
Visual	Database	Tools

Visual	Database	Tools	Usage	Considerations
The	following	issues	may	affect	your	usage	of	the	Visual	Database	Tools.

Saving	Queries
To	save	queries	designed	in	Visual	Database	Tools	Query	Designer,	you	must
use	SQL	Query	Analyzer.

To	save	queries	designed	in	Query	Designer

1.	 Design	the	query.

2.	 In	the	SQL	Pane,	select	the	query	statements,	right-click,	and	then
click	Copy.

3.	 In	SQL	Server	Enterprise	Manager,	on	the	Tools	menu,	click	SQL
Query	Analyzer.

4.	 Right-click	in	the	Query	window	of	SQL	Query	Analyzer,	and	click
Paste.

5.	 On	the	File	menu,	click	Save	As	to	save	the	query.

Note		Although	Query	Designer	provides	menu	options	for	saving,	these	options
are	disabled.

For	more	information	about	SQL	Query	Analyzer,	see	the	Overview	of	SQL
Query	Analyzer.

OLE	DB	Provider
The	Microsoft	OLE	DB	Provider	for	SQL	Server	is	implemented	as	a	dynamic
link	library	(DLL)	on	the	client	machine	and	a	set	of	stored	procedures	on	the
server.		Unless	both	parts	are	installed,	the	OLE	DB	provider	will	not	function

JavaScript:hhobj_1.Click()

correctly.

Sqloledb.dll	is	the	DLL.

Running	Instcat.sql	installs	the	stored	procedures.

If	you	install	a	newer	version	of	Sqloledb.dll,	but	do	not	install	Instcat.sql	on
each	SQL	Server	machine	running	OLE	DB,	some	OLE	DB	functions	will	return
incorrect	results.

Visual	Database	Tools

Visual	Database	Tools	and	SQL	Server	Databases
The	Microsoft®	Visual	Database	Tools	work	transparently	with	SQL	Server
databases	by	producing	SQL	Server-specific	SQL	commands,	recognizing	SQL
syntax	unique	to	SQL	Server,	and	so	on.

In	a	few	instances,	however,	you	will	find	it	useful	to	know	how	the	Visual
Database	Tools	differ	when	you	are	working	with	SQL	Server	databases.	For
example,	you	might	find	it	helpful	to	understand	how	the	Query	Designer	will
treat	SQL	Server-specific	syntax	if	you	enter	an	SQL	command	yourself,	or	what
operators	you	can	use.

For	more	information	about See
Issues	and	notes	for	using	the
Database	Designer	with	SQL	Server
databases

Database	Designer	Considerations
for	SQL	Server	Databases

Issues	and	notes	for	using	the	Query
Designer	with	SQL	Server	databases

Query	Designer	Considerations	for
SQL	Server	Databases

Visual	Database	Tools

Database	Designer	Considerations	for	SQL	Server
Databases
The	following	guidelines	outline	SQL	Server-specific	features	that	you	can	use.

Below	you	will	find	information	about:

Case	Sensitivity

Full-Text	Indexes

Changing	Column	Properties

Case	Sensitivity

Column	and	table	names	in	a	SQL	Server	database	can	be	stored	in	uppercase
letters,	lowercase	letters,	or	a	combination	of	both.	For	example,	a	column	name
can	appear	as	"LASTNAME,"	"LastName,"	or	"lastname."

Depending	on	how	SQL	Server	was	installed,	databases	can	be	case-sensitive	or
case-insensitive.	If	a	database	is	case-sensitive,	you	must	enter	owner,	table,	and
column	names	using	the	correct	combination	of	uppercase	and	lowercase
characters.	If	you	are	using	a	case-sensitive	database,	you	must	think	carefully
when	you	refer	to	a	database	object	by	name,	since	two	objects	named
"CUSTOMER"	and	"Customer"	can	exist	in	the	same	database.

If	the	server	was	installed	with	a	case-insensitive	option,	you	can	enter	database
object	names	using	any	combination	of	uppercase	and	lowercase	characters.

Tip			To	determine	the	case	sensitivity	of	a	server,	execute	the
stored	procedure	sp_server_info,	and	then	examine	the	contents	of	row	18.	If
the	server	has	been	installed	with	the	case-insensitive	setting,	the	option	for
sort_order	will	be	set	to	nocase.	You	can	run	a	stored	procedure	from	the
Query	Analyzer.

Full-Text	Indexes

JavaScript:hhobj_1.Click()

A	table	can	include	full-text	indexes.	Database	Designer	and	Table	Designer
provide	limited	support	for	manipulating	tables	with	full-text	indexes.		You
cannot	use	Database	Designer	or	Table	Designer	to	create	a	full-text	index,	but	if
you	modify	a	table	with	full-text	indexes,	the	Database	Designer	or	Table
Designer	warns	you	if	your	modification	affects	the	full-text	index.		In	most
cases,	however,	when	you	save	your	modifications,	the	Database	Designer	or
Table	Designer	will	be	able	to	reestablish	the	table's	full-text	indexes.	

For	more	information,	see	Full-Text	Indexing	Support.

Changing	Column	Properties
For	information	on	the	procedure	you	use	to	set	column	properties,	see	Setting
Column	Properties.

The	following	items	contain	information	specific	to	Microsoft	SQL	Server
databases:

Default	Values	for	Data	Types

Changing	the	Data	Type	Assigned	to	a	Column

Changing	the	Column	Length

Changing	the	Column	Precision

Changing	the	Column	Scale

Changing	the	Null	Option	Assigned	to	a	Column

Assigning	a	Default	Value	to	a	Column

Redefining	a	Global	Default

JavaScript:hhobj_2.Click()

Changing	a	Column's	Identity	Properties

Default	Values	for	Data	Types

The	following	default	values	are	automatically	added	for	a	new	column:

Data	Type Description Default	value
Column	Name The	name	of	a	column	in	a	table.

Column	names	must	conform	to	rules
for	identifiers	and	must	be	unique	in
the	table.

Blank

Datatype The	data	type	of	the	column.	System-
or	user-defined	data	types	are
acceptable.

Character	(char)

Length The	maximum	number	of	digits	(for
numeric	data	types)	or	characters
allowed	for	values	in	the	column.

Differs	for
different	data	types
(e.g.,	10	for
Character,	50	for
VARBINARY)

Precision The	maximum	total	number	of	decimal
digits	that	can	be	stored,	both	to	the
left	and	to	the	right	of	the	decimal
point.

0

Scale The	maximum	number	of	decimal
digits	that	can	be	stored	to	the	right	of
the	decimal	point.	This	value	must	be
less	than	or	equal	to	the	precision.	
Applies	only	to	DECIMAL	and
NUMERIC	data	types.

0

Allow	Nulls Whether	or	not	the	column	can	accept
null	values.

Yes	(selected)

Default	Value The	value	that	will	be	inserted	into	the
column	if	the	user	does	not	make	an
entry.	Default	values	are	ignored	for
columns	with	a	timestamp	data	type.	If
you	do	not	define	a	default	value	and	a

Blank

column	allows	nulls,	NULL	will	be
inserted.

Identity Whether	or	not	the	column	will
generate	incremental	values	for	new
rows	based	on	the	Identity	Seed	and
Identity	Increment	settings.

No	(not	selected)

Identity	Seed The	value	assigned	to	the	first	row	in
the	table.	If	the	Identity	setting	is	No,
Identity	Seed	is	blank.		If	the	Identity
setting	is	Yes,	Identity	Seed	defaults
to	1.

Blank	or	1.

Identity
Increment

The	value	which	is	added	to	the
Identity	Seed	and	assigned	to	the
second	row	in	the	table.	Each
subsequent	row	is	increased	by	this
value.	If	the	Identity	setting	is	No,
Identity	Increment	is	blank.		If	the
Identity	setting	is	Yes,	Identity
Increment	defaults	to	1.

Blank	or	1.

Changing	the	Data	Type	Assigned	to	a	Column
A	column's	data	type	determines	what	kind	of	data	can	be	stored	in	the	column.
A	list	of	system-defined	data	types	appears	in	the	Data	type	column.

You	can	choose	the	appropriate	data	type	for	the	information	you	want	to	store	in
the	column.	User-defined	data	types	appear	at	the	end	of	the	data	type	list.	The
system-defined	data	type	that	corresponds	to	the	user-defined	data	type	appears
in	parentheses	at	the	end	of	the	user-defined	data	type	name.	For	example:	"id
(varchar)."

Special	considerations	for	assigning	a	user-defined
data	type	to	a	column

Selecting	a	data	type	automatically	sets	the	length,	precision,	and	scale
for	the	column	based	on	the	data	type's	definition.	You	cannot	change
these	settings	for	user-defined	data	types.

You	can	change	the	Allow	Nulls	setting	only	if	the	user-defined	data
type	allows	null	values.

For	more	information,	see	Creating	User-Defined	Data	Types.

Note			Changing	the	data	type	recreates	the	table	in	the	database	when	you
save	the	table	or	diagram.

Caution			If	you	change	the	data	type	of	a	column	that	is	related	to	columns
in	other	tables,	then	the	data	type	of	the	related	columns	must	also	be
changed	to	preserve	referential	integrity.	When	you	save	the	table	or
diagram,	the	Datatype	Change	Required	dialog	box	enables	you	to
automatically	change	the	data	type	of	the	related	columns.

For	more	information,	see	Data	Types.

Changing	the	Column	Length
When	you	select	a	data	type,	the	column	length	is	automatically	defined.	You
can	reset	the	length	property	for	a	column	with	a	data	type	of	binary,	char,	nchar,
nvarchar,	varbinary,	or	varchar	if	you	want	to	increase	or	decrease	the	length	of
acceptable	values	in	that	column.	For	columns	with	other	data	types,	the	length
is	derived	from	the	data	type.

Changing	the	Column	Precision
For	most	data	types,	the	column	precision	is	automatically	defined.	You	can
change	the	column	precision	for	the	decimal	and	numeric	data	types	if	you	want
to	redefine	the	maximum	number	of	digits	these	columns	use.	The	precision	of	a
numeric	column	refers	to	the	maximum	number	of	digits	used	by	the	selected
data	type.	The	precision	of	a	non-numeric	column	generally	refers	to	either	the
maximum	length	or	the	defined	length	of	the	column.

The	Database	Designer	prevents	you	from	changing	the	precision	of	a	column

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

whose	data	type	is	not	decimal	or	numeric.

Changing	the	Column	Scale
When	you	select	a	data	type,	the	column	scale	by	default	is	set	to	0.	The	scale	of
a	numeric	column	refers	to	the	maximum	number	of	digits	to	the	right	of	the
decimal	point.	For	columns	with	approximate	floating	point	numbers,	the	scale
is	undefined	because	the	number	of	digits	to	the	right	of	the	decimal	point	is	not
fixed.

You	can	change	the	scale	for	a	numeric	or	decimal	column	if	you	want	to
redefine	the	number	of	digits	that	can	appear	to	the	right	of	the	decimal	point.

Changing	the	Null	Option	Assigned	to	a	Column
For	each	column	in	your	table,	you	can	specify	whether	to	allow	null	values	or
disallow	null	values.	A	null	value,	or	NULL,	is	not	the	same	as	zero	(0)	or	blank;
NULL	means	that	no	entry	has	been	made.	Its	presence	usually	implies	that	the
value	is	either	unknown	or	undefined.	For	example,	a	null	value	in	the	price
column	of	the	titles	table	of	the	pubs	sample	database	does	not	mean	that	the
book	has	no	price;	it	means	that	the	price	is	unknown	or	has	not	been	set.

If	null	values	are	not	allowed,	the	user	entering	data	in	the	table	must	enter	a
value	in	the	column	or	the	table	row	cannot	be	accepted	in	the	database.

Note			You	cannot	change	this	property	on	a	primary	key	column.	Also,
identity	columns	cannot	have	null	values.		That	is,	you	cannot	create	or
modify	a	column	so	that	its	Identity	setting	is	Yes	and	its	Nulls	Allowed
setting	is	Yes.

Assigning	a	Default	Value	to	a	Column
For	each	column	in	your	table,	you	can	specify	a	default	value	that	will	be
entered	in	the	column	if	the	user	leaves	it	blank.	If	you	do	not	assign	a	default
value	and	the	user	leaves	the	column	blank,	then:

If	you	set	the	option	to	allow	null	values,	NULL	will	be	inserted	into	the
column.

If	you	did	not	set	the	option	to	allow	null	values,	the	column	will
remain	blank,	but	you	will	not	be	able	to	save	the	row	until	you	supply	a
value	for	the	column.

For	text	strings,	enclose	the	value	in	single	quotation	marks	(');	do	not	use
double	quotation	marks	(")	because	they	are	reserved	for	quoted	identifiers.	For
example,	type:	98036	or	'Paris,	France'.
If	your	entry	in	the	Default	Value	column	replaces	a	bound	default	(which	is
shown	without	parentheses),	the	default	will	be	unbound	and	the	new	value	will
replace	it.

Redefining	a	Global	Default
A	global	default	is	one	that	is	defined	for	a	specific	database	and	is	shared	by
columns	of	different	tables.	For	example,	suppose	several	of	your	tables	have	a
quantity	column.	You	can	define	a	global	default	in	your	database	that	inserts	a
value	of	1	in	the	quantity	column	whenever	the	user	leaves	that	column	blank
in	any	table.

If	a	global	default	is	bound	to	a	column,	you	can	specify	a	different	default	value
for	that	column	in	a	specific	table.	In	such	a	case,	the	existing	global	default	is
unbound	from	the	column	before	the	new	default	value	is	bound	to	the	column.

To	redefine	a	global	default

1.	 In	your	database	diagram,	assign	a	new	default	value	to	the	column
you	want	to	change.

2.	 A	message	prompts	you	to	permanently	unbind	the	existing	default	in
order	for	the	new	default	to	be	applied.	Choose	OK.

Changing	a	Column's	Identity	Properties

You	can	change	the	identity	properties	of	a	column	if	you	want	to	redefine	the
sequential	numbers	that	are	automatically	generated	and	stored	in	that	column

when	new	rows	are	added	to	the	table.	You	can	set	the	identity	properties	on	only
one	column	per	table.

Columns	that	have	the	identity	property	contain	system-generated	sequential
values	that	uniquely	identify	each	row	within	a	table	(for	example,	employee
identification	numbers).	When	inserting	values	into	a	table	with	an	identity
column,	Microsoft	SQL	Server	automatically	generates	the	next	identifier	based
on	the	last	used	identity	value	(the	identity	seed	property)	and	the	increment
value	(the	identity	increment	property)	specified	during	the	creation	of	the
column.

The	identity	property	can	be	set	only	for	a	column	whose	data	type	is	decimal,
int,	numeric,	smallint,	bigint,	or	tinyint	and	that	disallows	null	values.

To	change	a	column's	identity	properties

1.	 In	your	database	diagram,	select	the	table	in	which	you	want	to	change
the	identity	properties	of	a	column.

2.	 If	you	are	not	already	in	Standard	view,	right-click	the	table	and
choose	Table	View,	then	Standard	from	the	shortcut	menu.

3.	 If	the	Allow	Nulls	property	is	selected,	clear	the	check	box.

4.	 Select	the	Identity	cell	for	the	column	whose	values	you	want	to
automatically	increment.

Note			Only	one	column	per	table	can	be	defined	as	an	identity
column.

5.	 Type	a	value	in	the	Identity	Seed	cell.	This	value	will	be	assigned	to
the	first	row	in	the	table.	If	you	leave	this	cell	blank,	the	value	1	will
be	assigned	by	default.

6.	 Type	a	value	in	the	Identity	Increment	cell.	This	value	is	the
increment	that	will	be	added	to	the	Identity	Seed	for	each	subsequent
row.	If	you	leave	this	cell	blank,	the	value	1	will	be	assigned	by

default.

For	example,	suppose	you	want	to	automatically	generate	a	5-digit	Order	ID	for
each	row	added	to	the	orders	table,	beginning	with	10000	and	incremented	by	a
value	of	10.	To	do	this,	you	would	select	the	Identity	property	box,	type	an
Identity	Seed	of	10000,	and	type	an	Identity	Increment	of	10.
If	you	change	any	of	the	identity	properties	for	a	table,	the	existing	identity
values	will	be	preserved.	Your	new	settings	apply	only	to	new	rows	that	are
added	to	the	table.

Note			If	an	identity	column	exists	for	a	table	with	frequent	deletions,	gaps
can	occur	between	identity	values.	If	you	want	to	avoid	such	gaps,	do	not	use
the	identity	property.

See	Also
Constraints	|	Creating	a	Relationship	Between	Tables	|	Creating	an	Index	|
Database	Designer	|	Deleting	a	Check	Constraint	|	Enforcing	Referential
Integrity	Between	Tables	|	Setting	Column	Properties	|	Table	Relationships

Visual	Database	Tools

Query	Designer	Considerations	for	SQL	Server
Databases
The	following	guidelines	provide	information	about	SQL	Server-specific
features	that	you	can	use.

Below	you	will	find	information	about:

SQL	Syntax	in	Query	Designer

Identifying	Database	Objects

Using	Quotation	Marks

Case	Sensitivity

Entering	Keywords	in	the	Grid	and	SQL	Panes

Entering	Currency	Values

Using	the	GUID	Data	Type

Entering	Blanks

Including	Optimizer	Hint	Comments

ANSI	to	OEM	Character	Conversion

Unsupported	and	Partially	Supported	Query	Types

Working	with	Tables	from	Different	Data	Sources

SQL	Syntax	in	Query	Designer

When	the	Query	Designer	builds	a	statement	in	the	SQL	pane,	it	will	use	syntax
specific	to	SQL	Server	whenever	possible.	For	example,	database	objects	such	as
tables	and	views	are	qualified	using	SQL	Server	owner	names.

You	can	also	type	SQL	Server-specific	syntax	in	the	SQL	pane.	In	some	cases
when	you	verify	a	query,	the	Query	Designer	converts	server-specific	syntax	to
ANSI	standard	syntax.	However,	the	changed	query	will	always	return	the	same
results.

Identifying	Database	Objects
When	you	enter	the	names	of	database	objects	(tables,	views,	and	columns)	in
the	SQL	pane,	you	must	provide	sufficient	information	for	SQL	Server	to
identify	the	object	you	want.	Database	objects	are	identified	with	unique	names
that	consist	of	up	to	three	parts	(for	tables	and	views)	or	four	parts	(for	columns):

database.owner.table

database.owner.table.column

Note			You	can	join	tables	from	different	databases	on	the	same	server.	In
that	case,	database	objects	can	have	four	part	names.	For	more	details,	see
Working	with	Tables	from	Different	Data	Sources.

In	general,	you	need	to	provide	only	enough	qualifiers	to	uniquely	identify	the
object	you	want	to	work	with.	For	example,	if	you	are	working	with	a	column
called	price	in	the	titles	table	in	the	current	database,	you	can	simply	reference
the	column	by	name,	as	in	this	SQL	statement:

SELECT	price
FROM	titles

However,	if	you	are	working	with	two	tables,	such	as	orders	and	products,	and
each	has	a	column	called	price,	you	must	qualify	references	to	the	column	with
the	appropriate	table	name,	as	in	this	example:

SELECT	products.prod_id,	orders.price

FROM	orders	INNER	JOIN	products	ON	
	orders.prod_id	=	products.prod_id

When	you	use	the	Diagram	pane	and	Grid	pane	to	work	with	tables	in	the
current	database,	the	Query	Designer	automatically	adds	owner	and	table
qualifiers	for	you.	If	you	are	not	the	owner	of	a	table	that	you	are	working	with,
the	owner's	name	will	appear	in	the	table	names.	For	example,	if	you	work	in	the
pubs	database,	the	owner	name	dbo	will	appear	in	front	of	table	names.	If	you
are	working	with	multiple	tables,	the	Query	Designer	adds	table	name	qualifiers
to	column	names.

Using	Quotation	Marks
The	standard	delimiters	for	literal	strings	in	SQL	are	single	quotation	marks	(').
By	default,	SQL	Server	reserves	double	quotation	marks	(")	as	delimiters	for
database	objects.

The	SQL	Server	ODBC	driver	supports	a	Quoted	Identifiers	setting	for	the
session	or	connection.	If	this	setting	is	on,	double	quotation	marks	are
interpreted	as	delimiters	for	identifiers.	However,	if	you	turn	this	setting	off,
double	quotation	marks	are	interpreted	instead	as	delimiters	for	literal	strings.

To	avoid	ambiguity,	the	Query	Designer	always	sets	Quoted	Identifiers	on,	so
that	double	quotation	marks	are	always	interpreted	as	database	object	delimiters.
If	you	have	previously	turned	Quoted	Identifiers	off,	the	Query	Designer
overrides	your	setting.

Therefore,	in	the	Query	Designer,	always	use	single	quotation	marks	to	enclose
string	literals.	Use	double	quotation	marks	only	as	needed	for	database	objects
delimiters.

Case	Sensitivity
Text	information	in	a	SQL	Server	database	can	be	stored	in	uppercase	letters,
lowercase	letters,	or	a	combination	of	both.	For	example,	a	last	name	can	appear
as	"SMITH,"	"Smith,"	or	"smith."

Depending	on	how	SQL	Server	was	installed,	databases	can	be	case-sensitive	or

case-insensitive.	If	a	database	is	case-sensitive,	when	you	search	for	text	data,
you	must	construct	your	search	conditions	using	the	exact	combination	of
uppercase	and	lowercase	letters.	For	example,	if	you	are	looking	for	a	name	such
as	"Smith,"	you	cannot	use	the	search	conditions	"=smith"	or	"=SMITH."

In	addition,	if	the	server	was	installed	as	case-sensitive,	you	must	provide
database,	owner,	table,	and	column	names	using	the	correct	combination	of
uppercase	and	lowercase	characters.	If	the	case	of	the	name	you	provide	does	not
match	exactly,	SQL	Server	returns	an	error	reporting	an	"invalid	object	name."

When	you	create	queries	using	the	Diagram	and	Grid	panes,	the	Query	Designer
will	always	accurately	reflect	the	case-sensitivity	of	your	server.	However,	if	you
enter	queries	in	the	SQL	pane,	you	must	be	careful	to	match	names	to	the	way
they	will	be	interpreted	by	the	server.

If	the	server	was	installed	with	a	case-insensitive	option,	you	can	enter	database
object	identifiers	and	search	conditions	using	any	combination	of	uppercase	and
lowercase	characters.

Tip			To	determine	the	case	sensitivity	of	a	server,	execute	the
stored	procedure	sp_server_info,	and	then	examine	the	contents	of	row	18.	If
the	server	has	been	installed	with	the	case-insensitive	setting,	the	option	for
sort_order	will	be	set	to	nocase.			You	can	run	a	stored	procedure	from	the
Query	Analyzer.

Entering	Keywords	in	the	Grid	and	SQL	Panes
The	Query	Designer	supports	the	use	of	certain	SQL	Server	constants,	variables,
and	reserved	column	names	in	the	Grid	or	SQL	panes.	Generally,	you	can	enter
these	values	by	typing	them	in,	but	the	Grid	pane	will	not	display	them	in	drop-
down	lists.	Examples	of	supported	names	include:

IDENTITYCOL			If	you	enter	this	name	in	the	Grid	or	SQL	pane,	the
SQL	Server	will	recognize	it	as	a	reference	to	an	auto-incrementing
column.

Predefined	global	values			You	can	enter	values	such	as
@@CONNECTIONS	and	@@CURSOR_ROW	into	the	Grid

JavaScript:hhobj_1.Click()

and	SQL	panes.

Constants	(niladic	functions)			You	can	enter	constant	values	such	as
CURRENT_TIMESTAMP	and	CURRENT_USER	in	either
pane.

NULL			If	you	enter	NULL	in	the	Grid	or	SQL	panes,	it	is	treated	as	a
literal	value,	not	a	constant.

Entering	Currency	Values	in	the	Grid	Pane

In	the	Grid	pane,	to	specify	that	you	want	data	interpreted	as	money,	precede	the
value	with	$	or	$-	(for	negative	values).	Do	not	include	a	comma	or	other
delimiter	to	indicate	thousands.	Formatting	values	this	way	alerts	the	Query
Designer	that	you	are	entering	values	to	be	treated	as	or	compared	to	data	in
money	or	smallmoney	type	columns.	Values	are	rounded	to	the	nearest
hundredth	of	a	unit.

You	can	use	$	no	matter	what	currency	you	are	working	with.	When	a	query
displays	values	from	money	columns	in	the	Results	pane,	it	does	not	include	the
$	prefix.	Depending	on	the	setting	in	the	Windows	Regional	Settings	dialog	box,
currency	data	might	or	might	not	include	a	comma	or	other	delimiter	for
thousands.

Using	the	GUID	Data	Type
You	can	include	references	to	the	GUID	data	type,	which	is	used	to	store
globally	unique	identifiers.	In	Update	and	Insert	From	queries	you	can	call	the
newid()	function	to	generate	a	new	GUID	to	be	stored	in	the	database.

When	you	are	creating	a	Select	query,	the	only	operations	allowed	with	a	GUID
type	column	are	comparisons	based	on	equality	(=	and	<>).

Entering	Blanks

You	can	specify	a	zero-length	string	in	an	Update	or	Insert	Into	query	by
entering	two	single	quotation	marks,	as	in	the	following	example:

UPDATE		employee
SET					minit	=	''
WHERE			emp_id	=	'CFS88322F'

In	versions	of	SQL	Server	6.5	or	earlier,	two	single	quotation	marks	are	treated
as	a	single	space.	For	example,	you	can	use	quotation	marks	in	the	following
expression:	'abc'	+	''	+	'def'.	The	resulting	value	would	be	'abc	def'.

Including	Optimizer	Hint	Comments	in	the	SQL	Pane
If	you	are	entering	a	query	directly	in	the	SQL	pane,	you	can	add	optimizer	hints
to	specify	the	use	of	specific	indexes,	locking	methods,	and	so	on.	However,
when	reformatting	the	contents	of	the	SQL	pane,	the	Query	Designer	might	not
maintain	these	comments.	Optimizer	comments	are	not	represented	graphically.

For	more	information,	see	Hints.

ANSI	to	OEM	Character	Conversion
Data	containing	extended	characters	—	that	is,	characters	outside	the	ASCII
range	32	(space)	to	126	(~),	including	international	characters	such	as	"ä,"	"ç,"
"é,"	"ñ,"	and	"ß"	—	can	require	special	handling	when	you	are	working	with
SQL	Server.

The	representation	of	extended	characters	in	a	result	set	depends	on	the	code
page	in	use.	A	code	page	is	a	character	set	that	a	computer	uses	to	interpret	and
display	data	properly.	Code	pages	usually	correspond	to	different	platforms	and
languages	and	are	used	in	international	applications.	For	example,	the	ASCII
value	174	might	appear	as	the	symbol	"®"	in	one	code	page	but	as	a	chevron
character	in	another	code	page.

In	general,	code	pages	are	divided	into	ANSI	code	pages	and	OEM	code	pages.
ANSI	code	pages,	in	which	high-numbered	ASCII	values	represent	international
characters,	are	used	in	Windows.	OEM	code	pages,	in	which	high-numbered
ASCII	values	represent	line-drawing	and	punctuation	characters,	were	designed

JavaScript:hhobj_2.Click()

for	MS-DOS®.

When	data	is	entered	into	a	SQL	Server	database,	SQL	Server	settings	on	the
local	(client)	computer	specify	whether	the	data	is	stored	in	ANSI	or	OEM
format.	The	option	is	specified	using	the	Automatic	ANSI	to	OEM	conversion
option	on	the	DB	Library	Options	tab	in	the	SQL	Server	Client
Configuration	dialog	box.	This	dialog	box	is	available	by	clicking	the	Microsoft
SQL	Server	Client	Network	Utility	from	Programs	on	the	Start	menu.	(For
more	information,	see	Using	the	DB-Library	Automatic	ANSI	to	OEM
Conversion	Option.)

By	default,	this	option	is	selected	for	the	SQL	Server	Client,	a	choice	which
causes	the	data	to	be	converted	from	high-numbered	ASCII	characters	to	OEM
characters.	For	example,	if	the	OEM	conversion	option	is	set	and	you	enter	the
name	"Günther"	in	a	column	and	then	save	the	row,	the	character	"ü"	will	be
converted	to	another	character	before	the	row	is	stored	in	the	database.

The	results	of	queries	that	you	create	in	the	Query	Designer	are	affected	by	the
format	in	which	extended-character	data	is	stored	in	combination	with	the	setting
of	the	OEM	conversion	option	in	the	SQL	Server	Client	Configuration	dialog
box.	Depending	on	these	variables:

You	might	not	be	able	to	search	for	data	that	includes	high-order	ASCII
characters.

Your	query	results	might	appear	in	the	Results	pane	with	incorrect
characters	substituted	for	high-order	ASCII	characters.

In	general,	if	data	is	stored	in	OEM	format,	you	should	set	the	OEM	conversion
option	so	the	data	will	display	properly	and	so	you	can	search	it.	If	data	is	stored
in	ANSI	format	(that	is,	it	was	not	converted	to	OEM	format)	but	you	have	set
the	OEM	conversion	option,	the	data	will	not	display	properly	and	you	will	not
be	able	to	search	for	it.

To	determine	whether	data	was	stored	in	OEM	format,	you	can	use	a	query	to
display	the	contents	of	the	table	or	tables	you	are	working	with.	If	extended
characters	appear	incorrectly,	the	OEM	conversion	setting	is	probably	wrong.
Close	the	query	and	the	project,	change	the	setting	in	the	SQL	Server	Client
Configuration	dialog	box,	and	then	open	the	project	and	query	again.

JavaScript:hhobj_3.Click()

Query	Designer	Unsupported	and	Partially	Supported
Query	Types
Some	types	of	legal	SQL	Server	queries	cannot	be	represented	graphically	in	the
Query	Designer.	You	can	still	enter	them	in	the	SQL	pane,	and	they	will	execute
correctly.	However,	the	Query	Designer	will	display	the	Query	Definitions
Differ	dialog	box	and	report	an	error	when	you	execute	your	query	or	change
panes.

Several	types	of	SQL	Server	queries	are	not	supported	graphically,	including:

Queries	using	INTERSECT.

Queries	using	UNION	[ALL].

Queries	using	CASE.

Any	data	definition	(DDL)	query,	including	CREATE	TABLE,	ALTER
TABLE,	CREATE	PROCEDURE,	ALTER	PROCEDURE,	and	so	on.
CREATE	VIEW	and	ALTER	VIEW	queries	are	not	supported
graphically,	but	you	can	use	the	View	Designer	to	create	and	edit	views.

Update	and	Delete	queries	that	include	an	extra	FROM	clause	(FROM
table	FROM	table)	that	specifies	the	list	of	rows	to	update	or	delete.

Queries	using	the	FOR	BROWSE	clause.

Queries	that	include	UPDATE	as	a	search	condition.

Queries	including	CURRENT	OF.

Working	with	Tables	from	Different	Data	Sources

You	can	create	distributed,	heterogeneous	queries	—queries	from	tables	and
table-structured	objects	outside	the	server	to	which	you	have	created	a	data
connection.	SQL	Server	can	access	any	data	source	that	supports	OLE	DB.	You
can	use	tables	and	table-structured	objects	from	these	outside	data	sources	as	you
would	any	tables	available	on	the	base	server	(if	you	have	proper	permissions	to
access	to	the	outside	data	source).

Microsoft	SQL	Server	can	access	outside	data	sources	in	two	ways.	The	first	is
using	a	linked	server,	which	is	defined	in	the	SQL	Server	database	to	point	to	the
outside	data	source.	A	linked	server	makes	the	data	source	accessible	using	a
naming	convention	similar	to	that	of	native	SQL	Server	data	objects.	The	second
is	to	use	a	dynamic	reference	to	the	outside	source	using	the	OpenRowset()
function,	which	allows	you	to	connect	to	any	accessible	data	source	in	your
query,	even	if	no	linked	server	is	defined	for	it.

Tables	and	table-structured	objects	from	outside	servers	do	not	appear	as	part	of
the	list	of	tables.	Instead,	to	use	them,	you	use	syntax	in	the	SQL	pane	of	the
Query	Designer	to	refer	to	the	linked	server	or	to	include	the	OpenRowset()
function.	However,	when	you	refer	to	an	outside	data	source	in	the	SQL	pane,
the	Query	Designer	adds	a	rectangle	representing	the	table	or	table-structured
object	to	the	Diagram	pane	to	represent	the	outside	data	source.

To	refer	to	an	outside	data	source	using	a	linked	server

In	the	SQL	pane,	use	the	following	syntax	to	refer	to	the	table:
linkserver.catalog.schema.object

Where:

linkserver	represents	the	name	on	the	local	Microsoft	SQL
Server	data	source	given	to	the	linked	server	in	OLE	DB.

catalog	represents	the	name	of	the	database	containing	the
object.

schema	represents	the	owner	of	the	object.

object	represents	the	table	or	view	in	the	database.

Note			You	must	define	the	SQL	Server	data	source	(the	linkserver	part	of	the
name)	before	you	use	this	name	in	the	query.

The	following	is	an	example	of	an	SQL	statement	that	joins	data	from	tables
from	the	local	database	with	a	table	on	a	server	called	"hrserver":

SELECT	e.id,	e.lname,	h.hiredate
FROM	employee	AS	e	INNER	JOIN	hrserver.hr.dbo.hiredata	AS	H
ON	e.emp_id	=	h.emp_id

To	refer	to	an	outside	data	source	dynamically

In	the	SQL	pane,	use	the	OpenRowset()	function	in	place	of	a	table
reference,	with	the	following	syntax:
OpenRowset(provider,connectString,object)

Where:

provider	represents	the	friendly	name	of	the	OLE	DB	provider.

connectString	represents	a	string	that	includes	information	for
connecting	to	the	outside	data	source.	This	parameter	is
optional	if	an	ODBC	connection	is	already	established	between
the	local	server	and	the	outside	data	source.	The	connectString
parameter	can	take	these	forms:

datasource;user	id;password,	which	lists	specific	connection
attributes.

-or-

provider	string,	which	is	a	single	string	of	named	attributes
with	values	for	creating	the	connection,	similar	to	the	string
used	in	a	.dsn	file.

object	represents	the	name	of	a	database	object.	You	can	refer
to	a	table,	view,	or	other	database	object	using	the	standard
naming	convention	recognized	by	the	outside	data	source.

Tip			The	data	source	referenced	by	OpenRowset()	is	easier	to

work	with	if	you	assign	it	a	table	alias.

The	following	examples	illustrate	variations	on	using	OpenRowset()	to
dynamically	access	data	from	an	outside	data	source.	The	first	shows	access
using	a	set	of	attributes	for	the	connect	string	to	a	Microsoft®	Jet	(Access)
database.	The	second	example	shows	how	you	can	pass	a	connect	string.

SELECT	n.*	
FROM	OpenRowset('Microsoft.jet.OLEDB.3.51',	
				'c:\nwind.mdb';'admin';'pwd',	authors)
AS	n

SELECT	a.*	
FROM	OpenRowset('MSDASQL',	'Driver=SQL	Server;Server=Test;
				UID=user1;PWD=pwd',	pubs.dbo.authors)
AS	a

See	Also
Creating	Make	Table	Queries	|	Creating	Queries	|	Designing	Queries	|	Specifying
Parameter	Marker	Characters	|	Supported	Query	Types	|	Using	Expressions	in	a
Query

Visual	Database	Tools

Database	Development	and	Visual	Database	Tools
As	you	design	a	database,	you	create	database	objects	such	as	tables,	columns,
keys,	indexes,	relationships,	constraints,	and	views.		To	help	you	create	these
objects,	the	Visual	Database	Tools	provides	three	mechanisms:	the	Database
Designer,	the	Table	Designer,	and	the	View	Designer.

The	Database	Designer			A	visual	tool	allowing	you	to	create	tables,
columns,	keys,	indexes,	relationships,	and	constraints.		Within	the
Database	Designer,	you	interact	with	database	objects	through	database
diagrams,	which	graphically	show	the	structure	of	the	database.		With
the	Database	Designer	you	can	create	and	modify	objects	that	are
visible	on	diagrams	(tables,	columns,	relationships,	and	keys)	and	some
objects	that	are	not	visible	on	diagrams	(indexes	and	constraints).

The	Table	Designer			A	visual	tool	allowing	you	to	create	an	individual
table.		Although	you	can	create	tables	with	the	Database	Designer,	the
Table	Designer	is	sometimes	more	convenient	for	this	task,	because	it
devotes	a	larger	portion	of	the	screen	to	the	table	and	shows	more	detail
about	the	table	as	you	design	it.

The	View	Designer			A	visual	tool	that	helps	you	create	views.	
Because	the	SQL	syntax	for	creating	views	is	almost	identical	to	the
syntax	for	creating	queries,	the	View	Designer	is	very	similar	to	the
Query	Designer.

See	Also

Database	Designer	|	Table	Designer	|	Query	and	View	Designer	Layout

Visual	Database	Tools

Database	Designer
The	Database	Designer	is	a	visual	tool	allowing	you	to	design	and	visualize	a
database	to	which	you	are	connected.		When	designing	a	database,	you	can	use
the	Database	Designer	to	create,	edit,	or	delete	tables,	columns,	keys,	indexes,
relationships,	and	constraints.	To	visualize	a	database,	you	can	create	one	or
more	diagrams	illustrating	some	or	all	of	the	tables,	columns,	keys,	and
relationships	in	it.

For	any	database,	you	can	create	as	many	database	diagrams	as	you	like;	each
database	table	can	appear	on	any	number	of	diagrams.		Thus,	you	can	create
different	diagrams	to	visualize	different	portions	of	the	database,	or	to	accentuate
different	aspects	of	the	design.		For	example,	you	can	create	a	large	diagram
showing	all	tables	and	columns,	and	you	can	create	a	smaller	diagram	showing
all	tables	without	showing	the	columns.

Each	database	diagram	you	create	is	stored	in	the	associated	database.

Tables	and	Columns	in	a	Database	Diagram
Within	a	database	diagram,	each	table	can	appear	with	three	distinct	features:	a
title	bar,	a	row	selector,	and	a	set	of	property	columns.

Title	Bar			The	title	bar	shows	the	name	of	the	table.	If	another	user	owns	the
table,	then	that	user's	name	appears	in	parentheses	at	the	end	of	the	table	name.
For	information	about	table	owners,	see	Ownership	of	Database	Objects.

If	you	have	modified	a	table	and	have	not	yet	saved	it,	an	asterisk	(*)	appears	at
the	end	of	the	table	name	to	indicate	unsaved	changes.	For	information	about
saving	modified	tables	and	diagrams,	see	Working	with	Databases.

Or

Row	Selector			You	can	click	the	row	selector	 	to	select	a	database	column	in
the	table.	The	row	selector	displays	a	key	symbol

if	the	column	is	in	the	table's	primary	key.	For	information	about	primary	keys,
see	Defining	a	Primary	Key.

Property	Columns			The	set	of	property	columns	is	visible	only	in	the	certain
views	of	your	table.	You	can	view	a	table	in	any	of	four	different	views	to	help
you	manage	the	size	and	layout	of	your	diagram.

For	more	information	about	table	views,	see	Changing	a	Table	View	in	a
Database	Diagram.

Relationships	in	a	Database	Diagram
Within	a	database	diagram,	each	relationship	can	appear	with	three	distinct
features:	endpoints,	a	line	style,	and	related	tables.

Endpoints			The	endpoints	of	the	line	indicate	whether	the	relationship	is	one-
to-one	or	one-to-many.		If	a	relationship	has	a	key	at	one	endpoint	and	a	figure-

eight	at	the	other,	it	is	a	one-to-many	relationship.	If	a	relationship	has	a	key	at
each	endpoint,	it	is	a	one-to-one	relationship.

Line	Style			The	line	itself	(not	its	endpoints)	indicates	whether	the	Database
Management	System	(DBMS)	enforces	referential	integrity	for	the	relationship
when	new	data	is	added	to	the	foreign-key	table.		If	the	line	appears	solid,	the
DBMS	enforces	referential	integrity	for	the	relationship	when	rows	are	added	or
modified	in	the	foreign-key	table.	If	the	line	appears	dotted,	the	DBMS	does	not
enforce	referential	integrity	for	the	relationship	when	rows	are	added	or
modified	in	the	foreign-key	table.

Related	Tables			The	relationship	line	indicates	that	a	foreign-key	relationship
exists	between	one	table	and	another.		For	a	one-to-many	relationship,	the
foreign-key	table	is	the	table	near	the	line's	figure-eight	symbol.		If	both
endpoints	of	the	line	attach	to	the	same	table,	the	relationship	is	a	reflexive
relationship.		For	more	information,	see	Drawing	a	Reflexive	Relationship.

See	Also
Database	Designer	Properties	Pages	|	Database	Designer	Dialog	Boxes

Visual	Database	Tools

Table	Designer
The	Table	Designer	is	a	visual	tool	allowing	you	to	design	and	visualize	a	single
table	in	a	database	to	which	you	are	connected.

The	Table	Designer	has	two	parts.		The	upper	part	shows	a	grid;	each	row	of	the
grid	describes	one	database	column.		For	each	database	column,	the	grid	displays
its	fundamental	characteristics:		column	name,	data	type,	length,	and	nulls-
allowed	setting.

The	lower	portion	of	the	Table	Designer	shows	additional	characteristics	for
whichever	data	column	is	highlighted	in	the	upper	portion.

From	the	Table	Designer,	you	can	also	access	property	pages	through	which	you
can	create	and	modify	relationships,	constraints,	indexes,	and	keys	for	the	table.

See	Also

Table	Designer	Properties	Pages	|	Database	Designer	Dialog	Boxes

Visual	Database	Tools

Interactions	Among	Database	Diagrams	and	Table
Design	Windows
When	you	connect	to	a	database	and	begin	designing	or	modifying	a	database
diagram	or	a	table,	the	Visual	Database	Tools	retain	your	work	in	memory.		That
is,	the	tools	do	not	transmit	your	work	to	the	database	until	you	explicitly	save
the	work	there.		Regardless	of	how	many	database	diagrams	you	open	or	how
many	tables	you	design,	the	Visual	Database	Tools	retain	a	single	in-memory
model	of	the	database	structure.		There	are	several	ramifications:

You	can	experiment	with	different	object	definitions

Because	your	modifications	are	not	saved	to	the	database	immediately,
you	can	experiment	to	see	how	a	proposed	modification	will	affect	the
database.		When	you	complete	you	modifications,	you	can	either	save
your	changes	to	the	database,	save	your	changes	to	a	script	file,	or
discard	your	changes.

Your	modifications	can	appear	in	many	diagrams	or	table	design
windows

When	you	modify	a	database	object,	every	open	diagram	containing
that	object	will	reflect	that	modification.		For	example,	if	you	add	a
column	to	a	table,	the	new	column	appears	on	every	open	diagram
containing	that	table.		If	you	modify	an	object	and	later	add	that	object
to	another	diagram,	the	added	object	reflects	the	modifications	—	even
if	you	have	not	yet	saved	the	modifications	to	the	database.

Your	modifications	can	exist	in	memory	only

The	in-memory	model	of	the	database	structure	endures	until	you	close
all	database	diagrams	and	table	design	windows	for	that	database.	
Thus,	it	is	possible	that	the	in-memory	model	retains	modifications	that
are	not	visible	on	any	open	database	diagrams.		Even	if	you	remove	a
modified	object	from	the	only	open	diagram,	the	modification	remains
in	memory.		If	you	later	add	the	same	object	to	any	diagram,	the
modification	will	be	visible.

Note			Query	Designer	windows	and	View	Designer	windows	use	a	different
strategy	to	retain	your	work	in	memory.		For	more	information,	see
Interactions	Among	Query	and	View	Designer	Windows

Visual	Database	Tools

Database	Objects
When	you	use	Visual	Database	Tools	to	design	a	database,	you	create	database
objects	such	as	the	following.

Tables

Columns

Keys

Table	Relationships

Indexes

Constraints

Triggers

Stored	Procedures

See	Also

Queries	and	Views

Visual	Database	Tools

Uniqueness	of	Database	Object	Names
The	database	catalog	in	your	database	contains	one	row	for	each	object
(constraint,	default,	log,	rule,	stored	procedure,	etc.)	created	within	a	database.
Because	the	DBMS	enforces	certain	rules	to	ensure	that	objects	have	unique
names,	you	must	take	care	when	naming	objects.

When	you	name	database	objects	in	a	database	diagram	or	table	diagram,	you
will	be	alerted	if	the	name	you	choose	is	already	used	by	another	object.		There
are	three	possible	outcomes	when	you	name	an	object:

You	choose	a	duplicate	name	detected	by	the	Visual	Database	Tools.
In	this	case,	you	receive	an	error	as	soon	as	you	try	to	name	the	object.

You	choose	a	duplicate	name	detected	by	the	DBMS.
In	this	case,	the	Visual	Database	Tools	initially	accept	the	name,	but	the
DBMS	rejects	the	name	when	you	try	to	save	the	object	to	the	database;
you	receive	an	error.

You	choose	a	unique	name.
In	this	case,	you	receive	no	error.

See	Also

Ownership	of	Database	Objects

Visual	Database	Tools

Tables
A	database	consists	of	one	or	more	tables.	A	table	is	a	collection	of	data,
arranged	in	rows	and	columns.	For	example,	you	might	have	a	table	for	author
information	called	authors.	Each	column	would	contain	a	certain	type	of
information,	such	as	the	author's	last	name.	Each	row	would	contain	all	the
information	about	a	specific	author:	first	name,	last	name,	address,	and	so	on.

In	a	database,	you	might	have	a	number	of	tables,	each	devoted	to	a	specific
topic.	For	example,	the	pubs	database	might	contain	tables	for	authors,	titles,
and	so	on.	Using	a	separate	table	for	each	topic	can	eliminate	duplicate	data,
make	data	storage	more	efficient,	and	reduce	data-entry	errors.

Tables	are	the	basic	building	blocks	of	database	diagrams.	In	a	database	diagram,
each	table	is	laid	out	in	a	matrix	so	that	you	can	see	all	the	properties	defined	for
every	column	in	your	database	table.

Tables	in	a	Database	Diagram
Each	table	in	a	database	diagram	has	three	distinct	features:	a	title	bar,	a	row
selector,	and	a	set	of	property	columns.

Title	Bar			The	title	bar	shows	the	name	of	the	table.	If	another	user
owns	the	table,	then	that	user's	name	appears	in	parentheses	at	the	end
of	the	table	name.

For	information	about	table	owners,	see	Multiuser	Environments.

If	you	have	modified	a	table	and	have	not	yet	saved	it,	an	asterisk	(*)	appears	at
the	end	of	the	table	name	to	indicate	unsaved	changes.	For	information	about
saving	modified	tables	and	diagrams,	see	Working	with	Databases.

or

Row	Selector			You	can	click	the	row	selector	 	to	select	a	database
column	in	the	table.	The	row	selector	displays	a	key	symbol	 	if	the

column	is	in	the	table's	primary	key.	For	information	about	primary
keys,	see	Defining	a	Primary	Key.

Property	Columns			The	set	of	property	columns	is	visible	only	in
certain	views	of	your	table.	You	can	view	a	table	in	any	of	five	different
views	to	help	you	manage	the	size	and	layout	of	your	diagram.

For	more	information	about	table	views,	see	Changing	a	Table	View.

Before	you	begin	defining	the	columns	for	a	table,	determine	what	type	of	data
the	table	will	hold	and	how	that	table	relates	to	the	other	tables	in	your	database.

Designing	Tables
To	determine	the	structure	of	a	new	table,	you	need	to	decide:

What	type	of	data	the	table	will	contain.

What	columns	you	need	in	the	table	and	the	data	type	(and	length,	if
required)	for	each	column.

Which	columns	should	accept	null	values.	For	information	about	data
types,	allowing	null	values,	and	other	column	properties,	see	Working
with	Columns.

Whether	to	use	constraints	and	if	so,	where.	For	more	information,	see
Constraints.

What	types	of	indexes	you	need,	where	you	need	them,	and	which
columns	should	be	the	primary	key	and	foreign	key.	For	more
information,	see	Indexes.

After	you	decide	on	the	structure	of	your	table,	you	can	create	the	table	and
define	its	columns	in	your	database	diagram	or	with	the	Table	Designer.	You	can
also	alter	the	table's	appearance	in	your	diagram	so	that	the	information	you	need
is	visible	when	you	need	it.	When	you	save	your	table	or	the	diagram,	the	table
is	created	in	your	database.

If	you	know	exactly	what	you	want	in	a	table,	it	is	often	most	efficient	to	define
everything	you	need	at	the	beginning,	including	the	table's	data	restrictions	and
additional	properties.	However,	in	many	cases,	you	will	do	best	to	first	create	a
basic	table	and	save	it	so	it	is	created	in	your	database.	You	can	then	add	some
test	data	to	the	table	and	experiment	with	the	table	in	the	database	diagram	to
fine-tune	its	design.

The	Database	Designer	lets	you	try	out	different	designs	by	working	with	tables
in	your	diagram.	Through	experimentation,	you	can	determine	what	types	of
data	are	frequently	entered	and	queried	and	then	redesign	your	table	accordingly.

When	you	change	a	table's	design	in	a	database	diagram	or	in	Table	Designer,
any	data	that	is	stored	in	the	table	is	preserved	to	the	extent	possible.	When	you
are	satisfied	with	your	basic	design,	you	can	add	constraints,	indexes,	and	any
additional	columns	that	you	require.	For	more	information,	see	Developing
Database	Structure.

To See
Add	new,	existing,	or	related	tables
to	your	database	diagram

Adding	Tables

Copy	a	table	from	one	database
diagram	to	another	diagram

Copying	a	Table	Across	Database
Diagrams

Create	a	new	table	that	contains	some
of	the	same	columns	as	an	existing
table	in	your	diagram

Duplicating	a	Table

Delete	a	table	from	a	database
diagram	and	the	database

Deleting	a	Table	from	a	Database
Diagram	and	the	Database

Change	the	name	of	a	table	in	a Renaming	a	Table

database	diagram	and	in	the	database
Change	the	amount	of	information
shown	for	the	tables	in	the	diagram

Changing	a	Table	View	in	a	Database
Diagram

Add	or	delete	columns	to	a	table,
change	column	property	settings

Working	with	Columns

Visual	Database	Tools

Columns
In	a	table,	data	is	arranged	into	columns.	Each	column	stores	one	data	element,
such	as	a	first	name,	one	line	of	an	address,	a	price,	or	any	similar	discrete	unit
of	information.

When	columns	are	created	in	a	table,	they	are	given	a	name	that	identifies	their
purpose,	such	as	FirstName	or	Address1.	In	most	databases,	you	must	also
specify	additional	properties,	such	as	how	long	the	longest	entry	in	the	column
will	be,	and	what	type	of	data	the	column	will	contain	-	characters,	integers,
floating-point	numbers,	dates	or	times,	and	so	on.	Other	column	properties	can
include	whether	the	column	is	the	table's	primary	key,	whether	users	must	enter	a
value	into	it,	and	what	its	default	value	is.

See	Also
Column	Properties

Visual	Database	Tools

Column	Properties
Each	column	in	a	table	has	a	set	of	properties.	Each	property	defines	one
characteristic,	such	as	the	name,	data	type	or	length,	of	a	column.	The	entire	set
of	properties	for	a	column	makes	up	that	column's	definition	in	your	database
table.

You	can	set	column	properties	directly	in	your	database	table	in	a	database
diagram.	Three	column	properties	are	required	—	the	column	name,	data	type,
and	length	—	before	you	can	save	a	table	in	your	database.	You	can	redefine	a
column	by	editing	any	of	its	properties.	For	example,	you	can	rename	a	column,
alter	its	length,	specify	a	default	value,	and	so	on.

When	you	view	your	table	in	Standard	view,	the	column	properties	are	laid	out
in	a	grid.	In	this	grid,	you	can	choose	which	properties	you	want	to	see.	You	can
hide	the	properties	that	you	rarely	define	and	show	the	properties	that	you	define
more	frequently.	You	can	also	resize	the	columns	in	the	grid	so	that	the
properties	are	easy	to	read.

For	more	information	about	showing,	hiding,	and	resizing	property	columns,
see:

Setting	Column	Properties

Resizing	Property	Columns

Changing	Which	Properties	Appear

Renaming	a	Column

Visual	Database	Tools

Keys
There	are	two	kinds	of	keys.		A	primary	key	is	a	set	of	columns	from	a	table	that
are	guaranteed	to	have	unique	values	for	each	row	of	that	table.		A	primary	key
is	also	called	a	primary	key	constraint,	because	it	effectively	constrains	the
values	you	can	add	to	the	table:	it	prevents	you	from	adding	a	row	to	the	table
whose	primary	key	columns	are	all	equal	to	the	corresponding	values	of	some
other	row	in	that	table.

A	foreign	key	is	a	correspondence	between	a	set	of	columns	in	one	table	and	the
set	of	primary	key	columns	in	some	other	table.		When	discussing	foreign	keys,
the	two	participating	tables	are	sometimes	called	the	foreign-key	table	and	the
primary-key	table.		A	foreign	key	is	also	called	a	foreign	key	constraint	because
it	constrains	table	rows:	it	ensures	that	any	row	you	add	to	the	foreign-key	table
has	a	corresponding	row	in	the	primary-key	table.		That	is,	it	requires	that	any
row	added	to	the	foreign-key	table	have	values	in	the	foreign-key	column	that
correspond	to	the	respective	values	of	the	primary	key	columns	for	some	row	in
the	primary-key	table.

For	more	information	about	primary	keys,	see	Primary	Key	Constraints.		For
more	information	about	foreign	keys,	see	Foreign	Key	Constraints.		For	details
about	working	with	keys,	see	Working	with	Keys.

Visual	Database	Tools

Table	Relationships
You	can	create	relationships	between	your	tables	in	a	database	diagram	to	show
how	the	columns	in	one	table	are	linked	to	columns	in	another	table.

In	a	relational	database,	relationships	enable	you	to	prevent	redundant	data.	For
example,	if	you	are	designing	a	database	that	will	track	information	about	books,
you	might	have	a	table	called	titles	that	stores	information	about	each	book,
such	as	the	book's	title,	date	of	publication,	and	publisher.	There	is	also
information	you	might	want	to	store	about	the	publisher,	such	as	the	publisher's
phone	number,	address,	and	zip	code.	If	you	were	to	store	all	of	this	information
in	the	titles	table,	the	publisher's	phone	number	would	be	duplicated	for	each
title	that	the	publisher	prints.

A	better	solution	is	to	store	the	publisher	information	only	once	in	a	separate
table,	publishers.	You	would	then	put	a	pointer	in	the	titles	table	that
references	an	entry	in	the	publisher	table.

To	make	sure	your	data	is	not	out	of	sync,	you	can	enforce	referential	integrity
between	the	titles	and	publishers	tables.	Referential	integrity	relationships	help
ensure	information	in	one	table	matches	information	in	another.	For	example,
each	title	in	the	titles	table	must	be	associated	with	a	specific	publisher	in	the
publishers	table.	A	title	cannot	be	added	to	the	database	for	a	publisher	that
does	not	exist	in	the	database.

For	a	better	understanding	of	table	relationships,	see:

Types	of	Table	Relationships

Overview	of	Referential	Integrity

Types	of	Table	Relationships

A	relationship	works	by	matching	data	in	key	columns	—	usually	columns	with
the	same	name	in	both	tables.	In	most	cases,	the	relationship	matches	the
primary	key	from	one	table,	which	provides	a	unique	identifier	for	each	row,
with	an	entry	in	the	foreign	key	in	the	other	table.	For	example,	sales	can	be

associated	with	the	specific	titles	sold	by	creating	a	relationship	between	the
title_id	column	in	the	titles	table	(the	primary	key)	and	the	title_id	column	in
the	sales	table	(the	foreign	key).
There	are	three	types	of	relationships	between	tables.	The	type	of	relationship
that	is	created	depends	on	how	the	related	columns	are	defined.

One-to-Many	Relationships

Many-to-Many	Relationships

One-to-One	Relationships

One-to-Many	Relationships

A	one-to-many	relationship	is	the	most	common	type	of	relationship.	In	this	type
of	relationship,	a	row	in	table	A	can	have	many	matching	rows	in	table	B,	but	a
row	in	table	B	can	have	only	one	matching	row	in	table	A.	For	example,	the
publishers	and	titles	tables	have	a	one-to-many	relationship:	each	publisher
produces	many	titles,	but	each	title	comes	from	only	one	publisher.

A	one-to-many	relationship	is	created	if	only	one	of	the	related	columns	is	a
primary	key	or	has	a	unique	constraint.

The	primary	key	side	of	a	one-to-many	relationship	is	denoted	by	a	key	
symbol.	The	foreign	key	side	of	a	relationship	is	denoted	by	an	infinity	
symbol.

Many-to-Many	Relationships
In	a	many-to-many	relationship,	a	row	in	table	A	can	have	many	matching	rows
in	table	B,	and	vice	versa.	You	create	such	a	relationship	by	defining	a	third
table,	called	a	junction	table,	whose	primary	key	consists	of	the	foreign	keys
from	both	table	A	and	table	B.	For	example,	the	authors	table	and	the	titles
table	have	a	many-to-many	relationship	that	is	defined	by	a	one-to-many
relationship	from	each	of	these	tables	to	the	titleauthors	table.	The	primary	key

of	the	titleauthors	table	is	the	combination	of	the	au_id	column	(the	authors
table's	primary	key)	and	the	title_id	column	(the	titles	table's	primary	key).

One-to-One	Relationships
In	a	one-to-one	relationship,	a	row	in	table	A	can	have	no	more	than	one
matching	row	in	table	B,	and	vice	versa.	A	one-to-one	relationship	is	created	if
both	of	the	related	columns	are	primary	keys	or	have	unique	constraints.

This	type	of	relationship	is	not	common	because	most	information	related	in	this
way	would	be	all	in	one	table.	You	might	use	a	one-to-one	relationship	to:

Divide	a	table	with	many	columns.

Isolate	part	of	a	table	for	security	reasons.

Store	data	that	is	short-lived	and	could	be	easily	deleted	by	simply
deleting	the	table.

Store	information	that	applies	only	to	a	subset	of	the	main	table.

The	primary	key	side	of	a	one-to-one	relationship	is	denoted	by	a	key	 	symbol.
The	foreign	key	side	is	also	denoted	by	a	key	 	symbol.

Overview	of	Referential	Integrity
Referential	integrity	is	a	system	of	rules	that	ensure	relationships	between	rows
in	related	tables	are	valid	and	that	you	do	not	accidentally	delete	or	change
related	data.

When	referential	integrity	is	enforced,	you	must	observe	the	following	rules:

You	cannot	enter	a	value	in	the	foreign	key	column	of	the	related	table
if	that	value	does	not	exist	in	the	primary	key	of	the	related	table.
However,	you	can	enter	a	null	in	the	foreign	key	column.	For	example,
you	cannot	indicate	that	a	job	is	assigned	to	an	employee	who	is	not

included	in	the	employee	table,	but	you	can	indicate	that	an	employee
has	no	assigned	job	by	entering	a	null	in	the	job_id	column	of	the
employee	table.

You	cannot	delete	a	row	from	a	primary	key	table	if	rows	matching	it
exist	in	a	related	table.	For	example,	you	cannot	delete	a	row	from	the
jobs	table	if	there	are	employees	assigned	to	the	job	represented	by	that
row	in	the	employee	table.

You	cannot	change	a	primary	key	value	in	the	primary	key	table	if	that
row	has	related	rows.	For	example,	you	cannot	delete	an	employee	from
the	employee	table	if	that	employee	is	assigned	to	a	job	in	the	jobs
table.

You	can	set	referential	integrity	when	all	of	the	following	conditions	are	met:

The	matching	column	from	the	primary	table	is	a	primary	key	or	has	a
unique	constraint.

The	related	columns	have	the	same	data	type	and	size.

Both	tables	belong	to	the	same	database.

Enforced	and	Unenforced	Relationships	in	Database
Diagrams

Creating	a	relationship	line	in	a	database	diagram	automatically	enforces
referential	integrity	by	creating	a	foreign	key	constraint	on	the	related	table.	An
enforced	relationship	appears	in	your	database	diagram	as	a	solid	line.	For
example:

An	unenforced	relationship,	whose	foreign	key	constraint	is	disabled,	appears	in
your	diagram	as	a	dashed	line.	For	example:

Depending	on	the	features	of	your	database,	you	can	set	options	to	disable	the
foreign	key	constraint	for	certain	conditions,	for	example,	during	INSERT	and
UPDATE	transactions.

To See
Create	relationships	between
database	tables	in	a	database	diagram

Creating	a	Relationship	Between
Tables

Ensure	each	value	entered	in	a
foreign	key	column	matches	an
existing	value	in	the	related	primary
key	column

Enforcing	Referential	Integrity
Between	Tables

Link	a	column	in	a	table	with	another
column	in	the	same	table

Drawing	a	Single-Table	Reflexive
Relationship

Create	a	many-to-many	relationship Mapping	Many-to-Many
Relationships	to	a	Database	Diagram

Change	the	name	of	a	relationship Renaming	a	Relationship
Remove	the	relationship	between
two	tables

Deleting	a	Relationship

Disable	a	foreign	key	constraint Disabling	a	Foreign	Key	Constraint
with	INSERT	and	UPDATE
Statements	and	Disabling	a	Foreign
Key	Constraint	for	Replication

Visual	Database	Tools

Indexes
You	can	use	an	index	to	gain	fast	access	to	specific	information	in	a	database
table.	An	index	is	a	structure	that	orders	the	values	of	one	or	more	columns	in	a
database	table,	for	example	the	last	name	(lname)	column	of	the	employee
table.	If	you	were	looking	for	a	specific	employee	by	his	or	her	last	name,	the
index	would	help	you	get	that	information	faster	than	if	you	had	to	search	all	the
rows	in	the	table.

The	index	provides	pointers	to	the	data	values	stored	in	specified	columns	of	the
table,	and	then	orders	those	pointers	according	to	the	sort	order	you	specify.	The
database	uses	the	index	much	as	you	use	an	index	in	a	book:	it	searches	the
index	to	find	a	particular	value	and	then	follows	the	pointer	to	the	row
containing	that	value.

In	database	diagrams,	you	can	create,	edit,	or	delete	each	type	of	index	in	the
Indexes/Keys	Property	Page	for	a	selected	table.	An	index	is	saved	in	the
database	when	you	save	the	table	that	it	is	attached	to,	or	when	you	save	the
diagram	in	which	that	table	appears.	For	details,	see	Creating	an	Index.

As	a	general	rule,	you	should	create	an	index	on	a	table	only	if	the	data	in	the
indexed	columns	will	be	queried	frequently.	Indexes	take	up	disk	space	and	slow
the	adding,	deleting,	and	updating	of	rows.	In	most	situations,	the	speed
advantages	of	indexes	for	data	retrieval	greatly	outweigh	these	disadvantages.
However,	if	your	application	updates	data	very	frequently	or	if	you	have	disk
space	constraints,	you	might	want	to	limit	the	number	of	indexes.

Before	creating	an	index,	you	must	determine	what	columns	to	use	and	what
type	of	index	to	create.		For	more	information,	see:

Index	Columns

Types	of	Index

Index	Columns

You	can	create	indexes	based	on	a	single	column	or	on	multiple	columns	in	a
database	table.	Multiple-column	indexes	enable	you	to	distinguish	between	rows

in	which	one	column	may	have	the	same	value.

Indexes	are	also	helpful	if	you	often	search	or	sort	by	two	or	more	columns	at	a
time.	For	example,	if	you	often	set	criteria	for	last	name	and	first	name	columns
in	the	same	query,	it	makes	sense	to	create	a	multiple-column	index	on	those	two
columns.

To	determine	the	usefulness	of	an	index:

Examine	the	WHERE	and	JOIN	clauses	of	your	queries.	Each	column
included	in	either	clause	is	a	possible	candidate	for	an	index.

Experiment	with	the	new	index	to	examine	its	effect	on	the	performance
of	running	queries.

Consider	the	number	of	indexes	already	created	on	your	table.	It	is	best
to	avoid	a	large	number	of	indexes	on	a	single	table.

Examine	the	definitions	of	the	indexes	already	created	on	your	table.	It
is	best	to	avoid	overlapping	indexes	that	contain	shared	columns.

Examine	the	number	of	unique	data	values	in	a	column	and	compare
that	number	with	the	number	of	rows	in	the	table.	The	result	is	the
selectivity	of	that	column,	which	can	help	you	decide	if	a	column	is	a
candidate	for	an	index	and,	if	so,	what	type	of	index.

Types	of	Index

Depending	on	the	functionality	of	your	database,	you	can	create	three	types	of
indexes	-	unique,	primary	key,	and	clustered	-	in	Database	Designer.

Tip			Although	a	unique	index	will	help	locate	information,	for	the	best
performance	results	it	is	recommended	that	you	use	primary	key	or	unique
constraints	instead.	For	more	information	about	these	constraints,	see
Primary	Key	Constraints	and	Unique	Constraints.

Unique	Index
A	unique	index	is	one	in	which	no	two	rows	are	permitted	to	have	the	same
index	value.

Most	databases	prevent	you	from	saving	a	table	with	a	newly	created	unique
index	when	there	are	duplicate	key	values	in	the	existing	data.	Your	database
may	also	prevent	the	addition	of	new	data	that	would	create	duplicate	key	values
in	the	table.	For	example,	if	you	create	a	unique	index	on	the	employee's	last
name	(lname)	in	the	employee	table,	then	no	two	employees	can	share	the
same	last	name.

For	more	information	about	unique	indexes,	see	Creating	a	Unique	Index.

Primary	Key	Index
A	database	table	often	has	a	column	or	combination	of	columns	whose	value
uniquely	identifies	each	row	in	the	table.	This	column	is	called	the	primary	key
of	the	table.

Defining	a	primary	key	for	a	table	in	a	database	diagram	automatically	creates	a
primary	key	index	that	is	a	specific	type	of	unique	index.	This	index	requires
each	value	in	the	primary	key	to	be	unique.	It	also	permits	fast	access	to	data
when	you	use	the	primary	key	index	in	queries.	For	more	information	about
primary	keys,	see	Defining	a	Primary	Key.

Clustered	Index
In	a	clustered	index,	the	physical	order	of	the	rows	in	the	table	is	the	same	as	the
logical	(indexed)	order	of	the	key	values.	A	table	can	contain	only	one	clustered
index.

If	an	index	is	not	clustered,	the	physical	order	of	the	rows	in	the	table	does	not
match	the	logical	order	of	the	key	values.	A	clustered	index	usually	provides
faster	access	to	data	than	does	a	nonclustered	index.

For	more	information	about	using	a	clustered	index,	see	Creating	a	Clustered
Index.

See	Also
Constraints

Visual	Database	Tools

Constraints
Constraints	are	business	logic	that	your	database	server	enforces	for	you.	They
limit	the	possible	values	that	users	can	enter	into	specified	columns,	enforcing
referential	integrity.	When	you	create	constraints	in	the	Database	Designer,	they
conform	to	the	ANSI	standard	for	creating	and	altering	tables.

The	Database	Designer	accepts	five	types	of	constraints:

Check	Constraints

Default	Constraints

Unique	Constraints

Primary	Key	Constraints

Foreign	Key	Constraints

Visual	Database	Tools

Check	Constraints
A	check	constraint	specifies	the	data	values	or	formats	that	are	acceptable	in	one
or	more	columns	in	a	table.	For	example,	you	can	require	the	zip	column	of	the
authors	table	to	allow	only	five-digit	numeric	entries.
You	can	define	many	check	constraints	for	a	table.	You	use	the	Tables	property
pages	to	create,	modify,	or	delete	each	check	constraint.

To See
Attach	a	check	constraint	to	a	table	to
specify	the	data	values	that	are
acceptable	in	one	or	more	columns

Attaching	a	New	Check	Constraint	to
a	Table	or	Column

Create	a	constraint	expression	to
check	data	for	a	condition

Defining	a	Check	Constraint
Expression

Change	the	constraint	expression	or
the	options	that	enable	or	disable	the
constraint	for	specific	conditions

Modifying	a	Check	Constraint

Apply	constraints	either	to	new	data
only	or	to	existing	data	as	well

Checking	Existing	Data	When
Creating	a	Check	Constraint

Disable	a	check	constraint	when	data
is	added	to,	updated	in,	or	deleted
from	a	table

Disabling	a	Check	Constraint	with
INSERT	and	UPDATE	Statements

Disable	a	check	constraint	when	your
table	is	replicated	in	another	database

Disabling	a	Check	Constraint	for
Replication

Remove	the	limitations	on	data
values	in	a	column

Deleting	a	Check	Constraint

Visual	Database	Tools

Default	Constraints
A	default	constraint	enables	you	to	define	the	value	that	will	be	supplied	for	a
column	whenever	a	user	fails	to	enter	a	value.	For	example,	in	a	table	with	a
column	called	payterms,	you	can	instruct	your	database	server	to	enter	"???"	or
"fill	in	later"	if	the	user	leaves	it	blank.

In	database	diagrams,	you	define	a	default	constraint	as	a	property	of	a	column
in	your	table.	You	define	this	type	of	constraint	for	a	column	by	specifying	a
default	value	inside	a	table	in	Standard	view.	Be	sure	to	specify	the	constraint
with	the	correct	delimiters.	For	example,	strings	must	be	surrounded	with	single
quotes.

For	more	information	about	defining	default	constraints,	see	Setting	Column
Properties.

See	Also
Constraints

Visual	Database	Tools

Unique	Constraints
A	unique	constraint	ensures	no	duplicate	values	are	entered	into	specified
columns	that	are	not	a	table's	primary	key.	For	example,	in	the	employee	table
in	which	the	emp_id	column	is	the	primary	key,	you	can	define	a	unique
constraint	that	requires	entries	in	the	Social	Security	number	(ssn)	column	to	be
unique	within	the	table.

In	database	diagrams,	you	use	the	Indexes/Keys	property	page	to	create,	modify,
or	delete	unique	constraints.

To See
Ensure	no	duplicate	values	are
entered	in	specific	columns

Creating	a	Unique	Constraint

Change	the	columns	that	the
constraint	is	attached	to,	change	the
constraint	name,	or	set	additional
properties	for	the	constraint

Modifying	a	Unique	Constraint

Remove	the	requirement	for
uniqueness	for	values	entered	in	the
column

Deleting	a	Unique	Constraint

Visual	Database	Tools

Primary	Key	Constraints
A	primary	key	constraint	ensures	no	duplicate	values	are	entered	in	particular
columns	and	that	NULL	values	are	not	entered	in	those	columns.	You	can	use
primary	key	constraints	to	enforce	uniqueness	as	well	as	referential	integrity.	For
example,	the	au_id	column	uniquely	identifies	each	author	stored	in	the
authors	table.
You	create	primary	key	constraints	directly	in	a	database	diagram.

To See
Enforce	uniqueness	for	values
entered	in	specified	columns

Defining	a	Primary	Key

Change	the	column	order,	index
name,	clustered	option,	or	fill	factor

Modifying	a	Primary	Key

Copy	column	properties	from	a
primary	key	column	to	a	foreign	key
column	to	relate	the	two	columns

Copying	Column	Properties	to	a
Foreign	Key	Column

Remove	the	requirement	for
uniqueness	for	the	values	entered	in	a
column

Deleting	a	Primary	Key	Constraint

Visual	Database	Tools

Foreign	Key	Constraints
A	foreign	key	constraint	works	in	conjunction	with	primary	key	or
unique	constraints	to	enforce	referential	integrity	among	specified	tables.	For
example,	you	can	place	a	foreign	key	constraint	on	the	title_id	column	in	the
publishers	table	to	ensure	that	a	value	entered	in	that	column	matches	an
existing	value	in	the	title_id	column	of	the	titles	table.
In	database	diagrams,	a	foreign	key	constraint	is	automatically	placed	on
specified	columns	when	you	create	a	relationship	to	a	table	from	another	table	to
which	a	primary	key	or	unique	constraint	is	attached.	For	more	information
about	creating	relationships,	see	Creating	a	Relationship	Between	Tables.

To See
See	which	columns	participate	in	the
foreign	key	side	of	a	relationship

Viewing	Foreign	Key	Attributes

Change	which	columns	are	related	to
columns	in	the	primary	key	table

Modifying	a	Foreign	Key

Check	existing	data	when	creating	a
relationship

Checking	Existing	Data	when
Creating	a	Relationship

Disable	a	foreign	key	constraint
during	INSERT	and	UPDATE
transactions

Disabling	a	Foreign	Key	Constraint
with	INSERT	and	UPDATE
Statements

Disable	a	foreign	key	constraint
during	replication	of	the	table

Disabling	a	Foreign	Key	Constraint
for	Replication

Remove	the	requirement	to	enforce
referential	integrity	between	primary
key	columns	and	the	related	columns
in	another	table

Deleting	a	Foreign	Key	Constraint

Visual	Database	Tools

Triggers
A	trigger	is	a	special	kind	of	stored	procedure	that	goes	into	effect	when	you
modify	data	in	a	specified	table	using	one	or	more	data	modification	operations:
UPDATE,	INSERT,	or	DELETE.	Triggers	can	query	other	tables	and	can	include
complex	SQL	statements.	They	are	primarily	useful	for	enforcing	complex
business	rules	or	requirements.	For	example,	you	could	control	whether	to	allow
an	order	to	be	inserted	based	on	a	customer's	current	account	status.

Triggers	are	also	useful	for	enforcing	referential	integrity,	which	preserves	the
defined	relationships	between	tables	when	you	add,	update,	or	delete	the	rows	in
those	tables.	However,	the	best	way	to	enforce	referential	integrity	is	to	define
primary	key	and	foreign	key	constraints	in	the	related	tables.	If	you	use	database
diagrams,	you	can	create	a	relationship	between	tables	to	automatically	create	a
foreign	key	constraint.	For	details,	see	Table	Relationships.

Advantages	of	Using	Triggers
Triggers	are	useful	in	these	ways:

Triggers	are	automatic:	they	are	activated	immediately	after	any
modification	to	the	table's	data,	such	as	a	manual	entry	or	an	application
action.

Triggers	can	cascade	changes	through	related	tables	in	the	database.	For
example,	you	can	write	a	delete	trigger	on	the	title_id	column	of	the
titles	table	to	cause	a	deletion	of	matching	rows	in	other	tables.	The
trigger	uses	the	title_id	column	as	a	unique	key	to	locate	matching
rows	in	the	titleauthor,	sales,	and	roysched	tables.

Triggers	can	enforce	restrictions	that	are	more	complex	than	those
defined	with	check	constraints.	Unlike	check	constraints,	triggers	can
reference	columns	in	other	tables.	For	example,	a	trigger	can	roll	back
updates	that	attempt	to	apply	a	discount	(stored	in	the	discounts	table)

to	books	(stored	in	the	titles	table)	with	a	price	of	less	than	$10.

For	details	about	working	with	triggers,	see	the	following	topics:

To See
Create	new	triggers Creating	a	Trigger
View	existing	triggers Viewing	a	Trigger
Change	the	name	of	a	trigger Modifying	and	Renaming	a	Trigger
Delete	stored	triggers Deleting	a	Trigger

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Visual	Database	Tools

Stored	Procedures
Stored	procedures	can	make	managing	your	database	and	displaying	information
about	that	database	and	its	users	much	easier.	Stored	procedures	are	a
precompiled	collection	of	SQL	statements	and	optional	control-of-flow
statements	stored	under	a	name	and	processed	as	a	unit.	Stored	procedures	are
stored	within	a	database;	can	be	executed	with	one	call	from	an	application;	and
allow	user-declared	variables,	conditional	execution,	and	other	powerful
programming	features.

Stored	procedures	can	contain	program	flow,	logic,	and	queries	against	the
database.	They	can	accept	parameters,	output	parameters,	return	single	or
multiple	result	sets,	and	return	values.

You	can	use	stored	procedures	for	any	purpose	for	which	you	would	use	SQL
statements,	with	these	advantages:

You	can	execute	a	series	of	SQL	statements	in	a	single	stored	procedure.

You	can	reference	other	stored	procedures	from	within	your	stored
procedure,	which	can	simplify	a	series	of	complex	statements.

The	stored	procedure	is	compiled	on	the	server	when	it	is	created,	so	it
executes	faster	than	individual	SQL	statements.

The	functionality	of	a	stored	procedure	is	dependent	on	the	features	offered	by
your	database.	For	more	details	about	what	a	stored	procedure	can	accomplish
for	you,	see	Stored	Procedures.

For	details	about	working	with	stored	procedures,	see	the	following	topics:

To See
Create	stored	procedures	to	be
executed	from	the	database

Creating	a	Stored	Procedure

Set	execute	permissions	to	allow
access	to	the	stored	procedures	by

Executing	a	Stored	Procedure

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

specific	users
Use	parameters	in	stored	procedures Specifying	Parameters
View	a	stored	procedure Viewing	a	Stored	Procedure
Delete	stored	procedures Deleting	a	Stored	Procedure
Run	stored	procedures	against	your
database

Executing	a	Stored	Procedure

Change	the	name	of	a	stored
procedure

Modifying	and	Renaming	a	Stored
Procedure

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

Visual	Database	Tools

User-Defined	Functions
Microsoft	SQL	Server	2000	lets	you	create	user-defined	functions.		Like	any
function,	a	user-defined	function	is	a	routine	that	returns	a	value.		Based	on	what
kind	of	value	it	returns,	each	user-defined	function	falls	into	one	of	three
categories:

Functions	that	return	an	updateable	table	of	data

If	a	user-defined	function	contains	a	single	SELECT	statement	and	that
statement	is	updateable,	then	the	tabular	result	returned	by	the	function
is	also	updateable.

