesses	a	SQL	Server	database
using	a	template:

http://IISServer/nwind/TemplateVirtualName/Template.xml

TemplateVirtualName	is	a	virtual	name	of	template	type,	which	identifies	that
the	specified	file	(Template.xml)	is	a	template	file.

See	Also

Accessing	SQL	Server	Using	HTTP

XML	and	Internet	Support

Creating	the	nwind	Virtual	Directory
This	example	creates	the	nwind	virtual	directory.	The	nwind	virtual	directory	is
used	in	most	of	the	examples	that	are	used	to	illustrate	URL	access	to
Microsoft®	SQL	Server™	2000.

Before	you	create	the	nwind	virtual	directory,	you	need	a	physical	directory
associated	with	the	virtual	directory	that	you	are	creating	(for	example,
C:\Inetpub\Wwwroot\nwind	where	nwind	is	the	physical	directory	associated
with	the	nwind	virtual	directory	that	is	created	in	the	following	procedure).

You	also	need	to	create	two	subdirectories	in	the	physical	directory	associated
with	the	virtual	directory	(for	example,	C:\Inetpub\Wwwroot\nwind\template,
and	C:\Inetpub\Wwwroot\nwind\schema).	These	are	the	directories	associated
with	the	virtual	names	of	template	and	schema	types	that	are	created	as	part	of
creating	nwind	virtual	directory.

To	create	the	nwind	virtual	directory

1.	 In	the	Microsoft	SQL	Server	program	group,	click	Configure	SQL
XML	Support	in	IIS.

2.	 Expand	a	server,	and	then	click	the	Web	site	you	want.

3.	 On	the	Action	menu,	point	to	New,	and	then	click	Virtual	Directory.
The	property	page	for	the	new	virtual	directory	is	displayed	on	the
screen.

4.	 On	the	General	tab	of	the	New	Virtual	Directory	Properties	dialog
box,	enter	the	name	of	the	virtual	directory.	For	this	example,	type
nwind	and	the	physical	directory	path	(for	example,
C:\Inetpub\Wwwroot\nwind,	assuming	you	have	a	subdirectory	nwind
created	in	the	C:\Inetpub\Wwwroot	directory).	You	can	optionally	use
the	Browse	button	to	select	the	directory.

5.	 On	the	Security	tab,	select	SQL	Server	and	enter	the	valid	SQL
Server	login	information.	When	you	go	to	the	next	tab,	you	will	be
asked	to	confirm	the	password	you	just	entered.

6.	 On	the	Data	Source	tab,	in	the	SQL	Server	box,	enter	the	name	of	a
server,	for	example	(local),	and	optionally,	the	name	of	an	instance	of
SQL	Server	2000	if	more	than	one	instance	is	installed	on	the	specified
computer.	In	the	Database	box,	enter	Northwind	as	the	name	of	the
default	database.

7.	 On	the	Settings	tab,	select	the	Allow	URL	queries,	Allow	template
queries,	Allow	XPath,	and	Allow	POST	options.

8.	 On	the	Virtual	Names	tab,	click	New	to	create	the	virtual	name	for	the
template	type.

In	the	Virtual	Name	Configuration	dialog	box:

Enter	template	in	the	Virtual	name	box	(it	can	be	any	user
specified	name).	In	the	Type	list,	select	template.	Enter	the
path	(for	example,	C:\Inetpub\Wwwroot\nwind\template,
assuming	there	is	a	subdirectory	template	in	the	physical
directory	associated	with	the	virtual	directory,	however	the
existence	of	the	path	is	not	checked).	Click	Save	to	save	the
virtual	name.

9.	 On	the	Virtual	Names	tab,	click	New	to	create	the	virtual	names	for
the	schema	type.

Enter	schema	in	the	Virtual	name	box	(it	can	be	any	user
specified	name).	In	the	Type	list,	select	schema.	Enter	the
path	(for	example,	C:\Inetpub\Wwwroot\nwind\schema,
assuming	there	is	a	subdirectory	schema	in	the	physical
directory	associated	with	the	virtual	directory).	Click	the	Save
button	to	save	the	virtual	name.

10.	 On	the	Virtual	Names	tab,	click	New	to	create	the	virtual	names	for
the	template	and	schema	types.

Enter	dbobject	in	the	Virtual	name	box	(it	can	be	any	user
specified	name).	In	the	Type	list,	select	dbobject.		Click	the
Save	button	to	save	the	virtual	name.

11.	 Click	OK	to	save	the	settings.

This	creates	a	virtual	directory	nwind.	The	queries	specified	using	this	virtual
directory	are,	by	default,	executed	against	the	Northwind	database.

To	test	the	virtual	directory,	in	the	browser	type:	http://<IISServer>/nwind?
sql=SELECT	*	FROM	Employees	FOR	XML	AUTO&root=root	and	press
ENTER.

See	Also

Using	IIS	Virtual	Directory	Management	for	SQL	Server	Utility

XML	and	Internet	Support

IIS	Virtual	Directory	Management	for	SQL	Server
Object	Model
The	IIS	Virtual	Directory	Management	for	SQL	Server	object	model	consists	of
these	objects:

SQLVDirControl	object

SQLVDirs	collection	object

SQLVDir	object

VirtualNames	collection	object

VirtualName	object

In	an	object	model,	the	content	and	functionality	of	an	application	are	provided
by	objects.	The	objects	are	units	of	related	content	and	functionality.	A	collection
object,	on	the	other	hand,	is	an	object	that	contains	a	set	of	related	objects.	You
can	use	a	collection	object	to	get	to	an	individual	object,	usually	with	an	Item
method.	For	example,	you	can	use	the	Item	method	of	the	SQLVDirs	collection
object	to	access	one	of	the	virtual	directories.

In	this	object	model,	SQLVDirControl	is	the	top-level	object	and	is	the	only
object	that	can	be	created	directly.	All	other	objects	must	be	obtained	from	the
SQLVDirControl	object	or	its	derivatives.

The	object	hierarchy	(object	model)	is	the	way	the	objects	in	the	application	are
arranged	relative	to	each	other.	This	illustration	shows	the	object	hierarchy	in	the
object	model	to	create	a	virtual	root.

See	Also

Accessing	SQL	Server	Using	HTTP

XML	and	Internet	Support

SQLVDirControl	Object
SQLVDirControl	is	the	only	object	in	the	object	hierarchy	that	can	be	accessed
directly	using	Automation.	All	other	objects	are	accessed	through	this	object	or
its	derivatives.

SQLVDirControl	supports	these	methods:

Connect

Connects	to	a	specific	Microsoft®	Internet	Information	Services	(IIS)	server.
The	two	parameters	to	this	method	are:	IIS	Server	name	and	Web	Site
number	(the	number	of	the	Web	site	in	the	metabase	tree).	If	none	of	the
parameters	is	supplied,	the	local	server	is	the	default	value	for	the	IIS	server,
and	the	first	Web	site	(default	Web	site)	on	that	IIS	server	is	selected	as	the
default.

Disconnect

Disconnects	from	the	last	connected	IIS	server	and	the	Web	site.	There	are
no	parameters	to	this	method.	You	must	call	Disconnect	to	close	the
connection	when	you	are	finished	or	before	you	connect	to	another	server	or
Web	site.

Note		You	cannot	issue	multiple	Connect	calls	to	establish	connections	to	many
IIS	servers.	However,	if	you	are	trying	to	connect	to	the	same	IIS	server	but
possibly	different	Web	sites,	you	can	call	Connect	multiple	times	without	calling
Disconnect.

SQLVDirs

The	SQLVDirs	method	retrieves	the	virtual	directory	collection	of	the	Web
site	to	which	you	are	connected.	After	you	are	connected	to	a	specific	IIS
server	and	Web	site,	call	the	SQLVDirs	to	obtain	the	SQLVDirs	collection
object,	which	provides	access	to	the	virtual	directory	objects.

Examples
This	example	shows	how	to	connect	to	a	specific	IIS	server	and	Web	site	on	the
IIS	server.	The	first	Web	site	is	selected	on	the	IIS	server.

Set	ObjXML	=	CreateObject("SQLVDir.SQLVDirControl")
ObjXML.Connect	"IISServer",	"1"
Set	ObjDirs	=	ObjXML.SQLVDirs
...

ObjXML.Disconnect
	

XML	and	Internet	Support

SQLVDirs	Collection	Object
The	SQLVDirs	collection	object	is	returned	by	the
SQLVDirControl.SQLVDirs	method.	With	the	SQLVDirs	collection	object,
you	can	access	a	specific	virtual	directory	(using	the	Item	method),	create	a	new
virtual	directory	(using	the	AddVirtualDirectory	method),	or	remove	an
existing	virtual	directory	(using	the	RemoveVirtualDirectory	method).

The	SQLVDirs	collection	object	supports	these	standard	methods:

Next	method

Retrieves	the	next	virtual	directory	(or	directories).	An	integer	specified	for
Next	determines	the	number	of	virtual	directories	to	retrieve.

Skip	method

Skips	the	virtual	directory	(or	directories).	A	number	specified	for	Skip
determines	how	many	virtual	directories	to	skip.

Reset	method

Resets	the	collection	index	to	the	first	virtual	directory.

Clone	method

Returns	a	copy	of	the	SQLVDirs	collection	object.

Count	method

Returns	the	number	of	virtual	directories.

Item	method

Retrieves	one	virtual	directory.	You	can	specify	an	integer	(starting	with	0
for	the	first	virtual	directory)	or	the	name	of	the	virtual	directory.

The	SQLVDirs	collection	object	also	supports	these	methods:

AddVirtualDirectory	method

Takes	the	name	of	the	virtual	directory	to	create.	This	method	creates	a	new
virtual	directory	in	the	metabase	with	all	the	defaults.	However,	some
properties,	like	the	default	database	are	not	set.

The	AddVirtualDirectory	method	or	Item	method	returns	a	SQLVDir
object	that	represents	the	virtual	directory.

RemoveVirtualDirectory	method

Removes	the	virtual	directory	from	the	Microsoft®	Internet	Information
Sevices	(IIS)	metabase.

Examples
This	example	establishes	a	connection	to	the	first	Web	site	on	an	IIS	server.	The
first	virtual	directory	object	(index	value	0)	on	the	connected	Web	site	is
accessed.

Set	ObjXML	=	CreateObject("SQLVDir.SQLVDirControl")
ObjXML.Connect	"IISServer",	"1"
Set	ObjVDirs	=	ObjXML.SQLVDirs
Set	ObjVDir	=	ObjVDirs.Item(0)
'	or	ObjVDirs(0)	since	Item()	is	the	default
...
ObjXML.Disconnect

XML	and	Internet	Support

SQLVDir	Object
The	SQLVDir	object	is	a	virtual	directory	object	obtained	by	calling	the	Item
method	(or	by	calling	the	AddVirtualDirectory	method	if	you	are	creating	a
new	virtual	directory).

The	SQLVDir	object	supports	the	following	properties.	You	can	get	and	set
values	for	all	of	these	properties	except	the	Password	property	(for	which	you
can	set,	but	cannot	get,	the	value).

Name	property

Is	the	name	of	the	virtual	directory.

PhysicalPath	property

Is	the	full	physical	path	to	the	directory	associated	with	the	virtual	directory.

ServerName	property

Is	the	name	of	the	server	running	Microsoft®	SQL	Server™	2000,	which	is
the	data	source	for	the	virtual	directory.

DatabaseName	property

Is	the	default	database	used	in	queries	against	this	virtual	directory.

UserName	property

Is	the	user	login	that	is	used	to	connect	to	the	data	source.

Password	property

Is	the	user	password	that	is	used	to	connect	to	the	data	source.

SecurityMode	property

Is	the	login	authentication	method	that	is	used	with	the	virtual	directory,	such
as	SQL	Authentication	or	Windows	Integrated	Authentication.	You	can
specify	one	of	these	values.

Value Description
1 SQL	Server	login

2 Microsoft	Windows®	anonymous	login
4 Basic	authentication
8 Windows	Integrated	Authentication

CAUTION		If	you	are	changing	the	connection	settings	(changing	server	name,
database	name,	user	name,	password	or	the	security	mode),	it	is	recommended
that	the	virtual	directory	access	be	disallowed.	The	virtual	directory	can	be
disabled	by	setting	the	AllowFlags	property	to	0.

AllowFlags	property

Provides	the	type	of	access	allowed	through	this	virtual	directory.	You	can
specify	one	(or	a	combination)	of	these	values.

Value Description
1 URL	queries
8 Template	access
64 XPath	queries

EnablePasswordSync	property

Specifies	whether	Microsoft®	Internet	Information	Services	(IIS)	is	allowed
to	handle	the	anonymous	password	synchronization.

DLLPath	property

Provides	the	full	path	to	the	Sqlisapi.dll.

AdditionalSettings	property

Are	user-defined	settings	appended	to	the	OLE	DB	connection	string.

The	SQLVDir	object	also	supports	this	method:

VirtualNames	method

Is	the	collection	of	virtual	name	mappings	for	the	virtual	directory.

Examples
This	example	establishes	a	connection	to	the	first	Web	site	on	an	IIS	server.	The

first	virtual	directory	object	(index	0)	on	the	connected	Web	site	is	accessed.	The
PhysicalPath	property	of	the	object	is	set	to	C:\inetpub.

Set	ObjXML	=	CreateObject("SQLVDir.SQLVDirControl")
ObjXML.Connect	"IISServer",	"1"
Set	ObjVDirs	=	ObjXML.SQLVDirs
Set	ObjVDir	=	ObjVDirs.Item(0)
ObjVDir.PhysicalPath	=	"C:\"
ObjVDir.PhysicalPath	=	ObjVDir.PhysicalPath	&	"inetpub"
...
ObjXML.Disconnect
	

XML	and	Internet	Support

VirtualNames	Collection	Object
The	VirtualNames	collection	object	is	a	collection	of	virtual	names	in	the
virtual	directory	object	(SQLVDir	object).	The	VirtualNames	collection	object
is	similar	to	the	SQLVDirs	object	(which	is	a	collection	of	virtual	root	objects).
The	VirtualNames	collection	object	supports	these	standard	methods:

Next	method

Retrieves	the	next	virtual	name	(or	names).	An	integer	specified	for	Next
determines	the	number	of	virtual	names	to	retrieve.

Skip	method

Skips	the	virtual	name	(or	names).	A	number	specified	for	Skip	determines
how	many	virtual	names	to	skip.

Reset	method

Resets	the	collection	index	to	the	first	virtual	name.

Clone	method

Returns	a	copy	of	the	VirtualNames	collection	object.

Count	method

Returns	the	number	of	virtual	names.

Item	method

Retrieves	one	virtual	name.	You	can	specify	an	integer	(starting	with	0	for
the	first	virtual	directory)	or	the	name	of	the	virtual	name.

The	VirtualNames	collection	object	also	supports	these	methods:

AddVirtualName	method

Passes	the	name	of	the	virtual	name,	type	of	the	virtual	name,	and	the
directory	path	associated	with	the	virtual	name	to	create.	The
AddVirtualName	method	or	Item	method	returns	an	interface	to	a
VirtualName	object	that	represents	the	virtual	name.

RemoveVirtualName	method

Removes	the	virtual	name	that	is	specified.

Examples
This	example	shows	the	steps	for	accessing	a	VirtualNames	collection	object.

Set	ObjXML	=	CreateObject("SQLVDir.SQLVDirControl")
ObjXML.Connect	"IISServer",	"1"
Set	ObjVDirs	=	ObjXML.SQLVDirs
Set	ObjVDir	=	ObjVDirs.Item(0)
Set	ObjNames	=	ObjVdir.VirtualNames
...
ObjXML.Disconnect
	

XML	and	Internet	Support

VirtualName	Object
The	VirtualName	object	is	obtained	by	calling	the	Item	method	(or	by	calling
the	AddVirtualName	method	if	you	are	creating	a	new	virtual	name).

The	VirtualName	object	supports	these	properties:

Name	property

Is	the	name	of	the	virtual	name	that	is	being	created.

Type	property

Is	the	virtual	name	type.	You	can	specify	one	of	these	values.

Value Description
1 Virtual	name	of	type	dbobject.
2 Virtual	name	of	type	schema.
4 Virtual	name	of	type	template.

Path	property

Is	the	directory	path	(absolute	or	relative)	associated	with	the	virtual	name.

Examples
This	example	shows	the	steps	for	accessing	an	existing	VirtualName	object	and
for	setting	some	of	its	attributes.

Set	ObjXML	=	CreateObject("SQLVDir.SQLVDirControl")
ObjXML.Connect	"IISServer",	"1"
Set	ObjVDirs	=	ObjXML.SQLVDirs
Set	ObjVDir	=	ObjVDirs.Item(0)
Set	ObjNames	=	ObjVdir.VirtualNames
Set	ObjVName1	=	ObjNames.Item(0)
ObjVName1.Type	=	2
ObjVName1.Name	=	"MySchema"
ObjVName1.Path	=	"C:\inetpub\schema"

...
ObjXML.Disconnect

This	statement	creates	a	new	virtual	name:

Set	NewVName	=	ObjNames.AddVirtualName	"MyNewSchema",	2,	"C:\inetpub\schema"
	

XML	and	Internet	Support

Creating	the	nwind	Virtual	Directory	Using	the
Object	Model
This	Microsoft®	Visual	Basic®	Scripting	Edition	(VBScript)	sample	creates	the
same	nwind	virtual	directory	that	is	described	in	Creating	the	nwind	Virtual
Directory.

Set	ObjXML	=	CreateObject("SQLVDir.SQLVDirControl")
ObjXML.Connect	'Connect	to	the	local	computer	and	Web	site	"1"

Set	ObjVDirs	=	ObjXML.SQLVDirs
Set	ObjVDir	=	ObjVDirs.AddVirtualDirectory("nwind")

'General	tab	in	UI
ObjVDir.PhysicalPath	=	"C:\Inetpub\wwwroot\nwind"

'Security	tab	in	UI
ObjVDir.UserName	=	"sa"	'SQL	Server	login
ObjVDir.Password	=	""			'SQL	Server	Password	(is	""	per	default)

'Data	source	tab	in	UI
'(local)	is	default	for	the	SQL	Server
ObjVDir.DatabaseName	=	"Northwind"

'Settings	tab	in	UI
objVDir.AllowFlags	=	73	'afURL_QUERIES	OR	afTEMPLATES	OR	afXPath

'Virtual	Name	Configuration	tab	in	the	UI
Set	objVNames	=	objVDir.VirtualNames
objVNames.AddVirtualName	"dbobject",	1,	""
objVNames.AddVirtualName	"schema",	2,	"C:\Inetpub\wwwroot\nwind\schema"
objVNames.AddVirtualName	"template",	4	,	"C:\Inetpub\wwwroot\nwind\template"

'Disconnect	from	the	server.
objXML.Disconnect

msgbox	"Done."
	

XML	and	Internet	Support

Accessing	SQL	Server	Using	HTTP
You	can	access	Microsoft®	SQL	Server™	2000	using	HTTP.	For	more
information	about	the	URL	syntax	that	is	support	by	the	SQL	ISAPI	extension,
see	URL	Access.	Before	queries	can	be	specified	using	HTTP,	a	virtual	root
must	be	created	using	the	IIS	Virtual	Directory	Management	for	SQL	Server
utility.	For	more	information,	see	Creating	the	nwind	Virtual	Directory.

The	HTTP	access	to	SQL	Server	allows	you	to:

Specify	SQL	queries	directly	in	the	URL,	for	example:
http://IISServer/nwind?sql=SELECT+*+FROM+Customers+FOR+XML+AUTO&root=root

The	FOR	XML	clause	returns	the	result	as	an	XML	document	instead	of
a	standard	rowset.	The	root	parameter	identifies	the	single	top-level
element.

Specify	templates	directly	in	the	URL.

Templates	are	valid	XML	documents	containing	one	or	more	SQL
statements.	The	templates	allow	you	to	put	together	data	to	form	a	valid
XML	document,	which	is	not	necessarily	the	case	when	queries	are
specified	directly	in	the	URL.	For	example:

http://IISServer/nwind?template=<ROOT+xmlns:sql="urn:schemas-microsoft-com:xml-sql"><sql:query>SELECT+*+FROM+Customers+FOR+XML+AUTO</sql:query></ROOT>

Specify	template	files	in	the	URL.

Writing	long	SQL	queries	at	the	URL	can	be	cumbersome.	In	addition,
browsers	may	have	limitations	on	the	amount	of	text	that	can	be	entered
in	the	URL.	To	avoid	these	problems,	templates	can	be	written	and
stored	in	a	file.	A	template	is	a	valid	XML	document	containing	one	or
more	SQL	statements	and	XPath	queries.	You	can	specify	a	template
file	directly	in	a	URL,	for	example:

http://IISServer/nwind/TemplateVirtualName/templatefile.xml

In	the	URL,	TemplateVirtualName	is	the	virtual	name	of	template
type	that	is	created	using	the	IIS	Virtual	Directory	Management	for	SQL

JavaScript:hhobj_1.Click()

Server	utility.

Template	files	also	enhance	security	by	removing	the	details	of	database
queries	from	the	user.	By	storing	the	template	file	in	the	virtual	root
directory	(or	its	subdirectories)	where	the	database	is	registered,
security	can	be	enforced	by	removing	the	URL	query-processing	service
on	the	virtual	root,	and	leaving	only	the	SQL	Server	XML	ISAPI	to
process	the	files	and	return	the	result	set.

Write	XPath	queries	against	the	annotated	XML-Data	Reduced	(XDR)
schemas	(also	referred	to	as	mapping	schemas).

Writing	XPath	queries	against	the	mapping	schemas	is	conceptually
similar	to	creating	views	using	the	CREATE	VIEW	statement	and
writing	SQL	queries	against	them,	for	example:

http://IISServer/nwind/SchemaVirtualName/schemafile.xml/Customer[@CustomerID="ALFKI"]

In	the	URL:

SchemaVirtualName	is	the	virtual	name	of	schema	type	that
is	created	using	the	IIS	Virtual	Directory	Management	for	SQL
Server	utility.	

Customer[@CustomerID="ALFKI"]	is	the	XPath	query
executed	against	the	schemafile.xml	specified	in	the	URL.

Specify	database	objects	directly	in	the	URL.

The	database	objects,	such	as	tables	and	views,	can	be	specified	as	part
of	the	URL,	and	an	XPath	can	be	specified	against	the	database	object,
for	example:

http://IISServer/nwind/dbobjectVirtualName/XpathQuery

In	the	URL,	dbobjectVirtualName	is	the	virtual	name	of	dbobject
type	that	is	created	using	IIS	Virtual	Directory	Management	for	SQL
Server	utility.

Note		When	an	operation	that	requires	resources	such	as	memory

(creating	temporary	tables	and	temporary	stored	procedures,	declaring
cursors,	executing	sp_xml_preparedocument,	and	so	on)	is	executed
at	the	URL,	the	resources	must	be	freed	by	executing	appropriate
corresponding	commands	(such	as,	DROP	TABLE,	DROP
PROCEDURE,	DEALLOCATE	the	cursor,	or	EXECUTE
sp_xml_removedocument).

XML	Documents	and	Document	Fragments

When	you	execute	a	template	or	a	query	with	the	root	parameter,	the	result	is	a
full	XML	document	with	a	single	top-level	element.	For	example,	this	URL
executes	a	template:

http://IISServer/VirtualRoot/TemplateVirutalName/MyTemplate.xml

This	is	a	sample	template	file	(MyTemplate.xml):

<ROOT	xmlns:sql="urn:schemas-microsoft-com:xml-sql">
				<sql:query>
						SELECT		*	
						FROM				Customers	
						FOR	XML	AUTO
				</sql:query>
</ROOT>	

The	<ROOT>	tag	in	the	template	provides	the	top-level	single	element	for	the
resulting	XML	document.

The	queries	can	be	specified	directly	in	the	URL.	In	this	case,	the	root	parameter
specifies	the	top-level	element	of	the	document	returned:

http://IISServer/VirtualRoot?sql=SELECT	*	FROM	Customers	FOR	XML	AUTO?root=root	

If	you	write	the	same	query	without	the	root	parameter,	an	XML	document
fragment	(an	XML	document	without	the	single	top-level	element)	is	returned.
This	fragment	has	no	header	information.	For	example,	this	URL	returns	a
document	fragment:

http://IISServer/VirtualRoot?sql=SELECT	*	FROM	Customers	FOR	XML	AUTO

The	byte-order	mark	identifying	the	document	encoding	is	returned	when	you
request	an	XML	document.	A	byte-order	mark	is	a	standard	sequence	of	bytes
identifying	encoding	type	of	the	XML	document.	The	XML	parsers	use	this
byte-order	mark	to	determine	the	document	encoding	(such	as	Unicode).	For
example	the	byte-order	mark,	oxff,	0xfe	identifies	the	document	as	Unicode.	By
default,	the	parser	assumes	the	UTF-8	as	the	document	encoding.

The	byte-order	mark	is	not	returned	when	you	request	a	XML	fragment,	because
the	byte-order	mark	belongs	to	the	XML	document	header,	which	is	missing	in
the	XML	fragment.

See	Also

Retrieving	XML	Documents	Using	FOR	XML

Using	IIS	Virtual	Directory	Management	for	SQL	Server	Utility

XML	and	Internet	Support

Three-Tier	System	Architecture
The	illustration	shows	the	three-tier	system	architecture	and	describes	the	way
HTTP	requests	from	the	client	are	handled.

The	middle	tier	is	the	Microsoft®	Internet	Information	Services	(IIS)	server	on
which	you	must	first	create	a	virtual	root	using	the	IIS	Virtual	Directory
Management	for	SQL	Server	utility.	The	IIS	server	name	specified	in	the	URL
identifies	the	IIS	server.	The	IIS	server	examines	the	virtual	root	specified	in	the
URL	and	determines	whether	an	ISAPI	DLL	extension	(Sqlisapi.dll)	has	been
registered	for	the	virtual	root	that	is	specified	in	the	URL.	The	IIS	server	loads
the	DLL	and	passes	on	the	URL	request	to	the	DLL.	The	Sqlisapi.dll	extension
communicates	with	the	OLE	DB	Provider	for	SQL	Server	(SQLOLEDB)	and
establishes	connection	with	the	instance	of	Microsoft	SQL	Server™	identified	in
the	virtual	root.

The	entire	XML	functionality	is	implemented	in	Sqlxmlx.dll.	When
SQLOLEDB	determines	that	the	command	is	an	XML	command,	the	provider
passes	that	command	to	Sqlxmlx.dll,	which	executes	the	command	and	returns
the	result	to	SQLOLEDB.

The	template	files,	XML-Data	Reduced	(XDR)	schema	files,	and	Extensible
Stylesheet	Language	(XSL)	files	reside	on	the	IIS	server.	The	XPath	queries	and
the	XDR	schemas	are	handled	on	the	IIS	server.	The	XPath	queries	are	translated

into	SQL	commands	by	Sqlxmlx.dll.

The	FOR	XML	clause	and	OPENXML	are	implemented	on	the	server	running
SQL	Server.

XML	and	Internet	Support

Special	Characters
Some	characters	have	special	meanings	when	they	are	used	in	a	URL	or	in	an
XML	document,	and	must	be	encoded	properly	for	these	meanings	to	take	effect.

Special	Characters	in	a	URL
In	queries	executed	at	the	URL,	special	characters	are	specified	as	%xx,	where
xx	is	the	hexadecimal	value	of	the	character.	The	following	table	lists	these
special	characters	and	describes	their	meanings.	For	more	information,	see	the
RFC1738	specification	at	http://www.faqs.org/rfcs/rfc1738.html.

Special
character Special	meaning

Hexadecimal
value

+ Indicates	a	space	(spaces	cannot	be	used	in	a
URL).

%20

/ Separates	directories	and	subdirectories. %2F
? Separates	the	actual	URL	and	the	parameters. %3F
% Specifies	special	characters. %25
# Indicates	bookmarks. %23
& Separator	between	parameters	specified	in	the

URL.
%26

For	example,	consider	this	query:

SELECT	*
FROM	Employees
WHERE	EmployeeID=?

Because	the	?	character	has	a	special	meaning	in	the	URL	(separates	the	URL
and	the	parameters	being	passed),	it	is	encoded	as	%3F	when	this	query	is
specified	in	the	URL.

The	following	URL	executes	the	query.	In	the	URL,	the	parameter	value	is
passed.	For	more	information	about	executing	SQL	statement	using	HTTP,	see

http://www.faqs.org/rfcs/rfc1738.html

Executing	SQL	Statements	Using	HTTP.

http://IISServer/nwind?sql=SELECT	*	FROM	Employees	WHERE	EmployeeID=%3F	FOR	XML	AUTO&root=root&EmployeeID=1

Any	special	character	(such	as	a	+	character)	to	the	right	of	a	?	character	is
escaped	by	the	browser	(that	is,	a	+	character	to	the	right	of	a	?	is	converted	to
%20).

Special	Characters	in	XML
Characters	such	as	the	>	and	<	characters	are	XML	markup	characters	and	have
special	meaning	in	XML.	When	these	characters	are	specified	in	SQL	queries	(or
an	XPath	queries),	they	must	be	properly	encoded	(also	referred	to	as	entity
encoding).	The	following	table	lists	these	special	characters	and	describes	their
meanings.	For	more	information,	see	the	XML	1.0	specification	at	XML	1.0
Specifications.

Special	character Special	meaning Entity	encoding
> Begins	a	tag. >
< Ends	a	tag. <
" Quotation	mark. "
' Apostrophe. '
& Ampersand. &

For	example,	consider	this	SQL	query:

SELECT		TOP	2	*	
FROM						[Order	Details]	
WHERE			UnitPrice	>	10	
FOR	XML	AUTO

Because	the	>	character	has	a	special	meaning	in	XML,	it	is	encoded	as	>
when	this	query	is	specified	in	a	template	(an	XML	document)	This	is	the
template	with	the	query:

<ROOT	xmlns:sql="urn:schemas-microsoft-com:xml-sql">

http://www.w3c.org

		<sql:query>
						SELECT	top	2	*	
						FROM					[Order	Details]	
						WHERE					UnitPrice	>	10	
						FOR	XML	AUTO
		</sql:query>
</ROOT>

For	more	information	about	templates,	see	Executing	SQL	Queries	Using
Templates	and	Executing	XPath	Queries	Using	Templates.

Entity	Encoding	Within	URL	Encoding
At	times	you	may	have	to	specify	both	the	URL	encoding	and	entity	encoding.
For	example,	this	template	can	be	specified	directly	in	the	URL	(instead	of
specifying	the	file	name):

<ROOT	xmlns:sql="urn:schemas-microsoft-com:xml-sql">
		<sql:query>
						SELECT	top	2	*	
						FROM					[Order	Details]	
						WHERE					UnitPrice	>	10	
						FOR	XML	AUTO
		</sql:query>
</ROOT>

In	this	case,	the	&	character	in	the	entity	encoding	>	(specified	for	>	markup
character)	has	a	special	meaning	in	the	URL	and	requires	further	encoding.	The
&	character	must	be	encoded	as	%26;	otherwise	it	is	treated	as	a	parameter
separator	in	the	URL.	The	URL	is	then	specified	as:

http://IISServer/nwind?template=<ROOT	xmlns:sql="urn:schemas-microsoft-com:xml-sql"><sql:query>SELECT	TOP	2	*	FROM	[Order	Details]	WHERE	UnitPrice	%26gt;	10	FOR	XML	AUTO</sql:query></ROOT>

See	Also

Accessing	SQL	Server	Using	HTTP

Retrieving	XML	Documents	Using	FOR	XML

Using	IIS	Virtual	Directory	Management	for	SQL	Server	Utility

XML	and	Internet	Support

Executing	SQL	Statements	Using	HTTP
Microsoft®	SQL	Server™	2000	can	be	accessed	directly	by	queries	executed	at
the	URL	(if	the	allow	URL	queries	option	was	selected	when	the	virtual	root
was	registered).	Clients	can	make	requests	using	HTTP	methods	GET	and	POST.
For	more	information	about	the	URL	syntax	that	is	support	by	the	SQL	ISAPI
extension,	see	URL	Access.

Examples
In	the	following	examples,	nwind	is	a	virtual	directory	used	to	access	the
Northwind	database.	For	more	information	about	creating	the	nwind	virtual
directory,	see	Creating	the	nwind	Virtual	Directory.

In	the	example	queries,	if	a	query	returns	more	than	one	element	at	the	root	of
the	document,	the	root	element	can	be	added	by	including	either	of	these:

A	SELECT	<ROOT>	in	the	query.

Passing	a	root	keyword	as	a	parameter	to	the	query	with	a	value	ROOT
(this	value	can	be	anything).

A.	Specify	a	simple	query

The	following	statement	returns	all	of	the	customer	data	in	the	Customers	table
in	the	Northwind	database.	In	this	query,	the	XML	mode	is	set	to	RAW.

http://IISServer/Nwind?sql=SELECT+top+2+CustomerID,+ContactName+FROM+Customers+FOR+XML+RAW&root=ROOT

Here	is	the	result	set:

<ROOT>
			<Customers	CustomerID="ALFKI"	ContactName="Maria	Andears"	/>	
			<Customers	CustomerID="ANATR"	ContactName="Ana	Trujillo"	/>	
</ROOT>

JavaScript:hhobj_1.Click()

B.	Specify	a	query	on	multiple	tables
In	this	example,	the	SELECT	statement	returns	information	from	the	Customers
and	Orders	tables	in	the	Northwind	database.	The	XML	mode	is	set	to	AUTO.

http://IISServer/nwind?sql=SELECT+top+2+Customers.CustomerID,OrderID,OrderDate+FROM+Customers,+Orders+WHERE+Customers.CustomerID=Orders.CustomerID+Order+by+Customers.CustomerID,OrderID+FOR+XML+AUTO&root=ROOT

This	is	the	partial	result:

<ROOT>
			<Customers	CustomerID="ALFKI">
					<Orders	OrderID="10643"	OrderDate="1997-08-25T00:00:00"	/>	
					<Orders	OrderID="10692"	OrderDate="1997-10-03T00:00:00"	/>	
			</Customers>
			<Customers	CustomerID="ANATR">
					<Orders	OrderID="10308"	OrderDate="1996-09-18T00:00:00"	/>	
			</Customers>
</ROOT>

C.	Specify	special	characters	in	the	query
The	following	query	returns	all	distinct	contact	titles	starting	with	Sa	from	the
Customers	table	in	the	Northwind	database.	The	example	uses	the	LIKE	clause
and	the	special	character	%	to	search	for	the	contact	titles.	In	the	LIKE	clause,
the	special	character	%	is	specified	as	%25.

http://IISServer/nwind?sql=SELECT+DISTINCT+ContactTitle+FROM+Customers+WHERE+ContactTitle+LIKE+'Sa%25'+ORDER+BY+ContactTitle+FOR+XML+AUTO&root=root

Here	is	the	result	set:

<ROOT>
			<Customers	ContactTitle="Sales	Agent"	/>	
			<Customers	ContactTitle="Sales	Associate"	/>	
			<Customers	ContactTitle="Sales	Manager"	/>	
			<Customers	ContactTitle="Sales	Representative"	/>	
</ROOT>

In	the	following	example,	order	and	order	detail	information	is	retrieved	from

the	Orders	and	Order	Details	tables.

http://IISServer/nwind?sql=SELECT+'<ROOT>'+SELECT+Orders.OrderID,+[Order+Details].OrderID,[Order+Details].ProductID,[Order+Details].UnitPrice+FROM+Orders,+[Order+Details]+WHERE+Orders.OrderID=[Order+Details].OrderID+ORDER+BY+Orders.OrderID+FOR+XML+AUTO;SELECT+'</ROOT>'

This	is	the	partial	result:

<ROOT>
<Orders	OrderID="10248">
		<Order_x0020_Details	OrderID="10248"	ProductID="11"	UnitPrice="14.00"	/>	
		<Order_x0020_Details	OrderID="10248"	ProductID="42"	UnitPrice="9.80"	/>	
</Orders>
<Orders	OrderID="10249">
		<Order_x0020_Details	OrderID="10249"	ProductID="14"	UnitPrice="18.60"	/>	
</Orders>
</ROOT>

D.	Specify	a	query	without	the	FOR	XML	clause
You	can	specify	SQL	queries	without	the	FOR	XML	clause.	The	result	is
returned	as	a	stream.	In	the	query,	you	can	specify	only	one	column	because
streaming	is	not	supported	over	multiple	column	results.	In	this	example,	the
query	returns	the	first	name	of	employees	from	the	Employees	table	in	the
Northwind	database.	The	result	is	returned	as	a	concatenated	string	of	first
names.

http://IISServer/nwind?sql=SELECT+FirstName+FROM+Employees

E.	Specify	the	contenttype	keyword
The	contenttype	keyword	specifies	the	content-type	of	the	document	returned.
text/XML	is	the	default	content-type	of	the	document	except	when	xsl	is
specified	in	the	URL.	When	xsl	is	specified	in	the	URL	and	contenttype	is	not
specified,	then	contenttype	defaults	to	text/html.	

In	this	example,	the	query	returns	a	picture	of	an	employee	from	the	Employees
table	in	the	Northwind	database.	FOR	XML	mode	is	not	specified	because	the
returned	data	is	compatible	with	the	receiving	application	(that	is,	the	browser
can	handle	the	returned	data).

http://IISServer/nwind?sql=SELECT+Photo+FROM+Employees+WHERE+EmployeeID=1

In	retrieving	images,	contenttype	is	generally	specified.	If	contenttype	is
specified,	the	ISAPI	extension	does	not	search	for	and	remove	any	Access
header	information.	Therefore,	to	retrieve	any	images	that	have	the	Access
header	information,	contenttype	should	not	be	specified	as	shown	in	the
previous	example.	In	all	other	cases,	contenttype	should	be	specified	as	shown
in	this	example:

http://iisserver/virtualroot?sql=SELECT+Picture+FROM+TableName+WHERE+SomeID=1&contenttype=image/jpeg

The	images	can	also	be	brought	into	an	HTML	document.	In	the	following
example,	an	.htm	file	(File1.htm)	is	created	with	these	contents:

When	this	file	is	opened	in	the	browser,	an	employee	photo	is	displayed.

F.	Specify	the	xsl	keyword
In	this	example,	the	query	returns	the	first	and	last	name	of	all	employees	in	the
Employee	table	in	the	Northwind	database.	employee.xsl	processes	the	result
set.

When	xsl	is	specified	in	the	URL	but	contenttype	is	not	specified	in	the	URL
and	there	is	no	content-type	defined	in	the	XSL	style	sheet,	contenttype	defaults
to	text/html.	Therefore,	the	result	is	displayed	in	the	form	of	a	table	with	two
columns	(firstname,	lastname).

http://IISServer/nwind?sql=SELECT+FirstName,LastName+FROM+Employees+FOR+XML+AUTO&xsl=employee.xsl&root=root

The	.xsl	file	is	provided	here.	This	file	must	exist	in	the	virtual	root	directory	or
one	of	its	subdirectories	(in	which	case	the	file	path	specified	is	relative	to	the
virtual	root	directory).	In	this	example,	the	.xsl	file	is	stored	in	the	virtual	root
directory.

<?xml	version='1.0'	encoding='UTF-8'?>										
	<xsl:stylesheet	xmlns:xsl="http://www.w3.org/1999/XSL/Transform"	version="1.0">	
				<xsl:template	match	=	'*'>																																

								<xsl:apply-templates	/>																															
				</xsl:template>																																											
				<xsl:template	match	=	'Employees'>																								
							<TR>																																																			
									<TD><xsl:value-of	select	=	'@FirstName'	/></TD>						
									<TD><xsl:value-of	select	=	'@LastName'	/></TD>
							</TR>																																																		
				</xsl:template>
				<xsl:template	match	=	'/'>																															
						<HTML>																																																		
								<HEAD>																																																
											<STYLE>th	{	background-color:	#CCCCCC	}</STYLE>				
								</HEAD>																																															
								<BODY>																																																
									<TABLE	border='1'	style='width:300;'>																
											<TR><TH	colspan='2'>Employees</TH></TR>												
											<TR><TH	>First	name</TH><TH>Last	name</TH></TR>				
											<xsl:apply-templates	select	=	'root'	/>												
									</TABLE>																																													
								</BODY>																																															
						</HTML>																																																	
				</xsl:template>																																											
</xsl:stylesheet>

Instead	of	specifying	the	contenttype	in	the	URL,	contenttype	can	also	be
specified	as	the	value	of	the	media-type	attribute	of	the	<xsl:output>	element.
For	example,	<xsl:output	media-type="text/html"	/>	can	be	added	after	the
namespace	declaration	in	the	preceding	XSL	file.

G.	Pass	parameters	to	SQL	statements
Parameters	can	be	passed	to	SQL	queries.	In	this	example,	employee	information
for	a	given	employee	ID	is	returned	from	the	Employees	table	in	the	Northwind
database.	The	value	of	EmployeeID	is	provided	as	input	to	the	query.	Note	that

the	?	character,	used	for	a	parameter	marker	in	the	URL,	is	a	special	character
and	is	encoded	as	%3F.	For	more	information	about	special	characters,	see
Special	Characters.

http://IISServer/nwind?sql=SELECT+FirstName,LastName+FROM+Employees+WHERE+EmployeeID=%3F+FOR+XML+AUTO&EmployeeID=1&root=ROOT

Here	is	the	result	set:

<ROOT>
			<Employees	FirstName="Nancy"	LastName="Davolio"	/>	
</ROOT>

In	this	query,	two	parameter	values	are	passed	to	the	query:

http://IISServer/nwind?sql=SELECT+'<ROOT>';SELECT+EmployeeID,Title+FROM+Employees+WHERE+LastName=%3F+and+FirstName=%3F+FOR+XML+AUTO;SELECT+'</ROOT>'&LastName=Davolio&FirstName=Nancy

Here	is	the	result	set:

<ROOT>
			<Employees	EmployeeID="1"	Title="Sales	Representative"	/>	
</ROOT>

See	Also

Accessing	SQL	Server	Using	HTTP

Retrieving	XML	Documents	Using	FOR	XML

Using	IIS	Virtual	Directory	Management	for	SQL	Server	Utility

XML	and	Internet	Support

Executing	Stored	Procedures	Using	HTTP
Stored	procedures	can	be	executed	at	the	URL,	using	either	the	Transact-SQL
execute	syntax:	EXECUTE	MySP;	or	the	ODBC	call	syntax:	{call+MySP}.

Parameters	can	be	passed	to	stored	procedures.	Parameters	are	selected	by	taking
any	unused	name=value	pairs	and	supplying	them	as	parameters	to	the	query	in
the	order	supplied.	For	more	information	about	the	URL	syntax	that	is	support
by	the	SQL	ISAPI	extension,	see	URL	Access.

Examples
In	the	following	examples,	nwind	is	a	virtual	directory	used	to	access	the
Northwind	database.	For	more	information	about	creating	the	nwind	virtual
directory,	see	Creating	the	nwind	Virtual	Directory.

A.	Execute	a	simple	stored	procedure
This	example	creates	and	executes	a	stored	procedure	that	returns	a	category
name	from	the	Categories	table	in	the	Northwind	database.	The	stored
procedure	takes	no	parameters.

IF	EXISTS	(SELECT	name	FROM	sysobjects
			WHERE	name	=	'CategoryInfo'	AND	type	=	'P')
			DROP	PROCEDURE	CategoryInfo
GO
CREATE	PROCEDURE	CategoryInfo
AS
				SELECT	CategoryName
				FROM					Categories
				FOR	XML	AUTO
GO

This	stored	procedure	can	be	executed	using	a	URL:

http://IISServer/nwind?sql=EXECUTE+CategoryInfo&root=ROOT

JavaScript:hhobj_1.Click()

B.	Execute	a	stored	procedure	with	a	parameter
In	this	example,	a	stored	procedure	with	parameters	is	executed	using	a	URL.
The	stored	procedure	retrieves,	for	a	given	category	ID,	the	category	name	from
the	Category	table	in	the	Northwind	database.

IF	EXISTS	(SELECT	name	FROM	sysobjects
			WHERE	name	=	'CategoryInfoWithInputParam'	AND	type	=	'P')
			DROP	PROCEDURE	CategoryInfoWithInputParam
GO

CREATE	PROCEDURE	CategoryInfoWithInputParam
																				@CategoryID	int
AS
				SELECT	'<ROOT>'
				SELECT	CategoryName
				FROM					Categories
				WHERE				Categories.CategoryID	=	@CategoryID	
				FOR	XML	AUTO
				SELECT	'</ROOT>'
GO

This	stored	procedure	can	be	executed	using	a	URL:

http://IISServer/nwind?sql=execute+CategoryInfoWithInputParam+1

Or

http://IISServer/nwind?sql=execute+CategoryInfoWithInputParam+@CategoryID=1

The	first	example	specifies	the	parameter	value	(1)	by	position	(that	is,	without	a
parameter	name).	The	second	example	specifies	the	parameter	name	with	the
value.

C.	Execute	a	stored	procedure	using	the	Transact-SQL
EXECUTE	and	ODBC	Call	syntax

This	stored	procedure	returns	employee	information	for	a	given	employee	from
the	Employees	table	in	the	Northwind	database.	The	stored	procedure	takes	the
employee	first	name	and	last	name	as	input	and	returns	the	employee	ID,
employee	title,	and	the	birth	date.

IF	EXISTS	(SELECT	name	FROM	sysobjects
			WHERE	name	=	'FindEmp'	AND	type	=	'P')
			DROP	PROCEDURE	FindEmp
GO

CREATE	PROCEDURE	FindEmp	@FName	varchar(20),	@LName	varchar(20)	AS
SELECT				EmployeeID,	Title,	BirthDate
FROM							Employees
WHERE				FirstName	=	@FName
AND							LastName	=	@LName
FOR	XML	AUTO
GO

The	Transact-SQL	EXECUTE	statement	can	be	specified	to	execute	the	stored
procedure:

http://IISServer/nwind?sql=SELECT+'<ROOT>';EXECUTE+FindEmp+'Nancy'+,+'Davolio';SELECT+'</ROOT>'

Or

http://IISServer/nwind?sql=SELECT+'<ROOT>';EXECUTE+FindEmp+@FName='Nancy'+,+@LName='Davolio';SELECT+'</ROOT>'

ODBC	call	syntax	can	also	be	specified	to	execute	the	stored	procedure:

http://IISServer/nwind?sql=SELECT+'<ROOT>';{CALL+FindEmp}+'Nancy'+,+'Davolio';SELECT+'</ROOT>'

Or

http://IISServer/nwind?sql=SELECT+'<ROOT>';{CALL+FindEmp}+@FName='Nancy'+,+@LName='Davolio';SELECT+'</ROOT>'

See	Also

Accessing	SQL	Server	Using	HTTP

Retrieving	XML	Documents	Using	FOR	XML

Using	IIS	Virtual	Directory	Management	for	SQL	Server	Utility

XML	and	Internet	Support

Executing	Template	Files	Using	HTTP
Writing	long	SQL	queries	at	the	URL	can	get	cumbersome.	Instead,	templates
can	be	used	to	specify	queries	(SQL	or	XPath).	The	template	file	name	is
specified	in	the	URL.	A	template	is	a	well-formed	XML	document	containing
one	or	more	SQL	statements	and	XPath	queries.

Using	a	template	you	can:

Specify	SQL	queries	or	XPath	queries.	When	XPath	queries	are
specified	in	the	template,	the	mapping	XML-Data	Reduced	(XDR)
schema	file	against	which	the	query	is	to	be	executed	is	also	identified
in	the	template.

Specify	a	top-level	element	for	the	XML	fragment	that	is	returned	by
executing	SQL	or	XPath	queries;	thereby,	making	the	result	of
executing	the	template	in	the	URL	a	valid	XML	document.

Define	parameters	that	can	be	passed	to	SQL	statements	or	XPath
queries.

Declare	namespaces.

Specify	an	Extensible	Stylesheet	Language	(XSL)	style	sheet	to	apply
to	the	resulting	document.

Template	files	also	enhance	security.	Because	the	URLs	(and	thus	the	queries	in
the	URL)	can	be	edited,	by	having	the	queries	stored	in	a	file	(template	file),	you
can	prevent	users	from	modifying	the	queries	and	obtaining	information	you	do
not	want	them	to	see.

The	security	is	enforced	by	removing	the	URL	query-processing	service	on	the
virtual	root	and	leaving	only	the	Microsoft®	SQL	Server™	XML	ISAPI	to
process	the	files	and	return	the	result	set.	The	virtual	root	is	registered	using	IIS
Virtual	Directory	Management	for	SQL	Server	utility.

Before	templates	can	be	specified	in	the	URL,	the	virtual	name	of	template	type
must	be	created	using	the	IIS	Virtual	Directory	Management	for	SQL	Server
utility.	For	more	information,	see	Using	IIS	Virtual	Directory	Management	for
SQL	Server	Utility.

See	Also

Using	IIS	Virtual	Directory	Management	for	SQL	Server	Utility

Accessing	SQL	Server	Using	HTTP

Retrieving	XML	Documents	Using	FOR	XML

Using	XPath	Queries

XML	and	Internet	Support

Using	XML	Templates
This	general	form	for	a	template	shows	the	way	SQL	queries	and	XPath	queries
are	specified:

<ROOT	xmlns:sql="urn:schemas-microsoft-com:xml-sql"
							sql:xsl='XSL	FileName'	>
		<sql:header>
				<sql:param>..</sql:param>
				<sql:param>..</sql:param>...n
		</sql:header>
		<sql:query>
				sql	statement(s)
		</sql:query>
		<sql:xpath-query	mapping-schema="SchemaFileName.xml">
				XPath	query
		</sql:xpath-query>
</ROOT>

Everything	in	a	template	is	optional.	The	elements	<header>,	<param>,	<query>,
<XPath-query>,	and	the	attribute	mapping-schema	are	defined	in	the	sql
namespace.	Therefore,	the	namespace	declaration	xmlns:sql="urn:schemas-
microsoft-com:xml-sql"	is	required.	The	namespace	can	be	named	anything;
sql	is	just	an	alias.

<ROOT>

This	tag	is	specified	to	provide	a	single	top-level	element	(also	referred	as
root	tag)	for	the	resulting	XML	document.	The	<ROOT>	tag	can	have	any
name.

<sql:header>

This	tag	is	used	to	hold	any	header	values.	In	the	current	implementation,
only	the	<sql:param>	element	can	be	specified	in	this	tag.	The	<sql:header>
tag	acts	as	containing	tag,	allowing	you	to	define	multiple	parameters.	With

all	the	parameter	definitions	in	one	place,	processing	the	parameter
definitions	is	more	efficient.

<sql:param>

This	element	is	used	to	define	a	parameter	that	is	passed	to	the	query	inside
the	template.	Each	<param>	element	defines	one	parameter.	Multiple
<param>	elements	can	be	specified	in	the	<sql:header>	tag.

<sql:query>

This	element	is	used	to	specify	SQL	queries.	You	can	specify	multiple
<sql:query>	elements	in	a	template.

<sql:xpath-query>

This	element	is	used	to	specify	an	XPath	query.	Because	the	XPath	query	is
executed	against	the	annotated	XML-Data	Reduced	(XDR)	schema,	the
schema	file	name	must	be	specified	using	the	mapping-schema	attribute.

sql:xsl

This	attribute	is	used	to	specify	an	Extensible	Stylesheet	Language	(XSL)
style	sheet	that	will	be	applied	to	the	resulting	XML	document.	In	specifying
the	XSL	file,	a	relative	or	an	absolute	path	can	be	specified.	This	relative
path	specified	is	relative	to	the	directory	associated	with	the	virtual	name	of
template	type.	For	example,	if	the	directory	associated	with	the	virtual	name
of	template	type	is	C:\Template,	then	the	relative	path,	Xyz/MyXSL.xml
specified	for	sql:xsl	maps	to	C:\Template\Xyz\MyXSL.xml.

mapping-schema

This	attribute	is	used	to	identify	the	annotated	XDR	schema.	This	attribute	is
specified	only	if	you	are	executing	an	XPath	query	in	the	template.	The
XPath	query	is	executed	against	the	annotated	XDR	schema.	In	specifying
the	mapping	schema	file,	a	relative	or	an	absolute	path	can	be	specified.	This
relative	path	specified	is	relative	to	the	directory	associated	with	the	virtual
name	of	template	type.	For	example,	if	the	directory	associated	with	the
virtual	name	of	template	type	is	C:\Template,	then	the	relative	path,
Schema/MSchema.xml	specified	for	mapping-schema	maps	to
C:\Template\Schema\MSchema.xml.

Note		Each	<sql:query>	or	<sql:XPath-query>	represents	a	separate	transaction.
Therefore,	if	you	have	multiple	<sql:query>	or	<sql:XPath-query>	tags	in	the
template,	and	if	one	fails,	the	others	will	proceed.

