
=Home	=													>	Next		>

	
wxDev-C++	is	an	extension	of	Dev-C++	by	Colin	Laplace	et.	al.	This	program
helps	you	to	visually	create	dialogs	and	frames	for	wxWidgets.	With	all	the
wonderful	features	of	Dev-C++,	wxDev-C++	is	still	being	actively	developed.
The	main	aim	of	this	project	is	to	provide	the	wxWidgets	community	with	a	free,
open-source,	commercial-grade	IDE/RAD	tool	for	development	with
wxWidgets.

http://wxdsgn.sourceforge.net/
http://bloodshed.net/dev/devcpp.html
http://wxwidgets.org/
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Rapid_application_development

Features:

Plugin	Capable:

Modules	can	be	added	at	runtime	to	expand	the	IDE's	capabilities
Users	can	chose	between	wxDev-C++	and	the	original	Dev-C++	IDEs

wxWidgets	Form	Designer

	Generates	XRC	XML	resources
	Drag-and-drop	design	paradigm
	Supports	wxWidgets'	sizer-based	layouts
	Connect	events	to	member	functions	within	the	editor

	Integrated	debugging

Support	for	GDB	and	CDB	(WinDbg)
Variable	watches
Automatic	stack	tracing
Local	variables	list
Displays	disassembly	and	CPU	registers

	Editor	features

Class	browser
Code	completion
Project	management
Project	profiles
Customisable	syntax	highlighting
Automatic	inline	assembly	highlighting
ToDo	List

	Application	compatibility

	Built-in	CVS	support
	Supports	MingW/Visual	C++	(6,	2003	and	2005,	2008)

Quickly	create	Windows	and	console	applications,	static	libraries	and
DLL's

Support	for	project	templates	to	expedite	the	creation	of	new	project	types

Package	manager	(through	the	use	of	DevPaks),	for	easy	installation	of	add-
on	libraries

<		Previous			<											=	Home	=													>	Next	>

License	Agreement
Dev-C++	and	wxDev-C++	are	distributed	under	the	GNU	General
Public	License.

Be	sure	to	read	it	before	use.

GNU	GENERAL	PUBLIC	LICENSE
															Version	2,	June	1991

	Copyright	(C)	1989,	1991	Free	Software	Foundation,	Inc.,
	51	Franklin	Street,	Fifth	Floor,	Boston,	MA	02110-1301	USA
	Everyone	is	permitted	to	copy	and	distribute	verbatim	copies
	of	this	license	document,	but	changing	it	is	not	allowed.

																Preamble

		The	licenses	for	most	software	are	designed	to	take	away	your
freedom	to	share	and	change	it.		By	contrast,	the	GNU	General	Public
License	is	intended	to	guarantee	your	freedom	to	share	and	change	free
software--to	make	sure	the	software	is	free	for	all	its	users.		This
General	Public	License	applies	to	most	of	the	Free	Software
Foundation's	software	and	to	any	other	program	whose	authors	commit	to
using	it.		(Some	other	Free	Software	Foundation	software	is	covered	by
the	GNU	Lesser	General	Public	License	instead.)		You	can	apply	it	to
your	programs,	too.

		When	we	speak	of	free	software,	we	are	referring	to	freedom,	not
price.		Our	General	Public	Licenses	are	designed	to	make	sure	that	you
have	the	freedom	to	distribute	copies	of	free	software	(and	charge	for
this	service	if	you	wish),	that	you	receive	source	code	or	can	get	it
if	you	want	it,	that	you	can	change	the	software	or	use	pieces	of	it
in	new	free	programs;	and	that	you	know	you	can	do	these	things.

		To	protect	your	rights,	we	need	to	make	restrictions	that	forbid
anyone	to	deny	you	these	rights	or	to	ask	you	to	surrender	the	rights.

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

These	restrictions	translate	to	certain	responsibilities	for	you	if	you
distribute	copies	of	the	software,	or	if	you	modify	it.

		For	example,	if	you	distribute	copies	of	such	a	program,	whether
gratis	or	for	a	fee,	you	must	give	the	recipients	all	the	rights	that
you	have.		You	must	make	sure	that	they,	too,	receive	or	can	get	the
source	code.		And	you	must	show	them	these	terms	so	they	know	their
rights.

		We	protect	your	rights	with	two	steps:	(1)	copyright	the	software,	and
(2)	offer	you	this	license	which	gives	you	legal	permission	to	copy,
distribute	and/or	modify	the	software.

		Also,	for	each	author's	protection	and	ours,	we	want	to	make	certain
that	everyone	understands	that	there	is	no	warranty	for	this	free
software.		If	the	software	is	modified	by	someone	else	and	passed	on,	we
want	its	recipients	to	know	that	what	they	have	is	not	the	original,	so
that	any	problems	introduced	by	others	will	not	reflect	on	the	original
authors'	reputations.

		Finally,	any	free	program	is	threatened	constantly	by	software
patents.		We	wish	to	avoid	the	danger	that	redistributors	of	a	free
program	will	individually	obtain	patent	licenses,	in	effect	making	the
program	proprietary.		To	prevent	this,	we	have	made	it	clear	that	any
patent	must	be	licensed	for	everyone's	free	use	or	not	licensed	at	all.

		The	precise	terms	and	conditions	for	copying,	distribution	and
modification	follow.

												GNU	GENERAL	PUBLIC	LICENSE
			TERMS	AND	CONDITIONS	FOR	COPYING,	DISTRIBUTION	AND
MODIFICATION

		0.	This	License	applies	to	any	program	or	other	work	which	contains
a	notice	placed	by	the	copyright	holder	saying	it	may	be	distributed
under	the	terms	of	this	General	Public	License.		The	"Program",	below,
refers	to	any	such	program	or	work,	and	a	"work	based	on	the	Program"
means	either	the	Program	or	any	derivative	work	under	copyright	law:
that	is	to	say,	a	work	containing	the	Program	or	a	portion	of	it,

either	verbatim	or	with	modifications	and/or	translated	into	another
language.		(Hereinafter,	translation	is	included	without	limitation	in
the	term	"modification".)		Each	licensee	is	addressed	as	"you".

Activities	other	than	copying,	distribution	and	modification	are	not
covered	by	this	License;	they	are	outside	its	scope.		The	act	of
running	the	Program	is	not	restricted,	and	the	output	from	the	Program
is	covered	only	if	its	contents	constitute	a	work	based	on	the
Program	(independent	of	having	been	made	by	running	the	Program).
Whether	that	is	true	depends	on	what	the	Program	does.

		1.	You	may	copy	and	distribute	verbatim	copies	of	the	Program's
source	code	as	you	receive	it,	in	any	medium,	provided	that	you
conspicuously	and	appropriately	publish	on	each	copy	an	appropriate
copyright	notice	and	disclaimer	of	warranty;	keep	intact	all	the
notices	that	refer	to	this	License	and	to	the	absence	of	any	warranty;
and	give	any	other	recipients	of	the	Program	a	copy	of	this	License
along	with	the	Program.

You	may	charge	a	fee	for	the	physical	act	of	transferring	a	copy,	and
you	may	at	your	option	offer	warranty	protection	in	exchange	for	a	fee.

		2.	You	may	modify	your	copy	or	copies	of	the	Program	or	any	portion
of	it,	thus	forming	a	work	based	on	the	Program,	and	copy	and
distribute	such	modifications	or	work	under	the	terms	of	Section	1
above,	provided	that	you	also	meet	all	of	these	conditions:

				a)	You	must	cause	the	modified	files	to	carry	prominent	notices
				stating	that	you	changed	the	files	and	the	date	of	any	change.

				b)	You	must	cause	any	work	that	you	distribute	or	publish,	that	in
				whole	or	in	part	contains	or	is	derived	from	the	Program	or	any
				part	thereof,	to	be	licensed	as	a	whole	at	no	charge	to	all	third
				parties	under	the	terms	of	this	License.

				c)	If	the	modified	program	normally	reads	commands	interactively
				when	run,	you	must	cause	it,	when	started	running	for	such
				interactive	use	in	the	most	ordinary	way,	to	print	or	display	an
				announcement	including	an	appropriate	copyright	notice	and	a

				notice	that	there	is	no	warranty	(or	else,	saying	that	you	provide
				a	warranty)	and	that	users	may	redistribute	the	program	under
				these	conditions,	and	telling	the	user	how	to	view	a	copy	of	this
				License.		(Exception:	if	the	Program	itself	is	interactive	but
				does	not	normally	print	such	an	announcement,	your	work	based	on
				the	Program	is	not	required	to	print	an	announcement.)

These	requirements	apply	to	the	modified	work	as	a	whole.		If
identifiable	sections	of	that	work	are	not	derived	from	the	Program,
and	can	be	reasonably	considered	independent	and	separate	works	in
themselves,	then	this	License,	and	its	terms,	do	not	apply	to	those
sections	when	you	distribute	them	as	separate	works.		But	when	you
distribute	the	same	sections	as	part	of	a	whole	which	is	a	work	based
on	the	Program,	the	distribution	of	the	whole	must	be	on	the	terms	of
this	License,	whose	permissions	for	other	licensees	extend	to	the
entire	whole,	and	thus	to	each	and	every	part	regardless	of	who	wrote	it.

Thus,	it	is	not	the	intent	of	this	section	to	claim	rights	or	contest
your	rights	to	work	written	entirely	by	you;	rather,	the	intent	is	to
exercise	the	right	to	control	the	distribution	of	derivative	or
collective	works	based	on	the	Program.

In	addition,	mere	aggregation	of	another	work	not	based	on	the	Program
with	the	Program	(or	with	a	work	based	on	the	Program)	on	a	volume	of
a	storage	or	distribution	medium	does	not	bring	the	other	work	under
the	scope	of	this	License.

		3.	You	may	copy	and	distribute	the	Program	(or	a	work	based	on	it,
under	Section	2)	in	object	code	or	executable	form	under	the	terms	of
Sections	1	and	2	above	provided	that	you	also	do	one	of	the	following:

				a)	Accompany	it	with	the	complete	corresponding	machine-readable
				source	code,	which	must	be	distributed	under	the	terms	of	Sections
				1	and	2	above	on	a	medium	customarily	used	for	software	interchange;	or,

				b)	Accompany	it	with	a	written	offer,	valid	for	at	least	three
				years,	to	give	any	third	party,	for	a	charge	no	more	than	your
				cost	of	physically	performing	source	distribution,	a	complete
				machine-readable	copy	of	the	corresponding	source	code,	to	be

				distributed	under	the	terms	of	Sections	1	and	2	above	on	a	medium
				customarily	used	for	software	interchange;	or,

				c)	Accompany	it	with	the	information	you	received	as	to	the	offer
				to	distribute	corresponding	source	code.		(This	alternative	is
				allowed	only	for	noncommercial	distribution	and	only	if	you
				received	the	program	in	object	code	or	executable	form	with	such
				an	offer,	in	accord	with	Subsection	b	above.)

The	source	code	for	a	work	means	the	preferred	form	of	the	work	for
making	modifications	to	it.		For	an	executable	work,	complete	source
code	means	all	the	source	code	for	all	modules	it	contains,	plus	any
associated	interface	definition	files,	plus	the	scripts	used	to
control	compilation	and	installation	of	the	executable.		However,	as	a
special	exception,	the	source	code	distributed	need	not	include
anything	that	is	normally	distributed	(in	either	source	or	binary
form)	with	the	major	components	(compiler,	kernel,	and	so	on)	of	the
operating	system	on	which	the	executable	runs,	unless	that	component
itself	accompanies	the	executable.

If	distribution	of	executable	or	object	code	is	made	by	offering
access	to	copy	from	a	designated	place,	then	offering	equivalent
access	to	copy	the	source	code	from	the	same	place	counts	as
distribution	of	the	source	code,	even	though	third	parties	are	not
compelled	to	copy	the	source	along	with	the	object	code.

		4.	You	may	not	copy,	modify,	sublicense,	or	distribute	the	Program
except	as	expressly	provided	under	this	License.		Any	attempt
otherwise	to	copy,	modify,	sublicense	or	distribute	the	Program	is
void,	and	will	automatically	terminate	your	rights	under	this	License.
However,	parties	who	have	received	copies,	or	rights,	from	you	under
this	License	will	not	have	their	licenses	terminated	so	long	as	such
parties	remain	in	full	compliance.

		5.	You	are	not	required	to	accept	this	License,	since	you	have	not
signed	it.		However,	nothing	else	grants	you	permission	to	modify	or
distribute	the	Program	or	its	derivative	works.		These	actions	are
prohibited	by	law	if	you	do	not	accept	this	License.		Therefore,	by
modifying	or	distributing	the	Program	(or	any	work	based	on	the

Program),	you	indicate	your	acceptance	of	this	License	to	do	so,	and
all	its	terms	and	conditions	for	copying,	distributing	or	modifying
the	Program	or	works	based	on	it.

		6.	Each	time	you	redistribute	the	Program	(or	any	work	based	on	the
Program),	the	recipient	automatically	receives	a	license	from	the
original	licensor	to	copy,	distribute	or	modify	the	Program	subject	to
these	terms	and	conditions.		You	may	not	impose	any	further
restrictions	on	the	recipients'	exercise	of	the	rights	granted	herein.
You	are	not	responsible	for	enforcing	compliance	by	third	parties	to
this	License.