Functions	that	return	a	non-updateable	table	of	data

If	a	user-defined	function	contains	more	than	one	SELECT	statement,
or	contains	a	SELECT	statement	that	is	not	updateable,	then	the	tabular
result	returned	by	that	function	is	not	updateable.

Functions	that	return	a	scalar	value

A	user-defined	function	can	return	a	scalar	value.

If	a	function	returns	a	table,	you	can	use	that	function	in	the	FROM	clause	of	a
query.		For	more	information,	see	Using	Something	Else	In	Place	of	a	Table.		If	a
function	returns	a	scalar	value,	you	can	use	it	in	a	query	anywhere	you	would
use	a	column	name.		For	more	information,	see	Expressions	in	Queries.

Visual	Database	Tools

Large	Database	Projects
When	you	use	the	Visual	Database	Tools	as	part	of	a	large	software	development
effort,	you	can	encounter	several	noteworthy	situations:

Multiple	People	Designing	a	Single	Database			Several	users	can
connect	to	a	database	and	use	the	Visual	Database	Tools	to	alter	the
database	design.		For	information	about	coordinating	the	simultaneous
activities	of	several	users,	see	Multiuser	Database	Design.

Evolutionary	Development	of	a	Deployed	Database			After	a	database
is	deployed,	design	changes	can	become	necessary	as	users	expand	the
set	of	tasks	they	want	to	perform	with	the	data.		For	information	about
making	changes	to	a	deployed	database,	see	Issues	of	Database
Evolution.

Multiple	Versions	of	a	Particular	Database			Large	projects	can
include	many	databases.		Even	a	project	with	a	single	database	can	have
several	copies	of	it	—	a	development	database,	a	test	database,	and	a
deployed	production	database.		During	the	lifetime	of	a	deployed
database	application,	changes	and	improvements	are	first	made	in	the
development	database,	then	propagated	to	the	test	database,	then
propagated	to	the	production	database.		For	information	about	using
Visual	Database	Tools	to	propagate	design	changes	from	one	database
to	another,	see	Development,	Test,	and	Production	Databases.

Visual	Database	Tools

Multiuser	Database	Design
You	can	work	with	database	diagrams	in	a	multiuser	environment;	that	is,	an
environment	in	which	more	than	one	user	at	a	time	may	make	changes	to	a
database	diagram	and	the	database.	When	you	save	a	diagram,	the	Database
Designer	verifies	that	the	database	has	not	been	modified	since	you	last	saved
the	diagram.	If	another	user	has	made	changes,	you	will	be	notified	that	the
database	has	been	modified.	You	may	need	to	reconcile	these	changes,	both	in
the	database	diagram	and	in	the	database	itself.

To See
Work	with	others	on	shared	database
diagrams

Multiuser	Environments

Resolve	changes	made	to	a	database
diagram	by	multiple	users

Reconciling	a	Database	Diagram
with	a	Modified	Database

Visual	Database	Tools

Multiuser	Environments
A	multiuser	environment	is	one	in	which	other	users	can	connect	and	make
changes	to	the	same	database	that	you	are	working	with.	As	a	result,	several
users	might	be	working	with	the	same	database	objects	at	the	same	time.	Thus,	a
multiuser	environment	introduces	the	possibility	of	your	database	diagrams
being	affected	by	changes	made	by	other	users,	and	vice	versa.	Such	changes
could	include	changes	to	copies	of	your	diagrams,	other	users'	diagrams	that
share	database	objects	with	your	diagrams,	or	the	underlying	database.

A	key	issue	when	working	with	databases	in	a	multiuser	environment	is	access
permissions.	The	permissions	you	have	for	the	database	determine	the	extent	of
the	work	you	can	do	with	the	database.	For	example,	to	make	changes	to	objects
in	a	database,	you	must	have	the	appropriate	write	permissions	for	the	database.
For	more	information	about	permissions	in	your	database,	see	Managing
Permissions.

As	one	of	multiple	users,	you	may	need	to	address	any	of	the	following	issues
when	working	with	the	Database	Designer:

Ownership	of	Database	Objects

Diagrams	Affected	by	Another	User's	Changes

Database	Objects	Deleted	by	Another	User

JavaScript:hhobj_1.Click()

Visual	Database	Tools

Ownership	of	Database	Objects
Each	database	object	is	owned	by	either	a	user	or	a	role.		If	the	owner	is	a	role,
the	object	is	co-owned	by	every	user	belonging	to	that	role.

Each	object	also	has	privileges	associated	with	it.		A	privilege	grants	a	particular
authority	to	an	object	for	either	an	individual	user	or	for	all	users	belonging	to	a
particular	role.

Depending	on	the	privileges	defined	in	the	database,	you	can	view	objects	that
you	do	not	own.		For	example,	you	can	include	on	a	database	diagram	an	object
owned	by	another	user.		When	such	an	object	appears	on	a	diagram	or	in	the
Table	Designer,	it	is	labeled	with	the	owner	name	as	well	as	the	object	name.

If	the	database	privileges	let	you	view	but	not	modify	the	database	structure,	you
can	use	change	scripts	to	design	your	modifications	without	transmitting	them	to
the	database.		For	more	information,	see	Saving	a	Change	Script.

For	details	about	changing	the	owner	of	a	table	or	view,	see	Tables	Property
Page	and	Query	Tab,	Properties	Window	(View	Designer),	respectively.

Visual	Database	Tools

Diagrams	Affected	by	Another	User's	Changes
In	a	multiuser	environment,	your	database	diagram	can	be	affected	by	changes
other	users	have	saved	to:

Your	diagram,	which	other	users	changed	since	you	opened	the
diagram.

Database	objects	shared	between	diagrams.

The	database.

For	example,	your	diagram	might	contain	a	table	that	another	user	deleted	or
renamed.	In	such	a	case,	your	diagram	will	no	longer	reflect	the	current	state	of
the	database.	When	you	attempt	to	save	your	database	diagram	or	selected
tables,	the	Database	Changes	Detected	dialog	box	notifies	you	that	the	database
has	been	updated	since	you	opened	your	diagram.

This	dialog	box	also	displays	a	list	of	database	objects	that	will	be	affected	as	a
result	of	saving	your	diagram	or	selection.	At	this	point,	you	can	take	one	of
these	actions:

Save	your	diagram	or	selection	and	update	the	database	with	all	the
changes	in	the	list.			This	action	will	also	affect	other	diagrams	that
share	the	same	database	objects.
For	example,	suppose	you	edit	the	au_id	column	in	the	titleauthors
table	on	your	diagram	and	another	user's	diagram	contains	the	authors
table	which	is	related	to	the	titleauthors	table	by	the	au_id	column.
Saving	your	diagram	will	affect	the	other	user's	diagram.	Similarly,
suppose	that	another	user	defined	a	check	constraint	for	the	qty	column
in	the	sales	table.	If	you	delete	the	qty	column	and	save	the	sales
table,	the	other	user's	check	constraint	will	be	affected.

Cancel	the	save	action.			You	can	then	close	the	diagram	without

saving	it.	When	you	reopen	the	diagram,	it	will	be	in	synch	with	the
database.

Save	a	list	of	the	changes.			You	can	save	the	list	of	database	changes
shown	in	the	Database	Changes	Detected	dialog	box	to	a	text	file	so	that
you	can	investigate	the	cause	of	other	users'	changes.
For	example,	if	another	user	edited	a	table	that	you	marked	for	deletion,
you	may	want	to	research	whether	the	table	should	be	deleted	before
updating	the	database.

See	Also

Interactions	Among	Database	Diagrams	and	Table	Design	Windows

Visual	Database	Tools

Database	Objects	Deleted	by	Another	User
In	a	multiuser	environment,	deleting	database	objects	from	the	database	can
affect	other	users.	If	another	user	deletes	a	database	object	that	appears	in	your
database	diagram,	the	effect	of	the	deletion	on	your	diagram	depends	on	where
the	object	was	deleted.

Where	the	object	was	deleted How	your	database	diagram	is	affected
In	another	copy	of	your	database
diagram

The	deleted	object	will	be	removed	from
your	diagram	next	time	you	open	it.		If
your	diagram	is	open	when	the	deletion
occurs,	it	still	shows	the	deleted	item.

In	a	different	database	diagram The	deleted	object	will	be	removed	from
your	diagram	next	time	you	open	it.		If
your	diagram	is	open	when	the	deletion
occurs,	it	still	shows	the	deleted	item.

In	the	database If	your	diagram	has	no	unsaved	changes
to	that	object,	the	object	will	be	removed
from	your	diagram	the	next	time	you
open	it.

If	your	diagram	contains	unsaved	changes
to	that	object,	the	object	will	remain	in
your	diagram.	You	can	recreate	it	in	the
database	by	saving	your	diagram.

Note			Recreating	a	deleted	object	creates	a	new	definition	of	that	object	in
the	database;	it	does	not	restore	the	data	that	was	deleted	when	the	object
was	deleted.

For	example,	if	the	titles	table	is	deleted	in	the	database	and	you	have
unsaved	changes	to	the	titles	table	in	your	database	diagram,	then	saving
your	diagram	will	create	a	new	titles	table	in	the	database.	Any	data	that
existed	in	the	titles	table	before	it	was	deleted	is	not	restored.

For	details	about	saving	a	diagram	when	the	database	has	changed,	see
Reconciling	a	Database	Diagram	with	a	Modified	Database.

Visual	Database	Tools

Issues	of	Database	Evolution
If	you	change	the	structure	of	a	deployed	database,	you	must	take	special	care
that	your	alteration	is	compatible	with	the	existing	data	and	database	structure.	
You	might	need	to	take	special	steps	when	you	make	the	following
modifications:

Adding	a	Constraint			If	you	add	a	constraint,	the	database	might
already	contain	data	that	does	not	satisfy	it.		When	you	try	to	save	the
new	constraint,	the	Save	Incomplete	dialog	box	informs	you	that	the
database	server	could	not	create	the	constraint.		To	force	the	database	to
accept	the	new	constraint,	you	can	clear	the	Check	existing	data	on
creation	check	box.		For	more	information,	see	Checking	Existing	Data
When	Creating	a	Check	Constraint.

Adding	a	Relationship			If	you	add	a	relationship,	the	database	might
already	contain	rows	of	the	foreign-key	table	that	do	not	have
corresponding	rows	in	the	primary-key	table.		That	is,	the	existing	data
might	not	satisfy	referential	integrity.		When	you	try	to	save	the	new
relationship,	the	Save	Incomplete	dialog	box	informs	you	that	the
database	server	could	not	save	the	revised	foreign-key	table.		To	force
the	database	to	accept	the	modification,	you	can	clear	the	Check
existing	data	on	creation	check	box.		For	details,	see	Checking	Existing
Data	when	Creating	a	Relationship.

Modifying	a	Table	Contributing	to	an	Indexed	View			If	you	modify
a	table	that	contributes	to	an	SQL	Server	indexed	view,	the	indexes	on
the	view	will	be	lost.		For	more	information	about	recreating	indexes,
see	Rebuilding	an	Index.

No	matter	how	you	alter	the	database	design,	you	should	retain	a	history	of	the
alterations.		One	approach	is	to	retain	SQL	scripts	for	all	modifications	that	you
ever	make	to	your	production	database.		For	more	information	about	scripts,	see
Working	with	Scripts.

JavaScript:hhobj_1.Click()

Visual	Database	Tools

Development,	Test,	and	Production	Databases
If	you	have	two	databases	with	identical	structure,	you	can	make	changes	in	one
database	and	propagate	those	changes	to	the	other.		For	example,	if	you	have	a
personal	development	database	and	a	group-wide	test	database,	you	can	modify
the	development	database,	then	propagate	those	changes	to	the	test	database.		To
accomplish	this:

You	can	perform	all	the	modifications	in	a	single	session	with	the
development	database,	save	an	SQL	script	file	of	your	session	and	later
run	the	script	on	the	test	database.		For	more	information,	see	Saving	a
Change	Script.

Visual	Database	Tools

Database	Queries	and	Visual	Database	Tools
After	a	database	is	designed	and	populated	with	data,	you	can	write	queries	to
retrieve	information	from	the	database.		To	help	you	write	queries,	the	Visual
Database	Tools	include	the	Query	Designer.		For	more	information,	see	the
following	topics:

Query	and	View	Designer	Layout

Queries	and	Views

Comparison	of	Queries	and	Views

Indexed	Views

Supported	Query	Types

Structure	of	Retrieval	Queries

Visual	Database	Tools

Query	and	View	Designer	Layout
Both	the	Query	Designer	and	View	Designer	consist	of	four	panes:	the	Diagram
pane,	the	Grid	pane,	the	SQL	pane,	and	the	Results	pane.

The	Diagram	pane	displays	the	tables	and	other	table	structured-
objects	that	you	are	querying.	Each	rectangle	represents	a	table	or	table-
structured	object	and	shows	the	available	data	columns	as	well	as	icons
that	indicate	how	each	column	is	used	in	the	query.	Joins	are	indicated
by	lines	between	the	rectangles.	For	more	information,	see	Diagram
Pane.

The	Grid	pane	contains	a	spreadsheet-like	grid	in	which	you	specify
options,	such	as	which	data	columns	to	display,	what	rows	to	select,
how	to	group	rows,	and	so	on.	For	more	information,	see	Grid	Pane.

The	SQL	pane	displays	the	SQL	statement	for	the	query	or	view.	You
can	edit	the	SQL	statement	created	by	the	Designer	or	you	can	enter

your	own	SQL	statement.	It	is	particularly	useful	for	entering	SQL
statements	that	cannot	be	created	using	the	Diagram	and	Grid	panes,
such	as	Union	queries.	For	more	information,	see	SQL	Pane.

The	Results	pane	shows	a	grid	with	data	retrieved	by	the	query	or
view.		In	the	Query	Designer,	the	pane	shows	the	results	of	the	most
recently	executed	Select	query.	You	can	modify	the	database	by	editing
values	in	the	cells	of	the	grid,	and	you	can	add	or	delete	rows.	For	more
information,	see	Results	Pane.		In	the	View	Designer,	the	results	pane
shows	the	contents	of	the	view.

You	can	create	a	query	or	view	by	working	in	any	of	the	panes:	you	can	specify
a	column	to	display	by	choosing	it	in	the	Diagram	pane,	entering	it	into	the	Grid
pane,	or	making	it	part	of	the	SQL	statement	in	the	SQL	pane.	The	Diagram,
Grid,	and	SQL	panes	are	synchronized	—	when	you	make	a	change	in	one	pane,
the	other	panes	automatically	reflect	the	change.

See	Also
Diagram	Pane	|	Grid	Pane	|	Navigating	in	the	Query	Designer	|	Results	Pane	|
SQL	Pane

Visual	Database	Tools

Diagram	Pane
The	Diagram	pane	presents	a	graphic	display	of	the	tables	or	table-structured
objects	you	have	selected	from	the	data	connection.	It	also	shows	any	join
relationships	among	them.

In	the	Diagram	pane	you	can:

Add	or	remove	tables	and	table-structured	objects	and	specify	data
columns	for	output.

Specify	columns	for	ordering	the	query.

Specify	that	you	want	to	group	rows	in	the	result	set.

Create	or	modify	joins	between	tables	and	table-structured	objects.

When	you	make	a	change	in	the	Diagram	pane,	the	Grid	pane	and	SQL	pane	are
updated	to	reflect	your	change.	For	example,	if	you	select	a	column	for	output	in
a	table	or	table-structured	object	window	in	the	Diagram	pane,	the	Query
Designer	adds	the	data	column	to	the	Grid	pane	and	to	the	SQL	statement	in	the
SQL	pane.

About	the	Diagram	Pane
Each	table	or	table-structured	object	appears	as	a	separate	window	in	the
Diagram	pane.	The	icon	in	the	title	bar	of	each	rectangle	indicates	what	type	of
object	the	rectangle	represents,	as	illustrated	in	the	following	table.

Icon Object	type
Table
Query	or	View
Linked	Table
User-Defined	Function

Subquery	(in	FROM	clause)
Linked	View

Each	rectangle	shows	the	data	columns	for	the	table	or	table-structured	object.
Check	boxes	and	symbols	appear	next	to	the	names	of	columns	to	indicate	how
the	columns	are	being	used	in	the	query.	ToolTips	display	information	such	as
data	type	and	size	for	columns.

The	following	table	lists	the	check	boxes	and	symbols	used	in	the	rectangle	for
each	table	or	table-structured	object.

Check	box	or	symbol Description
Specifies	whether	a	data	column	appears	in	the
query	result	set	(Select	query)	or	is	used	in	an
Update,	Insert	From,	Make	Table,	or	Insert	Into
query.	Select	the	column	to	add	it	to	the	results.
If	(All	Columns)	is	selected,	all	data	columns
appear	in	the	output.

The	icon	used	with	the	check	box	changes
according	to	the	type	of	query	you	are	creating.
When	creating	a	Delete	query,	you	cannot	select
individual	columns.

Indicates	that	the	data	column	is	being	used	to
order	the	query	results	(is	part	of	an	ORDER	BY
clause).	The	icon	appears	as	A-Z	if	the	sort	order
is	ascending	or	Z-A	if	sort	order	is	descending.
Indicates	that	the	data	column	is	being	used	to

create	a	grouped	result	set	(is	part	of	a	GROUP
BY	clause)	in	an	aggregate	query.
Indicates	that	the	data	column	is	included	in	a
search	condition	for	the	query	(is	part	of	a
WHERE	or	HAVING	clause).
Indicates	that	the	contents	of	the	data	column	are
being	summarized	for	output	(are	included	in	a
SUM,	AVG,	or	other	aggregate	function).

Note			The	Query	Designer	will	not	display	data	columns	for	a	table	or	table-
structured	object	if	you	do	not	have	sufficient	access	rights	to	it	or	if	the
database	driver	cannot	return	information	about	it.	In	such	cases,	the	Query
Designer	displays	only	a	title	bar	for	the	table	or	table-structured	object.

Joined	Tables	on	the	Diagram	Pane
If	the	query	involves	a	join,	a	join	line	appears	between	the	data	columns
involved	in	the	join.	If	the	joined	data	columns	are	not	displayed	(for	example,
the	table	or	table-structured	object	window	is	minimized	or	the	join	involves	an
expression),	the	Query	Designer	places	the	join	line	in	the	title	bar	of	the
rectangle	representing	the	table	or	table-structured	object.	The	Query	Designer
displays	one	join	line	for	each	join	condition.

The	shape	of	the	icon	in	the	middle	of	the	join	line	indicates	how	the	tables	or
table-structured	objects	are	joined.	If	the	join	clause	uses	an	operator	other	than
equal	(=),	the	operator	is	displayed	in	the	join	line	icon.	The	following	table	lists
the	icons	that	can	be	displayed	in	a	join	line.

Join	line	icon Description

Inner	join	(created	using	equal	sign).
Inner	join	based	on	the	"greater	than"	operator.
(The	operator	displayed	in	the	join	line	icon
reflects	the	operator	used	in	the	join.)
Outer	join	in	which	all	rows	from	the	table
represented	on	the	left	will	be	included,	even	if
they	do	not	have	matches	in	the	related	table.
Outer	join	in	which	all	rows	from	the	table
represented	on	the	right	will	be	included,	even	if
they	do	not	have	matches	in	the	related	table.
A	full	outer	join	in	which	all	rows	from	both
tables	will	be	included,	even	if	they	do	not	have
matches	in	the	related	table.

Icons	on	the	ends	of	the	join	line	indicate	the	type	of	join.	The	following	table
lists	the	types	of	joins	and	the	icons	that	can	be	displayed	on	the	ends	of	the	join
line.

Icon	on	ends	of	join	line Description
One-to-one	join

One-to-many	join

Query	Designer	cannot	determine	join	type

See	Also
Adding	Tables	|	Creating	a	Query	|	Designing	Queries	|	Grid	Pane	|	Grouping
Rows	in	Query	Results	|	Removing	Columns	from	Query	Output	|	Removing
Tables	|	Removing	Joins	|	Results	Pane	|	SQL	Pane

Visual	Database	Tools

Grid	Pane
The	Grid	pane	allows	you	to	specify	query	options	—	such	as	which	data
columns	to	display,	how	to	order	the	results,	and	what	rows	to	select	—	by
entering	your	choices	into	a	spreadsheet-like	grid.	In	the	Grid	pane	you	can
specify:

Columns	to	display	and	column	name	aliases.

The	table	that	a	column	belongs	to.

Expressions	for	calculated	columns.

The	sort	order	for	the	query.

Search	conditions.

Grouping	criteria,	including	aggregate	functions	to	use	for	summary
reports.

New	values	for	Update	or	Insert	Into	queries.

Target	column	names	for	Insert	From	queries.

Changes	you	make	in	the	Grid	pane	are	automatically	reflected	in	the	Diagram
pane	and	SQL	pane.	Similarly,	the	Grid	pane	is	updated	automatically	to	reflect
changes	made	in	the	other	panes.

About	the	Grid	Pane
The	rows	in	the	Grid	pane	display	the	data	columns	used	in	your	query;	columns
in	the	Grid	pane	display	query	options.

The	specific	information	that	appears	in	the	Grid	pane	depends	on	the	type	of
query	you	are	creating.	If	you	are	creating	a	Select	query,	the	Grid	pane	contains
different	columns	than	if	you	are	creating	an	Update	query.

The	following	table	lists	the	grid	columns	that	can	appear	in	the	Grid	pane.

Column Query	type Description
Column All Displays	either	the	name	of	a	data	column	used

for	the	query	or	the	expression	for	a	computed
column.	This	column	is	locked	so	that	it	is
always	visible	as	you	scroll	horizontally.

Alias Select,	Insert
From,	Update,
Make	Table

Specifies	either	an	alternate	name	for	a	column
or	the	name	you	can	use	for	a	computed
column.

Table Select,	Insert
From,	Update,
Make	Table

Specifies	the	name	of	the	table	or	table-
structured	object	for	the	associated	data
column.	This	column	is	blank	for	computed
columns.

Output Select,	Insert
From,	Make
Table

Specifies	whether	a	data	column	appears	in	the
query	output.

Note			If	the	database	allows,	you	can	use	a
data	column	for	sort	or	search	clauses
without	displaying	it	in	the	result	set.

Sort	Type Select,	Insert
From

Specifies	that	the	associated	data	column	is
used	to	sort	the	query	results	and	whether	the
sort	is	ascending	or	descending.

Sort	Order Select,	Insert
From

Specifies	the	sort	priority	for	data	columns
used	to	sort	the	result	set.	When	you	change
the	sort	order	for	a	data	column,	the	sort	order

for	all	other	columns	is	updated	accordingly.
Group	By Select,	Insert

From,	Make
Table

Specifies	that	the	associated	data	column	is
being	used	to	create	an	aggregate	query.	This
grid	column	appears	only	if	you	have	chosen
Group	By	from	the	Tools	menu	or	have	added
a	GROUP	BY	clause	to	the	SQL	pane.

By	default,	the	value	of	this	column	is	set	to
Group	By,	and	the	column	becomes	part	of	the
GROUP	BY	clause.

When	you	move	to	a	cell	in	this	column	and
select	an	aggregate	function	to	apply	to	the
associated	data	column,	by	default	the	resulting
expression	is	added	as	an	output	column	for	the
result	set.

Criteria All Specifies	a	search	condition	(filter)	for	the
associated	data	column.	Enter	an	operator	(the
default	is	"=")	and	the	value	to	search	for.
Enclose	text	values	in	single	quotation	marks.

If	the	associated	data	column	is	part	of	a
GROUP	BY	clause,	the	expression	you	enter	is
used	for	a	HAVING	clause.

If	you	enter	values	for	more	than	one	cell	in	the
Criteria	grid	column,	the	resulting	search
conditions	are	automatically	linked	with	a
logical	AND.

To	specify	multiple	search	condition
expressions	for	a	single	database	column	(for
example,	(fname	>	'A')	AND	(fname	<
'M'),	add	the	data	column	to	the	Grid	pane
twice	and	enter	separate	values	in	the	Criteria
grid	column	for	each	instance	of	the	data
column.

Or	... All Specifies	an	additional	search	condition

expression	for	the	data	column,	linked	to
previous	expressions	with	a	logical	OR.	You
can	add	more	Or	...	grid	columns	by	pressing
the	TAB	key	in	the	rightmost	Or	...	column.

Append Insert	From Specifies	the	name	of	the	target	data	column
for	the	associated	data	column.	When	you
create	an	Insert	From	query,	the	Query
Designer	attempts	to	match	the	source	to	an
appropriate	target	data	column.	If	the	Query
Designer	cannot	choose	a	match,	you	must
provide	the	column	name.

New	Value Update,	Insert
Into

Specifies	the	value	to	place	into	the	associated
column.	Enter	a	literal	value	or	an	expression.

See	Also
Creating	Column	Aliases	|	Designing	Queries	|	Diagram	Pane	|	Entering	Search
Values	|	Grouping	Rows	in	Query	Results	|	Results	Pane	|	Specifying	Search
Conditions	|	SQL	Pane

Visual	Database	Tools

SQL	Pane
The	SQL	pane	displays	the	SQL	statement	for	the	current	query.	As	you	build
your	query,	the	SQL	pane	is	automatically	updated	and	reformatted	to	be	easy	to
read.

In	the	SQL	pane	you	can:

Create	new	queries	by	entering	SQL	statements.

Modify	the	SQL	statement	created	by	the	Query	Designer	based	on
settings	you	make	in	the	Diagram	and	Grid	panes.

Enter	statements	that	take	advantage	of	features	specific	to	the	database
you	are	using.

Note			Be	sure	you	know	the	rules	for	identifying	database	objects	in	the
database	you	are	using.	For	details	about	SQL	Server,	see	Query	Designer
Considerations	for	SQL	Server	Databases.

Statements	in	the	SQL	Pane
You	can	edit	the	current	query	directly	in	the	SQL	pane.	When	you	move	to
another	pane,	the	Query	Designer	automatically	formats	your	statement,	and
then	changes	the	Diagram	and	Grid	panes	to	match	your	statement.

Note			You	can	enter	optimizer	hints	for	SQL	statements,	but	the	Query
Designer	might	reformat	them.	For	details	about	SQL	Server,	see	Query
Designer	Considerations	for	SQL	Server	Databases.

If	your	statement	cannot	be	represented	in	the	Diagram	and	Grid	panes,	and	if
those	panes	are	visible,	the	Query	Designer	displays	an	error	and	then	offers	you
two	choices:

Return	to	the	SQL	pane	and	edit	the	statement.

Discard	your	changes	and	revert	to	the	most	recent	version	of	the	SQL
statement.

If	you	return	to	the	SQL	pane	and	continue	editing	the	statement,	the	Query
Designer	dims	the	other	panes	to	indicate	that	they	no	longer	reflect	the	contents
of	the	SQL	pane.

You	can	also	use	the	SQL	pane	to	enter	SQL	statements	that	cannot	be
represented	graphically	in	the	Query	Designer.	In	such	cases,	the	Query
Designer	displays	the	same	behavior	as	it	does	when	it	detects	an	error	—	it
dims	the	Diagram	and	Grid	panes	to	indicate	that	they	do	not	represent	the
current	statement.	You	can	continue	to	edit	the	statement	and	execute	it	as	you
would	any	SQL	statement.	For	details	about	unsupported	query	types	in	SQL
Server,	see	Query	Designer	Considerations	for	SQL	Server	Databases.

Note			If	you	enter	an	SQL	statement,	but	then	make	further	changes	to	the
query	by	changing	the	Diagram	and	Grid	panes,	the	Query	Designer	rebuilds
and	redisplays	the	SQL	statement.	In	some	cases,	this	action	results	in	an
SQL	statement	that	is	constructed	differently	from	the	one	you	originally
entered	(though	it	will	always	yield	the	same	results).	This	difference	is
particularly	likely	when	you	are	working	with	search	conditions	that	involve
several	clauses	linked	with	AND	and	OR.

See	Also
Creating	Queries	|	Designing	Queries	|	Diagram	Pane	|	Executing	a	Query	|	Grid
Pane	|	Results	Pane	|	Using	Expressions	in	a	Query

Visual	Database	Tools

Results	Pane
The	Results	pane	shows	the	results	of	the	most	recently	executed	Select	query.
(The	results	of	other	query	types	are	displayed	in	message	boxes.)

In	the	Results	pane	you	can:

View	the	result	set	for	the	most	recently	executed	Select	query	in	a
spreadsheet-like	grid.

Edit	the	values	in	individual	columns	in	the	result	set,	add	new	rows,
and	delete	existing	rows.	For	details,	see	Editing	Rows	in	the	Results
Pane.

If	you	change	the	query	definition	(for	example,	add	another	output	column	to
the	query),	the	Query	Designer	dims	the	Results	pane	to	indicate	that	it	no	longer
reflects	the	current	query.	However,	you	can	still	navigate	in	the	Results	pane
grid	to	edit,	add,	or	delete	rows.

Data	in	the	Results	Pane
When	you	execute	a	Select	query,	open	a	view,	or	open	a	table,	the	result	set
appears	in	the	Results	pane.

The	Results	pane	uses	these	conventions:

Columns	containing	no	value	display	the	word	<NULL>.

Columns	containing	binary	data	display	the	word	<Binary>.	You
cannot	edit	the	contents	of	these	of	columns.

Columns	containing	long	varchar-type	data	display	up	to	900	characters
of	data.	If	the	data	is	longer,	the	cell	displays	<Long	Text>.

Columns	format	number,	currency,	time,	and	date	information

according	to	the	options	set	in	the	Regional	Settings	dialog	box	in	the
Microsoft®	Windows®	Control	Panel.

See	Also

Adding	New	Rows	in	the	Results	Pane	|	Deleting	Rows	in	the	Results	Pane	|
Determining	When	Query	Results	Can	Be	Updated	|	Editing	Rows	in	the	Results
Pane	|	Removing	Columns	from	Query	Output	|	Reordering	Output	Columns

Visual	Database	Tools

How	the	Query	Designer	Represents	Joins
If	tables	are	joined,	the	Query	Designer	represents	the	join	graphically	in	the
Diagram	Pane	and	by	using	SQL	syntax	in	the	SQL	Pane.

Diagram	Pane
In	the	Diagram	pane	the	Query	Designer	displays	a	join	line	between	the	data
columns	involved	in	the	join.	The	Query	Designer	displays	one	join	line	for	each
join	condition.	For	example,	the	following	illustration	shows	a	join	line	between
two	tables	that	are	joined:

If	tables	are	joined	using	more	than	one	join	condition,	the	Query	Designer
displays	multiple	join	lines,	as	in	the	following	example:

If	the	joined	data	columns	are	not	displayed	(for	example,	the	rectangle
representing	the	table	or	table-structured	object	is	minimized	or	the	join	involves
an	expression),	the	Query	Designer	places	the	join	line	at	the	title	bar	of	the
rectangle	representing	the	table	or	table-structured	object.

The	shape	of	the	icon	in	the	middle	of	the	join	line	indicates	how	the	tables	or

table-structured	objects	are	joined.	If	the	join	clause	uses	an	operator	other	than
equal	(=),	the	operator	appears	in	the	join	line	icon.	The	following	table	lists	the
icons	that	appear	in	the	join	line.

Join	line	icon Description
Inner	join	(created	using	an	equal	sign).
Inner	join	based	on	the	"greater	than"	operator.
Outer	join	in	which	all	rows	from	the	table	represented
on	the	left	will	be	included,	even	if	they	do	not	have
matches	in	the	related	table.
Outer	join	in	which	all	rows	from	the	table	represented
on	the	right	will	be	included,	even	if	they	do	not	have
matches	in	the	related	table.
Full	outer	join	in	which	all	rows	from	both	tables	will
be	included,	even	if	they	do	not	have	matches	in	the
related	table.

The	symbols	on	the	ends	of	the	join	line	indicate	the	type	of	join.	The	following
table	lists	the	types	of	joins	and	the	icons	displayed	on	the	ends	of	the	join	line.

Icon	on	ends	of	join	line Type	of	join
One-to-one	join.

One-to-many	join.

Query	Designer	cannot	determine	the
join	type.	This	situation	occurs	most
often	when	you	have	created	a	join
manually.

SQL	Pane
A	join	can	be	expressed	in	a	number	of	ways	in	an	SQL	statement.	The	exact
syntax	depends	on	the	database	you	are	using	and	on	how	you	have	defined	the
join.

Syntax	options	for	joining	tables	include:

JOIN	qualifier	for	the	FROM	clause.			The	keywords	INNER	and
OUTER	specify	the	join	type.	This	syntax	is	standard	for	ANSI	92
SQL.

For	example,	if	you	join	the	publishers	and	pub_info	tables	based	on
the	pub_id	column	in	each	table,	the	resulting	SQL	statement	might
look	like	this:

SELECT	*
FROM	publishers	INNER	JOIN	pub_info	ON
			publishers.pub_id	=	pub_info.pub_id

If	you	create	an	outer	join,	the	words	LEFT	OUTER	or	RIGHT	OUTER
appear	in	place	of	the	word	INNER.

WHERE	clause	compares	columns	in	both	tables.			A	WHERE
clause	appears	if	the	database	does	not	support	the	JOIN	syntax	(or	if
you	entered	it	yourself).	If	the	join	is	created	in	the	WHERE	clause,
both	table	names	appear	in	the	FROM	clause.

For	example,	the	following	statement	joins	the	publishers	and
pub_info	tables.

SELECT	*
FROM	publishers,	pub_info
WHERE		publishers.pub_id	=	pub_info.pub_id

Note			SQL	Server	databases	support	*=	and	=*	syntax.	For
details,	see	Query	Designer	Considerations	for	SQL	Server.

See	Also

Creating	Outer	Joins	|	Creating	Self-Joins	|	Joining	Tables	Automatically	|
Joining	Tables	Manually	|	Modifying	Join	Operators	|	Types	of	Joins

Visual	Database	Tools

Queries	and	Views
A	query	is	a	specific	request	for	the	retrieval,	creation,	modification,	or	deletion
of	data	in	a	database.		A	database	accepts	queries	that	are	written	in	SQL,	a
language	that	is	powerful	but	challenging.		To	capitalize	on	the	power	of	SQL
without	enduring	the	challenge	of	writing	it,	you	can	use	the	Visual	Database
Tools.		With	the	tools,	you	can	create	SQL	queries	without	directly	writing	SQL.	

SQL	is	also	used	to	create	views,	which	are	specific	subsets	of	database	data.	
Because	views	and	retrieval	queries	are	defined	with	the	same	statement	(the
SQL	SELECT	statement),	they	are	necessarily	similar.		But	there	are	important
distinctions	between	queries	and	views.		For	more	information	see	Comparison
of	Queries	and	Views.

The	SQL	SELECT	statement	is	the	foundation	of	views	and	retrieval	queries,	but
there	are	other	kinds	of	queries	based	on	other	SQL	statements.		For	more
information	about	the	types	of	queries,	see	Supported	Query	Types.

See	Also
Comparison	of	Queries	and	Views

Visual	Database	Tools

Comparison	of	Queries	and	Views
Because	queries	and	views	have	so	many	similarities,	it	is	easy	to	overlook	their
differences.		This	section	briefly	compares	queries	and	views.

Storage	Views	are	stored	as	part	of	a	database	design,	but	queries	are	not.		As
you	design	a	database,	you	can	include	views	in	the	design	for	the	following
reasons:

Some	subsets	of	data	are	of	interest	to	many	users.	Because	each
view	is	stored	in	the	database,	it	establishes	a	particular	subset	of	data
that	can	be	used	by	any	database	user.

Views	can	conceal	base	tables.	You	can	disallow	all	user	access	to
database	tables,	requiring	users	to	manipulate	data	through	views	only.	
Such	an	approach	can	protect	users	and	application	programs	from
certain	database	modifications.		For	example,	if	you	can	create	a	view
called	"Current	Month	Sales."		On	the	first	of	each	month,	you	can
modify	the	view	definition	accordingly.		Without	such	a	view,	users
would	each	month	need	to	rewrite	their	queries	to	select	Sales	rows
from	the	appropriate	month.

Updating	results	The	restrictions	on	updating	result	sets	are	different	for	views
and	queries.		For	more	information,	see	Rules	for	Updating	Results.

Sorting	results	You	can	sort	any	query	result,	but	you	can	sort	a	view	only	if	the
view	includes	the	TOP	clause.		For	more	information	about	the	TOP	clause,	see
Limiting	Result	Sets	Using	TOP	and	PERCENT.

Query	plan	generation	A	query	plan	is	an	internal	strategy	by	which	a	database
server	tries	to	create	result	sets	quickly.		A	database	server	can	establish	a	query
plan	for	a	view	as	soon	as	the	view	is	saved.		For	a	query,	however,	a	database
server	cannot	establish	a	query	plan	until	the	query	is	actually	run	—	that	is,
until	the	user	explicitly	demands	the	result	set.

Parameterization	You	can	create	parameters	for	a	query,	but	not	for	a	view.		For
more	information	about	parameterized	queries,	see	Creating	General	Purpose
Queries.

JavaScript:hhobj_1.Click()

Encryption	A	view	can	be	encrypted,	but	a	query	cannot.		For	more	information
see	Encrypting	Views.

See	Also
Queries	and	Views

Visual	Database	Tools

Indexed	Views
SQL	Server	2000	supports	indexed	views.		Indexed	views	are	views	whose
results	are	persisted	in	the	database	and	indexed	for	fast	access.

To	learn	how	to	create	an	indexed	view,	see	Creating	Indexed	Views.

As	with	any	other	views,	indexed	views	depend	on	base	tables	for	their	data.	
Such	dependency	means	that	if	you	change	a	base	table	contributing	to	an
indexed	view,	the	indexed	view	might	become	invalid.		For	example,	renaming	a
column	that	contributes	to	a	view	invalidates	the	view.		To	prevent	such
problems,	SQL	Server	supports	creating	views	with	"schema	binding."		Schema
binding	prohibits	any	table	or	column	modification	that	would	invalidate	the
view.		Any	indexed	view	you	create	with	the	View	Designer	automatically	gets
schema	binding,	because	SQL	Server	requires	that	indexed	views	have	schema
binding.

Schema	binding	does	not	mean	you	cannot	modify	the	view;	it	means	you
cannot	modify	the	underlying	tables	or	views	in	ways	that	would	change	the
view's	result	set.

Using	the	Table	Designer	or	Database	Designer,	you	might	attempt	to	modify	a
base	table	or	column	that	contributes	to	a	view	defined	with	schema	binding.		If
your	attempted	modification	could	invalidate	the	view,	the	Designer	warns	you
and	asks	you	whether	you	want	to	proceed.		If	you	choose	to	proceed,	these
things	happen:

Your	modifications	to	the	base	table	occur.

All	views	depending	on	the	base	table	views	are	changed	so	that
"schema	binding"	is	removed.		Thus,	your	subsequent	changes	to	the
base	table	will	proceed	without	warning.

If	the	dependent	views	were	indexed,	the	indexes	are	deleted.

The	Table	Designer	and	Database	Designer	warn	you	before	modifying	a	base
table	only	if	that	base	table	contributes	to	a	view	with	schema	binding	and	if

your	modification	satisfies	one	or	more	of	the	following	conditions:

Your	modification	deletes	the	base	table.

Your	modification	renames	the	base	table.

Your	modification	recreates	the	base	table.

Your	modification	removes	a	column	from	the	base	table	and	the	view
includes	that	column.

Your	modification	renames	a	column	from	the	base	table	and	the	view
includes	that	column.

See	Also

Creating	Indexed	Views

Visual	Database	Tools

Interactions	Among	Query	and	View	Designer
Windows
When	you	design	a	view,	the	View	Designer	retains	your	work	in	memory.		That
is,	the	View	Designer	does	not	transmit	your	work	to	the	database	until	you
explicitly	save	the	view	there.		For	each	open	Query	Designer	and	View
Designer	Window,	the	Visual	Database	Tools	retain	a	separate	portion	of
memory	to	retain	your	work.		Because	each	window	has	its	own	memory,	the
modifications	you	make	in	one	window	are	not	available	to	any	other	window.	

Remember,	you	can	use	a	view	as	part	of	a	query	or	as	part	of	another	view.
After	you	modify	a	view,	your	modifications	will	not	affect	queries	or	other
views	until	you	save	the	modified	view	to	the	database.

Note			Database	diagrams	and	Table	Designer	windows	use	a	different	strategy
to	retain	your	work	in	memory.		For	more	information,	see	Interactions	Among
Database	Diagrams	and	Table	Design	Windows.

See	Also
Interactions	Among	Database	Diagrams	and	Table	Design	Windows

Visual	Database	Tools

Interaction	Between	the	Results	Pane	and	the
Database
When	you	run	a	query	or	view,	the	database	prepares	the	result	set	and	returns
the	results	to	you.		If	the	result	set	contains	many	rows,	they	are	returned	to	you
in	batches.		There	are	several	details	you	should	know	about:

The	database	runs	the	query	in	its	entirety			The	query	processing	on
the	database	server	is	not	run	in	batches.		Only	the	transmission	of	the
query	result	from	the	server	to	your	computer	runs	in	batches.

Unless	you	demand	otherwise,	only	the	first	batch	of	results	is
returned			After	the	first	batch	of	rows	is	returned	to	you,	you	can
continue	to	work	in	other	panes	of	the	query	or	view.		If	you	want	to
view	more	rows	of	the	result	set,	you	can	begin	to	scroll	through	the
results	pane	to	induce	the	database	server	to	transmit	more	rows	to	your
computer.

Some	operations	in	the	results	pane	require	the	entire	result	set			If	you
attempt	to	navigate	to	the	last	row	of	the	result	set,	or	if	you	edit	a	value	within
the	result	set,	you	effectively	induce	the	database	server	to	return	the	entire	result
set	to	you.		For	an	especially	large	result	set,	this	can	be	time-consuming.

Visual	Database	Tools

Supported	Query	Types
You	can	create	the	following	types	of	queries	in	the	Diagram	and	Grid	panes	(the
graphical	panes)	of	the	Query	Designer:

Select	query			Retrieves	data	from	one	or	more	tables	or	views.	This
type	of	query	creates	an	SQL	SELECT	statement.

Insert	Into	query			Creates	a	new	row	and	inserts	values	into	specified
columns.	This	type	of	query	creates	an	SQL	INSERT	INTO...VALUES
statement.

Insert	From	query			Creates	new	rows	by	copying	existing	rows	from
one	table	into	another,	or	into	the	same	table	as	new	rows.	This	type	of
query	creates	an	SQL	INSERT...SELECT	statement.

Update	query			Changes	the	values	of	individual	columns	in	one	or
more	existing	rows	in	a	table.	This	type	of	query	creates	an	SQL
UPDATE	statement.

Delete	query			Removes	one	or	more	rows	from	a	table.	This	type	of
query	creates	an	SQL	DELETE	statement.

Note			A	Delete	query	removes	entire	rows	from	the	table.	If	you
want	to	delete	values	from	individual	data	columns,	use	an
Update	query.

Make	Table	query			Creates	a	new	table	and	creates	rows	in	it	by
copying	the	results	of	a	query	into	it.	This	type	of	query	creates	an	SQL
SELECT...INTO	statement.

In	addition	to	the	queries	you	can	create	using	the	graphical	panes,	you	can	enter
any	SQL	statement	into	the	SQL	pane,	such	as	Union	queries.

When	you	create	queries	using	SQL	statements	that	cannot	be	represented	in	the

graphical	panes,	the	Query	Designer	dims	those	panes	to	indicate	that	they	do
not	reflect	the	query	you	are	creating.	However,	the	dimmed	panes	are	still
active	and,	in	many	cases,	you	can	make	changes	to	the	query	in	those	panes.	If
the	changes	you	make	result	in	a	query	that	can	be	represented	in	the	graphical
panes,	those	panes	are	no	longer	dimmed.

For	details	about	unsupported	query	types	in	SQL	Server,	see	Query	Designer
Considerations	for	SQL	Server	Databases.

See	Also
Creating	Delete	Queries	|	Creating	Insert	From	Queries	|	Creating	Update
Queries	|	Creating	Insert	Into	Queries	|	Creating	Make	Table	Queries

Visual	Database	Tools

Structure	of	Retrieval	Queries
A	retrieval	query	requests	data	from	the	database.		At	its	simplest,	a	retrieval
query	merely	fetches	all	data	from	a	single	table.		But	as	you	create	more
complex	(and	more	typical)	retrieval	queries,	you	can	assemble	exactly	the	data
you	want	in	the	following	ways:

Including	or	Excluding	Rows

Including	or	Excluding	Columns

Combining	Tables

Collapsing	Groups	of	Rows

Using	a	Table	Twice	in	One	Query

Using	Something	Else	in	Place	of	a	Table

Sorting	Rows

Visual	Database	Tools

Including	or	Excluding	Rows
To	restrict	the	number	of	rows	a	Select	query	should	return,	you	create
search	conditions	or	filter	criteria.		In	SQL,	search	conditions	appear	in	the
WHERE	clause	of	the	statement,	or	if	you	are	creating	an	aggregate	query,	in	the
HAVING	clause.

Note			You	can	also	use	search	conditions	to	indicate	which	rows	are	affected
by	an	Update,	Insert	Into,	Insert	From,	Delete,	or	Make	Table	query.

When	the	query	runs,	the	database	engine	examines	and	applies	the	search
condition	to	each	row	in	the	tables	you	are	searching.	If	the	row	meets	the
condition,	it	is	included	in	the	query.	For	example,	a	search	condition	that	would
find	all	the	employees	in	a	particular	region	might	be:

region	=	'UK'

To	establish	the	criteria	for	including	a	row	in	a	result,	you	can	use	multiple
search	conditions.		For	example,	the	following	search	criterion	consists	of	two
search	conditions.		The	query	includes	a	row	in	the	result	set	only	if	that	row
satisfies	both	of	the	conditions.

region	=	'UK'	AND	product_line	=	'Housewares'

You	can	combine	these	conditions	with	AND	or	OR.		The	previous	example	uses
AND.		In	contrast,	the	following	criterion	uses	OR.		The	attendant	query	result
will	include	any	row	that	satisfies	either	or	both	of	the	search	conditions:

region	=	'UK'	OR	product_line	=	'Housewares'

You	can	even	combine	search	conditions	on	a	single	column.		For	example,	the
following	criterion	combines	two	conditions	on	the	region	column:

region	=	'UK'	OR	region	=	'US'

For	details	about	combining	search	conditions,	see	the	following	topics:

Combining	Search	Conditions

Specifying	Multiple	Search	Conditions	for	One	Column

Specifying	Multiple	Search	Conditions	for	Multiple	Columns

Combining	Conditions	when	AND	Has	Precedence

Combining	Conditions	when	OR	Has	Precedence

Predicates	in	Search	Conditions

A	search	condition	consists	of	one	or	more	predicates,	each	specifying	a	single
condition.	If	the	search	condition	includes	more	than	one	predicate,	the
predicates	are	linked	with	a	logical	AND	(to	narrow	the	search)	or	OR	(to
broaden	it).	The	following	example	shows	how	you	can	use	multiple	conditions
when	searching	an	employee	table	to	find	the	employee	(or	employees)	with
the	specified	first	and	last	names:

WHERE	lname	=	'Smith'	AND	fname	=	'Jean'

A	single	predicate	follows	this	format:

search_expression	operator	search_value

In	most	instances,	search_expression	is	the	name	of	a	column	to	search.
Similarly,	the	most	common	form	of	search_value	is	a	literal	value	to	search	for,
which	can	be	either	a	string	of	characters	or	a	number.

The	following	two	examples	show	literal	values.	The	first	searches	for	all	the
employees	who	are	in	the	United	Kingdom,	and	the	second	searches	for	all
employees	with	a	specific	job	level:

WHERE	region	=	'UK'

WHERE	job_lvl	=	100

Both	search_expression	and	search_value	can	consist	of	any	(or	any
combination)	of	the	following:

Literal			A	single	text,	numeric,	date,	or	logical	value.	The	following
example	uses	a	literal	to	find	all	rows	for	employees	in	the	United
Kingdom:
WHERE	region	=	'UK'

Column	reference			The	name	of	a	column	in	one	of	the	tables	being
searched.	The	following	example	searches	a	products	table	for	all	rows
in	which	the	value	of	the	production	cost	is	lower	than	the	shipping
cost:
WHERE	prod_cost	<	ship_cost

Function			A	reference	to	a	function	that	the	database	back	end	can
resolve	to	calculate	a	value	for	the	search.	The	function	can	be	a
function	defined	by	the	database	server	or	a	user-defined	function	that
returns	a	scalar	value.		The	following	example	searches	for	orders
placed	today	(the	GETDATE()	function	returns	the	current	date):
WHERE	order_date	=	GETDATE()

NULL			The	following	example	searches	an	authors	table	for	all
authors	who	have	a	first	name	on	file:
WHERE	au_fname	IS	NOT	NULL

Calculation			The	result	of	a	calculation	that	can	involve	literals,
column	references,	or	other	expressions.	The	following	example
searches	a	products	table	to	find	all	rows	in	which	the	retail	sales	price
is	more	than	twice	the	production	cost:
WHERE	sales_price	>	(prod_cost	*	2)

Subquery			A	result	set	generated	by	another	query.	The	following
example	searches	a	products	table	to	find	all	the	products	from
Swedish	suppliers.	The	subquery	first	searches	the	suppliers	table	to
build	a	list	of	the	suppliers	located	in	that	country.	The	second	search
then	searches	the	products	table,	matching	the	product's	supplier	ID
against	the	list	created	by	the	subquery:
WHERE	supplier_id	IN

		(SELECT	supplier.supplier_id
		FROM	supplier
		WHERE	(supplier.country	=	'Sweden'))

For	more	details	about	creating	search	conditions,	see	the	following	topics.

For	information	about See
Specifying	search	conditions	in	the
Query	Designer

Specifying	Search	Conditions

Creating	expressions	that	you	can	use
in	search	conditions

Using	Expressions	in	Queries

Using	operators	in	search	conditions Comparison	Operators,	Logical
Operators,	and	Wildcard	Characters

Entering	text,	numbers,	dates,	or
logical	values

Entering	Search	Values

Finding	rows	that	do	not	match	a
value

Selecting	Rows	that	Do	Not	Match	a
Value

Removing	duplicate	rows	from
Select	queries

Excluding	Duplicate	Rows

Applying	multiple	search	conditions
to	the	same	data	column

Specifying	Multiple	Search
Conditions	for	One	Column

Including	several	data	columns	as
part	of	the	search	condition	for	a
query

Specifying	Multiple	Search
Conditions	for	Multiple	Columns

Linking	search	conditions	with	AND
and	OR	operators

Combining	Search	Conditions

Using	subqueries Creating	Subqueries

Visual	Database	Tools

Including	or	Excluding	Columns
You	can	choose	which	columns	appear	in	a	query	result.		When	choosing	which
columns	to	include,	there	are	several	things	to	keep	in	mind:

You	can	include	all	of	a	table's	columns			For	example,	you	can
include	everything	about	each	employee.		The	resulting	SQL	looks	like
this:
SELECT	*
FROM	employee

You	can	include	exactly	the	columns	you	want			For	example,	you	can
list	the	name	of	all	the	employees.		The	resulting	SQL	looks	like	this:
SELECT	fname,	minit,	lname
FROM	employee

The	list	of	columns	you	include	might	not	even	include	a	column	from
every	table	in	the	query.		This	does	not	mean	that	the	table	does	not
contribute	to	the	query.		For	an	example	of	a	query	that	uses	a	table
without	including	any	of	that	table's	columns,	see	Using	a	Table	Twice
in	One	Query.

You	can	include	all	columns	from	all	tables			For	example,	when	you
combine	data	from	the	sales	and	stores	tables,	you	can	include	every
column	from	either	table	in	the	result.		The	resulting	SQL	might	look
like	this:
SELECT					*
FROM									sales	INNER	JOIN
stores	ON	sales.stor_id	=	stores.stor_id

You	can	include	derived	columns			That	is,	you	can	include	columns
that	are	not	part	of	any	database	table	of	the	query.		For	example,	you
can	create	a	result	set	containing	the	job	description	and	the	average	job
level	for	each	job.		The	resulting	SQL	might	look	like	this:
SELECT				job_desc,	(max_lvl	+	min_lvl)	/	2	

FROM									jobs

You	can	use	SQL	syntax	to	define	the	derived	column	(as	in	the
preceding	sample	query)	or	you	can	employ	a	user-defined	function	that
returns	a	scalar	value.	

For	more	information	on	including	columns	in	a	query	result,	see	Adding
Columns.		For	more	information	on	user-defined	functions,	see	User-Defined
Functions.

See	Also
Structure	of	Retrieval	Queries

JavaScript:hhobj_1.Click()

Visual	Database	Tools

Combining	Tables
A	query	result	can	include	data	from	multiple	tables.		To	combine	data	from
tables,	you	use	the	JOIN	operation	from	SQL.		The	JOIN	operation	matches
rows	of	one	table	with	rows	of	another	table,	based	on	values	in	those	rows.		For
example,	you	can	join	the	table	titles	with	the	table	publishers.		Each	row	in
the	result	set	will	describe	a	title,	including	information	about	that	title's
publisher,	as	shown	in	the	following	illustration:	

When	you	use	JOIN,	you	have	several	decisions	to	make.	The	following	topics
describe	the	types	of	joins	and	how	to	use	them:

Types	of	Joins

JOIN	Columns

JOIN	Comparison	Operators

JOIN	Tables

Visual	Database	Tools

Types	of	Joins
When	you	join	tables,	the	type	of	join	that	you	create	affects	the	rows	that	appear
in	the	result	set.	You	can	create	the	following	types	of	joins:

Inner	join			A	join	that	displays	only	the	rows	that	have	a	match	in	both
joined	tables.	(This	is	the	default	type	of	join	in	the	Query	Designer.)
For	example,	you	can	join	the	titles	and	publishers	tables	to	create	a
result	set	that	shows	the	publisher	name	for	each	title.	In	an	inner	join,
titles	for	which	you	do	not	have	publisher	information	are	not	included
in	the	result	set,	nor	are	publishers	with	no	titles.		The	resulting	SQL	for
such	a	join	might	look	like	this:
SELECT					title,	pub_name
FROM									titles	INNER	JOIN
publishers	ON	titles.pub_id	=	publishers.pub_id

Note			Columns	containing	NULL	do	not	match	any	values
when	you	are	creating	an	inner	join	and	are	therefore	excluded
from	the	result	set.	Null	values	do	not	match	other	null	values.

For	more	information	on	creating	an	inner	join,	see	Joining	Tables
Automatically.

Outer	join			A	join	that	includes	rows	even	if	they	do	not	have	related
rows	in	the	joined	table.	You	can	create	three	variations	of	an	outer	join
to	specify	the	unmatched	rows	to	be	included:

Left	outer	join			All	rows	from	the	first-named	table	(the	"left"
table,	which	appears	leftmost	in	the	JOIN	clause)	are	included.
Unmatched	rows	in	the	right	table	do	not	appear.	For	example,
the	following	SQL	statement	illustrates	a	left	outer	join
between	the	titles	and	publishers	tables	to	include	all	titles,
even	those	you	do	not	have	publisher	information	for:
SELECT	titles.title_id,	
							titles.title,	

							publishers.pub_name
FROM	titles	LEFT	OUTER	JOIN	publishers	
												ON	titles.pub_id	
													=	publishers.pub_id

Right	outer	join			All	rows	in	the	second-named	table	(the
"right"	table,	which	appears	rightmost	in	the	JOIN	clause)	are
included.	Unmatched	rows	in	the	left	table	are	not	included.
For	example,	a	right	outer	join	between	the	titles	and
publishers	tables	will	include	all	publishers,	even	those	who
have	no	titles	in	the	titles	table.		The	resulting	SQL	might	look
like	this:
SELECT	titles.title_id,	
							titles.title,	
							publishers.pub_name
FROM	titles	RIGHT	OUTER	JOIN	publishers	
												ON	titles.pub_id	
													=	publishers.pub_id

Full	outer	join			All	rows	in	all	joined	tables	are	included,
whether	they	are	matched	or	not.	For	example,	a	full	outer	join
between	titles	and	publishers	shows	all	titles	and	all
publishers,	even	those	that	have	no	match	in	the	other	table.
SELECT	titles.title_id,	
							titles.title,	
							publishers.pub_name
FROM	titles	FULL	OUTER	JOIN	publishers	
												ON	titles.pub_id	
													=	publishers.pub_id

For	more	information	on	creating	an	outer	join,	see	Creating	Outer
Joins.

Cross	join			A	join	whose	result	set	includes	one	row	for	each	possible
pairing	of	rows	from	the	two	tables.		For	example,	authors	CROSS

JOIN	publishers	yields	a	result	set	with	one	row	for	each	possible
author/publisher	combination.		The	resulting	SQL	might	look	like	this:
SELECT	*
FROM	authors	CROSS	JOIN	publishers	

For	more	information	on	creating	a	cross	join,	see	Removing	Joins.

See	Also

Creating	Outer	Joins	|	Creating	Self-Joins	|	How	the	Query	Designer	Represents
Joins	|	Joining	Tables	Automatically	|	Joining	Tables	Manually	|	Modifying	Join
Operators	|	Querying	Using	Multiple	Tables	|	Removing	Joins

Visual	Database	Tools

Join	Columns
The	JOIN	operator	matches	rows	by	comparing	values	in	one	table	with	values
in	another.		You	decide	which	columns	from	each	table	should	be	matched.		You
have	several	choices:

Related	Columns			Typically,	you	join	tables	by	matching	values	in
columns	for	which	a	foreign-key	relationship	exists.		For	example,	you
can	join	discounts	to	stores	by	matching	the	values	of	stor_id	in	the
respective	tables.		The	resulting	SQL	might	look	like	this:
SELECT	*
FROM	discounts	INNER	JOIN	stores	
					ON	stores.stor_id	=	discounts.stor_id

For	more	information	on	joining	tables	on	related	columns,	see	Joining
Tables	Automatically.

Unrelated	Columns			You	can	also	join	tables	by	matching	values	in
columns	for	which	no	foreign-key	relationship	exists.		For	example,	you
can	join	publishers	to	authors	by	matching	the	values	of	state	in	the
respective	tables.		Such	a	join	yields	a	result	set	in	which	each	row
describes	an	author-publisher	pair	located	in	the	same	state.
SELECT	au_lname,	
							au_fname,	
							pub_name,	
							authors.state
FROM			authors	INNER	JOIN	publishers	
															ON	authors.state	
																=	publishers.state

For	more	information	on	joining	tables	on	unrelated	columns,	see
Joining	Tables	Manually.

Note	also	that	you	use	multiple	columns	to	match	rows	from	the	joined	tables.	

For	example,	to	find	the	author-publisher	pairs	in	which	the	author	and	publisher
are	located	in	the	same	city,	you	use	a	join	operation	matching	the	respective
state	columns	and	the	respective	city	columns	of	the	two	tables.		You	need	to
match	both	city	and	state	because	it	is	possible	that	different	states	could	have
like-named	cities	(e.g.,	Springfield,	Illinois	and	Springfield,	Massachusetts).

For	more	information	on	joining	tables	on	multiple	columns,	see	Joining	Tables
on	Multiple	Columns.

See	Also

Structure	of	Retrieval	Queries

Visual	Database	Tools

Join	Comparison	Operators
The	JOIN	operator	matches	rows	by	comparing	values	in	one	table	with	values
in	another.		You	can	decide	exactly	what	constitutes	a	match.		Your	choices	fall
into	two	broad	categories:

Match	on	Equality			Typically,	you	match	rows	when	the	respective
column	values	are	equal.		For	example,	to	create	a	result	set	in	which
each	row	contains	a	full	description	of	each	publisher,	(that	is,	with
columns	from	the	publishers	table	and	the	pub_info	table)	you	use	a	join
matching	rows	where	the	values	of	pub_id	in	the	respective	tables	are
equal.		The	resulting	SQL	might	look	like	this:
SELECT	*
				FROM	publishers	INNER	JOIN	pub_info	
						ON	publishers.pub_id	
						=		pub_info.pub_id

Other			You	can	match	rows	using	some	test	other	than	equality.		For
example,	to	find	the	employees	and	the	jobs	for	which	they	are
underqualified,	you	can	join	employee	with	jobs,	matching	rows	in
which	the	job's	minimum	required	level	exceeds	the	employee's	job
level.		The	resulting	SQL	might	look	like	this:

SELECT	
			fname,	minit,	lname,	
			job_desc,	job_lvl,	min_lvl
FROM	employee	INNER	JOIN	jobs	
			ON	employee.job_lvl	
				<	jobs.min_lvl

For	more	information	on	comparison	operators,	see	Comparison	Operators.

See	Also

Structure	of	Retrieval	Queries

Visual	Database	Tools

Join	Tables
When	combining	data	from	multiple	tables,	you	must	decide	what	tables	to	use.	
There	are	several	noteworthy	considerations:

Combining	Three	or	More	Tables			Each	JOIN	operation	combines
two	tables.			However,	you	can	use	multiple	JOIN	operations	within	one
query	to	assemble	data	from	any	number	of	tables.		Because	the	result
of	each	JOIN	operation	is	effectively	a	table,	you	can	use	that	result	as
an	operand	in	a	subsequent	join	operation.		For	example,	to	create	a
result	set	in	which	each	row	contains	a	book	title,	an	author,	and	the
percentage	of	that	book's	royalties	the	author	receives,	you	must
combine	data	from	three	tables:		authors,	titles,	and	titleauthor.		The
resulting	SQL	might	look	like	this:
SELECT	
				title,	
				au_fname,	
				au_lname,	
				royaltyper
FROM	
				authors	
								INNER	JOIN	
								titleauthor	
								ON	authors.au_id	
								=		titleauthor.au_id
			INNER	JOIN
			titles	
									ON	titleauthor.title_id	
									=		titles.title_id

Using	a	Table	merely	to	join	others			You	can	include	a	table	in	a	join
even	if	you	do	not	want	to	include	any	of	that	table's	columns	in	a	result
set.		For	example,	to	establish	a	result	set	in	which	each	row	describes	a

title-store	pair	in	which	that	store	sells	that	title,	you	include	columns
from	two	tables:	titles,	and	stores.		But	you	must	use	a	third	table,	sales,
to	determine	which	stores	have	sold	which	titles.		The	resulting	SQL
might	look	like	this:
SELECT	title,	stor_name	
FROM	titles	
									INNER	JOIN	
									sales	
									ON	titles.title_id	=	sales.title_id	
													INNER	JOIN	
													stores	
													ON	
													sales.stor_id	=	stores.stor_id

Notice	that	the	sales	table	contributes	no	columns	to	the	result	set.

Using	a	table	twice	in	one	query			You	can	use	the	same	table	two	(or
more)	times	within	a	single	query.		For	more	information,	see	Using	a
Table	Twice	in	One	Query.

Using	something	else	in	place	of	a	table			In	place	of	a	table,	you	can
use	a	query,	a	view,	or	a	user-defined	function	that	returns	a	table.		For
more	information,	see	Using	Something	Else	in	Place	of	a	Table.

For	more	information	on	adding	tables	to	a	query,	see	Adding	Tables.

See	Also

Structure	of	Retrieval	Queries

Visual	Database	Tools

Collapsing	Groups	of	Rows
You	can	create	a	query	result	in	which	each	result	row	corresponds	to	an	entire
group	of	rows	from	the	original	data.		When	collapsing	rows,	there	are	several
things	to	keep	in	mind:

You	can	eliminate	duplicate	rows			Some	queries	can	create	result	sets
in	which	multiple	identical	rows	appear.		For	example,	you	can	create	a
result	set	in	which	each	row	contains	the	city	and	state	name	of	a	city
containing	an	author	–	but	if	a	city	contains	several	authors,	there	will
be	several	identical	rows.		The	resulting	SQL	might	look	like	this:
SELECT	city,	state
FROM	authors

The	result	set	generated	by	the	preceding	query	is	not	very	useful.		If	a
city	contains	four	authors,	the	result	set	will	include	four	identical
rows.		Since	the	result	set	does	not	include	any	columns	other	than	city
and	state,	there	is	no	way	to	distinguish	the	identical	rows	from	each
other.		One	way	to	avoid	such	duplicate	rows	is	to	include	additional
columns	that	can	make	the	rows	different.		For	example,	if	you	include
author	name,	each	row	will	be	different	(provided	no	two	like-named
authors	live	within	any	one	city).		The	resulting	SQL	might	look	like
this:

SELECT	city,	state,	fname,	minit,	lname
FROM	authors

Of	course,	the	preceding	query	eliminates	the	symptom,	but	does	not
really	solve	the	problem.		That	is,	the	result	set	has	no	duplicates,	but	it
is	no	longer	a	result	set	about	cities.		To	eliminate	duplicates	in	the
original	result	set,	and	still	have	each	row	describe	a	city,	you	can	create
a	query	returning	only	distinct	rows.		The	resulting	SQL	might	look	like
this:

SELECT	DISTINCT	city,	state
FROM	authors

For	details	about	eliminating	duplicates,	see	Excluding	Duplicate	Rows.

You	can	calculate	on	groups	of	rows			That	is,	you	can	summarize
information	in	groups	of	rows.		For	example,	you	can	create	a	result	set
in	which	each	row	contains	the	city	and	state	name	of	a	city	containing
an	author,	plus	a	count	of	the	number	of	authors	contained	in	that	city.	
The	resulting	SQL	might	look	like	this:
SELECT	city,	state,	COUNT(*)
FROM	authors
GROUP	BY	city,	state

For	details	about	calculating	on	groups	of	rows,	see	Aggregate
Functions	and	Querying	on	Groups	of	Rows.

You	can	use	selection	criteria	to	include	groups	of	rows			For
example,	you	can	create	a	result	set	in	which	each	row	contains	the	city
and	state	name	of	a	city	containing	several	authors,	plus	a	count	of	the
number	of	authors	contained	in	that	city.		The	resulting	SQL	might	look
like	this:
SELECT	city,	state,	COUNT(*)
FROM	authors
GROUP	BY	city,	state
HAVING	COUNT(*)	>	1

For	details	about	applying	selection	criteria	on	groups	of	rows,	see
Specifying	Conditions	for	Groups	and	Using	HAVING	and	WHERE
Clauses	in	the	Same	Query.

See	Also

Structure	of	Retrieval	Queries

Visual	Database	Tools

Using	a	Table	Twice	in	One	Query
You	can	use	the	same	table	two	(or	more)	times	within	a	single	query.		There	are
several	situations	in	which	you	do	this.

Creating	a	self-join	with	a	reflexive	relationship			You	can	join	a
table	to	itself	using	a	reflexive	relationship	—	a	relationship	in	which
the	referring	foreign-key	columns	and	the	referred-to	primary-key
columns	are	in	the	same	table.		For	example,	suppose	the	employee
table	contains	an	additional	column,	employee.manager_emp_id,	and
that	a	foreign	key	exists	from	manager_emp_id	to	employee.emp_id.	
Within	each	row	of	the	employee	table,	the	manager_emp_id	column
indicates	the	employee's	boss.		More	precisely,	it	indicates	the
employee's	boss's	emp_id.

By	joining	the	table	to	itself	using	this	reflexive	relationship,	you	can
establish	a	result	set	in	which	each	row	contains	a	boss's	name	and	the	name
of	one	of	that	boss's	employees.		The	resulting	SQL	might	look	like	this:

SELECT	
				boss.lname,	
				boss.fname,	
				employee.lname,	
				employee.fname
FROM	
				employee
								INNER	JOIN	
								employee	boss	
								ON	employee.manager_emp_id	
								=		boss.emp_id

For	more	information	about	creating	joins	using	reflexive	relationships,	see
Creating	Self-Joins	Automatically.

Creating	a	self-join	without	a	reflexive	relationship			You	can	join	a
table	to	itself	without	using	a	reflexive	relationship.		For	example,	you

can	establish	a	result	set	in	which	each	row	describes	an	employee	and	a
potential	mentor	for	that	employee.		(A	potential	mentor	is	an	employee
with	a	higher	job	level.)		The	resulting	SQL	might	look	like	this:
SELECT	
				employee.fname,	
				employee.lname,	
				mentor.fname,	
				mentor.lname	
FROM	
				employee	
								INNER	JOIN	
								employee	mentor	
								ON	employee.job_lvl	
								<		mentor.job_lvl

Notice	that	the	join	uses	a	condition	other	than	equality.		For	more
information	about	joining	tables	using	conditions	other	than	equality,
see	Join	Comparison	Operators.

For	more	information	about	creating	self-joins	using	unrelated	columns,
see	Creating	Self-Joins	Manually.

Using	a	table	twice	without	a	self-join			Even	without	a	self	join,	you
can	use	the	same	table	twice	(or	more)	in	a	query.		For	example,	you	can
establish	a	result	set	containing	the	other	books	by	the	author	or	authors
of	your	favorite	book.		In	this	case,	you	use	the	titleauthors	table	twice
—	once	to	find	the	authors	of	your	favorite	book	(Is	Anger	the	Enemy?),
and	once	to	find	the	other	books	by	those	authors.		The	resulting	SQL
might	look	like	this:
SELECT	
				other_title.title
FROM	
				titles	favorite_title	
								INNER	JOIN	
								titleauthor	favorite_titleauthor	
								ON	favorite_title.title_id	

								=		favorite_titleauthor.title_id	
												INNER	JOIN	
												authors	
												ON	favorite_titleauthor.au_id	
												=		authors.au_id	
																INNER	JOIN	
																titleauthor	other_titleauthor	
																ON	authors.au_id	
																=		other_titleauthor.au_id	
																				INNER	JOIN	
																				titles	other_title	
																				ON	other_titleauthor.title_id	
																				=		other_title.title_id	
WHERE	
				favorite_title.title	
				=	'Is	Anger	the	Enemy?'	
		AND	
				favorite_title.title	
				<>	other_title.title	

Note			To	distinguish	between	the	multiple	uses	of	any	one	table,	the
preceding	query	uses	the	following	aliases:		favorite_title,
favorite_titleauthor,	other_titleauthor,	and	other_title.		For	more	information
about	aliases,	see	Creating	Table	Aliases.

See	Also
Structure	of	Retrieval	Queries	|	Drawing	a	Reflexive	Relationship

Visual	Database	Tools

Using	Something	Else	in	Place	of	a	Table
Whenever	you	write	a	retrieval	query,	you	articulate	what	columns	you	want,
what	rows	you	want,	and	where	the	query	processor	should	find	the	original
data.		Typically,	this	original	data	consists	of	a	table	or	several	tables	joined
together.		But	the	original	data	can	come	from	sources	other	than	tables.		In	fact,
it	can	come	from	views,	queries,	or	user-defined	functions	that	return	a	table.	

More	precisely,	the	original	data	can	come	from	any	joined	combination	of
tables,	views,	queries,	and	user-defined	functions	that	return	tables.

Using	a	View	in	Place	of	a	Table
You	can	select	rows	from	a	view.		For	example,	suppose	the	database	includes	a
view	called	"ExpensiveBooks,"	in	which	each	row	describes	a	title	whose	price
exceeds	19.99.		The	view	definition	might	look	like	this:

SELECT	*
FROM	titles
WHERE	price	>	19.99

You	can	select	the	expensive	psychology	books	merely	by	selecting	the
psychology	books	from	the	ExpensiveBooks	view.		The	resulting	SQL	might
look	like	this:

SELECT	*
FROM	ExpensiveBooks
WHERE	type	=	'psychology'

Similarly,	a	view	can	participate	in	a	JOIN	operation.		For	example,	you	can	find
the	sales	of	expensive	books	merely	by	joining	the	sales	table	to	the
ExpensiveBooks	view.		The	resulting	SQL	might	look	like	this:

SELECT	*
FROM	sales	
									INNER	JOIN	

									ExpensiveBooks	
									ON	sales.title_id	
									=		ExpensiveBooks.title_id

For	more	information	about	adding	a	view	to	a	query,	see	Adding	Tables.

Using	a	Query	in	Place	of	a	Table
You	can	select	rows	from	a	query.		For	example,	suppose	you	have	already
written	a	query	retrieving	titles	and	identifiers	of	the	coauthored	books	—	the
books	with	more	than	one	author.		The	SQL	might	look	like	this:

SELECT	
					titles.title_id,	title,	type
FROM	
					titleauthor	
									INNER	JOIN
									titles	
									ON	titleauthor.title_id	
									=		titles.title_id	
GROUP	BY	
					titles.title_id,	title,	type
HAVING	COUNT(*)	>	1

You	can	then	write	another	query	that	builds	on	this	result.		For	example,	you
can	write	a	query	that	retrieves	the	coauthored	psychology	books.		To	write	this
new	query,	you	can	use	the	existing	query	as	the	source	of	the	new	query's	data.	
The	resulting	SQL	might	look	like	this:

SELECT	
				title
FROM	
				(
				SELECT	
								titles.title_id,	

								title,	
								type
				FROM	
								titleauthor	
												INNER	JOIN
												titles	
												ON	titleauthor.title_id	
												=		titles.title_id	
				GROUP	BY	
								titles.title_id,	
								title,	
								type
				HAVING	COUNT(*)	>	1
)	
				co_authored_books
WHERE					type	=	'psychology'

The	emphasized	text	shows	the	existing	query	used	as	the	source	of	the	new
query's	data.		Note	that	the	new	query	uses	an	alias	("co_authored_books")	for
the	existing	query.		For	more	information	about	aliases,	see	Creating	Table
Aliases	and	Creating	Column	Aliases.

Similarly,	a	query	can	participate	in	a	JOIN	operation.		For	example,	you	can
find	the	sales	of	expensive	coauthored	books	merely	by	joining	the
ExpensiveBooks	view	to	the	query	retrieving	the	coauthored	books.		The
resulting	SQL	might	look	like	this:

SELECT	
				ExpensiveBooks.title
FROM	
				ExpensiveBooks	
								INNER	JOIN
								(
								SELECT	
												titles.title_id,	

												title,	
												type
								FROM	
												titleauthor	
																INNER	JOIN
																titles	
																ON	titleauthor.title_id	
																=		titles.title_id	
								GROUP	BY	
												titles.title_id,	
												title,	
												type
								HAVING	COUNT(*)	>	1
)

For	more	information	about	adding	a	query	to	a	query,	see	Adding	Tables.

Using	a	User-Defined	Function	in	Place	of	a	Table
In	SQL	Server	2000	or	higher,	you	can	create	a	user-defined	function	that	returns
a	table.		Such	functions	are	useful	for	performing	complex	or	procedural	logic.	

For	example,	suppose	the	employee	table	contains	an	additional	column,
employee.manager_emp_id,	and	that	a	foreign	key	exists	from	manager_emp_id
to	employee.emp_id.		Within	each	row	of	the	employee	table,	the
manager_emp_id	column	indicates	the	employee's	boss.		More	precisely,	it
indicates	the	employee's	boss's	emp_id.		You	can	create	a	user-defined	function
that	returns	a	table	containing	one	row	for	each	employee	working	within	a
particular	high-level	manager's	organizational	hierarchy.		You	might	call	the
function	fn_GetWholeTeam,	and	design	it	to	take	an	input	variable	—	the
emp_id	of	the	manager	whose	team	you	want	to	retrieve.

You	can	write	a	query	that	uses	the	fn_GetWholeTeam	function	as	a	source	of
data.		The	resulting	SQL	might	look	like	this:

SELECT	*	

FROM	
					fn_GetWholeTeam	('VPA30890F')

("VPA30890F"	is	the	emp_id	of	the	manager	whose	organization	you	want	to
retrieve.)		For	more	information	about	adding	a	user-defined	function	to	a	query,
see	Adding	Tables.

See	Also
User-Defined	Functions	|	Queries	and	Views

Visual	Database	Tools

Sorting	Rows
You	can	order	the	rows	in	a	query	result.		That	is,	you	can	name	a	particular
column	or	set	of	columns	whose	values	determine	the	order	of	rows	in	the	result
set.		There	are	several	ways	in	which	you	can	use	ordering:

You	can	arrange	rows	in	ascending	or	descending	order			By	default,
SQL	uses	order-by	columns	to	arrangesrows	in	ascending	order.		For
example,	to	arrange	the	book	titles	by	ascending	price,	simply	sort	the
rows	by	the	price	column.		The	resulting	SQL	might	look	like	this:
SELECT	*
FROM	titles
ORDER	BY	price

On	the	other	hand,	if	you	want	to	arrange	the	titles	with	the	more
expensive	books	first,	you	can	explicitly	specify	a	highest-first
ordering.		That	is,	you	indicate	that	the	result	rows	should	be	arranged
by	descending	values	of	the	price	column.		The	resulting	SQL	might
look	like	this:

SELECT	*
FROM	titles
ORDER	BY	price	DESC

You	can	sort	by	multiple	columns			For	example,	you	can	create	a
result	set	with	one	row	for	each	author,	ordering	first	by	state	and	then
by	city.		The	resulting	SQL	might	look	like	this:
SELECT	*
FROM	authors	
ORDER	BY	state,	city

You	can	sort	by	columns	not	appearing	in	the	result	set			For
example,	you	can	create	a	result	set	with	the	most	expensive	titles	first,
even	though	the	prices	do	not	appear.		The	resulting	SQL	might	look
like	this:

SELECT	title_id,	title
FROM	titles
ORDER	BY	price	DESC

You	can	sort	by	derived	columns			For	example,	you	can	create	a
result	set	in	which	each	row	contains	a	book	title	—	with	the	books	that
pay	the	highest	royalty	per	copy	appearing	first.		The	resulting	SQL
might	look	like	this:
SELECT	title,	price	*	royalty	/	100	as	royalty_per_unit
FROM	titles
ORDER	BY	royalty_per_unit	DESC

(The	formula	for	calculating	the	royalty	that	each	book	earns	per	copy	is
emphasized.)	