If	contenttype	is	set,	Sqlisapi.dll	returns	that	header	information	to	the
browser.	If	the	contenttype	is	not	set,	the	first	character	in	the	template
file	is	used	by	the	urlmon	to	determine	the	content-type.	If	the	first
character	in	the	template	is	the	<	character	or	a	Unicode	byte	order	mark
(0xFFFE),	text/xml	is	returned	to	the	browser	as	the	content-type,	and
the	browser	displays	the	result.	Otherwise,	Sqlisapi.dll	does	not	send	the
content-type	header	information	that	instructs	the	browser	on	how	to
display	the	result;	therefore,	you	do	not	see	the	result	in	the	browser.

Before	templates	can	be	specified	in	the	URL,	the	virtual	name	of	template	type
must	be	created	using	the	IIS	Virtual	Directory	Management	for	SQL	Server
utility.	For	more	information,	see	Using	IIS	Virtual	Directory	Management	for
SQL	Server	Utility.

Storing	the	Templates
The	template	is	stored	in	the	directory	associated	with	the	virtual	name	of
template	type	or	one	its	subdirectories:

If	the	template	is	stored	in	the	directory	associated	with	virtual	name	of
template	type,	the	URL	query	looks	like:
http://IISServer/nwind/TemplateVirtualName/TemplateFile.xml

If	the	template	is	stored	in	the	subdirectory	associated	with	virtual	name
of	template	type	(xyz),	the	URL	query	looks	like:
http://IISServer/nwind/TemplateVirtualName/xyz/TemplateFile.xml

See	Also

Using	IIS	Virtual	Directory	Management	for	SQL	Server	Utility

Accessing	SQL	Server	Using	HTTP

Retrieving	XML	Documents	Using	FOR	XML

Using	XPath	Queries

XML	and	Internet	Support

Executing	SQL	Queries	Using	Templates
In	the	following	examples,	nwind	is	a	virtual	directory	created	using	the	IIS
Virtual	Directory	Management	for	SQL	Server	utility,	and	template	is	the	virtual
name	of	template	type	defined	when	the	virtual	directory	is	created	(any	name
can	be	given	to	a	virtual	name	when	it	is	created).	For	more	information,	see
Using	IIS	Virtual	Directory	Management	for	SQL	Server	Utility.

The	<sql:query>	tag	is	used	to	specify	SQL	statements.

Examples

A.	Create	a	template	file	with	a	simple	SELECT	statement
This	template	specifies	a	simple	SELECT	statement.

<ROOT	xmlns:sql="urn:schemas-microsoft-com:xml-sql">
		<sql:query>
				SELECT	top	2	CustomerID,	CompanyName	
				FROM			Customers	
				FOR	XML	AUTO
		</sql:query>
</ROOT>

This	template	is	stored	in	a	file	(File1.xml)	and	executed	using	a	URL:

http://IISServer/nwind/template/File1.xml

The	query	specified	in	the	template	is	replaced	by	its	result.	Therefore,	the	XML
document	returned	has	the	same	structure	as	the	template	itself,	including	the
<ROOT>	tag	that	is	added.

This	is	the	result:

<ROOT	xmlns:sql="urn:schemas-microsoft-com:xml-sql">	
		<Customers	CustomerID="ALFKI"	CompanyName="Alfreds	Futterkiste"	/>	
		<Customers	CustomerID="ANATR"	CompanyName="Ana	Trujillo	Emparedados	y	helados"	/>	

</ROOT>

B.	Execute	a	stored	procedure	in	a	template	file
A	stored	procedure	can	also	be	executed	in	a	template.	The	stored	procedure	is
also	specified	in	the	<sql:query>	tag.

Consider	this	stored	procedure:

IF	EXISTS	(SELECT	name	FROM	sysobjects
			WHERE	name	=	'CategoryInfo'	AND	type	=	'P')
			DROP	PROCEDURE	CategoryInfo
GO
CREATE	PROCEDURE	CategoryInfo
AS
				SELECT			CategoryName
				FROM					Categories
				WHERE				Categories.CategoryID	=	2
				FOR	XML	AUTO

The	stored	procedure	can	be	executed	in	a	template:

<ROOT	xmlns:sql="urn:schemas-microsoft-com:xml-sql">
		<sql:query>
				exec	CategoryInfo
		</sql:query>
</ROOT>

This	template	is	stored	in	a	file	(File1.xml)	and	executed	using	a	URL:

http://IISServer/nwind/template/File1.xml

This	is	the	result:

<ROOT	xmlns:sql="urn:schemas-microsoft-com:xml-sql">	
		<Categories	CategoryName="Condiments"	/>	
</ROOT>

C.	Use	entity	references	in	a	template
Because	a	template	is	an	XML	document,	entity	references	must	be	used	for
special	characters.	This	example	uses	the	entity	reference	(>)	for	the	special
markup	character	(>).

Consider	this	template:

<ROOT	xmlns:sql="urn:schemas-microsoft-com:xml-sql">
		<sql:query>
						SELECT	top	2	*	
						FROM					[Order	Details]	
						WHERE					UnitPrice	>	10	
						FOR	XML	AUTO
		</sql:query>
</ROOT>

This	template	is	stored	in	a	file	(File1.xml)	and	executed	using	a	URL:

http://IISServer/nwind/template/File1.xml

This	is	the	result:

<ROOT	xmlns:sql="urn:schemas-microsoft-com:xml-sql">	
		<Order_x0020_Details	OrderID="10248"	ProductID="11"	UnitPrice="14"	
																							Quantity="12"	Discount="0"	/>	
		<Order_x0020_Details	OrderID="10248"	ProductID="72"	UnitPrice="34.8"	
																							Quantity="5"	Discount="0"	/>	
</ROOT>

If	this	template	is	specified	directly	in	the	URL,	additional	encoding	is	needed.
Because	the	>	character	is	a	special	character	in	XML	and	because	it	is	specified
in	a	template	(an	XML	document),	it	is	encoded	as	>.	And	because	the	&
character	is	a	special	character	in	this	URL,	&	must	be	encoded	as	%26	when
this	template	is	specified	in	the	URL.

The	template	is	then	specified	in	the	URL	as:

http://IISServer/nwind?template=<ROOT%20xmlns:sql="urn:schemas-microsoft-com:xml-sql"><sql:query>SELECT%20top%202%20*%20FROM%20[Order%20Details]%20WHERE%20UnitPrice%20%26gt;%2010%20FOR%20XML%20AUTO</sql:query></ROOT>

D.	Specify	templates	directly	in	the	URL
Templates	can	be	specified	directly	in	the	URL.	In	this	example,	a	template
containing	a	simple	SELECT	statement	is	specified	in	the	URL:

http://IISServer/nwind?template=<ROOT+xmlns:sql="urn:schemas-microsoft-com:xml-sql"><sql:query>SELECT+*+FROM+Customers+FOR+XML+AUTO</sql:query></ROOT>

CAUTION		Specifying	templates	directly	in	the	URL	is	not	recommended	for
security	reasons.

See	Also

Using	IIS	Virtual	Directory	Management	for	SQL	Server	Utility

Accessing	SQL	Server	Using	HTTP

Retrieving	XML	Documents	Using	FOR	XML

XML	and	Internet	Support

Passing	Parameters	to	Templates
SQL	queries	requiring	parameter	values	can	be	specified	in	templates.	The
<sql:header>	tag	is	specified	to	define	parameters.	The	parameters	can	be
assigned	default	values.	The	default	parameter	values	are	used	when	a	template
is	executed	without	specifying	parameter	values.

Templates	can	also	be	used	to	specify	XPath	queries	against	annotated	XDR
(XML-Data	Reduced)	schemas.	The	<sql:xpath-query>	tag	is	used	to	specify	the
XPath	query.	For	more	information	and	an	example,	see	Using	XPath	Queries.

Examples
In	the	following	examples,	nwind	is	a	virtual	directory	created	using	the	IIS
Virtual	Directory	Management	for	SQL	Server	utility,	and	template	is	the	virtual
name	of	template	type	defined	when	the	virtual	directory	is	created	(any	name
can	be	given	to	a	virtual	name	when	it	is	created).	For	more	information,	see
Using	IIS	Virtual	Directory	Management	for	SQL	Server	Utility.

A.	Specify	default	parameters	in	a	template
Parameter	values	can	be	assigned	default	values	in	a	template.	The	stored
procedure	in	this	example	requires	one	input	parameter	(@CategoryName).

IF	EXISTS	(SELECT	name	FROM	sysobjects
			WHERE	name	=	'CategoryInfoWithInputParam'	AND	type	=	'P')
			DROP	PROCEDURE	CategoryInfoWithInputParam
GO
CREATE	PROCEDURE	CategoryInfoWithInputParam
																				@CategoryName	varchar(35)
AS
				SELECT					CategoryName,	Description
				FROM					Categories
				WHERE				Categories.CategoryName	=	@CategoryName	for	xml	auto

A	template	with	a	call	to	execute	the	stored	procedure	can	be	created	as	shown	in

the	following	example.	The	template	specifies	a	default	value	(Condiments)	for
the	parameter	@CategoryName.

<ROOT	xmlns:sql='urn:schemas-microsoft-com:xml-sql'>
		<sql:header>
					<sql:param	name='CategoryName'>Condiments</sql:param>		
		</sql:header>																																										
		<sql:query	>																																														
						exec	CategoryInfoWithInputParam	@CategoryName
		</sql:query>
</ROOT>

This	template	is	saved	in	a	file	(File1.xml)	and	executed	using	a	URL:

http://IISServer/nwind/template/File1.xml

Because	no	parameters	are	passed	to	the	file,	the	default	value	(Condiments)	is
used.

This	is	the	result:

<ROOT	xmlns:sql="urn:schemas-microsoft-com:xml-sql">	
		<Categories	CategoryName="Condiments"	Description="Sweet	and	savory	
							sauces,	relishes,	spreads,	and	seasonings"	/>	
</ROOT>

The	template	can	be	also	be	executed	directly	at	the	URL:

http://IISServer/nwind?template=<ROOT	xmlns:sql='urn:schemas-microsoft-com:xml-sql'><sql:header><sql:param	name='CategoryName'>Condiments</sql:param></sql:header><sql:query	>exec	CategoryInfoWithInputParam	@CategoryName</sql:query></ROOT>

CAUTION		Specifying	queries	or	templates	directly	in	the	URL	is	not
recommended	for	security	reasons.

B.	Pass	a	parameter	value	to	a	template
Parameters	can	be	passed	to	template	files.	In	this	example,	the	stored	procedure
requires	one	input	parameter	(@CategoryName).

IF	EXISTS	(SELECT	name	FROM	sysobjects
			WHERE	name	=	'CategoryInfoWithInputParam'	AND	type	=	'P')
			DROP	PROCEDURE	CategoryInfoWithInputParam
GO
CREATE	PROCEDURE	CategoryInfoWithInputParam
																				@CategoryName	varchar(35)
AS
				SELECT					CategoryName,	Description
				FROM					Categories
				WHERE				Categories.CategoryName	=	@CategoryName	for	xml	auto

The	stored	procedure	is	called	in	the	template	as	shown	in	the	example	that
follows.	The	template	specifies	a	default	value	for	the	parameter
@CategoryName.

<ROOT	xmlns:sql='urn:schemas-microsoft-com:xml-sql'>
		<sql:header>
							<sql:param	name='CategoryName'>Condiments</sql:param>		
		</sql:header>																																										
		<sql:query	>																																														
						exec	CategoryInfoWithInputParam	@CategoryName
		</sql:query>
</ROOT>

This	template	is	stored	in	a	file	(File1.xml)	and	executed	using	a	URL:

http://IISServer/nwind/template/File1.xml?CategoryName=Beverages

If	a	parameter	value	is	passed	to	the	file	at	run	time,	the	specified	value	is	used
instead	of	the	default	value.	In	the	following	call	to	execute	a	template	file,	the
value	Beverages	is	passed	to	the	file.

This	is	the	result:

<ROOT	xmlns:sql="urn:schemas-microsoft-com:xml-sql">	
				<Categories	CategoryName="Beverages"	Description="Soft	drinks,	

											coffees,	teas,	beers,	and	ales"	/>	
</ROOT>

The	template	can	be	executed	directly	using	a	URL:

http://IISServer/nwind?template=<ROOT	xmlns:sql='urn:schemas-microsoft-com:xml-sql'><sql:header><sql:param	name='CategoryName'>Condiments</sql:param></sql:header><sql:query	>exec	CategoryInfoWithInputParam	@CategoryName</sql:query></ROOT>&CategoryName=Beverages

CAUTION		Specifying	queries	or	templates	directly	in	the	URL	is	not
recommended	for	security	reasons.

C.	Pass	multiple	parameters	to	a	template
Multiple	parameters	can	be	passed	to	a	template.	In	this	example,	two
parameters	with	default	values	are	specified	in	<sql:header>.	The	template	also
specifies	two	queries	that	require	parameter	values.

This	template	consists	of	two	SQL	queries,	each	of	which	takes	one	parameter:

<ROOT	xmlns:sql="urn:schemas-microsoft-com:xml-sql">
		<sql:header>
							<sql:param	name='CustomerID'>ALFKI</sql:param>
					<sql:param	name='EmployeeID'>1</sql:param>	
		</sql:header>
		<sql:query>
					SELECT		CustomerID,CompanyName	
					FROM				Customers	
					WHERE			CustomerID=@CustomerID	
					FOR	XML	AUTO
		</sql:query>
		<sql:query>
					SELECT	EmployeeID,LastName,FirstName	
					FROM	Employees	
					WHERE	EmployeeID=@EmployeeID	
					FOR	XML	AUTO
		</sql:query>
</ROOT>

This	template	is	stored	in	a	file	(File1.xml)	and	executed	using	a	URL:

http://IISServer/nwind/template/template5.xml

This	is	the	result:

<ROOT	xmlns:sql="urn:schemas-microsoft-com:xml-sql">	
		<Customers	CustomerID="ALFKI"	CompanyName="Alfreds	Futterkiste"	/>	
		<Employees	EmployeeID="1"	LastName="Davolio"	FirstName="Nancy"	/>	
</ROOT>

In	the	following	example,	only	the	CustomerID	parameter	value	is	provided.
Therefore,	the	default	customer	ID	value	ALFKI	is	ignored.	Because	no	value	is
provided	for	EmployeeID	parameter,	the	default	value	is	used.

http://IISServer/nwind/template/template5.xml?CustomerID=BERGS

This	is	the	result:

<ROOT	xmlns:sql="urn:schemas-microsoft-com:xml-sql">	
		<Customers	CustomerID="BERGS"	CompanyName="Berglunds	snabbköp"	/>	
		<Employees	EmployeeID="1"	LastName="Davolio"	FirstName="Nancy"	/>	
</ROOT>

The	template	is	executed	by	passing	both	parameter	values	(default	values	are
ignored).

http://IISServer/nwind/template/template5.xml?CustomerID=BERGS&EmployeeID=2

See	Also

Using	IIS	Virtual	Directory	Management	for	SQL	Server	Utility

Accessing	SQL	Server	Using	HTTP

Retrieving	XML	Documents	Using	FOR	XML

XML	and	Internet	Support

Specifying	an	XSL	Style	Sheet	in	a	Template
An	Extensible	Stylesheet	Language	(XSL)	style	sheet	can	be	applied	to	the
query	results.	When	you	execute	a	template	using	HTTP,	you	can	specify	an
XSL	file	in	these	ways:

Use	the	sql:xsl	attribute	in	the	template.

Use	the	xsl	keyword	as	part	of	the	URL	to	specify	the	XSL	file	that	will
be	used	to	process	the	resulting	XML	data.

If	the	XSL	file	is	specified	both	in	the	template	using	sql:xsl	and	in	the	URL
using	the	keyword	xsl,	the	XSL	style	sheet	specified	in	the	template	is	applied	to
the	results	first,	and	then	the	XSL	file	specified	in	the	URL	is	applied.

Examples
In	the	following	example,	nwind	is	a	virtual	directory	created	using	the	IIS
Virtual	Directory	Management	for	SQL	Server	utility,	and	template	is	the	virtual
name	of	template	type	defined	when	the	virtual	directory	is	created	(any	name
can	be	given	to	a	virtual	name	when	it	is	created).	For	more	information,	see
Using	IIS	Virtual	Directory	Management	for	SQL	Server	Utility.

A.	Specify	sql:xsl	in	a	template	to	process	the	result
In	this	example,	a	template	includes	a	simple	SELECT	statement.	The	query
result	is	processed	according	to	the	instructions	in	the	XSL	file	specified	using
sql:xsl.

<?xml	version	='1.0'	encoding='UTF-8'?>																						
	<root	xmlns:sql='urn:schemas-microsoft-com:xml-sql'										
							sql:xsl='MyXSL.xsl'>																														
			<sql:query>																																																
						SELECT	FirstName,	LastName	FROM	Employees	FOR	XML	AUTO		
			</sql:query>																																															
</root>	

For	illustration	purposes,	the	template	(TemplateWithXSL.xml)	is	stored	in	the
directory	associated	with	the	virtual	name	(template),	of	template	type.	The
XSL	file	(MyXSL.xsl)	is	also	stored	in	the	same	directory.

This	is	the	XSL	file:

<?xml	version='1.0'	encoding='UTF-8'?>										
	<xsl:stylesheet	xmlns:xsl="http://www.w3.org/1999/XSL/Transform"	version="1.0">	
				
				<xsl:template	match	=	'*'>																																
								<xsl:apply-templates	/>																															
				</xsl:template>																																											
				<xsl:template	match	=	'Employees'>																								
							<TR>																																																			
									<TD><xsl:value-of	select	=	'@FirstName'	/></TD>						
									<TD><xsl:value-of	select	=	'@LastName'	/></TD>
							</TR>																																																		
				</xsl:template>
				<xsl:template	match	=	'/'>																															
						<HTML>																																																		
								<HEAD>																																																
											<STYLE>th	{	background-color:	#CCCCCC	}</STYLE>				
								</HEAD>																																															
								<BODY>																																																
									<TABLE	border='1'	style='width:300;'>																
											<TR><TH	colspan='2'>Employees</TH></TR>												
											<TR><TH	>First	name</TH><TH>Last	name</TH></TR>				
											<xsl:apply-templates	select	=	'root'	/>												
									</TABLE>																																													
								</BODY>																																															
						</HTML>																																																	
				</xsl:template>																																											
</xsl:stylesheet>

This	URL	executes	the	template:

http://IISServer/nwind/template/TemplateWithXSL.xml&contenttype=text/html

Because	the	XSL	file	is	applied	to	the	result,	the	contenttype	is	set	to	text/html.
Therefore,	specifying	the	contenttype	parameter	in	the	URL	is	optional.

The	result	is	displayed	in	a	two-column	table	format	(FirstName	and
LastName).

You	can	also	specify	the	XSL	file	in	the	URL	instead	of	in	a	template	(using
sql:xsl),	.	In	this	case,	the	XSL	file	must	be	stored	in	the	directory	associated
with	the	virtual	root	(nwind)	or	one	of	its	subdirectories,	in	which	case	the
relative	path	must	be	specified	in	the	URL.	Assuming	the	XSL	file	is	stored	in
the	directory	associated	with	the	nwind	virtual	directory,	this	URL	executes	the
template:

http://IISServer/nwind/template/templateFile.xml?xsl=MyXSL.xsl

If	the	XSL	file	is	stored	in	a	subdirectory	(x)	of	the	virtual	root	directory,	the
URL	with	a	relative	path	is	specified	as:

http://IISServer/nwind/template/templateFile.xml?xsl=/x/MyXSL.xsl

If	the	XSL	file	is	specified	in	the	template	using	sql:xsl	and	in	the	URL	using	the
keyword	xsl,	the	XSL	style	sheet	specified	in	the	template	is	applied	to	the
results	first,	and	then	the	XSL	file	specified	in	the	URL	is	applied.

XML	and	Internet	Support

Executing	XPath	Queries	Using	Templates
The	<sql:xpath-query>	tag	is	used	to	specify	the	XPath	query	in	the	template.
The	XPath	query	is	executed	against	the	annotated	XML-Data	Reduced	(XDR)
mapping	schema	specified	using	he	mapping-schema	attribute	of	the	<xpath-
query>	element.	For	more	information	about	XDR	schemas,	see	Creating	XML
Views	Using	Annotated	XDR	Schemas.	For	more	information	about	XPath
queries,	see	Using	XPath	Queries.

The	mapping	XDR	schema	specified	in	the	template	must	be	stored	in	the
directory	associated	with	the	template	virtual	name	(created	using	IIS	Virtual
Directory	Management	for	SQL	Server	utility)	or	one	of	its	subdirectories,	in
which	case	you	must	specify	the	relative	path	in	the	mapping-schema	attribute.

See	Also

Using	IIS	Virtual	Directory	Management	for	SQL	Server	Utility

Accessing	SQL	Server	Using	HTTP

Creating	XML	Views	Using	Annotated	XDR	Schemas

XML	and	Internet	Support

Executing	XPath	Queries	Using	HTTP
The	XPath	queries	against	annotated	XML-Data	Reduced	(XDR)	schema	can	be
specified	directly	in	the	URL.	For	more	information	about	the	URL	syntax	that	is
supported	by	the	SQL	ISAPI	extension,	see	URL	Access.

The	annotated	XDR	schemas	provide	an	XML	view	of	the	relational	data.	To
execute	an	XPath	query	against	an	annotated	XDR	schema,	the	schema	file	is
specified	as	part	of	the	URL.

To	specify	an	XPath	query	against	an	annotated	XDR	schema,	you	must	create	a
virtual	name	of	schema	type	using	the	IIS	Virtual	Directory	Management	for
SQL	Server	utility.	The	XDR	schema	specified	in	the	URL	must	be	stored	in	the
directory	associated	with	virtual	name	of	schema	type	or	one	of	its
subdirectories:

If	the	annotated	XDR	schema	is	stored	in	the	directory	associated	with
the	virtual	name	of	schema	type,	the	URL	query	looks	like:
http://IISServer/nwind/SchemaVirtualName/XDRSchema.xml/XpathQuery

If	the	annotated	XDR	schema	is	stored	in	a	subdirectory	(xyz)
associated	with	virtual	name	of	schema	type,	the	path	relative	to	the
directory	associated	with	virtual	name	of	schema	type	is	included	in	the
URL.	In	this	case,	the	URL	query	looks	like:
http://IISServer/nwind/SchemaVirtualName/xyz/XDRSchema.xml/XpathQuery

Examples

In	this	example,	nwind	is	a	virtual	directory	created	using	the	IIS	Virtual
Directory	Management	for	SQL	Server	utility,	and	schema	is	the	virtual	name	of
schema	type	defined	when	the	virtual	directory	is	created	(any	name	can	be
given	to	a	virtual	name	when	it	is	created).

A.	Specify	an	XPath	query	in	the	URL
For	example,	consider	this	annotated	XDR	schema:

JavaScript:hhobj_1.Click()

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:dt="urn:schemas-microsoft-com:datatypes"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql">

		<ElementType	name="Customer"	sql:relation="Customers"	>
				<AttributeType	name="CustomerID"	/>
				<AttributeType	name="ContactName"	/>
				<AttributeType	name="Phone"	/>

				<attribute	type="CustomerID"	/>
				<attribute	type="ContactName"	/>
				<attribute	type="Phone"	/>
		</ElementType>
</Schema>

For	illustration	purposes,	this	XDR	schema	is	stored	as	MySchema.xml	in	the
directory	associated	with	the	virtual	name	of	schema	type.

This	URL	executes	an	XPath	query	against	the	XDR	schema	(MySchema.xml)
specified	in	the	URL.	The	XPath	query	requests	all	the	customers	with
CustomerID	of	ALFKI.

http://IISServer/nwind/schema/Schema2.xml/Customer[@CustomerID="ALFKI"]

This	is	the	result:

<Customer	CustomerID="ALFKI"	ContactName="Maria	Anders"	Phone="030-0074321"	/>	

If	the	query	returns	more	than	one	customer,	you	must	specify	the	root	keyword
to	return	a	well-formed	XML	document.	The	following	XPath	query	returns	all
the	customers.	In	the	URL,	the	root	keyword	is	specified:

http://IISServer/nwind/schema/Schema2.xml/Customer?root=root

This	is	the	partial	result:

<?xml	version="1.0"	encoding="utf-8"	?>	
<root>	
			<Customer	CustomerID="ALFKI"	ContactName="Maria	Anders"	
													Phone="030-0074321"	/>	
			<Customer	CustomerID="ANATR"	ContactName="Ana	Trujillo"	
													Phone="(5)	555-4729"	/>	
				...
</root>
	

See	Also

Using	Annotated	XDR	Schemas	in	Queries

Using	XPath	Queries

Creating	XML	Views	Using	Annotated	XDR	Schemas

XML	and	Internet	Support

Accessing	Database	Objects	Using	HTTP
The	database	objects,	such	as	tables	and	views,	can	be	accessed	directly	using	a
URL.	In	this	case,	the	XPath	query	is	specified	directly	against	the	database
object	to	obtain	the	result	(one	row/one	column	value).	For	more	information
about	the	URL	syntax	that	is	supported	by	the	SQL	ISAPI	extension,	see	URL
Access.

In	the	URL,	the	virtual	name	of	dbobject	type	is	specified	when	accessing
database	objects	directly.

The	FOR	XML	queries	can	return	references	to	binary	data.	You	can	retrieve	the
binary	data	associated	with	the	reference	by	sending	another	URL	request	with
the	dbobject	reference	in	it.	This	is	the	primary	purpose	for	the	dbobject	virtual
name	type.	For	more	information	about	queries	that	use	FOR	XML,	see
Retrieving	XML	Documents	Using	FOR	XML.

Examples
In	the	following	examples,	nwind	is	a	virtual	directory	created	using	the	IIS
Virtual	Directory	Management	for	SQL	Server	utility.	The	dbobject	is	the
virtual	name	of	dbobject	type	and	template	is	a	virtual	name	of	template	type
defined	when	the	virtual	directory	is	created	(any	name	can	be	given	to	a	virtual
name	when	it	is	created).	For	more	information,	see	Using	IIS	Virtual	Directory
Management	for	SQL	Server	Utility.

A.	Retrieve	an	employee's	photo	using	the	virtual	name	of
dbobject	type	in	the	URL
The	XPath	query	specified	retrieves	Photo	column	from	Employees	table.	In	the
URL,	Employees[@EmployeeID='1']/@Photo	is	the	XPath	query.	In	the	query,
Employees	is	the	table	name	and	@EmployeeID='1'	is	the	predicate	that	finds
an	employee	with	an	ID	value	of	1.	@Photo	is	the	column	from	which	to
retrieve	the	value.

http://IISServer/nwind/dbobject/Employees[@EmployeeID='1']/@Photo

JavaScript:hhobj_1.Click()

The	query	is	translated	into	the	following	SELECT	statement:

SELECT				Photo
FROM							Employees
WHERE				EmployeeID='1'

Note		The	XPath	query	must	identify	a	single	row	and	a	single	column.

B.	Execute	a	query	to	obtain	references	to	image	data	and	to
apply	an	XSL	style	sheet	to	process	the	references
In	this	example,	a	SELECT	statement	is	specified	to	retrieve	the	employee	ID
and	photo.	The	query	returns	references	to	the	image	data.	These	references	are
used	in	the	Extensible	Stylesheet	Language	(XSL)	file	to	retrieve	the	employee
photos	and	to	display	them	in	the	browser.

The	query	is	specified	in	a	template.	For	illustration	purposes,	the	template	file	is
saved	as	TemplateWithAnXSL.xml	file	in	the	template	subdirectory	of	the
virtual	root	(assuming	this	is	the	directory	specified	when	the	virtual	name	of
template	type	is	created).

<?xml	version	='1.0'	encoding='UTF-8'?>																			
<root	xmlns:sql='urn:schemas-microsoft-com:xml-sql'	sql:xsl='photo.xsl'>	
		<sql:query	>
					SELECT	employeeID,	photo	FROM	employees	FOR	XML	AUTO	
		</sql:query>																																												
</root>

This	is	the	XSL	file	(Photo.xsl)	to	process	the	result	set.	For	illustration
purposes,	this	file	is	stored	in	the	virtual	root	directory.

<?xml	version='1.0'	encoding='UTF-8'?>										
	<xsl:stylesheet	xmlns:xsl='http://www.w3.org/TR/WD-xsl'	>				
				<xsl:template	match	=	'*'>																																
								<xsl:apply-templates	/>																															
				</xsl:template>																																											
				<xsl:template	match	=	'employees'>																								

							<TR>																																																			
									<TD><xsl:value-of	select	=	'@employeeID'	/></TD>					
									<TD>	<xsl:attribute	name='src'>	
																				<xsl:value-of	select	=	'@photo'/>
																				</xsl:attribute>	
																			
									</TD>																																												
							</TR>																																																		
				</xsl:template>																																											
				<xsl:template	match	=	'/'>																															
						<HTML>																																																		
								<HEAD>																																																
											<STYLE>th	{	background-color:	#CCCCCC	}</STYLE>				
								<!--	<BASE	href='http://IISServer/nwind/'></BASE>				-->
								</HEAD>																																															
								<BODY>																																																
									<TABLE	border='1'	style='width:300;'>																
											<TR><TH	colspan='2'>Employees</TH></TR>												
											<TR><TH	>EmployeeID</TH><TH>Photo</TH></TR>				
											<xsl:apply-templates	select	=	'root'	/>												
									</TABLE>																																													
								</BODY>																																															
						</HTML>																																																	
				</xsl:template>																																											
</xsl:stylesheet>

This	URL	executes	the	template:

http://IISServer/nwind/template/TemplatewithAnXSL.xml?contenttype=text/html

After	applying	the	XSL	file,	the	query	result	is	displayed	as	a	two-column	table
(EmployeeID	and	Photo).

C.	Specify	special	characters	in	the	query

In	a	URL,	the	question	mark	(?)	separates	the	URL	and	the	parameters	being
passed	to	the	URL.	Any	special	characters,	such	as	the	plus	sign	(+)	to	the	right
of	the	?,	are	escaped	by	the	browser	(that	is,	a	+	to	the	right	of	a	?	is	converted	to
%20).

The	URL	in	this	example	produces	an	error	because	the	+	in	the	predicate
expression	is	interpreted	as	an	addition	operator	(because	there	is	no	?	in	the
URL).	You	must	specify	%20	in	place	of	+	in	the	URL.

http://IISServer/nwind/dbobject/Orders[@OrderID=10248%20and%20@EmployeeID=5]/@CustomerID

See	Also

Using	IIS	Virtual	Directory	Management	for	SQL	Server	Utility

Using	XPath	Queries

XML	and	Internet	Support

Sample	Applications	to	Post	Templates
The	topics	in	this	section	present	simple	applications	that	show	how	to	post
templates.

XML	and	Internet	Support

Using	HTML	Forms	to	Post	Templates
HTML	forms	can	be	used	to	post	templates.	The	input	mechanism	of	HTML
forms	can	be	used	to	obtain	user	input	for	the	values	of	the	parameters	that	can
be	passed	to	an	SQL	statement.	In	the	TEXTAREA	element	of	the	HTML	form,
template	is	used	as	the	variable	name	for	the	NAME	attribute.	The	body	of	the
TEXTAREA	is	then	sent	as	a	value	for	template.

Examples
In	the	following	examples,	nwind	is	a	virtual	directory	created	using	the	IIS
Virtual	Directory	Management	for	SQL	Server	utility	(any	name	can	be	given	to
a	virtual	name	when	it	is	created).	For	more	information,	see	Using	IIS	Virtual
Directory	Management	for	SQL	Server	Utility.

A.	Post	a	simple	template	in	a	form
The	HTML	form	in	this	example	prompts	the	user	to	enter	an	employee	ID.	The
ID	value	is	used	as	an	input	parameter	to	the	SELECT	statement	in	the	template.
The	query	returns	the	first	and	last	name	of	employees	from	the	Employees
table	in	the	Northwind	database.	This	form	can	be	saved	in	an	.htm	file	and
opened	in	the	browser.

<head>
<TITLE>Sample	Form	</TITLE>
</head>
<body>
For	a	given	employee	ID,	employee	first	and	last	name	is	retrieved.
<form	action="http://IISServer/nwind"	method="POST">
Employee	ID	Number
<input	type=text	name=EmployeeID	value='1'>
<input	type=hidden	name=contenttype	value=text/xml>
<input	type=hidden	name=template	value='
<ROOT	xmlns:sql="urn:schemas-microsoft-com:xml-sql"	>
<sql:header>

				<sql:param	name="EmployeeID">1</sql:param>
</sql:header>
<sql:query>
		SELECT	FirstName,	LastName	
		FROM				Employees	
		WHERE				EmployeeID=@EmployeeID	
		FOR	XML	AUTO
</sql:query>
</ROOT>
'>
<p><input	type="submit">
</form>
</body>

B.	Post	a	template	in	an	HTML	form	and	provide	an	XSL	file	to
process	the	output
In	this	example,	a	simple	HTML	form	is	used	to	post	a	template.	The	template
contains	a	SELECT	statement	that	returns	first	and	last	names	from	the
Employees	table	in	the	Northwind	database.

When	this	HTML	document	is	opened	in	the	browser,	the	user	can	specify	the
content-type	and	the	Extensible	Stylesheet	Language	(XSL)	file	to	process	the
result	set.	If	the	content-type	is	specified	as	text/html,	the	XSL	file	processes	the
result	set	and	produces	a	two-column	table	as	output.

If	the	content-type	is	specified	as	text/xml,	the	result	is	displayed	in	form	of	an
XML	document.

Note		The	XSL	file	must	reside	in	the	physical	directory	(or	one	of	its
subdirectories)	associated	with	the	virtual	directory.	If	the	file	is	stored	in	the
physical	directory,	only	the	file	name	has	to	be	specified.	If	the	file	is	stored	in
one	of	the	subdirectories	of	the	physical	directory,	the	directory	path	relative	to
the	physical	directory	is	specified.

<body>

Hi	there

<form	action="http://IISServer/nwind"	method="POST">

contenttype

<input	name=contenttype	value="text/html">

xsl

<input	name=xsl	value="emp.xsl">

<input	type=hidden	name=template	value='

<ROOT>

<sql:query	xmlns:sql="urn:schemas-microsoft-com:xml-sql">

Select	FirstName,	LastName	from	Employees	for	xml
auto</sql:query>

</ROOT>

'>

<p><input	type="submit">

</form>

</body>

The	XSL	file	is	given	below.	The	XSL	transformation	is	applied	to	the	result	set.

<?xml	version="1.0"		encoding="ISO-8859-1"	?>
<xsl:stylesheet	xmlns:xsl="http://www.w3.org/TR/WD-xsl">
<xsl:template	match	=	"*">
			<xsl:apply-templates	/>
</xsl:template>

<xsl:template	match	=	"Employees">
			<TR>

			<TD><xsl:value-of	select	=	"@FirstName"	/></TD>
			<TD><xsl:value-of	select	=	"@LastName"	/></TD>
			</TR>
</xsl:template>

<xsl:template	match	=	"/">
				<HTML>
				<HEAD>
				<STYLE>th	{	background-color:	#CCCCCC	}</STYLE>
				</HEAD>
				<BODY>
			<TABLE	border="1"	style="width:300;">
			<TR><TH	colspan="2">Employees</TH></TR>
			<TR><TH	>FirstName</TH><TH>LastName</TH></TR>
			<xsl:apply-templates	select	=	"ROOT"	/>
			</TABLE>
				</BODY>
				</HTML>
</xsl:template>
</xsl:stylesheet>

See	Also

Using	IIS	Virtual	Directory	Management	for	SQL	Server	Utility

Accessing	SQL	Server	Using	HTTP

Retrieving	XML	Documents	Using	FOR	XML

Using	XPath	Queries

XML	and	Internet	Support

Posting	Templates	Directly	to	the	Virtual	Directory
This	Microsoft®	Visual	Basic®	example	shows	how	templates	can	be	sent
directly	to	the	virtual	directory	without	using	a	Web	browser.	In	this	example,	a
template	consisting	of	a	SELECT	statement	is	sent	directly	to	the	nwind	virtual
directory.	For	information	about	how	to	create	the	nwind	virtual	directory,	see
Creating	the	nwind	Virtual	Directory.

		Dim	xmlHttp	As	New	MSXML2.xmlHttp
		Dim	doc	As	New	MSXML2.DOMDocument
		Dim	strQuery	As	String
		Dim	strURL	As	String
		Dim	strPostBody	As	String

			'	Set	the	post	body	-	this	is	the	query/request.
		strPostBody	=	"<?xml	version='1.0'	encoding='UTF-16'?>																			"	&	_
																"<root>																																																				"	&	_
																"<sql:query	xmlns:sql='urn:schemas-microsoft-com:xml-sql'>	"	&	_
																"	select	OrderID,	shipName	from	Orders	for	xml	raw																																			"	&	_
																"</sql:query>																																														"	&	_
																"</root>																																																			"

			'	Validate	the	document	using	the	MSXML	parser.	
		doc.loadXML	strPostBody
		
		If	doc.parseError.errorCode	Then
'	Do	something	with	the	error.
		End	If
		
			'	Post	the	template.
		xmlHttp.Open	"POST",	"http://localhost/nwind",	False
		xmlHttp.setRequestHeader	"Content-type",	"application/xml"
		xmlHttp.send	doc

			'	Retrieve	the	results.
			Debug.Print	xmlHttp.responseText

See	Also

Using	IIS	Virtual	Directory	Management	for	SQL	Server	Utility

Accessing	SQL	Server	Using	HTTP

Retrieving	XML	Documents	Using	FOR	XML

Using	XPath	Queries

XML	and	Internet	Support

Creating	XML	Views	Using	Annotated	XDR	Schemas
You	can	create	XML	views	of	relational	data	using	XDR	(XML-Data	Reduced)
schemas.	These	views	can	then	be	queried	using	XPath	queries.	This	is	similar	to
creating	views	using	CREATE	VIEW	statements	and	specifying	SQL	queries
against	the	view.

An	XML	schema	describes	the	structure	of	an	XML	document	and	also	various
constraints	on	the	data	in	the	document.	When	you	specify	XPath	queries	against
the	schema,	the	structure	of	the	XML	document	returned	is	determined	by	the
schema	against	which	the	XPath	query	is	executed.

In	Microsoft®	SQL	Server™	2000,	the	XML-Data	Reduced	(XDR)	language	is
used	to	create	the	schemas.	The	XDR	is	flexible	and	overcomes	some	of	the
limitations	of	the	Document	Type	Definition	(DTD),	which	also	describes	the
document	structure.	Unlike	DTDs,	XDR	schemas	describe	the	structure	of	the
document	using	the	same	syntax	as	the	XML	document.	Additionally,	in	a	DTD,
all	the	data	contents	are	character	data.	XDR	language	schemas	allow	you	to
specify	the	data	type	of	an	element	or	an	attribute.

In	an	XDR	schema,	the	<Schema>	element	encloses	the	entire	schema.	As
properties	of	the	<Schema>	element,	you	can	describe	attributes	that	define	the
schema	name	and	the	namespaces	in	which	the	schema	reside.	In	the	XDR
language,	all	element	declarations	must	be	contained	within	the	<Schema>
element.

The	minimum	XDR	schema	is:

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data">
			...
</Schema>

The	<Schema>	element	is	derived	from	the	xml-data	namespace	(urn:schemas-
microsoft-com:xml-data).

Note		This	documentation	assumes	that	you	are	familiar	with	XML-Data
language.

Annotations	to	the	XDR	Schema
You	can	use	an	XDR	schema	with	annotations	that	describe	the	mapping	to	the
database	to	query	the	database	and	return	the	results	in	the	form	of	an	XML
document.	SQL	Server	2000	introduces	a	number	of	annotations	that	you	can	use
to	map	the	XDR	schema	to	the	database	tables	and	columns.	XPath	queries	can
be	specified	against	the	XML	view	created	by	the	XDR	schema	to	query	the
database	and	obtain	results	as	an	XML.

This	is	an	alternative	to	the	more	complex	process	of	writing	a	SQL	query	that
uses	the	FOR	XML	EXPLICIT	mode	for	describing	the	XML	document
structure	as	part	of	the	query	For	more	information	about	SELECT	queries	with
the	FOR	XML	EXPLICIT	mode,	see	Using	EXPLICIT	Mode.	However,	for
overcoming	most	of	the	limitations	of	XPath	queries	against	mapping	schemas,
use	SQL	queries	with	the	FOR	XML	EXPLICIT	mode	to	return	results	in	form
of	an	XML	document.

If	you	have	public	XDR	schemas	(such	as	a	Microsoft	BizTalk™	schemas),	you
can	perform	either	of	these:

Write	the	FOR	XML	EXPLICIT	mode	query	so	the	data	that	is
generated	is	valid	against	the	public	XDR	schema;	however,	writing
FOR	XML	EXPLICIT	queries	can	be	cumbersome.	

Make	a	private	copy	of	the	public	XDR	schema.	Then	add	annotations
to	this	private	copy,	thus	generating	a	mapping	schema.	You	can	specify
XPath	queries	against	the	mapping	schema.	As	a	result,	what	the	query
generates	is	the	data	in	the	namespace	of	the	public	schema.	Creating
annotated	schemas	and	specifying	XPath	queries	against	them	is	a	much
simpler	process	than	writing	the	complex	FOR	XML	EXPLICIT
queries.	The	illustration	shows	the	process.

Note		The	Microsoft	BizTalk™	Framework	is	an	effort	to	define	a	standard
XML	format	to	common	business	objects,	such	as	Contacts,	Orders,	and
Appointments.	You	can	find	copies	of	these	business	schemas	at
http://biztalk.org.

http://biztalk.org/BizTalk/default.asp

Mapping	Schema
In	the	context	of	the	relational	database,	it	is	useful	to	map	the	arbitrary	XDR
schema	to	a	relational	store.	One	way	to	achieve	this	is	to	annotate	the	XDR
schema.	An	XDR	schema	with	the	annotations	is	referred	to	as	a	mapping
schema,	which	provides	information	pertaining	to	how	XML	data	is	to	be
mapped	to	relational	store.	A	mapping	schema	is,	in	effect,	an	XML	view	of	the
relational	data.	These	mappings	can	be	used	to	retrieve	relational	data	as	an
XML	document.

Microsoft	SQL	Server	2000	introduces	a	number	of	annotations	that	can	be	used
in	the	XDR	schema	to	map	the	elements	and	attributes	to	the	database	tables	and
columns.	You	can	specify	queries	against	the	mapping	schemas	(XML	views)
using	XPath	(XML	Path).	The	mapping	schema	describes	the	resulting	document
structure.

Namespace	for	Annotations
In	an	XDR	schema,	the	annotations	are	specified	using	this	namespace:
urn:schemas-microsoft-com:xml-sql.

The	example	show	that	the	easiest	way	to	specify	the	namespace	is	to	specify	it
in	the	<Schema>	tag	.	The	annotations	must	be	namespace-qualified	to	the
urn:schemas-microsoft-com:xml-sql	namespace.

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql"
															>
			
</Schema>

The	namespace	prefix	that	is	used	is	arbitrary.	In	this	documentation,	the	sql
prefix	is	used	to	denote	the	annotation	namespace	and	to	distinguish	annotations
in	this	namespace	from	those	in	other	namespaces.

Namespace	for	Data	Types
XDR	schemas	allow	you	to	specify	the	data	type	of	an	element	or	an	attribute.

The	data	types	are	specified	using	this	namespace:	urn:schemas-microsoft-
com:datatypes.

This	is	the	minimum	XDR	schema	with	the	namespace	declarations:

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql"
								xmlns:dt="urn:schemas-microsoft-com:datatypes">
			...
</Schema>

The	namespace	prefix	that	is	used	is	arbitrary.	In	this	documentation,	the	dt
prefix	is	used	to	denote	the	data	type	namespace	and	to	distinguish	annotations
in	this	namespace	from	those	in	other	namespaces.

The	<Schema>	element	is	derived	from	the	xml-data	namespace:	urn:schemas-
microsoft-com:xml-data.

Example	of	an	XDR	Schema
This	example	shows	how	annotations	are	added	to	the	XDR	schema.	This	XDR
schema	consists	of	an	<Employee>	element	and	the	EmpID,	Fname,	and
Lname	attributes.

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:dt="urn:schemas-microsoft-com:datatypes"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType	name="Employee"	>
				<AttributeType	name="EmpID"	/>
				<AttributeType	name="FName"	/>
				<AttributeType	name="LName"	/>

				<attribute	type="EmpID"	/>
				<attribute	type="FName"	/>

				<attribute	type="LName"	/>
</ElementType>
</Schema>

Now,	annotations	are	added	to	this	XDR	schema	to	map	its	elements	and
attributes	to	the	database	tables	and	columns.	This	is	the	annotated	XDR
schema:	

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:dt="urn:schemas-microsoft-com:datatypes"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType	name="Employee"	sql:relation="Employees"	>
				<AttributeType	name="EmpID"	/>
				<AttributeType	name="FName"	/>
				<AttributeType	name="LName"	/>

				<attribute	type="EmpID"	sql:field="EmployeeID"	/>
				<attribute	type="FName"	sql:field="FirstName"	/>
				<attribute	type="LName"	sql:field="LastName"	/>
</ElementType>
</Schema>

In	the	mapping	schema,	the	<Employee>	element	is	mapped	to	the	Employees
table	using	sql:relation	annotation.	The	attributes	EmpID,	Fname,	and	Lname
are	mapped	to	the	EmployeeID,	FirstName,	and	LastName	columns	in	the
Employees	table	using	the	sql:field	annotations.

This	annotated	XDR	schema	provides	the	XML	view	of	the	relational	data.	This
XML	view	can	be	queried	using	the	XPath	(XML	Path)	language.	The	query
returns	an	XML	document	as	a	result,	instead	of	the	rowset	returned	by	the	SQL
queries.

Note		In	the	mapping	schema,	the	specified	relational	values	(such	as	table	name
and	column	name)	are	case-sensitive.

XML	and	Internet	Support

Annotations	to	the	XDR	Schema
Microsoft®	SQL	Server™	2000	introduces	a	number	of	annotations	to	the	XDR
schema	language.	These	annotations	can	be	used	within	the	XDR	schema	to
specify	XML-to-relational	mapping.	This	includes	mapping	between	elements
and	attributes	in	the	XDR	schema	to	tables/views	and	columns	in	the	databases.
By	default,	an	element	name	in	an	annotated	schema	maps	to	a	table	(view)
name	in	the	specified	database	and	the	attribute	name	maps	to	the	column	name.
These	annotations	can	also	be	used	to	specify	the	hierarchical	relationships	in
XML	(thus,	representing	the	relationships	in	the	database).

The	table	shows	the	list	of	annotations.

Annotation Description Topic	link
sql:relation Maps	an	XML	item	to	the

database	table.
Using	sql:relation

sql:field Maps	an	XML	item	and	the
database	column.

Using	sql:field

sql:is-constant Creates	an	XML	element	that
does	not	map	to	any	table.	The
element	appears	in	the	query
output.

Creating	Constant
Elements	Using
sql:is-constant

sql:map-field Allows	schema	items	to	be
excluded	from	the	result.

Excluding	Schema
Elements	from	the
Resulting	XML
Document	Using
sql:map-field

<sql:relationship>Specifies	relationships	between
XML	elements.	The	key,	key-
relation,	foreign-key	and
foreign-relation	attributes	are
used	to	establish	the	relationship.

Specifying
Relationships	Using
<sql:relationship>

sql:limit-field
sql:limit-value

Allows	limiting	the	values
returned	based	on	a	limiting
value.

Filtering	Values
Using	sql:limit-field
and	sql:limit-value

sql:key-fields Allows	specification	of
column(s)	that	uniquely	identify
the	rows	in	a	table.

Identifying	Key
Columns	Using
sql:key-fields

sql:target-
namespace

Allows	placing	the	elements	and
attributes	from	the	default
namespace	into	a	different
namespace	for	query	results.

Specifying	a	Target
Namespace	Using
sql:target-namespace

sql:id-prefix Creates	valid	XML	ID,	IDREF,
and	IDREFS.	Prepends	the
values	of	ID,	IDREF,	and
IDREFS	with	a	string.

Creating	Valid	ID,
IDREF,	and	IDREFS
Type	Attributes
Using	sql:id-prefix

sql:use-cdata Allows	specifying	CDATA
sections	to	be	used	for	certain
elements	in	the	XML	document.

Creating	CDATA
Sections	Using
sql:use-cdata

sql:url-encode When	XML	element/attribute	is
mapped	to	a	SQL	Server	BLOB
column,	allows	requesting	a
reference	(URI)	to	be	returned
that	can	be	used	later	for	BLOB
data.

Requesting	URL
References	to	BLOB
Data	Using	sql:url-
encode

sql:overflow-field Identifies	the	database	column
that	contains	the	overflow	data.

Retrieving
Unconsumed	Data
Using	sql:overflow-
field

Note		All	of	the	examples	presented	in	the	topics	in	this	section	specify	simple
XPath	queries	against	the	annotated	XDR	schema	described	in	each	example.
Prior	familiarity	with	XPath	language	is	assumed.	For	more	information,	see
Using	XPath	Queries.

See	Also

IIS	Virtual	Directory	Management	for	SQL	Server

Using	XPath	Queries

Accessing	SQL	Server	Using	HTTP

Executing	Template	Files	Using	HTTP

XML	and	Internet	Support

Default	Mapping	of	XDR	Elements	and	Attributes	to
Tables	and	Columns
In	an	annotated	XDR	schema,	an	<element>,	by	default,	maps	to	the	same	name
table/view,	and	an	attribute	maps	to	the	same	name	column.

You	can	map	the	noncomplex	subelements	in	the	schema	to	the	database
columns.	To	map	an	<element>	to	a	column	in	the	database,	the	content
attribute	is	specified	for	that	element	with	the	textOnly	value.	If
content=textOnly	is	not	specified	in	mapping	an	<element>	to	a	database
column,	the	sql:field	annotation	must	be	explicitly	specified	to	map	the
<element>	to	a	database	column.	For	more	information,	see	Using	sql:field.

Examples
To	create	working	samples	using	these	examples,	you	must	create	the	nwind
virtual	directory	(to	access	the	Northwind	database)	and	a	virtual	name	of
template	type.	For	more	information	about	creating	the	nwind	virtual	directory,
see	Creating	the	nwind	Virtual	Directory.

In	creating	working	samples	in	each	example,	templates	are	used	to	specify
XPath	queries	against	the	mapping	XDR	schema.	There	are	different	ways	of
using	annotated	XDR	schemas	in	queries,	for	example,	inline	schemas	and
schemas	in	the	URL.	For	more	information,	see	Using	Annotated	XDR	Schemas
in	Queries.

A.	Specify	default	mapping
In	this	example,	the	<Employees>	element	maps	to	the	Employees	table	in	the
Northwind	database,	and	all	the	attributes	map	to	same	name	columns	in	the
Employees	table.	In	this	XDR	schema,	no	annotations	are	specified.

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:dt="urn:schemas-microsoft-com:datatypes"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType	name="Employees"	>
				<AttributeType	name="EmployeeID"	/>
				<AttributeType	name="FirstName"	/>
				<AttributeType	name="LastName"	/>

				<attribute	type="EmployeeID"	/>
				<attribute	type="FirstName"	/>
				<attribute	type="LastName"	/>
</ElementType>
</Schema>

Testing	a	sample	XPath	query	against	the	schema

B.	Map	an	XML	<element>	to	a	database	column

By	default,	an	XML	<element>	maps	to	a	database	table,	and	an	<attribute>
maps	to	database	column.	To	map	an	<element>	to	a	database	column,	content
attribute	is	specified	with	textOnly	value.

This	XDR	schema	consists	of	<Employees>	element	with	<FirstName>	and
<LastName>	subelements	and	an	EmployeeID	attribute.

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:dt="urn:schemas-microsoft-com:datatypes"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType	name="FirstName"	content="textOnly"	/>
<ElementType	name="LastName"		content="textOnly"	/>

<ElementType	name="Employees"	>
				<AttributeType	name="EmployeeID"	/>
				
				<attribute	type="EmployeeID"	/>
				<element	type="FirstName"	/>

				<element	type="LastName"		/>
</ElementType>
</Schema>

By	default	the	<Employees>	element	in	the	XDR	schema	maps	to	the
Employees	table	in	the	database.	The	content	attribute	is	specified	on
<FirstName>	and	<LastName>	subelements.	Therefore,	these	subelements	will
map	to	the	same	name	columns	in	the	Employees	table.

Note		Mixed	content	(elements	with	both	text	and	subelements)	is	not	supported.