		7.	If,	as	a	consequence	of	a	court	judgment	or	allegation	of	patent
infringement	or	for	any	other	reason	(not	limited	to	patent	issues),
conditions	are	imposed	on	you	(whether	by	court	order,	agreement	or
otherwise)	that	contradict	the	conditions	of	this	License,	they	do	not
excuse	you	from	the	conditions	of	this	License.		If	you	cannot
distribute	so	as	to	satisfy	simultaneously	your	obligations	under	this
License	and	any	other	pertinent	obligations,	then	as	a	consequence	you
may	not	distribute	the	Program	at	all.		For	example,	if	a	patent
license	would	not	permit	royalty-free	redistribution	of	the	Program	by
all	those	who	receive	copies	directly	or	indirectly	through	you,	then
the	only	way	you	could	satisfy	both	it	and	this	License	would	be	to
refrain	entirely	from	distribution	of	the	Program.

If	any	portion	of	this	section	is	held	invalid	or	unenforceable	under
any	particular	circumstance,	the	balance	of	the	section	is	intended	to
apply	and	the	section	as	a	whole	is	intended	to	apply	in	other
circumstances.

It	is	not	the	purpose	of	this	section	to	induce	you	to	infringe	any
patents	or	other	property	right	claims	or	to	contest	validity	of	any
such	claims;	this	section	has	the	sole	purpose	of	protecting	the
integrity	of	the	free	software	distribution	system,	which	is
implemented	by	public	license	practices.		Many	people	have	made
generous	contributions	to	the	wide	range	of	software	distributed
through	that	system	in	reliance	on	consistent	application	of	that
system;	it	is	up	to	the	author/donor	to	decide	if	he	or	she	is	willing
to	distribute	software	through	any	other	system	and	a	licensee	cannot

impose	that	choice.

This	section	is	intended	to	make	thoroughly	clear	what	is	believed	to
be	a	consequence	of	the	rest	of	this	License.

		8.	If	the	distribution	and/or	use	of	the	Program	is	restricted	in
certain	countries	either	by	patents	or	by	copyrighted	interfaces,	the
original	copyright	holder	who	places	the	Program	under	this	License
may	add	an	explicit	geographical	distribution	limitation	excluding
those	countries,	so	that	distribution	is	permitted	only	in	or	among
countries	not	thus	excluded.		In	such	case,	this	License	incorporates
the	limitation	as	if	written	in	the	body	of	this	License.

		9.	The	Free	Software	Foundation	may	publish	revised	and/or	new	versions
of	the	General	Public	License	from	time	to	time.		Such	new	versions	will
be	similar	in	spirit	to	the	present	version,	but	may	differ	in	detail	to
address	new	problems	or	concerns.

Each	version	is	given	a	distinguishing	version	number.		If	the	Program
specifies	a	version	number	of	this	License	which	applies	to	it	and	"any
later	version",	you	have	the	option	of	following	the	terms	and	conditions
either	of	that	version	or	of	any	later	version	published	by	the	Free
Software	Foundation.		If	the	Program	does	not	specify	a	version	number	of
this	License,	you	may	choose	any	version	ever	published	by	the	Free	Software
Foundation.

		10.	If	you	wish	to	incorporate	parts	of	the	Program	into	other	free
programs	whose	distribution	conditions	are	different,	write	to	the	author
to	ask	for	permission.		For	software	which	is	copyrighted	by	the	Free
Software	Foundation,	write	to	the	Free	Software	Foundation;	we	sometimes
make	exceptions	for	this.		Our	decision	will	be	guided	by	the	two	goals
of	preserving	the	free	status	of	all	derivatives	of	our	free	software	and
of	promoting	the	sharing	and	reuse	of	software	generally.

																NO	WARRANTY

		11.	BECAUSE	THE	PROGRAM	IS	LICENSED	FREE	OF	CHARGE,	THERE
IS	NO	WARRANTY
FOR	THE	PROGRAM,	TO	THE	EXTENT	PERMITTED	BY	APPLICABLE

LAW.		EXCEPT	WHEN
OTHERWISE	STATED	IN	WRITING	THE	COPYRIGHT	HOLDERS
AND/OR	OTHER	PARTIES
PROVIDE	THE	PROGRAM	"AS	IS"	WITHOUT	WARRANTY	OF	ANY
KIND,	EITHER	EXPRESSED
OR	IMPLIED,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED
WARRANTIES	OF
MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.	
THE	ENTIRE	RISK	AS
TO	THE	QUALITY	AND	PERFORMANCE	OF	THE	PROGRAM	IS	WITH
YOU.		SHOULD	THE
PROGRAM	PROVE	DEFECTIVE,	YOU	ASSUME	THE	COST	OF	ALL
NECESSARY	SERVICING,
REPAIR	OR	CORRECTION.

		12.	IN	NO	EVENT	UNLESS	REQUIRED	BY	APPLICABLE	LAW	OR
AGREED	TO	IN	WRITING
WILL	ANY	COPYRIGHT	HOLDER,	OR	ANY	OTHER	PARTY	WHO	MAY
MODIFY	AND/OR
REDISTRIBUTE	THE	PROGRAM	AS	PERMITTED	ABOVE,	BE	LIABLE
TO	YOU	FOR	DAMAGES,
INCLUDING	ANY	GENERAL,	SPECIAL,	INCIDENTAL	OR
CONSEQUENTIAL	DAMAGES	ARISING
OUT	OF	THE	USE	OR	INABILITY	TO	USE	THE	PROGRAM	(INCLUDING
BUT	NOT	LIMITED
TO	LOSS	OF	DATA	OR	DATA	BEING	RENDERED	INACCURATE	OR
LOSSES	SUSTAINED	BY
YOU	OR	THIRD	PARTIES	OR	A	FAILURE	OF	THE	PROGRAM	TO
OPERATE	WITH	ANY	OTHER
PROGRAMS),	EVEN	IF	SUCH	HOLDER	OR	OTHER	PARTY	HAS	BEEN
ADVISED	OF	THE
POSSIBILITY	OF	SUCH	DAMAGES.

													END	OF	TERMS	AND	CONDITIONS

								How	to	Apply	These	Terms	to	Your	New	Programs

		If	you	develop	a	new	program,	and	you	want	it	to	be	of	the	greatest
possible	use	to	the	public,	the	best	way	to	achieve	this	is	to	make	it

free	software	which	everyone	can	redistribute	and	change	under	these	terms.

		To	do	so,	attach	the	following	notices	to	the	program.		It	is	safest
to	attach	them	to	the	start	of	each	source	file	to	most	effectively
convey	the	exclusion	of	warranty;	and	each	file	should	have	at	least
the	"copyright"	line	and	a	pointer	to	where	the	full	notice	is	found.

				<one	line	to	give	the	program's	name	and	a	brief	idea	of	what	it	does.>
				Copyright	(C)	<year>		<name	of	author>

				This	program	is	free	software;	you	can	redistribute	it	and/or	modify
				it	under	the	terms	of	the	GNU	General	Public	License	as	published	by
				the	Free	Software	Foundation;	either	version	2	of	the	License,	or
				(at	your	option)	any	later	version.

				This	program	is	distributed	in	the	hope	that	it	will	be	useful,
				but	WITHOUT	ANY	WARRANTY;	without	even	the	implied	warranty	of
				MERCHANTABILITY	or	FITNESS	FOR	A	PARTICULAR	PURPOSE.		See
the
				GNU	General	Public	License	for	more	details.

				You	should	have	received	a	copy	of	the	GNU	General	Public	License	along
				with	this	program;	if	not,	write	to	the	Free	Software	Foundation,	Inc.,
				51	Franklin	Street,	Fifth	Floor,	Boston,	MA	02110-1301	USA.

Also	add	information	on	how	to	contact	you	by	electronic	and	paper	mail.

If	the	program	is	interactive,	make	it	output	a	short	notice	like	this
when	it	starts	in	an	interactive	mode:

				Gnomovision	version	69,	Copyright	(C)	year	name	of	author
				Gnomovision	comes	with	ABSOLUTELY	NO	WARRANTY;	for	details	type
`show	w'.
				This	is	free	software,	and	you	are	welcome	to	redistribute	it
				under	certain	conditions;	type	`show	c'	for	details.

The	hypothetical	commands	`show	w'	and	`show	c'	should	show	the	appropriate
parts	of	the	General	Public	License.		Of	course,	the	commands	you	use	may
be	called	something	other	than	`show	w'	and	`show	c';	they	could	even	be

mouse-clicks	or	menu	items--whatever	suits	your	program.

You	should	also	get	your	employer	(if	you	work	as	a	programmer)	or	your
school,	if	any,	to	sign	a	"copyright	disclaimer"	for	the	program,	if
necessary.		Here	is	a	sample;	alter	the	names:

		Yoyodyne,	Inc.,	hereby	disclaims	all	copyright	interest	in	the	program
		`Gnomovision'	(which	makes	passes	at	compilers)	written	by	James	Hacker.

		<signature	of	Ty	Coon>,	1	April	1989
		Ty	Coon,	President	of	Vice

This	General	Public	License	does	not	permit	incorporating	your	program	into
proprietary	programs.		If	your	program	is	a	subroutine	library,	you	may
consider	it	more	useful	to	permit	linking	proprietary	applications	with	the
library.		If	this	is	what	you	want	to	do,	use	the	GNU	Lesser	General
Public	License	instead	of	this	License.

<		Previous			<											=	Home	=													>	Next	>

Credits
For	Dev-C++

Developers	:	Colin	Laplace,	Hongli	Lai,	Mike	Berg,	Yiannis	Mandravellos

MingW	compiler	system	:	Mumit	Khan,	J.J.	Var	Der	Heidjen,	Colin	Hendrix	and
GNU	developers

Update	system	and	initial	work	on	the	help	file	:	Kip	Warner

New	Look	theme	:	Gerard	Caulfield:

Gnome	icons	:	Gnome	designers

Blue	theme	:	Thomas	Thron

http://www.bloodshed.net/devcpp.html
http://www.mingw.org/

For	wxDev-C++

Developers:						Guru	Kathiresan,	Malcolm	Nealon,	Esteban	Aguilar,	
																								Edward	Toovey,	Nuklear	Zelph,	Joel	Low,	and	Tony	Reina

Update	of	Help	File:	Tony	Reina

http://www.bloodshed.net/devcpp.html
http://wxdsgn.sourceforge.net/?q=node/19

<		Previous			<											=	Home	=													>	Next	>

Getting	Started
When	you	launch	Dev-C++	for	the	first	time,	you	will	see	the	following	dialog	:

You	can	select	the	language	wxDev-C++	will	use,	as	well	as	the	icon	theme.

To	add	a	XP	flavor	to	wxDev-C++,	check	the	‘Use	XP	Theme’	box.

If	you	installed	wxDev-C++	with	the	included	Mingw	compiler	system,	then	all
MingW	compiler	paths	will	be	set	to	their		correct	values.	If	you	have	previously
installed	versions	of	Cygwin,	MSYS,	or	MingW,	they	might	interfere	with
wxDev-C++.	Although	they	can	be	used,	you'll	have	to	set	up	the	compiler	paths
and	settings	manually	in	the	Tools	menu	under	Compiler	Options.

If	you	also	have	the	MS	Visual	Studio	compiler	installed,	wxDev-C++	will
attempt	to	detect	it	and	add	the	relevant	paths	as	well.

Now	you	can	then	proceed	to	the	Basic	Steps.	

<		Previous			<											=	Home	=													>	Next	>

Creating	a	Project
What	is	a	wxDev-C++	Project	?

				Projects	are	the	way	you	manage	different	source	files	and	compiler/linker
options	inside	wxDev-C++.	It's	an	ini	file	(usually	ending	in	the	.dev	extension),
which	specifies	what	source	files	should	be	included	in	your	program	and	what
compiler/linker	parameters/switches	you	want	to	use	to	build	them.

When	to	use	wxDev-C++	Projects	?

(Answer:	[Almost]	Always)

You	have	more	than	one	source	file	-	Using	Projects	ensures	that	all	of	your
source	files	are	linked	to	the	executable	after	they	are	compiled.
You	need	to	create	a	DLL	or	static	library,	or	want	to	use	resource	files	in
your	program	-	Projects	allow	you	to	specify	the	compiler	and	linker
options	necessary

How	can	I	create	a	wxDev-C++	Project	?

Go	to	the	File	menu	and	click	on	New,	then	Project.	A	dialog	opens,	containing
different	Project	types.

Here	are	the	basic	Dev-C++	project	types	:

Console	application	:	creates	a	console	(command-line	shell)	program
Static	library	:	creates	an	empty	project	with	the	options	needed	for
building	a	static	library
DLL	:	creates	a	Win32	Dynamic	Link	Library

In	addition,	wxDev-C++	contains	three	wxWidgets	(GUI)	project	types:

Empty	wxWidgets	project	-	A	project	that	initially	contains	no	source	files
but	has	the	correct	compiler	and	linker	settings	to	build	wxWidgets	source
code.
wxWidgets	Dialog	-	A	project	that	contains	skeleton	source	files	for	a
wxDialog
wxWidgets	Frame	-	A	project	that	contains	skeleton	source	files	for	a
wxFrame

Now	that	you	selected	your	project	type,	fill	the	name	of	your	project	in	the
corresponding	edit	box,	select	the	programming	language	you	will	be	using	(C
or	C++),	and	click	on	OK.	

<		Previous			<											=	Home	=													>	Next	>

Adding	and	Removing	files
Adding	and	removing	files	is	very	easy.	

