
Transact-SQL	Reference

Transact-SQL	Overview
Transact-SQL	is	central	to	the	use	of	Microsoft®	SQL	Server™.	All	applications
that	communicate	with	SQL	Server	do	so	by	sending	Transact-SQL	statements	to
the	server,	regardless	of	an	application's	user	interface.

Transact-SQL	is	generated	from	many	kinds	of	applications,	including:

General	office	productivity	applications.

Applications	that	use	a	graphical	user	interface	(GUI)	to	allow	users	to
select	the	tables	and	columns	from	which	they	want	to	see	data.

Applications	that	use	general	language	sentences	to	determine	what	data
a	user	wants	to	see.

Line	of	business	applications	that	store	their	data	in	SQL	Server
databases.	These	can	include	both	applications	from	other	vendors	and
applications	written	in-house.

Transact-SQL	scripts	that	are	run	using	utilities	such	as	osql.

Applications	created	with	development	systems	such	as	Microsoft
Visual	C++®,	Microsoft	Visual	Basic®,	or	Microsoft	Visual	J++®	that
use	database	application	programming	interfaces	(APIs)	such	as	ADO,
OLE	DB,	and	ODBC.

Web	pages	that	extract	data	from	SQL	Server	databases.

Distributed	database	systems	from	which	data	from	SQL	Server	is
replicated	to	various	databases	or	distributed	queries	are	executed.

Data	warehouses	in	which	data	is	extracted	from	online	transaction
processing	(OLTP)	systems	and	summarized	for	decision-support
analysis.

For	information	about	how	Transact-SQL	interacts	with	APIs	and	application
components	such	as	transaction	control,	cursors,	and	locking,	see	Accessing	and
Changing	Relational	Data	Overview.

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

Transact-SQL	Syntax	Conventions
The	syntax	diagrams	in	the	Transact-SQL	Reference	use	these	conventions.

Convention Used	for
UPPERCASE Transact-SQL	keywords.
italic User-supplied	parameters	of	Transact-SQL	syntax.
|	(vertical	bar) Separating	syntax	items	within	brackets	or	braces.	You

can	choose	only	one	of	the	items.
[]	(brackets) Optional	syntax	items.	Do	not	type	the	brackets.
{}	(braces) Required	syntax	items.	Do	not	type	the	braces.
[,...n] Indicating	that	the	preceding	item	can	be	repeated	n

number	of	times.	The	occurrences	are	separated	by
commas.

[...n] Indicating	that	the	preceding	item	can	be	repeated	n
number	of	times.	The	occurrences	are	separated	by
blanks.

bold Database	names,	table	names,	column	names,	index
names,	stored	procedures,	utilities,	data	type	names,
and	text	that	must	be	typed	exactly	as	shown.

<label>	::= The	name	for	a	block	of	syntax.	This	convention	is
used	to	group	and	label	portions	of	lengthy	syntax	or	a
unit	of	syntax	that	can	be	used	in	more	than	one	place
within	a	statement.	Each	location	in	which	the	block	of
syntax	can	be	used	is	indicated	with	the	label	enclosed
in	chevrons:	<label>.

Unless	specified	otherwise,	all	Transact-SQL	references	to	the	name	of	a
database	object	can	be	a	four-part	name	in	the	form:

	[
				server_name.[database_name].[owner_name].
				|	database_name.[owner_name].
				|	owner_name.
]

]
object_name

server_name	specifies	a	linked	server	name	or	remote	server	name.

database_name	specifies	the	name	of	a	Microsoft®	SQL	Server™
database	when	the	object	resides	in	a	SQL	Server	database.	It	specifies
an	OLE	DB	catalog	when	the	object	is	in	a	linked	server.

owner_name	specifies	the	user	that	owns	the	object	if	the	object	is	in	a
SQL	Server	database.	It	specifies	an	OLE	DB	schema	name	when	the
object	is	in	a	linked	server.

object_name	refers	to	the	name	of	the	object.

When	referencing	a	specific	object,	you	do	not	always	have	to	specify	the	server,
database,	and	owner	for	SQL	Server	to	identify	the	object.	Intermediate	nodes
can	be	omitted;	use	periods	to	indicate	these	positions.	The	valid	formats	of
object	names	are:

server.database.owner.object

server.database..object

server..owner.object

server...object

database.owner.object

database..object

owner.object

object

Code	Example	Conventions
Unless	stated	otherwise,	the	examples	were	tested	using	SQL	Query	Analyzer
and	its	default	settings	for	these	options:

QUOTED_IDENTIFIER

ANSI_NULLS

ANSI_WARNINGS

ANSI_PADDING

ANSI_NULL_DFLT_ON

CONCAT_NULL_YIELDS_NULL

Most	code	examples	in	the	Transact-SQL	Reference	have	been	tested	on	servers
running	a	case-sensitive	sort	order.	The	test	servers	were	usually	running	the
ANSI/ISO	1252	code	page.

Transact-SQL	Data	Type	Categories
Data	types	with	similar	characteristics	are	classified	into	categories.	Categories
that	contain	two	or	three	data	types	generally	have	a	category	name	derived	from
the	data	types	in	that	category.	For	example,	the	money	and	smallmoney
category	contains	the	money	data	type	and	the	smallmoney	data	type.	Data	type
names	always	appear	in	bold,	even	when	used	as	part	of	a	category	name.

Transact-SQL	Data	Type	Hierarchy
The	following	data	type	hierarchy	shows	the	SQL	Server	data	type	categories,
subcategories,	and	data	types	used	in	the	SQL	Server	documentation.	For
example,	the	exact	numeric	category	contains	three	subcategories:	integers,
decimal,	and	money	and	smallmoney.

The	exact	numeric	category	also	contains	all	of	the	data	types	in	these	three
subcategories:	bigint,	int,	smallint,	tinyint,	bit,	decimal,	money,	and
smallmoney.	Any	reference	to	exact	numeric	in	the	Transact-SQL	Reference
refers	to	these	eight	data	types.

In	this	hierarchy	the	category	names	built	from	two	or	more	data	types	use	the
conjunction	"and."	The	conjunction	"or"	may	be	used	in	the	Transact-SQL
Reference	if	it	is	more	appropriate	for	the	context	in	which	the	name	is	used.

The	data	types	specified	in	this	hierarchy	also	pertain	to	synonyms.	For	example,
int	refers	to	both	int	and	its	synonym	integer.	For	more	information,	see	Data
Types.

numeric
								exact	numeric
																integer
																								bigint
																								int
																								smallint
																								tinyint
																bit
																decimal	and	numeric
																								decimal
																								numeric
																money	and	smallmoney
																								money
																								smallmoney
								approximate	numeric
																float
																real
								datetime	and	smalldatetime
																datetime
																smalldatetime

character	and	binary	string
								character	string
																char,	varchar,	and	text
																								char	and	varchar
																																char
																																varchar
																								text
																Unicode	character	string
																								nchar	and	nvarchar
																																nchar

																																nvarchar
																								ntext
								binary	strings
																binary	and	varbinary
																								binary
																								varbinary
																image

cursor

sql_variant

table

timestamp

uniqueidentifier

Additional	data	type	categories	used	in	the	Transact-SQL	Reference	are
described	in	these	two	hierarchies:

text,	ntext,	and	image
								text	and	ntext
																text
																ntext
								image

short	string
								short	character
																char	and	varchar
																								char
																								varchar
																nchar	and	nvarchar
																								nchar
																								nvarchar
								binary	and	varbinary
																binary
																varbinary

Transact-SQL	Reference

New	and	Enhanced	Features	in	Transact-SQL
Transact-SQL	in	Microsoft®	SQL	Server™	2000	provides	new	and	enhanced
statements,	stored	procedures,	functions,	data	types,	DBCC	statements,	and
information	schema	views.

Data	Types

New	data	types
bigint table
sql_variant 	

Database	Console	Commands	(DBCC)

New	commands
DBCC	CHECKCONSTRAINTS DBCC	DROPCLEANBUFFERS
DBCC	CLEANTABLE DBCC	FREEPROCCACHE
DBCC
CONCURRENCYVIOLATION

DBCC	INDEXDEFRAG

Enhanced	commands
DBCC	CHECKALLOC DBCC	CHECKFILEGROUP
DBCC	CHECKDB DBCC	SHOWCONTIG
DBCC	CHECKTABLE 	

Functions

New	functions
BINARY_CHECKSUM fn_virtualfilestats
CHECKSUM GETUTCDATE
CHECKSUM_AGG HAS_DBACCESS

COLLATIONPROPERTY IDENT_CURRENT
COUNT_BIG INDEXKEY_PROPERTY
DATABASEPROPERTYEX OBJECTPROPERTY
fn_helpcollations OPENDATASOURCE
fn_listextendedproperty OPENXML
fn_servershareddrives ROWCOUNT_BIG
fn_trace_geteventinfo SCOPE_IDENTITY
fn_trace_getfilterinfo SERVERPROPERTY
fn_trace_getinfo SESSIONPROPERTY
fn_trace_gettable SQL_VARIANT_PROPERTY

Information	Schema	Views

New	information	schema	views
PARAMETERS ROUTINE_COLUMNS
ROUTINES 	

Replication	Stored	Procedures

New	replication	stored	procedures
sp_addmergealternatepublisher sp_getqueuedrows
sp_addscriptexec sp_getsubscriptiondtspackagename
sp_adjustpublisheridentityrange sp_helparticledts
sp_attachsubscription sp_helpmergealternatepublisher
sp_browsesnapshotfolder sp_helpreplicationoption
sp_browsemergesnapshotfolder sp_ivindexhasnullcols
sp_changesubscriptiondtsinfo sp_marksubscriptionvalidation
sp_copysnapshot sp_mergearticlecolumn
sp_disableagentoffload sp_repladdcolumn
sp_dropanonymouseagent sp_repldropcolumn
sp_dropmergealternatepublisher sp_restoredbreplication

sp_enableagentoffload sp_resyncmergesubscription
sp_getagentoffloadinfo sp_vupgrade_replication

Reserved	Keywords
COLLATE,	FUNCTION,	and	OPENXML	are	reserved	keywords	in	SQL	Server
2000.

The	following	words	have	been	unreserved.

AVG COMMITTED
CONFIRM CONTROLROW
COUNT ERROREXIT
FLOPPY ISOLATION
LEVEL MAX
MIN MIRROREXIT
ONCE ONLY
PERM PERMANENT
PIPE PREPARE
PRIVILEGES REPEATABLE
SERIALIZABLE SUM
TAPE TEMP
TEMPORARY UNCOMMITTED
WORK 	

Statements

New	statements
ALTER	FUNCTION DROP	FUNCTION
CREATE	FUNCTION 	

Enhanced	statements
ALTER	DATABASE CREATE	TABLE
ALTER	TABLE CREATE	TRIGGER
BACKUP INDEXPROPERTY
COLUMNPROPERTY OBJECTPROPERTY
CREATE	INDEX RESTORE
CREATE	STATISTICS 	

System	Stored	Procedures

New	system	stored	procedures
sp_addextendedproperty sp_delete_maintenance_plan_job
sp_add_log_shipping_database sp_dropextendedproperty
sp_add_log_shipping_plan sp_get_log_shipping_monitor_info
sp_add_log_shipping_plan_database sp_helpconstraint
sp_add_log_shipping_primary sp_helpindex
sp_add_log_shipping_secondary sp_help_maintenance_plan
sp_add_maintenance_plan sp_invalidate_textptr
sp_add_maintenance_plan_db sp_remove_log_shipping_monitor
sp_add_maintenance_plan_job sp_resolve_logins
sp_can_tlog_be_applied sp_settriggerorder
sp_change_monitor_role sp_trace_create
sp_change_primary_role sp_trace_generateevent
sp_change_secondary_role sp_trace_setevent
sp_create_log_shipping_monitor_account sp_trace_setfilter
sp_define_log_shipping_monitor sp_trace_setstatus
sp_delete_log_shipping_database sp_updateextendedproperty
sp_delete_log_shipping_plan sp_update_log_shipping_monitor_info
sp_delete_log_shipping_plan_database sp_update_log_shipping_plan
sp_delete_log_shipping_primary sp_update_log_shipping_plan_database
sp_delete_log_shipping_secondary sp_xml_preparedocument
sp_delete_maintenance_plan sp_xml_removedocument

sp_delete_maintenance_plan_db 	

Enhanced	system	stored	procedures
sp_helptrigger sp_serveroption
sp_tableoption sp_who

System	Tables

New	system	tables
logmarkhistory MSsync_states
log_shipping_databases sysdbmaintplan_databases
log_shipping_monitor sysdbmaintplan_history
log_shipping_plan_databases sysdbmaintplan_jobs
log_shipping_plan_history sysdbmaintplans
log_shipping_plans sysmergeschemaarticles
log_shipping_secondaries sysopentapes
Mssub_identity_range 	

Transact-SQL	Reference

+	(Add)
Adds	two	numbers.	This	addition	arithmetic	operator	can	also	add	a	number,	in
days,	to	a	date.

Syntax
expression	+	expression

Arguments
expression

Is	any	valid	Microsoft®	SQL	Server™	expression	of	any	of	the	data	types	in
the	numeric	category	except	the	bit	data	type.

Result	Types
Returns	the	data	type	of	the	argument	with	the	higher	precedence.	For	more
information,	see	Data	Type	Precedence.

Examples

A.	Use	the	addition	operator	to	calculate	the	total	units	available
for	customers	to	order
This	example	adds	the	current	number	of	products	in	stock	and	the	number	of
units	currently	on	order	for	all	products	in	the	Products	table.

USE	Northwind
GO
SELECT	ProductName,	UnitsInStock	+	UnitsOnOrder
FROM	Products
ORDER	BY	ProductName	ASC
GO

B.	Use	the	addition	operator	to	add	days	to	date	and	time	values
This	example	adds	a	number	of	days	to	a	datetime	date.

USE	master
GO
SET	NOCOUNT	ON
DECLARE	@startdate	datetime,	@adddays	int
SET	@startdate	=	'1/10/1900	12:00	AM'
SET	@adddays	=	5
SET	NOCOUNT	OFF
SELECT	@startdate	+	1.25	AS	'Start	Date',	
			@startdate	+	@adddays	AS	'Add	Date'

Here	is	the	result	set:

Start	Date																		Add	Date																				
---------------------------	---------------------------	
Jan	11	1900		6:00AM									Jan	15	1900	12:00AM									

(1	row(s)	affected)

C.	Add	character	and	integer	data	types
This	example	adds	an	int	data	type	value	and	a	character	value	by	converting	the
character	data	type	to	int.	If	an	invalid	character	exists	in	the	char	string,	SQL
Server	returns	an	error.

DECLARE	@addvalue	int
SET	@addvalue	=	15
SELECT	'125127'	+	@addvalue

Here	is	the	result	set:

125142																		

(1	row(s)	affected)

See	Also

CAST	and	CONVERT

Data	Type	Conversion

Data	Types

Expressions

Functions

Operators

SELECT

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

+	(Positive)
A	unary	operator	that	returns	the	positive	value	of	a	numeric	expression	(a	unary
operator).

Syntax
+	numeric_expression

Arguments
numeric_expression

Is	any	valid	Microsoft®	SQL	Server™	expression	of	any	of	the	data	types	in
the	numeric	data	type	category	except	the	datetime	or	smalldatetime	data
types.

Result	Types
Returns	the	data	type	of	numeric_expression,	except	that	an	unsigned	tinyint
expression	is	promoted	to	a	smallint	result.

Examples
This	example	sets	a	variable	to	a	positive	value.

DECLARE	@MyNumber	decimal(10,2)
SET	@MyNumber	=	+123.45

See	Also

Data	Types

Expressions

Operators

Transact-SQL	Reference

+	(String	Concatenation)
An	operator	in	a	string	expression	that	concatenates	two	or	more	character	or
binary	strings,	columns,	or	a	combination	of	strings	and	column	names	into	one
expression	(a	string	operator).

Syntax
expression	+	expression

Arguments
expression

Is	any	valid	Microsoft®	SQL	Server™	expression	of	any	of	the	data	types	in
the	character	and	binary	data	type	category,	except	the	image,	ntext,	or	text
data	types.	Both	expressions	must	be	of	the	same	data	type,	or	one
expression	must	be	able	to	be	implicitly	converted	to	the	data	type	of	the
other	expression.

An	explicit	conversion	to	character	data	must	be	used	when	concatenating
binary	strings	and	any	characters	between	the	binary	strings.	The	following
example	shows	when	CONVERT	(or	CAST)	must	be	used	with	binary
concatenation	and	when	CONVERT	(or	CAST)	does	not	need	to	be	used.

DECLARE	@mybin1	binary(5),	@mybin2	binary(5)
SET	@mybin1	=	0xFF
SET	@mybin2	=	0xA5
--	No	CONVERT	or	CAST	function	is	necessary	because	this	example	
--	concatenates	two	binary	strings.
SELECT	@mybin1	+	@mybin2
--	A	CONVERT	or	CAST	function	is	necessary	because	this	example
--	concatenates	two	binary	strings	plus	a	space.
SELECT	CONVERT(varchar(5),	@mybin1)	+	'	'	
				+	CONVERT(varchar(5),	@mybin2)
--	Here	is	the	same	conversion	using	CAST

SELECT	CAST(@mybin1	AS	varchar(5))	+	'	'	
				+	CAST(@mybin2	AS	varchar(5))

Result	Types
Returns	the	data	type	of	the	argument	with	the	highest	precedence.	For	more
information,	see	Data	Type	Precedence.

Remarks
When	you	concatenate	null	values,	either	the	concat	null	yields	null	setting	of
sp_dboption	or	SET	CONCAT_NULL_YIELDS_NULL	determines	the
behavior	when	one	expression	is	NULL.	With	either	concat	null	yields	null	or
SET	CONCAT_NULL_YIELDS_NULL	enabled	ON,	'string'	+	NULL	returns
NULL.	If	either	concat	null	yields	null	or	SET
CONCAT_NULL_YIELDS_NULL	is	disabled,	the	result	is	'string'.

Examples

A.	Use	string	concatenation
This	example	creates	a	single	column	(under	the	column	heading	Name)	from
multiple	character	columns,	with	the	author's	last	name	followed	by	a	comma,	a
single	space,	and	then	the	author's	first	name.	The	result	set	is	in	ascending,
alphabetical	order	by	the	author's	last	name,	and	then	by	the	author's	first	name.

USE	pubs
SELECT	(au_lname	+	',	'	+	au_fname)	AS	Name
FROM	authors
ORDER	BY	au_lname	ASC,	au_fname	ASC

Here	is	the	result	set:

Name																																																											
--	
Bennet,	Abraham																																																
Blotchet-Halls,	Reginald																																							

Carson,	Cheryl																																																	
DeFrance,	Michel																																															
del	Castillo,	Innes																																												
Dull,	Ann																																																						
Green,	Marjorie																																																
Greene,	Morningstar																																												
Gringlesby,	Burt																																															
Hunter,	Sheryl																																																	
Karsen,	Livia																																																		
Locksley,	Charlene																																													
MacFeather,	Stearns																																												
McBadden,	Heather																																														
O'Leary,	Michael																																															
Panteley,	Sylvia																																															
Ringer,	Albert																																																	
Ringer,	Anne																																																			
Smith,	Meander																																																	
Straight,	Dean																																																	
Stringer,	Dirk																																																	
White,	Johnson																																																	
Yokomoto,	Akiko																																																

(23	row(s)	affected)

B.	Combine	numeric	and	date	data	types
This	example	uses	the	CAST	function	to	concatenate	numeric	and	date	data
types.

USE	pubs
SELECT	'The	order	date	is	'	+	CAST(ord_date	AS	varchar(30))
FROM	sales
WHERE	ord_num	=	'A2976'
ORDER	BY	ord_num

Here	is	the	result	set:

--	
The	order	date	is	May	24	1993	12:00AM												

(1	row(s)	affected)

C.	Use	multiple	string	concatenation
This	example	concatenates	multiple	strings	to	form	one	long	string.	To	display
the	last	name	and	the	first	initial	of	each	author	living	in	the	state	of	California,	a
comma	is	placed	after	the	last	name	and	a	period	after	the	first	initial.

USE	pubs
SELECT	(au_lname	+	','	+	SPACE(1)	+	SUBSTRING(au_fname,	1,	1)	+	'.')	AS	Name
FROM	authors
WHERE	state	=	'CA'
ORDER	BY	au_lname	ASC,	au_fname	ASC

Here	is	the	result	set:

Name																																									
--	
Bennet,	A.																																			
Carson,	C.																																			
Dull,	A.																																					
Green,	M.																																				
Gringlesby,	B.																															
Hunter,	S.																																			
Karsen,	L.																																			
Locksley,	C.																																	
MacFeather,	S.																															
McBadden,	H.																																	
O'Leary,	M.																																		
Straight,	D.																																	
Stringer,	D.																																	

White,	J.																																				
Yokomoto,	A.																																	

(15	row(s)	affected)

See	Also

CAST	and	CONVERT

Data	Type	Conversion

Data	Types

Expressions

Functions

Operators

SELECT

SET

Setting	Database	Options

sp_dboption

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

-	(Negative)
Is	a	unary	operator	that	returns	the	negative	value	of	a	numeric	expression	(a
unary	operator).

Syntax
-	numeric_expression

Arguments
numeric_expression

Is	any	valid	Microsoft®	SQL	Server™	expression	of	any	of	the	data	types	of
the	numeric	data	type	category	except	the	datetime	or	smalldatetime	data
types.

Result	Types
Returns	the	data	type	of	numeric_expression,	except	that	an	unsigned	tinyint
expression	is	promoted	to	a	signed	smallint	result.

Examples

A.	Set	a	variable	to	a	negative	value
This	example	sets	a	variable	to	a	negative	value.

DECLARE	@MyNumber	decimal(10,2)
@MyNumber	=	-123.45

B.	Negate	a	value
This	example	negates	a	variable.

DECLARE	@Num1	int
SET	@Num1	=	5

SELECT	-@Num1

See	Also

Data	Types

Expressions

Operators

Transact-SQL	Reference

-	(Subtract)
Subtracts	two	numbers.	This	subtraction	arithmetic	operator	can	also	subtract	a
number,	in	days,	from	a	date.

Syntax
expression	-	expression

Arguments
expression

Is	any	valid	Microsoft®	SQL	Server™	expression	of	any	of	the	data	types	of
the	numeric	data	type	category	except	the	bit	data	type.

Result	Types
Returns	the	data	type	of	the	argument	with	the	higher	precedence.	For	more
information,	see	Data	Type	Precedence.

Examples

A.	Use	subtraction	in	a	SELECT	statement
This	example	returns	the	amount	of	the	year-to-date	revenues	retained	by	the
company	for	each	book	title.

USE	pubs
GO
SELECT	title,
			(
						(price	*	ytd_sales)	*	CAST(((100	-	royalty)	/	100.0)	
									AS	MONEY)
)	AS	IncomeAfterRoyalty
FROM	titles

WHERE	royalty	<>	0
ORDER	BY	title_id	ASC
GO

Parentheses	can	be	used	to	change	the	order	of	execution.	Calculations	inside
parentheses	are	evaluated	first.	If	parentheses	are	nested,	the	most	deeply	nested
calculation	has	precedence.	For	example,	the	result	and	meaning	of	the
preceding	query	can	be	changed	if	you	use	parentheses	to	force	the	evaluation	of
subtraction	before	multiplication,	which	in	this	case	would	yield	a	meaningless
number.

B.	Use	date	subtraction
This	example	subtracts	a	number	of	days	from	a	datetime	date.

USE	pubs
GO
DECLARE	@altstartdate	datetime
SET	@altstartdate	=	'1/10/1900	3:00	AM'
SELECT	@altstartdate	-	1.5	AS	'Subtract	Date'

Here	is	the	result	set:

Subtract	Date															

Jan	8	1900		3:00PM										

(1	row(s)	affected)

See	Also

Data	Types

Expressions

Functions

Operators

SELECT

Transact-SQL	Reference

*	(Multiply)
Multiplies	two	expressions	(an	arithmetic	multiplication	operator).

Syntax
expression	*	expression

Arguments
expression

Is	any	valid	Microsoft®	SQL	Server™	expression	of	any	of	the	data	types	of
the	numeric	data	type	category	except	the	datetime	or	smalldatetime	data
types.

Result	Types
Returns	the	data	type	of	the	argument	with	the	higher	precedence.	For	more
information,	see	Data	Type	Precedence.

Examples
This	example	retrieves	the	title	identification	number	and	the	price	of	modern
cookbooks,	and	uses	the	*	arithmetic	operator	to	multiply	the	price	by	1.15.

USE	pubs
SELECT	title_id,	price	*	1.15	AS	NewPrice
FROM	titles
WHERE	type	=	'mod_cook'
ORDER	BY	title_id	ASC

See	Also

Data	Types

Expressions

Functions

Operators

SELECT

WHERE

Transact-SQL	Reference

/	(Divide)
Divides	one	number	by	another	(an	arithmetic	division	operator).

Syntax
dividend	/	divisor

Arguments
dividend

Is	the	numeric	expression	to	divide.	dividend	can	be	any	valid	Microsoft®
SQL	Server™	expression	of	any	of	the	data	types	of	the	numeric	data	type
category	except	the	datetime	and	smalldatetime	data	types.

divisor

Is	the	numeric	expression	to	divide	the	dividend	by.	divisor	can	be	any	valid
SQL	Server	expression	of	any	of	the	data	types	of	the	numeric	data	type
category	except	the	datetime	and	smalldatetime	data	types.

Result	Types
Returns	the	data	type	of	the	argument	with	the	higher	precedence.	For	more
information	about	data	type	precedence,	see	Data	Type	Precedence.

If	an	integer	dividend	is	divided	by	an	integer	divisor,	the	result	is	an	integer	that
has	any	fractional	part	of	the	result	truncated.

Remarks
The	actual	value	returned	by	the	/	operator	is	the	quotient	of	the	first	expression
divided	by	the	second	expression.

Examples
This	example	uses	the	division	arithmetic	operator	to	calculate	the	royalty
amounts	due	for	authors	who	have	written	business	books.

USE	pubs
GO
SELECT	((ytd_sales	*	price)	*	royalty)/100	AS	'Royalty	Amount'
FROM	titles
WHERE	type	=	'business'
ORDER	BY	title_id

See	Also

Data	Types

Expressions

Functions

Operators

SELECT

WHERE

Transact-SQL	Reference

%	(Modulo)
Provides	the	remainder	of	one	number	divided	by	another.

Syntax
dividend	%	divisor

Arguments
dividend

Is	the	numeric	expression	to	divide.	dividend	must	be	any	valid	Microsoft®
SQL	Server™	expression	of	the	integer	data	type	category.	(A	modulo	is	the
integer	that	remains	after	two	integers	are	divided.)

divisor

Is	the	numeric	expression	to	divide	the	dividend	by.	divisor	must	be	any
valid	SQL	Server	expression	of	any	of	the	data	types	of	the	integer	data	type
category.

Result	Types
int

Remarks
The	modulo	arithmetic	operator	can	be	used	in	the	select	list	of	the	SELECT
statement	with	any	combination	of	column	names,	numeric	constants,	or	any
valid	expression	of	the	integer	data	type	category.

Examples
This	example	returns	the	book	title	number	and	any	modulo	(remainder)	of
dividing	the	price	(converted	to	an	integer	value)	of	each	book	into	the	total
yearly	sales	(ytd_sales	*	price).

USE	pubs

GO
SELECT	title_id,	
			CAST((ytd_sales	*	price)	AS	int)	%	CAST(price	AS	int)	AS	Modulo
FROM	titles
WHERE	price	IS	NOT	NULL	and	type	=	'trad_cook'
ORDER	BY	title_id
GO

See	Also

Expressions

Functions

LIKE

Operators

SELECT

Transact-SQL	Reference

%	(Wildcard	-	Character(s)	to	Match)
Matches	any	string	of	zero	or	more	characters.	This	wildcard	character	can	be
used	as	either	a	prefix	or	a	suffix.

See	Also

LIKE

Transact-SQL	Reference

&	(Bitwise	AND)
Performs	a	bitwise	logical	AND	operation	between	two	integer	values.

Syntax
expression	&	expression

Arguments
expression

Is	any	valid	Microsoft®	SQL	Server™	expression	of	any	of	the	data	types	of
the	integer	data	type	category.	expression	is	an	integer	parameter	that	is
treated	and	transformed	into	a	binary	number	for	the	bitwise	operation.

Result	Types
Returns	an	int	if	the	input	values	are	int,	a	smallint	if	the	input	values	are
smallint,	or	a	tinyint	if	the	input	values	are	tinyint.

Remarks
The	bitwise	&	operator	performs	a	bitwise	logical	AND	between	the	two
expressions,	taking	each	corresponding	bit	for	both	expressions.	The	bits	in	the
result	are	set	to	1	if	and	only	if	both	bits	(for	the	current	bit	being	resolved)	in
the	input	expressions	have	a	value	of	1;	otherwise,	the	bit	in	the	result	is	set	to	0.

The	&	bitwise	operator	can	be	used	only	on	expressions	of	the	integer	data	type
category.

If	the	left	and	right	expressions	have	different	integer	data	types	(for	example,
the	left	expression	is	smallint	and	the	right	expression	is	int),	the	argument	of
the	smaller	data	type	is	converted	to	the	larger	data	type.	In	this	example,	the
smallint	expression	is	converted	to	an	int.

Examples

This	example	creates	a	table	with	int	data	types	to	show	the	values,	and	puts	the
table	into	one	row.

USE	master
GO
IF	EXISTS	(SELECT	*	FROM	INFORMATION_SCHEMA.TABLES	
						WHERE	TABLE_NAME	=	'bitwise')
			DROP	TABLE	bitwise
GO
CREATE	TABLE	bitwise
(
	a_int_value	int	NOT	NULL,
	b_int_value	int	NOT	NULL
)
GO
INSERT	bitwise	VALUES	(170,	75)
GO

This	query	performs	the	bitwise	AND	between	the	a_int_value	and	b_int_value
columns.

USE	MASTER
GO
SELECT	a_int_value	&	b_int_value
FROM	bitwise
GO

Here	is	the	result	set:

10										

(1	row(s)	affected)

The	binary	representation	of	170	(a_int_value	or	A,	below)	is	0000	0000	1010
1010.	The	binary	representation	of	75	(b_int_value	or	B,	below)	is	0000	0000

0100	1011.	Performing	the	bitwise	AND	operation	on	these	two	values	produces
the	binary	result	0000	0000	0000	1010,	which	is	decimal	10.

(A	&	B)
									0000				0000	1010	1010
									0000	0000	0100	1011

									0000	0000	0000	1010

See	Also

Expressions

Operators	(Bitwise	Operators)

Transact-SQL	Reference

|	(Bitwise	OR)
Performs	a	bitwise	logical	OR	operation	between	two	given	integer	values	as
translated	to	binary	expressions	within	Transact-SQL	statements.

Syntax
expression	|	expression

Arguments
expression

Is	any	valid	Microsoft®	SQL	Server™	expression	of	any	of	the	data	types	of
the	integer	data	type	category.	expression	is	an	integer	that	is	treated	and
transformed	into	a	binary	number	for	the	bitwise	operation.

Result	Types
Returns	an	int	if	the	input	values	are	int,	a	smallint	if	the	input	values	are
smallint,	or	a	tinyint	if	the	input	values	are	tinyint.

Remarks
The	bitwise	|	operator	performs	a	bitwise	logical	OR	between	the	two
expressions,	taking	each	corresponding	bit	for	both	expressions.	The	bits	in	the
result	are	set	to	1	if	either	or	both	bits	(for	the	current	bit	being	resolved)	in	the
input	expressions	have	a	value	of	1;	if	neither	bit	in	the	input	expressions	is	1,
the	bit	in	the	result	is	set	to	0.

The	|	bitwise	operator	requires	two	expressions,	and	it	can	be	used	on
expressions	of	only	the	integer	data	type	category.

If	the	left	and	right	expressions	have	different	integer	data	types	(for	example,
the	left	expression	is	smallint	and	the	right	expression	is	int),	the	argument	of
the	smaller	data	type	is	converted	to	the	larger	data	type.	In	this	example,	the
smallint	expression	is	converted	to	an	int.

Examples
This	example	creates	a	table	with	int	data	types	to	show	the	original	values	and
puts	the	table	into	one	row.

USE	master
GO
IF	EXISTS	(SELECT	*	FROM	INFORMATION_SCHEMA.TABLES	
						WHERE	TABLE_NAME	=	'bitwise')
			DROP	TABLE	bitwise
GO
CREATE	TABLE	bitwise
(
	a_int_value	int	NOT	NULL,
b_int_value	int	NOT	NULL
)
GO
INSERT	bitwise	VALUES	(170,	75)
GO

This	query	performs	the	bitwise	OR	on	the	a_int_value	and	b_int_value
columns.

USE	MASTER
GO
SELECT	a_int_value	|	b_int_value
FROM	bitwise
GO

Here	is	the	result	set:

235									

(1	row(s)	affected)

The	binary	representation	of	170	(a_int_value	or	A,	below)	is	0000	0000	1010
1010.	The	binary	representation	of	75	(b_int_value	or	B,	below)	is	0000	0000
0100	1011.	Performing	the	bitwise	OR	operation	on	these	two	values	produces
the	binary	result	0000	0000	1110	1011,	which	is	decimal	235.

(A	|	B)
									0000	0000	1010	1010
									0000	0000	0100	1011

									0000	0000	1110	1011

See	Also

Expressions

Operators	(Bitwise	Operators)

Transact-SQL	Reference

^	(Bitwise	Exclusive	OR)
Performs	a	bitwise	exclusive	OR	operation	between	two	given	integer	values	as
translated	to	binary	expressions	within	Transact-SQL	statements.

Syntax
expression	^	expression

Arguments
expression

Is	any	valid	Microsoft®	SQL	Server™	expression	of	any	of	the	data	types	of
the	integer	data	type	category,	or	of	the	binary	or	varbinary	data	type.
expression	is	an	integer	that	is	treated	and	transformed	into	a	binary	number
for	the	bitwise	operation.

Note		Only	one	expression	can	be	of	either	binary	or	varbinary	data	type	in	a
bitwise	operation.

Result	Types
Returns	an	int	if	the	input	values	are	int,	a	smallint	if	the	input	values	are
smallint,	or	a	tinyint	if	the	input	values	are	tinyint.

Remarks
The	bitwise	^	operator	performs	a	bitwise	logical	^	between	the	two	expressions,
taking	each	corresponding	bit	for	both	expressions.	The	bits	in	the	result	are	set
to	1	if	either	(but	not	both)	bits	(for	the	current	bit	being	resolved)	in	the	input
expressions	have	a	value	of	1;	if	both	bits	are	either	a	value	of	0	or	1,	the	bit	in
the	result	is	cleared	to	a	value	of	0.

The	^	bitwise	operator	can	be	used	only	on	columns	of	the	integer	data	type
category.

If	the	left	and	right	expressions	have	different	integer	data	types	(for	example,

the	left	expression	is	smallint	and	the	right	expression	is	int),	then	the	argument
of	the	smaller	data	type	is	converted	to	the	larger	data	type.	In	this	example,	the
smallint	expression	is	converted	to	an	int.

Examples
This	example	creates	a	table	with	int	data	types	to	show	the	original	values,	and
puts	the	table	into	one	row.

USE	master
GO
IF	EXISTS	(SELECT	*	FROM	INFORMATION_SCHEMA.TABLES	
						WHERE	TABLE_NAME	=	'bitwise')
			DROP	TABLE	bitwise
GO
CREATE	TABLE	bitwise
(
	a_int_value	int	NOT	NULL,
b_int_value	int	NOT	NULL
)
GO
INSERT	bitwise	VALUES	(170,	75)
GO

This	query	performs	the	bitwise	exclusive	OR	on	the	a_int_value	and
b_int_value	columns.

USE	MASTER
GO
SELECT	a_int_value	^	b_int_value
FROM	bitwise
GO

Here	is	the	result	set:

225									

(1	row(s)	affected)

The	binary	representation	of	170	(a_int_value	or	A,	below)	is	0000	0000	1010
1010.	The	binary	representation	of	75	(b_int_value	or	B,	below)	is	0000	0000
0100	1011.	Performing	the	bitwise	exclusive	OR	operation	on	these	two	values
produces	the	binary	result	0000	0000	1110	0001,	which	is	decimal	225.

(A	^	B)			
									0000	0000	1010	1010
									0000	0000	0100	1011

									0000	0000	1110	0001

See	Also

Expressions

Operators	(Bitwise	Operators)

Transact-SQL	Reference

~	(Bitwise	NOT)
Performs	a	bitwise	logical	NOT	operation	for	one	given	integer	value	as
translated	to	binary	expressions	within	Transact-SQL	statements.

Syntax
~	expression

Arguments
expression

Is	any	valid	Microsoft®	SQL	Server™	expression	of	any	of	the	data	types	of
the	integer	data	type	category,	or	of	the	binary	or	varbinary	data	type.
expression	is	an	integer	that	is	treated	and	transformed	into	a	binary	number
for	the	bitwise	operation.

Result	Types
Returns	an	int	if	the	input	values	are	int,	a	smallint	if	the	input	values	are
smallint,	a	tinyint	if	the	input	values	are	tinyint,	or	a	bit	if	the	input	values	are
bit.

Remarks
The	bitwise	~	operator	performs	a	bitwise	logical	NOT	for	the	expression,	taking
each	corresponding	bit.	The	bits	in	the	result	are	set	to	1	if	one	bit	(for	the
current	bit	being	resolved)	in	expression	has	a	value	of	0;	otherwise,	the	bit	in
the	result	is	cleared	to	a	value	of	1.

The	~	bitwise	operator	can	be	used	only	on	columns	of	the	integer	data	type
category.

IMPORTANT		When	performing	any	kind	of	bitwise	operation,	the	storage	length
of	the	expression	used	in	the	bitwise	operation	is	important.	It	is	recommended
that	you	use	the	same	number	of	bytes	when	storing	values.	For	example,	storing
the	decimal	value	of	5	as	a	tinyint,	smallint,	or	int	produces	a	value	stored	with

different	numbers	of	bytes.	tinyint	stores	data	using	1	byte,	smallint	stores	data
using	2	bytes,	and	int	stores	data	using	4	bytes.	Therefore,	performing	a	bitwise
operation	on	an	int	decimal	value	can	produce	different	results	as	compared	to	a
direct	binary	or	hexidecimal	translation,	especially	when	the	~	(bitwise	NOT)
operator	is	used.	The	bitwise	NOT	operation	may	occur	on	a	variable	of	a	shorter
length	that,	when	converted	to	a	longer	data	type	variable,	may	not	have	the	bits
in	the	upper	8	bits	set	to	the	expected	value.	It	is	recommended	that	you	convert
the	smaller	data	type	variable	to	the	larger	data	type,	and	then	perform	the	NOT
operation	on	the	result.

Examples
This	example	creates	a	table	with	int	data	types	to	show	the	values,	and	puts	the
table	into	one	row.

USE	master
GO
IF	EXISTS	(SELECT	*	FROM	INFORMATION_SCHEMA.TABLES	
						WHERE	TABLE_NAME	=	'bitwise')
			DROP	TABLE	bitwise
GO
CREATE	TABLE	bitwise
(
	a_int_value	tinyint	NOT	NULL,
b_int_value	tinyint	NOT	NULL
)
GO
INSERT	bitwise	VALUES	(170,	75)
GO

This	query	performs	the	bitwise	NOT	on	the	a_int_value	and	b_int_value
columns.

USE	MASTER
GO
SELECT	~	a_int_value,	~	b_int_value

FROM	bitwise

Here	is	the	result	set:

---	---	
85		180	

(1	row(s)	affected)

The	binary	representation	of	170	(a_int_value	or	A,	below)	is	0000	0000	1010
1010.	Performing	the	bitwise	NOT	operation	on	this	value	produces	the	binary
result	0000	0000	0101	0101,	which	is	decimal	85.

	(~A)			
									0000	0000	1010	1010

									0000	0000	0101	0101

See	Also

Expressions

Operators	(Bitwise	Operators)

Transact-SQL	Reference

=	(Equals)
Compares	two	expressions	(a	comparison	operator).	When	you	compare	nonnull
expressions,	the	result	is	TRUE	if	both	operands	are	equal;	otherwise,	the	result
is	FALSE.	If	either	or	both	operands	are	NULL	and	SET	ANSI_NULLS	is	set	to
ON,	the	result	is	NULL.	If	SET	ANSI_NULLS	is	set	to	OFF,	the	result	is
FALSE	if	one	of	the	operands	is	NULL,	and	TRUE	if	both	operands	are	NULL.

Syntax
expression	=	expression

Arguments
expression

Is	any	valid	Microsoft®	SQL	Server™	expression.	Both	expressions	must
have	implicitly	convertible	data	types.	The	conversion	depends	on	the	rules
of	data	type	precedence.	For	more	information,	see	Data	Type	Precedence.

Result	Types
Boolean

See	Also

Data	Types

Expressions

Operators	(Comparison	Operators)

Transact-SQL	Reference

>	(Greater	Than)
Compares	two	expressions	(a	comparison	operator).	When	you	compare	nonnull
expressions,	the	result	is	TRUE	if	the	left	operand	has	a	higher	value	than	the
right	operand;	otherwise,	the	result	is	FALSE.	If	either	or	both	operands	are
NULL	and	SET	ANSI_NULLS	is	set	to	ON,	the	result	is	NULL.	If	SET
ANSI_NULLS	is	set	to	OFF,	the	result	is	FALSE	if	one	of	the	operands	is
NULL,	and	TRUE	if	both	operands	are	NULL.

Syntax
expression	>	expression

Arguments
expression

Is	any	valid	Microsoft®	SQL	Server™	expression.	Both	expressions	must
have	implicitly	convertible	data	types.	The	conversion	depends	on	the	rules
of	data	type	precedence.	For	more	information,	see	Data	Type	Precedence.

Result	Types
Boolean

See	Also

Data	Types

Expressions

Operators	(Comparison	Operators)

Transact-SQL	Reference

<	(Less	Than)
Compares	two	expressions	(a	comparison	operator).	When	you	compare	nonnull
expressions,	the	result	is	TRUE	if	the	left	operand	has	a	lower	value	than	the
right	operand;	otherwise,	the	result	is	FALSE.	If	either	or	both	operands	are
NULL	and	SET	ANSI_NULLS	is	set	to	ON,	the	result	is	NULL.	If	SET
ANSI_NULLS	is	set	to	OFF,	the	result	is	FALSE	if	one	of	the	operands	is
NULL,	and	TRUE	if	both	operands	are	NULL.

Syntax
expression	<	expression

Arguments
expression

Is	any	valid	Microsoft®	SQL	Server™	expression.	Both	expressions	must
have	implicitly	convertible	data	types.	The	conversion	depends	on	the	rules
of	data	type	precedence.	For	more	information,	see	Data	Type	Precedence.

Result	Types
Boolean

See	Also

Data	Types

Expressions

Operators	(Comparison	Operators)

Transact-SQL	Reference

>=	(Greater	Than	or	Equal	To)
Compares	two	expressions	(a	comparison	operator).	When	you	compare	nonnull
expressions,	the	result	is	TRUE	if	the	left	operand	has	a	higher	or	equal	value
than	the	right	operand;	otherwise,	the	result	is	FALSE.	If	either	or	both	operands
are	NULL	and	SET	ANSI_NULLS	is	set	to	ON,	the	result	is	NULL.	If	SET
ANSI_NULLS	is	set	to	OFF,	the	result	is	FALSE	if	one	of	the	operands	is
NULL,	and	TRUE	if	both	operands	are	NULL.

Syntax
expression	>	=	expression

Arguments
expression

Is	any	valid	Microsoft®	SQL	Server™	expression.	Both	expressions	must
have	implicitly	convertible	data	types.	The	conversion	depends	on	the	rules
of	data	type	precedence.	For	more	information,	see	Data	Type	Precedence.

Result	Types
Boolean

See	Also

Data	Types

Expressions

Operators	(Comparison	Operators)

Transact-SQL	Reference

<=	(Less	Than	or	Equal	To)
Compares	two	expressions	(a	comparison	operator).	When	you	compare	nonnull
expressions,	the	result	is	TRUE	if	the	left	operand	has	a	lower	or	equal	value
than	the	right	operand;	otherwise,	the	result	is	FALSE.	If	either	or	both	operands
are	NULL	and	SET	ANSI_NULLS	is	set	to	ON,	the	result	is	NULL.	If	SET
ANSI_NULLS	is	set	to	OFF,	the	result	is	FALSE	if	one	of	the	operands	is
NULL,	and	TRUE	if	both	operands	are	NULL.

Syntax
expression	=	<	expression

Arguments
expression

Is	any	valid	Microsoft®	SQL	Server™	expression.	Both	expressions	must
have	implicitly	convertible	data	types.	The	conversion	depends	on	the	rules
of	data	type	precedence.	For	more	information,	see	Data	Type	Precedence.

Result	Types
Boolean

See	Also

Data	Types

Expressions

Operators	(Comparison	Operators)

Transact-SQL	Reference

<>	(Not	Equal	To)
Compares	two	expressions	(a	comparison	operator).	When	you	compare	nonnull
expressions,	the	result	is	TRUE	if	the	left	operand	is	not	equal	to	the	right
operand;	otherwise,	the	result	is	FALSE.	If	either	or	both	operands	are	NULL
and	SET	ANSI_NULLS	is	set	to	ON,	the	result	is	NULL.	If	SET	ANSI_NULLS
is	set	to	OFF,	the	result	is	FALSE	if	one	of	the	operands	is	NULL,	and	TRUE	if
both	operands	are	NULL.

Syntax
expression	<	>	expression

Arguments
expression

Is	any	valid	Microsoft®	SQL	Server™	expression.	Both	expressions	must
have	implicitly	convertible	data	types.	The	conversion	depends	on	the	rules
of	data	type	precedence.	For	more	information,	see	Data	Type	Precedence.

Result	Types
Boolean

See	Also

Data	Types

Expressions

Operators	(Comparison	Operators)

Transact-SQL	Reference

!<	(Not	Less	Than)
Compares	two	expressions	(a	comparison	operator).	When	you	compare	nonnull
expressions,	the	result	is	TRUE	if	the	left	operand	does	not	have	a	lower	value
than	the	right	operand;	otherwise,	the	result	is	FALSE.	If	either	or	both	operands
are	NULL	and	SET	ANSI_NULLS	is	set	to	ON,	the	result	is	NULL.	If	SET
ANSI_NULLS	is	set	to	OFF,	the	result	is	FALSE	if	one	of	the	operands	is
NULL,	and	TRUE	if	both	operands	are	NULL.

Syntax
expression	!	<	expression

Arguments
expression

Is	any	valid	Microsoft®	SQL	Server™	expression.	Both	expressions	must
have	implicitly	convertible	data	types.	The	conversion	depends	on	the	rules
of	data	type	precedence.	For	more	information,	see	Data	Type	Precedence.

Result	Types
Boolean

See	Also

Data	Types

Expressions

Operators	(Comparison	Operators)

Transact-SQL	Reference

!=	(Not	Equal	To)
Tests	whether	one	expression	is	not	equal	to	another	expression	(a	comparison
operator).	Functions	the	same	as	the	Not	Equal	To	(<>)	comparison	operator.

See	Also

Expressions

<>	(Not	Equal	To)

Operators	(Comparison	Operators)

Transact-SQL	Reference

!>	(Not	Greater	Than)
Compares	two	expressions	(a	comparison	operator).	When	you	compare	nonnull
expressions,	the	result	is	TRUE	if	the	left	operand	does	not	have	a	higher	value
than	the	right	operand;	otherwise,	the	result	is	FALSE.	If	either	or	both	operands
are	NULL	and	SET	ANSI_NULLS	is	set	to	ON,	the	result	is	NULL.	If	SET
ANSI_NULLS	is	set	to	OFF,	the	result	is	FALSE	if	one	of	the	operands	is
NULL,	and	TRUE	if	both	operands	are	NULL.

Syntax
expression	!	>	expression

Arguments
expression

Is	any	valid	Microsoft®	SQL	Server™	expression.	Both	expressions	must
have	implicitly	convertible	data	types.	The	conversion	depends	on	the	rules
of	data	type	precedence.	For	more	information,	see	Data	Type	Precedence.

Result	Types
Boolean

See	Also

Data	Types

Expressions

Operators	(Comparison	Operators)

Transact-SQL	Reference

--	(Comment)
Indicates	user-provided	text.	Comments	can	be	inserted	on	a	separate	line,	nested
(--	only)	at	the	end	of	a	Transact-SQL	command	line,	or	within	a	Transact-SQL
statement.	The	comment	is	not	evaluated	by	the	server.	Two	hyphens	(--)	is	the
SQL-92	standard	indicator	for	comments.

Syntax
--	text_of_comment

Arguments
text_of_comment

Is	the	character	string	containing	the	text	of	the	comment.

Remarks
Use	--	for	single-line	or	nested	comments.	Comments	inserted	with	--	are
delimited	by	the	newline	character.

There	is	no	maximum	length	for	comments.

Note		Including	a	GO	command	within	a	comment	generates	an	error	message.

Examples
This	example	uses	the	--	commenting	characters.

--	Choose	the	pubs	database.
USE	pubs
--	Choose	all	columns	and	all	rows	from	the	titles	table.
SELECT	*
FROM	titles
ORDER	BY	title_id	ASC	--	We	don't	have	to	specify	ASC	because	that
--	is	the	default.

See	Also

/*...*/	(Comment)

Control-of-Flow	Language

Using	Comments

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

/*...*/	(Comment)
Indicates	user-provided	text.	The	text	between	the	/*	and	*/	commenting
characters	is	not	evaluated	by	the	server.

Syntax
/	*	text_of_comment	*	/

Arguments
text_of_comment

Is	the	character	string(s)	containing	the	text	of	the	comment.

Remarks
Comments	can	be	inserted	on	a	separate	line	or	within	a	Transact-SQL
statement.	Multiple-line	comments	must	be	indicated	by	/*	and	*/.	A	stylistic
convention	often	used	for	multiple-line	comments	is	to	begin	the	first	line	with
/*,	subsequent	lines	with	**,	and	end	with	*/.

There	is	no	maximum	length	for	comments.

Note		Including	a	GO	command	within	a	comment	generates	an	error	message.

Examples
This	example	uses	comments	to	document	and	test	the	behavior	during	different
phases	of	development	for	a	trigger.	In	this	example,	parts	of	the	trigger	are
commented	out	to	narrow	down	problems	and	test	only	one	of	the	conditions.
Both	styles	of	comments	are	used;	SQL-92	style	(--)	comments	are	shown	both
alone	and	nested.

Note		The	following	CREATE	TRIGGER	statement	fails	because	a	trigger
named	employee_insupd	already	exists	in	the	pubs	database.

CREATE	TRIGGER	employee_insupd
/*

			Because	CHECK	constraints	can	only	reference	the	column(s)
			on	which	the	column-	or	table-level	constraint	has	
			been	defined,	any	cross-table	constraints	(in	this	case,	
			business	rules)	need	to	be	defined	as	triggers.

			Employee	job_lvls	(on	which	salaries	are	based)	should	be	within	
			the	range	defined	for	their	job.	To	get	the	appropriate	range,	
			the	jobs	table	needs	to	be	referenced.	This	trigger	will	be	
			invoked	for	INSERT	and	UPDATES	only.	
*/
ON	employee
FOR	INSERT,	UPDATE
AS
/*	Get	the	range	of	level	for	this	job	type	from	the	jobs	table.	*/
DECLARE	@min_lvl	tinyint,						--	Minimum	level	var.	declaration
			@max_lvl	tinyint,									--	Maximum	level	var.	declaration
			@emp_lvl	tinyint,									--	Employee	level	var.	declaration
			@job_id	smallint												--	Job	ID	var.	declaration
SELECT	@min_lvl	=	min_lvl,						--	Set	the	minimum	level
			@max_lvl	=	max_lvl,										--	Set	the	maximum	level
			@emp_lvl	=	i.job_lvl,						--	Set	the	proposed	employee	level
			@job_id	=	i.job_id									--	Set	the	Job	ID	for	comparison
FROM	employee	e,	jobs	j,	inserted	i	
WHERE	e.emp_id	=	i.emp_id	AND	i.job_id	=	j.job_id
IF	(@job_id	=	1)	and	(@emp_lvl	<>	10)	
BEGIN
			RAISERROR	('Job	id	1	expects	the	default	level	of	10.',	16,	1)
			ROLLBACK	TRANSACTION
END
/*	Only	want	to	test	first	condition.	Remaining	ELSE	is	commented	out.
--	Comments	within	this	section	are	unaffected	by	this	commenting	style.
ELSE
IF	NOT	(@emp_lvl	BETWEEN	@min_lvl	AND	@max_lvl)	--	Check	valid	range

BEGIN
			RAISERROR	('The	level	for	job_id:%d	should	be	between	%d	and	%d.',
						16,	1,	@job_id,	@min_lvl,	@max_lvl)
			ROLLBACK	TRANSACTION
END
*/
GO

See	Also

--	(Comment)

Control-of-Flow	Language

Using	Comments

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

[]	(Wildcard	-	Character(s)	to	Match)
Matches	any	single	character	within	the	specified	range	or	set	that	is	specified
inside	the	square	brackets.

See	Also

LIKE

Transact-SQL	Reference

[^]	(Wildcard	-	Character(s)	Not	to	Match)
Matches	any	single	character	not	within	the	specified	range	or	set	that	is
specified	inside	the	square	brackets.

See	Also

LIKE

Transact-SQL	Reference

_	(Wildcard	-	Match	One	Character)
Matches	any	single	character,	and	can	be	used	as	either	a	prefix	or	suffix.

See	Also

LIKE

Transact-SQL	Reference

@@CONNECTIONS
Returns	the	number	of	connections,	or	attempted	connections,	since	Microsoft®
SQL	Server™	was	last	started.

Syntax
@@CONNECTIONS

Return	Types
integer

Remarks
Connections	are	different	from	users.	Applications,	for	example,	can	open
multiple	connections	to	SQL	Server	without	the	user	observing	the	connections.

To	display	a	report	containing	several	SQL	Server	statistics,	including
connection	attempts,	run	sp_monitor.

Examples
This	example	shows	the	number	of	login	attempts	as	of	the	current	date	and
time.

SELECT	GETDATE()	AS	'Today's	Date	and	Time',	
			@@CONNECTIONS	AS	'Login	Attempts'

Here	is	the	result	set:

Today's	Date	and	Time														Login	Attempts
---------------------------								---------------
1998-04-09	14:28:46.940												18

See	Also

Configuration	Functions

sp_monitor

Transact-SQL	Reference

@@CPU_BUSY
Returns	the	time	in	milliseconds	(based	on	the	resolution	of	the	system	timer)
that	the	CPU	has	spent	working	since	Microsoft®	SQL	Server™	was	last	started.

Syntax
@@CPU_BUSY

Return	Types
integer

Remarks
To	display	a	report	containing	several	SQL	Server	statistics,	including	CPU
activity,	run	sp_monitor.

Examples
This	example	shows	SQL	Server	CPU	activity	as	of	the	current	date	and	time.

SELECT	@@CPU_BUSY	AS	'CPU	ms',	GETDATE()	AS	'As	of'

Here	is	the	result	set:

CPU	ms															As	of
-----------------				---------------------------
20																			1998-04-18		14:43:08.180	

See	Also

@@IDLE

@@IO_BUSY

sp_monitor

System	Statistical	Functions

Transact-SQL	Reference

@@CURSOR_ROWS
Returns	the	number	of	qualifying	rows	currently	in	the	last	cursor	opened	on	the
connection.	To	improve	performance,	Microsoft®	SQL	Server™	can	populate
large	keyset	and	static	cursors	asynchronously.	@@CURSOR_ROWS	can	be
called	to	determine	that	the	number	of	the	rows	that	qualify	for	a	cursor	are
retrieved	at	the	time	@@CURSOR_ROWS	is	called.

Return	value Description
-m The	cursor	is	populated	asynchronously.	The	value

returned	(-m)	is	the	number	of	rows	currently	in	the
keyset.

-1 The	cursor	is	dynamic.	Because	dynamic	cursors	reflect
all	changes,	the	number	of	rows	that	qualify	for	the	cursor
is	constantly	changing.	It	can	never	be	definitely	stated
that	all	qualified	rows	have	been	retrieved.

0 No	cursors	have	been	opened,	no	rows	qualified	for	the
last	opened	cursor,	or	the	last-opened	cursor	is	closed	or
deallocated.

n The	cursor	is	fully	populated.	The	value	returned	(n)	is	the
total	number	of	rows	in	the	cursor.

Syntax
@@CURSOR_ROWS

Return	Types
integer

Remarks
The	number	returned	by	@@CURSOR_ROWS	is	negative	if	the	last	cursor	was
opened	asynchronously.	Keyset-driver	or	static	cursors	are	opened
asynchronously	if	the	value	for	sp_configure	cursor	threshold	is	greater	than	0,
and	the	number	of	rows	in	the	cursor	result	set	is	greater	than	the	cursor

threshold.

Examples
This	example	declares	a	cursor	and	uses	SELECT	to	display	the	value	of
@@CURSOR_ROWS.	The	setting	has	a	value	of	0	before	the	cursor	is	opened,
and	a	value	of	-1	to	indicate	that	the	cursor	keyset	is	populated	asynchronously.

SELECT	@@CURSOR_ROWS
DECLARE	authors_cursor	CURSOR	FOR
SELECT	au_lname	FROM	authors
OPEN	authors_cursor
FETCH	NEXT	FROM	authors_cursor
SELECT	@@CURSOR_ROWS
CLOSE	authors_cursor
DEALLOCATE	authors_cursor

0											

(1	row(s)	affected)

au_lname																																	
--	
White																																				

(1	row(s)	affected)

-1										

(1	row(s)	affected)

See	Also

Asynchronous	Population

Cursor	Functions

OPEN

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

@@DATEFIRST
Returns	the	current	value	of	the	SET	DATEFIRST	parameter,	which	indicates
the	specified	first	day	of	each	week:	1	for	Monday,	2	for	Wednesday,	and	so	on
through	7	for	Sunday.

Syntax
@@DATEFIRST

Return	Types
tinyint

Remarks
The	U.S.	English	default	is	7,	Sunday.

Examples
This	example	sets	the	first	day	of	the	week	to	5	(Friday),	and	assumes	the	current
day	to	be	Saturday.	The	SELECT	statement	returns	the	DATEFIRST	value	and
the	number	of	the	current	day	of	the	week.

SET	DATEFIRST	5
SELECT	@@DATEFIRST	AS	'1st	Day',	DATEPART(dw,	GETDATE())	AS	'Today'

Here	is	the	result	set.	Counting	from	Friday,	today	(Saturday)	is	day	2.

1st	Day											Today
----------------		--------------
5																	2

See	Also

DATEPART

Configuration	Functions

SET	DATEFIRST

Transact-SQL	Reference

@@DBTS
Returns	the	value	of	the	current	timestamp	data	type	for	the	current	database.
This	timestamp	is	guaranteed	to	be	unique	in	the	database.

Syntax
@@DBTS

Return	Types
varbinary

Remarks
@@DBTS	returns	the	current	database's	last-used	timestamp	value.	A	new
timestamp	value	is	generated	when	a	row	with	a	timestamp	column	is	inserted
or	updated.

Examples
This	example	returns	the	current	timestamp	from	the	pubs	database.

USE	pubs
SELECT	@@DBTS

See	Also

Configuration	Functions

Cursor	Concurrency

Data	Types

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

@@ERROR
Returns	the	error	number	for	the	last	Transact-SQL	statement	executed.

Syntax
@@ERROR

Return	Types
integer

Remarks
When	Microsoft®	SQL	Server™	completes	the	execution	of	a	Transact-SQL
statement,	@@ERROR	is	set	to	0	if	the	statement	executed	successfully.	If	an
error	occurs,	an	error	message	is	returned.	@@ERROR	returns	the	number	of
the	error	message	until	another	Transact-SQL	statement	is	executed.	You	can
view	the	text	associated	with	an	@@ERROR	error	number	in	the	sysmessages
system	table.

Because	@@ERROR	is	cleared	and	reset	on	each	statement	executed,	check	it
immediately	following	the	statement	validated,	or	save	it	to	a	local	variable	that
can	be	checked	later.

Examples

A.	Use	@@ERROR	to	detect	a	specific	error
This	example	uses	@@ERROR	to	check	for	a	check	constraint	violation	(error
#547)	in	an	UPDATE	statement.

USE	pubs
GO
UPDATE	authors	SET	au_id	=	'172	32	1176'
WHERE	au_id	=	"172-32-1176"

IF	@@ERROR	=	547
			print	"A	check	constraint	violation	occurred"

B.	Use	@@ERROR	to	conditionally	exit	a	procedure
The	IF...ELSE	statements	in	this	example	test	@@ERROR	after	an	INSERT
statement	in	a	stored	procedure.	The	value	of	the	@@ERROR	variable
determines	the	return	code	sent	to	the	calling	program,	indicating	success	or
failure	of	the	procedure.

USE	pubs
GO

--	Create	the	procedure.
CREATE	PROCEDURE	add_author	
@au_id	varchar(11),@au_lname	varchar(40),
@au_fname	varchar(20),@phone	char(12),
@address	varchar(40)	=	NULL,@city	varchar(20)	=	NULL,
@state	char(2)	=	NULL,@zip	char(5)	=	NULL,
@contract	bit	=	NULL
AS

--	Execute	the	INSERT	statement.
INSERT	INTO	authors
(au_id,		au_lname,	au_fname,	phone,	address,	
	city,	state,	zip,	contract)	values
(@au_id,@au_lname,@au_fname,@phone,@address,
	@city,@state,@zip,@contract)

--	Test	the	error	value.
IF	@@ERROR	<>	0	
BEGIN
			--	Return	99	to	the	calling	program	to	indicate	failure.
			PRINT	"An	error	occurred	loading	the	new	author	information"

			RETURN(99)
END
ELSE
BEGIN
			--	Return	0	to	the	calling	program	to	indicate	success.
			PRINT	"The	new	author	information	has	been	loaded"
			RETURN(0)
END
GO

C.	Use	@@ERROR	to	check	the	success	of	several	statements
This	example	depends	on	the	successful	operation	of	the	INSERT	and	DELETE
statements.	Local	variables	are	set	to	the	value	of	@@ERROR	after	both
statements	and	are	used	in	a	shared	error-handling	routine	for	the	operation.

USE	pubs
GO
DECLARE	@del_error	int,	@ins_error	int
--	Start	a	transaction.
BEGIN	TRAN

--	Execute	the	DELETE	statement.
DELETE	authors
WHERE	au_id	=	'409-56-7088'

--	Set	a	variable	to	the	error	value	for	
--	the	DELETE	statement.
SELECT	@del_error	=	@@ERROR

--	Execute	the	INSERT	statement.
INSERT	authors
			VALUES('409-56-7008',	'Bennet',	'Abraham',	'415	658-9932',
			'6223	Bateman	St.',	'Berkeley',	'CA',	'94705',	1)

--	Set	a	variable	to	the	error	value	for	
--	the	INSERT	statement.
SELECT	@ins_error	=	@@ERROR

--	Test	the	error	values.
IF	@del_error	=	0	AND	@ins_error	=	0
BEGIN
			--	Success.	Commit	the	transaction.
			PRINT	"The	author	information	has	been	replaced"				
			COMMIT	TRAN
END
ELSE
BEGIN
			--	An	error	occurred.	Indicate	which	operation(s)	failed
			--	and	roll	back	the	transaction.
			IF	@del_error	<>	0	
						PRINT	"An	error	occurred	during	execution	of	the	DELETE	
						statement."	

			IF	@ins_error	<>	0
						PRINT	"An	error	occurred	during	execution	of	the	INSERT	
						statement."	

			ROLLBACK	TRAN
END
GO

D.	Use	@@ERROR	with	@@ROWCOUNT
This	example	uses	@@ERROR	with	@@ROWCOUNT	to	validate	the
operation	of	an	UPDATE	statement.	The	value	of	@@ERROR	is	checked	for
any	indication	of	an	error,	and	@@ROWCOUNT	is	used	to	ensure	that	the
update	was	successfully	applied	to	a	row	in	the	table.

USE	pubs
GO
CREATE	PROCEDURE	change_publisher
@title_id	tid,	
@new_pub_id	char(4)	
AS

--	Declare	variables	used	in	error	checking.
DECLARE	@error_var	int,	@rowcount_var	int

--	Execute	the	UPDATE	statement.
UPDATE	titles	SET	pub_id	=	@new_pub_id	
WHERE	title_id	=	@title_id	

--	Save	the	@@ERROR	and	@@ROWCOUNT	values	in	local	
--	variables	before	they	are	cleared.
SELECT	@error_var	=	@@ERROR,	@rowcount_var	=	@@ROWCOUNT

--	Check	for	errors.	If	an	invalid	@new_pub_id	was	specified
--	the	UPDATE	statement	returns	a	foreign-key	violation	error	#547.
IF	@error_var	<>	0
BEGIN
			IF	@error_var	=	547
			BEGIN
						PRINT	"ERROR:	Invalid	ID	specified	for	new	publisher"
						RETURN(1)
			END
			ELSE
			BEGIN
						PRINT	"ERROR:	Unhandled	error	occurred"
						RETURN(2)
			END
END

--	Check	the	rowcount.	@rowcount_var	is	set	to	0	
--	if	an	invalid	@title_id	was	specified.
IF	@rowcount_var	=	0	
BEGIN
			PRINT	"Warning:	The	title_id	specified	is	not	valid"
			RETURN(1)
END
ELSE
BEGIN
			PRINT	"The	book	has	been	updated	with	the	new	publisher"
			RETURN(0)
END
GO

See	Also

Error	Handling

@@ROWCOUNT

SET	@local_variable

sysmessages

System	Functions

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

@@FETCH_STATUS
Returns	the	status	of	the	last	cursor	FETCH	statement	issued	against	any	cursor
currently	opened	by	the	connection.

Return	value Description
0 FETCH	statement	was	successful.
-1 FETCH	statement	failed	or	the	row	was	beyond	the

result	set.
-2 Row	fetched	is	missing.

Syntax
@@FETCH_STATUS

Return	Types
integer

Remarks
Because	@@FETCH_STATUS	is	global	to	all	cursors	on	a	connection,	use
@@FETCH_STATUS	carefully.	After	a	FETCH	statement	is	executed,	the	test
for	@@FETCH_STATUS	must	occur	before	any	other	FETCH	statement	is
executed	against	another	cursor.	The	value	of	@@FETCH_STATUS	is
undefined	before	any	fetches	have	occurred	on	the	connection.

For	example,	a	user	executes	a	FETCH	statement	from	one	cursor,	and	then	calls
a	stored	procedure	that	opens	and	processes	the	results	from	another	cursor.
When	control	is	returned	from	the	called	stored	procedure,
@@FETCH_STATUS	reflects	the	last	FETCH	executed	in	the	stored	procedure,
not	the	FETCH	statement	executed	before	the	stored	procedure	is	called.

Examples
This	example	uses	@@FETCH_STATUS	to	control	cursor	activities	in	a
WHILE	loop.

DECLARE	Employee_Cursor	CURSOR	FOR
SELECT	LastName,	FirstName	FROM	Northwind.dbo.Employees
OPEN	Employee_Cursor
FETCH	NEXT	FROM	Employee_Cursor
WHILE	@@FETCH_STATUS	=	0
BEGIN
			FETCH	NEXT	FROM	Employee_Cursor
END
CLOSE	Employee_Cursor
DEALLOCATE	Employee_Cursor

See	Also

Cursor	Functions

FETCH

Transact-SQL	Reference

@@IDENTITY
Returns	the	last-inserted	identity	value.

Syntax
@@IDENTITY

Return	Types
numeric

Remarks
After	an	INSERT,	SELECT	INTO,	or	bulk	copy	statement	completes,
@@IDENTITY	contains	the	last	identity	value	generated	by	the	statement.	If	the
statement	did	not	affect	any	tables	with	identity	columns,	@@IDENTITY
returns	NULL.	If	multiple	rows	are	inserted,	generating	multiple	identity	values,
@@IDENTITY	returns	the	last	identity	value	generated.	If	the	statement	fires
one	or	more	triggers	that	perform	inserts	that	generate	identity	values,	calling
@@IDENTITY	immediately	after	the	statement	returns	the	last	identity	value
generated	by	the	triggers.	The	@@IDENTITY	value	does	not	revert	to	a
previous	setting	if	the	INSERT	or	SELECT	INTO	statement	or	bulk	copy	fails,
or	if	the	transaction	is	rolled	back.

@@IDENTITY,	SCOPE_IDENTITY,	and	IDENT_CURRENT	are	similar
functions	in	that	they	return	the	last	value	inserted	into	the	IDENTITY	column
of	a	table.

@@IDENTITY	and	SCOPE_IDENTITY	will	return	the	last	identity	value
generated	in	any	table	in	the	current	session.	However,	SCOPE_IDENTITY
returns	the	value	only	within	the	current	scope;	@@IDENTITY	is	not	limited	to
a	specific	scope.

IDENT_CURRENT	is	not	limited	by	scope	and	session;	it	is	limited	to	a
specified	table.	IDENT_CURRENT	returns	the	identity	value	generated	for	a
specific	table	in	any	session	and	any	scope.	For	more	information,	see
IDENT_CURRENT.

Examples
This	example	inserts	a	row	into	a	table	with	an	identity	column	and	uses
@@IDENTITY	to	display	the	identity	value	used	in	the	new	row.

INSERT	INTO	jobs	(job_desc,min_lvl,max_lvl)
VALUES	('Accountant',12,125)
SELECT	@@IDENTITY	AS	'Identity'

See	Also

CREATE	TABLE

IDENT_CURRENT

INSERT

SCOPE_IDENTITY

SELECT

System	Functions

Transact-SQL	Reference

@@IDLE
Returns	the	time	in	milliseconds	(based	on	the	resolution	of	the	system	timer)
that	Microsoft®	SQL	Server™	has	been	idle	since	last	started.

Syntax
@@IDLE

Return	Types
integer

Remarks
To	display	a	report	containing	several	SQL	Server	statistics,	run	sp_monitor.

Examples
This	example	shows	the	number	of	milliseconds	SQL	Server	was	idle	between
the	start	time	and	the	current	time.

SELECT	@@IDLE	AS	'Idle	ms',	GETDATE()	AS	'As	of'

Here	is	the	result	set:

Idle	Ms														As	of
-----------------				---------------------------
277593															1998-04-18		16:41:07.160

See	Also

@@CPU_BUSY

sp_monitor

@@IO_BUSY

System	Statistical	Functions

Transact-SQL	Reference

@@IO_BUSY
Returns	the	time	in	milliseconds	(based	on	the	resolution	of	the	system	timer)
that	Microsoft®	SQL	Server™	has	spent	performing	input	and	output	operations
since	it	was	last	started.

Syntax
@@IO_BUSY

Return	Types
integer

Remarks
To	display	a	report	containing	several	SQL	Server	statistics,	run	sp_monitor.

Examples
This	example	shows	the	number	of	milliseconds	SQL	Server	has	spent
performing	input/output	operations	between	start	time	and	the	current	time.

SELECT	@@IO_BUSY	AS	'IO	ms',	GETDATE()	AS	'As	of'

Here	is	the	result	set:

IO	ms																As	of
------------------			-----------------------------
31																			1998-04-18		16:49:49.650

See	Also

@@CPU_BUSY

sp_monitor

System	Statistical	Functions

Transact-SQL	Reference

@@LANGID
Returns	the	local	language	identifier	(ID)	of	the	language	currently	in	use.

Syntax
@@LANGID

Return	Types
smallint

Remarks
To	view	information	about	language	settings	(including	language	ID	numbers),
run	sp_helplanguage	with	no	parameter	specified.

Examples
This	example	sets	the	language	for	the	current	session	to	Italian,	and	then	uses
@@LANGID	to	return	the	ID	for	Italian.

SET	LANGUAGE	'Italian'
SELECT	@@LANGID	AS	'Language	ID'

Here	is	the	result	set:

Language	ID

6

See	Also

Configuration	Functions

SET	LANGUAGE

sp_helplanguage

Transact-SQL	Reference

@@LANGUAGE
Returns	the	name	of	the	language	currently	in	use.

Syntax
@@LANGUAGE

Return	Types
nvarchar

Remarks
To	view	information	about	language	settings	(including	valid	official	language
names),	run	sp_helplanguage	with	no	parameter	specified.

Examples
This	example	returns	the	language	for	the	current	session.

SELECT	@@LANGUAGE	AS	'Language	Name'

Here	is	the	result	set:

Language	Name

us_english

See	Also

Configuration	Functions

SET	LANGUAGE

sp_helplanguage

Transact-SQL	Reference

@@LOCK_TIMEOUT
Returns	the	current	lock	time-out	setting,	in	milliseconds,	for	the	current	session.

Syntax
@@LOCK_TIMEOUT

Return	Types
integer

Remarks
SET	LOCK_TIMEOUT	allows	an	application	to	set	the	maximum	time	that	a
statement	waits	on	a	blocked	resource.	When	a	statement	has	waited	longer	than
the	LOCK_TIMEOUT	setting,	the	blocked	statement	is	automatically	canceled,
and	an	error	message	is	returned	to	the	application.

At	the	beginning	of	a	connection,	@@LOCK_TIMEOUT	returns	a	value	of	-1.

Examples
This	example	shows	the	result	set	when	a	LOCK_TIMEOUT	value	is	not	set.

SELECT	@@LOCK_TIMEOUT

Here	is	the	result	set:

-1

This	example	sets	LOCK_TIMEOUT	to	1800	milliseconds,	and	then	calls
@@LOCK_TIMEOUT.

SET	LOCK_TIMEOUT	1800
SELECT	@@LOCK_TIMEOUT

Here	is	the	result	set:

1800

See	Also

Configuration	Functions

Customizing	the	Lock	Time-out

SET	LOCK_TIMEOUT

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

@@MAX_CONNECTIONS
Returns	the	maximum	number	of	simultaneous	user	connections	allowed	on	a
Microsoft®	SQL	Server™.	The	number	returned	is	not	necessarily	the	number
currently	configured.

Syntax
@@MAX_CONNECTIONS

Return	Types
integer

Remarks
The	actual	number	of	user	connections	allowed	also	depends	on	the	version	of
SQL	Server	installed	and	the	limitations	of	your	application(s)	and	hardware.

To	reconfigure	SQL	Server	for	fewer	connections,	use	sp_configure.

Examples
This	example	assumes	that	SQL	Server	has	not	been	reconfigured	for	fewer	user
connections.

SELECT	@@MAX_CONNECTIONS

Here	is	the	result	set:

32767

See	Also

sp_configure

Configuration	Functions

user	connections	Option

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

@@MAX_PRECISION
Returns	the	precision	level	used	by	decimal	and	numeric	data	types	as	currently
set	in	the	server.

Syntax
@@MAX_PRECISION

Return	Types
tinyint

Remarks
By	default,	the	maximum	precision	returns	38.

Examples

SELECT	@@MAX_PRECISION

See	Also

Configuration	Functions

decimal	and	numeric

Precision,	Scale,	and	Length

Transact-SQL	Reference

@@NESTLEVEL
Returns	the	nesting	level	of	the	current	stored	procedure	execution	(initially	0).

Syntax
@@NESTLEVEL

Return	Types
integer

Remarks
Each	time	a	stored	procedure	calls	another	stored	procedure,	the	nesting	level	is
incremented.	When	the	maximum	of	32	is	exceeded,	the	transaction	is
terminated.

Examples
This	example	creates	two	procedures:	one	that	calls	the	other,	and	one	that
displays	the	@@NESTLEVEL	setting	of	each.

CREATE	PROCEDURE	innerproc	as	
select	@@NESTLEVEL	AS	'Inner	Level'
GO

CREATE	PROCEDURE	outerproc	as	
select	@@NESTLEVEL	AS	'Outer	Level'
EXEC	innerproc
GO

EXECUTE	outerproc
GO

Here	is	the	result	set:

Outer	Level	

1																	

Inner	Level	

2																	

See	Also

Configuration	Functions

Creating	a	Stored	Procedure

@@TRANCOUNT

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

@@OPTIONS
Returns	information	about	current	SET	options.

Syntax
@@OPTIONS

Return	Types
integer

Remarks
SET	options	can	be	modified	as	a	whole	by	using	the	sp_configure	user	options
configuration	option.	Each	user	has	an	@@OPTIONS	function	that	represents
the	configuration.	When	first	logging	on,	all	users	are	assigned	a	default
configuration	set	by	the	system	administrator.

You	can	change	the	language	and	query-processing	options	by	using	the	SET
statement.

Examples
This	example	sets	NOCOUNT	ON	and	then	tests	the	value	of	@@OPTIONS.
The	NOCOUNT	ON	option	prevents	the	message	about	the	number	of	rows
affected	from	being	sent	back	to	the	requesting	client	for	every	statement	in	a
session.	The	value	of	@@OPTIONS	is	set	to	512	(0x0200),	which	represents	the
NOCOUNT	option.	This	example	tests	whether	the	NOCOUNT	option	is
enabled	on	the	client.	For	example,	it	can	help	track	performance	differences	on
a	client.

SET	NOCOUNT	ON
IF	@@OPTIONS	&	512	>	0	
			RAISERROR	('Current	user	has	SET	NOCOUNT	turned	on.',1,1)

See	Also

Configuration	Functions

sp_configure

user	options	Option

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

@@PACK_RECEIVED
Returns	the	number	of	input	packets	read	from	the	network	by	Microsoft®	SQL
Server™	since	last	started.

Syntax
@@PACK_RECEIVED

Return	Types
integer

Remarks
To	display	a	report	containing	several	SQL	Server	statistics,	including	packets
sent	and	received,	run	sp_monitor.

Examples

SELECT	@@PACK_RECEIVED

See	Also

@@PACK_SENT

sp_monitor

System	Statistical	Functions

Transact-SQL	Reference

@@PACK_SENT
Returns	the	number	of	output	packets	written	to	the	network	by	Microsoft®	SQL
Server™	since	last	started.

Syntax
@@PACK_SENT

Return	Types
integer

Remarks
To	display	a	report	containing	several	SQL	Server	statistics,	including	packets
sent	and	received,	run	sp_monitor.

Examples

SELECT	@@PACK_SENT

See	Also

@@PACK_RECEIVED

sp_monitor

System	Statistical	Functions

Transact-SQL	Reference

@@PACKET_ERRORS
Returns	the	number	of	network	packet	errors	that	have	occurred	on	Microsoft®
SQL	Server™	connections	since	SQL	Server	was	last	started.

Syntax
@@PACKET_ERRORS

Return	Types
integer

Remarks
To	display	a	report	containing	several	SQL	Server	statistics,	including	packet
errors,	run	sp_monitor.

Examples

SELECT	@@PACKET_ERRORS

See	Also

@@PACK_RECEIVED

@@PACK_SENT

sp_monitor

System	Statistical	Functions

Transact-SQL	Reference

@@PROCID
Returns	the	stored	procedure	identifier	(ID)	of	the	current	procedure.

Syntax
@@PROCID

Return	Types
integer

Examples
This	example	creates	a	procedure	that	uses	SELECT	to	display	the	@@PROCID
setting	from	inside	the	procedure.

CREATE	PROCEDURE	testprocedure	AS
SELECT	@@PROCID	AS	'ProcID'
GO
EXEC	testprocedure
GO

See	Also

CREATE	PROCEDURE

Metadata	Functions

Transact-SQL	Reference

@@REMSERVER
Returns	the	name	of	the	remote	Microsoft®	SQL	Server™	database	server	as	it
appears	in	the	login	record.

Syntax
@@REMSERVER

Return	Types
nvarchar(256)

Remarks
@@REMSERVER	enables	a	stored	procedure	to	check	the	name	of	the	database
server	from	which	the	procedure	is	run.

Examples
This	example	creates	a	procedure,	check_server,	that	returns	the	name	of	the
remote	server.

CREATE	PROCEDURE	check_server
AS
SELECT	@@REMSERVER

The	stored	procedure	is	created	on	SEATTLE1,	the	local	server.	The	user	logs
on	to	a	remote	server,	LONDON2,	and	runs	check_server.

exec	SEATTLE1...check_server

Here	is	the	result	set:

LONDON2

See	Also

Configuration	Functions

Configuring	Remote	Servers

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

@@ROWCOUNT
Returns	the	number	of	rows	affected	by	the	last	statement.

Syntax
@@ROWCOUNT

Return	Types
integer

Remarks
This	variable	is	set	to	0	by	any	statement	that	does	not	return	rows,	such	as	an	IF
statement.

Examples
This	example	executes	UPDATE	and	uses	@@ROWCOUNT	to	detect	if	any
rows	were	changed.

UPDATE	authors	SET	au_lname	=	'Jones'
WHERE	au_id	=	'999-888-7777'
IF	@@ROWCOUNT	=	0
			print	'Warning:	No	rows	were	updated'

See	Also

@@ERROR

System	Functions

Transact-SQL	Reference

@@SERVERNAME
Returns	the	name	of	the	local	server	running	Microsoft®	SQL	Server™.

Syntax
@@SERVERNAME

Return	Types
nvarchar

Remarks
SQL	Server	Setup	sets	the	server	name	to	the	computer	name	during	installation.
Change	@@SERVERNAME	by	using	sp_addserver	and	then	restarting	SQL
Server.	This	method,	however,		is	not	usually	required.

With	multiple	instances	of	SQL	Server	installed,	@@SERVERNAME	returns
the	following	local	server	name	information	if	the	local	server	name	has	not
been	changed	since	setup.

Instance Server	information
Default	instance 'servername'
Named	instance 'servername\instancename'
Virtual	server	-	default	instance 'virtualservername'
Virtual	server	-	named	instance 'virtualservername\instancename'

Although	the	@@SERVERNAME	function	and	the	SERVERNAME	property	of
SERVERPROPERTY	function	may	return	strings	with	similar	formats,	the
information	can	be	different.	The	SERVERNAME	property	automatically
reports	changes	in	the	network	name	of	the	computer.

In	contrast,	@@SERVERNAME	does	not	report	such	changes.
@@SERVERNAME	reports	changes	made	to	the	local	server	name	using	the
sp_addserver	or	sp_dropserver	stored	procedure.

Examples

SELECT	@@SERVERNAME

See	Also

Configuration	Functions

SERVERPROPERTY

sp_addserver

Transact-SQL	Reference

@@SERVICENAME
Returns	the	name	of	the	registry	key	under	which	Microsoft®	SQL	Server™	is
running.	@@SERVICENAME	returns	MSSQLServer	if	the	current	instance	is
the	default	instance;	this	function	returns	the	instance	name	if	the	current
instance	is	a	named	instance.

Syntax
@@SERVICENAME

Return	Types
nvarchar

Remarks
SQL	Server	runs	as	a	service	named	MSSQLServer	on	Microsoft	Windows
NT®.	It	does	not	run	as	a	service	on	Windows®	95/98	because	the	operating
system	does	not	support	services.

Examples

SELECT	@@SERVICENAME

Here	is	the	result	set:

MSSQLServer

See	Also

Configuration	Functions

MSSQLServer	Service

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

@@SPID
Returns	the	server	process	identifier	(ID)	of	the	current	user	process.

Syntax
@@SPID

Return	Types
smallint

Remarks
@@SPID	can	be	used	to	identify	the	current	user	process	in	the	output	of
sp_who.

Examples
This	example	returns	the	process	ID,	login	name,	and	user	name	for	the	current
user	process.

SELECT	@@SPID	AS	'ID',	SYSTEM_USER	AS	'Login	Name',	USER	AS	'User	Name'

Here	is	the	result	set:

ID					Login	Name							User	Name		
-----		-------------				-----------
11					sa															dbo								

See	Also

Configuration	Functions

sp_lock

sp_who

Transact-SQL	Reference

@@TEXTSIZE
Returns	the	current	value	of	the	TEXTSIZE	option	of	the	SET	statement,	which
specifies	the	maximum	length,	in	bytes,	of	text	or	image	data	that	a	SELECT
statement	returns.

Syntax
@@TEXTSIZE

Return	Types
integer

Remarks
The	default	size	is	4096	bytes.

Examples
This	example	uses	SELECT	to	display	the	@@TEXTSIZE	value	before	and
after	it	is	changed	with	the	SET	TEXTSIZE	statement.

SELECT	@@TEXTSIZE
SET	TEXTSIZE	2048
SELECT	@@TEXTSIZE

Here	is	the	result	set:

64512

2048

See	Also

Configuration	Functions

SET	TEXTSIZE

Transact-SQL	Reference

@@TIMETICKS
Returns	the	number	of	microseconds	per	tick.

Syntax
@@TIMETICKS

Return	Types
integer

Remarks
The	amount	of	time	per	tick	is	computer-dependent.	Each	tick	on	the	operating
system	is	31.25	milliseconds,	or	one	thirty-second	of	a	second.

Examples

SELECT	@@TIMETICKS

See	Also

System	Statistical	Functions

Transact-SQL	Reference

@@TOTAL_ERRORS
Returns	the	number	of	disk	read/write	errors	encountered	by	Microsoft®	SQL
Server™	since	last	started.

Syntax
@@TOTAL_ERRORS

Return	Types
integer

Remarks
To	display	a	report	containing	several	SQL	Server	statistics,	including	total
number	of	errors,	run	sp_monitor.

Examples
This	example	shows	the	number	of	errors	encountered	by	SQL	Server	as	of	the
current	date	and	time.

SELECT	@@TOTAL_ERRORS	AS	'Errors',	GETDATE()	AS	'As	of'

Here	is	the	result	set:

Errors									As	of																										
-------								-------------------------------
0														1998-04-21		22:07:30.013							

See	Also

sp_monitor

System	Statistical	Functions

Transact-SQL	Reference

@@TOTAL_READ
Returns	the	number	of	disk	reads	(not	cache	reads)	by	Microsoft®	SQL	Server™
since	last	started.

Syntax
@@TOTAL_READ

Return	Types
integer

Remarks
To	display	a	report	containing	several	SQL	Server	statistics,	including	read	and
write	activity,	run	sp_monitor.

Examples
This	example	shows	the	total	number	of	disk	read	and	writes	as	of	the	current
date	and	time.

SELECT	@@TOTAL_READ	AS	'Reads',	@@TOTAL_WRITE	AS	'Writes',	GETDATE()	AS	'As	of'

Here	is	the	result	set:

Reads							Writes								As	of
---------			-----------			------------------------------
978									124											1998-04-21	22:14:22.37

See	Also

sp_monitor

System	Statistical	Functions

@@TOTAL_WRITE

Transact-SQL	Reference

@@TOTAL_WRITE
Returns	the	number	of	disk	writes	by	Microsoft®	SQL	Server™	since	last
started.

Syntax
@@TOTAL_WRITE

Return	Types
integer

Remarks
To	display	a	report	containing	several	SQL	Server	statistics,	including	read	and
write	activity,	run	sp_monitor.

Examples
This	example	shows	the	total	number	of	disk	reads	and	writes	as	of	the	current
date	and	time.

SELECT	@@TOTAL_READ	AS	'Reads',	@@TOTAL_WRITE	AS	'Writes',	GETDATE()	AS	'As	of'

Here	is	the	result	set:

Reads							Writes								As	of
---------			-----------			------------------------------
978									124											1998-04-21	22:14:22.37								

See	Also

sp_monitor

System	Statistical	Functions

@@TOTAL_READ

Transact-SQL	Reference

@@TRANCOUNT
Returns	the	number	of	active	transactions	for	the	current	connection.

Syntax
@@TRANCOUNT

Return	Types
integer

Remarks
The	BEGIN	TRANSACTION	statement	increments	@@TRANCOUNT	by	1.
ROLLBACK	TRANSACTION	decrements	@@TRANCOUNT	to	0,	except	for
ROLLBACK	TRANSACTION	savepoint_name,	which	does	not	affect
@@TRANCOUNT.	COMMIT	TRANSACTION	or	COMMIT	WORK
decrement	@@TRANCOUNT	by	1.

Examples
This	example	uses	@@TRANCOUNT	to	test	for	open	transactions	that	should
be	committed.

BEGIN	TRANSACTION
UPDATE	authors	SET	au_lname	=	upper(au_lname)
WHERE	au_lname	=	'White'
IF	@@ROWCOUNT	=	2
			COMMIT	TRAN

IF	@@TRANCOUNT	>	0
BEGIN
			PRINT	'A	transaction	needs	to	be	rolled	back'
			ROLLBACK	TRAN
END

See	Also

BEGIN	TRANSACTION

COMMIT	TRANSACTION

ROLLBACK	TRANSACTION

System	Functions

Transact-SQL	Reference

@@VERSION
Returns	the	date,	version,	and	processor	type	for	the	current	installation	of
Microsoft®	SQL	Server™.

Syntax
@@VERSION

Return	Types
nvarchar

Remarks
The	information	returned	by	@@VERSION	is	similar	to	the	product	name,
version,	platform,	and	file	data	returned	by	the	xp_msver	stored	procedure,
which	provides	more	detailed	information.

Examples
This	example	returns	the	date,	version,	and	processor	type	for	the	current
installation.

SELECT	@@VERSION

See	Also

Configuration	Functions

xp_msver

Transact-SQL	Reference

ABS
Returns	the	absolute,	positive	value	of	the	given	numeric	expression.

Syntax
ABS	(numeric_expression)

Arguments
numeric_expression

Is	an	expression	of	the	exact	numeric	or	approximate	numeric	data	type
category,	except	for	the	bit	data	type.

Return	Types
Returns	the	same	type	as	numeric_expression.

Examples
This	example	shows	the	effect	of	the	ABS	function	on	three	different	numbers.

SELECT	ABS(-1.0),	ABS(0.0),	ABS(1.0)

Here	is	the	result	set:

----	----	----
1.0		.0			1.0

The	ABS	function	can	produce	an	overflow	error,	for	example:

SELECT	ABS(convert(int,	-2147483648))

Here	is	the	error	message:

Server:	Msg	8115,	Level	16,	State	2
Arithmetic	overflow	error	converting	expression	to	type	int.

See	Also

CAST	and	CONVERT

Data	Types

Mathematical	Functions

Transact-SQL	Reference

ACOS
Returns	the	angle,	in	radians,	whose	cosine	is	the	given	float	expression;	also
called	arccosine.

Syntax
ACOS	(float_expression)

Arguments
float_expression

Is	an	expression	of	the	type	float	or	real,	with	a	value	from	-1	through	1.
Values	outside	this	range	return	NULL	and	report	a	domain	error.

Return	Types
float

Examples
This	example	returns	the	ACOS	of	the	given	angle.

SET	NOCOUNT	OFF
DECLARE	@angle	float
SET	@angle	=	-1
SELECT	'The	ACOS	of	the	angle	is:	'	+	CONVERT(varchar,	ACOS(@angle))

Here	is	the	result	set:

The	ACOS	of	the	angle	is:	3.14159																								

(1	row(s)	affected)

This	example	sets	@angle	to	a	value	outside	the	valid	range.

SET	NOCOUNT	OFF
DECLARE	@angle	float
SET	@angle	=	1.01
SELECT	'The	ACOS	of	the	angle	is:	'	+	CONVERT(varchar,	ACOS(@angle))

Here	is	the	result	set:

--	
NULL																								

(1	row(s)	affected)

A	domain	error	occurred.

See	Also

Mathematical	Functions

Transact-SQL	Reference

ALL
Compares	a	scalar	value	with	a	single-column	set	of	values.

Syntax
scalar_expression	{	=	|	<>	|	!=	|	>	|	>=	|	!>	|	<	|	<=	|	!<	}	ALL	(subquery)

Arguments
scalar_expression

Is	any	valid	Microsoft®	SQL	Server™	expression.

{	=	|	<>	|	!=	|	>	|	>=	|	!>	|	<	|	<=	|	!<	}

Is	a	comparison	operator.

subquery

Is	a	subquery	that	returns	a	result	set	of	one	column.	The	data	type	of	the
returned	column	must	be	the	same	data	type	as	the	data	type	of
scalar_expression.

Is	a	restricted	SELECT	statement	(the	ORDER	BY	clause,	the	COMPUTE
clause,	and	the	INTO	keyword	are	not	allowed).

Return	Types
Boolean

Result	Value
Returns	TRUE	when	the	comparison	specified	is	TRUE	for	all	pairs
(scalar_expression,	x)	where	x	is	a	value	in	the	single-column	set;	otherwise
returns	FALSE.

See	Also

CASE

Expressions

Functions

LIKE

Operators	(Logical	Operators)

SELECT	(Subqueries)

WHERE

Transact-SQL	Reference

ALTER	DATABASE
Adds	or	removes	files	and	filegroups	from	a	database.	Can	also	be	used	to
modify	the	attributes	of	files	and	filegroups,	such	as	changing	the	name	or	size
of	a	file.	ALTER	DATABASE	provides	the	ability	to	change	the	database	name,
filegroup	names,	and	the	logical	names	of	data	files	and	log	files.

ALTER	DATABASE	supports	the	setting	of	database	options.	In	previous
versions	of	Microsoft®	SQL	Server™,	these	options	could	be	set	with	the
sp_dboption	stored	procedure.	SQL	Server	continues	to	support	sp_dboption	in
this	release	but	may	not	do	so	in	the	future.	Use	the
DATABASEPROPERTYEX	function	to	retrieve	current	settings	for	database
options.

Syntax
ALTER	DATABASE	database	
{	ADD	FILE	<	filespec	>	[,...n]	[TO	FILEGROUP	filegroup_name]	
|	ADD	LOG	FILE	<	filespec	>	[,...n]	
|	REMOVE	FILE	logical_file_name	
|	ADD	FILEGROUP	filegroup_name	
|	REMOVE	FILEGROUP	filegroup_name	
|	MODIFY	FILE	<	filespec	>	
|	MODIFY	NAME	=	new_dbname	
|	MODIFY	FILEGROUP	filegroup_name	{filegroup_property	|	NAME	=
new_filegroup_name	}
|	SET	<	optionspec	>	[,...n]	[WITH	<	termination	>]	
|	COLLATE	<	collation_name	>	
}

<	filespec	>	::=

<	optionspec	>	::=

				<	state_option	>	::=
								{	SINGLE_USER	|	RESTRICTED_USER	|	MULTI_USER	}	
								|	{	OFFLINE	|	ONLINE	}	

								|	{	READ_ONLY	|	READ_WRITE	}	

				<	termination	>	::=	
								ROLLBACK	AFTER	integer	[SECONDS]	
								|	ROLLBACK	IMMEDIATE	
								|	NO_WAIT

				<	cursor_option	>	::=	
								CURSOR_CLOSE_ON_COMMIT	{	ON	|	OFF	}	
								|	CURSOR_DEFAULT	{	LOCAL	|	GLOBAL	}

				<	auto_option	>	::=	
								AUTO_CLOSE	{	ON	|	OFF	}	
								|	AUTO_CREATE_STATISTICS	{	ON	|	OFF	}	
								|	AUTO_SHRINK	{	ON	|	OFF	}	
								|	AUTO_UPDATE_STATISTICS	{	ON	|	OFF	}

				<	sql_option	>	::=	
								ANSI_NULL_DEFAULT	{	ON	|	OFF	}	
								|	ANSI_NULLS	{	ON	|	OFF	}	
								|	ANSI_PADDING	{	ON	|	OFF	}	
								|	ANSI_WARNINGS	{	ON	|	OFF	}	
								|	ARITHABORT	{	ON	|	OFF	}	
								|	CONCAT_NULL_YIELDS_NULL	{	ON	|	OFF	}	
								|	NUMERIC_ROUNDABORT	{	ON	|	OFF	}	
								|	QUOTED_IDENTIFIER	{	ON	|	OFF	}	
								|	RECURSIVE_TRIGGERS	{	ON	|	OFF	}

				<	recovery_option	>	::=	
								RECOVERY	{	FULL	|	BULK_LOGGED	|	SIMPLE	}	
								|	TORN_PAGE_DETECTION	{	ON	|	OFF	}

Arguments
database

Is	the	name	of	the	database	changed.

ADD	FILE

Specifies	that	a	file	is	added.

TO	FILEGROUP

Specifies	the	filegroup	to	which	to	add	the	specified	file.

filegroup_name

Is	the	name	of	the	filegroup	to	add	the	specified	file	to.

ADD	LOG	FILE

Specifies	that	a	log	file	be	added	to	the	specified	database.

REMOVE	FILE

Removes	the	file	description	from	the	database	system	tables	and	deletes	the
physical	file.	The	file	cannot	be	removed	unless	empty.

ADD	FILEGROUP

Specifies	that	a	filegroup	is	to	be	added.

filegroup_name

Is	the	name	of	the	filegroup	to	add	or	drop.

REMOVE	FILEGROUP

Removes	the	filegroup	from	the	database	and	deletes	all	the	files	in	the
filegroup.	The	filegroup	cannot	be	removed	unless	empty.

MODIFY	FILE

Specifies	the	given	file	that	should	be	modified,	including	the	FILENAME,
SIZE,	FILEGROWTH,	and	MAXSIZE	options.	Only	one	of	these	properties
can	be	changed	at	a	time.	NAME	must	be	specified	in	the	<filespec>	to
identify	the	file	to	be	modified.	If	SIZE	is	specified,	the	new	size	must	be
larger	than	the	current	file	size.	FILENAME	can	be	specified	only	for	files	in
the	tempdb	database,	and	the	new	name	does	not	take	effect	until	Microsoft
SQL	Server	is	restarted.

To	modify	the	logical	name	of	a	data	file	or	log	file,	specify	in	NAME	the
logical	file	name	to	be	renamed,	and	specify	for	NEWNAME	the	new	logical
name	for	the	file.

Thus:

MODIFY	FILE	(NAME	=	logical_file_name,	NEWNAME	=
new_logical_name...).

For	optimum	performance	during	multiple	modify-file	operations,	several
ALTER	DATABASE	database	MODIFY	FILE	statements	can	be	run
concurrently.

MODIFY	NAME	=	new_dbname

Renames	the	database.

MODIFY	FILEGROUP	filegroup_name	{	filegroup_property	|	NAME	=
new_filegroup_name	}

Specifies	the	filegroup	to	be	modified	and	the	change	needed.

If	filegroup_name	and	NAME	=	new_filegroup_name	are	specified,	changes
the	filegroup	name	to	the	new_filegroup_name.

If	filegroup_name	and	filegroup_property	are	specified,	indicates	the	given
filegroup	property	be	applied	to	the	filegroup.	The	values	for
filegroup_property	are:

READONLY
Specifies	the	filegroup	is	read-only.	Updates	to	objects	in	it	are	not
allowed.	The	primary	filegroup	cannot	be	made	read-only.	Only	users
with	exclusive	database	access	can	mark	a	filegroup	read-only.

READWRITE
Reverses	the	READONLY	property.	Updates	are	enabled	for	the	objects
in	the	filegroup.	Only	users	who	have	exclusive	access	to	the	database
can	mark	a	filegroup	read/write.

DEFAULT
Specifies	the	filegroup	as	the	default	database	filegroup.	Only	one
database	filegroup	can	be	default.	CREATE	DATABASE	sets	the
primary	filegroup	as	the	initial	default	filegroup.	New	tables	and	indexes
are	created	in	the	default	filegroup—if	no	filegroup	is	specified	in	the
CREATE	TABLE,	ALTER	TABLE,	or	CREATE	INDEX	statements.

WITH	<termination>

Specifies	when	to	roll	back	incomplete	transactions	when	the	database	is
transitioned	from	one	state	to	another.	Only	one	termination	clause	can	be
specified	and	it	follows	the	SET	clauses.

ROLLBACK	AFTER	integer	[SECONDS]	|	ROLLBACK	IMMEDIATE
Specifies	whether	to	roll	back	after	the	specified	number	of	seconds	or
immediately.	If	the	termination	clause	is	omitted,	transactions	are
allowed	to	commit	or	roll	back	on	their	own.

NO_WAIT
Specifies	that	if	the	requested	database	state	or	option	change	cannot
complete	immediately	without	waiting	for	transactions	to	commit	or	roll
back	on	their	own,	the	request	will	fail.

COLLATE	<	collation_name	>

Specifies	the	collation	for	the	database.	Collation	name	can	be	either	a
Windows	collation	name	or	a	SQL	collation	name.	If	not	specified,	the
database	is	assigned	the	default	collation	of	the	SQL	Server	instance.

For	more	information	about	the	Windows	and	SQL	collation	names,	see
COLLATE.

<filespec>

Controls	the	file	properties.

NAME
Specifies	a	logical	name	for	the	file.

logical_file_name
Is	the	name	used	in	Microsoft	SQL	Server	when	referencing	the	file.	The
name	must	be	unique	within	the	database	and	conform	to	the	rules	for
identifiers.	The	name	can	be	a	character	or	Unicode	constant,	a	regular
identifier,	or	a	delimited	identifier.	For	more	information,	see	Using
Identifiers.	

FILENAME
Specifies	an	operating	system	file	name.	When	used	with	MODIFY
FILE,	FILENAME	can	be	specified	only	for	files	in	the	tempdb

JavaScript:hhobj_1.Click()

database.	The	new	tempdb	file	name	takes	effect	only	after	SQL	Server
is	stopped	and	restarted.

'os_file_name'
Is	the	path	and	file	name	used	by	the	operating	system	for	the	file.	The
file	must	reside	in	the	server	in	which	SQL	Server	is	installed.	Data	and
log	files	should	not	be	placed	on	compressed	file	systems.

If	the	file	is	on	a	raw	partition,	os_file_name	must	specify	only
the	drive	letter	of	an	existing	raw	partition.	Only	one	file	can	be
placed	on	each	raw	partition.	Files	on	raw	partitions	do	not
autogrow;	therefore,	the	MAXSIZE	and	FILEGROWTH
parameters	are	not	needed	when	os_file_name	specifies	a	raw
partition.	

SIZE
Specifies	the	file	size.

size
Is	the	size	of	the	file.	The	KB,	MB,	GB,	and	TB	suffixes	can	be	used	to
specify	kilobytes,	megabytes,	gigabytes,	or	terabytes.	The	default	is	MB.
Specify	a	whole	number;	do	not	include	a	decimal.	The	minimum	value
for	size	is	512	KB,	and	the	default	if	size	is	not	specified	is	1	MB.	When
specified	with	ADD	FILE,	size	is	the	initial	size	for	the	file.	When
specified	with	MODIFY	FILE,	size	is	the	new	size	for	the	file,	and	must
be	larger	than	the	current	file	size.

MAXSIZE
Specifies	the	maximum	file	size.

max_size
Is	the	maximum	file	size.	The	KB,	MB,	GB,	and	TB	suffixes	can	be	used
to	specify	kilobytes,	megabytes,	gigabytes,	or	terabytes.	The	default	is
MB.	Specify	a	whole	number;	do	not	include	a	decimal.	If	max_size	is
not	specified,	the	file	size	will	increase	until	the	disk	is	full.	The
Microsoft	Windows	NT®	application	log	warns	an	administrator	when	a
disk	is	about	to	become	full.

UNLIMITED

Specifies	that	the	file	increases	in	size	until	the	disk	is	full.

FILEGROWTH
Specifies	file	increase	increment.	

growth_increment
Is	the	amount	of	space	added	to	the	file	each	time	new	space	is	needed.	A
value	of	0	indicates	no	increase.	The	value	can	be	specified	in	MB,	KB,
or	%.	Specify	a	whole	number;	do	not	include	a	decimal.	When	%	is
specified,	the	increment	size	is	the	specified	percentage	of	the	file	size	at
the	time	the	increment	occurs.	If	a	number	is	specified	without	an	MB,
KB,	or	%	suffix,	the	default	is	MB.	The	default	value	if	FILEGROWTH
is	not	specified	is	10%,	and	the	minimum	value	is	64	KB.	The	size
specified	is	rounded	to	the	nearest	64	KB.

<state_option>

Controls	user	access	to	the	database,	whether	the	database	is	online,	and
whether	writes	are	allowed.

SINGLE_USER	|	RESTRICTED_USER	|	MULTI_USER
Controls	which	users	may	access	the	database.	When	SINGLE_USER	is
specified,	only	one	user	at	a	time	can	access	the	database.	When
RESTRICTED_USER	is	specified,	only	members	of	the	db_owner,
dbcreator,	or	sysadmin	roles	can	use	the	database.	MULTI_USER
returns	the	database	to	its	normal	operating	state.

OFFLINE	|	ONLINE
Controls	whether	the	database	is	offline	or	online.

READ_ONLY	|	READ_WRITE
Specifies	whether	the	database	is	in	read-only	mode.	In	read-only	mode,
users	can	read	data	from	the	database,	not	modify	it.	The	database	cannot
be	in	use	when	READ_ONLY	is	specified.	The	master	database	is	the
exception,	and	only	the	system	administrator	can	use	master	while
READ_ONLY	is	set.	READ_WRITE	returns	the	database	to	read/write
operations.

<cursor_option>

Controls	cursor	options.

CURSOR_CLOSE_ON_COMMIT	ON	|	OFF
If	ON	is	specified,	any	cursors	open	when	a	transaction	is	committed	or
rolled	back	are	closed.	If	OFF	is	specified,	such	cursors	remain	open
when	a	transaction	is	committed;	rolling	back	a	transaction	closes	any
cursors	except	those	defined	as	INSENSITIVE	or	STATIC.

CURSOR_DEFAULTLOCAL	|	GLOBAL
Controls	whether	cursor	scope	defaults	to	LOCAL	or	GLOBAL.

<auto_option>

Controls	automatic	options.

AUTO_CLOSE	ON	|	OFF
If	ON	is	specified,	the	database	is	shut	down	cleanly	and	its	resources	are
freed	after	the	last	user	exits.	If	OFF	is	specified,	the	database	remains
open	after	the	last	user	exits.	

AUTO_CREATE_STATISTICS	ON	|	OFF
If	ON	is	specified,	any	missing	statistics	needed	by	a	query	for
optimization	are	automatically	built	during	optimization.	

AUTO_SHRINK	ON	|	OFF
If	ON	is	specified,	the	database	files	are	candidates	for	automatic
periodic	shrinking.	

AUTO_UPDATE_STATISTICS	ON	|	OFF
If	ON	is	specified,	any	out-of-date	statistics	required	by	a	query	for
optimization	are	automatically	built	during	optimization.	If	OFF	is
specified,	statistics	must	be	updated	manually.

<sql_option>

Controls	the	ANSI	compliance	options.

ANSI_NULL_DEFAULT	ON	|	OFF
If	ON	is	specified,	CREATE	TABLE	follows	SQL-92	rules	to	determine
whether	a	column	allows	null	values.

ANSI_NULLS	ON	|	OFF
If	ON	is	specified,	all	comparisons	to	a	null	value	evaluate	to
UNKNOWN.	If	OFF	is	specified,	comparisons	of	non-UNICODE	values
to	a	null	value	evaluate	to	TRUE	if	both	values	are	NULL.

ANSI_PADDING	ON	|	OFF
If	ON	is	specified,	strings	are	padded	to	the	same	length	before
comparison	or	insert.	If	OFF	is	specified,	strings	are	not	padded.

ANSI_WARNINGS	ON	|	OFF
If	ON	is	specified,	errors	or	warnings	are	issued	when	conditions	such	as
divide-by-zero	occur.	

ARITHABORT	ON	|	OFF
If	ON	is	specified,	a	query	is	terminated	when	an	overflow	or	divide-by-
zero	error	occurs	during	query	execution.

CONCAT_NULL_YIELDS_NULL	ON	|	OFF
If	ON	is	specified,	the	result	of	a	concatenation	operation	is	NULL	when
either	operand	is	NULL.	If	OFF	is	specified,	the	null	value	is	treated	as
an	empty	character	string.	The	default	is	OFF.	

QUOTED_IDENTIFIER	ON	|	OFF
If	ON	is	specified,	double	quotation	marks	can	be	used	to	enclose
delimited	identifiers.

NUMERIC_ROUNDABORT	ON	|	OFF
If	ON	is	specified,	an	error	is	generated	when	loss	of	precision	occurs	in
an	expression.

RECURSIVE_TRIGGERS	ON	|	OFF
If	ON	is	specified,	recursive	firing	of	triggers	is	allowed.
RECURSIVE_TRIGGERS	OFF,	the	default,	prevents	direct	recursion
only.	To	disable	indirect	recursion	as	well,	set	the	nested	triggers	server
option	to	0	using	sp_configure.

<recovery_options>

Controls	database	recovery	options.

RECOVERY	FULL	|	BULK_LOGGED	|	SIMPLE
If	FULL	is	specified,	complete	protection	against	media	failure	is
provided.	If	a	data	file	is	damaged,	media	recovery	can	restore	all
committed	transactions.

If	BULK_LOGGED	is	specified,	protection	against	media	failure	is
combined	with	the	best	performance	and	least	amount	of	log	memory
usage	for	certain	large	scale	or	bulk	operations.	These	operations	include
SELECT	INTO,	bulk	load	operations	(bcp	and	BULK	INSERT),
CREATE	INDEX,	and	text	and	image	operations	(WRITETEXT	and
UPDATETEXT).

Under	the	bulk-logged	recovery	model,	logging	for	the	entire	class	is
minimal	and	cannot	be	controlled	on	an	operation-by-operation	basis.

If	SIMPLE	is	specified,	a	simple	backup	strategy	that	uses	minimal	log
space	is	provided.	Log	space	can	be	automatically	reused	when	no	longer
needed	for	server	failure	recovery.

IMPORTANT		The	simple	recovery	model	is	easier	to	manage	than	the	other
two	models	but	at	the	expense	of	higher	data	loss	exposure	if	a	data	file
is	damaged.	All	changes	since	the	most	recent	database	or	differential
database	backup	are	lost	and	must	be	re-entered	manually.

The	default	recovery	model	is	determined	by	the	recovery	model	of	the
model	database.	To	change	the	default	for	new	databases,	use	ALTER
DATABASE	to	set	the	recovery	option	of	the	model	database.

TORN_PAGE_DETECTION	ON	|	OFF
If	ON	is	specified,	incomplete	pages	can	be	detected.	The	default	is	ON.

Remarks

To	remove	a	database,	use	DROP	DATABASE.	To	rename	a	database,	use
sp_renamedb.	For	more	information	about	decreasing	the	size	of	a	database,	see
DBCC	SHRINKDATABASE.

Before	you	apply	a	different	or	new	collation	to	a	database,	ensure	the	following
conditions	are	in	place:

1.	 You	are	the	only	one	currently	using	the	database.

2.	 No	schema	bound	object	is	dependent	on	the	collation	of	the	database.

If	the	following	objects,	which	are	dependent	on	the	database
collation,	exist	in	the	database,	the	ALTER	DATABASE	database
COLLATE	statement	will	fail.	SQL	Server	will	return	an	error
message	for	each	object	blocking	the	ALTER	action:

User-defined	functions	and	views	created	with
SCHEMABINDING.

Computed	columns.

CHECK	constraints.

Table-valued	functions	that	return	tables	with	character
columns	with	collations	inherited	from	the	default	database
collation.

3.	 Altering	the	database	collation	does	not	create	duplicates	among	any
system	names	for	the	database	objects.

These	namespaces	may	cause	the	failure	of	a	database	collation
alteration	if	duplicate	names	result	from	the	changed	collation:

Object	names	(such	as	procedure,	table,	trigger,	or	view).

Schema	names	(such	as	group,	role,	or	user).

Scalar-type	names	(such	as	system	and	user-defined	types).

Full-text	catalog	names.

Column	or	parameter	names	within	an	object.

Index	names	within	a	table.

Duplicate	names	resulting	from	the	new	collation	will	cause	the	alter
action	to	fail	and	SQL	Server	will	return	an	error	message	specifying
the	namespace	where	the	duplicate	was	found.

You	cannot	add	or	remove	a	file	while	a	BACKUP	statement	is	executing.

To	specify	a	fraction	of	a	megabyte	in	the	size	parameters,	convert	the	value	to
kilobytes	by	multiplying	the	number	by	1024.	For	example,	specify	1536	KB
instead	of	1.5MB	(1.5	x	1024	=	1536).

Permissions
ALTER	DATABASE	permissions	default	to	members	of	the	sysadmin	and
dbcreator	fixed	server	roles,	and	to	members	of	the	db_owner	fixed	database
roles.	These	permissions	are	not	transferable.

Examples

A.	Add	a	file	to	a	database
This	example	creates	a	database	and	alters	it	to	add	a	new	5-MB	data	file.

USE	master
GO
CREATE	DATABASE	Test1	ON
(
	NAME	=	Test1dat1,	
	FILENAME	=	'c:\Program	Files\Microsoft	SQL	Server\MSSQL\Data\t1dat1.ndf',
	SIZE	=	5MB,
	MAXSIZE	=	100MB,
	FILEGROWTH	=	5MB

)
GO
ALTER	DATABASE	Test1	
ADD	FILE	
(
	NAME	=	Test1dat2,
	FILENAME	=	'c:\Program	Files\Microsoft	SQL	Server\MSSQL\Data\t1dat2.ndf',
	SIZE	=	5MB,
	MAXSIZE	=	100MB,
	FILEGROWTH	=	5MB
)
GO

B.	Add	a	filegroup	with	two	files	to	a	database
This	example	creates	a	filegroup	in	the	Test	1	database	created	in	Example	A
and	adds	two	5-MB	files	to	the	filegroup.	It	then	makes	Test1FG1	the	default
filegroup.

USE	master
GO
ALTER	DATABASE	Test1
ADD	FILEGROUP	Test1FG1
GO

ALTER	DATABASE	Test1	
ADD	FILE	
(NAME	=	test1dat3,
		FILENAME	=	'c:\Program	Files\Microsoft	SQL	Server\MSSQL\Data\t1dat3.ndf',
		SIZE	=	5MB,
		MAXSIZE	=	100MB,
		FILEGROWTH	=	5MB),
(NAME	=	test1dat4,
		FILENAME	=	'c:\Program	Files\Microsoft	SQL	Server\MSSQL\Data\t1dat4.ndf',

		SIZE	=	5MB,
		MAXSIZE	=	100MB,
		FILEGROWTH	=	5MB)
TO	FILEGROUP	Test1FG1

ALTER	DATABASE	Test1
MODIFY	FILEGROUP	Test1FG1	DEFAULT
GO

C.	Add	two	log	files	to	a	database
This	example	adds	two	5-MB	log	files	to	a	database.

USE	master
GO
ALTER	DATABASE	Test1	
ADD	LOG	FILE	
(NAME	=	test1log2,
		FILENAME	=	'c:\Program	Files\Microsoft	SQL	Server\MSSQL\Data\test2log.ldf',
		SIZE	=	5MB,
		MAXSIZE	=	100MB,
		FILEGROWTH	=	5MB),
(NAME	=	test1log3,
		FILENAME	=	'c:\Program	Files\Microsoft	SQL	Server\MSSQL\Data\test3log.ldf',
		SIZE	=	5MB,
		MAXSIZE	=	100MB,
		FILEGROWTH	=	5MB)
GO

D.	Remove	a	file	from	a	database
This	example	removes	one	of	the	files	added	to	the	Test1	database	in	Example
B.

USE	master

GO
ALTER	DATABASE	Test1	
REMOVE	FILE	test1dat4
GO

E.	Modify	a	file
This	example	increases	the	size	of	one	of	the	files	added	to	the	Test1	database	in
Example	B.

USE	master
GO
ALTER	DATABASE	Test1	
MODIFY	FILE
			(NAME	=	test1dat3,
			SIZE	=	20MB)
GO

F.	Make	the	primary	filegroup	the	default
This	example	makes	the	primary	filegroup	the	default	filegroup	if	another
filegroup	was	made	the	default	earlier.

USE	master
GO
ALTER	DATABASE	MyDatabase	
MODIFY	FILEGROUP	[PRIMARY]	DEFAULT
GO

See	Also

CREATE	DATABASE

DROP	DATABASE

sp_helpdb

sp_helpfile

sp_helpfilegroup

sp_renamedb

sp_spaceused

Using	Recovery	Models

JavaScript:hhobj_2.Click()

Transact-SQL	Reference

ALTER	FUNCTION
Alters	an	existing	user-defined	function,	previously	created	by	executing	the
CREATE	FUNCTION	statement,	without	changing	permissions	and	without
affecting	any	dependent	functions,	stored	procedures,	or	triggers.

For	more	information	about	the	parameters	used	in	the	ALTER	FUNCTION
statement,	see	CREATE	FUNCTION.

Syntax
Scalar	Functions

ALTER	FUNCTION	[owner_name.]	function_name	
				([{	@parameter_name	scalar_parameter_data_type	[=	default]	}	[,...n]])

RETURNS	scalar_return_data_type

[WITH	<	function_option>	[,...n]]

[AS]

BEGIN	
				function_body	
				RETURN	scalar_expression
END

Inline	Table-valued	Functions

ALTER	FUNCTION	[owner_name.]	function_name	
				([{	@parameter_name	scalar_parameter_data_type	[=	default]	}	[,...n]])

RETURNS	TABLE

[WITH	<	function_option	>	[,...n]]

[AS]

RETURN	[(]	select-stmt	[)]

Multi-statement	Table-valued	Functions

ALTER	FUNCTION	[owner_name.]	function_name	

				([{	@parameter_name	scalar_parameter_data_type	[=	default]	}	[,...n]])

RETURNS	@return_variable	TABLE	<	table_type_definition	>

[WITH	<	function_option	>	[,...n]]

[AS]

BEGIN	
				function_body	
				RETURN
END

<	function_option	>	::=	
				{	ENCRYPTION	|	SCHEMABINDING	}

<	table_type_definition	>	::	=	
				({	column_definition	|	table_constraint	}	[,...n])

Arguments
owner_name

Is	the	name	of	the	user	ID	that	owns	the	user-defined	function	to	be	changed.
owner_name	must	be	an	existing	user	ID.

function_name

Is	the	user-defined	function	to	be	changed.	Function	names	must	conform	to
the	rules	for	identifiers	and	must	be	unique	within	the	database	and	to	its
owner.

@parameter_name

Is	a	parameter	in	the	user-defined	function.	One	or	more	parameters	can	be
declared.	A	function	can	have	a	maximum	of	1,024	parameters.	The	value	of
each	declared	parameter	must	be	supplied	by	the	user	when	the	function	is
executed	(unless	a	default	for	the	parameter	is	defined).	When	a	parameter	of
the	function	has	a	default	value,	the	keyword	"default"	must	be	specified
when	calling	the	function	in	order	to	get	the	default	value.	This	behavior	is
different	from	parameters	with	default	values	in	stored	procedures	in	which
omitting	the	parameter	also	implies	the	default	value.

Specify	a	parameter	name	using	an	at	sign	(@)	as	the	first	character.	The
parameter	name	must	conform	to	the	rules	for	identifiers.	Parameters	are
local	to	the	function;	the	same	parameter	names	can	be	used	in	other
functions.	Parameters	can	take	the	place	only	of	constants;	they	cannot	be
used	in	place	of	table	names,	column	names,	or	the	names	of	other	database
objects.

scalar_parameter_data_type

Is	the	parameter	data	type.	All	scalar	data	types,	including	bigint	and
sql_variant,	can	be	used	as	a	parameter	for	user-defined	functions.	The
timestamp	data	type	is	not	supported.	Nonscalar	types	such	as	cursor	and
table	cannot	be	specified.

scalar_return_data_type

Is	the	return	value	of	a	scalar	user-defined	function.	scalar_return_data_type
can	be	any	of	the	scalar	data	types	supported	by	SQL	Server,	except	text,
ntext,	image,	and	timestamp.

scalar_expression

Specifies	that	the	scalar	function	returns	a	scalar	value.

TABLE

Specifies	that	the	return	value	of	the	table-valued	function	is	a	table.

In	inline	table-valued	functions,	the	TABLE	return	value	is	defined	through	a
single	SELECT	statement.	Inline	functions	do	not	have	associated	return
variables.

In	multi-statement	table-valued	functions,	@return_variable	is	a	TABLE
variable,	used	to	store	and	accumulate	the	rows	that	should	be	returned	as	the
value	of	the	function.

function_body

Specifies	that	a	series	of	Transact-SQL	statements,	which	together	do	not
produce	a	side	effect,	define	the	value	of	the	function.	function_body	is	used
only	in	scalar	functions	and	multi-statement	table-valued	functions.

In	scalar	functions,	function_body	is	a	series	of	Transact-SQL	statements	that
together	evaluate	to	a	scalar	value.

In	multi-statement	table-valued	functions,	function_body	is	a	series	of
Transact-SQL	statements	that	populate	a	table	return	variable.

select-stmt

Is	the	single	SELECT	statement	that	defines	the	return	value	of	an	inline
table-valued	function.

ENCRYPTION

Indicates	that	SQL	Server	encrypts	the	system	table	columns	containing	the
text	of	the	CREATE	FUNCTION	statement.	Using	ENCRYPTION	prevents
the	function	from	being	published	as	part	of	SQL	Server	replication.

SCHEMABINDING

Specifies	that	the	function	is	bound	to	the	database	objects	that	it	references.
This	condition	will	prevent	changes	to	the	function	if	other	schema	bound
objects	are	referencing	it.

The	binding	of	the	function	to	the	objects	it	references	is	removed	only	when
one	of	two	actions	take	place:

The	function	is	dropped.

The	function	is	altered	(using	the	ALTER	statement)	with	the
SCHEMABINDING	option	not	specified.

For	a	list	of	conditions	that	must	be	met	before	a	function	can	be	schema
bound,	see	CREATE	FUNCTION.

Remarks
ALTER	FUNCTION	cannot	be	used	to	change	a	scalar-valued	function	to	a
table-valued	function,	or	vice	versa.	Also,	ALTER	FUNCTION	cannot	be	used
to	change	an	inline	function	to	a	multistatement	function,	or	vice	versa.

Permissions
ALTER	FUNCTION	permissions	default	to	members	of	the	sysadmin	fixed
server	role,	and	the	db_owner	and	db_ddladmin	fixed	database	roles,	and	the

owner	of	the	function,	and	are	not	transferable.

Owners	of	functions	have	EXECUTE	permission	on	their	functions.	However,
other	users	may	be	granted	such	permissions	as	well.

See	Also

CREATE	FUNCTION

DROP	FUNCTION

Transact-SQL	Reference

ALTER	PROCEDURE
Alters	a	previously	created	procedure,	created	by	executing	the	CREATE
PROCEDURE	statement,	without	changing	permissions	and	without	affecting
any	dependent	stored	procedures	or	triggers.	For	more	information	about	the
parameters	used	in	the	ALTER	PROCEDURE	statement,	see	CREATE
PROCEDURE.

Syntax
ALTER	PROC	[EDURE]	procedure_name	[;	number]	
				[{	@parameter	data_type	}	
								[VARYING]	[=	default]	[OUTPUT]	
]	[,...n]	
[WITH	
				{	RECOMPILE	|	ENCRYPTION	
								|	RECOMPILE	,	ENCRYPTION	
				}	
]
[FOR	REPLICATION]	
AS	
				sql_statement	[...n]

Arguments
procedure_name

Is	the	name	of	the	procedure	to	change.	Procedure	names	must	conform	to
the	rules	for	identifiers.

;number

Is	an	existing	optional	integer	used	to	group	procedures	of	the	same	name	so
that	they	can	be	dropped	together	with	a	single	DROP	PROCEDURE
statement.

@parameter

Is	a	parameter	in	the	procedure.

data_type

Is	the	data	type	of	the	parameter.

VARYING

Specifies	the	result	set	supported	as	an	output	parameter	(constructed
dynamically	by	the	stored	procedure	and	whose	contents	can	vary).	Applies
only	to	cursor	parameters.

default

Is	a	default	value	for	the	parameter.

OUTPUT

Indicates	that	the	parameter	is	a	return	parameter.

n

Is	a	placeholder	indicating	up	to	2,100	parameters	can	be	specified.

{RECOMPILE	|	ENCRYPTION	|	RECOMPILE,	ENCRYPTION}

RECOMPILE	indicates	that	Microsoft®	SQL	Server™	does	not	cache	a	plan
for	this	procedure	and	the	procedure	is	recompiled	at	run	time.

ENCRYPTION	indicates	that	SQL	Server	encrypts	the	syscomments	table
entry	that	contains	the	text	of	the	ALTER	PROCEDURE	statement.	Using
ENCRYPTION	prevents	the	procedure	from	being	published	as	part	of	SQL
Server	replication.

Note		During	an	upgrade,	SQL	Server	uses	the	encrypted	comments	stored	in
syscomments	to	re-create	encrypted	procedures.

FOR	REPLICATION

Specifies	that	stored	procedures	created	for	replication	cannot	be	executed	on
the	Subscriber.	A	stored	procedure	created	with	the	FOR	REPLICATION
option	is	used	as	a	stored	procedure	filter	and	only	executed	during
replication.	This	option	cannot	be	used	with	the	WITH	RECOMPILE	option.

AS

Are	the	actions	the	procedure	is	to	take.

sql_statement

Is	any	number	and	type	of	Transact-SQL	statements	to	be	included	in	the
procedure.	Some	limitations	do	apply.	For	more	information,	see
sql_statement	Limitations	in	CREATE	PROCEDURE.

n

Is	a	placeholder	indicating	that	multiple	Transact-SQL	statements	can	be
included	in	the	procedure.	For	more	information,	see	CREATE
PROCEDURE.

Remarks
For	more	information	about	ALTER	PROCEDURE,	see	Remarks	in	CREATE
PROCEDURE.

Note		If	a	previous	procedure	definition	was	created	using	WITH
ENCRYPTION	or	WITH	RECOMPILE,	these	options	are	only	enabled	if	they
are	included	in	ALTER	PROCEDURE.

Permissions
ALTER	PROCEDURE	permissions	default	to	members	of	the	sysadmin	fixed
server	role,	and	the	db_owner	and	db_ddladmin	fixed	database	roles,	and	the
owner	of	the	procedure,	and	are	not	transferable.

Permissions	and	the	startup	property	remain	unchanged	for	a	procedure	modified
with	ALTER	PROCEDURE.

Examples
This	example	creates	a	procedure	called	Oakland_authors	that,	by	default,
contains	all	authors	from	the	city	of	Oakland,	California.	Permissions	are
granted.	Then,	when	the	procedure	must	be	changed	to	retrieve	all	authors	from
California,	ALTER	PROCEDURE	is	used	to	redefine	the	stored	procedure.

USE	pubs
GO
IF	EXISTS(SELECT	name	FROM	sysobjects	WHERE	name	=	'Oakland_authors'	AND	type	=	'P')

			DROP	PROCEDURE	Oakland_authors
GO
--	Create	a	procedure	from	the	authors	table	that	contains	author	
--	information	for	those	authors	who	live	in	Oakland,	California.
USE	pubs
GO
CREATE	PROCEDURE	Oakland_authors
AS	
SELECT	au_fname,	au_lname,	address,	city,	zip
FROM	pubs..authors
WHERE	city	=	'Oakland'
and	state	=	'CA'
ORDER	BY	au_lname,	au_fname
GO
--	Here	is	the	statement	to	actually	see	the	text	of	the	procedure.
SELECT	o.id,	c.text
FROM	sysobjects	o	INNER	JOIN	syscomments	c	ON	o.id	=	c.id
WHERE	o.type	=	'P'	and	o.name	=	'Oakland_authors'
--	Here,	EXECUTE	permissions	are	granted	on	the	procedure	to	public.
GRANT	EXECUTE	ON	Oakland_authors	TO	public
GO
--	The	procedure	must	be	changed	to	include	all
--	authors	from	California,	regardless	of	what	city	they	live	in.
--	If	ALTER	PROCEDURE	is	not	used	but	the	procedure	is	dropped
--	and	then	re-created,	the	above	GRANT	statement	and	any	
--	other	statements	dealing	with	permissions	that	pertain	to	this	
--	procedure	must	be	re-entered.
ALTER	PROCEDURE	Oakland_authors
WITH	ENCRYPTION
AS	
SELECT	au_fname,	au_lname,	address,	city,	zip
FROM	pubs..authors
WHERE	state	=	'CA'

ORDER	BY	au_lname,	au_fname
GO
--	Here	is	the	statement	to	actually	see	the	text	of	the	procedure.
SELECT	o.id,	c.text
FROM	sysobjects	o	INNER	JOIN	syscomments	c	ON	o.id	=	c.id
WHERE	o.type	=	'P'	and	o.name	=	'Oakland_authors'
GO

See	Also

Data	Types

DROP	PROCEDURE

EXECUTE

Programming	Stored	Procedures

System	Tables

Using	Identifiers

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

ALTER	TABLE
Modifies	a	table	definition	by	altering,	adding,	or	dropping	columns	and
constraints,	or	by	disabling	or	enabling	constraints	and	triggers.

Syntax
ALTER	TABLE	table	
{	[ALTER	COLUMN	column_name	
				{	new_data_type	[(precision	[,	scale])]	
								[COLLATE	<	collation_name	>]	
								[NULL	|	NOT	NULL]	
								|	{ADD	|	DROP	}	ROWGUIDCOL	}	
]	
				|	ADD	
								{	[<	column_definition	>]	
								|		column_name	AS	computed_column_expression	
								}	[,...n]	
				|	[WITH	CHECK	|	WITH	NOCHECK]	ADD	
								{	<	table_constraint	>	}	[,...n]	
				|	DROP	
								{	[CONSTRAINT]	constraint_name	
												|	COLUMN	column	}	[,...n]	
				|	{	CHECK	|	NOCHECK	}	CONSTRAINT	
								{	ALL	|	constraint_name	[,...n]	}	
				|	{	ENABLE	|	DISABLE	}	TRIGGER	
								{	ALL	|	trigger_name	[,...n]	}	
}

<	column_definition	>	::=	
				{	column_name	data_type	}	
				[[DEFAULT	constant_expression]	[WITH	VALUES]	
				|	[IDENTITY	[(seed	,	increment)	[NOT	FOR	REPLICATION]]]	
]	
				[ROWGUIDCOL]	
				[COLLATE	<	collation_name	>]	

				[<	column_constraint	>]	[...n]

<	column_constraint	>	::=	
				[CONSTRAINT	constraint_name]	
				{	[NULL	|	NOT	NULL]	
								|	[{	PRIMARY	KEY	|	UNIQUE	}	
												[CLUSTERED	|	NONCLUSTERED]	
												[WITH	FILLFACTOR	=	fillfactor]	
												[ON	{	filegroup	|	DEFAULT	}]	
]	
								|	[[FOREIGN	KEY]	
												REFERENCES	ref_table	[(ref_column)]	
												[ON	DELETE	{	CASCADE	|	NO	ACTION	}]	
												[ON	UPDATE	{	CASCADE	|	NO	ACTION	}]	
												[NOT	FOR	REPLICATION]	
]	
								|	CHECK	[NOT	FOR	REPLICATION]	
												(logical_expression)	
				}

<	table_constraint	>	::=	
				[CONSTRAINT	constraint_name]	
				{	[{	PRIMARY	KEY	|	UNIQUE	}	
								[CLUSTERED	|	NONCLUSTERED]	
								{	(column	[,...n])	}	
								[WITH	FILLFACTOR	=	fillfactor]	
								[ON	{filegroup	|	DEFAULT	}]	
]	
								|				FOREIGN	KEY	
												[(column	[,...n])]	
												REFERENCES	ref_table	[(ref_column	[,...n])]	
												[ON	DELETE	{	CASCADE	|	NO	ACTION	}]	
												[ON	UPDATE	{	CASCADE	|	NO	ACTION	}]	
												[NOT	FOR	REPLICATION]	
								|	DEFAULT	constant_expression	
												[FOR	column]	[WITH	VALUES]	
								|				CHECK	[NOT	FOR	REPLICATION]	
												(search_conditions)	

				}

Arguments
table

Is	the	name	of	the	table	to	be	altered.	If	the	table	is	not	in	the	current
database	or	owned	by	the	current	user,	the	database	and	owner	can	be
explicitly	specified.

ALTER	COLUMN

Specifies	that	the	given	column	is	to	be	changed	or	altered.	ALTER
COLUMN	is	not	allowed	if	the	compatibility	level	is	65	or	earlier.	For	more
information,	see	sp_dbcmptlevel.

The	altered	column	cannot	be:

A	column	with	a	text,	image,	ntext,	or	timestamp	data	type.

The	ROWGUIDCOL	for	the	table.

A	computed	column	or	used	in	a	computed	column.

A	replicated	column.

Used	in	an	index,	unless	the	column	is	a	varchar,	nvarchar,	or
varbinary	data	type,	the	data	type	is	not	changed,	and	the	new	size	is
equal	to	or	larger	than	the	old	size.

Used	in	statistics	generated	by	the	CREATE	STATISTICS	statement.
First	remove	the	statistics	using	the	DROP	STATISTICS	statement.
Statistics	automatically	generated	by	the	query	optimizer	are
automatically	dropped	by	ALTER	COLUMN.

Used	in	a	PRIMARY	KEY	or	[FOREIGN	KEY]	REFERENCES

constraint.

Used	in	a	CHECK	or	UNIQUE	constraint,	except	that	altering	the
length	of	a	variable-length	column	used	in	a	CHECK	or	UNIQUE
constraint	is	allowed.

Associated	with	a	default,	except	that	changing	the	length,	precision,	or
scale	of	a	column	is	allowed	if	the	data	type	is	not	changed.

Some	data	type	changes	may	result	in	a	change	in	the	data.	For	example,
changing	an	nchar	or	nvarchar	column	to	char	or	varchar	can	result	in	the
conversion	of	extended	characters.	For	more	information,	see	CAST	and
CONVERT.	Reducing	the	precision	and	scale	of	a	column	may	result	in	data
truncation.

column_name

Is	the	name	of	the	column	to	be	altered,	added,	or	dropped.	For	new
columns,	column_name	can	be	omitted	for	columns	created	with	a
timestamp	data	type.	The	name	timestamp	is	used	if	no	column_name	is
specified	for	a	timestamp	data	type	column.

new_data_type

Is	the	new	data	type	for	the	altered	column.	Criteria	for	the	new_data_type	of
an	altered	column	are:

The	previous	data	type	must	be	implicitly	convertible	to	the	new	data
type.

new_data_type	cannot	be	timestamp.

ANSI	null	defaults	are	always	on	for	ALTER	COLUMN;	if	not
specified,	the	column	is	nullable.

ANSI	padding	is	always	on	for	ALTER	COLUMN.

If	the	altered	column	is	an	identity	column,	new_data_type	must	be	a
data	type	that	supports	the	identity	property.

The	current	setting	for	SET	ARITHABORT	is	ignored.	ALTER	TABLE
operates	as	if	the	ARITHABORT	option	is	ON.

precision

Is	the	precision	for	the	specified	data	type.	For	more	information	about	valid
precision	values,	see	Precision,	Scale,	and	Length.

scale

Is	the	scale	for	the	specified	data	type.	For	more	information	about	valid
scale	values,	see	Precision,	Scale,	and	Length.

COLLATE	<	collation_name	>

Specifies	the	new	collation	for	the	altered	column.	Collation	name	can	be
either	a	Windows	collation	name	or	a	SQL	collation	name.	For	a	list	and
more	information,	see	Windows	Collation	Name	and	SQL	Collation	Name.

The	COLLATE	clause	can	be	used	to	alter	the	collations	only	of	columns	of
the	char,	varchar,	text,	nchar,	nvarchar,	and	ntext	data	types.	If	not
specified,	the	column	is	assigned	the	default	collation	of	the	database.

ALTER	COLUMN	cannot	have	a	collation	change	if	any	of	the	following
conditions	apply:

If	a	check	constraint,	foreign	key	constraint,	or	computed	columns
reference	the	column	changed.	

If	any	index,	statistics,	or	full-text	index	are	created	on	the	column.
Statistics	created	automatically	on	the	column	changed	will	be	dropped
if	the	column	collation	is	altered.

If	a	SCHEMABOUND	view	or	function	references	the	column.

For	more	information	about	the	COLLATE	clause,	see	COLLATE.

NULL	|	NOT	NULL

Specifies	whether	the	column	can	accept	null	values.	Columns	that	do	not
allow	null	values	can	be	added	with	ALTER	TABLE	only	if	they	have	a
default	specified.	A	new	column	added	to	a	table	must	either	allow	null
values,	or	the	column	must	be	specified	with	a	default	value.

If	the	new	column	allows	null	values	and	no	default	is	specified,	the	new
column	contains	a	null	value	for	each	row	in	the	table.	If	the	new	column
allows	null	values	and	a	default	definition	is	added	with	the	new	column,	the
WITH	VALUES	option	can	be	used	to	store	the	default	value	in	the	new
column	for	each	existing	row	in	the	table.

If	the	new	column	does	not	allow	null	values,	a	DEFAULT	definition	must
be	added	with	the	new	column,	and	the	new	column	automatically	loads	with
the	default	value	in	the	new	columns	in	each	existing	row.

NULL	can	be	specified	in	ALTER	COLUMN	to	make	a	NOT	NULL	column
allow	null	values,	except	for	columns	in	PRIMARY	KEY	constraints.	NOT
NULL	can	be	specified	in	ALTER	COLUMN	only	if	the	column	contains	no
null	values.	The	null	values	must	be	updated	to	some	value	before	the
ALTER	COLUMN	NOT	NULL	is	allowed,	such	as:

UPDATE	MyTable	SET	NullCol	=	N'some_value'	WHERE	NullCol	IS	NULL

ALTER	TABLE	MyTable	ALTER	COLUMN	NullCOl	NVARCHAR(20)	NOT	NULL

If	NULL	or	NOT	NULL	is	specified	with	ALTER	COLUMN,
new_data_type	[(precision	[,	scale])]	must	also	be	specified.	If	the	data	type,
precision,	and	scale	are	not	changed,	specify	the	current	column	values.

[{ADD	|	DROP}	ROWGUIDCOL]

Specifies	the	ROWGUIDCOL	property	is	added	to	or	dropped	from	the
specified	column.	ROWGUIDCOL	is	a	keyword	indicating	that	the	column
is	a	row	global	unique	identifier	column.	Only	one	uniqueidentifier	column
per	table	can	be	designated	as	the	ROWGUIDCOL	column.	The
ROWGUIDCOL	property	can	be	assigned	only	to	a	uniqueidentifier
column.

The	ROWGUIDCOL	property	does	not	enforce	uniqueness	of	the	values

stored	in	the	column.	It	also	does	not	automatically	generate	values	for	new
rows	inserted	into	the	table.	To	generate	unique	values	for	each	column,
either	use	the	NEWID	function	on	INSERT	statements	or	specify	the
NEWID	function	as	the	default	for	the	column.

ADD

Specifies	that	one	or	more	column	definitions,	computed	column	definitions,
or	table	constraints	are	added.

computed_column_expression

Is	an	expression	that	defines	the	value	of	a	computed	column.	A	computed
column	is	a	virtual	column	not	physically	stored	in	the	table	but	computed
from	an	expression	using	other	columns	in	the	same	table.	For	example,	a
computed	column	could	have	the	definition:	cost	AS	price	*	qty.	The
expression	can	be	a	noncomputed	column	name,	constant,	function,	variable,
and	any	combination	of	these	connected	by	one	or	more	operators.	The
expression	cannot	be	a	subquery.

Computed	columns	can	be	used	in	select	lists,	WHERE	clauses,	ORDER	BY
clauses,	or	any	other	locations	where	regular	expressions	can	be	used,	with
these	exceptions:

A	computed	column	cannot	be	used	as	a	DEFAULT	or	FOREIGN	KEY
constraint	definition	or	with	a	NOT	NULL	constraint	definition.
However,	a	computed	column	can	be	used	as	a	key	column	in	an	index
or	as	part	of	any	PRIMARY	KEY	or	UNIQUE	constraint,	if	the
computed	column	value	is	defined	by	a	deterministic	expression	and	the
data	type	of	the	result	is	allowed	in	index	columns.

For	example,	if	the	table	has	integer	columns	a	and	b,	the	computed
column	a+b	may	be	indexed	but	computed	column	a+DATEPART(dd,
GETDATE())	cannot	be	indexed	because	the	value	may	change	in
subsequent	invocations.

A	computed	column	cannot	be	the	target	of	an	INSERT	or	UPDATE
statement.

Note		Because	each	row	in	a	table	may	have	different	values	for
columns	involved	in	a	computed	column,	the	computed	column	may	not

have	the	same	result	for	each	row.

n

Is	a	placeholder	indicating	that	the	preceding	item	can	be	repeated	n	number
of	times.

WITH	CHECK	|	WITH	NOCHECK

Specifies	whether	the	data	in	the	table	is	or	is	not	validated	against	a	newly
added	or	re-enabled	FOREIGN	KEY	or	CHECK	constraint.	If	not	specified,
WITH	CHECK	is	assumed	for	new	constraints,	and	WITH	NOCHECK	is
assumed	for	re-enabled	constraints.

The	WITH	CHECK	and	WITH	NOCHECK	clauses	cannot	be	used	for
PRIMARY	KEY	and	UNIQUE	constraints.

If	you	do	not	want	to	verify	new	CHECK	or	FOREIGN	KEY	constraints
against	existing	data,	use	WITH	NOCHECK.	This	is	not	recommended
except	in	rare	cases.	The	new	constraint	will	be	evaluated	in	all	future
updates.	Any	constraint	violations	suppressed	by	WITH	NOCHECK	when
the	constraint	is	added	may	cause	future	updates	to	fail	if	they	update	rows
with	data	that	does	not	comply	with	the	constraint.

Constraints	defined	WITH	NOCHECK	are	not	considered	by	the	query
optimizer.	These	constraints	are	ignored	until	all	such	constraints	are	re-
enabled	using	ALTER	TABLE	table	CHECK	CONSTRAINT	ALL.

DROP	{	[CONSTRAINT]	constraint_name	|	COLUMN	column_name	}

Specifies	that	constraint_name	or	column_name	is	removed	from	the	table.
DROP	COLUMN	is	not	allowed	if	the	compatibility	level	is	65	or	earlier.
Multiple	columns	and	constraints	can	be	listed.	A	column	cannot	be	dropped
if	it	is:

A	replicated	column.

Used	in	an	index.

Used	in	a	CHECK,	FOREIGN	KEY,	UNIQUE,	or	PRIMARY	KEY
constraint.

Associated	with	a	default	defined	with	the	DEFAULT	keyword,	or
bound	to	a	default	object.

Bound	to	a	rule.

{	CHECK	|	NOCHECK}	CONSTRAINT

Specifies	that	constraint_name	is	enabled	or	disabled.	When	disabled,	future
inserts	or	updates	to	the	column	are	not	validated	against	the	constraint
conditions.	This	option	can	only	be	used	with	FOREIGN	KEY	and	CHECK
constraints.

ALL
Specifies	that	all	constraints	are	disabled	with	the	NOCHECK	option,	or
enabled	with	the	CHECK	option.

{ENABLE	|	DISABLE}	TRIGGER

Specifies	that	trigger_name	is	enabled	or	disabled.	When	a	trigger	is
disabled	it	is	still	defined	for	the	table;	however,	when	INSERT,	UPDATE,	or
DELETE	statements	are	executed	against	the	table,	the	actions	in	the	trigger
are	not	performed	until	the	trigger	is	re-enabled.

ALL
Specifies	that	all	triggers	in	the	table	are	enabled	or	disabled.

trigger_name
Specifies	the	name	of	the	trigger	to	disable	or	enable.

column_name	data_type

Is	the	data	type	for	the	new	column.	data_type	can	be	any	Microsoft®	SQL
Server™	or	user-defined	data	type.

DEFAULT

Is	a	keyword	that	specifies	the	default	value	for	the	column.	DEFAULT
definitions	can	be	used	to	provide	values	for	a	new	column	in	the	existing

rows	of	data.	DEFAULT	definitions	cannot	be	added	to	columns	that	have	a
timestamp	data	type,	an	IDENTITY	property,	an	existing	DEFAULT
definition,	or	a	bound	default.	If	the	column	has	an	existing	default,	the
default	must	be	dropped	before	the	new	default	can	be	added.	To	maintain
compatibility	with	earlier	versions	of	SQL	Server,	it	is	possible	to	assign	a
constraint	name	to	a	DEFAULT.

IDENTITY

Specifies	that	the	new	column	is	an	identity	column.	When	a	new	row	is
added	to	the	table,	SQL	Server	provides	a	unique,	incremental	value	for	the
column.	Identity	columns	are	commonly	used	in	conjunction	with
PRIMARY	KEY	constraints	to	serve	as	the	unique	row	identifier	for	the
table.	The	IDENTITY	property	can	be	assigned	to	a	tinyint,	smallint,	int,
bigint,	decimal(p,0),	or	numeric(p,0)	column.	Only	one	identity	column
can	be	created	per	table.	The	DEFAULT	keyword	and	bound	defaults	cannot
be	used	with	an	identity	column.	Either	both	the	seed	and	increment	must	be
specified,	or	neither.	If	neither	are	specified,	the	default	is	(1,1).

Seed
Is	the	value	used	for	the	first	row	loaded	into	the	table.

Increment
Is	the	incremental	value	added	to	the	identity	value	of	the	previous	row
loaded.

NOT	FOR	REPLICATION

Specifies	that	the	IDENTITY	property	should	not	be	enforced	when	a
replication	login,	such	as	sqlrepl,	inserts	data	into	the	table.	NOT	FOR
REPLICATION	can	also	be	specified	on	constraints.	The	constraint	is	not
checked	when	a	replication	login	inserts	data	into	the	table.

CONSTRAINT

Specifies	the	beginning	of	a	PRIMARY	KEY,	UNIQUE,	FOREIGN	KEY,	or
CHECK	constraint,	or	a	DEFAULT	definition.

constraint_name

Is	the	new	constraint.	Constraint	names	must	follow	the	rules	for	identifiers,

except	that	the	name	cannot	begin	with	a	number	sign	(#).	If
constraint_name	is	not	supplied,	a	system-generated	name	is	assigned	to	the
constraint.

PRIMARY	KEY

Is	a	constraint	that	enforces	entity	integrity	for	a	given	column	or	columns
through	a	unique	index.	Only	one	PRIMARY	KEY	constraint	can	be	created
for	each	table.

UNIQUE

Is	a	constraint	that	provides	entity	integrity	for	a	given	column	or	columns
through	a	unique	index.

CLUSTERED	|	NONCLUSTERED

Specifies	that	a	clustered	or	nonclustered	index	is	created	for	the	PRIMARY
KEY	or	UNIQUE	constraint.	PRIMARY	KEY	constraints	default	to
CLUSTERED;	UNIQUE	constraints	default	to	NONCLUSTERED.

If	a	clustered	constraint	or	index	already	exists	on	a	table,	CLUSTERED
cannot	be	specified	in	ALTER	TABLE.	If	a	clustered	constraint	or	index
already	exists	on	a	table,	PRIMARY	KEY	constraints	default	to
NONCLUSTERED.

WITH	FILLFACTOR	=	fillfactor

Specifies	how	full	SQL	Server	should	make	each	index	page	used	to	store
the	index	data.	User-specified	fillfactor	values	can	be	from	1	through	100.	If
a	value	is	not	specified,	the	default	is	0.	A	lower	fillfactor	value	creates	an
index	with	more	space	available	for	new	index	entries	without	having	to
allocate	new	space.	For	more	information,	see	CREATE	INDEX.

ON	{filegroup	|	DEFAULT}

Specifies	the	storage	location	of	the	index	created	for	the	constraint.	If
filegroup	is	specified,	the	index	is	created	in	the	named	filegroup.	If
DEFAULT	is	specified,	the	index	is	created	in	the	default	filegroup.	If	ON	is
not	specified,	the	index	is	created	in	the	filegroup	that	contains	the	table.	If
ON	is	specified	when	adding	a	clustered	index	for	a	PRIMARY	KEY	or
UNIQUE	constraint,	the	entire	table	is	moved	to	the	specified	filegroup
when	the	clustered	index	is	created.

DEFAULT,	in	this	context,	is	not	a	keyword.	DEFAULT	is	an	identifier	for
the	default	filegroup	and	must	be	delimited,	as	in	ON	"DEFAULT"	or	ON
[DEFAULT].

FOREIGN	KEY...REFERENCES

Is	a	constraint	that	provides	referential	integrity	for	the	data	in	the	column.
FOREIGN	KEY	constraints	require	that	each	value	in	the	column	exists	in
the	specified	column	in	the	referenced	table.

ref_table

Is	the	table	referenced	by	the	FOREIGN	KEY	constraint.

ref_column

Is	a	column	or	list	of	columns	in	parentheses	referenced	by	the	new
FOREIGN	KEY	constraint.

ON	DELETE	{CASCADE	|	NO	ACTION}

Specifies	what	action	occurs	to	a	row	in	the	table	altered,	if	that	row	has	a
referential	relationship	and	the	referenced	row	is	deleted	from	the	parent
table.	The	default	is	NO	ACTION.

If	CASCADE	is	specified,	a	row	is	deleted	from	the	referencing	table	if	that
row	is	deleted	from	the	parent	table.	If	NO	ACTION	is	specified,	SQL
Server	raises	an	error	and	the	delete	action	on	the	row	in	the	parent	table	is
rolled	back.

The	CASCADE	action	ON	DELETE	cannot	be	defined	if	an	INSTEAD	OF
trigger	ON	DELETE	already	exists	on	the	table	in	question.

For	example,	in	the	Northwind	database,	the	Orders	table	has	a	referential
relationship	with	the	Customers	table.	The	Orders.CustomerID	foreign
key	references	the	Customers.CustomerID	primary	key.

If	a	DELETE	statement	is	executed	on	a	row	in	the	Customers	table,	and	an
ON	DELETE	CASCADE	action	is	specified	for	Orders.CustomerID,	SQL
Server	checks	for	one	or	more	dependent	rows	in	the	Orders	table.	If	any
exist,	the	dependent	row	in	the	Orders	table	will	be	deleted,	as	well	as	the
row	referenced	in	the	Customers	table.

On	the	other	hand,	if	NO	ACTION	is	specified,	SQL	Server	raises	an	error
and	rolls	back	the	delete	action	on	the	Customers	row	if	there	is	at	least	one
row	in	the	Orders	table	that	references	it.

ON	UPDATE	{CASCADE	|	NO	ACTION}

Specifies	what	action	occurs	to	a	row	in	the	table	altered,	if	that	row	has	a
referential	relationship	and	the	referenced	row	is	updated	in	the	parent	table.
The	default	is	NO	ACTION.

If	CASCADE	is	specified,	the	row	is	updated	in	the	referencing	table	if	that
row	is	updated	in	the	parent	table.	If	NO	ACTION	is	specified,	SQL	Server
raises	an	error	and	the	update	action	on	the	row	in	the	parent	table	is	rolled
back.

The	CASCADE	action	ON	UPDATE	cannot	be	defined	if	an	INSTEAD	OF
trigger	ON	UPDATE	already	exists	on	the	table	in	question.

For	example,	in	the	Northwind	database,	the	Orders	table	has	a	referential
relationship	with	the	Customers	table.	The	Orders.CustomerID	foreign
key	references	the	Customers.CustomerID	primary	key.

If	an	UPDATE	statement	is	executed	on	a	row	in	the	Customers	table,	and
an	ON	UPDATE	CASCADE	action	is	specified	for	Orders.CustomerID,
SQL	Server	checks	for	one	or	more	dependent	rows	in	the	Orders	table.	If
any	exist,	the	dependent	row	in	the	Orders	table	will	be	updated,	as	well	as
the	row	referenced	in	the	Customers	table.

On	the	other	hand,	if	NO	ACTION	is	specified,	SQL	Server	raises	an	error
and	rolls	back	the	update	action	on	the	Customers	row	if	there	is	at	least	one
row	in	the	Orders	table	that	references	it.

[ASC	|	DESC]

Specifies	the	order	in	which	the	column	or	columns	participating	in	table
constraints	are	sorted.	The	default	is	ASC.

WITH	VALUES

Specifies	that	the	value	given	in	DEFAULT	constant_expression	is	stored	in
a	new	column	added	to	existing	rows.	WITH	VALUES	can	be	specified	only
when	DEFAULT	is	specified	in	an	ADD	column	clause.	If	the	added	column
allows	null	values	and	WITH	VALUES	is	specified,	the	default	value	is

stored	in	the	new	column	added	to	existing	rows.	If	WITH	VALUES	is	not
specified	for	columns	that	allow	nulls,	the	value	NULL	is	stored	in	the	new
column	in	existing	rows.	If	the	new	column	does	not	allow	nulls,	the	default
value	is	stored	in	new	rows	regardless	of	whether	WITH	VALUES	is
specified.

column[,...n]

Is	a	column	or	list	of	columns	in	parentheses	used	in	a	new	constraint.

constant_expression

Is	a	literal	value,	a	NULL,	or	a	system	function	used	as	the	default	column
value.

FOR	column

Specifies	the	column	associated	with	a	table-level	DEFAULT	definition.

CHECK

Is	a	constraint	that	enforces	domain	integrity	by	limiting	the	possible	values
that	can	be	entered	into	a	column	or	columns.

logical_expression

Is	a	logical	expression	used	in	a	CHECK	constraint	and	returns	TRUE	or
FALSE.	Logical_expression	used	with	CHECK	constraints	cannot	reference
another	table	but	can	reference	other	columns	in	the	same	table	for	the	same
row.

Remarks
To	add	new	rows	of	data,	use	the	INSERT	statement.	To	remove	rows	of	data,
use	the	DELETE	or	TRUNCATE	TABLE	statements.	To	change	the	values	in
existing	rows,	use	UPDATE.

The	changes	specified	in	ALTER	TABLE	are	implemented	immediately.	If	the
changes	require	modifications	of	the	rows	in	the	table,	ALTER	TABLE	updates
the	rows.	ALTER	TABLE	acquires	a	schema	modify	lock	on	the	table	to	ensure
no	other	connections	reference	even	the	meta	data	for	the	table	during	the
change.	The	modifications	made	to	the	table	are	logged	and	fully	recoverable.
Changes	that	affect	all	the	rows	in	very	large	tables,	such	as	dropping	a	column

or	adding	a	NOT	NULL	column	with	a	default,	can	take	a	long	time	to	complete
and	generate	many	log	records.	These	ALTER	TABLE	statements	should	be
executed	with	the	same	care	as	any	INSERT,	UPDATE,	or	DELETE	statement
that	affects	a	large	number	of	rows.

If	there	are	any	execution	plans	in	the	procedure	cache	referencing	the	table,
ALTER	TABLE	marks	them	to	be	recompiled	on	their	next	execution.

If	the	ALTER	TABLE	statement	specifies	changes	on	column	values	referenced
by	other	tables,	either	of	two	events	occurs	depending	on	the	action	specified	by
ON	UPDATE	or	ON	DELETE	in	the	referencing	tables.

If	no	value	or	NO	ACTION	(the	default)	is	specified	in	the	referencing
tables,	an	ALTER	TABLE	statement	against	the	parent	table	that	causes
a	change	to	the	column	value	referenced	by	the	other	tables	will	be
rolled	back	and	SQL	Server	raises	an	error.

If	CASCADE	is	specified	in	the	referencing	tables,	changes	caused	by
an	ALTER	TABLE	statement	against	the	parent	table	are	applied	to	the
parent	table	and	its	dependents.

ALTER	TABLE	statements	that	add	a	sql_variant	column	can	generate	the
following	warning:

The	total	row	size	(xx)	for	table	'yy'	exceeds	the	maximum	number	of	bytes	per	row	(8060).	Rows	that	exceed	the	maximum	number	of	bytes	will	not	be	added.

This	warning	occurs	because	sql_variant	can	have	a	maximum	length	of	8016
bytes.	When	a	sql_variant	column	contains	values	close	to	the	maximum
length,	it	can	overshoot	the	row's	maximum	size	limit.

The	restrictions	that	apply	to	ALTER	TABLE	statements	on	tables	with	schema
bound	views	are	the	same	as	the	restrictions	currently	applied	when	altering
tables	with	a	simple	index.	Adding	a	column	is	allowed.	However,	removing	or
changing	a	column	that	participates	in	any	schema	bound	view	is	not	allowed.	If
the	ALTER	TABLE	statement	requires	altering	a	column	used	in	a	schema
bound	view,	the	alter	action	fails	and	SQL	Server	raises	an	error	message.	For
more	information	about	SCHEMABINDING	and	indexed	views,	see	CREATE
VIEW.

Adding	or	removing	triggers	on	base	tables	is	not	affected	by	creating	a	schema
bound	view	referencing	the	tables.

Indexes	created	as	part	of	a	constraint	are	dropped	when	the	constraint	is
dropped.	Indexes	that	were	created	with	CREATE	INDEX	must	be	dropped	with
the	DROP	INDEX	statement.	The	DBCC	DBREINDEX	statement	can	be	used
to	rebuild	an	index	part	of	a	constraint	definition;	the	constraint	does	not	need	to
be	dropped	and	added	again	with	ALTER	TABLE.

All	indexes	and	constraints	based	on	a	column	must	be	removed	before	the
column	can	be	removed.

When	constraints	are	added,	all	existing	data	is	verified	for	constraint	violations.
If	any	violations	occur,	the	ALTER	TABLE	statement	fails	and	an	error	is
returned.

When	a	new	PRIMARY	KEY	or	UNIQUE	constraint	is	added	to	an	existing
column,	the	data	in	the	column(s)	must	be	unique.	If	duplicate	values	are	found,
the	ALTER	TABLE	statement	fails.	The	WITH	NOCHECK	option	has	no	effect
when	adding	PRIMARY	KEY	or	UNIQUE	constraints.

Each	PRIMARY	KEY	and	UNIQUE	constraint	generates	an	index.	The	number
of	UNIQUE	and	PRIMARY	KEY	constraints	cannot	cause	the	number	of
indexes	on	the	table	to	exceed	249	nonclustered	indexes	and	1	clustered	index.

If	a	column	is	added	having	a	uniqueidentifier	data	type,	it	can	be	defined	with
a	default	that	uses	the	NEWID()	function	to	supply	the	unique	identifier	values
in	the	new	column	for	each	existing	row	in	the	table.

SQL	Server	does	not	enforce	an	order	in	which	DEFAULT,	IDENTITY,
ROWGUIDCOL,	or	column	constraints	are	specified	in	a	column	definition.

The	ALTER	COLUMN	clause	of	ALTER	TABLE	does	not	bind	or	unbind	any
rules	on	a	column.	Rules	must	be	bound	or	unbound	separately	using
sp_bindrule	or	sp_unbindrule.

Rules	can	be	bound	to	a	user-defined	data	type.	CREATE	TABLE	then
automatically	binds	the	rule	to	any	column	defined	having	the	user-defined	data
type.	ALTER	COLUMN	does	not	unbind	the	rule	when	changing	the	column
data	type.	The	rule	from	the	original	user-defined	data	type	remains	bound	to	the
column.	After	ALTER	COLUMN	has	changed	the	data	type	of	the	column,	any
subsequent	sp_unbindrule	execution	that	unbinds	the	rule	from	the	user-defined

data	type	does	not	unbind	it	from	the	column	for	which	data	type	was	changed.
If	ALTER	COLUMN	changes	the	data	type	of	a	column	to	a	user-defined	data
type	bound	to	a	rule,	the	rule	bound	to	the	new	data	type	is	not	bound	to	the
column.

Permissions
ALTER	TABLE	permissions	default	to	the	table	owner,	members	of	the
sysadmin	fixed	server	role,	and	the	db_owner	and	db_ddladmin	fixed	database
roles,	and	are	not	transferable.

Examples

A.	Alter	a	table	to	add	a	new	column
This	example	adds	a	column	that	allows	null	values	and	has	no	values	provided
through	a	DEFAULT	definition.	Each	row	will	have	a	NULL	in	the	new	column.

CREATE	TABLE	doc_exa	(column_a	INT)	
GO
ALTER	TABLE	doc_exa	ADD	column_b	VARCHAR(20)	NULL
GO
EXEC	sp_help	doc_exa
GO
DROP	TABLE	doc_exa
GO

B.	Alter	a	table	to	drop	a	column
This	example	modifies	a	table	to	remove	a	column.

CREATE	TABLE	doc_exb	(column_a	INT,	column_b	VARCHAR(20)	NULL)	
GO
ALTER	TABLE	doc_exb	DROP	COLUMN	column_b
GO
EXEC	sp_help	doc_exb
GO

DROP	TABLE	doc_exb
GO

C.	Alter	a	table	to	add	a	column	with	a	constraint
This	example	adds	a	new	column	with	a	UNIQUE	constraint.

CREATE	TABLE	doc_exc	(column_a	INT)	
GO
ALTER	TABLE	doc_exc	ADD	column_b	VARCHAR(20)	NULL	
			CONSTRAINT	exb_unique	UNIQUE
GO
EXEC	sp_help	doc_exc
GO
DROP	TABLE	doc_exc
GO

D.	Alter	a	table	to	add	an	unverified	constraint
This	example	adds	a	constraint	to	an	existing	column	in	the	table.	The	column
has	a	value	that	violates	the	constraint;	therefore,	WITH	NOCHECK	is	used	to
prevent	the	constraint	from	being	validated	against	existing	rows,	and	to	allow
the	constraint	to	be	added.

CREATE	TABLE	doc_exd	(column_a	INT)	
GO
INSERT	INTO	doc_exd	VALUES	(-1)
GO
ALTER	TABLE	doc_exd	WITH	NOCHECK	
ADD	CONSTRAINT	exd_check	CHECK	(column_a	>	1)
GO
EXEC	sp_help	doc_exd
GO
DROP	TABLE	doc_exd
GO

E.	Alter	a	table	to	add	several	columns	with	constraints
This	example	adds	several	columns	with	constraints	defined	with	the	new
column.	The	first	new	column	has	an	IDENTITY	property;	each	row	in	the	table
has	new	incremental	values	in	the	identity	column.

CREATE	TABLE	doc_exe	(column_a	INT	CONSTRAINT	column_a_un	UNIQUE)	
GO
ALTER	TABLE	doc_exe	ADD	

/*	Add	a	PRIMARY	KEY	identity	column.	*/	
column_b	INT	IDENTITY
CONSTRAINT	column_b_pk	PRIMARY	KEY,	

/*	Add	a	column	referencing	another	column	in	the	same	table.	*/	
column_c	INT	NULL		
CONSTRAINT	column_c_fk	
REFERENCES	doc_exe(column_a),

/*	Add	a	column	with	a	constraint	to	enforce	that			*/	
/*	nonnull	data	is	in	a	valid	phone	number	format.		*/
column_d	VARCHAR(16)	NULL	
CONSTRAINT	column_d_chk
CHECK	
(column_d	IS	NULL	OR	
column_d	LIKE	"[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]"	OR
column_d	LIKE
"([0-9][0-9][0-9])	[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]"),

/*	Add	a	nonnull	column	with	a	default.		*/	
column_e	DECIMAL(3,3)
CONSTRAINT	column_e_default
DEFAULT	.081
GO

EXEC	sp_help	doc_exe
GO
DROP	TABLE	doc_exe
GO

F.	Add	a	nullable	column	with	default	values
This	example	adds	a	nullable	column	with	a	DEFAULT	definition,	and	uses
WITH	VALUES	to	provide	values	for	each	existing	row	in	the	table.	If	WITH
VALUES	is	not	used,	each	row	has	the	value	NULL	in	the	new	column.

ALTER	TABLE	MyTable	
ADD	AddDate	smalldatetime	NULL
CONSTRAINT	AddDateDflt
DEFAULT	getdate()	WITH	VALUES

G.	Disable	and	reenable	a	constraint
This	example	disables	a	constraint	that	limits	the	salaries	accepted	in	the	data.
WITH	NOCHECK	CONSTRAINT	is	used	with	ALTER	TABLE	to	disable	the
constraint	and	allow	an	insert	that	would	normally	violate	the	constraint.	WITH
CHECK	CONSTRAINT	re-enables	the	constraint.

CREATE	TABLE	cnst_example	
(id	INT	NOT	NULL,
	name	VARCHAR(10)	NOT	NULL,
	salary	MONEY	NOT	NULL
				CONSTRAINT	salary_cap	CHECK	(salary	<	100000)
)

--	Valid	inserts
INSERT	INTO	cnst_example	VALUES	(1,"Joe	Brown",65000)
INSERT	INTO	cnst_example	VALUES	(2,"Mary	Smith",75000)

--	This	insert	violates	the	constraint.
INSERT	INTO	cnst_example	VALUES	(3,"Pat	Jones",105000)

--	Disable	the	constraint	and	try	again.
ALTER	TABLE	cnst_example	NOCHECK	CONSTRAINT	salary_cap
INSERT	INTO	cnst_example	VALUES	(3,"Pat	Jones",105000)

--	Reenable	the	constraint	and	try	another	insert,	will	fail.
ALTER	TABLE	cnst_example	CHECK	CONSTRAINT	salary_cap
INSERT	INTO	cnst_example	VALUES	(4,"Eric	James",110000)

H.	Disable	and	reenable	a	trigger
This	example	uses	the	DISABLE	TRIGGER	option	of	ALTER	TABLE	to
disable	the	trigger	and	allow	an	insert	that	would	normally	violate	the	trigger.	It
then	uses	ENABLE	TRIGGER	to	re-enable	the	trigger.

CREATE	TABLE	trig_example	
(id	INT,	
name	VARCHAR(10),
salary	MONEY)
go
--	Create	the	trigger.
CREATE	TRIGGER	trig1	ON	trig_example	FOR	INSERT
as	
IF	(SELECT	COUNT(*)	FROM	INSERTED
WHERE	salary	>	100000)	>	0
BEGIN
print	"TRIG1	Error:	you	attempted	to	insert	a	salary	>	$100,000"
ROLLBACK	TRANSACTION
END
GO
--	Attempt	an	insert	that	violates	the	trigger.
INSERT	INTO	trig_example	VALUES	(1,"Pat	Smith",100001)
GO
--	Disable	the	trigger.

ALTER	TABLE	trig_example	DISABLE	TRIGGER	trig1
GO
--	Attempt	an	insert	that	would	normally	violate	the	trigger
INSERT	INTO	trig_example	VALUES	(2,"Chuck	Jones",100001)
GO
--	Re-enable	the	trigger.
ALTER	TABLE	trig_example	ENABLE	TRIGGER	trig1
GO
--	Attempt	an	insert	that	violates	the	trigger.
INSERT	INTO	trig_example	VALUES	(3,"Mary	Booth",100001)
GO

See	Also

DROP	TABLE

sp_help

Transact-SQL	Reference

ALTER	TRIGGER
Alters	the	definition	of	a	trigger	created	previously	by	the	CREATE	TRIGGER
statement.	For	more	information	about	the	parameters	used	in	the	ALTER
TRIGGER	statement,	see	CREATE	TRIGGER.

Syntax
ALTER	TRIGGER	trigger_name	
ON	(table	|	view)	
[WITH	ENCRYPTION]	
{	
				{	(FOR	|	AFTER	|	INSTEAD	OF)	{	[DELETE]	[,]	[INSERT]	[,]	[
UPDATE]	}	
								[NOT	FOR	REPLICATION]	
								AS	
								sql_statement	[...n]	
				}	
				|	
				{	(FOR	|	AFTER	|	INSTEAD	OF)	{	[INSERT]	[,]	[UPDATE]	}	
								[NOT	FOR	REPLICATION]	
								AS	
								{	IF	UPDATE	(column)	
								[{	AND	|	OR	}	UPDATE	(column)]	
								[...n]	
								|	IF	(COLUMNS_UPDATED	()	{	bitwise_operator	}	updated_bitmask)	
								{	comparison_operator	}	column_bitmask	[...n]	
								}	
								sql_statement	[...n]	
				}	
}

Arguments
trigger_name

Is	the	existing	trigger	to	alter.

table	|	view

Is	the	table	or	view	on	which	the	trigger	is	executed.

WITH	ENCRYPTION

Encrypts	the	syscomments	entries	that	contain	the	text	of	the	ALTER
TRIGGER	statement.	Using	WITH	ENCRYPTION	prevents	the	trigger	from
being	published	as	part	of	SQL	Server	replication.

Note		If	a	previous	trigger	definition	was	created	using	WITH	ENCRYPTION	or
RECOMPILE,	these	options	are	only	enabled	if	they	are	included	in	ALTER
TRIGGER.

AFTER

Specifies	that	the	trigger	is	fired	only	after	the	triggering	SQL	statement	is
executed	successfully.	All	referential	cascade	actions	and	constraint	checks
also	must	have	been	successful	before	this	trigger	executes.

AFTER	is	the	default,	if	only	the	FOR	keyword	is	specified.

AFTER	triggers	may	be	defined	only	on	tables.

INSTEAD	OF

Specifies	that	the	trigger	is	executed	instead	of	the	triggering	SQL	statement,
thus	overriding	the	actions	of	the	triggering	statements.

At	most,	one	INSTEAD	OF	trigger	per	INSERT,	UPDATE,	or	DELETE
statement	can	be	defined	on	a	table	or	view.	However,	it	is	possible	to	define
views	on	views	where	each	view	has	its	own	INSTEAD	OF	trigger.

INSTEAD	OF	triggers	are	not	allowed	on	views	created	with	WITH
CHECK	OPTION.	SQL	Server	will	raise	an	error	if	an	INSTEAD	OF	trigger
is	added	to	a	view	for	which	WITH	CHECK	OPTION	was	specified.	The
user	must	remove	that	option	using	ALTER	VIEW	before	defining	the
INSTEAD	OF	trigger.

{	[DELETE]	[,]	[INSERT]	[,]	[UPDATE]	}	|	{	[INSERT]	[,]	[UPDATE]}

Are	keywords	that	specify	which	data	modification	statements,	when
attempted	against	this	table	or	view,	activate	the	trigger.	At	least	one	option
must	be	specified.	Any	combination	of	these	in	any	order	is	allowed	in	the

trigger	definition.	If	more	than	one	option	is	specified,	separate	the	options
with	commas.

For	INSTEAD	OF	triggers,	the	DELETE	option	is	not	allowed	on	tables	that
have	a	referential	relationship	specifying	a	cascade	action	ON	DELETE.
Similarly,	the	UPDATE	option	is	not	allowed	on	tables	that	have	a	referential
relationship	specifying	a	cascade	action	ON	UPDATE.	For	more
information,	see	ALTER	TABLE.

NOT	FOR	REPLICATION

Indicates	that	the	trigger	should	not	be	executed	when	a	replication	login
such	as	sqlrepl	modifies	the	table	involved	in	the	trigger.

AS

Are	the	actions	the	trigger	is	to	take.

sql_statement

Is	the	trigger	condition(s)	and	action(s).

n

Is	a	placeholder	indicating	that	multiple	Transact-SQL	statements	can	be
included	in	the	trigger.

IF	UPDATE	(column)

Tests	for	an	INSERT	or	UPDATE	action	to	a	specified	column	and	is	not
used	with	DELETE	operations.

UPDATE(column)	can	be	used	anywhere	inside	the	body	of	the	trigger.

{AND	|	OR}

Specifies	another	column	to	test	for	either	an	INSERT	or	UPDATE	action.

column

Is	the	name	of	the	column	to	test	for	either	an	INSERT	or	UPDATE	action.

IF	(COLUMNS_UPDATED())

Tests	to	see,	in	an	INSERT	or	UPDATE	trigger	only,	whether	the	mentioned
column	or	columns	were	inserted	or	updated.	COLUMNS_UPDATED

returns	a	varbinary	bit	pattern	that	indicates	which	columns	of	the	table
were	inserted	or	updated.

COLUMNS_UPDATED	can	be	used	anywhere	inside	the	body	of	the
trigger.

bitwise_operator

Is	the	bitwise	operator	to	use	in	the	comparison.

updated_bitmask

Is	the	integer	bitmask	of	those	columns	actually	updated	or	inserted.	For
example,	table	t1	contains	columns	C1,	C2,	C3,	C4,	and	C5.	To	check
whether	columns	C2,	C3,	and	C4	are	all	updated	(with	table	t1	having	an
UPDATE	trigger),	specify	a	value	of	14.	To	check	whether	only	C2	is
updated,	specify	a	value	of	2.

comparison_operator

Is	the	comparison	operator.	Use	the	equal	sign	(=)	to	check	whether	all
columns	specified	in	updated_bitmask	are	actually	updated.	Use	the	greater
than	symbol	(>)	to	check	whether	any	or	not	all	columns	specified	in	the
updated_bitmask	are	updated.

column_bitmask

Is	the	integer	bitmask	of	the	columns	to	check.

Remarks
For	more	information	about	ALTER	TRIGGER,	see	Remarks	in	CREATE
TRIGGER.

Note		Because	Microsoft	does	not	support	the	addition	of	user-defined	triggers
on	system	tables,	it	is	recommended	that	no	user-defined	triggers	be	created	on
system	tables.

ALTER	TRIGGER	supports	manually	updateable	views	through	INSTEAD	OF
triggers	on	tables	and	views.	Microsoft®	SQL	Server™	applies	ALTER
TRIGGER	the	same	way	for	all	types	of	triggers	(AFTER,	INSTEAD-OF).

The	first	and	last	AFTER	triggers	to	be	executed	on	a	table	may	be	specified	by

using	sp_settriggerorder.	Only	one	first	and	one	last	AFTER	trigger	may	be
specified	on	a	table;	if	there	are	other	AFTER	triggers	on	the	same	table,	they
will	be	executed	in	an	undefined	sequence.

If	an	ALTER	TRIGGER	statement	changes	a	first	or	last	trigger,	the	first	or	last
attribute	set	on	the	modified	trigger	is	dropped,	and	the	order	value	must	be	reset
with	sp_settriggerorder.

An	AFTER	trigger	is	executed	only	after	the	triggering	SQL	statement,	including
all	referential	cascade	actions	and	constraint	checks	associated	with	the	object
updated	or	deleted,	is	executed	successfully.	The	AFTER	trigger	operation
checks	for	the	effects	of	the	triggering	statement	as	well	as	all	referential	cascade
UPDATE	and	DELETE	actions	caused	by	the	triggering	statement.

When	a	DELETE	action	to	a	child	or	referencing	table	is	the	result	of	a
CASCADE	on	a	DELETE	from	the	parent	table,	and	an	INSTEAD	OF	trigger
on	DELETE	is	defined	on	that	child	table,	the	trigger	is	ignored	and	the
DELETE	action	is	executed.

Permissions
ALTER	TRIGGER	permissions	default	to	members	of	the	db_owner	and
db_ddladmin	fixed	database	roles,	and	to	the	table	owner.	These	permissions
are	not	transferable.

Examples
This	example	creates	a	trigger	that	prints	a	user-defined	message	to	the	client
when	a	user	tries	to	add	or	change	data	in	the	roysched	table.	Then,	the	trigger	is
altered	using	ALTER	TRIGGER	to	apply	the	trigger	only	on	INSERT	activities.
This	trigger	is	helpful	because	it	reminds	the	user	who	updates	or	inserts	rows
into	this	table	to	also	notify	the	book	authors	and	publishers.

USE	pubs
GO
CREATE	TRIGGER	royalty_reminder
ON	roysched
WITH	ENCRYPTION
FOR	INSERT,	UPDATE	

AS	RAISERROR	(50009,	16,	10)

--	Now,	alter	the	trigger.
USE	pubs
GO
ALTER	TRIGGER	royalty_reminder
ON	roysched
FOR	INSERT
AS	RAISERROR	(50009,	16,	10)

Message	50009	is	a	user-defined	message	in	sysmessages.	For	more	information
about	creating	user-defined	messages,	see	sp_addmessage.

See	Also

DROP	TRIGGER

Programming	Stored	Procedures

sp_addmessage

Transactions

Using	Identifiers

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

ALTER	VIEW
Alters	a	previously	created	view	(created	by	executing	CREATE	VIEW),
including	indexed	views,	without	affecting	dependent	stored	procedures	or
triggers	and	without	changing	permissions.	For	more	information	about	the
parameters	used	in	the	ALTER	VIEW	statement,	see	CREATE	VIEW.

Syntax
ALTER	VIEW	[<	database_name	>	.]	[<	owner	>	.]	view_name	[(column	[
,...n])]	
[WITH	<	view_attribute	>	[,...n]]	
AS	
				select_statement	
[WITH	CHECK	OPTION]

<	view_attribute	>	::=	
				{	ENCRYPTION	|	SCHEMABINDING	|	VIEW_METADATA	}

Arguments
view_name

Is	the	view	to	change.

column

Is	the	name	of	one	or	more	columns,	separated	by	commas,	to	be	part	of	the
given	view.

IMPORTANT		Column	permissions	are	maintained	only	when	columns	have	the
same	name	before	and	after	ALTER	VIEW	is	performed.

Note		In	the	columns	for	the	view,	the	permissions	for	a	column	name	apply
across	a	CREATE	VIEW	or	ALTER	VIEW	statement,	regardless	of	the	source	of
the	underlying	data.	For	example,	if	permissions	are	granted	on	the	title_id
column	in	a	CREATE	VIEW	statement,	an	ALTER	VIEW	statement	can	rename
the	title_id	column	(for	example,	to	qty)	and	still	have	the	permissions

associated	with	the	view	using	title_id.

n

Is	a	placeholder	indicating	the	column	can	be	repeated	n	number	of	times.

WITH	ENCRYPTION

Encrypts	the	syscomments	entries	that	contain	the	text	of	the	ALTER	VIEW
statement.	Using	WITH	ENCRYPTION	prevents	the	view	from	being
published	as	part	of	SQL	Server	replication.

SCHEMABINDING

Binds	the	view	to	the	schema.	When	SCHEMABINDING	is	specified,	the
select_statement	must	include	the	two-part	name	(owner.object)	of	tables,
views,	or	user-defined	functions	referenced.

Views	or	tables	participating	in	a	view	created	with	the	schema	binding
clause	cannot	be	dropped	unless	that	view	is	dropped	or	changed	so	it	no
longer	has	schema	binding.	Otherwise,	SQL	Server	raises	an	error.	In
addition,	ALTER	TABLE	statements	on	tables	that	participate	in	views
having	schema	binding	will	fail	if	these	statements	affect	the	view	definition.

VIEW_METADATA

Specifies	that	SQL	Server	will	return	to	the	DBLIB,	ODBC,	and	OLE	DB
APIs	the	meta	data	information	about	the	view,	instead	of	the	base	table	or
tables,	when	browse-mode	meta	data	is	being	requested	for	a	query	that
references	the	view.	Browse-mode	meta	data	is	additional	meta	data	returned
by	SQL	Server	to	the	client-side	DB-LIB,	ODBC,	and	OLE	DB	APIs,	which
allow	the	client-side	APIs	to	implement	updatable	client-side	cursors.
Browse-mode	meta	data	includes	information	about	the	base	table	that	the
columns	in	the	result	set	belong	to.

For	views	created	with	VIEW_METADATA	option,	the	browse-mode	meta
data	returns	the	view	name	as	opposed	to	the	base	table	names	when
describing	columns	from	the	view	in	the	result	set.

When	a	view	is	created	WITH	VIEW_METADATA,	all	its	columns	(except
for	timestamp)	are	updatable	if	the	view	has	INSERT	or	UPDATE
INSTEAD	OF	triggers.	See	Updatable	Views	in	CREATE	VIEW.

AS

Are	the	actions	the	view	is	to	take.

select_statement

Is	the	SELECT	statement	that	defines	the	view.

WITH	CHECK	OPTION

Forces	all	data	modification	statements	executed	against	the	view	to	adhere
to	the	criteria	set	within	the	select_statement	defining	the	view.

Remarks
For	more	information	about	ALTER	VIEW,	see	Remarks	in	CREATE	VIEW.

Note		If	the	previous	view	definition	was	created	using	WITH	ENCRYPTION	or
CHECK	OPTION,	these	options	are	enabled	only	if	included	in	ALTER	VIEW.

If	a	view	currently	in	use	is	modified	by	using	ALTER	VIEW,	Microsoft®	SQL
Server™	takes	an	exclusive	schema	lock	on	the	view.	When	the	lock	is	granted,
and	there	are	no	active	users	of	the	view,	SQL	Server	deletes	all	copies	of	the
view	from	the	procedure	cache.	Existing	plans	referencing	the	view	remain	in
the	cache	but	are	recompiled	when	invoked.

ALTER	VIEW	can	be	applied	to	indexed	views.	However,	ALTER	VIEW
unconditionally	drops	all	indexes	on	the	view.

Permissions
ALTER	VIEW	permissions	default	to	members	of	the	db_owner	and
db_ddladmin	fixed	database	roles,	and	to	the	view	owner.	These	permissions
are	not	transferable.

To	alter	a	view,	the	user	must	have	ALTER	VIEW	permission	along	with
SELECT	permission	on	the	tables,	views,	and	table-valued	functions	being
referenced	in	the	view,	and	EXECUTE	permission	on	the	scalar-valued	functions
being	invoked	in	the	view.

In	addition,	to	alter	a	view	WITH	SCHEMABINDING,	the	user	must	have
REFERENCES	permissions	on	each	table,	view,	and	user-defined	function	that
is	referenced.

Examples

A.	Alter	a	view
This	example	creates	a	view	that	contains	all	authors	called	All_authors.
Permissions	are	granted	to	the	view,	but	requirements	are	changed	to	select
authors	from	Utah.	Then,	ALTER	VIEW	is	used	to	replace	the	view.

--	Create	a	view	from	the	authors	table	that	contains	all	authors.
CREATE	VIEW	All_authors	(au_fname,	au_lname,	address,	city,	zip)
AS	
SELECT	au_fname,	au_lname,	address,	city,	zip
FROM	pubs..authors
GO
--	Grant	SELECT	permissions	on	the	view	to	public.
GRANT	SELECT	ON	All_authors	TO	public
GO
--	The	view	needs	to	be	changed	to	include	all	authors	
--	from	Utah.
--	If	ALTER	VIEW	is	not	used	but	instead	the	view	is	dropped	and	
--	re-created,	the	above	GRANT	statement	and	any	other	statements	
--	dealing	with	permissions	that	pertain	to	this	view	
--	must	be	re-entered.
ALTER	VIEW	All_authors	(au_fname,	au_lname,	address,	city,	zip)
AS	
SELECT	au_fname,	au_lname,	address,	city,	zip
FROM	pubs..authors
WHERE	state	=	'UT'
GO

B.	Use	@@ROWCOUNT	function	in	a	view
This	example	uses	the	@@ROWCOUNT	function	as	part	of	the	view	definition.

USE	pubs

GO
CREATE	VIEW	yourview
AS
				SELECT	title_id,	title,	mycount	=	@@ROWCOUNT,	ytd_sales
				FROM	titles
GO
SELECT	*	
FROM	yourview
GO
--	Here,	the	view	is	altered.
USE	pubs
GO
ALTER	VIEW	yourview
AS
				SELECT	title,	mycount	=	@@	ROWCOUNT,	ytd_sales
				FROM	titles
				WHERE	type	=	'mod_cook'
GO
SELECT	*	
FROM	yourview
GO

See	Also

CREATE	TABLE

CREATE	VIEW

DROP	VIEW

Programming	Stored	Procedures

SELECT

Using	Identifiers

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

AND
Combines	two	Boolean	expressions	and	returns	TRUE	when	both	expressions
are	TRUE.	When	more	than	one	logical	operator	is	used	in	a	statement,	AND
operators	are	evaluated	first.	You	can	change	the	order	of	evaluation	by	using
parentheses.

Syntax
boolean_expression	AND	boolean_expression

Arguments
boolean_expression

Is	any	valid	Microsoft®	SQL	Server™	expression	that	returns	a	Boolean
value:	TRUE,	FALSE,	or	UNKNOWN.

Result	Types
Boolean

Result	Value
Returns	TRUE	when	both	expressions	are	TRUE.

Remarks
This	chart	outlines	the	outcomes	when	you	compare	TRUE	and	FALSE	values
using	the	AND	operator.

	 TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN

See	Also

Expressions

Functions

Operators	(Logical	Operators)

SELECT

WHERE

Transact-SQL	Reference

ANY
Compares	a	scalar	value	with	a	single-column	set	of	values.	For	more
information,	see	SOME	|	ANY.

Transact-SQL	Reference

APP_NAME
Returns	the	application	name	for	the	current	session	if	set	by	the	application.

Syntax
APP_NAME	()

Return	Types
nvarchar(128)

Examples
This	example	checks	whether	the	client	application	that	initiated	this	process	is	a
SQL	Query	Analyzer	session.

DECLARE	@CurrentApp	varchar(35)
SET	@CurrentApp	=	APP_NAME()
IF	@CurrentApp	<>	'MS	SQL	Query	Analyzer'
PRINT	'This	process	was	not	started	by	a	SQL	Query	Analyzer	query	session.'

See	Also

System	Functions

Transact-SQL	Reference

ASCII
Returns	the	ASCII	code	value	of	the	leftmost	character	of	a	character	expression.

Syntax
ASCII	(character_expression)

Arguments
character_expression

Is	an	expression	of	the	type	char	or	varchar.

Return	Types
int

Examples
This	example,	which	assumes	an	ASCII	character	set,	returns	the	ASCII	value
and	char	character	for	each	character	in	the	string	"Du	monde	entier."

SET	TEXTSIZE	0
SET	NOCOUNT	ON
--	Create	the	variables	for	the	current	character	string	position	
--	and	for	the	character	string.
DECLARE	@position	int,	@string	char(15)
--	Initialize	the	variables.
SET	@position	=	1
SET	@string	=	'Du	monde	entier'
WHILE	@position	<=	DATALENGTH(@string)
			BEGIN
			SELECT	ASCII(SUBSTRING(@string,	@position,	1)),
						CHAR(ASCII(SUBSTRING(@string,	@position,	1)))
				SET	@position	=	@position	+	1

			END
SET	NOCOUNT	OFF
GO

Here	is	the	result	set:

-----------	-	
68										D	
														
-----------	-	
117									u	
														
-----------	-	
32												
														
-----------	-	
109									m	
														
-----------	-	
111									o	
														
-----------	-	
110									n	
														
-----------	-	
100									d	
														
-----------	-	
101									e	
														
-----------	-	
32												
														
-----------	-	

101									e	
														
-----------	-	
110									n	
														
-----------	-	
116									t	
														
-----------	-	
105									i	
														
-----------	-	
101									e	
														
-----------	-	
114									r

See	Also

String	Functions

Transact-SQL	Reference

ASIN
Returns	the	angle,	in	radians,	whose	sine	is	the	given	float	expression	(also
called	arcsine).

Syntax
ASIN	(float_expression)

Arguments
float_expression

Is	an	expression	of	the	type	float,	with	a	value	from	-1	through	1.	Values
outside	this	range	return	NULL	and	report	a	domain	error.

Return	Types
float

Examples
This	example	takes	a	float	expression	and	returns	the	ASIN	of	the	given	angle.

--	First	value	will	be	-1.01,	which	fails.
DECLARE	@angle	float
SET	@angle	=	-1.01
SELECT	'The	ASIN	of	the	angle	is:	'	+	CONVERT(varchar,	ASIN(@angle))
GO

--	Next	value	is	-1.00.
DECLARE	@angle	float
SET	@angle	=	-1.00
SELECT	'The	ASIN	of	the	angle	is:	'	+	CONVERT(varchar,	ASIN(@angle))
GO

--	Next	value	is	0.1472738.
DECLARE	@angle	float
SET	@angle	=	0.1472738
SELECT	'The	ASIN	of	the	angle	is:	'	+	CONVERT(varchar,	ASIN(@angle))
GO

Here	is	the	result	set:

The	ASIN	of	the	angle	is:																																

(1	row(s)	affected)

Domain	error	occurred.

The	ASIN	of	the	angle	is:	-1.5708																								

(1	row(s)	affected)

The	ASIN	of	the	angle	is:	0.147811																							

(1	row(s)	affected)

See	Also

CEILING

Mathematical	Functions

SET	ARITHIGNORE

SET	ARITHABORT

Transact-SQL	Reference

ATAN
Returns	the	angle	in	radians	whose	tangent	is	the	given	float	expression	(also
called	arctangent).

Syntax
ATAN	(float_expression)

Arguments
float_expression

Is	an	expression	of	the	type	float.

Return	Types
float

Examples
This	example	takes	a	float	expression	and	returns	the	ATAN	of	the	given	angle.

SELECT	'The	ATAN	of	-45.01	is:	'	+	CONVERT(varchar,	ATAN(-45.01))
SELECT	'The	ATAN	of	-181.01	is:	'	+	CONVERT(varchar,	ATAN(-181.01))
SELECT	'The	ATAN	of	0	is:	'	+	CONVERT(varchar,	ATAN(0))
SELECT	'The	ATAN	of	0.1472738	is:	'	+	CONVERT(varchar,	ATAN(0.1472738))
SELECT	'The	ATAN	of	197.1099392	is:	'	+	CONVERT(varchar,	ATAN(197.1099392))
GO

Here	is	the	result	set:

The	ATAN	of	-45.01	is:	-1.54858																							

(1	row(s)	affected)

The	ATAN	of	-181.01	is:	-1.56527																							

(1	row(s)	affected)

The	ATAN	of	0	is:	0																														

(1	row(s)	affected)

The	ATAN	of	0.1472738	is:	0.146223																							

(1	row(s)	affected)

The	ATAN	of	197.1099392	is:	1.56572																								

(1	row(s)	affected)

See	Also

CEILING

Mathematical	Functions

Transact-SQL	Reference

ATN2
Returns	the	angle,	in	radians,	whose	tangent	is	between	the	two	given	float
expressions	(also	called	arctangent).

Syntax
ATN2	(float_expression	,	float_expression)

Arguments
float_expression

Is	an	expression	of	the	float	data	type.

Return	Types
float

Examples
This	example	calculates	the	ATN2	for	the	given	angles.

DECLARE	@angle1	float
DECLARE	@angle2	float
SET	@angle1	=	35.175643
SET	@angle2	=	129.44
SELECT	'The	ATN2	of	the	angle	is:	'	+	CONVERT(varchar,ATN2(@angle1,@angle2))
GO

Here	is	the	result	set:

The	ATN2	of	the	angle	is:	0.265345																							

(1	row(s)	affected)

See	Also

CAST	and	CONVERT

float	and	real

Mathematical	Functions

Transact-SQL	Reference

AVG
Returns	the	average	of	the	values	in	a	group.	Null	values	are	ignored.

Syntax
AVG	([ALL	|	DISTINCT]	expression)

Arguments
ALL

Applies	the	aggregate	function	to	all	values.	ALL	is	the	default.

DISTINCT

Specifies	that	AVG	be	performed	only	on	each	unique	instance	of	a	value,
regardless	of	how	many	times	the	value	occurs.

expression

Is	an	expression	of	the	exact	numeric	or	approximate	numeric	data	type
category,	except	for	the	bit	data	type.	Aggregate	functions	and	subqueries	are
not	permitted.

Return	Types
The	return	type	is	determined	by	the	type	of	the	evaluated	result	of	expression.

Expression	result Return	type
integer	category int
decimal	category	(p,	s) decimal(38,	s)	divided	by	decimal(10,

0)
money	and	smallmoney	category money
float	and	real	category float

IMPORTANT		Distinct	aggregates,	for	example,	AVG(DISTINCT	column_name),
COUNT(DISTINCT	column_name),	MAX(DISTINCT	column_name),
MIN(DISTINCT	column_name),	and	SUM(DISTINCT	column_name),	are	not

supported	when	using	CUBE	or	ROLLUP.	If	used,	Microsoft®	SQL	Server™
returns	an	error	message	and	cancels	the	query.

Examples

A.	Use	SUM	and	AVG	functions	for	calculations
This	example	calculates	the	average	advance	and	the	sum	of	year-to-date	sales
for	all	business	books.	Each	of	these	aggregate	functions	produces	a	single
summary	value	for	all	of	the	retrieved	rows.

USE	pubs

SELECT	AVG(advance),	SUM(ytd_sales)
FROM	titles
WHERE	type	=	'business'

Here	is	the	result	set:

--------------------------	-----------	
6,281.25																			30788							

(1	row(s)	affected)

B.	Use	SUM	and	AVG	functions	with	a	GROUP	BY	clause
When	used	with	a	GROUP	BY	clause,	each	aggregate	function	produces	a	single
value	for	each	group,	rather	than	for	the	whole	table.	This	example	produces
summary	values	for	each	type	of	book	that	include	the	average	advance	for	each
type	of	book	and	the	sum	of	year-to-date	sales	for	each	type	of	book.

USE	pubs

SELECT	type,	AVG(advance),	SUM(ytd_sales)
FROM	titles
GROUP	BY	type
ORDER	BY	type

Here	is	the	result	set:

type																																																
------------	--------------------------	-----------	
business					6,281.25																			30788							
mod_cook					7,500.00																			24278							
popular_comp	7,500.00																			12875							
psychology			4,255.00																			9939								
trad_cook				6,333.33																			19566							
UNDECIDED				NULL																							NULL						

(6	row(s)	affected)

C.	Use	AVG	with	DISTINCT
This	statement	returns	the	average	price	of	business	books.

USE	pubs

SELECT	AVG(DISTINCT	price)
FROM	titles
WHERE	type	=	'business'

Here	is	the	result	set:

11.64																						

(1	row(s)	affected)

D.	Use	AVG	without	DISTINCT
Without	DISTINCT,	the	AVG	function	finds	the	average	price	of	all	business
titles	in	the	titles	table.

USE	pubs

SELECT	AVG(price)
FROM	titles
WHERE	type	=	'business'

Here	is	the	result	set:

13.73																						

(1	row(s)	affected)

See	Also

Aggregate	Functions

Transact-SQL	Reference

BACKUP
Backs	up	an	entire	database,	transaction	log,	or	one	or	more	files	or	filegroups.
For	more	information	about	database	backup	and	restore	operations,	see	Backing
Up	and	Restoring	Databases.

Syntax
Backing	up	an	entire	database:

BACKUP	DATABASE	{	database_name	|	@database_name_var	}	
TO	<	backup_device	>	[,...n]	
[WITH	
				[BLOCKSIZE	=	{	blocksize	|	@blocksize_variable	}]	
				[[,]	DESCRIPTION	=	{	'text'	|	@text_variable	}]	
				[[,]	DIFFERENTIAL]	
				[[,]	EXPIREDATE	=	{	date	|	@date_var	}	
								|	RETAINDAYS	=	{	days	|	@days_var	}]	
				[[,]	PASSWORD	=	{	password	|	@password_variable	}]	
				[[,]	FORMAT	|	NOFORMAT]	
				[[,]	{	INIT	|	NOINIT	}]	
				[[,]	MEDIADESCRIPTION	=	{	'text'	|	@text_variable	}]	
				[[,]	MEDIANAME	=	{	media_name	|	@media_name_variable	}]	
				[[,]	MEDIAPASSWORD	=	{	mediapassword	|	@mediapassword_variable	}
]	
				[[,]	NAME	=	{	backup_set_name	|	@backup_set_name_var	}]	
				[[,]	{	NOSKIP	|	SKIP	}]	
				[[,]	{	NOREWIND	|	REWIND	}]	
				[[,]	{	NOUNLOAD	|	UNLOAD	}]	
				[[,]	RESTART]	
				[[,]	STATS	[=	percentage]]	
]

Backing	up	specific	files	or	filegroups:

BACKUP	DATABASE	{	database_name	|	@database_name_var	}	
				<	file_or_filegroup	>	[,...n]	

JavaScript:hhobj_1.Click()

TO	<	backup_device	>	[,...n]	
[WITH
				[BLOCKSIZE	=	{	blocksize	|	@blocksize_variable	}]	
				[[,]	DESCRIPTION	=	{	'text'	|	@text_variable	}]	
				[[,]	DIFFERENTIAL]	
				[[,]	EXPIREDATE	=	{	date	|	@date_var	}	
								|	RETAINDAYS	=	{	days	|	@days_var	}]	
				[[,]	PASSWORD	=	{	password	|	@password_variable	}]	
				[[,]	FORMAT	|	NOFORMAT]	
				[[,]	{	INIT	|	NOINIT	}]	
				[[,]	MEDIADESCRIPTION	=	{	'text'	|	@text_variable	}]	
				[[,]	MEDIANAME	=	{	media_name	|	@media_name_variable	}]	
				[[,]	MEDIAPASSWORD	=	{	mediapassword	|	@mediapassword_variable	}
]	
				[[,]	NAME	=	{	backup_set_name	|	@backup_set_name_var	}]	
				[[,]	{	NOSKIP	|	SKIP	}]	
				[[,]	{	NOREWIND	|	REWIND	}]
				[[,]	{	NOUNLOAD	|	UNLOAD	}]	
				[[,]	RESTART]	
				[[,]	STATS	[=	percentage]]	
]

Backing	up	a	transaction	log:

BACKUP	LOG	{	database_name	|	@database_name_var	}	
{	
				TO	<	backup_device	>	[,...n]	
				[WITH	
								[BLOCKSIZE	=	{	blocksize	|	@blocksize_variable	}]	
								[[,]	DESCRIPTION	=	{	'text'	|	@text_variable	}]	
								[[,]	EXPIREDATE	=	{	date	|	@date_var	}	
												|	RETAINDAYS	=	{	days	|	@days_var	}]	
								[[,]	PASSWORD	=	{	password	|	@password_variable	}]	
								[[,]	FORMAT	|	NOFORMAT]	
								[[,]	{	INIT	|	NOINIT	}]	
								[[,]	MEDIADESCRIPTION	=	{	'text'	|	@text_variable	}]	
								[[,]	MEDIANAME	=	{	media_name	|	@media_name_variable	}]	
								[[,]	MEDIAPASSWORD	=	{	mediapassword	|

@mediapassword_variable	}]	
								[[,]	NAME	=	{	backup_set_name	|	@backup_set_name_var	}]	
								[[,]	NO_TRUNCATE]	
								[[,]	{	NORECOVERY	|	STANDBY	=	undo_file_name	}]	
								[[,]	{	NOREWIND	|	REWIND	}]
								[[,]	{	NOSKIP	|	SKIP	}]	
								[[,]	{	NOUNLOAD	|	UNLOAD	}]	
								[[,]	RESTART]	
								[[,]	STATS	[=	percentage]]	
]	
}

<	backup_device	>	::=	
				{	
								{	logical_backup_device_name	|	@logical_backup_device_name_var	}	
								|	
								{	DISK	|	TAPE	}	=	
												{	'physical_backup_device_name'	|
@physical_backup_device_name_var	}
				}

<	file_or_filegroup	>	::=	
				{	
								FILE	=	{	logical_file_name	|	@logical_file_name_var	}	
								|	
								FILEGROUP	=	{	logical_filegroup_name	|	@logical_filegroup_name_var
}	
				}

Truncating	the	transaction	log:

BACKUP	LOG	{	database_name	|	@database_name_var	}	
{	
				[WITH	
								{	NO_LOG	|	TRUNCATE_ONLY	}]	
}

Arguments

DATABASE

Specifies	a	complete	database	backup.	If	a	list	of	files	and	filegroups	is
specified,	only	those	files	and	filegroups	are	backed	up.

Note		During	a	full	database	or	differential	backup,	Microsoft®	SQL	Server™
backs	up	enough	of	the	transaction	log	to	produce	a	consistent	database	for	when
the	database	is	restored.	Only	a	full	database	backup	can	be	performed	on	the
master	database.

{	database_name	|	@database_name_var	}

Is	the	database	from	which	the	transaction	log,	partial	database,	or	complete
database	is	backed	up.	If	supplied	as	a	variable	(@database_name_var),	this
name	can	be	specified	either	as	a	string	constant	(@database_name_var	=
database	name)	or	as	a	variable	of	character	string	data	type,	except	for	the
ntext	or	text	data	types.

<	backup_device	>

Specifies	the	logical	or	physical	backup	device	to	use	for	the	backup
operation.	Can	be	one	or	more	of	the	following:

{	logical_backup_device_name	}	|	{	@logical_backup_device_name_var	}
Is	the	logical	name,	which	must	follow	the	rules	for	identifiers,	of	the
backup	device(s)	(created	by	sp_addumpdevice)	to	which	the	database
is	backed	up.	If	supplied	as	a	variable
(@logical_backup_device_name_var),	the	backup	device	name	can	be
specified	either	as	a	string	constant	(@logical_backup_device_name_var
=	logical	backup	device	name)	or	as	a	variable	of	character	string	data
type,	except	for	the	ntext	or	text	data	types.

{	DISK	|	TAPE	}	=

'physical_backup_device_name'	|	@physical_backup_device_name_var
Allows	backups	to	be	created	on	the	specified	disk	or	tape	device.	The
physical	device	specified	need	not	exist	prior	to	executing	the	BACKUP
statement.	If	the	physical	device	exists	and	the	INIT	option	is	not
specified	in	the	BACKUP	statement,	the	backup	is	appended	to	the
device.

When	specifying	TO	DISK	or	TO	TAPE,	enter	the	complete	path	and	file
name.	For	example,	DISK	=	'C:\Program	Files\Microsoft	SQL
Server\MSSQL\BACKUP\Mybackup.dat'	or	TAPE	=	'\\.\TAPE0'.

Note		If	a	relative	path	name	is	entered	for	a	backup	to	disk,	the	backup
file	is	placed	in	the	default	backup	directory.	This	directory	is	set	during
installation	and	stored	in	the	BackupDirectory	registry	key	under
KEY_LOCAL_MACHINE\Software\Microsoft\MSSQLServer\MSSQLServer.

If	using	a	network	server	with	a	Uniform	Naming	Convention	(UNC)
name	or	using	a	redirected	drive	letter,	specify	a	device	type	of	disk.

When	specifying	multiple	files,	logical	file	names	(or	variables)	and
physical	file	names	(or	variables)	can	be	mixed.	However,	all	devices
must	be	of	the	same	type	(disk,	tape,	or	pipe).

Backup	to	tape	is	not	supported	on	Windows	98.

n

Is	a	placeholder	that	indicates	multiple	backup	devices	may	be	specified.	The
maximum	number	of	backup	devices	is	64.

BLOCKSIZE	=	{	blocksize	|	@blocksize_variable	}

Specifies	the	physical	block	size,	in	bytes.	On	Windows	NT	systems,	the
default	is	the	default	block	size	of	the	device.	Generally,	this	parameter	is	not
required	as	SQL	Server	will	choose	a	blocksize	that	is	appropriate	to	the
device.	On	Windows	2000-based	computers,	the	default	is	65,536	(64	KB,
which	is	the	maximum	size	SQL	Server	supports).

For	DISK,	BACKUP	automatically	determines	the	appropriate	block	size	for
disk	devices.

Note		To	transfer	the	resulting	backup	set	to	a	CD-ROM	and	then	restore	from
that	CD-ROM,	set	BLOCKSIZE	to	2048.

The	default	BLOCKSIZE	for	tape	is	65,536	(64	KB).	Explicitly	stating	a
block	size	overrides	SQL	Server's	selection	of	a	block	size.

DESCRIPTION	=	{	'text'	|	@text_variable	}

Specifies	the	free-form	text	describing	the	backup	set.	The	string	can	have	a

maximum	of	255	characters.