Testing	a	sample	XPath	query	against	the	schema

See	Also

IIS	Virtual	Directory	Management	for	SQL	Server

Using	XPath	Queries

Accessing	SQL	Server	Using	HTTP

Executing	Template	Files	Using	HTTP

XML	and	Internet	Support

Explicit	Mapping	of	XDR	Elements	and	Attributes	to
Tables	and	Columns
In	providing	an	XML	view	of	the	relational	database	through	an	XDR	schema,
the	elements	and	attributes	in	the	schema	must	be	mapped	to	database	tables	and
columns.	The	rows	in	the	database	table/view	will	map	to	elements	in	XML.	The
column	values	in	the	database	map	to	attributes	or	elements.	To	obtain	a	single
value	from	the	database,	the	mapping	specified	in	the	mapping	XDR	schema
must	have	both	relation	and	field	specification.

By	default,	an	element	name	in	an	annotated	schema	maps	to	the	table	(view)
name	in	the	specified	database,	and	the	attribute	name	(and	noncomplex
subelements	with	text-only	content)	maps	to	the	column	name.	If	the
element/attribute	name	is	the	same	as	a	table	(view)/column	name	in	the
database,	there	is	no	need	to	explicitly	specify	any	mappings.

However,	if	the	element/attribute	name	is	not	the	same	as	the	table
(view)/column	name	in	the	database,	the	following	annotations	are	used	to
specify	the	mapping	between	an	element/attribute	in	an	XML	document	and	the
table/column	in	a	database:

sql:relation

Maps	an	XML	element	to	a	database	table.

sql:field

Maps	an	attribute	or	a	noncomplex	subelement	to	a	database	column.

When	XPath	queries	are	specified	against	the	annotated	XDR	schema,	the	data
for	the	elements	and	attributes	in	the	schema	is	retrieved	from	the	tables	and
columns	to	which	they	map.

See	Also

Default	Mapping	of	XDR	Elements	and	Attributes	to	Tables	and	Columns

XML	and	Internet	Support

Using	sql:relation
The	sql:relation	annotation	is	added	to	map	an	XML	node	in	the	XDR	schema
to	a	database	table.	A	table/view	name	is	specified	as	the	value	of	sql:relation
annotation.

The	sql:relation	annotation	can	be	added	to	an	<ElementType>,	<element>,	or
<attribute>	node	in	the	XDR	schema.	sql:relation	specifies	the	mapping
between	<ElementType>,	<element>,	or	<attribute>	in	the	schema	to	a
table/view	in	a	database.

When	sql:relation	is	specified	on	<ElementType>,	the	scope	of	this	annotation
applies	to	all	the	attribute	and	subelement	specifications	in	that	<ElementType>.
Therefore,	it	provides	a	shortcut	in	writing	annotations.	When	sql:relation	is
specified	directly	on	the	<element>,	there	is	also	scoping	introduced	to	attributes
specified	within	an	<ElementType>.	sql:relation	is	ignored	on	<AttributeType>.

sql:relation	is	useful	in	cases	in	which	identifiers	that	are	valid	in	Microsoft®
SQL	Server™	are	invalid	in	XML.	For	example,	Order	Details	is	a	valid	table
name	in	SQL	Server	but	invalid	in	XML.	In	such	cases,	sql:relation	annotation
can	be	used	to	specify	the	mapping,	for	example:

<ElementType	name="OD"	sql:relation="[Order	Details]">

Examples
To	create	working	samples	using	these	examples,	you	must	create	the	nwind
virtual	directory	(to	access	the	Northwind	database)	and	a	virtual	name	of
template	type.	For	more	information	about	creating	the	nwind	virtual	directory,
see	Creating	the	nwind	Virtual	Directory.

In	creating	working	samples	in	each	example,	templates	are	used	to	specify
XPath	queries	against	the	mapping	XDR	schema.	There	are	different	ways	of
using	annotated	XDR	schemas	in	queries,	for	example,	inline	schemas	and
schemas	in	the	URL.	For	more	information,	see	Using	Annotated	XDR	Schemas
in	Queries.

A.	Specify	sql:relation	on	<ElementType>	containing	attributes
In	this	example,	the	XDR	schema	consists	of	<Customer>	element	with
CustomerID,	ContactName,	and	Phone	attributes.	The	sql:relation	annotation
is	specified	on	the	<ElementType>,	mapping	Customer	element	to	the
Customers	table.	The	scope	of	this	mapping	applies	to	all	the	attributes	in	the
<ElementType>.	Therefore,	all	the	attributes	map	to	columns	in	the	Customers
table.

The	default	mapping	takes	places	for	the	attributes,	for	example,	the	attributes
map	to	same	name	columns	in	the	Customers	table.

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:dt="urn:schemas-microsoft-com:datatypes"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql">
		<ElementType	name="Customer"	sql:relation="Customers"	>
				<AttributeType	name="CustomerID"	/>
				<AttributeType	name="ContactName"	/>
				<AttributeType	name="Phone"	/>

				<attribute	type="CustomerID"	/>
				<attribute	type="ContactName"	/>
				<attribute	type="Phone"	/>
		</ElementType>
</Schema>

Testing	a	sample	XPath	query	against	the	schema

B.	Specify	sql:relation	on	<ElementType>	containing	subelements
and	attributes

In	this	example,	the	XDR	schema	consists	of	<Customer>	element	with
CustomerID,	ContactName	attributes	and	<Address>	subelement.	The
sql:relation	annotation	is	specified	on	the	<ElementType>,	mapping	Customer
element	to	the	Customers	table.	The	scope	of	this	mapping	applies	to	all	the

attributes	in	the	<ElementType>.	Therefore,	all	the	attributes	map	to	columns	in
the	Customers	table.

The	default	mapping	takes	places	for	the	attributes.	The	attributes	map	to
columns	with	the	same	name	in	the	Customers	table.

In	this	example,	the	content	attribute	is	specified	on	the	<Address>	subelement.
Without	the	content=textOnly	attribute,	the	<Address>	element	does	not	map	to
the	address	column	in	the	Customers	table	because,	by	default,	elements	map
to	a	table	and	not	to	a	field.

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:dt="urn:schemas-microsoft-com:datatypes"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql">

		<ElementType	name="Address"	content="textOnly"		/>
		<ElementType	name="Customer"	sql:relation="Customers"	>
				<AttributeType	name="CustomerID"	/>
				<AttributeType	name="ContactName"	/>

				<attribute	type="CustomerID"	/>
				<attribute	type="ContactName"	/>
				<element	type="Address"		/>
		</ElementType>
</Schema>

As	an	alternative,	instead	of	specifying	content=textOnly	attribute,	you	can
specify	sql:field	annotation	to	map	the	<Address>	subelement	to	the	Address
column:

<element	type="Address"	sql:field="Address"	>

Testing	a	sample	XPath	query	against	the	schema

See	Also

IIS	Virtual	Directory	Management	for	SQL	Server

Using	XPath	Queries

Accessing	SQL	Server	Using	HTTP

Executing	Template	Files	Using	HTTP

XML	and	Internet	Support

Using	sql:field
The	sql:field	annotation	specifies	the	mapping	between	element	or	attribute	in
an	annotated	schema	to	a	column	in	a	database.	sql:field	can	be	added	to	an
element	or	attribute.	sql:field	is	ignored	on	<AttributeType>	elements	of	the
annotated	schema.	The	sql:field	attribute	specifies	the	name	of	the	mapped
column	in	a	table	or	view.

For	example,	sql:field	can	be	used	to	specify	the	name	of	column	when	that
name	does	not	match	with	the	field	in	schema	specified	in	XDR.	The	value	of
sql:field	must	be	a	column	name.	Four-part	column	names	such	as
database.owner.table.columnname	are	not	allowed.	This	is	true	for	all
annotations	that	take	a	column	name	as	its	value.

Examples
To	create	working	samples	using	these	examples,	you	must	create	the	nwind
virtual	directory	(to	access	the	Northwind	database)	and	a	virtual	name	of
template	type.	For	more	information	about	creating	the	nwind	virtual	directory,
see	Creating	the	nwind	Virtual	Directory.

In	creating	working	samples	in	each	example,	templates	are	used	to	specify
XPath	queries	against	the	mapping	XDR	schema.	There	are	different	ways	of
using	annotated	XDR	schemas	in	queries,	for	example,	inline	schemas	and
schemas	in	the	URL.	For	more	information,	see	Using	Annotated	XDR	Schemas
in	Queries.

A.	Specify	sql:field	for	an	<attribute>	of	the	XDR	schema
In	this	annotated	schema,	the	sql:field	annotation	is	specified	on	the	<attribute>
element	of	the	schema.	The	sql:field	attribute	maps	the	Company	attribute	in
the	schema	to	the	CompanyName	column	in	the	Customers	table.

Because	the	attribute	name	CustomerID	in	the	XDR	schema	is	the	same	as	the
CustomerID	column	in	the	Customers	table,	sql:field	is	not	specified.	The
mapping	is	by	default.

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:dt="urn:schemas-microsoft-com:datatypes"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType	name="Customer"	sql:relation="Customers"	>
				<AttributeType	name="CustomerID"	/>
				<AttributeType	name="Company"	/>
				
				<attribute	type="CustomerID"	/>
				<attribute	type="Company"	sql:field="CompanyName"	/>
</ElementType>
</Schema>

Testing	a	sample	XPath	query	against	the	schema

In	a	mapping	schema,	attributes	can	be	globally	declared	(for	example,
<AttributeType...>,	declared	outside	the	scope	of	the	<ElementType>),	and	then
referenced	in	<attribute	type=...>,	as	shown	in	this	schema.

In	this	schema,	the	Contact	attribute	is	declared	globally	and	referenced	in	the
scope	of	the	Customer	<ElementType>.

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:dt="urn:schemas-microsoft-com:datatypes"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<AttributeType	name="Contact"	/>

<ElementType	name="Customer"	sql:relation="Customers"	>
				<AttributeType	name="CustomerID"	/>
				<AttributeType	name="Company"	/>
				
				<attribute	type="CustomerID"	/>

				<attribute	type="Company"	sql:field="CompanyName"	/>
				<attribute	type="Contact"	sql:field="ContactName"	/>
</ElementType>
</Schema>

B.	Specify	sql:field	for	an	<element>	in	the	XDR	schema
In	this	annotated	schema,	the	sql:field	annotation	is	specified	on	<element>	in
the	schema.	The	sql:field	annotation	maps	the	<CompanyName>	subelement	in
the	schema	to	the	CompanyName	column	in	the	Customers	table.

Without	the	explicit	annotation,	the	<CompanyName>	subelement	of	the
<Customer>	element	in	the	schema	will	not	map	to	the	CompanyName	column
of	the	Customers	table	because	the	default	mapping	of	elements	is	to	a	relation,
not	to	a	field	(the	exception	to	this	occurs	when	the	<ElementType>	contains	a
textOnly	attribute).

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:dt="urn:schemas-microsoft-com:datatypes"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql">
		<ElementType	name="CompanyName"	/>
		<ElementType	name="Customer"	sql:relation="Customers"	>
				<AttributeType	name="CustomerID"	/>

				<attribute	type="CustomerID"	/>
				<element	type="CompanyName"	sql:field="CompanyName"	/>
		</ElementType>
</Schema>

Testing	a	sample	XPath	query	against	the	schema

If	content="textOnly"	is	specified	on	CompanyName	<ElementType>,	the
sql:field	annotation	is	not	required	on	the	<CompanyName>	subelement.	The
CompanyName	subelement	will	map	to	the	CompanyName	column	in	the
Customer	table.

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:dt="urn:schemas-microsoft-com:datatypes"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql">
		<ElementType	name="CompanyName"	content="textOnly"	/>
		<ElementType	name="Customer"	sql:relation="Customers"	>
				<AttributeType	name="CustomerID"	/>

				<attribute	type="CustomerID"	/>
				<element	type="CompanyName"	/>
		</ElementType>
</Schema>

See	Also

IIS	Virtual	Directory	Management	for	SQL	Server

Using	XPath	Queries

Accessing	SQL	Server	Using	HTTP

Executing	Template	Files	Using	HTTP

XML	and	Internet	Support

Specifying	Relationships	Using	<sql:relationship>
The	elements	in	an	XML	document	can	be	related.	The	elements	can	be	nested
hierarchically,	and	ID,	IDREF,	or	IDREFS	relationships	can	be	specified
between	the	elements.

For	example,	in	an	XDR	schema,	a	<customer>	element	contains	<order>
subelements.	The	<customer>	element	maps	to	Customers	table	and	<order>
element	maps	to	Orders	table	in	the	database.	These	underlying	tables,
Customers	and	Orders	are	related	because	customers	place	orders.	The
CustomerID	in	Orders	table	is	a	foreign	key	referring	to	CustomerID	primary
key	in	Customers	table.	You	can	establish	these	relationships	among	mapping
schema	elements	using	the	<sql:relationship>	annotation.

In	the	annotated	XDR	schema,	the	<sql:relationship>	annotation	is	used	to	nest
the	schema	elements	hierarchically	based	on	the	primary	key	and	foreign	key
relationships	among	the	underlying	tables	to	which	the	elements	map.	In
specifying	the	<sql:relationship>	annotation,	you	must	identify:

The	primary	table	(Customers)	and	the	foreign	table	(Orders)	and	

The	necessary	join	condition	(CustomerID	in	Orders	is	a	foreign	key
referring	to	CustomerID	primary	key	in	Customers	table).

This	information	is	used	in	generating	the	proper	hierarchy	(for	each	<customer>
element,	the	related	<order>	elements	appear	as	subelements).

To	provide	the	table	names	and	the	necessary	join	information,	the	following
attributes	are	specified	with	the	<sql:relationship>	annotation.	These	attributes
are	valid	only	with	the	<sql:relationship>	element:

key-relation

Specifies	the	primary	relation	(table).

key

Specifies	the	primary	key	of	the	key-relation.	If	the	primary	key	is
composed	of	multiple	columns,	values	are	specified	with	a	space

between	them.	There	is	positional	mapping	between	the	values	specified
for	the	multicolumn	key	and	the	corresponding	foreign	key.

foreign-relation

Specifies	the	foreign	relation	(table).

foreign-key

Specifies	the	foreign	key	in	the	foreign-relation	referring	to	key	in
key-relation.	If	the	foreign	key	is	composed	of	multiple	attributes
(columns),	the	foreign	key	values	are	specified	with	a	space	between
them.	There	is	positional	mapping	between	the	values	specified	for	the
multicolumn	key	and	the	corresponding	foreign	key.

Note		You	must	ensure	that	the	Microsoft®	SQL	Server™	data	types	of	the	key
and	foreign-key	are	such	that	they	can	be	implicitly	converted	if	necessary.

The	<sql:relationship>	tag	can	be	added	only	to	<element>	or	<attribute>
elements	in	an	annotated	schema.	When	<sql:relationship>	is	specified	on	an
<attribute>,	there	should	be	a	sql:relation	and	sql:field	specified	for	the
attribute	to	ensure	that	a	single	value	is	retrieved	(multiple	attributes	of	the	same
name	are	invalid	in	XML).	When	<sql:relationship>	is	specified	on	an
<element>,	the	relationship	may	result	in	a	single	value	or	a	set	of	values.

The	<sql:relationship>	tag	is	used	to	specify	a	single	logical	relationship
between	two	entities.	The	attributes	define	the	relations	and	fields	used	to	define
the	logical	relationship.	Multiple	instances	of	<sql:relationship>	may	be
specified	within	an	<element>	or	<attribute>	in	the	annotated	schema,	which
indicates	a	complex	relationship	between	the	<element>	or	<attribute>	and	its
contained	element.	All	instances	of	<sql:relationship>	are	used	together	to	define
the	complex	relationship.

When	multiple	instances	of	<sql:relationship>	tag	are	specified	within	an
<element>	or	<attribute>,	the	order	in	which	they	appear	is	significant.

sql:key-fields	must	be	specified	in	an	<element>	containing	a	child	element	and
a	<sql:relationship>,	defined	between	the	element	and	the	child,	that	does	not
provide	the	primary	key	of	the	table	specified	in	the	parent	element.	For	more
information,	see	Identifying	Key	Columns	Using	sql:key-fields.	To	produce
proper	nesting	in	the	result,	it	is	recommended	that	sql:key-fields	be	specified	in

all	schemas.

Note		In	the	mapping	schema,	relational	values	such	as	table	name	and	column
name	are	case-sensitive.

Examples
To	create	working	samples	using	these	examples,	you	must	create	the	nwind
virtual	directory	(to	access	the	Northwind	database)	and	a	virtual	name	of
template	type.	For	more	information	about	creating	the	nwind	virtual	directory,
see	Creating	the	nwind	Virtual	Directory.

In	creating	working	samples	in	each	example,	templates	are	used	to	specify
XPath	queries	against	the	mapping	XDR	schema.	There	are	different	ways	of
using	annotated	XDR	schemas	in	queries,	for	example,	inline	schemas	and
schemas	in	the	URL.	For	more	information,	see	Using	Annotated	XDR	Schemas
in	Queries.

A.	Specify	<sql:relationship>	on	an	<element>
This	annotated	XDR	schema	includes	<Customer>	and	<Order>	elements.	The
<Order>	element	is	a	subelement	of	<Customer>	element.

In	the	schema,	the	<sql:relationship>	annotation	is	specified	on	the	<Order>
subelement.	The	annotation	identifies	CustomerID	in	the	Orders	table	as	a
foreign	key	referring	to	the	CustomerID	primary	key	in	the	Customers	table.
Therefore,	orders	belonging	to	a	customer	appear	as	a	subelement	of	that
<Customer>	element.

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:dt="urn:schemas-microsoft-com:datatypes"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<ElementType	name="Order"	sql:relation="Orders"	>
				<AttributeType	name="CustomerID"	/>
				<AttributeType	name="OrderID"	/>
				<AttributeType	name="OrderDate"	/>

				<attribute	type="CustomerID"	/>
				<attribute	type="OrderID"	/>
				<attribute	type="OrderDate"	/>
</ElementType>
<ElementType	name="Customer"	sql:relation="Customers"	>
				<AttributeType	name="CustomerID"	/>
				<attribute	type="CustomerID"	/>
				<element	type="Order"	>
													<sql:relationship	
																					key-relation="Customers"
																				key="CustomerID"
																				foreign-key="CustomerID"
																				foreign-relation="Orders"	/>
				</element>
</ElementType>
</Schema>

Note		In	the	mapping	schema,	the	relational	values	such	as	the	table	name	and
column	name	are	case-sensitive.	In	the	previous	example,	Customers	is	the
value	of	sql:relation	attribute.	The	corresponding	key-relation	attribute	value
must	also	be	Customers.

Testing	a	sample	XPath	query	against	the	schema

B.	Specify	<sql:relationship>	on	an	<attribute>	and	create
document	references	using	ID	and	IDREFS.

In	this	example,	local	document	references	are	specified	using	ID	and	IDREFS.
The	sample	XDR	schema	consists	of	<Customer>	element	that	maps	to	the
Customers	table.	This	element	consists	of	an	<Order>	subelement	that	maps	to
the	Orders	table.

In	the	example,	<sql:relationship>	is	specified	twice:

<sql:relationship>	is	specified	on	the	<Order>	subelement.	Therefore,
orders	belonging	to	a	customer	will	appear	as	subelement	of	that

<Customer>	element.	

<sql:relationship>	is	also	specified	on	the	OrderIDList	attribute	of	the
<Customer>	element.	This	attribute	is	defined	as	IDREFS	type
referring	to	the	OrderID	attribute	(an	ID	type	attribute)	of	the	<Order>
element.	Therefore,	<sql:relationship>	is	required.	In	this	case,	the
<sql:relationship>	annotation	allows	a	list	of	orders	belonging	to	a
customer	to	appear	with	that	<Customer>	element.

Attributes	specified	as	IDREFS	can	be	used	to	refer	to	ID	type
attributes,	thus	enabling	intradocument	links.

Because	numbers	are	not	valid	ID	values	(must	be	name	tokens),	sql:id-prefix
has	been	used	to	make	the	Order	ID	a	string	value.	For	more	information,	see
Using	sql:id-prefix.

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:dt="urn:schemas-microsoft-com:datatypes"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql">
		<ElementType	name="Order"	sql:relation="Orders"	>
				<AttributeType	name="OrderID"	dt:type="id"	sql:id-prefix="Ord-"	/>
				<AttributeType	name="OrderDate"	/>
	
				<attribute	type="OrderID"	/>
				<attribute	type="OrderDate"	/>
		</ElementType>

		<ElementType	name="Customer"	sql:relation="Customers">
				<AttributeType	name="CustomerID"		/>
					<AttributeType	name="ContactName"	/>

				<attribute	type="CustomerID"	/>
				<attribute	type="ContactName"	/>
				<AttributeType	name="OrderIDList"	dt:type="idrefs"	

																																						sql:id-prefix="Ord-"/>
				<attribute	type="OrderIDList"	sql:relation="Orders"	
																																		sql:field="OrderID">
																	<sql:relationship
																						key-relation="Customers"
																						key="CustomerID"
																						foreign-relation="Orders"
																						foreign-key="CustomerID"	/>
				</attribute>
				<element	type="Order">
																	<sql:relationship	key-relation="Customers"
																						key="CustomerID"
																						foreign-relation="Orders"
																						foreign-key="CustomerID"	/>
				</element>
		</ElementType>
</Schema>

Testing	a	sample	XPath	query	against	the	schema

C.	Specify	<sql:relationship>	on	multiple	<element>s

In	this	example,	the	annotated	XDR	schema	consists	of	the	<Customer>,
<Order>,	and	<OD>	elements.

The	<Order>	element	is	a	subelement	of	<Customer>	element.
<sql:relationship>	is	specified	on	the	<Order>	subelement	so	that	orders
belonging	to	a	customer	appear	as	subelements	of	<Customer>.

The	<Order>	element	includes	<OD>	subelement.	<sql:relationship>	is	specified
on	<OD>	subelement	so	that	the	order	details	belonging	to	an	order	appear	as
subelements	of	that	<Order>	element.

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:dt="urn:schemas-microsoft-com:datatypes"

								xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType	name="OD"	sql:relation="[Order	Details]"	>
				<AttributeType	name="OrderID"	/>
				<AttributeType	name="ProductID"	/>

				<attribute	type="OrderID"	/>
				<attribute	type="ProductID"	/>
</ElementType>

<ElementType	name="Order"	sql:relation="Orders"	>
				<AttributeType	name="CustomerID"	/>
				<AttributeType	name="OrderID"	/>
				<AttributeType	name="OrderDate"	/>

				<attribute	type="CustomerID"	/>
				<attribute	type="OrderID"	/>
				<attribute	type="OrderDate"	/>
				<element	type="OD"	>
													<sql:relationship	
																			key-relation="Orders"
																			key="OrderID"
																			foreign-key="OrderID"
																			foreign-relation="[Order	Details]"	/>
				</element>
</ElementType>

<ElementType	name="Customer"	sql:relation="Customers"	>
				<AttributeType	name="CustomerID"	/>

				<attribute	type="CustomerID"	/>
				<element	type="Order"	>
						<sql:relationship	

																key-relation="Customers"
																key="CustomerID"
																foreign-key="CustomerID"
																foreign-relation="Orders"	/>
				</element>
</ElementType>
</Schema>

Testing	a	sample	XPath	query	against	the	schema

D.	Specify	indirect	relationships

In	this	example,	the	annotated	XDR	schema	consists	of	the	<Customer>,	<OD>
elements.	The	relationship	between	these	elements	is	indirect	(Customers	table
is	related	to	Order	Details	table	through	the	Orders	table).	To	relate	a	customer
to	the	order	details,	first	the	relationship	between	the	Customer	table	and	the
Orders	table	is	specified.	Then,	the	relationship	between	the	Orders	and	Order
Details	tables	is	specified.

This	is	the	schema:

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:dt="urn:schemas-microsoft-com:datatypes"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<ElementType	name="OD"	sql:relation="[Order	Details]"	>
				<AttributeType	name="OrderID"	/>
				<AttributeType	name="ProductID"	/>
				<AttributeType	name="UnitPrice"	/>

				<attribute	type="OrderID"	/>
				<attribute	type="ProductID"	/>
				<attribute	type="UnitPrice"	/>
</ElementType>
<ElementType	name="Customer"	sql:relation="Customers"	>

				<AttributeType	name="CustomerID"	/>
				<attribute	type="CustomerID"	/>
				<element	type="OD"	>
													<sql:relationship	
																				key-relation="Customers"
																				key="CustomerID"
																				foreign-relation="Orders"
																				foreign-key="CustomerID"/>
													<sql:relationship	
																				key-relation="Orders"
																				key="OrderID"
																				foreign-relation="[Order	Details]"	
																				foreign-key="OrderID"	/>
				</element>
</ElementType>
</Schema>

Testing	a	sample	XPath	query	against	the	schema

E.	Specify	multikey	join	relationships

In	specifying	a	join	using	<sql:relationship>,	you	can	specify	a	join	involving
two	or	more	columns.	In	this	case,	the	column	names	for	key	and	foreign-key
are	listed	using	a	space.

This	example	assumes	these	two	tables	exist:

Cust(fname,	lname)

Ord(OrderID,	fname,	lname)

The	fname	and	lname	columns	form	the	primary	key	of	the	Cust	table.	The
OrderID	is	the	primary	key	of	the	Ord	table.	The	fname	and	lname	in	Ord
table	are	foreign	keys	referring	to	fname	and	lname	primary	key	of	the	Cust
table.

This	schema	consists	of	<Cust>	and	<Ord>	elements.	<sql:relationship>	is	used
to	join	them.

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:dt="urn:schemas-microsoft-com:datatypes"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<ElementType	name="Ord"	sql:relation="Ord"	>
				<AttributeType	name="OrderID"	/>

				<attribute	type="OrderID"	/>
</ElementType>

<ElementType	name="Cust"	sql:relation="Cust"	>
				<AttributeType	name="fname"	/>
				<AttributeType	name="lname"	/>
				<attribute	type="fname"	/>
				<attribute	type="lname"	/>
				<element	type="Ord"	>
													<sql:relationship	
																				key-relation="Cust"
																				key="fname	lname"
																				foreign-relation="Ord"
																				foreign-key="fname	lname"/>
				</element>
</ElementType>
</Schema>

Testing	a	sample	XPath	query	against	the	schema

See	Also

IIS	Virtual	Directory	Management	for	SQL	Server

Using	XPath	Queries

Accessing	SQL	Server	Using	HTTP

Executing	Template	Files	Using	HTTP

XML	and	Internet	Support

Creating	Constant	Elements	Using	sql:is-constant
Because	of	the	default	mapping,	every	element	and	attribute	in	the	XDR	schema
maps	to	a	database	table	and	column.	At	times,	you	may	want	create	an	element
in	the	XDR	schema	that	does	not	map	to	any	database	table	or	column	but	still
appears	in	the	XML	document.	These	are	called	constant	elements.	To	create	a
constant	element,	specify	the	sql:is-constant	annotation.	sql:is-constant	takes	a
Boolean	value	(0	=	FALSE,	1	=	TRUE).

This	annotation	is	specified	on	<ElementType>,	which	does	not	map	to	any
database	table,	thereby	making	it	a	constant	element.	The	sql:is-constant
annotation	can	be	used	for:

Adding	a	top-level	element	to	the	XML	document.	XML	requires	a
single	top-level	element	(<root>	element)	for	the	document.	

Creating	container	elements,	for	example,	an	<Orders>	element	that
wraps	all	Orders.

Examples

To	create	working	samples	using	these	examples,	you	must	create	the	nwind
virtual	directory	(to	access	the	Northwind	database)	and	a	virtual	name	of
template	type.	For	more	information	about	creating	the	nwind	virtual	directory,
see	Creating	the	nwind	Virtual	Directory.

In	creating	working	samples	in	each	example,	templates	are	used	to	specify
XPath	queries	against	the	mapping	XDR	schema.	There	are	different	ways	of
using	annotated	XDR	schemas	in	queries,	for	example,	inline	schemas	and
schemas	in	the	URL.	For	more	information,	see	Using	Annotated	XDR	Schemas
in	Queries.

A.	Specify	sql:is-constant	to	add	a	container	element
In	this	annotated	XDR	schema,	<OrderList>	is	defined	as	a	constant	element
containing	all	the	<Orders>	subelements.	The	sql:is-constant	annotation	is
specified	on	the	OrderList	<ElementType>,	making	it	a	constant,	and	therefore

not	mapping	to	any	database	table.	Although	<OrderList>	element	does	not	map
to	any	database	table/column,	it	still	appears	in	the	resulting	XML	as	a	container
element	containing	<Orders>	subelements.

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes"
xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<ElementType	name="Orders"	>
			<AttributeType	name="OrderID"	/>
			<attribute	type="OrderID"	/>
</ElementType>
<ElementType	name="OrderList"	sql:is-constant="1">
			<element	type="Orders">
						<sql:relationship	
																			key-relation="Customers"	
																			foreign-relation="Orders"	
																			key="CustomerID"	
																			foreign-key="CustomerID"	/>
			</element>
</ElementType>
<ElementType	name="Customers"	>
			<AttributeType	name="CustomerID"	/>
			<attribute	type="CustomerID"	/>
			<element	type="OrderList"	/>
</ElementType>
</Schema>

Testing	a	sample	XPath	query	against	the	schema

See	Also

IIS	Virtual	Directory	Management	for	SQL	Server

Using	XPath	Queries

Accessing	SQL	Server	Using	HTTP

Executing	Template	Files	Using	HTTP

XML	and	Internet	Support

Excluding	Schema	Elements	from	the	Resulting	XML
Document	Using	sql:map-field
Because	of	the	default	mapping,	every	element	and	attribute	in	the	XDR	schema
maps	to	a	database	table	and	column.	At	times,	you	may	want	create	an	element
in	the	XDR	schema	that	does	not	map	to	any	database	table	or	column	and	does
not	appear	in	the	XML.	This	is	done	by	specifying	the	sql:map-field	annotation.

The	sql:map-field	annotation	differs	from	sql:is-constant	in	that	the	unmapped
elements	and	attributes	do	not	appear	in	the	XML	document.	sql:map-field	is
especially	useful	if	the	schema	cannot	be	modified	or	is	used	to	validate	XML
from	other	sources	yet	contains	data	that	is	not	stored	in	your	database.

sql:map-field	takes	a	Boolean	value	(0	=	FALSE,	1	=	TRUE).	The	sql:map-
field	annotation	is	valid	only	on	an	<attribute>,	<element>	or	<ElementTypes>
with	text-only	content	(content=textOnly).	The	annotation	is	not	valid	on	an
<element>	or	<ElementTypes>	that	maps	to	tables.

Examples
To	create	working	samples	using	these	examples,	you	must	create	the	nwind
virtual	directory	(to	access	the	Northwind	database)	and	a	virtual	name	of
template	type.	For	more	information	about	creating	the	nwind	virtual	directory,
see	Creating	the	nwind	Virtual	Directory.

In	creating	working	samples	in	each	example,	templates	are	used	to	specify
XPath	queries	against	the	mapping	XDR	schema.	There	are	different	ways	of
using	annotated	XDR	schemas	in	queries,	for	example,	inline	schemas	and
schemas	in	the	URL.	For	more	information,	see	Using	Annotated	XDR	Schemas
in	Queries.

A.	Specify	the	sql:map-field	annotation
Assume	you	have	an	XDR	schema	from	some	other	source.	This	XDR	schema
consists	of	<Employees>	element	with	EmployeeID,	FirstName,	LastName,
and	HomeAddress	attributes.

In	mapping	this	XDR	schema	to	the	Employees	table	in	the	database,	sql:map-

field	is	specified	on	the	HomeAddress	attribute	because	the	Employees	table
does	not	store	home	addresses	of	employees.	As	a	result,	this	attribute	is	not
returned	in	the	resulting	XML	document	when	an	XPath	query	is	specified
againt	the	mapping	schema.

Default	mapping	takes	place	for	the	rest	of	the	schema.	The	<Employees>
element	maps	to	the	Employees	table,	and	all	the	attributes	map	to	the	columns
with	the	same	name	in	the	Employees	table.	For	more	information	about	default
mapping,	see	Default	Mapping	of	XDR	Elements	and	Attributes	to	Tables	and
Columns.

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:dt="urn:schemas-microsoft-com:datatypes"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType	name="Employees"	>
				<AttributeType	name="EmployeeID"	/>
				<AttributeType	name="FirstName"	/>
				<AttributeType	name="LastName"	/>
				<AttributeType	name="HomeAddress"	/>

				<attribute	type="EmployeeID"	/>
				<attribute	type="FirstName"	/>
				<attribute	type="LastName"	/>
				<attribute	type="HomeAddress"	sql:map-field="0"	/>
</ElementType>
</Schema>

Testing	a	sample	XPath	query	against	the	schema

See	Also

IIS	Virtual	Directory	Management	for	SQL	Server

Using	XPath	Queries

Accessing	SQL	Server	Using	HTTP

Executing	Template	Files	Using	HTTP

XML	and	Internet	Support

Filtering	Values	Using	sql:limit-field	and	sql:limit-
value
You	can	limit	rows	returned	from	a	database	query	based	on	some	limiting	value.
These	annotations	are	used	to	identify	the	database	column	that	contains	the
limiting	values	and	to	specify	a	specific	limiting	value	to	be	used	to	filter	the
data	returned.

The	sql:limit-field	annotation	is	used	to	identify	a	column	that	contains	a
limiting	value.	sql:limit-field	is	used	to	qualify	the	join	relationship	specified
using	<sql:relationship>.	sql:limit-field	must	be	used	on	an	element	or	attribute
that	has	<sql:relationship>	specified.

The	sql:limit-value	annotation	is	used	to	specify	the	limited	value	in	the	column
specified	in	a	sql:limit-field	annotation.	This	annotation	is	optional.	If	sql:limit-
value	is	not	specified,	a	null	value	is	assumed.

Examples
To	create	working	samples	using	these	examples,	you	must	create	the	nwind
virtual	directory	(to	access	the	Northwind	database)	and	a	virtual	name	of
template	type.	For	more	information	about	creating	the	nwind	virtual	directory,
see	Creating	the	nwind	Virtual	Directory.

In	creating	working	samples	in	each	example,	templates	are	used	to	specify
XPath	queries	against	the	mapping	XDR	schema.	There	are	different	ways	of
using	annotated	XDR	schemas	in	queries,	for	example,	inline	schemas	and
schemas	in	the	URL.	For	more	information,	see	Using	Annotated	XDR	Schemas
in	Queries.

A.	Limit	the	customer	addresses	returned	to	a	specific	address
type
In	this	example,	a	database	contains	two	tables:

Customer	(CustomerID,	CompanyName)

Addresses	(CustomerID,	AddressType,	StreetAddress)

A	customer	can	have	a	shipping	and/or	a	billing	address	(the	AddressType
column	values	are	Shipping	and	Billing).

This	is	the	mapping	schema	in	which	the	ShipTo	schema	attribute	maps	to
StreetAddress	column	in	the	Addresses	relation.	The	values	returned	for	this
attribute	are	limited	to	only	Shipping	addresses	by	specifying	the	sql:limit-field
and	sql:limit-value	annotations.	Similarly,	the	BillTo	schema	attribute	returns
only	the	Billing	address	of	a	customer.

This	is	the	schema:

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:dt="urn:schemas-microsoft-com:datatypes"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType	name="Customer"	sql:relation="Customer"	>
				<AttributeType	name="CustomerID"	/>
				<AttributeType	name="CompanyName"	/>
				<AttributeType	name="BillTo"	/>
				<AttributeType	name="ShipTo"	/>

				<attribute	type="CustomerID"	/>
				<attribute	type="CompanyName"	/>
				<attribute	type="BillTo"	
																sql:limit-field="AddressType"
																sql:limit-value="billing"
																sql:field="StreetAddress"
																sql:relation="Addresses"	>
																<sql:relationship	
																								key="CustomerID"
																								key-relation="Customer"
																							foreign-relation="Addresses"
																							foreign-key="CustomerID"	/>

				</attribute>
				<attribute	type="ShipTo"	
																sql:limit-field="AddressType"
																sql:limit-value="shipping"
																sql:field="StreetAddress"
																sql:relation="Addresses"	>
																<sql:relationship	
																					key="CustomerID"
																					key-relation="Customer"
																					foreign-relation="Addresses"
																					foreign-key="CustomerID"	/>
				</attribute>
</ElementType>
</Schema>

Testing	a	sample	XPath	query	against	the	schema

See	Also

IIS	Virtual	Directory	Management	for	SQL	Server

Using	XPath	Queries

Accessing	SQL	Server	Using	HTTP

Executing	Template	Files	Using	HTTP

XML	and	Internet	Support

Identifying	Key	Columns	Using	sql:key-fields
When	an	XPath	query	is	specified	against	the	XDR	schema,	key	information	is
required	in	most	cases	to	obtain	proper	nesting	in	the	result.	Specifying	the
sql:key-fields	annotation	is	a	way	to	ensure	that	the	appropriate	hierarchy	is
generated.

Note		To	produce	proper	nesting	in	the	result,	it	is	recommended	that	sql:key-
fields	be	specified	in	all	schemas.

In	many	instances,	it	is	necessary	to	understand	how	to	uniquely	identify	the
rows	in	a	table	to	generate	the	appropriate	XML	hierarchy.	The	sql:key-fields
annotation	can	be	added	to	the	<element>	and	<ElementType>	to	identify
column(s)	that	uniquely	identify	rows	in	the	table.

The	value	of	sql:key-fields	identifies	the	column(s)	that	uniquely	identify	the
rows	in	the	relation	specified	in	the	<ElementType>.	If	more	than	one	column	is
required	to	uniquely	identify	a	row,	the	column	values	are	listed	separated	with	a
space.

sql:key-fields	must	be	specified	in	an	element	containing	a	child	element	and	a
<sql:relationship>,	defined	between	the	element	and	the	child,	that	does	not
provide	the	primary	key	of	the	table	specified	in	the	parent	element.

Examples
To	create	working	samples	using	these	examples,	you	must	create	the	nwind
virtual	directory	(to	access	the	Northwind	database)	and	a	virtual	name	of
template	type.	For	more	information	about	creating	the	nwind	virtual	directory,
see	Creating	the	nwind	Virtual	Directory.

In	creating	working	samples	in	each	example,	templates	are	used	to	specify
XPath	queries	against	the	mapping	XDR	schema.	There	are	different	ways	of
using	annotated	XDR	schemas	in	queries,	for	example,	inline	schemas	and
schemas	in	the	URL.	For	more	information,	see	Using	Annotated	XDR	Schemas
in	Queries.

A.	Produce	the	appropriate	nesting	when	<sql:relationship>	does

not	provide	sufficient	information
This	example	shows	where	sql:key-fields	must	be	specified.

Consider	the	following	schema.	The	schema	specifies	hierarchy	between
<Order>	and	<Customer>	elements	in	which	<Order>	element	is	the	parent	and
the	<Customer>	element	is	a	child.

The	<sql:relationship>	tag	is	used	to	specify	the	parent-child	relationship.
<sql:relationship>	identifies	CustomerID	as	foreign-key	in	the	Orders	table
referring	to	CustomerID	key	in	the	Customers	table.	This	information	provided
in	<sql:relationship>	is	not	sufficient	to	uniquely	identify	rows	the	parent	table
(Orders).	Therefore,	without	sql:key-fields,	the	hierarchy	generated	is
inaccurate.

With	sql:key-fields	specified	on	<Order>,	the	annotation	uniquely	identifies	the
rows	in	the	parent	(Orders	table)	and	its	child	elements	appear	below	its	parent.

This	is	the	schema:

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:dt="urn:schemas-microsoft-com:datatypes"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql">
		<ElementType	name="Customer"	sql:relation="Customers">
				<AttributeType	name="CustomerID"	/>
				<AttributeType	name="ContactName"	/>

				<attribute	type="CustomerID"	/>
				<attribute	type="ContactName"	/>
		</ElementType>

		<ElementType	name="Order"	sql:relation="Orders"	
																												sql:key-fields="OrderID"	>
				<AttributeType	name="OrderID"	/>
				<AttributeType	name="CustomerID"	/>
	
				<attribute	type="OrderID"	/>

				<attribute	type="CustomerID"	/>
				<element	type="Customer"	>
													<sql:relationship
																									key-relation="Orders"
																									key="CustomerID"
																									foreign-relation="Customers"
																									foreign-key="CustomerID"	/>
				</element>
					</ElementType>
</Schema>

Creating	a	working	sample	of	this	schema

B.	Specify	sql:key-fields	to	produce	proper	nesting	in	the	result

In	this	schema,	there	is	no	hierarchy	specified	using	<sql:relationship>.	The
schema	still	requires	the	sql:key-fields	annotation	specified	to	uniquely	identify
employees	in	the	Employees	table.

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
			xmlns:dt="urn:schemas-microsoft-com:datatypes"
			xmlns:sql="urn:schemas-microsoft-com:xml-sql">
			<ElementType	name="Region"	content="textOnly"		>
						<AttributeType	name="EmployeeID"	/>
						<attribute	type="EmployeeID"	/>
			</ElementType>

			<ElementType	name="Employees"	sql:key-fields="EmployeeID"	>
						<element	type="Region"	/>
			</ElementType>			
</Schema>

Creating	a	working	sample	of	this	schema

See	Also

IIS	Virtual	Directory	Management	for	SQL	Server

Using	XPath	Queries

Accessing	SQL	Server	Using	HTTP

Executing	Template	Files	Using	HTTP

XML	and	Internet	Support

Specifying	a	Target	Namespace	Using	sql:target-
namespace
The	sql:target-namespace	annotation	can	be	used	to	place	elements	and
attributes	from	the	default	namespace	into	a	different	namespace.	The
sql:target-namespace	attribute	can	be	added	only	to	the	<Schema>	tag	in	the
XDR	schema.

The	value	of	sql:target-namespace	is	the	namespace	URI	(Uniform	Resource
Identifier)	to	be	used	for	generating	elements	and	attributes	specified	in	the
mapping	schema.	This	URI	is	applied	to	all	elements	and	attributes	in	the	default
namespace.	The	XML	document	returned	from	queries	against	this	schema
contain	xmlns:prefix="uri"	declarations	and	prefix	the	element	and	attribute
names	accordingly.	The	URI	that	is	used	comes	from	the	value	of	the	sql:target-
namespace	annotation.	However,	the	prefix	is	generated	arbitrarily	and	does	not
correspond	to	any	values	in	the	schema	(even	if	the	prefixes	are	used	in	the
schema).

Examples
To	create	working	samples	using	these	examples,	you	must	create	the	nwind
virtual	directory	(to	access	the	Northwind	database)	and	a	virtual	name	of
template	type.	For	more	information	about	creating	the	nwind	virtual	directory,
see	Creating	the	nwind	Virtual	Directory.

In	creating	working	samples	in	each	example,	templates	are	used	to	specify
XPath	queries	against	the	mapping	XDR	schema.	There	are	different	ways	of
using	annotated	XDR	schemas	in	queries,	for	example,	inline	schemas	and
schemas	in	the	URL.	For	more	information,	see	Using	Annotated	XDR	Schemas
in	Queries.

A.	Specify	a	target	namespace
In	this	example,	sql:target-namespace	annotation	is	used	to	specify	the	target
namespace.	As	a	result,	all	the	elements	and	attributes	that	would	have	gone	to
the	default	namespace	are	redirected	to	the	target	namespace	(MyNamespace).

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:dt="urn:schemas-microsoft-com:datatypes"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql"
								sql:target-namespace="urn:MyNamespace">
<ElementType	name="Orders"	>
			<AttributeType	name="OrderID"	/>
			<attribute	type="OrderID"/>
</ElementType>
<ElementType	name="Customers"	>
			<AttributeType	name="CustomerID"	/>
			<attribute	type="CustomerID"	/>
			<AttributeType	name="Contact"	/>
			<attribute	type="Contact"	sql:field="ContactName"	/>
			<element	type="Orders"	>
						<sql:relationship	
												key="CustomerID"	
												foreign-key="CustomerID"	
												key-relation="Customers"	
												foreign-relation="Orders"	/>
			</element>
</ElementType>
</Schema>

Testing	a	sample	XPath	query	against	the	schema

See	Also

IIS	Virtual	Directory	Management	for	SQL	Server

Using	XPath	Queries

Accessing	SQL	Server	Using	HTTP

Executing	Template	Files	Using	HTTP

XML	and	Internet	Support

Creating	Valid	ID,	IDREF,	and	IDREFS	Type
Attributes	Using	sql:id-prefix
An	attribute	can	be	specified	to	be	an	ID	type	attribute.	Attributes	specified	as
IDREF	or	IDREFS	can	then	be	used	to	refer	to	the	ID	type	attributes,	thus
enabling	intradocument	links.

ID,	IDREF,	and	IDREFS	correspond	to	PK/FK	(primary	key/foreign	key)
relationships	in	the	database,	with	few	differences.	In	the	XML	document,	the
values	of	ID	type	attributes	must	be	distinct.	If	you	have	CustomerID	and
OrderID	attributes	in	an	XML	document,	these	values	must	be	distinct.
However,	in	a	database,	CustomerID	and	OrderID	columns	can	have	the	same
values	(for	example,	CustomerID	=	1	and	OrderID	=	1	are	valid	in	the
database).	

For	the	ID,	IDREF,	and	IDREFS	attributes	to	be	valid:

The	value	of	ID	must	be	unique	within	the	XML	document.

For	every	IDREF	and	IDREFS,	the	referenced	ID	values	must	be	in
the	XML	document.

The	value	of	an	ID,	IDREF,	and	IDREFS	must	be	named	token	(for
example,	integer	value	101	cannot	be	an	ID	value).

The	attributes	of	ID,	IDREF,	and	IDREFS	type	cannot	be	mapped	to
columns	of	type	text,	ntext,	image,	or	any	other	binary	data	type	(for
example,	timestamp).

If	an	XML	document	contains	multiple	IDs,	to	ensure	the	values	are	unique,
sql:id-prefix	annotation	is	used.	For	more	information	about	sql:id-prefix,	see
Using	sql:id-prefix.

See	Also

IIS	Virtual	Directory	Management	for	SQL	Server

Using	XPath	Queries

Accessing	SQL	Server	Using	HTTP

Executing	Template	Files	Using	HTTP

XML	and	Internet	Support

Using	sql:id-prefix
The	sql:id-prefix	annotation	is	used	to	create	a	valid	XML	ID,	IDREF,	or
IDREFS	attribute.

In	an	XML	document,	the	values	of	ID	type	attributes	must	be	distinct.	If	there
are	multiple	ID	type	attributes	in	an	XML	document,	to	ensure	that	the	values	of
these	attributes	are	distinct,	specify	the	sql:id-prefix	attribute	for	the	ID	type
attributes.	sql:id-prefix	is	also	used	to	create	named	tokens	from	numbers.	The
value	specified	for	sql:id-prefix	must	be	a	valid	name	character.

The	sql:id-prefix	attribute	is	used	to	prepend	the	values	of	ID,	IDREF,	and
IDREFS	with	a	string,	thereby,	making	it	unique.	No	checks	are	made	to	ensure
the	validity	of	the	prefixes	and	the	uniqueness	of	the	values	of	ID,	IDREF,	or
IDREFS.

sql:id-prefix	is	ignored	on	attributes	that	are	not	of	type	ID,	IDREF,	or
IDREFS.

Note		Each	value	of	the	ID,	IDREF,	and	IDREFS	attributes	is	limited	to	4,000
characters,	including	the	prefix	(if	specified).

Examples
To	create	working	samples	using	these	examples,	you	must	create	the	nwind
virtual	directory	(to	access	the	Northwind	database)	and	a	virtual	name	of
template	type.	For	more	information	about	creating	the	nwind	virtual	directory,
see	Creating	the	nwind	Virtual	Directory.

In	creating	working	samples	in	each	example,	templates	are	used	to	specify
XPath	queries	against	the	mapping	XDR	schema.	There	are	different	ways	of
using	annotated	XDR	schemas	in	queries,	for	example,	inline	schemas	and
schemas	in	the	URL.	For	more	information,	see	Using	Annotated	XDR	Schemas
in	Queries.

A.	Specify	sql:id-prefix	for	an	ID	type	attribute
In	this	XDR	schema,	OrderID	and	EmployeeID	attributes	are	declared	as	ID

type.	To	ensure	that	the	IDs	are	unique	and	valid,	sql:id-prefix	annotation	is
specified	for	these	attributes:

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:dt="urn:schemas-microsoft-com:datatypes"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql">
		<ElementType	name="Order"	sql:relation="Orders"	sql:key-fields="OrderID">
				<AttributeType	name="OrderID"	dt:type="id"	sql:id-prefix="Ord-"	/>
				<AttributeType	name="OrderDate"	/>
	
				<attribute	type="OrderID"	/>
				<attribute	type="OrderDate"	/>
		</ElementType>

		<ElementType	name="Employee"	sql:relation="Employees">
				<AttributeType	name="EmployeeID"	dt:type="id"	/>
					<AttributeType	name="LastName"	/>

				<attribute	type="EmployeeID"	/>
				<attribute	type="LastName"	/>
				<AttributeType	name="OrderList"	dt:type="idrefs"
																																	sql:id-prefix="Ord-"	/>
				<attribute	type="OrderList"	sql:relation="Orders"	sql:field="OrderID">
								<sql:relationship
																key-relation="Employees"
																key="EmployeeID"
																foreign-relation="Orders"
																foreign-key="EmployeeID"	/>
				</attribute>
				<element	type="Order">
								<sql:relationship	key-relation="Employees"
																										key="EmployeeID"
																										foreign-relation="Orders"

																										foreign-key="EmployeeID"	/>
				</element>
		</ElementType>
</Schema>

Testing	a	sample	XPath	query	against	the	schema

See	Also

IIS	Virtual	Directory	Management	for	SQL	Server

Using	XPath	Queries

Accessing	SQL	Server	Using	HTTP

Executing	Template	Files	Using	HTTP

XML	and	Internet	Support

Data	Type	Coercions
The	data	type	of	an	element	or	an	attribute	can	be	specified	in	an	XDR	schema.
When	an	XDR	schema	is	used	to	extract	data	from	the	database,	the	appropriate
data	format	is	output	as	a	result	of	a	query.	The	dt:type	and	sql:datatype
annotations	are	used	to	control	the	mapping	between	XDR	data	types	and
Microsoft®	SQL	Server™	2000	data	types.

dt:type
You	can	use	the	dt:type	attribute	to	specify	the	XML	data	type	of	an	attribute	or
element	that	maps	to	a	column.	The	dt:type	attribute	can	be	specified	on
<AttributeType>	or	<ElementType>.	The	dt:type	affects	the	document	returned
from	the	server	and	also	the	XPath	query	executed.	When	an	XPath	query	is
executed	against	a	mapping	schema	containing	dt:type,	XPath	uses	the	data	type
indicated	when	processing	the	query.	For	more	information	about	how	XPath
uses	dt:type,	see	XPath	Data	Types.

In	a	document	returned,	all	SQL	Server	data	types	are	converted	into	string
representations.	Some	data	types	require	additional	conversions.	The	following
table	lists	the	conversions	that	are	used	for	various	dt:type	values.

XML	data	type SQL	Server	conversion
bit CONVERT(bit,	COLUMN)
date LEFT(CONVERT(nvarchar(4000),	COLUMN,

126),	10)
fixed.14.4 CONVERT(money,	COLUMN)
id/idref/idrefs id-prefix	+	CONVERT(nvarchar(4000),

COLUMN,	126)
nmtoken/nmtokens id-prefix	+	CONVERT(nvarchar(4000),

COLUMN,	126)
time/time.tz SUBSTRING(CONVERT(nvarchar(4000),

COLUMN,	126),	1+CHARINDEX(N'T',
CONVERT(nvarchar(4000),	COLUMN,	126)),
24)

All	others No	additional	conversion

Note	that	some	SQL	Server	values	cannot	be	converted	to	some	XML	data	types,
either	because	the	conversion	is	not	possible	(for	example,	"XYZ"	to	a	number
data	type)	or	because	the	value	exceeds	the	range	of	that	data	type	(for	example,
-100000	converted	to	ui2).	Incompatible	type	conversions	may	result	in	invalid
XML	documents	or	SQL	Server	errors.

Mapping	from	SQL	Server	Data	Types	to	XML	Data	Types
The	table	shows	a	natural	mapping	from	SQL	Server	data	types	to	XML	data
types.