You	can	add	multiple	files	in	the	same	time	by	clicking	on	Project	menu,	then	on
Add	to	Project.

You	have	different	ways	for	removing	files	from	your	project.	

Either	click	on	Project	menu,	then	on	Remove	from	Project	and	select	the	file
you	want	to	remove	in	the	list,	or	right-click	on	the	file	you	want	to	remove	in
the	Project	Manager	window,	and	click	on	Remove	file

<		Previous			<											=	Home	=													>	Next	>

Project	options	overview
You	can	load	the	Project	Options	dialog	by	clicking	on	the	Project	menu,	then	on
Options	(shortcut	:Alt+P).

General	sheet	:

				The	first	thing	you	may	notice	is	that	wxDev-C++	allows	for	multiple
compiler	profiles	for	the	same	project.	In	the	Project	Profile	section	there	is	a
drop-down	box	with	the	available	compiler	profiles	for	the	current	project.	Users
can	switch	the	compiler	profile	between	different	compilers	(e.g.	MingW	gcc
and	VS	2008)	or	between	different	settings	of	the	same	compiler	(e.g.	debug
versus	release	profiles).	You	may	add,	remove,	rename,	or	copy	the	profiles	for
the	current	project	by	clicking	on	the	icons	to	the	right	of	the	drop-down	box.	

(Note	that	these	actions	only	affect	the	current	project.)

Other	items	of	this	window:

Name:	Modify	here	the	name	of	your	project.

Icon	:	You	can	assign	an	icon	to	your	program,	either	by	selecting	one	in	the
Icon	Library,	or	by	giving	your	own	icon	using	the	Browse	button.

Type	:	This	is	an	important	settings	which	indicates	which	project	type	you	are
making.	Select	:

Win32	GUI	:	if	your	application	is	a	graphical	user	interface
Win32	Console	:	if	your	application	needs	a	console	window	(MS-DOS	or
command	shell	window)
Win32	Static	Lib	:	if	you	are	creating	a	static	library
Win32	DLL	:	if	you	are	creating	a	dynamic	link	library	(DLL)

Files	sheet	:

Regardless	of	the	compiler	used,	wxDev-C++	uses	the	MingW	make	build

system	to	compile	and	link	projects.	Makefiles	are	automatically	generated
based	on	the	source	files	contained	in	the	project.	This	window	enables	you	to
modify	the	compilation	commands	and	options	for	each	source	file	to	customize
the	makefile	that	is	generated.

Build	priority	:	Increment	this	value	in	order	to	have	the	source	file	compiled	in
priority	of	the	others

Include	in	compilation	:	If	not	set,	your	file	will	not	be	compiled.

Include	in	linking	:	Add	the	object	file	generated	from	the	source	file	to	the
linking	stage

Compile	file	as	C++	:	Check	this	flag	if	it	is	a	C++	source	file

Override	build	command	:	For	experimented	users	only.	You	can	change	there
the	command	used	by	Dev-C++	to	compile	your	file

Compiler	sheet	:

See	the	Compiler	Options	section	for	more	details.

Parameters	sheet	:

You	can	provide	here	command	line	arguments	to	the	C/C++	compilers	and
linker.

Use	the	linker	parameters	box	to	specify	libraries	to	link	with	your	project.	
For	more	information,	please	read	the	linker	library	section.

Directories	sheet	:

You	can	provide	here	a	list	of	Includes,	Resources	and	Libraries	directories	to	be
searched	when	compiling/linking.	These	directories	are	only	used	for	the	current
project	and	profile.

Build	Options	sheet	:

Executable	output	directory	:	Specify	here	the	directory	where	your	executable
will	be	created	(default	is	project’s	directory).

Object	file	output	directory	:	Specify	here	the	directory	where	your	object	files
will	be	created	(default	is	source	file’s	directory).

Override	output	filename	:	You	may	change	the	output	filename	of	your	program
here.

Makefile	sheet	:

wxDev-C++	automatically	creates	a	MingW	Makefile	for	taking	care	of	the
building	process.	If	you	are	experienced	with	makefiles	and	want	to	add	other
lines,	you	can	do	it	here.	Or,	you	can	create	your	own	custom	makefile	and	have
the	IDE	use	the	custom	makefile	rather	than	the	auto-generated	one.

Version	Info	sheet	:

You	can	specify	version	information	for	your	program	here.	This	info	shows	up
when	you	right	click	on	the	executable's	icon	and	select	"Properties".

<		Previous			<											=	Home	=													>	Next	>

Linking	libraries	with	your	project
A	little	history	:

MingW/GNU

Library	filenames	under	the	GNU	system	are	in	the	form	libNAME.a	(where
NAME	is	the	name	of	the	library,	like	wsock32).	

For	example,	if	you	want	to	use	the	wsock32	(winsock)	library,	the	filename	will
be	libwsock32.a	
The	gcc	parameter	for	linking	a	library	is	–NAME,	so	for	linking	with	the
wsock32	library	we	would	give	GCC	the	–lwsock32	parameter.

MS	VC++

MS	libraries	are	in	the	form	NAME.lib	(where	NAME	is	the	name	of	the	library,
like	wxmsw28).	MS	VC	uses	the	entire	name	so,	for	example,	linking	the
wxWidgets	2.8.9	library	would	be	wxmsw28.lib.	

Linking	your	library:

Click	on	Project	menu	then	on	Options.	Now	click	on	the	Parameters	sheet.

In	the	Linker	edit	box,	you	can	specify	as	many	libraries	as	you	need.	You	can
also	pass	the	complete	filename	of	the	library.

Example	:	–lm	–lwsock32	c:\libs\mylib.a	c:\objs\myobj.o

You	may	also	use	the	Add	Library	or	Object	button	 	to
select	your	library	from	a	list.

<		Previous			<											=	Home	=													>	Next	>

Compiling	and	linking	process
How	does	the	compile	and	link	process	works	?

The	build	process	can	be	generally	divided	into	four	steps	:

1.	 Preprocessor	:	expands	macros	and	include	files	in	your	source.
2.	 Compiler	:	transform	your	source	file	into	assembly	code	(a	processor

language	that's	human	readable)
3.	 Assembler	:	takes	the	assembly	code	and	generate	machine-readable	code

(binary	object	code)
4.	 Linker	:	assembles	and	resolves	object	codes	together	to	create	a	single

executable.

How	to	do	this	in	wxDev-C++	?

Just	go	to	the	Execute	menu	and	click	Compile	 (shortcut	:	Ctrl+F9),	and
wxDev-C++	will	take	care	of	the	4	build	steps.

Look	at	the	bottom	panel	of	wxDev-C++,	you	should	get	something	like	this	:

This	log	window	shows	you	what	wxDev-C++	is	doing	(the	program	it	executes,
the	files	it	is	creating,	...).

If	your	program	compiled,	you	will	see	the	message	‘Compilation	successful’
in	this	window.

If	compiling	or	linking	fails,	you	will	see	a	list	of	the	errors	on	the	bottom	panel	:

You	can	directly	jump	to	the	line	in	your	code	where	the	error	appears	by
double-clicking	on	item.

Note,	the	GNU/MingW	Makefile	system	that	we	use	should	detect	any	files	that
have	been	changed	between	builds	and	only	re-compile	those	files.		However,
there	are	some	times	when	you	may	want	to	just	force	the	Makefile	system	to
rebuild	everything	in	the	project.	To	do	this,	just	go	to	the	Execute	menu	and
Rebuild	All	(shortcut:	Ctrl+F11).	Rebuild	all	is	equivalent	to	calling	Clean	and
then	Compile.

<		Previous			<											=	Home	=													>	Next	>

Executing	your	program
The	Basics

Executing	your	program	is	as	simple	as	clicking	on	the	Execute	menu,	then	Run	
	(shortcut	:	Ctrl+F10).

You	can	also	use	Compile	and	Run	 	(shortcut	:	F9)	to	build	your	program	and
then	executing	it.

<		Previous			<											=	Home	=													>	Next	>

Introduction	to	debugging
				All	developers	make	mistakes,	but	some	mistakes	are	harder	to	detect	than
others.	Compile-time	mistakes	are	usually	the	easiest	to	spot	because	wxDev-
C++	will	provide	a	list	of	those	errors	(including	line	numbers	and	suggested
corrections)	in	the	Compiler	Output	window.	Runtime	errors	(or	"bugs")	are
more	insidious	because	the	developer	has	no	way	of	knowing	what	line	of	code
caused	the	dreaded	infinite	loop	or	"Access	Violation"	or	"Segmentation
Fault"	or	"Blue	Screen	of	Death".	Thus	debuggers	were	created	to	help
developers	investigate	their	program	while	it	is	running.

				A	debugger	is	a	program	that	runs	your	program	inside	of	it.	It	keeps	track	of
your	program's	functions,	variables	and	instructions.	It	is	capable	of	pausing
your	program	at	a	given	moment	(aka	breakpointing),	allowing	you	to	view	(and
even	modify)	the	values	of	your	variables	at	that	moment,	and	then	continuing
the	execution	of	the	program	either	one	instruction	at	a	time	(stepping)	or	to	the
end	of	execution.	You	can	set	breakpoints	anywhere	in	your	code	:	once	your
program	reaches	that		code	at	runtime,	the	debugger	will	pause	your	program
and	let	you	examine	its	variables	at	that	time.

				This	tutorial	explains	the	use	of	the	MingW	GNU	debugger	(gdb).	It	can	only
be	used	with	the	MingW	gcc	compiler.	Note	that	gdb	is	intended	to	be	a
command-line	interface.	It	runs	as	its	own	shell	allowing	the	user	to	run	gcc-
compiled	programs	from	within	that	shell.	All	we	do	in	wxDev-C++	is	send
messages	to	the	gdb	shell	and	parse	the	output	as	it	occurs.	

				With	gdb	(as	with	all	debuggers),	we	can:

specify	places	within	the	program	to	halt	execution	(aka	breakpoints)
step	through	the	program	one	line	of	source	code	at	a	time
view	the	values	of	variables	in	realtime	as	the	program	executes
evaluate	the	memory	stack	when	a	program	throws	an	error

Note	that	a	web	search	will	reveal	many	gdb	tutorials	out	there	that	are	far	more	comprehensive	than	this
one	in	terms	of	scope	(for	example,	http://dirac.org/linux/gdb/).	Please	consider	and	review	them	if	you	really
want	to	learn	the	in's	and	out's	of	using	gdb.

http://www.gnu.org/software/gdb/
http://www.mingw.org/
http://dirac.org/linux/gdb/

There	are,	in	fact,	other	graphical	programs,	which	also	use	gdb	in	a	similar	manner.	For	instance,	the	Data
Display	Debugger	(ddd)	is	a	popular	GUI	interface	for	gdb	debugging.	You	may,	in	fact,	prefer	to	use	these
3rd	party	programs	instead	of	the	built	in	wxDev-C++	interface.

				

http://www.gnu.org/software/ddd

<		Previous			<											=	Home	=													>	Next	>

Example	Program	to	Debug
				We're	going	to	explain	the	debug	process	by	working	through	an	example.
	Although	we	are	limiting	our	discussion	to	the	gdb	debugger,	the	same	example
could	be	used	for	other	debuggers.

				To	create	our	example	debug	project,	go	to	the	File	menu	and	select	New	and
then	Project.	The	new	project	dialog	will	be	displayed.	

Select	the	Console	Application	from	the	window.		We'll	name	our	project
"sampleDebug".	You'll	notice	that	a	new	project	will	be	created	with	a	skeleton
C++	code	called	main.cpp.		Replace	the	C++	code	in	main.cpp	with	the
following	code:

main.cpp

#include	<cstdlib>

#include	<iostream>

using	namespace	std;

float	fGlobal	=	1234.56;

void	test2(int*	iTest2a,	int	iTest2b)

{

				char	chTest2	=	'r';

				*iTest2a	=	iTest2b;

				printf("Finished	test2\n");

}

void	test()

{

				int	iTesta,	*iTestb;	/*	Put	a	breakpoint	here	*/

				test2(&iTesta,	5);

				printf("iTesta	=	%d\n",	iTesta);

				/*	The	next	lines	will	cause	a	runtime	error	

															since	iTestb	never	gets	initialized	*/

				/*

				test2(iTestb,	3);

				printf("iTestb	=	%d\n",	iTestb);

				*/

}

int	main(int	argc,	char	*argv[])

{

				float	fMain	=	3.1415;

				test();

				printf("Press	any	key	to	continue...");

				getchar	();	/*	Pause	the	program	from	exiting	*/

				return	EXIT_SUCCESS;

}

				Remember	to	save	the	project	after	you've	replaced	the	contents	of	main.cpp.

				This	sample	project	will	demonstrate	the	concepts	of	functions,	local	and
global	variables,	breakpoints,	and	backtraces.		Note	that	lines	24-27	are	currently
commented.

					/*
				test2(iTestb,	3);

				printf("iTestb	=	%d\n",	iTestb);

				*/

These	lines	will	not	cause	an	error	during	compile-time	(i.e.	the	Mingw	gcc
compiler	will	create	an	executable	with	no	reported	compile	errors),	but	it	will
cause	a	core	dump	at	runtime	due	to	the	use	of	the	uninitialized	variable	iTestb.

In	the	next	few	sections,	we'll	put	our	sampleDebug	project	to	good	use
explaining	how	to	use	the	debugger...