To	calculate	a	derived	column,	you	can	use	SQL	syntax,	as	in	the
preceding	example,	or	you	can	use	a	user-defined	function	that	returns	a
scalar	value.		For	more	information	about	user-defined	functions,	see
User-Defined	Functions.

You	can	sort	grouped	rows			For	example,	you	can	create	a	result	set
in	which	each	row	describes	a	city,	plus	the	number	of	authors	in	that
city	—	with	the	cities	containing	many	authors	appearing	first.		The
resulting	SQL	might	look	like	this:
SELECT	city,	state,	COUNT(*)
FROM	authors
GROUP	BY	city,	state
ORDER	BY	COUNT(*)	DESC,	state	

(Notice	that	the	query	uses	state	as	a	secondary	sort	column.		Thus,	if
two	states	have	the	same	number	of	authors,	those	states	will	appear	in
alphabetical	order.)

You	can	sort	using	international	data			That	is,	you	can	sort	a	column
using	collating	conventions	that	differ	from	the	default	conventions	for
that	column.		For	example,	you	can	write	a	query	that	retrieves	all	the
book	titles	by	the	Icelandic	novelist	Halldor	Laxness.		To	display	the

JavaScript:hhobj_1.Click()

titles	in	alphabetical	order,	you	use	an	Icelandic	collating	sequence	for
the	title	column.		The	resulting	SQL	might	look	like	this:
SELECT	title
FROM	
				authors	
				INNER	JOIN	
								titleauthor	
								ON	authors.au_id	
								=		titleauthor.au_id	
								INNER	JOIN
												titles	
												ON	titleauthor.title_id	
												=		titles.title_id	
WHERE	
					au_fname	=	'Halldor'	AND	
					au_lname	=	'Laxness'
ORDER	BY	
					title	COLLATE	SQL_Icelandic_Pref_CP1_CI_AS

For	more	information	about	sorting	result	rows,	see	Ordering	Query	Results.

Visual	Database	Tools

Expressions	in	Queries
You	can	use	an	expression	anywhere	in	a	query	where	you	can	use	a	column
name.	Expressions	can	calculate	values	to	display,	be	part	of	search	conditions,
or	combine	the	contents	of	data	columns.	An	expression	can	consist	of	a
mathematical	calculation	or	a	string,	and	can	involve	any	combination	of	column
names,	literals,	operators,	or	functions.

Examples	of	the	use	of	expressions	in	a	query	include:

In	a	products	table,	displaying	a	discounted	price	that	is	calculated	by
taking	10%	off	the	retail	price.

Displaying	only	the	first	three	digits	—	the	area	code	—	of	a	phone
number.

Displaying	employee	names	in	the	format	last_name,	first_name.

Joining	two	tables,	an	orders	table	and	a	products	table,	then	sorting
the	query	on	the	total	price	(order	quantity	times	product	price).

In	an	orders	table,	copying	and	then	deleting	all	orders	that	were
shipped	more	than	one	year	ago.

For	more	information	about	creating	and	using	expressions,	refer	to	the	topics
listed	in	the	following	table.

For	information	about See
Creating	expressions Creating	an	Expression
Entering	expressions	into	a	query Using	Expressions	in	a	Query
Creating	summaries	of	data Summarizing	and	Grouping
Using	operators	in	expressions Operators	for	Expressions
Using	functions	in	expressions Functions	for	Expressions

Using	predefined	variables	in
expressions

Predefined	Variables	for	Expressions

Visual	Database	Tools

Parameter	Queries
In	some	cases	you	want	to	create	a	query	that	you	can	use	many	times,	but	with	a
different	value	each	time.	For	example,	you	might	frequently	query	a	titles	table
to	find	all	the	books	written	by	one	author.	You	could	run	the	same	query	for
each	request,	except	that	the	author's	ID	or	name	would	be	different	each	time.

To	create	a	query	that	can	have	different	values	at	different	times,	you	use
parameters	in	the	query.	A	parameter	is	a	placeholder	for	a	value	that	is	supplied
when	the	query	runs.	An	SQL	statement	with	a	parameter	might	look	like	the
following,	where	"?"	represents	the	parameter	for	the	author's	state:

SELECT	au_lname,	au_fname
FROM	state
WHERE	state	=	?

Where	You	Can	Use	Parameters
You	can	use	parameters	as	placeholders	for	literal	values	—	for	either	text	or
numeric	values.	Most	commonly,	parameters	are	used	as	placeholders	in
search	conditions	for	individual	rows	or	for	groups	(that	is,	in	the	WHERE	or
HAVING	clauses	of	an	SQL	statement).

Some	databases	allow	you	to	use	parameters	as	placeholders	in	expressions.	For
example,	you	might	want	to	calculate	discounted	prices	by	supplying	a	different
discount	value	each	time	you	run	a	query.	To	do	so,	you	could	specify	the
following	expression:

(price	*	?)

For	details	about	where	you	can	use	parameters,	see	Parameters.

Specifying	Unnamed	and	Named	Parameters
You	can	specify	two	types	of	parameters:	unnamed	and	named.	An	unnamed
parameter	is	a	question	mark	(?)	that	you	put	anywhere	in	the	query	that	you

JavaScript:hhobj_1.Click()

want	to	prompt	for	or	substitute	a	literal	value.	For	example,	if	you	use	an
unnamed	parameter	to	search	for	an	author's	id	in	a	titles	table,	the	resulting
statement	in	the	SQL	pane	might	look	like	this:

SELECT	au_lname,	au_fname
FROM	state
WHERE	state	=	?

When	you	run	the	query	in	the	Query	Designer,	the	Define	Query	Parameters
dialog	box	appears	with	"?"	as	the	name	of	the	parameter,	as	in	the	following
illustration.

Alternatively,	you	can	assign	a	name	to	a	parameter.	Named	parameters	are
particularly	useful	if	you	have	multiple	parameters	in	a	query.	For	example,	if
you	use	named	parameters	to	search	for	an	author's	first	and	last	names	in	an
authors	table,	the	resulting	statement	in	the	SQL	pane	might	look	like	this:

SELECT	au_id
FROM	authors
WHERE	au_fname	=	%first	name%	AND
		au_lname	=	%last	name%

When	you	run	the	query	in	the	Query	Designer,	the	Define	Query	Parameters
dialog	box	appears	with	a	list	of	named	parameters,	as	in	the	following
illustration.

See	Also
Creating	a	Query	with	Named	Parameters	|	Creating	a	Query	with	Unnamed
Parameters	|	Creating	General	Purpose	Queries	|	Specifying	Parameter	Marker
Characters	|	Supported	Query	Types

Visual	Database	Tools

Summary	and	Grouping	Behavior	in	the	Query
Designer
When	you	create	aggregate	queries,	certain	logical	principles	apply.	For
example,	you	cannot	display	the	contents	of	individual	rows	in	a	summary	query.
The	Query	Designer	helps	you	comply	with	these	principles	in	the	way	the
Diagram	and	Grid	panes	behave.

By	understanding	the	principles	of	aggregate	queries	and	the	Query	Designer's
behavior,	you	can	create	logically	correct	aggregate	queries.	The	overriding
principle	is	that	aggregate	queries	can	result	only	in	summary	information.	Thus,
most	of	the	principles	that	follow	describe	the	ways	that	you	can	reference
individual	data	columns	within	an	aggregate	query.

Referencing	Columns	for	Output	and	Sorting

Referencing	Columns	in	Search	Conditions

Working	with	Columns	in	Aggregate	Queries

Referencing	Columns	for	Output	and	Sorting

The	following	principles	describe	how	you	can	reference	columns	in	an
aggregate	query	for	output	and	for	sorting:

If	you	include	an	aggregate	function	anywhere	in	a	query,	the	query	is
considered	an	aggregate	query.	(This	principle	does	not	necessarily
apply	to	subqueries,	which	can	include	nonaggregate	information.)

You	cannot	display	the	contents	of	individual	rows	in	an	aggregate
query;	you	can	display	only	summary	data.	As	a	consequence,	all
columns	marked	for	output	must	also	be	assigned	to	either	an
aggregate	function	or	to	the	GROUP	BY	clause.

Columns	used	in	aggregate	functions	cannot	appear	in	the	GROUP	BY

clause.

Referencing	Columns	in	Search	Conditions

The	following	principles	describe	how	you	can	reference	columns	in	an
aggregate	query	in	search	conditions.	In	general,	you	can	use	a	column	in	a
search	condition	to	filter	the	rows	that	should	be	summarized	(a	WHERE	clause)
or	to	determine	which	grouped	results	appear	in	the	final	output	(a	HAVING
clause).

Individual	data	columns	can	appear	in	either	the	WHERE	or	HAVING
clause,	depending	on	how	they	are	used	elsewhere	in	the	query.

WHERE	clauses	are	used	to	select	a	subset	of	rows	for	summarizing
and	grouping	and	are	thus	applied	before	any	grouping	is	done.
Therefore,	you	can	use	a	data	column	in	a	WHERE	clause	even	if	it	is
not	part	of	the	GROUP	BY	clause	or	contained	in	an	aggregate	function.
For	example,	the	following	statement	selects	all	titles	that	cost	more
than	$10.00	and	averages	the	price:
SELECT	AVG(price)
FROM	titles
WHERE	price	>	10

If	you	create	a	search	condition	that	involves	a	column	also	used	in	a
GROUP	BY	clause	or	aggregate	function,	the	search	condition	can
appear	as	either	a	WHERE	clause	or	a	HAVING	clause	—	you	can
decide	which	when	you	create	the	condition.	For	example,	the	following
statement	creates	an	average	price	for	the	titles	for	each	publisher,	then
displays	the	average	for	the	publishers	in	which	the	average	price	is
greater	than	$10.00:
SELECT	pub_id,	AVG(price)
FROM	titles
GROUP	BY	pub_id
HAVING	(AVG(price)	>	10)

If	you	use	an	aggregate	function	in	a	search	condition,	the	condition
involves	a	summary	and	must	therefore	be	part	of	the	HAVING	clause.

Working	with	Columns	in	Aggregate	Queries

When	you	create	aggregate	queries	using	the	Diagram	and	Grid	panes,	the	Query
Designer	makes	certain	assumptions	so	that	your	query	adheres	to	the	principles
outlined	earlier.	For	example,	if	you	are	creating	an	aggregate	query	and	mark	a
data	column	for	output,	the	Query	Designer	automatically	makes	the	column	part
of	the	GROUP	BY	clause	so	that	you	do	not	inadvertently	attempt	to	display	the
contents	of	an	individual	row	in	a	summary.

Even	though	the	Query	Designer	works	to	help	prevent	logical	errors,	it	is
possible	to	create	aggregate	queries	that	will	not	execute.	Therefore,	be	sure	that
you	understand	the	principles	listed	earlier	in	order	to	avoid	errors	when	you
create	queries.

The	Query	Designer	uses	the	following	guidelines	for	working	with	columns:

When	you	choose	the	Group	By	option	or	add	an	aggregate	function	to
a	query,	all	columns	marked	for	output	or	used	for	sorting	are
automatically	added	to	the	GROUP	BY	clause.	Columns	are	not
automatically	added	to	the	GROUP	BY	clause	if	they	are	already	part	of
an	aggregate	function.

If	you	do	not	want	a	particular	column	to	be	part	of	the	GROUP	BY
clause,	you	must	manually	change	it	by	selecting	a	different	option	in
the	Group	By	column	of	the	Grid	pane.	(However,	the	Query	Designer
will	not	prevent	you	from	choosing	an	option	that	can	result	in	a	query
that	will	not	run.)

If	you	manually	add	a	query	output	column	to	an	aggregate	function	in
either	the	Grid	or	SQL	pane,	the	Query	Designer	does	not	automatically
remove	other	output	columns	from	the	query.	Therefore,	you	must
remove	the	remaining	columns	from	the	query	output	or	make	them	part
of	the	GROUP	BY	clause	or	of	an	aggregate	function.

When	you	enter	a	search	condition	into	the	Criteria	column	of	the	Grid	pane,	the
Query	Designer	follows	these	rules:

If	the	Group	By	column	of	the	grid	is	not	displayed	(because	you	have
not	yet	specified	an	aggregate	query),	the	search	condition	is	placed	into
the	WHERE	clause.

If	you	are	already	in	an	aggregate	query	and	have	selected	the	option
Where	in	the	Group	By	column,	the	search	condition	is	placed	into	the
WHERE	clause.

If	the	Group	By	column	contains	any	value	other	than	Where,	the
search	condition	is	placed	in	the	HAVING	clause.

See	Also

Counting	Rows	in	a	Table	|	Grouping	Rows	in	Query	Results	|	Querying	on
Groups	of	Rows	|	Specifying	Conditions	for	Groups	|	Summarizing	and
Grouping	|	Summarizing	Values	for	All	Rows	in	a	Table	|	Summarizing	Values
Using	Custom	Expressions	|	Using	HAVING	and	WHERE	Clauses	in	the	Same
Query

Visual	Database	Tools

Using	the	Query	Designer	with	International	Data
You	can	use	the	Query	Designer	with	data	in	any	language	and	in	any	version	of
the	Windows®	operating	system.		The	following	guidelines	outline	the
differences	you	will	notice	and	provide	information	about	managing	data	in
international	applications.

Note			For	additional	information	about	ANSI	to	OEM	character	conversion
in	SQL	Server,	see	Query	Designer	Considerations.

Localized	Information	in	the	Grid	and	SQL	Panes
If	you	are	using	the	Grid	pane	to	create	you	query,	you	can	enter	information	in
the	format	that	corresponds	to	the	Windows	Regional	Settings	for	you	computer.	
For	example,	if	you	are	searching	for	data,	you	can	enter	the	data	in	the	Criteria
columns	using	whatever	format	you	are	accustomed	to	using,	with	these
exceptions:

Long	data	formats	are	not	supported.

Currency	symbols	should	not	be	entered	in	the	Grid	pane.		However,	the
correct	symbol	will	appear	in	the	Results	pane.

Note			You	may	enter	the	$	currency	symbol,	but	the	Results
pane	will	return	the	currency	symbol	that	corresponds	to	the
Windows	Regional	Settings	for	your	computer.

Unary	minus	always	appears	on	the	left	side	(for	example,	-1)
regardless	of	the	Regional	Settings	options.

In	contrast,	data	and	keywords	in	the	SQL	pane	must	always	be	in	ANSI	(U.S.)
format.		For	example,	as	the	Query	Designer	builds	a	query,	it	inserts	the	ANSI
form	of	all	SQL	keywords	such	as	SELECT	and	FROM.		If	you	add	elements	to
the	statement	in	the	SQL	pane,	be	sure	to	use	the	ANSI	standard	form	for	the
elements.

When	you	enter	data	using	local-specific	format	in	the	Grid	pane,	the	Query

Designer	automatically	translates	it	to	ANSI	format	in	the	SQL	pane.		For
example,	if	your	Regional	Settings	are	set	to	Standard	German,	you	can	enter
data	in	the	Grid	pane	in	a	format	such	as	"31.12.96."	However,	the	date	will
appear	in	the	SQL	pane	in	ANSI	datetime	format	as	{	ts	'1996-12-31
00:00:00'	}.	If	you	enter	data	directly	in	the	SQL	pane,	you	must	enter	it	in
ANSI	format.

Sort	Order
The	sort	order	of	data	in	your	query	is	determined	by	the	database.		Options	that
you	set	in	the	Windows	Regional	Settings	dialog	box	do	not	affect	sort	order	for
queries.		Within	any	particular	query,	however,	you	can	request	that	rows	be
returned	in	a	particular	order.		For	more	information,	see	Sorting	Rows.

Using	Double-Byte	Characters
You	can	enter	DBCS	characters	for	literals	and	for	database	object	names	such
as	table	and	view	names	or	aliases.		You	can	also	use	DBCS	characters	for
parameter	names	and	parameter	marker	characters.		However,	you	cannot	use
DBCS	characters	in	SQL	language	elements	such	as	function	names	or	SQL
keywords.

Visual	Database	Tools

Developing	Database	Structure
The	Database	Designer	provides	tools	to	help	you	create	and	maintain	the
structure	of	the	database.		The	Table	Designer	devotes	an	entire	window	to	the
design	of	an	individual	table.		For	more	information	about	database	and	table
structure,	see	Database	Development	and	the	Visual	Database	Tools.

For	details	about	the	specific	steps	in	developing	database	structure,	see	the
following	topics:

Working	with	Databases

Working	with	Tables

Working	with	Columns

Working	with	Keys

Working	with	Relationships

Working	with	Indexes

Working	with	Constraints

Working	with	Scripts

Visual	Database	Tools

Working	with	Databases
The	Database	Designer	provides	tools	to	help	you	change	your	database.	You
can	control	when	and	how	changes	to	a	database	made	in	a	database	diagram	are
saved.	You	control	these	changes	by	noting	which	objects	have	changed	and
which	remain	unchanged	in	the	database	diagram,	by	saving	changes	only	to
selected	tables,	and	by	discarding	unwanted	changes.	You	can	also	use	SQL
change	scripts	to	track,	discard,	postpone,	and	apply	unsaved	changes.

To See
Save	changes	made	on	a	database
diagram

Saving	an	Entire	Database	Diagram

Save	changes	to	a	selected	table	on	a
diagram

Saving	Selected	Tables	on	a	Diagram

Save	your	work	in	table	designer Saving	Your	Work	in	Table	Designer
Return	to	a	previous	version	of	a
database	diagram	without	saving
changes

Discarding	Modifications

Ensure	that	database	objects	have	a
unique	name

Uniquely	Naming	Database	Objects

Visual	Database	Tools

Saving	Selected	Tables	on	a	Diagram
You	can	save	a	specific	table	or	a	set	of	tables	if	you	do	not	want	to	save	all	the
changes	you	made	in	a	database	diagram.

To	save	selected	tables

1.	 In	your	database	diagram,	select	the	tables	you	want	to	save.

2.	 Right-click	one	of	the	selected	tables,	and	choose	Save	Selection.

3.	 The	Save	dialog	box	displays	the	list	of	tables	that	will	be	updated	in
the	database	when	you	save	your	selection.
Choose	Save	Text	File	if	you	want	to	save	the	list	of	tables	in	a	text
file	in	the	project	directory	before	continuing.	When	a	message	box
displays	the	name	of	the	saved	text	file,	choose	OK.

4.	 In	the	Save	dialog	box,	confirm	the	list	of	tables	and	choose	Yes	to
save	these	tables.

Note			The	list	of	tables	may	contain	tables	in	addition	to	those	selected.	For
example,	if	you	change	the	data	type	of	a	column	that	participates	in	a
relationship	with	another	table,	both	tables	will	be	included	in	this	list.

See	Also
Saving	a	Change	Script

Visual	Database	Tools

Saving	an	Entire	Database	Diagram
By	saving	a	database	diagram,	you	can	save	all	the	changes	you	made	to	it,
including	any	changes	you	made	to	the	tables,	columns	and	other	database
objects.

To	save	the	database	diagram

1.	 Right-click	inside	the	database	diagram,	then	click	Save.

2.	 If	this	is	a	new	diagram	that	you	have	never	before	saved,	the	Save	As
dialog	box	appears.		Type	a	name	for	the	diagram.
If	you	made	changes	to	tables	in	an	existing	diagram,	the	Save	dialog
box	appears	and	displays	a	list	of	changes	that	will	be	saved	in	the
database	when	you	save	your	diagram.

3.	 Click	Yes	to	update	the	database	to	match	your	diagram.

See	Also

Saving	a	Change	Script

Visual	Database	Tools

Saving	Your	Work	in	Table	Designer
You	can	save	all	the	changes	you	made	to	a	table	in	the	Table	Designer.

To	save	a	table

1.	 Click	the	Save	button	on	the	toolbar.

If	you	made	changes	to	the	table,	the	Save	dialog	box	appears	and
displays	a	list	of	changes	that	will	be	saved	in	the	database	when	you
save	your	diagram.

Note			The	list	of	tables	may	contain	tables	other	than	the	table
you	modified.		For	example,	if	you	change	the	data	type	of	a
column	that	participates	in	a	relationship	with	another	table,
both	tables	will	be	included	in	this	list.

2.	 Click	Yes	to	update	the	database.

See	Also

Saving	a	Change	Script

Visual	Database	Tools

Discarding	Changes	Made	in	Database	Designer	or
Table	Designer
You	can	discard	changes	in	your	database	diagram	that	you	do	not	want	to	save
in	the	database.

To	discard	pending	modifications

1.	 Close	your	database	diagram	or	table	design	window.

2.	 A	message	prompts	you	to	save	your	changes.	Choose	No.

Caution			If	you	have	other	open	database	diagrams	or	table	design	windows
connected	to	the	same	database,	the	modifications	that	you	discard	in	this
manner	remain	in	your	local	memory.		To	remove	these	pending
modifications	from	memory,	you	must	close	all	database	diagrams	and	table
design	windows	connected	to	the	same	database.		For	more	information,	see
Interactions	Among	Database	Diagrams	and	Table	Design	Windows.

Visual	Database	Tools

Reconciling	a	Database	Diagram	with	a	Modified
Database
You	save	your	database	diagram	when	you	are	ready	to	update	the	database	to
match	your	diagram.	However,	if	other	users	have	updated	the	database	since
you	opened	your	diagram,	their	changes	might	affect	your	diagram	and	vice
versa.	In	such	cases,	saving	your	diagram	will	automatically:

Recreate	database	objects	that	are	referenced	in	your	diagram	but	that
another	user	deleted.

Preserve	triggers	that	were	added	to	a	table;	triggers	that	were	deleted
from	a	table	are	not	preserved.

Delete	an	object	you	deleted	in	your	diagram,	even	if		another	user
edited	that	object.

Saving	your	diagram	will	reconcile	the	database	with	your	diagram	by
overwriting	other	users'	changes	so	that	the	database	will	match	your	diagram.

To	reconcile	your	diagram	with	a	modified	database

1.	 Save	your	database	diagram.
If	you	have	not	previously	saved	your	diagram,	type	a	name	for	the
diagram	in	the	Save	New	Database	Diagram	dialog	box	and	choose
OK.

2.	 The	Save	dialog	box	lists	the	tables	that	will	be	affected	when	you
save	your	diagram.	Choose	Yes	to	continue.

3.	 The	Database	Changes	Detected	dialog	box	lists	the	objects	that	were
modified	and	will	be	changed	to	match	your	diagram.	Choose	Yes	to
save	the	diagram	and	accept	the	list	of	changes.

Note			If	your	diagram	contains	tables	and	columns	that	were	deleted	in	the

database,	only	their	definitions	are	recreated	in	the	database	when	you	save
your	diagram.	This	process	does	not	restore	any	data	that	existed	in	these
objects	before	their	deletion.

See	Also
Multiuser	Environments

Visual	Database	Tools

Working	with	Tables
The	Visual	Database	Tools	help	you	change	your	database.	You	can	control
when	and	how	changes	to	a	database	made	in	a	database	diagram	are	saved.	You
control	these	changes	by	noting	which	objects	have	changed	and	which	remain
unchanged	in	the	database	diagram,	by	saving	changes	only	to	selected	tables,
and	by	discarding	unwanted	changes.	You	can	also	use	SQL	change	scripts	to
track,	discard,	and	apply	unsaved	changes.

To See
Add	a	table Adding	Tables
Remove	a	table	from	a	diagram Removing	a	Table	from	a	Database

Diagram
Remove	a	table	from	the	database Deleting	a	Table	from	a	Database

Diagram	and	the	Database
Rename	a	table Renaming	a	Table
Duplicate	a	table Duplicating	a	Table
Copy	a	table	to	another	diagram Copying	a	Table	Across	Database

Diagrams
Change	how	tables	appear	in	the
diagram

Changing	a	Table	View	in	a	Database
Diagram

Change	which	per-column	properties
appear	in	a	diagram

Changing	Which	Properties	Appear

Move	columns	to	another	table Moving	Columns	from	One	Table	to
Another

Resize	per-column	property	columns Resizing	Property	Columns

Visual	Database	Tools

Adding	Tables
You	can	add	a	table	to	your	database	diagram	to	edit	its	structure	or	relate	it	to
other	tables	in	your	diagram.	You	can	either	add	existing	database	tables	to	a
diagram	or	insert	a	new	table	that	has	not	yet	been	defined	in	the	database.	
Alternatively,	you	can	create	a	table	or	modify	an	existing	table	with	the	Table
Designer.

Creating	a	New	Table	with	Table	Designer

Inserting	a	New	Table	in	a	Diagram

Adding	an	Existing	Table	to	a	Diagram

Adding	Related	Tables	to	a	Diagram

Creating	a	New	Table	with	Table	Designer

Using	Table	Designer,	you	can	create	a	new	table	in	the	database	without
opening	a	database	diagram.

To	create	a	new	table	with	Table	Designer

1.	 Make	sure	you	are	connected	to	the	database	in	which	you	want	to
create	the	table.	Right-click	the	Tables	node	of	the	target	database	and
choose	New	Table.	

2.	 Add	the	columns	and	other	details	of	the	table.

Note			For	each	column	you	add,	a	new	row	appears	in	the	top	portion	of	the
Table	Designer.		Within	that	row,	you	can	edit	the	column's	basic	properties.	
To	edit	the	columns	other	properties,	you	can	use	the	bottom	portion	of	the
Table	Designer.		Simply	click	on	a	particular	row	in	the	top	portion	of	the
Table	Designer,	then	add	or	edit	the	values	for	the	properties	appearing	in	the
bottom	portion.

Inserting	a	New	Table
Adding	a	new	table	to	the	database	diagram	means	that	you	are	defining	a	new
table	that	does	not	already	exist	in	the	database.	To	create	a	new	table,	you	must
define	the	individual	columns	that	make	up	the	table.	The	table	is	created	in	the
database	when	you	save	the	table	or	the	diagram.

To	insert	a	new	table	into	a	diagram

1.	 Make	sure	you	are	connected	to	the	database	in	which	you	want	to
create	the	table.

To	create	a	table	in	your	current	diagram,	click	the	New	Table	button	 	on	the
toolbar.

–or–

Right-click	in	the	diagram	and	select	New	Table.

2.	 Modify	or	accept	the	system-assigned	table	name,	in	the	Choose	Name
dialog	box,	and	then	choose	OK.
A	new	table	appears	in	the	diagram	in	Standard	view.

3.	 In	the	first	cell	of	the	new	table,	type	a	column	name.	Then	press	the
TAB	key	to	move	to	the	next	cell.

4.	 Under	Datatype,	select	a	data	type	for	the	column.	Each	column	must
have	a	name	and	data	type.
You	can	set	the	column's	other	properties,	such	as	Scale,	by	using	the
Columns	property	page.		See	Setting	Column	Properties	for	details.

5.	 Repeat	steps	3	and	4	for	each	column	you	want	to	add	to	the	table.

When	you	save	your	database	diagram,	the	new	table	will	be	added	to	your
database.

Note			If	you	create	a	new	table,	then	remove	it	from	the	diagram	before
saving	it	to	the	database,	the	table	name	remains	in	memory	until	you	close
the	database	diagram.	Also,	if	you	delete	an	existing	table	from	the	database,

the	table	name	remains	in	memory.	To	use	the	table	name	again,	close	and
restart	the	Database	Designer.

Adding	an	Existing	Table
Adding	an	existing	table	means	that	the	table	you	want	to	appear	in	your
diagram	already	exists	in	your	database.	If	you	add	a	group	of	tables	to	a
diagram,	any	relationships	that	exist	between	the	tables	are	also	added	to	the
diagram.

To	add	an	existing	table	to	a	diagram

1.	 Open	a	database	diagram.

2.	 Right-click	inside	the	diagram,	then	choose	Add	Table....

3.	 In	the	Add	Table	dialog	box,	click	the	table,	then	click	Add.	
Alternatively,	you	can	double-click	any	tables	you	want	to	add	before
closing	the	dialog	box.

4.	 Click	Close	to	close	the	Add	Table	dialog	box.

If	relationships	exist	between	the	selected	table	and	other	tables	in	your	diagram,
relationship	lines	are	automatically	drawn.

When	you	add	a	table	to	a	diagram,	the	definition	of	the	table	(not	the	data	that	is
stored	in	the	table)	is	loaded	from	your	database	into	memory.	At	that	point	you
can	edit	the	table's	definition.	For	example,	you	can	add	new	columns	or	modify
its	indexes,	key,	relationships,	or	constraints.

Adding	Related	Tables
For	tables	with	existing	foreign	key	constraints,	you	can	easily	add	the	related
tables	to	the	database	diagram.

To	add	related	tables	to	a	diagram

1.	 Select	one	or	more	tables	with	foreign	key	constraints	in	the	database
diagram.

2.	 Right-click	on	any	of	the	selected	tables	and	choose	Add	Related
Tables.

Both	those	tables	referenced	by	a	foreign	key	constraint	from	the	selected
table(s)	and	those	referencing	the	selected	table(s)	with	a	foreign	key	constraint
are	added	to	the	diagram.

See	Also
Copying	a	Table	Across	Database	Diagrams	|	Deleting	a	Table	from	a	Database
Diagram	and	the	Database	|	Removing	a	Table	from	a	Database	Diagram	|
Renaming	a	Table	|	Tables

Visual	Database	Tools

Removing	a	Table	from	a	Database	Diagram
You	can	remove	a	table	from	your	database	diagram.	Removing	a	table	does	not
alter	your	database.	The	table	and	its	relationships	to	other	tables	continue	to
exist	in	the	database.

If	you	remove	a	table	that	has	been	changed	either	by	you	or	another	user,	a
message	prompts	you	to	save	the	table	before	removing	it:

If	you	save	the	table	before	removing	it,	the	database	is	updated	with
the	changes.

If	you	discard	changes	to	the	table	before	removing	it,	the	table	remains
in	memory	in	its	modified	state	until	you	save	the	table	or	close	the	last
open	database	diagram,	even	though	the	table	no	longer	appears	in	your
diagram.		For	more	information,	see	Interactions	Among	Database
Diagrams	and	Table	Design	Windows.

To	remove	a	table	from	a	database	diagram

1.	 In	your	database	diagram,	select	the	table	you	want	to	remove.

2.	 Right-click	the	table	and	choose	Remove	Table	from	Diagram	from
the	shortcut	menu.

If	the	table	has	unsaved	changes	as	a	result	of	edits	you	made	in	the
database	diagram,	a	message	prompts	you	to	save	the	table	before
removing	it.

The	table	is	removed	from	your	diagram	but	it	continues	to	exist	in	the	database.

See	Also
Database	Designer	|	Deleting	a	Table	from	a	Database	Diagram	and	the	Database
|	Tables

Visual	Database	Tools

Deleting	a	Table	from	a	Database	Diagram	and	the
Database
Delete	a	table	from	your	database	diagram	when	you	want	to	do	all	of	the
following:

Remove	the	table	from	your	diagram.

Remove	the	table	from	every	other	diagram	in	which	it	appears.

Mark	the	table	for	deletion	from	the	database.

A	table	that	is	marked	for	deletion	is	permanently	deleted	from	the	database
when	you	save	your	diagram.	A	reference	to	that	table	continues	to	exist	in
memory	until	you	save	the	diagram.	If	you	close	the	diagram	without	saving	it,
the	table	will	continue	to	exist	in	your	database	and	appear	in	your	diagram	and
every	other	diagram	in	which	it	appeared	before	you	marked	it	for	deletion.

To	delete	a	table	from	the	database

1.	 In	your	database	diagram,	select	the	table	you	want	to	delete.

2.	 Right-click	the	table	and	choose	Delete	Table	from	Database	from
the	shortcut	menu.

3.	 A	message	box	prompts	you	to	confirm	the	deletion.	Choose	Yes.

Note			Deleting	a	table	automatically	removes	any	relationships	to	it.

See	Also
Adding	Tables	to	a	Database	Diagram	|	Database	Designer	|	Removing	a	Table
from	a	Database	Diagram	|	Tables

Visual	Database	Tools

Renaming	a	Table
When	you	rename	a	table,	the	table	name	is	automatically	updated	in	every
database	diagram	in	which	the	table	appears.	It	is	updated	in	the	database	when
you	save	the	table	or	diagram.

Caution			Think	carefully	before	you	rename	a	table.		If	existing	queries,
views,	user-defined	functions,	stored	procedures,	or	programs	refer	to	that
table,	the	name	modification	will	make	these	objects	invalid.

To	rename	a	table

1.	 In	your	database	diagram,	select	the	table	you	want	to	rename.

2.	 Right-click	the	table,	and	choose	Property	Pages	from	the	shortcut
menu.

3.	 Choose	the	Tables	tab.

4.	 In	the	Table	name	box,	type	a	new	name.	Be	sure	to	choose	a	name
that	does	not	duplicate	one	in	the	Selected	table	list.
To	cancel	this	action,	press	the	ESC	key	before	leaving	this	field.

5.	 Click	Close.

The	table	is	renamed	in	the	diagram	as	soon	as	you	exit	the	Table	name	box.

See	Also
Tables

Visual	Database	Tools

Duplicating	a	Table
A	table	can	appear	only	once	in	a	database	diagram.	However,	if	you	want	to
create	a	new	table	that	contains	some	or	all	of	the	same	columns	as	an	existing
table	in	your	diagram,	you	can	duplicate	the	existing	table	as	the	first	step	in
creating	your	new	table.	Then	in	your	new	table,	you	can	delete	unwanted
columns,	add	new	columns,	and	assign	a	unique	table	name.

Note			This	operation	duplicates	only	a	table's	structure;	it	does	not	duplicate
any	table	rows.

Use	the	same	technique	for	duplicating	tables	across	database	diagrams.

To	duplicate	a	table

In	the	database	diagram	where	you	want	to	duplicate	the	table,	right-click	the
diagram	and	choose	New	Table	from	the	shortcut	menu.
-or-
Click	the	New	Table	button	 	on	the	Database	Diagram	toolbar.

6.	 In	the	Choose	Name	dialog	box,	accept	or	change	the	system-assigned
name	of	the	new	table	and	click	OK.
A	blank	table	is	added	to	your	diagram.

7.	 In	the	table	you	want	to	duplicate,	select	all	the	columns.	This	table
can	be	in	the	same	diagram,	a	different	diagram	in	the	same	database,
or	a	diagram	in	a	different	database.

8.	 Copy	the	columns	to	the	blank	table.	For	details	about	copying
columns,	see	Copying	Columns	from	One	Table	to	Another.

See	Also

Tables

Visual	Database	Tools

Copying	a	Table	Across	Database	Diagrams
You	can	copy	a	table	from	one	database	diagram	to	another	in	the	same	database.

Copying	a	table	from	one	database	diagram	to	another	diagram	merely	adds	a
reference	to	the	table	in	the	second	diagram.	The	table	is	not	duplicated	in	your
database.	For	example,	if	you	copy	the	authors	table	from	one	database	diagram
to	another,	each	diagram	references	the	same	authors	table	in	the	database.
To	copy	a	table	from	another	database	diagram

1.	 Make	sure	you	are	connected	to	the	database	whose	table	you	want	to
copy.

2.	 Open	the	source	and	target	database	diagrams	and	within	the	source
diagram,	select	the	table	that	you	want	to	copy	to	the	target	diagram.

3.	 Click	the	Copy	button	on	the	toolbar.	This	action	places	the	selected
table	definition	on	the	Clipboard.

4.	 Switch	to	the	target	diagram.	This	diagram	must	be	in	the	same
database	as	the	source	diagram.

5.	 Click	the	Paste	button	on	the	toolbar.	The	Clipboard	contents	appear	at
the	new	location	and	remain	highlighted	until	you	click	elsewhere.	If
relationships	exist	between	the	selected	tables	and	other	tables	in	the
target	diagram,	relationship	lines	are	automatically	drawn.

When	you	edit	the	table	in	either	diagram,	your	changes	are	reflected	in	both
diagrams.	Similarly,	once	you	save	the	table	in	either	diagram,	the	table	is	no
longer	considered	"modified"	in	either	diagram.		For	more	information,	see
Interactions	Among	Table	Diagrams	and	Table	Designer	Windows.

See	Also

Adding	Tables	to	a	Database	Diagram	|	Database	Designer	|	Duplicating	a	Table	|
Tables

Visual	Database	Tools

Changing	a	Table	View	in	a	Database	Diagram
When	you	are	working	with	only	a	few	tables	in	a	database	diagram,	it	is	usually
helpful	to	view	as	much	column	information	as	possible.	Such	a	view	not	only
gives	you	more	information,	but	it	also	enables	you	to	edit	the	column
definitions.

When	you	are	working	with	a	large	number	of	tables,	however,	it	is	usually
preferable	to	view	only	the	column	names,	or	only	the	table	name,	so	that	you
can	see	more	of	the	tables	in	your	diagram	at	once.

In	a	database	diagram,	you	can	expand	the	tables	you	want	to	edit	as	needed	and
then	collapse	them	again	to	save	space	on	the	diagram.

Each	table	in	a	database	diagram	can	be	displayed	in	one	of	five	views.

Standard	 			Shows	every	database	column	of	the	table,	but	shows	only	the
column	name	and	other	fundamental	properties	of	each	database	column.	You

can	edit	the	column	properties	directly	by	typing	in	a	cell	or	using	the	Cut,
Copy,	and	Paste	commands.	You	can	also	move	and	delete	entire	database
column	definitions.
When	you	insert	a	new	table	into	a	diagram,	it	is	shown	in	this	view	so	that	you
can	begin	defining	each	column.

Column	Names	 			Shows	only	the	name	of	each	database	column.	You	can
rename	the	database	columns	in	this	view.	When	you	add	an	existing	table	to	a
diagram,	it	is	shown	in	this	view.

Keys	 			Shows	only	the	names	of	only	some	of	the	table's	columns.		The
columns	whose	names	appear	are	those	participating	in	a	primary	key,	a	foreign
key,	or	a	unique	constraint.		You	can	rename	some	of	the	database	columns	in
this	view.

Name	Only	 			Shows	only	the	table	name.

Custom		 			Shows	all	of	the	table's	database	columns,	but	shows	only	the
properties	you	choose.		This	gives	you	the	flexibility	to	display	only	the
information	you	want.	This	view	is	also	useful	for	printing	the	database
diagrams,	because	you	can	display	more	tables	on	one	page,	and	will	not
normally	see	horizontal	scroll	bars	on	the	tables.

The	default	set	of	properties	for	the	Custom	view	includes	Column	Name,
Condensed	Datatype,	and	Nullable.

Property Setting
Column	Name The	name	of	the	field	in	the	table.
Condensed	Datatype Information	about	the	field's	data	type,	in	the

same	format	as	the	SQL	Create	Table
statement.	For	example,	a	field	containing	a
variable-length	string	with	a	maximum	length
of	20	characters	would	be	represented	as
varchar(20).

Nullable Null	(the	field	can	contain	a	Null	value)	or	Not
Null	(the	field	must	contain	a	non-null	value).

To	change	a	table	view

1.	 In	your	database	diagram,	select	the	tables	you	want	to	see	in	another
view.	To	change	the	view	of	all	the	tables,	right-click	in	the	diagram
and	choose	Select	All.

2.	 Right-click	the	table	and	select	the	desired	view	from	the	shortcut
menu.

When	you	finish	editing	a	table,	you	can	change	it	to	a	different	view	or	resize	it
to	create	more	space	on	the	diagram.

To	modify	the	Custom	view

1.	 In	your	database	diagram,	right-click	the	table	you	want	to	see	in
Custom	view.	

2.	 From	the	shortcut	menu,	choose	Table	View...	then	Modify	Custom
View.	The	Column	Selection	dialog	box	appears.	

3.	 Use	the	arrows	to	move	the	desired	columns	from	the	Available
columns	box	to	the	Selected	columns	box.

Note			To	add	a	column,	highlight	the	column	in	the	Available
columns	box	and	click	the	>	button.	The	column	will	then	be
listed	in	the	Selected	columns	box.	To	display	all	columns,
click	the	>>	button.	To	remove	a	column	from	the	Selected
columns	box,	highlight	the	column	and	click	the	<	button.

4.	 The	columns	will	appear	in	the	table	in	the	order	they	are	displayed	in
the	Selected	columns	box.	Use	the	Sort	arrows	to	rearrange	the
columns	in	the	Selected	columns	box	to	the	desired	order.

5.	 To	make	this	setting	the	default	Custom	view,	select	the	Save	as
default	box.

Note			If	the	Save	as	default	box	is	not	selected,	the	columns
listed	in	the	Selected	columns	box	will	be	displayed	for	all	the

database	tables	displayed	in	Custom	view	on	the	current
diagram.	However,	this	setting	will	not	be	saved	and	is	not
applied	to	other	diagrams	when	you	choose	the	Custom	view
command.

6.	 Click	OK.

The	selected	table	is	redrawn	to	display	the	columns	chosen	in	the	dialog	box.

See	Also
Tables

Visual	Database	Tools

Changing	Which	Properties	Appear
When	you	show	a	database	table	in	Standard	view,	some	but	not	all	of	that
table's	property	columns	are	visible.	You	can	customize	this	view	by	choosing
whether	to	hide	or	show	each	property	column	in	a	database	table.

Note			When	you	change	which	properties	appear,	you	change	only	the
displayed	properties	for	that	table	in	that	diagram.

To	hide	a	property	column

1.	 In	your	database	diagram,	select	the	table	whose	property	column	you
want	to	hide.

Position	the	pointer	along	the	right	border	of	the	column	header	for	the	column
that	you	want	to	hide.	The	cursor	changes	from	an	arrow	to	a	splitter	pointer	 .

2.	 Drag	the	column	border	to	the	left	until	it	meets	the	column's	left
border.

3.	 Release	the	mouse	button.

To	show	a	property	column	that	is	hidden

1.	 In	your	database	diagram,	select	the	table	whose	property	column	you
want	to	show.

2.	 Position	the	pointer	along	the	right	border	of	the	previous	column's
header.	The	cursor	changes	from	an	arrow	to	a	splitter	pointer.

3.	 Double-click	the	splitter	pointer.	The	hidden	column	resizes	to	fit	the
widest	entry.

Note			You	can	also	set	which	column	properties	you	want	to	display	for
database	tables	in	a	database	diagram	by	using	Custom	view.	For	information
on	this	view,	see	Changing	a	Table	View.

See	Also
Column	Properties	|	Resizing	Property	Columns

Visual	Database	Tools

Moving	Columns	from	One	Table	to	Another
You	can	move	columns	from	one	table	to	another	table	in	the	same	database
diagram	or	in	a	different	diagram.	Moving	columns	in	the	database	diagram
moves	the	column	definition	only.	The	data	itself	is	not	automatically	transferred
to	the	second	table	as	part	of	this	process.

Tip			To	move	both	the	column's	definition	and	its	data,	you	can	use	the
Query	Designer	in	conjunction	with	the	Database	Designer.	For	information
about	the	Query	Designer,	see	Designing	Queries.

To	move	columns	without	data	from	one	table	to	another

1.	 In	your	database	diagram,	select	the	columns	that	you	want	to	move.

2.	 Click	the	Cut	button	on	the	toolbar.	This	action	deletes	the	selection
from	the	table	and	places	the	column	and	its	current	set	of	properties
on	the	Clipboard.

3.	 Position	the	cursor	in	the	new	table	at	the	location	where	you	want	to
insert	the	columns.	

4.	 Click	the	Paste	button	on	the	toolbar.	The	columns	are	inserted	at	the
new	location	and	remain	highlighted	until	you	click	elsewhere.

To	move	columns	with	data	from	one	table	to	another

1.	 In	your	database	diagram,	select	the	columns	that	you	want	to	move.

2.	 Click	the	Copy	button	on	the	toolbar.	This	action	places	the	selection
with	its	current	set	of	properties	on	the	Clipboard.

3.	 Position	the	cursor	in	the	new	table	at	the	location	where	you	want	to
insert	the	columns.

4.	 Click	the	Paste	button	on	the	toolbar.	The	columns	are	inserted	at	the
new	location	and	remain	highlighted	until	you	click	elsewhere.

5.	 Run	an	update	query	to	add	the	data	to	the	table	to	which	you	copied
the	columns.	For	details,	see	Creating	Update	Queries.

6.	 Return	to	the	database	diagram	and	delete	the	columns	from	the
original	table.	For	details,	see	Deleting	Columns	from	a	Table.

See	Also

Tables

Visual	Database	Tools

Resizing	Property	Columns
You	can	manually	change	the	width	of	a	property	column	in	a	database	table	by
resizing	it	in	Standard	view.	For	example,	you	can	widen	the	Datatype	column	if
it	contains	user-defined	data	type	names	that	are	too	long	to	see	in	their	entirety.
You	can	also	automatically	resize	a	property	column	to	fit	its	widest	entry.

To	manually	change	the	width	of	a	property	column

1.	 In	your	database	diagram	or	in	Table	Designer,	select	the	table	whose
property	columns	you	want	to	resize.

Position	the	pointer	along	the	right	border	of	the	column	header	for	the	column
that	you	want	to	resize.	The	cursor	changes	from	an	arrow	to	a	splitter	pointer	 .

2.	 Drag	the	column	border	to	the	left	to	reduce	its	width	or	to	the	right	to
increase	its	width.

3.	 Release	the	mouse	button.

To	resize	a	property	column	to	fit	the	widest	entry

1.	 In	your	database	diagram,	select	the	table	whose	columns	you	want	to
resize.

2.	 Position	the	pointer	along	the	right	border	of	the	column	header	for	the
column	that	you	want	to	resize.	The	cursor	changes	from	an	arrow	to	a
splitter	pointer.

3.	 Double-click	the	splitter	pointer.

Note			You	can	also	resize	property	columns	in	Custom	view	for	any
columns	you	have	chosen	to	display	in	this	view.

See	Also

Changing	Which	Properties	Appear	|	Column	Properties

Visual	Database	Tools

Working	with	Columns
You	can	edit	the	column	properties	for	tables	directly	in	the	database	diagram	or
Table	Designer.

To See
Add	new	column	definitions	to	the
end	of	a	table

Inserting	Columns	into	a	Table

Copy	the	column	definitions	from
one	table	to	another	table	in	the	same
diagram	or	in	different	diagrams

Copying	Columns	from	One	Table	to
Another

Move	the	column	definitions	from
one	table	to	another	table	in	the	same
database	diagram	or	in	a	different
diagram

Moving	Columns	from	One	Table	to
Another

Delete	columns	from	a	table	and
from	the	database

Deleting	Columns	from	a	Table

Set	or	edit	the	column	definition
(properties)	for	a	database	table

Column	Properties

Visual	Database	Tools

Inserting	Columns	into	a	Table
You	can	add	new	column	definitions	to	a	table	to	capture	additional	data	that	is
not	already	stored	in	an	existing	column.	The	Standard	view,	which	shows	a
table	with	all	of	its	currently	defined	columns,	provides	blank	grid	rows	so	that
you	can	easily	add	new	column	definitions	to	your	database	table.

To	insert	columns	into	a	table	from	a	database	diagram

1.	 In	your	database	diagram,	select	the	table	that	you	want	to	add	new
columns	to.

2.	 If	the	table	is	not	already	in	Standard	view,	right-click	the	table	and
choose	Standard	from	the	shortcut	menu.

3.	 Right-click	a	row	in	the	table	and	select	Insert	Column	from	the
shortcut	menu.	A	blank	column	row	is	inserted	above	the	selected	row.
-or-
Place	the	cursor	in	the	first	blank	cell	in	the	Column	Name	column.

4.	 In	the	Column	Name	column,	type	the	column	name	in	the	cell.	The
Column	Name	is	a	required	value.

5.	 Press	the	TAB	key	to	go	to	the	Datatype	cell.	This	is	a	required	value.

The	default	values	for	your	database	are	added	when	you	create	a	new	column.
Define	other	properties	for	the	column	as	needed.	You	can	change	any	of	these
values	and	set	additional	properties	at	any	time	according	to	the	rules	of	your
database.

To	insert	columns	into	a	table	from	the	Table	Designer

1.	 Open	the	Table	Designer	for	the	table	to	which	you	want	to	add	a
column.

2.	 Right-click	a	row	in	the	table	and	select	Insert	Column	from	the
shortcut	menu.	A	blank	column	row	is	inserted.
-or-
Place	the	cursor	in	the	first	blank	cell	in	the	Column	Name	column.

3.	 In	the	Column	Name	column,	type	the	column	name	in	the	cell.	The
Column	Name	is	a	required	value.

4.	 Press	the	TAB	key	to	go	to	the	Datatype	cell.	This	is	a	required	value.

The	default	values	for	your	database	are	added	when	you	create	a	new	column.
Define	other	properties	for	the	column	as	needed.	To	define	any	of	the
fundamental	properties,	enter	the	property	value	on	the	grid.		To	define	any	of
the	other	properties,	highlight	the	grid	row	describing	that	database	column,	then
enter	the	property	value	in	the	appropriate	control	on	the	tab	appearing	under	the
grid.

See	Also
Setting	Column	Properties	|	Tables

Visual	Database	Tools

Copying	Columns	from	One	Table	to	Another
You	can	copy	columns	from	one	table	to	another	table	in	the	same	diagram	or	in
different	diagrams.	Copying	a	column	involves	only	the	column	definition.	The
data	itself	is	not	automatically	transferred	to	the	second	table	as	part	of	this
process.

Tip			You	can	use	database	queries	to	copy	the	column's	data	from	the
original	column	to	the	new	column.	Use	the	Query	Designer	to	run	an
update	query	to	add	the	data	to	the	table	to	which	you	copied	the	columns.
For	details,	see	Creating	Update	Queries.	For	information	about	the	Query
Designer,	see	Designing	Queries.

To	copy	columns	from	one	table	to	another

1.	 In	your	database	diagram,	select	the	columns	that	you	want	to	copy.

2.	 Click	the	Copy	button	on	the	toolbar.	This	action	copies	the	selection
from	the	table	and	places	the	column	and	its	current	set	of	properties
on	the	Clipboard.

3.	 Position	the	cursor	in	the	table	at	the	location	where	you	want	to	insert
the	columns.	

4.	 Click	the	Paste	button	on	the	toolbar.	The	column	and	its	properties
are	inserted	at	the	new	location.

When	you	copy	a	database	column	that	has	a	user-defined	data	type	from	one
database	to	another,	the	user-defined	data	type	may	not	be	available	in	the
destination	database.	In	such	a	case,	the	column	will	be	assigned	the	nearest
matching	base	data	type	available	in	that	database.

See	Also
Duplicating	a	Table	|	Tables

Visual	Database	Tools

Deleting	Columns	from	a	Table
Delete	columns	from	a	table	when	they	are	no	longer	needed	to	store	data.	When
a	column	is	deleted	from	the	table	in	the	database	diagram,	it	and	all	the	data	it
contains	are	deleted	from	the	database.

Caution			This	action	cannot	be	undone	once	the	database	diagram	or	table	is
saved.	The	only	way	to	restore	a	deleted	column	is	to	close	the	table	or
database	diagram	without	saving	changes.

To	delete	columns	from	a	table

1.	 In	your	table	or	database	diagram,	select	the	column	or	columns	you
want	to	delete.

2.	 Right-click	the	column	and	choose	Delete	Column	from	the	shortcut
menu.

3.	 If	the	column	participates	in	a	relationship,	a	message	prompts	you	to
confirm	the	deletion	of	the	selected	columns	and	their	relationships.
Choose	OK.

If	the	column	does	not	participate	in	a	check	constraint,	then	the	column,	any
constraints	attached	to	it,	any	relationships	it	participates	in,	and	any	data
contained	in	the	column	are	removed	from	the	database	and	the	diagram.	They
are	deleted	from	the	database	when	you	save	the	table	or	database	diagram.		If
the	column	does	participate	in	a	check	constraint,	the	database	server	will	reject
your	modification	when	you	save	your	work.		That	is,	the	commit	operation	will
fail.		To	delete	a	column	that	participates	in	a	check	constraint,	you	must	first
modify	or	remove	the	check	constraint	before	deleting	the	column.

See	Also
Deleting	a	Table	from	a	Database	Diagram	and	the	Database	|	Inserting	Columns
into	a	Table	|	Tables

Visual	Database	Tools

Setting	Column	Properties
You	can	set	or	change	the	properties	of	a	column.

To	set	column	properties	in	a	database	diagram

1.	 In	your	database	diagram,	select	the	table	whose	column	properties
you	want	to	define.

2.	 Right-click	the	table	and	choose	Properties	from	the	shortcut	menu.

3.	 Select	the	Columns	tab.	

4.	 For	each	property	you	want	to	change,	modify	the	value	or	setting.

5.	 Click	Close	to	close	the	property	page.

The	new	setting	takes	effect	in	the	database	diagram	as	soon	as	you	press	the
TAB	key	or	click	outside	the	cell	in	the	Properties	dialog	box.	The	new	setting
is	saved	in	the	database	when	you	save	the	table	or	your	diagram.

Note			If	a	column	property	is	visible	on	the	database	diagram,	you	can	edit
that	property	value	directly	—	without	opening	the	property	page.		For
information	about	controlling	which	column	properties	are	visible	on	a
diagram,	see	Changing	a	Table	View	in	a	Database	Diagram.

To	set	column	properties	in	Table	Designer

1.	 Open	the	Table	Designer	for	the	table	containing	the	column	whose
property	you	want	to	modify.

2.	 To	set	a	fundamental	property,	click	in	the	grid	cell	for	that	property	of
the	database	column	you	want	to	modify,	then	enter	the	value.
-or-
To	set	another	property,	select	the	grid	row	describing	the	database

column	you	want	to	modify,	then	modify	the	property	in	the	tab
appearing	below	the	grid.

The	new	setting	takes	effect	in	the	database	diagram	as	soon	as	you	press	the
TAB	key	or	click	outside	the	edited	grid	cell	or	control.	The	new	setting	is	saved
in	the	database	when	you	save	the	table	or	your	diagram.

See	Also
Column	Properties

Visual	Database	Tools

Renaming	a	Column
The	name	of	a	column	in	a	table	in	your	database	diagram	shows	the	name	of	the
column	as	it	is	stored	in	the	database.	You	can	rename	a	column	directly	in	your
table	in	the	database	diagram	and	the	database	will	be	updated	with	the	new
name	when	you	save	the	table	or	diagram.

Column	names	are	stored	in	the	case	(uppercase	or	lowercase)	in	which	they
appear	in	your	diagram.

Caution			Renaming	a	column	may	affect	triggers,	stored	procedures,	and
constraints.	Consider	renaming	a	column	before	you	create	these	other
objects.	For	more	information	about	these	database	objects,	see	Database
Objects.

To	rename	a	column

1.	 In	your	database	diagram,	select	the	table	whose	column	you	want	to
rename.

2.	 If	only	the	table	name	is	shown	in	the	database	diagram,	right-click	the
table	and	select	Standard,	Column	Names,	or	Keys	from	the	shortcut
menu.

3.	 In	the	cell	that	shows	the	column	name	you	want	to	change,	type	a
new	column	name.

The	column	is	renamed	in	your	table	or	diagram	as	soon	as	you	exit	the	cell	that
shows	the	column	name.	The	column	is	renamed	in	your	database	when	you
save	the	table	or	diagram.

See	Also
Column	Properties	|	Uniqueness	of	Database	Object	Names

Visual	Database	Tools

Working	with	Relationships
A	relationship	is	a	type	of	association	between	table	rows.		For	an	overview	of
relationships,	see	Table	Relationships.

For	details	about	working	with	relationships,	see	the	following	topics:

To See
Create	relationships	between
database	tables	in	a	database	diagram

Creating	a	Relationship	Between
Tables

Ensure	each	value	entered	in	a
foreign	key	column	matches	an
existing	value	in	the	related	primary
key	column

Enforcing	Referential	Integrity
Between	Tables

Link	a	column	in	a	table	with	another
column	in	the	same	table

Drawing	a	Single-Table	Reflexive
Relationship

Create	a	many-to-many	relationship Mapping	Many-to-Many
Relationships	to	a	Database	Diagram

Change	the	name	of	a	relationship Renaming	a	Relationship
Remove	the	relationship	between
two	tables

Deleting	a	Relationship

Disable	a	foreign	key	constraint Disabling	a	Foreign	Key	Constraint
with	INSERT	and	UPDATE
Statements	and	Disabling	a	Foreign
Key	Constraint	for	Replication

Visual	Database	Tools

Creating	a	Relationship	Between	Tables
You	create	a	relationship	between	two	tables	when	you	want	to	associate	rows	of
one	table	with	rows	of	another.		For	more	background	about	relationships,	see
Table	Relationships.

To	create	a	relationship	in	a	database	diagram

In	your	database	diagram,	click	the	row	selector	 	for	the	database	column	or
combination	of	columns	that	you	want	to	relate	to	a	column	in	another	table.

1.	 While	the	pointer	is	positioned	over	the	row	selector,	click	and	drag	to
the	related	table.

2.	 Release	the	mouse	button.	The	Create	Relationship	dialog	box	appears
and	attempts	to	match	the	columns	you	selected	with	columns	of	the
same	name	and	data	type	in	the	related	table.

3.	 In	the	Create	Relationship	dialog	box,	confirm	that	the	columns	you
want	to	relate	are	shown	in	the	Primary	key	table	and	Foreign	key
table	lists.

4.	 Choose	OK	to	create	the	relationship.

On	the	diagram,	the	primary	key	side	of	the	relationship	is	denoted	by	a	key	
symbol.	In	one-to-one	relationships,	the	table	that	initiated	the	relationship
determines	the	primary	key	side.	For	example,	if	you	create	a	relationship	from
the	pub_id	column	in	the	publishers	table	to	the	pub_id	column	in	the
pub_info	table,	then	the	publishers	table	is	on	the	primary	key	side	of	the
relationship.

To	create	a	relationship	in	Table	Designer

1.	 Open	the	Table	Designer	for	the	table	that	will	be	on	the	foreign	key
side	of	the	relationship.		

2.	 Right-click	in	the	Table	Designer	and	choose	Relationships.

3.	 Click	the	New	button.		

4.	 From	the	drop-down	list	in	Primary	Key	Table,	choose	the	table	that
will	be	on	the	primary-key	side	of	the	relationship.		In	the	grid
beneath,	enter	the	columns	contributing	to	the	table's	primary	key.		In
the	adjacent	grid	cell	to	the	left	of	each	column,	enter	the
corresponding	foreign-key	column	of	the	foreign-key	table.
The	table	designer	suggests	a	name	for	the	relationship.		To	change
this	name,	edit	the	contents	of	the	Relationship	Name	text	box.

5.	 Choose	Close	to	create	the	relationship.

6.	 For	more	details,	see	the	Relationships	Property	Page.

See	Also

Defining	a	Primary	Key	|	Deleting	a	Relationship	|	Mapping	Many-to-Many
Relationships	to	a	Database	Diagram	|	Renaming	a	Relationship	|	Table
Relationships

Visual	Database	Tools

Enforcing	Referential	Integrity	Between	Tables
Referential	integrity	between	tables	is	enforced	by	default	when	you	create	a
relationship	in	your	database	diagram.	An	enforced	relationship	ensures	each
value	entered	in	a	foreign	key	column	matches	an	existing	value	in	the	related
primary	key	column.

You	can	change	the	conditions	under	which	referential	integrity	is	enforced	by
editing	the	relationship's	properties.

To	change	referential	integrity	options	for	a	new	relationship

1.	 In	your	database	diagram,	create	a	relationship.	For	details,	see
Creating	a	Relationship	Between	Tables.

2.	 In	the	Create	Relationship	dialog	box,	clear	or	select	one	or	more	of
the	options.

For	information	about	the	options	available	for	SQL	Server	databases,
see	Database	Designer	Considerations	for	SQL	Server	Databases.

To	change	referential	integrity	options	for	an	existing	relationship

1.	 In	your	database	diagram,	select	the	relationship	line.

2.	 Right-click	the	relationship	line	and	select	Properties.

3.	 Choose	the	Relationships	tab.

4.	 Select	the	relationship	from	the	Selected	relationship	list.

5.	 Clear	or	select	one	or	more	of	the	options.

For	information	about	the	options	available	for	SQL	Server	databases,
see	Database	Designer	Considerations	for	SQL	Server	Databases.

The	relationship	is	updated	in	the	database	when	you	save	the	diagram	or	either
of	the	related	tables.

See	Also
Foreign	Key	Constraints	|	Primary	Key	Constraints	|	Table	Relationships	|
Unique	Constraints

Visual	Database	Tools

Drawing	a	Reflexive	Relationship
You	create	a	reflexive	relationship	to	link	a	column	or	columns	in	a	table	with
another	column	or	columns	in	the	same	table.	For	example,	suppose	the
employee	table	has	an	emp_id	column	and	a	mgr_id	column.	Because	each
manager	is	also	an	employee,	you	relate	these	two	columns	by	drawing	a
relationship	line	from	the	table	to	itself.	This	relationship	ensures	each	manager
ID	that	is	added	to	the	table	matches	an	existing	employee	ID.

Before	you	create	a	relationship,	you	must	first	define	a	primary	key	or	unique
constraint	for	your	table.	You	then	relate	the	primary	key	column	to	a	matching
column.	Once	you	create	the	relationship,	the	matching	column	becomes	a
foreign	key	of	the	table.

To	draw	a	reflexive	relationship

1.	 In	your	database	diagram,	click	the	row	selector	for	the	database
column	or	columns	that	you	want	to	relate	to	another	column	or
columns.

2.	 While	the	pointer	is	positioned	over	the	row	selector,	drag	the	pointer
outside	the	table	until	a	line	appears.

3.	 Drag	the	line	back	to	the	selected	table.

4.	 Release	the	mouse	button.	The	Create	Relationship	dialog	box	appears
and	attempts	to	match	the	primary	key	columns	with	the	nonkey
columns	you	dragged	the	line	to.

5.	 Confirm	that	the	columns	you	want	to	relate	are	shown	in	the	Primary
key	table	and	Foreign	key	table	lists.

6.	 Choose	OK	to	create	the	relationship.

When	you	run	queries	against	a	table,	you	can	use	a	reflexive	relationship	to
create	a	self-join.	For	information	about	querying	tables	with	joins,	see
Combining	Tables.

See	Also
Table	Relationships

Visual	Database	Tools

Deleting	a	Relationship
Delete	a	relationship	when	you	no	longer	want	to	relate	columns	in	two	related
tables.	When	you	redesign	tables,	it	is	often	necessary	to	delete	relationships	and
then	recreate	them	after	your	new	design	is	complete.	For	example,	if	you	decide
to	normalize	a	database	and	store	all	address	data	in	one	table,	you	would	delete
all	the	relationships	to	address	columns	between	existing	tables,	create	a	new
table	containing	the	address	columns,	and	then	create	relationships	from	the
new	address	table	to	every	table	that	requires	an	address.
To	delete	a	relationship

1.	 In	your	database	diagram,	select	the	line	that	represents	the
relationship	that	you	want	to	delete	from	the	diagram.

2.	 Right-click	the	relationship	line	and	choose	Delete	Relationship	from
Database	from	the	shortcut	menu.

3.	 A	message	box	prompts	you	to	confirm	the	deletion.	Choose	Yes.

-or-

1.	 Right-click	on	any	table	in	a	database	diagram	or	right-click	within	the
Table	Designer	and	choose	Relationships	from	the	shortcut	menu.

2.	 Select	the	relationship	from	the	Selected	relationship	drop-down	list.

3.	 Click	the	Delete	button.	

Note			When	you	delete	a	relationship,	the	relationship	line	is	removed	from
every	diagram	in	which	it	appears.	It	is	deleted	from	the	database	when	you
save	the	diagram	or	when	you	save	either	of	the	tables	that	it	related.

See	Also

Creating	a	Relationship	Between	Tables	|	Table	Relationships

Visual	Database	Tools

Renaming	a	Relationship
You	can	rename	a	relationship.	When	you	rename	a	relationship,	the	relationship
name	is	automatically	updated	in	the	current	diagram	and	any	other	diagram	in
which	it	appears.

To	rename	a	relationship

1.	 In	your	database	diagram,	select	the	line	representing	the	relationship
that	you	want	to	rename.

2.	 Right-click	the	relationship	line	and	select	Properties.

3.	 Choose	the	Relationships	tab.

4.	 In	the	Relationship	name	box,	type	a	new	name.

The	relationship	is	renamed	in	the	diagram	and	any	other	diagram	in	which	it
appears	as	soon	as	you	exit	the	Relationship	name	box;	it	is	renamed	in	the
database	when	you	save	either	of	the	related	tables	or	the	diagram.

See	Also
Table	Relationships

Visual	Database	Tools

Checking	Existing	Data	when	Creating	a	Relationship
Select	the	option	to	check	existing	data	when	you	create	a	relationship	if	the
foreign	key	constraint	should	apply	to	existing	data	as	well	as	to	new	data.

To	check	existing	data	when	creating	a	relationship

1.	 In	your	database	diagram,	select	the	table	that	the	foreign	key
constraint	is	attached	to.

2.	 Right-click	the	table	and	select	Properties.	

3.	 Choose	the	Relationships	tab.

4.	 Select	the	relationship	from	the	Selected	relationship	list.

5.	 Select	the	Check	existing	data	on	creation	check	box.

The	foreign	key	constraint	is	applied	when	you	save	the	table	or	diagram.	If	any
constraint	violations	are	encountered	during	the	save	process,	the	table	cannot	be
saved.

See	Also
Check	Constraints	|	Constraints	|	Creating	a	Relationship.

Visual	Database	Tools

Mapping	Many-to-Many	Relationships	to	a	Database
Diagram
Many-to-many	relationships	let	you	relate	each	row	in	one	table	to	many	rows	in
another	table,	and	vice	versa.	For	example,	you	could	create	a	many-to-many
relationship	between	the	authors	table	and	the	titles	table	to	match	each	author
to	all	of	his	or	her	books	and	to	match	each	book	to	all	of	its	authors.	Creating	a
one-to-many	relationship	from	either	table	would	incorrectly	indicate	that	every
book	can	have	only	one	author,	or	that	every	author	can	write	only	one	book.

Many-to-many	relationships	between	tables	are	accommodated	in	databases	by
means	of	junction	tables.	A	junction	table	contains	the	primary	key	columns	of
the	two	tables	you	want	to	relate.		You	then	create	a	relationship	from	the
primary	key	columns	of	each	of	those	two	tables	to	the	matching	columns	in	the
junction	table.		In	the	pubs	database,	the	titleauthor	table	is	a	junction	table.
To	create	a	many-to-many	relationship	between	tables

1.	 In	your	database	diagram,	add	the	tables	that	you	want	to	create	a
many-to-many	relationship	between.

2.	 Create	a	third	table	by	right-clicking	the	diagram	and	choosing	New
Table	from	the	shortcut	menu.	This	will	become	the	junction	table.	For
details,	see	Adding	Tables	to	a	Database	Diagram.

3.	 In	the	Choose	Name	dialog	box,	change	the	system-assigned	table
name.	For	example,	the	junction	table	between	the	titles	table	and	the
authors	table	is	now	named	titleauthors.	For	details,	see	Renaming	a
Table.

4.	 Copy	the	primary	key	columns	from	each	of	the	other	two	tables	to	the
junction	table.	You	can	add	other	columns	to	this	table,	just	as	you	can
to	any	other	table.	For	details,	see	Copying	Columns	from	One	Table
to	Another.

5.	 In	the	junction	table,	set	the	primary	key	to	include	all	the	primary	key
columns	from	the	other	two	tables.	For	details,	see	Defining	a	Primary
Key.

6.	 Define	a	one-to-many	relationship	between	each	of	the	two	primary
tables	and	the	junction	table.		The	junction	table	should	be	at	the
"many"	side	of	both	of	the	relationships	you	create.		For	details,	see
Creating	a	Relationship	Between	Tables.

Note			The	creation	of	a	junction	table	in	a	database	diagram	does	not	insert
data	from	the	related	tables	into	the	junction	table.	For	information	about
inserting	data	into	a	table,	see	Creating	Insert	Queries.

See	Also
Table	Relationships

Visual	Database	Tools

Working	with	Indexes
An	index	is	a	mechanism	for	providing	fast	access	to	table	rows	or	for	enforcing
certain	constraints.		For	an	overview	of	indexes,	see	Indexes.

For	details	about	working	with	indexes,	see	the	following	topics:

To See
Create	an	index Creating	an	Index
Create	an	indexed	view Creating	Indexed	Views
Create	a	unique	index Creating	a	Unique	Index
Create	a	clustered	index Creating	a	Clustered	Index
Rename	an	index Renaming	an	Index
Delete	an	index Deleting	an	Index
Save,	display,	and	update	an	index
definition

Saving,	Displaying,	and	Updating	an
Index	Definition

Specify	a	fill	factor	for	an	index Specifying	a	Fill	Factor	for	an	Index

Visual	Database	Tools

Creating	an	Index
You	can	use	an	index	to	speed	access	to	data	in	a	database	table.	You	create	an
index	by	selecting	one	or	more	columns	in	a	table	that	you	want	to	be	able	to
search	on.	You	can	use	the	index	once	you	save	the	table.

To	create	an	index

1.	 In	your	database	diagram,	select	the	table	you	want	to	index,	right-
click	the	table,	and	choose	Indexes/Keys	from	the	shortcut	menu.

-or-

Open	the	Table	Designer	for	the	table	you	want	to	index,	right-click	in
the	Table	Designer,	and	choose	Indexes/Keys	from	the	shortcut	menu.

2.	 Choose	New.	The	Selected	index	box	displays	the	system-assigned
name	of	the	new	index.

3.	 Under	Column	name,	select	the	columns	you	want	to	index.	You	can
select	up	to	16	columns.	For	optimal	performance,	select	only	one	or
two	columns.		For	each	column	you	select,	you	can	indicate	whether
the	index	organizes	its	values	in	ascending	or	descending	order.

4.	 Specify	any	other	desired	settings	for	the	index	and	then	click	OK.

The	index	is	created	in	the	database	when	you	save	the	table	or	diagram.

See	Also
Creating	a	Clustered	Index	|	Creating	a	Unique	Index	|	Deleting	an	Index	|
Indexes	|	Renaming	an	Index	|	Saving,	Displaying,	and	Updating	an	Index
Definition	|	Specifying	a	Fill	Factor	for	an	Index

Visual	Database	Tools

Creating	a	Unique	Index
In	SQL	Server,	you	can	create	a	unique	index	when	uniqueness	is	a	characteristic
of	the	data	itself,	but	the	combination	of	indexed	columns	is	not	the	same	as	the
table's	primary	key.	For	example,	if	you	plan	to	query	frequently	on	the	Social
Security	number	(ssn)	column	in	the	employee	table	(where	the	primary	key	is
emp_id),	and	you	want	to	ensure	Social	Security	numbers	are	unique,	create	a
unique	index	on	ssn.	If	the	user	enters	the	same	Social	Security	number	for	more
than	one	employee,	the	database	displays	an	error	and	cannot	save	the	table.

When	you	create	or	modify	a	unique	index,	you	can	set	an	option	to	ignore
duplicate	keys.	If	this	option	is	set	and	you	attempt	to	create	duplicate	keys	by
adding	or	updating	data	that	affects	multiple	rows	(with	the	INSERT	or
UPDATE	statement),	the	row	that	causes	the	duplicates	is	not	added	or,	in	the
case	of	an	update,	discarded.

For	example,	if	you	try	to	update	"Smith"	to	"Jones"	in	a	table	where	"Jones"
already	exists,	you	end	up	with	one	"Jones"	and	no	"Smith"	in	the	resulting
table.	The	original	"Smith"	row	is	lost	because	an	UPDATE	statement	is	actually
a	DELETE	followed	by	an	INSERT.	"Smith"	was	deleted	and	the	attempt	to
insert	an	additional	"Jones"	failed.	The	whole	transaction	cannot	be	rolled	back
because	the	purpose	of	this	option	is	to	allow	a	transaction	in	spite	of	the
presence	of	duplicates.

To	create	a	unique	index

1.	 In	your	database	diagram,	select	the	table	you	want	to	index,	right-
click	the	table,	and	choose	Indexes/Keys	from	the	shortcut	menu.

-or-

Open	the	Table	Designer	for	the	table	you	want	to	index,	right-click	in
the	Table	Designer,	and	choose	Indexes/Keys	from	the	shortcut	menu.

2.	 Choose	New.	The	Selected	index	list	displays	the	system-assigned
name	of	the	new	index.

3.	 Under	Column	name,	select	the	columns	you	want	to	index.	You	can

select	up	to	16	columns.	For	optimal	performance,	select	only	one	or
two	columns	per	index.		For	each	column	you	select,	indicate	whether
the	index	arranges	values	of	this	column	in	ascending	or	descending
order.

4.	 Select	the	Create	UNIQUE	check	box.

5.	 Select	the	Index	option.

6.	 Select	the	Ignore	duplicate	keys	option	if	you	want	to	ignore	new	or
updated	data	that	would	create	a	duplicate	key	in	the	index	(with	the
INSERT	or	UPDATE	statement).

The	index	is	created	in	the	database	when	you	save	the	table	or	diagram.

Note			You	cannot	create	a	unique	index	on	a	single	column	if	that	column
contains	NULL	in	more	than	one	row.	Similarly,	you	cannot	create	a	unique
index	on	multiple	columns	if	the	combination	of	columns	contains	NULL	in
more	than	one	row.	These	are	treated	as	duplicate	values	for	indexing
purposes.

See	Also
Creating	a	Unique	Constraint	|	Defining	a	Primary	Key	|	Indexes	|	Saving,
Displaying,	and	Updating	an	Index	Definition	|	Unique	Constraints

Visual	Database	Tools

Creating	a	Clustered	Index
In	Microsoft®	SQL	Server™	databases	you	can	create	a	clustered	index.	In	a
clustered	index,	the	physical	order	of	the	rows	in	the	table	is	the	same	as	the
logical	(indexed)	order	of	the	index	key	values.	A	table	can	contain	only	one
clustered	index.	UPDATE	and	DELETE	operations	are	often	accelerated	by
clustered	indexes	because	these	operations	require	large	amounts	of	data	to	be
read.		Creating	or	modifying	a	clustered	index	can	be	time-consuming,	because	it
is	during	these	operations	that	the	table's	rows	are	reorganized	on	disk.

Consider	using	a	clustered	index	for:

Columns	that	contain	a	limited	number	of	unique	values,	such	as	a	state
column	that	contains	only	50	unique	state	codes.

Queries	that	return	a	range	of	values,	using	operators	such	as
BETWEEN,	>,	>=,	<,	and	<=.

Queries	that	return	large	result	sets.

To	create	a	clustered	index

1.	 In	your	database	diagram,	select	the	table	you	want	to	index,	right-
click	the	table,	and	choose	Indexes/Keys	from	the	shortcut	menu.

-or-

Open	the	Table	Designer	for	the	table	you	want	to	index,	right-click	in
the	Table	Designer,	and	choose	Indexes/Keys	from	the	shortcut	menu.

2.	 Create	a	new	index.	For	details,	see	Creating	an	Index.
To	modify	an	existing	index,	select	the	index	from	the	Selected	index
list.

3.	 Select	the	Create	as	CLUSTERED	check	box.

The	index	is	created	in	the	database	when	you	save	the	table	or	diagram.

See	Also
Indexes	|	Saving,	Displaying,	and	Updating	an	Index	Definition

Visual	Database	Tools

Renaming	an	Index
New	indexes	are	automatically	given	system-defined	names	based	on	the
database	table	name.	If	you	create	multiple	indexes	on	a	table,	the	index	names
are	appended	with	"_1",	"_2",	and	so	on.	You	can	rename	an	index	as	long	as
index	names	are	unique	within	the	table.

Note			When	you	create	a	primary	key	or	unique	constraint	for	a	table,	an
index	with	the	same	name	as	the	constraint	is	automatically	created	for	the
table.	Because	index	names	must	be	unique	for	a	table,	you	cannot	create	or
rename	an	index	to	have	the	same	name	as	the	primary	key	or	unique
constraint	for	the	table.

To	rename	an	index

1.	 In	your	database	diagram,	select	the	table	whose	index	you	want	to
rename,	right-click	the	table,	and	choose	Properties	from	the	shortcut
menu.

-or-

Open	the	Table	Designer	for	the	table	whose	index	you	want	to
rename,	right-click	in	the	Table	Designer,	and	choose	Properties	from
the	shortcut	menu.

2.	 Choose	the	Indexes/Keys	tab.

3.	 Select	the	index	from	the	Selected	index	list.

4.	 Type	a	new	name	in	the	Index	name	box.	Make	sure	that	it	does	not
duplicate	a	name	in	the	Selected	index	list.

The	index	is	renamed	in	your	diagram	when	you	exit	the	Index	name	box.	It	is
renamed	in	the	database	when	you	save	the	table	or	diagram.

See	Also

Deleting	an	Index	|	Indexes	|	Saving,	Displaying,	and	Updating	an	Index
Definition

Visual	Database	Tools

Deleting	an	Index
Indexes	can	slow	INSERT,	UPDATE,	and	DELETE	performance.	If	you	find
that	an	index	hinders	overall	performance	or	you	no	longer	need	it,	you	can
delete	it.