SQL	Server	data	type XML	data	type
bigint i8
binary bin.base64
bit boolean
char char
datetime datetime
decimal r8
float r8
image bin.base64
int int
money r8
nchar string
ntext string
nvarchar string
numeric r8
real r4
smalldatetime datetime
smallint i2
smallmoney fixed.14.4
sysname string
text string
timestamp ui8
tinyint ui1

varbinary bin.base64
varchar string
uniqueidentifier uuid

sql:datatype
The	XML	data	type	bin.base64	maps	to	various	Microsoft®	SQL	Server™	data
types	(binary,	image,	varbinary).	To	clearly	map	the	XML	data	type
bin.base64	to	a	specific	SQL	Server	data,	the	sql:datatype	annotation	is	used.
sql:datatype	specifies	the	SQL	Server	data	type	of	the	column	to	which	the
attribute	maps.

This	is	useful	when	data	is	being	stored	in	the	database.	By	specifying	the
sql:datatype	annotation,	you	can	identify	the	explicit	SQL	Server	data	type.	The
data	item	is	then	stored	as	the	type	specified	in	sql:datatype.

The	valid	values	for	sql:datatype	are	text,	ntext,	image,	and	binary).

Examples
To	create	working	samples	using	these	examples,	you	must	create	the	nwind
virtual	directory	(to	access	the	Northwind	database)	and	a	virtual	name	of
template	type.	For	more	information	about	creating	the	nwind	virtual	directory,
see	Creating	the	nwind	Virtual	Directory.

In	creating	working	samples	in	each	example,	templates	are	used	to	specify
XPath	queries	against	the	mapping	XDR	schema.	There	are	different	ways	of
using	annotated	XDR	schemas	in	queries,	for	example,	inline	schemas	and
schemas	in	the	URL.	For	more	information,	see	Using	Annotated	XDR	Schemas
in	Queries.

A.	Specify	dt:type	on	an	attribute
In	this	XDR	schema,	dt:type	is	specified	on	the	OrdDate	and	ShipDate
attributes.

For	the	ReqDate	attribute,	no	XPath	data	type	is	specified.	Therefore,	XPath
returns	the	SQL	Server	datetime	values	retrieved	from	the	RequiredDate

column	in	the	database.

The	date	XPath	data	type	is	specified	on	OrdDate	attribute.	XPath	returns	only
the	date	part	of	the	values	(and	no	time)	retrieved	from	OrderDate	column.

The	time	XPath	data	type	is	specified	on	ShipDate	attribute.	XPath	returns	only
the	time	part	of	the	values	(and	no	date)	retrieved	from	ShippedDate	column.

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:dt="urn:schemas-microsoft-com:datatypes"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType	name="Order"	sql:relation="Orders">
				<AttributeType	name="OID"	/>
				<AttributeType	name="CustID"		/>
				<AttributeType	name="OrdDate"	dt:type="date"	/>
				<AttributeType	name="ReqDate"	/>
				<AttributeType	name="ShipDate"	dt:type="time"	/>

				<attribute	type="OID"	sql:field="OrderID"	/>
				<attribute	type="CustID"	sql:field="CustomerID"	/>
				<attribute	type="OrdDate"	sql:field="OrderDate"	/>
				<attribute	type="ReqDate"	sql:field="RequiredDate"	/>
				<attribute	type="ShipDate"	sql:field="ShippedDate"	/>
</ElementType>
</Schema>

Testing	a	sample	XPath	query	against	the	schema

B.	Specify	sql:datatype	on	an	attribute

In	this	example,	sql:datatype	is	used	to	identify	the	SQL	Server	data	type	of	the
Photo	column.

<?xml	version="1.0"	?>

<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:dt="urn:schemas-microsoft-com:datatypes"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType	name="Employee"	sql:relation="Employees">
				<AttributeType	name="EID"	/>
				<AttributeType	name="fname"	/>
				<AttributeType	name="lname"	/>
				<AttributeType	name="photo"		/>

				<attribute	type="EID"	sql:field="EmployeeID"	/>
				<attribute	type="fname"	sql:field="FirstName"	/>
				<attribute	type="lname"	sql:field="LastName"	/>
				<attribute	type="photo"	sql:field="Photo"	sql:datatype="image"	/>
</ElementType>
</Schema>

Testing	a	sample	XPath	query	against	the	schema

See	Also

IIS	Virtual	Directory	Management	for	SQL	Server

Using	XPath	Queries

Accessing	SQL	Server	Using	HTTP

Executing	Template	Files	Using	HTTP

XML	and	Internet	Support

Creating	CDATA	Sections	Using	sql:use-cdata
In	XML,	CDATA	sections	are	used	to	escape	blocks	of	text	containing	characters
that	would	otherwise	be	recognized	as	markup.

Microsoft®	SQL	Server™	data	may	contain	characters	that	are	considered
special	by	the	XML	parser,	for	example,	characters	such	as	<,	>,	<=,	&	are
treated	as	markup	characters.	If	you	want	to	avoid	SQL	Server	data	containing
special	characters	being	treated	as	markup,	you	can	wrap	them	in	a	CDATA
section.	The	text	placed	in	the	CDATA	section	is	treated	as	plain	text.

The	sql:use-cdata	annotation	is	used	specify	if	the	data	returned	by	SQL	Server
be	wrapped	in	a	CDATA	section.	Use	sql:use-cdata	annotation	to	indicate	if	the
value	from	the	column	specified	by	sql:field	should	be	enclosed	in	a	CDATA
section.	The	sql:use-cdata	annotation	can	be	specified	on	<ElementType>	or
<element>,	and	takes	a	Boolean	value	(0	=	FALSE,	1	=	TRUE).	sql:use-cdata
cannot	be	used	with	sql:url-encode	or	on	any	of	the	attribute	types	ID,	IDREF,
IDREFS,	NMTOKEN,	or	NMTOKENS.

Examples
To	create	working	samples	using	these	examples,	you	must	create	the	nwind
virtual	directory	(to	access	the	Northwind	database)	and	a	virtual	name	of
template	type.	For	more	information	about	creating	the	nwind	virtual	directory,
see	Creating	the	nwind	Virtual	Directory.

In	creating	working	samples	in	each	example,	templates	are	used	to	specify
XPath	queries	against	the	mapping	XDR	schema.	There	are	different	ways	of
using	annotated	XDR	schemas	in	queries,	for	example,	inline	schemas	and
schemas	in	the	URL.	For	more	information,	see	Using	Annotated	XDR	Schemas
in	Queries.

A.	Specify	sql:use-cdata	on	an	element
In	this	schema,	sql:use-cdata	is	set	to	1	(TRUE)	for	the	<ProductName>
element.	As	a	result,	the	data	for	<ProductName>	is	returned	in	the	CDATA
section.

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
			xmlns:dt="urn:schemas-microsoft-com:datatypes"
			xmlns:sql="urn:schemas-microsoft-com:xml-sql">
			<ElementType	name="ProductName"	content="textOnly"	/>
			<ElementType	name="Products"	>
						<element	type="ProductName"	sql:use-cdata="1"		/>
			</ElementType>
</Schema>

Testing	a	sample	XPath	query	against	the	schema

See	Also

IIS	Virtual	Directory	Management	for	SQL	Server

Using	XPath	Queries

Accessing	SQL	Server	Using	HTTP

Executing	Template	Files	Using	HTTP

XML	and	Internet	Support

Requesting	URL	References	to	BLOB	Data	Using
sql:url-encode
In	the	annotated	XDR	schema,	when	an	attribute	(or	element)	is	mapped	to	a
Microsoft®	SQL	Server™	BLOB	column,	the	data	is	returned	in	Base	64-
encoded	format	within	XML.	For	a	description	of	the	SQL	Server	data	types	and
their	corresponding	XML	data	types,	see	Data	Type	Coercions.

If	you	want	a	reference	to	the	data	(URI)	to	be	returned	that	can	be	used	later	to
retrieve	the	BLOB	data	in	a	binary	format,	specify	the	sql:url-encode
annotation.

Specify	sql:url-encode	annotation	to	indicate	that	a	URL	to	the	field	should	be
returned	instead	of	the	value	of	the	field.	sql:url-encode	depends	on	the	primary
key	to	generate	a	singleton	select	in	the	URL.	The	primary	key	can	be	specified
using	sql:key-fields	annotation.	For	more	information,	see	Identifying	Key
Columns	Using	sql:key-fields.

The	sql:url-encode	annotation	takes	a	Boolean	type	value	(0	=	FALSE,	1	=
TRUE).	sql:url-encode	cannot	be	used	with	sql:use-cdata	or	on	any	of	the
attribute	types	ID,	IDREF,	IDREFS,	NMTOKEN,	or	NMTOKENS.

Examples
To	create	working	samples	using	these	examples,	you	must	create	the	nwind
virtual	directory	(to	access	the	Northwind	database)	and	a	virtual	name	of
template	type.	For	more	information	about	creating	the	nwind	virtual	directory,
see	Creating	the	nwind	Virtual	Directory.

In	creating	working	samples	in	each	example,	templates	are	used	to	specify
XPath	queries	against	the	mapping	XDR	schema.	There	are	different	ways	of
using	annotated	XDR	schemas	in	queries,	for	example,	inline	schemas	and
schemas	in	the	URL.	For	more	information,	see	Using	Annotated	XDR	Schemas
in	Queries.

A.	Specify	sql:url-encode	to	obtain	a	URL	reference	to	BLOB	data
In	this	example,	the	mapping	schema	specifies	sql:url-encode	on	the	Photo

attribute	to	retrieve	the	URI	reference	to	the	employee	photo	(instead	of
retrieving	the	binary	data	in	Base	64-encoded	format).

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
			xmlns:dt="urn:schemas-microsoft-com:datatypes"
			xmlns:sql="urn:schemas-microsoft-com:xml-sql">
			<ElementType	name="Employee"	sql:relation="Employees"	
																	sql:key-fields="EmployeeID"	>
						<AttributeType	name="EmployeeID"	/>
						<AttributeType	name="Photo"	/>

						<attribute	type="EmployeeID"	/>
						<attribute	type="Photo"		sql:url-encode="1"	/>
			</ElementType>
</Schema>

Testing	a	sample	XPath	query	against	the	schema

See	Also

IIS	Virtual	Directory	Management	for	SQL	Server

Using	XPath	Queries

Accessing	SQL	Server	Using	HTTP

Executing	Template	Files	Using	HTTP

XML	and	Internet	Support

Retrieving	Unconsumed	Data	Using	sql:overflow-field
When	records	are	inserted	in	the	database	from	an	XML	document	using
OPENXML,	all	the	unconsumed	data	from	the	source	XML	document	can	be
stored	in	a	column.	In	retrieving	data	from	the	database	using	annotated
schemas,	the	sql:overflow-field	attribute	can	be	specified	to	identify	the	column
in	the	table	in	which	the	overflow	data	is	stored.

This	data	is	then	retrieved	in	these	ways:

Attributes	stored	in	the	overflow	column	are	added	to	the	element
containing	the	sql:overflow-field	annotation.

The	subelements,	and	their	descendents,	stored	in	the	overflow	column
in	the	database	are	added	as	subelements,	following	the	content	that	is
explicitly	specified	in	the	schema	(no	order	is	preserved).

Examples

To	create	working	samples	using	these	examples,	you	must	create	the	nwind
virtual	directory	(to	access	the	Northwind	database)	and	a	virtual	name	of
template	type.	For	more	information	about	creating	the	nwind	virtual	directory,
see	Creating	the	nwind	Virtual	Directory.

In	creating	working	samples	in	each	example,	templates	are	used	to	specify
XPath	queries	against	the	mapping	XDR	schema.	There	are	different	ways	of
using	annotated	XDR	schemas	in	queries,	for	example,	inline	schemas	and
schemas	in	the	URL.	For	more	information,	see	Using	Annotated	XDR	Schemas
in	Queries.

A.	Specify	sql:overflow-field	for	an	<ElementType>	in	the	XDR
schema
The	example	assumes	this	table	exists:

CREATE	TABLE	Customers2	(
			CustomerID							VARCHAR(10),	

			ContactName				VARCHAR(30),	
			OverflowData				NVARCHAR(200))
GO
INSERT	INTO	Customers2	VALUES	(
						'ALFKI',	
						'Joe',
							N'<xyz><address>111	Maple,	Seattle</address></xyz>')
GO

In	this	example,	the	mapping	schema	retrieves	the	unconsumed	data	stored	in	the
OverflowData	column	of	the	Customers2	table.	The	sql:overflow-field
attribute	is	specified	on	the	<ElementType>.

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:dt="urn:schemas-microsoft-com:datatypes"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql">
		<ElementType	name="Customers2"	sql:overflow-field="OverflowData"	>
				<AttributeType	name="CustomerID"	/>
				<AttributeType	name="ContactName"	/>

				<attribute	type="CustomerID"	/>
				<attribute	type="ContactName"/>
		</ElementType>
</Schema>

Testing	a	sample	XPath	query	against	the	schema

See	Also

IIS	Virtual	Directory	Management	for	SQL	Server

Using	XPath	Queries

Accessing	SQL	Server	Using	HTTP

Executing	Template	Files	Using	HTTP

XML	and	Internet	Support

Specifying	Default	Values	for	Attributes	in	the	XDR
Schema
In	a	database	columns	can	be	assigned	default	values.	Similarly,	in	an	XDR
schema,	default	values	can	be	set	for	attributes	(elements	cannot	be	assigned
default	values	in	the	XDR	schema).	The	XDR	schema	allows	the	default
attribute	specification	on	<AttributeType>.

If	a	column	value	associated	with	an	attribute	is	NULL,	that	attribute	is	not
returned	for	that	instance	of	the	element.	But	if	the	default	attribute	is	specified
on	the	<AttributeType>,	then	the	attribute	is	returned	with	the	default	value
specified.

For	example,	in	extracting	data	from	the	database	into	an	XML	document,	if	one
of	the	attribute	values	is	missing,	a	default	value	of	that	attribute	in	the	XDR
schema	is	used.

Note		The	default	values	may	not	appear	in	the	document	that	is	returned,	rather
this	value	is	used	by	the	validating	parser	whenever	the	attribute	is	not	present.

The	default	value	is	used	if	the	parser	used	is	schema-aware.	That	is,	for	the
MSXML	parser,	you	must	ensure	that	the	resolveExternals	flag	is	set	to
TRUE	(the	default),	and	the	parser	then	fetches	the	schemas.	Once	parsed,
the	individual	instances	have	the	attributes	(for	which	the	default	is
specified),	regardless	of	whether	the	attribute	was	included	in	the	XML
document.	The	DOM	supplies	the	default	value.

Examples
To	create	working	samples	using	these	examples,	you	must	create	the	nwind
virtual	directory	(to	access	the	Northwind	database)	and	a	virtual	name	of
template	type.	For	more	information	about	creating	the	nwind	virtual	directory,
see	Creating	the	nwind	Virtual	Directory.

In	creating	working	samples	in	each	example,	templates	are	used	to	specify
XPath	queries	against	the	mapping	XDR	schema.	There	are	different	ways	of
using	annotated	XDR	schemas	in	queries,	for	example,	inline	schemas	and
schemas	in	the	URL.	For	more	information,	see	Using	Annotated	XDR	Schemas

in	Queries.

A.	Specify	the	default	value	for	an	attribute	in	the	XDR	schema
In	this	example,	attribute	Title	is	given	a	default	value	of	XYZ.	When	employee
records	are	retrieved,	a	default	value	is	assigned	for	the	employees	who	do	not
have	a	title.

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:dt="urn:schemas-microsoft-com:datatypes"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType	name="Employees"	>
				<AttributeType	name="EID"	sql:field="EmployeeID"/>
				<AttributeType	name="FirstName"	/>
				<AttributeType	name="LastName"	/>
				<AttributeType	name="Title"	default="XYZ"/>

				<attribute	type="EID"	sql:field="EmployeeID"	/>
				<attribute	type="FirstName"	/>
				<attribute	type="LastName"	/>
				<attribute	type="Title"		/>
</ElementType>
</Schema>

Testing	a	sample	XPath	query	against	the	schema

See	Also

IIS	Virtual	Directory	Management	for	SQL	Server

Using	XPath	Queries

Accessing	SQL	Server	Using	HTTP

Executing	Template	Files	Using	HTTP

XML	and	Internet	Support

Using	Annotated	XDR	Schemas	in	Queries
These	are	the	ways	queries	can	be	specified	against	annotated	schema	to	retrieve
data	from	the	database:

Specify	XPath	queries	in	a	template	against	the	XDR	schema

The	<sql:xpath-query>	element	allows	you	to	specify	an	XPath	query
against	the	XML	view	defined	by	the	annotated	schema.	The	annotated
schema	against	which	the	XPath	query	is	to	be	executed	is	identified	by
using	mapping-schema	attribute	of	the	<sql:xpath-query>	element.

Templates	are	valid	XML	documents	that	contain	one	or	more	queries.
The	FOR	XML	and	XPath	queries	return	a	document	fragment.
Templates	act	as	containers	for	the	resulting	document	fragments
(templates	provide	a	way	to	specify	a	single,	top-level	element).

The	examples	in	this	topic	use	templates	to	specify	an	XPath	query
against	an	annotated	schema	to	retrieve	data	from	the	database.

For	more	information	about	templates,	see	Executing	Template	Files
Using	a	URL.

Inline	Mapping	Schemas

An	annotated	schema	can	be	included	directly	in	a	template.	The	sql:is-
mapping-schema	annotation	is	used	to	specify	an	inline	annotated
schema.	sql:is-mapping-schema	takes	a	Boolean	type	value	(0	=
FALSE,	1	=	TRUE).	sql:is-mapping-schema	is	specified	on	the
<Schema>	element	in	the	template.

The	sql:id	attribute	uniquely	identifies	the	element	in	which	it	is
contained.	sql:id	is	of	the	ID	type	attribute	and	is	specified	on	the
<Schema>	element.	The	value	assigned	to	sql:id	is	then	used	to
reference	the	inline	annotated	schema	using	the	mapping-schema
attribute	in	<sql:xpath-query>.

For	example,	this	is	a	template	with	an	inline	annotated	schema	is
specified:

<ROOT					xmlns:sql="urn:schemas-microsoft-com:xml-sql">
		<Schema	xmlns="urn:schemas-microsoft-com:xml-data"

				sql:id="MyMappingSchema"
				sql:is-mapping-schema="1">

				<ElementType	name="Employees"	>
						<AttributeType	name="EmployeeID"	/>
						<AttributeType	name="FirstName"	/>
						<AttributeType	name="LastName"	/>

						<attribute	type="EmployeeID"	/>
						<attribute	type="FirstName"	/>
						<attribute	type="LastName"	/>
				</ElementType>
		</Schema>

<sql:xpath-query	mapping-schema="#MyMappingSchema">
		Employees
</sql:xpath-query>
</ROOT>

For	illustration	purposes,	this	template	is	stored	in	the	template
subdirectory	of	the	virtual	root	directory,	and	the	file	name	is
InlineSchemaTemplate.xml.

This	URL	executes	the	template:

http://IISServer/VirtualRoot/template/InlineSchemaTemplate.xml

In	the	URL,	template	is	a	virtual	name	(created	by	using	the	IIS	Virtual
Directory	Management	for	SQL	Server	utility)	of	the	template	type,
followed	by	the	template	file	name.

Mapping	Schema	in	the	URL

An	XPath	query	can	be	specified	against	the	annotated	schema	directly
in	a	URL.	This	is	performed	by	creating	a	virtual	name	of	schema	type
and	by	specifying	the	annotated	schema	and	the	XPath	query	at	the
URL.

For	example,	consider	this	annotated	schema:

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:dt="urn:schemas-microsoft-com:datatypes"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql">

		<ElementType	name="Customer"	sql:relation="Customers"	>
				<AttributeType	name="CustomerID"	/>
				<AttributeType	name="ContactName"	/>
				<AttributeType	name="Phone"	/>

				<attribute	type="CustomerID"	/>
				<attribute	type="ContactName"	/>
				<attribute	type="Phone"	/>
		</ElementType>
</Schema>

For	illustration	purposes,	this	XDR	schema	is	stored	in	the	schema
subdirectory	of	the	virtual	root	directory,	and	the	file	name	is
Schema2.xml.

An	XPath	query	against	the	annotated	schema	can	be	specified	directly
in	the	URL:

http://IISServer/VirtualRoot/schema/Schema2.xml/Customer[@CustomerID="ALFKI"]

In	the	URL,	schema	is	the	virtual	name	of	schema	type	(created	by
using	the	IIS	Virtual	Directory	Management	for	SQL	Server	utility).
Schema2.xml	is	the	annotated	schema	file	followed	by	an	XPath	query
requesting	all	the	customers	with	a	CustomerID	of	ALFKI.

See	Also

IIS	Virtual	Directory	Management	for	SQL	Server

Using	XPath	Queries

Accessing	SQL	Server	Using	HTTP

Executing	Template	Files	Using	HTTP

XML	and	Internet	Support

Schema	Caching
Schema	caching	significantly	improves	the	performance	of	an	XPath	query.
When	an	XPath	query	is	executed	against	an	annotated	XDR	schema,	the
schema	is	stored	in	memory,	and	the	necessary	data	structures	are	built	in
memory.	If	schema	caching	is	set,	the	schema	remains	in	memory,	thereby
improving	performance	for	subsequent	XPath	queries.

You	can	set	the	schema	cache	size	by	adding	the	following	key	in	the	registry:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Client\SQLXMLX\SchemaCacheSize.

The	schema	size	is	set	based	on	the	available	memory	and	the	number	of
schemas	you	are	using.	The	default	SchemaCacheSize	size	is	31.	If	you	set
SchemaCacheSize	higher,	more	memory	is	used.	Therefore,	you	can	increase	the
cache	size	if	schema	access	seems	slow,	or	decrease	the	cache	size	if	memory	is
low.

For	performance	reasons,	it	is	recommended	that	you	set	SchemaCacheSize
higher	than	the	number	of	mapping	schemas	you	usually	use.	As	the	number	of
schemas	increase,	if	SchemaCacheSize	is	less	than	the	number	of	schemas	you
have,	the	performance	degrades.

Note		During	development,	it	is	recommended	that	you	do	not	cache	the
schemas,	because	the	changes	to	the	schemas	are	not	reflected	in	the	cache	for
about	two	minutes.

See	Also

IIS	Virtual	Directory	Management	for	SQL	Server

Using	XPath	Queries

Accessing	SQL	Server	Using	HTTP

XML	Error	Messages

JavaScript:hhobj_1.Click()

XML	and	Internet	Support

Using	XPath	Queries
The	Microsoft®	SQL	Server™	2000	support	for	annotated	XDR	schemas	allows
you	to	create	XML	views	of	the	relational	data	stored	in	the	database.	You	can
use	a	subset	of	the	XPath	language	to	query	the	XML	views	created	by	an
annotated	XDR	schema.

The	XPath	query	can	be	specified	as	part	of	a	URL	or	within	a	template.	The
mapping	schema	determines	the	structure	of	this	resulting	fragment,	and	the
values	are	retrieved	from	the	database.	This	process	is	conceptually	similar	to
creating	views	using	the	CREATE	VIEW	statement	and	writing	SQL	queries
against	them.

Note		To	understand	XPath	queries,	you	must	be	familiar	with	the	concepts	of
templates	(for	more	information,	see	Using	XML	Templates),	HTTP	access	to
SQL	Server	(for	more	information,	see	Accessing	SQL	Server	Using	HTTP),
mapping	schema	(for	more	information,	see	Creating	XML	Views	Using
Annotated	XDR	Schemas),	and	the	XPath	standard	defined	by	the	World	Wide
Web	Consortium	(W3C).

An	XML	document	consists	of	nodes	such	as	an	element	node,	attribute	node,
text	node,	and	so	on.	For	example,	consider	this	XML	document:

<root>
		<Customer	cid=	"C1"	name="Janine"	city="Issaquah">
						<Order	oid="O1"	date="1/20/1996"	amount="3.5"	/>
						<Order	oid="O2"	date="4/30/1997"	amount="13.4">Customer	was
										very	satisfied</Order>
			</Customer>
			<Customer	cid="C2"	name="Ursula"	city="Oelde"	>
						<Order	oid="O3"	date="7/14/1999"	amount="100"	note="Wrap	it	blue	white	red">
										<Urgency>Important</Urgency>
						</Order>
						<Order	oid="O4"	date="1/20/1996"	amount="10000"/>
			</Customer>
</root>

In	this	document,	Customer	is	an	element	node,	cid	is	an	attribute	node,	and
Important	is	a	text	node.

XPath	(XML	Path	Language)	is	a	graph	navigation	language.	XPath	is	used	to
select	a	set	of	nodes	from	an	XML	document.	Each	XPath	operator	selects	a
node-set	based	on	a	node-set	selected	by	a	previous	XPath	operator.	For
example,	given	a	set	of	<Customer>	nodes,	XPath	can	select	all	<Order>	nodes
with	the	date	attribute	value	7/14/1999.	The	resulting	node-set	contains	all	the
orders	with	order	date	7/14/1999.

Note		XPath	language	is	defined	by	the	W3C	as	a	standard	navigation	language.
The	XPath	language	specification,	XML	Path	Language	(XPath)	version	1.0
W3C	Proposed	Recommendation	8	October	1999,	can	be	found	at	the	W3C	Web
site	at	http://www.w3.org/TR/1999/PR-xpath-19991008.html.	A	subset	of	this
specification	is	implemented	in	SQL	Server	2000.	For	more	information,	see
XPath	Guidelines	and	Limitations.

Supported	Functionality
The	table	shows	the	features	of	the	XPath	language	that	are	implemented	in	SQL
Server	2000.

Feature Item Link	to	sample	queries
Axes attribute,	child,

parent,	and	self	axes
Specifying	Axes	in
XPath	Queries

Boolean-valued
predicates	including
successive	and	nested
predicates

	 Specifying	Arithmetic
Operators	in	XPath
Queries

All	relational	operators =,	!=,	<,	<=,	>,	>= Specifying	Relational
Operators	in	XPath
Queries

Arithmetic	operators +,	-,	*,	div Specifying	Arithmatic
Operators	in	XPath

Explicit	conversion
functions

number(),	string(),
Boolean()

Specifying	Explicit
Conversion	Functions	in
XPath	Queries

Boolean	operators AND,	OR Specifying	Boolean

http://www.w3.org/TR/1999/PR-xpath-19991008.html

Operators	in	XPath
Queries

Boolean	functions true(),	false(),	not() Specifying	Boolean
Functions	in	XPath
Queries

XPath	variables 	 Specifying	XPath
Variables	in	XPath
Queries

Unsupported	Functionality
The	table	shows	the	features	of	the	XPath	language	that	are	not	implemented	in
SQL	Server	2000.

Feature Item
Axes ancestor,	ancestor-or-self,	descendant,

descendant-or-self	(//),	following,
following-sibling,	namespace,	preceding,
preceding-sibling

Numeric-valued	predicates 	
Arithmetic	operators mod
Node	functions ancestor,	ancestor-or-self,	descendant,

descendant-or-self	(//),	following,
following-sibling,	namespace,	preceding,
preceding-sibling

String	functions string(),	concat(),	starts-with(),
contains(),	substring-before(),	substring-
after(),	substring(),	string-length(),
normalize(),	translate()

Boolean	functions lang()
Numeric	functions sum(),	floor(),	ceiling(),	round()
Union	operator |

Specifying	an	XPath	Query

XPath	queries	can	be	specified	directly	in	the	URL	or	in	a	template	that	is
specified	in	the	URL.	Parameters	can	be	passed	to	the	XPath	queries	specified
directly	in	the	URL	or	in	the	template	using	XPath	variables.

XPath	Queries	in	a	URL
XPath	queries	can	be	directly	specified	in	the	URL,	for	example:

http://IISServer/VirtualRoot/SchemaVirtualName/SchemaFile/XPathQuery[?root=ROOT]

The	root	parameter	is	specified	to	provide	a	single	top-level	element.	Any	value
can	be	specified	for	this	parameter.	If	the	query	returns	only	one	element	(or	if
you	want	to	receive	a	collection	of	top-level	nodes),	you	do	not	have	to	specify
this	parameter.

The	SchemaVirtualName	in	the	URL	is	a	virtual	name	of	schema	type	created
using	the	IIS	Virtual	Directory	Management	for	SQL	Server	utility.	For	more
information,	see	IIS	Virtual	Directory	Management	for	SQL	Server.

When	you	specify	XPath	queries	in	the	URL,	note	the	following	URL-specific
behavior:

XPath	may	contain	characters	such	as	#	or	+	that	have	special	meanings
in	the	URLs.	Escape	these	characters	using	the	URL	percent	encoding,
or	specify	the	XPath	in	a	template.	For	example,	the	URL
http://IISServer/VirtualRoot/VirtualName/SchemaFile/Customers[@CustomerID="#"]
is	truncated	at	the	#	symbol,	resulting	in	an	invalid	XPath.

XPath	expressions	such	as	..	or	//	that	resemble	special	file	paths	are
interpreted	by	some	browsers	and	modified	before	passing	the	URL	to
the	server.	Consequently,	XPaths	containing	these	expressions	may	not
work	as	expected	from	the	URL.	For	example:

The	URL
http://IISServer/VirtualRoot/VirtualName/SchemaFile/Customers/..
may	be	transformed	by	the	browser	to
http://IIServer/VirtualRoot/VirtualName/SchemaFile/,
which	is	invalid	XPath.	

The	URL
http://IISServer/VirtualRoot/VirtualName/SchemaFile//Customers
may	be	transformed	by	the	browser	to
http://IISServer/VirtualRoot/VirtualName/SchemaFile/Customers
which	is	different	XPath.

XPath	Queries	in	a	Template

You	can	write	the	XPath	queries	in	a	template	and	specify	the	template	in	the
URL.	For	example,	this	is	a	template	with	an	XPath	query:

<ROOT	xmlns:sql="urn:schemas-microsoft-com:xml-sql">
		<sql:xpath-query	mapping-schema="FilePath/AnnotatedSchemaFile.xml">
				Specify	the	XPath	query
		</sql:xpath-query>
</ROOT>

This	template	file	is	stored	in	the	directory	specified	at	the	time	a	virtual	name	of
type	template	is	created.	For	more	information	about	creating	virtual	names,	see
Using	IIS	Virtual	Directory	Management	for	SQL	Server	Utility.

This	URL	executes	the	template:

http://IISServer/VirtualRoot/VirtualName/TemplateFile.xml

The	VirtualName	specified	in	the	URL	is	of	template	type.

Note		There	is	no	namespace	support	for	XPath	queries	specified	directly	in	the
URL.	If	you	want	to	use	a	namespace	in	an	XPath	query,	template	should	be
used.	For	more	information	about	templates,	see	Executing	Template	Files	Using
a	URL.

When	you	specify	XPath	queries	in	a	template,	note	the	following	behavior:

XPath	may	contain	characters	such	as	<	or	&	that	have	special
meanings	in	XML	(and	template	is	an	XML	document).	You	must
escape	these	characters	using	XML	&-encoding,	or	specify	the	XPath	in
the	URL.

See	Also

Retrieving	XML	Documents	Using	FOR	XML

Accessing	SQL	Server	Using	HTTP

IIS	Virtual	Directory	Management	for	SQL	Server

XML	Error	Messages

JavaScript:hhobj_1.Click()

XML	and	Internet	Support

Guidelines	for	Using	XPath	Queries
Microsoft®	SQL	Server™	2000	implements	a	subset	of	the	World	Wide	Web
Consortium	(W3C)	XPath	specification,	which	is	located	at
http://www.w3.org/TR/1999/PR-xpath-19991008.html"
target=_blank>http://www.w3.org/TR/1999/PR-xpath-19991008.html.	The
implementation	of	XPath	queries	in	SQL	Server	2000	differs	from	the	W3C
specification	in	these	areas:

Root	queries

SQL	Server	2000	does	not	support	the	root	query	(/).	Every	XPath
query	must	begin	at	a	top-level	<ElementType>	in	the	schema.

Reporting	errors

The	W3C	XPath	specification	defines	no	error	conditions.	XPath
queries	that	fail	to	select	any	nodes	return	an	empty	node-set.	In	SQL
Server	2000,	a	query	may	return	many	types	of	error	messages.	For
more	information,	see	Errors	in	XPath	Queries.

Document	order

In	SQL	Server	2000,	document	order	is	not	always	determined.
Consequently,	numeric	predicates	and	axes	that	use	document	order
(such	as	following)	are	not	implemented.

The	lack	of	document	order	also	means	that	the	string	value	of	a	node
can	be	evaluated	only	when	that	node	maps	to	a	single	column	in	a
single	row.	An	element	with	subelements	or	an	IDREFS	or
NMTOKENS	node	cannot	be	converted	to	string.

Note		In	some	cases,	the	key-fields	annotation	or	keys	from	the
relationship	annotation	can	result	in	a	deterministic	document	order.
However,	this	is	not	the	primary	use	of	these	annotations	For	more
information,	see	Identifying	Key	Columns	Using	sql:key-fields	and
Specifying	Relationships	Using	<sql:relationship>.

Data	types

JavaScript:hhobj_1.Click()

SQL	Server	2000	has	limitations	in	implementing	the	XPath	string,
number,	and	boolean	data	types.	For	more	information,	see	XPath
Data	Types.

Cross-product	queries

SQL	Server	2000	does	not	support	cross-product	XPath	queries,	such	as
Customer[Order/@OrderDate=Order/@ShippedDate].	This	query
selects	all	Customers	with	any	Order	for	which	the	OrderDate	equals
the	ShippedDate	of	any	Order.

However,	SQL	Server	2000	does	support	queries	such	as
Customer[Order[@OrderDate=@ShippedDate]],	which	selects
Customers	with	any	Order	for	which	the	OrderDate	equals	its
ShippedDate.

See	Also

Using	XPath	Queries

XML	and	Internet	Support

Specifying	a	Location	Path
XPath	queries	are	specified	in	the	form	of	an	expression.	There	are	various	kinds
of	expressions.	A	location	path	is	an	expression	that	selects	a	set	of	nodes
relative	to	the	context	node.	The	result	of	evaluating	an	expression	that	is	a
location	path	is	a	node-set.

Types	of	Location	Paths
A	location	path	can	take	either	of	these	forms:

Absolute	location	path

An	absolute	location	path	starts	at	the	root	node	of	the	document.	It
consists	of	a	slash	mark	(/)	optionally	followed	by	a	relative	location
path.	The	slash	mark	(/)	selects	the	root	node	of	the	document.

Relative	location	path

A	relative	location	path	starts	at	the	context	node	in	the	document.	A
location	path	consists	of	a	sequence	of	one	or	more	location	steps
separated	by	a	slash	mark	(/).	Each	step	selects	a	set	of	nodes	relative	to
the	context	node.	The	initial	sequence	of	steps	selects	a	set	of	nodes
relative	to	a	context	node.	Each	node	in	that	set	is	used	as	a	context
node	for	the	following	step.	The	sets	of	nodes	identified	by	that	step	are
joined.	For	example,	child::Order/child::OrderDetail	selects	the
<OrderDetail>	element	children	of	the	<Order>	element	children	of	the
context	node.

Note		In	this	implementation	of	XPath,	every	XPath	query	begins	at	the
root	context,	even	if	the	XPath	is	not	explicitly	absolute.	For	example,
an	XPath	query	beginning	with	Customer	is	treated	as	/Customer.	In
the	XPath	query,	Customer[Order],	Customer	begins	at	the	root
context	but	the	Order	begins	at	the	Customer	context.	For	more
information,	see	XPath	Guidelines	and	Limitations.

Location	Steps

A	location	path	(absolute	or	relative)	is	composed	of	location	steps	that	contain
three	parts:

Axis

The	axis	specifies	the	tree	relationship	between	the	nodes	selected	by
the	location	step	and	the	context	node.	The	parent,	child,	attribute,
and	self	axes	are	supported.	If	a	child	axis	is	specified	in	the	location
path,	all	the	nodes	selected	by	the	query	are	the	children	of	the	context
node.	If	a	parent	axis	is	specified,	the	node	selected	is	the	parent	node
of	the	context	node.	If	an	attribute	axis	is	specified,	the	nodes	selected
are	the	attributes	of	the	context	node.

Node	test

A	node	test	specifies	the	node	type	selected	by	the	location	step.	Every
axis	(child,	parent,	attribute,	and	self)	has	a	principal	node	type.	For
the	attribute	axis,	the	principal	node	type	is	<attribute>.	For	the
parent,	child,	and	self	axes,	the	principal	node	type	is	<element>.

For	example,	if	the	location	path	specifies	child::Customer,	the
<Customer>	element	children	of	the	context	node	are	selected.	Because
the	child	axis	has	<element>	as	its	principal	node	type,	the	node	test,
Customer,	is	TRUE	if	Customer	is	an	<element>	node.

Selection	predicates	(zero	or	more)

A	predicate	filters	a	node-set	with	respect	to	an	axis.	Specifying
selection	predicates	in	an	XPath	expression	is	similar	to	specifying	a
WHERE	clause	in	a	SELECT	statement.	The	predicate	is	specified
between	brackets.	Applying	the	test	specified	in	the	selection	predicates
filters	the	nodes	returned	by	the	node	test.	For	each	node	in	the	node-set
to	be	filtered,	the	predicate	expression	is	evaluated	with	that	node	as	the
context	node,	with	the	number	of	nodes	in	the	node-set	as	context	size.
If	the	predicate	expression	evaluates	to	TRUE	for	that	node,	the	node	is
included	in	the	resulting	node-set.

The	syntax	for	a	location	step	is	the	axis	name	and	node	test	separated
by	two	colons	(::),	followed	by	zero	or	more	expressions,	each	in	square
brackets.	For	example,	in	the	XPath	expression	(location	path)
child::Customer[@CustomerID='ALFKI'],	selects	all	the

<Customer>	element	children	of	the	context	node.	Then	the	test	in	the
predicate	is	applied	to	the	node-set,	which	returns	only	the	<Customer>
element	nodes	with	attribute	value	'ALFKI'	for	its	CustomerID
attribute.

XML	and	Internet	Support

Specifying	an	Axis
The	axis	specifies	the	tree	relationship	between	the	nodes	selected	by	the
location	step	and	the	context	node.	These	axes	are	supported:

child

Contains	the	child	of	the	context	node.

This	XPath	expression	(location	path)	selects	from	the	current	context
node	all	the	<Customer>	children:

child::Customer

In	this	XPath	query,	child	is	the	axis.	Customer	is	the	node	test.

parent

Contains	the	parent	of	the	context	node.

This	XPath	expression	selects	all	the	<Customer>	parents	of	the
<Order>	children:

child::Customer/child::Order[parent::Customer/@customerID="ALFKI"]

This	is	same	as	specifying	Child::Customer.	In	this	XPath	query,	child
and	parent	are	the	axes.	Customer	and	Order	are	the	node	tests.

attribute

Contains	the	attribute	of	the	context	node.

This	XPath	expression	selects	CustomerID	attribute	of	the	context
node:

attribute::CustomerID	

self

Contains	the	context	node	itself.

This	XPath	expression	selects	the	current	node	if	it	is	the	<Order>	node:

self::Order

In	this	XPath	query,	self	is	the	axis,	and	Order	is	the	node	test.

XML	and	Internet	Support

Specifying	a	Node	Test	in	the	Location	Path
A	node	test	specifies	the	node	type	selected	by	the	location	step.	Every	axis
(child,	parent,	attribute,	and	self)	has	a	principal	node	type.	For	the	attribute
axis,	the	principal	node	type	is	<attribute>.	For	the	parent,	child,	and	self	axes,
the	principal	node	type	is	<element>.

Note		The	wildcard	node	test	*	(for	example,	child::*)	is	not	supported.

Node	Test:	Example	1
The	location	path	child::Customer	selects	<Customer>	element	children	of	the
context	node.

In	the	example,	child	is	the	axis	and	Customer	is	the	node	test.	The	principal
node	type	for	the	child	axis	is	<element>.	Therefore,	the	node	test	is	TRUE	if
the	<Customer>	node	is	an	<element>	node.	If	the	context	node	has	no
<Customer>	children,	an	empty	set	of	nodes	is	returned.

Node	Test:	Example	2
The	location	path	attribute::CustomerID	selects	CustomerID	attribute	of	the
context	node.

In	the	example,	attribute	is	the	axis	and	CustomerID	is	the	node	test.	The
principal	node	type	of	the	attribute	axis	is	<attribute>.	Therefore,	the	node	test
is	TRUE	if	CustomerID	is	an	<attribute>	node.	If	the	context	node	has	no
CustomerID,	an	empty	set	of	nodes	is	returned.

Note		In	this	implementation	of	XPath,	if	a	location	step	refers	to	an	<element>
or	an	<attribute>	type	that	is	not	declared	in	the	schema,	an	error	is	generated.
This	is	different	from	the	implementation	of	XPath	in	MSXML,	which	returns	an
empty	node	set.

Abbreviated	Syntax	for	the	Axes
The	following	abbreviated	syntax	for	the	location	path	is	supported:

attribute::	can	be	abbreviated	to	@.

The	location	path	Customer[@CustomerID="ALFKI"]	is	the	same
as	child::Customer[attribute::CustomerID="ALFKI"].

child::	can	be	omitted	from	a	location	step.

Thus,	child	is	the	default	axis.	The	location	path	Customer/Order	is
the	same	as	child::Customer/child::Order.

self::node()	can	be	abbreviated	to	one	period	(.),	and	parent::node()
can	be	abbreviated	to	two	periods	(..).

XML	and	Internet	Support

Specifying	Selection	Predicates	in	the	Location	Path
A	predicate	filters	a	node-set	with	respect	to	an	axis	(similar	to	a	WHERE	clause
in	a	SELECT	statement).	The	predicate	is	specified	between	brackets.	For	each
node	in	the	node-set	to	be	filtered,	the	predicate	expression	is	evaluated	with	that
node	as	the	context	node,	with	the	number	of	nodes	in	the	node-set	as	context
size.	If	the	predicate	expression	evaluates	to	TRUE	for	that	node,	the	node	is
included	in	the	resulting	node-set.

XPath	also	allows	position-based	filtering.	A	predicate	expression	evaluating	to
a	number	selects	that	ordinal	node.	For	example,	the	location	path	Customer[3]
returns	the	third	customer.	Such	numeric	predicates	are	not	supported.	Only
predicate	expressions	that	return	a	Boolean	result	are	supported.

Note		For	information	about	the	limitations	of	this	XPath	implementation	of
XPath	and	the	differences	between	it	and	the	W3C	specification,	see	XPath
Guidelines	and	Limitations.

Selection	Predicate:	Example	1
This	XPath	expression	(location	path)	selects	from	the	current	context	node	all
the	<Customer>	element	children	that	have	the	CustomerID	attribute	with	value
of	ALFKI:

/child::Customer[attribute::CustomerID="ALFKI"]

In	this	XPath	query,	child,	and	attribute	are	the	axis	name.	Customer	is	the
node	test	(TRUE	if	Customer	is	an	<element	node>,	because	<element>	is	the
principal	node	type	for	the	child	axis).	attribute::CustomerID="ALFKI"	is
the	predicate.	In	the	predicate,	attribute	is	the	axis	and	CustomerID	is	the	node
test	(TRUE	if	CustomerID	is	an	attribute	of	the	context	node,	because
<attribute>	is	the	principal	node	type	of	attribute	axis).

Using	the	abbreviated	syntax,	the	XPath	query	can	also	be	specified	as:

/Customer[@CustomerID="ALFKI"]

Selection	Predicate:	Example	2

This	XPath	expression	(location	path)	selects	from	the	current	context	node	all
the	<Order>	grandchildren	that	have	the	OrderID	attribute	with	the	value	1:

/child::Customer/child::Order[attribute::OrderID="1"]

In	this	XPath	expression,	child	and	attribute	are	the	axis	names.	Customer,
Order,	and	OrderID	are	the	node	tests.	attribute::OrderID="1"	is	the
predicate.

Using	the	abbreviated	syntax,	the	XPath	query	can	also	be	specified	as:

/Customer/Order[@OrderID="1"]

Selection	Predicate:	Example	3
This	XPath	expression	(location	path)	selects	from	the	current	context	node	all
the	<Customer>	children	that	have	one	or	more	<ContactName>	children:

child::Customer[child::ContactName]

The	example	assumes	that	the	<ContactName>	is	a	<child>	element	of	the
<Customer>	element	in	the	XML	document,	which	is	referred	to	as	element-
centric	mapping	in	an	annotated	XDR	schema.	For	more	information,	see
Creating	XML	Views	Using	Annotated	XDR	Schemas.

In	this	XPath	expression,	child	is	the	axis	name.	Customer	is	the	node	test
(TRUE	if	Customer	is	an	<element>	node,	because	<element>	is	the	principal
node	type	for	child	axis).	child::ContactName	is	the	predicate.	In	the	predicate,
child	is	the	axis	and	ContactName	is	the	node	test	(TRUE	if	ContactName	is
an	<element>	node).

This	expression	returns	only	the	<Customer>	element	children	of	the	context
node	that	have	<ContactName>	element	children.

Using	the	abbreviated	syntax,	the	XPath	query	can	also	be	specified	as:

Customer[ContacName]

Selection	Predicate:	Example	4
This	XPath	expression	selects	<Customer>	element	children	of	the	context	node

that	do	not	have	<ContactName>	element	children:

child::Customer[not(child::ContactName)]

The	example	assumes	that	the	<ContactName>	is	a	subelement	of	<Customer>
element	in	the	XML	document	and	the	ContactName	is	a	field	that	is	not
required	in	the	database.

In	this	example,	child	is	the	axis.	Customer	is	the	node	test	(TRUE	if	Customer
is	an	<element>	node).	not(child::ContactName)	is	the	predicate.	In	the
predicate	child	is	the	axis	and	ContactName	is	the	node	test	(TRUE	if
ContactName	is	an	<element>	node).

Using	the	abbreviate	syntax,	the	XPath	query	can	also	be	specified	as:

Customer[not(ContactName)]

Selection	Predicate:	Example	5
This	XPath	expression	selects	from	the	current	context	node	all	the	<Customer>
children	that	have	the	CustomerID	attribute:

child::Customer[attribute::CustomerID]

In	this	example,	child	is	the	axis	and	Customer	is	node	test	(TRUE	if	Customer
is	an	<element>	node).	attribute::CustomerID	is	the	predicate.	In	the	predicate,
attribute	is	the	axis	and	CustomerID	is	the	predicate	(TRUE	if	CustomerID	is
an	<attribute>	node).

Using	the	abbreviated	syntax,	the	XPath	query	can	also	be	specified	as:

Customer[@CustomerID]

See	Also

Creating	XML	Views	Using	Annotated	XDR	Schemas

Retrieving	XML	Documents	Using	FOR	XML

Accessing	SQL	Server	Using	HTTP

XML	and	Internet	Support

Sample	XPath	Queries
The	sample	XPath	queries	refer	to	the	following	mapping	schema.	The	mapping
schema	is	an	annotated	XML-Data	Reduced	(XDR)	schema.	For	more
information	about	mapping	schemas,	see	Creating	XML	Views	Using	Annotated
XDR	Schemas.

Note		Before	you	can	execute	the	sample	XPath	queries	using	a	URL,	you	must
create	a	virtual	root	to	access	the	Northwind	database	and	the	virtual	names	of
template	and	schema	types.	For	information	about	creating	the	sample	nwind
virtual	directory	and	the	virtual	names,	see	Creating	the	nwind	Virtual	Directory.
For	more	information	about	accessing	Microsoft®	SQL	Server™	using	HTTP,
see	Accessing	SQL	Server	Using	HTTP.

There	are	two	ways	to	execute	XPath	queries	against	the	annotated	XDR
schemas:

Create	a	template	with	an	XPath	query	in	it.	This	template	is	then
executed	in	the	URL	(for	example,
http://IISServer/VirtualRoot/TemplateVirtualName/TemplateFile.xml).
In	the	template,	you	specify	the	mapping	schema	against	which	the
XPath	query	is	to	be	executed.	In	this	case,	the	mapping	schema	must
be	stored	in	the	directory	(or	one	of	its	subdirectories,	in	which	case	a
relative	path	is	specified	as	the	value	of	the	mapping-schema	attribute
in	the	template)	associated	with	virtual	name	of	template	type.	

The	XPath	query	can	be	directly	specified	in	the	URL	(for	example,
http://IISServer/VirtualRoot/SchemaVirtualName/SchemaFile.xml/XPathQuery).
In	this	case,	the	schema	file	must	be	stored	in	the	directory	associated
with	the	virtual	name	of	schema	type.

Sample	Annotated	XDR	Schema

In	all	the	examples	in	this	section,	for	illustration	purposes,	the	XPath	queries
are	specified	in	a	template	and	the	template	is	executed	using	HTTP.	Therefore,
you	must	use	this	mapping	schema	file,	(SampleSchema1.xml),	which	is	saved

in	the	directory	associated	with	virtual	name	of	template	type:

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
								xmlns:dt="urn:schemas-microsoft-com:datatypes"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql">

		<ElementType	name="Customer"	sql:relation="Customers">
				<AttributeType	name="CustomerID"	dt:type="id"	/>
				<AttributeType	name="CompanyName"	/>
				<AttributeType	name="ContactName"	/>
				<AttributeType	name="City"	/>
				<AttributeType	name="Fax"	/>
				<AttributeType	name="Orders"	dt:type="idrefs"		sql:id-prefix="Ord-"	/>

				<attribute	type="CustomerID"	/>
				<attribute	type="CompanyName"	/>
				<attribute	type="ContactName"	/>
				<attribute	type="City"	/>
				<attribute	type="Fax"	/>
				<attribute	type="Orders"	sql:relation="Orders"	sql:field="OrderID">
						<sql:relationship		
																key-relation="Customers"		
																key="CustomerID"
																foreign-relation="Orders"	
																foreign-key="CustomerID"	/>
				</attribute>

				<element	type="Order">
						<sql:relationship	
															key-relation="Customers"		
															key="CustomerID"
															foreign-relation="Orders"	
															foreign-key="CustomerID"	/>

				</element>
		</ElementType>

		<ElementType	name="Order"	sql:relation="Orders">
				<AttributeType	name="OrderID"	dt:type="id"	sql:id-prefix="Ord-"	/>
				<AttributeType	name="EmployeeID"	/>
				<AttributeType	name="OrderDate"	/>
				<AttributeType	name="RequiredDate"	/>
				<AttributeType	name="ShippedDate"	/>

				<attribute	type="OrderID"	/>
				<attribute	type="EmployeeID"	/>
				<attribute	type="OrderDate"	/>
				<attribute	type="RequiredDate"	/>
				<attribute	type="ShippedDate"	/>

				<element	type="OrderDetail">
						<sql:relationship	
																	key-relation="Orders"														
																	key="OrderID"
																	foreign-relation="[Order	Details]"	
																	foreign-key="OrderID"	/>
				</element>
		</ElementType>

		<ElementType	name="OrderDetail"	sql:relation="[Order	Details]"
																																		sql:key-fields="OrderID	ProductID">
				<AttributeType	name="ProductID"	dt:type="idref"	
																																				sql:id-prefix="Prod-"	/>
				<AttributeType	name="UnitPrice"/>
				<AttributeType	name="Quantity"	/>

				<attribute	type="ProductID"	/>

				<attribute	type="UnitPrice"	sql:field="UnitPrice"	/>
				<attribute	type="Quantity"	/>

				<element	type="Discount"		sql:field="Discount"/>
		</ElementType>

		<ElementType	name="Discount"	dt:type="string"	
																															sql:relation="[Order	Details]"/>

<ElementType	name="Employee"	sql:relation="Employees">
				<AttributeType	name="EmployeeID"	/>
				<AttributeType	name="LastName"	/>
				<AttributeType	name="FirstName"	/>
				<AttributeType	name="Title"	/>

				<attribute	type="EmployeeID"	/>
				<attribute	type="LastName"	/>
				<attribute	type="FirstName"	/>
				<attribute	type="Title"	/>
</ElementType>
</Schema>

Note		

The	sample	queries	are	grouped	by	the	type	of	XPath	operation	that	is
performed	by	the	query.

XML	and	Internet	Support

Specifying	Axes	in	XPath	Queries
The	following	examples	show	how	axes	are	specified	in	XPath	queries.	The
XPath	queries	in	these	examples	are	specified	against	the	mapping	schema
contained	in	SampleSchema1.xml.	For	information	about	this	sample	schema,
see	Sample	XPath	Queries.

Examples

A.	Retrieve	child	elements	of	the	context	node
This	XPath	query	selects	all	the	<Customer>	child	elements	of	the	context	node:

/child::Employee

In	the	query,	child	is	the	axis	and	Customer	is	the	node	test	(TRUE	if
Customer	is	an	<element>	node,	because	<element>	is	the	primary	node	type
associated	with	the	child	axis).