DIFFERENTIAL

Specifies	the	database	or	file	backup	should	consist	only	of	the	portions	of
the	database	or	file	changed	since	the	last	full	backup.	A	differential	backup
usually	takes	up	less	space	than	a	full	backup.	Use	this	option	so	that	all
individual	log	backups	since	the	last	full	backup	do	not	need	to	be	applied.
For	more	information,	see	Differential	Database	Backups	and	File
Differential	Backups.

Note		During	a	full	database	or	differential	backup,	SQL	Server	backs	up	enough
of	the	transaction	log	to	produce	a	consistent	database	when	the	database	is
restored.

EXPIREDATE	=	{	date	|	@date_var	}

Specifies	the	date	when	the	backup	set	expires	and	can	be	overwritten.	If
supplied	as	a	variable	(@date_var),	this	date	is	specified	as	either	a	string
constant	(@date_var	=	date),	as	a	variable	of	character	string	data	type
(except	for	the	ntext	or	text	data	types),	a	smalldatetime,	or	datetime
variable,	and	must	follow	the	configured	system	datetime	format.

RETAINDAYS	=	{	days	|	@days_var	}

Specifies	the	number	of	days	that	must	elapse	before	this	backup	media	set
can	be	overwritten.	If	supplied	as	a	variable	(@days_var),	it	must	be
specified	as	an	integer.

IMPORTANT		If	EXPIREDATE	or	RETAINDAYS	is	not	specified,	expiration	is
determined	by	the	media	retention	configuration	setting	of	sp_configure.	These
options	only	prevent	SQL	Server	from	overwriting	a	file.	Tapes	can	be	erased
using	other	methods,	and	disk	files	can	be	deleted	through	the	operating	system.
For	more	information	about	expiration	verification,	see	SKIP	and	FORMAT	in
this	topic.

PASSWORD	=	{	password	|	@password_variable	}

Sets	the	password	for	the	backup	set.	PASSWORD	is	a	character	string.	If	a
password	is	defined	for	the	backup	set,	the	password	must	be	supplied	to
perform	any	restore	operation	from	the	backup	set.

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

IMPORTANT		A	backup	set	password	protects	the	contents	of	the	backup	set	from
unauthorized	access	through	SQL	Server	2000	tools,	but	does	not	protect	the
backup	set	from	being	overwritten.

For	more	information	about	using	passwords,	see	the	Permissions	section.

FORMAT

Specifies	that	the	media	header	should	be	written	on	all	volumes	used	for
this	backup	operation.	Any	existing	media	header	is	overwritten.	The
FORMAT	option	invalidates	the	entire	media	contents,	ignoring	any	existing
content.

IMPORTANT		Use	FORMAT	carefully.	Formatting	one	backup	device	or	medium
renders	the	entire	media	set	unusable.	For	example,	if	a	single	tape	belonging	to
an	existing	striped	media	set	is	initialized,	the	entire	media	set	is	rendered
useless.

By	specifying	FORMAT,	the	backup	operation	implies	SKIP	and	INIT;	these
do	not	need	to	be	explicitly	stated.

NOFORMAT

Specifies	the	media	header	should	not	be	written	on	all	volumes	used	for	this
backup	operation	and	does	not	rewrite	the	backup	device	unless	INIT	is
specified.

INIT

Specifies	that	all	backup	sets	should	be	overwritten,	but	preserves	the	media
header.	If	INIT	is	specified,	any	existing	backup	set	data	on	that	device	is
overwritten.

The	backup	media	is	not	overwritten	if	any	one	of	the	following	conditions	is
met:

All	backup	sets	on	the	media	have	not	yet	expired.	For	more
information,	see	the	EXPIREDATE	and	RETAINDAYS	options.

The	backup	set	name	given	in	the	BACKUP	statement,	if	provided,
does	not	match	the	name	on	the	backup	media.	For	more	information,
see	the	NAME	clause.

Use	the	SKIP	option	to	override	these	checks.	For	more	information	about
interactions	when	using	SKIP,	NOSKIP,	INIT,	and	NOINIT,	see	the	Remarks
section.

Note		If	the	backup	media	is	password	protected,	SQL	Server	does	not	write	to
the	media	unless	the	media	password	is	supplied.	This	check	is	not	overridden
by	the	SKIP	option.	Password-protected	media	may	be	overwritten	only	by
reformatting	it.	For	more	information,	see	the	FORMAT	option.

NOINIT

Indicates	that	the	backup	set	is	appended	to	the	specified	disk	or	tape	device,
preserving	existing	backup	sets.	NOINIT	is	the	default.

The	FILE	option	of	the	RESTORE	command	is	used	to	select	the	appropriate
backup	set	at	restore	time.	For	more	information,	see	RESTORE.

If	a	media	password	is	defined	for	the	media	set,	the	password	must	be
supplied.

MEDIADESCRIPTION	=	{	text	|	@text_variable	}

Specifies	the	free-form	text	description,	maximum	of	255	characters,	of	the
media	set.

MEDIANAME	=	{	media_name	|	@media_name_variable	}

Specifies	the	media	name,	a	maximum	of	128	characters,	for	the	entire
backup	media	set.	If	MEDIANAME	is	specified,	it	must	match	the
previously	specified	media	name	already	existing	on	the	backup	volume(s).
If	not	specified	or	if	the	SKIP	option	is	specified,	there	is	no	verification
check	of	the	media	name.

MEDIAPASSWORD	=	{	mediapassword	|	@mediapassword_variable	}

Sets	the	password	for	the	media	set.	MEDIAPASSWORD	is	a	character
string.

If	a	password	is	defined	for	the	media	set,	the	password	must	be	supplied	to
create	a	backup	set	on	that	media	set.	In	addition,	that	media	password	also
must	be	supplied	to	perform	any	restore	operation	from	the	media	set.
Password-protected	media	may	be	overwritten	only	by	reformatting	it.	For
more	information,	see	the	FORMAT	option.

For	more	information	about	using	passwords,	see	the	Permissions	section.

NAME	=	{	backup_set_name	|	@backup_set_var	}

Specifies	the	name	of	the	backup	set.	Names	can	have	a	maximum	of	128
characters.	If	NAME	is	not	specified,	it	is	blank.

NORECOVERY

Used	only	with	BACKUP	LOG.	Backs	up	the	tail	of	the	log	and	leaves	the
database	in	the	Restoring	state.	NORECOVERY	is	useful	when	failing	over
to	a	secondary	database	or	when	saving	the	tail	of	the	log	prior	to	a
RESTORE	operation.

STANDBY	=	undo_file_name

Used	only	with	BACKUP	LOG.	Backs	up	the	tail	of	the	log	and	leaves	the
database	in	read-only	and	standby	mode.	The	undo	file	name	specifies
storage	to	hold	rollback	changes	which	must	be	undone	if	RESTORE	LOG
operations	are	to	be	subsequently	applied.

If	the	specified	undo	file	name	does	not	exist,	SQL	Server	creates	it.	If	the
file	does	exist,	SQL	Server	overwrites	it.	For	more	information,	see	Using
Standby	Servers.

NOREWIND

Specifies	that	SQL	Server	will	keep	the	tape	open	after	the	backup	operation.
NOREWIND	implies	NOUNLOAD.	SQL	Server	will	retain	ownership	of
the	tape	drive	until	a	BACKUP	or	RESTORE	command	is	used	WITH
REWIND.

If	a	tape	is	inadvertently	left	open,	the	fastest	way	to	release	the	tape	is	by
using	the	following	RESTORE	command:

RESTORE	LABELONLY	FROM	TAPE	=	<name>	WITH	REWIND

A	list	of	currently	open	tapes	can	be	found	by	querying	the	sysopentapes
table	in	the	master	database.

REWIND

Specifies	that	SQL	Server	will	release	and	rewind	the	tape.	If	neither

JavaScript:hhobj_4.Click()

NOREWIND	nor	REWIND	is	specified,	REWIND	is	the	default.

NOSKIP

Instructs	the	BACKUP	statement	to	check	the	expiration	date	of	all	backup
sets	on	the	media	before	allowing	them	to	be	overwritten.

SKIP

Disables	the	backup	set	expiration	and	name	checking	usually	performed	by
the	BACKUP	statement	to	prevent	overwrites	of	backup	sets.	For	more
information,	see	the	Remarks	section.

NOUNLOAD

Specifies	the	tape	is	not	unloaded	automatically	from	the	tape	drive	after	a
backup.	NOUNLOAD	remains	set	until	UNLOAD	is	specified.	This	option
is	used	only	for	tape	devices.

UNLOAD

Specifies	that	the	tape	is	automatically	rewound	and	unloaded	when	the
backup	is	finished.	UNLOAD	is	set	by	default	when	a	new	user	session	is
started.	It	remains	set	until	that	user	specifies	NOUNLOAD.	This	option	is
used	only	for	tape	devices.

RESTART

Specifies	that	SQL	Server	restarts	an	interrupted	backup	operation.	The
RESTART	option	saves	time	because	it	restarts	the	backup	operation	at	the
point	it	was	interrupted.	To	RESTART	a	specific	backup	operation,	repeat	the
entire	BACKUP	statement	and	add	the	RESTART	option.	Using	the
RESTART	option	is	not	required	but	can	save	time.

IMPORTANT		This	option	can	only	be	used	for	backups	directed	to	tape	media	and
for	backups	that	span	multiple	tape	volumes.	A	restart	operation	never	occurs	on
the	first	volume	of	the	backup.

STATS	[=	percentage]

Displays	a	message	each	time	another	percentage	completes,	and	is	used	to
gauge	progress.	If	percentage	is	omitted,	SQL	Server	displays	a	message
after	each	10	percent	is	completed.

<	file_or_filegroup	>

Specifies	the	logical	names	of	the	files	or	filegroups	to	include	in	the
database	backup.	Multiple	files	or	filegroups	may	be	specified.

FILE	=	{	logical_file_name	|	@logical_file_name_var	}

Names	one	or	more	files	to	include	in	the	database	backup.

FILEGROUP	=	{	logical_filegroup_name	|	@logical_filegroup_name_var	}

Names	one	or	more	filegroups	to	include	in	the	database	backup.

Note		Back	up	a	file	when	the	database	size	and	performance	requirements	make
a	full	database	backup	impractical.	To	back	up	the	transaction	log	separately,	use
BACKUP	LOG.

IMPORTANT		To	recover	a	database	using	file	and	filegroup	backups,	a	separate
backup	of	the	transaction	log	must	be	provided	by	using	BACKUP	LOG.	For
more	information	about	file	backups,	see	Backing	up	Using	File	Backups.

File	and	filegroup	backups	are	not	allowed	if	the	recovery	model	is	simple.

n

Is	a	placeholder	indicating	that	multiple	files	and	filegroups	may	be
specified.	There	is	no	maximum	number	of	files	or	filegroups.

LOG

Specifies	a	backup	of	the	transaction	log	only.	The	log	is	backed	up	from	the
last	successfully	executed	LOG	backup	to	the	current	end	of	the	log.	Once
the	log	is	backed	up,	the	space	may	be	truncated	when	no	longer	required	by
replication	or	active	transactions.

Note		If	backing	up	the	log	does	not	appear	to	truncate	most	of	the	log,	an	old
open	transaction	may	exist	in	the	log.	Log	space	can	be	monitored	with	DBCC
SQLPERF	(LOGSPACE).	For	more	information,	see	Transaction	Log	Backups.

NO_LOG	|	TRUNCATE_ONLY

Removes	the	inactive	part	of	the	log	without	making	a	backup	copy	of	it	and
truncates	the	log.	This	option	frees	space.	Specifying	a	backup	device	is
unnecessary	because	the	log	backup	is	not	saved.	NO_LOG	and

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

TRUNCATE_ONLY	are	synonyms.

After	backing	up	the	log	using	either	NO_LOG	or	TRUNCATE_ONLY,	the
changes	recorded	in	the	log	are	not	recoverable.	For	recovery	purposes,
immediately	execute	BACKUP	DATABASE.

NO_TRUNCATE

Allows	backing	up	the	log	in	situations	where	the	database	is	damaged.

Remarks
Database	or	log	backups	can	be	appended	to	any	disk	or	tape	device,	allowing	a
database,	and	its	transaction	logs,	to	be	kept	within	one	physical	location.

SQL	Server	uses	an	online	backup	process	to	allow	a	database	backup	while	the
database	is	still	in	use.	The	following	list	includes	operations	that	cannot	run
during	a	database	or	transaction	log	backup:

File	management	operations	such	as	the	ALTER	DATABASE	statement
with	either	the	ADD	FILE	or	REMOVE	FILE	options;	INSERT,
UPDATE,	or	DELETE	statements	are	allowed	during	a	backup
operation.

Shrink	database	or	shrink	file.	This	includes	autoshrink	operations.

If	a	backup	is	started	when	one	of	these	operations	is	in	progress,	the	backup
ends.	If	a	backup	is	running	and	one	of	these	operations	is	attempted,	the
operation	fails.

Cross-platform	backup	operations,	even	between	different	processor	types,	can
be	performed	as	long	as	the	collation	of	the	database	is	supported	by	the
operating	system.	For	more	information,	see	SQL	Server	Collation
Fundamentals.

Backup	File	Format
SQL	Server	backups	can	coexist	on	tape	media	with	Windows	NT	backups
because	the	SQL	Server	2000	backup	format	conforms	to	Microsoft	Tape	Format
(MTF);	the	same	format	used	by	Windows	NT	tape	backups.	To	ensure

JavaScript:hhobj_7.Click()

interoperability,	the	tape	should	be	formatted	by	NTBackup.

Backup	Types
Backup	types	supported	by	SQL	Server	include:

Full	database	backup,	which	backs	up	the	entire	database	including	the
transaction	log.

Differential	database	backup	performed	between	full	database	backups.

Transaction	log	backup.

A	sequence	of	log	backups	provides	for	a	continuous	chain	of
transaction	information	to	support	recovery	forward	from	database,
differential,	or	file	backups.

File(s)	and	Filegroup(s)	backup.

Use	BACKUP	to	back	up	database	files	and	filegroups	instead	of	the
full	database	when	time	constraints	make	a	full	database	backup
impractical.	To	back	up	a	file	instead	of	the	full	database,	put
procedures	in	place	to	ensure	that	all	files	in	the	database	are	backed	up
regularly.	Also,	separate	transaction	log	backups	must	be	performed.
After	restoring	a	file	backup,	apply	the	transaction	log	to	roll	the	file
contents	forward	to	make	it	consistent	with	the	rest	of	the	database.

Backup	devices	used	in	a	stripe	set	must	always	be	used	in	a	stripe	set	(unless
reinitialized	at	some	point	with	FORMAT)	with	the	same	number	of	devices.
After	a	backup	device	is	defined	as	part	of	a	stripe	set,	it	cannot	be	used	for	a
single	devicebackup	unless	FORMAT	is	specified.	Similarly,	a	backup	device
that	contains	nonstriped	backups	cannot	be	used	in	a	stripe	set	unless	FORMAT
is	specified.	Use	FORMAT	to	split	a	striped	backup	set.

If	neither	MEDIANAME	nor	MEDIADESCRIPTION	is	specified	when	a	media
header	is	written,	the	media	header	field	corresponding	to	the	blank	item	is
empty.

BACKUP	LOG	cannot	be	used	if	the	recovery	model	is	SIMPLE.	Use	BACKUP

DATABASE	instead.

Interaction	of	SKIP,	NOSKIP,	INIT,	and	NOINIT
This	table	shows	how	the	{	INIT	|	NOINIT	}	and	{	NOSKIP	|	SKIP	}	clauses
interact.

Note		In	all	these	interactions,	if	the	tape	media	is	empty	or	the	disk	backup	file
does	not	exist,	write	a	media	header	and	proceed.	If	the	media	is	not	empty	and
does	not	contain	a	valid	media	header,	give	feedback	that	this	is	not	valid	MTF
media	and	abort	the	backup.

	 INIT NOINIT
SKIP If	the	volume	contains	a	valid1

media	header,	verify	the	media
password	and	overwrite	any
backup	sets	on	the	media,
preserving	only	the	media	header.

If	the	volume	does	not	contain	a
valid	media	header,	generate	one
with	the	given	MEDIANAME,
MEDIAPASSWORD,	and
MEDIADESCRIPTION,	if	any.

If	the	volume	contains	a	valid
media	header,	verify	the	media
password	and	append	the
backup	set,	preserving	all
existing	backup	sets.

If	the	volume	does	not	contain
a	valid	media	header,	an	error
occurs.

NOSKIP If	the	volume	contains	a	valid
media	header,	perform	the
following	checks:

Verify	the	media
password.2

If	MEDIANAME	was
specified,	verify	that	the
given	media	name
matches	the	media
header's	media	name.

If	the	volume	contains	a	valid
media	header,	verify	the	media
password*	and	verify	that	the
media	name	matches	the	given
MEDIANAME,	if	any.	If	it
matches,	append	the	backup
set,	preserving	all	existing
backup	sets.

If	the	volume	does	not	contain
a	valid	media	header,	an	error
occurs.

Verify	that	there	are	no
unexpired	backup	set(s)
already	on	the	media.
If	there	are,	abort	the
backup.

If	these	checks	pass,	overwrite
any	backup	sets	on	the	media,
preserving	only	the	media	header.

If	the	volume	does	not	contain	a
valid	media	header,	generate	one
with	the	given	MEDIANAME,
MEDIAPASSWORD,	and
MEDIADESCRIPTION,	if	any.

1.	Validity	includes	the	MTF	version	number	and	other	header	information.	If	the	version	specified	is
unsupported	or	an	unexpected	value,	an	error	occurs.
2.	The	user	must	belong	to	the	appropriate	fixed	database	or	server	roles	and	provide	the	correct	media
password	to	perform	a	backup	operation.

Note		To	maintain	backward	compatibility,	the	DUMP	keyword	can	be	used	in
place	of	the	BACKUP	keyword	in	the	BACKUP	statement	syntax.	In	addition,
the	TRANSACTION	keyword	can	be	used	in	place	of	the	LOG	keyword.

Backup	History	Tables
SQL	Server	includes	these	backup	history	tables	that	track	backup	activity:

backupfile

backupmediafamily

backupmediaset

backupset

When	a	RESTORE	is	performed,	the	backup	history	tables	are	modified.

Compatibility	Considerations
CAUTION		Backups	created	with	Microsoft®	SQL	Server™	2000	cannot	be
restored	in	earlier	versions	of	SQL	Server.

Permissions
BACKUP	DATABASE	and	BACKUP	LOG	permissions	default	to	members	of
the	sysadmin	fixed	server	role	and	the	db_owner	and	db_backupoperator
fixed	database	roles.

In	addition,	the	user	may	specify	passwords	for	a	media	set,	a	backup	set,	or
both.	When	a	password	is	defined	on	a	media	set,	it	is	not	enough	that	a	user	is	a
member	of	appropriate	fixed	server	and	database	roles	to	perform	a	backup.	The
user	also	must	supply	the	media	password	to	perform	these	operations.	Similarly,
restore	is	not	allowed	unless	the	correct	media	password	and	backup	set
password	are	specified	in	the	restore	command.

Defining	passwords	for	backup	sets	and	media	sets	is	an	optional	feature	in	the
BACKUP	statement.	The	passwords	will	prevent	unauthorized	restore	operations
and	unauthorized	appends	of	backup	sets	to	media	using	SQL	Server	2000	tools,
but	passwords	do	not	prevent	overwrite	of	media	with	the	FORMAT	option.

Thus,	although	the	use	of	passwords	can	help	protect	the	contents	of	media	from
unauthorized	access	using	SQL	Server	tools,	passwords	do	not	protect	contents
from	being	destroyed.	Passwords	do	not	fully	prevent	unauthorized	access	to	the
contents	of	the	media	because	the	data	in	the	backup	sets	is	not	encrypted	and
could	theoretically	be	examined	by	programs	specifically	created	for	this
purpose.	For	situations	where	security	is	crucial,	it	is	important	to	prevent	access
to	the	media	by	unauthorized	individuals.

It	is	an	error	to	specify	a	password	for	objects	that	were	not	created	with
associated	passwords.

BACKUP	creates	the	backup	set	with	the	backup	set	password	supplied	through
the	PASSWORD	option.	In	addition,	BACKUP	will	normally	verify	the	media
password	given	by	the	MEDIAPASSWORD	option	prior	to	writing	to	the	media.
The	only	time	that	BACKUP	will	not	verify	the	media	password	is	when	it
formats	the	media,	which	overwrites	the	media	header.	BACKUP	formats	the
media	only:

If	the	FORMAT	option	is	specified.

If	the	media	header	is	invalid	and	INIT	is	specified.

If	the	operation	is	writing	a	continuation	volume.

If	BACKUP	writes	the	media	header,	BACKUP	will	assign	the	media	set
password	to	the	value	specified	in	the	MEDIAPASSWORD	option.

For	more	information	about	the	impact	of	passwords	on	SKIP,	NOSKIP,	INIT,
and	NOINIT	options,	see	the	Remarks	section.

Ownership	and	permission	problems	on	the	backup	device's	physical	file	can
interfere	with	a	backup	operation.	SQL	Server	must	be	able	to	read	and	write	to
the	device;	the	account	under	which	the	SQL	Server	service	runs	must	have
write	permissions.	However,	sp_addumpdevice,	which	adds	an	entry	for	a
device	in	the	system	tables,	does	not	check	file	access	permissions.	Such
problems	on	the	backup	device's	physical	file	may	not	appear	until	the	physical
resource	is	accessed	when	the	backup	or	restore	is	attempted.

Examples

A.	Back	up	the	entire	MyNwind	database
Note		The	MyNwind	database	is	shown	for	illustration	only.

This	example	creates	a	logical	backup	device	in	which	a	full	backup	of	the
MyNwind	database	is	placed.

--	Create	a	logical	backup	device	for	the	full	MyNwind	backup.
USE	master
EXEC	sp_addumpdevice	'disk',	'MyNwind_1',	
			DISK	='c:\Program	Files\Microsoft	SQL	Server\MSSQL\BACKUP\MyNwind_1.dat'

--	Back	up	the	full	MyNwind	database.
BACKUP	DATABASE	MyNwind	TO	MyNwind_1

B.	Back	up	the	database	and	log
This	example	creates	both	a	full	database	and	log	backup.	The	database	is
backed	up	to	a	logical	backup	device	called	MyNwind_2,	and	then	the	log	is
backed	up	to	a	logical	backup	device	called	MyNwindLog1.

Note		Creating	a	logical	backup	device	needs	to	be	done	only	once.

--	Create	the	backup	device	for	the	full	MyNwind	backup.
USE	master
EXEC	sp_addumpdevice	'disk',	'MyNwind_2',
			'c:\Program	Files\Microsoft	SQL	Server\MSSQL\BACKUP\MyNwind_2.dat'

--Create	the	log	backup	device.
USE	master
EXEC	sp_addumpdevice	'disk',	'MyNwindLog1',
			'c:\Program	Files\Microsoft	SQL	Server\MSSQL\BACKUP\MyNwindLog1.dat'

--	Back	up	the	full	MyNwind	database.
BACKUP	DATABASE	MyNwind	TO	MyNwind_2

--	Update	activity	has	occurred	since	the	full	database	backup.

--	Back	up	the	log	of	the	MyNwind	database.
BACKUP	LOG	MyNwind	
			TO	MyNwindLog1

See	Also

Backup	Formats

DBCC	SQLPERF

RESTORE

RESTORE	FILELISTONLY

RESTORE	HEADERONLY

JavaScript:hhobj_8.Click()

RESTORE	LABELONLY

RESTORE	VERIFYONLY

sp_addumpdevice

sp_configure

sp_dboption

sp_helpfile

sp_helpfilegroup

Using	Identifiers

Using	Media	Sets	and	Families

JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()

Transact-SQL	Reference

BEGIN...END
Encloses	a	series	of	Transact-SQL	statements	so	that	a	group	of	Transact-SQL
statements	can	be	executed.	BEGIN	and	END	are	control-of-flow	language
keywords.

Syntax
BEGIN
				{	
								sql_statement	
								|	statement_block	
				}	
END

Arguments
{	sql_statement	|	statement_block	}

Is	any	valid	Transact-SQL	statement	or	statement	grouping	as	defined	with	a
statement	block.

Remarks
BEGIN...END	blocks	can	be	nested.

Although	all	Transact-SQL	statements	are	valid	within	a	BEGIN...END	block,
certain	Transact-SQL	statements	should	not	be	grouped	together	within	the	same
batch	(statement	block).	For	more	information,	see	Batches	and	the	individual
statements	used.

Examples
In	this	example,	BEGIN	and	END	define	a	series	of	Transact-SQL	statements
that	execute	together.	If	the	BEGIN...END	block	were	not	included,	the	IF
condition	would	cause	only	the	ROLLBACK	TRANSACTION	to	execute,	and
the	print	message	would	not	be	returned.

JavaScript:hhobj_1.Click()

USE	pubs
GO
CREATE	TRIGGER	deltitle
ON	titles
FOR	delete
AS
IF				(SELECT	COUNT(*)	FROM	deleted,	sales
						WHERE	sales.title_id	=	deleted.title_id)	>	0
			BEGIN
						ROLLBACK	TRANSACTION
						PRINT	'You	can't	delete	a	title	with	sales.'
END

See	Also

ALTER	TRIGGER

Control-of-Flow	Language

CREATE	TRIGGER

END	(BEGIN...END)

Transact-SQL	Reference

BEGIN	DISTRIBUTED	TRANSACTION
Specifies	the	start	of	a	Transact-SQL	distributed	transaction	managed	by
Microsoft	Distributed	Transaction	Coordinator	(MS	DTC).

Syntax
BEGIN	DISTRIBUTED	TRAN	[SACTION]	
				[transaction_name	|	@tran_name_variable]

Arguments
transaction_name

Is	a	user-defined	transaction	name	used	to	track	the	distributed	transaction
within	MS	DTC	utilities.	transaction_name	must	conform	to	the	rules	for
identifiers	but	only	the	first	32	characters	are	used.

@tran_name_variable

Is	the	name	of	a	user-defined	variable	containing	a	transaction	name	used	to
track	the	distributed	transaction	within	MS	DTC	utilities.	The	variable	must
be	declared	with	a	char,	varchar,	nchar,	or	nvarchar	data	type.

Remarks
The	server	executing	the	BEGIN	DISTRIBUTED	TRANSACTION	statement	is
the	transaction	originator	and	controls	the	completion	of	the	transaction.	When	a
subsequent	COMMIT	TRANSACTION	or	ROLLBACK	TRANSACTION
statement	is	issued	for	the	connection,	the	controlling	server	requests	that	MS
DTC	manage	the	completion	of	the	distributed	transaction	across	the	servers
involved.

There	are	two	ways	remote	SQL	servers	are	enlisted	in	a	distributed	transaction:

A	connection	already	enlisted	in	the	distributed	transaction	performs	a
remote	stored	procedure	call	referencing	a	remote	server.

A	connection	already	enlisted	in	the	distributed	transaction	executes	a
distributed	query	referencing	a	remote	server.

For	example,	if	BEGIN	DISTRIBUTED	TRANSACTION	is	issued	on
ServerA,	the	connection	calls	a	stored	procedure	on	ServerB	and	another	stored
procedure	on	ServerC,	and	the	stored	procedure	on	ServerC	executes	a
distributed	query	against	ServerD,	then	all	four	SQL	servers	are	involved	in	the
distributed	transaction.	ServerA	is	the	originating,	controlling	server	for	the
transaction.

The	connections	involved	in	Transact-SQL	distributed	transactions	do	not	get	a
transaction	object	they	can	pass	to	another	connection	for	it	to	explicitly	enlist	in
the	distributed	transaction.	The	only	way	for	a	remote	server	to	enlist	in	the
transaction	is	to	be	the	target	of	a	remote	stored	procedure	call	or	a	distributed
query.

The	sp_configure	remote	proc	trans	option	controls	whether	calls	to	remote
stored	procedures	in	a	local	transaction	automatically	cause	the	local	transaction
to	be	promoted	to	a	distributed	transaction	managed	by	MS	DTC.	The
connection-level	SET	option	REMOTE_PROC_TRANSACTIONS	can	be	used
to	override	the	server	default	established	by	sp_configure	remote	proc	trans.
With	this	option	set	on,	a	remote	stored	procedure	call	causes	a	local	transaction
to	be	promoted	to	a	distributed	transaction.	The	connection	that	creates	the	MS
DTC	transaction	becomes	the	originator	for	the	transaction.	COMMIT
TRANSACTION	initiates	an	MS	DTC	coordinated	commit.	If	the	sp_configure
remote	proc	trans	option	is	set	on,	remote	stored	procedure	calls	in	local
transactions	are	automatically	protected	as	part	of	distributed	transactions
without	having	to	rewrite	applications	to	specifically	issue	BEGIN
DISTRIBUTED	TRANSACTION	instead	of	BEGIN	TRANSACTION.

When	a	distributed	query	is	executed	in	a	local	transaction,	the	transaction	is
automatically	promoted	to	a	distributed	transaction	if	the	target	OLE	DB	data
source	supports	ITransactionLocal.	If	the	target	OLE	DB	data	source	does	not
support	ITransactionLocal,	only	read-only	operations	are	allowed	in	the
distributed	query.

For	more	information	about	the	distributed	transaction	environment	and	process,
see	the	Microsoft	Distributed	Transaction	Coordinator	documentation.

Permissions
BEGIN	DISTRIBUTED	TRANSACTION	permissions	default	to	any	valid	user.

Examples
This	example	updates	the	author's	last	name	on	the	local	and	remote	databases.
The	local	and	remote	databases	will	both	either	commit	or	roll	back	the
transaction.

Note		Unless	MS	DTC	is	currently	installed	on	the	computer	running
Microsoft®	SQL	Server™,	this	example	produces	an	error	message.	For	more
information	about	installing	MS	DTC,	see	the	Microsoft	Distributed	Transaction
Coordinator	documentation.

USE	pubs
GO
BEGIN	DISTRIBUTED	TRANSACTION
UPDATE	authors
			SET	au_lname	=	'McDonald'	WHERE	au_id	=	'409-56-7008'
EXECUTE	remote.pubs.dbo.changeauth_lname	'409-56-7008','McDonald'
COMMIT	TRAN
GO

See	Also

BEGIN	TRANSACTION

COMMIT	TRANSACTION

COMMIT	WORK

Distributed	Transactions

ROLLBACK	TRANSACTION

ROLLBACK	WORK

SAVE	TRANSACTION

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

BEGIN	TRANSACTION
Marks	the	starting	point	of	an	explicit,	local	transaction.	BEGIN
TRANSACTION	increments	@@TRANCOUNT	by	1.

Syntax
BEGIN	TRAN	[SACTION]	[transaction_name	|	@tran_name_variable
				[WITH	MARK	['description']]]

Arguments
transaction_name

Is	the	name	assigned	to	the	transaction.	transaction_name	must	conform	to
the	rules	for	identifiers	but	identifiers	longer	than	32	characters	are	not
allowed.	Use	transaction	names	only	on	the	outermost	pair	of	nested
BEGIN...COMMIT	or	BEGIN...ROLLBACK	statements.

@tran_name_variable

Is	the	name	of	a	user-defined	variable	containing	a	valid	transaction	name.
The	variable	must	be	declared	with	a	char,	varchar,	nchar,	or	nvarchar
data	type.

WITH	MARK	['description']

Specifies	the	transaction	is	marked	in	the	log.	description	is	a	string	that
describes	the	mark.

If	WITH	MARK	is	used,	a	transaction	name	must	be	specified.	WITH
MARK	allows	for	restoring	a	transaction	log	to	a	named	mark.

Remarks
BEGIN	TRANSACTION	represents	a	point	at	which	the	data	referenced	by	a
connection	is	logically	and	physically	consistent.	If	errors	are	encountered,	all
data	modifications	made	after	the	BEGIN	TRANSACTION	can	be	rolled	back
to	return	the	data	to	this	known	state	of	consistency.	Each	transaction	lasts	until

either	it	completes	without	errors	and	COMMIT	TRANSACTION	is	issued	to
make	the	modifications	a	permanent	part	of	the	database,	or	errors	are
encountered	and	all	modifications	are	erased	with	a	ROLLBACK
TRANSACTION	statement.

BEGIN	TRANSACTION	starts	a	local	transaction	for	the	connection	issuing	the
statement.	Depending	on	the	current	transaction	isolation	level	settings,	many
resources	acquired	to	support	the	Transact-SQL	statements	issued	by	the
connection	are	locked	by	the	transaction	until	it	is	completed	with	either	a
COMMIT	TRANSACTION	or	ROLLBACK	TRANSACTION	statement.
Transactions	left	outstanding	for	long	periods	of	time	can	prevent	other	users
from	accessing	these	locked	resources.

Although	BEGIN	TRANSACTION	starts	a	local	transaction,	it	is	not	recorded
in	the	transaction	log	until	the	application	subsequently	performs	an	action	that
must	be	recorded	in	the	log,	such	as	executing	an	INSERT,	UPDATE,	or
DELETE	statement.	An	application	can	perform	actions	such	as	acquiring	locks
to	protect	the	transaction	isolation	level	of	SELECT	statements,	but	nothing	is
recorded	in	the	log	until	the	application	performs	a	modification	action.

Naming	multiple	transactions	in	a	series	of	nested	transactions	with	a	transaction
name	has	little	effect	on	the	transaction.	Only	the	first	(outermost)	transaction
name	is	registered	with	the	system.	A	rollback	to	any	other	name	(other	than	a
valid	savepoint	name)	generates	an	error.	None	of	the	statements	executed	before
the	rollback	are	in	fact	rolled	back	at	the	time	this	error	occurs.	The	statements
are	rolled	back	only	when	the	outer	transaction	is	rolled	back.

BEGIN	TRANSACTION	starts	a	local	transaction.	The	local	transaction	is
escalated	to	a	distributed	transaction	if	the	following	actions	are	performed
before	it	is	committed	or	rolled	back:

An	INSERT,	DELETE,	or	UPDATE	statement	is	executed	that
references	a	remote	table	on	a	linked	server.	The	INSERT,	UPDATE,	or
DELETE	statement	fails	if	the	OLE	DB	provider	used	to	access	the
linked	server	does	not	support	the	ITransactionJoin	interface.

A	call	is	made	to	a	remote	stored	procedure	when	the
REMOTE_PROC_TRANSACTIONS	option	is	set	to	ON.

The	local	copy	of	SQL	Server	becomes	the	transaction	controller	and	uses	MS
DTC	to	manage	the	distributed	transaction.

Marked	Transactions
The	WITH	MARK	option	causes	the	transaction	name	to	be	placed	in	the
transaction	log.	When	restoring	a	database	to	an	earlier	state,	the	marked
transaction	can	be	used	in	place	of	a	date	and	time.	For	more	information,	see
Restoring	a	Database	to	a	Prior	State,	Recovering	to	a	Named	Transaction,	and
RESTORE.

Additionally,	transaction	log	marks	are	necessary	if	you	need	to	recover	a	set	of
related	databases	to	a	logically	consistent	state.	Marks	can	be	placed	in	the
transaction	logs	of	the	related	databases	by	a	distributed	transaction.	Recovering
the	set	of	related	databases	to	these	marks	results	in	a	set	of	databases	that	are
transactionally	consistent.	Placement	of	marks	in	related	databases	requires
special	procedures.	For	more	information,	see	Backup	and	Recovery	of	Related
Databases.

The	mark	is	placed	in	the	transaction	log	only	if	the	database	is	updated	by	the
marked	transaction.	Transactions	that	do	not	modify	data	are	not	marked.

BEGIN	TRAN	new_name	WITH	MARK	can	be	nested	within	an	already
existing	transaction	that	is	not	marked.	Upon	doing	so,	new_name	becomes	the
mark	name	for	the	transaction,	despite	the	name	that	the	transaction	may	already
have	been	given.	In	the	following	example,	M2	is	the	name	of	the	mark.

BEGIN	TRAN	T1
UPDATE	table1	...
BEGIN	TRAN	M2	WITH	MARK
UPDATE	table2	...
SELECT	*	from	table1
COMMIT	TRAN	M2
UPDATE	table3	...
COMMIT	TRAN	T1

Attempting	to	mark	a	transaction	that	is	already	marked	results	in	a	warning	(not
error)	message:

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

BEGIN	TRAN	T1	WITH	MARK
UPDATE	table1	...
BEGIN	TRAN	M2	WITH	MARK

Server:	Msg	3920,	Level	16,	State	1,	Line	3
WITH	MARK	option	only	applies	to	the	first	BEGIN	TRAN	WITH	MARK.
The	option	is	ignored.

Permissions
BEGIN	TRANSACTION	permissions	default	to	any	valid	user.

Examples

A.	Naming	a	transaction
This	example	demonstrates	how	to	name	a	transaction.	Upon	committing	the
named	transaction,	royalties	paid	for	all	popular	computer	books	are	increased
by	10	percent.

DECLARE	@TranName	VARCHAR(20)
SELECT	@TranName	=	'MyTransaction'

BEGIN	TRANSACTION	@TranName
GO
USE	pubs
GO
UPDATE	roysched
SET	royalty	=	royalty	*	1.10
WHERE	title_id	LIKE	'Pc%'
GO

COMMIT	TRANSACTION	MyTransaction
GO

B.	Marking	a	transaction
This	example	demonstrates	how	to	mark	a	transaction.	The	transaction	named
"RoyaltyUpdate"	is	marked.

BEGIN	TRANSACTION	RoyaltyUpdate	
			WITH	MARK	'Update	royalty	values'
GO
USE	pubs
GO
UPDATE	roysched
			SET	royalty	=	royalty	*	1.10
			WHERE	title_id	LIKE	'Pc%'
GO
COMMIT	TRANSACTION	RoyaltyUpdate
GO

See	Also

BEGIN	DISTRIBUTED	TRANSACTION

COMMIT	TRANSACTION

COMMIT	WORK

RESTORE

Recovering	to	a	Named	Transaction

ROLLBACK	TRANSACTION

ROLLBACK	WORK

SAVE	TRANSACTION

Transactions

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Transact-SQL	Reference

BETWEEN
Specifies	a	range	to	test.

Syntax
test_expression	[NOT]	BETWEEN	begin_expression	AND	end_expression

Arguments
test_expression

Is	the	expression	to	test	for	in	the	range	defined	by	begin_expression	and
end_expression.	test_expression	must	be	the	same	data	type	as	both
begin_expression	and	end_expression.

NOT

Specifies	that	the	result	of	the	predicate	be	negated.

begin_expression

Is	any	valid	Microsoft®	SQL	Server™	expression.	begin_expression	must	be
the	same	data	type	as	both	test_expression	and	end_expression.

end_expression

Is	any	valid	SQL	Server	expression.	end_expression	must	be	the	same	data
type	as	both	test_expression	and	begin_expression.

AND

Acts	as	a	placeholder	indicating	that	test_expression	should	be	within	the
range	indicated	by	begin_expression	and	end_expression.

Result	Types
Boolean

Result	Value

BETWEEN	returns	TRUE	if	the	value	of	test_expression	is	greater	than	or	equal
to	the	value	of	begin_expression	and	less	than	or	equal	to	the	value	of
end_expression.

NOT	BETWEEN	returns	TRUE	if	the	value	of	test_expression	is	less	than	the
value	of	begin_expression	or	greater	than	the	value	of	end_expression.

Remarks
To	specify	an	exclusive	range,	use	the	greater	than	(>)	and	less	than	operators
(<).	If	any	input	to	the	BETWEEN	or	NOT	BETWEEN	predicate	is	NULL,	the
result	is	UNKNOWN.

Examples

A.	Use	BETWEEN
This	example	returns	title	identifiers	for	books	with	year-to-date	unit	sales	from
4,095	through	12,000.

USE	pubs
GO
SELECT	title_id,	ytd_sales
FROM	titles
WHERE	ytd_sales	BETWEEN	4095	AND	12000
GO

Here	is	the	result	set:

title_id	ytd_sales	
--------	-----------	
BU1032			4095								
BU7832			4095								
PC1035			8780								
PC8888			4095								
TC7777			4095								

(5	row(s)	affected)

B.	Use	>	and	<	instead	of	BETWEEN
This	example,	which	uses	greater	than	(>)	and	less	than	(<)	operators,	returns
different	results	because	these	operators	are	not	inclusive.

USE	pubs
GO
SELECT	title_id,	ytd_sales						
FROM	titles						
WHERE	ytd_sales	>	4095	AND	ytd_sales	<	12000						
GO

Here	is	the	result	set:

title_id	ytd_sales			
--------	-----------	
PC1035			8780								

(1	row(s)	affected)

C.	Use	NOT	BETWEEN
This	example	finds	all	rows	outside	a	specified	range	(from	4,095	through
12,000).

USE	pubs
GO
SELECT	title_id,	ytd_sales
FROM	titles
WHERE	ytd_sales	NOT	BETWEEN	4095	AND	12000
GO

Here	is	the	result	set:

title_id	ytd_sales			

--------	-----------	
BU1111			3876								
BU2075			18722							
MC2222			2032								
MC3021			22246							
PS1372			375									
PS2091			2045								
PS2106			111									
PS3333			4072								
PS7777			3336								
TC3218			375									
TC4203			15096							

(11	row(s)	affected)

See	Also

>	(Greater	Than)

<	(Less	Than)

Expressions

Functions

Operators	(Logical	Operators)

SELECT	(Subqueries)

WHERE

Transact-SQL	Reference

binary	and	varbinary
Binary	data	types	of	either	fixed-length	(binary)	or	variable-length	(varbinary).

binary	[(n)]

Fixed-length	binary	data	of	n	bytes.	n	must	be	a	value	from	1	through	8,000.
Storage	size	is	n+4	bytes.

varbinary	[(n)]

Variable-length	binary	data	of	n	bytes.	n	must	be	a	value	from	1	through
8,000.	Storage	size	is	the	actual	length	of	the	data	entered	+	4	bytes,	not	n
bytes.	The	data	entered	can	be	0	bytes	in	length.	The	SQL-92	synonym	for
varbinary	is	binary	varying.

Remarks
When	n	is	not	specified	in	a	data	definition,	or	variable	declaration	statement,
the	default	length	is	1.	When	n	is	not	specified	with	the	CAST	function,	the
default	length	is	30.

Use	binary	when	column	data	entries	are	consistent	in	size.

Use	varbinary	when	column	data	entries	are	inconsistent	in	size.

See	Also

ALTER	TABLE

CAST	and	CONVERT

CREATE	TABLE

Data	Type	Conversion

Data	Types

DECLARE	@local_variable

DELETE

JavaScript:hhobj_1.Click()

INSERT

SET	@local_variable

UPDATE

Transact-SQL	Reference

BINARY_CHECKSUM
Returns	the	binary	checksum	value	computed	over	a	row	of	a	table	or	over	a	list
of	expressions.	BINARY_CHECKSUM	can	be	used	to	detect	changes	to	a	row
of	a	table.

Syntax
BINARY_CHECKSUM	(*	|	expression	[,...n])

Arguments
*

Specifies	that	the	computation	is	over	all	the	columns	of	the	table.
BINARY_CHECKSUM	ignores	columns	of	noncomparable	data	types	in	its
computation.	Noncomparable	data	types	are	text,	ntext,	image,	and	cursor,
as	well	as	sql_variant	with	any	of	the	above	types	as	its	base	type.

expression

Is	an	expression	of	any	type.	BINARY_CHECKSUM	ignores	expressions	of
noncomparable	data	types	in	its	computation.

Remarks
BINARY_CHECKSUM(*),	computed	on	any	row	of	a	table,	returns	the	same
value	as	long	the	row	is	not	subsequently	modified.	BINARY_CHECKSUM(*)
will	return	a	different	value	for	most,	but	not	all,	changes	to	the	row,	and	can	be
used	to	detect	most	row	modifications.

BINARY_CHECKSUM	can	be	applied	over	a	list	of	expressions,	and	returns	the
same	value	for	a	given	list.	BINARY_CHECKSUM	applied	over	any	two	lists	of
expressions	returns	the	same	value	if	the	corresponding	elements	of	the	two	lists
have	the	same	type	and	byte	representation.	For	this	definition,	NULL	values	of
a	given	type	are	considered	to	have	the	same	byte	representation.

BINARY_CHECKSUM	and	CHECKSUM	are	similar	functions:	they	can	be
used	to	compute	a	checksum	value	on	a	list	of	expressions,	and	the	order	of

expressions	affects	the	resultant	value.	The	order	of	columns	used	in	the	case	of
BINARY_CHECKSUM(*)	is	the	order	of	columns	specified	in	the	table	or	view
definition,	including	computed	columns.

CHECKSUM	and	BINARY_CHECKSUM	return	different	values	for	the	string
data	types,	where	locale	can	cause	strings	with	different	representation	to
compare	equal.	The	string	data	types	are	char,	varchar,	nchar,	nvarchar,	or
sql_variant	(if	the	base	type	of	sql_variant	is	a	string	data	type).	For	example,
the	BINARY_CHECKSUM	values	for	the	strings	"McCavity"	and	"Mccavity"
are	different.	In	contrast,	in	a	case-insensitive	server,	CHECKSUM	returns	the
same	checksum	values	for	those	strings.	CHECKSUM	values	should	not	be
compared	against	BINARY_CHECKSUM	values.

Examples

A.	Use	BINARY_CHECKSUM	to	detect	changes	in	the	rows	of	a
table.
This	example	uses	BINARY_CHECKSUM	to	detect	changes	in	a	row	of	the
Products	table	in	the	Northwind	database.

/*Get	the	checksum	value	before	the	values	in	the	specific	rows	(#13-15)	are	changed.*/
USE			Northwind
GO
CREATE			TABLE	TableBC	(ProductID	int,	bchecksum	int)
INSERT			INTO	TableBC
									SELECT			ProductID,	BINARY_CHECKSUM(*)
									FROM						Products
/*TableBC	contains	a	column	of	77	checksum	values	corresponding	to	each	row	in	the	Products	table.*/

--A	large	company	bought	products	13-15.
--The	new	company	modified	the	products	names	and	unit	prices.
--Change	the	values	of	ProductsName	and	UnitPrice	for	rows	13,	14,	and	15	of	the	Products	table.*/
UPDATE			Products
SET			ProductName='Oishi	Konbu',	UnitPrice=5
WHERE			ProductName='Konbu'

UPDATE			Products
SET			ProductName='Oishi	Tofu',	UnitPrice=20
WHERE			ProductName='Tofu'

UPDATE			Products
SET			ProductName='Oishi	Genen	Shouyu',	UnitPrice=12
WHERE			ProductName='Genen	Shouyu'

--Determine	the	rows	that	have	changed.
SELECT			ProductID
FROM						TableBC
WHERE			EXISTS			(
						SELECT			ProductID
						FROM						Products
						WHERE						Products.ProductID	=	TableBC.ProductID	
						AND			BINARY_CHECKSUM(*)	<>	TableBC.bchecksum)

Here	is	the	result	set:

ProductID
13
14
15

See	Also

CHECKSUM

CHECKSUM_AGG

Transact-SQL	Reference

bit
Integer	data	type	1,	0,	or	NULL.

Remarks
Columns	of	type	bit	cannot	have	indexes	on	them.

Microsoft®	SQL	Server™	optimizes	the	storage	used	for	bit	columns.	If	there
are	8	or	fewer	bit	columns	in	a	table,	the	columns	are	stored	as	1	byte.	If	there
are	from	9	through	16	bit	columns,	they	are	stored	as	2	bytes,	and	so	on.

See	Also

ALTER	TABLE

CAST	and	CONVERT

CREATE	TABLE

Data	Type	Conversion

Data	Types

DECLARE	@local_variable

DELETE

INSERT

SET	@local_variable

syscolumns

UPDATE

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

BREAK
Exits	the	innermost	WHILE	loop.	Any	statements	following	the	END	keyword
are	ignored.	BREAK	is	often,	but	not	always,	activated	by	an	IF	test.

See	Also

Control-of-Flow	Language

WHILE

Transact-SQL	Reference

BULK	INSERT
Copies	a	data	file	into	a	database	table	or	view	in	a	user-specified	format.

Syntax
BULK	INSERT	[['database_name'.]	['owner'].]	{	'table_name'	FROM
'data_file'	}					[WITH	
								(
												[BATCHSIZE	[=	batch_size]]	
												[[,]	CHECK_CONSTRAINTS]	
												[[,]	CODEPAGE	[=	'ACP'	|	'OEM'	|	'RAW'	|	'code_page']]	
												[[,]	DATAFILETYPE	[=	
																{	'char'	|	'native'|	'widechar'	|	'widenative'	}]]	
												[[,]	FIELDTERMINATOR	[=	'field_terminator']]	
												[[,]	FIRSTROW	[=	first_row]]	
												[[,]	FIRE_TRIGGERS]	
												[[,]	FORMATFILE	=	'format_file_path']	
												[[,]	KEEPIDENTITY]	
												[[,]	KEEPNULLS]	
												[[,]	KILOBYTES_PER_BATCH	[=	kilobytes_per_batch]]	
												[[,]	LASTROW	[=	last_row]]	
												[[,]	MAXERRORS	[=	max_errors]]	
												[[,]	ORDER	({	column	[ASC	|	DESC]	}	[,...n])]	
												[[,]	ROWS_PER_BATCH	[=	rows_per_batch]]	
												[[,]	ROWTERMINATOR	[=	'row_terminator']]	
												[[,]	TABLOCK]	
)	
]

Arguments
'database_name'

Is	the	database	name	in	which	the	specified	table	or	view	resides.	If	not
specified,	this	is	the	current	database.

'owner'

Is	the	name	of	the	table	or	view	owner.	owner	is	optional	if	the	user
performing	the	bulk	copy	operation	owns	the	specified	table	or	view.	If
owner	is	not	specified	and	the	user	performing	the	bulk	copy	operation	does
not	own	the	specified	table	or	view,	Microsoft®	SQL	Server™	returns	an
error	message,	and	the	bulk	copy	operation	is	canceled.

'table_name'

Is	the	name	of	the	table	or	view	to	bulk	copy	data	into.	Only	views	in	which
all	columns	refer	to	the	same	base	table	can	be	used.	For	more	information
about	the	restrictions	for	copying	data	into	views,	see	INSERT.

'data_file'

Is	the	full	path	of	the	data	file	that	contains	data	to	copy	into	the	specified
table	or	view.	BULK	INSERT	can	copy	data	from	a	disk	(including	network,
floppy	disk,	hard	disk,	and	so	on).

data_file	must	specify	a	valid	path	from	the	server	on	which	SQL	Server	is
running.	If	data_file	is	a	remote	file,	specify	the	Universal	Naming
Convention	(UNC)	name.

BATCHSIZE	[=	batch_size]

Specifies	the	number	of	rows	in	a	batch.	Each	batch	is	copied	to	the	server	as
one	transaction.	SQL	Server	commits	or	rolls	back,	in	the	case	of	failure,	the
transaction	for	every	batch.	By	default,	all	data	in	the	specified	data	file	is
one	batch.

CHECK_CONSTRAINTS

Specifies	that	any	constraints	on	table_name	are	checked	during	the	bulk
copy	operation.	By	default,	constraints	are	ignored.

CODEPAGE	[=	'ACP'	|	'OEM'	|	'RAW'	|	'code_page']

Specifies	the	code	page	of	the	data	in	the	data	file.	CODEPAGE	is	relevant
only	if	the	data	contains	char,	varchar,	or	text	columns	with	character
values	greater	than	127	or	less	than	32.

CODEPAGE

value Description
ACP Columns	of	char,	varchar,	or	text	data	type	are

converted	from	the	ANSI/Microsoft	Windows®	code
page	(ISO	1252)	to	the	SQL	Server	code	page.

OEM	(default) Columns	of	char,	varchar,	or	text	data	type	are
converted	from	the	system	OEM	code	page	to	the	SQL
Server	code	page.

RAW No	conversion	from	one	code	page	to	another	occurs;
this	is	the	fastest	option.

code_page Specific	code	page	number,	for	example,	850.

DATAFILETYPE	[=	{'char'	|	'native'	|	'widechar'	|	'widenative'	}]

Specifies	that	BULK	INSERT	performs	the	copy	operation	using	the
specified	default.

DATAFILETYPE
value Description
char	(default) Performs	the	bulk	copy	operation	from	a	data	file

containing	character	data.
native Performs	the	bulk	copy	operation	using	the	native

(database)	data	types.	The	data	file	to	load	is	created
by	bulk	copying	data	from	SQL	Server	using	the	bcp
utility.

widechar Performs	the	bulk	copy	operation	from	a	data	file
containing	Unicode	characters.

widenative Performs	the	same	bulk	copy	operation	as	native,
except	char,	varchar,	and	text	columns	are	stored	as
Unicode	in	the	data	file.	The	data	file	to	be	loaded	was
created	by	bulk	copying	data	from	SQL	Server	using
the	bcp	utility.	This	option	offers	a	higher	performance
alternative	to	the	widechar	option,	and	is	intended	for
transferring	data	from	one	computer	running	SQL
Server	to	another	by	using	a	data	file.	Use	this	option
when	transferring	data	that	contains	ANSI	extended
characters	in	order	to	take	advantage	of	native	mode

performance.

FIELDTERMINATOR	[=	'field_terminator']

Specifies	the	field	terminator	to	be	used	for	char	and	widechar	data	files.
The	default	is	\t	(tab	character).

FIRSTROW	[=	first_row]

Specifies	the	number	of	the	first	row	to	copy.	The	default	is	1,	indicating	the
first	row	in	the	specified	data	file.

FIRE_TRIGGERS

Specifies	that	any	insert	triggers	defined	on	the	destination	table	will	execute
during	the	bulk	copy	operation.	If	FIRE_TRIGGERS	is	not	specified,	no
insert	triggers	will	execute.

FORMATFILE	[=	'format_file_path']

Specifies	the	full	path	of	a	format	file.	A	format	file	describes	the	data	file
that	contains	stored	responses	created	using	the	bcp	utility	on	the	same	table
or	view.	The	format	file	should	be	used	in	cases	in	which:

The	data	file	contains	greater	or	fewer	columns	than	the	table	or	view.

The	columns	are	in	a	different	order.

The	column	delimiters	vary.

There	are	other	changes	in	the	data	format.	Format	files	are	usually
created	by	using	the	bcp	utility	and	modified	with	a	text	editor	as
needed.	For	more	information,	see	bcp	Utility.

KEEPIDENTITY

Specifies	that	the	values	for	an	identity	column	are	present	in	the	file
imported.	If	KEEPIDENTITY	is	not	given,	the	identity	values	for	this
column	in	the	data	file	imported	are	ignored,	and	SQL	Server	automatically

JavaScript:hhobj_1.Click()

assigns	unique	values	based	on	the	seed	and	increment	values	specified
during	table	creation.	If	the	data	file	does	not	contain	values	for	the	identity
column	in	the	table	or	view,	use	a	format	file	to	specify	that	the	identity
column	in	the	table	or	view	should	be	skipped	when	importing	data;	SQL
Server	automatically	assigns	unique	values	for	the	column.	For	more
information,	see	DBCC	CHECKIDENT.

KEEPNULLS

Specifies	that	empty	columns	should	retain	a	null	value	during	the	bulk	copy
operation,	rather	than	have	any	default	values	for	the	columns	inserted.

KILOBYTES_PER_BATCH	[=	kilobytes_per_batch]

Specifies	the	approximate	number	of	kilobytes	(KB)	of	data	per	batch	(as
kilobytes_per_batch).	By	default,	KILOBYTES_PER_BATCH	is	unknown.

LASTROW	[=	last_row]

Specifies	the	number	of	the	last	row	to	copy.	The	default	is	0,	indicating	the
last	row	in	the	specified	data	file.

MAXERRORS	[=	max_errors]

Specifies	the	maximum	number	of	errors	that	can	occur	before	the	bulk	copy
operation	is	canceled.	Each	row	that	cannot	be	imported	by	the	bulk	copy
operation	is	ignored	and	counted	as	one	error.	If	max_errors	is	not	specified,
the	default	is	10.

ORDER	({	column	[ASC	|	DESC]	}	[,...n])

Specifies	how	the	data	in	the	data	file	is	sorted.	Bulk	copy	operation
performance	is	improved	if	the	data	loaded	is	sorted	according	to	the
clustered	index	on	the	table.	If	the	data	file	is	sorted	in	a	different	order,	or
there	is	no	clustered	index	on	the	table,	the	ORDER	clause	is	ignored.	The
column	names	supplied	must	be	valid	columns	in	the	destination	table.	By
default,	the	bulk	insert	operation	assumes	the	data	file	is	unordered.

n

Is	a	placeholder	indicating	that	multiple	columns	can	be	specified.

ROWS_PER_BATCH	[=	rows_per_batch]

Specifies	the	number	of	rows	of	data	per	batch	(as	rows_per_batch).	Used
when	BATCHSIZE	is	not	specified,	resulting	in	the	entire	data	file	sent	to	the
server	as	a	single	transaction.	The	server	optimizes	the	bulk	load	according
to	rows_per_batch.	By	default,	ROWS_PER_BATCH	is	unknown.

ROWTERMINATOR	[=	'row_terminator']

Specifies	the	row	terminator	to	be	used	for	char	and	widechar	data	files.
The	default	is	\n	(newline	character).

TABLOCK

Specifies	that	a	table-level	lock	is	acquired	for	the	duration	of	the	bulk	copy
operation.	A	table	can	be	loaded	concurrently	by	multiple	clients	if	the	table
has	no	indexes	and	TABLOCK	is	specified.	By	default,	locking	behavior	is
determined	by	the	table	option	table	lock	on	bulk	load.	Holding	a	lock	only
for	the	duration	of	the	bulk	copy	operation	reduces	lock	contention	on	the
table,	significantly	improving	performance.

Remarks
The	BULK	INSERT	statement	can	be	executed	within	a	user-defined
transaction.	Rolling	back	a	user-defined	transaction	that	uses	a	BULK	INSERT
statement	and	BATCHSIZE	clause	to	load	data	into	a	table	or	view	using
multiple	batches	rolls	back	all	batches	sent	to	SQL	Server.

Permissions
Only	members	of	the	sysadmin	and	bulkadmin	fixed	server	roles	can	execute
BULK	INSERT.

Examples
This	example	imports	order	detail	information	from	the	specified	data	file	using
a	pipe	(|)	as	the	field	terminator	and	|\n	as	the	row	terminator.

BULK	INSERT	Northwind.dbo.[Order	Details]
			FROM	'f:\orders\lineitem.tbl'
			WITH	
						(

									FIELDTERMINATOR	=	'|',
									ROWTERMINATOR	=	'|\n'
)

This	example	specifies	the	FIRE_TRIGGERS	argument.

BULK	INSERT	Northwind.dbo.[Order	Details]
			FROM	'f:\orders\lineitem.tbl'
			WITH
					(
								FIELDTERMINATOR	=	'|',
								ROWTERMINATOR	=	':\n',
								FIRE_TRIGGERS
)

See	Also

bcp	Utility

Collations

Copying	Data	Between	Different	Collations

Copying	Data	Using	bcp	or	BULK	INSERT

Parallel	Data	Loads

sp_tableoption

Using	Format	Files

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

Transact-SQL	Reference

CASE
Evaluates	a	list	of	conditions	and	returns	one	of	multiple	possible	result
expressions.

CASE	has	two	formats:

The	simple	CASE	function	compares	an	expression	to	a	set	of	simple
expressions	to	determine	the	result.	

The	searched	CASE	function	evaluates	a	set	of	Boolean	expressions	to
determine	the	result.

Both	formats	support	an	optional	ELSE	argument.

Syntax
Simple	CASE	function:

CASE	input_expression	
				WHEN	when_expression	THEN	result_expression	
								[...n]	
				[
								ELSE	else_result_expression	
]	
END

Searched	CASE	function:

CASE
				WHEN	Boolean_expression	THEN	result_expression	
								[...n]	
				[
								ELSE	else_result_expression	
]	
END

Arguments

input_expression

Is	the	expression	evaluated	when	using	the	simple	CASE	format.
input_expression	is	any	valid	Microsoft®	SQL	Server™	expression.

WHEN	when_expression

Is	a	simple	expression	to	which	input_expression	is	compared	when	using
the	simple	CASE	format.	when_expression	is	any	valid	SQL	Server
expression.	The	data	types	of	input_expression	and	each	when_expression
must	be	the	same	or	must	be	an	implicit	conversion.

n

Is	a	placeholder	indicating	that	multiple	WHEN	when_expression	THEN
result_expression	clauses,	or	multiple	WHEN	Boolean_expression	THEN
result_expression	clauses	can	be	used.

THEN	result_expression

Is	the	expression	returned	when	input_expression	equals	when_expression
evaluates	to	TRUE,	or	Boolean_expression	evaluates	to	TRUE.	result
expression	is	any	valid	SQL	Server	expression.

ELSE	else_result_expression

Is	the	expression	returned	if	no	comparison	operation	evaluates	to	TRUE.	If
this	argument	is	omitted	and	no	comparison	operation	evaluates	to	TRUE,
CASE	returns	NULL.	else_result_expression	is	any	valid	SQL	Server
expression.	The	data	types	of	else_result_expression	and	any
result_expression	must	be	the	same	or	must	be	an	implicit	conversion.

WHEN	Boolean_expression

Is	the	Boolean	expression	evaluated	when	using	the	searched	CASE	format.
Boolean_expression	is	any	valid	Boolean	expression.

Result	Types
Returns	the	highest	precedence	type	from	the	set	of	types	in	result_expressions
and	the	optional	else_result_expression.	For	more	information,	see	Data	Type
Precedence.

Result	Values

Simple	CASE	function:
Evaluates	input_expression,	and	then,	in	the	order	specified,	evaluates
input_expression	=	when_expression	for	each	WHEN	clause.	

Returns	the	result_expression	of	the	first	(input_expression	=
when_expression)	that	evaluates	to	TRUE.	

If	no	input_expression	=	when_expression	evaluates	to	TRUE,	SQL
Server	returns	the	else_result_expression	if	an	ELSE	clause	is	specified,
or	a	NULL	value	if	no	ELSE	clause	is	specified.

Searched	CASE	function:
Evaluates,	in	the	order	specified,	Boolean_expression	for	each	WHEN
clause.

Returns	result_expression	of	the	first	Boolean_expression	that	evaluates
to	TRUE.	

If	no	Boolean_expression	evaluates	to	TRUE,	SQL	Server	returns	the
else_result_expression	if	an	ELSE	clause	is	specified,	or	a	NULL	value
if	no	ELSE	clause	is	specified.

Examples

A.	Use	a	SELECT	statement	with	a	simple	CASE	function
Within	a	SELECT	statement,	a	simple	CASE	function	allows	only	an	equality
check;	no	other	comparisons	are	made.	This	example	uses	the	CASE	function	to
alter	the	display	of	book	categories	to	make	them	more	understandable.

USE	pubs

GO
SELECT			Category	=	
						CASE	type
									WHEN	'popular_comp'	THEN	'Popular	Computing'
									WHEN	'mod_cook'	THEN	'Modern	Cooking'
									WHEN	'business'	THEN	'Business'
									WHEN	'psychology'	THEN	'Psychology'
									WHEN	'trad_cook'	THEN	'Traditional	Cooking'
									ELSE	'Not	yet	categorized'
						END,
			CAST(title	AS	varchar(25))	AS	'Shortened	Title',
			price	AS	Price
FROM	titles
WHERE	price	IS	NOT	NULL
ORDER	BY	type,	price
COMPUTE	AVG(price)	BY	type
GO

Here	is	the	result	set:

Category												Shortened	Title											Price																						
-------------------	-------------------------	--------------------------	
Business												You	Can	Combat	Computer	S	2.99																							
Business												Cooking	with	Computers:	S	11.95																						
Business												The	Busy	Executive's	Data	19.99																						
Business												Straight	Talk	About	Compu	19.99																						

																																														avg
																																														==========================
																																														13.73																						

Category												Shortened	Title											Price																						
-------------------	-------------------------	--------------------------	
Modern	Cooking						The	Gourmet	Microwave					2.99																							

Modern	Cooking						Silicon	Valley	Gastronomi	19.99																						

																																														avg
																																														==========================
																																														11.49																						

Category												Shortened	Title											Price																						
-------------------	-------------------------	--------------------------	
Popular	Computing			Secrets	of	Silicon	Valley	20.00																						
Popular	Computing			But	Is	It	User	Friendly?		22.95																						

																																														avg
																																														==========================
																																														21.48																						

Category												Shortened	Title											Price																						
-------------------	-------------------------	--------------------------	
Psychology										Life	Without	Fear									7.00																							
Psychology										Emotional	Security:	A	New	7.99																							
Psychology										Is	Anger	the	Enemy?							10.95																						
Psychology										Prolonged	Data	Deprivatio	19.99																						
Psychology										Computer	Phobic	AND	Non-P	21.59																						

																																														avg
																																														==========================
																																														13.50																						

Category												Shortened	Title											Price																						
-------------------	-------------------------	--------------------------	
Traditional	Cooking	Fifty	Years	in	Buckingham	11.95																						
Traditional	Cooking	Sushi,	Anyone?												14.99																						
Traditional	Cooking	Onions,	Leeks,	and	Garlic	20.95																						

																																														avg
																																														==========================
																																														15.96																						

(21	row(s)	affected)

B.	Use	a	SELECT	statement	with	simple	and	searched	CASE
function
Within	a	SELECT	statement,	the	searched	CASE	function	allows	values	to	be
replaced	in	the	result	set	based	on	comparison	values.	This	example	displays	the
price	(a	money	column)	as	a	text	comment	based	on	the	price	range	for	a	book.

USE	pubs
GO
SELECT				'Price	Category'	=	
						CASE	
									WHEN	price	IS	NULL	THEN	'Not	yet	priced'
									WHEN	price	<	10	THEN	'Very	Reasonable	Title'
									WHEN	price	>=	10	and	price	<	20	THEN	'Coffee	Table	Title'
									ELSE	'Expensive	book!'
						END,
			CAST(title	AS	varchar(20))	AS	'Shortened	Title'
FROM	titles
ORDER	BY	price
GO

Here	is	the	result	set:

Price	Category								Shortened	Title						
---------------------	--------------------	
Not	yet	priced								Net	Etiquette								
Not	yet	priced								The	Psychology	of	Co	
Very	Reasonable	Title	The	Gourmet	Microwav	
Very	Reasonable	Title	You	Can	Combat	Compu	

Very	Reasonable	Title	Life	Without	Fear				
Very	Reasonable	Title	Emotional	Security:		
Coffee	Table	Title				Is	Anger	the	Enemy?		
Coffee	Table	Title				Cooking	with	Compute	
Coffee	Table	Title				Fifty	Years	in	Bucki	
Coffee	Table	Title				Sushi,	Anyone?							
Coffee	Table	Title				Prolonged	Data	Depri	
Coffee	Table	Title				Silicon	Valley	Gastr	
Coffee	Table	Title				Straight	Talk	About		
Coffee	Table	Title				The	Busy	Executive's	
Expensive	book!							Secrets	of	Silicon	V	
Expensive	book!							Onions,	Leeks,	and	G	
Expensive	book!							Computer	Phobic	And		
Expensive	book!							But	Is	It	User	Frien	

(18	row(s)	affected)

C.	Use	CASE	with	SUBSTRING	and	SELECT
This	example	uses	CASE	and	THEN	to	produce	a	list	of	authors,	the	book
identification	numbers,	and	the	book	types	each	author	has	written.

USE	pubs
SELECT	SUBSTRING((RTRIM(a.au_fname)	+	'	'+	
			RTRIM(a.au_lname)	+	'	'),	1,	25)	AS	Name,	a.au_id,	ta.title_id,
			Type	=	
		CASE	
				WHEN	SUBSTRING(ta.title_id,	1,	2)	=	'BU'	THEN	'Business'
				WHEN	SUBSTRING(ta.title_id,	1,	2)	=	'MC'	THEN	'Modern	Cooking'
				WHEN	SUBSTRING(ta.title_id,	1,	2)	=	'PC'	THEN	'Popular	Computing'
				WHEN	SUBSTRING(ta.title_id,	1,	2)	=	'PS'	THEN	'Psychology'
				WHEN	SUBSTRING(ta.title_id,	1,	2)	=	'TC'	THEN	'Traditional	Cooking'
		END
FROM	titleauthor	ta	JOIN	authors	a	ON	ta.au_id	=	a.au_id

Here	is	the	result	set:

Name																						au_id							title_id	Type																
-------------------------	-----------	--------	-------------------	
Johnson	White													172-32-1176	PS3333			Psychology										
Marjorie	Green												213-46-8915	BU1032			Business												
Marjorie	Green												213-46-8915	BU2075			Business												
Cheryl	Carson													238-95-7766	PC1035			Popular	Computing			
Michael	O'Leary											267-41-2394	BU1111			Business												
Michael	O'Leary											267-41-2394	TC7777			Traditional	Cooking	
Dean	Straight													274-80-9391	BU7832			Business												
Abraham	Bennet												409-56-7008	BU1032			Business												
Ann	Dull																		427-17-2319	PC8888			Popular	Computing			
Burt	Gringlesby											472-27-2349	TC7777			Traditional	Cooking	
Charlene	Locksley									486-29-1786	PC9999			Popular	Computing			
Charlene	Locksley									486-29-1786	PS7777			Psychology										
Reginald	Blotchet-Halls			648-92-1872	TC4203			Traditional	Cooking	
Akiko	Yokomoto												672-71-3249	TC7777			Traditional	Cooking	
Innes	del	Castillo								712-45-1867	MC2222			Modern	Cooking						
Michel	DeFrance											722-51-5454	MC3021			Modern	Cooking						
Stearns	MacFeather								724-80-9391	BU1111			Business												
Stearns	MacFeather								724-80-9391	PS1372			Psychology										
Livia	Karsen														756-30-7391	PS1372			Psychology										
Sylvia	Panteley											807-91-6654	TC3218			Traditional	Cooking	
Sheryl	Hunter													846-92-7186	PC8888			Popular	Computing			
Anne	Ringer															899-46-2035	MC3021			Modern	Cooking						
Anne	Ringer															899-46-2035	PS2091			Psychology										
Albert	Ringer													998-72-3567	PS2091			Psychology										
Albert	Ringer													998-72-3567	PS2106			Psychology										

(25	row(s)	affected)

See	Also

Data	Type	Conversion

Data	Types

Expressions

SELECT

System	Functions

UPDATE

WHERE

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

CAST	and	CONVERT
Explicitly	converts	an	expression	of	one	data	type	to	another.	CAST	and
CONVERT	provide	similar	functionality.

Syntax
Using	CAST:

CAST	(expression	AS	data_type)

Using	CONVERT:

CONVERT	(data_type	[(length)]	,	expression	[,	style])

Arguments
expression

Is	any	valid	Microsoft®	SQL	Server™	expression.	For	more	information,
see	Expressions.

data_type

Is	the	target	system-supplied	data	type,	including	bigint	and	sql_variant.
User-defined	data	types	cannot	be	used.	For	more	information	about
available	data	types,	see	Data	Types.

length

Is	an	optional	parameter	of	nchar,	nvarchar,	char,	varchar,	binary,	or
varbinary	data	types.

style

Is	the	style	of	date	format	used	to	convert	datetime	or	smalldatetime	data	to
character	data	(nchar,	nvarchar,	char,	varchar,	nchar,	or	nvarchar	data
types),	or	the	string	format	when	converting	float,	real,	money,	or
smallmoney	data	to	character	data	(nchar,	nvarchar,	char,	varchar,	nchar,
or	nvarchar	data	types).

SQL	Server	supports	the	date	format	in	Arabic	style,	using	Kuwaiti

algorithm.

In	the	table,	the	two	columns	on	the	left	represent	the	style	values	for
datetime	or	smalldatetime	conversion	to	character	data.	Add	100	to	a	style
value	to	get	a	four-place	year	that	includes	the	century	(yyyy).

Without
century	(yy)

With	century
(yyyy) Standard Input/Output**

- 0	or	100	(*) Default mon	dd	yyyy
hh:miAM	(or	PM)

1 101 USA mm/dd/yy
2 102 ANSI yy.mm.dd
3 103 British/French dd/mm/yy
4 104 German dd.mm.yy
5 105 Italian dd-mm-yy
6 106 - dd	mon	yy
7 107 - Mon	dd,	yy
8 108 - hh:mm:ss
- 9	or	109	(*) Default	+

milliseconds
mon	dd	yyyy
hh:mi:ss:mmmAM
(or	PM)

10 110 USA mm-dd-yy
11 111 JAPAN yy/mm/dd
12 112 ISO yymmdd
- 13	or	113	(*) Europe	default	+

milliseconds
dd	mon	yyyy
hh:mm:ss:mmm(24h)

14 114 - hh:mi:ss:mmm(24h)
- 20	or	120	(*) ODBC	canonical yyyy-mm-dd

hh:mi:ss(24h)
- 21	or	121	(*) ODBC	canonical

(with	milliseconds)
yyyy-mm-dd
hh:mi:ss.mmm(24h)

- 126(***) ISO8601 yyyy-mm-dd
Thh:mm:ss:mmm(no
spaces)

- 130* Kuwaiti dd	mon	yyyy

hh:mi:ss:mmmAM
- 131* Kuwaiti dd/mm/yy

hh:mi:ss:mmmAM
*				The	default	values	(style	0	or	100,	9	or	109,	13	or	113,	20	or	120,	and	21	or	121)	always	return	the
century	(yyyy).
**	Input	when	converting	to	datetime;	output	when	converting	to	character	data.
***	Designed	for	XML	use.	For	conversion	from	datetime	or	smalldatetime	to	character	data,	the	output
format	is	as	described	in	the	table.	For	conversion	from	float,	money,	or	smallmoney	to	character	data,
the	output	is	equivalent	to	style	2.	For	conversion	from	real	to	character	data,	the	output	is	equivalent	to
style	1.

IMPORTANT		By	default,	SQL	Server	interprets	two-digit	years	based	on	a	cutoff
year	of	2049.	That	is,	the	two-digit	year	49	is	interpreted	as	2049	and	the	two-
digit	year	50	is	interpreted	as	1950.	Many	client	applications,	such	as	those
based	on	OLE	Automation	objects,	use	a	cutoff	year	of	2030.	SQL	Server
provides	a	configuration	option	(two	digit	year	cutoff)	that	changes	the	cutoff
year	used	by	SQL	Server	and	allows	the	consistent	treatment	of	dates.	The	safest
course,	however,	is	to	specify	four-digit	years.

When	you	convert	to	character	data	from	smalldatetime,	the	styles	that
include	seconds	or	milliseconds	show	zeros	in	these	positions.	You	can
truncate	unwanted	date	parts	when	converting	from	datetime	or
smalldatetime	values	by	using	an	appropriate	char	or	varchar	data	type
length.

This	table	shows	the	style	values	for	float	or	real	conversion	to	character
data.

Value Output
0	(default) Six	digits	maximum.	Use	in	scientific	notation,	when

appropriate.
1 Always	eight	digits.	Always	use	in	scientific	notation.
2 Always	16	digits.	Always	use	in	scientific	notation.

In	the	following	table,	the	column	on	the	left	represents	the	style	value	for
money	or	smallmoney	conversion	to	character	data.

Value Output

0	(default) No	commas	every	three	digits	to	the	left	of	the	decimal	point,
and	two	digits	to	the	right	of	the	decimal	point;	for	example,
4235.98.

1 Commas	every	three	digits	to	the	left	of	the	decimal	point,	and
two	digits	to	the	right	of	the	decimal	point;	for	example,
3,510.92.

2 No	commas	every	three	digits	to	the	left	of	the	decimal	point,
and	four	digits	to	the	right	of	the	decimal	point;	for	example,
4235.9819.

Return	Types
Returns	the	same	value	as	data	type	0.

Remarks
Implicit	conversions	are	those	conversions	that	occur	without	specifying	either
the	CAST	or	CONVERT	function.	Explicit	conversions	are	those	conversions
that	require	the	CAST	(CONVERT)	function	to	be	specified.	This	chart	shows
all	explicit	and	implicit	data	type	conversions	allowed	for	SQL	Server	system-
supplied	data	types,	including	bigint	and	sql_variant.

Note		Because	Unicode	data	always	uses	an	even	number	of	bytes,	use	caution
when	converting	binary	or	varbinary	to	or	from	Unicode	supported	data	types.
For	example,	this	conversion	does	not	return	a	hexadecimal	value	of	41,	but	of
4100:		SELECT	CAST(CAST(0x41	AS	nvarchar)	AS	varbinary)
Automatic	data	type	conversion	is	not	supported	for	the	text	and	image	data
types.	You	can	explicitly	convert	text	data	to	character	data,	and	image	data	to
binary	or	varbinary,	but	the	maximum	length	is	8000.	If	you	attempt	an
incorrect	conversion	(for	example,	if	you	convert	a	character	expression	that
includes	letters	to	an	int),	SQL	Server	generates	an	error	message.

When	the	output	of	CAST	or	CONVERT	is	a	character	string,	and	the	input	is	a
character	string,	the	output	has	the	same	collation	and	collation	label	as	the
input.	If	the	input	is	not	a	character	string,	the	output	has	the	default	collation	of

the	database,	and	a	collation	label	of	coercible-default.	For	more	information,
see	Collation	Precedence.

To	assign	a	different	collation	to	the	output,	apply	the	COLLATE	clause	to	the
result	expression	of	the	CAST	or	CONVERT	function.	For	example:

SELECT	CAST('abc'	AS	varchar(5))	COLLATE	French_CS_AS

There	is	no	implicit	conversion	on	assignment	from	the	sql_variant	data	type
but	there	is	implicit	conversion	to	sql_variant.

When	converting	character	or	binary	expressions	(char,	nchar,	nvarchar,
varchar,	binary,	or	varbinary)	to	an	expression	of	a	different	data	type,	data
can	be	truncated,	only	partially	displayed,	or	an	error	is	returned	because	the
result	is	too	short	to	display.	Conversions	to	char,	varchar,	nchar,	nvarchar,
binary,	and	varbinary	are	truncated,	except	for	the	conversions	shown	in	this
table.

From	data	type To	data	type Result
int,	smallint,	or	tinyint char *
	 varchar *
	 nchar E
	 nvarchar E
money,	smallmoney,	numeric,
decimal,	float,	or	real

char E

	 varchar E
	 nchar E
	 nvarchar E
*	Result	length	too	short	to	display.
E	Error	returned	because	result	length	is	too	short	to	display.

Microsoft	SQL	Server	guarantees	that	only	roundtrip	conversions,	conversions
that	convert	a	data	type	from	its	original	data	type	and	back	again,	will	yield	the
same	values	from	release	to	release.	This	example	shows	such	a	roundtrip
conversion:

DECLARE	@myval	decimal	(5,	2)
SET	@myval	=	193.57

SELECT	CAST(CAST(@myval	AS	varbinary(20))	AS	decimal(10,5))
--	Or,	using	CONVERT
SELECT	CONVERT(decimal(10,5),	CONVERT(varbinary(20),	@myval))

Do	not	attempt	to	construct,	for	example,	binary	values	and	convert	them	to	a
data	type	of	the	numeric	data	type	category.	SQL	Server	does	not	guarantee	that
the	result	of	a	decimal	or	numeric	data	type	conversion	to	binary	will	be	the
same	between	releases	of	SQL	Server.

This	example	shows	a	resulting	expression	too	small	to	display.

USE	pubs
SELECT	SUBSTRING(title,	1,	25)	AS	Title,	CAST(ytd_sales	AS	char(2))
FROM	titles
WHERE	type	=	'trad_cook'

Here	is	the	result	set:

Title																								
-------------------------	--	
Onions,	Leeks,	and	Garlic	*		
Fifty	Years	in	Buckingham	*		
Sushi,	Anyone?												*		

(3	row(s)	affected)

When	data	types	are	converted	with	a	different	number	of	decimal	places,	the
value	is	truncated	to	the	most	precise	digit.	For	example,	the	result	of	SELECT
CAST(10.6496	AS	int)	is	10.

When	data	types	in	which	the	target	data	type	has	fewer	decimal	points	than	the
source	data	type	are	converted,	the	value	is	rounded.	For	example,	the	result	of
CAST(10.3496847	AS	money)	is	$10.3497.

SQL	Server	returns	an	error	message	when	non-numeric	char,	nchar,	varchar,
or	nvarchar	data	is	converted	to	int,	float,	numeric,	or	decimal.	SQL	Server
also	returns	an	error	when	an	empty	string	("	")	is	converted	to	numeric	or
decimal.

Using	Binary	String	Data
When	binary	or	varbinary	data	is	converted	to	character	data	and	an	odd
number	of	values	is	specified	following	the	x,	SQL	Server	adds	a	0	(zero)	after
the	x	to	make	an	even	number	of	values.

Binary	data	consists	of	the	characters	from	0	through	9	and	from	A	through	F	(or
from	a	through	f),	in	groups	of	two	characters	each.	Binary	strings	must	be
preceded	by	0x.	For	example,	to	input	FF,	type	0xFF.	The	maximum	value	is	a
binary	value	of	8000	bytes,	each	of	which	is	FF.	The	binary	data	types	are	not
for	hexadecimal	data	but	rather	for	bit	patterns.	Conversions	and	calculations	of
hexadecimal	numbers	stored	as	binary	data	can	be	unreliable.

When	specifying	the	length	of	a	binary	data	type,	every	two	characters	count	as
one.	A	length	of	10	signifies	that	10	two-character	groupings	will	be	entered.

Empty	binary	strings,	represented	by	0x,	can	be	stored	as	binary	data.

Examples

A.	Use	both	CAST	and	CONVERT
Each	example	retrieves	the	titles	for	those	books	that	have	a	3	in	the	first	digit	of
year-to-date	sales,	and	converts	their	ytd_sales	to	char(20).

--	Use	CAST.
USE	pubs
GO
SELECT	SUBSTRING(title,	1,	30)	AS	Title,	ytd_sales
FROM	titles
WHERE	CAST(ytd_sales	AS	char(20))	LIKE	'3%'
GO

--	Use	CONVERT.
USE	pubs
GO
SELECT	SUBSTRING(title,	1,	30)	AS	Title,	ytd_sales
FROM	titles

WHERE	CONVERT(char(20),	ytd_sales)	LIKE	'3%'
GO

Here	is	the	result	set	(for	either	query):

Title																										ytd_sales			
------------------------------	-----------	
Cooking	with	Computers:	Surrep	3876								
Computer	Phobic	AND	Non-Phobic	375									
Emotional	Security:	A	New	Algo	3336								
Onions,	Leeks,	and	Garlic:	Coo	375									

(4	row(s)	affected)

B.	Use	CAST	with	arithmetic	operators
This	example	calculates	a	single	column	computation	(Copies)	by	dividing	the
total	year-to-date	sales	(ytd_sales)	by	the	individual	book	price	(price).	This
result	is	converted	to	an	int	data	type	after	being	rounded	to	the	nearest	whole
number.

USE	pubs
GO
SELECT	CAST(ROUND(ytd_sales/price,	0)	AS	int)	AS	'Copies'
FROM	titles
GO

Here	is	the	result	set:

Copies						

205									
324									
6262								
205									
102									

7440								
NULL								
383									
205									
NULL								
17										
187									
16										
204									
418									
18										
1263								
273									

(18	row(s)	affected)

C.	Use	CAST	to	concatenate
This	example	concatenates	noncharacter,	nonbinary	expressions	using	the	CAST
data	type	conversion	function.

USE	pubs
GO
SELECT	'The	price	is	'	+	CAST(price	AS	varchar(12))
FROM	titles
WHERE	price	>	10.00
GO

Here	is	the	result	set:

The	price	is	19.99								
The	price	is	11.95								
The	price	is	19.99								
The	price	is	19.99								

The	price	is	22.95								
The	price	is	20.00								
The	price	is	21.59								
The	price	is	10.95								
The	price	is	19.99								
The	price	is	20.95								
The	price	is	11.95								
The	price	is	14.99								

(12	row(s)	affected)

D.	Use	CAST	for	more	readable	text
This	example	uses	CAST	in	the	select	list	to	convert	the	title	column	to	a
char(50)	column	so	the	results	are	more	readable.

USE	pubs
GO
SELECT	CAST(title	AS	char(50)),	ytd_sales
FROM	titles
WHERE	type	=	'trad_cook'
GO

Here	is	the	result	set:

																																																							ytd_sales
--					---------
Onions,	Leeks,	and	Garlic:	Cooking	Secrets	of	the						375
Fifty	Years	in	Buckingham	Palace	Kitchens														15096
Sushi,	Anyone?																																									4095

(3	row(s)	affected)

E.	Use	CAST	with	LIKE	clause
This	example	converts	an	int	column	(the	ytd_sales	column)	to	a	char(20)

column	so	that	it	can	be	used	with	the	LIKE	clause.

USE	pubs
GO
SELECT	title,	ytd_sales
FROM	titles
WHERE	CAST(ytd_sales	AS	char(20))	LIKE	'15%'
			AND	type	=	'trad_cook'
GO

Here	is	the	result	set:

title																																																								ytd_sales			
--	-----------	
Fifty	Years	in	Buckingham	Palace	Kitchens																				15096							

(1	row(s)	affected)

See	Also

Data	Type	Conversion

SELECT

System	Functions

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

CEILING
Returns	the	smallest	integer	greater	than,	or	equal	to,	the	given	numeric
expression.

Syntax
CEILING	(numeric_expression)

Arguments
numeric_expression

Is	an	expression	of	the	exact	numeric	or	approximate	numeric	data	type
category,	except	for	the	bit	data	type.

Return	Types
Returns	the	same	type	as	numeric_expression.

Examples
This	example	shows	positive	numeric,	negative,	and	zero	values	with	the
CEILING	function.

SELECT	CEILING($123.45),	CEILING($-123.45),	CEILING($0.0)
GO

Here	is	the	result	set:

---------	---------	-------------------------	
124.00				-123.00				0.00																					

(1	row(s)	affected)

See	Also

System	Functions

Transact-SQL	Reference

char	and	varchar
Fixed-length	(char)	or	variable-length	(varchar)	character	data	types.

char[(n)]

Fixed-length	non-Unicode	character	data	with	length	of	n	bytes.	n	must	be	a
value	from	1	through	8,000.	Storage	size	is	n	bytes.	The	SQL-92	synonym
for	char	is	character.

varchar[(n)]

Variable-length	non-Unicode	character	data	with	length	of	n	bytes.	n	must	be
a	value	from	1	through	8,000.	Storage	size	is	the	actual	length	in	bytes	of	the
data	entered,	not	n	bytes.	The	data	entered	can	be	0	characters	in	length.	The
SQL-92	synonyms	for	varchar	are	char	varying	or	character	varying.

Remarks
When	n	is	not	specified	in	a	data	definition	or	variable	declaration	statement,	the
default	length	is	1.	When	n	is	not	specified	with	the	CAST	function,	the	default
length	is	30.

Objects	using	char	or	varchar	are	assigned	the	default	collation	of	the	database,
unless	a	specific	collation	is	assigned	using	the	COLLATE	clause.	The	collation
controls	the	code	page	used	to	store	the	character	data.

Sites	supporting	multiple	languages	should	consider	using	the	Unicode	nchar	or
nvarchar	data	types	to	minimize	character	conversion	issues.	If	you	use	char	or
varchar:

Use	char	when	the	data	values	in	a	column	are	expected	to	be
consistently	close	to	the	same	size.

Use	varchar	when	the	data	values	in	a	column	are	expected	to	vary
considerably	in	size.

If	SET	ANSI_PADDING	is	OFF	when	CREATE	TABLE	or	ALTER	TABLE	is
executed,	a	char	column	defined	as	NULL	is	handled	as	varchar.

When	the	collation	code	page	uses	double-byte	characters,	the	storage	size	is
still	n	bytes.	Depending	on	the	character	string,	the	storage	size	of	n	bytes	may
be	less	than	n	characters.

See	Also

CAST	and	CONVERT

COLLATE

Collations

Data	Type	Conversion

Data	Types

sp_dbcmptlevel

Specifying	Collations

Using	char	and	varchar	Data

Using	Unicode	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Transact-SQL	Reference

CHAR
A	string	function	that	converts	an	int	ASCII	code	to	a	character.

Syntax
CHAR	(integer_expression)

Arguments
integer_expression

Is	an	integer	from	0	through	255.	NULL	is	returned	if	the	integer	expression
is	not	in	this	range.

Return	Types
char(1)

Remarks
CHAR	can	be	used	to	insert	control	characters	into	character	strings.	The	table
shows	some	commonly	used	control	characters.

Control	character Value
Tab CHAR(9)
Line	feed CHAR(10)
Carriage	return CHAR(13)

Examples

A.	Use	ASCII	and	CHAR	to	print	ASCII	values	from	a	string
This	example	prints	the	ASCII	value	and	character	for	each	character	in	the
string	New	Moon.

SET	TEXTSIZE	0

--	Create	variables	for	the	character	string	and	for	the	current	
--	position	in	the	string.
DECLARE	@position	int,	@string	char(8)
--	Initialize	the	current	position	and	the	string	variables.
SET	@position	=	1
SET	@string	=	'New	Moon'
WHILE	@position	<=	DATALENGTH(@string)
			BEGIN
			SELECT	ASCII(SUBSTRING(@string,	@position,	1)),	
						CHAR(ASCII(SUBSTRING(@string,	@position,	1)))
			SET	@position	=	@position	+	1
			END
GO

Here	is	the	result	set:

-----------	-	
78										N	
														
-----------	-	
101									e	
														
-----------	-	
119									w	
														
-----------	-	
32												
														
-----------	-	
77										M	
														
-----------	-	
111									o	
														

-----------	-	
111									o	
														
-----------	-	
110									n	
														
-----------	-	

B.	Use	CHAR	to	insert	a	control	character
This	example	uses	CHAR(13)	to	print	name,	address,	and	city	information	on
separate	lines,	when	the	results	are	returned	in	text.

USE	Northwind
SELECT	FirstName	+	'	'	+	LastName,	+	CHAR(13)	+	Address,	
			+	CHAR(13)	+	City,	+	Region	
FROM	Employees
WHERE	EmployeeID	=	1

Here	is	the	result	set:

Nancy	Davolio
507	-	20th	Ave.	E.
Apt.	2A
Seattle												WA

Note		In	this	record,	the	data	in	the	Address	column	also	contains	a	control
character.

See	Also

+	(String	Concatenation)

String	Functions

Transact-SQL	Reference

CHARINDEX
Returns	the	starting	position	of	the	specified	expression	in	a	character	string.

Syntax
CHARINDEX	(expression1	,	expression2	[,	start_location])

Arguments
expression1

Is	an	expression	containing	the	sequence	of	characters	to	be	found.
expression1	is	an	expression	of	the	short	character	data	type	category.

expression2

Is	an	expression,	usually	a	column	searched	for	the	specified	sequence.
expression2	is	of	the	character	string	data	type	category.

start_location

Is	the	character	position	to	start	searching	for	expression1	in	expression2.	If
start_location	is	not	given,	is	a	negative	number,	or	is	zero,	the	search	starts
at	the	beginning	of	expression2.

Return	Types
int

Remarks
If	either	expression1	or	expression2	is	of	a	Unicode	data	type	(nvarchar	or
nchar)	and	the	other	is	not,	the	other	is	converted	to	a	Unicode	data	type.

If	either	expression1	or	expression2	is	NULL,	CHARINDEX	returns	NULL
when	the	database	compatibility	level	is	70	or	later.	If	the	database	compatibility
level	is	65	or	earlier,	CHARINDEX	returns	NULL	only	when	both	expression1
and	expression2	are	NULL.

If	expression1	is	not	found	within	expression2,	CHARINDEX	returns	0.

Examples
The	first	code	example	returns	the	position	at	which	the	sequence	"wonderful"
begins	in	the	notes	column	of	the	titles	table.	The	second	example	uses	the
optional	start_location	parameter	to	begin	looking	for	wonderful	in	the	fifth
character	of	the	notes	column.	The	third	example	shows	the	result	set	when
expression1	is	not	found	within	expression2.

USE	pubs
GO
SELECT	CHARINDEX('wonderful',	notes)
FROM	titles
WHERE	title_id	=	'TC3218'
GO

--	Use	the	optional	start_location	parameter	to	start	searching	
--	for	wonderful	starting	with	the	fifth	character	in	the	notes
--	column.
USE	pubs
GO
SELECT	CHARINDEX('wonderful',	notes,	5)
FROM	titles
WHERE	title_id	=	'TC3218'
GO

Here	is	the	result	set	for	the	first	and	second	queries:

46										

(1	row(s)	affected)

USE	pubs

GO
SELECT	CHARINDEX('wondrous',	notes)
FROM	titles
WHERE	title_id='TC3218'
GO

Here	is	the	result	set.

0										

(1	row(s)	affected)

See	Also

+	(String	Concatenation)

String	Functions

Transact-SQL	Reference

CHECKPOINT
Forces	all	dirty	pages	for	the	current	database	to	be	written	to	disk.	Dirty	pages
are	data	or	log	pages	modified	after	entered	into	the	buffer	cache,	but	the
modifications	have	not	yet	been	written	to	disk.	For	more	information	about	log
truncation,	see	Truncating	the	Transaction	Log.

Syntax
CHECKPOINT

Remarks
The	CHECKPOINT	statement	saves	time	in	a	subsequent	recovery	by	creating	a
point	at	which	all	modifications	to	data	and	log	pages	are	guaranteed	to	have
been	written	to	disk.

Checkpoints	also	occur:

When	a	database	option	is	changed	with	ALTER	DATABASE.	A
checkpoint	is	executed	in	the	database	in	which	the	option	is	changed.

When	a	server	is	stopped,	a	checkpoint	is	executed	in	each	database	on
the	server.	These	methods	of	stopping	Microsoft®	SQL	Server™	2000
checkpoint	each	database:

Using	SQL	Server	Service	Manager.

Using	SQL	Server	Enterprise	Manager.

Using	the	SHUTDOWN	statement.

Using	the	Windows	NT	command	net	stop	mssqlserver	on	the
command	prompt.

JavaScript:hhobj_1.Click()

Using	the	services	icon	in	the	Windows	NT	control	panel,
selecting	the	mssqlserver	service,	and	clicking	the	stop	button.

The	SHUTDOWN	WITH	NOWAIT	statement	shuts	down	SQL	Server	without
executing	a	checkpoint	in	each	database.	This	may	cause	the	subsequent	restart
to	take	a	longer	time	than	usual	to	recover	the	databases	on	the	server.

SQL	Server	2000	also	automatically	checkpoints	any	database	where	the	lesser
of	these	conditions	occur:

The	active	portion	of	the	log	exceeds	the	size	that	the	server	could
recover	in	the	amount	of	time	specified	in	the	recovery	interval	server
configuration	option.

If	the	database	is	in	log	truncate	mode	and	the	log	becomes	70	percent
full.

A	database	is	in	log	truncate	mode	when	both	these	conditions	are	TRUE:

The	database	is	using	the	simple	recovery	model.

One	of	these	events	has	occurred	after	the	last	BACKUP	DATABASE
statement	referencing	the	database	was	executed:

A	BACKUP	LOG	statement	referencing	the	database	is
executed	with	either	the	NO_LOG	or	TRUNCATE_ONLY
clauses.

A	nonlogged	operation	is	performed	in	the	database,	such	as	a
nonlogged	bulk	copy	operation	or	a	nonlogged	WRITETEXT
statement	is	executed.

An	ALTER	DATABASE	statement	that	adds	or	deletes	a	file	in
the	database	is	executed.

Permissions

CHECKPOINT	permissions	default	to	members	of	the	sysadmin	fixed	server
role	and	the	db_owner	and	db_backupoperator	fixed	database	roles,	and	are
not	transferable.

See	Also

ALTER	DATABASE

Checkpoints	and	the	Active	Portion	of	the	Log

recovery	interval	Option

Setting	Database	Options

SHUTDOWN

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Transact-SQL	Reference

CHECKSUM
Returns	the	checksum	value	computed	over	a	row	of	a	table,	or	over	a	list	of
expressions.	CHECKSUM	is	intended	for	use	in	building	hash	indices.

Syntax
CHECKSUM	(*	|	expression	[,...n])

Arguments
*

Specifies	that	computation	is	over	all	the	columns	of	the	table.	CHECKSUM
returns	an	error	if	any	column	is	of	noncomparable	data	type.
Noncomparable	data	types	are	text,	ntext,	image,	and	cursor,	as	well	as
sql_variant	with	any	of	the	above	types	as	its	base	type.

expression

Is	an	expression	of	any	type	except	a	noncomparable	data	type.

Return	Types
int

Remarks
CHECKSUM	computes	a	hash	value,	called	the	checksum,	over	its	list	of
arguments.	The	hash	value	is	intended	for	use	in	building	hash	indices.	If	the
arguments	to	CHECKSUM	are	columns,	and	an	index	is	built	over	the	computed
CHECKSUM	value,	the	result	is	a	hash	index,	which	can	be	used	for	equality
searches	over	the	columns.

CHECKSUM	satisfies	the	properties	of	a	hash	function:	CHECKSUM	applied
over	any	two	lists	of	expressions	returns	the	same	value	if	the	corresponding
elements	of	the	two	lists	have	the	same	type	and	are	equal	when	compared	using
the	equals	(=)	operator.	For	the	purpose	of	this	definition,	NULL	values	of	a
given	type	are	considered	to	compare	as	equal.	If	one	of	the	values	in	the

expression	list	changes,	the	checksum	of	the	list	also	usually	changes.	However,
there	is	a	small	chance	that	the	checksum	will	not	change.

BINARY_CHECKSUM	and	CHECKSUM	are	similar	functions:	they	can	be
used	to	compute	a	checksum	value	on	a	list	of	expressions,	and	the	order	of
expressions	affects	the	resultant	value.	The	order	of	columns	used	in	the	case	of
CHECKSUM(*)	is	the	order	of	columns	specified	in	the	table	or	view	definition,
including	computed	columns.

CHECKSUM	and	BINARY_CHECKSUM	return	different	values	for	the	string
data	types,	where	locale	can	cause	strings	with	different	representation	to
compare	equal.	The	string	data	types	are	char,	varchar,	nchar,	nvarchar,	or
sql_variant	(if	its	base	type	is	a	string	data	type).	For	example,	the
BINARY_CHECKSUM	values	for	the	strings	"McCavity"	and	"Mccavity"	are
different.	In	contrast,	in	a	case-insensitive	server,	CHECKSUM	returns	the	same
checksum	values	for	those	strings.	CHECKSUM	values	should	not	be	compared
against	BINARY_CHECKSUM	values.

Examples

Using	CHECKSUM	to	build	hash	indices
The	CHECKSUM	function	may	be	used	to	build	hash	indices.	The	hash	index	is
built	by	adding	a	computed	checksum	column	to	the	table	being	indexed,	then
building	an	index	on	the	checksum	column.

--	Create	a	checksum	index.
SET	ARITHABORT	ON
USE	Northwind
GO
ALTER	TABLE	Products	
ADD	cs_Pname	AS	checksum(ProductName)
CREATE	INDEX	Pname_index	ON	Products	(cs_Pname)

The	checksum	index	can	be	used	as	a	hash	index,	particularly	to	improve
indexing	speed	when	the	column	to	be	indexed	is	a	long	character	column.	The
checksum	index	can	be	used	for	equality	searches.

/*Use	the	index	in	a	SELECT	query.	Add	a	second	search	
condition	to	catch	stray	cases	where	checksums	match,	
but	the	values	are	not	identical.*/
SELECT	*	
FROM	Products
WHERE	checksum(N'Vegie-spread')	=	cs_Pname
AND	ProductName	=	N'Vegie-spread'

Creating	the	index	on	the	computed	column	materializes	the	checksum	column,
and	any	changes	to	the	ProductName	value	will	be	propagated	to	the	checksum
column.	Alternatively,	an	index	could	be	built	directly	on	the	column	indexed.
However,	if	the	key	values	are	long,	a	regular	index	is	not	likely	to	perform	as
well	as	a	checksum	index.

See	Also

BINARY_CHECKSUM

CHECKSUM_AGG

Transact-SQL	Reference

CHECKSUM_AGG
Returns	the	checksum	of	the	values	in	a	group.	Null	values	are	ignored.

Syntax
CHECKSUM_AGG	([ALL	|	DISTINCT]	expression)

Arguments
ALL

Applies	the	aggregate	function	to	all	values.	ALL	is	the	default.

DISTINCT

Specifies	that	CHECKSUM_AGG	return	the	checksum	of	unique	values.

expression

Is	a	constant,	column,	or	function,	and	any	combination	of	arithmetic,
bitwise,	and	string	operators.	expression	is	an	expression	of	the	int	data	type.
Aggregate	functions	and	subqueries	are	not	allowed.

Return	Types
Returns	the	checksum	of	all	expression	values	as	int.

Remarks
CHECKSUM_AGG	can	be	used	along	with	BINARY_CHECKSUM	to	detect
changes	in	a	table.

The	order	of	the	rows	in	the	table	does	not	affect	the	result	of
CHECKSUM_AGG.	In	addition,	CHECKSUM_AGG	functions	may	be	used
with	the	DISTINCT	keyword	and	the	GROUP	BY	clause.

If	one	of	the	values	in	the	expression	list	changes,	the	checksum	of	the	list	also
usually	changes.	However,	there	is	a	small	chance	that	the	checksum	will	not
change.

CHECKSUM_AGG	has	similar	functionality	with	other	aggregate	functions.
For	more	information,	see	Aggregate	Functions.

Examples

A.	Use	CHECKSUM_AGG	with	BINARY_CHECKSUM	to	detect
changes	in	a	table.
This	example	uses	CHECKSUM_AGG	with	the	BINARY_CHECKSUM
function	to	detect	changes	in	the	Products	table.

USE	Northwind
GO
SELECT			CHECKSUM_AGG(BINARY_CHECKSUM(*))
FROM			Products	

B.	Use	CHECKSUM_AGG	with	BINARY_CHECKSUM	to	detect
changes	in	a	column	of	a	table.
This	example	detects	changes	in	UnitsInStock	column	of	the	Products	table	in
the	Northwind	database.

--Get	the	checksum	value	before	the	column	value	is	changed.
USE			Northwind
GO
SELECT			CHECKSUM_AGG(CAST(UnitsInStock	AS	int))
FROM			Products

Here	is	the	result	set:

57

--Change	the	value	of	a	row	in	the	column
UPDATE			Products			--
SET			UnitsInStock=135
WHERE			UnitsInStock=125

--Get	the	checksum	of	the	modified	column.
SELECT			CHECKSUM_AGG(CAST(UnitsInStock	AS	int))
FROM			Products

Here	is	the	result	set:

195

See	Also

BINARY_CHECKSUM

CHECKSUM

Transact-SQL	Reference

CLOSE
Closes	an	open	cursor	by	releasing	the	current	result	set	and	freeing	any	cursor
locks	held	on	the	rows	on	which	the	cursor	is	positioned.	CLOSE	leaves	the	data
structures	accessible	for	reopening,	but	fetches	and	positioned	updates	are	not
allowed	until	the	cursor	is	reopened.	CLOSE	must	be	issued	on	an	open	cursor;
it	is	not	allowed	on	cursors	that	have	only	been	declared	or	are	already	closed.

Syntax
CLOSE	{	{	[GLOBAL]	cursor_name	}	|	cursor_variable_name	}

Arguments
GLOBAL

Specifies	that	cursor_name	refers	to	a	global	cursor.

cursor_name

Is	the	name	of	an	open	cursor.	If	both	a	global	and	a	local	cursor	exist	with
cursor_name	as	their	name,	cursor_name	refers	to	the	global	cursor	when
GLOBAL	is	specified;	otherwise,	cursor_name	refers	to	the	local	cursor.

cursor_variable_name

Is	the	name	of	a	cursor	variable	associated	with	an	open	cursor.

Examples
This	example	shows	the	correct	placement	of	the	CLOSE	statement	in	a	cursor-
based	process.

USE	pubs
GO

DECLARE	authorcursor	CURSOR	FOR	
SELECT	au_fname,	au_lname	
FROM	authors

ORDER	BY	au_fname,	au_lname

OPEN	authorcursor
FETCH	NEXT	FROM	authorcursor	
WHILE	@@FETCH_STATUS	=	0
BEGIN
			FETCH	NEXT	FROM	authorcursor	
END

CLOSE	authorcursor
DEALLOCATE	authorcursor
GO

See	Also

Cursors

DEALLOCATE

FETCH

OPEN

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

COALESCE
Returns	the	first	nonnull	expression	among	its	arguments.

Syntax
COALESCE	(expression	[,...n])

Arguments
expression

Is	an	expression	of	any	type.

n

Is	a	placeholder	indicating	that	multiple	expressions	can	be	specified.	All
expressions	must	be	of	the	same	type	or	must	be	implicitly	convertible	to	the
same	type.

Return	Types
Returns	the	same	value	as	expression.

Remarks
If	all	arguments	are	NULL,	COALESCE	returns	NULL.

COALESCE(expression1,...n)	is	equivalent	to	this	CASE	function:

CASE
			WHEN	(expression1	IS	NOT	NULL)	THEN	expression1
			...
			WHEN	(expressionN	IS	NOT	NULL)	THEN	expressionN
			ELSE	NULL

Examples
In	this	example,	the	wages	table	is	shown	to	include	three	columns	with

information	about	an	employee's	yearly	wage:	hourly_wage,	salary,	and
commission.	However,	an	employee	receives	only	one	type	of	pay.	To	determine
the	total	amount	paid	to	all	employees,	use	the	COALESCE	function	to	receive
only	the	nonnull	value	found	in	hourly_wage,	salary,	and	commission.

SET	NOCOUNT	ON
GO
USE	master
IF	EXISTS	(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.TABLES	
						WHERE	TABLE_NAME	=	'wages')
			DROP	TABLE	wages
GO
CREATE	TABLE	wages
(
			emp_id						tinyint				identity,
			hourly_wage			decimal			NULL,
			salary						decimal				NULL,
			commission			decimal			NULL,
			num_sales			tinyint			NULL
)
GO
INSERT	wages	VALUES(10.00,	NULL,	NULL,	NULL)
INSERT	wages	VALUES(20.00,	NULL,	NULL,	NULL)
INSERT	wages	VALUES(30.00,	NULL,	NULL,	NULL)
INSERT	wages	VALUES(40.00,	NULL,	NULL,	NULL)
INSERT	wages	VALUES(NULL,	10000.00,	NULL,	NULL)
INSERT	wages	VALUES(NULL,	20000.00,	NULL,	NULL)
INSERT	wages	VALUES(NULL,	30000.00,	NULL,	NULL)
INSERT	wages	VALUES(NULL,	40000.00,	NULL,	NULL)
INSERT	wages	VALUES(NULL,	NULL,	15000,	3)
INSERT	wages	VALUES(NULL,	NULL,	25000,	2)
INSERT	wages	VALUES(NULL,	NULL,	20000,	6)
INSERT	wages	VALUES(NULL,	NULL,	14000,	4)
GO

SET	NOCOUNT	OFF
GO
SELECT	CAST(COALESCE(hourly_wage	*	40	*	52,	
			salary,	
			commission	*	num_sales)	AS	money)	AS	'Total	Salary'	
FROM	wages
GO

Here	is	the	result	set:

Total	Salary	

20800.0000
41600.0000
62400.0000
83200.0000
10000.0000
20000.0000
30000.0000
40000.0000
45000.0000
50000.0000
120000.0000
56000.0000

(12	row(s)	affected)

See	Also

CASE

System	Functions

Transact-SQL	Reference

COLLATE
A	clause	that	can	be	applied	to	a	database	definition	or	a	column	definition	to
define	the	collation,	or	to	a	character	string	expression	to	apply	a	collation	cast.

Syntax
COLLATE	<	collation_name	>

<	collation_name	>	::	=	
				{	Windows_collation_name	}	|	{	SQL_collation_name	}

Arguments
collation_name

Is	the	name	of	the	collation	to	be	applied	to	the	expression,	column
definition,	or	database	definition.	collation_name	can	be	only	a	specified
Windows_collation_name	or	a	SQL_collation_name.

Windows_collation_name
Is	the	collation	name	for	Windows	collation.	See	Windows	Collation
Names.

SQL_collation_name
Is	the	collation	name	for	a	SQL	collation.	See	SQL	Collation	Names.

Remarks

The	COLLATE	clause	can	be	specified	at	several	levels,	including	the	following:

1.	 Creating	or	altering	a	database.

You	can	use	the	COLLATE	clause	of	the	CREATE	DATABASE	or
ALTER	DATABASE	statement	to	specify	the	default	collation	of	the
database.	You	can	also	specify	a	collation	when	you	create	a	database
using	SQL	Server	Enterprise	Manager.	If	you	do	not	specify	a
collation,	the	database	is	assigned	the	default	collation	of	the	SQL

Server	instance.

2.	 Creating	or	altering	a	table	column.

You	can	specify	collations	for	each	character	string	column	using	the
COLLATE	clause	of	the	CREATE	TABLE	or	ALTER	TABLE
statement.	You	can	also	specify	a	collation	when	you	create	a	table
using	SQL	Server	Enterprise	Manager.	If	you	do	not	specify	a
collation,	the	column	is	assigned	the	default	collation	of	the	database.

You	can	also	use	the	database_default	option	in	the	COLLATE	clause
to	specify	that	a	column	in	a	temporary	table	use	the	collation	default
of	the	current	user	database	for	the	connection	instead	of	tempdb.

3.	 Casting	the	collation	of	an	expression.

You	can	use	the	COLLATE	clause	to	cast	a	character	expression	to	a
certain	collation.	Character	literals	and	variables	are	assigned	the
default	collation	of	the	current	database.	Column	references	are
assigned	the	definition	collation	of	the	column.		For	the	collation	of	an
expression,	see	Collation	Precedence.

The	collation	of	an	identifier	depends	on	the	level	at	which	it	is	defined.
Identifiers	of	instance-level	objects,	such	as	logins	and	database	names,	are
assigned	the	default	collation	of	the	instance.	Identifiers	of	objects	within	a
database,	such	as	tables,	views,	and	column	names,	are	assigned	the	default
collation	of	the	database.	For	example,	two	tables	with	names	differing	only	in
case	may	be	created	in	a	database	with	case-sensitive	collation,	but	may	not	be
created	in	a	database	with	case-insensitive	collation.

Variables,	GOTO	labels,	temporary	stored	procedures,	and	temporary	tables	can
be	created	when	the	connection	context	is	associated	with	one	database,	and	then
referenced	when	the	context	has	been	switched	to	another	database.	The
identifiers	for	variables,	GOTO	labels,	temporary	stored	procedures,	and
temporary	tables	are	in	the	default	collation	of	the	instance.

The	COLLATE	clause	can	be	applied	only	for	the	char,	varchar,	text,	nchar,
nvarchar,	and	ntext	data	types.

Collations	are	generally	identified	by	a	collation	name.	The	exception	is	in	Setup
where	you	do	not	specify	a	collation	name	for	Windows	collations,	but	instead

specify	the	collation	designator,	and	then	select	check	boxes	to	specify	binary
sorting	or	dictionary	sorting	that	is	either	sensitive	or	insensitive	to	either	case	or
accents.

You	can	execute	the	system	function	fn_helpcollations	to	retrieve	a	list	of	all	the
valid	collation	names	for	Windows	collations	and	SQL	collations:

SELECT	*
FROM	::fn_helpcollations()

SQL	Server	can	support	only	code	pages	that	are	supported	by	the	underlying
operating	system.	When	you	perform	an	action	that	depends	on	collations,	the
SQL	Server	collation	used	by	the	referenced	object	must	use	a	code	page
supported	by	the	operating	system	running	on	the	computer.	These	actions	can
include:

Specifying	a	default	collation	for	a	database	when	you	create	or	alter	the
database.

Specifying	a	collation	for	a	column	when	creating	or	altering	a	table.

When	restoring	or	attaching	a	database,	the	default	collation	of	the
database	and	the	collation	of	any	char,	varchar,	and	text	columns	or
parameters	in	the	database	must	be	supported	by	the	operating	system.

Code	page	translations	are	supported	for	char	and	varchar	data	types,
but	not	for	text	data	type.	Data	loss	during	code	page	translations	is	not
reported.

If	the	collation	specified	or	the	collation	used	by	the	referenced	object,	uses	a
code	page	not	supported	by	Windows®,	SQL	Server	issues	error.	For	more
information,	see	the	Collations	section	in	the	SQL	Server	Architecture	chapter	of
the	SQL	Server	Books	Online.

See	Also

ALTER	TABLE

Collation	Options	for	International	Support

Collation	Precedence

Collations

Constants

CREATE	DATABASE

CREATE	TABLE

DECLARE	@local_variable

table

Using	Unicode	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Transact-SQL	Reference

Windows	Collation	Name
Specifies	the	Windows	collation	name	in	the	COLLATE	clause.	The	Windows
collations	name	is	composed	of	the	collation	designator	and	the	comparison
styles.

Syntax
<	Windows_collation_name	>	::	=

				CollationDesignator_<ComparisonStyle>

				<	ComparisonStyle	>	::	=	
								CaseSensitivity_AccentSensitivity	
								[_KanatypeSensitive	[_WidthSensitive]]	
								|	_BIN

Arguments
CollationDesignator

Specifies	the	base	collation	rules	used	by	the	Windows	collation.	The	base
collation	rules	cover:

The	alphabet	or	language	whose	sorting	rules	are	applied	when
dictionary	sorting	is	specified

The	code	page	used	to	store	non-Unicode	character	data.

Examples	are	Latin1_General	or	French,	both	of	which	use	code	page
1252,	or	Turkish,	which	uses	code	page	1254.

CaseSensitivity

CI	specifies	case-insensitive,	CS	specifies	case-sensitive.

AccentSensitivity

AI	specifies	accent-insensitive,	AS	specifies	accent-sensitive.

KanatypeSensitive

Omitted	specifies	case-insensitive,	KS	specifies	kanatype-sensitive.

WidthSensitivity

Omitted	specifies	case-insensitive,	WS	specifies	case-sensitive.

BIN

Specifies	the	binary	sort	order	is	to	be	used.

Remarks
The	collation	designators	for	Microsoft®	SQL	Server™	2000	Windows
collations	are:

SQL	Server	2000	Collation
Designator

Code	Page	for
non-Unicode
data Supported	Windows	Locales

Albanian 1250 Albanian
Arabic 1256 Arabic	(Algeria),	Arabic

(Bahrain),	Arabic	(Egypt),
Arabic	(Iraq),	Arabic	(Jordan),
Arabic	(Kuwait),	Arabic
(Lebanon),	Arabic	(Libya),
Arabic	(Morocco),	Arabic
(Oman),	Arabic	(Qatar),
Arabic	(Saudi	Arabia),	Arabic
(Syria),	Arabic	(Tunisia),
Arabic	(United	Arab
Emirates),	Arabic	(Yemen),
Farsi,	Urdu

Chinese_PRC 936 Chinese	(Hong	Kong	S.A.R.),
Chinese	(People's	Republic	of
China),	Chinese	(Singapore)

Chinese_PRC_Stroke 936 Stroke	sort	with	Chinese
(PRC)

Chinese_Taiwan_Bopomofo 950 Bopomofo	with	Chinese

(Taiwan)
Chinese_Taiwan_Stroke 950 Chinese	(Taiwan)
Croatian 1250 Croatian
Cyrillic_General 1251 Bulgarian,	Byelorussian,

Russian,	Serbian
Czech 1250 Czech
Danish_Norwegian 1252 Danish,	Norwegian	(Bokmål),

Norwegian	(Nyorsk)
Estonian 1257 Estonian
Finnish_Swedish 1252 Finnish,	Swedish
French 1252 French	(Belgium),	French

(Canada),	French
(Luxemburg),	French
(Standard),	French
(Switzerland)

Georgian_Modern_Sort 1252 Modern	Sort	with	Georgian
German_PhoneBook 1252 PhoneBook	sort	with	German
Greek 1253 Greek
Hebrew 1255 Hebrew
Hindi For	Unicode

data	types	only
Hindi

Hungarian 1250 Hungarian
Hungarian_Technical 1250
Icelandic 1252 Icelandic
Japanese 932 Japanese
Japanese_Unicode 932
Korean_Wansung 949 Korean
Korean_Wansung_Unicode 949
Latin1_General 1252 Afrikaans,	Basque,	Catalan,

Dutch	(Belgium),	Dutch
(Standard),	English
(Australia),	English	(Britain),
English	(Canada),	English
(Carribbean)	English

(Ireland),	English	(Jamaican),
English	(New	Zealand),
English	(South	Africa),
English	(United	States),
Faeroese,	German	(Austria),
German	(Liechtenstein),
German	(Luxembourg),
German	(Standard),	German
(Switzerland),	Indonesian,
Italian,	Italian	(Switzerland),
Portuguese	(Brazil),
Portuguese	(Standard)

Latvian 1257 Latvian
Lithuanian 1257 Lithuanian
Lithuanian_Classic 1257
Macedonian 1251 Macedonian
Mexican_Trad_Spanish 1252 Spanish	(Mexican),	Spanish

(Traditional	Sort)
Modern_Spanish 1252 Spanish	(Argentina),	Spanish

(Bolivia),	Spanish	(Chile),
Spanish	(Colombia),	Spanish
(Costa	Rica),	Spanish
(Dominican	Republic),
Spanish	(Ecuador),	Spanish
(Guatemala),	Spanish
(Modern	Sort),	Spanish
(Panama),	Spanish	(Paraguay),
Spanish	(Peru),	Spanish
(Uruguay),	Spanish
(Venezuela)

Polish 1250 Polish
Romanian 1250 Romanian
Slovak 1250 Slovak
Slovenian 1250 Slovenian
Thai 874 Thai

Turkish 1254 Turkish
Ukrainian 1251 Ukrainian
Vietnamese 1258 Vietnamese

Examples
These	are	some	examples	of	Windows	collation	names:

Latin1_General_CI_AS

Collation	uses	the	Latin1	General	dictionary	sorting	rules,	code	page
1252.	Is	case-insensitive	and	accent-sensitive.

Estonian_CS_AS

Collation	uses	the	Estonian	dictionary	sorting	rules,	code	page	1257.	Is
case-sensitive	and	accent-sensitive.

Latin1_General_BIN

Collation	uses	code	page	1252	and	binary	sorting	rules.	The	Latin1
General	dictionary	sorting	rules	are	ignored.

See	Also

ALTER	TABLE

Collation	Settings	in	Setup

Constants

CREATE	DATABASE

CREATE	TABLE

DECLARE	@local_variable

table

Windows	Collation	Names	Table

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

SQL	Collation	Name
A	single	string	that	specifies	the	collation	name	for	a	SQL	collation.

Syntax
<	SQL_collation_name	>	::	=

				SQL_SortRules[_Pref]_CPCodepage_<ComparisonStyle>	
				<ComparisonStyle>	::=
								_CaseSensitivity_AccentSensitivity	|	_BIN

Arguments
SortRules

A	string	identifying	the	alphabet	or	language	whose	sorting	rules	are	applied
when	dictionary	sorting	is	specified.	Examples	are	Latin1_General	or	Polish.

Pref

Specifies	uppercase	preference.

Codepage

Specifies	a	one	to	four	digit	number	identifying	the	code	page	used	by	the
collation.	CP1	specifies	code	page	1252,	for	all	other	code	pages	the
complete	code	page	number	is	specified.	For	example,	CP1251	specifies
code	page	1251	and	CP850	specifies	code	page	850.

CaseSensitivity

CI	specifies	case-insensitive,	CS	specifies	case-sensitive.

AccentSensitivity

AI	specifies	accent-insensitive,	AS	specifies	accent-sensitive.

BIN

Specifies	the	binary	sort	order	is	to	be	used.

Remarks
This	table	lists	the	SQL	collation	names.

Sort	order	ID SQL	collation	name
30 SQL_Latin1_General_Cp437_BIN
31 SQL_Latin1_General_Cp437_CS_AS
32 SQL_Latin1_General_Cp437_CI_AS
33 SQL_Latin1_General_Pref_CP437_CI_AS
34 SQL_Latin1_General_Cp437_CI_AI
40 SQL_Latin1_General_Cp850_BIN
41 SQL_Latin1_General_Cp850_CS_AS
42 SQL_Latin1_General_Cp850_CI_AS
43 SQL_Latin1_General_Pref_CP850_CI_AS
44 SQL_Latin1_General_Cp850_CI_AI
49 SQL_1Xcompat_CP850_CI_AS
50 Latin1_General_BIN
51 SQL_Latin1_General_Cp1_CS_AS
52 SQL_Latin1_General_Cp1_CI_AS
53 SQL_Latin1_General_Pref_CP1_CI_AS
54 SQL_Latin1_General_Cp1_CI_AI
55 SQL_AltDiction_Cp850_CS_AS
56 SQL_AltDiction_Pref_CP850_CI_AS
57 SQL_AltDiction_Cp850_CI_AI
58 SQL_Scandinavian_Pref_Cp850_CI_AS
59 SQL_Scandinavian_Cp850_CS_AS
60 SQL_Scandinavian_Cp850_CI_AS
61 SQL_AltDiction_Cp850_CI_AS
71 Latin1_General_CS_AS
72 Latin1_General_CI_AS
73 Danish_Norwegian_CS_AS
74 Finnish_Swedish_CS_AS
75 Icelandic_CS_AS
80 Hungarian_BIN	(or	Albanian_BIN,	Czech_BIN,

and	so	on)1

81 SQL_Latin1_General_Cp1250_CS_AS
82 SQL_Latin1_General_Cp1250_CI_AS
83 SQL_Czech_Cp1250_CS_AS
84 SQL_Czech_Cp1250_CI_AS
85 SQL_Hungarian_Cp1250_CS_AS
86 SQL_Hungarian_Cp1250_CI_AS
87 SQL_Polish_Cp1250_CS_AS
88 SQL_Polish_Cp1250_CI_AS
89 SQL_Romanian_Cp1250_CS_AS
90 SQL_Romanian_Cp1250_CI_AS
91 SQL_Croatian_Cp1250_CS_AS
92 SQL_Croatian_Cp1250_CI_AS
93 SQL_Slovak_Cp1250_CS_AS
94 SQL_Slovak_Cp1250_CI_AS
95 SQL_Slovenian_Cp1250_CS_AS
96 SQL_Slovenian_Cp1250_CI_AS
104 Cyrillic_General_BIN	(or	Ukrainian_BIN,

Macedonian_BIN)
105 SQL_Latin1_General_Cp1251_CS_AS
106 SQL_Latin1_General_Cp1251_CI_AS
107 SQL_Ukrainian_Cp1251_CS_AS
108 SQL_Ukrainian_Cp1251_CI_AS
112 Greek_BIN
113 SQL_Latin1_General_Cp1253_CS_AS
114 SQL_Latin1_General_Cp1253_CI_AS
120 SQL_MixDiction_Cp1253_CS_AS
121 SQL_AltDiction_Cp1253_CS_AS
124 SQL_Latin1_General_Cp1253_CI_AI
128 Turkish_BIN
129 SQL_Latin1_General_Cp1254_CS_AS
130 SQL_Latin1_General_Cp1254_CI_AS
136 Hebrew_BIN

137 SQL_Latin1_General_Cp1255_CS_AS

138 SQL_Latin1_General_Cp1255_CI_AS
144 Arabic_BIN
145 SQL_Latin1_General_Cp1256_CS_AS
146 SQL_Latin1_General_Cp1256_CI_AS
153 SQL_Latin1_General_Cp1257_CS_AS
154 SQL_Latin1_General_Cp1257_CI_AS
155 SQL_Estonian_Cp1257_CS_AS
156 SQL_Estonian_Cp1257_CI_AS
157 SQL_Latvian_Cp1257_CS_AS
158 SQL_Latvian_Cp1257_CI_AS
159 SQL_Lithuanian_Cp1257_CS_AS
160 SQL_Lithuanian_Cp1257_CI_AS
183 SQL_Danish_Pref_Cp1_CI_AS
184 SQL_SwedishPhone_Pref_Cp1_CI_AS
185 SQL_SwedishStd_Pref_Cp1_CI_AS
186 SQL_Icelandic_Pref_Cp1_CI_AS
192 Japanese_BIN
193 Japanese_CI_AS
194 Korean_Wansung_BIN
195 Korean_Wansung_CI_AS
196 Chinese_Taiwan_Stroke_BIN
197 Chinese_Taiwan_Stroke_CI_AS
198 Chinese_PRC_BIN
199 Chinese_PRC_CI_AS
200 Japanese_CS_AS
201 Korean_Wansung_CS_AS
202 Chinese_Taiwan_Stroke_CS_AS
203 Chinese_PRC_CS_AS
204 Thai_BIN
205 Thai_CI_AS
206 Thai_CS_AS
210 SQL_EBCDIC037_CP1_CS_AS

211 SQL_EBCDIC273_CP1_CS_AS
212 SQL_EBCDIC277_CP1_CS_AS
213 SQL_EBCDIC278_CP1_CS_AS
214 SQL_EBCDIC280_CP1_CS_AS
215 SQL_EBCDIC284_CP1_CS_AS
216 SQL_EBCDIC285_CP1_CS_AS
217 SQL_EBCDIC297_CP1_CS_AS
1For	Sort	Order	ID	80,	use	any	of	the	Window	collations	with	the	code	page	of	1250,	and	binary	order.	For
example:	Albanian_BIN,	Croatian_BIN,	Czech_BIN,	Romanian_BIN,	Slovak_BIN,	Slovenian_BIN.

See	Also

ALTER	TABLE

Collation	Settings	in	Setup

Constants

CREATE	DATABASE

CREATE	TABLE

DECLARE	@local_variable

table

SQL	Collation	Names	Table	(Compatibility	collations)

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

COLLATIONPROPERTY
Returns	the	property	of	a	given	collation.

Syntax
COLLATIONPROPERTY(collation_name,	property)

Arguments
collation_name

Is	the	name	of	the	collation.	collation_name	is	nvarchar(128),	and	has	no
default.

property

Is	the	property	of	the	collation.	property	is	varchar(128),	and	can	be	any	of
these	values:

Property	name Description
CodePage The	nonUnicode	code	page	of	the	collation.
LCID The	Windows	LCID	of	the	collation.

Returns	NULL	for	SQL	collations.
ComparisonStyle The	Windows	comparison	style	of	the

collation.
Returns	NULL	for	binary	or	SQL	collations.

Return	Types
sql_variant

Examples

SELECT	COLLATIONPROPERTY('Traditional_Spanish_CS_AS_KS_WS',	'CodePage')

Result	Set

1252	

See	Also

fn_helpcollations

Transact-SQL	Reference

COL_LENGTH
Returns	the	defined	length	(in	bytes)	of	a	column.

Syntax
COL_LENGTH	('table'	,	'column')

Arguments
'table'

Is	the	name	of	the	table	for	which	to	determine	column	length	information.
table	is	an	expression	of	type	nvarchar.

'column'

Is	the	name	of	the	column	for	which	to	determine	length.	column	is	an
expression	of	type	nvarchar.

Return	Types
int

Examples
This	example	shows	the	return	values	for	a	column	of	type	varchar(40)	and	a
column	of	type	nvarchar(40).

USE	pubs
GO
CREATE	TABLE	t1
			(c1	varchar(40),
				c2	nvarchar(40)
)
GO
SELECT	COL_LENGTH('t1','c1')AS	'VarChar',

						COL_LENGTH('t1','c2')AS	'NVarChar'
GO
DROP	TABLE	t1

Here	is	the	result	set.

VarChar					NVarChar
40										80

See	Also

Expressions

Metadata	Functions

Transact-SQL	Reference

COL_NAME
Returns	the	name	of	a	database	column	given	the	corresponding	table
identification	number	and	column	identification	number.

Syntax
COL_NAME	(table_id	,	column_id)

Arguments
table_id

Is	the	identification	number	of	the	table	containing	the	database	column.
table_id	is	of	type	int.

column_id

Is	the	identification	number	of	the	column.	column_id	parameter	is	of	type
int.

Return	Types
sysname

Remarks
The	table_id	and	column_id	parameters	together	produce	a	column	name	string.

For	more	information	about	obtaining	table	and	column	identification	numbers,
see	OBJECT_ID.

Examples
This	example	returns	the	name	of	the	first	column	in	the	Employees	table	of	the
Northwind	database.

USE	Northwind
SET	NOCOUNT	OFF

SELECT	COL_NAME(OBJECT_ID('Employees'),	1)

Here	is	the	result	set:

EmployeeID

(1	row(s)	affected)

See	Also

Expressions

Metadata	Functions

sysobjects

Transact-SQL	Reference

COLUMNPROPERTY
Returns	information	about	a	column	or	procedure	parameter.

Syntax
COLUMNPROPERTY	(id	,	column	,	property)

Arguments
id

Is	an	expression	containing	the	identifier	(ID)	of	the	table	or	procedure.

column

Is	an	expression	containing	the	name	of	the	column	or	parameter.

property

Is	an	expression	containing	the	information	to	be	returned	for	id,	and	can	be
any	of	these	values.

Value Description Value	returned
AllowsNull Allows	null	values. 1	=	TRUE

0	=	FALSE
NULL	=	Invalid	input

IsComputed The	column	is	a	computed
column.

1	=	TRUE
0	=	FALSE
NULL	=	Invalid	input

IsCursorType The	procedure	parameter	is	of
type	CURSOR.

1	=	TRUE
0	=	FALSE
NULL	=	Invalid	input

IsDeterministic The	column	is	deterministic.
This	property	applies	only	to
computed	columns	and	view
columns.

1	=	TRUE
0	=	FALSE
NULL	=	Invalid	input.
Not	a	computed	column
or	view	column.

IsFulltextIndexed The	column	has	been	registered
for	full-text	indexing.

1	=	TRUE
0	=	FALSE
NULL	=	Invalid	input

IsIdentity The	column	uses	the
IDENTITY	property.

1	=	TRUE
0	=	FALSE
NULL	=	Invalid	input

IsIdNotForRepl The	column	checks	for	the
IDENTITY_INSERT	setting.	If
IDENTITY	NOT	FOR
REPLICATION	is	specified,
the	IDENTITY_INSERT
setting	is	not	checked.

1	=	TRUE
0	=	FALSE
NULL	=	Invalid	input

IsIndexable The	column	can	be	indexed. 1	=	TRUE
0	=	FALSE
NULL	=	Invalid	input

IsOutParam The	procedure	parameter	is	an
output	parameter.

1	=	TRUE
0	=	FALSE
NULL	=	Invalid	input

IsPrecise The	column	is	precise.	This
property	applies	only	to
deterministic	columns.

1	=	TRUE
0	=	FALSE
NULL	=	Invalid	input.
Not	a	deterministic
column

IsRowGuidCol The	column	has	the
uniqueidentifier	data	type	and
is	defined	with	the
ROWGUIDCOL	property.

1	=	TRUE
0	=	FALSE
NULL	=	Invalid	input

Precision Precision	for	the	data	type	of
the	column	or	parameter.

The	precision	of	the
specified	column	data
type

NULL	=	Invalid	input

Scale Scale	for	the	data	type	of	the
column	or	parameter.

The	scale

NULL	=	Invalid	input

UsesAnsiTrim ANSI	padding	setting	was	ON 1=	TRUE

when	the	table	was	initially
created.

0=	FALSE
NULL	=	Invalid	input

Return	Types
int

Remarks
When	checking	a	column's	deterministic	property,	test	first	whether	the	column
is	a	computed	column.	IsDeterministic	returns	NULL	for	noncomputed
columns.

Computed	columns	can	be	specified	as	index	columns.

Examples
This	example	returns	the	length	of	the	au_lname	column.

SELECT	COLUMNPROPERTY(OBJECT_ID('authors'),'au_lname','PRECISION')

See	Also

Metadata	Functions

OBJECTPROPERTY

TYPEPROPERTY

Transact-SQL	Reference

COMMIT	TRANSACTION
Marks	the	end	of	a	successful	implicit	or	user-defined	transaction.	If
@@TRANCOUNT	is	1,	COMMIT	TRANSACTION	makes	all	data
modifications	performed	since	the	start	of	the	transaction	a	permanent	part	of	the
database,	frees	the	resources	held	by	the	connection,	and	decrements
@@TRANCOUNT	to	0.	If	@@TRANCOUNT	is	greater	than	1,	COMMIT
TRANSACTION	decrements	@@TRANCOUNT	only	by	1.

Syntax
COMMIT	[TRAN	[SACTION]	[transaction_name	|	@tran_name_variable]]

Arguments
transaction_name

Is	ignored	by	Microsoft®	SQL	Server™.	transaction_name	specifies	a
transaction	name	assigned	by	a	previous	BEGIN	TRANSACTION.
transaction_name	must	conform	to	the	rules	for	identifiers,	but	only	the	first
32	characters	of	the	transaction	name	are	used.	transaction_name	can	be
used	as	a	readability	aid	by	indicating	to	programmers	which	nested	BEGIN
TRANSACTION	the	COMMIT	TRANSACTION	is	associated	with.

@tran_name_variable

Is	the	name	of	a	user-defined	variable	containing	a	valid	transaction	name.
The	variable	must	be	declared	with	a	char,	varchar,	nchar,	or	nvarchar
data	type.

Remarks
It	is	the	responsibility	of	the	Transact-SQL	programmer	to	issue	COMMIT
TRANSACTION	only	at	a	point	when	all	data	referenced	by	the	transaction	is
logically	correct.

If	the	transaction	committed	was	a	Transact-SQL	distributed	transaction,
COMMIT	TRANSACTION	triggers	MS	DTC	to	use	a	two-phase	commit

protocol	to	commit	all	the	servers	involved	in	the	transaction.	If	a	local
transaction	spans	two	or	more	databases	on	the	same	server,	SQL	Server	uses	an
internal	two-phase	commit	to	commit	all	the	databases	involved	in	the
transaction.

When	used	in	nested	transactions,	commits	of	the	inner	transactions	do	not	free
resources	or	make	their	modifications	permanent.	The	data	modifications	are
made	permanent	and	resources	freed	only	when	the	outer	transaction	is
committed.	Each	COMMIT	TRANSACTION	issued	when	@@TRANCOUNT
is	greater	than	1	simply	decrements	@@TRANCOUNT	by	1.	When
@@TRANCOUNT	is	finally	decremented	to	0,	the	entire	outer	transaction	is
committed.	Because	transaction_name	is	ignored	by	SQL	Server,	issuing	a
COMMIT	TRANSACTION	referencing	the	name	of	an	outer	transaction	when
there	are	outstanding	inner	transactions	only	decrements	@@TRANCOUNT	by
1.

Issuing	a	COMMIT	TRANSACTION	when	@@TRANCOUNT	is	0	results	in
an	error	that	there	is	no	corresponding	BEGIN	TRANSACTION.

You	cannot	roll	back	a	transaction	after	a	COMMIT	TRANSACTION	statement
is	issued	because	the	data	modifications	have	been	made	a	permanent	part	of	the
database.

Examples

A.	Commit	a	transaction.
This	example	increases	the	advance	to	be	paid	to	an	author	when	year-to-date
sales	of	a	title	are	greater	than	$8,000.

BEGIN	TRANSACTION
USE	pubs
GO
UPDATE	titles
SET	advance	=	advance	*	1.25
WHERE	ytd_sales	>	8000
GO
COMMIT

GO

B.	Commit	a	nested	transaction.
This	example	creates	a	table,	generates	three	levels	of	nested	transactions,	and
then	commits	the	nested	transaction.	Although	each	COMMIT	TRANSACTION
statement	has	a	transaction_name	parameter,	there	is	no	relationship	between	the
COMMIT	TRANSACTION	and	BEGIN	TRANSACTION	statements.	The
transaction_name	parameters	are	simply	readability	aids	to	help	the	programmer
ensure	the	proper	number	of	commits	are	coded	to	decrement
@@TRANCOUNT	to	0,	and	thereby	commit	the	outer	transaction.

CREATE	TABLE	TestTran	(Cola	INT	PRIMARY	KEY,	Colb	CHAR(3))
GO
BEGIN	TRANSACTION	OuterTran	--	@@TRANCOUNT	set	to	1.
GO
INSERT	INTO	TestTran	VALUES	(1,	'aaa')
GO
BEGIN	TRANSACTION	Inner1	--	@@TRANCOUNT	set	to	2.
GO
INSERT	INTO	TestTran	VALUES	(2,	'bbb')
GO
BEGIN	TRANSACTION	Inner2	--	@@TRANCOUNT	set	to	3.
GO
INSERT	INTO	TestTran	VALUES	(3,	'ccc')
GO
COMMIT	TRANSACTION	Inner2	--	Decrements	@@TRANCOUNT	to	2.
--	Nothing	committed.
GO
COMMIT	TRANSACTION	Inner1	--	Decrements	@@TRANCOUNT	to	1.
--	Nothing	committed.
GO
COMMIT	TRANSACTION	OuterTran	--	Decrements	@@TRANCOUNT	to	0.
--	Commits	outer	transaction	OuterTran.
GO

See	Also

BEGIN	DISTRIBUTED	TRANSACTION

BEGIN	TRANSACTION

COMMIT	WORK

ROLLBACK	TRANSACTION

ROLLBACK	WORK

SAVE	TRANSACTION

@@TRANCOUNT

Transactions

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

COMMIT	WORK
Marks	the	end	of	a	transaction.

Syntax
COMMIT	[WORK]

Remarks
This	statement	functions	identically	to	COMMIT	TRANSACTION,	except
COMMIT	TRANSACTION	accepts	a	user-defined	transaction	name.	This
COMMIT	syntax,	with	or	without	specifying	the	optional	keyword	WORK,	is
compatible	with	SQL-92.

See	Also

BEGIN	DISTRIBUTED	TRANSACTION

BEGIN	TRANSACTION

COMMIT	TRANSACTION

ROLLBACK	TRANSACTION

ROLLBACK	WORK

SAVE	TRANSACTION

@@TRANCOUNT

Transact-SQL	Reference

Constants
A	constant,	also	known	as	a	literal	or	a	scalar	value,	is	a	symbol	that	represents	a
specific	data	value.	The	format	of	a	constant	depends	on	the	data	type	of	the
value	it	represents.

Character	string	constants

Character	string	constants	are	enclosed	in	single	quotation	marks	and	include
alphanumeric	characters	(a-z,	A-Z,	and	0-9)	and	special	characters,	such	as
exclamation	point	(!),	at	sign	(@),	and	number	sign	(#).	Character	string
constants	are	assigned	the	default	collation	of	the	current	database,	unless	the
COLLATE	clause	is	used	to	specify	a	collation.	Character	strings	typed	by
users	are	evaluated	through	the	code	page	of	the	computer	and	are	translated
to	the	database	default	code	page	if	necessary.	For	more	information,	see
Collations.

If	the	QUOTED_IDENTIFIER	option	has	been	set	OFF	for	a	connection,
character	strings	can	also	be	enclosed	in	double	quotation	marks,	but	the
Microsoft®	OLE	DB	Provider	for	Microsoft	SQL	Server™	and	ODBC
driver	automatically	use	SET	QUOTED_IDENTIFIER	ON.	The	use	of
single	quotation	marks	is	recommended.

If	a	character	string	enclosed	in	single	quotation	marks	contains	an
embedded	quotation	mark,	represent	the	embedded	single	quotation	mark
with	two	single	quotation	marks.	This	is	not	necessary	in	strings	embedded
in	double	quotation	marks.

Examples	of	character	strings	are:

'Cincinnati'
'O''Brien'
'Process	X	is	50%	complete.'
'The	level	for	job_id:	%d	should	be	between	%d	and	%d.'
"O'Brien"

Empty	strings	are	represented	as	two	single	quotation	marks	with	nothing	in
between.	In	6.x	compatibility	mode,	an	empty	string	is	treated	as	a	single

JavaScript:hhobj_1.Click()

space.

Character	string	constants	support	enhanced	collations.

Unicode	strings

Unicode	strings	have	a	format	similar	to	character	strings	but	are	preceded
by	an	N	identifier	(N	stands	for	National	Language	in	the	SQL-92	standard).
The	N	prefix	must	be	uppercase.	For	example,	'Michél'	is	a	character
constant	while	N'Michél'	is	a	Unicode	constant.	Unicode	constants	are
interpreted	as	Unicode	data,	and	are	not	evaluated	using	a	code	page.
Unicode	constants	do	have	a	collation,	which	primarily	controls	comparisons
and	case	sensitivity.	Unicode	constants	are	assigned	the	default	collation	of
the	current	database,	unless	the	COLLATE	clause	is	used	to	specify	a
collation.	Unicode	data	is	stored	using	two	bytes	per	character,	as	opposed	to
one	byte	per	character	for	character	data.	For	more	information,	see	Using
Unicode	Data.

Unicode	string	constants	support	enhanced	collations.

Binary	constants

Binary	constants	have	the	suffix	0x	and	are	a	string	of	hexadecimal	numbers.
They	are	not	enclosed	in	quotation	marks.	Examples	of	binary	strings	are:

0xAE
0x12Ef
0x69048AEFDD010E
0x		(empty	binary	string)

bit	constants

bit	constants	are	represented	by	the	numbers	zero	or	one,	and	are	not
enclosed	in	quotation	marks.	If	a	number	larger	than	one	is	used,	it	is
converted	to	one.

datetime	constants

datetime	constants	are	represented	using	character	date	values	in	specific
formats,	enclosed	in	single	quotation	marks.	For	more	information	about	the
formats	for	datetime	constants,	see	Using	Date	and	Time	Data.	Examples	of
date	constants	are:

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

'April	15,	1998'
'15	April,	1998'
'980415'
'04/15/98'

Examples	of	time	constants	are:

'14:30:24'
'04:24	PM'

integer	constants

integer	constants	are	represented	by	a	string	of	numbers	not	enclosed	in
quotation	marks	and	do	not	contain	decimal	points.	integer	constants	must
be	whole	numbers;	they	cannot	contain	decimals.	Examples	of	integer
constants	are:

1894
2

decimal	constants

decimal	constants	are	represented	by	a	string	of	numbers	that	are	not
enclosed	in	quotation	marks	and	contain	a	decimal	point.	Examples	of
decimal	constants	are:

1894.1204
2.0

float	and	real	constants

float	and	real	constants	are	represented	using	scientific	notation.	Examples
of	float	or	real	values	are:

101.5E5
0.5E-2

money	constants

money	constants	are	represented	as	string	of	numbers	with	an	optional
decimal	point	and	an	optional	currency	symbol	as	a	prefix.	They	are	not
enclosed	in	quotation	marks.	Examples	of	money	constants	are:

$12
$542023.14

uniqueidentifier	constants

uniqueidentifier	constants	are	a	string	representing	a	globally	unique
identifier	(GUID)	value.	They	can	be	specified	in	either	a	character	or	binary
string	format.	Both	of	these	examples	specify	the	same	GUID:

'6F9619FF-8B86-D011-B42D-00C04FC964FF'
0xff19966f868b11d0b42d00c04fc964ff

Specifying	Negative	and	Positive	Numbers
To	indicate	whether	a	number	is	positive	or	negative,	apply	the	+	or	-	unary
operators	to	a	numeric	constant.	This	creates	a	numeric	expression	that
represents	the	signed	numeric	value.	Numeric	constants	default	to	positive	if	the
+	or	-	unary	operators	are	not	applied.

Signed	integer	expressions:
+145345234
-2147483648

Signed	decimal	expressions:
+145345234.2234
-2147483648.10

Signed	float	expressions:
+123E-3
-12E5

Signed	money	expressions:
-$45.56
+$423456.99

Enhanced	Collations

SQL	Server	2000	supports	character	and	Unicode	string	constants	that	support
enhanced	collations.

To	utilize	enhanced	collation,	use	the	COLLATE	clause.

See	Also

Collations

Data	Types

Expressions

Operators

Using	Constants

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Transact-SQL	Reference

CONTAINS
Is	a	predicate	used	to	search	columns	containing	character-based	data	types	for
precise	or	fuzzy	(less	precise)	matches	to	single	words	and	phrases,	the
proximity	of	words	within	a	certain	distance	of	one	another,	or	weighted
matches.	CONTAINS	can	search	for:

A	word	or	phrase.

The	prefix	of	a	word	or	phrase.

A	word	near	another	word.

A	word	inflectionally	generated	from	another	(for	example,	the	word
drive	is	the	inflectional	stem	of	drives,	drove,	driving,	and	driven).

A	word	that	has	a	higher	designated	weighting	than	another	word.

Syntax

CONTAINS
				({	column	|	*	}	,	'<	contains_search_condition	>'	
)

<	contains_search_condition	>	::=	
								{	<	simple_term	>	
								|	<	prefix_term	>	
								|	<	generation_term	>	
								|	<	proximity_term	>	
								|	<	weighted_term	>	
								}	
								|	{	(<	contains_search_condition	>)	
								{	AND	|	AND	NOT	|	OR	}	<	contains_search_condition	>	[...n]	
								}

<	simple_term	>	::=	
				word	|	"	phrase	"

<	prefix	term	>	::=	
				{	"word	*	"	|	"phrase	*	"	}

<	generation_term	>	::=	
				FORMSOF	(INFLECTIONAL	,	<	simple_term	>	[,...n])

<	proximity_term	>	::=	
				{	<	simple_term	>	|	<	prefix_term	>	}	
				{	{	NEAR	|	~	}	{	<	simple_term	>	|	<	prefix_term	>	}	}	[...n]

<	weighted_term	>	::=	
				ISABOUT	
								({	{	
																<	simple_term	>	
																|	<	prefix_term	>	
																|	<	generation_term	>	
																|	<	proximity_term	>	
																}	
												[WEIGHT	(weight_value)]	
												}	[,...n]	
)

Arguments
column

Is	the	name	of	a	specific	column	that	has	been	registered	for	full-text
searching.	Columns	of	the	character	string	data	types	are	valid	full-text
searching	columns.

*

Specifies	that	all	columns	in	the	table	registered	for	full-text	searching
should	be	used	to	search	for	the	given	contains	search	condition(s).	If	more
than	one	table	is	in	the	FROM	clause,	*	must	be	qualified	by	the	table	name.

<contains_search_condition>

Specifies	some	text	to	search	for	in	column.	Variables	cannot	be	used	for	the

search	condition.

word

Is	a	string	of	characters	without	spaces	or	punctuation.

phrase

Is	one	or	more	words	with	spaces	between	each	word.

Note		Some	languages,	such	as	those	in	Asia,	can	have	phrases	that	consist	of
one	or	more	words	without	spaces	between	them.

<simple_term>

Specifies	a	match	for	an	exact	word	(one	or	more	characters	without	spaces
or	punctuation	in	single-byte	languages)	or	a	phrase	(one	or	more
consecutive	words	separated	by	spaces	and	optional	punctuation	in	single-
byte	languages).	Examples	of	valid	simple	terms	are	"blue	berry",	blueberry,
and	"Microsoft	SQL	Server".	Phrases	should	be	enclosed	in	double	quotation
marks	("").	Words	in	a	phrase	must	appear	in	the	same	order	as	specified	in
<contains_search_condition>	as	they	appear	in	the	database	column.	The
search	for	characters	in	the	word	or	phrase	is	case	insensitive.	Noise	words
(such	as	a,	and,	or	the)	in	full-text	indexed	columns	are	not	stored	in	the	full-
text	index.	If	a	noise	word	is	used	in	a	single	word	search,	SQL	Server
returns	an	error	message	indicating	that	only	noise	words	are	present	in	the
query.	SQL	Server	includes	a	standard	list	of	noise	words	in	the	directory
\Mssql\Ftdata\Sqlserver\Config.

Punctuation	is	ignored.	Therefore,	CONTAINS(testing,	"computer	failure")
matches	a	row	with	the	value,	"Where	is	my	computer?	Failure	to	find	it
would	be	expensive."

<prefix_term>

Specifies	a	match	of	words	or	phrases	beginning	with	the	specified	text.
Enclose	a	prefix	term	in	double	quotation	marks	("")	and	add	an	asterisk	(*)
before	the	ending	quotation	mark,	so	that	all	text	starting	with	the	simple
term	specified	before	the	asterisk	is	matched.	The	clause	should	be	specified
this	way:	CONTAINS	(column,	'"text*"')	The	asterisk	matches	zero,
one,	or	more	characters	(of	the	root	word	or	words	in	the	word	or	phrase).	If
the	text	and	asterisk	are	not	delimited	by	double	quotation	marks,	as	in

CONTAINS	(column,	'text*'),	full-text	search	considers	the	asterisk	as	a
character	and	will	search	for	exact	matches	to	text*.
When	<prefix_term>	is	a	phrase,	each	word	contained	in	the	phrase	is
considered	to	be	a	separate	prefix.	Therefore,	a	query	specifying	a	prefix
term	of	"local	wine	*"	matches	any	rows	with	the	text	of	"local	winery",
"locally	wined	and	dined",	and	so	on.

<generation_term>

Specifies	a	match	of	words	when	the	included	simple	terms	include	variants
of	the	original	word	for	which	to	search.

INFLECTIONAL
Specifies	that	the	plural	and	singular,	as	well	as	the	gender	and	neutral
forms	of	nouns,	verbs,	and	adjectives	should	be	matched.	The	various
tenses	of	verbs	should	be	matched	too.

A	given	<simple_term>	within	a	<generation_term>	will	not
match	both	nouns	and	verbs.

<proximity_term>

Specifies	a	match	of	words	or	phrases	that	must	be	close	to	one	another.
<proximity_term>	operates	similarly	to	the	AND	operator:	both	require	that
more	than	one	word	or	phrase	exist	in	the	column	being	searched.	As	the
words	in	<proximity_term>	appear	closer	together,	the	better	the	match.

NEAR	|	~
Indicates	that	the	word	or	phrase	on	the	left	side	of	the	NEAR	or	~
operator	should	be	approximately	close	to	the	word	or	phrase	on	the	right
side	of	the	NEAR	or	~	operator.	Multiple	proximity	terms	can	be
chained,	for	example:
a	NEAR	b	NEAR	c	

This	means	that	word	or	phrase	a	should	be	near	word	or	phrase
b,	which	should	be	near	word	or	phrase	c.

Microsoft®	SQL	Server™	ranks	the	distance	between	the	left	and
right	word	or	phrase.	A	low	rank	value	(for	example,	0)	indicates

a	large	distance	between	the	two.	If	the	specified	words	or
phrases	are	far	apart	from	each	other,	the	query	is	considered	to
be	satisfied;	however,	the	query	has	a	very	low	(0)	rank	value.
However,	if	<contains_search_condition>	consists	of	only	one	or
more	NEAR	proximity	terms,	SQL	Server	does	not	return	rows
with	a	rank	value	of	0.	For	more	information	about	ranking,	see
CONTAINSTABLE.

<weighted_term>

Specifies	that	the	matching	rows	(returned	by	the	query)	match	a	list	of
words	and	phrases,	each	optionally	given	a	weighting	value.

ISABOUT
Specifies	the	<weighted_term>	keyword.

WEIGHT	(weight_value)
Specifies	a	weight	value	which	is	a	number	from	0.0	through	1.0.	Each
component	in	<weighted_term>	may	include	a	weight_value.
weight_value	is	a	way	to	change	how	various	portions	of	a	query	affect
the	rank	value	assigned	to	each	row	matching	the	query.	Weighting
forces	a	different	measurement	of	the	ranking	of	a	value	because	all	the
components	of	<weighted_term>	are	used	together	to	determine	the
match.	A	row	is	returned	if	there	is	a	match	on	any	one	of	the	ISABOUT
parameters,	whether	or	not	a	weight	value	is	assigned.	To	determine	the
rank	values	for	each	returned	row	that	indicates	the	degree	of	matching
between	the	returned	rows,	see	CONTAINSTABLE.

AND	|	AND	NOT	|	OR

Specifies	a	logical	operation	between	two	contains	search	conditions.	When
<contains_search_condition>	contains	parenthesized	groups,	these
parenthesized	groups	are	evaluated	first.	After	evaluating	parenthesized
groups,	these	rules	apply	when	using	these	logical	operators	with	contains
search	conditions:

NOT	is	applied	before	AND.

NOT	can	only	occur	after	AND,	as	in	AND	NOT.	The	OR	NOT

operator	is	not	allowed.	NOT	cannot	be	specified	before	the	first	term
(for	example,	CONTAINS	(mycolumn,	'NOT	"phrase_to_search_for"	'
).

AND	is	applied	before	OR.

Boolean	operators	of	the	same	type	(AND,	OR)	are	associative	and	can
therefore	be	applied	in	any	order.

n

Is	a	placeholder	indicating	that	multiple	contains	search	conditions	and	terms
within	them	can	be	specified.

Remarks
CONTAINS	is	not	recognized	as	a	keyword	if	the	compatibility	level	is	less	than
70.	For	more	information,	see	sp_dbcmptlevel.

Examples

A.	Use	CONTAINS	with	<simple_term>
This	example	finds	all	products	with	a	price	of	$15.00	that	contain	the	word
"bottles."

USE	Northwind
GO
SELECT	ProductName
FROM	Products
WHERE	UnitPrice	=	15.00
			AND	CONTAINS(QuantityPerUnit,	'bottles')
GO

B.	Use	CONTAINS	and	phrase	in	<simple_term>
This	example	returns	all	products	that	contain	either	the	phrase	"sasquatch	ale"

or	"steeleye	stout."

USE	Northwind
GO
SELECT	ProductName
FROM	Products
WHERE	CONTAINS(ProductName,	'	"sasquatch	ale"	OR	"steeleye	stout"	')
GO

C.	Use	CONTAINS	with	<prefix_term>
This	example	returns	all	product	names	with	at	least	one	word	starting	with	the
prefix	choc	in	the	ProductName	column.

USE	Northwind
GO
SELECT	ProductName
FROM	Products
WHERE	CONTAINS(ProductName,	'	"choc*"	')
GO

D.	Use	CONTAINS	and	OR	with	<prefix_term>
This	example	returns	all	category	descriptions	containing	the	strings	"sea"	or
"bread."

USE	Northwind
SELECT	CategoryName
FROM	Categories
WHERE	CONTAINS(Description,	'"sea*"	OR	"bread*"')
GO

E.	Use	CONTAINS	with	<proximity_term>
This	example	returns	all	product	names	that	have	the	word	"Boysenberry"	near
the	word	"spread."

USE	Northwind

GO
SELECT	ProductName
FROM	Products
WHERE	CONTAINS(ProductName,	'spread	NEAR	Boysenberry')
GO

F.	Use	CONTAINS	with	<generation_term>
This	example	searches	for	all	products	with	words	of	the	form	dry:	dried,	drying,
and	so	on.

USE	Northwind
GO
SELECT	ProductName
FROM	Products
WHERE	CONTAINS(ProductName,	'	FORMSOF	(INFLECTIONAL,	dry)	')
GO

G.	Use	CONTAINS	with	<weighted_term>
This	example	searches	for	all	product	names	containing	the	words	spread,
sauces,	or	relishes,	and	different	weightings	are	given	to	each	word.

USE	Northwind
GO
SELECT	CategoryName,	Description
FROM	Categories
WHERE	CONTAINS(Description,	'ISABOUT	(spread	weight	(.8),	
			sauces	weight	(.4),	relishes	weight	(.2))')
GO

H.	Use	CONTAINS	with	variables
This	example	uses	a	variable	instead	of	a	specific	search	term.

USE	pubs
GO

DECLARE	@SearchWord	varchar(30)
SET	@SearchWord	='Moon'
SELECT	pr_info	FROM	pub_info	WHERE	CONTAINS(pr_info,	@SearchWord)

See	Also

FREETEXT

FREETEXTTABLE

Using	the	CONTAINS	Predicate

WHERE

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

CONTAINSTABLE
Returns	a	table	of	zero,	one,	or	more	rows	for	those	columns	containing
character-based	data	types	for	precise	or	fuzzy	(less	precise)	matches	to	single
words	and	phrases,	the	proximity	of	words	within	a	certain	distance	of	one
another,	or	weighted	matches.	CONTAINSTABLE	can	be	referenced	in	the
FROM	clause	of	a	SELECT	statement	as	if	it	were	a	regular	table	name.

Queries	using	CONTAINSTABLE	specify	contains-type	full-text	queries	that
return	a	relevance	ranking	value	(RANK)	for	each	row.	The	CONTAINSTABLE
function	uses	the	same	search	conditions	as	the	CONTAINS	predicate.

Syntax
CONTAINSTABLE	(table	,	{	column	|	*	}	,	'	<	contains_search_condition	>	'	
				[,	top_n_by_rank])

<	contains_search_condition	>	::=	
								{	<	simple_term	>	
								|	<	prefix_term	>	
								|	<	generation_term	>	
								|	<	proximity_term	>	
								|		<	weighted_term	>	
								}	
								|	{	(<	contains_search_condition	>)	
								{	AND	|	AND	NOT	|	OR	}	<	contains_search_condition	>	[...n]	
								}

<	simple_term	>	::=	
				word	|	"	phrase	"

<	prefix	term	>	::=	
				{	"word	*	"	|	"phrase	*	"	}

<	generation_term	>	::=	
				FORMSOF	(INFLECTIONAL	,	<	simple_term	>	[,...n])

<	proximity_term	>	::=	
				{	<	simple_term	>	|	<	prefix_term	>	}	

				{	{	NEAR	|	~	}	{	<	simple_term	>	|	<	prefix_term	>	}	}	[...n]

<	weighted_term	>	::=	
				ISABOUT
								({	{	
																<	simple_term	>	
																|	<	prefix_term	>	
																|	<	generation_term	>	
																|	<	proximity_term	>	
																}	
												[WEIGHT	(weight_value)]	
												}	[,...n]	
)

Arguments
table

Is	the	name	of	the	table	that	has	been	marked	for	full-text	querying.	table	can
be	a	one-,	two-,	or	three-part	database	object	name.	For	more	information,
see	Transact-SQL	Syntax	Conventions.	table	cannot	specify	a	server	name
and	cannot	be	used	in	queries	against	linked	servers.

column

Is	the	name	of	the	column	to	search,	which	resides	in	table.	Columns	of	the
character	string	data	types	are	valid	full-text	searching	columns.

*

Specifies	that	all	columns	in	the	table	that	have	been	registered	for	full-text
searching	should	be	used	to	search	for	the	given	contains	search	condition(s).

top_n_by_rank

Specifies	that	only	the	n	highest	ranked	matches,	in	descending	order,	are
returned.	Applies	only	when	an	integer	value,	n,	is	specified.

<contains_search_condition>

Specifies	some	text	to	search	for	in	column.	Variables	cannot	be	used	for	the
search	condition.	For	more	information,	see	CONTAINS.

Remarks
The	table	returned	has	a	column	named	KEY	that	contains	full-text	key	values.
Each	full-text	indexed	table	has	a	column	whose	values	are	guaranteed	to	be
unique,	and	the	values	returned	in	the	KEY	column	are	the	full-text	key	values
of	the	rows	that	match	the	selection	criteria	specified	in	the	contains	search
condition.	The	TableFulltextKeyColumn	property,	obtained	from	the
OBJECTPROPERTY	function,	provides	the	identity	for	this	unique	key	column.
To	obtain	the	rows	you	want	from	the	original	table,	specify	a	join	with	the
CONTAINSTABLE	rows.	The	typical	form	of	the	FROM	clause	for	a	SELECT
statement	using	CONTAINSTABLE	is:

SELECT	select_list
FROM	table	AS	FT_TBL	INNER	JOIN
			CONTAINSTABLE(table,	column,	contains_search_condition)	AS	KEY_TBL
			ON	FT_TBL.unique_key_column	=	KEY_TBL.[KEY]

The	table	produced	by	CONTAINSTABLE	includes	a	column	named	RANK.
The	RANK	column	is	a	value	(from	0	through	1000)	for	each	row	indicating
how	well	a	row	matched	the	selection	criteria.	This	rank	value	is	typically	used
in	one	of	these	ways	in	the	SELECT	statement:

In	the	ORDER	BY	clause	to	return	the	highest-ranking	rows	as	the	first
rows	in	the	table.

In	the	select	list	to	see	the	rank	value	assigned	to	each	row.

In	the	WHERE	clause	to	filter	out	rows	with	low	rank	values.

CONTAINSTABLE	is	not	recognized	as	a	keyword	if	the	compatibility	level	is
less	than	70.	For	more	information,	see	sp_dbcmptlevel.

Permissions
Execute	permissions	are	available	only	by	users	with	the	appropriate	SELECT
privileges	on	the	table	or	the	referenced	table's	columns.

Examples

A.	Return	rank	values	using	CONTAINSTABLE
This	example	searches	for	all	product	names	containing	the	words	breads,	fish,
or	beers,	and	different	weightings	are	given	to	each	word.	For	each	returned	row
matching	this	search	criteria,	the	relative	closeness	(ranking	value)	of	the	match
is	shown.	In	addition,	the	highest	ranking	rows	are	returned	first.

USE	Northwind
GO
SELECT	FT_TBL.CategoryName,	FT_TBL.Description,	KEY_TBL.RANK
FROM	Categories	AS	FT_TBL	INNER	JOIN	
			CONTAINSTABLE(Categories,	Description,	
			'ISABOUT	(breads	weight	(.8),	
			fish	weight	(.4),	beers	weight	(.2))')	AS	KEY_TBL
			ON	FT_TBL.CategoryID	=	KEY_TBL.[KEY]
ORDER	BY	KEY_TBL.RANK	DESC
GO

B.	Return	rank	values	greater	than	specified	value	using
CONTAINSTABLE
This	example	returns	the	description	and	category	name	of	all	food	categories
for	which	the	Description	column	contains	the	words	"sweet	and	savory"	near
either	the	word	"sauces"	or	the	word	"candies."	All	rows	with	a	category	name
"Seafood"	are	disregarded.	Only	rows	with	a	rank	value	of	2	or	higher	are
returned.

USE	Northwind
GO
SELECT	FT_TBL.Description,	
			FT_TBL.CategoryName,	
			KEY_TBL.RANK
FROM	Categories	AS	FT_TBL	INNER	JOIN
			CONTAINSTABLE	(Categories,	Description,	

						'("sweet	and	savory"	NEAR	sauces)	OR
						("sweet	and	savory"	NEAR	candies)'
)	AS	KEY_TBL
			ON	FT_TBL.CategoryID	=	KEY_TBL.[KEY]
WHERE	KEY_TBL.RANK	>	2
			AND	FT_TBL.CategoryName	<>	'Seafood'
ORDER	BY	KEY_TBL.RANK	DESC

C.	Return	top	10	ranked	results	using	CONTAINSTABLE	and
Top_n_by_rank
This	example	returns	the	description	and	category	name	of	the	top	10	food
categories	where	the	Description	column	contains	the	words	"sweet	and	savory"
near	either	the	word	"sauces"	or	the	word	"candies."

SELECT	FT_TBL.Description,	
			FT_TBL.CategoryName,	
			KEY_TBL.RANK
FROM	Categories	AS	FT_TBL	INNER	JOIN
			CONTAINSTABLE	(Categories,	Description,	
						'("sweet	and	savory"	NEAR	sauces)	OR
						("sweet	and	savory"	NEAR	candies)'
						,	10
)	AS	KEY_TBL
			ON	FT_TBL.CategoryID	=	KEY_TBL.[KEY]

See	Also

CONTAINS

Full-text	Querying	SQL	Server	Data

Rowset	Functions

SELECT

WHERE

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

CONTINUE
Restarts	a	WHILE	loop.	Any	statements	after	the	CONTINUE	keyword	are
ignored.	CONTINUE	is	often,	but	not	always,	activated	by	an	IF	test.	For	more
information,	see	WHILE	and	Control-of-Flow	Language.

Transact-SQL	Reference

Control-of-Flow	Language
The	table	shows	the	Transact-SQL	control-of-flow	keywords.

Keyword Description
BEGIN...END Defines	a	statement	block.
BREAK Exits	the	innermost	WHILE	loop.
CONTINUE Restarts	a	WHILE	loop.
GOTO	label Continues	processing	at	the	statement	following

the	label	as	defined	by	label.
IF...ELSE Defines	conditional,	and	optionally,	alternate

execution	when	a	condition	is	FALSE.
RETURN Exits	unconditionally.
WAITFOR Sets	a	delay	for	statement	execution.
WHILE Repeats	statements	while	a	specific	condition	is

TRUE.

Other	Transact-SQL	statements	that	can	be	used	with	control-of-flow	language
statements	are:

CASE

/*...*/	(Comment)

--	(Comment)

DECLARE	@local_variable

EXECUTE

PRINT

RAISERROR

Transact-SQL	Reference

COS
A	mathematic	function	that	returns	the	trigonometric	cosine	of	the	given	angle
(in	radians)	in	the	given	expression.

Syntax
COS	(float_expression)

Arguments
float_expression

Is	an	expression	of	type	float.

Return	Types
float

Examples
This	example	returns	the	COS	of	the	given	angle.

DECLARE	@angle	float
SET	@angle	=	14.78
SELECT	'The	COS	of	the	angle	is:	'	+	CONVERT(varchar,COS(@angle))
GO

Here	is	the	result	set:

The	COS	of	the	angle	is:	-0.599465																						

(1	row(s)	affected)

See	Also

Mathematical	Functions

Transact-SQL	Reference

COT
A	mathematic	function	that	returns	the	trigonometric	cotangent	of	the	specified
angle	(in	radians)	in	the	given	float	expression.

Syntax
COT	(float_expression)

Arguments
float_expression

Is	an	expression	of	type	float.

Return	Types
float

Examples
This	example	returns	the	COT	for	the	given	angle.

DECLARE	@angle	float
SET	@angle	=	124.1332
SELECT	'The	COT	of	the	angle	is:	'	+	CONVERT(varchar,COT(@angle))
GO

Here	is	the	result	set:

The	COT	of	the	angle	is:	-0.040312														

(1	row(s)	affected)

See	Also

Mathematical	Functions

Transact-SQL	Reference

COUNT
Returns	the	number	of	items	in	a	group.

Syntax
COUNT	({	[ALL	|	DISTINCT]	expression]	|	*	})

Arguments
ALL

Applies	the	aggregate	function	to	all	values.	ALL	is	the	default.

DISTINCT

Specifies	that	COUNT	returns	the	number	of	unique	nonnull	values.

expression

Is	an	expression	of	any	type	except	uniqueidentifier,	text,	image,	or	ntext.
Aggregate	functions	and	subqueries	are	not	permitted.

*

Specifies	that	all	rows	should	be	counted	to	return	the	total	number	of	rows
in	a	table.	COUNT(*)	takes	no	parameters	and	cannot	be	used	with
DISTINCT.	COUNT(*)	does	not	require	an	expression	parameter	because,
by	definition,	it	does	not	use	information	about	any	particular	column.
COUNT(*)	returns	the	number	of	rows	in	a	specified	table	without
eliminating	duplicates.	It	counts	each	row	separately,	including	rows	that
contain	null	values.

IMPORTANT		Distinct	aggregates,	for	example	AVG(DISTINCT	column_name),
COUNT(DISTINCT	column_name),	MAX(DISTINCT	column_name),
MIN(DISTINCT	column_name),	and	SUM(DISTINCT	column_name),	are	not
supported	when	using	CUBE	or	ROLLUP.	If	used,	Microsoft®	SQL	Server™
returns	an	error	message	and	cancels	the	query.

Return	Types

int

Remarks
COUNT(*)	returns	the	number	of	items	in	a	group,	including	NULL	values	and
duplicates.

COUNT(ALL	expression)	evaluates	expression	for	each	row	in	a	group	and
returns	the	number	of	nonnull	values.

COUNT(DISTINCT	expression)	evaluates	expression	for	each	row	in	a	group
and	returns	the	number	of	unique,	nonnull	values.

Examples

A.	Use	COUNT	and	DISTINCT
This	example	finds	the	number	of	different	cities	in	which	authors	live.

USE	pubs
GO
SELECT	COUNT(DISTINCT	city)
FROM	authors
GO

Here	is	the	result	set:

16										

(1	row(s)	affected)

B.	Use	COUNT(*)
This	example	finds	the	total	number	of	books	and	titles.

USE	pubs
GO
SELECT	COUNT(*)

FROM	titles
GO

Here	is	the	result	set:

18										

(1	row(s)	affected)

C.	Use	COUNT(*)	with	other	aggregates
The	example	shows	that	COUNT(*)	can	be	combined	with	other	aggregate
functions	in	the	select	list.

USE	pubs
GO
SELECT	COUNT(*),	AVG(price)
FROM	titles
WHERE	advance	>	$1000
GO

Here	is	the	result	set:

-----------	--------------------------	
15										14.42																						

(1	row(s)	affected)

See	Also

Aggregate	Functions

Transact-SQL	Reference

COUNT_BIG
Returns	the	number	of	items	in	a	group.	COUNT_BIG	works	like	the	COUNT
function.	The	only	difference	between	them	is	their	return	values:	COUNT_BIG
always	returns	a	bigint	data	type	value.	COUNT	always	returns	an	int	data	type
value.

Syntax
COUNT_BIG	({	[ALL	|	DISTINCT]	expression	}	|	*)

Arguments
ALL

Applies	the	aggregate	function	to	all	values.	ALL	is	the	default.

DISTINCT

Specifies	that	COUNT_BIG	returns	the	number	of	unique	nonnull	values.

expression

Is	an	expression	of	any	type	except	uniqueidentifier,	text,	image,	or	ntext.
Aggregate	functions	and	subqueries	are	not	permitted.

*

Specifies	that	all	rows	should	be	counted	to	return	the	total	number	of	rows
in	a	table.	COUNT_BIG(*)	takes	no	parameters	and	cannot	be	used	with
DISTINCT.	COUNT_BIG(*)	does	not	require	an	expression	parameter
because,	by	definition,	it	does	not	use	information	about	any	particular
column.	COUNT_BIG(*)	returns	the	number	of	rows	in	a	specified	table
without	eliminating	duplicates.	It	counts	each	row	separately,	including	rows
that	contain	null	values.

Return	Types
bigint

Remarks
COUNT_BIG(*)	returns	the	number	of	items	in	a	group,	including	NULL	values
and	duplicates.

COUNT_BIG(ALL	expression)	evaluates	expression	for	each	row	in	a	group	and
returns	the	number	of	nonnull	values.

COUNT_BIG(DISTINCT	expression)	evaluates	expression	for	each	row	in	a
group	and	returns	the	number	of	unique,	nonnull	values.

See	Also

int,	bigint,	smallint,	and	tinyint

Transact-SQL	Reference

CREATE	DATABASE
Creates	a	new	database	and	the	files	used	to	store	the	database,	or	attaches	a
database	from	the	files	of	a	previously	created	database.

Note		For	more	information	about	backward	compatibility	with	DISK	INIT,	see
Devices	(Level	3)	in	Microsoft®	SQL	Server™	Backward	Compatibility
Details.

Syntax
CREATE	DATABASE	database_name	
[ON	
				[<	filespec	>	[,...n]]	
				[,	<	filegroup	>	[,...n]]	
]	
[LOG	ON	{	<	filespec	>	[,...n]	}]	
[COLLATE	collation_name]
[FOR	LOAD	|	FOR	ATTACH]

<	filespec	>	::=

[PRIMARY]
([NAME	=	logical_file_name	,]	
				FILENAME	=	'os_file_name'	
				[,	SIZE	=	size]	
				[,	MAXSIZE	=	{	max_size	|	UNLIMITED	}]	
				[,	FILEGROWTH	=	growth_increment])	[,...n]

<	filegroup	>	::=

FILEGROUP	filegroup_name	<	filespec	>	[,...n]

Arguments
database_name

Is	the	name	of	the	new	database.	Database	names	must	be	unique	within	a
server	and	conform	to	the	rules	for	identifiers.	database_name	can	be	a

JavaScript:hhobj_1.Click()

maximum	of	128	characters,	unless	no	logical	name	is	specified	for	the	log.
If	no	logical	log	file	name	is	specified,	Microsoft®	SQL	Server™	generates
a	logical	name	by	appending	a	suffix	to	database_name.	This	limits
database_name	to	123	characters	so	that	the	generated	logical	log	file	name
is	less	than	128	characters.

ON

Specifies	that	the	disk	files	used	to	store	the	data	portions	of	the	database
(data	files)	are	defined	explicitly.	The	keyword	is	followed	by	a	comma-
separated	list	of	<filespec>	items	defining	the	data	files	for	the	primary
filegroup.	The	list	of	files	in	the	primary	filegroup	can	be	followed	by	an
optional,	comma-separated	list	of	<filegroup>	items	defining	user	filegroups
and	their	files.

n

Is	a	placeholder	indicating	that	multiple	files	can	be	specified	for	the	new
database.

LOG	ON

Specifies	that	the	disk	files	used	to	store	the	database	log	(log	files)	are
explicitly	defined.	The	keyword	is	followed	by	a	comma-separated	list	of
<filespec>	items	defining	the	log	files.	If	LOG	ON	is	not	specified,	a	single
log	file	is	automatically	created	with	a	system-generated	name	and	a	size	that
is	25	percent	of	the	sum	of	the	sizes	of	all	the	data	files	for	the	database.

FOR	LOAD

This	clause	is	supported	for	compatibility	with	earlier	versions	of	Microsoft
SQL	Server.	The	database	is	created	with	the	dbo	use	only	database	option
turned	on,	and	the	status	is	set	to	loading.	This	is	not	required	in	SQL	Server
version	7.0	because	the	RESTORE	statement	can	recreate	a	database	as	part
of	the	restore	operation.

FOR	ATTACH

Specifies	that	a	database	is	attached	from	an	existing	set	of	operating	system
files.	There	must	be	a	<filespec>	entry	specifying	the	first	primary	file.	The
only	other	<filespec>	entries	needed	are	those	for	any	files	that	have	a
different	path	from	when	the	database	was	first	created	or	last	attached.	A

<filespec>	entry	must	be	specified	for	these	files.	The	database	attached	must
have	been	created	using	the	same	code	page	and	sort	order	as	SQL	Server.
Use	the	sp_attach_db	system	stored	procedure	instead	of	using	CREATE
DATABASE	FOR	ATTACH	directly.	Use	CREATE	DATABASE	FOR
ATTACH	only	when	you	must	specify	more	than	16	<filespec>	items.

If	you	attach	a	database	to	a	server	other	than	the	server	from	which	the
database	was	detached,	and	the	detached	database	was	enabled	for
replication,	you	should	run	sp_removedbreplication	to	remove	replication
from	the	database.

collation_name

Specifies	the	default	collation	for	the	database.	Collation	name	can	be	either
a	Windows	collation	name	or	a	SQL	collation	name.	If	not	specified,	the
database	is	assigned	the	default	collation	of	the	SQL	Server	instance.

For	more	information	about	the	Windows	and	SQL	collation	names,	see
COLLATE.

PRIMARY

Specifies	that	the	associated	<filespec>	list	defines	the	primary	file.	The
primary	filegroup	contains	all	of	the	database	system	tables.	It	also	contains
all	objects	not	assigned	to	user	filegroups.	The	first	<filespec>	entry	in	the
primary	filegroup	becomes	the	primary	file,	which	is	the	file	containing	the
logical	start	of	the	database	and	its	system	tables.	A	database	can	have	only
one	primary	file.	If	PRIMARY	is	not	specified,	the	first	file	listed	in	the
CREATE	DATABASE	statement	becomes	the	primary	file.

NAME

Specifies	the	logical	name	for	the	file	defined	by	the	<filespec>.	The	NAME
parameter	is	not	required	when	FOR	ATTACH	is	specified.

logical_file_name

Is	the	name	used	to	reference	the	file	in	any	Transact-SQL	statements
executed	after	the	database	is	created.	logical_file_name	must	be	unique	in
the	database	and	conform	to	the	rules	for	identifiers.	The	name	can	be	a
character	or	Unicode	constant,	or	a	regular	or	delimited	identifier.

FILENAME

Specifies	the	operating-system	file	name	for	the	file	defined	by	the
<filespec>.

'os_file_name'

Is	the	path	and	file	name	used	by	the	operating	system	when	it	creates	the
physical	file	defined	by	the	<filespec>.	The	path	in	os_file_name	must
specify	a	directory	on	an	instance	of	SQL	Server.	os_file_name	cannot
specify	a	directory	in	a	compressed	file	system.

If	the	file	is	created	on	a	raw	partition,	os_file_name	must	specify	only	the
drive	letter	of	an	existing	raw	partition.	Only	one	file	can	be	created	on	each
raw	partition.	Files	on	raw	partitions	do	not	autogrow;	therefore,	the
MAXSIZE	and	FILEGROWTH	parameters	are	not	needed	when
os_file_name	specifies	a	raw	partition.

SIZE

Specifies	the	size	of	the	file	defined	in	the	<filespec>.	When	a	SIZE
parameter	is	not	supplied	in	the	<filespec>	for	a	primary	file,	SQL	Server
uses	the	size	of	the	primary	file	in	the	model	database.	When	a	SIZE
parameter	is	not	specified	in	the	<filespec>	for	a	secondary	or	log	file,	SQL
Server	makes	the	file	1	MB.

size

Is	the	initial	size	of	the	file	defined	in	the	<filespec>.	The	kilobyte	(KB),
megabyte	(MB),	gigabyte	(GB),	or	terabyte	(TB)	suffixes	can	be	used.	The
default	is	MB.	Specify	a	whole	number;	do	not	include	a	decimal.	The
minimum	value	for	size	is	512	KB.	If	size	is	not	specified,	the	default	is	1
MB.	The	size	specified	for	the	primary	file	must	be	at	least	as	large	as	the
primary	file	of	the	model	database.

MAXSIZE

Specifies	the	maximum	size	to	which	the	file	defined	in	the	<filespec>	can
grow.

max_size

Is	the	maximum	size	to	which	the	file	defined	in	the	<filespec>	can	grow.
The	kilobyte	(KB),	megabyte	(MB),	gigabyte	(GB),	or	terabyte	(TB)	suffixes

can	be	used.	The	default	is	MB.	Specify	a	whole	number;	do	not	include	a
decimal.	If	max_size	is	not	specified,	the	file	grows	until	the	disk	is	full.

Note		The	Microsoft	Windows	NT®	S/B	system	log	warns	the	SQL	Server
system	administrator	if	a	disk	is	almost	full.

UNLIMITED

Specifies	that	the	file	defined	in	the	<filespec>	grows	until	the	disk	is	full.

FILEGROWTH

Specifies	the	growth	increment	of	the	file	defined	in	the	<filespec>.	The
FILEGROWTH	setting	for	a	file	cannot	exceed	the	MAXSIZE	setting.

growth_increment

Is	the	amount	of	space	added	to	the	file	each	time	new	space	is	needed.
Specify	a	whole	number;	do	not	include	a	decimal.	A	value	of	0	indicates	no
growth.	The	value	can	be	specified	in	MB,	KB,	GB,	TB,	or	percent	(%).	If	a
number	is	specified	without	an	MB,	KB,	or	%	suffix,	the	default	is	MB.
When	%	is	specified,	the	growth	increment	size	is	the	specified	percentage
of	the	size	of	the	file	at	the	time	the	increment	occurs.	If	FILEGROWTH	is
not	specified,	the	default	value	is	10	percent	and	the	minimum	value	is	64
KB.	The	size	specified	is	rounded	to	the	nearest	64	KB.

Remarks
You	can	use	one	CREATE	DATABASE	statement	to	create	a	database	and	the
files	that	store	the	database.	SQL	Server	implements	the	CREATE	DATABASE
statement	in	two	steps:

1.	 SQL	Server	uses	a	copy	of	the	model	database	to	initialize	the
database	and	its	meta	data.

2.	 SQL	Server	then	fills	the	rest	of	the	database	with	empty	pages,	except
for	pages	that	have	internal	data	recording	how	the	space	is	used	in	the
database.

Any	user-defined	objects	in	the	model	database	are	therefore	copied	to	all	newly
created	databases.	You	can	add	to	the	model	database	any	objects,	such	as	tables,

views,	stored	procedures,	data	types,	and	so	on,	to	be	included	in	all	databases.

Each	new	database	inherits	the	database	option	settings	from	the	model	database
(unless	FOR	ATTACH	is	specified).	For	example,	the	database	option	select
into/bulkcopy	is	set	to	OFF	in	model	and	any	new	databases	you	create.	If	you
use	ALTER	DATABASE	to	change	the	options	for	the	model	database,	these
option	settings	are	in	effect	for	new	databases	you	create.	If	FOR	ATTACH	is
specified	on	the	CREATE	DATABASE	statement,	the	new	database	inherits	the
database	option	settings	of	the	original	database.

A	maximum	of	32,767	databases	can	be	specified	on	a	server.

There	are	three	types	of	files	used	to	store	a	database:

The	primary	file	contains	the	startup	information	for	the	database.	The
primary	file	is	also	used	to	store	data.	Every	database	has	one	primary
file.

Secondary	files	hold	all	of	the	data	that	does	not	fit	in	the	primary	data
file.	Databases	need	not	have	any	secondary	data	files	if	the	primary	file
is	large	enough	to	hold	all	of	the	data	in	the	database.	Other	databases
may	be	large	enough	to	need	multiple	secondary	data	files,	or	they	may
use	secondary	files	on	separate	disk	drives	to	spread	the	data	across
multiple	disks.

Transaction	log	files	hold	the	log	information	used	to	recover	the
database.	There	must	be	at	least	one	transaction	log	file	for	each
database,	although	there	may	be	more	than	one.	The	minimum	size	for	a
transaction	log	file	is	512	KB.

Every	database	has	at	least	two	files,	a	primary	file	and	a	transaction	log	file.

Although	'os_file_name'	can	be	any	valid	operating	system	file	name,	the	name
more	clearly	reflects	the	purpose	of	the	file	if	you	use	the	following
recommended	extensions.

File	type File	name	extension
Primary	data	file .mdf

Secondary	data	file .ndf
Transaction	log	file .ldf

Note		The	master	database	should	be	backed	up	when	a	user	database	is	created.

Fractions	cannot	be	specified	in	the	SIZE,	MAXSIZE,	and	FILEGROWTH
parameters.	To	specify	a	fraction	of	a	megabyte	in	SIZE	parameters,	convert	to
kilobytes	by	multiplying	the	number	by	1,024.	For	example,	specify	1,536	KB
instead	of	1.5	MB	(1.5	multiplied	by	1,024	equals	1,536).

When	a	simple	CREATE	DATABASE	database_name	statement	is	specified
with	no	additional	parameters,	the	database	is	made	the	same	size	as	the	model
database.

All	databases	have	at	least	a	primary	filegroup.	All	system	tables	are	allocated	in
the	primary	filegroup.	A	database	can	also	have	user-defined	filegroups.	If	an
object	is	created	with	an	ON	filegroup	clause	specifying	a	user-defined
filegroup,	then	all	the	pages	for	the	object	are	allocated	from	the	specified
filegroup.	The	pages	for	all	user	objects	created	without	an	ON	filegroup	clause,
or	with	an	ON	DEFAULT	clause,	are	allocated	from	the	default	filegroup.	When
a	database	is	first	created	the	primary	filegroup	is	the	default	filegroup.	You	can
specify	a	user-defined	filegroup	as	the	default	filegroup	using	ALTER
DATABASE:

ALTER	DATABASE	database_name	MODIFY	FILEGROUP	filegroup_name

Each	database	has	an	owner	who	has	the	ability	to	perform	special	activities	in
the	database.	The	owner	is	the	user	who	creates	the	database.	The	database
owner	can	be	changed	with	sp_changedbowner.

To	display	a	report	on	a	database,	or	on	all	the	databases	for	an	instance	of	SQL
Server,	execute	sp_helpdb.	For	a	report	on	the	space	used	in	a	database,	use
sp_spaceused.	For	a	report	on	the	filegroups	in	a	database	use
sp_helpfilegroup,	and	use	sp_helpfile	for	a	report	of	the	files	in	a	database.

Earlier	versions	of	SQL	Server	used	DISK	INIT	statements	to	create	the	files	for
a	database	before	the	CREATE	DATABASE	statement	was	executed.	For
backward	compatibility	with	earlier	versions	of	SQL	Server,	the	CREATE
DATABASE	statement	can	also	create	a	new	database	on	files	or	devices	created

with	the	DISK	INIT	statement.	For	more	information,	see	SQL	Server	Backward
Compatibility	Details.

Permissions
CREATE	DATABASE	permission	defaults	to	members	of	the	sysadmin	and
dbcreator	fixed	server	roles.	Members	of	the	sysadmin	and	securityadmin
fixed	server	roles	can	grant	CREATE	DATABASE	permissions	to	other	logins.
Members	of	the	sysadmin	and	dbcreator	fixed	server	role	can	add	other	logins
to	the	dbcreator	role.	The	CREATE	DATABASE	permission	must	be	explicitly
granted;	it	is	not	granted	by	the	GRANT	ALL	statement.

CREATE	DATABASE	permission	is	usually	limited	to	a	few	logins	to	maintain
control	over	disk	usage	on	an	instance	of	SQL	Server.

Examples

A.	Create	a	database	that	specifies	the	data	and	transaction	log
files
This	example	creates	a	database	called	Sales.	Because	the	keyword	PRIMARY
is	not	used,	the	first	file	(Sales_dat)	becomes	the	primary	file.	Because	neither
MB	or	KB	is	specified	in	the	SIZE	parameter	for	the	Sales_dat	file,	it	defaults	to
MB	and	is	allocated	in	megabytes.	The	Sales_log	file	is	allocated	in	megabytes
because	the	MB	suffix	is	explicitly	stated	in	the	SIZE	parameter.

USE	master
GO
CREATE	DATABASE	Sales
ON	
(NAME	=	Sales_dat,
			FILENAME	=	'c:\program	files\microsoft	sql	server\mssql\data\saledat.mdf',
			SIZE	=	10,
			MAXSIZE	=	50,
			FILEGROWTH	=	5)
LOG	ON
(NAME	=	'Sales_log',

JavaScript:hhobj_2.Click()

			FILENAME	=	'c:\program	files\microsoft	sql	server\mssql\data\salelog.ldf',
			SIZE	=	5MB,
			MAXSIZE	=	25MB,
			FILEGROWTH	=	5MB)
GO

B.	Create	a	database	specifying	multiple	data	and	transaction	log
files
This	example	creates	a	database	called	Archive	with	three	100-MB	data	files
and	two	100-MB	transaction	log	files.	The	primary	file	is	the	first	file	in	the	list
and	is	explicitly	specified	with	the	PRIMARY	keyword.	The	transaction	log	files
are	specified	following	the	LOG	ON	keywords.	Note	the	extensions	used	for	the
files	in	the	FILENAME	option:	.mdf	is	used	for	primary	data	files,	.ndf	is	used
for	the	secondary	data	files,	and	.ldf	is	used	for	transaction	log	files.

USE	master
GO
CREATE	DATABASE	Archive	
ON
PRIMARY	(NAME	=	Arch1,
						FILENAME	=	'c:\program	files\microsoft	sql	server\mssql\data\archdat1.mdf',
						SIZE	=	100MB,
						MAXSIZE	=	200,
						FILEGROWTH	=	20),
(NAME	=	Arch2,
			FILENAME	=	'c:\program	files\microsoft	sql	server\mssql\data\archdat2.ndf',
			SIZE	=	100MB,
			MAXSIZE	=	200,
			FILEGROWTH	=	20),
(NAME	=	Arch3,
			FILENAME	=	'c:\program	files\microsoft	sql	server\mssql\data\archdat3.ndf',
			SIZE	=	100MB,
			MAXSIZE	=	200,
			FILEGROWTH	=	20)

LOG	ON	
(NAME	=	Archlog1,
			FILENAME	=	'c:\program	files\microsoft	sql	server\mssql\data\archlog1.ldf',
			SIZE	=	100MB,
			MAXSIZE	=	200,
			FILEGROWTH	=	20),
(NAME	=	Archlog2,
			FILENAME	=	'c:\program	files\microsoft	sql	server\mssql\data\archlog2.ldf',
			SIZE	=	100MB,
			MAXSIZE	=	200,
			FILEGROWTH	=	20)
GO

C.	Create	a	simple	database
This	example	creates	a	database	called	Products	and	specifies	a	single	file.	The
file	specified	becomes	the	primary	file,	and	a	1-MB	transaction	log	file	is
automatically	created.	Because	neither	MB	or	KB	is	specified	in	the	SIZE
parameter	for	the	primary	file,	the	primary	file	is	allocated	in	megabytes.
Because	there	is	no	<filespec>	for	the	transaction	log	file,	the	transaction	log	file
has	no	MAXSIZE	and	can	grow	to	fill	all	available	disk	space.

USE	master
GO
CREATE	DATABASE	Products
ON	
(NAME	=	prods_dat,
			FILENAME	=	'c:\program	files\microsoft	sql	server\mssql\data\prods.mdf',
			SIZE	=	4,
			MAXSIZE	=	10,
			FILEGROWTH	=	1)
GO

D.	Create	a	database	without	specifying	files

This	example	creates	a	database	named	mytest	and	creates	a	corresponding
primary	and	transaction	log	file.	Because	the	statement	has	no	<filespec>	items,
the	primary	database	file	is	the	size	of	the	model	database	primary	file.	The
transaction	log	is	the	size	of	the	model	database	transaction	log	file.	Because
MAXSIZE	is	not	specified,	the	files	can	grow	to	fill	all	available	disk	space.

CREATE	DATABASE	mytest

E.	Create	a	database	without	specifying	SIZE
This	example	creates	a	database	named	products2.	The	file	prods2_dat
becomes	the	primary	file	with	a	size	equal	to	the	size	of	the	primary	file	in	the
model	database.	The	transaction	log	file	is	created	automatically	and	is	25
percent	of	the	size	of	the	primary	file,	or	512	KB,	whichever	is	larger.	Because
MAXSIZE	is	not	specified,	the	files	can	grow	to	fill	all	available	disk	space.

USE	master
GO
CREATE	DATABASE	Products2
ON	
(NAME	=	prods2_dat,
			FILENAME	=	'c:\program	files\microsoft	sql	server\mssql\data\prods2.mdf')
GO

F.	Create	a	database	with	filegroups
This	example	creates	a	database	named	sales	with	three	filegroups:

The	primary	filegroup	with	the	files	Spri1_dat	and	Spri2_dat.	The
FILEGROWTH	increments	for	these	files	is	specified	as	15	percent.

A	filegroup	named	SalesGroup1	with	the	files	SGrp1Fi1	and
SGrp1Fi2.

A	filegroup	named	SalesGroup2	with	the	files	SGrp2Fi1	and
SGrp2Fi2.

CREATE	DATABASE	Sales
ON	PRIMARY
(NAME	=	SPri1_dat,
			FILENAME	=	'c:\program	files\microsoft	sql	server\mssql\data\SPri1dat.mdf',
			SIZE	=	10,
			MAXSIZE	=	50,
			FILEGROWTH	=	15%),
(NAME	=	SPri2_dat,
			FILENAME	=	'c:\program	files\microsoft	sql	server\mssql\data\SPri2dt.ndf',
			SIZE	=	10,
			MAXSIZE	=	50,
			FILEGROWTH	=	15%),
FILEGROUP	SalesGroup1
(NAME	=	SGrp1Fi1_dat,
			FILENAME	=	'c:\program	files\microsoft	sql	server\mssql\data\SG1Fi1dt.ndf',
			SIZE	=	10,
			MAXSIZE	=	50,
			FILEGROWTH	=	5),
(NAME	=	SGrp1Fi2_dat,
			FILENAME	=	'c:\program	files\microsoft	sql	server\mssql\data\SG1Fi2dt.ndf',
			SIZE	=	10,
			MAXSIZE	=	50,
			FILEGROWTH	=	5),
FILEGROUP	SalesGroup2
(NAME	=	SGrp2Fi1_dat,
			FILENAME	=	'c:\program	files\microsoft	sql	server\mssql\data\SG2Fi1dt.ndf',
			SIZE	=	10,
			MAXSIZE	=	50,
			FILEGROWTH	=	5),
(NAME	=	SGrp2Fi2_dat,
			FILENAME	=	'c:\program	files\microsoft	sql	server\mssql\data\SG2Fi2dt.ndf',
			SIZE	=	10,
			MAXSIZE	=	50,

			FILEGROWTH	=	5)
LOG	ON
(NAME	=	'Sales_log',
			FILENAME	=	'c:\program	files\microsoft	sql	server\mssql\data\salelog.ldf',
			SIZE	=	5MB,
			MAXSIZE	=	25MB,
			FILEGROWTH	=	5MB)
GO

G.	Attach	a	database

Example	B	creates	a	database	named	Archive	with	the	following	physical	files:

c:\program	files\microsoft	sql	server\mssql\data\archdat1.mdf
c:\program	files\microsoft	sql	server\mssql\data\archdat2.ndf
c:\program	files\microsoft	sql	server\mssql\data\archdat3.ndf
c:\program	files\microsoft	sql	server\mssql\data\archlog1.ldf
c:\program	files\microsoft	sql	server\mssql\data\archlog2.ldf

The	database	can	be	detached	using	the	sp_detach_db	stored	procedure,	and
then	reattached	using	CREATE	DATABASE	with	the	FOR	ATTACH	clause:

sp_detach_db	Archive
GO
CREATE	DATABASE	Archive
ON	PRIMARY	(FILENAME	=	'c:\program	files\microsoft	sql	server\mssql\data\archdat1.mdf')
FOR	ATTACH
GO

H.	Use	raw	partitions
This	example	creates	a	database	called	Employees	using	raw	partitions.	The	raw
partitions	must	exist	when	the	statement	is	executed,	and	only	one	file	can	go	on
each	raw	partition.

USE	master

GO
CREATE	DATABASE	Employees
ON	
(NAME	=	Empl_dat,
			FILENAME	=	'f:',
			SIZE	=	10,
			MAXSIZE	=	50,
			FILEGROWTH	=	5)
LOG	ON
(NAME	=	'Sales_log',
			FILENAME	=	'g:',
			SIZE	=	5MB,
			MAXSIZE	=	25MB,
			FILEGROWTH	=	5MB)
GO

I.	Use	mounted	drives
This	example	creates	a	database	called	Employees	using	mounted	drives
pointing	to	raw	partitions.	This	feature	is	available	only	in	Microsoft®
Windows®	2000	Server.	The	mounted	drives	and	raw	partitions	must	exist	when
the	statement	is	executed,	and	only	one	file	can	go	on	each	raw	partition.	When
creating	a	database	file	on	a	mounted	drive,	a	trailing	backslash	(\)	must	end	the
drive	path.

USE	master
GO
CREATE	DATABASE	Employees
ON	
(NAME	=	Empl_dat,
			FILENAME	=	'd:\sample	data	dir\',
			SIZE	=	10,
			MAXSIZE	=	50,
			FILEGROWTH	=	5)
LOG	ON

(NAME	=	'Sales_log',
			FILENAME	=	'd:\sample	log	dir\',
			SIZE	=	5MB,
			MAXSIZE	=	25MB,
			FILEGROWTH	=	5MB)
GO

See	Also

ALTER	DATABASE

DROP	DATABASE

sp_attach_db

sp_changedbowner

sp_detach_db

sp_helpdb

sp_helpfile

sp_helpfilegroup

sp_removedbreplication

sp_renamedb

sp_spaceused

Using	Raw	Partitions

JavaScript:hhobj_3.Click()

Transact-SQL	Reference

CREATE	DEFAULT
Creates	an	object	called	a	default.	When	bound	to	a	column	or	a	user-defined
data	type,	a	default	specifies	a	value	to	be	inserted	into	the	column	to	which	the
object	is	bound	(or	into	all	columns,	in	the	case	of	a	user-defined	data	type)
when	no	value	is	explicitly	supplied	during	an	insert.	Defaults,	a	backward
compatibility	feature,	perform	some	of	the	same	functions	as	default	definitions
created	using	the	DEFAULT	keyword	of	ALTER	or	CREATE	TABLE
statements.	Default	definitions	are	the	preferred,	standard	way	to	restrict	column
data	because	the	definition	is	stored	with	the	table	and	automatically	dropped
when	the	table	is	dropped.	A	default	is	beneficial,	however,	when	the	default	is
used	multiple	times	for	multiple	columns.

Syntax
CREATE	DEFAULT	default	
				AS	constant_expression

Arguments
default

Is	the	name	of	the	default.	Default	names	must	conform	to	the	rules	for
identifiers.	Specifying	the	default	owner	name	is	optional.

constant_expression

Is	an	expression	that	contains	only	constant	values	(it	cannot	include	the
names	of	any	columns	or	other	database	objects).	Any	constant,	built-in
function,	or	mathematical	expression	can	be	used.	Enclose	character	and	date
constants	in	single	quotation	marks	(');	monetary,	integer,	and	floating-point
constants	do	not	require	quotation	marks.	Binary	data	must	be	preceded	by
0x,	and	monetary	data	must	be	preceded	by	a	dollar	sign	($).	The	default
value	must	be	compatible	with	the	column	data	type.

Remarks
A	default	name	can	be	created	only	in	the	current	database.	Within	a	database,

default	names	must	be	unique	by	owner.	When	a	default	is	created,	use
sp_bindefault	to	bind	it	to	a	column	or	to	a	user-defined	data	type.

If	the	default	is	not	compatible	with	the	column	to	which	it	is	bound,	Microsoft®
SQL	Server™	generates	an	error	message	when	trying	to	insert	the	default	value.
For	example,	N/A	cannot	be	used	as	a	default	for	a	numeric	column.

If	the	default	value	is	too	long	for	the	column	to	which	it	is	bound,	the	value	is
truncated.

CREATE	DEFAULT	statements	cannot	be	combined	with	other	Transact-SQL
statements	in	a	single	batch.

A	default	must	be	dropped	before	creating	a	new	one	of	the	same	name,	and	the
default	must	be	unbound	by	executing	sp_unbindefault	before	it	is	dropped.

If	a	column	has	both	a	default	and	a	rule	associated	with	it,	the	default	value
must	not	violate	the	rule.	A	default	that	conflicts	with	a	rule	is	never	inserted,
and	SQL	Server	generates	an	error	message	each	time	it	attempts	to	insert	the
default.

When	bound	to	a	column,	a	default	value	is	inserted	when:

A	value	is	not	explicitly	inserted.

Either	the	DEFAULT	VALUES	or	DEFAULT	keywords	are	used	with
INSERT	to	insert	default	values.

If	NOT	NULL	is	specified	when	creating	a	column	and	a	default	is	not	created
for	it,	an	error	message	is	generated	when	a	user	fails	to	make	an	entry	in	that
column.	This	table	illustrates	the	relationship	between	the	existence	of	a	default
and	the	definition	of	a	column	as	NULL	or	NOT	NULL.	The	entries	in	the	table
show	the	result.

Column
definition

No	entry,	no
default

No	entry,
default

Enter	NULL,
no	default

Enter
NULL,
default

NULL NULL default NULL NULL
NOT	NULL Error default error error

Note		Whether	SQL	Server	interprets	an	empty	string	as	a	single	space	or	as	a
true	empty	string	is	controlled	by	the	sp_dbcmptlevel	setting.	If	the
compatibility	level	is	less	than	or	equal	to	65,	SQL	Server	interprets	empty
strings	as	single	spaces.	If	the	compatibility	level	is	equal	to	70,	SQL	Server
interprets	empty	strings	as	empty	strings.	For	more	information,	see
sp_dbcmptlevel.

To	rename	a	default,	use	sp_rename.	For	a	report	on	a	default,	use	sp_help.

Permissions
CREATE	DEFAULT	permissions	default	to	members	of	the	sysadmin	fixed
server	role	and	the	db_ddladmin	and	db_owner	fixed	database	roles.	Members
of	the	sysadmin,	db_owner	and	db_securityadmin	roles	can	transfer
permissions	to	other	users.

Examples

A.	Create	a	simple	character	default
This	example	creates	a	character	default	called	unknown.

USE	pubs
GO
CREATE	DEFAULT	phonedflt	AS	'unknown'

B.	Bind	a	default
This	example	binds	the	default	created	in	example	A.	The	default	takes	effect
only	if	there	is	no	entry	in	the	phone	column	of	the	authors	table.	Note	that	no
entry	is	not	the	same	as	an	explicit	null	value.

Because	a	default	named	phonedflt	does	not	exist,	the	following	Transact-SQL
statement	fails.	This	example	is	for	illustration	only.

USE	pubs
GO

sp_bindefault	phonedflt,	'authors.phone'

See	Also

ALTER	TABLE

Batches

CREATE	RULE

CREATE	TABLE

DROP	DEFAULT

DROP	RULE

Expressions

INSERT

sp_bindefault

sp_help

sp_helptext

sp_rename

sp_unbindefault

Using	Identifiers

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

CREATE	FUNCTION
Creates	a	user-defined	function,	which	is	a	saved	Transact-SQL	routine	that
returns	a	value.	User-defined	functions	cannot	be	used	to	perform	a	set	of	actions
that	modify	the	global	database	state.	User-defined	functions,	like	system
functions,	can	be	invoked	from	a	query.	They	also	can	be	executed	through	an
EXECUTE	statement	like	stored	procedures.

User-defined	functions	are	modified	using	ALTER	FUNCTION,	and	dropped
using	DROP	FUNCTION.

Syntax
Scalar	Functions

CREATE		FUNCTION	[owner_name.]	function_name	
				([{	@parameter_name	[AS]	scalar_parameter_data_type	[=	default]	}	[
,...n]])

RETURNS	scalar_return_data_type

[WITH	<	function_option>	[[,]	...n]]

[AS]

BEGIN	
				function_body	
				RETURN	scalar_expression
END

Inline	Table-valued	Functions

CREATE	FUNCTION	[owner_name.]	function_name	
				([{	@parameter_name	[AS]	scalar_parameter_data_type	[=	default]	}	[
,...n]])

RETURNS	TABLE

[WITH	<	function_option	>	[[,]	...n]]

[AS]

RETURN	[(]	select-stmt	[)]

Multi-statement	Table-valued	Functions

CREATE	FUNCTION	[owner_name.]	function_name	
				([{	@parameter_name	[AS]	scalar_parameter_data_type	[=	default]	}	[
,...n]])

RETURNS	@return_variable	TABLE	<	table_type_definition	>

[WITH	<	function_option	>	[[,]	...n]]

[AS]

BEGIN	
				function_body	
				RETURN
END

<	function_option	>	::=	
				{	ENCRYPTION	|	SCHEMABINDING	}

<	table_type_definition	>	::	=	
				({	column_definition	|	table_constraint	}	[,...n])

Arguments
owner_name

Is	the	name	of	the	user	ID	that	owns	the	user-defined	function.	owner_name
must	be	an	existing	user	ID.

function_name

Is	the	name	of	the	user-defined	function.	Function	names	must	conform	to
the	rules	for	identifiers	and	must	be	unique	within	the	database	and	to	its
owner.

@parameter_name

Is	a	parameter	in	the	user-defined	function.	One	or	more	parameters	can	be
declared	in	a	CREATE	FUNCTION	statement.	A	function	can	have	a
maximum	of	1,024	parameters.	The	value	of	each	declared	parameter	must
be	supplied	by	the	user	when	the	function	is	executed,	unless	a	default	for

the	parameter	is	defined.	When	a	parameter	of	the	function	has	a	default
value,	the	keyword	"default"	must	be	specified	when	calling	the	function	in
order	to	get	the	default	value.	This	behavior	is	different	from	parameters	with
default	values	in	stored	procedures	in	which	omitting	the	parameter	also
implies	the	default	value.