To	delete	an	index

1.	 In	your	database	diagram,	select	the	table	whose	index	you	want	to
delete,	right-click	the	table,	and	choose	Properties	from	the	shortcut
menu.

-or-

Open	the	Table	Designer	for	the	table	whose	index	you	want	to	delete,
right-click	in	the	Table	Designer,	and	choose	Properties	from	the
shortcut	menu.

2.	 Choose	the	Indexes/Keys	tab.

3.	 From	the	Selected	index	list,	select	the	index	you	want	to	delete.

4.	 Choose	Delete.

Caution			Choosing	Delete	will	result	in	an	action	that	cannot
be	undone	without	losing	all	other	changes	made	to	the
database	diagram.	To	undo	this	action,	close	this	database
diagram	and	all	other	open	database	diagrams	and	Table
Designer	windows	without	saving	the	changes.

The	index	is	deleted	from	the	database	when	you	save	your	table	or	diagram.

See	Also
Creating	an	Index	|	Indexes	|	Saving,	Displaying,	and	Updating	an	Index
Definition

Visual	Database	Tools

Saving,	Displaying,	and	Updating	a	Table's	Index
Definition
Your	index	is	automatically	saved	in	the	database	when	you	save	your	table	or
database	diagram.	The	index	is	available	for	modification	as	soon	as	you	create
it.

To	display	and	update	index	definitions

1.	 In	your	database	diagram,	right-click	the	table	and	choose	Properties
from	the	shortcut	menu.

-or-

Open	the	Table	Designer	for	the	table	whose	index	you	want	to
modify,	right-click	in	the	Table	Designer,	and	choose	Properties	from
the	shortcut	menu.

2.	 Choose	the	Indexes/Keys	tab.

3.	 To	update	the	definition,	select	the	field	you	want	to	update	and
change	its	value	or	setting.

Your	changes	are	saved	to	the	database	when	you	save	the	table	or	diagram.

Note	that	you	can	also	manage	indexes	on	some	views.		For	more	information,
see	Indexed	Views.

See	Also
Indexes

Visual	Database	Tools

Specifying	a	Fill	Factor	for	an	Index
You	can	identify	a	fill	factor	to	specify	how	full	each	index	page	can	be.	The
amount	of	empty	space	on	an	index	page	is	important	because	when	an	index
page	fills	up,	the	system	must	take	time	to	split	it	to	make	room	for	new	rows.

It	is	seldom	necessary	to	specify	a	fill	factor	when	you	create	an	index.	The
option	is	provided	for	fine-tuning	performance.	It	is	useful	when	you	are
creating	a	new	index	on	a	table	with	existing	data,	and	particularly	when	you	can
accurately	predict	future	changes	in	that	data.

To	specify	a	fill	factor	for	an	index	on	a	table

1.	 In	your	database	diagram,	right-click	the	table	containing	the	index	for
which	you	want	to	specify	a	fill	factor,	and	choose	Properties	from
the	shortcut	menu.

-or-

Open	the	Table	Designer	for	the	table	containing	the	index	for	which
you	want	to	specify	a	fill	factor,	right-click	in	the	Table	Designer,	and
choose	Properties	from	the	shortcut	menu.

2.	 Choose	the	Indexes/Keys	tab.

3.	 Select	the	index	from	the	Selected	index	list.

4.	 In	the	Fill	factor	box,	type	a	percentage	from	0	to	100.

To	specify	a	fill	factor	for	an	index	on	a	view

1.	 Open	the	View	Designer	for	the	view	containing	the	index	for	which
you	want	to	specify	a	fill	factor,	right-click	in	the	View	Designer,	and
choose	Manage	Indexes	from	the	shortcut	menu.

2.	 Select	the	index	from	the	Selected	index	list.

3.	 In	the	Fill	factor	box,	type	a	percentage	from	0	to	100.

For	more	information	about	fill	factors	and	their	uses,	see		SQL	Server	Books
Online.

See	Also
Indexes

Visual	Database	Tools

Working	with	Keys
A	primary	key	is	a	constraint	that	assures	that	each	table	contains	no	duplicate
rows.		A	foreign	key	is	a	constraint	that	enforces	referential	integrity.		For	more
information	about	keys,	see	Keys.

For	details	about	working	with	keys,	see	the	following	topics:

To See
Define	a	primary	key Defining	a	Primary	Key
Modify	a	primary	key Modifying	a	Primary	Key
Delete	a	primary	key Deleting	a	Primary	Key	Constraint
Define	a	foreign	key Creating	a	Relationship	Between

Tables
Modify	a	foreign	key Modifying	a	Foreign	Key
Delete	a	foreign	key Deleting	a	Foreign	Key	Constraint
Copy	primary-key	columns	to	a
foreign-key	table

Copying	Column	Properties	to	a
Foreign	Key	Column

Ensure	each	value	entered	in	a
foreign	key	column	matches	an
existing	value	in	the	related	primary
key	column

Enforcing	Referential	Integrity
Between	Tables

Disable	a	foreign	key	constraint Disabling	a	Foreign	Key	Constraint
with	INSERT	and	UPDATE
Statements	and	Disabling	a	Foreign
Key	Constraint	for	Replication

Visual	Database	Tools

Defining	a	Primary	Key
Define	a	primary	key	to	enforce	uniqueness	for	values	entered	in	specified
columns	that	do	not	allow	nulls.	If	you	define	a	primary	key	for	a	table	in	your
database,	you	can	relate	that	table	to	other	tables,	thus	reducing	the	need	for
redundant	data.	A	table	can	have	only	one	primary	key.	

To	define	a	primary	key

1.	 In	your	database	diagram	or	Table	Designer,	click	the	row	selector	for
the	database	column	you	want	to	define	as	the	primary	key.	If	you
want	to	select	multiple	columns,	hold	down	the	CTRL	key	while	you
click	the	row	selectors	for	the	other	columns.

2.	 Right-click	the	row	selector	for	the	column	and	select	Set	Primary
Key.	A	primary	key	index,	named	"PK_"	followed	by	the	table	name,
is	automatically	created;	you	can	find	it	on	the	Indexes/Keys	tab	of	the
property	pages.

Warning			If	you	want	to	redefine	the	primary	key,	any	relationships	to	the
existing	primary	key	must	be	deleted	before	the	new	primary	key	can	be
created.	A	message	will	warn	you	that	existing	relationships	will	be
automatically	deleted	as	part	of	this	process.

A	primary	key	column	is	identified	by	a	primary	key	symbol	 	in	its	row
selector.

If	a	primary	key	consists	of	more	than	one	column,	duplicate	values	are	allowed
in	one	column,	but	each	combination	of	values	from	all	the	columns	in	the
primary	key	must	be	unique.

If	you	define	a	compound	key,	the	order	of	columns	in	the	primary	key	matches
the	order	of	columns	as	shown	in	the	table	in	your	diagram.	However,	you	can
change	the	order	of	columns	after	the	primary	key	is	created.		For	more
information,	see	Modifying	a	Primary	Key.

See	Also

Constraints	|	Deleting	a	Primary	Key	Constraint	|	Enforcing	Referential	Integrity
Between	Tables	|	Modifying	a	Primary	Key	|	Primary	Key	Constraints	|	Table
Relationships

Visual	Database	Tools

Modifying	a	Primary	Key
Modify	a	primary	key	if	you	want	to	change	the	column	order,	index	name,
clustered	option,	or	fill	factor.

To	modify	a	primary	key

1.	 In	your	database	diagram,	right-click	the	table	whose	primary	key	you
want	to	modify,	and	choose	Properties	from	the	shortcut	menu.

-or-

Open	the	Table	Designer	for	the	table	whose	primary	key	you	want	to
modify,	right-click	in	the	Table	Designer,	and	choose	Properties	from
the	shortcut	menu.

2.	 Choose	the	Indexes/Keys	tab.

3.	 Select	the	primary	key	index	from	the	Selected	index	list.

4.	 Complete	an	action	from	the	following	table:

To Follow	these	steps
Change	the	column
order

In	the	Column	name	grid,	remove	the
columns	from	the	primary	key.		Then	add	the
columns	back	in	the	order	you	want.		To
remove	a	column	from	the	key,	simply
remove	the	column	name	from	the	Column
name	list.

Rename	the
primary	key

Type	a	new	name	in	the	Index	name	box.
Make	sure	that	your	new	name	does	not
duplicate	a	name	in	the	Selected	index	list.

Set	the	clustered
option

Select	the	Create	as	CLUSTERED	check
box.	Only	one	clustered	index	can	exist	per
table.	If	this	option	is	not	available	for	your
index,	you	must	first	clear	this	setting	on	the
existing	clustered	index.

Define	a	fill	factor Type	an	integer	from	0	to	100	in	the	Fill
factor	box.

The	primary	key	is	updated	in	the	database	when	you	save	your	table	or
diagram.

See	Also
Constraints	|	Deleting	a	Primary	Key	Constraint	|	Enforcing	Referential	Integrity
Between	Tables	|	Primary	Key	Constraints

Visual	Database	Tools

Deleting	a	Primary	Key	Constraint
Delete	a	primary	key	constraint	when	you	want	to	remove	the	requirement	for
uniqueness	for	the	values	entered	in	a	column	or	a	combination	or	columns.

To	delete	a	primary	key	constraint

In	your	database	diagram	or	Table	Designer,	select	the	primary	key	columns	for
the	table	whose	primary	key	constraint	you	want	to	delete.	A	primary	key
column	is	identified	by	a	primary	key	symbol	 	in	its	row	selector.

1.	 Right-click	the	row	selector	for	the	column	and	select	Set	Primary
Key.

–or–

2.	 In	your	database	diagram,	select	the	table	whose	primary	key
constraint	you	want	to	delete.

3.	 Right-click	the	table	and	select	Indexes/Keys.

4.	 Select	the	primary	key	index	from	the	Selected	index	list.

5.	 Choose	Delete.

Caution			Choosing	Delete	will	result	in	an	action	that	cannot	be	undone
without	losing	all	other	changes	made	to	the	database	diagram.	To	undo	this
action,	close	this	database	diagram	and	all	other	open	database	diagrams
without	saving	the	changes.

The	constraint	is	deleted	from	the	database	when	you	save	the	table	or	diagram.

See	Also
Constraints	|	Defining	a	Primary	Key	|	Primary	Key	Constraints

Visual	Database	Tools

Modifying	a	Foreign	Key
Modify	the	foreign	key	side	of	a	relationship	if	you	want	to	change	which
columns	are	related	to	columns	in	the	primary	key	table.

To	modify	a	foreign	key

1.	 In	your	database	diagram,	right-click	the	relationship	corresponding	to
the	foreign	key	you	want	to	modify,	then	choose	Properties	from	the
shortcut	menu.

-or-

Open	the	Table	Designer	for	the	table	containing	the	foreign	key	you
want	to	modify,	right-click	in	the	Table	Designer,	and	choose
Properties	from	the	shortcut	menu.

2.	 Choose	the	Relationships	tab.

3.	 Select	the	relationship	from	the	Selected	relationship	list.

4.	 In	the	Foreign	key	table	column,	expand	the	list	in	the	first	row.

5.	 Select	a	different	table	column	from	the	list.	The	foreign	key	column
must	match	the	data	type	and	size	of	the	primary	key	column,	with
these	exceptions:

A	char	column	or	sysname	column	can	relate	to	a	varchar
column.

A	binary	column	can	relate	to	a	varbinary	column.

A	user-defined	data	type	can	relate	to	its	base	type.

Any	changes	you	make	to	the	relationship's	properties	take	effect	as	soon	as	you
move	outside	the	grid	in	the	property	pages.	The	constraint	is	updated	in	the

database	when	you	save	your	table	or	diagram.

Note			Modifying	a	relationship	in	a	database	diagram	marks	both	of	the
related	tables	as	modified.	Consequently,	each	table	will	also	be	marked	as
modified	in	any	other	diagrams	in	which	it	appears.

See	Also
Constraints	|	Deleting	a	Foreign	Key	Constraint	|	Foreign	Key	Constraints	|
Modifying	a	Primary	Key

Visual	Database	Tools

Viewing	Foreign	Key	Attributes
View	the	foreign	key	attributes	of	a	relationship	if	you	want	to	see	which
columns	participate	in	the	foreign	key	side	of	a	relationship.	If	the	foreign	key
columns	are	related	to	a	primary	key,	the	primary	key	columns	are	identified	in
your	database	diagram	by	a	primary	key	symbol	in	the	row	selector.

To	view	the	foreign	key	attributes	of	a	relationship

1.	 In	your	database	diagram,	right-click	the	relationship	line
corresponding	to	the	foreign	key,	then	choose	Properties	from	the
shortcut	menu.

-or-

Open	the	Table	Designer	for	the	table	containing	the	foreign	key	you
want	to	modify,	right-click	in	the	Table	Designer,	and	choose
Properties	from	the	shortcut	menu.

2.	 Choose	the	Relationships	tab.

3.	 Make	sure	the	relationship	is	selected	in	the	Selected	relationship	list.

4.	 The	Foreign	key	table	column	displays	the	name	of	each	column	that
participates	in	the	foreign	key	side	of	the	relationship.

See	Also

Constraints	|	Foreign	Key	Constraints	|	Modifying	a	Foreign	Key

Visual	Database	Tools

Disabling	a	Foreign	Key	Constraint	for	Replication
SQL	Server	supports	replication.		Select	the	option	to	disable	a	foreign	key
constraint	during	replication	if	the	constraint	is	specific	to	the	source	database
and	may	unnecessarily	prevent	new	data	from	being	entered	into	the	destination
database.

To	disable	a	foreign	key	constraint	for	replication

1.	 In	your	database	diagram,	right-click	the	table	containing	the	foreign
key,	then	select	Properties	from	the	shortcut	menu.

-or-

Open	the	Table	Designer	for	the	table	containing	the	foreign	key	you
want	to	modify,	right-click	in	the	Table	Designer,	and	choose
Properties	from	the	shortcut	menu.

2.	 Choose	the	Relationships	tab.

3.	 Select	the	relationship	from	the	Selected	relationship	list.

4.	 Clear	the	Enable	relationship	for	replication	check	box.

See	Also

Constraints	|	Foreign	Key	Constraints

Visual	Database	Tools

Disabling	a	Foreign	Key	Constraint	with	INSERT	and
UPDATE	Statements
Select	the	option	to	disable	a	foreign	key	constraint	during	INSERT	and
UPDATE	transactions	if	you	know	that	new	data	will	violate	the	constraint	or	if
the	constraint	applies	only	to	the	data	already	in	the	database.

To	disable	a	foreign	key	constraint	for	INSERT	and	UPDATE	statements

1.	 In	your	database	diagram,	right-click	the	table	containing	the	foreign
key,	then	select	Properties	from	the	shortcut	menu.

-or-

Open	the	Table	Designer	for	the	table	containing	the	foreign	key	you
want	to	modify,	right-click	in	the	Table	Designer,	and	choose
Properties	from	the	shortcut	menu.

2.	 Choose	the	Relationships	tab.

3.	 Select	the	relationship	from	the	Selected	relationship	list.

4.	 Clear	the	Enforce	relationship	for	INSERTs	and	UPDATEs	check
box.

After	you	add	or	modify	data,	you	should	select	this	option	if	you	want	to	ensure
the	constraint	applies	to	subsequent	data	modifications.

Note			If	you	plan	to	use	triggers	to	implement	database	operations,	you	must
disable	foreign	key	constraints	in	order	for	the	trigger	to	run.

See	Also
Constraints	|	Foreign	Key	Constraints

Visual	Database	Tools

Deleting	a	Foreign	Key	Constraint
Delete	a	foreign	key	constraint	when	you	want	to	remove	the	requirement	to
enforce	referential	integrity.

To	delete	a	foreign	key	constraint

In	your	database	diagram,	delete	the	relationship	line	that	represents	the
foreign	key	constraint	you	want	to	delete.	For	details,	see	Deleting	a
Relationship.

Note			Deleting	a	relationship	from	a	database	diagram	marks	the	related
tables	as	modified	in	all	diagrams	in	which	they	appear.

See	Also
Constraints	|	Foreign	Key	Constraints

Visual	Database	Tools

Copying	Column	Properties	to	a	Foreign	Key	Column
When	you	copy	a	column	from	one	table	to	another	table,	the	column	name	and
many	of	the	other	properties	you	defined	for	that	column	in	the	original	table	are
copied	to	the	new	location.	You	can	copy	column	properties	from	a	primary	key
column	to	a	foreign	key	column	if	you	want	to	relate	the	two	columns.	Related
columns	must	have	the	same	data	type	(or	data	types	that	can	be	related)	and
length	property	settings.

To	copy	primary	key	column	properties	to	foreign	key	columns

In	your	database	diagram,	select	the	primary	key	columns	that	you	want	to	copy.
Primary	key	columns	are	indicated	by	a	key	symbol	 	in	their	row	selector.

5.	 Copy	the	columns	to	the	foreign	key	table.	For	details,	see	Copying
Columns	from	One	Table	to	Another.

6.	 Drag	a	relationship	line	from	the	columns	in	the	primary	key	table	to
the	same	columns	in	the	foreign	key	table.	For	details,	see	Creating	a
Relationship	Between	Tables.

See	Also

Copying	Columns	from	One	Table	to	Another

Visual	Database	Tools

Working	with	Constraints
Constraints	are	rules	that	the	database	server	enforces	for	you.		For	more
information	see	Constraints.

For	details	about	working	with	constraints,	see	the	following	topics:

To See
Attach	a	check	constraint	to	a	table	to
specify	the	data	values	that	are
acceptable	in	one	or	more	columns

Attaching	a	New	Check	Constraint	to
a	Table	or	Column

Create	a	constraint	expression	to
check	data	for	a	condition

Defining	a	Check	Constraint
Expression

Change	the	constraint	expression	or
the	options	that	enable	or	disable	the
constraint	for	specific	conditions

Modifying	a	Check	Constraint

Apply	constraints	either	to	new	data
only	or	to	existing	data	as	well

Checking	Existing	Data	When
Creating	a	Check	Constraint

Disable	a	check	constraint	when	data
is	added	to,	updated	in,	or	deleted
from	a	table

Disabling	a	Check	Constraint	with
INSERT	and	UPDATE	Statements

Disable	a	check	constraint	when	your
table	is	replicated	in	another	database

Disabling	a	Check	Constraint	for
Replication

Remove	the	limitations	on	data
values	in	a	column

Deleting	a	Check	Constraint

Ensure	no	duplicate	values	are
entered	in	specific	columns

Creating	a	Unique	Constraint

Change	the	columns	that	the
constraint	is	attached	to,	change	the
constraint	name,	or	set	additional
properties	for	the	constraint

Modifying	a	Unique	Constraint

Remove	the	requirement	for
uniqueness	for	values	entered	in	the
column

Deleting	a	Unique	Constraint

Enforce	uniqueness	for	values Defining	a	Primary	Key

entered	in	specified	columns
Change	the	column	order,	index
name,	clustered	option,	or	fill	factor

Modifying	a	Primary	Key

Copy	column	properties	from	a
primary	key	column	to	a	foreign	key
column	to	relate	the	two	columns

Copying	Column	Properties	to	a
Foreign	Key	Column

Remove	the	requirement	for
uniqueness	for	the	values	entered	in	a
column

Deleting	a	Primary	Key	Constraint

See	which	columns	participate	in	the
foreign	key	side	of	a	relationship

Viewing	Foreign	Key	Attributes

Change	which	columns	are	related	to
columns	in	the	primary	key	table

Modifying	a	Foreign	Key

Check	existing	data	when	creating	a
relationship

Checking	Existing	Data	when
Creating	a	Relationship

Disable	a	foreign	key	constraint
during	INSERT	and	UPDATE
transactions

Disabling	a	Foreign	Key	Constraint
with	INSERT	and	UPDATE
Statements

Disable	a	foreign	key	constraint
during	replication	of	the	table

Disabling	a	Foreign	Key	Constraint
for	Replication

Remove	the	requirement	to	enforce
referential	integrity	between	primary
key	columns	and	the	related	columns
in	another	table

Deleting	a	Foreign	Key	Constraint

Visual	Database	Tools

Attaching	a	New	Check	Constraint	to	a	Table	or
Column
Attach	a	check	constraint	to	a	table	to	specify	the	data	values	that	are	acceptable
in	one	or	more	columns.

To	attach	a	new	check	constraint

1.	 In	your	database	diagram,	right-click	the	table	that	will	contain	the
constraint,	then	select	Constraints	from	the	shortcut	menu.

-or-

Open	the	Table	Designer	for	the	table	that	will	contain	the	constraint,
right-click	in	the	Table	Designer,	and	choose	Constraints	from	the
shortcut	menu.

2.	 Choose	New.	The	Selected	constraint	box	displays	the	system-
assigned	name	of	the	new	constraint.	System-assigned	names	begin
with	"CK_"	followed	by	the	table	name.

3.	 In	the	Constraint	expression	box,	type	the	SQL	expressions	for	the
check	constraint.	For	example,	to	limit	the	entries	in	the	state	column
of	the	authors	table	to	New	York,	type:
state	=	'NY'

Or,	to	require	entries	in	the	zip	column	to	be	5	digits,	type:

zip	LIKE	'[0-9][0-9][0-9][0-9][0-9]'

Note			Make	sure	to	enclose	any	non-numeric	constraint	values
in	single	quotation	marks	(').	For	additional	details,	see
Defining	a	Check	Constraint	Expression.

4.	 If	you	want	to	give	the	constraint	a	different	name,	type	the	name	in
the	Constraint	name	box.

5.	 Use	the	check	boxes	to	control	when	the	constraint	is	enforced:

To	test	the	constraint	on	existing	data	before	creating	the
constraint,	check	Check	existing	data	on	creation.		

To	enforce	the	constraint	whenever	a	replication	operation
occurs	on	this	table,	check	Enforce	constraint	for
replication.		

To	enforce	the	constraint	whenever	a	row	of	this	table	is
inserted	or	updated,	check	Enforce	constraint	for	INSERTs
and	UPDATEs.		

See	Also

Check	Constraints	|	Constraints	|	Deleting	a	Check	Constraint	|	Disabling	a
Check	Constraint	for	Replication

Visual	Database	Tools

Defining	a	Check	Constraint	Expression
When	you	attach	a	check	constraint	to	a	table	or	column,	you	must	include	an
SQL	expression.	For	details	about	this	operation,	see	Attaching	a	New	Check
Constraint	to	a	Table	or	Column.

You	can	create	a	simple	constraint	expression	to	check	data	for	a	simple
condition;	or	you	can	create	a	complex	expression,	using	Boolean	operators,	to
check	data	for	several	conditions.	For	example,	suppose	the	authors	table	has	a
zip	column	where	a	5-digit	character	string	is	required.	This	sample	constraint
expression	guarantees	that	only	5-digit	numbers	are	allowed:

zip	LIKE	'[0-9][0-9][0-9][0-9][0-9]'

Or	suppose	the	sales	table	has	a	column	called	qty	which	requires	a	value
greater	than	0.	This	sample	constraint	guarantees	that	only	positive	values	are
allowed:

qty	>	0

Or	suppose	the	orders	table	limits	the	type	of	credit	cards	accepted	for	all	credit
card	orders.	This	sample	constraint	guarantees	that	if	the	order	is	placed	on	a
credit	card,	then	only	Visa,	MasterCard,	or	American	Express	is	accepted:

NOT	(payment_method	=	'credit	card')	OR
			(card_type	IN	('VISA',	'MASTERCARD',	'AMERICAN	EXPRESS'))

To	define	a	constraint	expression

1.	 Create	a	new	check	constraint.	For	details	on	how	to	do	this,	see
Attaching	a	New	Check	Constraint	to	a	Table	or	Column.

2.	 In	the	Check	Constraints	tab	of	the	property	pages,	type	an
expression	in	the	Constraint	expression	box	using	the	following
syntax:
{constant	|	column_name	|	function	|	(subquery)}
[{operator	|	AND	|	OR	|	NOT}

{constant	|	column_name	|	function	|	(subquery)}...]

The	SQL	syntax	is	made	up	of	the	following	parameters:

Parameter Description
constant A	literal	value,	such	as	numeric	or	character	data.

Character	data	must	be	enclosed	within	single
quotation	marks	(').

column_name Specifies	a	column.
function A	built-in	function.
operator An	arithmetic,	bitwise,	comparison,	or	string

operators.
AND Use	in	Boolean	expressions	to	connect	two

expressions.	Results	are	returned	when	both
expressions	are	true.

When	AND	and	OR	are	both	used	in	a	statement,
AND	is	processed	first.	You	can	change	the	order
of	execution	by	using	parentheses.

OR Use	in	Boolean	expressions	to	connect	two	or	more
conditions.	Results	are	returned	when	either
condition	is	true.

When	AND	and	OR	are	both	used	in	a	statement,
OR	is	evaluated	after	AND.	You	can	change	the
order	of	execution	by	using	parentheses.

NOT Negates	any	Boolean	expression	(which	can
include	keywords,	such	as	LIKE,	NULL,
BETWEEN,	IN,	and	EXISTS).

When	more	than	one	logical	operator	is	used	in	a
statement,	NOT	is	processed	first.	You	can	change
the	order	of	execution	by	using	parentheses.

See	Also

Check	Constraints	|	Constraints

Visual	Database	Tools

Checking	Existing	Data	When	Creating	a	Check
Constraint
When	you	create	a	check	constraint,	you	can	set	an	option	to	apply	it	either	to
new	data	only	or	to	existing	data	as	well.	The	option	of	applying	the	constraint	to
new	data	only	is	useful	when	you	know	that	the	existing	data	already	meets	the
new	check	constraint,	or	when	a	business	rule	requires	the	constraint	to	be
enforced	only	from	this	point	forward.

For	example,	you	may	have	required	zip	codes	to	be	limited	to	five	digits	in	the
past,	but	now	want	new	data	to	allow	nine-digit	zip	codes.	Old	data	with	five-
digit	zip	codes	will	coexist	with	new	data	that	contains	nine-digit	zip	codes.

To	check	existing	data	when	creating	a	check	constraint

1.	 In	your	database	diagram,	right-click	the	table	containing	the
constraint,	then	select	Properties	from	the	shortcut	menu.

-or-

Open	the	Table	Designer	for	the	table	containing	the	constraint,	right-
click	in	the	Table	Designer,	and	choose	Properties	from	the	shortcut
menu.

2.	 Choose	the	Check	Constraints	tab.

3.	 Select	the	constraint	from	the	Selected	constraint	list.

4.	 Select	the	Check	existing	data	on	creation	check	box.	This	option	is
selected	by	default.

The	check	constraint	will	be	applied	when	you	save	the	table	or	the	database
diagram.	If	any	constraint	violations	are	encountered	during	the	save	process,	the
table	cannot	be	saved.

See	Also

Attaching	a	New	Check	Constraint	to	a	Table	or	Column	|	Check	Constraints	|
Constraints

Visual	Database	Tools

Disabling	a	Check	Constraint	for	Replication
You	can	disable	a	check	constraint	when	your	table	is	replicated	in	another
database.	When	you	replicate	a	table,	the	table	definition	and	data	are	copied
from	the	source	database	to	a	destination	database.	These	two	databases	are
usually	(but	not	necessarily)	on	separate	servers.	If	the	check	constraints	are
specific	to	the	source	database,	they	may	unnecessarily	prevent	new	data	from
being	entered	in	the	destination	database.	When	you	replicate	a	database	at	a
remote	site,	you	should	not	reapply	check	constraints	because:

The	integrity	of	the	data	was	checked	when	it	was	entered	into	the
original	database.

The	replication	will	fail	if	data	violates	the	check	constraints.

To	disable	a	check	constraint	for	replication

1.	 In	your	database	diagram,	right-click	the	table	containing	the
constraint,	then	select	Properties	from	the	shortcut	menu.

-or-

Open	the	Table	Designer	for	the	table	containing	the	constraint,	right-
click	in	the	Table	Designer,	and	choose	Properties	from	the	shortcut
menu.

2.	 Choose	the	Check	Constraints	tab.

3.	 Select	the	constraint	from	the	Selected	constraint	list.

4.	 Clear	the	Enforce	constraint	for	replication	check	box.

See	Also

Attaching	a	New	Check	Constraint	to	a	Table	or	Column	|	Check	Constraints	|
Constraints

Visual	Database	Tools

Disabling	a	Check	Constraint	with	INSERT	and
UPDATE	Statements
You	can	disable	a	check	constraint	when	data	is	added	to,	updated	in,	or	deleted
from	a	table.	Disabling	a	constraint	enables	you	to	perform	the	following
transactions:

Add	a	new	row	of	data	to	a	table	(using	the	INSERT	statement)	where
the	existing	rows	were	required	to	meet	specific	business	rules	that	no
longer	apply.	For	example,	you	may	have	required	postal	codes	to	be
limited	to	five	digits	in	the	past,	but	now	want	new	data	to	allow	nine-
digit	postal	codes.	Old	data	with	five-digit	postal	codes	will	coexist	with
new	data	that	contains	nine-digit	postal	codes.

Modify	existing	rows	(using	the	UPDATE	statement)	where	the	existing
rows	were	required	to	meet	specific	business	rules	that	no	longer	apply.
For	example,	you	may	want	to	update	all	existing	five-digit	postal	codes
to	nine-digit	postal	codes.

Select	the	option	to	disable	a	check	constraint	during	INSERT	and	UPDATE
transactions	if	you	know	that	new	data	will	violate	the	constraint,	or	if	the
constraint	applies	only	to	the	data	already	in	the	database.

To	disable	a	check	constraint	with	INSERT	and	UPDATE	statements

1.	 In	your	database	diagram,	right-click	the	table	containing	the
constraint,	then	select	Properties	from	the	shortcut	menu.

-or-

Open	the	Table	Designer	for	the	table	containing	the	constraint,	right-
click	in	the	Table	Designer,	and	choose	Properties	from	the	shortcut
menu.

2.	 Choose	the	Check	Constraints	tab.

3.	 Select	the	constraint	from	the	Selected	constraint	list.

4.	 Clear	the	Enforce	constraint	for	INSERTs	and	UPDATEs	check
box.

You	can	select	this	option	after	you	add	or	modify	data	to	guarantee
that	the	constraint	applies	to	subsequent	data	modifications.

See	Also

Attaching	a	New	Check	Constraint	to	a	Table	or	Column	|	Check	Constraints	|
Constraints

Visual	Database	Tools

Modifying	a	Check	Constraint
Modify	a	check	constraint	when	you	want	to	change	the	constraint	expression	or
the	options	that	enable	or	disable	the	constraint	for	specific	conditions.

To	modify	a	check	constraint

1.	 In	your	database	diagram,	right-click	the	table	containing	the
constraint,	then	select	Properties	from	the	shortcut	menu.

-or-

Open	the	Table	Designer	for	the	table	containing	the	constraint,	right-
click	in	the	Table	Designer,	and	choose	Properties	from	the	shortcut
menu.

2.	 Choose	the	Check	Constraints	tab.

3.	 Select	the	constraint	you	want	to	change	from	the	Selected	constraint
list.

4.	 Complete	an	action	from	the	following	table:

To Follow	these	steps
Edit	the	constraint
expression

Type	the	new	expression	in	the	Constraint
expression	box.	For	details,	see	Defining	a
Check	Constraint	Expression.

Rename	the	constraint Type	a	new	name	in	the	Constraint	name
box.

Apply	the	constraint
to	existing	data	

Select	the	Check	existing	data	on
creation	option.	For	details,	see	Checking
Existing	Data	When	Creating	a	Check
Constraint.

Disable	the	constraint
when	new	data	is
added	to	the	table	or

Clear	the	Enforce	constraint	for
INSERTs	and	UPDATEs	option.	For
details,	see	Disabling	a	Check	Constraint

when	existing	data	is
updated	in	the	table	

with	INSERT	and	UPDATE	Statements.

Disable	the	constraint
when	the	table	is
replicated	in	another
database

Clear	the	Enforce	constraint	for
replication	option.	For	details,	see
Disabling	a	Check	Constraint	for
Replication.

The	constraint	is	updated	in	the	database	when	you	save	your	table	or	diagram.

See	Also
Check	Constraints	|	Constraints

Visual	Database	Tools

Deleting	a	Check	Constraint
Delete	a	check	constraint	when	you	want	to	remove	the	limitations	on	data
values	that	are	accepted	in	the	column	or	columns	included	in	the	constraint
expression.

To	delete	a	check	constraint

1.	 In	your	database	diagram,	right-click	the	table	containing	the
constraint,	then	select	Properties	from	the	shortcut	menu.

-or-

Open	the	Table	Designer	for	the	table	containing	the	constraint,	right-
click	in	the	Table	Designer,	and	choose	Properties	from	the	shortcut
menu.

2.	 Choose	the	Check	Constraints	tab.

3.	 Select	the	constraint	from	the	Selected	constraint	list.

4.	 Choose	Delete.

Caution			Choosing	Delete	will	result	in	an	action	that	cannot	be	undone
without	losing	all	other	changes	made	to	the	database	diagram.	To	undo	this
action,	close	this	database	diagram	and	all	other	open	database	diagrams
without	saving	the	changes.

The	constraint	is	deleted	from	the	database	when	you	save	the	table	or	diagram.

See	Also
Attaching	a	New	Check	Constraint	to	a	Table	or	Column	|	Check	Constraints	|
Constraints

Visual	Database	Tools

Creating	a	Unique	Constraint
Create	a	unique	constraint	to	ensure	no	duplicate	values	are	entered	in	specific
columns	that	do	not	participate	in	a	primary	key.	While	both	a	unique	constraint
and	a	primary	key	enforce	uniqueness,	you	should	attach	a	unique	constraint
instead	of	a	primary	key	constraint	to	a	table	if:

You	want	to	enforce	uniqueness	in	a	column	or	combination	of
columns.	You	can	attach	multiple	unique	constraints	to	a	table,	whereas
you	can	attach	only	one	primary	key	constraint	to	a	table.

You	want	to	enforce	uniqueness	in	a	column	that	allows	null	values.
You	can	attach	unique	constraints	to	columns	that	allow	null	values,
whereas	you	can	attach	primary	key	constraints	only	to	columns	that	do
not	allow	null	values.	When	you	attach	a	unique	constraint	to	a	column
allowing	null	values,	you	ensure	that	at	most	one	row	will	have	a	null
value	in	the	constrained	column.

To	create	a	unique	constraint

1.	 In	your	database	diagram,	right-click	the	table	that	will	contain	the
constraint,	then	select	Properties	from	the	shortcut	menu.

-or-

Open	the	Table	Designer	for	the	table	that	will	contain	the	constraint,
right-click	in	the	Table	Designer,	and	choose	Properties	from	the
shortcut	menu.

2.	 Choose	the	Indexes/Keys	tab.

3.	 Choose	New.	A	system-assigned	name	appears	in	the	Index	name
box.	

4.	 Under	Column	name,	expand	the	list	of	columns	and	select	the
column	that	you	want	to	attach	the	constraint	to.	To	attach	the

constraint	to	multiple	columns,	select	the	additional	columns	in
subsequent	rows.

5.	 Select	the	Create	UNIQUE	check	box.

6.	 Select	the	Constraint	option.

The	unique	constraint	is	created	in	the	database	when	you	save	the	table	or	the
diagram.

If	you	are	using	SQL	Server,	you	can	control	the	sort	order	of	key	values	and	the
action	taken	when	duplicate	keys	exist.		To	do	this,	you	should	create	a	unique
index	instead	of	a	unique	constraint.	For	more	information,	see	Creating	a
Unique	Index.

See	Also
Constraints	|	Creating	a	Unique	Index	|	Deleting	a	Unique	Constraint	|	Unique
Constraints

Visual	Database	Tools

Modifying	a	Unique	Constraint
Modify	a	unique	constraint	when	you	want	to	change	the	columns	that	the
constraint	is	attached	to,	change	the	constraint	name,	or	set	additional	properties
for	the	constraint.

To	modify	a	unique	constraint

1.	 In	your	database	diagram,	right-click	the	table	containing	the
constraint,	then	select	Properties	from	the	shortcut	menu.

-or-

Open	the	Table	Designer	for	the	table	containing	the	constraint,	right-
click	in	the	Table	Designer,	and	choose	Properties	from	the	shortcut
menu.

2.	 Choose	the	Indexes/Keys	tab.

3.	 Select	the	constraint	you	want	to	change	from	the	Selected	index	list.

4.	 Complete	an	action	from	the	following	table:

To Follow	these	steps
Change	the	columns
that	the	constraint	is
attached	to

In	the	Column	name	grid,	expand	the	list
and	select	the	columns	you	want	to	attach
the	constraint	to.

Rename	the	constraint Type	a	new	name	in	the	Index	name	box.
Make	sure	that	your	new	name	does	not
duplicate	a	name	in	the	Selected	index	list.

Set	the	clustered
option	

Select	the	Create	as	CLUSTERED	check
box.	Only	one	clustered	index	can	exist	per
table.	If	a	clustered	index	already	exists,
you	must	first	clear	this	setting	on	that
index.

Define	a	fill	factor Type	an	integer	from	0	to	100	in	the	Fill

factor	box.

The	constraint	is	updated	in	the	database	when	you	save	your	table	or	diagram.

See	Also
Constraints	|	Unique	Constraints

Visual	Database	Tools

Deleting	a	Unique	Constraint
Delete	a	unique	constraint	when	you	want	to	remove	the	requirement	for
uniqueness	for	values	entered	in	the	column	or	combination	of	columns	included
in	the	constraint	expression.

To	delete	a	unique	constraint

1.	 In	your	database	diagram,	right-click	the	table	containing	the
constrained	column	or	columns,	then	select	Indexes/Keys	from	the
shortcut	menu.

-or-

Open	the	Table	Designer	for	the	table	containing	the	constraint,	right-
click	in	the	Table	Designer,	and	choose	Indexes/Keys	from	the
shortcut	menu.

2.	 Select	the	unique	constraint	from	the	Selected	index	list.

3.	 Choose	Delete.

Caution			Choosing	Delete	will	result	in	an	action	that	cannot	be	undone
without	losing	all	other	changes	made	to	the	database	diagram.	To	undo	this
action,	close	this	database	diagram	or	table	design	window	and	all	other	open
database	diagrams	and	table	design	windows	without	saving	the	changes.

The	constraint	is	deleted	from	the	database	when	you	save	the	table	or	diagram.

See	Also
Constraints	|	Creating	a	Unique	Constraint	|	Unique	Constraints

Visual	Database	Tools

Working	with	User-Defined	Functions
You	can	employ	user-defined	functions	in	a	number	of	places	in	your
applications.

For	details	about	working	with	user-defined	functions,	see	the	following	topics:

To See
Include	data	from	a	user-
defined	function	in	a	query

Including	User-Defined	Functions	in	a	Query

Visual	Database	Tools

Working	with	Scripts
You	can	preserve	your	work	in	SQL	Scripts.		In	so	doing,	you	can	retain	your
work	without	affecting	the	underlying	database.		Later,	you	or	another	user	can
run	the	scripts	to	affect	the	database.

To See
Create	a	script	capturing	all	the
changes	you	made	since	you	opened
the	database	diagram	or	last	saved
your	work	to	the	database

Saving	a	Change	Script

Visual	Database	Tools

Saving	a	Change	Script
You	can	save	an	SQL	change	script	if	you	do	not	have	security	permissions	to
alter	a	database	or	if	you	are	not	ready	to	update	the	database	(for	example,	if
you	have	made	changes	to	the	database	diagram	that	conflict	with	changes	made
by	other	users).	An	SQL	change	script	provides	a	record	of	your	changes	that
can	be	applied	to	the	database	at	a	later	time	using	a	database	tool	(for	example,
the	Microsoft®	SQL	Server™	command-line	utility	osql).

To	save	a	change	script

1.	 Right-click	inside	the	database	diagram,	and	then	click	Save	Change
Script.	This	command	is	available	whenever	you	have	unsaved
database	changes	in	your	diagram.

2.	 In	the	Save	Change	Script	dialog	box,	choose	Yes.

Note			If	the	option	to	automatically	generate	a	change	script	is
selected,	a	change	script	is	generated	whenever	you	save	your
database	diagram	or	any	changed	database	object	in	the
diagram.	This	is	helpful	if	you	need	to	track	the	changes	you
have	made	to	the	database.

3.	 A	message	box	displays	the	file	name	of	the	saved	change	script.
Choose	OK.

Each	time	you	save	a	change	script,	a	new	text	file	named	DbDgmN.sql	(where
N	equals	1	for	the	first	change	script	you	generate	and	N+1	for	each	subsequent
change	script)	is	created	and	saved	in	the	current	working	directory.

The	change	script	file	lists	any	changed	tables	and	how	they	were	changed
(using	the	DROP	TABLE,	ALTER	TABLE,	or	CREATE	TABLE	SQL
statements).	The	change	script	file	also	contains	any	error	handling	code	that	is
required	to	clean	up	temporary	tables	or	to	rollback	transactions	that	were	part	of
unsuccessful	changes	(changes	that	could	not	be	saved).	In	addition,	the	change
script	file	contains	code	to	make	the	script	run	successfully	against	the	database
and	code	(Print	statements)	that	describe	what	the	script	is	doing	when	it	runs.

Any	error	messages	that	occurred	while	the	changes	were	saved	are	stored	in	a
log	file,	with	the	same	name	as	the	script	file,	except	with	a	.log	extension.		You
can	also	view	messages	showing	which	tables	were	successfully	and
unsuccessfully	saved	in	the	Log	Viewer.

See	Also
Database	Changes	Detected	Dialog	Box	|	Saving	Selected	Tables

Visual	Database	Tools

Designing	Data	Retrieval	and	Manipulation
The	Microsoft®	Visual	Database	Tools	Query	Designer	and	View	Designer	can
help	you	create	and	maintain	the	data	retrieval	and	data	manipulation	portions	of
your	application.

For	more	information	about	designing	the	data	retrieval	and	manipulation
portions	of	an	application,	see	Database	Queries	and	the	Visual	Database	Tools.

For	details	about	the	specific	steps	in	designing	data	retrieval	and	manipulation
solutions,	see	the	following	topics:

Designing	Queries

Working	with	Views

Manipulating	Data

Visual	Database	Tools

Designing	Queries
Query	design	is	an	important	part	of	developing	database	applications,	because
after	the	database	is	designed	and	populated	with	data,	it	is	through	queries	that
you	put	that	data	to	use.		To	learn	more	about	the	specific	steps	of	query	design,
see	the	following	topics:

Performing	Basic	Operations	with	Queries

Specifying	Search	Criteria

Querying	on	Groups	of	Rows

Querying	Using	Multiple	Tables

Creating	General	Purpose	Queries

Using	Expressions	in	Queries

Including	User-Defined	Functions	in	a	Query

Visual	Database	Tools

Performing	Basic	Operations	with	Queries
The	following	fundamental	operations	apply	to	most	or	all	queries.

To See
Create	a	new	query Creating	a	Query
Add	a	table,	view,	or	any	other
column	source	to	a	query

Adding	Tables

Remove	a	column	source	from	a
query

Removing	Tables

Add	a	column	to	a	query Adding	Columns
Remove	a	column	from	the	query
output

Removing	Columns	from	Query
Output

Remove	a	column	from	the	query Removing	Columns	from	the	Query
Change	the	order	of	columns	in
query	output

Reordering	Output	Columns

Create	column	aliases	in	a	query Creating	Column	Aliases
Create	table	aliases	in	a	query Creating	Table	Aliases
Verify	a	query Verifying	a	Query
Add	comments	to	a	query Commenting	a	Query
Execute	a	query Executing	a	Query
Stop	a	query Stopping	a	Query
Clear	query	results Clearing	Query	Results
Print	query	results Printing	Query	Results
Order	result	rows	of	a	query Ordering	Query	Results

Visual	Database	Tools

Creating	a	Query
To	create	a	new	query

1.	 In	the	SQL	Server	Enterprise	Manager,	right-click	any	table	or	view
that	will	be	included	in	the	query.

2.	 On	the	shortcut	menu,	point	to	Open	Table	and	choose	Query,	or
point	to	Open	View	and	choose	Query.

The	Query	Designer	appears	with	the	table	or	view	already	present	on
the	Diagram	Pane.

See	Also

Performing	Basic	Operations	with	Queries

Visual	Database	Tools

Adding	Tables
When	you	create	a	query,	you	are	retrieving	data	from	a	table	or	other	objects
structured	like	tables	—	views	and	certain	user-defined	functions.		To	work	with
any	of	these	objects	in	your	query,	you	add	them	to	the	Diagram	pane.

Note			For	information	about	adding	tables	or	objects	structured	like	tables
from	different	data	sources	while	working	with	SQL	Server,	see	Query
Designer	Considerations	for	SQL	Server	Databases.

To	add	a	table,	view,	or	user-defined	function	to	the	query

1.	 In	the	Diagram	pane	of	the	Query	Designer	or	View	Designer,	right-
click	the	background	and	choose	Add	Table	from	the	shortcut	menu.

2.	 In	the	Add	Table	dialog	box,	select	the	tab	for	the	type	of	object	you
want	to	add	to	the	query.

3.	 In	the	list	of	items,	double-click	each	item	you	want	to	add.

4.	 When	you	finish	adding	items,	click	Close.

The	Query	Designer	updates	the	Diagram	pane,	Grid	pane,	and	SQL	pane
accordingly.

Alternatively,	you	can	drag	objects	onto	the	Diagram	pane.		You	can	drag	a
table,	view,	or	user-defined	function	from	the	SQL	Server	Enterprise
Manager.	

You	can	also	drag	columns	or	tables	from	the	Database	Designer	or	paste	them
from	the	Clipboard.

Tables	and	views	are	automatically	added	to	the	query	when	you	reference	them
in	the	statement	in	the	SQL	pane.

The	Query	Designer	will	not	display	data	columns	for	a	table	or	table-structured
object	if	you	do	not	have	sufficient	access	rights	to	it	or	if	the	ODBC	driver

cannot	return	information	about	it.	In	such	cases,	only	a	title	bar	and	the	*	(All
Columns)	check	box	are	displayed	for	the	table	or	table-structured	object.

To	add	an	existing	query	to	a	new	query

1.	 Make	sure	the	SQL	pane	is	displayed	in	the	new	query	you	are
creating.

2.	 In	the	SQL	pane,	type	a	right	and	left	parentheses	()	after	the	word
FROM.

3.	 Open	the	Query	designer	for	the	existing	query	.		(You	now	have	two
Query	Designers	open.)

4.	 Display	the	SQL	pane	for	the	inner	query	–	the	existing	query	you	are
including	in	the	new,	outer	query.		

5.	 Select	all	the	text	in	the	SQL	pane,	and	copy	it	to	the	Clipboard.

6.	 Click	in	the	SQL	pane	of	the	new	query,	situate	the	cursor	between	the
parentheses	you	added,	and	paste	the	contents	of	the	Clipboard.

7.	 Still	in	the	SQL	pane,	add	an	alias	after	the	right	parenthesis.

See	Also

Removing	Tables

Visual	Database	Tools

Removing	Tables
You	can	remove	a	table	—	or	any	table-structured	object	—	from	the	query.

Note			Removing	a	table	or	table-structured	object	does	not	delete	anything
from	the	database;	it	only	removes	it	from	the	current	query.	For	details
about	removing	a	table	from	a	database,	see	Deleting	a	Table	from	a
Database	Diagram	and	the	Database.

To	remove	a	table	or	table-structured	object

In	the	Diagram	pane,	select	the	table,	view,	user-defined	function,	or
query,	and	then	press	DELETE,	or	right-click	the	object	and	then
choose	Remove.	You	can	select	and	remove	multiple	objects	at	one
time.

–or–

Remove	all	references	to	the	object	in	the	SQL	pane.

When	you	remove	a	table	or	table-structured	object,	the	Query	Designer
automatically	removes	joins	that	involve	that	table	or	table-structured	object	and
removes	references	to	the	object's	columns	in	the	SQL	and	Grid	panes.	However,
if	the	query	contains	complex	expressions	involving	the	object,	the	object	is	not
automatically	removed	until	all	references	to	it	are	removed.

See	Also
Adding	Tables

Visual	Database	Tools

Adding	Columns
To	use	a	column	in	a	query,	you	must	add	it	to	the	query.	You	might	add	a
column	to	display	it	in	query	output,	to	use	it	for	sorting,	to	search	the	contents
of	the	column,	or	to	summarize	its	contents.

If	you	are	creating	a	Select	query	and	add	a	column	in	the	Diagram	or	Grid
panes,	the	column	you	add	becomes	part	of	the	query	output.	You	can	remove
the	column	from	the	output	and	still	use	it	for	sorting,	searching,	and	so	on.	For
example,	to	find	all	employees	in	the	accounting	department,	you	might	search
the	department	column	but	not	display	it	in	the	output.

Tip			Wherever	you	use	a	column	in	a	query,	you	can	also	use	an	expression
that	can	consist	of	any	combination	of	columns,	literals,	operators,	and
functions.	For	details,	see	Using	Expressions	in	Queries.

You	can	add	columns	individually	or	as	a	group.	Your	choices	are:

An	individual	column	from	one	table	or	table-structured	object,	to	use
for	sorting,	searching,	or	summarizing.

All	columns	from	one	table	or	table-structured	object.	For	tables,	this	is
the	equivalent	of	specifying	"tablename.*"	in	the	SQL	statement.

All	columns	from	all	table-structured	objects	in	the	query,	which	can	be
useful	if	you	are	working	with	joins.	This	option	is	the	equivalent	of
specifying	"*"	alone	in	the	SQL	statement	when	more	than	one	table	or
table-structured	object	is	used	in	the	query.
When	you	add	all	columns,	the	Query	Designer	does	not	add	all
individual	columns	to	the	query;	it	instead	uses	the	asterisk	("*").	If
you	need	to	work	with	a	specific	column,	you	must	add	it	separately.

Note			When	you	choose	"*",	all	currently	defined	columns	for	the	tables	you
are	using	are	included.	If	a	table	definition	changes,	the	list	of	columns
returned	by	"*"	changes	as	well.	It	is	recommended	that,	if	practical,	you
specify	the	columns	you	want	to	work	with	instead	of	using	"*".

To	add	an	individual	column

In	the	Diagram	pane,	select	the	check	box	next	to	the	data	column	that
you	want	to	include.

-or-

In	the	Grid	pane,	move	to	the	first	blank	grid	row	where	you	want	to
add	the	column,	click	the	field	in	the	Column	column,	and	select	a
column	name	from	the	list.

Note			To	add	a	data	row	at	a	specific	location	in	the	Grid	pane,
select	the	grid	row	where	you	want	to	add	the	new	column	and
press	INS.	A	new	column	is	added	above	that	row.

To	add	all	columns	for	one	table	or	table-structured	object

In	the	Diagram	pane,	select	the	check	box	 	next	to	(All	Columns).

–or–

Specify	objectname.*	in	the	SQL	statement	in	the	SQL	pane,
substituting	the	name	of	your	table	or	table-structured	object	for
objectname.

To	add	all	columns	for	all	tables	and	table-structured	objects

1.	 Make	sure	no	join	lines	in	the	Diagram	pane	are	selected.

2.	 Right-click	in	the	query	window	and	choose	Properties	from	the
shortcut	menu.	Then	choose	the	Query	tab.

3.	 Select	Output	all	columns.
–or–
Specify	*	in	the	output	list	of	the	SQL	statement	in	the	SQL	pane.

See	Also

Creating	Column	Aliases	|	Removing	Columns	from	Query	Output	|	Removing

Columns	from	the	Query	|	Reordering	Output	Columns

Visual	Database	Tools

Removing	Columns	from	Query	Output
If	you	are	using	a	column	in	a	Select	query	but	do	not	want	to	display	it	in	the
result	set	(that	is,	you	do	not	want	it	in	the	query's	select	list),	you	can	remove	it
from	output.	After	you	remove	the	column	from	the	query's	output,	you	can	still
use	it	in	search	conditions	or	as	a	sorting	field.

Note			If	you	want	to	remove	a	column	from	the	query	altogether,	see
Removing	Columns	from	the	Query.

To	remove	a	column	from	the	query	output

In	the	Diagram	pane,	clear	the	check	box	next	to	the	name	of	the
column	you	want	to	remove.

-or-

In	the	Grid	pane,	clear	the	check	box	in	the	Output	column	for	the	data
column	you	want	to	remove.	(If	you	want	to	add	the	column	back	to	the
query	output,	you	can	check	the	Output	column	again.)

-or-

Remove	the	column	from	the	output	list	in	the	SQL	pane.

See	Also

Adding	Columns	|	Using	Expressions	in	Queries

Visual	Database	Tools

Removing	Columns	from	the	Query
If	you	no	longer	want	to	use	a	column	in	a	query,	you	can	remove	it.	If	you	do,
the	Query	Designer	removes	references	to	the	column	in	the	select	list,	the	sort
specification,	the	search	criteria,	SQL	pane,	and	any	grouping	specifications.

Note			If	you	want	to	remove	a	column	from	just	the	output	of	a	Select	query,
you	can	do	so	without	removing	it	from	the	query	altogether.	For	details,	see
Removing	Columns	from	Query	Output.

To	remove	a	column	from	the	query

In	the	Grid	pane,	select	the	grid	row	containing	the	column	you	want	to
remove	and	then	press	DELETE.

-or-

Remove	all	references	to	the	column	in	the	SQL	pane.

See	Also

Adding	Columns

Visual	Database	Tools

Reordering	Output	Columns
The	order	in	which	you	add	data	columns	to	a	Select	query	determines	the	order
in	which	they	appear	in	the	results.	The	first	column	you	add	to	the	query
appears	leftmost	in	the	results,	the	second	column	next,	and	so	on.

If	you	are	creating	Update	or	Insert	queries,	the	order	in	which	you	add	columns
affects	the	order	in	which	data	is	processed.

To	control	where	a	data	column	appears	in	the	result	set,	or	in	what	order	it	is
used,	you	can	reorder	the	columns.

To	reorder	columns	for	output

In	the	Grid	pane,	select	the	row	containing	the	column	by	clicking	the	row
selector	button	to	the	left	of	the	row	 .

4.	 Point	to	the	row	selector	button	and	drag	the	row	to	a	new	location.

-or-

Edit	the	order	of	the	column	names	in	the	SQL	pane.

Tip			You	can	add	a	data	row	at	a	specific	location	in	the	Grid	pane	by
inserting	a	blank	row	into	the	Grid	pane,	and	then	specifying	the	data	column
to	insert.	For	details,	see	Adding	Columns.

See	Also
Adding	Columns

Visual	Database	Tools

Creating	Column	Aliases
You	can	create	aliases	for	column	names	to	make	it	easier	to	work	with	column
names,	calculations,	and	summary	values.	For	example,	you	can	create	a	column
alias	to:

Create	a	column	name,	such	as	"Total	Amount,"	for	an	expression	such
as	(quantity	*	unit_price)	or	for	an	aggregate	function.	

Create	a	shortened	form	of	a	column	name,	such	as	"d_id"	for
"discounts.stor_id."

After	you	have	defined	a	column	alias,	you	can	use	the	alias	in	a	Select	query	to
specify	query	output.

To	create	a	column	alias

1.	 In	the	Grid	pane,	locate	the	row	containing	the	data	column	for	which
you	want	to	create	an	alias,	and	if	necessary,	mark	it	for	output.	If	the
data	column	is	not	already	in	the	grid,	add	it.

2.	 In	the	Alias	column	for	that	row,	enter	the	alias.	The	alias	must	follow
all	naming	conventions	for	SQL.	If	the	alias	name	you	enter	contains
spaces,	the	Query	Designer	automatically	puts	delimiters	around	it.

See	Also

Adding	Columns

Visual	Database	Tools

Creating	Table	Aliases
Aliases	can	make	it	easier	to	work	with	table	names.	Using	aliases	is	helpful
when:

You	want	to	make	the	statement	in	the	SQL	pane	shorter	and	easier	to
read.

You	refer	to	the	table	name	often	in	your	query	—	such	as	in	qualifying
column	names	—	and	want	to	be	sure	you	stay	within	a	specific
character-length	limit	for	your	query.	(Some	databases	impose	a
maximum	length	for	queries.)

You	are	working	with	multiple	instances	of	the	same	table	(such	as	in	a
self-join)	and	need	a	way	to	refer	to	one	instance	or	the	other.

For	example,	you	can	create	an	alias	"e"	for	a	table	name
employee_information,	and	then	refer	to	the	table	as	"e"	throughout	the	rest
of	the	query.

To	create	an	alias	for	a	table	or	table-structured	object

1.	 Add	the	table	or	table-structured	object	to	your	query.

2.	 In	the	Diagram	Pane,	right-click	the	object	for	which	you	want	to
create	an	alias,	then	select	Properties	from	the	shortcut	menu.

3.	 In	the	Properties	dialog	box,	enter	the	alias	in	the	Alias	box.

When	you	create	a	table	alias,	the	Query	Designer	substitutes	the	alias	for	the
corresponding	table	name	in	the	Table	column	of	the	Grid	pane.

Note			The	SQL	standard	specifies	that	when	you	create	an	alias	for	a	table
name,	you	must	use	the	alias	to	refer	to	the	table	in	the	rest	of	the	SQL

statement	(that	is,	you	cannot	use	the	original	table	name).

Visual	Database	Tools

Verifying	a	Query
To	avoid	problems,	you	can	check	the	query	you	have	built	to	ensure	its	syntax
is	correct.	This	option	is	especially	useful	when	you	enter	statements	in	the	SQL
pane.

Note			A	statement	can	be	valid,	and	therefore	be	verified	successfully,	even
if	it	cannot	be	represented	in	the	Diagram	and	Grid	panes.

Note			SQL	Verification	can	detect	some,	but	not	all	SQL	errors.		If	a	query
contains	an	error	not	detected	during	SQL	verification,	the	database	will
detect	the	error	when	you	run	the	query.

To	verify	an	SQL	statement

Right-click	in	the	SQL	pane,	and	select	 	Verify	SQL	Syntax	from	the
shortcut	menu.

See	Also
Executing	a	Query

Visual	Database	Tools

Commenting	a	Query
You	can	document	a	query	or	view	by	adding	a	comment	to	it.		You	can	enter	a
comment	with	a	property	page	or	in	the	SQL	pane.

You	should	avoid	entering	the	two-character	strings	"/*"	and	"*/"	within	your
comments.	

If	you	change	the	type	of	query	(for	example,	from	a	SELECT	query	to	an
UPDATE	query),	the	query's	comment	is	deleted.	

If	you	add	a	comment	to	a	view,	the	text	that	you	add	is	returned	by	the	sp_help
stored	procedure.

To	add	a	comment	to	a	query	with	the	property	page

1.	 Right-click	in	the	Query	Designer	or	View	Designer,	then	select
Property	Pages	from	the	shortcut	menu.

2.	 If	you	are	working	on	a	query,	select	the	Query	tab.		If	you	are
working	on	a	View,	select	the	View	tab.

3.	 Enter	the	comment	in	the	SQL	Comment	field.

To	add	a	comment	to	a	query	in	the	SQL	pane

1.	 Situate	the	text	cursor	at	the	beginning	or	end	of	the	SQL	pane.		Enter
the	comment,	preceded	by	"/*"	and	followed	by	"*/".	
You	must	situate	the	cursor	at	the	beginning	or	end	of	the	SQL	pane
because	you	cannot	enter	embedded	comments.

2.	 Click	in	the	Diagram	pane	or	Grid	pane.
The	comment	is	automatically	removed	from	the	SQL	pane	and
appended	to	the	existing	comment	text	in	the	SQL	Comment	field	on
the	Query	or	View	property	page.

JavaScript:hhobj_1.Click()

Visual	Database	Tools

Executing	a	Query
When	you	have	finished	designing	your	query,	you	can	run	it.

Note			If	you	want	to	test	whether	the	syntax	of	the	query	you	are	creating	is
correct,	you	can	verify	the	query.	For	details,	see	Verifying	a	Query.

To	execute	a	query

Right-click	anywhere	in	the	query	window,	and	select	Run	from	the
shortcut	menu.

If	you	are	creating	a	Select	query,	the	results	of	the	query	appear	in	the	Results
pane.

The	Query	Designer	returns	results	to	your	computer	in	batches	(incrementally)
so	that	you	can	begin	viewing	results	as	soon	as	possible,	and	so	that	you	can
perform	other	tasks	while	the	query	is	underway.		For	more	information,	see
Interaction	Between	the	Results	Pane	and	the	Database.

If	you	are	creating	an	Update,	Insert	From,	Insert	Into,	Delete,	or	Make	Table
query,	the	Query	Designer	displays	a	message	indicating	how	many	rows	were
affected	by	the	query.

For	information	on	viewing	results	and	navigating	in	the	Results	pane,	see
Results	Pane.

See	Also
Clearing	Query	Results	|	Editing	Rows	in	the	Results	Pane	|	Verifying	a	Query

Visual	Database	Tools

Stopping	a	Query
If	you	see	that	the	query	is	taking	too	long	or	is	not	returning	the	results	you
expect,	you	can	stop	the	query	if	it	has	not	already	finished.

To	stop	a	query

Right-click	anywhere	in	the	Results	pane,	and	then	choose	Clear
Results.

The	Query	Designer	also	stops	the	current	query	if	you	execute	a	new	query.

See	Also
Clearing	Query	Results	|	Executing	a	Query

Visual	Database	Tools

Clearing	Query	Results
If	you	change	the	current	query	definition,	the	Query	Designer	dims	the	Results
pane	to	indicate	that	the	contents	of	the	pane	no	longer	reflect	the	query	you	are
editing.	You	can	also	clear	the	contents	of	the	Results	pane.

To	clear	query	results

Right-click	in	the	Results	pane,	and	then	choose	Clear	Results.

If	a	query	is	being	executed	when	you	clear	the	Results	pane,	the	Query
Designer	stops	the	query.

See	Also
Executing	a	Query	|	Stopping	a	Query

Visual	Database	Tools

Printing	Query	Results
To	print	the	results	of	your	query,	you	can	copy	the	contents	of	the	Results	pane
to	another	Windows	program,	such	as	a	word	processing	program,	then	format
and	print	it	there.

The	Query	Designer	puts	query	results	onto	the	Clipboard	using	tabs	as
delimiters	between	columns	and	carriage	return	and	linefeed	characters	as
delimiters	between	rows.

To	print	query	results

1.	 Select	the	columns	or	rows	that	you	want	to	print.

2.	 Use	the	Copy	command	to	move	them	to	the	Clipboard.

3.	 Switch	to	the	Windows	program	you	want	to	use	to	print	the	results.

4.	 Use	the	Paste	command	to	move	the	query	results	from	the	Clipboard.

5.	 Format	and	print	the	results.

See	Also

Page	Setup	Dialog	Box

Visual	Database	Tools

Ordering	Query	Results
You	can	order	your	query	by	the	contents	of	a	data	column	or	by	an	expression.
The	Query	Designer	allows	you	to	specify	the	sort	types	ascending	and
descending.

You	can	also	order	the	query	results	by	more	than	one	column	or	expression	and
specify	the	sort	order	for	each.	For	example,	if	you	are	querying	an	employee
table,	you	can	order	the	results	by	department	(sort	order	=	1)	and	within	each
department	by	last	name	(sort	order	=	2).

Note			You	cannot	sort	by	the	contents	of	a	memo	or	binary	(BLOB)	column.

To	order	query	results

1.	 If	you	have	not	done	so	already,	add	the	columns	or	expressions	that
you	want	to	sort	by	to	the	Grid	pane.
If	you	do	not	want	the	columns	or	expressions	to	be	part	of	the	result
set,	remove	them	as	output	columns.

2.	 In	the	Grid	pane,	locate	the	row	containing	the	first	data	column	or
expression	to	sort	by,	and	then	in	the	Sort	Type	grid	column,	choose
Ascending	or	Descending.

3.	 If	you	are	sorting	by	multiple	columns	or	expressions,	specify	the	sort
order	in	the	Sort	Order	column	of	the	grid.

–or–

In	the	Diagram	pane,	right-click	the	column	to	sort	by	and	then	choose
Sort	Ascending	or	Sort	Descending	from	the	shortcut	menu.	You	can

select	multiple	columns	before	right-clicking	them.	If	you	use	this
method,	the	columns	are	sorted	in	the	order	you	select	them.

See	Also

Collapsing	Groups	of	Rows

Visual	Database	Tools

Creating	Queries
The	Query	Designer	features	an	easy-to-use	interface	for	working	with	your
queries.	The	topics	in	this	section	describe	the	fundamentals	of	working	with	any
query,	including	how	to	choose	a	table	or	table-structured	object	to	work	with,
how	to	add	or	remove	data	columns	from	the	query,	and	how	to	execute	the
query.

To See
Add	or	remove	tables	or	table-
structured	objects	from	a	query

Adding	Tables	Removing	Tables

Add	or	remove	columns	from	a
query	or	from	the	query	output

Adding	Columns
Removing	Columns	from	Query
Output
Removing	Columns	from	the	Query

Change	how	query	results	are
displayed

Reordering	Output	Columns
Ordering	Query	Results

Clear	or	print	the	query	results Clearing	Query	Results
Printing	Query	Results

Create	aliases	for	tables	or	columns Creating	Table	Aliases
Creating	Column	Aliases

Check	the	syntax	of	a	query Verifying	a	Query
To	run	or	stop	a	query Executing	a	Query

Stopping	a	Query

Visual	Database	Tools

Specifying	Search	Criteria
You	can	use	search	criteria	to	restrict	the	number	of	rows	returned	by	a	query.	
For	more	information	about	choosing	rows	for	inclusion	in	a	result	set,	see
Including	or	Excluding	Rows.

For	details	about	the	particular	steps	to	creating	search	criteria,	refer	to	the	topics
listed	in	the	following	table.

For	information	about See
Specifying	search	conditions	in	the
Query	Designer

Specifying	Search	Conditions

Creating	expressions	that	you	can	use
in	search	conditions

Using	Expressions	in	Queries

Using	operators	in	search	conditions Comparison	Operators,	Logical
Operators,	and	Wildcard	Characters

Entering	text,	numbers,	dates,	or
logical	values

Entering	Search	Values

Finding	rows	that	do	not	match	a
value

Selecting	Rows	that	Do	Not	Match	a
Value

Removing	duplicate	rows	from
Select	queries

Excluding	Duplicate	Rows

Applying	multiple	search	conditions
to	the	same	data	column

Specifying	Multiple	Search
Conditions	for	One	Column

Including	several	data	columns	as
part	of	the	search	condition	for	a
query

Specifying	Multiple	Search
Conditions	for	Multiple	Columns

Linking	search	conditions	with	AND
and	OR	operators

Combining	Search	Conditions

Using	subqueries Creating	Subqueries

Visual	Database	Tools

Specifying	Search	Conditions
You	can	specify	the	data	rows	that	appear	in	your	query	by	specifying
search	conditions.	For	example,	if	you	are	querying	an	employee	table,	you	can
specify	that	you	want	to	find	only	the	employees	who	work	in	a	particular
region.

You	specify	search	conditions	using	an	expression.	Most	commonly	the
expression	consists	of	an	operator	and	a	search	value.	For	example,	to	find
employees	in	a	particular	sales	region,	you	might	specify	the	following	search
criterion	for	the	region	column:

='UK'

Note			If	you	are	working	with	multiple	tables,	the	Query	Designer	examines
each	search	condition	to	determine	whether	the	comparison	you	are	making
results	in	a	join.	If	so,	the	Query	Designer	automatically	converts	the	search
condition	into	a	join.	For	more	information,	see	Joining	Tables
Automatically.

To	specify	search	conditions

1.	 If	you	have	not	done	so	already,	add	the	columns	or	expressions	that
you	want	to	use	within	your	search	condition	to	the	Grid	pane.
If	you	are	creating	a	Select	query	and	do	not	want	the	search	columns
or	expressions	to	appear	in	the	query	output,	clear	the	Output	column
for	each	search	column	or	expression	to	remove	them	as	output
columns.

2.	 Locate	the	row	containing	the	data	column	or	expression	to	search,	and
then	in	the	Criteria	grid	column,	enter	a	search	condition.

Note			If	you	do	not	enter	an	operator,	the	Query	Designer
automatically	inserts	the	equality	operator	"=".

The	Query	Designer	updates	the	SQL	statement	in	the	SQL	pane	by	adding	or

modifying	the	WHERE	clause.

See	Also
Wildcard	Characters	|	Including	or	Excluding	Rows

Visual	Database	Tools

Selecting	Rows	that	Do	Not	Match	a	Value
To	find	rows	that	do	not	match	a	value,	use	the	NOT	operator.	For	example,	to
find	all	the	rows	in	a	products	table	where	the	values	in	the	product	code
column	begin	with	a	character	other	than	"A,"	you	can	enter	a	search	condition
such	as	the	following:

NOT	LIKE	'A%'

See	Also
Entering	Search	Values	|	Specifying	Search	Conditions	|	Specifying	Search
Criteria	|	Including	or	Excluding	Rows

Visual	Database	Tools

Specifying	Multiple	Search	Conditions	for	One
Column
In	some	instances,	you	might	want	to	apply	a	number	of	search	conditions	to	the
same	data	column.	For	example,	you	might	want	to:

Search	for	several	different	names	in	an	employee	table	or	for
employees	who	are	in	different	salary	ranges.	This	type	of	search
requires	an	OR	condition.

Search	for	a	book	title	that	both	starts	with	the	word	"The"	and	contains
the	word	"Cook."	This	type	of	search	requires	an	AND	condition.

Note			The	information	in	this	topic	applies	to	search	conditions	in	both	the
WHERE	and	HAVING	clauses	of	a	query.	The	examples	focus	on	creating
WHERE	clauses,	but	the	principles	apply	to	both	types	of	search	conditions.
For	details	about	creating	HAVING	clauses,	see	Specifying	Conditions	for
Groups.

To	search	for	alternative	values	in	the	same	data	column,	you	specify	an	OR
condition.	To	search	for	values	that	meet	several	conditions,	you	specify	an
AND	condition.

Specifying	an	OR	Condition
Using	an	OR	condition	enables	you	to	specify	several	alternative	values	to
search	for	in	a	column.	This	option	expands	the	scope	of	the	search	and	can
return	more	rows	than	searching	for	a	single	value.

Tip			You	can	often	use	the	IN	operator	instead	to	search	for	multiple	values
in	the	same	data	column.	For	details,	see	Comparison	Operators.

To	specify	an	OR	condition

1.	 In	the	Grid	pane,	add	the	column	to	search.

2.	 In	the	Criteria	column	for	the	data	column	you	just	added,	specify	the
first	condition.

3.	 In	the	Or	...	column	for	the	same	data	column,	specify	the	second
condition.

The	Query	Designer	creates	a	WHERE	clause	that	contains	an	OR	condition
such	as	the	following:

SELECT	fname,	lname
FROM	employees
WHERE	(salary	<	30000)	OR	(salary	>	100000)

Specifying	an	AND	Condition
Using	an	AND	condition	enables	you	to	specify	that	values	in	a	column	must
meet	two	(or	more)	conditions	for	the	row	to	be	included	in	the	result	set.	This
option	narrows	the	scope	of	the	search	and	usually	returns	fewer	rows	than
searching	for	a	single	value.

Tip			If	you	are	searching	for	a	range	of	values,	you	can	use	the	BETWEEN
operator	instead	of	linking	two	conditions	with	AND.	For	details,	see
Comparison	Operators.

To	specify	an	AND	condition

1.	 In	the	Grid	pane,	add	the	column	to	search.

2.	 In	the	Criteria	column	for	the	data	column	you	just	added,	specify	the
first	condition.

3.	 Add	the	same	data	column	to	the	Grid	pane	again,	placing	it	in	an
empty	row	of	the	grid.

4.	 In	the	Criteria	column	for	the	second	instance	of	the	data	column,
specify	the	second	condition.

The	Query	Designer	creates	a	WHERE	clause	that	contains	an	AND	condition
such	as	the	following:

SELECT	title_id,	title
FROM	titles
WHERE	(title	LIKE	'%Cook%')	AND	
		(title	LIKE	'%Recipe%')

See	Also
Combining	Search	Conditions	|	Specifying	Multiple	Search	Conditions	for
Multiple	Columns

Visual	Database	Tools

Specifying	Multiple	Search	Conditions	for	Multiple
Columns
You	can	expand	or	narrow	the	scope	of	your	query	by	including	several	data
columns	as	part	of	your	search	condition.	For	example,	you	might	want	to:

Search	for	employees	who	either	have	worked	more	than	five	years	at
the	company	or	who	hold	certain	jobs.

Search	for	a	book	that	is	both	published	by	a	specific	publisher	and
pertains	to	cooking.

To	create	a	query	that	searches	for	values	in	either	of	two	(or	more)	columns,
you	specify	an	OR	condition.	To	create	a	query	that	must	meet	all	conditions	in
two	(or	more)	columns,	you	specify	an	AND	condition.

Note			If	you	are	creating	queries	that	include	combinations	of	AND	and	OR
clauses,	you	must	be	aware	of	how	the	query	is	interpreted	when	you	execute
it.	For	details,	see	Combining	Search	Conditions.

Specifying	an	OR	Condition
To	create	multiple	conditions	linked	with	OR,	you	put	each	separate	condition	in
a	different	column	of	the	Grid	pane.

To	specify	an	OR	condition	for	two	different	columns

1.	 In	the	Grid	pane,	add	the	columns	you	want	to	search.	For	details,	see
Adding	Columns.

2.	 In	the	Criteria	column	for	the	first	column	to	search,	specify	the	first
condition.	For	details,	see	Specifying	Search	Conditions.

3.	 In	the	Or	...	column	for	the	second	data	column	to	search,	specify	the
second	condition,	leaving	the	Criteria	column	blank.

The	Query	Designer	creates	a	WHERE	clause	that	contains	an	OR	condition
such	as	the	following:

SELECT	job_lvl,	hire_date
FROM	employee
WHERE	(job_lvl	>=	200)	OR	
		(hire_date	<	'01/01/90')

4.	 Repeat	Steps	3	and	4	for	each	additional	condition	you	want	to	add.
Use	a	different	Or	...	column	for	each	new	condition.

Specifying	an	AND	Condition
To	search	different	data	columns	using	conditions	linked	with	AND,	you	put	all
the	conditions	in	the	Criteria	column	of	the	grid.

To	specify	an	AND	condition	for	two	different	columns

1.	 In	the	Grid	pane,	add	the	columns	you	want	to	search.

2.	 In	the	Criteria	column	for	the	first	data	column	to	search,	specify	the
first	condition.

3.	 In	the	Criteria	column	for	the	second	data	column,	specify	the	second
condition.

The	Query	Designer	creates	a	WHERE	clause	that	contains	an	AND	condition
such	as	the	following:

SELECT	pub_id,	title
FROM	titles
WHERE	(pub_id	=	'0877')	AND	(title	LIKE	'%Cook%')

4.	 Repeat	Steps	2	and	3	for	each	additional	condition	you	want	to	add.

See	Also
Combining	Conditions	when	AND	Has	Precedence	|	Combining	Conditions
when	OR	Has	Precedence	|	Combining	Search	Conditions	|	Comparison
Operators	|	Specifying	Search	Criteria

Visual	Database	Tools

Combining	Conditions	when	AND	Has	Precedence
To	combine	conditions	with	AND,	you	put	the	conditions	in	the	same	column	of
the	Grid	pane.	To	combine	conditions	with	OR,	you	put	the	first	one	in	the
Criteria	column	and	additional	conditions	into	an	Or	...	column.

For	example,	imagine	that	you	want	to	find	either	employees	who	have	been
with	the	company	for	more	than	five	years	in	lower-level	jobs	or	employees	with
middle-level	jobs	regardless	of	their	hire	date.	This	query	requires	three
conditions,	two	of	them	linked	with	AND:

Employees	with	a	hire	date	earlier	than	five	years	ago	and	with	a	job
level	of	100

-or-

Employees	with	a	job	level	of	200

The	following	procedure	illustrates	how	to	create	this	type	of	query	in	the	Grid
pane.

To	combine	conditions	when	AND	has	precedence

1.	 In	the	Grid	pane,	add	the	data	columns	you	want	to	search.	If	you
want	to	search	the	same	column	using	two	or	more	conditions	linked
with	AND,	you	must	add	the	data	column	name	to	the	grid	once	for
each	value	you	want	to	search.

2.	 In	the	Criteria	column,	enter	all	the	conditions	that	you	want	to	link
with	AND.	For	example,	to	link	conditions	with	AND	that	search	the
hire_date	and	job_lvl	columns,	enter	values	as	shown	here:

These	grid	entries	produce	the	following	WHERE	clause	in	the	statement	in	the
SQL	pane:

WHERE	(hire_date	<	'01/01/91')	AND
		(job_lvl	=	100)

3.	 In	the	Or	...	grid	column,	enter	conditions	that	you	want	to	link	with
OR.	For	example,	to	add	a	condition	that	searches	for	another	value	in
the	job_lvl	column,	enter	an	additional	value	as	shown	here:

Adding	a	value	in	the	Or	...	column	adds	another	condition	to	the	WHERE
clause	in	the	statement	in	the	SQL	pane:

WHERE	(hire_date	<	'01/01/91')	AND
		(job_lvl	=	100)	OR	
		(job_lvl	=	200)

See	Also
Combining	Conditions	when	OR	Has	Precedence	|	Combining	Search
Conditions	|	Creating	an	Expression	|	Entering	Search	Values	|	Specifying	Search
Criteria

Visual	Database	Tools

Combining	Conditions	when	OR	Has	Precedence
To	link	conditions	with	OR	and	give	them	precedence	over	conditions	linked
with	AND,	you	must	repeat	the	AND	condition	for	each	OR	condition.