The	child	axis	is	the	default.	Therefore,	the	query	can	be	written	as:

/Employee

To	test	the	XPath	query	against	the	mapping	schema

B.	Retrieve	grandchildren	of	the	context	node

This	XPath	query	selects	all	the	<Order>	element	children	of	the	<Customer>
element	children	of	the	context	node:

/child::Customer/child::Order

In	the	query,	child	is	the	axis	and	Customer	and	Order	are	the	node	tests	(these
node	tests	are	TRUE	if	Customer	and	Order	are	<element>	nodes,	because	the
<element>	node	is	the	primary	node	for	the	child	axis).	For	each	node	matching
<Customer>,	the	nodes	matching	<Orders>	are	added	to	the	result.	Only
<Order>	is	returned	in	the	result	set.

The	child	axis	is	the	default.	Therefore,	the	query	can	be	specified	as:

/Customer/Order

To	test	the	XPath	query	against	the	mapping	schema

C.	Use	..	to	specify	the	parent	axis
This	query	retrieves	all	the	<Order>	elements	whose	parent	is	<Customer>
element	with	a	CustomerID	attribute	value	of	ALFKI.	The	query	uses	parent
axis	in	the	predicate	to	find	parent	of	<Order>	element.

/child::Customer/child::Order[../@CustomerID="ALFKI"]

The	child	axis	is	the	default	axis.	Therefore,	the	query	can	be	specified	as:

/Customer/Order[../@CustomerID="ALFKI"]

The	XPath	query	is	equivalent	to:

/Customer[@CustomerID="ALFKI"]/Order.

Note		The	XPath	query	/Order[../@CustomerID="ALFKI"]	will	return	an
error	because	there	is	no	parent	of	Order.	Although	there	may	be	elements	in
the	mapping	schema	that	contain	Order,	the	XPath	did	not	begin	at	any	of	them;
consequently,	Order	is	considered	to	be	the	top-level	element	type	in	the
document.

To	test	the	XPath	query	against	the	mapping	schema

D.	Specify	the	attribute	axis

This	XPath	query	selects	all	the	<Customer>	child	elements	of	the	context	node
with	a	CustomerID	attribute	value	of	ALFKI:

/child::Customer[attribute::CustomerID="ALFKI"]

In	the	predicate	attribute::CustomerID,	attribute	is	the	axis	and	CustomerID
is	the	node	test	(if	CustomerID	is	an	attribute	the	node	test	is	TRUE,	because
the	<attribute>	node	is	the	primary	node	for	the	attribute	axis).

A	shortcut	to	the	attribute	axis	(@)	can	be	specified,	and	because	child	is	the
default	axis,	it	can	be	omitted	from	the	query:

/Customer[@CustomerID="ALFKI"]

To	test	the	XPath	query	against	the	mapping	schema

XML	and	Internet	Support

Specifying	Boolean-Valued	Predicates	in	XPath
Queries
The	following	examples	show	how	Boolean-valued	predicates	are	specified	in
XPath	queries.	The	XPath	queries	in	these	examples	are	specified	against	the
mapping	schema	contained	in	SampleSchema1.xml.	For	information	about	this
sample	schema,	see	Sample	XPath	Queries.

Examples

A.	Specify	multiple	predicates
This	XPath	query	uses	multiple	predicates	to	find	order	information	for	a	given
order	ID	and	a	customer	ID:

/child::Customer[attribute::CustomerID="ALFKI"]/child::Order[attribute::OrderID="Ord-10643"]

A	shortcut	to	the	attribute	axis	(@)	can	be	specified,	and	because	the	child	axis
is	the	default,	it	can	be	omitted	from	the	query:

/Customer[@CustomerID="ALFKI"]/Order[@OrderID="Ord-10643"]

To	test	the	XPath	query	against	the	mapping	schema

B.	Specify	successive	and	nested	predicates

This	query	shows	using	successive	predicates.	The	query	returns	all	the
<Customer>	child	elements	of	the	context	node	that	have	both	a	City	attribute
with	a	value	of	London	and	a	Fax	attribute:

/child::Customer[attribute::City="London"][attribute::Fax]

The	query	returns	the	<Customer>	elements	that	satisfy	both	the	conditions
specified	in	the	predicates.

A	shortcut	to	the	attribute	axis	(@)	can	be	specified,	and	because	the	child	axis
is	the	default,	it	can	be	omitted	from	the	query:

/Customer[@City="London"][@Fax]

The	following	XPath	query	illustrates	the	use	of	nested	predicates.	The	query
returns	all	the	<Customer>	child	elements	of	the	context	node	that	include
<Order>	subelements	with	at	least	one	of	<Order>	element	that	has	an
EmployeeID	attribute	value	of	2.

/Customer[Order[@EmployeeID=2]]

To	test	the	XPath	query	against	the	mapping	schema

C.	Specify	a	top-level	predicate

This	query	returns	the	<Customer>	child	element	nodes	of	the	context	node	that
have	<Order>	element	children.	The	query	tests	the	location	path	as	the	top-level
predicate:

/child::Customer[child::Order]

The	child	axis	is	the	default.	Therefore,	the	query	can	be	specified	as:

/Customer[Order]

To	test	the	XPath	query	against	the	mapping	schema

XML	and	Internet	Support

Specifying	Relational	Operators	in	XPath	Queries
The	following	examples	show	how	relational	operators	are	specified	in	XPath
queries.	The	XPath	queries	in	these	examples	are	specified	against	the	mapping
schema	contained	in	SampleSchema1.xml.	For	information	about	this	sample
schema,	see	Sample	XPath	Queries.

Examples

A.	Specify	relational	operator
This	XPath	query	returns	the	<Customer>	elements	with	at	least	one	child
<Order>	containing	an	<OrderDetail>	child	with	a	Quantity	attribute	with	a
value	greater	than	5:

/child::Customer[Order/OrderDetail[@Quantity>5]]

The	predicate	specified	in	the	brackets	filters	the	<Customer>	elements.	Only	the
<Customer>	elements	that	have	at	least	one	<OrderDetail>	grandchild	with	a
Quantity	attribute	value	greater	than	5	are	returned.

The	child	axis	is	the	default.	Therefore,	the	query	can	be	specified	as:

/Customer[Order/OrderDetail[@Quantity>5]]

To	test	the	XPath	query	against	the	mapping	schema

B.	Specify	relational	operator	in	the	XPath	query	and	use	Boolean
function	to	compare	the	result

This	query	returns	all	the	<Order>	element	children	of	the	context	node	that
have	an	EmployeeID	attribute	value	that	is	less	than	4:

/child::Customer/child::Order[(attribute::EmployeeID	<	4)=true()]

A	shortcut	to	the	attribute	axis	(@)	can	be	specified,	and	because	the	child	axis
is	the	default,	it	can	be	omitted	from	the	query:

/Customer/Order[(@EmployeeID	<	4)=true()]

Note		When	this	query	is	specified	in	a	template,	the	<	character	must	be	entity
encoded	because	the	<	character	has	special	meaning	in	an	XML	document.	In	a
template,	use	<	to	specify	the	<	character.

To	test	the	XPath	query	against	the	mapping	schema

XML	and	Internet	Support

Specifying	Arithmetic	Operators	in	XPath	Queries
The	following	example	shows	how	arithmetic	operators	are	specified	in	XPath
queries.	The	XPath	queries	in	these	example	is	specified	against	the	mapping
schema	contained	in	SampleSchema1.xml.	For	information	about	this	sample
schema,	see	Sample	XPath	Queries.

Examples

A.	Specify	the	*	arithmetic	operator
This	XPath	query	returns	<OrderDetail>	elements	that	satisfy	the	predicate
specified:

/child::OrderDetail[@UnitPrice	*	@Quantity	=	98]

In	the	query,	child	is	the	axis	and	OrderDetail	is	the	node	test	(TRUE	if
OrderDetail	is	an	<element	node>,	because	<element>	node	is	the	primary	node
for	the	child	axis).	For	all	the	<OrderDetail>	element	nodes,	the	test	in	the
predicate	is	applied,	and	only	those	nodes	that	satisfy	the	condition	are	returned.

Note		The	numbers	in	XPath	are	double-precision	floating-point	numbers,	and
comparing	floating-point	numbers	as	in	the	example	causes	rounding.

To	test	the	XPath	query	against	the	mapping	schema

XML	and	Internet	Support

Specifying	Explicit	Conversion	Functions	in	XPath
Queries
The	following	examples	show	how	explicit	conversion	functions	are	specified	in
XPath	queries.	The	XPath	queries	in	these	examples	are	specified	against	the
mapping	schema	contained	in	SampleSchema1.xml.	For	information	about	this
sample	schema,	see	Sample	XPath	Queries.

Examples

A.	Use	the	number()	explicit	conversion	function
The	number()	function	converts	an	argument	to	a	number.

Assume	the	value	of	EmployeeID	is	nonnumeric,	the	following	query	converts
EmployeeID	to	a	number	and	compares	it	with	the	value	4.	The	query	returns	all
<Employee>	element	children	of	the	context	node	with	the	EmployeeID
attribute	that	has	a	numeric	value	of	4:

/child::Employee[number(attribute::EmployeeID)=4]

A	shortcut	to	the	attribute	axis	(@)	can	be	specified,	and	because	the	child	axis
is	the	default,	it	can	be	omitted	from	the	query:

/Employee[number(@EmployeeID)=4]

In	relational	terms,	the	query	returns	an	employee	with	an	EmployeeID	of	4.

To	test	the	XPath	query	against	the	mapping	schema

B.	Use	the	string()	explicit	conversion	function

The	string()	function	converts	an	argument	to	a	string.

The	following	query	converts	EmployeeID	to	a	string	and	compares	it	with	the
value	4.	The	query	returns	all	<Employee>	element	children	of	the	context	node
with	the	EmployeeID	attribute	that	has	a	string	value	of	4:

/child::Employee[string(attribute::EmployeeID)="4"]

A	shortcut	to	the	attribute	axis	(@)	can	be	specified,	and	because	the	child	axis
is	the	default,	it	can	be	omitted	from	the	query:

/Employee[string(@EmployeeID)="4"]

In	relational	terms,	the	query	returns	an	employee	who	has	an	EmployeeID	of	4.

The	following	query	returns	<Customer>	elements	with	a	ContactName
attribute	that	is	a	nonempty	string:

Customer[string(@ContactName)=true()]

To	test	the	XPath	query	against	the	mapping	schema

XML	and	Internet	Support

Specifying	Boolean	Operators	in	XPath	Queries
The	following	example	shows	how	Boolean	operators	are	specified	in	XPath
queries.	The	XPath	queries	in	this	examples	is	specified	against	the	mapping
schema	contained	in	SampleSchema1.xml.	For	information	about	this	sample
schema,	see	Sample	XPath	Queries.

Examples

A.	Specify	the	OR	Boolean	operator
This	XPath	query	returns	the	<Customer>	element	children	of	the	context	node
with	the	CustomerID	attribute	value	of	ALFKI	or	ANATR:

/child::Customer[attribute::CustomerID="ALFKI"	or	attribute::CustomerID="ANATR"]

A	shortcut	to	the	attribute	axis	(@)	can	be	specified,	and	because	the	child	axis
is	the	default,	it	can	be	omitted:

/Customer[@CustomerID="ALFKI"	or	@CustomerID="ANATR"]

In	the	predicate,	attribute	is	the	axis	and	CustomerID	is	the	node	test	(TRUE	if
CustomerID	is	an	<attribute>	node,	because	the	<attribute>	node	is	the	primary
node	for	the	attribute	axis).	The	predicate	filters	the	<Customer>	elements	and
returns	only	those	that	satisfy	the	condition	specified	in	the	predicate.

To	test	the	XPath	queries	against	the	mapping	schema

XML	and	Internet	Support

Specifying	Boolean	Functions	in	XPath	Queries
The	following	examples	show	how	Boolean	functions	are	specified	in	XPath
queries.	The	XPath	queries	in	these	examples	are	specified	against	the	mapping
schema	contained	in	SampleSchema1.xml.	For	information	about	this	sample
schema,	see	Sample	XPath	Queries.

Examples

A.	Specify	the	not()	Boolean	function
This	query	returns	all	the	<Customer>	child	elements	of	the	context	node	that	do
not	have	<Order>	subelements:

/child::Customer[not(child::Order)]

The	child	axis	is	the	default.	Therefore,	the	query	can	be	specified	as:

/Customer[not(Order)]

To	test	the	XPath	query	against	the	mapping	schema

B.	Specify	the	true()	and	false()	Boolean	functions

This	query	returns	all	<Customer>	element	children	of	the	context	node	that	do
not	have	<Order>	subelements.	In	relational	terms,	this	query	returns	all
customers	who	have	not	placed	any	orders.

/child::Customer[child::Order=false()]

The	child	axis	is	the	default.	Therefore,	the	query	can	be	specified	as:

/Customer[Order=false()]

This	query	is	equivalent	to:

/Customer[not(Order)]

The	following	query	returns	all	the	customers	who	have	placed	at	least	one
order:

/Customer[Order=true()]

This	query	is	equivalent	to:

/Customer[Order]

To	test	the	XPath	query	against	the	mapping	schema

XML	and	Internet	Support

Specifying	XPath	Variables	in	XPath	Queries
The	following	examples	show	how	XPath	variables	are	passed	in	XPath	queries.
The	XPath	queries	in	these	examples	are	specified	against	the	mapping	schema
contained	in	SampleSchema1.xml.	For	information	about	this	sample	schema,
see	Sample	XPath	Queries.

Examples

A.	Use	the	XPath	variables
A	sample	template	consists	of	two	XPath	queries.	Each	of	the	XPath	queries
takes	one	parameter.	The	template	also	specifies	default	values	for	these
parameters.	The	default	values	are	used	if	parameter	values	are	not	specified.
Two	parameters	with	default	values	are	specified	in	<sql:header>.

<ROOT	xmlns:sql="urn:schemas-microsoft-com:xml-sql">
		<sql:header>
					<sql:param	name='CustomerID'>ALFKI</sql:param>
					<sql:param	name='EmployeeID'>1</sql:param>	
		</sql:header>
		<sql:xpath-query	mapping-schema="SampleSchema1.xml">
				Customer[@CustomerID=$CustomerID]	
		</sql:xpath-query	>
		<sql:xpath-query	mapping-schema="SampleSchema1.xml">
			Employee[@EmployeeID=$EmployeeID]	
		</sql:xpath-query>
</ROOT>

This	template	is	stored	in	a	file	(MyTemplate.xml)	and	executed	using	a	URL:

http://IISServer/VirtualRoot/template/MyTemplate.xml

In	the	URL,	no	parameters	are	passed.	Therefore,	the	default	parameter	values
are	used.

In	the	following	URL,	the	CustomerID	parameter	value	is	provided.	Therefore,
the	default	customer	ID	value	ALFKI	is	ignored.	Because	no	value	is	provided
for	the	EmployeeID	parameter,	the	default	value	is	used.

http://IISServer/VirtualRoot/template/MyTemplate.xml?CustomerID=BERGS

In	the	following	URL,	both	parameter	values	are	passed	(default	values	are
ignored).

http://IISServer/VirtualRoot/template/MyTemplate.xml?CustomerID=BERGS&EmployeeID=2

Note		The	XPath	query	can	be	specified	directly	in	the	URL:
http://IISServer/nwind/schema/SampleSchema1.xml/Customer[@CustomerID=$CustomerID]?
CustomerID=ANATR&root=root.

The	virtual	name	schema	is	of	schema	type.	The	schema	file	is	stored	in	the
directory	associated	with	virtual	name	of	schema	type.	The	root	parameter	is
used	to	specify	a	top-level	element	for	the	resulting	XML	document	(root	can
be	any	value).

XML	and	Internet	Support

XPath	Data	Types
Microsoft®	SQL	Server™	2000,	XPath,	and	XDR	(XML-Data	Reduced)	have
very	different	data	types.	For	example,	XPath	does	not	have	integer	or	date	data
types,	but	SQL	Server	and	XDR	have	many.	XDR	uses	nanosecond	precision	for
time	values,	and	SQL	Server	uses	at	most	1/300-second	precision.	Consequently,
mapping	one	data	type	to	another	is	not	always	possible.	For	more	information
about	mapping	SQL	Server	data	types	to	XDR	data	types,	see	Data	Type
Coercions.

XPath	has	three	data	types:	string,	number,	and	boolean.	The	number	data
type	is	always	an	IEEE	754	double-precision	floating-point.	The	SQL	Server
float(53)	data	type	is	the	closest	to	XPath	number.	However,	float(53)	is	not
exactly	IEEE	754.	For	example,	neither	NaN	(Not-a-Number)	nor	infinity	is
used.	Attempting	to	convert	a	nonnumeric	string	to	number	and	trying	to	divide
by	zero	results	in	an	error.

XPath	Conversions
When	you	use	an	XPath	query	such	as	OrderDetail[@UnitPrice	>	"10.0"],
implicit	and	explicit	data	type	conversions	can	change	the	meaning	of	the	query
in	subtle	ways.	Therefore,	it	is	important	to	understand	how	XPath	data	types	are
implemented.	The	XPath	language	specification,	XML	Path	Language	(XPath)
version	1.0	W3C	Proposed	Recommendation	8	October	1999,	can	be	found	at
the	W3C	Web	site	at	http://www.w3.org/TR/1999/PR-xpath-19991008.html.	

XPath	operators	are	divided	into	four	categories:

Boolean	operators	(and,	or)

Relational	operators	(<,	>,	<=,	>=)

Equality	operators	(=,	!=)

Arithmetic	operators	(+,	-,	*,	div,	mod)

Each	category	of	operator	converts	its	operands	differently.	XPath	operators
implicitly	convert	their	operands	if	necessary.	Arithmetic	operators	convert	their
operands	to	number,	and	result	in	a	number	value.	Boolean	operators	convert
their	operands	to	boolean,	and	result	in	a	Boolean	value.	Relational	operators
and	equality	operators	result	in	a	Boolean	value.	However,	they	have	different
conversion	rules	depending	on	the	original	data	types	of	their	operands,	as
shown	in	this	table.

Operand Relational	operator Equality	operator
Both	operands	are
node-sets

TRUE	if	and	only	if	there
is	a	node	in	one	set	and	a
node	in	the	second	set
such	that	the	comparison
of	their	string	values	is
TRUE.

Same

One	is	a	node-set,
the	other	a	string

TRUE	if	and	only	if	there
is	a	node	in	the	node-set
such	that	when	converted
to	number,	the
comparison	of	it	with	the
string	converted	to
number	is	TRUE.

TRUE	if	and	only	if	there	is
a	node	in	the	node-set	such
that	when	converted	to
string,	the	comparison	of	it
with	the	string	is	TRUE.

One	is	a	node-set,
the	other	a
number

TRUE	if	and	only	if	there
is	a	node	in	the	node-set
such	that	when	converted
to	number,	the
comparison	of	it	with	the
number	is	TRUE.

Same

One	is	a	node-set,
the	other	a
boolean

TRUE	if	and	only	if	there
is	a	node	in	the	node-set
such	that	when	converted
to	boolean	and	then	to
number,	the	comparison
of	it	with	the	boolean
converted	to	number	is
TRUE.

TRUE	if	and	only	if	there	is
a	node	in	the	node-set	such
that	when	converted	to
boolean,	the	comparison	of
it	with	the	boolean	is
TRUE.

Neither	is	a	node-
set

Convert	both	operands	to
number	and	then
compare.

Convert	both	operands	to	a
common	type	and	then
compare.	Convert	to
boolean	if	either	is
boolean,	number	if	either
is	number;	otherwise,
convert	to	string.

Note		Because	XPath	relational	operators	always	convert	their	operands	to
number,	string	comparisons	are	not	possible.	To	include	date	comparisons,
SQL	Server	2000	offers	this	variation	to	the	XPath	specification:	When	a
relational	operator	compares	a	string	to	a	string,	a	node-set	to	a	string,	or	a
string-valued	node-set	to	a	string-valued	node-set,	a	string	comparison	(not	a
number	comparison)	is	performed.

Node-Set	Conversions
Node-set	conversions	are	sometimes	nonintuitive.	A	node-set	is	converted	to	a
string	by	taking	the	string	value	of	only	the	first	node	in	the	set.	A	node-set	is
converted	to	number	by	converting	it	to	string,	and	then	converting	string	to
number.	A	node-set	is	converted	to	boolean	by	testing	for	its	existence.

Note		Because	SQL	Server	2000	does	not	perform	positional	selection	(for
example,	the	XPath	query	Customer[3]	means	the	third	customer.	This	type	of
positional	selection	is	not	supported	in	SQL	Server	2000.)	on	node-sets,	the
node-set-to-string	or	node-set-to-number	conversions	as	described	by	the
XPath	specification	are	not	implemented.	SQL	Server	2000	uses	"any"	semantics
wherever	the	XPath	specification	specifies	"first"	semantics.	For	example,	based
on	the	W3C	XPath	specification,	this	XPath	query
Order[OrderDetail/@UnitPrice	>	10.0]	selects	those	orders	with	the	first
OrderDetail	that	has	a	UnitPrice	greater	than	10.0.	In	SQL	Server	2000,	this
XPath	query	selects	those	orders	with	any	OrderDetail	that	has	a	UnitPrice	that
is	greater	than	10.0.

Conversion	to	boolean	generates	an	existence	test;	therefore,	the	XPath	query
Products[@Discontinued=true()]	is	equivalent	to	the	SQL	expression
"Products.Discontinued	is	not	null",	not	the	SQL	expression

"Products.Discontinued	=	1".	To	get	the	latter	meaning,	first	convert	the	node-set
to	a	non-boolean	type,	such	as	number.	For	example,
Products[number(@Discontinued)	=	true()].

Because	most	operators	are	defined	to	be	TRUE	if	they	are	TRUE	for	any	or	one
of	the	nodes	in	the	node-set,	these	operations	always	evaluate	to	FALSE	if	the
node-set	is	empty.	Thus,	if	A	is	empty,	both	A	=	B	and	A	!=	B	are	FALSE,	and
not(A=B)	and	not(A!=B)	are	TRUE.

Usually,	an	attribute	or	element	that	maps	to	a	column	exists	if	the	value	of	that
column	in	the	database	is	not	null.	Elements	that	map	to	rows	exist	if	any	of	their
children	exist.	For	more	information	see,	Using	sql:relation	and	Using	sql:field.

Note		Elements	annotated	with	is-constant	always	exist.	Consequently,	XPath
predicates	cannot	be	used	on	is-constant	elements.	For	more	information,	see
Creating	Constant	Elements	Using	sql:is-constant.

When	a	node-set	is	converted	to	string	or	number,	its	XDR	type	(if	any)	is
inspected	in	the	annotated	schema	and	that	type	is	used	to	determine	the
conversion	that	is	required.

Mapping	XDR	Data	Types	to	XPath	Data	Types
The	XPath	data	type	of	a	node	is	derived	from	the	XDR	data	type	in	the	schema,
as	shown	in	this	table	(the	node	EmployeeID	is	used	for	illustrative	purpose).

XDR	data	type

Equivalent	
XPath	data
type SQL	Server	conversion	used

None
bin.base64
bin.hex

N/A None
EmployeeID

boolean boolean CONVERT(bit,	EmployeeID)
number,	int,
float,
i1,	i2,	i4,	i8,
r4,	r8
ui1,	ui2,	ui4,
ui8

number CONVERT(float(53),	EmployeeID)

id,	idref,	idrefs
entity,	entities
enumeration
notation
nmtoken,
nmtokens
char
dateTime
dateTime.tz
string
uri
uuid

string CONVERT(nvarchar(4000),	EmployeeID,
126)

fixed14.4 N/A	(there	is
no	data	type
in	XPath	that
is	equivalent
to	the
fixed14.4
XDR	data
type)

CONVERT(money,	EmployeeID)

date string LEFT(CONVERT(nvarchar(4000),
EmployeeID,	126),	10)

time

time.tz

string SUBSTRING(CONVERT(nvarchar(4000),
EmployeeID,	126),	1	+
CHARINDEX(N'T',
CONVERT(nvarchar(4000),	EmployeeID,
126)),	24)

The	date	and	time	conversions	are	designed	to	work	whether	the	value	is	stored
in	the	database	using	the	SQL	Server	datetime	data	type	or	a	string.	Note	that
the	SQL	Server	datetime	data	type	does	not	use	timezone	and	has	a	smaller
precision	than	the	XML	time	data	type.	To	include	the	timezone	data	type	or
additional	precision,	store	the	data	in	SQL	Server	2000	using	a	string	type.

When	a	node	is	converted	from	its	XDR	data	type	to	the	XPath	data	type,
additional	conversion	is	sometimes	necessary	(from	one	XPath	data	type	to

another	XPath	data	type).	For	example,	consider	this	XPath	query:

(@m	+	3)	=	4

If	@m	is	of	the	fixed14.4	XDR	data	type,	the	conversion	from	XDR	data	type	to
XPath	data	type	is	accomplished	using:

CONVERT(money,	m)

In	this	conversion,	the	node	m	is	converted	from	fixed14.4	to	money.	However,
adding	the	value	of	3,	requires	additional	conversion:

CONVERT(float(CONVERT(money,	m))

The	XPath	expression	is	evaluated	as:

CONVERT(float(CONVERT(money,	m))	+	CONVERT(float(53),	3)	=	CONVERT(float(53),	3)

As	shown	in	the	following	table,	this	is	the	same	conversion	that	is	applied	for
other	XPath	expressions	(such	as	literals	or	compound	expressions).

	 X	is	unknown X	is	string X	is	number X	is	boolean
string(X) CONVERT

(nvarchar
(4000),	X,
126)

- CONVERT
(nvarchar
(4000),	X,
126)

CASE	WHEN
X	THEN
N'true'	ELSE
N'false'	END

number(X) CONVERT
(float(53),	X)

CONVERT
(float(53),
X)

- CASE	WHEN
X	THEN	1
ELSE	0	END

boolean(X) - LEN(X)	>	0 X	!=	0 -

Examples

A.	Convert	a	data	type	in	an	XPath	query
In	the	following	XPath	query	specified	against	an	annotated	XDR	schema,	the
query	selects	all	the	Employee	nodes	with	the	EmployeeID	attribute	value	of	E-

1,	where	"E-"	is	the	prefix	specified	using	the	sql:id-prefix	annotation.

Employee[@EmployeeID="E-1"]
The	predicate	in	the	query	is	equivalent	to	the	SQL	expression:

N'E-'	+	CONVERT(nvarchar(4000),	Employees.EmployeeID,	126)	=
N'E-1'
Because	EmployeeID	is	one	of	the	id	(idref,	idrefs,	nmtoken,	nmtokens,	and
so	on)	data	type	values	in	the	XDR	schema,	EmployeeID	is	converted	to	the
string	XPath	data	type	using	the	conversion	rules	described	previously.

CONVERT(nvarchar(4000),	Employees.EmployeeID,	126)
The	"E-"	prefix	is	added	to	the	string,	and	the	result	is	then	compared	with	N'E-
1'.

B.	Perform	several	data	type	conversions	in	an	XPath	query
Consider	this	XPath	query	specified	against	an	annotated	XDR	schema:
OrderDetail[@UnitPrice	*	@Quantity	>	98]
This	XPath	query	returns	all	the	<OrderDetail>	elements	satisfying	the	predicate
@UnitPrice	*	@Quantity	>	98.	If	the	UnitPrice	is	annotated	with	a	fixed14.4
data	type	in	the	annotated	schema,	this	predicate	is	equivalent	to	the	SQL
expression:

CONVERT(float(53),	CONVERT(money,	[Order	Details].UnitPrice))
*	CONVERT(float(53),	[Order	Details].Quantity)	>
CONVERT(float(53),	98)
In	converting	the	values	in	the	XPath	query,	the	first	conversion	converts	the
XDR	data	type	to	the	XPath	data	type.	Because	the	XDR	data	type	of	UnitPrice
is	fixed14.4,	as	described	in	the	previous	table,	this	is	the	first	conversion	that	is
used:

CONVERT(money,	[Order	Details].UnitPrice))	

Because	the	arithmetic	operators	convert	their	operands	to	the	number	XPath
data	type,	the	second	conversion	(from	one	XPath	data	type	to	another	XPath

data	type)	is	applied	in	which	the	value	is	converted	to	float(53)	(float(53)	is
close	to	the	XPath	number	data	type):

CONVERT(float(53),	CONVERT(money,	[Order	Details].UnitPrice))	

Assuming	the	Quantity	attribute	has	no	XDR	data	type,	Quantity	is	converted
to	a	number	XPath	data	type	in	a	single	conversion:

CONVERT(float(53),	[Order	Details].Quantity)	

Similarly,	the	value	98	is	converted	to	the	number	XPath	data	type:

CONVERT(float(53),	98)

Note		If	the	XDR	data	type	used	in	the	schema	is	incompatible	with	the
underlying	SQL	Server	data	type	in	the	database,	or	if	an	impossible	XPath	data
type	conversion	is	performed,	SQL	Server	may	return	an	error.	For	example,	if
EmployeeID	attribute	is	annotated	with	id-prefix	annotation,	the	XPath
Employee[@EmployeeID=1]	generates	an	error	because	EmployeeID	has	the
id-prefix	annotation	and	cannot	be	converted	to	number.

XML	and	Internet	Support

Retrieving	and	Writing	XML	Data
You	can	execute	SQL	queries	to	return	results	as	XML	rather	than	standard
rowsets.	These	queries	can	be	executed	directly	or	from	within	stored
procedures.	To	retrieve	results	directly,	you	use	the	FOR	XML	clause	of	the
SELECT	statement,	and	within	the	FOR	XML	clause	you	specify	an	XML
mode:	RAW,	AUTO,	or	EXPLICIT.

For	example,	this	SELECT	statement	retrieves	information	from	Customers	and
Orders	table	in	the	Northwind	database.	This	query	specifies	the	AUTO	mode
in	the	FOR	XML	clause:

SELECT	Customers.CustomerID,	ContactName,	CompanyName,
							Orders.CustomerID,	OrderDate
FROM	Customers,	Orders
WHERE	Customers.CustomerID	=	Orders.CustomerID	
AND	(Customers.CustomerID	=	N'ALFKI'	
				OR	Customers.CustomerID	=	N'XYZAA')
ORDER	BY	Customers.CustomerID
FOR	XML	AUTO

Whereas	you	can	use	the	FOR	XML	clause	to	retrieve	data	as	an	XML
document,	you	can	use	the	Transact-SQL	OPENXML	function	to	insert	data
represented	as	an	XML	document.	OPENXML	is	a	rowset	provider	similar	to	a
table	or	a	view,	providing	a	rowset	over	in-memory	XML	documents.
OPENXML	allows	access	to	XML	data	as	if	it	is	a	relational	rowset	by
providing	a	rowset	view	of	the	internal	representation	of	an	XML	document.	The
records	in	the	rowset	can	be	stored	in	database	tables.	OPENXML	can	be	used	in
SELECT,	and	SELECT	INTO	statements	where	a	source	table	or	view	can	be
specified.

The	following	example	shows	the	use	of	OPENXML	in	an	INSERT	statement
and	a	SELECT	statement.	The	sample	XML	document	consists	of	<Customers>
and	<Orders>	elements.	First,	the	sp_xml_preparedocument	stored	procedure
parses	the	XML	document.	The	parsed	document	is	a	tree	representation	of	the
nodes	(elements,	attributes,	text,	comments,	and	so	on)	in	the	XML	document.

OPENXML	then	refers	to	this	parsed	XML	document	and	provides	a	rowset
view	of	all	or	parts	of	this	XML	document.	An	INSERT	statement	using
OPENXML	can	insert	data	from	such	a	rowset	into	a	database	table.	Several
OPENXML	calls	can	be	used	to	provide	rowset	view	of	various	parts	of	the
XML	document	and	process	them,	for	example,	inserting	them	into	different
tables	(this	process	is	also	referred	to	as	"Shredding	XML	into	tables").	In	the
following	example,	an	XML	document	is	shredded	in	a	way	that	<Customers>
elements	are	stored	in	the	Customers	table	and	<Orders>	elements	are	stored	in
the	Orders	table	using	two	INSERT	statements.

The	example	also	shows	a	SELECT	statement	with	OPENXML	that	retrieves
CustomerID	and	OrderDate	from	the	XML	document.

DECLARE	@hDoc	int
EXEC	sp_xml_preparedocument	@hDoc	OUTPUT,	
						N'<ROOT>
									<Customers	CustomerID="XYZAA"	ContactName="Joe"	
															CompanyName="Company1">
												<Orders	CustomerID="XYZAA"	
															OrderDate="2000-08-25T00:00:00"/>
												<Orders	CustomerID="XYZAA"	
															OrderDate="2000-10-03T00:00:00"/>
									</Customers>
									<Customers	CustomerID="XYZBB"	ContactName="Steve"
															CompanyName="Company2">No	Orders	yet!
									</Customers>
						</ROOT>'
--	Use	OPENXML	to	provide	rowset	consisting	of	customer	data.
INSERT	Customers	
SELECT	*	
FROM	OPENXML(@hDoc,	N'/ROOT/Customers')	
					WITH	Customers
--	Use	OPENXML	to	provide	rowset	consisting	of	order	data.
INSERT	Orders	
SELECT	*	

FROM	OPENXML(@hDoc,	N'//Orders')	
					WITH	Orders
--	Using	OPENXML	in	a	SELECT	statement.
SELECT	*	FROM	OPENXML(@hDoc,	N'/ROOT/Customers/Orders')	with	(CustomerID	nchar(5)	'../@CustomerID',	OrderDate	datetime)
--	Remove	the	internal	representation	of	the	XML	document.
EXEC	sp_xml_removedocument	@hDoc

This	illustration	shows	the	parsed	XML	tree	of	the	preceding	XML	document
that	was	created	by	sp_xml_pareparedocument.

See	Also

OPENXML

Writing	XML	Using	OPENXML

Retrieving	XML	Documents	Using	FOR	XML

JavaScript:hhobj_1.Click()

XML	and	Internet	Support

Retrieving	XML	Documents	Using	FOR	XML
You	can	execute	SQL	queries	against	existing	relational	databases	to	return
results	as	XML	documents	rather	than	as	standard	rowsets.	To	retrieve	results
directly,	use	the	FOR	XML	clause	of	the	SELECT	statement,	and	within	the
FOR	XML	clause,	specify	one	of	these	XML	modes:

RAW

AUTO

EXPLICIT

These	modes	are	in	effect	only	for	the	execution	of	the	query	for	which	they	are
set.	They	do	not	affect	the	results	of	any	subsequent	queries.	In	addition	to
specifying	the	XML	mode,	you	can	also	request	the	XML-Data	schema.

See	Also

Executing	Template	Files	Using	a	URL

SELECT

JavaScript:hhobj_1.Click()

XML	and	Internet	Support

Basic	Syntax	of	the	FOR	XML	Clause
The	basic	syntax	for	specifying	the	XML	mode	in	the	FOR	clause	is:

FOR	XML	mode	[,	XMLDATA]	[,	ELEMENTS][,	BINARY	BASE64]

Arguments
XML	mode

Specifies	the	XML	mode.	XML	mode	determines	the	shape	of	the	resulting
XML.	
mode	can	be	RAW,	AUTO,	or	EXPLICIT.

XMLDATA

Specifies	that	an	XML-Data	schema	should	be	returned.	The	schema	is
prepended	to	the	document	as	an	inline	schema.

ELEMENTS

If	the	ELEMENTS	option	is	specified,	the	columns	are	returned	as
subelements.	Otherwise,	they	are	mapped	to	XML	attributes.	This	option	is
supported	in	AUTO	mode	only.

BINARY	BASE64

If	the	BINARY	Base64	option	is	specified,	any	binary	data	returned	by	the
query	is	represented	in	base64-encoded	format.	To	retrieve	binary	data	using
RAW	and	EXPLICIT	mode,	this	option	must	be	specified.	In	AUTO	mode,
binary	data	is	returned	as	a	reference	by	default.

See	Also

SELECT

JavaScript:hhobj_1.Click()

XML	and	Internet	Support

Guidelines	for	Using	the	FOR	XML	Clause
The	FOR	XML	clause	is	valid	only	in	the	SELECT	statement	and	is	subject	to
these	limitations:

FOR	XML	is	not	valid	in	subselections,	whether	it	is	in	UPDATE,
INSERT,	or	DELETE	statements,	a	nested	SELECT	statement,	or	other
statements	(SELECT	INTO,	assignment).	For	example,	subselects	as
shown	in	these	examples	are	not	supported:

Example	A

SELECT	*
FROM	Table1
WHERE(SELECT	*	FROM	Table2	FOR	XML	RAW)

Example	B

DECLARE	@doc	nchar(3000)
SET	@doc	=	(SELECT	*	FROM	Customers	WHERE	CustomerID	=	'ALFKI'	FOR	XML	RAW)

FOR	XML	is	not	valid	for	any	selection	that	is	used	with	a	COMPUTE
BY	or	FOR	BROWSE	clause,	for	example:
SELECT	OrderID,	UnitPrice	
FROM	[Order	Details]	
ORDER	BY	OrderID	COMPUTE	SUM(UnitPrice)	BY	OrderID

GROUP	BY	and	aggregate	functions	are	currently	not	supported	with
FOR	XML	AUTO.	For	example:
SELECT	max(price),	min(price),	avg(price)
FROM	titles
FOR	XML	AUTO

FOR	XML	is	not	valid	in	a	SELECT	statement	used	in	a	view	definition
or	in	a	user-defined	function	that	returns	a	rowset.	For	example,	this

statement	is	not	allowed:
CREATE	VIEW	AllOrders	AS	SELECT	*	FROM	Orders	FOR	XML	AUTO

However,	a	statement	such	as	the	following	is	allowed:

SELECT	*	FROM	ViewName	FOR	XML	AUTO	are	allowed.

FOR	XML	cannot	be	used	in	a	selection	that	requires	further	processing
in	a	stored	procedure.	

FOR	XML	cannot	be	used	with	cursors.

Generally,	FOR	XML	cannot	be	used	for	any	selections	that	do	not
produce	direct	output	to	the	Microsoft®	SQL	Server™	2000	client.

FOR	XML	cannot	be	used	in	a	stored	procedure	when	called	in	an
INSERT	statement.

When	a	SELECT	statement	with	a	FOR	XML	clause	specifies	a	four-
part	name	in	the	query,	the	server	name	is	not	returned	in	the	resulting
XML	document	when	the	query	is	executed	on	the	local	computer.
However,	the	server	name	is	returned	as	the	four-part	name	when	the
query	is	executed	on	a	network	server.

For	example,	consider	this	query:

SELECT	TOP	1	LastName
FROM	ServerName.Northwind.dbo.Employees
FOR	XML	AUTO

When	ServerName	is	a	local	server,	the	query	returns:

<Northwind.dbo.Employees	LastName="Buchanan"/>

When	ServerName	is	a	network	server,	the	query	returns:

<ServerName.Northwind.dbo.Employees	LastName="Buchanan"/>

This	can	be	avoided	by	specifying	this	alias:

SELECT	TOP	1	LastName
FROM	ServerName.Northwind.dbo.Employees	x
FOR	XML	AUTO	

This	query	returns:

<x	="Buchanan"/>

Using	derived	tables	in	a	SELECT	statement	with	FOR	XML	AUTO
may	not	produce	the	nesting	you	want.

The	FOR	BROWSE	mode	is	implemented	when	a	query	with	the	FOR
XML	AUTO	mode	is	specified.	The	FOR	XML	AUTO	mode	uses	the
information	provided	by	the	FOR	BROWSE	mode	in	determining	the
hierarchy	in	the	result	set.

For	example,	consider	the	following	query.	A	derived	table	P	is	created
in	the	query.

SELECT	c.CompanyName,
							o.OrderID,
							o.OrderDate,
							p.ProductName,
							p.Quantity,
							p.UnitPrice,
							p.Total
FROM			Customers	AS	c
							JOIN
							Orders	AS	o
							ON
							c.CustomerID	=	o.CustomerID
							JOIN
							(

									SELECT	od.OrderID,
																pr.ProductName,
																od.Quantity,
																od.UnitPrice,
																od.Quantity	*	od.UnitPrice	AS	total
									FROM			Products	AS	pr
																JOIN
																[Order	Details]	AS	od
																ON
																pr.ProductID	=	od.ProductID
)	AS	p
							ON
							o.OrderID	=	p.OrderID
FOR	XML	AUTO

This	is	the	partial	result:

<c	CompanyName="Vins	et	alcools	Chevalier">
		<o	OrderID="10248"	OrderDate="1996-07-04T00:00:00">
				<pr	ProductName="Queso	Cabrales">
								<od	Quantity="12"	UnitPrice="14.0000"	total="168.0000"/>
				</pr>
				<pr	ProductName="Singaporean	Hokkien	Fried	Mee">
								<od	Quantity="10"	UnitPrice="9.8000"	total="98.0000"/>
				</pr>
</c>

In	the	resulting	XML	document,	the	<p>	element	is	missing,	and	the
<pr>	and	<od>	elements	are	returned.	This	occurs	because	the	query
optimizer	eliminates	the	P	table	in	the	result	and	returns	a	result	set
consisting	of	the	od	and	pr	tables.

This	can	be	avoided	by	rewriting	the	query.	For	example,	you	can
rewrite	the	query	is	to	create	a	view	and	use	it	in	the	SELECT
statement:

CREATE	VIEW	p	AS		
									SELECT	od.OrderID,
																pr.ProductName,
																od.Quantity,
																od.UnitPrice,
																od.Quantity	*	od.UnitPrice	AS	total
									FROM			Products	AS	pr
																JOIN
																[Order	Details]	AS	od
																ON
																pr.ProductID	=	od.ProductID

And	then	write	the	SELECT	statement:

SELECT	c.CompanyName,
							o.OrderID,
							o.OrderDate,
							p.ProductName,
							p.Quantity,
							p.UnitPrice,
							p.total
FROM			Customers	AS	c
							JOIN
							Orders	AS	o
							ON
							c.CustomerID	=	o.CustomerID
							JOIN
								p
							ON
							o.OrderID	=	p.OrderID
FOR	XML	AUTO

This	is	the	partial	result:

<c	CompanyName="Vins	et	alcools	Chevalier">
		<o	OrderID="10248"	OrderDate="1996-07-04T00:00:00">
				<p	ProductName="Queso	Cabrales"	
							Quantity="12"	
							UnitPrice="14.0000"	
							total="168.0000"/>
		</o>
</c>

In	addition,	SQL	Server	names	containing	characters	that	are	invalid	in	XML
names	(such	as	spaces)	are	translated	into	XML	names	in	a	way	in	which	the
invalid	characters	are	translated	into	escaped	numeric	entity	encoding.

There	are	only	two	nonalphabetic	characters	that	can	begin	an	XML	name:	the
colon	(:)	and	the	underscore	(_).	Because	the	colon	(:)	is	already	reserved	for
namespaces,	the	underscore	(_)	is	chosen	as	the	escape	character.	The	escape
rules	used	for	encoding	are:

Any	UCS-2	character	that	is	not	a	valid	XML	name	character
(according	to	the	XML	1.0	specification)	is	escaped	as	_xHHHH_,
where	HHHH	stands	for	the	four-digit	hexadecimal	UCS-2	code	for	the
character	in	the	most	significant	bit-first	order.	For	example,	the	table
name	Order	Details	is	encoded	as	Order_x0020_Details.

Characters	that	do	not	fit	into	the	UCS-2	realm	(the	UCS-4	additions	of
the	range	U+00010000	to	U+0010FFFF)	are	encoded	as
xHHHHHHHH,	where	HHHHHHHH	stands	for	the	eight-digit
hexadecimal	UCS-4	encoding	of	the	character.

The	underscore	character	does	not	need	to	be	escaped	unless	it	is
followed	by	the	character	x.	For	example,	the	table	name
Order_Details	is	not	encoded.

The	colon	(:)	in	identifiers	is	not	escaped	so	that	the	namespace	element
and	attribute	names	can	be	generated	by	the	FOR	XML	query.	For

example,	the	following	query	generates	a	namespace	attribute	with	a
colon	in	the	name:
SELECT	'namespace-urn'	as	'xmlns:namespace',	
									1	as	'namespace:a'	
FOR	XML	RAW

The	query	produces	this	result:

<row	xmlns:namespace="namespace-urn"	namespace:a="1"/>

In	a	SELECT	query,	casting	of	any	column	to	a	binary	large	object
(BLOB)	makes	it	a	temporary	entity	(losing	its	associated	table	name
and	column	name).	This	causes	AUTO	mode	queries	to	generate	an
error	because	it	does	not	know	where	to	place	this	value	in	the	XML
hierarchy,	for	example:
CREATE	TABLE	MyTable	(Col1	int	PRIMARY	KEY,	Col2	binary)
INSERT	INTO	MyTable	VALUES	(1,	0x7)

This	query	produces	an	error	because	of	the	casting	to	a	BLOB:

SELECT	Col1,
									CAST(Col2	as	image)	as	Col2
FROM	MyTable
FOR	XML	AUTO

If	you	remove	the	casting,	the	query	produces	results	as	expected:

SELECT	Col1,
									Col2
FROM	MyTable
FOR	XML	AUTO

This	is	the	result:

<Computed	Col1="1"	Col2="dbobject/Computed[@Col1='1']/@Col2"/>	

See	Also

Executing	SQL	Statements	Using	HTTP

Executing	Template	Files	Using	HTTP

SELECT

JavaScript:hhobj_1.Click()

XML	and	Internet	Support

Using	RAW	Mode
RAW	mode	transforms	each	row	in	the	query	result	set	into	an	XML	element
with	the	generic	identifier	row.	Each	column	value	that	is	not	NULL	is	mapped
to	an	attribute	of	the	XML	element	in	which	the	attribute	name	is	the	same	as	the
column	name.

The	BINARY	BASE64	option	must	be	specified	in	the	query	to	return	the	binary
data	in	base64-encoded	format.	In	RAW	mode,	retrieving	binary	data	without
specifying	the	BINARY	BASE64	option	results	in	an	error.

When	an	XML-Data	schema	is	requested,	the	schema,	declared	as	a	namespace,
appears	at	the	beginning	of	the	data.	In	the	result,	the	schema	namespace
reference	is	repeated	for	every	top-level	element.

Examples
The	queries	in	these	examples	can	be	executed	using	SQL	Query	Analyzer.	To
execute	these	queries	using	HTTP,	see	Accessing	SQL	Server	Using	HTTP.

A.	Retrieve	customer	and	order	information	using	the	RAW	mode
This	query	returns	customer	and	order	information.	RAW	mode	is	specified	in
the	FOR	XML	clause.

SELECT	Customers.CustomerID,	Orders.OrderID,	Orders.OrderDate	
FROM	Customers,	Orders	
WHERE	Customers.CustomerID	=	Orders.CustomerID	
ORDER	BY	Customers.CustomerID	
FOR	XML	RAW

This	is	the	partial	result:

<row	CustomerID="ALFKI"	OrderID="10643"	OrderDate="1997-08-25T00:00:00"/>
<row	CustomerID="ANATR"	OrderID="10308"	OrderDate="1996-09-18T00:00:00"/>
<row	CustomerID="ANATR"	OrderID="10625"	OrderDate="1997-08-08T00:00:00"/>

<row	CustomerID="AROUT"	OrderID="10355"	OrderDate="1996-11-15T00:00:00"/>

The	same	query	can	be	specified	using	an	outer	join	to	return	all	customers	in
the	result	set,	regardless	of	whether	there	are	any	orders	for	those	customers.

SELECT	C.CustomerID,	O.OrderID,	O.OrderDate
FROM	Customers	C	LEFT	OUTER	JOIN	Orders	O	ON	C.CustomerID	=	O.CustomerID
ORDER	BY	C.CustomerID
FOR	XML	RAW

This	is	the	partial	result:

<row	CustomerID="BONAP"	OrderID="11076"	OrderDate="1998-05-06T00:00:00"/>
<row	CustomerID="FISSA"/>
<row	CustomerID="PARIS"/>
<row	CustomerID="RICSU"	OrderID="11075"	OrderDate="1998-05-06T00:00:00"/>

B.	Specify	the	XMLDATA	option	to	request	XML-Data	schema
This	query	returns	the	XML-DATA	schema	that	describes	the	document
structure:

SELECT	TOP	2	Customers.CustomerID,	Orders.OrderID,	Orders.OrderDate
FROM	Customers,	Orders
WHERE	Customers.CustomerID	=	Orders.CustomerID
ORDER	BY	Customers.CustomerID
FOR	XML	RAW	,	XMLDATA

This	is	the	partial	result:

<Schema	name="Schema3"	xmlns="urn:schemas-microsoft-com:xml-data"	
					xmlns:dt="urn:schemas-microsoft-com:datatypes">
		<ElementType	name="row"	content="empty"	model="closed">
				<AttributeType	name="CustomerID"	dt:type="string"/>
				<AttributeType	name="OrderID"	dt:type="i4"/>
				<AttributeType	name="OrderDate"	dt:type="dateTime"/>
				<attribute	type="CustomerID"/><attribute	type="OrderID"/>

				<attribute	type="OrderDate"/>
		</ElementType>
</Schema>
<row	xmlns="x-schema:#Schema3"	CustomerID="ALFKI"	OrderID="10643"	
					OrderDate="1997-08-25T00:00:00"/>
<row	xmlns="x-schema:#Schema3"	CustomerID="ALFKI"	OrderID="10692"	
					OrderDate="1997-10-03T00:00:00"/>

Note		The	<Schema>	is	declared	as	a	namespace.	To	avoid	namespace	collisions
when	multiple	XML-Data	schemas	are	requested	in	different	FOR	XML	queries,
the	namespace	identifier	(Schema3	in	this	example)	changes	with	every	query
execution.	The	namespace	identifier	is	made	up	of	Schema	followed	by	an
integer.

C.	Retrieve	binary	data
This	query	returns	an	employee	photo	from	Employees	table.	Photo	is	an	image
column	in	the	Employees	table.	The	BINARY	BASE64	option	is	specified	in	the
query	to	return	the	binary	data	in	base64-encoded	format.

SELECT	TOP	1	Photo
FROM	Employees
WHERE	EmployeeID=1
FOR	XML	RAW,	BINARY	BASE64

This	is	the	result:

<row	Photo="Binary	data	in	base64	format"/>

D.	Directly	specify	a	URL	to	retrieve	binary	data
Because	the	RAW	mode	does	not	support	addressing	the	binary	data	as	URLs,
this	example	creates	a	URL	directly,	using	the
DBOBJECT/TABLE[@PK1="v1"]/@COLUMN	syntax.	This	returns	a
reference	to	an	image	data	that	can	be	used	in	subsequent	operations.

SELECT	TOP	1	EmployeeID,

			'dbobject/Employees[@EmployeeID='+CAST(EmployeeID	as	
												nvarchar(4000))+']/@Photo'	Photo
FROM	Employees
FOR	XML	RAW

This	is	the	result:

<row	EmployeeID="3"	
					Photo="dbobject/Employees[@EmployeeID3]/@Photo"/>
	

See	Also

SELECT

JavaScript:hhobj_1.Click()

XML	and	Internet	Support

Using	AUTO	Mode
AUTO	mode	returns	query	results	as	nested	XML	elements.	Each	table	in	the
FROM	clause,	from	which	at	least	one	column	is	listed	in	the	SELECT	clause,	is
represented	as	an	XML	element.	The	columns	listed	in	the	SELECT	clause	are
mapped	to	the	appropriate	attribute	of	the	element.	When	the	ELEMENTS
option	is	specified,	the	table	columns	are	mapped	to	subelements	instead	of
attributes.	By	default,	AUTO	mode	maps	the	table	columns	to	XML	attributes.

A	table	name	(or	the	alias	if	provided)	maps	to	the	XML	element	name.	A
column	name	(or	the	alias	if	provided)	maps	to	an	attribute	name	or	noncomplex
subelement	name	when	the	ELEMENTS	option	is	specified	in	the	query.

The	hierarchy	(nesting	of	the	elements)	in	the	result	set	is	based	on	the	order	of
tables	identified	by	the	columns	specified	in	the	SELECT	clause;	therefore,	the
order	in	which	column	names	are	specified	in	the	SELECT	clause	is	significant.

The	tables	are	identified	and	nested	in	the	order	in	which	the	column	names	are
listed	in	the	SELECT	clause.	The	first,	leftmost	table	identified	forms	the	top
element	in	the	resulting	XML	document.	The	second	leftmost	table	(identified	by
columns	in	the	SELECT	statement)	forms	a	subelement	within	the	top	element,
and	so	on.

If	a	column	name	listed	in	the	SELECT	clause	is	from	a	table	that	is	already
identified	by	a	previously	specified	column	in	the	SELECT	clause,	the	column	is
added	as	an	attribute	(or	as	a	subelement	if	ELEMENTS	option	is	specified)	of
the	element	already	created,	instead	of	opening	a	new	level	of	hierarchy	(adding
a	new	subelement	for	that	table).