<		Previous			<											=	Home	=													>	Next	>

Debugging	your	program
Launching	your	program	into	the	debugger	is	easy.	
Just	go	to	the	Debug	menu	and	click	on	Debug	(shortcut	:	F8).

If	you	do	not	have	debugging	information	set	in	your	project,	wxDev-C++	will
ask	you	if	you	want	to	rebuild	your	program	with	this	information	enabled.	You
can	manually	select	that	option	in	Compiler	Option	in	the	Linker	section.	

Note	that	the	executable	size	has	grown	because	the	compiler	has	added
additional	information	that	the	debugger	accesses	during	runtime.	After	your
project	has	been	rebuilt	with	the	debugger	information	included,	you	can	click
Debug	again.

The	debugger	has	now	loaded	your	program	and	runs	it.	

				What	happened?		Well,	as	the	Debugger	Output	window	shows	above,
wxDev-C++	started	gdb	and	ran	your	executable	called	"sampleDebug.exe".
	The	program	had	no	errors	and	no	breakpoints	and	so	it	exited	normally.	
Since	the	program	exited	normally,	this	output	is	probably	only	interesting	if	you
are	familiar	with	gdb.	
You	will	also	have	seen	your	program	run	in	a	console	window	like	this

				You	can	also	send	commands	directly	to	the	debugger	by	using	the	"Send
command	to	GDB"	edit	box	just	above	the	output.	If	you	do	not	know	gdb,	you
can	type	help	to	display	a	list	of	commands.	
You	can	see	(almost)	all	of	GDB's	output	by	turning	on	Verbose	Debugger
Output	in	the	Debug	menu.
Remember	that	wxDev-C++	is	really	just	running	a	shell	that	passes	these
commands	to	the	debugger	and	reads	the	output	returned.	You	could	re-create
the	same	commands	by	using	gdb	from	within	a	DOS	shell.

				In	the	next	sections,	we'll	cover	several	useful	(and	more	interesting)	aspects
of	the	debugger	:

Breakpoints
Stepping	through		your	code
Watch	variables
Backtracing
Using	the	CPU	Window

<		Previous			<											=	Home	=													>	Next	>

Setting	Breakpoints
You	can	use	breakpoints	to	pause	your	program	at	a	certain	instruction	(i.e.	at	a
line	of	code).

To	add	a	breakpoint,	first	select	the	line	of	code	where	you	want	to	pause	by
simply	positioning	the	text	cursor	on	it.	Now,	click	on	the	Debug	menu,	then	on
Toggle	Breakpoint	(shortcut	:	Ctrl+F5).	Clicking	on	the	gutter	(at	the	left	of	the
editor)	in	front	of	your	line	will	have	the	same	effect.	You	can	set	multiple
breakpoints.	Clicking	on	the	checkmark	in	the	gutter	will	remove	the	breakpoint.

Note	that	if	the	breakpoint	is	set,	the	line	will	be	highlighted	red	and	a
checkmark	will	appear	in	the	left	gutter.

Now	re-run	the	debugger	(shortcut:	F8)	.	wxDev-C++	will	run	your	program
via	the	debugger	and	will	warn	you	that	your	breakpoint	was	reached	by
changing	the	line	color	to	blue.

In	the	next	steps	we'll	see	how	to	examine	the	variables	and	step	through	the
program's	execution.

<		Previous			<											=	Home	=													>	Next	>

Stepping	Through	Your	Program
Once	a	breakpoint	has	been	reached,	you	can	step	into	the	code	of	your
application	in	different	ways	:

Next	Step	 	(shortcut	:	F7)	:			The	debugger	will	execute	the	next
instruction	(i.e.	line	of	code)	and	pause

Step	Into	 	(shortcut	:	Shift+F7)	:		The	debugger	will	execute	the	next
instruction	(i.e.	line	of	code)	and	pause.	If	that	instruction	is	a	function	call
it	will	jump	into	the	function	and	future	steps	will	go	line	by	line	through
that	function	until	it	returns	to	the	line	that	called	it.
-exec-finish :			The	debugger	will	resume	execution	until	the	current
function	is	exited.
Debug	/	Continue	 	(shortcut	:	F8)	:		The	debugger	will	start	or	continue
the	execution	of	your	program	until	another	breakpoint	is	reached.

If	your	program	is	still	paused	at	the	breakpoint,	try	hitting	F7	to	continue	to	the
next	step.	You'll	note	that	the	cursor	in	the	source	code	moves	down	to	the	next
line	of	code	and	highlights	it	in	blue.	The	breakpoint	returns	to	its	red	highlight.

If	you	keep	hitting	F7,	the	debugger	will	continue	executing	the	program	one
line	at	a	time	until	it	reaches	the	end.	Note	that	this	is	very	useful	in	sections	of
your	code	where	you	think	there	may	be	logic	errors	or	infinite	loops.	You	can
essentially	slow	the	program	execution	down	and	view	each	instruction	as	it
happens.

<		Previous			<											=	Home	=													>	Next	>

Watching	variables
				One	of	the	most	interesting	aspects	of	debugging	is	the	possibility	to	display
the	value	of	your	variables	at	a	given	time.	This	way	you	can	be	sure	your
variable	(e.g.	a	counter	index)	has	the	value	you	would	expect.

				wxDev-C++	is	able	to	conveniently	show	you	the	contents	of	your	classes,
strings,	structures/unions,	arrays	and	other	variables	in	the	Debug	Local
Variables	window:

Note	that	in	the	above	window,	iTesta	has	already	had	its	value	set	to	"5",	but
iTestb	has	not	been	set	(the	value	will	be	random	and	depends	on	what	data	is	at
that	pointer	at	that	given	time).	

Now	keep	this	Local	Variables	window	open	and	re-start	the	debugging.		You
should	be	able	to	"step	through"	the	code	after	the	breakpoint	(discussed	in	the
last	section)	and	watch	the	iTesta	variable	change	from	a	random	value	to	"5".

Adding	Watchpoints

Watchpoints	are	like	breakpoints	that	are	triggered	not	by	a	particular	line	of
code,	but	by	the	change	in	value	of	a	particular	variable	in	code.		For	example,
let's	say	that	you've	got	a	large	program	and	think	that	your	variable	iCount	is
being	changed	unexpectedly.		You	can	set	a	regular	breakpoint	(at	any	line
number),	run	the	debugger	to	the	breakpoint,	and	then	add	a	watch	to	iCount.

	The	debugger	will	then	always	break	whenever	the	value	of	iCount	changes.

To	set	a	watchpoint,	add	a	normal	breakpoint	to	your	code	and	run	the	debugger.
On	the	Debug	window,	click	on	the	Watch	tab.	Then,	click	anywhere	within	the
Watch	tab	space.	An	Add	Watch		(shortcut	:	F4)	menu	should	appear.

Once	you	select	Add	Watch,	a	dialog	box	should	appear:

				Type	the	name	of	your	variable	in	the	dialog,	and	press	OK.	If	you	select	a
word	in	the	current	source	file	and	press	F4,	it	will	add	a	watch	of	the	selected
text	without	asking	for	a	variable	name.	A	breakpoint	can	be	generated	when	the
value	of	the	variable	is	written,	read,	or	both.

				Once	a	watchpoint	variable	is	set,	it	will	continue	to	be	monitored	in	future
debugging	runs.	You	can	also	modify	the	value	of	your	watched	variable	at	any
time	during	debugging	by	right	clicking	on	the	variable	name	in	the	Debug
Watch	window	and	selecting	Modify	value.	Note	that	you	are	changing	this	value
outside	of	your	source	code.	The	next	time	you	run	the	debug,	the	value	you
entered	is	lost	and	the	program	executes	normally.

Important	Notes:

When	using	pointers	to	structures	or	classes,	if	you	want	to	display	all	the
members	of	variable	my_pointer	then	you	need	to	watch	*my_pointer	(‘*’	is
the	value-operator).	Watching	only	my_pointer	would	just	display	the
address	contained	in	my_pointer.
Sometimes	the	debugger	may	not	know	the	type	of	a	pointer,	and	cannot
display	all	of	the	members	of	the	pointed	structure	or	class.	You	can	bypass
this	problem	by	casting	your	watched	variable.	For	example,	if	the
debugger	cannot	show	the	contents	of	my_pointer	of	type	MyPointer,	you
could	try	adding	the	watch	variable:	*(MyPointer	*)my_pointer
If	you	are	watching	a	wxString	variable,	you	might	find	that	when	the	string
changes,	the	debugger	stops	inside	one	of	wxWidgets'	string	functions	and
pressing	F7	has	no	effect.	The	solution	is	to	set	an	ordinary	breakpoint	on
the	next	line	and	press	F8	to	continue	to	the	new	breakpoint.
This	happens	because	GDB	is	a	general-purpose	debugger	and	it	doesn't
know	that	you	are	not	interested	in	the	internal	workings	of	wxWidgets.	It	is
normally	seen	as	undesirable	behaviour	but	it	is	not	a	fault.

<		Previous			<											=	Home	=													>	Next	>

Backtracing
				Backtracing	is	the	debugging	concept	that	tells	you	which	functions	were
called	before	reaching	a	breakpoint	or	an	interruption	(like	an	access	violation	or
other	runtime	error).

				Let’s	do	a	simple	test.	Move	the	breakpoint	in	your	sampleDebug	project	to	the
printf	line	within	the	test2	(line	12).	Then,	re-run	the	debugger	(shortcut:	F8).
If	you	look	at	the	Debug	window	in	the	Backtrace	tab,	you	should	see	something
like	this:

				This	correctly	shows	the	list	of	functions	that	have	been	called	(since	the	start
of	the	program)	before	reaching	the	breakpoint.	Clicking	on	a	function	in	this	list
will	bring	you	to	its	implementation	in	your	source	code.	So,	for	example,	if	you
click	on	test,	the	IDE	will	take	you	to	line	19	in	the	source	code.

				Now	uncomment	lines	24-27	in	the	function	test.	When	you	try	to	debug	this
time,	the	program	will	eventually	cause	an	access	violation	and	end.		The	IDE
should	display	which	line	triggered	the	error	and	the	backtrace	should	display
the	functions	called	to	reach	it.

<		Previous			<											=	Home	=													>	Next	>

Using	CPU	window
wxDev-C++	provides	a	CPU	window	to	expert	developers	who	want	access	to
the	status	of	CPU	registers,	memory	and	instructions.

To	show	the	CPU	window,	wait	for	a	breakpoint	or	interruption	to	raise	in	your
program	and	go	to	the	Debug	menu,	then	click	View	CPU	Window.	A	window
similar	to	this	will	appear,	but	the	memory	pane	will	be	blank:

On	the	top	left,	you	can	find	the	assembler	instructions	of	the	current	function.
You	can	display	the	assembler	code	of	any	other	function	by	typing	its	name	in
the	Function	field,	then	pressing	the	Enter	key.

On	the	bottom	left	is	the	Memory	pane,	which	you	can	use	to	display	the
contents	of	memory.	You	can	view	any	accessible*	area	of	memory.	For
example,	say	we	want	to	see	where	the	character	chTest2	is	stored.	(You	will

need	to	step	through	the	program	and	stop	at	line	12	to	see	this	example).	Type
"&chTest2"	into	the	address	box	and	click	"Refresh".	The	number	'72'	and	the
character	'r'	will	appear.	This	is	the	value	of	chTest2	in	hexadecimal	and	as	a
character.	Change	count	to	64	and	refresh.	Now	you	will	see	chTest2	and	the
following	63	bytes	displayed,	in	hexadecimal	in	the	left-hand	block	and	the
corresponding	characters	in	the	right-hand	block.	You	can	obtain	the	address
where	chTest2	was	stored	by	reading	off	the	address	and	counting	columns	to
the	first	value	(GDB	converted	what	you	typed	in	the	address	box	to	the	numeric
address,	you	are	likely	to	see	a	different	address	to	that	shown	here).	You	can
directly	type	addresses	in	decimal	('2359047')	or	hexadecimal	('0x23FF07')
format	as	well	as	indirectly	('&chTest2').
*	Some	memory	areas	are	inaccessible	and	cannot	be	displayed.

On	the	right,	are	the	contents	of	the	CPU	registers.		

<		Previous			<											=	Home	=													>	Next	>

Debugging	multi-threaded	programs
The	GDB	Debugger	manual	describes	multi-threaded	programs:

"	...a	single	program	may	have	more	than	one	thread	of	execution.	The	precise	semantics	

of	threads	differ	from	one	operating	system	to	another,	but	in	general	the	threads	of	a	

single	program	are	akin	to	multiple	processes	—	except	that	they	share	one	address	space	

(that	is,	they	can	all	examine	and	modify	the	same	variables).	On	the	other	hand,	each	

thread	has	its	own	registers	and	execution	stack,	and	perhaps	private	memory."