For	example,	imagine	that	you	want	to	find	all	employees	who	have	been	with
the	company	more	than	five	years	and	have	lower-level	jobs	or	are	retired.	This
query	requires	three	conditions,	a	single	condition	linked	to	two	additional
conditions	with	AND:

Employees	with	a	hire	date	earlier	than	five	years	ago,	and

Employees	with	a	job	level	of	100	or	whose	status	is	"R"	(for	retired).

The	following	procedure	illustrates	how	to	create	this	type	of	query	in	the	Grid
pane.

To	combine	conditions	when	OR	has	precedence

1.	 In	the	Grid	pane,	add	the	data	columns	you	want	to	search.	If	you
want	to	search	the	same	column	using	two	or	more	conditions	linked
with	AND,	you	must	add	the	data	column	name	to	the	grid	once	for
each	value	you	want	to	search.

2.	 Create	the	conditions	to	be	linked	with	OR	by	entering	the	first	one
into	the	Criteria	grid	column	and	the	second	(and	subsequent	ones)
into	separate	Or	...	columns.	For	example,	to	link	conditions	with	OR
that	search	the	job_lvl	and	status	columns,	enter	values	as	shown
here:

Entering	the	values	shown	in	the	grid	above	produces	the	following	WHERE
clause	in	the	statement	in	the	SQL	pane:

WHERE	(job_lvl	=	100)	OR	(status	=	'R')

3.	 Create	the	AND	condition	by	entering	it	once	for	each	OR	condition.
Place	each	entry	in	the	same	grid	column	as	the	OR	condition	it
corresponds	to.	For	example,	to	add	an	AND	condition	that	searches
the	hire_date	column	and	applies	to	both	OR	conditions,	enter	values
as	shown	here:

Entering	the	values	shown	in	the	grid	above	produces	the	following	WHERE
clause	in	the	statement	in	the	SQL	pane:

WHERE	(job_lvl	=	100)	AND	
		(hire_date	<	'01/01/90')	OR
		(status	=	'R')	AND	
		(hire_date	<	'01/01/91')

Tip			You	can	repeat	an	AND	condition	by	adding	it	once,	and	then	using
the	Cut	and	Paste	commands	from	the	Edit	menu	to	repeat	it	for	other
OR	conditions.

The	WHERE	clause	created	by	the	Query	Designer	is	equivalent	to	the
following	WHERE	clause,	which	uses	parentheses	to	specify	the	precedence	of
OR	over	AND:

WHERE	(job_lvl	=	100	OR	status	=	'R')	AND
			(hire_date	<	'01/01/91')

Note			If	you	enter	the	search	conditions	in	the	format	shown	immediately
above	in	the	SQL	pane,	but	then	make	a	change	to	the	query	in	the	Diagram
or	Grid	panes,	the	Query	Designer	recreates	the	SQL	statement	to	match	the
form	with	the	AND	condition	explicitly	distributed	to	both	OR	conditions.

See	Also

Combining	Conditions	when	AND	Has	Precedence	|	Combining	Search
Conditions	|	Comparison	Operators	|	Specifying	Search	Criteria

Visual	Database	Tools

Creating	Subqueries
You	can	use	the	results	of	one	query	as	the	input	for	another.	Typically,	you	use
the	results	of	a	subquery	as	a	search	condition	that	uses	the	IN()	function	or
EXISTS	operator.	However,	you	can	also	use	a	subquery	in	the	FROM	clause.

You	can	create	a	subquery	by	entering	it	in	either	the	Grid	pane	or	SQL	pane.

To	define	an	EXISTS	subquery	in	the	Grid	pane

1.	 Create	the	primary	query.

2.	 In	the	Column	column	for	the	first	empty	row	in	the	Grid	pane,	enter
EXISTS	followed	by	the	subquery	in	parentheses.

3.	 In	the	Criteria	column	for	the	row	containing	the	subquery,	enter
TRUE,	FALSE,	=TRUE,	or	=FALSE.	Entering	FALSE	or	=FALSE
results	in	a	NOT	EXISTS	query.

Note			To	create	a	NOT	EXISTS	query,	create	an	EXISTS	query	as	listed	in
the	above	steps,	and	set	the	Criteria	column	to	FALSE.	If	you	enter	NOT
EXISTS	in	the	Grid	pane,	the	Query	Designer	will	display	an	error.

To	define	a	subquery	in	the	SQL	pane

1.	 Create	the	primary	query.

2.	 In	the	SQL	pane,	select	the	SQL	statement,	and	then	use	Copy	to
move	the	query	to	the	Clipboard.

3.	 Start	the	new	query,	and	then	use	Paste	to	move	the	first	query	into	the
new	query's	WHERE	or	FROM	clause.

For	example,	imagine	you	have	two	tables,	products	and	suppliers,	and	you
want	to	create	a	query	showing	all	products	for	suppliers	in	Sweden.	Create	the
first	query	on	the	suppliers	table	to	find	all	Swedish	suppliers:

SELECT	supplier_id
FROM	supplier
WHERE	(country	=	'Sweden')

Use	the	Copy	command	to	move	this	query	to	the	Clipboard.	Create	the	second
query	using	the	products	table,	listing	the	information	you	need	about	products:

SELECT	product_id,	supplier_id,	product_name
FROM	products

In	the	SQL	pane,	add	a	WHERE	clause	to	the	second	query,	then	paste	the	first
query	from	the	Clipboard.	Place	parentheses	around	the	first	query,	so	that	the
end	result	looks	like	this:

SELECT	product_id,	supplier_id,	product_name
FROM	products
WHERE	supplier_id	IN
			(SELECT	supplier_id
		FROM	supplier
		WHERE	(country	=	'Sweden'))

Note			When	you	add	a	subquery	to	the	WHERE	clause,	the	subquery
appears	in	the	Criteria	column	of	the	Grid	pane.	You	can	edit	it	further	in
either	the	Grid	pane	or	SQL	pane.	However,	the	tables	and	table-structured
objects,	columns,	and	expressions	referenced	in	the	subquery	are	not
displayed	in	the	Diagram	or	Grid	pane.

See	Also
Supported	Query	Types

Visual	Database	Tools

Using	Expressions	in	a	Query
To	use	an	expression	in	a	query,	you	can	type	it	directly	into	the	Grid	pane	or
you	can	enter	it	in	the	SQL	pane	as	part	of	the	statement.	Entering	expressions	is
similar	to	entering	column	names.	For	details	about	how	to	create	an	expression,
see	Creating	an	Expression.

Tip			To	make	it	easier	to	see	long	expressions	on	your	screen,	you	can	resize
the	columns	in	the	Grid	pane.	For	details,	see	Grid	Pane.

In	this	topic	you	can	read	about:

Displaying	Expressions	in	the	Result	Set

Sorting	Using	Expressions

Searching	Using	Expressions

Displaying	Expressions	in	the	Result	Set

You	can	display	an	expression	in	the	result	set	by	specifying	the	expression	in
place	of	a	column	in	the	Grid	pane.

To	display	an	expression	in	the	result	set

1.	 In	the	Grid	pane,	insert	a	new	grid	row.

2.	 In	the	Column	column	of	the	new	grid	row,	type	the	expression	whose
results	you	want	to	display.

When	you	display	the	results	of	an	expression	in	the	result	set,	the	database
assigns	a	column	heading	to	it	using	the	format	"Exprn,"	where	n	is	the	number
of	the	expression	in	the	current	query.	You	can	replace	this	with	a	more
meaningful	alias	for	the	expression.	For	details,	see	Creating	Column	Aliases.

Sorting	Using	Expressions
In	SQL	Server	you	can	sort	by	the	results	of	an	expression.	As	with	columns,
you	specify	the	sort	type	and	sort	order.

To	sort	using	an	expression

1.	 In	the	Grid	pane,	insert	a	new	grid	row.

2.	 In	the	Column	column	of	the	new	grid	row,	type	the	expression	you
want	to	sort	by.

3.	 If	you	do	not	want	to	display	the	expression	in	the	query,	clear	the
Output	column	of	the	new	row.

4.	 In	the	Sort	Type	column,	choose	Ascending	or	Descending,	and	then
in	the	Sort	Order	column,	choose	the	sort	priority	for	the	expression.

Searching	Using	Expressions
There	are	two	ways	to	use	an	expression	for	searching.	The	expression	can	be
the	condition	against	which	you	compare	values,	or	it	can	function	as	the	value
you	are	comparing.

The	following	example	illustrates	how	you	can	use	an	expression	as	the
condition	in	a	WHERE	clause:

SELECT	ord_num,	ord_date	
FROM	sales
WHERE	(price	*	.9)	>	20

In	contrast,	the	following	example	illustrates	the	opposite	use	of	an	expression,
in	which	the	expression	is	the	value	you	are	comparing:

SELECT	ord_num,	ord_date
FROM	sales
WHERE	(ord_date	>=	DATEADD(day,	-10,	GETDATE()))

The	way	you	specify	an	expression	for	searching	depends	on	whether	it	appears
as	a	condition	or	as	a	value	to	search.

To	use	an	expression	as	a	condition

1.	 In	the	Grid	pane,	insert	a	new	grid	row.

2.	 In	the	Column	column	of	the	new	grid	row,	type	the	expression	you
want	to	use	as	the	condition.

3.	 In	the	Criteria	column	for	the	new	row,	type	the	value	to	compare
against	the	condition.

To	use	an	expression	as	a	search	value

1.	 If	it	is	not	already	in	the	Grid	pane,	add	the	data	column	or	expression
you	want	to	search.

2.	 In	the	Criteria	column	for	that	data	column	or	expression,	enter	the
expression	to	use	as	a	search	value.

See	Also
Creating	an	Expression	|	Functions	for	Expressions	|	Operators	for	Expressions	|
Predefined	Variables	for	Expressions	|	Query	Designer	Considerations	for	SQL
Server	Databases

Visual	Database	Tools

Including	User-Defined	Functions	in	a	Query
You	can	include	a	user-defined	function	in	a	query.		You	can	include	any	of	the
three	types	of	functions:

Non-updateable	functions	returning	a	table

Updateable	functions	returning	a	table

Functions	returning	a	scalar

To	include	an	updateable	or	non-updateable	table	function	in	a	query	or
view

1.	 Design	the	query	to	which	you	want	to	add	the	function.		In	the	Query
Designer,	be	sure	the	Diagram	pane	is	visible.

2.	 In	the	SQL	Server	Enterprise	Manager,	expand	the	Databases	node	and
the	particular	node	for	the	database	you	are	working	on.

3.	 Click	the	User	Defined	Functions	node.

4.	 From	the	list	of	functions,	drag	the	function	onto	the	Diagram	pane.

To	include	a	scalar	function	in	a	query	or	view

1.	 Design	the	query	to	which	you	want	to	add	the	function.		In	the	Query
Designer,	be	sure	the	Grid	pane	is	visible.

2.	 In	the	SQL	Server	Enterprise	Manager,	expand	the	Databases	node	and
the	particular	node	for	the	database	you	are	working	on.

3.	 Click	the	User	Defined	Functions	node.

4.	 In	the	first	blank	row	of	the	Grid	pane,	enter	the	name	of	the	function
in	the	Column	column.

See	Also

User-Defined	Functions

Visual	Database	Tools

Querying	on	Groups	of	Rows
You	can	create	a	query	result	in	which	each	result	row	corresponds	to	an	entire
group	of	rows	from	the	original	data.		To	learn	about	the	logical	principles	for
creating	such	queries,	see	Collapsing	Groups	of	Rows.

To	learn	the	details	about	creating	such	queries,	see	the	topics	listed	in	the
following	table:

To See
Learn	about	excluding	duplicate
rows

Excluding	Duplicate	Rows

Create	subsets	of	summary
information	by	organizing	data	into
groups

Grouping	Rows	in	Query	Results

Count	the	number	of	rows	that	meet
specific	conditions

Counting	Rows	in	a	Table

Create	an	average,	sum,	or	other
summary	from	information	in	all
rows	in	a	table

Summarizing	Values	for	All	Rows	in
a	Table

Use	calculations	to	create	summary
information

Summarizing	Values	Using	Custom
Expressions

Create	search	conditions	that	apply	to
groups	of	rows

Specifying	Conditions	for	Groups

Use	search	conditions	on	both
individual	rows	and	on	groups	of
rows

Using	HAVING	and	WHERE
Clauses	in	the	Same	Query

Visual	Database	Tools

Excluding	Duplicate	Rows
If	you	want	to	see	only	unique	values	in	a	result	set,	you	can	specify	that	you
want	to	exclude	duplicates	from	the	result	set.

To	exclude	duplicate	rows	from	the	result	set

1.	 Right-click	the	background	of	the	Diagram	pane,	then	choose
Property	Pages	from	the	shortcut	menu.

2.	 In	the	Query	tab	of	the	Property	pages	window,	select	Distinct
values.

The	Query	Designer	inserts	the	keyword	DISTINCT	in	front	of	the	list
of	display	columns	in	the	SQL	statement.

Note			If	you	use	the	DISTINCT	keyword,	you	cannot	modify	the
result	set	in	the	results	pane.

See	Also

Selecting	Rows	that	Do	Not	Match	a	Value	|	Specifying	Search	Criteria	|
Collapsing	Groups	of	Rows

Visual	Database	Tools

Grouping	Rows	in	Query	Results
If	you	want	to	create	subtotals	or	show	other	summary	information	for	subsets	of
a	table,	you	create	groups	using	an	aggregate	query.	Each	group	summarizes	the
data	for	all	the	rows	in	the	table	that	have	the	same	value.

For	example,	you	might	want	to	see	the	average	price	of	a	book	in	the	titles
table,	but	break	the	results	down	by	publisher.	To	do	so,	you	group	the	query	by
publisher	(for	example,	pub_id).	The	resulting	query	output	might	look	like
this:

When	you	group	data,	you	can	display	only	summary	or	grouped	data,	such	as:

The	values	of	the	grouped	columns	(those	that	appear	in	the	GROUP
BY	clause).	In	the	example	above,	pub_id	is	the	grouped	column.

Values	produced	by	aggregate	functions	such	as	SUM()	and	AVG().	In
the	example	above,	the	second	column	is	produced	by	using	the	AVG()
function	with	the	price	column.

You	cannot	display	values	from	individual	rows.	For	example,	if	you	group	only
by	publisher,	you	cannot	also	display	individual	titles	in	the	query.	Therefore,	if
you	add	columns	to	the	query	output,	the	Query	Designer	automatically	adds
them	to	the	GROUP	BY	clause	of	the	statement	in	the	SQL	pane.	If	you	want	a
column	to	be	aggregated	instead,	you	can	specify	an	aggregate	function	for	that
column.

If	you	group	by	more	than	one	column,	each	group	in	the	query	shows	the
aggregate	values	for	all	grouping	columns.

For	example,	the	following	query	against	the	titles	table	groups	by	publisher
(pub_id)	and	also	by	book	type	(type).	The	query	results	are	ordered	by

publisher	and	show	summary	information	for	each	different	type	of	book	that	the
publisher	produces:

SELECT	pub_id,	type,	SUM(price)	Total_price
FROM	titles
GROUP	BY	pub_id,	type

The	resulting	output	might	look	like	this:

To	group	rows

1.	 Start	the	query	by	adding	the	tables	you	want	to	summarize	to	the
Diagram	pane.

2.	 Right-click	the	background	of	the	Diagram	pane,	then	choose	Group
By	from	the	shortcut	menu.	The	Query	Designer	adds	a	Group	By
column	to	the	grid	in	the	Grid	pane.

3.	 Add	the	column	or	columns	you	want	to	group	to	the	Grid	pane.	If
you	want	the	column	to	appear	in	the	query	output,	be	sure	that	the
Output	column	is	selected	for	output.

The	Query	Designer	adds	a	GROUP	BY	clause	to	the	statement	in	the
SQL	pane.	For	example,	the	SQL	statement	might	look	like	this:

SELECT	pub_id
FROM	titles
GROUP	BY	pub_id

4.	 Add	the	column	or	columns	you	want	to	aggregate	to	the	Grid	pane.
Be	sure	that	the	column	is	marked	for	output.

5.	 In	the	Group	By	grid	cell	for	the	column	that	is	going	to	be
aggregated,	select	the	appropriate	aggregate	function.

The	Query	Designer	automatically	assigns	a	column	alias	to	the
column	you	are	summarizing.		You	can	replace	this	automatically
generated	alias	with	a	more	meaningful	one.		For	more	details,	see
Creating	Column	Aliases.

The	corresponding	statement	in	the	SQL	pane	might	look	like	this:

SELECT			pub_id,	SUM(price)	AS	Totalprice
FROM					titles
GROUP	BY	pub_id

See	Also
Specifying	Conditions	for	Groups	|	Summarizing	and	Grouping	|	Summarizing
Values	for	All	Rows	in	a	Table	|	Summary	and	Grouping	Behavior	in	the	Query
Designer	|	Querying	on	Groups	of	Rows.

Visual	Database	Tools

Counting	Rows	in	a	Table
You	can	count	rows	in	a	table	to	determine:

The	total	number	of	rows	in	a	table,	for	example,	a	count	of	all	the
books	in	a	titles	table.

The	number	of	rows	in	a	table	that	meet	a	specific	condition,	for
example,	the	number	of	books	by	one	publisher	in	a	titles	table.

The	number	of	values	in	a	particular	column.

When	you	count	values	in	a	column,	nulls	are	not	included	in	the	count.	For
example,	you	might	count	the	number	of	books	in	a	titles	table	that	have	values
in	the	advance	column.	By	default,	the	count	includes	all	values,	not	just	unique
values.

The	procedures	for	all	three	types	of	counts	are	similar.

To	count	all	the	rows	in	a	table

1.	 Be	sure	the	table	you	want	to	summarize	is	already	present	in	the
Diagram	pane.

2.	 Right-click	the	background	of	the	Diagram	pane,	then	choose	Group
By	from	the	shortcut	menu.	The	Query	Designer	adds	a	Group	By
column	to	the	grid	in	the	Grid	pane.

3.	 Select	*	(All	Columns)	in	the	rectangle	representing	the	table	or	table-
structured	object.

The	Query	Designer	automatically	fills	the	term	Count	into	the	Group
By	column	in	the	Grid	pane	and	assigns	a	column	alias	to	the	column
you	are	summarizing.		You	can	replace	this	automatically	generated

alias	with	a	more	meaningful	one.		For	more	details,	see	Creating
Column	Aliases.

To	count	all	the	rows	that	meet	a	condition

1.	 Be	sure	the	table	you	want	to	summarize	is	already	present	in	the
Diagram	pane.

2.	 Right-click	the	background	of	the	Diagram	pane,	then	choose	Group
By	from	the	shortcut	menu.	The	Query	Designer	adds	a	Group	By
column	to	the	grid	in	the	Grid	pane.

3.	 Select	*	(All	Columns)	in	the	rectangle	representing	the	table	or	table-
structured	object.

The	Query	Designer	automatically	fills	the	term	Count	into	the	Group
By	column	in	the	Grid	pane	and	assigns	a	column	alias	to	the	column
you	are	summarizing.	To	create	a	more	useful	column	heading	in
query	output,	see	Creating	Column	Aliases.

4.	 Add	the	data	column	that	you	want	to	search,	and	then	clear	the	check
box	in	the	Output	column.

The	Query	Designer	automatically	fills	the	term	Group	By	into	the
Group	By	column	of	the	grid.

5.	 Change	Group	By	in	the	Group	By	column	to	Where.

6.	 In	the	Criteria	column	for	the	data	column	to	search,	enter	the	search
condition.

To	count	the	values	in	a	column

1.	 Be	sure	the	table	you	want	to	summarize	is	already	present	in	the
Diagram	pane.

2.	 Right-click	the	background	of	the	Diagram	pane,	then	choose	Group
By	from	the	shortcut	menu.	The	Query	Designer	adds	a	Group	By

column	to	the	grid	in	the	Grid	pane.

3.	 Add	the	column	that	you	want	to	count	to	the	Grid	pane.

The	Query	Designer	automatically	fills	the	term	Group	By	into	the
Group	By	column	of	the	grid.

4.	 Change	Group	By	in	the	Group	By	column	to	Count.

Note			To	count	only	unique	values,	choose	Count	Distinct.

See	Also
Summarizing	and	Grouping	|	Summarizing	Values	for	All	Rows	in	a	Table	|
Summary	and	Grouping	Behavior	in	the	Query	Designer

Visual	Database	Tools

Summarizing	or	Aggregating	Values	for	All	Rows	in	a
Table
Using	an	aggregate	function,	you	can	create	a	summary	for	all	the	values	in	a
table.	For	example,	you	can	create	a	query	such	as	the	following	to	display	the
total	price	for	all	books	in	the	titles	table:

SELECT	SUM(price)
FROM	titles

You	can	create	multiple	aggregations	in	the	same	query	by	using	aggregate
functions	with	more	than	one	column.	For	example,	you	can	create	a	query	that
calculates	the	total	of	the	price	column	and	the	average	of	the	discount
column.

You	can	also	aggregate	the	same	column	in	different	ways	(such	as	totaling,
counting,	and	averaging)	in	the	same	query.	For	example,	the	following	query
averages	and	summarizes	the	price	column	from	the	titles	table:

SELECT	AVG(price),	SUM(price)
FROM	titles

If	you	add	a	search	condition,	you	can	aggregate	the	subset	of	rows	that	meet
that	condition.

Note			You	can	also	count	all	the	rows	in	the	table	or	the	ones	that	meet	a
specific	condition.	For	details,	see	Counting	Rows	in	a	Table.

When	you	create	a	single	aggregation	value	for	all	rows	in	a	table,	you	display
only	the	aggregate	values	themselves.	For	example,	if	you	are	totaling	the	value
of	the	price	column	of	the	titles	table,	you	would	not	also	display	individual
titles,	publisher	names,	and	so	on.

Note			If	you	are	subtotaling	—	that	is,	creating	groups	—	you	can	display
column	values	for	each	group.	For	details,	see	Grouping	Rows	in	Query
Results.

To	aggregate	values	for	all	rows

1.	 Be	sure	the	table	you	want	to	aggregate	is	already	present	in	the
Diagram	pane.

2.	 Right-click	the	background	of	the	Diagram	pane,	then	choose	Group
By	from	the	shortcut	menu.	The	Query	Designer	adds	a	Group	By
column	to	the	grid	in	the	Grid	pane.

3.	 Add	the	column	you	want	to	aggregate	to	the	Grid	pane.	Be	sure	that
the	column	is	marked	for	output.

The	Query	Designer	automatically	assigns	a	column	alias	to	the
column	you	are	summarizing.		You	can	replace	this	alias	with	a	more
meaningful	one.		For	details,	see	Creating	Column	Aliases.

4.	 In	the	Group	By	grid	column,	select	the	appropriate	aggregate
function,	such	as:	Sum,	Avg,	Min,	Max,	Count.	If	you	want	to
aggregate	only	unique	rows	in	the	result	set,	choose	an	aggregate
function	with	the	DISTINCT	options,	such	as	Min	Distinct.	Do	not
choose	Group	By,	Expression,	or	Where,	because	those	options	do
not	apply	when	you	are	aggregating	all	rows.

The	Query	Designer	replaces	the	column	name	in	the	statement	in	the
SQL	pane	with	the	aggregate	function	that	you	specify.	For	example,
the	SQL	statement	might	look	like	this:

SELECT	SUM(price)
FROM	titles

5.	 If	you	want	to	create	more	than	one	aggregation	in	the	query,	repeat
steps	3	and	4.

When	you	add	another	column	to	the	query	output	list	or	order	by	list,
the	Query	Designer	automatically	fills	the	term	Group	By	into	the
Group	By	column	of	the	grid.	Select	the	appropriate	aggregate
function.

6.	 Add	search	conditions,	if	any,	to	specify	the	subset	of	rows	you	want

to	summarize.

When	you	execute	the	query,	the	Results	pane	displays	the	aggregations	that	you
specified.

Note			The	Query	Designer	maintains	aggregate	functions	as	part	of	the	SQL
statement	in	the	SQL	pane	until	you	explicitly	turn	off	Group	By	mode.
Therefore,	if	you	modify	your	query	by	changing	its	type	or	by	changing
which	tables	or	table-structured	objects	are	present	in	the	diagram	pane,	the
resulting	query	might	include	invalid	aggregate	functions.

See	Also
Counting	Rows	in	a	Table	|	Grouping	Rows	in	Query	Results	|	Summarizing
Values	for	All	Rows	in	a	Table	|	Summarizing	Values	Using	Custom	Expressions
|	Summary	and	Grouping	Behavior	in	the	Query	Designer

Visual	Database	Tools

Summarizing	or	Aggregating	Values	Using	Custom
Expressions
In	addition	to	using	aggregate	functions	to	aggregate	data,	you	can	create	custom
expressions	to	produce	aggregate	values.	You	can	use	custom	expressions	in
place	of	aggregate	functions	anywhere	in	an	aggregate	query.

For	example,	in	the	titles	table	you	might	want	to	create	a	query	that	shows	not
just	the	average	price,	but	what	the	average	price	would	be	if	it	were	discounted.

You	cannot	include	an	expression	that	is	based	on	calculations	involving	only
individual	rows	in	the	table;	the	expression	must	be	based	on	an	aggregate	value,
because	only	the	aggregate	values	are	available	at	the	time	the	expression	is
calculated.

To	specify	a	custom	expression	for	a	summary	value

1.	 Specify	the	groups	for	your	query.	For	details,	see	Grouping	Rows	in
Query	Results.

2.	 Move	to	a	blank	row	of	the	Grid	Pane,	and	then	type	the	expression	in
the	Columns	column.

The	Query	Designer	automatically	assigns	a	column	alias	to	the
expression	to	create	a	useful	column	heading	in	query	output.	For
more	details,	see	Creating	Column	Aliases.

3.	 In	the	Group	By	column	for	the	expression,	select	Expression.

See	Also

Counting	Rows	in	a	Table	|	Summarizing	Values	for	All	Rows	in	a	Table	|
Summary	and	Grouping	Behavior	in	the	Query	Designer

Visual	Database	Tools

Specifying	Conditions	for	Groups
You	can	limit	the	groups	that	appear	in	a	query	by	specifying	a	condition	that
applies	to	groups	as	a	whole	—	a	HAVING	clause.	After	the	data	has	been
grouped	and	aggregated,	the	conditions	in	the	HAVING	clause	are	applied.	Only
the	groups	that	meet	the	conditions	appear	in	the	query.

For	example,	you	might	want	to	see	the	average	price	of	all	books	for	each
publisher	in	a	titles	table,	but	only	if	the	average	price	exceeds	$10.00.	In	that
case,	you	could	specify	a	HAVING	clause	with	a	condition	such	as	AVG(price)
>	10.

Note			In	some	instances,	you	might	want	to	exclude	individual	rows	from
groups	before	applying	a	condition	to	groups	as	a	whole.	For	details,	see
Using	HAVING	and	WHERE	Clauses	in	the	Same	Query.

You	can	create	complex	conditions	for	a	HAVING	clause	by	using	AND	and	OR
to	link	conditions.	For	details	about	using	AND	and	OR	in	search	conditions,	see
Specifying	Multiple	Search	Conditions	for	One	Column.

To	specify	a	condition	for	a	group

1.	 Specify	the	groups	for	your	query.	For	details,	see	Grouping	Rows	in
Query	Results.

2.	 If	it	is	not	already	in	the	Grid	pane,	add	the	column	on	which	you	want
to	base	the	condition.	(Most	often	the	condition	involves	a	column	that
is	already	a	group	or	summary	column.)	You	cannot	use	a	column	that
is	not	part	of	an	aggregate	function	or	of	the	GROUP	BY	clause.

3.	 In	the	Criteria	column,	specify	the	condition	to	apply	to	the	group.

The	Query	Designer	automatically	creates	a	HAVING	clause	in	the
statement	in	the	SQL	pane,	such	as	in	the	following	example:

SELECT	pub_id,	AVG(price)

FROM	titles
GROUP	BY	pub_id
HAVING	(AVG(price)	>	10)

4.	 Repeat	steps	2	and	3	for	each	additional	condition	you	want	to	specify.

See	Also

Grouping	Rows	in	Query	Results	|	Summarizing	and	Grouping	|	Summary	and
Grouping	Behavior	in	the	Query	Designer	|	Using	HAVING	and	WHERE
Clauses	in	the	Same	Query

Visual	Database	Tools

Using	HAVING	and	WHERE	Clauses	in	the	Same
Query
In	some	instances,	you	might	want	to	exclude	individual	rows	from	groups
(using	a	WHERE	clause)	before	applying	a	condition	to	groups	as	a	whole
(using	a	HAVING	clause).

A	HAVING	clause	is	like	a	WHERE	clause,	but	applies	only	to	groups	as	a
whole	(that	is,	to	the	rows	in	the	result	set	representing	groups),	whereas	the
WHERE	clause	applies	to	individual	rows.	A	query	can	contain	both	a	WHERE
clause	and	a	HAVING	clause.	In	that	case:

The	WHERE	clause	is	applied	first	to	the	individual	rows	in	the	tables
or	table-structured	objects	in	the	diagram	pane..	Only	the	rows	that	meet
the	conditions	in	the	WHERE	clause	are	grouped.

The	HAVING	clause	is	then	applied	to	the	rows	in	the	result	set	that	are
produced	by	grouping.	Only	the	groups	that	meet	the	HAVING
conditions	appear	in	the	query	output.	You	can	apply	a	HAVING	clause
only	to	columns	that	also	appear	in	the	GROUP	BY	clause	or	in	an
aggregate	function.

For	example,	imagine	that	you	are	joining	the	titles	and	publishers	tables	to
create	a	query	showing	the	average	book	price	for	a	set	of	publishers.	You	want
to	see	the	average	price	for	only	a	specific	set	of	publishers	—	perhaps	only	the
publishers	in	the	state	of	California.	And	even	then,	you	want	to	see	the	average
price	only	if	it	is	over	$10.00.

You	can	establish	the	first	condition	by	including	a	WHERE	clause,	which
discards	any	publishers	that	are	not	in	California,	before	calculating	average
prices.	The	second	condition	requires	a	HAVING	clause,	because	the	condition
is	based	on	the	results	of	grouping	and	summarizing	the	data.	The	resulting	SQL
statement	might	look	like	this:

SELECT	titles.pub_id,	AVG(titles.price)

FROM	titles	INNER	JOIN	publishers
			ON	titles.pub_id	=	publishers.pub_id
WHERE	publishers.state	=	'CA'
GROUP	BY	titles.pub_id
HAVING	AVG(price)	>	10

You	can	create	both	HAVING	and	WHERE	clauses	in	the	Grid	pane	of	the
Query	Designer.	By	default,	if	you	specify	a	search	condition	for	a	column,	the
condition	becomes	part	of	the	HAVING	clause.	However,	you	can	change	the
condition	to	be	a	WHERE	clause.

You	can	create	a	WHERE	clause	and	HAVING	clause	involving	the	same
column.	To	do	so,	you	must	add	the	column	twice	to	the	Grid	pane,	then	specify
one	instance	as	part	of	the	HAVING	clause	and	the	other	instance	as	part	of	the
WHERE	clause.

To	specify	a	WHERE	condition	in	an	aggregate	query

1.	 Specify	the	groups	for	your	query.	For	details,	see	Grouping	Rows	in
Query	Results.

2.	 If	it	is	not	already	in	the	Grid	pane,	add	the	column	on	which	you
want	to	base	the	WHERE	condition.

3.	 Clear	the	Output	column	unless	the	data	column	is	part	of	the
GROUP	BY	clause	or	included	in	an	aggregate	function.

4.	 In	the	Criteria	column,	specify	the	WHERE	condition.	The	Query
Designer	adds	the	condition	to	the	HAVING	clause	of	the	SQL
statement.

Note			The	query	shown	in	the	example	for	this	procedure	joins
two	tables,	titles	and	publishers.

At	this	point	in	the	query,	the	SQL	statement	contains	a	HAVING
clause:

SELECT	titles.pub_id,	AVG(titles.price)
FROM	titles	INNER	JOIN	publishers	
			ON	titles.pub_id	=	publishers.pub_id
GROUP	BY	titles.pub_id
HAVING	publishers.state	=	'CA'

5.	 In	the	Group	By	column,	select	Where	from	the	list	of	group	and
summary	options.		The	Query	Designer	removes	the	condition	from
the	HAVING	clause	in	the	SQL	statement	and	adds	it	to	the	WHERE
clause.

The	SQL	statement	changes	to	include	a	WHERE	clause	instead:

SELECT	titles.pub_id,	AVG(titles.price)
FROM	titles	INNER	JOIN	publishers	
			ON	titles.pub_id	=	publishers.pub_id
WHERE	publishers.state	=	'CA'
GROUP	BY	titles.pub_id

See	Also

Grouping	Rows	in	Query	Results	|	Specifying	Conditions	for	Groups	|	Summary
and	Grouping	Behavior	in	the	Query	Designer

Visual	Database	Tools

Querying	Using	Multiple	Tables
A	query	result	can	include	data	from	multiple	tables	or	table-structured	objects.	
To	combine	data	from	multiple	table-structured	objects,	you	use	the	JOIN
operation	from	SQL.		For	more	information,	see	Combining	Tables.	

For	information	about	creating	queries	using	multiple	tables,	see	the	following
topics:

To See
Learn	the	different	ways	in	which
tables	can	be	joined

Types	of	Joins

Learn	how	the	Query	Designer
displays	join	information	in	the
Diagram	pane

How	the	Query	Designer	Represents
Joins

Let	the	Query	Designer	determine	if
tables	should	be	joined

Joining	Tables	Automatically

Join	tables	yourself Joining	Tables	Manually
Specify	that	tables	should	be	joined
using	an	operator	other	than	equal
(=)

Modifying	Join	Operators

Specify	that	joined	tables	should
include	rows	even	when	they	do	not
match	rows	in	the	corresponding
table

Creating	Outer	Joins

Use	a	join	to	find	subsets	of	data
within	a	single	table

Creating	Self-Joins

Remove	a	join	between	tables Removing	Joins

Visual	Database	Tools

Joining	Tables	Automatically
When	you	add	two	or	more	tables	to	a	query,	the	Query	Designer	attempts	to
determine	if	they	are	related.	If	they	are,	the	Query	Designer	automatically	puts
join	lines	between	the	rectangles	representing	the	tables	or	table-structured
objects.

The	Query	Designer	will	recognize	tables	as	joined	if:

The	database	contains	information	that	specifies	that	the	tables	are
related.

If	two	columns,	one	in	each	table,	have	the	same	name	and	data	type.
The	column	must	be	a	primary	key	in	at	least	one	of	the	tables.	For
example,	if	you	add	employee	and	jobs	tables,	if	the	job_id	column
is	the	primary	key	in	the	jobs	table,	and	if	each	table	has	a	column
called	job_id	with	the	same	data	type,	the	Query	Designer	will
automatically	join	the	tables.

Note			The	Query	Designer	will	create	only	one	join	based	on
columns	with	the	same	name	and	data	type.	If	more	than	one
join	is	possible,	the	Query	Designer	stops	after	creating	a	join
based	on	the	first	set	of	matching	columns	that	it	finds.

The	Query	Designer	detects	that	a	search	condition	(a	WHERE	clause)
is	actually	a	join	condition.	For	example,	you	might	add	the	tables
employee	and	jobs,	then	create	a	search	condition	that	searches	for	the
same	value	in	the	job_id	column	of	both	tables.	When	you	do,	the
Query	Designer	detects	that	the	search	condition	results	in	a	join,	and
then	creates	a	join	condition	based	on	the	search	condition.

If	the	Query	Designer	has	created	a	join	that	is	not	suitable	to	your	query,	you
can	modify	the	join	or	remove	it.	For	details,	see	Modifying	Join	Operators	and
Removing	Joins.

If	the	Query	Designer	does	not	automatically	join	the	tables	in	your	query,	you

can	create	a	join	yourself.	For	details,	see	Joining	Tables	Manually.

See	Also
Creating	Outer	Joins	|	Creating	Self-Joins	|	How	the	Query	Designer	Represents
Joins	|	Joining	Tables	Automatically	|	Joining	Tables	Manually	|	Modifying	Join
Operators	|	Querying	Using	Multiple	Tables	|	Removing	Joins	|	Types	of	Joins

Visual	Database	Tools

Joining	Tables	Manually
When	you	add	two	(or	more)	tables	to	a	query,	the	Query	Designer	attempts	to
join	them	based	on	common	data	or	on	information	stored	in	the	database	about
how	tables	are	related.	For	details,	see	Joining	Tables	Automatically.	However,
if	the	Query	Designer	has	not	joined	the	tables	automatically,	or	if	you	want	to
create	additional	join	conditions	between	tables,	you	can	join	tables	manually.

You	can	create	joins	based	on	comparisons	between	any	two	columns,	not	just
columns	that	contain	the	same	information.	For	example,	if	your	database
contains	two	tables,	titles	and	roysched,	you	can	compare	values	in	the
ytd_sales	column	of	the	titles	table	against	the	lorange	and	hirange	columns
in	the	roysched	table.	Creating	this	join	would	allow	you	to	find	titles	for	which
the	year-to-date	sales	falls	between	the	low	and	high	ranges	for	the	royalty
payments.

Tip			Joins	work	fastest	if	the	columns	in	the	join	condition	have	been
indexed.	In	some	cases,	joining	on	unindexed	columns	can	result	in	a	slow
query.	For	information	about	creating	indexes	using	the	Visual	Database
Tools,	see	Indexes.

To	manually	join	tables	or	table-structured	objects

1.	 Add	to	the	Diagram	pane	the	objects	you	want	to	join.

2.	 Drag	the	name	of	the	join	column	in	the	first	table	or	table-structured
object	and	drop	it	onto	the	related	column	in	the	second	table	or	table-
structured	object.	You	cannot	base	a	join	on	text,	ntext,	or	image
columns.

Note			The	join	columns	must	be	of	the	same	(or	compatible)
data	types.	For	example,	if	the	join	column	in	the	first	table	is	a
date,	you	must	relate	it	to	a	date	column	in	the	second	table.	On
the	other	hand,	if	the	first	join	column	is	an	integer,	the	related
join	column	must	also	be	of	an	integer	data	type,	but	it	can	be	a
different	size.	The	Query	Designer	will	not	check	the	data

types	of	the	columns	you	use	to	create	a	join,	but	when	you
execute	the	query,	the	database	will	display	an	error	if	the	data
types	are	not	compatible.

3.	 If	necessary,	change	the	join	operator;	by	default,	the	operator	is	an
equal	sign	(=).	For	background,	see	Join	Comparison	Operators.		For
details,	see	Modifying	Join	Operators.

The	Query	Designer	adds	an	INNER	JOIN	clause	to	the	SQL	statement	in	the
SQL	pane.	You	can	change	the	type	to	an	outer	join.	For	details	see	Creating
Outer	Joins.

See	Also
How	the	Query	Designer	Represents	Joins	|	Querying	Using	Multiple	Tables	|
Types	of	Joins

Visual	Database	Tools

Joining	Tables	on	Multiple	Columns
You	can	join	tables	with	multiple	columns.		That	is,	you	can	create	a	query	that
matches	rows	from	the	two	tables	only	if	they	satisfy	multiple	conditions.		For
background	information,	see	Join	Columns.		If	the	database	contains	a
relationship	matching	multiple	foreign-key	columns	in	one	table	to	a
multicolumn	primary	key	in	the	other	table,	you	can	use	this	relationship	to
create	a	multicolumn	join.		For	details,	see	Joining	Tables	Automatically.

Even	if	the	database	contains	no	multi-column	foreign-key	relationship,	you	can
create	the	join	manually.

To	manually	create	a	multicolumn	join

1.	 Add	to	the	Diagram	pane	the	tables	you	want	to	join.

2.	 Drag	the	name	of	the	first	join	column	in	the	first	table	window	and
drop	it	onto	the	related	column	in	the	second	table	window.	You
cannot	base	a	join	on	text,	ntext,	or	image	columns.

Note			In	general,	the	join	columns	must	be	of	the	same	(or
compatible)	data	types.	For	example,	if	the	join	column	in	the
first	table	is	a	date,	you	must	relate	it	to	a	date	column	in	the
second	table.	On	the	other	hand,	if	the	first	join	column	is	an
integer,	the	related	join	column	must	also	be	of	an	integer	data
type,	but	it	can	be	a	different	size.	However,	SQL	Server
provides	implicit	data	type	conversions	so	that	many	joins
between	seemingly	incompatible	columns	will	work.		
The	Query	Designer	will	not	check	the	data	types	of	the
columns	you	use	to	create	a	join,	but	when	you	execute	the
query,	the	database	will	display	an	error	if	the	data	types	are
not	compatible.

3.	 Drag	the	name	of	the	second	join	column	in	the	first	table	window	and
drop	it	onto	the	related	column	in	the	second	table	window.

4.	 Repeat	step	3	for	each	additional	pair	of	join	columns	in	the	two
tables.

See	Also

Joining	Tables	Automatically	|	Joining	Tables	Manually	|	Querying	Using
Multiple	Tables

Visual	Database	Tools

Modifying	Join	Operators
By	default,	the	Query	Designer	joins	tables	using	an	equal	sign	(an	equijoin),
which	matches	values	in	the	two	join	columns.	If	you	want,	you	can	change	the
operator	used	to	compare	values	in	the	join	columns.

To	modify	join	operators

1.	 In	the	Diagram	pane,	right-click	the	join	line	you	want	to	modify,	and
then	choose	Properties	from	the	shortcut	menu.

2.	 In	the	Join	Line	tab	of	the	Properties	dialog	box,	select	a	new	operator
from	the	list.
–or–
Change	the	operator	in	the	SQL	statement	in	the	SQL	pane.

See	Also

Joining	Tables	Automatically	|	Joining	Tables	Manually	|	Querying	Using
Multiple	Tables

Visual	Database	Tools

Creating	Outer	Joins
By	default,	the	Query	Designer	creates	an	inner	join	between	tables.	If	you	want
to	include	data	rows	in	the	result	set	that	do	not	have	a	match	in	the	joined	table,
you	can	create	an	outer	join.

When	you	create	an	outer	join,	the	order	in	which	tables	appear	in	the	SQL
statement	(as	reflected	in	the	SQL	pane)	is	significant.	The	first	table	you	add
becomes	the	"left"	table	and	the	second	table	becomes	the	"right"	table.	(The
actual	order	in	which	the	tables	appear	in	the	Diagram	pane	is	not	significant.)
When	you	specify	a	left	or	right	outer	join,	you	are	referring	to	the	order	in
which	the	tables	were	added	to	the	query	and	to	the	order	in	which	they	appear
in	the	SQL	statement	in	the	SQL	pane.

To	create	an	outer	join

1.	 Create	the	join,	either	automatically	or	manually.	For	details,	see
Joining	Tables	Automatically	or	Joining	Tables	Manually.

2.	 Select	the	join	line	in	the	Diagram	pane,	and	then	choose	Select	All
Rows	from	table	from	the	shortcut	menu,	selecting	the	command	that
includes	the	table	whose	extra	rows	you	want	to	include.

–or–

In	the	Diagram	pane,	right-click	the	join	line	you	want	to	change	to	an
outer	join,	and	then	choose	Properties	from	the	shortcut	menu.	Under
Include	rows	in	the	Join	Line	tab	of	the	Properties	dialog	box,	choose
the	option	specifying	the	table	from	which	you	want	to	include	all
rows.

Choose	the	first	table	to	create	a	left	outer	join.

Choose	the	second	table	to	create	a	right	outer	join.

Choose	both	tables	to	create	a	full	outer	join.

When	you	specify	an	outer	join,	the	Query	Designer	modifies	the	join	line	to
indicate	an	outer	join.

In	addition,	the	Query	Designer	modifies	the	SQL	statement	in	the	SQL	pane	to
reflect	the	change	in	join	type,	as	shown	in	the	following	statement:

SELECT	employee.job_id,	employee.emp_id,
			employee.fname,	employee.minit,	jobs.job_desc
FROM	employee	LEFT	OUTER	JOIN	jobs	ON	
				employee.job_id	=	jobs.job_id

Because	an	outer	join	includes	unmatched	rows,	you	can	use	it	to	find	rows	that
violate	foreign	key	constraints.	To	do	so,	you	create	an	outer	join	and	then	add	a
search	condition	to	find	rows	in	which	the	primary	key	column	of	the	rightmost
table	is	null.	For	example,	the	following	outer	join	finds	rows	in	the	employee
table	that	do	not	have	corresponding	rows	in	the	jobs	table:

SELECT	employee.emp_id,	employee.job_id
FROM	employee	LEFT	OUTER	JOIN	jobs	
			ON	employee.job_id	=	jobs.job_id
WHERE	(jobs.job_id	IS	NULL)

See	Also
How	the	Query	Designer	Represents	Joins	|	Querying	Using	Multiple	Tables	|
Types	of	Joins

Visual	Database	Tools

Creating	Self-Joins	Automatically
If	a	table	has	a	reflexive	relationship	in	the	database,	you	can	join	it	to	itself
automatically.

To	create	a	self-join	automatically

1.	 Add	to	the	Diagram	pane	the	table	you	want	to	work	with.

2.	 Add	the	same	table	again,	so	that	the	Diagram	pane	shows	the	same
table	twice	within	the	Diagram	pane.
The	Query	Designer	assigns	an	alias	to	the	second	instance	by	adding
a	sequential	number	to	the	table	name.	In	addition,	the	Query	Designer
creates	a	join	line	between	the	two	rectangles	representing	the	two
different	ways	the	table	participates	in	the	query.

See	Also

Drawing	a	Reflexive	Relationship

Visual	Database	Tools

Creating	Self-Joins	Manually
You	can	join	a	table	to	itself	even	if	the	table	does	not	have	a	reflexive
relationship	in	the	database.		For	example,	you	can	use	a	self-join	to	find	pairs	of
authors	living	in	the	same	city.

As	with	any	join,	a	self-join	requires	at	least	two	tables.	The	difference	is	that,
instead	of	adding	a	second	table	to	the	query,	you	add	a	second	instance	of	the
same	table.	That	way,	you	can	compare	a	column	in	the	first	instance	of	the	table
to	the	same	column	in	the	second	instance,	which	allows	you	to	compare	the
values	in	a	column	to	each	other.	The	Query	Designer	assigns	an	alias	to	the
second	instance	of	the	table.

For	example,	if	you	are	creating	a	self-join	to	find	all	pairs	of	authors	within
Berkeley,	you	compare	the	city	column	in	the	first	instance	of	the	table	against
the	city	column	in	the	second	instance.	The	resulting	query	might	look	like	the
following:

			SELECT	
									authors.au_fname,	
									authors.au_lname,	
									authors1.au_fname	AS	Expr2,	
									authors1.au_lname	AS	Expr3
						FROM	
									authors	
												INNER	JOIN
												authors	authors1	
															ON	authors.city	
																=	authors1.city
						WHERE
									authors.city	=	'Berkeley'

Creating	a	self-join	often	requires	multiple	join	conditions.	To	understand	why,
consider	the	result	of	the	preceding	query:

			Cheryl	Carson							Cheryl	Carson
			Abraham	Bennet						Abraham	Bennet
			Cheryl	Carson							Abraham	Bennet
			Abraham	Bennet						Cheryl	Carson

The	first	row	is	useless;	it	indicates	that	Cheryl	Carson	lives	in	the	same	city	as
Cheryl	Carson.		The	second	row	is	equally	useless.		To	eliminate	this	useless
data,	you	add	another	condition	retaining	only	those	result	rows	in	which	the	two
author	names	describe	different	authors.		The	resulting	query	might	look	like
this:

			SELECT	
									authors.au_fname,	
									authors.au_lname,	
									authors1.au_fname	AS	Expr2,	
									authors1.au_lname	AS	Expr3
						FROM	
									authors	
												INNER	JOIN
												authors	authors1	
															ON	authors.city	
																=	authors1.city
															AND	authors.au_id
																<>	authors1.au_id
						WHERE
									authors.city	=	'Berkeley'

The	result	set	is	improved:

			Cheryl	Carson							Abraham	Bennet
			Abraham	Bennet						Cheryl	Carson

But	the	two	result	rows	are	redundant.		The	first	says	Carson	lives	in	the	same
city	as	Bennet,	and	the	second	says	the	Bennet	lives	in	the	same	city	as	Carson.	
To	eliminate	this	redundancy,	you	can	alter	the	second	join	condition	from	"not

equals"	to	"less	than".		The	resulting	query	might	look	like	this:

			SELECT	
									authors.au_fname,	
									authors.au_lname,	
									authors1.au_fname	AS	Expr2,	
									authors1.au_lname	AS	Expr3
						FROM	
									authors	
												INNER	JOIN
												authors	authors1	
															ON	authors.city	
																=	authors1.city
															AND	authors.au_id
																<	authors1.au_id
						WHERE
									authors.city	=	'Berkeley'

And	the	result	set	looks	like	this:

			Cheryl	Carson							Abraham	Bennet

To	create	a	self-join	manually

1.	 Add	to	the	Diagram	pane	the	table	or	table-structured	object	you	want
to	work	with.

2.	 Add	the	same	table	again,	so	that	the	Diagram	pane	shows	the	same
table	or	table-structured	object	twice	within	the	Diagram	pane..

The	Query	Designer	assigns	an	alias	to	the	second	instance	by	adding
a	sequential	number	to	the	table	name.	In	addition,	the	Query	Designer
creates	a	join	line	between	the	two	occurrences	of	the	table	or	table-
structured	object	within	the	Diagram	pane.

3.	 Right-click	the	join	line,	choose	Properties	from	the	shortcut	menu,
and	then	change	the	comparison	operator	between	the	primary	keys	as

required.	For	example,	you	might	change	the	operator	to	less	than	(<).

4.	 Create	the	additional	join	condition	(for	example,	authors.zip	=
authors1.zip)	by	dragging	the	name	of	the	primary	join	column	in	the
first	occurrence	of	the	table	or	table-structured	object	and	dropping	it
on	the	corresponding	column	in	the	second	occurrence.

5.	 Specify	other	options	for	the	query	such	as	output	columns,	search
conditions,	and	sort	order.

See	Also

Querying	Using	Multiple	Tables

Visual	Database	Tools

Removing	Joins
If	you	do	not	want	tables	to	be	joined	via	an	inner	join	or	an	outer	join,	you	can
remove	the	join	between	them.	For	example,	you	might	remove	a	join	that	the
Query	Designer	has	created	automatically	between	two	tables.

Note			Removing	a	join	from	a	query	does	alter	the	underlying	relationship	in
the	database.

If	two	joined	tables	are	part	of	your	query	and	you	remove	all	join	conditions
between	them,	the	resulting	query	becomes	the	product	of	both	tables	—	that	is,
it	becomes	a	CROSS	JOIN.		For	more	information,	see	Types	of	Joins.

To	remove	a	join

In	the	Diagram	pane,	select	the	join	line	for	the	join	to	remove,	and	then
press	the	DELETE	key.	You	can	select	and	delete	multiple	join	lines	at
one	time.

The	Query	Designer	removes	the	join	line	and	alters	the	statement	in	the	SQL
pane.

See	Also
Joining	Tables	Automatically	|	Joining	Tables	Manually	|	Querying	Using
Multiple	Tables

Visual	Database	Tools

Manipulating	Data
In	addition	to	viewing	the	contents	of	tables,	you	can	use	the	Query	Designer	or
View	Designer	to	modify	data,	such	as	editing	the	contents	of	columns,	adding
new	rows,	and	deleting	existing	rows.	Using	the	graphical	features	of	the	Query
Designer	and	View	Designer,	you	can	modify	data	in	tables	two	ways:

Execute	a	Select	query,	then	edit	the	data	directly	in	the	Results	pane.

Create	a	query	to	update,	delete,	or	copy	data	in	tables	or	updateable
views.

Note			If	you	are	familiar	with	SQL,	you	can	also	execute	any	statement	in
the	SQL	pane,	including	those	that	update	or	delete	data	in	tables	or
updateable	views.	The	features	discussed	in	this	section	relate	primarily	to
capabilities	that	are	available	by	using	the	Diagram,	Grid,	and	Results	panes.

Editing	directly	in	the	Results	pane	is	similar	to	editing	in	a	form	or	spreadsheet.
You	can	see	the	changes	immediately,	and	if	there	is	a	problem	(for	example,
you	attempt	to	enter	data	that	does	not	match	the	data	type	of	a	column),	you	are
notified	as	soon	as	you	try	to	move	to	another	row.	For	details,	see	Editing	Rows
in	the	Results	Pane.

Alternatively,	you	can	create	a	query	to	update,	delete,	or	copy	the	data	of	many
rows	in	one	operation.	For	example,	you	can	create	one	query	that	changes	the
status	of	all	the	employees	who	have	worked	at	the	company	more	than	five
years,	or	a	set	of	two	queries	that	first	copy	and	then	delete	all	orders	more	than
two	years	old.

See	Also
Adding	New	Rows	in	the	Results	Pane	|	Creating	Delete	Queries	|	Deleting
Rows	in	the	Results	Pane	|	Editing	Rows	in	the	Results	Pane

Visual	Database	Tools

Editing	Rows	in	the	Results	Pane
In	many	cases,	you	can	edit	the	data	in	the	Results	pane	grid	and	save	changes	to
the	table	or	tables	represented	by	the	query.	However,	whether	you	can	actually
change,	add,	or	delete	rows	depends	on	the	type	of	query	you	have	defined	and
on	constraints,	triggers,	and	permissions	maintained	by	the	database.

For	details	about	the	types	of	queries	you	can	update,	see	Rules	for	Updating
Results.

Note			You	cannot	update	timestamp	or	binary	columns	using	the	Query
Designer.

The	Query	Designer	or	View	Designer	can	perform	only	minor	validation	of	the
data	you	enter	in	the	Results	pane.	For	example,	if	the	price	column	of	the	titles
table	accepts	only	positive	values,	the	Query	Designer	or	View	Designer	might
not	enforce	this	restriction,	and	it	would	be	possible	to	enter	a	negative	value.
However,	when	you	save	a	row,	the	database	will	report	an	error	if	any	column
in	the	row	contains	invalid	data.

To	edit	data	in	the	Results	pane

1.	 Navigate	to	the	cells	containing	the	data	you	want	to	change.

Type	in	the	new	data.	While	you	are	editing,	the	leftmost	column	displays	 	to
indicate	that	the	row	is	being	edited.
While	you	are	editing,	the	following	rules	apply:

When	entering	number,	currency,	time,	or	date	information,	use	a
format	that	will	be	recognized	according	to	the	specification	in	the
Regional	Settings	dialog	box	in	the	Windows	Control	Panel.

To	enter	a	NULL	value	into	a	cell,	press	CTRL+0.

You	can	edit	a	memo-type	column	(such	as	a	text,	memo,	or	long
character	column)	if	the	column	does	not	display	<Long	Text>.	The
Results	pane	can	accept	up	to	900	characters	of	text	in	memo-type

columns.	If	you	are	typing	in	a	cell	and	exceed	the	amount	of	text	that
the	Results	pane	can	accept,	the	Query	Designer	will	beep	to	indicate
that	you	have	exceeded	this	limit.

You	cannot	edit	BLOB	data.

2.	 Save	your	changes	by	moving	to	another	row	in	the	grid.

Note			The	Query	Designer	or	View	Designer	does	not
automatically	save	your	changes	if	you	switch	to	another	pane.
If	you	edit	the	current	query	(for	example,	by	making	a	change
in	the	Grid	Pane),	the	Results	pane	is	dimmed.	However,	it	is
still	active,	and	you	can	still	edit	and	save	the	row	on	which
you	had	been	working.

To	cancel	your	changes	for	the	current	row,	press	ESC.	If	you	press	ESC	while
in	a	cell	that	you	have	changed,	the	changes	for	only	that	cell	are	canceled.	If
you	press	ESC	while	in	a	cell	that	you	have	not	changed,	the	changes	for	the
entire	row	are	canceled	and	all	the	cells	in	that	row	revert	to	their	old	values.

It	is	possible	that	a	result	you	are	using	conflicts	with	changes	being	made	by
other	users.	For	example,	you	might	be	using	the	Results	pane	to	edit	a	row
while	another	user	executes	an	Update	query	that	modifies	the	row	you	are
editing.

When	you	save	the	row	you	have	edited,	the	Query	Designer	or	View	Designer
compares	the	row	against	the	version	currently	in	the	database.	If	there	is	a
difference,	a	message	appears	indicating	that	the	target	row	could	not	be	located
in	the	database.		You	can	run	the	query	or	view	a	second	time	to	refresh	the
Results	pane	and	see	the	other	user's	modifications.

See	Also
Adding	New	Rows	in	the	Results	Pane	|	Deleting	Rows	in	the	Results	Pane	|
Navigating	in	the	Query	Designer	|	Rules	for	Updating	Results

Visual	Database	Tools

Adding	New	Rows	in	the	Results	Pane
If	the	data	in	the	Results	pane	can	be	modified,	you	can	also	add	new	rows.

Note			You	cannot	add	BLOB	or	binary	columns	using	the	Results	pane.

The	Query	and	View	Designers	can	perform	only	simple	data	validation	on	the
data	you	enter	in	the	Results	pane.	For	example,	if	the	price	column	of	the	titles
table	accepts	only	positive	values,	the	Query	or	View	Designer	might	be	able	to
enforce	this	restriction	and	might	display	an	error	message	if	you	enter	a
negative	value.	But	if	the	column	is	defined	in	the	database	to	accept	prices	in
only	a	certain	range	(such	as	between	100	and	1000),	the	Query	or	View
Designer	cannot	enforce	this	restriction.	When	you	save	a	row,	the	database	will
display	an	error	message	if	any	column	in	the	row	contains	invalid	data.

When	you	add	a	row,	some	columns	might	be	filled	in	by	default	values	or
triggers.	In	many	cases	the	Query	Designer	or	View	Designer	can	refresh	the
display	of	the	new	row	to	show	you	the	automatically	generated	values.
However,	rows	cannot	be	refreshed	if	the	row's	primary	key:

Is	not	part	of	the	result	set.

Is	generated	automatically.

Is	modified	by	a	trigger.

In	these	cases,	if	you	want	to	see	the	row	as	it	is	stored	in	the	database,	you	must
re-execute	the	query.	Even	then,	however,	the	new	row	might	not	appear	if	it
does	not	match	the	search	conditions	in	the	query	you	execute.

You	can	add	new	data	either	by	typing	it	in	or	by	pasting	it	from	the	Clipboard.
A	row	to	be	pasted	must	have	exactly	the	same	number	and	types	of	columns	as
the	table	into	which	you	are	pasting.	You	can	paste	multiple	rows	into	the
Results	pane	at	once.

To	add	a	new	data	row

1.	 Navigate	to	the	bottom	of	the	Results	pane,	where	a	blank	row	is

available	for	adding	a	new	data	row.

Tip			You	can	jump	from	anywhere	in	the	Results	pane	to	the
bottom	by	pressing	INS	or	right-clicking	the	Results	pane,	and
then	choosing	New.

2.	 If	you	are	pasting	rows	from	the	Clipboard,	select	the	new	row	by
clicking	the	button	to	its	left.

3.	 Enter	the	data	for	the	new	row.	If	you	are	pasting,	choose	Paste	from
the	shortcut	menu.

Tip			To	enter	null	into	a	cell,	press	CTRL+0.

4.	 Save	the	new	row	by	moving	to	another	row	in	the	grid.

Note			The	Query	Designer	or	View	Designer	does	not
automatically	save	your	changes	if	you	switch	to	another	pane.
If	you	edit	the	current	query	or	view	(for	example,	by	making	a
change	in	the	Grid	pane),	the	Results	pane	is	dimmed.
However,	it	is	still	active,	and	you	can	still	edit	and	save	the
row	on	which	you	had	been	working.

If	an	error	occurs	when	you	save	the	row	(for	example,	you	left	a	column	blank
that	does	not	accept	null	values),	the	Query	Designer	displays	the	error	message
provided	by	the	database,	and	then	returns	you	to	the	row	you	were	editing.	You
can	then:

Resolve	the	error	by	making	further	edits	in	the	row.

Cancel	the	edit	by	pressing	ESC.	If	you	press	ESC	while	in	a	cell	that
you	changed,	the	changes	for	that	cell	are	canceled.	If	you	press	ESC
while	in	a	cell	you	have	not	changed,	the	changes	for	the	entire	row	are
canceled.

See	Also

Deleting	Rows	in	the	Results	Pane	|	Editing	Rows	in	the	Results	Pane	|

Navigating	in	the	Query	Designer	|	Rules	for	Updating	Results

Visual	Database	Tools

Deleting	Rows	in	the	Results	Pane
If	the	data	in	the	Results	pane	can	be	modified,	you	can	also	delete	existing
rows.

To	delete	a	row

1.	 Select	the	box	to	the	left	of	the	row	or	rows	you	want	to	delete	in	the
Results	pane	grid.

2.	 Press	DELETE.

Caution			Rows	you	delete	in	this	way	are	permanently
removed	from	the	database	and	cannot	be	recalled.

See	Also

Adding	New	Rows	in	the	Results	Pane	|	Editing	Rows	in	the	Results	Pane	|
Navigating	in	the	Query	Designer	|	Rules	for	Updating	Results

Visual	Database	Tools

Creating	Update	Queries
You	can	change	the	contents	of	multiple	rows	in	one	operation	by	using	an
Update	query.	For	example,	in	a	titles	table	you	can	use	an	Update	query	to	add
10%	to	the	price	of	all	books	for	a	particular	publisher.

When	you	create	an	Update	query,	you	specify:

The	table	to	update

The	columns	whose	contents	you	want	to	update

The	value	or	expression	to	use	to	update	the	individual	columns

Search	conditions	to	define	the	rows	you	want	to	update

For	example,	the	following	query	updates	the	titles	table	by	adding	10%	to	the
price	of	all	titles	for	one	publisher:

UPDATE	titles
SET	price	=	price	*	1.1
WHERE	(pub_id	=	'0766')

Caution			You	cannot	undo	the	action	of	executing	an	Update	query.	As	a
precaution,	back	up	your	data	before	executing	the	query.

To	create	an	Update	query

1.	 Add	the	table	you	want	to	update	to	the	Diagram	pane.

2.	 Right-click	in	the	Query	Designer	window,	point	to	Change	Type,	and
then	choose	Update.

Note				If	more	than	one	table	is	displayed	in	the	Diagram	pane
when	you	start	the	Update	query,	the	Query	Designer	displays
the	Update	Table	dialog	box	to	prompt	you	for	the	name	of	the

table	to	update.

3.	 Define	the	data	columns	to	update	by	adding	them	to	the	query.	For
details,	see	Adding	Columns.	Columns	will	be	updated	only	if	you	add
them	to	the	query.

4.	 In	the	New	Value	column	of	the	Grid	pane,	enter	the	update	value	for
the	column.	You	can	enter	literal	values,	column	names,	or
expressions.	The	value	must	match	(or	be	compatible	with)	the	data
type	of	the	column	you	are	updating.

Caution			The	Query	Designer	cannot	check	that	a	value	fits
within	the	length	of	the	column	you	are	updating.	If	you
provide	a	value	that	is	too	long,	it	might	be	truncated	without
warning.	For	example,	if	a	name	column	is	20	characters	long
but	you	specify	an	update	value	of	25	characters,	the	last	5
characters	might	be	truncated.

5.	 Define	the	rows	to	update	by	entering	search	conditions	in	the
Criteria	column.	For	details,	see	Specifying	Search	Conditions.
If	you	do	not	specify	a	search	condition,	all	rows	in	the	specified	table
will	be	updated.

Note			When	you	add	a	column	to	the	Grid	pane	for	use	in	a	search	condition,
the	Query	Designer	also	adds	it	to	the	list	of	columns	to	be	updated.	If	you	want
to	use	a	column	for	a	search	condition	but	not	update	it,	clear	the	check	box	next
to	the	column	name	in	the	rectangle	representing	the	table	or	table-structured
object.	

When	you	execute	an	Update	query,	no	results	are	reported	in	the	Results	pane.
Instead,	a	message	appears	indicating	how	many	rows	were	changed.

See	Also
Creating	Delete	Queries	|	Supported	Query	Types

Visual	Database	Tools

Creating	Insert	From	Queries
You	can	copy	rows	from	one	table	to	another	or	within	a	table	using	an	Insert
From	query.	For	example,	in	a	titles	table,	you	can	use	an	Insert	From	query	to
copy	information	about	all	the	titles	for	one	publisher	to	a	second	table	that	you
can	make	available	to	that	publisher.	An	Insert	From	query	is	similar	to	a	Make
Table	query,	but	copies	rows	into	an	existing	table.

Tip			You	can	also	copy	rows	from	one	table	to	another	using	cut	and	paste.
For	details,	see	Adding	New	Rows	in	the	Results	Pane.

When	you	create	an	Insert	From	query,	you	specify:

The	database	table	to	copy	rows	to	(the	destination	table).

The	table	or	tables	to	copy	rows	from	(the	source	table).	The	source
table	or	tables	become	part	of	a	subquery.	If	you	are	copying	within	a
table,	the	source	table	is	the	same	as	the	destination	table.

The	columns	in	the	source	table	whose	contents	you	want	to	copy.

The	target	columns	in	the	destination	table	to	copy	the	data	to.

Search	conditions	to	define	the	rows	you	want	to	copy.

Sort	order,	if	you	want	to	copy	the	rows	in	a	particular	order.

Group	By	options,	if	you	want	to	copy	only	summary	information.

For	example,	the	following	query	copies	title	information	from	the	titles	table	to
an	archive	table	called	archivetitles.	The	query	copies	the	contents	of	four
columns	for	all	titles	belonging	to	a	particular	publisher:

INSERT	INTO	archivetitles	

			(title_id,	title,	type,	pub_id)
SELECT	title_id,	title,	type,	pub_id
FROM	titles
WHERE	(pub_id	=	'0766')

Note			To	insert	values	into	a	new	row,	use	an	Insert	Into	query.

You	can	copy	the	contents	of	selected	columns	or	of	all	columns	in	a	row.	In
either	case,	the	data	you	are	copying	must	be	compatible	with	the	columns	in	the
rows	you	are	copying	to.	For	example,	if	you	copy	the	contents	of	a	column	such
as	price,	the	column	in	the	row	you	are	copying	to	must	accept	numeric	data
with	decimal	places.	If	you	are	copying	an	entire	row,	the	destination	table	must
have	compatible	columns	in	the	same	physical	position	as	the	source	table.

When	you	create	an	Insert	From	query,	the	Grid	pane	changes	to	reflect	options
available	for	copying	data.	An	Append	column	is	added	to	allow	you	to	specify
the	columns	into	which	data	should	be	copied.

Caution			You	cannot	undo	the	action	of	executing	an	Insert	From	query.	As
a	precaution,	back	up	your	data	before	executing	the	query.

To	create	an	Insert	From	query

1.	 Right-click	in	the	Query	Designer	window,	point	to	Change	Type,	and
then	choose	Insert	From.

2.	 In	the	Choose	Table	for	INSERT	FROM	Query	dialog	box,	select	the
table	to	copy	rows	to	(the	destination	table).

Note			The	Query	Designer	cannot	determine	in	advance	which
tables	and	views	you	can	update.	Therefore,	the	Table	Name
list	in	the	Choose	Table	for	Insert	From	Query	dialog	box
shows	all	available	tables	and	views	in	the	data	connection	you
are	querying,	even	those	that	you	might	not	be	able	to	copy
rows	to.

3.	 Add	to	the	query	the	table	to	copy	rows	from	(the	source	table).	For
details,	see	Adding	Tables.	If	you	are	copying	rows	within	a	table,	you
can	add	the	source	table	as	a	destination	table.

The	data	columns	from	the	source	table	appear	in	an	input	window	in
the	Diagram	pane.

4.	 In	the	rectangle	representing	the	table	or	table-structured	object,
choose	the	names	of	the	columns	whose	contents	you	want	to	copy.	To
copy	entire	rows,	choose	*	(All	Columns).

The	Query	Designer	adds	the	columns	you	choose	to	the	Column
column	of	the	Grid	pane.

5.	 In	the	Append	column	of	the	Grid	pane,	select	a	target	column	in	the
destination	table	for	each	column	you	are	copying.	Choose
tablename.*	if	you	are	copying	entire	rows.	The	columns	in	the
destination	table	must	have	the	same	(or	compatible)	data	types	as	the
columns	in	the	source	table.

6.	 If	you	want	to	copy	rows	in	a	particular	order,	specify	a	sort	order.	For
details,	see	Ordering	Query	Results.

7.	 Specify	the	rows	to	copy	by	entering	search	conditions	in	the	Criteria
column.	For	details,	see	Specifying	Search	Conditions.
If	you	do	not	specify	a	search	condition,	all	rows	from	the	source	table
will	be	copied	to	the	destination	table.

Note			When	you	add	a	column	to	search	to	the	Grid	pane,	the	Query	Designer
also	adds	it	to	the	list	of	columns	to	copy.	If	you	want	to	use	a	column	for
searching	but	not	copy	it,	clear	the	check	box	next	to	the	column	name	in	the
rectangle	representing	the	table	or	table-structured	object	

8.	 If	you	want	to	copy	summary	information,	specify	Group	By	options.
For	details,	see	Summarizing	Values	for	All	Rows	in	a	Table.

When	you	execute	an	Insert	From	query,	no	results	are	reported	in	the	Results
pane.	Instead,	a	message	appears	indicating	how	many	rows	were	copied.

See	Also

Creating	Delete	Queries	|	Creating	Update	Queries	|	Supported	Query	Types

Visual	Database	Tools

Creating	Delete	Queries
You	can	delete	multiple	rows	in	one	operation	by	using	a	Delete	query.	When
you	create	a	Delete	query,	you	specify	the	database	table	to	delete	rows	from	and
the	search	condition	to	define	the	rows	you	want	to	delete.

Note				Deleting	all	rows	from	a	table	clears	the	data	in	the	table	but	does	not
delete	the	table	itself.	You	can	delete	tables	using	the	Database	Designer.	For
information	about	using	the	Database	Designer,	see	Database	Designer.

When	you	create	a	Delete	query,	the	Grid	pane	changes	to	reflect	the	options
available	for	deleting	rows.	Because	you	do	not	display	data	in	a	Delete	query,
the	Output,	Sort	By,	and	Sort	Order	columns	are	removed.	In	addition,	the	check
boxes	next	to	the	column	names	in	the	rectangle	representing	the	table	or	table-
structured	object	are	removed	because	you	cannot	specify	individual	columns	to
delete.

Caution			You	cannot	undo	the	action	of	executing	a	Delete	query.	As	a
precaution,	back	up	your	data	before	executing	a	Delete	query.

To	create	a	Delete	query

1.	 Add	the	table	to	delete	rows	from	to	the	Diagram	pane.

2.	 Right-click	in	the	Query	Designer	window,	point	to	Change	Type,	and
then	choose	Delete.

Note			If	more	than	one	table	is	displayed	in	the	Diagram	pane
when	you	start	the	Delete	query,	the	Query	Designer	displays
the	Delete	Table	dialog	box	to	prompt	you	for	the	name	of	the
table	to	delete	rows	from.

3.	 Enter	search	conditions	to	define	the	rows	to	be	deleted.	For	details,
see	Specifying	Search	Conditions.	If	you	do	not	specify	a	search
condition,	all	rows	in	the	specified	table	will	be	deleted.

Note			Because	you	cannot	delete	the	contents	of	individual
columns,	the	check	boxes	in	the	rectangle	representing	the
table	or	table-structured	object	are	removed	when	you	start	a

Delete	query.	To	add	columns	to	the	Grid	pane	to	use	in	search
conditions,	drag	them	from	the	rectangle	representing	the	table
or	table-structured	object	to	the	Columns	column,	or	select	a
data	column	in	the	Columns	column.

When	you	execute	the	Delete	query,	no	results	are	reported	in	the	Results	pane.
Instead,	a	message	appears	indicating	how	many	rows	were	deleted.

See	Also
Supported	Query	Types

Visual	Database	Tools

Creating	Insert	Into	Queries
You	can	create	a	new	row	in	the	current	table	using	an	Insert	Into	query.	When
you	create	an	Insert	Into	query,	you	specify:

The	database	table	to	add	the	row	to.

The	columns	whose	contents	you	want	to	add.

The	value	or	expression	to	insert	into	the	individual	columns.

For	example,	the	following	query	adds	a	row	to	the	titles	table,	specifying
values	for	the	title,	type,	publisher,	and	price:

INSERT	INTO	titles
									(title_id,	title,	type,	pub_id,	price)
VALUES			('BU9876',	'Creating	Web	Pages',	'business',	'1389',	'29.99')

When	you	create	an	Insert	Into	query,	the	Grid	pane	changes	to	reflect	the	only
options	available	for	inserting	a	new	row:	the	column	name	and	the	value	to
insert.

Caution			You	cannot	undo	the	action	of	executing	an	Insert	Into	query.	As	a
precaution,	back	up	your	data	before	executing	the	query.

To	create	an	Insert	Into	query

1.	 Add	the	table	you	want	to	update	to	the	Diagram	pane.

2.	 Right-click	in	the	Query	Designer	window,	point	to	Change	Type,	and
then	choose	Insert	Into.

Note			If	more	than	one	table	is	displayed	in	the	Diagram	pane
when	you	start	the	Insert	Into	query,	the	Query	Designer
displays	the	Insert	Into	dialog	box	to	prompt	you	for	the	name
of	the	table	to	update.

3.	 Define	the	data	columns	to	create	by	adding	them	to	the	query.	For
details,	see	Adding	Columns.	Columns	will	be	updated	only	if	you	add
them	to	the	query.

4.	 In	the	New	Value	column	of	the	Grid	pane,	enter	the	new	value	for	the
column.	You	can	enter	literal	values,	column	names,	or	expressions.
The	value	must	match	(or	be	compatible	with)	the	data	type	of	the
column	you	are	updating.

Caution			The	Query	Designer	cannot	check	that	a	value	fits
within	the	length	of	the	column	you	are	inserting.	If	you
provide	a	value	that	is	too	long,	it	might	be	truncated	without
warning.	For	example,	if	a	name	column	is	20	characters	long
but	you	specify	an	insert	value	of	25	characters,	the	last	5
characters	might	be	truncated.

When	you	execute	an	Insert	Into	query,	no	results	are	reported	in	the	Results
pane.	Instead,	a	message	appears	indicating	how	many	rows	were	changed.

See	Also
Manipulating	Data

Visual	Database	Tools

Creating	Make	Table	Queries
You	can	copy	rows	into	a	new	table	using	a	Make	Table	query,	which	is	useful
for	creating	subsets	of	data	to	work	with	or	copying	the	contents	of	a	table	from
one	database	to	another.	A	Make	Table	query	is	similar	to	an	Insert	From	query,
but	creates	a	new	table	to	copy	rows	into.

When	you	create	a	Make	Table	query,	you	specify:

The	name	of	the	new	database	table	(the	destination	table).

The	table	or	tables	to	copy	rows	from	(the	source	table).	You	can	copy
from	a	single	table	or	from	joined	tables.

The	columns	in	the	source	table	whose	contents	you	want	to	copy.

Sort	order,	if	you	want	to	copy	the	rows	in	a	particular	order.

Search	conditions	to	define	the	rows	you	want	to	copy.

Group	By	options,	if	you	want	to	copy	only	summary	information.

For	example,	the	following	query	creates	a	new	table	called	uk_customers	and
copies	information	from	the	customers	table	to	it:

SELECT	*	
INTO	uk_customers
FROM	customers
WHERE	country	=	'UK'

In	order	to	use	a	Make	Table	query	successfully:

You	must	have	permission	to	create	a	table	in	the	target	database.

To	create	a	Make	Table	query

1.	 Add	the	source	table	or	tables	to	the	Diagram	pane.

2.	 Right-click	in	the	Query	Designer	window,	point	to	Change	Type,	and
then	choose	Create	Table.

3.	 In	the	Make	Table	dialog	box,	type	the	name	of	the	destination	table.
The	Query	Designer	does	not	check	whether	the	name	is	already	in	use
or	whether	you	have	permission	to	create	the	table.
To	create	a	destination	table	in	another	database,	specify	a	fully
qualified	table	name	including	the	name	of	the	target	database,	the
owner	(if	required),	and	the	name	of	the	table.

4.	 Specify	the	columns	to	copy	by	adding	them	to	the	query.	For	details,
see	Adding	Columns.	Columns	will	be	copied	only	if	you	add	them	to
the	query.	To	copy	entire	rows,	choose	*	(All	Columns).
The	Query	Designer	adds	the	columns	you	choose	to	the	Column
column	of	the	Grid	pane.

5.	 If	you	want	to	copy	rows	in	a	particular	order,	specify	a	sort	order.	For
details,	see	Ordering	Query	Results.

6.	 Specify	the	rows	to	copy	by	entering	search	conditions.	For	details,	see
Specifying	Search	Conditions.
If	you	do	not	specify	a	search	condition,	all	rows	from	the	source	table
will	be	copied	to	the	destination	table.

Note			When	you	add	a	column	to	search	to	the	Grid	pane,	the	Query	Designer
also	adds	it	to	the	list	of	columns	to	copy.	If	you	want	to	use	a	column	for
searching	but	not	copy	it,	clear	the	check	box	next	to	the	column	name	in	the
rectangle	representing	the	table	or	table-structured	object	

7.	 If	you	want	to	copy	summary	information,	specify	Group	By	options.
For	details,	see	Summarizing	Values	for	All	Rows	in	a	Table.