For	example,	execute	this	query:

SELECT	Customers.CustomerID,	Orders.OrderID,	Customers.ContactName
FROM	Customers,	Orders
WHERE	Customers.CustomerID	=	Orders.CustomerID
FOR	XML	AUTO

This	is	the	partial	result:

<Customers	CustomerID="ALFKI"	ContactName="Maria	Anders">
		<Orders	OrderID="10643"/>
		<Orders	OrderID="10692"/>
		<Orders	OrderID="10702"/>
		<Orders	OrderID="10835"/>
		<Orders	OrderID="10952"/>
		<Orders	OrderID="11011"/>
</Customers>

Note	that	in	the	SELECT	clause,	CustomerID	identifies	the	Customers	table.
Therefore,	a	<Customers>	element	is	created	and	CustomerID	is	added	as	its
attribute.	Next,	the	OrderID	column	name	identifies	the	Orders	table.	An
<Orders>	element	is	added	as	a	subelement	of	<Customers>,	and	the	OrderID
attribute	is	added	to	the	<Orders>	element.	Now,	the	ContactName	column
identifies	the	Customers	table,	which	was	already	identified	by	the
CustomerID	column.	Therefore,	no	new	element	is	created.	Instead,
ContactName	attribute	is	added	to	the	<Customers>	element	that	is	already
created.

This	query	specifies	the	ELEMENT	option.	Therefore,	an	element-centric
document	is	returned.

SELECT	Customers.CustomerID,	Orders.OrderID,	Customers.ContactName
FROM	Customers,	Orders
WHERE	Customers.CustomerID	=	Orders.CustomerID
FOR	XML	AUTO,	ELEMENTS

This	is	the	partial	result:

<Customers>
		<CustomerID>ALFKI</CustomerID>
		<ContactName>Maria	Anders</ContactName>
								<Orders><OrderID>10643</OrderID></Orders>
								<Orders><OrderID>10692</OrderID></Orders>
								<Orders><OrderID>10702</OrderID></Orders>
								<Orders><OrderID>10835</OrderID></Orders>

								<Orders><OrderID>10952</OrderID></Orders>
								<Orders><OrderID>11011</OrderID></Orders>
</Customers>

This	query	returns	employee	and	order	information.	Again,	the	AUTO	mode	is
specified	in	the	FOR	XML	clause.

SELECT	Employees.EmployeeID,	LastName,	FirstName,	
							OrderID,	OrderDate,	Orders.EmployeeID
FROM	Orders,	Employees
WHERE	Orders.EmployeeID	=	Employees.EmployeeID
ORDER	BY	Employees.EmployeeID
FOR	XML	AUTO

The	partial	result	is	shown	below.	The	table	name	appears	as	a	tag	for	the	XML
element	in	the	output.	There	is	one	<Employee>	element	for	each	value	of
EmployeeID.

<Employees	EmployeeID="1"	LastName="Davolio"	FirstName="Nancy">
		<Orders	OrderID="10258"	OrderDate="1996-07-17T00:00:00"	EmployeeID="1"/>
		<Orders	OrderID="10270"	OrderDate="1996-08-01T00:00:00"	EmployeeID="1"/>
</Employees>
<Employees	EmployeeID="2"	LastName="Fuller"	FirstName="Andrew">
		<Orders	OrderID="10248"	OrderDate="1996-07-04T00:00:00"	EmployeeID="5"/>
		<Orders	OrderID="10249"	OrderDate="1996-07-05T00:00:00"	EmployeeID="6"/>
</Employees>

Because	the	Employees	table	is	identified	before	the	Orders	table	in	the
SELECT	clause,	the	<Employees>	element	appears	as	the	outmost	element	in
the	resulting	hierarchy	that	contains	the	<Orders>	subelements.

In	this	example,	comparing	the	EmployeeID	values	from	one	row	to	the	next
creates	the	<Employees>	elements	in	the	resulting	XML	document.	This	is	done
because	EmployeeID	is	the	primary	key	of	the	table.	If	EmployeeID	is	not
identified	as	the	primary	key	of	the	Employees	table,	all	the	column	values	from
the	Employees	table	specified	in	the	SELECT	statement	(EmployeeID,

LastName,	and	FirstName)	are	compared	from	one	row	to	the	next.	If	any	of
the	values	differ	from	one	row	to	the	next,	then	a	new	<Employees>	element	is
added	in	the	result.

In	comparing	these	column	values,	if	any	of	the	columns	to	be	compared	are	of
type	text,	ntext,	or	image,	FOR	XML	assumes	that	values	are	different
(although	they	may	be	the	same	because	Microsoft®	SQL	Server™	2000	does
not	support	comparing	large	objects);	and	elements	are	added	to	the	result	for
each	row	selected.

When	a	column	in	the	SELECT	clause	cannot	be	associated	with	any	of	the
tables	identified	in	the	FROM	clause	(in	case	of	an	aggregate	column	or
computed	column),	the	column	is	added	in	the	XML	document	in	the	deepest
nesting	level	in	place	when	it	is	encountered	in	the	list.	If	such	a	column	appears
as	the	first	column	in	the	SELECT	clause,	the	column	is	added	to	the	top
element.

If	the	*	wildcard	character	is	specified	in	the	SELECT	clause,	the	nesting	is
determined	in	the	same	way	as	described	above	(based	on	the	order	the	rows	are
returned	by	the	query	engine).

The	GROUP	BY	and	aggregate	functions	are	not	supported	in	the	AUTO	mode.
However,	for	a	work	around	in	which	a	nested	SELECT	is	used	to	retrieve	the
information,	see	Example	C	that	follows.

If	BINARY	BASE64	option	is	specified	in	the	query,	the	binary	data	is	returned
in	base64	encoding	format.	By	default	(if	BINARY	BASE64	option	is	not
specified),	the	AUTO	mode	supports	URL	encoding	of	binary	data.	That	is,
instead	of	returning	the	binary	data,	a	reference	(a	relative	URL	to	the	virtual
root	of	the	database	where	query	is	executed)	is	returned	that	can	be	used	to
access	the	actual	binary	data	in	subsequent	operations.	The	query	must	provide
enough	information	such	as	primary	key	columns	to	identify	the	image.

In	a	query	specified	against	a	table	or	view,	if	an	alias	is	specified	for	the	binary
column	of	the	view,	the	alias	is	returned	in	the	URL	encoding	of	the	binary	data.
In	subsequent	operations,	the	alias	is	meaningless,	and	the	URL	encoding	cannot
be	used	to	retrieve	the	image.	Therefore,	do	not	use	aliases	when	querying	a
view	using	FOR	XML	AUTO	mode.

When	a	view	is	created	using	a	SELECT	statement	with	TOP	n	option	or
DISTINCT	option,	the	primary	key	information	is	lost.	Therefore,	if	a	query	is

specified	against	this	view	to	retrieve	a	binary	column	using	OPEN	XML	AUTO
mode,	an	error	is	returned.	For	example,	if	you	create	the	following	view:

CREATE	VIEW	MyView	as	SELECT	TOP	2	*	FROM	Employees

This	query	generates	an	error	because	MyView	does	not	have	EmployeeID	as
its	primary	key:

SELECT	EmployeeID,	Photo	
FROM	MyView	
WHERE	EmployeeID	=	1
FOR	XML	AUTO

If	the	same	query	is	specified	against	the	Employees	table,	you	get	these	results:

SELECT	EmployeeID,	Photo	
FROM	Employees	
WHERE	EmployeeID	=	1
FOR	XML	AUTO

Examples
The	queries	in	these	examples	can	be	executed	using	SQL	Query	Analyzer.	To
execute	these	queries	using	HTTP,	see	Accessing	SQL	Server	Using	HTTP.

A.	Retrieve	employee	and	order	information	using	the	AUTO
mode
This	query	returns	employee	and	order	information.	AUTO	mode	is	specified	in
the	FOR	XML	clause:

SELECT	Employees.EmployeeID,	LastName,	FirstName,	
							OrderID,	OrderDate,	Orders.EmployeeID
FROM	Orders,	Employees
WHERE	Orders.EmployeeID	=	Employees.EmployeeID
ORDER	BY	Employees.EmployeeID
FOR	XML	AUTO

The	partial	result	is	shown	below.	The	table	name	appears	as	a	tag	for	the	XML
element	in	the	output.	There	is	one	<Employee>	element	for	each	value	of
EmployeeID.

<Employees	EmployeeID="1"	LastName="Davolio"	FirstName="Nancy">
		<Orders	OrderID="10258"	OrderDate="1996-07-17T00:00:00"	EmployeeID="1"/>
		<Orders	OrderID="10270"	OrderDate="1996-08-01T00:00:00"	EmployeeID="1"/>
</Employees>
<Employees	EmployeeID="2"	LastName="Fuller"	FirstName="Andrew">
		<Orders	OrderID="10248"	OrderDate="1996-07-04T00:00:00"	EmployeeID="5"/>
		<Orders	OrderID="10249"	OrderDate="1996-07-05T00:00:00"	EmployeeID="6"/>
</Employees>

If	the	same	query	is	specified	in	such	a	way	that	in	the	SELECT	clause	the
column	from	the	Orders	table	is	specified	before	the	columns	in	the	Employees
table,	the	hierarchy	produced	has	the	<Orders>	element	as	top	element	and	the
<Employees>	elements	at	the	next	level	in	the	hierarchy.

SELECT	OrderID,	OrderDate,	Orders.EmployeeID,	
							Employees.EmployeeID,	LastName,	FirstName
FROM	Orders,	Employees
WHERE	Orders.EmployeeID	=	Employees.EmployeeID
ORDER	BY	Employees.EmployeeID
FOR	XML	AUTO

This	is	the	partial	result:

<Orders	OrderID="10258"	OrderDate="1996-07-17T00:00:00"	EmployeeID="1">
		<Employees	EmployeeID="1"	LastName="Davolio"	FirstName="Nancy"/>
</Orders>
<Orders	OrderID="10270"	OrderDate="1996-08-01T00:00:00"	EmployeeID="1">
		<Employees	EmployeeID="1"	LastName="Davolio"	FirstName="Nancy"/>
</Orders>

In	the	following	query,	the	Orders	table	is	the	leftmost	table	based	on	the
columns	specified	in	the	SELECT	statement.	As	a	result	the	<Orders>	elements

are	created	as	top	elements.	The	columns	in	the	Employees	table	are	specified
next	in	the	SELECT	statement.	The	<Employees>	element	appears	nested	inside
the	<Orders>	element.	Finally,	a	column	in	the	Orders	table	is	specified	in	the
SELECT	statement.	However,	because	the	Orders	table	is	already	at	the	top
level	in	the	hierarchy,	this	column	is	added	to	that	element,	and	no	further
elements	are	created.

SELECT	OrderID,	Orders.EmployeeID,	
							Employees.EmployeeID,	LastName,	FirstName,	OrderDate
FROM	Orders,	Employees
WHERE	Orders.EmployeeID	=	Employees.EmployeeID
AND	Employees.EmployeeID=1	or	Employees.EmployeeID=2
ORDER	BY	Employees.EmployeeID
FOR	XML	AUTO

This	is	the	partial	result:

<Orders	OrderID="10258"	EmployeeID="1"	OrderDate="1996-07-17T00:00:00">
		<Employees	EmployeeID="1"	LastName="Davolio"	FirstName="Nancy"/>
</Orders>
<Orders	OrderID="10270"	EmployeeID="1"	OrderDate="1996-08-01T00:00:00">
		<Employees	EmployeeID="1"	LastName="Davolio"	FirstName="Nancy"/>
</Orders>

B.	Specify	aliases	for	table	names
This	query	returns	customer	and	order	information.	Aliases	are	used	for	table
names.

SELECT	C.CustomerID,	O.OrderID,	O.OrderDate	
FROM	Customers	C	LEFT	OUTER	JOIN	Orders	O	ON	C.CustomerID	=	O.CustomerID	
ORDER	BY	C.CustomerID	
FOR	XML	AUTO

The	partial	result	set	is	shown	below.	The	element	names	are	the	same	as	the
aliases	specified	for	the	tables	used	in	the	query.

<C	CustomerID="ALFKI">
			<O	OrderID="10643"	OrderDate="1997-08-25T00:00:00"/>
			<O	OrderID="10692"	OrderDate="1997-10-03T00:00:00"/>
</C>
<C	CustomerID="ANATR">
			<O	OrderID="10308"	OrderDate="1996-09-18T00:00:00"/>
</C>

In	a	nested	query,	if	an	alias	is	specified	in	the	inner	query,	depending	on	how
the	optimizer	handles	the	query,	the	alias	is	not	preserved.	For	example:

SELECT	TOP	2	*
FROM	(SELECT	FirstName+'	'+LastName	as	FullName	FROM	Employees)	as	EMP
FOR	XML	AUTO

The	query	produces	this	result:

<Employees	FullName="Nancy	Davolio"/>
<Employees	FullName="Andrew	Fuller"/>

In	the	result,	the	element	name	is	<Employees>	instead	of	<EMP>.

C.	Specify	GROUP	BY	and	aggregate	functions
The	GROUP	BY	and	aggregate	functions	are	not	currently	supported	with	FOR
XML	AUTO	mode.	The	following	query	uses	a	nested	query	approach	to	find
the	number	of	orders	a	customer	has	placed.	This	query	returns	customer
information	including	the	number	of	orders	the	customer	has	placed,	the	order
information	and	the	order	detail	information.

The	inner	SELECT	statement	produces	a	table	with	customer	information	along
with	the	number	of	orders	the	customer	has	placed	(GROUP	BY	and	COUNT()
function	are	used).	This	inner	table	is	then	joined	with	tables	in	FROM	clause	of
the	outer	query	where	the	FOR	XML	mode	is	specified.

SELECT	Cust.CustomerID,	ContactName,	NoOfOrders,	
							O.OrderID,	O.CustomerID,	

							OD.ProductID,	OD.Quantity
FROM	(SELECT	C.CustomerID,	C.ContactName,	count(*)	as	NoOfOrders
						FROM	Customers	C	left	outer	join	
											Orders	O	ON	C.CustomerID	=	O.CustomerID
									GROUP	BY	C.CustomerID,	C.ContactName)	Cust
									left	outer	join	Orders	O	on	Cust.CustomerID	=	O.CustomerID
									left	outer	join	[Order	Details]	OD	on	O.OrderID	=	OD.OrderID
FOR	XML	AUTO

This	is	the	partial	result:

<Cust	CustomerID="ALFKI"	ContactName="Maria	Anders"	NoOfOrders="6">
		<O	OrderID="10643"	CustomerID="ALFKI">
				<OD	ProductID="28"	Quantity="15"/>
				<OD	ProductID="39"	Quantity="21"/>
				<OD	ProductID="46"	Quantity="2"/>
		</O>
		<O	OrderID="10692"	CustomerID="ALFKI">
				<OD	ProductID="63"	Quantity="20"/>
		</O>
</Cust>

D.	Specify	computed	columns	in	the	AUTO	mode
This	query	returns	concatenated	employee	names	and	the	order	ID	of	the	orders
the	employee	has	taken.	The	computed	column	is	assigned	to	the	innermost	level
encountered	at	that	point.	The	concatenated	employee	names	are	added	as
attributes	of	<Order>	element	in	the	result.

SELECT	FirstName+'	'+LastName	as	Name,
							Orders.OrderID
FROM	Employees	left	outer	join	Orders	on
					Employees.EmployeeID=Orders.EmployeeID
ORDER	BY	Name
FOR	XML	AUTO

This	is	the	partial	result:

<Orders	Name="Andrew	Fuller"	OrderID="10265"/>
<Orders	Name="Andrew	Fuller"	OrderID="10277"/>

To	get	the	<Emp>	elements	with	Name	attribute	containing	the	order
subelements,	the	query	is	rewritten	using	a	subselect.	The	innerselect	creates	a
temporary	Emp	table	with	the	computed	column	containing	the	names	of	the
employees.	This	table	is	then	joined	with	the	Orders	table	to	get	the	result.

SELECT	Emp.name,	Orders.OrderID
FROM	(SELECT	FirstName+'	'+LastName	as	Name,
						EmployeeID
									FROM	Employees)	Emp
									left	outer	join	Orders	on	Emp.EmployeeID	=	Orders.EmployeeID
ORDER	BY	Emp.Name
FOR	XML	AUTO

This	is	the	partial	result:

<Emp	name="Andrew	Fuller">
		<Orders	OrderID="10265"/>
		<Orders	OrderID="10277"/>
		<Orders	OrderID="10280"/>
</Emp>

E.	Return	binary	data
This	query	returns	an	employee	photo	from	the	Employees	table.	Photo	is	an
image	column	in	the	Employees	table.	The	AUTO	mode,	by	default,	returns	a
reference	(relative	URL	to	the	virtual	root	of	the	database	where	the	query	is
executed)	to	the	binary	data.	The	EmployeeID	key	attribute	must	be	specified	to
identify	the	image.	In	retrieving	an	image	reference	as	in	this	example,	the
primary	key	of	the	table	must	also	be	specified	in	the	SELECT	clause	to
uniquely	identify	a	row.

SELECT	EmployeeID,	Photo

FROM	Employees
WHERE	EmployeeID=1
FOR	XML	AUTO

This	is	the	result:

<Employees	EmployeeID="1"	Photo="dbobject/Employees[@EmployeeID='1']/@Photo"/>

The	same	query	is	executed	with	the	BINARY	BASE64	option.	The	query
returns	the	binary	data	in	base64-encoded	format.

SELECT	Photo
FROM	Employees
WHERE	EmployeeID=1
FOR	XML	AUTO,	BINARY	Base64

This	is	the	result:

<Employees	Photo="Here	you	see	the	Picture	in	base64	format"/>

In	retrieving	binary	data	using	AUTO	mode,	a	reference	(a	relative	URL	to	the
virtual	root	of	the	database	where	the	query	is	executed),	instead	of	the	binary
data,	is	returned	by	default	(for	example,	BINARY	BASE64	option	is	not
specified).	In	case-insensitive	databases,	if	the	table	or	column	name	specified	in
the	query	does	not	match	the	table	or	column	name	in	the	database,	the	query
executes;	however,	the	case	returned	in	the	reference	will	not	be	consistent.	For
example:

SELECT	TOP	2	PHOTO,	EMPLOYEEID	FROM	EMPLOYEES	FOR	XML	AUTO

This	is	the	result:

<EMPLOYEES	PHOTO="dbobject/EMPLOYEES[@EmployeeID='1']/@Photo"	
											EMPLOYEEID="1"/>
<EMPLOYEES	PHOTO="dbobject/EMPLOYEES[@EmployeeID='2']/@Photo"	
											EMPLOYEEID="2"/>

This	could	be	a	problem,	especially	if	two	templates	request	data	from	the	same

table	in	a	case-insensitive	database	but	use	queries	with	different	cases.	To	avoid
such	a	problem,	it	is	recommended	that	the	case	of	the	table	or	column	name
specified	in	the	queries	match	the	case	of	table	or	column	name	in	the	database.

F.	Understand	the	encoding
This	example	shows	various	encoding	that	takes	place	in	the	result.

1.	 Create	this	table:
CREATE	TABLE	[Special	Chars]	(Col1	char(1)	primary	key,	[Col#&2]	varbinary(50))

2.	 Add	following	data	to	the	table:
INSERT	INTO	[Special	Chars]	values	('&',	0x20)
INSERT	INTO	[Special	Chars]	values	('#',	0x20)

3.	 This	query	returns	the	data	from	the	table.	The	FOR	XML	AUTO
mode	is	specified.	Binary	data	is	returned	as	a	reference.
SELECT	*	FROM	[Special	Chars]	FOR	XML	AUTO

This	is	the	result:

<Special_x0020_Chars	
Col1="#"
Col_x0023__x0026_2="dbobject/Special_x0020_Chars[@Col1='#']/@Col_x0023__x0026_2"
/>
<Special_x0020_Chars	
Col1="&"	
Col_x0023__x0026_2="dbobject/Special_x0020_Chars[@Col1='&']/@Col_x0023__x0026_2"
/>

This	is	the	process	for	encoding	special	characters	in	the	result:

In	the	query	result,	the	special	XML	and	URL	characters	in	the	element
and	attribute	names	returned	are	encoded	using	the	hexadecimal	value
of	the	corresponding	Unicode	character	encoded.	In	the	preceding
result,	the	element	name	<Special	Chars>	is	returned	as
<Special_x0020_Chars>.	The	attribute	name	<Col#&2>	is	returned	as

<Col_x0023__x0026_2>	(both	XML	and	URL	special	characters	are
encoded).

If	the	values	of	the	elements	or	attribute	contain	any	of	the	five	standard
XML	character	entities	(',	"",	<,	>,	and	&),	these	special	XML
characters	are	always	encoded	using	XML	character	encoding.	In	the
above	result,	the	value	&	in	the	value	of	attribute	<Col1>	is	encoded	as
&.	However,	the	#	character	remains	#	because	it	is	a	valid	XML
character	(not	a	special	XML	character).

If	the	values	of	the	elements	or	attributes	contain	any	special	URL
characters	that	have	special	meaning	in	the	URL,	they	are	encoded	only
in	the	DBOBJECT	URL	value	and	encoded	only	when	the	special
character	is	part	of	a	table	or	column	name.	In	the	result,	the	character	#
that	is	part	of	table	name	Col#&2	is	encoded	as	_x0023_	in	the
DBOJBECT	URL.

G.	Specify	the	ELEMENTS	option

This	query	returns	customer	and	order	information.	The	query	specifies	the
ELEMENTS	option.	As	a	result,	the	table	columns	are	mapped	to	subelements.

SELECT	Customers.CustomerID,	ContactName,	OrderID,	OrderDate
FROM	Customers,	Orders
WHERE	Customers.CustomerID	=	Orders.CustomerID
ORDER	BY	Customers.CustomerID
FOR	XML	AUTO,	ELEMENTS

This	is	the	result:

<Customers>
		<CustomerID>ALFKI</CustomerID>
		<ContactName>Maria	Anders</ContactName>
					<Orders>
							<OrderID>10835</OrderID>

							<OrderDate>1998-01-15T00:00:00</OrderDate>
					</Orders>
					<Orders>
							<OrderID>10952</OrderID>
							<OrderDate>1998-03-16T00:00:00</OrderDate>
					</Orders>
</Customers>

In	the	element-centric	mapping,	you	can	specify	the	same	alias	for	different
columns	in	the	query.	This	results	in	multiple	subelements	with	the	same	name
(this	is	not	allowed	in	attribute-centric	mapping),	for	example:

SELECT	FirstName	name,	LastName	name
FROM	Employees
FOR	XML	AUTO,	EXPLICIT

This	is	the	partial	result:

<Employees>	
		<name>Nancy</name>	
		<name>Davolio</name>	
</Employees>	
	...

See	Also

SELECT

JavaScript:hhobj_1.Click()

XML	and	Internet	Support

Using	EXPLICIT	Mode
In	an	EXPLICIT	mode,	the	query	writer	controls	shape	of	the	XML	document
returned	by	the	execution	of	the	query.	The	query	must	be	written	in	a	specific
way	so	that	the	additional	information	about	the	expected	nesting	is	explicitly
specified	as	part	of	the	query.	You	can	also	specify	additional	configurations	at
the	column	level	using	the	directives.	When	you	specify	EXPLICIT	mode,	you
must	assume	the	responsibility	for	ensuring	that	the	generated	XML	is	well-
formed	and	valid	(in	case	of	an	XML-DATA	schema).

Processing	EXPLICIT	Mode	Queries	and	the	Universal	Table
The	EXPLICIT	mode	transforms	the	rowset	resulting	from	the	query	execution
into	an	XML	document.	For	the	EXPLICIT	mode	to	produce	the	XML
document,	the	rowset	must	have	certain	format.	This	requires	the	SELECT	query
to	be	written	in	a	certain	way	to	produce	the	rowset	with	a	specific	format
(called	the	universal	table),	which	can	then	be	processed	to	produce	the
requested	XML	document.

First	the	EXPLICIT	mode	requires	the	query	to	produce	two	meta	data	columns:

The	first	column	specified	in	the	SELECT	clause	must	be	a	named
(Tag)	tag	number.	The	Tag	column	stores	the	tag	number	of	the	current
element.	Tag	is	an	integer	data	type.

The	second	column	specified	must	be	a	named	(Parent)	tag	number	of
the	parent	element.	The	Parent	column	stores	the	tag	number	of	the
parent	element.	Tag	is	an	integer	data	type.

These	columns	are	used	to	determine	the	parent-child	hierarchy	in	the	XML	tree.
This	information	is	then	used	to	produce	the	desired	XML	tree.	If	the	parent	tag
value	stored	in	Parent	column	is	0	or	NULL,	the	row	is	placed	on	the	top	level
of	the	XML	hierarchy.

The	remainder	of	the	universal	table	fully	describes	the	resulting	XML
document.	An	example	of	a	universal	table	showing	the	nesting	for	the

<Customer>,	<Order>,	and	<OrderDetail>	elements	is	shown	in	this	illustration.

The	data	in	the	rowset	(universal	table)	is	partitioned	vertically	into	groups.	Each
group	becomes	an	XML	element	in	the	result.

A	query	that	generates	this	sample	universal	table	will	produce	the	following
XML	document	in	the	EXPLICIT	mode	(one	of	the	examples	below	describes
the	query).	Only	the	partial	output	is	shown:

<Customer	cid="C1"	name="Janine">
			<Order	id="O1"	date="1/20/1996">
						<OrderDetail	id="OD1"	pid="P1"/>
						<OrderDetail	id="OD2"	pid="P2"/>
			</Order>
			<Order	id="O2"	date="3/29/1997">
			...
</Customer>

The	FOR	XML	EXPLICIT	mode	requires	that	the	SELECT	query	specify	the
column	names	in	the	universal	table	in	a	certain	way.	It	requires	that	the
SELECT	query	associate	the	element	names	with	the	tag	numbers	and	provide
the	property	names	(attribute	names	by	default)	in	the	column	names	of	the
universal	table.		In	addition,	to	get	the	correct	children	instances	associated	with
their	parent,	the	rowset	needs	to	be	ordered	such	that	the	parent	is	followed
immediately	by	its	children.

To	summarize,	the	information	provided	in	the	column	names	of	the	universal
table,	the	values	in	the	Tag	and	Parent	meta	columns,	and	the	data	in	the
universal	table	format	are	used	to	generate	the	desired	XML	document	in	the
EXPLICIT	mode.

Specifying	Column	Names	in	a	Universal	Table
The	SELECT	query	must	specify	the	column	names	in	a	universal	table.	The
column	names	in	the	universal	table	are	encoded	using	XML	generic	identifiers
and	attribute	names.	The	encoding	of	the	element	name,	the	attribute	names,	and
other	transformation	information	in	the	column	name	in	the	universal	table	are
specified	as:

ElementName!TagNumber!AttributeName!Directive

Arguments
ElementName

Is	the	resulting	generic	identifier	of	the	element	(for	example,	if	Customers
is	specified	as	ElementName,	then	<Customers>	is	the	element	tag).

TagNumber

Is	the	tag	number	of	the	element.	TagNumber,	with	the	help	of	the	two	meta
data	columns	(Tag	and	Parent)	in	the	universal	table,	is	used	to	express	the
nesting	of	XML	elements	in	the	XML	tree.	Every	TagNumber	correspond	to
exactly	one	ElementName.

AttributeName

Is	either	the	name	of	the	XML	attribute	(if	Directive	is	not	specified)	or	the
name	of	the	contained	element	(if	Directive	is	either	xml,	cdata,	or
element).	If	Directive	is	specified,	AttributeName	can	be	empty.	In	this	case,
the	value	contained	in	the	column	is	directly	contained	by	the	element	with
the	specified	ElementName.

Directive

Is	an	optional	directive.	If	Directive	is	not	specified,	AttributeName	must	be
specified.	If	AttributeName	is	not	specified	and	Directive	is	not	specified	(for
example,	Customer!1),	an	element	directive	is	implied	(for	example,
Customer!1!!element),	and	data	is	contained.

Directive	has	two	purposes.	This	option	is	used	to	encode	ID,	IDREF,	and
IDREFS	by	using	the	keywords	ID,	IDREF,	and	IDREFS.	It	is	also	used	to
indicate	how	to	map	the	string	data	to	XML	using	the	keywords	hide,

element,	xml,	xmltext,	and	cdata.	Combining	directives	between	these	two
groups	is	allowed	in	most	of	the	cases,	but	not	combining	among	themselves.

ID
An	element	attribute	can	be	specified	to	be	an	ID	type	attribute.	IDREF
and	IDREFS	attributes	can	then	be	used	to	refer	to	them,	enabling
intradocument	links.	If	XMLDATA	is	not	requested,	this	keyword	has	no
effect.

IDREF
Attributes	specified	as	IDREF	can	be	used	to	refer	to	ID	type	attributes,
enabling	intradocument	links.	If	XMLDATA	is	not	requested,	this
keyword	has	no	effect.

IDREFS
Attributes	specified	as	IDREFS	can	be	used	to	refer	to	ID	type
attributes,	enabling	intradocument	links.	If	XMLDATA	is	not	requested,
this	keyword	has	no	effect.

hide
The	attribute	is	not	displayed.	This	may	be	useful	for	ordering	the	result
by	an	attribute	that	will	not	appear	in	the	result.

element
This	does	not	generate	an	attribute.	Instead	it	generates	a	contained
element	with	the	specified	name	(or	generate	contained	element	directly
if	no	attribute	name	is	specified).	The	contained	data	is	encoded	as	an
entity	(for	example,	the	<	character	becomes	<).	This	keyword	can	be
combined	with	ID,	IDREF,	or	IDREFS.	

xml
This	is	the	same	as	an	element	directive	except	that	no	entity	encoding
takes	place	(for	example,	the	<	character	remains	<).	This	directive	is	not
allowed	with	any	other	directive	except	hide.

xmltext
The	column	content	should	be	wrapped	in	a	single	tag	that	will	be
integrated	with	the	rest	of	the	document.	This	directive	is	useful	in

fetching	overflow	(unconsumed)	XML	data	stored	in	a	column	by
OPENXML.	For	more	information,	see	Writing	XML	Using	OPENXML.

If	AttributeName	is	specified,	the	tag	name	is	replaced	by	the
specified	name;	otherwise,	the	attribute	is	appended	to	the	current
list	of	attributes	of	the	enclosing	elements	and	by	putting	the
content	at	the	beginning	of	the	containment	without	entity
encoding.	The	column	with	this	directive	must	be	a	text	type
(varchar,	nvarchar,	char,	nchar,	text,	ntext).	This	directive	can
be	used	only	with	hide.	This	directive	is	useful	in	fetching
overflow	data	stored	in	a	column.

If	the	content	is	not	a	well-formed	XML,	the	behavior	is
undefined.	

cdata
Contains	the	data	by	wrapping	it	with	a	CDATA	section.	The	content	is
not	entity	encoded.	The	original	data	type	must	be	a	text	type	(varchar,
nvarchar,	text,	ntext).	This	directive	can	be	used	only	with	hide.	When
this	directive	is	used,	AttributeName	must	not	be	specified.

Examples

The	queries	in	these	examples	can	be	executed	using	SQL	Query	Analyzer.	To
execute	these	queries	using	HTTP,	see	Accessing	SQL	Server	Using	HTTP.

The	process	for	writing	queries	using	EXPLICIT	mode	is	explained	in	detail	in
Examples	A	and	B.	This	process	applies	to	the	other	examples	that	follow.

A.	Retrieve	customer	and	order	information
This	example	retrieves	customer	and	order	information.	Assume	you	want	the
following	hierarchy	generated:

<Customer	CustomerID="ALFKI">

						<Order	OrderID=10643>
					<Order	OrderID=10692>

							...

</Customer>
<Customer	CustomerID="ANATR"	>

						<Order	OrderID=10308	>
					<Order	OrderID=10625	>

							...

</Customer>

The	universal	table	produced	by	the	query	from	which	the	resulting	XML	tree	is
produced	contains	two	meta	data	columns:	Tag	and	Parent.	Therefore,	in
specifying	the	query	the	SELECT	clause	must	specify	these	columns.	The	values
in	these	columns	are	used	in	generating	the	XML	hierarchy.

The	<Customer>	element	is	at	the	top	level.	In	this	example,	this	element	is
assigned	a	Tag	value	of	1	(this	can	be	any	number,	but	there	is	unique	number
associated	with	each	element	name).	Because	<Customer>	is	a	top-level
element,	its	Parent	tag	value	is	NULL.

The	<Order>	element	is	a	child	of	the	<Customer>	element.	Therefore,	the
Parent	tag	value	for	<Order>	element	is	1	(identifying	<Customer>	as	its	parent
element).	The	<Order>	element	is	assigned	a	Tag	value	of	2.

You	can	write	a	query	with	two	SELECT	statements	and	use	UNION	ALL	to
combine	the	results	of	the	statements:

In	the	first	SELECT	statement	in	the	query,	all	the	<Customer>
elements	and	their	attribute	values	are	obtained.	In	a	query	with
multiple	SELECT	statements,	only	the	column	names	(universal	table
column	names)	that	are	specified	in	the	first	query	are	used.	The	column
names	specified	in	the	subsequent	SELECT	statements	are	ignored.
Therefore,	the	column	names	for	the	universal	table	that	specify	the
XML	element	and	attribute	names	are	included	in	this	query:
SELECT	1																				as	Tag,	
									NULL																	as	Parent,
									Customers.CustomerID	as	[Customer!1!CustomerID],
									NULL																	as	[Order!2!OrderID]
FROM	Customers

In	the	second	query,	all	<Order>	elements	and	their	attribute	values	are
retrieved:
SELECT	2,	
									1,
									Customers.CustomerID,
									Orders.OrderID
FROM	Customers,	Orders
WHERE	Customers.CustomerID	=	Orders.CustomerID

The	two	SELECT	statements	in	the	query	are	combined	with	a	UNION
ALL.

The	universal	table	rowset	(containing	all	data	and	meta	data)	is
scanned	one	row	at	a	time,	in	a	forward-only	manner,	producing	the
resulting	XML	tree.	To	yield	the	proper	XML	document	hierarchy,	it	is
also	important	to	specify	the	order	of	rows	in	the	universal	table.	This	is
achieved	by	using	the	ORDER	BY	clause	in	the	query.

This	is	the	final	query:
SELECT	1																				as	Tag,	
									NULL																	as	Parent,
									Customers.CustomerID	as	[Customer!1!CustomerID],
									NULL																	as	[Order!2!OrderID]
FROM	Customers

UNION	ALL
SELECT	2,	
									1,
									Customers.CustomerID,
									Orders.OrderID
FROM	Customers,	Orders
WHERE	Customers.CustomerID	=	Orders.CustomerID
ORDER	BY	[Customer!1!CustomerID],	[Order!2!OrderID]

FOR	XML	EXPLICIT

The	resulting	universal	table	is	a	four-column	table.	For	illustration	purposes,
only	a	few	rows	are	shown.

Tag Parent Customer!1!CustomerID Order!2!OrderID
1 NULL ALFKI NULL
2 1 ALFKI 10643
2 1 ALFKI 10692
2 1 ALFKI 10702
2 1 ALFKI 11011
2 1 ALFKI ...
1 NULL ANATR NULL
2 1 ANATR 10308
2 1 ANATR 10625
2 1 ANATR ...

The	processing	of	the	rows	in	the	universal	table	to	produce	the	resulting	XML
tree	is	described	here:

1.	 The	first	row	identifies	Tag	value	1.	All	columns	with	the	Tag	value	1
are	identified.	In	this	case,	there	is	only	one	column:
Customer!1!CustomerID.	This	column	name	is	composed	of	element
name	(Customer),	tag	number	(1),	and	attribute	name	(CustomerID).
Therefore,	a	<Customer>	element	is	created,	and	an	attribute
CustomerID	is	added	to	it.	The	column	value	is	then	assigned	as	the
attribute	value.

2.	 The	second	row	has	the	Tag	value	2.	Therefore,	all	columns	with	the
Tag	value	2	are	identified.	There	is	only	one	column	with	the	Tag
value	2:	Order!2!OrderID.	The	column	name	is	composed	of	element
name	(Order),	tag	number	(2)	and	attribute	name	(OrderID).	This
row	also	identifies	<Customer>	as	its	parent	(Parent	value	is	1).	As	a
result,	an	<Order>	element	is	created	as	a	child	of	the	<Customer>
element	and	an	attribute	OrderID	is	added	to	it.	The	column	value	is

then	assigned	as	the	attribute	value.

3.	 All	the	subsequent	rows	with	Tag	value	2	are	processed	in	the	same
manner.

4.	 A	row	with	Tag	value	1	is	identified.	It	identifies	the
Customer!1!CustomerID	column	with	the	Tag	value	1.	This	column
identifies	a	<Customer>	element	with	no	parent	(Parent	is	NULL).
Thus,	both	the	previous	<Order>	tag	and	the	previous	<Customer>	tag
are	closed.	A	new	<Customer>	tag	is	opened,	and	the	process	is
repeated.

Because	Directive	is	not	specified	in	the	query,	the	attribute	name	is	the	name	of
the	XML	attribute.	This	is	the	partial	result	set:

<Customer	CustomerID="ALFKI">
		<Order	OrderID="10643"	/>	
		<Order	OrderID="10692"	/>	
		<Order	OrderID="10702"	/>	
		<Order	OrderID="11011"	/>	
</Customer>
<Customer	CustomerID="ANATR">
		<Order	OrderID="10308"	/>	
		<Order	OrderID="10625"	/>	
</Customer>

B.	Specify	the	element	directive
This	example	retrieves	the	customer	and	order	information.	Assume	you	want
the	following	hierarchy	generated:	(note	that	<OrderID>	is	a	subelement	of
<Order>	and	not	an	attribute):

<Customer	CustomerID="ALFKI">
			<Order	OrderDate="1997-08-25T00:00:00">
						<OrderID>10643</OrderID>	
			</Order>

			<Order	OrderDate="1997-10-03T00:00:00">
						<OrderID>10692</OrderID>	
			</Order>
				...
</Customer>

The	<Customer>	element	is	at	the	top	level.	In	this	example,	it	is	assigned	a	Tag
value	of	1.	Because	<Customer>	is	a	top-level	element,	its	Parent	tag	value	is
NULL.

The	<Order>	element	is	a	child	of	<Customer>	element.	Therefore,	the	Parent
tag	value	for	<Order>	element	is	1	(identifying	<Customer>	as	its	parent
element)	and	it	is	assigned	a	Tag	value	of	2.

The	<Order>	element	has	<OrderID>	as	a	contained	element	(not	an	attribute).
Therefore,	in	retrieving	this	value,	the	element	directive	must	be	specified.

You	can	write	a	query	with	two	SELECT	statements	and	use	a	UNION	ALL	to
combine	the	results	of	the	statements:

In	the	first	SELECT	statement	in	the	query,	all	the	<Customer>
elements	and	their	attribute	values	are	obtained.	In	a	query	with
multiple	SELECT	statements,	only	the	column	names	(universal	table
column	names)	that	are	specified	in	the	first	query	are	used.	The	column
names	specified	in	the	subsequent	SELECT	statements	are	ignored.
Therefore,	the	column	names	for	the	universal	table	that	specify	the
XML	element	and	attribute	names	are	included	in	this	query:
SELECT	1																				as	Tag,	
									NULL																	as	Parent,
									Customers.CustomerID	as	[Customer!1!CustomerID],
									NULL																	as	[Order!2!OrderID!element],
									NULL																	as	[Order!2!OrderDate]
FROM	Customers

In	the	second	query,	all	<Order>	elements	and	their	attribute	values	are
retrieved.	This	query	selects	Customers.CustomerID	because	of	the
required	grouping	of	parent	with	children	using	ORDER	BY	clause.
SELECT	2,	1,

									Customers.CustomerID,
									Orders.OrderID,
									Orders.OrderDate
FROM	Customers,	Orders
WHERE	Customers.CustomerID	=	Orders.CustomerID

The	two	SELECT	statements	in	the	query	are	combined	with	a	UNION
ALL.

The	ORDER	BY	clause	is	used	to	specify	the	order	of	the	rows	in	the
universal	table	rowset	that	is	generated.

This	is	the	final	query:
SELECT	1																				as	Tag,	
									NULL																	as	Parent,
									Customers.CustomerID	as	[Customer!1!CustomerID],
									NULL																	as	[Order!2!OrderID!element],
									NULL																	as	[Order!2!OrderDate]
FROM	Customers

UNION	ALL
SELECT	2,	
									1,
									Customers.CustomerID,
									Orders.OrderID,
									Orders.OrderDate
FROM	Customers,	Orders
WHERE	Customers.CustomerID	=	Orders.CustomerID
ORDER	BY	[Customer!1!CustomerID],	[Order!2!OrderID!element]
FOR	XML	EXPLICIT

The	resulting	universal	table	is	a	five-column	table.	For	illustration	purposes,
only	a	few	rows	are	shown.

Tag Parent Customer!1!CustomerIDOrder!2!OrderID!element Order!2!OrderDate
1 NULL ALFKI NULL NULL
2 1 ALFKI 10692 1997-10-

03T00:00:00
2 1 ALFKI 10702 1997-10-

13T00:00:00
2 1 ALFKI 10835 1998-01-

15T00:00:00
...
1 NULL ANATR 10308 1996-09-

18T00:00:00
1 NULL ANATR

The	processing	of	the	rows	in	the	rowset	to	produce	the	resulting	XML	tree	is
described	here:

1.	 The	first	row	identifies	Tag	value	1.	Therefore,	all	the	columns	with
Tag	value	1	are	identified.	In	this	case	there	is	only	one	column:
Customer!1!CustomerID	column.	This	column	name	is	composed	of
element	name	(Customer),	tag	number	(1)	and	attribute	name
(CustomerID).	Therefore,	a	<Customer>	element	is	created	and	an
attribute	CustomerID	is	added	to	it.	The	column	value	is	then
assigned	as	the	attribute	value.

2.	 The	second	row	has	Tag	value	2.	All	the	columns	with	Tag	value	2	are
identified.	There	are	two	columns	(Order!2!OrderID!element	and
Order!2!OrderDate)	with	the	tag	number	2.

Column	Order!2!OrderDate	is	composed	of	element	name
(Order),	tag	number	(2)	and	the	attribute	name	(OrderDate).
This	row	identifies	<Customer>	as	its	parent	(Parent	value	is
1).	Therefore,	an	<Order>	element	is	created	as	a	child	of	the
<Customer>	element,	and	an	attribute	OrderID	is	added	to	it.
The	column	value	is	assigned	as	the	attribute	value.

The	column	name,	Order!2!OrderID!element	consists	of	the
directive	(element).	Therefore,	a	contained	element
(<OrderID>)	is	generated.	The	column	value	is	assigned	as
the	element	value.

3.	 All	the	subsequent	rows	with	Tag	value	2	are	processed	in	the	same
manner.

4.	 A	row	with	Tag	value	1	is	identified.	It	identifies
Customer!1!CustomerID	column	with	Tag	value	1.	This	column
identifies	a	<Customer>	element	with	no	parent	(Parent	is	NULL).
Therefore,	both	the	previous	<Order>	tag	and	the	previous
<Customer>	tag	are	closed.	A	new	<Customer>	tag	is	opened,	and	the
process	is	repeated.

Note		In	the	query,	if	the	column	name	(Order!2!OrderID!element)
is	changed	so	that	the	attribute	name	is	not	specified
(Order!2!!element),	the	query	generates	the	contained	element
directly.

C.	Specify	the	element	directive	and	the	entity	encoding

If	the	directive	is	set	to	element,	the	contained	data	is	entity	encoded.	For
example,	if	one	of	the	customer	contact	names	in	the	Customers	table	is
Mar<ia	Anders,	the	following	query	encodes	the	contained	data:

--Update	customer	record.
UPDATE	Customers	
SET	ContactName='Mar<ia	Anders'	
WHERE	ContactName='Maria	Anders'
GO

The	following	query	returns	the	customer	ID	and	contact	name	information.

The	process	of	writing	the	query	to	produce	the	universal	table	and	the
processing	of	the	universal	table	rowset	to	produce	the	resulting	XML	document

is	similar	to	the	process	described	in	Example	A	and	Example	B.

SELECT	1	as	Tag,	NULL	as	Parent,
							Customers.CustomerID	as	[Customer!1!CustomerID],
							Customers.ContactName	as	[Customer!1!ContactName!element]
FROM	Customers
ORDER	BY	[Customer!1!CustomerID]
FOR	XML	EXPLICIT
GO
--	set	the	value	back	to	original
UPDATE	Customers	
SET	ContactName='Maria	Anders'	
WHERE	ContactName='Mar<ia	Anders'
GO

The	partial	result	is	shown	below.	Because	the	element	directive	is	specified	in
the	query,	the	attribute	name	specified	is	the	name	of	the	contained	element.
Also	the	ContactName	is	entity	encoded	(the	<	character	in	the	ContactName
is	returned	as	<)

<Customer	CustomerID="ALFKI">
		<ContactName>Mar<ia	Anders</ContactName>
</Customer>
<Customer	CustomerID="ANATR">
		<ContactName>Ana	Trujillo</ContactName>
</Customer>

D.	Specify	the	xml	directive
The	xml	directive	is	similar	to	element	directive	except	that	the	contained	data	is
not	entity	encoded	(the	<	character	remains	<).	For	example,	if	one	of	the
customer	contact	names	in	the	Customers	table	is	Mar<ia	Andears,	the
following	query	does	not	entity	encode	the	contained	data	and	generates	an	XML
document	that	is	not	well-formed.

--	Update	a	customer	record.

UPDATE	Customers	
SET	ContactName='Mar<ia	Anders'	
WHERE	ContactName='Maria	Anders'
GO

The	following	query	returns	the	customer	ID	and	contact	name	information.

The	process	of	writing	the	query	to	produce	the	universal	table	and	the
processing	of	the	universal	table	rowset	to	produce	the	resulting	XML	document
is	similar	to	the	process	described	in	Example	A	and	Example	B.

SELECT	1	as	Tag,	NULL	as	Parent,
							Customers.CustomerID	as	[Customer!1!CustomerID],
							Customers.ContactName	as	[Customer!1!ContactName!xml]
FROM	Customers
ORDER	BY	[Customer!1!CustomerID]
FOR	XML	EXPLICIT
GO
--	Set	customer	record	back	to	the	original.
UPDATE	Customers	
SET	ContactName='Maria	Anders'	
WHERE	ContactName='Mar<ia	Anders'
GO

The	partial	result	is	shown	below.	Because	the	directive	is	specified	in	the	query,
the	attribute	name	specified	is	the	name	of	the	contained	element.

<Customer	CustomerID="ALFKI">
			<ContactName>Mar<ia	Anders</ContactName>
</Customer>
<Customer	CustomerID="ANATR">
			<ContactName>Ana	Trujillo</ContactName>
</Customer>

E.	Specify	the	hide	directive

This	example	shows	the	use	of	the	hide	directive.	This	directive	is	useful	when
you	want	the	query	to	return	an	attribute	for	ordering	the	rows	in	the	universal
table	returned	by	the	query	but	you	do	not	want	that	attribute	in	the	final
resulting	XML	document.

Assume	you	want	the	following	hierarchy	generated	where	the	<Customer>
elements	are	ordered	by	CustomerID,	and	within	each	<Customer>	element,	the
<Order>	elements	are	sorted	by	OrderID.	Note	that	the	OrderID	attribute	is	not
in	the	resulting	XML	document:

<Customer	CustomerID="ALFKI">
		<Order	OrderDate="1997-08-25T00:00:00"	/>	
		<Order	OrderDate="1997-10-03T00:00:00"	/>	
		<Order	OrderDate="1997-10-13T00:00:00"	/>	
</Customer>

In	this	case,	the	OrderID	is	retrieved	for	ordering	purposes	but	in	specifying	the
column	name	for	this	attribute,	the	hide	directive	is	specified.	As	a	result	the
OrderID	attribute	is	not	displayed	as	part	of	the	resulting	XML	document.

The	process	of	writing	the	query	to	produce	the	universal	table	and	the
processing	of	the	universal	table	rowset	to	produce	the	resulting	XML	document
is	similar	to	the	process	described	in	Example	A	and	Example	B.

This	is	the	query:

SELECT	1	as	Tag,	
							NULL	as	Parent,
							Customers.CustomerID	as	[Customer!1!CustomerID],
							NULL																	as	[Order!2!OrderID!hide],	
							NULL																	as	[Order!2!OrderDate]
FROM	Customers
UNION	ALL
SELECT	2,	
							1,
							Customers.CustomerID,
							Orders.OrderID,	

							Orders.OrderDate
FROM	Customers,	Orders
WHERE	Customers.CustomerID	=	Orders.CustomerID
ORDER	BY	[Customer!1!CustomerID],	[Order!2!OrderID!hide]
FOR	XML	EXPLICIT

This	is	the	partial	result.	The	OrderID	attribute	is	not	in	the	resulting	document.

<Customer	CustomerID="ALFKI">
		<Order	OrderDate="1997-08-25T00:00:00"	/>	
		<Order	OrderDate="1997-10-03T00:00:00"	/>	
		<Order	OrderDate="1997-10-13T00:00:00"	/>	
</Customer>
<Customer	CustomerID="ANATR">
		<Order	OrderDate="1996-09-18T00:00:00"	/>	
		<Order	OrderDate="1997-08-08T00:00:00"	/>	
</Customer>

F.	Specify	the	cdata	directive
If	the	directive	is	set	to	cdata,	the	contained	data	is	not	entity	encoded	but	is	put
in	the	CDATA	section.	The	cdata	attributes	must	be	nameless.

The	following	query	wraps	the	contact	names	in	the	CDATA	sections.	The
process	of	writing	the	query	to	produce	the	universal	table	and	the	processing	of
the	universal	table	rowset	to	produce	the	resulting	XML	document	is	similar	to
the	process	described	in	Example	A	and	Example	B.

SELECT	1																					as	Tag,	
							NULL																		as	Parent,
							Customers.CustomerID		as	[Customer!1!CustomerID],
							Customers.ContactName	as	[Customer!1!!cdata]
FROM	Customers
ORDER	BY	[Customer!1!CustomerID]
FOR	XML	EXPLICIT

The	partial	result	is	shown	below.	The	contained	data	is	wrapped	in	the	CDATA
section,	and	the	contained	data	is	not	entity	encoded	(the	contact	name	remains
Mar<ia	Ande!rs).

<Customer	CustomerID="ALFKI">
		<![CDATA[Maria	Anders]]>
</Customer>
<Customer	CustomerID="ANATR">
		<![CDATA[Ana	Trujillo]]>
</Customer>

G.	Specify	the	ID	and	IDREF	directives
In	an	XML	document,	an	element	attribute	can	be	specified	as	an	ID	type
attribute	and	the	IDREF	attributes	in	the	document	can	then	be	used	to	refer	to
them,	thereby	enabling	intradocument	links	(similar	to	the	primary	key	and
foreign	key	relationship	in	relational	databases).

The	query	in	this	example	returns	an	XML	document	that	consists	of	the	ID	and
IDREF	attributes.	The	example	retrieves	customer	and	order	information.	The
query	is	to	return	this	XML	document:

<Customer	CustomerID="ALFKI">
		<Order	CustomerID="ALFKI"	OrderDate="1997-08-25T00:00:00">
				<OrderID>10643</OrderID>
		</Order>
		<Order	CustomerID="ALFKI"	OrderDate="1997-10-03T00:00:00">
				<OrderID>10692</OrderID>
		</Order>
</Customer>
...

Assume	also	that	the	CustomerID	attribute	of	the	<Customer>	element	is	to	be
of	ID	type	and	the	CustomerID	attribute	of	<Order>	element	is	to	be	an	IDREF
type.	Because	an	order	can	belong	to	only	one	customer,	an	IDREF	is	specified.

The	process	of	writing	the	query	to	produce	the	universal	table	and	the

processing	of	the	universal	table	rowset	to	produce	the	resulting	XML	document
is	similar	to	the	process	described	in	Example	A	and	Example	B.	The	only
addition	to	the	query	is	that	the	directives	(ID	and	IDREF)	are	specified	as	part
of	the	columns.