Debugging	a	multi-threaded	program	is	broadly	similar	to	debugging	a	single-
threaded	program,	however	a	number	of	points	must	be	borne	in	mind:

A	breakpoint	may	be	set	in	any	part	of	the	program	in	the	normal	way.	If	the
breakpoint	is	set	in	a	function	or	method	that	was	or	will	be	started	as	a
separate	thread,	then	execution	halts	as	normal	when	the	breakpoint	is	hit.	If
the	function	or	method	executes	in	several	threads,	then	execution	halts
each	time	the	breakpoint	is	hit,	no	matter	which	thread	it	is	in.
When	a	thread	stops,	usually	because	a	breakpoint	or	watchpoint	is	hit,	then
all	currently	executing	threads	stop.	Only	the	thread	that	initiated	the	stop	is
guaranteed	to	stop	at	a	source	line.	The	other	threads	may	stop	anywhere,
including	part-way	through	a	statement.
The	thread	that	initiated	the	stop	becomes	the	currently	active	thread	and
the	focus	of	debugging.
The	currently	active	thread	is	marked	with	an	asterisk	'*'	in	the	Threads	tab.
When	a	thread	is	started	with	"Debug"	[F8],	"Next	Step"	[F7],	"Step	Into"
[Shift+F7]	or	any	other	command	that	causes	execution	to	begin,	ALL
stopped	threads	will	re-start.
A	single	step	might	not	complete.	It	is	possible	for	a	breakpoint	or	another
cause	in	another	thread	to	halt	execution	before	the	first	thread	completes
the	step	you	requested.
It	is	not	possible	to	separately	identify	watched	variables	that	have	the	same
name,	but	which	are	in	different	threads;	hence	the	program	will	stop	when
any	instance	of	the	watched	variable	changes.	However,	the	thread	in	which
the	watched	variable	changed	will	become	the	current	thread,	and	both	the
Local	Variables	tab	and	the	Watches	tab	will	show	the	values	of	the
variables	in	that	current	thread.

Unless	you	examine	memory	directly,	the	CPU	window	also	operates	on	the
current	thread.	Unlike	Local	Variables,	Watches	and	Threads,	the	panes	of
the	CPU	window	do	not	refresh	automatically	and	you	must	click	Refresh
on	each	pane	as	appropriate.
	

<		Previous			<											=	Home	=													>	Next	>

Integrated	Templates
				wxDev-C++	uses	a	template	system	to	allow	the	user	to	more	easily	create
specific	projects.	By	this	point	you've	encountered	templates	without	knowing	it.
When	you	select	File,	New,	Project	on	the	IDE	menu,	the	project	type	options
listed	in	the	dialog	box	(e.g.	Console	application,	wxWidgets	frame,	etc.)	are
preset	templates.

Templates	usually	include	two	components:

1.	 A	set	of	source	files		-	These	source	files	contains	the	minimal	amount	of
code	needed	to	build	the	application

2.	 Project	file	-	A	preset	project	file	(extension	.dev)	containing	all	of	the
compiler	and	linker	options	necessary	to	build	the	application.

Templates	are	usually	stored	within	the	Templates	subdirectory	under	the
wxDev-C++	installation	directory.	Let's	look	at	a	simple	example	of	a	template
from	that	directory.

Templates\2-ConsoleApp.dev

[Template]

ver=3

Name=Console	Application

IconIndex=1

Description=A	console	application	(MSDOS	window)

Catagory=Basic	[Project]

UnitCount=1

Name=Console	App

ProfilesCount=2

ProfileIndex=0	

[Unit0]

CName=main.c

CppName=main.cpp

C=consoleapp_c.txt

Cpp=consoleapp_cpp.txt

[Profile0]

ProfileName=Mingw	3.4.2

Type=1

ObjFiles=

Includes=

Libs=

PrivateResource=

ResourceIncludes=

MakeIncludes=

Compiler=

CppCompiler=

Linker=

PreprocDefines=

CompilerSettings=0000000000000000000000

Icon=

ExeOutput=Output\MingW

ObjectOutput=Objects\MingW

OverrideOutput=0

OverrideOutputName=

HostApplication=

CommandLine=

UseCustomMakefile=0

CustomMakefile=

IncludeVersionInfo=0

SupportXPThemes=0

CompilerSet=0

compilerType=0

[Profile1]

ProfileName=MS	VC++	2005

Type=1

ObjFiles=

Includes=

Libs=

PrivateResource=

ResourceIncludes=

MakeIncludes=

Compiler=

CppCompiler=

Linker=

PreprocDefines=

CompilerSettings=000000000000010000000000000000000000

Icon=

ExeOutput=Output\MSVC++2005

ObjectOutput=Objects\MSVC++2005

OverrideOutput=0

OverrideOutputName=

HostApplication=

CommandLine=

UseCustomMakefile=0

CustomMakefile=

IncludeVersionInfo=0

SupportXPThemes=0

CompilerSet=1

compilerType=1

				The	template	above	sets	up	a	generic	console	project	(i.e.	a	DOS	shell
application).		In	the	[Project]	section,	one	source	code	unit	and	two	compiler
profiles	are	defined.		The	source	code	unit	is	further	specified	as	consisting	of	a
C++	skeleton	code	which	is	derived	from	the	file	consoleapp_cpp.txt	and
renamed	as	file	main.cpp.	The	two	profiles	are	further	specified	as	a	MingW
gcc	and	a	MS	VC++	2005	compiler	profile.

				Using	a	text	editor,	you	can	easily	create	your	own	templates	for	use	with
wxDev-C++.	However,	wxDev-C++	can	also	automatically	create	templates	for
you	based	on	your	existing	projects.	For	example,	let's	say	that	you	frequently
like	to	use	the	Boost,	wxWidgets,	and	SQLite	libraries	in	your	projects.		You'd
like	to	create	a	Boost/wx/Lite	(let's	call	it	"BWL")	template	that	sets	up	all	of	the
includes,	switches,	and	base	code	so	that	whenever	you	create	a	new	project,	you

can	have	the	template	handle	the	basic	setup	and	jump	right	into	the	main
programming.	Here's	how	to	create	your	BWL	template:

1.	 Create	the	most	basic	project	you	can	that	correctly	compiles,	links,	and
executes	using	the	Boost,	wxWidgets,	and	SQLite	libraries.

2.	 On	the	File	menu	select	New	and	then	Template.	A	new	template	window

appears.	
3.	 In	the	Template	Info	tab,	you	can	specify	the	name,	description,	type,	and

icons	associated	with	this	template.
4.	 In	the	Files	tab,	you	can	select	which	files	of	the	current	project	you	want	to

include	in	the	template.	Whenever	you	create	new	projects	with	this
template,	those	files	(and	their	contents)	will	be	generated	in	the	new
project.

5.	 In	the	Extras	tab,	you	can	specify	extra	compiler	and	linker
switches/parameters	that	you	wish	to	include	in	the	template	for	new
projects.

				Once	you've	filled	out	all	of	the	necessary	information	for	your	new	template,
hit	the	Create	button	and	save	the	template	with	a	unique	name	(e.g.	BWL-
template.dev).

				To	test	your	new	template,	close	the	current	project	and	try	to	create	a	new
project	(File,	New,	Project).	Your	BWL	template	should	appear	as	an	option	in

the	list	and	can	be	used	like	any	other.

<		Previous			<											=	Home	=													>	Next	>

Getting	and	Installing	Packages
				wxDev-C++	makes	use	of	Dev-C++'s	DevPak	system	for	updating	and
improving	the	program.		For	example,	if	you	need	to	use	SQLite	or	OpenSSL	in
your	programs,	there	are	probably	DevPaks	out	there	that	will	allow	you	to
automatically	add	the	header	files,	libraries,	and	templates	needed	to	easily	add
these	functions	to	your	programs.	DevPaks	are	also	used	to	automatically	update
the	IDE	or	the	RAD.

What's	in	a	DevPak?

				A	DevPak	is	really	just	a	compressed	package	containing	files	that	will	be
copied	to	your	computer.		The	DevPak	creator	first	creates	a	file	(extension
.devpackage)	that	contains	what	files	to	include	in	the	DevPak	and	where	to
copy	them	on	the	target	computer.		Those	files	are	then	added	to	a	single	file
using	the	tar	archiving	tool	(extension	.tar)	and	that	single	archive	file	is
compressed	using	the	bzip2	tool	(extension	.tar.bz2).	The	single,	compressed
archive	file	is	given	the	extension	.devpak,	but	it	is	actually	just	a	tar'd,	bzip2'd
archive	similar	to	other	packages	you	may	have	downloaded.	Although	you	can
create	DevPaks	manually,	the	developers	of	Dev-C++	made	the	process	even
easier	by	providing	a	GUI	for	making	DevPaks	called	PackMaker.	You	tell
PackMaker	what	files	to	include	in	your	DevPak	and	in	what	directories	to
install	those	files,	and	PackMaker	handles	the	archiving	for	you.

Where	do	I	get	DevPaks?

The	easiest	way	to	get	DevPaks	is	to	use	wxDev-C++'s	web	update	feature.
WebUpdate	searches	a	list	of	DevPak	servers	and	tells	you	if	the	ones	online	are
newer	than	the	ones	you	already	have	installed.	To	activate	WebUpdate,	go	to
the	Tools	menu	and	select	Check	for	Updates/Packages.	

http://devpaks.org/
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Rapid_application_development
http://en.wikipedia.org/wiki/Tar_%28file_format%29
http://www.bzip.org/
http://en.wikipedia.org/wiki/Graphical_user_interface

				You	can	select	the	online	DevPak	server	in	the	dropdown	box	and	then	click
the	Check	for	Updates	button	to	download	a	list	of	available	DevPaks	on	that
server.	Note	that	we	suggest	using	DevPaks	from	the	wxDev-C++	server	because
we	know	they'll	work	with	the	wxDev-C++	IDE.		Other	DevPaks	may	require
some	manual	intervention	to	get	the	correct	paths	for	the	compiler	and	linker.

				Once	you	find	a	DevPak	you	want	to	download,	click	on	the	empty	checkbox
to	the	right	of	its	name	and	then	click	the	Download	Selected	button	at	the
bottom,	right	of	the	window.	The	DevPak	will	be	download	from	the	webserver
and	will	begin	the	install	process:

				In	the	above	case,	I've	selected	the	wxBzipStream	DevPak	to	install.		There's
usually	a	Welcome	screen	that	explains	what	the	package	will	install	and	screens
for	the	ReadMe	and	License	files	that	typically	come	with	packages.		Continue
the	DevPak	installation	by	clicking	on	the	Next	button	until	you	are	told	that	the
DevPak	has	installed	successfully.	Once	finished,	our	wxBzipStream	library
should	be	installed	on	our	computer	and	ready	for	use	in	our	programming.

Managing	DevPaks

How	do	I	know	that	my	new	DevPak	really	installed	correctly?
What	happens	if	I	want	to	uninstall	it?

				To	manage	your	DevPaks,	the	Dev-C++	developers	created	a	DevPak
manager	called	PackMan.	To	activate	PackMan	click	on	the	Tools	menu	and
select	Package	Manager.	

				As	you	can	see,	the	wxBzipStream	package	is	shown	along	with	the	other
packages	installed	on	my	system.	In	the	notebook	page	to	the	left	of	the	screen,
you'll	see	that	the	General	tab	lists	the	name,	version,	and	description	of	the
DevPak.	If	you	click	on	the	Files	tab,	you'll	see	a	list	of	the	files	that	are
associated	with	this	DevPak	and	where	they	have	been	installed	on	your
computer.

To	verify	that	the	DevPak	successfully	installed	all	of	its	files	to	your
computer,	select	the	DevPak's	icon	and	click	on	the	Verify	tool	in	the	toolbar.	A
message	box	should	appear	telling	you	if	any	files	that	should	be	in	the	DevPak
don't	appear	on	your	computer	in	their	correct	location.

To	uninstall	the	DevPak,	select	the	DevPak's	icon	and	click	on	the	Remove
tool	in	the	toolbar.	PackMan	will	delete	all	of	the	files	from	your	computer	that
were	a	part	of	this	DevPak.

<		Previous			<											=	Home	=													>	Next	>

Compiler	Options
				As	the	name	implies,	the	Compiler	Options	dialog	allows	you	to	configure
global	settings	for	the	compilers	you	will	use	to	build	your	programs.	

				To	access	the	dialog,	click	on	the	Tools	menu,	then	select	Compiler	Options.	

<		Previous			<											=	Home	=													>	Next	>

Compiler	Options
Compiler	tab

Compiler	Set

				The	first	tab	in	the	Compiler	Options	dialog	allows	you	to	specify	the	name	of
your	compiler	set	and	any	additional	commands	you	wish	to	add	to	the	compiler
or	makefile	instructions.	Recall	that	wxDev-C++	allows	you	to	use	different
compiler	sets	to	build	the	same	project.

				Note	that	the	name	of	the	compiler	set	is	just	a	tag.	It	does	not	have	to	be	the
name	of	the	actual	compiler	you	wish	to	use.	For	example,	instead	of	the	set
name	"Default	GCC	compiler",	I	can	define	a	compiler	set	named	"Best
compiler	in	the	World	1",	but	use	the	compiler	type	of		MingW	(i.e.	the	MingW
gcc	compiler).	The	buttons	 	allow	you	to	add,	delete,	and	rename	a
compiler	set	respectively.

				Remember	that	this	configuration	window	will	change	the	global	settings	used
by	all	of	your	projects	with	this	compiler	set.		If	you	want	to	add	custom
compiler/linker	settings	for	a	particular	project	and	not	affect	other	projects,	then
you	want	to	go	to	the	Project	menu	and	select	Project	Options.

Compiler	set	to	configure

				Here,	you	actually	specify	which	type	of	compiler	you	wish	to	use	with	this
compiler	set.	The	default	compiler	that	comes	bundled	with	wxDev-C++	is
MingW	gcc.		We	also	support	MS	VC	2003,	2005,	and	2008	compilers.

Add	the	following	commands	when	calling	compiler

				Here	you	can	specify	additional	command-line	options	to	be	passed	to	the	gcc
compiler	when	compiling	your	project	or	file.	Check	the	gcc	manual	for	a	list	of
command-line	arguments.