When	you	execute	a	Make	Table	query,	no	results	are	reported	in	the	Results
pane.	Instead,	a	message	appears	indicating	how	many	rows	were	copied.

See	Also
Manipulating	Data

Visual	Database	Tools

Creating	General	Purpose	Queries
In	many	instances,	it	is	useful	to	create	a	query	that	you	can	reuse	many	times	in
your	applications	with	different	input	each	time.	In	this	section	you	will	find
information	about	how	to	create	parameter	queries	for	these	general	purposes.

To See
Learn	about	general-purpose	queries Parameter	Queries
Create	a	query	using	unnamed
parameters

Creating	a	Query	with	Unnamed
Parameters

Specify	names	for	the	parameters	in
your	query	to	help	distinguish
multiple	parameters

Creating	a	Query	with	Named
Parameters

Mark	a	name	as	a	parameter	instead
of	a	string	of	literal	characters

Specifying	Parameter	Marker
Characters

Visual	Database	Tools

Creating	a	Query	with	Unnamed	Parameters
You	can	create	a	query	with	an	unnamed	parameter	by	specifying	a	question
mark	(?)	as	a	placeholder	for	a	literal	value.	You	can	specify	as	many	unnamed
parameters	in	the	query	as	you	need.

Note			If	you	are	using	multiple	parameters,	you	can	use	named	parameters
to	help	you	distinguish	them.	For	details,	see	Creating	a	Query	with	Named
Parameters.

When	you	run	the	query	in	the	Query	Designer,	the	Define	Query	Parameters
dialog	box	is	displayed	with	"?"	as	the	name	of	the	parameter.

To	specify	an	unnamed	parameter

1.	 Add	the	columns	or	expressions	that	you	want	to	search	to	the	Grid
pane.	If	you	do	not	want	the	search	columns	or	expressions	to	appear
in	the	query	output,	remove	them	as	output	columns.

Locate	the	row	containing	the	data	column	or	expression	to	search,	and	then	in
the	Criteria	grid	column,	enter	a	question	mark	(?).

By	default,	the	Query	Designer	adds	the	"="	operator.	However,	you	can	edit	the
cell	to	substitute	">",	"<",	or	any	other	SQL	comparison	operator.

See	Also

Creating	a	Query	with	Named	Parameters	|	Parameter	Queries

Visual	Database	Tools

Creating	a	Query	with	Named	Parameters
You	can	specify	names	for	the	parameters	in	your	query	to	help	you	distinguish
multiple	parameters.	For	example,	if	you	create	a	parameter	query	that	prompts
for	an	author's	name,	you	can	use	the	parameter	names	"first	name"	and	"last
name."	When	you	run	the	query	in	the	Query	Designer,	you	are	prompted	for	the
parameter	by	name:

To	mark	the	parameter	name	as	a	name	and	not	a	string	of	literal	characters,	you
specify	parameter	marker	characters	and	then	place	those	characters	around	the
parameter	name.	For	details,	see	Specifying	Parameter	Marker	Characters.

If	you	use	both	prefix-marker	and	suffix-marker	characters,	you	can	name	your
parameters	using	any	combination	of	characters,	including	text,	numbers,
punctuation,	and	spaces.	(However,	do	not	use	null	or	a	question	mark.)	If	you
specify	only	a	prefix-marker	character,	the	parameter	name	cannot	contain
spaces.

Note			The	parameter	name	you	specify	is	used	as	a	variable	in	the
environment	from	which	you	run	the	query.	Be	sure	that	the	parameter	names
you	use	are	acceptable	in	all	environments	in	which	you	intend	to	use	the
query.

To	specify	a	named	parameter

1.	 If	you	have	not	done	so	already,	specify	the	parameter	marker
characters.	For	details,	see	Specifying	Parameter	Marker	Characters.

2.	 Add	the	columns	or	expressions	that	you	want	to	search	to	the	Grid
pane.	If	you	are	creating	a	Select	query	and	do	not	want	the	search
columns	or	expressions	to	appear	in	the	query	output,	remove	them	as
output	columns.

3.	 Locate	the	row	containing	the	data	column	or	expression	to	search,	and
then	in	the	Criteria	grid	column,	enter	the	name	of	the	parameter.	Be
sure	to	mark	the	parameter	using	the	appropriate	characters:

By	default,	the	Query	Designer	adds	the	"="	operator.	However,	you	can	edit	the
cell	to	substitute	">",	"<",	or	any	other	SQL	comparison	operator.

See	Also
Creating	a	Query	with	Unnamed	Parameters	|	Parameter	Queries	|	Specifying
Parameter	Marker	Characters

Visual	Database	Tools

Specifying	Parameter	Marker	Characters
To	mark	a	name	as	a	parameter	and	not	as	a	string	of	literal	characters,	you	place
a	prefix	in	front	of	the	parameter	name	(and,	as	an	option,	a	suffix	after	it).	For
example,	parameter	marker	characters	might	be	"@",	":",	or	"%".

For	example,	in	your	query	you	might	define	a	parameter	called	"last	name."	To
indicate	that	"last	name"	is	a	parameter	and	not	a	string	to	search	for	in	the
lname	column,	you	might	specify	that	the	parameter	marker	characters	are	"["
and	"]".	You	can	then	enter	"[last	name]"	as	a	search	condition	value,	and	the
Query	Designer	will	correctly	interpret	"last	name"	as	a	parameter.

In	rare	instances,	the	parameter	marker	character	you	define	might	also	appear	in
the	name	of	the	parameter.	If	so,	you	can	specify	an	escape	character.	For	details,
see	Parameters	Tab,	Properties	Window.

To	specify	parameter	marker	characters

1.	 Right-click	in	any	pane	of	the	Query	Designer,	and	then	from	the
shortcut	menu	choose	Properties.

2.	 In	the	Properties	dialog	box	choose	the	Parameters	tab.

3.	 Enter	the	parameter	prefix	character	or	characters	and,	if	you	intend	to
use	one,	a	suffix	character.	(You	can	specify	a	suffix	character	only	if
you	have	specified	a	prefix	character.)	If	you	need	to	specify	one,	enter
an	escape	character.

See	Also

Creating	a	Query	with	Named	Parameters	|	Parameter	Queries

Visual	Database	Tools

Working	With	Views
A	view	is	simply	a	SELECT	query	saved	in	the	database.		Thus,	most	operations
you	can	perform	on	queries	you	can	also	perform	on	views.		However,	there	are
some	operations	that	apply	only	to	one	or	the	other.		For	background
information,	see	Comparison	of	Queries	and	Views.

For	details	about	most	of	the	operations	you	can	perform	on	views,	see
Designing	Queries.		For	details	about	View-specific	operations,	see	the	topics
listed	in	the	following	table.

To See
Create	a	view Creating	Views
Create	an	indexed	view Creating	Indexed	Views
Modify	an	indexed	view Modifying	Indexed	Views

Visual	Database	Tools

Creating	Views
Because	a	view	is	saved	in	the	database	and	a	query	is	not,	the	process	of
creating	a	new	view	is	different	from	the	process	of	creating	a	query.

To	create	a	view

1.	 In	the	SQL	Server	Enterprise	Manager,	right-click	the	Views	node,
then	choose	New	View	from	the	shortcut	menu.

2.	 Proceed	to	design	the	view	as	you	would	design	a	SELECT	query.

Note			Although	you	design	the	view	as	you	would	design	a
SELECT	query,	there	are	some	restrictions.		For	more
information,	see	Comparison	of	Queries	and	Views.

See	Also

Creating	Indexed	Views

Visual	Database	Tools

Creating	Indexed	Views
An	indexed	view	is	a	view	whose	result	set	is	stored	in	the	database	for	fast
access.		For	more	background	on	indexed	views,	see	Indexed	Views.

To	create	an	indexed	view

1.	 In	the	SQL	Server	Enterprise	Manager,	make	sure	the	Databases	node
is	expanded,	and	that	the	node	for	the	target	database	is	expanded,	too.

2.	 Right-click	on	the	Views	node,	then	choose	New	View	from	the
shortcut	menu.

3.	 Add	tables	to	the	Diagram	pane.		Because	you	intend	this	to	be	an
indexed	view,	be	sure	to	add	only	tables	that	you	own.

4.	 Select	which	columns	you	want	included	in	the	view.		Do	not	use	the
asterisk	(*);	you	must	explicitly	select	each	column	that	you	want	to
appear	in	the	indexed	view.

5.	 Right-click	the	background	of	the	Diagram	pane,	then	choose	Manage
Indexes	from	the	shortcut	menu.		The	Indexes	dialog	box	appears.

Note			There	are	many	situations	in	which	the	Manage	Indexes
command	is	unavailable,	because	there	are	many	restrictions
on	which	views	can	be	indexed.		For	example,	you	cannot
index	a	view	unless	you	are	the	owner	of	each	table
contributing	to	it.	For	more	information	about	indexed	views,
see	View	Indexes.

6.	 Within	the	dialog	box,	click	New.

7.	 Supply	the	information	for	the	index	definition	—	index	name,	index
columns	and	their	order,	index	file	group,	and	the	other	index	settings.	

JavaScript:hhobj_1.Click()

For	a	complete	description	of	these	settings,	see	Indexes	Dialog	Box.

8.	 Click	OK.

See	Also

Indexed	Views	|	Modifying	Indexed	Views	|	Creating	Views

Visual	Database	Tools

Modifying	Indexed	Views
There	are	two	ways	you	modify	an	indexed	view.		You	can	modify	the	view,	or
you	can	modify	the	indexes	on	the	view.

To	modify	an	indexed	view

1.	 In	the	SQL	Server	Enterprise	Manager,	make	sure	the	Databases	node
is	expanded,	and	that	the	node	for	the	target	database	is	expanded,	too.

2.	 Click	the	Views	node,	right-click	the	target	view,	then	choose	Design
View	from	the	shortcut	menu.

3.	 Proceed	to	modify	the	view	by	manipulating	its	definition	on	the
Diagram	pane,	Grid	pane,	and	SQL	pane.

Note			When	you	save	the	modified	view,	its	indexes	will	be	deleted	and
recreated.

To	modify	the	index	of	an	indexed	view

1.	 In	the	SQL	Server	Enterprise	Manager,	make	sure	the	Databases	node
is	expanded,	and	that	the	node	for	the	target	database	is	expanded,	too.

2.	 Click	the	Views	node,	right-click	the	target	view,	then	choose	Design
View	from	the	shortcut	menu.

3.	 Right-click	the	background	of	the	Diagram	pane	and	choose	Manage
Indexes	from	the	shortcut	menu.

4.	 Revise	the	information	for	the	index	definition	—	index	name,	index
columns	and	their	order,	index	file	group,	and	the	other	index	settings.	
For	a	complete	description	of	these	settings,	see	Indexes	Dialog	Box.

5.	 Click	OK.

See	Also

Indexed	Views	|	Creating	Indexed	Views

Visual	Database	Tools

Encrypting	Views
You	can	encrypt	a	view.		That	is,	you	can	permanently	conceal	the	text	of	the
view	definition.

Note			This	operation	is	irreversible.		After	you	encrypt	a	view,	you	can
never	again	modify	it,	because	you	can	never	again	see	the	view	definition.	
If	you	need	to	modify	an	encrypted	view,	you	must	delete	it	and	recreate
another	one.

To	encrypt	a	view

1.	 In	the	SQL	Server	Enterprise	Manager,	make	sure	the	Databases	node
is	expanded,	and	that	the	node	for	the	target	database	is	expanded,	too.

2.	 Click	the	Views	node,	right-click	the	target	view,	then	choose	Design
View	from	the	shortcut	menu.

3.	 Right-click	the	background	of	the	Diagram	pane	and	choose
Properties	from	the	shortcut	menu.

4.	 Select	Encrypt	View	and	click	Close.

See	Also

Creating	Views

Visual	Database	Tools

Reference
The	following	reference	topics	are	available	for	the	Visual	Database	Tools:

Rules	for	Updating	Query	Results

Navigating	in	the	Query	Designer

Comparison	Operators

Logical	Operators

Wildcard	Characters

Rules	and	Grid-Pane	Conventions	for	Combining	Search	Conditions

Rules	for	Entering	Search	Values

Aggregate	Functions

Structure	of	Expressions

Properties	Pages

Dialog	Boxes

Visual	Database	Tools	and	SQL	Server	Databases

Error	Messages

Visual	Database	Tools

Rules	for	Updating	Results
In	many	cases,	you	can	update	the	result	set	displayed	in	the	Results	pane.
However,	in	some	cases	you	cannot.

In	general,	in	order	to	update	results,	the	Query	Designer	must	have	sufficient
information	to	uniquely	identify	the	row	in	the	table.	An	example	is	if	the	query
includes	a	primary	key	in	the	output	list.	In	addition,	you	must	have	sufficient
permission	to	update	the	database.

If	your	query	is	based	on	a	view,	you	might	be	able	to	update	it.	The	same
guidelines	apply,	except	that	they	apply	to	the	underlying	tables	in	the	view,	not
just	to	the	view	itself.

Note			The	Query	Designer	cannot	determine	in	advance	whether	you	can
update	a	result	set	based	on	a	view.	Therefore,	it	displays	all	views,	even
though	you	might	not	be	able	to	update	them.

The	following	table	summarizes	specific	instances	in	which	you	might	and
might	not	be	able	to	update	query	results	in	the	Results	pane.

Query
Can	results	be
updated?

Query	based	on	one	table	with	primary	key	in	the
output	list

Yes	(except	as	listed
below).

Query	based	on	a	table	with	no	unique	index	and
without	a	primary	key

Query	must	contain
sufficient	information
to	uniquely	identify
records.

Query	based	on	multiple	tables	which	are	not	joinedNo.
Query	based	on	data	marked	as	read-only	in	the
database

No.

Query	based	on	a	view	that	involves	one	table	with
no	constraints

Yes	(except	as	listed
below).

Query	based	on	tables	joined	with	a
one-to-one	relationship

Yes	(except	as	listed
below).

Query	based	on	tables	joined	with	a Usually.

one-to-many	relationship
Query	based	on	three	or	more	tables	in	which	there
is	a	many-to-many	relationship

No.

Query	based	on	a	table	for	which	update	permission
is	not	granted

Can	delete	but	not
update.

Query	based	on	a	table	for	which	delete	permission
is	not	granted

Can	update	but	not
delete.

Aggregate	query No.
Query	based	on	a	subquery	that	contains	totals	or
aggregate	functions

No.

Query	that	includes	the	DISTINCT	keyword	to
exclude	duplicate	rows

No.

Query	whose	FROM	clause	includes	a	user-defined
function	that	returns	a	table	and	the	user-defined
function	contains	multiple	select	statements

No.

Query	whose	FROM	clause	includes	an	inline	use-
defined	function

Yes.

In	addition,	you	might	not	be	able	to	update	specific	columns	in	the	query
results.	The	following	list	summarizes	specific	types	of	columns	that	you	cannot
update	in	the	Results	pane.

Columns	based	on	expressions

Columns	based	on	scalar	user-defined	functions

Rows	or	columns	deleted	by	another	user

Rows	or	columns	locked	by	another	user	(locked	rows	can	usually	be
updated	as	soon	as	they	are	unlocked)

Timestamp	or	BLOB	columns

See	Also

Reference

Visual	Database	Tools

Navigating	in	the	Query	Designer
You	can	work	in	the	Query	Designer	using	the	keyboard	or	the	mouse.	Refer	to
the	following	tables	for	specific	methods.

Any	Pane

To Press Click
Move	among	the	Query
Designer	panes

F6,	SHIFT+F6 Anywhere	in	the	target	pane

Diagram	Pane

To Press Click
Move	among	tables,	other
table-structured	objects,
(and	to	join	lines,	if
available)

TAB,	or
SHIFT+TAB

The	table,	table-structured
object,	or	join	line	to	move	to

Move	between	columns	in
a	table	or	table-structured
object

Arrow	keys The	column	to	go	to

Choose	the	selected	data
column	for	output

SPACEBAR1	or
PLUS	key

The	check	box	next	to	the
name	of	the	column

Remove	the	selected	data
column	from	the	query
output

SPACEBAR1	or
MINUS	key

The	check	box	next	to	the
name	of	the	column

Remove	the	selected	table,
table-structured	object,	or
join	line	from	the	query

DELETE Right-click,	and	then	choose
Remove

1				If	multiple	items	are	selected,	pressing	this	key	affects	all	selected	items.	Select	multiple	items	by
holding	down	the	SHIFT	key	while	clicking	them.	Toggle	the	selected	state	of	a	single	item	by	holding
down	CTRL	while	clicking	it.

Grid	Pane

To Press Click
Move	among	cells Arrow	keys	or	TAB

or	SHIFT+TAB
The	target	cell

Move	to	the	last	row	in
the	current	column

CTRL+DOWN
ARROW

	

Move	to	the	first	row	in
the	current	column

CTRL+UP
ARROW

	

Move	to	the	top	left	cell
in	the	visible	portion	of
grid

CTRL+HOME 	

Move	to	the	bottom	right
cell

CTRL+END 	

Move	in	a	drop-down	list UP	ARROW	or
DOWN	ARROW

The	button	in	the	cell

Select	an	entire	grid
column

CTRL+SPACEBARThe	column	header

Select	an	entire	grid	row 	 The	button	to	the	left	of	the
row

Toggle	between	edit
mode	and	cell	selection
mode

F2 	

Copy	selected	text	in	cell
to	the	Clipboard	(in	edit
mode)

CTRL+C 	

Cut	selected	text	in	cell
and	place	it	on	the
Clipboard	(in	edit	mode)

CTRL+X 	

Paste	text	from	the
Clipboard	(in	edit	mode)

CTRL+V 	

Toggle	between	insert
and	overstrike	mode
while	editing	in	a	cell

INS 	

Toggle	the	check	box	in SPACEBAR1 The	check	box

the	Output	column
Clear	the	selected
contents	of	a	cell

DELETE 	

Remove	row	containing
selected	data	column
from	the	query

DELETE1 	

Clear	all	values	for	a
selected	grid	column

DELETE 	

Insert	row	between
existing	rows

INS	after	you	select
grid	row

	

Add	an	Or	...	column INS	after	you	select
any	Or	...	column

	

1				If	multiple	items	are	selected,	pressing	this	key	affects	all	selected	items.

SQL	Pane
You	can	use	the	standard	Windows	editing	keys	when	working	in	the	SQL	pane,
such	as	CTRL+Arrow	keys	to	move	between	words,	and	the	Cut,	Copy,	and
Paste	commands	on	the	Edit	menu.

Note			You	can	only	insert	text;	there	is	no	overstrike	mode.

Results	Pane

To Press Click
Move	between	cells Arrow	keys	or	TAB

or	SHIFT+TAB
The	target	cell

Move	to	first	or	last	cell
in	current	row

HOME	or	END 	

Move	to	the	first	row	in
the	current	column

CTRL+UP
ARROW

	

Move	to	the	top	left	cell CTRL+HOME 	
Move	to	the	bottom	cell
in	the	first	column

CTRL+DOWN
ARROW

	

Select	to	first	character SHIFT+HOME 	

in	a	cell
Select	to	last	character	in
a	cell

SHIFT+END 	

Select	an	entire	grid
column

CTRL+SPACEBARThe	column	header

Select	an	entire	grid	row 	 The	button	to	the	left	of	the
row

Toggle	between	edit
mode	and	cell	selection
mode

F2 	

Toggle	between	insert
and	overstrike	mode
while	editing	in	a	cell

INS 	

Insert	a	new	row	into	the
grid	(moves	to	last	row
in	grid)

INS	while	cell	is
selected

	

Delete	a	row	from	the
table

DELETE1 	

Undo	changes	for	the
current	cell

ESC	in	cell	that	has
changed

	

Undo	changes	for	the
current	row

ESC	in	any	cell	that
has	not	changed

	

Enter	null	into	a	cell CTRL+0 	
Copy	selected	columns
or	rows	to	the	Clipboard

CTRL+C 	

Copy	selected	text	in	cell
to	the	Clipboard	(in	edit
mode)

CTRL+C 	

Cut	selected	text	in	cell
to	the	Clipboard	(in	edit
mode)

CTRL+X 	

Paste	text	from	the
Clipboard	(in	edit	mode)

CTRL+V 	

1				If	multiple	items	are	selected,	pressing	this	key	affects	all	selected	items.

See	Also
Reference

Visual	Database	Tools

Comparison	Operators
You	can	use	any	standard	SQL	operators	in	a	search	condition.	When	you	use
operators	in	a	search	condition,	the	following	rules	apply:

The	data	types	of	the	data	used	in	the	comparison	must	match.	That	is,
only	text	can	be	compared	to	text,	numbers	to	numbers,	and	so	on.	For
information	about	converting	data	types,	see	Data	Type	Conversion.

If	you	compare	text	data,	the	result	depends	on	the	character	set
currently	in	use.	For	example,	if	a	table	was	created	using	Scandinavian
characters,	the	search	results	might	differ	depending	on	whether	your
current	character	set	(code	page)	is	Scandinavian	or	another	character
set.

If	a	comparison	value	is	null,	the	result	is	unknown.	Nulls	are	not
matched	to	any	value,	including	other	instances	of	null.	For	example,	if
you	are	searching	for	a	name	beginning	with	the	letter	"M"	or	higher
(name	>=	'M'),	and	some	of	the	rows	contain	no	value,	those	rows	do
not	appear,	no	matter	what	comparison	operator	you	use.

The	following	table	summarizes	search	condition	operators	that	are	defined	for
standard	SQL	and	how	the	operators	are	entered	in	the	Grid	Pane.	For	more
information,	see	Operators.

Operator Meaning Grid	pane	example1 SQL	pane	example
= Equal. =	'Smith' SELECT	fname,	lname

FROM	employees
WHERE	lname	=	'Smith'

<>
!=

Not	equal
to.

<>	'Active' SELECT	fname,	lname
FROM	employees
WHERE	status	<>	'Active'

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

> Greater
than.

>	'01	Jan	1995'2 SELECT	fname,	lname
FROM	employees
WHERE	hire_date	>
	'12/31/90'

< Less	than. <	100 SELECT	fname,	lname
FROM	employees
WHERE	job_lvl	<	100

>=
!<

Greater
than	or
equal	to.

>=	'T' SELECT	au_lname
FROM	authors
WHERE	au_lname	>=	'T'

<=
!>

Less	than
or	equal	to.

<=	'01	Jan	1995'	2 SELECT	fname,	lname
FROM	employees
WHERE	hire_date	<=	
	'01/01/95'

BETWEEN
expr1
AND	expr2

Tests	range
of	values.

BETWEEN	
'01	Jan	1995'	
AND	

'31	Dec	1995'2

SELECT	fname,	lname
FROM	employees
WHERE	hire_date	
	BETWEEN	'12/31/90'
	AND	'12/31/91'

IS	[NOT]
NULL

Tests
whether
contents	of
column	or
result	of
expression
is	null.

IS	NULL SELECT	fname,	lname
FROM	employees
WHERE	photo_on_file	IS	NULL

[NOT]
LIKE

Performs
pattern
matching

LIKE	('MAC%') SELECT	fname,	lname
FROM	employees

(usually
restricted
to
character
data
types).

WHERE	lname	LIKE	('MAC%')

expr1
[NOT]	IN	
(val1,	val2,
...)

–	or	–

expr1
[NOT]	IN	
(subquery)

Matches
list	of
specific
values	by
testing
whether
expr1
appears
either	in	a
list	of
values	or
in	the
result	set
of	a
subquery.

IN	('SW',	'SE')

supplier_id	IN

		(subquery)

SELECT	fname,	lname
FROM	employees
WHERE	sales_region	IN	('SW',	'SE')

SELECT	product_name

FROM	products
WHERE	supplier_id	IN
		(SELECT	supplier_id
		FROM	supplier
		WHERE	(country	=	'Sweden'))

ANY
(SOME)

Tests
whether
one	or
more	rows
in	the
result	set
of	a
subquery
meet	the
specified
condition.
(ANY	and
SOME	are
synonyms;
the	Query

<>	ANY	(subquery) SELECT	au_lname,	au_fname

FROM	authors
where	city	<>	any
	(SELECT	city	FROM	publishers)

Designer
will	use
ANY	when
creating	an
SQL
statement.)

ALL Tests
whether	all
rows	in	the
result	set
of	a
subquery
meet	the
specified
condition.

advance	>	ALL	(subquery)SELECT	title	FROM	titles

where	advance	>	all
		(SELECT	advance	FROM
			publishers,titles
		where	titles.pub_id	
			=	publishers.pub_id
		AND	pub_name	=	
			'Alogdata	Infosystems')

[NOT]
EXISTS

Tests
whether	a
subquery
returns	any
results
whatsoever
(not	a
specific
result).

EXISTS	(subquery) SELECT	product_name

FROM	products
WHERE	EXISTS
		(SELECT	*	FROM	
			orders,	products
		WHERE	orders.prod_id	
		=	products.prod_id)

1				For	clarity,	the	Grid	pane	examples	include	only	one	example	for	each	operator	and	do	not	indicate
which	data	column	is	being	searched.
2				Dates	can	be	entered	in	the	Grid	pane	using	the	format	specified	in	the	Windows	Regional	Settings
dialog	box.	For	details,	see	Entering	Search	Values.

See	Also
Reference

Visual	Database	Tools

Logical	Operators
You	can	combine	or	modify	search	conditions	using	the	standard	logical
operators	listed	in	the	following	table.	The	operators	are	listed	in	the	order	that
they	are	evaluated.

Operator Meaning Example
NOT Logical	opposite	of

condition
SELECT	*	FROM	employee

WHERE	NOT	(fname	=	'Ann')

AND Both	conditions
must	apply

SELECT	*	FROM	employee
WHERE	lname	=	'Smith'	AND	fname	=	'Ann'

OR Either	condition
can	apply

SELECT	*	FROM	employee
WHERE	region	=	'UK'	OR	region	=	'FRA'

See	Also
Reference

Visual	Database	Tools

Wildcard	Characters
You	can	search	for	patterns	within	data	columns	or	expressions	by	using
wildcard	characters.	For	example,	you	can	search	for	all	employees	whose	last
names	begin	with	"Mac"	or	end	with	"son."

In	this	topic,	you	can	read	about:

Wildcard	Characters

Searching	for	Characters	Used	as	Wildcard	Characters

Searching	Datetime	Columns

Examples	of	Wildcard	Searches

Wildcard	Characters

You	can	use	wildcard	characters	to	search	any	columns	that	can	be	treated	as	text
strings.	Columns	with	the	data	type	character	can	always	be	treated	as	text
strings.

To	search	for	patterns,	use	the	LIKE	operator,	and	then	substitute	wildcard
characters	for	one	or	more	characters	in	the	search	string.	You	can	use	either	of
the	following	wildcard	characters:

Wildcard	character Meaning
%	(percent	symbol) Zero	or	more	characters	in	that	position
_	(underscore) One	character	at	that	position

For	example,	to	search	for	all	names	beginning	with	"Mac,"	you	could	specify
the	search	condition	LIKE	'Mac%'.	To	find	names	such	as	"Jan,"	"Jen,"	and
"Jon,"	you	could	specify	the	search	condition	LIKE	'J_n'.

Searching	for	Characters	Used	as	Wildcard
Characters
In	some	cases,	you	might	need	to	search	for	a	string	that	contains	one	of	the
characters	used	as	a	wildcard	character.	For	example,	in	a	titles	table	you	might
want	to	find	all	the	publications	that	contain	the	string	"10%"	as	part	of	the	title.
Because	"%"	is	part	of	the	string	you	are	searching	for,	you	must	specify	that
you	mean	it	as	a	literal	string	and	not	a	wildcard	character.

To	search	for	characters	that	can	be	interpreted	as	wildcard	characters,	you	can
specify	an	escape	character.	Place	the	escape	character	immediately	in	front	of
the	"%"	or	"_"	character	that	you	mean	literally.	To	specify	the	escape	character,
include	an	ESCAPE	clause	immediately	after	the	LIKE	search	criterion.	You	can
do	this	in	either	the	Criteria	column	of	the	Grid	pane	or	in	the	SQL	pane.

For	example,	imagine	that	you	want	to	find	all	titles	that	contain	the	string
"10%".	Suppose	you	want	to	define	the	character	"#"	as	an	escape	character,
which	allows	you	to	include	"#"	in	front	of	the	"%"	character	that	is	meant
literally.	You	can	enter	this	in	the	Grid	pane:

LIKE	'%10#%%'	ESCAPE	'#'

The	resulting	WHERE	clause	in	the	SQL	statement	looks	like	this:

WHERE	title	LIKE	'%10#%%'	ESCAPE	'#'

Note			You	can	define	an	escape	character	only	in	the	SQL	pane.

Searching	Datetime	Columns
When	working	with	a	datetime	data	type	column,	you	can	search	any	portion	of
the	date	or	time,	including	text	abbreviations	of	the	month	and	complete	years.

For	example,	you	can	use	the	following	LIKE	clause	to	search	for	all	rows	in
which	the	date	falls	within	1994:

LIKE	'%1994%'

The	following	searches	for	all	rows	in	which	the	date	falls	within	the	month	of
January,	regardless	of	year:

LIKE	'Jan%'

For	more	information,	see	LIKE.

JavaScript:hhobj_1.Click()

Examples	of	Wildcard	Searches
The	following	examples	illustrate	the	use	of	wildcard	characters.

Search	expression Description Sample	matches
LIKE	'Mac%' Finds	values	beginning

with	"Mac"
Mac
MacIntosh
Mackenzie

LIKE	'J%n' Finds	values	starting	with
"J"	and	ending	with	"n"

Jon
Johnson
Jason
Juan

LIKE	'%son' Finds	values	ending	with
"son"

Son
Anderson

LIKE	'%sam%' Finds	values	with	"sam"
anywhere	in	the	string

Sam
Samson
Grossam

LIKE	'%Mar%' Finds	values	in	a	datetime
column	that	fall	in	the
month	of	March,	regardless
of	year

3/1/94
01	Mar	1992

LIKE	'%1994%' Finds	values	in	a	datetime
column	for	the	year	1994.

12/1/94
01	Jan	1994

LIKE	'Mac_' Finds	values	with	exactly
four	characters,	the	first
three	being	"Mac"

Mack
Macs

LIKE	'_dam' Finds	values	with	exactly
four	characters,	the	last
three	being	"dam"

Adam
Odam

LIKE	'%s_n' Finds	values	containing	"s"
and	"n"	at	the	end	of	the
value,	with	any	one
character	between	them
and	any	number	of

Anderson
Andersen
Johnson
san
sun

characters	in	front	of	them

See	Also
Reference

Visual	Database	Tools

Rules	and	Grid-Pane	Conventions	for	Combining
Search	Conditions
You	can	create	queries	that	include	any	number	of	search	conditions,	linked	with
any	number	of	AND	and	OR	operators.	A	query	with	a	combination	of	AND	and
OR	clauses	can	become	complex,	so	it	is	helpful	to	understand	how	such	a	query
is	interpreted	when	you	execute	it,	and	how	such	a	query	is	represented	in	the
Grid	and	SQL	panes.

Note			For	details	about	search	conditions	that	contain	only	one	AND	or	OR
operator,	see	Specifying	Multiple	Search	Conditions	for	One	Column	and
Specifying	Multiple	Search	Conditions	for	Multiple	Columns.

Below	you	will	find	information	about:

The	precedence	of	AND	and	OR	in	queries	that	contain	both.

How	the	conditions	in	AND	and	OR	clauses	relate	logically	to	one
another.

How	the	Query	Designer	represents	in	the	Grid	pane	queries	that
contain	both	AND	and	OR.

To	help	you	understand	the	discussion	below,	imagine	that	you	are	working	with
an	employee	table	containing	the	columns	hire_date,	job_lvl,	and	status.
The	examples	assume	that	you	need	to	know	information	such	as	how	long	an
employee	has	worked	with	the	company	(that	is,	what	the	employee's	hire	date
is),	what	type	of	job	the	employee	performs	(what	the	job	level	is),	and	the
employee's	status	(for	example,	retired).

Precedence	of	AND	and	OR
When	a	query	is	executed,	it	evaluates	first	the	clauses	linked	with	AND,	and
then	those	linked	with	OR.

Note			The	NOT	operator	takes	precedence	over	both	AND	and	OR.

For	example,	to	find	either	employees	who	have	been	with	the	company	for
more	than	five	years	in	lower-level	jobs	or	employees	with	middle-level	jobs
without	regard	for	their	hire	date,	you	can	construct	a	WHERE	clause	such	as
the	following:

WHERE	
			hire_date	<	'01/01/90'	AND	
			job_lvl	=	100	OR
			job_lvl	=	200
			

To	override	the	default	precedence	of	AND	over	OR,	you	can	put	parentheses
around	specific	conditions	in	the	SQL	pane.	Conditions	in	parentheses	are
always	evaluated	first.	For	example,	to	find	all	employees	who	have	been	with
the	company	more	than	five	years	in	either	lower	or	middle-level	jobs,	you	can
construct	a	WHERE	clause	such	as	the	following:

WHERE	
			hire_date	<	'01/01/90'	AND	
			(job_lvl	=	100	OR	job_lvl	=	200)

Tip			It	is	recommended	that,	for	clarity,	you	always	include	parentheses
when	combining	AND	and	OR	clauses	instead	of	relying	on	the	default
precedence.

How	AND	Works	with	Multiple	OR	Clauses
Understanding	how	AND	and	OR	clauses	are	related	when	combined	can	help
you	construct	and	understand	complex	queries	in	the	Query	Designer.

If	you	link	multiple	conditions	using	AND,	the	first	set	of	conditions	linked	with
AND	applies	to	all	the	conditions	in	the	second	set.	In	other	words,	a	condition
linked	with	AND	to	another	condition	is	distributed	to	all	the	conditions	in	the
second	set.	For	example,	the	following	schematic	representation	shows	an	AND
condition	linked	to	a	set	of	OR	conditions:

A	AND	(B	OR	C)

The	representation	above	is	logically	equivalent	to	the	following	schematic
representation,	which	shows	how	the	AND	condition	is	distributed	to	the	second
set	of	conditions:

(A	AND	B)	OR	(A	AND	C)

This	distributive	principle	affects	how	you	use	the	Query	Designer.	For	example,
imagine	that	you	are	looking	for	all	employees	who	have	been	with	the	company
more	than	five	years	in	either	lower	or	middle-level	jobs.	You	enter	the
following	WHERE	clause	into	the	statement	in	the	SQL	pane:

WHERE	(hire_date	<	'01/01/90')	AND	
			(job_lvl	=	100	OR	job_lvl	=	200)

The	clause	linked	with	AND	applies	to	both	clauses	linked	with	OR.	An	explicit
way	to	express	this	is	to	repeat	the	AND	condition	once	for	each	condition	in	the
OR	clause.	The	following	statement	is	more	explicit	(and	longer)	than	the
previous	statement,	but	is	logically	equivalent	to	it:

WHERE				(hire_date	<	'01/01/90')	AND
		(job_lvl	=	100)	OR	
		(hire_date	<	'01/01/90')	AND	
		(job_lvl	=	200)

The	principle	of	distributing	AND	clauses	to	linked	OR	clauses	applies	no
matter	how	many	individual	conditions	are	involved.	For	example,	imagine	that
you	want	to	find	higher	or	middle-level	employees	who	have	been	with	the
company	more	than	five	years	or	are	retired.	The	WHERE	clause	might	look	like
this:

WHERE	
			(job_lvl	=	200	OR	job_lvl	=	300)	AND
			(hire_date	<	'01/01/90')	OR	(status	=	'R')

After	the	conditions	linked	with	AND	have	been	distributed,	the	WHERE	clause
will	look	like	this:

WHERE	

			(job_lvl	=	200	AND	hire_date	<	'01/01/90')	OR
			(job_lvl	=	200	AND	status	=	'R')	OR
			(job_lvl	=	300	AND	hire_date	<	'01/01/90')	OR
			(job_lvl	=	300	AND	status	=	'R')	

How	Multiple	AND	and	OR	Clauses	Are	Represented
in	the	Grid	Pane
The	Query	Designer	represents	your	search	conditions	in	the	Grid	pane.
However,	in	some	cases	that	involve	multiple	clauses	linked	with	AND	and	OR,
the	representation	in	the	Grid	pane	might	not	be	what	you	expect.	In	addition,	if
you	modify	your	query	in	the	Grid	or	Diagram	panes,	you	might	find	that	your
SQL	statement	has	been	changed	from	what	you	entered.

In	general,	these	rules	dictate	how	AND	and	OR	clauses	appear	in	the	Grid
pane:

All	conditions	linked	with	AND	appear	in	the	Criteria	grid	column	or
in	the	same	Or	...	column.

All	conditions	linked	with	OR	appear	in	separate	Or	...	columns.

If	the	logical	result	of	a	combination	of	AND	and	OR	clauses	is	that	the
AND	is	distributed	into	several	OR	clauses,	the	Grid	pane	represents
this	explicitly	by	repeating	the	AND	clause	as	many	times	as	necessary.

For	example,	in	the	SQL	pane	you	might	create	a	search	condition	such	as	the
following,	in	which	two	clauses	linked	with	AND	take	precedence	over	a	third
one	linked	with	OR:

WHERE	(hire_date	<	'01/01/90')	AND	
		(job_lvl	=	100)	OR	
		(status	=	'R')

The	Query	Designer	represents	this	WHERE	clause	in	the	Grid	pane	as	follows:

However,	if	the	linked	OR	clauses	take	precedence	over	an	AND	clause,	the
AND	clause	is	repeated	for	each	OR	clause.	This	causes	the	AND	clause	to	be
distributed	to	each	OR	clause.	For	example,	in	the	SQL	pane	you	might	create	a
WHERE	clause	such	as	the	following:

WHERE	(hire_date	<	'01/01/90')	AND	
		((job_lvl	=	100)	OR	
		(status	=	'R'))

The	Query	Designer	represents	this	WHERE	clause	in	the	Grid	pane	as	follows:

If	the	linked	OR	clauses	involve	only	one	data	column,	the	Query	Designer	can
place	the	entire	OR	clause	into	a	single	cell	of	the	grid,	avoiding	the	need	to
repeat	the	AND	clause.	For	example,	in	the	SQL	pane	you	might	create	a
WHERE	clause	such	as	the	following:

WHERE	(hire_date	<	'01/01/90')	AND	
		((status	=	'R')	OR	(status	=	'A'))

The	Query	Designer	represents	this	WHERE	clause	in	the	Grid	pane	as	follows:

If	you	make	a	change	to	the	query	(such	as	changing	one	of	the	values	in	the
Grid	pane),	the	Query	Designer	recreates	the	SQL	statement	in	the	SQL	pane.
The	recreated	SQL	statement	will	resemble	the	Grid	pane	display	rather	than
your	original	statement.	For	example,	if	the	Grid	pane	contains	distributed	AND
clauses,	the	resulting	statement	in	the	SQL	pane	will	be	recreated	with	explicit
distributed	AND	clauses.	For	details,	see	"How	AND	Works	with	Multiple	OR
Clauses"	earlier	in	this	topic.

See	Also
Reference

Visual	Database	Tools

Rules	for	Entering	Search	Values
This	topic	discusses	the	conventions	you	must	use	when	entering	the	following
types	of	literal	values	for	a	search	condition:

Text	values

Numeric	values

Dates

Logical	values

Note			The	information	in	this	topic	is	derived	from	the	rules	for	standard
SQL-92.	If	you	have	questions	about	how	to	enter	search	values,	see	the
Transact-SQL	Reference.

Searching	on	Text	Values
The	following	guidelines	apply	when	you	enter	text	values	in	search	conditions:

Quotation	marks			Enclose	text	values	in	single	quotation	marks,	as	in
this	example	for	a	last	name:
'Smith'

If	you	are	entering	a	search	condition	in	the	Grid	pane,	you	can	simply
type	the	text	value	and	the	Query	Designer	will	automatically	put	single
quotation	marks	around	it.

Note			In	SQL	Server,	the	Query	Designer	always	interprets
double	quotation	marks	as	database	object	delimiters.	For
details,	see	Query	Designer	Considerations	for	SQL	Server
Databases.

Embedding	apostrophes			If	the	data	you	are	searching	for	contains	a
single	quotation	mark	(an	apostrophe),	you	can	enter	two	single

JavaScript:hhobj_1.Click()

quotation	marks	to	indicate	that	you	mean	the	single	quotation	mark	as
a	literal	value	and	not	a	delimiter.	For	example,	the	following	condition
searches	for	the	value	"Swann's	Way":
='Swann''s	Way'

Length	limits			Do	not	exceed	the	maximum	length	of	the	SQL
statement	when	entering	long	strings.	The	SQL	standard	does	not
impose	a	maximum	length	on	literal	strings,	but	most	ODBC	drivers
have	a	maximum	length	limit	for	a	statement.

Case	sensitivity			Follow	the	case	sensitivity	rules	for	the	database	you
are	using.	The	database	you	are	using	determines	whether	text	searches
are	case	sensitive.	

If	you	are	unsure	about	whether	the	database	uses	a	case-sensitive
search,	you	can	use	the	UPPER	or	LOWER	functions	in	the	search
condition	to	convert	the	case	of	the	search	data,	as	illustrated	in	the
following	example:

WHERE	UPPER(lname)	=	'SMITH'

For	details	about	the	functions	to	convert	to	uppercase	and	lowercase
letters,	see	Functions	for	Expressions.

Searching	on	Numeric	Values

The	following	guidelines	apply	when	you	enter	numeric	values	in	search
conditions:

Quotation	marks			Do	not	enclose	numbers	in	quotation	marks.

Non-numeric	characters			Do	not	include	non-numeric	characters
except	the	decimal	separator	(as	defined	in	the	Regional	Settings	dialog
box	of	Windows	Control	Panel)	and	negative	sign	(-).	Do	not	include
digit	grouping	symbols	(such	as	a	comma	between	thousands)	or
currency	symbols.

Decimal	marks			If	you	are	entering	whole	numbers,	you	can	include	a
decimal	mark,	whether	the	value	you	are	searching	for	is	an	integer	or	a
real	number.

Scientific	notation			You	can	enter	very	large	or	very	small	numbers
using	scientific	notation,	as	in	this	example:
>	1.23456e-9

Note			For	details	about	entering	currency	values	in	SQL	Server,	see	Query
Designer	Considerations	for	SQL	Server	Databases.

Searching	on	Dates
The	format	you	use	to	enter	dates	depends	on	the	database	you	are	using	and	in
what	pane	of	the	Query	Designer	you	are	entering	the	date.	The	Query	Designer
can	work	with	the	following	date	formats:

Locale-specific			The	format	specified	for	dates	in	the	Windows
Regional	Settings	Properties	dialog	box.

Database-specific			Any	format	understood	by	the	database.

ANSI	standard	date			A	format	that	uses	braces,	the	marker	'd'	to
designate	the	date,	and	a	date	string,	as	in	the	following	example:
{	d	'1990-12-31'	}

ANSI	standard	datetime			Similar	to	ANSI-standard	date,	but	uses	'ts'
instead	of	'd'	and	adds	hours,	minutes,	and	seconds	to	the	date	(using	a
24-hour	clock),	as	in	this	example	for	December	31,	1990:
{	ts	'1990-12-31	00:00:00'	}

In	general,	the	ANSI	standard	date	format	is	used	with	databases	that
represent	dates	using	a	true	date	data	type.	In	contrast,	the	datetime

format	is	used	with	databases	that	support	a	datetime	data	type.

The	following	table	summarizes	the	date	format	that	you	can	use	in	different
panes	of	the	Query	Designer.

Pane Date	format
Grid Locale-specific

Database-specific
ANSI	standard

Dates	entered	in	the	Grid	pane	are	converted
to	a	database-compatible	format	in	the	SQL
pane.

SQL Database-specific
ANSI	standard

Dates	entered	into	the	SQL	pane	are	converted
to	the	locale-specific	format	in	the	Grid	pane.

Results Locale-specific

Searching	on	Logical	Values
The	format	of	logical	data	varies	from	database	to	database.	Very	frequently,	a
value	of	False	is	stored	as	zero	(0).	A	value	of	True	is	most	frequently	stored	as	1
and	occasionally	as	-1.	The	following	guidelines	apply	when	you	enter	logical
values	in	search	conditions:

To	search	for	a	value	of	False,	use	a	zero,	as	in	the	following	example:
SELECT	*	FROM	authors
WHERE	contract	=	0

If	you	are	not	sure	what	format	to	use	when	searching	for	a	True	value,
try	using	1,	as	in	the	following	example:
SELECT	*	FROM	authors
WHERE	contract	=	1

Alternatively,	you	can	broaden	the	scope	of	the	search	by	searching	for
any	non-zero	value,	as	in	the	following	example:
SELECT	*	FROM	authors
WHERE	contract	<>	0

See	Also

Reference

Visual	Database	Tools

Aggregate	Functions
To	summarize	all	the	data	in	a	table,	you	create	an	aggregate	query	that	involves
a	function	such	as	SUM()	or	AVG().	When	you	run	the	query,	the	result	set
contains	a	single	row	with	the	summary	information.	For	example,	you	can
calculate	the	total	price	of	all	books	in	the	titles	table	by	creating	a	query	that
sums	the	contents	of	the	price	column.	The	resulting	query	output	might	look
like	this:

The	corresponding	SQL	statement	might	look	like	this:

SELECT	SUM(price)	total_price
FROM	titles

You	can	use	the	following	aggregate	functions:

Aggregate	function Description
AVG(expr) Average	of	the	values	in	a	column.	The	column

can	contain	only	numeric	data.
COUNT(expr),
COUNT(*)

A	count	of	the	values	in	a	column	(if	you
specify	a	column	name	as	expr)	or	of	all	rows	in
a	table	or	group	(if	you	specify	*).
COUNT(expr)	ignores	null	values,	but
COUNT(*)	includes	them	in	the	count.

MAX(expr) Highest	value	in	a	column	(last	value
alphabetically	for	text	data	types).	Ignores	null
values.

MIN(expr) Lowest	value	in	a	column	(first	value
alphabetically	for	text	data	types).	Ignores	null
values.

SUM(expr) Total	of	values	in	a	column.	The	column	can
contain	only	numeric	data.

When	you	use	an	aggregate	function,	by	default	the	summary	information
includes	all	specified	rows.	In	some	instances,	a	result	set	includes	non-unique
rows.	You	can	filter	out	non-unique	rows	by	using	the	DISTINCT	option	of	an
aggregate	function.

You	can	combine	aggregate	functions	with	other	expressions	to	calculate	other
summary	values.	For	details,	see	Summarizing	Values	Using	Custom
Expressions.

See	Also
Reference

Visual	Database	Tools

Structure	of	Expressions
An	expression	consists	of	any	combination	of	column	names,	literals,	operators,
or	functions.	Follow	these	guidelines	in	combining	elements	to	form
expressions:

Reference	columns	by	typing	their	names.	If	your	query	uses	more	than
one	table	and	if	you	use	a	column	name	that	is	not	unique,	you	must	add
the	table	name	and	a	period	to	the	column	name.	The	following
example	shows	the	column	name	job_id	qualified	with	the	table	name
employee:
employee.job_id

Include	literal	text	by	enclosing	it	in	single	quotation	marks;	no
quotation	marks	are	necessary	for	numbers.

Note			In	SQL	Server,	the	Query	Designer	always	interprets
double	quotation	marks	as	database	object	delimiters.	For
details,	see	Query	Designer	Considerations	for	SQL	Server
Databases.

Use	standard	arithmetic	operators	for	numbers	and	a	concatenation
operator	for	combining	strings.	For	details,	see	Operators	for
Expressions.

Include	parentheses	to	establish	precedence	of	operators.

If	you	include	a	function,	use	these	same	guidelines	for	the	arguments
passed	to	the	function.	That	is,	reference	columns	by	typing	their
names,	enclose	literal	text	in	single	quotation	marks,	and	so	on.	For
more	information,	see	Functions	for	Expressions.

If	you	pass	column	names	as	function	arguments,	be	sure	the	data	type
of	the	column	is	appropriate	for	the	function	argument.

You	can	include	user-defined	functions	returning	a	scalar	value	in	an
expression.		For	more	information	about	user-defined	functions,	see
User-Defined	Functions.

The	following	table	illustrates	the	use	of	expressions	in	a	query.

Expression Result
SELECT	(price	*	.9)
FROM	products

Displays	a	discounted	price	(10%	off
the	value	in	the	price	column).

SELECT	(lname	+	',	'	+	fname)
FROM	employee

Displays	the	concatenated	values	of
the	last	name	and	first	name	columns
with	a	comma	between	them.

SELECT	sales.qty,	titles.price

FROM	sales	INNER	JOIN
titles	ON	
sales.title_id	=	titles.title_id
ORDER	BY	
(sales.qty	*	titles.price)

After	joining	two	tables,	sorts	the
result	set	by	the	total	value	of	an	order
(quantity	times	price).

SELECT	au_lname,	au_fname
FROM	authors
WHERE	
(SUBSTRING(phone,	1,	3)	=
'415')

Displays	authors	whose	area	code	is
in	the	San	Francisco	area.

SELECT	ord_num,	ord_date
FROM	sales
WHERE
(ord_date	>=	
		DATEADD(day,	-10,
GETDATE()))

Finds	all	orders	in	the	sales	table	that
were	made	in	the	last	10	days.	Today's
date	is	returned	by	the	GETDATE()
function.

See	Also

Reference

Visual	Database	Tools

Operators	for	Expressions
You	can	use	a	variety	of	operators	in	constructing	expressions	for	your	query,
including	mathematical	and	text	operators.

Mathematical	Operators
The	following	table	lists	the	mathematical	operators	you	can	use	in	constructing
an	expression.

Operator Meaning
+,	- Unary	positive,	negative
+ Addition
- Subtraction
* Multiplication
/ Division

Note			For	more	information,	see	Operators.

If	you	use	more	than	one	mathematical	operator	in	an	expression,	the	Query
Designer	processes	the	expression	according	to	the	following	operator
precedence.	To	override	the	default	precedence,	use	parentheses	around	the
portion	of	the	expression	that	is	to	be	evaluated	first.	If	more	than	one	operator
of	the	same	level	is	included,	the	operators	are	evaluated	left	to	right.

1.	 Unary	+	and	-

2.	 *	and	/

3.	 +	and	-

Text	Operator

You	can	perform	one	operation	on	text:	concatenation	or	the	linking	together	of

JavaScript:hhobj_1.Click()

strings.	To	concatenate	a	string,	use	the	"+"	operator	in	the	Grid	pane.	For	more
information,	see	Operators.

You	can	also	use	the	ODBC	CONCAT	function,	which	is	supported	by	ODBC-
compliant	drivers.	For	example,	the	following	expression	illustrates	how	you	can
use	the	CONCAT	function	to	combine	authors'	last	name	and	first	name	with	a
comma	between	them:

{	fn	CONCAT(au_lname,{	fn	CONCAT	(',	',	au_fname)})}

For	more	details	about	functions	you	can	use,	see	Functions	for	Expressions.

See	Also
Reference

JavaScript:hhobj_2.Click()

Visual	Database	Tools

Functions	for	Expressions
You	can	call	a	number	of	functions	when	you	are	building	an	expression,
including:

String	(character)	functions

Date	functions

Mathematical	functions

System	functions

Other	functions,	such	as	those	to	convert	data	from	one	type	to	another

User-defined	functions

For	more	information,	see	Functions.

If	you	are	creating	queries	(not	views,	stored	procedures,	or	triggers)	that	might
be	run	against	different	databases,	you	can	also	use	ODBC	functions.	ODBC
syntax	includes	the	"fn"	qualifier	in	front	of	the	function	name	and	braces	around
the	entire	function.	For	example,	the	following	expression	uses	an	ODBC
function	to	convert	text	to	lowercase	letters:

{fn	LCASE	(address)	}

The	Query	Designer	can	help	you	work	with	functions	by:

Correctly	inserting	quotation	marks	in	function	arguments

Validating	the	data	types	of	arguments

Validating	the	data	types	of	return	values

JavaScript:hhobj_1.Click()

For	information	on	ODBC,	see	the	Data	Access	Services	section	of	the	MSDN®
Online	Library	Microsoft	Web	site.	For	more	information	on	functions,	see	User-
Defined	Functions.

Note			You	can	use	a	special	set	of	functions,	the	aggregate	functions	such	as
SUM()	and	AVG(),	to	create	queries	that	summarize	data.	For	details,	see
Summarizing	and	Grouping.

String	Functions
The	following	table	contains	samples	of	string	functions.		For	more	information,
see	String	Functions	and	Using	String	Functions.

Function DescriptionExample
LCASE()1,	
LOWER()

Converts
strings	to
lowercase

SELECT	UPPER(substring(lname,	1,	1))	+	

		LOWER(substring	(lname,	2,	99))
FROM	employee

Displays	a	last	name	after	the	first	character	is	converted	to	uppercase	and	the	remaining	characters	to	lowercase.

LTRIM() Removes
leading
spaces	from
a	string

SELECT	stor_name,	LTRIM(stor_address)
FROM	stores

Displays	an	address	column	after	extraneous	spaces	are	removed	from	the	front.

SUBSTRING(
)

Extracts
one	or	more
characters
from	a
string

SELECT	SUBSTRING(phone,1,3)
FROM	employee

Displays	the	first	three	characters	(the	area	code)	of	a	phone	number.

UCASE()1,	
UPPER()

Converts
strings	to
uppercase

SELECT	*	FROM	employee
WHERE	UPPER(lname)	=	'SMITH'

Converts	the	contents	of	the	lname	column	to	uppercase	before	comparing	them	to	a	specific	value	(avoids	mismatches	if	the	search	is	case	sensitive).	For	details	about	case	sensitivity	in	SQL	Server,	see	

http://www.microsoft.com/isapi/redir.dll?Prd=platformsdk&Ar=home
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

1				If	calling	as	an	ODBC	function,	use	syntax	such	as:	{	fn	LCASE(text)	}.

Date	Functions
The	following	table	contains	samples	of	date	functions.		For	more	information,
see	Date	and	Time	Functions.

Function DescriptionExample
DATEDIFF(
)

Calculates
an	interval
between
two	dates.

SELECT	fname,	lname,	hire_date
FROM	employee
WHERE	DATEDIFF(year,	hire_date,	getdate()

Locates	all	employees	hired	more	than	five	years
ago.

DATEPART(
)

Returns	the
specified
portion	of	a
date	or
datetime
column,
including
the	day,
month,	or
year.

SELECT	DATEPART(year,	hire_date)
FROM	employee

Displays	only	the	year	in	which	an	employee
was	hired	(not	the	full	date).

CURDATE(
)1,
GETDATE(
)	or	DATE()

Returns	the
current	date
in	datetime
format.	This
function	is
useful	as
input	for
many	other
date
functions,
such	as

SELECT	order_id
FROM	orders
WHERE	order_date	=	GETDATE()

Displays	orders	placed	today.

JavaScript:hhobj_5.Click()

calculating
an	interval
forward	or
backward
from	today.

1				If	calling	as	an	ODBC	function,	use	syntax	such	as:	{	fn	CURDATE()	}.

Mathematical	Functions
The	following	functions	are	typical	of	those	available	in	many	databases.		Refer
to	Mathematical	Functions	for	more	information.

Note			You	can	use	the	aggregate	functions	AVG(),	COUNT(),	MAX(),
MIN(),	and	SUM()	to	create	averages	and	totals	in	your	report.	For	details,
see	Summarizing	and	Grouping.

Function DescriptionExample
ROUND() Rounds	a

number	off
to	the
specified
number	of
decimal
places

SELECT	ROUND(qty	*	(price	*	discount),	2)
FROM	sales

Displays	a	total	price	based	on	a	discount,	then
rounds	the	results	off	to	two	decimal	places.

FLOOR() Rounds	a
number
down	to	the
nearest
(smallest)
whole
number

UPDATE	titles
SET	price	=	FLOOR(price)

Rounds	all	prices	in	the	titles	table	down	to	the
nearest	whole	number.

CEILING(
)

Rounds	a
number	up
to	the
nearest
whole
number

INSERT	INTO	archivetitle

SELECT	title,	CEILING(price)
FROM	titles

JavaScript:hhobj_6.Click()

Copies	the	title	and	the	price	(rounded	up	to	the
nearest	integer)	from	the	titles	table	to	the
archivetitle	table.

System	Functions
The	following	functions	are	typical	of	those	available	in	many	databases.		For
more	information,	see	System	Functions.

Function DescriptionExample
DATALENGTH(
)

Returns	the
number	of
bytes	used
by	the
specified
expression

SELECT	DATALENGTH(au_lname	+	',	'	

		+	au_fname)
FROM	authors

Lists	the	number	of	bytes	required	for	the
combination	of	last	and	first	names.

USER()1,	
USER_NAME()

Returns	the
current	user
name

SELECT	company_name,	city,	phone

FROM	customers
WHERE	salesperson	=	USER_NAME()

Creates	a	list	of	customers	for	the	salesperson
who	runs	the	query.

1				If	calling	as	an	ODBC	function,	use	syntax	such	as:	{	fn	USER()	}.

Other	Functions
The	following	functions	illustrate	utility	functions	available	in	many	databases.	
For	more	information,	see	Functions.

Function DescriptionExample

JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

CONVERT(
)

Converts
data	from
one	data
type	into
another.
Useful	to
format	data
or	to	use	the
contents	of
a	data
column	as
an
argument	in
a	function
that
requires	a
different
data	type.

SELECT	'Hired:	'	+	CONVERT(char	(11),

		hire_date)
FROM	employee

Displays	a	date	with	a	caption	in	front	of	it;	the
CONVERT()	function	creates	a	string	out	of	the
date	so	that	it	can	be	concatenated	with	a	literal
string.

SOUNDEX(
)

Returns	the
Soundex
code	for	the
specified
expression,
which	you
can	use	to
create
"sounds
like"
searches.

SELECT	au_lname,	au_fname
FROM	authors
WHERE	SOUNDEX(au_fname)	=	'M240'

Searches	for	names	that	sound	like	"Michael".

STR() Converts
numeric
data	into	a
character
string	so
you	can
manipulate
it	with	text

SELECT	str(job_id)	+	'	'	+	
			str(job_lvl)
FROM	employee

Displays	the	job_id	and	job_lvl	columns	(both
numeric)	in	a	single	string.

operators.

See	Also
Reference

Visual	Database	Tools

Predefined	Variables	for	Expressions
In	addition	to	using	column	names,	literals,	operators,	and	functions	in	an
expression,	you	can	use	predefined	variables	that	have	defined	meanings	or
values.	For	example,	you	can	use	a	predefined	variable	to	display	the	user	name
for	the	current	user	or	to	search	for	data	columns	that	contain	no	value	(null).

See	Also
Reference	|	Reserved	Keywords	|	Functions

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Visual	Database	Tools

Dialog	Boxes
For	information	about	the	dialog	boxes	used	by	the	Visual	Database	Tools,	see
the	following	topics:

Database	Designer	Dialog	Boxes

Query	Designer	Dialog	Boxes

Visual	Database	Tools

Database	Designer	Dialog	Boxes
Documentation	is	available	for	the	following	Database	Designer	user	interface
elements:

Add	Table	Dialog	Box

Choose	Name	Dialog	Box

Column	Selection	Dialog	Box

Create	Relationship	Dialog	Box

Database	Changes	Detected	Dialog	Box

Datatype	Change	Required	Dialog	Box

Page	Setup	Dialog	Box

Save	Change	Script	Dialog	Box

Save	Dialog	Box

Save	Incomplete	Dialog	Box

Unsaved	Changes	Exist	Dialog	Box

Validation	Warnings	Dialog	Box

Visual	Database	Tools

Add	Table	Dialog	Box	(Database	Designer)
Enables	you	to	add	tables	in	Database	Designer.

Add
Adds	the	selected	table	or	tables.

If	you	add	a	table	or	view	that	already	appears	on	the	Diagram	pane,	you	will	get
a	message	warning	you	that	the	table	already	exists	on	the	diagram.

Note			If	you	want	to	add	several	tables	to	the	diagram,	you	can	select
them	all	before	clicking	Add.		Alternatively,	you	can	double-click	each
table	you	want	to	add,	then	click	Close	when	you	are	finished.

Close
Closes	the	dialog	box	without	adding	further	tables.

See	Also
Database	Designer	Dialog	Boxes	|	Add	Table	Dialog	Box	(Query	and	View
Designers)

Visual	Database	Tools

Choose	Name	Dialog	Box
Enables	you	to	change	the	system-assigned	name	of	a	new	table	before	that	table
is	created	in	the	database.

Enter	a	name	for	the	table
Displays	the	system-assigned	name	of	the	table.	Type	a	new	name	for	the	table
in	the	text	box.		Although	you	can	later	use	the	Table	property	page	to	change
the	system-assigned	name,	it	is	best	if	you	make	any	name	changes	now.	
Changing	the	name	of	an	existing	database	object	is	risky,	because	you	can
invalidate	programs	and	queries	that	refer	to	that	object	by	name.

OK
Creates	the	table	with	the	name	you	specified.	The	table	is	created	in	the
database	when	you	save	the	table	or	diagram.

Cancel
Cancels	the	creation	of	the	new	table.

For	more	information	about	creating	tables,	see	Adding	a	Table	to	a	Database
Diagram.

See	Also
Database	Designer	Dialog	Boxes	|	Renaming	a	Table

Visual	Database	Tools

Create	Relationship	Dialog	Box
Enables	you	to	confirm	the	related	columns	and	to	set	properties	for	a	new
relationship.

This	dialog	box	appears	when	you	draw	a	relationship	line	between	two	tables	in
your	database	diagram.

Relationship	name
Displays	the	system-assigned	name	of	the	relationship.	To	rename	the
relationship,	type	a	new	name	in	the	text	box.

Primary	key	table
Shows	the	name	of	the	primary	key	table	in	the	relationship,	followed	by	the
columns	that	make	up	the	primary	key.	You	can	select	different	columns	to
match	the	columns	shown	under	Foreign	key	table.

Foreign	key	table
Shows	the	name	of	the	foreign	key	table	in	the	relationship,	followed	by	the
columns	that	make	up	the	foreign	key.	You	can	select	different	columns	to	match
the	columns	shown	under	Primary	key	table.

Check	existing	data	on	creation
Applies	the	relationship	to	existing	data	in	the	foreign	key	table	when	the
relationship	is	created.	An	error	message	will	notify	you	of	any	data	that	violates
the	constraint	if	this	box	is	selected.

Enforce	relationship	for	INSERT	and	UPDATE
Selecting	this	options	enforces	the	constraint	whenever	data	is	added	to	or

updated	in	the	foreign	key	table	using	these	statements.

Enforce	relationship	for	replication
Selecting	this	option	enforces	referential	integrity	for	the	relationship	whenever
the	foreign	key	table	is	replicated	to	a	different	database.

Cascade	update	related	fields
Instructs	the	database	to	propagate	new	key	values	to	corresponding	foreign	key
fields	whenever	a	primary	key	value	is	updated.

Cascade	delete	related	fields
Instructs	the	database	to	delete	corresponding	rows	from	the	foreign	key	table
whenever	rows	from	the	primary	key	table	are	deleted.

OK
Creates	the	relationship	with	the	properties	you	selected.

Cancel
Erases	the	relationship	line	from	your	database	diagram.	The	relationship	is	not
created.

For	more	information	about	creating	relationships	between	tables,	see	Creating	a
Relationship	Between	Tables.

See	Also
Database	Designer	Dialog	Boxes	|	Relationships	Property	Page

Visual	Database	Tools

Column	Selection	Dialog	Box
Lets	you	change	the	Custom	view	for	tables	in	the	database	diagram.	Custom
view	shows	only	the	column	properties	identified	by	the	user.

This	dialog	box	appears	when	you	right-click	a	table	and	then	choose	Modify
Custom	View	from	the	shortcut	menu.

Available	columns
Lists	all	columns	existing	in	the	selected	database	table.	The	columns	listed	here
depend	on	the	properties	of	the	database	table	and	the	type	of	database.
Highlight	the	desired	column	and	use	the	arrow	buttons	to	move	the	columns	to
the	Selected	columns	box.

Selected	columns
Displays	the	column	properties	currently	defined	for	the	Custom	view.	Use	the
arrow	buttons	to	add	and	remove	column	properties	to	the	Selected	Columns	list.

Move
Use	the	up	and	down	arrow	buttons	to	move	highlighted	columns	up	or	down	in
the	Selected	columns	list.	The	column	properties	will	be	displayed	in	the	table
in	the	order	shown	in	the	Selected	columns	list.

Save	as	default
Replaces	the	default	Custom	view	with	the	columns	selected	in	this	dialog	box.
If	not	selected,	the	column	selection	specified	in	the	dialog	box	will	be	applied
only	to	the	selected	table	in	the	database	diagram.

OK

Saves	the	Custom	view.

Cancel
Cancels	the	modification	of	Custom	view.

For	more	information	about	Custom	views,	see	Changing	a	Table	View.

See	Also
Database	Designer	Dialog	Boxes

Visual	Database	Tools

Database	Changes	Detected	Dialog	Box
Appears	if	you	attempt	to	save	a	database	diagram	or	selected	tables	but	some	of
the	database	objects	that	will	be	affected	by	the	save	action	are	out	of	date	with
the	database.	Accepting	the	changes	shown	in	this	dialog	box	updates	the
database	to	match	your	diagram	and	overwrites	other	users'	changes.

Note			Although	you	cannot	undo	changes	made	to	a	table	or	database
diagram,	the	changes	are	not	saved	to	the	database	until	you	save	the	table	or
diagram.	You	can	discard	any	unsaved	changes	by	choosing	No	and	closing
all	open	diagrams	without	saving	them.

Yes
Updates	the	database	with	all	the	changes	shown	in	the	list.

No
Cancels	the	save	action.

Save	Text	File
Displays	the	Save	As	dialog	box,	letting	you	specify	a	location	for	a	text	file
containing	a	list	of	the	database	changes.

For	more	information	about	saving	database	objects	that	have	changed	since	you
began	working	in	the	Database	Designer,	see	Reconciling	a	Database	Diagram
with	a	Modified	Database.

See	Also
Database	Designer	Dialog	Boxes

Visual	Database	Tools

Datatype	Change	Required	Dialog	Box
Appears	when	you	change	the	data	type,	length,	scale,	precision,	or	collation	of	a
column	that	participates	in	a	relationship.

Yes
Changes	the	data	type	property	of	the	related	columns	shown	in	the	list	so	that
existing	relationships	are	preserved.

No
Cancels	the	data	type	change	and	restores	the	previous	data	type	to	the	column
you	just	changed.

See	Also
Database	Designer	Dialog	Boxes

Visual	Database	Tools

Define	Column	Collation	Dialog	Box
Lets	you	specify	a	collation	sequence	for	the	column.		A	column's	collation
sequence	is	used	in	any	operation	that	compares	values	of	the	column	to	each
other	or	to	constant	values.		It	is	also	affects	the	behavior	of	some	string
functions,	such	a	SUBSTRING,	and	CHARINDEX.		For	a	complete	list	of	the
effects	of	a	column's	collation	setting,	see	SQL	Server	Collation	Fundamentals.

This	dialog	box	appears	in	any	of	several	situations:

If	you	enter	an	invalid	collation	name	in	the	Collation	box	in	the
bottom	portion	of	the	Table	Designer	or	in	the	Columns	property	page

If	you	click	in	the	Collation	box	in	the	Columns	property	page	or	in	the
bottom	portion	of	the	Table	Designer,	then	click	the	button	appearing	to
the	right	of	the	control.

SQL	Collation

Select	SQL	Collation	if	you	want	to	choose	among	the	collation	sequences
defined	by	SQL	Server.				Then	select	a	collation	sequence	from	the	drop-down
list.

Windows	Collation
Select	Windows	Collation	if	you	want	to	choose	among	the	collation	sequences
defined	by	Windows.		Then	select	a	collation	sequence	from	the	drop-down	list.

Binary	Sort
Applies	only	if	you	select	Windows	collation.		Select	this	if	you	want
comparison	operations	to	use	the	binary	codes	of	character	values	for
comparison.		If	you	select	this	option,	certain	alphabetic	comparison	options
become	unavailable.		For	example,	making	case-insensitive	comparisons
becomes	unavailable	because	uppercase	letters	and	lowercase	letters	have

JavaScript:hhobj_1.Click()

different	binary	encodings.

Dictionary	Sort
Applies	only	if	you	select	Windows	collation.		Select	this	if	you	want
comparison	operations	to	use	certain	alphabetic	comparison	options.		The
alphabetic	comparisons	options	are:

Case	Sensitive			Select	this	if	you	want	comparisons	to	consider
uppercase	and	lower	case	letters	to	be	unequal.

Accent	Sensitive			Select	this	if	you	want	comparisons	to	consider
accented	and	unaccented	letters	to	be	unequal.		If	you	select	this,
comparisons	will	also	consider	differently	accented	letters	to	be	unequal

Kana	Sensitive			Select	this	if	you	want	comparisons	to	consider
katakana	and	hiragana	Japanese	syllables	to	be	unequal.

Width	Sensitive			Select	this	if	you	want	comparisons	to	consider	half-
width	and	full-width	characters	to	be	unequal.

Reset	Defaults

Applies	to	the	column	the	default	collation	sequence	for	the	database.

See	Also
Database	Designer	Dialog	Boxes

Visual	Database	Tools

Page	Setup	Dialog	Box
Use	this	dialog	box	to	specify	a	diagram's	printer	settings,	such	as	orientation,
scale,	and	paper	size.	The	print	setup	options	you	set	for	a	diagram	are	saved
with	the	diagram	file.	When	you	change	the	Print	scale	and	Orientation	options
for	the	diagram,	the	page	breaks	for	the	diagram	are	automatically	updated.

Name
Shows	the	name	of	the	default	printer	and	lists	the	printers	that	are	set	up	on
your	computer.

Properties
Sets	the	options	for	the	selected	printer.	The	options	available	depend	on	the
features	of	the	printer.

Status
Shows	information	about	the	selected	printer.

Type
Displays	the	model	and	make	information	for	the	selected	printer.

Where
Displays	the	network	path	or	serial	port	information	for	the	selected	printer.

Comment
Displays	additional	information	about	the	selected	printer.

Size
Specifies	the	size	of	the	paper	or	envelope	you	want	to	use.

Source
Specifies	where	the	paper	you	want	to	use	is	located	in	the	printer.	Different
printer	models	support	different	paper	sources,	such	as	the	upper	tray,	envelope
feed,	and	manual	feed.

Portrait
Sets	a	taller-than-wide	layout	for	the	document	on	the	page.

Landscape
Sets	a	wider-than-tall	layout	for	the	document	on	the	page.

Percent
Sets	the	size	of	the	diagram	based	on	the	settings	as	applied	to	a	100-percent
diagram.	Choose	a	percentage	between	10	and	400.

See	Also
Database	Designer	Dialog	Boxes

Visual	Database	Tools

Save	Change	Script	Dialog	Box
Displays	a	change	script	whenever	you	save	a	table	or	diagram	while	there	are
unsaved	database	changes	in	it.		The	dialog	box	lets	you	save	the	change	script
as	a	text	file	with	an	.sql	extension.

This	dialog	box	appears	when	you	choose	Save	Change	Script	from	the	File
menu	or	click	the	Save	Change	Script	button	 on	the	Database	Designer
toolbar.

Yes
Displays	the	Save	As	dialog	box,	prompting	you	for	a	destination	file	to	contain
the	change	script.

No
Cancels	the	save	action.

Automatically	generate	change	script	on	every	save
Select	this	option	to	create	a	change	script	each	time	you	save	the	database
diagram	or	selected	tables.	This	provides	a	record	of	all	changes	made	to	the
database.

If	you	have	selected	to	have	a	change	script	created	automatically	each	time	you
save,	this	dialog	box	will	not	appear	when	you	save	your	database	diagram.

For	more	information	about	saving	SQL	change	scripts,	see	Saving	a	Change
Script.

See	Also
Database	Designer	Dialog	Boxes	|	Saving	a	Change	Script

Visual	Database	Tools

Save	Dialog	Box
Appears	when	you	save	a	database	diagram	or	selected	tables.		This	dialog	box
lets	you	confirm	the	tables	that	will	be	saved.	It	does	not	appear	when	your
diagram	contains	only	one	modified	table.

Note			Although	you	cannot	undo	changes	made	to	a	table	or	database
diagram,	the	changes	are	not	saved	to	the	database	until	you	save	the	table	or
diagram.	You	can	discard	any	unsaved	changes	by	closing	all	open	diagrams
without	saving	them.

Yes
Saves	all	the	tables	shown	in	the	list.

No
Cancels	the	save	action.

Save	Text	File
Displays	the	Save	As	dialog	box,	prompting	you	for	a	location	in	which	to	save	a
text	file	listing	the	tables.		This	file	provides	a	record	of	the	tables	that	were
affected	by	the	changes	you	made.

See	Also
Database	Designer	Dialog	Boxes	|	Saving	Selected	Tables

Visual	Database	Tools

Save	Incomplete	Dialog	Box
Appears	when	errors	are	encountered	while	trying	to	save	a	database	diagram	or
selected	tables.	This	dialog	box	lists	the	following:	the	objects	that	were
successfully	saved	in	the	database,	the	objects	that	were	not	saved,	and	the	errors
that	were	encountered.

OK
Returns	to	the	diagram.

Save	Text	File
Displays	the	Save	As	dialog	box,	prompting	you	for	a	location	in	which	to	save	a
text	file	listing	the	tables.		This	file	provides	a	record	of	the	database	changes
that	were	successfully	saved	as	well	as	the	changes	that	could	not	be	saved	due
to	errors.

For	more	information	about	the	errors	that	can	occur,	see:

Error	modifying	column	properties.

Invalid	cursor	state

Unable	to	add	constraint.

Unable	to	create	index.

Unable	to	create	relationship.

Unable	to	modify	table.

Unable	to	preserve	trigger.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

If	the	error	you	want	to	troubleshoot	does	not	appear	in	this	list,	see	System
errors.	for	additional	messages	returned	by	Microsoft®	SQL	Server™.

Error	modifying	column	properties
Appears	when	your	constraint	expression	contains	an	error.

ODBC	error	text
[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]The	name	'[column	value]'
is	illegal	in	this	context.	Only	constants,	constant	expressions,	or	variables
allowed	here.	Column	names	are	illegal.

Cause
A	default	value	defined	for	a	character	column	is	not	enclosed	in	single
quotation	marks	(').

Recommended	solution
Enclose	the	value	in	single	quotation	marks	in	the	database	column's	Default
Value	cell	and	then	save	the	table.

Invalid	cursor	state
Appears	when	Microsoft®	SQL	Server™	runs	out	of	resources	while	attempting
to	save	selected	tables	or	a	database	diagram.

ODBC	error	text
[Microsoft][ODBC	SQL	Server	Driver]Invalid	cursor	state.

Cause

JavaScript:hhobj_8.Click()

There	is	insufficient	space	in	your	database	or	transaction	log	to	complete	the
save	process.

Recommended	solution
Check	to	see	if	the	database	or	the	transaction	log	is	full.	If	so,	increase	the	size
of	the	database	to	accommodate	the	change.	Check	other	system	resources	or
contact	your	System	Administrator.

For	more	information	about	increasing	the	size	of	your	database,	see	Expanding
a	Database.

Unable	to	add	constraint
Appears	when	a	new	constraint	has	failed	on	existing	data	or	your	constraint
expression	contains	an	error.	Compare	the	ODBC	error	text	that	appears	in	the
Save	Incomplete	dialog	box	with	the	error	text	shown	below	to	determine	the
appropriate	solution.

ODBC	error	text
[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]Data	exists	in	table	'[table
name]',	database	'[database	name]',	that	violates	CHECK	constraint	'[constraint
name]'	being	added.	ALTER	command	has	been	aborted.

[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]Unable	to	create	constraint.
See	previous	errors.

Cause
Existing	data	does	not	match	the	check	constraint.

Recommended	solution
Change	the	data	(for	example,	by	using	Query	Designer)	to	match	the	constraint.
For	details,	see	Query	Designer.

JavaScript:hhobj_9.Click()

-or-

Clear	the	Check	existing	data	on	creation	check	box	in	the	Tables	property
page	for	the	check	constraint	in	question.	For	more	information	about	disabling
this	property,	see	Checking	Existing	Data	when	Creating	a	Relationship.

-or-

Change	the	constraint	expression	in	the	Tables	property	page	for	the	check
constraint	in	question.

ODBC	error	text
[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]Invalid	column	'[column
name]'	specified	in	constraint	definition.

[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]Unable	to	create	constraint.
See	previous	errors.

Cause
The	text	value	in	the	check	constraint	expression	on	the	Tables	property	page	is
not	enclosed	in	single	quotation	marks	(').

-or-

A	column	that	participates	in	the	check	constraint	has	been	renamed.	For
example,	if	the	original	constraint	had	the	expression	(cityname	=	'Paris')	and
you	renamed	the	column	to	city,	you	would	see	this	error.

Recommended	solution
Correct	the	expression	and	save	the	table.

ODBC	error	text
[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]Line	[line	number]:
Incorrect	syntax	near	'[operator]'.

Cause
The	expression	defined	for	the	check	constraint	(in	the	Tables	property	page)	or
the	default	constraint	(in	the	Default	Value	cell)	is	not	valid	SQL	syntax.	For
example,	the	check	constraint	expression	'city	equals	Paris'	was	typed	instead
of	'city	=	Paris'.