This	is	the	query:

SELECT	1																				as	Tag,	
							NULL																	as	Parent,
							Customers.CustomerID	as	[Customer!1!CustomerID!id],
							NULL																	as	[Order!2!OrderID!element],
							NULL																	as	[Order!2!CustomerID!idref],	
							NULL																	as	[Order!2!OrderDate]
FROM	Customers
UNION	ALL
SELECT	2,	
							1,
							Customers.CustomerID,
							Orders.OrderID,	Orders.CustomerID,
							Orders.OrderDate
FROM	Customers,	Orders
WHERE	Customers.CustomerID	=	Orders.CustomerID
ORDER	BY	[Customer!1!CustomerID!id],	[Order!2!OrderID!element]
FOR	XML	EXPLICIT,	XMLDATA

The	ID	or	IDREF	directives	specified	in	the	query	mark	the	elements/attributes
in	the	XML-Data	schema.	In	the	query:

ID	directive	is	specified	as	part	of	the	universal	table	column	name
(Customer!1!CustomerID!id).	This	directive	makes	the	CustomerID
attribute	of	the	<Customer>	element	in	the	returned	XML	documents	an
ID	type	attribute.	In	the	XML-Data	schema	the	dt:type	value	is	ID	in
the	AttributeType	declaration.

IDREF	directive	is	specified	as	part	of	the	universal	table	column	name
(Order!2!OrderID!idref).	This	directive	makes	the	OrderID	attribute

of	the	<Order>	element	in	the	returned	XML	documents	an	IDREF
type	attribute.	In	the	XML-Data	schema	the	dt:type	value	is	IDREF	in
the	AttributeType	declaration.

You	can	obtain	the	XML-Data	schema	by	specifying	the	XMLDATA	schema
option	in	the	query.	Note	that	the	ID	and	IDREF	directives	specified	in	the
query	overwrite	the	data	types	in	the	XML-Data	schema.

This	is	the	partial	result.	Because	the	XMLDATA	schema	option	is	specified	in
the	query,	the	schema	is	prepended	to	the	result.

<Schema	name="Schema1"	xmlns="urn:schemas-microsoft-com:xml-data"	xmlns:dt="urn:schemas-microsoft-com:datatypes">
<ElementType	name="Customer"	content="mixed"	model="open">
		<AttributeType	name="CustomerID"	dt:type="id"/>
		<attribute	type="CustomerID"/>
</ElementType>
<ElementType	name="Order"	content="mixed"	model="open">
		<AttributeType	name="CustomerID"	dt:type="idref"/>
		<AttributeType	name="OrderDate"	dt:type="dateTime"/>
		<element	type="OrderID"/>
		<attribute	type="CustomerID"/>
		<attribute	type="OrderDate"/>
</ElementType>
<ElementType	name="OrderID"	content="textOnly"	model="closed"	
													dt:type="i4"/>
</Schema>
<Customer	xmlns="x-schema:#Schema1"	CustomerID="ALFKI">
		<Order	CustomerID="ALFKI"	OrderDate="1997-08-25T00:00:00">
				<OrderID>10643</OrderID>
		</Order>
		<Order	CustomerID="ALFKI"	OrderDate="1997-10-03T00:00:00">
				<OrderID>10692</OrderID>
		</Order>
</Customer>

H.	Specify	the	ID	and	IDREFS	attributes
An	element	attribute	can	be	specified	as	an	ID	type	attribute,	and	the	IDREFS
attribute	can	then	be	used	to	refer	to	it,	thereby	enabling	intradocument	links
(similar	to	the	primary	key,	foreign	key	relationships	in	relational	databases).

This	example	shows	how	the	ID	and	IDREFS	directives	can	be	specified	as	part
of	the	column	names	in	a	query	to	create	XML	attributes	of	ID	and	IDREFS
types.	Because	IDs	cannot	be	integer	values,	the	ID	values	in	this	example	are
converted	(type	casted);	prefixes	are	used	for	the	ID	values.

In	the	ORDER	BY	clause,	the	customer	name	is	specified	as	the	ordering
attribute	to	show	that	attributes	that	are	not	ID	can	be	used	to	sort	the	result.

Assume	these	tables	exist	in	the	database:

--	Create	Customers2	table.
CREATE	TABLE	Customers2	(CustomerID		int	primary	key,	
													CustomerName	varchar(50))
GO
--	Insert	records	in	Customers2	table.
INSERT	INTO	Customers2	values	(1,	'Joe')
INSERT	INTO	Customers2	values	(2,	'Bob')
INSERT	INTO	Customers2	values	(3,	'Mary')
Go
--	Create	Orders2	table.
CREATE	TABLE	Orders2	(OrderID			int	primary	key,	
													CustomerID	int	references	Customers2)
GO
--	Insert	records	in	Orders2	table.
INSERT	INTO	Orders2	values	(5,	3)
INSERT	INTO	Orders2	values	(6,	1)
INSERT	INTO	Orders2	values	(9,	1)
INSERT	INTO	Orders2	values	(3,	1)
INSERT	INTO	Orders2	values	(8,	2)
INSERT	INTO	Orders2	values	(7,	2)
GO

Assume	a	query	is	to	return	an	XML	document	with	this	hierarchy:

<Cust	CustID="1"	CustName="Joe"	OrderIDList="O-3	O-6	O-9">
			<Order	Oid="O-3"/>
			<Order	Oid="O-6"/>
			<Order	Oid="O-9"/>
</Cust>
<Cust	CustID="2"	CustName="Bob"	OrderIDList="O-7	O-8">
			<Order	Oid="O-7"/>
			<Order	Oid="O-8"/>
</Cust>
<Cust	CustID="3"	CustName="Mary"	OrderIDList="O-5">
			<Order	Oid="O-5"/>
</Cust>

The	OrderIDList	attribute	of	the	<Cust>	element	is	a	multivalued	attribute
referring	to	the	Oid	attribute	of	<Order>	element.	To	establish	this	link,	the	Oid
attribute	must	be	declared	of	ID	type,	and	the	OrderIDList	attribute	of	the
<Cust>	element	must	be	declared	of	IDREFS	type.	Because	a	customer	can
place	many	orders,	IDREFS	type	is	used.

The	process	of	writing	the	query	to	produce	the	universal	table	and	the
processing	of	the	universal	table	rowset	to	produce	the	resulting	XML	document
is	similar	to	the	process	described	in	Example	A	and	Example	B.	The	only
addition	to	the	query	is	that	the	directives	(ID	and	IDREFS)	are	specified	as	part
of	the	columns.

This	is	the	query:

--	Generate	Customer	element	without	IDREFS	attribute.
SELECT	1												AS	tag,	
							NULL									AS	parent,	
							CustomerID			AS	"Cust!1!CustID",	
							CustomerName	AS	"Cust!1!CustName",	
							NULL									AS	"Cust!1!OrderIDList!idrefs",	
							NULL									AS	"Order!2!Oid!id"
FROM	Customers2

UNION	ALL
--	Now	add	the	IDREFS.	Note	that	Customers2.CustomerName	
--	is	repeated	because	it	is	listed	in	the	ORDER	BY	clause	
--	(otherwise,	NULL	would	suffice).
SELECT	1	AS	tag,	
							NULL	AS	parent,	
							Customers2.CustomerID,	
							Customers2.CustomerName,	
							'O-'+CAST(Orders2.OrderID	as	varchar(5)),	
							NULL
FROM	Customers2	join	Orders2		on	Customers2.CustomerID	=	Orders2.CustomerID

UNION	ALL
--	Now	add	the	subelements	(Orders2).	
--	Customers2.CustomerID	is	repeated	because	it	is	the	parent	key.	
--	Customers2.CustomerName	is	repeated	because	it	is	listed	
--	in	the	ORDER	BY	clause.
SELECT	2	AS	tag,
							1	AS	parent,	
							Customers2.CustomerID,	
							Customers2.CustomerName,	
							NULL,	
							'O-'+CAST(Orders2.OrderID	as	varchar(5))
FROM	Customers2	JOIN	Orders2	ON	Customers2.CustomerID	=	Orders2.CustomerID

--	Now	order	by	name	and	by	key.	No	order	on	the	last	column	
--	is	required	because	the	key	of	Orders2	is	not	a	parent.
ORDER	BY	"Cust!1!CustID",	"Order!2!Oid!id",	"Cust!1!OrderIDList!idrefs"
FOR	XML	EXPLICIT,	XMLDATA

The	ID	or	IDREFS	directives	specified	in	the	query	mark	the
elements/attributes	in	the	XML-Data	schema.	In	the	query:

ID	directive	is	specified	as	part	of	the	universal	table	column	name

(Order!2!Oid!id).	The	directive	makes	the	Oid	attribute	of	the
<Order>	element	in	the	returned	XML	documents	an	ID	type	attribute.
In	the	XML-Data	schema	the	dt:type	value	is	ID	in	the	AttributeType
declaration.

IDREF	directive	is	specified	as	part	of	the	universal	table	column	name
(Cust!1!OrderIDList!idrefs).	The	directive	makes	the	OrderIDList
attribute	of	the	<Cust>	element	in	the	returned	XML	documents	an
IDREF	type	attribute.	In	the	XML-Data	schema	the	dt:type	value	is
IDREFS	in	the	AttributeType	declaration.

You	can	obtain	the	XML-Data	schema	by	specifying	the	XMLDATA	option	in
the	query.	Note	that	the	ID	and	IDREFS	directives	specified	in	the	query
overwrite	the	data	types	in	the	XML-Data	schema.

This	is	the	result:

<Schema	name="Schema8"	xmlns="urn:schemas-microsoft-com:xml-data"	
xmlns:dt="urn:schemas-microsoft-com:datatypes">	
<ElementType	name="Cust"	content="mixed"	model="open">
		<AttributeType	name="CustID"	dt:type="i4"/>
		<AttributeType	name="CustName"	dt:type="string"/>
		<AttributeType	name="OrderIDList"	dt:type="idrefs"/>
		<attribute	type="CustID"/>
		<attribute	type="CustName"/>
		<attribute	type="OrderIDList"/>
	</ElementType>
	<ElementType	name="Order"	content="mixed"	model="open">
		<AttributeType	name="Oid"	dt:type="id"/>
		<attribute	type="Oid"/>
	</ElementType>
	</Schema>
	<Cust	xmlns="x-schema:#Schema8"	CustID="1"	CustName="Joe"	
							OrderIDList="O-3	O-6	O-9">
		<Order	Oid="O-3"/>

		<Order	Oid="O-6"/>
		<Order	Oid="O-9"/>
	</Cust>
	<Cust	xmlns="x-schema:#Schema8"	CustID="2"	CustName="Bob"	
							OrderIDList="O-7	O-8">
		<Order	Oid="O-7"/>
		<Order	Oid="O-8"/>
	</Cust>
	<Cust	xmlns="x-schema:#Schema8"	CustID="3"	CustName="Mary"	
							OrderIDList="O-5">
		<Order	Oid="O-5"/>
	</Cust>	

I.	Specify	the	xmltext	directive
This	example	shows	how	data	in	the	overflow	column	is	addressed	using	the
xmltext	directive	in	a	SELECT	statement	using	EXPLICIT	mode.

Consider	the	Person	table.	This	table	has	the	Overflow	column	that	stores
unconsumed	part	of	XML	document.

CREATE	TABLE	Person(PersonID	varchar(5),	PersonName	varchar(20),	Overflow	nvarchar(200))
INSERT	INTO	Person	VALUES	('P1','Joe',N'<SomeTag	attr1="data">content</SomeTag>')
INSERT	INTO	Person	VALUES	('P2','Joe',N'<SomeTag	attr2="data"/>')
INSERT	INTO	Person	VALUES	('P3','Joe',N'<SomeTag	attr3="data"	PersonID="P">content</SomeTag>')

This	query	retrieves	columns	from	the	Person	table.	For	the	Overflow	column,
AttributeName	is	not	specified,	but	directive	is	set	to	xmltext	as	part	of
providing	universal	table	column	name.

SELECT	1	as	Tag,	NULL	as	parent,
			PersonID	as	[Parent!1!PersonID],
			PersonName	as	[Parent!1!PersonName],
			overflow	as	[Parent!1!!xmltext]	--	No	AttributeName;	xmltext	directive
FROM	Person
FOR	XML	EXPLICIT

Because	AttributeName	is	not	specified	for	the	Overflow	column	and	the
xmltext	directive	is	specified,	in	the	resulting	XML	document	the	attributes	in
the	<overflow>	element	are	appended	to	the	attribute	list	of	the	enclosing
<Parent>	element,	and	because	the	PersonID	attribute	in	the	<xmltext>	element
conflicts	with	the	PersonID	attribute	retrieved	on	the	same	element	level,	the
attribute	in	the	<xmltext>	element	is	ignored	(even	if	PersonID	is	NULL).
Generally,	an	attribute	overrides	an	attribute	of	the	same	name	in	the	overflow.

This	is	the	result:

<Parent	PersonID="P1"	PersonName="Joe"	attr1="data">
content</Parent>
<Parent	PersonID="P2"	PersonName="Joe"	attr2="data">
</Parent>
<Parent	PersonID="P3"	PersonName="Joe"	attr3="data">
content</Parent>

If	the	overflow	data	had	subelements	and	the	same	query	is	specified,	the
subelements	in	the	Overflow	column	are	added	as	the	subelements	of	the
enclosing	<Parent>	element.

For	example,	change	the	data	in	the	Person	table	so	that	the	Overflow	column
now	has	subelements:

TRUNCATE	TABLE	Person
INSERT	INTO	Person	VALUES	('P1','Joe',N'<SomeTag	attr1="data">content</SomeTag>')
INSERT	INTO	Person	VALUES	('P2','Joe',N'<SomeTag	attr2="data"/>')
INSERT	INTO	Person	VALUES	('P3','Joe',N'<SomeTag	attr3="data"	PersonID="P"><name>content</name></SomeTag>')

If	the	same	query	is	executed,	the	subelements	in	the	<xmltext>	element	are
added	as	subelements	of	the	enclosing	<Parent>	element.

SELECT	1	as	Tag,	NULL	as	parent,
			PersonID	as	[Parent!1!PersonID],
			PersonName	as	[Parent!1!PersonName],
			overflow	as	[Parent!1!!xmltext]	--	no	AttributeName,	xmltext	directive
FROM	Person
FOR	XML	EXPLICIT

This	is	the	result:

<Parent	PersonID="P1"	PersonName="Joe"	attr1="data">
content</Parent>
<Parent	PersonID="P2"	PersonName="Joe"	attr2="data">
</Parent>
<Parent	PersonID="P3"	PersonName="Joe"	attr3="data">
<name>content</name></Parent>

If	AttributeName	is	specified	with	the	xmltext	directive,	the	attributes	of	the
<overflow>	element	are	added	as	attributes	of	the	subelements	of	the	enclosing
<Parent>	element.	The	name	specified	for	AttributeName	becomes	the	name	of
the	subelement

In	this	query,	AttributeName	(<overflow>)	is	specified	along	with	the	xmltext
directive.

SELECT	1	as	Tag,	NULL	as	parent,
			PersonID	as	[Parent!1!PersonID],
			PersonName	as	[Parent!1!PersonName],
			overflow	as	[Parent!1!overflow!xmltext]	--	overflow	is	AttributeName
																																											--	xmltext	is	directive
FROM	Person
FOR	XML	EXPLICIT

This	is	the	result:

<Parent	PersonID="P1"	PersonName="Joe">
<overflow	attr1="data">
content</overflow>
</Parent>
<Parent	PersonID="P2"	PersonName="Joe">
<overflow	attr2="data"/>
</Parent>
<Parent	PersonID="P3"	PersonName="Joe">

<overflow	attr3="data"	PersonID="P">
<name>content</name></overflow>
</Parent>

In	this	query	element,	directive	is	specified	for	PersonName	attribute.	This
results	in	PersonName	added	as	subelement	of	the	enclosing	<Parent>	element.
The	attributes	of	the	<xmltext>	are	still	appended	to	the	enclosing	<Parent>
element.	The	contents	of	<overflow>	element	(subelements	and	so	on)	are
prepended	to	the	other	subelements	of	the	enclosing	<Parent>	elements.

SELECT	1						as	Tag,	NULL	as	parent,
			PersonID			as	[Parent!1!PersonID],
			PersonName	as	[Parent!1!PersonName!element],	--	element	directive
			overflow			as	[Parent!1!!xmltext]
FROM	Person
FOR	XML	EXPLICIT

This	is	the	result:

<Parent	PersonID="P1"	attr1="data">
			content			<PersonName>Joe</PersonName>
</Parent>
<Parent	PersonID="P2"	attr2="data">
			<PersonName>Joe</PersonName>
</Parent>
<Parent	PersonID="P3"	attr3="data">
			<name>content</name>			<PersonName>Joe</PersonName>
</Parent>

If	the	xmltext	column	data	contain	attributes	on	the	root	element,	these	attributes
are	not	shown	in	XML-Data	schema	and	the	MSXML	parser	does	not	validate
the	resulting	XML	document	fragment,	for	example:

SELECT	1	as	Tag,
							0	as	Parent,
							N'<overflow	a="1"/>'	as	'overflow!1!!xmltext'

FOR	XML	EXPLICIT,	xmldata

This	is	the	result.	Note	that	in	the	returned	schema,	the	overflow	attribute	a	is
missing	from	the	schema.

<Schema	name="Schema12"	xmlns="urn:schemas-microsoft-com:xml-data"	
				xmlns:dt="urn:schemas-microsoft-com:datatypes">
	<ElementType	name="overflow"	content="mixed"	model="open">
	</ElementType>
</Schema>
	<overflow	xmlns="x-schema:#Schema12"	a="1">	</overflow>	

J.	Obtain	an	XML	document	consisting	of	customers,	orders,	and
order	details
The	query	in	this	example	generates	the	universal	table	rowset	described	in	the
conceptual	discussion	earlier	in	the	topic.

Assume	this	is	the	hierarchy	to	be	generated:

<Customer	cid="C1"	name="Janine">
			<Order	id="O1"	date="1/20/1996">
						<OrderDetail	id="OD1"	pid="P1"/>
						<OrderDetail	id="OD2"	pid="P2"/>
			</Order>
			<Order	id="O2"	date="3/29/1997">
			...
</Customer>

The	process	of	writing	the	query	to	produce	the	universal	table	and	the
processing	of	the	universal	table	rowset	to	produce	the	resulting	XML	document
is	similar	to	the	process	described	in	Example	A	and	Example	B.

SELECT	1													as	Tag,	
							NULL										as	Parent,
							C.CustomerID		as	[Customer!1!cid],
							C.ContactName	as	[Customer!1!name],

							NULL										as	[Order!2!id],
							NULL										as	[Order!2!date],
							NULL										as	[OrderDetail!3!id!id],
							NULL										as	[OrderDetail!3!pid!idref]
FROM	Customers	C
UNION	ALL
SELECT	2	as	Tag,	
							1	as	Parent,
							C.CustomerID,
							NULL,
							O.OrderID,
							O.OrderDate,
							NULL,
							NULL
FROM	Customers	C,	Orders	O
WHERE	C.CustomerID	=	O.CustomerID
UNION	ALL
SELECT	3	as	Tag,	
							2	as	Parent,
							C.CustomerID,
							NULL,
							O.OrderID,
							NULL,
							OD.OrderID,
							OD.ProductID
FROM	Customers	C,	Orders	O,	[Order	Details]	OD
WHERE	C.CustomerID	=	O.CustomerID
AND	O.OrderID	=	OD.OrderID
ORDER	BY	[Customer!1!cid],	[Order!2!id]
FOR	XML	EXPLICIT

This	is	the	partial	result:

<Customer	cid="ALFKI"	name="Maria	Anders">

			<Order	id="10643"	date="1997-08-25T00:00:00">
						<OrderDetail	id="10643"	pid="28"></OrderDetail>
						<OrderDetail	id="10643"	pid="39"></OrderDetail>
			</Order>
			<Order	id="10692"	date="1997-10-03T00:00:00">
						<OrderDetail	id="10692"	pid="63"></OrderDetail>
			</Order>
			<Order	id="10702"	date="1997-10-13T00:00:00">
						<OrderDetail	id="10702"	pid="3"></OrderDetail>
						<OrderDetail	id="10702"	pid="76"></OrderDetail>
			</Order>
</Customer>

See	Also

SELECT

JavaScript:hhobj_1.Click()

XML	and	Internet	Support

Specifying	the	XMLDATA	Schema	Option	in	a	Query
The	primary	purpose	for	specifying	XMLDATA	in	a	query	is	to	receive	XML
data	type	information	that	can	be	used	where	data	types	are	necessary	(for
example,	in	handling	numeric	expressions).	Otherwise,	everything	in	an	XML
document	is	a	textual	string.	Generating	an	XML-Data	schema	is	an	overhead	on
the	server,	is	likely	to	affect	performance,	and	should	be	used	only	when	data
types	are	needed.

If	the	database	column	from	which	values	are	retrieved	is	of	type	sql_variant,
there	is	no	data	type	information	in	the	XML-Data	schema.	If	a	given	query
designates	different	XML	elements	with	same	name,	XMLDATA	may	produce
an	invalid	XML-Data	schema.	This	is	because	element	name	collisions	and	data
type	names	are	not	resolved	(you	might	have	two	elements	with	same	name	but
different	data	types).

Example

A.	Specify	the	XMLDATA	schema	option
This	query	specifies	the	XMLDATA	schema	option.	The	query	returns	customer
and	order	information.

SELECT	Customers.CustomerID,	ContactName,
							Orders.OrderID,	OrderDate,	Orders.CustomerID,
							ProductID,	Quantity
FROM	Customers,	Orders,	[Order	Details]
WHERE	Customers.CustomerID	=	Orders.CustomerID
AND	Orders.OrderID	=	[Order	Details].OrderID
ORDER	BY	Customers.CustomerID,	Orders.OrderID
FOR	XML	AUTO,	XMLDATA

This	is	the	partial	result.	The	XML-Data	schema	is	generated	and	prepended	to
the	result.	The	table	name	[Order	Details]	is	an	invalid	XML	name	because	of
the	space	in	the	table	name.	This	invalid	character	is	converted	into	escaped

numeric	encoding.

<Schema	name="Schema1"	xmlns="urn:schemas-microsoft-com:xml-data"	xmlns:dt="urn:schemas-microsoft-com:datatypes">
<ElementType	name="Customers"	content="eltOnly"	model="closed">
<element	type="Orders"/>
		<AttributeType	name="CustomerID"	dt:type="string"/>
		<AttributeType	name="ContactName"	dt:type="string"/>
		<attribute	type="CustomerID"/>
		<attribute	type="ContactName"/>
</ElementType>
<ElementType	name="Orders"	content="eltOnly"	model="closed">
<element	type="Order_0020_Details"/>
		<AttributeType	name="OrderID"	dt:type="i4"/>
		<AttributeType	name="OrderDate"	dt:type="dateTime"/>
		<AttributeType	name="CustomerID"	dt:type="string"/>
		<attribute	type="OrderID"/>
		<attribute	type="OrderDate"/>
		<attribute	type="CustomerID"/>
</ElementType>
<ElementType	name="Order_0020_Details"	content="empty"	model="closed">
		<AttributeType	name="ProductID"	dt:type="i4"/>
		<AttributeType	name="Quantity"	dt:type="i2"/>
		<attribute	type="ProductID"/>
		<attribute	type="Quantity"/>
</ElementType>
</Schema>
<Customers	xmlns="x-schema:#Schema1"	CustomerID="ALFKI"	ContactName="Maria	Anders">
		<Orders	OrderID="10643"	OrderDate="1997-08-25T00:00:00"	
										CustomerID="ALFKI">
				<Order_0020_Details	ProductID="28"	Quantity="15"/>
				<Order_0020_Details	ProductID="39"	Quantity="21"/>
		</Orders>
		<Orders	OrderID="10692"	OrderDate="1997-10-03T00:00:00"			
										CustomerID="ALFKI">

				<Order_0020_Details	ProductID="63"	Quantity="20"/>
		</Orders>
</Customers>

The	query	in	the	following	example	assigns	the	same	alias	to	the	EmployeeID
and	LastName	columns,	and	Employees	table	specified	in	the	FROM	clause:

SELECT	EmployeeID	emp,	
							LastName	emp	
FROM	Employees	emp	
FOR	XML	AUTO,	ELEMENTS,	XMLDATA

Only	the	resulting	XML-Data	schema	is	shown.	In	the	schema	there	are	three
<emp>	elements.	Also	note	that	two	of	the	<emp>	elements	have	different	data
types.

<Schema	name="Schema2"	xmlns="urn:schemas-microsoft-com:xml-data"	xmlns:dt="urn:schemas-microsoft-com:datatypes">
<ElementType	name="emp"	content="mixed"	model="closed">
			<element	type="emp"/>
			<element	type="emp"/>
</ElementType>
<ElementType	name="emp"	content="textOnly"	model="closed"	dt:type="i4"/>
<ElementType	name="emp"	content="textOnly"	model="closed"	dt:type="string"/>
</Schema>
	

XML	and	Internet	Support

Writing	XML	Using	OPENXML
OPENXML	is	a	Transact-SQL	keyword	that	provides	a	rowset	over	in-memory
XML	documents.	OPENXML	is	a	rowset	provider	similar	to	a	table	or	a	view.
OPENXML	allows	access	to	XML	data	as	if	it	is	a	relational	rowset	by
providing	a	rowset	view	of	the	internal	representation	of	an	XML	document.	The
records	in	the	rowset	can	be	stored	in	database	tables	(similar	to	the	rowsets
provided	by	tables	and	views).

OPENXML	can	be	used	in	SELECT,	and	SELECT	INTO	statements	wherever
rowset	providers,	such	as	a	table,	a	view	or	OPENROWSET	can	appear	as	the
source.	For	information	about	the	syntax	of	OPENXML,	see	OPENXML.

To	write	queries	against	an	XML	document	using	OPENXML,	you	must	first
call	sp_xml_preparedocument,	which	parses	the	XML	document	and	returns	a
handle	to	the	parsed	document	that	is	ready	for	consumption.	The	parsed
document	is	a	tree	representation	of	various	nodes	(elements,	attributes,	text,
comment,	and	so	on)	in	the	XML	document.	The	document	handle	is	passed	to
OPENXML,	which	then	provides	a	rowset	view	of	the	document	based	on	the
parameters	passed	to	it.

The	internal	representation	of	an	XML	document	must	be	removed	from
memory	by	calling	sp_xml_removedocument	system	stored	procedure	to	free
the	memory.

This	illustration	shows	the	process.

JavaScript:hhobj_1.Click()

Note		To	understand	OPENXML,	familiarity	with	XPath	queries	and
understanding	of	XML	is	required.	For	more	information	about	XPath	support	in
Microsoft®	SQL	Server™	2000,	see	Using	XPath	Queries.

OPENXML	Parameters
The	parameters	to	OPENXML	include:

An	XML	document	handle	(idoc)

An	XPath	expression	to	identify	the	nodes	to	be	mapped	to	rows
(rowpattern)

A	description	of	the	rowset	to	be	generated

Mapping	between	the	rowset	columns	and	the	XML	nodes

XML	Document	Handle	(idoc)

The	document	handle	is	returned	by	the	sp_xml_preparedocument	stored
procedure.

XPath	Expression	to	Identify	the	Nodes	to	Be	Processed
(rowpattern)
The	XPath	expression	specified	as	rowpattern	identifies	a	set	of	nodes	in	the
XML	document.	Each	node	identified	by	rowpattern	corresponds	to	a	single	row
in	the	rowset	generated	by	OPENXML.

The	nodes	identified	by	the	XPath	expression	can	be	any	XML	node	(elements,
attributes,	processing	instructions,	and	so	on)	in	the	XML	document.	If
rowpattern	identifies	a	set	of	elements	in	the	XML	document,	there	is	one	row	in
the	rowset	for	each	element	node	identified.	For	example,	if	rowpattern	ends	in
an	attribute,	a	row	is	created	for	each	attribute	node	selected	by	rowpattern.

Description	of	the	Rowset	to	Be	Generated
A	rowset	schema	must	be	provided	to	OPENXML	to	generate	the	rowset.	You
can	specify	the	rowset	schema	by	using	the	optional	WITH	clause.	These
options	are	available	for	specifying	the	rowset	schema:

Specify	the	complete	schema	in	the	WITH	clause.

In	specifying	the	rowset	schema	you	specify	the	column	names	and
their	data	types	and	their	mapping	to	the	XML	document.

You	can	specify	the	column	pattern	(using	the	ColPattern	parameter	in
the	SchemaDeclaration).	The	column	pattern	specified	is	used	to	map	a
rowset	column	to	the	XML	node	identified	by	rowpattern	and	also	to
determine	the	type	of	mapping.

If	ColPattern	is	not	specified	for	a	column,	the	rowset	column	maps	to
the	XML	node	with	same	name	based	on	the	mapping	specified	by	the
flags	parameter.	However,	if	ColPattern	is	specified	as	part	of	schema
specification	in	the	WITH	clause,	it	overwrites	the	mapping	specified	in
the	flags	parameter.

Specify	the	name	of	an	existing	table	in	the	WITH	clause.

You	can	simply	specify	an	existing	table	name	whose	schema	can	be
used	by	OPENXML	to	generate	the	rowset.

Do	not	specify	the	WITH	clause.

In	this	case,	OPENXML	returns	a	rowset	in	the	edge	table	format.	This
is	called	an	edge	table	because,	in	this	table	format,	every	edge	in	the
parsed	XML	document	tree	maps	to	a	row	in	the	rowset.

Edge	tables	represent	the	fine-grained	XML	document	structure	(for
example,	element/attribute	names,	the	document	hierarchy,	the
namespaces,	processing	instructions,	and	so	on)	in	a	single	table.	The
edge	table	format	allows	you	to	get	additional	information	that	is	not
exposed	through	the	metaproperties.	For	more	information	about
metaproperties,	see	Specifying	Metaproperties	in	OPENXML.

The	additional	information	provided	by	edge	table	allows	you	to	store
and	query	the	data	type	of	an	element/attribute,	the	node	type	(element
node,	attribute	node,	or	a	value	node),	store	and	query	information
about	the	XML	document	structure,	and	to	possibly	build	your	own
XML	document	management	system.

Using	an	edge	table,	you	can	write	stored	procedures	that	take	XML
documents	as	a	BLOB	input,	produce	the	edge	table,	and	then	extract
and	analyze	the	document	on	its	finest	level	(find	the	document
hierarchy,	element/attribute	names,	namespaces,	processing	instructions,
and	so	on).

The	edge	table	also	can	serve	as	a	storage	format	for	XML	documents
when	mapping	to	other	relational	formats	does	not	make	sense,	and	an
ntext	field	is	not	providing	enough	structural	information.

Whenever	you	would	use	an	XML	parser	to	examine	the	XML
document,	you	can	use	edge	table	to	get	the	same	information.

This	table	describes	the	structure	of	the	edge	table.

Column
name

Data
type Description

id Bigint Is	the	unique	ID	of	the	document	node.

The	root	element	has	an	ID	value	0.	The
negative	ID	values	are	reserved.

parentid Bigint Identifies	the	parent	of	the	node.	The
parent	identified	by	this	ID	is	not
necessarily	the	parent	element	but	it
depends	on	the	NodeType	of	the	node
whose	parent	is	identified	by	this	ID.	For
example,	if	the	node	is	a	text	node,	the
parent	of	it	may	be	an	attribute	node.

If	the	node	is	at	the	top	level	in	the	XML
document,	its	ParentID	is	NULL.

nodetype Int Identifies	the	node	type.	Is	an	integer	that
corresponds	to	the	XML	DOM	node	type
numbering	(see	DOM	for	node
information).

Some	of	the	node	types	are:

1	=	Element	node
2	=	Attribute	node
3	=	Text	node

localname nvarcharGives	the	local	name	of	the	element	or
attribute.	Is	NULL	if	the	DOM	object
does	not	have	a	name.

prefix nvarchar Is	the	namespace	prefix	of	the	node
name.

namespaceuri nvarchar Is	the	namespace	URI	of	the	node.	If	the
value	is	NULL,	no	namespace	is	present.

datatype nvarchar Is	the	actual	data	type	of	the	element	or
attribute	row	and	is	NULL	otherwise.	The
data	type	is	inferred	from	the	inline	DTD
or	from	the	inline	schema.

prev Bigint Is	the	XML	ID	of	the	previous	sibling
element.	Is	NULL	if	there	is	no	direct

previous	sibling.
text Ntext Contains	the	attribute	value	or	the

element	content	in	text	form	(or	is	NULL
if	the	edge	table	entry	does	not	need	a
value).

Mapping	Between	the	Rowset	Columns	and	the	XML	Nodes

In	the	OPENXML	statement,	you	can	optionally	specify	the	type	of	mapping
(attribute-centric,	element-centric)	between	the	rowset	columns	and	the	XML
nodes	identified	by	the	rowpattern.	This	information	is	used	in	transformation
between	the	XML	nodes	and	the	rowset	columns.

There	are	two	ways	to	specify	the	mapping	(you	can	specify	both):

Use	the	flags	parameter.

The	mapping	specified	by	the	flags	parameter	assumes	name
correspondence	where	the	XML	nodes	map	to	corresponding	rowset
columns	with	same	name.

Use	the	ColPattern	parameter.

ColPattern,	an	XPath	expression,	is	specified	as	part	of
SchemaDeclaration	in	the	WITH	clause.	The	mapping	specified	in
ColPattern	overwrites	the	mapping	specified	by	flags	parameter.

ColPattern	can	be	used	to	specify	the	special	nature	of	the	mapping	(in
case	of	attribute-centric	and	element-centric	mapping)	that	overwrites	or
enhances	the	default	mapping	indicated	by	the	flags.

ColPattern	is	specified	if:

The	column	name	in	the	rowset	is	different	from	the
element/attribute	name	to	which	it	is	mapped.	In	this	case
ColPattern	is	used	to	identify	the	XML	element/attribute	name
to	which	the	rowset	column	maps.

You	want	to	map	a	metaproperty	attribute	to	the	column.	In	this

case,	ColPattern	is	used	to	identify	the	metaproperty	to	which
the	rowset	column	maps.	For	more	information	about	using
metaproperties	,	see	Specifying	Metaproperties	in	OPENXML.

Both	the	flags	and	ColPattern	parameters	are	optional.	If	no	mapping	is
specified,	attribute-centric	mapping	(default	value	of	flags	parameter)	is	assumed
by	default.

Attribute-centric	Mapping
If	the	flags	parameter	in	OPENXML	is	set	to	attributes	map	to	the	columns	in
the	rowset	based	on	the	name	correspondence.	Name	correspondence	means	that
XML	attributes	of	a	given	name	are	stored	in	a	column	in	the	rowset	with	the
same	name.

If	the	column	name	is	different	from	the	attribute	name	to	which	it	maps,
ColPattern	must	be	specified.

If	XML	attribute	has	a	namespace	qualifier,	the	column	name	in	the	rowset	must
have	the	qualifier	as	well.

Element-centric	Mapping
Setting	the	flags	parameter	in	OPENXML	to	2	(XML_ELEMENTS)	specifies
the	element-centric	mapping.	It	is	similar	to	attribute-centric	mapping	except
for	these	differences:

The	name	correspondence	of	the	mapping	(for	example,	a	column
mapping	to	an	XML	element	with	the	same	name)	chooses	the
noncomplex	subelements,	unless	a	column-level	pattern	is	specified.	In
the	retrieval	case,	if	subelement	is	complex	(contains	further
subelements),	the	column	is	set	to	NULL.	Attribute	values	of	the
subelements	are	disregarded.

Multiple	subelements	with	the	same	name	overwrite	each	other	in	the
order	retrieved.	Fusion	on	the	parent	appends	subelement	in	case	of
name	equivalence.

See	Also

sp_xml_preparedocument

sp_xml_removedocument

OPENXML

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

XML	and	Internet	Support

Using	OPENXML
The	examples	in	this	topic	show	how	OPENXML	is	used	in	creating	a	rowset
view	of	an	XML	document.	For	information	about	the	syntax	of	OPENXML,	see
OPENXML.	The	examples	show	all	aspects	of	OPENXML	except	specifying
metaproperties	in	OPENXML.	For	more	information	about	specifying
metaproperties	in	OPENXML,	see	Specifying	Metaproperties	in	OPENXML.

Examples
In	retrieving	the	data,	rowpattern	is	used	to	identify	the	nodes	in	the	XML
document	that	determine	the	rows.	rowpattern	is	expressed	in	the	XPath	pattern
language	used	in	the	MSXML	XPath	implementation.	For	example,	if	the	pattern
ends	in	an	element	or	an	attribute,	a	row	is	created	for	each	element	or	attribute
node	selected	by	rowpattern.

The	flags	value	provides	default	mapping.	In	the	SchemaDeclaration,	if	no
ColPattern	is	specified,	the	mapping	specified	in	flags	is	assumed.	The	flags
value	is	ignored	if	ColPattern	is	specified	in	SchemaDeclaration.	The	specified
ColPattern	determines	the	mapping	(attribute-centric	or	element-centric)	and
also	the	behavior	in	dealing	with	overflow	and	unconsumed	data.

A.	Execute	a	simple	SELECT	statement	with	OPENXML
The	XML	document	in	this	example	consists	of	the	<Customer>,	<Order>,	and
<OrderDetail>	elements.	The	OPENXML	statement	retrieves	customer
information	in	a	two-column	rowset	(CustomerID	and	ContactName)	from	the
XML	document.

First,	the	sp_xml_preparedocument	stored	procedure	is	called	to	obtain	a
document	handle.	This	document	handle	is	passed	to	OPENXML.

In	the	OPENXML	statement:

rowpattern	(/ROOT/Customer)	identifies	the	<Customer>	nodes	to
process.

The	flags	parameter	value	is	set	to	1	indicating	attribute-centric

JavaScript:hhobj_1.Click()

mapping.	As	a	result,	the	XML	attributes	map	to	the	columns	in	the
rowset	defined	in	SchemaDeclaration.

In	SchemaDeclaration	(in	the	WITH	clause),	the	specified	ColName
values	match	the	corresponding	XML	attribute	names.	Therefore,	the
ColPattern	parameter	is	not	specified	in	SchemaDeclaration.

And	then,	the	SELECT	statement	retrieves	all	the	columns	in	the	rowset
provided	by	OPENXML.

DECLARE	@idoc	int
DECLARE	@doc	varchar(1000)
SET	@doc	='
<ROOT>
<Customer	CustomerID="VINET"	ContactName="Paul	Henriot">
			<Order	OrderID="10248"	CustomerID="VINET"	EmployeeID="5"	
										OrderDate="1996-07-04T00:00:00">
						<OrderDetail	ProductID="11"	Quantity="12"/>
						<OrderDetail	ProductID="42"	Quantity="10"/>
			</Order>
</Customer>
<Customer	CustomerID="LILAS"	ContactName="Carlos	Gonzlez">
			<Order	OrderID="10283"	CustomerID="LILAS"	EmployeeID="3"	
										OrderDate="1996-08-16T00:00:00">
						<OrderDetail	ProductID="72"	Quantity="3"/>
			</Order>
</Customer>
</ROOT>'
--	Create	an	internal	representation	of	the	XML	document.
EXEC	sp_xml_preparedocument	@idoc	OUTPUT,	@doc
--	Execute	a	SELECT	statement	using	OPENXML	rowset	provider.
SELECT	*
FROM	OPENXML	(@idoc,	'/ROOT/Customer',1)
						WITH	(CustomerID		varchar(10),

												ContactName	varchar(20))
EXEC	sp_xml_removedocument	@idoc

This	is	the	result:

CustomerID	ContactName										
----------	--------------------	
VINET						Paul	Henriot
LILAS						Carlos	Gonzlez

If	the	same	SELECT	statement	is	executed	with	flags	set	to	2,	indicating
element-centric	mapping,	because	<Customer>	elements	do	not	have	any
subelements,	the	values	of	CustomerID	and	ContactName	for	both	the
customers	are	returned	as	NULL.

If	in	the	XML	document,	the	<CustomerID>	and	<ContactName>	are
subelements,	the	element-centric	mapping	retrieves	the	values.

DECLARE	@idoc	int
DECLARE	@doc	varchar(1000)
SET	@doc	='
<ROOT>
<Customer>
			<CustomerID>VINET</CustomerID>
			<ContactName>Paul	Henriot</ContactName>
			<Order	OrderID="10248"	CustomerID="VINET"	EmployeeID="5"	OrderDate="1996-07-04T00:00:00">
						<OrderDetail	ProductID="11"	Quantity="12"/>
						<OrderDetail	ProductID="42"	Quantity="10"/>
			</Order>
</Customer>
<Customer>			
			<CustomerID>LILAS</CustomerID>
			<ContactName>Carlos	Gonzlez</ContactName>
			<Order	OrderID="10283"	CustomerID="LILAS"	EmployeeID="3"	OrderDate="1996-08-16T00:00:00">
						<OrderDetail	ProductID="72"	Quantity="3"/>
			</Order>

</Customer>
</ROOT>'
--	Create	an	internal	representation	of	the	XML	document.
EXEC	sp_xml_preparedocument	@idoc	OUTPUT,	@doc
--	Execute	a	SELECT	statement	using	OPENXML	rowset	provider.
SELECT				*
FROM						OPENXML	(@idoc,	'/ROOT/Customer',2)
											WITH	(CustomerID		varchar(10),
																	ContactName	varchar(20))
EXEC	sp_xml_removedocument	@idoc

This	is	the	result:

CustomerID	ContactName										
----------	--------------------	
VINET						Paul	Henriot
LILAS						Carlos	Gonzlez

B.	Specify	ColPattern	for	mapping	between	rowset	columns	and
the	XML	attributes/elements
This	example	shows	how	the	XPath	pattern	is	specified	in	the	optional
ColPattern	parameter	to	provide	mapping	between	rowset	columns	and	the	XML
attributes	(and	elements).

The	XML	document	in	this	example	consists	of	the	<Customer>,	<Order>,	and
<OrderDetail>	elements.	The	OPENXML	statement	retrieves	customer	and
order	information	as	a	rowset	(CustomerID,	OrderDate,	ProdID,	and	Qty)
from	the	XML	document.

First,	the	sp_xml_preparedocument	stored	procedure	is	called	to	obtain	a
document	handle.	This	document	handle	is	passed	to	OPENXML.

In	the	OPENXML	statement:

rowpattern	(/ROOT/Customer/Order/OrderDetail)	identifies	the
<OrderDetail>	nodes	to	process.

For	illustration	purposes,	the	flags	parameter	value	is	set	to	2	indicating
element-centric	mapping.	However,	the	mapping	specified	in
ColPattern	overwrites	this	mapping	(the	XPath	pattern	specified	in
ColPattern	maps	the	columns	in	the	rowset	to	attributes	thus	resulting
in	an	attribute-centric	mapping).

In	SchemaDeclaration	(in	the	WITH	clause),	ColPattern	is	also	specified	with
the	ColName	and	ColType	parameters.	The	optional	ColPattern	is	the	XPath
pattern	specified	to	indicate:

The	OrderID,	CustomerID,	and	OrderDate	columns	in	the	rowset
map	to	the	attributes	of	the	parent	of	the	nodes	identified	by	rowpattern.
rowpattern	identifies	the	<OrderDetail>	nodes.	Therefore,	the
CustomerID	and	OrderDate	columns	map	to	CustomerID	and
OrderDate	attributes	of	the	<Order>	element.

The	ProdID	and	Qty	columns	in	the	rowset	map	to	the	ProductID	and
Quantity	attributes	of	the	nodes	identified	in	rowpattern.

And	then	the	SELECT	statement	retrieves	all	the	columns	in	the	rowset	provided
by	OPENXML.

DECLARE	@idoc	int
DECLARE	@doc	varchar(1000)
SET	@doc	='
<ROOT>
<Customer	CustomerID="VINET"	ContactName="Paul	Henriot">
			<Order	OrderID="10248"	CustomerID="VINET"	EmployeeID="5"	
											OrderDate="1996-07-04T00:00:00">
						<OrderDetail	ProductID="11"	Quantity="12"/>
						<OrderDetail	ProductID="42"	Quantity="10"/>
			</Order>
</Customer>
<Customer	CustomerID="LILAS"	ContactName="Carlos	Gonzlez">
			<Order	OrderID="10283"	CustomerID="LILAS"	EmployeeID="3"	
											OrderDate="1996-08-16T00:00:00">

						<OrderDetail	ProductID="72"	Quantity="3"/>
			</Order>
</Customer>
</ROOT>'
--	Create	an	internal	representation	of	the	XML	document.
EXEC	sp_xml_preparedocument	@idoc	OUTPUT,	@doc
--	Execute	a	SELECT	stmt	using	OPENXML	rowset	provider.
SELECT	*
FROM	OPENXML	(@idoc,	'/ROOT/Customer/Order/OrderDetail',2)
						WITH	(OrderID					int									'../@OrderID',
												CustomerID		varchar(10)	'../@CustomerID',
												OrderDate			datetime				'../@OrderDate',
												ProdID						int									'@ProductID',
												Qty									int									'@Quantity')

This	is	the	result:

OrderID	CustomerID								OrderDate										ProdID				Qty

10248						VINET							1996-07-04	00:00:00.000					11							12
10248						VINET							1996-07-04	00:00:00.000					42							10
10283						LILAS							1996-08-16	00:00:00.000					72								3

The	XPath	pattern	specified	as	ColPattern	can	also	be	specified	to	map	the	XML
elements	to	the	rowset	columns	(resulting	in	element-centric	mapping).	In	the
following	example,	the	XML	document	<CustomerID>	and	<OrderDate>	are
subelements	of	<Orders>	element.	Because	ColPattern	overwrites	the	mapping
specified	in	flags	parameter,	the	flags	parameter	is	not	specified	in	OPENXML.

DECLARE	@idoc	int
DECLARE	@doc	varchar(1000)
SET	@doc	='
<ROOT>
<Customer	CustomerID="VINET"	ContactName="Paul	Henriot">
			<Order	EmployeeID="5"	>

						<OrderID>10248</OrderID>
						<CustomerID>VINET</CustomerID>
						<OrderDate>1996-07-04T00:00:00</OrderDate>
						<OrderDetail	ProductID="11"	Quantity="12"/>
						<OrderDetail	ProductID="42"	Quantity="10"/>
			</Order>
</Customer>
<Customer	CustomerID="LILAS"	ContactName="Carlos	Gonzlez">
			<Order		EmployeeID="3"	>
						<OrderID>10283</OrderID>
						<CustomerID>LILAS</CustomerID>
						<OrderDate>1996-08-16T00:00:00</OrderDate>
						<OrderDetail	ProductID="72"	Quantity="3"/>
			</Order>
</Customer>
</ROOT>'
--	Create	an	internal	representation	of	the	XML	document.
EXEC	sp_xml_preparedocument	@idoc	OUTPUT,	@doc
--	Execute	a	SELECT	stmt	using	OPENXML	rowset	provider.
SELECT	*
FROM	OPENXML	(@idoc,	'/ROOT/Customer/Order/OrderDetail')
						WITH	(CustomerID		varchar(10)			'../CustomerID',
												OrderDate			datetime						'../OrderDate',
												ProdID						int											'@ProductID',
												Qty									int											'@Quantity')
EXEC	sp_xml_removedocument	@idoc

C.	Combining	attribute-centric	and	element-centric	mapping
In	this	example,	the	flags	parameter	is	set	to	3,	indicating	that	both	attribute-
centric	and	element-centric	mapping	is	to	be	applied.	In	this	case,	the
attribute-centric	mapping	is	applied	first,	and	then	element-centric	mapping	is
applied	for	all	the	columns	not	yet	dealt	with.

DECLARE	@idoc	int
DECLARE	@doc	varchar(1000)
SET	@doc	='
<ROOT>
<Customer	CustomerID="VINET"		>
					<ContactName>Paul	Henriot</ContactName>
			<Order	OrderID="10248"	CustomerID="VINET"	EmployeeID="5"	
										OrderDate="1996-07-04T00:00:00">
						<OrderDetail	ProductID="11"	Quantity="12"/>
						<OrderDetail	ProductID="42"	Quantity="10"/>
			</Order>
</Customer>
<Customer	CustomerID="LILAS"	>	
					<ContactName>Carlos	Gonzlez</ContactName>
			<Order	OrderID="10283"	CustomerID="LILAS"	EmployeeID="3"	
										OrderDate="1996-08-16T00:00:00">
						<OrderDetail	ProductID="72"	Quantity="3"/>
			</Order>
</Customer>
</ROOT>'

--	Create	an	internal	representation	of	the	XML	document.
EXEC	sp_xml_preparedocument	@idoc	OUTPUT,	@doc

--	Execute	a	SELECT	statement	using	OPENXML	rowset	provider.
SELECT	*
FROM	OPENXML	(@idoc,	'/ROOT/Customer',3)
									WITH	(CustomerID		varchar(10),
															ContactName	varchar(20))

EXEC	sp_xml_removedocument	@idoc

This	is	the	result

CustomerID	ContactName										
----------	--------------------	
VINET						Paul	Henriot
LILAS						Carlos	Gonzlez

The	attribute-centric	mapping	is	applied	for	CustomerID.	There	is	no
ContactName	attribute	in	the	<Customers>	element;	therefore,	element-centric
mapping	is	applied.

D.	Specify	text()	XPath	function	as	ColPattern
The	XML	document	in	this	example	consists	of	the	<Customer>	and	<Order>
elements.	The	OPENXML	statement	retrieves	a	rowset	consisting	of	the	oid
attribute	from	the	<Order>	element,	the	ID	of	the	parent	of	the	node	(identified
by	rowpattern),	and	the	leaf-value	string	of	the	element	content.

First,	the	sp_xml_preparedocument	stored	procedure	is	called	to	obtain	a
document	handle.	This	document	handle	is	passed	to	OPENXML.

In	the	OPENXML	statement:

rowpattern	(/root/Customer/Order)	identifies	the	<Order>	nodes	to
process.

The	flags	parameter	value	is	set	to	1,	indicating	attribute-centric
mapping.	As	a	result,	the	XML	attributes	map	to	the	rowset	columns
defined	in	SchemaDeclaration.

In	SchemaDeclaration	(in	the	WITH	clause),	the	rowset	column	names,
oid	and	amount,	match	the	corresponding	XML	attribute	names.
Therefore,	the	ColPattern	parameter	is	not	specified.	For	the	comment
column	in	the	rowset,	the	XPath	function	(text())	is	specified	as
ColPattern.	This	overwrites	the	attribute-centric	mapping	specified	in
flags,	and	the	column	contains	the	leaf-value	string	of	the	element
content.

And	then,	the	SELECT	statement	retrieves	all	the	columns	in	the	rowset

provided	by	OPENXML.

DECLARE	@idoc	int
DECLARE	@doc	varchar(1000)
--sample	XML	document
SET	@doc	='
<root>
		<Customer	cid=	"C1"	name="Janine"	city="Issaquah">
						<Order	oid="O1"	date="1/20/1996"	amount="3.5"	/>
						<Order	oid="O2"	date="4/30/1997"	amount="13.4">Customer	was	very	satisfied
						</Order>
			</Customer>
			<Customer	cid="C2"	name="Ursula"	city="Oelde"	>
						<Order	oid="O3"	date="7/14/1999"	amount="100"	note="Wrap	it	blue	
													white	red">
												<Urgency>Important</Urgency>
												Happy	Customer.
						</Order>
						<Order	oid="O4"	date="1/20/1996"	amount="10000"/>
			</Customer>
</root>
'
--	Create	an	internal	representation	of	the	XML	document.
EXEC	sp_xml_preparedocument	@idoc	OUTPUT,	@doc

--	Execute	a	SELECT	statement	using	OPENXML	rowset	provider.
SELECT	*
FROM	OPENXML	(@idoc,	'/root/Customer/Order',	1)
						WITH	(oid					char(5),	
												amount		float,	
												comment	ntext	'text()')
EXEC	sp_xml_removedocument	@idoc

This	is	the	result:

oid			amount								comment
-----	-----------			-----------------------------
O1				3.5											NULL
O2				13.4										Customer	was	very	satisfied
O3				100.0									Happy	Customer.
O4				10000.0							NULL

E.	Specify	TableName	in	the	WITH	clause
This	example	specifies	TableName	in	the	WITH	clause	instead	of
SchemaDeclaration	in	the	WITH	clause.	This	is	useful	if	you	have	a	table	with
the	structure	you	want	and	no	column	patterns	(ColPattern	parameter)	are
required.

The	XML	document	in	this	example	consists	of	the	<Customer>	and	<Order>
elements.	The	OPENXML	statement	retrieves	order	information	in	a	three-
column	rowset	(oid,	date,	and	amount)	from	the	XML	document.

First,	the	sp_xml_preparedocument	stored	procedure	is	called	to	obtain	a
document	handle.	This	document	handle	is	passed	to	OPENXML.

In	the	OPENXML	statement:

rowpattern	(/root/Customer/Order)	identifies	the	<Order>	nodes	to
process.

There	is	no	SchemaDeclaration	in	the	WITH	clause.	Instead,	a	table
name	is	specified.	Therefore,	the	table	schema	is	used	as	the	rowset
schema.	

The	flags	parameter	value	is	set	to	1,	indicating	attribute-centric
mapping.	Therefore,	attributes	of	the	elements	(identified	by
rowpattern)	map	to	the	rowset	columns	with	the	same	name.