Add	these	commands	to	the	linker	command-line

				Here	you	can	specify	options	to	be	passed	onto	the	linker	(ld.exe).	

http://gcc.gnu.org/onlinedocs/gcc/index.html#toc_Invoking-GCC

Compile	delay

				This	option	is	present	to	provide	a	delay	before	compiling.	Normally,	you	will
not	use	this.	If	make	complains	of	the	timestamp	being	invalid,	try	specifying	a
delay	here.

Use	fast	but	imperfect	dependency	generation

				By	default,	Dev-C++	will	check	all	files	and	headers	for	dependancy
information,	and	update	the	makefile	accordingly.	If	you	find	that	it's	taking	too
much	time,	you	can	prevent	this	by	enabling	this	option.

<		Previous			<											=	Home	=													>	Next	>

Compiler	Options
Settings	tab

				The	compiler	settings	will,	of	course,	depend	on	which	compiler	you	are	using
(in	most	cases	Mingw	gcc	or	MS	VC).	I'm	only	going	to	explain	the	MingW	gcc
settings	in	this	help	file.		However,	Microsoft	provides	a	very	informative	online
library	if	you	need	help	with	MS	VC	compiler	settings.

NOTE:	A	more	in	depth	explanation	of	these	compiler	options	can	be	found	in
the	gcc	manual.	

C	Compiler

Support	all	ANSI	standard	C	programs

http://msdn.microsoft.com/en-us/vstudio/default.aspx
http://gcc.gnu.org/onlinedocs/gcc/

Option	-ansi:	Will	attempt	to	be	as	ANSI	conformant	as	possible.

Attempt	to	support	some	aspects	of	traditional	C	pre-processors

Option	-traditional-cpp	:	Will	attempt	to	make	the	pre-processor	behave	as
traditional	ones	do.

Inhibit	all	warning	messages

Option	-w:	No	warnings	will	be	displayed.

Displays	one	error	per	line

Option	-fmessage-length=0	:	Displays	one	error	per	line!

C++	compiler

Turn	off	all	access	checking

Option	-fno-access-control

Accept	$	in	identifiers

Option	-fdollar-in-identifiers:	Will	allow	$	to	be	used	in	variable	and	function
names.	Cannot	be	used	with	GCC	3.2.

Code	generation

Enable	exception	handling

Option	-fexceptions

Use	same	size	for	double	and	float

Option	-fshort-double

Put	extra	commentary	information	in	the	generated	assembler

Option	-fverbose-asm:	The	intermediary	assembler	files	generated	will	have
extra	comments.	Only	useful	if	they're	being	saved	(using	the	-S	command-line
option).

Code	profiling

Generate	profiling	info	for	analysis

Option	-pg:	Writes	extra	information	into	the	generated	program	files	to	use	with
the	profiler.	The	profiler	lets	you	see	where	maximum	amount	of	the	program's
execution	time	is	being	spent,	so	that	when	you're	optimizing	the	program,	you
optimize	only	the	parts	that	make	the	difference.	This	option	should	be	disabled
when	building	retail/final	versions.	It	should	be	used	only	in	debug	builds.

Linker

Link	an	Objective	C	program

Option	-lobjc

Generate	debugging	information

Option	-g3:	Writes	debug	information	into	the	generate	binaries.	This	lets	you
debug	it	with	the	integrated	debugger.

Do	not	use	standard	system	startup	files	or	libraries

Option	-nostdlib:		Do	not	use	the	standard	system	startup	files	or	libraries	when
linking.	No	startup	files	and	only	the	libraries	you	specify	will	be	passed	to	the

http://en.wikipedia.org/wiki/Objective-C

linker.	The	compiler	may	generate	calls	to	memcmp,	memset,	memcpy	and
memmove.	These	entries	are	usually	resolved	by	entries	in	libc.	These	entry
points	should	be	supplied	through	some	other	mechanism	when	this	option	is
specified.	

Do	not	create	a	console	window

Option	-mwindows:	Instructs	gcc	to	build	a	Windows	GUI	application	without	a
console	window.

Strip	executable

Option	-s:	Remove	all	symbol	table	and	relocation	information	from	the
executable.	

Optimization

				Optimization	can	make	your	code	execute	faster,	but	requires	more	time	to
compile.

Perform	a	number	of	minor	optimizations

Option	-fexpensive-optimizations:	Perform	a	number	of	minor	optimizations	that
are	relatively	expensive.	Enabled	at	levels	-O2,	-O3,	-Os.	

Further	Optimizations

Here,	you	can	select	the	optimization	level.

Optimize

Option	-O1:	With	-O1	(or	just	-O),	the	compiler	tries	to	reduce	code	size	and
execution	time,	without	performing	any	optimizations	that	take	a	great	deal	of
compilation	time.	

Optimize	more

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options

Option	-O2:		GCC	performs	nearly	all	supported	optimizations	that	do	not
involve	a	space-speed	tradeoff.	The	compiler	does	not	perform	loop	unrolling	or
function	inlining	when	you	specify	-O2.	As	compared	to	-O,	this	option
increases	both	compilation	time	and	the	performance	of	the	generated	code.	

Best	optimization

Option	-O3:	Optimize	yet	more.	-O3	turns	on	all	optimizations	specified	by	-O2
and	also	turns	on	the	-finline-functions,	-funswitch-loops,	-fpredictive-
commoning,	-fgcse-after-reload	and	-ftree-vectorize	options.

<		Previous			<											=	Home	=													>	Next	>

Compiler	Options
Directories	tab

				These	are	the	directories	the	IDE	will	search	when	it	is	building	your	program.

Binaries

Specifies	the	locations	of	the	compiler,	linker,	and	other	executables.

Libraries

Specifies	the	locations	of	the	library	files	(*.a,	*.dll,	*.lib,	*.def).

C	includes

Specifies	the	locations	of	the	headers	(*.h)	for	C	programs.

C++	includes

Specifies	the	locations	of	the	headers	(*.h,	*.hpp)	for	C++	programs.

Resource	includes

Specifies	the	location	for	the	resource	files	(*.rc)	for	Windows	programs.

<		Previous			<											=	Home	=													>	Next	>

Compiler	Options
Programs	tab

	
				Here	you	can	specify	the	filenames	of	the	different	compiler	executable
components.	Note	that	wxDev-C++	uses	the	MingW	make	system	for	all	of	its
builds.	

<		Previous			<											=	Home	=													>	Next	>

Compiler	Options
wxWidgets	tab

				This	is	where	you	can	store	the	information	about	the	wxWidgets	libraries	you
want	to	use.		The	information	here	will	be	used	to	change	the	values	passed	to
the	linker	in	the	MingW	makefile.		For	the	current	example,	the	program	would
be	linked	to	to	the	library	libwxmsw28.a	for	gcc	and	wxmsw28.lib	for	MS	VC.
If	you	update	your	wxWidgets	libraries	(or	want	to	use	your	own	libraries),	then
you'll	need	to	update	this	information	in	order	to	pass	the	correct	library	to	the
makefile.

<		Previous			<											=	Home	=													>	Next	>

Environment	Options
General	options	tab

To	access	the	Environment	Options	dialog,	click	on	the	Tools	menu	and
select	Environment	Options.

Allow	only	one	instance	of	wxDev-C++

Allows	only	one	instance	of	the	IDE	to	be	running.

Create	Backup	files

If	enabled,	whenever	you	save	a	source	file	inwx	Dev-C++,	a	backup	copy	will
be	saved	along	with	it.	This	backup	will	be	overwritten	on	successive	saves.

Minimize	on	run

If	enabled,	wxDev-C++	will	minimize	itself	when	you	execute	your	program
from	within	it	(using	the	`Run'	command	under	`Execute').

Show	toolbars	in	Full-screen

By	default,	toolbars	are	hidden	when	wxDev-C++	is	made	full-screen.	If	this
option	is	enabled,	they	will	be	shown	all	the	time.

Double-click	to	open	project-manager	files

If	this	option	is	enabled,	you'll	need	to	double-click	on	the	nodes	in	project-
manager	to	open	them	in	the	editor.	Otherwise,	you	would	single-click.

Auto-open...

Here,	you	can	choose	what	files	are	automatically	opened	in	the	editor	when	you
open	a	project.

Debug	variables	browser

If	"Watch	variables	under	mouse"	is	checked,	variables	under	the	current	mouse
position	will	be	created	as	watch	variables	during	a	debugging	session.

<		Previous			<											=	Home	=													>	Next	>

Environment	Options
Interface

Max	files	in	re-open	menu

Here,	you	can	specify	the	number	of	files	wxDev-C++	keeps	track	of	in	the
Reopen	menu.	Older	files	are	forgotten	first.

Message	Window	Tabs

Sets	the	position	of	the	message	window	tabs	(Compiler,	Resources,	Compile
Log,	Debug,	Find,	ToDo	List)

Language

Select	your	language	here.

Theme

Select	the	theme	you	want	wxDev-C++	to	use.

No	splash	screen	on	startup

If	enabled,	it	prevents	wxDev-C++	for	displaying	a	logo	when	it	starts	up.

Use	XP	theme	(WinXP	only)

If	enabled,	it	makes	wxDev-C++	use	Windows	XP	themes	(bitmap	title-bars,
buttons,	etc.).

Open/Save	dialog	style

Here	you	can	select	the	type	of	file	open/save	dialog	you	want	to	see.

Compilation	progress	window

Allows	you	to	select	whether	you	wish	to	see	the	compiler	output	log	at	compile
time	and	if	you	wish	it	to	auto-close.

<		Previous			<											=	Home	=													>	Next	>

Environment	Options	tab
Files	and	Directories

				This	is	where	you	can	modify	the	default	directories	that	the	IDE	uses	to	store
configuration	files,	templates,	and	user	data.

Alternate	configuration	file

wxDev-C++	typically	saves	your	preferences	to	a	settings	file	(devcpp.cfg)
located	in	the	user	AppData	directory.	You	can	change	where	the	IDE	looks	for
this	settings	file.	This	is	useful	if	you	want	to	have	all	of	the	IDE	files	in	one
directory	for	portability.	(Some	users	have	been	able	to	use	wxDev-C++	on	a
thumbdrive	that	they	move	from	computer	to	computer	without	having	to	install
it	on	the	computer).

User's	default	directory

Specifies	the	default	location	that	the	IDE	uses	(when	creating	projects,	opening,
saving,	etc.)

Templates

Specifies	the	location	of	the	Dev-C++	project	templates	(the	ones	displayed
when	you	click	on	`New	Project').

Icon	library	path

Specifies	the	location	of	the	icons	for	use	in	your	projects.

Language	Files	path

Specifies	the	location	of	the	Dev-C++	language	files.

Splash	screen	image

You	can	specify	an	alternate	splash-screen	bitmap	here.

<		Previous			<											=	Home	=													>	Next	>

Environment	Options
File	Associations	tab

				Here,	you	can	select	one	or	more	file	types	which	the	IDE	will	associate	itself
with,	so	that	the	next	time	you	open	an	associated	file	in	Windows	Explorer,
wxDev-C++	will	be	opened	up	automatically	and	load	that	file.

<		Previous			<											=	Home	=													>	Next	>

Environment	Options
CVS	Support	tab

				Concurrent	Versioning	System	(CVS)	is	a	way	to	store	your	project	files	and
keep	track	of	any	changes	you	(and	other	developers)	make.		It	allows	you	to	not
only	backup	your	current	files,	but	also	to	rollback	to	earlier	versions	of	your
files	and	undo	changes.

	CVS	program	file

Enter	the	name	and	directory	of	the	CVS	program	executable.

Compression	level

http://www.nongnu.org/cvs/

Specify	the	compression	level	to	be	used.

Use	SSH	instead	of	RSH

Use	the	SSH	program	to	connect

http://en.wikipedia.org/wiki/Secure_Shell

<		Previous			<											=	Home	=													>	Next	>

Editor	Options
Editor	options	allow	you	to	configure	how	you	wish	your	source	code	to	display
within	the	IDE.		wxDev-C++	allows	you	to	configure	code	formatting,	line
numbers,	code	completion,	syntax	highlighting,	and	many	other	options	that	are
useful	when	coding	large	programs.

To	access	the	Editor	Options	go	to	the	Tools	menu	and	select	Editor	Options.