Recommended	solution
Correct	the	expression	and	save	the	table.

For	more	information	about	constraints,	see	Constraints.

Unable	to	create	index
Appears	when	a	new	index	has	failed	on	existing	data.

ODBC	error	text
[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]Create	unique	index
aborted	on	duplicate	key.	Primary	key	is	'[primary	key	data]'

[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]Unable	to	create	constraint.
See	previous	errors.

Cause
A	unique	index	was	created	in	the	Indexes/Keys	property	page	but	duplicate	data
exists	in	the	database.

Recommended	solution
Remove	duplicate	data	from	the	database.	For	more	information,	see	Designing
Queries.

-or-

Change	the	option	in	the	Indexes/Keys	property	page	to	allow	duplicate	rows	in
the	index.

For	more	information	about	creating	unique	indexes,	see	Creating	a	Unique
Index.

Unable	to	create	relationship
Appears	when	a	new	referential	integrity	constraint	has	failed	on	existing	data.

ODBC	error	text
[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]Data	exists	in	table	'[table
name]',	database	'[database	name]',	that	violates	FOREIGN	KEY	constraint
'[constraint	name]'	being	added.	ALTER	command	has	been	aborted.

[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]Unable	to	create	constraint.
See	previous	errors.

Cause
Existing	data	fails	the	foreign	key	constraint.

Recommended	solution
Change	the	data	that	fails	the	foreign	key	constraint	by	running	a	query	to	show
all	the	foreign	key	values	that	do	not	match	primary	key	values.	For	example,	to
find	foreign	key	values	in	the	job_id	column	of	the	employee	table	that	do	not
match	primary	key	values	in	the	jobs	table,	run	a	query	with	this	SQL	syntax:

SELECT		employee.emp_id,	employee.job_id
FROM		employee	LEFT	OUTER	JOIN	jobs	ON	employee.job_id	=	jobs.job_id
WHERE	(jobs.job_id	IS	NULL)

For	more	information,	see	Creating	Queries.

-or-

Clear	the	Check	existing	data	on	creation	check	box	in	the	Relationships
property	page.	For	more	information,	see	Checking	Existing	Data	when	Creating
a	Relationship.

Unable	to	modify	table
Appears	when	a	new	constraint	has	failed	on	existing	data.	Compare	the	ODBC
error	text	that	appears	in	the	Save	Incomplete	dialog	box	with	the	two	ODBC
errors	shown	below	to	determine	the	appropriate	solution.

ODBC	error	text
[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]The	column	[column	name]
in	table	Tmp_	[table	name]	may	not	be	null.

Cause
A	new	database	column	has	been	added	that	does	not	allow	null	values	and	does
not	provide	a	default	value.	The	table	name	in	question	appears	after	"Tmp_".

Recommended	solution
Change	the	column	properties.	Either	select	the	Allow	Nulls	property	or	type	a
Default	Value	setting.	For	more	information	about	setting	properties	for
database	columns,	see	Column	Properties.

ODBC	error	text
[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]Attempt	to	insert	the	value
NULL	into	column	'[column	name]',	table	'[database	name]	TMP_	[table
name]';	column	does	not	allow	nulls.	INSERT	fails.

[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]Command	has	been
aborted.

Cause
The	Allow	Nulls	property	on	an	existing	database	column	has	been	cleared,	but
the	column	has	existing	null	values	in	it.

Recommended	solution
Go	to	the	column	and	select	the	Allow	Nulls	property.

For	more	information	about	setting	properties	for	database	columns,	see	Column
Properties.

Unable	to	preserve	trigger
Appears	when	your	trigger	text	references	a	column	that	has	been	renamed,
deleted,	or	assigned	a	different	data	type.

ODBC	error	text
[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]Invalid	column	name
'[column	name]'.
-	Unable	to	preserve	trigger	'[trigger	name]'.

Cause
A	change	to	the	table	required	the	table	to	be	recreated.	When	a	table	is
recreated,	the	triggers	attached	to	that	table	are	automatically	recreated	as	well.

Recommended	solution
The	recommended	solution	depends	on	the	type	of	change	made	to	the	column
referenced	by	the	trigger.

To	preserve	a	trigger	that	references	a	renamed	column

Rename	the	column	to	its	original	name	and	then	save	the	table.	This
action	will	allow	the	table	to	be	recreated.	You	can	now	rename	the

column,	save	the	table	again,	and	then	edit	the	trigger	to	fix	the	renamed
columns.

To	preserve	a	trigger	that	references	a	deleted	column

1.	 Expand	the	table	that	the	trigger	is	attached	to.

2.	 Right-click	the	trigger	you	want	to	change	and	choose	Open	from	the
shortcut	menu.

3.	 Edit	the	trigger	text	and	save	the	trigger.

4.	 Save	the	table	or	database	diagram.

For	more	information	about	triggers,	see	Triggers	and	Enforcing	Business	Rules
with	Triggers.

System	errors
System	errors	can	appear	in	the	Save	Incomplete	dialog	box	when	you	exceed
Microsoft®	SQL	Server™	limitations	that	are	not	controlled	by	the	Database
Designer.		One	such	error	is	described	here.

ODBC	error	text
[Microsoft][ODBC	SQL	Server	Driver]Timeout	expired.

Cause
The	timeout	can	occur	when	you	are	updating	the	database	with	any	Transact-
SQL	changes.

Recommended	solution
Try	again	later	to	save	the	diagram	or	selected	tables.

JavaScript:hhobj_10.Click()

-or-

Save	a	change	script	and	apply	it	to	the	database	at	a	later	time.	For	more
information,	see	Saving	a	Change	Script.

-or-

Increase	the	SQL	Query	Time-out	value	and	try	to	save	the	diagram	or	selected
tables	again.

See	Also
Database	Designer	Dialog	Boxes	|	Database	Designer	Considerations	for	SQL
Server	Databases

Visual	Database	Tools

Unsaved	Changes	Exist	Dialog	Box
Appears	if	you	close	the	last	table	of	a	database	diagram	or	the	diagram	itself	in
the	Database	Designer	when	there	are	unsaved	tables	in	memory.

Note			Although	you	cannot	undo	changes	made	to	a	table	or	database
diagram,	the	changes	are	not	saved	to	the	database	until	you	save	the	table	or
diagram.	You	can	discard	any	unsaved	changes	by	choosing	No	and	closing
all	open	diagrams	without	saving	them.

Yes
Saves	all	the	tables	shown	in	the	list.

No
Closes	the	diagram	without	saving	the	changes.

Save	Text	File
Displays	the	Save	As	dialog	box,	letting	you	specify	a	location	for	a	text	file
containing	a	record	of	the	tables	that	were	affected	by	the	changes	you	made.

See	Also
Database	Designer	Dialog	Boxes	|	Saving	Selected	Tables

Visual	Database	Tools

Validation	Warnings	Dialog	Box
Appears	if	you	attempt	to	save	modifications	with	potentially	damaging	side
effects—or	if	the	database	commit	operation	is	likely	to	fail.		This	dialog	box
indicates	what	those	side	effects	might	be	or	why	the	commit	operation	might
fail.		It	gives	you	the	chance	to	proceed	with	the	modification	or	cancel	the
operation.

Note			This	dialog	box	appears	when	you	attempt	to	transmit	your
modifications	to	the	database	OR	when	you	save	a	change	script.

The	dialog	box	can	appear	for	any	of	these	reasons:

You	might	not	have	database	permissions	to	commit	all	the
modifications.

Your	modifications	would	result	in	improperly	formed	computed
columns,	default	constraints,	or	check	constraints.

A	modification	to	a	column's	data	type	might	cause	data	loss.

A	modification	would	result	in	an	index	greater	than	900	bytes.

A	modification	would	change	a	table	or	column	contributing	to	a
schema-bound	view	or	user-defined	function.

Yes

Proceeds	with	the	operation.		That	is,	selecting	Yes	proceeds	to	generate	the
change	script	or	transmit	the	modifications	to	the	database.		Remember,	even	if
you	are	transmitting	the	modifications	to	the	database	and	you	select	Yes,	the
commit	operation	could	still	fail	if	you	do	not	have	privileges	to	modify	the
database;	if	your	modifications	would	result	in	an	index	greater	than	900	bytes;
or	if	your	modifications	would	result	in	an	improperly	formed	computed	column,

default	constraint,	or	check	constraint.

No
Cancels	the	save	action.

Save	Text	File
Displays	the	Save	As	dialog	box,	letting	you	specify	a	location	for	a	text	file
containing	a	list	of	the	warnings.

See	Also
Database	Designer	Dialog	Boxes	|	Indexed	Views	|	Saving	a	Change	Script

Visual	Database	Tools

Query	Designer	Dialog	Boxes
Documentation	is	available	for	the	following	Database	Designer	user	interface
elements:

Add	Table	Dialog	Box

Database	Changes	Detected	Dialog	Box

Define	Query	Parameters	Dialog	Box

Delete	Table	Dialog	Box

Go	To	Row	Dialog	Box

Indexes	Dialog	Box

Choose	Target	Table	for	INSERT	FROM	Dialog	Box

Insert	Into	Dialog	Box

Make	Table	Dialog	Box

Query	Definitions	Differ	Dialog	Box

Returning	Query	Results	Dialog	Box

Returning	Query	Results	(Edit)	Dialog	Box

SQL	Syntax	Errors	Encountered	Dialog	Box

Update	Table	Dialog	Box

Visual	Database	Tools

Add	Table	Dialog	Box	(Query	and	View	Designers)
Enables	you	to	add	tables,	views,	or	user-defined	functions	returning	a	table	in
the	Query	or	View	Designer.

Tables
Lists	the	tables	you	can	add	to	the	Diagram	pane.		To	add	a	table,	select	it	and
click	Add.		To	add	several	tables	at	once,	select	them	and	click	Add.

Views
Lists	the	views	you	can	add	to	the	Diagram	pane.		To	add	a	view,	select	it	and
click	Add.		To	add	several	views	at	once,	select	them	and	click	Add.

Functions
Lists	the	user-defined	functions	you	can	add	to	the	Diagram	pane.		To	add	a
function,	select	it	and	click	Add.		To	add	several	functions	at	once,	select	them
and	click	Add.

Add
Adds	the	selected	item	or	items.

Close
Closes	the	dialog	box	without	adding	further	items,	including	the	currently
highlighted	items.

See	Also
Query	Designer	Dialog	Boxes	|	Add	Table	Dialog	Box	(Database	Designer)

Visual	Database	Tools

Database	Changes	Detected	Dialog	Box
Notifies	you	that	the	data	row	you	are	editing	in	the	Results	pane	is	no	longer
current.	This	dialog	box	appears	when	you	attempt	to	save	changes	to	a	row	by
moving	to	another	row	in	the	Results	pane	and	the	Query	Designer	determines
that	the	corresponding	row	in	the	database	has	changed.	This	situation	occurs
most	often	when	another	user	has	edited	the	row	and	saved	the	changes	since
you	executed	your	query.

The	dialog	box	displays	a	message	asking	how	you	want	to	proceed.

Yes
Choose	this	button	to	specify	that	you	want	to	save	your	changes	and	overwrite
the	changes	made	by	the	other	user.

No
Choose	this	button	to	discard	the	changes	you	have	made	and	fetch	the	most
current	version	of	the	row.	The	Query	Designer	returns	you	to	the	Results	pane
after	rereading	the	row	from	the	database.

Cancel
Choose	this	button	to	return	to	the	Results	pane	without	saving	the	row	and
without	discarding	your	changes.	If	you	choose	this	option,	you	can	attempt	to
save	the	row	again	or	make	further	changes,	such	as	matching	your	edits	to	the
version	of	the	row	in	the	database.

Tip			To	see	the	most	current	version	of	the	row	without	discarding	your
changes,	execute	a	second	query	against	the	data	you	are	editing.

See	Also
Query	Designer	Dialog	Boxes

Visual	Database	Tools

Define	Query	Parameters	Dialog	Box
Allows	you	to	enter	values	for	the	parameters	defined	in	the	query.	This	dialog
box	appears	when	you	execute	a	query	that	contains	parameters	to	be	filled	in	at
run	time.

Parameter	name
Lists	the	parameters	defined	for	the	query	being	executed.	If	the	query	contains
named	parameters,	the	names	appear	in	the	list.	If	the	query	contains	unnamed
parameters,	a	question	mark	appears	for	each	parameter	in	the	query.

Parameter	value
Enter	the	value	for	each	parameter	listed	under	Parameter	name.	The	value	used
most	recently	appears	as	the	default	parameter	value.

See	Also
Query	Designer	Dialog	Boxes	|	Creating	a	Query	with	Named	Parameters	|
Creating	a	Query	with	Unnamed	Parameters	|	Parameter	Queries	|	Specifying
Parameter	Marker	Characters

Visual	Database	Tools

Delete	Table	Dialog	Box
Allows	you	to	specify	the	table	from	which	to	delete	rows.	This	dialog	box
appears	if	more	than	one	table	is	displayed	in	the	Diagram	pane	when	you	start	a
Delete	query.

Select	the	table	to	delete	rows	from,	and	then	choose	OK.

Note			A	Delete	query	removes	entire	rows	from	the	table.	If	you	want	to
clear	values	from	individual	data	columns,	use	an	Update	query.	If	you	want
to	delete	columns	from	a	table	definition,	or	delete	the	table	itself,	use	the
Database	Designer	or	the	database	design	tools	for	your	database.

See	Also
Query	Designer	Dialog	Boxes

Visual	Database	Tools

Go	To	Row	Dialog	Box
Allows	you	to	navigate	to	a	specific	row	in	the	Results	pane.	This	dialog	box
appears	when	you	right-click	in	the	Results	pane	and	choose	Row.

Row
Enter	the	row	number	of	the	row	you	want	to	navigate	to.	If	the	query	has
finished	fetching	query	results,	the	total	number	of	rows	in	the	result	set	is
displayed.	If	you	enter	a	number	higher	than	the	total	number	of	rows	in	the
result	set,	the	Query	Designer	moves	to	the	last	row.

See	Also
Query	Designer	Dialog	Boxes	|	Navigating	in	the	Query	Designer	|	Results	Pane

Visual	Database	Tools

Indexes	Dialog	Box
Allows	you	to	specify	create,	delete,	and	modify	indexes.

Selected	Index
Shows	the	name	of	the	first	index	for	the	selected	view.		To	show	properties	for	a
different	index,	select	an	index	from	the	drop-down	list.

New
Choose	this	button	to	create	a	new	index.		For	more	information,	see	Creating
Indexed	Views.

Delete
Choose	this	button	to	remove	the	selected	index.

Index	Name
Shows	the	name	of	the	selected	item.	You	can	rename	the	item	by	entering	a	new
name	in	this	box.

Column	Name/Order
Shows	the	columns	contributing	to	the	index,	along	with	whether	each	column's
values	are	arranged	in	ascending	or	descending	order	within	the	item.	You	can
add,	change,	or	remove	column	names	in	this	list.		You	can	also	change	the
ascending/descending	setting	for	each	column.

Index	File	Group
Select	the	name	of	the	file	group	in	which	you	want	to	store	the	selected	index.

You	must	have	at	least	one	user-defined	file	group	for	this	setting	to	be	enabled.
This	setting	is	only	available	for	Microsoft®	SQL	Server™	7.0	or	higher
databases.	If	you	create	a	database	object	and	do	not	specify	its	file	group,	SQL
Server	will	assign	it	to	the	default	file	group.	Initially,	the	default	file	group	is
the	Primary	file	group.

For	more	information	on	creating	and	using	file	groups,	see	Files	and	Filegroups.

Create	UNIQUE
Select	this	option	to	create	a	unique	index	for	the	selected	view.

Ignore	duplicate	key			If	you	create	a	unique	index,	you	can	set	this
option	to	ensure	each	index	value	is	unique.

Create	as	CLUSTERED

Select	this	option	to	create	a	clustered	index	for	the	selected	view.	For	more
information,	see	Creating	a	Clustered	Index.

Do	not	automatically	recomputed	statistics
Select	this	option	to	tell	SQL	Server	to	use	previously	created	statistics.	This
choice,	available	only	for	Microsoft®	SQL	Server™	7.0	and	higher	databases,
may	not	produce	optimal	results	and	is	not	recommended.

For	more	information,	see	Statistical	Information.

Fill	factor
Shows	the	fill	factor	that	specifies	how	full	each	index	page	can	be.	If	a	fill
factor	is	not	specified,	the	database's	default	fill	factor	is	used.	For	more
information,	see	Specifying	a	Fill	Factor	for	an	Index.

Pad	Index

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

If	you	specified	a	fill	factor	of	more	than	zero	percent,	and	you	selected	the
option	to	create	a	unique	index,	you	can	tell	SQL	Server	to	use	the	same
percentage	you	specified	in	fill	factor	as	the	space	to	leave	open	on	each	interior
node.	By	default,	SQL	Server	sets	a	two-row	index	size.

See	Also
Query	Designer	Dialog	Boxes

Visual	Database	Tools

Choose	Target	Table	for	INSERT	FROM	Dialog	Box
Allows	you	to	specify	a	table	to	insert	new	rows	into.	This	dialog	box	appears
when	you	start	an	INSERT	FROM	query.

Table	name
Select	from	the	list	the	name	of	the	table	to	add	rows	to.	You	can	specify	only
one	table	for	the	INSERT	FROM	query.

Note			You	can	change	the	table	into	which	you	want	to	insert	rows	in	the
Properties	window.	For	details,	see	Query	Tab,	Properties	Window.

See	Also
Query	Designer	Dialog	Boxes

JavaScript:hhobj_1.Click()

Visual	Database	Tools

Insert	Into	Dialog	Box
Allows	you	to	specify	the	table	to	add	a	row	to.	This	dialog	box	appears	if	more
than	one	table	is	displayed	in	the	Diagram	pane	when	you	start	an	Insert	Into
query.

Select	the	table	to	add	a	row	to,	and	then	choose	OK.

See	Also
Query	Designer	Dialog	Boxes

Visual	Database	Tools

Make	Table	Dialog	Box
Allows	you	to	name	a	table	that	will	be	created	and	that	you	will	copy	rows	to.
This	dialog	box	appears	when	you	start	a	Make	Table	query.

Table	Name
Type	the	name	of	the	table	to	create.	The	Query	Designer	does	not	check
whether	the	name	is	already	in	use	or	whether	you	have	permission	to	create	the
table.

To	create	a	destination	table	in	another	database,	specify	a	fully	qualified	table
name,	including	the	name	of	the	target	database,	the	owner	(if	required),	and	the
name	of	the	table.

Note			Before	you	execute	the	query,	from	the	Property	Pages	window,	you
can	change	properties	of	the	table	you	want	to	create.	For	details,	see	Query
Tab,	Properties	Window.

See	Also
Query	Designer	Dialog	Boxes	|	Creating	Make	Table	Queries

Visual	Database	Tools

Query	Definitions	Differ	Dialog	Box
Notifies	you	that	your	query	cannot	be	represented	graphically	in	the	Diagram
and	Grid	panes	and	that	you	can	edit	your	query	only	in	the	SQL	pane.	This
dialog	box	appears	when	you	enter	or	edit	an	SQL	statement	in	the	SQL	pane;
then	you	either	switch	to	another	pane,	verify	the	query,	or	attempt	to	execute	the
query;	and	one	of	the	following	conditions	applies:

The	SQL	command	is	incomplete	or	contains	one	or	more	syntax	errors.

The	SQL	command	is	valid	but	is	not	supported	in	the	graphical	panes
(for	example,	a	Union	query).

The	SQL	command	is	valid	but	contains	syntax	specific	to	the	data
connection	you	are	using.

Tip			You	can	check	whether	a	statement	is	valid	using	the	Verify	SQL
Statement	button	on	the	Query	toolbar.

The	dialog	box	displays	a	message	with	the	reason	that	the	SQL	statement
cannot	be	represented,	and	then	asks	how	you	want	to	proceed.

Note			The	Query	Definitions	Differ	dialog	box	does	not	appear	if	you	have
hidden	the	Diagram	and	Grid	panes,	because	the	Query	Designer	assumes
that	you	are	editing	only	in	the	SQL	pane.

Yes
Choose	this	button	to	specify	that	you	want	to	accept	the	SQL	statement,	either
to	edit	it	further	or	to	execute	it.	If	you	accept	the	statement,	the	Diagram	and
Grid	panes	appear	dimmed	to	indicate	that	they	do	not	represent	the	statement	in
the	SQL	pane.

No

Choose	this	button	to	discard	your	changes	to	the	SQL	pane.

Note			If	the	statement	is	correct	but	not	supported	graphically	by	the	Query
Designer,	you	can	execute	it	even	though	it	cannot	be	represented	in	the
Diagram	and	Grid	panes.	For	example,	if	you	enter	a	Union	query,	the
statement	can	be	executed	but	not	represented	in	the	other	panes.

See	Also
Query	Designer	Dialog	Boxes

Visual	Database	Tools

Returning	Query	Results	(Edit)	Dialog	Box
Notifies	you	that	the	Query	Designer	or	View	Designer	cannot	save	changes	to
the	row	you	have	edited	because	the	result	set	is	still	being	transmitted	from	the
database	to	your	computer.		For	more	information,	see	Interaction	Between	the
Results	Pane	and	the	Database.

To	help	you	estimate	how	long	you	must	wait,	the	dialog	box	displays	a	progress
counter.

Cancel
Choose	this	button	to	specify	that	you	want	to	cancel	your	attempt	to	move	to
another	row.	The	Query	Designer	returns	you	to	the	row	you	have	edited.

If	you	do	not	choose	Cancel,	the	Query	Designer	saves	your	changes	after	the
result	set	has	been	completely	transmitted	to	your	computer.

See	Also
Query	Designer	Dialog	Boxes

Visual	Database	Tools

Returning	Query	Results	Dialog	Box
Notifies	you	that	the	Query	Designer	or	View	Designer	cannot	perform	the
requested	action	because	the	result	set	is	still	being	transmitted	from	the	database
to	your	computer.	This	dialog	box	appears	when	you	have	executed	a	query,	and
then	before	the	result	set	has	been	fully	transmitted	to	your	computer,	you
attempt	one	of	the	following	operations:

To	go	to	a	result-set	row	that	has	not	yet	been	returned.

To	insert	a	new	row	in	the	Results	pane.

To	delete	one	or	more	rows	in	the	Results	pane.

To	use	the	Copy	command	to	place	selected	columns	on	the	Clipboard.

For	more	information,	see	Interaction	Between	the	Results	Pane	and	the
Database.

To	help	you	estimate	how	long	you	must	wait,	the	dialog	box	displays	a	progress
counter.

Cancel
Cancels	the	attempted	operation	and	leaves	you	at	the	row	you	were	on	when
you	requested	the	operation.

See	Also
Query	Designer	Dialog	Boxes

Visual	Database	Tools

SQL	Syntax	Errors	Encountered	Dialog	Box
Notifies	you	that	the	Query	Designer	cannot	parse	the	SQL	statement	in	the	SQL
pane.	This	dialog	box	appears	when	you	enter	or	edit	an	SQL	statement	in	the
SQL	pane;	and	then	you	either	switch	to	another	pane,	verify	the	query,	or
attempt	to	execute	the	query;	and	one	of	the	following	conditions	applies:

The	SQL	command	is	incomplete	or	contains	one	or	more	syntax	errors.

The	SQL	command	is	valid	but	is	not	supported	in	the	graphical	panes
(for	example,	a	Union	query).

The	SQL	command	is	valid	but	contains	syntax	specific	to	the	data
connection	you	are	using.

Tip			You	can	check	whether	a	statement	is	valid	using	the	Verify	SQL
Statement	button	on	the	Query	toolbar.

The	dialog	box	displays	a	message	with	the	reason	that	the	SQL	statement
cannot	be	parsed.	Choose	OK	to	proceed.

See	Also
Query	Designer	Dialog	Boxes

Visual	Database	Tools

Update	Table	Dialog	Box
Allows	you	to	specify	the	table	to	be	updated.	This	dialog	box	appears	if	more
than	one	table	is	displayed	in	the	Diagram	pane	when	you	start	an	Update	query.

Select	the	table	to	update,	and	then	choose	OK.

See	Also
Query	Designer	Dialog	Boxes	|	Creating	Update	Queries

Visual	Database	Tools

Properties	Pages
For	information	about	the	properties	pages	used	by	the	Visual	Database	Tools,
see	the	following	topics:

Database	Designer	and	Table	Designer	Properties	Pages

Query	Designer	and	View	Designer	Properties	Pages

Visual	Database	Tools

Database	Designer	and	Table	Designer	Properties
Pages
The	Database	Designer	and	Table	Designer	provide	property	pages	with	which
you	can	create,	delete,	and	modify	database	objects,	and	set	other	options	that
affect	them.

To See
Set	properties	for	database	tables Tables	Property	Page
Set	properties	for	columns Columns	Property	Page
Create	and	manipulate	relationships
between	tables,	including	choosing
primary	and	foreign	keys	for	the
relationship

Relationships	Property	Page

Create	and	manipulate	indexes,
primary	keys,	and	unique	constraints
attached	to	a	table

Indexes/Keys	Property	Page

Create	and	manipulate	check
constraints

Constraints	Property	Page

Visual	Database	Tools

Columns	Property	Page
This	property	page	contains	a	set	of	properties	for	a	column	within	a	table.

Table	name
Shows	the	name	of	the	table	containing	the	column	whose	properties	you	are
viewing.	The	Table	Name	option	is	editable	only	within	the	Database	Designer
—	not	from	within	the	Table	Designer.	If	more	than	one	table	is	selected	in	your
diagram,	only	the	name	of	the	first	table	is	visible.

Column	Name
Shows	the	name	of	the	selected	column	of	the	selected	table	in	your	diagram.		If
more	than	one	table	is	selected	in	your	diagram,	only	the	name	of	the	first
column	of	the	first	table	is	visible.		To	show	properties	for	a	different	column,
expand	the	Column	Name	list.

Description
Shows	the	text	description	of	the	selected	column.

Default	Value
Shows	the	default	for	this	column	whenever	a	row	with	a	null	value	for	this
column	is	inserted	into	the	table.		The	value	of	this	field	can	be	either	the	value
of	a	SQL	Server	default	constraint	or	the	name	of	a	global	constraint	to	which
the	column	is	bound.		The	drop-down	list	contains	all	global	defaults	defined	in
the	database.		To	bind	the	column	to	a	global	default,	select	from	the	drop-down
list.		Alternatively,	to	create	a	default	constraint	for	the	column,	enter	the	default
value	directly	as	text.

Precision

Shows	the	maximum	number	of	digits	for	values	of	this	column.

Scale
Shows	the	maximum	number	of	digits	that	can	appear	to	the	right	of	the	decimal
point	for	values	of	this	column.

Identity
Shows	whether	the	column	is	used	by	SQL	Server	as	an	identifier	column.	
Possible	values	are:

No			The	column	is	not	used	as	an	identity	column.

Yes			The	column	is	used	as	an	identity	column.

Yes	(Not	For	Replication)			The	column	is	used	as	an	identity	column,
except	while	a	replication	agent	is	inserting	data	into	the	table.

Identity	Seed

Shows	the	seed	value	of	an	identity	column.		This	option	applies	only	to
columns	whose	Identity	option	is	set	to	Yes	or	Yes	(Not	For	Replication).

Identity	Increment
Shows	the	increment	value	of	an	identity	column.		This	option	applies	only	to
columns	whose	Identity	option	is	set	to	Yes	or	Yes	(Not	For	Replication).

Is	RowGuid
Shows	whether	the	column	is	used	by	SQL	Server	as	a	ROWGUID	column.	
You	can	set	this	value	to	Yes	only	for	a	column	that	is	an	identity	column.

Formula
Shows	the	formula	for	a	computed	column.

Collation
Shows	the	collating	sequence	that	SQL	Server	applies	by	default	to	the	column
whenever	the	column	values	are	used	to	sort	rows	of	a	query	result.		To	use	the
default	collating	sequence	for	the	database,	choose	<database	default>.

Indexed
Shows	whether	an	index	exists	on	the	column.	Possible	values	are:

No			No	index	exists	on	the	column.

Yes	(duplicates	OK)			A	non-unique	index	exists	on	the	column.

Yes	(no	duplicates)			A	unique	index	exists	on	the	column.

See	Also

Database	Designer	and	Table	Designer	Properties	Pages

Visual	Database	Tools

Check	Constraints	Property	Page
This	property	page	contains	a	set	of	properties	for	constraints	(except	unique
constraints)	attached	to	the	tables	in	your	database.	Properties	applying	to	unique
constraints	appear	on	the	Indexes/Keys	property	page.

Table	Name
Shows	the	name	of	the	selected	table	in	your	diagram.		If	more	than	one	table	is
selected	in	your	diagram,	only	the	name	of	the	first	table	is	visible.

Selected	Constraint
Shows	the	name	of	the	constraint	whose	properties	you	are	viewing.		To	view	the
properties	of	a	different	constraint,	select	a	constraint	from	the	drop-down	list.

New
Choose	this	button	to	create	a	new	constraint	for	the	selected	database	table.
Enter	properties	for	the	index.	For	more	information,	see	Attaching	a	New
Check	Constraint	to	a	Table	or	Column.

Delete
Choose	this	button	to	remove	the	selected	constraint	from	the	database.		For
more	information,	see	Deleting	a	Check	Constraint.

Constraint	name
Shows	the	name	of	the	constraint	whose	properties	you	are	viewing.		Use	this
control	to	modify	the	name	of	the	constraint.	For	more	information,	see
Modifying	a	Check	Constraint.

Constraint	expression
Shows	the	SQL	syntax	of	the	selected	check	constraint.	For	new	constraints,	you
must	enter	the	SQL	syntax	before	exiting	this	box.	You	can	also	edit	existing
check	constraints.	For	more	information,	see	Defining	a	Check	Constraint
Expression.

Check	existing	data	on	creation
When	selected,	this	option	ensures	that	all	data	that	exists	in	the	table	before	the
constraint	was	created	is	verified	against	the	constraint.

Enforce	constraint	for	INSERT	and	UPDATE
Enforces	the	constraint	when	data	is	inserted	into	or	updated	in	the	table.

Enforce	constraint	for	replication
Enforces	the	constraint	when	the	table	is	replicated	into	a	different	database.

See	Also
Database	Designer	and	Table	Designer	Properties	Pages

Visual	Database	Tools

Indexes/Keys	Property	Page
This	property	page	contains	a	set	of	properties	for	the	indexes,	primary	keys,	and
unique	constraints	attached	to	the	tables	in	your	database	diagram.	Indexes	and
constraints	are	not	graphically	represented	in	database	diagrams.

Table	name
Shows	the	name	of	the	selected	table	in	your	diagram.	If	more	than	one	table	is
selected	in	your	diagram,	only	the	name	of	the	first	table	is	visible.

Selected	index
Shows	the	name	of	the	first	index	for	the	selected	table	in	your	diagram.	If	more
than	one	table	is	selected	in	your	diagram,	only	the	name	of	the	first	index	for
the	first	table	is	visible.	To	show	properties	for	a	different	index,	expand	the
drop-down	list.

Type
Shows	the	index	or	key	object	type	for	the	selected	table:	index,	primary	key,	or
unique.

New
Choose	this	button	to	create	a	new	index,	key,	or	unique	constraint	for	the
selected	database	table.	For	more	information,	see	Creating	an	Index.

Delete
Choose	this	button	to	remove	the	selected	index,	key,	or	constraint	from	the
table.	For	more	information,	see	Deleting	an	Index.

Note			If	you	try	to	delete	a	primary	key	that	participates	in	relationships,	a

message	appears	asking	you	if	you	want	to	delete	all	the	relationships,	too.	
You	cannot	delete	a	primary	key	without	first	deleting	the	relationships	it
participates	in.

Column	name/Order
Shows	the	columns	contributing	to	the	index,	primary	key,	or	unique	constraint,
along	with	whether	each	column's	values	are	arranged	in	ascending	or
descending	order	within	the	item.	You	can	add,	change,	or	remove	column
names	in	this	list.		You	can	also	change	the	ascending/descending	setting	for
each	column.

Index	name
Shows	the	name	of	the	selected	index.	You	can	rename	the	index	by	entering	a
new	name	in	this	box.	For	more	information,	see	Renaming	an	Index.

Index	file	group
Select	the	name	of	the	file	group	in	which	you	want	to	store	the	selected	index.
You	must	have	at	least	one	user-defined	file	group	for	this	setting	to	be	enabled.
If	you	create	a	database	object	and	do	not	specify	its	file	group,	SQL	Server	will
assign	it	to	the	default	file	group.	Initially,	the	default	file	group	is	the	Primary
file	group.

For	more	information	on	creating	and	using	file	groups,	see	Placing	Indexes	on
Filegroups.

Create	UNIQUE
Select	this	option	to	create	a	unique	constraint	or	index	for	the	selected	database
table.	Specify	whether	you	are	creating	a	constraint	or	index	by	selecting	either
the	Constraint	or	Index	button.

Ignore	duplicate	key			If	you	create	a	unique	index,	you	can	set	this
option	to	ensure	each	value	in	an	indexed	column	is	unique.

JavaScript:hhobj_1.Click()

Fill	factor

Shows	the	fill	factor	that	specifies	how	full	each	index	page	can	be.	If	a	fill
factor	is	not	specified,	the	database's	default	fill	factor	is	used.	For	more
information,	see	Specifying	a	Fill	Factor	for	an	Index.

Pad	Index
If	you	specified	a	Fill	Factor	of	more	than	zero	percent,	and	you	selected	the
option	to	create	a	unique	index,	you	can	tell	SQL	Server	to	use	the	same
percentage	you	specified	in	Fill	Factor	as	the	space	to	leave	open	on	each
interior	node.	By	default,	SQL	Server	sets	a	two-row	index	size.

Create	as	CLUSTERED
Select	this	option	to	create	a	clustered	index	for	the	selected	database	table.	For
more	information,	see	Creating	a	Clustered	Index.

Don't	automatically	recompute	statistics
Select	this	option	to	tell	SQL	Server	to	use	previously	created	statistics.	This
choice	may	not	produce	optimal	results	and	is	not	recommended.

For	more	information,	see	Statistical	Information.

See	Also
Database	Designer	and	Table	Designer	Properties	Pages

JavaScript:hhobj_2.Click()

Visual	Database	Tools

Relationships	Property	Page
This	property	page	contains	a	set	of	properties	for	the	relationships	between	the
tables	in	your	database.

Table	name
Shows	the	name	of	the	selected	table	in	your	diagram.	If	more	than	one	table	is
selected	in	your	diagram,	only	the	name	of	the	first	table	is	visible.

Selected	relationship
Shows	the	name	of	the	selected	relationship	in	your	diagram.	If	more	than	one
relationship	is	selected	in	your	diagram,	only	the	name	of	the	first	relationship	in
your	selection	is	visible.	Expand	the	list	to	view	or	modify	the	properties	of	a
different	relationship.

Each	entry	in	the	drop-down	list	is	preceded	by	an	icon.		A	key	icon	indicates
that	the	table	participates	in	the	relationship	as	the	referred-to	table.		An	infinity
icon	indicates	that	the	table	participates	as	the	referring	table.		(The	referring
table	has	the	relationship's	foreign-key	constraint.)

New
Choose	this	button	to	create	a	new	relationship	for	the	selected	database	table.
For	more	information,	see	Creating	a	Relationship.

Delete
Choose	this	button	to	remove	the	selected	relationship	from	the	database.	For
more	information,	see	Deleting	a	Relationship.

Relationship	name

Shows	the	name	of	the	selected	relationship.	You	can	rename	the	relationship	by
entering	a	new	name	in	this	box.	For	more	information,	see	Renaming	a
Relationship.

Primary	key	table
Shows	the	name	of	the	primary	key	table	in	the	relationship,	followed	by	the
columns	that	make	up	the	primary	key.	For	information	about	changing	the
primary	key,	see	Modifying	a	Primary	Key.

Foreign	key	table
Shows	the	name	of	the	foreign	key	table	in	the	relationship,	followed	by	the
columns	that	make	up	the	foreign	key.	For	information	about	changing	the
foreign	key,	see	Modifying	a	Foreign	Key.

Check	existing	data	on	creation
Applies	the	constraint	to	data	that	already	exists	in	the	database	when	the
relationship	is	added	to	the	foreign	key	table.

Enforce	relationship	for	INSERTs	and	UPDATEs
Applies	the	constraint	to	data	that	is	inserted	into,	deleted,	or	updated	in	the
foreign	key	table.	Also	prevents	a	row	in	the	primary	key	table	from	being
deleted	when	a	matching	row	exists	in	the	foreign	key	table.

Enforce	relationship	for	replication
Applies	the	constraint	when	the	foreign	key	table	is	copied	to	a	different
database.

Cascade	Update	Related	Fields
Instructs	the	DBMS	to	automatically	update	foreign-key	values	of	this

relationship	whenever	the	primary-key	value	is	updated.

Cascade	Delete	Related	Fields
Instructs	the	DBMS	to	automatically	delete	rows	of	the	foreign-key	table
whenever	the	referred-to	row	of	the	primary-key	table	is	deleted.

See	Also
Database	Designer	and	Table	Designer	Properties	Pages

Visual	Database	Tools

Tables	Property	Page
This	property	page	contains	a	set	of	properties	for	the	tables	in	your	database.

Selected	table
Shows	the	name	of	the	selected	table.	If	more	than	one	table	is	selected	in	your
diagram,	only	the	name	of	the	first	table	in	your	selection	is	visible.	Expand	the
list	to	choose	a	different	table	whose	properties	you	want	to	inspect	or	modify.

Owner
Shows	the	name	of	the	table's	owner.		The	owner	name	is	either	a	SQL	Server
role	or	SQL	Server	user.	The	drop-down	list	contains	all	the	users	and	roles
defined	in	the	database.		Within	the	drop-down	list,	the	users	and	roles	have
different	icons;	the	role	icon	shows	two	faces,	the	user	icon	shows	only	one.

This	control	is	editable	only	if	you	are	connected	to	a	database	as	a	user	that	is	a
member	of	the	db_owner	role	or	is	a	member	of	both	the	db_ddladmin	and
db_securityadmin	roles.

Table	name
Shows	the	name	of	the	selected	table.	To	rename	the	table,	enter	a	new	name	in
this	box.	For	more	information,	see	Renaming	a	Table.

Table	Identity	Column
Shows	the	column	used	by	SQL	Server	as	the	table's	identity	column.	To	change
the	identity	column,	choose	from	the	drop-down	list.		Within	the	drop-down	list,
you	can	choose	the	blank	entry	to	indicate	that	the	table	has	no	identity	column.

Table	ROWGUID	Column

Shows	the	column	used	by	SQL	Server	as	the	table's	ROWGUID	column.	To
change	the	ROWGUID	column,	choose	from	the	drop-down	list.		Within	the
drop-down	list,	you	can	choose	the	blank	entry	to	indicate	that	the	table	has	no
ROWGUID	column.

Table	File	Group
Select	the	name	of	the	file	group	in	which	you	want	to	store	the	selected	table
data.	You	must	have	at	least	one	user-defined	file	group	for	this	setting	to	be
enabled.	If	you	create	a	database	object	and	do	not	specify	its	file	group,	SQL
Server	will	assign	it	to	the	default	file	group.	Initially,	the	default	file	group	is
the	Primary	file	group.

For	more	information,	see	Placing	Tables	on	Filegroups.

Text	File	Group
Select	the	name	of	the	file	group	you	want	to	store	the	text	and	images	from	the
selected	table	in.	You	must	have	at	least	one	user-defined	file	group	for	this
setting	to	be	enabled.	If	you	create	a	database	object	and	do	not	specify	its	file
group,	SQL	Server	will	assign	it	to	the	default	file	group.	Initially,	the	default
file	group	is	Primary	file	group.

For	more	information,	see	Placing	Tables	on	Filegroups.

Description
You	can	enter	any	text	in	this	field.		The	text	that	you	enter	is	implemented	as	a
SQL	Server	2000	extended	property.

See	Also
Database	Designer	and	Table	Designer	Properties	Pages

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Visual	Database	Tools

Query	Designer	Properties	Pages
Query	Designer	provides	property	pages	to	set	options	that	affect	how	queries
will	be	executed	against	your	database.

To See
Control	the	behavior	of	your	query
by	setting	its	properties	using	the
Query	Designer

Query	Tab,	Properties	Window
(Query	Designer)

Control	the	behavior	of	your	query
by	setting	its	properties	using	the
View	Designer

Query	Tab,	Properties	Window
(View	Designer)

Mark	parameters	in	your	query	with
special	characters

Parameters	Tab,	Properties	Window

Specify	options	for	joining	tables	in	a
multitable	query

Join	Line	Tab,	Properties	Window

Visual	Database	Tools

Query	Tab,	Properties	Window	(Query	Designer)
Contains	options	for	controlling	the	behavior	of	the	query	you	are	building	or
modifying.

Query	name
Displays	the	name	for	the	current	query.	You	cannot	change	the	query	name	in
this	box.		For	more	information,	see	Visual	Database	Tools	Usage
Considerations.

Output	all	columns
Specifies	that	all	columns	from	all	tables	in	the	current	query	will	be	in	the	result
set.	Choosing	this	option	is	equivalent	to	specifying	an	asterisk	(*)	in	place	of
individual	column	names	after	the	SELECT	keyword	in	the	SQL	statement.

DISTINCT	values
Specifies	that	the	query	will	filter	out	duplicates	in	the	result	set.	This	option	is
useful	when	you	are	using	only	some	of	the	columns	from	the	table	or	tables	and
those	columns	might	contain	duplicate	values,	or	when	the	process	of	joining
two	or	more	tables	produces	duplicate	rows	in	the	result	set.	Choosing	this
option	is	equivalent	to	inserting	the	word	DISTINCT	into	the	statement	in	the
SQL	pane.

Destination	table
Specifies	the	name	of	the	table	into	which	you	are	inserting	rows.	This	list
appears	if	you	are	creating	an	Insert	query	or	Make	Table	query.	For	an	Insert
query,	select	a	table	name	from	the	list.

For	a	Make	Table	query,	type	the	name	of	the	table	to	create.	The	Query
Designer	does	not	check	whether	the	name	is	already	in	use	or	whether	you	have
permission	to	create	the	table.	To	create	a	destination	table	in	another	database,

specify	a	fully	qualified	table	name,	including	the	name	of	the	target	database,
the	owner	(if	required),	and	the	name	of	the	table.

GROUP	BY	extension
Specifies	that	additional	options	for	views	based	on	aggregate	queries	are
available.

WITH	CUBE
Specifies	that	the	aggregate	query	should	produce	summary	values	for	groups
specified	in	the	GROUP	BY	clause.	The	groups	are	created	by	cross-referencing
columns	included	in	the	GROUP	BY	clause,	and	then	applying	the	query's
aggregate	function	to	produce	summary	values	for	the	additional	super-aggregate
rows.	The	WITH	CUBE	option	is	multidimensional,	creating	summaries	from	all
combinations	of	aggregate	functions	and	columns	in	the	query.

WITH	ROLLUP
Specifies	that	the	aggregate	query	should	produce	summary	values	for	the
groups	specified	in	the	GROUP	BY	clause.	The	WITH	ROLLUP	option	is
similar	to	the	WITH	CUBE	option,	but	creates	only	one	type	of	summary	for
each	combination	of	column	and	aggregate	function.

ALL
Specifies	that	the	aggregate	query	will	include	any	duplicate	rows	in	the
summary.

Top
Specifies	that	the	query	will	include	a	TOP	clause,	which	returns	only	the	first	n
rows	or	first	n	percentage	of	rows	in	the	result	set.	The	default	is	that	the	query
returns	the	first	10	rows	in	the	result	set.

Use	this	box	to	specify	a	different	number	of	rows	to	return	or	to	specify	a

percentage.

Percent
Specifies	that	the	query	will	include	a	TOP	clause,	returning	only	the	first	n
percentage	of	rows	in	the	result	set.

With	Ties
Specifies	that	the	query	will	include	a	WITH	TIES	clause.	WITH	TIES	is	useful
if	a	query	includes	an	ORDER	BY	clause	and	a	TOP	clause	based	on	percentage.
If	this	option	is	set,	and	if	the	percentage	cutoff	falls	in	the	middle	of	a	set	of
rows	with	identical	values	in	the	ORDER	BY	clause,	the	query	extends	the
percentage	until	all	such	rows	are	included.

See	Also
Query	Designer	Properties	Pages

Visual	Database	Tools

Query	Tab,	Properties	Window	(View	Designer)
Contains	options	for	controlling	the	behavior	of	the	view	you	are	building	or
modifying.

View	name
Displays	the	name	for	the	current	query.	If	you	have	not	yet	saved	your	view,	the
default	name	is	displayed.	You	cannot	change	the	name	in	this	box.	To	assign	a
name,	choose	Save	or	Save	As	from	the	File	menu.

Output	all	columns
Specifies	that	all	columns	from	all	tables	currently	displayed	will	be	in	the	view.
Choosing	this	option	is	equivalent	to	specifying	an	asterisk	(*)	in	place	of
individual	column	names.

DISTINCT	values
Specifies	that	the	query	will	filter	out	duplicates	in	the	view.	This	option	is
useful	when	you	are	using	only	some	of	the	columns	from	a	table	and	those
columns	might	contain	duplicate	values,	or	when	the	process	of	joining	two	or
more	tables	produces	duplicate	rows	in	the	result	set.	Choosing	this	option	is
equivalent	to	inserting	the	word	DISTINCT	into	the	statement	in	the	SQL	pane.

Encrypt	view
Encrypts	the	view	when	you	save	it.	You	will	continue	to	be	able	to	work	with
the	view	until	you	close	the	View	Designer.

Important			After	you	close	an	encrypted	view,	you	will	no	longer	be	able	to
open	it	in	the	View	Designer.	If	you	need	to	modify	an	encrypted	view,	you
must	delete	it	and	recreate	another.

GROUP	BY	extension
Specifies	that	additional	options	for	views	based	on	aggregate	queries	are
available.

WITH	CUBE
Specifies	that	the	aggregate	query	should	produce	summary	values	for	groups
specified	in	the	GROUP	BY	clause.	The	groups	are	created	by	cross-referencing
columns	included	in	the	GROUP	BY	clause,	and	then	applying	the	query's
aggregate	function	to	produce	summary	values	for	the	additional	super-aggregate
rows.	The	WITH	CUBE	option	is	multidimensional,	creating	summaries	from	all
combinations	of	aggregate	functions	and	columns	in	the	query.

WITH	ROLLUP
Specifies	that	the	aggregate	query	should	produce	summary	values	for	the
groups	specified	in	the	GROUP	BY	clause.	The	WITH	ROLLUP	option	is
similar	to	the	WITH	CUBE	option,	but	creates	only	one	type	of	summary	for
each	combination	of	column	and	aggregate	function.

ALL
Specifies	that	the	aggregate	query	will	include	any	duplicate	rows	in	the
summary.

Check	Option
Indicates	that	whenever	you	open	this	view	and	modify	the	results	pane,	the
DBMS	checks	that	the	added	or	modified	data	satisfies	the	WHERE	clause	of
the	view	definition.	

Owner
Shows	the	name	of	the	view's	owner.		The	owner	name	is	either	a	SQL	Server

role	or	SQL	Server	user.		The	drop-down	list	contains	all	the	users	and	roles
defined	in	the	database.		Within	the	drop-down	list,	the	users	and	roles	have
different	icons;	the	role	icon	shows	two	faces,	the	user	icon	shows	only	one.

This	control	is	editable	only	if	you	are	connected	to	the	database	as	a	user	that	is
a	member	of	the	db_owner	role	or	is	a	member	of	both	the	db_ddladmin	and
db_securityadmin	roles.

Top
Specifies	that	the	query	will	include	a	TOP	clause,	which	returns	only	the	first	n
rows	or	first	n	percentage	of	rows	in	the	result	set.	The	default	is	that	the	query
returns	the	first	10	rows	in	the	result	set.

Use	this	box	to	specify	a	different	number	of	rows	to	return	or	to	specify	a
percentage.

Percent
Specifies	that	the	query	will	include	a	TOP	clause,	returning	only	the	first	n
percentage	of	rows	in	the	result	set.

With	Ties
Specifies	that	the	view	will	include	a	WITH	TIES	clause.	WITH	TIES	is	useful
if	a	view	includes	an	ORDER	BY	clause	and	a	TOP	clause	based	on	percentage.
If	this	option	is	set,	and	if	the	percentage	cutoff	falls	in	the	middle	of	a	set	of
rows	with	identical	values	in	the	ORDER	BY	clause,	the	view	is	extended	to
include	all	such	rows.

See	Also
Query	Designer	Properties	Pages

Visual	Database	Tools

Data	Source	Tab,	Properties	Window
Specifies	options	for	any	table	or	table-structured	object	appearing	in	the
Diagram	pane	of	a	query	or	view.

Object	Name
If	the	selected	object	is	a	table,	view,	or	function,	this	control	contains	the
object's	name.

If	the	selected	object	is	a	subquery,	this	control	contains	the	text	of	the	subquery.

Alias
Contains	the	Alias	(if	any)	of	the	selected	object.		You	can	create	or	modify	an
alias	for	the	object	by	typing	in	this	box.

Full	Name
If	the	selected	object	is	a	table,	view,	or	function,	this	control	contains	the
object's	full	name	(e.g.,	Northwind.dbo.Invoices).

If	the	selected	object	is	a	subquery,	this	control	contains	the	text	of	the	subquery.

See	Also
Query	Designer	Properties	Pages	|	Using	Something	Else	in	Place	of	a	Table

Visual	Database	Tools

Function	Parameters	Tab,	Properties	Window
Specifies	options	for	parameters	of	a	table-valued	user-defined	function.		This
property	page	contains	a	grid,	each	row	of	which	describes	one	parameter.

Options

Name
Contains	the	name	of	the	parameter.		You	cannot	edit	this	box.

Data	Type
Contains	the	data	type	of	the	parameter.		You	cannot	edit	this	box.

Default
Contains	the	default	value	of	the	parameter.		You	cannot	edit	this	box.

Value
Contains	the	value	for	this	parameter	used	by	this	query.

See	Also
Query	Designer	Properties	Pages

Visual	Database	Tools

Parameters	Tab,	Properties	Window
Specifies	options	for	marking	parameters	in	the	query.

To	include	a	parameter	in	a	query,	you	must	mark	the	parameter	using	special
characters	so	that	the	Query	Designer	does	not	mistake	your	parameter	name	for
text	data.	For	example,	if	you	specify	square	brackets	([and])	as	parameter
markers,	you	can	enter	a	parameter	by	specifying	a	search	expression	such	as	the
following:

=	[last_name]

When	you	run	the	query,	the	Query	Designer	prompts	you	for	a	value,	and	then
substitutes	the	value	you	provide	for	the	parameter	last_name.
For	more	information	about	using	parameters	in	queries,	see	Parameter	Queries.

Options

Prefix	characters
Specifies	the	character	or	characters	that	mark	the	beginning	of	a	parameter.

Suffix	characters
Specifies	the	character	or	characters	that	mark	the	end	of	a	parameter.

Escape	character
Specifies	an	escape	character	that	is	used	to	indicate	that	a	parameter	marker
character	in	a	name	is	meant	literally.	For	example,	if	you	specify	"%"	as	a
parameter	marker,	you	would	not	normally	be	able	to	include	that	character	in	a
parameter	name	such	as	"%	complete."	However,	you	can	specify	"\"	as	an
escape	character,	and	then	use	the	following	string	as	the	parameter	name:

%\%	complete%

See	Also
Query	Designer	Properties	Pages

Visual	Database	Tools

Join	Line	Tab,	Properties	Window
Specifies	options	for	the	joining	of	tables	in	a	query.

By	default,	related	tables	are	joined	using	an	inner	join	that	creates	a	result	set
based	on	rows	containing	matching	information	in	the	join	columns.	By	setting
options	in	the	Join	Line	tab,	you	can	specify	a	join	based	on	a	different	operator,
and	you	can	specify	an	outer	join.

For	more	information	about	joining	tables,	see	Querying	Using	Multiple	Tables.

Options

Table
The	names	of	the	tables	involved	in	the	join.	You	cannot	change	the	names	of	the
tables	here	—	this	information	is	displayed	for	information	only.

Column
The	names	of	the	columns	used	for	joining	the	tables.	The	operator	in	the
Operator	list	specifies	the	relationship	between	the	data	in	the	columns.	You
cannot	change	the	names	of	the	columns	here	—	this	information	is	displayed
for	information	only.

Operator
Specifies	the	operator	used	to	relate	the	join	columns.	To	specify	an	operator
other	than	equal	(=),	select	it	from	the	list.	When	you	close	the	dialog	box,	the
operator	you	selected	will	appear	in	the	diamond	graphic	of	the	join	line,	as	in
the	following:

Include	rows

Specifies	whether	unmatched	rows	appear	in	the	Results	pane.

All	rows	from	<table1>
Specifies	that	all	the	rows	from	the	left	table	appear	in	the	output,	even	if	there
are	no	corresponding	matches	in	the	right	table.	Columns	with	no	matching	data
in	the	right	table	appear	as	null.	Choosing	this	option	is	equivalent	to	specifying
LEFT	OUTER	JOIN	in	the	SQL	statement.

All	rows	from	<table2>
Specifies	that	all	the	rows	from	the	right	table	appear	in	the	output,	even	if	there
are	no	corresponding	matches	in	the	left	table.	Columns	with	no	matching	data
in	the	left	table	appear	as	null.	Choosing	this	option	is	equivalent	to	specifying
RIGHT	OUTER	JOIN	in	the	SQL	statement.

Selecting	both	All	rows	from	<table1>	and	All	rows	from	<table2>	is	equivalent
to	specifying	FULL	OUTER	JOIN	in	the	SQL	statement.

When	you	select	an	option	to	create	an	outer	join,	the	diamond	graphic	in	the
join	line	changes	to	indicate	that	the	join	is	a	left	outer,	right	outer,	or	full	outer
join.

Note			The	words	"left"	and	"right"	do	not	necessarily	correspond	to	the
position	of	tables	in	the	Diagram	pane.	"Left"	refers	to	the	table	whose	name
appears	to	the	left	of	the	keyword	JOIN	in	the	SQL	statement,	and	"right"
refers	to	the	table	whose	name	appears	to	the	right	of	the	JOIN	keyword.	If
you	move	tables	in	the	Diagram	pane,	you	do	not	change	which	table	is
considered	left	or	right.

See	Also
Query	Designer	Properties	Pages

Visual	Database	Tools

Error	Messages
You	may	encounter	message	boxes	while	using	the	Microsoft®	Visual	Database
Tools.	For	more	information	about	those	messages,	browse	the	following	topics.

Database	Designer	Troubleshooting	Errors

Query	Designer	Troubleshooting	Errors

Note			The	Visual	Database	Tools	are	dependent	upon	many	other
applications	and	components.	If	you	receive	an	error	message	not	listed	in
the	Visual	Database	Tools	documentation,	see	Error	Messages	in	the
Troubleshooting	section.

JavaScript:hhobj_1.Click()

Visual	Database	Tools

Database	Designer	Troubleshooting	Errors
Error	messages	may	occur	during	the	process	of	saving	a	database	diagram	or
selected	tables	in	a	diagram.	For	more	information	about	those	messages,	see	the
Save	Incomplete	dialog	box.

For	information	about	additional	Visual	Database	Tools	error	messages,	see
Query	Designer	Troubleshooting	Errors.

Note			The	Visual	Database	Tools	are	dependent	upon	many	other
applications	and	components.	If	you	receive	an	error	message	not	listed	in
the	Visual	Database	Tools	documentation,	see	Error	Messages	in	the
Troubleshooting	section.

JavaScript:hhobj_1.Click()

Visual	Database	Tools

A	pair	of	matching	columns	is	required	to	create	a
relationship.
You	must	select	matching	columns	from	both	tables	participating	in	a	foreign
key	relationship.	The	columns	you	have	selected	don't	match,	so	they	cannot	be
related.

Choose	two	columns	that	match,	and	then	attempt	to	establish	the	relationship.
In	order	to	match,	there	must	be	the	same	number	of	columns	and	each	partner	in
a	pair	of	columns	must	have	a	comparable	data	type.

For	more	information,	see	Foreign	Key	and	Creating	a	Relationship	Between
Tables.

Visual	Database	Tools

A	primary	key	can't	be	created	on	column	'<0s>'
because	it	allows	null	values.
The	primary	key	is	used	to	relate	the	table	to	foreign	keys	in	other	tables.	All
columns	participating	in	a	primary	key	must	contain	defined	values	other	than
NULL.

To	create	a	primary	key	on	the	selected	column,	first	clear	the	Allow	Nulls	check
box	for	the	column.

For	more	information,	see	Primary	Key	and	Column	Properties.

Visual	Database	Tools

A	primary	key	or	index	cannot	be	created	on	columns
with	a	datatype	of	<0s>.
A	column's	datatype	defines	what	kind	of	information	can	be	stored	in	a	column.
Some	datatypes	such	as	TEXT	or	Image	cannot	be	used	in	an	index	because
servers	will	not	allow	indexes	on	these	types	of	data.

For	more	information,	see	Indexes,	Creating	a	Unique	Index,	and	Defining	a
Primary	Key.

Visual	Database	Tools

A	primary	key	or	index	cannot	have	more	than	<0d>
columns.
Microsoft®	SQL	Server™	does	not	allow	more	than	16	columns	in	an	index.
Because	a	primary	key	has	an	associated	index,	there	can	be	no	more	than	16
columns	in	a	primary	key.

For	more	information,	see	Indexes	and	Defining	a	Primary	Key.

Visual	Database	Tools

A	primary	key	or	unique	constraint	must	be	defined
for	table	'<0s>'	before	it	can	participate	in	a
relationship.
In	order	to	create	a	foreign	key	relationship,	at	least	one	of	the	two	tables	must
have	a	primary	key	or	unique	constraint	defined.	To	create	the	relationship	you
are	attempting	to	create,	first	create	a	primary	key	for	one	of	the	tables.

For	more	information,	see	Defining	a	Primary	Key	and	Creating	a	Relationship
Between	Tables.

Visual	Database	Tools

A	relationship	cannot	contain	more	than	'<0d>'
columns.
Select	fewer	than	16	columns	when	defining	the	foreign	key	relationship.

For	more	information,	see	Creating	a	Relationship	Between	Tables.

Visual	Database	Tools

An	index	already	exists	for	table	'<0s>'	with	the
columns	'<1s>'.
Oracle	only	allows	one	index	for	each	ordered	set	of	columns.

As	a	rule,	you	should	create	an	index	only	if	the	data	in	the	selected	columns
will	be	queried	frequently.	Indexes	take	up	disk	space	and	can	slow	the	adding,
deleting,	and	updating	of	rows.

In	most	cases,	the	benefits	of	indexes	will	far	outweigh	the	performance
overhead,	but	if	your	application	updates	data	very	frequently,	or	if	you	have
disk	space	constraints,	you	might	also	want	to	limit	the	number	of	indexes.

For	more	information,	see	Indexes	and	Creating	an	Index.

Visual	Database	Tools

An	index	can't	exist	on	a	blank	column.
An	index	must	contain	at	least	one	column,	and	that	column	must	contain	unique
data	values	if	you	are	creating	a	unique	index.	The	column	names	selected	must
be	entered	under	Column	name	in	the	Selected	index	box.

For	more	information,	see	Indexes	and	Creating	an	Index.

Visual	Database	Tools

Are	you	sure	you	want	to	delete	the	current	selection
from	your	database?
This	will	permanently	delete	the	table	and	all	its	data	from	your	database.

For	more	information,	see	Deleting	a	Table	from	a	Database	Diagram	and	the
Database.

Visual	Database	Tools

Are	you	sure	you	want	to	permanently	delete	table
'<0s>'	from	your	database?
This	will	permanently	delete	the	table	and	all	its	data	from	the	database.

For	more	information,	see	Deleting	a	Table	from	a	Database	Diagram	and	the
Database.

Visual	Database	Tools

Are	you	sure	you	want	to	permanently	delete	the
selected	tables	from	your	database?
The	table	and	all	its	data	will	be	deleted	from	the	database.

For	more	information,	see	Deleting	a	Table	from	a	Database	Diagram	and	the
Database.

Visual	Database	Tools

Are	you	sure	you	want	to	remove	the	selected	table
from	the	diagram?
This	will	remove	the	table	from	the	diagram	but	leave	the	table	in	the	database.

For	more	information,	see	Removing	a	Table	from	a	Database	Diagram.

Visual	Database	Tools

Are	you	sure	you	want	to	remove	the	selected	tables
from	the	diagram?
This	will	remove	the	table	from	the	diagram,	but	not	from	your	database.

For	more	information,	see	Removing	a	Table	from	a	Database	Diagram.

Visual	Database	Tools

Both	sides	of	a	relationship	must	have	the	same
number	of	columns.
When	creating	a	composite	foreign	key	relationship,	both	sides	of	the
relationship	must	have	the	same	number	of	columns.	Make	sure	the	number	of
columns	you've	selected	matches	the	number	of	columns	in	the	target	table.

For	more	information,	see	Creating	a	Relationship	Between	Tables.

Visual	Database	Tools

Column	'<1s>'	in	table	'<0s>'	participates	in	index
'<2s>'.	Columns	with	a	datatype	of	'<3s>'	cannot
participate	in	indexes	or	primary	keys.
You	have	attempted	to	change	the	datatype	of	a	column	that	is	part	of	an	index	or
a	primary	key.	Indexes	and	primary	keys	cannot	be	created	for	columns	with
datatypes	such	as	TEXT	or	IMAGE.	To	change	the	datatype,	first	remove	the
index	or	primary	key.

For	more	information	see	Indexes,	Creating	a	Unique	Index,	and	Defining	a
Primary	Key.

Visual	Database	Tools

Editing	this	default	will	permanently	unbind	the
named	default.
Changing	from	a	named	default	to	a	default	constraint	is	not	allowed	on
Microsoft®	SQL	Server™.	For	more	information,	see	Constraints.

JavaScript:hhobj_1.Click()

Visual	Database	Tools

Identity	column	'<0s>'	in	table	'<1s>'	must	have	a
datatype	of	int,	smallint,	tinyint,	decimal	or	numeric
with	scale	of	0.
Only	certain	datatypes	can	be	used	for	Identity	columns.	Columns	that	are
Identity	columns	contain	system-generated,	sequential	values	that	uniquely
identify	each	row	within	a	table.

For	more	information,	see	Column	Properties.

Visual	Database	Tools

Invalid	name.	You	must	provide	a	name	for	this
object.
An	object	name	is	required	to	continue.	Valid	names	begin	with	an	underscore
(_)	or	a	character	and	contain	a	combination	of	characters,	numbers,	and
underscores.

The	maximum	length	for	a	name	based	on	the	server	is	32	for	Microsoft®	SQL
Server™	6.5	and	earlier	and	32	for	Oracle.

In	general,	avoid	names	that	contain	periods.

For	more	information,	see	Uniquely	Naming	Database	Objects.

Visual	Database	Tools

ODBC	error:	<0s>.
An	ODBC	error	has	been	generated.	You	might	have	deleted	a	record	that	has	a
foreign	key	value	related	to	it,	or	you	might	have	violated	a	check	constraint.

For	details,	refer	to	your	ODBC	documentation.

Visual	Database	Tools

One	or	more	selected	tables	are	already	on	the
diagram.
You	can	only	have	one	copy	of	any	table	on	a	diagram.	If	you	want	to	create	a
new	table	that	has	some	of	the	same	columns	as	an	existing	table,	you	can
duplicate	an	existing	table	as	the	first	step	in	creating	a	new	table.

For	more	information,	see	Duplicating	Tables.

Visual	Database	Tools

Only	one	clustered	index	can	be	created	on	table
'<0s>'.
A	clustered	index	is	a	special	type	of	index	that	reorders	the	way	records	in	the
table	are	physically	stored.	Therefore	only	one	clustered	index	can	be	created	on
each	table.

To	create	a	second	index	on	the	same	table,	change	the	Clustered	property
setting	before	creating	the	second	index.

For	more	information,	see	Indexes	and	Creating	a	Clustered	Index.

Visual	Database	Tools

Only	one	ROWGUID	column	is	allowed	per	table.
You	have	attempted	to	assign	more	than	one	ROWGUID.	The	ROWGUID	is	a
special	property	similar	to	IDENTITY	and	only	one	ROWGUID	is	allowed	per
table.

For	more	information,	see	Setting	Column	Properties.

Visual	Database	Tools

Relationship	'<0s>'	was	modified	or	deleted	since	the
diagram	was	loaded.
A	modified	relationship	is	about	to	be	saved.	It	is	possible	that	a	table	involved
in	the	relationship	has	been	deleted	from	the	database	by	another	user.

Verify	whether	this	relationship	is	meant	to	be	modified.	Changing	or	deleting	a
relationship	for	a	table	may	affect	other	tables.

For	more	information	about	relationships,	see	Table	Relationships	and	Deleting	a
Relationship.

Visual	Database	Tools

Table	<0s>	already	exists.
The	table	name	you	specified	already	exists	in	the	database.	Type	another	name
for	the	new	table.

Visual	Database	Tools

Table	'<0s>'	is	marked	for	deletion	and	was	not	added
to	the	diagram.
A	table	that	has	been	removed	from	the	diagram	will	be	deleted	from	the
diagram	when	the	changes	are	saved.	The	table	will	not,	however,	be	deleted
from	the	database.

For	more	information,	see	Removing	a	Table	from	a	Database	Diagram.

-or-

The	table	has	been	deleted	from	the	database	by	another	user	and	cannot	be
added	to	your	diagram.

For	more	information,	see	Deleting	a	Table	from	a	Database	Diagram	and	the
Database.

Visual	Database	Tools

Table	'<0s>'	no	longer	exists	in	the	database.
The	table	has	been	deleted	from	the	database	and	cannot	be	used	in	your
diagram.

For	more	information,	see	Deleting	a	Table	from	a	Database	Diagram	and	the
Database.

Visual	Database	Tools

The	Allow	Nulls	property	can't	be	set	on	a	column
that	is	part	of	the	primary	key.
All	columns	that	are	part	of	a	table's	a	primary	key	must	contain	aggregate
unique	values	other	than	NULL.	To	add	the	column	to	a	primary	key,	first	clear
the	Allow	Nulls	check	box	on	the	Column	Property	dialog	box.

For	more	information,	see	Column	Properties.

Visual	Database	Tools

The	Allow	Nulls	property	can't	be	set	on	column
'<0s>'	because	it	is	an	identity	column.
All	identity	columns	must	contain	unique	values	other	than	NULL.	To	make	the
column	an	identity	column,	first	clear	the	Allow	Nulls	check	box	on	the	Column
Property	dialog	box.

For	more	information,	see	Column	Properties.

Visual	Database	Tools

The	columns	in	table	'<0s>'	do	not	match	an	existing
enabled	primary	key	or	UNIQUE	constraint.
At	least	one	table	participating	in	a	relationship	must	have	either	a	Primary	Key
or	a	Unique	Constraint.	After	setting	up	a	Primary	Key	or	a	Unique	constraint
for	one	of	the	tables	you've	selected,	you	can	then	define	other	relationships	for
that	table.

For	more	information,	see	Creating	a	Unique	Constraint	and	Defining	a	Primary
Key.

Visual	Database	Tools

The	columns	in	table	'<0s>'	do	not	match	an	existing
primary	key	or	UNIQUE	constraint.
The	columns	on	the	primary	key	side	of	a	foreign	key	relationship	must
participate	in	either	a	Primary	Key	or	a	Unique	Constraint.	After	setting	up	a
Primary	Key	or	a	Unique	constraint	for	one	of	the	tables	you've	selected,	you
can	then	define	other	relationships	for	that	table.

For	more	information,	see	Creating	a	Unique	Constraint	and	Defining	a	Primary
Key.

Visual	Database	Tools

The	datatype	of	column	'<1s>'	in	the	'<0s>'	table	can't
be	changed	because	it	participates	in	index	'<2s>'.
The	sum	of	the	lengths	of	all	columns	in	an	index	can	not	exceed	256	bytes.
Changing	to	the	specified	datatype	would	exceed	the	maximum	index	size	of
<3d>	bytes.

For	more	information,	see	Column	Properties	and	Creating	an	Index.

Visual	Database	Tools

The	following	datatype	or	size	property	of	'<0s>.<1s>'
doesn't	match	'<2s>.<3s>'.
When	creating	a	foreign	key	relationship,	the	data	types	and	other	properties	of
selected	columns	must	match.	Select	a	column	with	the	same	data	types	and
other	properties	as	the	related	column.		The	properties	that	must	match	are	Data
type,	Length,	Precision,	Scale,	and	Collation.

Visual	Database	Tools

The	Default	Value	property	can't	be	set	on	column
'<0s>'	because	it	is	an	identity	column.
Identity	columns	contain	system-generated	sequential	values	that	uniquely
identify	each	row	within	the	table.	Therefore,	identity	columns	cannot	have
default	values.

For	more	information,	see	Column	Properties.

Visual	Database	Tools

The	existing	relationship	must	have	at	least	one	pair
of	related	columns.
There	must	be	matching	columns	on	both	sides	of	a	foreign	key	relationship.
Deleting	a	column	that	is	part	of	a	relationship	will	disable	the	relationship.

For	more	information,	see	Creating	a	Relationship.

Visual	Database	Tools

The	Identity	property	can't	be	set	on	column	'<0s>'
because	it	allows	null	values.
Identity	columns	contain	system-generated	sequential	values	that	uniquely
identify	each	row	within	the	table.	Therefore,	identity	columns	cannot	have	null
values.

For	more	information,	see	Column	Properties.

Visual	Database	Tools

The	Identity	property	can't	be	set	on	column	'<0s>'
because	it	has	a	default	value.
Identity	columns	contain	system-generated	sequential	values	that	uniquely
identify	each	row	within	the	table.	Therefore,	identity	columns	cannot	have
default	values.

For	more	information,	see	Column	Properties.

Visual	Database	Tools

The	number	of	selected	columns	exceeds	the	number
of	columns	in	the	target	table.
You	cannot	create	a	compound	foreign	key	relationship	using	more	columns	than
exist	in	the	target	table.	Make	sure	the	number	of	columns	you've	selected
matches	the	number	in	the	target	table.

For	more	information,	see	Creating	a	Relationship	Between	Tables.

Visual	Database	Tools

The	primary	key	or	UNIQUE	constraint	cannot	be
changed	until	its	existing	relationships	are	deleted.
You	cannot	change	a	table's	primary	key	or	unique	constraint	while	other	foreign
key	relationships	are	still	in	place.	To	change	a	table's	primary	key	or	unique
constraint,	first	delete	all	existing	relationships	for	the	table.

For	more	information,	see	Deleting	a	Relationship.

Visual	Database	Tools

The	primary	key	or	Unique	constraint	cannot	be
changed	while	relationships	to	the	existing	primary
key	or	Unique	constraint	are	enforced.
You	cannot	change	a	table's	primary	key	or	unique	constraint	while	other	foreign
key	relationships	are	still	in	place.	To	change	a	table's	primary	key	or	unique
constraint,	first	delete	all	existing	relationships	for	the	table.

For	more	information,	see	Deleting	a	Relationship.

Visual	Database	Tools

The	total	size	of	an	index	or	primary	key	cannot
exceed	256	bytes.
The	sum	of	the	lengths	of	all	columns	in	an	index	can	not	exceed	256	bytes.
Changing	to	the	specified	datatype	would	exceed	the	maximum	index	size	of
<3d>	bytes.

For	more	information,	see	Indexes,	Column	Properties,	and	Creating	an	Index.

Visual	Database	Tools

You	are	not	logged	in	as	the	database	owner	or	as	a
user	that	is	a	member	of	the	db_owner	role.	You	will
not	be	able	to	save	changes	to	tables	that	you	do	not
own.
Because	you	are	not	logged	on	as	the	system	administrator,	database	owner,	or	a
user	that	is	a	member	of	the	db_owner	role,	you	have	limited	privileges	to	the
database.		The	privileges	you	have	are	determined	by	the	permissions	granted	to
your	logon	ID	and	the	privileges	granted	to	the	roles	that	your	logon	ID	is	a
member	of.

Even	though	you	are	not	the	database	owner,	you	will	still	be	able	to	use	any
tables	that	you	have	permissions	to	see.		For	example,	you	can	create	diagrams
using	such	tables.		However	you	won't	be	able	to	perform	all	edits.	Certain	edits
require	SQL	Server	CREATE	TABLE	permission,	which	gives	you	permission
to	create	new	tables	and	modify	tables	that	you	own.

Even	if	you	have	CREATE	TABLE	permission,	there	are	limitations	to	the
modifications	you	can	make.		Remember,	as	you	modify	an	existing	table	or
design	a	new	one,	your	work	can	induce	attendant	modifications	in	other	tables.	
For	example,	if	you	change	the	data	type	of	a	foreign-key	column,	the
corresponding	column	in	the	primary-key	table	will	be	automatically	modified
by	the	Visual	Database	Tools.		If	you	do	not	own	the	primary-key	table,	and	you
are	not	logged	in	as	the	system	administrator,	database	owner,	or	a	user	that	is	a
member	of	the	db_owner	role,	your	modification	will	fail.

For	more	information,	see	Working	in	a	Multi-User	Environment.

JavaScript:hhobj_1.Click()

Visual	Database	Tools

A	blank	constraint	expression	is	not	allowed.
You	must	enter	a	constraint	in	the	Constraints	Expression	dialog	box	before
fcontinuing	to	define	properties	for	your	table.

For	more	information,	see	Creating	a	Unique	Constraint.

Visual	Database	Tools

Are	you	sure	you	want	to	delete	the	selected
relationship	from	your	database?
Answering	YES	will	delete	the	selected	relationship.

For	more	information	about	relationships,	see	Table	Relationships	and	Deleting	a
Relationship.

Visual	Database	Tools

Deleting	the	selected	columns	will	also	delete
relationships.
The	columns	you	have	chosen	to	delete	have	existing	relationships.	Deleting
these	columns	will	delete	the	relationships	associated	with	them.

For	more	information	about	relationships,	see	Table	Relationships	and	Deleting	a
Relationship.

Visual	Database	Tools

Do	you	want	to	save	changes	in	this	diagram?
You	have	made	changes	in	this	diagram.	You	will	lose	the	changes	if	you	close
this	diagram	without	saving.	Do	you	want	to	save	changes?

For	more	information	about	database	diagrams,	see	Database	Designer.

Visual	Database	Tools

Do	you	want	to	save	changes	in	this	table?
You	have	made	changes	in	this	table.	You	will	lose	the	changes	if	you	close	this
table	without	saving.	Do	you	want	to	save	changes?

For	more	information	about	working	with	tables,	see	Tables.

Visual	Database	Tools

Database	Designer	Error
No	specific	help	is	available	for	this	error.	If	the	text	in	the	error	message	does
not	provide	enough	information	for	you	to	solve	the	problem,	please	consider	the
following	options:

Verify	that	your	settings	are	correct	and	try	the	action	again.

Use	the	index	to	search	for	keywords	related	to	the	error	message.	

If	the	problem	is	due	to	external	applications	or	software,	consult	the
documentation	for	that	area.	For	example,	errors	may	be	caused	by	your
database	software,	your	server	setup,	or	even	the	network	you	are	using.

For	database	modification	errors,	such	as	invalid	parameters	in	a
database	table,	consult	your	database	software	for	details.

Check	the	Readme	for	late-breaking	information	concerning	the	error.

Visual	Database	Tools

Internal	Error.
An	unexpected	error	has	occurred.		You	can	try	any	of	the	following	remedial
actions:

Try	the	operation	again.

Restart	your	application	and	try	again.

Restart	your	computer	and	try	again.

Check	the	Knowledge	Base	at	the	Microsoft	Web	site	for	any	available
new	information	on	internal	errors	with	the	Visual	Database	Tools.

http://www.microsoft.com/isapi/redir.dll?Prd=productsupport

Visual	Database	Tools

The	name	is	too	long.
The	name	supplied	for	a	database	object	is	too	long.		Enter	a	shorter	name.

Visual	Database	Tools

This	backend	version	is	not	supported	to	design
database	diagrams	or	tables.
The	database	to	which	you	are	connected	does	not	allow	schema	modification
with	the	Visual	Database	Tools.		Be	sure	you	are	connected	to	the	correct
database.

Visual	Database	Tools

Changing	the	column	to	the	selected	data	type	will
delete	relationships.
The	columns	whose	data	types	you	are	changing	participate	in	foreign-key
relationships.		If	the	data	types	are	changed,	the	relationships	will	be	deleted.	
Choose	Yes	to	proceed	with	the	operation	and	delete	the	relationships.		Choose
No	to	stop	the	operation.	

Note:			Choosing	No	does	not	cancel	the	portion	of	the	operation	that	has
already	been	completed	in	the	database.

Visual	Database	Tools

Adding	a	formula	to	the	selected	column	will	delete	all
indexes	and	relationships	it	participates	in.
The	column	you	are	modifying	participates	in	one	or	more	relationships	or
contributes	to	one	or	more	indexes.		When	you	modify	the	column,	it	will
become	a	computed	column,	which	cannot	participate	in	relationships	or
contribute	to	indexes.		Choose	Yes	to	proceed	with	the	operation	and	delete	the
indexes	and	relationships.		Choose	No	to	cancel	the	operation.