And	then	the	SELECT	statement	retrieves	all	the	columns	in	the	rowset	provided
by	OPENXML.

--	Create	a	test	table.	This	table	schema	is	used	by	OPENXML	as	the

--	rowset	schema.
CREATE	TABLE	T1(oid	char(5),	date	datetime,	amount	float)
DECLARE	@idoc	int
DECLARE	@doc	varchar(1000)
--	Sample	XML	document
SET	@doc	='
<root>
		<Customer	cid=	"C1"	name="Janine"	city="Issaquah">
						<Order	oid="O1"	date="1/20/1996"	amount="3.5"	/>
						<Order	oid="O2"	date="4/30/1997"	amount="13.4">Customer	was	very	
													satisfied</Order>
			</Customer>
			<Customer	cid="C2"	name="Ursula"	city="Oelde"	>
						<Order	oid="O3"	date="7/14/1999"	amount="100"	note="Wrap	it	blue	
													white	red">
										<Urgency>Important</Urgency>
						</Order>
						<Order	oid="O4"	date="1/20/1996"	amount="10000"/>
			</Customer>
</root>
'
--Create	an	internal	representation	of	the	XML	document.
EXEC	sp_xml_preparedocument	@idoc	OUTPUT,	@doc

--	Execute	a	SELECT	statement	using	OPENXML	rowset	provider.
SELECT	*
FROM	OPENXML	(@idoc,	'/root/Customer/Order',	1)
						WITH	T1
EXEC	sp_xml_removedocument	@idoc

This	is	the	result:

oid			date																								amount
-----	---------------------------	----------

O1				1996-01-20	00:00:00.000					3.5
O2				1997-04-30	00:00:00.000					13.4
O3				1999-07-14	00:00:00.000					100.0
O4				1996-01-20	00:00:00.000					10000.0

F.	Obtain	the	result	in	an	edge	table	format
In	this	example,	the	WITH	clause	is	not	specified	in	the	OPENXML	statement.
As	a	result,	the	rowset	generated	by	OPENXML	has	an	edge	table	format.	The
SELECT	statement	returns	all	the	columns	in	the	edge	table.

The	sample	XML	document	in	the	example	consists	of	the	<Customer>,
<Order>,	and	<OrderDetail>	elements.

First,	the	sp_xml_preparedocument	stored	procedure	is	called	to	obtain	a
document	handle.	This	document	handle	is	passed	to	OPENXML.

In	the	OPENXML	statement:

rowpattern	(/ROOT/Customer)	identifies	the	<Customer>	nodes	to
process.

The	WITH	clause	is	not	provided;	therefore,	OPENXML	returns	the
rowset	in	an	edge	table	format.

And	then	the	SELECT	statement	retrieves	all	the	columns	in	the	edge	table.

DECLARE	@idoc	int
DECLARE	@doc	varchar(1000)
SET	@doc	='
<ROOT>
<Customer	CustomerID="VINET"	ContactName="Paul	Henriot">
			<Order	CustomerID="VINET"	EmployeeID="5"	OrderDate=
											"1996-07-04T00:00:00">
						<OrderDetail	OrderID="10248"	ProductID="11"	Quantity="12"/>
						<OrderDetail	OrderID="10248"	ProductID="42"	Quantity="10"/>
			</Order>

</Customer>
<Customer	CustomerID="LILAS"	ContactName="Carlos	Gonzlez">
			<Order	CustomerID="LILAS"	EmployeeID="3"	OrderDate=
											"1996-08-16T00:00:00">
						<OrderDetail	OrderID="10283"	ProductID="72"	Quantity="3"/>
			</Order>
</Customer>
</ROOT>'
--Create	an	internal	representation	of	the	XML	document.
EXEC	sp_xml_preparedocument	@idoc	OUTPUT,	@doc
--	Execute	a	SELECT	statement	using	OPENXML	rowset	provider.
SELECT	*
FROM	OPENXML	(@idoc,	'/ROOT/Customer')
EXEC	sp_xml_removedocument	@idoc

The	result	is	returned	as	an	edge	table.	You	can	write	queries	against	the	edge
table	to	obtain	information:

The	following	query	returns	the	number	of	Customer	nodes	in	the
document.	Because	the	WITH	clause	is	not	specified,	OPENXML
returns	an	edge	table.	The	SELECT	statement	queries	the	edge	table.
SELECT	count(*)
FROM	OPENXML(@idoc,	'/')
WHERE	localname	=	'Customer'

This	query	returns	local	names	of	XML	nodes	of	element	type.
SELECT	distinct	localname	
FROM	OPENXML(@idoc,	'/')	
WHERE	nodetype	=	1	
ORDER	BY	localname

G.	Specify	rowpattern	ending	with	an	attribute

The	XML	document	in	this	example	consists	of	the	<Customer>,	<Order>,	and
<OrderDetail>	elements.	The	OPENXML	statement	retrieves	order	details

information	in	a	three-column	rowset	(ProductID,	Quantity,	and	OrderID)
from	the	XML	document.

First,	the	sp_xml_preparedocument	is	called	to	obtain	a	document	handle.	This
document	handle	is	passed	to	OPENXML.

In	the	OPENXML	statement:

rowpattern	(/ROOT/Customer/Order/OrderDetail/@ProductID)	ends
with	an	XML	attribute	(ProductID).	In	the	resulting	rowset,	a	row	is
created	for	each	attribute	node	selected	in	the	XML	document.

In	this	example,	the	flags	parameter	is	not	specified.	Instead,	the
mappings	are	specified	by	the	ColPattern	parameter.

In	SchemaDeclaration	(in	the	WITH	clause),	ColPattern	is	also	specified	with
the	ColName	and	ColType	parameters.	The	optional	ColPattern	is	the	XPath
pattern	specified	to	indicate:

The	XPath	pattern	(.)	specified	as	ColPattern	for	the	ProdID	column	in
the	rowset	identifies	the	context	node	(current	node).	As	per	the
rowpattern	specified,	it	is	the	ProductID	attribute	of	the	<OrderDetail>
element.

The	ColPattern,	../@Quantity,	specified	for	the	Qty	column	in	the
rowset	identifies	the	Quantity	attribute	of	the	parent	(<OrderDetail>)
node	of	the	context	node	(<ProductID>).	

Similarly,	the	ColPattern,	../../@OrderID,	specified	for	the	OID
column	in	the	rowset	identifies	the	OrderID	attribute	of	the	parent
(<Order>)	of	the	parent	(<OrderDetail>)	node	of	the	context	node
(<ProductID>).

And	then,	the	SELECT	statement	retrieves	all	the	columns	in	the	rowset
provided	by	OPENXML.

DECLARE	@idoc	int
DECLARE	@doc	varchar(1000)

--Sample	XML	document
SET	@doc	='
<ROOT>
<Customer	CustomerID="VINET"	ContactName="Paul	Henriot">
			<Order	OrderID="10248"	CustomerID="VINET"	EmployeeID="5"	OrderDate=
											"1996-07-04T00:00:00">
						<OrderDetail	ProductID="11"	Quantity="12"/>
						<OrderDetail	ProductID="42"	Quantity="10"/>
			</Order>
</Customer>
<Customer	CustomerID="LILAS"	ContactName="Carlos	Gonzlez">
			<Order	OrderID="10283"	CustomerID="LILAS"	EmployeeID="3"	OrderDate=
											"1996-08-16T00:00:00">
						<OrderDetail	ProductID="72"	Quantity="3"/>
			</Order>
</Customer>
</ROOT>'
--	Create	an	internal	representation	of	the	XML	document.
EXEC	sp_xml_preparedocument	@idoc	OUTPUT,	@doc
--	Execute	a	SELECT	stmt	using	OPENXML	rowset	provider.
SELECT	*
FROM	OPENXML	(@idoc,	'/ROOT/Customer/Order/OrderDetail/@ProductID')
							WITH	(ProdID		int	'.',
														Qty					int	'../@Quantity',
														OID					int	'../../@OrderID')
EXEC	sp_xml_removedocument	@idoc

This	is	the	result:

ProdID						Qty									OID
-----------	-----------	-------	
11										12										10248
42										10										10248
72										3											10283

H.	Specify	an	XML	document	with	multiple	text	nodes
If	you	have	multiple	text	nodes	in	an	XML	document,	a	SELECT	statement	with
a	ColPattern	(text())	returns	only	the	first	text	node	instead	of	all.	For	example:

DECLARE	@h	int
EXEC	sp_xml_preparedocument	@h	OUTPUT,
									N'
									<root	xmlns:a="urn:1">
											<a:Elem	abar="asdf">
													T<a>aU
											</a:Elem>
									</root>',
									'<ns	xmlns:b="urn:1"	/>'

SELECT	*	FROM	openxml(@h,	'/root/b:Elem')
						WITH	(Col1	varchar(20)	'text()')

The	SELECT	statement	returns	T	as	the	result	(and	not	TaU)

I.	Retrieve	individual	values	from	multivalued	attributes
An	XML	document	can	have	attributes	that	are	multivalued.	For	example	the
IDREFS	attribute	can	be	multivalued.	In	an	XML	document,	the	multivalued
attribute	values	are	specified	as	a	string	with	the	values	separated	by	a	space.	In
the	following	XML	document,	the	attends	attribute	of	the	<Student>	element
and	the	attendedBy	attribute	of	<Class>	are	multivalued.	Retrieving	individual
values	from	a	multivalued	XML	attribute	and	storing	each	value	in	a	separate
row	in	the	database	requires	additional	work.	This	example	shows	the	process.

This	sample	XML	document	consists	of	the	following	elements:

<Student>

Consists	of	id	(student	ID),	name,	and	attends	attributes.	The	attends
attribute	is	a	multivalued	attribute.

<Class>

Consists	of	id	(class	ID),	name,	and	attendedBy	attributes.	The
attendedBy	attribute	is	a	multivalued	attribute.

This	attends	attribute	in	<Student>	and	the	attendedBy	attribute	in	<Class>
represent	a	m:n	relationship	between	Student	and	Class	tables.	A	student	can
take	many	classes	and	a	class	can	have	many	students.

Assume	you	want	to	shred	this	document	and	save	it	in	the	database	as	follows:

Save	the	<Student>	data	in	the	Students	table.

Save	the	<Class>	data	in	the	Courses	table.

Save	he	m:n	relationship	data	(between	Student	and	Class)	in	the
CourseAttendence	table.	Additional	work	is	required	to	extract	the
values.	To	retrieve	this	information	and	store	it	in	the	table,	use	these
stored	procedures:

Insert_Idrefs_Values

Inserts	the	values	of	course	ID	and	student	ID	in	the
CourseAttendence	table.

Extract_idrefs_values

Extracts	the	individual	student	IDs	from	each	<Course>
element.	An	edge	table	is	used	to	retrieve	these	values.

Here	are	the	steps:

1.	 Create	the	following	tables:
DROP	TABLE	CourseAttendance
DROP	TABLE	Students
DROP	TABLE	Courses
GO
CREATE	TABLE	Students(
																id			varchar(5)	primary	key,
																name	varchar(30)
)

GO
CREATE	TABLE	Courses(
															id							varchar(5)	primary	key,
															name					varchar(30),
															taughtBy	varchar(5)
)
GO
CREATE	TABLE	CourseAttendance(
													id									varchar(5)	references	Courses(id),
													attendedBy	varchar(5)	references	Students(id),
													constraint	CourseAttendance_PK	primary	key	(id,	attendedBy)
)
go

2.	 Create	these	stored	procedures:
DROP	PROCEDURE	f_idrefs
GO
CREATE	PROCEDURE	f_idrefs
				@t						varchar(500),
				@idtab		varchar(50),
				@id					varchar(5)
AS
DECLARE	@sp	int
DECLARE	@att	varchar(5)
SET	@sp	=	0
WHILE	(LEN(@t)	>	0)
BEGIN	
				SET	@sp	=	CHARINDEX('	',	@t+	'	')
				SET	@att	=	LEFT(@t,	@sp-1)
				EXEC('INSERT	INTO	'+@idtab+'	VALUES	('''+@id+''',	'''+@att+''')')
				SET	@t	=	SUBSTRING(@t+	'	',	@sp+1,	LEN(@t)+1-@sp)
END
Go

DROP	PROCEDURE	fill_idrefs
GO
CREATE	PROCEDURE	fill_idrefs	
				@xmldoc					int,
				@xpath						varchar(100),
				@from							varchar(50),
				@to									varchar(50),
				@idtable				varchar(100)
AS
DECLARE	@t	varchar(500)
DECLARE	@id	varchar(5)

/*	Temporary	Edge	table	*/
SELECT	*	
INTO	#TempEdge	
FROM	OPENXML(@xmldoc,	@xpath)

DECLARE	fillidrefs_cursor	CURSOR	FOR
				SELECT	CAST(iv.text	AS	nvarchar(200))	AS	id,
											CAST(av.text	AS	nvarchar(4000))	AS	refs
				FROM			#TempEdge	c,	#TempEdge	i,
											#TempEdge	iv,	#TempEdge	a,	#TempEdge	av
				WHERE		c.id	=	i.parentid
				AND				UPPER(i.localname)	=	UPPER(@from)
				AND				i.id	=	iv.parentid
				AND				c.id	=	a.parentid
				AND				UPPER(a.localname)	=	UPPER(@to)
				AND				a.id	=	av.parentid

OPEN	fillidrefs_cursor
FETCH	NEXT	FROM	fillidrefs_cursor	INTO	@id,	@t
WHILE	(@@FETCH_STATUS	<>	-1)

BEGIN
				IF	(@@FETCH_STATUS	<>	-2)
				BEGIN
								execute	f_idrefs	@t,	@idtable,	@id
				END
				FETCH	NEXT	FROM	fillidrefs_cursor	INTO	@id,	@t
END
CLOSE	fillidrefs_cursor
DEALLOCATE	fillidrefs_cursor
Go

3.	 This	is	the	sample	document	that	is	shredded	and	the	data	is	stored	in
the	preceding	tables.
DECLARE	@h	int
EXECUTE	sp_xml_preparedocument	@h	OUTPUT,	'
<Data>
		<Student	id	=	"s1"	name	=	"Student1"		attends	=	"c1	c3	c6"		/>
		<Student	id	=	"s2"	name	=	"Student2"		attends	=	"c2	c4"	/>
		<Student	id	=	"s3"	name	=	"Student3"		attends	=	"c2	c4	c6"	/>
		<Student	id	=	"s4"	name	=	"Student4"		attends	=	"c1	c3	c5"	/>
		<Student	id	=	"s5"	name	=	"Student5"		attends	=	"c1	c3	c5	c6"	/>
		<Student	id	=	"s6"	name	=	"Student6"	/>

		<Class	id	=	"c1"	name	=	"Intro	to	Programming"	
									attendedBy	=	"s1	s4	s5"	/>
		<Class	id	=	"c2"	name	=	"Databases"	
									attendedBy	=	"s2	s3"	/>
		<Class	id	=	"c3"	name	=	"Operating	Systems"	
									attendedBy	=	"s1	s4	s5"	/>
		<Class	id	=	"c4"	name	=	"Networks"	attendedBy	=	"s2	s3"	/>
		<Class	id	=	"c5"	name	=	"Algorithms	and	Graphs"	
									attendedBy	=		"s4	s5"/>
		<Class	id	=	"c6"	name	=	"Power	and	Pragmatism"	

									attendedBy	=	"s1	s3	s5"	/>
</Data>'

INSERT	INTO	Students	SELECT	*	FROM	OPENXML(@h,	'//Student')	WITH	Students

INSERT	INTO	Courses	SELECT	*	FROM	OPENXML(@h,	'//Class')	WITH	Courses
/*	Using	the	edge	table	*/
EXECUTE	fill_idrefs	@h,	'//Class',	'id',	'attendedby',	'CourseAttendance'

SELECT	*	FROM	Students
SELECT	*	FROM	Courses
SELECT	*	FROM	CourseAttendance

EXECUTE	sp_xml_removedocument	@h

See	Also

sp_xml_preparedocument

sp_xml_removedocument

OPENXML

Writing	XML	Using	OPENXML

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

XML	and	Internet	Support

Specifying	Metaproperties	in	OPENXML
Metaproperty	attributes	in	an	XML	document	are	attributes	that	describe	the
properties	of	an	XML	item	(element,	attribute,	or	any	other	DOM	node).	These
attributes	do	not	physically	exist	in	the	XML	document	text;	however,
OPENXML	provides	these	metaproperties	for	all	the	XML	items.	These
metaproperties	allow	you	to	extract	information	(such	as	local	positioning	and
namespace	information)	of	XML	nodes,	which	provide	more	details	than	is
visible	in	the	textual	representation.

You	can	map	these	metaproperties	to	the	rowset	columns	in	an	OPENXML
statement	using	the	ColPattern	parameter.	The	columns	will	contain	the	values
of	the	metaproperties	to	which	they	are	mapped.	For	more	information	about	the
syntax	of	OPENXML,	see	OPENXML.

To	access	the	metaproperty	attributes,	a	namespace	specific	to	Microsoft®	SQL
Server™	2000	(urn:schemas-microsoft-com:xml-metaprop)	is	provided	that
allows	the	user	to	access	the	metaproperty	attributes.	If	the	result	of	an
OPENXML	query	is	returned	in	an	edge	table	format,	the	edge	table	contains
one	column	for	each	metaproperty	attribute	(except	for	the	xmltext
metaproperty).

Some	of	the	metaproperty	attributes	are	used	for	processing	purposes.	For
example,	xmltext	metaproperty	attribute	is	used	for	overflow	handling.
Overflow	handling	refers	to	the	unconsumed,	unprocessed	data	in	the	document.
One	of	the	columns	in	the	rowset	generated	by	OPENXML	can	be	identified	as
overflow	column	by	mapping	it	to	xmltext	metaproperty	using	the	ColPattern
parameter.	The	column	then	receives	the	overflow	data	(the	flags	parameter
determines	whether	the	column	contains	only	the	unconsumed	data	or
everything).

The	following	table	lists	the	metaproperty	attributes	that	each	parsed	XML
element	possesses.	These	metaproperty	attributes	can	be	accessed	using	the
namespace	urn:schemas-microsoft-com:xml-metaprop.	Any	value	set	by	the
user	directly	in	the	XML	document	using	these	metaproperties	is	disregarded.

Note		You	cannot	reference	these	metaproperties	in	any	XPath	navigation.

JavaScript:hhobj_1.Click()

Metaproperty
attribute Description
@mp:id Provides	system-generated,	document-wide	identifier

of	the	DOM	node	(element,	attribute,	and	so	on).	This
ID	is	guaranteed	to	refer	to	the	same	XML	node	as
long	as	the	document	is	not	reparsed.

An	XML	ID	of	0	indicates	that	the	element	is	a	root
element.	Its	parent	XML	ID	is	NULL.

@mp:localname Stores	the	local	part	of	the	name	of	the	node.	It	is
used	with	prefix	and	namespace	URI	(Uniform
Resource	Identifier)	to	name	element	or	attribute
nodes.

@mp:namespaceuriProvides	the	namespace	URI	of	the	current	element.
If	the	value	of	this	attribute	is	NULL,	no	namespace
is	present

@mp:prefix Stores	the	namespace	prefix	of	the	current	element
name.

If	no	prefix	is	present	(NULL)	and	a	URI	is	given,
indicates	that	the	specified	namespace	is	the	default
namespace.	If	no	URI	is	given,	no	namespace	is
attached.

@mp:prev Stores	the	previous	sibling	relative	to	a	node,	thereby,
providing	information	about	the	ordering	of	elements
in	the	document.

@mp:prev	contains	the	XML	ID	of	the	previous
sibling	that	has	the	same	parent	element.	If	an
element	is	at	the	beginning	of	the	sibling	list,
@mp:prev	is	NULL.

@mp:xmltext This	metaproperty	is	used	for	processing	purposes.	Is
the	textual	serialization	of	the	element	and	its
attributes	and	subelements	as	used	in	the	overflow
handling	of	OPENXML.

This	table	shows	additional	parent	properties	that	are	provided	that	allow	you	to

retrieve	information	about	the	hierarchy.

Parent	metaproperty	attribute Description
@mp:parentid Corresponds	to	../@mp:id
@mp:parentlocalname Corresponds	to	../@mp:localname
@mp:parentnamespacerui Corresponds	to

../@mp:namespaceuri
@mp:parentprefix Corresponds	to	../@mp:prefix

Examples

A.	Map	the	OPENXML	rowset	columns	to	the	metaproperties
This	example	creates	a	rowset	view	of	the	sample	XML	document	by	using
OPENXML.	This	example	shows	how	the	various	metaproperty	attributes	can
be	mapped	to	rowset	columns	in	an	OPENXML	statement	using	the	ColPattern
parameter.

In	the	OPENXML	statement:

The	id	column	is	mapped	to	the	@mp:id	metaproperty	attribute
indicating	that	the	column	contains	the	system-generated	unique	XML
ID	of	the	element.

The	parent	column	is	mapped	to	@mp:parentid,	indicating	that	the
column	contains	the	XML	ID	of	the	parent	of	the	element.

The	parentLocalName	column	is	mapped	to	@mp:parentlocalname,
indicating	that	the	column	contains	the	local	name	of	the	parent.

And	then,	the	SELECT	statement	returns	the	rowset	provided	by	OPENXML:

DECLARE	@idoc	int
DECLARE	@doc	varchar(1000)
--	Sample	XML	document

SET	@doc	='
<root>
		<Customer	cid=	"C1"	name="Janine"	city="Issaquah">
						<Order	oid="O1"	date="1/20/1996"	amount="3.5"	/>
						<Order	oid="O2"	date="4/30/1997"	amount="13.4">Customer	was	very	satisfied</Order>
			</Customer>
			<Customer	cid="C2"	name="Ursula"	city="Oelde"	>
						<Order	oid="O3"	date="7/14/1999"	amount="100"	note="Wrap	it	blue	white	red">
										<Urgency>Important</Urgency>
						</Order>
						<Order	oid="O4"	date="1/20/1996"	amount="10000"/>
			</Customer>
</root>
'
--	Create	an	internal	representation	of	the	XML	document.
EXEC	sp_xml_preparedocument	@idoc	OUTPUT,	@doc

--	Execute	a	SELECT	statement	using	OPENXML	rowset	provider.
SELECT	*
FROM	OPENXML	(@idoc,	'/root/Customer/Order',	9)
						WITH	(id	int	'@mp:id',	
												oid	char(5),	
												date	datetime,	
												amount	real,	
												parentIDNo	int	'@mp:parentid',	
												parentLocalName	varchar(40)	'@mp:parentlocalname')
EXEC	sp_xml_removedocument	@idoc

This	is	the	result:

id			oid									date																amount				parentIDNo		parentLocalName		
---	-------	----------------------	----------	------------	---------------
6				O1				1996-01-20	00:00:00.000					3.5									2								Customer
10			O2				1997-04-30	00:00:00.000					13.4								2								Customer

19			O3				1999-07-14	00:00:00.000					100.0							15							Customer
25			O4				1996-01-20	00:00:00.000					10000.0					15							Customer

B.	Retrieve	the	entire	XML	document
In	this	example,	OPENXML	creates	a	one-column	rowset	view	of	the	sample
XML	document.	This	column	(Col1)	is	mapped	to	the	xmltext	metaproperty,
making	it	an	overflow	column.	Therefore,	the	column	receives	the	unconsumed
data,	which	is	the	entire	document	in	this	case.

And	then	the	SELECT	statement	returns	the	entire	rowset.

DECLARE	@idoc	int
DECLARE	@doc	varchar(1000)
SET	@doc	='
<?xml	version="1.0"?>
<root>
		<Customer	cid=	"C1"	name="Janine"	city="Issaquah">
						<Order	oid="O1"	date="1/20/1996"	amount="3.5"	/>
						<Order	oid="O2"	date="4/30/1997"	amount="13.4">Customer	was	very	
													satisfied</Order>
			</Customer>
			<Customer	cid="C2"	name="Ursula"	city="Oelde"	>
						<Order	oid="O3"	date="7/14/1999"	amount="100"	note="Wrap	it	blue	
													white	red">
					<MyTag>Testing	to	see	if	all	the	subelements	are	returned</MyTag>
										<Urgency>Important</Urgency>
						</Order>
						<Order	oid="O4"	date="1/20/1996"	amount="10000"/>
			</Customer>
</root>
'
--	Create	an	internal	representation	of	the	XML	document.
EXEC	sp_xml_preparedocument	@idoc	OUTPUT,	@doc

--	Execute	a	SELECT	statement	using	OPENXML	rowset	provider.
SELECT	*
FROM	OPENXML	(@idoc,	'/')
			WITH	(Col1	ntext	'@mp:xmltext')

To	retrieve	the	entire	document	without	the	XML	declaration,	the	query	can	be
specified	as:

SELECT	*
FROM	OPENXML	(@idoc,	'/root')
			WITH	(Col1	ntext	'@mp:xmltext')
EXEC	sp_xml_removedocument	@idoc

The	query	returns	the	root	element	with	the	name	root	and	the	data	contained	by
the	root	element

C.	Specify	the	xmltext	metaproperty	to	retrieve	the	unconsumed
data	in	a	column
This	example	creates	a	rowset	view	of	the	sample	XML	document	by	using
OPENXML.	The	example	shows	how	to	retrieve	unconsumed	XML	data	by
mapping	the	xmltext	metaproperty	attribute	to	a	rowset	column	in	OPENXML.

The	comment	column	is	identified	as	the	overflow	column	by	mapping	it	to	the
@mp:xmltext	metaproperty.	The	flags	parameter	is	set	to	9
(XML_ATTRIBUTE	and	XML_NOCOPY),	indicating	attribute-centric
mapping	and	that	only	the	unconsumed	data	should	be	copied	to	the	overflow
column.

And	then	the	SELECT	statement	returns	the	rowset	provided	by	OPENXML.

In	this	example,	@mp:parentlocalname	metaproperty	is	set	for	a	column
(ParentLocalName)	in	the	rowset	generated	by	OPENXML.	As	a	result,	this
column	contains	the	local	name	of	the	parent	element.

Two	additional	columns	are	specified	in	the	rowset	(parent	and	comment).	The
parent	column	is	mapped	to	@mp:parentid,	indicating	that	the	column
contains	the	XML	ID	of	the	parent	element	of	the	element.	The	comment	column
is	identified	as	the	overflow	column	by	mapping	it	to	@mp:xmltext

metaproperty.

DECLARE	@idoc	int
DECLARE	@doc	varchar(1000)
--	sample	XML	document
SET	@doc	='
<root>
		<Customer	cid=	"C1"	name="Janine"	city="Issaquah">
						<Order	oid="O1"	date="1/20/1996"	amount="3.5"	/>
						<Order	oid="O2"	date="4/30/1997"	amount="13.4">Customer	was	very	satisfied</Order>
			</Customer>
			<Customer	cid="C2"	name="Ursula"	city="Oelde"	>
						<Order	oid="O3"	date="7/14/1999"	amount="100"	note="Wrap	it	blue	white	red">
										<Urgency>Important</Urgency>
						</Order>
						<Order	oid="O4"	date="1/20/1996"	amount="10000"/>
			</Customer>
</root>
'
--	Create	an	internal	representation	of	the	XML	document.
EXEC	sp_xml_preparedocument	@idoc	OUTPUT,	@doc

--	Execute	a	SELECT	statement	using	OPENXML	rowset	provider.
SELECT	*
FROM	OPENXML	(@idoc,	'/root/Customer/Order',	9)
						WITH	(oid	char(5),	
												date	datetime,
												comment	ntext	'@mp:xmltext')
EXEC	sp_xml_removedocument	@idoc

This	is	the	result.	Because	the	oid	and	date	columns	are	already	consumed,	they
do	not	appear	in	the	overflow	column.

oid			date																								comment																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																										

-----	---------------------------	--
O1				1996-01-20	00:00:00.000					<Order	amount="3.5"/>
O2				1997-04-30	00:00:00.000					<Order	amount="13.4">Customer	was	very	
																																			satisfied</Order>
O3				1999-07-14	00:00:00.000					<Order	amount="100"	note="Wrap	it	blue	
																																			white	red"><Urgency>	
																																			Important</Urgency></Order>
O4				1996-01-20	00:00:00.000					<Order	amount="10000"/>

See	Also

Writing	XML	Using	OPENXML

OPENXML

JavaScript:hhobj_2.Click()

XML	and	Internet	Support

XML	System	Stored	Procedures
Microsoft®	SQL	Server™	2000	provides	these	system	stored	procedures	that	are
used	in	conjunction	with	OPENXML:

sp_xml_preparedocument

sp_xml_removedocument

To	write	queries	using	OPENXML,	you	must	first	create	an	internal
representation	of	the	XML	document	by	calling	sp_xml_preparedocument.	The
stored	procedure	returns	a	handle	to	the	internal	representation	of	the	XML
document.	This	handle	is	then	passed	to	OPENXML,	which	provides	rowset
views	of	the	document	based	on	Xpaths;	namely	one	row	pattern	and	one	or
more	column	patterns.

The	internal	representation	of	an	XML	document	can	be	removed	from	memory
by	calling	sp_xml_removedocument	system	stored	procedure.

See	Also

OPENXML

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

XML	and	Internet	Support

Sample	XML	Applications
The	topics	in	this	section	present	simple	applications	that	demonstrate	how	to
pass	an	XML	document	from	the	client	to	the	server.	The	XML	document	is	then
shredded	using	OPENXML	and	the	necessary	updates	are	applied	to	the
database	tables.

XML	and	Internet	Support

Sample	HTML	Form	to	Insert	Records	Using
OPENXML
This	sample	HTML	form	prompts	a	user	to	enter	an	employee	ID,	first	name,
and	last	name.	After	the	user	has	entered	the	data	in	the	form,	an	XML	document
containing	the	employee	element	to	be	inserted	in	the	database	is	created.	The
XML	document	is	passed	as	a	parameter	to	the	template.

Before	executing	this	example,	you	must	create	a	virtual	root.	For	more
information,	see	Creating	the	nwind	Virtual	Directory.

This	example	shows:

How	to	create	a	simple	HTML	form.

How	to	create	an	XML	document	from	the	data	entered	in	the	HTML
form.

How	to	pass	the	XML	document	to	the	template.

How	to	use	the	OPENXML	clause	in	an	INSERT	statement	to	add	the
record	in	the	database.

The	template	executes	a	stored	procedure.	The	XML	document	is	passed	to	the
stored	procedure	as	a	text	parameter.

The	stored	procedure:

Calls	sp_xml_preparedocument	to	create	an	internal	representation	of
the	XML	document	passed	as	a	text	parameter.

Calls	the	INSERT	statement	to	insert	the	employee	record	in	the
Employee	table.	The	record	to	be	inserted	is	provided	by	OPENXML,
which	creates	a	rowset	view	of	the	XML	document.

These	are	the	steps	to	create	a	working	sample:

1.	 Create	this	table:
CREATE	TABLE	Employee(eid	int,	fname	varchar(20),	lname	varchar(20))

2.	 Create	these	stored	procedure	in	the	database:
CREATE	PROC	sp_insert_employee	@empdata	ntext	
AS	
							DECLARE	@hDoc	int	
				EXEC	sp_xml_preparedocument	@hDoc	OUTPUT,	@empdata	
				INSERT	INTO	Employee	
						SELECT	*	
						FROM	OPENXML(@hDoc,	'/Employee')	
												WITH	Employee	
					EXEC	sp_xml_removedocument	@hDoc	

3.	 Create	the	following	template.	The	template	must	be	stored	in	the
directory	associated	with	the	virtual	name	of	template	type	(if	you
have	created	the	sample	nwind	virtual	directory,	the	template	is	stored
in	the	template	subdirectory	of	the	virtual	root	directory).	Save	the
template	as	MyTemplate.xml.
<root	xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<sql:header>
<sql:param	name="empdata"><Employee/></sql:param>
</sql:header>
<sql:query>exec	sp_insert_employee	@empdata
</sql:query>
</root>

This	is	the	HTML	form:

<html>
<body>
		<form	action="http://IISServer/nwind/template
												/MyTemplate.xml"	method="post">

				<input	type="hidden"	id="e"	name="empdata">
				<input	type="hidden"	name="contenttype"	value="text/xml">
							EmployeeID:	<input	type=text	id=eid	value="1">

							First	Name:	<input	type=text	id=fname	value="Harry">

							Last	Name:	<input	type=text	id=lname	value="Smith">

					<input	type=submit	onclick="Insert_Employee(e,	eid,
							lname,	fname)"	value="Insert	Employee">

<script>
				function	Insert_Employee(e,	eid,	lname,	fname)
					{
						e.value	=	'<Employee	eid="'	+	eid.value	+
						'"	lname="'	+	lname.value	+	'"	fname="'	+
						fname.value	+	'"/>';
					}
</script>
</form>
</body>
</html>

XML	and	Internet	Support

Sample	HTML	Form	to	Update	Records	Using
OPENXML
This	sample	application	shows	how	data	in	an	XML	documents	can	be	used	to
update	records	in	a	database	table.	The	application	shows	the	process	of:

Executing	a	template	from	an	HTML	form.

Passing	an	XML	document	as	a	parameter	to	the	template.	

Executing	SQL	statements	(stored	procedures)	in	a	template.

Using	the	OPENXML	rowset	provider	with	UPDATE	to	apply	the
updates.

The	application	assumes	that	the	client	has	an	XML	document	that	is	created
using	another	application.	The	application	uses	OPENXML	to	shred	the	XML
document	and	creates	the	rowset	that	is	passed	to	UPDATE	statement.

Before	executing	this	example,	you	must	create	a	virtual	root.	For	more
information,	see	Creating	the	nwind	Virtual	Directory.

The	template	executes	a	stored	procedure	(sp_update_employee).	The	XML
document	is	passed	to	the	stored	procedure	as	a	text	parameter.

The	stored	procedure:

Calls	sp_xml_preparedocument	to	create	an	internal	representation	of
the	XML	document	passed	as	a	text	parameter.

Calls	the	UPDATE	statement	to	update	the	employee	records	in	the
Employee	table.	OPENXML	provides	the	rowset	view	of	the	XML,
which	is	used	in	the	UPDATE	statement.

These	are	the	steps	to	create	a	working	sample:

1.	 Create	this	table:
CREATE	TABLE	Employee(eid	int,	fname	varchar(20),	lname	varchar(20))

2.	 Add	sample	data:
INSERT	INTO	Employee	VALUES	(1,	'Nancy',	'Davolio')
INSERT	INTO	Employee	VALUES	(2,	'Andrew',	'Fuller')

3.	 Create	this	stored	procedure	in	the	database:
CREATE	PROC	sp_update_employee	@empdata	ntext					
AS					
DECLARE	@hDoc	int							
exec	sp_xml_preparedocument	@hDoc	OUTPUT,@empdata		
UPDATE	Employee					
SET					
						Employee.fname	=	XMLEmployee.fname,				
						Employee.lname	=	XMLEmployee.lname						
FROM	OPENXML(@hDoc,	'/root/Employee')			
													WITH	Employee	XMLEmployee				
WHERE		Employee.eid	=	XMLEmployee.eid				
EXEC	sp_xml_removedocument	@hDoc				
SELECT			*				
from						Employee	
FOR	XML	AUTO				

4.	 Create	the	following	template.	The	template	must	be	stored	in	the
directory	associated	with	the	virtual	name	of	template	type	(if	you
have	created	the	sample	nwind	virtual	directory,	the	template	is	stored
in	the	template	subdirectory	of	the	virtual	root	directory).	Save	the
template	as	UpdateEmployee.xml.
<root	xmlns:sql="urn:schemas-microsoft-com:xml-sql">
				<sql:header>
								<sql:param	name="empdata"><Employee/></sql:param>
				</sql:header>
				<sql:query>

									exec	sp_update_employee	@empdata
				</sql:query>
</root>

This	is	the	HTML	form:

<html>
<body>
<form	name="Employee"	
						action="http://localhost/nwind/Template/UpdateEmployee.XML"	
						method="POST">
This	app	assumes	that	client	has	this	simple
XML	document	created	using	some	other	application	and	you	want	to
update	the	tables	based	on	the	data	in	this	document.

<input	type=hidden	name="contenttype"	value="text/xml">
<textarea	name="empdata"	cols=50	rows=5>
			<root>
					<Employee	eid="1"	lname="Leverling"	fname="Janet"/>
					<Employee	eid="2"	lname="Peacock"	fname="Margaret"/>
			</root>
</textarea>

<input	type=Submit	value="Submit">
</form>
</body>
</html>

See	Also

IIS	Virtual	Directory	Management	for	SQL	Server

Executing	Template	Files	Using	HTTP

Using	XPath	Queries

XML	and	Internet	Support

Sample	Visual	Basic	Application	to	Update	Records
Using	OPENXML	and	ADO
The	application	is	based	on	the	assumption	that	the	client	has	an	XML	document
(created	with	some	other	application)	that	is	to	be	used	to	apply	updates	to	the
database.

This	example	shows:

Writing	a	simple	Microsoft®	Visual	Basic®	application	to	update	the
database	using	XML	documents.	

Using	ADO	to	execute	XML	templates.

Creating	and	execute	templates	and	pass	parameters	to	the	templates.

Creating	a	rowset	from	an	XML	document	using	OPENXML.

These	are	the	steps	to	create	a	working	sample:

1.	 Create	this	table:
CREATE	TABLE	Employee(eid	int,	fname	varchar(20),	lname	varchar(20))

2.	 Add	sample	data:
INSERT	INTO	Employee	VALUES	(1,	'Nancy',	'Davolio')
INSERT	INTO	Employee	VALUES	(2,	'Andrew',	'Fuller')

3.	 Create	the	following	stored	procedure	in	the	database:
CREATE	PROC	update_employee	@empdata	nvarchar(4000)	
AS	
	DECLARE	@hDoc	int			
	exec	sp_xml_preparedocument	@hDoc	OUTPUT,@empdata			
	UPDATE	Employee	

	SET	
			Employee.fname	=	XMLEmployee.fname,
			Employee.lname	=	XMLEmployee.lname		
	FROM	OPENXML(@hDoc,	'update/Employee')			
							WITH	Employee	XMLEmployee
	WHERE		Employee.eid	=	XMLEmployee.eid
	EXEC	sp_xml_removedocument	@hDoc			

4.	 Create	a	Visual	Basic	project	(a	standard	EXE	project	is	sufficient).

5.	 Add	Microsoft	ActiveX®	Data	Objects	2.6	Library	to	the	project
references.

6.	 Add	the	following	code:
'The	code	uses	ADO	to	establish	a	SQL	Server	connection	and	passes	in	a	
'template	to	the	server.	The	template	executes	a	stored	procedure	
'(update_employee)	which	accepts	an	XML	document	as	input.	The	stored	
'procedure	uses	OPENXML	to	shred	the	document	and	generate	a	rowset	
'which	is	used	to	update	the	records	in	the	Employee	table.
'The	template	is	then	executed	on	the	server	and	the	resulting	stream	
'is	returned	to	the	client.	The	stream	contains	the	resulting	XML	
'document.

Dim	cmd	As	New	ADODB.Command
Dim	conn	As	New	ADODB.Connection
Dim	strmIn	As	New	ADODB.Stream
Dim	strmOut	As	New	ADODB.Stream

'	Open	a	connection	to	the	SQL	Server.
conn.Provider	=	"SQLOLEDB"
conn.Open	"server=(local);	database=Northwind;	uid=sa;	"

Set	cmd.ActiveConnection	=	conn

'	Build	the	command	string	in	the	form	of	an	XML	template.
SQLxml	=	"<root	xmlns:sql=""urn:schemas-microsoft-com:xml-sql""><sql:query><![CDATA["
SQLxml	=	SQLxml	&	"exec	update_employee	N'<update><Employee	eid=""1""	lname=""Leverling""	fname=""Janet""/>"
SQLxml	=	SQLxml	&	"<Employee	eid=""2""	lname=""Peacock""	fname=""Margaret""/></update>']]>"
SQLxml	=	SQLxml	&	"</sql:query></root>"

'	Set	the	command	dialect	to	XML.
cmd.Dialect	=	"{5d531cb2-e6ed-11d2-b252-00c04f681b71}"

'	Open	the	command	stream	and	write	our	template	to	it.
strmIn.Open
strmIn.WriteText	SQLxml
strmIn.Position	=	0

Set	cmd.CommandStream	=	strmIn

'	Execute	the	command,	open	the	return	stream,	and	read	the	result.
strmOut.Open
strmOut.LineSeparator	=	adCRLF
cmd.Properties("Output	Stream").Value	=	strmOut
cmd.Execute	,	,	adExecuteStream
strmOut.Position	=	0
Debug.Print	strmOut.ReadText

	

XML	and	Internet	Support

OLE	DB	Provider	for	SQL	Server	Extensions	for
XML
The	Microsoft®	OLE	DB	Provider	for	SQL	Server	(SQLOLEDB)	supports	a
new	dialect	called	DBGUID_MSSQLXML	to	execute	XML	templates	with
embedded	queries	(such	as	SQL	FOR	XML	and	XPath	queries).	Templates	are
valid	XML	documents	containing	one	or	more	queries.	The	FOR	XML	and
XPath	queries	return	a	document	fragment.	The	templates	act	as	a	container	for
the	resulting	document	fragment.

Setting	an	XML	Command	Using	ICommandText
The	ICommandText::SetCommandText	and	ICommand::Execute	methods
have	been	enhanced	to	allow	XML	documents	to	be	set	as	command	text,	to
execute	the	command	and	retrieve	the	results	as	a	stream	that	can	then	be	used	in
further	processing,	such	as	passing	the	XML	document	to	DOM	(Document
Object	Model).

The	XML	templates	can	be	passed	to	the	ICommandText::SetCommandText
method.	When	XML	templates	are	set	as	command	text	using
ICommandText::SetCommandText,	the	consumer	must	pass
DBGUID_MSSQLXML	as	the	GUID	of	the	command	syntax.	This	new	GUID
indicates	that	the	command	text	is	an	XML	template.

The	consumer	must	call	ICommand::Execute	to	execute	XML	templates.	To
obtain	an	XML	document	as	a	result	set,	the	riid	is	set	to	IStream,	in	which	case
the	provider	returns	the	result	set	as	a	stream.

Limitations	of	ICommandText
The	template	being	passed	to	ICommandText::SetCommandText	can	be	large.
And	if	the	template	being	executed	is	stored	in	a	file,	overhead	is	required	to
read	the	file,	buffer	its	contents,	and	then	set	command	text	using
ICommandText::SetCommandText.

In	addition,	the	ICommandText::SetCommandText	expects	the	command
string	to	be	a	Unicode	string.	If	the	actual	XML	file	is	in	some	encoding,

additional	overhead	is	required	to	convert	the	file	to	Unicode	before	passing	it	to
IcommandText::SetCommandText	as	a	command.

Setting	an	XML	Command	Using	ICommandStream
The	OLE	DB	(version	2.6)	interface	ICommandStream,	although	similar	to
ICommandText,	passes	a	command	as	a	stream	object	rather	than	as	a	string.

SQLOLEDB	has	implemented	the	optional	ICommandStream	interface	on	the
command	object.	The	ICommandStream	interface	allows	you	to	pass	a	stream
to	the	command	object.

The	ICommandStream	interface	allows	a	command	to	be	in	any	encoding	that
the	XML	parser	understands.	Thus,	when	ICommand::Execute	is	called,	the
command	text	is	read	out	of	the	stream	directly	and	no	conversion	is	required.
Executing	XML	commands	using	ICommandStream	interface	is	more	efficient.

Both	the	ICommandStream::GetCommandStream	and
ICommandStream::SetCommandStream	interfaces	are	implemented	in
SQLOLEDB.

For	ICommandStream,	the	default	dialect	(DBGUID_DEFAULT)	is
DBGUID_MSSQLXML.	The	dialects	supported	by
ICommandStream::SetCommandStream	are	provider-specific.	SQLOLEDB
supports	DBGUID_MSSSQLXML	only	(DBGUID_SQL	and	DBGUID_XPATH
are	not	supported.)

If	you	read	from	the	stream	returned	by	GetCommandStream	before
EXECUTE	is	called,	EXECUTE	may	fail	unless	EXECUTE	can	read	from	the
proper	position	in	the	stream.

Support	for	the	OLE	DB	(Version	2.6)	DBPROPSET_STREAM
Property	Set
SQLOLEDB	has	implemented	DBPROPSET_STREAM	property	set	(in	the
Stream	property	group),	which	includes	these	properties:

DBPROP_OUTPUTSTREAM

The	value	passed	in	this	property	is	a	Variant	containing	a	pointer	to	either
IStream	or	ISequentialStream.	When	this	property	is	set,

ICommand::Execute	returns	results	in	the	stream	specified	by	this	property.
This	avoids	extra	copies	of	the	data	because	you	can	pass	the	stream	to	other
users,	such	as	the	XML	parser.

DBPROP_OUTPUTENCODING

This	property	specifies	the	requested	encoding	for	the	stream	returned	by	the
Execute	method.	Some	of	the	commonly	used	encodings	are	UTF-8,	ANSI,
and	Unicode.	The	UTF-8	is	the	default	encoding	if	the	value	of	this	property
is	NULL.

Requesting	ISequentialStream	on	ICommand::Execute
You	can	request	ISequentialStream	on	ICommand::Execute.

While	reading	from	a	stream	as	long	as	there	is	data	to	read,
ISequentialStream::Read	will	return	S_OK.	After	the	end	of	the	stream	is
reached,	a	subsequent	read	will	return	S_FALSE,	unless	there	were	errors	during
the	execution	of	the	command.	If	there	were	any	errors,
DB_S_ERRORSOCCURED	is	returned	only	on	the	first	read	after	the	end	of	the
stream	was	reached.	All	the	subsequent	reads	will	return	S_FALSE.

In	executing	the	command,	if	there	are	any	errors,	the	errors	are	returned	as
processing	instructions	(PIs)	in	the	stream.	All	the	errors	are	returned	after	the
last	read.	Applications	that	do	not	have	access	to	error	objects	can	examine	the
stream	contents	for	the	PI	containing	the	errors.

ISequentialStream	is	supported	only	when	the	selected	result	is	a	single-
column	rowset.

SQLOLEDB	Provider-Specific	Properties
To	support	XML-specific	behavior,	SQLOLEDB	has	implemented	the	following
provider-specific	properties	in	the	DBPROPSET_SQLSERVERSTREAM
property	set	(Stream	property	group).	These	properties	allow	you	to	specify	the
mapping	schema	against	which	an	XPath	query	can	be	specified	as	a	command,
or	to	specify	an	XSL	file	to	process	the	result.	Some	of	these	properties	are
useful	for	enhancing	security	and	performance.

SSPROP_STREAM_BASEPATH

This	property	is	used	to	specify	the	base	path.	This	base	path	is	used	in
resolving	relative	paths	specified	for	the	XSL	file,	mapping	schema,	or
external	schema	references	in	a	template.

SSPROP_STREAM_MAPPINGSCHEMA

This	property	is	used	for	specifying	a	schema	for	the	XPath	queries.	The	path
specified	can	be	relative	or	absolute.	If	the	path	specified	is	relative,	the	base
path	specified	in	SSPROP_STREAM_BASEPATH	is	used	to	resolve	the
relative	path.	If	the	base	path	is	not	specified,	the	relative	path	is	relative	to
the	current	directory

SSPROP_STREAM_XSL

This	property	is	used	for	specifying	an	XSL	file.	The	path	specified	can	be
relative	or	absolute.	If	the	path	specified	is	relative,	the	base	path	specified	in
SSPROP_STREAM_BASEPATH	is	used	to	resolve	the	relative	path.	If	the
base	path	is	not	specified,	the	relative	path	is	relative	to	the	current	directory.

SSPROP_STREAM_CONTENTTYPE

If	an	XSL	style	sheet	is	applied	to	the	result,	the	media-type	property	on
<xsl:output>	in	the	XSL	file	is	returned	as	the	value	of	this	property.

SSPROP_STREAM_FLAGS

This	property	is	used	to	specify	certain	security	restrictions.	For	example,
you	may	not	want	to	allow	URL	references	to	files	or	absolute	paths	to	files
(such	as	external	sites).	You	may	not	want	to	allow	queries	in	the	templates.
The	property	can	be	assigned	values	STREAM_FLAGS_DISALLOW_URL,
STREAM_FLAGS_DISALLOW_ABSOLUTE_PATH,	or
STREAM_FLAGS_DISALLOW_QUERY.

For	more	information	about	these	properties,	see	Initialization	and	Authorization
Properties.

JavaScript:hhobj_1.Click()

XML	and	Internet	Support

Using	ICommandStream	to	Set	an	XML	Command
The	OLE	DB	(version	2.6)	interface	ICommandStream	passes	a	command	as	a
stream	object	rather	than	as	a	string.

This	interface	allows	command	to	be	in	any	encoding	that	the	XML	parser
understands.	When	ICommand::Execute	is	called,	the	command	text	is	read	out
of	the	stream	directly	and	no	conversion	is	required.	Therefore,	executing	XML
commands	using	ICommandStream	interface	is	more	efficient.

To	set	XML	as	a	command	using	ICommandStream	and	retrieving	the
result	as	an	XML	document

	XML and Internet Support Overview
	IIS Virtual Directory Management for SQL Server
	System Requirements for IIS Virtual Directory Management
	Using IIS Virtual Directory Management for SQL Server Utility
	Creating the nwind Virtual Directory

	IIS Virtual Directory Management for SQL Server Object Model
	SQLVDirControl Object
	SQLVDirs Collection Object
	SQLVDir Object
	VirtualNames Collection Object
	VirtualName Object

	Creating the nwind Virtual Directory Using the Object Model

	Accessing SQL Server Using HTTP
	Three-Tier System Architecture
	Special Characters
	Executing SQL Statements Using HTTP
	Executing Stored Procedures Using HTTP

	Executing Template Files Using HTTP
	Using XML Templates
	Executing SQL Queries Using Templates
	Passing Parameters to Templates
	Specifying an XSL Style Sheet in a Template
	Executing XPath Queries Using Templates

	Executing XPath Queries Using HTTP
	Accessing Database Objects Using HTTP
	Sample Applications to Post Templates
	Using HTML Forms to Post Templates
	Posting Templates Directly to the Virtual Directory

	Creating XML Views Using Annotated XDR Schemas
	Annotations to the XDR Schema
	Default Mapping of XDR Elements and Attributes to Tables and Columns
	Explicit Mapping of XDR Elements and Attributes to Tables and Columns
	Using sql:relation
	Using sql:field

	Specifying Relationships Using <sql:relationship>
	Creating Constant Elements Using sql:is-constant
	Excluding Schema Elements from the Resulting XML Document Using sql:map-field
	Filtering Values Using sql:limit-field and sql:limit-value
	Identifying Key Columns Using sql:key-fields
	Specifying a Target Namespace Using sql:target-namespace
	Creating Valid ID, IDREF, and IDREFS Type Attributes Using sql:id-prefix
	Using sql:id-prefix

	Data Type Coercions
	Creating CDATA Sections Using sql:use-cdata
	Requesting URL References to BLOB Data Using sql:url-encode
	Retrieving Unconsumed Data Using sql:overflow-field
	Specifying Default Values for Attributes in the XDR Schema

	Using Annotated XDR Schemas in Queries
	Schema Caching

	Using XPath Queries
	Guidelines for Using XPath Queries
	Specifying a Location Path
	Specifying an Axis
	Specifying a Node Test in the Location Path
	Specifying Selection Predicates in the Location Path

	Sample XPath Queries
	Specifying Axes in XPath Queries
	Specifying Boolean-Valued Predicates in XPath Queries
	Specifying Relational Operators in XPath Queries
	Specifying Arithmetic Operators in XPath Queries
	Specifying Explicit Conversion Functions in XPath Queries
	Specifying Boolean Operators in XPath Queries
	Specifying Boolean Functions in XPath Queries
	Specifying XPath Variables in XPath Queries

	XPath Data Types

	Retrieving and Writing XML Data
	Retrieving XML Documents Using FOR XML
	Basic Syntax of the FOR XML Clause
	Guidelines for Using the FOR XML Clause
	Using RAW Mode
	Using AUTO Mode
	Using EXPLICIT Mode
	Specifying the XMLDATA Schema Option in a Query

	Writing XML Using OPENXML
	Using OPENXML
	Specifying Metaproperties in OPENXML
	XML System Stored Procedures
	Sample XML Applications
	Sample HTML Form to Insert Records Using OPENXML
	Sample HTML Form to Update Records Using OPENXML
	Sample Visual Basic Application to Update Records Using OPENXML and ADO

	OLE DB Provider for SQL Server Extensions for XML
	Using ICommandStream to Set an XML Command