Specify	a	parameter	name	using	an	at	sign	(@)	as	the	first	character.	The
parameter	name	must	conform	to	the	rules	for	identifiers.	Parameters	are
local	to	the	function;	the	same	parameter	names	can	be	used	in	other
functions.	Parameters	can	take	the	place	only	of	constants;	they	cannot	be
used	in	place	of	table	names,	column	names,	or	the	names	of	other	database
objects.

scalar_parameter_data_type

Is	the	parameter	data	type.	All	scalar	data	types,	including	bigint	and
sql_variant,	can	be	used	as	a	parameter	for	user-defined	functions.	The
timestamp	data	type	and	user-defined	data	types	not	supported.	Nonscalar
types	such	as	cursor	and	table	cannot	be	specified.

scalar_return_data_type

Is	the	return	value	of	a	scalar	user-defined	function.	scalar_return_data_type
can	be	any	of	the	scalar	data	types	supported	by	SQL	Server,	except	text,
ntext,	image,	and	timestamp.

scalar_expression

Specifies	the	scalar	value	that	the	scalar	function	returns.

TABLE

Specifies	that	the	return	value	of	the	table-valued	function	is	a	table.

In	inline	table-valued	functions,	the	TABLE	return	value	is	defined	through	a
single	SELECT	statement.	Inline	functions	do	not	have	associated	return
variables.

In	multi-statement	table-valued	functions,	@return_variable	is	a	TABLE
variable,	used	to	store	and	accumulate	the	rows	that	should	be	returned	as	the
value	of	the	function.

function_body

Specifies	that	a	series	of	Transact-SQL	statements,	which	together	do	not
produce	a	side	effect,	define	the	value	of	the	function.	function_body	is	used
only	in	scalar	functions	and	multi-statement	table-valued	functions.

In	scalar	functions,	function_body	is	a	series	of	Transact-SQL	statements	that
together	evaluate	to	a	scalar	value.

In	multi-statement	table-valued	functions,	function_body	is	a	series	of
Transact-SQL	statements	that	populate	a	table	return	variable.

select-stmt

Is	the	single	SELECT	statement	that	defines	the	return	value	of	an	inline
table-valued	function.

ENCRYPTION

Indicates	that	SQL	Server	encrypts	the	system	table	columns	containing	the
text	of	the	CREATE	FUNCTION	statement.	Using	ENCRYPTION	prevents
the	function	from	being	published	as	part	of	SQL	Server	replication.

SCHEMABINDING

Specifies	that	the	function	is	bound	to	the	database	objects	that	it	references.
If	a	function	is	created	with	the	SCHEMABINDING	option,	then	the
database	objects	that	the	function	references	cannot	be	altered	(using	the
ALTER	statement)	or	dropped	(using	a	DROP	statement).

The	binding	of	the	function	to	the	objects	it	references	is	removed	only	when
one	of	two	actions	take	place:

The	function	is	dropped.

The	function	is	altered	(using	the	ALTER	statement)	with	the
SCHEMABINDING	option	not	specified.

A	function	can	be	schema-bound	only	if	the	following	conditions	are	true:

The	user-defined	functions	and	views	referenced	by	the	function	are
also	schema-bound.

The	objects	referenced	by	the	function	are	not	referenced	using	a	two-

part	name.	

The	function	and	the	objects	it	references	belong	to	the	same	database.

The	user	who	executed	the	CREATE	FUNCTION	statement	has
REFERENCES	permission	on	all	the	database	objects	that	the	function
references.

The	CREATE	FUNCTION	statement	with	the	SCHEMABINDING	option
specified	will	fail	if	the	above	conditions	are	not	true.

Remarks
User-defined	functions	are	either	scalar-valued	or	table-valued.	Functions	are
scalar-valued	if	the	RETURNS	clause	specified	one	of	the	scalar	data	types.
Scalar-valued	functions	can	be	defined	using	multiple	Transact-SQL	statements.

Functions	are	table-valued	if	the	RETURNS	clause	specified	TABLE.
Depending	on	how	the	body	of	the	function	is	defined,	table-valued	functions
can	be	classified	as	inline	or	multi-statement	functions.

If	the	RETURNS	clause	specifies	TABLE	with	no	accompanying	column	list,
the	function	is	an	inline	function.	Inline	functions	are	table-valued	functions
defined	with	a	single	SELECT	statement	making	up	the	body	of	the	function.
The	columns,	including	the	data	types,	of	the	table	returned	by	the	function	are
derived	from	the	SELECT	list	of	the	SELECT	statement	defining	the	function.

If	the	RETURNS	clause	specifies	a	TABLE	type	with	columns	and	their	data
types,	the	function	is	a	multi-statement	table-valued	function.

The	following	statements	are	allowed	in	the	body	of	a	multi-statement	function.
Statements	not	in	this	list	are	not	allowed	in	the	body	of	a	function:

Assignment	statements.

Control-of-Flow	statements.

DECLARE	statements	defining	data	variables	and	cursors	that	are	local

to	the	function.

SELECT	statements	containing	select	lists	with	expressions	that	assign
values	to	variables	that	are	local	to	the	function.

Cursor	operations	referencing	local	cursors	that	are	declared,	opened,
closed,	and	deallocated	in	the	function.	Only	FETCH	statements	that
assign	values	to	local	variables	using	the	INTO	clause	are	allowed;
FETCH	statements	that	return	data	to	the	client	are	not	allowed.

INSERT,	UPDATE,	and	DELETE	statements	modifying	table	variables
local	to	the	function.

EXECUTE	statements	calling	an	extended	stored	procedures.

Function	Determinism	and	Side	Effects

Functions	are	either	deterministic	or	nondeterministic.	They	are	deterministic
when	they	always	return	the	same	result	any	time	they	are	called	with	a	specific
set	of	input	values.	They	are	nondeterministic	when	they	could	return	different
result	values	each	time	they	are	called	with	the	same	specific	set	of	input	values.

Nondeterministic	functions	can	cause	side	effects.	Side	effects	are	changes	to
some	global	state	of	the	database,	such	as	an	update	to	a	database	table,	or	to
some	external	resource,	such	as	a	file	or	the	network	(for	example,	modify	a	file
or	send	an	e-mail	message).

Built-in	nondeterministic	functions	are	not	allowed	in	the	body	of	user-defined
functions;	they	are	as	follows:

@@CONNECTIONS @@TOTAL_ERRORS
@@CPU_BUSY @@TOTAL_READ
@@IDLE @@TOTAL_WRITE
@@IO_BUSY GETDATE
@@MAX_CONNECTIONS GETUTCDATE

@@PACK_RECEIVED NEWID
@@PACK_SENT RAND
@@PACKET_ERRORS TEXTPTR
@@TIMETICKS 	

Although	nondeterministic	functions	are	not	allowed	in	the	body	of	user-defined
functions,	these	user-defined	functions	still	can	cause	side	effects	if	they	call
extended	stored	procedures.

Functions	that	call	extended	stored	procedures	are	considered	nondeterministic
because	extended	stored	procedures	can	cause	side	effects	on	the	database.
When	user	defined	functions	call	extended	stored	procedures	that	can	have	side
effects	on	the	database,	do	not	rely	on	a	consistent	result	set	or	execution	of	the
function.

Calling	extended	stored	procedures	from	functions
The	extended	stored	procedure,	when	called	from	inside	a	function,	cannot
return	result	sets	to	the	client.	Any	ODS	APIs	that	return	result	sets	to	the	client
will	return	FAIL.		The	extended	stored	procedure	could	connect	back	to
Microsoft®	SQL	Server™;	however,	it	should	not	attempt	to	join	the	same
transaction	as	the	function	that	invoked	the	extended	stored	procedure.

Similar	to	invocations	from	a	batch	or	stored	procedure,	the	extended	stored
procedure	will	be	executed	in	the	context	of	the	Windows®	security	account
under	which	SQL	Server	is	running.	The	owner	of	the	stored	procedure	should
consider	this	when	giving	EXECUTE	privileges	on	it	to	users.

Function	Invocation
Scalar-valued	functions	may	be	invoked	where	scalar	expressions	are	used,
including	computed	columns	and	CHECK	constraint	definitions.	When	invoking
scalar-valued	functions,	at	minimum	use	the	two-part	name	of	the	function.

[database_name.]owner_name.function_name	([argument_expr][,...])

If	a	user-defined	function	is	used	to	define	a	computed	column,	the	function's
deterministic	quality	also	defines	whether	an	index	may	be	created	on	that

computed	column.	An	index	can	be	created	on	a	computed	column	that	uses	a
function	only	if	the	function	is	deterministic.	A	function	is	deterministic	if	it
always	returns	the	same	value,	given	the	same	input.

Table-valued	functions	can	be	invoked	using	a	single	part	name.

[database_name.][owner_name.]function_name	([argument_expr][,...])

System	table	functions	that	are	included	in	Microsoft®	SQL	Server™	2000	need
to	be	invoked	using	a	'::'	prefix	before	the	function	name.

SELECT	*
FROM	::fn_helpcollations()

Transact-SQL	errors	that	cause	a	statement	to	be	stopped	and	then	continued
with	the	next	statement	in	a	stored	procedure	are	treated	differently	inside	a
function.	In	functions,	such	errors	will	cause	the	function	execution	to	be
stopped.	This	in	turn	will	cause	the	statement	that	invoked	the	function	to	be
stopped.

Permissions
Users	should	have	the	CREATE	FUNCTION	permission	to	execute	the
CREATE	FUNCTION	statement.

CREATE	FUNCTION	permissions	default	to	members	of	the	sysadmin	fixed
server	role,	and	the	db_owner	and	db_ddladmin	fixed	database	roles.	Members
of	sysadmin	and	db_owner	can	grant	CREATE	FUNCTION	permissions	to
other	logins	by	using	the	GRANT	statement.

Owners	of	functions	have	EXECUTE	permission	on	their	functions.	Other	users
do	not	have	EXECUTE	permissions	unless	EXECUTE	permissions	on	the
specific	function	are	granted	to	them.

In	order	to	create	or	alter	tables	with	references	to	user-defined	functions	in	the
CONSTRAINT,	DEFAULT	clauses,	or	computed	column	definition,	the	user
must	also	have	REFERENCES	permission	to	the	functions.

Examples

A.	Scalar-valued	user-defined	function	that	calculates	the	ISO
week
In	this	example,	a	user-defined	function,	ISOweek,	takes	a	date	argument	and
calculates	the	ISO	week	number.		For	this	function	to	calculate	properly,	SET
DATEFIRST	1	must	be	invoked	before	the	function	is	called.

CREATE	FUNCTION	ISOweek		(@DATE	datetime)
RETURNS	int
AS
BEGIN
			DECLARE	@ISOweek	int
			SET	@ISOweek=	DATEPART(wk,@DATE)+1
						-DATEPART(wk,CAST(DATEPART(yy,@DATE)	as	CHAR(4))+'0104')
--Special	cases:	Jan	1-3	may	belong	to	the	previous	year
			IF	(@ISOweek=0)	
						SET	@ISOweek=dbo.ISOweek(CAST(DATEPART(yy,@DATE)-1	
									AS	CHAR(4))+'12'+	CAST(24+DATEPART(DAY,@DATE)	AS	CHAR(2)))+1
--Special	case:	Dec	29-31	may	belong	to	the	next	year
			IF	((DATEPART(mm,@DATE)=12)	AND	
						((DATEPART(dd,@DATE)-DATEPART(dw,@DATE))>=	28))
						SET	@ISOweek=1
			RETURN(@ISOweek)
END

Here	is	the	function	call.	Notice	that	DATEFIRST	is	set	to	1.

SET	DATEFIRST	1
SELECT	master.dbo.ISOweek('12/26/1999')	AS	'ISO	Week'

Here	is	the	result	set.

ISO	Week

52

B.	Inline	table-valued	function
This	example	returns	an	inline	table-valued	function.

USE	pubs
GO
CREATE	FUNCTION	SalesByStore	(@storeid	varchar(30))
RETURNS	TABLE
AS
RETURN	(SELECT	title,	qty
						FROM	sales	s,	titles	t
						WHERE	s.stor_id	=	@storeid	and
						t.title_id	=	s.title_id)

C.	Multi-statement	table-valued	function
Given	a	table	that	represents	a	hierarchical	relationship:

CREATE	TABLE	employees	(empid	nchar(5)	PRIMARY	KEY,	
						empname	nvarchar(50),	
						mgrid	nchar(5)	REFERENCES	employees(empid),	
						title	nvarchar(30)
)

The	table-valued	function	fn_FindReports(InEmpID),	which	--	given	an
Employee	ID	--	returns	a	table	corresponding	to	all	the	employees	that	report	to
the	given	employee	directly	or	indirectly.	This	logic	is	not	expressible	in	a	single
query	and	is	a	good	candidate	for	implementing	as	a	user-defined	function.

CREATE	FUNCTION	fn_FindReports	(@InEmpId	nchar(5))
RETURNS	@retFindReports	TABLE	(empid	nchar(5)	primary	key,
			empname	nvarchar(50)	NOT	NULL,
			mgrid	nchar(5),
			title	nvarchar(30))
/*Returns	a	result	set	that	lists	all	the	employees	who	report	to	given	
employee	directly	or	indirectly.*/

AS
BEGIN
			DECLARE	@RowsAdded	int
			--	table	variable	to	hold	accumulated	results
			DECLARE	@reports	TABLE	(empid	nchar(5)	primary	key,	
						empname	nvarchar(50)	NOT	NULL,
						mgrid	nchar(5),
						title	nvarchar(30),
						processed	tinyint	default	0)
--	initialize	@Reports	with	direct	reports	of	the	given	employee	
			INSERT	@reports
			SELECT	empid,	empname,	mgrid,	title,	0
			FROM	employees	
			WHERE	empid	=	@InEmpId	
			SET	@RowsAdded	=	@@rowcount
			--	While	new	employees	were	added	in	the	previous	iteration
			WHILE	@RowsAdded	>	0
			BEGIN
						/*Mark	all	employee	records	whose	direct	reports	are	going	to	be	
			found	in	this	iteration	with	processed=1.*/
						UPDATE	@reports
						SET	processed	=	1
						WHERE	processed	=	0
						--	Insert	employees	who	report	to	employees	marked	1.
						INSERT	@reports
						SELECT	e.empid,	e.empname,	e.mgrid,	e.title,	0
						FROM	employees	e,	@reports	r
						WHERE	e.mgrid=r.empid	and	e.mgrid	<>	e.empid	and	r.processed	=	1
						SET	@RowsAdded	=	@@rowcount
						/*Mark	all	employee	records	whose	direct	reports	have	been	found
			in	this	iteration.*/
						UPDATE	@reports
						SET	processed	=	2

						WHERE	processed	=	1
			END
			
			--	copy	to	the	result	of	the	function	the	required	columns
			INSERT	@retFindReports
			SELECT	empid,	empname,	mgrid,	title	
			FROM	@reports
			RETURN
END
GO

--	Example	invocation
SELECT	*	
FROM	fn_FindReports('11234')
GO

See	Also

ALTER	FUNCTION

DROP	FUNCTION

Invoking	User-defined	Functions

User-defined	Functions

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

CREATE	INDEX
Creates	an	index	on	a	given	table	or	view.

Only	the	table	or	view	owner	can	create	indexes	on	that	table.	The	owner	of	a
table	or	view	can	create	an	index	at	any	time,	whether	or	not	there	is	data	in	the
table.	Indexes	can	be	created	on	tables	or	views	in	another	database	by
specifying	a	qualified	database	name.

Syntax
CREATE	[UNIQUE]	[CLUSTERED	|	NONCLUSTERED]	INDEX
index_name	
				ON	{	table	|	view	}	(column	[ASC	|	DESC]	[,...n])	
[WITH	<	index_option	>	[,...n]]	
[ON	filegroup]

<	index_option	>	::	=	
				{	PAD_INDEX	|	
								FILLFACTOR	=	fillfactor	|	
								IGNORE_DUP_KEY	|	
								DROP_EXISTING	|	
				STATISTICS_NORECOMPUTE	|	
				SORT_IN_TEMPDB		
}

Arguments
UNIQUE

Creates	a	unique	index	(one	in	which	no	two	rows	are	permitted	to	have	the
same	index	value)	on	a	table	or	view.	A	clustered	index	on	a	view	must	be
UNIQUE.

Microsoft®	SQL	Server™	checks	for	duplicate	values	when	the	index	is	created
(if	data	already	exists)	and	checks	each	time	data	is	added	with	an	INSERT	or
UPDATE	statement.	If	duplicate	key	values	exist,	the	CREATE	INDEX
statement	is	canceled	and	an	error	message	giving	the	first	duplicate	is	returned.

Multiple	NULL	values	are	considered	duplicates	when	UNIQUE	index	is
created.

When	a	unique	index	exists,	UPDATE	or	INSERT	statements	that	would
generate	duplicate	key	values	are	rolled	back,	and	SQL	Server	displays	an	error
message.	This	is	true	even	if	the	UPDATE	or	INSERT	statement	changes	many
rows	but	causes	only	one	duplicate.	If	an	attempt	is	made	to	enter	data	for	which
there	is	a	unique	index	and	the	IGNORE_DUP_KEY	clause	is	specified,	only
the	rows	violating	the	UNIQUE	index	fail.	When	processing	an	UPDATE
statement,	IGNORE_DUP_KEY	has	no	effect.

SQL	Server	does	not	allow	the	creation	of	a	unique	index	on	columns	that
already	include	duplicate	values,	whether	or	not	IGNORE_DUP_KEY	is	set.	If
attempted,	SQL	Server	displays	an	error	message;	duplicates	must	be	eliminated
before	a	unique	index	can	be	created	on	the	column(s).

CLUSTERED

Creates	an	object	where	the	physical	order	of	rows	is	the	same	as	the	indexed
order	of	the	rows,	and	the	bottom	(leaf)	level	of	the	clustered	index	contains
the	actual	data	rows.	A	table	or	view	is	allowed	one	clustered	index	at	a	time.

A	view	with	a	clustered	index	is	called	an	indexed	view.	A	unique	clustered
index	must	be	created	on	a	view	before	any	other	indexes	can	be	defined	on	the
same	view.

Create	the	clustered	index	before	creating	any	nonclustered	indexes.	Existing
nonclustered	indexes	on	tables	are	rebuilt	when	a	clustered	index	is	created.

If	CLUSTERED	is	not	specified,	a	nonclustered	index	is	created.

Note		Because	the	leaf	level	of	a	clustered	index	and	its	data	pages	are	the	same
by	definition,	creating	a	clustered	index	and	using	the	ON	filegroup	clause
effectively	moves	a	table	from	the	file	on	which	the	table	was	created	to	the	new
filegroup.	Before	creating	tables	or	indexes	on	specific	filegroups,	verify	which
filegroups	are	available	and	that	they	have	enough	empty	space	for	the	index.	It
is	important	that	the	filegroup	have	at	least	1.2	times	the	space	required	for	the
entire	table.

NONCLUSTERED

Creates	an	object	that	specifies	the	logical	ordering	of	a	table.	With	a

nonclustered	index,	the	physical	order	of	the	rows	is	independent	of	their
indexed	order.	The	leaf	level	of	a	nonclustered	index	contains	index	rows.
Each	index	row	contains	the	nonclustered	key	value	and	one	or	more	row
locators	that	point	to	the	row	that	contains	the	value.	If	the	table	does	not
have	a	clustered	index,	the	row	locator	is	the	row's	disk	address.	If	the	table
does	have	a	clustered	index,	the	row	locator	is	the	clustered	index	key	for	the
row.

Each	table	can	have	as	many	as	249	nonclustered	indexes	(regardless	of	how
they	are	created:	implicitly	with	PRIMARY	KEY	and	UNIQUE	constraints,	or
explicitly	with	CREATE	INDEX).	Each	index	can	provide	access	to	the	data	in	a
different	sort	order.

For	indexed	views,	nonclustered	indexes	can	be	created	only	on	a	view	with	a
clustered	index	already	defined.	Thus,	the	row	locator	of	a	nonclustered	index	on
an	indexed	view	is	always	the	clustered	key	of	the	row.

index_name

Is	the	name	of	the	index.	Index	names	must	be	unique	within	a	table	or	view
but	do	not	need	to	be	unique	within	a	database.	Index	names	must	follow	the
rules	of	identifiers.

table

Is	the	table	that	contains	the	column	or	columns	to	be	indexed.	Specifying
the	database	and	table	owner	names	is	optional.

view

Is	the	name	of	the	view	to	be	indexed.	The	view	must	be	defined	with
SCHEMABINDING	in	order	to	create	an	index	on	it.	The	view	definition
also	must	be	deterministic.	A	view	is	deterministic	if	all	expressions	in	the
select	list,	and	the	WHERE	and	GROUP	BY	clauses	are	deterministic.	Also,
all	key	columns	must	be	precise.	Only	nonkey	columns	of	the	view	may
contain	float	expressions	(expressions	that	use	float	data	type),	and	float
expressions	cannot	be	used	anywhere	else	in	the	view	definition.

To	find	a	column	in	the	view	that	is	deterministic,	use	the
COLUMNPROPERTY	function	(IsDeterministic	property).	The	IsPrecise
property	of	the	function	can	be	used	to	determine	that	the	key	columns	are
precise.

A	unique	clustered	index	must	be	created	on	a	view	before	any	nonclustered
index	is	created.

Indexed	views	may	be	used	by	the	query	optimizer	in	SQL	Server	Enterprise
or	Developer	edition	to	speed	up	the	query	execution.	The	view	does	not
need	to	be	referenced	in	the	query	for	the	optimizer	to	consider	that	view	for
a	substitution.

When	creating	indexed	views	or	manipulating	rows	in	tables	participating	in
an	indexed	view,	seven	SET	options	must	be	assigned	specific	values.	The
SET	options	ARITHABORT,	CONCAT_NULL_YIELDS_NULL,
QUOTED_IDENTIFIER,	ANSI_NULLS,	ANSI_PADDING,	and
ANSI_WARNING	must	be	ON.	The	SET	option
NUMERIC_ROUNDABORT	must	be	OFF.

If	any	of	these	settings	is	different,	data	modification	statements	(INSERT,
UPDATE,	DELETE)	on	any	table	referenced	by	an	indexed	view	fail	and
SQL	Server	raises	an	error	listing	all	SET	options	that	violate	setting
requirements.	In	addition,	for	a	SELECT	statement	that	involves	an	indexed
view,	if	the	values	of	any	of	the	SET	options	are	not	the	required	values,	SQL
Server	processes	the	SELECT	without	considering	the	indexed	view
substitution.	This	ensures	correctness	of	query	result	in	cases	where	it	can	be
affected	by	the	above	SET	options.

If	the	application	uses	a	DB-Library	connection,	all	seven	SET	options	on
the	server	must	be	assigned	the	required	values.	(By	default,	OLE	DB	and
ODBC	connections	have	set	all	of	the	required	SET	options	correctly,	except
for	ARITHABORT.)

Some	operations,	like	BCP,	replication,	or	distributed	queries	may	fail	to
execute	their	updates	against	tables	participating	in	indexed	views	if	not	all
of	the	listed	SET	options	have	the	required	value.	In	the	majority	of	cases,
this	issue	can	be	prevented	by	setting	ARITHABORT	to	ON	(through	user
options	in	the	server	configuration	option).

It	is	strongly	recommended	that	the	ARITHABORT	user	option	be	set
server-wide	to	ON	as	soon	as	the	first	indexed	view	or	index	on	a	computed
column	is	created	in	any	database	on	the	server.

See	the	Remarks	section	for	more	information	on	considerations	and

restrictions	on	indexed	views.

column

Is	the	column	or	columns	to	which	the	index	applies.	Specify	two	or	more
column	names	to	create	a	composite	index	on	the	combined	values	in	the
specified	columns.	List	the	columns	to	be	included	in	the	composite	index
(in	sort-priority	order)	inside	the	parentheses	after	table.

Note		Columns	consisting	of	the	ntext,	text,	or	image	data	types	cannot	be
specified	as	columns	for	an	index.	In	addition,	a	view	cannot	include	any	text,
ntext,	or	image	columns,	even	if	they	are	not	referenced	in	the	CREATE
INDEX	statement.

Composite	indexes	are	used	when	two	or	more	columns	are	best	searched	as
a	unit	or	if	many	queries	reference	only	the	columns	specified	in	the	index.
As	many	as	16	columns	can	be	combined	into	a	single	composite	index.	All
the	columns	in	a	composite	index	must	be	in	the	same	table.	The	maximum
allowable	size	of	the	combined	index	values	is	900	bytes.	That	is,	the	sum	of
the	lengths	of	the	fixed-size	columns	that	make	up	the	composite	index
cannot	exceed	900	bytes.	For	more	information	about	variable	type	columns
in	composite	indexes,	see	the	Remarks	section.

[ASC	|	DESC]

Determines	the	ascending	or	descending	sort	direction	for	the	particular
index	column.	The	default	is	ASC.

n

Is	a	placeholder	indicating	that	multiple	columns	can	be	specified	for	any
particular	index.

PAD_INDEX

Specifies	the	space	to	leave	open	on	each	page	(node)	in	the	intermediate
levels	of	the	index.	The	PAD_INDEX	option	is	useful	only	when
FILLFACTOR	is	specified,	because	PAD_INDEX	uses	the	percentage
specified	by	FILLFACTOR.	By	default,	SQL	Server	ensures	that	each	index
page	has	enough	empty	space	to	accommodate	at	least	one	row	of	the
maximum	size	the	index	can	have,	given	the	set	of	keys	on	the	intermediate
pages.	If	the	percentage	specified	for	FILLFACTOR	is	not	large	enough	to

accommodate	one	row,	SQL	Server	internally	overrides	the	percentage	to
allow	the	minimum.

Note		The	number	of	rows	on	an	intermediate	index	page	is	never	less	than	two,
regardless	of	how	low	the	value	of	FILLFACTOR.

FILLFACTOR	=	fillfactor

Specifies	a	percentage	that	indicates	how	full	SQL	Server	should	make	the
leaf	level	of	each	index	page	during	index	creation.	When	an	index	page	fills
up,	SQL	Server	must	take	time	to	split	the	index	page	to	make	room	for	new
rows,	which	is	quite	expensive.	For	update-intensive	tables,	a	properly
chosen	FILLFACTOR	value	yields	better	update	performance	than	an
improper	FILLFACTOR	value.	The	value	of	the	original	FILLFACTOR	is
stored	with	the	index	in	sysindexes.

When	FILLFACTOR	is	specified,	SQL	Server	rounds	up	the	number	of	rows
to	be	placed	on	each	page.	For	example,	issuing	CREATE	CLUSTERED
INDEX	...	FILLFACTOR	=	33	creates	a	clustered	index	with	a
FILLFACTOR	of	33	percent.	Assume	that	SQL	Server	calculates	that	5.2
rows	is	33	percent	of	the	space	on	a	page.	SQL	Server	rounds	so	that	six
rows	are	placed	on	each	page.

Note		An	explicit	FILLFACTOR	setting	applies	only	when	the	index	is	first
created.	SQL	Server	does	not	dynamically	keep	the	specified	percentage	of
empty	space	in	the	pages.

User-specified	FILLFACTOR	values	can	be	from	1	through	100.	If	no	value
is	specified,	the	default	is	0.	When	FILLFACTOR	is	set	to	0,	only	the	leaf
pages	are	filled.	You	can	change	the	default	FILLFACTOR	setting	by
executing	sp_configure.

Use	a	FILLFACTOR	of	100	only	if	no	INSERT	or	UPDATE	statements	will
occur,	such	as	with	a	read-only	table.	If	FILLFACTOR	is	100,	SQL	Server
creates	indexes	with	leaf	pages	100	percent	full.	An	INSERT	or	UPDATE
made	after	the	creation	of	an	index	with	a	100	percent	FILLFACTOR	causes
page	splits	for	each	INSERT	and	possibly	each	UPDATE.

Smaller	FILLFACTOR	values,	except	0,	cause	SQL	Server	to	create	new
indexes	with	leaf	pages	that	are	not	completely	full.	For	example,	a

FILLFACTOR	of	10	can	be	a	reasonable	choice	when	creating	an	index	on	a
table	known	to	contain	a	small	portion	of	the	data	that	it	will	eventually	hold.
Smaller	FILLFACTOR	values	also	cause	each	index	to	take	more	storage
space.

The	following	table	illustrates	how	the	pages	of	an	index	are	filled	up	if
FILLFACTOR	is	specified.

FILLFACTOR Intermediate	page Leaf	page
0	percent One	free	entry 100	percent	full
1	-	99	percent One	free	entry <=	FILLFACTOR	percent

full
100	percent One	free	entry 100	percent	full

One	free	entry	is	the	space	on	the	page	that	can	accommodate	another	index
entry.

IMPORTANT		Creating	a	clustered	index	with	a	FILLFACTOR	affects	the	amount
of	storage	space	the	data	occupies	because	SQL	Server	redistributes	the	data
when	it	creates	the	clustered	index.

IGNORE_DUP_KEY

Controls	what	happens	when	an	attempt	is	made	to	insert	a	duplicate	key
value	into	a	column	that	is	part	of	a	unique	clustered	index.	If
IGNORE_DUP_KEY	was	specified	for	the	index	and	an	INSERT	statement
that	creates	a	duplicate	key	is	executed,	SQL	Server	issues	a	warning	and
ignores	the	duplicate	row.

If	IGNORE_DUP_KEY	was	not	specified	for	the	index,	SQL	Server	issues
an	error	message	and	rolls	back	the	entire	INSERT	statement.

The	table	shows	when	IGNORE_DUP_KEY	can	be	used.

Index	type Options
Clustered Not	allowed
Unique	clustered IGNORE_DUP_KEY	allowed
Nonclustered Not	allowed

Unique	nonclustered IGNORE_DUP_KEY	allowed

DROP_EXISTING

Specifies	that	the	named,	preexisting	clustered	or	nonclustered	index	should
be	dropped	and	rebuilt.	The	index	name	specified	must	be	the	same	as	a
currently	existing	index.	Because	nonclustered	indexes	contain	the	clustering
keys,	the	nonclustered	indexes	must	be	rebuilt	when	a	clustered	index	is
dropped.	If	a	clustered	index	is	recreated,	the	nonclustered	indexes	must	be
rebuilt	to	take	the	new	set	of	keys	into	account.

The	DROP_EXISTING	clause	enhances	performance	when	re-creating	a
clustered	index	(with	either	the	same	or	a	different	set	of	keys)	on	a	table	that
also	has	nonclustered	indexes.	The	DROP_EXISTING	clause	replaces	the
execution	of	a	DROP	INDEX	statement	on	the	old	clustered	index	followed
by	the	execution	of	a	CREATE	INDEX	statement	for	the	new	clustered
index.	The	nonclustered	indexes	are	rebuilt	once,	and	only	if	the	keys	are
different.

If	the	keys	do	not	change	(the	same	index	name	and	columns	as	the	original
index	are	provided),	the	DROP_EXISTING	clause	does	not	sort	the	data
again.	This	can	be	useful	if	the	index	must	be	compacted.

A	clustered	index	cannot	be	converted	to	a	nonclustered	index	using	the
DROP_EXISTING	clause;	however,	a	unique	clustered	index	can	be
changed	to	a	non-unique	index,	and	vice	versa.

Note		When	executing	a	CREATE	INDEX	statement	with	the
DROP_EXISTING	clause,	SQL	Server	assumes	that	the	index	is	consistent,	that
is,	there	is	no	corruption	in	the	index.	The	rows	in	the	specified	index	should	be
sorted	by	the	specified	key	referenced	in	the	CREATE	INDEX	statement.

STATISTICS_NORECOMPUTE

Specifies	that	out-of-date	index	statistics	are	not	automatically	recomputed.
To	restore	automatic	statistics	updating,	execute	UPDATE	STATISTICS
without	the	NORECOMPUTE	clause.

IMPORTANT		Disabling	automatic	recomputation	of	distribution	statistics	may

prevent	the	SQL	Server	query	optimizer	from	picking	optimal	execution	plans
for	queries	involving	the	table.

SORT_IN_TEMPDB

Specifies	that	the	intermediate	sort	results	used	to	build	the	index	will	be
stored	in	the	tempdb	database.	This	option	may	reduce	the	time	needed	to
create	an	index	if	tempdb	is	on	a	different	set	of	disks	than	the	user
database,	but	it	increases	the	amount	of	disk	space	used	during	the	index
build.

For	more	information,	see	tempdb	and	Index	Creation.

ON	filegroup

Creates	the	specified	index	on	the	given	filegroup.	The	filegroup	must	have
already	been	created	by	executing	either	CREATE	DATABASE	or	ALTER
DATABASE.

Remarks
Space	is	allocated	to	tables	and	indexes	in	increments	of	one	extent	(eight	8-
kilobyte	pages)	at	a	time.	Each	time	an	extent	is	filled,	another	is	allocated.
Indexes	on	very	small	or	empty	tables	will	use	single	page	allocations	until	eight
pages	have	been	added	to	the	index	and	then	will	switch	to	extent	allocations.
For	a	report	on	the	amount	of	space	allocated	and	used	by	an	index,	use
sp_spaceused.

Creating	a	clustered	index	requires	space	available	in	your	database	equal	to
approximately	1.2	times	the	size	of	the	data.	This	is	space	in	addition	to	the
space	used	by	the	existing	table;	the	data	is	duplicated	in	order	to	create	the
clustered	index,	and	the	old,	nonindexed	data	is	deleted	when	the	index	is
complete.	When	using	the	DROP_EXISTING	clause,	the	space	needed	for	the
clustered	index	is	the	amount	of	space	equal	to	the	space	requirements	of	the
existing	index.	The	amount	of	additional	space	required	also	may	be	affected	by
the	FILLFACTOR	specified.

When	creating	an	index	in	SQL	Server	2000,	you	can	use	the
SORT_IN_TEMPDB	option	to	direct	the	database	engine	to	store	the
intermediate	index	sort	results	in	tempdb.	This	option	may	reduce	the	time
needed	to	create	an	index	if	tempdb	is	on	a	different	set	of	disks	than	the	user

JavaScript:hhobj_1.Click()

database,	but	it	increases	the	amount	of	disk	space	used	to	create	an	index.	In
addition	to	the	space	required	in	the	user	database	to	create	the	index,	tempdb
must	have	about	the	same	amount	of	additional	space	to	hold	the	intermediate
sort	results.	For	more	information,	see	tempdb	and	Index	Creation.

The	CREATE	INDEX	statement	is	optimized	like	any	other	query.	The	SQL
Server	query	processor	may	choose	to	scan	another	index	instead	of	performing
a	table	scan	to	save	on	I/O	operations.	The	sort	may	be	eliminated	in	some
situations.

On	multiprocessor	computers	on	SQL	Server	Enterprise	and	Developer	Editions,
CREATE	INDEX	automatically	uses	more	processors	to	perform	the	scan	and
sort,	in	the	same	way	as	other	queries	do.	The	number	of	processors	employed	to
execute	a	single	CREATE	INDEX	statement	is	determined	by	the	configuration
option	max	degree	of	parallelism	as	well	as	the	current	workload.	If	SQL
Server	detects	that	the	system	is	busy,	the	degree	of	parallelism	of	the	CREATE
INDEX	operation	is	automatically	reduced	before	statement	execution	begins.

Entire	filegroups	affected	by	a	CREATE	INDEX	statement	since	the	last
filegroup	backup	must	be	backed	up	as	a	unit.	For	more	information	about	file
and	filegroup	backups,	see	BACKUP.

Backup	and	CREATE	INDEX	operations	do	not	block	each	other.	If	a	backup	is
in	progress,	index	is	created	in	a	fully	logged	mode,	which	may	require	extra	log
space.

To	display	a	report	on	an	object's	indexes,	execute	sp_helpindex.

Indexes	can	be	created	on	a	temporary	table.	When	the	table	is	dropped	or	the
session	ends,	all	indexes	and	triggers	are	dropped.

Variable	type	columns	in	indexes
The	maximum	size	allowed	for	an	index	key	is	900	bytes,	but	SQL	Server	2000
allows	indexes	to	be	created	on	columns	that	may	have	large	variable	type
columns	with	a	maximum	size	greater	than	900	bytes.

During	index	creation,	SQL	Server	checks	the	following	conditions:

The	sum	of	all	fixed	data	columns	that	participate	in	the	index	definition
must	be	less	or	equal	to	900	bytes.	When	the	index	to	be	created	is

JavaScript:hhobj_2.Click()

composed	of	fixed	data	columns	only,	the	total	size	of	the	fixed	data
columns	must	be	less	or	equal	to	900	bytes.	Otherwise,	the	index	will
not	be	created	and	SQL	Server	will	return	an	error.

If	the	index	definition	is	composed	of	fixed-	and	variable-type	columns,
and	the	fixed-data	columns	meet	the	previous	condition	(less	or	equal	to
900	bytes),	SQL	Server	still	checks	the	total	size	of	the	variable	type
columns.	If	the	maximum	size	of	the	variable-type	columns	plus	the
size	of	the	fixed-data	columns	is	greater	than	900	bytes,	SQL	Server
creates	the	index,	but	returns	a	warning	to	the	user.	The	warning	alerts
the	user	that	if	subsequent	insert	or	update	actions	on	the	variable-type
columns	result	in	a	total	size	greater	than	900	bytes,	the	action	will	fail
and	the	user	will	get	a	run-time	error.	Likewise,	if	the	index	definition	is
composed	of	variable-type	columns	only,	and	the	maximum	total	size	of
these	columns	is	greater	than	900	bytes,	SQL	Server	will	create	the
index,	but	return	a	warning.

For	more	information,	see	Maximum	Size	of	Index	Keys.

Considerations	when	indexing	computed	columns	and	views
In	SQL	Server	2000,	indexes	also	can	be	created	on	computed	columns	and
views.	Creating	a	unique	clustered	index	on	a	view	improves	query	performance
because	the	view	is	stored	in	the	database	in	the	same	way	a	table	with	a
clustered	index	is	stored.

The	UNIQUE	or	PRIMARY	KEY	may	contain	a	computed	column	as	long	as	it
satisfies	all	conditions	for	indexing.	Specifically,	the	computed	column	must	be
deterministic,	precise,	and	must	not	contain	text,	ntext,	or	image	columns.	For
more	information	about	determinism,	see	Deterministic	and	Nondeterministic
Functions.

Creation	of	an	index	on	a	computed	column	or	view	may	cause	the	failure	of	an
INSERT	or	UPDATE	operation	that	previously	worked.	Such	a	failure	may	take
place	when	the	computed	column	results	in	arithmetic	error.	For	example,
although	computed	column	c	in	the	following	table	will	result	in	an	arithmetic
error,	the	INSERT	statement	will	work:

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

CREATE	TABLE	t1	(a	int,	b	int,	c	AS	a/b)
GO
INSERT	INTO	t1	VALUES	('1',	'0')
GO

If,	instead,	after	creating	the	table,	you	create	an	index	on	computed	column	c,
the	same	INSERT	statement	now	will	fail.

CREATE	TABLE	t1	(a	int,	b	int,	c	AS	a/b)
GO
CREATE	UNIQUE	CLUSTERED	INDEX	Idx1	ON	t1.c
GO
INSERT	INTO	t1	VALUES	('1',	'0')
GO

The	result	of	a	query	using	an	index	on	a	view	defined	with	numeric	or	float
expressions	may	be	different	from	a	similar	query	that	does	not	use	the	index	on
the	view.	This	difference	may	be	the	result	of	rounding	errors	during	INSERT,
DELETE,	or	UPDATE	actions	on	underlying	tables.

To	prevent	SQL	Server	from	using	indexed	views,	include	the	OPTION
(EXPAND	VIEWS)	hint	on	the	query.	Also,	setting	any	of	the	listed	options
incorrectly	will	prevent	the	optimizer	from	using	the	indexes	on	the	views.	For
more	information	about	the	OPTION	(EXPAND	VIEWS)	hint,	see	SELECT.

Restrictions	on	indexed	views
The	SELECT	statement	defining	an	indexed	view	must	not	have	the	TOP,
DISTINCT,	COMPUTE,	HAVING,	and	UNION	keywords.	It	cannot	have	a
subquery.

The	SELECT	list	may	not	include	asterisks	(*),	'table.*'	wildcard	lists,
DISTINCT,	COUNT(*),	COUNT(<expression>),	computed	columns	from	the
base	tables,	and	scalar	aggregates.

Nonaggregate	SELECT	lists	cannot	have	expressions.	Aggregate	SELECT	list
(queries	that	contain	GROUP	BY)	may	include	SUM	and
COUNT_BIG(<expression>);	it	must	contain	COUNT_BIG(*).	Other	aggregate

functions	(MIN,	MAX,	STDEV,...)	are	not	allowed.

Complex	aggregation	using	AVG	cannot	participate	in	the	SELECT	list	of	the
indexed	view.	However,	if	a	query	uses	such	aggregation,	the	optimizer	is
capable	of	using	this	indexed	view	to	substitute	AVG	with	a	combination	of
simple	aggregates	SUM	and	COUNT_BIG.

A	column	resulting	from	an	expression	that	either	evaluates	to	a	float	data	type
or	uses	float	expressions	for	its	evaluation	cannot	be	a	key	of	an	index	in	an
indexed	view	or	on	a	computed	column	in	a	table.	Such	columns	are	called
nonprecise.	Use	the	COLUMNPROPERTY	function	to	determine	if	a	particular
computed	column	or	a	column	in	a	view	is	precise.

Indexed	views	are	subject	to	these	additional	restrictions:

The	creator	of	the	index	must	own	the	tables.	All	tables,	the	view,	and
the	index,	must	be	created	in	the	same	database.

The	SELECT	statement	defining	the	indexed	view	may	not	contain
views,	rowset	functions,	inline	functions,	or	derived	tables.	The	same
physical	table	may	occur	only	once	in	the	statement.

In	any	joined	tables,	no	OUTER	JOIN	operations	are	allowed.

No	subqueries	or	CONTAINS	or	FREETEXT	predicates	are	allowed	in
the	search	condition.

If	the	view	definition	contains	a	GROUP	BY	clause,	all	grouping
columns	as	well	as	the	COUNT_BIG(*)	expression	must	appear	in	the
view's	SELECT	list.	Also,	these	columns	must	be	the	only	columns	in
the	CREATE	UNIQUE	CLUSTERED	INDEX	clause.

The	body	of	the	definition	of	a	view	that	can	be	indexed	must	be	deterministic
and	precise,	similar	to	the	requirements	on	indexes	on	computed	columns.	See
Creating	Indexes	on	Computed	Columns.

Permissions

JavaScript:hhobj_5.Click()

CREATE	INDEX	permissions	default	to	the	sysadmin	fixed	server	role	and	the
db_ddladmin	and	db_owner	fixed	database	roles	and	the	table	owner,	and	are
not	transferable.

Examples

A.	Use	a	simple	index
This	example	creates	an	index	on	the	au_id	column	of	the	authors	table.

SET	NOCOUNT	OFF
USE	pubs
IF	EXISTS	(SELECT	name	FROM	sysindexes	
						WHERE	name	=	'au_id_ind')
			DROP	INDEX	authors.au_id_ind
GO
USE	pubs
CREATE	INDEX	au_id_ind
			ON	authors	(au_id)
GO

B.	Use	a	unique	clustered	index
This	example	creates	an	index	on	the	employeeID	column	of	the	emp_pay	table
that	enforces	uniqueness.	This	index	physically	orders	the	data	on	disk	because
the	CLUSTERED	clause	is	specified.

SET	NOCOUNT	ON
USE	pubs
IF	EXISTS	(SELECT	*	FROM	INFORMATION_SCHEMA.TABLES	
						WHERE	TABLE_NAME	=	'emp_pay')
			DROP	TABLE	emp_pay
GO
USE	pubs
IF	EXISTS	(SELECT	name	FROM	sysindexes	
						WHERE	name	=	'employeeID_ind')

			DROP	INDEX	emp_pay.employeeID_ind
GO
USE	pubs
GO
CREATE	TABLE	emp_pay
(
	employeeID	int	NOT	NULL,
	base_pay	money	NOT	NULL,
	commission	decimal(2,	2)	NOT	NULL
)
INSERT	emp_pay
			VALUES	(1,	500,	.10)
INSERT	emp_pay	
			VALUES	(2,	1000,	.05)
INSERT	emp_pay	
			VALUES	(3,	800,	.07)
INSERT	emp_pay
			VALUES	(5,	1500,	.03)
INSERT	emp_pay
			VALUES	(9,	750,	.06)
GO
SET	NOCOUNT	OFF
CREATE	UNIQUE	CLUSTERED	INDEX	employeeID_ind
			ON	emp_pay	(employeeID)
GO

C.	Use	a	simple	composite	index
This	example	creates	an	index	on	the	orderID	and	employeeID	columns	of	the
order_emp	table.

SET	NOCOUNT	ON
USE	pubs
IF	EXISTS	(SELECT	*	FROM	INFORMATION_SCHEMA.TABLES	

						WHERE	TABLE_NAME	=	'order_emp')
			DROP	TABLE	order_emp
GO
USE	pubs
IF	EXISTS	(SELECT	name	FROM	sysindexes	
						WHERE	name	=	'emp_order_ind')
			DROP	INDEX	order_emp.emp_order_ind
GO
USE	pubs
GO
CREATE	TABLE	order_emp
(
	orderID	int	IDENTITY(1000,	1),
	employeeID	int	NOT	NULL,
	orderdate	datetime	NOT	NULL	DEFAULT	GETDATE(),
	orderamount	money	NOT	NULL
)

INSERT	order_emp	(employeeID,	orderdate,	orderamount)
			VALUES	(5,	'4/12/98',	315.19)
INSERT	order_emp	(employeeID,	orderdate,	orderamount)
			VALUES	(5,	'5/30/98',	1929.04)
INSERT	order_emp	(employeeID,	orderdate,	orderamount)
			VALUES	(1,	'1/03/98',	2039.82)
INSERT	order_emp	(employeeID,	orderdate,	orderamount)
			VALUES	(1,	'1/22/98',	445.29)
INSERT	order_emp	(employeeID,	orderdate,	orderamount)
			VALUES	(4,	'4/05/98',	689.39)
INSERT	order_emp	(employeeID,	orderdate,	orderamount)
			VALUES	(7,	'3/21/98',	1598.23)
INSERT	order_emp	(employeeID,	orderdate,	orderamount)
			VALUES	(7,	'3/21/98',	445.77)
INSERT	order_emp	(employeeID,	orderdate,	orderamount)

			VALUES	(7,	'3/22/98',	2178.98)
GO
SET	NOCOUNT	OFF
CREATE	INDEX	emp_order_ind
			ON	order_emp	(orderID,	employeeID)

D.	Use	the	FILLFACTOR	option
This	example	uses	the	FILLFACTOR	clause	set	to	100.	A	FILLFACTOR	of	100
fills	every	page	completely	and	is	useful	only	when	you	know	that	index	values
in	the	table	will	never	change.

SET	NOCOUNT	OFF
USE	pubs
IF	EXISTS	(SELECT	name	FROM	sysindexes	
						WHERE	name	=	'zip_ind')
			DROP	INDEX	authors.zip_ind
GO
USE	pubs
GO
CREATE	NONCLUSTERED	INDEX	zip_ind
			ON	authors	(zip)
			WITH	FILLFACTOR	=	100

E.	Use	the	IGNORE_DUP_KEY
This	example	creates	a	unique	clustered	index	on	the	emp_pay	table.	If	a
duplicate	key	is	entered,	the	INSERT	or	UPDATE	statement	is	ignored.

SET	NOCOUNT	ON
USE	pubs
IF	EXISTS	(SELECT	*	FROM	INFORMATION_SCHEMA.TABLES	
						WHERE	TABLE_NAME	=	'emp_pay')
			DROP	TABLE	emp_pay
GO
USE	pubs

IF	EXISTS	(SELECT	name	FROM	sysindexes	
						WHERE	name	=	'employeeID_ind')
			DROP	INDEX	emp_pay.employeeID_ind
GO
USE	pubs
GO
CREATE	TABLE	emp_pay
(
	employeeID	int	NOT	NULL,
	base_pay	money	NOT	NULL,
	commission	decimal(2,	2)	NOT	NULL
)
INSERT	emp_pay
			VALUES	(1,	500,	.10)
INSERT	emp_pay	
			VALUES	(2,	1000,	.05)
INSERT	emp_pay	
			VALUES	(3,	800,	.07)
INSERT	emp_pay
			VALUES	(5,	1500,	.03)
INSERT	emp_pay
			VALUES	(9,	750,	.06)
GO
SET	NOCOUNT	OFF
GO
CREATE	UNIQUE	CLUSTERED	INDEX	employeeID_ind
			ON	emp_pay(employeeID)
			WITH	IGNORE_DUP_KEY

F.	Create	an	index	with	PAD_INDEX
This	example	creates	an	index	on	the	author's	identification	number	in	the
authors	table.	Without	the	PAD_INDEX	clause,	SQL	Server	creates	leaf	pages
that	are	10	percent	full,	but	the	pages	above	the	leaf	level	are	filled	almost

completely.	With	PAD_INDEX,	the	intermediate	pages	are	also	10	percent	full.

Note		At	least	two	entries	appear	on	the	index	pages	of	unique	clustered	indexes
when	PAD_INDEX	is	not	specified.

SET	NOCOUNT	OFF
USE	pubs
IF	EXISTS	(SELECT	name	FROM	sysindexes	
						WHERE	name	=	'au_id_ind')
			DROP	INDEX	authors.au_id_ind
GO
USE	pubs
CREATE	INDEX	au_id_ind
			ON	authors	(au_id)
			WITH	PAD_INDEX,	FILLFACTOR	=	10

G.	Create	an	index	on	a	view
This	example	will	create	a	view	and	an	index	on	that	view.	Then,	two	queries	are
included	using	the	indexed	view.

USE	Northwind
GO

--Set	the	options	to	support	indexed	views.
SET	NUMERIC_ROUNDABORT	OFF	
GO	
SET	ANSI_PADDING,ANSI_WARNINGS,CONCAT_NULL_YIELDS_NULL,ARITHABORT,QUOTED_IDENTIFIER,ANSI_NULLS	ON
GO

--Create	view.
CREATE			VIEW	V1	
WITH			SCHEMABINDING	
AS	
			SELECT	SUM(UnitPrice*Quantity*(1.00-Discount))	AS	Revenue,	OrderDate,	ProductID,	COUNT_BIG(*)	AS	COUNT	
			FROM			dbo.[Order	Details]	od,	dbo.Orders	o	

			WHERE			od.OrderID=o.OrderID	
			GROUP	BY			OrderDate,	ProductID
GO

--Create	index	on	the	view.
CREATE	UNIQUE	CLUSTERED	INDEX	IV1	ON	V1	(OrderDate,	ProductID)
GO

--This	query	will	use	the	above	indexed	view.
SELECT	SUM(UnitPrice*Quantity*(1.00-Discount))	AS	Rev,	OrderDate,	ProductID
FROM			dbo.[Order	Details]	od,	dbo.Orders	o
WHERE			od.OrderID=o.OrderID	AND	ProductID	in	(2,	4,	25,	13,	7,	89,	22,	34)
			AND	OrderDate	>=	'05/01/1998'
GROUP	BY	OrderDate,	ProductID
ORDER	BY	Rev	DESC

--This	query	will	use	the	above	indexed	view.
SELECT		OrderDate,	SUM(UnitPrice*Quantity*(1.00-Discount))	AS	Rev
FROM			dbo.[Order	Details]	od,	dbo.Orders	o
WHERE			od.OrderID=o.OrderID	AND	DATEPART(mm,OrderDate)=	3
			AND	DATEPART(yy,OrderDate)	=	1998
GROUP	BY	OrderDate
ORDER	BY	OrderDate	ASC

See	Also

ALTER	DATABASE

CREATE	DATABASE

CREATE	STATISTICS

CREATE	TABLE

Data	Types

DBCC	SHOW_STATISTICS

Designing	an	Index

DROP	INDEX

DROP	STATISTICS

Indexes

INSERT

RECONFIGURE

SET

sp_autostats

sp_createstats

sp_dbcmptlevel

sp_dboption

sp_helpindex

sp_spaceused

sysindexes

Transactions

UPDATE

UPDATE	STATISTICS

Using	Identifiers

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

Transact-SQL	Reference

CREATE	PROCEDURE
Creates	a	stored	procedure,	which	is	a	saved	collection	of	Transact-SQL
statements	that	can	take	and	return	user-supplied	parameters.

Procedures	can	be	created	for	permanent	use	or	for	temporary	use	within	a
session	(local	temporary	procedure)	or	for	temporary	use	within	all	sessions
(global	temporary	procedure).

Stored	procedures	can	also	be	created	to	run	automatically	when	Microsoft®
SQL	Server™	starts.

Syntax
CREATE	PROC	[EDURE]	procedure_name	[;	number]	
				[{	@parameter	data_type	}	
								[VARYING]	[=	default]	[OUTPUT]	
]	[,...n]	

[WITH	
				{	RECOMPILE	|	ENCRYPTION	|	RECOMPILE	,	ENCRYPTION	}]	

[FOR	REPLICATION]	

AS	sql_statement	[...n]

Arguments
procedure_name

Is	the	name	of	the	new	stored	procedure.	Procedure	names	must	conform	to
the	rules	for	identifiers	and	must	be	unique	within	the	database	and	its	owner.
For	more	information,	see	Using	Identifiers.

Local	or	global	temporary	procedures	can	be	created	by	preceding	the
procedure_name	with	a	single	number	sign	(#procedure_name)	for	local
temporary	procedures	and	a	double	number	sign	(##procedure_name)	for
global	temporary	procedures.	The	complete	name,	including	#	or	##,	cannot

JavaScript:hhobj_1.Click()

exceed	128	characters.	Specifying	the	procedure	owner	name	is	optional.

;number

Is	an	optional	integer	used	to	group	procedures	of	the	same	name	so	they	can
be	dropped	together	with	a	single	DROP	PROCEDURE	statement.	For
example,	the	procedures	used	with	an	application	called	orders	may	be
named	orderproc;1,	orderproc;2,	and	so	on.	The	statement	DROP
PROCEDURE	orderproc	drops	the	entire	group.	If	the	name	contains
delimited	identifiers,	the	number	should	not	be	included	as	part	of	the
identifier;	use	the	appropriate	delimiter	around	procedure_name	only.

@parameter

Is	a	parameter	in	the	procedure.	One	or	more	parameters	can	be	declared	in	a
CREATE	PROCEDURE	statement.	The	value	of	each	declared	parameter
must	be	supplied	by	the	user	when	the	procedure	is	executed	(unless	a
default	for	the	parameter	is	defined).	A	stored	procedure	can	have	a
maximum	of	2,100	parameters.

Specify	a	parameter	name	using	an	at	sign	(@)	as	the	first	character.	The
parameter	name	must	conform	to	the	rules	for	identifiers.	Parameters	are
local	to	the	procedure;	the	same	parameter	names	can	be	used	in	other
procedures.	By	default,	parameters	can	take	the	place	only	of	constants;	they
cannot	be	used	in	place	of	table	names,	column	names,	or	the	names	of	other
database	objects.	For	more	information,	see	EXECUTE.

data_type

Is	the	parameter	data	type.	All	data	types,	including	text,	ntext	and	image,
can	be	used	as	a	parameter	for	a	stored	procedure.	However,	the	cursor	data
type	can	be	used	only	on	OUTPUT	parameters.	When	you	specify	a	data
type	of	cursor,	the	VARYING	and	OUTPUT	keywords	must	also	be
specified.	For	more	information	about	SQL	Server	-	supplied	data	types	and
their	syntax,	see	Data	Types.

Note		There	is	no	limit	on	the	maximum	number	of	output	parameters	that	can
be	of	cursor	data	type.

VARYING

Specifies	the	result	set	supported	as	an	output	parameter	(constructed

dynamically	by	the	stored	procedure	and	whose	contents	can	vary).	Applies
only	to	cursor	parameters.

default

Is	a	default	value	for	the	parameter.	If	a	default	is	defined,	the	procedure	can
be	executed	without	specifying	a	value	for	that	parameter.	The	default	must
be	a	constant	or	it	can	be	NULL.	It	can	include	wildcard	characters	(%,	_,	[],
and	[^])	if	the	procedure	uses	the	parameter	with	the	LIKE	keyword.

OUTPUT

Indicates	that	the	parameter	is	a	return	parameter.	The	value	of	this	option
can	be	returned	to	EXEC[UTE].	Use	OUTPUT	parameters	to	return
information	to	the	calling	procedure.	Text,	ntext,	and	image	parameters	can
be	used	as	OUTPUT	parameters.	An	output	parameter	using	the	OUTPUT
keyword	can	be	a	cursor	placeholder.

n

Is	a	placeholder	indicating	that	a	maximum	of	2,100	parameters	can	be
specified.

{RECOMPILE	|	ENCRYPTION	|	RECOMPILE,	ENCRYPTION}

RECOMPILE	indicates	that	SQL	Server	does	not	cache	a	plan	for	this
procedure	and	the	procedure	is	recompiled	at	run	time.	Use	the
RECOMPILE	option	when	using	atypical	or	temporary	values	without
overriding	the	execution	plan	cached	in	memory.

ENCRYPTION	indicates	that	SQL	Server	encrypts	the	syscomments	table
entry	containing	the	text	of	the	CREATE	PROCEDURE	statement.	Using
ENCRYPTION	prevents	the	procedure	from	being	published	as	part	of	SQL
Server	replication.

Note		During	an	upgrade,	SQL	Server	uses	the	encrypted	comments	stored	in
syscomments	to	re-create	encrypted	procedures.

FOR	REPLICATION

Specifies	that	stored	procedures	created	for	replication	cannot	be	executed	on
the	Subscriber.	A	stored	procedure	created	with	the	FOR	REPLICATION
option	is	used	as	a	stored	procedure	filter	and	only	executed	during

replication.	This	option	cannot	be	used	with	the	WITH	RECOMPILE	option.

AS

Specifies	the	actions	the	procedure	is	to	take.

sql_statement

Is	any	number	and	type	of	Transact-SQL	statements	to	be	included	in	the
procedure.	Some	limitations	apply.

n

Is	a	placeholder	that	indicates	multiple	Transact-SQL	statements	may	be
included	in	this	procedure.

Remarks
The	maximum	size	of	a	stored	procedure	is	128	MB.

A	user-defined	stored	procedure	can	be	created	only	in	the	current	database
(except	for	temporary	procedures,	which	are	always	created	in	tempdb).	The
CREATE	PROCEDURE	statement	cannot	be	combined	with	other	Transact-
SQL	statements	in	a	single	batch.

Parameters	are	nullable	by	default.	If	a	NULL	parameter	value	is	passed	and	that
parameter	is	used	in	a	CREATE	or	ALTER	TABLE	statement	in	which	the
column	referenced	does	not	allow	NULLs,	SQL	Server	generates	an	error.	To
prevent	passing	a	NULL	parameter	value	to	a	column	that	does	not	allow
NULLs,	add	programming	logic	to	the	procedure	or	use	a	default	value	(with	the
DEFAULT	keyword	of	CREATE	or	ALTER	TABLE)	for	the	column.

It	is	recommended	that	you	explicitly	specify	NULL	or	NOT	NULL	for	each
column	in	any	CREATE	TABLE	or	ALTER	TABLE	statement	in	a	stored
procedure,	such	as	when	creating	a	temporary	table.	The	ANSI_DFLT_ON	and
ANSI_DFLT_OFF	options	control	the	way	SQL	Server	assigns	the	NULL	or
NOT	NULL	attributes	to	columns	if	not	specified	in	a	CREATE	TABLE	or
ALTER	TABLE	statement.	If	a	connection	executes	a	stored	procedure	with
different	settings	for	these	options	than	the	connection	that	created	the
procedure,	the	columns	of	the	table	created	for	the	second	connection	can	have
different	nullability	and	exhibit	different	behaviors.	If	NULL	or	NOT	NULL	is
explicitly	stated	for	each	column,	the	temporary	tables	are	created	with	the	same

nullability	for	all	connections	that	execute	the	stored	procedure.

SQL	Server	saves	the	settings	of	both	SET	QUOTED_IDENTIFIER	and	SET
ANSI_NULLS	when	a	stored	procedure	is	created	or	altered.	These	original
settings	are	used	when	the	stored	procedure	is	executed.	Therefore,	any	client
session	settings	for	SET	QUOTED_IDENTIFIER	and	SET	ANSI_NULLS	are
ignored	during	stored	procedure	execution.	SET	QUOTED_IDENTIFIER	and
SET	ANSI_NULLS	statements	that	occur	within	the	stored	procedure	do	not
affect	the	functionality	of	the	stored	procedure.

Other	SET	options,	such	as	SET	ARITHABORT,	SET	ANSI_WARNINGS,	or
SET	ANSI_PADDINGS	are	not	saved	when	a	stored	procedure	is	created	or
altered.	If	the	logic	of	the	stored	procedure	is	dependent	on	a	particular	setting,
include	a	SET	statement	at	the	start	of	the	procedure	to	ensure	the	proper	setting.
When	a	SET	statement	is	executed	from	a	stored	procedure,	the	setting	remains
in	effect	only	until	the	stored	procedure	completes.	The	setting	is	then	restored	to
the	value	it	had	when	the	stored	procedure	was	called.	This	allows	individual
clients	to	set	the	options	wanted	without	affecting	the	logic	of	the	stored
procedure.

Note		Whether	SQL	Server	interprets	an	empty	string	as	either	a	single	space	or
as	a	true	empty	string	is	controlled	by	the	compatibility	level	setting.	If	the
compatibility	level	is	less	than	or	equal	to	65,	SQL	Server	interprets	empty
strings	as	single	spaces.	If	the	compatibility	level	is	equal	to	70,	SQL	Server
interprets	empty	strings	as	empty	strings.	For	more	information,	see
sp_dbcmptlevel.

Getting	Information	About	Stored	Procedures
To	display	the	text	used	to	create	the	procedure,	execute	sp_helptext	in	the
database	in	which	the	procedure	exists	with	the	procedure	name	as	the
parameter.

Note		Stored	procedures	created	with	the	ENCRYPTION	option	cannot	be
viewed	with	sp_helptext.

For	a	report	on	the	objects	referenced	by	a	procedure,	use	sp_depends.

To	rename	a	procedure,	use	sp_rename.

Referencing	Objects
SQL	Server	allows	the	creation	of	stored	procedures	that	reference	objects	that
do	not	yet	exist.	At	creation	time,	only	syntax	checking	is	done.	The	stored
procedure	is	compiled	to	generate	an	execution	plan	when	executed,	if	a	valid
plan	does	not	already	exist	in	the	cache.	Only	during	compilation	are	all	objects
referenced	in	the	stored	procedure	resolved.	Thus,	a	syntactically	correct	stored
procedure	that	references	objects	which	do	not	exist	can	be	created	successfully,
but	will	fail	at	run	time	because	referenced	objects	do	not	exist.	For	more
information,	see	Deferred	Name	Resolution	and	Compilation.

Deferred	Name	Resolution	and	Compatibility	Level
SQL	Server	allows	Transact-SQL	stored	procedures	to	refer	to	tables	that	do	not
exist	at	creation	time.	This	ability	is	called	deferred	name	resolution.	If,
however,	the	Transact-SQL	stored	procedure	refers	to	a	table	defined	within	the
stored	procedure,	a	warning	is	issued	at	creation	time	if	the	compatibility	level
setting	(set	by	executing	sp_dbcmptlevel)	is	65.	An	error	message	is	returned	at
run	time	if	the	table	referenced	does	not	exist.	For	more	information,	see
sp_dbcmptlevel	and	Deferred	Name	Resolution	and	Compilation.

Executing	Stored	Procedures
When	a	CREATE	PROCEDURE	statement	is	executed	successfully,	the
procedure	name	is	stored	in	the	sysobjects	system	table	and	the	text	of	the
CREATE	PROCEDURE	statement	is	stored	in	syscomments.	When	executed
for	the	first	time,	the	procedure	is	compiled	to	determine	an	optimal	access	plan
to	retrieve	the	data.

Parameters	Using	the	cursor	Data	Type
Stored	procedures	can	use	the	cursor	data	type	only	for	OUTPUT	parameters.	If
the	cursor	data	type	is	specified	for	a	parameter,	both	the	VARYING	and
OUTPUT	parameters	are	required.	If	the	VARYING	keyword	is	specified	for	a
parameter,	the	data	type	must	be	cursor	and	the	OUTPUT	keyword	must	be
specified.

Note		The	cursor	data	type	cannot	be	bound	to	application	variables	through	the
database	APIs	such	as	OLE	DB,	ODBC,	ADO,	and	DB-Library.	Because

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

OUTPUT	parameters	must	be	bound	before	an	application	can	execute	a	stored
procedure,	stored	procedures	with	cursor	OUTPUT	parameters	cannot	be	called
from	the	database	APIs.	These	procedures	can	be	called	from	Transact-SQL
batches,	stored	procedures,	or	triggers	only	when	the	cursor	OUTPUT	variable
is	assigned	to	a	Transact-SQL	local	cursor	variable.

Cursor	Output	Parameters
The	following	rules	pertain	to	cursor	output	parameters	when	the	procedure	is
executed:

For	a	forward-only	cursor,	the	rows	returned	in	the	cursor's	result	set	are
only	those	rows	at	and	beyond	the	position	of	the	cursor	at	the
conclusion	of	the	stored	procedure	executed,	for	example:

A	nonscrollable	cursor	is	opened	in	a	procedure	on	a	result	set
named	RS	of	100	rows.	

The	procedure	fetches	the	first	5	rows	of	result	set	RS.

The	procedure	returns	to	its	caller.

The	result	set	RS	returned	to	the	caller	consists	of	rows	from	6
through	100	of	RS,	and	the	cursor	in	the	caller	is	positioned
before	the	first	row	of	RS.

For	a	forward-only	cursor,	if	the	cursor	is	positioned	before	the	first	row
upon	completion	of	the	stored	procedure,	the	entire	result	set	is	returned
to	the	calling	batch,	stored	procedure,	or	trigger.	When	returned,	the
cursor	position	is	set	before	the	first	row.

For	a	forward-only	cursor,	if	the	cursor	is	positioned	beyond	the	end	of
the	last	row	upon	completion	of	the	stored	procedure,	an	empty	result
set	is	returned	to	the	calling	batch,	stored	procedure,	or	trigger.

Note		An	empty	result	set	is	not	the	same	as	a	null	value.

For	a	scrollable	cursor,	all	the	rows	in	the	result	set	are	returned	to	the
calling	batch,	stored	procedure,	or	trigger	at	the	conclusion	of	the
execution	of	the	stored	procedure.	When	returned,	the	cursor	position	is
left	at	the	position	of	the	last	fetch	executed	in	the	procedure.

For	any	type	of	cursor,	if	the	cursor	is	closed,	then	a	null	value	is	passed
back	to	the	calling	batch,	stored	procedure,	or	trigger.	This	will	also	be
the	case	if	a	cursor	is	assigned	to	a	parameter,	but	that	cursor	is	never
opened.

Note		The	closed	state	matters	only	at	return	time.	For	example,	it	is	valid	to
close	a	cursor	part	way	through	the	procedure,	to	open	it	again	later	in	the
procedure,	and	return	that	cursor's	result	set	to	the	calling	batch,	stored
procedure,	or	trigger.

Temporary	Stored	Procedures
SQL	Server	supports	two	types	of	temporary	procedures:	local	and	global.	A
local	temporary	procedure	is	visible	only	to	the	connection	that	created	it.	A
global	temporary	procedure	is	available	to	all	connections.	Local	temporary
procedures	are	automatically	dropped	at	the	end	of	the	current	session.	Global
temporary	procedures	are	dropped	at	the	end	of	the	last	session	using	the
procedure.	Usually,	this	is	when	the	session	that	created	the	procedure	ends.

Temporary	procedures	named	with	#	and	##	can	be	created	by	any	user.	When
the	procedure	is	created,	the	owner	of	the	local	procedure	is	the	only	one	who
can	use	it.	Permission	to	execute	a	local	temporary	procedure	cannot	be	granted
for	other	users.	If	a	global	temporary	procedure	is	created,	all	users	can	access	it;
permissions	cannot	be	revoked	explicitly.	Explicitly	creating	a	temporary
procedure	in	tempdb	(naming	without	a	number	sign)	can	be	performed	only	by
those	with	explicit	CREATE	PROCEDURE	permission	in	the	tempdb	database.
Permission	can	be	granted	and	revoked	from	these	procedures.

Note		Heavy	use	of	temporary	stored	procedures	can	create	contention	on	the
system	tables	in	tempdb	and	adversely	affect	performance.	It	is	recommended
that	sp_executesql	be	used	instead.	sp_executesql	does	not	store	data	in	the
system	tables	and	therefore	avoids	the	problem.

Automatically	Executing	Stored	Procedures
One	or	more	stored	procedures	can	execute	automatically	when	SQL	Server
starts.	The	stored	procedures	must	be	created	by	the	system	administrator	and
executed	under	the	sysadmin	fixed	server	role	as	a	background	process.	The
procedure(s)	cannot	have	any	input	parameters.

There	is	no	limit	to	the	number	of	startup	procedures	you	can	have,	but	be	aware
that	each	consumes	one	connection	while	executing.	If	you	must	execute
multiple	procedures	at	startup	but	do	not	need	to	execute	them	in	parallel,	make
one	procedure	the	startup	procedure	and	have	that	procedure	call	the	other
procedures.	This	uses	only	one	connection.

Execution	of	the	stored	procedures	starts	when	the	last	database	is	recovered	at
startup.	To	skip	launching	these	stored	procedures,	specify	trace	flag	4022	as	a
startup	parameter.	If	you	start	SQL	Server	with	minimal	configuration	(using	the
-f	flag),	the	startup	stored	procedures	are	not	executed.	For	more	information,
see	Trace	Flags.

To	create	a	startup	stored	procedure,	you	must	be	logged	in	as	a	member	of	the
sysadmin	fixed	server	role	and	create	the	stored	procedure	in	the	master
database.

Use	sp_procoption	to:

Designate	an	existing	stored	procedure	as	a	startup	procedure.

Stop	a	procedure	from	executing	at	SQL	Server	startup.

View	a	list	of	all	procedures	that	execute	at	SQL	Server	startup.

Stored	Procedure	Nesting

Stored	procedures	can	be	nested;	that	is	one	stored	procedure	calling	another.
The	nesting	level	is	incremented	when	the	called	procedure	starts	execution,	and
decremented	when	the	called	procedure	finishes	execution.	Exceeding	the
maximum	levels	of	nesting	causes	the	whole	calling	procedure	chain	to	fail.	The
current	nesting	level	is	returned	by	the	@@NESTLEVEL	function.

To	estimate	the	size	of	a	compiled	stored	procedure,	use	these	Performance
Monitor	Counters.

Performance	Monitor	object	name
Performance	Monitor	Counter
name

SQLServer:	Buffer	Manager Cache	Size	(pages)
SQLServer:	Cache	Manager Cache	Hit	Ratio
	 Cache	Pages
	 Cache	Object	Counts*
*	These	counters	are	available	for	various	categories	of	cache	objects	including	adhoc	sql,	prepared	sql,
procedures,	triggers,	and	so	on.

For	more	information,	see	SQL	Server:	Buffer	Manager	Object	and	SQL	Server:
Cache	Manager	Object.

sql_statement	Limitations
Any	SET	statement	can	be	specified	inside	a	stored	procedure	except	SET
SHOWPLAN_TEXT	and	SET	SHOWPLAN_ALL,	which	must	be	the	only
statements	in	the	batch.	The	SET	option	chosen	remains	in	effect	during	the
execution	of	the	stored	procedure	and	then	reverts	to	its	former	setting.

Inside	a	stored	procedure,	object	names	used	with	certain	statements	must	be
qualified	with	the	name	of	the	object	owner	if	other	users	are	to	use	the	stored
procedure.	The	statements	are:

ALTER	TABLE

CREATE	INDEX

CREATE	TABLE

All	DBCC	statements

DROP	TABLE

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

DROP	INDEX

TRUNCATE	TABLE

UPDATE	STATISTICS

Permissions

CREATE	PROCEDURE	permissions	default	to	members	of	the	sysadmin	fixed
server	role,	and	the	db_owner	and	db_ddladmin	fixed	database	roles.	Members
of	the	sysadmin	fixed	server	role	and	the	db_owner	fixed	database	role	can
transfer	CREATE	PROCEDURE	permissions	to	other	users.	Permission	to
execute	a	stored	procedure	is	given	to	the	procedure	owner,	who	can	then	set
execution	permission	for	other	database	users.

Examples

A.	Use	a	simple	procedure	with	a	complex	SELECT
This	stored	procedure	returns	all	authors	(first	and	last	names	supplied),	their
titles,	and	their	publishers	from	a	four-table	join.	This	stored	procedure	does	not
use	any	parameters.

USE	pubs
IF	EXISTS	(SELECT	name	FROM	sysobjects	
									WHERE	name	=	'au_info_all'	AND	type	=	'P')
			DROP	PROCEDURE	au_info_all
GO
CREATE	PROCEDURE	au_info_all
AS
SELECT	au_lname,	au_fname,	title,	pub_name
			FROM	authors	a	INNER	JOIN	titleauthor	ta
						ON	a.au_id	=	ta.au_id	INNER	JOIN	titles	t
						ON	t.title_id	=	ta.title_id	INNER	JOIN	publishers	p
						ON	t.pub_id	=	p.pub_id

GO

The	au_info_all	stored	procedure	can	be	executed	in	these	ways:

EXECUTE	au_info_all
--	Or
EXEC	au_info_all

Or,	if	this	procedure	is	the	first	statement	within	the	batch:

au_info_all

B.	Use	a	simple	procedure	with	parameters
This	stored	procedure	returns	only	the	specified	authors	(first	and	last	names
supplied),	their	titles,	and	their	publishers	from	a	four-table	join.	This	stored
procedure	accepts	exact	matches	for	the	parameters	passed.

USE	pubs
IF	EXISTS	(SELECT	name	FROM	sysobjects	
									WHERE	name	=	'au_info'	AND	type	=	'P')
			DROP	PROCEDURE	au_info
GO
USE	pubs
GO
CREATE	PROCEDURE	au_info	
			@lastname	varchar(40),	
			@firstname	varchar(20)	
AS	
SELECT	au_lname,	au_fname,	title,	pub_name
			FROM	authors	a	INNER	JOIN	titleauthor	ta
						ON	a.au_id	=	ta.au_id	INNER	JOIN	titles	t
						ON	t.title_id	=	ta.title_id	INNER	JOIN	publishers	p
						ON	t.pub_id	=	p.pub_id
			WHERE		au_fname	=	@firstname
						AND	au_lname	=	@lastname

GO

The	au_info	stored	procedure	can	be	executed	in	these	ways:

EXECUTE	au_info	'Dull',	'Ann'
--	Or
EXECUTE	au_info	@lastname	=	'Dull',	@firstname	=	'Ann'
--	Or
EXECUTE	au_info	@firstname	=	'Ann',	@lastname	=	'Dull'
--	Or
EXEC	au_info	'Dull',	'Ann'
--	Or
EXEC	au_info	@lastname	=	'Dull',	@firstname	=	'Ann'
--	Or
EXEC	au_info	@firstname	=	'Ann',	@lastname	=	'Dull'

Or,	if	this	procedure	is	the	first	statement	within	the	batch:

au_info	'Dull',	'Ann'
--	Or
au_info	@lastname	=	'Dull',	@firstname	=	'Ann'
--	Or
au_info	@firstname	=	'Ann',	@lastname	=	'Dull'

C.	Use	a	simple	procedure	with	wildcard	parameters
This	stored	procedure	returns	only	the	specified	authors	(first	and	last	names
supplied),	their	titles,	and	their	publishers	from	a	four-table	join.	This	stored
procedure	pattern	matches	the	parameters	passed	or,	if	not	supplied,	uses	the
preset	defaults.

USE	pubs
IF	EXISTS	(SELECT	name	FROM	sysobjects	
						WHERE	name	=	'au_info2'	AND	type	=	'P')
			DROP	PROCEDURE	au_info2
GO

USE	pubs
GO
CREATE	PROCEDURE	au_info2
			@lastname	varchar(30)	=	'D%',
			@firstname	varchar(18)	=	'%'
AS	
SELECT	au_lname,	au_fname,	title,	pub_name
FROM	authors	a	INNER	JOIN	titleauthor	ta
			ON	a.au_id	=	ta.au_id	INNER	JOIN	titles	t
			ON	t.title_id	=	ta.title_id	INNER	JOIN	publishers	p
			ON	t.pub_id	=	p.pub_id
WHERE	au_fname	LIKE	@firstname
			AND	au_lname	LIKE	@lastname
GO

The	au_info2	stored	procedure	can	be	executed	in	many	combinations.	Only	a
few	combinations	are	shown	here:

EXECUTE	au_info2
--	Or
EXECUTE	au_info2	'Wh%'
--	Or
EXECUTE	au_info2	@firstname	=	'A%'
--	Or
EXECUTE	au_info2	'[CK]ars[OE]n'
--	Or
EXECUTE	au_info2	'Hunter',	'Sheryl'
--	Or
EXECUTE	au_info2	'H%',	'S%'

D.	Use	OUTPUT	parameters
OUTPUT	parameters	allow	an	external	procedure,	a	batch,	or	more	than	one
Transact-SQL	statements	to	access	a	value	set	during	the	procedure	execution.	In
this	example,	a	stored	procedure	(titles_sum)	is	created	and	allows	one	optional

input	parameter	and	one	output	parameter.

First,	create	the	procedure:

USE	pubs
GO
IF	EXISTS(SELECT	name	FROM	sysobjects
						WHERE	name	=	'titles_sum'	AND	type	=	'P')
			DROP	PROCEDURE	titles_sum
GO
USE	pubs
GO
CREATE	PROCEDURE	titles_sum	@@TITLE	varchar(40)	=	'%',	@@SUM	money	OUTPUT
AS
SELECT	'Title	Name'	=	title
FROM	titles	
WHERE	title	LIKE	@@TITLE	
SELECT	@@SUM	=	SUM(price)
FROM	titles
WHERE	title	LIKE	@@TITLE
GO

Next,	use	the	OUTPUT	parameter	with	control-of-flow	language.

Note		The	OUTPUT	variable	must	be	defined	during	the	table	creation	as	well	as
during	use	of	the	variable.

The	parameter	name	and	variable	name	do	not	have	to	match;	however,	the	data
type	and	parameter	positioning	must	match	(unless	@@SUM	=	variable	is
used).

DECLARE	@@TOTALCOST	money
EXECUTE	titles_sum	'The%',	@@TOTALCOST	OUTPUT
IF	@@TOTALCOST	<	200	
BEGIN
			PRINT	'	'
			PRINT	'All	of	these	titles	can	be	purchased	for	less	than	$200.'

END
ELSE
			SELECT	'The	total	cost	of	these	titles	is	$'	
									+	RTRIM(CAST(@@TOTALCOST	AS	varchar(20)))

Here	is	the	result	set:

Title	Name																																																															
--	
The	Busy	Executive's	Database	Guide
The	Gourmet	Microwave
The	Psychology	of	Computer	Cooking

(3	row(s)	affected)

Warning,	null	value	eliminated	from	aggregate.
	
All	of	these	titles	can	be	purchased	for	less	than	$200.

E.	Use	an	OUTPUT	cursor	parameter
OUTPUT	cursor	parameters	are	used	to	pass	a	cursor	that	is	local	to	a	stored
procedure	back	to	the	calling	batch,	stored	procedure,	or	trigger.

First,	create	the	procedure	that	declares	and	then	opens	a	cursor	on	the	titles
table:

USE	pubs
IF	EXISTS	(SELECT	name	FROM	sysobjects	
						WHERE	name	=	'titles_cursor'	and	type	=	'P')
DROP	PROCEDURE	titles_cursor
GO
CREATE	PROCEDURE	titles_cursor	@titles_cursor	CURSOR	VARYING	OUTPUT
AS
SET	@titles_cursor	=	CURSOR
FORWARD_ONLY	STATIC	FOR

SELECT	*
FROM	titles

OPEN	@titles_cursor
GO

Next,	execute	a	batch	that	declares	a	local	cursor	variable,	executes	the
procedure	to	assign	the	cursor	to	the	local	variable,	and	then	fetches	the	rows
from	the	cursor.

USE	pubs
GO
DECLARE	@MyCursor	CURSOR
EXEC	titles_cursor	@titles_cursor	=	@MyCursor	OUTPUT
WHILE	(@@FETCH_STATUS	=	0)
BEGIN
			FETCH	NEXT	FROM	@MyCursor
END
CLOSE	@MyCursor
DEALLOCATE	@MyCursor
GO

F.	Use	the	WITH	RECOMPILE	option
The	WITH	RECOMPILE	clause	is	helpful	when	the	parameters	supplied	to	the
procedure	will	not	be	typical,	and	when	a	new	execution	plan	should	not	be
cached	or	stored	in	memory.

USE	pubs
IF	EXISTS	(SELECT	name	FROM	sysobjects
						WHERE	name	=	'titles_by_author'	AND	type	=	'P')
			DROP	PROCEDURE	titles_by_author
GO
CREATE	PROCEDURE	titles_by_author	@@LNAME_PATTERN	varchar(30)	=	'%'
WITH	RECOMPILE

AS
SELECT	RTRIM(au_fname)	+	'	'	+	RTRIM(au_lname)	AS	'Authors	full	name',
			title	AS	Title
FROM	authors	a	INNER	JOIN	titleauthor	ta	
			ON	a.au_id	=	ta.au_id	INNER	JOIN	titles	t
			ON	ta.title_id	=	t.title_id
WHERE	au_lname	LIKE	@@LNAME_PATTERN
GO

G.	Use	the	WITH	ENCRYPTION	option
The	WITH	ENCRYPTION	clause	hides	the	text	of	a	stored	procedure	from
users.	This	example	creates	an	encrypted	procedure,	uses	the	sp_helptext	system
stored	procedure	to	get	information	on	that	encrypted	procedure,	and	then
attempts	to	get	information	on	that	procedure	directly	from	the	syscomments
table.

IF	EXISTS	(SELECT	name	FROM	sysobjects
						WHERE	name	=	'encrypt_this'	AND	type	=	'P')
			DROP	PROCEDURE	encrypt_this
GO
USE	pubs
GO
CREATE	PROCEDURE	encrypt_this
WITH	ENCRYPTION
AS
SELECT	*	
FROM	authors
GO

EXEC	sp_helptext	encrypt_this

Here	is	the	result	set:

The	object's	comments	have	been	encrypted.

Next,	select	the	identification	number	and	text	of	the	encrypted	stored	procedure
contents.

SELECT	c.id,	c.text	
FROM	syscomments	c	INNER	JOIN	sysobjects	o
			ON	c.id	=	o.id
WHERE	o.name	=	'encrypt_this'

Here	is	the	result	set:

Note		The	text	column	output	is	shown	on	a	separate	line.	When	executed,	this
information	appears	on	the	same	line	as	the	id	column	information.

id									text																																																								
----------	--
1413580074	?????????????????????????????????e??

(1	row(s)	affected)

H.	Create	a	user-defined	system	stored	procedure
This	example	creates	a	procedure	to	display	all	the	tables	and	their
corresponding	indexes	with	a	table	name	beginning	with	the	string	emp.	If	not
specified,	this	procedure	returns	all	tables	(and	indexes)	with	a	table	name
beginning	with	sys.

IF	EXISTS	(SELECT	name	FROM	sysobjects
						WHERE	name	=	'sp_showindexes'	AND	type	=	'P')
			DROP	PROCEDURE	sp_showindexes
GO
USE	master
GO
CREATE	PROCEDURE	sp_showindexes
			@@TABLE	varchar(30)	=	'sys%'
AS	
SELECT	o.name	AS	TABLE_NAME,
			i.name	AS	INDEX_NAME,	

			indid	AS	INDEX_ID
FROM	sysindexes	i	INNER	JOIN	sysobjects	o
			ON	o.id	=	i.id	
WHERE	o.name	LIKE	@@TABLE
GO									
USE	pubs
EXEC	sp_showindexes	'emp%'
GO

Here	is	the	result	set:

TABLE_NAME							INDEX_NAME							INDEX_ID	
----------------	----------------	----------------
employee									employee_ind					1
employee									PK_emp_id								2

(2	row(s)	affected)

I.	Use	deferred	name	resolution
This	example	shows	four	procedures	and	the	various	ways	that	deferred	name
resolution	can	be	used.	Each	stored	procedure	is	created,	although	the	table	or
column	referenced	does	not	exist	at	compile	time.

IF	EXISTS	(SELECT	name	FROM	sysobjects
						WHERE	name	=	'proc1'	AND	type	=	'P')
			DROP	PROCEDURE	proc1
GO
--	Creating	a	procedure	on	a	nonexistent	table.
USE	pubs
GO
CREATE	PROCEDURE	proc1
AS
			SELECT	*
			FROM	does_not_exist

GO		
--	Here	is	the	statement	to	actually	see	the	text	of	the	procedure.
SELECT	o.id,	c.text
FROM	sysobjects	o	INNER	JOIN	syscomments	c	
			ON	o.id	=	c.id
WHERE	o.type	=	'P'	AND	o.name	=	'proc1'
GO
USE	master
GO
IF	EXISTS	(SELECT	name	FROM	sysobjects
						WHERE	name	=	'proc2'	AND	type	=	'P')
			DROP	PROCEDURE	proc2
GO
--	Creating	a	procedure	that	attempts	to	retrieve	information	from	a
--	nonexistent	column	in	an	existing	table.
USE	pubs
GO
CREATE	PROCEDURE	proc2
AS
			DECLARE	@middle_init	char(1)
			SET	@middle_init	=	NULL
			SELECT	au_id,	middle_initial	=	@middle_init
			FROM	authors
GO		
--	Here	is	the	statement	to	actually	see	the	text	of	the	procedure.
SELECT	o.id,	c.text
FROM	sysobjects	o	INNER	JOIN	syscomments	c	
			ON	o.id	=	c.id
WHERE	o.type	=	'P'	and	o.name	=	'proc2'

See	Also

ALTER	PROCEDURE

Batches

Control-of-Flow	Language

Cursors

DBCC

DECLARE	@local_variable

DROP	PROCEDURE

Functions

GRANT

Programming	Stored	Procedures

SELECT

sp_addextendedproc

sp_depends

sp_helptext

sp_procoption

sp_recompile

sp_rename

System	Tables

Using	Comments

Using	Variables	and	Parameters

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()

Transact-SQL	Reference

CREATE	RULE
Creates	an	object	called	a	rule.	When	bound	to	a	column	or	a	user-defined	data
type,	a	rule	specifies	the	acceptable	values	that	can	be	inserted	into	that	column.
Rules,	a	backward	compatibility	feature,	perform	some	of	the	same	functions	as
check	constraints.	CHECK	constraints,	created	using	the	CHECK	keyword	of
ALTER	or	CREATE	TABLE,	are	the	preferred,	standard	way	to	restrict	the
values	in	a	column	(multiple	constraints	can	be	defined	on	one	or	multiple
columns).	A	column	or	user-defined	data	type	can	have	only	one	rule	bound	to	it.
However,	a	column	can	have	both	a	rule	and	one	or	more	check	constraints
associated	with	it.	When	this	is	true,	all	restrictions	are	evaluated.

Syntax
CREATE	RULE	rule	
				AS	condition_expression

Arguments
rule

Is	the	name	of	the	new	rule.	Rule	names	must	conform	to	the	rules	for
identifiers.	Specifying	the	rule	owner	name	is	optional.

condition_expression

Is	the	condition(s)	defining	the	rule.	A	rule	can	be	any	expression	valid	in	a
WHERE	clause	and	can	include	such	elements	as	arithmetic	operators,
relational	operators,	and	predicates	(for	example,	IN,	LIKE,	BETWEEN).	A
rule	cannot	reference	columns	or	other	database	objects.	Built-in	functions
that	do	not	reference	database	objects	can	be	included.

condition_expression	includes	one	variable.	The	at	sign	(@)	precedes	each
local	variable.	The	expression	refers	to	the	value	entered	with	the	UPDATE
or	INSERT	statement.	Any	name	or	symbol	can	be	used	to	represent	the
value	when	creating	the	rule,	but	the	first	character	must	be	the	at	sign	(@).

Remarks

The	CREATE	RULE	statement	cannot	be	combined	with	other	Transact-SQL
statements	in	a	single	batch.	Rules	do	not	apply	to	data	already	existing	in	the
database	at	the	time	the	rules	are	created,	and	rules	cannot	be	bound	to	system
data	types.	A	rule	can	be	created	only	in	the	current	database.	After	creating	a
rule,	execute	sp_bindrule	to	bind	the	rule	to	a	column	or	to	a	user-defined	data
type.

The	rule	must	be	compatible	with	the	column	data	type.	A	rule	cannot	be	bound
to	a	text,	image,	or	timestamp	column.	Be	sure	to	enclose	character	and	date
constants	with	single	quotation	marks	(')	and	to	precede	binary	constants	with
0x.	For	example,	"@value	LIKE	A%"	cannot	be	used	as	a	rule	for	a	numeric
column.	If	the	rule	is	not	compatible	with	the	column	to	which	it	is	bound,
Microsoft®	SQL	Server™	returns	an	error	message	when	inserting	a	value,	but
not	when	the	rule	is	bound.

A	rule	bound	to	a	user-defined	data	type	is	activated	only	when	you	attempt	to
insert	a	value	into,	or	to	update,	a	database	column	of	the	user-defined	data	type.
Because	rules	do	not	test	variables,	do	not	assign	a	value	to	a	user-defined	data
type	variable	that	would	be	rejected	by	a	rule	bound	to	a	column	of	the	same
data	type.

To	get	a	report	on	a	rule,	use	sp_help.	To	display	the	text	of	a	rule,	execute
sp_helptext	with	the	rule	name	as	the	parameter.	To	rename	a	rule,	use
sp_rename.

A	rule	must	be	dropped	(using	DROP	RULE)	before	a	new	one	with	the	same
name	is	created,	and	the	rule	must	be	unbound	(using	sp_unbindrule)	before	it
is	dropped.	Use	sp_unbindrule	to	unbind	a	rule	from	a	column.

You	can	bind	a	new	rule	to	a	column	or	data	type	without	unbinding	the	previous
one;	the	new	rule	overrides	the	previous	one.	Rules	bound	to	columns	always
take	precedence	over	rules	bound	to	user-defined	data	types.	Binding	a	rule	to	a
column	replaces	a	rule	already	bound	to	the	user-defined	data	type	of	that
column.	But	binding	a	rule	to	a	data	type	does	not	replace	a	rule	bound	to	a
column	of	that	user-defined	data	type.	The	table	shows	the	precedence	in	effect
when	binding	rules	to	columns	and	to	user-defined	data	types	where	rules
already	exist.

	 Old	rule	bound	to

New	rule	bound	to user-defined	data	type Column
User-defined	data	type Old	rule	replaced No	change
Column Old	rule	replaced Old	rule	replaced

If	a	column	has	both	a	default	and	a	rule	associated	with	it,	the	default	must	fall
within	the	domain	defined	by	the	rule.	A	default	that	conflicts	with	a	rule	is
never	inserted.	SQL	Server	generates	an	error	message	each	time	it	attempts	to
insert	such	a	default.

Note		Whether	SQL	Server	interprets	an	empty	string	as	a	single	space	or	as	a
true	empty	string	is	controlled	by	the	setting	of	sp_dbcmptlevel.	If	the
compatibility	level	is	less	than	or	equal	to	65,	SQL	Server	interprets	empty
strings	as	single	spaces.	If	the	compatibility	level	is	equal	to	70,	SQL	Server
interprets	empty	strings	as	empty	strings.	For	more	information,	see
sp_dbcmptlevel.

Permissions
CREATE	RULE	permissions	default	to	the	members	of	the	sysadmin	fixed
server	role	and	the	db_ddladmin	and	db_owner	fixed	database	roles.	Members
of	the	sysadmin,	db_owner	and	db_securityadmin	roles	can	transfer
permissions	to	other	users.

Examples

A.	Rule	with	a	range
This	example	creates	a	rule	that	restricts	the	range	of	integers	inserted	into	the
column(s)	to	which	this	rule	is	bound.

CREATE	RULE	range_rule
AS	
@range	>=	$1000	AND	@range	<	$20000

B.	Rule	with	a	list
This	example	creates	a	rule	that	restricts	the	actual	values	entered	into	the

column	or	columns	(to	which	this	rule	is	bound)	to	only	those	listed	in	the	rule.

CREATE	RULE	list_rule
AS	
@list	IN	('1389',	'0736',	'0877')

C.	Rule	with	a	pattern
This	example	creates	a	rule	to	follow	a	pattern	of	any	two	characters	followed	by
a	hyphen,	any	number	of	characters	(or	no	characters),	and	ending	with	an
integer	from	0	through	9.

CREATE	RULE	pattern_rule	
AS
@value	LIKE	'_	_-%[0-9]'

See	Also

ALTER	TABLE

Batches

CREATE	DEFAULT

CREATE	TABLE

DROP	DEFAULT

DROP	RULE

Expressions

sp_bindrule

sp_help

sp_helptext

sp_rename

sp_unbindrule

Using	Identifiers

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

WHERE

Transact-SQL	Reference

CREATE	SCHEMA
Creates	a	schema	that	can	be	thought	of	as	a	conceptual	object	containing
definitions	of	tables,	views,	and	permissions.

Syntax
CREATE	SCHEMA	AUTHORIZATION	owner	
				[<	schema_element	>	[...n]]

<	schema_element	>	::=	
				{	table_definition	|	view_definition	|	grant_statement	}

Arguments
AUTHORIZATION	owner

Specifies	the	ID	of	the	schema	object	owner.	This	identifier	must	be	a	valid
security	account	in	the	database.

table_definition

Specifies	a	CREATE	TABLE	statement	that	creates	a	table	within	the
schema.

view_definition

Specifies	a	CREATE	VIEW	statement	that	creates	a	view	within	the	schema.

grant_statement

Specifies	a	GRANT	statement	that	grants	permissions	for	a	user	or	a	group
of	users.

Remarks
CREATE	SCHEMA	provides	a	way	to	create	tables	and	views	and	to	grant
permissions	for	objects	with	a	single	statement.	If	errors	occur	when	creating
any	objects	or	granting	any	permissions	specified	in	a	CREATE	SCHEMA
statement,	none	of	the	objects	are	created.

The	created	objects	do	not	have	to	appear	in	logical	order,	except	for	views	that
reference	other	views.	For	example,	a	GRANT	statement	can	grant	permission
for	an	object	before	the	object	itself	is	created,	or	a	CREATE	VIEW	statement
can	appear	before	the	CREATE	TABLE	statements	creating	the	tables	referenced
by	the	view.	Also,	CREATE	TABLE	statements	can	declare	foreign	keys	to
tables	specified	later.	The	exception	is	that	if	the	select	from	one	view	references
another	view,	the	referenced	view	must	be	specified	before	the	view	that
references	it.

Permissions
CREATE	SCHEMA	permissions	default	to	all	users,	but	they	must	have
permissions	to	create	the	objects	that	participate	in	the	schema.

Examples

A.	Grant	access	to	objects	before	object	creation
This	example	shows	permissions	granted	before	the	objects	are	created.

CREATE	SCHEMA	AUTHORIZATION	ross	
GRANT	SELECT	on	v1	TO	public
CREATE	VIEW	v1(c1)	AS	SELECT	c1	from	t1
CREATE	TABLE	t1(c1	int)

B.	Create	mutually	dependent	FOREIGN	KEY	constraints
This	example	creates	mutually	dependent	FOREIGN	KEY	constraints.	Other
methods	would	take	several	steps	to	accomplish	what	is	enabled	by	this
CREATE	SCHEMA	example.

CREATE	SCHEMA	AUTHORIZATION	ross
CREATE	TABLE	t1	(c1	INT	PRIMARY	KEY,	c2	INT	REFERENCES	t2(c1))
CREATE	TABLE	t2	(c1	INT	PRIMARY	KEY,	c2	INT	REFERENCES	t1(c1))

Transact-SQL	Reference

CREATE	STATISTICS
Creates	a	histogram	and	associated	density	groups	(collections)	over	the	supplied
column	or	set	of	columns.

Syntax
CREATE	STATISTICS	statistics_name	
ON	{	table	|	view	}	(column	[,...n])	
				[WITH	
								[[FULLSCAN	
												|	SAMPLE	number	{	PERCENT	|	ROWS	}]	[,]]	
								[NORECOMPUTE]	
]

Arguments
statistics_name

Is	the	name	of	the	statistics	group	to	create.	Statistics	names	must	conform	to
the	rules	for	identifiers.

table

Is	the	name	of	the	table	on	which	to	create	the	named	statistics.	Table	names
must	conform	to	the	rules	for	identifiers.	table	is	the	table	with	which	the
column	is	associated.	Specifying	the	table	owner	name	is	optional.	Statistics
can	be	created	on	tables	in	another	database	by	specifying	a	qualified
database	name.

view

Is	the	name	of	the	view	on	which	to	create	the	named	statistics.	A	view	must
have	a	clustered	index	before	statistics	can	be	created	on	it.	View	names
must	conform	to	the	rules	for	identifiers.	view	is	the	view	with	which	the
column	is	associated.	Specifying	the	view	owner	name	is	optional.	Statistics
can	be	created	on	views	in	another	database	by	specifying	a	qualified
database	name.

column

Is	the	column	or	set	of	columns	on	which	to	create	statistics.	Computed
columns	and	columns	of	the	ntext,	text,	or	image	data	types	cannot	be
specified	as	statistics	columns.

n

Is	a	placeholder	indicating	that	multiple	columns	can	be	specified.

FULLSCAN

Specifies	that	all	rows	in	table	should	be	read	to	gather	the	statistics.
Specifying	FULLSCAN	provides	the	same	behavior	as	SAMPLE	100
PERCENT.	This	option	cannot	be	used	with	the	SAMPLE	option.

SAMPLE	number	{	PERCENT	|	ROWS	}

Specifies	that	a	percentage,	or	a	specified	number	of	rows,	of	the	data	should
be	read	using	random	sampling	to	gather	the	statistics.	number	can	be	only
an	integer:	if	PERCENT,	number	should	be	from	0	through	100;	if	ROWS,
number	can	be	from	0	to	the	n	total	rows.

This	option	cannot	be	used	with	the	FULLSCAN	option.	If	no	SAMPLE	or
FULLSCAN	option	is	given,	an	automatic	sample	is	computed	by
Microsoft®	SQL	Server™.

NORECOMPUTE

Specifies	that	automatic	recomputation	of	the	statistics	should	be	disabled.	If
this	option	is	specified,	SQL	Server	continues	to	use	previously	created	(old)
statistics	even	as	the	data	changes.	The	statistics	are	not	automatically
updated	and	maintained	by	SQL	Server,	which	may	produce	suboptimal
plans.

WARNING		It	is	recommended	that	this	option	be	used	rarely	and	only	by	a
trained	system	administrator.

Remarks
Only	the	table	owner	can	create	statistics	on	that	table.	The	owner	of	a	table	can
create	a	statistics	group	(collection)	at	any	time,	whether	or	not	there	is	data	in

the	table.

CREATE	STATISTICS	can	be	executed	on	views	with	clustered	index,	or
indexed	views.	Statistics	on	indexed	views	are	used	by	the	optimizer	only	if	the
view	is	directly	referenced	in	the	query	and	the	NOEXPAND	hint	is	specified	for
the	view.	Otherwise,	the	statistics	are	derived	from	the	underlying	tables	before
the	indexed	view	is	substituted	into	the	query	plan.	Such	substitution	is
supported	only	on	Microsoft	SQL	Server	2000	Enterprise	and	Developer
Editions.

Permissions
CREATE	STATISTICS	permissions	default	to	members	of	the	sysadmin	fixed
server	role	and	the	db_ddladmin	and	db_owner	fixed	database	roles	and	the
table	owner,	and	are	not	transferable.

Examples

A.	Use	CREATE	STATISTICS	with	SAMPLE	number	PERCENT
This	example	creates	the	names	statistics	group	(collection),	which	calculates
random	sampling	statistics	on	five	percent	of	the	CompanyName	and
ContactName	columns	of	the	Customers	table.

CREATE	STATISTICS	names
			ON	Customers	(CompanyName,	ContactName)
			WITH	SAMPLE	5	PERCENT
GO

B.	Use	CREATE	STATISTICS	with	FULLSCAN	and
NORECOMPUTE
This	example	creates	the	names	statistics	group	(collection),	which	calculates
statistics	for	all	rows	in	the	CompanyName	and	ContactName	columns	of	the
Customers	table	and	disables	automatic	recomputation	of	statistics.

CREATE	STATISTICS	names
			ON	Northwind..Customers	(CompanyName,	ContactName)

			WITH	FULLSCAN,	NORECOMPUTE
GO

See	Also

CREATE	INDEX

DBCC	SHOW_STATISTICS

DROP	STATISTICS

sp_autostats

sp_createstats

sp_dboption

UPDATE	STATISTICS

Transact-SQL	Reference

CREATE	TABLE
Creates	a	new	table.

Syntax
CREATE	TABLE	
				[database_name.[owner]	.	|	owner.]	table_name	
				({	<	column_definition	>	
								|	column_name	AS	computed_column_expression	
								|	<	table_constraint	>	::=	[CONSTRAINT	constraint_name]	}

												|	[{	PRIMARY	KEY	|	UNIQUE	}	[,...n]	
)	

[ON	{	filegroup	|	DEFAULT	}]	
[TEXTIMAGE_ON	{	filegroup	|	DEFAULT	}]	

<	column_definition	>	::=	{	column_name	data_type	}	
				[COLLATE	<	collation_name	>]	
				[[DEFAULT	constant_expression]	
								|	[IDENTITY	[(seed	,	increment)	[NOT	FOR	REPLICATION]]]
]	
				[ROWGUIDCOL]	
				[<	column_constraint	>]	[...n]	

<	column_constraint	>	::=	[CONSTRAINT	constraint_name]	
				{	[NULL	|	NOT	NULL]	
								|	[{	PRIMARY	KEY	|	UNIQUE	}	
												[CLUSTERED	|	NONCLUSTERED]	
												[WITH	FILLFACTOR	=	fillfactor]	
												[ON	{filegroup	|	DEFAULT}]]	
]	
								|	[[FOREIGN	KEY]	
												REFERENCES	ref_table	[(ref_column)]	
												[ON	DELETE	{	CASCADE	|	NO	ACTION	}]	

												[ON	UPDATE	{	CASCADE	|	NO	ACTION	}]	
												[NOT	FOR	REPLICATION]	
]	
								|	CHECK	[NOT	FOR	REPLICATION]	
								(logical_expression)	
				}

<	table_constraint	>	::=	[CONSTRAINT	constraint_name]	
				{	[{	PRIMARY	KEY	|	UNIQUE	}	
								[CLUSTERED	|	NONCLUSTERED]	
								{	(column	[ASC	|	DESC]	[,...n])	}	
								[WITH	FILLFACTOR	=	fillfactor]	
								[ON	{	filegroup	|	DEFAULT	}]	
]	
				|	FOREIGN	KEY	
								[(column	[,...n])]	
								REFERENCES	ref_table	[(ref_column	[,...n])]	
								[ON	DELETE	{	CASCADE	|	NO	ACTION	}]	
								[ON	UPDATE	{	CASCADE	|	NO	ACTION	}]	
								[NOT	FOR	REPLICATION]	
				|	CHECK	[NOT	FOR	REPLICATION]	
								(search_conditions)	
				}

Arguments
database_name

Is	the	name	of	the	database	in	which	the	table	is	created.	database_name
must	specify	the	name	of	an	existing	database.	database_name	defaults	to
the	current	database	if	not	specified.	The	login	for	the	current	connection
must	be	associated	with	an	existing	user	ID	in	the	database	specified	by
database_name,	and	that	user	ID	must	have	create	table	permissions.

owner

Is	the	name	of	the	user	ID	that	owns	the	new	table.	owner	must	be	an
existing	user	ID	in	the	database	specified	by	database_name.	owner	defaults
to	the	user	ID	associated	with	the	login	for	the	current	connection	in	the

database	specified	in	database_name.	If	the	CREATE	TABLE	statement	is
executed	by	a	member	of	the	sysadmin	fixed	server	role,	or	a	member	of	the
db_dbowner	or	db_ddladmin	fixed	database	roles	in	the	database	specified
by	database_name,	owner	can	specify	a	user	ID	other	than	the	one
associated	with	the	login	of	the	current	connection.	If	the	CREATE	TABLE
statement	is	executed	by	a	login	associated	with	a	user	ID	that	has	only
create	table	permissions,	owner	must	specify	the	user	ID	associated	with	the
current	login.	Members	of	the	sysadmin	fixed	server	role,	or	logins	aliased
to	the	dbo	user	are	associated	with	the	user	ID	dbo;	therefore,	tables	created
by	these	users	default	to	having	dbo	as	the	owner.	Tables	created	by	any
logins	not	in	either	of	these	two	roles	have	owner	default	to	the	user	ID
associated	with	the	login.

table_name

Is	the	name	of	the	new	table.	Table	names	must	conform	to	the	rules	for
identifiers.	The	combination	of	owner.table_name	must	be	unique	within	the
database.	table_name	can	contain	a	maximum	of	128	characters,	except	for
local	temporary	table	names	(names	prefixed	with	a	single	number	sign	(#))
that	cannot	exceed	116	characters.

column_name

Is	the	name	of	a	column	in	the	table.	Column	names	must	conform	to	the
rules	for	identifiers	and	must	be	unique	in	the	table.	column_name	can	be
omitted	for	columns	created	with	a	timestamp	data	type.	The	name	of	a
timestamp	column	defaults	to	timestamp	if	column_name	is	not	specified.

computed_column_expression

Is	an	expression	defining	the	value	of	a	computed	column.	A	computed
column	is	a	virtual	column	not	physically	stored	in	the	table.	It	is	computed
from	an	expression	using	other	columns	in	the	same	table.	For	example,	a
computed	column	can	have	the	definition:	cost	AS	price	*	qty.	The
expression	can	be	a	noncomputed	column	name,	constant,	function,	variable,
and	any	combination	of	these	connected	by	one	or	more	operators.	The
expression	cannot	be	a	subquery.

Computed	columns	can	be	used	in	select	lists,	WHERE	clauses,	ORDER	BY
clauses,	or	any	other	locations	in	which	regular	expressions	can	be	used,	with
the	following	exceptions:

A	computed	column	cannot	be	used	as	a	DEFAULT	or	FOREIGN	KEY
constraint	definition	or	with	a	NOT	NULL	constraint	definition.
However,	a	computed	column	can	be	used	as	a	key	column	in	an	index
or	as	part	of	any	PRIMARY	KEY	or	UNIQUE	constraint,	if	the
computed	column	value	is	defined	by	a	deterministic	expression	and	the
data	type	of	the	result	is	allowed	in	index	columns.

For	example,	if	the	table	has	integer	columns	a	and	b,	the	computed
column	a+b	may	be	indexed,	but	computed	column	a+DATEPART(dd,
GETDATE())	cannot	be	indexed	because	the	value	may	change	in
subsequent	invocations.

A	computed	column	cannot	be	the	target	of	an	INSERT	or	UPDATE
statement.

Note		Each	row	in	a	table	can	have	different	values	for	columns
involved	in	a	computed	column,	therefore	the	computed	column	may
not	have	the	same	value	for	each	row.

The	nullability	of	computed	columns	is	determined	automatically	by
SQL	Server	based	on	the	expressions	used.	The	result	of	most
expressions	is	considered	nullable	even	if	only	non-nullable	columns
are	present	because	possible	underflows	or	overflows	will	produce
NULL	results	as	well.	Use	the	COLUMNPROPERTY	function
(AllowsNull	property)	to	investigate	the	nullability	of	any	computed
column	in	a	table.	An	expression	expr	that	is	nullable	can	be	turned	into
a	non-nullable	one	by	specifying	ISNULL(check_expression,	constant)
where	the	constant	is	a	non-NULL	value	substituted	for	any	NULL
result.

ON	{filegroup	|	DEFAULT}

Specifies	the	filegroup	on	which	the	table	is	stored.	If	filegroup	is	specified,
the	table	is	stored	in	the	named	filegroup.	The	filegroup	must	exist	within	the
database.	If	DEFAULT	is	specified,	or	if	ON	is	not	specified	at	all,	the	table
is	stored	on	the	default	filegroup.

ON	{filegroup	|	DEFAULT}	can	also	be	specified	in	a	PRIMARY	KEY	or
UNIQUE	constraint.	These	constraints	create	indexes.	If	filegroup	is

specified,	the	index	is	stored	in	the	named	filegroup.	If	DEFAULT	is
specified,	the	index	is	stored	in	the	default	filegroup.	If	no	filegroup	is
specified	in	a	constraint,	the	index	is	stored	on	the	same	filegroup	as	the
table.	If	the	PRIMARY	KEY	or	UNIQUE	constraint	creates	a	clustered
index,	the	data	pages	for	the	table	are	stored	in	the	same	filegroup	as	the
index.

Note		DEFAULT,	in	the	context	of	ON	{filegroup	|	DEFAULT}	and
TEXTIMAGE_ON	{filegroup	|	DEFAULT},	is	not	a	keyword.	DEFAULT	is	an
identifier	for	the	default	filegroup	and	must	be	delimited,	as	in	ON	"DEFAULT"
or	ON	[DEFAULT]	and	TEXTIMAGE_ON	"DEFAULT"	or	TEXTIMAGE_ON
[DEFAULT].

TEXTIMAGE_ON

Are	keywords	indicating	that	the	text,	ntext,	and	image	columns	are	stored
on	the	specified	filegroup.	TEXTIMAGE	ON	is	not	allowed	if	there	are	no
text,	ntext,	or	image	columns	in	the	table.	If	TEXTIMAGE_ON	is	not
specified,	the	text,	ntext,	and	image	columns	are	stored	in	the	same
filegroup	as	the	table.

data_type

Specifies	the	column	data	type.	System	or	user-defined	data	types	are
acceptable.	User-defined	data	types	are	created	with	sp_addtype	before	they
can	be	used	in	a	table	definition.

The	NULL/NOT	NULL	assignment	for	a	user-defined	data	type	can	be
overridden	during	the	CREATE	TABLE	statement.	However,	the	length
specification	cannot	be	changed;	you	cannot	specify	a	length	for	a	user-
defined	data	type	in	a	CREATE	TABLE	statement.

DEFAULT

Specifies	the	value	provided	for	the	column	when	a	value	is	not	explicitly
supplied	during	an	insert.	DEFAULT	definitions	can	be	applied	to	any
columns	except	those	defined	as	timestamp,	or	those	with	the	IDENTITY
property.	DEFAULT	definitions	are	removed	when	the	table	is	dropped.	Only
a	constant	value,	such	as	a	character	string;	a	system	function,	such	as
SYSTEM_USER();	or	NULL	can	be	used	as	a	default.	To	maintain
compatibility	with	earlier	versions	of	SQL	Server,	a	constraint	name	can	be

assigned	to	a	DEFAULT.

constant_expression

Is	a	constant,	NULL,	or	a	system	function	used	as	the	default	value	for	the
column.

IDENTITY

Indicates	that	the	new	column	is	an	identity	column.	When	a	new	row	is
added	to	the	table,	Microsoft®	SQL	Server™	provides	a	unique,	incremental
value	for	the	column.	Identity	columns	are	commonly	used	in	conjunction
with	PRIMARY	KEY	constraints	to	serve	as	the	unique	row	identifier	for	the
table.	The	IDENTITY	property	can	be	assigned	to	tinyint,	smallint,	int,
bigint,	decimal(p,0),	or	numeric(p,0)	columns.	Only	one	identity	column
can	be	created	per	table.	Bound	defaults	and	DEFAULT	constraints	cannot
be	used	with	an	identity	column.	You	must	specify	both	the	seed	and
increment	or	neither.	If	neither	is	specified,	the	default	is	(1,1).

seed

Is	the	value	used	for	the	very	first	row	loaded	into	the	table.

increment

Is	the	incremental	value	added	to	the	identity	value	of	the	previous	row
loaded.

NOT	FOR	REPLICATION

Indicates	that	the	IDENTITY	property	should	not	be	enforced	when	a
replication	login	such	as	sqlrepl	inserts	data	into	the	table.	Replicated	rows
must	retain	the	key	values	assigned	in	the	publishing	database;	the	NOT
FOR	REPLICATION	clause	ensures	that	rows	inserted	by	a	replication
process	are	not	assigned	new	identity	values.	Rows	inserted	by	other	logins
continue	to	have	new	identity	values	created	in	the	usual	way.	It	is
recommended	that	a	CHECK	constraint	with	NOT	FOR	REPLICATION	also
be	defined	to	ensure	that	the	identity	values	assigned	are	within	the	range
wanted	for	the	current	database.

ROWGUIDCOL

Indicates	that	the	new	column	is	a	row	global	unique	identifier	column.	Only

one	uniqueidentifier	column	per	table	can	be	designated	as	the
ROWGUIDCOL	column.	The	ROWGUIDCOL	property	can	be	assigned
only	to	a	uniqueidentifier	column.	The	ROWGUIDCOL	keyword	is	not
valid	if	the	database	compatibility	level	is	65	or	lower.	For	more	information,
see	sp_dbcmptlevel.

The	ROWGUIDCOL	property	does	not	enforce	uniqueness	of	the	values
stored	in	the	column.	It	also	does	not	automatically	generate	values	for	new
rows	inserted	into	the	table.	To	generate	unique	values	for	each	column,
either	use	the	NEWID	function	on	INSERT	statements	or	use	the	NEWID
function	as	the	default	for	the	column.

collation_name

Specifies	the	collation	for	the	column.	Collation	name	can	be	either	a
Windows	collation	name	or	a	SQL	collation	name.	The	collation_name	is
applicable	only	for	columns	of	the	char,	varchar,	text,	nchar,	nvarchar,
and	ntext	data	types.	If	not	specified,	the	column	is	assigned	either	the
collation	of	the	user-defined	data	type,	if	the	column	is	of	a	user-defined	data
type,	or	the	default	collation	of	the	database.

For	more	information	about	the	Windows	and	SQL	collation	names,	see
COLLATE.

CONSTRAINT

Is	an	optional	keyword	indicating	the	beginning	of	a	PRIMARY	KEY,	NOT
NULL,	UNIQUE,	FOREIGN	KEY,	or	CHECK	constraint	definition.
Constraints	are	special	properties	that	enforce	data	integrity	and	they	may
create	indexes	for	the	table	and	its	columns.

constraint_name

Is	the	name	of	a	constraint.	Constraint	names	must	be	unique	within	a
database.

NULL	|	NOT	NULL

Are	keywords	that	determine	if	null	values	are	allowed	in	the	column.	NULL
is	not	strictly	a	constraint	but	can	be	specified	in	the	same	manner	as	NOT
NULL.

PRIMARY	KEY

Is	a	constraint	that	enforces	entity	integrity	for	a	given	column	or	columns
through	a	unique	index.	Only	one	PRIMARY	KEY	constraint	can	be	created
per	table.

UNIQUE

Is	a	constraint	that	provides	entity	integrity	for	a	given	column	or	columns
through	a	unique	index.	A	table	can	have	multiple	UNIQUE	constraints.

CLUSTERED	|	NONCLUSTERED

Are	keywords	to	indicate	that	a	clustered	or	a	nonclustered	index	is	created
for	the	PRIMARY	KEY	or	UNIQUE	constraint.	PRIMARY	KEY	constraints
default	to	CLUSTERED	and	UNIQUE	constraints	default	to
NONCLUSTERED.

You	can	specify	CLUSTERED	for	only	one	constraint	in	a	CREATE	TABLE
statement.	If	you	specify	CLUSTERED	for	a	UNIQUE	constraint	and	also
specify	a	PRIMARY	KEY	constraint,	the	PRIMARY	KEY	defaults	to
NONCLUSTERED.

[WITH	FILLFACTOR	=	fillfactor]

Specifies	how	full	SQL	Server	should	make	each	index	page	used	to	store
the	index	data.	User-specified	fillfactor	values	can	be	from	1	through	100,
with	a	default	of	0.	A	lower	fill	factor	creates	the	index	with	more	space
available	for	new	index	entries	without	having	to	allocate	new	space.

FOREIGN	KEY...REFERENCES

Is	a	constraint	that	provides	referential	integrity	for	the	data	in	the	column	or
columns.	FOREIGN	KEY	constraints	require	that	each	value	in	the	column
exists	in	the	corresponding	referenced	column(s)	in	the	referenced	table.
FOREIGN	KEY	constraints	can	reference	only	columns	that	are	PRIMARY
KEY	or	UNIQUE	constraints	in	the	referenced	table	or	columns	referenced
in	a	UNIQUE	INDEX	on	the	referenced	table.

ref_table

Is	the	name	of	the	table	referenced	by	the	FOREIGN	KEY	constraint.

(ref_column[,...n])

Is	a	column,	or	list	of	columns,	from	the	table	referenced	by	the	FOREIGN
KEY	constraint.

ON	DELETE	{CASCADE	|	NO	ACTION}

Specifies	what	action	takes	place	to	a	row	in	the	table	created,	if	that	row	has
a	referential	relationship	and	the	referenced	row	is	deleted	from	the	parent
table.	The	default	is	NO	ACTION.

If	CASCADE	is	specified,	a	row	is	deleted	from	the	referencing	table	if	that
row	is	deleted	from	the	parent	table.	If	NO	ACTION	is	specified,	SQL
Server	raises	an	error	and	the	delete	action	on	the	row	in	the	parent	table	is
rolled	back.

For	example,	in	the	Northwind	database,	the	Orders	table	has	a	referential
relationship	with	the	Customers	table.	The	Orders.CustomerID	foreign
key	references	the	Customers.CustomerID	primary	key.

If	a	DELETE	statement	is	executed	on	a	row	in	the	Customers	table,	and	an
ON	DELETE	CASCADE	action	is	specified	for	Orders.CustomerID,	SQL
Server	checks	for	one	or	more	dependent	rows	in	the	Orders	table.	If	any,
the	dependent	rows	in	the	Orders	table	are	deleted,	as	well	as	the	row
referenced	in	the	Customers	table.

On	the	other	hand,	if	NO	ACTION	is	specified,	SQL	Server	raises	an	error
and	rolls	back	the	delete	action	on	the	Customers	row	if	there	is	at	least	one
row	in	the	Orders	table	that	references	it.

ON	UPDATE	{CASCADE	|	NO	ACTION}

Specifies	what	action	takes	place	to	a	row	in	the	table	created,	if	that	row	has
a	referential	relationship	and	the	referenced	row	is	updated	in	the	parent
table.	The	default	is	NO	ACTION.

If	CASCADE	is	specified,	the	row	is	updated	in	the	referencing	table	if	that
row	is	updated	in	the	parent	table.	If	NO	ACTION	is	specified,	SQL	Server
raises	an	error	and	the	update	action	on	the	row	in	the	parent	table	is	rolled
back.

For	example,	in	the	Northwind	database,	the	Orders	table	has	a	referential
relationship	with	the	Customers	table:	Orders.CustomerID	foreign	key
references	the	Customers.CustomerID	primary	key.

If	an	UPDATE	statement	is	executed	on	a	row	in	the	Customers	table,	and
an	ON	UPDATE	CASCADE	action	is	specified	for	Orders.CustomerID,
SQL	Server	checks	for	one	or	more	dependent	rows	in	the	Orders	table.	If
any	exist,	the	dependent	rows	in	the	Orders	table	are	updated,	as	well	as	the
row	referenced	in	the	Customers.

Alternately,	if	NO	ACTION	is	specified,	SQL	Server	raises	an	error	and	rolls
back	the	update	action	on	the	Customers	row	if	there	is	at	least	one	row	in
the	Orders	table	that	references	it.

CHECK

Is	a	constraint	that	enforces	domain	integrity	by	limiting	the	possible	values
that	can	be	entered	into	a	column	or	columns.

NOT	FOR	REPLICATION

Keywords	used	to	prevent	the	CHECK	constraint	from	being	enforced
during	the	distribution	process	used	by	replication.	When	tables	are
subscribers	to	a	replication	publication,	do	not	update	the	subscription	table
directly,	instead	update	the	publishing	table,	and	let	replication	distribute	the
data	back	to	the	subscribing	table.	A	CHECK	constraint	can	be	defined	on
the	subscription	table	to	prevent	users	from	modifying	it.	Unless	the	NOT
FOR	REPLICATION	clause	is	added,	however,	the	CHECK	constraint	also
prevents	the	replication	process	from	distributing	modifications	from	the
publishing	table	to	the	subscribing	table.	The	NOT	FOR	REPLICATION
clause	means	the	constraint	is	enforced	on	user	modifications	but	not	on	the
replication	process.

The	NOT	FOR	REPLICATION	CHECK	constraint	is	applied	to	both	the
before	and	after	image	of	an	updated	record	to	prevent	records	from	being
added	to	or	deleted	from	the	replicated	range.	All	deletes	and	inserts	are
checked;	if	they	fall	within	the	replicated	range,	they	are	rejected.

When	this	constraint	is	used	with	an	identity	column,	SQL	Server	allows	the
table	not	to	have	its	identity	column	values	reseeded	when	a	replication	user
updates	the	identity	column.

logical_expression

Is	a	logical	expression	that	returns	TRUE	or	FALSE.

column

Is	a	column	or	list	of	columns,	in	parentheses,	used	in	table	constraints	to
indicate	the	columns	used	in	the	constraint	definition.

[ASC	|	DESC]

Specifies	the	order	in	which	the	column	or	columns	participating	in	table
constraints	are	sorted.	The	default	is	ASC.

n

Is	a	placeholder	indicating	that	the	preceding	item	can	be	repeated	n	number
of	times.

Remarks
SQL	Server	can	have	as	many	as	two	billion	tables	per	database	and	1,024
columns	per	table.	The	number	of	rows	and	total	size	of	the	table	are	limited
only	by	the	available	storage.	The	maximum	number	of	bytes	per	row	is	8,060.
If	you	create	tables	with	varchar,	nvarchar,	or	varbinary	columns	in	which	the
total	defined	width	exceeds	8,060	bytes,	the	table	is	created,	but	a	warning
message	appears.	Trying	to	insert	more	than	8,060	bytes	into	such	a	row	or	to
update	a	row	so	that	its	total	row	size	exceeds	8,060	produces	an	error	message
and	the	statement	fails.

CREATE	TABLE	statements	that	include	a	sql_variant	column	can	generate	the
following	warning:

The	total	row	size	(xx)	for	table	'yy'	exceeds	the	maximum	number	of	bytes	per	row	(8060).	Rows	that	exceed	the	maximum	number	of	bytes	will	not	be	added.

This	warning	occurs	because	sql_variant	can	have	a	maximum	length	of	8016
bytes.	When	a	sql_variant	column	contains	values	close	to	the	maximum
length,	it	can	overshoot	the	row's	maximum	size	limit.

Each	table	can	contain	a	maximum	of	249	nonclustered	indexes	and	1	clustered
index.	These	include	the	indexes	generated	to	support	any	PRIMARY	KEY	and
UNIQUE	constraints	defined	for	the	table.

SQL	Server	does	not	enforce	an	order	in	which	DEFAULT,	IDENTITY,
ROWGUIDCOL,	or	column	constraints	are	specified	in	a	column	definition.

Temporary	Tables
You	can	create	local	and	global	temporary	tables.	Local	temporary	tables	are
visible	only	in	the	current	session;	global	temporary	tables	are	visible	to	all
sessions.

Prefix	local	temporary	table	names	with	single	number	sign	(#table_name),	and
prefix	global	temporary	table	names	with	a	double	number	sign	(##table_name).

SQL	statements	reference	the	temporary	table	using	the	value	specified	for
table_name	in	the	CREATE	TABLE	statement:

CREATE	TABLE	#MyTempTable	(cola	INT	PRIMARY	KEY)
INSERT	INTO	#MyTempTable	VALUES	(1)

If	a	local	temporary	table	is	created	in	a	stored	procedure	or	application	that	can
be	executed	at	the	same	time	by	several	users,	SQL	Server	has	to	be	able	to
distinguish	the	tables	created	by	the	different	users.	SQL	Server	does	this	by
internally	appending	a	numeric	suffix	to	each	local	temporary	table	name.	The
full	name	of	a	temporary	table	as	stored	in	the	sysobjects	table	in	tempdb
consists	of	table	name	specified	in	the	CREATE	TABLE	statement	and	the
system-generated	numeric	suffix.	To	allow	for	the	suffix,	table_name	specified
for	a	local	temporary	name	cannot	exceed	116	characters.

Temporary	tables	are	automatically	dropped	when	they	go	out	of	scope,	unless
explicitly	dropped	using	DROP	TABLE:

A	local	temporary	table	created	in	a	stored	procedure	is	dropped
automatically	when	the	stored	procedure	completes.	The	table	can	be
referenced	by	any	nested	stored	procedures	executed	by	the	stored
procedure	that	created	the	table.	The	table	cannot	be	referenced	by	the
process	which	called	the	stored	procedure	that	created	the	table.

All	other	local	temporary	tables	are	dropped	automatically	at	the	end	of
the	current	session.

Global	temporary	tables	are	automatically	dropped	when	the	session
that	created	the	table	ends	and	all	other	tasks	have	stopped	referencing

them.	The	association	between	a	task	and	a	table	is	maintained	only	for
the	life	of	a	single	Transact-SQL	statement.	This	means	that	a	global
temporary	table	is	dropped	at	the	completion	of	the	last	Transact-SQL
statement	that	was	actively	referencing	the	table	when	the	creating
session	ended.

A	local	temporary	table	created	within	a	stored	procedure	or	trigger	is	distinct
from	a	temporary	table	with	the	same	name	created	before	the	stored	procedure
or	trigger	is	called.	If	a	query	references	a	temporary	table,	and	two	temporary
tables	with	the	same	name	exist	at	that	time,	it	is	not	defined	which	table	the
query	is	resolved	against.	Nested	stored	procedures	can	also	create	temporary
tables	with	the	same	name	as	a	temporary	table	created	by	the	stored	procedure
that	called	it.	All	references	to	the	table	name	in	the	nested	stored	procedure	are
resolved	to	the	table	created	in	the	nested	procedure,	for	example:

CREATE	PROCEDURE	Test2
AS
CREATE	TABLE	#t(x	INT	PRIMARY	KEY)
INSERT	INTO	#t	VALUES	(2)
SELECT	Test2Col	=	x	FROM	#t
GO
CREATE	PROCEDURE	Test1
AS
CREATE	TABLE	#t(x	INT	PRIMARY	KEY)
INSERT	INTO	#t	VALUES	(1)
SELECT	Test1Col	=	x	FROM	#t
EXEC	Test2
GO
CREATE	TABLE	#t(x	INT	PRIMARY	KEY)
INSERT	INTO	#t	VALUES	(99)
GO
EXEC	Test1
GO

Here	is	the	result	set:

(1	row(s)	affected)

Test1Col				

1											

(1	row(s)	affected)

Test2Col				

2											

When	you	create	local	or	global	temporary	tables,	the	CREATE	TABLE	syntax
supports	constraint	definitions	with	the	exception	of	FOREIGN	KEY	constraints.
If	a	FOREIGN	KEY	constraint	is	specified	in	a	temporary	table,	the	statement
returns	a	warning	message	indicating	that	the	constraint	was	skipped,	and	the
table	is	still	created	without	the	FOREIGN	KEY	constraints.	Temporary	tables
cannot	be	referenced	in	FOREIGN	KEY	constraints.

Consider	using	table	variables	instead	of	temporary	tables.	Temporary	tables	are
useful	in	cases	when	indexes	need	to	be	created	explicitly	on	them,	or	when	the
table	values	need	to	be	visible	across	multiple	stored	procedures	or	functions.	In
general,	table	variables	contribute	to	more	efficient	query	processing.	For	more
information,	see	table.

PRIMARY	KEY	Constraints
A	table	can	contain	only	one	PRIMARY	KEY	constraint.

The	index	generated	by	a	PRIMARY	KEY	constraint	cannot	cause	the
number	of	indexes	on	the	table	to	exceed	249	nonclustered	indexes	and
1	clustered	index.

If	CLUSTERED	or	NONCLUSTERED	is	not	specified	for	a
PRIMARY	KEY	constraint,	CLUSTERED	is	used	if	there	are	no

clustered	indexes	specified	for	UNIQUE	constraints.

All	columns	defined	within	a	PRIMARY	KEY	constraint	must	be
defined	as	NOT	NULL.	If	nullability	is	not	specified,	all	columns
participating	in	a	PRIMARY	KEY	constraint	have	their	nullability	set	to
NOT	NULL.

UNIQUE	Constraints
If	CLUSTERED	or	NONCLUSTERED	is	not	specified	for	a	UNIQUE
constraint,	NONCLUSTERED	is	used	by	default.

Each	UNIQUE	constraint	generates	an	index.	The	number	of	UNIQUE
constraints	cannot	cause	the	number	of	indexes	on	the	table	to	exceed
249	nonclustered	indexes	and	1	clustered	index.

FOREIGN	KEY	Constraints
When	a	value	other	than	NULL	is	entered	into	the	column	of	a
FOREIGN	KEY	constraint,	the	value	must	exist	in	the	referenced
column;	otherwise,	a	foreign	key	violation	error	message	is	returned.	

FOREIGN	KEY	constraints	are	applied	to	the	preceding	column	unless
source	columns	are	specified.

FOREIGN	KEY	constraints	can	reference	only	tables	within	the	same
database	on	the	same	server.	Cross-database	referential	integrity	must
be	implemented	through	triggers.	For	more	information,	see	CREATE
TRIGGER.	

FOREIGN	KEY	constraints	can	reference	another	column	in	the	same
table	(a	self-reference).

The	REFERENCES	clause	of	a	column-level	FOREIGN	KEY

constraint	can	list	only	one	reference	column,	which	must	have	the
same	data	type	as	the	column	on	which	the	constraint	is	defined.

The	REFERENCES	clause	of	a	table-level	FOREIGN	KEY	constraint
must	have	the	same	number	of	reference	columns	as	the	number	of
columns	in	the	constraint	column	list.	The	data	type	of	each	reference
column	must	also	be	the	same	as	the	corresponding	column	in	the
column	list.

CASCADE	may	not	be	specified	if	a	column	of	type	timestamp	is	part
of	either	the	foreign	key	or	the	referenced	key.

It	is	possible	to	combine	CASCADE	and	NO	ACTION	on	tables	that
have	referential	relationships	with	each	other.	If	SQL	Server	encounters
NO	ACTION,	it	terminates	and	rolls	back	related	CASCADE	actions.
When	a	DELETE	statement	causes	a	combination	of	CASCADE	and
NO	ACTION	actions,	all	the	CASCADE	actions	are	applied	before
SQL	Server	checks	for	any	NO	ACTION.

A	table	can	contain	a	maximum	of	253	FOREIGN	KEY	constraints.

FOREIGN	KEY	constraints	are	not	enforced	on	temporary	tables.

A	table	can	reference	a	maximum	of	253	different	tables	in	its
FOREIGN	KEY	constraints.

FOREIGN	KEY	constraints	can	reference	only	columns	in	PRIMARY
KEY	or	UNIQUE	constraints	in	the	referenced	table	or	in	a	UNIQUE
INDEX	on	the	referenced	table.

DEFAULT	Definitions
A	column	can	have	only	one	DEFAULT	definition.

A	DEFAULT	definition	can	contain	constant	values,	functions,	SQL-92
niladic	functions,	or	NULL.	The	table	shows	the	niladic	functions	and
the	values	they	return	for	the	default	during	an	INSERT	statement.

SQL-92	niladic	function Value	returned
CURRENT_TIMESTAMP Current	date	and	time.
CURRENT_USER Name	of	user	performing

insert.
SESSION_USER Name	of	user	performing

insert.
SYSTEM_USER Name	of	user	performing

insert.
USER Name	of	user	performing

insert.

constant_expression	in	a	DEFAULT	definition	cannot	refer	to	another
column	in	the	table,	or	to	other	tables,	views,	or	stored	procedures.

DEFAULT	definitions	cannot	be	created	on	columns	with	a	timestamp
data	type	or	columns	with	an	IDENTITY	property.

DEFAULT	definitions	cannot	be	created	for	columns	with	user-defined
data	types	if	the	user-defined	data	type	is	bound	to	a	default	object.

CHECK	Constraints
A	column	can	have	any	number	of	CHECK	constraints,	and	the
condition	can	include	multiple	logical	expressions	combined	with	AND
and	OR.	Multiple	CHECK	constraints	for	a	column	are	validated	in	the
order	created.

The	search	condition	must	evaluate	to	a	Boolean	expression	and	cannot

reference	another	table.

A	column-level	CHECK	constraint	can	reference	only	the	constrained
column,	and	a	table-level	CHECK	constraint	can	reference	only
columns	in	the	same	table.

CHECK	CONSTRAINTS	and	rules	serve	the	same	function	of
validating	the	data	during	INSERT	and	DELETE	statements.

When	a	rule	and	one	or	more	CHECK	constraints	exist	for	a	column	or
columns,	all	restrictions	are	evaluated.

Additional	Constraint	Information
An	index	created	for	a	constraint	cannot	be	dropped	with	the	DROP
INDEX	statement;	the	constraint	must	be	dropped	with	the	ALTER
TABLE	statement.	An	index	created	for	and	used	by	a	constraint	can	be
rebuilt	with	the	DBCC	DBREINDEX	statement.	

Constraint	names	must	follow	the	rules	for	identifiers,	except	that	the
name	cannot	begin	with	a	number	sign	(#).	If	constraint_name	is	not
supplied,	a	system-generated	name	is	assigned	to	the	constraint.	The
constraint	name	appears	in	any	error	message	about	constraint
violations.	

When	a	constraint	is	violated	in	an	INSERT,	UPDATE,	or	DELETE
statement,	the	statement	is	terminated.	However,	the	transaction	(if	the
statement	is	part	of	an	explicit	transaction)	continues	to	be	processed.
You	can	use	the	ROLLBACK	TRANSACTION	statement	with	the
transaction	definition	by	checking	the	@@ERROR	system	function.

If	a	table	has	FOREIGN	KEY	or	CHECK	CONSTRAINTS	and	triggers,	the
constraint	conditions	are	evaluated	before	the	trigger	is	executed.

For	a	report	on	a	table	and	its	columns,	use	sp_help	or	sp_helpconstraint.	To
rename	a	table,	use	sp_rename.	For	a	report	on	the	views	and	stored	procedures
that	depend	on	a	table,	use	sp_depends.

Space	is	generally	allocated	to	tables	and	indexes	in	increments	of	one	extent	at
a	time.	When	the	table	or	index	is	created,	it	is	allocated	pages	from	mixed
extents	until	it	has	enough	pages	to	fill	a	uniform	extent.	After	it	has	enough
pages	to	fill	a	uniform	extent,	another	extent	is	allocated	each	time	the	currently
allocated	extents	become	full.	For	a	report	about	the	amount	of	space	allocated
and	used	by	a	table,	execute	sp_spaceused.

Nullability	Rules	Within	a	Table	Definition
The	nullability	of	a	column	determines	whether	or	not	that	column	can	allow	a
null	value	(NULL)	as	the	data	in	that	column.	NULL	is	not	zero	or	blank:	it
means	no	entry	was	made	or	an	explicit	NULL	was	supplied,	and	it	usually
implies	that	the	value	is	either	unknown	or	not	applicable.

When	you	create	or	alter	a	table	with	the	CREATE	TABLE	or	ALTER	TABLE
statements,	database	and	session	settings	influence	and	possibly	override	the
nullability	of	the	data	type	used	in	a	column	definition.	It	is	recommended	that
you	always	explicitly	define	a	column	as	NULL	or	NOT	NULL	for
noncomputed	columns	or,	if	you	use	a	user-defined	data	type,	that	you	allow	the
column	to	use	the	default	nullability	of	the	data	type.

When	not	explicitly	specified,	column	nullability	follows	these	rules:

If	the	column	is	defined	with	a	user-defined	data	type:

SQL	Server	uses	the	nullability	specified	when	the	data	type
was	created.	Use	sp_help	to	get	the	default	nullability	of	the
data	type.

If	the	column	is	defined	with	a	system-supplied	data	type:

If	the	system-supplied	data	type	has	only	one	option,	it	takes
precedence.	timestamp	data	types	must	be	NOT	NULL.

If	the	setting	of	sp_dbcmptlevel	is	65	or	lower,	bit	data	types
default	to	NOT	NULL	if	the	column	does	not	have	an	explicit
NULL	or	NOT	NULL.	For	more	information,	see
sp_dbcmptlevel.	

If	any	session	settings	are	ON	(turned	on	with	the	SET
statement),	then:

If	ANSI_NULL_DFLT_ON	is	ON,	NULL	is	assigned.

If	ANSI_NULL_DFLT_OFF	is	ON,	NOT	NULL	is	assigned.

If	any	database	settings	are	configured	(changed	with
sp_dboption),	then:

If	ANSI	null	default	is	true,	NULL	is	assigned.

If	ANSI	null	default	is	false,	NOT	NULL	is	assigned.

When	neither	of	the	ANSI_NULL_DFLT	options	is	set	for	the	session
and	the	database	is	set	to	the	default	(ANSI	null	default	is	false),	then
the	SQL	Server	default	of	NOT	NULL	is	assigned.

If	the	column	is	a	computed	column,	its	nullability	is	always	determined
automatically	by	SQL	Server.	Use	the	COLUMNPROPERTY	function
(AllowsNull	property)	to	find	out	the	nullability	of	such	a	column.

Note		The	SQL	Server	ODBC	driver	and	Microsoft	OLE	DB	Provider	for	SQL
Server	both	default	to	having	ANSI_NULL_DFLT_ON	set	to	ON.	ODBC	and
OLE	DB	users	can	configure	this	in	ODBC	data	sources,	or	with	connection
attributes	or	properties	set	by	the	application.

Permissions
CREATE	TABLE	permission	defaults	to	the	members	of	the	db_owner	and
db_ddladmin	fixed	database	roles.	Members	of	the	db_owner	fixed	database
role	and	members	of	the	sysadmin	fixed	server	role	can	transfer	CREATE
TABLE	permission	to	other	users.

Examples

A.	Use	PRIMARY	KEY	constraints
This	example	shows	the	column	definition	for	a	PRIMARY	KEY	constraint	with
a	clustered	index	on	the	job_id	column	of	the	jobs	table	(allowing	the	system	to

supply	the	constraint	name)	in	the	pubs	sample	database.

job_id			smallint
						PRIMARY	KEY	CLUSTERED

This	example	shows	how	a	name	can	be	supplied	for	the	PRIMARY	KEY
constraint.	This	constraint	is	used	on	the	emp_id	column	of	the	employee	table.
This	column	is	based	on	a	user-defined	data	type.

emp_id			empid
						CONSTRAINT	PK_emp_id	PRIMARY	KEY	NONCLUSTERED

B.	Use	FOREIGN	KEY	constraints
A	FOREIGN	KEY	constraint	is	used	to	reference	another	table.	Foreign	keys	can
be	single-column	keys	or	multicolumn	keys.	This	example	shows	a	single-
column	FOREIGN	KEY	constraint	on	the	employee	table	that	references	the
jobs	table.	Only	the	REFERENCES	clause	is	required	for	a	single-column
FOREIGN	KEY	constraint.

job_id			smallint						NOT	NULL
						DEFAULT	1
						REFERENCES	jobs(job_id)

You	can	also	explicitly	use	the	FOREIGN	KEY	clause	and	restate	the	column
attribute.	Note	that	the	column	name	does	not	have	to	be	the	same	in	both	tables.

FOREIGN	KEY	(job_id)	REFERENCES	jobs(job_id)

Multicolumn	key	constraints	are	created	as	table	constraints.	In	the	pubs
database,	the	sales	table	includes	a	multicolumn	PRIMARY	KEY.	This	example
shows	how	to	reference	this	key	from	another	table;	an	explicit	constraint	name
is	optional.

CONSTRAINT	FK_sales_backorder	FOREIGN	KEY	(stor_id,	ord_num,	title_id)
			REFERENCES	sales	(stor_id,	ord_num,	title_id)

C.	Use	UNIQUE	constraints

UNIQUE	constraints	are	used	to	enforce	uniqueness	on	nonprimary	key
columns.	A	PRIMARY	KEY	constraint	column	includes	a	restriction	for
uniqueness	automatically;	however,	a	UNIQUE	constraint	can	allow	null	values.
This	example	shows	a	column	called	pseudonym	on	the	authors	table.	It
enforces	a	restriction	that	authors'	pen	names	must	be	unique.

pseudonym	varchar(30)			NULL
UNIQUE	NONCLUSTERED

This	example	shows	a	UNIQUE	constraint	created	on	the	stor_name	and	city
columns	of	the	stores	table,	where	the	stor_id	is	actually	the	PRIMARY	KEY;
no	two	stores	in	the	same	city	should	be	the	same.

CONSTRAINT	U_store	UNIQUE	NONCLUSTERED	(stor_name,	city)

D.	Use	DEFAULT	definitions
Defaults	supply	a	value	(with	the	INSERT	and	UPDATE	statements)	when	no
value	is	supplied.	In	the	pubs	database,	many	DEFAULT	definitions	are	used	to
ensure	that	valid	data	or	placeholders	are	entered.

On	the	jobs	table,	a	character	string	default	supplies	a	description	(column
job_desc)	when	the	actual	description	is	not	entered	explicitly.

DEFAULT	'New	Position	-	title	not	formalized	yet'

In	the	employee	table,	the	employees	can	be	employed	by	an	imprint	company
or	by	the	parent	company.	When	an	explicit	company	is	not	supplied,	the	parent
company	is	entered	(note	that,	as	shown	here,	comments	can	be	nested	within
the	table	definition).

DEFAULT	('9952')
/*	By	default	the	Parent	Company	Publisher	is	the	company
to	whom	each	employee	reports.	*/

In	addition	to	constants,	DEFAULT	definitions	can	include	functions.	Use	this
example	to	get	the	current	date	for	an	entry:

DEFAULT	(getdate())

Niladic-functions	can	also	improve	data	integrity.	To	keep	track	of	the	user	who
inserted	a	row,	use	the	niladic-function	for	USER	(do	not	surround	the	niladic-
functions	with	parentheses):

DEFAULT	USER

E.	Use	CHECK	constraints
This	example	shows	restrictions	made	to	the	values	entered	into	the	min_lvl	and
max_lvl	columns	of	the	jobs	table.	Both	of	these	constraints	are	unnamed:

CHECK	(min_lvl	>=	10)

and

CHECK	(max_lvl	<=	250)

This	example	shows	a	named	constraint	with	a	pattern	restriction	on	the
character	data	entered	into	the	emp_id	column	of	the	employee	table.

CONSTRAINT	CK_emp_id	CHECK	(emp_id	LIKE	
			'[A-Z][A-Z][A-Z][1-9][0-9][0-9][0-9][0-9][FM]'	OR
			emp_id	LIKE	'[A-Z]-[A-Z][1-9][0-9][0-9][0-9][0-9][FM]')

This	example	specifies	that	the	pub_id	must	be	within	a	specific	list	or	follow	a
given	pattern.	This	constraint	is	for	the	pub_id	of	the	publishers	table.

CHECK	(pub_id	IN	('1389',	'0736',	'0877',	'1622',	'1756')
			OR	pub_id	LIKE	'99[0-9][0-9]')

F.	Complete	table	definitions
This	example	shows	complete	table	definitions	with	all	constraint	definitions	for
three	tables	(jobs,	employee,	and	publishers)	created	in	the	pubs	database.

/*	**************************	jobs	table	**************************	*/
CREATE	TABLE	jobs
(
			job_id		smallint

						IDENTITY(1,1)
						PRIMARY	KEY	CLUSTERED,
			job_desc								varchar(50)					NOT	NULL
						DEFAULT	'New	Position	-	title	not	formalized	yet',
			min_lvl	tinyint	NOT	NULL
						CHECK	(min_lvl	>=	10),
			max_lvl	tinyint	NOT	NULL
						CHECK	(max_lvl	<=	250)
)

/*	*************************	employee	table	*************************	*/
CREATE	TABLE	employee	
(
			emp_id		empid
						CONSTRAINT	PK_emp_id	PRIMARY	KEY	NONCLUSTERED
						CONSTRAINT	CK_emp_id	CHECK	(emp_id	LIKE	
									'[A-Z][A-Z][A-Z][1-9][0-9][0-9][0-9][0-9][FM]'	or
									emp_id	LIKE	'[A-Z]-[A-Z][1-9][0-9][0-9][0-9][0-9][FM]'),
						/*	Each	employee	ID	consists	of	three	characters	that	
						represent	the	employee's	initials,	followed	by	a	five	
						digit	number	ranging	from	10000	through	99999	and	then	the	
						employee's	gender	(M	or	F).	A	(hyphen)	-	is	acceptable	
						for	the	middle	initial.	*/
			fname			varchar(20)					NOT	NULL,
			minit			char(1)	NULL,
			lname			varchar(30)					NOT	NULL,
			job_id		smallint								NOT	NULL
						DEFAULT	1
						/*	Entry	job_id	for	new	hires.	*/
						REFERENCES	jobs(job_id),
			job_lvl	tinyint
						DEFAULT	10,
						/*	Entry	job_lvl	for	new	hires.	*/

			pub_id		char(4)	NOT	NULL
						DEFAULT	('9952')
						REFERENCES	publishers(pub_id),
						/*	By	default,	the	Parent	Company	Publisher	is	the	company
						to	whom	each	employee	reports.	*/
			hire_date							datetime								NOT	NULL
						DEFAULT	(getdate())
						/*	By	default,	the	current	system	date	is	entered.	*/
)

/*	*****************	publishers	table	********************	*/
CREATE	TABLE	publishers
(
			pub_id		char(4)	NOT	NULL	
									CONSTRAINT	UPKCL_pubind	PRIMARY	KEY	CLUSTERED
									CHECK	(pub_id	IN	('1389',	'0736',	'0877',	'1622',	'1756')
												OR	pub_id	LIKE	'99[0-9][0-9]'),
			pub_name						varchar(40)					NULL,
			city									varchar(20)					NULL,
			state						char(2)	NULL,
			country						varchar(30)					NULL
												DEFAULT('USA')
)

G.	Use	the	uniqueidentifier	data	type	in	a	column
This	example	creates	a	table	with	a	uniqueidentifier	column.	It	uses	a
PRIMARY	KEY	constraint	to	protect	the	table	against	users	inserting	duplicated
values,	and	it	uses	the	NEWID()	function	in	the	DEFAULT	constraint	to	provide
values	for	new	rows.

CREATE	TABLE	Globally_Unique_Data
(guid	uniqueidentifier	
			CONSTRAINT	Guid_Default	

			DEFAULT	NEWID(),
Employee_Name	varchar(60),
CONSTRAINT	Guid_PK	PRIMARY	KEY	(Guid)
)

H.	Use	an	expression	for	a	computed	column
This	example	illustrates	the	use	of	an	expression	((low	+	high)/2)	for	calculating
the	myavg	computed	column.

CREATE	TABLE	mytable	
			(
				low	int,
				high	int,
				myavg	AS	(low	+	high)/2
)

I.	Use	the	USER_NAME	function	for	a	computed	column
This	example	uses	the	USER_NAME	function	in	the	myuser_name	column.

CREATE	TABLE	mylogintable
			(
				date_in	datetime,
				user_id	int,
				myuser_name	AS	USER_NAME()
)

J.	Use	NOT	FOR	REPLICATION
This	example	shows	using	the	IDENTITY	property	on	a	table	subscribed	to	a
replication.	The	table	includes	a	CHECK	constraint	to	ensure	that	the	SaleID
values	generated	on	this	system	do	not	grow	into	the	range	assigned	to	the
replication	Publisher.

CREATE	TABLE	Sales
			(SaleID	INT	IDENTITY(100000,1)	NOT	FOR	REPLICATION,

													CHECK	NOT	FOR	REPLICATION	(SaleID	<=	199999),
				SalesRegion	CHAR(2),
			CONSTRAINT	ID_PK	PRIMARY	KEY	(SaleID)
)

See	Also

ALTER	TABLE

COLUMNPROPERTY

CREATE	INDEX

CREATE	RULE

CREATE	VIEW

Data	Types

DROP	INDEX

DROP	RULE

DROP	TABLE

sp_addtype

sp_depends

sp_help

sp_helpconstraint

sp_rename

sp_spaceused

Transact-SQL	Reference

CREATE	TRIGGER
Creates	a	trigger,	which	is	a	special	kind	of	stored	procedure	that	executes
automatically	when	a	user	attempts	the	specified	data-modification	statement	on
the	specified	table.	Microsoft®	SQL	Server™	allows	the	creation	of	multiple
triggers	for	any	given	INSERT,	UPDATE,	or	DELETE	statement.

Syntax
CREATE	TRIGGER	trigger_name	
ON	{	table	|	view	}	
[WITH	ENCRYPTION]	
{	
				{	{	FOR	|	AFTER	|	INSTEAD	OF	}	{	[INSERT]	[,]	[UPDATE]	}	
								[WITH	APPEND]	
								[NOT	FOR	REPLICATION]	
								AS	
								[{	IF	UPDATE	(column)	
												[{	AND	|	OR	}	UPDATE	(column)]	
																[...n]	
								|	IF	(COLUMNS_UPDATED	()	{	bitwise_operator	}	updated_bitmask)	
																{	comparison_operator	}	column_bitmask	[...n]	
								}]	
								sql_statement	[...n]	
				}	
}

Arguments
trigger_name

Is	the	name	of	the	trigger.	A	trigger	name	must	conform	to	the	rules	for
identifiers	and	must	be	unique	within	the	database.	Specifying	the	trigger
owner	name	is	optional.

Table	|	view

Is	the	table	or	view	on	which	the	trigger	is	executed	and	is	sometimes	called

the	trigger	table	or	trigger	view.	Specifying	the	owner	name	of	the	table	or
view	is	optional.

WITH	ENCRYPTION

Encrypts	the	syscomments	entries	that	contain	the	text	of	CREATE
TRIGGER.	Using	WITH	ENCRYPTION	prevents	the	trigger	from	being
published	as	part	of	SQL	Server	replication.

AFTER

Specifies	that	the	trigger	is	fired	only	when	all	operations	specified	in	the
triggering	SQL	statement	have	executed	successfully.	All	referential	cascade
actions	and	constraint	checks	also	must	succeed	before	this	trigger	executes.

AFTER	is	the	default,	if	FOR	is	the	only	keyword	specified.

AFTER	triggers	cannot	be	defined	on	views.

INSTEAD	OF

Specifies	that	the	trigger	is	executed	instead	of	the	triggering	SQL	statement,
thus	overriding	the	actions	of	the	triggering	statements.

At	most,	one	INSTEAD	OF	trigger	per	INSERT,	UPDATE,	or	DELETE
statement	can	be	defined	on	a	table	or	view.	However,	it	is	possible	to	define
views	on	views	where	each	view	has	its	own	INSTEAD	OF	trigger.

INSTEAD	OF	triggers	are	not	allowed	on	updateable	views	WITH	CHECK
OPTION.	SQL	Server	will	raise	an	error	if	an	INSTEAD	OF	trigger	is	added
to	an	updateable	view	WITH	CHECK	OPTION	specified.	The	user	must
remove	that	option	using	ALTER	VIEW	before	defining	the	INSTEAD	OF
trigger.

{	[DELETE]	[,]	[INSERT]	[,]	[UPDATE]	}

Are	keywords	that	specify	which	data	modification	statements,	when
attempted	against	this	table	or	view,	activate	the	trigger.	At	least	one	option
must	be	specified.	Any	combination	of	these	in	any	order	is	allowed	in	the
trigger	definition.	If	more	than	one	option	is	specified,	separate	the	options
with	commas.

For	INSTEAD	OF	triggers,	the	DELETE	option	is	not	allowed	on	tables	that
have	a	referential	relationship	specifying	a	cascade	action	ON	DELETE.

Similarly,	the	UPDATE	option	is	not	allowed	on	tables	that	have	a	referential
relationship	specifying	a	cascade	action	ON	UPDATE.

WITH	APPEND

Specifies	that	an	additional	trigger	of	an	existing	type	should	be	added.	Use
of	this	optional	clause	is	needed	only	when	the	compatibility	level	is	65	or
lower.	If	the	compatibility	level	is	70	or	higher,	the	WITH	APPEND	clause
is	not	needed	to	add	an	additional	trigger	of	an	existing	type	(this	is	the
default	behavior	of	CREATE	TRIGGER	with	the	compatibility	level	setting
of	70	or	higher.)	For	more	information,	see	sp_dbcmptlevel.

WITH	APPEND	cannot	be	used	with	INSTEAD	OF	triggers	or	if	AFTER
trigger	is	explicitly	stated.	WITH	APPEND	can	be	used	only	when	FOR	is
specified	(without	INSTEAD	OF	or	AFTER)	for	backward	compatibility
reasons.	WITH	APPEND	and	FOR	(which	is	interpreted	as	AFTER)	will	not
be	supported	in	future	releases.

NOT	FOR	REPLICATION

Indicates	that	the	trigger	should	not	be	executed	when	a	replication	process
modifies	the	table	involved	in	the	trigger.

AS

Are	the	actions	the	trigger	is	to	perform.

sql_statement

Is	the	trigger	condition(s)	and	action(s).	Trigger	conditions	specify	additional
criteria	that	determine	whether	the	attempted	DELETE,	INSERT,	or
UPDATE	statements	cause	the	trigger	action(s)	to	be	carried	out.

The	trigger	actions	specified	in	the	Transact-SQL	statements	go	into	effect
when	the	DELETE,	INSERT,	or	UPDATE	operation	is	attempted.

Triggers	can	include	any	number	and	kind	of	Transact-SQL	statements.	A
trigger	is	designed	to	check	or	change	data	based	on	a	data	modification
statement;	it	should	not	return	data	to	the	user.	The	Transact-SQL	statements
in	a	trigger	often	include	control-of-flow	language.	A	few	special	tables	are
used	in	CREATE	TRIGGER	statements:

deleted	and	inserted	are	logical	(conceptual)	tables.	They	are

structurally	similar	to	the	table	on	which	the	trigger	is	defined,	that	is,
the	table	on	which	the	user	action	is	attempted,	and	hold	the	old	values
or	new	values	of	the	rows	that	may	be	changed	by	the	user	action.	For
example,	to	retrieve	all	values	in	the	deleted	table,	use:
SELECT	*
FROM	deleted

In	a	DELETE,	INSERT,	or	UPDATE	trigger,	SQL	Server	does	not	allow
text,	ntext,	or	image	column	references	in	the	inserted	and	deleted
tables	if	the	compatibility	level	is	equal	to	70.	The	text,	ntext,	and
image	values	in	the	inserted	and	deleted	tables	cannot	be	accessed.	To
retrieve	the	new	value	in	either	an	INSERT	or	UPDATE	trigger,	join	the
inserted	table	with	the	original	update	table.	When	the	compatibility
level	is	65	or	lower,	null	values	are	returned	for	inserted	or	deleted
text,	ntext,	or	image	columns	that	allow	null	values;	zero-length	strings
are	returned	if	the	columns	are	not	nullable.

If	the	compatibility	level	is	80	or	higher,	SQL	Server	allows	the	update
of	text,	ntext,	or	image	columns	through	the	INSTEAD	OF	trigger	on
tables	or	views.

n

Is	a	placeholder	indicating	that	multiple	Transact-SQL	statements	can	be
included	in	the	trigger.	For	the	IF	UPDATE	(column)	statement,	multiple
columns	can	be	included	by	repeating	the	UPDATE	(column)	clause.

IF	UPDATE	(column)

Tests	for	an	INSERT	or	UPDATE	action	to	a	specified	column	and	is	not
used	with	DELETE	operations.	More	than	one	column	can	be	specified.
Because	the	table	name	is	specified	in	the	ON	clause,	do	not	include	the
table	name	before	the	column	name	in	an	IF	UPDATE	clause.	To	test	for	an
INSERT	or	UPDATE	action	for	more	than	one	column,	specify	a	separate
UPDATE(column)	clause	following	the	first	one.	IF	UPDATE	will	return	the
TRUE	value	in	INSERT	actions	because	the	columns	have	either	explicit
values	or	implicit	(NULL)	values	inserted.

Note		The	IF	UPDATE	(column)	clause	functions	identically	to	an	IF,	IF...ELSE

or	WHILE	statement	and	can	use	the	BEGIN...END	block.	For	more
information,	see	Control-of-Flow	Language.

UPDATE(column)	can	be	used	anywhere	inside	the	body	of	the	trigger.

column

Is	the	name	of	the	column	to	test	for	either	an	INSERT	or	UPDATE	action.
This	column	can	be	of	any	data	type	supported	by	SQL	Server.	However,
computed	columns	cannot	be	used	in	this	context.	For	more	information,	see
Data	Types.

IF	(COLUMNS_UPDATED())

Tests,	in	an	INSERT	or	UPDATE	trigger	only,	whether	the	mentioned
column	or	columns	were	inserted	or	updated.	COLUMNS_UPDATED
returns	a	varbinary	bit	pattern	that	indicates	which	columns	in	the	table
were	inserted	or	updated.

The	COLUMNS_UPDATED	function	returns	the	bits	in	order	from	left	to
right,	with	the	least	significant	bit	being	the	leftmost.	The	leftmost	bit
represents	the	first	column	in	the	table;	the	next	bit	to	the	right	represents	the
second	column,	and	so	on.	COLUMNS_UPDATED	returns	multiple	bytes	if
the	table	on	which	the	trigger	is	created	contains	more	than	8	columns,	with
the	least	significant	byte	being	the	leftmost.	COLUMNS_UPDATED	will
return	the	TRUE	value	for	all	columns	in	INSERT	actions	because	the
columns	have	either	explicit	values	or	implicit	(NULL)	values	inserted.

COLUMNS_UPDATED	can	be	used	anywhere	inside	the	body	of	the
trigger.

bitwise_operator

Is	the	bitwise	operator	to	use	in	the	comparison.

updated_bitmask

Is	the	integer	bitmask	of	those	columns	actually	updated	or	inserted.	For
example,	table	t1	contains	columns	C1,	C2,	C3,	C4,	and	C5.	To	check
whether	columns	C2,	C3,	and	C4	are	all	updated	(with	table	t1	having	an
UPDATE	trigger),	specify	a	value	of	14.	To	check	whether	only	column	C2
is	updated,	specify	a	value	of	2.

comparison_operator

Is	the	comparison	operator.	Use	the	equal	sign	(=)	to	check	whether	all
columns	specified	in	updated_bitmask	are	actually	updated.	Use	the	greater
than	symbol	(>)	to	check	whether	any	or	some	of	the	columns	specified	in
updated_bitmask	are	updated.

column_bitmask

Is	the	integer	bitmask	of	those	columns	to	check	whether	they	are	updated	or
inserted.

Remarks
Triggers	are	often	used	for	enforcing	business	rules	and	data	integrity.	SQL
Server	provides	declarative	referential	integrity	(DRI)	through	the	table	creation
statements	(ALTER	TABLE	and	CREATE	TABLE);	however,	DRI	does	not
provide	cross-database	referential	integrity.	To	enforce	referential	integrity	(rules
about	the	relationships	between	the	primary	and	foreign	keys	of	tables),	use
primary	and	foreign	key	constraints	(the	PRIMARY	KEY	and	FOREIGN	KEY
keywords	of	ALTER	TABLE	and	CREATE	TABLE).	If	constraints	exist	on	the
trigger	table,	they	are	checked	after	the	INSTEAD	OF	trigger	execution	and
prior	to	the	AFTER	trigger	execution.	If	the	constraints	are	violated,	the
INSTEAD	OF	trigger	actions	are	rolled	back	and	the	AFTER	trigger	is	not
executed	(fired).

The	first	and	last	AFTER	triggers	to	be	executed	on	a	table	may	be	specified	by
using	sp_settriggerorder.	Only	one	first	and	one	last	AFTER	trigger	for	each	of
the	INSERT,	UPDATE,	and	DELETE	operations	may	be	specified	on	a	table;	if
there	are	other	AFTER	triggers	on	the	same	table,	they	are	executed	randomly.

If	an	ALTER	TRIGGER	statement	changes	a	first	or	last	trigger,	the	first	or	last
attribute	set	on	the	modified	trigger	is	dropped,	and	the	order	value	must	be	reset
with	sp_settriggerorder.

An	AFTER	trigger	is	executed	only	after	the	triggering	SQL	statement,	including
all	referential	cascade	actions	and	constraint	checks	associated	with	the	object
updated	or	deleted,	has	executed	successfully.	The	AFTER	trigger	sees	the
effects	of	the	triggering	statement	as	well	as	all	referential	cascade	UPDATE	and
DELETE	actions	caused	by	the	triggering	statement.

Trigger	Limitations
CREATE	TRIGGER	must	be	the	first	statement	in	the	batch	and	can	apply	to
only	one	table.

A	trigger	is	created	only	in	the	current	database;	however,	a	trigger	can	reference
objects	outside	the	current	database.

If	the	trigger	owner	name	is	specified	(to	qualify	the	trigger),	qualify	the	table
name	in	the	same	way.

The	same	trigger	action	can	be	defined	for	more	than	one	user	action	(for
example,	INSERT	and	UPDATE)	in	the	same	CREATE	TRIGGER	statement.

INSTEAD	OF	DELETE/UPDATE	triggers	cannot	be	defined	on	a	table	that	has
a	foreign	key	with	a	cascade	on	DELETE/UPDATE	action	defined.

Any	SET	statement	can	be	specified	inside	a	trigger.	The	SET	option	chosen
remains	in	effect	during	the	execution	of	the	trigger	and	then	reverts	to	its	former
setting.

When	a	trigger	fires,	results	are	returned	to	the	calling	application,	just	as	with
stored	procedures.	To	eliminate	having	results	returned	to	an	application	due	to	a
trigger	firing,	do	not	include	either	SELECT	statements	that	return	results,	or
statements	that	perform	variable	assignment	in	a	trigger.	A	trigger	that	includes
either	SELECT	statements	that	return	results	to	the	user	or	statements	that
perform	variable	assignment	requires	special	handling;	these	returned	results
would	have	to	be	written	into	every	application	in	which	modifications	to	the
trigger	table	are	allowed.	If	variable	assignment	must	occur	in	a	trigger,	use	a
SET	NOCOUNT	statement	at	the	beginning	of	the	trigger	to	eliminate	the	return
of	any	result	sets.

A	TRUNCATE	TABLE	statement	is	not	caught	by	a	DELETE	trigger.	Although
a	TRUNCATE	TABLE	statement	is,	in	effect,	a	DELETE	without	a	WHERE
clause	(it	removes	all	rows),	it	is	not	logged	and	thus	cannot	execute	a	trigger.
Because	permission	for	the	TRUNCATE	TABLE	statement	defaults	to	the	table
owner	and	is	not	transferable,	only	the	table	owner	should	be	concerned	about
inadvertently	circumventing	a	DELETE	trigger	with	a	TRUNCATE	TABLE
statement.

The	WRITETEXT	statement,	whether	logged	or	unlogged,	does	not	activate	a

trigger.

These	Transact-SQL	statements	are	not	allowed	in	a	trigger:

ALTER	DATABASE CREATE	DATABASE DISK	INIT
DISK	RESIZE DROP	DATABASE LOAD	DATABASE
LOAD	LOG RECONFIGURE RESTORE

DATABASE
RESTORE	LOG 	 	

Note		Because	SQL	Server	does	not	support	user-defined	triggers	on	system
tables,	it	is	recommended	that	no	user-defined	triggers	be	created	on	system
tables.

Multiple	Triggers
SQL	Server	allows	multiple	triggers	to	be	created	for	each	data	modification
event	(DELETE,	INSERT,	or	UPDATE).	For	example,	if	CREATE	TRIGGER
FOR	UPDATE	is	executed	for	a	table	that	already	has	an	UPDATE	trigger,	then
an	additional	update	trigger	is	created.	In	earlier	versions,	only	one	trigger	for
each	data	modification	event	(INSERT,	UPDATE,	DELETE)	was	allowed	for
each	table.

Note		The	default	behavior	for	CREATE	TRIGGER	(with	the	compatibility	level
of	70)	is	to	add	additional	triggers	to	existing	triggers,	if	the	trigger	names	differ.
If	trigger	names	are	the	same,	SQL	Server	returns	an	error	message.	However,	if
the	compatibility	level	is	equal	to	or	less	than	65,	any	new	triggers	created	with
the	CREATE	TRIGGER	statement	replace	any	existing	triggers	of	the	same
type,	even	if	the	trigger	names	are	different.	For	more	information,	see
sp_dbcmptlevel.

Recursive	Triggers
SQL	Server	also	allows	recursive	invocation	of	triggers	when	the	recursive
triggers	setting	is	enabled	in	sp_dboption.

Recursive	triggers	allow	two	types	of	recursion	to	occur:

Indirect	recursion

Direct	recursion

With	indirect	recursion,	an	application	updates	table	T1,	which	fires	trigger
TR1,	updating	table	T2.	In	this	scenario,	trigger	T2	then	fires	and	updates	table
T1.

With	direct	recursion,	the	application	updates	table	T1,	which	fires	trigger	TR1,
updating	table	T1.	Because	table	T1	was	updated,	trigger	TR1	fires	again,	and
so	on.

This	example	uses	both	indirect	and	direct	trigger	recursion.	Assume	that	two
update	triggers,	TR1	and	TR2,	are	defined	on	table	T1.	Trigger	TR1	updates
table	T1	recursively.	An	UPDATE	statement	executes	each	TR1	and	TR2	one
time.	In	addition,	the	execution	of	TR1	triggers	the	execution	of	TR1
(recursively)	and	TR2.	The	inserted	and	deleted	tables	for	a	given	trigger
contain	rows	corresponding	only	to	the	UPDATE	statement	that	invoked	the
trigger.

Note		The	above	behavior	occurs	only	if	the	recursive	triggers	setting	of
sp_dboption	is	enabled.	There	is	no	defined	order	in	which	multiple	triggers
defined	for	a	given	event	are	executed.	Each	trigger	should	be	self-contained.

Disabling	the	recursive	triggers	setting	only	prevents	direct	recursions.	To
disable	indirect	recursion	as	well,	set	the	nested	triggers	server	option	to	0	using
sp_configure.

If	any	of	the	triggers	do	a	ROLLBACK	TRANSACTION,	regardless	of	the
nesting	level,	no	further	triggers	are	executed.

Nested	Triggers
Triggers	can	be	nested	to	a	maximum	of	32	levels.	If	a	trigger	changes	a	table	on
which	there	is	another	trigger,	the	second	trigger	is	activated	and	can	then	call	a
third	trigger,	and	so	on.	If	any	trigger	in	the	chain	sets	off	an	infinite	loop,	the
nesting	level	is	exceeded	and	the	trigger	is	canceled.	To	disable	nested	triggers,
set	the	nested	triggers	option	of	sp_configure	to	0	(off).	The	default
configuration	allows	nested	triggers.	If	nested	triggers	is	off,	recursive	triggers	is

also	disabled,	regardless	of	the	recursive	triggers	setting	of	sp_dboption.

Deferred	Name	Resolution
SQL	Server	allows	Transact-SQL	stored	procedures,	triggers,	and	batches	to
refer	to	tables	that	do	not	exist	at	compile	time.	This	ability	is	called	deferred
name	resolution.	However,	if	the	Transact-SQL	stored	procedure,	trigger,	or
batch	refers	to	a	table	defined	in	the	stored	procedure	or	trigger,	a	warning	is
issued	at	creation	time	only	if	the	compatibility	level	setting	(set	by	executing
sp_dbcmptlevel)	is	equal	to	65.	A	warning	is	issued	at	compile	time	if	a	batch	is
used.	An	error	message	is	returned	at	run	time	if	the	table	referenced	does	not
exist.	For	more	information,	see	Deferred	Name	Resolution	and	Compilation.

Permissions
CREATE	TRIGGER	permissions	default	to	the	table	owner	on	which	the	trigger
is	defined,	the	sysadmin	fixed	server	role,	and	members	of	the	db_owner	and
db_ddladmin	fixed	database	roles,	and	are	not	transferable.

To	retrieve	data	from	a	table	or	view,	a	user	must	have	SELECT	statement
permission	on	the	table	or	view.	To	update	the	content	of	a	table	or	view,	a	user
must	have	INSERT,	DELETE,	and	UPDATE	statement	permissions	on	the	table
or	view.

If	an	INSTEAD	OF	trigger	exists	on	a	view,	the	user	must	have	INSERT,
DELETE,	and	UPDATE	privileges	on	that	view	to	issue	INSERT,	DELETE,	and
UPDATE	statements	against	the	view,	regardless	of	whether	the	execution
actually	performs	such	an	operation	on	the	view.

Examples

A.	Use	a	trigger	with	a	reminder	message
This	example	trigger	prints	a	message	to	the	client	when	anyone	tries	to	add	or
change	data	in	the	titles	table.

Note		Message	50009	is	a	user-defined	message	in	sysmessages.	For	more
information	about	creating	user-defined	messages,	see	sp_addmessage.

JavaScript:hhobj_1.Click()

USE	pubs
IF	EXISTS	(SELECT	name	FROM	sysobjects
						WHERE	name	=	'reminder'	AND	type	=	'TR')
			DROP	TRIGGER	reminder
GO
CREATE	TRIGGER	reminder
ON	titles
FOR	INSERT,	UPDATE	
AS	RAISERROR	(50009,	16,	10)
GO

B.	Use	a	trigger	with	a	reminder	e-mail	message
This	example	sends	an	e-mail	message	to	a	specified	person	(MaryM)	when	the
titles	table	changes.

USE	pubs
IF	EXISTS	(SELECT	name	FROM	sysobjects
						WHERE	name	=	'reminder'	AND	type	=	'TR')
			DROP	TRIGGER	reminder
GO
CREATE	TRIGGER	reminder
ON	titles
FOR	INSERT,	UPDATE,	DELETE	
AS
			EXEC	master..xp_sendmail	'MaryM',	
						'Don''t	forget	to	print	a	report	for	the	distributors.'
GO

C.	Use	a	trigger	business	rule	between	the	employee	and	jobs
tables
Because	CHECK	constraints	can	reference	only	the	columns	on	which	the
column-	or	table-level	constraint	is	defined,	any	cross-table	constraints	(in	this
case,	business	rules)	must	be	defined	as	triggers.

This	example	creates	a	trigger	that,	when	an	employee	job	level	is	inserted	or
updated,	checks	that	the	specified	employee	job	level	(job_lvls),	on	which
salaries	are	based,	is	within	the	range	defined	for	the	job.	To	get	the	appropriate
range,	the	jobs	table	must	be	referenced.

USE	pubs
IF	EXISTS	(SELECT	name	FROM	sysobjects
						WHERE	name	=	'employee_insupd'	AND	type	=	'TR')
			DROP	TRIGGER	employee_insupd
GO
CREATE	TRIGGER	employee_insupd
ON	employee
FOR	INSERT,	UPDATE
AS
/*	Get	the	range	of	level	for	this	job	type	from	the	jobs	table.	*/
DECLARE	@min_lvl	tinyint,
			@max_lvl	tinyint,
			@emp_lvl	tinyint,
			@job_id	smallint
SELECT	@min_lvl	=	min_lvl,	
			@max_lvl	=	max_lvl,	
			@emp_lvl	=	i.job_lvl,
			@job_id	=	i.job_id
FROM	employee	e	INNER	JOIN	inserted	i	ON	e.emp_id	=	i.emp_id	
			JOIN	jobs	j	ON	j.job_id	=	i.job_id
IF	(@job_id	=	1)	and	(@emp_lvl	<>	10)	
BEGIN
			RAISERROR	('Job	id	1	expects	the	default	level	of	10.',	16,	1)
			ROLLBACK	TRANSACTION
END
ELSE
IF	NOT	(@emp_lvl	BETWEEN	@min_lvl	AND	@max_lvl)
BEGIN
			RAISERROR	('The	level	for	job_id:%d	should	be	between	%d	and	%d.',

						16,	1,	@job_id,	@min_lvl,	@max_lvl)
			ROLLBACK	TRANSACTION
END

D.	Use	deferred	name	resolution
This	example	creates	two	triggers	to	illustrate	deferred	name	resolution.

USE	pubs
IF	EXISTS	(SELECT	name	FROM	sysobjects
						WHERE	name	=	'trig1'	AND	type	=	'TR')
			DROP	TRIGGER	trig1
GO
--	Creating	a	trigger	on	a	nonexistent	table.
CREATE	TRIGGER	trig1
on	authors
FOR	INSERT,	UPDATE,	DELETE
AS	
			SELECT	a.au_lname,	a.au_fname,	x.info	
			FROM	authors	a	INNER	JOIN	does_not_exist	x	
						ON	a.au_id	=	x.au_id
GO
--	Here	is	the	statement	to	actually	see	the	text	of	the	trigger.
SELECT	o.id,	c.text
FROM	sysobjects	o	INNER	JOIN	syscomments	c	
			ON	o.id	=	c.id
WHERE	o.type	=	'TR'	and	o.name	=	'trig1'

--	Creating	a	trigger	on	an	existing	table,	but	with	a	nonexistent	
--	column.
USE	pubs
IF	EXISTS	(SELECT	name	FROM	sysobjects
						WHERE	name	=	'trig2'	AND	type	=	'TR')
			DROP	TRIGGER	trig2

GO
CREATE	TRIGGER	trig2	
ON	authors
FOR	INSERT,	UPDATE
AS	
			DECLARE	@fax	varchar(12)
			SELECT	@fax	=	phone			
			FROM	authors
GO
--	Here	is	the	statement	to	actually	see	the	text	of	the	trigger.
SELECT	o.id,	c.text
FROM	sysobjects	o	INNER	JOIN	syscomments	c	
			ON	o.id	=	c.id
WHERE	o.type	=	'TR'	and	o.name	=	'trig2'

E.	Use	COLUMNS_UPDATED
This	example	creates	two	tables:	an	employeeData	table	and	an
auditEmployeeData	table.	The	employeeData	table,	which	holds	sensitive
employee	payroll	information,	can	be	modified	by	members	of	the	human
resources	department.	If	the	employee's	social	security	number	(SSN),	yearly
salary,	or	bank	account	number	is	changed,	an	audit	record	is	generated	and
inserted	into	the	auditEmployeeData	audit	table.

By	using	the	COLUMNS_UPDATED()	function,	it	is	possible	to	test	quickly	for
any	changes	to	these	columns	that	contain	sensitive	employee	information.	This
use	of	COLUMNS_UPDATED()	only	works	if	you	are	trying	to	detect	changes
to	the	first	8	columns	in	the	table.

USE	pubs
IF	EXISTS(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.TABLES
			WHERE	TABLE_NAME	=	'employeeData')
			DROP	TABLE	employeeData
IF	EXISTS(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.TABLES
			WHERE	TABLE_NAME	=	'auditEmployeeData')
			DROP	TABLE	auditEmployeeData

GO
CREATE	TABLE	employeeData	(
			emp_id	int	NOT	NULL,
			emp_bankAccountNumber	char	(10)	NOT	NULL,
			emp_salary	int	NOT	NULL,
			emp_SSN	char	(11)	NOT	NULL,
			emp_lname	nchar	(32)	NOT	NULL,
			emp_fname	nchar	(32)	NOT	NULL,
			emp_manager	int	NOT	NULL
)
GO
CREATE	TABLE	auditEmployeeData	(
			audit_log_id	uniqueidentifier	DEFAULT	NEWID(),
			audit_log_type	char	(3)	NOT	NULL,
			audit_emp_id	int	NOT	NULL,
			audit_emp_bankAccountNumber	char	(10)	NULL,
			audit_emp_salary	int	NULL,
			audit_emp_SSN	char	(11)	NULL,
			audit_user	sysname	DEFAULT	SUSER_SNAME(),
			audit_changed	datetime	DEFAULT	GETDATE()
)
GO
CREATE	TRIGGER	updEmployeeData	
ON	employeeData	
FOR	update	AS
/*Check	whether	columns	2,	3	or	4	has	been	updated.	If	any	or	all	of	columns	2,	3	or	4	have	been	changed,	create	an	audit	record.	The	bitmask	is:	power(2,(2-1))+power(2,(3-1))+power(2,(4-1))	=	14.	To	check	if	all	columns	2,	3,	and	4	are	updated,	use	=	14	in	place	of	>0	(below).*/

			IF	(COLUMNS_UPDATED()	&	14)	>	0
/*Use	IF	(COLUMNS_UPDATED()	&	14)	=	14	to	see	if	all	of	columns	2,	3,	and	4	are	updated.*/
						BEGIN
--	Audit	OLD	record.
						INSERT	INTO	auditEmployeeData
									(audit_log_type,

									audit_emp_id,
									audit_emp_bankAccountNumber,
									audit_emp_salary,
									audit_emp_SSN)
									SELECT	'OLD',	
												del.emp_id,
												del.emp_bankAccountNumber,
												del.emp_salary,
												del.emp_SSN
									FROM	deleted	del

--	Audit	NEW	record.
						INSERT	INTO	auditEmployeeData
									(audit_log_type,
									audit_emp_id,
									audit_emp_bankAccountNumber,
									audit_emp_salary,
									audit_emp_SSN)
									SELECT	'NEW',
												ins.emp_id,
												ins.emp_bankAccountNumber,
												ins.emp_salary,
												ins.emp_SSN
									FROM	inserted	ins
			END
GO

/*Inserting	a	new	employee	does	not	cause	the	UPDATE	trigger	to	fire.*/
INSERT	INTO	employeeData
			VALUES	(101,	'USA-987-01',	23000,	'R-M53550M',	N'Mendel',	N'Roland',	32)
GO

/*Updating	the	employee	record	for	employee	number	101	to	change	the	salary	to	51000	causes	the	UPDATE	trigger	to	fire	and	an	audit	trail	to	be	produced.*/

UPDATE	employeeData
			SET	emp_salary	=	51000
			WHERE	emp_id	=	101
GO
SELECT	*	FROM	auditEmployeeData
GO

/*Updating	the	employee	record	for	employee	number	101	to	change	both	the	bank	account	number	and	social	security	number	(SSN)	causes	the	UPDATE	trigger	to	fire	and	an	audit	trail	to	be	produced.*/

UPDATE	employeeData
			SET	emp_bankAccountNumber	=	'133146A0',	emp_SSN	=	'R-M53550M'
			WHERE	emp_id	=	101
GO
SELECT	*	FROM	auditEmployeeData
GO

F.	Use	COLUMNS_UPDATED	to	test	more	than	8	columns
If	you	must	test	for	updates	that	affect	columns	other	than	the	first	8	columns	in
a	table,	you	must	use	the	SUBSTRING	function	to	test	the	proper	bit	returned	by
COLUMNS_UPDATED.	This	example	tests	for	updates	that	affect	columns	3,	5,
or	9	in	the	Northwind.dbo.Customers	table.

USE	Northwind
DROP	TRIGGER		tr1
GO
CREATE	TRIGGER	tr1	ON	Customers
FOR	UPDATE	AS
			IF	((SUBSTRING(COLUMNS_UPDATED(),1,1)=power(2,(3-1))
						+	power(2,(5-1)))	
						AND	(SUBSTRING(COLUMNS_UPDATED(),2,1)=power(2,(1-1)))
)	
			PRINT	'Columns	3,	5	and	9	updated'
GO

UPDATE	Customers	
			SET	ContactName=ContactName,
						Address=Address,
						Country=Country
GO

See	Also

ALTER	TABLE

ALTER	TRIGGER

CREATE	TABLE

DROP	TRIGGER

Programming	Stored	Procedures

sp_depends

sp_help

sp_helptext

sp_rename

sp_settriggerorder

sp_spaceused

Using	Identifiers

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Transact-SQL	Reference

CREATE	VIEW
Creates	a	virtual	table	that	represents	the	data	in	one	or	more	tables	in	an
alternative	way.	CREATE	VIEW	must	be	the	first	statement	in	a	query	batch.

Syntax
CREATE	VIEW	[<	database_name	>	.]	[<	owner	>	.]	view_name	[(column	[
,...n])]	
[WITH	<	view_attribute	>	[,...n]]	
AS	
select_statement	
[WITH	CHECK	OPTION]	

<	view_attribute	>	::=	
				{	ENCRYPTION	|	SCHEMABINDING	|	VIEW_METADATA	}

Arguments
view_name

Is	the	name	of	the	view.	View	names	must	follow	the	rules	for	identifiers.
Specifying	the	view	owner	name	is	optional.

column

Is	the	name	to	be	used	for	a	column	in	a	view.	Naming	a	column	in	CREATE
VIEW	is	necessary	only	when	a	column	is	derived	from	an	arithmetic
expression,	a	function,	or	a	constant,	when	two	or	more	columns	may
otherwise	have	the	same	name	(usually	because	of	a	join),	or	when	a	column
in	a	view	is	given	a	name	different	from	that	of	the	column	from	which
derived.	Column	names	can	also	be	assigned	in	the	SELECT	statement.

If	column	is	not	specified,	the	view	columns	acquire	the	same	names	as	the
columns	in	the	SELECT	statement.

Note		In	the	columns	for	the	view,	the	permissions	for	a	column	name	apply
across	a	CREATE	VIEW	or	ALTER	VIEW	statement,	regardless	of	the	source	of

the	underlying	data.	For	example,	if	permissions	are	granted	on	the	title_id
column	in	a	CREATE	VIEW	statement,	an	ALTER	VIEW	statement	can	name
the	title_id	column	with	a	different	column	name,	such	as	qty,	and	still	have	the
permissions	associated	with	the	view	using	title_id.

n

Is	a	placeholder	that	indicates	that	multiple	columns	can	be	specified.

AS

Are	the	actions	the	view	is	to	perform.

select_statement

Is	the	SELECT	statement	that	defines	the	view.	It	can	use	more	than	one
table	and	other	views.	To	select	from	the	objects	referenced	in	the	SELECT
clause	of	a	view	created,	it	is	necessary	to	have	the	appropriate	permissions.

A	view	does	not	have	to	be	a	simple	subset	of	the	rows	and	columns	of	one
particular	table.	A	view	can	be	created	using	more	than	one	table	or	other
views	with	a	SELECT	clause	of	any	complexity.

In	an	indexed	view	definition,	the	SELECT	statement	must	be	a	single	table
statement	or	a	multitable	JOIN	with	optional	aggregation.

There	are	a	few	restrictions	on	the	SELECT	clauses	in	a	view	definition.	A
CREATE	VIEW	statement	cannot:

Include	COMPUTE	or	COMPUTE	BY	clauses.

Include	ORDER	BY	clause,	unless	there	is	also	a	TOP	clause	in	the
select	list	of	the	SELECT	statement.

Include	the	INTO	keyword.

Reference	a	temporary	table	or	a	table	variable.

Because	select_statement	uses	the	SELECT	statement,	it	is	valid	to	use
<join_hint>	and	<table_hint>	hints	as	specified	in	the	FROM	clause.	For

more	information,	see	FROM	and	SELECT.

Functions	can	be	used	in	the	select_statement.

select_statement	can	use	multiple	SELECT	statements	separated	by	UNION
or	UNION	ALL.

WITH	CHECK	OPTION

Forces	all	data	modification	statements	executed	against	the	view	to	adhere
to	the	criteria	set	within	select_statement.	When	a	row	is	modified	through	a
view,	the	WITH	CHECK	OPTION	ensures	the	data	remains	visible	through
the	view	after	the	modification	is	committed.

WITH	ENCRYPTION

Indicates	that	SQL	Server	encrypts	the	system	table	columns	containing	the
text	of	the	CREATE	VIEW	statement.	Using	WITH	ENCRYPTION	prevents
the	view	from	being	published	as	part	of	SQL	Server	replication.

SCHEMABINDING

Binds	the	view	to	the	schema.	When	SCHEMABINDING	is	specified,	the
select_statement	must	include	the	two-part	names	(owner.object)	of	tables,
views,	or	user-defined	functions	referenced.

Views	or	tables	participating	in	a	view	created	with	the	schema	binding
clause	cannot	be	dropped	unless	that	view	is	dropped	or	changed	so	that	it	no
longer	has	schema	binding.	Otherwise,	SQL	Server	raises	an	error.	In
addition,	ALTER	TABLE	statements	on	tables	that	participate	in	views
having	schema	binding	will	fail	if	these	statements	affect	the	view	definition.

VIEW_METADATA

Specifies	that	SQL	Server	will	return	to	the	DBLIB,	ODBC,	and	OLE	DB
APIs	the	metadata	information	about	the	view,	instead	of	the	base	table	or
tables,	when	browse-mode	metadata	is	being	requested	for	a	query	that
references	the	view.	Browse-mode	metadata	is	additional	metadata	returned
by	SQL	Server	to	the	client-side	DB-LIB,	ODBC,	and	OLE	DB	APIs,	which
allow	the	client-side	APIs	to	implement	updatable	client-side	cursors.
Browse-mode	meta	data	includes	information	about	the	base	table	that	the
columns	in	the	result	set	belong	to.

For	views	created	with	VIEW_METADATA	option,	the	browse-mode	meta
data	returns	the	view	name	as	opposed	to	the	base	table	names	when
describing	columns	from	the	view	in	the	result	set.

When	a	view	is	created	WITH	VIEW_METADATA,	all	its	columns	(except
for	timestamp)	are	updatable	if	the	view	has	INSERT	or	UPDATE
INSTEAD	OF	triggers.	See	Updatable	Views	later	in	this	topic.

Remarks
A	view	can	be	created	only	in	the	current	database.	A	view	can	reference	a
maximum	of	1,024	columns.

When	querying	through	a	view,	Microsoft®	SQL	Server™	checks	to	make	sure
that	all	the	database	objects	referenced	anywhere	in	the	statement	exist,	that	they
are	valid	in	the	context	of	the	statement,	and	that	data	modification	statements	do
not	violate	any	data	integrity	rules.	A	check	that	fails	returns	an	error	message.	A
successful	check	translates	the	action	into	an	action	against	the	underlying
table(s).

If	a	view	depends	on	a	table	(or	view)	that	was	dropped,	SQL	Server	produces	an
error	message	if	anyone	tries	to	use	the	view.	If	a	new	table	(or	view)	is	created,
and	the	table	structure	does	not	change	from	the	previous	base	table,	to	replace
the	one	dropped,	the	view	again	becomes	usable.	If	the	new	table	(or	view)
structure	changes,	then	the	view	must	be	dropped	and	recreated.

When	a	view	is	created,	the	name	of	the	view	is	stored	in	the	sysobjects	table.
Information	about	the	columns	defined	in	a	view	is	added	to	the	syscolumns
table,	and	information	about	the	view	dependencies	is	added	to	the	sysdepends
table.	In	addition,	the	text	of	the	CREATE	VIEW	statement	is	added	to	the
syscomments	table.	This	is	similar	to	a	stored	procedure;	when	a	view	is
executed	for	the	first	time,	only	its	query	tree	is	stored	in	the	procedure	cache.
Each	time	a	view	is	accessed,	its	execution	plan	is	recompiled.

The	result	of	a	query	using	an	index	on	a	view	defined	with	numeric	or	float
expressions	may	be	different	from	a	similar	query	that	does	not	use	the	index	on
the	view.	This	difference	may	be	the	result	of	rounding	errors	during	INSERT,
DELETE,	or	UPDATE	actions	on	underlying	tables.

SQL	Server	saves	the	settings	of	SET	QUOTED_IDENTIFIER	and	SET

ANSI_NULLS	when	a	view	is	created.	These	original	settings	are	restored	when
the	view	is	used.	Therefore,	any	client	session	settings	for	SET
QUOTED_IDENTIFIER	and	SET	ANSI_NULLS	is	ignored	when	accessing	the
view.

Note		Whether	SQL	Server	interprets	an	empty	string	as	a	single	space	or	as	a
true	empty	string	is	controlled	by	the	setting	of	sp_dbcmptlevel.	If	the
compatibility	level	is	less	than	or	equal	to	65,	SQL	Server	interprets	empty
strings	as	single	spaces.	If	the	compatibility	level	is	equal	to	or	higher	than	70,
SQL	Server	interprets	empty	strings	as	empty	strings.	For	more	information,	see
sp_dbcmptlevel.

Updatable	Views
Microsoft	SQL	Server	2000	enhances	the	class	of	updatable	views	in	two	ways:

INSTEAD	OF	Triggers:	INSTEAD	OF	triggers	can	be	created	on	a
view	in	order	to	make	a	view	updatable.	The	INSTEAD	OF	trigger	is
executed	instead	of	the	data	modification	statement	on	which	the	trigger
is	defined.	This	trigger	allows	the	user	to	specify	the	set	of	actions	that
need	to	take	place	in	order	to	process	the	data	modification	statement.
Thus,	if	an	INSTEAD	OF	trigger	exists	for	a	view	on	a	given	data
modification	statement	(INSERT,	UPDATE,	or	DELETE),	the
corresponding	view	is	updatable	through	that	statement.	For	more
information	about	INSTEAD	OF	triggers,	see	Designing	INSTEAD	OF
triggers.

Partitioned	Views:	If	the	view	is	of	a	specified	form	called	'partitioned
view,'	the	view	is	updatable,	subject	to	certain	restrictions.	Partitioned
views	and	their	updatability	are	discussed	later	in	this	topic.

When	needed,	SQL	Server	will	distinguish	Local	Partitioned	Views	as
the	views	in	which	all	participating	tables	and	the	view	are	on	the	same
SQL	Server,	and	Distributed	Partitioned	Views	as	the	views	in	which
at	least	one	of	the	tables	in	the	view	resides	on	a	different	(remote)
server.

If	a	view	does	not	have	INSTEAD	OF	triggers,	or	if	it	is	not	a	partitioned	view,

JavaScript:hhobj_1.Click()

then	it	is	updatable	only	if	the	following	conditions	are	satisfied:

The	select_statement	has	no	aggregate	functions	in	the	select	list	and
does	not	contain	the	TOP,	GROUP	BY,	UNION	(unless	the	view	is	a
partitioned	view	as	described	later	in	this	topic),	or	DISTINCT	clauses.
Aggregate	functions	can	be	used	in	a	subquery	in	the	FROM	clause	as
long	as	the	values	returned	by	the	functions	are	not	modified.	For	more
information,	see	Aggregate	Functions.

select_statement	has	no	derived	columns	in	the	select	list.	Derived
columns	are	result	set	columns	formed	by	anything	other	than	a	simple
column	expression,	such	as	using	functions	or	addition	or	subtraction
operators.

The	FROM	clause	in	the	select_statement	references	at	least	one	table.
select_statement	must	have	more	than	non-tabular	expressions,	which
are	expressions	not	derived	from	a	table.	For	example,	this	view	is	not
updatable:
CREATE	VIEW	NoTable	AS
SELECT	GETDATE()	AS	CurrentDate,
							@@LANGUAGE	AS	CurrentLanguage,
							CURRENT_USER	AS	CurrentUser

INSERT,	UPDATE,	and	DELETE	statements	also	must	meet	certain
qualifications	before	they	can	reference	a	view	that	is	updatable,	as	specified	in
the	conditions	above.	UPDATE	and	INSERT	statements	can	reference	a	view
only	if	the	view	is	updatable	and	the	UPDATE	or	INSERT	statement	is	written
so	that	it	modifies	data	in	only	one	of	the	base	tables	referenced	in	the	FROM
clause	of	the	view.	A	DELETE	statement	can	reference	an	updatable	view	only	if
the	view	references	exactly	one	table	in	its	FROM	clause.

Partitioned	Views
A	partitioned	view	is	a	view	defined	by	a	UNION	ALL	of	member	tables
structured	in	the	same	way,	but	stored	separately	as	multiple	tables	in	either	the
same	SQL	Server	or	in	a	group	of	autonomous	SQL	Server	2000	servers,	called

Federated	SQL	Server	2000	Servers.

For	example,	if	you	have	Customers	table	data	distributed	in	three	member
tables	in	three	server	locations	(Customers_33	on	Server1,	Customers_66	on
Server2,	and	Customers_99	on	Server3),	a	partitioned	view	on	Server1	would
be	defined	this	way:

--Partitioned	view	as	defined	on	Server1
CREATE	VIEW	Customers
AS
--Select	from	local	member	table
SELECT	*
FROM	CompanyData.dbo.Customers_33
UNION	ALL
--Select	from	member	table	on	Server2
SELECT	*
FROM	Server2.CompanyData.dbo.Customers_66
UNION	ALL
--Select	from	mmeber	table	on	Server3
SELECT	*
FROM	Server3.CompanyData.dbo.Customers_99

In	general,	a	view	is	said	to	be	a	partitioned	view	if	it	is	of	the	following	form:

SELECT	<select_list1>
FROM	T1
UNION	ALL
SELECT	<select_list2>
FROM	T2
UNION	ALL
...
SELECT	<select_listn>
FROM	Tn

Conditions	for	Creating	Partitioned	Views

JavaScript:hhobj_2.Click()

1.	 SELECT	list

All	columns	in	the	member	tables	should	be	selected	in	the
column	list	of	the	view	definition.

The	columns	in	the	same	ordinal	position	of	each	select_list
should	be	of	the	same	type,	including	collations.	It	is	not
sufficient	for	the	columns	to	be	implicitly	convertible	types,
as	is	generally	the	case	for	UNION.

Also,	at	least	one	column	(for	example	<col>)	must	appear	in
all	the	SELECT	lists	in	the	same	ordinal	position.	This	<col>
should	be	defined	such	that	the	member	tables	T1,	...,	Tn	have
CHECK	constraints	C1,	...,	Cn	defined	on	<col>	respectively.

Constraint	C1	defined	on	table	T1	must	follow	this	form:

C1	::=	<	simple_interval	>	[OR	<	simple_interval	>	OR	...]
<	simple_interval	>	::	=	
				<	col	>	{	<	|	>	|	<=	|	>=	|	=	}	
				|	<	col	>	BETWEEN	<	value1	>	AND	<	value2	>
				|	<	col	>	IN	(value_list)
				|	<	col	>	{	>	|	>=	}	<	value1	>	AND
								<	col	>	{	<	|	<=	}	<	value2	>

The	constraints	should	be	such	that	any	given	value	of	<col>
can	satisfy	at	most	one	of	the	constraints	C1,	...,	Cn	so	that
the	constraints	should	form	a	set	of	disjointed	or	non-
overlapping	intervals.	The	column	<col>	on	which	the
disjointed	constraints	are	defined	is	called	the	'partitioning
column.'	Note	that	the	partitioning	column	may	have	different
names	in	the	underlying	tables.	The	constraints	should	be	in
an	enabled	state	in	order	for	them	to	meet	the	above
conditions	of	the	partitioning	column.	If	the	constraints	are
disabled,	re-enable	constraint	checking	with	either	the	WITH
CHECK	option	or	the	CHECK	constraint_name	options	of
ALTER	TABLE.

Here	are	some	examples	of	valid	sets	of	constraints:

{	[col	<	10],	[col	between	11	and	20]	,	[col	>	20]	}
{	[col	between	11	and	20],	[col	between	21	and	30],	[col	between	31	and	100]	}

The	same	column	cannot	be	used	multiple	times	in	the
SELECT	list.

2.	 Partitioning	column

The	partitioning	column	is	a	part	of	the	PRIMARY	KEY	of
the	table.

It	cannot	be	a	computed	column.

If	there	is	more	than	one	constraint	on	the	same	column	in	a
member	table,	SQL	Server	ignores	all	the	constraints	and	will
not	consider	them	when	determining	whether	or	not	the	view
is	a	partitioned	view.	To	meet	the	conditions	of	the	partitioned
view,	there	should	be	only	one	partitioning	constraint	on	the
partitioning	column.

3.	 Member	tables	(or	underlying	tables	T1,	...,	Tn)

The	tables	can	be	either	local	tables	or	tables	from	other	SQL
Servers	referenced	either	through	a	four-part	name	or	an
OPENDATASOURCE-	or	OPENROWSET-based	name.	(The
OPENDATASOURCE	and	OPENROWSET	syntax	can
specify	a	table	name,	but	not	a	pass-through	query.)	For	more
information,	see	OPENDATASOURCE	and	OPENROWSET
.

If	one	or	more	of	the	member	tables	are	remote,	the	view	is
called	distributed	partitioned	view,	and	additional	conditions
apply.	They	are	discussed	later	in	this	section.

The	same	table	cannot	appear	twice	in	the	set	of	tables	that
are	being	combined	with	the	UNION	ALL	statement.

The	member	tables	cannot	have	indexes	created	on	computed
columns	in	the	table.

The	member	tables	should	have	all	PRIMARY	KEY
constraints	on	an	identical	number	of	columns.

All	member	tables	in	the	view	should	have	the	same	ANSI
padding	setting	(which	is	set	using	the	user	options	option	in
sp_configure	or	the	SET	option).

Conditions	for	Modifying	Partitioned	Views

Only	the	Developer	and	Enterprise	Editions	of	SQL	Server	2000	allow	INSERT,
UPDATE,	and	DELETE	operations	on	partitioned	views.	To	modify	partitioned
views,	the	statements	must	meet	these	conditions:

The	INSERT	statement	must	supply	values	for	all	the	columns	in	the
view,	even	if	the	underlying	member	tables	have	a	DEFAULT	constraint
for	those	columns	or	if	they	allow	NULLs.	For	those	member	table
columns	that	have	DEFAULT	definitions,	the	statements	cannot	use	the
keyword	DEFAULT	explicitly.

The	value	being	inserted	into	the	partitioning	column	should	satisfy	at
least	one	of	the	underlying	constraints;	otherwise,	the	INSERT	action
will	fail	with	a	constraint	violation.

UPDATE	statements	cannot	specify	the	DEFAULT	keyword	as	a	value
in	the	SET	clause	even	if	the	column	has	a	DEFAULT	value	defined	in
the	corresponding	member	table.

PRIMARY	KEY	columns	cannot	be	modified	through	an	UPDATE
statement	if	the	member	tables	have	text,	ntext,	or	image	columns.	

Columns	in	the	view	that	are	an	IDENTITY	column	in	one	or	more	of
the	member	tables	cannot	be	modified	through	an	INSERT	or	UPDATE

statement.

If	one	of	the	member	tables	contains	a	timestamp	column,	the	view
cannot	be	modified	through	an	INSERT	or	UPDATE	statement.

INSERT,	UPDATE,	and	DELETE	actions	against	a	partitioned	view	are
not	allowed	if	there	is	a	self-join	with	the	same	view	or	with	any	of	the
member	tables	in	the	statement.

Note		To	update	a	partitioned	view,	the	user	must	have	INSERT,
UPDATE,	and	DELETE	permissions	on	the	member	tables.

Additional	Conditions	for	Distributed	Partitioned	Views

For	distributed	partitioned	views	(when	one	or	more	member	tables	are	remote),
the	following	additional	conditions	apply:

A	distributed	transaction	will	be	started	to	ensure	atomicity	across	all
nodes	affected	by	the	update.

The	XACT_ABORT	SET	option	should	be	set	to	ON	for	INSERT,
UPDATE,	or	DELETE	statements	to	work.

Any	smallmoney	and	smalldatetime	columns	in	remote	tables	that	are
referenced	in	a	partitioned	view	are	mapped	as	money	and	datetime
respectively.	Consequently,	the	corresponding	columns	(in	the	same
ordinal	position	in	the	select	list)	in	the	local	tables	should	be	money
and	datetime.

Any	linked	server	in	the	partitioned	view	cannot	be	a	loopback	linked
server	(a	linked	server	that	points	to	the	same	SQL	Server).

The	setting	of	the	SET	ROWCOUNT	option	is	ignored	for	INSERT,	UPDATE,
and	DELETE	actions	that	involve	updatable	partitioned	views	and	remote	tables.

When	the	member	tables	and	partitioned	view	definition	are	in	place,	Microsoft

SQL	Server	2000	builds	intelligent	plans	that	use	queries	efficiently	to	access
data	from	member	tables.	With	the	CHECK	constraint	definitions,	the	query
processor	maps	the	distribution	of	key	values	across	the	member	tables.	When	a
user	issues	a	query,	the	query	processor	compares	the	map	to	the	values	specified
in	the	WHERE	clause,	and	builds	an	execution	plan	with	a	minimal	amount	of
data	transfer	between	member	servers.	Thus,	although	some	member	tables	may
be	located	in	remote	servers,	SQL	Server	2000	will	resolve	distributed	queries	so
that	the	amount	of	distributed	data	that	has	to	be	transferred	is	minimal.	For
more	information	about	how	SQL	Server	2000	resolves	queries	on	partitioned
views,	see	Resolving	Distributed	Partitioned	Views.

Considerations	for	Replication

In	order	to	create	partitioned	views	on	member	tables	that	are	involved	in
replication,	the	following	considerations	apply:

If	the	underlying	tables	are	involved	in	merge	replication	or
transactional	replication	with	updating	subscribers,	the	uniqueidentifier
column	should	also	be	included	in	the	SELECT	list.

Any	INSERT	actions	into	the	partitioned	view	must	provide	a	NEWID()
value	for	the	uniqueidentifier	column.	Any	UPDATE	actions	against	the
uniqueidentifier	column	must	supply	NEWID()	as	the	value	since	the
DEFAULT	keyword	cannot	be	used.

The	replication	of	updates	made	using	the	view	is	exactly	the	same	as
when	replicating	tables	in	two	different	databases;	that	is,	the	tables	are
served	by	different	replication	agents	and	the	order	of	the	updates	is	not
guaranteed.

Permissions

CREATE	VIEW	permission	defaults	to	the	members	of	the	db_owner	and
db_ddladmin	fixed	database	roles.	Members	of	the	sysadmin	fixed	server	role
and	the	db_owner	fixed	database	role	can	transfer	CREATE	VIEW	permission
to	other	users.

To	create	a	view,	the	user	must	have	CREATE	VIEW	permission	along	with

JavaScript:hhobj_3.Click()

SELECT	permission	on	the	tables,	views,	and	table-valued	functions	being
referenced	in	the	view,	and	EXECUTE	permission	on	the	scalar-valued	functions
being	invoked	in	the	view.

In	addition,	to	create	a	view	WITH	SCHEMABINDING,	the	user	must	have
REFERENCES	permissions	on	each	table,	view,	and	user-defined	function	that
is	referenced.

Examples

A.	Use	a	simple	CREATE	VIEW
This	example	creates	a	view	with	a	simple	SELECT	statement.	A	simple	view	is
helpful	when	a	combination	of	columns	is	queried	frequently.

USE	pubs
IF	EXISTS	(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.VIEWS
						WHERE	TABLE_NAME	=	'titles_view')
			DROP	VIEW	titles_view
GO
CREATE	VIEW	titles_view
AS	
SELECT	title,	type,	price,	pubdate
FROM	titles
GO

B.	Use	WITH	ENCRYPTION
This	example	uses	the	WITH	ENCRYPTION	option	and	shows	computed
columns,	renamed	columns,	and	multiple	columns.