<		Previous			<											=	Home	=													>	Next	>

Editor	Options
General	tab

Editor	options

Auto	Indent	-	Automatically	indents	a	new	line	according	to	the	current
line's	syntax
Insert	Mode	-	Text	will	insert	at	the	current	cursor	position	(not	overwrite)
Use	Tab	Character	-	Inserts	tab	character,	otherwise	inserts	spaces
Smart	Tabs	-	When	[Enter]	is	pressed,	indents	the	new	line	with	the	same
combination	of	tabs	and	spaces	as	the	previous	line,	otherwise	indents	the
new	line	with	the	most	economical	combination	of	tabs	and	spaces,
depending	on	the	setting	of	Use	Tab	Character

Keep	Trailing	Spaces
Backspace	Unindents	-	If	a	tab	stands	before	the	current	cursor	position,	the
backspace	key	will	remove	it
Group	Undo	-	When	undoing/redoing	actions,	handles	all	successive
changes	of	the	same	kind	in	one	operation,	otherwise	handles	one	operation
at	a	time
Insert	Dropped	Files
Show	hidden	line	characters	-	Displays	hidden	characters	in	the	editor
Ensure	that	file	ends	with	a	newline
Highlight	current	line	-	Highlights	the	line	at	the	current	cursor	position
Enhanced	Home	Key
Cursor	Past	EOF	-	Allows	you	to	place	the	cursor	past	the	end-of-file
character
Cursor	Past	EOL	-	Allows	you	to	place	the	cursor	past	the	end-of-line
character
Double	Click	Line
Find	Text	at	Cursor	-	If	checked,	the	"Find"	dialog	will	use	the	text	at	the
current	cursor	position	as	the	search	term.
Scrollbars	as	needed	-	If	checked,	scrollbars	will	only	be	displayed	if	there
is	text	beyond	what's	visible	in	the	window.
Half	Page	Scroll	
Scroll	hint
Show	editor	hints	

Caret

Insert	Caret	-	If	text	mode	is	set	to	insert,	then	use	this	caret	graphic	to	mark
the	current	position.
Overwrite	Caret	-	If	text	mode	is	not	set	to	insert	(i.e.	typing	will	overwrite
text),	then	use	this	caret	graphic	to	mark	the	current	position.
Highlight	matching	braces/parenthesis	-	Highlight	the	matching	braces	in	a
block	of	code

Right	Margin

Visible	-	If	checked,	a	vertical	line	is	displayed	to	denote	the	right	margin	in
the	editor
Width	-	Sets	the	line	width	marker

Color	-	Color	of	the	right	margin	marker

<		Previous			<											=	Home	=													>	Next	>

Editor	Options
Display	tab

	

Editor	font

				As	the	name	implies,	this	allows	you	to	select	which	font	you	wish	to	use	for
the	editor.		It	also	also	you	to	specify	how	many	spaces	are	used	for	tabs.

Gutter

Visible	-	The	gutter	is	the	left	margin	of	the	text	editor.	If	this	is	checked,
the	gutter	will	be	displayed.
Autosize	-	The	width	of	the	gutter	will	change	to	best	fit	the	text.

Use	custom	font	-	Allows	you	to	specify	a	gutter	font	that	is	different	than
the	text	editor
Line	numbers	-	If	checked,	it	will	display	the	line	numbers	of	the	text
Start	at	zero	-	Line	numbers	typically	start	at	1.	If	this	box	is	checked,	they
will	start	at	0.
Show	leading	Zeros	-	Left	pads	0's	to	the	line	numbers	(e.g.	0020)		to	make
all	line	numbers	the	same	width.

<		Previous			<											=	Home	=													>	Next	>

Editor	Options
Syntax	tab

	
				Syntax	highlighting	allows	you	to	format	your	display	of	C/C++	source	code
using	different	fonts,	colors,	and	backgrounds.	Note	that	the	wxDev-C++/Dev-
C++	editor	only	knows	C/C++	syntax	highlighting	and	probably	won't	work	for
other	programming	languages.	The	Type	listbox	allows	you	to	configure	each
programming	language	class	(comments,	assembler	code,	numbers,	reserved
words,	etc.)	The	Enabled	file	extensions	text	box	specifies	which	file
extensions	apply	to	these	definitions.	The	highlighted	code	at	the	bottom	of	the
tab	shows	a	preview	of	how	C/C++	source	code	will	be	displayed	with	the
current	settings.
	

<		Previous			<											=	Home	=													>	Next	>

Editor	Options
Code	tab

				This	allows	the	user	to	define	a	menu	option	that	adds	code	snippets	while	you
are	programming.		The	idea	is	that	if	you	have	code	that	you	frequently	use	(e.g.
a	class	or	function	that	you	almost	always	add	to	your	programs),	then	you	can
set	up	a	menu	selection	that	automatically	adds	this	code	to	your	current	project
at	the	current	cursor	position.		

				To	add	a	code	snippet	to	the	menu,	go	to	the	Tools	menu	and	select	Editor
Options.	Then,	click	on	the	Add	button.	The	Add	Code	Insert	Entry	dialog	will
allow	you	to	name	the	new	menu	entry	and	a	description	of	what	the	entry	will
do.	Then,	add	the	code	snippet	to	the	Code	textbox.	When	you	click	the	Ok
button,	your	code	snippet	will	be	added	to	the	Edit	menu	under	Insert.	Selecting

that	menu	item	will	insert	your	Code	into	the	IDE	at	the	current	cursor	position.

<		Previous			<											=	Home	=													>	Next	>

Editor	Options
Class	browsing	tab

	
				The	Class	Browser	is	a	hierarchical	tree	that	displays	all	of	the	classes,
functions,	global	variables,	and	structures	that	are	used	in	your	project.	It's	a	nice
way	to	graphically	display	the	major	players	in	your	programs.	The	Class
Browser	is	displayed	in	the	Project	Inspector	window	under	the	Classes	tab.	

NOTE:	Class	browsing	MUST	BE	ENABLED	to	use	the	wxDev-C++	visual
designer.

				In	the	Engine	options	section,	you	can	configure	the	class	browser	to	scan
both	local	and	global	include	files	for	their	major	players.		If	you	chose	to	scan
for	global	include	files,	then	you	will	also	include	in	the	class	browser	the
classes	and	functions	from	the	3rd	party	libraries	you	link	with	your	program

(e.g.	wxWidgets	libraries,	SQLite	libraries,	etc.).

				In	the	View	options	section,	checking	the	Show	inherited	members	box	will
cause	the	class	browser	to	also	display	any	classes	from	which	your	classes	are
dervied.	For	example,	if	you	create	your	own	wxFrame	class	called	myFrame1,
the	browser	windowwould	typically	only	show	the	members	of	that	class	that
you've	specified	in	your	project.	With	the	Show	inherited	members	checked	it
will	also	display	the	members	that	were	inherited	from	the	generic	wxFrame
class.

<		Previous			<											=	Home	=													>	Next	>

Editor	Options
Code	completion	tab

	
				Code	completion	allows	you	to	program	C/C++	more	efficiently.	When
enabled,	code	completion	will	try	to	offer	suggestions	for	completing	your	code
as	you	type	it.	For	example,	if	you	were	working	on	a	wxFrame	project
and	typed:

this->

in	the	source	code,	a	dropdown	box	will	appear	offering	properties	and	functions
that	can	complete	the	command.	The	Delay	value	in	code	completion	specifies
the	amount	of	time	(in	milliseconds)	which	a	user	must	pause	typing	for	the	code
completion	to	be	activated.	For	example,	with	a	delay	of	500,	the	user	will	have
to	pause	typing	for	500	ms	(or	half	a	second)	before	the	code	completion

command	is	initiated;	otherwise,	the	code	completion	will	be	skipped.

Semi-auto	complete

You	can	manually	invoke	code	completion	with	the	key	sequence	Ctrl+Space.	

Code	completion	cache

				Although	code	completion	is	very	useful,	it	takes	time	to	build	a	list	of
possible	completions	to	your	code.	You	may	be	able	to	speed	things	up	by
creating	a	cache.		The	cache	is	loaded	when	the	IDE	starts	up	(so	it	takes	a
longer	time	to	start	the	IDE)	so	the	IDE	parses	the	single	cache	file	instead	of	the
multiple	include	files.	To	add	include	files	to	the	code	completion	cache,	click	on
the	Add	button	and	select	the	file	to	include	in	the	cache.	

<		Previous			<											=	Home	=													>	Next	>

Configure	Shortcuts
You	can	change	the	keyboard	shortcuts	by	going	to	the	Tools	menu	and	selecting
Configure	Shortcuts.

Use	the	mouse	to	select	the	menu	entry	for	which	you	wish	to	add	or	change	a
shortcut.Then,	type	the	new	keyboard	shortcut	for	that	menu	entry.	To	delete	a
shortcut,	hit	"Esc".	Press	the	"Ok"	button	when	finished.

<		Previous			<											=	Home	=													>	Next	>

Editor	Shortcuts
Actions:

These	commands	perform	various	actions.

Command Description
Control	+	Shift	+	B Go	to	matching	bracket

Control	+	(number) Move	to	marker
(number)

Control	+	Shift	+
(number) Set	marker	(number)

F1 Context	sensitive	help
on	word	

						

<		Previous			<											=	Home	=													>	Next	>

Editor	Shortcuts
Cursor:

These	commands	control	how	the	cursor	behaves.

Command Description
Left	Arrow Left	one	character
Right	Arrow Right	one	character
Up	Arrow Up	one	line
Down	Arrow Down	one	line		
Control	+	Left Left	one	word	
Control	+	Right Right	one	word	
Home Start	of	line		
End End	of	line
Page	Up Up	one	page
Page	Down Down	one	page

Left	one	page
Right	one	page

Control	+	Page	Up Top	of	page
Control	+	Page	Down Bottom	of	page
Control	+	Home Abs	begin
Control	+	End Abs	end

<		Previous			<											=	Home	=													>	Next	>

Editor	Shortcuts
Modes:

These	commands	control	modes.

Command Description
Insert Set	insert	mode

Set	overwrite	mode
Toggle	insert/overwrite

Control	+	Shift	+	N Selection	type	is	normal
Control	+	Shift	+	C Selection	type	is	column
Control	+	Shift	+	L Selection	type	is	line

<		Previous			<											=	Home	=													>	Next	>

Editor	Shortcuts
Delete:

All	the	commands	having	to	do	with	deleting.

Command Description	
Backspace Character	to	left
Shift	+
Backspace Character	to	left

Delete Character	to	right
Control	+	T Word	to	right
Control	+
Backspace Word	to	left

From	cursor	to	start	of	line
Control	+	Shift
+	Y From	cursor	to	end	of	line

Control	+	Y Current	line
Everything	in	editor	

Enter Line	break	at	current	position,	move
caret

Shift	+	Enter Line	break	at	current	position,	move
caret

Control	+	M Line	break	at	current	position,	move
caret

Control	+	N Line	break	at	current	position,	don't
move	caret
Insert	character	at	curent	position

Alt	+	Backspace Perform	undo	if	available
Control	+	Z Perform	undo	if	available
Alt	+	Shift	+ Perform	redo	if	available	

Back
Control	+	Shift
+	Z Perform	redo	if	available

Shift	+	Delete Remove	selection	place	on	clipboard
Control	+	X Remove	selection	place	on	clipboard

Shift	+	Insert Move	clipboard	contents	to	current
position

Control	+	V Move	clipboard	contents	to	current
position

Control	+	Shift
+	I Move	selection	to	right

Control	+	Shift
+	U Move	selection	to	left

Tab Tab	key	
Shift	+	Tab Tab	to	left

<		Previous			<											=	Home	=													>	Next	>

Editor	Shortcuts
Scrolling:

These	commands	control	everything	to	do	with	scrolling.

Command Description
Scroll	Up	+	Control Go	up	one	line
Scroll	Down	+	Control Go	down	one	line
Scroll	Left Left	one	character
Scroll	Right Right	one	character
	

<		Previous			<											=	Home	=													>	Next	>

Editor	Shortcuts
Selection:

These	commands	control	how	the	currently	highlighted	text	behaves.

Command Description
Shift	+	Left Select	left
Shift	+	Right Select	right
Shift	+	Up Select	up
Shift	+	Down Select	down
Control	+	Shift	+	Left Select	word	left
Control	+	Shift	+	Right Select	word	right
Shift	+	Home Select	line	start
Shift	+	End Select	line	end
Shift	+	Page	Up Select	page	up
Shift	+	Page	Down Select	page	down

Select	page	left	
Select	page	right

Control	+	Shift	+	Page
Up Select	page	top

Control	+	Shift	+	Page
Down Select	page	bottom

Control	+	Shift	+
Home Select	editor	top

Control	+	Shift	+	End Select	gotoxy
Control	+	A Select	All
Control	+	Insert Select	All

Control	+	C Copy	selection	to
clipboard

Control	+	V Paste	selection	to
clipboard

Control	+	X Cut	selection	to
clipboard

<		Previous			<											=	Home	=													>	Next	>

Editor	Shortcuts
Visual	Designer:

These	commands	only	apply	to	the	wxWidgets	visual	designer	and	only	work	if
a	component	(i.e.	widget)	has	been	selected.

Command Description

Ctrl	+	Left Move	the	component	one	tick	to	the
left

Ctrl	+	Right Move	the	component	one	tick	to	the
right

Ctrl	+	Up Move	the	component	one	tick	up
Cttrl	+
Down Move	the	component	one	tick	down

Ctrl	+	Del Delete	the	component
Ctrl	+	X Cut	the	component	from	the	designer
Ctrl	+	C Copy	the	component

Ctrl	+	V Paste	a	copy	of	the	component	to	the
form

<		Previous			<											=	Home	=													>	Next	>

ToDo	List
wxDev-C++	provides	a	way	to	keep	track	of	your	"ToDo"	list	from	within	your
program's	comments.	This	makes	it	easy	to	keep	track	of	incomplete	sections	of
your	source	code.

There	are	two	methods	for	adding	items	to	a	ToDo	list:

1.	 Place	the	cursor	somewhere	in	the	source,	then	either	a	right	mouse	click
and	select	"Add	ToDo	Item"	or	just	Shift+Ctrl+T.

2.	 Just	embed	C/C++	style	comments	within	your	code	that	are	prefaced	by
the	identifier	"TODO:".	For	example,

/*	TODO	:				Add	ToDo	instructions	to	help	tutorial.	*/

When	the	project	is	reloaded,	the	"ToDo	List"	will	be	displayed.		Clicking	on	the
check	mark	to	the	left	of	the	ToDo	will	change	mark	the	item	as	"Done".
Double-clicking	on	the	ToDo	item	will	move	the	editor	to	that	line	in	the	source.