Visual	Database	Tools

Removing	the	formula	from	the	selected	column
leaves	it	with	data	type	that	is	disallowed	in	indexes
and	relationships.
The	column	whose	formula	you	are	removing	participates	in	one	or	more
indexes	or	relationships.		The	modification	will	result	in	a	column	whose	data
type	precludes	it	from	participating	in	them.		Choose	Yes	to	proceed	with	the
modification	and	delete	the	indexes	and	relationships.		Choose	No	to	cancel	the
modification.

Visual	Database	Tools

Changing	the	column	to	the	selected	data	type	will
delete	its	indexes.
The	column	whose	data	type	you	are	changing	contributes	to	one	or	more
indexes.		The	modification	will	delete	the	indexes.		Choose	Yes	to	proceed	with
the	modification	and	delete	the	indexes.		Choose	No	to	cancel	the	modification.

Visual	Database	Tools

Changing	a	column	data	type	results	in	an	index	that
is	too	large.
The	column	whose	data	type	you	are	changing	contributes	to	one	or	more
indexes.		The	new	data	type	enlarges	the	column,	making	one	or	more	of	that
column's	indexes	too	large.		Choose	Yes	to	proceed	with	the	modification	and
delete	the	index	or	indexes.		Choose	No	to	cancel	the	modification.

Visual	Database	Tools

Adding	a	formula	to	the	selected	column	will	delete	all
relationships	it	participates	in	as	a	foreign	key.
The	column	to	which	you	are	adding	a	formula	contributes	to	one	or	more
foreign	keys.		The	modification	will	delete	the	attendant	foreign-key
relationships.		Choose	Yes	to	proceed	with	the	modification	and	delete	the
relationships.		Choose	No	to	cancel	the	modification.

Visual	Database	Tools

Error	validating	the	formula	for	column.
The	formula	contains	an	error.		Common	errors	include	mismatched	parentheses,
misspelled	column	names,	and	using	an	operator	on	a	column	whose	data	type
does	not	support	that	operator.		Choose	Yes	to	modify	the	formula.		Choose	No
to	leave	it	as	is.

Visual	Database	Tools

Column	has	no	name	and	will	be	deleted.
Because	the	column-name	field	is	blank,	the	column	will	be	deleted.		Choose
Yes	to	delete	the	column.		Choose	No	to	return	to	the	Table	Designer	or	database
diagram	to	supply	a	column	name.

Visual	Database	Tools

Primary	key	or	index	cannot	be	created	on	column
'<0s>'	because	its	data	type	is	'<1s>'.
You	have	included	in	an	index	or	primary	key	a	column	whose	data	type
precludes	its	participation	in	keys	or	indexes.	Change	the	column's	data	type	or
remove	it	from	the	index	or	primary	key.

For	the	rules	restricting	the	data	types	of	index	and	key	columns,	see	Creating
and	Modifying	PRIMARY	KEY	Constraints	and	Table	Indexes.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Visual	Database	Tools

Primary	key	or	index	cannot	be	created	on	a	column
with	no	name.
You	have	included	in	a	primary	key	a	column	with	no	name.	Provide	a	name	for
the	column	before	including	that	column	in	the	primary	key.

Visual	Database	Tools

You	entered	<0d>	characters	for	'<1s>'.	The
maximum	number	of	characters	allowed	is	<2d>.
You	entered	a	property	value	that	is	longer	than	the	maximum	allowed	for	that
property.		Choose	a	shorter	value.

Visual	Database	Tools

Values	for	'<0s>'	must	lie	within	the	range	<1d>	to
<2d>.
You	entered	a	property	value	that	is	outside	the	range	of	legal	values	for	that
property.		Choose	a	value	within	the	range	specified.

Visual	Database	Tools

Table	'<0s>'	has	no	columns.
You	tried	to	save	a	table	with	no	columns.		Either	add	a	column	to	the	table,
delete	the	table	from	the	diagram,	or	close	the	Table	Designer	without	saving	the
table.

Visual	Database	Tools

Default	Value	property	cannot	be	set	on	column	'<0s>'
because	it	is	a	computed	column.
You	tried	to	set	a	default	value	on	a	column	that	has	a	formula.		Remove	the
column's	formula	before	setting	a	default.

Visual	Database	Tools

Column	'<0s>'	is	a	computed	column,	and	cannot
participate	in	indexes	or	relationships.
You	tried	to	use	a	column	with	a	formula	in	an	index	or	relationship.		In	SQL
Server	7.0	databases,	a	computed	column	cannot	participate	in	an	index	or	a
relationship.		In	SQL	Server	2000,	a	computed	column	can	participate	in
indexes,	but	not	in	relationships.	Either	clear	the	column's	Formula	property	or
remove	the	column	from	the	index	or	relationship.

Visual	Database	Tools

Column	'<0s>'	is	a	computed	column,	and	cannot
contribute	to	foreign	keys.
You	tried	to	use	a	column	with	a	formula	in	a	foreign	key.		Either	clear	the
column's	Formula	property	or	remove	the	column	from	the	foreign	key.

Visual	Database	Tools

The	index	is	used	to	enforce	the	full-text	key	for	this
table.	Deleting	this	index	will	disable	full-text	indexing
for	the	table.	Do	you	want	to	proceed?
You	are	performing	an	operation	that	will	delete	an	index	that	is	used	as	a	key
for	full-text	indexing	of	this	table.		If	you	proceed	with	the	operation,	full-text
indexing	for	this	table	will	be	disabled.

Visual	Database	Tools

Column	'<0s>'	is	used	to	enforce	the	full-text	key	on
table	'<1s>'	and	must	be	<2d>	bytes	or	less.
You	are	performing	an	operation	that	will	enlarge	a	column	used	as	a	key	for
full-text	indexing	of	this	table	beyond	the	maximum	size	for	such	a	column.	
Choose	Yes	to	proceed	with	the	operation	and	disable	full-text	indexing	on	the
table.		Choose	No	to	cancel	the	operation.

Visual	Database	Tools

Column	'<0s>'	participates	in	full-text	indexing	on
table	'<1s>'.		After	this	change,	the	column	will	no
longer	participate	in	the	table's	full-text	index.
You	are	performing	an	operation	that	disallows	full-text	searching	of	the	data	in
this	column.		Choose	Yes	to	proceed	with	the	operation	and	disable	full-text
searches	of	this	column.

Even	if	you	choose	Yes,	other	columns	that	participate	in	this	table's	full-text
indexing	will	be	unaffected.		That	is,	you	will	still	be	able	to	perform	full-text
searches	of	the	data	in	those	columns.

Visual	Database	Tools

The	following	error	was	encountered	while	changing
the	collation:	<0s>.
The	collation	was	not	changed	because	of	the	underlying	problem	described	in
the	message.		Changing	a	column's	collation	is	akin	to	changing	its	data	type.	
That	is,	after	you	change	the	collation,	the	Visual	Database	Tools	validate	the
column's	data	type.		This	validation	can	uncover	a	number	of	problems,
including:

The	modification	enlarges	the	column,	which	in	turn	enlarges	an	index
beyond	the	maximum	size	for	indexes.

The	modification	is	incompatible	with	existing	data	values	in	the
column.

Choose	a	different	collation	for	the	column	or	fix	the	underlying	problem.

Visual	Database	Tools

Index	'<0s>'	is	used	to	enforce	the	full-text	key	on
table	'<1s>'	and	must	not	be	null.
You	are	performing	an	operation	that	will	allow	null	values	within	the	column
that	is	used	as	a	key	for	full-text	indexing	of	this	table.		Proceed	with	the
operation	to	disable	full-text	indexing	for	this	table	or	cancel	the	operation	to
keep	full-text	indexing.

Visual	Database	Tools

Index	'<0s>'	is	used	to	enforce	the	full-text	key	on
table	'<1s>'	and	must	be	single-column.
You	are	adding	a	column	to	the	index	that	is	used	as	a	key	for	full-text	indexing
of	this	table.		Proceeding	with	the	operation	will	disable	full-text	indexing	for
this	table.		Choose	Yes	to	proceed	with	the	operation	and	disable	full-text
indexing.		Choose	No	to	cancel	the	operation.

Visual	Database	Tools

Index	'<0s>'	is	used	to	enforce	the	full-text	key	on
table	'<1s>'	and	must	be	unique.
This	operation	will	allow	duplicate	values	on	the	index	that	is	used	as	a	key	for
full-text	indexing	of	this	table.		If	you	proceed	with	the	operation,	full-text
indexing	for	this	table	will	be	disabled.		Choose	Yes	to	proceed	with	the
operation	and	disable	full-text	indexing.		Choose	No	to	cancel	the	operation.

Visual	Database	Tools

Index	'<0s>'	is	used	to	enforce	the	full-text	key	on
table	'<1s>'	and	must	be	<2d>	bytes	or	less.
This	action	will	enlarge	the	index	that	is	used	as	a	key	for	full-text	indexing	of
this	table	beyond	the	maximum	size	for	such	an	index.		If	you	proceed	with	the
operation,	full-text	indexing	for	this	table	will	be	disabled.		Choose	Yes	to
proceed	with	the	operation	and	disable	full-text	indexing.		Choose	No	to	cancel
the	operation.

Visual	Database	Tools

The	identity	increment	must	be	a	number	containing
<0d>	digits	or	less.
You	have	entered	an	invalid	value	for	the	identity	increment	field.		Enter	an
integer	whose	magnitude	is	less	than	the	maximum	indicated	in	the	error
message.		If	the	data	type	of	the	column	is	TINYINT,	you	must	enter	a	positive
number.		For	any	other	data	type,	you	can	enter	a	positive	or	negative	number.

Visual	Database	Tools

Identity	seed	must	be	a	number	containing	<0d>
digits	or	less.
You	have	entered	an	invalid	value	for	the	identity	seed	field.		Enter	an	integer
whose	magnitude	is	less	than	the	maximum	indicated	in	the	error	message.		If
the	data	type	of	the	column	is	TINYINT,	you	must	enter	a	positive	number.		For
any	other	data	type,	you	can	enter	a	positive	or	negative	number.

Visual	Database	Tools

The	table	must	have	at	least	one	column	that	is	not
computed.
You	cannot	create	a	table	all	of	whose	columns	are	computed.		You	can,
however,	create	a	view	containing	entirely	computed	data.

For	more	information,	see	Queries	and	Views.

Visual	Database	Tools

The	new	relationship	must	have	at	least	one	pair	of
related	columns.
The	relationship	must	relate	at	least	one	column	from	the	foreign-key	table	to	at
least	one	column	in	the	primary	key	table.		Select	a	column	from	each	table	or
delete	the	relationship.

Visual	Database	Tools

The	collation	properties	of	columns	<0s>	and	<1s>	do
not	match.
Each	pair	of	corresponding	columns	from	the	primary-key	table	and	foreign-key
table	of	a	relationship	must	have	identical	collation	settings,	but	this	relationship
includes	a	pair	of	corresponding	columns	with	different	settings.		Remove	the
columns	from	the	relationship	or	change	the	collation	settings	to	be	identical.

Visual	Database	Tools

Select	both	primary	key	table	and	foreign	key	table
before	selecting	any	field	for	the	relationship.
You	tried	to	select	the	columns	from	one	table	of	a	relationship	before	indicating
what	the	other	table	is.		You	must	first	indicate	both	tables	before	proceeding	to
choose	columns.

Visual	Database	Tools

Your	Logon	does	not	have	CREATE	TABLE
permission;	you	might	not	be	able	to	make	certain
edits	that	require	this	permission.
You	are	creating	or	modifying	a	table	in	a	database	in	which	your	logon	ID	does
not	have	CREATE	TABLE	permissions	and	is	not	a	member	of	the	DBO	role.	
Check	with	the	database	administrator	to	make	sure	that	you	have	the	necessary
permissions	to	create	tables	in	the	database.

Remember,	a	seemingly	innocuous	modification	to	an	existing	table	can	require
CREATE	TABLE	permission.		For	example,	if	you	add	a	column	to	a	table,	the
Visual	Database	Tools	instruct	SQL	Server	to	delete	the	table,	re-create	it,	and
re-insert	the	rows	it	had	contained.

Visual	Database	Tools

Setting	for	Length	must	be	from	<0d>	to	<1d>.
You	must	enter	a	whole	number	within	the	range	specified	in	the	error	message.

Visual	Database	Tools

Setting	for	Precision	must	be	from	<0d>	to	<1d>.
You	must	enter	a	whole	number	within	the	range	specified	in	the	error	message.

Visual	Database	Tools

Setting	for	Scale	must	be	from	<0d>	to	<1d>.
You	must	enter	a	whole	number	within	the	range	specified	in	the	error	message.

Visual	Database	Tools

Property	cannot	be	modified.
You	attempted	to	change	a	property	that	is	incompatible	with	other	properties
already	specified.

Visual	Database	Tools

A	diagram	with	that	name	already	exists	in	the
database.
A	diagram	of	that	name	already	exists	in	the	database.		Choose	Yes	to	replace	the
existing	diagram	with	the	one	you	are	saving.

Visual	Database	Tools

Another	user	modified	this	diagram	while	you	were
working	on	it.
Since	you	opened	the	diagram	and	began	working	on	it,	another	user	has	saved
modifications	to	it	in	the	database.		If	you	save	your	modifications,	you	will
overwrite	that	user's	changes.

For	more	information,	see	Multiuser	Environments.

Visual	Database	Tools

The	table	being	loaded	into	memory	has	a	user-
defined	data	type	that	is	not	recognized.
The	table	you	are	loading	into	memory	refers	to	a	recently	created	user-defined
data	type,	but	your	in-memory	list	of	user-defined	data	types	does	not	include	it.

Because	the	data	type	was	created	recently,	it	is	not	present	in	local	memory.		All
user-defined	data	types	are	loaded	from	the	database	into	local	memory	when
you	open	the	first	Table	Designer	window	or	database	diagram	within	your
connection	to	that	database.		To	refresh	your	in-memory	copy	of	the	database's
user-defined	data	types,	close	all	open	database	diagrams	and	Table	Designer
windows	within	that	database	connection.		After	you	close	them	all,	reopen	them
in	turn.		When	you	reopen	the	first	one,	the	list	of	user-defined	data	types	will	be
refreshed.

For	more	information,	see	Multiuser	Environments.

Visual	Database	Tools

Your	diagram	will	be	updated	with	the	following
changes	to	match	the	database	before	the	following
tables	can	be	loaded.
A	table	you	are	trying	to	add	to	the	diagram	is	related	to	a	table	already	on	the
diagram,	and	that	relationship	somehow	contradicts	the	contents	of	your
diagram.	This	occurs	because	another	user	has	added	or	modified	the
relationship	since	you	began	working	on	the	diagram.

Remember,	when	you	add	a	table	to	a	diagram,	the	Database	Designer
automatically	includes	any	relationships	between	the	existing	tables	and	the
newly	added	table.		In	attempting	to	add	such	a	relationship,	the	Database
Designer	has	discovered	that	your	in-memory	copy	of	the	database	structure	no
longer	matches	the	contents	of	the	database.		Before	adding	the	table,	the
Database	Designer	will	update	your	diagram	accordingly.

For	example,	suppose	your	diagram	is	initially	consistent	with	the	database.		The
diagram	includes	two	tables,	Student	and	Course,	and	a	one-to-one
relationship	between	them,	called	TutoringAssignment.		The	relationship
indicates	that	each	student	can	tutor	a	course	and	each	course	can	be	tutored	by	a
student.		Initially,	your	diagram	includes	no	other	tables.

While	you	are	working	on	the	diagram,	another	user	changes	the	database
structure.		That	user	deletes	the	TutoringAssignment	relationship	and	adds
another	relationship	of	the	same	name	between	the	tables	Student	and
SectionOfCourse.		(This	change	improves	the	database	structure,	because	it
more	faithfully	represents	your	organization's	information	needs.		Students	are
assigned	to	tutor	particular	sections	of	courses,	not	courses	in	general.)		The
other	user	commits	these	changes	to	the	database.

Now	you	add	the	SectionOfCourse	table	to	your	diagram.		Because	this	table
has	a	relationship	to	the	Student	table	already	present	on	your	diagram,	the
Database	Designer	tries	to	include	this	relationship	on	the	diagram.		The	conflict
arises	because	the	to-be-included	relationship	has	the	same	name	as	a	now
obsolete	relationship	already	present	on	your	diagram.

Because	of	these	conflicts,	the	Database	Designer	will	update	your	in-memory
copy	of	the	database	structure	accordingly.		That	is,	it	will	remove	the
TutoringAssignment	relationship	between	the	tables	Student	and	Course.	
Only	then	will	the	Database	Designer	add	to	your	diagram	the
SectionOfCourse	table	and	the	TutoringAssignment	relationship	between
the	Student	and	SectionOfCourse	tables.

Note			The	Database	Designer	does	not	reconcile	all	differences	between
your	diagram	and	the	database.		It	reconciles	only	those	differences	that
would	otherwise	prevent	you	from	adding	the	table	to	the	diagram.

Visual	Database	Tools

Your	table	will	be	updated	with	the	following	changes
to	match	the	database.
The	Table	Designer	needs	to	load	information	about	the	table	to	which	you	are
trying	to	create	a	relationship.		For	example,	it	needs	to	load	the	details	about	the
other	table's	columns,	so	you	can	choose	which	columns	from	the	table	you	are
designing	correspond	to	columns	in	the	other	table.

The	contents	of	the	database	and	the	in-memory	contents	of	the	Table	Designer
are	in	conflict.		This	conflict	occurs	because	another	user	has	recently	modified
the	table	you	are	working	on,	but	the	Table	Designer	retains	the	older	version	of
the	table	in	your	local	memory.

The	body	of	the	message	shows	the	details	of	the	conflict.		Before	proceeding	to
load	the	other	table	into	your	local	memory,	the	Table	Designer	will	reconcile
these	conflicts	accordingly.

Note			The	Table	Designer	does	not	reconcile	all	differences	between	your
local	memory	and	the	database.		It	reconciles	only	those	differences	that
would	otherwise	prevent	you	from	creating	the	relationship	you	are	trying	to
create.

Visual	Database	Tools

The	following	schema-bound	objects	will	be	modified.
The	object	you	are	modifying	contributes	to	the	definition	of	one	or	more
schema-bound	objects.		Those	schema-bound	objects	will	be	modified	or
dropped.		The	body	of	the	message	gives	the	details.

Visual	Database	Tools

Column	is	the	full-text	filter	for	columns	that
participate	in	full-text	indexing	on	a	table.
You	are	trying	to	delete	a	column	or	change	its	data	type,	but	that	column	is	the
full-text	filter	for	one	or	more	other	columns	for	which	a	full-text	index	exists.	
If	you	proceed	with	the	operation,	the	columns	will	no	longer	participate	in	the
full-text	index.

If	you	later	want	to	reestablish	full-text	indexing	for	these	columns,	you	must
choose	or	create	a	new	full-text	filter	field,	and	you	must	add	these	columns
back	to	the	full-text	index.		For	more	information	about	accomplishing	these
tasks,	see	Full-Text	Indexes.

JavaScript:hhobj_1.Click()

Visual	Database	Tools

Query	Designer	Troubleshooting	Errors
This	section	contains	a	list	of	possible	messages	returned	while	creating	and
running	queries	using	the	Query	Designer.	These	errors	often	occur	while	trying
to	save	or	execute	a	query.

For	information	about	additional	Microsoft	Visual	Database	Tools	error
messages,	see	Database	Designer	Troubleshooting	Errors.

Note			If	you	receive	an	error	message	not	listed	in	the	Visual	Database	Tools
section,	see	Error	Messages.

JavaScript:hhobj_1.Click()

Visual	Database	Tools

(+)	operator	ignored.
The	Oracle	outer	join	operator	that	you	entered	is	not	appropriate	and	will	be
ignored.

See	Types	of	Joins	and	Creating	Outer	Joins	for	more	information.

Visual	Database	Tools

(+)	table	reference	cannot	be	joined	with	more	than
one	table.
There	is	an	error	in	the	way	that	you	are	attempting	to	join	a	table	reference.
This	table	reference	can	only	be	joined	with	one	other	table.

For	more	information,	see	Types	of	Joins.

Visual	Database	Tools

<0s>	in	expression	is	not	part	of	the	query.
An	expression	within	your	query	is	not	properly	formed.	This	often	occurs	when
the	criteria	expression	that	you	entered	doesn't	match	the	available	columns	for
the	input	sources.	Clear	the	value	out	and	then	type	in	a	column	reference	that
matches	your	input	sources.

For	more	information,	see	Using	Expressions	in	Queries.

Visual	Database	Tools

The	Query	Designer	does	not	support	the	<0s>	SQL
construct.
The	syntax	you	entered	is	valid	but	is	not	supported	visually	by	the	Query
Designer.	Be	sure	to	verify	your	syntax	before	saving.

For	more	information,	see	Supported	Query	Types.

Visual	Database	Tools

<0s>	cannot	be	used	in	this	query	type.
The	action	you	are	attempting	is	not	permitted	with	the	type	of	query	you	have
selected.	Verify	the	syntax	in	your	query	or	change	the	query	type.

For	more	information,	see	Supported	Query	Types.

Visual	Database	Tools

<0s>	support	not	available	in	this	server	version.
You	have	attempted	to	use	a	feature	that	isn't	supported	by	your	server	software.

Visual	Database	Tools

A	number	of	rows	were	affected.
The	query	executed	successfully.	The	specified	rows	were	affected	by	a	make
table	process.

Visual	Database	Tools

Ambiguous	outer	join	(+)	operator.
The	Query	Designer	requires	that	you	follow	specific	rules	when	designing
queries.	The	Query	Designer	is	unable	to	process	the	outer	join	operator	you
have	entered.	Check	the	syntax	in	your	SQL	statement.

For	more	information,	see	Creating	Outer	Joins.

Visual	Database	Tools

Appropriate	SQL	cannot	be	generated.
The	Microsoft	Visual	Database	Tools	Query	Designer	requires	that	you	follow
specific	rules	when	designing	queries.	This	error	may	appear	if	you	have	used
the	Diagram	or	Grid	pane	to	create	a	query	that	cannot	be	expressed	in	an	SQL
statement.	Verify	the	query	options	you	have	selected.

For	more	information,	see	Creating	Queries	or	Specifying	Search	Criteria.

Visual	Database	Tools

You	are	about	to	delete	a	row	or	rows.
Choosing	Yes	will	delete	the	selected	row	from	the	table.	If	you	say	Yes,	the
deletion	will	be	immediately	transmitted	to	the	database.		You	will	not	be	able	to
Undo	this	change.

For	more	information	about	deleting	rows,	see	Deleting	Rows	in	the	Results
Pane.

For	more	information	about	changing	data	using	queries,	see	Manipulating	Data.

Visual	Database	Tools

Bad	top	value.
The	top	value	in	your	query	is	invalid	or	out	of	range.	The	value	for	the	top
clause	must	be	an	integer	value	if	the	PERCENT	clause	is	not	used.	To	use	the
PERCENT	clause,	just	type	in	the	word	PERCENT	after	the	numeric	value	in
the	cell.

For	more	information,	see	Entering	Search	Values.

Visual	Database	Tools

Cannot	put	expression	on	select	list.
There	are	limitations	to	what	expressions	are	allowed	in	the	select	list.	The
expression	you	are	trying	to	add	may	be	invalid.	Verify	that	the	syntax	in	the
expression	is	correct.	It	is	possible	that	the	type	of	expression	is	invalid.

For	more	information,	see	Using	Expressions	in	Queries.

Visual	Database	Tools

Cannot	assign	alias	to	this	field.
An	alias	can	only	be	created	for	a	suitable	column	or	table.	The	field	you	have
chosen	is	not	valid.	Verify	that	the	settings	for	the	field	are	correct.

For	more	information,	see	Creating	Column	Aliases	or	Creating	Table	Aliases.

Visual	Database	Tools

Cannot	convert	entry	to	valid	date/time.
The	Microsoft	Visual	Database	Tools	Query	Designer	requires	that	you	follow
specific	rules	when	designing	queries.	Verify	that	the	entry	is	correct.

For	more	information,	see	Manipulating	Data.

Visual	Database	Tools

Cannot	convert	to	proper	type.
The	Microsoft	Visual	Database	Tools	Query	Designer	requires	that	you	follow
specific	rules	when	converting	values.	The	query	cannot	be	converted.	Verify
that	the	information	in	the	query	and	the	query	type	are	appropriate.

For	more	information,	see	Functions	for	Expressions.

Visual	Database	Tools

Cannot	delete	rows	with	unknown	keys.
The	row	you've	attempted	to	delete	has	an	unknown	key.	This	row	cannot	be
deleted	at	this	time.

For	more	information,	see	Deleting	Rows	in	the	Results	Pane.

Visual	Database	Tools

Cannot	edit	rows	with	unknown	keys.
The	row	you've	attempted	to	edit	has	an	unknown	key.

For	more	information,	see	Editing	Rows	in	the	Results	Pane.

Visual	Database	Tools

Cannot	edit	this	cell.
The	cell	you've	selected	cannot	be	edited.	It	may	be	the	result	of	a	calculation	or
part	of	a	joined	table.

For	more	information,	see	Manipulating	Data.

Visual	Database	Tools

Cannot	filter	this	expression.
The	expression	you've	entered	cannot	be	filtered.	This	typically	occurs	when	the
user	types	in	a	criteria	against	the	*	or	a	criteria	against	a	field	that	is	blank	in	the
QBE.	The	user	should	only	enter	criteria	against	fields	that	are	already	in	the
QBE.

For	more	information,	see	Specifying	Search	Criteria.

Visual	Database	Tools

Cannot	insert	into	this	expression.
You	cannot	insert	data	into	the	selected	expression.	This	function	is	not
supported	at	this	time.

For	more	information,	see	Creating	Insert	Queries.

Visual	Database	Tools

Cannot	open	encrypted	<0s>	<1s>.
After	a	view	has	been	encrypted	and	closed	it	can't	be	opened	again.

For	more	information,	see	Creating	Views.

Visual	Database	Tools

Cannot	update	this	expression.
The	selected	expression	cannot	be	updated.

For	more	information,	see	Using	Expressions	in	Queries.

Visual	Database	Tools

Cannot	use	column	whose	data	type	is	IMAGE	or
TEXT	in	this	context.
The	Microsoft	Visual	Database	Tools	Query	Designer	requires	that	you	follow
specific	rules	when	designing	queries.

For	more	information,	see	Creating	Queries	and	Specifying	Search	Criteria.

Visual	Database	Tools

Cannot	use	LONG	data	type	in	this	context.
The	Microsoft	Visual	Database	Tools	Query	Designer	requires	that	you	follow
specific	rules	when	designing	queries.

For	more	information,	see	Creating	Queries	and	Specifying	Search	Criteria.

Visual	Database	Tools

Column	list	not	supported	for	Make	Table	query.
The	Query	Designer	does	not	support	inclusion	of	the	optional	column	list	for
the	Oracle	Make	Table	query.	Remove	the	column	list	and	use	column	aliases	in
your	select	statement	instead.

For	more	information,	see	Creating	Make	Table	Queries.

Visual	Database	Tools

Column	with	(+)	operator	does	not	reference	a	valid
table.
The	operator	you've	used	in	the	query	column	must	reference	a	valid	table.	The
Query	Designer	cannot	validate	the	table	currently	referenced.	Verify	that	the
table	exists	in	the	database	and	that	the	Query	Designer	has	access	to	it.

For	more	information,	see	Specifying	Search	Conditions.

Visual	Database	Tools

Data	source	alias	is	read	only.
Read-only	values	cannot	be	edited.	To	use	this	data	source,	you	need	a	write-
enabled	version	of	the	data	source	available	to	the	Query	Designer.

For	more	information,	see	Manipulating	Data.

Visual	Database	Tools

Data	source	base	name	is	read	only.
Read-only	values	cannot	be	edited.	To	use	this	data	source,	you	need	a	write-
enabled	version	of	the	data	source	available	to	the	Query	Designer.

For	more	information,	see	Manipulating	Data.

Visual	Database	Tools

Data	type	error	in	expression.
Expressions	with	different	data	types	can	generate	errors.	To	work	with	different
data	types	in	a	single	expression,	you	need	to	convert	to	the	same	data	type.

For	more	information,	see	Creating	an	Expression.

Visual	Database	Tools

Data	type	mismatch	-	no	conversion	possible.
To	work	with	different	data	types	in	a	single	expression,	you	need	to	convert	to
the	same	data	type.	The	selected	data	types	cannot	be	converted.

For	more	information,	see	Using	Expressions	in	Queries.

Visual	Database	Tools

Data	type	mismatch	-	use	the	CONVERT	function.
To	work	with	different	data	types	in	a	single	expression,	you	need	to	convert	to
the	same	data	type.	One	of	the	data	types	must	be	converted	before	you	can
continue.

For	more	information,	see	Using	Expressions	in	Queries.

Visual	Database	Tools

DELETE	statement	conflicted	with	COLUMN
REFERENCE	constraint.
A	conflict	occurred	while	your	query	attempted	to	execute.	The	QueryDesigner
has	tried	to	locate	the	direct	source	of	the	conflict.	Please	check	the	syntax	of
your	query	to	attempt	to	resolve	the	conflict.

Visual	Database	Tools

Do	you	want	to	suppress	further	error	messages
telling	you	why	records	can't	be	pasted?
If	you	answer	Yes,	you	will	not	receive	messages	explaining	why	records	cannot
be	pasted	correctly.

Visual	Database	Tools

Error	after	function	'<0s>'
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	after	predicate	near	'<0s>'
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	before	EXISTS	clause.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	before	EXISTS	clause:	'<0s>'	not	recognized.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	before	FROM	clause.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	following	UNION	operator.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	in	column	list.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	in	column	list:	'<0s>'	not	recognized.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	in	destination	table	specification.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	best	results,	do	not	include	periods	in	the	destination	table	specification.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	in	FROM	clause	near	'<0s>'
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	in	GROUP	BY	clause.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Summarizing	and
Grouping.

Visual	Database	Tools

Error	in	GROUP	BY	clause	near	'<0s>'.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Summarizing	and
Grouping.

Visual	Database	Tools

Error	in	HAVING	clause.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Querying	on	Groups
of	Rows.

Visual	Database	Tools

Error	in	HAVING	clause	near	'<0s>'.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Querying	on	Groups
of	Rows.

Visual	Database	Tools

Error	in	INSERT	statement.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	in	INSERT	statement:	'<0s>'	not	recognized.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	in	join	expression.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Querying	Using
Multiple	Tables.

Visual	Database	Tools

Error	in	join	expression:	'<0s>'	not	recognized.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Querying	Using
Multiple	Tables.

Visual	Database	Tools

Error	in	list	of	function	arguments:	'<0s>'	not
recognized.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	in	list	of	values.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	in	list	of	values	in	IN	clause.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	in	list	of	values	in	IN	clause:	'<0s>'	not
recognized.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	in	list	of	values:	'<0s>'	not	recognized.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	in	ON	clause	near	'<0s>'.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	in	optional	FROM	clause.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	in	ORDER	BY	clause.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	in	ORDER	BY	clause	near	'<0s>'.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	in	SELECT	clause:	alias	'<0s>'	not	recognized.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	in	SELECT	clause:	alias	not	recognized.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	in	SELECT	clause:	expression	near	'<0s>'.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	in	set	list	in	UPDATE	clause.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	in	table	name	or	view	name	in	DELETE	clause.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.	Be	sure	to	use	Quoted	Identifiers	as	needed.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	in	table	name	or	view	name	in	DELETE	clause:
<0s>'	not	recognized.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.	Be	sure	to	use	Quoted	Identifiers	as	needed.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	in	table	name	or	view	name	in	INSERT	clause.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.	Be	sure	to	use	Quoted	Identifiers	as	needed.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	in	table	name	or	view	name	in	INSERT	clause:
'<0s>'	not	recognized.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.	Be	sure	to	use	Quoted	Identifiers	as	needed.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	in	table	name	or	view	name	in	UPDATE	clause.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.	Be	sure	to	use	Quoted	Identifiers	as	needed.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	in	text	following	query	statement:	'<0s>'.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	in	values	list	in	INSERT	INTO	clause.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	in	values	list	in	INSERT	INTO	clause:	'<0s>'
not	recognized.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

Make	sure	the	number	of	items	in	the	Column	list	matches	the	number	of	items
in	the	Values	list.

For	more	information,	see	Specifying	Search	Criteria	and	Creating	Queries.

Visual	Database	Tools

Error	in	WHERE	clause	near	'<0s>'.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Querying	on	Groups
of	Rows.

Visual	Database	Tools

Function	argument	count	error.
A	function	in	your	query	has	the	wrong	number	of	arguments.	Review	you	query
syntax	to	locate	the	function.

For	more	information,	see	Functions	for	Expressions	and	Specifying	Search
Criteria.

Visual	Database	Tools

Ignoring	illegal	use	of	ALL.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Although	the	query	will	run,	you	should	review
your	query	syntax	and	correct	the	error.

For	more	information,	see	Specifying	Search	Criteria	and	Specifying	Search
Conditions.

Visual	Database	Tools

Ignoring	ODBC	syntax.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Specifying	Search
Conditions.

Visual	Database	Tools

Illegal	use	of	expression	list.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Specifying	Search
Conditions.

Visual	Database	Tools

Illegal	sequence	use.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Specifying	Search
Conditions.

Visual	Database	Tools

Illegal	use	of	outer	join	operator.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Creating	Outer	Joins.

Visual	Database	Tools

Incomplete	column	list.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Specifying	Search
Conditions.

Visual	Database	Tools

Incomplete	SET	clause.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Specifying	Search
Conditions.

Visual	Database	Tools

Incomplete	VALUES	list.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Specifying	Search
Conditions.

Visual	Database	Tools

Invalid	entries	must	be	resolved	before	you	can	exit
this	pane.
Exiting	a	pane	causes	other	panes	to	be	updated.	If	there	is	an	invalid	entry	in	the
pane	you	are	editing,	you	need	to	change	or	delete	it.

Visual	Database	Tools

Invalid	escape	character.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

Your	escape	character	must	be	a	single	character.

For	more	information,	see	Specifying	Search	Criteria	and	Specifying	Search
Conditions.

Visual	Database	Tools

Invalid	identifier	'<0s>'.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Specifying	Search
Conditions.

Visual	Database	Tools

Invalid	or	missing	expression.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Specifying	Search
Conditions.

Visual	Database	Tools

Invalid	or	missing	expression	near	'<0s>'.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Specifying	Search
Conditions.

Visual	Database	Tools

Invalid	prefix	or	suffix	characters.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Specifying	Search
Conditions.

Visual	Database	Tools

Invalid	row	index:	Goto	failed.
You	have	entered	a	non-numeric	value	into	the	GoTo	record	field.	Enter	a
numeric	value	instead.	Entering	a	number	that	is	greater	than	the	number	of	rows
in	the	table,	goes	to	the	last	record.

For	more	information,	see	Specifying	Search	Criteria.

Visual	Database	Tools

Invalid	text	or	symbol.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Specifying	Search
Conditions.

Visual	Database	Tools

Invalid	view	name.
The	View	name	you've	specified	is	not	valid.	Valid	names	begin	with	an
underscore	(_)	or	a	character	and	contain	a	combination	of	characters,	numbers
and	underscores.

The	maximum	length	for	View	names	is	32	for	Microsoft®	SQL	Server™	6.5,
32	for	Oracle,	and	128	for	SQL	Server	7.0	and	SQL	Server	2000.	Do	not	use
names	with	a	period.

For	more	information,	see	Working	With	Views.

Visual	Database	Tools

Missing	escape	character	in	LIKE	predicate.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Specifying	Search
Conditions.

Visual	Database	Tools

Missing	FROM	clause.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Specifying	Search
Conditions.

Visual	Database	Tools

Missing	FROM	clause	near	'<0s>'.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Specifying	Search
Conditions.

Visual	Database	Tools

Missing	FROM	keyword.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Specifying	Search
Conditions.

Visual	Database	Tools

Missing	FROM	keyword	near	'<0s>'.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Specifying	Search
Conditions.

Visual	Database	Tools

Missing	INTO	keyword.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Specifying	Search
Conditions.

Visual	Database	Tools

Missing	INTO	keyword	near	'<0s>'.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Specifying	Search
Conditions.

Visual	Database	Tools

Missing	or	incomplete	SELECT	clause.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Specifying	Search
Conditions.

Visual	Database	Tools

Missing	pattern	in	LIKE	predicate.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Specifying	Search
Conditions.

Visual	Database	Tools

Missing	SET	keyword.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria	and	Specifying	Search
Conditions.

Visual	Database	Tools

Missing	subquery.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Creating	Subqueries.

Visual	Database	Tools

Missing	subquery	correlation	name.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Creating	Subqueries.

Visual	Database	Tools

Missing	subquery	or	the	operator	you	entered
requires	parenthesis.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Creating	Subqueries.

Visual	Database	Tools

Must	enter	either	TRUE	or	FALSE.
When	specifying	a	criteria	for	the	EXISTS	statement,	you	must	use	either	True
for	EXISTS	or	False	for	NOT	EXISTS.

For	more	information,	see	Specifying	Search	Criteria.

Visual	Database	Tools

Outer	join	column	may	not	be	used	with	an	IN
predicate	or	subquery.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Creating	Outer	Joins.

Visual	Database	Tools

Query	Designer	cannot	open	this	query	file.
Query	Designer	cannot	open	the	specified	query	file.	Verify	that	file	is	a	query
file.	The	file	may	be	corrupt	or	from	a	non-supported	version	of	the	Query
Designer.

For	more	information,	see	Supported	Query	Types.

Visual	Database	Tools

Query	has	executed	successfully.
The	query	executed	successfully.

Visual	Database	Tools

Row	limit	value	should	be	between	<xxx>	and	<xxx>.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Entering	Search	Values.

Visual	Database	Tools

SQL	statement	could	not	be	parsed.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Creating	Queries.

Visual	Database	Tools

The	SQL	syntax	has	been	verified	against	the	data
source.
The	SQL	verified	successfully.

For	more	information,	see	Creating	Queries	and	Specifying	Search	Criteria.

Visual	Database	Tools

Syntax	error	in	table	reference.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Creating	Queries	and	Specifying	Search	Criteria.

Visual	Database	Tools

Syntax	error	in	table	reference:	'<0s>'	not	recognized.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria.

Visual	Database	Tools

ODBC	driver	returned	an	invalid	ODBC	version	and
needs	to	be	updated.
Your	ODBC	driver	is	not	current.	For	best	results,	use	the	ODBC	driver
provided	with	the	Microsoft	Visual	Database	Tools	installation.

For	more	information	refer	to	your	ODBC	documentation.

Visual	Database	Tools

Use	of	GROUP	BY	function	in	WHERE	clause	not
allowed.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Querying	on	Groups	of	Rows.

Visual	Database	Tools

The	NOT	keyword	may	not	be	used	in	a	column	cell.
When	entering	a	NOT	EXIST	subquery	into	the	Column	cell,	enter	just	the
EXIST	clause.	Then	go	to	the	Criteria	cell	and	enter	False	for	it.

For	more	information,	see	Specifying	Search	Criteria.

Visual	Database	Tools

ORDER	BY	not	supported	for	CREATE	TABLE
query.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Reordering	Output	Columns.

Visual	Database	Tools

Outer	join	operator	(+)	not	allowed	as	OR	operand.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Creating	Outer	Joins	and	Specifying	Search	Criteria.

Visual	Database	Tools

Outer	join	operator	(+)	not	allowed	in	the	grid	pane.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Creating	Outer	Joins.

Visual	Database	Tools

The	query	cannot	be	executed	because	some	files	are
missing	or	not	registered.
Query	Designer	cannot	locate	your	query	files	and	cannot	run	your	query.	You
may	need	to	reinstall	the	product.

Visual	Database	Tools

The	Query	Designer	does	not	support	the	critical
ODBC	APIs.
The	API	you	are	attempting	to	use	is	not	supported.	Refer	to	your	ODBC	driver
documentation.	Use	Microsoft	provided	ODBC	drivers	whenever	possible.

Visual	Database	Tools

The	Query	Designer	does	not	support	the	current
ODBC	API.
The	API	you	are	attempting	to	use	is	not	supported.	Refer	to	your	ODBC	driver
documentation.	Use	Microsoft	provided	ODBC	drivers	whenever	possible.

Visual	Database	Tools

Query	Designer	supports	no	more	than	1	table	for	this
type	of	query.
Only	one	data	source	can	be	used	with	this	query	type.

For	more	information,	see	Supported	Query	Types.

Visual	Database	Tools

The	specified	OR	group	number	is	already	in	use.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria.

Visual	Database	Tools

The	value	you	entered	is	not	consistent	with	the	data
type	or	length	of	the	column.
Entered	values	must	match	the	column	data	types.

For	more	information,	see	Entering	Search	Values.

Visual	Database	Tools

There	are	not	enough	values	in	the	subquery	select
list.
The	SELECT	statement	needs	to	include	the	same	number	of	columns	that	the
embedded	subquery	returns.

For	more	information,	see	Creating	Subqueries.

Visual	Database	Tools

There	are	not	enough	columns	to	match	the	value	list.
An	UPDATE	or	INSERT	statement	contains	more	values	than	the	table	being
updated.	Verify	your	SQL	statement	to	make	sure	the	number	of	columns
matches	the	table.

Visual	Database	Tools

There	are	no	columns	selected.	Please	select	one	or
more	columns	and	re-run	the	query
The	SELECT	list	does	not	contain	any	output	columns.	Specify	the	columns	you
want	to	be	returned	and	run	the	query	again.

JavaScript:hhobj_1.Click()

Visual	Database	Tools

There	is	no	unique	table	in	this	query.
The	query	needs	to	unambiguously	identify	which	table	to	return	values	from.

Visual	Database	Tools

ALIAS	name	is	already	being	used.
Alias	names	must	be	unique.	Enter	a	different	alias	name.

For	more	information,	see	Creating	Table	Aliases	and	Creating	Column	Aliases.

Visual	Database	Tools

This	cell	contains	the	text	string	"<NULL>"	which
may	not	be	processed	correctly.
Use	NULL	or	NOT	NULL	for	comparing	null	data.	Review	your	query	syntax
and	correct	the	error	before	running	your	query.

For	more	information,	see	Creating	Queries.

Visual	Database	Tools

IS	operator	can	only	be	used	with	NULL	or	NOT
NULL.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria.

Visual	Database	Tools

This	operator	cannot	be	used	with	columns	with	data
type	"uniqueidentifier".
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria.

Visual	Database	Tools

Table	is	not	in	the	query	definition.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Creating	Queries.

Visual	Database	Tools

Too	many	characters	for	field	width.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Creating	Queries.

Visual	Database	Tools

Unable	to	locate	data	source.
The	specified	data	source	cannot	be	found.	Check	the	data	source	location	and
the	entered	location.

Visual	Database	Tools

Unable	to	parse	expression.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria.

Visual	Database	Tools

Unable	to	parse	query	text.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria.

Visual	Database	Tools

Unable	to	parse	statement.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria.

Visual	Database	Tools

Unknown	column.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria.

Visual	Database	Tools

Unknown	conversion	specification.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria.

Visual	Database	Tools

Use	of	CONVERT	function	might	be	unnecessary.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria.

Visual	Database	Tools

SQL	text	cannot	be	represented	in	the	grid	pane	and
diagram	pane.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria.

Visual	Database	Tools

View	already	exists	in	the	database.
Views	must	have	unique	names	within	the	database.	Enter	a	different	name	for
the	view.

For	more	information,	see	Creating	Views.

Visual	Database	Tools

You	might	not	have	permission	to	perform	this
operation,	or	the	object	<0s>	might	no	longer	exist	in
the	database.
The	object	you	want	to	work	with	may	be	listed,	but	you	may	not	have	SELECT
permission	to	this	object.	Or,	the	object	may	no	longer	exist	in	the	database.

Refresh	the	list	of	objects	to	find	out	if	this	object	still	exists	in	the	database.	If
this	object	still	exists,	then	contact	the	owner	of	the	object	or	the	Database
Administrator	to	get	permission	to	this	object.

For	more	information,	see	Ownership	of	Database	Objects.

Visual	Database	Tools

Link	server	object	cannot	be	used	as	a	destination
with	this	query	type.
The	selected	query	type	does	not	support	using	link	server	objects	as
destinations.

For	more	information,	see	Creating	Queries.

Visual	Database	Tools

ALL	cannot	be	used	with	CUBE	or	ROLLUP.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria.

Visual	Database	Tools

OpenRowset	cannot	be	used	as	a	destination	with	this
query	type.
There	is	an	error	in	the	syntax	of	your	query.	The	Query	Designer	has	attempted
to	locate	the	source	of	the	error.	Review	your	query	syntax	and	correct	the	error
before	running	your	query.

For	more	information,	see	Specifying	Search	Criteria.

Visual	Database	Tools

Enter	an	expression	in	the	Column	cell	first.
Enter	an	expression	in	the	column	cell.

For	more	information,	see	Using	Expressions	in	Queries.

Visual	Database	Tools

Your	entry	cannot	be	converted	to	a	valid	date	time
value.
In	general,	the	ANSI	standard	date	format	is	used	with	databases	that	represent
dates	using	a	true	date	data	type.	In	contrast,	the	datetime	format	is	used	with
databases	that	support	a	datetime	data	type.

For	more	information,	see	Entering	Search	Values.

Visual	Database	Tools

Query	Designer	Error.
No	specific	help	is	available	for	this	error.	If	the	text	in	the	error	message	does
not	provide	enough	information	for	you	to	solve	the	problem,	please	consider	the
following	options:

Verify	that	your	settings	are	correct	and	try	the	action	again.

Use	the	index	to	search	for	keywords	related	to	the	error	message.	

If	the	problem	is	due	to	external	applications	or	software,	consult	the
documentation	for	that	area.	For	example,	errors	may	be	caused	by	your
server	setup,	or	even	the	network	you	are	using.

For	SQL	statement	errors,	consult	the	Transact-SQL	Reference.

Check	the	Readme	for	late-breaking	information	concerning	the	error.

JavaScript:hhobj_1.Click()

Visual	Database	Tools

The	alias	name	is	too	long.
The	name	you	supplied	as	an	alias	for	a	table	or	table-structured	object	is	too
long.		Enter	a	shorter	name.

Visual	Database	Tools

Poorly	formed	comment.
The	comment	contains	an	error.		Be	sure	that	the	body	of	the	comment	does	not
contain	any	comment	markers	(/*	or	*/).

Visual	Database	Tools

An	expression	cannot	be	used	as	a	parameter	value.
An	expression	appears	as	a	parameter	value.	Parameter	values	must	be	scalar
quantities	or	simple	text.		Supply	a	text	value	or	number	for	the	quantity,	as
appropriate.

Visual	Database	Tools

Incomplete	parameters	or	column	list.
An	argument	is	missing	from	an	insert	statement.		Rewrite	the	insert	statement	to
supply	the	missing	argument.

Visual	Database	Tools

Incomplete	parameters	list.
A	parameter	is	missing	from	a	user-defined	function	that	returns	a	table.		Rewrite
the	statement	to	supply	the	missing	argument.

Visual	Database	Tools

Warning:		It	is	likely	that	your	modification	will	result
in	a	view	that	cannot	be	indexed.
The	modifications	you	are	trying	to	transmit	to	the	database	might	result	in	a
view	that	cannot	be	indexed.	If	you	proceed	with	the	modifications,	the	view's
existing	indexes	will	be	deleted.

Visual	Database	Tools

Warning:		It	is	likely	that	the	view	definition	will
result	in	a	view	that	cannot	be	indexed.
The	view	definition	you	are	trying	to	transmit	to	the	database	might	result	in	a
view	that	cannot	be	indexed.	You	can	proceed	to	save	the	view,	but	SQL	Server
might	not	create	the	indexes	for	it.

Visual	Database	Tools

Index	already	exists.
The	database	already	contains	an	index	with	the	name	you	supplied.		Choose
another	name.

Visual	Database	Tools

Unquoted	alias	contains	white	space.
An	alias	you	supplied	contains	embedded	blanks	or	other	white	space.		Remove
the	white	space	or	put	double-quotation	marks	around	the	alias.

Visual	Database	Tools

If	you	save	the	view	encrypted,	you	will	no	longer	be
able	to	alter	the	view	definition.
By	encrypting	a	view,	you	disallow	all	users	(regardless	of	database	privileges),
including	yourself,	from	ever	seeing	the	view	definition.		Thus,	you	will	not	be
able	to	alter	the	view	definition.		Choose	OK	to	save	the	view	in	encrypted
form.		Choose	Cancel	to	cancel	the	Save	operation.

Visual	Database	Tools

View	has	indexes.		If	you	remove	schema	binding,	the
indexes	will	be	dropped.
The	operation	you	are	performing	will	automatically	remove	schema	binding
from	an	indexed	view.		When	schema	binding	is	removed,	the	indexes	will	be
dropped.		Click	OK	to	proceed	with	the	operation;	click	Cancel	to	cancel	the
operation.

For	more	information,	see	Indexed	Views.

Visual	Database	Tools

Edits	not	allowed.		HAVING	clause	not	allowed	in	an
indexed	view.
You	cannot	use	the	HAVING	clause	in	the	view	definition	of	an	indexed	view.	
You	can	remove	the	indexes	or	you	can	remove	the	HAVING	clause.

Visual	Database	Tools

Database	Server	Version	Runtime	Error.
The	database	server	has	returned	a	run-time	error.		See	Error	Messages.

JavaScript:hhobj_1.Click()

Visual	Database	Tools

SQL	Verify	failed.
The	database	server	could	not	verify	the	validity	of	the	SQL	statement.		For
more	information,	consult	the	Transact-SQL	Reference.

JavaScript:hhobj_1.Click()

Visual	Database	Tools

Poorly	formed	cast	function.
An	expression	contains	a	bad	CAST	function.

JavaScript:hhobj_1.Click()

Visual	Database	Tools

Illegal	use	of	collation	clause.
The	SQL	statement	uses	the	collation	clause	illegally.		For	more	information,	see
COLLATE.

JavaScript:hhobj_1.Click()

Visual	Database	Tools

Columns	in	this	expression	have	incompatible
collations.
An	expression	you	supplied	in	an	indexed	view	definition	uses	two	columns	with
different	collation	settings,	so	a	collation	clause	has	been	added	to	one	of	the
columns.		But	an	indexed	view	definition	cannot	contain	the	collation	clause.	
Modify	the	view	definition	by	either	removing	the	expression	with	the
incompatible	columns	or	remove	the	indexes	from	the	view.

Visual	Database	Tools

Collate	clause	may	not	be	used	in	an	indexed	view.
The	COLLATE	clause	appears	within	the	definition	of	an	indexed	view,	but	an
indexed	view	definition	cannot	contain	the	COLLATE	clause.		Modify	the	view
definition	by	either	removing	the	COLLATE	clause	or	removing	the	indexes
from	the	view.

Visual	Database	Tools

Asterisk	(*)	may	not	be	used	in	an	indexed	view.
Because	an	indexed	view	is	stored	on	disk,	the	view	definition	must	explicitly
refer	to	the	columns	to	be	included	in	the	view.		Replace	the	asterisk	with	the
columns	you	want	to	include	in	the	view.

Visual	Database	Tools

Index	must	have	at	least	one	column.
Your	modification	would	result	in	an	index	without	columns,	which	is	illegal.	
You	can	delete	the	index	or	modify	it	by	adding	a	column	to	it.

Visual	Database	Tools

Invalid	fill	factor;	enter	an	integer	between	0	and	100.
Because	fill	factor	must	be	a	percentage,	its	minimum	value	is	zero	and	its
maximum	value	is	100.		You	can	use	only	whole-number	percentages.		For
example,	67	is	acceptable,	but	66.7	is	not.

Visual	Database	Tools

Indexed	View	must	contain	a	clustered	index.
Because	an	indexed	view	is	stored	on	disk,	it	must	contain	a	clustered	index
(rather	than	a	nonclustered	one).		Modify	the	index	to	make	it	a	clustered	index.

Visual	Database	Tools

The	table-valued	function	used	as	target	is	not	an	in-
line	function.
The	operation	you	are	attempting	requires	an	updateable	user-defined	function
(an	in-line	function),	but	the	function	you	are	using	is	not	updateable.		You	can
replace	the	function	with	an	updateable	one,	or	you	can	change	the	query	type	to
a	SELECT	query.

Visual	Database	Tools

WITH	TIES	clause	requires	an	ORDER	BY	clause.
The	query	does	not	conform	to	SQL	syntax,	because	it	uses	the	WITH	TIES
clause	without	an	attendant	ORDER	BY	clause.		Either	remove	the	WITH	TIES
clause	or	add	an	ORDER	BY	clause.

Visual	Database	Tools

There	are	too	many	values	from	the	sub-query	select
list.
The	number	of	columns	in	the	target	of	the	INSERT	operation	exceeds	the
number	of	data	values	you	supplied.		Modify	the	query	to	include	one	value	for
each	column.

Visual	Database	Tools

NOT	cannot	be	used	in	a	column	cell.
To	negate	a	criterion	that	contains	a	subquery,	you	cannot	place	the	NOT
operator	in	the	Column	cell	of	the	Grid	pane.		Instead,	you	should	put	the
keyword	FALSE	in	the	Criteria	cell	of	that	same	row	of	the	Grid	pane.

Visual	Database	Tools

View	definition	includes	no	output	columns	or	no
items	in	the	FROM	clause.
A	view	definition	must	have	at	least	one	table	or	table-structured	object	in	the
FROM	clause,	and	must	have	at	least	one	column	in	the	select	list.		The	view
definition	is	missing	one	or	both.		Modify	the	view	definition	accordingly.

Visual	Database	Tools

You	cannot	create	a	view	which	is	self-referenced.
The	view	definition's	FROM	clause	includes	the	name	of	this	view.		Remove	the
view	name	from	the	FROM	clause.

Visual	Database	Tools

This	SQL	statement	type	cannot	be	used	in	a	view.
A	view	definition	must	be	a	SELECT	statement	(rather	than	an	INSERT,
UPDATE,	DELETE,	or	CREATE	TABLE	statement).		Alter	the	view	definition
accordingly.

Visual	Database	Tools

Query	or	View	has	been	modified.		Save	changes
before	closing?
You	have	changed	the	query	or	view.		If	you	do	not	save	it,	your	modifications
will	be	lost.		Choose	Yes	to	save	the	changes;	choose	no	to	cancel	the	operation.

Visual	Database	Tools

Query	or	View	already	exists.		Do	you	want	to
overwrite	it?
A	query	or	view	with	that	name	already	exists.		If	you	choose	Yes,	you	will
replace	the	existing	query	with	the	new	one.

Visual	Database	Tools

You	are	about	to	paste	n	rows.
When	you	paste	rows	in	the	results	pane,	the	rows	are	immediately	transmitted
to	the	database.		Because	the	database	commits	these	modifications	when	you
transmit	them,	you	cannot	Undo	this	change.

Visual	Database	Tools

Rows	pasted.
The	rows	you	pasted	in	the	results	pane	have	been	transmitted	to	the	database.	
Because	the	database	committed	these	modifications	when	you	transmitted	them,
you	cannot	Undo	this	change.

Visual	Database	Tools

Column	cannot	be	updated.
You	cannot	update	values	in	this	column	–	perhaps	because	it	is	a	computed
column,	and	identiTy	column,	or	a	column	whose	values	are	RowGuids.

Visual	Database	Tools

The	database	row	you	are	modifying	no	longer	exists
in	the	database.
After	you	retrieved	data	into	the	Results	pane,	another	user	deleted	a	row	from
the	database.		You	are	now	trying	to	modify	that	row	from	within	the	Results
pane.		Your	modification	will	not	work,	because	the	row	that	is	the	target	of	your
modification	no	longer	exists.

Visual	Database	Tools

Too	many	or	too	few	parameters	specified.
You	are	using	a	user-defined	function,	but	you	are	not	supplying	the	correct
number	of	parameters.		Check	the	definition	of	the	user-defined	function	to
determine	how	many	parameters	it	takes.

Visual	Database	Tools

View	name	cannot	begin	with	#.
The	view	name	cannot	begin	with	a	pound	sign	(#).		Choose	a	different	name.

Visual	Database	Tools

Table	name	cannot	include	the	double-quote
character.
The	table	name	cannot	include	the	double-quote	character	(").		Choose	a
different	name.

	Visual Database Tools Usage Considerations
	Visual Database Tools and SQL Server Databases
	Database Designer Considerations for SQL Server Databases
	Query Designer Considerations for SQL Server Databases

	Database Development and Visual Database Tools
	Database Designer
	Table Designer
	Interactions Among Database Diagrams and Table Design Windows
	Database Objects
	Uniqueness of Database Object Names
	Tables
	Columns
	Column Properties

	Keys
	Table Relationships
	Indexes
	Constraints
	Check Constraints
	Default Constraints
	Unique Constraints
	Primary Key Constraints
	Foreign Key Constraints

	Triggers
	Stored Procedures
	User-Defined Functions

	Large Database Projects
	Multiuser Database Design
	Multiuser Environments
	Ownership of Database Objects
	Diagrams Affected by Another User's Changes
	Database Objects Deleted by Another User

	Issues of Database Evolution
	Development, Test, and Production Databases

	Database Queries and Visual Database Tools
	Query and View Designer Layout
	Diagram Pane
	Grid Pane
	SQL Pane
	Results Pane
	How the Query Designer Represents Joins

	Queries and Views
	Comparison of Queries and Views
	Indexed Views
	Interactions Among Query and View Designer Windows
	Interaction Between the Results Pane and the Database
	Supported Query Types
	Structure of Retrieval Queries
	Including or Excluding Rows
	Including or Excluding Columns
	Combining Tables
	Types of Joins
	Join Columns
	Join Comparison Operators
	Join Tables

	Collapsing Groups of Rows
	Using a Table Twice in One Query
	Using Something Else in Place of a Table
	Sorting Rows

	Expressions in Queries
	Parameter Queries
	Summary and Grouping Behavior in the Query Designer
	Using the Query Designer with International Data

	Developing Database Structure
	Working with Databases
	Saving Selected Tables on a Diagram
	Saving an Entire Database Diagram
	Saving Your Work in Table Designer
	Discarding Modifications Made in Database Designer or Table Designer
	Reconciling a Database Diagram with a Modified Database

	Working with Tables
	Adding Tables to a Diagram
	Removing a Table from a Database Diagram
	Deleting a Table from a Database Diagram and the Database
	Renaming a Table
	Duplicating a Table
	Copying a Table Across Database Diagrams
	Changing a Table View in a Database Diagram
	Changing Which Properties Appear
	Moving Columns from One Table to Another
	Resizing Property Columns

	Working with Columns
	Inserting Columns into a Table
	Copying Columns from One Table to Another
	Deleting Columns from a Table
	Setting Column Properties
	Renaming a Column

	Working with Relationships
	Creating a Relationship Between Tables
	Enforcing Referential Integrity Between Tables
	Drawing a Reflexive Relationship
	Deleting a Relationship
	Renaming a Relationship
	Checking Existing Data when Creating a Relationship
	Mapping Many-to-Many Relationships to a Database Diagram

	Working with Indexes
	Creating an Index
	Creating a Unique Index
	Creating a Clustered Index
	Renaming an Index
	Deleting an Index
	Saving, Displaying, and Updating an Index Definition
	Specifying a Fill Factor for an Index

	Working with Keys
	Defining a Primary Key
	Modifying a Primary Key
	Deleting a Primary Key Constraint
	Modifying a Foreign Key
	Viewing Foreign Key Attributes
	Disabling a Foreign Key Constraint for Replication
	Disabling a Foreign Key Constraint with INSERT and UPDATE Statements
	Deleting a Foreign Key Constraint
	Copying Column Properties to a Foreign Key Column

	Working with Constraints
	Attaching a New Check Constraint to a Table or Column
	Defining a Check Constraint Expression
	Checking Existing Data When Creating a Check Constraint
	Disabling a Check Constraint for Replication
	Disabling a Check Constraint with INSERT and UPDATE Statements
	Modifying a Check Constraint
	Deleting a Check Constraint
	Creating a Unique Constraint
	Modifying a Unique Constraint
	Deleting a Unique Constraint

	Working with User-Defined Functions
	Working with Scripts
	Saving a Change Script

	Designing Data Retrieval and Manipulation
	Designing Queries
	Performing Basic Operations with Queries
	Creating a Query
	Adding Tables
	Removing Tables
	Adding Columns
	Removing Columns from Query Output
	Removing Columns from the Query
	Reordering Output Columns
	Creating Column Aliases
	Creating Table Aliases
	Verifying a Query
	Commenting a Query
	Executing a Query
	Stopping a Query
	Clearing Query Results
	Printing Query Results
	Ordering Query Results

	Creating Queries
	Specifying Search Criteria
	Specifying Search Conditions
	Selecting Rows that Do Not Match a Value
	Specifying Multiple Search Conditions for One Column
	Specifying Multiple Search Conditions for Multiple Columns
	Combining Conditions when AND Has Precedence
	Combining Conditions when OR Has Precedence

	Creating Subqueries
	Using Expressions in a Query
	Including User-Defined Functions in a Query
	Querying on Groups of Rows
	Excluding Duplicate Rows
	Grouping Rows in Query Results
	Counting Rows in a Table
	Summarizing or Aggregating Values for All Rows in a Table
	Summarizing or Aggregating Values Using Custom Expressions
	Specifying Conditions for Groups
	Using HAVING and WHERE Clauses in the Same Query

	Querying Using Multiple Tables
	Joining Tables Automatically
	Joining Tables Manually
	Joining Tables on Multiple Columns
	Modifying Join Operators
	Creating Outer Joins
	Creating Self-Joins Automatically
	Creating Self-Joins Manually
	Removing Joins

	Manipulating Data
	Editing Rows in the Results Pane
	Adding New Rows in the Results Pane
	Deleting Rows in the Results Pane
	Creating Update Queries
	Creating Insert From Queries
	Creating Delete Queries
	Creating Insert Into Queries
	Creating Make Table Queries
	Creating General Purpose Queries
	Creating a Query with Unnamed Parameters
	Creating a Query with Named Parameters
	Specifying Parameter Marker Characters

	Working With Views
	Creating Views
	Creating Indexed Views
	Modifying Indexed Views
	Encrypting Views

	Reference
	Rules for Updating Results
	Navigating in the Query Designer
	Comparison Operators
	Logical Operators
	Wildcard Characters
	Rules and Grid-Pane Conventions for Combining Search Conditions
	Rules for Entering Search Values
	Aggregate Functions
	Structure of Expressions
	Operators for Expressions
	Functions for Expressions
	Predefined Variables for Expressions

	Dialog Boxes
	Database Designer Dialog Boxes
	Add Table Dialog Box
	Choose Name Dialog Box
	Create Relationship Dialog Box
	Column Selection Dialog Box
	Database Changes Detected Dialog Box
	Datatype Change Required Dialog Box
	Define Column Collation Dialog Box
	Page Setup Dialog Box
	Save Change Script Dialog Box
	Save Dialog Box
	Save Incomplete Dialog Box
	Unsaved Changes Exist Dialog Box
	Validation Warnings Dialog Box

	Query Designer Dialog Boxes
	Add Table Dialog Box (Query and View Designers)
	Database Changes Detected Dialog Box
	Define Query Parameters Dialog Box
	Delete Table Dialog Box
	Go To Row Dialog Box
	Indexes Dialog Box
	Choose Table for INSERT FROM Query Dialog Box
	Insert Into Dialog Box
	Make Table Dialog Box
	Query Definitions Differ Dialog Box
	Returning Query Results (Edit) Dialog Box
	Returning Query Results Dialog Box
	SQL Syntax Errors Encountered Dialog Box
	Update Table Dialog Box

	Properties Pages
	Database Designer Properties Pages
	Columns Property Page
	Check Constraints Property Page
	Indexes/Keys Property Page
	Relationships Property Page
	Tables Property Page

	Query Designer Properties Pages
	Query Tab, Properties Window (Query Designer)
	Query Tab, Properties Window (View Designer)
	Data Source Tab, Properties Window
	Function Parameters Tab, Properties Window
	Parameters Tab, Properties Window
	Join Line Tab, Properties Window

	Error Messages
	Database Designer Troubleshooting Errors
	A pair of matching columns is required to create a relationship.
	A primary key can't be created on column '<0s>' because it allows null values.
	A primary key or index cannot be created on columns with a datatype of <0s>.
	A primary key or index cannot have more than <0d> columns.
	A primary key or UNIQUE constraint must be defined for table '<0s>' before it can participate in a relationship.
	A relationship cannot contain more than '<0d>' columns.
	An index already exists for table '<0s>' with the columns '<1s>'.
	An index can't exist on a blank column.
	Are you sure you want to delete the current selection from your database?
	Are you sure you want to permanently delete table '<0s>' from your database?
	Are you sure you want to permanently delete the selected tables from your database?
	Are you sure you want to remove the selected table from the diagram?
	Are you sure you want to remove the selected tables from the diagram?
	Both sides of a relationship must have the same number of columns.
	Column '<1s>' in table '<0s>' participates in index '<2s>'. Columns with a datatype of '<3s>' cannot participate in indexes or primary keys.
	Editing this default will permanently unbind the named default.
	Identity column '<0s>' in table '<1s>' must have a datatype of int, smallint, tinyint, decimal or numeric with scale of 0.
	Invalid name. You must provide a name for this object.
	ODBC error: <0s>
	One or more selected tables are already on the diagram.
	Only one clustered index can be created on table '<0s>'.
	Only one ROWGUID column is allowed per table.
	Relationship '<0s>' was modified or deleted since the diagram was loaded.
	Table <0s> already exists
	Table '<0s>' is marked for deletion and was not added to the diagram.
	Table '<0s>' no longer exists in the database.
	The Allow Nulls property can't be set on a column that is part of the primary key.
	The Allow Nulls property can't be set on column '<0s>' because it is an identity column.
	The columns in table '<0s>' do not match an existing enabled primary key or UNIQUE constraint.
	The columns in table '<0s>' do not match an existing primary key or UNIQUE constraint.
	The datatype of column '<1s>' in the '<0s>' table can't be changed because it participates in index '<2s>'.
	The datatype or size property of '<0s>.<1s>' doesn't match '<2s>.<3s>'.
	The Default Value property can't be set on column '<0s>' because it is an identity column.
	The existing relationship must have at least one pair of related columns.
	The Identity property can't be set on column '<0s>' because it allows null values.
	The Identity property can't be set on column '<0s>' because it has a default value.
	The number of selected columns exceeds the number of columns in the target table.
	The primary key or UNIQUE constraint cannot be changed until its existing relationships are deleted.
	The primary key or UNIQUE constraint cannot be changed while relationships to the existing primary key or UNIQUE constraint are enforced.
	The total size of an index or primary key cannot exceed 256 bytes.
	You are not logged in as the database owner or system administrator. You will not be able to save changes to tables that you do not own.
	A blank constraint expression is not allowed
	Are you sure you want to delete the selected relationship from your database?
	Deleting the selected columns will also delete relationships
	Do you want to save changes in this diagram?
	Do you want to save changes in this table?
	Database Designer Error
	Internal Error.
	The name is too long.
	This backend version is not supported to design database diagrams or tables.
	Changing the column to the selected data type will delete relationships.
	Adding a formula to the selected column will delete all indexes and relationships it participates in.
	Removing the formula from the selected column leaves it with data type that cannot be indexed.
	Changing the column to the selected data type will delete its indexes.
	Enlarging a column results in a too-large index.
	Adding a formula to the selected column will delete all relationships it participates in as a foreign key.
	Error validating the formula for column.
	Column has no name and will be deleted.
	Primary key or index cannot be created on column '<0s>' because its data type is '<1s>'.
	Primary key or index cannot be created on a column with no name.
	You entered <0d> characters for '<1s>'. The maximum number of characters allowed is <2d>.
	Values for '<0s>' must lie within the range <1d> to <2d>.
	Table '<0s>' has no columns.
	Default Value property cannot be set on column '<0s>' because it is a computed column.
	Column '<0s>' is a computed column, and cannot participate in indexes or relationships.
	Column '<0s>' is a computed column, and cannot contribute to foreign keys.
	The index used to enforce the full-text key for this table will be deleted. Do you want to proceed?
	Column '<0s>' is used to enforce the full-text key on table '<1s>' and must be <2d> bytes or less.
	Column '<0s>' participates in full-text indexing on table '<1s>'. After this change, the column will no longer participate in the table's full-text index.
	The following error was encountered while changing the collation: <0s>.
	Index '<0s>' is used to enforce the full-text key on table '<1s>' and must not be null.
	Index '<0s>' is used to enforce the full-text key on table '<1s>' and must be single-column.
	Index '<0s>' is used to enforce the full-text key on table '<1s>' and must be unique.
	Index '<0s>' is used to enforce the full-text key on table '<1s>' and must be <2d> bytes or less.
	The identity increment must be a positive number containing <0d> digits or less.
	Identity seed must be a positive number containing <0d> digits or less.
	The table must have at least one column that is not computed.
	The new relationship must have at least one pair of related columns.
	The collation properties of columns <0s> and <1s> do not match.
	Select both primary key table and foreign key table before selecting any field for the relationship.
	Your Logon does not have CREATE TABLE permission; you might not be able to make certain edits that require this permission.
	Setting for Length must be from <0d> to <1d>.
	Setting for Precision must be from <0d> to <1d>.
	Setting for Scale must be from <0d> to <1d>.
	Property cannot be modified.
	A diagram with that name already exists in the database.
	Another user modified this diagram while you were working on it.
	The table being loaded into memory has a user-defined data type that is not recognized.
	Your diagram will be updated with the following changes to match the database before the following tables can be loaded.
	Your table will be updated with the following changes to match the database.
	The following schema-bound objects will be modified.
	Column is the full-text filter for columns that participate in full-text indexing on a table.

	Query Designer Troubleshooting Errors
	(+) operator ignored.
	(+) table reference cannot be joined with more than one table.
	<0s> in expression is not part of the query.
	The Query Designer does not support the <0s> SQL construct.
	<0s> cannot be used in this query type.
	<0s> support not available in this server version.
	A number of rows were affected.
	Ambiguous outer join (+) operator.
	Appropriate SQL cannot be generated.
	You are about to delete a row or rows.
	Bad top value.
	Cannot put expression on select list.
	Cannot assign alias to this field.
	Cannot convert entry to valid date/time.
	Cannot convert to proper type.
	Cannot delete rows with unknown keys.
	Cannot edit rows with unknown keys.
	Cannot edit this cell.
	Cannot filter this expression.
	Cannot insert into this expression.
	Cannot open encrypted <0s> <1s>.
	Cannot update this expression.
	Cannot use column whose data type is IMAGE or TEXT in this context.
	Cannot use LONG data type in this context.
	Column list not supported for Make Table query.
	Column with (+) operator does not reference a valid table.
	Data source alias is read only.
	Data source base name is read only.
	Data type error in expression.
	Data type mismatch - no conversion possible.
	Data type mismatch - use the CONVERT function.
	DELETE statement conflicted with COLUMN REFERENCE constraint.
	Do you want to suppress further error messages telling you why records can't be pasted?
	Error after function '<0s>'
	Error after predicate near '<0s>'
	Error before EXISTS clause.
	Error before EXISTS clause: '<0s>' not recognized.
	Error before FROM clause.
	Error following UNION operator.
	Error in column list.
	Error in column list: '<0s>' not recognized.
	Error in destination table specification.
	Error in FROM clause near '<0s>'
	Error in GROUP BY clause.
	Error in GROUP BY clause near '<0s>'.
	Error in HAVING clause.
	Error in HAVING clause near '<0s>'.
	Error in INSERT statement.
	Error in INSERT statement: '<0s>' not recognized.
	Error in join expression.
	Error in join expression: '<0s>' not recognized.
	Error in list of function arguments: '<0s>' not recognized.
	Error in list of values.
	Error in list of values in IN clause.
	Error in list of values in IN clause: '<0s>' not recognized.
	Error in list of values: '<0s>' not recognized.
	Error in ON clause near '<0s>'.
	Error in optional FROM clause.
	Error in ORDER BY clause.
	Error in ORDER BY clause near '<0s>'.
	Error in SELECT clause: alias '<0s>' not recognized.
	Error in SELECT clause: alias not recognized.
	Error in SELECT clause: expression near '<0s>'.
	Error in set list in UPDATE clause.
	Error in table name or view name in DELETE clause.
	Error in table name or view name in DELETE clause: <0s>' not recognized.
	Error in table name or view name in INSERT clause.
	Error in table name or view name in INSERT clause: '<0s>' not recognized.
	Error in table name or view name in UPDATE clause.
	Error in text following query statement: '<0s>'.
	Error in values list in INSERT INTO clause.
	Error in values list in INSERT INTO clause: '<0s>' not recognized.
	Error in WHERE clause near '<0s>'.
	Function argument count error.
	Ignoring illegal use of ALL.
	Ignoring ODBC syntax.
	Illegal use of expression list.
	Illegal sequence use.
	Illegal use of outer join operator.
	Incomplete column list.
	Incomplete SET clause.
	Incomplete VALUES list.
	Invalid entries must be resolved before you can exit this pane.
	Invalid escape character.
	Invalid identifier '<0s>'.
	Invalid or missing expression.
	Invalid or missing expression near '<0s>'.
	Invalid prefix or suffix characters.
	Invalid row index: Goto failed.
	Invalid text or symbol.
	Invalid view name.
	Missing escape character in LIKE predicate.
	Missing FROM clause.
	Missing FROM clause near '<0s>'.
	Missing FROM keyword.
	Missing FROM keyword near '<0s>'.
	Missing INTO keyword.
	Missing INTO keyword near '<0s>'.
	Missing or incomplete SELECT clause.
	Missing pattern in LIKE predicate.
	Missing SET keyword.
	Missing subquery.
	Missing subquery correlation name.
	Missing subquery or the operator you entered requires parenthesis.
	Must enter either TRUE or FALSE.
	Outer join column may not be used with an IN predicate or subquery.
	Query Designer cannot open this query file.
	Query has executed successfully.
	Row limit value should be between <xxx> and <xxx>.
	SQL statement could not be parsed.
	The SQL syntax has been verified against the data source.
	Syntax error in table reference.
	Syntax error in table reference: '<0s>' not recognized.
	ODBC driver returned an invalid ODBC version and needs to be updated.
	Use of GROUP BY function in WHERE clause not allowed.
	The NOT keyword may not be used in a column cell.
	ORDER BY not supported for CREATE TABLE query.
	Outer join operator (+) not allowed as OR operand.
	Outer join operator (+) not allowed in the grid pane.
	The query cannot be executed because some files are missing or not registered.
	The Query Designer does not support the critical ODBC APIs.
	The Query Designer does not support the current ODBC API.
	Query Designer supports no more than 1 table for this type of query.
	The specified OR group number is already in use.
	The value you entered is not consistent with the data type or length of the column.
	There are not enough columns in the subquery select list.
	There are not enough columns to match the value list.
	There are no columns selected. Please select one or more columns and re-run the query
	There is no unique table in this query.
	ALIAS name is already being used.
	This cell contains the text string "<NULL>" which may not be processed correctly.
	IS operator can only be used with NULL or NOT NULL.
	This operator cannot be used with columns with data type "uniqueidentifier".
	Table is not in the query definition.
	Too many characters for field width.
	Unable to locate data source.
	Unable to parse expression.
	Unable to parse query text.
	Unable to parse statement.
	Unknown column.
	Unknown conversion specification.
	Use of CONVERT function might be unnecessary.
	SQL text cannot be represented in the grid pane and diagram pane.
	View already exists in the database.
	You might not have permission to perform this operation, or the object <0s> might no longer exist in the database.
	Link server object cannot be used as a destination with this query type.
	ALL cannot be used with CUBE or ROLLUP.
	OpenRowset cannot be used as a destination with this query type.
	Enter an expression in the Column cell first.
	Your entry cannot be converted to a valid date time value.
	Query Designer Error.
	The alias name is too long.
	Poorly formed comment.
	An expression cannot be used as a parameter value.
	Incomplete parameters or column list.
	Incomplete parameters list.
	Warning: Modification can result in a view that cannot be indexed.
	Warning: It is likely that the view definition will result in a view that cannot be indexed.
	Index already exists.
	Unquoted alias contains white space.
	If you save the view encrypted, you will no longer be able to alter the view definition.
	View has indexes. If you remove schema binding, the indexes will be dropped.
	Edits not allowed. Having clause not allowed in an Indexed View.
	Database Server Version Runtime Error.
	SQL Verify failed.
	Malformed Cast Function.
	Illegal use of collation clause.
	Columns in this expression have incompatible collations.
	Collate clause may not be used in an indexed view.
	Asterisk (*) may not be used in an indexed view.
	Index must have at least one column.
	Invalid fill factor; enter an integer between 0 and 100.
	Indexed View must contain a clustered index.
	The table-valued function used as target is not an in-line function.
	WITH TIES clause requires an ORDER BY clause.
	There are too many values from the sub-query select list.
	NOT cannot be used in a column cell.
	View definition includes no output columns or not items in the FROM clause.
	You cannot create a view which is self-referenced.
	This SQL statement type cannot be used in a view.
	Query or View has been modified. Save changes before closing?
	Query or View already exists. Do you want to overwrite it?
	You are about to paste n rows.
	Rows pasted.
	Column cannot be updated.
	The database row you are modifying no longer exists in the database.
	Too many or too few parameters specified.
	View name cannot begin with #.
	Table name cannot include the double-quote character.