USE	pubs
IF	EXISTS	(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.VIEWS
						WHERE	TABLE_NAME	=	'accounts')
			DROP	VIEW	accounts
GO
CREATE	VIEW	accounts	(title,	advance,	amt_due)

WITH	ENCRYPTION
AS	
SELECT	title,	advance,	price	*	royalty	*	ytd_sales
FROM	titles
WHERE	price	>	$5
GO

Here	is	the	query	to	retrieve	the	identification	number	and	text	of	the	encrypted
stored	procedure:

USE	pubs
GO
SELECT	c.id,	c.text	
FROM	syscomments	c,	sysobjects	o
WHERE	c.id	=	o.id	and	o.name	=	'accounts'
GO

Here	is	the	result	set:

Note		The	text	column	output	is	shown	on	a	separate	line.	When	the	procedure	is
executed,	this	information	appears	on	the	same	line	as	the	id	column
information.

id										text																																																								
-----------	--
661577395		
???...

(1	row(s)	affected)

C.	Use	WITH	CHECK	OPTION
This	example	shows	a	view	named	CAonly	that	allows	data	modifications	to
apply	only	to	authors	within	the	state	of	California.

USE	pubs
IF	EXISTS	(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.VIEWS

						WHERE	TABLE_NAME	=	'CAonly')
			DROP	VIEW	CAonly
GO
CREATE	VIEW	CAonly
AS	
SELECT	au_lname,	au_fname,	city,	state
FROM	authors
WHERE	state	=	'CA'
WITH	CHECK	OPTION
GO

D.	Use	built-in	functions	within	a	view
This	example	shows	a	view	definition	that	includes	a	built-in	function.	When
you	use	functions,	the	derived	column	must	include	a	column	name	in	the
CREATE	VIEW	statement.

USE	pubs
IF	EXISTS	(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.VIEWS
						WHERE	TABLE_NAME	=	'categories')
			DROP	VIEW	categories
GO
CREATE	VIEW	categories	(category,	average_price)
AS	
SELECT	type,	AVG(price)
FROM	titles
GROUP	BY	type
GO

E.	Use	@@ROWCOUNT	function	in	a	view
This	example	uses	the	@@ROWCOUNT	function	as	part	of	the	view	definition.

USE	pubs
IF	EXISTS	(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.VIEWS
						WHERE	TABLE_NAME	=	'myview')

			DROP	VIEW	myview
GO
CREATE	VIEW	myview
AS
			SELECT	au_lname,	au_fname,	@@ROWCOUNT	AS	bar
			FROM	authors
			WHERE	state	=	'UT'
GO
SELECT	*	
FROM	myview

F.	Use	partitioned	data
This	example	uses	tables	named	SUPPLY1,	SUPPLY2,	SUPPLY3,	and
SUPPLY4,	which	correspond	to	the	supplier	tables	from	four	offices,	located	in
different	countries.

--create	the	tables	and	insert	the	values
CREATE	TABLE	SUPPLY1	(
			supplyID	INT	PRIMARY	KEY	CHECK	(supplyID	BETWEEN	1	and	150),
			supplier	CHAR(50)
)
CREATE	TABLE	SUPPLY2	(
			supplyID	INT	PRIMARY	KEY	CHECK	(supplyID	BETWEEN	151	and	300),
			supplier	CHAR(50)
)
CREATE	TABLE	SUPPLY3	(
			supplyID	INT	PRIMARY	KEY	CHECK	(supplyID	BETWEEN	301	and	450),
			supplier	CHAR(50)
)
CREATE	TABLE	SUPPLY4	(
			supplyID	INT	PRIMARY	KEY	CHECK	(supplyID	BETWEEN	451	and	600),
			supplier	CHAR(50)
)

INSERT	SUPPLY1	VALUES	('1',	'CaliforniaCorp')
INSERT	SUPPLY1	VALUES	('5',	'BraziliaLtd')
INSERT	SUPPLY2	VALUES	('231',	'FarEast')
INSERT	SUPPLY2	VALUES	('280',	'NZ')
INSERT	SUPPLY3	VALUES	('321',	'EuroGroup')
INSERT	SUPPLY3	VALUES	('442',	'UKArchip')
INSERT	SUPPLY4	VALUES	('475',	'India')
INSERT	SUPPLY4	VALUES	('521',	'Afrique')

--create	the	view	that	combines	all	supplier	tables
CREATE	VIEW	all_supplier_view
AS
SELECT	*
FROM	SUPPLY1
			UNION	ALL
SELECT	*
FROM	SUPPLY2
			UNION	ALL
SELECT	*
FROM	SUPPLY3
			UNION	ALL
SELECT	*
FROM	SUPPLY4

See	Also

ALTER	TABLE

ALTER	VIEW

DELETE

DROP	VIEW

INSERT

Programming	Stored	Procedures

JavaScript:hhobj_4.Click()

sp_depends

sp_help

sp_helptext

sp_rename

System	Tables

UPDATE

Using	Identifiers

Using	Views	with	Partitioned	Data

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Transact-SQL	Reference

CURRENT_TIMESTAMP
Returns	the	current	date	and	time.	This	function	is	equivalent	to	GETDATE().

Syntax
CURRENT_TIMESTAMP

Return	Types
datetime

Examples

A.	Use	CURRENT_TIMESTAMP	to	return	the	current	date	and
time
This	example	returns	the	value	of	CURRENT_TIMESTAMP	and	a	text
description.

SELECT	'The	current	time	is:	'+	CONVERT(char(30),	CURRENT_TIMESTAMP)

Here	is	the	result	set:

The	current	time	is:	Feb	24	1998		3:45PM												

(1	row(s)	affected)

B.	Use	CURRENT_TIMESTAMP	as	a	DEFAULT	constraint
This	example	creates	a	table	that	uses	CURRENT_TIMESTAMP	as	a
DEFAULT	constraint	for	the	sales_date	column	of	a	sales	row.

USE	pubs
GO
CREATE	TABLE	sales2

(
	sales_id	int	IDENTITY(10000,	1)	NOT	NULL,
	cust_id		int	NOT	NULL,
	sales_date	datetime	NOT	NULL	DEFAULT	CURRENT_TIMESTAMP,
	sales_amt	money	NOT	NULL,
	delivery_date	datetime	NOT	NULL	DEFAULT	DATEADD(dd,	10,	GETDATE())
)
GO
INSERT	sales2	(cust_id,	sales_amt)
			VALUES	(20000,	550)

This	query	selects	all	information	from	the	sales2	table.

USE	pubs
GO
SELECT	*	
FROM	sales2
GO

Here	is	the	result	set:

sales_id				cust_id				sales_date										sales_amt	delivery_date															
-----------	----------	-------------------	---------	-------------------
10000							20000						Mar	4	1998	10:06AM		550.00				Mar	14	1998	10:06AM

(1	row(s)	affected)

See	Also

ALTER	TABLE

CREATE	TABLE

System	Functions

Transact-SQL	Reference

CURRENT_USER
Returns	the	current	user.	This	function	is	equivalent	to	USER_NAME().

Syntax
CURRENT_USER

Return	Types
sysname

Examples

A.	Use	CURRENT_USER	to	return	the	current	username
This	example	declares	a	variable	as	char,	assigns	the	current	value	of
CURRENT_USER	to	it,	and	then	returns	the	variable	with	a	text	description.

SELECT	'The	current	user	is:	'+	convert(char(30),	CURRENT_USER)

Here	is	the	result	set:

The	current	user	is:	dbo																												

(1	row(s)	affected)

B.	Use	CURRENT_USER	as	a	DEFAULT	constraint
This	example	creates	a	table	that	uses	CURRENT_USER	as	a	DEFAULT
constraint	for	the	order_person	column	on	a	sales	row.

USE	pubs
IF	EXISTS	(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.TABLES
						WHERE	TABLE_NAME	=	'orders2')
			DROP	TABLE	orders2

GO
SET	NOCOUNT	ON
CREATE	TABLE	orders2
(
	order_id	int	IDENTITY(1000,	1)	NOT	NULL,
	cust_id		int	NOT	NULL,
	order_date	datetime	NOT	NULL	DEFAULT	GETDATE(),
	order_amt	money	NOT	NULL,
	order_person	char(30)	NOT	NULL	DEFAULT	CURRENT_USER
)
GO
INSERT	orders2	(cust_id,	order_amt)
VALUES	(5105,	577.95)
GO
SET	NOCOUNT	OFF

This	query	selects	all	information	from	the	orders2	table.

SELECT	*	
FROM	orders2

Here	is	the	result	set:

order_id				cust_id					order_date													order_amt				order_person																			
-----------	-----------	-------------------	-------------	--------------	
1000								5105								Mar	4	1998	10:13AM						577.95											dbo																												

(1	row(s)	affected)

See	Also

ALTER	TABLE

CREATE	TABLE

System	Functions

Transact-SQL	Reference

cursor
A	data	type	for	variables	or	stored	procedure	OUTPUT	parameters	that	contain	a
reference	to	a	cursor.	Any	variables	created	with	the	cursor	data	type	are
nullable.

The	operations	that	can	reference	variables	and	parameters	having	a	cursor	data
type	are:

The	DECLARE	@local_variable	and	SET	@local_variable	statements.

The	OPEN,	FETCH,	CLOSE,	and	DEALLOCATE	cursor	statements.

Stored	procedure	output	parameters.

The	CURSOR_STATUS	function.

The	sp_cursor_list,	sp_describe_cursor,	sp_describe_cursor_tables,
and	sp_describe_cursor_columns	system	stored	procedures.

IMPORTANT		The	cursor	data	type	cannot	be	used	for	a	column	in	a	CREATE
TABLE	statement.

See	Also

CAST	and	CONVERT

CURSOR_STATUS

Data	Type	Conversion

Data	Types

DECLARE	CURSOR

DECLARE	@local_variable

JavaScript:hhobj_1.Click()

SET	@local_variable

Transact-SQL	Reference

CURSOR_STATUS
A	scalar	function	that	allows	the	caller	of	a	stored	procedure	to	determine
whether	or	not	the	procedure	has	returned	a	cursor	and	result	set	for	a	given
parameter.

Syntax
CURSOR_STATUS	
				(
								{	'local'	,	'cursor_name'	}	
								|	{	'global'	,	'cursor_name'	}	
								|	{	'variable'	,	'cursor_variable'	}	
)

Arguments
'local'

Specifies	a	constant	that	indicates	the	source	of	the	cursor	is	a	local	cursor
name.

'cursor_name'

Is	the	name	of	the	cursor.	A	cursor	name	must	conform	to	the	rules	for
identifiers.

'global'

Specifies	a	constant	that	indicates	the	source	of	the	cursor	is	a	global	cursor
name.

'variable'

Specifies	a	constant	that	indicates	the	source	of	the	cursor	is	a	local	variable.

'cursor_variable'

Is	the	name	of	the	cursor	variable.	A	cursor	variable	must	be	defined	using
the	cursor	data	type.

Return	Types
smallint

Return
value Cursor	name Cursor	variable
1 The	result	set	of	the	cursor

has	at	least	one	row	and:

For	insensitive	and	keyset
cursors,	the	result	set	has	at
least	one	row.

For	dynamic	cursors,	the
result	set	can	have	zero,	one,
or	more	rows.

The	cursor	allocated	to	this	variable
is	open	and:

For	insensitive	and	keyset	cursors,
the	result	set	has	at	least	one	row.

For	dynamic	cursors,	the	result	set
can	have	zero,	one,	or	more	rows.

0 The	result	set	of	the	cursor	is
empty.*

The	cursor	allocated	to	this	variable
is	open,	but	the	result	set	is
definitely	empty.*

-1 The	cursor	is	closed. The	cursor	allocated	to	this	variable
is	closed.

-2 Not	applicable. Can	be:

No	cursor	was	assigned	to	this
OUTPUT	variable	by	the	previously
called	procedure.

A	cursor	was	assigned	to	this
OUTPUT	variable	by	the	previously
called	procedure,	but	it	was	in	a
closed	state	upon	completion	of	the
procedure.	Therefore,	the	cursor	is
deallocated	and	not	returned	to	the
calling	procedure.

There	is	no	cursor	assigned	to	a
declared	cursor	variable.

-3 A	cursor	with	the	specified A	cursor	variable	with	the	specified

name	does	not	exist. name	does	not	exist,	or	if	one	exists
it	has	not	yet	had	a	cursor	allocated
to	it.

*	Dynamic	cursors	never	return	this	result.

Examples
This	example	creates	a	procedure	named	lake_list	and	uses	the	output	from
executing	lake_list	as	a	check	for	CURSOR_STATUS.

Note		This	example	depends	on	a	procedure	named	check_authority,	which	has
not	been	created.

USE	pubs
IF	EXISTS	(SELECT	name	FROM	sysobjects
						WHERE	name	=	'lake_list'	AND	type	=	'P')
			DROP	PROCEDURE	lake_list
GO
CREATE	PROCEDURE	lake_list
			(@region	varchar(30),
					@size	integer,
					@lake_list_cursor	CURSOR	VARYING	OUTPUT)
AS	
BEGIN
			DECLARE	@ok	SMALLINT
			EXECUTE	check_authority	@region,	username,	@ok	OUTPUT
			IF	@ok	=	1
						BEGIN
						SET	@lake_list_cursor	=CURSOR	LOCAL	SCROLL	FOR
									SELECT	name,	lat,	long,	size,	boat_launch,	cost
									FROM	lake_inventory
									WHERE	locale	=	@region	AND	area	>=	@size
									ORDER	BY	name
						OPEN	@lake_list_cursor
						END

END
DECLARE	@my_lakes_cursor	CURSOR
DECLARE	@my_region	char(30)
SET	@my_region	=	'Northern	Ontario'
EXECUTE	lake_list	@my_region,	500,	@my_lakes_cursor	OUTPUT
IF	Cursor_Status('variable',	'@my_lakes_cursor')	<=	0
			BEGIN
			/*	Some	code	to	tell	the	user	that	there	is	no	list	of
			lakes	for	him/her	*/
			END
ELSE
			BEGIN
						FETCH	@my_lakes_cursor	INTO	--	Destination	here
						--	Continue	with	other	code	here.
END

See	Also

Cursor	Functions

Data	Types

Using	Identifiers

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

Cursors
Microsoft®	SQL	Server™	statements	produce	a	complete	result	set,	but	there
are	times	when	the	results	are	best	processed	one	row	at	a	time.	Opening	a	cursor
on	a	result	set	allows	processing	the	result	set	one	row	at	a	time.	SQL	Server
version	7.0	also	introduces	assigning	a	cursor	to	a	variable	or	parameter	with	a
cursor	data	type.

Cursor	operations	are	supported	on	these	statements:

CLOSE

CREATE	PROCEDURE

DEALLOCATE

DECLARE	CURSOR

DECLARE	@local_variable

DELETE

FETCH

OPEN

UPDATE

SET

These	system	functions	and	system	stored	procedures	also	support	cursors:

@@CURSOR_ROWS

CURSOR_STATUS

@@FETCH_STATUS

sp_cursor_list

sp_describe_cursor

sp_describe_cursor_columns

sp_describe_cursor_tables

See	Also

Cursors

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

DATABASEPROPERTY
Returns	the	named	database	property	value	for	the	given	database	and	property
name.

IMPORTANT		Use	the	Microsoft®	SQL	Server™	2000	function
DATABASEPROPERTYEX	to	obtain	information	about	the	current	setting	of
database	options	or	the	properties	of	a	specified	database.	The
DATABASEPROPERTY	function	is	provided	for	backward	compatibility.

Syntax
DATABASEPROPERTY(database	,	property)

Arguments
database

Is	an	expression	containing	the	name	of	the	database	for	which	to	return	the
named	property	information.	database	is	nvarchar(128).

property

Is	an	expression	containing	the	name	of	the	database	property	to	return.
property	is	varchar(128),	and	can	be	one	of	these	values.

Value Description
Value
returned

IsAnsiNullDefault Database	follows
SQL-92	rules	for
allowing	null	values.

1	=	TRUE	0	=
FALSE
NULL	=
Invalid	input

IsAnsiNullsEnabled All	comparisons	to	a
null	evaluate	to
unknown.

1	=	TRUE
0	=	FALSE
NULL	=
Invalid	input

IsAnsiWarningsEnabled Error	or	warning
messages	are	issued

1	=	TRUE
0	=	FALSE

when	standard	error
conditions	occur.

NULL	=
Invalid	input

IsAutoClose Database	shuts	down
cleanly	and	frees
resources	after	the	last
user	exits.

1	=	TRUE
0	=	FALSE
NULL	=
Invalid	input

IsAutoCreateStatistics Existing	statistics	are
automatically	updated
when	the	statistics
become	out-of-date
because	the	data	in	the
tables	has	changed.

1	=	TRUE
0	=	FALSE
NULL	=
Invalid	input

IsAutoShrink Database	files	are
candidates	for
automatic	periodic
shrinking.

1	=	TRUE
0	=	FALSE
NULL	=
Invalid	input

IsAutoUpdateStatistics Auto	update	statistics
database	option	is
enabled.

1	=	TRUE
0	=	FALSE
NULL	=
Invalid	input

IsBulkCopy Database	allows
nonlogged	operations.

1	=	TRUE
0	=	FALSE
NULL	=
Invalid	input

IsCloseCursorsOnCommitEnabledCursors	that	are	open
when	a	transaction	is
committed	are	closed.

1	=	TRUE
0	=	FALSE
NULL	=
Invalid	input

IsDboOnly Database	is	in	DBO-
only	access	mode.

1	=	TRUE
0	=	FALSE
NULL	=
Invalid	input

IsDetached Database	was
detached	by	a	detach
operation.

1	=	TRUE
0	=	FALSE
NULL	=
Invalid	input

IsEmergencyMode Emergency	mode	is
enabled	to	allow
suspect	database	to	be
usable.

1	=	TRUE
0	=	FALSE
NULL	=
Invalid	input

IsFulltextEnabled Database	is	full-text
enabled.

1	=	TRUE
0	=	FALSE
NULL	=
Invalid	input

IsInLoad Database	is	loading. 1	=	TRUE
0	=	FALSE
NULL	=
Invalid	input

IsInRecovery Database	is
recovering.

1	=	TRUE
0	=	FALSE
NULL1	=
Invalid	input

IsInStandBy Database	is	online	as
read-only,	with	restore
log	allowed.

1	=	TRUE
0	=	FALSE
NULL	=
Invalid	input

IsLocalCursorsDefault Cursor	declarations
default	to	LOCAL.

1	=	TRUE
0	=	FALSE
NULL	=
Invalid	input

IsNotRecovered Database	failed	to
recover.

1	=	TRUE
0	=	FALSE
NULL	=
Invalid	input

IsNullConcat Null	concatenation
operand	yields	NULL.

1	=	TRUE
0	=	FALSE
NULL	=
Invalid	input

IsOffline Database	is	offline. 1	=	TRUE
0	=	FALSE
NULL	=

Invalid	input
IsQuotedIdentifiersEnabled Double	quotation

marks	can	be	used	on
identifiers.

1	=	TRUE
0	=	FALSE
NULL	=
Invalid	input

IsReadOnly Database	is	in	a	read-
only	access	mode.

1	=	TRUE
0	=	FALSE
NULL	=
Invalid	input

IsRecursiveTriggersEnabled Recursive	firing	of
triggers	is	enabled.

1	=	TRUE
0	=	FALSE
NULL	=
Invalid	input

IsShutDown Database	encountered
a	problem	at	startup.

1	=	TRUE
0	=	FALSE
NULL1	=
Invalid	input

IsSingleUser Database	is	in	single-
user	access	mode.

1	=	TRUE
0	=	FALSE
NULL	=
Invalid	input

IsSuspect Database	is	suspect. 1	=	TRUE
0	=	FALSE
NULL	=
Invalid	input

IsTruncLog Database	truncates	its
logon	checkpoints.

1	=	TRUE
0	=	FALSE
NULL	=
Invalid	input

Version Internal	version
number	of	the
Microsoft®	SQL
Server™	code	with
which	the	database
was	created.	For
internal	use	only	by

Version
number	=
Database	is
open
NULL	=
Database	is
closed

SQL	Server	tools	and
in	upgrade	processing.

1.	Returned	value	is	also	NULL	if	the	database	has	never	been	started,	or	has	been	autoclosed.

Return	Types
integer

Examples
This	example	returns	the	setting	for	the	IsTruncLog	property	for	the	master
database.

USE	master
SELECT	DATABASEPROPERTY('master',	'IsTruncLog')

Here	is	the	result	set:

1

See	Also

Control-of-Flow	Language

DATABASEPROPERTYEX

DELETE

INSERT

Metadata	Functions

SELECT

sp_dboption

UPDATE

WHERE

Transact-SQL	Reference

DATABASEPROPERTYEX
Returns	the	current	setting	of	the	specified	database	option	or	property	for	the
specified	database.

Syntax
DATABASEPROPERTYEX(database	,	property)

Arguments
database

Is	an	expression	that	evaluates	to	the	name	of	the	database	for	which	a
property	setting	is	to	be	returned.	database	is	nvarchar(128).

property

Is	an	expression	that	indicates	the	option	or	property	setting	to	be	returned.
property	is	nvarchar(128),	and	can	be	one	of	these	values.

Value Description Value	returned
Collation Default

collation	name
for	the
database.

Collation	name

IsAnsiNullDefault Database
follows	SQL-
92	rules	for
allowing	null
values.

1	=	TRUE	0	=	FALSE
NULL	=	Invalid	input

IsAnsiNullsEnabled All
comparisons
to	a	null
evaluate	to
unknown.

1	=	TRUE
0	=	FALSE
NULL	=	Invalid	input

IsAnsiPaddingEnabled Strings	are 1	=	TRUE

padded	to	the
same	length
before
comparison	or
insert.

0	=	FALSE
NULL	=	Invalid	input

IsAnsiWarningsEnabled Error	or
warning
messages	are
issued	when
standard	error
conditions
occur.

1	=	TRUE
0	=	FALSE
NULL	=	Invalid	input

IsArithmeticAbortEnabled Queries	are
terminated
when	an
overflow	or
divide-by-zero
error	occurs
during	query
execution.

1	=	TRUE
0	=	FALSE
NULL	=	Invalid	input

IsAutoClose Database
shuts	down
cleanly	and
frees
resources	after
the	last	user
exits.

1	=	TRUE
0	=	FALSE
NULL	=	Invalid	input

IsAutoCreateStatistics Existing
statistics	are
automatically
updated	when
the	statistics
become	out-
of-date
because	the
data	in	the

1	=	TRUE
0	=	FALSE
NULL	=	Invalid	input

tables	has
changed.

IsAutoShrink Database	files
are	candidates
for	automatic
periodic
shrinking.

1	=	TRUE
0	=	FALSE
NULL	=	Invalid	input

IsAutoUpdateStatistics Auto	update
statistics
database
option	is
enabled.

1	=	TRUE
0	=	FALSE
NULL	=	Invalid	input

IsCloseCursorsOnCommitEnabledCursors	that
are	open	when
a	transaction
is	committed
are	closed.

1	=	TRUE
0	=	FALSE
NULL	=	Invalid	input

IsFulltextEnabled Database	is
full-text
enabled.

1	=	TRUE
0	=	FALSE
NULL	=	Invalid	input

IsInStandBy Database	is
online	as	read-
only,	with
restore	log
allowed.

1	=	TRUE
0	=	FALSE
NULL	=	Invalid	input

IsLocalCursorsDefault Cursor
declarations
default	to
LOCAL.

1	=	TRUE
0	=	FALSE
NULL	=	Invalid	input

IsMergePublished The	tables	of	a
database	can
be	published
for	replication,
if	replication
is	installed.

1	=	TRUE
0	=	FALSE
NULL	=	Invalid	input

IsNullConcat Null 1	=	TRUE

concatenation
operand	yields
NULL.

0	=	FALSE
NULL	=	Invalid	input

IsNumericRoundAbortEnabled Errors	are
generated
when	loss	of
precision
occurs	in
expressions.

1	=	TRUE
0	=	FALSE
NULL	=	Invalid	input

IsQuotedIdentifiersEnabled Double
quotation
marks	can	be
used	on
identifiers.

1	=	TRUE
0	=	FALSE
NULL	=	Invalid	input

IsRecursiveTriggersEnabled Recursive
firing	of
triggers	is
enabled.

1	=	TRUE
0	=	FALSE
NULL	=	Invalid	input

IsSubscribed Database	can
be	subscribed
for
publication.

1	=	TRUE
0	=	FALSE
NULL	=	Invalid	input

IsTornPageDetectionEnabled Microsoft®
SQL	Server™
detects
incomplete
I/O	operations
caused	by
power	failures
or	other
system
outages.

1	=	TRUE
0	=	FALSE
NULL	=	Invalid	input

Recovery Recovery
model	for	the
database.

FULL	=	full	recovery
model
BULK_LOGGED	=
bulk	logged	model

SIMPLE	=	simple
recovery	model

SQLSortOrder SQL	Server
sort	order	ID
supported	in
previous
versions	of
SQL	Server.

0	=	Database	is	using
Windows	collation
>0	=	SQL	Server	sort
order	ID

Status Database
status.

ONLINE	=	database	is
available	for	query
OFFLINE	=	database
was	explicitly	taken
offline
RESTORING	=
database	is	being
restored
RECOVERING	=
database	is	recovering
and	not	yet	ready	for
queries
SUSPECT	=	database
cannot	be	recovered

Updateability Indicates
whether	data
can	be
modified.

READ_ONLY	=	data
can	be	read	but	not
modified
READ_WRITE	=	data
can	be	read	and
modified

UserAccess Indicates
which	users
can	access	the
database.

SINGLE_USER	=
only	one	db_owner,
dbcreator,	or
sysadmin	user	at	a
time
RESTRICTED_USER
=	only	members	of
db_owner,

dbcreator,	and
sysadmin	roles
MULTI_USER	=	all
users

Version Internal
version
number	of	the
Microsoft
SQL	Server
code	with
which	the
database	was
created.	For
internal	use
only	by	SQL
Server	tools
and	in	upgrade
processing.

Version	number	=
Database	is	open
NULL	=	Database	is
closed

Return	Types
sql_variant

Remarks
This	function	returns	only	one	property	setting	at	a	time.

DATABASEPROPERTY	is	supported	for	backward	compatibility	but	does	not
provide	information	about	the	properties	added	in	this	release.	Also,	many
properties	supported	by	DATABASEPROPERTY	have	been	replaced	by	new
properties	in	DATABASEPROPERTYEX.

Examples

A.	Retrieving	the	status	of	the	autoshrink	database	option

This	example	returns	the	status	of	the	autoshrink	database	option	for	the
Northwind	database.

SELECT	DATABASEPROPERTYEX('Northwind',	'IsAutoShrink')

Here	is	the	result	set	(indicates	that	autoshrink	is	off):

0

B.	Retrieving	the	default	collation	for	a	database
This	example	returns	the	name	of	the	default	collation	for	the	Northwind
database.

SELECT	DATABASEPROPERTYEX('Northwind',	'Collation')

Here	is	the	result	set:

SQL_Latin1_General_CP1_CS_AS

See	Also

ALTER	DATABASE

COLLATE

Transact-SQL	Reference

Data	Types
In	Microsoft®	SQL	Server™,	each	column,	local	variable,	expression,	and
parameter	has	a	related	data	type,	which	is	an	attribute	that	specifies	the	type	of
data	(integer,	character,	money,	and	so	on)	that	the	object	can	hold.	SQL	Server
supplies	a	set	of	system	data	types	that	define	all	of	the	types	of	data	that	can	be
used	with	SQL	Server.	The	set	of	system-supplied	data	types	is	shown	below.

User-defined	data	types,	which	are	aliases	for	system-supplied	data	types,	can
also	be	defined.	For	more	information	about	user-defined	data	types,	see
sp_addtype	and	Creating	User-defined	Data	Types.

When	two	expressions	that	have	different	data	types,	collations,	precision,	scale,
or	length	are	combined	by	an	operator:

The	data	type	of	the	resulting	value	is	determined	by	applying	the	rules
of	data	type	precedence	to	the	data	types	of	the	input	expressions.	For
more	information,	see	Data	Type	Precedence.

If	the	result	data	type	is	char,	varchar,	text,	nchar,	nvarchar,	or
ntext,	the	collation	of	the	result	value	is	determined	by	the	rules	of
collation	precedence.	For	more	information,	see	Collation	Precedence.

The	precision,	scale,	and	length	of	the	result	depend	on	the	precision,
scale,	and	length	of	the	input	expressions.	For	more	information,	see
Precision,	Scale,	and	Length.

SQL	Server	provides	data	type	synonyms	for	SQL-92	compatibility.	For	more
information,	see	Data	Type	Synonyms.

Exact	Numerics

Integers
bigint

Integer	(whole	number)	data	from	-2^63	(-9223372036854775808)	through

JavaScript:hhobj_1.Click()

2^63-1	(9223372036854775807).

int

Integer	(whole	number)	data	from	-2^31	(-2,147,483,648)	through	2^31	-	1
(2,147,483,647).

smallint

Integer	data	from	2^15	(-32,768)	through	2^15	-	1	(32,767).

tinyint

Integer	data	from	0	through	255.

bit
bit

Integer	data	with	either	a	1	or	0	value.

decimal	and	numeric
decimal

Fixed	precision	and	scale	numeric	data	from	-10^38	+1	through	10^38	–1.

numeric

Functionally	equivalent	to	decimal.

money	and	smallmoney
money

Monetary	data	values	from	-2^63	(-922,337,203,685,477.5808)	through	2^63
-	1	(+922,337,203,685,477.5807),	with	accuracy	to	a	ten-thousandth	of	a
monetary	unit.

smallmoney

Monetary	data	values	from	-214,748.3648	through	+214,748.3647,	with
accuracy	to	a	ten-thousandth	of	a	monetary	unit.

Approximate	Numerics
float

Floating	precision	number	data	from	-1.79E	+	308	through	1.79E	+	308.

real

Floating	precision	number	data	from	-3.40E	+	38	through	3.40E	+	38.

datetime	and	smalldatetime
datetime

Date	and	time	data	from	January	1,	1753,	through	December	31,	9999,	with
an	accuracy	of	three-hundredths	of	a	second,	or	3.33	milliseconds.

smalldatetime

Date	and	time	data	from	January	1,	1900,	through	June	6,	2079,	with	an
accuracy	of	one	minute.

Character	Strings
char

Fixed-length	non-Unicode	character	data	with	a	maximum	length	of	8,000
characters.

varchar

Variable-length	non-Unicode	data	with	a	maximum	of	8,000	characters.

text

Variable-length	non-Unicode	data	with	a	maximum	length	of	2^31	-	1
(2,147,483,647)	characters.

Unicode	Character	Strings
nchar

Fixed-length	Unicode	data	with	a	maximum	length	of	4,000	characters.

nvarchar

Variable-length	Unicode	data	with	a	maximum	length	of	4,000	characters.
sysname	is	a	system-supplied	user-defined	data	type	that	is	functionally
equivalent	to	nvarchar(128)	and	is	used	to	reference	database	object	names.

ntext

Variable-length	Unicode	data	with	a	maximum	length	of	2^30	-	1
(1,073,741,823)	characters.

Binary	Strings
binary

Fixed-length	binary	data	with	a	maximum	length	of	8,000	bytes.

varbinary

Variable-length	binary	data	with	a	maximum	length	of	8,000	bytes.

image

Variable-length	binary	data	with	a	maximum	length	of	2^31	-	1
(2,147,483,647)	bytes.

Other	Data	Types
cursor

A	reference	to	a	cursor.

sql_variant

A	data	type	that	stores	values	of	various	SQL	Server-supported	data	types,
except	text,	ntext,	timestamp,	and	sql_variant.

table

A	special	data	type	used	to	store	a	result	set	for	later	processing	.

timestamp

A	database-wide	unique	number	that	gets	updated	every	time	a	row	gets
updated.

uniqueidentifier

A	globally	unique	identifier	(GUID).

See	Also

CREATE	PROCEDURE

CREATE	TABLE

DECLARE	@local_variable

EXECUTE

Expressions

Functions

LIKE

SET

sp_bindefault

sp_bindrule

sp_droptype

sp_help

sp_rename

sp_unbindefault

sp_unbindrule

Using	Unicode	Data

JavaScript:hhobj_2.Click()

Transact-SQL	Reference

Data	Type	Precedence
When	two	expressions	of	different	data	types	are	combined	by	an	operator,	the
data	type	precedence	rules	specify	which	data	type	is	converted	to	the	other.	The
data	type	with	the	lower	precedence	is	converted	to	the	data	type	with	the	higher
precedence.	If	the	conversion	is	not	a	supported	implicit	conversion,	an	error	is
returned.	When	both	operand	expressions	have	the	same	data	type,	the	result	of
the	operation	has	that	data	type.

This	is	the	precedence	order	for	the	Microsoft®	SQL	Server™	2000	data	types:

sql_variant	(highest)

datetime

smalldatetime

float

real

decimal

money

smallmoney

bigint

int

smallint

tinyint

bit

ntext	

text

image

timestamp

uniqueidentifier	

nvarchar

nchar

varchar

char

varbinary

binary	(lowest)

Transact-SQL	Reference

Collation	Precedence
Collation	precedence,	also	known	as	collation	coercion	rules,	is	the	term	given	to
the	set	of	rules	that	determine:

The	collation	of	the	final	result	of	an	expression	that	is	evaluated	to	a
character	string.

The	collation	used	by	collation-sensitive	operators	that	use	character
string	inputs	but	do	not	return	a	character	string,	such	as	LIKE	and	IN.

The	collation	precedence	rules	apply	only	to	the	character	string	data	types,
char,	varchar,	text,	nchar,	nvarchar,	and	ntext.	Objects	with	other	data	types
do	not	participate	in	collation	evaluations.

The	collation	of	all	objects	falls	into	one	of	four	categories.	The	name	of	each
category	is	called	the	collation	label.

Collation	label Types	of	objects
Coercible-default Any	Transact-SQL	character	string	variable,	parameter,

literal,	or	the	output	of	a	catalog	built-in	function,	or	a
built-in	function	that	does	not	take	string	inputs	but
produces	a	string	output.

If	the	object	is	declared	in	a	user-defined	function,
stored	procedure,	or	trigger,	it	is	assigned	the	default
collation	of	the	database	in	which	the	function,	stored
procedure,	or	trigger	is	created.	If	the	object	is	declared
in	a	batch,	it	is	assigned	the	default	collation	of	the
current	database	for	the	connection.

Implicit	X A	column	reference.	The	collation	of	the	expression
(denoted	by	X)	is	taken	from	the	collation	defined	for
the	column	in	the	table	or	view.

Even	if	the	column	was	explicitly	assigned	a	collation
by	a	COLLATE	clause	in	the	CREATE	TABLE	or
CREATE	VIEW	statement,	the	column	reference	is

classified	as	implicit.

Explicit	X An	expression	that	is	explicitly	cast	to	a	specific
collation	(denoted	by	X)	using	a	COLLATE	clause	in
the	expression.

No-collation Indicates	that	the	value	of	an	expression	is	the	result	of
an	operation	between	two	strings	with	conflicting
collations	of	the	implicit	collation	label.	The	expression
result	is	defined	as	not	having	a	collation.

The	collation	label	of	a	simple	expression	that	references	only	one	character
string	object	is	the	collation	label	of	the	referenced	object.

The	collation	label	of	a	complex	expression	that	references	two	operand
expressions	with	the	same	collation	label	is	the	collation	label	of	the	operand
expressions.

The	collation	label	of	the	final	result	of	a	complex	expression	that	references	two
operand	expressions	with	different	collations	is	based	on	these	rules:

Explicit	takes	precedence	over	implicit.	Implicit	takes	precedence	over
coercible-default.	In	other	words,

Explicit	>	Implicit	>	Coercible-Default

Combining	two	explicit	expressions	that	have	been	assigned	different
collations	generates	an	error.

Explicit	X	+	Explicit	Y	=	Error

Combining	two	implicit	expressions	that	have	different	collations	yields
a	result	of	no-collation.

Implicit	X	+	Implicit	Y	=	No-collation

Combining	an	expression	with	no-collation	with	an	expression	of	any
label,	except	explicit	collation	(see	following	bullet),	yields	a	result	that
has	the	no-collation	label.

No-collation	+	anything	=	No-collation

Combining	an	expression	with	no-collation	with	an	expression	that	has
an	explicit	collation,	yields	an	expression	with	an	explicit	label.

No-collation	+	Explicit	X	=	Explicit

These	examples	illustrate	the	rules.

USE	tempdb
GO

CREATE	TABLE	TestTab	(
			id	int,	
			GreekCol	nvarchar(10)	collate	greek_ci_as,	
			LatinCol	nvarchar(10)	collate	latin1_general_cs_as
)
INSERT	TestTab	VALUES	(1,	N'A',	N'a')
GO

The	predicate	in	the	following	query	has	collation	conflict	and	generates	an
error:

SELECT	*	
FROM	TestTab	
WHERE	GreekCol	=	LatinCol

This	is	the	result	set.

Msg	446,	Level	16,	State	9,	Server	CTSSERV,	Line	1
Cannot	resolve	collation	conflict	for	equal	to	operation.

The	predicate	in	the	following	query	is	evaluated	in	collation	greek_ci_as
because	the	right	expression	has	the	explicit	label,	which	takes	precedence	over
the	implicit	label	of	the	right	expression:

SELECT	*	
FROM	TestTab	
WHERE	GreekCol	=	LatinCol	COLLATE	greek_ci_as

This	is	the	result	set.

id										GreekCol													LatinCol
	-----------	--------------------	--------------------
											1	a																				A

(1	row	affected)

The	case	expressions	in	the	following	queries	have	no	collation	label	so	they
cannot	appear	in	the	select	list	or	be	operated	by	collation-sensitive	operators.
However,	the	expressions	can	be	operated	on	by	collation-insensitive	operators.

SELECT	(CASE	WHEN	id	>	10	THEN	GreekCol	ELSE	LatinCol	END)	
FROM	TestTab

Here	is	the	result	set.

Msg	451,	Level	16,	State	1,	Line	1
Cannot	resolve	collation	conflict	for	column	1	in	SELECT	statement.

SELECT	PATINDEX((CASE	WHEN	id	>	10	THEN	GreekCol	ELSE	LatinCol	END),	'a')
FROM	TestTab

Here	is	the	result	set.

Msg	446,	Level	16,	State	9,	Server	LEIH2,	Line	1
Cannot	resolve	collation	conflict	for	patindex	operation.

SELECT	(CASE	WHEN	id	>	10	THEN	GreekCol	ELSE	LatinCol	END)	COLLATE	Latin1_General_CI_AS	
FROM	TestTab

Here	is	the	result	set.

a

(1	row	affected)

This	table	summarizes	the	rules.

Operand	coercion
label Explicit	X Implicit	X

Coercible-
default No-collation

Explicit	Y Generates
Error

Result	is
Explicit	Y

Result	is
Explicit	Y

Result	is
Explicit	Y

Implicit	Y Result	is
Explicit	X

Result	is	No-
collation

Result	is
Implicit	Y

Result	is	No-
collation

Coercible-default Result	is
Explicit	X

Result	is
Implicit	X

Result	is
Coercible-
default

Result	is	No-
collation

No-collation Result	is
Explicit	X

Result	is	No-
collation

Result	is	No-
collation

Result	is	No-
collation

Operators	and	functions	are	either	collation	sensitive	or	insensitive:

Collation	sensitive	means	that	specifying	a	no-collation	operand	is	a
compile-time	error.	The	expression	result	cannot	be	no-collation.

Collation	insensitive	means	that	the	operands	and	result	can	be	no-
collation.

The	comparison	operators,	and	the	MAX,	MIN,	BETWEEN,	LIKE,	and	IN
operators,	are	collation	sensitive.	The	string	used	by	the	operators	is	assigned	the
collation	label	of	the	operand	that	has	the	higher	precedence.	The	UNION
operator	is	also	collation	sensitive,	and	all	string	operands	and	the	final	result	is
assigned	the	collation	of	the	operand	with	the	highest	precedence.	The	collation
precedence	of	the	UNION	operands	and	result	are	evaluated	column	by	column.

The	assignment	operator	is	collation	insensitive	and	the	right	expression	is	cast
to	the	left	collation.

The	string	concatenation	operator	is	collation	insensitive,	the	two	string
operands	and	the	result	are	assigned	the	collation	label	of	the	operand	with	the
highest	collation	precedence.	The	UNION	ALL	and	CASE	operators	are
collation	insensitive,	and	all	string	operands	and	the	final	results	are	assigned	the
collation	label	of	the	operand	with	the	highest	precedence.	The	collation

precedence	of	the	UNION	ALL	operands	and	result	are	evaluated	column	by
column.

THE	CAST,	CONVERT,	and	COLLATE	functions	are	collation	sensitive	for
char,	varchar,	and	text	data	types.	If	the	input	and	output	of	the	CAST	and
CONVERT	functions	are	character	strings,	the	output	string	has	the	collation
label	of	the	input	string.	If	the	input	is	not	a	character	string,	the	output	string	is
coercible-default	and	assigned	the	collation	of	the	current	database	for	the
connection,	or	the	database	containing	the	user-defined	function,	stored
procedure,	or	trigger	in	which	the	CAST	or	CONVERT	is	referenced.

For	the	built-in	functions	that	return	a	string	but	do	not	take	a	string	input,	the
result	string	is	coercible-default	and	is	assigned	either	the	collation	of	the	current
database,	or	the	collation	of	the	database	containing	the	user-defined	function,
stored	procedure,	or	trigger	in	which	the	function	is	referenced.

These	functions	are	collation-sensitive	and	their	output	strings	have	the	collation
label	of	the	input	string:

CHARINDEX

DIFFERENCE

ISNUMERIC

LEFT

LEN

LOWER

PATINDEX

REPLACE

REVERSE

RIGHT

SOUNDEX

STUFF

SUBSTRING

UPPER

These	additional	rules	also	apply	to	collation	precedence:

You	cannot	have	multiple	COLLATE	clauses	on	an	expression	that	is
already	an	explicit	expression.	For	example,	this	WHERE	clause	is
illegal	because	a	COLLATE	clause	is	specified	for	an	expression	that	is
already	an	explicit	expression:
WHERE	ColumnA	=	('abc'	COLLATE	French_CI_AS)	COLLATE	French_CS_AS

Code	page	conversions	for	text	data	types	are	not	allowed.	You	cannot
cast	a	text	expression	from	one	collation	to	another	if	they	have	the
different	code	pages.	The	assignment	operator	cannot	assign	values	if
the	collation	of	the	right	text	operand	has	a	different	code	page	than	the
left	text	operand.

Determination	of	collation	precedence	takes	place	after	data	type	conversion.
The	operand	from	which	the	resulting	collation	is	taken	can	be	different	from	the
operand	that	supplies	the	data	type	of	the	final	result.	For	example,	consider	this
batch:

CREATE	TABLE	TestTab
			(PrimaryKey	int	PRIMARY	KEY,
				CharCol	char(10)	COLLATE	French_CI_AS
)

SELECT	*
FROM	TestTab
WHERE	CharCol	LIKE	N'abc'

The	Unicode	data	type	of	the	simple	expression	N'abc'	has	a	higher	data	type
precedence,	so	the	resulting	expression	has	the	Unicode	data	type	assigned	to
N'abc'.	The	expression	CharCol,	however,	has	a	collation	label	of	Implicit,
while	N'abc'	has	a	lower	coercion	label	of	coercible-default,	so	the	collation	used
is	the	French_CI_AS	collation	of	CharCol.

See	Also

COLLATE

Data	Type	Conversion

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

Precision,	Scale,	and	Length
Precision	is	the	number	of	digits	in	a	number.	Scale	is	the	number	of	digits	to	the
right	of	the	decimal	point	in	a	number.	For	example,	the	number	123.45	has	a
precision	of	5	and	a	scale	of	2.

The	default	maximum	precision	of	numeric	and	decimal	data	types	is	38.	In
previous	versions	of	SQL	Server,	the	default	maximum	was	28.

Length	for	a	numeric	data	type	is	the	number	of	bytes	used	to	store	the	number.
Length	for	a	character	string	or	Unicode	data	type	is	the	number	of	characters.
The	length	for	binary,	varbinary,	and	image	data	types	is	the	number	of	bytes.
For	example,	an	int	data	type	can	hold	10	digits,	is	stored	in	4	bytes,	and	does
not	accept	decimal	points.	The	int	data	type	has	a	precision	of	10,	a	length	of	4,
and	a	scale	of	0.

When	two	char,	varchar,	binary,	or	varbinary	expressions	are	concatenated,
the	length	of	the	resulting	expression	is	the	sum	of	the	lengths	of	the	two	source
expressions	or	8,000	characters,	whichever	is	less.

When	two	nchar	or	nvarchar	expressions	are	concatenated,	the	length	of	the
resulting	expression	is	the	sum	of	the	lengths	of	the	two	source	expressions,	or
4,000	characters,	whichever	is	less.

The	precision	and	scale	of	the	numeric	data	types	besides	decimal	are	fixed.	If
an	arithmetic	operator	has	two	expressions	of	the	same	type,	then	the	result	has
the	same	data	type	with	the	precision	and	scale	defined	for	that	type.	If	an
operator	has	two	expressions	with	different	numeric	data	types,	then	the	rules	of
data	type	precedence	define	the	data	type	of	the	result.	The	result	has	the
precision	and	scale	defined	for	its	data	type.

This	table	defines	how	the	precision	and	scale	of	the	result	are	calculated	when
the	result	of	an	operation	is	of	type	decimal.	The	result	is	decimal	when:

Both	expressions	are	decimal.

One	expression	is	decimal	and	the	other	is	a	data	type	with	a	lower
precedence	than	decimal.

The	operand	expressions	are	denoted	as	expression	e1,	with	precision	p1	and
scale	s1,	and	expression	e2,	with	precision	p2	and	scale	s2.	The	precision	and
scale	for	any	expression	that	is	not	decimal	is	the	precision	and	scale	defined	for
the	data	type	of	the	expression.

Operation Result	precision Result	scale	*
e1	+	e2 max(s1,	s2)	+	max(p1-s1,	p2-s2)	+	1 max(s1,	s2)
e1	-	e2 max(s1,	s2)	+	max(p1-s1,	p2-s2) max(s1,	s2)
e1	*	e2 p1	+	p2	+	1 s1	+	s2
e1	/	e2 p1	-	s1	+	s2	+	max(6,	s1	+	p2	+	1) max(6,	s1	+	p2	+	1)
*	The	result	precision	and	scale	have	an	absolute	maximum	of	38.	When	a	result	precision	is	greater	than
38,	the	corresponding	scale	is	reduced	to	prevent	the	integral	part	of	a	result	from	being	truncated.

Transact-SQL	Reference

Data	Type	Synonyms
Data	type	synonyms	are	included	for	SQL-92	compatibility.

Synonym Mapped	to	system	data	type
Binary	varying Varbinary
char	varying Varchar
character Char
character char(1)
character(n) char(n)
character	varying(n) varchar(n)
Dec decimal
Double	precision float
float[(n)]	for	n	=	1-7 real
float[(n)]	for	n	=	8-15 float
integer int
national	character(n) nchar(n)
national	char(n) nchar(n)
national	character	varying(n) nvarchar(n)
national	char	varying(n) nvarchar(n)
national	text ntext
rowversion timestamp

Data	type	synonyms	can	be	used	in	place	of	the	corresponding	base	data	type
name	in	data	definition	language	(DDL)	statements,	such	as	CREATE	TABLE,
CREATE	PROCEDURE,	or	DECLARE	@variable.	The	synonyms	have	no
visibility	after	the	object	is	created,	however.	When	the	object	is	created,	it	is
assigned	the	base	data	type	associated	with	the	synonym,	and	there	is	no	record
that	the	synonym	was	specified	in	the	statement	that	created	the	object.

All	objects	derived	from	the	original	object,	such	as	result	set	columns	or
expressions,	are	assigned	the	base	data	type.	All	subsequent	meta	data	functions
performed	on	the	original	object	and	any	derived	objects	will	report	the	base
data	type,	not	the	synonym.	This	includes	meta	data	operations,	such	as	sp_help

and	other	system	stored	procedures,	the	information	schema	views,	or	the
various	data	access	API	meta	data	operations	that	report	the	data	types	of	table
or	result	set	columns.

Data	type	synonyms	also	cannot	be	specified	in	the	graphical	administration
utilities,	such	as	SQL	Server	Enterprise	Manager.

For	example,	you	can	create	a	table	specifying	national	character	varying:

CREATE	TABLE	ExampleTable	(PriKey	int	PRIMARY	KEY,	VarCHarCol	national	character	varying(10))

VarCharCol	is	actually	assigned	an	nvarchar(10)	data	type,	and	all	subsequent
meta	data	functions	will	report	it	as	an	nvarchar(10)	column.	The	meta	data
functions	will	never	report	them	as	national	character	varying(10)	column.

Transact-SQL	Reference

DATALENGTH
Returns	the	number	of	bytes	used	to	represent	any	expression.

Syntax
DATALENGTH	(expression)

Arguments
expression

Is	an	expression	of	any	type.

Return	Types
int

Remarks
DATALENGTH	is	especially	useful	with	varchar,	varbinary,	text,	image,
nvarchar,	and	ntext	data	types	because	these	data	types	can	store	variable-
length	data.

The	DATALENGTH	of	NULL	is	NULL.

Note		Compatibility	levels	can	affect	return	values.	For	more	information	about
compatibility	levels,	see	sp_dbcmptlevel.

Examples
This	example	finds	the	length	of	the	pub_name	column	in	the	publishers	table.

USE	pubs
GO
SELECT	length	=	DATALENGTH(pub_name),	pub_name
FROM	publishers
ORDER	BY	pub_name

GO

Here	is	the	result	set:

length						pub_name																																	
-----------	--	
20										Algodata	Infosystems																					
16										Binnet	&	Hardley																									
21										Five	Lakes	Publishing																				
5											GGG&G																																				
18										Lucerne	Publishing																							
14										New	Moon	Books																											
17										Ramona	Publishers																								
14										Scootney	Books																											

(8	row(s)	affected)

See	Also

CAST	and	CONVERT

Data	Types

System	Functions

Transact-SQL	Reference

DATEADD
Returns	a	new	datetime	value	based	on	adding	an	interval	to	the	specified	date.

Syntax
DATEADD	(datepart	,	number,	date)

Arguments
datepart

Is	the	parameter	that	specifies	on	which	part	of	the	date	to	return	a	new
value.	The	table	lists	the	dateparts	and	abbreviations	recognized	by
Microsoft®	SQL	Server™.

Datepart Abbreviations
Year yy,	yyyy
quarter qq,	q
Month mm,	m
dayofyear dy,	y
Day dd,	d
Week wk,	ww
Hour hh
minute mi,	n
second ss,	s
millisecond ms

number

Is	the	value	used	to	increment	datepart.	If	you	specify	a	value	that	is	not	an
integer,	the	fractional	part	of	the	value	is	discarded.	For	example,	if	you
specify	day	for	datepart	and1.75	for	number,	date	is	incremented	by	1.

date

Is	an	expression	that	returns	a	datetime	or	smalldatetime	value,	or	a

character	string	in	a	date	format.	For	more	information	about	specifying
dates,	see	datetime	and	smalldatetime.

If	you	specify	only	the	last	two	digits	of	the	year,	values	less	than	or	equal	to
the	last	two	digits	of	the	value	of	the	two	digit	year	cutoff	configuration
option	are	in	the	same	century	as	the	cutoff	year.	Values	greater	than	the	last
two	digits	of	the	value	of	this	option	are	in	the	century	that	precedes	the
cutoff	year.	For	example,	if	two	digit	year	cutoff	is	2049	(default),	49	is
interpreted	as	2049	and	2050	is	interpreted	as	1950.	To	avoid	ambiguity,	use
four-digit	years.

Return	Types
Returns	datetime,	but	smalldatetime	if	the	date	argument	is	smalldatetime.

Examples
This	example	prints	a	listing	of	a	time	frame	for	titles	in	the	pubs	database.	This
time	frame	represents	the	existing	publication	date	plus	21	days.

USE	pubs
GO
SELECT	DATEADD(day,	21,	pubdate)	AS	timeframe
FROM	titles
GO

Here	is	the	result	set:

timeframe																			

Jul	3	1991	12:00AM										
Jun	30	1991	12:00AM									
Jul	21	1991	12:00AM									
Jul	13	1991	12:00AM									
Jun	30	1991	12:00AM									
Jul	9	1991	12:00AM										
Mar	14	1997		5:09PM									

Jul	21	1991	12:00AM									
Jul	3	1994	12:00AM										
Mar	14	1997		5:09PM									
Nov	11	1991	12:00AM									
Jul	6	1991	12:00AM										
Oct	26	1991	12:00AM									
Jul	3	1991	12:00AM										
Jul	3	1991	12:00AM										
Nov	11	1991	12:00AM									
Jul	3	1991	12:00AM										
Jul	3	1991	12:00AM										

(18	row(s)	affected)

See	Also

CAST	and	CONVERT

Data	Types

Date	and	Time	Functions

Time	Formats

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

DATEDIFF
Returns	the	number	of	date	and	time	boundaries	crossed	between	two	specified
dates.

Syntax
DATEDIFF	(datepart	,	startdate	,	enddate)

Arguments
datepart

Is	the	parameter	that	specifies	on	which	part	of	the	date	to	calculate	the
difference.	The	table	lists	dateparts	and	abbreviations	recognized	by
Microsoft®	SQL	Server™.

Datepart Abbreviations
Year yy,	yyyy
quarter qq,	q
Month mm,	m
dayofyear dy,	y
Day dd,	d
Week wk,	ww
Hour hh
minute mi,	n
second ss,	s
millisecond ms

startdate

Is	the	beginning	date	for	the	calculation.	startdate	is	an	expression	that
returns	a	datetime	or	smalldatetime	value,	or	a	character	string	in	a	date
format.

Because	smalldatetime	is	accurate	only	to	the	minute,	when	a
smalldatetime	value	is	used,	seconds	and	milliseconds	are	always	0.

If	you	specify	only	the	last	two	digits	of	the	year,	values	less	than	or	equal	to
the	last	two	digits	of	the	value	of	the	two	digit	year	cutoff	configuration
option	are	in	the	same	century	as	the	cutoff	year.	Values	greater	than	the	last
two	digits	of	the	value	of	this	option	are	in	the	century	that	precedes	the
cutoff	year.	For	example,	if	the	two	digit	year	cutoff	is	2049	(default),	49	is
interpreted	as	2049	and	2050	is	interpreted	as	1950.	To	avoid	ambiguity,	use
four-digit	years.

For	more	information	about	specifying	time	values,	see	Time	Formats.	For
more	information	about	specifying	dates,	see	datetime	and	smalldatetime.

enddate

Is	the	ending	date	for	the	calculation.	enddate	is	an	expression	that	returns	a
datetime	or	smalldatetime	value,	or	a	character	string	in	a	date	format.

Return	Types
integer

Remarks
startdate	is	subtracted	from	enddate.	If	startdate	is	later	than	enddate,	a	negative
value	is	returned.

DATEDIFF	produces	an	error	if	the	result	is	out	of	range	for	integer	values.	For
milliseconds,	the	maximum	number	is	24	days,	20	hours,	31	minutes	and	23.647
seconds.	For	seconds,	the	maximum	number	is	68	years.

The	method	of	counting	crossed	boundaries	such	as	minutes,	seconds,	and
milliseconds	makes	the	result	given	by	DATEDIFF	consistent	across	all	data
types.	The	result	is	a	signed	integer	value	equal	to	the	number	of	datepart
boundaries	crossed	between	the	first	and	second	date.	For	example,	the	number
of	weeks	between	Sunday,	January	4,	and	Sunday,	January	11,	is	1.

Examples
This	example	determines	the	difference	in	days	between	the	current	date	and	the
publication	date	for	titles	in	the	pubs	database.

USE	pubs

JavaScript:hhobj_1.Click()

GO
SELECT	DATEDIFF(day,	pubdate,	getdate())	AS	no_of_days
FROM	titles
GO

See	Also

CAST	and	CONVERT

Data	Types

Date	and	Time	Functions

Transact-SQL	Reference

DATENAME
Returns	a	character	string	representing	the	specified	datepart	of	the	specified
date.

Syntax
DATENAME	(datepart	,	date)

Arguments
datepart

Is	the	parameter	that	specifies	the	part	of	the	date	to	return.	The	table	lists
dateparts	and	abbreviations	recognized	by	Microsoft®	SQL	Server™.

Datepart Abbreviations
year yy,	yyyy
quarter qq,	q
month mm,	m
dayofyear dy,	y
day dd,	d
week wk,	ww
weekday dw
hour hh
minute mi,	n
second ss,	s
millisecond ms

The	weekday	(dw)	datepart	returns	the	day	of	the	week	(Sunday,	Monday,
and	so	on).

Is	an	expression	that	returns	a	datetime	or	smalldatetime	value,	or	a
character	string	in	a	date	format.	Use	the	datetime	data	type	for	dates	after
January	1,	1753.	Store	as	character	data	for	earlier	dates.	When	entering
datetime	values,	always	enclose	them	in	quotation	marks.	Because

smalldatetime	is	accurate	only	to	the	minute,	when	a	smalldatetime	value	is
used,	seconds	and	milliseconds	are	always	0.	For	more	information	about
specifying	dates,	see	datetime	and	smalldatetime.	For	more	information
about	specifying	time	values,	see	Time	Formats.

If	you	specify	only	the	last	two	digits	of	the	year,	values	less	than	or	equal	to
the	last	two	digits	of	the	value	of	the	two	digit	year	cutoff	configuration
option	are	in	the	same	century	as	the	cutoff	year.	Values	greater	than	the	last
two	digits	of	the	value	of	this	option	are	in	the	century	that	precedes	the
cutoff	year.	For	example,	if	two	digit	year	cutoff	is	2049	(default),	49	is
interpreted	as	2049	and	2050	is	interpreted	as	1950.	To	avoid	ambiguity,	use
four-digit	years.

Return	Types
nvarchar

Remarks
SQL	Server	automatically	converts	between	character	and	datetime	values	as
necessary,	for	example,	when	you	compare	a	character	value	with	a	datetime
value.

Examples
This	example	extracts	the	month	name	from	the	date	returned	by	GETDATE.

SELECT	DATENAME(month,	getdate())	AS	'Month	Name'

Here	is	the	result	set:

Month	Name																					

February																							

See	Also

CAST	and	CONVERT

JavaScript:hhobj_1.Click()

Data	Types

Date	and	Time	Functions

Transact-SQL	Reference

DATEPART
Returns	an	integer	representing	the	specified	datepart	of	the	specified	date.

Syntax
DATEPART	(datepart	,	date)

Arguments
datepart

Is	the	parameter	that	specifies	the	part	of	the	date	to	return.	The	table	lists
dateparts	and	abbreviations	recognized	by	Microsoft®	SQL	Server™.

Datepart Abbreviations
year yy,	yyyy
quarter qq,	q
month mm,	m
dayofyear dy,	y
day dd,	d
week wk,	ww
weekday dw
hour hh
minute mi,	n
second ss,	s
millisecond ms

The	week	(wk,	ww)	datepart	reflects	changes	made	to	SET	DATEFIRST.
January	1	of	any	year	defines	the	starting	number	for	the	week	datepart,	for
example:	DATEPART(wk,	'Jan	1,	xxxx')	=	1,	where	xxxx	is	any	year.

The	weekday	(dw)	datepart	returns	a	number	that	corresponds	to	the	day	of
the	week,	for	example:	Sunday	=	1,	Saturday	=	7.	The	number	produced	by
the	weekday	datepart	depends	on	the	value	set	by	SET	DATEFIRST,	which
sets	the	first	day	of	the	week.

date

Is	an	expression	that	returns	a	datetime	or	smalldatetime	value,	or	a
character	string	in	a	date	format.	Use	the	datetime	data	type	only	for	dates
after	January	1,	1753.	Store	dates	as	character	data	for	earlier	dates.	When
entering	datetime	values,	always	enclose	them	in	quotation	marks.	Because
smalldatetime	is	accurate	only	to	the	minute,	when	a	smalldatetime	value	is
used,	seconds	and	milliseconds	are	always	0.

If	you	specify	only	the	last	two	digits	of	the	year,	values	less	than	or	equal	to
the	last	two	digits	of	the	value	of	the	two	digit	year	cutoff	configuration
option	are	in	the	same	century	as	the	cutoff	year.	Values	greater	than	the	last
two	digits	of	the	value	of	this	option	are	in	the	century	that	precedes	the
cutoff	year.	For	example,	if	two	digit	year	cutoff	is	2049	(default),	49	is
interpreted	as	2049	and	2050	is	interpreted	as	1950.	To	avoid	ambiguity,	use
four-digit	years.

For	more	information	about	specifying	time	values,	see	Time	Formats.	For
more	information	about	specifying	dates,	see	datetime	and	smalldatetime.

Return	Types
int

Remarks
The	DAY,	MONTH,	and	YEAR	functions	are	synonyms	for	DATEPART(dd,
date),	DATEPART(mm,	date),	and	DATEPART(yy,	date),	respectively.

Examples
The	GETDATE	function	returns	the	current	date;	however,	the	complete	date	is
not	always	the	information	needed	for	comparison	(often	only	a	portion	of	the
date	is	compared).	This	example	shows	the	output	of	GETDATE	as	well	as
DATEPART.

SELECT	GETDATE()	AS	'Current	Date'
GO

Here	is	the	result	set:

JavaScript:hhobj_1.Click()

Current	Date																

Feb	18	1998	11:46PM									

SELECT	DATEPART(month,	GETDATE())	AS	'Month	Number'
GO

Here	is	the	result	set:

Month	Number	

2												

This	example	assumes	the	date	May	29.

SELECT	DATEPART(month,	GETDATE())
GO

Here	is	the	result	set:

5											

(1	row(s)	affected)

In	this	example,	the	date	is	specified	as	a	number.	Notice	that	SQL	Server
interprets	0	as	January	1,	1900.

SELECT	DATEPART(m,	0),	DATEPART(d,	0),	DATEPART(yy,	0)

Here	is	the	result	set:

-----	------	------
1					1						1900

See	Also

CAST	and	CONVERT

Data	Types

Date	and	Time	Functions

Transact-SQL	Reference

datetime	and	smalldatetime
Date	and	time	data	types	for	representing	date	and	time	of	day.

datetime

Date	and	time	data	from	January	1,	1753	through	December	31,	9999,	to	an
accuracy	of	one	three-hundredth	of	a	second	(equivalent	to	3.33	milliseconds
or	0.00333	seconds).	Values	are	rounded	to	increments	of	.000,	.003,	or	.007
seconds,	as	shown	in	the	table.

Example Rounded	example
01/01/98	23:59:59.999 1998-01-02	00:00:00.000
01/01/98	23:59:59.995,
01/01/98	23:59:59.996,	
01/01/98	23:59:59.997,	or
01/01/98	23:59:59.998

1998-01-01	23:59:59.997

01/01/98	23:59:59.992,	
01/01/98	23:59:59.993,	
01/01/98	23:59:59.994

1998-01-01	23:59:59.993

01/01/98	23:59:59.990	or
01/01/98	23:59:59.991

1998-01-01	23:59:59.990

Microsoft®	SQL	Server™	rejects	all	values	it	cannot	recognize	as	dates
between	1753	and	9999.

smalldatetime

Date	and	time	data	from	January	1,	1900,	through	June	6,	2079,	with
accuracy	to	the	minute.	smalldatetime	values	with	29.998	seconds	or	lower
are	rounded	down	to	the	nearest	minute;	values	with	29.999	seconds	or
higher	are	rounded	up	to	the	nearest	minute.

--returns	time	as	12:35
SELECT	CAST('2000-05-08	12:35:29.998'	AS	smalldatetime)
GO

--returns	time	as	12:36
SELECT	CAST('2000-05-08	12:35:29.999'	AS	smalldatetime)
GO

Remarks
Values	with	the	datetime	data	type	are	stored	internally	by	Microsoft	SQL
Server	as	two	4-byte	integers.	The	first	4	bytes	store	the	number	of	days	before
or	after	the	base	date,	January	1,	1900.	The	base	date	is	the	system	reference
date.	Values	for	datetime	earlier	than	January	1,	1753,	are	not	permitted.	The
other	4	bytes	store	the	time	of	day	represented	as	the	number	of	milliseconds
after	midnight.

The	smalldatetime	data	type	stores	dates	and	times	of	day	with	less	precision
than	datetime.	SQL	Server	stores	smalldatetime	values	as	two	2-byte	integers.
The	first	2	bytes	store	the	number	of	days	after	January	1,	1900.	The	other	2
bytes	store	the	number	of	minutes	since	midnight.	Dates	range	from	January	1,
1900,	through	June	6,	2079,	with	accuracy	to	the	minute.

See	Also

ALTER	TABLE

CAST	and	CONVERT

CREATE	TABLE

Data	Type	Conversion

Data	Types

DECLARE	@local_variable

DELETE

INSERT

SET	@local_variable

UPDATE

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

DAY
Returns	an	integer	representing	the	day	datepart	of	the	specified	date.

Syntax
DAY	(date)

Arguments
date

Is	an	expression	of	type	datetime	or	smalldatetime.

Return	Type
int

Remarks
This	function	is	equivalent	to	DATEPART(dd,	date).

Examples
This	example	returns	the	number	of	the	day	from	the	date	03/12/1998.

SELECT	DAY('03/12/1998')	AS	'Day	Number'
GO

Here	is	the	result	set:

Day	Number	

12												

In	this	example,	the	date	is	specified	as	a	number.	Notice	that	Microsoft®	SQL
Server™	interprets	0	as	January	1,	1900.

SELECT	MONTH(0),	DAY(0),	YEAR(0)

Here	is	the	result	set.

-----	------	------
1					1						1900

See	Also

Date	and	Time	Functions

datetime	and	smalldatetime

Expressions

Transact-SQL	Reference

DB_ID
Returns	the	database	identification	(ID)	number.

Syntax
DB_ID	(['database_name'])

Arguments
'database_name'

Is	the	database	name	used	to	return	the	corresponding	database	ID.
database_name	is	nvarchar.	If	database_name	is	omitted,	the	current
database	ID	is	returned.

Return	Types
smallint

Examples
This	example	examines	each	database	in	sysdatabases	using	the	database	name
to	determine	the	database	ID.

USE	master
SELECT	name,	DB_ID(name)	AS	DB_ID
FROM	sysdatabases
ORDER	BY	dbid

Here	is	the	result	set:

name																											DB_ID		
------------------------------	------	
master																									1						
tempdb																									2						
model																										3						

msdb																											4						
pubs																											5						

(5	row(s)	affected)

See	Also

Metadata	Functions

Transact-SQL	Reference

DB_NAME
Returns	the	database	name.

Syntax
DB_NAME	(database_id)

Arguments
database_id

Is	the	identification	number	(ID)	of	the	database	to	be	returned.	database_id
is	smallint,	with	no	default.	If	no	ID	is	specified,	the	current	database	name
is	returned.

Return	Types
nvarchar(128)

Examples
This	example	examines	each	database	in	sysdatabases	using	the	database
identification	number	to	determine	the	database	name.

USE	master
SELECT	dbid,	DB_NAME(dbid)	AS	DB_NAME
FROM	sysdatabases
ORDER	BY	dbid
GO

Here	is	the	result	set:

dbid			DB_NAME																								
------	------------------------------	
1						master																									
2						tempdb																									

3						model																										
4						msdb																											
5						pubs																											

(5	row(s)	affected)

See	Also

Metadata	Functions

Transact-SQL	Reference

DBCC
The	Transact-SQL	programming	language	provides	DBCC	statements	that	act	as
Database	Console	Commands	for	Microsoft®	SQL	Server™	2000.	These
statements	check	the	physical	and	logical	consistency	of	a	database.	Many
DBCC	statements	can	fix	detected	problems.

Database	Console	Command	statements	are	grouped	into	these	categories.

Statement	category Perform
Maintenance	statementsMaintenance	tasks	on	a	database,	index,	or

filegroup.
Miscellaneous
statements

Miscellaneous	tasks	such	as	enabling	row-level
locking	or	removing	a	dynamic-link	library	(DLL)
from	memory.

Status	statements Status	checks.
Validation	statements Validation	operations	on	a	database,	table,	index,

catalog,	filegroup,	system	tables,	or	allocation	of
database	pages.

The	DBCC	statements	of	SQL	Server	2000	take	input	parameters	and	return
values.	All	DBCC	statement	parameters	can	accept	both	Unicode	and	DBCS
literals.

Using	DBCC	Result	Set	Outputs
Many	DBCC	commands	can	produce	output	in	tabular	form	(using	the	WITH
TABLERESULTS	option).	This	information	can	be	loaded	into	a	table	for
further	use.	An	example	script	is	shown	below:

--	Create	the	table	to	accept	the	results
CREATE	TABLE	#tracestatus	(
			TraceFlag	INT,
			Status	INT
)

--	Execute	the	command,	putting	the	results	in	the	table
INSERT	INTO	#tracestatus	
			EXEC	('DBCC	TRACESTATUS	(-1)	WITH	NO_INFOMSGS')

--	Display	the	results
SELECT	*	
FROM	#tracestatus
GO

Maintenance	Statements
DBCC	DBREINDEX

DBCC	DBREPAIR

DBCC	INDEXDEFRAG

DBCC	SHRINKDATABASE

DBCC	SHRINKFILE

DBCC	UPDATEUSAGE

Miscellaneous	Statements
DBCC	dllname	(FREE)

DBCC	HELP

DBCC	PINTABLE

DBCC	ROWLOCK

DBCC	TRACEOFF

DBCC	TRACEON

DBCC	UNPINTABLE

Status	Statements
DBCC	INPUTBUFFER

DBCC	OPENTRAN

DBCC	OUTPUTBUFFER

DBCC	PROCCACHE

DBCC	SHOWCONTIG

DBCC	SHOW_STATISTICS

DBCC	SQLPERF

DBCC	TRACESTATUS

DBCC	USEROPTIONS

Validation	Statements
DBCC	CHECKALLOC

DBCC	CHECKCATALOG

DBCC	CHECKCONSTRAINTS

DBCC	CHECKDB

DBCC	CHECKFILEGROUP

DBCC	CHECKIDENT

DBCC	CHECKTABLE

DBCC	NEWALLOC

Transact-SQL	Reference

DBCC	CHECKALLOC
Checks	the	consistency	of	disk	space	allocation	structures	for	a	specified
database.

Syntax
DBCC	CHECKALLOC	
				('database_name'	
												[,	NOINDEX	
																|	
																{	REPAIR_ALLOW_DATA_LOSS	
																				|	REPAIR_FAST	
																				|	REPAIR_REBUILD	
																}]	
)				[WITH	{	[ALL_ERRORMSGS	|	NO_INFOMSGS]	
																				[,	[TABLOCK]]	
																				[,	[ESTIMATEONLY]]	
																}	
]

Arguments
'database_name'

Is	the	database	for	which	to	check	allocation	and	page	usage.	If	not	specified,
the	default	is	the	current	database.	Database	names	must	conform	to	the	rules
for	identifiers.	For	more	information,	see	Using	Identifiers.

NOINDEX

Specifies	that	nonclustered	indexes	for	nonsystem	tables	should	not	be
checked.

Note		NOINDEX	is	maintained	for	backward	compatibility	only.	All	indexes	are
checked	when	executing	DBCC	CHECKALLOC.

REPAIR_ALLOW_DATA_LOSS	|	REPAIR_FAST	|	REPAIR_REBUILD

JavaScript:hhobj_1.Click()

Specifies	that	DBCC	CHECKALLOC	repair	the	found	errors.	The	given
database_name	must	be	in	single-user	mode	to	use	one	of	these	repair
options,	and	can	be	one	of	the	following.

Value Description
REPAIR_ALLOW_DATA_LOSSPerforms	all	repairs	done	by

REPAIR_REBUILD	and	includes
allocation	and	deallocation	of	rows	and
pages	for	correcting	allocation	errors,
structural	row	or	page	errors,	and
deletion	of	corrupted	text	objects.	These
repairs	can	result	in	some	data	loss.	The
repair	can	be	done	under	a	user
transaction	to	allow	the	user	to	roll	back
the	changes	made.	If	repairs	are	rolled
back,	the	database	will	still	contain
errors	and	should	be	restored	from	a
backup.	If	a	repair	for	an	error	has	been
skipped	due	to	the	provided	repair	level,
any	repairs	that	depend	on	the	repair	are
also	skipped.	After	repairs	are
completed,	back	up	the	database.

REPAIR_FAST Performs	minor,	nontime-consuming
repair	actions	such	as	repairing	extra
keys	in	nonclustered	indexes.	These
repairs	can	be	done	quickly	and	without
risk	of	data	loss.

REPAIR_REBUILD Performs	all	repairs	done	by
REPAIR_FAST	and	includes	time-
consuming	repairs	such	as	rebuilding
indexes.	These	repairs	can	be	done
without	risk	of	data	loss.

WITH

Specifies	options	on	the	number	of	error	messages	returned,	locks	obtained,

or	estimating	tempdb	requirements.	If	neither	ALL_ERRORMSGS	nor
NO_INFOMSGS	is	specified,	Microsoft®	SQL	Server™	2000	returns	all
error	messages.

ALL_ERRORMSGS

Displays	all	error	messages.	If	not	specified,	SQL	Server	displays	a
maximum	of	200	error	messages	per	object.

NO_INFOMSGS

Suppresses	all	informational	messages	and	the	report	of	space	used.

TABLOCK

Causes	DBCC	command	to	obtain	shared	table	locks.	Ignored	for	DBCC
CHECKALLOC.

ESTIMATE	ONLY

Displays	the	estimated	amount	of	tempdb	space	required	to	run	DBCC
CHECKALLOC	with	all	of	the	other	specified	options.

Remarks
DBCC	CHECKALLOC	checks	allocation	and	page	usage	in	a	database,
including	indexed	views.	The	NOINDEX	option,	used	only	for	backward
compatibility,	also	applies	to	indexed	views.

It	is	not	necessary	to	execute	DBCC	CHECKALLOC	if	DBCC	CHECKDB	has
already	been	executed.	DBCC	CHECKDB	is	a	superset	of	DBCC
CHECKALLOC	and	includes	allocation	checks	in	addition	to	checks	of	index
structure	and	data	integrity.

DBCC	CHECKDB	is	the	safest	repair	statement	because	it	identifies	and	repairs
the	widest	possible	range	of	errors.	If	only	allocation	errors	are	reported	for	a
database,	execute	DBCC	CHECKALLOC	with	a	repair	option	to	correct	them.
However,	to	ensure	that	all	errors	(including	allocation	errors)	are	repaired
properly,	execute	DBCC	CHECKDB	with	a	repair	option.	DBCC
CHECKALLOC	messages	are	sorted	by	object	ID,	except	for	those	messages
generated	from	tempdb.	DBCC	CHECKALLOC	validates	the	allocation	of	all
data	pages	in	the	database	while	DBCC	CHECKDB	validates	the	page

information	used	in	the	storage	of	data	in	addition	to	validating	the	allocation
information.

DBCC	CHECKALLOC	does	not	acquire	table	locks	by	default.	Instead,	it
acquires	schema	locks	that	prevent	meta	data	changes	but	allow	changes	to	the
data	while	the	DBCC	CHECKALLOC	is	in	progress.	The	DBCC	statement
collects	information,	and	then	scans	the	log	for	any	additional	changes	made,
merging	the	two	sets	of	information	together	to	produce	a	consistent	view	of	the
data	at	the	end	of	the	scan.

Result	Sets
This	table	describes	the	information	DBCC	CHECKALLOC	returns.

Item Description
FirstIAM Internal	use	only.
Root Internal	use	only.
Dpages Data	page	count	from	sysindexes.
Pages	used Allocated	pages.
Dedicated	extents Extents	allocated	to	the	object.

If	mixed	allocation	pages	are	used,	there	may	be
pages	allocated	with	no	extents.

The	second	part	of	a	DBCC	CHECKALLOC	report	is	an	allocation	summary	for
each	index	in	each	file.	This	summary	gives	users	an	idea	of	the	distribution	of
the	data.

Item Description
Reserved Pages	allocated	to	the	index	and	the	unused	pages

in	allocated	extents.
Used Pages	allocated	and	in	use	by	the	index.

Whether	or	not	any	options	(except	WITH	NO_INFOMSGS)	are	specified,
DBCC	CHECKALLOC	returns	this	result	set	(values	may	vary):

DBCC	results	for	'master'.

Table	sysobjects																Object	ID	1.
Index	ID	1									FirstIAM	(1:11)			Root	(1:12)				Dpages	22.
				Index	ID	1.	24	pages	used	in	5	dedicated	extents.
Index	ID	2									FirstIAM	(1:1368)			Root	(1:1362)				Dpages	10.
				Index	ID	2.	12	pages	used	in	2	dedicated	extents.
Index	ID	3									FirstIAM	(1:1392)			Root	(1:1408)				Dpages	4.
				Index	ID	3.	6	pages	used	in	0	dedicated	extents.
Total	number	of	extents	is	7.

'...'

Table	spt_server_info																Object	ID	1938105945.
Index	ID	1									FirstIAM	(1:520)			Root	(1:508)				Dpages	1.
				Index	ID	1.	3	pages	used	in	0	dedicated	extents.
Total	number	of	extents	is	0.

Processed	52	entries	in	sysindexes	for	database	ID	1.
File	1.	Number	of	extents	=	210,	used	pages	=	1126,	reserved	pages	=	1280.
											File	1	(number	of	mixed	extents	=	73,	mixed	pages	=	184).
				Object	ID	1,	Index	ID	0,	data	extents	5,	pages	24,	mixed	extent	pages	9.
'...'
				Object	ID	1938105945,	Index	ID	0,	data	extents	0,	pages	3,	mixed	extent	pages	3.
Total	number	of	extents	=	210,	used	pages	=	1126,	reserved	pages	=	1280	in	this	database.
							(number	of	mixed	extents	=	73,	mixed	pages	=	184)	in	this	database.
CHECKALLOC	found	0	allocation	errors	and	0	consistency	errors	in	database	'master'.
DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

DBCC	CHECKALLOC	returns	this	result	set	when	the	ESTIMATE	ONLY
option	is	specified.

Estimated	TEMPDB	space	needed	for	CHECKALLOC	(KB)	

34

(1	row(s)	affected)

DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

Permissions
DBCC	CHECKALLOC	permissions	default	to	members	of	the	sysadmin	fixed
server	role	or	the	db_owner	fixed	database	role,	and	are	not	transferable.

Examples
This	example	executes	DBCC	CHECKALLOC	for	the	current	database	and	for
the	pubs	database.

--	Check	the	current	database.
DBCC	CHECKALLOC
GO
--	Check	the	pubs	database.
DBCC	CHECKALLOC	('pubs')
GO

See	Also

DBCC

DBCC	NEWALLOC

Space	Allocation	and	Reuse

sp_dboption

JavaScript:hhobj_2.Click()

Transact-SQL	Reference

DBCC	CHECKCATALOG
Checks	for	consistency	in	and	between	system	tables	in	the	specified	database.

Syntax
DBCC	CHECKCATALOG	
				('database_name'	
)				[WITH	NO_INFOMSGS]

Arguments
'database_name'

Is	the	database	for	which	to	check	system	table	consistency.	If	not	specified,
the	default	is	the	current	database.	Database	names	must	conform	to	the	rules
for	identifiers.	For	more	information,	see	Using	Identifiers.

WITH	NO_INFOMSGS

Suppresses	all	informational	messages	and	the	report	of	space	used	when
there	are	less	than	200	error	messages.	If	not	specified,	DBCC
CHECKCATALOG	displays	all	error	messages.	DBCC	CHECKCATALOG
messages	are	sorted	by	object	ID,	except	for	those	messages	generated	from
tempdb.

Remarks
DBCC	CHECKCATALOG	checks	that	every	data	type	in	syscolumns	has	a
matching	entry	in	systypes	and	that	every	table	and	view	in	sysobjects	has	at
least	one	column	in	syscolumns.

Result	Sets
If	no	database	is	specified,	DBCC	CHECKCATALOG	returns	this	result	set
(message):

DBCC	results	for	'current	database'.

JavaScript:hhobj_1.Click()

DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

If	Northwind	is	provided	as	a	database	name,	DBCC	CHECKCATALOG
returns	this	result	set	(message):

DBCC	results	for	'Northwind'.
DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

Permissions
DBCC	CHECKCATALOG	permissions	default	to	members	of	the	sysadmin
fixed	server	role,	the	db_owner	and	db_backupoperator	fixed	database	roles,
and	are	not	transferable.

Examples
This	example	checks	the	allocation	and	structural	integrity	of	objects	in	both	the
current	database	and	in	the	pubs	database.

--	Check	the	current	database.
DBCC	CHECKCATALOG
GO
--	Check	the	pubs	database.
DBCC	CHECKCATALOG	('pubs')
GO

See	Also

DBCC

System	Tables

Transact-SQL	Reference

DBCC	CHECKCONSTRAINTS
Checks	the	integrity	of	a	specified	constraint	or	all	constraints	on	a	specified
table.

Syntax
DBCC	CHECKCONSTRAINTS	
				[('table_name'	|	'constraint_name'	
)]

				[WITH	{	ALL_ERRORMSGS	|	ALL_CONSTRAINTS	}]

Arguments
'table_name'	|	'constraint_name'

Is	the	table	or	constraint	to	be	checked.	If	table_name	is	specified,	all
enabled	constraints	on	that	table	are	checked.	If	constraint_name	is
specified,	only	that	constraint	is	checked.	If	neither	a	table_name	nor	a
constraint_name	is	specified,	all	enabled	constraints	on	all	tables	in	the
current	database	are	checked.

A	constraint	name	uniquely	identifies	the	table	to	which	it	belongs.	For	more
information,	see	Using	Identifiers.

ALL_CONSTRAINTS

Checks	all	enabled	and	disabled	constraints	on	the	table,	if	the	table	name	is
specified	or	if	all	tables	are	checked.	Otherwise,	checks	only	the	enabled
constraint.	ALL_CONSTRAINTS	has	no	effect	when	a	constraint	name	is
specified.

ALL_ERRORMSGS

Returns	all	rows	that	violate	constraints	in	the	table	checked.	The	default	is
the	first	200	rows.

Remarks

JavaScript:hhobj_1.Click()

DBCC	CHECKCONSTRAINTS	constructs	and	executes	a	query	for	all	foreign
key	constraints	and	check	constraints	on	a	table.

For	example,	a	foreign	key	query	will	be	of	the	form:

SELECT	columns
FROM	table_being_checked	LEFT	JOIN	referenced_table
			ON	table_being_checked.fkey1	=	referenced_table.pkey1	
			AND	table_being_checked.fkey2	=	referenced_table.pkey2
WHERE	table_being_checked.fkey1	IS	NOT	NULL	
			AND	referenced_table.pkey1	IS	NULL
			AND	table_being_checked.fkey2	IS	NOT	NULL
			AND	referenced_table.pkey2	IS	NULL

The	query	data	is	stored	in	a	temp	table.	When	all	requested	tables	or	constraints
have	been	checked,	the	result	set	is	returned.

DBCC	CHECKCONSTRAINTS	checks	the	integrity	of	foreign	key	and	checked
constraints,	but	does	not	check	the	integrity	of	a	table's	on-disk	data	structures.
These	data	structure	checks	can	be	performed	with	DBCC	CHECKDB	and
DBCC	CHECKTABLE.

Result	Sets
DBCC	CHECKCONSTRAINTS	return	a	rowset	with	the	following	columns.

Column	name Data	type Description
Table	Name varchar Name	of	the	table.
Constraint	Name varchar Name	of	the	constraint	violated.
Where varchar Column	value	assignments	that	identify

the	row	or	rows	violating	the	constraint.

The	value	in	this	column	may	be	used	in	a
WHERE	clause	of	a	SELECT	statement
querying	for	rows	violating	the	constraint.

For	example,	a	DBCC	CHECKCONSTRAINT	on	the	orders	table	yields	the
following	result.

Table	Name			Constraint	Name						Where
-----------			-----------------------			-----------------------
orders						PartNo_FKey									PartNo	=	'12'

The	value	PartNo	=	'12'	in	the	Where	column	can	be	used	in	a	SELECT
statement	that	identifies	the	row	violating	the	constraint	PartNo_FKEY.

Select	*	
From	orders	
Where	PartNo	=	'12'

The	user	then	may	decide	to	modify,	delete	or	otherwise	adjust	the	rows.

Permissions
DBCC	CHECKCONSTRAINTS	permissions	default	to	members	of	the
sysadmin	fixed	server	role	and	the	db_owner	fixed	database	role,	and	are	not
transferable.

Examples

A.	Check	a	table.
This	example	checks	the	constraint	integrity	of	the	orders	table	in	the	pubs
database.

DBCC	CHECKCONSTRAINTS	('authors')
GO

B.	Check	a	specific	constraint
This	example	checks	the	integrity	of	the	PartNo_FKey	constraint.	The
constraint	name	uniquely	identifies	the	table	it	is	declared	upon.

DBCC	CHECKCONSTRAINTS	('PartNo_Fkey')

GO

C.	Check	all	enabled	and	disabled	constraints	on	all	tables
This	example	checks	the	integrity	of	all	enabled	and	disabled	constraints	on	all
tables	in	the	current	database.

DBCC	CHECKCONSTRAINTS	WITH	ALL_CONSTRAINTS
GO

Transact-SQL	Reference

DBCC	CHECKDB
Checks	the	allocation	and	structural	integrity	of	all	the	objects	in	the	specified
database.

Syntax
DBCC	CHECKDB	
				('database_name'	
												[,	NOINDEX	
																|	{	REPAIR_ALLOW_DATA_LOSS	
																				|	REPAIR_FAST	
																				|	REPAIR_REBUILD	
																				}]	
)				[WITH	{	[ALL_ERRORMSGS]	
																				[,	[NO_INFOMSGS]]	
																				[,	[TABLOCK]]	
																				[,	[ESTIMATEONLY]]	
																				[,	[PHYSICAL_ONLY]]	
																				}	
]

Arguments
'database_name'

Is	the	database	for	which	to	check	all	object	allocation	and	structural
integrity.	If	not	specified,	the	default	is	the	current	database.	Database	names
must	conform	to	the	rules	for	identifiers.	For	more	information,	see	Using
Identifiers.

NOINDEX

Specifies	that	nonclustered	indexes	for	nonsystem	tables	should	not	be
checked.	NOINDEX	decreases	the	overall	execution	time	because	it	does	not
check	nonclustered	indexes	for	user-defined	tables.	NOINDEX	has	no	effect
on	system	tables,	because	DBCC	CHECKDB	always	checks	all	system	table
indexes.

JavaScript:hhobj_1.Click()

REPAIR_ALLOW_DATA_LOSS	|	REPAIR_FAST|	REPAIR_REBUILD

Specifies	that	DBCC	CHECKDB	repair	the	found	errors.	The	given
database_name	must	be	in	single-user	mode	to	use	a	repair	option	and	can
be	one	of	the	following.

Value Description
REPAIR_ALLOW_DATA_LOSSPerforms	all	repairs	done	by

REPAIR_REBUILD	and	includes
allocation	and	deallocation	of	rows	and
pages	for	correcting	allocation	errors,
structural	row	or	page	errors,	and
deletion	of	corrupted	text	objects.	These
repairs	can	result	in	some	data	loss.	The
repair	may	be	done	under	a	user
transaction	to	allow	the	user	to	roll	back
the	changes	made.	If	repairs	are	rolled
back,	the	database	will	still	contain
errors	and	should	be	restored	from	a
backup.	If	a	repair	for	an	error	has	been
skipped	due	to	the	provided	repair	level,
any	repairs	that	depend	on	the	repair	are
also	skipped.	After	repairs	are
completed,	back	up	the	database.

REPAIR_FAST Performs	minor,	nontime-consuming
repair	actions	such	as	repairing	extra
keys	in	nonclustered	indexes.	These
repairs	can	be	done	quickly	and	without
risk	of	data	loss.

REPAIR_REBUILD Performs	all	repairs	done	by
REPAIR_FAST	and	includes	time-
consuming	repairs	such	as	rebuilding
indexes.	These	repairs	can	be	done
without	risk	of	data	loss.

WITH

Specifies	options	on	the	number	of	error	messages	returned,	locks	obtained,
or	estimating	tempdb	requirements.

ALL_ERRORMSGS

Displays	an	unlimited	number	of	errors	per	object.	If	ALL_ERRORMSGS	is
not	specified,	displays	up	to	200	error	messages	for	each	object.	Error
messages	are	sorted	by	object	ID,	except	for	those	messages	generated	from
tempdb.

NO_INFOMSGS

Suppresses	all	informational	messages	(Severity	10)	and	the	report	of	space
used.

TABLOCK

Causes	DBCC	CHECKDB	to	obtain	shared	table	locks.	TABLOCK	will
cause	DBCC	CHECKDB	to	run	faster	on	a	database	under	heavy	load,	but
decreases	the	concurrency	available	on	the	database	while	DBCC
CHECKDB	is	running.

ESTIMATE	ONLY

Displays	the	estimated	amount	of	tempdb	space	needed	to	run	DBCC
CHECKDB	with	all	of	the	other	specified	options.	The	check	is	not
performed.

PHYSICAL_ONLY

Limits	the	checking	to	the	integrity	of	the	physical	structure	of	the	page	and
record	headers,	and	to	the	consistency	between	the	pages'	object	ID	and
index	ID	and	the	allocation	structures.	Designed	to	provide	a	low	overhead
check	of	the	physical	consistency	of	the	database,	this	check	also	detects	torn
pages	and	common	hardware	failures	that	can	compromise	a	user's	data.
PHYSICAL_ONLY	always	implies	NO_INFOMSGS	and	is	not	allowed
with	any	of	the	repair	options.

Remarks
DBCC	CHECKDB	performs	a	physical	consistency	check	on	indexed	views.
The	NOINDEX	option,	used	only	for	backward	compatibility,	also	applies	to	any

secondary	indexes	on	indexed	views.

DBCC	CHECKDB	is	the	safest	repair	statement	because	it	identifies	and	repairs
the	widest	possible	errors.	If	only	allocation	errors	are	reported	for	a	database,
execute	DBCC	CHECKALLOC	with	a	repair	option	to	repair	these	errors.
However,	to	ensure	that	all	errors,	including	allocation	errors,	are	properly
repaired,	execute	DBCC	CHECKDB	with	a	repair	option	rather	than	DBCC
CHECKALLOC	with	a	repair	option.

DBCC	CHECKDB	validates	the	integrity	of	everything	in	a	database.	There	is
no	need	to	run	DBCC	CHECKALLOC	or	DBCC	CHECKTABLE	if	DBCC
CHECKDB	either	is	currently	or	has	been	recently	executed.

DBCC	CHECKDB	performs	the	same	checking	as	if	both	a	DBCC
CHECKALLOC	statement	and	a	DBCC	CHECKTABLE	statement	were
executed	for	each	table	in	the	database.

DBCC	CHECKDB	does	not	acquire	table	locks	by	default.	Instead,	it	acquires
schema	locks	that	prevent	meta	data	changes	but	allow	changes	to	the	data.	The
schema	locks	acquired	will	prevent	the	user	from	getting	an	exclusive	table	lock
required	to	build	a	clustered	index,	drop	any	index,	or	truncate	the	table.

The	DBCC	statement	collects	information,	and	then	scans	the	log	for	any
additional	changes	made,	merging	the	two	sets	of	information	together	to
produce	a	consistent	view	of	the	data	at	the	end	of	the	scan.

When	the	TABLOCK	option	is	specified,	DBCC	CHECKDB	acquires	shared
table	locks.	This	allows	more	detailed	error	messages	for	some	classes	of	errors
and	minimizes	the	amount	of	tempdb	space	required	by	avoiding	the	use	of
transaction	log	data.	The	TABLOCK	option	will	not	block	the	truncation	of	the
log	and	will	allow	the	command	to	run	faster.

DBCC	CHECKDB	checks	the	linkages	and	sizes	of	text,	ntext,	and	image
pages	for	each	table,	and	the	allocation	of	all	the	pages	in	the	database.

For	each	table	in	the	database,	DBCC	CHECKDB	checks	that:

Index	and	data	pages	are	correctly	linked.

Indexes	are	in	their	proper	sort	order.

Pointers	are	consistent.

The	data	on	each	page	is	reasonable.

Page	offsets	are	reasonable.

Errors	indicate	potential	problems	in	the	database	and	should	be	corrected
immediately.

By	default,	DBCC	CHECKDB	performs	parallel	checking	of	objects.		The
degree	of	parallelism	is	determined	automatically	by	the	query	processor.	The
maximum	degree	of	parallelism	is	configured	in	the	same	manner	as	that	of
parallel	queries.		Use	the	sp_configure	system	stored	procedure	to	restrict	the
maximum	number	of	processors	available	for	DBCC	checking.		For	more
information,	see	max	degree	of	parallelism	Option.

Parallel	checking	can	be	disabled	by	using	trace	flag	2528.		For	more
information,	see	Trace	Flags.

Result	Sets
Whether	or	not	any	options	(except	for	the	NO_INFOMSGS	or	NOINDEX
options)	are	specified,	DBCC	CHECKDB	returns	this	result	set	for	the	current
database,	if	no	database	is	specified	(values	may	vary):

DBCC	results	for	'master'.
DBCC	results	for	'sysobjects'.
There	are	862	rows	in	13	pages	for	object	'sysobjects'.
DBCC	results	for	'sysindexes'.
There	are	80	rows	in	3	pages	for	object	'sysindexes'.
'...'
DBCC	results	for	'spt_provider_types'.
There	are	23	rows	in	1	pages	for	object	'spt_provider_types'.
CHECKDB	found	0	allocation	errors	and	0	consistency	errors	in	database	'master'.
DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

IF	the	NO_INFOMSGS	option	is	specified,	DBCC	CHECKDB	returns	this

JavaScript:hhobj_2.Click()

result	set	(message):

The	command(s)	completed	successfully.

DBCC	CHECKDB	returns	this	result	set	when	the	ESTIMATEONLY	option	is
specified.

Estimated	TEMPDB	space	needed	for	CHECKALLOC	(KB)	

13

(1	row(s)	affected)

Estimated	TEMPDB	space	needed	for	CHECKTABLES	(KB)	
--	
57

(1	row(s)	affected)

DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

Permissions
DBCC	CHECKDB	permissions	default	to	members	of	the	sysadmin	fixed
server	role	or	the	db_owner	fixed	database	role,	and	are	not	transferable.

Examples

A.	Check	both	the	current	and	the	pubs	database
This	example	executes	DBCC	CHECKDB	for	the	current	database	and	for	the
pubs	database.

--	Check	the	current	database.
DBCC	CHECKDB
GO
--	Check	the	pubs	database	without	nonclustered	indexes.

DBCC	CHECKDB	('pubs',	NOINDEX)
GO

B.	Check	the	current	database,	suppressing	informational
messages
This	example	checks	the	current	database	and	suppresses	all	informational
messages.

DBCC	CHECKDB	WITH	NO_INFOMSGS
GO

See	Also

Features	Supported	by	the	Editions	of	SQL	Server	2000

How	to	configure	the	number	of	processors	available	for	parallel	queries
(Enterprise	Manager)

Physical	Database	Architecture

sp_helpdb

System	Tables

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Transact-SQL	Reference

DBCC	CHECKFILEGROUP
Checks	the	allocation	and	structural	integrity	of	all	tables	(in	the	current
database)	in	the	specified	filegroup.

Syntax
DBCC	CHECKFILEGROUP	
				([{	'filegroup'	|	filegroup_id	}]	
								[,	NOINDEX]	
)				[WITH	{	[ALL_ERRORMSGS	|	NO_INFOMSGS]	
																				[,	[TABLOCK]]	
																				[,	[ESTIMATEONLY]]	
																				}	
]

Arguments
'filegroup'

Is	the	name	of	the	filegroup	for	which	to	check	table	allocation	and	structural
integrity.	If	not	specified,	the	default	is	the	primary	filegroup.	Filegroup
names	must	conform	to	the	rules	for	identifiers.	For	more	information,	see
Using	Identifiers.

filegroup_id

Is	the	filegroup	identification	(ID)	number	for	which	to	check	table
allocation	and	structural	integrity.	Obtain	filegroup_id	from	either	the
FILEGROUP_ID	function	or	the	sysfilegroups	system	table	in	the	database
containing	the	filegroup.

NOINDEX

Specifies	that	nonclustered	indexes	for	nonsystem	tables	should	not	be
checked.	This	decreases	execution	time.	NOINDEX	has	no	effect	on	system
tables.	DBCC	CHECKFILEGROUP	always	checks	all	system	table	indexes
when	run	on	the	default	filegroup.

JavaScript:hhobj_1.Click()

WITH

Specifies	options	on	the	number	of	error	messages	returned,	locks	obtained,
or	estimating	tempdb	requirements.	If	neither	ALL_ERRORMSGS	nor
NO_INFOMSGS	is	specified,	Microsoft®	SQL	Server™	returns	all	error
messages.

ALL_ERRORMSGS

Displays	all	error	messages.	If	not	specified,	SQL	Server	displays	a
maximum	of	200	error	messages	per	table.	Error	messages	are	sorted	by
object	ID,	except	for	those	messages	generated	from	tempdb.

NO_INFOMSGS

Suppresses	all	informational	messages	and	the	report	of	space	used.

TABLOCK

Causes	DBCC	CHECKFILEGROUP	to	obtain	shared	table	locks.

ESTIMATE	ONLY

Displays	the	estimated	amount	of	tempdb	space	required	to	run	DBCC
CHECKFILEGROUP	with	all	of	the	other	specified	options.

Remarks
DBCC	CHECKFILEGROUP	and	DBCC	CHECKDB	are	similar	DBCC
statements.	The	main	difference	lies	in	the	check	conducted	by	DBCC
CHECKFILEGROUP:	it	is	limited	to	the	single	specified	filegroup	and	required
tables.

Executing	DBCC	CHECKFILEGROUP	statements	on	all	filegroups	in	a
database	is	the	same	as	running	a	single	DBCC	CHECKDB	statement.	The	only
difference	is	that	any	table	with	indexes	on	different	filegroups	has	the	table	and
indexes	checked	multiple	times	(one	time	for	each	filegroup	holding	the	table	or
any	of	its	indexes).

DBCC	CHECKFILEGROUP	prevents	modification	of	all	tables	and	indexes	in
the	filegroup	(as	well	as	tables	in	other	filegroups	whose	indexes	are	in	the
filegroup	currently	checked)	for	the	duration	of	the	operation.

During	DBCC	CHECKFILEGROUP	execution,	table	creation	and	deletion
actions	are	not	allowed.

DBCC	CHECKFILEGROUP	does	not	acquire	table	locks	by	default.	Instead,	it
acquires	schema	locks	that	prevent	meta	data	changes	but	allow	changes	to	the
data.	The	DBCC	statement	collects	information,	then	scans	the	log	for	any
additional	changes	made,	merging	the	two	sets	of	information	together	to
produce	a	consistent	view	of	the	data	at	the	end	of	the	scan.

When	the	TABLOCK	option	is	specified,	DBCC	CHECKFILEGROUP	acquires
shared	table	locks.	This	allows	more	detailed	error	messages	for	some	classes	of
errors	and	minimizes	the	amount	of	tempdb	space	required	by	avoiding	the	use
of	transaction	log	data.

DBCC	CHECKFILEGROUP	checks	the	linkages	and	sizes	of	text,	ntext,	and
image	pages	for	each	filegroup,	and	the	allocation	of	all	the	pages	in	the
filegroup.

DBCC	CHECKFILEGROUP	also	performs	a	physical	consistency	check	on
indexed	views.	The	NOINDEX	option,	used	only	for	backward	compatibility,
also	applies	to	indexed	views.

For	each	table	in	the	filegroup,	DBCC	CHECKFILEGROUP	checks	that:

Index	and	data	pages	are	correctly	linked.

Indexes	are	in	their	proper	sort	order.

Pointers	are	consistent.

The	data	on	each	page	is	reasonable.

Page	offsets	are	reasonable.

If	a	nonclustered	index	in	the	filegroup	being	explicitly	checked	is	associated
with	a	table	in	another	filegroup,	the	table	in	the	other	filegroup	(not	originally
explicitly	checked)	is	also	checked	because	verifying	the	index	also	requires
verification	of	the	base	table	structure.	If	a	table	in	the	filegroup	being	checked

has	a	nonclustered	index	in	another	filegroup,	however,	the	index	is	not	checked
because:

The	base	table	structure	is	not	dependent	on	the	structure	of	a
nonclustered	index.

The	DBCC	CHECKFILEGROUP	statement	is	focused	on	validating
only	objects	in	the	filegroup.	Nonclustered	indexes	do	not	have	to	be
scanned	to	validate	the	base	table.

Only	checking	the	index	when	the	filegroup	holding	it	is	specifically
checked	reduces	duplicate	processing	when	DBCC
CHECKFILEGROUP	is	run	on	multiple	filegroups	in	a	database.

It	is	not	possible	to	have	a	clustered	index	and	a	table	on	different	filegroups,	so
these	considerations	only	apply	to	nonclustered	indexes.

The	references	to	filegroup	and	filegroup_id	are	only	relevant	in	the	current
database.	Be	sure	to	switch	context	to	the	proper	database	before	executing
DBCC	CHECKFILEGROUP.	For	more	information	about	changing	the	current
database,	see	USE.

By	default,	DBCC	CHECKFILEGROUP	performs	parallel	checking	of	objects.	
The	degree	of	parallelism	is	determined	automatically	by	the	query	processor.
The	maximum	degree	of	parallelism	is	configured	in	the	same	manner	as	that	of
parallel	queries.		Use	the	sp_configure	system	stored	procedure	to	restrict	the
maximum	number	of	processors	available	for	DBCC	checking.		For	more
information,	see	max	degree	of	parallelism	Option.

Parallel	checking	can	be	disabled	by	using	trace	flag	2528.		For	more
information,	see	Trace	Flags.

Result	Sets
Whether	or	not	any	options	(except	NOINDEX)	are	specified,	DBCC
CHECKFILEGROUP	returns	this	result	set	for	the	current	database,	if	no
database	is	specified	(values	may	vary):

DBCC	results	for	'master'.

JavaScript:hhobj_2.Click()

DBCC	results	for	'sysobjects'.
There	are	862	rows	in	13	pages	for	object	'sysobjects'.
DBCC	results	for	'sysindexes'.
There	are	80	rows	in	3	pages	for	object	'sysindexes'.
'...'
DBCC	results	for	'spt_provider_types'.
There	are	23	rows	in	1	pages	for	object	'spt_provider_types'.
CHECKFILEGROUP	found	0	allocation	errors	and	0	consistency	errors	in	database	'master'.
DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

DBCC	CHECKFILEGROUP	returns	this	result	set	if	the	NO_INFOMSGS
option	is	specified:

DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

DBCC	CHECKFILEGROUP	returns	this	result	set	when	the	ESTIMATEONLY
option	is	specified.

Estimated	TEMPDB	space	needed	for	CHECKALLOC	(KB)	

15

(1	row(s)	affected)

Estimated	TEMPDB	space	needed	for	CHECKTABLES	(KB)	
--	
207

(1	row(s)	affected)

DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

Permissions
DBCC	CHECKFILEGROUP	permissions	default	to	members	of	the	sysadmin

fixed	server	role	or	the	db_owner	fixed	database	role,	and	are	not	transferable.

Examples

A.	Check	the	PRIMARY	filegroup	in	the	pubs	database
This	example	checks	the	pubs	database	primary	filegroup.

USE	pubs
GO
DBCC	CHECKFILEGROUP
GO

B.	Check	the	pubs	PRIMARY	filegroup	without	nonclustered
indexes
This	example	checks	the	pubs	database	primary	filegroup	(excluding
nonclustered	indexes)	by	specifying	the	identification	number	of	the	primary
filegroup,	and	by	specifying	the	NOINDEX	option.

USE	pubs
GO
DBCC	CHECKFILEGROUP	(1,	NOINDEX)
GO

See	Also

Features	Supported	by	the	Editions	of	SQL	Server	2000

FILEGROUP_ID

How	to	configure	the	number	of	processors	available	for	parallel	queries
(Enterprise	Manager)

Physical	Database	Architecture

sp_helpfile

sp_helpfilegroup

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

sysfilegroups

Transact-SQL	Reference

DBCC	CHECKIDENT
Checks	the	current	identity	value	for	the	specified	table	and,	if	needed,	corrects
the	identity	value.

Syntax
DBCC	CHECKIDENT	
				('table_name'	
								[,	{	NORESEED	
																|	{	RESEED	[,	new_reseed_value]	}	
												}	
]	
)

Arguments
'table_name'

Is	the	name	of	the	table	for	which	to	check	the	current	identity	value.	Table
names	must	conform	to	the	rules	for	identifiers.	For	more	information,	see
Using	Identifiers.	The	table	specified	must	contain	an	identity	column.

NORESEED

Specifies	that	the	current	identity	value	should	not	be	corrected.

RESEED

Specifies	that	the	current	identity	value	should	be	corrected.

new_reseed_value

Is	the	value	to	use	in	reseeding	the	identity	column.

Remarks
If	necessary,	DBCC	CHECKIDENT	corrects	the	current	identity	value	for	a
column.	The	current	identity	value	is	not	corrected,	however,	if	the	identity
column	was	created	with	the	NOT	FOR	REPLICATION	clause	(in	either	the

JavaScript:hhobj_1.Click()

CREATE	TABLE	or	ALTER	TABLE	statement).

Invalid	identity	information	can	cause	error	message	2627	when	a	primary	key
or	unique	key	constraint	exists	on	the	identity	column.

The	specific	corrections	made	to	the	current	identity	value	depend	on	the
parameter	specifications.

DBCC	CHECKIDENT
statement Identity	correction(s)	made
DBCC	CHECKIDENT
('table_name',	NORESEED)

The	current	identity	value	is	not	reset.
DBCC	CHECKIDENT	returns	a	report
indicating	the	current	identity	value	and
what	it	should	be.

DBCC	CHECKIDENT
('table_name')	or	DBCC
CHECKIDENT	('table_name',
RESEED)

If	the	current	identity	value	for	a	table	is
lower	than	the	maximum	identity	value
stored	in	the	column,	it	is	reset	using	the
maximum	value	in	the	identity	column.

DBCC	CHECKIDENT
('table_name',	RESEED,
new_reseed_value)

The	current	identity	value	is	set	to	the
new_reseed_value.	If	no	rows	have	been
inserted	to	the	table	since	it	was	created,
the	first	row	inserted	after	executing
DBCC	CHECKIDENT	will	use
new_reseed_value	as	the	identity.
Otherwise,	the	next	row	inserted	will	use
new_reseed_value	+	1.	If	the	value	of
new_reseed_value	is	less	than	the
maximum	value	in	the	identity	column,
error	message	2627	will	be	generated	on
subsequent	references	to	the	table.

The	current	identity	value	can	be	larger	than	the	maximum	value	in	the	table.
DBCC	CHECKIDENT	does	not	reset	the	current	identity	value	automatically	in
this	case.	To	reset	the	current	identity	value	when	it	is	larger	than	the	maximum
value	in	the	column,	use	either	of	two	methods:

Execute	DBCC	CHECKIDENT	('table_name',	NORESEED)	to

determine	the	current	maximum	value	in	the	column,	and	then	specify
that	as	the	new_reseed_value	in	a	DBCC	CHECKIDENT
('table_name',	RESEED,	new_reseed_value)	statement.

Execute	DBCC	CHECKIDENT	('table_name',	RESEED,
new_reseed_value)	with	new_reseed_value	set	to	a	very	low	value,	and
then	run	DBCC	CHECKIDENT	('table_name',	RESEED).

Result	Sets

Whether	or	not	any	of	the	options	are	specified	(for	a	table	containing	an	identity
column;	this	example	uses	the	jobs	table	of	the	pubs	database),	DBCC
CHECKIDENT	returns	this	result	set	(values	may	vary):

Checking	identity	information:	current	identity	value	'14',	current	column	value	'14'.
DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

Permissions
DBCC	CHECKIDENT	permissions	default	to	the	table	owner,	members	of	the
sysadmin	fixed	server	role,	and	the	db_owner	and	db_ddladmin	fixed	database
role,	and	are	not	transferable.

Examples

A.	Reset	the	current	identity	value,	if	needed
This	example	resets	the	current	identity	value,	if	needed,	of	the	jobs	table.

USE	pubs
GO
DBCC	CHECKIDENT	(jobs)
GO

B.	Report	the	current	identity	value
This	example	reports	the	current	identity	value	in	the	jobs	table,	and	does	not

correct	the	identity	value,	if	incorrect.

USE	pubs
GO
DBCC	CHECKIDENT	(jobs,	NORESEED)
GO

C.	Force	the	current	identity	value	to	30
This	example	forces	the	current	identity	value	in	the	jobs	table	to	a	value	of	30.

USE	pubs
GO
DBCC	CHECKIDENT	(jobs,	RESEED,	30)
GO

See	Also

ALTER	TABLE

CREATE	TABLE

DBCC

IDENTITY	(Property)

USE

Transact-SQL	Reference

DBCC	CHECKTABLE
Checks	the	integrity	of	the	data,	index,	text,	ntext,	and	image	pages	for	the
specified	table	or	indexed	view.

Syntax
DBCC	CHECKTABLE	
				('table_name'	|	'view_name'	
								[,	NOINDEX	
												|	index_id	
												|	{	REPAIR_ALLOW_DATA_LOSS	
																|	REPAIR_FAST	
																|	REPAIR_REBUILD	}	
]	
)				[WITH	{	[ALL_ERRORMSGS	|	NO_INFOMSGS]	
																				[,	[TABLOCK]]	
																				[,	[ESTIMATEONLY]]	
																				[,	[PHYSICAL_ONLY]]	
																}	
]	

Arguments

'table_name'	|	'view_name'

Is	the	table	or	indexed	view	for	which	to	check	data	page	integrity.	Table	or
view	names	must	conform	to	the	rules	for	identifiers.	For	more	information,
see	Using	Identifiers.

NOINDEX

Specifies	that	nonclustered	indexes	for	nonsystem	tables	should	not	be
checked.

REPAIR_ALLOW_DATA_LOSS	|	REPAIR_FAST	|	REPAIR_REBUILD

Specifies	that	DBCC	CHECKTABLE	repair	the	found	errors.	The	database
must	be	in	single-user	mode	to	use	a	repair	option	and	can	be	one	of	the

JavaScript:hhobj_1.Click()

following.

Value Description
REPAIR_ALLOW_DATA_LOSSPerforms	all	repairs	done	by

REPAIR_REBUILD	and	includes
allocation	and	deallocation	of	rows	and
pages	for	correcting	allocation	errors,
structural	row	or	page	errors,	and
deletion	of	corrupted	text	objects.	These
repairs	can	result	in	some	data	loss.	The
repair	may	be	done	under	a	user
transaction	to	allow	the	user	to	roll	back
the	changes	made.	If	repairs	are	rolled
back,	the	database	will	still	contain
errors	and	should	be	restored	from	a
backup.	If	a	repair	for	an	error	has	been
skipped	due	to	the	provided	repair	level,
any	repairs	that	depend	on	the	repair	are
also	skipped.	After	repairs	are
completed,	back	up	the	database.

REPAIR_FAST Performs	minor,	nontime-consuming
repair	actions	such	as	repairing	extra
keys	in	nonclustered	indexes.	These
repairs	can	be	done	quickly	and	without
risk	of	data	loss.

REPAIR_REBUILD Performs	all	repairs	done	by
REPAIR_FAST	and	includes	time-
consuming	repairs	such	as	rebuilding
indexes.	These	repairs	can	be	done
without	risk	of	data	loss.

index_id

Is	the	index	identification	(ID)	number	for	which	to	check	data	page
integrity.	If	an	index_id	is	specified,	DBCC	CHECKTABLE	checks	only	that
index.

WITH

Specifies	options	on	the	number	of	error	messages	returned,	locks	obtained,
or	estimating	tempdb	requirements.	If	neither	ALL_ERRORMSGS	nor
NO_INFOMSGS	is	specified,	Microsoft®	SQL	Server™	returns	all	error
messages.

ALL_ERRORMSGS

Displays	all	error	messages.	If	not	specified,	SQL	Server	displays	a
maximum	of	200	error	messages	per	table.	Error	messages	are	sorted	by
object	ID.

NO_INFOMSGS

Suppresses	all	informational	messages	and	the	report	of	space	used.

TABLOCK

Causes	DBCC	CHECKTABLE	to	obtain	a	shared	table	lock.

ESTIMATE	ONLY

Displays	the	estimated	amount	of	tempdb	space	needed	to	run	DBCC
CHECKTABLE	with	all	of	the	other	specified	options.

PHYSICAL_ONLY

Limits	the	checking	to	the	integrity	of	the	physical	structure	of	the	page	and
record	headers,	and	to	the	consistency	between	the	pages'	object	ID	and
index	ID	and	the	allocation	structures.	Designed	to	provide	a	low	overhead
check	of	the	physical	consistency	of	the	database,	this	check	also	detects	torn
pages	and	common	hardware	failures	that	can	compromise	a	user's	data.
PHYSICAL_ONLY	always	implies	NO_INFOMSGS	and	is	not	allowed
with	any	of	the	repair	options.

Remarks
DBCC	CHECKTABLE	performs	a	physical	consistency	check	on	tables	and
indexed	views.	The	NOINDEX	option,	used	only	for	backward	compatibility,
also	applies	to	indexed	views.

For	the	specified	table,	DBCC	CHECKTABLE	checks	that:

Index	and	data	pages	are	correctly	linked.

Indexes	are	in	their	proper	sort	order.

Pointers	are	consistent.

The	data	on	each	page	is	reasonable.

Page	offsets	are	reasonable.

DBCC	CHECKTABLE	checks	the	linkages	and	sizes	of	text,	ntext,	and	image
pages	for	the	specified	table.	However,	DBCC	CHECKTABLE	does	not	verify
the	consistency	of	all	the	allocation	structures	in	the	database.	Use	DBCC
CHECKALLOC	to	do	this	verification.

DBCC	CHECKTABLE	does	not	acquire	a	table	lock	by	default.	Instead,	it
acquires	a	schema	lock	that	prevents	meta	data	changes	but	allows	changes	to
the	data.	The	DBCC	statement	collects	information,	then	scans	the	log	for	any
additional	changes	made,	merging	the	two	sets	of	information	together	to
produce	a	consistent	view	of	the	data	at	the	end	of	the	scan.

When	the	TABLOCK	option	is	specified,	DBCC	CHECKTABLE	acquires	a
shared	table	lock.	This	allows	more	detailed	error	messages	for	some	classes	of
errors	and	minimizes	the	amount	of	tempdb	space	required	by	avoiding	the	use
of	transaction	log	data.

To	perform	DBCC	CHECKTABLE	on	every	table	in	the	database,	use	DBCC
CHECKDB.

By	default,	DBCC	CHECKTABLE	performs	parallel	checking	of	objects.	The
degree	of	parallelism	is	determined	automatically	by	the	query	processor.	The
maximum	degree	of	parallelism	is	configured	in	the	same	manner	as	that	of
parallel	queries.	Use	the	sp_configure	system	stored	procedure	to	restrict	the
maximum	number	of	processors	available	for	DBCC	checking.	For	more
information,	see	max	degree	of	parallelism	Option.

Parallel	checking	can	be	disabled	by	using	trace	flag	2528.	For	more

JavaScript:hhobj_2.Click()

information,	see	Trace	Flags.

Result	Sets
DBCC	CHECKTABLE	returns	this	result	set	(same	result	set	is	returned	if	you
specify	only	the	table	name	or	if	you	provide	any	of	the	options);	this	example
specifies	the	authors	table	in	the	pubs	database	(values	may	vary):

DBCC	results	for	'authors'.
There	are	23	rows	in	1	pages	for	object	'authors'.
DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

DBCC	CHECKTABLE	returns	this	result	set	when	the	ESTIMATEONLY	option
is	specified.

Estimated	TEMPDB	space	needed	for	CHECKTABLES	(KB)	
--	
2

(1	row(s)	affected)

DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

Permissions
DBCC	CHECKTABLE	permissions	default	to	members	of	the	sysadmin	fixed
server	role	or	the	db_owner	fixed	database	role,	or	the	table	owner,	and	are	not
transferable.

Examples

A.	Check	a	specific	table
This	example	checks	the	data	page	integrity	of	the	authors	table.

DBCC	CHECKTABLE	('authors')
GO

B.	Check	the	table	without	checking	nonclustered	indexes
This	example	checks	the	data	page	integrity	of	the	authors	table	without
checking	nonclustered	indexes.

DBCC	CHECKTABLE	('authors')	WITH	PHYSICAL_ONLY
GO

C.	Check	a	specific	index
This	example	checks	a	specific	index,	obtained	by	accessing	sysindexes.

USE	pubs
DECLARE	@indid	int
SELECT	@indid	=	indid	
FROM	sysindexes
WHERE	id	=	OBJECT_ID('authors')	AND	name	=	'aunmind'
DBCC	CHECKTABLE	('authors',	@indid)
GO

See	Also

DBCC

Features	Supported	by	the	Editions	of	SQL	Server	2000

How	to	configure	the	number	of	processors	available	for	parallel	queries
(Enterprise	Manager)

Table	and	Index	Architecture

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Transact-SQL	Reference

DBCC	CLEANTABLE
Reclaims	space	for	dropped	variable	length	columns	and	text	columns.

Syntax
DBCC	CLEANTABLE
				({	'database_name'	|	database_id	}	
								,	{	'table_name'	|	table_id	|	'view_name'	|	view_id	}	
								[,	batch_size]	
)

Arguments
'database_name'	|	database_id

Is	the	database	in	which	the	table	to	be	cleaned	belongs.

'table_name'	|	table_id	|	'view_name'	|	view_id

Is	the	table	or	view	to	be	cleaned.

batch_size

Is	the	number	of	rows	processed	per	transaction.	If	not	specified,	the
statement	processes	the	entire	table	in	one	transaction.

Remarks
DBCC	CLEANTABLE	reclaims	space	after	a	variable	length	column	or	a	text
column	is	dropped	using	the	ALTER	TABLE	DROP	COLUMN	statement.	It
does	not	reclaim	space	after	a	fixed	length	column	is	dropped.

DBCC	CLEANTABLE	runs	as	one	or	more	transactions.	If	a	batch	size	is	not
specified,	the	statement	processes	the	entire	row	in	one	transaction.	For	some
large	tables,	the	length	of	the	single	transaction	and	the	log	space	required	may
be	too	much.	If	a	batch	size	is	specified,	the	statement	runs	in	a	series	of
transactions,	each	including	the	specified	number	of	rows.	DBCC
CLEANTABLE	cannot	be	run	as	a	transaction	inside	another	transaction.

This	operation	is	fully	logged.

DBCC	CLEANTABLE	is	not	supported	for	use	on	system	tables	or	temporary
tables.

Result	Sets

DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

Permissions
DBCC	CLEANTABLE	permissions	default	to	members	of	the	sysadmin	fixed
server	role,	the	db_owner	and	db_ddladmin	fixed	database	roles,	and	the	table
owner.

Transact-SQL	Reference

DBCC	CONCURRENCYVIOLATION
Displays	statistics	on	how	many	times	more	than	five	batches	were	executed
concurrently	on	SQL	Server	2000	Desktop	Engine	or	SQL	Server	2000	Personal
Edition.	Also	Controls	whether	these	statistics	are	also	recorded	in	the	SQL
Server	error	log.

Syntax
DBCC	CONCURRENCYVIOLATION	[(DISPLAY	|	RESET	|	STARTLOG	|
STOPLOG)]

Arguments
DISPLAY

Displays	the	current	values	of	the	concurrency	violation	counters.	The
counters	record	how	many	times	more	than	5	batches	were	executed
concurrently	since	logging	was	started	or	the	counters	were	last	reset.
DISPLAY	is	the	default	if	no	option	is	specified.

RESET

Sets	all	the	concurrency	violation	counters	to	zero.

STARTLOG

Enables	logging	the	concurrency	violation	counters	in	the	SQL	Server	event
log	once	a	minute	whenever	there	are	more	than	5	concurrent	batches.

STOPLOG

Stops	the	periodic	logging	of	the	concurrency	violation	counters	in	the	SQL
Server	event	log.

Remarks
DBCC	CONCURRENCYVIOLATION	can	be	executed	on	any	Edition	of	SQL
Server	2000,	but	is	only	effective	on	the	SQL	Server	2000	editions	that	have	a
concurrent	workload	governor:	SQL	Server	2000	Desktop	Engine	and	SQL

Server	2000	Personal	Edition.	On	all	other	editions,	it	has	no	effect	other	than
returning	the	message:

DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

SQL	Server	2000	Desktop	Edition	and	SQL	Server	2000	Personal	Edition	have	a
concurrent	workload	governor	that	limits	performance	when	more	than	5	batches
are	executed	concurrently.	As	the	number	of	batches	executing	concurrently
increases,	the	governor	lowers	the	performance	of	the	system	by	increasing
amounts.	Counts	of	the	number	of	times	more	than	5	batches	are	executed
concurrently	are	maintained	in	internal	counters.	You	can	display	the	contents	of
these	counters	using	the	DBCC	CONCURRENCYVIOLATION	statement	with
either	the	DISPLAY	parameter	or	no	parameter.	You	should	consider	upgrading
to	another	edition	of	SQL	Server	2000	if	performance	on	a	well-tuned	system	is
slow,	and	DBCC	CONCURRENCYVIOLATIONS	shows	that	the	database
engine	has	often	had	significantly	more	than	5	batches	executing	concurrently.

You	can	enable	periodic	logging	of	the	concurrency	violation	counters	in	the
SQL	Server	event	log	using	the	DBCC
CONCURRENCYVIOLATION(STARTLOG)	statement.	When	logging	is
enabled,	the	concurrency	violation	counters	are	logged	in	the	event	log	once	a
minute	if	there	are	more	than	5	concurrent	batches	being	executed.	The	counters
are	not	written	to	the	error	log	whenever	there	are	4	or	less	concurrent	batches.

The	primary	output	of	the	DBCC	CONCURRENCYVIOLATION	statement	is
in	these	lines:

Concurrency	violations	since	2000-02-02	11:03:17.20
	1			2			3				4				5			6				7			8			9			10-100			>100
	5			3			1				0				0			0				0			0			0						0							0

The	first	line	indicates	how	long	the	counters	have	been	accumulating
statistics.

The	second	line	is	built	of	headings	that	indicate	which	counter	is	being
reported	in	that	field	of	the	message.	Each	heading	indicates	how	far
over	the	5-batch	limit	each	violation	was.	The	1	represents	the	count	of
the	number	of	times	6	batches	(5	batch	limit	+	1	violation)	were

executing	concurrently,	the	2	represents	the	count	of	the	number	of
times	7	batches	(5	+	2)	were	executing	concurrently,	and	so	on.	The
heading	10-100	represents	the	count	of	the	number	of	times	the	system
was	between	10	and	100	batches	over	the	limit,	and	the	heading	>100
indicates	the	number	of	times	the	system	was	more	than	100	batches
over	the	limit.

The	third	line	reports	how	many	times	the	indicated	number	of	batches
were	executing	concurrently.	In	the	example	line	above,	there	were	5
times	when	the	system	was	1	batch	over	the	limit,	3	times	it	was	2
batches	over	the	limit,	and	1	time	it	was	3	batches	over	the	limit.

When	periodic	logging	is	enabled,	a	message	in	this	format	is	placed	in	the	SQL
Server	error	log	once	a	minute	whenever	more	than	5	batches	are	executing
concurrently:

2000-02-02	11:03:17.20	spid	12		This	SQL	Server	has	been	opimized	for	5	concurrent	queries.	This	limit	has	been	exceeded	by	2	queries	and	performance	may	be	adversely	affected.

Result	Sets
If	periodic	logging	of	the	concurrency	violation	counters	is	enabled,	DBCC
CONCURRENCYVIOLATION	returns	this	result	set	(message):

Concurrency	violations	since	2000-02-02	11:03:17.20
	1			2			3				4				5			6				7			8			9			10-100			>100
	5			3			1				0				0			0				0			0			0						0							0
Concurrency	violations	will	be	written	to	the	SQL	Server	error	log.
DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

If	periodic	logging	of	the	concurrency	violation	counters	is	not	enabled,	DBCC
CONCURRENCYVIOLATION	returns	this	result	set	(message):

Concurrency	violations	since	2000-02-02	11:03:17.20
	1			2			3				4				5			6				7			8			9			10-100			>100
	5			3			1				0				0			0				0			0			0						0							0
Concurrency	violations	will	not	be	written	to	the	SQL	Server	error	log.
DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

Permissions
DBCC	CONCURRENCYVIOLATION	permissions	default	to	members	of	the
sysadmin	fixed	server	role	and	are	not	transferable.

Examples
This	example	displays	the	current	counter	values,	and	then	resets	the	counters.

--	Display	the	current	counter	values.
DBCC	CONCURRENCYVIOLATION
GO
--	Reset	the	counter	values	to	0.
DBCC	CONCURRENCYVIOLATION(RESET)
GO

See	Also

DBCC

SQL	Server	2000	Databases	on	the	Desktop

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

DBCC	DBREPAIR
Drops	a	damaged	database.

IMPORTANT		DBCC	DBREPAIR	is	included	in	Microsoft®	SQL	Server™	2000
for	backward	compatibility	only.	It	is	recommended	that	DROP	DATABASE	be
used	to	drop	damaged	databases.	In	a	future	version	of	SQL	Server,	DBCC
DBREPAIR	may	not	be	supported.

See	Also

DBCC

DROP	DATABASE

Transact-SQL	Reference

DBCC	DBREINDEX
Rebuilds	one	or	more	indexes	for	a	table	in	the	specified	database.

Syntax
DBCC	DBREINDEX	
				(['database.owner.table_name'				
												[,	index_name	
																[,	fillfactor]	
]	
]	
)				[WITH	NO_INFOMSGS]

Arguments
'database.owner.table_name'

Is	the	name	of	the	table	for	which	to	rebuild	the	specified	index(es).
Database,	owner,	and	table	names	must	conform	to	the	rules	for	identifiers.
For	more	information,	see	Using	Identifiers.	The	entire
database.owner.table_name	must	be	enclosed	in	single	quotation	marks	(')	if
either	the	database	or	owner	parts	are	supplied.	The	single	quotation	marks
are	not	necessary	if	only	table_name	is	specified.

index_name

Is	the	name	of	the	index	to	rebuild.	Index	names	must	conform	to	the	rules
for	identifiers.	If	index_name	is	not	specified	or	is	specified	as	'	',	all	indexes
for	the	table	are	rebuilt.

fillfactor

Is	the	percentage	of	space	on	each	index	page	to	be	used	for	storing	data
when	the	index	is	created.	fillfactor	replaces	the	original	fillfactor	as	the	new
default	for	the	index	and	for	any	other	nonclustered	indexes	rebuilt	because	a
clustered	index	is	rebuilt.	When	fillfactor	is	0,	DBCC	DBREINDEX	uses	the
original	fillfactor	specified	when	the	index	was	created.

JavaScript:hhobj_1.Click()

WITH	NO_INFOMSGS

Suppresses	all	informational	messages	(with	severity	levels	from	0	through
10).

Remarks
DBCC	DBREINDEX	rebuilds	an	index	for	a	table	or	all	indexes	defined	for	a
table.	By	allowing	an	index	to	be	rebuilt	dynamically,	indexes	enforcing	either
PRIMARY	KEY	or	UNIQUE	constraints	can	be	rebuilt	without	having	to	drop
and	re-create	those	constraints.	This	means	an	index	can	be	rebuilt	without
knowing	the	table's	structure	or	constraints,	which	could	occur	after	a	bulk	copy
of	data	into	the	table.

If	either	index_name	or	fillfactor	is	specified,	all	preceding	parameters	must	also
be	specified.

DBCC	DBREINDEX	can	rebuild	all	of	the	indexes	for	a	table	in	one	statement,
which	is	easier	than	coding	multiple	DROP	INDEX	and	CREATE	INDEX
statements.	Because	the	work	is	done	by	one	statement,	DBCC	DBREINDEX	is
automatically	atomic,	while	individual	DROP	INDEX	and	CREATE	INDEX
statements	would	have	to	be	put	in	a	transaction	to	be	atomic.	Also,	DBCC
DBREINDEX	can	take	advantage	of	more	optimizations	with	DBCC
DBREINDEX	than	it	can	with	individual	DROP	INDEX	and	CREATE	INDEX
statements.

DBCC	DBREINDEX	is	not	supported	for	use	on	system	tables.

Result	Sets
Whether	or	not	any	of	the	options	(except	NO_INFOMSGS)	are	specified	(the
table	name	must	be	specified),	DBCC	DBREINDEX	returns	this	result	set;	this
example	uses	the	authors	table	of	the	pubs	database	(values	will	vary):

Index	(ID	=	1)	is	being	rebuilt.
Index	(ID	=	2)	is	being	rebuilt.
DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

DBCC	DBREINDEX	returns	this	result	set	(message)	if	the	NO_INFOMSGS
option	is	specified:

DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

Permissions
DBCC	DBREINDEX	permissions	default	to	members	of	the	sysadmin	fixed
server	role,	the	db_owner	and	db_ddladmin	fixed	database	roles,	and	the	table
owner,	and	are	not	transferable.

Examples

A.	Rebuild	an	index
This	example	rebuilds	the	au_nmind	clustered	index	with	a	fillfactor	of	80	on
the	authors	table	in	the	pubs	database.

DBCC	DBREINDEX	('pubs.dbo.authors',	UPKCL_auidind,	80)

B.	Rebuild	all	indexes
This	example	rebuilds	all	indexes	on	the	authors	table	using	a	fillfactor	value
of	70.

DBCC	DBREINDEX	(authors,	'',	70)

See	Also

ALTER	TABLE

CREATE	TABLE

DBCC

Table	and	Index	Architecture

JavaScript:hhobj_2.Click()

Transact-SQL	Reference

DBCC	dllname	(FREE)
Unloads	the	specified	extended	stored	procedure	dynamic-link	library	(DLL)
from	memory.

Syntax
DBCC	dllname	(FREE)

Arguments
dllname

Is	the	name	of	the	DLL	to	release	from	memory.

Remarks
When	an	extended	stored	procedure	is	executed,	the	DLL	remains	loaded	by
Microsoft®	SQL	Server™	until	the	server	is	shut	down.	This	statement	allows	a
DLL	to	be	unloaded	from	memory	without	shutting	down	SQL	Server.	Execute
sp_helpextendedproc	to	display	the	DLL	files	currently	loaded	by	SQL	Server.

Result	Sets
DBCC	dllname	(FREE)	returns	this	result	set	(message)	when	a	valid	DLL	is
specified:

DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

Permissions
DBCC	dllname	(FREE)	permissions	default	to	members	of	the	sysadmin	fixed
server	role	or	the	db_owner	fixed	database	role,	and	are	not	transferable.

Examples
This	example	assumes	an	extended	procedure	xp_sample	is	implemented	as
Xp_sample.dll	and	has	been	executed.	It	uses	the	DBCC	dllname	(FREE)

statement	to	unload	the	Xp_sample.dll	file	associated	with	the	xp_sample
extended	procedure.

DBCC	xp_sample	(FREE)

See	Also

DBCC

Execution	Characteristics	of	Extended	Stored	Procedures

sp_addextendedproc

sp_dropextendedproc

sp_helpextendedproc

Unloading	an	Extended	Stored	Procedure	DLL

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

DBCC	DROPCLEANBUFFERS
Removes	all	clean	buffers	from	the	buffer	pool.

Syntax
DBCC	DROPCLEANBUFFERS

Remarks
Use	DBCC	DROPCLEANBUFFERS	to	test	queries	with	a	cold	buffer	cache
without	shutting	down	and	restarting	the	server.

Result	Sets

DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

Permissions
DBCC	DROPCLEANBUFFERS	permissions	default	to	members	of	the
sysadmin	fixed	server	role	only,	and	are	not	transferable.

Transact-SQL	Reference

DBCC	FREEPROCCACHE
Removes	all	elements	from	the	procedure	cache.

Syntax
DBCC	FREEPROCCACHE

Remarks
Use	DBCC	FREEPROCCACHE	to	clear	the	procedure	cache.	Freeing	the
procedure	cache	would	cause,	for	example,	an	ad-hoc	SQL	statement	to	be
recompiled	rather	than	reused	from	the	cache.

Result	Sets

DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

Permissions
DBCC	FREEPROCACHE	permissions	default	to	members	of	the	sysadmin	and
serveradmin	fixed	server	role	only,	and	are	not	transferable.

Transact-SQL	Reference

DBCC	HELP
Returns	syntax	information	for	the	specified	DBCC	statement.

Syntax
DBCC	HELP	('dbcc_statement'	|	@dbcc_statement_var	|	'?')

Arguments
dbcc_statement	|	@dbcc_statement_var

Is	the	name	of	the	DBCC	statement	for	which	to	receive	syntax	information.
Provide	only	the	portion	of	the	DBCC	statement	following	the	DBCC	part	of
the	statement.	For	example,	CHECKDB	rather	than	DBCC	CHECKDB.

?

Specifies	that	Microsoft®	SQL	Server™	return	all	DBCC	statements	(minus
the	"DBCC"	portion	of	the	statement)	for	which	help	information	can	be
obtained.

Result	Sets
DBCC	HELP	returns	a	result	set	displaying	the	syntax	for	the	specified	DBCC
statement.	Syntax	varies	between	the	DBCC	statements.

Permissions
DBCC	HELP	permissions	default	to	members	of	the	sysadmin	fixed	server	role
only,	and	are	not	transferable.

Examples

A.	Use	DBCC	HELP	with	a	variable
This	example	returns	syntax	information	for	DBCC	CHECKDB.

DECLARE	@dbcc_stmt	sysname
SET	@dbcc_stmt	=	'CHECKDB'
DBCC	HELP	(@dbcc_stmt)
GO

B.	Use	DBCC	HELP	with	the	?	option
This	example	returns	all	DBCC	statements	for	which	help	is	available.

DBCC	HELP	('?')
GO

See	Also

DBCC

Transact-SQL	Reference

DBCC	INDEXDEFRAG
Defragments	clustered	and	secondary	indexes	of	the	specified	table	or	view.

Syntax
DBCC	INDEXDEFRAG
				({	database_name	|	database_id	|	0	}	
								,	{	table_name	|	table_id	|	'view_name'	|	view_id	}	
								,	{	index_name	|	index_id	}	
)				[WITH	NO_INFOMSGS]

Arguments
database_name	|	database_id	|	0

Is	the	database	for	which	to	defragment	an	index.	Database	names	must
conform	to	the	rules	for	identifiers.	For	more	information,	see	Using
Identifiers.	If	0	is	specified,	then	the	current	database	is	used.

table_name	|	table_id	|	'view_name'	|	view_id

Is	the	table	or	view	for	which	to	defragment	an	index.	Table	and	view	names
must	conform	to	the	rules	for	identifiers.

index_name	|	index_id

Is	the	index	to	defragment.	Index	names	must	conform	to	the	rules	for
identifiers.

WITH	NO_INFOMSGS

Suppresses	all	informational	messages	(with	severity	levels	from	0	through
10).

Remarks
DBCC	INDEXDEFRAG	can	defragment	clustered	and	nonclustered	indexes	on
tables	and	views.	DBCC	INDEXDEFRAG	defragments	the	leaf	level	of	an
index	so	that	the	physical	order	of	the	pages	matches	the	left-to-right	logical

JavaScript:hhobj_1.Click()

order	of	the	leaf	nodes,	thus	improving	index-scanning	performance.

DBCC	INDEXDEFRAG	also	compacts	the	pages	of	an	index,	taking	into
account	the	FILLFACTOR	specified	when	the	index	was	created.	Any	empty
pages	created	as	a	result	of	this	compaction	will	be	removed.	For	more
information	about	FILLFACTOR,	see	CREATE	INDEX.

If	an	index	spans	more	than	one	file,	DBCC	INDEXDEFRAG	defragments	one
file	at	a	time.	Pages	do	not	migrate	between	files.

Every	five	minutes,	DBCC	INDEXDEFRAG	will	report	to	the	user	an	estimated
percentage	completed.	DBCC	INDEXDEFRAG	can	be	terminated	at	any	point
in	the	process,	and	any	completed	work	is	retained.

Unlike	DBCC	DBREINDEX	(or	the	index	building	operation	in	general),	DBCC
INDEXDEFRAG	is	an	online	operation.	It	does	not	hold	locks	long	term	and
thus	will	not	block	running	queries	or	updates.	A	relatively	unfragmented	index
can	be	defragmented	faster	than	a	new	index	can	be	built	because	the	time	to
defragment	is	related	to	the	amount	of	fragmentation.	A	very	fragmented	index
might	take	considerably	longer	to	defragment	than	to	rebuild.		In	addition,	the
defragmentation	is	always	fully	logged,	regardless	of	the	database	recovery
model	setting	(see	ALTER	DATABASE).	The	defragmentation	of	a	very
fragmented	index	can	generate	more	log	than	even	a	fully	logged	index	creation.
The	defragmentation,	however,	is	performed	as	a	series	of	short	transactions	and
thus	does	not	require	a	large	log	if	log	backups	are	taken	frequently	or	if	the
recovery	model	setting	is	SIMPLE.

Also,	DBCC	INDEXDEFRAG	will	not	help	if	two	indexes	are	interleaved	on
the	disk	because	INDEXDEFRAG	shuffles	the	pages	in	place.	To	improve	the
clustering	of	pages,	rebuild	the	index.

DBCC	INDEXDEFRAG	is	not	supported	for	use	on	system	tables.

Result	Sets
DBCC	INDEXDEFRAG	returns	this	result	set	unless	WITH	NO_INFOMSGS	is
specified	(values	may	vary):

Pages	Scanned	Pages	Moved	Pages	Removed
-------------	-----------	-------------

359											346									8

(1	row(s)	affected)

DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

Permissions
DBCC	INDEXDEFRAG	permissions	default	to	members	of	the	sysadmin	fixed
server	role,	the	db_owner	and	db_ddladmin	fixed	database	role,	and	the	table
owner,	and	are	not	transferable.

Examples

DBCC	INDEXDEFRAG	(Northwind,	Orders,	CustomersOrders)
GO
	

Transact-SQL	Reference

DBCC	INPUTBUFFER
Displays	the	last	statement	sent	from	a	client	to	Microsoft®	SQL	Server™.

Syntax
DBCC	INPUTBUFFER	(spid)

Arguments
spid

Is	the	system	process	ID	(SPID)	for	the	user	connection	as	displayed	in	the
output	of	the	sp_who	system	stored	procedure.

Result	Sets
DBCC	INPUTBUFFER	returns	a	rowset	with	the	following	columns.

Column	name Data	type Description
EventType nvarchar(30) Event	type,	for	example:	RPC,	Language,

or	No	Event.
Parameters Int 0	=	text

1-	n	=	parameters
EventInfo nvarchar(255) For	an	EventType	of	RPC,	EventInfo

contains	only	the	procedure	name.	For	an
EventType	of	Language	or	No	Event,
only	the	first	255	characters	of	the	event
are	displayed.

For	example,	DBCC	INPUTBUFFER	returns	the	following	result	set	when	the
last	event	in	the	buffer	is	DBCC	INPUTBUFFER(11).

EventType						Parameters	EventInfo													
--------------	----------	---------------------	
Language	Event	0										DBCC	INPUTBUFFER	(11)

(1	row(s)	affected)

DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

Note		There	are	very	brief	transitional	periods	between	events	when	no	event
can	be	displayed	on	Windows	NT®.	On	Windows	98,	an	event	is	displayed	only
when	active.

Permissions
DBCC	INPUTBUFFER	permissions	default	to	members	of	the	sysadmin	fixed
server	role	only,	who	can	see	any	SPID.	Other	users	can	see	any	SPID	they	own.
Permissions	are	not	transferable.

Examples
This	example	assumes	a	valid	SPID	of	10.

DBCC	INPUTBUFFER	(10)

See	Also

DBCC

sp_who

Trace	Flags

Transact-SQL	Reference

DBCC	NEWALLOC
Checks	the	allocation	of	data	and	index	pages	for	each	table	within	the	extent
structures	of	the	database.

IMPORTANT		DBCC	NEWALLOC	is	identical	to	DBCC	CHECKALLOC	and	is
included	in	Microsoft®	SQL	Server™	2000	for	backward	compatibility	only.	It
is	recommended	that	DBCC	CHECKALLOC	be	used	to	check	the	allocation
and	use	of	all	pages	in	the	specified	database.	In	a	future	version	of	Microsoft
SQL	Server,	DBCC	NEWALLOC	may	not	be	supported.

See	Also

DBCC

DBCC	CHECKDB

DBCC	CHECKALLOC

sqlmaint	Utility

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

DBCC	OPENTRAN
Displays	information	about	the	oldest	active	transaction	and	the	oldest
distributed	and	nondistributed	replicated	transactions,	if	any,	within	the	specified
database.	Results	are	displayed	only	if	there	is	an	active	transaction	or	if	the
database	contains	replication	information.	An	informational	message	is
displayed	if	there	are	no	active	transactions.

Syntax
DBCC	OPENTRAN	
				({	'database_name'	|	database_id})
								[WITH	TABLERESULTS	
												[,	NO_INFOMSGS]	
]

Arguments
'database_name'

Is	the	name	of	the	database	for	which	to	display	the	oldest	transaction
information.	Database	names	must	conform	to	the	rules	for	identifiers.	For
more	information,	see	Using	Identifiers.

database_id

Is	the	database	identification	(ID)	number	for	which	to	display	the	oldest
transaction	information.	Obtain	the	database	ID	using	the	DB_ID	function.

WITH	TABLERESULTS

Specifies	results	in	a	tabular	format	that	can	be	loaded	into	a	table.	Use	this
option	to	create	a	table	of	results	that	can	be	inserted	into	a	table	for
comparisons.	When	this	option	is	not	specified,	results	are	formatted	for
readability.

NO_INFOMSGS

Suppresses	all	informational	messages.

JavaScript:hhobj_1.Click()

Remarks
If	neither	database_name	nor	database_id	is	specified,	the	default	is	the	current
database.

Use	DBCC	OPENTRAN	to	determine	whether	an	open	transaction	exists	within
the	log.	When	using	the	BACKUP	LOG	statement,	only	the	inactive	portion	of
the	log	can	be	truncated;	an	open	transaction	can	cause	the	log	to	not	truncate
completely.	In	earlier	versions	of	Microsoft®	SQL	Server™,	either	all	users	had
to	log	off	or	the	server	had	to	be	shut	down	and	restarted	to	clear	uncommitted
transactions	from	the	log.	With	DBCC	OPENTRAN,	an	open	transaction	can	be
identified	(by	obtaining	the	system	process	ID	from	the	sp_who	output)	and
terminated,	if	necessary.

Result	Sets
DBCC	OPENTRAN	returns	this	result	set	when	there	are	no	open	transactions:

No	active	open	transactions.
DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

Permissions
DBCC	OPENTRAN	permissions	default	to	members	of	the	sysadmin	fixed
server	role	or	the	db_owner	fixed	database	role,	and	are	not	transferable.

Examples
This	example	obtains	transaction	information	for	the	current	database	and	for	the
pubs	database.

--	Display	transaction	information	only	for	the	current	database.
DBCC	OPENTRAN
GO
--	Display	transaction	information	for	the	pubs	database.
DBCC	OPENTRAN('pubs')
GO

See	Also

BEGIN	TRANSACTION

COMMIT	TRANSACTION

DBCC

DB_ID

ROLLBACK	TRANSACTION

Transact-SQL	Reference

DBCC	OUTPUTBUFFER
Returns	the	current	output	buffer	in	hexadecimal	and	ASCII	format	for	the
specified	system	process	ID	(SPID).

Syntax
DBCC	OUTPUTBUFFER	(spid)

Arguments
spid

Is	the	system	process	ID	for	the	user	connection	as	displayed	in	the	output	of
the	sp_who	system	stored	procedure.

Remarks
When	you	use	DBCC	OUTPUTBUFFER,	DBCC	OUTPUTBUFFER	displays
the	results	sent	to	the	specified	client	(spid).	For	processes	that	do	not	contain
output	streams,	an	error	message	is	returned.

To	show	the	statement	executed	that	returned	the	results	displayed	by	DBCC
OUTPUTBUFFER,	execute	DBCC	INPUTBUFFER.

Result	Sets
DBCC	OUTPUTBUFFER	returns	this	result	set	(values	may	vary):

Output	Buffer																																																												
--	
01fb8028:		04	00	01	5f	00	00	00	00	e3	1b	00	01	06	6d	00	61		..._.........m.a
01fb8038:		00	73	00	74	00	65	00	72	00	06	6d	00	61	00	73	00		.s.t.e.r..m.a.s.
'...'
01fb8218:		04	17	00	00	00	00	00	d1	04	18	00	00	00	00	00	d1	
01fb8228:			.

(33	row(s)	affected)

DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

Permissions
DBCC	OUTPUTBUFFER	permissions	default	only	to	members	of	the
sysadmin	fixed	server	role,	who	can	see	any	SPID.	Permissions	are	not
transferable.

Examples
This	example	returns	current	output	buffer	information	for	an	assumed	SPID	
of	13.

DBCC	OUTPUTBUFFER	(13)

See	Also

DBCC

sp_who

Trace	Flags

Transact-SQL	Reference

DBCC	PINTABLE
Marks	a	table	to	be	pinned,	which	means	Microsoft®	SQL	Server™	does	not
flush	the	pages	for	the	table	from	memory.

Syntax
DBCC	PINTABLE	(database_id	,	table_id)

Arguments
database_id

Is	the	database	identification	(ID)	number	of	the	table	to	be	pinned.	To
determine	the	database	ID,	use	the	DB_ID	function.

table_id

Is	the	object	identification	number	of	the	table	to	be	pinned.	To	determine	the
table	ID,	use	the	OBJECT_ID	function.

Remarks
DBCC	PINTABLE	does	not	cause	the	table	to	be	read	into	memory.	As	the
pages	from	the	table	are	read	into	the	buffer	cache	by	normal	Transact-SQL
statements,	they	are	marked	as	pinned	pages.	SQL	Server	does	not	flush	pinned
pages	when	it	needs	space	to	read	in	a	new	page.	SQL	Server	still	logs	updates	to
the	page	and,	if	necessary,	writes	the	updated	page	back	to	disk.	SQL	Server
does,	however,	keep	a	copy	of	the	page	available	in	the	buffer	cache	until	the
table	is	unpinned	with	the	DBCC	UNPINTABLE	statement.

DBCC	PINTABLE	is	best	used	to	keep	small,	frequently	referenced	tables	in
memory.	The	pages	for	the	small	table	are	read	into	memory	one	time,	then	all
future	references	to	their	data	do	not	require	a	disk	read.

CAUTION		Although	DBCC	PINTABLE	can	provide	performance	improvements,
it	must	be	used	with	care.	If	a	large	table	is	pinned,	it	can	start	using	a	large
portion	of	the	buffer	cache	and	not	leave	enough	cache	to	service	the	other	tables
in	the	system	adequately.	If	a	table	larger	than	the	buffer	cache	is	pinned,	it	can

fill	the	entire	buffer	cache.	A	member	of	the	sysadmin	fixed	server	role	must
shut	down	SQL	Server,	restart	SQL	Server,	and	then	unpin	the	table.	Pinning	too
many	tables	can	cause	the	same	problems	as	pinning	a	table	larger	than	the
buffer	cache.

Result	Sets
Here	is	the	result	set:

Warning:	Pinning	tables	should	be	carefully	considered.	If	a	pinned	table	is	larger,	or	grows	larger,	than	the	available	data	cache,	the	server	may	need	to	be	restarted	and	the	table	unpinned.
DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

Permissions
DBCC	PINTABLE	permissions	default	to	members	of	the	sysadmin	fixed
server	role	and	are	not	transferable.

Examples
This	example	pins	the	authors	table	in	the	pubs	database.

DECLARE	@db_id	int,	@tbl_id	int
USE	pubs
SET	@db_id	=	DB_ID('pubs')
SET	@tbl_id	=	OBJECT_ID('pubs..authors')
DBCC	PINTABLE	(@db_id,	@tbl_id)

See	Also

DBCC

Memory	Architecture

DBCC	UNPINTABLE

sp_tableoption

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

DBCC	PROCCACHE
Displays	information	in	a	table	format	about	the	procedure	cache.

Syntax
DBCC	PROCCACHE

Remarks
SQL	Server	Performance	Monitor	uses	DBCC	PROCCACHE	to	obtain
information	about	the	procedure	cache.

Result	Sets
This	table	describes	the	columns	of	the	result	set.

Column	name Description
num	proc	buffs Number	of	possible	stored	procedures	that	could

be	in	the	procedure	cache.
num	proc	buffs	used Number	of	cache	slots	holding	stored

procedures.
num	proc	buffs	active Number	of	cache	slots	holding	stored	procedures

that	are	currently	executing.
proc	cache	size Total	size	of	the	procedure	cache.
proc	cache	used Amount	of	the	procedure	cache	holding	stored

procedures.
proc	cache	active Amount	of	the	procedure	cache	holding	stored

procedures	that	are	currently	executing.

Permissions
DBCC	PROCCACHE	permissions	default	to	members	of	the	sysadmin	fixed
server	role	or	the	db_owner	fixed	database	role,	and	are	not	transferable.

See	Also

DBCC

Memory	Architecture

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

DBCC	ROWLOCK
Used	for	Microsoft®	SQL	Server™	version	6.5,	enabling	Insert	Row	Locking
(IRL)	operations	on	tables.

IMPORTANT		Row-level	locking	is	enabled	by	default	in	SQL	Server.	The	locking
strategy	of	SQL	Server	is	row	locking	with	possible	promotion	to	page	or	table
locking.	DBCC	ROWLOCK	does	not	alter	the	locking	behavior	of	SQL	Server
(it	has	no	effect)	and	is	included	in	Microsoft	SQL	Server	2000	for	backward
compatibility	of	existing	scripts	and	procedures	only.	In	a	future	version	of	SQL
Server,	DBCC	ROWLOCK	may	not	be	supported.

See	Also

DBCC

Transact-SQL	Reference

DBCC	SHOWCONTIG
Displays	fragmentation	information	for	the	data	and	indexes	of	the	specified
table.

Syntax
DBCC	SHOWCONTIG	
				[({	table_name	|	table_id	|	view_name	|	view_id	}	
												[,	index_name	|	index_id]	
)	
]	
				[WITH	{	ALL_INDEXES	
																|	FAST	[,	ALL_INDEXES]	
																|	TABLERESULTS	[,	{	ALL_INDEXES	}]	
																[,	{	FAST	|	ALL_LEVELS	}]	
												}
]

Arguments
table_name	|	table_id	|	view_name	|	view_id

Is	the	table	or	view	for	which	to	check	fragmentation	information.	If	not
specified,	all	tables	and	indexed	views	in	the	current	database	are	checked.
To	obtain	the	table	or	view	ID,	use	the	OBJECT_ID	function.

index_name	|	index_id

Is	the	index	for	which	to	check	fragmentation	information.	If	not	specified,
the	statement	processes	the	base	index	for	the	specified	table	or	view.	To
obtain	the	index	ID,	use	sysindexes.

WITH

Specifies	options	for	the	type	of	information	returned	by	the	DBCC
statement.

FAST

Specifies	whether	to	perform	a	fast	scan	of	the	index	and	output	minimal
information.	A	fast	scan	does	not	read	the	leaf	or	data	level	pages	of	the
index.

TABLERESULTS

Displays	results	as	a	rowset,	with	additional	information.

ALL_INDEXES

Displays	results	for	all	the	indexes	for	the	specified	tables	and	views,	even	if
a	particular	index	is	specified.

ALL_LEVELS

Can	only	be	used	with	the	TABLERESULTS	option.	Cannot	be	used	with
the	FAST	option.	Specifies	whether	to	produce	output	for	each	level	of	each
index	processed.	If	not	specified,	only	the	index	leaf	level	or	table	data	level
will	be	processed.

Remarks
The	DBCC	SHOWCONTIG	statement	traverses	the	page	chain	at	the	leaf	level
of	the	specified	index	when	index_id	is	specified.	If	only	table_id	is	specified,	or
if	index_id	is	0,	the	data	pages	of	the	specified	table	are	scanned.

DBCC	SHOWCONTIG	determines	whether	the	table	is	heavily	fragmented.
Table	fragmentation	occurs	through	the	process	of	data	modifications	(INSERT,
UPDATE,	and	DELETE	statements)	made	against	the	table.	Because	these
modifications	are	not	usually	distributed	equally	among	the	rows	of	the	table,	the
fullness	of	each	page	can	vary	over	time.	For	queries	that	scan	part	or	all	of	a
table,	such	table	fragmentation	can	cause	additional	page	reads,	which	hinders
parallel	scanning	of	data.

When	an	index	is	heavily	fragmented,	there	are	two	choices	for	reducing
fragmentation:

Drop	and	re-create	a	clustered	index.

Re-creating	a	clustered	index	reorganizes	the	data,	and	results	in	full
data	pages.	The	level	of	fullness	can	be	configured	using	the
FILLFACTOR	option.	The	drawbacks	of	this	method	are	that	the	index

is	offline	during	the	drop/re-create	cycle	and	that	the	operation	is
atomic.	If	the	index	creation	is	interrupted,	the	index	is	not	re-created.

Use	DBCC	INDEXDEFRAG	to	reorder	the	leaf	level	pages	of	the
index	in	a	logical	order.

The	DBCC	INDEXDEFRAG	command	is	an	online	operation,	so	the
index	is	available	while	the	command	is	running.	The	operation	is	also
interruptible	without	loss	of	completed	work.	The	drawback	of	this
method	is	that	it	does	not	do	as	good	a	job	of	reorganizing	the	data	as	a
clustered	index	drop/re-create	operation.

The	Avg.	Bytes	free	per	page	and	Avg.	Page	density	(full)	statistic	in	the	result
set	give	an	indication	of	the	fullness	of	index	pages.	The	Avg.	Bytes	free	per
page	figure	should	be	low	and	the	Avg.	Page	density	(full)	figure	should	be
high.	Dropping	and	recreating	a	clustered	index,	with	the	FILLFACTOR	option
specified,	can	improve	these	statistics.	Also,	the	DBCC	INDEXDEFRAG
command	will	compact	an	index,	taking	into	account	its	FILLFACTOR,	which
will	improve	these	statistics.

The	fragmentation	level	of	an	index	can	be	determined	in	two	ways:

Comparing	the	values	of	Extent	Switches	and	Extents	Scanned.

Note:	This	method	of	determining	fragmentation	does	not	work	if	the
index	spans	multiple	files.	The	value	of	Extent	Switches	should	be	as
close	as	possible	to	that	of	Extents	Scanned.	This	ratio	is	calculated	as
the	Scan	Density	value,	which	should	be	as	high	as	possible.	This	can
be	improved	by	either	method	of	reducing	fragmentation	discussed
earlier.

Understanding	Logical	Scan	Fragmentation	and	Extent	Scan
Fragmentation	values.

Logical	Scan	Fragmentation	and,	to	a	lesser	extent,	Extent	Scan
Fragmentation	values	give	the	best	indication	of	a	table's
fragmentation	level.	Both	these	values	should	be	as	close	to	zero	as
possible	(although	a	value	from	0%	through	10%	may	be	acceptable).	It
should	be	noted	that	the	Extent	Scan	Fragmentation	value	will	be
high	if	the	index	spans	multiple	files.	Both	methods	of	reducing
fragmentation	can	be	used	to	reduce	these	values.

Result	Sets

This	table	describes	the	information	in	the	result	set.

Statistic Description
Pages	Scanned Number	of	pages	in	the	table	or	index.
Extents	Scanned Number	of	extents	in	the	table	or	index.
Extent	Switches Number	of	times	the	DBCC	statement	moved

from	one	extent	to	another	while	it	traversed	the
pages	of	the	table	or	index.

Avg.	Pages	per	Extent Number	of	pages	per	extent	in	the	page	chain.
Scan	Density	
[Best	Count:	Actual
Count]

Best	count	is	the	ideal	number	of	extent	changes
if	everything	is	contiguously	linked.	Actual
count	is	the	actual	number	of	extent	changes.
The	number	in	scan	density	is	100	if	everything
is	contiguous;	if	it	is	less	than	100,	some
fragmentation	exists.	Scan	density	is	a
percentage.

Logical	Scan
Fragmentation

Percentage	of	out-of-order	pages	returned	from
scanning	the	leaf	pages	of	an	index.	This	number
is	not	relevant	to	heaps	and	text	indexes.	An	out
of	order	page	is	one	for	which	the	next	page
indicated	in	an	IAM	is	a	different	page	than	the
page	pointed	to	by	the	next	page	pointer	in	the
leaf	page.

Extent	Scan
Fragmentation

Percentage	of	out-of-order	extents	in	scanning
the	leaf	pages	of	an	index.	This	number	is	not
relevant	to	heaps.	An	out-of-order	extent	is	one
for	which	the	extent	containing	the	current	page
for	an	index	is	not	physically	the	next	extent
after	the	extent	containing	the	previous	page	for
an	index.

Avg.	Bytes	free	per	page Average	number	of	free	bytes	on	the	pages
scanned.	The	higher	the	number,	the	less	full	the
pages	are.	Lower	numbers	are	better.	This

number	is	also	affected	by	row	size;	a	large	row
size	can	result	in	a	higher	number.

Avg.	Page	density	(full) Average	page	density	(as	a	percentage).	This
value	takes	into	account	row	size,	so	it	is	a	more
accurate	indication	of	how	full	your	pages	are.
The	higher	the	percentage,	the	better.

When	a	table	ID	and	the	FAST	option	are	specified,	DBCC	SHOWCONTIG
returns	a	result	set	with	only	the	following	columns:

Pages	Scanned

Extent	Switches

Scan	Density	[Best	Count:Actual	Count]

Logical	Scan	Fragmentation

When	TABLERESULTS	is	specified,	DBCC	SHOWCONTIG	returns	these
eight	columns,	described	in	the	first	table,	and	the	following	additional	columns.

ExtentSwitches

AverageFreeBytes

AveragePageDensity

ScanDensity

BestCount

ActualCount

LogicalFragmentation				

ExtentFragmentation

Statistic Description
ObjectName Name	of	the	table	or	view	processed.
ObjectId ID	of	the	object	name.
IndexName Name	of	the	index	processed.	IndexName	is	NULL

for	a	heap.
IndexId ID	of	the	index.	IndexId	is	0	for	a	heap.
Level Level	of	the	index.	Level	0	is	the	leaf	(or	data)	level

of	the	index.	The	level	number	increases	moving	up
the	tree	toward	the	index	root.	Level	is	0	for	a	heap.

Pages Number	of	pages	comprising	that	level	of	the	index
or	entire	heap.

Rows Number	of	data	or	index	records	at	that	level	of	the
index.	For	a	heap,	this	is	the	number	of	data	records
in	the	entire	heap.

MinimumRecordSize Minimum	record	size	in	that	level	of	the	index	or
entire	heap.

MaximumRecordSizeMaximum	record	size	in	that	level	of	the	index	or
entire	heap.

AverageRecordSize Average	record	size	in	that	level	of	the	index	or
entire	heap.

ForwardedRecords Number	of	forwarded	records	in	that	level	of	the
index	or	entire	heap.

Extents Number	of	extents	in	that	level	of	the	index	or	entire
heap.

DBCC	SHOWCONTIG	returns	the	following	columns	when	TABLERESULTS
and	FAST	are	specified.

ObjectName

ObjectId

IndexName

IndexId

Pages

ExtentSwitchs

ScanDensity

BestCount

ActualCount

LogicalFragmentation

Permissions

DBCC	SHOWCONTIG	permissions	default	to	members	of	the	sysadmin	fixed
server	role,	the	db_owner	and	db_ddladmin	fixed	database	roles,	and	the	table
owner,	and	are	not	transferable.

Examples

A.	Display	fragmentation	information	for	a	table
This	example	displays	fragmentation	information	for	the	table	with	the	specified
table	name.

USE	Northwind
GO
DBCC	SHOWCONTIG	(Employees)
GO

B.	Use	OBJECT_ID	to	obtain	the	table	ID	and	sysindexes	to
obtain	the	index	ID
This	example	uses	OBJECT_ID	and	sysindexes	to	obtain	the	table	ID	and	index
ID	for	the	aunmind	index	of	the	authors	table.

USE	pubs
GO
DECLARE	@id	int,	@indid	int
SET	@id	=	OBJECT_ID('authors')
SELECT	@indid	=	indid	
FROM	sysindexes
WHERE	id	=	@id	
			AND	name	=	'aunmind'
DBCC	SHOWCONTIG	(@id,	@indid)
GO

C.	Display	an	abbreviated	result	set	for	a	table
This	example	returns	an	abbreviated	result	set	for	the	authors	table	in	the	pubs
database.

USE	pubs
DBCC	SHOWCONTIG	('authors',	1)	WITH	FAST

D.	Display	the	full	result	set	for	every	index	on	every	table	in	a
database
This	example	returns	a	full	table	result	set	for	every	index	on	every	table	in	the
pubs	database.

USE	pubs

DBCC	SHOWCONTIG	WITH	TABLERESULTS,	ALL_INDEXES

E.	Use	DBCC	SHOWCONTIG	and	DBCC	INDEXDEFRAG	to
defragment	the	indexes	in	a	database
This	example	shows	a	simple	way	to	defragment	all	indexes	in	a	database	that	is
fragmented	above	a	declared	threshold.

/*Perform	a	'USE	<database	name>'	to	select	the	database	in	which	to	run	the	script.*/
--	Declare	variables
SET	NOCOUNT	ON
DECLARE	@tablename	VARCHAR	(128)
DECLARE	@execstr			VARCHAR	(255)
DECLARE	@objectid		INT
DECLARE	@indexid			INT
DECLARE	@frag						DECIMAL
DECLARE	@maxfrag			DECIMAL

--	Decide	on	the	maximum	fragmentation	to	allow
SELECT	@maxfrag	=	30.0

--	Declare	cursor
DECLARE	tables	CURSOR	FOR
			SELECT	TABLE_NAME
			FROM	INFORMATION_SCHEMA.TABLES
			WHERE	TABLE_TYPE	=	'BASE	TABLE'

--	Create	the	table
CREATE	TABLE	#fraglist	(
			ObjectName	CHAR	(255),
			ObjectId	INT,
			IndexName	CHAR	(255),
			IndexId	INT,
			Lvl	INT,

			CountPages	INT,
			CountRows	INT,
			MinRecSize	INT,
			MaxRecSize	INT,
			AvgRecSize	INT,
			ForRecCount	INT,
			Extents	INT,
			ExtentSwitches	INT,
			AvgFreeBytes	INT,
			AvgPageDensity	INT,
			ScanDensity	DECIMAL,
			BestCount	INT,
			ActualCount	INT,
			LogicalFrag	DECIMAL,
			ExtentFrag	DECIMAL)

--	Open	the	cursor
OPEN	tables

--	Loop	through	all	the	tables	in	the	database
FETCH	NEXT
			FROM	tables
			INTO	@tablename

WHILE	@@FETCH_STATUS	=	0
BEGIN
--	Do	the	showcontig	of	all	indexes	of	the	table
			INSERT	INTO	#fraglist	
			EXEC	('DBCC	SHOWCONTIG	('''	+	@tablename	+	''')	
						WITH	FAST,	TABLERESULTS,	ALL_INDEXES,	NO_INFOMSGS')
			FETCH	NEXT
						FROM	tables
						INTO	@tablename

END

--	Close	and	deallocate	the	cursor
CLOSE	tables
DEALLOCATE	tables

--	Declare	cursor	for	list	of	indexes	to	be	defragged
DECLARE	indexes	CURSOR	FOR
			SELECT	ObjectName,	ObjectId,	IndexId,	LogicalFrag
			FROM	#fraglist
			WHERE	LogicalFrag	>=	@maxfrag
						AND	INDEXPROPERTY	(ObjectId,	IndexName,	'IndexDepth')	>	0

--	Open	the	cursor
OPEN	indexes

--	loop	through	the	indexes
FETCH	NEXT
			FROM	indexes
			INTO	@tablename,	@objectid,	@indexid,	@frag

WHILE	@@FETCH_STATUS	=	0
BEGIN
			PRINT	'Executing	DBCC	INDEXDEFRAG	(0,	'	+	RTRIM(@tablename)	+	',
						'	+	RTRIM(@indexid)	+	')	-	fragmentation	currently	'
							+	RTRIM(CONVERT(varchar(15),@frag))	+	'%'
			SELECT	@execstr	=	'DBCC	INDEXDEFRAG	(0,	'	+	RTRIM(@objectid)	+	',
							'	+	RTRIM(@indexid)	+	')'
			EXEC	(@execstr)

			FETCH	NEXT
						FROM	indexes
						INTO	@tablename,	@objectid,	@indexid,	@frag

END

--	Close	and	deallocate	the	cursor
CLOSE	indexes
DEALLOCATE	indexes

--	Delete	the	temporary	table
DROP	TABLE	#fraglist
GO

See	Also

CREATE	INDEX

DBCC

DBCC	DBREINDEX

DBCC	INDEXDEFRAG

DROP	INDEX

OBJECT_ID

Space	Allocation	and	Reuse

sysindexes

Table	and	Index	Architecture

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

DBCC	SHOW_STATISTICS
Displays	the	current	distribution	statistics	for	the	specified	target	on	the	specified
table.

Syntax
DBCC	SHOW_STATISTICS	(table	,	target)

Arguments
table

Is	the	name	of	the	table	for	which	to	display	statistics	information.	Table
names	must	conform	to	the	rules	for	identifiers.	For	more	information,	see
Using	Identifiers.

target

Is	the	name	of	the	object	(index	name	or	collection)	for	which	to	display
statistics	information.	Target	names	must	conform	to	the	rules	for	identifiers.
If	target	is	both	an	index	name	and	a	statistics	collection	name,	both	index
and	column	statistics	are	returned.	If	no	index	or	statistics	collection	is	found
with	the	specified	name,	an	error	is	returned.

Remarks
The	results	returned	indicate	the	selectivity	of	an	index	(the	lower	the	density
returned,	the	higher	the	selectivity)	and	provide	the	basis	for	determining
whether	or	not	an	index	is	useful	to	the	query	optimizer.	The	results	returned	are
based	on	distribution	steps	of	the	index.

To	see	the	last	date	the	statistics	were	updated,	use	STATS_DATE.

Result	Sets
This	table	describes	the	columns	in	the	result	set.

Column	name Description

JavaScript:hhobj_1.Click()

Updated Date	and	time	the	statistics	were	last
updated.

Rows Number	of	rows	in	the	table.
Rows	Sampled Number	of	rows	sampled	for	statistics

information.
Steps Number	of	distribution	steps.
Density Selectivity	of	the	first	index	column	prefix

(non-frequent).
Average	key	length Average	length	of	the	first	index	column

prefix.
All	density Selectivity	of	a	set	of	index	column	prefixes

(frequent).
Average	length Average	length	of	a	set	of	index	column

prefixes.
Columns Names	of	index	column	prefixes	for	which

All	density	and	Average	length	are
displayed.

RANGE_HI_KEY Upper	bound	value	of	a	histogram	step.
RANGE_ROWS Number	of	rows	from	the	sample	that	fall

within	a	histogram	step,	excluding	the
upper	bound.

EQ_ROWS Number	of	rows	from	the	sample	that	are
equal	in	value	to	the	upper	bound	of	the
histogram	step.

DISTINCT_RANGE_ROWSNumber	of	distinct	values	within	a
histogram	step,	excluding	the	upper	bound.

AVG_RANGE_ROWS Average	number	of	duplicate	values	within
a	histogram	step,	excluding	the	upper
bound	(RANGE_ROWS	/
DISTINCT_RANGE_ROWS	for
DISTINCT_RANGE_ROWS	>	0).

Permissions
DBCC	SHOW_STATISTICS	permissions	default	to	members	of	the	sysadmin
fixed	server	role,	the	db_owner	and	db_ddladmin	fixed	database	role,	and	the

table	owner,	and	are	not	transferable.

Examples
This	example	displays	statistics	information	for	the	UPKCL_auidind	index	of
the	authors	table.

USE	pubs
DBCC	SHOW_STATISTICS	(authors,	UPKCL_auidind)
GO

Here	is	the	result	set:

Statistics	for	INDEX	'UPKCL_auidind'.
Updated															Rows			Rows	Sampled			Steps			Density
---------------------	------	--------------	-------	--------------
Mar		1	2000		4:58AM				23				23													23						4.3478262E-2

Average	key	length

11.0

(1	row(s)	affected)

All	density														Average	Length											Columns																																																																																																																																																																																																																																																										
------------------------	------------------------	----------------	
4.3478262E-2													11.0																					au_id

(1	row(s)	affected)

RANGE_HI_KEY	RANGE_ROWS	EQ_ROWS	DISTINCT_RANGE_ROWS	AVG_RANGE_ROWS											
------------	----------	-------	-------------------	--------------
172-32-1176		0.0								1.0					0																			0.0
213-46-8915		0.0								1.0					0																			0.0
238-95-7766		0.0								1.0					0																			0.0

267-41-2394		0.0								1.0					0																			0.0
274-80-9391		0.0								1.0					0																			0.0
341-22-1782		0.0								1.0					0																			0.0
409-56-7008		0.0								1.0					0																			0.0
427-17-2319		0.0								1.0					0																			0.0
472-27-2349		0.0								1.0					0																			0.0
486-29-1786		0.0								1.0					0																			0.0
527-72-3246		0.0								1.0					0																			0.0
648-92-1872		0.0								1.0					0																			0.0
672-71-3249		0.0								1.0					0																			0.0
712-45-1867		0.0								1.0					0																			0.0
722-51-5454		0.0								1.0					0																			0.0
724-08-9931		0.0								1.0					0																			0.0
724-80-9391		0.0								1.0					0																			0.0
756-30-7391		0.0								1.0					0																			0.0
807-91-6654		0.0								1.0					0																			0.0
846-92-7186		0.0								1.0					0																			0.0
893-72-1158		0.0								1.0					0																			0.0
899-46-2035		0.0								1.0					0																			0.0
998-72-3567		0.0								1.0					0																			0.0

(23	row(s)	affected)

See	Also

CREATE	INDEX

CREATE	STATISTICS

DBCC

Distribution	Statistics

DROP	STATISTICS

sp_autostats

JavaScript:hhobj_2.Click()

sp_createstats

sp_dboption

STATS_DATE

UPDATE	STATISTICS

USE

Transact-SQL	Reference

DBCC	SHRINKDATABASE
Shrinks	the	size	of	the	data	files	in	the	specified	database.

Syntax
DBCC	SHRINKDATABASE	
				(database_name	[,	target_percent]	
								[,	{	NOTRUNCATE	|	TRUNCATEONLY	}]	
)

Arguments
database_name

Is	the	name	of	the	database	to	be	shrunk.	Database	names	must	conform	to
the	rules	for	identifiers.	For	more	information,	see	Using	Identifiers.	

target_percent

Is	the	desired	percentage	of	free	space	left	in	the	database	file	after	the
database	has	been	shrunk.

NOTRUNCATE

Causes	the	freed	file	space	to	be	retained	in	the	database	files.	If	not
specified,	the	freed	file	space	is	released	to	the	operating	system.

TRUNCATEONLY

Causes	any	unused	space	in	the	data	files	to	be	released	to	the	operating
system	and	shrinks	the	file	to	the	last	allocated	extent,	reducing	the	file	size
without	moving	any	data.	No	attempt	is	made	to	relocate	rows	to	unallocated
pages.	target_percent	is	ignored	when	TRUNCATEONLY	is	used.

Remarks
Microsoft®	SQL	Server™	can	shrink:

All	data	and	log	files	for	a	specific	database.	Execute	DBCC

JavaScript:hhobj_1.Click()

SHRINKDATABASE.

One	data	or	log	file	at	a	time	for	a	specific	database.	Execute	DBCC
SHRINKFILE.

DBCC	SHRINKDATABASE	shrinks	data	files	on	a	per-file	basis.	However,
DBCC	SHRINKDATABASE	shrinks	log	files	as	if	all	the	log	files	existed	in	one
contiguous	log	pool.

Assume	a	database	named	mydb	with	two	data	files	and	two	log	files.	Both	data
and	log	files	are	10	MB	in	size.	The	first	data	file	contains	6	MB	of	data.

For	each	file,	SQL	Server	calculates	a	target	size,	which	is	the	size	to	which	the
file	is	to	be	shrunk.	When	DBCC	SHRINKDATABASE	is	specified	with
target_percent,	SQL	Server	calculates	target	size	to	be	the	target_percent
amount	of	space	free	in	the	file	after	shrinking.	For	example,	if	you	specify	a
target_percent	of	25	for	shrinking	mydb.	SQL	Server	calculates	the	target	size
for	this	file	to	be	8	MB	(6	MB	of	data	plus	2	MB	of	free	space).	Therefore,	SQL
Server	moves	any	data	from	the	last	2	MB	of	the	data	file	to	any	free	space	in	the
first	8	MB	of	the	data	file	and	then	shrinks	the	file.

Assume	the	first	data	file	of	mydb	contains	7	MB	of	data.	Specifying
target_percent	of	30	allows	this	data	file	to	be	shrunk	to	the	desired	free
percentage	of	30.	However,	specifying	a	target_percent	of	40	does	not	shrink	the
data	file	because	SQL	Server	will	not	shrink	a	file	to	a	size	smaller	than	the	data
currently	occupies.	You	can	also	think	of	this	issue	another	way:	40	percent
desired	free	space	+	70	percent	full	data	file	(7	MB	out	of	10	MB)	is	greater	than
100	percent.	Because	the	desired	percentage	free	plus	the	current	percentage	that
the	data	file	occupies	is	over	100	percent	(by	10	percent),	any	target_size	greater
than	30	will	not	shrink	the	data	file.

For	log	files,	SQL	Server	uses	target_percent	to	calculate	the	target	size	for	the
entire	log;	therefore,	target_percent	is	the	amount	of	free	space	in	the	log	after
the	shrink	operation.	Target	size	for	the	entire	log	is	then	translated	to	target	size
for	each	log	file.	DBCC	SHRINKDATABASE	attempts	to	shrink	each	physical
log	file	to	its	target	size	immediately.	If	no	part	of	the	logical	log	resides	in	the
virtual	logs	beyond	the	log	file's	target	size,	the	file	is	successfully	truncated	and
DBCC	SHRINKDATABASE	completes	with	no	messages.	However,	if	part	of
the	logical	log	resides	in	the	virtual	logs	beyond	the	target	size,	SQL	Server	frees

as	much	space	as	possible	and	then	issues	an	informational	message.	The
message	tells	you	what	actions	you	need	to	perform	to	move	the	logical	log	out
of	the	virtual	logs	at	the	end	of	the	file.	After	you	perform	the	actions,	you	can
then	reissue	the	DBCC	SHRINKDATABASE	command	to	free	the	remaining
space.	For	more	information	about	shrinking	transaction	logs,	see	Shrinking	the
Transaction	Log.

Because	a	log	file	can	only	be	shrunk	to	a	virtual	log	file	boundary,	it	may	not	be
possible	to	shrink	a	log	file	to	a	size	smaller	than	the	size	of	a	virtual	log	file,
even	if	it	is	not	being	used.	For	example,	a	database	with	a	log	file	of	1	GB	can
have	the	log	file	shrunk	to	only	128	MB.	For	more	information	about	truncation,
see	Truncating	the	Transaction	Log.	For	more	information	about	determining
virtual	log	file	sizes,	see	Virtual	Log	Files.

The	target	size	for	data	and	log	files	as	calculated	by	DBCC
SHRINKDATABASE	can	never	be	smaller	than	the	minimum	size	of	a	file.	The
minimum	size	of	a	file	is	the	size	specified	when	the	file	was	originally	created,
or	the	last	explicit	size	set	with	a	file	size	changing	operation	such	as	ALTER
DATABASE	with	the	MODIFY	FILE	option	or	DBCC	SHRINKFILE.	For
example,	if	all	the	data	and	log	files	of	mydb	were	specified	to	be	10	MB	at	the
time	CREATE	DATABASE	was	executed,	the	minimum	size	of	each	file	is	10
MB.	DBCC	SHRINKDATABASE	cannot	shrink	any	of	the	files	smaller	than	10
MB.	If	one	of	the	files	is	explicitly	grown	to	a	size	of	20	MB	by	using	ALTER
DATABASE	with	the	MODIFY	FILE	option,	the	new	minimum	size	of	the	file
is	20	MB.	To	shrink	a	file	to	a	size	smaller	than	its	minimum	size,	use	DBCC
SHRINKFILE	and	specify	the	new	size.	Executing	DBCC	SHRINKFILE
changes	the	minimum	file	size	to	the	new	size	specified.

When	using	data	files,	DBCC	SHRINKDATABASE	has	the	NOTRUNCATE
and	TRUNCATEONLY	options.	Both	options	are	ignored	if	specified	for	log
files.	DBCC	SHRINKDATABASE	with	neither	option	is	equivalent	to	a	DBCC
SHRINKDATABASE	with	the	NOTRUNCATE	option	followed	by	a	DBCC
SHRINKDATABASE	with	the	TRUNCATEONLY	option.

The	NOTRUNCATE	option,	with	or	without	specifying	target_percent,
performs	the	actual	data	movement	operations	of	DBCC	SHRINKDATABASE
including	the	movement	of	allocated	pages	from	the	end	of	a	file	to	unallocated
pages	in	the	front	of	the	file.	However,	the	free	space	at	the	end	of	the	file	is	not
returned	to	the	operating	system	and	the	physical	size	of	the	file	does	not

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

change.	Therefore,	data	files	appear	not	to	shrink	when	the	NOTRUNCATE
option	is	specified.	For	example,	assume	you	are	using	the	mydb	database	again.
mydb	has	two	data	files	and	two	log	files.	The	second	data	file	and	second	log
file	are	both	10	MB	in	size.	When	DBCC	SHRINKDATABASE	mydb
NOTRUNCATE	is	executed,	Microsoft	SQL	Server	moves	the	data	from	the
later	pages	to	the	front	pages	of	the	data	file.	However,	the	file	still	remains	10
MB	in	size.

The	TRUNCATEONLY	option	reclaims	all	free	space	at	the	end	of	the	file	to	the
operating	system.	However,	TRUNCATEONLY	does	not	perform	any	page
movement	inside	the	file	or	files.	The	specified	file	is	shrunk	only	to	the	last
allocated	extent.	target_percent	is	ignored	if	specified	with	the
TRUNCATEONLY	option.

The	database	cannot	be	made	smaller	than	the	size	of	the	model	database.

The	database	being	shrunk	does	not	have	to	be	in	single	user	mode;	other	users
can	be	working	in	the	database	when	it	is	shrunk.	This	includes	system
databases.

Result	Sets
This	table	describes	the	columns	in	the	result	set.

Column	name Description
DbId Database	identification	number	of	the	file	SQL	Server

attempted	to	shrink.
FileId The	file	identification	number	of	the	file	SQL	Server

attempted	to	shrink.
CurrentSize The	number	of	8-KB	pages	the	file	currently	occupies.
MinimumSize The	number	of	8-KB	pages	the	file	could	occupy,	at

minimum.	This	corresponds	to	the	minimum	size	or
originally	created	size	of	a	file.

UsedPages The	number	of	8-KB	pages	currently	used	by	the	file.
EstimatedPages The	number	of	8-KB	pages	that	SQL	Server	estimates

the	file	could	be	shrunk	down	to.

Note		SQL	Server	does	not	display	rows	for	those	files	not	shrunk.

Permissions
DBCC	SHRINKDATABASE	permissions	default	to	members	of	the	sysadmin
fixed	server	role	or	the	db_owner	fixed	database	role,	and	are	not	transferable.

Examples
This	example	decreases	the	size	of	the	files	in	the	UserDB	user	database	to
allow	10	percent	free	space	in	the	files	of	UserDB.

DBCC	SHRINKDATABASE	(UserDB,	10)
GO

See	Also

ALTER	DATABASE

DBCC

Physical	Database	Files	and	Filegroups

JavaScript:hhobj_5.Click()

Transact-SQL	Reference

DBCC	SHRINKFILE
Shrinks	the	size	of	the	specified	data	file	or	log	file	for	the	related	database.

Syntax
DBCC	SHRINKFILE	
				({	file_name	|	file_id	}	
								{	[,	target_size]	
												|	[,	{	EMPTYFILE	|	NOTRUNCATE	|	TRUNCATEONLY	}]	
								}
)

Arguments
file_name

Is	the	logical	name	of	the	file	shrunk.	File	names	must	conform	to	the	rules
for	identifiers.	For	more	information,	see	Using	Identifiers.

file_id

Is	the	identification	(ID)	number	of	the	file	to	be	shrunk.	To	obtain	a	file	ID,
use	the	FILE_ID	function	or	search	sysfiles	in	the	current	database.

target_size

Is	the	desired	size	for	the	file	in	megabytes,	expressed	as	an	integer.	If	not
specified,	DBCC	SHRINKFILE	reduces	the	size	to	the	default	file	size.

If	target_size	is	specified,	DBCC	SHRINKFILE	attempts	to	shrink	the	file	to
the	specified	size.	Used	pages	in	the	part	of	the	file	to	be	freed	are	relocated
to	available	free	space	in	the	part	of	the	file	retained.	For	example,	if	there	is
a	10-MB	data	file,	a	DBCC	SHRINKFILE	with	a	target_size	of	8	causes	all
used	pages	in	the	last	2	MB	of	the	file	to	be	reallocated	into	any	available
free	slots	in	the	first	8	MB	of	the	file.	DBCC	SHRINKFILE	does	not	shrink
a	file	past	the	size	needed	to	store	the	data	in	the	file.	For	example,	if	7	MB
of	a	10-MB	data	file	is	used,	a	DBCC	SHRINKFILE	statement	with	a
target_size	of	6	shrinks	the	file	to	only	7	MB,	not	6	MB.

JavaScript:hhobj_1.Click()

EMPTYFILE

Migrates	all	data	from	the	specified	file	to	other	files	in	the	same	filegroup.
Microsoft®	SQL	Server™	no	longer	allows	data	to	be	placed	on	the	file	used
with	the	EMPTYFILE	option.	This	option	allows	the	file	to	be	dropped	using
the	ALTER	DATABASE	statement.

NOTRUNCATE

Causes	the	freed	file	space	to	be	retained	in	the	files.

When	NOTRUNCATE	is	specified	along	with	target_size,	the	space	freed	is
not	released	to	the	operating	system.	The	only	effect	of	the	DBCC
SHRINKFILE	is	to	relocate	used	pages	from	above	the	target_size	line	to	the
front	of	the	file.	When	NOTRUNCATE	is	not	specified,	all	freed	file	space	is
returned	to	the	operating	system.

TRUNCATEONLY

Causes	any	unused	space	in	the	files	to	be	released	to	the	operating	system
and	shrinks	the	file	to	the	last	allocated	extent,	reducing	the	file	size	without
moving	any	data.	No	attempt	is	made	to	relocate	rows	to	unallocated	pages.
target_size	is	ignored	when	TRUNCATEONLY	is	used.

Remarks
DBCC	SHRINKFILE	applies	to	the	files	in	the	current	database.	Switch	context
to	the	database	to	issue	a	DBCC	SHRINKFILE	statement	referencing	a	file	in
that	particular	database.	For	more	information	about	changing	the	current
database,	see	USE.

The	database	cannot	be	made	smaller	than	the	size	of	the	model	database.

Use	DBCC	SHRINKFILE	to	reduce	the	size	of	a	file	to	smaller	than	its
originally	created	size.	The	minimum	file	size	for	the	file	is	then	reset	to	the
newly	specified	size.

To	remove	any	data	that	may	be	in	a	file,	execute	DBCC
SHRINKFILE('file_name',	EMPTYFILE)	before	executing	ALTER
DATABASE.

The	database	being	shrunk	does	not	have	to	be	in	single-user	mode;	other	users

can	be	working	in	the	database	when	the	file	is	shrunk.	You	do	not	have	to	run
SQL	Server	in	single-user	mode	to	shrink	the	system	databases.

For	log	files,	SQL	Server	uses	target_size	to	calculate	the	target	size	for	the
entire	log;	therefore,	target_size	is	the	amount	of	free	space	in	the	log	after	the
shrink	operation.	Target	size	for	the	entire	log	is	then	translated	to	target	size	for
each	log	file.	DBCC	SHRINKFILE	attempts	to	shrink	each	physical	log	file	to
its	target	size	immediately.	If	no	part	of	the	logical	log	resides	in	the	virtual	logs
beyond	the	log	file's	target	size,	the	file	is	successfully	truncated	and	DBCC
SHRINKFILE	completes	with	no	messages.	However,	if	part	of	the	logical	log
resides	in	the	virtual	logs	beyond	the	target	size,	SQL	Server	frees	as	much	space
as	possible	and	then	issues	an	informational	message.	The	message	tells	you
what	actions	you	need	to	perform	to	move	the	logical	log	out	of	the	virtual	logs
at	the	end	of	the	file.	After	you	perform	the	actions,	you	can	then	reissue	the
DBCC	SHRINKFILE	command	to	free	the	remaining	space.	For	more
information	about	shrinking	transaction	logs,	see	Shrinking	the	Transaction	Log.

Because	a	log	file	can	only	be	shrunk	to	a	virtual	log	file	boundary,	it	may	not	be
possible	to	shrink	a	log	file	to	a	size	smaller	than	the	size	of	a	virtual	log	file,
even	if	it	is	not	being	used.	For	example,	a	database	with	a	log	file	of	1	GB	can
have	the	log	file	shrunk	to	only	128	MB.	For	more	information	about	truncation,
see	Truncating	the	Transaction	Log.	For	more	information	about	determining
virtual	log	file	sizes,	see	Virtual	Log	Files.

Result	Sets
This	table	describes	the	columns	in	the	result	set.

Column	name Description
DbId Database	identification	number	of	the	file	SQL

Server	attempted	to	shrink.
FileId The	file	identification	number	of	the	file	SQL

Server	attempted	to	shrink.
CurrentSize The	number	of	8-KB	pages	the	file	currently

occupies.
MinimumSize The	number	of	8-KB	pages	the	file	could	occupy,

at	minimum.	This	corresponds	to	the	minimum
size	or	originally	created	size	of	a	file.

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

UsedPages The	number	of	8-KB	pages	currently	used	by	the
file.

EstimatedPages The	number	of	8-KB	pages	that	SQL	Server
estimates	the	file	could	be	shrunk	down	to.

Permissions
DBCC	SHRINKFILE	permissions	default	to	members	of	the	sysadmin	fixed
server	role	or	the	db_owner	fixed	database	role,	and	are	not	transferable.

Examples
This	example	shrinks	the	size	of	a	file	named	DataFil1	in	the	UserDB	user
database	to	7	MB.

USE	UserDB
GO
DBCC	SHRINKFILE	(DataFil1,	7)
GO

See	Also

ALTER	DATABASE

DBCC

FILE_ID

Physical	Database	Files	and	Filegroups

sysfiles

JavaScript:hhobj_5.Click()

Transact-SQL	Reference

DBCC	SQLPERF
Provides	statistics	about	the	use	of	transaction-log	space	in	all	databases.

Syntax
DBCC	SQLPERF	(LOGSPACE)

Remarks
The	transaction	log	accumulates	information	about	changes	to	data	in	each
database.	The	information	returned	by	DBCC	SQLPERF(LOGSPACE)	can	be
used	to	monitor	the	amount	of	space	used	and	indicates	when	to	back	up	or
truncate	the	transaction	log.

Result	Sets
This	table	describes	the	columns	in	the	result	set.

Column	name Definition
Database	Name Name	of	the	database	for	the	log	statistics	displayed.
Log	Size	(MB) The	actual	amount	of	space	available	for	the	log.

This	amount	is	smaller	than	the	amount	originally
allocated	for	log	space	because	Microsoft®	SQL
Server™	reserves	a	small	amount	of	disk	space	for
internal	header	information.

Log	Space	Used	(%) Percentage	of	the	log	file	currently	occupied	with
transaction	log	information.

Status Status	of	the	log	file	(always	contains	0).

Permissions
DBCC	SQLPERF	permissions	default	to	any	user.

Examples

This	example	displays	LOGSPACE	information	for	all	databases	currently
installed.

DBCC	SQLPERF(LOGSPACE)
GO

Here	is	the	result	set:

Database	Name	Log	Size	(MB)	Log	Space	Used	(%)	Status						
-------------	-------------	------------------	-----------	
pubs																1.99219												4.26471											0	
msdb																3.99219												17.0132											0	
tempdb														1.99219												1.64216											0	
model																			1.0												12.7953											0	
master														3.99219												14.3469											0	

See	Also

DBCC

sp_spaceused

Transact-SQL	Reference

DBCC	TRACEOFF
Disables	the	specified	trace	flag(s).

Syntax
DBCC	TRACEOFF	(trace#	[,...n])

Arguments
trace#

Is	the	number	of	the	trace	flag	to	disable.

n

Is	a	placeholder	indicating	that	multiple	trace	flags	can	be	specified.

Remarks
Trace	flags	are	used	to	customize	certain	characteristics	controlling	how
Microsoft®	SQL	Server™	operates.

To	find	out	information	about	the	status	of	trace	flags,	use	DBCC
TRACESTATUS.	To	enable	certain	trace	flags,	use	DBCC	TRACEON.

Result	Sets
DBCC	TRACEOFF	returns	this	result	set	(message):

DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

Permissions
DBCC	TRACEOFF	permissions	default	to	members	of	the	sysadmin	fixed
server	role	only,	and	are	not	transferable.

Examples

This	example	disables	the	effects	of	trace	flag	3205.

DBCC	TRACEOFF	(3205)
GO

See	Also

DBCC

DBCC	TRACEON

DBCC	TRACESTATUS

Trace	Flags

Transact-SQL	Reference

DBCC	TRACEON
Turns	on	(enables)	the	specified	trace	flag.

Syntax
DBCC	TRACEON	(trace#	[,...n])

Arguments
trace#

Is	the	number	of	the	trace	flag	to	turn	on.

n

Is	a	placeholder	indicating	that	multiple	trace	flags	can	be	specified.

Remarks
Trace	flags	are	used	to	customize	certain	characteristics	controlling	how
Microsoft®	SQL	Server™	operates.	Trace	flags	remain	enabled	in	the	server
until	disabled	by	executing	a	DBCC	TRACEOFF	statement.	New	connections
into	the	server	do	not	see	any	trace	flags	until	a	DBCC	TRACEON	statement	is
issued.	Then,	the	connection	will	see	all	trace	flags	currently	enabled	in	the
server,	even	those	enabled	by	another	connection.

For	more	information	about	the	status	of	trace	flags,	see	DBCC
TRACESTATUS.

Result	Sets
DBCC	TRACEON	returns	this	result	set	(message):

DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

Permissions
DBCC	TRACEON	permissions	default	to	members	of	the	sysadmin	fixed	server

role	only,	and	are	not	transferable.

Examples
This	example	disables	hardware	compression	for	tape	drivers.

DBCC	TRACEON	(3205)
GO

See	Also

DBCC

DBCC	TRACEOFF

DBCC	TRACESTATUS

Trace	Flags

Transact-SQL	Reference

DBCC	TRACESTATUS
Displays	the	status	of	trace	flags.

Syntax
DBCC	TRACESTATUS	(trace#	[,...n])

Arguments
trace#

Is	the	number	of	the	trace	flag	whose	status	will	be	displayed.

n

Is	a	placeholder	that	indicates	multiple	trace	flags	can	be	specified.

Result	Sets
DBCC	TRACESTATUS	returns	a	column	for	the	trace	flag	number	and	a
column	for	the	status,	indicating	whether	the	trace	flag	is	ON	(1)	or	OFF	(0).	To
get	status	information	for	all	trace	flags	currently	turned	on,	specify	-	1	for
trace#.

Remarks
To	enable	certain	trace	flags,	use	DBCC	TRACEON.	To	disable	trace	flags,	use
DBCC	TRACEOFF.

Permissions
DBCC	TRACESTATUS	permissions	default	to	any	user.

Examples

A.	Display	the	status	of	all	trace	flags	currently	enabled

This	example	displays	the	status	of	all	currently	enabled	trace	flags	by
specifying	a	value	of	-1.

DBCC	TRACESTATUS(-1)
GO

B.	Display	the	status	of	multiple	trace	flags
This	example	displays	the	status	of	trace	flags	2528	and	3205.

DBCC	TRACESTATUS	(2528,	3205)
GO

See	Also

DBCC

DBCC	TRACEOFF

DBCC	TRACEON

Trace	Flags

Transact-SQL	Reference

DBCC	UNPINTABLE
Marks	a	table	as	unpinned.	After	a	table	is	marked	as	unpinned,	the	table	pages
in	the	buffer	cache	can	be	flushed.

Syntax
DBCC	UNPINTABLE	(database_id	,	table_id)

Arguments
database_id

Is	the	database	identification	(ID)	number	of	the	database	containing	the
table	to	be	pinned.	To	obtain	the	database	ID,	use	DB_ID.

table_id

Is	the	object	ID	of	the	table	to	be	pinned.	To	determine	the	object	ID,	use
OBJECT_ID.

Remarks
DBCC	UNPINTABLE	does	not	cause	the	table	to	be	immediately	flushed	from
the	data	cache.	It	specifies	that	all	of	the	pages	for	the	table	in	the	buffer	cache
can	be	flushed	if	space	is	needed	to	read	in	a	new	page	from	disk.

Result	Sets
DBCC	UNPINTABLE	returns	this	result	set	(message):

DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

Permissions
DBCC	UNPINTABLE	permissions	default	to	members	of	the	sysadmin	fixed
server	role	and	are	not	transferable.

Examples
This	example	unpins	the	authors	table	in	the	pubs	database.

DECLARE	@db_id	int,	@tbl_id	int
USE	pubs
SET	@db_id	=	DB_ID('pubs')
SET	@tbl_id	=	OBJECT_ID('pubs..authors')
DBCC	UNPINTABLE	(@db_id,	@tbl_id)

See	Also

DB_ID

DBCC

DBCC	PINTABLE

Memory	Architecture

OBJECT_ID

sp_tableoption

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

DBCC	UPDATEUSAGE
Reports	and	corrects	inaccuracies	in	the	sysindexes	table,	which	may	result	in
incorrect	space	usage	reports	by	the	sp_spaceused	system	stored	procedure.

Syntax
DBCC	UPDATEUSAGE	
				({	'database_name'	|	0	}	
								[,	{	'table_name'	|	'view_name'	}	
								[,	{	index_id	|	'index_name'	}]]	
)	
				[WITH				[COUNT_ROWS]	[,	NO_INFOMSGS]	
]

Arguments
'database_name'	|	0

Is	the	name	of	the	database	for	which	to	report	and	correct	space	usage
statistics.	Database	names	must	conform	to	the	rules	for	identifiers.	For	more
information,	see	Using	Identifiers.	If	0	is	specified,	then	the	current	database
is	used.

'table_name'	|	'view_name'

Is	the	name	of	the	table	or	indexed	view	for	which	to	report	and	correct
space	usage	statistics.	Table	and	view	names	must	conform	to	the	rules	for
identifiers.

index_id	|	'index_name'

Is	the	identification	(ID)	number	or	index	name	of	the	index	to	use.	If	not
specified,	the	statement	processes	all	indexes	for	the	specified	table	or	view.

COUNT_ROWS

Specifies	that	the	rows	column	of	sysindexes	is	updated	with	the	current
count	of	the	number	of	rows	in	the	table	or	view.	This	applies	only	to
sysindexes	rows	that	have	an	indid	of	0	or	1.	This	option	can	affect

JavaScript:hhobj_1.Click()

performance	on	large	tables	and	indexed	views.

NO_INFOMSGS

Suppresses	all	informational	messages.

Remarks
DBCC	UPDATEUSAGE	corrects	the	rows,	used,	reserved,	and	dpages
columns	of	the	sysindexes	table	for	tables	and	clustered	indexes.	Size
information	is	not	maintained	for	nonclustered	indexes.

If	there	are	no	inaccuracies	in	sysindexes,	DBCC	UPDATEUSAGE	returns	no
data.	If	inaccuracies	are	found	and	corrected	and	the	WITH	NO_INFOMSGS
option	is	not	used,	UPDATEUSAGE	returns	the	rows	and	columns	being
updated	in	sysindexes.

Use	UPDATEUSAGE	to	synchronize	space-usage	counters.	DBCC
UPDATEUSAGE	can	take	some	time	to	run	on	large	tables	or	databases,	so	it
should	typically	be	used	only	when	you	suspect	incorrect	values	returned	by
sp_spaceused.	sp_spaceused	accepts	an	optional	parameter	to	run	DBCC
UPDATEUSAGE	before	returning	space	information	for	the	table	or	index.

Result	Sets
DBCC	UPDATEUSAGE	returns	this	result	set	for	the	Northwind	database
(values	may	vary):

DBCC	UPDATEUSAGE:	sysindexes	row	updated	for	table	'Orders'	(index	ID	4):
								USED	pages:	Changed	from	(2)	to	(4)	pages.
								RSVD	pages:	Changed	from	(2)	to	(4)	pages.
DBCC	UPDATEUSAGE:	sysindexes	row	updated	for	table	'Orders'	(index	ID	5):
								USED	pages:	Changed	from	(2)	to	(4)	pages.
								RSVD	pages:	Changed	from	(2)	to	(4)	pages.
'...'
DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

Permissions

DBCC	UPDATEUSAGE	permissions	default	to	members	of	the	sysadmin	fixed
server	role	or	the	db_owner	fixed	database	role,	and	are	not	transferable.

Examples

A.	Update	sysindexes	by	specifying	0	for	the	current	database
This	example	specifies	0	for	the	database	name	and	Microsoft®	SQL	Server™
reports	information	for	the	current	database.

DBCC	UPDATEUSAGE	(0)
GO

B.	Update	sysindexes	for	pubs,	suppressing	informational
messages
This	example	specifies	pubs	as	the	database	name,	and	suppresses	all
informational	messages.

DBCC	UPDATEUSAGE	('pubs')	WITH	NO_INFOMSGS	
GO

C.	Update	sysindexes	for	the	authors	table
This	example	reports	information	about	the	authors	table.

DBCC	UPDATEUSAGE	('pubs','authors')
GO

D.	Update	sysindexes	for	a	specified	index
This	example	uses	the	index	name,	UPKCL_auidind.

DBCC	UPDATEUSAGE	('pubs',	'authors',	'UPKCL_auidind')

See	Also

DBCC

sp_spaceused

sysindexes

Table	and	Index	Architecture

UPDATE	STATISTICS

JavaScript:hhobj_2.Click()

Transact-SQL	Reference

DBCC	USEROPTIONS
Returns	the	SET	options	active	(set)	for	the	current	connection.

Syntax
DBCC	USEROPTIONS

Result	Sets
DBCC	USEROPTIONS	returns	this	result	set	(values	and	entries	may	vary):

Set	Option																			Value																																							
----------------------------	---	
textsize																					64512
language																					us_english
dateformat																			mdy
datefirst																				7
ansi_null_dflt_on												SET
ansi_warnings																SET
ansi_padding																	SET
ansi_nulls																			SET
concat_null_yields_null						SET

(9	row(s)	affected)

DBCC	execution	completed.	If	DBCC	printed	error	messages,	contact	your	system	administrator.

DBCC	USEROPTIONS	returns	a	column	for	the	name	of	the	SET	option	and	a
column	for	the	setting	of	the	option.

Permissions
DBCC	USEROPTIONS	permissions	default	to	any	user.

Examples
This	example	returns	the	active	SET	options	for	the	current	connection.

DBCC	USEROPTIONS

See	Also

DBCC

Customizing	Transaction	Isolation	Level

SET

SET	TRANSACTION	ISOLATION	LEVEL

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

DEALLOCATE
Removes	a	cursor	reference.	When	the	last	cursor	reference	is	deallocated,	the
data	structures	comprising	the	cursor	are	released	by	Microsoft®	SQL	Server™.

Syntax
DEALLOCATE	{	{	[GLOBAL]	cursor_name	}	|	@cursor_variable_name	}

Arguments
cursor_name

Is	the	name	of	an	already	declared	cursor.	If	both	a	global	and	a	local	cursor
exist	with	cursor_name	as	their	name,	cursor_name	refers	to	the	global
cursor	if	GLOBAL	is	specified	and	to	the	local	cursor	if	GLOBAL	is	not
specified.

@cursor_variable_name

Is	the	name	of	a	cursor	variable.	@cursor_variable_name	must	be	of	type
cursor.

Remarks
Statements	that	operate	on	cursors	use	either	a	cursor	name	or	a	cursor	variable
to	refer	to	the	cursor.	DEALLOCATE	removes	the	association	between	a	cursor
and	the	cursor	name	or	cursor	variable.	If	a	name	or	variable	is	the	last	one
referencing	the	cursor,	the	cursor	is	deallocated	and	any	resources	used	by	the
cursor	are	freed.	Scroll	locks	used	to	protect	the	isolation	of	fetches	are	freed	at
DEALLOCATE.	Transaction	locks	used	to	protect	updates,	including	positioned
updates	made	through	the	cursor,	are	held	until	the	end	of	the	transaction.

The	DECLARE	CURSOR	statement	allocates	and	associates	a	cursor	with	a
cursor	name:

DECLARE	abc	SCROLL	CURSOR	FOR
SELECT	*	FROM	authors

After	a	cursor	name	is	associated	with	a	cursor,	the	name	cannot	be	used	for
another	cursor	of	the	same	scope	(GLOBAL	or	LOCAL)	until	this	cursor	has
been	deallocated.

A	cursor	variable	is	associated	with	a	cursor	using	one	of	two	methods:

By	name	using	a	SET	statement	that	sets	a	cursor	to	a	cursor	variable:
DECLARE	@MyCrsrRef	CURSOR
SET	@MyCrsrRef	=	abc

A	cursor	can	also	be	created	and	associated	with	a	variable	without
having	a	cursor	name	defined:
DECLARE	@MyCursor	CURSOR
SET	@MyCursor	=	CURSOR	LOCAL	SCROLL	FOR
SELECT	*	FROM	titles

A	DEALLOCATE	@cursor_variable_name	statement	removes	only	the
reference	of	the	named	variable	to	the	cursor.	The	variable	is	not	deallocated
until	it	goes	out	of	scope	at	the	end	of	the	batch,	stored	procedure,	or	trigger.
After	a	DEALLOCATE	@cursor_variable_name	statement,	the	variable	can	be
associated	with	another	cursor	using	the	SET	statement.