To	specify	the	priority	of	the	ToDo	item,	add	the	identifier	"
(username#priority#):"	to	the	"TODO	:".	For	example,

//	TODO	(tony#7#):	Download	the	wxDev-C++	help	file

	will	set	the	priority	level	to	"7"	and	the	user	to	"tony"	for	this	item.

Note	that	the	dropdown	box	labeled	"Filter"	allows	you	to	view	ToDo's	that	are

within	your	current	open	file	or	within	an	combination	of	files	in	and	out	of	your
project.

<		Previous			<											=	Home	=													>	Next	>

Form	Designer	Options
Designer	Options:

				
				Some	basic	settings	for	the	wxWidgets	form	designer	can	be	set	through	the
Tools	menu	and	selecting	Designer	Options.	

Grid	Settings

				In	the	first	box,	the	grid	settings	can	be	modified:

Show	Form	Grid	-	Toggle	grid	on/off
Snap	to	Grid	-	Components	will	be	aligned	to	the	nearest	grid	point
X-,	Y-coordinate	grid	interval	-	The	spacing	used	between	grid	ticks

Behaviour	Settings

				In	the	second	box,	the	visual	designer	can	be	set	to	"floating".	When	this	box
is	checked,	the	visual	designer	window(s)	will	be	undocked	from	the	IDE.
Floating	makes	it	easier	to	manage	large	windows.	For	example,	in	the	image
below,	the	two	designer	forms	(left)	are	floating	independently	of	the	wxDev-
C++	IDE	(right).

<		Previous			<											=	Home	=													>	Next	>

Form	Designer	Options
Code	Generation	Options:

				The	form	designer	generates	wxWidgets	C++	code.	Some	preferences	for	the
code	generation	can	be	set	through	the	Tools	menu	and	selecting	Designer
Options.	

Generate	XRC	Code	-		When	checked,	the	standard	wxWidgets	C++	code
is	replaced	by	wxWidgets	XRC	code.	XRC	is	wxWidgets	XML-based
resource	system.	
String	Internationalization	-	When	the	code	generator	passes	strings	to
the	wxWidgets	component	properties,	it	uses	this	function	as	a	wrapper.
Choices	are	wxT(),	_T(),	and	_().
Sizer	Options	-	Allows	the	sizer	code	to	use	the	predefines
wxDefaultPosition	and	wxDefaultSize	rather	than	a	numerical	value.

			

http://docs.wxwidgets.org/stable/wx_xrcoverview.html#xrcoverview

<		Previous			<											=	Home	=													>	Next	>

Frequently	Asked	Questions	(FAQ)
wxDev-C++	FAQ

Please	note	that	we	have	a	robust	wxforum	where	someone	has	probably	asked
your	question	already.		We	also	have	several	online	tutorials	that	are	a	great	help
to	the	beginner.	Finally,	SofT	has	written	a	book	called	"Programming	with
wxDev-C++".

If	you	have	web	access,	please	consult	our	online	FAQ.

What	is	wxDev-C++?

wxDev-C++	is	an	extension	of	Dev-C++	with	a	Form	Designer	for	the	amazing
cross-platform	framework	wxWidgets.	It	contains	all	the	features	of	Dev-C++
alongside	a	recent	wxWidgets	distribution	along	with	a	form	desinger	for	rapid
application	development	(RAD).

Where	can	I	get	help	for	wxDev-C++?

You	can	either	see	the	available	tutorials	or	post	your	question	in	the	wxForum.

Which	language	is	wxDev-C++	written	in?

wxDev-C++	and	Dev-C++	were	written	with	Borland	Delphi	6.0	Personal
Edition,	a	free	(albeit	closed-source)	compiler	for	Windows	(yes,	the	irony).	Lots
of	open-sourced,	third	party	components	like	the	JVCL	and	extlib	are	used.

Where	do	I	obtain	the	wxDev-C++	source	code?

Have	a	look	at	our	Subversion	repository.	You	can	download	the	source	by
clicking	on	the	"Download	GNU	tarball"	link.

http://wxforum.shadonet.com/viewforum.php?f=28
http://wxdsgn.sourceforge.net/?q=node/6
http://wxdevcpp-book.sourceforge.net/
http://wxdsgn.sourceforge.net/?q=node/2
http://www.wxwidgets.org
http://wxdsgn.sourceforge.net/?q=node/6
http://wxforum.shadonet.com/viewforum.php?f=28
http://wxdsgn.svn.sourceforge.net/wxdsgn/

Will	there	be	a	release	for	Linux?

You	will	have	to	ask	this	question	to	the	core	Dev-C++	developers.	Since
wxDev-C++	is	based	on	Dev-C++,	a	Linux	distribution	will	be	a	possible	only	if
we	have	a	Linux	version	of	Dev-C++.	Some	effort	(by	Tony)	have	been	put	in	to
compile	wxDev-C++	with	Lazarus	failed.	Nuklear	Zelph	has	managed	to	get
wxDev-C++	running	under	Wine	on	the	latest	version	of	Ubuntu	linux.	You	may
wish	to	contact	Nuklear	on	the	wxforum	if	you	want	to	find	out	how	to	do	this.	

Why	does	wxDev-C++	take	a	long	time	to	compile,	and	the	binaries
produced	so	large?

				Because	MingW	gcc	tries	to	emit	code	that	will	work	on	many	platforms,	it
tends	to	be	slow	at	compiling	programs.	Using	the	MS	VC	compiler	may	speed
up	compilation	and	produce	(slightly)	smaller	binaries.

				Large	binaries	are	produced	because	of	static	linkage	with	libstdc++	(which	is
said	to	be	bulky)	and	the	static,	monolithic	build	of	wxWidgets	that	we	include
in	wxDev-C++.	Dynamic	linkage	to	wxWidgets	can	be	done	if	desired	(see	the
tutorial	on	building	your	own	wxWidgets	library),	and	switching	to	STLport	is
advised	if	you	need	to	reduce	the	binary	size.	

				Most	people	assume	that	large	binaries	are	a	sign	of	waste	and	inefficiency.
This	may	be	true.	However,	remember	that	GUI	programs	are	necessarily	large
due	to	the	intensive	use	of	graphics	(even	if	you	don't	take	advantage	of	all	that
the	graphics	can	do).	It's	unlikely	you'll	produce	a	useful	GUI	for	under	100	Kb
or	even	under	1	Mb	(even	for	a	"Hello	World!"	program).	So	you	can	build	you
own	wxWidgets	library	as	a	DLL	that	just	includes	wxTextCtrl	and	wxButton,
BUT	it's	not	going	to	be	a	very	useful	library	for	your	other	programs	(which
may	need	more	components).

http://wxforum.shadonet.com/viewforum.php?f=28
http://wxforum.shadonet.com/viewtopic.php?t=2772&highlight=slow
http://wxforum.shadonet.com/viewtopic.php?t=736&highlight=huge+executable
http://wxdsgn.sourceforge.net/?q=node/9

Dev-C++	FAQ

NOTE:	This	part	of	the	FAQ	is	a	holdover	from	Dev-C++	4.9.9.2	and	may	no
longer	be	up-to-date	or	relevant.

Why	can't	I	use	conio.h	functions	like	clrsrc()?

Because	conio.h	is	not	part	of	the	C	standard.	It	is	a	Borland	extension,	and
works	only	with	Borland	compilers	(and	perhaps	some	other	commercial
compilers).	Dev-C++	uses	GCC,	the	GNU	Compiler	Collection,	as	its	compiler.
GCC	is	originally	a	UNIX	compiler,	and	aims	for	portability	and	standards-
compliance.

If	you	really	canot	live	without	them,	you	can	use	Borland	functions	this	way:
Include	conio.h	to	your	source,	and	add	the	following	file	to	your	project	:
C:\Dev-C++\include\conio.c	(where	C:\Dev-C++	is	where	you	installed	Dev-
C++).

Please	note	that	conio	support	is	not	complete.

My	console	window	keeps	closing,	how	do	I	change	that	?

You	can	do	it	this	way:
#include	<iostream>

int	main(int	argc,	char	*argv[])

{

		printf	("Press	ENTER	to

continue...\n");

		getchar	();	/*	wait	for	input	*/

		return	EXIT_SUCCESS;

}

After	linking,	i	get	an	error	like	C:\DEV-C++\LIB\\libmingw32.a(main.o)
(.text+0x8e):	undefined	reference	to	`WinMain@16'

You	probably	haven't	declared	any	main()	or	WinMain()	function	in	your
program.

How	can	i	provide	a	.def	file	for	my	DLL	?

Go	to	the	Project	menu	and	select	Project	Options,	Parameters	sheet,	Linker
box	.	Add	to	the	textbox,	--def	yourfile.def

I	am	having	strange	problems	under	Windows	XP

Try	to	run	Windows	Update	and	make	sure	that	you	have	the	Program
Compatibility	updates.

How	do	I	enable	Debugging	mode	?

Go	to	the	Project	menu	and	select	Project	Options	and	click	on	the	Compiler
sheet.	In	the	Linker	section,	put	“Yes”	to	'Generate	debugging	information'.	Do
a	'Rebuild	All'	and	you	should	be	able	to	debug	now.

When	I	launch	Dev-C++	I	get	the	message	saying	'WININET.DLL'	or
'MSCVRT.DLL'	or	‘SHFOLDER.DLL’	not	found

You	are	missing	a	Windows	DLL	(and	probably	have	a	broken	version	of
Windows).	Please	go	to	the	Microsoft	Update	site	and	see	if	you	can	fix	your
installation	of	Windows.

How	to	use	assembly	with	Dev-C++	?

The	"GNU	as"	assembler	uses	AT&T	syntax	(not	Intel).
Here's	an	example	of	such	a	syntax	:

//	2	global	variables

int	AdrIO;

static	char	ValIO;

void	MyFunction(..........)

{

				__asm("mov	_AdrIO,	%dx")	;	//

loading	16	bits	register

				__asm("mov	_ValIO,	%al")	;	//

loading	8	bits	register

				/*

				Don't	forget	the	underscore	_

before	each	global	variable	names	!

				*/

				__asm("mov	%ax,%dx")	;	//	AX	-->	DX

}

I	am	using	Windows	98	and	I	cannot	compile

Some	users	have	report	that	you	need	to	apply	several	patches	to	your	system.
Here	is	the	list	of	them,	they	can	be	found	on	Microsoft	Windows	98	download
site.

				*	47569us.exe	-	labeled	as	Windows98SE	shutdown
				*	dcom98.exe	-	see	also	this	page
				*	DX81eng.exe	-	latest	version	of	DirectX	(this	is	11MB,	and	cannot	be
uninstalled	without	reinstalling	Windows	98.	You	might	want	to	try	this	one	last
in	case	the	other	above	didn't	work,	as	it	should	update	many	parts	of	the
system).

<		Previous			<											=	Home	=	

Mailing	List	/	Forum
wxDev-C++

If	you	have	wxDev-C++	specific	questions,	please	post	them	on	the	wxforum.
This	is	the	preferred	mailing	list.	Please	remember	to	search	the	forum	for	the
answer	to	your	question	before	posting	it.	Chances	are	that	someone	has	already
asked	(and	answered)	it.	We	also	have	a	Frequently	Asked	Questions	page.

If	you're	sure	that	you've	found	a	bug,	please	post	it	to	our	Bug	Tracker	on
SourceForge.

http://wxforum.shadonet.com/viewforum.php?f=28
http://sourceforge.net/tracker/?group_id=95606&atid=611982

Dev-C++

If	you	have	programming	or	Dev-C++	specific	questions,	you	can	post	it	on	the
forum	or	on	the	mailing	list.

Bloodshed	Software	/	Dev-C++	Forum	:	http://bloodshed.net/forum

Dev-C++	Mailing	List	:	http://bloodshed.net/devcpp-ml.html

http://www.bloodshed.net/devcpp.html
http://bloodshed.net/forum
http://bloodshed.net/devcpp-ml.html

	wxDev-C++	/	Dev-C++	Help	File
Introduction
GNU	General	Public	License
Credits
Getting	Started
Basic	Steps

Creating	a	Project
Adding/Removing	files
Managing	Project	Options

Project	options	overview
Linking	libraries	with	your	project

Compiling	and	Running
Compiling	and	linking	process
Executing	your	program

Debugging	within	Dev-C++
Introduction	to	debugging
Sample	Program	to	Debug
Debugging	your	program
Integrated	debugging	commands

Breakpoints
Stepping	through	your	program
Watchpoints
Backtracing
Using	the	CPU	window
Debugging	multi-threaded	programs

Dev-C++	Templates	and	Packages
Integrated	Templates
Getting	and	Installing	Packages

Compiler	Options
Compiler

Settings
Directories
Programs
wxWidgets

Environment	Options
General
Interface
Files	&	Directories
File	Associations
CVS

Editor	Options
General
Display
Syntax
Code
Class	Browser	Tab
Code	completion

Shortcuts
Actions
Cursor
Modes
Delete
Scrolling
Selection
Visual	Designer

ToDo	List
Visual	Designer	(RAD)

Designer	Options
Code	Generation	Options

Getting	help
FAQ	(Frequently	Asked	Questions)
Mailing	List	/	Forum