USE	pubs
GO
DECLARE	@MyCursor	CURSOR
SET	@MyCursor	=	CURSOR	LOCAL	SCROLL	FOR
SELECT	*	FROM	titles

DEALLOCATE	@MyCursor

SET	@MyCursor	=	CURSOR	LOCAL	SCROLL	FOR
SELECT	*	FROM	sales
GO

A	cursor	variable	does	not	have	to	be	explicitly	deallocated.	The	variable	is
implicitly	deallocated	when	it	goes	out	of	scope.

Permissions
DEALLOCATE	permissions	default	to	any	valid	user.

Examples
This	script	shows	how	cursors	persist	until	the	last	name	or	until	the	variable
referencing	them	has	been	deallocated.

USE	pubs
GO
--	Create	and	open	a	global	named	cursor	that
--	is	visible	outside	the	batch.
DECLARE	abc	CURSOR	GLOBAL	SCROLL	FOR
SELECT	*	FROM	authors
OPEN	abc
GO
--	Reference	the	named	cursor	with	a	cursor	variable.
DECLARE	@MyCrsrRef1	CURSOR
SET	@MyCrsrRef1	=	abc
--	Now	deallocate	the	cursor	reference.
DEALLOCATE	@MyCrsrRef1
--	Cursor	abc	still	exists.
FETCH	NEXT	FROM	abc
GO
--	Reference	the	named	cursor	again.
DECLARE	@MyCrsrRef2	CURSOR
SET	@MyCrsrRef2	=	abc
--	Now	deallocate	cursor	name	abc.
DEALLOCATE	abc
--	Cursor	still	exists,	referenced	by	@MyCrsrRef2.
FETCH	NEXT	FROM	@MyCrsrRef2
--	Cursor	finally	is	deallocated	when	last	referencing
--	variable	goes	out	of	scope	at	the	end	of	the	batch.
GO

--	Create	an	unnamed	cursor.
DECLARE	@MyCursor	CURSOR
SET	@MyCursor	=	CURSOR	LOCAL	SCROLL	FOR
SELECT	*	FROM	titles
--	The	following	statement	deallocates	the	cursor
--	because	no	other	variables	reference	it.
DEALLOCATE	@MyCursor
GO

See	Also

CLOSE

Cursors

DECLARE	@local_variable

FETCH

OPEN

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

decimal	and	numeric
Numeric	data	types	with	fixed	precision	and	scale.

decimal[(p[,	s])]	and	numeric[(p[,	s])]

Fixed	precision	and	scale	numbers.	When	maximum	precision	is	used,	valid
values	are	from	-	10^38	+1	through	10^38	-	1.	The	SQL-92	synonyms	for
decimal	are	dec	and	dec(p,	s).

p	(precision)

Specifies	the	maximum	total	number	of	decimal	digits	that	can	be	stored,	both	to
the	left	and	to	the	right	of	the	decimal	point.	The	precision	must	be	a	value	from
1	through	the	maximum	precision.	The	maximum	precision	is	38.

s	(scale)

Specifies	the	maximum	number	of	decimal	digits	that	can	be	stored	to	the	right
of	the	decimal	point.	Scale	must	be	a	value	from	0	through	p.	The	default	scale	is
0;	therefore,	0	<=	s	<=	p.	Maximum	storage	sizes	vary,	based	on	the	precision.

Precision Storage	bytes
1	-	9 5
10-19 9
20-28 13
29-38 17

See	Also

ALTER	TABLE

CAST	and	CONVERT

CREATE	TABLE

Data	Type	Conversion

Data	Types

DECLARE	@local_variable

JavaScript:hhobj_1.Click()

DELETE

INSERT

SET	@local_variable

Using	Startup	Options

UPDATE

JavaScript:hhobj_2.Click()

Transact-SQL	Reference

DECLARE	@local_variable
Variables	are	declared	in	the	body	of	a	batch	or	procedure	with	the	DECLARE
statement	and	are	assigned	values	with	either	a	SET	or	SELECT	statement.
Cursor	variables	can	be	declared	with	this	statement	and	used	with	other	cursor-
related	statements.	After	declaration,	all	variables	are	initialized	as	NULL.

Syntax
DECLARE	
				{{	@local_variable	data_type	}	
								|	{	@cursor_variable_name	CURSOR	}	
								|	{	table_type_definition	}	
				}	[,...n]

<	table_type_definition	>	::=	
				TABLE	({	<	column_definition	>	|	<	table_constraint	>	}	[,...]	
)	

<	column_definition	>	::=	
				column_name	scalar_data_type	
				[COLLATE	collation_name]	
				[[DEFAULT	constant_expression]	|	IDENTITY	[(seed,	increment)]]	
				[ROWGUIDCOL]	
				[<	column_constraint	>]	

<	column_constraint	>	::=	
				{	[NULL	|	NOT	NULL]	
				|	[PRIMARY	KEY	|	UNIQUE]	
				|	CHECK	(logical_expression)	
				}	

<	table_constraint	>	::=	
				{	{	PRIMARY	KEY	|	UNIQUE	}	(column_name	[,...])	
				|	CHECK	(search_condition)	
				}

Arguments
@local_variable

Is	the	name	of	a	variable.	Variable	names	must	begin	with	an	at	sign	(@).
Local	variable	names	must	conform	to	the	rules	for	identifiers.	For	more
information,	see	Using	Identifiers.

data_type

Is	any	system-supplied	or	user-defined	data	type.	A	variable	cannot	be	of
text,	ntext,	or	image	data	type.	For	more	information	about	system	data
types,	see	Data	Types.	For	more	information	about	user-defined	data	types,
see	sp_addtype.

@cursor_variable_name

Is	the	name	of	a	cursor	variable.	Cursor	variable	names	must	begin	with	an	at
sign	(@)	and	conform	to	the	rules	for	identifiers.

CURSOR

Specifies	that	the	variable	is	a	local,	cursor	variable.

table_type_definition

Defines	the	table	data	type.	The	table	declaration	includes	column
definitions,	names,	data	types,	and	constraints.	The	only	constraint	types
allowed	are	PRIMARY	KEY,	UNIQUE	KEY,	NULL,	and	CHECK.

table_type_definition	is	a	subset	of	information	used	to	define	a	table	in
CREATE	TABLE.	Elements	and	essential	definitions	are	included	here;	for
more	information,	see	CREATE	TABLE.

n

Is	a	placeholder	indicating	that	multiple	variables	can	be	specified	and
assigned	values.	When	declaring	table	variables,	the	table	variable	must	be
the	only	variable	being	declared	in	the	DECLARE	statement.

column_name

Is	the	name	of	the	column	in	the	table.

scalar_data_type

JavaScript:hhobj_1.Click()

Specifies	that	the	column	is	a	scalar	data	type.

[COLLATE	collation_name]

Specifies	the	collation	for	the	column.	collation_name	can	be	either	a
Windows	collation	name	or	an	SQL	collation	name,	and	is	applicable	only
for	columns	of	the	char,	varchar,	text,	nchar,	nvarchar,	and	ntext	data
types.	If	not	specified,	the	column	is	assigned	either	the	collation	of	the	user-
defined	data	type	(if	the	column	is	of	a	user-defined	data	type),	or	the	default
collation	of	the	database.

For	more	information	about	the	Windows	and	SQL	collation	names,	see
COLLATE.

DEFAULT

Specifies	the	value	provided	for	the	column	when	a	value	is	not	explicitly
supplied	during	an	insert.	DEFAULT	definitions	can	be	applied	to	any
columns	except	those	defined	as	timestamp,	or	those	with	the	IDENTITY
property.	DEFAULT	definitions	are	removed	when	the	table	is	dropped.	Only
a	constant	value,	such	as	a	character	string;	a	system	function,	such	as	a
SYSTEM_USER();	or	NULL	can	be	used	as	a	default.	To	maintain
compatibility	with	earlier	versions	of	SQL	Server,	a	constraint	name	can	be
assigned	to	a	DEFAULT.

constant_expression

Is	a	constant,	NULL,	or	a	system	function	used	as	the	default	value	for	the
column.

IDENTITY

Indicates	that	the	new	column	is	an	identity	column.	When	a	new	row	is
added	to	the	table,	SQL	Server	provides	a	unique,	incremental	value	for	the
column.	Identity	columns	are	commonly	used	in	conjunction	with
PRIMARY	KEY	constraints	to	serve	as	the	unique	row	identifier	for	the
table.	The	IDENTITY	property	can	be	assigned	to	tinyint,	smallint,	int,
decimal(p,0),	or	numeric(p,0)	columns.	Only	one	identity	column	can	be
created	per	table.	Bound	defaults	and	DEFAULT	constraints	cannot	be	used
with	an	identity	column.	You	must	specify	both	the	seed	and	increment,	or
neither.	If	neither	is	specified,	the	default	is	(1,1).

seed

Is	the	value	used	for	the	very	first	row	loaded	into	the	table.

increment

Is	the	incremental	value	added	to	the	identity	value	of	the	previous	row	that
was	loaded.

ROWGUIDCOL

Indicates	that	the	new	column	is	a	row	global	unique	identifier	column.	Only
one	uniqueidentifier	column	per	table	can	be	designated	as	the
ROWGUIDCOL	column.	The	ROWGUIDCOL	property	can	be	assigned
only	to	a	uniqueidentifier	column.

NULL	|	NOT	NULL

Are	keywords	that	determine	whether	or	not	null	values	are	allowed	in	the
column.

PRIMARY	KEY

Is	a	constraint	that	enforces	entity	integrity	for	a	given	column	or	columns
through	a	unique	index.	Only	one	PRIMARY	KEY	constraint	can	be	created
per	table.

UNIQUE

Is	a	constraint	that	provides	entity	integrity	for	a	given	column	or	columns
through	a	unique	index.	A	table	can	have	multiple	UNIQUE	constraints.

CHECK

Is	a	constraint	that	enforces	domain	integrity	by	limiting	the	possible	values
that	can	be	entered	into	a	column	or	columns.

logical_expression

Is	a	logical	expression	that	returns	TRUE	or	FALSE.

Remarks
Variables	are	often	used	in	a	batch	or	procedure	as	counters	for	WHILE,	LOOP,
or	for	an	IF...ELSE	block.

Variables	can	be	used	only	in	expressions,	not	in	place	of	object	names	or
keywords.	To	construct	dynamic	SQL	statements,	use	EXECUTE.

The	scope	of	a	local	variable	is	the	batch,	stored	procedure,	or	statement	block	in
which	it	is	declared.	For	more	information	about	using	local	variables	in
statement	blocks,	see	Using	BEGIN...END.

A	cursor	variable	that	currently	has	a	cursor	assigned	to	it	can	be	referenced	as	a
source	in	a:

CLOSE	statement.

DEALLOCATE	statement.

FETCH	statement.

OPEN	statement.

Positioned	DELETE	or	UPDATE	statement.

SET	CURSOR	variable	statement	(on	the	right	side).

In	all	these	statements,	Microsoft®	SQL	Server™	raises	an	error	if	a	referenced
cursor	variable	exists	but	does	not	have	a	cursor	currently	allocated	to	it.	If	a
referenced	cursor	variable	does	not	exist,	SQL	Server	raises	the	same	error
raised	for	an	undeclared	variable	of	another	type.

A	cursor	variable:

Can	be	the	target	of	either	a	cursor	type	or	another	cursor	variable.	For
more	information,	see	SET	@local_variable.

Can	be	referenced	as	the	target	of	an	output	cursor	parameter	in	an
EXECUTE	statement	if	the	cursor	variable	does	not	have	a	cursor
currently	assigned	to	it.

JavaScript:hhobj_2.Click()

Should	be	regarded	as	a	pointer	to	the	cursor.	For	more	information
about	cursor	variables,	see	Transact-SQL	Cursors.

Examples

A.	Use	DECLARE

This	example	uses	a	local	variable	named	@find	to	retrieve	author	information
for	all	authors	with	last	names	beginning	with	Ring.

USE	pubs
DECLARE	@find	varchar(30)
SET	@find	=	'Ring%'
SELECT	au_lname,	au_fname,	phone
FROM	authors
WHERE	au_lname	LIKE	@find

Here	is	the	result	set:

au_lname																															au_fname													phone								
--------------------------------------	--------------------	------------	
Ringer																																	Anne																	801	826-0752	
Ringer																																	Albert															801	826-0752	

(2	row(s)	affected)

B.	Use	DECLARE	with	two	variables
This	example	retrieves	employee	names	from	employees	of	Binnet	&	Hardley
(pub_id	=	0877)	who	were	hired	on	or	after	January	1,	1993.

USE	pubs
SET	NOCOUNT	ON
GO
DECLARE	@pub_id	char(4),	@hire_date	datetime
SET	@pub_id	=	'0877'

JavaScript:hhobj_3.Click()

SET	@hire_date	=	'1/01/93'
--	Here	is	the	SELECT	statement	syntax	to	assign	values	to	two	local	
--	variables.
--	SELECT	@pub_id	=	'0877',	@hire_date	=	'1/01/93'
SET	NOCOUNT	OFF
SELECT	fname,	lname
FROM	employee
WHERE	pub_id	=	@pub_id	and	hire_date	>=	@hire_date

Here	is	the	result	set:

fname																lname																										
--------------------	------------------------------	
Anabela														Domingues																						
Paul																	Henriot																								

(2	row(s)	affected)

See	Also

EXECUTE

Functions

SELECT

table

Transact-SQL	Reference

DECLARE	CURSOR
Defines	the	attributes	of	a	Transact-SQL	server	cursor,	such	as	its	scrolling
behavior	and	the	query	used	to	build	the	result	set	on	which	the	cursor	operates.
DECLARE	CURSOR	accepts	both	a	syntax	based	on	the	SQL-92	standard	and	a
syntax	using	a	set	of	Transact-SQL	extensions.

SQL-92	Syntax
DECLARE	cursor_name	[INSENSITIVE]	[SCROLL]	CURSOR	
FOR	select_statement	
[FOR	{	READ	ONLY	|	UPDATE	[OF	column_name	[,...n]]	}]

Transact-SQL	Extended	Syntax
DECLARE	cursor_name	CURSOR	
[LOCAL	|	GLOBAL]	
[FORWARD_ONLY	|	SCROLL]	
[STATIC	|	KEYSET	|	DYNAMIC	|	FAST_FORWARD]	
[READ_ONLY	|	SCROLL_LOCKS	|	OPTIMISTIC]	
[TYPE_WARNING]	
FOR	select_statement	
[FOR	UPDATE	[OF	column_name	[,...n]]]

SQL-92	Arguments
cursor_name

Is	the	name	of	the	Transact-SQL	server	cursor	defined.	cursor_name	must
conform	to	the	rules	for	identifiers.	For	more	information	about	rules	for
identifiers,	see	Using	Identifiers.

INSENSITIVE

Defines	a	cursor	that	makes	a	temporary	copy	of	the	data	to	be	used	by	the
cursor.	All	requests	to	the	cursor	are	answered	from	this	temporary	table	in
tempdb;	therefore,	modifications	made	to	base	tables	are	not	reflected	in	the
data	returned	by	fetches	made	to	this	cursor,	and	this	cursor	does	not	allow

JavaScript:hhobj_1.Click()

modifications.	When	SQL-92	syntax	is	used,	if	INSENSITIVE	is	omitted,
committed	deletes	and	updates	made	to	the	underlying	tables	(by	any	user)
are	reflected	in	subsequent	fetches.

SCROLL

Specifies	that	all	fetch	options	(FIRST,	LAST,	PRIOR,	NEXT,	RELATIVE,
ABSOLUTE)	are	available.	If	SCROLL	is	not	specified	in	an	SQL-92
DECLARE	CURSOR,	NEXT	is	the	only	fetch	option	supported.	SCROLL
cannot	be	specified	if	FAST_FORWARD	is	also	specified.

select_statement

Is	a	standard	SELECT	statement	that	defines	the	result	set	of	the	cursor.	The
keywords	COMPUTE,	COMPUTE	BY,	FOR	BROWSE,	and	INTO	are	not
allowed	within	select_statement	of	a	cursor	declaration.

Microsoft®	SQL	Server™	implicitly	converts	the	cursor	to	another	type	if
clauses	in	select_statement	conflict	with	the	functionality	of	the	requested
cursor	type.	For	more	information,	see	Implicit	Cursor	Conversions.

READ	ONLY

Prevents	updates	made	through	this	cursor.	The	cursor	cannot	be	referenced
in	a	WHERE	CURRENT	OF	clause	in	an	UPDATE	or	DELETE	statement.
This	option	overrides	the	default	capability	of	a	cursor	to	be	updated.

UPDATE	[OF	column_name	[,...n]]

Defines	updatable	columns	within	the	cursor.	If	OF	column_name	[,...n]	is
specified,	only	the	columns	listed	allow	modifications.	If	UPDATE	is
specified	without	a	column	list,	all	columns	can	be	updated.

Transact-SQL	Extended	Arguments
cursor_name

Is	the	name	of	the	Transact-SQL	server	cursor	defined.	cursor_name	must
conform	to	the	rules	for	identifiers.	For	more	information	about	rules	for
identifiers,	see	Using	Identifiers.

LOCAL

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Specifies	that	the	scope	of	the	cursor	is	local	to	the	batch,	stored	procedure,
or	trigger	in	which	the	cursor	was	created.	The	cursor	name	is	only	valid
within	this	scope.	The	cursor	can	be	referenced	by	local	cursor	variables	in
the	batch,	stored	procedure,	or	trigger,	or	a	stored	procedure	OUTPUT
parameter.	An	OUTPUT	parameter	is	used	to	pass	the	local	cursor	back	to
the	calling	batch,	stored	procedure,	or	trigger,	which	can	assign	the
parameter	to	a	cursor	variable	to	reference	the	cursor	after	the	stored
procedure	terminates.	The	cursor	is	implicitly	deallocated	when	the	batch,
stored	procedure,	or	trigger	terminates,	unless	the	cursor	was	passed	back	in
an	OUTPUT	parameter.	If	it	is	passed	back	in	an	OUTPUT	parameter,	the
cursor	is	deallocated	when	the	last	variable	referencing	it	is	deallocated	or
goes	out	of	scope.

GLOBAL

Specifies	that	the	scope	of	the	cursor	is	global	to	the	connection.	The	cursor
name	can	be	referenced	in	any	stored	procedure	or	batch	executed	by	the
connection.	The	cursor	is	only	implicitly	deallocated	at	disconnect.

Note		If	neither	GLOBAL	or	LOCAL	is	specified,	the	default	is	controlled	by
the	setting	of	the	default	to	local	cursor	database	option.	In	SQL	Server	version
7.0,	this	option	defaults	to	FALSE	to	match	earlier	versions	of	SQL	Server,	in
which	all	cursors	were	global.	The	default	of	this	option	may	change	in	future
versions	of	SQL	Server.	For	more	information,	see	Setting	Database	Options.

FORWARD_ONLY

Specifies	that	the	cursor	can	only	be	scrolled	from	the	first	to	the	last	row.
FETCH	NEXT	is	the	only	supported	fetch	option.	If	FORWARD_ONLY	is
specified	without	the	STATIC,	KEYSET,	or	DYNAMIC	keywords,	the
cursor	operates	as	a	DYNAMIC	cursor.	When	neither	FORWARD_ONLY
nor	SCROLL	is	specified,	FORWARD_ONLY	is	the	default,	unless	the
keywords	STATIC,	KEYSET,	or	DYNAMIC	are	specified.	STATIC,
KEYSET,	and	DYNAMIC	cursors	default	to	SCROLL.	Unlike	database
APIs	such	as	ODBC	and	ADO,	FORWARD_ONLY	is	supported	with
STATIC,	KEYSET,	and	DYNAMIC	Transact-SQL	cursors.
FAST_FORWARD	and	FORWARD_ONLY	are	mutually	exclusive;	if	one	is
specified	the	other	cannot	be	specified.

STATIC

JavaScript:hhobj_4.Click()

Defines	a	cursor	that	makes	a	temporary	copy	of	the	data	to	be	used	by	the
cursor.	All	requests	to	the	cursor	are	answered	from	this	temporary	table	in
tempdb;	therefore,	modifications	made	to	base	tables	are	not	reflected	in	the
data	returned	by	fetches	made	to	this	cursor,	and	this	cursor	does	not	allow
modifications.

KEYSET

Specifies	that	the	membership	and	order	of	rows	in	the	cursor	are	fixed	when
the	cursor	is	opened.	The	set	of	keys	that	uniquely	identify	the	rows	is	built
into	a	table	in	tempdb	known	as	the	keyset.	Changes	to	nonkey	values	in	the
base	tables,	either	made	by	the	cursor	owner	or	committed	by	other	users,	are
visible	as	the	owner	scrolls	around	the	cursor.	Inserts	made	by	other	users	are
not	visible	(inserts	cannot	be	made	through	a	Transact-SQL	server	cursor).	If
a	row	is	deleted,	an	attempt	to	fetch	the	row	returns	an
@@FETCH_STATUS	of	-2.	Updates	of	key	values	from	outside	the	cursor
resemble	a	delete	of	the	old	row	followed	by	an	insert	of	the	new	row.	The
row	with	the	new	values	is	not	visible,	and	attempts	to	fetch	the	row	with	the
old	values	return	an	@@FETCH_STATUS	of	-2.	The	new	values	are	visible
if	the	update	is	done	through	the	cursor	by	specifying	the	WHERE
CURRENT	OF	clause.

DYNAMIC

Defines	a	cursor	that	reflects	all	data	changes	made	to	the	rows	in	its	result
set	as	you	scroll	around	the	cursor.	The	data	values,	order,	and	membership
of	the	rows	can	change	on	each	fetch.	The	ABSOLUTE	fetch	option	is	not
supported	with	dynamic	cursors.

FAST_FORWARD

Specifies	a	FORWARD_ONLY,	READ_ONLY	cursor	with	performance
optimizations	enabled.	FAST_FORWARD	cannot	be	specified	if	SCROLL	or
FOR_UPDATE	is	also	specified.	FAST_FORWARD	and
FORWARD_ONLY	are	mutually	exclusive;	if	one	is	specified	the	other
cannot	be	specified.

READ_ONLY

Prevents	updates	made	through	this	cursor.	The	cursor	cannot	be	referenced
in	a	WHERE	CURRENT	OF	clause	in	an	UPDATE	or	DELETE	statement.

This	option	overrides	the	default	capability	of	a	cursor	to	be	updated.

SCROLL_LOCKS

Specifies	that	positioned	updates	or	deletes	made	through	the	cursor	are
guaranteed	to	succeed.	Microsoft®	SQL	Server™	locks	the	rows	as	they	are
read	into	the	cursor	to	ensure	their	availability	for	later	modifications.
SCROLL_LOCKS	cannot	be	specified	if	FAST_FORWARD	is	also
specified.

OPTIMISTIC

Specifies	that	positioned	updates	or	deletes	made	through	the	cursor	do	not
succeed	if	the	row	has	been	updated	since	it	was	read	into	the	cursor.	SQL
Server	does	not	lock	rows	as	they	are	read	into	the	cursor.	It	instead	uses
comparisons	of	timestamp	column	values,	or	a	checksum	value	if	the	table
has	no	timestamp	column,	to	determine	whether	the	row	was	modified	after
it	was	read	into	the	cursor.	If	the	row	was	modified,	the	attempted	positioned
update	or	delete	fails.	OPTIMISTIC	cannot	be	specified	if
FAST_FORWARD	is	also	specified.

TYPE_WARNING

Specifies	that	a	warning	message	is	sent	to	the	client	if	the	cursor	is
implicitly	converted	from	the	requested	type	to	another.

select_statement

Is	a	standard	SELECT	statement	that	defines	the	result	set	of	the	cursor.	The
keywords	COMPUTE,	COMPUTE	BY,	FOR	BROWSE,	and	INTO	are	not
allowed	within	select_statement	of	a	cursor	declaration.

SQL	Server	implicitly	converts	the	cursor	to	another	type	if	clauses	in
select_statement	conflict	with	the	functionality	of	the	requested	cursor	type.
For	more	information,	see	Implicit	Cursor	Conversions.

UPDATE	[OF	column_name	[,...n]]

Defines	updatable	columns	within	the	cursor.	If	OF	column_name	[,...n]	is
supplied,	only	the	columns	listed	allow	modifications.	If	UPDATE	is
specified	without	a	column	list,	all	columns	can	be	updated,	unless	the
READ_ONLY	concurrency	option	was	specified.

JavaScript:hhobj_5.Click()

Remarks
DECLARE	CURSOR	defines	the	attributes	of	a	Transact-SQL	server	cursor,
such	as	its	scrolling	behavior	and	the	query	used	to	build	the	result	set	on	which
the	cursor	operates.	The	OPEN	statement	populates	the	result	set,	and	FETCH
returns	a	row	from	the	result	set.	The	CLOSE	statement	releases	the	current
result	set	associated	with	the	cursor.	The	DEALLOCATE	statement	releases	the
resources	used	by	the	cursor.

The	first	form	of	the	DECLARE	CURSOR	statement	uses	the	SQL-92	syntax
for	declaring	cursor	behaviors.	The	second	form	of	DECLARE	CURSOR	uses
Transact-SQL	extensions	that	allow	you	to	define	cursors	using	the	same	cursor
types	used	in	the	database	API	cursor	functions	of	ODBC,	ADO,	and	DB-
Library.

You	cannot	mix	the	two	forms.	If	you	specify	the	SCROLL	or	INSENSITIVE
keywords	before	the	CURSOR	keyword,	you	cannot	use	any	keywords	between
the	CURSOR	and	FOR	select_statement	keywords.	If	you	specify	any	keywords
between	the	CURSOR	and	FOR	select_statement	keywords,	you	cannot	specify
SCROLL	or	INSENSITIVE	before	the	CURSOR	keyword.

If	a	DECLARE	CURSOR	using	Transact-SQL	syntax	does	not	specify
READ_ONLY,	OPTIMISTIC,	or	SCROLL_LOCKS,	the	default	is	as	follows:

If	the	SELECT	statement	does	not	support	updates	(insufficient
permissions,	accessing	remote	tables	that	do	not	support	updates,	and	so
on),	the	cursor	is	READ_ONLY.

STATIC	and	FAST_FORWARD	cursors	default	to	READ_ONLY.

DYNAMIC	and	KEYSET	cursors	default	to	OPTIMISTIC.

Cursor	names	can	be	referenced	only	by	other	Transact-SQL	statements.	They
cannot	be	referenced	by	database	API	functions.	For	example,	after	declaring	a
cursor,	the	cursor	name	cannot	be	referenced	from	OLE	DB,	ODBC,	ADO,	or
DB-Library	functions	or	methods.	The	cursor	rows	cannot	be	fetched	using	the
fetch	functions	or	methods	of	the	APIs;	the	rows	can	be	fetched	only	by
Transact-SQL	FETCH	statements.

After	a	cursor	has	been	declared,	these	system	stored	procedures	can	be	used	to
determine	the	characteristics	of	the	cursor.

System	stored	procedure Description
sp_cursor_list Returns	a	list	of	cursors	currently	visible	on

the	connection	and	their	attributes.
sp_describe_cursor Describes	the	attributes	of	a	cursor,	such	as

whether	it	is	a	forward-only	or	scrolling
cursor.

sp_describe_cursor_columnsDescribes	the	attributes	of	the	columns	in
the	cursor	result	set.

sp_describe_cursor_tables Describes	the	base	tables	accessed	by	the
cursor.

Variables	may	be	used	as	part	of	the	select_statement	that	declares	a	cursor.
However,	changes	to	those	variables	after	the	cursor	has	been	declared	will	have
no	affect	on	the	cursor's	operation.

Permissions
DECLARE	CURSOR	permissions	default	to	any	user	that	has	SELECT
permissions	on	the	views,	tables,	and	columns	used	in	the	cursor.

Examples

A.	Use	simple	cursor	and	syntax
The	result	set	generated	at	the	opening	of	this	cursor	includes	all	rows	and	all
columns	in	the	authors	table	of	the	pubs	database.	This	cursor	can	be	updated,
and	all	updates	and	deletes	are	represented	in	fetches	made	against	this	cursor.
FETCH	NEXT	is	the	only	fetch	available	because	the	SCROLL	option	has	not
been	specified.

DECLARE	authors_cursor	CURSOR
			FOR	SELECT	*	FROM	authors
OPEN	authors_cursor

FETCH	NEXT	FROM	authors_cursor

B.	Use	nested	cursors	to	produce	report	output
This	example	shows	how	cursors	can	be	nested	to	produce	complex	reports.	The
inner	cursor	is	declared	for	each	author.

SET	NOCOUNT	ON

DECLARE	@au_id	varchar(11),	@au_fname	varchar(20),	@au_lname	varchar(40),
			@message	varchar(80),	@title	varchar(80)

PRINT	"--------	Utah	Authors	report	--------"

DECLARE	authors_cursor	CURSOR	FOR	
SELECT	au_id,	au_fname,	au_lname
FROM	authors
WHERE	state	=	"UT"
ORDER	BY	au_id

OPEN	authors_cursor

FETCH	NEXT	FROM	authors_cursor	
INTO	@au_id,	@au_fname,	@au_lname

WHILE	@@FETCH_STATUS	=	0
BEGIN
			PRINT	"	"
			SELECT	@message	=	"-----	Books	by	Author:	"	+	
						@au_fname	+	"	"	+	@au_lname

			PRINT	@message

			--	Declare	an	inner	cursor	based			

			--	on	au_id	from	the	outer	cursor.

			DECLARE	titles_cursor	CURSOR	FOR	
			SELECT	t.title
			FROM	titleauthor	ta,	titles	t
			WHERE	ta.title_id	=	t.title_id	AND
			ta.au_id	=	@au_id			--	Variable	value	from	the	outer	cursor

			OPEN	titles_cursor
			FETCH	NEXT	FROM	titles_cursor	INTO	@title

			IF	@@FETCH_STATUS	<>	0	
						PRINT	"									<<No	Books>>"					

			WHILE	@@FETCH_STATUS	=	0
			BEGIN
						
						SELECT	@message	=	"									"	+	@title
						PRINT	@message
						FETCH	NEXT	FROM	titles_cursor	INTO	@title
			
			END

			CLOSE	titles_cursor
			DEALLOCATE	titles_cursor
			
			--	Get	the	next	author.
			FETCH	NEXT	FROM	authors_cursor	
			INTO	@au_id,	@au_fname,	@au_lname
END

CLOSE	authors_cursor
DEALLOCATE	authors_cursor

GO

--------	Utah	Authors	report	--------
	
-----	Books	by	Author:	Anne	Ringer
									The	Gourmet	Microwave
									Is	Anger	the	Enemy?
	
-----	Books	by	Author:	Albert	Ringer
									Is	Anger	the	Enemy?
									Life	Without	Fear

See	Also

@@FETCH_STATUS

CLOSE

Cursors

DEALLOCATE

FETCH

OPEN

SELECT

sp_configure

JavaScript:hhobj_6.Click()

Transact-SQL	Reference

DEGREES
Given	an	angle	in	radians,	returns	the	corresponding	angle	in	degrees.

Syntax
DEGREES	(numeric_expression)

Arguments
numeric_expression

Is	an	expression	of	the	exact	numeric	or	approximate	numeric	data	type
category,	except	for	the	bit	data	type.

Return	Code	Values
Returns	the	same	type	as	numeric_expression.

Examples
This	example	returns	the	number	of	degrees	in	an	angle	of	PI/2	radians.

SELECT	'The	number	of	degrees	in	PI/2	radians	is:	'	+	
CONVERT(varchar,	DEGREES((PI()/2)))
GO

Here	is	the	result	set:

The	number	of	degrees	in	PI/2	radians	is	90							

(1	row(s)	affected)

See	Also

Mathematical	Functions

Transact-SQL	Reference

DELETE
Removes	rows	from	a	table.

Syntax
DELETE	
				[FROM]	
								{	table_name	WITH	(<	table_hint_limited	>	[...n])	
									|	view_name	
									|	rowset_function_limited	
								}	

								[FROM	{	<	table_source	>	}	[,...n]]

				[WHERE	
								{	<	search_condition	>	
								|	{	[CURRENT	OF	
																{	{	[GLOBAL]	cursor_name	}	
																				|	cursor_variable_name	
																}	
]	}
								}	
]	
				[OPTION	(<	query_hint	>	[,...n])]

<	table_source	>	::=	
				table_name	[[AS]	table_alias]	[WITH	(<	table_hint	>	[,...n])]	
				|	view_name	[[AS]	table_alias]	
				|	rowset_function	[[AS]	table_alias]	
				|	derived_table	[AS]	table_alias	[(column_alias	[,...n])]	
				|	<	joined_table	>

<	joined_table	>	::=	
				<	table_source	>	<	join_type	>	<	table_source	>	ON	<	search_condition	>	
				|	<	table_source	>	CROSS	JOIN	<	table_source	>	
				|	<	joined_table	>

<	join_type	>	::=	
				[INNER	|	{	{	LEFT	|	RIGHT	|	FULL	}	[OUTER]	}]	
				[<	join_hint	>]	
				JOIN

<	table_hint_limited	>	::=	
				{	FASTFIRSTROW	
								|	HOLDLOCK	
								|	PAGLOCK	
								|	READCOMMITTED	
								|	REPEATABLEREAD	
								|	ROWLOCK	
								|	SERIALIZABLE	
								|	TABLOCK	
								|	TABLOCKX	
								|	UPDLOCK
				}

<	table_hint	>	::=	
				{	INDEX	(index_val	[,...n])	
								|	FASTFIRSTROW	
								|	HOLDLOCK	
								|	NOLOCK	
								|	PAGLOCK	
								|	READCOMMITTED	
								|	READPAST	
								|	READUNCOMMITTED	
								|	REPEATABLEREAD	
								|	ROWLOCK	
								|	SERIALIZABLE	
								|	TABLOCK	
								|	TABLOCKX	
								|	UPDLOCK	
				}

<	query_hint	>	::=	
				{	{	HASH	|	ORDER	}	GROUP	
								|	{	CONCAT	|	HASH	|	MERGE	}	UNION	
								|	FAST	number_rows	

								|	FORCE	ORDER	
								|	MAXDOP	
								|	ROBUST	PLAN	
								|	KEEP	PLAN	
				}

Arguments
FROM

Is	an	optional	keyword	that	can	be	used	between	the	DELETE	keyword	and
the	target	table_name,	view_name,	or	rowset_function_limited.

table_name

Is	the	name	of	the	table	from	which	the	rows	are	to	be	removed.

A	table	variable,	within	its	scope,	or	a	four-part	table	name	(or	view	name)
using	the	OPENDATASOURCE	function	as	the	server	name	also	may	be
used	as	a	table	source	in	a	DELETE	statement.

WITH	(<table_hint_limited>	[...n])

Specifies	one	or	more	table	hints	that	are	allowed	for	a	target	table.	The
WITH	keyword	and	the	parentheses	are	required.	READPAST,	NOLOCK,
and	READUNCOMMITTED	are	not	allowed.	For	more	information	about
table	hints,	see	FROM.

view_name

Is	the	name	of	a	view.	The	view	referenced	by	view_name	must	be	updatable
and	reference	exactly	one	base	table	in	the	FROM	clause	of	the	view.	For
more	information	about	updatable	views,	see	CREATE	VIEW.

Note		If	the	table	or	view	exists	in	another	database	or	has	an	owner	other	than
the	current	user,	use	a	four-part	qualified	name	in	the	format
server_name.database.[owner].object_name.	For	more	information,	see
Transact-SQL	Syntax	Conventions.

rowset_function_limited

Is	either	the	OPENQUERY	or	OPENROWSET	function,	subject	to	provider

capabilities.	For	more	information	about	capabilities	needed	by	the	provider,
see	UPDATE	and	DELETE	Requirements	for	OLE	DB	Providers.	For	more
information	about	the	rowset	functions,	see	OPENQUERY	and
OPENROWSET.

FROM	<table_source>

Specifies	an	additional	FROM	clause.	This	Transact-SQL	extension	to
DELETE	allows	you	to	specify	data	from	<table_sources>	and	delete
corresponding	rows	from	the	table	in	the	first	FROM	clause.

This	extension,	specifying	a	join,	can	be	used	instead	of	a	subquery	in	the
WHERE	clause	to	identify	rows	to	be	removed.

table_name	[[AS]	table_alias]
Is	the	name	of	the	table	to	provide	criteria	values	for	the	delete	operation.

view_name	[[AS]	table_alias]
Is	the	name	of	the	view	to	provide	criteria	values	for	the	delete	operation.
A	view	with	INSTEAD	OF	UPDATE	trigger	cannot	be	a	target	of	an
UPDATE	with	a	FROM	clause.

WITH	(<table_hint>
Specifies	one	or	more	table	hints.	For	more	information	about	table	hints,
see	FROM.

rowset_function	[[AS]	table_alias]
Is	the	name	of	a	rowset	function	and	an	optional	alias.	For	more
information	about	a	list	of	rowset	functions,	see	Rowset	Functions.

derived_table	[AS]	table_alias
Is	a	subquery	that	retrieves	rows	from	the	database.	derived_table	is	used
as	input	to	the	outer	query.

column_alias
Is	an	optional	alias	to	replace	a	column	name	in	the	result	set.	Include
one	column	alias	for	each	column	in	the	select	list,	and	enclose	the	entire
list	of	column	aliases	in	parentheses.

<joined_table>

JavaScript:hhobj_1.Click()

Is	a	result	set	that	is	the	product	of	two	or	more	tables,	for	example:

SELECT	*
FROM	tab1	LEFT	OUTER	JOIN	tab2	ON	tab1.c3	=	tab2.c3
				RIGHT	OUTER	JOIN	tab3	LEFT	OUTER	JOIN	tab4
								ON	tab3.c1	=	tab4.c1
								ON	tab2.c3	=	tab4.c3

For	multiple	CROSS	joins,	use	parentheses	to	change	the	natural	order	of	the
joins.

<join_type>

Specifies	the	type	of	join	operation.

INNER
Specifies	all	matching	pairs	of	rows	are	returned.	Discards	unmatched
rows	from	both	tables.	This	is	the	default	if	no	join	type	is	specified.

LEFT	[OUTER]
Specifies	that	all	rows	from	the	left	table	not	meeting	the	specified
condition	are	included	in	the	result	set,	and	output	columns	from	the	right
table	are	set	to	NULL	in	addition	to	all	rows	returned	by	the	inner	join.

RIGHT	[OUTER]
Specifies	that	all	rows	from	the	right	table	not	meeting	the	specified
condition	are	included	in	the	result	set,	and	output	columns	from	the	left
table	are	set	to	NULL	in	addition	to	all	rows	returned	by	the	inner	join.

FULL	[OUTER]
If	a	row	from	either	the	left	or	right	table	does	not	match	the	selection
criteria,	specifies	the	row	be	included	in	the	result	set,	and	output
columns	that	correspond	to	the	other	table	be	set	to	NULL.	This	is	in
addition	to	all	rows	usually	returned	by	the	inner	join.

JOIN
Is	a	keyword	to	indicate	that	an	SQL-92	style	join	be	used	in	the	delete
operation.

ON	<search_condition>

Specifies	the	condition	on	which	the	join	is	based.	The	condition	can	specify
any	predicate,	although	columns	and	comparison	operators	are	often	used,
for	example:

FROM	Suppliers	JOIN	Products	
				ON	(Suppliers.SupplierID	=	Products.SupplierID)

When	the	condition	specifies	columns,	they	need	not	have	the	same	name	or
same	data	type;	however,	if	the	data	types	are	not	identical,	they	must	be
either	compatible	or	types	that	Microsoft®	SQL	Server™	can	implicitly
convert.	If	the	data	types	cannot	be	implicitly	converted,	the	condition	must
explicitly	convert	the	data	type	using	the	CAST	function.

For	more	information	about	search	conditions	and	predicates,	see	Search
Condition.

CROSS	JOIN

Specifies	the	cross-product	of	two	tables.	Returns	the	same	rows	as	if	no
WHERE	clause	was	specified	in	an	old-style,	non-SQL-92-style	join.

WHERE

Specifies	the	conditions	used	to	limit	the	number	of	rows	that	are	deleted.	If
a	WHERE	clause	is	not	supplied,	DELETE	removes	all	the	rows	from	the
table.	There	are	two	forms	of	delete	operations	based	on	what	is	specified	in
the	WHERE	clause:

Searched	deletes	specify	a	search	condition	to	qualify	the	rows	to
delete.

Positioned	deletes	use	the	CURRENT	OF	clause	to	specify	a	cursor.
The	delete	operation	occurs	at	the	current	position	of	the	cursor.	This
can	be	more	accurate	than	a	searched	DELETE	that	uses	a	WHERE
search_condition	clause	to	qualify	the	rows	to	be	deleted.	A	searched
DELETE	deletes	multiple	rows	if	the	search	condition	does	not
uniquely	identify	a	single	row.

<search_condition>
Specifies	the	restricting	conditions	for	the	rows	to	be	deleted.	There	is	no
limit	to	the	number	of	predicates	that	can	be	included	in	a	search
condition.	For	more	information,	see	Search	Condition.	

CURRENT	OF
Specifies	that	the	DELETE	is	done	at	the	current	position	of	the	specified
cursor.

GLOBAL
Specifies	that	cursor_name	refers	to	a	global	cursor.

cursor_name
Is	the	name	of	the	open	cursor	from	which	the	fetch	is	made.	If	both	a
global	and	a	local	cursor	with	the	name	cursor_name	exist,	this	argument
refers	to	the	global	cursor	if	GLOBAL	is	specified,	and	to	the	local
cursor	otherwise.	The	cursor	must	allow	updates.

cursor_variable_name
Is	the	name	of	a	cursor	variable.	The	cursor	variable	must	reference	a
cursor	that	allows	updates.

OPTION	(<query_hint>	[,...n])

Are	keywords	indicating	that	optimizer	hints	are	used	to	customize	SQL
Server's	processing	of	the	statement.

{HASH	|	ORDER}	GROUP
Specifies	that	the	aggregations	specified	in	the	GROUP	BY	or
COMPUTE	clause	of	the	query	should	use	hashing	or	ordering.

{MERGE	|	HASH	|	CONCAT}	UNION
Specifies	that	all	UNION	operations	should	be	performed	by	merging,
hashing,	or	concatenating	UNION	sets.	If	more	than	one	UNION	hint	is
specified,	the	query	optimizer	selects	the	least	expensive	strategy	from
those	hints	specified.

Note		If	a	<joint_hint>	is	also	specified	for	any	particular	pair	of	joined
tables	in	the	FROM	clause,	it	takes	precedence	over	any	<join_hint>

specified	in	the	OPTION	clause.

FAST	number_rows
Specifies	that	the	query	is	optimized	for	fast	retrieval	of	the	first
number_rows	(a	nonnegative	integer).	After	the	first	number_rows	are
returned,	the	query	continues	execution	and	produces	its	full	result	set.

FORCE	ORDER
Specifies	that	the	join	order	indicated	by	the	query	syntax	is	preserved
during	query	optimization.

MAXDOP	number
Overrides	the	max	degree	of	parallelism	configuration	option	(of
sp_configure)	only	for	the	query	specifying	this	option.	All	semantic
rules	used	with	max	degree	of	parallelism	configuration	option	are
applicable	when	using	the	MAXDOP	query	hint.	For	more	information,
see	max	degree	of	parallelism	Option.	

ROBUST	PLAN
Forces	the	query	optimizer	to	attempt	a	plan	that	works	for	the	maximum
potential	row	size	at	the	expense	of	performance.	If	such	a	plan	is	not
possible,	the	query	optimizer	returns	an	error	rather	than	deferring	error
detection	to	query	execution.	Rows	may	contain	variable-length
columns;	SQL	Server	allows	rows	to	be	defined	that	have	a	maximum
potential	size	beyond	the	ability	of	SQL	Server	to	process	them.	Usually,
despite	the	maximum	potential	size,	an	application	stores	rows	that	have
actual	sizes	within	the	limits	that	SQL	Server	can	process.	If	SQL	Server
encounters	a	row	that	is	too	long,	an	execution	error	is	returned.

KEEP	PLAN

Forces	the	query	optimizer	to	relax	the	estimated	recompile	threshold	for	a
query.	The	estimated	recompile	threshold	is	the	point	at	which	a	query	is
automatically	recompiled	when	the	estimated	number	of	indexed	column
changes	(update,	delete	or	insert)	have	been	made	to	a	table.	Specifying
KEEP	PLAN	ensures	that	a	query	will	not	be	recompiled	as	frequently	when
there	are	multiple	updates	to	a	table.

JavaScript:hhobj_2.Click()

Remarks
DELETE	may	be	used	in	the	body	of	a	user-defined	function	if	the	object
modified	is	a	table	variable.

A	four-part	table	name	(or	view	name)	using	the	OPENDATASOURCE	function
as	the	server	name	may	be	used	as	a	table	source	in	all	places	a	table	name	can
appear.

The	DELETE	statement	may	fail	if	it	violates	a	trigger	or	attempts	to	remove	a
row	referenced	by	data	in	another	table	with	a	FOREIGN	KEY	constraint.	If	the
DELETE	removes	multiple	rows,	and	any	one	of	the	removed	rows	violates	a
trigger	or	constraint,	the	statement	is	canceled,	an	error	is	returned,	and	no	rows
are	removed.

When	an	INSTEAD-OF	trigger	is	defined	on	DELETE	actions	against	a	table	or
view,	the	trigger	executes	instead	of	the	DELETE	statement.	Earlier	versions	of
SQL	Server	only	support	AFTER	triggers	on	DELETE	and	other	data
modification	statements.

When	a	DELETE	statement	encounters	an	arithmetic	error	(overflow,	divide	by
zero,	or	a	domain	error)	occurring	during	expression	evaluation,	SQL	Server
handles	these	errors	as	if	SET	ARITHABORT	is	ON.	The	remainder	of	the	batch
is	canceled,	and	an	error	message	is	returned.

The	setting	of	the	SET	ROWCOUNT	option	is	ignored	for	DELETE	statements
against	remote	tables	and	local	and	remote	partitioned	views.

If	you	want	to	delete	all	the	rows	in	a	table,	TRUNCATE	TABLE	is	faster	than
DELETE.	DELETE	physically	removes	rows	one	at	a	time	and	records	each
deleted	row	in	the	transaction	log.	TRUNCATE	TABLE	deallocates	all	pages
associated	with	the	table.	For	this	reason,	TRUNCATE	TABLE	is	faster	and
requires	less	transaction	log	space	than	DELETE.	TRUNCATE	TABLE	is
functionally	equivalent	to	DELETE	with	no	WHERE	clause,	but	TRUNCATE
TABLE	cannot	be	used	with	tables	referenced	by	foreign	keys.	Both	DELETE
and	TRUNCATE	TABLE	make	the	space	occupied	by	the	deleted	rows	available
for	the	storage	of	new	data.

Permissions
DELETE	permissions	default	to	members	of	the	sysadmin	fixed	server	role,	the

db_owner	and	db_datawriter	fixed	database	roles,	and	the	table	owner.
Members	of	the	sysadmin,	db_owner,	and	the	db_securityadmin	roles,	and	the
table	owner	can	transfer	permissions	to	other	users.

SELECT	permissions	are	also	required	if	the	statement	contains	a	WHERE
clause.

Examples

A.	Use	DELETE	with	no	parameters
This	example	deletes	all	rows	from	the	authors	table.

USE	pubs
DELETE	authors

B.	Use	DELETE	on	a	set	of	rows
Because	au_lname	may	not	be	unique,	this	example	deletes	all	rows	in	which
au_lname	is	McBadden.

USE	pubs
DELETE	FROM	authors
WHERE	au_lname	=	'McBadden'

C.	Use	DELETE	on	the	current	row	of	a	cursor
This	example	shows	a	delete	made	against	a	cursor	named
complex_join_cursor.	It	affects	only	the	single	row	currently	fetched	from	the
cursor.

USE	pubs
DELETE	FROM	authors
WHERE	CURRENT	OF	complex_join_cursor

D.	Use	DELETE	based	on	a	subquery	or	use	the	Transact-SQL
extension
This	example	shows	the	Transact-SQL	extension	used	to	delete	records	from	a

base	table	that	is	based	on	a	join	or	correlated	subquery.	The	first	DELETE
shows	the	SQL-92-compatible	subquery	solution,	and	the	second	DELETE
shows	the	Transact-SQL	extension.	Both	queries	remove	rows	from	the
titleauthors	table	based	on	the	titles	stored	in	the	titles	table.

/*	SQL-92-Standard	subquery	*/
USE	pubs
DELETE	FROM	titleauthor
WHERE	title_id	IN	
			(SELECT	title_id	
			FROM	titles
			WHERE	title	LIKE	'%computers%')

/*	Transact-SQL	extension	*/
USE	pubs
DELETE	titleauthor
FROM	titleauthor	INNER	JOIN	titles	
			ON	titleauthor.title_id	=	titles.title_id
WHERE	titles.title	LIKE	'%computers%'

E.	Use	DELETE	and	a	SELECT	with	the	TOP	Clause
Because	a	SELECT	statement	can	be	specified	in	a	DELETE	statement,	the	TOP
clause	can	also	be	used	within	the	SELECT	statement.	For	example,	this
example	deletes	the	top	10	authors	from	the	authors	table.

DELETE	authors	
FROM	(SELECT	TOP	10	*	FROM	authors)	AS	t1
WHERE	authors.au_id	=	t1.au_id

See	Also

CREATE	TABLE

CREATE	TRIGGER

Cursors

JavaScript:hhobj_3.Click()

DROP	TABLE

INSERT

SELECT

TRUNCATE	TABLE

UPDATE

Transact-SQL	Reference

DENY
Creates	an	entry	in	the	security	system	that	denies	a	permission	from	a	security
account	in	the	current	database	and	prevents	the	security	account	from	inheriting
the	permission	through	its	group	or	role	memberships.

Syntax
Statement	permissions:

DENY	{	ALL	|	statement	[,...n]	}	
TO	security_account	[,...n]

Object	permissions:

DENY	
				{	ALL	[PRIVILEGES]	|	permission	[,...n]	}	
				{	
								[(column	[,...n])]	ON	{	table	|	view	}	
								|	ON	{	table	|	view	}	[(column	[,...n])]	
								|	ON	{	stored_procedure	|	extended_procedure	}	
								|	ON	{	user_defined_function	}	
				}	
TO	security_account	[,...n]	
[CASCADE]

Arguments
ALL

Specifies	that	all	applicable	permissions	are	denied.	For	statement
permissions,	ALL	can	be	used	only	by	members	of	the	sysadmin	role.	For
object	permissions,	ALL	can	be	used	by	members	of	the	sysadmin	and
db_owner	roles,	and	database	object	owners.

statement

Is	the	statement	for	which	permission	is	denied.	The	statement	list	can
include:

CREATE	DATABASE

CREATE	DEFAULT

CREATE	FUNCTION

CREATE	PROCEDURE

CREATE	RULE

CREATE	TABLE

CREATE	VIEW

BACKUP	DATABASE

BACKUP	LOG

n

Is	a	placeholder	indicating	that	the	item	can	be	repeated	in	a	comma-
separated	list.

TO

Specifies	the	security	account	list.

security_account

Is	the	name	of	the	security	account	in	the	current	database	affected	by	the
denied	permission.	The	security	account	can	be	a:

Microsoft®	SQL	Server™	user.

SQL	Server	role.

Microsoft	Windows	NT®	user.

Windows	NT	group.

When	a	permission	is	denied	from	a	SQL	Server	user	or	Windows	NT	user
account,	the	specified	security_account	is	the	only	account	affected	by	the
permission.	If	a	permission	is	denied	from	a	SQL	Server	role	or	a	Windows
NT	group,	the	permission	affects	all	users	in	the	current	database	who	are
members	of	the	group	or	role,	regardless	of	the	permissions	that	have	been
granted	to	the	members	of	the	group	or	role.	If	there	are	permission	conflicts
between	a	group	or	role	and	its	members,	the	most	restrictive	permission
(DENY)	takes	precedence.

Two	special	security	accounts	can	be	used	with	DENY.	Permissions	denied
from	the	public	role	are	applied	to	all	users	in	the	database.	Permissions
denied	from	the	guest	user	are	used	by	all	users	who	do	not	have	a	user
account	in	the	database.

When	denying	permissions	to	a	Windows	NT	local	or	global	group,	specify
the	domain	or	computer	name	the	group	is	defined	on,	followed	by	a
backslash,	then	the	group	name.	However,	to	deny	permissions	to	a	Windows
NT	built-in	local	group,	specify	BUILTIN	instead	of	the	domain	or	computer
name.

PRIVILEGES

Is	an	optional	keyword	that	can	be	included	for	SQL-92	compliance.

permission

Is	a	denied	object	permission.	When	permissions	are	denied	on	a	table	or	a
view,	the	permission	list	can	include	one	or	more	of	these	statements:
SELECT,	INSERT,	DELETE,	or	UPDATE.

Object	permissions	denied	on	a	table	can	also	include	REFERENCES,	and
object	permissions	denied	on	a	stored	procedure	or	extended	stored
procedure	can	include	EXECUTE.	When	permissions	are	denied	on
columns,	the	permissions	list	can	include	SELECT	or	UPDATE.

column

Is	the	name	of	the	column	in	the	current	database	for	which	permissions	are
denied.

table

Is	the	name	of	the	table	in	the	current	database	for	which	permissions	are
denied.

view

Is	the	name	of	the	view	in	the	current	database	for	which	permissions	are
denied.

stored_procedure

Is	the	name	of	the	stored	procedure	in	the	current	database	for	which
permissions	are	denied.

extended_procedure

Is	the	name	of	an	extended	stored	procedure	for	which	permissions	are
denied.

user_defined_function

Is	the	name	of	the	user-defined	function	for	which	permissions	are	being
denied.

CASCADE

Specifies	that	permissions	are	denied	from	security_account	as	well	as	any
other	security	accounts	granted	permissions	by	security_account.	Use
CASCADE	when	denying	a	grantable	permission.	If	CASCADE	is	not
specified	and	the	specified	user	is	granted	WITH	GRANT	OPTION
permission,	an	error	is	returned.

Remarks
If	the	DENY	statement	is	used	to	prevent	a	user	from	gaining	a	permission	and
the	user	is	later	added	to	a	group	or	role	with	the	permission	granted,	the	user
does	not	gain	access	to	the	permission.

If	a	user	activates	an	application	role,	the	effect	of	DENY	is	null	for	any	objects
the	user	accesses	using	the	application	role.	Although	a	user	may	be	denied
access	to	a	specific	object	in	the	current	database,	if	the	application	role	has
access	to	the	object,	the	user	also	has	access	while	the	application	role	is
activated.

Use	the	REVOKE	statement	to	remove	a	denied	permission	from	a	user	account.
The	security	account	does	not	gain	access	to	the	permission	unless	the
permission	has	been	granted	to	a	group	or	role	in	which	the	user	is	a	member.
Use	the	GRANT	statement	to	both	remove	a	denied	permission,	and	explicitly
apply	the	permission	to	the	security	account.

Note		DENY	is	a	new	keyword	in	SQL	Server	version	6.x	compatibility	mode.
DENY	is	needed	to	specifically	deny	a	permission	from	a	user	account,	because
in	SQL	Server	version	7.0	REVOKE	removes	only	previously	granted	or	denied
permissions.	Existing	SQL	Server	6.x	scripts	that	use	REVOKE	may	have	to	be
changed	to	use	DENY	to	maintain	behavior.

Permissions
DENY	permissions	default	to	members	of	the	sysadmin,	db_owner,	or
db_securityadmin	roles,	and	database	object	owners.

Examples

A.	Deny	statement	permissions
This	example	denies	multiple	statement	permissions	to	multiple	users.	Users
cannot	use	the	CREATE	DATABASE	or	CREATE	TABLE	statements	unless
they	are	explicitly	granted	the	permission.

DENY	CREATE	DATABASE,	CREATE	TABLE
TO	Mary,	John,	[Corporate\BobJ]

B.	Deny	object	permissions	within	the	permission	hierarchy
This	example	shows	the	preferred	ordering	of	permissions.	First,	SELECT
permissions	are	granted	to	the	public	role.	After	this,	specific	permissions	are
denied	for	users	Mary,	John,	and	Tom.	These	users	then	have	no	permissions	to

the	authors	table.

USE	pubs
GO

GRANT	SELECT
ON	authors
TO	public
GO

DENY	SELECT,	INSERT,	UPDATE,	DELETE
ON	authors
TO	Mary,	John,	Tom

C.	Deny	permissions	to	a	SQL	Server	role
This	example	denies	CREATE	TABLE	permissions	to	all	members	of	the
Accounting	role.	Even	if	existing	users	of	Accounting	have	been	explicitly
granted	CREATE	TABLE	permission,	the	DENY	overrides	that	permission.

DENY	CREATE	TABLE	TO	Accounting

See	Also

Backward	Compatibility

GRANT

Denying	Permissions

REVOKE

sp_helprotect

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

DIFFERENCE
Returns	the	difference	between	the	SOUNDEX	values	of	two	character
expressions	as	an	integer.

Syntax
DIFFERENCE	(character_expression	,	character_expression)

Arguments
character_expression

Is	an	expression	of	type	char	or	varchar.

Return	Types
int

Remarks
The	integer	returned	is	the	number	of	characters	in	the	SOUNDEX	values	that
are	the	same.	The	return	value	ranges	from	0	through	4,	with	4	indicating	the
SOUNDEX	values	are	identical.

Examples
In	the	first	part	of	this	example,	the	SOUNDEX	values	of	two	very	similar
strings	are	compared,	and	DIFFERENCE	returns	a	value	of	4.	In	the	second	part
of	this	example,	the	SOUNDEX	values	for	two	very	different	strings	are
compared,	and	DIFFERENCE	returns	a	value	of	0.

USE	pubs
GO
--	Returns	a	DIFFERENCE	value	of	4,	the	least	possible	difference.
SELECT	SOUNDEX('Green'),
		SOUNDEX('Greene'),	DIFFERENCE('Green','Greene')

GO
--	Returns	a	DIFFERENCE	value	of	0,	the	highest	possible	difference.
SELECT	SOUNDEX('Blotchet-Halls'),
		SOUNDEX('Greene'),	DIFFERENCE('Blotchet-Halls',	'Greene')
GO

Here	is	the	result	set:

-----	-----	-----------	
G650		G650		4											

(1	row(s)	affected)
																								
-----	-----	-----------	
B432		G650		0											

(1	row(s)	affected)

See	Also

SOUNDEX

String	Functions

Transact-SQL	Reference

DROP	DATABASE
Removes	one	or	more	databases	from	Microsoft®	SQL	Server™.	Removing	a
database	deletes	the	database	and	the	disk	files	used	by	the	database.

Syntax
DROP	DATABASE	database_name	[,...n]

Arguments
database_name

Specifies	the	name	of	the	database	to	be	removed.	Execute	sp_helpdb	from
the	master	database	to	see	a	list	of	databases.

Remarks
To	use	DROP	DATABASE,	the	database	context	of	the	connection	must	be	in
the	master	database.

DROP	DATABASE	removes	damaged	databases	marked	as	suspect	and	removes
the	specified	database.	Before	dropping	a	database	used	in	replication,	first
remove	replication.	Any	database	published	for	transactional	replication,	or
published	or	subscribed	to	merge	replication	cannot	be	dropped.	For	more
information,	see	Administering	and	Monitoring	Replication.	If	a	database	is
damaged	and	replication	cannot	first	be	removed,	in	most	cases	you	still	can
drop	the	database	by	marking	it	as	an	offline	database.

A	dropped	database	can	be	re-created	only	by	restoring	a	backup.	You	cannot
drop	a	database	currently	in	use	(open	for	reading	or	writing	by	any	user).	When
a	database	is	dropped,	the	master	database	should	be	backed	up.

System	databases	(msdb,	master,	model,	tempdb)	cannot	be	dropped.

Permissions
DROP	DATABASE	permissions	default	to	the	database	owner,	members	of	the
sysadmin	and	dbcreator	fixed	server	roles,	and	are	not	transferable.

JavaScript:hhobj_1.Click()

Examples

A.	Drop	a	single	database
This	example	removes	all	references	for	the	publishing	database	from	the
system	tables.

DROP	DATABASE	publishing

B.	Drop	multiple	databases
This	example	removes	all	references	for	each	of	the	listed	databases	from	the
system	tables.

DROP	DATABASE	pubs,	newpubs

See	Also

ALTER	DATABASE

CREATE	DATABASE

sp_dropdevice

sp_helpdb

sp_renamedb

USE

Transact-SQL	Reference

DROP	DEFAULT
Removes	one	or	more	user-defined	defaults	from	the	current	database.

The	DROP	DEFAULT	statement	does	not	apply	to	DEFAULT	constraints.	For
more	information	about	dropping	DEFAULT	constraints	(created	by	using	the
DEFAULT	option	of	either	the	CREATE	TABLE	or	ALTER	TABLE
statements),	see	"ALTER	TABLE"	in	this	volume.

Syntax
DROP	DEFAULT	{	default	}	[,...n]

Arguments
default

Is	the	name	of	an	existing	default.	To	see	a	list	of	defaults	that	exist,	execute
sp_help.	Defaults	must	conform	to	the	rules	for	identifiers.	For	more
information,	see	Using	Identifiers.	Specifying	the	default	owner	name	is
optional.

n

Is	a	placeholder	indicating	that	multiple	defaults	can	be	specified.

Remarks
Before	dropping	a	default,	unbind	the	default	by	executing	sp_unbindefault	(if
the	default	is	currently	bound	to	a	column	or	a	user-defined	data	type).

After	a	default	is	dropped	from	a	column	that	allows	null	values,	NULL	is
inserted	in	that	position	when	rows	are	added	and	no	value	is	explicitly	supplied.
After	a	default	is	dropped	from	a	NOT	NULL	column,	an	error	message	is
returned	when	rows	are	added	and	no	value	is	explicitly	supplied.	These	rows
are	added	later	as	part	of	the	normal	INSERT	statement	behavior.

Permissions

JavaScript:hhobj_1.Click()

DROP	DEFAULT	permissions	default	to	the	owner	of	the	default,	and	are	not
transferable.	However,	members	of	the	db_owner	and	db_ddladmin	fixed
database	roles	and	the	sysadmin	fixed	server	role	can	drop	any	default	object	by
specifying	the	owner	in	DROP	DEFAULT.

Examples

A.	Drop	a	default
If	a	default	has	not	been	bound	to	a	column	or	to	a	user-defined	data	type,	it	can
simply	be	dropped	using	DROP	DEFAULT.	This	example	removes	the	user-
created	default	named	datedflt.

USE	pubs
IF	EXISTS	(SELECT	name	FROM	sysobjects
									WHERE	name	=	'datedflt'	
												AND	type	=	'D')
			DROP	DEFAULT	datedflt
GO

B.	Drop	a	default	that	has	been	bound	to	a	column
This	example	unbinds	the	default	associated	with	the	phone	column	of	the
authors	table	and	then	drops	the	default	named	phonedflt.

USE	pubs
IF	EXISTS	(SELECT	name	FROM	sysobjects
									WHERE	name	=	'phonedflt'	
												AND	type	=	'D')
			BEGIN	
						EXEC	sp_unbindefault	'authors.phone'
						DROP	DEFAULT	phonedflt
			END
GO

See	Also

CREATE	DEFAULT

sp_helptext

sp_help

sp_unbindefault

Transact-SQL	Reference

DROP	FUNCTION
Removes	one	or	more	user-defined	functions	from	the	current	database.	User-
defined	functions	are	created	using	CREATE	FUNCTION	and	modified	using
ALTER	FUNCTION.

Syntax
DROP	FUNCTION	{	[owner_name	.]	function_name	}	[,...n]

Arguments
function_name

Is	the	name	of	the	user-defined	function	or	functions	to	be	removed.
Specifying	the	owner	name	is	optional;	the	server	name	and	database	name
cannot	be	specified.

n

Is	a	placeholder	indicating	that	multiple	user-defined	functions	can	be
specified.

Permissions
DROP	FUNCTION	permissions	default	to	the	function	owner,	and	are	not
transferable.	However,	members	of	the	sysadmin	fixed	server	role	and	the
db_owner	and	db_ddladmin	fixed	database	roles	can	drop	any	object	by
specifying	the	owner	in	DROP	FUNCTION.

See	Also

ALTER	FUNCTION

CREATE	FUNCTION

User-defined	Functions

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

DROP	INDEX
Removes	one	or	more	indexes	from	the	current	database.

The	DROP	INDEX	statement	does	not	apply	to	indexes	created	by	defining
PRIMARY	KEY	or	UNIQUE	constraints	(created	by	using	the	PRIMARY	KEY
or	UNIQUE	options	of	either	the	CREATE	TABLE	or	ALTER	TABLE
statements,	respectively).	For	more	information	about	PRIMARY	or	UNIQUE
KEY	constraints,	see	"CREATE	TABLE"	or	"ALTER	TABLE"	in	this	volume.

Syntax
DROP	INDEX	'table.index	|	view.index'	[,...n]

Arguments
table	|	view

Is	the	table	or	indexed	view	in	which	the	indexed	column	is	located.	To	see	a
list	of	indexes	that	exist	on	a	table	or	view,	use	sp_helpindex	and	specify	the
table	or	view	name.	Table	and	view	names	must	conform	to	the	rules	for
identifiers.	For	more	information,	see	Using	Identifiers.	Specifying	the	table
or	view	owner	name	is	optional.

index

Is	the	name	of	the	index	to	be	dropped.	Index	names	must	conform	to	the
rules	for	identifiers.

n

Is	a	placeholder	indicating	that	multiple	indexes	can	be	specified.

Remarks
After	DROP	INDEX	is	executed,	all	the	space	previously	occupied	by	the	index
is	regained.	This	space	can	then	be	used	for	any	database	object.

DROP	INDEX	cannot	be	specified	on	an	index	on	a	system	table.

JavaScript:hhobj_1.Click()

To	drop	the	indexes	created	to	implement	PRIMARY	KEY	or	UNIQUE
constraints,	the	constraint	must	be	dropped.	For	more	information	about
dropping	constraints,	see	"ALTER	TABLE"	in	this	volume.

Nonclustered	indexes	have	different	pointers	to	data	rows	depending	on	whether
or	not	a	clustered	index	is	defined	for	the	table.	If	there	is	a	clustered	index	the
leaf	rows	of	the	nonclustered	indexes	use	the	clustered	index	keys	to	point	to	the
data	rows.	If	the	table	is	a	heap,	the	leaf	rows	of	nonclustered	indexes	use	row
pointers.	If	you	drop	a	clustered	index	on	a	table	with	nonclustered	indexes,	all
the	nonclustered	indexes	are	rebuilt	to	replace	the	clustered	index	keys	with	row
pointers.

Similarly,	when	the	clustered	index	of	an	indexed	view	is	dropped,	all
nonclustered	indexes	on	the	same	view	are	dropped	automatically.

Sometimes	indexes	are	dropped	and	re-created	to	reorganize	the	index,	for
example	to	apply	a	new	fillfactor	or	to	reorganize	data	after	a	bulk	load.	It	is
more	efficient	to	use	CREATE	INDEX	and	the	WITH	DROP_EXISTING	clause
for	this,	especially	for	clustered	indexes.	Dropping	a	clustered	index	causes	all
the	nonclustered	indexes	to	be	rebuilt.	If	the	clustered	index	is	then	re-created,
the	nonclustered	indexes	are	rebuilt	once	again	to	replace	the	row	pointers	with
clustered	index	keys.	The	WITH	DROP_EXISTING	clause	of	CREATE	INDEX
has	optimizations	to	prevent	this	overhead	of	rebuilding	the	nonclustered	indexes
twice.	DBCC	DBREINDEX	can	also	be	used	and	has	the	advantage	that	it	does
not	require	that	the	structure	of	the	index	be	known.

Permissions
DROP	INDEX	permissions	default	to	the	table	owner,	and	are	not	transferable.
However,	members	of	the	db_owner	and	db_ddladmin	fixed	database	role	or
sysadmin	fixed	server	role	can	drop	any	object	by	specifying	the	owner	in
DROP	INDEX.

Examples
This	example	removes	the	index	named	au_id_ind	in	the	authors	table.

USE	pubs
IF	EXISTS	(SELECT	name	FROM	sysindexes

									WHERE	name	=	'au_id_ind')
			DROP	INDEX	authors.au_id_ind
GO

See	Also

CREATE	INDEX

DBCC	DBREINDEX

sp_helpindex

sp_spaceused

Transact-SQL	Reference

DROP	PROCEDURE
Removes	one	or	more	stored	procedures	or	procedure	groups	from	the	current
database.

Syntax
DROP	PROCEDURE	{	procedure	}	[,...n]

Arguments
procedure

Is	name	of	the	stored	procedure	or	stored	procedure	group	to	be	removed.
Procedure	names	must	conform	to	the	rules	for	identifiers.	For	more
information,	see	Using	Identifiers.	Specifying	the	procedure	owner	name	is
optional,	and	a	server	name	or	database	name	cannot	be	specified.

n

Is	a	placeholder	indicating	that	multiple	procedures	can	be	specified.

Remarks
To	see	a	list	of	procedure	names,	use	sp_help.	To	display	the	procedure
definition	(which	is	stored	in	the	syscomments	system	table),	use	sp_helptext.
When	a	stored	procedure	is	dropped,	information	about	the	procedure	is
removed	from	the	sysobjects	and	syscomments	system	tables.

Individual	procedures	in	the	group	cannot	be	dropped;	the	entire	procedure
group	is	dropped.

User-defined	system	procedures	(prefixed	with	sp_)	are	dropped	from	the
master	database	whether	or	not	it	is	the	current	database.	If	the	system
procedure	is	not	found	in	the	current	database,	Microsoft®	SQL	Server™	tries	to
drop	it	from	the	master	database.

Permissions

JavaScript:hhobj_1.Click()

DROP	PROCEDURE	permissions	default	to	the	procedure	owner	and	are	not
transferable.	However,	members	of	the	db_owner	and	db_ddladmin	fixed
database	roles	and	the	sysadmin	fixed	server	role	can	drop	any	object	by
specifying	the	owner	in	DROP	PROCEDURE.

Examples
This	example	removes	the	byroyalty	stored	procedure	(in	the	current	database).

DROP	PROCEDURE	byroyalty
GO

See	Also

ALTER	PROCEDURE

CREATE	PROCEDURE

sp_depends

sp_helptext

sp_rename

syscomments

sysobjects

USE

Transact-SQL	Reference

DROP	RULE
Removes	one	or	more	user-defined	rules	from	the	current	database.

Syntax
DROP	RULE	{	rule	}	[,...n]

Arguments
rule

Is	the	rule	to	be	removed.	Rule	names	must	conform	to	the	rules	for
identifiers.	For	more	information	about	rules	for	identifiers,	see	Using
Identifiers.	Specifying	the	rule	owner	name	is	optional.

n

Is	a	placeholder	indicating	that	multiple	rules	can	be	specified.

Remarks
To	drop	a	rule,	first	unbind	it	if	the	rule	is	currently	bound	to	a	column	or	to	a
user-defined	data	type.	Use	sp_unbindrule	to	unbind	the	rule.	If	the	rule	is
bound	when	attempting	to	drop	it,	an	error	message	is	displayed	and	the	DROP
RULE	statement	is	canceled.

After	a	rule	is	dropped,	new	data	entered	into	the	columns	previously	governed
by	the	rule	is	entered	without	the	rule's	constraints.	Existing	data	is	not	affected
in	any	way.

The	DROP	RULE	statement	does	not	apply	to	CHECK	constraints.	For	more
information	about	dropping	CHECK	constraints,	see	"ALTER	TABLE"	in	this
volume.

Permissions
DROP	RULE	permissions	default	to	the	rule	owner	and	are	not	transferable.
However,	members	of	the	db_owner	and	db_ddladmin	fixed	database	roles	and

JavaScript:hhobj_1.Click()

the	sysadmin	fixed	server	role	can	drop	any	object	by	specifying	the	owner	in
DROP	RULE.

Examples
This	example	unbinds	and	then	drops	the	rule	named	pub_id_rule.

USE	pubs
IF	EXISTS	(SELECT	name	FROM	sysobjects
									WHERE	name	=	'pub_id_rule'
												AND	type	=	'R')
			BEGIN
						EXEC	sp_unbindrule	'publishers.pub_id'
						DROP	RULE	pub_id_rule
			END
GO

See	Also

CREATE	RULE

sp_bindrule

sp_help

sp_helptext

sp_unbindrule

USE

Transact-SQL	Reference

DROP	STATISTICS
Drops	statistics	for	multiple	collections	within	the	specified	tables	(in	the	current
database).

Syntax
DROP	STATISTICS	table.statistics_name	|	view.statistics_name	[,...n]

Arguments
table	|	view

Is	the	name	of	the	target	table	or	indexed	view	for	which	statistics	should	be
dropped.	Table	and	view	names	must	conform	to	the	rules	for	identifiers.	For
more	information,	see	Using	Identifiers.	Specifying	the	table	or	view	owner
name	is	optional.

statistics_name

Is	the	name	of	the	statistics	group	to	drop.	Statistics	names	must	conform	to
the	rules	for	identifiers.

n

Is	a	placeholder	indicating	that	more	than	one	statistics_name	group
(collection)	can	be	specified.

Remarks
Be	careful	when	dropping	statistics	because	dropping	statistics	may	affect	the
plan	chosen	by	the	query	optimizer.

For	more	information	about	displaying	statistics,	see	"DBCC
SHOW_STATISTICS"	in	this	volume.	For	more	information	about	updating
statistics,	see	"UPDATE	STATISTICS"	and	the	auto	update	statistics	option	of
"sp_dboption"	in	this	volume.	For	more	information	about	creating	statistics,
see	"CREATE	STATISTICS",	"CREATE	INDEX",	and	the	auto	create	statistics
option	of	"sp_dboption"	in	this	volume.

JavaScript:hhobj_1.Click()

Permissions
DROP	STATISTICS	permissions	default	to	the	table	or	view	owner,	and	are	not
transferable.	However,	members	of	the	db_owner	and	db_ddladmin	fixed
database	roles	and	sysadmin	fixed	server	role	can	drop	any	object	by	specifying
the	owner	in	DROP	STATISTICS.

Examples
This	example	drops	the	anames	statistics	group	(collection)	of	the	authors	table
and	the	tnames	statistics	(collection)	of	the	titles	table.

--	Create	the	statistics	groups.
CREATE	STATISTICS	anames	
			ON	authors	(au_lname,	au_fname)
			WITH	SAMPLE	50	PERCENT
GO
CREATE	STATISTICS	tnames
			ON	titles	(title_id)
			WITH	FULLSCAN
GO
DROP	STATISTICS	authors.anames,	titles.tnames
GO

See	Also

CREATE	INDEX

CREATE	STATISTICS

DBCC	SHOW_STATISTICS

sp_autostats

sp_createstats

sp_dboption

UPDATE	STATISTICS

USE

Transact-SQL	Reference

DROP	TABLE
Removes	a	table	definition	and	all	data,	indexes,	triggers,	constraints,	and
permission	specifications	for	that	table.	Any	view	or	stored	procedure	that
references	the	dropped	table	must	be	explicitly	dropped	by	using	the	DROP
VIEW	or	DROP	PROCEDURE	statement.

Syntax
DROP	TABLE	table_name

Arguments
table_name

Is	the	name	of	the	table	to	be	removed.

Remarks
DROP	TABLE	cannot	be	used	to	drop	a	table	referenced	by	a	FOREIGN	KEY
constraint.	The	referencing	FOREIGN	KEY	constraint	or	the	referencing	table
must	first	be	dropped.

A	table	owner	can	drop	a	table	in	any	database.	When	a	table	is	dropped,	rules	or
defaults	on	it	lose	their	binding,	and	any	constraints	or	triggers	associated	with	it
are	automatically	dropped.	If	you	re-create	a	table,	you	must	rebind	the
appropriate	rules	and	defaults,	re-create	any	triggers,	and	add	all	necessary
constraints.

You	cannot	use	the	DROP	TABLE	statement	on	system	tables.

If	you	delete	all	rows	in	a	table	(DELETE	tablename)	or	use	the	TRUNCATE
TABLE	statement,	the	table	exists	until	it	is	dropped.

Permissions
DROP	TABLE	permissions	default	to	the	table	owner,	and	are	not	transferable.
However,	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	and
db_dlladmin	fixed	database	roles	can	drop	any	object	by	specifying	the	owner

in	the	DROP	TABLE	statement.

Examples

A.	Drop	a	table	in	the	current	database
This	example	removes	the	titles1	table	and	its	data	and	indexes	from	the	current
database.

DROP	TABLE	titles1

B.	Drop	a	table	in	another	database
This	example	drops	the	authors2	table	in	the	pubs	database.	It	can	be	executed
from	any	database.

DROP	TABLE	pubs.dbo.authors2

See	Also

ALTER	TABLE

CREATE	TABLE

DELETE

sp_depends

sp_help

sp_spaceused

TRUNCATE	TABLE

Transact-SQL	Reference

DROP	TRIGGER
Removes	one	or	more	triggers	from	the	current	database.

Syntax
DROP	TRIGGER	{	trigger	}	[,...n]

Arguments
trigger

Is	the	name	of	the	trigger(s)	to	remove.	Trigger	names	must	conform	to	the
rules	for	identifiers.	For	more	information	about	rules	for	identifiers,	see
Using	Identifiers.	Specifying	the	trigger	owner	name	is	optional.	To	see	a	list
of	currently	created	triggers,	use	sp_helptrigger.

n

Is	a	placeholder	indicating	that	multiple	triggers	can	be	specified.

Remarks
You	can	remove	a	trigger	by	dropping	it	or	by	dropping	the	trigger	table.	When	a
table	is	dropped,	all	associated	triggers	are	also	dropped.	When	a	trigger	is
dropped,	information	about	the	trigger	is	removed	from	the	sysobjects	and
syscomments	system	tables.

Use	DROP	TRIGGER	and	CREATE	TRIGGER	to	rename	a	trigger.	Use
ALTER	TRIGGER	to	change	the	definition	of	a	trigger.

For	more	information	about	determining	dependencies	for	a	specific	trigger,	see
"sp_depends"	in	this	volume.

For	more	information	about	viewing	the	text	of	the	trigger,	see	"sp_helptext"	in
this	volume.

For	more	information	about	viewing	a	list	of	existing	triggers,	see
"sp_helptrigger"	in	this	volume.

JavaScript:hhobj_1.Click()

Permissions
DROP	TRIGGER	permissions	default	to	the	trigger	table	owner,	and	are	not
transferable.	However,	members	of	the	db_owner	and	db_dlladmin	fixed
database	role	or	sysadmin	fixed	server	role	can	drop	any	object	by	explicitly
specifying	the	owner	in	the	DROP	TRIGGER	statement.

Examples
This	example	drops	the	employee_insupd	trigger.

USE	pubs
IF	EXISTS	(SELECT	name	FROM	sysobjects
						WHERE	name	=	'employee_insupd'	AND	type	=	'TR')
			DROP	TRIGGER	employee_insupd
GO

See	Also

ALTER	TRIGGER

CREATE	TRIGGER

sp_help

syscomments

sysobjects

Transact-SQL	Reference

DROP	VIEW
Removes	one	or	more	views	from	the	current	database.	DROP	VIEW	can	be
executed	against	indexed	views.

Syntax
DROP	VIEW	{	view	}	[,...n]

Arguments
view

Is	the	name	of	the	view(s)	to	be	removed.	View	names	must	conform	to	the
rules	for	identifiers.	For	more	information,	see	Using	Identifiers.	Specifying
the	view	owner	name	is	optional.	To	see	a	list	of	currently	created	views,	use
sp_help.

n

Is	a	placeholder	indicating	that	multiple	views	can	be	specified.

Remarks
When	you	drop	a	view,	the	definition	of	the	view	and	other	information	about
the	view	is	deleted	from	the	sysobjects,	syscolumns,	syscomments,
sysdepends,	and	sysprotects	system	tables.	All	permissions	for	the	view	are	also
deleted.

Any	view	on	a	dropped	table	(dropped	by	using	the	DROP	TABLE	statement)
must	be	dropped	explicitly	by	using	DROP	VIEW.

When	executed	against	an	indexed	view,	DROP	VIEW	automatically	drops	all
indexes	on	a	view.	Use	sp_helpindex	to	display	all	indexes	on	a	view.

When	querying	through	a	view,	Microsoft®	SQL	Server™	checks	to	make	sure
that	all	the	database	objects	referenced	anywhere	in	the	statement	exist,	that	they
are	valid	in	the	context	of	the	statement,	and	that	data	modification	statements	do
not	violate	any	data	integrity	rules.	A	check	that	fails	returns	an	error	message.	A

JavaScript:hhobj_1.Click()

successful	check	translates	the	action	into	an	action	against	the	underlying
table(s).

If	the	underlying	table(s)	or	view(s)	have	changed	since	the	view	was	originally
created,	it	may	be	useful	to	drop	and	re-create	the	view.

For	more	information	about	determining	dependencies	for	a	specific	view,	see
sp_depends.

For	more	information	about	viewing	the	text	of	the	view,	see	sp_helptext.

Permissions
DROP	VIEW	permissions	default	to	the	view	owner,	and	are	not	transferable.
However,	members	of	the	db_owner	and	db_ddladmin	fixed	database	role	and
sysadmin	fixed	server	role	can	drop	any	object	by	explicitly	specifying	the
owner	in	DROP	VIEW.

Examples
This	example	removes	the	view	titles_view.

USE	pubs
IF	EXISTS	(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.VIEWS
									WHERE	TABLE_NAME	=	'titles_view')
			DROP	VIEW	titles_view
GO

See	Also

ALTER	VIEW

CREATE	VIEW

syscolumns

syscomments

sysdepends

sysobjects

sysprotects

USE

Transact-SQL	Reference

DUMP
Makes	a	backup	copy	of	a	database	(DUMP	DATABASE)	or	makes	a	copy	of
the	transaction	log	(DUMP	TRANSACTION)	in	a	form	that	can	be	read	into
Microsoft®	SQL	Server™	using	the	BACKUP	or	LOAD	statements.

IMPORTANT		The	DUMP	statement	is	included	in	SQL	Server	version	2000	for
backward	compatibility.	It	is	recommended	that	the	BACKUP	statement	be	used
instead	of	the	DUMP	statement.	In	a	future	version	of	SQL	Server,	DUMP	will
not	be	supported.

See	Also

BACKUP

LOAD

sp_addumpdevice

sp_dropdevice

sp_helpdb

sp_helpdevice

sp_spaceused

Transact-SQL	Reference

ELSE	(IF...ELSE)
Imposes	conditions	on	the	execution	of	a	Transact-SQL	statement.	The	Transact-
SQL	statement	(sql_statement)	following	the	Boolean_expression	is	executed	if
the	Boolean_expression	evaluates	to	TRUE.	The	optional	ELSE	keyword	is	an
alternate	Transact-SQL	statement	that	is	executed	when	Boolean_expression
evaluates	to	FALSE	or	NULL.

Syntax
IF	Boolean_expression	{	sql_statement	|	statement_block	}	
[
				ELSE	
				{	sql_statement	|	statement_block	}]

Arguments
Boolean_expression

Is	an	expression	that	returns	TRUE	or	FALSE.	If	the	Boolean	expression
contains	a	SELECT	statement,	the	SELECT	statement	must	be	enclosed	in
parentheses.

{sql_statement	|	statement_block}

Is	any	valid	Transact-SQL	statement	or	statement	grouping	as	defined	with	a
statement	block.	To	define	a	statement	block	(batch),	use	the	control-of-flow
language	keywords	BEGIN	and	END.	Although	all	Transact-SQL	statements
are	valid	within	a	BEGIN...END	block,	certain	Transact-SQL	statements
should	not	be	grouped	together	within	the	same	batch	(statement	block).

Result	Types
Boolean

Examples
This	example	produces	a	list	of	traditional	cookbooks	priced	between	$10	and

$20	when	one	or	more	books	meet	these	conditions.	Otherwise,	SQL	Server
prints	a	message	that	no	books	meet	the	condition	and	a	list	of	traditional
cookbooks	that	costs	less	than	$10	is	produced.

USE	pubs
GO
DECLARE	@msg	varchar(255)
IF	(SELECT	COUNT(price)
			FROM	titles	
			WHERE	title_id	LIKE	'TC%'	AND	price	BETWEEN	10	AND	20)	>	0
			
			BEGIN
					SET	NOCOUNT	ON
					SET	@msg	=	'There	are	several	books	that	are	a	good	value	between	$10	and	$20.	These	books	are:	'
									PRINT	@msg
						SELECT	title	
					FROM	titles	
					WHERE	title_id	LIKE	'TC%'	AND	price	BETWEEN	10	AND	20
			END
ELSE
			BEGIN
					SET	NOCOUNT	ON
					SET	@msg	=	'There	are	no	books	between	$10	and	$20.	You	might	consider	the	following	books	that	are	under	$10.'
									PRINT	@msg
					SELECT	title	
					FROM	titles	
					WHERE	title_id	LIKE	'TC%'	AND	price	<	10							
			END

Here	is	the	result	set:

There	are	several	books	that	are	a	good	value	between	$10	and	$20.	These	books	are:	
title																																																																			
--
Fifty	Years	in	Buckingham	Palace	Kitchens

Sushi,	Anyone?

(2	row(s)	affected)

See	Also

ALTER	TRIGGER

Batches

Control-of-Flow	Language

CREATE	TRIGGER

IF...ELSE

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

END	(BEGIN...END)
Encloses	a	series	of	Transact-SQL	statements	that	will	execute	as	a	group.
BEGIN...END	blocks	can	be	nested.

Syntax
BEGIN	
				{	sql_statement	|	statement_block	}	
END

Arguments
{sql_statement	|	statement_block}

Is	any	valid	Transact-SQL	statement	or	statement	grouping	as	defined	with	a
statement	block.	To	define	a	statement	block	(batch),	use	the	control-of-flow
language	keywords	BEGIN	and	END.	Although	all	Transact-SQL	statements
are	valid	within	a	BEGIN...END	block,	certain	Transact-SQL	statements
should	not	be	grouped	together	within	the	same	batch	(statement	block).

Result	Types
Boolean

Examples
This	example	produces	a	list	of	business	books	that	are	priced	less	than	$20
when	one	or	more	books	meet	these	conditions.	Otherwise,	SQL	Server	prints	a
message	that	no	books	meet	the	conditions	and	a	list	of	all	books	that	cost	less
than	$20	is	produced.

SET	NOCOUNT	OFF
GO
USE	pubs
GO
SET	NOCOUNT	ON

GO
DECLARE	@msg	varchar(255)
IF	(SELECT	COUNT(price)
			FROM	titles	
			WHERE	title_id	LIKE	'BU%'	AND	price	<	20)	>	0
			
			BEGIN
					SET	@msg	=	'There	are	several	books	that	are	a	good	value	at	under	$20.	These	books	are:	'
									PRINT	@msg
					SET	NOCOUNT	OFF						
						SELECT	title	
						FROM	titles	
						WHERE	price	<	20
			END
ELSE
			BEGIN
					SET	@msg	=	'There	are	no	books	under	$20.	'
									PRINT	@msg
					SELECT	title	
					FROM	titles	
					WHERE	title_id	
					LIKE	'BU%'	
					AND	
					PRICE	<10
			END

Here	is	the	result	set:

There	are	several	books	that	are	a	good	value	at	under	$20.	These	books	are:	
title																																																																												
--
The	Busy	Executive's	Database	Guide																																														
Cooking	with	Computers:	Surreptitious	Balance	Sheets																													
You	Can	Combat	Computer	Stress!																																																		

Straight	Talk	About	Computers																																																				
Silicon	Valley	Gastronomic	Treats																																																
The	Gourmet	Microwave																																																												
Is	Anger	the	Enemy?																																																														
Life	Without	Fear																																																																
Prolonged	Data	Deprivation:	Four	Case	Studies																																				
Emotional	Security:	A	New	Algorithm																																														
Fifty	Years	in	Buckingham	Palace	Kitchens																																								
Sushi,	Anyone?																																																																			

(12	row(s)	affected)

See	Also

ALTER	TRIGGER

Batches

BEGIN...END

Control-of-Flow	Language

CREATE	TRIGGER

ELSE	(IF...ELSE)

IF...ELSE

WHILE

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

EXECUTE
Executes	a	scalar-valued,	user-defined	function,	a	system	procedure,	a	user-
defined	stored	procedure,	or	an	extended	stored	procedure.	Also	supports	the
execution	of	a	character	string	within	a	Transact-SQL	batch.

To	invoke	a	function,	use	the	syntax	described	for	EXECUTE	stored_procedure.

Syntax
Execute	a	stored	procedure:

[[EXEC	[UTE]]	
				{	
								[@return_status	=]	
												{	procedure_name	[;number]	|	@procedure_name_var	
				}	
				[[@parameter	=]	{	value	|	@variable	[OUTPUT]	|	[DEFAULT]]	
								[,...n]	
[WITH	RECOMPILE]

Execute	a	character	string:

EXEC	[UTE]	({	@string_variable	|	[N]	'tsql_string'	}	[+	...n])

Arguments
@return_status

Is	an	optional	integer	variable	that	stores	the	return	status	of	a	stored
procedure.	This	variable	must	be	declared	in	the	batch,	stored	procedure,	or
function	before	it	is	used	in	an	EXECUTE	statement.

When	used	to	invoke	a	scalar-valued	user-defined	function,	the
@return_status	variable	can	be	of	any	scalar	data	type.

procedure_name

Is	the	fully	qualified	or	nonfully	qualified	name	of	the	stored	procedure	to
call.	Procedure	names	must	conform	to	the	rules	for	identifiers.	For	more

information,	see	Using	Identifiers.	The	names	of	extended	stored	procedures
are	always	case-sensitive,	regardless	of	the	code	page	or	sort	order	of	the
server.

A	procedure	that	has	been	created	in	another	database	can	be	executed	if	the
user	executing	the	procedure	owns	the	procedure	or	has	the	appropriate
permission	to	execute	it	in	that	database.	A	procedure	can	be	executed	on
another	server	running	Microsoft®	SQL	Server™	if	the	user	executing	the
procedure	has	the	appropriate	permission	to	use	that	server	(remote	access)
and	to	execute	the	procedure	in	that	database.	If	a	server	name	is	specified
but	no	database	name	is	specified,	SQL	Server	looks	for	the	procedure	in	the
user's	default	database.

;number

Is	an	optional	integer	used	to	group	procedures	of	the	same	name	so	they	can
be	dropped	with	a	single	DROP	PROCEDURE	statement.	This	parameter	is
not	used	for	extended	stored	procedures.

Procedures	used	in	the	same	application	are	often	grouped	this	way.	For
example,	the	procedures	used	with	the	orders	application	may	be	named
orderproc;1,	orderproc;2,	and	so	on.	The	statement	DROP	PROCEDURE
orderproc	drops	the	entire	group.	After	the	procedures	have	been	grouped,
individual	procedures	within	the	group	cannot	be	dropped.	For	example,	the
statement	DROP	PROCEDURE	orderproc;2	is	not	allowed.	For	more
information	about	procedure	groups,	see	CREATE	PROCEDURE.

@procedure_name_var

Is	the	name	of	a	locally	defined	variable	that	represents	a	stored	procedure
name.

@parameter

Is	the	parameter	for	a	procedure,	as	defined	in	the	CREATE	PROCEDURE
statement.	Parameter	names	must	be	preceded	by	the	at	sign	(@).	When	used
with	the	@parameter_name	=	value	form,	parameter	names	and	constants	do
not	have	to	be	supplied	in	the	order	in	which	they	are	defined	in	the
CREATE	PROCEDURE	statement.	However,	if	the	@parameter_name	=
value	form	is	used	for	any	parameter,	it	must	be	used	for	all	subsequent
parameters.

JavaScript:hhobj_1.Click()

Parameters	are	nullable	by	default.	If	a	NULL	parameter	value	is	passed	and
that	parameter	is	used	in	a	CREATE	or	ALTER	TABLE	statement	in	which
the	column	referenced	does	not	allow	NULLs	(for	example,	inserting	into	a
column	that	does	not	allow	NULLs),	SQL	Server	generates	an	error.	To
prevent	passing	a	parameter	value	of	NULL	to	a	column	that	does	not	allow
NULLs,	either	add	programming	logic	to	the	procedure	or	use	a	default
value	(with	the	DEFAULT	keyword	of	CREATE	or	ALTER	TABLE)	for	the
column.

value

Is	the	value	of	the	parameter	to	the	procedure.	If	parameter	names	are	not
specified,	parameter	values	must	be	supplied	in	the	order	defined	in	the
CREATE	PROCEDURE	statement.

If	the	value	of	a	parameter	is	an	object	name,	character	string,	or	qualified	by
a	database	name	or	owner	name,	the	entire	name	must	be	enclosed	in	single
quotation	marks.	If	the	value	of	a	parameter	is	a	keyword,	the	keyword	must
be	enclosed	in	double	quotation	marks.

If	a	default	is	defined	in	the	CREATE	PROCEDURE	statement,	a	user	can
execute	the	procedure	without	specifying	a	parameter.	The	default	must	be	a
constant	and	can	include	the	wildcard	characters	%,	_,	[],	and	[^]	if	the
procedure	uses	the	parameter	name	with	the	LIKE	keyword.

The	default	can	also	be	NULL.	Usually,	the	procedure	definition	specifies
the	action	that	should	be	taken	if	a	parameter	value	is	NULL.

@variable

Is	the	variable	that	stores	a	parameter	or	a	return	parameter.

OUTPUT

Specifies	that	the	stored	procedure	returns	a	parameter.	The	matching
parameter	in	the	stored	procedure	must	also	have	been	created	with	the
keyword	OUTPUT.	Use	this	keyword	when	using	cursor	variables	as
parameters.

If	OUTPUT	parameters	are	being	used	and	the	intent	is	to	use	the	return
values	in	other	statements	within	the	calling	batch	or	procedure,	the	value	of
the	parameter	must	be	passed	as	a	variable	(that	is,	@parameter	=

@variable).	You	cannot	execute	a	procedure	specifying	OUTPUT	for	a
parameter	that	is	not	defined	as	an	OUTPUT	parameter	in	the	CREATE
PROCEDURE	statement.	Constants	cannot	be	passed	to	stored	procedures
using	OUTPUT;	the	return	parameter	requires	a	variable	name.	The
variable's	data	type	must	be	declared	and	a	value	assigned	before	executing
the	procedure.	Return	parameters	can	be	of	any	data	type	except	the	text	or
image	data	types.

DEFAULT

Supplies	the	default	value	of	the	parameter	as	defined	in	the	procedure.
When	the	procedure	expects	a	value	for	a	parameter	that	does	not	have	a
defined	default	and	either	a	parameter	is	missing	or	the	DEFAULT	keyword
is	specified,	an	error	occurs.

n

Is	a	placeholder	indicating	that	the	preceding	item(s)	can	be	repeated
multiple	times.	For	example,	EXECUTE	can	specify	one	or	more
@parameter,	value,	or	@variable	items.

WITH	RECOMPILE

Forces	a	new	plan	to	be	compiled.	Use	this	option	if	the	parameter	you	are
supplying	is	atypical	or	if	the	data	has	significantly	changed.	The	changed
plan	is	used	in	subsequent	executions.	This	option	is	not	used	for	extended
stored	procedures.	It	is	recommended	that	you	use	this	option	sparingly
because	it	is	expensive.

@string_variable

Is	the	name	of	a	local	variable.	@string_variable	can	be	of	char,	varchar,
nchar,	or	nvarchar	data	type	with	a	maximum	value	of	the	server's
available	memory.	If	the	string	is	greater	than	4,000	characters,	concatenate
multiple	local	variables	to	use	for	the	EXECUTE	string.	For	more
information	about	system-supplied	SQL	Server	data	types,	see	Data	Types.

[N]'tsql_string'

Is	a	constant	string.	tsql_string	can	be	of	nvarchar	or	varchar	data	type.	If
the	N	is	included,	the	string	is	interpreted	as	nvarchar	data	type	with	a
maximum	value	of	the	server's	available	memory.	If	the	string	is	greater	than

4,000	characters,	concatenate	multiple	local	variables	to	use	for	the
EXECUTE	string.

Remarks
If	the	first	three	characters	of	the	procedure	name	are	sp_,	SQL	Server	searches
the	master	database	for	the	procedure.	If	no	qualified	procedure	name	is
provided,	SQL	Server	searches	for	the	procedure	as	if	the	owner	name	is	dbo.	To
resolve	the	stored	procedure	name	as	a	user-defined	stored	procedure	with	the
same	name	as	a	system	stored	procedure,	provide	the	fully	qualified	procedure
name.

Parameters	can	be	supplied	either	by	using	value	or	by	using	@parameter_name
=	value.	A	parameter	is	not	part	of	a	transaction;	therefore,	if	a	parameter	is
changed	in	a	transaction	that	is	later	rolled	back,	the	parameter's	value	does	not
revert	to	its	previous	value.	The	value	returned	to	the	caller	is	always	the	value	at
the	time	the	procedure	returns.

Nesting	occurs	when	one	stored	procedure	calls	another.	The	nesting	level	is
incremented	when	the	called	procedure	begins	execution,	and	it	is	decremented
when	the	called	procedure	has	finished.	Exceeding	the	maximum	of	32	nesting
levels	causes	the	entire	calling	procedure	chain	to	fail.	The	current	nesting	level
is	stored	in	the	@@NESTLEVEL	function.

SQL	Server	currently	uses	return	values	0	through	-14	to	indicate	the	execution
status	of	stored	procedures.	Values	from	-15	through	-99	are	reserved	for	future
use.	For	more	information	about	a	list	of	reserved	return	status	values,	see
RETURN.

Because	remote	stored	procedures	and	extended	stored	procedures	are	not	within
the	scope	of	a	transaction	(unless	issued	within	a	BEGIN	DISTRIBUTED
TRANSACTION	statement	or	when	used	with	various	configuration	options),
commands	executed	through	calls	to	them	cannot	be	rolled	back.	For	more
information,	see	System	Stored	Procedures	and	BEGIN	DISTRIBUTED
TRANSACTION.

When	using	cursor	variables,	if	you	execute	a	procedure	that	passes	in	a	cursor
variable	with	a	cursor	allocated	to	it	an	error	occurs.

You	do	not	have	to	specify	the	EXECUTE	keyword	when	executing	stored

procedures	if	the	statement	is	the	first	one	in	a	batch.

Using	EXECUTE	with	a	Character	String
Use	the	string	concatenation	operator	(+)	to	create	large	strings	for	dynamic
execution.	Each	string	expression	can	be	a	mixture	of	Unicode	and	non-Unicode
data	types.

Although	each	[N]	'tsql_string'	or	@string_variable	must	be	less	than	8,000
bytes,	the	concatenation	is	performed	logically	in	the	SQL	Server	parser	and
never	materializes	in	memory.	For	example,	this	statement	never	produces	the
expected	16,000	concatenated	character	string:

EXEC('name_of_8000_char_string'	+	'another_name_of_8000_char_string')

Statement(s)	inside	the	EXECUTE	statement	are	not	compiled	until	the
EXECUTE	statement	is	executed.

Changes	in	database	context	last	only	until	the	end	of	the	EXECUTE	statement.
For	example,	after	the	EXEC	in	this	example,	the	database	context	is	master:

USE	master	EXEC	("USE	pubs")	SELECT	*	FROM	authors

Permissions
EXECUTE	permissions	for	a	stored	procedure	default	to	the	owner	of	the	stored
procedure,	who	can	transfer	them	to	other	users.	Permissions	to	use	the
statement(s)	within	the	EXECUTE	string	are	checked	at	the	time	EXECUTE	is
encountered,	even	if	the	EXECUTE	statement	is	included	within	a	stored
procedure.	When	a	stored	procedure	is	run	that	executes	a	string,	permissions	are
checked	in	the	context	of	the	user	who	executes	the	procedure,	not	in	the	context
of	the	user	who	created	the	procedure.	However,	if	a	user	owns	two	stored
procedures	in	which	the	first	procedure	calls	the	second,	then	EXECUTE
permission	checking	is	not	performed	for	the	second	stored	procedure.

Examples

A.	Use	EXECUTE	to	pass	a	single	parameter

The	showind	stored	procedure	expects	one	parameter	(@tabname),	a	table
name.	The	following	examples	execute	the	showind	stored	procedure	with	titles
as	its	parameter	value.

Note		The	showind	stored	procedure	is	shown	for	illustrative	purposes	only	and
does	not	exist	in	the	pubs	database.

EXEC	showind	titles

The	variable	can	be	explicitly	named	in	the	execution:

EXEC	showind	@tabname	=	titles

If	this	is	the	first	statement	in	a	batch	or	an	isql	script,	EXEC	is	not	required:

showind	titles

-Or-

showind	@tabname	=	titles

B.	Use	multiple	parameters	and	an	output	parameter
This	example	executes	the	roy_check	stored	procedure,	which	passes	three
parameters.	The	third	parameter,	@pc,	is	an	OUTPUT	parameter.	After	the
procedure	has	been	executed,	the	return	value	is	available	in	the	variable
@percent.

Note		The	roy_check	stored	procedure	is	shown	for	illustrative	purposes	only
and	does	not	exist	in	the	pubs	database.

DECLARE	@percent	int
EXECUTE	roy_check	'BU1032',	1050,	@pc	=	@percent	OUTPUT
SET	Percent	=	@percent

C.	Use	EXECUTE	'tsql_string'	with	a	variable
This	example	shows	how	EXECUTE	handles	dynamically	built	strings
containing	variables.	This	example	creates	the	tables_cursor	cursor	to	hold	a	list
of	all	user-defined	tables	(type	=	U).

Note		This	example	is	shown	for	illustrative	purposes	only.

DECLARE	tables_cursor	CURSOR
			FOR
			SELECT	name	FROM	sysobjects	WHERE	type	=	'U'
OPEN	tables_cursor
DECLARE	@tablename	sysname
FETCH	NEXT	FROM	tables_cursor	INTO	@tablename
WHILE	(@@FETCH_STATUS	<>	-1)
BEGIN
			/*	A	@@FETCH_STATUS	of	-2	means	that	the	row	has	been	deleted.
			There	is	no	need	to	test	for	this	because	this	loop	drops	all
			user-defined	tables.			*/.
			EXEC	('DROP	TABLE	'	+	@tablename)
			FETCH	NEXT	FROM	tables_cursor	INTO	@tablename
END
PRINT	'All	user-defined	tables	have	been	dropped	from	the	database.'
DEALLOCATE	tables_cursor

D.	Use	EXECUTE	with	a	remote	stored	procedure
This	example	executes	the	checkcontract	stored	procedure	on	the	remote	server
SQLSERVER1	and	stores	the	return	status	indicating	success	or	failure	in
@retstat.

DECLARE	@retstat	int
EXECUTE	@retstat	=	SQLSERVER1.pubs.dbo.checkcontract	'409-56-4008'

E.	Use	EXECUTE	with	an	extended	stored	procedure
This	example	uses	the	xp_cmdshell	extended	stored	procedure	to	list	a	directory
of	all	files	with	an	.exe	file	name	extension.

USE	master
EXECUTE	xp_cmdshell	'dir	*.exe'

F.	Use	EXECUTE	with	a	stored	procedure	variable
This	example	creates	a	variable	that	represents	a	stored	procedure	name.

DECLARE	@proc_name	varchar(30)
SET	@proc_name	=	'sp_who'
EXEC	@proc_name

G.	Use	EXECUTE	with	DEFAULT
This	example	creates	a	stored	procedure	with	default	values	for	the	first	and
third	parameters.	When	the	procedure	is	run,	these	defaults	are	inserted	for	the
first	and	third	parameters	if	no	value	is	passed	in	the	call	or	if	the	default	is
specified.	Note	the	various	ways	the	DEFAULT	keyword	can	be	used.

USE	pubs
IF	EXISTS	(SELECT	name	FROM	sysobjects	
						WHERE	name	=	'proc_calculate_taxes'	AND	type	=	'P')
			DROP	PROCEDURE	proc_calculate_taxes
GO
--	Create	the	stored	procedure.
CREATE	PROCEDURE	proc_calculate_taxes	(@p1	smallint	=	42,	@p2	char(1),	
						@p3	varchar(8)	=	'CAR')
				AS	
			SELECT	*	
			FROM	mytable

The	proc_calculate_taxes	stored	procedure	can	be	executed	in	many
combinations:

EXECUTE	proc_calculate_taxes	@p2	=	'A'
EXECUTE	proc_calculate_taxes	69,	'B'
EXECUTE	proc_calculate_taxes	69,	'C',	'House'
EXECUTE	proc_calculate_taxes	@p1	=	DEFAULT,	@p2	=	'D'
EXECUTE	proc_calculate_taxes	DEFAULT,	@p3	=	'Local',	@p2	=	'E'
EXECUTE	proc_calculate_taxes	69,	'F',	@p3	=	DEFAULT
EXECUTE	proc_calculate_taxes	95,	'G',	DEFAULT

EXECUTE	proc_calculate_taxes	DEFAULT,	'H',	DEFAULT
EXECUTE	proc_calculate_taxes	DEFAULT,	'I',	@p3	=	DEFAULT

See	Also

+	(String	Concatenation)

[]	(Wildcard	-	Character(s)	to	Match)

@@NESTLEVEL

ALTER	PROCEDURE

DECLARE	@local_variable

DROP	PROCEDURE

Functions

sp_depends

sp_helptext

Transact-SQL	Reference

EXISTS
Specifies	a	subquery	to	test	for	the	existence	of	rows.

Syntax
EXISTS	subquery

Arguments
subquery

Is	a	restricted	SELECT	statement	(the	COMPUTE	clause,	and	the	INTO
keyword	are	not	allowed).	For	more	information,	see	the	discussion	of
subqueries	in	SELECT.

Result	Types
Boolean

Result	Values
Returns	TRUE	if	a	subquery	contains	any	rows.

Examples

A.	Use	NULL	in	subquery	to	still	return	a	result	set
This	example	returns	a	result	set	with	NULL	specified	in	the	subquery	and	still
evaluates	to	TRUE	by	using	EXISTS.

USE	Northwind
GO
SELECT	CategoryName
FROM	Categories
WHERE	EXISTS	(SELECT	NULL)
ORDER	BY	CategoryName	ASC

GO

B.	Compare	queries	using	EXISTS	and	IN
This	example	compares	two	queries	that	are	semantically	equivalent.	The	first
query	uses	EXISTS	and	the	second	query	uses	IN.	Note	that	both	queries	return
the	same	information.

USE	pubs
GO
SELECT	DISTINCT	pub_name
FROM	publishers
WHERE	EXISTS
			(SELECT	*
			FROM	titles
			WHERE	pub_id	=	publishers.pub_id
			AND	type	=	'business')
GO

--	Or,	using	the	IN	clause:

USE	pubs
GO
SELECT	distinct	pub_name
FROM	publishers
WHERE	pub_id	IN
			(SELECT	pub_id
			FROM	titles
			WHERE	type	=	'business')
GO

Here	is	the	result	set	for	either	query:

pub_name																																	
--	

Algodata	Infosystems																					
New	Moon	Books																											

(2	row(s)	affected)

C.	Compare	queries	using	EXISTS	and	=	ANY
This	example	shows	two	queries	to	find	authors	who	live	in	the	same	city	as	a
publisher.	The	first	query	uses	=	ANY	and	the	second	uses	EXISTS.	Note	that
both	queries	return	the	same	information.

USE	pubs
GO
SELECT	au_lname,	au_fname
FROM	authors
WHERE	exists
			(SELECT	*
			FROM	publishers
			WHERE	authors.city	=	publishers.city)
GO

--	Or,	using	=	ANY

USE	pubs
GO
SELECT	au_lname,	au_fname
FROM	authors
WHERE	city	=	ANY
			(SELECT	city
			FROM	publishers)
GO

Here	is	the	result	set	for	either	query:

au_lname																																	au_fname													

--	--------------------	
Carson																																			Cheryl															
Bennet																																			Abraham														

(2	row(s)	affected)

D.	Compare	queries	using	EXISTS	and	IN
This	example	shows	queries	to	find	titles	of	books	published	by	any	publisher
located	in	a	city	that	begins	with	the	letter	B.

USE	pubs
GO
SELECT	title
FROM	titles
WHERE	EXISTS
			(SELECT	*
			FROM	publishers
			WHERE	pub_id	=	titles.pub_id
			AND	city	LIKE	'B%')
GO

--	Or,	using	IN:

USE	pubs
GO
SELECT	title
FROM	titles
WHERE	pub_id	IN
			(SELECT	pub_id
			FROM	publishers
			WHERE	city	LIKE	'B%')
GO

Here	is	the	result	set	for	either	query:

title																																																																												
--	
The	Busy	Executive's	Database	Guide																																														
Cooking	with	Computers:	Surreptitious	Balance	Sheets																													
You	Can	Combat	Computer	Stress!																																																		
Straight	Talk	About	Computers																																																				
But	Is	It	User	Friendly?																																																									
Secrets	of	Silicon	Valley																																																								
Net	Etiquette																																																																				
Is	Anger	the	Enemy?																																																														
Life	Without	Fear																																																																
Prolonged	Data	Deprivation:	Four	Case	Studies																																				
Emotional	Security:	A	New	Algorithm																																														

(11	row(s)	affected)

E.	Use	NOT	EXISTS
NOT	EXISTS	works	the	opposite	as	EXISTS.	The	WHERE	clause	in	NOT
EXISTS	is	satisfied	if	no	rows	are	returned	by	the	subquery.	This	example	finds
the	names	of	publishers	who	do	not	publish	business	books.

USE	pubs
GO
SELECT	pub_name
FROM	publishers
WHERE	NOT	EXISTS
			(SELECT	*
			FROM	titles
			WHERE	pub_id	=	publishers.pub_id
			AND	type	=	'business')
ORDER	BY	pub_name
GO

Here	is	the	result	set:

pub_name																																	
--	
Binnet	&	Hardley																									
Five	Lakes	Publishing																				
GGG&G																																				
Lucerne	Publishing																							
Ramona	Publishers																								
Scootney	Books																											

(6	row(s)	affected)

See	Also

Expressions

Functions

WHERE

Transact-SQL	Reference

EXP
Returns	the	exponential	value	of	the	given	float	expression.

Syntax
EXP	(float_expression)

Arguments
float_expression

Is	an	expression	of	type	float.

Return	Types
float

Examples
This	example	declares	a	variable	and	returns	the	exponential	value	of	the	given
variable	(378.615345498)	with	a	text	description.

DECLARE	@var	float
SET	@var	=	378.615345498
SELECT	'The	EXP	of	the	variable	is:	'	+	CONVERT(varchar,EXP(@var))
GO

Here	is	the	result	set:

The	EXP	of	the	variable	is:	2.69498e+164																			

(1	row(s)	affected)

See	Also

CAST	and	CONVERT

float	and	real

Mathematical	Functions

money	and	smallmoney

Transact-SQL	Reference

Expressions
A	combination	of	symbols	and	operators	that	Microsoft®	SQL	Server™
evaluates	to	obtain	a	single	data	value.	Simple	expressions	can	be	a	single
constant,	variable,	column,	or	scalar	function.	Operators	can	be	used	to	join	two
or	more	simple	expressions	into	a	complex	expression.

Syntax
{	constant	
				|	scalar_function	
				|	[alias.]	column	
				|	local_variable	
				|	(expression)	
				|	(scalar_subquery)	
				|	{	unary_operator	}	expression	
				|	expression	{	binary_operator	}	expression	
}

Arguments
constant

Is	a	symbol	that	represents	a	single,	specific	data	value.	constant	is	one	or
more	alphanumeric	characters	(letters	a-z,	A-Z,	and	numbers	0-9)	or	symbols
(exclamation	point	(!),	at	sign	(@),	number	sign	(#),	and	so	on).	Character
and	datetime	values	are	enclosed	in	quotation	marks,	while	binary	strings
and	numeric	constants	are	not.	For	more	information,	see	Constants.

scalar_function

Is	a	unit	of	Transact-SQL	syntax	that	provides	a	specific	service	and	returns	a
single	value.	scalar_function	can	be	built-in	scalar	functions,	such	as	the
SUM,	GETDATE,	or	CAST	functions,	or	scalar	user-defined	functions.

[alias.]

Is	the	alias,	or	correlation	name,	assigned	to	a	table	by	the	AS	keyword	in	the
FROM	clause.

column

Is	the	name	of	a	column.	Only	the	name	of	the	column	is	allowed	in	an
expression;	a	four-part	name	cannot	be	specified.

local_variable

Is	the	name	of	a	user-defined	variable.	For	more	information,	see	DECLARE
@local_variable.

(expression)

Is	any	valid	SQL	Server	expression	as	defined	in	this	topic.	The	parentheses
are	grouping	operators	that	ensure	that	all	the	operators	in	the	expression
within	the	parentheses	are	evaluated	before	the	resulting	expression	is
combined	with	another.

(scalar_subquery)

Is	a	subquery	that	returns	one	value.	For	example:

SELECT	MAX(UnitPrice)
FROM	Products

{unary_operator}

Is	an	operator	that	has	only	one	numeric	operand:

+	indicates	a	positive	number.

-	indicates	a	negative	number.

~	indicates	the	one's	complement	operator.

Unary	operators	can	be	applied	only	to	expressions	that	evaluate	to	any	of
the	data	types	of	the	numeric	data	type	category.

{binary_operator}

Is	an	operator	that	defines	the	way	two	expressions	are	combined	to	yield	a
single	result.	binary	_operator	can	be	an	arithmetic	operator,	the	assignment
operator	(=),	a	bitwise	operator,	a	comparison	operator,	a	logical	operator,

the	string	concatenation	operator	(+),	or	a	unary	operator.	For	more
information	about	operators,	see	Operators.

Expression	Results
For	a	simple	expression	built	of	a	single	constant,	variable,	scalar	function,	or
column	name,	the	data	type,	collation,	precision,	scale,	and	value	of	the
expression	is	the	data	type,	collation,	precision,	scale,	and	value	of	the
referenced	element.

When	two	expressions	are	combined	using	comparison	or	logical	operators,	the
resulting	data	type	is	Boolean	and	the	value	is	one	of	three	values:	TRUE,
FALSE,	or	UNKNOWN.	For	more	information	about	Boolean	data	types,	see
Operators.

When	two	expressions	are	combined	using	arithmetic,	bitwise,	or	string
operators,	the	operator	determines	the	resulting	data	type.

Complex	expressions	made	up	of	many	symbols	and	operators	evaluate	to	a
single-valued	result.	The	data	type,	collation,	precision,	and	value	of	the
resulting	expression	is	determined	by	combining	the	component	expressions,
two	at	a	time,	until	a	final	result	is	reached.	The	sequence	in	which	the
expressions	are	combined	is	defined	by	the	precedence	of	the	operators	in	the
expression.

Remarks
Two	expressions	can	be	combined	by	an	operator	if	they	both	have	data	types
supported	by	the	operator	and	at	least	one	of	these	conditions	is	TRUE:

The	expressions	have	the	same	data	type.

The	data	type	with	the	lower	precedence	can	be	implicitly	converted	to
the	data	type	with	the	higher	data	type	precedence.

The	CAST	function	can	explicitly	convert	the	data	type	with	the	lower
precedence	to	either	the	data	type	with	the	higher	precedence	or	to	an
intermediate	data	type	that	can	be	implicitly	converted	to	the	data	type

with	the	higher	precedence.

If	there	is	no	supported	implicit	or	explicit	conversion,	the	two	expressions
cannot	be	combined.

The	collation	of	any	expression	that	evaluates	to	a	character	string	is	set
following	the	rules	of	collation	precedence.	For	more	information,	see	Collation
Precedence.

In	a	programming	language	such	as	C	or	Microsoft	Visual	Basic®,	an	expression
always	evaluates	to	a	single	result.	Expressions	in	a	Transact-SQL	select	list
have	a	variation	on	this	rule:	The	expression	is	evaluated	individually	for	each
row	in	the	result	set.	A	single	expression	may	have	a	different	value	in	each	row
of	the	result	set,	but	each	row	has	only	one	value	for	the	expression.	For
example,	in	this	SELECT	statement	both	the	reference	to	ProductID	and	the	term
1+2	in	the	select	list	are	expressions:

SELECT	ProductID,	1+2
FROM	Northwind.dbo.Products

The	expression	1+2	evaluates	to	3	in	each	row	in	the	result	set.	Although	the
expression	ProductID	generates	a	unique	value	in	each	result	set	row,	each	row
only	has	one	value	for	ProductID.

See	Also

CASE

CAST	and	CONVERT

COALESCE

Data	Type	Conversion

Data	Type	Precedence

Data	Types

Functions

LIKE

JavaScript:hhobj_1.Click()

NULLIF

SELECT

WHERE

Transact-SQL	Reference

FETCH
Retrieves	a	specific	row	from	a	Transact-SQL	server	cursor.

Syntax
FETCH	
								[[NEXT	|	PRIOR	|	FIRST	|	LAST	
																|	ABSOLUTE	{	n	|	@nvar	}	
																|	RELATIVE	{	n	|	@nvar	}	
]	
												FROM	
]	
{	{	[GLOBAL]	cursor_name	}	|	@cursor_variable_name	}	
[INTO	@variable_name	[,...n]]

Arguments
NEXT

Returns	the	result	row	immediately	following	the	current	row,	and
increments	the	current	row	to	the	row	returned.	If	FETCH	NEXT	is	the	first
fetch	against	a	cursor,	it	returns	the	first	row	in	the	result	set.	NEXT	is	the
default	cursor	fetch	option.

PRIOR

Returns	the	result	row	immediately	preceding	the	current	row,	and
decrements	the	current	row	to	the	row	returned.	If	FETCH	PRIOR	is	the	first
fetch	against	a	cursor,	no	row	is	returned	and	the	cursor	is	left	positioned
before	the	first	row.

FIRST

Returns	the	first	row	in	the	cursor	and	makes	it	the	current	row.

LAST

Returns	the	last	row	in	the	cursor	and	makes	it	the	current	row.

ABSOLUTE	{n	|	@nvar}

If	n	or	@nvar	is	positive,	returns	the	row	n	rows	from	the	front	of	the	cursor
and	makes	the	returned	row	the	new	current	row.	If	n	or	@nvar	is	negative,
returns	the	row	n	rows	before	the	end	of	the	cursor	and	makes	the	returned
row	the	new	current	row.	If	n	or	@nvar	is	0,	no	rows	are	returned.	n	must	be
an	integer	constant	and	@nvar	must	be	smallint,	tinyint,	or	int.

RELATIVE	{n	|	@nvar}

If	n	or	@nvar	is	positive,	returns	the	row	n	rows	beyond	the	current	row	and
makes	the	returned	row	the	new	current	row.	If	n	or	@nvar	is	negative,
returns	the	row	n	rows	prior	to	the	current	row	and	makes	the	returned	row
the	new	current	row.	If	n	or	@nvar	is	0,	returns	the	current	row.	If	FETCH
RELATIVE	is	specified	with	n	or	@nvar	set	to	negative	numbers	or	0	on	the
first	fetch	done	against	a	cursor,	no	rows	are	returned.	n	must	be	an	integer
constant	and	@nvar	must	be	smallint,	tinyint,	or	int.

GLOBAL

Specifies	that	cursor_name	refers	to	a	global	cursor.

cursor_name

Is	the	name	of	the	open	cursor	from	which	the	fetch	should	be	made.	If	both
a	global	and	a	local	cursor	exist	with	cursor_name	as	their	name,
cursor_name	to	the	global	cursor	if	GLOBAL	is	specified	and	to	the	local
cursor	if	GLOBAL	is	not	specified.

@cursor_variable_name

Is	the	name	of	a	cursor	variable	referencing	the	open	cursor	from	which	the
fetch	should	be	made.

INTO	@variable_name[,...n]

Allows	data	from	the	columns	of	a	fetch	to	be	placed	into	local	variables.
Each	variable	in	the	list,	from	left	to	right,	is	associated	with	the
corresponding	column	in	the	cursor	result	set.	The	data	type	of	each	variable
must	either	match	or	be	a	supported	implicit	conversion	of	the	data	type	of
the	corresponding	result	set	column.	The	number	of	variables	must	match	the
number	of	columns	in	the	cursor	select	list.

Remarks
If	the	SCROLL	option	is	not	specified	in	an	SQL-92	style	DECLARE	CURSOR
statement,	NEXT	is	the	only	FETCH	option	supported.	If	SCROLL	is	specified
in	an	SQL-92	style	DECLARE	CURSOR,	all	FETCH	options	are	supported.

When	the	Transact_SQL	DECLARE	cursor	extensions	are	used,	these	rules
apply:

If	either	FORWARD-ONLY	or	FAST_FORWARD	is	specified,	NEXT
is	the	only	FETCH	option	supported.

If	DYNAMIC,	FORWARD_ONLY	or	FAST_FORWARD	are	not
specified,	and	one	of	KEYSET,	STATIC,	or	SCROLL	are	specified,	all
FETCH	options	are	supported.

DYNAMIC	SCROLL	cursors	support	all	the	FETCH	options	except
ABSOLUTE.

The	@@FETCH_STATUS	function	reports	the	status	of	the	last	FETCH
statement.	The	same	information	is	recorded	in	the	fetch_status	column	in	the
cursor	returned	by	sp_describe_cursor.	This	status	information	should	be	used
to	determine	the	validity	of	the	data	returned	by	a	FETCH	statement	prior	to
attempting	any	operation	against	that	data.	For	more	information,	see
@@FETCH_STATUS.

Permissions
FETCH	permissions	default	to	any	valid	user.

Examples

A.	Use	FETCH	in	a	simple	cursor
This	example	declares	a	simple	cursor	for	the	rows	in	the	authors	table	with	a
last	name	beginning	with	B,	and	uses	FETCH	NEXT	to	step	through	the	rows.
The	FETCH	statements	return	the	value	for	the	column	specified	in	the
DECLARE	CURSOR	as	a	single-row	result	set.

USE	pubs
GO
DECLARE	authors_cursor	CURSOR	FOR
SELECT	au_lname	FROM	authors
WHERE	au_lname	LIKE	"B%"
ORDER	BY	au_lname

OPEN	authors_cursor

--	Perform	the	first	fetch.
FETCH	NEXT	FROM	authors_cursor

--	Check	@@FETCH_STATUS	to	see	if	there	are	any	more	rows	to	fetch.
WHILE	@@FETCH_STATUS	=	0
BEGIN
			--	This	is	executed	as	long	as	the	previous	fetch	succeeds.
			FETCH	NEXT	FROM	authors_cursor
END

CLOSE	authors_cursor
DEALLOCATE	authors_cursor
GO

au_lname																																	
--	
Bennet																																			
au_lname																																	
--	
Blotchet-Halls																											
au_lname																																	
--

B.	Use	FETCH	to	store	values	in	variables

This	example	is	similar	to	the	last	example,	except	the	output	of	the	FETCH
statements	is	stored	in	local	variables	rather	than	being	returned	directly	to	the
client.	The	PRINT	statement	combines	the	variables	into	a	single	string	and
returns	them	to	the	client.

USE	pubs
GO

--	Declare	the	variables	to	store	the	values	returned	by	FETCH.
DECLARE	@au_lname	varchar(40),	@au_fname	varchar(20)

DECLARE	authors_cursor	CURSOR	FOR
SELECT	au_lname,	au_fname	FROM	authors
WHERE	au_lname	LIKE	"B%"
ORDER	BY	au_lname,	au_fname

OPEN	authors_cursor

--	Perform	the	first	fetch	and	store	the	values	in	variables.
--	Note:	The	variables	are	in	the	same	order	as	the	columns
--	in	the	SELECT	statement.	

FETCH	NEXT	FROM	authors_cursor
INTO	@au_lname,	@au_fname

--	Check	@@FETCH_STATUS	to	see	if	there	are	any	more	rows	to	fetch.
WHILE	@@FETCH_STATUS	=	0
BEGIN

			--	Concatenate	and	display	the	current	values	in	the	variables.
			PRINT	"Author:	"	+	@au_fname	+	"	"	+		@au_lname

			--	This	is	executed	as	long	as	the	previous	fetch	succeeds.

			FETCH	NEXT	FROM	authors_cursor
			INTO	@au_lname,	@au_fname
END

CLOSE	authors_cursor
DEALLOCATE	authors_cursor
GO

Author:	Abraham	Bennet
Author:	Reginald	Blotchet-Halls

C.	Declare	a	SCROLL	cursor	and	use	the	other	FETCH	options
This	example	creates	a	SCROLL	cursor	to	allow	full	scrolling	capabilities
through	the	LAST,	PRIOR,	RELATIVE,	and	ABSOLUTE	options.

USE	pubs
GO

--	Execute	the	SELECT	statement	alone	to	show	the	
--	full	result	set	that	is	used	by	the	cursor.
SELECT	au_lname,	au_fname	FROM	authors
ORDER	BY	au_lname,	au_fname

--	Declare	the	cursor.
DECLARE	authors_cursor	SCROLL	CURSOR	FOR
SELECT	au_lname,	au_fname	FROM	authors
ORDER	BY	au_lname,	au_fname

OPEN	authors_cursor

--	Fetch	the	last	row	in	the	cursor.
FETCH	LAST	FROM	authors_cursor

--	Fetch	the	row	immediately	prior	to	the	current	row	in	the	cursor.
FETCH	PRIOR	FROM	authors_cursor

--	Fetch	the	second	row	in	the	cursor.
FETCH	ABSOLUTE	2	FROM	authors_cursor

--	Fetch	the	row	that	is	three	rows	after	the	current	row.
FETCH	RELATIVE	3	FROM	authors_cursor

--	Fetch	the	row	that	is	two	rows	prior	to	the	current	row.
FETCH	RELATIVE	-2	FROM	authors_cursor

CLOSE	authors_cursor
DEALLOCATE	authors_cursor
GO

au_lname																																	au_fname													
--	--------------------	
Bennet																																			Abraham														
Blotchet-Halls																											Reginald													
Carson																																			Cheryl															
DeFrance																																	Michel															
del	Castillo																													Innes																
Dull																																					Ann																		
Green																																				Marjorie													
Greene																																			Morningstar										
Gringlesby																															Burt																	
Hunter																																			Sheryl															
Karsen																																			Livia																
Locksley																																	Charlene													
MacFeather																															Stearns														
McBadden																																	Heather														
O'Leary																																		Michael														

Panteley																																	Sylvia															
Ringer																																			Albert															
Ringer																																			Anne																	
Smith																																				Meander														
Straight																																	Dean																	
Stringer																																	Dirk																	
White																																				Johnson														
Yokomoto																																	Akiko																

au_lname																																	au_fname													
--	--------------------	
Yokomoto																																	Akiko																
au_lname																																	au_fname													
--	--------------------	
White																																				Johnson														
au_lname																																	au_fname													
--	--------------------	
Blotchet-Halls																											Reginald													
au_lname																																	au_fname													
--	--------------------	
del	Castillo																													Innes																
au_lname																																	au_fname													
--	--------------------	
Carson																																			Cheryl

See	Also

CLOSE

Cursors

DEALLOCATE

DECLARE	CURSOR

OPEN

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

FILE_ID
Returns	the	file	identification	(ID)	number	for	the	given	logical	file	name	in	the
current	database.

Syntax
FILE_ID	('file_name')

Arguments
'file_name'

Is	the	name	of	the	file	for	which	to	return	the	file	ID.	file_name	is
nchar(128).

Return	Types
smallint

Remarks
file_name	corresponds	to	the	name	column	in	sysfiles.

Examples
This	example	returns	the	file	ID	(1)	for	the	master	database.

USE	master
SELECT	FILE_ID('master')

See	Also

Control-of-Flow	Language

DELETE

INSERT

Metadata	Functions

SELECT

UPDATE

WHERE

Transact-SQL	Reference

FILE_NAME
Returns	the	logical	file	name	for	the	given	file	identification	(ID)	number.

Syntax
FILE_NAME	(file_id)

Arguments
file_id

Is	the	file	identification	number	for	which	to	return	the	file	name.	file_id	is
smallint.

Return	Types
nvarchar(128)

Remarks
file_ID	corresponds	to	the	fileid	column	in	sysfiles.

Examples
This	example	returns	the	file	name	for	a	file_ID	of	1	(the	master	database	file).

USE	master
SELECT	FILE_NAME(1)

See	Also

Control-of-Flow	Language

DELETE

INSERT

Metadata	Functions

SELECT

UPDATE

WHERE

Transact-SQL	Reference

FILEGROUP_ID
Returns	the	filegroup	identification	(ID)	number	for	the	given	filegroup	name.

Syntax
FILEGROUP_ID	('filegroup_name')

Arguments
'filegroup_name'

Is	the	filegroup	name	for	which	to	return	the	filegroup	ID.	filegroup_name	is
nvarchar(128).

Return	Types
smallint

Remarks
filegroup_name	corresponds	to	the	groupname	column	in	sysfilegroups.

Examples
This	example	returns	the	filegroup	ID	for	the	filegroup	named	default.

USE	master
SELECT	FILEGROUP_ID('default')

See	Also

Control-of-Flow	Language

DELETE

INSERT

Metadata	Functions

SELECT

UPDATE

WHERE

Transact-SQL	Reference

FILEGROUP_NAME
Returns	the	filegroup	name	for	the	given	filegroup	identification	(ID)	number.

Syntax
FILEGROUP_NAME	(filegroup_id)

Arguments
filegroup_id

Is	the	filegroup	ID	number	for	which	to	return	the	filegroup	name.
filegroup_id	is	smallint.

Return	Types
nvarchar(128)

Remarks
filegroup_id	corresponds	to	the	groupid	column	in	sysfilegroups.

Examples
This	example	returns	the	filegroup	name	for	the	filegroup	ID	1	(the	default).

USE	master
SELECT	FILEGROUP_NAME(1)

See	Also

Control-of-Flow	Language

DELETE

INSERT

Metadata	Functions

SELECT

UPDATE

WHERE

Transact-SQL	Reference

FILEGROUPPROPERTY
Returns	the	specified	filegroup	property	value	when	given	a	filegroup	and
property	name.

Syntax
FILEGROUPPROPERTY	(filegroup_name	,	property)

Arguments
filegroup_name

Is	an	expression	containing	the	name	of	the	filegroup	for	which	to	return	the
named	property	information.	filegroup_name	is	nvarchar(128).

property

Is	an	expression	containing	the	name	of	the	filegroup	property	to	return.
property	is	varchar(128),	and	can	be	one	of	these	values.

Value Description Value	returned
IsReadOnly Filegroup	name	is	read-only. 1	=	True	0	=	False

NULL	=	Invalid
input

IsUserDefinedFG Filegroup	name	is	a	user-defined
filegroup.

1	=	True
0	=	False
NULL	=	Invalid
input

IsDefault Filegroup	name	is	the	default
filegroup.

1	=	True
0	=	False
NULL	=	Invalid
input

Return	Types

int

Examples
This	example	returns	the	setting	for	the	IsUserDefinedFG	property	for	the
primary	filegroup.

USE	master
SELECT	FILEGROUPPROPERTY('primary',	'IsUserDefinedFG')

See	Also

Control-of-Flow	Language

DELETE

INSERT

Metadata	Functions

SELECT

UPDATE

WHERE

Transact-SQL	Reference

FILEPROPERTY
Returns	the	specified	file	name	property	value	when	given	a	file	name	and
property	name.

Syntax
FILEPROPERTY	(file_name	,	property)

Arguments
file_name

Is	an	expression	containing	the	name	of	the	file	associated	with	the	current
database	for	which	to	return	property	information.	file_name	is	nchar(128).

property

Is	an	expression	containing	the	name	of	the	file	property	to	return.	property
is	varchar(128),	and	can	be	one	of	these	values.

Value Description Value	returned
IsReadOnly File	is	read-only. 1	=	True	0	=	False

NULL	=	Invalid	input
IsPrimaryFile File	is	the	primary	file. 1	=	True

0	=	False
NULL	=	Invalid	input

IsLogFile File	is	a	log	file. 1	=	True
0	=	False
NULL	=	Invalid	input

SpaceUsed Amount	of	space	used	by	the
specified	file.

Number	of	pages
allocated	in	the	file

Return	Types
int

Examples
This	example	returns	the	setting	for	the	IsPrimaryFile	property	for	the	master
file	name	in	the	master	database.

USE	master
SELECT	FILEPROPERTY('master',	'IsPrimaryFile')

See	Also

Control-of-Flow	Language

DELETE

INSERT

Metadata	Functions

SELECT

UPDATE

WHERE

Transact-SQL	Reference

float	and	real
Approximate	number	data	types	for	use	with	floating	point	numeric	data.
Floating	point	data	is	approximate;	not	all	values	in	the	data	type	range	can	be
precisely	represented.

Syntax
float	[(n)]

Is	a	floating	point	number	data	from	-	1.79E	+	308	through	1.79E	+	308.	n	is
the	number	of	bits	used	to	store	the	mantissa	of	the	float	number	in	scientific
notation	and	thus	dictates	the	precision	and	storage	size.	n	must	be	a	value
from	1	through	53.

n	is Precision Storage	size
1-24 7	digits 4	bytes
25-53 15	digits 8	bytes

The	Microsoft®	SQL	Server™	float[(n)]	data	type	conforms	to	the	SQL-92
standard	for	all	values	of	n	from	1	to	53.	The	synonym	for	double	precision
is	float(53).

real

Floating	point	number	data	from	–3.40E	+	38	through	3.40E	+	38.	Storage
size	is	4	bytes.	In	SQL	Server,	the	synonym	for	real	is	float(24).

See	Also

ALTER	TABLE

CAST	and	CONVERT

CREATE	TABLE

Data	Type	Conversion

Data	Types

JavaScript:hhobj_1.Click()

DECLARE	@local_variable

DELETE

INSERT

SET	@local_variable

UPDATE

Transact-SQL	Reference

FLOOR
Returns	the	largest	integer	less	than	or	equal	to	the	given	numeric	expression.

Syntax
FLOOR	(numeric_expression)

Arguments
numeric_expression

Is	an	expression	of	the	exact	numeric	or	approximate	numeric	data	type
category,	except	for	the	bit	data	type.

Return	Types
Returns	the	same	type	as	numeric_expression.

Examples
This	example	shows	positive	numeric,	negative	numeric,	and	currency	values
with	the	FLOOR	function.

SELECT	FLOOR(123.45),	FLOOR(-123.45),	FLOOR($123.45)

The	result	is	the	integer	portion	of	the	calculated	value	in	the	same	data	type	as
numeric_expression.

---------						---------					-----------
123												-124										123.0000			

See	Also

Mathematical	Functions

Transact-SQL	Reference

fn_helpcollations
Returns	a	list	of	all	the	collations	supported	by	Microsoft®	SQL	Server™	2000.

Syntax
fn_helpcollations	()

Tables	Returned
fn_helpcollations	returns	the	following	information.

Column	name Data	type Description
Name sysname Standard	collation	name
Description nvarchar(1000) Description	of	the

collation

See	Also

COLLATE

COLLATIONPROPERTY

Transact-SQL	Reference

fn_listextendedproperty
Returns	extended	property	values	of	database	objects.

Syntax
fn_listextendedproperty	(
				{	default	|	[@name	=]	'property_name'	|	NULL	}	
				,	{	default	|	[@level0type	=]	'level0_object_type'	|	NULL	}	
				,	{	default	|	[@level0name	=]	'level0_object_name'	|	NULL	}	
				,	{	default	|	[@level1type	=]	'level1_object_type'	|	NULL	}	
				,	{	default	|	[@level1name	=]	'level1_object_name'	|	NULL	}	
				,	{	default	|	[@level2type	=]	'level2_object_type'	|	NULL	}	
				,	{	default	|	[@level2name	=]	'level2_object_name'	|	NULL	}	
)

Arguments
{default|[@name	=]	'property_name'|NULL}

Is	the	name	of	the	property.	property_name	is	sysname.	Valid	inputs	are
default,	NULL,	or	a	property	name.

{default|[@level0type	=]	'level0_object_type'|NULL}

Is	the	user	or	user-defined	type.	level0_object_type	is	varchar(128),	with	a
default	of	NULL.	Valid	inputs	are	USER,	TYPE,	default,	and	NULL.

{default|[@level0name	=]	'level0_object_name'|NULL}

Is	the	name	of	the	level	0	object	type	specified.	level0_object_name	is
sysname	with	a	default	of	NULL.	Valid	inputs	are	default,	NULL,	or	an
object	name.

{default|[@level1type	=]	'level1_object_type'|NULL}

Is	the	type	of	level	1	object.	level1_object_type	is	varchar(128)	with	a
default	of	NULL.	Valid	inputs	are	TABLE,	VIEW,	PROCEDURE,
FUNCTION,	DEFAULT,	RULE,	default,	and	NULL.

Note		Default	maps	to	NULL	and	'default'	maps	to	the	object	type	DEFAULT.

{default|[@level1name	=]	'level1_object_name'|NULL}

Is	the	name	of	the	level	1	object	type	specified.	level1_object_name	is
sysname	with	a	default	of	NULL.	Valid	inputs	are	default,	NULL,	or	an
object	name.

{default|[@level2type	=]	'level2_object_type'|NULL}

Is	the	type	of	level	2	object.	level2_object_type	is	varchar(128)	with	a
default	of	NULL.	Valid	inputs	are	COLUMN,	PARAMETER,	INDEX,
CONSTRAINT,	TRIGGER,	DEFAULT,	default	(which	maps	to	NULL),	and
NULL.

{default|[@level2name	=]	'level2_object_name'|NULL}

Is	the	name	of	the	level	2	object	type	specified.	level2_object_name	is
sysname	with	a	default	of	NULL.	Valid	inputs	are	default,	NULL,	or	an
object	name.

Tables	Returned
This	is	the	format	of	the	tables	returned	by	fn_listextendedproperty.

Column	name Data	type
objtype sysname
objname sysname
name sysname
value sql_variant

If	the	table	returned	is	empty,	either	the	object	does	not	have	extended	properties
or	the	user	does	not	have	permissions	to	list	the	extended	properties	on	the
object.

Remarks
Extended	properties	are	not	allowed	on	system	objects.

If	the	value	for	property_name	is	NULL	or	default,	fn_listextendedproperty

returns	all	the	properties	for	the	object.

When	the	object	type	is	specified	and	the	value	of	the	corresponding	object
name	is	NULL	or	default,	fn_listextendedproperty	returns	all	extended	properties
for	all	objects	of	the	type	specified.

The	objects	are	distinguished	according	to	levels,	with	level	0	as	the	highest	and
level	2	the	lowest.	If	a	lower	level	object	(level	1	or	2)	type	and	name	are
specified,	the	parent	object	type	and	name	should	be	given	values	that	are	not
NULL	or	default.	Otherwise,	the	function	will	return	an	error.

Permissions	to	list	extended	properties	of	certain	level	object	types	vary.

For	level	0	objects,	a	user	can	list	extended	properties	specifying	the
type	"user"	if	that	person	is	the	user	identified	in	the	level	0	name,	or	if
that	user	is	a	member	of	the	db_owner	and	db_ddladmin	fixed
database	role.	

All	users	can	list	extended	properties	using	the	level	0	object	type
"type."

For	level	1	objects,	a	user	can	list	extended	properties	on	any	of	the
valid	type	values	if	the	user	is	the	object	owner,	or	if	the	user	has	any
permission	on	the	object.	

For	level	2	objects,	a	user	can	list	extended	properties	on	any	of	valid
type	values	if	the	current	user	has	any	permission	on	the	parent	object
(level	1	and	0).

Examples

This	example	lists	all	extended	properties	for	the	database.

SELECT			*
FROM			::fn_listextendedproperty(NULL,	NULL,	NULL,	NULL,	NULL,	NULL,	NULL)

-Or-

SELECT			*
FROM			::fn_listextendedproperty(default,	default,	default,	default,	default,	default,	default)

This	example	lists	all	extended	properties	for	all	columns	in	table	'T1.'

CREATE			table	T1	(id	int	,	name	char	(20))

EXEC			sp_addextendedproperty	'caption',	'Employee	ID',	'user',	dbo,	'table',	'T1',	'column',	id

EXEC			sp_addextendedproperty	'caption',	'Employee	Name',	'user',	dbo,	'table',	'T1',	'column',	name

SELECT			*
FROM			::fn_listextendedproperty	(NULL,	'user',	'dbo',	'table',	'T1',	'column',	default)

Here	is	the	result	set:

objtype objname name value
COLUMN id caption Employee	ID
COLUMN name caption Employee	Name

See	Also

Property	Management

sp_addextendedproperty

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

fn_servershareddrives
Returns	the	names	of	shared	drives	used	by	the	clustered	server.

Syntax
fn_servershareddrives()

Tables	Returned
If	the	current	server	instance	is	not	a	clustered	server,	fn_servershareddrives
returns	an	empty	rowset.

If	the	current	server	is	a	clustered	server,	fn_servershareddrives	returns	the
following	information:

Name Data	type Description
DriveName nchar(1) Name	of	the	shared	drive

Remarks
fn_servershareddrives	returns	a	list	of	shared	drives	used	by	this	clustered	server.
These	shared	drives	belong	to	the	same	cluster	group	as	the	SQL	Server
resource.	Further,	the	SQL	Server	resource	is	dependent	on	these	drives.

This	function	is	helpful	in	identifying	drives	available	to	users.

Examples
Here	is	a	query	on	a	clustered	server	instance.

SELECT	*
FROM	::fn_servershareddrives()

Here	is	the	result	set:

DriveName

m
n

See	Also

Failover	Clustering

fn_virtualservernodes

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

fn_trace_geteventinfo
Returns	information	about	the	events	traced.

Syntax
fn_trace_geteventinfo	([@traceid	=]	trace_id)

Arguments
[@traceid	=]	trace_id

Is	the	ID	of	the	trace.	trace_id	is	int,	with	no	default.	The	user	employs	this
trace_id	value	to	identify,	modify,	and	control	the	trace.

Tables	Returned

Column	name Data	type Description
EventID int ID	of	the	traced	event
ColumnID int ID	numbers	of	all	columns	collected	for	each

event

Remarks
fn_trace_geteventinfo	is	a	Microsoft®	SQL	Server™	2000	built-in	function	that
performs	many	of	the	actions	previously	executed	by	extended	stored	procedures
available	in	earlier	versions	of	SQL	Server.	Use	fn_trace_geteventinfo	instead
of:

xp_trace_geteventclassrequired

xp_trace_getqueuecreateinfo

xp_trace_getqueueproperties

To	obtain	information	previously	returned	by	the

xp_trace_geteventclassrequired,	for	example,	execute	a	query	in	the	following
form:

SELECT	*
FROM	::fn_trace_geteventinfo(trace_id)
WHERE	EventID=	'x'

See	Also

sp_trace_generateevent

sp_trace_setevent

sp_trace_setfilter

Transact-SQL	Reference

fn_trace_getfilterinfo
Returns	information	about	the	filters	applied	to	a	specified	trace.

Syntax
fn_trace_getfilterinfo([@traceid	=]	trace_id)

Arguments
[@traceid	=]	trace_id

Is	the	ID	of	the	trace.	trace_id	is	int,	with	no	default.	The	user	employs	this
trace_id	value	to	identify,	modify,	and	control	the	trace.

Tables	Returned
This	function	returns	the	following	information.	For	more	information	about	the
columns,	see	sp_trace_setfilter.

Column	name Data	type Description
Column	ID int The	ID	of	the	column	on	which	the	filter	is

applied.
Logical
Operator

int Specifies	whether	the	AND	or	OR
operator	is	applied.

Comparison
Operator

int Specifies	the	type	of	comparison	made	(=,
<>,	<,	>,	<=,	>=,	LIKE,	or	NOT	LIKE).

Value sql_variant Specifies	the	value	on	which	the	filter	is
applied.

Remarks
fn_trace_getfilterinfo	is	a	Microsoft®	SQL	Server™	2000	built-in	function	that
performs	many	of	the	actions	previously	executed	by	extended	stored	procedures
available	in	earlier	versions	of	SQL	Server.	Use	fn_trace_getfilterinfo	instead	of
the	xp_trace_get*filter	extended	stored	procedures.	For	more	information,	see
Creating	and	Managing	Traces	and	Templates.

JavaScript:hhobj_1.Click()

To	use	fn_trace_getfilterinfo	to	obtain	information	about	the	filters	applied	or
available	for	certain	traces,	execute	a	query	that	follows	this	form:

SELECT	*
FROM	::fn_trace_getfilterinfo(trace_id)
WHERE

See	Also

sp_trace_setfilter

Transact-SQL	Reference

fn_trace_getinfo
Returns	information	about	a	specified	trace	or	existing	traces.

Syntax
fn_trace_getinfo([@traceid	=]	trace_id)

Arguments
[@traceid	=]	trace_id

Is	the	ID	of	the	trace,	and	is	an	integer.	To	return	information	on	all	traces,
specify	the	default	value	for	this	parameter.	The	keyword	'default'	must	be
used,	as	in

SELECT	*	FROM	::	fn_trace_getinfo(default)	

When	the	value	of	0	is	explicitly	supplied,	the	function	will	return	all	traces
as	if	the	function	was	called	with	the	'default'	keyword.	The	user	employs
this	trace_id	value	to	identify,	modify,	and	control	the	trace.

Tables	Returned
If	a	trace_id	is	specified,	fn_trace_getinfo	returns	a	table	with	information	about
the	specified	trace.	If	no	trace_id	is	specified,	this	function	returns	information
about	all	active	traces.

Column	name Data	type Description
TraceId int The	ID	of	the	trace.
Property int The	property	of	the	trace	as	represented

by	the	following	integers:

1	-	Trace	Options	(See	@options	in
sp_trace_create)
2	-	FileName
3	-	MaxSize
4	-	StopTime

5	-	Current	Trace	status

Value sql_variant The	information	about	the	property	of
the	trace	specified.

Remarks
fn_trace_getinfo	is	a	Microsoft®	SQL	Server™	2000	built-in	function	that
performs	many	of	the	actions	previously	executed	by	extended	stored	procedures
available	in	earlier	versions	of	SQL	Server.	Use	fn_trace_getinfo	instead	of:

xp_trace_getqueuecreateinfo

xp_trace_getqueuedestination

xp_trace_getqueueproperties

To	obtain	information	previously	returned	by	the	xp_trace_getqueueproperties,
for	example,	execute	a	query	in	the	following	form:

SELECT	*
FROM	::fn_trace_getinfo(trace_id)
WHERE	Property=4

See	Also

sp_trace_generateevent

sp_trace_setevent

sp_trace_setfilter

sp_trace_setstatus

Transact-SQL	Reference

fn_trace_gettable
Returns	trace	file	information	in	a	table	format.

Syntax
fn_trace_gettable([@filename	=]	filename	,	[@numfiles	=]	number_files)

Arguments
[@filename	=]	filename

Specifies	the	initial	trace	to	be	read.	filename	is	nvarchar(256),	with	no
default.

[@numfiles	=]	number_files

Specifies	the	number	of	rollover	files,	including	the	initial	file	specified	in
filename,	to	be	read.	number_files	is	int.	Users	may	specify	the	default	value
"default"	to	tell	SQL	Server	to	read	all	rollover	files	until	the	end	of	the	trace.

SELECT	*	FROM	::fn_trace_gettable('c:\my_trace.trc',	default)
GO

OR

SELECT	*	FROM	::fn_trace_gettable(('c:\my_trace.trc',	-1)
GO

Tables	Returned
fn_trace_gettable	returns	a	table	with	all	the	valid	columns.	For	information,	see
sp_trace_setevent.

Examples
This	example	calls	the	function	as	part	of	a	SELECT..INTO	statement	and
returns	a	table	that	can	be	loaded	into	SQL	Profiler.

USE	pubs
SELECT	*	INTO	temp_trc
FROM	::fn_trace_gettable(c:\my_trace.trc",	default)

See	Also

sp_trace_generateevent

sp_trace_setevent

sp_trace_setfilter

sp_trace_setstatus

Transact-SQL	Reference

fn_virtualfilestats
Returns	I/O	statistics	for	database	files,	including	log	files.

Syntax
fn_virtualfilestats	([@DatabaseID=]	database_id	
				,	[@FileID	=]	file_id)

Arguments
[@DatabaseID=]	database_id

Is	the	ID	of	the	database.	database_id	is	int,	with	no	default.

[@FileID	=]	file_id

Is	the	ID	of	the	file.	file_id	is	int,	with	no	default.

Tables	Returned

Column	Name Data	type Description
DbId smallint Database	ID
FileId smallint File	ID
TimeStamp int Time	at	which	the	data	was	taken
NumberReads bigint Number	of	reads	issued	on	the	file
NumberWrites bigint Number	of	writes	made	on	the	file
BytesRead bigint Number	of	bytes	read	issued	on	the	file
BytesWritten bigint Number	of	bytes	written	made	on	the	file
IoStallMS bigint Total	amount	of	time,	in	milliseconds,	that

users	waited	for	the	I/Os	to	complete	on
the	file

Remarks

fn_virtualfilestats	is	a	system	table-valued	function	that	gives	statistical
information,	such	as	the	total	number	of	I/Os	performed	on	a	file.	The	function
helps	keep	track	of	the	length	of	time	users	have	to	wait	to	read	or	write	to	a	file.
The	function	also	helps	identify	the	files	that	encounter	large	numbers	of	I/O
activity.

Examples

SELECT	*
FROM	::	fn_virtualfilestats(1,	1)
	

Transact-SQL	Reference

fn_virtualservernodes
Returns	the	list	of	nodes	on	which	the	virtual	server	can	run.	Such	information	is
useful	in	failover	clustering	environments.

Syntax
fn_virtualservernodes()

Tables	Returned
If	the	current	server	instance	is	not	a	clustered	server,	fn_virtualservernodes
returns	an	empty	rowset.

If	the	current	server	is	a	clustered	server,	fn_virtualservernodes	returns	the	list	of
nodes	on	which	this	virtual	server	has	been	defined.

Examples
Here	is	a	query	on	a	clustered	server	instance.

SELECT	*
FROM	::fn_virtualservernodes()

Here	is	the	result	set:

NodeName

ntmachine1
ntmachine2

See	Also

Failover	Clustering

fn_servershareddrives

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

FORMATMESSAGE
Constructs	a	message	from	an	existing	message	in	sysmessages.	The
functionality	of	FORMATMESSAGE	resembles	that	of	the	RAISERROR
statement;	however,	RAISERROR	prints	the	message	immediately,	and
FORMATMESSAGE	returns	the	edited	message	for	further	processing.

Syntax
FORMATMESSAGE	(msg_number	,	param_value	[,...n])

Arguments
msg_number

Is	the	ID	of	the	message	stored	in	sysmessages.	If	the	message	does	not	exist
in	sysmessages,	NULL	is	returned.

param_value

Is	one	or	more	parameter	values	for	use	in	the	message.	The	values	must	be
specified	in	the	order	in	which	the	placeholder	variables	appear	in	the
message.	The	maximum	number	of	values	is	20.

Return	Types
nvarchar

Remarks
Like	the	RAISERROR	statement,	FORMATMESSAGE	edits	the	message	by
substituting	the	supplied	parameter	values	for	placeholder	variables	in	the
message.	For	more	information	about	the	placeholders	allowed	in	error	messages
and	the	editing	process,	see	RAISERROR.

FORMATMESSAGE	looks	up	the	message	in	the	current	language	of	the	user.
If	there	is	no	localized	version	of	the	message,	the	U.S.	English	version	is	used.

For	localized	messages,	the	supplied	parameter	values	must	correspond	to	the

parameter	placeholders	in	the	U.S.	English	version.	That	is,	parameter	1	in	the
localized	version	must	correspond	to	parameter	1	in	the	U.S.	English	version,
parameter	2	must	correspond	to	parameter	2,	and	so	on.

Examples
This	example	uses	a	hypothetical	message	50001,	stored	in	sysmessages	as	"The
number	of	rows	in	%s	is	%1d."	FORMATMESSAGE	substitutes	the	values
Table1	and	5	for	the	parameter	placeholders.	The	resulting	string,	"The	number
of	rows	in	Table1	is	5."	is	stored	in	the	local	variable	@var1.

DECLARE	@var1	VARCHAR(100)
SELECT	@var1	=	FORMATMESSAGE(50001,	'Table1',	5)

See	Also

sp_addmessage

System	Functions

Transact-SQL	Reference

FREETEXT
Is	a	predicate	used	to	search	columns	containing	character-based	data	types	for
values	that	match	the	meaning	and	not	the	exact	wording	of	the	words	in	the
search	condition.	When	FREETEXT	is	used,	the	full-text	query	engine	internally
"word-breaks"	the	freetext_string	into	a	number	of	search	terms	and	assigns	each
term	a	weight	and	then	finds	the	matches.

Syntax
FREETEXT	({	column	|	*	}	,	'freetext_string')

Arguments
column

Is	the	name	of	a	specific	column	that	has	been	registered	for	full-text
searching.	Columns	of	the	character	string	data	types	are	valid	columns	for
full-text	searching.

*

Specifies	that	all	columns	that	have	been	registered	for	full-text	searching
should	be	used	to	search	for	the	given	freetext_string.

freetext_string

Is	text	to	search	for	in	the	specified	column.	Any	text,	including	words,
phrases	or	sentences,	can	be	entered.	There	is	no	concern	about	syntax.

Remarks
Full-text	queries	using	FREETEXT	are	less	precise	than	those	full-text	queries
using	CONTAINS.	The	Microsoft®	SQL	Server™	full-text	search	engine
identifies	important	words	and	phrases.	No	special	meaning	is	given	to	any	of
the	reserved	keywords	or	wildcard	characters	that	typically	have	meaning	when
specified	in	the	<contains_search_condition>	parameter	of	the	CONTAINS
predicate.

FREETEXT	is	not	recognized	as	a	keyword	if	the	compatibility	level	is	less	than
70.	For	more	information,	see	sp_dbcmptlevel.

Examples

A.	Use	FREETEXT	to	search	for	words	containing	specified
character	values
This	example	searches	for	all	product	categories	containing	the	words	related	to
bread,	candy,	dry,	and	meat	in	the	product	description,	such	as	breads,	candies,
dried,	and	meats.

USE	Northwind
GO
SELECT	CategoryName
FROM	Categories
WHERE	FREETEXT	(Description,	'sweetest	candy	bread	and	dry	meat')
GO

B.	Use	variables	in	full-text	search
This	example	uses	a	variable	instead	of	a	specific	search	term.

USE	pubs
GO
DECLARE	@SearchWord	varchar(30)
SET	@SearchWord	='Moon'
SELECT	pr_info	FROM	pub_info	WHERE	FREETEXT(pr_info,	@SearchWord)

See	Also

CONTAINS

CONTAINSTABLE

Data	Types

FREETEXTTABLE

WHERE

Transact-SQL	Reference

FREETEXTTABLE
Returns	a	table	of	zero,	one,	or	more	rows	for	those	columns	containing
character-based	data	types	for	values	that	match	the	meaning,	but	not	the	exact
wording,	of	the	text	in	the	specified	freetext_string.	FREETEXTTABLE	can	be
referenced	in	the	FROM	clause	of	a	SELECT	statement	like	a	regular	table
name.

Queries	using	FREETEXTTABLE	specify	freetext-type	full-text	queries	that
return	a	relevance	ranking	value	(RANK)	for	each	row.

Syntax
FREETEXTTABLE	(table	,	{	column	|	*	}	,	'freetext_string'	[,	top_n_by_rank]
)

Arguments
table

Is	the	name	of	the	table	that	has	been	marked	for	full-text	querying.	table	can
be	a	one-,	two-,	or	three-part	database	object	name.	For	more	information,
see	Transact-SQL	Syntax	Conventions.	table	cannot	specify	a	server	name
and	cannot	be	used	in	queries	against	linked	servers.

column

Is	the	name	of	the	column	to	search	that	resides	within	table.	Columns	of	the
character	string	data	types	are	valid	columns	for	full-text	searching.

*

Specifies	that	all	columns	that	have	been	registered	for	full-text	searching
should	be	used	to	search	for	the	given	freetext_string.

freetext_string

Is	the	text	to	search	for	in	the	specified	column.	Variables	cannot	be	used.

top_n_by_rank

When	an	integer	value,	n,	is	specified,	FREETEXTTABLE	returns	only	the
top	n	matches,	ordered	by	rank.

Remarks
FREETEXTTABLE	uses	the	same	search	conditions	as	the	FREETEXT
predicate.

Like	CONTAINSTABLE,	the	table	returned	has	columns	named	KEY	and
RANK,	which	are	referenced	within	the	query	to	obtain	the	appropriate	rows
and	use	the	row	ranking	values.

FREETEXTTABLE	is	not	recognized	as	a	keyword	if	the	compatibility	level	is
less	than	70.	For	more	information,	see	sp_dbcmptlevel.

Permissions
FREETEXTTABLE	can	be	invoked	only	by	users	with	appropriate	SELECT
privileges	for	the	specified	table	or	the	referenced	columns	of	the	table.

Examples
This	example	returns	the	category	name	and	description	of	all	categories	that
relate	to	sweet,	candy,	bread,	dry,	and	meat.

USE	Northwind
SELECT	FT_TBL.CategoryName,	
			FT_TBL.Description,
			KEY_TBL.RANK
FROM	Categories	AS	FT_TBL	INNER	JOIN
			FREETEXTTABLE(Categories,	Description,	
			'sweetest	candy	bread	and	dry	meat')	AS	KEY_TBL
			ON	FT_TBL.CategoryID	=	KEY_TBL.[KEY]
GO

See	Also

CONTAINS

CONTAINSTABLE

FREETEXT

Full-text	Querying	SQL	Server	Data

Rowset	Functions

SELECT

WHERE

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

FROM
Specifies	the	tables,	views,	derived	tables,	and	joined	tables	used	in	DELETE,
SELECT,	and	UPDATE	statements.

Syntax
[FROM	{	<	table_source	>	}	[,...n]]	

<	table_source	>	::=	
				table_name	[[AS]	table_alias]	[WITH	(<	table_hint	>	[,...n])]	
				|	view_name	[[AS]	table_alias]	[WITH	(<	view_hint	>	[,...n])]	
				|	rowset_function	[[AS]	table_alias]	
				|	user_defined_function	[[AS]	table_alias]
				|	derived_table	[AS]	table_alias	[(column_alias	[,...n])]	
				|	<	joined_table	>

<	joined_table	>	::=	
				<	table_source	>	<	join_type	>	<	table_source	>	ON	<	search_condition	>	
				|	<	table_source	>	CROSS	JOIN	<	table_source	>	
				|	[(]	<	joined_table	>	[)]

<	join_type	>	::=	
				[INNER	|	{	{	LEFT	|	RIGHT	|	FULL	}	[OUTER]	}]	
				[<	join_hint	>]	
				JOIN

Arguments
<table_source>

Specifies	a	table	or	view,	both	with	or	without	an	alias,	to	use	in	the
Transact-SQL	statement.	A	maximum	of	256	tables	can	be	used	in	the
statement.	A	table	variable	may	be	specified	as	a	table	source.

If	the	table	or	view	exists	in	another	database	on	the	same	computer	running
Microsoft®	SQL	Server™,	use	a	fully	qualified	name	in	the	form
database.owner.object_name.	If	the	table	or	view	exists	outside	the	local

server	on	a	linked	server,	use	a	four-part	name	in	the	form
linked_server.catalog.schema.object.	A	four-part	table	(or	view)	name
constructed	using	the	OPENDATASOURCE	function	as	the	server	part	of
the	name	also	may	be	used	to	specify	the	table	source.	For	more	information
about	the	function,	see	OPENDATASOURCE.

table_name

Is	the	name	of	a	table.	The	order	of	the	tables	and	views	after	the	FROM
keyword	does	not	affect	the	result	set	returned.	Errors	are	reported	when
duplicate	names	appear	in	the	FROM	clause.

[AS]	table_alias

Is	an	alias	for	table_name,	view_name,	or	rowset_function,	used	either	for
convenience	or	to	distinguish	a	table	or	view	in	a	self-join	or	subquery.	An
alias	is	often	a	shortened	table	name	used	to	refer	to	specific	columns	of	the
tables	in	a	join.	If	the	same	column	name	exists	in	more	than	one	table	in	the
join,	SQL	Server	requires	that	the	column	name	must	be	qualified	by	a	table
name	or	alias.	(The	table	name	cannot	be	used	if	an	alias	is	defined).

WITH	(<	table_hint	>)

Specifies	a	table	scan,	one	or	more	indexes	to	be	used	by	the	query
optimizer,	or	a	locking	method	to	be	used	by	the	query	optimizer	with	this
table	and	for	this	statement.	For	more	information,	see	Table	Hints.

view_name

Is	the	name	of	a	view.	A	view	is	a	"virtual	table",	usually	created	as	a	subset
of	columns	from	one	or	more	tables.

WITH	(<	view_hint	>)

Specifies	a	scan	of	the	indexed	view.	By	default,	the	view	is	expanded	before
the	query	optimizer	processes	the	query.	View	hints	are	allowed	only	in
SELECT	statements,	and	cannot	be	used	in	UPDATE,	DELETE,	and
INSERT	statements.

rowset_function

Specifies	one	of	the	rowset	functions,	which	return	an	object	that	can	be	used
in	place	of	a	table	reference.	For	more	information	about	a	list	of	rowset

functions,	see	Rowset	Functions.

user_defined_function

Specifies	a	user-defined	function	that	returns	a	table.	If	the	user-defined
function	is	a	built-in	user-defined	function,	it	must	be	preceded	by	two
colons,	as	in

FROM	::fn_listextendedproperty

derived_table

Is	a	subquery	that	retrieves	rows	from	the	database.	derived_table	is	used	as
input	to	the	outer	query.

column_alias

Is	an	optional	alias	to	replace	a	column	name	in	the	result	set.	Include	one
column	alias	for	each	column	in	the	select	list,	and	enclose	the	entire	list	of
column	aliases	in	parentheses.

<	joined_table	>

Is	a	result	set	that	is	the	product	of	two	or	more	tables,	for	example:

SELECT	*
FROM	tab1	LEFT	OUTER	JOIN	tab2	ON	tab1.c3	=	tab2.c3
				RIGHT	OUTER	JOIN	tab3	LEFT	OUTER	JOIN	tab4
								ON	tab3.c1	=	tab4.c1
								ON	tab2.c3	=	tab4.c3

For	multiple	CROSS	joins,	use	parentheses	to	change	the	natural	order	of	the
joins.

<	join_type	>

Specifies	the	type	of	join	operation.

INNER

Specifies	all	matching	pairs	of	rows	are	returned.	Discards	unmatched	rows
from	both	tables.	This	is	the	default	if	no	join	type	is	specified.

FULL	[OUTER]

Specifies	that	a	row	from	either	the	left	or	right	table	that	does	not	meet	the
join	condition	is	included	in	the	result	set,	and	output	columns	that
correspond	to	the	other	table	are	set	to	NULL.	This	is	in	addition	to	all	rows
usually	returned	by	the	INNER	JOIN.

Note		It	is	possible	to	specify	outer	joins	as	specified	here	or	by	using	the	old
nonstandard	*=	and	=*	operators	in	the	WHERE	clause.	The	two	methods
cannot	both	be	used	in	the	same	statement.

LEFT	[OUTER]

Specifies	that	all	rows	from	the	left	table	not	meeting	the	join	condition	are
included	in	the	result	set,	and	output	columns	from	the	other	table	are	set	to
NULL	in	addition	to	all	rows	returned	by	the	inner	join.

RIGHT	[OUTER]

Specifies	all	rows	from	the	right	table	not	meeting	the	join	condition	are
included	in	the	result	set,	and	output	columns	that	correspond	to	the	other
table	are	set	to	NULL,	in	addition	to	all	rows	returned	by	the	inner	join.

<join_hint>

Specifies	that	the	SQL	Server	query	optimizer	use	one	join	hint,	or	execution
algorithm,	per	join	specified	in	the	query	FROM	clause.	For	more
information,	see	Join	Hints	later	in	this	topic.

JOIN

Indicates	that	the	specified	join	operation	should	take	place	between	the
given	tables	or	views.

ON	<search_condition>

Specifies	the	condition	on	which	the	join	is	based.	The	condition	can	specify
any	predicate,	although	columns	and	comparison	operators	are	often	used,
for	example:

SELECT	ProductID,	Suppliers.SupplierID
				FROM	Suppliers	JOIN	Products	
				ON	(Suppliers.SupplierID	=	Products.SupplierID)

When	the	condition	specifies	columns,	the	columns	do	not	have	to	have	the
same	name	or	same	data	type;	however,	if	the	data	types	are	not	identical,
they	must	be	either	compatible	or	types	that	Microsoft®	SQL	Server™	can
implicitly	convert.	If	the	data	types	cannot	be	implicitly	converted,	the
condition	must	explicitly	convert	the	data	type	using	the	CAST	function.

There	may	be	predicates	involving	only	one	of	the	joined	tables	in	the	ON
clause.	Such	predicates	also	may	be	in	the	WHERE	clause	in	the	query.
Although	the	placement	of	such	predicates	does	not	make	a	difference	in	the
case	of	INNER	joins,	they	may	cause	a	different	result	if	OUTER	joins	are
involved.	This	is	because	the	predicates	in	the	ON	clause	are	applied	to	the
table	prior	to	the	join,	while	the	WHERE	clause	is	semantically	applied	on
the	result	of	the	join.

For	more	information	about	search	conditions	and	predicates,	see	Search
Condition.

CROSS	JOIN

Specifies	the	cross-product	of	two	tables.	Returns	the	same	rows	as	if	no
WHERE	clause	was	specified	in	an	old-style,	non-SQL-92-style	join.

Table	Hints
A	table	hint	specifies	a	table	scan,	one	or	more	indexes	to	be	used	by	the	query
optimizer,	or	a	locking	method	to	be	used	by	the	query	optimizer	with	this	table
and	for	this	SELECT.	Although	this	is	an	option,	the	query	optimizer	can	usually
pick	the	best	optimization	method	without	hints	being	specified.

CAUTION		Because	the	query	optimizer	of	SQL	Server	usually	selects	the	best
execution	plan	for	a	query,	it	is	recommended	that	<join_hint>,	<query_hint>,
<table_hint>,	and	<view_hint>	only	be	used	as	a	last	resort	by	experienced
developers	and	database	administrators.

The	table	hints	are	ignored	if	the	table	is	not	accessed	by	the	query	plan.	This
may	be	a	result	of	the	optimizer's	choice	not	to	access	the	table	at	all,	or	because
an	indexed	view	is	accessed	instead.	In	the	latter	case,	the	use	of	an	indexed
view	may	be	prevented	by	using	the	OPTION	(EXPAND	VIEWS)	query	hint.

The	use	of	commas	between	table	hints	is	optional	but	encouraged.	Separation	of
hints	by	spaces	rather	than	commas	is	supported	for	backward	compatibility.

The	use	of	the	WITH	keyword	is	encouraged,	although	it	is	not	currently
required.	In	future	releases	of	SQL	Server,	WITH	may	be	a	required	keyword.

In	SQL	Server	2000,	all	lock	hints	are	propagated	to	all	the	base	tables	and	views
that	are	referenced	in	a	view.	In	addition,	SQL	Server	performs	the
corresponding	lock	consistency	checks.

If	a	table	(including	system	tables)	contains	computed	columns	and	the
computed	columns	are	computed	by	expressions	or	functions	accessing	columns
in	other	tables,	the	table	hints	are	not	used	on	those	tables	(the	table	hints	are	not
propagated).	For	example,	a	NOLOCK	table	hint	is	specified	on	a	table	in	the
query.	This	table	has	computed	columns	that	are	computed	by	a	combination	of
expressions	and	functions	(accessing	columns	in	another	table).	The	tables
referenced	by	the	expressions	and	functions	do	not	use	the	NOLOCK	table	hint
when	accessed.

SQL	Server	does	not	allow	more	than	one	table	hint	from	each	of	the	following
groups	for	each	table	in	the	FROM	clause:

Granularity	hints:	PAGLOCK,	NOLOCK,	ROWLOCK,	TABLOCK,	or
TABLOCKX.	

Isolation	level	hints:	HOLDLOCK,	NOLOCK,	READCOMMITTED,
REPEATABLEREAD,	SERIALIZABLE.

The	NOLOCK,	READUNCOMMITTED,	and	READPAST	table	hints	are	not
allowed	for	tables	that	are	targets	of	delete,	insert,	or	update	operations.

Syntax
<	table_hint	>	::=	
				{	INDEX	(index_val	[,...n])	
								|	FASTFIRSTROW	
								|	HOLDLOCK	
								|	NOLOCK	
								|	PAGLOCK	
								|	READCOMMITTED	
								|	READPAST	
								|	READUNCOMMITTED	

								|	REPEATABLEREAD	
								|	ROWLOCK	
								|	SERIALIZABLE	
								|	TABLOCK	
								|	TABLOCKX	
								|	UPDLOCK	
								|	XLOCK	
				}

Arguments
INDEX	(index_val	[,...n])

Specifies	the	name	or	ID	of	the	indexes	to	be	used	by	SQL	Server	when
processing	the	statement.	Only	one	index	hint	per	table	can	be	specified.

If	a	clustered	index	exists,	INDEX(0)	forces	a	clustered	index	scan	and
INDEX(1)	forces	a	clustered	index	scan	or	seek.	If	no	clustered	index	exists,
INDEX(0)	forces	a	table	scan	and	INDEX(1)	is	interpreted	as	an	error.

The	alternative	INDEX	=	syntax	(which	specifies	a	single	index	hint)	is
supported	only	for	backward	compatibility.

If	multiple	indexes	are	used	in	the	single	hint	list,	the	duplicates	are	ignored
and	the	rest	of	the	listed	indexes	are	used	to	retrieve	the	rows	of	the	table.
The	order	of	the	indexes	in	the	index	hint	is	significant.	A	multiple	index	hint
also	enforces	index	ANDing	and	SQL	Server	applies	as	many	conditions	as
possible	on	each	index	accessed.	If	the	collection	of	hinted	indexes	is	not
covering,	a	fetch	is	performed	after	retrieving	all	the	indexed	columns.

Note		If	an	index	hint	referring	to	multiple	indexes	is	used	on	the	fact	table	in	a
star	join,	SQL	Server	ignores	the	index	hint	and	returns	a	warning	message.
Also,	index	ORing	is	disallowed	for	a	table	with	an	index	hint	specified.

The	maximum	number	of	indexes	in	the	table	hint	is	250	nonclustered
indexes.

FASTFIRSTROW

Equivalent	to	OPTION	(FAST	1).	For	more	information,	see	FAST	in	the
OPTION	clause	in	SELECT.

HOLDLOCK

Equivalent	to	SERIALIZABLE.	(For	more	information,	see
SERIALIZABLE	later	in	this	topic.)	The	HOLDLOCK	option	applies	only
to	the	table	or	view	for	which	it	is	specified	and	only	for	the	duration	of	the
transaction	defined	by	the	statement	in	which	it	is	used.	HOLDLOCK	cannot
be	used	in	a	SELECT	statement	that	includes	the	FOR	BROWSE	option.

NOLOCK

Equivalent	to	READUNCOMMITTED.	For	more	information,	see
READUNCOMMITTED	later	in	this	topic.

PAGLOCK

Takes	shared	page	locks	where	a	single	shared	table	lock	is	normally	taken.

READCOMMITTED

Specifies	that	a	scan	is	performed	with	the	same	locking	semantics	as	a
transaction	running	at	READ	COMMITTED	isolation	level.	For	more
information	about	isolation	levels,	see	SET	TRANSACTION	ISOLATION
LEVEL.

READPAST

Specifies	that	locked	rows	are	skipped	(read	past).	For	example,	assume
table	T1	contains	a	single	integer	column	with	the	values	of	1,	2,	3,	4,	5.	If
transaction	A	changes	the	value	of	3	to	8	but	has	not	yet	committed,	a
SELECT	*	FROM	T1	(READPAST)	yields	values	1,	2,	4,	5.	READPAST
applies	only	to	transactions	operating	at	READ	COMMITTED	isolation	and
reads	past	only	row-level	locks.	This	lock	hint	is	used	primarily	to
implement	a	work	queue	on	a	SQL	Server	table.

READUNCOMMITTED

Specifies	that	dirty	reads	are	allowed.	This	means	that	no	shared	locks	are
issued	and	no	exclusive	locks	are	honored.	Allowing	dirty	reads	can	result	in
higher	concurrency,	but	at	the	cost	of	lower	consistency.	If
READUNCOMMITTED	is	specified,	it	is	possible	to	read	an	uncommitted
transaction	or	to	read	a	set	of	pages	rolled	back	in	the	middle	of	the	read;
therefore,	error	messages	may	result.	For	more	information	about	isolation
levels,	see	SET	TRANSACTION	ISOLATION	LEVEL.

Note		If	you	receive	the	error	message	601	when	READUNCOMMITTED	is
specified,	resolve	it	as	you	would	a	deadlock	error	(1205),	and	retry	your
statement.

REPEATABLEREAD

Specifies	that	a	scan	is	performed	with	the	same	locking	semantics	as	a
transaction	running	at	REPEATABLE	READ	isolation	level.	For	more
information	about	isolation	levels,	see	SET	TRANSACTION	ISOLATION
LEVEL.

ROWLOCK

Specifies	that	a	shared	row	lock	is	taken	when	a	single	shared	page	or	table
lock	is	normally	taken.

SERIALIZABLE

Equivalent	to	HOLDLOCK.	Makes	shared	locks	more	restrictive	by	holding
them	until	the	completion	of	a	transaction	(instead	of	releasing	the	shared
lock	as	soon	as	the	required	table	or	data	page	is	no	longer	needed,	whether
or	not	the	transaction	has	been	completed).	The	scan	is	performed	with	the
same	semantics	as	a	transaction	running	at	the	SERIALIZABLE	isolation
level.	For	more	information	about	isolation	levels,	see	SET	TRANSACTION
ISOLATION	LEVEL.

TABLOCK

Specifies	that	a	shared	lock	is	taken	on	the	table	held	until	the	end-of-
statement.	If	HOLDLOCK	is	also	specified,	the	shared	table	lock	is	held
until	the	end	of	the	transaction.

TABLOCKX

Specifies	that	an	exclusive	lock	is	taken	on	the	table	held	until	the	end-of-
statement	or	end-of-transaction.

UPDLOCK

Specifies	that	update	locks	instead	of	shared	locks	are	taken	while	reading
the	table,	and	that	they	are	held	until	the	end-of-statement	or	end-of-
transaction.

XLOCK

Specifies	that	exclusive	locks	should	be	taken	and	held	until	the	end	of
transaction	on	all	data	processed	by	the	statement.	If	specified	with
PAGLOCK	or	TABLOCK,	the	exclusive	locks	apply	to	the	appropriate	level
of	granularity.

View	Hints
View	hints	can	be	used	only	for	indexed	views.	(An	indexed	view	is	a	view	with
a	unique	clustered	index	created	on	it.)	If	a	query	contains	references	to	columns
that	are	present	both	in	an	indexed	view	and	base	tables,	and	Microsoft	SQL
Server™	query	optimizer	determines	that	using	the	indexed	view	provides	the
best	method	for	executing	the	query,	then	the	optimizer	utilizes	the	index	on	the
view.	This	function	is	supported	only	on	the	Enterprise	and	Developer	Editions
of	the	Microsoft	SQL	Server	2000.

However,	in	order	for	the	optimizer	to	consider	indexed	views,	the	following
SET	options	must	be	set	to	ON:

ANSI_NULLS ANSI_WARNINGS CONCAT_NULL_YIELDS_NULL
ANSI_PADDING ARITHABORT QUOTED_IDENTIFIERS

In	addition,	the	NUMERIC_ROUNDABORT	option	must	be	set	to	OFF.

To	force	the	optimizer	to	use	an	index	for	an	indexed	view,	specify	the
NOEXPAND	option.	This	hint	may	be	used	only	if	the	view	is	also	named	in	the
query.	SQL	Server	2000	does	not	provide	a	hint	to	force	a	particular	indexed
view	to	be	used	in	a	query	that	does	not	name	the	view	directly	in	the	FROM
clause;	however,	the	query	optimizer	considers	the	use	of	indexed	views	even	if
they	are	not	referenced	directly	in	the	query.

View	hints	are	allowed	only	in	SELECT	statements;	they	cannot	be	used	in
views	that	are	the	table	source	in	INSERT,	UPDATE,	and	DELETE	statements.

Syntax
<	view_hint	>	::=	

{	NOEXPAND	[,	INDEX	(index_val	[,...n])]	}

Arguments
NOEXPAND

Specifies	that	the	indexed	view	is	not	expanded	when	the	query	optimizer
processes	the	query.	The	query	optimizer	treats	the	view	like	a	table	with
clustered	index.

INDEX	(index_val	[,...n])

Specifies	the	name	or	ID	of	the	indexes	to	be	used	by	SQL	Server	when	it
processes	the	statement.	Only	one	index	hint	per	view	can	be	specified.

INDEX(0)	forces	a	clustered	index	scan	and	INDEX(1)	forces	a	clustered
index	scan	or	seek.

If	multiple	indexes	are	used	in	the	single	hint	list,	the	duplicates	are	ignored
and	the	rest	of	the	listed	indexes	are	used	to	retrieve	the	rows	of	the	indexed
view.	The	ordering	of	the	indexes	in	the	index	hint	is	significant.	A	multiple
index	hint	also	enforces	index	ANDing	and	SQL	Server	applies	as	many
conditions	as	possible	on	each	index	accessed.	If	the	collection	of	hinted
indexes	does	not	contain	all	columns	referenced	in	the	query,	a	fetch	is
performed	after	retrieving	all	the	indexed	columns.

Join	Hints
Join	hints,	which	are	specified	in	a	query's	FROM	clause,	enforce	a	join	strategy
between	two	tables.	If	a	join	hint	is	specified	for	any	two	tables,	the	query
optimizer	automatically	enforces	the	join	order	for	all	joined	tables	in	the	query,
based	on	the	position	of	the	ON	keywords.	In	the	case	of	CROSS	JOINS,	when
the	ON	clauses	are	not	used,	parentheses	can	be	used	to	indicate	the	join	order.

CAUTION		Because	the	SQL	Server	query	optimizer	usually	selects	the	best
execution	plan	for	a	query,	it	is	recommended	that	<join_hint>,	<query_hint>,
and	<table_hint>	be	used	only	as	a	last	resort	by	experienced	database
administrators.

Syntax

<	join_hint	>	::=	
				{	LOOP	|	HASH	|	MERGE	|	REMOTE	}

Arguments
LOOP	|	HASH	|	MERGE

Specifies	that	the	join	in	the	query	should	use	looping,	hashing,	or	merging.
Using	LOOP	|	HASH	|	MERGE	JOIN	enforces	a	particular	join	between	two
tables.

REMOTE

Specifies	that	the	join	operation	is	performed	on	the	site	of	the	right	table.
This	is	useful	when	the	left	table	is	a	local	table	and	the	right	table	is	a
remote	table.	REMOTE	should	be	used	only	when	the	left	table	has	fewer
rows	than	the	right	table.

If	the	right	table	is	local,	the	join	is	performed	locally.	If	both	tables	are
remote	but	from	different	data	sources,	REMOTE	causes	the	join	to	be
performed	on	the	right	table's	site.	If	both	tables	are	remote	tables	from	the
same	data	source,	REMOTE	is	not	necessary.

REMOTE	cannot	be	used	when	one	of	the	values	being	compared	in	the	join
predicate	is	cast	to	a	different	collation	using	the	COLLATE	clause.

REMOTE	can	be	used	only	for	INNER	JOIN	operations.

Remarks
The	FROM	clause	supports	the	SQL-92-SQL	syntax	for	joined	tables	and
derived	tables.	SQL-92	syntax	provides	the	INNER,	LEFT	OUTER,	RIGHT
OUTER,	FULL	OUTER,	and	CROSS	join	operators.

Although	the	outer	join	operators	from	earlier	versions	of	SQL	Server	are
supported,	you	cannot	use	both	outer	join	operators	and	SQL-92-style	joined
tables	in	the	same	FROM	clause.

UNION	and	JOIN	within	a	FROM	clause	are	supported	within	views	as	well	as
in	derived	tables	and	subqueries.

A	self-join	is	a	table	that	joins	upon	itself.	Inserts	or	updates	that	are	based	on	a

self-join	follow	the	order	in	the	FROM	clause.

Since	Microsoft	SQL	Server™	2000	considers	distribution	and	cardinality
statistics	from	linked	servers	that	provide	column	distribution	statistics,	the
REMOTE	join	hint	is	not	really	necessary	to	force	evaluating	a	join	remotely.
The	SQL	Server	query	processor	considers	remote	statistics	and	determines	if	a
remote-join	strategy	is	appropriate.	REMOTE	join	hint	is	useful	for	providers
that	do	not	provide	column	distribution	statistics.	For	more	information,	see
Distribution	Statistics	Requirements	for	OLE	DB	Providers.

Permissions
FROM	permissions	default	to	the	permissions	for	the	DELETE,	SELECT,	or
UPDATE	statement.

Examples

A.	Use	a	simple	FROM	clause
This	example	retrieves	the	pub_id	and	pub_name	columns	from	the	publishers
table.

USE	pubs
SELECT	pub_id,	pub_name
FROM	publishers
ORDER	BY	pub_id

Here	is	the	result	set:

pub_id	pub_name														
------	---------------------
0736			New	Moon	Books								
0877			Binnet	&	Hardley						
1389			Algodata	Infosystems		
1622			Five	Lakes	Publishing	
1756			Ramona	Publishers					
9901			GGG&G																	

JavaScript:hhobj_1.Click()

9952			Scootney	Books								
9999			Lucerne	Publishing				

(8	row(s)	affected)

B.	Use	the	TABLOCK	and	HOLDLOCK	optimizer	hints
The	following	partial	transaction	shows	how	to	place	an	explicit	shared	table
lock	on	authors	and	how	to	read	the	index.	The	lock	is	held	throughout	the
entire	transaction.

USE	pubs
BEGIN	TRAN
SELECT	COUNT(*)	
FROM	authors	WITH	(TABLOCK,	HOLDLOCK)

C.	Use	the	SQL-92	CROSS	JOIN	syntax
This	example	returns	the	cross	product	of	the	two	tables	authors	and
publishers.	A	list	of	all	possible	combinations	of	au_lname	rows	and	all
pub_name	rows	are	returned.

USE	pubs
SELECT	au_lname,	pub_name	
FROM	authors	CROSS	JOIN	publishers
ORDER	BY	au_lname	ASC,	pub_name	ASC

Here	is	the	result	set:

au_lname																																	pub_name																								
--	-------------------------------	
Bennet																																			Algodata	Infosystems
Bennet																																			Binnet	&	Hardley
Bennet																																			Five	Lakes	Publishing
Bennet																																			GGG&G
Bennet																																			Lucerne	Publishing
Bennet																																			New	Moon	Books

Bennet																																			Ramona	Publishers
Bennet																																			Scootney	Books
Blotchet-Halls																											Algodata	Infosystems
Blotchet-Halls																											Binnet	&	Hardley
Blotchet-Halls																											Five	Lakes	Publishing
Blotchet-Halls																											GGG&G
Blotchet-Halls																											Lucerne	Publishing
Blotchet-Halls																											New	Moon	Books
Blotchet-Halls																											Ramona	Publishers
Blotchet-Halls																											Scootney	Books
Carson																																			Algodata	Infosystems
Carson																																			Binnet	&	Hardley
Carson																																			Five	Lakes	Publishing
...
Stringer																																	Scootney	Books
White																																				Algodata	Infosystems
White																																				Binnet	&	Hardley
White																																				Five	Lakes	Publishing
White																																				GGG&G
White																																				Lucerne	Publishing
White																																				New	Moon	Books
White																																				Ramona	Publishers
White																																				Scootney	Books
Yokomoto																																	Algodata	Infosystems
Yokomoto																																	Binnet	&	Hardley
Yokomoto																																	Five	Lakes	Publishing
Yokomoto																																	GGG&G
Yokomoto																																	Lucerne	Publishing
Yokomoto																																	New	Moon	Books
Yokomoto																																	Ramona	Publishers
Yokomoto																																	Scootney	Books

(184	row(s)	affected)

D.	Use	the	SQL-92	FULL	OUTER	JOIN	syntax
This	example	returns	the	book	title	and	its	corresponding	publisher	in	the	titles
table.	It	also	returns	any	publishers	who	have	not	published	books	listed	in	the
titles	table,	and	any	book	titles	with	a	publisher	other	than	the	one	listed	in	the
publishers	table.

USE	pubs
--	The	OUTER	keyword	following	the	FULL	keyword	is	optional.
SELECT	SUBSTRING(titles.title,	1,	10)	AS	Title,	
			publishers.pub_name	AS	Publisher
FROM	publishers	FULL	OUTER	JOIN	titles
			ON	titles.pub_id	=	publishers.pub_id
WHERE	titles.pub_id	IS	NULL	
			OR	publishers.pub_id	IS	NULL
ORDER	BY	publishers.pub_name

Here	is	the	result	set:

Title						Publisher																																
----------	--	
NULL							Five	Lakes	Publishing
NULL							GGG&G
NULL							Lucerne	Publishing
NULL							Ramona	Publishers
NULL							Scootney	Books

(5	row(s)	affected)

E.	Use	the	SQL-92	LEFT	OUTER	JOIN	syntax
This	example	joins	two	tables	on	au_id	and	preserves	the	unmatched	rows	from
the	left	table.	The	authors	table	is	matched	with	the	titleauthor	table	on	the
au_id	columns	in	each	table.	All	authors,	published	and	unpublished,	appear	in
the	result	set.

USE	pubs

--	The	OUTER	keyword	following	the	LEFT	keyword	is	optional.
SELECT	SUBSTRING(authors.au_lname,	1,	10)	AS	Last,
			authors.au_fname	AS	First,	titleauthor.title_id
FROM	authors	LEFT	OUTER	JOIN	titleauthor
			ON	authors.au_id	=	titleauthor.au_id

Here	is	the	result	set:

Last							First																title_id	
----------	--------------------	--------	
White						Johnson														PS3333			
Green						Marjorie													BU1032			
Green						Marjorie													BU2075			
Carson					Cheryl															PC1035			
...																								...						
McBadden			Heather														NULL
Ringer					Anne																	PS2091			
Ringer					Albert															PS2091			
Ringer					Albert															PS2106			

(29	row(s)	affected)

F.	Use	the	SQL-92	INNER	JOIN	syntax
This	example	returns	all	publisher	names	with	the	corresponding	book	titles	each
publisher	has	published.

USE	pubs
--	By	default,	SQL	Server	performs	an	INNER	JOIN	if	only	the	JOIN	
--	keyword	is	specified.
SELECT	SUBSTRING(titles.title,	1,	30)	AS	Title,	publishers.pub_name
FROM	publishers	INNER	JOIN	titles	
			ON	titles.pub_id	=	publishers.pub_id
ORDER	BY	publishers.pub_name

Here	is	the	result	set:

Title																										pub_name																																	
------------------------------	--	
The	Busy	Executive's	Database		Algodata	Infosystems																					
Cooking	with	Computers:	Surrep	Algodata	Infosystems																					
Straight	Talk	About	Computers		Algodata	Infosystems																					
But	Is	It	User	Friendly?							Algodata	Infosystems																					
Secrets	of	Silicon	Valley						Algodata	Infosystems																					
Net	Etiquette																		Algodata	Infosystems																					
Silicon	Valley	Gastronomic	Tre	Binnet	&	Hardley																									
The	Gourmet	Microwave										Binnet	&	Hardley																									
The	Psychology	of	Computer	Coo	Binnet	&	Hardley																									
Computer	Phobic	AND	Non-Phobic	Binnet	&	Hardley																									
Onions,	Leeks,	and	Garlic:	Coo	Binnet	&	Hardley																									
Fifty	Years	in	Buckingham	Pala	Binnet	&	Hardley																									
Sushi,	Anyone?																	Binnet	&	Hardley																									
You	Can	Combat	Computer	Stress	New	Moon	Books																											
Is	Anger	the	Enemy?												New	Moon	Books																											
Life	Without	Fear														New	Moon	Books																											
Prolonged	Data	Deprivation:	Fo	New	Moon	Books																											
Emotional	Security:	A	New	Algo	New	Moon	Books																											

(18	row(s)	affected)

G.	Use	the	SQL-92	RIGHT	OUTER	JOIN	syntax
This	example	joins	two	tables	on	pub_id	and	preserves	the	unmatched	rows
from	the	right	table.	The	publishers	table	is	matched	with	the	titles	table	on	the
pub_id	column	in	each	table.	All	publishers	appear	in	the	result	set,	whether	or
not	they	have	published	any	books.

USE	pubs
SELECT	SUBSTRING(titles.title,	1,	30)	AS	'Title',	publishers.pub_name
FROM	titles	RIGHT	OUTER	JOIN	publishers	

			ON	titles.pub_id	=	publishers.pub_id
ORDER	BY	publishers.pub_name

Here	is	the	result	set:

Title																										pub_name																																	
------------------------------	--	
The	Busy	Executive's	Database		Algodata	Infosystems																					
Cooking	with	Computers:	Surrep	Algodata	Infosystems																					
Straight	Talk	About	Computers		Algodata	Infosystems																					
But	Is	It	User	Friendly?							Algodata	Infosystems																					
Secrets	of	Silicon	Valley						Algodata	Infosystems																					
Net	Etiquette																		Algodata	Infosystems																					
Silicon	Valley	Gastronomic	Tre	Binnet	&	Hardley																									
The	Gourmet	Microwave										Binnet	&	Hardley																									
The	Psychology	of	Computer	Coo	Binnet	&	Hardley																									
Computer	Phobic	AND	Non-Phobic	Binnet	&	Hardley																									
Onions,	Leeks,	and	Garlic:	Coo	Binnet	&	Hardley																									
Fifty	Years	in	Buckingham	Pala	Binnet	&	Hardley																									
Sushi,	Anyone?																	Binnet	&	Hardley																									
NULL																											Five	Lakes	Publishing																				
NULL																											GGG&G																																				
NULL																											Lucerne	Publishing																							
You	Can	Combat	Computer	Stress	New	Moon	Books																											
Is	Anger	the	Enemy?												New	Moon	Books																											
Life	Without	Fear														New	Moon	Books																											
Prolonged	Data	Deprivation:	Fo	New	Moon	Books																											
Emotional	Security:	A	New	Algo	New	Moon	Books																											
NULL																											Ramona	Publishers																								
NULL																											Scootney	Books																											

(23	row(s)	affected)

H.	Use	HASH	and	MERGE	join	hints

This	example	performs	a	three-table	join	among	the	authors,	titleauthors,	and
titles	tables	to	produce	a	list	of	authors	and	the	books	they	have	written.	The
query	optimizer	joins	authors	and	titleauthors	(A	x	TA)	using	a	MERGE	join.
Next,	the	results	of	the	authors	and	titleauthors	MERGE	join	(A	x	TA)	are
HASH	joined	with	the	titles	table	to	produce	(A	x	TA)	x	T.

IMPORTANT		After	a	join	hint	is	specified,	the	INNER	keyword	is	no	longer
optional	and	must	be	explicitly	stated	for	an	INNER	JOIN	to	be	performed.

USE	pubs
SELECT	SUBSTRING((RTRIM(a.au_fname)	+	'	'	+	LTRIM(a.au_lname)),	1,	25)
			AS	Name,	SUBSTRING(t.title,	1,	20)	AS	Title
FROM	authors	a	INNER	MERGE	JOIN	titleauthor	ta	
			ON	a.au_id	=	ta.au_id	INNER	HASH	JOIN	titles	t	
			ON	t.title_id	=	ta.title_id
ORDER	BY	au_lname	ASC,	au_fname	ASC

Here	is	the	result	set:

Warning:	The	join	order	has	been	enforced	because	a	local	join	hint	is	used.
Name																						Title																
-------------------------	--------------------	
Abraham	Bennet												The	Busy	Executive's	
Reginald	Blotchet-Halls			Fifty	Years	in	Bucki	
Cheryl	Carson													But	Is	It	User	Frien	
Michel	DeFrance											The	Gourmet	Microwav	
Innes	del	Castillo								Silicon	Valley	Gastr	
...																				...
Johnson	White													Prolonged	Data	Depri	
Akiko	Yokomoto												Sushi,	Anyone?							

(25	row(s)	affected)

I.	Use	a	derived	table
This	example	uses	a	derived	table,	a	SELECT	statement	after	the	FROM	clause,

to	return	all	authors'	first	and	last	names	and	the	book	numbers	for	each	title	the
author	has	written.

USE	pubs
SELECT	RTRIM(a.au_fname)	+	'	'	+	LTRIM(a.au_lname)	AS	Name,	d1.title_id
FROM	authors	a,	(SELECT	title_id,	au_id	FROM	titleauthor)	AS	d1
WHERE	a.au_id	=	d1.au_id
ORDER	BY	a.au_lname,	a.au_fname

Here	is	the	result	set:

Name																																																										title_id	
---	--------	
Abraham	Bennet																																																BU1032			
Reginald	Blotchet-Halls																																							TC4203			
Cheryl	Carson																																																	PC1035			
Michel	DeFrance																																															MC3021			
Innes	del	Castillo																																												MC2222			
Ann	Dull																																																						PC8888			
Marjorie	Green																																																BU1032			
Marjorie	Green																																																BU2075			
Burt	Gringlesby																																															TC7777			
Sheryl	Hunter																																																	PC8888			
Livia	Karsen																																																		PS1372			
Charlene	Locksley																																													PC9999			
Charlene	Locksley																																													PS7777			
Stearns	MacFeather																																												BU1111			
Stearns	MacFeather																																												PS1372			
Michael	O'Leary																																															BU1111			
Michael	O'Leary																																															TC7777			
Sylvia	Panteley																																															TC3218			
Albert	Ringer																																																	PS2091			
Albert	Ringer																																																	PS2106			
Anne	Ringer																																																			MC3021			

Anne	Ringer																																																			PS2091			
Dean	Straight																																																	BU7832			
Johnson	White																																																	PS3333			
Akiko	Yokomoto																																																TC7777			

(25	row(s)	affected)

See	Also

CONTAINSTABLE

DELETE

FREETEXTTABLE

INSERT

OPENQUERY

OPENROWSET

Operators

UPDATE

WHERE

Transact-SQL	Reference

FULLTEXTCATALOGPROPERTY
Returns	information	about	full-text	catalog	properties.

Syntax
FULLTEXTCATALOGPROPERTY	(catalog_name	,	property)

Arguments
catalog_name

Is	an	expression	containing	the	name	of	the	full-text	catalog.

property

Is	an	expression	containing	the	name	of	the	full-text	catalog	property.	The
table	lists	the	properties	and	provides	descriptions	of	the	information
returned.

Property Description
PopulateStatus 0	=	Idle	

1	=	Full	population	in	progress
2	=	Paused	
3	=	Throttled	
4	=	Recovering	
5	=	Shutdown	
6	=	Incremental	population	in	progress	
7	=	Building	index	
8	=	Disk	is	full.	Paused.
9	=	Change	tracking

ItemCount Number	of	full-text	indexed	items	currently	in
the	full-text	catalog.

IndexSize Size	of	the	full-text	index	in	megabytes.
UniqueKeyCount Number	of	unique	words	(keys)	that	make	up

the	full-text	index	in	this	catalog.	This	is	an
approximation	of	the	number	of	nonnoise

words	stored	in	the	full-text	catalog.
LogSize Size,	in	bytes,	of	the	combined	set	of	error

logs	associated	with	a	Microsoft®	Search
Service	full-text	catalog.

PopulateCompletionAge The	difference	in	seconds	between	the
completion	of	the	last	full-text	index
population	and	01/01/1990	00:00:00.

Return	Types
int

Remarks
It	is	important	that	applications	do	not	wait	in	a	tight	loop,	checking	for	the
PopulateStatus	property	to	become	idle	(indicating	that	population	has
completed)	because	this	takes	CPU	cycles	away	from	the	database	and	full-text
search	processes	and	causes	time	outs.

Examples
This	example	returns	the	number	of	full-text	indexed	items	in	the	Cat_Desc	full-
text	catalog.

USE	Northwind
GO
SELECT	fulltextcatalogproperty('Cat_Desc',	'ItemCount')	

Here	is	the	result	set:

9

See	Also

FULLTEXTSERVICEPROPERTY

Metadata	Functions

sp_help_fulltext_catalogs

Transact-SQL	Reference

FULLTEXTSERVICEPROPERTY
Returns	information	about	full-text	service-level	properties.

Syntax
FULLTEXTSERVICEPROPERTY	(property)

Arguments
property

Is	an	expression	containing	the	name	of	the	full-text	service-level	property.
The	table	lists	the	properties	and	provides	descriptions	of	the	information
returned.

Property Value
ResourceUsage A	value	from	1	(background)	through	5

(dedicated).
ConnectTimeout The	number	of	seconds	that	Microsoft	Search

Service	will	wait	for	all	connections	to	the
Microsoft®	SQL	Server™	database	server	for
full-text	index	population	before	timing	out.

IsFulltextInstalled The	full-text	component	is	installed	with	the
current	instance	of	SQL	Server.

1	=	Full-text	is	installed.
0	=	Full-text	is	not	installed.
NULL	=	Invalid	input,	or	error.

DataTimeout The	number	of	seconds	that	Microsoft	Search
Service	will	wait	for	data	to	be	returned	by
Microsoft	SQL	Server	database	server	for	full-
text	index	population	before	timing	out.

Return	Types
int

Examples
This	example	verifies	that	Microsoft®	Search	Service	is	installed.

SELECT	fulltextserviceproperty('IsFulltextInstalled')

Here	is	the	result	set:

1

See	Also

FULLTEXTCATALOGPROPERTY

Metadata	Functions

sp_fulltext_service

Transact-SQL	Reference

Functions
The	Transact-SQL	programming	language	provides	three	types	of	functions:

Rowset	functions

Can	be	used	like	table	references	in	an	SQL	statement.	For	more
information	about	a	list	of	these	functions,	see	Rowset	Functions.

Aggregate	functions

Operate	on	a	collection	of	values	but	return	a	single,	summarizing
value.	For	more	information	about	a	list	of	these	functions,	see
Aggregate	Functions.

Scalar	functions

Operate	on	a	single	value	and	then	return	a	single	value.	Scalar
functions	can	be	used	wherever	an	expression	is	valid.	This	table
categorizes	the	scalar	functions.

Function	category Explanation
Configuration
Functions

Returns	information	about	the	current
configuration.

Cursor	Functions Returns	information	about	cursors.
Date	and	Time
Functions

Performs	an	operation	on	a	date	and	time	input
value	and	returns	either	a	string,	numeric,	or
date	and	time	value.

Mathematical
Functions

Performs	a	calculation	based	on	input	values
provided	as	parameters	to	the	function,	and
returns	a	numeric	value.

Metadata	Functions Returns	information	about	the	database	and
database	objects.

Security	Functions Returns	information	about	users	and	roles.
String	Functions Performs	an	operation	on	a	string	(char	or

varchar)	input	value	and	returns	a	string	or
numeric	value.

System	Functions Performs	operations	and	returns	information

about	values,	objects,	and	settings	in
Microsoft®	SQL	Server™.

System	Statistical
Functions

Returns	statistical	information	about	the
system.

Text	and	Image
Functions

Performs	an	operation	on	a	text	or	image	input
values	or	column,	and	returns	information
about	the	value.

Function	Determinism

SQL	Server	2000	built-in	functions	are	either	deterministic	or	nondeterministic.
Functions	are	deterministic	when	they	always	return	the	same	result	any	time
they	are	called	with	a	specific	set	of	input	values.	Functions	are	nondeterministic
when	they	could	return	different	results	each	time	they	are	called,	even	with	the
same	specific	set	of	input	values.

The	determinism	of	functions	dictate	whether	they	can	be	used	in	indexed
computed	columns	and	indexed	views.	Index	scans	must	always	produce
consistent	results.	Thus,	only	deterministic	functions	can	be	used	to	define
computed	columns	and	views	that	are	to	be	indexed.

Configuration,	cursor,	meta	data,	security,	and	system	statistical	functions	are
nondeterministic.	In	addition,	the	following	built-in	functions	are	also	always
nondeterministic:

@@ERROR FORMATMESSAGE NEWID
@@IDENTITY GETANSINULL PERMISSIONS
@@ROWCOUNT GETDATE SESSION_USER
@@TRANCOUNT HOST_ID STATS_DATE
APP_NAME HOST_NAME SYSTEM_USER
CURRENT_TIMESTAMP IDENT_INCR TEXTPTR
CURRENT_USER IDENT_SEED TEXTVALID
DATENAME IDENTITY USER_NAME

Function	Collation
Functions	that	take	a	character	string	input	and	return	a	character	string	output
use	the	collation	of	the	input	string	for	the	output.

Functions	that	take	non-character	inputs	and	return	a	character	string	use	the
default	collation	of	the	current	database	for	the	output.

Functions	that	take	multiple	character	string	inputs	and	return	a	character	string
use	the	rules	of	collation	precedence	to	set	the	collation	of	the	output	string.	For
more	information,	see	Collation	Precedence.

See	Also

CREATE	FUNCTION

Deterministic	and	Nondeterministic	Functions

User-defined	Functions

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

Aggregate	Functions
Aggregate	functions	perform	a	calculation	on	a	set	of	values	and	return	a	single
value.	With	the	exception	of	COUNT,	aggregate	functions	ignore	null	values.
Aggregate	functions	are	often	used	with	the	GROUP	BY	clause	of	the	SELECT
statement.

All	aggregate	functions	are	deterministic;	they	return	the	same	value	any	time
they	are	called	with	a	given	set	of	input	values.	For	more	information	about
function	determinism,	see	Deterministic	and	Nondeterministic	Functions.

Aggregate	functions	are	allowed	as	expressions	only	in:

The	select	list	of	a	SELECT	statement	(either	a	subquery	or	an	outer
query).

A	COMPUTE	or	COMPUTE	BY	clause.

A	HAVING	clause.

The	Transact-SQL	programming	language	provides	these	aggregate	functions:

AVG MAX
BINARY_CHECKSUM MIN
CHECKSUM SUM
CHECKSUM_AGG STDEV
COUNT STDEVP
COUNT_BIG VAR
GROUPING VARP

See	Also

Functions

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

Configuration	Functions
These	scalar	functions	return	information	about	current	configuration	option
settings.

@@DATEFIRST @@OPTIONS
@@DBTS @@REMSERVER
@@LANGID @@SERVERNAME
@@LANGUAGE @@SERVICENAME
@@LOCK_TIMEOUT @@SPID
@@MAX_CONNECTIONS @@TEXTSIZE
@@MAX_PRECISION @@VERSION
@@NESTLEVEL 	

All	configuration	functions	are	nondeterministic;	they	do	not	always	return	the
same	results	every	time	they	are	called	with	a	specific	set	of	input	values.	For
more	information	about	function	determinism,	see	Deterministic	and
Nondeterministic	Functions.

See	Also

Functions

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

Cursor	Functions
These	scalar	functions	return	information	about	cursors.

@@CURSOR_ROWS

CURSOR_STATUS

@@FETCH_STATUS

All	cursor	functions	are	nondeterministic;	they	do	not	always	return	the	same
results	every	time	they	are	called	with	a	specific	set	of	input	values.	For	more
information	about	function	determinism,	see	Deterministic	and	Nondeterministic
Functions.

See	Also

Functions

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

Date	and	Time	Functions
These	scalar	functions	perform	an	operation	on	a	date	and	time	input	value	and
return	a	string,	numeric,	or	date	and	time	value.

This	table	lists	the	date	and	time	functions	and	their	determinism	property.	For
more	information	about	function	determinism,	see	Deterministic	and
Nondeterministic	Functions.

Function Determinism
DATEADD Deterministic
DATEDIFF Deterministic
DATENAME Nondeterministic
DATEPART Deterministic	except	when	used	as	DATEPART

(dw,	date).	dw,	the	weekday	datepart,	depends	on
the	value	set	by	SET	DATEFIRST,	which	sets	the
first	day	of	the	week.

DAY Deterministic
GETDATE Nondeterministic
GETUTCDATE Nondeterministic
MONTH Deterministic
YEAR Deterministic

See	Also

Functions

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

Mathematical	Functions
These	scalar	functions	perform	a	calculation,	usually	based	on	input	values
provided	as	arguments,	and	return	a	numeric	value.

ABS DEGREES RAND
ACOS EXP ROUND
ASIN FLOOR SIGN
ATAN LOG SIN
ATN2 LOG10 SQUARE
CEILING PI SQRT
COS POWER TAN
COT RADIANS 	

Note		Arithmetic	functions,	such	as	ABS,	CEILING,	DEGREES,	FLOOR,
POWER,	RADIANS,	and	SIGN,	return	a	value	having	the	same	data	type	as	the
input	value.	Trigonometric	and	other	functions,	including	EXP,	LOG,	LOG10,
SQUARE,	and	SQRT,	cast	their	input	values	to	float	and	return	a	float	value.

All	mathematical	functions,	except	for	RAND,	are	deterministic	functions;	they
return	the	same	results	each	time	they	are	called	with	a	specific	set	of	input
values.	RAND	is	deterministic	only	when	a	seed	parameter	is	specified.	For
more	information	about	function	determinism,	see	Deterministic	and
Nondeterministic	Functions.

See	Also

Functions

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

Meta	Data	Functions
These	scalar	functions	return	information	about	the	database	and	database
objects.

COL_LENGTH fn_listextendedproperty
COL_NAME FULLTEXTCATALOGPROPERTY
COLUMNPROPERTY FULLTEXTSERVICEPROPERTY
DATABASEPROPERTY INDEX_COL
DATABASEPROPERTYEX INDEXKEY_PROPERTY
DB_ID INDEXPROPERTY
DB_NAME OBJECT_ID
FILE_ID OBJECT_NAME
FILE_NAME OBJECTPROPERTY
FILEGROUP_ID @@PROCID
FILEGROUP_NAME SQL_VARIANT_PROPERTY
FILEGROUPPROPERTY TYPEPROPERTY
FILEPROPERTY 	

All	meta	data	functions	are	nondeterministic.		They	do	not	always	return	the
same	results	every	time	they	are	called	with	a	specific	set	of	input	values.	For
more	information	about	function	determinism,	see	Deterministic	and
Nondeterministic	Functions.

See	Also

Functions

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

Rowset	Functions
These	rowset	functions	return	an	object	that	can	be	used	in	place	of	a	table
reference	in	a	Transact-SQL	statement.

CONTAINSTABLE

FREETEXTTABLE

OPENDATASOURCE

OPENQUERY

OPENROWSET

OPENXML

All	rowset	functions	are	nondeterministic;	they	do	not	return	the	same	results
every	time	they	are	called	with	a	specific	set	of	input	values.	For	more
information	about	function	determinism,	see	Deterministic	and	Nondeterministic
Functions.

See	Also

Functions

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

Security	Functions
These	scalar	functions	return	information	about	users	and	roles.

fn_trace_geteventinfo IS_SRVROLEMEMBER
fn_trace_getfilterinfo SUSER_SID
fn_trace_getinfo SUSER_SNAME
fn_trace_gettable USER_ID
HAS_DBACCESS USER
IS_MEMBER 	

All	security	functions	are	nondeterministic.	They	do	not	always	return	the	same
results	every	time	they	are	called	with	a	specific	set	of	input	values.	For	more
information	about	function	determinism,	see	Deterministic	and	Nondeterministic
Functions.

See	Also

Functions

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

String	Functions
These	scalar	functions	perform	an	operation	on	a	string	input	value	and	return	a
string	or	numeric	value.

ASCII NCHAR SOUNDEX
CHAR PATINDEX SPACE
CHARINDEX REPLACE STR
DIFFERENCE QUOTENAME STUFF
LEFT REPLICATE SUBSTRING
LEN REVERSE UNICODE
LOWER RIGHT UPPER
LTRIM RTRIM 	

All	built-in	string	functions,	except	for	CHARINDEX	and	PATINDEX,	are
deterministic.	They	return	the	same	value	any	time	they	are	called	with	a	given
set	of	input	values.	For	more	information	about	function	determinism,	see
Deterministic	and	Nondeterministic	Functions.

See	Also

Functions

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

System	Functions
These	scalar	functions	perform	operations	on	and	return	information	about
values,	objects,	and	settings	in	Microsoft®	SQL	Server™.

This	table	lists	the	system	functions	and	their	determinism	property.	For	more
information	about	function	determinism,	see	Deterministic	and	Nondeterministic
Functions.

Function Determinism
APP_NAME Nondeterministic
CASE	expression Deterministic
CAST	and	CONVERT Deterministic	unless	used	with	datetime,

smalldatetime,	or	sql_variant.
COALESCE Deterministic
COLLATIONPROPERTY Nondeterministic
CURRENT_TIMESTAMP Nondeterministic
CURRENT_USER Nondeterministic
DATALENGTH Deterministic
@@ERROR Nondeterministic
fn_helpcollations Deterministic
fn_servershareddrives Nondeterministic
fn_virtualfilestats Nondeterministic
FORMATMESSAGE Nondeterministic
GETANSINULL Nondeterministic
HOST_ID Nondeterministic
HOST_NAME Nondeterministic
IDENT_CURRENT Nondeterministic
IDENT_INCR Nondeterministic
IDENT_SEED Nondeterministic
@@IDENTITY Nondeterministic
IDENTITY	(Function) Nondeterministic
ISDATE Deterministic	only	if	used	with	the

JavaScript:hhobj_1.Click()

CONVERT	function,	the	CONVERT	style
parameter	is	specified	and	the	style	parameter
is	not	equal	to	0,	100,	9,	or	109.	Styles	0	and
100	use	the	default	format	mon	dd	yyyy
hh:miAM	(or	PM).	Styles	9	and	109	use	the
default	format	plus	milliseconds	mon	dd	yyyy
hh:mi:ss:mmmAM	(or	PM).

ISNULL Deterministic
ISNUMERIC Deterministic
NEWID Nondeterministic
NULLIF Deterministic
PARSENAME Deterministic
PERMISSIONS Nondeterministic
@@ROWCOUNT Nondeterministic
ROWCOUNT_BIG Nondeterministic
SCOPE_IDENTITY Nondeterministic
SERVERPROPERTY Nondeterministic
SESSIONPROPERTY Nondeterministic
SESSION_USER Nondeterministic
STATS_DATE Nondeterministic
SYSTEM_USER Nondeterministic
@@TRANCOUNT Nondeterministic
USER_NAME Nondeterministic

See	Also

Functions

Transact-SQL	Reference

System	Statistical	Functions
These	scalar	functions	return	statistical	information	about	the	system.

@@CONNECTIONS @@PACK_RECEIVED
@@CPU_BUSY @@PACK_SENT
fn_virtualfilestats @@TIMETICKS
@@IDLE @@TOTAL_ERRORS
@@IO_BUSY @@TOTAL_READ
@@PACKET_ERRORS @@TOTAL_WRITE

All	system	statistical	functions	are	nondeterministic;	they	do	not	always	return
the	same	results	every	time	they	are	called	with	a	specific	set	of	input	values.	For
more	information	about	function	determinism,	see	Deterministic	and
Nondeterministic	Functions.

See	Also

Functions

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

Text	and	Image	Functions
These	scalar	functions	perform	an	operation	on	a	text	or	image	input	value	or
column	and	return	information	about	the	value.

PATINDEX

TEXTPTR

TEXTVALID

These	text	and	image	functions	are	nondeterministic	functions	and	they	may	not
return	the	same	results	each	time	they	are	called,	even	with	the	same	set	of	input
values.	For	more	information	about	function	determinism,	see	Deterministic	and
Nondeterministic	Functions.

See	Also

Functions

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

GETANSINULL
Returns	the	default	nullability	for	the	database	for	this	session.

Syntax
GETANSINULL	(['database'])

Arguments
'database'

Is	the	name	of	the	database	for	which	to	return	nullability	information.
database	is	either	char	or	nchar.	If	char,	database	is	implicitly	converted	to
nchar.

Return	Types
int

Remarks
When	the	nullability	of	the	given	database	allows	null	values	and	the	column	or
data	type	nullability	is	not	explicitly	defined,	GETANSINULL	returns	1.	This	is
the	ANSI	NULL	default.

To	activate	the	ANSI	NULL	default	behavior,	one	of	these	conditions	must	be
set:

sp_dboption	'database_name',	'ANSI	null	default',	true

SET	ANSI_NULL_DFLT_ON	ON

SET	ANSI_NULL_DFLT_OFF	OFF

Examples

This	example	checks	the	default	nullability	for	the	pubs	database.

USE	pubs
GO
SELECT	GETANSINULL('pubs')
GO

Here	is	the	result	set:

1						

(1	row(s)	affected)

See	Also

System	Functions

Transact-SQL	Reference

GETDATE
Returns	the	current	system	date	and	time	in	the	Microsoft®	SQL	Server™
standard	internal	format	for	datetime	values.

Syntax
GETDATE	()

Return	Types
datetime

Remarks
Date	functions	can	be	used	in	the	SELECT	statement	select	list	or	in	the
WHERE	clause	of	a	query.

In	designing	a	report,	GETDATE	can	be	used	to	print	the	current	date	and	time
every	time	the	report	is	produced.	GETDATE	is	also	useful	for	tracking	activity,
such	as	logging	the	time	a	transaction	occurred	on	an	account.

Examples

A.	Use	GET	DATE	to	return	the	current	date	and	time
This	example	finds	the	current	system	date	and	time.

SELECT	GETDATE()
GO

Here	is	the	result	set:

July	29	1998			2:50				PM

(1	row(s)	affected)

B.	Use	GETDATE	with	CREATE	TABLE
This	example	creates	the	employees	table	and	uses	GETDATE	for	a	default
value	for	the	employee	hire	date.

USE	pubs
GO
CREATE	TABLE	employees
(
	emp_id	char(11)	NOT	NULL,
	emp_lname	varchar(40)	NOT	NULL,
	emp_fname	varchar(20)	NOT	NULL,
	emp_hire_date	datetime	DEFAULT	GETDATE(),
	emp_mgr	varchar(30)
)
GO

See	Also

Date	and	Time	Functions

Transact-SQL	Reference

GETUTCDATE
Returns	the	datetime	value	representing	the	current	UTC	time	(Universal	Time
Coordinate	or	Greenwich	Mean	Time).	The	current	UTC	time	is	derived	from
the	current	local	time	and	the	time	zone	setting	in	the	operating	system	of	the
computer	on	which	SQL	Server	is	running.

Syntax
GETUTCDATE()

Return	Types
datetime

Remarks
GETUTCDATE	is	a	nondeterministic	function.	Views	and	expressions	that
reference	this	column	cannot	be	indexed.

GETUTCDATE	cannot	be	called	inside	a	user-defined	function.

Transact-SQL	Reference

GO
Signals	the	end	of	a	batch	of	Transact-SQL	statements	to	the	Microsoft®	SQL
Server™	utilities.

Syntax
GO

Remarks
GO	is	not	a	Transact-SQL	statement;	it	is	a	command	recognized	by	the	osql	and
isql	utilities	and	SQL	Query	Analyzer.

SQL	Server	utilities	interpret	GO	as	a	signal	that	they	should	send	the	current
batch	of	Transact-SQL	statements	to	SQL	Server.	The	current	batch	of
statements	is	composed	of	all	statements	entered	since	the	last	GO,	or	since	the
start	of	the	ad	hoc	session	or	script	if	this	is	the	first	GO.	SQL	Query	Analyzer
and	the	osql	and	isql	command	prompt	utilities	implement	GO	differently.	For
more	information,	see	osql	Utility,	isql	Utility,	and	SQL	Query	Analyzer.

A	Transact-SQL	statement	cannot	occupy	the	same	line	as	a	GO	command.
However,	the	line	can	contain	comments.

Users	must	follow	the	rules	for	batches.	For	example,	any	execution	of	a	stored
procedure	after	the	first	statement	in	a	batch	must	include	the	EXECUTE
keyword.	The	scope	of	local	(user-defined)	variables	is	limited	to	a	batch,	and
cannot	be	referenced	after	a	GO	command.

USE	pubs
GO
DECLARE	@MyMsg	VARCHAR(50)
SELECT	@MyMsg	=	'Hello,	World.'
GO	--	@MyMsg	is	not	valid	after	this	GO	ends	the	batch.

--	Yields	an	error	because	@MyMsg	not	declared	in	this	batch.
PRINT	@MyMsg

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

GO

SELECT	@@VERSION;
--	Yields	an	error:	Must	be	EXEC	sp_who	if	not	first	statement	in	
--	batch.
sp_who
GO

SQL	Server	applications	can	send	multiple	Transact-SQL	statements	to	SQL
Server	for	execution	as	a	batch.	The	statements	in	the	batch	are	then	compiled
into	a	single	execution	plan.	Programmers	executing	ad	hoc	statements	in	the
SQL	Server	utilities,	or	building	scripts	of	Transact-SQL	statements	to	run
through	the	SQL	Server	utilities,	use	GO	to	signal	the	end	of	a	batch.

Applications	based	on	the	DB-Library,	ODBC,	or	OLE	DB	APIs	receive	a
syntax	error	if	they	attempt	to	execute	a	GO	command.	The	SQL	Server	utilities
never	send	a	GO	command	to	the	server.

Permissions
GO	is	a	utility	command	that	requires	no	permissions.	It	can	be	executed	by	any
user.

Examples
This	example	creates	two	batches.	The	first	batch	contains	only	a	USE	pubs
statement	to	set	the	database	context.	The	remaining	statements	use	a	local
variable,	so	all	local	variable	declarations	must	be	grouped	in	a	single	batch.
This	is	done	by	not	having	a	GO	command	until	after	the	last	statement	that
references	the	variable.

USE	pubs
GO
DECLARE	@NmbrAuthors	int
SELECT	@NmbrAuthors	=	COUNT(*)
FROM	authors
PRINT	'The	number	of	authors	as	of	'	+

						CAST(GETDATE()	AS	char(20))	+	'	is	'	+
						CAST(@NmbrAuthors	AS	char	(10))
GO

See	Also

Batches

Batch	Processing

Writing	Readable	Code

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Transact-SQL	Reference

GOTO
Alters	the	flow	of	execution	to	a	label.	The	Transact-SQL	statement(s)	following
GOTO	are	skipped	and	processing	continues	at	the	label.	GOTO	statements	and
labels	can	be	used	anywhere	within	a	procedure,	batch,	or	statement	block.
GOTO	statements	can	be	nested.

Syntax
Define	the	label:

				label	:

Alter	the	execution:

				GOTO	label

Arguments
label

Is	the	point	after	which	processing	begins	if	a	GOTO	is	targeted	to	that	label.
Labels	must	follow	the	rules	for	identifiers.	A	label	can	be	used	as	a
commenting	method	whether	or	not	GOTO	is	used.

Remarks
GOTO	can	exist	within	conditional	control-of-flow	statements,	statement	blocks,
or	procedures,	but	it	cannot	go	to	a	label	outside	of	the	batch.	GOTO	branching
can	go	to	a	label	defined	before	or	after	GOTO.

Permissions
GOTO	permissions	default	to	any	valid	user.

Examples
This	example	shows	GOTO	looping	as	an	alternative	to	using	WHILE.

Note		The	tnames_cursor	cursor	is	not	defined.	This	example	is	for	illustration
only.

USE	pubs
GO
DECLARE	@tablename	sysname
SET	@tablename	=	N'authors'
table_loop:
			IF	(@@FETCH_STATUS	<>	-2)
			BEGIN			
						SELECT	@tablename	=	RTRIM(UPPER(@tablename))	
						EXEC	("SELECT	"""	+	@tablename	+	"""	=	COUNT(*)	FROM	"	
												+	@tablename)
						PRINT	"	"
			END
			FETCH	NEXT	FROM	tnames_cursor	INTO	@tablename
IF	(@@FETCH_STATUS	<>	-1)	GOTO	table_loop
GO

See	Also

BEGIN...END

BREAK

CONTINUE

Control-of-Flow	Language

IF...ELSE

WAITFOR

Using	Identifiers

WHILE

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

GRANT
Creates	an	entry	in	the	security	system	that	allows	a	user	in	the	current	database
to	work	with	data	in	the	current	database	or	execute	specific	Transact-SQL
statements.

Syntax
Statement	permissions:

GRANT	{	ALL	|	statement	[,...n]	}	
TO	security_account	[,...n]

Object	permissions:

GRANT	
				{	ALL	[PRIVILEGES]	|	permission	[,...n]	}	
				{	
								[(column	[,...n])]	ON	{	table	|	view	}	
								|	ON	{	table	|	view	}	[(column	[,...n])]	
								|	ON	{	stored_procedure	|	extended_procedure	}	
								|	ON	{	user_defined_function	}
				}	
TO	security_account	[,...n]	
[WITH	GRANT	OPTION]	
[AS	{	group	|	role	}]

Arguments
ALL

Specifies	that	all	applicable	permissions	are	being	granted.	For	statement
permissions,	ALL	can	be	used	only	by	members	of	the	sysadmin	role.	For
object	permissions,	ALL	can	be	used	by	members	of	the	sysadmin	and
db_owner	roles,	and	database	object	owners.

statement

Is	the	statement	for	which	permission	is	being	granted.	The	statement	list	can

include:

CREATE	DATABASE

CREATE	DEFAULT

CREATE	FUNCTION

CREATE	PROCEDURE

CREATE	RULE

CREATE	TABLE

CREATE	VIEW

BACKUP	DATABASE

BACKUP	LOG

n

A	placeholder	indicating	that	the	item	can	be	repeated	in	a	comma-separated
list.

TO

Specifies	the	security	account	list.

security_account

Is	the	security	account	to	which	the	permissions	are	applied.	The	security
account	can	be	a:

Microsoft®	SQL	Server™	user.

SQL	Server	role.

Microsoft	Windows	NT®	user.

Windows	NT	group.

When	a	permission	is	granted	to	a	SQL	Server	user	or	Windows	NT	user
account,	the	specified	security_account	is	the	only	account	affected	by	the
permission.	If	a	permission	is	granted	to	a	SQL	Server	role	or	a	Windows	NT
group,	the	permission	affects	all	users	in	the	current	database	who	are
members	of	the	group	or	role.	If	there	are	permission	conflicts	between	a
group	or	role	and	its	members,	the	most	restrictive	permission	(DENY)	takes
precedence.	security_account	must	exist	in	the	current	database;	permissions
cannot	be	granted	to	a	user,	role,	or	group	in	another	database,	unless	the
user	has	already	been	created	or	given	access	to	the	current	database.

Two	special	security	accounts	can	be	used	with	GRANT.	Permissions
granted	to	the	public	role	are	applied	to	all	users	in	the	database.	Permissions
granted	to	the	guest	user	are	used	by	all	users	who	do	not	have	a	user
account	in	the	database.

When	granting	permissions	to	a	Windows	NT	local	or	global	group,	specify
the	domain	or	computer	name	the	group	is	defined	on,	followed	by	a
backslash,	then	the	group	name.	However,	to	grant	permissions	to	a
Windows	NT	built-in	local	group,	specify	BUILTIN	instead	of	the	domain	or
computer	name.

PRIVILEGES

Is	an	optional	keyword	that	can	be	included	for	SQL-92	compliance.

permission

Is	an	object	permission	that	is	being	granted.	When	object	permissions	are
granted	on	a	table,	table-valued	function,	or	a	view,	the	permission	list	can
include	one	or	more	of	these	permissions:	SELECT,	INSERT,	DELETE,
REFERENCES,	or	UPDATE.	A	column-list	can	be	supplied	along	with
SELECT	and	UPDATE	permissions.	If	a	column-list	is	not	supplied	with
SELECT	and	UPDATE	permissions,	then	the	permission	applies	to	all	the

columns	in	the	table,	view,	or	table-valued	function.

Object	permissions	granted	on	a	stored	procedure	can	include	only
EXECUTE.	Object	permissions	granted	on	a	scalar-valued	function	can
include	EXECUTE	and	REFERENCES.

SELECT	permission	is	needed	on	a	column	in	order	to	access	that	column	in
a	SELECT	statement.	UPDATE	permission	is	needed	on	a	column	in	order	to
update	that	column	using	an	UPDATE	statement.

The	REFERENCES	permission	on	a	table	is	needed	in	order	to	create	a
FOREIGN	KEY	constraint	that	references	that	table.

The	REFERENCES	permission	is	needed	on	an	object	in	order	to	create	a
FUNCTION	or	VIEW	with	the	WITH	SCHEMABINDING	clause	that
references	that	object.

column

Is	the	name	of	a	column	in	the	current	database	for	which	permissions	are
being	granted.

table

Is	the	name	of	the	table	in	the	current	database	for	which	permissions	are
being	granted.

view

Is	the	name	of	the	view	in	the	current	database	for	which	permissions	are
being	granted.

stored_procedure

Is	the	name	of	the	stored	procedure	in	the	current	database	for	which
permissions	are	being	granted.

extended_procedure

Is	the	name	of	the	extended	stored	procedure	for	which	permissions	are
being	granted.

user_defined_function

Is	the	name	of	the	user-defined	function	for	which	permissions	are	being

granted.

WITH	GRANT	OPTION

Specifies	that	the	security_account	is	given	the	ability	to	grant	the	specified
object	permission	to	the	other	security	accounts.	The	WITH	GRANT
OPTION	clause	is	valid	only	with	object	permissions.

AS	{group	|	role}

Specifies	the	optional	name	of	the	security	account	in	the	current	database
that	has	the	authority	to	execute	the	GRANT	statement.	AS	is	used	when
permissions	on	an	object	are	granted	to	a	group	or	role,	and	the	object
permissions	need	to	be	further	granted	to	users	who	are	not	members	of	the
group	or	role.	Because	only	a	user,	rather	than	a	group	or	role,	can	execute	a
GRANT	statement,	a	specific	member	of	the	group	or	role	grants
permissions	on	the	object	under	the	authority	of	the	group	or	role.

Remarks
Cross-database	permissions	are	not	allowed;	permissions	can	be	granted	only	to
users	in	the	current	database	for	objects	and	statements	in	the	current	database.	If
a	user	needs	permissions	to	objects	in	another	database,	create	the	user	account
in	the	other	database,	or	grant	the	user	account	access	to	the	other	database,	as
well	as	the	current	database.

Note		System	stored	procedures	are	the	exception	because	EXECUTE
permissions	are	already	granted	to	the	public	role,	allowing	everyone	to	execute
them.	However,	after	a	system	stored	procedure	is	executed,	it	checks	the	user's
role	membership.	If	the	user	is	not	a	member	of	the	appropriate	fixed	server	or
database	role	necessary	to	run	the	stored	procedure,	the	stored	procedure	does
not	continue.

The	REVOKE	statement	can	be	used	to	remove	granted	permissions,	and	the
DENY	statement	can	be	used	to	prevent	a	user	from	gaining	permissions	through
a	GRANT	to	their	user	account.

A	granted	permission	removes	the	denied	or	revoked	permission	at	the	level
granted	(user,	group,	or	role).	The	same	permission	denied	at	another	level	such
as	group	or	role	containing	the	user	takes	precedence.	However,	although	the
same	permission	revoked	at	another	level	still	applies,	it	does	not	prevent	the

user	from	accessing	the	object.

If	a	user	activates	an	application	role,	the	effect	of	GRANT	is	null	for	any
objects	the	user	accesses	using	the	application	role.	Therefore,	although	a	user
may	be	granted	access	to	a	specific	object	in	the	current	database,	if	the	user	uses
an	application	role	that	does	not	have	access	to	the	object,	the	user	also	does	not
have	access	while	the	application	role	is	activated.

The	sp_helprotect	system	stored	procedure	reports	permissions	on	a	database
object	or	user.

Permissions
GRANT	permissions	depend	on	the	statement	permissions	being	granted	and	the
object	involved	in	the	permissions.	The	members	of	the	sysadmin	role	can	grant
any	permissions	in	any	database.	Object	owners	can	grant	permissions	for	the
objects	they	own.	Members	of	the	db_owner	or	db_securityadmin	roles	can
grant	any	permissions	on	any	statement	or	object	in	their	database.

Statements	that	require	permissions	are	those	that	add	objects	in	the	database	or
perform	administrative	activities	with	the	database.	Each	statement	that	requires
permissions	has	a	certain	set	of	roles	that	automatically	have	permissions	to
execute	the	statement.	For	example,	the	CREATE	TABLE	permission	defaults	to
members	of	the	sysadmin	and	db_owner	and	db_ddladmin	roles.	The
permissions	to	execute	the	SELECT	statement	for	a	table	default	to	the
sysadmin	and	db_owner	roles,	and	the	owner	of	the	object.

There	are	some	Transact-SQL	statements	that	cannot	be	granted	as	permissions;
the	ability	to	execute	these	statements	requires	membership	in	a	fixed	role	that
has	implied	permissions	to	execute	special	statements.	For	example,	to	execute
the	SHUTDOWN	statement,	the	user	must	be	added	as	member	of	the
serveradmin	role.

Members	of	the	dbcreator,	processadmin,	securityadmin,	and	serveradmin
fixed	server	roles	have	permissions	to	execute	only	these	Transact-SQL
statements.

Statement dbcreator processadmin securityadmin serveradmin bulkadmin
ALTER
DATABASE

X

CREATE
DATABASE

X

BULK	INSERT X
DBCC X	(1)
DENY X	(2)
GRANT X	(2)
KILL X
RECONFIGURE X
RESTORE X
REVOKE X	(2)
SHUTDOWN X
(1)	For	more	information,	see	the	DBCC	statement.
(2)	Applies	to	the	CREATE	DATABASE	statement	only.

Note		Members	of	the	diskadmin	and	setupadmin	fixed	server	roles	do	not
have	permissions	to	execute	any	Transact-SQL	statements,	only	certain	system
stored	procedures.	Members	of	the	sysadmin	fixed	server	role,	however,	have
permissions	to	execute	all	Transact-SQL	statements.

Members	of	the	following	fixed	database	roles	have	permissions	to	execute	the
specified	Transact-SQL	statements.

Statement db_owner db_datareaderdb_datawriterdb_ddladmin db_backupoperator
ALTER
DATABASE

X X

ALTER
FUNCTION

X X

ALTER
PROCEDURE

X X

ALTER
TABLE

X	(1) X

ALTER
TRIGGER

X X

ALTER	VIEW X	(1) X
BACKUP X X

CHECKPOINT X X
CREATE
DEFAULT

X X

CREATE
FUNCTION

X X

CREATE
INDEX

X	(1) X

CREATE
PROCEDURE

X X

CREATE
RULE

X X

CREATE
TABLE

X X

CREATE
TRIGGER

X	(1) X

CREATE
VIEW

X 		 X

DBCC X X	(2)
DELETE X	(1) X
DENY X
DENY	on
object

X

DROP X	(1) X
EXECUTE X	(1)
GRANT X
GRANT	on
object

X	(1)

INSERT X	(1) X
READTEXT X	(1) X
REFERENCES X	(1) X
RESTORE X
REVOKE X
REVOKE	on
object

X	(1)

SELECT X	(1) X
SETUSER X
TRUNCATE
TABLE

X	(1) X

UPDATE X	(1) X
UPDATE
STATISTICS

X	(1)

UPDATETEXTX	(1) X
WRITETEXT X	(1) X
(1)	Permission	applies	to	the	object	owner	as	well.
(2)	For	more	information,	see	the	DBCC	statement.

Note		Members	of	the	db_accessadmin	fixed	database	role	do	not	have
permissions	to	execute	any	Transact-SQL	statements,	only	certain	system	stored
procedures.

The	Transact-SQL	statements	that	do	not	require	permissions	to	be	executed
(automatically	granted	to	public)	are:

BEGIN	TRANSACTION COMMIT	TRANSACTION
PRINT RAISERROR
ROLLBACK	TRANSACTION SAVE	TRANSACTION
SET 	

For	more	information	about	the	permissions	required	to	execute	the	system
stored	procedures,	see	the	appropriate	system	stored	procedure.

Examples

A.	Grant	statement	permissions
This	example	grants	multiple	statement	permissions	to	the	users	Mary	and
John,	and	the	Corporate\BobJ	Windows	NT	group.

GRANT	CREATE	DATABASE,	CREATE	TABLE
TO	Mary,	John,	[Corporate\BobJ]

B.	Grant	object	permissions	within	the	permission	hierarchy
This	example	shows	the	preferred	ordering	of	permissions.	First,	SELECT
permissions	are	granted	to	the	public	role.	Then,	specific	permissions	are
granted	to	users	Mary,	John,	and	Tom.	These	users	then	have	all	permissions	to
the	authors	table.

USE	pubs
GO

GRANT	SELECT
ON	authors
TO	public
GO	

GRANT	INSERT,	UPDATE,	DELETE
ON	authors
TO	Mary,	John,	Tom
GO

C.	Grant	permissions	to	a	SQL	Server	role
This	example	grants	CREATE	TABLE	permissions	to	all	members	of	the
Accounting	role.

GRANT	CREATE	TABLE	TO	Accounting

D.	Grant	permissions	using	the	AS	option
The	Plan_Data	table	is	owned	by	the	user	Jean.	Jean	grants	SELECT
permissions,	specifying	the	WITH	GRANT	OPTION	clause,	on	Plan_Data	to
the	Accounting	role.	The	user	Jill,	who	is	member	of	Accounting,	wants	to
grant	SELECT	permissions	on	the	Plan_Data	table	to	the	user	Jack,	who	is	not
a	member	of	Accounting.

Because	the	permission	to	GRANT	other	users	SELECT	permissions	to	the
Plan_Data	table	were	granted	to	the	Accounting	role	and	not	Jill	explicitly,	Jill
cannot	grant	permissions	for	the	table	based	on	the	permissions	granted	through

being	a	member	of	the	Accounting	role.	Jill	must	use	the	AS	clause	to	assume
the	grant	permissions	of	the	Accounting	role.

/*	User	Jean	*/
GRANT	SELECT	ON	Plan_Data	TO	Accounting	WITH	GRANT	OPTION

/*	User	Jill	*/
GRANT	SELECT	ON	Plan_Data	TO	Jack	AS	Accounting

See	Also

Granting	Permissions

DENY

REVOKE

sp_addgroup

sp_addlogin

sp_adduser

sp_changegroup

sp_changedbowner

sp_dropgroup

sp_dropuser

sp_helpgroup

sp_helprotect

sp_helpuser

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

GROUP	BY
Divides	a	table	into	groups.	Groups	can	consist	of	column	names	or	results	or
computed	columns.	For	more	information,	see	SELECT.

Transact-SQL	Reference

GROUPING
Is	an	aggregate	function	that	causes	an	additional	column	to	be	output	with	a
value	of	1	when	the	row	is	added	by	either	the	CUBE	or	ROLLUP	operator,	or	0
when	the	row	is	not	the	result	of	CUBE	or	ROLLUP.

Grouping	is	allowed	only	in	the	select	list	associated	with	a	GROUP	BY	clause
that	contains	either	the	CUBE	or	ROLLUP	operator.

Syntax
GROUPING	(column_name)

Arguments
column_name

Is	a	column	in	a	GROUP	BY	clause	to	check	for	CUBE	or	ROLLUP	null
values.

Return	Types
int

Remarks
Grouping	is	used	to	distinguish	the	null	values	returned	by	CUBE	and	ROLLUP
from	standard	null	values.	The	NULL	returned	as	the	result	of	a	CUBE	or
ROLLUP	operation	is	a	special	use	of	NULL.	It	acts	as	a	column	placeholder	in
the	result	set	and	means	"all."

Examples
This	example	groups	royalty	and	aggregate	advance	amounts.	The	GROUPING
function	is	applied	to	the	royalty	column.

USE	pubs
SELECT	royalty,	SUM(advance)	'total	advance',	

			GROUPING(royalty)	'grp'
			FROM	titles
			GROUP	BY	royalty	WITH	ROLLUP

The	result	set	shows	two	null	values	under	royalty.	The	first	NULL	represents
the	group	of	null	values	from	this	column	in	the	table.	The	second	NULL	is	in
the	summary	row	added	by	the	ROLLUP	operation.	The	summary	row	shows
the	total	advance	amounts	for	all	royalty	groups	and	is	indicated	by	1	in	the	grp
column.

Here	is	the	result	set:

royalty								total	advance														grp	
---------						---------------------				---
NULL											NULL																					0		
10													57000.0000															0		
12													2275.0000																0		
14													4000.0000																0		
16													7000.0000																0		
24													25125.0000															0		
NULL											95400.0000															1		

See	Also

Aggregate	Functions

SELECT

Transact-SQL	Reference

HAS_DBACCESS
Returns	information	about	whether	the	user	has	access	to	the	specified	database.

Syntax
HAS_DBACCESS	('database_name')

Arguments
database_name

Is	the	name	of	the	database	for	which	the	user	wants	access	information.
database_name	is	sysname.

Return	Types
int

Remarks
HAS_DBACCESS	returns	1	if	the	user	has	access	to	the	database,	0	if	the	user
has	no	access	to	the	database,	and	NULL	if	the	database	name	is	invalid.

Transact-SQL	Reference

HAVING
Specifies	a	search	condition	for	a	group	or	an	aggregate.	HAVING	can	be	used
only	with	the	SELECT	statement.	It	is	usually	used	in	a	GROUP	BY	clause.
When	GROUP	BY	is	not	used,	HAVING	behaves	like	a	WHERE	clause.	For
more	information,	see	SELECT.

Transact-SQL	Reference

HOST_ID
Returns	the	workstation	identification	number.

Syntax
HOST_ID	()

Return	Types
char(8)

Remarks
When	the	parameter	to	a	system	function	is	optional,	the	current	database,	host
computer,	server	user,	or	database	user	is	assumed.	Built-in	functions	must
always	be	followed	by	parentheses.

System	functions	can	be	used	in	the	select	list,	in	the	WHERE	clause,	and
anywhere	an	expression	is	allowed.

Examples
This	example	creates	a	table	that	uses	HOST_ID()	in	a	DEFAULT	definition	to
record	the	terminal	ID	of	computers	that	insert	rows	into	a	table	recording
orders.

CREATE	TABLE	Orders
			(OrderID					INT							PRIMARY	KEY,
				CustomerID		NCHAR(5)		REFERENCES	Customers(CustomerID),
				TerminalID		CHAR(8)			NOT	NULL	DEFAULT	HOST_ID(),
				OrderDate			DATETIME		NOT	NULL,
				ShipDate				DATETIME		NULL,
				ShipperID			INT							NULL	REFERENCES	Shippers(ShipperID))
GO

See	Also

Expressions

System	Functions

Transact-SQL	Reference

HOST_NAME
Returns	the	workstation	name.

Syntax
HOST_NAME	()

Return	Types
nchar

Remarks
When	the	parameter	to	a	system	function	is	optional,	the	current	database,	host
computer,	server	user,	or	database	user	is	assumed.	Built-in	functions	must
always	be	followed	by	parentheses.

System	functions	can	be	used	in	the	select	list,	in	the	WHERE	clause,	and
anywhere	an	expression	is	allowed.

Examples
This	example	creates	a	table	that	uses	HOST_NAME()	in	a	DEFAULT	definition
to	record	the	workstation	name	of	computers	that	insert	rows	into	a	table
recording	orders.

CREATE	TABLE	Orders
			(OrderID					INT								PRIMARY	KEY,
				CustomerID		NCHAR(5)			REFERENCES	Customers(CustomerID),
				Workstation	NCHAR(30)		NOT	NULL	DEFAULT	HOST_NAME(),
				OrderDate			DATETIME			NOT	NULL,
				ShipDate				DATETIME			NULL,
				ShipperID			INT								NULL	REFERENCES	Shippers(ShipperID))

See	Also

Expressions

System	Functions

Transact-SQL	Reference

IDENT_CURRENT
Returns	the	last	identity	value	generated	for	a	specified	table	in	any	session	and
any	scope.

Syntax
IDENT_CURRENT('table_name')

Arguments
table_name

Is	the	name	of	the	table	whose	identity	value	will	be	returned.	table_name	is
varchar,	with	no	default.

Return	Types
sql_variant

Remarks
IDENT_CURRENT	is	similar	to	the	Microsoft®	SQL	Server™	2000	identity
functions	SCOPE_IDENTITY	and	@@IDENTITY.	All	three	functions	return
last-generated	identity	values.	However,	the	scope	and	session	on	which	'last'	is
defined	in	each	of	these	functions	differ.

IDENT_CURRENT	returns	the	last	identity	value	generated	for	a
specific	table	in	any	session	and	any	scope.

@@IDENTITY	returns	the	last	identity	value	generated	for	any	table	in
the	current	session,	across	all	scopes.

SCOPE_IDENTITY	returns	the	last	identity	value	generated	for	any
table	in	the	current	session	and	the	current	scope.

Examples

This	example	illustrates	the	different	identity	values	returned	by
IDENT_CURRENT,	@@IDENTITY,	and	SCOPE_IDENTITY.

USE	pubs
DROP	TABLE	t6
DROP	TABLE	t7
GO
CREATE	TABLE	t6(id	int	IDENTITY)
CREATE	TABLE	t7(id	int	IDENTITY(100,1))
GO
CREATE	TRIGGER	t6ins	ON	t6	FOR	INSERT	
AS
BEGIN
			INSERT	t7	DEFAULT	VALUES
END
GO
--end	of	trigger	definition

SELECT			*	FROM	t6
--id	is	empty.

SELECT			*	FROM	t7
--id	is	empty.

--Do	the	following	in	Session	1
INSERT	t6	DEFAULT	VALUES
SELECT	@@IDENTITY						
/*Returns	the	value	100,	which	was	inserted	by	the	trigger.*/

SELECT	SCOPE_IDENTITY()			
/*	Returns	the	value	1,	which	was	inserted	by	the	
INSERT	stmt	2	statements	before	this	query.*/

SELECT	IDENT_CURRENT('t7')
/*	Returns	value	inserted	into	t7,	i.e.	in	the	trigger.*/

SELECT	IDENT_CURRENT('t6')
/*	Returns	value	inserted	into	t6,	which	was	the	INSERT	statement	4	stmts	before	this	query.*/

--	Do	the	following	in	Session	2
SELECT	@@IDENTITY
/*	Returns	NULL	since	there	has	been	no	INSERT	action	
so	far	in	this	session.*/

SELECT	SCOPE_IDENTITY()
/*	Returns	NULL	since	there	has	been	no	INSERT	action	
so	far	in	this	scope	in	this	session.*/

SELECT	IDENT_CURRENT('t7')
/*	Returns	the	last	value	inserted	into	t7.*/

See	Also

@@IDENTITY

SCOPE_IDENTITY

Transact-SQL	Reference

IDENT_INCR
Returns	the	increment	value	(returned	as	numeric(@@MAXPRECISION,0))
specified	during	the	creation	of	an	identity	column	in	a	table	or	view	that	has	an
identity	column.

Syntax
IDENT_INCR	('table_or_view')

Arguments
'table_or_view'

Is	an	expression	specifying	the	table	or	view	to	check	for	a	valid	identity
increment	value.	table_or_view	can	be	a	character	string	constant	enclosed	in
quotation	marks,	a	variable,	a	function,	or	a	column	name.	table_or_view	is
char,	nchar,	varchar,	or	nvarchar.

Return	Types
numeric

Examples
This	example	returns	1	for	the	jobs	table	in	the	pubs	database	because	the	jobs
table	includes	an	identity	column	with	an	increment	value	of	1.

USE	pubs
SELECT	TABLE_NAME,	IDENT_INCR(TABLE_NAME)	AS	IDENT_INCR
FROM	INFORMATION_SCHEMA.TABLES
WHERE	IDENT_INCR(TABLE_NAME)	IS	NOT	NULL

Here	is	the	result	set:

TABLE_NAME																																																		IDENT_INCR			
--	-----------	

jobs																																																									1											
	
(1	row(s)	affected)	

See	Also

Expressions

System	Functions

Transact-SQL	Reference

IDENT_SEED
Returns	the	seed	value	(returned	as	numeric(@@MAXPRECISION,0))
specified	during	the	creation	of	an	identity	column	in	a	table	or	a	view	that	has
an	identity	column.

Syntax
IDENT_SEED	('table_or_view')

Arguments
'table_or_view'

Is	an	expression	specifying	the	table	or	view	to	check	for	a	valid	identity
seed	value.	table_or_view	can	be	a	character	string	constant	enclosed	in
quotation	marks,	a	variable,	a	function,	or	a	column	name.	table_or_view	is
char,	nchar,	varchar,	or	nvarchar.

Return	Types
numeric

Examples
This	example	returns	1	for	the	jobs	table	in	the	pubs	database	because	the	jobs
table	includes	an	identity	column	with	a	seed	value	of	1.

USE	pubs
SELECT	TABLE_NAME,	IDENT_SEED(TABLE_NAME)	AS	IDENT_SEED
FROM	INFORMATION_SCHEMA.TABLES
WHERE	IDENT_SEED(TABLE_NAME)	IS	NOT	NULL

Here	is	the	result	set:

TABLE_NAME																																																			IDENT_SEED		
--	-----------	

jobs																																																									1											

(1	row(s)	affected)

See	Also

Expressions

System	Functions

Transact-SQL	Reference

IDENTITY	(Property)
Creates	an	identity	column	in	a	table.	This	property	is	used	with	the	CREATE
TABLE	and	ALTER	TABLE	Transact-SQL	statements.

Note		The	IDENTITY	property	is	not	the	same	as	the	SQL-DMO	Identity
property	that	exposes	the	row	identity	property	of	a	column.

Syntax
IDENTITY	[(seed	,	increment)]

Arguments
seed

Is	the	value	that	is	used	for	the	very	first	row	loaded	into	the	table.

increment

Is	the	incremental	value	that	is	added	to	the	identity	value	of	the	previous
row	that	was	loaded.

You	must	specify	both	the	seed	and	increment	or	neither.	If	neither	is	specified,
the	default	is	(1,1).

Remarks
If	an	identity	column	exists	for	a	table	with	frequent	deletions,	gaps	can	occur
between	identity	values.	If	this	is	a	concern,	do	not	use	the	IDENTITY	property.
However,	to	ensure	that	no	gaps	have	been	created	or	to	fill	an	existing	gap,
evaluate	the	existing	identity	values	before	explicitly	entering	one	with	SET
IDENTITY_INSERT	ON.

If	you	are	reusing	a	removed	identity	value,	use	the	sample	code	in	Example	B
to	check	for	the	next	available	identity	value.	Replace	tablename,	column_type,
and	max(column_type)	-	1	with	your	table	name,	identity	column	data	type,	and
numeric	value	of	the	maximum	allowable	value	(for	that	data	type)	-1.

Use	DBCC	CHECKIDENT	to	check	the	current	identity	value	and	compare	it

with	the	maximum	value	in	the	identity	column.

When	the	IDENTITY	property	is	used	with	CREATE	TABLE,	Microsoft®	SQL
Server™	uses	the	NOT	FOR	REPLICATION	option	of	CREATE	TABLE	to
override	the	automatic	incrementing	of	an	identity	column.	Usually,	SQL	Server
assigns	each	new	row	inserted	in	a	table	a	value	that	is	some	increment	greater
than	the	previous	highest	value.	However,	if	the	new	rows	are	replicated	from
another	data	source,	the	identity	values	must	remain	exactly	as	they	were	at	the
data	source.

Examples

A.	Use	the	IDENTITY	property	with	CREATE	TABLE
This	example	creates	a	new	table	using	the	IDENTITY	property	for	an
automatically	incrementing	identification	number.

USE	pubs
IF	EXISTS(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.TABLES
						WHERE	TABLE_NAME	=	'new_employees')
			DROP	TABLE	new_employees
GO
CREATE	TABLE	new_employees
(
	id_num	int	IDENTITY(1,1),
	fname	varchar	(20),
	minit	char(1),
	lname	varchar(30)
)

INSERT	new_employees
			(fname,	minit,	lname)
VALUES
			('Karin',	'F',	'Josephs')

INSERT	new_employees

			(fname,	minit,	lname)
VALUES
			('Pirkko',	'O',	'Koskitalo')

B.	Use	generic	syntax	for	finding	gaps	in	identity	values
This	example	shows	generic	syntax	for	finding	gaps	in	identity	values	when	data
is	removed.

Note		The	first	part	of	the	following	Transact-SQL	script	is	designed	for
illustration	purposes	only.	You	can	run	the	Transact-SQL	script	that	starts	with
the	comment:	-	-	Create	the	img	table.

--	Here	is	the	generic	syntax	for	finding	identity	value	gaps	in	data.
--	This	is	the	beginning	of	the	illustrative	example.
SET	IDENTITY_INSERT	tablename	ON

DECLARE	@minidentval	column_type
DECLARE	@nextidentval	column_type
SELECT	@minidentval	=	MIN(IDENTITYCOL)	FROM	tablename
IF	@minidentval	=	IDENT_SEED('tablename')
			SELECT	@nextidentval	=	MIN(IDENTITYCOL)	+	IDENT_INCR('tablename')
			FROM	tablename	t1
			WHERE	IDENTITYCOL	BETWEEN	IDENT_SEED('tablename')	AND	
						MAX(column_type)	AND
						NOT	EXISTS	(SELECT	*	FROM	tablename	t2
									WHERE	t2.IDENTITYCOL	=	t1.IDENTITYCOL	+	
												IDENT_INCR('tablename'))
ELSE
			SELECT	@nextidentval	=	IDENT_SEED('tablename')
SET	IDENTITY_INSERT	tablename	OFF
--	Here	is	an	example	to	find	gaps	in	the	actual	data.
--	The	table	is	called	img	and	has	two	columns:	the	first	column	
--	called	id_num,	which	is	an	increasing	identification	number,	and	the	
--	second	column	called	company_name.

--	This	is	the	end	of	the	illustration	example.

--	Create	the	img	table.
--	If	the	img	table	already	exists,	drop	it.
--	Create	the	img	table.
IF	EXISTS(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.TABLES	
						WHERE	TABLE_NAME	=	'img')
			DROP	TABLE	img
GO
CREATE	TABLE	img	(id_num	int	IDENTITY(1,1),	company_name	sysname)
INSERT	img(company_name)	VALUES	('New	Moon	Books')
INSERT	img(company_name)	VALUES	('Lucerne	Publishing')
--	SET	IDENTITY_INSERT	ON	and	use	in	img	table.
SET	IDENTITY_INSERT	img	ON

DECLARE	@minidentval	smallint
DECLARE	@nextidentval	smallint
SELECT	@minidentval	=	MIN(IDENTITYCOL)	FROM	img
	IF	@minidentval	=	IDENT_SEED('img')
				SELECT	@nextidentval	=	MIN(IDENTITYCOL)	+	IDENT_INCR('img')
				FROM	img	t1
				WHERE	IDENTITYCOL	BETWEEN	IDENT_SEED('img')	AND	32766	AND
						NOT				EXISTS	(SELECT	*	FROM	img	t2
										WHERE	t2.IDENTITYCOL	=	t1.IDENTITYCOL	+	IDENT_INCR('img'))
	ELSE
				SELECT	@nextidentval	=	IDENT_SEED('img')
SET	IDENTITY_INSERT	img	OFF

See	Also

ALTER	TABLE

CREATE	TABLE

DBCC	CHECKIDENT

IDENT_INCR

@@IDENTITY

IDENTITY	(Function)

IDENT_SEED

SELECT

SET	IDENTITY_INSERT

Transact-SQL	Reference

IDENTITY	(Function)
Is	used	only	in	a	SELECT	statement	with	an	INTO	table	clause	to	insert	an
identity	column	into	a	new	table.

Although	similar,	the	IDENTITY	function	is	not	the	IDENTITY	property	that	is
used	with	CREATE	TABLE	and	ALTER	TABLE.

Syntax
IDENTITY	(data_type	[,	seed	,	increment])	AS	column_name

Arguments
data_type

Is	the	data	type	of	the	identity	column.	Valid	data	types	for	an	identity
column	are	any	data	types	of	the	integer	data	type	category	(except	for	the
bit	data	type),	or	decimal	data	type.

seed

Is	the	value	to	be	assigned	to	the	first	row	in	the	table.	Each	subsequent	row
is	assigned	the	next	identity	value,	which	is	equal	to	the	last	IDENTITY
value	plus	the	increment	value.	If	neither	seed	nor	increment	is	specified,
both	default	to	1.

increment

Is	the	increment	to	add	to	the	seed	value	for	successive	rows	in	the	table.

column_name

Is	the	name	of	the	column	that	is	to	be	inserted	into	the	new	table.

Return	Types
Returns	the	same	as	data_type.

Remarks

Because	this	function	creates	a	column	in	a	table,	a	name	for	the	column	must	be
specified	in	the	select	list	in	one	of	these	ways:

--(1)
SELECT	IDENTITY(int,	1,1)	AS	ID_Num
INTO	NewTable
FROM	OldTable

--(2)
SELECT	ID_Num	=	IDENTITY(int,	1,	1)
INTO	NewTable
FROM	OldTable

Examples
This	example	inserts	all	rows	from	the	employee	table	from	the	pubs	database
into	a	new	table	called	employees.	The	IDENTITY	function	is	used	to	start
identification	numbers	at	100	instead	of	1	in	the	employees	table.

USE	pubs
IF	EXISTS(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.TABLES
						WHERE	TABLE_NAME	=	'employees')
			DROP	TABLE	employees
GO
EXEC	sp_dboption	'pubs',	'select	into/bulkcopy',	'true'

SELECT	emp_id	AS	emp_num,	
			fname	AS	first,	
			minit	AS	middle,	
			lname	AS	last,	
			IDENTITY(smallint,	100,	1)	AS	job_num,	
			job_lvl	AS	job_level,	
			pub_id,	
			hire_date
INTO	employees	

FROM	employee
GO
USE	pubs
EXEC	sp_dboption	'pubs',	'select	into/bulkcopy',	'false'

See	Also

CREATE	TABLE

@@IDENTITY

IDENTITY	(Property)

SELECT	@local_variable

Using	System	Functions

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

IF...ELSE
Imposes	conditions	on	the	execution	of	a	Transact-SQL	statement.	The	Transact-
SQL	statement	following	an	IF	keyword	and	its	condition	is	executed	if	the
condition	is	satisfied	(when	the	Boolean	expression	returns	TRUE).	The	optional
ELSE	keyword	introduces	an	alternate	Transact-SQL	statement	that	is	executed
when	the	IF	condition	is	not	satisfied	(when	the	Boolean	expression	returns
FALSE).

Syntax
IF	Boolean_expression	
				{	sql_statement	|	statement_block	}	
[ELSE	
				{	sql_statement	|	statement_block	}]

Arguments
Boolean_expression

Is	an	expression	that	returns	TRUE	or	FALSE.	If	the	Boolean	expression
contains	a	SELECT	statement,	the	SELECT	statement	must	be	enclosed	in
parentheses.

{sql_statement	|	statement_block}

Is	any	Transact-SQL	statement	or	statement	grouping	as	defined	with	a
statement	block.	Unless	a	statement	block	is	used,	the	IF	or	ELSE	condition
can	affect	the	performance	of	only	one	Transact-SQL	statement.	To	define	a
statement	block,	use	the	control-of-flow	keywords	BEGIN	and	END.
CREATE	TABLE	or	SELECT	INTO	statements	must	refer	to	the	same	table
name	if	the	CREATE	TABLE	or	SELECT	INTO	statements	are	used	in	both
the	IF	and	ELSE	areas	of	the	IF...ELSE	block.

Remarks
IF...ELSE	constructs	can	be	used	in	batches,	in	stored	procedures	(in	which	these
constructs	are	often	used	to	test	for	the	existence	of	some	parameter),	and	in	ad

hoc	queries.

IF	tests	can	be	nested	after	another	IF	or	following	an	ELSE.	There	is	no	limit	to
the	number	of	nested	levels.

Examples

A.	Use	one	IF...ELSE	block
This	example	shows	an	IF	condition	with	a	statement	block.	If	the	average	price
of	the	title	is	not	less	than	$15,	it	prints	the	text:	Average	title	price	is	more	than
$15.

USE	pubs

IF	(SELECT	AVG(price)	FROM	titles	WHERE	type	=	'mod_cook')	<	$15
BEGIN
			PRINT	'The	following	titles	are	excellent	mod_cook	books:'
			PRINT	'	'
			SELECT	SUBSTRING(title,	1,	35)	AS	Title
			FROM	titles
			WHERE	type	=	'mod_cook'	
END
ELSE
			PRINT	'Average	title	price	is	more	than	$15.'

Here	is	the	result	set:

The	following	titles	are	excellent	mod_cook	books:
	
Title																															

Silicon	Valley	Gastronomic	Treats			
The	Gourmet	Microwave															

(2	row(s)	affected)

B.	Use	more	than	one	IF...ELSE	block
This	example	uses	two	IF	blocks.	If	the	average	price	of	the	title	is	not	less	than
$15,	it	prints	the	text:	Average	title	price	is	more	than	$15.	If	the	average	price	of
modern	cookbooks	is	more	than	$15,	the	statement	that	the	modern	cookbooks
are	expensive	is	printed.

USE	pubs

IF	(SELECT	AVG(price)	FROM	titles	WHERE	type	=	'mod_cook')	<	$15
BEGIN
			PRINT	'The	following	titles	are	excellent	mod_cook	books:'
			PRINT	'	'
			SELECT	SUBSTRING(title,	1,	35)	AS	Title
			FROM	titles
			WHERE	type	=	'mod_cook'	
END
ELSE
			IF	(SELECT	AVG(price)	FROM	titles	WHERE	type	=	'mod_cook')	>	$15
BEGIN
			PRINT	'The	following	titles	are	expensive	mod_cook	books:'
			PRINT	'	'
			SELECT	SUBSTRING(title,	1,	35)	AS	Title
			FROM	titles
			WHERE	type	=	'mod_cook'	
END

See	Also

ALTER	TRIGGER

BEGIN...END

CREATE	TABLE

CREATE	TRIGGER

ELSE	(IF...ELSE)

END	(BEGIN...END)

SELECT

WHILE

Transact-SQL	Reference

image
For	more	information	about	the	image	data	type,	see	ntext,	text,	and	image.

See	Also

Data	Type	Conversion

Data	Types

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

IN
Determines	if	a	given	value	matches	any	value	in	a	subquery	or	a	list.

Syntax
test_expression	[NOT]	IN	
				(
								subquery	
								|	expression	[,...n]	
)

Arguments
test_expression

Is	any	valid	Microsoft®	SQL	Server™	expression.

subquery

Is	a	subquery	that	has	a	result	set	of	one	column.	This	column	must	have	the
same	data	type	as	test_expression.

expression	[,...n]

Is	a	list	of	expressions	to	test	for	a	match.	All	expressions	must	be	of	the
same	type	as	test_expression.

Result	Types
Boolean

Result	Value
If	the	value	of	test_expression	is	equal	to	any	value	returned	by	subquery	or	is
equal	to	any	expression	from	the	comma-separated	list,	the	result	value	is	TRUE.
Otherwise,	the	result	value	is	FALSE.

Using	NOT	IN	negates	the	returned	value.

Examples

A.	Compare	OR	and	IN
This	example	selects	a	list	of	the	names	and	states	of	all	authors	who	live	in
California,	Indiana,	or	Maryland.

USE	pubs

SELECT	au_lname,	state
FROM	authors
WHERE	state	=	'CA'	OR	state	=	'IN'	OR	state	=	'MD'

However,	you	get	the	same	results	using	IN:

USE	pubs

SELECT	au_lname,	state
FROM	authors
WHERE	state	IN	('CA',	'IN',	'MD')

Here	is	the	result	set	from	either	query:

au_lname			state
--------			-----
White						CA
Green						CA
Carson						CA
O'Leary						CA
Straight						CA
Bennet						CA
Dull						CA
Gringlesby						CA
Locksley						CA
Yokomoto						CA
DeFrance						IN

Stringer						CA
MacFeather						CA
Karsen						CA
Panteley												MD
Hunter												CA
McBadden												CA

(17	row(s)	affected)

B.	Use	IN	with	a	subquery
This	example	finds	all	au_ids	in	the	titleauthor	table	for	authors	who	make	less
than	50	percent	of	the	royalty	on	any	one	book,	and	then	selects	from	the
authors	table	all	author	names	with	au_ids	that	match	the	results	from	the
titleauthor	query.	The	results	show	that	several	authors	fall	into	the	less-than-
50-percent	category.

USE	pubs
SELECT	au_lname,	au_fname
FROM	authors
WHERE	au_id	IN
			(SELECT	au_id
			FROM	titleauthor
			WHERE	royaltyper	<	50)

Here	is	the	result	set:

au_lname																																	au_fname													
--	--------------------	
Green																																				Marjorie													
O'Leary																																		Michael														
Gringlesby																															Burt																	
Yokomoto																																	Akiko																
MacFeather																															Stearns														
Ringer																																			Anne																	

(6	row(s)	affected)

C.	Use	NOT	IN	with	a	subquery
NOT	IN	finds	the	authors	who	do	not	match	the	items	in	the	values	list.	This
example	finds	the	names	of	authors	who	do	not	make	less	than	50	percent	of	the
royalties	on	at	least	one	book.

USE	pubs
SELECT	au_lname,	au_fname
FROM	authors
WHERE	au_id	NOT	IN
			(SELECT	au_id
			FROM	titleauthor
			WHERE	royaltyper	<	50)

Here	is	the	result	set:

au_lname																																	au_fname													
--	--------------------	
White																																				Johnson														
Carson																																			Cheryl															
Straight																																	Dean																	
Smith																																				Meander														
Bennet																																			Abraham														
Dull																																					Ann																		
Locksley																																	Charlene													
Greene																																			Morningstar										
Blotchet-Halls																											Reginald													
del	Castillo																													Innes																
DeFrance																																	Michel															
Stringer																																	Dirk																	
Karsen																																			Livia																
Panteley																																	Sylvia															

Hunter																																			Sheryl															
McBadden																																	Heather														
Ringer																																			Albert															

(17	row(s)	affected)

See	Also

CASE

Expressions

Functions

Operators

SELECT

WHERE

Transact-SQL	Reference

INDEXKEY_PROPERTY
Returns	information	about	the	index	key.

Syntax
INDEXKEY_PROPERTY	(table_ID	,	index_ID	,	key_ID	,	property)

Arguments
table_ID

Is	the	table	identification	number.	table_ID	is	int.

index_ID

Is	the	index	identification	number.	index_ID	is	int.

key_ID

Is	the	index	column	position.	key_ID	is	int.

property

Is	the	name	of	the	property	for	which	information	will	be	returned.	property
is	a	character	string	and	can	be	one	of	these	values.

Value Description
ColumnId Column	ID	at	the	key_ID	position	of	the	index.
IsDescending Order	in	which	the	index	column	is	stored.

1	=	Descending
0	=	Ascending

Return	Types
int

Examples

SELECT	indexkey_property(OBJECT_ID('authors'),2,2,'ColumnId')

SELECT	indexkey_property(OBJECT_ID('authors'),2,2,'IsDescending')

Transact-SQL	Reference

INDEXPROPERTY
Returns	the	named	index	property	value	given	a	table	identification	number,
index	name,	and	property	name.

Syntax
INDEXPROPERTY	(table_ID	,	index	,	property)

Arguments
table_ID

Is	an	expression	containing	the	identification	number	of	the	table	or	indexed
view	for	which	to	provide	index	property	information.	table_ID	is	int.

index

Is	an	expression	containing	the	name	of	the	index	for	which	to	return
property	information.	index	is	nvarchar(128).

property

Is	an	expression	containing	the	name	of	the	database	property	to	return.
property	is	varchar(128),	and	can	be	one	of	these	values.

Property Description
IndexDepth Depth	of	the	index.

Returns	the	number	of	levels	the	index	has.

IndexFillFactor Index	specifies	its	own	fill	factor.

Returns	the	fill	factor	used	when	the	index	was
created	or	last	rebuilt.

IndexID Index	ID	of	the	index	on	a	specified	table	or
indexed	view.

IsAutoStatistics Index	was	generated	by	the	auto	create	statistics
option	of	sp_dboption.

1	=	True	0	=	False	
NULL	=	Invalid	input

IsClustered Index	is	clustered.

1	=	True
0	=	False
NULL	=	Invalid	input

IsFulltextKey Index	is	the	full-text	key	for	a	table.

1	=	True
0	=	False
NULL	=	Invalid	input

IsHypothetical Index	is	hypothetical	and	cannot	be	used	directly
as	a	data	access	path.	Hypothetical	indexes	hold
column	level	statistics.

1	=	True
0	=	False
NULL	=	Invalid	input

IsPadIndex Index	specifies	space	to	leave	open	on	each
interior	node.

1	=	True
0	=	False
NULL	=	Invalid	input

IsPageLockDisallowed 1	=	Page	locking	is	disallowed	through
sp_indexoption.
0	=	Page	locking	is	allowed.
NULL	=	Invalid	input

IsRowLockDisallowed 1	=	Row	locking	is	disallowed	through
sp_indexoption.
0	=	Row	locking	is	allowed.
NULL	=	Invalid	input.

IsStatistics Index	was	created	by	the	CREATE	STATISTICS
statement	or	by	the	auto	create	statistics	option
of	sp_dboption.	Statistics	indexes	are	used	as	a

placeholder	for	column-level	statistics.

1	=	True
0	=	False
NULL	=	Invalid	input

IsUnique Index	is	unique.

1	=	True
0	=	False
NULL	=	Invalid	input

Return	Types
int

Examples
This	example	returns	the	setting	for	the	IsPadIndex	property	for	the
UPKCL_auidind	index	of	the	authors	table.

USE	pubs
SELECT	INDEXPROPERTY(OBJECT_ID('authors'),	'UPKCL_auidind',	
			'IsPadIndex')

See	Also

Control-of-Flow	Language

CREATE	INDEX

DELETE

INSERT

Meta	data	Functions

Operators	(Logical	Operators)

UPDATE

WHERE

Transact-SQL	Reference

INDEX_COL
Returns	the	indexed	column	name.

Syntax
INDEX_COL	('table'	,	index_id	,	key_id)

Arguments
'table'

Is	the	name	of	the	table.

index_id

Is	the	ID	of	the	index.

key_id

Is	the	ID	of	the	key.

Return	Types
nvarchar	(256)

Examples
This	example	produces	a	list	of	indexes	in	the	authors	table.

USE	pubs

--	Declare	variables	to	use	in	this	example.
DECLARE	@id	int,	@type	char(2),@msg	varchar(80),	
			@indid	smallint,	@indname	sysname,	@status	int,
			@indkey	int,	@name	varchar(30)
--	Obtain	the	identification	number	for	the	authors	table	to	look	up
--	its	indexes	in	the	sysindexes	table.

SET	NOCOUNT	ON
SELECT	@id	=	id,	@type	=	type	
FROM	sysobjects
WHERE	name	=	'authors'	and	type	=	'U'
		
--	Start	printing	the	output	information.
print	'Index	information	for	the	authors	table'
print	'---------------------------------------'
		
--	Loop	through	all	indexes	in	the	authors	table.
--	Declare	a	cursor.	
DECLARE	i	cursor	
FOR	
SELECT	indid,	name,	status	
FROM	sysindexes
WHERE	id	=	@id	
		
--	Open	the	cursor	and	fetch	next	set	of	index	information.
OPEN	i
		
FETCH	NEXT	FROM	i	INTO	@indid,	@indname,	@status
			
			IF	@@FETCH_STATUS	=	0
			PRINT	'	'
							
			--	While	there	are	still	rows	to	retrieve	from	the	cursor,	
			--	find	out	index	information	and	print	it.
			WHILE	@@FETCH_STATUS	=	0	
					BEGIN
		
					SET	@msg	=	NULL
					--	Print	the	index	name	and	the	index	number.
										SET	@msg	=	'	Index	number	'		+	CONVERT(varchar,	@indid)+	

						'	is	'+@indname
		
					SET	@indkey	=	1
					--	@indkey	(equivalent	to	key_id	in	the	syntax	diagram	of
					--	INDEX_COL)	can	be	from	1	to	16.
							WHILE	@indkey	<=	16	and	INDEX_COL(@name,	@indid,	@indkey)
						IS	NOT	NULL
		
						BEGIN
						--	Print	different	information	if	@indkey	<>	1.
								IF	@indkey	=	1
									SET	@msg	=	@msg	+	'	on	'	
												+	index_col(@name,	@indid,	@indkey)	
								ELSE
									SET	@msg	=	@msg	+	',	'	
												+	index_col(@name,	@indid,	@indkey)	
									
								SET	@indkey	=	@indkey	+	1
						END
		
						PRINT	@msg										
						SET	@msg	=	NULL
						FETCH	NEXT	FROM	i	INTO	@indid,	@indname,	@status
		
			END
			CLOSE	i
			DEALLOCATE	i

SET	NOCOUNT	OFF

Here	is	the	result	set:

Index	information	for	the	authors	table

	Index	number	1	is	UPKCL_auidind
	Index	number	2	is	aunmind

See	Also

Expressions

Metadata	Functions

WHERE

Transact-SQL	Reference

Information	Schema	Views
Microsoft®	SQL	Server™	2000	provides	two	methods	for	obtaining	meta	data:
system	stored	procedures	or	information	schema	views.

Note		To	obtain	meta	data,	use	system	stored	procedures,	system	functions,	or
these	system-supplied	views	only.	Querying	the	system	tables	directly	may	not
provide	accurate	information	if	system	tables	are	changed	in	future	releases.

These	views	provide	an	internal,	system	table-independent	view	of	the	SQL
Server	meta	data.	Information	schema	views	allow	applications	to	work	properly
even	though	significant	changes	have	been	made	to	the	system	tables.	The
information	schema	views	included	in	SQL	Server	conform	to	the	SQL-92
Standard	definition	for	the	INFORMATION_SCHEMA.

SQL	Server	supports	a	three-part	naming	convention	when	referring	to	the
current	server.	The	SQL-92	standard	also	supports	a	three-part	naming
convention.	However,	the	names	used	in	both	naming	conventions	are	different.
These	views	are	defined	in	a	special	schema	named
INFORMATION_SCHEMA,	which	is	contained	in	each	database.	Each
INFORMATION_SCHEMA	view	contains	meta	data	for	all	data	objects	stored
in	that	particular	database.	This	table	describes	the	relationships	between	the
SQL	Server	names	and	the	SQL-92-standard	names.

SQL	Server	name Maps	to	this	equivalent	SQL-92	name
Database catalog
Owner schema
Object object
user-defined	data	type domain

This	naming	convention	mapping	applies	to	these	SQL	Server	SQL-92-
compatible	views.	These	views	are	defined	in	a	special	schema	named
INFORMATION_SCHEMA,	which	is	contained	in	each	database.	Each
INFORMATION_SCHEMA	view	contains	meta	data	for	all	data	objects	stored
in	that	particular	database.

CHECK_CONSTRAINTS

COLUMN_DOMAIN_USAGE

COLUMN_PRIVILEGES

COLUMNS

CONSTRAINT_COLUMN_USAGE

CONSTRAINT_TABLE_USAGE

DOMAIN_CONSTRAINTS

DOMAINS

KEY_COLUMN_USAGE

PARAMETERS

REFERENTIAL_CONSTRAINTS

ROUTINES

ROUTINE_COLUMNS

SCHEMATA

TABLE_CONSTRAINTS

TABLE_PRIVILEGES

TABLES

VIEW_COLUMN_USAGE

VIEW_TABLE_USAGE

VIEWS

In	addition,	some	views	contain	references	to	different	classes	of	data	such	as
character	data	or	binary	data.

When	referencing	the	information	schema	views,	you	must	use	a	qualified	name
that	includes	the	INFORMATION_SCHEMA	schema	name	in	the	position
where	you	usually	specify	the	user	name.	For	example:

SELECT	*
FROM	Northwind.INFORMATION_SCHEMA.COLUMNS
WHERE	TABLE_NAME	=	N'Customers'

See	Also

Data	Types

System	Stored	Procedures

Transact-SQL	Reference

CHECK_CONSTRAINTS
Contains	one	row	for	each	CHECK	constraint	in	the	current	database.	This
information	schema	view	returns	information	about	the	objects	to	which	the
current	user	has	permissions.	The
INFORMATION_SCHEMA.CHECK_CONSTRAINTS	view	is	based	on	the
sysobjects	and	syscomments	system	tables.

To	retrieve	information	from	these	views,	specify	the	fully	qualified	name	of
INFORMATION_SCHEMA	view_name.

Column	name Data	type Description
CONSTRAINT_CATALOGnvarchar(128) Constraint	qualifier.
CONSTRAINT_SCHEMA nvarchar(128) Constraint	owner.
CONSTRAINT_NAME sysname Constraint	name.
CHECK_CLAUSE nvarchar(4000) Actual	text	of	the

Transact-SQL	definition
statement.

See	Also

syscomments

sysobjects

Transact-SQL	Reference

COLUMN_DOMAIN_USAGE
Contains	one	row	for	each	column,	in	the	current	database,	that	has	a	user-
defined	data	type.	This	information	schema	view	returns	information	about	the
objects	to	which	the	current	user	has	permissions.	The
INFORMATION_SCHEMA.COLUMN_DOMAIN_USAGE	view	is	based
on	the	sysobjects,	syscolumns,	and	systypes	system	tables.

To	retrieve	information	from	these	views,	specify	the	fully	qualified	name	of
INFORMATION_SCHEMA	view_name.

Column	name Data	type Description
DOMAIN_CATALOGnvarchar(128) Database	in	which	the	user-

defined	data	type	exists.
DOMAIN_SCHEMA nvarchar(128) Username	that	created	the	user-

defined	data	type.
DOMAIN_NAME sysname User-defined	data	type.
TABLE_CATALOG nvarchar(128) Table	qualifier.
TABLE_SCHEMA nvarchar(128) Table	owner.
TABLE_NAME sysname Table	in	which	the	user-defined

data	type	is	used.
COLUMN_NAME sysname Column	using	the	user-defined

data	type.

See	Also

syscomments

sysobjects

systypes

Transact-SQL	Reference

COLUMN_PRIVILEGES
Contains	one	row	for	each	column	with	a	privilege	either	granted	to	or	by	the
current	user	in	the	current	database.	The
INFORMATION_SCHEMA.COLUMN_PRIVILEGES	view	is	based	on	the
sysprotects,	sysobjects,	and	syscolumns	system	tables.

To	retrieve	information	from	these	views,	specify	the	fully	qualified	name	of
INFORMATION_SCHEMA	view_name.

Column	name Data	type Description
GRANTOR nvarchar(128) Privilege	grantor.
GRANTEE nvarchar(128) Privilege	grantee.
TABLE_CATALOG nvarchar(128) Table	qualifier.
TABLE_SCHEMA nvarchar(128) Table	owner.
TABLE_NAME sysname Table	name.
COLUMN_NAME sysname Column	name.
PRIVILEGE_TYPE varchar(10) Type	of	privilege.
IS_GRANTABLE varchar(3) Specifies	whether	the	grantee	has

the	ability	to	grant	permissions	to
others.

See	Also

syscomments

sysobjects

sysprotects

Transact-SQL	Reference

COLUMNS
Contains	one	row	for	each	column	accessible	to	the	current	user	in	the	current
database.	The	INFORMATION_SCHEMA.COLUMNS	view	is	based	on	the
sysobjects,	spt_data	type_info,	systypes,	syscolumns,	syscomments,
sysconfigures,	and	syscharsets	system	tables.

To	retrieve	information	from	these	views,	specify	the	fully	qualified	name	of
INFORMATION_SCHEMA	view_name.

Column	name Data	type Description
TABLE_CATALOG nvarchar(128) Table	qualifier.
TABLE_SCHEMA nvarchar(128) Table	owner.
TABLE_NAME nvarchar(128) Table	name.
COLUMN_NAME nvarchar(128) Column	name.
ORDINAL_POSITION smallint Column

identification
number.

COLUMN_DEFAULT nvarchar(4000)Default	value
of	the	column.

IS_NULLABLE varchar(3) Nullability	of
the	column.	If
this	column
allows	NULL,
this	column
returns	YES.
Otherwise,	NO
is	returned.

DATA_TYPE nvarchar(128) System-
supplied	data
type.

CHARACTER_MAXIMUM_LENGTH smallint Maximum
length,	in
characters,	for

binary	data,
character	data,
or	text	and
image	data.
Otherwise,
NULL	is
returned.	For
more
information,
see	Data	Types.

CHARACTER_OCTET_LENGTH smallint Maximum
length,	in
bytes,	for
binary	data,
character	data,
or	text	and
image	data.
Otherwise,
NULL	is
returned.

NUMERIC_PRECISION tinyint Precision	of
approximate
numeric	data,
exact	numeric
data,	integer
data,	or
monetary	data.
Otherwise,
NULL	is
returned.

NUMERIC_PRECISION_RADIX smallint Precision	radix
of	approximate
numeric	data,
exact	numeric
data,	integer
data,	or

monetary	data.
Otherwise,
NULL	is
returned.

NUMERIC_SCALE tinyint Scale	of
approximate
numeric	data,
exact	numeric
data,	integer
data,	or
monetary	data.
Otherwise,
NULL	is
returned.

DATETIME_PRECISION smallint Subtype	code
for	datetime
and	SQL-92
interval	data
types.	For
other	data
types,	NULL	is
returned.

CHARACTER_SET_CATALOG varchar(6) Returns
master,
indicating	the
database	in
which	the
character	set	is
located,	if	the
column	is
character	data
or	text	data
type.
Otherwise,
NULL	is
returned.

CHARACTER_SET_SCHEMA varchar(3) Returns	DBO,
indicating	the
owner	name	of
the	character
set,	if	the
column	is
character	data
or	text	data
type.
Otherwise,
NULL	is
returned.

CHARACTER_SET_NAME nvarchar(128) Returns	the
unique	name
for	the
character	set	if
this	column	is
character	data
or	text	data
type.
Otherwise,
NULL	is
returned.

COLLATION_CATALOG varchar(6) Returns
master,
indicating	the
database	in
which	the	sort
order	is
defined,	if	the
column	is
character	data
or	text	data
type.
Otherwise,	this
column	is
NULL.

COLLATION_SCHEMA varchar(3) Returns	DBO,
indicating	the
owner	of	the
sort	order	for
character	data
or	text	data
type.
Otherwise,
NULL	is
returned.

COLLATION_NAME nvarchar(128) Returns	the
unique	name
for	the	sort
order	if	the
column	is
character	data
or	text	data
type.
Otherwise,
NULL	is
returned.

DOMAIN_CATALOG nvarchar(128) If	the	column
is	a	user-
defined	data
type,	this
column	is	the
database	name
in	which	the
user-defined
data	type	was
created.
Otherwise,
NULL	is
returned.

DOMAIN_SCHEMA nvarchar(128) If	the	column
is	a	user-

defined	data
type,	this
column	is	the
creator	of	the
user-defined
data	type.
Otherwise,
NULL	is
returned.

DOMAIN_NAME nvarchar(128) If	the	column
is	a	user-
defined	data
type,	this
column	is	the
name	of	the
user-defined
data	type.
Otherwise,
NULL	is
returned.

See	Also

syscharsets

syscolumns

syscomments

sysconfigures

sysobjects

systypes

Transact-SQL	Reference

CONSTRAINT_COLUMN_USAGE
Contains	one	row	for	each	column,	in	the	current	database,	that	has	a	constraint
defined	on	it.	This	information	schema	view	returns	information	about	the
objects	to	which	the	current	user	has	permissions.	The
INFORMATION_SCHEMA.CONSTRAINT_COLUMN_USAGE	view	is
based	on	the	sysobjects,	syscolumns,	and	systypes	system	tables.

To	retrieve	information	from	these	views,	specify	the	fully	qualified	name	of
INFORMATION_SCHEMA	view_name.

Column	name Data	type Description
TABLE_CATALOG nvarchar(128) Table	qualifier
TABLE_SCHEMA nvarchar(128) Table	owner
TABLE_NAME nvarchar(128) Table	name
COLUMN_NAME nvarchar(128) Column	name
CONSTRAINT_CATALOGnvarchar(128) Constraint	qualifier
CONSTRAINT_SCHEMA nvarchar(128) Constraint	owner
CONSTRAINT_NAME nvarchar(128) Constraint	name

See	Also

syscolumns

sysobjects

systypes

Transact-SQL	Reference

CONSTRAINT_TABLE_USAGE
Contains	one	row	for	each	table,	in	the	current	database,	that	has	a	constraint
defined	on	it.	This	information	schema	view	returns	information	about	the
objects	to	which	the	current	user	has	permissions.	The
INFORMATION_SCHEMA.CONSTRAINT_TABLE_USAGE	view	is
based	on	the	sysobjects	system	table.

To	retrieve	information	from	these	views,	specify	the	fully	qualified	name	of
INFORMATION_SCHEMA	view_name.

Column	name Data	type Description
TABLE_CATALOG nvarchar(128) Table	qualifier
TABLE_SCHEMA nvarchar(128) Table	owner
TABLE_NAME sysname Table	name
CONSTRAINT_CATALOGnvarchar(128) Constraint	qualifier
CONSTRAINT_SCHEMA nvarchar(128) Constraint	owner
CONSTRAINT_NAME sysname Constraint	name

See	Also

sysobjects

Transact-SQL	Reference

DOMAIN_CONSTRAINTS
Contains	one	row	for	each	user-defined	data	type,	accessible	to	the	current	user
in	the	current	database,	with	a	rule	bound	to	it.	The
INFORMATION_SCHEMA.DOMAIN_CONSTRAINTS	view	is	based	on
the	sysobjects	and	systypes	system	tables.

To	retrieve	information	from	these	views,	specify	the	fully	qualified	name	of
INFORMATION_SCHEMA	view_name.

Column	name Data	type Description
CONSTRAINT_CATALOGnvarchar(128) Database	in	which	the	rule

exists.
CONSTRAINT_SCHEMA nvarchar(128) Rule	owner.
CONSTRAINT_NAME sysname Rule	name.
DOMAIN_CATALOG nvarchar(128) Database	in	which	the

user-defined	data	type
exists.

DOMAIN_SCHEMA nvarchar(128) User	that	created	the	user-
defined	data	type.

DOMAIN_NAME sysname User-defined	data	type.
IS_DEFERRABLE varchar(2) Specifies	whether

constraint	checking	is
deferrable.	Always	returns
NO.

INITIALLY_DEFERRED varchar(2) Specifies	whether
constraint	checking	is
initially	deferred.	Always
returns	NO.

See	Also

sysobjects

systypes

Transact-SQL	Reference

DOMAINS
Contains	one	row	for	each	user-defined	data	type	accessible	to	the	current	user	in
the	current	database.	The	INFORMATION_SCHEMA.DOMAINS	view	is
based	on	the	spt_data	type_info,	systypes,	syscomments,	sysconfigures,	and
syscharsets	system	tables.

To	retrieve	information	from	these	views,	specify	the	fully	qualified	name	of
INFORMATION_SCHEMA	view_name.

Column	name Data	type Description
DOMAIN_CATALOG nvarchar(128) Database	in

which	the	user-
defined	data
type	exists.

DOMAIN_SCHEMA nvarchar(128) User	that
created	the
user-defined
data	type.

DOMAIN_NAME sysname User-defined
data	type.

DATA_TYPE sysname System-
supplied	data
type.

CHARACTER_MAXIMUM_LENGTH smallint Maximum
length,	in
characters,	for
binary	data,
character	data,
or	text	and
image	data.
Otherwise,
NULL	is
returned.	For
more
information,

see	Data	Types.
CHARACTER_OCTET_LENGTH smallint Maximum

length,	in
bytes,	for
binary	data,
character	data,
or	text	and
image	data.
Otherwise,
NULL	is
returned.

COLLATION_CATALOG varchar(6) Returns
master,
indicating	the
database	in
which	the	sort
order	is
defined,	if	the
column	is
character	data
or	text	data
type.
Otherwise,	this
column	is
NULL.

COLLATION_SCHEMA varchar(3) Returns	DBO,
indicating	the
owner	of	the
sort	order	for
character	data
or	text	data
type.
Otherwise,
NULL	is
returned.

COLLATION_NAME nvarchar(128) Returns	the

unique	name
for	the	sort
order	if	the
column	is
character	data
or	text	data
type.
Otherwise,
NULL	is
returned.

CHARACTER_SET_CATALOG varchar(6) Returns
master,
indicating	the
database	in
which	the
character	set	is
located,	if	the
column	is
character	data
or	text	data
type.
Otherwise,
NULL	is
returned.

CHARACTER_SET_SCHEMA varchar(3) Returns	DBO,
indicating	the
owner	name	of
the	character
set,	if	the
column	is
character	data
or	text	data
type.
Otherwise,
NULL	is
returned.

CHARACTER_SET_NAME nvarchar(128) Returns	the
unique	name
for	the
character	set	if
this	column	is
character	data
or	text	data
type.
Otherwise,
NULL	is
returned.

NUMERIC_PRECISION tinyint Precision	of
approximate
numeric	data,
exact	numeric
data,	integer
data,	or
monetary	data.
Otherwise,
NULL	is
returned.

NUMERIC_PRECISION_RADIX smallint Precision	radix
of	approximate
numeric	data,
exact	numeric
data,	integer
data,	or
monetary	data.
Otherwise,
NULL	is
returned.

NUMERIC_SCALE tinyint Scale	of
approximate
numeric	data,
exact	numeric
data,	integer
data,	or

monetary	data.
Otherwise,
NULL	is
returned.

DATETIME_PRECISION smallint Subtype	code
for	datetime
and	SQL-92
interval	data
type.	For	other
data	types,	this
column	returns
a	NULL.

DOMAIN_DEFAULT nvarchar(4000)Actual	text	of
the	definition
Transact-SQL
statement.

See	Also

syscharsets

syscomments

sysconfigures

systypes

Transact-SQL	Reference

KEY_COLUMN_USAGE
Contains	one	row	for	each	column,	in	the	current	database,	that	is	constrained	as
a	key.	This	information	schema	view	returns	information	about	the	objects	to
which	the	current	user	has	permissions.	The
INFORMATION_SCHEMA.KEY_COLUMN_USAGE	view	is	based	on	the
sysobjects,	syscolumns,	sysreferences,	spt_values,	and	sysindexes	system
tables.

To	retrieve	information	from	these	views,	specify	the	fully	qualified	name	of
INFORMATION_SCHEMA	view_name.

Column	name Data	type Description
CONSTRAINT_CATALOGnvarchar(128) Constraint	qualifier
CONSTRAINT_SCHEMA nvarchar(128) Constraint	owner

name
CONSTRAINT_NAME nvarchar(128) Constraint	name
TABLE_CATALOG nvarchar(128) Table	qualifier
TABLE_SCHEMA nvarchar(128) Table	owner	name
TABLE_NAME nvarchar(128) Table	name
COLUMN_NAME nvarchar(128) Column	name
ORDINAL_POSITION int Column	ordinal

position

See	Also

syscolumns

sysindexes

sysobjects

sysreferences

Transact-SQL	Reference

PARAMETERS
Contains	one	row	for	each	parameter	of	a	user-defined	function	or	stored
procedure	accessible	to	the	current	user	in	the	current	database.	For	functions,
this	view	also	returns	one	row	with	return	value	information.

The	INFORMATION_SCHEMA.PARAMETERS	view	is	based	on	the
sysobjects	and	syscolumns	system	tables.

To	retrieve	information	from	these	views,	specify	the	fully	qualified	name	of
INFORMATION_SCHEMA	view_name.

Column	name Data	type Description
SPECIFIC_CATALOG nvarchar(128)Catalog	name	of

the	ROUTINE
for	which	this	is
a	parameter.

SPECIFIC_SCHEMA nvarchar(128)Owner	name	of
the	ROUTINE
for	which	this	is
a	parameter.

SPECIFIC_NAME nvarchar(128)Name	of	the
ROUTINE	for
which	this	is	a
parameter.

ORDINAL_POSITION smallint Ordinal	position
of	the	parameter
starting	at	1.	For
the	return	value
of	a	function,
this	is	a	0.

PARAMETER_MODE nvarchar(10) Returns	IN	if	an
input	parameter,
OUT	if	an
output
parameter,	and

INOUT	if	an
input/output
parameter.

IS_RESULT nvarchar(10) Returns	YES	if
indicates	result
of	the	routine
that	is	a
function.
Otherwise,
returns	NO.

AS_LOCATOR nvarchar(10) Returns	YES	if
declared	as
locator.
Otherwise,
returns	NO.

PARAMETER_NAME nvarchar(128)Name	of	the
parameter.
NULL	if	this
corresponds	to
the	return	value
of	a	function.

DATA_TYPE nvarchar(128)Data	type	of	the
parameter.

CHARACTER_MAXIMUM_LENGTH int Maximum
length	in
characters	for
binary	or
character	data
types.
Otherwise,
returns	NULL.

CHARACTER_OCTET_LENGTH int Maximum
length,	in	bytes,
for	binary	or
character	data
types.

Otherwise,
returns	NULL.

COLLATION_CATALOG nvarchar(128)Catalog	name	of
the	collation	of
the	parameter.	If
not	one	of	the
character	types,
returns	NULL.

COLLATION_SCHEMA nvarchar(128)Schema	name	of
the	collation	of
the	parameter.	If
not	one	of	the
character	types,
returns	NULL.

COLLATION_NAME nvarchar(128)Name	of	the
collation	of	the
parameter.	If	not
one	of	the
character	types,
returns	NULL.

CHARACTER_SET_CATALOG nvarchar(128)Catalog	name	of
the	character	set
of	the	parameter.
If	not	one	of	the
character	types,
returns	NULL.

CHARACTER_SET_SCHEMA nvarchar(128)Owner	name	of
the	character	set
of	the	parameter.
If	not	one	of	the
character	types,
returns	NULL.

CHARACTER_SET_NAME nvarchar(128)Name	of	the
character	set	of
the	parameter.	If
not	one	of	the

character	types,
returns	NULL.

NUMERIC_PRECISION tinyint Precision	of
approximate
numeric	data,
exact	numeric
data,	integer
data,	or
monetary	data.
Otherwise,
returns	NULL.

NUMERIC_PRECISION_RADIX smallint Precision	radix
of	approximate
numeric	data,
exact	numeric
data,	integer
data,	or
monetary	data.
Otherwise,
returns	NULL.

NUMERIC_SCALE tinyint Scale	of
approximate
numeric	data,
exact	numeric
data,	integer
data,	or
monetary	data.
Otherwise,
returns	NULL.

DATETIME_PRECISION smallint Precision	in
fractional
seconds	if	the
parameter	type
is	datetime	or
smalldatetime.
Otherwise,

returns	NULL.
INTERVAL_TYPE nvarchar(30) NULL.

Reserved	for
future	use.

INTERVAL_PRECISION smallint NULL.
Reserved	for
future	use.

USER_DEFINED_TYPE_CATALOG nvarchar(128)NULL.
Reserved	for
future	use.

USER_DEFINED_TYPE_SCHEMA nvarchar(128)NULL.
Reserved	for
future	use.

USER_DEFINED_TYPE_NAME nvarchar(128)NULL.
Reserved	for
future	use.

SCOPE_CATALOG nvarchar(128)NULL.
Reserved	for
future	use.

SCOPE_SCHEMA nvarchar(128)NULL.
Reserved	for
future	use.

SCOPE_NAME nvarchar(128)NULL.
Reserved	for
future	use.

See	Also

syscolumns

sysobjects

Transact-SQL	Reference

REFERENTIAL_CONSTRAINTS
Contains	one	row	for	each	foreign	constraint	in	the	current	database.	This
information	schema	view	returns	information	about	the	objects	to	which	the
current	user	has	permissions.	The
INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS	view	is
based	on	the	sysreferences,	sysindexes,	and	sysobjects	system	tables.

To	retrieve	information	from	these	views,	specify	the	fully	qualified	name	of
INFORMATION_SCHEMA	view_name.

Column	name Data	type Description
CONSTRAINT_CATALOG nvarchar(128) Constraint

qualifier.
CONSTRAINT_SCHEMA nvarchar(128) Constraint	owner.
CONSTRAINT_NAME sysname Constraint	name.
UNIQUE_CONSTRAINT_CATALOGnvarchar(128)Unique	constraint

qualifier.
UNIQUE_CONSTRAINT_SCHEMA nvarchar(128)Unique	constraint

owner.
UNIQUE_CONSTRAINT_NAME sysname Unique

constraint.
MATCH_OPTION varchar(7) Referential

constraint-
matching
conditions.
Always	returns
NONE,	which
means	that	no
match	is	defined.
The	condition	is
considered	a
match	if

At	least
one

value	in
the
foreign
key
column
is
NULL;

Or

All
values	in
the
foreign
key
column
are	not
NULL
and	there
is	a	row
in	the
primary
key	table
with
exactly
the	same
key.

UPDATE_RULE varchar(9) The	action	that	is
taken	if	a
Transact-SQL
statement	violates
referential
integrity	defined
by	this	constraint.

Returns	either
NO	ACTION	or

CASCADE.	If
NO	ACTION	is
specified	on	ON
UPDATE	for	this
constraint,	then
the	update	of	the
primary	key
referenced	in	the
constraint	will	not
be	propagated	to
the	foreign	key.	If
such	update	of	a
primary	key	will
cause	a	referential
integrity	violation
because	at	least
one	foreign	key
contains	the	same
value,	SQL
Server	will	not
execute	any
change	to	the
parent	and
referring	tables.
SQL	Server	also
will	raise	an	error.

If	CASCADE	is
specified	on	ON
UPDATE	for	this
constraint,	then
any	change	to	the
primary	key	value
is	automatically
propagated	to	the
foreign	key	value.

DELETE_RULE varchar(9) The	action	that	is

taken	if	a
Transact-SQL
statement	violates
referential
integrity	defined
by	this	constraint.

Returns	either
NO	ACTION	or
CASCADE.	If
NO	ACTION	is
specified	on	ON
DELETE	for	this
constraint,	then
the	delete	on	the
primary	key
referenced	in	the
constraint	will	not
be	propagated	to
the	foreign	key.	If
such	delete	of	a
primary	key	will
cause	a	referential
integrity	violation
because	at	least
one	foreign	key
contains	the	same
value,	SQL
Server	will	not
execute	any
change	to	the
parent	and
referring	tables.
SQL	Server	also
will	raise	an	error.

If	CASCADE	is
specified	on	ON

DELETE	on	this
constraint,	then
any	change	to	the
primary	key	value
is	automatically
propagated	to	the
foreign	key	value.

See	Also

sysindexes

sysobjects

sysreferences

Transact-SQL	Reference

ROUTINES
Contains	one	row	for	each	stored	procedure	and	function	accessible	to	the
current	user	in	the	current	database.	The	columns	that	describe	the	return	value
apply	only	to	functions.	For	stored	procedures,	these	columns	will	be	NULL.

The	INFORMATION_SCHEMA.ROUTINES	view	is	based	on	the	sysobjects
and	syscolumns	system	tables.

To	retrieve	information	from	these	views,	specify	the	fully	qualified	name	of
INFORMATION_SCHEMA	view_name.

Note		The	ROUTINE_DEFINITION	column	contains	the	source	statements
that	created	the	function,	stored	procedure,	or	trigger.	These	source	statements
are	likely	to	contain	embedded	carriage	returns.	If	you	are	returning	this	column
to	an	application	that	is	displaying	the	results	in	a	text	format,	the	embedded
carriage	returns	in	the	ROUTINE_DEFINITION	results	may	affect	the
formatting	of	the	overall	result	set.	If	you	select	the	ROUTINE_DEFINITION
column,	you	must	adjust	for	the	embedded	carriage	returns;	for	example,	by
returning	the	result	set	into	a	grid	or	returning	ROUTINE_DEFINITION	into
its	own	text	box.

Column	name Data	type Description
SPECIFIC_CATALOG nvarchar(128) Specific	name	of	the

catalog.

For	SQL	Server	2000,
this	name	is	the	same	as
ROUTINE_CATALOG

SPECIFIC_SCHEMA nvarchar(128) Specific	name	of	the
catalog.

For	SQL	Server	2000,
this	is	the	same	as
ROUTINE_SCHEMA

SPECIFIC_NAME nvarchar(128) Specific	name	of	the
catalog.

For	SQL	Server	2000,
this	is	the	same	as
ROUTINE_NAME.

ROUTINE_CATALOG nvarchar(128) Catalog	name	of	the
function.

ROUTINE_SCHEMA nvarchar(128) Owner	name	of	the
function.

ROUTINE_NAME nvarchar(128) Name	of	the	function.
ROUTINE_TYPE nvarchar(20) Returns	PROCEDURE

for	stored	procedures,
and	FUNCTION	for
functions.

MODULE_CATALOG nvarchar(128) NULL.	Reserved	for
future	use.

MODULE_SCHEMA nvarchar(128) NULL.	Reserved	for
future	use.

MODULE_NAME nvarchar(128) NULL.	Reserved	for
future	use.

UDT_CATALOG nvarchar(128) NULL.	Reserved	for
future	use.

UDT_SCHEMA nvarchar(128) NULL.	Reserved	for
future	use.

UDT_NAME nvarchar(128) NULL.	Reserved	for
future	use.

DATA_TYPE nvarchar(128) Data	type	of	the	return
value	of	the	function.
Returns	table	if	a	table-
valued	function.

CHARACTER_MAXIMUM_LENGTH int Maximum	length	in
characters,	if	the	return
type	is	a	character	type.

CHARACTER_OCTET_LENGTH int Maximum	length	in
bytes,	if	the	return	type	is
a	character	type.

COLLATION_CATALOG nvarchar(128) Catalog	portion	of	the

collation	name	of	the
return	value.	For
noncharacter	types,
returns	NULL.

COLLATION_SCHEMA nvarchar(128) Schema	portion	of	the
collation	name	of	the
return	value.	For
noncharacter	types,
returns	NULL.

COLLATION_NAME nvarchar(128) Collation	name	of	the
return	value.	For
noncharacter	types,
returns	NULL.

CHARACTER_SET_CATALOG nvarchar(128) Catalog	name	of	the
return	value's	character
set.	For	noncharacter
types,	returns	NULL.

CHARACTER_SET_SCHEMA nvarchar(128) Schema	name	of	the
return	value's	character
set.	For	noncharacter
types,	returns	NULL.

CHARACTER_SET_NAME nvarchar(128) Name	of	the	return
value's	character	set.	For
noncharacter	types,
returns	NULL.

NUMERIC_PRECISION smallint Numeric	precision	of	the
return	value.	For	the
nonnumeric	types,
returns	NULL.

NUMERIC_PRECISION_RADIX smallint Numeric	precision	radix
of	the	return	value.	For
nonnumeric	types,
returns	NULL.

NUMERIC_SCALE smallint Scale	of	the	return	value.
For	nonnumeric	types,
returns	NULL.

DATETIME_PRECISION smallint Fractional	precision	of	a
second	if	return	value	is
of	type	datetime.
Otherwise,	returns
NULL.

INTERVAL_TYPE nvarchar(30) NULL.	Reserved	for
future	use.

INTERVAL_PRECISION smallint NULL.	Reserved	for
future	use.

TYPE_UDT_CATALOG nvarchar(128) NULL.	Reserved	for
future	use.

TYPE_UDT_SCHEMA nvarchar(128) NULL.	Reserved	for
future	use.

TYPE_UDT_NAME nvarchar(128) NULL.	Reserved	for
future	use.

SCOPE_CATALOG nvarchar(128) NULL.	Reserved	for
future	use.

SCOPE_SCHEMA nvarchar(128) NULL.	Reserved	for
future	use.

SCOPE_NAME nvarchar(128) NULL.	Reserved	for
future	use.

MAXIMUM_CARDINALITY bigint NULL.	Reserved	for
future	use.

DTD_IDENTIFIER nvarchar(128) NULL.	Reserved	for
future	use.

ROUTINE_BODY nvarchar(30) Returns	SQL	for	a
Transact-SQL	function,
and	EXTERNAL	for	an
externally	written
function.

In	SQL	Server	2000,
functions	will	always	be
SQL.

ROUTINE_DEFINITION nvarchar(4000)Definition	text	of	the
function	or	stored

procedure	if	the	function
or	stored	procedure	is	not
encrypted.	Otherwise,
returns	NULL.

EXTERNAL_NAME nvarchar(128) NULL.	Reserved	for
future	use.

EXTERNAL_LANGUAGE nvarchar(30) NULL.	Reserved	for
future	use.

PARAMETER_STYLE nvarchar(30) NULL.	Reserved	for
future	use.

IS_DETERMINISTIC nvarchar(10) Returns	YES	if	the
routine	is	deterministic.

Returns	NO	if	the	routine
is	nondeterministic.

Always	returns	NO	for
stored	procedures.

SQL_DATA_ACCESS nvarchar(30) Returns	one	of	the
following	four	values:

NONE	=	The	function
does	not	contain	SQL.
CONTAINS	=	The
function	possibly
contains	SQL.
READS	=	The	function
possibly	reads	SQL	data.
MODIFIES	=	The
function	possibly
modifies	SQL	data.

In	SQL	Server	2000,
returns	READS	for	all
functions,	and
MODIFIES	for	all	stored
procedures.

IS_NULL_CALL nvarchar(10) Indicates	if	the	routine
will	be	called	if	any	of	its
arguments	are	NULL.

In	SQL	Server	2000,
always	returns	YES.

SQL_PATH nvarchar(128) NULL.	Reserved	for
future	use.

SCHEMA_LEVEL_ROUTINE nvarchar(10) Returns	YES	if	schema-
level	function,	or	NO	if
not	a	schema-level
function.

In	SQL	Server	2000,
always	returns	YES.

MAX_DYNAMIC_RESULT_SETS smallint Maximum	number	of
dynamic	result	sets
returned	by	routine.

Returns	0	if	functions,
and	TBD	if	stored
procedures.

IS_USER_DEFINED_CAST nvarchar(10) Returns	YES	if	user-
defined	cast	function,	and
NO	if	not	a	user-defined
cast	function.

In	SQL	Server	2000,
always	returns	NO.

IS_IMPLICITLY_INVOCABLE nvarchar(10) Returns	YES	if	the
routine	is	implicitly
invocable,	and	NO	if
function	is	not	implicitly
invocable.

In	SQL	Server	2000,
always	returns	NO.

CREATED datetime Time	the	routine	was
created.

LAST_ALTERED datetime The	last	time	the	function
was	modified.

See	Also

syscolumns

sysobjects

Transact-SQL	Reference

ROUTINE_COLUMNS
Contains	one	row	for	each	column	returned	by	the	table-valued	functions
accessible	to	the	current	user	in	the	current	database.

The	INFORMATION_SCHEMA.ROUTINE_COLUMNS	view	is	based	on
the	sysobjects	and	syscolumns	system	tables.

To	retrieve	information	from	this	view,	specify	the	fully	qualified	name	of
INFORMATION_SCHEMA	view_name.

Column	name Data	type Description
TABLE_CATALOG nvarchar(128) Catalog	or

database	name
of	the	table-
valued
function.

TABLE_SCHEMA nvarchar(128) Owner	of	the
table-valued
function.

TABLE_NAME nvarchar(128) Name	of	the
table-valued
function.

COLUMN_NAME nvarchar(128) Column	name.
ORDINAL_POSITION smallint Column

identification
number.

COLUMN_DEFAULT nvarchar(4000)Default	value
of	the	column.

IS_NULLABLE varchar(3) If	this	column
allows	NULL,
returns	YES.
Otherwise,
returns	NO.

DATA_TYPE nvarchar(128) System-
supplied	data

type.
CHARACTER_MAXIMUM_LENGTH smallint Maximum

length,	in
characters,	for
binary	data,
character	data,
or	text	and
image	data.
Otherwise,
returns	NULL.
For	more
information,
see	Data	Types.

CHARACTER_OCTET_LENGTH smallint Maximum
length,	in
bytes,	for
binary	data,
character	data,
or	text	and
image	data.
Otherwise,
returns	NULL.

NUMERIC_PRECISION tinyint Precision	of
approximate
numeric	data,
exact	numeric
data,	integer
data,	or
monetary	data.
Otherwise,
returns	NULL.

NUMERIC_PRECISION_RADIX smallint Precision	radix
of	approximate
numeric	data,
exact	numeric
data,	integer

data,	or
monetary	data.
Otherwise,
returns	NULL.

NUMERIC_SCALE tinyint Scale	of
approximate
numeric	data,
exact	numeric
data,	integer
data,	or
monetary	data.
Otherwise,
returns	NULL.

DATETIME_PRECISION smallint Subtype	code
for	datetime
and	SQL-92
integer	data
types.	For
other	data
types,	returns
NULL.

CHARACTER_SET_CATALOG varchar(6) Returns
master,
indicating	the
database	in
which	the
character	set	is
located,	if	the
column	is
character	data
or	text	data
type.
Otherwise,
returns	NULL.

CHARACTER_SET_SCHEMA varchar(3) Returns	DBO,
indicating	the

owner	name	of
the	character
set,	if	the
column	is
character	data
or	text	data
type.
Otherwise,
returns	NULL.

CHARACTER_SET_NAME nvarchar(128) Returns	the
unique	name
for	the
character	set	if
this	column	is
character	data
or	text	data
type.
Otherwise,
returns	NULL.

COLLATION_CATALOG varchar(6) Returns
master,
indicating	the
database	in
which	the	sort
order	is
defined,	if	the
column	is
character	data
or	text	data
type.
Otherwise,
returns	NULL.

COLLATION_SCHEMA varchar(3) Returns	DBO,
indicating	the
owner	of	the
sort	order	for

character	data
or	text	data
type.
Otherwise,
returns	NULL.

COLLATION_NAME nvarchar(128) Returns	the
unique	name
for	the	sort
order	if	the
column	is
character	data
or	text	data
type.
Otherwise,
returns	NULL.

DOMAIN_CATALOG nvarchar(128) If	the	column
is	a	user-
defined	data
type,	this
column	is	the
database	name
in	which	the
user-defined
data	type	was
created.
Otherwise,
returns	NULL.

DOMAIN_SCHEMA nvarchar(128) If	the	column
is	a	user-
defined	data
type,	this
column	is	the
creator	of	the
user-defined
data	type.
Otherwise,

returns	NULL.
DOMAIN_NAME nvarchar(128) If	the	column

is	a	user-
defined	data
type,	this
column	is	the
name	of	the
user-defined
data	type.
Otherwise,
returns	NULL.

See	Also

syscolumns

sysobjects

Transact-SQL	Reference

SCHEMATA
Contains	one	row	for	each	database	that	has	permissions	for	the	current	user.	The
INFORMATION_SCHEMA.SCHEMATA	view	is	based	on	the	sysdatabases,
sysconfigures,	and	syscharsets	system	tables.

To	retrieve	information	from	these	views,	specify	the	fully	qualified	name	of
INFORMATION_SCHEMA	view_name.

Column	name Data	type Description
CATALOG_NAME sysname Name	of	the

database
where	the
current	user
has
permissions.

SCHEMA_NAME nvarchar(128)Returns	the
name	of	the
schema
owner	of
object.

SCHEMA_OWNER nvarchar(128)Schema
owner
name.

DEFAULT_CHARACTER_SET_CATALOGvarchar(6) Returns
master,
indicating
the	database
where	the
default
character	set
is	defined.

DEFAULT_CHARACTER_SET_SCHEMA varchar(3) Returns
DBO,
indicating
the	name	of

the	default
character	set
owner.

DEFAULT_CHARACTER_SET_NAME sysname Returns	the
name	of	the
default
character
set.

See	Also

syscharsets

sysconfigures

sysdatabases

Transact-SQL	Reference

TABLE_CONSTRAINTS
Contains	one	row	for	each	table	constraint	in	the	current	database.	This
information	schema	view	returns	information	about	the	objects	to	which	the
current	user	has	permissions.	The
INFORMATION_SCHEMA.TABLE_CONSTRAINTS	view	is	based	on	the
sysobjects	system	table.

To	retrieve	information	from	these	views,	specify	the	fully	qualified	name	of
INFORMATION_SCHEMA	view_name.

Column	name Data	type Description
CONSTRAINT_CATALOGnvarchar(128) Constraint	qualifier.
CONSTRAINT_SCHEMA nvarchar(128) Constraint	owner.
CONSTRAINT_NAME sysname Constraint	name.
TABLE_CATALOG nvarchar(128) Table	qualifier.
TABLE_SCHEMA nvarchar(128) Table	owner.
TABLE_NAME sysname Table	name.
CONSTRAINT_TYPE varchar(11) Type	of	constraint.	Can	be

CHECK,	UNIQUE,
PRIMARY	KEY,	or
FOREIGN	KEY.

IS_DEFERRABLE varchar(2) Specifies	whether
constraint	checking	is
deferrable.	Always	returns
NO.

INITIALLY_DEFERRED varchar(2) Specifies	whether
constraint	checking	is
initially	deferred.	Always
returns	NO.

See	Also

sysobjects

Transact-SQL	Reference

TABLE_PRIVILEGES
Contains	one	row	for	each	table	privilege	granted	to	or	by	the	current	user	in	the
current	database.	The	INFORMATION_SCHEMA.TABLE_PRIVILEGES
view	is	based	on	the	sysprotects	and	sysobjects	system	tables.

To	retrieve	information	from	these	views,	specify	the	fully	qualified	name	of
INFORMATION_SCHEMA	view_name.

Column	name Data	type Description
GRANTOR nvarchar(128) Privilege	grantor.
GRANTEE nvarchar(128) Privilege	grantee.
TABLE_CATALOG nvarchar(128) Table	qualifier.
TABLE_SCHEMA nvarchar(128) Table	owner.
TABLE_NAME sysname Table	name.
PRIVILEGE_TYPE varchar(10) Type	of	privilege.
IS_GRANTABLE varchar(3) Specifies	whether	the	grantee	has

the	ability	to	grant	permissions	to
others.

See	Also

sysobjects

sysprotects

Transact-SQL	Reference

TABLES
Contains	one	row	for	each	table	in	the	current	database	for	which	the	current
user	has	permissions.	The	INFORMATION_SCHEMA.TABLES	view	is
based	on	the	sysobjects	system	table.

To	retrieve	information	from	these	views,	specify	the	fully	qualified	name	of
INFORMATION_SCHEMA	view_name.

Column	name Data	type Description
TABLE_CATALOG nvarchar(128) Table	qualifier.
TABLE_SCHEMA nvarchar(128) Table	owner.
TABLE_NAME sysname Table	name.
TABLE_TYPE varchar(10) Type	of	table.	Can	be	VIEW

or	BASE	TABLE.

See	Also

sysobjects

Transact-SQL	Reference

VIEW_COLUMN_USAGE
Contains	one	row	for	each	column,	in	the	current	database,	used	in	a	view
definition.	This	information	schema	view	returns	information	about	the	objects
to	which	the	current	user	has	permissions.	The
INFORMATION_SCHEMA.VIEW_COLUMN_USAGE	is	based	on	the
sysobjects	and	sysdepends	system	tables.

To	retrieve	information	from	these	views,	specify	the	fully	qualified	name	of
INFORMATION_SCHEMA	view_name.

Column	name Data	type Description
VIEW_CATALOG nvarchar(128) View	qualifier
VIEW_SCHEMA nvarchar(128) View	owner
VIEW_NAME sysname View	name
TABLE_CATALOG nvarchar(128) Table	qualifier
TABLE_SCHEMA nvarchar(128) Table	owner
TABLE_NAME sysname Base	table
COLUMN_NAME sysname Column	name

See	Also

sysdepends

sysobjects

Transact-SQL	Reference

VIEW_TABLE_USAGE
Contains	one	row	for	each	table,	in	the	current	database,	used	in	a	view.	This
information	schema	view	returns	information	about	the	objects	to	which	the
current	user	has	permissions.	The
INFORMATION_SCHEMA.VIEW_TABLE_USAGE	view	is	based	on	the
sysobjects	and	sysdepends	system	tables.

To	retrieve	information	from	these	views,	specify	the	fully	qualified	name	of
INFORMATION_SCHEMA	view_name.

Column	name Data	type Description
VIEW_CATALOG nvarchar(128) View	qualifier.
VIEW_SCHEMA nvarchar(128) View	owner.
VIEW_NAME sysname View	name.
TABLE_CATALOG nvarchar(128) Table	qualifier.
TABLE_SCHEMA nvarchar(128) Base	table	owner.
TABLE_NAME sysname Base	table	that	the	view	is	based

on.

See	Also

sysdepends

sysobjects

Transact-SQL	Reference

VIEWS
Contains	one	row	for	views	accessible	to	the	current	user	in	the	current	database.
The	INFORMATION_SCHEMA.VIEWS	is	based	on	the	sysobjects	and
syscomments	system	tables.

To	retrieve	information	from	these	views,	specify	the	fully	qualified	name	of
INFORMATION_SCHEMA	view_name.

Column	name Data	type Description
TABLE_CATALOG nvarchar(128) View	qualifier.
TABLE_SCHEMA nvarchar(128) View	owner.
TABLE_NAME nvarchar(128) View	name.
VIEW_DEFINITIONnvarchar(4000) If	the	length	of	definition	is

greater	than	nvarchar(4000),
this	column	is	NULL;	otherwise,
this	column	is	the	view
definition	text.

CHECK_OPTION varchar(7) Type	of	WITH	CHECK
OPTION.	Is	CASCADE	if	the
original	view	was	created	using
the	WITH	CHECK	OPTION.
Otherwise,	NONE	is	returned.

IS_UPDATABLE varchar(2) Specifies	whether	the	view	is
updatable.	Always	returns	NO.

See	Also

syscomments

Transact-SQL	Reference

INSERT
Adds	a	new	row	to	a	table	or	a	view.

Syntax
INSERT	[INTO]	
				{	table_name	WITH	(<	table_hint_limited	>	[...n])	
								|	view_name	
								|	rowset_function_limited	
				}	

				{				[(column_list)]	
								{	VALUES	
												({	DEFAULT	|	NULL	|	expression	}	[,...n])	
												|	derived_table	
												|	execute_statement	
								}	
				}	
				|	DEFAULT	VALUES

<	table_hint_limited	>	::=	
				{	FASTFIRSTROW	
								|	HOLDLOCK	
								|	PAGLOCK	
								|	READCOMMITTED	
								|	REPEATABLEREAD	
								|	ROWLOCK	
								|	SERIALIZABLE	
								|	TABLOCK	
								|	TABLOCKX	
								|	UPDLOCK	
				}

Arguments
[INTO]

Is	an	optional	keyword	that	can	be	used	between	INSERT	and	the	target
table.

table_name

Is	the	name	of	a	table	or	table	variable	that	is	to	receive	the	data.

WITH	(<table_hint_limited>	[...n])

Specifies	one	or	more	table	hints	that	are	allowed	for	a	target	table.	The
WITH	keyword	and	the	parentheses	are	required.	READPAST,	NOLOCK,
and	READUNCOMMITTED	are	not	allowed.	For	more	information	about
table	hints,	see	FROM.

view_name

Is	the	name	and	optional	alias	of	a	view.	The	view	referenced	by	view_name
must	be	updatable.	The	modifications	made	by	the	INSERT	statement	cannot
affect	more	than	one	of	the	base	tables	referenced	in	the	FROM	clause	of	the
view.	For	example,	an	INSERT	into	a	multitable	view	must	use	a	column_list
that	references	only	columns	from	one	base	table.	For	more	information
about	updatable	views,	see	CREATE	VIEW.

rowset_function_limited

Is	either	the	OPENQUERY	or	OPENROWSET	function.	For	more
information,	see	OPENQUERY	and	OPENROWSET.

(column_list)

Is	a	list	of	one	or	more	columns	in	which	to	insert	data.	column_list	must	be
enclosed	in	parentheses	and	delimited	by	commas.

If	a	column	is	not	in	column_list,	Microsoft®	SQL	Server™	must	be	able	to
provide	a	value	based	on	the	definition	of	the	column;	otherwise,	the	row
cannot	be	loaded.	SQL	Server	automatically	provides	a	value	for	the	column
if	the	column:

Has	an	IDENTITY	property.	The	next	incremental	identity	value	is
used.

Has	a	default.	The	default	value	for	the	column	is	used.

Has	a	timestamp	data	type.	The	current	timestamp	value	is	used.

Is	nullable.	A	null	value	is	used.

column_list	and	VALUES	list	must	be	used	when	inserting	explicit	values
into	an	identity	column,	and	the	SET	IDENTITY_INSERT	option	must	be
ON	for	the	table.

VALUES

Introduces	the	list	of	data	values	to	be	inserted.	There	must	be	one	data	value
for	each	column	in	column_list	(if	specified)	or	in	the	table.	The	values	list
must	be	enclosed	in	parentheses.

If	the	values	in	the	VALUES	list	are	not	in	the	same	order	as	the	columns	in
the	table	or	do	not	have	a	value	for	each	column	in	the	table,	column_list
must	be	used	to	explicitly	specify	the	column	that	stores	each	incoming
value.

DEFAULT

Forces	SQL	Server	to	load	the	default	value	defined	for	a	column.	If	a
default	does	not	exist	for	the	column	and	the	column	allows	NULLs,	NULL
is	inserted.	For	a	column	defined	with	the	timestamp	data	type,	the	next
timestamp	value	is	inserted.	DEFAULT	is	not	valid	for	an	identity	column.

expression

Is	a	constant,	a	variable,	or	an	expression.	The	expression	cannot	contain	a
SELECT	or	EXECUTE	statement.

derived_table

Is	any	valid	SELECT	statement	that	returns	rows	of	data	to	be	loaded	into
the	table.

execute_statement

Is	any	valid	EXECUTE	statement	that	returns	data	with	SELECT	or
READTEXT	statements.

If	execute_statement	is	used	with	INSERT,	each	result	set	must	be
compatible	with	the	columns	in	the	table	or	in	column_list.
execute_statement	can	be	used	to	execute	stored	procedures	on	the	same
server	or	a	remote	server.	The	procedure	in	the	remote	server	is	executed,
and	the	result	sets	are	returned	to	the	local	server	and	loaded	into	the	table	in
the	local	server.	If	execute_statement	returns	data	with	the	READTEXT
statement,	each	individual	READTEXT	statement	can	return	a	maximum	of
1	MB	(1024	KB)	of	data.	execute_statement	can	also	be	used	with	extended
procedures,	and	inserts	the	data	returned	by	the	main	thread	of	the	extended
procedure.	Output	from	threads	other	than	the	main	thread	are	not	inserted.

Note		For	SQL	Server	version	7.0,	execute_statement	cannot	contain	an
extended	stored	procedure	that	returns	text	or	image	columns.	This	behavior	is	a
change	from	earlier	versions	of	SQL	Server.

DEFAULT	VALUES

Forces	the	new	row	to	contain	the	default	values	defined	for	each	column.

Remarks
INSERT	appends	new	rows	to	a	table.	To	replace	data	in	a	table,	the	DELETE	or
TRUNCATE	TABLE	statements	must	be	used	to	clear	existing	data	before
loading	new	data	with	INSERT.	To	modify	column	values	in	existing	rows,	use
UPDATE.	To	create	a	new	table	and	load	it	with	data	in	one	step,	use	the	INTO
option	of	the	SELECT	statement.

A	table	variable,	in	its	scope,	may	be	accessed	like	a	regular	table.	Thus,	table
variable	may	be	used	as	the	table	to	which	rows	are	to	be	added	in	an	INSERT
statement.	For	more	information,	see	table.

A	four-part	name	constructed	with	the	OPENDATASOURCE	function	as	the
server-name	part	may	be	used	as	a	table	source	in	all	places	a	table	name	can
appear	in	INSERT	statements.

Columns	created	with	the	uniqueidentifier	data	type	store	specially	formatted
16-byte	binary	values.	Unlike	with	identity	columns,	SQL	Server	does	not
automatically	generate	values	for	columns	with	the	uniqueidentifier	data	type.
During	an	insert	operation,	variables	with	a	data	type	of	uniqueidentifier	and
string	constants	in	the	form	xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx	(36

characters	including	hyphens,	where	x	is	a	hexadecimal	digit	in	the	range	0-9	or
a-f)	can	be	used	for	uniqueidentifier	columns.	For	example,	6F9619FF-8B86-
D011-B42D-00C04FC964FF	is	a	valid	value	for	a	uniqueidentifier	variable	or
column.	Use	the	NEWID()	function	to	obtain	a	globally	unique	ID	(GUID).

When	you	insert	rows,	these	rules	apply:

If	a	value	is	being	loaded	into	columns	with	a	char,	varchar,	or
varbinary	data	type,	the	padding	or	truncation	of	trailing	blanks
(spaces	for	char	and	varchar,	zeros	for	varbinary)	is	determined	by
the	SET	ANSI_PADDING	setting	defined	for	the	column	when	the
table	was	created.	For	more	information,	see	SET	ANSI_PADDING.

This	table	shows	the	default	operation	when	SET	ANSI_PADDING	is
OFF.

Data	type Default	operation
Char Pad	value	with	spaces	to	the	defined	width	of

column.
Varchar Remove	trailing	spaces	to	the	last	nonspace

character	or	to	a	single	space	character	for	strings
consisting	of	only	spaces.

Varbinary Remove	trailing	zeros.

If	an	empty	string	('	')	is	loaded	into	a	column	with	a	varchar	or	text
data	type,	the	default	operation	is	to	load	a	zero-length	string.	If	the
compatibility	level	for	the	database	is	less	than	70,	the	value	is
converted	to	a	single	space.	For	more	information,	see	sp_dbcmptlevel.	

If	an	INSERT	statement	violates	a	constraint	or	rule,	or	if	it	has	a	value
incompatible	with	the	data	type	of	the	column,	the	statement	fails	and
SQL	Server	displays	an	error	message.	

Inserting	a	null	value	into	a	text	or	image	column	does	not	create	a
valid	text	pointer,	nor	does	it	preallocate	an	8-KB	text	page.	For	more
information	about	inserting	text	and	image	data,	see	Using	text,	ntext,

JavaScript:hhobj_1.Click()

and	image	Functions.	

If	INSERT	is	loading	multiple	rows	with	SELECT	or	EXECUTE,	any
violation	of	a	rule	or	constraint	that	occurs	from	the	values	being	loaded
causes	the	entire	statement	to	be	terminated,	and	no	rows	are	loaded.

When	inserting	values	into	remote	SQL	Server	tables,	and	not	all	values
for	all	columns	are	specified,	the	user	must	identify	the	columns	to
which	the	specified	values	are	to	be	inserted.

The	setting	of	the	SET	ROWCOUNT	option	is	ignored	for	INSERT	statements
against	local	and	remote	partitioned	views.	Also,	this	option	is	not	supported	for
INSERT	statements	against	remote	tables	in	SQL	Server	2000	when	the
compatibility	level	is	set	to	80.

When	an	INSTEAD-OF	trigger	is	defined	on	INSERT	actions	against	a	table	or
view,	the	trigger	executes	instead	of	the	INSERT	statement.	Previous	versions	of
SQL	Server	only	support	AFTER	triggers	defined	on	INSERT	and	other	data
modification	statements.

When	an	INSERT	statement	encounters	an	arithmetic	error	(overflow,	divide	by
zero,	or	a	domain	error)	occurring	during	expression	evaluation,	SQL	Server
handles	these	errors	as	if	SET	ARITHABORT	is	ON.	The	remainder	of	the	batch
is	halted,	and	an	error	message	is	returned.

Permissions
INSERT	permissions	default	to	members	of	the	sysadmin	fixed	server	role,	the
db_owner	and	db_datawriter	fixed	database	roles,	and	the	table	owner.
Members	of	the	sysadmin,	db_owner,	and	the	db_securityadmin	roles,	and	the
table	owner	can	transfer	permissions	to	other	users.

Examples

A.	Use	a	simple	INSERT
This	example	creates	the	table	T1	and	inserts	one	row.

IF	EXISTS(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.TABLES
						WHERE	TABLE_NAME	=	'T1')
			DROP	TABLE	T1
GO
CREATE	TABLE	T1	(column_1	int,	column_2	varchar(30))
INSERT	T1	VALUES	(1,	'Row	#1')

B.	Insert	data	that	is	not	in	the	same	order	as	the	columns
This	example	uses	column_list	and	VALUES	list	to	explicitly	specify	the	values
that	are	inserted	into	each	column.

IF	EXISTS(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.TABLES
						WHERE	TABLE_NAME	=	'T1')
			DROP	TABLE	T1
GO
CREATE	TABLE	T1	(column_1	int,	column_2	varchar(30))
INSERT	T1	(column_2,	column_1)	VALUES	('Row	#1',1)

C.	Insert	data	with	fewer	values	than	columns
This	example	creates	a	table	that	has	four	columns.	The	INSERT	statements
insert	rows	that	contain	values	for	some	of	the	columns,	but	not	all	of	them.

IF	EXISTS(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.TABLES
						WHERE	TABLE_NAME	=	'T1')
			DROP	TABLE	T1
GO
CREATE	TABLE	T1	
(column_1	int	identity,	
		column_2	varchar(30)	
				CONSTRAINT	default_name	DEFAULT	('column	default'),
		column_3	int	NULL,
		column_4	varchar(40)
)
INSERT	INTO	T1	(column_4)	

			VALUES	('Explicit	value')
INSERT	INTO	T1	(column_2,column_4)	
			VALUES	('Explicit	value',	'Explicit	value')
INSERT	INTO	T1	(column_2,column_3,column_4)	
			VALUES	('Explicit	value',-44,'Explicit	value')
SELECT	*	
FROM	T1

D.	Load	data	into	a	table	with	an	identity	column
The	first	two	INSERT	statements	allow	identity	values	to	be	generated	for	the
new	rows.	The	third	INSERT	statement	overrides	the	IDENTITY	property	for
the	column	with	the	SET	IDENTITY_INSERT	statement,	and	inserts	an	explicit
value	into	the	identity	column.

IF	EXISTS(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.TABLES
						WHERE	TABLE_NAME	=	'T1')
			DROP	TABLE	T1
GO
CREATE	TABLE	T1	(column_1	int	IDENTITY,	column_2	varchar(30))
INSERT	T1	VALUES	('Row	#1')
INSERT	T1	(column_2)	VALUES	('Row	#2')
SET	IDENTITY_INSERT	T1	ON	
INSERT	INTO	T1	(column_1,column_2)	
			VALUES	(-99,'Explicit	identity	value')
SELECT	*	
FROM	T1

E.	Load	data	into	a	table	through	a	view
The	INSERT	statement	in	this	example	specifies	a	view	name;	however,	the	new
row	is	inserted	in	the	view's	underlying	table.	The	order	of	VALUES	list	in	the
INSERT	statement	must	match	the	column	order	of	the	view.

IF	EXISTS(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.TABLES
						WHERE	TABLE_NAME	=	'T1')

			DROP	TABLE	T1
GO
IF	EXISTS(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.VIEWS
						WHERE	TABLE_NAME	=	'V1')
			DROP	VIEW	V1
GO
CREATE	TABLE	T1	(column_1	int,	column_2	varchar(30))
GO
CREATE	VIEW	V1	AS	SELECT	column_2,	column_1	
FROM	T1
GO
INSERT	INTO	V1	
			VALUES	('Row	1',1)
SELECT	*	
FROM	T1

F.	Load	data	using	the	DEFAULT	VALUES	option
The	CREATE	TABLE	statement	in	this	example	defines	each	column	with	a
value	that	can	be	used	when	no	explicit	value	for	the	column	is	specified	in	the
INSERT	statement.	The	DEFAULT	VALUES	option	of	the	INSERT	statement	is
used	to	add	rows	without	supplying	explicit	values.

IF	EXISTS(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.TABLES
						WHERE	TABLE_NAME	=	'T1')
			DROP	TABLE	T1
GO
CREATE	DEFAULT	bound_default	AS	'Bound	default	value'
GO
CREATE	TABLE	T1	
(column_1	int	identity,	
		column_2	varchar(30)	
				CONSTRAINT	default_name	DEFAULT	('column	default'),
		column_3	timestamp,

		column_4	varchar(30),
		column_5	int	NULL)
GO
USE	master
EXEC	sp_bindefault	'bound_default','T1.column_4'
INSERT	INTO	T1	DEFAULT	VALUES	
SELECT	*	
FROM	T1

G.	Load	data	using	the	SELECT	and	EXECUTE	options
This	example	demonstrates	three	different	methods	for	getting	data	from	one
table	and	loading	it	into	another.	Each	is	based	on	a	multitable	SELECT
statement	that	includes	an	expression	and	a	literal	value	in	the	column	list.

The	first	INSERT	statement	uses	a	SELECT	statement	directly	to	retrieve	data
from	the	source	table,	authors,	and	store	the	result	set	in	the	author_sales	table.
The	second	INSERT	executes	a	procedure	that	contains	the	SELECT	statement,
and	the	third	INSERT	executes	the	SELECT	statement	as	a	literal	string.

IF	EXISTS(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.TABLES
						WHERE	TABLE_NAME	=	'author_sales')
			DROP	TABLE	author_sales
GO
IF	EXISTS(SELECT	name	FROM	sysobjects	
						WHERE	name	=	'get_author_sales'	AND	type	=	'P')
			DROP	PROCEDURE	get_author_sales
GO
USE	pubs
CREATE	TABLE	author_sales
(data_source			varchar(20),
		au_id									varchar(11),
		au_lname						varchar(40),
		sales_dollars	smallmoney
)

GO
CREATE	PROCEDURE	get_author_sales	
AS	
			SELECT	'PROCEDURE',	authors.au_id,	authors.au_lname,	
						SUM(titles.price	*	sales.qty)	
			FROM	authors	INNER	JOIN	titleauthor	
						ON	authors.au_id	=	titleauthor.au_id	INNER	JOIN	titles
						ON	titleauthor.title_id	=	titles.title_id	INNER	JOIN	sales
						ON	titles.title_id	=	sales.title_id
			WHERE	authors.au_id	like	'8%'
			GROUP	BY	authors.au_id,	authors.au_lname
GO
--INSERT...SELECT	example
USE	pubs
INSERT	author_sales
			SELECT	'SELECT',	authors.au_id,	authors.au_lname,	
						SUM(titles.price	*	sales.qty)	
			FROM	authors	INNER	JOIN	titleauthor	
						ON	authors.au_id	=	titleauthor.au_id	INNER	JOIN	titles
						ON	titleauthor.title_id	=	titles.title_id	INNER	JOIN	sales
						ON	titles.title_id	=	sales.title_id
			WHERE	authors.au_id	LIKE	'8%'
			GROUP	BY	authors.au_id,	authors.au_lname

--INSERT...EXECUTE	procedure	example
INSERT	author_sales	EXECUTE	get_author_sales

--INSERT...EXECUTE('string')	example
INSERT	author_sales	
EXECUTE	
('
SELECT	''EXEC	STRING'',	authors.au_id,	authors.au_lname,	
			SUM(titles.price	*	sales.qty)	

			FROM	authors	INNER	JOIN	titleauthor	
						ON	authors.au_id	=	titleauthor.au_id	INNER	JOIN	titles
						ON	titleauthor.title_id	=	titles.title_id	INNER	JOIN	sales
						ON	titles.title_id	=	sales.title_id
			WHERE	authors.au_id	like	''8%''
			GROUP	BY	authors.au_id,	authors.au_lname
')

--Show	results.
SELECT	*	FROM	author_sales

H.	Insert	data	using	the	TOP	clause	in	a	SELECT	statement
Because	a	SELECT	statement	can	be	specified	in	an	INSERT	statement,	the	TOP
clause	can	also	be	used	within	the	SELECT	statement.	The	example	inserts	the
top	10	authors	from	the	authors	table	into	a	new	table	called	new_authors.

IF	EXISTS(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.TABLES
						WHERE	TABLE_NAME	=	'new_authors')
			DROP	TABLE	new_authors
GO
USE	pubs
CREATE	TABLE	new_authors
(
	au_id				id,
	au_lname	varchar(40),
	au_fname	varchar(20),
	phone				char(12),
	address		varchar(40),
	city					varchar(20),				
	state				char(2),	
	zip									char(5),
	contract	bit
)

INSERT	INTO	new_authors	
SELECT	TOP	10	*	
FROM	authors

See	Also

CREATE	TABLE

EXECUTE

FROM

IDENTITY	(Property)

NEWID

SELECT

SET	ROWCOUNT

Transact-SQL	Reference

int,	bigint,	smallint,	and	tinyint
Exact	number	data	types	that	use	integer	data.

bigint

Integer	(whole	number)	data	from	-2^63	(-9223372036854775808)	through
2^63-1	(9223372036854775807).	Storage	size	is	8	bytes.

int

Integer	(whole	number)	data	from	-2^31	(-2,147,483,648)	through	2^31	-	1
(2,147,483,647).	Storage	size	is	4	bytes.	The	SQL-92	synonym	for	int	is
integer.

smallint

Integer	data	from	-2^15	(-32,768)	through	2^15	-	1	(32,767).	Storage	size	is
2	bytes.

tinyint

Integer	data	from	0	through	255.	Storage	size	is	1	byte.

Remarks
The	bigint	data	type	is	supported	where	integer	values	are	supported.	However,
bigint	is	intended	for	special	cases	where	the	integer	values	may	exceed	the
range	supported	by	the	int	data	type.	The	int	data	type	remains	the	primary
integer	data	type	in	SQL	Server.

bigint	fits	between	smallmoney	and	int	in	the	data	type	precedence	chart.

Functions	will	return	bigint	only	if	the	parameter	expression	is	a	bigint	data
type.	SQL	Server	will	not	automatically	promote	other	integer	data	types
(tinyint,	smallint,	and	int)	to	bigint.

See	Also

ALTER	TABLE

CAST	and	CONVERT

CREATE	TABLE

Data	Type	Conversion

Data	Types

DECLARE	@local_variable

DELETE

INSERT

SET	@local_variable

UPDATE

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

IS_MEMBER
Indicates	whether	the	current	user	is	a	member	of	the	specified	Microsoft®
Windows	NT®	group	or	Microsoft	SQL	Server™	role.

Syntax
IS_MEMBER	({	'group'	|	'role'	})

Arguments
'group'

Is	the	name	of	the	Windows	NT	group	being	checked;	must	be	in	the	format
Domain\Group.	group	is	sysname.

'role'

Is	the	name	of	the	SQL	Server	role	being	checked.	role	is	sysname	and	can
include	the	database	fixed	roles	or	user-defined	roles	but	not	server	roles.

Return	Types
int

Remarks
IS_MEMBER	returns	these	values.

Return	value Description
0 Current	user	is	not	a	member	of	group	or	role.
1 Current	user	is	a	member	of	group	or	role.
NULL Either	group	or	role	is	not	valid.

This	function	can	be	useful	to	programmatically	detect	whether	the	current	user
can	perform	an	activity	that	depends	on	the	permissions	applied	to	a	group	or
role.

Examples
This	example	indicates	whether	the	current	user	is	a	member	of	the	db_owner
fixed	database	role.

IF	IS_MEMBER	('db_owner')	=	1
			print	'Current	user	is	a	member	of	the	db_owner	role'
ELSE	IF	IS_MEMBER	('db_owner')	=	0
			print	'Current	user	is	NOT	a	member	of	the	db_owner	role'
ELSE	IF	IS_MEMBER	('db_owner')	IS	NULL
			print	'ERROR:	Invalid	group	/	role	specified'

See	Also

IS_SRVROLEMEMBER

Security	Functions

Transact-SQL	Reference

IS_SRVROLEMEMBER
Indicates	whether	the	current	user	login	is	a	member	of	the	specified	server	role.

Syntax
IS_SRVROLEMEMBER	('role'	[,	'login'])

Arguments
'role'

Is	the	name	of	the	server	role	being	checked.	role	is	sysname.

Valid	values	for	role	are:

sysadmin

dbcreator

diskadmin

processadmin

serveradmin

setupadmin

securityadmin

'login'

Is	the	optional	name	of	the	login	to	check.	login	is	sysname,	with	a	default
of	NULL.	If	not	specified,	the	login	account	for	the	current	user	is	used.

Return	Types

int

Remarks
IS_SRVROLEMEMBER	returns	these	values.

Return	value Description
0 login	is	not	a	member	of	role.
1 login	is	a	member	of	role.
NULL role	or	login	is	not	valid.

This	function	can	be	useful	to	programmatically	detect	whether	the	current	user
can	perform	an	activity	requiring	the	server	role's	permissions.

If	a	Windows	NT®	user,	such	as	London\JoeB,	is	specified	for	login,
IS_SRVROLEMEMBER	returns	NULL	if	the	user	has	not	previously	been
granted	or	denied	direct	access	to	Microsoft	SQL	Server	using	sp_grantlogin	or
sp_denylogin.

Examples
This	example	indicates	whether	the	current	user	is	a	member	of	the	sysadmin
fixed	server	role.

IF	IS_SRVROLEMEMBER	('sysadmin')	=	1
			print	'Current	user''s	login	is	a	member	of	the	sysadmin	role'
ELSE	IF	IS_SRVROLEMEMBER	('sysadmin')	=	0
			print	'Current	user''s	login	is	NOT	a	member	of	the	sysadmin	role'
ELSE	IF	IS_SRVROLEMEMBER	('sysadmin')	IS	NULL
			print	'ERROR:	Invalid	server	role	specified'

See	Also

IS_MEMBER

Security	Functions

Transact-SQL	Reference

ISDATE
Determines	whether	an	input	expression	is	a	valid	date.

Syntax
ISDATE	(expression)

Arguments
expression

Is	an	expression	to	be	validated	as	a	date.	expression	is	any	expression	that
returns	a	varchar	data	type.

Return	Types
int

Remarks
ISDATE	returns	1	if	the	input	expression	is	a	valid	date;	otherwise,	it	returns	0.
This	table	shows	the	return	values	for	a	selection	of	examples.

Column	value	(varchar)
ISDATE	return
value

NULL 0
Abc 0
100,	-100,	100	a,	or	100.00 0
.01 0
-100.1234e-123 0
.231e90 0
$100.12345,	-	$100.12345,	or	$-1000.123 0
as100	or	1a00 0
1995-10-1,1/20/95,1995-10-1	12:00pm,	Feb	7	1995
11:00pm,	or	1995-10-1,	or	1/23/95

1

13/43/3425	or	1995-10-1a 0
$1000,	$100,	or	$100	a 0

Examples

A.	Use	ISDATE	to	check	a	variable
This	example	checks	the	@datestring	local	variable	for	valid	date	data.

DECLARE	@datestring	varchar(8)
SET	@datestring	=	'12/21/98'
SELECT	ISDATE(@datestring)

Here	is	the	result	set:

1											

B.	Use	ISDATE	to	check	a	column	for	dates
This	example	creates	the	test_dates	table	and	inserts	two	values.	ISDATE	is
used	to	determine	whether	the	values	in	the	columns	are	dates.

USE	tempdb
CREATE	TABLE	test_dates	(Col_1	varchar(15),	Col_2	datetime)
GO
INSERT	INTO	test_dates	VALUES	('abc',	'July	13,	1998')
GO
SELECT	ISDATE(Col_1)	AS	Col_1,	ISDATE(Col_2)	AS	Col_2	
			FROM	test_dates

Here	is	the	result	set:

Col_1																					Col_2															
-----------------									--------------------
0																									1																			

See	Also

char	and	varchar

System	Functions

Transact-SQL	Reference

IS	[NOT]	NULL
Determines	whether	or	not	a	given	expression	is	NULL.

Syntax
expression	IS	[NOT]	NULL

Arguments
expression

Is	any	valid	Microsoft®	SQL	Server™	expression.

NOT

Specifies	that	the	Boolean	result	be	negated.	The	predicate	reverses	its	return
values,	returning	TRUE	if	the	value	is	not	NULL,	and	FALSE	if	the	value	is
NULL.

Result	Types
Boolean

Return	Code	Values
If	the	value	of	expression	is	NULL,	IS	NULL	returns	TRUE;	otherwise,	it
returns	FALSE.

If	the	value	of	expression	is	NULL,	IS	NOT	NULL	returns	FALSE;	otherwise,	it
returns	TRUE.

Remarks
To	determine	if	an	expression	is	NULL,	use	IS	NULL	or	IS	NOT	NULL	rather
than	comparison	operators	(such	as	=	or	!=).	Comparison	operators	return
UNKNOWN	if	either	or	both	arguments	are	NULL.

Examples

This	example	returns	the	title	number	and	the	advance	amount	for	all	books	in
which	either	the	advance	amount	is	less	than	$5,000	or	the	advance	is	unknown
(or	NULL).	Note	that	the	results	shown	are	those	returned	after	Example	C	has
been	executed.

USE	pubs
SELECT	title_id,	advance
FROM	titles
WHERE	advance	<	$5000	OR	advance	IS	NULL
ORDER	BY	title_id

Here	is	the	result	set:

title_id	advance																				
--------	--------------------------	
MC2222			0.0000																					
MC3026			NULL																							
PC9999			NULL																							
PS2091			2275.0000																		
PS3333			2000.0000																		
PS7777			4000.0000																		
TC4203			4000.0000																		

(7	row(s)	affected)

See	Also

CASE

CREATE	PROCEDURE

CREATE	TABLE

Data	Types

Expressions

INSERT

LIKE

Null	Values

Operators	(Logical	Operators)

SELECT

sp_help

UPDATE

WHERE

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

ISNULL
Replaces	NULL	with	the	specified	replacement	value.

Syntax
ISNULL	(check_expression	,	replacement_value)

Arguments
check_expression

Is	the	expression	to	be	checked	for	NULL.	check_expression	can	be	of	any
type.

replacement_value

Is	the	expression	to	be	returned	if	check_expression	is	NULL.
replacement_value	must	have	the	same	type	as	check_expresssion.

Return	Types
Returns	the	same	type	as	check_expression.

Remarks
The	value	of	check_expression	is	returned	if	it	is	not	NULL;	otherwise,
replacement_value	is	returned.

Examples

A.	Use	ISNULL	with	AVG
This	example	finds	the	average	of	the	prices	of	all	titles,	substituting	the	value
$10.00	for	all	NULL	entries	in	the	price	column	of	the	titles	table.

USE	pubs
GO

SELECT	AVG(ISNULL(price,	$10.00))
FROM	titles
GO

Here	is	the	result	set:

14.24																						

(1	row(s)	affected)

B.	Use	ISNULL
This	example	selects	the	title,	type,	and	price	for	all	books	in	the	titles	table.	If
the	price	for	a	given	title	is	NULL,	the	price	shown	in	the	result	set	is	0.00.

USE	pubs
GO
SELECT	SUBSTRING(title,	1,	15)	AS	Title,	type	AS	Type,	
			ISNULL(price,	0.00)	AS	Price
FROM	titles
GO

Here	is	the	result	set:

Title											Type									Price										
---------------	------------	--------------------------	
The	Busy	Execut	business					19.99																						
Cooking	with	Co	business					11.95																						
You	Can	Combat		business					2.99																							
Straight	Talk	A	business					19.99																						
Silicon	Valley		mod_cook					19.99																						
The	Gourmet	Mic	mod_cook					2.99																							
The	Psychology		UNDECIDED				0.00																							
But	Is	It	User		popular_comp	22.95																						
Secrets	of	Sili	popular_comp	20.00																						

Net	Etiquette			popular_comp	0.00																							
Computer	Phobic	psychology			21.59																						
Is	Anger	the	En	psychology			10.95																						
Life	Without	Fe	psychology			7.00																							
Prolonged	Data		psychology			19.99																						
Emotional	Secur	psychology			7.99																							
Onions,	Leeks,		trad_cook				20.95																						
Fifty	Years	in		trad_cook				11.95																						
Sushi,	Anyone?		trad_cook				14.99																						

(18	row(s)	affected)

See	Also

Expressions

IS	[NOT]	NULL

System	Functions

WHERE

Transact-SQL	Reference

ISNUMERIC
Determines	whether	an	expression	is	a	valid	numeric	type.

Syntax
ISNUMERIC	(expression)

Arguments
expression

Is	an	expression	to	be	evaluated.

Return	Types
int

Remarks
ISNUMERIC	returns	1	when	the	input	expression	evaluates	to	a	valid	integer,
floating	point	number,	money	or	decimal	type;	otherwise	it	returns	0.	A	return
value	of	1	guarantees	that	expression	can	be	converted	to	one	of	these	numeric
types.

Examples

A.	Use	ISNUMERIC
This	example	returns	1	because	the	zip	column	contains	valid	numeric	values.

USE	pubs
SELECT	ISNUMERIC(zip)	
FROM	authors
GO

B.	Use	ISNUMERIC	and	SUBSTRING

This	example	returns	0	for	all	titles	in	the	titles	table	because	none	of	the	titles
are	valid	numeric	values.

USE	pubs
GO
--	Because	the	title	column	is	all	character	data,	expect	a	result	of	0
--	for	the	ISNUMERIC	function.
SELECT	SUBSTRING(title,	1,	15)	type,	price,	ISNUMERIC(title)
FROM	titles
GO

Here	is	the	result	set:

type												price																																		
---------------	--------------------------	-----------	
The	Busy	Execut	19.99																						0											
Cooking	with	Co	11.95																						0											
You	Can	Combat		2.99																							0											
Straight	Talk	A	19.99																						0											
Silicon	Valley		19.99																						0											
The	Gourmet	Mic	2.99																							0											
The	Psychology		(null)																					0											
But	Is	It	User		22.95																						0											
Secrets	of	Sili	20.00																						0											
Net	Etiquette			(null)																					0											
Computer	Phobic	21.59																						0											
Is	Anger	the	En	10.95																						0											
Life	Without	Fe	7.00																							0											
Prolonged	Data		19.99																						0											
Emotional	Secur	7.99																							0											
Onions,	Leeks,		20.95																						0											
Fifty	Years	in		11.95																						0											
Sushi,	Anyone?		14.99																						0											

(18	row(s)	affected)

See	Also

Expressions

System	Functions

Transact-SQL	Reference

KILL
Terminates	a	user	process	based	on	the	system	process	ID	(SPID)	or	unit	of	work
(UOW).	If	the	specified	SPID	or	UOW	has	a	lot	of	work	to	undo,	the	KILL
command	may	take	some	time	to	complete,	particularly	when	it	involves	rolling
back	a	long	transaction.

In	Microsoft®	SQL	Server™	2000,	KILL	can	be	used	to	terminate	a	normal
connection,	which	internally	terminates	the	transactions	associated	with	the
given	SPID.	In	addition,	the	command	can	also	be	used	to	terminate	all	orphaned
distributed	transactions	when	Microsoft	Distributed	Transaction	Coordinator
(MS	DTC)	is	in	use.	A	distributed	transaction	is	orphaned	when	it	is	not
associated	with	any	current	SPID.

Syntax
KILL	{spid	|	UOW}	[WITH	STATUSONLY]

Arguments
spid

Is	the	system	process	ID	(SPID)	of	the	process	to	terminate.	The	SPID	value
is	a	unique	integer	(smallint)	assigned	to	each	user	connection	when	the
connection	is	made,	but	the	assignment	is	not	permanent.

Use	KILL	spid	to	terminate	regular	non-distributed	and	distributed
transactions	associated	with	a	given	SPID.

UOW

Identifies	the	Unit	of	Work	ID	(UOW)	of	the	DTC	transaction.	UOW	is	a
character	string	that	may	be	obtained	from	the	syslockinfo	table,	which	gives
the	UOW	for	every	lock	held	by	a	DTC	transaction.	UOW	also	may	be
obtained	from	the	error	log	or	through	the	DTC	monitor.	For	more
information	on	monitoring	distributed	transactions,	see	the	MS	DTC	user
manual.

Use	KILL	UOW	to	terminate	orphaned	DTC	transactions,	which	are	not

associated	with	any	real	SPID	and	instead	are	associated	artificially	with
SPID	=	'-2'.	For	more	information	on	SPID	=	'-2',	see	the	Remarks	section
later	in	this	topic.

WITH	STATUSONLY

Specifies	that	SQL	Server	generate	a	progress	report	on	a	given	spid	or	UOW
that	is	being	rolled	back.	The	KILL	command	with	WITH	STATUSONLY
does	not	terminate	or	roll	back	the	spid	or	UOW.	It	only	displays	the	current
progress	report.

For	the	KILL	command	with	WITH	STATUSONLY	option	to	generate	a
report	successfully,	the	spid	or	UOW	must	be	currently	in	the	rollback	status.
The	progress	report	states	the	amount	of	rollback	completed	(in	percent)	and
the	estimated	length	of	time	left	(in	seconds),	in	this	form:

Spid|UOW	<xxx>:	Transaction	rollback	in	progress.	Estimated	rollback	completion:	

If	the	rollback	of	the	spid	or	UOW	has	completed	when	the	KILL	command
with	the	WITH	STATUSONLY	option	is	executed,	or	if	no	spid	or	UOW	is
being	rolled	back,	the	KILL	with	WITH	STATUSONLY	will	return	the
following	error:

Status	report	cannot	be	obtained.	KILL/ROLLBACK	operator	for	Process	ID|UOW	<xxx>	is	not	in	progress.

The	same	status	report	can	be	obtained	by	executing	twice	the	KILL
spid|UOW	command	without	the	WITH	STATUSONLY	option;	however,
this	is	not	recommended.	The	second	execution	of	the	command	may
terminate	a	new	process	that	may	have	been	assigned	to	the	released	SPID.

Remarks
KILL	is	commonly	used	to	terminate	a	process	that	is	blocking	other	important
processes	with	locks,	or	to	terminate	a	process	that	is	executing	a	query	that	is
using	necessary	system	resources.	System	processes	and	processes	running	an
extended	stored	procedure	cannot	be	terminated.

Use	KILL	very	carefully,	especially	when	critical	processes	are	running.	You
cannot	kill	your	own	process.	Other	processes	not	to	kill	are:

AWAITING	COMMAND

CHECKPOINT	SLEEP

LAZY	WRITER

LOCK	MONITOR

SELECT

SIGNAL	HANDLER

Execute	sp_who	to	get	a	report	on	valid	SPID	values.	If	a	rollback	is	in	progress
for	a	specific	SPID,	the	cmd	column	for	the	specific	the	SPID	in	the	sp_who
result	set	will	indicate	'KILLED/ROLLBACK'.

Use	@@SPID	to	display	the	SPID	value	for	the	current	session.

In	SQL	Server	2000,	the	KILL	command	can	be	used	to	resolve	SPIDs
associated	with	non-distributed	and	distributed	transactions.	KILL	also	can	be
used	to	resolve	orphaned	or	in-doubt	distributed	transactions.	A	distributed
transaction	is	orphaned	when	it	is	not	associated	with	any	current	SPID.

The	SPID	value	of	'-2'	is	set	aside	as	an	indicator	of	connectionless,	or	orphaned,
transactions.	SQL	Server	assigns	this	value	to	all	orphaned	distributed
transactions,	making	it	easier	to	identify	such	transactions	in	sp_lock	(spid
column),	sp_who	(blk	column),	syslockinfo,	and	sysprocesses.	This	feature	is
useful	when	a	particular	connection	has	a	lock	on	the	database	resource	and	is
blocking	the	progress	of	a	transaction.	The	user	would	be	able	to	identify	the
SPID	that	owns	the	lock,	and	end	the	connection.

The	KILL	command	can	be	used	to	resolve	in-doubt	transactions,	which	are
unresolved	distributed	transactions	resulting	from	unplanned	restarts	of	the
database	server	or	DTC	coordinator.	For	more	information	on	resolving	in-doubt
transactions,	see	Troubleshooting	DTC	Transactions.

Permissions

JavaScript:hhobj_1.Click()

KILL	permissions	default	to	the	members	of	the	sysadmin	and	processadmin
fixed	database	roles,	and	are	not	transferable.

Examples

A.	Use	KILL	to	terminate	a	SPID
This	example	shows	how	to	terminate	SPID	53.

KILL	53

B.	Use	KILL	spid	WITH	STATUSONLY	to	obtain	a	progress
report.
This	example	generates	a	status	of	the	rollback	process	for	the	specific	spid.

KILL	54
KILL	54	WITH	STATUSONLY

--This	is	the	progress	report.
spid	54:	Transaction	rollback	in	progress.	Estimated	rollback	completion:	80%	Estimated	time	left:	10	seconds.

C.	Use	KILL	to	terminate	an	orphan	distributed	transaction.
This	example	shows	how	to	terminate	an	orphan	(SPID	=	-2)	transaction	with
UOW	=	D5499C66-E398-45CA-BF7E-DC9C194B48CF.

KILL	'D5499C66-E398-45CA-BF7E-DC9C194B48CF'

See	Also

Functions

SHUTDOWN

@@SPID

sp_lock

sp_who

Troubleshooting	DTC	Transactions

JavaScript:hhobj_2.Click()

Transact-SQL	Reference

LEFT
Returns	the	part	of	a	character	string	starting	at	a	specified	number	of	characters
from	the	left.

Syntax
LEFT	(character_expression	,	integer_expression)

Arguments
character_expression

Is	an	expression	of	character	or	binary	data.	character_expression	can	be	a
constant,	variable,	or	column.	character_expression	must	be	of	a	data	type
that	can	be	implicitly	convertible	to	varchar.	Otherwise,	use	the	CAST
function	to	explicitly	convert	character_expression.

integer_expression

Is	a	positive	whole	number.	If	integer_expression	is	negative,	a	null	string	is
returned.

Return	Types
varchar

Remarks
Compatibility	levels	can	affect	return	values.	For	more	information	about
compatibility	levels,	see	sp_dbcmptlevel.

Examples

A.	Use	LEFT	with	a	column
This	example	returns	the	five	leftmost	characters	of	each	book	title.

USE	pubs
GO
SELECT	LEFT(title,	5)	
FROM	titles
ORDER	BY	title_id
GO

Here	is	the	result	set:

The	B	
Cooki	
You	C	
Strai	
Silic	
The	G	
The	P	
But	I	
Secre	
Net	E	
Compu	
Is	An	
Life		
Prolo	
Emoti	
Onion	
Fifty	
Sushi	

(18	row(s)	affected)

B.	Use	LEFT	with	a	character	string
This	example	uses	LEFT	to	return	the	two	leftmost	characters	of	the	character

string	abcdefg.

SELECT	LEFT('abcdefg',2)
GO

Here	is	the	result	set:

--	
ab	

(1	row(s)	affected)

See	Also

Data	Types

String	Functions

Transact-SQL	Reference

LEN
Returns	the	number	of	characters,	rather	than	the	number	of	bytes,	of	the	given
string	expression,	excluding	trailing	blanks.

Syntax
LEN	(string_expression)

Arguments
string_expression

Is	the	string	expression	to	be	evaluated.

Return	Types
int

Examples
This	example	selects	the	number	of	characters	and	the	data	in	CompanyName
for	companies	located	in	Finland.

USE	Northwind
GO
SELECT	LEN(CompanyName)	AS	'Length',	CompanyName
FROM	Customers
WHERE	Country	=	'Finland'

Here	is	the	result	set:

Length							CompanyName
-----------		------------------------------
14											Wartian	Herkku
11											Wilman	Kala

See	Also

Data	Types

String	Functions

Transact-SQL	Reference

LIKE
Determines	whether	or	not	a	given	character	string	matches	a	specified	pattern.
A	pattern	can	include	regular	characters	and	wildcard	characters.	During	pattern
matching,	regular	characters	must	exactly	match	the	characters	specified	in	the
character	string.	Wildcard	characters,	however,	can	be	matched	with	arbitrary
fragments	of	the	character	string.	Using	wildcard	characters	makes	the	LIKE
operator	more	flexible	than	using	the	=	and	!=	string	comparison	operators.	If
any	of	the	arguments	are	not	of	character	string	data	type,	Microsoft®	SQL
Server™	converts	them	to	character	string	data	type,	if	possible.

Syntax
match_expression	[NOT]	LIKE	pattern	[ESCAPE	escape_character]

Arguments
match_expression

Is	any	valid	SQL	Server	expression	of	character	string	data	type.

pattern

Is	the	pattern	to	search	for	in	match_expression,	and	can	include	these	valid
SQL	Server	wildcard	characters.

Wildcard
character Description Example
% Any	string	of	zero	or

more	characters.
WHERE	title	LIKE
'%computer%'	finds	all	book
titles	with	the	word	'computer'
anywhere	in	the	book	title.

_	(underscore) Any	single	character. WHERE	au_fname	LIKE	'_ean'
finds	all	four-letter	first	names
that	end	with	ean	(Dean,	Sean,
and	so	on).

[] Any	single	character WHERE	au_lname	LIKE	'[C-

within	the	specified	range
([a-f])	or	set	([abcdef]).

P]arsen'	finds	author	last	names
ending	with	arsen	and	beginning
with	any	single	character
between	C	and	P,	for	example
Carsen,	Larsen,	Karsen,	and	so
on.

[^] Any	single	character	not
within	the	specified	range
([^a-f])	or	set	([^abcdef]).

WHERE	au_lname	LIKE
'de[^l]%'	all	author	last	names
beginning	with	de	and	where	the
following	letter	is	not	l.

escape_character

Is	any	valid	SQL	Server	expression	of	any	of	the	data	types	of	the	character
string	data	type	category.	escape_character	has	no	default	and	must	consist
of	only	one	character.

Result	Types
Boolean

Result	Value
LIKE	returns	TRUE	if	the	match_expression	matches	the	specified	pattern.

Remarks
When	you	perform	string	comparisons	with	LIKE,	all	characters	in	the	pattern
string	are	significant,	including	leading	or	trailing	spaces.	If	a	comparison	in	a
query	is	to	return	all	rows	with	a	string	LIKE	'abc	'	(abc	followed	by	a	single
space),	a	row	in	which	the	value	of	that	column	is	abc	(abc	without	a	space)	is
not	returned.	However,	trailing	blanks,	in	the	expression	to	which	the	pattern	is
matched,	are	ignored.	If	a	comparison	in	a	query	is	to	return	all	rows	with	the
string	LIKE	'abc'	(abc	without	a	space),	all	rows	that	start	with	abc	and	have	zero
or	more	trailing	blanks	are	returned.

A	string	comparison	using	a	pattern	containing	char	and	varchar	data	may	not
pass	a	LIKE	comparison	because	of	how	the	data	is	stored.	It	is	important	to
understand	the	storage	for	each	data	type	and	where	a	LIKE	comparison	may

fail.	The	following	example	passes	a	local	char	variable	to	a	stored	procedure
and	then	uses	pattern	matching	to	find	all	of	the	books	by	a	certain	author.	In	this
procedure,	the	author's	last	name	is	passed	as	a	variable.

CREATE	PROCEDURE	find_books	@AU_LNAME	char(20)
AS
SELECT	@AU_LNAME	=	RTRIM(@AU_LNAME)	+	'%'
SELECT	t.title_id,	t.title	
FROM	authors	a,	titleauthor	ta,	titles	t
WHERE	a.au_id	=	ta.au_id	AND	ta.title_id	=	t.title_id
			AND	a.au_lname	LIKE	@AU_LNAME

In	the	find_books	procedure,	no	rows	are	returned	because	the	char	variable
(@AU_LNAME)	contains	trailing	blanks	whenever	the	name	contains	fewer
than	20	characters.	Because	the	au_lname	column	is	varchar,	there	are	no
trailing	blanks.	This	procedure	fails	because	the	trailing	blanks	are	significant.

However,	this	example	succeeds	because	trailing	blanks	are	not	added	to	a
varchar	variable:

USE	pubs
GO
CREATE	PROCEDURE	find_books2	@au_lname	varchar(20)
AS
SELECT	t.title_id,	t.title	
FROM	authors	a,	titleauthor	ta,	titles	t
WHERE	a.au_id	=	ta.au_id	AND	ta.title_id	=	t.title_id
			AND	a.au_lname	LIKE	@au_lname	+	'%'

EXEC	find_books2	'ring'

Here	is	the	result	set:

title_id	title																																																																												
--------	---
MC3021			The	Gourmet	Microwave																																																												

PS2091			Is	Anger	the	Enemy?																																																														
PS2091			Is	Anger	the	Enemy?																																																														
PS2106			Life	Without	Fear																																																																

(4	row(s)	affected)

Pattern	Matching	with	LIKE
It	is	recommended	that	LIKE	be	used	when	you	search	for	datetime	values,
because	datetime	entries	can	contain	a	variety	of	dateparts.	For	example,	if	you
insert	the	value	19981231	9:20	into	a	column	named	arrival_time,	the	clause
WHERE	arrival_time	=	9:20	cannot	find	an	exact	match	for	the	9:20	string
because	SQL	Server	converts	it	to	Jan	1,	1900	9:20AM.	A	match	is	found,
however,	by	the	clause	WHERE	arrival_time	LIKE	'%9:20%'.

LIKE	supports	ASCII	pattern	matching	and	Unicode	pattern	matching.	When	all
arguments	(match_expression,	pattern,	and	escape_character,	if	present)	are
ASCII	character	data	types,	ASCII	pattern	matching	is	performed.	If	any	of	the
arguments	are	of	Unicode	data	type,	all	arguments	are	converted	to	Unicode	and
Unicode	pattern	matching	is	performed.	When	you	use	Unicode	data	(nchar	or
nvarchar	data	types)	with	LIKE,	trailing	blanks	are	significant;	however,	for
non-Unicode	data,	trailing	blanks	are	not	significant.	Unicode	LIKE	is
compatible	with	the	SQL-92	standard.	ASCII	LIKE	is	compatible	with	earlier
versions	of	SQL	Server.

Here	is	a	series	of	examples	that	show	the	differences	in	rows	returned	between
ASCII	and	Unicode	LIKE	pattern	matching:

--	ASCII	pattern	matching	with	char	column
CREATE	TABLE	t	(col1	char(30))
INSERT	INTO	t	VALUES	('Robert	King')
SELECT	*	
FROM	t	
WHERE	col1	LIKE	'%	King'			--	returns	1	row

--	Unicode	pattern	matching	with	nchar	column
CREATE	TABLE	t	(col1	nchar(30))

INSERT	INTO	t	VALUES	('Robert	King')
SELECT	*	
FROM	t	
WHERE	col1	LIKE	'%	King'			--	no	rows	returned

--	Unicode	pattern	matching	with	nchar	column	and	RTRIM
CREATE	TABLE	t	(col1	nchar	(30))
INSERT	INTO	t	VALUES	('Robert	King')
SELECT	*	
FROM	t	
WHERE	RTRIM(col1)	LIKE	'%	King'			--	returns	1	row

Note		When	you	perform	string	comparisons	with	LIKE,	all	characters	in	the
pattern	string	are	significant,	including	every	leading	or	trailing	blank	(space).

Using	the	%	Wildcard	Character
If	the	LIKE	'5%'	symbol	is	specified,	SQL	Server	searches	for	the	number	5
followed	by	any	string	of	zero	or	more	characters.

For	example,	this	query	shows	all	system	tables	in	a	database,	because	they	all
begin	with	the	letters	sys:

SELECT	TABLE_NAME
FROM	INFORMATION_SCHEMA.TABLES
WHERE	TABLE_NAME	LIKE	'sys%'

Note		Be	aware	that	system	tables	can	change	from	version	to	version.	It	is
recommended	that	you	use	the	Information	Schema	Views	or	applicable	stored
procedures	to	work	with	SQL	Server	system	tables.

To	see	all	objects	that	are	not	system	tables,	use	NOT	LIKE	'sys%'.	If	you	have	a
total	of	32	objects	and	LIKE	finds	13	names	that	match	the	pattern,	NOT	LIKE
finds	the	19	objects	that	do	not	match	the	LIKE	pattern.

You	may	not	always	find	the	same	names	with	a	pattern	such	as	LIKE	'[^s][^y]
[^s]%'.	Instead	of	19	names,	you	may	get	only	14,	with	all	the	names	that	begin
with	s	or	have	y	as	the	second	letter	or	have	s	as	the	third	letter	eliminated	from

the	results,	as	well	as	the	system	table	names.	This	is	because	match	strings	with
negative	wildcards	are	evaluated	in	steps,	one	wildcard	at	a	time.	If	the	match
fails	at	any	point	in	the	evaluation,	it	is	eliminated.

Using	Wildcard	Characters	as	Literals
You	can	use	the	wildcard	pattern	matching	characters	as	literal	characters.	To	use
a	wildcard	character	as	a	literal	character,	enclose	the	wildcard	character	in
brackets.	The	table	shows	several	examples	of	using	the	LIKE	keyword	and	the	[
]	wildcard	characters.

Symbol Meaning
LIKE	'5[%]' 5%
LIKE	'[_]n' _n
LIKE	'[a-cdf]' a,	b,	c,	d,	or	f
LIKE	'[-acdf]' -,	a,	c,	d,	or	f
LIKE	'[[]' [
LIKE	']']
LIKE	'abc[_]d%' abc_d	and	abc_de
LIKE	'abc[def]' abcd,	abce,	and	abcf

Pattern	Matching	with	the	ESCAPE	Clause
You	can	search	for	character	strings	that	include	one	or	more	of	the	special
wildcard	characters.	For	example,	the	discounts	table	in	the	customers	database
may	store	discount	values	that	include	a	percent	sign	(%).	To	search	for	the
percent	sign	as	a	character	instead	of	as	a	wildcard	character,	the	ESCAPE
keyword	and	escape	character	must	be	provided.	For	example,	a	sample	database
contains	a	column	named	comment	that	contains	the	text	30%.	To	search	for	any
rows	containing	the	string	30%	anywhere	in	the	comment	column,	specify	a
WHERE	clause	of	WHERE	comment	LIKE	'%30!%%'	ESCAPE	'!'.	Unless
ESCAPE	and	the	escape	character	are	specified,	SQL	Server	returns	any	rows
with	the	string	30.

This	example	shows	how	to	search	for	the	string	"50%	off	when	100	or	more
copies	are	purchased"	in	the	notes	column	of	the	titles	table	in	the	pubs

database:

USE	pubs
GO
SELECT	notes
FROM	titles
WHERE	notes	LIKE	'50%%	off	when	100	or	more	copies	are	purchased'	
			ESCAPE	'%'
GO

Examples

A.	Use	LIKE	with	the	%	wildcard	character
This	example	finds	all	phone	numbers	that	have	area	code	415	in	the	authors
table.

USE	pubs
GO
SELECT	phone
FROM	authors
WHERE	phone	LIKE	'415%'
ORDER	by	au_lname
GO

Here	is	the	result	set:

phone								

415	658-9932	
415	548-7723	
415	836-7128	
415	986-7020	
415	836-7128	
415	534-9219	
415	585-4620	

415	354-7128	
415	834-2919	
415	843-2991	
415	935-4228	

(11	row(s)	affected)

B.	Use	NOT	LIKE	with	the	%	wildcard	character
This	example	finds	all	phone	numbers	in	the	authors	table	that	have	area	codes
other	than	415.

USE	pubs
GO
SELECT	phone
FROM	authors
WHERE	phone	NOT	LIKE	'415%'
ORDER	BY	au_lname
GO

Here	is	the	result	set:

phone								

503	745-6402	
219	547-9982	
615	996-8275	
615	297-2723	
707	938-6445	
707	448-4982	
408	286-2428	
301	946-8853	
801	826-0752	
801	826-0752	
913	843-0462	

408	496-7223	

(12	row(s)	affected)

C.	Use	the	ESCAPE	clause
This	example	uses	the	ESCAPE	clause	and	the	escape	character	to	find	the	exact
character	string	10-15%	in	column	c1	of	the	mytbl2	table.

USE	pubs
GO
IF	EXISTS(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.TABLES
						WHERE	TABLE_NAME	=	'mytbl2')
			DROP	TABLE	mytbl2
GO
USE	pubs
GO
CREATE	TABLE	mytbl2
(
	c1	sysname
)
GO
INSERT	mytbl2	VALUES	('Discount	is	10-15%	off')
INSERT	mytbl2	VALUES	('Discount	is	.10-.15	off')
GO
SELECT	c1	
FROM	mytbl2
WHERE	c1	LIKE	'%10-15!%	off%'	ESCAPE	'!'
GO

D.	Use	the	[]	wildcard	characters
This	example	finds	authors	with	the	first	name	of	Cheryl	or	Sheryl.

USE	pubs

GO
SELECT	au_lname,	au_fname,	phone
FROM	authors
WHERE	au_fname	LIKE	'[CS]heryl'
ORDER	BY	au_lname	ASC,	au_fname	ASC
GO

This	example	finds	the	rows	for	authors	with	last	names	of	Carson,	Carsen,
Karson,	or	Karsen.

USE	pubs
GO
SELECT	au_lname,	au_fname,	phone
FROM	authors
WHERE	au_lname	LIKE	'[CK]ars[eo]n'
ORDER	BY	au_lname	ASC,	au_fname	ASC
GO

See	Also

Expressions

Functions

SELECT

WHERE

Transact-SQL	Reference

LOAD
Loads	a	backup	copy	of	one	of	the	following:

User	database	(LOAD	DATABASE)

Transaction	log	(LOAD	TRANSACTION)

Header	information	about	the	dump	(LOAD	HEADERONLY)

IMPORTANT		The	LOAD	statement	is	included	in	Microsoft®	SQL	Server™	2000
for	backward	compatibility.	The	LOAD	statement	is	identical	to	the	RESTORE
statement.	It	is	recommended	that	the	RESTORE	statement	be	used	instead	of
the	LOAD	statement.	In	a	future	version	of	SQL	Server,	LOAD	will	not	be
supported.

See	Also

BACKUP

CREATE	DATABASE

RESTORE

sp_helpdevice

Transact-SQL	Reference

LOG
Returns	the	natural	logarithm	of	the	given	float	expression.

Syntax
LOG	(float_expression)

Arguments
float_expression

Is	an	expression	of	the	float	data	type.

Return	Types
float

Examples
This	example	calculates	the	LOG	for	the	given	float	expression.

DECLARE	@var	float
SET	@var	=	5.175643
SELECT	'The	LOG	of	the	variable	is:	'	+	CONVERT(varchar,LOG(@var))
GO

Here	is	the	result	set:

The	LOG	of	the	variable	is:	1.64396																								

(1	row(s)	affected)

See	Also

Mathematical	Functions

Transact-SQL	Reference

LOG10
Returns	the	base-10	logarithm	of	the	given	float	expression.

Syntax
LOG10	(float_expression)

Arguments
float_expression

Is	an	expression	of	the	float	data	type.

Return	Types
float

Examples
This	example	calculates	the	LOG10	of	the	given	variable.

DECLARE	@var	float
SET	@var	=	145.175643
SELECT	'The	LOG10	of	the	variable	is:	'	+	CONVERT(varchar,LOG10(@var))
GO

Here	is	the	result	set:

The	LOG10	of	the	variable	is:	2.16189				

(1	row(s)	affected)

See	Also

Mathematical	Functions

Transact-SQL	Reference

LOWER
Returns	a	character	expression	after	converting	uppercase	character	data	to
lowercase.

Syntax
LOWER	(character_expression)

Arguments
character_expression

Is	an	expression	of	character	or	binary	data.	character_expression	can	be	a
constant,	variable,	or	column.	character_expression	must	be	of	a	data	type
that	is	implicitly	convertible	to	varchar.	Otherwise,	use	CAST	to	explicitly
convert	character_expression.

Return	Types
varchar

Examples
This	example	uses	the	LOWER	function,	the	UPPER	function,	and	nests	the
UPPER	function	inside	the	LOWER	function	in	selecting	book	titles	that	have
prices	between	$11	and	$20.

USE	pubs
GO
SELECT	LOWER(SUBSTRING(title,	1,	20))	AS	Lower,	
			UPPER(SUBSTRING(title,	1,	20))	AS	Upper,	
			LOWER(UPPER(SUBSTRING(title,	1,	20)))	As	LowerUpper
FROM	titles
WHERE	price	between	11.00	and	20.00
GO

Here	is	the	result	set:

Lower																			Upper																			LowerUpper											
--------------------				--------------------				--------------------	
the	busy	executive's				THE	BUSY	EXECUTIVE'S				the	busy	executive's	
cooking	with	compute				COOKING	WITH	COMPUTE				cooking	with	compute	
straight	talk	about					STRAIGHT	TALK	ABOUT					straight	talk	about		
silicon	valley	gastr				SILICON	VALLEY	GASTR				silicon	valley	gastr	
secrets	of	silicon	v				SECRETS	OF	SILICON	V				secrets	of	silicon	v	
prolonged	data	depri				PROLONGED	DATA	DEPRI				prolonged	data	depri	
fifty	years	in	bucki				FIFTY	YEARS	IN	BUCKI				fifty	years	in	bucki	
sushi,	anyone?										SUSHI,	ANYONE?										sushi,	anyone?							

(8	row(s)	affected)

See	Also

Data	Types

String	Functions

Transact-SQL	Reference

LTRIM
Returns	a	character	expression	after	removing	leading	blanks.

Syntax
LTRIM	(character_expression)

Arguments
character_expression

Is	an	expression	of	character	or	binary	data.	character_expression	can	be	a
constant,	variable,	or	column.	character_expression	must	be	of	a	data	type
that	is	implicitly	convertible	to	varchar.	Otherwise,	use	CAST	to	explicitly
convert	character_expression.

Return	Type
varchar

Remarks
Compatibility	levels	can	affect	return	values.	For	more	information	about
compatibility	levels,	see	sp_dbcmptlevel.

Examples
This	example	uses	LTRIM	to	remove	leading	spaces	from	a	character	variable.

DECLARE	@string_to_trim	varchar(60)
SET	@string_to_trim	=	'					Five	spaces	are	at	the	beginning	of	this
			string.'
SELECT	'Here	is	the	string	without	the	leading	spaces:	'	+	
			LTRIM(@string_to_trim)
GO

Here	is	the	result	set:

--
Here	is	the	string	without	the	leading	spaces:	Five	spaces	are	at	the	beginning	of	this	string.													

(1	row(s)	affected)

See	Also

Data	Types

String	Functions

Transact-SQL	Reference

MAX
Returns	the	maximum	value	in	the	expression.

Syntax
MAX	([ALL	|	DISTINCT]	expression)

Arguments
ALL

Applies	the	aggregate	function	to	all	values.	ALL	is	the	default.

DISTINCT

Specifies	that	each	unique	value	is	considered.	DISTINCT	is	not	meaningful
with	MAX	and	is	available	for	SQL-92	compatibility	only.

expression

Is	a	constant,	column	name,	or	function,	and	any	combination	of	arithmetic,
bitwise,	and	string	operators.	MAX	can	be	used	with	numeric,	character,	and
datetime	columns,	but	not	with	bit	columns.	Aggregate	functions	and
subqueries	are	not	permitted.

Return	Types
Returns	a	value	same	as	expression.

IMPORTANT		Distinct	aggregates,	for	example	AVG(DISTINCT	column_name),
COUNT(DISTINCT	column_name),	MAX(DISTINCT	column_name),
MIN(DISTINCT	column_name),	and	SUM(DISTINCT	column_name),	are	not
supported	when	using	CUBE	or	ROLLUP.	If	used,	Microsoft®	SQL	Server™
returns	an	error	message	and	cancels	the	query.

Remarks
MAX	ignores	any	null	values.

For	character	columns,	MAX	finds	the	highest	value	in	the	collating	sequence.

Examples
This	example	returns	the	book	with	the	highest	(maximum)	year-to-date	sales.

USE	pubs
GO
SELECT	MAX(ytd_sales)
FROM	titles
GO

Here	is	the	result	set:

22246									

(1	row(s)	affected)

Warning,	null	value	eliminated	from	aggregate.

See	Also

Aggregate	Functions

Transact-SQL	Reference

MIN
Returns	the	minimum	value	in	the	expression.

Syntax
MIN	([ALL	|	DISTINCT]	expression)

Arguments
ALL

Applies	the	aggregate	function	to	all	values.	ALL	is	the	default.

DISTINCT

Specifies	that	each	unique	value	is	considered.	DISTINCT	is	not	meaningful
with	MIN	and	is	available	for	SQL-92	compatibility	only.

expression

Is	a	constant,	column	name,	or	function,	and	any	combination	of	arithmetic,
bitwise,	and	string	operators.	MIN	can	be	used	with	numeric,	char,	varchar,
or	datetime	columns,	but	not	with	bit	columns.	Aggregate	functions	and
subqueries	are	not	permitted.

Return	Types
Returns	a	value	same	as	expression.

IMPORTANT		Distinct	aggregates,	for	example	AVG(DISTINCT	column_name),
COUNT(DISTINCT	column_name),	MAX(DISTINCT	column_name),
MIN(DISTINCT	column_name),	and	SUM(DISTINCT	column_name),	are	not
supported	when	using	CUBE	or	ROLLUP.	If	used,	Microsoft®	SQL	Server™
returns	an	error	message	and	ends	the	query.

Remarks
MIN	ignores	any	null	values.

With	character	data	columns,	MIN	finds	the	value	that	is	lowest	in	the	sort
sequence.

Examples
This	example	returns	the	book	with	the	lowest	(minimum)	year-to-date	sales.

USE	pubs
GO
SELECT	min(ytd_sales)
FROM	titles
GO

Here	is	the	result	set:

111									

(1	row(s)	affected)

See	Also

Aggregate	Functions

Transact-SQL	Reference

money	and	smallmoney
Monetary	data	types	for	representing	monetary	or	currency	values.

money

Monetary	data	values	from	-2^63	(-922,337,203,685,477.5808)	through
2^63	-	1	(+922,337,203,685,477.5807),	with	accuracy	to	a	ten-thousandth	of
a	monetary	unit.	Storage	size	is	8	bytes.

smallmoney

Monetary	data	values	from	-	214,748.3648	through	+214,748.3647,	with
accuracy	to	a	ten-thousandth	of	a	monetary	unit.	Storage	size	is	4	bytes.

See	Also

ALTER	TABLE

CAST	and	CONVERT

CREATE	TABLE

Data	Type	Conversion

Data	Types

DECLARE	@local_variable

DELETE

INSERT

Monetary	Data

SET	@local_variable

UPDATE

Using	Monetary	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Transact-SQL	Reference

MONTH
Returns	an	integer	that	represents	the	month	part	of	a	specified	date.

Syntax
MONTH	(date)

Arguments
date

Is	an	expression	returning	a	datetime	or	smalldatetime	value,	or	a	character
string	in	a	date	format.	Use	the	datetime	data	type	only	for	dates	after
January	1,	1753.

Return	Types
int

Remarks
MONTH	is	equivalent	to	DATEPART(mm,	date).

Always	enclose	datetime	values	in	quotation	marks.	For	earlier	dates,	store
dates	as	character	data.

Microsoft®	SQL	Server™	recognizes	a	variety	of	date	styles.	For	more
information	about	date	and	time	data,	see	CAST	and	CONVERT.

Examples
This	example	returns	the	number	of	the	month	from	the	date	03/12/1998.

SELECT	"Month	Number"	=	MONTH('03/12/1998')
GO

Here	is	the	result	set:

Month	Number	

3												

This	example	specifies	the	date	as	a	number.	Notice	that	SQL	Server	interprets	0
as	January	1,	1900.

SELECT	MONTH(0),	DAY(0),	YEAR(0)

Here	is	the	result	set.

-----	------	------
1					1						1900

See	Also

Data	Types

Date	and	Time	Functions

datetime	and	smalldatetime

Transact-SQL	Reference

NCHAR
Returns	the	Unicode	character	with	the	given	integer	code,	as	defined	by	the
Unicode	standard.

Syntax
NCHAR	(integer_expression)

Arguments
integer_expression

Is	a	positive	whole	number	from	0	through	65535.	If	a	value	outside	this
range	is	specified,	NULL	is	returned.

Return	Types
nchar(1)

Examples

A.	Use	NCHAR	and	UNICODE
This	example	uses	the	UNICODE	and	NCHAR	functions	to	print	the	UNICODE
value	and	the	NCHAR	(Unicode	character)	of	the	second	character	of	the
København	character	string,	and	to	print	the	actual	second	character,	ø.

DECLARE	@nstring	nchar(8)
SET	@nstring	=	N'København'
SELECT	UNICODE(SUBSTRING(@nstring,	2,	1)),	
			NCHAR(UNICODE(SUBSTRING(@nstring,	2,	1)))
GO

Here	is	the	result	set:

-----------	-	

248									ø

(1	row(s)	affected)

B.	Use	SUBSTRING,	UNICODE,	CONVERT,	and	NCHAR
This	example	uses	the	SUBSTRING,	UNICODE,	CONVERT,	and	NCHAR
functions	to	print	the	character	number,	the	Unicode	character,	and	the
UNICODE	value	of	each	of	the	characters	in	the	string	København.

--	The	@position	variable	holds	the	position	of	the	character	currently
--	being	processed.	The	@nstring	variable	is	the	Unicode	character	
--	string	to	process.
DECLARE	@position	int,	@nstring	nchar(9)
--	Initialize	the	current	position	variable	to	the	first	character	in	
--	the	string.
SET	@position	=	1
--	Initialize	the	character	string	variable	to	the	string	to	process.
--	Notice	that	there	is	an	N	before	the	start	of	the	string,	which	
--	indicates	that	the	data	following	the	N	is	Unicode	data.
SET	@nstring	=	N'København'
--	Print	the	character	number	of	the	position	of	the	string	you're	at,	
--	the	actual	Unicode	character	you're	processing,	and	the	UNICODE	value	--	for	this	particular	character.
PRINT	'Character	#'	+	'	'	+	'Unicode	Character'	+	'	'	+	'UNICODE	Value'
WHILE	@position	<=	DATALENGTH(@nstring)
			BEGIN
			SELECT	@position,	
						NCHAR(UNICODE(SUBSTRING(@nstring,	@position,	1))),
						CONVERT(NCHAR(17),	SUBSTRING(@nstring,	@position,	1)),
						UNICODE(SUBSTRING(@nstring,	@position,	1))
			SELECT	@position	=	@position	+	1
			END
GO

Here	is	the	result	set:

Character	#	Unicode	Character	UNICODE	Value
																																										
-----------	-----------------	-----------	
1											K																	75										
																																										
-----------	-----------------	-----------	
2											ø																	248									
																																										
-----------	-----------------	-----------	
3											b																	98										
																																										
-----------	-----------------	-----------	
4											e																	101									
																																										
-----------	-----------------	-----------	
5											n																	110									
																																										
-----------	-----------------	-----------	
6											h																	104									
																																										
-----------	-----------------	-----------	
7											a																	97										
																																										
-----------	-----------------	-----------	
8											v																	118									
																																										
-----------	-----------------	-----------	
9											n																	110									
																																										
-----------	-----------------	-----------	
10										(null)												(null)						
																																										

-----------	-----------------	-----------	
11										(null)												(null)						
																																										
-----------	-----------------	-----------	
12										(null)												(null)						
																																										
-----------	-----------------	-----------	
13										(null)												(null)						
																																										
-----------	-----------------	-----------	
14										(null)												(null)						
																																										
-----------	-----------------	-----------	
15										(null)												(null)						
																																										
-----------	-----------------	-----------	
16										(null)												(null)						
																																										
-----------	-----------------	-----------	
17										(null)												(null)						
																																										
-----------	-----------------	-----------	
18										(null)												(null)

See	Also

Data	Types

String	Functions

UNICODE

Transact-SQL	Reference

nchar	and	nvarchar
Character	data	types	that	are	either	fixed-length	(nchar)	or	variable-length
(nvarchar)	Unicode	data	and	use	the	UNICODE	UCS-2	character	set.

nchar(n)

Fixed-length	Unicode	character	data	of	n	characters.	n	must	be	a	value	from
1	through	4,000.	Storage	size	is	two	times	n	bytes.	The	SQL-92	synonyms
for	nchar	are	national	char	and	national	character.

nvarchar(n)

Variable-length	Unicode	character	data	of	n	characters.	n	must	be	a	value
from	1	through	4,000.	Storage	size,	in	bytes,	is	two	times	the	number	of
characters	entered.	The	data	entered	can	be	0	characters	in	length.	The	SQL-
92	synonyms	for	nvarchar	are	national	char	varying	and	national
character	varying.

Remarks
When	n	is	not	specified	in	a	data	definition	or	variable	declaration	statement,	the
default	length	is	1.	When	n	is	not	specified	with	the	CAST	function,	the	default
length	is	30.

Use	nchar	when	the	data	entries	in	a	column	are	expected	to	be	consistently
close	to	the	same	size.

Use	nvarchar	when	the	data	entries	in	a	column	are	expected	to	vary
considerably	in	size.

Objects	using	nchar	or	nvarchar	are	assigned	the	default	collation	of	the
database,	unless	a	specific	collation	is	assigned	using	the	COLLATE	clause.

SET	ANSI_PADDING	OFF	does	not	apply	to	nchar	or	nvarchar.	SET
ANSI_PADDING	is	always	ON	for	nchar	and	nvarchar.

See	Also

ALTER	TABLE

CAST	and	CONVERT

COLLATE

CREATE	TABLE

Data	Type	Conversion

Data	Types

DECLARE	@local_variable

DELETE

INSERT

LIKE

SET	ANSI_PADDING

SET	@local_variable

sp_dbcmptlevel

UPDATE

Using	Unicode	Data

WHERE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

NEWID
Creates	a	unique	value	of	type	uniqueidentifier.

Syntax
NEWID	()

Return	Types
uniqueidentifier

Examples

A.	Use	the	NEWID	function	with	a	variable
This	example	uses	NEWID	to	assign	a	value	to	a	variable	declared	as	the
uniqueidentifier	data	type.	The	value	of	the	uniqueidentifier	data	type	variable
is	printed	before	the	value	is	tested.

--	Creating	a	local	variable	with	DECLARE/SET	syntax.
DECLARE	@myid	uniqueidentifier
SET	@myid	=	NEWID()
PRINT	'Value	of	@myid	is:	'+	CONVERT(varchar(255),	@myid)

Here	is	the	result	set:

Value	of	@myid	is:	6F9619FF-8B86-D011-B42D-00C04FC964FF

Note		The	value	returned	by	NEWID	is	different	for	each	computer.	This
number	is	shown	only	for	illustration.

B.	Use	NEWID	in	a	CREATE	TABLE	statement
This	example	creates	cust	table	with	a	uniqueidentifier	data	type,	and	uses
NEWID	to	fill	the	table	with	a	default	value.	In	assigning	the	default	value	of
NEWID(),	each	new	and	existing	row	has	a	unique	value	for	the	cust_id

column.

--	Creating	a	table	using	NEWID	for	uniqueidentifier	data	type.	
CREATE	TABLE	cust
(
	cust_id	uniqueidentifier	NOT	NULL
			DEFAULT	newid(),
	company	varchar(30)	NOT	NULL,
	contact_name	varchar(60)	NOT	NULL,	
	address	varchar(30)	NOT	NULL,	
	city	varchar(30)	NOT	NULL,
	state_province	varchar(10)	NULL,
	postal_code	varchar(10)	NOT	NULL,	
	country	varchar(20)	NOT	NULL,	
	telephone	varchar(15)	NOT	NULL,
	fax	varchar(15)	NULL
)
GO
--	Inserting	data	into	cust	table.
INSERT	cust
(cust_id,	company,	contact_name,	address,	city,	state_province,	
	postal_code,	country,	telephone,	fax)
VALUES
(newid(),	'Wartian	Herkku',	'Pirkko	Koskitalo',	'Torikatu	38',	'Oulu',	NULL,
	'90110',	'Finland',	'981-443655',	'981-443655')
INSERT	cust
(cust_id,	company,	contact_name,	address,	city,	state_province,
postal_code,	country,	telephone,	fax)
VALUES	
(newid(),	'Wellington	Importadora',	'Paula	Parente',	'Rua	do	Mercado,	12',	'Resende',	'SP',
	'08737-363',	'Brazil',	'(14)	555-8122',	'')
INSERT	cust
(cust_id,	company,	contact_name,	address,	city,	state_province,
	postal_code,	country,	telephone,	fax)

VALUES
(newid(),	'Cactus	Comidas	para	Ilevar',	'Patricio	Simpson',	'Cerrito	333',	'Buenos	Aires',	NULL,	
	'1010',	'Argentina',	'(1)	135-5555',	'(1)	135-4892')
INSERT	cust
(cust_id,	company,	contact_name,	address,	city,	state_province,
	postal_code,	country,	telephone,	fax)
VALUES	
(newid(),	'Ernst	Handel',	'Roland	Mendel',	'Kirchgasse	6',	'Graz',	NULL,
	'8010',	'Austria',	'7675-3425',	'7675-3426')
INSERT	cust
(cust_id,	company,	contact_name,	address,	city,	state_province,
	postal_code,	country,	telephone,	fax)
VALUES	
(newid(),	'Maison	Dewey',	'Catherine	Dewey',	'Rue	Joseph-Bens	532',	'Bruxelles',	NULL,
	'B-1180',	'Belgium',	'(02)	201	24	67',	'(02)	201	24	68')
GO

C.	Use	uniqueidentifier	and	variable	assignment
This	example	declares	a	local	variable	called	@myid	as	a	variable	of
uniqueidentifier	data	type.	Then,	the	variable	is	assigned	a	value	using	the	SET
statement.

DECLARE	@myid	uniqueidentifier	
SET	@myid	=	'A972C577-DFB0-064E-1189-0154C99310DAAC12'
GO

See	Also

ALTER	TABLE

CAST	and	CONVERT

CREATE	TABLE

Data	Types

Replication	Overview

System	Functions

uniqueidentifier

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

Northwind	Sample	Database
The	Northwind	Traders	sample	database	contains	the	sales	data	for	a	fictitious
company	called	Northwind	Traders,	which	imports	and	exports	specialty	foods
from	around	the	world.

If	you	have	made	changes	to	the	Northwind	database,	you	can	reinstall	it	by
running	a	script	from	the	Install	directory	of	your	Microsoft®	SQL	Server™
2000	installation:

1.	 At	the	command	prompt,	change	to	the	Mssql\Install	directory.

2.	 Use	the	osql	utility	to	run	the	Instnwnd.sql	script:
osql/Usa	/Psapassword	/Sservername	/iinstnwnd.sql	/oinstnwnd.rpt

3.	 Check	Instnwnd.rpt	for	reported	errors.

The	database	is	created	in	the	Data	directory	of	your	SQL	Server	installation.

Instnwnd.sql	is	a	large	file.	If	you	want	to	view	Instnwnd.sql	using	Notepad,	first
turn	off	the	Notepad	Word	Wrap	option.	If	Word	Wrap	is	on,	opening	the	file	and
each	scrolling	operation	will	take	a	long	time.	Even	turning	Word	Wrap	off	after
the	file	has	been	opened	takes	a	long	time.

Transact-SQL	Reference

Categories

Column_name Data	type Nullable Default Check Key/index
CategoryID int no IDENTITY(1,1) PK	clust.
CategoryNamenvarchar(15) no Nonclust.
Description ntext yes
Picture image yes

Transact-SQL	Reference

Customers

Column_name Data	type Nullable Default Check Key/index
CustomerID nchar(5) no PK	clust.
CompanyName nvarchar(40) no Nonclust.
ContactName nvarchar(30) yes
ContactTitle nvarchar(30) yes
Address nvarchar(60) yes
City nvarchar(15) yes Nonclust.
Region nvarchar(15) yes Nonclust.
PostalCode nvarchar(10) yes Nonclust.
Country nvarchar(15) yes
Phone nvarchar(24) yes
Fax nvarchar(24) yes

Transact-SQL	Reference

CustomerCustomerDemo

Column_name Data	type Nullable Default CheckKey/index
CustomerID nchar(5) no Composite	PK	nonclust1,

FK	Customers(CustomerID
CustomerTypeID nchar(10) no Composite	PK	nonclust1,	

FK
CustomerDemographics(

1		The	composite	primary	key	is	defined	on	CustomerID,	CustomerTypeID.

Transact-SQL	Reference

CustomerDemographics

Column_name Data	type Nullable Default Check Key/index
CustomerTypeID nchar(10) no PK

nonclust.
CustomerDesc ntext yes 	

Transact-SQL	Reference

Employees

Column_name Data	type Nullable Default CheckKey/index
EmployeeID int no IDENTITY

(1,1)
PK	clust.

LastName nvarchar(20) no Nonclust.
FirstName nvarchar(10) no
Title nvarchar(30) yes
TitleOfCourtesy nvarchar(25) yes
BirthDate datetime yes yes1

HireDate datetime yes
Address nvarchar(60) yes 		
City nvarchar(15) yes
Region nvarchar(15) yes
PostalCode nvarchar(10) yes Nonclust.
Country nvarchar(15) yes
HomePhone nvarchar(24) yes
Extension nvarchar(4) yes
Photo image yes
Notes ntext yes
ReportsTo int yes FK

Employees(EmployeeID
Photopath nvarchar(255) yes1		The	BirthDate	CHECK	constraint	is	defined	as	(BirthDate	<	GETDATE()).

Note		Some	entries	in	the	Address	column	of	the	Employees	table	contain
newline	characters	that	may	affect	the	format	of	the	result	set	columns.

Transact-SQL	Reference

EmployeeTerritories

Column_name Data	type Nullable Default Check Key/index
EmployeeID int no Composite

PK
nonclust.

TerritoryID nvarchar(20) no Composite
PK
nonclust.

Transact-SQL	Reference

Order	Details

Column_name
Data
type Nullable Default Check Key/index

OrderID int no Composite	PK,	clust1,
FK	
Orders(OrderID)2

ProductID int no Composite	PK,	clust1,
FK	
Products(ProductID)3

UnitPrice money no 0 yes4

Quantity smallint no 1 yes5

Discount real no 0
1		The	composite,	primary	key,	clustered	index	is	defined	on	OrderID	and	ProductID.
2		There	are	also	two	nonclustered	indexes	on	OrderID.
3		There	are	also	two		nonclustered	indexes	on	ProductID.
4		The	UnitPrice	CHECK	constraint	is	defined	as	(UnitPrice	>=	0).
5		The	Quantity	CHECK	constraint	is	defined	as	(Quantity	>	0).	
The	table-level	CHECK	constraint	is	defined	as	(Discount	>=	0	and	Discount	<	=	1).

Transact-SQL	Reference

Orders

Column_name Data	type Nullable Default CheckKey/index
OrderID int no IDENTITY

(1,1)
PK,	clust.

CustomerID nchar(5) yes FK
Customers(CustomerID

EmployeeID int yes FK
Employees(EmployeeID

OrderDate datetime yes GETDATE
()

Nonclust.

RequiredDate datetime yes
ShippedDate datetime yes Nonclust.
ShipVia int yes 	 FK	Shippers(ShipperID
Freight money yes 0
ShipName nvarchar(40) yes
ShipAddress nvarchar(60) yes 	
ShipCity nvarchar(15) yes
ShipRegion nvarchar(15) yes 	
ShipPostalCode nvarchar(10) yes Nonclust.
ShipCountry nvarchar(15) yes1		There	are	also	two	nonclustered	indexes	on	CustomerID.
2		There	are	also	two	nonclustered	indexes	on	EmployeeID.
3		There	is	also	a	nonclustered	index	on	ShipVia.

Transact-SQL	Reference

Products

Column_name Data	type Nullable Default CheckKey/index
ProductID int no IDENTITY

(1,1)
	 PK,	clust.

ProductName nvarchar(40) no Nonclust.
SupplierID int yes FK

Suppliers(SupplierID
nonclust.1

CategoryID int yes FK
Categories(CategoryID
nonclust.2

QuantityPerUnit nvarchar(20) yes
UnitPrice money yes 0 yes3

UnitsInStock smallint yes 0 yes4

UnitsOnOrder smallint yes 0 yes5

ReorderLevel smallint yes 0 yes6

Discontinued bit no 01		There	are	two	nonclustered	indexes	on	SupplierID.
2		There	are	two	nonclustered	indexes	on	CategoryID.
3		The	UnitPrice	CHECK	constraint	is	defined	as	(UnitPrice	>=).
4		The	UnitsInStock	CHECK	constraint	is	defined	as	(UnitsInStock	>=).
5		The	UnitsOnOrder	CHECK	constraint	is	defined	as	(UnitsOnOrder	>=).
6		The	ReorderLevel	CHECK	constraint	is	defined	as	(ReorderLevel	>=).

Transact-SQL	Reference

Region

Column_name Data	type Nullable Default Check Key/index
RegionID int no PK

nonclust.
RegionDescription nchar(50) no

Transact-SQL	Reference

Shippers

Column_name Data	type Nullable Default Check Key/index
ShipperID int no IDENTITY

(1,1)
PK	clust.

CompanyName nvarchar(40) no
Phone nvarchar(24) yes

Transact-SQL	Reference

Suppliers

Column_name Data	type Nullable Default Check Key/index
SupplierID int no IDENTITY

(1,1)
PK	clust.

CompanyName nvarchar(40) no Nonclust.
ContactName nvarchar(30) yes
ContactTitle nvarchar(30) yes
Address nvarchar(60) yes
City nvarchar(15) yes
Region nvarchar(15) yes
PostalCode nvarchar(10) yes Nonclust.
Country nvarchar(15) yes 	
Phone nvarchar(24) yes
Fax nvarchar(24) yes
HomePage ntext yes

Transact-SQL	Reference

Territories

Column_name Data	type Nullable Default Check Key/index
TerritoryID nvarchar(20) no 	 PK

nonclust.
TerritoryDescription nchar(50) no 	 	
RegionID int no FK	Region

(RegionID)

Transact-SQL	Reference

NOT
Negates	a	Boolean	input.

Syntax
[NOT]	boolean_expression

Arguments
boolean_expression

Is	any	valid	Microsoft®	SQL	Server™	Boolean	expression.

Result	Types
Boolean

Result	Value
NOT	reverses	the	value	of	any	Boolean	expression.

Remarks
The	use	of	NOT	negates	an	expression.

This	table	shows	the	results	of	comparing	TRUE	and	FALSE	values	using	the
NOT	operator.

	 NOT
TRUE FALSE
FALSE TRUE
UNKNOWN UNKNOWN

Examples
This	example	finds	all	business	and	psychology	books	that	do	not	have	an
advance	over	$5,500.

USE	pubs
GO
SELECT	title_id,	type,	advance
FROM	titles
WHERE	(type	=	'business'	OR	type	=	'psychology')
			AND	NOT	advance	>	$5500
ORDER	BY	title_id	ASC
GO

Here	is	the	result	set:

title_id	type									advance															
--------	------------	---------------------	
BU1032			business					5000.0000
BU1111			business					5000.0000
BU7832			business					5000.0000
PS2091			psychology			2275.0000
PS3333			psychology			2000.0000
PS7777			psychology			4000.0000

(6	row(s)	affected)

See	Also

Expressions

Functions

Operators	(Logical	Operators)

SELECT

WHERE

Transact-SQL	Reference

ntext,	text,	and	image
Fixed	and	variable-length	data	types	for	storing	large	non-Unicode	and	Unicode
character	and	binary	data.	Unicode	data	uses	the	UNICODE	UCS-2	character
set.

ntext

Variable-length	Unicode	data	with	a	maximum	length	of	230	-	1
(1,073,741,823)	characters.	Storage	size,	in	bytes,	is	two	times	the	number	of
characters	entered.	The	SQL-92	synonym	for	ntext	is	national	text.

text

Variable-length	non-Unicode	data	in	the	code	page	of	the	server	and	with	a
maximum	length	of	231-1	(2,147,483,647)	characters.	When	the	server	code
page	uses	double-byte	characters,	the	storage	is	still	2,147,483,647	bytes.
Depending	on	the	character	string,	the	storage	size	may	be	less	than
2,147,483,647	bytes.

image

Variable-length	binary	data	from	0	through	231-1	(2,147,483,647)	bytes.

Remarks
These	functions	and	statements	can	be	used	with	ntext,	text,	or	image	data.

Functions Statements
DATALENGTH READTEXT
PATINDEX SET	TEXTSIZE
SUBSTRING UPDATETEXT
TEXTPTR WRITETEXT
TEXTVALID 	

See	Also

ALTER	TABLE

CAST	and	CONVERT

CREATE	TABLE

Data	Type	Conversion

Data	Types

DECLARE	@local_variable

DELETE

INSERT

LIKE

SET	@local_variable

UPDATE

Using	Unicode	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

NULLIF
Returns	a	null	value	if	the	two	specified	expressions	are	equivalent.

Syntax
NULLIF	(expression	,	expression)

Arguments
expression

Is	a	constant,	column	name,	function,	subquery,	or	any	combination	of
arithmetic,	bitwise,	and	string	operators.

Return	Types
Returns	the	same	type	as	the	first	expression.

NULLIF	returns	the	first	expression	if	the	two	expressions	are	not	equivalent.	If
the	expressions	are	equivalent,	NULLIF	returns	a	null	value	of	the	type	of	the
first	expression.

Remarks
NULLIF	is	equivalent	to	a	searched	CASE	function	in	which	the	two
expressions	are	equal	and	the	resulting	expression	is	NULL.

Examples
This	example	creates	a	budgets	table	to	show	a	department	(dept)	its	current
budget	(current_year)	and	its	previous	budget	(previous_year).	For	the	current
year,	NULL	is	used	for	departments	with	budgets	that	have	not	changed	from	the
previous	year,	and	0	is	used	for	budgets	that	have	not	yet	been	determined.	To
find	out	the	average	of	only	those	departments	that	receive	a	budget	as	well	as	to
include	the	budget	value	from	the	previous	year	(use	the	previous_year	value,
where	the	current_year	is	0),	combine	the	NULLIF	and	COALESCE	functions.

USE	pubs
IF	EXISTS	(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.TABLES
						WHERE	TABLE_NAME	=	'budgets')
			DROP	TABLE	budgets
GO
SET	NOCOUNT	ON
CREATE	TABLE	budgets
(
			dept												tinyint			IDENTITY,
			current_year						decimal			NULL,
			previous_year			decimal			NULL
)
INSERT	budgets	VALUES(100000,	150000)
INSERT	budgets	VALUES(NULL,	300000)
INSERT	budgets	VALUES(0,	100000)
INSERT	budgets	VALUES(NULL,	150000)
INSERT	budgets	VALUES(300000,	250000)
GO		
SET	NOCOUNT	OFF
SELECT	AVG(NULLIF(COALESCE(current_year,
			previous_year),	0.00))	AS	'Average	Budget'
FROM	budgets
GO

Here	is	the	result	set:

Average	Budget																											
--	
212500.000000

(1	row(s)	affected)

See	Also

CASE

decimal	and	numeric

System	Functions

Transact-SQL	Reference

numeric
For	more	information	about	the	numeric	data	type,	see	decimal	and	numeric.

See	Also

Data	Type	Conversion

Data	Types

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

OBJECT_ID
Returns	the	database	object	identification	number.

Syntax
OBJECT_ID	('object')

Arguments
'object'

Is	the	object	to	be	used.	object	is	either	char	or	nchar.	If	object	is	char,	it	is
implicitly	converted	to	nchar.

Return	Types
int

Remarks
When	the	parameter	to	a	system	function	is	optional,	the	current	database,	host
computer,	server	user,	or	database	user	is	assumed.	Built-in	functions	must
always	be	followed	by	parentheses.

When	specifying	a	temporary	table	name,	the	database	name	must	precede	the
temporary	table	name,	for	example:

SELECT	OBJECT_ID('tempdb..#mytemptable')

System	functions	can	be	used	in	the	select	list,	in	the	WHERE	clause,	and
anywhere	an	expression	is	allowed.	For	more	information,	see	Expressions	and
WHERE.

Examples
This	example	returns	the	object	ID	for	the	authors	table	in	the	pubs	database.

USE	master

SELECT	OBJECT_ID('pubs..authors')

Here	is	the	result	set:

1977058079			

(1	row(s)	affected)

See	Also

Metadata	Functions

Transact-SQL	Reference

OBJECT_NAME
Returns	the	database	object	name.

Syntax
OBJECT_NAME	(object_id)

Arguments
object_id

Is	the	ID	of	the	object	to	be	used.	object_id	is	int.

Return	Types
nchar

Remarks
When	the	parameter	of	a	system	function	is	optional,	the	current	database,	host
computer,	server	user,	or	database	user	is	assumed.	Built-in	functions	must
always	be	followed	by	parentheses.

System	functions	can	be	used	in	the	select	list,	in	the	WHERE	clause,	and
anywhere	an	expression	is	allowed.	For	more	information,	see	Expressions	and
WHERE.

Examples
This	example	returns	the	OBJECT_NAME	for	the	authors	table	in	the	pubs
database.

USE	pubs
SELECT	TABLE_CATALOG,	TABLE_NAME
FROM	INFORMATION_SCHEMA.TABLES
WHERE	TABLE_NAME	=	OBJECT_NAME(1977058079)

Here	is	the	result	set:

TABLE_CATALOG																		TABLE_NAME			
------------------------------	--------------
pubs																											authors							

(1	row(s)	affected)

See	Also

Metadata	Functions

Transact-SQL	Reference

OBJECTPROPERTY
Returns	information	about	objects	in	the	current	database.

Syntax
OBJECTPROPERTY	(id	,	property)

Arguments
id

Is	an	expression	containing	the	ID	of	the	object	in	the	current	database.	id	is
int.

property

Is	an	expression	containing	the	information	to	be	returned	for	the	object
specified	by	id.	property	can	be	one	of	these	values.

Note		Unless	noted	otherwise,	the	value	NULL	is	returned	when	property	is	not
a	valid	property	name.

Property	name
Object
type

Description	and	values
returned

CnstIsClustKey Constraint A	primary	key	with	a
clustered	index.

1	=	True	0	=	False

CnstIsColumn Constraint COLUMN	constraint.

1	=	True
0	=	False

CnstIsDeleteCascade Constraint A	foreign	key	constraint
with	the	ON	DELETE
CASCADE	option.

CnstIsDisabled Constraint Disabled	constraint.

1	=	True
0	=	False

CnstIsNonclustKey Constraint A	primary	key	with	a
nonclustered	index.

1	=	True
0	=	False

CnstIsNotTrusted Constraint Constraint	was	enabled
without	checking
existing	rows,	so
constraint	may	not	hold
for	all	rows.

1	=	True	
0	=	False

CnstIsNotRepl Constraint The	constraint	is	defined
with	the	NOT	FOR
REPLICATION
keywords.

CnstIsUpdateCascade Constraint A	foreign	key	constraint
with	the	ON	UPDATE
CASCADE	option.

ExecIsAfterTrigger Trigger AFTER	trigger.
ExecIsAnsiNullsOn Procedure,

Trigger,
View

The	setting	of
ANSI_NULLS	at
creation	time.

1	=	True
0	=	False

ExecIsDeleteTrigger Trigger DELETE	trigger.

1	=	True
0	=	False

ExecIsFirstDeleteTrigger Trigger The	first	trigger	fired
when	a	DELETE	is
executed	against	the

table.
ExecIsFirstInsertTrigger Trigger The	first	trigger	fired

when	an	INSERT	is
executed	against	the
table.

ExecIsFirstUpdateTrigger Trigger The	first	trigger	fired
when	an	UPDATE	is
executed	against	the
table.

ExecIsInsertTrigger Trigger INSERT	trigger.

1	=	True
0	=	False

ExecIsInsteadOfTrigger Trigger INSTEAD	OF	trigger.
ExecIsLastDeleteTrigger Trigger The	last	trigger	fired

when	a	DELETE	is
executed	against	the
table.

ExecIsLastInsertTrigger Trigger The	last	trigger	fired
when	an	INSERT	is
executed	against	the
table.

ExecIsLastUpdateTrigger Trigger The	last	trigger	fired
when	an	UPDATE	is
executed	against	the
table.

ExecIsQuotedIdentOn Procedure,
Trigger,
View

The	setting	of
QUOTED_IDENTIFIER
at	creation	time.

1	=	True
0	=	False

ExecIsStartup Procedure Startup	procedure.

1	=	True
0	=	False

ExecIsTriggerDisabled Trigger Disabled	trigger.

1	=	True
0	=	False

ExecIsUpdateTrigger Trigger UPDATE	trigger.

1	=	True
0	=	False

HasAfterTrigger Table,
View

Table	or	view	has	an
AFTER	trigger.

1	=	True
0	=	False

HasInsertTrigger Table,
View

Table	or	view	has	an
INSERT	trigger.

1	=	True
0	=	False

HasInsteadOfTrigger Table,
View

Table	or	view	has	an
INSTEAD	OF	trigger.

1	=	True
0	=	False

HasUpdateTrigger Table,
View

Table	or	view	has	an
UPDATE	trigger.

1	=	True
0	=	False

IsAnsiNullsOn Function,
Procedure,
Table,
Trigger,
View

Specifies	that	the	ANSI
NULLS	option	setting
for	the	table	is	ON,
meaning	all	comparisons
against	a	null	value
evaluate	to	UNKNOWN.
This	setting	applies	to	all
expressions	in	the	table

definition,	including
computed	columns	and
constraints,	for	as	long
as	the	table	exists.

1	=	ON
0	=	OFF

IsCheckCnst Any CHECK	constraint.

1	=	True
0	=	False

IsConstraint Any Constraint.

1	=	True
0	=	False

IsDefault Any Bound	default.

1	=	True
0	=	False

IsDefaultCnst Any DEFAULT	constraint.

1	=	True
0	=	False

IsDeterministic Function,
View

The	determinism
property	of	the	function.
Applies	only	to	scalar-
and	table-valued
functions.

1	=	Deterministic
0	=	Not	Deterministic
NULL	=	Not	a	scalar-	or
table-valued	function,	or
invalid	object	ID.

IsExecuted Any Specifies	how	this	object
can	be	executed	(view,

procedure,	or	trigger).

1	=	True
0	=	False

IsExtendedProc Any Extended	procedure.

1	=	True
0	=	False

IsForeignKey Any FOREIGN	KEY
constraint.

1	=	True
0	=	False

IsIndexed Table,
View

A	table	or	view	with	an
index.

IsIndexable Table,
View

A	table	or	view	on	which
an	index	may	be	created.

IsInlineFunction Function Inline	function.

1	=	Inline	function
0	=	Not	inline	function
NULL	=	Not	a	function,
or	invalid	object	ID.

IsMSShipped Any An	object	created	during
installation	of
Microsoft®	SQL
Server™	2000.

1	=	True
0	=	False

IsPrimaryKey Any PRIMARY	KEY
constraint.

1	=	True
0	=	False

IsProcedure Any Procedure.

1	=	True
0	=	False

IsQuotedIdentOn Function,
Procedure,
Table,
Trigger,
View

Specifies	that	the	quoted
identifier	setting	for	the
table	is	ON,	meaning
double	quotation	marks
delimit	identifiers	in	all
expressions	involved	in
the	table	definition.

1	=	ON
0	=	OFF

IsReplProc Any Replication	procedure.

1	=	True
0	=	False

IsRule Any Bound	rule.

1	=	True
0	=	False

IsScalarFunction Function Scalar-valued	function.

1	=	Scalar-valued
0	=	Table-valued
NULL	=	Not	a	function,
or	invalid	object	ID.

IsSchemaBound Function,
View

A	schema	bound
function	or	view	created
with
SCHEMABINDING.

1	=	Schema-bound
0	=	Not	schema-bound
NULL	=	Not	a	function
or	a	view,	or	invalid
object	ID.

IsSystemTable Table System	table.

1	=	True
0	=	False

IsTable Table Table.

1	=	True
0	=	False

IsTableFunction Function Table-valued	function.

1	=	Table-valued
0	=	Scalar-valued
NULL	=	Not	a	function,
or	invalid	object	ID.

IsTrigger Any Trigger.

1	=	True
0	=	False

IsUniqueCnst Any UNIQUE	constraint.

1	=	True
0	=	False

IsUserTable Table User-defined	table.

1	=	True
0	=	False

IsView View View.

1	=	True
0	=	False

OwnerId Any Owner	of	the	object.

Nonnull	=	The	database
user	ID	of	the	object
owner.
NULL	=	Invalid	input.

TableDeleteTrigger Table Table	has	a	DELETE
trigger.

>1	=	ID	of	first	trigger
with	given	type.

TableDeleteTriggerCount Table The	table	has	the
specified	number	of
DELETE	triggers.

>1	=	ID	of	first	trigger
with	given	type.
NULL	=	Invalid	input.

TableFullTextBackgroundUpdateIndexOnTable The	table	has	full-text
background	update	index
enabled.

1	=	TRUE
0	=	FALSE

TableFulltextCatalogId Table The	ID	of	the	full-text
catalog	in	which	the	full-
text	index	data	for	the
table	resides.

Nonzero	=	Full-text
catalog	ID,	associated
with	the	unique	index
that	identifies	the	rows
in	a	full-text	indexed
table.
0	=	Table	is	not	full-text
indexed.

TableFullTextChangeTrackingOn Table The	table	has	full-text
change-tracking	enabled.

1	=	TRUE
0	=	FALSE

TableFulltextKeyColumn Table The	ID	of	the	column
associated	with	the
single-column	unique
index	that	is
participating	in	the	full-
text	index	definition.

0	=	Table	is	not	full-text
indexed.

TableFullTextPopulateStatus Table 0	=	No	population
1	=	Full	population
2	=	Incremental
population

TableHasActiveFulltextIndex Tables The	table	has	an	active
full-text	index.

1	=	True
0	=	False

TableHasCheckCnst Table The	table	has	a	CHECK
constraint.

1	=	True
0	=	False

TableHasClustIndex Table The	table	has	a	clustered
index.

1	=	True
0	=	False

TableHasDefaultCnst Table The	table	has	a
DEFAULT	constraint.

1	=	True
0	=	False

TableHasDeleteTrigger Table The	table	has	a	DELETE
trigger.

1	=	True

0	=	False

TableHasForeignKey Table The	table	has	a
FOREIGN	KEY
constraint.

1	=	True
0	=	False

TableHasForeignRef Table Table	is	referenced	by	a
FOREIGN	KEY
constraint.

1	=	True
0	=	False

TableHasIdentity Table The	table	has	an	identity
column.

1	=	True
0	=	False

TableHasIndex Table The	table	has	an	index	of
any	type.

1	=	True
0	=	False

TableHasInsertTrigger Table The	object	has	an	Insert
trigger.

1	=	True
0	=	False
NULL	=	Invalid	input.

TableHasNonclustIndex Table The	table	has	a
nonclustered	index.

1	=	True
0	=	False

TableHasPrimaryKey Table The	table	has	a	primary
key.

1	=	True
0	=	False

TableHasRowGuidCol Table The	table	has	a
ROWGUIDCOL	for	a
uniqueidentifier
column.

1	=	True
0	=	False

TableHasTextImage Table The	table	has	a	text
column.

1	=	True
0	=	False

TableHasTimestamp Table The	table	has	a
timestamp	column.

1	=	True
0	=	False

TableHasUniqueCnst Table The	table	has	a	UNIQUE
constraint.

1	=	True
0	=	False

TableHasUpdateTrigger Table The	object	has	an
Update	trigger.

1	=	True
0	=	False

TableInsertTrigger Table The	table	has	an
INSERT	trigger.

>1	=	ID	of	first	trigger
with	given	type.

TableInsertTriggerCount Table The	table	has	the

specified	number	of
INSERT	triggers.

>1	=	ID	of	first	trigger
with	given	type.

TableIsFake Table The	table	is	not	real.	It	is
materialized	internally
on	demand	by	SQL
Server.

1	=	True
0	=	False

TableIsPinned Table The	table	is	pinned	to	be
held	in	the	data	cache.

1	=	True
0	=	False

TableTextInRowLimit Table The	maximum	bytes
allowed	for	text	in	row,
or	0	if	text	in	row	option
is	not	set.

TableUpdateTrigger Table The	table	has	an
UPDATE	trigger.

>1	=	ID	of	first	trigger
with	given	type.

TableUpdateTriggerCount Table The	table	has	the
specified	number	of
UPDATE	triggers.

>1	=	ID	of	first	trigger
with	given	type.

Return	Types

int

Remarks
OBJECTPROPERTY(view_id,'IsIndexable')	may	consume	significant	computer
resources	because	evaluation	of	IsIndexable	property	requires	the	parsing	of
view	definition,	normalization,	and	partial	optimization.

OBJECTPROPERTY(table_id,	'TableHasActiveFulltextIndex')	will	return	'1'
(True)	when	at	least	one	column	of	a	table	is	added	for	indexing.	Full-text
indexing	becomes	active	for	population	as	soon	as	the	first	column	is	added	for
indexing.

When	the	last	column	in	an	index	is	dropped,	the	index	becomes	inactive.

The	actual	creation	of	index	still	might	fail	if	certain	index	key	requirements	are
not	met.	See	CREATE	INDEX	for	details.

Examples

A.	To	find	out	if	authors	is	a	table
This	example	tests	whether	authors	is	a	table.

IF	OBJECTPROPERTY	(object_id('authors'),'ISTABLE')	=	1
			print	'Authors	is	a	table'

ELSE	IF	OBJECTPROPERTY	(object_id('authors'),'ISTABLE')	=	0
			print	'Authors	is	not	a	table'

ELSE	IF	OBJECTPROPERTY	(object_id('authors'),'ISTABLE')	IS	NULL
			print	'ERROR:	Authors	is	not	an	object'

B.	To	determine	if	text	in	row	is	enabled	on	a	table
This	example	tests	whether	the	text	in	row	option	is	enabled	in	the	authors
table	so	that	text,	ntext,	or	image	data	can	be	stored	in	its	data	row.

USE	pubs

SELECT	OBJECTPROPERTY(OBJECT_ID('authors'),'TableTextInRowLimit')

The	result	set	shows	that	text	in	row	is	not	enabled	on	the	table.

0

C.	To	determine	if	a	scalar-valued	user-defined	function	is
deterministic
This	example	tests	whether	the	user-defined	scalar-valued	function
fn_CubicVolume,	which	returns	a	decimal,	is	deterministic.

CREATE	FUNCTION	fn_CubicVolume
--	Input	dimensions	in	centimeters.
			(@CubeLength	decimal(4,1),	@CubeWidth	decimal(4,1),
			@CubeHeight	decimal(4,1))
RETURNS	decimal(12,3)	--	Cubic	Centimeters.
WITH	SCHEMABINDING
AS
BEGIN
			RETURN	(@CubeLength	*	@CubeWidth	*	@CubeHeight)
END

--Is	it	a	deterministic	function?
SELECT	OBJECTPROPERTY(OBJECT_ID('fn_CubicVolume'),	'IsDeterministic')

The	result	set	shows	that	fn_CubicVolume	is	a	deterministic	function.

1

See	Also

COLUMNPROPERTY

CREATE	INDEX

Metadata	Functions

TYPEPROPERTY

Transact-SQL	Reference

OPEN
Opens	a	Transact-SQL	server	cursor	and	populates	the	cursor	by	executing	the
Transact-SQL	statement	specified	on	the	DECLARE	CURSOR	or	SET
cursor_variable	statement.

Syntax
OPEN	{	{	[GLOBAL]	cursor_name	}	|	cursor_variable_name	}

Arguments
GLOBAL

Specifies	that	cursor_name	refers	to	a	global	cursor.

cursor_name

Is	the	name	of	a	declared	cursor.	If	both	a	global	and	a	local	cursor	exist	with
cursor_name	as	their	name,	cursor_name	refers	to	the	global	cursor	if
GLOBAL	is	specified;	otherwise,	cursor_name	refers	to	the	local	cursor.

cursor_variable_name

Is	the	name	of	a	cursor	variable	that	references	a	cursor.

Remarks
If	the	cursor	is	declared	with	the	INSENSITIVE	or	STATIC	option,	OPEN
creates	a	temporary	table	to	hold	the	result	set.	OPEN	fails	if	the	size	of	any	row
in	the	result	set	exceeds	the	maximum	row	size	for	Microsoft®	SQL	Server™
tables.	If	the	cursor	is	declared	with	the	KEYSET	option,	OPEN	creates	a
temporary	table	to	hold	the	keyset.	The	temporary	tables	are	stored	in	tempdb.

After	a	cursor	has	been	opened,	use	the	@@CURSOR_ROWS	function	to
receive	the	number	of	qualifying	rows	in	the	last	opened	cursor.	Depending	on
the	number	of	rows	expected	in	the	result	set,	SQL	Server	may	choose	to
populate	a	keyset-driven	cursor	asynchronously	on	a	separate	thread.	This	allows
fetches	to	proceed	immediately,	even	if	the	keyset	is	not	fully	populated.	For

more	information,	see	Asynchronous	Population.

To	set	the	threshold	at	which	SQL	Server	generates	keysets	asynchronously,	set
the	cursor	threshold	configuration	option.	For	more	information,	see
sp_configure.

Examples
This	example	opens	a	cursor	and	fetches	all	the	rows.

DECLARE	Employee_Cursor	CURSOR	FOR
SELECT	LastName,	FirstName
FROM	Northwind.dbo.Employees
WHERE	LastName	like	'B%'

OPEN	Employee_Cursor

FETCH	NEXT	FROM	Employee_Cursor
WHILE	@@FETCH_STATUS	=	0
BEGIN
				FETCH	NEXT	FROM	Employee_Cursor
END

CLOSE	Employee_Cursor
DEALLOCATE	Employee_Cursor

See	Also

CLOSE

@@CURSOR_ROWS

DEALLOCATE

DECLARE	CURSOR

FETCH

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

OPENDATASOURCE
Provides	ad	hoc	connection	information	as	part	of	a	four-part	object	name
without	using	a	linked	server	name.

Syntax
OPENDATASOURCE	(provider_name,	init_string)

Arguments
provider_name

Is	the	name	registered	as	the	PROGID	of	the	OLE	DB	provider	used	to
access	the	data	source.	provider_name	is	a	char	data	type,	with	no	default
value.

init_string

Is	the	connection	string	passed	to	the	IDataInitialize	interface	of	the
destination	provider.	The	provider	string	syntax	is	based	on	keyword-value
pairs	separated	by	semicolons,	that	is,	"keyword1=value;	keyword2=value."

The	basic	syntax	is	defined	in	the	Microsoft®	Data	Access	SDK.	Refer	to
the	documentation	on	the	provider	for	specific	keyword-value	pairs
supported.	This	table	lists	the	most	commonly	used	keywords	in	the
init_string	argument.

Keyword OLE	DB	property
Valid	values	and
Description

Data
Source

DBPROP_INIT_DATASOURCE Name	of	the	data	source
to	connect	to.	Different
providers	interpret	this
in	different	ways.	For
SQL	Server	OLE	DB
provider,	this	indicates
the	name	of	the	server.
For	Jet	OLE	DB

provider,	this	indicates
the	full	path	of	the	.mdb
file	or	.xls	file.

Location DBPROP_INIT_LOCATION Location	of	the	database
to	connect	to.

Extended
Properties

DBPROP_INIT_PROVIDERSTRINGThe	provider-specific
connect-string.

Connect
timeout

DBPROP_INIT_TIMEOUT Time-out	value	after
which	the	connection
attempt	fails.

User	ID DBPROP_AUTH_USERID User	ID	to	be	used	for
the	connection.

Password DBPROP_AUTH_PASSWORD Password	to	be	used	for
the	connection.

Catalog DBPROP_INIT_CATALOG The	name	of	the	initial
or	default	catalog	when
connecting	to	the	data
source.

Remarks
The	OPENDATASOURCE	function	can	be	used	in	the	same	Transact-SQL
syntax	locations	as	a	linked	server	name.	Thus,	OPENDATASOURCE	can	be
used	as	the	first	part	of	a	four-part	name	that	refers	to	a	table	or	view	name	in	a
SELECT,	INSERT,	UPDATE,	or	DELETE	statement,	or	to	a	remote	stored
procedure	in	an	EXECUTE	statement.	When	executing	remote	stored
procedures,	OPENDATASOURCE	should	refer	to	another	SQL	Server.
OPENDATASOURCE	does	not	accept	variables	for	its	arguments.

Like	the	OPENROWSET	function,	OPENDATASOURCE	should	only	reference
OLE	DB	data	sources	accessed	infrequently.	Define	a	linked	server	for	any	data
sources	accessed	more	than	a	few	times.	Neither	OPENDATASOURCE,	nor
OPENROWSET	provide	all	the	functionality	of	linked	server	definitions,	such
as	security	management	and	the	ability	to	query	catalog	information.	All
connection	information,	including	passwords,	must	be	provided	each	time
OPENDATASOURCE	is	called.

Examples
This	example	accesses	data	from	a	table	on	another	instance	of	SQL	Server.

SELECT			*
FROM						OPENDATASOURCE(
									'SQLOLEDB',
									'Data	Source=ServerName;User	ID=MyUID;Password=MyPass'
).Northwind.dbo.Categories

This	is	an	example	of	a	query	against	an	Excel	spreadsheet	through	the	OLE	DB
provider	for	Jet.

SELECT	*	
FROM	OpenDataSource('Microsoft.Jet.OLEDB.4.0',
		'Data	Source="c:\Finance\account.xls";User	ID=Admin;Password=;Extended	properties=Excel	5.0')...xactions
	

See	Also

Distributed	Queries

OPENROWSET

sp_addlinkedserver

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

OPENQUERY
Executes	the	specified	pass-through	query	on	the	given	linked	server,	which	is
an	OLE	DB	data	source.	The	OPENQUERY	function	can	be	referenced	in	the
FROM	clause	of	a	query	as	though	it	is	a	table	name.	The	OPENQUERY
function	can	also	be	referenced	as	the	target	table	of	an	INSERT,	UPDATE,	or
DELETE	statement,	subject	to	the	capabilities	of	the	OLE	DB	provider.
Although	the	query	may	return	multiple	result	sets,	OPENQUERY	returns	only
the	first	one.

Syntax
OPENQUERY	(linked_server	,	'query')

Arguments
linked_server

Is	an	identifier	representing	the	name	of	the	linked	server.

'query'

Is	the	query	string	executed	in	the	linked	server.

Remarks
OPENQUERY	does	not	accept	variables	for	its	arguments.

Examples
This	example	creates	a	linked	server	named	OracleSvr	against	an	Oracle
database	using	the	Microsoft	OLE	DB	Provider	for	Oracle.	Then	this	example
uses	a	pass-through	query	against	this	linked	server.

Note		This	example	assumes	that	an	Oracle	database	alias	called	ORCLDB	has
been	created.

EXEC	sp_addlinkedserver	'OracleSvr',	
			'Oracle	7.3',	

			'MSDAORA',	
			'ORCLDB'
GO
SELECT	*
FROM	OPENQUERY(OracleSvr,	'SELECT	name,	id	FROM	joe.titles')	
GO

See	Also

DELETE

Distributed	Queries

FROM

INSERT

OPENDATASOURCE

OPENROWSET

Rowset	Functions

SELECT

sp_addlinkedserver

sp_serveroption

UPDATE

WHERE

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

OPENROWSET
Includes	all	connection	information	necessary	to	access	remote	data	from	an
OLE	DB	data	source.	This	method	is	an	alternative	to	accessing	tables	in	a
linked	server	and	is	a	one-time,	ad	hoc	method	of	connecting	and	accessing
remote	data	using	OLE	DB.	The	OPENROWSET	function	can	be	referenced	in
the	FROM	clause	of	a	query	as	though	it	is	a	table	name.	The	OPENROWSET
function	can	also	be	referenced	as	the	target	table	of	an	INSERT,	UPDATE,	or
DELETE	statement,	subject	to	the	capabilities	of	the	OLE	DB	provider.
Although	the	query	may	return	multiple	result	sets,	OPENROWSET	returns	only
the	first	one.

Syntax
OPENROWSET	('provider_name'	
				,	{	'datasource'	;	'user_id'	;	'password'	
								|	'provider_string'	}	
				,	{	[catalog.]	[schema.]	object	
								|	'query'	}	
)

Arguments
'provider_name'

Is	a	character	string	that	represents	the	friendly	name	of	the	OLE	DB
provider	as	specified	in	the	registry.	provider_name	has	no	default	value.

'datasource'

Is	a	string	constant	that	corresponds	to	a	particular	OLE	DB	data	source.
datasource	is	the	DBPROP_INIT_DATASOURCE	property	to	be	passed	to
the	provider's	IDBProperties	interface	to	initialize	the	provider.	Typically,
this	string	includes	the	name	of	the	database	file,	the	name	of	a	database
server,	or	a	name	that	the	provider	understands	to	locate	the	database(s).

'user_id'

Is	a	string	constant	that	is	the	username	that	is	passed	to	the	specified	OLE

DB	provider.	user_id	specifies	the	security	context	for	the	connection	and	is
passed	in	as	the	DBPROP_AUTH_USERID	property	to	initialize	the
provider.

'password'

Is	a	string	constant	that	is	the	user	password	to	be	passed	to	the	OLE	DB
provider.	password	is	passed	in	as	the	DBPROP_AUTH_PASSWORD
property	when	initializing	the	provider.

'provider_string'

Is	a	provider-specific	connection	string	that	is	passed	in	as	the
DBPROP_INIT_PROVIDERSTRING	property	to	initialize	the	OLE	DB
provider.	provider_string	typically	encapsulates	all	the	connection
information	needed	to	initialize	the	provider.

catalog

Is	the	name	of	the	catalog	or	database	in	which	the	specified	object	resides.

schema

Is	the	name	of	the	schema	or	object	owner	for	the	specified	object.

object

Is	the	object	name	that	uniquely	identifies	the	object	to	manipulate.

'query'

Is	a	string	constant	sent	to	and	executed	by	the	provider.	Microsoft®	SQL
Server™	does	not	process	this	query,	but	processes	query	results	returned	by
the	provider	(a	pass-through	query).	Pass-through	queries	are	useful	when
used	on	providers	that	do	not	expose	their	tabular	data	through	table	names,
but	only	through	a	command	language.	Pass-through	queries	are	supported
on	the	remote	server,	as	long	as	the	query	provider	supports	the	OLE	DB
Command	object	and	its	mandatory	interfaces.	For	more	information,	see
SQL	Server	OLE	DB	Programmer's	Reference.

Remarks
Catalog	and	schema	names	are	required	if	the	OLE	DB	provider	supports

JavaScript:hhobj_1.Click()

multiple	catalogs	and	schemas	in	the	specified	data	source.	Values	for	catalog
and	schema	can	be	omitted	if	the	OLE	DB	provider	does	not	support	them.

If	the	provider	supports	only	schema	names,	a	two-part	name	of	the	form
schema.object	must	be	specified.	If	the	provider	supports	only	catalog	names,	a
three-part	name	of	the	form	catalog.schema.object	must	be	specified.

OPENROWSET	does	not	accept	variables	for	its	arguments.

Permissions
OPENROWSET	permissions	are	determined	by	the	permissions	of	the	username
being	passed	to	the	OLE	DB	provider.

Examples

A.	Use	OPENROWSET	with	a	SELECT	and	the	Microsoft	OLE
DB	Provider	for	SQL	Server
This	example	uses	the	Microsoft	OLE	DB	Provider	for	SQL	Server	to	access	the
authors	table	in	the	pubs	database	on	a	remote	server	named	seattle1.	The
provider	is	initialized	from	the	datasource,	user_id,	and	password,	and	a
SELECT	is	used	to	define	the	row	set	returned.

USE	pubs
GO
SELECT	a.*
FROM	OPENROWSET('SQLOLEDB','seattle1';'sa';'MyPass',
			'SELECT	*	FROM	pubs.dbo.authors	ORDER	BY	au_lname,	au_fname')	AS	a
GO

B.	Use	OPENROWSET	with	an	object	and	the	OLE	DB	Provider
for	ODBC
This	example	uses	the	OLE	DB	Provider	for	ODBC	and	the	SQL	Server	ODBC
driver	to	access	the	authors	table	in	the	pubs	database	on	a	remote	server	named
seattle1.	The	provider	is	initialized	with	a	provider_string	specified	in	the
ODBC	syntax	used	by	the	ODBC	provider,	and	the	catalog.schema.object

syntax	is	used	to	define	the	row	set	returned.

USE	pubs
GO
SELECT	a.*
FROM	OPENROWSET('MSDASQL',
			'DRIVER={SQL	Server};SERVER=seattle1;UID=sa;PWD=MyPass',
			pubs.dbo.authors)	AS	a
ORDER	BY	a.au_lname,	a.au_fname
GO

C.	Use	the	Microsoft	OLE	DB	Provider	for	Jet
This	example	accesses	the	orders	table	in	the	Microsoft	Access	Northwind
database	through	the	Microsoft	OLE	DB	Provider	for	Jet.

Note		This	example	assumes	that	Access	is	installed.

USE	pubs
GO
SELECT	a.*
FROM	OPENROWSET('Microsoft.Jet.OLEDB.4.0',	
			'c:\MSOffice\Access\Samples\northwind.mdb';'admin';'mypwd',	Orders)	
			AS	a
GO

D.	Use	OPENROWSET	and	another	table	in	an	INNER	JOIN
This	example	selects	all	data	from	the	customers	table	from	the	local	SQL
Server	Northwind	database	and	from	the	orders	table	from	the	Access
Northwind	database	stored	on	the	same	computer.

Note		This	example	assumes	that	Access	is	installed.

USE	pubs
GO
SELECT	c.*,	o.*
FROM	Northwind.dbo.Customers	AS	c	INNER	JOIN	

			OPENROWSET('Microsoft.Jet.OLEDB.4.0',	
			'c:\MSOffice\Access\Samples\northwind.mdb';'admin';'mypwd',	Orders)	
			AS	o
			ON	c.CustomerID	=	o.CustomerID	
GO

See	Also

DELETE

Distributed	Queries

FROM

INSERT

OPENDATASOURCE

OPENQUERY

Rowset	Functions

SELECT

sp_addlinkedserver

sp_serveroption

UPDATE

WHERE

JavaScript:hhobj_2.Click()

Transact-SQL	Reference

OPENXML
OPENXML	provides	a	rowset	view	over	an	XML	document.	Because
OPENXML	is	a	rowset	provider,	OPENXML	can	be	used	in	Transact-SQL
statements	in	which	rowset	providers	such	as	a	table,	view,	or	the
OPENROWSET	function	can	appear.

Syntax
OPENXML(idoc	int	[in],rowpattern	nvarchar[in],[flags	byte[in]])	
[WITH	(SchemaDeclaration	|	TableName)]

Arguments
idoc

Is	the	document	handle	of	the	internal	representation	of	an	XML	document.
The	internal	representation	of	an	XML	document	is	created	by	calling
sp_xml_preparedocument.

rowpattern

Is	the	XPath	pattern	used	to	identify	the	nodes	(in	the	XML	document	whose
handle	is	passed	in	the	idoc	parameter)	to	be	processed	as	rows.

flags

Indicates	the	mapping	that	should	be	used	between	the	XML	data	and	the
relational	rowset,	and	how	the	spill-over	column	should	be	filled.	flags	is	an
optional	input	parameter,	and	can	be	one	of	these	values.

Byte
Value Description
0 Defaults	to	attribute-centric	mapping.
1 Use	the	attribute-centric	mapping.

Can	be	combined	with	XML_ELEMENTS;	in	which	case,
attribute-centric	mapping	is	applied	first,	and	then	element-centric
mapping	is	applied	for	all	columns	not	yet	dealt	with.

2 Use	the	element-centric	mapping.
Can	be	combined	with	XML_ATTRIBUTES;	in	which	case,
attribute-centric	mapping	is	applied	first,	and	then	element-centric
mapping	is	applied	for	all	columns	not	yet	dealt	with.

8 Can	be	combined	(logical	OR)	with	XML_ATTRIBUTES	or
XML_ELEMENTS.
In	context	of	retrieval,	this	flag	indicates	that	the	consumed	data
should	not	be	copied	to	the	overflow	property	@mp:xmltext.

SchemaDeclaration

Is	the	schema	definition	of	the	form:	
ColName	ColType	[ColPattern	|	MetaProperty][,	ColName	ColType
[ColPattern	|	MetaProperty]...]

ColName
Is	the	column	name	in	the	rowset.

ColType
Is	the	SQL	data	type	of	the	column	in	the	rowset.	If	the	column	types
differ	from	the	underlying	XML	data	type	of	the	attribute,	type	coercion
occurs.	If	the	column	is	of	type	timestamp,	the	present	value	in	the	XML
document	is	disregarded	when	selecting	from	an	OPENXML	rowset,	and
the	autofill	values	are	returned.

ColPattern
Is	an	optional,	general	XPath	pattern	that	describes	how	the	XML	nodes
should	be	mapped	to	the	columns.	If	the	ColPattern	is	not	specified,	the
default	mapping	(attribute-centric	or	element-centric	mapping	as
specified	by	flags)	takes	place.

The	XPath	pattern	specified	as	ColPattern	is	used	to	specify	the
special	nature	of	the	mapping	(in	case	of	attribute-centric	and
element-centric	mapping)	that	overwrites	or	enhances	the	default
mapping	indicated	by	flags.

The	general	XPath	pattern	specified	as	ColPattern	also	supports
the	metaproperties.	

MetaProperty
Is	one	of	the	metaproperties	provided	by	OPENXML.	If	the
metaproperty	is	specified,	the	column	contains	information	provided	by
the	metaproperty.	The	metaproperties	allow	you	to	extract	information
(such	as	relative	position,	,	namespace	information)	about	XML	nodes,
which	provides	more	information	than	is	visible	in	the	textual
representation.

TableName

Is	the	table	name	that	can	be	given	(instead	of	SchemaDeclaration)	if	a	table
with	the	desired	schema	already	exists	and	no	column	patterns	are	required.

The	WITH	clause	provides	a	rowset	format	(and	additional	mapping	information
as	necessary)	using	either	SchemaDeclaration	or	specifying	an	existing
TableName.	If	the	optional	WITH	clause	is	not	specified,	the	results	are	returned
in	an	edge	table	format.	Edge	tables	represent	the	fine-grained	XML	document
structure	(e.g.	element/attribute	names,	the	document	hierarchy,	the	namespaces,
PIs	etc.)	in	a	single	table.

This	table	describes	the	structure	of	the	edge	table.

Column	name Data	type Description
id bigint Is	the	unique	ID	of	the	document	node.

The	root	element	has	an	ID	value	0.	The
negative	ID	values	are	reserved.

parentid bigint Identifies	the	parent	of	the	node.	The	parent
identified	by	this	ID	is	not	necessarily	the
parent	element,	but	it	depends	on	the	NodeType
of	the	node	whose	parent	is	identified	by	this
ID.	For	example,	if	the	node	is	a	text	node,	the
parent	of	it	may	be	an	attribute	node.

If	the	node	is	at	the	top	level	in	the	XML
document,	its	ParentID	is	NULL.

nodetype int Identifies	the	node	type.	Is	an	integer	that
corresponds	to	the	XML	DOM	node	type

numbering	(see	DOM	for	node	information).

The	node	types	are:

1	=	Element	node
2	=	Attribute	node
3	=	Text	node

localname nvarchar Gives	the	local	name	of	the	element	or	attribute.
Is	NULL	if	the	DOM	object	does	not	have	a
name.

prefix nvarchar Is	the	namespace	prefix	of	the	node	name.
namespaceuri nvarchar Is	the	namespace	URI	of	the	node.	If	the	value

is	NULL,	no	namespace	is	present.
datatype nvarchar Is	the	actual	data	type	of	the	element	or	attribute

row	and	is	NULL	otherwise.	The	data	type	is
inferred	from	the	inline	DTD	or	from	the	inline
schema.

prev bigint Is	the	XML	ID	of	the	previous	sibling	element.
Is	NULL	if	there	is	no	direct	previous	sibling.

text ntext Contains	the	attribute	value	or	the	element
content	in	text	form	(or	is	NULL	if	the	edge
table	entry	does	not	need	a	value).

Examples

A.	Use	a	simple	SELECT	statement	with	OPENXML
This	example	creates	an	internal	representation	of	the	XML	image	using
sp_xml_preparedocument.	A	SELECT	statement	using	an	OPENXML	rowset
provider	is	then	executed	against	the	internal	representation	of	the	XML
document.

The	flag	value	is	set	to	1	indicating	attribute-centric	mapping.	Therefore,	the
XML	attributes	map	to	the	columns	in	the	rowset.	The	rowpattern	specified	as
/ROOT/Customers	identifies	the	<Customers>	nodes	to	be	processed.

The	optional	ColPattern	(column	pattern)	is	not	specified	because	the	column
name	matches	the	XML	attribute	names.

The	OPENXML	rowset	provider	creates	a	two-column	rowset	(CustomerID	and
ContactName)	from	which	the	SELECT	statement	retrieves	the	necessary
columns	(in	this	case,	all	the	columns).

DECLARE	@idoc	int
DECLARE	@doc	varchar(1000)
SET	@doc	='
<ROOT>
<Customer	CustomerID="VINET"	ContactName="Paul	Henriot">
			<Order	CustomerID="VINET"	EmployeeID="5"	OrderDate="1996-07-04T00:00:00">
						<OrderDetail	OrderID="10248"	ProductID="11"	Quantity="12"/>
						<OrderDetail	OrderID="10248"	ProductID="42"	Quantity="10"/>
			</Order>
</Customer>
<Customer	CustomerID="LILAS"	ContactName="Carlos	Gonzlez">
			<Order	CustomerID="LILAS"	EmployeeID="3"	OrderDate="1996-08-16T00:00:00">
						<OrderDetail	OrderID="10283"	ProductID="72"	Quantity="3"/>
			</Order>
</Customer>
</ROOT>'
--Create	an	internal	representation	of	the	XML	document.
EXEC	sp_xml_preparedocument	@idoc	OUTPUT,	@doc
--	Execute	a	SELECT	statement	that	uses	the	OPENXML	rowset	provider.
SELECT				*
FROM							OPENXML	(@idoc,	'/ROOT/Customer',1)
												WITH	(CustomerID		varchar(10),
																		ContactName	varchar(20))

Here	is	the	result	set:

CustomerID	ContactName										
----------	--------------------	

VINET						Paul	Henriot
LILAS						Carlos	Gonzlez

If	the	same	SELECT	statement	is	executed	with	flags	set	to	2,	indicating
element-centric	mapping,	the	values	of	CustomerID	and	ContactName	for	both
of	the	customers	in	the	XML	document	are	returned	as	NULL,	because	the
<Customers>	elements	do	not	have	any	subelements.

Here	is	the	result	set:

CustomerID	ContactName
----------	-----------
NULL							NULL
NULL							NULL

B.	Specify	ColPattern	for	mapping	between	columns	and	the
XML	attributes
This	query	returns	customer	ID,	order	date,	product	ID	and	quantity	attributes
from	the	XML	document.	The	rowpattern	identifies	the	<OrderDetails>
elements.	ProductID	and	Quantity	are	the	attributes	of	the	<OrderDetails>
element.	However,	the	OrderID,	CustomerID	and	OrderDate	are	the	attributes
of	the	parent	element	(<Orders>).

The	optional	ColPattern	is	specified,	indicating	that:

The	OrderID,	CustomerID	and	OrderDate	in	the	rowset	map	to	the
attributes	of	the	parent	of	the	nodes	identified	by	rowpattern	in	the
XML	document.

The	ProdID	column	in	the	rowset	maps	to	the	ProductID	attribute,	and
the	Qty	column	in	the	rowset	maps	to	the	Quantity	attribute	of	the
nodes	identified	in	rowpattern.

Although	the	element-centric	mapping	is	specified	by	the	flags	parameter,	the
mapping	specified	in	ColPattern	overwrites	this	mapping.

declare	@idoc	int

declare	@doc	varchar(1000)
set	@doc	='
<ROOT>
<Customer	CustomerID="VINET"	ContactName="Paul	Henriot">
			<Order	OrderID="10248"	CustomerID="VINET"	EmployeeID="5"	
											OrderDate="1996-07-04T00:00:00">
						<OrderDetail	ProductID="11"	Quantity="12"/>
						<OrderDetail	ProductID="42"	Quantity="10"/>
			</Order>
</Customer>
<Customer	CustomerID="LILAS"	ContactName="Carlos	Gonzlez">
			<Order	OrderID="10283"	CustomerID="LILAS"	EmployeeID="3"	
											OrderDate="1996-08-16T00:00:00">
						<OrderDetail	ProductID="72"	Quantity="3"/>
			</Order>
</Customer>
</ROOT>'
--Create	an	internal	representation	of	the	XML	document.
exec	sp_xml_preparedocument	@idoc	OUTPUT,	@doc
--	SELECT	stmt	using	OPENXML	rowset	provider
SELECT	*
FROM			OPENXML	(@idoc,	'/ROOT/Customer/Order/OrderDetail',2)
									WITH	(OrderID							int									'../@OrderID',
															CustomerID		varchar(10)	'../@CustomerID',
															OrderDate			datetime				'../@OrderDate',
															ProdID						int									'@ProductID',
															Qty									int									'@Quantity')

This	is	the	result:

OrderID	CustomerID											OrderDate																	ProdID				Qty

--

10248						VINET							1996-07-04	00:00:00.000			11						12

10248						VINET							1996-07-04	00:00:00.000			42						10
10283						LILAS							1996-08-16	00:00:00.000			72						3

C.	Obtain	result	in	an	edge	table	format
In	this	example,	the	WITH	clause	is	not	specified	in	the	OPENXML	statement.
As	a	result,	the	rowset	generated	by	OPENXML	has	an	edge	table	format.	The
SELECT	statement	returns	all	the	columns	in	the	edge	table.

The	sample	XML	document	in	the	example	consists	of		<Customers>,	<Orders>,
and	<Order_0020_Details>	elements.

First	sp_xml_preparedocument	is	called	to	obtain	a	document	handle.	This
document	handle	is	passed	to	OPENXML.

In	the	OPENXML	statement

The	rowpattern	(/ROOT/Customers)	identifies	the	<Customers>	nodes
to	process.

The	WITH	clause	is	not	provided.	Therefore	OPENXML	returns	the
rowset	in	an	edge	table	format.

Finally	the	SELECT	statement	retrieves	all	the	columns	in	the	edge	table.

declare	@idoc	int
declare	@doc	varchar(1000)
set	@doc	='
<ROOT>
<Customers	CustomerID="VINET"	ContactName="Paul	Henriot">
			<Orders	CustomerID="VINET"	EmployeeID="5"	OrderDate=
											"1996-07-04T00:00:00">
						<Order_x0020_Details	OrderID="10248"	ProductID="11"	Quantity="12"/>
						<Order_x0020_Details	OrderID="10248"	ProductID="42"	Quantity="10"/>
			</Orders>
</Customers>
<Customers	CustomerID="LILAS"	ContactName="Carlos	Gonzlez">

			<Orders	CustomerID="LILAS"	EmployeeID="3"	OrderDate=
											"1996-08-16T00:00:00">
						<Order_x0020_Details	OrderID="10283"	ProductID="72"	Quantity="3"/>
			</Orders>
</Customers>
</ROOT>'
--Create	an	internal	representation	of	the	XML	document.
exec	sp_xml_preparedocument	@idoc	OUTPUT,	@doc
--	SELECT	statement	using	OPENXML	rowset	provider
SELECT				*
FROM							OPENXML	(@idoc,	'/ROOT/Customers')
EXEC	sp_xml_removedocument	@idoc

The	result	is	returned	as	an	edge	table.

See	Also

Using	OPENXML

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

Operators
An	operator	is	a	symbol	specifying	an	action	that	is	performed	on	one	or	more
expressions.	Microsoft®	SQL	Server™	2000	uses	these	operator	categories:

Arithmetic	operators

Assignment	operator

Bitwise	operators

Comparison	operators

Logical	operators

String	concatenation	operator

Unary	operators

Arithmetic	Operators

Arithmetic	operators	perform	mathematical	operations	on	two	expressions	of
any	of	the	data	types	of	the	numeric	data	type	category.	For	more	information
about	data	type	categories,	see	Transact-SQL	Syntax	Conventions.

Operator Meaning
+	(Add) Addition.
-	(Subtract) Subtraction.
*	(Multiply) Multiplication.
/	(Divide) Division.
%	(Modulo) Returns	the	integer	remainder	of	a	division.	For

example,	12	%	5	=	2	because	the	remainder	of	12

divided	by	5	is	2.

The	plus	(+)	and	minus	(-)	can	also	be	used	to	perform	arithmetic	operations	on
datetime	and	smalldatetime	values.

For	more	information	about	the	precision	and	scale	of	the	result	of	an	arithmetic
operation,	see	Precision,	Scale,	and	Length.

Assignment	Operator
Transact-SQL	has	one	assignment	operator,	the	equals	sign	(=).	In	this	example,
the	@MyCounter	variable	is	created.	Then,	the	assignment	operator	sets
@MyCounter	to	a	value	returned	by	an	expression.

DECLARE	@MyCounter	INT
SET	@MyCounter	=	1

The	assignment	operator	can	also	be	used	to	establish	the	relationship	between	a
column	heading	and	the	expression	defining	the	values	for	the	column.	This
example	displays	two	column	headings	named	FirstColumnHeading	and
SecondColumnHeading.	The	string	xyz	is	displayed	in	the
FirstColumnHeading	column	heading	for	all	rows.	Then,	each	product	ID	from
the	Products	table	is	listed	in	the	SecondColumnHeading	column	heading.

USE	Northwind
GO
SELECT	FirstColumnHeading	=	'xyz',
							SecondColumnHeading	=	ProductID
FROM	Products
GO

Bitwise	Operators
Bitwise	operators	perform	bit	manipulations	between	two	expressions	of	any	of
the	data	types	of	the	integer	data	type	category.

Operator Meaning

&	(Bitwise	AND) Bitwise	AND	(two	operands).
|	(Bitwise	OR) Bitwise	OR	(two	operands).
^	(Bitwise	Exclusive	OR) Bitwise	exclusive	OR	(two	operands).

The	operands	for	bitwise	operators	can	be	any	of	the	data	types	of	the	integer	or
binary	string	data	type	categories	(except	for	the	image	data	type),	with	the
exception	that	both	operands	cannot	be	any	of	the	data	types	of	the	binary	string
data	type	category.	The	table	shows	the	supported	operand	data	types.

Left	operand Right	operand
binary int,	smallint,	or	tinyint
bit int,	smallint,	tinyint,	or	bit
int int,	smallint,	tinyint,	binary,	or	varbinary
smallint int,	smallint,	tinyint,	binary,	or	varbinary
tinyint int,	smallint,	tinyint,	binary,	or	varbinary
varbinary int,	smallint,	or	tinyint

Comparison	Operators
Comparison	operators	test	whether	or	not	two	expressions	are	the	same.
Comparison	operators	can	be	used	on	all	expressions	except	expressions	of	the
text,	ntext,	or	image	data	types.

Operator Meaning
=	(Equals) Equal	to
>	(Greater	Than) Greater	than
<	(Less	Than) Less	than
>=	(Greater	Than	or	Equal
To)

Greater	than	or	equal	to

<=	(Less	Than	or	Equal	To) Less	than	or	equal	to
<>	(Not	Equal	To) Not	equal	to
!=	(Not	Equal	To) Not	equal	to	(not	SQL-92	standard)
!<	(Not	Less	Than) Not	less	than	(not	SQL-92	standard)

!>	(Not	Greater	Than) Not	greater	than	(not	SQL-92	standard)

The	result	of	a	comparison	operator	has	the	Boolean	data	type,	which	has	three
values:	TRUE,	FALSE,	and	UNKNOWN.	Expressions	that	return	a	Boolean
data	type	are	known	as	Boolean	expressions.

Unlike	other	SQL	Server	data	types,	a	Boolean	data	type	cannot	be	specified	as
the	data	type	of	a	table	column	or	variable,	and	cannot	be	returned	in	a	result	set.

When	SET	ANSI_NULLS	is	ON,	an	operator	that	has	one	or	two	NULL
expressions	returns	UNKNOWN.	When	SET	ANSI_NULLS	is	OFF,	the	same
rules	apply,	except	an	equals	operator	returns	TRUE	if	both	expressions	are
NULL.	For	example,	NULL	=	NULL	returns	TRUE	if	SET	ANSI_NULLS	is
OFF.

Expressions	with	Boolean	data	types	are	used	in	the	WHERE	clause	to	filter	the
rows	that	qualify	for	the	search	conditions	and	in	control-of-flow	language
statements	such	as	IF	and	WHILE,	for	example:

USE	Northwind
GO
DECLARE	@MyProduct	int
SET	@MyProduct	=	10
IF	(@MyProduct	<>	0)
			SELECT	*
			FROM	Products
			WHERE	ProductID	=	@MyProduct
GO

Logical	Operators
Logical	operators	test	for	the	truth	of	some	condition.	Logical	operators,	like
comparison	operators,	return	a	Boolean	data	type	with	a	value	of	TRUE	or
FALSE.

Operator Meaning
ALL TRUE	if	all	of	a	set	of	comparisons	are	TRUE.

AND TRUE	if	both	Boolean	expressions	are	TRUE.
ANY TRUE	if	any	one	of	a	set	of	comparisons	are	TRUE.
BETWEEN TRUE	if	the	operand	is	within	a	range.
EXISTS TRUE	if	a	subquery	contains	any	rows.
IN TRUE	if	the	operand	is	equal	to	one	of	a	list	of

expressions.
LIKE TRUE	if	the	operand	matches	a	pattern.
NOT Reverses	the	value	of	any	other	Boolean	operator.
OR TRUE	if	either	Boolean	expression	is	TRUE.
SOME TRUE	if	some	of	a	set	of	comparisons	are	TRUE.

For	more	information	about	logical	operators,	see	the	specific	logical	operator
topic.

String	Concatenation	Operator
The	string	concatenation	operator	allows	string	concatenation	with	the	addition
sign	(+),	which	is	also	known	as	the	string	concatenation	operator.	All	other
string	manipulation	is	handled	through	string	functions	such	as	SUBSTRING.

By	default,	an	empty	string	is	interpreted	as	an	empty	string	in	INSERT	or
assignment	statements	on	data	of	the	varchar	data	type.	In	concatenating	data	of
the	varchar,	char,	or	text	data	types,	the	empty	string	is	interpreted	as	an	empty
string.	For	example,	'abc'	+	''	+	'def'	is	stored	as	'abcdef'.	However,	if	the
sp_dbcmptlevel	compatibility	level	setting	is	65,	empty	constants	are	treated	as
a	single	blank	character	and	'abc'	+	''	+	'def'	is	stored	as	'abc	def'.	For	more
information	about	the	interpretation	of	empty	strings,	see	sp_dbcmptlevel.

When	two	character	strings	are	concatenated,	the	collation	of	the	result
expression	is	set	following	the	rules	of	collation	precedence.	For	more
information,	see	Collation	Precedence.

Unary	Operators
Unary	operators	perform	an	operation	on	only	one	expression	of	any	of	the	data
types	of	the	numeric	data	type	category.

Operator Meaning
+	(Positive) Numeric	value	is	positive.
-	(Negative) Numeric	value	is	negative.
~	(Bitwise	NOT) Returns	the	ones	complement	of	the	number.

The	+	(Positive)	and	-	(Negative)	operators	can	be	used	on	any	expression	of	any
of	the	data	types	of	the	numeric	data	type	category.	The	~	(Bitwise	NOT)
operator	can	be	used	only	on	expressions	of	any	of	the	data	types	of	the	integer
data	type	category.

Operator	Precedence
When	a	complex	expression	has	multiple	operators,	operator	precedence
determines	the	sequence	in	which	the	operations	are	performed.	The	order	of
execution	can	significantly	affect	the	resulting	value.

Operators	have	these	precedence	levels.	An	operator	on	higher	levels	is
evaluated	before	an	operator	on	a	lower	level:

+	(Positive),	-	(Negative),	~	(Bitwise	NOT)

*	(Multiply),	/	(Division),	%	(Modulo)

+	(Add),	(+	Concatenate),	-	(Subtract)

=,		>,		<,		>=,		<=,		<>,		!=,		!>,		!<	(Comparison	operators)

^	(Bitwise	Exlusive	OR),	&	(Bitwise	AND),	|	(Bitwise	OR)

NOT

AND

ALL,	ANY,	BETWEEN,	IN,	LIKE,	OR,	SOME

=	(Assignment)

When	two	operators	in	an	expression	have	the	same	operator	precedence	level,
they	are	evaluated	left	to	right	based	on	their	position	in	the	expression.	For
example,	in	the	expression	used	in	the	SET	statement	of	this	example,	the
subtraction	operator	is	evaluated	before	the	addition	operator.

DECLARE	@MyNumber	int
SET	@MyNumber	=	4	-	2	+	27
--	Evaluates	to	2	+	27	which	yields	an	expression	result	of	29.
SELECT	@MyNumber

Use	parentheses	to	override	the	defined	precedence	of	the	operators	in	an
expression.	Everything	within	the	parentheses	is	evaluated	first	to	yield	a	single
value	before	that	value	can	be	used	by	any	operator	outside	of	the	parentheses.

For	example,	in	the	expression	used	in	the	SET	statement	of	this	example,	the
multiplication	operator	has	a	higher	precedence	than	the	addition	operator,	so	it
gets	evaluated	first;	the	expression	result	is	13.

DECLARE	@MyNumber	int
SET	@MyNumber	=	2	*	4	+	5
--	Evaluates	to	8	+	5	which	yields	an	expression	result	of	13.
SELECT	@MyNumber

In	the	expression	used	in	the	SET	statement	of	this	example,	the	parentheses
causes	the	addition	to	be	performed	first;	the	expression	result	is	18.

DECLARE	@MyNumber	int
SET	@MyNumber	=	2	*	(4	+	5)
--	Evaluates	to	2	*	9	which	yields	an	expression	result	of	18.
SELECT	@MyNumber

If	an	expression	has	nested	parentheses,	the	most	deeply	nested	expression	is
evaluated	first.	This	example	contains	nested	parentheses,	with	the	expression	5

-	3	in	the	most	deeply	nested	set	of	parentheses.	This	expression	yields	a	value	of
2.	Then,	the	addition	operator	(+)	adds	this	result	to	4,	which	yields	a	value	of	6.
Finally,	the	6	is	multiplied	by	2	to	yield	an	expression	result	of	12.

DECLARE	@MyNumber	int
SET	@MyNumber	=	2	*	(4	+	(5	-	3))
--	Evaluates	to	2	*	(4	+	2)	which	further	evaluates	to	2	*	6,	and	
--	yields	an	expression	result	of	12.
SELECT	@MyNumber

See	Also

Functions

Transact-SQL	Reference

OR
Combines	two	conditions.	When	more	than	one	logical	operator	is	used	in	a
statement,	OR	operators	are	evaluated	after	AND	operators.	However,	you	can
change	the	order	of	evaluation	by	using	parentheses.

Syntax
boolean_expression	OR	boolean_expression

Arguments
boolean_expression

Is	any	valid	Microsoft®	SQL	Server™	expression	that	returns	TRUE,
FALSE,	or	UNKNOWN.

Result	Types
Boolean

Result	Value
OR	returns	TRUE	when	either	of	the	conditions	is	TRUE.

Remarks
This	table	shows	the	result	of	the	OR	operator.

	 TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN

Examples
This	example	retrieves	the	book	titles	that	carry	an	advance	greater	than	$5,500

and	are	either	business	or	psychology	books.	If	the	parentheses	are	not	included,
the	WHERE	clause	retrieves	all	business	books	or	psychology	books	that	have
an	advance	greater	than	$5,500.

USE	pubs
GO
SELECT	SUBSTRING(title,	1,	30)	AS	Title,	type
FROM	titles
WHERE	(type	=	'business'	OR	type	=	'psychology')	AND
			advance	>	$5500
ORDER	BY	title
GO

Here	is	the	result	set:

Title																										type									
------------------------------	------------	
Computer	Phobic	AND	Non-Phobic	psychology			
Life	Without	Fear														psychology			
You	Can	Combat	Computer	Stress	business					

(3	row(s)	affected)

See	Also

Expressions

Functions

Operators	(Logical	Operators)

SELECT

WHERE

Transact-SQL	Reference

ORDER	BY
Specifies	the	sort	order	used	on	columns	returned	in	a	SELECT	statement.	For
more	information,	see	SELECT.

Transact-SQL	Reference

PARSENAME
Returns	the	specified	part	of	an	object	name.	Parts	of	an	object	that	can	be
retrieved	are	the	object	name,	owner	name,	database	name,	and	server	name.

Note		The	PARSENAME	function	does	not	indicate	whether	or	not	an	object	by
the	specified	name	exists.	It	just	returns	the	specified	piece	of	the	given	object
name.

Syntax
PARSENAME	('object_name'	,	object_piece)

Arguments
'object_name'

Is	the	name	of	the	object	for	which	to	retrieve	the	specified	object	part.
object_name	is	sysname.	This	parameter	is	an	optionally	qualified	object
name.	If	all	parts	of	the	object	name	are	qualified,	this	name	can	consist	of
four	parts:	the	server	name,	the	database	name,	the	owner	name,	and	the
object	name.

object_piece

Is	the	object	part	to	return.	object_piece	is	int,	and	can	have	these	values.

Value Description
1 Object	name
2 Owner	name
3 Database	name
4 Server	name

Return	Types
nchar

Remarks

PARSENAME	returns	NULL	if	any	of	the	following	conditions	are	met:

Either	object_name	or	object_piece	is	NULL.

A	syntax	error	occurs.

The	requested	object	part	has	a	length	of	0	and	is	an	invalid	Microsoft®
SQL	Server™	identifier.	A	zero-length	object	name	renders	the	entire
qualified	name	invalid.

Examples

This	example	uses	PARSENAME	to	return	information	about	the	authors	table
in	the	pubs	database.

USE	pubs
SELECT	PARSENAME('pubs..authors',	1)	AS	'Object	Name'
SELECT	PARSENAME('pubs..authors',	2)	AS	'Owner	Name'
SELECT	PARSENAME('pubs..authors',	3)	AS	'Database	Name'
SELECT	PARSENAME('pubs..authors',	4)	AS	'Server	Name'

Here	is	the	result	set:

Object	Name																				

authors																								

(1	row(s)	affected)

Owner	Name																					

(null)																									

(1	row(s)	affected)

Database	Name																		

pubs																											

(1	row(s)	affected)

Server	Name																				

(null)																									

(1	row(s)	affected)

See	Also

ALTER	TABLE

CREATE	TABLE

System	Functions

Transact-SQL	Reference

PATINDEX
Returns	the	starting	position	of	the	first	occurrence	of	a	pattern	in	a	specified
expression,	or	zeros	if	the	pattern	is	not	found,	on	all	valid	text	and	character
data	types.

Syntax
PATINDEX	('%pattern%'	,	expression)

Arguments
pattern

Is	a	literal	string.	Wildcard	characters	can	be	used;	however,	the	%	character
must	precede	and	follow	pattern	(except	when	searching	for	first	or	last
characters).	pattern	is	an	expression	of	the	short	character	data	type	category.

expression

Is	an	expression,	usually	a	column	that	is	searched	for	the	specified	pattern.
expression	is	of	the	character	string	data	type	category.

Return	Types
int

Remarks
PATINDEX	is	useful	with	text	data	types;	it	can	be	used	in	a	WHERE	clause	in
addition	to	IS	NULL,	IS	NOT	NULL,	and	LIKE	(the	only	other	comparisons
that	are	valid	on	text	in	a	WHERE	clause).

If	either	pattern	or	expression	is	NULL,	PATINDEX	returns	NULL	when	the
database	compatibility	level	is	70.	If	the	database	compatibility	level	is	65	or
earlier,	PATINDEX	returns	NULL	only	when	both	pattern	and	expression	are
NULL.

Examples

A.	Use	a	pattern	with	PATINDEX
This	example	finds	the	position	at	which	the	pattern	"wonderful"	begins	in	a
specific	row	of	the	notes	column	in	the	titles	table.

USE	pubs
GO
SELECT	PATINDEX('%wonderful%',	notes)
FROM	titles
WHERE	title_id	=	'TC3218'
GO

Here	is	the	result	set:

46										

(1	row(s)	affected)

If	you	do	not	restrict	the	rows	to	be	searched	by	using	a	WHERE	clause,	the
query	returns	all	rows	in	the	table	and	reports	nonzero	values	for	those	rows	in
which	the	pattern	was	found	and	zero	for	all	rows	in	which	the	pattern	was	not
found.

B.	Use	wildcard	characters	with	PATINDEX
This	example	uses	wildcards	to	find	the	position	at	which	the	pattern
"won_erful"	begins	in	a	specific	row	of	the	notes	column	in	the	titles	table,
where	the	underscore	is	a	wildcard	representing	any	character.

USE	pubs
GO
SELECT	PATINDEX('%won_erful%',	notes)
FROM	titles
WHERE	title_id	=	'TC3218'

GO

Here	is	the	result	set:

46

(1	row(s)	affected)

If	you	do	not	restrict	the	rows	to	be	searched,	the	query	returns	all	rows	in	the
table	and	reports	nonzero	values	for	those	rows	in	which	the	pattern	was	found.

See	Also

Data	Types

String	Functions

Transact-SQL	Reference

PERMISSIONS
Returns	a	value	containing	a	bitmap	that	indicates	the	statement,	object,	or
column	permissions	for	the	current	user.

Syntax
PERMISSIONS	([objectid	[,	'column']])

Arguments
objectid

Is	the	ID	of	an	object.	If	objectid	is	not	specified,	the	bitmap	value	contains
statement	permissions	for	the	current	user;	otherwise,	the	bitmap	contains
object	permissions	on	the	object	ID	for	the	current	user.	The	object	specified
must	be	in	the	current	database.	Use	the	OBJECT_ID	function	with	an	object
name	to	determine	the	objectid	value.

'column'

Is	the	optional	name	of	a	column	for	which	permission	information	is	being
returned.	The	column	must	be	a	valid	column	name	in	the	table	specified	by
objectid.

Return	Types
int

Remarks
PERMISSIONS	can	be	used	to	determine	whether	the	current	user	has	the
necessary	permissions	to	execute	a	statement	or	to	GRANT	a	permission	on	an
object	to	another	user.

The	permissions	information	returned	is	a	32-bit	bitmap.

The	lower	16	bits	reflect	permissions	granted	to	the	security	account	for	the
current	user,	as	well	as	permissions	applied	to	Microsoft®	Windows	NT®

groups	or	Microsoft	SQL	Server™	roles	of	which	the	current	user	is	a	member.
For	example,	a	returned	value	of	66	(hex	value	0x42),	when	no	objectid	is
specified,	indicates	the	current	user	has	permissions	to	execute	the	CREATE
TABLE	(decimal	value	2)	and	BACKUP	DATABASE	(decimal	value	64)
statement	permissions.

The	upper	16	bits	reflect	the	permissions	that	the	current	user	can	GRANT	to
other	users.	The	upper	16	bits	are	interpreted	exactly	as	those	for	the	lower	16
bits	described	in	the	following	tables,	except	they	are	shifted	to	the	left	by	16
bits	(multiplied	by	65536).	For	example,	0x8	(decimal	value	8)	is	the	bit
indicating	INSERT	permissions	when	an	objectid	is	specified.	Whereas	0x80000
(decimal	value	524288)	indicates	the	ability	to	GRANT	INSERT	permissions
because	524288	=	8	x	65536.	Due	to	membership	in	roles,	it	is	possible	to	not
have	a	permission	to	execute	a	statement,	but	still	be	able	to	grant	that
permission	to	someone	else.

The	table	shows	the	bits	used	for	statement	permissions	(objectid	is	not
specified).

Bit	(dec) Bit	(hex) Statement	permission
1 0x1 CREATE	DATABASE	(master	database

only)
2 0x2 CREATE	TABLE
4 0x4 CREATE	PROCEDURE
8 0x8 CREATE	VIEW
16 0x10 CREATE	RULE
32 0x20 CREATE	DEFAULT
64 0x40 BACKUP	DATABASE
128 0x80 BACKUP	LOG
256 0x100 Reserved

The	table	shows	the	bits	used	for	object	permissions	that	are	returned	when	only
objectid	is	specified.

Bit	(dec) Bit	(hex) Statement	permission
1 0x1 SELECT	ALL
2 0x2 UPDATE	ALL

4 0x4 REFERENCES	ALL
8 0x8 INSERT
16 0x10 DELETE
32 0x20 EXECUTE	(procedures	only)
4096 0x1000 SELECT	ANY	(at	least	one	column)
8192 0x2000 UPDATE	ANY
16384 0x4000 REFERENCES	ANY

The	table	shows	the	bits	used	for	column-level	object	permissions	that	are
returned	when	both	objectid	and	column	are	specified.

Bit	(dec) Bit	(hex) Statement	permission
1 0x1 SELECT
2 0x2 UPDATE
4 0x4 REFERENCES

A	NULL	is	returned	if	a	specified	parameter	is	NULL	or	invalid	(for	example,	an
objectid	or	column	that	does	not	exist).	The	bit	values	for	permissions	that	do	not
apply	(for	example	EXECUTE	permissions,	bit	0x20,	for	a	table)	are	undefined.

Use	the	bitwise	AND	(&)	operator	to	determine	each	bit	set	in	the	bitmap
returned	by	the	PERMISSIONS	function.

The	sp_helprotect	system	stored	procedure	can	also	be	used	to	return	a	list	of
object	permissions	for	a	user	in	the	current	database.

Examples

A.	Use	PERMISSIONS	function	with	statement	permissions
This	example	determines	whether	the	current	user	can	execute	the	CREATE
TABLE	statement.

IF	PERMISSIONS()&2=2
			CREATE	TABLE	test_table	(col1	INT)

ELSE
			PRINT	'ERROR:	The	current	user	cannot	create	a	table.'

B.	Use	PERMISSIONS	function	with	object	permissions
This	example	determines	whether	the	current	user	can	insert	a	row	of	data	into
the	authors	table.

IF	PERMISSIONS(OBJECT_ID('authors'))&8=8	
			PRINT	'The	current	user	can	insert	data	into	authors.'
ELSE
			PRINT	'ERROR:	The	current	user	cannot	insert	data	into	authors.'

C.	Use	PERMISSIONS	function	with	grantable	permissions
This	example	determines	whether	the	current	user	can	grant	the	INSERT
permission	on	the	authors	table	to	another	user.

IF	PERMISSIONS(OBJECT_ID('authors'))&0x80000=0x80000
			PRINT	'INSERT	on	authors	is	grantable.'
ELSE
			PRINT	'You	may	not	GRANT	INSERT	permissions	on	authors.'

See	Also

DENY

GRANT

OBJECT_ID

REVOKE

sp_helprotect

System	Functions

Transact-SQL	Reference

PI
Returns	the	constant	value	of	PI.

Syntax
PI	()

Return	Types
float

Examples
This	example	returns	the	value	of	PI.

SELECT	PI()
GO

Here	is	the	result	set:

3.14159265358979

(1	row(s)	affected)

See	Also

Mathematical	Functions

Transact-SQL	Reference

POWER
Returns	the	value	of	the	given	expression	to	the	specified	power.

Syntax
POWER	(numeric_expression	,	y)

Arguments
numeric_expression

Is	an	expression	of	the	exact	numeric	or	approximate	numeric	data	type
category,	except	for	the	bit	data	type.

y

Is	the	power	to	which	to	raise	numeric_expression.	y	can	be	an	expression	of
the	exact	numeric	or	approximate	numeric	data	type	category,	except	for	the
bit	data	type.

Return	Types
Same	as	numeric_expression.

Examples

A.	Use	POWER	to	show	results	of	0.0
This	example	shows	a	floating	point	underflow	that	returns	a	result	of	0.0.

SELECT	POWER(2.0,	-100.0)
GO

Here	is	the	result	set:

--
0.0

(1	row(s)	affected)

B.	Use	POWER
This	example	returns	POWER	results	for	21	to	24.

DECLARE	@value	int,	@counter	int
SET	@value	=	2
SET	@counter	=	1

WHILE	@counter	<	5
			BEGIN
						SELECT	POWER(@value,	@counter)
						SET	NOCOUNT	ON
						SET	@counter	=	@counter	+	1
						SET	NOCOUNT	OFF
			END
GO

Here	is	the	result	set:

2											

(1	row(s)	affected)

4											

(1	row(s)	affected)

8											

(1	row(s)	affected)

16										

(1	row(s)	affected)

See	Also

decimal	and	numeric

float	and	real

int,	smallint,	and	tinyint

Mathematical	Functions

money	and	smallmoney

Transact-SQL	Reference

Predicate
Is	an	expression	that	evaluates	to	TRUE,	FALSE,	or	UNKNOWN.	Predicates	are
used	in	the	search	condition	of	WHERE	clauses	and	HAVING	clauses,	and	the
join	conditions	of	FROM	clauses.

See	Also

BETWEEN

CONTAINS

EXISTS

FREETEXT

IN

IS	[NOT]	NULL

LIKE

Search	Condition

Transact-SQL	Reference

PRINT
Returns	a	user-defined	message	to	the	client.

Syntax
PRINT	'any	ASCII	text'	|	@local_variable	|	@@FUNCTION	|	string_expr

Arguments
'any	ASCII	text'

Is	a	string	of	text.

@local_variable

Is	a	variable	of	any	valid	character	data	type.	@local_variable	must	be	char
or	varchar,	or	be	able	to	be	implicitly	converted	to	those	data	types.

@@FUNCTION

Is	a	function	that	returns	string	results.	@@FUNCTION	must	be	char	or
varchar,	or	be	able	to	be	implicitly	converted	to	those	data	types.

string_expr

Is	an	expression	that	returns	a	string.	Can	include	concatenated	literal	values
and	variables.	The	message	string	can	be	up	to	8,000	characters	long;	any
characters	after	8,000	are	truncated.

Remarks
To	print	a	user-defined	error	message	having	an	error	number	that	can	be
returned	by	@@ERROR,	use	RAISERROR	instead	of	PRINT.

Examples

A.	Conditionally	executed	print	(IF	EXISTS)
This	example	uses	the	PRINT	statement	to	conditionally	return	a	message.

IF	EXISTS	(SELECT	zip	FROM	authors	WHERE	zip	=	'94705')
			PRINT	'Berkeley	author'

B.	Build	and	display	a	string
This	example	converts	the	results	of	the	GETDATE	function	to	a	varchar	data
type	and	concatenates	it	with	literal	text	to	be	returned	by	PRINT.

PRINT	'This	message	was	printed	on	'	+	
			RTRIM(CONVERT(varchar(30),	GETDATE()))	+	'.'

See	Also

Data	Types

DECLARE	@local_variable

Functions

RAISERROR

Transact-SQL	Reference

pubs	Sample	Database
The	pubs	sample	database	is	modeled	after	a	book	publishing	company	and	is
used	to	demonstrate	many	of	the	options	available	for	a	Microsoft®	SQL
Server™	database.	The	database	and	its	tables	are	commonly	used	in	the
examples	presented	in	the	documentation	content.

If	you	have	made	changes	to	the	pubs	database,	you	can	reinstall	it	using	files
located	in	the	Install	directory	of	your	SQL	Server	installation.	The	installation
process	requires	two	steps:

1.	 From	the	command	prompt,	use	the	osql	utility	to	run	the	Instpubs.sql
script.	This	drops	the	existing	pubs	database,	creates	a	new	one,	and
defines	all	the	objects	in	the	database.

2.	 From	the	command	prompt,	run	Pubimage.bat.	This	inserts	image
values	into	the	pub_info	table.

Transact-SQL	Reference

authors

Column_nameData	type Nullable Default Check Key/index
au_id id no yes	1 PK,	clust.
au_lname varchar(40) no Composite,

nonclust.	3

au_fname varchar(20) no Composite,
nonclust.	3

phone char(12) no 'UNKNOWN'
address varchar(40) yes
city varchar(20) yes
state char(2) yes
zip char(5) yes yes	2

contract bit no1	The	au_id	CHECK	constraint	is	defined	as	(au_id	LIKE	'[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-
9]').
2	The	zip	CHECK	constraint	is	defined	as	(zip	LIKE	'[0-9][0-9][0-9][0-9][0-9]').
3	The	composite,	nonclustered	index	is	defined	on	au_lname	and	au_fname.

These	tables	show	the	contents	of	the	authors	table.	The	first	column	(au_id)	is
repeated	in	the	second	table,	along	with	columns	5	through	9.

au_id	(1) au_lname	(2) au_fname	(3) phone	(4)
172-32-1176 White Johnson 408	496-7223
213-46-8915 Green Marjorie 415	986-7020
238-95-7766 Carson Cheryl 415	548-7723
267-41-2394 O'Leary Michael 408	286-2428
274-80-9391 Straight Dean 415	834-2919
341-22-1782 Smith Meander 913	843-0462
409-56-7008 Bennet Abraham 415	658-9932
427-17-2319 Dull Ann 415	836-7128
472-27-2349 Gringlesby Burt 707	938-6445
486-29-1786 Locksley Charlene 415	585-4620
527-72-3246 Greene Morningstar 615	297-2723
648-92-1872 Blotchet-Halls Reginald 503	745-6402

672-71-3249 Yokomoto Akiko 415	935-4228
712-45-1867 del	Castillo Innes 615	996-8275
722-51-5454 DeFrance Michel 219	547-9982
724-08-9931 Stringer Dirk 415	843-2991
724-80-9391 MacFeather Stearns 415	354-7128
756-30-7391 Karsen Livia 415	534-9219
807-91-6654 Panteley Sylvia 301	946-8853
846-92-7186 Hunter Sheryl 415	836-7128
893-72-1158 McBadden Heather 707	448-4982
899-46-2035 Ringer Anne 801	826-0752
998-72-3567 Ringer Albert 801	826-0752

au_id	(1) address	(5) city	(6)
state
(7) zip	(8)

contract
(9)

172-32-1176 10932	Bigge	Rd. Menlo	Park CA 94025 1
213-46-8915 309	63rd	St.	#411 Oakland CA 94618 1
238-95-7766 589	Darwin	Ln. Berkeley CA 94705 1
267-41-2394 22	Cleveland	Av.

#14
San	Jose CA 95128 1

274-80-9391 5420	College	Av. Oakland CA 94609 1
341-22-1782 10	Mississippi	Dr. Lawrence KS 66044 0
409-56-7008 6223	Bateman	St. Berkeley CA 94705 1
427-17-2319 3410	Blonde	St. Palo	Alto CA 94301 1
472-27-2349 PO	Box	792 Covelo CA 95428 1
486-29-1786 18	Broadway	Av. San	FranciscoCA 94130 1
527-72-3246 22	Graybar	House

Rd.
Nashville TN 37215 0

648-92-1872 55	Hillsdale	Bl. Corvallis OR 97330 1
672-71-3249 3	Silver	Ct. Walnut	Creek CA 94595 1
712-45-1867 2286	Cram	Pl.	#86 Ann	Arbor MI 48105 1
722-51-5454 3	Balding	Pl. Gary IN 46403 1
724-08-9931 5420	Telegraph	Av. Oakland CA 94609 0

724-80-9391 44	Upland	Hts. Oakland CA 94612 1
756-30-7391 5720	McAuley	St. Oakland CA 94609 1
807-91-6654 1956	Arlington	Pl. Rockville MD 20853 1
846-92-7186 3410	Blonde	St. Palo	Alto CA 94301 1
893-72-1158 301	Putnam Vacaville CA 95688 0
899-46-2035 67	Seventh	Av. Salt	Lake

City
UT 84152 1

998-72-3567 67	Seventh	Av. Salt	Lake
City

UT 84152 1

Transact-SQL	Reference

discounts

Column_name Data	type Nullable Default Check Key/index
discounttype varchar(40) no
stor_id char(4) yes FK

stores(stor_id)
lowqty smallint yes
highqty smallint yes
discount float no

		

discounttype stor_id lowqty highqty discount
Initial	Customer NULL NULL NULL 10.5
Volume	Discount NULL 100 1000 6.7
Customer	Discount 8042 NULL NULL 5.0

		

Transact-SQL	Reference

employee

Column_nameData	type Nullable Default CheckKey/index
emp_id empid no yes	1 PK,	nonclust.
fname varchar(20) no Composite,	clust.	2
minit char(1) yes Composite,	clust.	2
lname varchar(30) no Composite,	clust.	2
job_id smallint no 1 FK	jobs(job_id)
job_lvl tinyint no 10
pub_id char(4) no '9952' FK

publishers(pub_id)
hire_date datetime no GETDATE(

)1	The	CHECK	constraint	is	defined	as	(emp_id	LIKE	'[A-Z][A-Z][A-Z][1-9][0-9][0-9][0-9][0-9][FM]')	OR
(emp_id	LIKE	'[A-Z]-[A-Z][1-9][0-9][0-9][0-9][0-9][FM]').
2	The	composite,	clustered	index	is	defined	on	lname,	fname,	and	minit.

These	tables	show	the	contents	of	the	employee	table.	The	first	column
(emp_id)	is	repeated	in	the	second	table,	along	with	columns	6	through	8.

emp_id	(1) fname	(2) minit	(3) lname	(4) job_id	(5)
PMA42628M Paolo M Accorti 13
PSA89086M Pedro S Alfonso 14
VPA30890F Victoria P Ashworth 6
H-B39728F Helen NULL Bennett 12
L-B31947F Lesley NULL Brown 7
F-C16315M Francisco NULL Chang 4
PTC11962M Philip T Cramer 2
A-C71970F Aria NULL Cruz 10
AMD15433F Ann M Devon 3
ARD36773F Anabela R Domingues 8
PHF38899M Peter H Franken 10
PXH22250M Paul X Henriot 5
CFH28514M Carlos F Hernández 5
PDI47470M Palle D Ibsen 7

KJJ92907F Karla J Jablonski 9
KFJ64308F Karin F Josephs 14
MGK44605M Matti G Karttunen 6
POK93028M Pirkko O Koskitalo 10
JYL26161F Janine Y Labrune 5
M-L67958F Maria NULL Larsson 7
Y-L77953M Yoshi NULL Latimer 12
LAL21447M Laurence A Lebihan 5
ENL44273F Elizabeth N Lincoln 14
PCM98509F Patricia C McKenna 11
R-M53550M Roland NULL Mendel 11
RBM23061F Rita B Müller 5
HAN90777M Helvetius A Nagy 7
TPO55093M Timothy P O'Rourke 13
SKO22412M Sven K Ottlieb 5
MAP77183M Miguel A Paolino 11
PSP68661F Paula S Parente 8
M-P91209M Manuel NULL Pereira 8
MJP25939M Maria J Pontes 5
M-R38834F Martine NULL Rancé 9
DWR65030M Diego W Roel 6
A-R89858F Annette NULL Roulet 6
MMS49649F Mary M Saveley 8
CGS88322F Carine G Schmitt 13
MAS70474F Margaret A Smith 9
HAS54740M Howard A Snyder 12
MFS52347M Martín F Sommer 10
GHT50241M Gary H Thomas 9
DBT39435M Daniel B Tonini 11

		

emp_id	(1) job_lvl	(6) pub_id	(7) hire_date	(8)

PMA42628M 35 0877 Aug	27	1992	12:00AM
PSA89086M 89 1389 Dec	24	1990	12:00AM
VPA30890F 140 0877 Sep	13	1990	12:00AM
H-B39728F 35 0877 Sep	21	1989	12:00AM
L-B31947F 120 0877 Feb	13	1991	12:00AM
F-C16315M 227 9952 Nov	3	1990	12:00AM
PTC11962M 215 9952 Nov	11	1989	12:00AM
A-C71970F 87 1389 Oct	26	1991	12:00AM
AMD15433F 200 9952 Jul	16	1991	12:00AM
ARD36773F 100 0877 Jan	27	1993	12:00AM
PHF38899M 75 0877 May	17	1992	12:00AM
PXH22250M 159 0877 Aug	19	1993	12:00AM
CFH28514M 211 9999 Apr	21	1989	12:00AM
PDI47470M 195 0736 May	9	1993	12:00AM
KJJ92907F 170 9999 Mar	11	1994	12:00AM
KFJ64308F 100 0736 Oct	17	1992	12:00AM
MGK44605M 220 0736 May	1	1994	12:00AM
POK93028M 80 9999 Nov	29	1993	12:00AM
JYL26161F 172 9901 May	26	1991	12:00AM
M-L67958F 135 1389 Mar	27	1992	12:00AM
Y-L77953M 32 1389 Jun	11	1989	12:00AM
LAL21447M 175 0736 Jun	3	1990	12:00AM
ENL44273F 35 0877 Jul	24	1990	12:00AM
PCM98509F 150 9999 Aug	1	1989	12:00AM
R-M53550M 150 0736 Sep	5	1991	12:00AM
RBM23061F 198 1622 Oct	9	1993	12:00AM
HAN90777M 120 9999 Mar	19	1993	12:00AM
TPO55093M 100 0736 Jun	19	1988	12:00AM
SKO22412M 150 1389 Apr	5	1991	12:00AM
MAP77183M 112 1389 Dec	7	1992	12:00AM
PSP68661F 125 1389 Jan	19	1994	12:00AM
M-P91209M 101 9999 Jan	9	1989	12:00AM
MJP25939M 246 1756 Mar	1	1989	12:00AM

M-R38834F 75 0877 Feb	5	1992	12:00AM
DWR65030M 192 1389 Dec	16	1991	12:00AM
A-R89858F 152 9999 Feb	21	1990	12:00AM
MMS49649F 175 0736 Jun	29	1993	12:00AM
CGS88322F 64 1389 Jul	7	1992	12:00AM
MAS70474F 78 1389 Sep	29	1988	12:00AM
HAS54740M 100 0736 Nov	19	1988	12:00AM
MFS52347M 165 0736 Apr	13	1990	12:00AM
GHT50241M 170 0736 Aug	9	1988	12:00AM
DBT39435M 75 0877 Jan	1	1990	12:00AM

		

Transact-SQL	Reference

jobs

Column_nameData	type Nullable Default Check Key/index
job_id smallint no IDENTITY(1,1) PK,	clust
stor_id char(4) no yes	1

min_lvl tinyint no yes	2

max_lvl tinyint no yes	3(1)		The	DEFAULT	constraint	is	defined	as	("New	Position	-	title	not	formalized	yet").
(2)		The	min_lvl	CHECK	constraint	is	defined	as	(min_lvl	>=	10).
(3)		The	max_lvl	CHECK	constraint	is	defined	as	(max_lvl	<=	250).

This	table	shows	the	contents	of	the	jobs	table.

job_id job_desc min_lvl max_lvl
1 New	Hire	-	Job	not	specified 10 10
2 Chief	Executive	Officer 200 250
3 Business	Operations	Manager 175 225
4 Chief	Financial	Officer 175 250
5 Publisher 150 250
6 Managing	Editor 140 225
7 Marketing	Manager 120 200
8 Public	Relations	Manager 100 175
9 Acquisitions	Manager 75 175
10 Productions	Manager 75 165
11 Operations	Manager 75 150
12 Editor 25 100
13 Sales	Representative 25 100
14 Designer 25 100

		

Transact-SQL	Reference

pub_info

Column_nameData	type Nullable Default Check Key/index
pub_id char(4) no PK,	clust.,	FK

publishers(pub_id)
logo image yes
pr_info text yes

This	table	shows	the	contents	of	the	pub_info	table.

pub_id logo	1 pr_info	2

0736 Newmoon.bmpThis	is	sample	text	data	for	New	Moon	Books,
publisher	0736	in	the	pubs	database.	New	Moon
Books	is	located	in	Boston,	Massachusetts.

0877 Binnet.bmp This	is	sample	text	data	for	Binnet	&	Hardley,
publisher	0877	in	the	pubs	database.	Binnet	&
Hardley	is	located	in	Washington,	D.C.

1389 Algodata.bmp This	is	sample	text	data	for	Algodata	Infosystems,
publisher	1389	in	the	pubs	database.	Algodata
Infosystems	is	located	in	Berkeley,	California.

1622 5lakes.bmp This	is	sample	text	data	for	Five	Lakes	Publishing,
publisher	1622	in	the	pubs	database.	Five	Lakes
Publishing	is	located	in	Chicago,	Illinois.

1756 Ramona.bmp This	is	sample	text	data	for	Ramona	Publishers,
publisher	1756	in	the	pubs	database.	Ramona
Publishers	is	located	in	Dallas,	Texas.

9901 Gggg.bmp This	is	sample	text	data	for	GGG&G,	publisher
9901	in	the	pubs	database.	GGG&G	is	located	in
München,	Germany.

9952 Scootney.bmp This	is	sample	text	data	for	Scootney	Books,
publisher	9952	in	the	pubs	database.	Scootney
Books	is	located	in	New	York	City,	New	York.

9999 Lucerne.bmp This	is	sample	text	data	for	Lucerne	Publishing,
publisher	9999	in	the	pubs	database.	Lucerne

Publishing	is	located	in	Paris,	France.
1		The	information	shown	here	is	not	the	actual	data.	It	is	the	file	name	from	which	the	bitmap	(image	data)
was	loaded.
2		The	text	shown	here	is	incomplete.	When	displaying	text	data,	the	display	is	limited	to	a	finite	number	of
characters.	This	table	shows	the	first	120	characters	of	the	text	column.

Transact-SQL	Reference

publishers

Column_name Data	type Nullable Default Check Key/index
pub_id char(4) no yes	1 PK,	clust.
pub_name varchar(40) yes
city varchar(20) yes
state char(2) yes
country varchar(30) yes 'USA'1		The	pub_id	CHECK	constraint	is	defined	as	(pub_id	=	'1756'	OR	(pub_id	=	'1622'	OR	(pub_id	=	'0877'
OR	(pub_id	=	'0736'	OR	(pub_id	=	'1389'))))	OR	(pub_id	LIKE	'99[0-9][0-0]').

This	table	shows	the	contents	of	the	publishers	table.

pub_id pub_name city state country
0736 New	Moon	Books Boston MA USA
0877 Binnet	&	Hardley Washington DC USA
1389 Algodata	Infosystems Berkeley CA USA
1622 Five	Lakes	Publishing Chicago IL USA
1756 Ramona	Publishers Dallas TX USA
9901 GGG&G München NULL Germany
9952 Scootney	Books New	York NY USA
9999 Lucerne	Publishing Paris NULL France

		

Transact-SQL	Reference

roysched

Column_name Data	type Nullable Default Check Key/index
title_id tid no FK

titles(title_id)
lorange int yes
hirange int yes
royalty int yes

This	table	shows	the	contents	of	the	roysched	table.

title_id lorange hirange royalty
BU1032 0 5000 10
BU1032 5001 50000 12
PC1035 0 2000 10
PC1035 2001 3000 12
PC1035 3001 4000 14
PC1035 4001 10000 16
PC1035 10001 50000 18
BU2075 0 1000 10
BU2075 1001 3000 12
BU2075 3001 5000 14
BU2075 5001 7000 16
BU2075 7001 10000 18
BU2075 10001 12000 20
BU2075 12001 14000 22
BU2075 14001 50000 24
PS2091 0 1000 10
PS2091 1001 5000 12
PS2091 5001 10000 14
PS2091 10001 50000 16
PS2106 0 2000 10
PS2106 2001 5000 12

PS2106 5001 10000 14
PS2106 10001 50000 16
MC3021 0 1000 10
MC3021 1001 2000 12
MC3021 2001 4000 14
MC3021 4001 6000 16
MC3021 6001 8000 18
MC3021 8001 10000 20
MC3021 10001 12000 22
MC3021 12001 50000 24
TC3218 0 2000 10
TC3218 2001 4000 12
TC3218 4001 6000 14
TC3218 6001 8000 16
TC3218 8001 10000 18
TC3218 10001 12000 20
TC3218 12001 14000 22
TC3218 14001 50000 24
PC8888 0 5000 10
PC8888 5001 10000 12
PC8888 10001 15000 14
PC8888 15001 50000 16
PS7777 0 5000 10
PS7777 5001 50000 12
PS3333 0 5000 10
PS3333 5001 10000 12
PS3333 10001 15000 14
PS3333 15001 50000 16
BU1111 0 4000 10
BU1111 4001 8000 12
BU1111 8001 10000 14
BU1111 12001 16000 16
BU1111 16001 20000 18

BU1111 20001 24000 20
BU1111 24001 28000 22
BU1111 28001 50000 24
MC2222 0 2000 10
MC2222 2001 4000 12
MC2222 4001 8000 14
MC2222 8001 12000 16
MC2222 12001 20000 18
MC2222 20001 50000 20
TC7777 0 5000 10
TC7777 5001 15000 12
TC7777 15001 50000 14
TC4203 0 2000 10
TC4203 2001 8000 12
TC4203 8001 16000 14
TC4203 16001 24000 16
TC4203 24001 32000 18
TC4203 32001 40000 20
TC4203 40001 50000 22
BU7832 0 5000 10
BU7832 5001 10000 12
BU7832 10001 15000 14
BU7832 15001 20000 16
BU7832 20001 25000 18
BU7832 25001 30000 20
BU7832 30001 35000 22
BU7832 35001 50000 24
PS1372 0 10000 10
PS1372 10001 20000 12
PS1372 20001 30000 14
PS1372 30001 40000 16
PS1372 40001 50000 18

		

Transact-SQL	Reference

sales

Column_name Data	type Nullable Key/index
stor_id char(4) no Composite	PK,	clust.

1,	FK	stores(stor_id)
ord_num varchar(20) no Composite	PK,	clust.

1
ord_date datetime no
qty smallint no
payterms varchar(12) no
title_id tid no Composite	PK,	clust.

1,	FK	titles(title_id)1		The	composite,	primary	key,	clustered	index	is	defined	on	stor_id,	ord_num,	and	title_id.

This	table	shows	the	contents	of	the	sales	table.

stor_id ord_num ord_date qty payterms title_id
6380 6871 Sep	14	1994	12:00AM 5 Net	60 BU1032
6380 722a Sep	13	1994	12:00AM 3 Net	60 PS2091
7066 A2976 May	24	1993

12:00AM
50 Net	30 PC8888

7066 QA7442.3 Sep	13	1994	12:00AM 75 ON	invoice PS2091
7067 D4482 Sep	14	1994	12:00AM 10 Net	60 PS2091
7067 P2121 Jun	15	1992	12:00AM 40 Net	30 TC3218
7067 P2121 Jun	15	1992	12:00AM 20 Net	30 TC4203
7067 P2121 Jun	15	1992	12:00AM 20 Net	30 TC7777
7131 N914008 Sep	14	1994	12:00AM 20 Net	30 PS2091
7131 N914014 Sep	14	1994	12:00AM 25 Net	30 MC3021
7131 P3087a May	29	1993

12:00AM
20 Net	60 PS1372

7131 P3087a May	29	1993
12:00AM

25 Net	60 PS2106

7131 P3087a May	29	1993
12:00AM

15 Net	60 PS3333

7131 P3087a May	29	1993
12:00AM

25 Net	60 PS7777

7896 QQ2299 Oct	28	1993	12:00AM 15 Net	60 BU7832
7896 TQ456 Dec	12	1993	12:00AM 10 Net	60 MC2222
7896 X999 Feb	21	1993	12:00AM 35 ON	invoice BU2075
8042 423LL922 Sep	14	1994	12:00AM 15 ON	invoice MC3021
8042 423LL930 Sep	14	1994	12:00AM 10 ON	invoice BU1032
8042 P723 Mar	11	1993	12:00AM25 Net	30 BU1111
8042 QA879.1 May	22	1993

12:00AM
30 Net	30 PC1035

		

Transact-SQL	Reference

stores

Column_name Data	type Nullable Default Check Key/index
stor_id char(4) no PK,	clust.
stor_name varchar(40) yes
stor_address varchar(40) yes
city varchar(20) yes
state char(2) yes
zip char(5) yes

		

This	table	shows	the	contents	of	the	stores	table.

stor_id stor_name stor_address city state zip
6380 Eric	the	Read

Books
788	Catamaugus
Ave.

Seattle WA 98056

7066 Barnum's 567	Pasadena	Ave. Tustin CA 92789
7067 News	&	Brews 577	First	St. Los	Gatos CA 96745
7131 Doc-U-Mat:

Quality	Laundry
and	Books

24-A	Avrogado	Way RemuladeWA 98014

7896 Fricative
Bookshop

89	Madison	St. Fremont CA 90019

8042 Bookbeat 679	Carson	St. Portland OR 89076

		

Transact-SQL	Reference

titleauthor

Column_nameData	type Nullable Default Check Key/index
au_id id no Composite	PK,	clust.

1,	FK
authors(au_id)	2

title_id tid no Composite	PK,	clust.
1,	FK	titles(title_id)
3

au_ord tinyint yes
royaltyper int yes 	1	The	composite,	primary	key,	clustered	index	is	defined	on	au_id	and	title_id.
2	This	foreign	key	also	has	a	nonclustered	index	on	au_id.
3	This	foreign	key	also	has	a	nonclustered	index	on	title_id.

This	table	shows	the	contents	of	the	titleauthor	table.

au_id title_id au_ord royaltyper
172-32-1176 PS3333 1 100
213-46-8915 BU1032 2 40
213-46-8915 BU2075 1 100
238-95-7766 PC1035 1 100
267-41-2394 BU1111 2 40
267-41-2394 TC7777 2 30
274-80-9391 BU7832 1 100
409-56-7008 BU1032 1 60
427-17-2319 PC8888 1 50
472-27-2349 TC7777 3 30
486-29-1786 PC9999 1 100
486-29-1786 PS7777 1 100
648-92-1872 TC4203 1 100
672-71-3249 TC7777 1 40
712-45-1867 MC2222 1 100
722-51-5454 MC3021 1 75
724-80-9391 BU1111 1 60

724-80-9391 PS1372 2 25
756-30-7391 PS1372 1 75
807-91-6654 TC3218 1 100
846-92-7186 PC8888 2 50
899-46-2035 MC3021 2 25
899-46-2035 PS2091 2 50
998-72-3567 PS2091 1 50
998-72-3567 PS2106 1 100

Transact-SQL	Reference

titles

Column_nameData	type Nullable Default Check Key/index
title_id tid no PK,	clust.
title varchar(80) no Nonclust.
type char(12) no 'UNDECIDED'
pub_id char(4) yes FK

publishers
(pub_id)

price money yes 	
advance money yes
royalty int yes 	
ytd_sales int yes
notes varchar(200) yes
pubdate datetime no GETDATE()

		

These	tables	show	the	contents	of	the	titles	table.	The	first	column	(title_id)	is
repeated	in	the	tables	that	follow,	along	with	columns	6	through	8,	and	9	
through	10.

title_id	(1) title	(2) type	(3) pub_id	(4) price	(5)
BU1032 The	Busy	Executive's

Database	Guide
business 1389 19.99

BU1111 Cooking	with	Computers:
Surreptitious	Balance
Sheets

business 1389 11.95

BU2075 You	Can	Combat
Computer	Stress!

business 0736 2.99

BU7832 Straight	Talk	About
Computers

business 1389 19.99

MC2222 Silicon	Valley
Gastronomic	Treats

mod_cook 0877 19.99

MC3021 The	Gourmet	Microwave mod_cook 0877 2.99
MC3026 The	Psychology	of

Computer	Cooking
UNDECIDED0877 NULL

PC1035 But	Is	It	User	Friendly? popular_comp 1389 22.95
PC8888 Secrets	of	Silicon	Valley popular_comp 1389 20.00
PC9999 Net	Etiquette popular_comp 1389 NULL
PS1372 Computer	Phobic	and

Non-Phobic	Individuals:
Behavior	Variations

psychology 0877 21.59

PS2091 Is	Anger	the	Enemy? psychology 0736 10.95
PS2106 Life	Without	Fear psychology 0736 7.00
PS3333 Prolonged	Data

Deprivation:	Four	Case
Studies

psychology 0736 19.99

PS7777 Emotional	Security:	A
New	Algorithm

psychology 0736 7.99

TC3218 Onions,	Leeks,	and
Garlic:	Cooking	Secrets
of	the	Mediterranean

trad_cook 0877 20.95

TC4203 Fifty	Years	in
Buckingham	Palace
Kitchens

trad_cook 0877 11.95

TC7777 Sushi,	Anyone? trad_cook 0877 14.99

		

title_id	(1) advance	(6) royalty	(7) ytd_sales	(8)
BU1032 5,000.00 10 4095
BU1111 5,000.00 10 3876
BU2075 10,125.00 24 18722
BU7832 5,000.00 10 4095
MC2222 0.00 12 2032
MC3021 15,000.00 24 22246
MC3026 NULL NULL NULL

PC1035 7,000.00 16 8780
PC8888 8,000.00 10 4095
PC9999 NULL NULL NULL
PS1372 7,000.00 10 375
PS2091 2,275.00 12 2045
PS2106 6,000.00 10 111
PS3333 2,000.00 10 4072
PS7777 4,000.00 10 3336
TC3218 7,000.00 10 375
TC4203 4,000.00 14 15096
TC7777 8,000.00 10 4095

		

title_id
(1) notes	(9) pubdate	(10)
BU1032 An	overview	of	available	database	systems	with

emphasis	on	common	business	applications.
Illustrated.

Jun	12	1991
12:00AM

BU1111 Helpful	hints	on	how	to	use	your	electronic
resources	to	the	best	advantage.

Jun	9	1991
12:00AM

BU2075 The	latest	medical	and	psychological	techniques
for	living	with	the	electronic	office.	Easy-to-
understand	explanations.

Jun	30	1991
12:00AM

BU7832 Annotated	analysis	of	what	computers	can	do	for
you:	a	no-hype	guide	for	the	critical	user.

Jun	22	1991
12:00AM

MC2222 Favorite	recipes	for	quick,	easy,	and	elegant
meals.

Jun	9	1991
12:00AM

MC3021 Traditional	French	gourmet	recipes	adapted	for
modern	microwave	cooking.

Jun	18	1991
12:00AM

MC3026 NULL Apr	28	1995
10:36AM

PC1035 A	survey	of	software	for	the	naive	user,	focusing
on	the	"friendliness"	of	each.

Jun	30	1991
12:00AM

PC8888 Muckraking	reporting	on	the	world's	largest
computer	hardware	and	software	manufacturers.

Jun	12	1994
12:00AM

PC9999 A	must-read	for	computer	conferencing. Apr	28	1995
10:36AM

PS1372 A	must	for	the	specialist,	examining	the
difference	between	those	who	hate	and	fear
computers	and	those	who	don't.

Oct	21	1991
12:00AM

PS2091 Carefully	researched	study	of	the	effects	of
strong	emotions	on	the	body.	Metabolic	charts
included.

Jun	15	1991
12:00AM

PS2106 New	exercise,	meditation,	and	nutritional
techniques	that	can	reduce	the	shock	of	daily
interactions.	Popular	audience.	Sample	menus
included,	exercise	video	available	separately.

Oct	5	1991
12:00AM

PS3333 What	happens	when	the	data	runs	dry?	Searching
evaluations	of	information-shortage	effects.

Jun	12	1991
12:00AM

PS7777 Protecting	yourself	and	your	loved	ones	from
undue	emotional	stress	in	the	modern	world.	Use
of	computer	and	nutritional	aids	emphasized.

Jun	12	1991
12:00AM

TC3218 Profusely	illustrated	in	color,	this	makes	a
wonderful	gift	book	for	a	cuisine-oriented	friend.

Oct	21	1991
12:00AM

TC4203 More	anecdotes	from	the	Queen's	favorite	cook
describing	life	among	English	royalty.	Recipes,
techniques,	tender	vignettes.

Jun	12	1991
12:00AM

TC7777 Detailed	instructions	on	how	to	make	authentic
Japanese	sushi	in	your	spare	time.

Jun	12	1991
12:00AM

		

Transact-SQL	Reference

QUOTENAME
Returns	a	Unicode	string	with	the	delimiters	added	to	make	the	input	string	a
valid	Microsoft®	SQL	Server™	delimited	identifier.

Syntax
QUOTENAME	('character_string'	[,	'quote_character'])

Arguments
'character_string'

Is	a	string	of	Unicode	character	data.	character_string	is	sysname.

'quote_character'

Is	a	one-character	string	to	use	as	the	delimiter.	Can	be	a	single	quotation
mark	('),	a	left	or	right	bracket	([]),	or	a	double	quotation	mark	(").	If
quote_character	is	not	specified,	brackets	are	used.

Return	Types
nvarchar(129)

Examples
This	example	takes	the	character	string	abc[]def	and	uses	the	[and]	characters
to	create	a	valid	SQL	Server	quoted	(delimited)	identifier.

SELECT	QUOTENAME('abc[]def')

Here	is	the	result	set:

[abc[]]def]

(1	row(s)	affected)

Notice	that	the	right	bracket	in	the	string	abc[]def	is	doubled	to	indicate	an

escape	character.

See	Also

String	Functions

Transact-SQL	Reference

RADIANS
Returns	radians	when	a	numeric	expression,	in	degrees,	is	entered.

Syntax
RADIANS	(numeric_expression)

Arguments
numeric_expression

Is	an	expression	of	the	exact	numeric	or	approximate	numeric	data	type
category,	except	for	the	bit	data	type.

Return	Types
Returns	the	same	type	as	numeric_expression.

Examples

A.	Use	RADIANS	to	show	0.0
This	example	returns	a	result	of	0.0	because	the	numeric	expression	to	convert	to
radians	is	too	small	for	the	RADIANS	function.

SELECT	RADIANS(1e-307)
GO

Here	is	the	result	set:

0.0																						
(1	row(s)	affected)

B.	Use	RADIANS

This	example	takes	a	float	expression	and	returns	the	RADIANS	of	the	given
angle.

--	First	value	is	-45.01.
DECLARE	@angle	float
SET	@angle	=	-45.01
SELECT	'The	RADIANS	of	the	angle	is:	'	+
			CONVERT(varchar,	RADIANS(@angle))
GO
--	Next	value	is	-181.01.
DECLARE	@angle	float
SET	@angle	=	-181.01
SELECT	'The	RADIANS	of	the	angle	is:	'	+
			CONVERT(varchar,	RADIANS(@angle))
GO
--	Next	value	is	0.00.
DECLARE	@angle	float
SET	@angle	=	0.00
SELECT	'The	RADIANS	of	the	angle	is:	'	+
			CONVERT(varchar,	RADIANS(@angle))
GO
--	Next	value	is	0.1472738.
DECLARE	@angle	float
SET	@angle	=	0.1472738
SELECT	'The	RADIANS	of	the	angle	is:	'	+
				CONVERT(varchar,	RADIANS(@angle))
GO
--	Last	value	is	197.1099392.
DECLARE	@angle	float
SET	@angle	=	197.1099392
SELECT	'The	RADIANS	of	the	angle	is:	'	+
			CONVERT(varchar,	RADIANS(@angle))
GO

Here	is	the	result	set:

The	RADIANS	of	the	angle	is:	-0.785573																						
(1	row(s)	affected)

The	RADIANS	of	the	angle	is:	-3.15922																							
(1	row(s)	affected)

The	RADIANS	of	the	angle	is:	0																														
(1	row(s)	affected)

The	RADIANS	of	the	angle	is:	0.00257041																					
	(1	row(s)	affected)

The	RADIANS	of	the	angle	is:	3.44022																								
(1	row(s)	affected)

See	Also

CAST	and	CONVERT

decimal	and	numeric

float	and	real

int,	smallint,	and	tinyint

Mathematical	Functions

money	and	smallmoney

Transact-SQL	Reference

RAISERROR
Returns	a	user-defined	error	message	and	sets	a	system	flag	to	record	that	an
error	has	occurred.	Using	RAISERROR,	the	client	can	either	retrieve	an	entry
from	the	sysmessages	table	or	build	a	message	dynamically	with	user-specified
severity	and	state	information.	After	the	message	is	defined	it	is	sent	back	to	the
client	as	a	server	error	message.

Syntax
RAISERROR	({	msg_id	|	msg_str	}	{	,	severity	,	state	}	
				[,	argument	[,...n]])	
				[WITH	option	[,...n]]

Arguments
msg_id

Is	a	user-defined	error	message	stored	in	the	sysmessages	table.	Error	numbers
for	user-defined	error	messages	should	be	greater	than	50,000.	Ad	hoc	messages
raise	an	error	of	50,000.

msg_str

Is	an	ad	hoc	message	with	formatting	similar	to	the	PRINTF	format	style	used	in
C.	The	error	message	can	have	up	to	400	characters.	If	the	message	contains
more	than	400	characters,	only	the	first	397	will	be	displayed	and	an	ellipsis	will
be	added	to	indicate	that	the	message	has	been	cut.	All	ad	hoc	messages	have	a
standard	message	ID	of	14,000.

This	format	is	supported	for	msg_str:

%	[[flag]	[width]	[precision]	[{h	|	l}]]	type

The	parameters	that	can	be	used	in	msg_str	are:

flag

Is	a	code	that	determines	the	spacing	and	justification	of	the	user-defined	error
message.

Code Prefix	or	justification Description
-	(minus) Left-justified Left-justify	the	result	within	the

given	field	width.
+	(plus) +	(plus)	or	-	(minus)

prefix
Preface	the	output	value	with	a	plus
(+)	or	minus	(-)	sign	if	the	output
value	is	of	signed	type.

0	(zero) Zero	padding If	width	is	prefaced	with	0,	zeros
are	added	until	the	minimum	width
is	reached.	When	0	and	-	appear,	0
is	ignored.	When	0	is	specified	with
an	integer	format	(i,	u,	x,	X,	o,	d),	0
is	ignored.

#	(number) 0x	prefix	for	hexadecimal
type	of	x	or	X

When	used	with	the	o,	x,	or	X
format,	the	#	flag	prefaces	any
nonzero	value	with	0,	0x,	or	0X,
respectively.	When	d,	i,	or	u	are
prefaced	by	the	#	flag,	the	flag	is
ignored.

'	'	(blank) Space	padding Preface	the	output	value	with	blank
spaces	if	the	value	is	signed	and
positive.	This	is	ignored	when
included	with	the	plus	sign	(+)	flag.

width

Is	an	integer	defining	the	minimum	width.	An	asterisk	(*)	allows	precision	to
determine	the	width.

precision

Is	the	maximum	number	of	characters	printed	for	the	output	field	or	the
minimum	number	of	digits	printed	for	integer	values.	An	asterisk	(*)	allows
argument	to	determine	the	precision.

{h	|	l}	type

Is	used	with	character	types	d,	i,	o,	x,	X,	or	u,	and	creates	short	int	(h)	or	long
int	(l)	values.

Character	type Represents
d	or	I Signed	integer
o Unsigned	octal
p Pointer
s String
u Unsigned	integer
x	or	X Unsigned	hexadecimal

Note		The	float,	double-,	and	single	character	types	are	not	supported.

severity

Is	the	user-defined	severity	level	associated	with	this	message.	Severity	levels
from	0	through	18	can	be	used	by	any	user.	Severity	levels	from	19	through	25
are	used	only	by	members	of	the	sysadmin	fixed	server	role.	For	severity	levels
from	19	through	25,	the	WITH	LOG	option	is	required.

CAUTION		Severity	levels	from	20	through	25	are	considered	fatal.	If	a	fatal
severity	level	is	encountered,	the	client	connection	is	terminated	after	receiving
the	message,	and	the	error	is	logged	in	the	error	log	and	the	application	log.

state

Is	an	arbitrary	integer	from	1	through	127	that	represents	information	about	the
invocation	state	of	the	error.	A	negative	value	for	state	defaults	to	1.

argument

Is	the	parameters	used	in	the	substitution	for	variables	defined	in	msg_str	or	the
message	corresponding	to	msg_id.	There	can	be	0	or	more	substitution
parameters;	however,	the	total	number	of	substitution	parameters	cannot	exceed
20.	Each	substitution	parameter	can	be	a	local	variable	or	any	of	these	data
types:	int1,	int2,	int4,	char,	varchar,	binary,	or	varbinary.	No	other	data	types
are	supported.

option

Is	a	custom	option	for	the	error.	option	can	be	one	of	these	values.

Value Description
LOG Logs	the	error	in	the	server	error	log	and	the

application	log.	Errors	logged	in	the	server	error	log
are	currently	limited	to	a	maximum	of	440	bytes.

NOWAIT Sends	messages	immediately	to	the	client.
SETERROR Sets	@@ERROR	value	to	msg_id	or	50000,	regardless

of	the	severity	level.

Remarks
If	a	sysmessages	error	is	used	and	the	message	was	created	using	the	format
shown	for	msg_str,	the	supplied	arguments	(argument1,	argument2,	and	so	on)
are	passed	to	the	message	of	the	supplied	msg_id.

When	you	use	RAISERROR	to	create	and	return	user-defined	error	messages,
use	sp_addmessage	to	add	user-defined	error	messages	and	sp_dropmessage	to
delete	user-defined	error	messages.

When	an	error	is	raised,	the	error	number	is	placed	in	the	@@ERROR	function,
which	stores	the	most	recently	generated	error	number.	@@ERROR	is	set	to	0
by	default	for	messages	with	a	severity	from	1	through	10.

Examples

A.	Create	an	ad	hoc	message
This	example	shows	two	errors	that	can	be	raised.	The	first	is	a	simple	error	with
a	static	message.	The	second	error	is	dynamically	built	based	on	the	attempted
modification.

CREATE	TRIGGER	employee_insupd
ON	employee
FOR	INSERT,	UPDATE
AS
/*	Get	the	range	of	level	for	this	job	type	from	the	jobs	table.	*/
DECLARE	@@MIN_LVL	tinyint,

			@@MAX_LVL	tinyint,
			@@EMP_LVL	tinyint,
			@@JOB_ID	smallint
SELECT	@@MIN_LVl	=	min_lvl,	
			@@MAX_LV	=	max_lvl,	
			@@	EMP_LVL	=	i.job_lvl,
			@@JOB_ID	=	i.job_id
FROM	employee	e,	jobs	j,	inserted	i	
WHERE	e.emp_id	=	i.emp_id	AND	i.job_id	=	j.job_id
IF	(@@JOB_ID	=	1)	and	(@@EMP_lVl	<>	10)	
BEGIN
			RAISERROR	('Job	id	1	expects	the	default	level	of	10.',	16,	1)
			ROLLBACK	TRANSACTION
END
ELSE
IF	NOT	@@	EMP_LVL	BETWEEN	@@MIN_LVL	AND	@@MAX_LVL)
BEGIN
			RAISERROR	('The	level	for	job_id:%d	should	be	between	%d	and	%d.',
						16,	1,	@@JOB_ID,	@@MIN_LVL,	@@MAX_LVL)
			ROLLBACK	TRANSACTION
END

B.	Create	an	ad	hoc	message	in	sysmessages
This	example	shows	how	to	achieve	the	same	results	with	RAISERROR	using
parameters	passed	to	a	message	stored	in	the	sysmessages	table	by	executing	the
employee_insupd	trigger.	The	message	was	added	to	the	sysmessages	table
with	the	sp_addmessage	system	stored	procedure	as	message	number	50005.

Note		This	example	is	shown	for	illustration	only.

RAISERROR	(50005,	16,	1,	@@JOB_ID,	@@MIN_LVL,	@@MAX_LVL)

See	Also

DECLARE	@local_variable

Functions

PRINT

sp_addmessage

sp_dropmessage

sysmessages

xp_logevent

Transact-SQL	Reference

RAND
Returns	a	random	float	value	from	0	through	1.

Syntax
RAND	([seed])

Arguments
seed

Is	an	integer	expression	(tinyint,	smallint,	or	int)	that	gives	the	seed	or	start
value.

Return	Types
float

Remarks
Repetitive	invocations	of	RAND()	in	a	single	query	will	produce	the	same	value.

Examples
This	example	produces	four	different	random	numbers	generated	with	the
RAND	function.

DECLARE	@counter	smallint
SET	@counter	=	1
WHILE	@counter	<	5
			BEGIN
						SELECT	RAND(@counter)	Random_Number
						SET	NOCOUNT	ON
						SET	@counter	=	@counter	+	1
						SET	NOCOUNT	OFF
			END

GO

Here	is	the	result	set:

Random_Number																																									

0.71359199321292355

(1	row(s)	affected)

Random_Number																																									

0.7136106261841817

(1	row(s)	affected)

Random_Number																																									

0.71362925915543995

(1	row(s)	affected)

Random_Number																																									

0.7136478921266981

(1	row(s)	affected)

See	Also

Mathematical	Functions

Transact-SQL	Reference

READTEXT
Reads	text,	ntext,	or	image	values	from	a	text,	ntext,	or	image	column,	starting
from	a	specified	offset	and	reading	the	specified	number	of	bytes.

Syntax
READTEXT	{	table.column	text_ptr	offset	size	}	[HOLDLOCK]

Arguments
table.column

Is	the	name	of	a	table	and	column	from	which	to	read.	Table	and	column
names	must	conform	to	the	rules	for	identifiers.	Specifying	the	table	and
column	names	is	required;	however,	specifying	the	database	name	and	owner
names	is	optional.

text_ptr

Is	a	valid	text	pointer.	text_ptr	must	be	binary(16).

offset

Is	the	number	of	bytes	(when	using	the	text	or	image	data	types)	or
characters	(when	using	the	ntext	data	type)	to	skip	before	starting	to	read	the
text,	image,	or	ntext	data.	When	using	ntext	data	type,	offset	is	the	number
of	characters	to	skip	before	starting	to	read	the	data.	When	using	text	or
image	data	types,	offset	is	the	number	of	bytes	to	skip	before	starting	to	read
the	data.

size

Is	the	number	of	bytes	(when	using	the	text	or	image	data	types)	or
characters	(when	using	the	ntext	data	type)	of	data	to	read.	If	size	is	0,	4	KB
bytes	of	data	are	read.

HOLDLOCK

Causes	the	text	value	to	be	locked	for	reads	until	the	end	of	the	transaction.
Other	users	can	read	the	value,	but	they	cannot	modify	it.

Remarks
Use	the	TEXTPTR	function	to	obtain	a	valid	text_ptr	value.	TEXTPTR	returns	a
pointer	to	the	text,	ntext,	or	image	column	in	the	specified	row	or	to	the	text,
ntext,	or	image	column	in	the	last	row	returned	by	the	query	if	more	than	one
row	is	returned.	Because	TEXTPTR	returns	a	16-byte	binary	string,	it	is	best	to
declare	a	local	variable	to	hold	the	text	pointer	and	then	use	the	variable	with
READTEXT.	For	more	information	about	declaring	a	local	variable,	see
DECLARE	@local_variable.

In	SQL	Server	2000,	in	row	text	pointers	may	exist	but	be	invalid.	For	more
information	about	the	text	in	row	option,	see	sp_tableoption.	For	more
information	about	invalidating	text	pointers,	see	sp_invalidate_textptr.

The	value	of	the	@@TEXTSIZE	function	supersedes	the	size	specified	for
READTEXT	if	it	is	less	than	the	specified	size	for	READTEXT.	The
@@TEXTSIZE	function	is	the	limit	on	the	number	of	bytes	of	data	to	be
returned	set	by	the	SET	TEXTSIZE	statement.	For	more	information	about	how
to	set	the	session	setting	for	TEXTSIZE,	see	SET	TEXTSIZE.

Permissions
READTEXT	permissions	default	to	users	with	SELECT	permissions	on	the
specified	table.	Permissions	are	transferrable	when	SELECT	permissions	are
transferred.

Examples
This	example	reads	the	second	through	twenty-sixth	characters	of	the	pr_info
column	in	the	pub_info	table.

USE	pubs
GO
DECLARE	@ptrval	varbinary(16)
SELECT	@ptrval	=	TEXTPTR(pr_info)	
			FROM	pub_info	pr	INNER	JOIN	publishers	p
						ON	pr.pub_id	=	p.pub_id	
						AND	p.pub_name	=	'New	Moon	Books'

READTEXT	pub_info.pr_info	@ptrval	1	25
GO

See	Also

@@TEXTSIZE

UPDATETEXT

WRITETEXT

Transact-SQL	Reference

real
For	more	information	about	the	real	data	type,	see	float	and	real.

See	Also

Data	Type	Conversion

Data	Types

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

RECONFIGURE
Updates	the	currently	configured	(the	config_value	column	in	the	sp_configure
result	set)	value	of	a	configuration	option	changed	with	the	sp_configure	system
stored	procedure.	Because	some	configuration	options	require	a	server	stop	and
restart	to	update	the	currently	running	value,	RECONFIGURE	does	not	always
update	the	currently	running	value	(the	run_value	column	in	the	sp_configure
result	set)	for	a	changed	configuration	value.

Syntax
RECONFIGURE	[WITH	OVERRIDE]

Arguments
RECONFIGURE

Specifies	that	if	the	configuration	setting	does	not	require	a	server	stop	and
restart,	the	currently	running	value	should	be	updated.	RECONFIGURE	also
checks	the	new	configuration	value	for	either	invalid	values	(for	example,	a
sort	order	value	that	does	not	exist	in	syscharsets)	or	nonrecommended
values	(for	example,	setting	allow	updates	to	1).	With	those	configuration
options	not	requiring	a	server	stop	and	restart,	the	currently	running	value
and	the	currently	configured	values	for	the	configuration	option	should	be
the	same	value	after	specifying	RECONFIGURE.

WITH	OVERRIDE

Disables	the	configuration	value	checking	(for	invalid	values	or	for
nonrecommended	values)	for	the	allow	updates,	recovery	interval,	or	time
slice	advanced	configuration	options.	In	addition,	RECONFIGURE	WITH
OVERRIDE	forces	the	reconfiguration	with	the	specified	value.	For
example,	the	min	server	memory	configuration	option	could	be	configured
with	a	value	greater	than	the	value	specified	in	the	max	server	memory
configuration	option.	However,	this	is	considered	a	fatal	error.	Therefore,
specifying	RECONFIGURE	WITH	OVERRIDE	would	not	disable
configuration	value	checking.	Any	configuration	option	can	be	reconfigured
using	the	WITH	OVERRIDE	option.

Remarks
sp_configure	does	not	accept	new	configuration	option	values	out	of	the
documented	valid	ranges	for	each	configuration	option.

Permissions
RECONFIGURE	permissions	default	to	members	of	the	sysadmin	and
serveradmin	fixed	server	roles,	and	are	not	transferable.

Examples
This	example	sets	the	upper	limit	for	the	network	packet	size	configuration
option	and	uses	RECONFIGURE	WITH	OVERRIDE	to	install	it.	Because	the
WITH	OVERRIDE	option	is	specified,	Microsoft®	SQL	Server™	does	not
check	the	value	specified	(8192)	to	see	if	it	is	a	valid	value	for	the	network
packet	size	configuration	option.

EXEC	sp_configure	'network	packet	size',	8192
RECONFIGURE	WITH	OVERRIDE
GO

See	Also

Setting	Configuration	Options

sp_configure

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

REPLACE
Replaces	all	occurrences	of	the	second	given	string	expression	in	the	first	string
expression	with	a	third	expression.

Syntax
REPLACE	('string_expression1'	,	'string_expression2'	,	'string_expression3')

Arguments
'string_expression1'

Is	the	string	expression	to	be	searched.	string_expression1	can	be	of
character	or	binary	data.

'string_expression2'

Is	the	string	expression	to	try	to	find.	string_expression2	can	be	of	character
or	binary	data.

'string_expression3'

Is	the	replacement	string	expression	string_expression3	can	be	of	character
or	binary	data.

Return	Types
Returns	character	data	if	string_expression	(1,	2,	or	3)	is	one	of	the	supported
character	data	types.	Returns	binary	data	if	string_expression	(1,	2,	or	3)	is	one
of	the	supported	binary	data	types.

Examples
This	example	replaces	the	string	cde	in	abcdefghi	with	xxx.

SELECT	REPLACE('abcdefghicde','cde','xxx')
GO

Here	is	the	result	set:

abxxxfghixxx
(1	row(s)	affected)

See	Also

Data	Types

String	Functions

Transact-SQL	Reference

REPLICATE
Repeats	a	character	expression	for	a	specified	number	of	times.

Syntax
REPLICATE	(character_expression	,	integer_expression)

Arguments
character_expression

Is	an	alphanumeric	expression	of	character	data.	character_expression	can	be
a	constant,	variable,	or	column	of	either	character	or	binary	data.

integer_expression

Is	a	positive	whole	number.	If	integer_expression	is	negative,	a	null	string	is
returned.

Return	Types
varchar

character_expression	must	be	of	a	data	type	that	is	implicitly	convertible	to
varchar.	Otherwise,	use	the	CAST	function	to	convert	explicitly
character_expression.

Remarks
Compatibility	levels	can	affect	return	values.	For	more	information,	see
sp_dbcmptlevel.

Examples

A.	Use	REPLICATE
This	example	replicates	each	author's	first	name	twice.

USE	pubs
SELECT	REPLICATE(au_fname,	2)	
FROM	authors
ORDER	BY	au_fname

Here	is	the	result	set:

AbrahamAbraham																											
AkikoAkiko																															
AlbertAlbert																													
AnnAnn																																			
AnneAnne																																	
BurtBurt																																	
CharleneCharlene																									
CherylCheryl																													
DeanDean																																	
DirkDirk																																	
HeatherHeather																											
InnesInnes																															
JohnsonJohnson																											
LiviaLivia																															
MarjorieMarjorie																									
MeanderMeander																											
MichaelMichael																											
MichelMichel																													
MorningstarMorningstar																			
ReginaldReginald																									
SherylSheryl																													
StearnsStearns																											
SylviaSylvia																													
(23	row(s)	affected)

B.	Use	REPLICATE,	SUBSTRING,	and	SPACE

This	example	uses	REPLICATE,	SUBSTRING,	and	SPACE	to	produce	a
telephone	and	fax	listing	of	all	authors	in	the	authors	table.

--	Replicate	phone	number	twice	because	the	fax	number	is	identical	to	
--	the	author	telephone	number.
USE	pubs
GO
SELECT	SUBSTRING((UPPER(au_lname)	+	','	+	SPACE(1)	+	au_fname),	1,	35)	
			AS	Name,	phone	AS	Phone,	REPLICATE(phone,1)	AS	Fax
FROM	authors
ORDER	BY	au_lname,	au_fname
GO

Here	is	the	result	set:

Name																																Phone								Fax																				
-----------------------------------	------------	-----------------------
BENNET,	Abraham																					415	658-9932	415	658-9932											
BLOTCHET-HALLS,	Reginald												503	745-6402	503	745-6402											
CARSON,	Cheryl																						415	548-7723	415	548-7723											
DEFRANCE,	Michel																				219	547-9982	219	547-9982											
DEL	CASTILLO,	Innes																	615	996-8275	615	996-8275											
DULL,	Ann																											415	836-7128	415	836-7128											
GREEN,	Marjorie																					415	986-7020	415	986-7020											
GREENE,	Morningstar																	615	297-2723	615	297-2723											
GRINGLESBY,	Burt																				707	938-6445	707	938-6445											
HUNTER,	Sheryl																						415	836-7128	415	836-7128											
KARSEN,	Livia																							415	534-9219	415	534-9219											
LOCKSLEY,	Charlene																		415	585-4620	415	585-4620											
MACFEATHER,	Stearns																	415	354-7128	415	354-7128											
MCBADDEN,	Heather																			707	448-4982	707	448-4982											
O'LEARY,	Michael																				408	286-2428	408	286-2428											
PANTELEY,	Sylvia																				301	946-8853	301	946-8853											
RINGER,	Albert																						801	826-0752	801	826-0752											

RINGER,	Anne																								801	826-0752	801	826-0752											
SMITH,	Meander																						913	843-0462	913	843-0462											
STRAIGHT,	Dean																						415	834-2919	415	834-2919											
STRINGER,	Dirk																						415	843-2991	415	843-2991											
WHITE,	Johnson																						408	496-7223	408	496-7223											
YOKOMOTO,	Akiko																					415	935-4228	415	935-4228											
(23	row(s)	affected)

C.	Use	REPLICATE	and	DATALENGTH
This	example	left	pads	numbers	to	a	specified	length	as	they	are	converted	from
a	numeric	data	type	to	character	or	Unicode.

USE	Northwind
GO
DROP	TABLE	t1
GO
CREATE	TABLE	t1	
(
	c1	varchar(3),
	c2	char(3)
)
GO
INSERT	INTO	t1	VALUES	('2',	'2')
INSERT	INTO	t1	VALUES	('37',	'37')
INSERT	INTO	t1	VALUES	('597',	'597')
GO
SELECT	REPLICATE('0',	3	-	DATALENGTH(c1))	+	c1	AS	[Varchar	Column],
							REPLICATE('0',	3	-	DATALENGTH(c2))	+	c2	AS	[Char	Column]
FROM	t1
GO

See	Also

Data	Types

String	Functions

Transact-SQL	Reference

Reserved	Keywords
Microsoft®	SQL	Server™	2000	uses	reserved	keywords	for	defining,
manipulating,	and	accessing	databases.	Reserved	keywords	are	part	of	the
grammar	of	the	Transact-SQL	language	used	by	SQL	Server	to	parse	and
understand	Transact-SQL	statements	and	batches.	Although	it	is	syntactically
possible	to	use	SQL	Server	reserved	keywords	as	identifiers	and	object	names	in
Transact-SQL	scripts,	this	can	be	done	only	using	delimited	identifiers.

The	following	table	lists	SQL	Server	reserved	keywords.

ADD EXCEPT PERCENT
ALL EXEC PLAN
ALTER EXECUTE PRECISION
AND EXISTS PRIMARY
ANY EXIT PRINT
AS FETCH PROC
ASC FILE PROCEDURE
AUTHORIZATION FILLFACTOR PUBLIC
BACKUP FOR RAISERROR
BEGIN FOREIGN READ
BETWEEN FREETEXT READTEXT
BREAK FREETEXTTABLE RECONFIGURE
BROWSE FROM REFERENCES
BULK FULL REPLICATION
BY FUNCTION RESTORE
CASCADE GOTO RESTRICT
CASE GRANT RETURN
CHECK GROUP REVOKE
CHECKPOINT HAVING RIGHT
CLOSE HOLDLOCK ROLLBACK
CLUSTERED IDENTITY ROWCOUNT
COALESCE IDENTITY_INSERT ROWGUIDCOL

COLLATE IDENTITYCOL RULE
COLUMN IF SAVE
COMMIT IN SCHEMA
COMPUTE INDEX SELECT
CONSTRAINT INNER SESSION_USER
CONTAINS INSERT SET
CONTAINSTABLE INTERSECT SETUSER
CONTINUE INTO SHUTDOWN
CONVERT IS SOME
CREATE JOIN STATISTICS
CROSS KEY SYSTEM_USER
CURRENT KILL TABLE
CURRENT_DATE LEFT TEXTSIZE
CURRENT_TIME LIKE THEN
CURRENT_TIMESTAMP LINENO TO
CURRENT_USER LOAD TOP
CURSOR NATIONAL TRAN
DATABASE NOCHECK TRANSACTION
DBCC NONCLUSTERED TRIGGER
DEALLOCATE NOT TRUNCATE
DECLARE NULL TSEQUAL
DEFAULT NULLIF UNION
DELETE OF UNIQUE
DENY OFF UPDATE
DESC OFFSETS UPDATETEXT
DISK ON USE
DISTINCT OPEN USER
DISTRIBUTED OPENDATASOURCE VALUES
DOUBLE OPENQUERY VARYING
DROP OPENROWSET VIEW
DUMMY OPENXML WAITFOR
DUMP OPTION WHEN
ELSE OR WHERE

END ORDER WHILE
ERRLVL OUTER WITH
ESCAPE OVER WRITETEXT

In	addition,	the	SQL-92	standard	defines	a	list	of	reserved	keywords.	Avoid
using	SQL-92	reserved	keywords	for	object	names	and	identifiers.	The	ODBC
reserved	keyword	list	(shown	below)	is	the	same	as	the	SQL-92	reserved
keyword	list.

Note		The	SQL-92	reserved	keywords	list	sometimes	can	be	more	restrictive
than	SQL	Server	and	at	other	times	less	restrictive.	For	example,	the	SQL-92
reserved	keywords	list	contains	INT,	which	SQL	Server	does	not	need	to
distinguish	as	a	reserved	keyword.

Transact-SQL	reserved	keywords	can	be	used	as	identifiers	or	names	of
databases	or	database	objects,	such	as	tables,	columns,	views,	and	so	on.	Use
either	quoted	identifiers	or	delimited	identifiers.	The	use	of	reserved	keywords
as	the	names	of	variables	and	stored	procedure	parameters	is	not	restricted.	For
more	information,	see	Using	Identifiers.

ODBC	Reserved	Keywords
The	following	words	are	reserved	for	use	in	ODBC	function	calls.	These	words
do	not	constrain	the	minimum	SQL	grammar;	however,	to	ensure	compatibility
with	drivers	that	support	the	core	SQL	grammar,	applications	should	avoid	using
these	keywords.

This	is	the	current	list	of	ODBC	reserved	keywords.	For	more	information,	see
Microsoft	ODBC	3.0	Programmer's	Reference,	Volume	2,	Appendix	C.

ABSOLUTE EXEC OVERLAPS
ACTION EXECUTE PAD
ADA EXISTS PARTIAL
ADD EXTERNAL PASCAL
ALL EXTRACT POSITION
ALLOCATE FALSE PRECISION
ALTER FETCH PREPARE
AND FIRST PRESERVE

JavaScript:hhobj_1.Click()

ANY FLOAT PRIMARY
ARE FOR PRIOR
AS FOREIGN PRIVILEGES
ASC FORTRAN PROCEDURE
ASSERTION FOUND PUBLIC
AT FROM READ
AUTHORIZATION FULL REAL
AVG GET REFERENCES
BEGIN GLOBAL RELATIVE
BETWEEN GO RESTRICT
BIT GOTO REVOKE
BIT_LENGTH GRANT RIGHT
BOTH GROUP ROLLBACK
BY HAVING ROWS
CASCADE HOUR SCHEMA
CASCADED IDENTITY SCROLL
CASE IMMEDIATE SECOND
CAST IN SECTION
CATALOG INCLUDE SELECT
CHAR INDEX SESSION
CHAR_LENGTH INDICATOR SESSION_USER
CHARACTER INITIALLY SET
CHARACTER_LENGTH INNER SIZE
CHECK INPUT SMALLINT
CLOSE INSENSITIVE SOME
COALESCE INSERT SPACE
COLLATE INT SQL
COLLATION INTEGER SQLCA
COLUMN INTERSECT SQLCODE
COMMIT INTERVAL SQLERROR
CONNECT INTO SQLSTATE
CONNECTION IS SQLWARNING
CONSTRAINT ISOLATION SUBSTRING

CONSTRAINTS JOIN SUM

CONTINUE KEY SYSTEM_USER
CONVERT LANGUAGE TABLE
CORRESPONDING LAST TEMPORARY
COUNT LEADING THEN
CREATE LEFT TIME
CROSS LEVEL TIMESTAMP
CURRENT LIKE TIMEZONE_HOUR
CURRENT_DATE LOCAL TIMEZONE_MINUTE
CURRENT_TIME LOWER TO
CURRENT_TIMESTAMPMATCH TRAILING
CURRENT_USER MAX TRANSACTION
CURSOR MIN TRANSLATE
DATE MINUTE TRANSLATION
DAY MODULE TRIM
DEALLOCATE MONTH TRUE
DEC NAMES UNION
DECIMAL NATIONAL UNIQUE
DECLARE NATURAL UNKNOWN
DEFAULT NCHAR UPDATE
DEFERRABLE NEXT UPPER
DEFERRED NO USAGE
DELETE NONE USER
DESC NOT USING
DESCRIBE NULL VALUE
DESCRIPTOR NULLIF VALUES
DIAGNOSTICS NUMERIC VARCHAR
DISCONNECT OCTET_LENGTH VARYING
DISTINCT OF VIEW
DOMAIN ON WHEN
DOUBLE ONLY WHENEVER
DROP OPEN WHERE
ELSE OPTION WITH

END OR WORK
END-EXEC ORDER WRITE
ESCAPE OUTER YEAR
EXCEPT OUTPUT ZONE
EXCEPTION 	 	

Future	Keywords
The	following	keywords	could	be	reserved	in	future	releases	of	SQL	Server	as
new	features	are	implemented.	Consider	avoiding	the	use	of	these	words	as
identifiers.

ABSOLUTE FOUND PRESERVE
ACTION FREE PRIOR
ADMIN GENERAL PRIVILEGES
AFTER GET READS
AGGREGATE GLOBAL REAL
ALIAS GO RECURSIVE
ALLOCATE GROUPING REF
ARE HOST REFERENCING
ARRAY HOUR RELATIVE
ASSERTION IGNORE RESULT
AT IMMEDIATE RETURNS
BEFORE INDICATOR ROLE
BINARY INITIALIZE ROLLUP
BIT INITIALLY ROUTINE
BLOB INOUT ROW
BOOLEAN INPUT ROWS
BOTH INT SAVEPOINT
BREADTH INTEGER SCROLL
CALL INTERVAL SCOPE
CASCADED ISOLATION SEARCH
CAST ITERATE SECOND

CATALOG LANGUAGE SECTION
CHAR LARGE SEQUENCE
CHARACTER LAST SESSION
CLASS LATERAL SETS
CLOB LEADING SIZE
COLLATION LESS SMALLINT
COMPLETION LEVEL SPACE
CONNECT LIMIT SPECIFIC
CONNECTION LOCAL SPECIFICTYPE
CONSTRAINTS LOCALTIME SQL
CONSTRUCTOR LOCALTIMESTAMP SQLEXCEPTION
CORRESPONDING LOCATOR SQLSTATE
CUBE MAP SQLWARNING
CURRENT_PATH MATCH START
CURRENT_ROLE MINUTE STATE
CYCLE MODIFIES STATEMENT
DATA MODIFY STATIC
DATE MODULE STRUCTURE
DAY MONTH TEMPORARY
DEC NAMES TERMINATE
DECIMAL NATURAL THAN
DEFERRABLE NCHAR TIME
DEFERRED NCLOB TIMESTAMP
DEPTH NEW TIMEZONE_HOUR
DEREF NEXT TIMEZONE_MINUTE
DESCRIBE NO TRAILING
DESCRIPTOR NONE TRANSLATION
DESTROY NUMERIC TREAT
DESTRUCTOR OBJECT TRUE
DETERMINISTIC OLD UNDER
DICTIONARY ONLY UNKNOWN
DIAGNOSTICS OPERATION UNNEST
DISCONNECT ORDINALITY USAGE

DOMAIN OUT USING

DYNAMIC OUTPUT VALUE
EACH PAD VARCHAR
END-EXEC PARAMETER VARIABLE
EQUALS PARAMETERS WHENEVER
EVERY PARTIAL WITHOUT
EXCEPTION PATH WORK
EXTERNAL POSTFIX WRITE
FALSE PREFIX YEAR
FIRST PREORDER ZONE
FLOAT PREPARE 	

See	Also

SET	QUOTED_IDENTIFIER

Using	Reserved	Keywords

JavaScript:hhobj_2.Click()

Transact-SQL	Reference

RESTORE
Restores	backups	taken	using	the	BACKUP	command.	For	more	information
about	database	back	up	and	restore	operations,	see	Backing	Up	and	Restoring
Databases.

Syntax
Restore	an	entire	database:

RESTORE	DATABASE	{	database_name	|	@database_name_var	}	
[FROM	<	backup_device	>	[,...n]]	
[WITH	
				[RESTRICTED_USER]	
				[[,]	FILE	=	{	file_number	|	@file_number	}]	
				[[,]	PASSWORD	=	{	password	|	@password_variable	}]	
				[[,]	MEDIANAME	=	{	media_name	|	@media_name_variable	}]	
				[[,]	MEDIAPASSWORD	=	{	mediapassword	|	@mediapassword_variable	}
]	
				[[,]	MOVE	'logical_file_name'	TO	'operating_system_file_name']	
												[,...n]	
				[[,]	KEEP_REPLICATION]	
				[[,]	{	NORECOVERY	|	RECOVERY	|	STANDBY	=	undo_file_name	}]	
				[[,]	{	NOREWIND	|	REWIND	}]	
				[[,]	{	NOUNLOAD	|	UNLOAD	}]	
				[[,]	REPLACE]	
				[[,]	RESTART]	
				[[,]	STATS	[=	percentage]]	
]

Restore	part	of	a	database:

RESTORE	DATABASE	{	database_name	|	@database_name_var	}	
				<	file_or_filegroup	>	[,...n]	
[FROM	<	backup_device	>	[,...n]]	
[WITH	
				{	PARTIAL	}	

JavaScript:hhobj_1.Click()

				[[,]	FILE	=	{	file_number	|	@file_number	}]	
				[[,]	PASSWORD	=	{	password	|	@password_variable	}]	
				[[,]	MEDIANAME	=	{	media_name	|	@media_name_variable	}]	
				[[,]	MEDIAPASSWORD	=	{	mediapassword	|	@mediapassword_variable	}
]	
				[[,]	MOVE	'logical_file_name'	TO	'operating_system_file_name']	
												[,...n]	
				[[,]	NORECOVERY]	
				[[,]	{	NOREWIND	|	REWIND	}]	
				[[,]	{	NOUNLOAD	|	UNLOAD	}]	
				[[,]	REPLACE]	
				[[,]	RESTRICTED_USER]
				[[,]	RESTART]	
				[[,]	STATS	[=	percentage]]	
]

Restore	specific	files	or	filegroups:

RESTORE	DATABASE	{	database_name	|	@database_name_var	}	
				<	file_or_filegroup	>	[,...n]	
[FROM	<	backup_device	>	[,...n]]	
[WITH	
				[RESTRICTED_USER]	
				[[,]	FILE	=	{	file_number	|	@file_number	}]	
				[[,]	PASSWORD	=	{	password	|	@password_variable	}]	
				[[,]	MEDIANAME	=	{	media_name	|	@media_name_variable	}]	
				[[,]	MEDIAPASSWORD	=	{	mediapassword	|	@mediapassword_variable	}
]
				[[,]	MOVE	'logical_file_name'	TO	'operating_system_file_name']	
												[,...n]
				[[,]	NORECOVERY]	
				[[,]	{	NOREWIND	|	REWIND	}]	
				[[,]	{	NOUNLOAD	|	UNLOAD	}]	
				[[,]	REPLACE]	
				[[,]	RESTART]	
				[[,]	STATS	[=	percentage]]	
]

Restore	a	transaction	log:

RESTORE	LOG	{	database_name	|	@database_name_var	}	
[FROM	<	backup_device	>	[,...n]]	
[WITH	
				[RESTRICTED_USER]	
				[[,]	FILE	=	{	file_number	|	@file_number	}]	
				[[,]	PASSWORD	=	{	password	|	@password_variable	}]	
				[[,]	MOVE	'logical_file_name'	TO	'operating_system_file_name']	
												[,...n]	
				[[,]	MEDIANAME	=	{	media_name	|	@media_name_variable	}]	
				[[,]	MEDIAPASSWORD	=	{	mediapassword	|	@mediapassword_variable	}
]	
				[[,]	KEEP_REPLICATION]	
				[[,]	{	NORECOVERY	|	RECOVERY	|	STANDBY	=	undo_file_name	}]	
				[[,]	{	NOREWIND	|	REWIND	}]	
				[[,]	{	NOUNLOAD	|	UNLOAD	}]	
				[[,]	RESTART]	
				[[,]	STATS	[=	percentage]]	
				[[,]	STOPAT	=	{	date_time	|	@date_time_var	}	
								|	[,]	STOPATMARK	=	'mark_name'	[AFTER	datetime]	
								|	[,]	STOPBEFOREMARK	=	'mark_name'	[AFTER	datetime]	
]	
]

<	backup_device	>	::=	
				{	
								{	'logical_backup_device_name'	|	@logical_backup_device_name_var	}	
								|	{	DISK	|	TAPE	}	=	
												{	'physical_backup_device_name'	|
@physical_backup_device_name_var	}	
				}

<	file_or_filegroup	>	::=	
				{	
								FILE	=	{	logical_file_name	|	@logical_file_name_var	}	
								|	
								FILEGROUP	=	{	logical_filegroup_name	|	@logical_filegroup_name_var
}	
				}

Arguments
DATABASE

Specifies	the	complete	restore	of	the	database	from	a	backup.	If	a	list	of	files
and	filegroups	is	specified,	only	those	files	and	filegroups	are	restored.

{database_name	|	@database_name_var}

Is	the	database	that	the	log	or	complete	database	is	restored	into.	If	supplied
as	a	variable	(@database_name_var),	this	name	can	be	specified	either	as	a
string	constant	(@database_name_var	=	database	name)	or	as	a	variable	of
character	string	data	type,	except	for	the	ntext	or	text	data	types.

FROM

Specifies	the	backup	devices	from	which	to	restore	the	backup.	If	the	FROM
clause	is	not	specified,	the	restore	of	a	backup	does	not	take	place.	Instead,
the	database	is	recovered.	Omitting	the	FROM	clause	can	be	used	to	attempt
recovery	of	a	database	that	has	been	restored	with	the	NORECOVERY
option,	or	to	switch	over	to	a	standby	server.	If	the	FROM	clause	is	omitted,
NORECOVERY,	RECOVERY,	or	STANDBY	must	be	specified.

<backup_device>

Specifies	the	logical	or	physical	backup	devices	to	use	for	the	restore
operation.	Can	be	one	or	more	of	the	following:

{'logical_backup_device_name'	|	@logical_backup_device_name_var}
Is	the	logical	name,	which	must	follow	the	rules	for	identifiers,	of	the
backup	device(s)	created	by	sp_addumpdevice	from	which	the	database
is	restored.	If	supplied	as	a	variable
(@logical_backup_device_name_var),	the	backup	device	name	can	be
specified	either	as	a	string	constant	(@logical_backup_device_name_var
=	logical_backup_device_name)	or	as	a	variable	of	character	string	data
type,	except	for	the	ntext	or	text	data	types.

{DISK	|	TAPE	}	=	
'physical_backup_device_name'	|	@physical_backup_device_name_var

Allows	backups	to	be	restored	from	the	named	disk	or	tape	device.	The

device	types	of	disk	and	tape	should	be	specified	with	the	actual	name
(for	example,	complete	path	and	file	name)	of	the	device:	DISK	=
'C:\Program	Files\Microsoft	SQL
Server\MSSQL\BACKUP\Mybackup.dat'	or	TAPE	=	'\\.\TAPE0'.	If
specified	as	a	variable	(@physical_backup_device_name_var),	the
device	name	can	be	specified	either	as	a	string	constant
(@physical_backup_device_name_var	=
'physcial_backup_device_name')	or	as	a	variable	of	character	string	data
type,	except	for	the	ntext	or	text	data	types.

If	using	either	a	network	server	with	a	UNC	name	or	a	redirected
drive	letter,	specify	a	device	type	of	disk.	The	account	under
which	you	are	running	SQL	Server	must	have	READ	access	to
the	remote	computer	or	network	server	in	order	to	perform	a
RESTORE	operation.

n

Is	a	placeholder	that	indicates	multiple	backup	devices	and	logical	backup
devices	can	be	specified.	The	maximum	number	of	backup	devices	or	logical
backup	devices	is	64.

RESTRICTED_USER

Restricts	access	for	the	newly	restored	database	to	members	of	the
db_owner,	dbcreator,	or	sysadmin	roles.	In	SQL	Server	2000,
RESTRICTED_USER	replaces	the	DBO_ONLY	option.	DBO_ONLY	is
available	only	for	backward	compatibility.

Use	with	the	RECOVERY	option.

For	more	information,	see	Setting	Database	Options.

FILE	=	{	file_number	|	@file_number	}

Identifies	the	backup	set	to	be	restored.	For	example,	a	file_number	of	1
indicates	the	first	backup	set	on	the	backup	medium	and	a	file_number	of	2
indicates	the	second	backup	set.

PASSWORD	=	{	password	|	@password_variable	}

Provides	the	password	for	the	backup	set.	PASSWORD	is	a	character	string.

JavaScript:hhobj_2.Click()

If	a	password	was	provided	when	the	backup	set	was	created,	the	password
must	be	supplied	to	perform	any	restore	operation	from	the	backup	set.

For	more	information	about	using	passwords,	see	Permissions.

MEDIANAME	=	{media_name	|	@media_name_variable}

Specifies	the	name	for	the	media.	If	provided,	the	media	name	must	match
the	media	name	on	the	backup	volume(s);	otherwise,	the	restore	operation
terminates.	If	no	media	name	is	given	in	the	RESTORE	statement,	the	check
for	a	matching	media	name	on	the	backup	volume(s)	is	not	performed.

IMPORTANT		Consistently	using	media	names	in	backup	and	restore	operations
provides	an	extra	safety	check	for	the	media	selected	for	the	restore	operation.

MEDIAPASSWORD	=	{	mediapassword	|	@mediapassword_variable	}

Supplies	the	password	for	the	media	set.	MEDIAPASSWORD	is	a	character
string.

If	a	password	was	provided	when	the	media	set	was	formatted,	that	password
must	be	supplied	to	access	any	backup	set	on	that	media	set.

MOVE	'logical_file_name'	TO	'operating_system_file_name'

Specifies	that	the	given	logical_file_name	should	be	moved	to
operating_system_file_name.	By	default,	the	logical_file_name	is	restored	to
its	original	location.	If	the	RESTORE	statement	is	used	to	copy	a	database	to
the	same	or	different	server,	the	MOVE	option	may	be	needed	to	relocate	the
database	files	and	to	avoid	collisions	with	existing	files.	Each	logical	file	in
the	database	can	be	specified	in	different	MOVE	statements.

Note		Use	RESTORE	FILELISTONLY	to	obtain	a	list	of	the	logical	files	from
the	backup	set.

For	more	information,	see	Copying	Databases.

n

Is	a	placeholder	that	indicates	more	than	one	logical	file	can	be	moved	by
specifying	multiple	MOVE	statements.

NORECOVERY

JavaScript:hhobj_3.Click()

Instructs	the	restore	operation	to	not	roll	back	any	uncommitted	transactions.
Either	the	NORECOVERY	or	STANDBY	option	must	be	specified	if	another
transaction	log	has	to	be	applied.	If	neither	NORECOVERY,	RECOVERY,
or	STANDBY	is	specified,	RECOVERY	is	the	default.

SQL	Server	requires	that	the	WITH	NORECOVERY	option	be	used	on	all
but	the	final	RESTORE	statement	when	restoring	a	database	backup	and
multiple	transaction	logs,	or	when	multiple	RESTORE	statements	are	needed
(for	example,	a	full	database	backup	followed	by	a	differential	database
backup).

Note		When	specifying	the	NORECOVERY	option,	the	database	is	not	usable	in
this	intermediate,	nonrecovered	state.

When	used	with	a	file	or	filegroup	restore	operation,	NORECOVERY	forces
the	database	to	remain	in	the	restoring	state	after	the	restore	operation.	This
is	useful	in	either	of	these	situations:

A	restore	script	is	being	run	and	the	log	is	always	being	applied.

A	sequence	of	file	restores	is	used	and	the	database	is	not	intended	to	be
usable	between	two	of	the	restore	operations.

RECOVERY

Instructs	the	restore	operation	to	roll	back	any	uncommitted	transactions.
After	the	recovery	process,	the	database	is	ready	for	use.

If	subsequent	RESTORE	operations	(RESTORE	LOG,	or	RESTORE
DATABASE	from	differential)	are	planned,	NORECOVERY	or	STANDBY
should	be	specified	instead.

If	neither	NORECOVERY,	RECOVERY,	or	STANDBY	is	specified,
RECOVERY	is	the	default.	When	restoring	backup	sets	from	an	earlier
version	of	SQL	Server,	a	database	upgrade	may	be	required.	This	upgrade	is
performed	automatically	when	WITH	RECOVERY	is	specified.	For	more
information,	see	Transaction	Log	Backups	.

STANDBY	=	undo_file_name

Specifies	the	undo	file	name	so	the	recovery	effects	can	be	undone.	The	size

JavaScript:hhobj_4.Click()

required	for	the	undo	file	depends	on	the	volume	of	undo	actions	resulting
from	uncommitted	transactions.	If	neither	NORECOVERY,	RECOVERY,	or
STANDBY	is	specified,	RECOVERY	is	the	default.

STANDBY	allows	a	database	to	be	brought	up	for	read-only	access	between
transaction	log	restores	and	can	be	used	with	either	warm	standby	server
situations	or	special	recovery	situations	in	which	it	is	useful	to	inspect	the
database	between	log	restores.

If	the	specified	undo	file	name	does	not	exist,	SQL	Server	creates	it.	If	the
file	does	exist,	SQL	Server	overwrites	it.

The	same	undo	file	can	be	used	for	consecutive	restores	of	the	same
database.	For	more	information,	see	Using	Standby	Servers.

IMPORTANT		If	free	disk	space	is	exhausted	on	the	drive	containing	the	specified
undo	file	name,	the	restore	operation	stops.

STANDBY	is	not	allowed	when	a	database	upgrade	is	necessary.

KEEP_REPLICATION

Instructs	the	restore	operation	to	preserve	replication	settings	when	restoring
a	published	database	to	a	server	other	than	that	on	which	it	was	created.
KEEP_REPLICATION	is	to	be	used	when	setting	up	replication	to	work
with	log	shipping.	It	prevents	replication	settings	from	being	removed	when
a	database	or	log	backup	is	restored	on	a	warm	standby	server	and	the
database	is	recovered.	Specifying	this	option	when	restoring	a	backup	with
the	NORECOVERY	option	is	not	permitted.

NOUNLOAD

Specifies	that	the	tape	is	not	unloaded	automatically	from	the	tape	drive	after
a	RESTORE.	NOUNLOAD	remains	set	until	UNLOAD	is	specified.	This
option	is	used	only	for	tape	devices.	If	a	non-tape	device	is	being	used	for
RESTORE,	this	option	is	ignored.

NOREWIND

Specifies	that	SQL	Server	will	keep	the	tape	open	after	the	backup	operation.
Keeping	the	tape	open	prevents	other	processes	from	accessing	the	tape.	The
tape	will	not	be	released	until	a	REWIND	or	UNLOAD	statement	is	issued,

JavaScript:hhobj_5.Click()

or	the	server	is	shut	down.	A	list	of	currently	open	tapes	can	be	found	by
querying	the	sysopentapes	table	in	the	master	database.

NOREWIND	implies	NOUNLOAD.	This	option	is	used	only	for	tape
devices.	If	a	non-tape	device	is	being	used	for	RESTORE,	this	option	is
ignored.

REWIND

Specifies	that	SQL	Server	will	release	and	rewind	the	tape.	If	neither
NOREWIND	nor	REWIND	is	specified,	REWIND	is	the	default.	This
option	is	used	only	for	tape	devices.	If	a	non-tape	device	is	being	used	for
RESTORE,	this	option	is	ignored.

UNLOAD

Specifies	that	the	tape	is	automatically	rewound	and	unloaded	when	the
RESTORE	is	finished.	UNLOAD	is	set	by	default	when	a	new	user	session
is	started.	It	remains	set	until	NOUNLOAD	is	specified.	This	option	is	used
only	for	tape	devices.	If	a	non-tape	device	is	being	used	for	RESTORE,	this
option	is	ignored.

REPLACE

Specifies	that	SQL	Server	should	create	the	specified	database	and	its	related
files	even	if	another	database	already	exists	with	the	same	name.	In	such	a
case,	the	existing	database	is	deleted.	When	the	REPLACE	option	is	not
specified,	a	safety	check	occurs	(which	prevents	overwriting	a	different
database	by	accident).	The	safety	check	ensures	that	the	RESTORE
DATABASE	statement	will	not	restore	the	database	to	the	current	server	if:

a.	 The	database	named	in	the	RESTORE	statement	already	exists	on	the
current	server,	and

b.	 The	database	name	is	different	from	the	database	name	recorded	in	the
backup	set.

REPLACE	also	allows	RESTORE	to	overwrite	an	existing	file	which	cannot
be	verified	as	belonging	to	the	database	being	restored.	Normally,	RESTORE
will	refuse	to	overwrite	pre-existing	files.

RESTART

Specifies	that	SQL	Server	should	restart	a	restore	operation	that	has	been
interrupted.	RESTART	restarts	the	restore	operation	at	the	point	it	was
interrupted.

IMPORTANT		This	option	can	only	be	used	for	restores	directed	from	tape	media
and	for	restores	that	span	multiple	tape	volumes.

STATS	[=	percentage]

Displays	a	message	each	time	another	percentage	completes	and	is	used	to
gauge	progress.	If	percentage	is	omitted,	SQL	Server	displays	a	message
after	every	10	percent	completed.

PARTIAL

Specifies	a	partial	restore	operation.	Application	or	user	errors	often	affect	an
isolated	portion	of	the	database,	such	as	a	table.	Examples	of	this	type	of
error	include	an	invalid	update	or	a	table	dropped	by	mistake.	To	support
recovery	from	these	events,	SQL	Server	provides	a	mechanism	to	restore	part
of	the	database	to	another	location	so	that	the	damaged	or	missing	data	can
be	copied	back	to	the	original	database.

The	granularity	of	the	partial	restore	operation	is	the	database	filegroup.	The
primary	file	and	filegroup	are	always	restored,	along	with	the	files	that	you
specify	and	their	corresponding	filegroups.	The	result	is	a	subset	of	the
database.	Filegroups	that	are	not	restored	are	marked	as	offline	and	are	not
accessible.

For	more	information,	see	Partial	Database	Restore	Operations.

<file_or_filegroup>

Specifies	the	names	of	the	logical	files	or	filegroups	to	include	in	the
database	restore.	Multiple	files	or	filegroups	can	be	specified.

FILE	=	{logical_file_name	|	@logical_file_name_var}
Names	one	or	more	files	to	include	in	the	database	restore.

FILEGROUP	=	{logical_filegroup_name	|	@logical_filegroup_name_var}
Names	one	or	more	filegroups	to	include	in	the	database	restore.

JavaScript:hhobj_6.Click()

When	this	option	is	used,	the	transaction	log	must	be	applied	to
the	database	files	after	the	last	file	or	filegroup	restore	operation
to	roll	the	files	forward	to	be	consistent	with	the	rest	of	the
database.	If	none	of	the	files	being	restored	have	been	modified
since	they	were	last	backed	up,	a	transaction	log	does	not	have	to
be	applied.	The	RESTORE	statement	informs	the	user	of	this
situation.

n

Is	a	placeholder	indicating	that	multiple	files	and	filegroups	may	be
specified.	There	is	no	maximum	number	of	files	or	filegroups.

LOG

Specifies	that	a	transaction	log	backup	is	to	be	applied	to	this	database.
Transaction	logs	must	be	applied	in	sequential	order.	SQL	Server	checks	the
backed	up	transaction	log	to	ensure	that	the	transactions	are	being	loaded
into	the	correct	database	and	in	the	correct	sequence.	To	apply	multiple
transaction	logs,	use	the	NORECOVERY	option	on	all	restore	operations
except	the	last.	For	more	information,	see	Transaction	Log	Backups.

STOPAT	=	date_time	|	@date_time_var

Specifies	that	the	database	be	restored	to	the	state	it	was	in	as	of	the	specified
date	and	time.	If	a	variable	is	used	for	STOPAT,	the	variable	must	be
varchar,	char,	smalldatetime,	or	datetime	data	type.	Only	transaction	log
records	written	before	the	specified	date	and	time	are	applied	to	the	database.

Note		If	you	specify	a	STOPAT	time	that	is	beyond	the	end	of	the	RESTORE
LOG	operation,	the	database	is	left	in	an	unrecovered	state,	just	as	if	RESTORE
LOG	had	been	run	with	NORECOVERY.

STOPATMARK	=	'mark_name'	[AFTER	datetime]

Specifies	recovery	to	the	specified	mark,	including	the	transaction	that
contains	the	mark.	If	AFTER	datetime	is	omitted,	recovery	stops	at	the	first
mark	with	the	specified	name.	If	AFTER	datetime	is	specified,	recovery
stops	at	the	first	mark	having	the	specified	name	exactly	at	or	after	datetime.

STOPBEFOREMARK	=	'mark_name'	[AFTER	datetime]

JavaScript:hhobj_7.Click()

Specifies	recovery	to	the	specified	mark	but	does	not	include	the	transaction
that	contains	the	mark.	If	AFTER	datetime	is	omitted,	recovery	stops	at	the
first	mark	with	the	specified	name.	If	AFTER	datetime	is	specified,	recovery
stops	at	the	first	mark	having	the	specified	name	exactly	at	or	after	datetime.

Remarks
During	the	restore,	the	specified	database	must	not	be	in	use.	Any	data	in	the
specified	database	is	replaced	by	the	restored	data.

For	more	information	about	database	recovery,	see	Backing	Up	and	Restoring
Databases.

Cross-platform	restore	operations,	even	between	different	processor	types,	can
be	performed	as	long	as	the	collation	of	the	database	is	supported	by	the
operating	system.	For	more	information,	see	SQL	Server	Collation
Fundamentals.

Restore	Types
Here	are	the	types	of	restores	that	SQL	Server	supports:

Full	database	restore	which	restores	the	entire	database.

Full	database	restore	and	a	differential	database	restore.	Restore	a
differential	backup	by	using	the	RESTORE	DATABASE	statement.

Transaction	log	restore.	

Individual	file	and	filegroup	restores.	Files	and	filegroups	can	be
restored	either	from	a	file	or	filegroup	backup	operation,	or	from	a	full
database	backup	operation.	When	restoring	files	or	filegroups,	you	must
apply	a	transaction	log.	In	addition,	file	differential	backups	can	be
restored	after	a	full	file	restore.

For	more	information,	see	Transaction	Log	Backups.

Create	and	maintain	a	warm	standby	server	or	standby	server.	For	more

JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()

information	about	standby	servers,	see	Using	Standby	Servers.

To	maintain	backward	compatibility,	the	following	keywords	can	be	used	in	the
RESTORE	statement	syntax:

LOAD	keyword	can	be	used	in	place	of	the	RESTORE	keyword.

TRANSACTION	keyword	can	be	used	in	place	of	the	LOG	keyword.

DBO_ONLY	keyword	can	be	used	in	place	of	the
RESTRICTED_USER	keyword.

Database	Settings	and	Restoring

When	using	the	RESTORE	DATABASE	statement,	the	restorable	database
options	(which	are	all	the	settable	options	of	ALTER	DATABASE	except	offline
and	the	merge	publish,	published,	and	subscribed	replication	options)	are	reset
to	the	settings	in	force	at	the	time	the	BACKUP	operation	ended.

Note		This	behavior	differs	from	earlier	versions	of	Microsoft	SQL	Server.

Using	the	WITH	RESTRICTED_USER	option,	however,	overrides	this	behavior
for	the	user	access	option	setting.	This	setting	is	always	set	following	a
RESTORE	statement,	which	includes	the	WITH	RESTRICTED_USER	option.

For	more	information,	see	Backing	Up	and	Restoring	Replication	Databases.

Restore	History	Tables
SQL	Server	includes	the	following	restore	history	tables,	which	track	the
RESTORE	activity	for	each	computer	system:

restorefile

restorefilegroup

restorehistory

JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()

Note		When	a	RESTORE	is	performed,	the	backup	history	tables	are	modified.

Restoring	a	damaged	master	database	is	performed	using	a	special	procedure.
For	more	information,	see	Restoring	the	master	Database.

Backups	created	with	Microsoft®	SQL	Server™	2000	cannot	be	restored	to	an
earlier	version	of	SQL	Server.

Permissions
If	the	database	being	restored	does	not	exist,	the	user	must	have	CREATE
DATABASE	permissions	to	be	able	to	execute	RESTORE.	If	the	database	exists,
RESTORE	permissions	default	to	members	of	the	sysadmin	and	dbcreator
fixed	server	roles	and	the	owner	(dbo)	of	the	database.

RESTORE	permissions	are	given	to	roles	in	which	membership	information	is
always	readily	available	to	the	server.	Because	fixed	database	role	membership
can	be	checked	only	when	the	database	is	accessible	and	undamaged,	which	is
not	always	the	case	when	RESTORE	is	executed,	members	of	the	db_owner
fixed	database	role	do	not	have	RESTORE	permissions.

In	addition,	the	user	may	specify	passwords	for	a	media	set,	a	backup	set,	or
both.	When	a	password	is	defined	on	a	media	set,	it	is	not	enough	that	a	user	is	a
member	of	appropriate	fixed	server	and	database	roles	to	perform	a	backup.	The
user	also	must	supply	the	media	password	to	perform	these	operations.	Similarly,
RESTORE	is	not	allowed	unless	the	correct	media	password	and	backup	set
password	are	specified	in	the	restore	command.

Defining	passwords	for	backup	sets	and	media	sets	is	an	optional	feature	in	the
BACKUP	statement.	The	passwords	will	prevent	unauthorized	restore	operations
and	unauthorized	appends	of	backup	sets	to	media	using	SQL	Server	2000	tools,
but	passwords	do	not	prevent	overwrite	of	media	with	the	FORMAT	option.

Thus,	although	the	use	of	passwords	can	help	protect	the	contents	of	media	from
unauthorized	access	using	SQL	Server	tools,	passwords	do	not	protect	contents
from	being	destroyed.	Passwords	do	not	fully	prevent	unauthorized	access	to	the
contents	of	the	media	because	the	data	in	the	backup	sets	is	not	encrypted	and
could	theoretically	be	examined	by	programs	specifically	created	for	this
purpose.	For	situations	where	security	is	crucial,	it	is	important	to	prevent	access
to	the	media	by	unauthorized	individuals.

JavaScript:hhobj_13.Click()

It	is	an	error	to	specify	a	password	if	none	is	defined.

Examples
Note		All	examples	assume	that	a	full	database	backup	has	been	performed.

A.	Restore	a	full	database
Note		The	MyNwind	database	is	shown	for	illustration.

This	example	restores	a	full	database	backup.

RESTORE	DATABASE	MyNwind	
			FROM	MyNwind_1

B.	Restore	a	full	database	and	a	differential	backup
This	example	restores	a	full	database	backup	followed	by	a	differential	backup.
In	addition,	this	example	shows	restoring	the	second	backup	set	on	the	media.
The	differential	backup	was	appended	to	the	backup	device	that	contains	the	full
database	backup.

RESTORE	DATABASE	MyNwind
			FROM	MyNwind_1
			WITH	NORECOVERY
RESTORE	DATABASE	MyNwind
			FROM	MyNwind_1
			WITH	FILE	=	2

C.	Restore	a	database	using	RESTART	syntax
This	example	uses	the	RESTART	option	to	restart	a	RESTORE	operation
interrupted	by	a	server	power	failure.

--	This	database	RESTORE	halted	prematurely	due	to	power	failure.
RESTORE	DATABASE	MyNwind
			FROM	MyNwind_1
--	Here	is	the	RESTORE	RESTART	operation.

RESTORE	DATABASE	MyNwind	
			FROM	MyNwind_1	WITH	RESTART

D.	Restore	a	database	and	move	files
This	example	restores	a	full	database	and	transaction	log	and	moves	the	restored
database	into	the	C:\Program	Files\Microsoft	SQL	Server\MSSQL\Data
directory.

RESTORE	DATABASE	MyNwind
			FROM	MyNwind_1
			WITH	NORECOVERY,	
						MOVE	'MyNwind'	TO	'c:\Program	Files\Microsoft	SQL	Server\MSSQL\Data\NewNwind.mdf',	
						MOVE	'MyNwindLog1'	TO	'c:\Program	Files\Microsoft	SQL	Server\MSSQL\Data\NewNwind.ldf'
RESTORE	LOG	MyNwind
			FROM	MyNwindLog1
			WITH	RECOVERY

E.	Make	a	copy	of	a	database	using	BACKUP	and	RESTORE
This	example	uses	both	the	BACKUP	and	RESTORE	statements	to	make	a	copy
of	the	Northwind	database.	The	MOVE	statement	causes	the	data	and	log	file	to
be	restored	to	the	specified	locations.	The	RESTORE	FILELISTONLY
statement	is	used	to	determine	the	number	and	names	of	the	files	in	the	database
being	restored.	The	new	copy	of	the	database	is	named	TestDB.	For	more
information,	see	RESTORE	FILELISTONLY.

BACKUP	DATABASE	Northwind	
			TO	DISK	=	'c:\Northwind.bak'
RESTORE	FILELISTONLY	
			FROM	DISK	=	'c:\Northwind.bak'
RESTORE	DATABASE	TestDB	
			FROM	DISK	=	'c:\Northwind.bak'
			WITH	MOVE	'Northwind'	TO	'c:\test\testdb.mdf',
			MOVE	'Northwind_log'	TO	'c:\test\testdb.ldf'
GO

F.	Restore	to	a	point-in-time	using	STOPAT	syntax	and	restore
with	more	than	one	device
This	example	restores	a	database	to	its	state	as	of	12:00	A.M.	on	April	15,	1998,
and	shows	a	restore	operation	that	involves	multiple	logs	and	multiple	backup
devices.

RESTORE	DATABASE	MyNwind
			FROM	MyNwind_1,	MyNwind_2
			WITH	NORECOVERY
RESTORE	LOG	MyNwind
			FROM	MyNwindLog1
			WITH	NORECOVERY
RESTORE	LOG	MyNwind
			FROM	MyNwindLog2
			WITH	RECOVERY,	STOPAT	=	'Apr	15,	1998	12:00	AM'

G.	Restore	using	TAPE	syntax
This	example	restores	a	full	database	backup	from	a	TAPE	backup	device.

RESTORE	DATABASE	MyNwind	
			FROM	TAPE	=	'\\.\tape0'

H.	Restore	using	FILE	and	FILEGROUP	syntax
This	example	restores	a	database	with	two	files,	one	filegroup,	and	one
transaction	log.

RESTORE	DATABASE	MyNwind
			FILE	=	'MyNwind_data_1',
			FILE	=	'MyNwind_data_2',
			FILEGROUP	=	'new_customers'
			FROM	MyNwind_1
			WITH	NORECOVERY
--	Restore	the	log	backup.
RESTORE	LOG	MyNwind

			FROM	MyNwindLog1

I.	Restore	the	Transaction	Log	to	the	Mark
This	example	restores	the	transaction	log	to	the	mark	named	"RoyaltyUpdate."

BEGIN	TRANSACTION	RoyaltyUpdate	
			WITH	MARK	'Update	royalty	values'
GO
USE	pubs
GO
UPDATE	roysched
			SET	royalty	=	royalty	*	1.10
			WHERE	title_id	LIKE	'PC%'
GO
COMMIT	TRANSACTION	RoyaltyUpdate
GO
--Time	passes.	Regular	database	
--and	log	backups	are	taken.
--An	error	occurs.
USE	master
GO

RESTORE	DATABASE	pubs
FROM	Pubs1
WITH	FILE	=	3,	NORECOVERY
GO
RESTORE	LOG	pubs
			FROM	Pubs1
			WITH	FILE	=	4,
			STOPATMARK	=	'RoyaltyUpdate'

See	Also

BACKUP

bcp	Utility

BEGIN	TRANSACTION

Data	Types

RESTORE	FILELISTONLY

RESTORE	HEADERONLY

RESTORE	LABELONLY

RESTORE	VERIFYONLY

sp_addumpdevice

Understanding	Media	Sets	and	Families

Using	Identifiers

JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()

Transact-SQL	Reference

RESTORE	FILELISTONLY
Returns	a	result	set	with	a	list	of	the	database	and	log	files	contained	in	the
backup	set.

Syntax
RESTORE	FILELISTONLY	
FROM	<	backup_device	>	
[WITH	
				[FILE	=	file_number]	
				[[,]	PASSWORD	=	{	password	|	@password_variable	}]	
				[[,]	MEDIAPASSWORD	=	{	mediapassword	|	@mediapassword_variable	}
]	
				[[,]	{	NOUNLOAD	|	UNLOAD	}]	
]

<	backup_device	>	::=	
				{	
								{	'logical_backup_device_name'	|	@logical_backup_device_name_var	}	
								|	{	DISK	|	TAPE	}	=	
												{	'physical_backup_device_name'	|
@physical_backup_device_name_var	}	
				}

Arguments
<backup_device>

Specifies	the	logical	or	physical	backup	device(s)	to	use	for	the	restore.	Can
be	one	or	more	of	the	following:

{'logical_backup_device_name'	|	@logical_backup_device_name_var}
Is	the	logical	name,	which	must	follow	the	rules	for	identifiers,	of	the
backup	device	created	by	sp_addumpdevice	from	which	the	database	is
restored.	If	supplied	as	a	variable	(@logical_backup_device_name_var),
the	backup	device	name	can	be	specified	either	as	a	string	constant

(@logical_backup_device_name_var	=	'logical_backup_device_name')
or	as	a	variable	of	character	string	data	type,	except	for	the	ntext	or	text
data	types.

{	DISK	|	TAPE	}	=
'physical_backup_device_name'	|	@physical_backup_device_name_var

Allows	backups	to	be	restored	from	the	named	disk	or	tape.	The
device	types	of	disk	and	tape	should	be	specified	with	the	actual
name	(for	example,	complete	path	and	file	name)	of	the	device:
DISK	=	'C:\Program	Files\Microsoft	SQL
Server\MSSQL\BACKUP\Mybackup.dat'	or	TAPE	=	'\\.\TAPE0'.
If	specified	as	a	variable	(@physical_backup_device_name_var),
the	device	name	can	be	specified	either	as	a	string	constant
(@physical_backup_device_name_var	=
'physical_backup_device_name')	or	as	a	variable	of	character
string	data	type,	except	for	the	ntext	or	text	data	types.

If	using	either	a	network	server	with	a	UNC	name	or	a	redirected
drive	letter,	specify	a	device	type	of	disk.

FILE	=	file_number

Identifies	the	backup	set	to	be	processed.	For	example,	a	file_number	of	1
indicates	the	first	backup	set	and	a	file_number	of	2	indicates	the	second
backup	set.	If	no	file_number	is	supplied,	the	first	backup	set	on	the	specified
<backup_device>	is	assumed.

PASSWORD	=	{	password	|	@password_variable	}

Is	the	password	for	the	backup	set.	PASSWORD	is	a	character	string.	If	a
password	was	provided	when	the	backup	set	was	created,	the	password	must
be	supplied	to	perform	any	restore	operation	from	the	backup	set.

For	more	information	about	using	passwords,	see	Permissions.

MEDIAPASSWORD	=	{	mediapassword	|	@mediapassword_variable	}

Is	the	password	for	the	media	set.	MEDIAPASSWORD	is	a	character	string.

If	a	password	was	provided	when	the	media	set	was	formatted,	that	password
must	be	supplied	to	create	a	backup	set	on	that	media	set.	In	addition,	that

media	password	also	must	be	supplied	to	perform	any	restore	operation	from
the	media	set.

NOUNLOAD

Specifies	that	the	tape	is	not	unloaded	automatically	from	the	tape	drive	after
a	restore.	NOUNLOAD	remains	set	until	UNLOAD	is	specified.	This	option
is	used	only	for	tape	devices.

UNLOAD

Specifies	that	the	tape	is	automatically	rewound	and	unloaded	when	the
restore	is	finished.	UNLOAD	is	set	by	default	when	a	new	user	session	is
started.	It	remains	set	until	NOUNLOAD	is	specified.	This	option	is	used
only	for	tape	devices.

Result	Sets
A	client	can	use	RESTORE	FILELISTONLY	to	obtain	a	list	of	the	files
contained	in	a	backup	set.	This	information	is	returned	as	a	result	set	containing
one	row	for	each	file.

Column	name Data	type Description
LogicalName nvarchar(128) Logical	name	of	the	file
PhysicalName nvarchar(260) Physical	or	operating-system	name	of	the

file
Type char(1) Data	file	(D)	or	a	log	file	(L)
FileGroupName nvarchar(128) Name	of	the	filegroup	that	contains	the

file
Size numeric(20,0) Current	size	in	bytes
MaxSize numeric(20,0) Maximum	allowed	size	in	bytes

Permissions
Any	user	may	use	RESTORE	FILELISTONLY.

In	addition,	the	user	may	specify	passwords	for	a	media	set,	a	backup	set,	or
both.	When	a	password	is	defined	on	a	media	set,	it	is	not	enough	that	a	user	is	a

member	of	appropriate	fixed	server	and	database	roles	to	perform	a	backup.	The
user	also	must	supply	the	media	password	to	perform	these	operations.	Similarly,
restore	is	not	allowed	unless	the	correct	media	password	and	backup	set
password	are	specified	in	the	restore	command.

Defining	passwords	for	backup	sets	and	media	sets	is	an	optional	feature	in	the
BACKUP	statement.	The	passwords	will	prevent	unauthorized	restore	operations
and	unauthorized	appends	of	backup	sets	to	media	using	SQL	Server	2000	tools,
but	passwords	do	not	prevent	overwrite	of	media	with	the	FORMAT	option.

Thus,	although	the	use	of	passwords	can	help	protect	the	contents	of	media	from
unauthorized	access	using	SQL	Server	tools,	passwords	do	not	protect	contents
from	being	destroyed.	Passwords	do	not	fully	prevent	unauthorized	access	to	the
contents	of	the	media	because	the	data	in	the	backup	sets	is	not	encrypted	and
could	theoretically	be	examined	by	programs	specifically	created	for	this
purpose.	For	situations	where	security	is	crucial,	it	is	important	to	prevent	access
to	the	media	by	unauthorized	individuals.

It	is	an	error	to	specify	a	password	if	none	is	defined.

See	Also

Backing	Up	and	Restoring	Databases

BACKUP

Data	Types

RESTORE

RESTORE	HEADERONLY

RESTORE	LABELONLY

RESTORE	VERIFYONLY

Understanding	Media	Sets	and	Families

Using	Identifiers

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Transact-SQL	Reference

RESTORE	HEADERONLY
Retrieves	all	the	backup	header	information	for	all	backup	sets	on	a	particular
backup	device.	The	result	from	executing	RESTORE	HEADERONLY	is	a	result
set.

Syntax
RESTORE	HEADERONLY	
FROM	<	backup_device	>	
[WITH	{	NOUNLOAD	|	UNLOAD	}	
				[[,]	FILE	=	file_number]
				[[,]	PASSWORD	=	{	password	|	@password_variable	}]	
				[[,]	MEDIAPASSWORD	=	{	mediapassword	|	@mediapassword_variable	}
]	
]

<	backup_device	>	::=	
				{	
								{	'logical_backup_device_name'	|	@logical_backup_device_name_var	}	
								|	{	DISK	|	TAPE	}	=	
												{	'physical_backup_device_name'	|
@physical_backup_device_name_var	}	
				}

Arguments
<backup_device>

Specifies	the	logical	or	physical	backup	device(s)	to	use	for	the	restore.	Can
be	one	of	the	following:

{'logical_backup_device_name'	|	@logical_backup_device_name_var}
Is	the	logical	name,	which	must	follow	the	rules	for	identifiers,	of	the
backup	device	created	by	sp_addumpdevice	from	which	the	database	is
restored.	If	supplied	as	a	variable	(@logical_backup_device_name_var),
the	backup	device	name	can	be	specified	either	as	a	string	constant

(@logical_backup_device_name_var	=	'logical_backup_device_name')
or	as	a	variable	of	character	string	data	type,	except	for	the	ntext	or	text
data	types.

{DISK	|	TAPE	}	=
'physical_backup_device_name'	|	@physical_backup_device_name_var

Allows	backups	to	be	restored	from	the	named	disk	or	tape
device.	The	device	types	of	disk	and	tape	should	be	specified	with
the	actual	name	(for	example,	complete	path	and	file	name)	of	the
device:	DISK	=	'C:\Program	Files\Microsoft	SQL
Server\MSSQL\BACKUP\Mybackup.dat'	or	TAPE	=	'\\.\TAPE0'.
If	specified	as	a	variable	(@physical_backup_device_name_var),
the	device	name	can	be	specified	either	as	a	string	constant
(@physical_backup_device_name_var	=
'physical_backup_device_name')	or	as	a	variable	of	character
string	data	type,	except	for	the	ntext	or	text	data	types.

If	using	either	a	network	server	with	a	UNC	name	or	a	redirected
drive	letter,	specify	a	device	type	of	disk.

NOUNLOAD

Specifies	that	the	tape	is	not	unloaded	automatically	from	the	tape	drive	after
a	restore.	NOUNLOAD	remains	set	until	UNLOAD	is	specified.	This	option
is	used	only	for	tape	devices.

UNLOAD

Specifies	that	the	tape	is	automatically	rewound	and	unloaded	when	the
restore	is	finished.	UNLOAD	is	set	by	default	when	a	new	user	session	is
started.	It	remains	set	until	NOUNLOAD	is	specified.	This	option	is	used
only	for	tape	devices.

FILE	=	file_number

Identifies	the	backup	set	to	be	described.	For	example,	a	file_number	of	1
indicates	the	first	backup	set	and	a	file_number	of	2	indicates	the	second
backup	set.	If	not	specified,	all	sets	on	the	device	are	described.

PASSWORD	=	{	password	|	@password_variable}

Is	the	password	for	the	backup	set.	PASSWORD	is	a	character	string.	If	a
password	was	provided	when	the	backup	set	was	created,	the	password	must
be	supplied	to	perform	any	restore	operation	from	the	backup	set.

For	more	information	about	using	passwords,	see	Permissions.

MEDIAPASSWORD	=	{	mediapassword	|	@mediapassword_variable}

Is	the	password	for	the	media	set.	MEDIAPASSWORD	is	a	character	string.

If	a	password	was	provided	when	the	media	set	was	formatted,	that	password
must	be	supplied	to	create	a	backup	set	on	that	media	set.	In	addition,	that
media	password	also	must	be	supplied	to	perform	any	restore	operation	from
the	media	set.

Result	Sets
For	each	backup	on	a	given	device,	the	server	sends	a	row	of	header	information
with	the	following	columns:

Note		Because	RESTORE	HEADERONLY	looks	at	all	backup	sets	on	the
media,	it	can	take	some	time	to	produce	this	result	set	when	using	high-capacity
tape	drives.	To	get	a	quick	look	at	the	media	without	getting	information	about
every	backup	set,	use	RESTORE	LABELONLY	or	specify	the	FILE	=
file_number.

Due	to	the	nature	of	Microsoft	Tape	Format,	it	is	possible	for	backup	sets
from	other	software	programs	to	occupy	space	on	the	same	media	as
Microsoft®	SQL	Server™	2000	backup	sets.	The	result	set	returned	by
RESTORE	HEADERONLY	includes	a	row	for	each	of	these	other	backup
sets.

Column	name Data	type

Description
for	SQL
Server	backup
sets

Description
for	other
backup	sets

BackupName nvarchar(128) Backup	set
name.

Data	set	name

BackupDescription nvarchar(255) Backup	set
description.

Data	set
description

BackupType smallint Backup	type:

1	=	Database
2	=	Transaction
Log
4	=	File
5	=	Differential
Database
6	=	Differential
File

Backup	type:

1	=	Normal
5	=
Differential
16	=
Incremental
17	=	Daily

ExpirationDate datetime Expiration	date
for	the	backup
set.

NULL

Compressed tinyint 0	=	No.	SQL
Server	does	not
support
software
compression.

Whether	the
backup	set	is
compressed
using
software-
based
compression:

1	=	Yes
0	=	No

Position smallint Position	of	the
backup	set	in
the	volume	(for
use	with	the
FILE	=
option).

Position	of
the	backup	set
in	the	volume

DeviceType tinyint Number
corresponding
to	the	device
used	for	the
backup
operation:

Disk

NULL

2	=	Logical
102	=	Physical

Tape	
5	=	Logical
105	=	Physical

Pipe	
6	=	Logical
106	=	Physical

Virtual	Device	
7	=	Logical
107	=	Physical

All	physical
device	names
and	device
numbers	can	be
found	in
sysdevices.

UserName nvarchar(128) Username	that
performed	the
backup
operation.

Username
that
performed	the
backup
operation

ServerName nvarchar(128) Name	of	the
server	that
wrote	the
backup	set.

NULL

DatabaseName nvarchar(128) Name	of	the
database	that
was	backed	up.

NULL

DatabaseVersion int Version	of	the
database	from
which	the
backup	was
created.

NULL

DatabaseCreationDate datetime Date	and	time
the	database
was	created.

NULL

BackupSize numeric(20,0) Size	of	the
backup,	in
bytes.

NULL

FirstLSN numeric(25,0) Log	sequence
number	of	the
first	transaction
in	the	backup
set.	NULL	for
file	backups.

NULL

LastLSN numeric(25,0) Log	sequence
number	of	the
last	transaction
in	the	backup
set.	NULL	for
file	backups.

NULL

CheckpointLSN numeric(25,0) Log	sequence
number	of	the
most	recent
checkpoint	at
the	time	the
backup	was
created.

NULL

DatabaseBackupLSN numeric(25,0) Log	sequence
number	of	the
most	recent	full
database
backup.

NULL

BackupStartDate datetime Date	and	time
that	the	backup
operation
began.

Media	Write
Date

BackupFinishDate datetime Date	and	time
that	the	backup

Media	Write
Date

operation
finished.

SortOrder smallint Server	sort
order.	This
column	is	valid
for	database
backups	only.
Provided	for
backward
compatibility.

NULL

CodePage smallint Server	code
page	or
character	set
used	by	the
server.

NULL

UnicodeLocaleId int Server	Unicode
locale	ID
configuration
option	used	for
Unicode
character	data
sorting.
Provided	for
backward
compatibility.

NULL

UnicodeComparisonStyle int Server	Unicode
comparison
style
configuration
option,	which
provides
additional
control	over
the	sorting	of
Unicode	data.
Provided	for
backward

NULL

compatibility.

CompatibilityLevel tinyint Compatibility
level	setting	of
the	database
from	which	the
backup	was
created.

NULL

SoftwareVendorId int Software
vendor
identification
number.	For
SQL	Server,
this	number	is
4608	(or
hexadecimal
0x1200).

Software
vendor
identification
number

SoftwareVersionMajor int Major	version
number	of	the
server	that
created	the
backup	set.

Major	version
number	of	the
software	that
created	the
backup	set

SoftwareVersionMinor int Minor	version
number	of	the
server	that
created	the
backup	set.

Minor	version
number	of	the
software	that
created	the
backup	set

SoftwareVersionBuild int Build	number
of	the	server
that	created	the
backup	set.

NULL

MachineName nvarchar(128) Name	of	the
computer	that
performed	the
backup

Type	of	the
computer	that
performed	the
backup

operation. operation
Flags int Bit	0	(X1)

indicates	bulk-
logged	data	is
captured	in	this
log	backup.

NULL

BindingID uniqueidentifierBinding	ID	for
the	database.

NULL

RecoveryForkID uniqueidentifier ID	for	the
current
recovery	fork
for	this	backup.

NULL

Collation nvarchar(128) Collation	used
by	the
database.

NULL

Note		If	passwords	are	defined	for	the	backup	sets,	RESTORE	HEADERONLY
will	show	complete	information	for	only	the	backup	set	whose	password
matches	the	specified	PASSWORD	option	of	the	command.	RESTORE
HEADERONLY	also	will	show	complete	information	for	unprotected	backup
sets.	The	BackupName	column	for	the	other	password-protected	backup	sets	on
the	media	will	be	set	to	'***Password	Protected***',	and	all	other	columns	will
be	NULL.

Permissions
Any	user	may	use	RESTORE	HEADERONLY.

In	addition,	the	user	may	specify	passwords	for	a	media	set,	a	backup	set,	or
both.	When	a	password	is	defined	on	a	media	set,	it	is	not	enough	that	a	user	is	a
member	of	appropriate	fixed	server	and	database	roles	to	perform	a	backup.	The
user	also	must	supply	the	media	password	to	perform	these	operations.	Similarly,
restore	is	not	allowed	unless	the	correct	media	password	and	backup	set
password	are	specified	in	the	restore	command.

Defining	passwords	for	backup	sets	and	media	sets	is	an	optional	feature	in	the
BACKUP	statement.	The	passwords	will	prevent	unauthorized	restore	operations

and	unauthorized	appends	of	backup	sets	to	media	using	SQL	Server	2000	tools,
but	passwords	do	not	prevent	overwrite	of	media	with	the	FORMAT	option.

Thus,	although	the	use	of	passwords	can	help	protect	the	contents	of	media	from
unauthorized	access	using	SQL	Server	tools,	passwords	do	not	protect	contents
from	being	destroyed.	Passwords	do	not	fully	prevent	unauthorized	access	to	the
contents	of	the	media	because	the	data	in	the	backup	sets	is	not	encrypted	and
could	theoretically	be	examined	by	programs	specifically	created	for	this
purpose.	For	situations	where	security	is	crucial,	it	is	important	to	prevent	access
to	the	media	by	unauthorized	individuals.

It	is	an	error	to	specify	a	password	if	none	is	defined.

Remarks
A	client	can	use	RESTORE	HEADERONLY	to	retrieve	all	the	backup	header
information	for	all	backups	on	a	particular	backup	device.	The	header
information	is	sent	as	a	row	by	the	server	for	each	backup	on	a	given	backup
device	in	a	table.

IMPORTANT		To	maintain	backward	compatibility,	the	LOAD	keyword	can	be
used	in	place	of	the	RESTORE	keyword	in	the	RESTORE	statement	syntax.

See	Also

Backing	Up	and	Restoring	Databases

BACKUP

Data	Types

RESTORE

RESTORE	FILELISTONLY

RESTORE	VERIFYONLY

RESTORE	LABELONLY

Understanding	Media	Sets	and	Families

Using	Identifiers

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Transact-SQL	Reference

RESTORE	LABELONLY
Returns	a	result	set	containing	information	about	the	backup	media	identified	by
the	given	backup	device.

Syntax
RESTORE	LABELONLY	
FROM	<	backup_device	>	
[WITH	{	NOUNLOAD	|	UNLOAD	}]	
				[[,]	MEDIAPASSWORD	=	{	mediapassword	|	@mediapassword_variable	}
]

<	backup_device	>	::=	
				{	
								{	'logical_backup_device_name'	|	@logical_backup_device_name_var	}	
								|	{	DISK	|	TAPE	}	=	
												{	'physical_backup_device_name'	|
@physical_backup_device_name_var	}	
				}

Arguments
<backup_device>

Specifies	the	logical	or	physical	backup	device	to	use	for	the	restore.	Can	be
one	of	the	following:

{'logical_backup_device__name'	|	@logical_backup_device_name_var}
Is	the	logical	name,	which	must	follow	the	rules	for	identifiers,	of	the
backup	device	created	by	sp_addumpdevice	from	which	the	database	is
restored.	If	supplied	as	a	variable	(@logical_backup_device_name_var),
the	backup	device	name	can	be	specified	either	as	a	string	constant
(@logical_backup_device_name_var	=	'logical_backup_device_name')
or	as	a	variable	of	character	string	data	type,	except	for	the	ntext	or	text
data	types.

{DISK	|	TAPE	}	=
'physical_backup_device_name'	|	@physical_backup_device_name_var

Allows	backups	to	be	restored	from	the	named	disk	or	tape
device.	The	device	types	of	disk	and	tape	should	be	specified	with
the	actual	name	(for	example,	complete	path	and	file	name)	of	the
device:	DISK	=	'C:\Program	Files\Microsoft	SQL
Server\MSSQL\BACKUP\Mybackup.dat'	or	TAPE	=	'\\.\TAPE0'.
If	specified	as	a	variable	(@physical_backup_device_name_var),
the	device	name	can	be	specified	either	as	a	string	constant
(@physical_backup_device_name_var	=
'physical_backup_device_name_var')	or	as	a	variable	of	character
string	data	type,	except	for	the	ntext	or	text	data	types.

If	using	either	a	network	server	with	a	UNC	name	or	a	redirected
drive	letter,	specify	a	device	type	of	disk.

NOUNLOAD

Specifies	that	the	tape	is	not	unloaded	automatically	from	the	tape	drive	after
a	restore.	NOUNLOAD	remains	set	until	UNLOAD	is	specified.	This	option
is	used	only	for	tape	devices.

UNLOAD

Specifies	that	the	tape	is	automatically	rewound	and	unloaded	when	the
restore	is	finished.	UNLOAD	is	set	by	default	when	a	new	user	session	is
started.	It	remains	set	until	NOUNLOAD	is	specified.	This	option	is	used
only	for	tape	devices.

MEDIAPASSWORD	=	{	mediapassword	|	@mediapassword_variable}

Is	the	password	for	the	media	set.	MEDIAPASSWORD	is	a	character	string.

If	a	password	was	provided	when	the	media	set	was	formatted,	that	password
must	be	supplied	to	create	a	backup	set	on	that	media	set.	In	addition,	that
media	password	also	must	be	supplied	to	perform	any	restore	operation	from
the	media	set.

Result	Sets

The	result	set	from	RESTORE	LABELONLY	consists	of	a	single	row	with	this
information.

Column	name Data	type Description
MediaName nvarchar(128) Name	of	the	media.
MediaSetId uniqueidentifierUnique	identification	number

of	the	media	set.	This	column
is	NULL	if	there	is	only	one
media	family	in	the	media	set.

FamilyCount int Number	of	media	families	in
the	media	set.

FamilySequenceNumber int Sequence	number	of	this
family.

MediaFamilyId uniqueidentifierUnique	identification	number
for	the	media	family.

MediaSequenceNumber int Sequence	number	of	this
media	in	the	media	family.

MediaLabelPresent tinyint Whether	the	media	description
contains:

1	=	Microsoft	Tape	Format
media	label
0	=	Media	description

MediaDescription nvarchar(255) Media	description,	in	free-
form	text,	or	the	Microsoft
Tape	Format	media	label.

SoftwareName nvarchar(128) Name	of	the	backup	software
that	wrote	the	label.

SoftwareVendorId int Unique	vendor	identification
number	of	the	software	vendor
that	wrote	the	backup.

MediaDate datetime Date	and	time	the	label	was
written.

Note		If	passwords	are	defined	for	the	media	set,	RESTORE	LABELONLY	will

return	information	only	if	the	correct	media	password	is	specified	in	the
MEDIAPASSWORD	option	of	the	command.

Permissions
Any	user	may	use	RESTORE	LABELONLY.

In	addition,	the	user	may	specify	passwords	for	a	media	set,	a	backup	set,	or
both.	When	a	password	is	defined	on	a	media	set,	it	is	not	enough	that	a	user	is	a
member	of	appropriate	fixed	server	and	database	roles	to	perform	a	backup.	The
user	also	must	supply	the	media	password	to	perform	these	operations.	Similarly,
restore	is	not	allowed	unless	the	correct	media	password	and	backup	set
password	are	specified	in	the	restore	command.

Defining	passwords	for	backup	sets	and	media	sets	is	an	optional	feature	in	the
BACKUP	statement.	The	passwords	will	prevent	unauthorized	restore	operations
and	unauthorized	appends	of	backup	sets	to	media	using	SQL	Server	2000	tools,
but	passwords	do	not	prevent	overwrite	of	media	with	the	FORMAT	option.

Thus,	although	the	use	of	passwords	can	help	protect	the	contents	of	media	from
unauthorized	access	using	SQL	Server	tools,	passwords	do	not	protect	contents
from	being	destroyed.	Passwords	do	not	fully	prevent	unauthorized	access	to	the
contents	of	the	media	because	the	data	in	the	backup	sets	is	not	encrypted	and
could	theoretically	be	examined	by	programs	specifically	created	for	this
purpose.	For	situations	where	security	is	crucial,	it	is	important	to	prevent	access
to	the	media	by	unauthorized	individuals.

It	is	an	error	to	specify	a	password	if	none	is	defined.

Remarks
Executing	RESTORE	LABELONLY	is	a	quick	way	to	find	out	what	the	backup
media	contains.	Because	RESTORE	LABELONLY	reads	only	the	media	header,
this	statement	finishes	quickly	even	when	using	high-capacity	tape	devices.

See	Also

Backing	Up	and	Restoring	Databases

BACKUP

JavaScript:hhobj_1.Click()

Data	Types

RESTORE

RESTORE	FILELISTONLY

RESTORE	VERIFYONLY

Understanding	Media	Sets	and	Families

Using	Identifiers

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Transact-SQL	Reference

RESTORE	VERIFYONLY
Verifies	the	backup	but	does	not	restore	the	backup.	Checks	to	see	that	the
backup	set	is	complete	and	that	all	volumes	are	readable.	However,	RESTORE
VERIFYONLY	does	not	attempt	to	verify	the	structure	of	the	data	contained	in
the	backup	volumes.	If	the	backup	is	valid,	Microsoft®	SQL	Server™	2000
returns	the	message:	"The	backup	set	is	valid."

Syntax
RESTORE	VERIFYONLY	
FROM	<	backup_device	>	[,...n]	
[WITH	
				[FILE	=	file_number]	
				[[,]	{	NOUNLOAD	|	UNLOAD	}]	
				[[,]	LOADHISTORY]	
				[[,]	PASSWORD	=	{	password	|	@password_variable	}]	
				[[,]	MEDIAPASSWORD	=	{	mediapassword	|	@mediapassword_variable	}
]	
				[[,]	{	NOREWIND	|	REWIND	}]
]

<	backup_device	>	::=	
				{	
								{	'logical_backup_device_name'	|	@logical_backup_device_name_var	}	
								|	{	DISK	|	TAPE	}	=	
												{	'physical_backup_device_name'	|
@physical_backup_device_name_var	}	
				}

Arguments
<backup_device>

Specifies	the	logical	or	physical	backup	device(s)	to	use	for	the	restore.	Can
be	one	or	more	of	the	following:

{'logical_backup_device_name'	|	@logical_backup_device_name_var}
Is	the	logical	name,	which	must	follow	the	rules	for	identifiers,	of	the
backup	device(s)	created	by	sp_addumpdevice	from	which	the	database
is	restored.	If	supplied	as	a	variable
(@logical_backup_device_name_var),	the	backup	device	name	can	be
specified	either	as	a	string	constant	(@logical_backup_device_name_var
=	'logical_backup_device_name')	or	as	a	variable	of	character	string	data
type,	except	for	the	ntext	or	text	data	types.

{DISK	|	TAPE	}	=
'physical_backup_device_name'	|	@physical_backup_device_name_var

Allows	backups	to	be	restored	from	the	named	disk	or	tape
device.	The	device	types	of	disk	and	tape	should	be	specified	with
the	actual	name	(for	example,	complete	path	and	file	name)	of	the
device:	DISK	=	'C:\Program	Files\Microsoft	SQL
Server\MSSQL\BACKUP\Mybackup.dat'	or	TAPE	=	'\\.\TAPE0'.
If	specified	as	a	variable	(@physical_backup_device_name_var),
the	device	name	can	be	specified	either	as	a	string	constant
(@physical_backup_device_name_var	=
'physical_backup_device_name')	or	as	a	variable	of	character
string	data	type,	except	for	the	ntext	or	text	data	types.

If	using	either	a	network	server	with	a	UNC	name	or	a	redirected
drive	letter,	specify	a	device	type	of	disk.

n

Is	a	placeholder	indicating	that	multiple	backup	devices	and	logical	backup
devices	may	be	specified.	The	maximum	number	of	backup	devices	or
logical	backup	devices	in	a	single	RESTORE	VERIFYONLY	statement	is
64.

Note		In	order	to	specify	multiple	backup	devices	for	<backup_device>,	all
backup	devices	specified	must	be	part	of	the	same	media	set.

FILE	=	file_number

Identifies	the	backup	set	to	be	restored	or	processed.	For	example,	a
file_number	of	1	indicates	the	first	backup	set	and	a	file_number	of	2

indicates	the	second	backup	set.	If	no	file_number	is	supplied,	the	first
backup	set	on	the	specified	<backup_device>	is	assumed.

NOUNLOAD

Specifies	that	the	tape	is	not	unloaded	automatically	from	the	tape	drive	after
a	restore.	NOUNLOAD	remains	set	until	UNLOAD	is	specified.	This	option
is	used	only	for	tape	devices.	If	a	nontape	device	is	being	used	for	the
restore,	this	option	is	ignored.

UNLOAD

Specifies	that	the	tape	is	automatically	rewound	and	unloaded	when	the
RESTORE	is	finished.	UNLOAD	is	set	by	default	when	a	new	user	session
is	started.	It	remains	set	until	NOUNLOAD	is	specified.	This	option	is	used
only	for	tape	devices.	If	a	nontape	device	is	being	used	for	the	RESTORE,
this	option	is	ignored.

LOADHISTORY

Specifies	that	the	restore	operation	loads	the	information	into	the	msdb
history	tables.	The	LOADHISTORY	option	loads	information,	for	the	single
backup	set	being	verified,	about	SQL	Server	backups	stored	on	the	media	set
to	the	backup	and	restore	history	tables	in	the	msdb	database.	No
information	for	non-SQL	Server	backups	is	loaded	into	these	history	tables.
For	more	information	about	history	tables,	see	System	Tables.

PASSWORD	=	{	password	|	@password_variable}

Is	the	password	for	the	backup	set.	PASSWORD	is	a	character	string.	If	a
password	was	provided	when	the	backup	set	was	created,	the	password	must
be	supplied	to	perform	any	restore	operation	from	the	backup	set.

For	more	information	about	using	passwords,	see	Permissions.

MEDIAPASSWORD	=	{	mediapassword	|	@mediapassword_variable}

Is	the	password	for	the	media	set.	MEDIAPASSWORD	is	a	character	string
data	type,	with	a	default	of	NULL.

If	a	password	was	provided	when	the	media	set	was	formatted,	that	password
must	be	supplied	to	create	a	backup	set	on	that	media	set.	In	addition,	that
media	password	also	must	be	supplied	to	perform	any	restore	operation	from

the	media	set.

NOREWIND

Specifies	that	SQL	Server	will	keep	the	tape	open	after	the	backup	operation.
NOREWIND	implies	NOUNLOAD.

REWIND

Specifies	that	SQL	Server	will	release	and	rewind	the	tape.	If	neither
NOREWIND	nor	REWIND	is	specified,	REWIND	is	the	default.

Permissions
Any	user	may	use	RESTORE	VERIFYONLY.

In	addition,	the	user	may	specify	passwords	for	a	media	set,	a	backup	set,	or
both.	When	a	password	is	defined	on	a	media	set,	it	is	not	enough	that	a	user	is	a
member	of	appropriate	fixed	server	and	database	roles	to	perform	a	backup.	The
user	also	must	supply	the	media	password	to	perform	these	operations.	Similarly,
restore	is	not	allowed	unless	the	correct	media	password	and	backup	set
password	are	specified	in	the	restore	command.

Defining	passwords	for	backup	sets	and	media	sets	is	an	optional	feature	in	the
BACKUP	statement.	The	passwords	will	prevent	unauthorized	restore	operations
and	unauthorized	appends	of	backup	sets	to	media	using	SQL	Server	2000	tools,
but	passwords	do	not	prevent	overwrite	of	media	with	the	FORMAT	option.

Thus,	although	the	use	of	passwords	can	help	protect	the	contents	of	media	from
unauthorized	access	using	SQL	Server	tools,	passwords	do	not	protect	contents
from	being	destroyed.	Passwords	do	not	fully	prevent	unauthorized	access	to	the
contents	of	the	media	because	the	data	in	the	backup	sets	is	not	encrypted	and
could	theoretically	be	examined	by	programs	specifically	created	for	this
purpose.	For	situations	where	security	is	crucial,	it	is	important	to	prevent	access
to	the	media	by	unauthorized	individuals.

It	is	an	error	to	specify	a	password	if	none	is	defined.

See	Also

Backing	Up	and	Restoring	Databases

JavaScript:hhobj_1.Click()

BACKUP

Data	Types

RESTORE

RESTORE	FILELISTONLY

RESTORE	HEADERONLY

RESTORE	LABELONLY

System	Tables

Understanding	Media	Sets	and	Families

Using	Identifiers

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Transact-SQL	Reference

RETURN
Exits	unconditionally	from	a	query	or	procedure.	RETURN	is	immediate	and
complete	and	can	be	used	at	any	point	to	exit	from	a	procedure,	batch,	or
statement	block.	Statements	following	RETURN	are	not	executed.

Syntax
RETURN	[integer_expression]

Arguments
integer_expression

Is	the	integer	value	returned.	Stored	procedures	can	return	an	integer	value	to
a	calling	procedure	or	an	application.

Return	Types
Optionally	returns	int.

Note		Unless	documented	otherwise,	all	system	stored	procedures	return	a	value
of	0,	which	indicates	success;	a	nonzero	value	indicates	failure.

Remarks
When	used	with	a	stored	procedure,	RETURN	cannot	return	a	null	value.	If	a
procedure	attempts	to	return	a	null	value	(for	example,	using	RETURN	@status
and	@status	is	NULL),	a	warning	message	is	generated	and	a	value	of	0	is
returned.

The	return	status	value	can	be	included	in	subsequent	Transact-SQL	statements
in	the	batch	or	procedure	that	executed	the	current	procedure,	but	it	must	be
entered	in	the	following	form:

EXECUTE	@return_status	=	procedure_name

Note		Whether	Microsoft®	SQL	Server™	2000	interprets	an	empty	string

(NULL)	as	either	a	single	space	or	as	a	true	empty	string	is	controlled	by	the
compatibility	level	setting.	If	the	compatibility	level	is	less	than	or	equal	to	65,
SQL	Server	interprets	empty	strings	as	single	spaces.	If	the	compatibility	level	is
equal	to	70,	SQL	Server	interprets	empty	strings	as	empty	strings.	For	more
information,	see	sp_dbcmptlevel.

Examples

A.	Return	from	a	procedure
This	example	shows	if	no	username	is	given	as	a	parameter	when	findjobs	is
executed,	RETURN	causes	the	procedure	to	exit	after	a	message	has	been	sent	to
the	user's	screen.	If	a	username	is	given,	the	names	of	all	objects	created	by	this
user	in	the	current	database	are	retrieved	from	the	appropriate	system	tables.

CREATE	PROCEDURE	findjobs	@nm	sysname	=	NULL
AS	
IF	@nm	IS	NULL
			BEGIN
						PRINT	'You	must	give	a	username'
						RETURN
			END
ELSE
			BEGIN
						SELECT	o.name,	o.id,	o.uid
						FROM	sysobjects	o	INNER	JOIN	master..syslogins	l
									ON	o.uid	=	l.sid
						WHERE	l.name	=	@nm
			END

B.	Return	status	codes
This	example	checks	the	state	for	the	specified	author's	ID.	If	the	state	is
California	(CA),	a	status	of	1	is	returned.	Otherwise,	2	is	returned	for	any	other
condition	(a	value	other	than	CA	for	state	or	an	au_id	that	did	not	match	a	row).

CREATE	PROCEDURE	checkstate	@param	varchar(11)
AS
IF	(SELECT	state	FROM	authors	WHERE	au_id	=	@param)	=	'CA'
			RETURN	1
ELSE
			RETURN	2

The	following	examples	show	the	return	status	from	the	execution	of
checkstate.	The	first	shows	an	author	in	California;	the	second,	an	author	not	in
California;	and	the	third,	an	invalid	author.	The	@return_status	local	variable
must	be	declared	before	it	can	be	used.

DECLARE	@return_status	int
EXEC	@return_status	=	checkstate	'172-32-1176'
SELECT	'Return	Status'	=	@return_status
GO

Here	is	the	result	set:

Return	Status	

1													

Execute	the	query	again,	specifying	a	different	author	number.

DECLARE	@return_status	int
EXEC	@return_status	=	checkstate	'648-92-1872'
SELECT	'Return	Status'	=	@return_status
GO

Here	is	the	result	set:

Return	Status	

2

Execute	the	query	again,	specifying	another	author	number.

DECLARE	@return_status	int
EXEC	@return_status	=	checkstate	'12345678901'
SELECT	'Return	Status'	=	@return_status
GO

Here	is	the	result	set:

Return	Status	

2

See	Also

ALTER	PROCEDURE

CREATE	PROCEDURE

DECLARE	@local_variable

EXECUTE

SET	@local_variable

Transact-SQL	Reference

REVERSE
Returns	the	reverse	of	a	character	expression.

Syntax
REVERSE	(character_expression)

Arguments
character_expression

Is	an	expression	of	character	data.	character_expression	can	be	a	constant,
variable,	or	column	of	either	character	or	binary	data.

Return	Types
varchar

Remarks
character_expression	must	be	of	a	data	type	that	is	implicitly	convertible	to
varchar.	Otherwise,	use	CAST	to	explicitly	convert	character_expression.

Examples
This	example	returns	all	author	first	names	with	the	characters	reversed.

USE	pubs
GO
SELECT	REVERSE(au_fname)	
FROM	authors
ORDER	BY	au_fname
GO

Here	is	the	result	set:

maharbA														
okikA																
treblA															
nnA																		
ennA																	
truB																	
enelrahC													
lyrehC															
naeD																	
kriD																	
rehtaeH														
sennI																
nosnhoJ														
aiviL																
eirojraM													
rednaeM														
leahciM														
lehciM															
ratsgninroM										
dlanigeR													
lyrehS															
snraetS														
aivlyS															
(23	row(s)	affected)

See	Also

CAST	and	CONVERT

Data	Types

String	Functions

Transact-SQL	Reference

REVOKE
Removes	a	previously	granted	or	denied	permission	from	a	user	in	the	current
database.

Syntax
Statement	permissions:

REVOKE	{	ALL	|	statement	[,...n]	}	
FROM	security_account	[,...n]

Object	permissions:

REVOKE	[GRANT	OPTION	FOR]	
				{	ALL	[PRIVILEGES]	|	permission	[,...n]	}	
				{	
								[(column	[,...n])]	ON	{	table	|	view	}	
								|	ON	{	table	|	view	}	[(column	[,...n])]	
								|	ON	{	stored_procedure	|	extended_procedure	}	
								|	ON	{	user_defined_function	}	
				}	
{	TO	|	FROM	}	
				security_account	[,...n]	
[CASCADE]	
[AS	{	group	|	role	}]

Arguments
ALL

Specifies	that	all	applicable	permissions	are	being	removed.	For	statement
permissions,	ALL	can	be	used	only	by	members	of	the	sysadmin	fixed
server	role.	For	object	permissions,	ALL	can	be	used	by	members	of	the
sysadmin	fixed	server	and	db_owner	fixed	database	roles,	and	database
object	owners.

statement

Is	a	granted	statement	for	which	permission	is	being	removed.	The	statement
list	can	include:

CREATE	DATABASE

CREATE	DEFAULT

CREATE	FUNCTION

CREATE	PROCEDURE

CREATE	RULE

CREATE	TABLE

CREATE	VIEW

BACKUP	DATABASE

BACKUP	LOG

n

Is	a	placeholder	indicating	the	item	can	be	repeated	in	a	comma-separated
list.

FROM

Specifies	the	security	account	list.

security_account

Is	the	security	account	in	the	current	database	from	which	the	permissions
are	being	removed.	The	security	account	can	be:

Microsoft®	SQL	Server™	user.

SQL	Server	role.

Microsoft	Windows	NT®	user.

Windows	NT	group.

Permissions	cannot	be	revoked	from	the	system	roles,	such	as
sysadmin.	When	permissions	are	revoked	from	an	SQL	Server	or
Windows	NT	user	account,	the	specified	security_account	is	the
only	account	affected	by	the	permissions.	If	permissions	are	revoked
from	an	SQL	Server	role	or	a	Windows	NT	group,	the	permissions
affect	all	users	in	the	current	database	who	are	members	of	the
group	or	role,	unless	the	user	has	already	been	explicitly	granted	or
denied	a	permission.

There	are	two	special	security	accounts	that	can	be	used	with
REVOKE.	Permissions	revoked	from	the	public	role	are	applied	to
all	users	in	the	database.	Permissions	revoked	from	the	guest	user
are	used	by	all	users	who	do	not	have	a	user	account	in	the	database.

When	revoking	permissions	to	a	Windows	NT	local	or	global	group,
specify	the	domain	or	computer	name	the	group	is	defined	on,
followed	by	a	backslash,	then	the	group	name,	for	example
London\JoeB.	However,	to	revoke	permissions	to	a	Windows	NT
built-in	local	group,	specify	BUILTIN	instead	of	the	domain	or
computer	name,	for	example	BUILTIN\Users.

GRANT	OPTION	FOR

Specifies	that	WITH	GRANT	OPTION	permissions	are	being	removed.	Use
the	GRANT	OPTION	FOR	keywords	with	REVOKE	to	remove	the	effects
of	the	WITH	GRANT	OPTION	setting	specified	in	the	GRANT	statement.
The	user	still	has	the	permissions,	but	cannot	grant	the	permissions	to	other
users.

If	the	permissions	being	revoked	were	not	originally	granted	using	the	WITH
GRANT	OPTION	setting,	GRANT	OPTION	FOR	is	ignored	if	specified,

and	permissions	are	revoked	as	usual.

If	the	permissions	being	revoked	were	originally	granted	using	the	WITH
GRANT	OPTION	setting,	specify	both	the	CASCADE	and	GRANT
OPTION	FOR	clauses;	otherwise,	an	error	is	returned.

PRIVILEGES

Is	an	optional	keyword	that	can	be	included	for	SQL-92	compliance.

permission

Is	an	object	permission	that	is	being	revoked.	When	permissions	are	revoked
on	a	table	or	a	view,	the	permission	list	can	include	one	or	more	of	these
statements:	SELECT,	INSERT,	DELETE,	or	UPDATE.

Object	permissions	revoked	on	a	table	can	also	include	REFERENCES,	and
object	permissions	revoked	on	a	stored	procedure	or	extended	stored
procedure	can	be	EXECUTE.	When	permissions	are	revoked	on	columns,
the	permissions	list	can	include	SELECT	or	UPDATE.

column

Is	the	name	of	the	column	in	the	current	database	for	which	permissions	are
being	removed.

table

Is	the	name	of	the	table	in	the	current	database	for	which	permissions	are
being	removed.

view

Is	the	name	of	the	view	in	the	current	database	for	which	permissions	are
being	removed.

stored_procedure

Is	the	name	of	the	stored	procedure	in	the	current	database	for	which
permissions	are	being	removed.

extended_procedure

Is	the	name	of	an	extended	stored	procedure	for	which	permissions	are	being
removed.

user_defined_function

Is	the	name	of	the	user-defined	function	for	which	permissions	are	being
removed.

TO

Specifies	the	security	account	list.

CASCADE

Specifies	that	permissions	are	being	removed	from	security_account	as	well
as	any	other	security	accounts	that	were	granted	permissions	by
security_account.	Use	when	revoking	a	grantable	permission.

If	the	permissions	being	revoked	were	originally	granted	to	security_account
using	the	WITH	GRANT	OPTION	setting,	specify	both	the	CASCADE	and
GRANT	OPTION	FOR	clauses;	otherwise,	an	error	is	returned.	Specifying
both	the	CASCADE	and	GRANT	OPTION	FOR	clauses	revokes	only	the
permissions	granted	using	the	WITH	GRANT	OPTION	setting	from
security_account,	as	well	as	any	other	security	accounts	that	were	granted
permissions	by	security_account.

AS	{group	|	role}

Specifies	the	optional	name	of	the	security	account	in	the	current	database
under	whose	authority	the	REVOKE	statement	will	be	executed.	AS	is	used
when	permissions	on	an	object	are	granted	to	a	group	or	role,	and	the	object
permissions	need	to	be	revoked	from	other	users.	Because	only	a	user,	rather
than	a	group	or	role,	can	execute	a	REVOKE	statement,	a	specific	member
of	the	group	or	role	revokes	permissions	from	the	object	under	the	authority
of	the	group	or	role.

Remarks
Only	use	REVOKE	with	permissions	in	the	current	database.

A	revoked	permission	removes	the	granted	or	denied	permission	only	at	the	level
revoked	(user,	group,	or	role).	For	example,	permission	to	view	the	authors
table	is	explicitly	granted	to	the	Andrew	user	account,	which	is	a	member	of	the
employees	role	only.	If	the	employees	role	is	revoked	access	to	view	the
authors	table,	Andrew	can	still	view	the	table	because	permission	has	been

explicitly	granted.	Andrew	is	unable	to	view	the	authors	table	only	if	Andrew
is	revoked	permission	as	well.	If	Andrew	is	never	explicitly	granted	permissions
to	view	authors,	then	revoking	permission	from	the	employees	role	prevents
Andrew	from	viewing	the	table.

Note		REVOKE	removes	only	previously	granted	or	denied	permissions.	Scripts
from	Microsoft®	SQL	Server™	6.5	or	earlier	that	use	REVOKE	may	have	to	be
changed	to	use	DENY	to	maintain	behavior.

If	a	user	activates	an	application	role,	the	effect	of	REVOKE	is	null	for	any
objects	the	user	accesses	using	the	application	role.	Although	a	user	may	be
revoked	access	to	a	specific	object	in	the	current	database,	if	the	application	role
has	access	to	the	object,	the	user	also	has	access	while	the	application	role	is
activated.

Use	sp_helprotect	to	report	the	permissions	on	a	database	object	or	user.

Permissions
REVOKE	permissions	default	to	members	of	the	sysadmin	fixed	server	role,
db_owner	and	db_securityadmin	fixed	database	roles,	and	database	object
owners.

Examples

A.	Revoke	statement	permissions	from	a	user	account
This	example	revokes	the	CREATE	TABLE	permissions	that	have	been	granted
to	the	users	Joe	and	Corporate\BobJ.	It	removes	the	permissions	that	allow	Joe
and	Corporate\BobJ	to	create	a	table.	However,	Joe	and	Corporate\BobJ	can
still	create	tables	if	CREATE	TABLE	permissions	have	been	granted	to	any	roles
of	which	they	are	members.

REVOKE	CREATE	TABLE	FROM	Joe,	[Corporate\BobJ]

B.	Revoke	multiple	permissions	from	multiple	user	accounts
This	example	revokes	multiple	statement	permissions	from	multiple	users.

REVOKE	CREATE	TABLE,	CREATE	DEFAULT

FROM	Mary,	John

C.	Revoke	a	denied	permission
The	user	Mary	is	a	member	of	the	Budget	role,	which	has	been	granted
SELECT	permissions	on	the	Budget_Data	table.	The	DENY	statement	has	been
used	with	Mary	to	prevent	access	to	the	Budget_Data	table	through	the
permissions	granted	to	the	Budget	role.

This	example	removes	the	denied	permission	from	Mary	and,	through	the
SELECT	permissions	applied	to	the	Budget	role,	allows	Mary	to	use	the
SELECT	statement	on	the	table.

REVOKE	SELECT	ON	Budget_Data	TO	Mary

See	Also

Backward	Compatibility

Deactivating	Established	Access	by	Revoking	Permissions

DENY

GRANT

sp_helprotect

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

RIGHT
Returns	the	part	of	a	character	string	starting	a	specified	number	of
integer_expression	characters	from	the	right.

Syntax
RIGHT	(character_expression	,	integer_expression)

Arguments
character_expression

Is	an	expression	of	character	data.	character_expression	can	be	a	constant,
variable,	or	column	of	either	character	or	binary	data.

integer_expression

Is	the	starting	position,	expressed	as	a	positive	whole	number.	If
integer_expression	is	negative,	an	error	is	returned.

Return	Types
varchar

character_expression	must	be	of	a	data	type	that	is	implicitly	convertible	to
varchar.	Otherwise,	use	CAST	to	explicitly	convert	character_expression.

Remarks
Compatibility	levels	can	affect	return	values.	For	more	information,	see
sp_dbcmptlevel.

Examples
This	example	returns	the	five	rightmost	characters	of	each	author's	first	name.

USE	pubs
GO

SELECT	RIGHT(au_fname,	5)	
FROM	authors
ORDER	BY	au_fname
GO

Here	is	the	result	set:

raham	
Akiko	
lbert	
Ann			
Anne		
Burt		
rlene	
heryl	
Dean		
Dirk		
ather	
Innes	
hnson	
Livia	
jorie	
ander	
chael	
ichel	
gstar	
inald	
heryl	
earns	
ylvia	
(23	row(s)	affected)

See	Also

CAST	and	CONVERT

Data	Types

String	Functions

Transact-SQL	Reference

ROLLBACK	TRANSACTION
Rolls	back	an	explicit	or	implicit	transaction	to	the	beginning	of	the	transaction,
or	to	a	savepoint	inside	a	transaction.

Syntax
ROLLBACK	[TRAN	[SACTION]	
				[transaction_name	|	@tran_name_variable	
				|	savepoint_name	|	@savepoint_variable]]

Arguments
transaction_name

Is	the	name	assigned	to	the	transaction	on	BEGIN	TRANSACTION.
transaction_name	must	conform	to	the	rules	for	identifiers,	but	only	the	first
32	characters	of	the	transaction	name	are	used.	When	nesting	transactions,
transaction_name	must	be	the	name	from	the	outermost	BEGIN
TRANSACTION	statement.

@tran_name_variable

Is	the	name	of	a	user-defined	variable	containing	a	valid	transaction	name.
The	variable	must	be	declared	with	a	char,	varchar,	nchar,	or	nvarchar
data	type.

savepoint_name

Is	savepoint_name	from	a	SAVE	TRANSACTION	statement.
savepoint_name	must	conform	to	the	rules	for	identifiers.	Use
savepoint_name	when	a	conditional	rollback	should	affect	only	part	of	the
transaction.

@savepoint_variable

Is	name	of	a	user-defined	variable	containing	a	valid	savepoint	name.	The
variable	must	be	declared	with	a	char,	varchar,	nchar,	or	nvarchar	data
type.

Remarks
ROLLBACK	TRANSACTION	erases	all	data	modifications	made	since	the	start
of	the	transaction	or	to	a	savepoint.	It	also	frees	resources	held	by	the
transaction.

ROLLBACK	TRANSACTION	without	a	savepoint_name	or	transaction_name
rolls	back	to	the	beginning	of	the	transaction.	When	nesting	transactions,	this
same	statement	rolls	back	all	inner	transactions	to	the	outermost	BEGIN
TRANSACTION	statement.	In	both	cases,	ROLLBACK	TRANSACTION
decrements	the	@@TRANCOUNT	system	function	to	0.	ROLLBACK
TRANSACTION	savepoint_name	does	not	decrement	@@TRANCOUNT.

A	ROLLBACK	TRANSACTION	statement	specifying	a	savepoint_name	does
not	free	any	locks.

ROLLBACK	TRANSACTION	cannot	reference	a	savepoint_name	in
distributed	transactions	started	either	explicitly	with	BEGIN	DISTRIBUTED
TRANSACTION	or	escalated	from	a	local	transaction.

A	transaction	cannot	be	rolled	back	after	a	COMMIT	TRANSACTION
statement	is	executed.

Within	a	transaction,	duplicate	savepoint	names	are	allowed,	but	a	ROLLBACK
TRANSACTION	using	the	duplicate	savepoint	name	rolls	back	only	to	the	most
recent	SAVE	TRANSACTION	using	that	savepoint	name.

In	stored	procedures,	ROLLBACK	TRANSACTION	statements	without	a
savepoint_name	or	transaction_name	roll	back	all	statements	to	the	outermost
BEGIN	TRANSACTION.	A	ROLLBACK	TRANSACTION	statement	in	a
stored	procedure	that	causes	@@TRANCOUNT	to	have	a	different	value	when
the	trigger	completes	than	the	@@TRANCOUNT	value	when	the	stored
procedure	was	called	produces	an	informational	message.	This	message	does	not
affect	subsequent	processing.

If	a	ROLLBACK	TRANSACTION	is	issued	in	a	trigger:

All	data	modifications	made	to	that	point	in	the	current	transaction	are
rolled	back,	including	any	made	by	the	trigger.

The	trigger	continues	executing	any	remaining	statements	after	the

ROLLBACK	statement.	If	any	of	these	statements	modify	data,	the
modifications	are	not	rolled	back.	No	nested	triggers	are	fired	by	the
execution	of	these	remaining	statements.

The	statements	in	the	batch	after	the	statement	that	fired	the	trigger	are
not	executed.

@@TRANCOUNT	is	incremented	by	one	when	entering	a	trigger,	even	when	in
autocommit	mode.	(The	system	treats	a	trigger	as	an	implied	nested	transaction.)

ROLLBACK	TRANSACTION	statements	in	stored	procedures	do	not	affect
subsequent	statements	in	the	batch	that	called	the	procedure;	subsequent
statements	in	the	batch	are	executed.	ROLLBACK	TRANSACTION	statements
in	triggers	terminate	the	batch	containing	the	statement	that	fired	the	trigger;
subsequent	statements	in	the	batch	are	not	executed.

A	ROLLBACK	TRANSACTION	statement	does	not	produce	any	messages	to
the	user.	If	warnings	are	needed	in	stored	procedures	or	triggers,	use	the
RAISERROR	or	PRINT	statements.	RAISERROR	is	the	preferred	statement	for
indicating	errors.

The	effect	of	a	ROLLBACK	on	cursors	is	defined	by	these	three	rules:

1.	 With	CURSOR_CLOSE_ON_COMMIT	set	ON,	ROLLBACK	closes
but	does	not	deallocate	all	open	cursors.

2.	 With	CURSOR_CLOSE_ON_COMMIT	set	OFF,	ROLLBACK	does
not	affect	any	open	synchronous	STATIC	or	INSENSITIVE	cursors	or
asynchronous	STATIC	cursors	that	have	been	fully	populated.	Open
cursors	of	any	other	type	are	closed	but	not	deallocated.

3.	 An	error	that	terminates	a	batch	and	generates	an	internal	rollback
deallocates	all	cursors	that	were	declared	in	the	batch	containing	the
error	statement.	All	cursors	are	deallocated	regardless	of	their	type	or
the	setting	of	CURSOR_CLOSE_ON_COMMIT.	This	includes
cursors	declared	in	stored	procedures	called	by	the	error	batch.	Cursors
declared	in	a	batch	before	the	error	batch	are	subject	to	rules	1	and	2.

A	deadlock	error	is	an	example	of	this	type	of	error.	A	ROLLBACK
statement	issued	in	a	trigger	also	automatically	generates	this	type	of
error.

Permissions

ROLLBACK	TRANSACTION	permissions	default	to	any	valid	user.

See	Also

BEGIN	DISTRIBUTED	TRANSACTION

BEGIN	TRANSACTION

COMMIT	TRANSACTION

COMMIT	WORK

Cursor	Locking

ROLLBACK	WORK

SAVE	TRANSACTION

Transactions

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

ROLLBACK	WORK
Rolls	back	a	user-specified	transaction	to	the	beginning	of	a	transaction.

Syntax
ROLLBACK	[WORK]

Remarks
This	statement	functions	identically	to	ROLLBACK	TRANSACTION	except
that	ROLLBACK	TRANSACTION	accepts	a	user-defined	transaction	name.
With	or	without	specifying	the	optional	WORK	keyword,	this	ROLLBACK
syntax	is	SQL-92-compatible.

When	nesting	transactions,	ROLLBACK	WORK	always	rolls	back	to	the
outermost	BEGIN	TRANSACTION	statement	and	decrements	the
@@TRANCOUNT	system	function	to	0.

Permissions
ROLLBACK	WORK	permissions	default	to	any	valid	user.

See	Also

BEGIN	DISTRIBUTED	TRANSACTION

BEGIN	TRANSACTION

COMMIT	TRANSACTION

COMMIT	WORK

ROLLBACK	TRANSACTION

SAVE	TRANSACTION

Transactions

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

ROUND
Returns	a	numeric	expression,	rounded	to	the	specified	length	or	precision.

Syntax
ROUND	(numeric_expression	,	length	[,	function])

Arguments
numeric_expression

Is	an	expression	of	the	exact	numeric	or	approximate	numeric	data	type
category,	except	for	the	bit	data	type.

length

Is	the	precision	to	which	numeric_expression	is	to	be	rounded.	length	must
be	tinyint,	smallint,	or	int.	When	length	is	a	positive	number,
numeric_expression	is	rounded	to	the	number	of	decimal	places	specified	by
length.	When	length	is	a	negative	number,	numeric_expression	is	rounded	on
the	left	side	of	the	decimal	point,	as	specified	by	length.

function

Is	the	type	of	operation	to	perform.	function	must	be	tinyint,	smallint,	or	int.
When	function	is	omitted	or	has	a	value	of	0	(default),	numeric_expression	is
rounded.	When	a	value	other	than	0	is	specified,	numeric_expression	is
truncated.

Return	Types
Returns	the	same	type	as	numeric_expression.

Remarks
ROUND	always	returns	a	value.	If	length	is	negative	and	larger	than	the	number
of	digits	before	the	decimal	point,	ROUND	returns	0.

Example Result
ROUND(748.58,	-4) 0

ROUND	returns	a	rounded	numeric_expression,	regardless	of	data	type,	when
length	is	a	negative	number.

Examples Result
ROUND(748.58,	-1) 750.00
ROUND(748.58,	-2) 700.00
ROUND(748.58,	-3) 1000.00

Examples

A.	Use	ROUND	and	estimates
This	example	shows	two	expressions	illustrating	that	with	the	ROUND	function
the	last	digit	is	always	an	estimate.

SELECT	ROUND(123.9994,	3),	ROUND(123.9995,	3)	
GO

Here	is	the	result	set:

-----------	-----------
123.9990				124.0000				

B.	Use	ROUND	and	rounding	approximations
This	example	shows	rounding	and	approximations.

Statement Result
SELECT	ROUND(123.4545,	2) 123.4500

SELECT	ROUND(123.45,	-2) 100.00

C.	Use	ROUND	to	truncate
This	example	uses	two	SELECT	statements	to	demonstrate	the	difference
between	rounding	and	truncation.	The	first	statement	rounds	the	result.	The
second	statement	truncates	the	result.

Statement Result
SELECT	ROUND(150.75,	0) 151.00

SELECT	ROUND(150.75,	0,	1) 150.00

See	Also

CEILING

Data	Types

Expressions

FLOOR

Mathematical	Functions

Transact-SQL	Reference

ROWCOUNT_BIG
Returns	the	number	of	rows	affected	by	the	last	statement	executed.	This
function	operates	like	@@ROWCOUNT,	except	that	the	return	type	of
ROWCOUNT_BIG	is	bigint.

Syntax
ROWCOUNT_BIG	()

Return	Types
bigint

Remarks
Following	a	SELECT	statement,	this	function	returns	the	number	of	rows
returned	by	the	SELECT	statement.

Following	INSERT,	UPDATE,	or	DELETE	statements,	this	function	returns	the
number	of	rows	affected	by	the	data	modification	statement.

Following	statements	that	do	not	return	rows,	such	as	an	IF	statement,	this
function	returns	zero	(0).

See	Also

COUNT_BIG

Data	Types

Transact-SQL	Reference

RTRIM
Returns	a	character	string	after	truncating	all	trailing	blanks.

Syntax
RTRIM	(character_expression)

Arguments
character_expression

Is	an	expression	of	character	data.	character_expression	can	be	a	constant,
variable,	or	column	of	either	character	or	binary	data.

Return	Types
varchar

Remarks
character_expression	must	be	of	a	data	type	that	is	implicitly	convertible	to
varchar.	Otherwise,	use	the	CAST	function	to	explicitly	convert
character_expression.

Note		Compatibility	levels	can	affect	return	values.	For	more	information,	see
sp_dbcmptlevel.

Examples
This	example	demonstrates	how	to	use	RTRIM	to	remove	trailing	spaces	from	a
character	variable.

DECLARE	@string_to_trim	varchar(60)
SET	@string_to_trim	=	'Four	spaces	are	after	the	period	in	this	sentence.				'
SELECT	'Here	is	the	string	without	the	leading	spaces:	'	+	CHAR(13)	+
			RTRIM(@string_to_trim)
GO

Here	is	the	result	set:

(1	row(s)	affected)
--	
Here	is	the	string	without	the	leading	spaces:	Four	spaces	are	after	the	period	in	this	sentence.											
(1	row(s)	affected)

See	Also

CAST	and	CONVERT

Data	Types

String	Functions

Transact-SQL	Reference

SAVE	TRANSACTION
Sets	a	savepoint	within	a	transaction.

Syntax
SAVE	TRAN	[SACTION]	{	savepoint_name	|	@savepoint_variable	}

Arguments
savepoint_name

Is	the	name	assigned	to	the	savepoint.	Savepoint	names	must	conform	to	the
rules	for	identifiers,	but	only	the	first	32	characters	are	used.

@savepoint_variable

Is	the	name	of	a	user-defined	variable	containing	a	valid	savepoint	name.
The	variable	must	be	declared	with	a	char,	varchar,	nchar,	or	nvarchar
data	type.

Remarks
A	user	can	set	a	savepoint,	or	marker,	within	a	transaction.	The	savepoint	defines
a	location	to	which	a	transaction	can	return	if	part	of	the	transaction	is
conditionally	canceled.	If	a	transaction	is	rolled	back	to	a	savepoint,	it	must
proceed	to	completion	(with	more	Transact-SQL	statements	if	needed	and	a
COMMIT	TRANSACTION	statement),	or	it	must	be	canceled	altogether	(by
rolling	the	transaction	back	to	its	beginning).	To	cancel	an	entire	transaction,	use
the	form	ROLLBACK	TRANSACTION	transaction_name.	All	the	statements
or	procedures	of	the	transaction	are	undone.

SAVE	TRANSACTION	is	not	supported	in	distributed	transactions	started	either
explicitly	with	BEGIN	DISTRIBUTED	TRANSACTION	or	escalated	from	a
local	transaction.

IMPORTANT		When	a	transaction	begins,	resources	used	during	the	transaction	are
held	until	the	completion	of	the	transaction	(namely	locks).	When	part	of	a
transaction	is	rolled	back	to	a	savepoint,	resources	continue	to	be	held	until	the

completion	of	the	transaction	(or	a	rollback	of	the	complete	transaction).

Permissions
SAVE	TRANSACTION	permissions	default	to	any	valid	user.

Examples
This	example	changes	the	royalty	split	for	the	two	authors	of	The	Gourmet
Microwave.	Because	the	database	would	be	inconsistent	between	the	two
updates,	they	must	be	grouped	into	a	user-defined	transaction.

BEGIN	TRANSACTION	royaltychange
			UPDATE	titleauthor
						SET	royaltyper	=	65
									FROM	titleauthor,	titles
												WHERE	royaltyper	=	75
															AND	titleauthor.title_id	=	titles.title_id
															AND	title	=	'The	Gourmet	Microwave'
			UPDATE	titleauthor
						SET	royaltyper	=	35
									FROM	titleauthor,	titles
												WHERE	royaltyper	=	25
															AND	titleauthor.title_id	=	titles.title_id
															AND	title	=	'The	Gourmet	Microwave'
SAVE	TRANSACTION	percentchanged

/*	
After	having	updated	the	royaltyper	entries	for	the	two	authors,	the	
user	inserts	the	savepoint	percentchanged,	and	then	determines	how	a	
10-percent	increase	in	the	book's	price	would	affect	the	authors'	royalty	earnings.	
*/

UPDATE	titles
			SET	price	=	price	*	1.1

						WHERE	title	=	'The	Gourmet	Microwave'
SELECT	(price	*	royalty	*	ytd_sales)	*	royaltyper
			FROM	titles,	titleauthor
						WHERE	title	=	'The	Gourmet	Microwave'
									AND	titles.title_id	=	titleauthor.title_id
/*	
The	transaction	is	rolled	back	to	the	savepoint
with	the	ROLLBACK	TRANSACTION	statement.	
*/

ROLLBACK	TRANSACTION	percentchanged
COMMIT	TRANSACTION

/*	End	of	royaltychange.	*/

See	Also

Batches

BEGIN	TRANSACTION

COMMIT	TRANSACTION

COMMIT	WORK

CREATE	PROCEDURE

CREATE	TRIGGER

DELETE

INSERT

ROLLBACK	TRANSACTION

ROLLBACK	WORK

SELECT

Transaction	Savepoints

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

UPDATE

Transact-SQL	Reference

SCOPE_IDENTITY
Returns	the	last	IDENTITY	value	inserted	into	an	IDENTITY	column	in	the
same	scope.	A	scope	is	a	module	--	a	stored	procedure,	trigger,	function,	or
batch.	Thus,	two	statements	are	in	the	same	scope	if	they	are	in	the	same	stored
procedure,	function,	or	batch.

Syntax
SCOPE_IDENTITY()

Return	Types
sql_variant

Remarks
SCOPE_IDENTITY,	IDENT_CURRENT,	and	@@IDENTITY	are	similar
functions	in	that	they	return	values	inserted	into	IDENTITY	columns.

IDENT_CURRENT	is	not	limited	by	scope	and	session;	it	is	limited	to	a
specified	table.	IDENT_CURRENT	returns	the	value	generated	for	a	specific
table	in	any	session	and	any	scope.	For	more	information,	see
IDENT_CURRENT.

SCOPE_IDENTITY	and	@@IDENTITY	will	return	last	identity	values
generated	in	any	table	in	the	current	session.	However,	SCOPE_IDENTITY
returns	values	inserted	only	within	the	current	scope;	@@IDENTITY	is	not
limited	to	a	specific	scope.

For	example,	you	have	two	tables,	T1	and	T2,	and	an	INSERT	trigger	defined	on
T1.	When	a	row	is	inserted	to	T1,	the	trigger	fires	and	inserts	a	row	in	T2.	This
scenario	illustrates	two	scopes:	the	insert	on	T1,	and	the	insert	on	T2	as	a	result
of	the	trigger.

Assuming	that	both	T1	and	T2	have	IDENTITY	columns,	@@IDENTITY	and
SCOPE_IDENTITY	will	return	different	values	at	the	end	of	an	INSERT
statement	on	T1.

@@IDENTITY	will	return	the	last	IDENTITY	column	value	inserted	across	any
scope	in	the	current	session,	which	is	the	value	inserted	in	T2.

SCOPE_IDENTITY()	will	return	the	IDENTITY	value	inserted	in	T1,	which
was	the	last	INSERT	that	occurred	in	the	same	scope.	The	SCOPE_IDENTITY()
function	will	return	the	NULL	value	if	the	function	is	invoked	before	any	insert
statements	into	an	identity	column	occur	in	the	scope.

See	Examples	for	an	illustration.

Examples
This	example	creates	two	tables,	TZ	and	TY,	and	an	INSERT	trigger	on	TZ.
When	a	row	is	inserted	to	table	TZ,	the	trigger	(Ztrig)	fires	and	inserts	a	row	in
TY.

USE	tempdb
GO
CREATE	TABLE	TZ	(
			Z_id		int	IDENTITY(1,1)PRIMARY	KEY,
			Z_name	varchar(20)	NOT	NULL)

INSERT	TZ
			VALUES	('Lisa')
INSERT	TZ
			VALUES	('Mike')
INSERT	TZ
			VALUES	('Carla')

SELECT	*	FROM	TZ

--Result	set:	This	is	how	table	TZ	looks
Z_id			Z_name

1						Lisa
2						Mike

3						Carla

CREATE	TABLE	TY	(
			Y_id		int	IDENTITY(100,5)PRIMARY	KEY,
			Y_name	varchar(20)	NULL)

INSERT	TY	(Y_name)
			VALUES	('boathouse')
INSERT	TY	(Y_name)
			VALUES	('rocks')
INSERT	TY	(Y_name)
			VALUES	('elevator')

SELECT	*	FROM	TY
--Result	set:	This	is	how	TY	looks:
Y_id		Y_name

100			boathouse
105			rocks
110			elevator

/*Create	the	trigger	that	inserts	a	row	in	table	TY	
when	a	row	is	inserted	in	table	TZ*/
CREATE	TRIGGER	Ztrig
ON	TZ
FOR	INSERT	AS	
			BEGIN
			INSERT	TY	VALUES	('')
			END

/*FIRE	the	trigger	and	find	out	what	identity	values	you	get	
with	the	@@IDENTITY	and	SCOPE_IDENTITY	functions*/
INSERT	TZ	VALUES	('Rosalie')

SELECT	SCOPE_IDENTITY()	AS	[SCOPE_IDENTITY]
GO
SELECT			@@IDENTITY	AS	[@@IDENTITY]
GO

--Here	is	the	result	set.
SCOPE_IDENTITY
4
/*SCOPE_IDENTITY	returned	the	last	identity	value	in	the	same	scope,	which	was	the	insert	on	table	TZ*/

@@IDENTITY
115
/*@@IDENTITY	returned	the	last	identity	value	inserted	to	TY	by	the	trigger,	which	fired	due	to	an	earlier	insert	on	TZ*/

See	Also

@@IDENTITY

Transact-SQL	Reference

Search	Condition
Is	a	combination	of	one	or	more	predicates	using	the	logical	operators	AND,
OR,	and	NOT.

Syntax
<	search_condition	>	::=	
				{				[NOT]	<	predicate	>	|	(<	search_condition	>)	}	
								[{	AND	|	OR	}	[NOT]	{	<	predicate	>	|	(<	search_condition	>)	}]	
				}				[,...n]

<	predicate	>	::=	
				{				expression	{	=	|	<	>	|	!	=	|	>	|	>	=	|	!	>	|	<	|	<	=	|	!	<	}	expression	
								|	string_expression	[NOT]	LIKE	string_expression	
												[ESCAPE	'escape_character']	
								|	expression	[NOT]	BETWEEN	expression	AND	expression	
								|	expression	IS	[NOT]	NULL	
								|	CONTAINS	
												({	column	|	*	}	,	'<	contains_search_condition	>')	
								|	FREETEXT	({	column	|	*	}	,	'freetext_string')	
								|	expression	[NOT]	IN	(subquery	|	expression	[,...n])	
								|	expression	{	=	|	<	>	|	!	=	|	>	|	>	=	|	!	>	|	<	|	<	=	|	!	<	}	
												{	ALL	|	SOME	|	ANY}	(subquery)	
								|	EXISTS	(subquery)	
				}

Arguments
<	search_condition	>

Specifies	the	conditions	for	the	rows	returned	in	the	result	set	for	a	SELECT
statement,	query	expression,	or	subquery.	For	an	UPDATE	statement,
specifies	the	rows	to	be	updated.	For	a	DELETE	statement,	specifies	the
rows	to	be	deleted.	There	is	no	limit	to	the	number	of	predicates	that	can	be
included	in	a	Transact-SQL	statement	search	condition.

NOT
Negates	the	Boolean	expression	specified	by	the	predicate.	For	more
information,	see	NOT.

AND
Combines	two	conditions	and	evaluates	to	TRUE	when	both	of	the
conditions	are	TRUE.	For	more	information,	see	AND.	

OR
Combines	two	conditions	and	evaluates	to	TRUE	when	either	condition
is	TRUE.	For	more	information,	see	OR.

<	predicate	>

Is	an	expression	that	returns	TRUE,	FALSE,	or	UNKNOWN.

expression
Is	a	column	name,	a	constant,	a	function,	a	variable,	a	scalar	subquery,	or
any	combination	of	column	names,	constants,	and	functions	connected
by	an	operator(s)	or	a	subquery.	The	expression	can	also	contain	the
CASE	function.

=
Is	the	operator	used	to	test	the	equality	between	two	expressions.

<>
Is	the	operator	used	to	test	the	condition	of	two	expressions	not	being
equal	to	each	other.

!=
Is	the	operator	used	to	test	the	condition	of	two	expressions	not	being
equal	to	each	other.

>
Is	the	operator	used	to	test	the	condition	of	one	expression	being	greater
than	the	other.

>=
Is	the	operator	used	to	test	the	condition	of	one	expression	being	greater

than	or	equal	to	the	other	expression.

!>
Is	the	operator	used	to	test	the	condition	of	one	expression	not	being
greater	than	the	other	expression.

<
Is	the	operator	used	to	test	the	condition	of	one	expression	being	less
than	the	other.

<=
Is	the	operator	used	to	test	the	condition	of	one	expression	being	less
than	or	equal	to	the	other	expression.

!<
Is	the	operator	used	to	test	the	condition	of	one	expression	not	being	less
than	the	other	expression.

string_expression
Is	a	string	of	characters	and	wildcard	characters.

[NOT]	LIKE
Indicates	that	the	subsequent	character	string	is	to	be	used	with	pattern
matching.	For	more	information,	see	LIKE.

ESCAPE	'escape_character'
Allows	a	wildcard	character	to	be	searched	for	in	a	character	string
instead	of	functioning	as	a	wildcard.	escape_character	is	the	character
that	is	placed	in	front	of	the	wildcard	character	to	denote	this	special	use.

[NOT]	BETWEEN
Specifies	an	inclusive	range	of	values.	Use	AND	to	separate	the
beginning	and	ending	values.	For	more	information,	see	BETWEEN.

IS	[NOT]	NULL
Specifies	a	search	for	null	values,	or	for	values	that	are	not	null,
depending	on	the	keywords	used.	An	expression	with	a	bitwise	or
arithmetic	operator	evaluates	to	NULL	if	any	of	the	operands	is	NULL.

CONTAINS
Searches	columns	containing	character-based	data	for	precise	or	"fuzzy"
(less	precise)	matches	to	single	words	and	phrases,	the	proximity	of
words	within	a	certain	distance	of	one	another,	and	weighted	matches.
Can	only	be	used	with	SELECT	statements.	For	more	information,	see
CONTAINS.	

FREETEXT
Provides	a	simple	form	of	natural	language	query	by	searching	columns
containing	character-based	data	for	values	that	match	the	meaning	rather
than	the	exact	words	in	the	predicate.	Can	only	be	used	with	SELECT
statements.	For	more	information,	see	FREETEXT.

[NOT]	IN
Specifies	the	search	for	an	expression,	based	on	the	expression's
inclusion	in	or	exclusion	from	a	list.	The	search	expression	can	be	a
constant	or	a	column	name,	and	the	list	can	be	a	set	of	constants	or,	more
commonly,	a	subquery.	Enclose	the	list	of	values	in	parentheses.	For
more	information,	see	IN.

subquery
Can	be	considered	a	restricted	SELECT	statement	and	is	similar	to
<query_expresssion>	in	the	SELECT	statement.	The	ORDER	BY	clause,
the	COMPUTE	clause,	and	the	INTO	keyword	are	not	allowed.	For	more
information,	see	SELECT.	

ALL
Used	with	a	comparison	operator	and	a	subquery.	Returns	TRUE	for
<predicate>	if	all	values	retrieved	for	the	subquery	satisfy	the
comparison	operation,	or	FALSE	if	not	all	values	satisfy	the	comparison
or	if	the	subquery	returns	no	rows	to	the	outer	statement.	For	more
information,	see	ALL.

{	SOME	|	ANY	}
Used	with	a	comparison	operator	and	a	subquery.	Returns	TRUE	for
<predicate>	if	any	value	retrieved	for	the	subquery	satisfies	the
comparison	operation,	or	FALSE	if	no	values	in	the	subquery	satisfy	the
comparison	or	if	the	subquery	returns	no	rows	to	the	outer	statement.

Otherwise,	the	expression	is	unknown.	For	more	information,	see	SOME
|	ANY.

EXISTS
Used	with	a	subquery	to	test	for	the	existence	of	rows	returned	by	the
subquery.	For	more	information,	see	EXISTS.

Remarks

The	order	of	precedence	for	the	logical	operators	is	NOT	(highest),	followed	by
AND,	followed	by	OR.	The	order	of	evaluation	at	the	same	precedence	level	is
from	left	to	right.	Parentheses	can	be	used	to	override	this	order	in	a	search
condition.	For	more	information	about	how	the	logical	operators	operate	on	truth
values,	see	AND,	OR,	and	NOT.

Examples

A.	Use	WHERE	with	LIKE	and	ESCAPE	syntax
This	example	assumes	a	description	column	exists	in	finances	table.	To	search
for	the	rows	in	which	the	description	column	contains	the	exact	characters	g_,
use	the	ESCAPE	option	because	_	is	a	wildcard	character.	Without	specifying
the	ESCAPE	option,	the	query	would	search	for	any	description	values
containing	the	letter	g	followed	by	any	single	character	other	than	the	_
character.

SELECT	*
FROM	finances
WHERE	description	LIKE	'gs_'	ESCAPE	'S'
GO

B.	Use	WHERE	and	LIKE	syntax	with	Unicode	data
This	example	uses	the	WHERE	clause	to	retrieve	the	contact	name,	telephone,
and	fax	numbers	for	any	companies	containing	the	string	snabbköp	at	the	end	of
the	company	name.

USE	Northwind

SELECT	CompanyName,	ContactName,	Phone,	Fax
FROM	Customers
WHERE	CompanyName	LIKE	N'%snabbköp'
ORDER	BY	CompanyName	ASC,	ContactName	ASC

See	Also

Aggregate	Functions

CASE

CONTAINSTABLE

Cursors

DELETE

Expressions

FREETEXTTABLE

FROM

Full-text	Querying	SQL	Server	Data

Operators	(Logical)

UPDATE

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

SELECT	@local_variable
Specifies	that	the	given	local	variable	(created	using	DECLARE
@local_variable)	should	be	set	to	the	specified	expression.

It	is	recommended	that	SET	@local_variable	be	used	for	variable	assignment
rather	than	SELECT	@local_variable.	For	more	information,	see	SET
@local_variable.

Syntax
SELECT	{	@local_variable	=	expression	}	[,...n]

Arguments
@local_variable

Is	a	declared	variable	for	which	a	value	is	to	be	assigned.

expression

Is	any	valid	Microsoft®	SQL	Server™	expression,	including	a	scalar
subquery.

Remarks
SELECT	@local_variable	is	usually	used	to	return	a	single	value	into	the
variable.	It	can	return	multiple	values	if,	for	example,	expression	is	the	name	of	a
column.	If	the	SELECT	statement	returns	more	than	one	value,	the	variable	is
assigned	the	last	value	returned.

If	the	SELECT	statement	returns	no	rows,	the	variable	retains	its	present	value.
If	expression	is	a	scalar	subquery	that	returns	no	value,	the	variable	is	set	to
NULL.

In	the	first	example,	a	variable	@var1	is	assigned	Generic	Name	as	its	value.
The	query	against	the	Customers	table	returns	no	rows	because	the	value
specified	for	CustomerID	does	not	exist	in	the	table.	The	variable	retains	the
Generic	Name	value.

USE	Northwind
DECLARE	@var1	nvarchar(30)
SELECT	@var1	=	'Generic	Name'

SELECT	@var1	=	CompanyName
FROM	Customers
WHERE	CustomerID	=	'ALFKA'

SELECT	@var1	AS	'Company	Name'

This	is	the	result:

Company	Name
--
Generic	Name

In	this	example,	a	subquery	is	used	to	assign	a	value	to	@var1.	Because	the
value	requested	for	CustomerID	does	not	exist,	the	subquery	returns	no	value
and	the	variable	is	set	to	NULL.

USE	Northwind
DECLARE	@var1	nvarchar(30)
SELECT	@var1	=	'Generic	Name'

SELECT	@var1	=
			(SELECT	CompanyName
			FROM	Customers
			WHERE	CustomerID	=	'ALFKA')

SELECT	@var1	AS	'Company	Name'

This	is	the	result:

Company	Name

NULL

One	SELECT	statement	can	initialize	multiple	local	variables.

Note		A	SELECT	statement	that	contains	a	variable	assignment	cannot	also	be
used	to	perform	normal	result	set	retrieval	operations.

See	Also

DECLARE	@local_variable

Expressions

SELECT

Transact-SQL	Reference

SELECT
Retrieves	rows	from	the	database	and	allows	the	selection	of	one	or	many	rows
or	columns	from	one	or	many	tables.	The	full	syntax	of	the	SELECT	statement	is
complex,	but	the	main	clauses	can	be	summarized	as:

SELECT	select_list	
[INTO	new_table]	
FROM	table_source	
[WHERE	search_condition]	
[GROUP	BY	group_by_expression]	
[HAVING	search_condition]	
[ORDER	BY	order_expression	[ASC	|	DESC]]

The	UNION	operator	can	be	used	between	queries	to	combine	their	results	into	a
single	result	set.

Syntax
SELECT	statement	::=	
				<	query_expression	>	
				[ORDER	BY	{	order_by_expression	|	column_position	[ASC	|	DESC]	}	
								[,...n]]	
				[COMPUTE	
								{	{	AVG	|	COUNT	|	MAX	|	MIN	|	SUM	}	(expression)	}	[,...n]	
								[BY	expression	[,...n]]	
]	
				[FOR	{	BROWSE	|	XML	{	RAW	|	AUTO	|	EXPLICIT	}	
												[,	XMLDATA]	
												[,	ELEMENTS]
												[,	BINARY	base64]
								}	
]	
				[OPTION	(<	query_hint	>	[,...n])]

<	query	expression	>	::=	
				{	<	query	specification	>	|	(<	query	expression	>)	}	

				[UNION	[ALL]	<	query	specification	|	(<	query	expression	>)	[...n]]

<	query	specification	>	::=	
				SELECT	[ALL	|	DISTINCT]	
								[{	TOP	integer	|	TOP	integer	PERCENT	}	[WITH	TIES]]	
								<	select_list	>	
				[INTO	new_table]	
				[FROM	{	<	table_source	>	}	[,...n]]	
				[WHERE	<	search_condition	>]	
				[GROUP	BY	[ALL]	group_by_expression	[,...n]	
								[WITH	{	CUBE	|	ROLLUP	}]
]
				[HAVING	<	search_condition	>]

Because	of	the	complexity	of	the	SELECT	statement,	detailed	syntax	elements
and	arguments	are	shown	by	clause:

SELECT	Clause
INTO	Clause
FROM	Clause
WHERE	Clause
GROUP	BY	Clause
HAVING	Clause
UNION	Operator
ORDER	BY	Clause
COMPUTE	Clause
FOR	Clause
OPTION	Clause

Transact-SQL	Reference

SELECT	Examples

A.	Use	SELECT	to	retrieve	rows	and	columns
This	example	shows	three	code	examples.	This	first	code	example	returns	all
rows	(no	WHERE	clause	is	specified)	and	all	columns	(using	the	*)	from	the
authors	table	in	the	pubs	database.

USE	pubs
SELECT	*
FROM	authors
ORDER	BY	au_lname	ASC,	au_fname	ASC

--	Alternate	way.
USE	pubs
SELECT	authors.*
FROM	customers
ORDER	BY	au_lname	ASC,	au_fname	ASC

This	example	returns	all	rows	(no	WHERE	clause	is	specified),	and	only	a
subset	of	the	columns	(au_lname,	au_fname,	phone,	city,	state)	from	the
authors	table	in	the	pubs	database.	In	addition,	column	headings	are	added.

USE	pubs
SELECT	au_fname,	au_lname,	phone	AS	Telephone,	city,	state
FROM	authors
ORDER	BY	au_lname	ASC,	au_fname	ASC

This	example	returns	only	the	rows	for	authors	who	live	in	California	and	do	not
have	the	last	name	McBadden.

USE	pubs
SELECT	au_fname,	au_lname,	phone	AS	Telephone
FROM	authors
WHERE	state	=	'CA'	and	au_lname	<>	'McBadden'

ORDER	BY	au_lname	ASC,	au_fname	ASC

B.	Use	SELECT	with	column	headings	and	calculations
These	examples	return	all	rows	from	titles.	The	first	example	returns	total	year-
to-date	sales	and	the	amounts	due	to	each	author	and	publisher.	In	the	second
example,	the	total	revenue	is	calculated	for	each	book.

USE	pubs
SELECT	ytd_sales	AS	Sales,	
			authors.au_fname	+	'	'+	authors.au_lname	AS	Author,	
			ToAuthor	=	(ytd_sales	*	royalty)	/	100,
			ToPublisher	=	ytd_sales	-	(ytd_sales	*	royalty)	/	100
FROM	titles	INNER	JOIN	titleauthor
			ON	titles.title_id	=	titleauthor.title_id	INNER	JOIN	authors
			ON	titleauthor.au_id	=	authors.au_id
ORDER	BY	Sales	DESC,	Author	ASC

Here	is	the	result	set:

Sales							Author																				ToAuthor				ToPublisher	
-----------	-------------------------	-----------	-----------	
22246							Anne	Ringer															5339								16907
22246							Michel	DeFrance											5339								16907
18722							Marjorie	Green												4493								14229
15096							Reginald	Blotchet-Halls			2113								12983
8780								Cheryl	Carson													1404								7376
4095								Abraham	Bennet												409									3686
4095								Akiko	Yokomoto												409									3686
4095								Ann	Dull																		409									3686
4095								Burt	Gringlesby											409									3686
4095								Dean	Straight													409									3686
4095								Marjorie	Green												409									3686
4095								Michael	O'Leary											409									3686
4095								Sheryl	Hunter													409									3686

4072								Johnson	White													407									3665
3876								Michael	O'Leary											387									3489
3876								Stearns	MacFeather								387									3489
3336								Charlene	Locksley									333									3003
2045								Albert	Ringer													245									1800
2045								Anne	Ringer															245									1800
2032								Innes	del	Castillo								243									1789
375									Livia	Karsen														37										338
375									Stearns	MacFeather								37										338
375									Sylvia	Panteley											37										338
111									Albert	Ringer													11										100
NULL								Charlene	Locksley									NULL								NULL

(25	row(s)	affected)

This	is	the	query	that	calculates	the	revenue	for	each	book:

USE	pubs
SELECT	'Total	income	is',	price	*	ytd_sales	AS	Revenue,	
'for',	title_id	AS	Book#
FROM	titles
ORDER	BY	Book#	ASC

Here	is	the	result	set:

Revenue																																				Book#		
---------------	---------------------	----	------	
Total	income	is	81859.0500												for		BU1032
Total	income	is	46318.2000												for		BU1111
Total	income	is	55978.7800												for		BU2075
Total	income	is	81859.0500												for		BU7832
Total	income	is	40619.6800												for		MC2222
Total	income	is	66515.5400												for		MC3021
Total	income	is	NULL																		for		MC3026

Total	income	is	201501.0000											for		PC1035
Total	income	is	81900.0000												for		PC8888
Total	income	is	NULL																		for		PC9999
Total	income	is	8096.2500													for		PS1372
Total	income	is	22392.7500												for		PS2091
Total	income	is	777.0000														for		PS2106
Total	income	is	81399.2800												for		PS3333
Total	income	is	26654.6400												for		PS7777
Total	income	is	7856.2500													for		TC3218
Total	income	is	180397.2000											for		TC4203
Total	income	is	61384.0500												for		TC7777

(18	row(s)	affected)

C.	Use	DISTINCT	with	SELECT
This	example	uses	DISTINCT	to	prevent	the	retrieval	of	duplicate	author	ID
numbers.

USE	pubs
SELECT	DISTINCT	au_id
FROM	authors
ORDER	BY	au_id

D.	Create	tables	with	SELECT	INTO
This	first	example	creates	a	temporary	table	named	#coffeetabletitles	in
tempdb.	To	use	this	table,	always	refer	to	it	with	the	exact	name	shown,
including	the	number	sign	(#).

USE	pubs
DROP	TABLE	#coffeetabletitles
GO
SET	NOCOUNT	ON
SELECT	*	INTO	#coffeetabletitles
FROM	titles

WHERE	price	<	$20
SET	NOCOUNT	OFF
SELECT	name	
FROM	tempdb..sysobjects	
WHERE	name	LIKE	'#c%'

Here	is	the	result	set:

name																																																																				
--
#coffeetabletitles__000000000028

(1	row(s)	affected)

CHECKPOINTing	database	that	was	changed.

(12	row(s)	affected)

name																																																																				
--
newtitles

(1	row(s)	affected)

CHECKPOINTing	database	that	was	changed.

This	second	example	creates	a	permanent	table	named	newtitles.

USE	pubs
IF	EXISTS	(SELECT	table_name	FROM	INFORMATION_SCHEMA.TABLES
						WHERE	table_name	=	'newtitles')
			DROP	TABLE	newtitles
GO
EXEC	sp_dboption	'pubs',	'select	into/bulkcopy',	'true'

USE	pubs
SELECT	*	INTO	newtitles
FROM	titles
WHERE	price	>	$25	OR	price	<	$20
SELECT	name	FROM	sysobjects	WHERE	name	LIKE	'new%'
USE	master
EXEC	sp_dboption	'pubs',	'select	into/bulkcopy',	'false'

Here	is	the	result	set:

name																											

newtitles																						

(1	row(s)	affected)

E.	Use	correlated	subqueries
This	example	shows	queries	that	are	semantically	equivalent	and	illustrates	the
difference	between	using	the	EXISTS	keyword	and	the	IN	keyword.	Both	are
examples	of	a	valid	subquery	retrieving	one	instance	of	each	publisher	name	for
which	the	book	title	is	a	business	book,	and	the	publisher	ID	numbers	match
between	the	titles	and	publishers	tables.

USE	pubs
SELECT	DISTINCT	pub_name
FROM	publishers
WHERE	EXISTS
			(SELECT	*
			FROM	titles
			WHERE	pub_id	=	publishers.pub_id
			AND	type	=	'business')

--	Or
USE	pubs
SELECT	distinct	pub_name

FROM	publishers
WHERE	pub_id	IN
			(SELECT	pub_id
			FROM	titles
			WHERE	type	=	'business')

This	example	uses	IN	in	a	correlated	(or	repeating)	subquery,	which	is	a	query
that	depends	on	the	outer	query	for	its	values.	It	is	executed	repeatedly,	once	for
each	row	that	may	be	selected	by	the	outer	query.	This	query	retrieves	one
instance	of	each	author's	first	and	last	name	for	which	the	royalty	percentage	in
the	titleauthor	table	is	100	and	for	which	the	author	identification	numbers
match	in	the	authors	and	titleauthor	tables.

USE	pubs
SELECT	DISTINCT	au_lname,	au_fname
FROM	authors
WHERE	100	IN
			(SELECT	royaltyper
			FROM	titleauthor
			WHERE	titleauthor.au_id	=	authors.au_id)

The	above	subquery	in	this	statement	cannot	be	evaluated	independently	of	the
outer	query.	It	needs	a	value	for	authors.au_id,	but	this	value	changes	as
Microsoft®	SQL	Server™	examines	different	rows	in	authors.

A	correlated	subquery	can	also	be	used	in	the	HAVING	clause	of	an	outer	query.
This	example	finds	the	types	of	books	for	which	the	maximum	advance	is	more
than	twice	the	average	for	the	group.

USE	pubs
SELECT	t1.type
FROM	titles	t1
GROUP	BY	t1.type
HAVING	MAX(t1.advance)	>=	ALL
			(SELECT	2	*	AVG(t2.advance)
			FROM	titles	t2

			WHERE	t1.type	=	t2.type)

This	example	uses	two	correlated	subqueries	to	find	the	names	of	authors	who
have	participated	in	writing	at	least	one	popular	computing	book.

USE	pubs
SELECT	au_lname,	au_fname
FROM	authors
WHERE	au_id	IN
			(SELECT	au_id
			FROM	titleauthor
			WHERE	title_id	IN
						(SELECT	title_id
						FROM	titles
						WHERE	type	=	'popular_comp'))

F.	Use	GROUP	BY
This	example	finds	the	total	year-to-date	sales	of	each	publisher	in	the	database.

USE	pubs
SELECT	pub_id,	SUM(ytd_sales)	AS	total
FROM	titles
GROUP	BY	pub_id
ORDER	BY	pub_id

Here	is	the	result	set:

pub_id			total
------			-----
0736						28286
0877						44219
1389						24941

(3	row(s)	affected)

Because	of	the	GROUP	BY	clause,	only	one	row	containing	the	sum	of	all	sales
is	returned	for	each	publisher.

G.	Use	GROUP	BY	with	multiple	groups
This	example	finds	the	average	price	and	the	sum	of	year-to-date	sales,	grouped
by	type	and	publisher	ID.

USE	pubs
SELECT	type,	pub_id,	AVG(price)	AS	'avg',	sum(ytd_sales)	AS	'sum'
FROM	titles
GROUP	BY	type,	pub_id
ORDER	BY	type,	pub_id

Here	is	the	result	set:

type									pub_id	avg																			sum									
------------	------	---------------------	-----------	
business					0736			2.9900																18722
business					1389			17.3100															12066
mod_cook					0877			11.4900															24278
popular_comp	1389			21.4750															12875
psychology			0736			11.4825															9564
psychology			0877			21.5900															375
trad_cook				0877			15.9633															19566
UNDECIDED				0877			NULL																		NULL

(8	row(s)	affected)

Warning,	null	value	eliminated	from	aggregate.

H.	Use	GROUP	BY	and	WHERE
This	example	puts	the	results	into	groups	after	retrieving	only	the	rows	with
advances	greater	than	$5,000.

USE	pubs

SELECT	type,	AVG(price)
FROM	titles
WHERE	advance	>	$5000
GROUP	BY	type
ORDER	BY	type

Here	is	the	result	set:

type																																				
------------	--------------------------	
business					2.99																							
mod_cook					2.99																							
popular_comp	21.48																						
psychology			14.30																						
trad_cook				17.97																						

(5	row(s)	affected)

I.	Use	GROUP	BY	with	an	expression
This	example	groups	by	an	expression.	You	can	group	by	an	expression	if	the
expression	does	not	include	aggregate	functions.

USE	pubs
SELECT	AVG(ytd_sales),	ytd_sales	*	royalty
FROM	titles
GROUP	BY	ytd_sales	*	royalty
ORDER	BY	ytd_sales	*	royalty

Here	is	the	result	set:

-----------	-----------	
NULL								NULL						
111									1110								
375									3750								
2032								24384							

2045								24540							
3336								33360							
3876								38760							
4072								40720							
4095								40950							
8780								140480						
15096							211344						
18722							449328						
22246							533904						

(13	row(s)	affected)

J.	Compare	GROUP	BY	and	GROUP	BY	ALL
The	first	example	produces	groups	only	for	those	books	that	commanded
royalties	of	10	percent.	Because	no	modern	cookbooks	have	a	royalty	of	10
percent,	there	is	no	group	in	the	results	for	the	mod_cook	type.

The	second	example	produces	groups	for	all	types,	including	modern	cookbooks
and	UNDECIDED,	although	the	modern	cookbook	group	does	not	include	any
rows	that	meet	the	qualification	specified	in	the	WHERE	clause.

The	column	that	holds	the	aggregate	value	(the	average	price)	is	NULL	for
groups	that	lack	qualifying	rows.

USE	pubs
SELECT	type,	AVG(price)
FROM	titles
WHERE	royalty	=	10
GROUP	BY	type
ORDER	BY	type

Here	is	the	result	set:

type																																				
------------	--------------------------	
business					17.31																						

popular_comp	20.00																						
psychology			14.14																						
trad_cook				17.97																						

(4	row(s)	affected)

--	Using	GROUP	BY	ALL
USE	pubs
SELECT	type,	AVG(price)
FROM	titles
WHERE	royalty	=	10
GROUP	BY	all	type
ORDER	BY	type

Here	is	the	result	set:

type																																				
------------	--------------------------	
business					17.31																						
mod_cook					NULL																					
popular_comp	20.00																						
psychology			14.14																						
trad_cook				17.97																						
UNDECIDED				NULL																					

(6	row(s)	affected)

K.	Use	GROUP	BY	with	ORDER	BY
This	example	finds	the	average	price	of	each	type	of	book	and	orders	the	results
by	average	price.

USE	pubs
SELECT	type,	AVG(price)
FROM	titles

GROUP	BY	type
ORDER	BY	AVG(price)

Here	is	the	result	set:

type																																				
------------	--------------------------	
UNDECIDED				NULL																					
mod_cook					11.49																						
psychology			13.50																						
business					13.73																						
trad_cook				15.96																						
popular_comp	21.48																						

(6	row(s)	affected)

L.	Use	the	HAVING	clause
The	first	example	shows	a	HAVING	clause	with	an	aggregate	function.	It	groups
the	rows	in	the	titles	table	by	type	and	eliminates	the	groups	that	include	only
one	book.	The	second	example	shows	a	HAVING	clause	without	aggregate
functions.	It	groups	the	rows	in	the	titles	table	by	type	and	eliminates	those	types
that	do	not	start	with	the	letter	p.

USE	pubs
SELECT	type
FROM	titles
GROUP	BY	type
HAVING	COUNT(*)	>	1
ORDER	BY	type

Here	is	the	result	set:

type									

business					

mod_cook					
popular_comp	
psychology			
trad_cook				

(5	row(s)	affected)

This	query	uses	the	LIKE	clause	in	the	HAVING	clause.

USE	pubs
SELECT	type
FROM	titles
GROUP	BY	type
HAVING	type	LIKE	'p%'
ORDER	BY	type

Here	is	the	result	set:

type

popular_comp
psychology

(2	row(s)	affected)

M.	Use	HAVING	and	GROUP	BY
This	example	shows	using	GROUP	BY,	HAVING,	WHERE,	and	ORDER	BY
clauses	in	one	SELECT	statement.	It	produces	groups	and	summary	values	but
does	so	after	eliminating	the	titles	with	prices	under	$5.	It	also	organizes	the
results	by	pub_id.

USE	pubs
SELECT	pub_id,	SUM(advance),	AVG(price)
FROM	titles
WHERE	price	>=	$5

GROUP	BY	pub_id
HAVING	SUM(advance)	>	$15000
			AND	AVG(price)	<	$20
			AND	pub_id	>	'0800'
ORDER	BY	pub_id

Here	is	the	result	set:

pub_id																																																							
------	--------------------------	--------------------------	
0877			26,000.00																		17.89																						
1389			30,000.00																		18.98																						

(2	row(s)	affected)

N.	Use	HAVING	with	SUM	and	AVG
This	example	groups	the	titles	table	by	publisher	and	includes	only	those	groups
of	publishers	who	have	paid	more	than	$25,000	in	total	advances	and	whose
books	average	more	than	$15	in	price.

USE	pubs
SELECT	pub_id,	SUM(advance),	AVG(price)
FROM	titles
GROUP	BY	pub_id
HAVING	SUM(advance)	>	$25000	
AND	AVG(price)	>	$15

To	see	the	publishers	who	have	had	year-to-date	sales	greater	than	$40,000,	use
this	query:

USE	pubs
SELECT	pub_id,	total	=	SUM(ytd_sales)
FROM	titles
GROUP	BY	pub_id
HAVING	SUM(ytd_sales)	>	40000

If	you	want	to	make	sure	there	are	at	least	six	books	involved	in	the	calculations
for	each	publisher,	use	HAVING	COUNT(*)	>	5	to	eliminate	the	publishers	that
return	totals	for	fewer	than	six	books.	The	query	looks	like	this:

USE	pubs
SELECT	pub_id,	SUM(ytd_sales)	AS	total
FROM	titles
GROUP	BY	pub_id
HAVING	COUNT(*)	>	5

Here	is	the	result	set:

pub_id			total
------			-----
0877						44219
1389						24941
			
(2	row(s)	affected)

With	this	statement,	two	rows	are	returned.	New	Moon	Books	(0736)	is
eliminated.

O.	Calculate	group	totals	with	COMPUTE	BY
This	example	uses	two	code	examples	to	show	the	use	of	COMPUTE	BY.	The
first	code	example	uses	one	COMPUTE	BY	with	one	aggregate	function,	and
the	second	code	example	uses	one	COMPUTE	BY	item	and	two	aggregate
functions.

This	example	calculates	the	sum	of	the	prices	(for	prices	over	$10)	for	each	type
of	cookbook,	in	order	first	by	type	of	book	and	then	by	price	of	book.

USE	pubs
SELECT	type,	price
FROM	titles
WHERE	price	>	$10
			AND	type	LIKE	'%cook'

ORDER	BY	type,	price
COMPUTE	SUM(price)	BY	type

Here	is	the	result	set:

type									price																	
------------	---------------------	
mod_cook					19.9900

(1	row(s)	affected)

sum																			

19.9900

(1	row(s)	affected)

type									price																	
------------	---------------------	
trad_cook				11.9500
trad_cook				14.9900
trad_cook				20.9500

(3	row(s)	affected)

sum																			

47.8900

(1	row(s)	affected)

This	example	retrieves	the	book	type,	publisher	identification	number,	and	price
of	all	cookbooks.	The	COMPUTE	BY	clause	uses	two	different	aggregate
functions.

USE	pubs
SELECT	type,	pub_id,	price
FROM	titles
WHERE	type	LIKE	'%cook'
ORDER	BY	type,	pub_id
COMPUTE	SUM(price),	MAX(pub_id)	BY	type

Here	is	the	result	set:

type									pub_id	price																	
------------	------	---------------------	
mod_cook					0877			19.9900
mod_cook					0877			2.9900

(2	row(s)	affected)

sum																			max		
---------------------	----	
22.9800															0877

(1	row(s)	affected)

type									pub_id	price																	
------------	------	---------------------	
trad_cook				0877			20.9500
trad_cook				0877			11.9500
trad_cook				0877			14.9900

(3	row(s)	affected)

sum																			max		
---------------------	----	
47.8900															0877

(1	row(s)	affected)

P.	Calculate	grand	values	using	COMPUTE	without	BY
The	COMPUTE	keyword	can	be	used	without	BY	to	generate	grand	totals,
grand	counts,	and	so	on.

This	statement	finds	the	grand	total	of	the	prices	and	advances	for	all	types	of
books	over	$20.

USE	pubs
SELECT	type,	price,	advance
FROM	titles
WHERE	price	>	$20
COMPUTE	SUM(price),	SUM(advance)

You	can	use	COMPUTE	BY	and	COMPUTE	without	BY	in	the	same	query.
This	query	finds	the	sum	of	prices	and	advances	by	type,	and	then	computes	the
grand	total	of	prices	and	advances	for	all	types	of	books.

USE	pubs
SELECT	type,	price,	advance
FROM	titles
WHERE	type	LIKE	'%cook'
ORDER	BY	type,	price
COMPUTE	SUM(price),	SUM(advance)	BY	type
COMPUTE	SUM(price),	SUM(advance)

Here	is	the	result	set:

type									price																	advance															
------------	---------------------	---------------------	
mod_cook					2.9900																15000.0000
mod_cook					19.9900															.0000

(2	row(s)	affected)

sum																			sum																			
---------------------	---------------------	
22.9800															15000.0000

(1	row(s)	affected)

type									price																	advance															
------------	---------------------	---------------------	
trad_cook				11.9500															4000.0000
trad_cook				14.9900															8000.0000
trad_cook				20.9500															7000.0000

(3	row(s)	affected)

sum																			sum																			
---------------------	---------------------	
47.8900															19000.0000

(1	row(s)	affected)

sum																			sum																			
---------------------	---------------------	
70.8700															34000.0000

(1	row(s)	affected)

Q.	Calculate	computed	sums	on	all	rows
This	example	shows	only	three	columns	in	the	select	list	and	gives	totals	based
on	all	prices	and	all	advances	at	the	end	of	the	results.

USE	pubs
SELECT	type,	price,	advance
FROM	titles

COMPUTE	SUM(price),	SUM(advance)

Here	is	the	result	set:

type									price																	advance															
------------	---------------------	---------------------	
business					19.9900															5000.0000
business					11.9500															5000.0000
business					2.9900																10125.0000
business					19.9900															5000.0000
mod_cook					19.9900															.0000
mod_cook					2.9900																15000.0000
UNDECIDED				NULL																		NULL
popular_comp	22.9500															7000.0000
popular_comp	20.0000															8000.0000
popular_comp	NULL																		NULL
psychology			21.5900															7000.0000
psychology			10.9500															2275.0000
psychology			7.0000																6000.0000
psychology			19.9900															2000.0000
psychology			7.9900																4000.0000
trad_cook				20.9500															7000.0000
trad_cook				11.9500															4000.0000
trad_cook				14.9900															8000.0000

(18	row(s)	affected)

sum																			sum																			
---------------------	---------------------	
236.2600														95400.0000

(1	row(s)	affected)

Warning,	null	value	eliminated	from	aggregate.

R.	Use	more	than	one	COMPUTE	clause
This	example	finds	the	sum	of	the	prices	of	all	psychology	books,	as	well	as	the
sum	of	the	prices	of	psychology	books	organized	by	publisher.	You	can	use
different	aggregate	functions	in	the	same	statement	by	including	more	than	one
COMPUTE	BY	clause.

USE	pubs
SELECT	type,	pub_id,	price
FROM	titles
WHERE	type	=	'psychology'
ORDER	BY	type,	pub_id,	price			
COMPUTE	SUM(price)	BY	type,	pub_id
COMPUTE	SUM(price)	BY	type

Here	is	the	result	set:

type									pub_id	price																	
------------	------	---------------------	
psychology			0736			7.0000
psychology			0736			7.9900
psychology			0736			10.9500
psychology			0736			19.9900

(4	row(s)	affected)

sum																			

45.9300

(1	row(s)	affected)

type									pub_id	price																	
------------	------	---------------------	
psychology			0877			21.5900

(1	row(s)	affected)

sum																			

21.5900

(1	row(s)	affected)

sum																			

67.5200

(1	row(s)	affected)

S.	Compare	GROUP	BY	with	COMPUTE
The	first	example	uses	the	COMPUTE	clause	to	calculate	the	sum	for	the	prices
of	the	different	types	of	cookbooks.	The	second	example	produces	the	same
summary	information	using	only	GROUP	BY.

USE	pubs
--	Using	COMPUTE
SELECT	type,	price
FROM	titles
WHERE	type	like	'%cook'
ORDER	BY	type,	price			
COMPUTE	SUM(price)	BY	type

Here	is	the	result	set:

type									price																	
------------	---------------------	
mod_cook					2.9900
mod_cook					19.9900

(2	row(s)	affected)

sum																			

22.9800

(1	row(s)	affected)

type									price																	
------------	---------------------	
trad_cook				11.9500
trad_cook				14.9900
trad_cook				20.9500

(3	row(s)	affected)

sum																			

47.8900

(1	row(s)	affected)

This	is	the	second	query	using	GROUP	BY:

USE	pubs
--	Using	GROUP	BY
SELECT	type,	SUM(price)
FROM	titles
WHERE	type	LIKE	'%cook'
GROUP	BY	type
ORDER	BY	type

Here	is	the	result	set:

type																															
------------	---------------------	
mod_cook					22.9800
trad_cook				47.8900

(2	row(s)	affected)

T.	Use	SELECT	with	GROUP	BY,	COMPUTE,	and	ORDER	BY
clauses
This	example	returns	only	those	rows	with	current	year-to-date	sales,	and	then
computes	the	average	book	cost	and	total	advances	in	descending	order	by	type.
Four	columns	of	data	are	returned,	including	a	truncated	title.	All	computed
columns	appear	within	the	select	list.

USE	pubs
SELECT	CAST(title	AS	char(20))	AS	title,	type,	price,	advance
FROM	titles
WHERE	ytd_sales	IS	NOT	NULL
ORDER	BY	type	DESC
COMPUTE	AVG(price),	SUM(advance)	BY	type
COMPUTE	SUM(price),	SUM(advance)

Here	is	the	result	set:

title																type									price																	advance															
--------------------	------------	---------------------	----------------
Onions,	Leeks,	and	G	trad_cook				20.9500															7000.0000
Fifty	Years	in	Bucki	trad_cook				11.9500															4000.0000
Sushi,	Anyone?							trad_cook				14.9900															8000.0000

(3	row(s)	affected)

avg																			sum																			
---------------------	---------------------	

15.9633															19000.0000

(1	row(s)	affected)

title																type									price																	advance															
--------------------	------------	---------------------	----------------
Computer	Phobic	AND		psychology			21.5900															7000.0000
Is	Anger	the	Enemy?		psychology			10.9500															2275.0000
Life	Without	Fear				psychology			7.0000																6000.0000
Prolonged	Data	Depri	psychology			19.9900															2000.0000
Emotional	Security:		psychology			7.9900																4000.0000

(5	row(s)	affected)

avg																			sum																			
---------------------	---------------------	
13.5040															21275.0000

(1	row(s)	affected)

title																type									price																	advance															
--------------------	------------	---------------------	----------------
But	Is	It	User	Frien	popular_comp	22.9500															7000.0000
Secrets	of	Silicon	V	popular_comp	20.0000															8000.0000

(2	row(s)	affected)

avg																			sum																			
---------------------	---------------------	
21.4750															15000.0000

(1	row(s)	affected)

title																type									price																	advance															
--------------------	------------	---------------------	----------------
Silicon	Valley	Gastr	mod_cook					19.9900															.0000
The	Gourmet	Microwav	mod_cook					2.9900																15000.0000

(2	row(s)	affected)

avg																			sum																			
---------------------	---------------------	
11.4900															15000.0000

(1	row(s)	affected)

title																type									price																	advance															
--------------------	------------	---------------------	----------------
The	Busy	Executive's	business					19.9900															5000.0000
Cooking	with	Compute	business					11.9500															5000.0000
You	Can	Combat	Compu	business					2.9900																10125.0000
Straight	Talk	About		business					19.9900															5000.0000

(4	row(s)	affected)

avg																			sum																			
---------------------	---------------------	
13.7300															25125.0000

(1	row(s)	affected)

sum																			sum																			
---------------------	---------------------	
236.2600														95400.0000

(1	row(s)	affected)

U.	Use	SELECT	statement	with	CUBE
This	example	shows	two	code	examples.	The	first	example	returns	a	result	set
from	a	SELECT	statement	using	the	CUBE	operator.	The	SELECT	statement
covers	a	one-to-many	relationship	between	book	titles	and	the	quantity	sold	of
each	book.	By	using	the	CUBE	operator,	the	statement	returns	an	extra	row.

USE	pubs
SELECT	SUBSTRING(title,	1,	65)	AS	title,	SUM(qty)	AS	'qty'
FROM	sales	INNER	JOIN	titles	
			ON	sales.title_id	=	titles.title_id
GROUP	BY	title
WITH	CUBE
ORDER	BY	title

Here	is	the	result	set:

title																																																													qty									
---	------
NULL																																																														493									
But	Is	It	User	Friendly?																																										30										
Computer	Phobic	AND	Non-Phobic	Individuals:	Behavior	Variations			20										
Cooking	with	Computers:	Surreptitious	Balance	Sheets														25										
...
The	Busy	Executive's	Database	Guide																															15										
The	Gourmet	Microwave																																													40										
You	Can	Combat	Computer	Stress!																																			35										

(17	row(s)	affected)

NULL	represents	all	values	in	the	title	column.	The	result	set	returns	values	for
the	quantity	sold	of	each	title	and	the	total	quantity	sold	of	all	titles.	Applying
the	CUBE	operator	or	ROLLUP	operator	returns	the	same	result.

This	example	uses	the	cube_examples	table	to	show	how	the	CUBE	operator
affects	the	result	set	and	uses	an	aggregate	function	(SUM).	The	cube_examples
table	contains	a	product	name,	a	customer	name,	and	the	number	of	orders	each

customer	has	made	for	a	particular	product.

USE	pubs
CREATE	TABLE	cube_examples
(product_name	varchar(30)		NULL,
	customer_name	varchar(30)	NULL,
	number_of_orders	int						NULL
)

INSERT	cube_examples	(product_name,	customer_name,	number_of_orders)
			VALUES	('Filo	Mix',	'Romero	y	tomillo',	10)
INSERT	cube_examples	(product_name,	customer_name,	number_of_orders)
			VALUES	('Outback	Lager',	'Wilman	Kala',	10)
INSERT	cube_examples	(product_name,	customer_name,	number_of_orders)
			VALUES	('Filo	Mix',	'Romero	y	tomillo',	20)
INSERT	cube_examples	(product_name,	customer_name,	number_of_orders)
			VALUES	('Ikura',	'Wilman	Kala',	10)
INSERT	cube_examples	(product_name,	customer_name,	number_of_orders)
			VALUES	('Ikura',	'Romero	y	tomillo',	10)
INSERT	cube_examples	(product_name,	customer_name,	number_of_orders)
			VALUES	('Outback	Lager',	'Wilman	Kala',	20)
INSERT	cube_examples	(product_name,	customer_name,	number_of_orders)
			VALUES	('Filo	Mix',	'Wilman	Kala',	30)
INSERT	cube_examples	(product_name,	customer_name,	number_of_orders)
			VALUES	('Filo	Mix',	'Eastern	Connection',	40)
INSERT	cube_examples	(product_name,	customer_name,	number_of_orders)
			VALUES	('Outback	Lager',	'Eastern	Connection',	10)
INSERT	cube_examples	(product_name,	customer_name,	number_of_orders)
			VALUES	('Ikura',	'Wilman	Kala',	40)
INSERT	cube_examples	(product_name,	customer_name,	number_of_orders)
			VALUES	('Ikura',	'Romero	y	tomillo',	10)
INSERT	cube_examples	(product_name,	customer_name,	number_of_orders)
			VALUES	('Filo	Mix',	'Romero	y	tomillo',	50)

First,	issue	a	typical	query	with	a	GROUP	BY	clause	and	the	result	set.

USE	pubs
SELECT	product_name,	customer_name,	SUM(number_of_orders)
FROM	cube_examples
GROUP	BY	product_name,	customer_name
ORDER	BY	product_name

The	GROUP	BY	causes	the	result	set	to	form	groups	within	groups.	Here	is	the
result	set:

product_name																			customer_name																														
------------------------------	------------------------------	----------
Filo	Mix																							Eastern	Connection													40										
Filo	Mix																							Romero	y	tomillo															80										
Filo	Mix																							Wilman	Kala																				30										
Ikura																										Romero	y	tomillo															20										
Ikura																										Wilman	Kala																				50										
Outback	Lager																		Eastern	Connection													10										
Outback	Lager																		Wilman	Kala																				30										

(7	row(s)	affected)

Next,	issue	a	query	with	a	GROUP	BY	clause	by	using	the	CUBE	operator.	The
result	set	should	include	the	same	information,	and	super-aggregate	information
for	each	of	the	GROUP	BY	columns.

USE	pubs
SELECT	product_name,	customer_name,	SUM(number_of_orders)
FROM	cube_examples
GROUP	BY	product_name,	customer_name
WITH	CUBE

The	result	set	for	the	CUBE	operator	holds	the	values	from	the	simple	GROUP
BY	result	set	above,	and	adds	the	super-aggregates	for	each	column	in	the
GROUP	BY	clause.	NULL	represents	all	values	in	the	set	from	which	the

aggregate	is	computed.	Here	is	the	result	set:

product_name																			customer_name																														
------------------------------	------------------------------	----------	
Filo	Mix																							Eastern	Connection													40										
Filo	Mix																							Romero	y	tomillo															80										
Filo	Mix																							Wilman	Kala																				30										
Filo	Mix																							NULL																											150									
Ikura																										Romero	y	tomillo															20										
Ikura																										Wilman	Kala																				50										
Ikura																										NULL																											70										
Outback	Lager																		Eastern	Connection													10										
Outback	Lager																		Wilman	Kala																				30										
Outback	Lager																		NULL																											40										
NULL																											NULL																											260									
NULL																											Eastern	Connection													50										
NULL																											Romero	y	tomillo															100									
NULL																											Wilman	Kala																				110									

(14	row(s)	affected)

Line	4	of	the	result	set	indicates	that	a	total	of	150	orders	for	Filo	Mix	was
placed	for	all	customers.

Line	11	of	the	result	set	indicates	that	the	total	number	of	orders	placed	for	all
products	by	all	customers	is	260.

Lines	12-14	of	the	result	set	indicate	that	the	total	number	of	orders	for	each
customer	for	all	products	are	100,	110,	and	50,	respectively.

V.	Use	CUBE	on	a	result	set	with	three	columns
This	example	shows	two	code	examples.	The	first	code	example	produces	a
CUBE	result	set	with	three	columns,	and	the	second	example	produces	a	four-
column	CUBE	result	set.

The	first	SELECT	statement	returns	the	publication	name,	title,	and	quantity	of

books	sold.	The	GROUP	BY	clause	in	this	example	includes	two	columns	called
pub_name	and	title.	There	are	also	two	one-to-many	relationships	between
publishers	and	titles	and	between	titles	and	sales.

By	using	the	CUBE	operator,	the	result	set	contains	more	detailed	information
about	the	quantities	of	titles	sold	by	publishers.	NULL	represents	all	values	in
the	title	column.

USE	pubs
SELECT	pub_name,	title,	SUM(qty)	AS	'qty'
FROM	sales	INNER	JOIN	titles	
			ON	sales.title_id	=	titles.title_id	INNER	JOIN	publishers	
			ON	publishers.pub_id	=	titles.pub_id
GROUP	BY	pub_name,	title
WITH	CUBE

Here	is	the	result	set:

pub_name													title																																						qty	
--------------------	--	------	
Algodata	Infosystems	But	Is	It	User	Friendly?																				30	
Algodata	Infosystems	Cooking	with	Computers:	Surreptitious	Ba				25	
Algodata	Infosystems	Secrets	of	Silicon	Valley																			50	
Algodata	Infosystems	Straight	Talk	About	Computers															15	
Algodata	Infosystems	The	Busy	Executive's	Database	Guide									15	
Algodata	Infosystems	NULL																																							135	
Binnet	&	Hardley					Computer	Phobic	AND	Non-Phobic	Individu					20	
Binnet	&	Hardley					Fifty	Years	in	Buckingham	Palace	Kitche					20	
...																																																...
NULL																	Sushi,	Anyone?																														20	
NULL																	The	Busy	Executive's	Database	Guide									15	
NULL																	The	Gourmet	Microwave																							40	
NULL																	You	Can	Combat	Computer	Stress!													35	

(36	row(s)	affected)

Increasing	the	number	of	columns	in	the	GROUP	BY	clause	shows	why	the
CUBE	operator	is	an	n-dimensional	operator.	A	GROUP	BY	clause	with	two
columns	returns	three	more	kinds	of	groupings	when	the	CUBE	operator	is	used.
The	number	of	groupings	can	be	more	than	three,	depending	on	the	distinct
values	in	the	columns.

The	result	set	is	grouped	by	the	publisher	name	and	then	by	the	book	title.	The
quantity	of	each	title	sold	by	each	publisher	is	listed	in	the	right-hand	column.

NULL	in	the	title	column	represents	all	titles.	For	more	information	about	how
to	differentiate	specific	values	and	all	values	in	the	result	set,	see	Example	H.
The	CUBE	operator	returns	these	groups	of	information	from	one	SELECT
statement:

Quantity	of	each	title	that	each	publisher	has	sold

Quantity	of	each	title	sold

Quantity	of	titles	sold	by	each	publisher

Total	number	of	titles	sold	by	all	publishers

Each	column	referenced	in	the	GROUP	BY	clause	has	been	cross-referenced
with	all	other	columns	in	the	GROUP	BY	clause	and	the	SUM	aggregate	has
been	reapplied,	which	produces	additional	rows	in	the	result	set.	Information
returned	in	the	result	set	grows	n-dimensionally	along	with	the	number	of
columns	in	the	GROUP	BY	clause.

Note		Ensure	that	the	columns	following	the	GROUP	BY	clause	have
meaningful,	real-life	relationships	with	each	other.	For	example,	if	you	use
au_fname	and	au_lname,	the	CUBE	operator	returns	irrelevant	information,
such	as	the	number	of	books	sold	by	authors	with	the	same	first	name.	Using	the
CUBE	operator	on	a	real-life	hierarchy,	such	as	yearly	sales	and	quarterly	sales,
produces	meaningless	rows	in	the	result	set.	It	is	more	efficient	to	use	the
ROLLUP	operator.

In	this	second	code	example,	the	GROUP	BY	clause	contains	three	columns
cross-referenced	by	the	CUBE	operator.	Three	one-to-many	relationships	exist

between	publishers	and	authors,	between	authors	and	titles,	and	between	titles
and	sales.

By	using	the	CUBE	operator,	more	detailed	information	is	returned	about	the
quantities	of	titles	sold	by	publishers.

USE	pubs
SELECT	pub_name,	au_lname,	title,	SUM(qty)
FROM	authors	INNER	JOIN	titleauthor	
			ON	authors.au_id	=	titleauthor.au_id	INNER	JOIN	titles	
			ON	titles.title_id	=	titleauthor.title_id	INNER	JOIN	publishers	
			ON	publishers.pub_id	=	titles.pub_id	INNER	JOIN	sales	
			ON	sales.title_id	=	titles.title_id
GROUP	BY	pub_name,	au_lname,	title
WITH	CUBE

The	CUBE	operator	returns	this	information	based	on	the	cross-referenced
groupings	returned	with	the	CUBE	operator:

Quantity	of	each	title	that	each	publisher	has	sold	for	each	author

Quantity	of	all	titles	each	publisher	has	sold	for	each	author

Quantity	of	all	titles	each	publisher	has	sold

Total	quantity	of	all	titles	sold	by	all	publishers	for	all	authors

Quantity	of	each	title	sold	by	all	publishers	for	each	author

Quantity	of	all	titles	sold	by	all	publishers	for	each	author

Quantity	of	each	title	sold	by	each	publisher	for	all	authors

Quantity	of	each	title	sold	by	all	publishers	for	each	author

Note		The	super-aggregate	for	all	publishers,	all	titles,	and	all	authors	is	greater
than	the	total	number	of	sales,	because	a	number	of	books	have	more	than	one
author.

A	pattern	emerges	as	the	number	of	relationships	grow.	The	pattern	of	values	and
NULL	in	the	report	shows	which	groups	have	been	formed	for	a	summary
aggregate.	Explicit	information	about	the	groups	is	provided	by	the	GROUPING
function.

W.	Use	the	GROUPING	function	with	CUBE
This	example	shows	how	the	SELECT	statement	uses	the	SUM	aggregate,	the
GROUP	BY	clause,	and	the	CUBE	operator.	It	also	uses	the	GROUPING
function	on	the	two	columns	listed	after	the	GROUP	BY	clause.

USE	pubs
SELECT	pub_name,	GROUPING(pub_name),title,	GROUPING(title),	
			SUM(qty)	AS	'qty'
FROM	sales	INNER	JOIN	titles	
			ON	sales.title_id	=	titles.title_id	INNER	JOIN	publishers	
			ON	publishers.pub_id	=	titles.pub_id
GROUP	BY	pub_name,	title
WITH	CUBE

The	result	set	has	two	columns	containing	0	and	1	values,	which	are	produced	by
the	GROUPING(pub_name)	and	GROUPING(title)	expressions.

Here	is	the	result	set:

pub_name																	title																									qty												
--------------------	---	-------------------------	---	-----------	
Algodata	Infosystems			0	But	Is	It	User	Friendly?				0										30	
Algodata	Infosystems			0	Cooking	with	Computers:	S			0										25	
Algodata	Infosystems			0	Secrets	of	Silicon	Valley			0										50	
Algodata	Infosystems			0	Straight	Talk	About	Compu			0										15	
Algodata	Infosystems			0	The	Busy	Executive's	Data			0										15	

Algodata	Infosystems			0	NULL																								1									135	
Binnet	&	Hardley							0	Computer	Phobic	AND	Non-P			0										20	
Binnet	&	Hardley							0	Fifty	Years	in	Buckingham			0										20	
...																																																...
NULL																			1	The	Busy	Executive's	Data			0										15	
NULL																			1	The	Gourmet	Microwave							0										40	
NULL																			1	You	Can	Combat	Computer	S			0										35	

(36	row(s)	affected)

X.	Use	the	ROLLUP	operator
This	example	shows	two	code	examples.	This	first	example	retrieves	the	product
name,	customer	name,	and	the	sum	of	orders	placed	and	uses	the	ROLLUP
operator.

USE	pubs
SELECT	product_name,	customer_name,	SUM(number_of_orders)	
			AS	'Sum	orders'
FROM	cube_examples
GROUP	BY	product_name,	customer_name
WITH	ROLLUP

Here	is	the	result	set:

product_name																			customer_name																		Sum	orders	
------------------------------	------------------------------	----------	
Filo	Mix																							Eastern	Connection													40																			
Filo	Mix																							Romero	y	tomillo															80																			
Filo	Mix																							Wilman	Kala																				30																			
Filo	Mix																							NULL																										150																		
Ikura																										Romero	y	tomillo															20																			
Ikura																										Wilman	Kala																				50																			
Ikura																										NULL																											70																			
Outback	Lager																		Eastern	Connection													10																			

Outback	Lager																		Wilman	Kala																				30																			
Outback	Lager																		NULL																											40																			
NULL																											NULL																											260																		

(11	row(s)	affected)

This	second	example	performs	a	ROLLUP	operation	on	the	company	and
department	columns	and	totals	the	number	of	employees.

The	ROLLUP	operator	produces	a	summary	of	aggregates.	This	is	useful	when
summary	information	is	needed	but	a	full	CUBE	provides	extraneous	data	or
when	you	have	sets	within	sets.	For	example,	departments	within	a	company	are
a	set	within	a	set.

USE	pubs
CREATE	TABLE	personnel
(
	company_name	varchar(20),
	department			varchar(15),
	num_employees	int
)

INSERT	personnel	VALUES	('Du	monde	entier',	'Finance',	10)
INSERT	personnel	VALUES	('Du	monde	entier',	'Engineering',	40)
INSERT	personnel	VALUES	('Du	monde	entier',	'Marketing',	40)
INSERT	personnel	VALUES	('Piccolo	und	mehr',	'Accounting',	20)
INSERT	personnel	VALUES	('Piccolo	und	mehr',	'Personnel',	30)
INSERT	personnel	VALUES	('Piccolo	und	mehr',	'Payroll',	40)

In	this	query,	the	company	name,	department,	and	the	sum	of	all	employees	for
the	company	become	part	of	the	result	set,	in	addition	to	the	ROLLUP
calculations.

SELECT	company_name,	department,	SUM(num_employees)
FROM	personnel
GROUP	BY	company_name,	department	WITH	ROLLUP

Here	is	the	result	set:

company_name									department																		
--------------------	---------------	-----------	
Du	monde	entier						Engineering					40										
Du	monde	entier						Finance									10										
Du	monde	entier						Marketing							40										
Du	monde	entier						NULL												90										
Piccolo	und	mehr					Accounting						20										
Piccolo	und	mehr					Payroll									40										
Piccolo	und	mehr					Personnel							30										
Piccolo	und	mehr					NULL												90										
NULL																	NULL												180									

(9	row(s)	affected)

Y.	Use	the	GROUPING	function
This	example	adds	three	new	rows	to	the	cube_examples	table.	Each	of	the
three	records	NULL	in	one	or	more	columns	to	show	only	the	ROLLUP	function
produces	a	value	of	1	in	the	grouping	column.	In	addition,	this	example	modifies
the	SELECT	statement	that	was	used	in	the	earlier	example.

USE	pubs
--	Add	first	row	with	a	NULL	customer	name	and	0	orders.
INSERT	cube_examples	(product_name,	customer_name,	number_of_orders)
			VALUES	('Ikura',	NULL,	0)

--	Add	second	row	with	a	NULL	product	and	NULL	customer	with	real	value	
--	for	orders.
INSERT	cube_examples	(product_name,	customer_name,	number_of_orders)
			VALUES	(NULL,	NULL,	50)

--	Add	third	row	with	a	NULL	product,	NULL	order	amount,	but	a	real	
--	customer	name.

INSERT	cube_examples	(product_name,	customer_name,	number_of_orders)
VALUES	(NULL,	'Wilman	Kala',	NULL)

SELECT	product_name	AS	Prod,	customer_name	AS	Cust,	
			SUM(number_of_orders)	AS	'Sum	Orders',
			GROUPING(product_name)	AS	'Grp	prod_name',
			GROUPING(customer_name)	AS	'Grp	cust_name'
FROM	cube_examples
GROUP	BY	product_name,	customer_name
WITH	ROLLUP

The	GROUPING	function	can	be	used	only	with	CUBE	or	ROLLUP.	The
GROUPING	function	returns	1	when	an	expression	evaluates	to	NULL,	because
the	column	value	is	NULL	and	represents	the	set	of	all	values.	The	GROUPING
function	returns	0	when	the	corresponding	column	(whether	it	is	NULL	or	not)
did	not	come	from	either	the	CUBE	or	ROLLUP	options	as	a	syntax	value.	The
returned	value	has	a	tinyint	data	type.

Here	is	the	result	set:

Prod										Cust															Sum	Orders		Grp	prod_name	Grp	cust_name	
-------------	------------------	-----------	-------------	-------------	
NULL										NULL															50										0													0													
NULL										Wilman	Kala								NULL								0													0													
NULL										NULL															50										0													1													
Filo	Mix						Eastern	Connection	40										0													0													
Filo	Mix						Romero	y	tomillo			80										0													0													
Filo	Mix						Wilman	Kala								30										0													0													
Filo	Mix						NULL															150									0													1													
Ikura									NULL															0											0													0													
Ikura									Romero	y	tomillo			20										0													0													
Ikura									Wilman	Kala								50										0													0													
Ikura									NULL															70										0													1													
Outback	Lager	Eastern	Connection	10										0													0													
Outback	Lager	Wilman	Kala								30										0													0													

Outback	Lager	NULL															40										0													1													
NULL										NULL															310									1													1													

(15	row(s)	affected)

Z.	Use	SELECT	with	GROUP	BY,	an	aggregate	function,	and
ROLLUP
This	example	uses	a	SELECT	query	that	contains	an	aggregate	function	and	a
GROUP	BY	clause,	which	lists	pub_name,	au_lname,	and	title,	in	that	order.

USE	pubs
SELECT	pub_name,	au_lname,	title,	SUM(qty)	AS	'SUM'
FROM	authors	INNER	JOIN	titleauthor	
			ON	authors.au_id	=	titleauthor.au_id	INNER	JOIN	titles	
			ON	titles.title_id	=	titleauthor.title_id	INNER	JOIN	publishers	
			ON	publishers.pub_id	=	titles.pub_id	INNER	JOIN	sales	
			ON	sales.title_id	=	titles.title_id
GROUP	BY	pub_name,	au_lname,	title
WITH	ROLLUP

By	using	the	ROLLUP	operator,	these	groupings	are	created	by	moving	right	to
left	along	the	list	of	columns.

pub_name						au_lname						title			SUM(qty)
pub_name						au_lname						NULL						SUM(qty)
pub_name						NULL									NULL						SUM(qty)
NULL									NULL									NULL						SUM(qty)

NULL	represents	all	values	for	that	column.

If	you	use	the	SELECT	statement	without	the	ROLLUP	operator,	the	statement
creates	a	single	grouping.	The	query	returns	a	sum	value	for	each	unique
combination	of	pub_name,	au_lname,	and	title.

pub_name							au_lname							title			SUM(qty)

Compare	these	examples	with	the	groupings	created	by	using	the	CUBE
operator	on	the	same	query.

pub_name						au_lname						title			SUM(qty)
pub_name						au_lname						NULL						SUM(qty)
pub_name						NULL									NULL						SUM(qty)
NULL									NULL									NULL						SUM(qty)
NULL									au_lname						title			SUM(qty)
NULL									au_lname						NULL						SUM(qty)
pub_name						NULL									title			SUM(qty)
NULL									NULL									title			SUM(qty)

The	groupings	correspond	to	the	information	returned	in	the	result	set.	NULL	in
the	result	set	represents	all	values	in	the	column.	The	ROLLUP	operator	returns
the	following	data	when	the	columns	(pub_name,	au_lname,	title)	are	in	the
order	listed	in	the	GROUP	BY	clause:

Quantity	of	each	title	that	each	publisher	has	sold	for	each	author

Quantity	of	all	titles	each	publisher	has	sold	for	each	author

Quantity	of	all	titles	each	publisher	has	sold

Total	quantity	of	all	titles	sold	by	all	publishers	for	all	authors

Here	is	the	result	set:

pub_name										au_lname					title																																SUM
-----------------	------------	------------------------------------	---
Algodata	Infosys		Bennet							The	Busy	Executive's	Database	Guide		15	
Algodata	Infosys		Bennet							NULL																																	15	
Algodata	Infosys		Carson							NULL																																	30	
Algodata	Infosys		Dull									Secrets	of	Silicon	Valley												50	
Algodata	Infosys		Dull									NULL																																	50	
...																																																			...

New	Moon	Books				White								Prolonged	Data	Deprivation:	Four					15	
New	Moon	Books				White								NULL																																	15	
New	Moon	Books				NULL									NULL																																316	
NULL														NULL									NULL																																791	

(49	row(s)	affected)

The	GROUPING	function	can	be	used	with	the	ROLLUP	operator	or	with	the
CUBE	operator.	You	can	apply	this	function	to	one	of	the	columns	in	the	select
list.	The	function	returns	either	1	or	0	depending	upon	whether	the	column	is
grouped	by	the	ROLLUP	operator.

a.	Use	the	INDEX	optimizer	hint
This	example	shows	two	ways	to	use	the	INDEX	optimizer	hint.	The	first
example	shows	how	to	force	the	optimizer	to	use	a	nonclustered	index	to	retrieve
rows	from	a	table	and	the	second	example	forces	a	table	scan	by	using	an	index
of	0.

--	Use	the	specifically	named	INDEX.
USE	pubs
SELECT	au_lname,	au_fname,	phone
FROM	authors	WITH	(INDEX(aunmind))
WHERE	au_lname	=	'Smith'

Here	is	the	result	set:

au_lname																															au_fname													phone								
--------------------------------------	--------------------	----------	
Smith																																		Meander														913	843-0462	

(1	row(s)	affected)

--	Force	a	table	scan	by	using	INDEX	=	0.
USE	pubs
SELECT	emp_id,	fname,	lname,	hire_date

FROM	employee	(index	=	0)
WHERE	hire_date	>	'10/1/1994'

b.	Use	OPTION	and	the	GROUP	hints
This	example	shows	how	the	OPTION	(GROUP)	clause	is	used	with	a	GROUP
BY	clause.

USE	pubs
SELECT	a.au_fname,	a.au_lname,	SUBSTRING(t.title,	1,	15)
FROM	authors	a	INNER	JOIN	titleauthor	ta	
			ON	a.au_id	=	ta.au_id	INNER	JOIN	titles	t	
			ON	t.title_id	=	ta.title_id
GROUP	BY	a.au_lname,	a.au_fname,	t.title
ORDER	BY	au_lname	ASC,	au_fname	ASC
OPTION	(HASH	GROUP,	FAST	10)

c.	Use	the	UNION	query	hint
This	example	uses	the	MERGE	UNION	query	hint.

USE	pubs
SELECT	*
FROM	authors	a1
OPTION	(MERGE	UNION)
SELECT	*
FROM	authors	a2

d.	Use	a	simple	UNION
The	result	set	in	this	example	includes	the	contents	of	the	ContactName,
CompanyName,	City,	and	Phone	columns	of	both	the	Customers	and
SouthAmericanCustomers	tables.

USE	Northwind
GO
IF	EXISTS(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.TABLES

						WHERE	TABLE_NAME	=	'SouthAmericanCustomers')
			DROP	TABLE	SouthAmericanCustomers
GO
--	Create	SouthAmericanCustomers	table.
SELECT	ContactName,	CompanyName,	City,	Phone
INTO	SouthAmericanCustomers
FROM	Customers
WHERE	Country	IN	('USA',	'Canada')
GO
--	Here	is	the	simple	union.
USE	Northwind
SELECT	ContactName,	CompanyName,	City,	Phone
FROM	Customers
WHERE	Country	IN	('USA',	'Canada')
UNION
SELECT	ContactName,	CompanyName,	City,	Phone
FROM	SouthAmericanCustomers
ORDER	BY	CompanyName,	ContactName	ASC
GO

e.	Use	SELECT	INTO	with	UNION
In	this	example,	the	INTO	clause	in	the	first	SELECT	statement	specifies	that
the	table	named	CustomerResults	holds	the	final	result	set	of	the	union	of	the
designated	columns	of	the	Customers	and	SouthAmericanCustomers	tables.

USE	Northwind
IF	EXISTS(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.TABLES
						WHERE	TABLE_NAME	=	'CustomerResults')
			DROP	TABLE	CustomerResults
GO
USE	Northwind
SELECT	ContactName,	CompanyName,	City,	Phone	INTO	CustomerResults
FROM	Customers

WHERE	Country	IN	('USA',	'Canada')
UNION
SELECT	ContactName,	CompanyName,	City,	Phone
FROM	SouthAmericanCustomers
ORDER	BY	CompanyName,	ContactName	ASC
GO

f.	Use	UNION	of	two	SELECT	statements	with	ORDER	BY
The	order	of	certain	parameters	used	with	the	UNION	clause	is	important.	This
example	shows	the	incorrect	and	correct	use	of	UNION	in	two	SELECT
statements	in	which	a	column	is	to	be	renamed	in	the	output.

/*	INCORRECT	*/
USE	Northwind
GO
SELECT	City
FROM	Customers
ORDER	BY	Cities
UNION
SELECT	Cities	=	City	
FROM	SouthAmericanCustomers
GO

/*	CORRECT	*/
USE	Northwind
GO
SELECT	Cities	=	City
FROM	Customers
			UNION
SELECT	City	
FROM	SouthAmericanCustomers
ORDER	BY	Cities
GO

g.	Use	UNION	of	three	SELECT	statements	showing	the	effects	of
ALL	and	parentheses
These	examples	use	UNION	to	combine	the	results	of	three	tables,	in	which	all
have	the	same	5	rows	of	data.	The	first	example	uses	UNION	ALL	to	show	the
duplicated	records,	and	returns	all	15	rows.	The	second	example	uses	UNION
without	ALL	to	eliminate	the	duplicate	rows	from	the	combined	results	of	the
three	SELECT	statements,	and	returns	5	rows.

The	final	example	uses	ALL	with	the	first	UNION,	and	parentheses	around	the
second	UNION	that	is	not	using	ALL.	The	second	UNION	is	processed	first
because	it	is	in	parentheses,	and	returns	5	rows	because	the	ALL	option	is	not
used	and	the	duplicates	are	removed.	These	5	rows	are	combined	with	the	results
of	the	first	SELECT	through	the	UNION	ALL	keywords,	which	does	not	remove
the	duplicates	between	the	two	sets	of	5	rows.	The	final	result	has	10	rows.

USE	Northwind
GO
IF	EXISTS(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.TABLES
						WHERE	TABLE_NAME	=	'CustomersOne')
			DROP	TABLE	CustomersOne
GO
IF	EXISTS(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.TABLES
						WHERE	TABLE_NAME	=	'CustomersTwo')
			DROP	TABLE	CustomersTwo
GO
IF	EXISTS(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.TABLES
						WHERE	TABLE_NAME	=	'CustomersThree')
			DROP	TABLE	CustomersThree
GO
USE	Northwind
GO
SELECT	ContactName,	CompanyName,	City,	Phone	INTO	CustomersOne
FROM	Customers
WHERE	Country	=	'Mexico'
GO

SELECT	ContactName,	CompanyName,	City,	Phone	INTO	CustomersTwo
FROM	Customers
WHERE	Country	=	'Mexico'
GO
SELECT	ContactName,	CompanyName,	City,	Phone	INTO	CustomersThree
FROM	Customers
WHERE	Country	=	'Mexico'
GO
--	Union	ALL
SELECT	ContactName
FROM	CustomersOne
			UNION	ALL
SELECT	ContactName	
FROM	CustomersTwo
			UNION	ALL
SELECT	ContactName	
FROM	CustomersThree
GO

USE	Northwind
GO
SELECT	ContactName
FROM	CustomersOne
			UNION	
SELECT	ContactName	
FROM	CustomersTwo
			UNION	
SELECT	ContactName	
FROM	CustomersThree
GO

USE	Northwind
GO

SELECT	ContactName	
FROM	CustomersOne
			UNION	ALL
			(
						SELECT	ContactName	
						FROM	CustomersTwo
									UNION
						SELECT	ContactName	
						FROM	CustomersThree
)
GO

See	Also

CREATE	TRIGGER

CREATE	VIEW

DELETE

Distributed	Queries

EXECUTE

Expressions

INSERT

LIKE

sp_dboption

Subquery	Fundamentals

UNION

UPDATE

Using	Variables	and	Parameters

WHERE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Transact-SQL	Reference

SERVERPROPERTY
Returns	property	information	about	the	server	instance.

Syntax
SERVERPROPERTY	(propertyname)

Arguments
propertyname

Is	an	expression	containing	the	property	information	to	be	returned	for	the
server.	propertyname	can	be	one	of	these	values.

Property	name Values	returned
Collation The	name	of	the	default	collation	for	the	server.

Returns	NULL	if	invalid	input	or	error.

Base	data	type:	nvarchar

Edition The	edition	of	the	Microsoft®	SQL	Server™
instance	installed	on	the	server.

Returns:

'Desktop	Engine'
'Developer	Edition'
'Enterprise	Edition'
'Enterprise	Evaluation	Edition'
'Personal	Edition'
'Standard	Edition'

Base	data	type:	nvarchar(128)

Engine	Edition The	engine	edition	of	the	SQL	Server	instance
installed	on	the	server.

1	=	Personal	or	Desktop	Engine

2	=	Standard
3	=	Enterprise	(returned	for	Enterprise,
Enterprise	Evaluation,	and	Developer)

Base	data	type:	int

InstanceName The	name	of	the	instance	to	which	the	user	is
connected.

Returns	NULL	if	the	instance	name	is	the
default	instance,	or	invalid	input	or	error.

Base	data	type:	nvarchar

IsClustered The	server	instance	is	configured	in	a	failover
cluster.

1	=	Clustered.
0	=	Not	Clustered.
NULL	=	Invalid	input,	or	error.

Base	data	type:	int

IsFullTextInstalled The	full-text	component	is	installed	with	the
current	instance	of	SQL	Server.

1	=	Full-text	is	installed.
0	=	Full-text	is	not	installed.
NULL	=	Invalid	input,	or	error.

Base	data	type:	int

IsIntegratedSecurityOnlyThe	server	is	in	integrated	security	mode.

1	=	Integrated	Security.
0	=	Not	Integrated	Security.
NULL	=	Invalid	input,	or	error.

Base	data	type:	int

IsSingleUser The	server	is	in	single	user	mode.

1	=	Single	User.
0	=	Not	Single	User

NULL	=	Invalid	input,	or	error.

Base	data	type:	int

IsSyncWithBackup The	database	is	either	a	published	database	or	a
distribution	database,	and	can	be	restored
without	disrupting	transactional	replication.

1	=	True.
0	=	False.

Base	data	type:	int

LicenseType Mode	of	this	instance	of	SQL	Server.

PER_SEAT	=	Per-seat	mode
PER_PROCESSOR	=	Per-processor	mode
DISABLED	=	Licensing	is	disabled.

Base	data	type:	nvarchar(128)

MachineName Windows	NT	computer	name	on	which	the
server	instance	is	running.

For	a	clustered	instance,	an	instance	of	SQL
Server	running	on	a	virtual	server	on	Microsoft
Cluster	Server,	it	returns	the	name	of	the	virtual
server.

Returns	NULL	if	invalid	input	or	error.

Base	data	type:	nvarchar

NumLicenses Number	of	client	licenses	registered	for	this
instance	of	SQL	Server,	if	in	per-seat	mode.

Number	of	processors	licensed	for	this	instance
of	SQL	Server,	if	in	per-processor	mode.

Returns	NULL	if	the	server	is	none	of	the
above.

Base	data	type:	int

ProcessID Process	ID	of	the	SQL	Server	service.
(ProcessID	is	useful	in	identifying	which
sqlservr.exe	belongs	to	this	instance.)

Returns	NULL	if	invalid	input	or	error.

Base	data	type:	int

ProductVersion The	version	of	the	instance	of	SQL	Server,	in
the	form	of	'major.minor.build'.

Base	data	type:	varchar(128)

ProductLevel The	level	of	the	version	of	the	SQL	Server
instance.

Returns:
'RTM'	=	shipping	version.
'SPn'	=	service	pack	version
'Bn',	=	beta	version.

Base	data	type:	nvarchar(128).

ServerName Both	the	Windows	NT	server	and	instance
information	associated	with	a	specified	instance
of	SQL	Server.

Returns	NULL	if	invalid	input	or	error.

Base	data	type:	nvarchar

Return	Types
sql_variant

Remarks
The	ServerName	property	of	the	SERVERPROPERTY	function	and
@@SERVERNAME	return	similar	information.	The	ServerName	property
provides	the	Windows	NT	server	and	instance	name	that	together	make	up	the

unique	server	instance.	@@SERVERNAME	provides	the	currently	configured
local	server	name.

ServerName	property	and	@@SERVERNAME	return	the	same	information	if
the	default	server	name	at	the	time	of	installation	has	not	been	changed.	The
local	server	name	can	be	configured	by	executing	sp_addserver	and
sp_dropserver.

If	the	local	server	name	has	been	changed	from	the	default	server	name	at	install
time,	then	@@SERVERNAME	returns	the	new	name.

Examples
This	example	used	the	SERVERPROPERTY	function	in	a	SELECT	statement	to
return	information	about	the	current	server.	This	scenario	is	useful	when	there
are	multiple	instances	of	SQL	Server	installed	on	a	Windows	NT	server,	and	the
client	needs	to	open	another	connection	to	the	same	instance	used	by	the	current
connection.

SELECT			CONVERT(char(20),	SERVERPROPERTY('servername'))

See	Also

@@SERVERNAME

Transact-SQL	Reference

SESSION_USER
Is	a	niladic	function	that	allows	a	system-supplied	value	for	the	current	session's
username	to	be	inserted	into	a	table	when	no	default	value	is	specified.	Also
allows	the	username	to	be	used	in	queries,	error	messages,	and	so	on.

Syntax
SESSION_USER

Return	Types
nchar

Remarks
Use	SESSION_USER	with	DEFAULT	constraints	in	either	the	CREATE
TABLE	or	ALTER	TABLE	statements,	or	use	as	any	standard	function.

Examples

A.	Use	SESSION_USER	to	return	the	session's	current	username
This	example	declares	a	variable	as	char,	assigns	the	current	value	of
SESSION_USER,	and	then	prints	the	variable	with	a	text	description.

DECLARE	@session_usr	char(30)
SET	@session_usr	=	SESSION_USER
SELECT	'This	session''s	current	user	is:	'+	@session_usr
GO

Here	is	the	result	set:

--	
This	session's	current	user	is:	dbo																												

(1	row(s)	affected)

B.	Use	SESSION_USER	with	DEFAULT	constraints
This	example	creates	a	table	using	the	SESSION_USER	niladic	function	as	a
DEFAULT	constraint	for	the	delivery	person.

USE	pubs
GO
CREATE	TABLE	deliveries2
(
	order_id	int	IDENTITY(5000,	1)	NOT	NULL,
	cust_id		int	NOT	NULL,
	order_date	datetime	NOT	NULL	DEFAULT	GETDATE(),
	delivery_date	datetime	NOT	NULL	DEFAULT	DATEADD(dd,	10,	GETDATE()),
	delivery_person	char(30)	NOT	NULL	DEFAULT	SESSION_USER
)
GO
INSERT	deliveries2	(cust_id)
VALUES	(7510)
INSERT	deliveries2	(cust_id)
VALUES	(7231)
INSERT	deliveries2	(cust_id)
VALUES	(7028)
INSERT	deliveries2	(cust_id)
VALUES	(7392)
INSERT	deliveries2	(cust_id)
VALUES	(7452)
GO

This	query	selects	all	information	from	the	deliveries2	table.

SELECT	order_id	AS	'Ord#',	cust_id	AS	'Cust#',	order_date,	
			delivery_date,	delivery_person	AS	'Delivery'
FROM	deliveries2

ORDER	BY	order_id
GO

Here	is	the	result	set:

Ord#		Cust#		order_date										delivery_date								Delivery					
----		------	------------------		--------------------	----------------
5000		7510			Mar	4	1998	10:21AM		Mar	14	1998	10:21AM		dbo																												
5001		7231			Mar	4	1998	10:21AM		Mar	14	1998	10:21AM		dbo																												
5002		7028			Mar	4	1998	10:21AM		Mar	14	1998	10:21AM		dbo																												
5003		7392			Mar	4	1998	10:21AM		Mar	14	1998	10:21AM		dbo																												
5004		7452			Mar	4	1998	10:21AM		Mar	14	1998	10:21AM		dbo																												

(5	row(s)	affected)

See	Also

ALTER	TABLE

CREATE	TABLE

CURRENT_TIMESTAMP

CURRENT_USER

SYSTEM_USER

System	Functions

USER

USER_NAME

Transact-SQL	Reference

SESSIONPROPERTY
Returns	the	SET	options	settings	of	a	session.

Syntax
SESSIONPROPERTY	(option)

Arguments
option

Is	the	current	option	setting	for	this	session.	option	may	be	any	of	the
following	values.

Option Description
ANSI_NULLS Specifies	whether	the	SQL-92	compliant

behavior	of	equals	(=)	and	not	equal	to	(<>)
against	null	values	is	applied.

1	=	ON
0	=	OFF

ANSI_PADDING Controls	the	way	the	column	stores	values
shorter	than	the	defined	size	of	the	column,
and	the	way	the	column	stores	values	that
have	trailing	blanks	in	character	and	binary
data.

1	=	ON
0	=	OFF

ANSI_WARNINGS Specifies	whether	the	SQL-92	standard
behavior	of	raising	error	messages	or
warnings	for	certain	conditions,	including
divide-by-zero	and	arithmetic	overflow,	is
applied.

1	=	ON

0	=	OFF

ARITHABORT Determines	whether	a	query	is	terminated
when	an	overflow	or	a	divide-by-zero	error
occurs	during	query	execution.

1	=	ON
0	=	OFF

CONCAT_NULL_YIELDS_
NULL

Controls	whether	concatenation	results	are
treated	as	null	or	empty	string	values.

1	=	ON
0	=	OFF

NUMERIC_ROUNDABORTSpecifies	whether	error	messages	and
warnings	are	generated	when	rounding	in	an
expression	causes	a	loss	of	precision.

1	=	ON
0	=	OFF

QUOTED_IDENTIFIER Specifies	whether	SQL-92	rules	regarding
the	use	of	quotation	marks	to	delimit
identifiers	and	literal	strings	are	to	be
followed.

1	=	ON
0	=	OFF

<Any	other	string> NULL	=	Invalid	input

Return	Types
sql_variant

Remarks
SET	options	are	figured	by	combining	server-level,	database-level,	and	user-
specified	options.

Examples
This	example	returns	the	setting	for	CONCAT_NULL_YIELDS_NULL	option.

SELECT			SESSIONPROPERTY	('CONCAT_NULL_YIELDS_NULL')

See	Also

sql_variant

Transact-SQL	Reference

SET	@local_variable
Sets	the	specified	local	variable,	previously	created	with	the	DECLARE
@local_variable	statement,	to	the	given	value.

Syntax
SET	{	{	@local_variable	=	expression	}	
								|	{	@cursor_variable	=	{	@cursor_variable	|	cursor_name	
																|	{	CURSOR	[FORWARD_ONLY	|	SCROLL]	
																				[STATIC	|	KEYSET	|	DYNAMIC	|	FAST_FORWARD]	
																				[READ_ONLY	|	SCROLL_LOCKS	|	OPTIMISTIC]	
																				[TYPE_WARNING]	
																FOR	select_statement	
																				[FOR	{	READ	ONLY	|	UPDATE	[OF	column_name	[,...n]]	}	
]	
																}	
								}	}	
				}

Arguments
@local_variable

Is	the	name	of	a	variable	of	any	type	except	cursor,	text,	ntext,	or	image.
Variable	names	must	begin	with	one	at	sign	(@).	Variable	names	must
conform	to	the	rules	for	identifiers.	For	more	information,	see	Using
Identifiers.

expression

Is	any	valid	Microsoft®	SQL	Server™	expression.

cursor_variable

Is	the	name	of	a	cursor	variable.	If	the	target	cursor	variable	previously
referenced	a	different	cursor,	that	previous	reference	is	removed.

cursor_name

JavaScript:hhobj_1.Click()

Is	the	name	of	a	cursor	declared	using	the	DECLARE	CURSOR	statement.

CURSOR

Specifies	that	the	SET	statement	contains	a	declaration	of	a	cursor.

SCROLL

Specifies	that	the	cursor	supports	all	fetch	options	(FIRST,	LAST,	NEXT,
PRIOR,	RELATIVE,	and	ABSOLUTE).	SCROLL	cannot	be	specified	if
FAST_FORWARD	is	also	specified.

FORWARD_ONLY

Specifies	that	the	cursor	supports	only	the	FETCH	NEXT	option.	The	cursor
can	be	retrieved	only	in	one	direction,	from	the	first	to	the	last	row.	If
FORWARD_ONLY	is	specified	without	the	STATIC,	KEYSET,	or
DYNAMIC	keywords,	the	cursor	is	implemented	as	DYNAMIC.	When
neither	FORWARD_ONLY	nor	SCROLL	is	specified,	FORWARD_ONLY	is
the	default,	unless	the	keywords	STATIC,	KEYSET,	or	DYNAMIC	are
specified.	STATIC,	KEYSET,	and	DYNAMIC	cursors	default	to	SCROLL.
FAST_FORWARD	and	FORWARD_ONLY	are	mutually	exclusive;	if	one	is
specified	the	other	cannot	be	specified.

STATIC

Defines	a	cursor	that	makes	a	temporary	copy	of	the	data	to	be	used	by	the
cursor.	All	requests	to	the	cursor	are	answered	from	this	temporary	table	in
tempdb;	therefore,	modifications	made	to	base	tables	are	not	reflected	in	the
data	returned	by	fetches	made	to	this	cursor,	and	this	cursor	does	not	allow
modifications.

KEYSET

Specifies	that	the	membership	and	order	of	rows	in	the	cursor	are	fixed	when
the	cursor	is	opened.	The	set	of	keys	that	uniquely	identify	the	rows	is	built
into	a	table	in	tempdb	known	as	the	keyset.	Changes	to	nonkey	values	in	the
base	tables,	either	made	by	the	cursor	owner	or	committed	by	other	users,	are
visible	as	the	owner	scrolls	around	the	cursor.	Inserts	made	by	other	users	are
not	visible	(inserts	cannot	be	made	through	a	Transact-SQL	server	cursor).	If
a	row	is	deleted,	an	attempt	to	fetch	the	row	returns	an
@@FETCH_STATUS	of	-2.	Updates	of	key	values	from	outside	the	cursor

resemble	a	delete	of	the	old	row	followed	by	an	insert	of	the	new	row.	The
row	with	the	new	values	is	not	visible,	and	attempts	to	fetch	the	row	with	the
old	values	return	an	@@FETCH_STATUS	of	-2.	The	new	values	are	visible
if	the	update	is	done	through	the	cursor	by	specifying	the	WHERE
CURRENT	OF	clause.

DYNAMIC

Defines	a	cursor	that	reflects	all	data	changes	made	to	the	rows	in	its	result
set	as	you	scroll	around	the	cursor.	The	data	values,	order,	and	membership
of	the	rows	can	change	on	each	fetch.	The	absolute	and	relative	fetch	options
are	not	supported	with	dynamic	cursors.

FAST_FORWARD

Specifies	a	FORWARD_ONLY,	READ_ONLY	cursor	with	optimizations
enabled.	FAST_FORWARD	cannot	be	specified	if	SCROLL	is	also
specified.	FAST_FORWARD	and	FORWARD_ONLY	are	mutually
exclusive,	if	one	is	specified	the	other	cannot	be	specified.

READ_ONLY

Prevents	updates	from	being	made	through	this	cursor.	The	cursor	cannot	be
referenced	in	a	WHERE	CURRENT	OF	clause	in	an	UPDATE	or	DELETE
statement.	This	option	overrides	the	default	capability	of	a	cursor	to	be
updated.

SCROLL	LOCKS

Specifies	that	positioned	updates	or	deletes	made	through	the	cursor	are
guaranteed	to	succeed.	SQL	Server	locks	the	rows	as	they	are	read	into	the
cursor	to	ensure	their	availability	for	later	modifications.	SCROLL_LOCKS
cannot	be	specified	if	FAST_FORWARD	is	also	specified.

OPTIMISTIC

Specifies	that	positioned	updates	or	deletes	made	through	the	cursor	do	not
succeed	if	the	row	has	been	updated	since	it	was	read	into	the	cursor.	SQL
Server	does	not	lock	rows	as	they	are	read	into	the	cursor.	It	instead	uses
comparisons	of	timestamp	column	values,	or	a	checksum	value	if	the	table
has	no	timestamp	column,	to	determine	if	the	row	was	modified	after	it	was
read	into	the	cursor.	If	the	row	was	modified,	the	attempted	positioned

update	or	delete	fails.	OPTIMISTIC	cannot	be	specified	if
FAST_FORWARD	is	also	specified.

TYPE_WARNING

Specifies	that	a	warning	message	is	sent	to	the	client	if	the	cursor	is
implicitly	converted	from	the	requested	type	to	another.

FOR	select_statement

Is	a	standard	SELECT	statement	that	defines	the	result	set	of	the	cursor.	The
keywords	COMPUTE,	COMPUTE	BY,	FOR	BROWSE,	and	INTO	are	not
allowed	within	the	select_statement	of	a	cursor	declaration.

If	DISTINCT,	UNION,	GROUP	BY,	or	HAVING	are	used,	or	an	aggregate
expression	is	included	in	the	select_list,	the	cursor	will	be	created	as
STATIC.

If	each	of	the	underlying	tables	does	not	have	a	unique	index	and	an	SQL-92
SCROLL	cursor	or	a	Transact-SQL	KEYSET	cursor	is	requested,	it	will
automatically	be	a	STATIC	cursor.

If	select_statement	contains	an	ORDER	BY	in	which	the	columns	are	not
unique	row	identifiers,	a	DYNAMIC	cursor	is	converted	to	a	KEYSET
cursor,	or	to	a	STATIC	cursor	if	a	KEYSET	cursor	cannot	be	opened.	This
also	happens	for	a	cursor	defined	using	SQL-92	syntax	but	without	the
STATIC	keyword.

READ	ONLY

Prevents	updates	from	being	made	through	this	cursor.	The	cursor	cannot	be
referenced	in	a	WHERE	CURRENT	OF	clause	in	an	UPDATE	or	DELETE
statement.	This	option	overrides	the	default	capability	of	a	cursor	to	be
updated.	This	keyword	varies	from	the	earlier	READ_ONLY	by	having	a
space	instead	of	an	underscore	between	READ	and	ONLY.

UPDATE	[OF	column_name	[,...n]]

Defines	updatable	columns	within	the	cursor.	If	OF	column_name	[,...n]	is
supplied,	only	the	columns	listed	will	allow	modifications.	If	no	list	is
supplied,	all	columns	can	be	updated,	unless	the	cursor	has	been	defined	as
READ_ONLY.

Remarks
After	declaration,	all	variables	are	initialized	to	NULL.	Use	the	SET	statement	to
assign	a	value	that	is	not	NULL	to	a	declared	variable.	The	SET	statement	that
assigns	a	value	to	the	variable	returns	a	single	value.	When	initializing	multiple
variables	use	a	separate	SET	statement	for	each	local	variable.

Variables	can	be	used	only	in	expressions,	not	in	place	of	object	names	or
keywords.	To	construct	dynamic	SQL	statements,	use	EXECUTE.

The	syntax	rules	for	SET	@cursor_variable	do	not	include	the	LOCAL	and
GLOBAL	keywords.	When	the	SET	@cursor_variable	=	CURSOR...	syntax	is
used,	the	cursor	is	created	as	GLOBAL	or	LOCAL,	depending	on	the	setting	of
the	default	to	local	cursor	database	option.

Cursor	variables	are	always	local,	even	if	they	reference	a	global	cursor.	When	a
cursor	variable	references	a	global	cursor,	the	cursor	has	both	a	global	and	a
local	cursor	reference.	For	more	information,	see	Example	C.

For	more	information,	see	DECLARE	CURSOR.

Permissions
SET	@local_variable	permissions	default	to	all	users.

Examples

A.	Print	the	value	of	a	variable	initialized	with	SET
This	example	creates	the	@myvar	variable,	places	a	string	value	into	the
variable,	and	prints	the	value	of	the	@myvar	variable.

DECLARE	@myvar	char(20)
SET	@myvar	=	'This	is	a	test'
SELECT	@myvar
GO

B.	Use	a	local	variable	assigned	a	value	with	SET	in	a	SELECT
statement

This	example	creates	a	local	variable	named	@state	and	uses	this	local	variable
in	a	SELECT	statement	to	find	all	author	first	and	last	names	where	the	author
resides	in	the	state	of	Utah.

USE	pubs
GO
DECLARE	@state	char(2)
SET	@state	=	'UT'
SELECT	RTRIM(au_fname)	+	'	'	+	RTRIM(au_lname)	AS	Name,	state
FROM	authors
WHERE	state	=	@state
GO

C.	Use	SET	with	a	global	cursor
This	example	creates	a	local	variable	and	then	sets	the	cursor	variable	to	the
global	cursor	name.

DECLARE	my_cursor	CURSOR	GLOBAL	FOR	SELECT	*	FROM	authors
			DECLARE	@my_variable	CURSOR	
			SET	@my_variable	=	my_cursor		
																						/*	There	is	a	GLOBAL	declared
																									reference	(my_cursor)	and	a	LOCAL	variable
																									reference	(@my_variable)	to	the	my_cursor
																									cursor.																																				*/
			DEALLOCATE	my_cursor		/*	There	is	now	only	a	LOCAL	variable
																									reference	(@my_variable)	to	the	my_cursor
																									cursor.																																				*/

D.	Define	a	cursor	with	SET
This	example	uses	the	SET	statement	to	define	a	cursor.

DECLARE	@CursorVar	CURSOR

SET	@CursorVar	=	CURSOR	SCROLL	DYNAMIC

FOR
SELECT	LastName,	FirstName
FROM	Northwind.dbo.Employees
WHERE	LastName	like	'B%'

OPEN	@CursorVar

FETCH	NEXT	FROM	@CursorVar
WHILE	@@FETCH_STATUS	=	0
BEGIN
				FETCH	NEXT	FROM	@CursorVar
END

CLOSE	@CursorVar
DEALLOCATE	@CursorVar

E.	Assign	a	value	from	a	query
This	example	uses	a	query	to	assign	a	value	to	a	variable.

USE	Northwind
GO
DECLARE	@rows	int
SET	@rows	=	(SELECT	COUNT(*)	FROM	Customers)

See	Also

DECLARE	@local_variable

EXECUTE

Expressions

SELECT

SET

Using	Variables	and	Parameters

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Transact-SQL	Reference

SET
The	Transact-SQL	programming	language	provides	several	SET	statements	that
alter	the	current	session	handling	of	specific	information.

The	SET	statements	are	grouped	into	these	categories.

Category Alters	the	current	session	settings	for
Date	and	time Handling	date	and	time	data.
Locking Handling	Microsoft®	SQL	Server™

locking.
Miscellaneous Miscellaneous	SQL	Server	functionality.
Query	execution Query	execution	and	processing.
SQL-92	settings Using	the	SQL-92	default	settings.
Statistics Displaying	statistics	information.
Transactions Handling	SQL	Server	transactions.

Date	and	Time	Statements
SET	DATEFIRST

SET	DATEFORMAT

Locking	Statements
SET	DEADLOCK_PRIORITY

SET	LOCK_TIMEOUT

Miscellaneous	Statements
SET	CONCAT_NULL_YIELDS_NULL

SET	CURSOR_CLOSE_ON_COMMIT

SET	DISABLE_DEF_CNST_CHK

SET	FIPS_FLAGGER

SET	IDENTITY_INSERT

SET	LANGUAGE

SET	OFFSETS

SET	QUOTED_IDENTIFIER

Query	Execution	Statements
SET	ARITHABORT

SET	ARITHIGNORE

SET	FMTONLY

SET	NOCOUNT

SET	NOEXEC

SET	NUMERIC_ROUNDABORT

SET	PARSEONLY

SET	QUERY_GOVERNOR_COST_LIMIT

SET	ROWCOUNT

SET	TEXTSIZE

SQL-92	Settings	Statements
SET	ANSI_DEFAULTS

SET	ANSI_NULL_DFLT_OFF

SET	ANSI_NULL_DFLT_ON

SET	ANSI_NULLS

SET	ANSI_PADDING

SET	ANSI_WARNINGS

Statistics	Statements

SET	FORCEPLAN

SET	SHOWPLAN_ALL

SET	SHOWPLAN_TEXT

SET	STATISTICS	IO

SET	STATISTICS	PROFILE

SET	STATISTICS	TIME

Transactions	Statements
SET	IMPLICIT_TRANSACTIONS

SET	REMOTE_PROC_TRANSACTIONS

SET	TRANSACTION	ISOLATION	LEVEL

SET	XACT_ABORT

Considerations	When	Using	the	SET	Statements
Except	for	SET	FIPS_FLAGGER,	SET	OFFSETS,	SET	PARSEONLY,
and	SET	QUOTED_IDENTIFIER,	all	other	SET	statements	are	set	at
execute	or	run	time.	SET	FIPS_FLAGGER,	SET	OFFSETS,	SET
PARSEONLY,	and	SET	QUOTED_IDENTIFIER	are	set	at	parse	time.

If	a	SET	statement	is	set	in	a	stored	procedure,	the	value	of	the	SET
option	is	restored	after	control	is	returned	from	the	stored	procedure.
Therefore,	a	SET	statement	specified	in	dynamic	SQL	does	not	affect
the	statements	that	follow	the	dynamic	SQL	statement.

Stored	procedures	execute	with	the	SET	settings	specified	at	execute
time	except	for	SET	ANSI_NULLS	and	SET	QUOTED_IDENTIFIER.
Stored	procedures	specifying	SET	ANSI_NULLS	or	SET
QUOTED_IDENTIFIER	use	the	setting	specified	at	stored	procedure
creation	time.	If	used	inside	a	stored	procedure,	any	SET	setting	is
ignored.

The	user	options	setting	of	sp_configure	allows	server-wide	settings
and	works	across	multiple	databases.	This	setting	also	behaves	like	an
explicit	SET	statement,	except	that	it	occurs	at	login	time.

Database	settings	(set	by	using	sp_dboption)	are	valid	only	at	the
database	level	and	only	take	effect	if	explicitly	set.	Database	settings
override	server	option	settings	(set	using	sp_configure).

With	any	of	the	SET	statements	with	ON	and	OFF	settings,	it	is	possible
to	specify	either	an	ON	or	OFF	setting	for	multiple	SET	options.	For
example,
SET	QUOTED_IDENTIFIER,	ANSI_NULLS	ON	

sets	both	QUOTED_IDENTIFIER	and	ANSI_NULLS	to	ON.

SET	statement	settings	override	database	option	settings	(set	by	using
sp_dboption).	In	addition,	some	connection	settings	are	set	ON
automatically	when	a	user	connects	to	a	database	based	on	the	values
put	into	effect	by	the	prior	use	of	the	sp_configure	user	options	setting,
or	the	values	that	apply	to	all	ODBC	and	OLE/DB	connections.

When	a	global	or	shortcut	SET	statement	(for	example,	SET
ANSI_DEFAULTS)	sets	a	number	of	settings,	issuing	the	shortcut	SET
statement	resets	the	prior	settings	for	all	those	options	affected	by	the
shortcut	SET	statement.	If	an	individual	SET	option	(affected	by	a
shortcut	SET	statement)	is	explicitly	set	after	the	shortcut	SET
statement	is	issued,	the	individual	SET	statement	overrides	the
corresponding	shortcut	settings.	

When	batches	are	used,	the	database	context	is	determined	by	the	batch
established	with	the	USE	statement.	Ad	hoc	queries	and	all	other
statements	that	are	executed	outside	of	the	stored	procedure	and	that	are
in	batches	inherit	the	option	settings	of	the	database	and	connection

established	with	the	USE	statement.

When	a	stored	procedure	is	executed,	either	from	a	batch	or	from
another	stored	procedure,	it	is	executed	under	the	option	values	that	are
currently	set	in	the	database	that	contains	the	stored	procedure.	For
example,	when	stored	procedure	db1.dbo.sp1	calls	stored	procedure
db2.dbo.sp2,	stored	procedure	sp1	is	executed	under	the	current
compatibility	level	setting	of	database	db1,	and	stored	procedure	sp2	is
executed	under	the	current	compatibility	level	setting	of	database	db2.

When	a	Transact-SQL	statement	refers	to	objects	that	reside	in	multiple
databases,	the	current	database	context	and	the	current	connection
context	(the	database	defined	by	the	USE	statement	if	it	is	in	a	batch,	or
the	database	that	contains	the	stored	procedure	if	it	is	in	a	stored
procedure)	applies	to	that	statement.

When	creating	and	manipulating	indexes	on	computed	columns	or
indexed	views,	the	SET	options	ARITHABORT,
CONCAT_NULL_YIELDS_NULL,	QUOTED_IDENTIFIER,
ANSI_NULLS,	ANSI_PADDING,	and	ANSI_WARNINGS	must	be	set
to	ON.	The	option	NUMERIC_ROUNDABORT	must	be	set	to	OFF.

If	any	of	these	options	are	not	set	to	the	required	values,	INSERT,
UPDATE,	and	DELETE	actions	on	indexed	views	or	tables	with
indexes	on	computed	columns	will	fail.	SQL	Server	will	raise	an	error
listing	all	the	options	that	are	incorrectly	set.	Also,	SQL	Server	will
process	SELECT	statements	on	these	tables	or	indexed	views	as	though
the	indexes	on	computed	columns	or	on	the	views	do	not	exist.

Transact-SQL	Reference

SET	ANSI_DEFAULTS
Controls	a	group	of	Microsoft®	SQL	Server™	settings	that	collectively	specify
some	SQL-92	standard	behavior.

Syntax
SET	ANSI_DEFAULTS	{	ON	|	OFF	}

Remarks
When	enabled	(ON),	this	option	enables	the	following	SQL-92	settings:

SET	ANSI_NULLS SET	CURSOR_CLOSE_ON_COMMIT
SET	ANSI_NULL_DFLT_ON SET	IMPLICIT_TRANSACTIONS
SET	ANSI_PADDING SET	QUOTED_IDENTIFIER
SET	ANSI_WARNINGS 	

Together,	these	SQL-92	standard	SET	options	define	the	query	processing
environment	for	the	duration	of	the	user's	work	session,	a	running	trigger,	or	a
stored	procedure.	These	SET	options,	however,	do	not	include	all	of	the	options
required	to	conform	to	the	SQL-92	standard.

When	dealing	with	indexes	on	computed	columns	and	indexed	views,	four	of
these	defaults	(ANSI_NULLS,	ANSI_PADDING,	ANSI_WARNINGS,	and
QUOTED_IDENTIFIER)	must	be	set	to	ON.	These	defaults	are	among	seven
SET	options	that	must	be	assigned	required	values	when	creating	and
manipulating	indexes	on	computed	columns	and	indexed	views.	The	other	SET
options	are:	ARITHABORT	(ON),	CONCAT_NULL_YIELDS_NULL	(ON),
and	NUMERIC_ROUNDABORT	(OFF).	For	more	information	about	required
SET	option	settings	with	indexed	views	and	indexes	on	computed	columns,	see
Considerations	When	Using	SET	Statements	in	SET.

The	SQL	Server	ODBC	driver	and	Microsoft	OLE	DB	Provider	for	SQL	Server
automatically	set	ANSI_DEFAULTS	to	ON	when	connecting.	The	driver	and
Provider	then	set	CURSOR_CLOSE_ON_COMMIT	and
IMPLICIT_TRANSACTIONS	to	OFF.	The	OFF	settings	for	SET

CURSOR_CLOSE_ON_COMMIT	and	SET	IMPLICIT_TRANSACTIONS	can
be	configured	in	ODBC	data	sources,	in	ODBC	connection	attributes,	or	in	OLE
DB	connection	properties	that	are	set	in	the	application	before	connecting	to
SQL	Server.	SET	ANSI_DEFAULTS	defaults	to	OFF	for	connections	from	DB-
Library	applications.

When	SET	ANSI_DEFAULTS	is	issued,	SET	QUOTED_IDENTIFIER	is	set	at
parse	time,	and	these	options	are	set	at	execute	time:

SET	ANSI_NULLS SET	ANSI_WARNINGS
SET	ANSI_NULL_DFLT_ON SET	CURSOR_CLOSE_ON_COMMIT
SET	ANSI_PADDING SET	IMPLICIT_TRANSACTIONS

Permissions
SET	ANSI_DEFAULTS	permissions	default	to	all	users.

Examples
This	example	sets	SET	ANSI_DEFAULTS	ON	and	uses	the	DBCC
USEROPTIONS	statement	to	display	the	settings	that	are	affected.

--	SET	ANSI_DEFAULTS	ON.
SET	ANSI_DEFAULTS	ON
GO
--	Display	the	current	settings.
DBCC	USEROPTIONS
GO
--	SET	ANSI_DEFAULTS	OFF.
SET	ANSI_DEFAULTS	OFF
GO

See	Also

DBCC	USEROPTIONS

SET

SET	ANSI_NULL_DFLT_ON

SET	ANSI_NULLS

SET	ANSI_PADDING

SET	ANSI_WARNINGS

SET	CURSOR_CLOSE_ON_COMMIT

SET	IMPLICIT_TRANSACTIONS

SET	QUOTED_IDENTIFIER

Transact-SQL	Reference

SET	ANSI_NULL_DFLT_OFF
Alters	the	session's	behavior	to	override	default	nullability	of	new	columns	when
the	ANSI	null	default	option	for	the	database	is	true.	For	more	information
about	setting	the	value	for	ANSI	null	default,	see	sp_dboption	and	Setting
Database	Options.

Syntax
SET	ANSI_NULL_DFLT_OFF	{ON	|	OFF}

Remarks
This	setting	only	affects	the	nullability	of	new	columns	when	the	nullability	of
the	column	is	not	specified	in	the	CREATE	TABLE	and	ALTER	TABLE
statements.	When	SET	ANSI_NULL_DFLT_OFF	is	ON,	new	columns	created
with	the	ALTER	TABLE	and	CREATE	TABLE	statements	are,	by	default,	NOT
NULL	if	the	nullability	status	of	the	column	is	not	explicitly	specified.	SET
ANSI_NULL_DFLT_OFF	has	no	effect	on	columns	created	with	an	explicit
NULL	or	NOT	NULL.

Both	SET	ANSI_NULL_DFLT_OFF	and	SET	ANSI_NULL_DFLT_ON	cannot
be	set	ON	simultaneously.	If	one	option	is	set	ON,	the	other	option	is	set	OFF.
Therefore,	either	ANSI_NULL_DFLT_OFF	or	SET	ANSI_NULL_DFLT_ON
can	be	set	ON,	or	both	can	be	set	OFF.	If	either	option	is	ON,	that	setting	(SET
ANSI_NULL_DFLT_OFF	or	SET	ANSI_NULL_DFLT_ON)	takes	effect.	If
both	options	are	set	OFF,	Microsoft®	SQL	Server™	uses	the	value	of	the	ANSI
null	default	option	of	sp_dboption.

For	the	most	reliable	operation	of	Transact-SQL	scripts	that	may	be	used	in
databases	with	different	nullability	settings,	it	is	best	to	always	specify	NULL	or
NOT	NULL	in	CREATE	TABLE	and	ALTER	TABLE	statements.

The	setting	of	SET	ANSI_NULL_DFLT_OFF	is	set	at	execute	or	run	time	and
not	at	parse	time.

Permissions

JavaScript:hhobj_1.Click()

SET	ANSI_NULL_DFLT_OFF	permissions	default	to	all	users.

Examples
This	example	shows	the	effects	of	SET	ANSI_NULL_DFLT_OFF	with	both
settings	for	the	ANSI	null	default	database	option.

USE	pubs
GO
--	Set	the	'ANSI	null	default'	database	option	to	true	by	executing	
--	sp_dboption.
GO
EXEC	sp_dboption	'pubs','ANSI	null	default','true'
GO
--	Create	table	t1.
CREATE	TABLE	t1	(a	tinyint)	
GO
--	NULL	INSERT	should	succeed.
INSERT	INTO	t1	(a)	VALUES	(null)
GO
--	SET	ANSI_NULL_DFLT_OFF	to	ON	and	create	table	t2.
SET	ANSI_NULL_DFLT_OFF	ON
GO
CREATE	TABLE	t2	(a	tinyint)
GO	
--	NULL	INSERT	should	fail.
INSERT	INTO	t2	(a)	VALUES	(null)
GO
--	SET	ANSI_NULL_DFLT_OFF	to	OFF	and	create	table	t3.
SET	ANSI_NULL_DFLT_OFF	off
GO
CREATE	TABLE	t3	(a	tinyint)	
GO	
--	NULL	INSERT	should	succeed.

INSERT	INTO	t3	(a)	VALUES	(null)
GO
--	This	illustrates	the	effect	of	having	both	the	sp_dboption	and	SET	
--	option	disabled.
--	Set	the	'ANSI	null	default'	database	option	to	false.
EXEC	sp_dboption	'pubs','ANSI	null	default','false'
GO
--	Create	table	t4.
CREATE	TABLE	t4	(a	tinyint)	
GO	
--	NULL	INSERT	should	fail.
INSERT	INTO	t4	(a)	VALUES	(null)
GO
--	SET	ANSI_NULL_DFLT_OFF	to	ON	and	create	table	t5.
SET	ANSI_NULL_DFLT_OFF	ON
GO
CREATE	TABLE	t5	(a	tinyint)
GO	
--	NULL	insert	should	fail.
INSERT	INTO	t5	(a)	VALUES	(null)
GO
--	SET	ANSI_NULL_DFLT_OFF	to	OFF	and	create	table	t6.
SET	ANSI_NULL_DFLT_OFF	OFF
GO
CREATE	TABLE	t6	(a	tinyint)	
GO	
--	NULL	insert	should	fail.
INSERT	INTO	t6	(a)	VALUES	(null)
GO
--	Drop	tables	t1	through	t6.
DROP	TABLE	t1
DROP	TABLE	t2
DROP	TABLE	t3

DROP	TABLE	t4
DROP	TABLE	t5
DROP	TABLE	t6
GO

See	Also

ALTER	TABLE

CREATE	TABLE

SET

SET	ANSI_NULL_DFLT_ON

Transact-SQL	Reference

SET	ANSI_NULL_DFLT_ON
Alters	the	session's	behavior	to	override	default	nullability	of	new	columns	when
the	ANSI	null	default	option	for	the	database	is	false.	For	more	information
about	setting	the	value	for	ANSI	null	default,	see	sp_dboption	and	Setting
Database	Options.

Syntax
SET	ANSI_NULL_DFLT_ON	{ON	|	OFF}

Remarks
This	setting	only	affects	the	nullability	of	new	columns	when	the	nullability	of
the	column	is	not	specified	in	the	CREATE	TABLE	and	ALTER	TABLE
statements.	When	SET	ANSI_NULL_DFLT_ON	is	ON,	new	columns	created
with	the	ALTER	TABLE	and	CREATE	TABLE	statements	allow	null	values	if
the	nullability	status	of	the	column	is	not	explicitly	specified.	SET
ANSI_NULL_DFLT_ON	has	no	effect	on	columns	created	with	an	explicit
NULL	or	NOT	NULL.

Both	SET	ANSI_NULL_DFLT_OFF	and	SET	ANSI_NULL_DFLT_ON	cannot
be	set	ON	simultaneously.	If	one	option	is	set	ON,	the	other	option	is	set	OFF.
Therefore,	either	ANSI_NULL_DFLT_OFF	or	ANSI_NULL_DFLT_ON	can	be
set	ON,	or	both	can	be	set	OFF.	If	either	option	is	ON,	that	setting	(SET
ANSI_NULL_DFLT_OFF	or	SET	ANSI_NULL_DFLT_ON)	takes	effect.	If
both	options	are	set	OFF,	Microsoft®	SQL	Server™	uses	the	value	of	the	ANSI
null	default	option	of	sp_dboption.

For	the	most	reliable	operation	of	Transact-SQL	scripts	used	in	databases	with
different	nullability	settings,	it	is	best	to	specify	NULL	or	NOT	NULL	in
CREATE	TABLE	and	ALTER	TABLE	statements.

The	SQL	Server	ODBC	driver	and	Microsoft	OLE	DB	Provider	for	SQL	Server
automatically	set	ANSI_NULL_DFLT_ON	to	ON	when	connecting.	SET
ANSI_NULL_DFLT_ON	defaults	to	OFF	for	connections	from	DB-Library
applications.

JavaScript:hhobj_1.Click()

When	SET	ANSI_DEFAULTS	is	ON,	SET	ANSI_NULL_DFLT_ON	is	enabled.

The	setting	of	SET	ANSI_NULL_DFLT_ON	is	set	at	execute	or	run	time	and
not	at	parse	time.

Permissions
SET	ANSI_NULL_DFLT_ON	permissions	default	to	all	users.

Examples
This	example	shows	the	effects	of	SET	ANSI_NULL_DFLT_ON	with	both
settings	for	the	ANSI	null	default	database	option.

USE	pubs
GO
--	The	code	from	this	point	on	demonstrates	that	SET	ANSI_NULL_DFLT_ON
--	has	an	effect	when	the	'ANSI	null	default'	for	the	database	is	false.
--	Set	the	'ANSI	null	default'	database	option	to	false	by	executing
--	sp_dboption.
EXEC	sp_dboption	'pubs','ANSI	null	default','false'
GO
--	Create	table	t1.
CREATE	TABLE	t1	(a	tinyint)	
GO	
--	NULL	INSERT	should	fail.
INSERT	INTO	t1	(a)	VALUES	(null)
GO
--	SET	ANSI_NULL_DFLT_ON	to	ON	and	create	table	t2.
SET	ANSI_NULL_DFLT_ON	ON
GO
CREATE	TABLE	t2	(a	tinyint)
GO	
--	NULL	insert	should	succeed.
INSERT	INTO	t2	(a)	VALUES	(null)
GO

--	SET	ANSI_NULL_DFLT_ON	to	OFF	and	create	table	t3.
SET	ANSI_NULL_DFLT_ON	OFF
GO
CREATE	TABLE	t3	(a	tinyint)	
GO	
--	NULL	insert	should	fail.
INSERT	INTO	t3	(a)	VALUES	(null)
GO
--	The	code	from	this	point	on	demonstrates	that	SET	ANSI_NULL_DFLT_ON	
--	has	no	effect	when	the	'ANSI	null	default'	for	the	database	is	true.
--	Set	the	'ANSI	null	default'	database	option	to	true.
EXEC	sp_dboption	'pubs','ANSI	null	default','true'
GO
--	Create	table	t4.
CREATE	TABLE	t4	(a	tinyint)	
GO	
--	NULL	INSERT	should	succeed.
INSERT	INTO	t4	(a)	VALUES	(null)
GO
--	SET	ANSI_NULL_DFLT_ON	to	ON	and	create	table	t5.
SET	ANSI_NULL_DFLT_ON	ON
GO
CREATE	TABLE	t5	(a	tinyint)
GO	
--	NULL	INSERT	should	succeed.
INSERT	INTO	t5	(a)	VALUES	(null)
GO
--	SET	ANSI_NULL_DFLT_ON	to	OFF	and	create	table	t6.
SET	ANSI_NULL_DFLT_ON	OFF
GO
CREATE	TABLE	t6	(a	tinyint)
GO	
--	NULL	INSERT	should	succeed.

INSERT	INTO	t6	(a)	VALUES	(null)
GO
--	Set	the	'ANSI	null	default'	database	option	to	false.
EXEC	sp_dboption	'pubs','ANSI	null	default','false'
GO
--	Drop	tables	t1	through	t6.
DROP	TABLE	t1
DROP	TABLE	t2
DROP	TABLE	t3
DROP	TABLE	t4
DROP	TABLE	t5
DROP	TABLE	t6
GO

See	Also

ALTER	TABLE

CREATE	TABLE

SET

SET	ANSI_DEFAULTS

SET	ANSI_NULL_DFLT_OFF

Transact-SQL	Reference

SET	ANSI_NULLS
Specifies	SQL-92	compliant	behavior	of	the	Equals	(=)	and	Not	Equal	to	(<>)
comparison	operators	when	used	with	null	values.

Syntax
SET	ANSI_NULLS	{ON	|	OFF}

Remarks
The	SQL-92	standard	requires	that	an	equals	(=)	or	not	equal	to	(<>)	comparison
against	a	null	value	evaluates	to	FALSE.	When	SET	ANSI_NULLS	is	ON,	a
SELECT	statement	using	WHERE	column_name	=	NULL	returns	zero	rows
even	if	there	are	null	values	in	column_name.	A	SELECT	statement	using
WHERE	column_name	<>	NULL	returns	zero	rows	even	if	there	are	nonnull
values	in	column_name.

When	SET	ANSI_NULLS	is	OFF,	the	Equals	(=)	and	Not	Equal	To	(<>)
comparison	operators	do	not	follow	the	SQL-92	standard.	A	SELECT	statement
using	WHERE	column_name	=	NULL	returns	the	rows	with	null	values	in
column_name.	A	SELECT	statement	using	WHERE	column_name	<>	NULL
returns	the	rows	with	nonnull	values	in	the	column.	In	addition,	a	SELECT
statement	using	WHERE	column_name	<>	XYZ_value	returns	all	rows	that	are
not	XYZ	value	and	that	are	not	NULL.

Note		Whether	Microsoft®	SQL	Server™	interprets	an	empty	string	as	either	a
single	space	or	as	a	true	empty	string	is	controlled	by	the	compatibility	level
setting	of	sp_dbcmptlevel.	If	the	compatibility	level	is	less	than	or	equal	to	65,
SQL	Server	interprets	empty	strings	as	single	spaces.	If	the	compatibility	level	is
equal	to	70,	SQL	Server	interprets	empty	strings	as	empty	strings.	For	more
information,	see	sp_dbcmptlevel.

When	SET	ANSI_NULLS	is	ON,	all	comparisons	against	a	null	value	evaluate
to	UNKNOWN.	When	SET	ANSI_NULLS	is	OFF,	comparisons	of	all	data
against	a	null	value	evaluate	to	TRUE	if	the	data	value	is	NULL.	If	not
specified,	the	setting	of	the	ANSI	nulls	option	of	the	current	database	applies.
For	more	information	about	the	ANSI	nulls	database	option,	see	sp_dboption

and	Setting	Database	Options.

For	a	script	to	work	as	intended,	regardless	of	the	ANSI	nulls	database	option	or
the	setting	of	SET	ANSI_NULLS,	use	IS	NULL	and	IS	NOT	NULL	in
comparisons	that	may	contain	null	values.

For	stored	procedures,	SQL	Server	uses	the	SET	ANSI_NULLS	setting	value
from	the	initial	creation	time	of	the	stored	procedure.	Whenever	the	stored
procedure	is	subsequently	executed,	the	setting	of	SET	ANSI_NULLS	is
restored	to	its	originally	used	value	and	takes	effect.	When	invoked	inside	a
stored	procedure,	the	setting	of	SET	ANSI_NULLS	is	not	changed.

SET	ANSI_NULLS	should	be	set	to	ON	for	executing	distributed	queries.

SET	ANSI_NULLS	also	must	be	ON	when	creating	or	manipulating	indexes	on
computed	columns	or	indexed	views.	If	SET	ANSI_NULLS	is	OFF,	CREATE,
UPDATE,	INSERT,	and	DELETE	statements	on	tables	with	indexes	on
computed	columns	or	indexed	views	will	fail.	SQL	Server	will	return	an	error
listing	all	SET	options	violating	the	required	values.	In	addition,	when	executing
a	SELECT	statement,	if	SET	ANSI_NULLS	is	OFF,	SQL	Server	will	ignore	the
index	values	on	computed	columns	or	views	and	resolve	the	select	as	though
there	were	no	such	indexes	on	the	tables	or	views.

Note		ANSI_NULLS	is	one	of	seven	SET	options	that	must	be	set	to	required
values	when	dealing	with	indexes	on	computed	columns	or	indexed	views.	The
options	ANSI_PADDING,	ANSI_WARNINGS,	ARITHABORT,
QUOTED_IDENTIFIER,	and	CONCAT_NULL_YIELDS_NULL	also	must	be
set	to	ON,	while	NUMERIC_ROUNDABORT	must	be	set	to	OFF.

The	SQL	Server	ODBC	driver	and	Microsoft	OLE	DB	Provider	for	SQL	Server
automatically	set	ANSI_NULLS	to	ON	when	connecting.	This	setting	can	be
configured	in	ODBC	data	sources,	in	ODBC	connection	attributes,	or	in	OLE
DB	connection	properties	that	are	set	in	the	application	before	connecting	to
SQL	Server.	SET	ANSI_NULLS	defaults	to	OFF	for	connections	from	DB-
Library	applications.

When	SET	ANSI_DEFAULTS	is	ON,	SET	ANSI_NULLS	is	enabled.

The	setting	of	SET	ANSI_NULLS	is	set	at	execute	or	run	time	and	not	at	parse
time.

JavaScript:hhobj_1.Click()

Permissions
SET	ANSI_NULLS	permissions	default	to	all	users.

Examples
This	example	uses	the	Equals	(=)	and	Not	Equal	To	(<>)	comparison	operators
to	make	comparisons	with	NULL	and	nonnull	values	in	a	table.	This	example
also	demonstrates	that	IS	NULL	is	not	affected	by	the	SET	ANSI_NULLS
setting.

--	Create	table	t1	and	insert	values.
CREATE	TABLE	t1	(a	int	null)
INSERT	INTO	t1	values	(NULL)
INSERT	INTO	t1	values	(0)
INSERT	INTO	t1	values	(1)
GO
--	Print	message	and	perform	SELECT	statements.
PRINT	'Testing	default	setting'
DECLARE	@varname	int
SELECT	@varname	=	NULL
SELECT	*	
FROM	t1	
WHERE	a	=	@varname
SELECT	*	
FROM	t1	
WHERE	a	<>	@varname
SELECT	*	
FROM	t1	
WHERE	a	IS	NULL
GO
--	SET	ANSI_NULLS	to	ON	and	test.
PRINT	'Testing	ANSI_NULLS	ON'
SET	ANSI_NULLS	ON
GO

DECLARE	@varname	int
SELECT	@varname	=	NULL
SELECT	*	
FROM	t1	
WHERE	a	=	@varname
SELECT	*	
FROM	t1	
WHERE	a	<>	@varname
SELECT	*	
FROM	t1	
WHERE	a	IS	NULL
GO
--	SET	ANSI_NULLS	to	OFF	and	test.
PRINT	'Testing	SET	ANSI_NULLS	OFF'
SET	ANSI_NULLS	OFF
GO
DECLARE	@varname	int
SELECT	@varname	=	NULL
SELECT	*	
FROM	t1	
WHERE	a	=	@varname
SELECT	*	
FROM	t1	
WHERE	a	<>	@varname
SELECT	*	
FROM	t1	
WHERE	a	IS	NULL
GO
--	Drop	table	t1.
DROP	TABLE	t1
GO

See	Also

=	(Equals)

IF...ELSE

<>	(Not	Equal	To)

SET

SET	ANSI_DEFAULTS

WHERE

WHILE

Transact-SQL	Reference

SET	ANSI_PADDING
Controls	the	way	the	column	stores	values	shorter	than	the	defined	size	of	the
column,	and	the	way	the	column	stores	values	that	have	trailing	blanks	in	char,
varchar,	binary,	and	varbinary	data.

Syntax
SET	ANSI_PADDING	{	ON	|	OFF	}

Remarks
Columns	defined	with	char,	varchar,	binary,	and	varbinary	data	types	have	a
defined	size.

This	setting	affects	only	the	definition	of	new	columns.	After	the	column	is
created,	Microsoft®	SQL	Server™	stores	the	values	based	on	the	setting	when
the	column	was	created.	Existing	columns	are	not	affected	by	a	later	change	to
this	setting.

WARNING		It	is	recommended	that	ANSI_PADDING	always	be	set	to	ON.

This	table	shows	the	effects	of	the	SET	ANSI_PADDING	setting	when	values
are	inserted	into	columns	with	char,	varchar,	binary,	and	varbinary	data	types.

Setting

char(n)	NOT	NULL
or	binary(n)	NOT
NULL

char(n)	NULL
or	binary(n)
NULL

varchar(n)	or
varbinary(n)

ON Pad	original	value
(with	trailing	blanks
for	char	columns
and	with	trailing
zeros	for	binary
columns)	to	the
length	of	the	column.

Follows	same
rules	as	for
char(n)	or
binary(n)	NOT
NULL	when	SET
ANSI_PADDING
is	ON.

Trailing	blanks	in
character	values	inserted
into	varchar	columns
are	not	trimmed.	Trailing
zeros	in	binary	values
inserted	into	varbinary
columns	are	not
trimmed.	Values	are	not
padded	to	the	length	of
the	column.

OFF Pad	original	value
(with	trailing	blanks
for	char	columns
and	with	trailing
zeros	for	binary
columns)	to	the
length	of	the	column.

Follows	same
rules	as	for
varchar	or
varbinary	when
SET
ANSI_PADDING
is	OFF.

Trailing	blanks	in
character	values	inserted
into	a	varchar	column
are	trimmed.	Trailing
zeros	in	binary	values
inserted	into	a	varbinary
column	are	trimmed.

Note		When	padded,	char	columns	are	padded	with	blanks,	and	binary	columns
are	padded	with	zeros.	When	trimmed,	char	columns	have	the	trailing	blanks
trimmed,	and	binary	columns	have	the	trailing	zeros	trimmed.

SET	ANSI_PADDING	must	be	ON	when	creating	or	manipulating	indexes	on
computed	columns	or	indexed	views.	For	more	information	about	required	SET
option	settings	with	indexed	views	and	indexes	on	computed	columns,	see
Considerations	When	Using	SET	Statements	in	SET.

The	SQL	Server	ODBC	driver	and	Microsoft	OLE	DB	Provider	for	SQL	Server
automatically	set	ANSI_PADDING	to	ON	when	connecting.	This	can	be
configured	in	ODBC	data	sources,	in	ODBC	connection	attributes,	or	OLE	DB
connection	properties	set	in	the	application	before	connecting.	SET
ANSI_PADDING	defaults	to	OFF	for	connections	from	DB-Library
applications.

nchar,	nvarchar,	and	ntext	columns	always	display	the	SET	ANSI_PADDING
ON	behavior,	regardless	of	the	current	setting	of	SET	ANSI_PADDING.

When	SET	ANSI_DEFAULTS	is	ON,	SET	ANSI_PADDING	is	enabled.

The	setting	of	SET	ANSI_PADDING	is	set	at	execute	or	run	time	and	not	at
parse	time.

Permissions
SET	ANSI_PADDING	permissions	default	to	all	users.

Examples
This	example	demonstrates	how	the	setting	affects	each	of	these	data	types.

SET	ANSI_PADDING	ON
GO
PRINT	'Testing	with	ANSI_PADDING	ON'
GO

CREATE	TABLE	t1	
(charcol	char(16)	NULL,	
varcharcol	varchar(16)	NULL,	
varbinarycol	varbinary(8))
GO
INSERT	INTO	t1	VALUES	('No	blanks',	'No	blanks',	0x00ee)
INSERT	INTO	t1	VALUES	('Trailing	blank	',	'Trailing	blank	',	0x00ee00)

SELECT	'CHAR'='>'	+	charcol	+	'<',	'VARCHAR'='>'	+	varcharcol	+	'<',
			varbinarycol
FROM	t1
GO

SET	ANSI_PADDING	OFF
GO
PRINT	'Testing	with	ANSI_PADDING	OFF'
GO

CREATE	TABLE	t2	
(charcol	char(16)	NULL,	
varcharcol	varchar(16)	NULL,	
varbinarycol	varbinary(8))
GO
INSERT	INTO	t2	VALUES	('No	blanks',	'No	blanks',	0x00ee)
INSERT	INTO	t2	VALUES	('Trailing	blank	',	'Trailing	blank	',	0x00ee00)

SELECT	'CHAR'='>'	+	charcol	+	'<',	'VARCHAR'='>'	+	varcharcol	+	'<',
			varbinarycol

FROM	t2
GO

DROP	TABLE	t1
DROP	TABLE	t2
GO

See	Also

CREATE	TABLE

INSERT

SET

SET	ANSI_DEFAULTS

Transact-SQL	Reference

SET	ANSI_WARNINGS
Specifies	SQL-92	standard	behavior	for	several	error	conditions.

Syntax
SET	ANSI_WARNINGS	{	ON	|	OFF	}

Remarks
SET	ANSI_WARNINGS	affects	these	conditions:

When	ON,	if	null	values	appear	in	aggregate	functions	(such	as	SUM,
AVG,	MAX,	MIN,	STDEV,	STDEVP,	VAR,	VARP,	or	COUNT)	a
warning	message	is	generated.	When	OFF,	no	warning	is	issued.

When	ON,	divide-by-zero	and	arithmetic	overflow	errors	cause	the
statement	to	be	rolled	back	and	an	error	message	is	generated.	When
OFF,	divide-by-zero	and	arithmetic	overflow	errors	cause	null	values	to
be	returned.	The	behavior	in	which	a	divide-by-zero	or	arithmetic
overflow	error	causes	null	values	to	be	returned	occurs	if	an	INSERT	or
UPDATE	is	attempted	on	a	character,	Unicode,	or	binary	column	in
which	the	length	of	a	new	value	exceeds	the	maximum	size	of	the
column.	If	SET	ANSI_WARNINGS	is	ON,	the	INSERT	or	UPDATE	is
canceled	as	specified	by	the	SQL-92	standard.	Trailing	blanks	are
ignored	for	character	columns	and	trailing	nulls	are	ignored	for	binary
columns.	When	OFF,	data	is	truncated	to	the	size	of	the	column	and	the
statement	succeeds.

Note		When	truncation	happens	in	any	conversion	to	or	from	binary	or
varbinary	data,	no	warning	or	error	is	issued,	regardless	of	SET
options.

The	user	options	option	of	sp_configure	can	be	used	to	set	the	default	setting
for	ANSI_WARNINGS	for	all	connections	to	the	server.	For	more	information,
see	sp_configure	or	Setting	Configuration	Options.

JavaScript:hhobj_1.Click()

SET	ANSI_WARNINGS	must	be	ON	when	creating	or	manipulating	indexes	on
computed	columns	or	indexed	views.	If	SET	ANSI_WARNINGS	is	OFF,
CREATE,	UPDATE,	INSERT,	and	DELETE	statements	on	tables	with	indexes
on	computed	columns	or	indexed	views	will	fail.	For	more	information	about
required	SET	option	settings	with	indexed	views	and	indexes	on	computed
columns,	see	Considerations	When	Using	SET	Statements	in	SET.

Microsoft®	SQL	Server™	includes	the	ANSI	warnings	database	option,	which
is	equivalent	to	SET	ANSI_WARNINGS.	When	SET	ANSI_WARNINGS	is
ON,	errors	or	warnings	are	raised	in	divide-by-zero,	string	too	large	for	database
column,	and	other	similar	errors.	When	SET	ANSI_WARNINGS	is	OFF,	these
errors	and	warnings	are	not	raised.	The	default	value	in	the	model	database	for
SET	ANSI_WARNINGS	is	OFF.	If	not	specified,	the	setting	of	ANSI	warnings
applies.	If	SET	ANSI_WARNINGS	is	OFF,	SQL	Server	uses	the	ANSI
warnings	setting	of	sp_dboption.	For	more	information,	see	sp_dboption	or
Setting	Database	Options.

ANSI_WARNINGS	should	be	set	to	ON	for	executing	distributed	queries.

The	SQL	Server	ODBC	driver	and	Microsoft	OLE	DB	Provider	for	SQL	Server
automatically	set	ANSI_WARNINGS	to	ON	when	connecting.	This	can	be
configured	in	ODBC	data	sources,	in	ODBC	connection	attributes,	or	OLE	DB
connection	properties	set	in	the	application	before	connecting.	SET
ANSI_WARNINGS	defaults	to	OFF	for	connections	from	DB-Library
applications.

When	SET	ANSI_DEFAULTS	is	ON,	SET	ANSI_WARNINGS	is	enabled.

The	setting	of	SET	ANSI_WARNINGS	is	set	at	execute	or	run	time	and	not	at
parse	time.

If	either	SET	ARITHABORT	or	SET	ARITHIGNORE	is	OFF	and	SET
ANSI_WARNINGS	is	ON,	SQL	Server	still	returns	an	error	message	when
encountering	divide-by-zero	or	overflow	errors.

Permissions
SET	ANSI_WARNINGS	permissions	default	to	all	users.

Examples

JavaScript:hhobj_2.Click()

This	example	demonstrates	the	three	situations	mentioned	above	with	the	SET
ANSI_WARNINGS	to	ON	and	OFF.

USE	pubs
GO
CREATE	TABLE	T1	(a	int,	b	int	NULL,	c	varchar(20))	
GO
SET	NOCOUNT	ON
GO
INSERT	INTO	T1	VALUES	(1,	NULL,	'')
INSERT	INTO	T1	VALUES	(1,	0,	'')
INSERT	INTO	T1	VALUES	(2,	1,	'')
INSERT	INTO	T1	VALUES	(2,	2,	'')
GO
SET	NOCOUNT	OFF
GO
		
PRINT	'****	Setting	ANSI_WARNINGS	ON'
GO
		
SET	ANSI_WARNINGS	ON
GO
		
PRINT	'Testing	NULL	in	aggregate'
GO
SELECT	a,	SUM(b)	FROM	T1	GROUP	BY	a
GO
		
PRINT	'Testing	String	Overflow	in	INSERT'
GO
INSERT	INTO	T1	VALUES	(3,	3,	'Text	string	longer	than	20	characters')
GO
		
PRINT	'Testing	Divide	by	zero'

GO
SELECT	a/b	FROM	T1
GO
		
PRINT	'****	Setting	ANSI_WARNINGS	OFF'
GO
SET	ANSI_WARNINGS	OFF
GO
		
PRINT	'Testing	NULL	in	aggregate'
GO
SELECT	a,	SUM(b)	FROM	T1	GROUP	BY	a
GO
		
PRINT	'Testing	String	Overflow	in	INSERT'
GO
INSERT	INTO	T1	VALUES	(4,	4,	'Text	string	longer	than	20	characters')
GO
		
PRINT	'Testing	Divide	by	zero'
GO
SELECT	a/b	FROM	T1
GO
DROP	TABLE	T1
GO

See	Also

INSERT

SELECT

SET

SET	ANSI_DEFAULTS

Transact-SQL	Reference

SET	ARITHABORT
Terminates	a	query	when	an	overflow	or	divide-by-zero	error	occurs	during
query	execution.

Syntax
SET	ARITHABORT	{	ON	|	OFF	}

Remarks
If	SET	ARITHABORT	is	ON,	these	error	conditions	cause	the	query	or	batch	to
terminate.	If	the	errors	occur	in	a	transaction,	the	transaction	is	rolled	back.	If
SET	ARITHABORT	is	OFF	and	one	of	these	errors	occurs,	a	warning	message
is	displayed,	and	NULL	is	assigned	to	the	result	of	the	arithmetic	operation.

Note		If	neither	SET	ARITHABORT	nor	SET	ARITHIGNORE	is	set,
Microsoft®	SQL	Server™	returns	NULL	and	returns	a	warning	message	after
the	query	is	executed.

When	an	INSERT,	DELETE	or	UPDATE	statement	encounters	an	arithmetic
error	(overflow,	divide-by-zero,	or	a	domain	error)	during	expression	evaluation
when	SET	ARITHABORT	is	OFF,	SQL	Server	inserts	or	updates	a	NULL	value.
If	the	target	column	is	not	nullable,	the	insert	or	update	action	fails	and	the	user
receives	an	error.

If	either	SET	ARITHABORT	or	SET	ARITHIGNORE	is	OFF	and	SET
ANSI_WARNINGS	is	ON,	SQL	Server	still	returns	an	error	message	when
encountering	divide-by-zero	or	overflow	errors.

The	setting	of	SET	ARITHABORT	is	set	at	execute	or	run	time	and	not	at	parse
time.

SET	ARITHABORT	must	be	ON	when	creating	or	manipulating	indexes	on
computed	columns	or	indexed	views.	If	SET	ARITHABORT	is	OFF,	CREATE,
UPDATE,	INSERT,	and	DELETE	statements	on	tables	with	indexes	on
computed	columns	or	indexed	views	will	fail.	For	more	information	about
required	SET	option	settings	with	indexed	views	and	indexes	on	computed
columns,	see	Considerations	When	Using	SET	Statements	in	SET.

Permissions
SET	ARITHABORT	permissions	default	to	all	users.

Examples
This	example	demonstrates	divide-by-zero	and	overflow	errors	with	both	SET
ARITHABORT	settings.

--	Create	tables	t1	and	t2	and	insert	data	values.
CREATE	TABLE	t1	(a	tinyint,	b	tinyint)
CREATE	TABLE	t2	(a	tinyint)
GO
INSERT	INTO	t1	VALUES	(1,	0)
INSERT	INTO	t1	VALUES	(255,	1)
GO

PRINT	'***	SET	ARITHABORT	ON'
GO
--	SET	ARITHABORT	ON	and	testing.
SET	ARITHABORT	ON
GO

PRINT	'***	Testing	divide	by	zero	during	SELECT'
GO
SELECT	a/b	
FROM	t1
GO
PRINT	'***	Testing	divide	by	zero	during	INSERT'
GO
INSERT	INTO	t2
SELECT	a/b	
FROM	t1
GO

PRINT	'***	Testing	tinyint	overflow'
GO
INSERT	INTO	t2
SELECT	a+b	
FROM	t1
GO

PRINT	'***	Resulting	data	-	should	be	no	data'
GO
SELECT	*	
FROM	t2
GO

--	Truncate	table	t2.
TRUNCATE	TABLE	t2
GO

--	SET	ARITHABORT	OFF	and	testing.
PRINT	'***	SET	ARITHABORT	OFF'
GO
SET	ARITHABORT	OFF
GO
--	This	works	properly.
PRINT	'***	Testing	divide	by	zero	during	SELECT'
GO
SELECT	a/b	
FROM	t1
GO
--	This	works	as	if	SET	ARITHABORT	was	ON.
PRINT	'***	Testing	divide	by	zero	during	INSERT'
GO
INSERT	INTO	t2
SELECT	a/b	

FROM	t1
GO
PRINT	'***	Testing	tinyint	overflow'
GO
INSERT	INTO	t2
SELECT	a+b	
FROM	t1
GO

PRINT	'***	Resulting	data	-	should	be	0	rows'
GO
SELECT	*	
FROM	t2
GO
--	Drop	tables	t1	and	t2.
DROP	TABLE	t1
DROP	TABLE	t2
GO

See	Also

SET

SET	ARITHIGNORE

Transact-SQL	Reference

SET	ARITHIGNORE
Controls	whether	error	messages	are	returned	from	overflow	or	divide-by-zero
errors	during	a	query.

Syntax
SET	ARITHIGNORE	{	ON	|	OFF	}

Remarks
The	SET	ARITHIGNORE	setting	only	controls	whether	an	error	message	is
returned.	Microsoft®	SQL	Server™	returns	a	NULL	in	a	calculation	involving
an	overflow	or	divide-by-zero	error,	regardless	of	this	setting.	The	SET
ARITHABORT	setting	can	be	used	to	determine	whether	or	not	the	query	is
terminated.	This	setting	has	no	effect	on	errors	occurring	during	INSERT,
UPDATE,	and	DELETE	statements.

If	either	SET	ARITHABORT	or	SET	ARITHIGNORE	is	OFF	and	SET
ANSI_WARNINGS	is	ON,	SQL	Server	still	returns	an	error	message	when
encountering	divide-by-zero	or	overflow	errors.

The	setting	of	SET	ARITHIGNORE	is	set	at	execute	or	run	time	and	not	at	parse
time.

Permissions
SET	ARITHIGNORE	permissions	default	to	all	users.

Examples
This	example	demonstrates	both	SET	ARITHIGNORE	settings	with	both	types
of	query	errors.

PRINT	'Setting	ARITHIGNORE	ON'
GO
--	SET	ARITHIGNORE	ON	and	testing.
SET	ARITHIGNORE	ON

GO
SELECT	1/0
GO
SELECT	CAST(256	AS	tinyint)	
GO

PRINT	'Setting	ARITHIGNORE	OFF'
GO
--	SET	ARITHIGNORE	OFF	and	testing.
SET	ARITHIGNORE	OFF
GO
SELECT	1/0
GO
SELECT	CAST(256	AS	tinyint)
GO

See	Also

SET

SET	ARITHABORT

Transact-SQL	Reference

SET	CONCAT_NULL_YIELDS_NULL
Controls	whether	or	not	concatenation	results	are	treated	as	null	or	empty	string
values.

Syntax
SET	CONCAT_NULL_YIELDS_NULL	{	ON	|	OFF	}

Remarks
When	SET	CONCAT_NULL_YIELDS_NULL	is	ON,	concatenating	a	null
value	with	a	string	yields	a	NULL	result.	For	example,	SELECT	'abc'	+	NULL
yields	NULL.	When	SET	CONCAT_NULL_YIELDS_NULL	is	OFF,
concatenating	a	null	value	with	a	string	yields	the	string	itself	(the	null	value	is
treated	as	an	empty	string).	For	example,	SELECT	'abc'	+	NULL	yields	abc.

If	not	specified,	the	setting	of	the	concat	null	yields	null	database	option
applies.

Note		SET	CONCAT_NULL_YIELDS_NULL	is	the	same	setting	as	the	concat
null	yields	null	setting	of	sp_dboption.

The	setting	of	SET	CONCAT_NULL_YIELDS_NULL	is	set	at	execute	or	run
time	and	not	at	parse	time.

SET	CONCAT_NULL_YIELDS_NULL	must	be	ON	when	creating	or
manipulating	indexes	on	computed	columns	or	indexed	views.	If	SET
CONCAT_NULL_YIELDS_NULL	is	OFF,	CREATE,	UPDATE,	INSERT,	and
DELETE	statements	on	tables	with	indexes	on	computed	columns	or	indexed
views	will	fail.	For	more	information	about	required	SET	option	settings	with
indexed	views	and	indexes	on	computed	columns,	see	Considerations	When
Using	SET	Statements	in	SET.

See	Also

SET

Setting	Database	Options

JavaScript:hhobj_1.Click()

sp_dboption

Transact-SQL	Reference

SET	CONTEXT_INFO
Associates	up	to	128	bytes	of	binary	information	with	the	current	session	or
connection.

Syntax
SET	CONTEXT_INFO	{	binary	|	@binary_var	}

Arguments
binary	|	@binary_var

Specify	a	binary	constant	or	binary	or	varbinary	variable	to	associate	with
the	current	session	or	connection.

Remarks
Session	context	information	is	stored	in	the	context_info	column	in	the
master.dbo.sysprocesses	table.	This	is	a	varbinary(128)	column.

SET	CONTEXT_INFO	cannot	be	specified	in	a	user-defined	function.	You
cannot	supply	a	null	value	to	SET	CONTEXT_INFO	because	the	sysprocesses
table	does	not	allow	null	values.

SET	CONTEXT_INFO	does	not	accept	expressions	other	than	constants	or
variable	names.	To	set	the	context	information	to	the	result	of	a	function	call,
you	must	first	place	the	function	call	result	in	a	binary	or	varbinary	variable.

When	you	issue	SET	CONTEXT_INFO	in	a	stored	procedure	or	trigger,	unlike
in	other	SET	statements,	the	new	value	set	for	the	context	information	persists
after	the	stored	procedure	or	trigger	completes.

Transact-SQL	Reference

SET	CURSOR_CLOSE_ON_COMMIT
Controls	whether	or	not	a	cursor	is	closed	when	a	transaction	is	committed.

Syntax
SET	CURSOR_CLOSE_ON_COMMIT	{	ON	|	OFF	}

Remarks
When	SET	CURSOR_CLOSE_ON_COMMIT	is	ON,	this	setting	closes	any
open	cursors	on	commit	or	rollback	in	compliance	with	SQL-92.	When	SET
CURSOR_CLOSE_ON_COMMIT	is	OFF,	the	cursor	is	not	closed	when	a
transaction	is	committed.

When	SET	CURSOR_CLOSE_ON_COMMIT	is	OFF,	a	ROLLBACK	statement
closes	only	open	asynchronous	cursors	that	are	not	fully	populated.STATIC	or
INSENSITIVE	cursors	that	were	opened	after	modifications	were	made	will	no
longer	reflect	the	state	of	the	data	if	the	modifications	are	rolled	back.

SET	CURSOR_CLOSE_ON_COMMIT	controls	the	same	behavior	as	the
cursor	close	on	commit	database	option	of	sp_dboption.	If
CURSOR_CLOSE_ON_COMMIT	is	set	to	ON	or	OFF,	that	setting	is	used	on
the	connection.	If	SET	CURSOR_CLOSE_ON_COMMIT	has	not	been
specified,	the	cursor	close	on	commit	setting	of	sp_dboption	applies.

The	Microsoft	OLE	DB	Provider	for	SQL	Server	and	the	SQL	Server	ODBC
driver	both	set	CURSOR_CLOSE_ON_COMMIT	to	OFF	when	they	connect.
DB-Library	does	not	automatically	set	the	CURSOR_CLOSE_ON_COMMIT
value.

When	SET	ANSI_DEFAULTS	is	ON,	SET	CURSOR_CLOSE_ON_COMMIT
is	enabled.

The	setting	of	SET	CURSOR_CLOSE_ON_COMMIT	is	set	at	execute	or	run
time	and	not	at	parse	time.

Permissions

SET	CURSOR_CLOSE_ON_COMMIT	permissions	default	to	all	users.

Examples
This	example	defines	a	cursor	in	a	transaction	and	attempts	to	use	it	after	the
transaction	is	committed.

SET	NOCOUNT	ON

CREATE	TABLE	t1	(a	int)
GO	

INSERT	INTO	t1	values	(1)
INSERT	INTO	t1	values	(2)
GO

PRINT	'--	SET	CURSOR_CLOSE_ON_COMMIT	ON'
GO
SET	CURSOR_CLOSE_ON_COMMIT	ON
GO

PRINT	'--	BEGIN	TRAN'
BEGIN	TRAN

PRINT	'--	Declare	and	open	cursor'
DECLARE	testcursor	CURSOR	FOR
SELECT	a	
FROM	t1

OPEN	testcursor

PRINT	'--	Commit	tran'
COMMIT	TRAN

PRINT	'--	Try	to	use	cursor'

FETCH	NEXT	FROM	testcursor

CLOSE	testcursor
DEALLOCATE	testcursor
GO

PRINT	'--	SET	CURSOR_CLOSE_ON_COMMIT	OFF'
GO
SET	CURSOR_CLOSE_ON_COMMIT	OFF
GO

PRINT	'--	BEGIN	TRAN'
BEGIN	TRAN

PRINT	'--	Declare	and	open	cursor'
DECLARE	testcursor	CURSOR	FOR
SELECT	a	
FROM	t1

OPEN	testcursor

PRINT	'--	Commit	tran'
COMMIT	TRAN

PRINT	'--	Try	to	use	cursor'

FETCH	NEXT	FROM	testcursor

CLOSE	testcursor

DEALLOCATE	testcursor
GO

DROP	TABLE	t1
GO

See	Also

BEGIN	TRANSACTION

CLOSE

COMMIT	TRANSACTION

ROLLBACK	TRANSACTION

SET

SET	ANSI_DEFAULTS

Setting	Database	Options

sp_dboption

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

SET	DATEFIRST
Sets	the	first	day	of	the	week	to	a	number	from	1	through	7.

Syntax
SET	DATEFIRST	{	number	|	@number_var	}

Arguments
number	|	@number_var

Is	an	integer	indicating	the	first	day	of	the	week,	and	can	be	one	of	these
values.

Value First	day	of	the	week	is
1 Monday
2 Tuesday
3 Wednesday
4 Thursday
5 Friday
6 Saturday
7	(default,	U.S.	English) Sunday

Remarks
Use	the	@@DATEFIRST	function	to	check	the	current	setting	of	SET
DATEFIRST.

The	setting	of	SET	DATEFIRST	is	set	at	execute	or	run	time	and	not	at	parse
time.

Permissions
SET	DATEFIRST	permissions	default	to	all	users.

Examples
This	example	displays	the	day	of	the	week	for	a	date	value	and	shows	the	effects
of	changing	the	DATEFIRST	setting.

--	SET	DATEFIRST	to	U.S.	English	default	value	of	7.
SET	DATEFIRST	7
GO
SELECT	CAST('1/1/99'	AS	datetime),	DATEPART(dw,	'1/1/99')
--	January	1,	1999	is	a	Friday.	Because	the	U.S.	English	default	
--	specifies	Sunday	as	the	first	day	of	the	week,	DATEPART	of	1/1/99	
--	(Friday)	yields	a	value	of	6,	because	Friday	is	the	sixth	day	of	the	
--	week	when	starting	with	Sunday	as	day	1.
SET	DATEFIRST	3
--	Because	Wednesday	is	now	considered	the	first	day	of	the	week,
--	DATEPART	should	now	show	that	1/1/99	(a	Friday)	is	the	third	day	of	the	--	week.	The	following	DATEPART	function	should	return	a	value	of	3.
SELECT	CAST('1/1/99'	AS	datetime),	DATEPART(dw,	'1/1/99')
GO

See	Also

Data	Types

@@DATEFIRST

datetime	and	smalldatetime

SET

Transact-SQL	Reference

SET	DATEFORMAT
Sets	the	order	of	the	dateparts	(month/day/year)	for	entering	datetime	or
smalldatetime	data.

Syntax
SET	DATEFORMAT	{	format	|	@format_var	}

Arguments
format	|	@format_var

Is	the	order	of	the	dateparts.	Can	be	either	Unicode	or	DBCS	converted	to
Unicode.	Valid	parameters	include	mdy,	dmy,	ymd,	ydm,	myd,	and	dym.	The
U.S.	English	default	is	mdy.

Remarks
This	setting	is	used	only	in	the	interpretation	of	character	strings	as	they	are
converted	to	date	values.	It	has	no	effect	on	the	display	of	date	values.

The	setting	of	SET	DATEFORMAT	is	set	at	execute	or	run	time	and	not	at	parse
time.

Permissions
SET	DATEFORMAT	permissions	default	to	all	users.

Examples
This	example	uses	different	date	formats	to	handle	date	strings	in	different
formats.

SET	DATEFORMAT	mdy
GO
DECLARE	@datevar	datetime
SET	@datevar	=	'12/31/98'

SELECT	@datevar
GO

SET	DATEFORMAT	ydm
GO
DECLARE	@datevar	datetime
SET	@datevar	=	'98/31/12'
SELECT	@datevar
GO

SET	DATEFORMAT	ymd
GO
DECLARE	@datevar	datetime
SET	@datevar	=	'98/12/31'
SELECT	@datevar
GO

See	Also

Data	Types

datetime	and	smalldatetime

SET

Transact-SQL	Reference

SET	DEADLOCK_PRIORITY
Controls	the	way	the	session	reacts	when	in	a	deadlock	situation.	Deadlock
situations	arise	when	two	processes	have	data	locked,	and	each	process	cannot
release	its	lock	until	other	processes	have	released	theirs.

Syntax
SET	DEADLOCK_PRIORITY	{	LOW	|	NORMAL	|	@deadlock_var	}

Arguments
LOW

Specifies	that	the	current	session	is	the	preferred	deadlock	victim.	The
deadlock	victim's	transaction	is	automatically	rolled	back	by	Microsoft®
SQL	Server™,	and	the	deadlock	error	message	1205	is	returned	to	the	client
application.

NORMAL

Specifies	that	the	session	return	to	the	default	deadlock-handling	method.

@deadlock_var

Is	a	character	variable	specifying	the	deadlock-handling	method.
@deadlock_var	is	3	if	LOW	is	specified,	and	6	if	NORMAL	is	specified.

Remarks
The	setting	of	SET	DEADLOCK_PRIORITY	is	set	at	execute	or	run	time	and
not	at	parse	time.

Permissions
SET	DEADLOCK_PRIORITY	permissions	default	to	all	users.

See	Also

@@LOCK_TIMEOUT

SET

SET	LOCK_TIMEOUT

Transact-SQL	Reference

SET	DISABLE_DEF_CNST_CHK
Specified	interim	deferred	violation	checking	and	was	used	for	efficiency
purposes	in	Microsoft®	SQL	Server™	version	6.x.

IMPORTANT		SET	DISABLE_DEF_CNST_CHK	is	included	for	backward
compatibility	only.	The	functionality	of	this	statement	is	now	built	into
Microsoft	SQL	Server	2000.	In	a	future	version	of	SQL	Server,	SET
DISABLE_DEF_CNST_CHK	may	not	be	supported.

Remarks
If	the	compatibility	level	is	set	to	60	or	65,	executing	this	statement	does
nothing.	However,	if	the	compatibility	level	is	set	to	70,	executing	this	statement
does	nothing,	and	SQL	Server	returns	a	warning	message.	For	more	information
about	setting	compatibility	levels,	see	sp_dbcmptlevel

See	Also

CREATE	TABLE

DELETE

INSERT

SET

UPDATE

Transact-SQL	Reference

SET	FIPS_FLAGGER
Specifies	checking	for	compliance	with	the	FIPS	127-2	standard,	which	is	based
on	the	SQL-92	standard.

Syntax
SET	FIPS_FLAGGER	level

Arguments
level

Is	the	level	of	compliance	against	the	FIPS	127-2	standard	for	which	all
database	operations	are	checked.	If	a	database	operation	conflicts	with	the
level	of	SQL-92	standards	chosen,	Microsoft®	SQL	Server™	generates	a
warning.

level	must	be	one	of	these	values.

Value Description
ENTRY Standards	checking	for	SQL-92	entry-level	compliance.
FULL Standards	checking	for	SQL-92	full	compliance.
INTERMEDIATEStandards	checking	for	SQL-92	intermediate-level

compliance.
OFF No	standards	checking.

Remarks
The	setting	of	SET	FIPS_FLAGGER	is	set	at	parse	time	and	not	at	execute	or
run	time.	Setting	at	parse	time	means	that	if	the	SET	statement	is	present	in	the
batch	or	stored	procedure,	it	takes	effect,	regardless	of	whether	code	execution
actually	reaches	that	point;	and	the	SET	statement	takes	effect	before	any
statements	are	executed.	For	example,	even	if	the	SET	statement	is	in	an
IF...ELSE	statement	block	that	is	never	reached	during	execution,	the	SET
statement	still	takes	effect	because	the	IF...ELSE	statement	block	is	parsed.

If	SET	FIPS_FLAGGER	is	set	in	a	stored	procedure,	the	value	of	SET
FIPS_FLAGGER	is	restored	after	control	is	returned	from	the	stored	procedure.
Therefore,	a	SET	FIPS_FLAGGER	statement	specified	in	dynamic	SQL	does
not	have	any	effect	on	any	statements	following	the	dynamic	SQL	statement.

Permissions
SET	FIPS_FLAGGER	permissions	default	to	all	users.

See	Also

SET

Transact-SQL	Reference

SET	FMTONLY
Returns	only	meta	data	to	the	client.

Syntax
SET	FMTONLY	{	ON	|	OFF	}

Remarks
No	rows	are	processed	or	sent	to	the	client	as	a	result	of	the	request	when	SET
FMTONLY	is	turned	ON.

The	setting	of	SET	FMTONLY	is	set	at	execute	or	run	time	and	not	at	parse
time.

Permissions
SET	FMTONLY	permissions	default	to	all	users.

Examples
This	example	changes	the	SET	FMTONLY	setting	to	ON	and	executes	a
SELECT	statement.	The	setting	causes	the	statement	to	return	the	column
information	only;	no	rows	of	data	are	returned.

SET	FMTONLY	ON
GO
USE	pubs
GO
SELECT	*	
FROM	pubs.dbo.authors
GO

See	Also

SET

Transact-SQL	Reference

SET	FORCEPLAN
Makes	the	Microsoft®	SQL	Server™	query	optimizer	process	a	join	in	the	same
order	as	tables	appear	in	the	FROM	clause	of	a	SELECT	statement	only.

Syntax
SET	FORCEPLAN	{	ON	|	OFF	}

Remarks
SET	FORCEPLAN	essentially	overrides	the	logic	used	by	the	query	optimizer	to
process	a	Transact-SQL	SELECT	statement.	The	data	returned	by	the	SELECT
statement	is	the	same	regardless	of	this	setting.	The	only	difference	is	the	way
SQL	Server	processes	the	tables	to	satisfy	the	query.

Query	optimizer	hints	can	also	be	used	in	queries	to	affect	how	SQL	Server
processes	the	SELECT	statement.

The	setting	of	SET	FORCEPLAN	is	set	at	execute	or	run	time	and	not	at	parse
time.

Permissions
SET	FORCEPLAN	permissions	default	to	all	users.

Examples
This	example	performs	a	join	between	three	tables.	The	SHOWPLAN_TEXT
setting	is	enabled	so	SQL	Server	returns	information	about	how	it	is	processing
the	query	differently	after	the	SET	FORCE_PLAN	setting	is	enabled.

--	SET	SHOWPLAN_TEXT	to	ON.
SET	SHOWPLAN_TEXT	ON
GO
USE	pubs
GO

--	Inner	join.
SELECT	a.au_lname,	a.au_fname,	t.title
FROM	authors	a	INNER	JOIN	titleauthor	ta
			ON	a.au_id	=	ta.au_id	INNER	JOIN	titles	t
			ON	ta.title_id	=	t.title_id
GO
--	SET	FORCEPLAN	to	ON.
SET	FORCEPLAN	ON
GO
--	Reexecute	inner	join	to	see	the	effect	of	SET	FORCEPLAN	ON.
SELECT	a.au_lname,	a.au_fname,	t.title
FROM	authors	a	INNER	JOIN	titleauthor	ta
			ON	a.au_id	=	ta.au_id	INNER	JOIN	titles	t
			ON	ta.title_id	=	t.title_id
GO
SET	SHOWPLAN_TEXT	OFF
GO
SET	FORCEPLAN	OFF
GO

See	Also

SELECT

SET

SET	SHOWPLAN_ALL

SET	SHOWPLAN_TEXT

Transact-SQL	Reference

SET	IDENTITY_INSERT
Allows	explicit	values	to	be	inserted	into	the	identity	column	of	a	table.

Syntax
SET	IDENTITY_INSERT	[database.	[owner.]]	{	table	}	{	ON	|	OFF	}

Arguments
database

Is	the	name	of	the	database	in	which	the	specified	table	resides.

owner

Is	the	name	of	the	table	owner.

table

Is	the	name	of	a	table	with	an	identity	column.

Remarks
At	any	time,	only	one	table	in	a	session	can	have	the	IDENTITY_INSERT
property	set	to	ON.	If	a	table	already	has	this	property	set	to	ON,	and	a	SET
IDENTITY_INSERT	ON	statement	is	issued	for	another	table,	Microsoft®	SQL
Server™	returns	an	error	message	that	states	SET	IDENTITY_INSERT	is
already	ON	and	reports	the	table	it	is	set	ON	for.

If	the	value	inserted	is	larger	than	the	current	identity	value	for	the	table,	SQL
Server	automatically	uses	the	new	inserted	value	as	the	current	identity	value.

The	setting	of	SET	IDENTITY_INSERT	is	set	at	execute	or	run	time	and	not	at
parse	time.

Permissions
Execute	permissions	default	to	the	sysadmin	fixed	server	role,	and	the
db_owner	and	db_ddladmin	fixed	database	roles,	and	the	object	owner.

Examples
This	example	creates	a	table	with	an	identity	column	and	shows	how	the	SET
IDENTITY_INSERT	setting	can	be	used	to	fill	a	gap	in	the	identity	values
caused	by	a	DELETE	statement.

--	Create	products	table.
CREATE	TABLE	products	(id	int	IDENTITY	PRIMARY	KEY,	product	varchar(40))
GO
--	Inserting	values	into	products	table.
INSERT	INTO	products	(product)	VALUES	('screwdriver')
INSERT	INTO	products	(product)	VALUES	('hammer')
INSERT	INTO	products	(product)	VALUES	('saw')
INSERT	INTO	products	(product)	VALUES	('shovel')
GO

--	Create	a	gap	in	the	identity	values.
DELETE	products	
WHERE	product	=	'saw'
GO

SELECT	*	
FROM	products
GO

--	Attempt	to	insert	an	explicit	ID	value	of	3;
--	should	return	a	warning.
INSERT	INTO	products	(id,	product)	VALUES(3,	'garden	shovel')
GO
--	SET	IDENTITY_INSERT	to	ON.
SET	IDENTITY_INSERT	products	ON
GO

--	Attempt	to	insert	an	explicit	ID	value	of	3

INSERT	INTO	products	(id,	product)	VALUES(3,	'garden	shovel').
GO

SELECT	*	
FROM	products
GO
--	Drop	products	table.
DROP	TABLE	products
GO

See	Also

CREATE	TABLE

IDENTITY	(Property)

INSERT

SET

Transact-SQL	Reference

SET	IMPLICIT_TRANSACTIONS
Sets	implicit	transaction	mode	for	the	connection.

Syntax
SET	IMPLICIT_TRANSACTIONS	{	ON	|	OFF	}

Remarks
When	ON,	SET	IMPLICIT_TRANSACTIONS	sets	the	connection	into	implicit
transaction	mode.	When	OFF,	it	returns	the	connection	to	autocommit
transaction	mode.

When	a	connection	is	in	implicit	transaction	mode	and	the	connection	is	not
currently	in	a	transaction,	executing	any	of	the	following	statements	starts	a
transaction:

ALTER	TABLE FETCH REVOKE
CREATE GRANT SELECT
DELETE INSERT TRUNCATE	TABLE
DROP OPEN UPDATE

If	the	connection	is	already	in	an	open	transaction,	the	statements	do	not	start	a
new	transaction.

Transactions	that	are	automatically	opened	as	the	result	of	this	setting	being	ON
must	be	explicitly	committed	or	rolled	back	by	the	user	at	the	end	of	the
transaction.	Otherwise,	the	transaction	and	all	the	data	changes	it	contains	are
rolled	back	when	the	user	disconnects.	After	a	transaction	is	committed,
executing	one	of	the	statements	above	starts	a	new	transaction.

Implicit	transaction	mode	remains	in	effect	until	the	connection	executes	a	SET
IMPLICIT_TRANSACTIONS	OFF	statement,	which	returns	the	connection	to
autocommit	mode.	In	autocommit	mode,	all	individual	statements	are	committed
if	they	complete	successfully.

The	Microsoft	OLE	DB	Provider	for	SQL	Server	and	the	SQL	Server	ODBC

driver	automatically	set	IMPLICIT_TRANSACTIONS	to	OFF	when
connecting.	SET	IMPLICIT_TRANSACTIONS	defaults	to	OFF	for	connections
from	DB-Library	applications.

When	SET	ANSI_DEFAULTS	is	ON,	SET	IMPLICIT_TRANSACTIONS	is
enabled.

The	setting	of	SET	IMPLICIT_TRANSACTIONS	is	set	at	execute	or	run	time
and	not	at	parse	time.

Examples
This	example	demonstrates	transactions	that	are	started	explicitly	and	implicitly
with	the	IMPLICIT_TRANSACTIONS	set	ON.	It	uses	the	@@TRANCOUNT
function	to	demonstrate	open	and	closed	transactions.

USE	pubs
GO

CREATE	table	t1	(a	int)
GO
INSERT	INTO	t1	VALUES	(1)
GO

PRINT	'Use	explicit	transaction'
BEGIN	TRAN
INSERT	INTO	t1	VALUES	(2)
SELECT	'Tran	count	in	transaction'=	@@TRANCOUNT
COMMIT	TRAN
SELECT	'Tran	count	outside	transaction'=	@@TRANCOUNT
GO

PRINT	'Setting	IMPLICIT_TRANSACTIONS	ON'
GO
SET	IMPLICIT_TRANSACTIONS	ON
GO

PRINT	'Use	implicit	transactions'
GO
--	No	BEGIN	TRAN	needed	here.
INSERT	INTO	t1	VALUES	(4)
SELECT	'Tran	count	in	transaction'=	@@TRANCOUNT
COMMIT	TRAN
SELECT	'Tran	count	outside	transaction'=	@@TRANCOUNT
GO

PRINT	'Use	explicit	transactions	with	IMPLICIT_TRANSACTIONS	ON'
GO
BEGIN	TRAN
INSERT	INTO	t1	VALUES	(5)
SELECT	'Tran	count	in	transaction'=	@@TRANCOUNT
COMMIT	TRAN
SELECT	'Tran	count	outside	transaction'=	@@TRANCOUNT
GO

SELECT	*	FROM	t1
GO

--	Need	to	commit	this	tran	too!
DROP	TABLE	t1
COMMIT	TRAN
GO

See	Also

ALTER	TABLE

BEGIN	TRANSACTION

CREATE	TABLE

DELETE

DROP	TABLE

FETCH

GRANT

Implicit	Transactions

INSERT

OPEN

REVOKE

SELECT

SET

SET	ANSI_DEFAULTS

@@TRANCOUNT

Transactions

TRUNCATE	TABLE

UPDATE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

SET	LANGUAGE
Specifies	the	language	environment	for	the	session.	The	session	language
determines	the	datetime	formats	and	system	messages.

Syntax
SET	LANGUAGE	{	[N]	'language'	|	@language_var	}

Arguments
[N]'language'	|	@language_var

Is	the	name	of	the	language	as	stored	in	syslanguages.	This	argument	can	be
either	Unicode	or	DBCS	converted	to	Unicode.	To	specify	a	language	in
Unicode,	use	N'language'.	If	specified	as	a	variable,	the	variable	must	be
sysname.

Remarks
The	setting	of	SET	LANGUAGE	is	set	at	execute	or	run	time	and	not	at	parse
time.

Permissions
SET	LANGUAGE	permissions	default	to	all	users.

Examples
This	example	sets	the	default	language	to	us_english.

SET	LANGUAGE	us_english
GO

See	Also

Data	Types

sp_helplanguage

SET

SQL	Server	Language	Support

syslanguages	(master	database	only)

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

SET	LOCK_TIMEOUT
Specifies	the	number	of	milliseconds	a	statement	waits	for	a	lock	to	be	released.

Syntax
SET	LOCK_TIMEOUT	timeout_period

Arguments
timeout_period

Is	the	number	of	milliseconds	that	will	pass	before	Microsoft®	SQL
Server™	returns	a	locking	error.	A	value	of	-1	(default)	indicates	no	time-out
period	(that	is,	wait	forever).

When	a	wait	for	a	lock	exceeds	the	time-out	value,	an	error	is	returned.	A
value	of	0	means	not	to	wait	at	all	and	return	a	message	as	soon	as	a	lock	is
encountered.

Remarks
At	the	beginning	of	a	connection,	this	setting	has	a	value	of	-1.	After	it	is
changed,	the	new	setting	stays	in	effect	for	the	remainder	of	the	connection.

The	setting	of	SET	LOCK_TIMEOUT	is	set	at	execute	or	run	time	and	not	at
parse	time.

The	READPAST	locking	hint	provides	an	alternative	to	this	SET	option.

Permissions
SET	LOCK_TIMEOUT	permissions	default	to	all	users.

Examples
This	example	sets	the	lock	time-out	period	to	1,800	milliseconds.

SET	LOCK_TIMEOUT	1800

GO

See	Also

Locking	Hints

@@LOCK_TIMEOUT

SET

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

SET	NOCOUNT
Stops	the	message	indicating	the	number	of	rows	affected	by	a	Transact-SQL
statement	from	being	returned	as	part	of	the	results.

Syntax
SET	NOCOUNT	{	ON	|	OFF	}

Remarks
When	SET	NOCOUNT	is	ON,	the	count	(indicating	the	number	of	rows	affected
by	a	Transact-SQL	statement)	is	not	returned.	When	SET	NOCOUNT	is	OFF,
the	count	is	returned.

The	@@ROWCOUNT	function	is	updated	even	when	SET	NOCOUNT	is	ON.

SET	NOCOUNT	ON	eliminates	the	sending	of	DONE_IN_PROC	messages	to
the	client	for	each	statement	in	a	stored	procedure.	When	using	the	utilities
provided	with	Microsoft®	SQL	Server™	to	execute	queries,	the	results	prevent
"nn	rows	affected"	from	being	displayed	at	the	end	Transact-SQL	statements
such	as	SELECT,	INSERT,	UPDATE,	and	DELETE.

For	stored	procedures	that	contain	several	statements	that	do	not	return	much
actual	data,	this	can	provide	a	significant	performance	boost	because	network
traffic	is	greatly	reduced.

The	setting	of	SET	NOCOUNT	is	set	at	execute	or	run	time	and	not	at	parse
time.

Permissions
SET	NOCOUNT	permissions	default	to	all	users.

Examples
This	example	(when	executed	in	the	osql	utility	or	SQL	Query	Analyzer)
prevents	the	message	(about	the	number	of	rows	affected)	from	being	displayed.

USE	pubs
GO
--	Display	the	count	message.
SELECT	au_lname	
FROM	authors
GO
USE	pubs
GO
--	SET	NOCOUNT	to	ON	and	no	longer	display	the	count	message.
SET	NOCOUNT	ON
GO
SELECT	au_lname	
FROM	authors
GO
--	Reset	SET	NOCOUNT	to	OFF.
SET	NOCOUNT	OFF
GO

See	Also

@@ROWCOUNT

SET

Transact-SQL	Reference

SET	NOEXEC
Compiles	each	query	but	does	not	execute	it.

Syntax
SET	NOEXEC	{	ON	|	OFF	}

Remarks
When	SET	NOEXEC	is	ON,	Microsoft®	SQL	Server™	compiles	each	batch	of
Transact-SQL	statements	but	does	not	execute	them.	When	SET	NOEXEC	is
OFF,	all	batches	are	executed	after	compilation.

The	execution	of	statements	in	SQL	Server	consists	of	two	phases:	compilation
and	execution.	This	setting	is	useful	for	having	SQL	Server	validate	the	syntax
and	object	names	in	Transact-SQL	code	when	executing.	It	is	also	useful	for
debugging	statements	that	would	usually	be	part	of	a	larger	batch	of	statements.

The	setting	of	SET	NOEXEC	is	set	at	execute	or	run	time	and	not	at	parse	time.

Permissions
SET	NOEXEC	permissions	default	to	all	users.

Examples
This	example	uses	NOEXEC	with	a	valid	query,	a	query	with	an	invalid	object
name,	and	a	query	with	incorrect	syntax.

USE	pubs
GO
PRINT	'Valid	query'
GO
--	SET	NOEXEC	to	ON.
SET	NOEXEC	ON
GO

--	Inner	join.
SELECT	a.au_lname,	a.au_fname,	t.title
FROM	authors	a	INNER	JOIN	titleauthor	ta
			ON	a.au_id	=	ta.au_id	INNER	JOIN	titles	t
			ON	ta.title_id	=	t.title_id
GO
--	SET	NOEXEC	to	OFF.
SET	NOEXEC	OFF
GO
PRINT	'Invalid	object	name'
GO
--	SET	NOEXEC	to	ON.
SET	NOEXEC	ON
GO
--	Function	name	used	is	a	reserved	keyword.

USE	pubs
GO
CREATE	FUNCTION	values	(@storeid	varchar(30))
RETURNS	TABLE
AS
RETURN	(SELECT	title,	qty
			FROM	sales	s,	titles	t
			WHERE	s.stor_id	=	@storeid	and
			t.title_id	=	s.title_id)
--	SET	NOEXEC	to	OFF.
SET	NOEXEC	OFF
GO
PRINT	'Invalid	syntax'
GO
--	SET	NOEXEC	to	ON.
SET	NOEXEC	ON
GO

--	Built-in	function	incorrectly	invoked
SELECT	*
FROM	fn_helpcollations()
--	Reset	SET	NOEXEC	to	OFF.
SET	NOEXEC	OFF
GO

See	Also

SET

SET	SHOWPLAN_ALL

SET	SHOWPLAN_TEXT

Transact-SQL	Reference

SET	NUMERIC_ROUNDABORT
Specifies	the	level	of	error	reporting	generated	when	rounding	in	an	expression
causes	a	loss	of	precision.

Syntax
SET	NUMERIC_ROUNDABORT	{	ON	|	OFF	}

Remarks
When	SET	NUMERIC_ROUNDABORT	is	ON,	an	error	is	generated	when	a
loss	of	precision	occurs	in	an	expression.	When	OFF,	losses	of	precision	do	not
generate	error	messages	and	the	result	is	rounded	to	the	precision	of	the	column
or	variable	storing	the	result.

Loss	of	precision	occurs	when	attempting	to	store	a	value	with	a	fixed	precision
in	a	column	or	variable	with	less	precision.

If	SET	NUMERIC_ROUNDABORT	is	ON,	SET	ARITHABORT	determines	the
severity	of	the	generated	error.	This	table	shows	the	effects	of	these	two	settings
when	a	loss	of	precision	occurs.

Setting

SET
NUMERIC_ROUNDABORT
ON

SET
NUMERIC_ROUNDABORT
OFF

SET
ARITHABORT
ON

Error	is	generated;	no	result	set
returned.

No	errors	or	warnings;	result	is
rounded.

SET
ARITHABORT
OFF

Warning	is	returned;
expression	returns	NULL.

No	errors	or	warnings;	result	is
rounded.

The	setting	of	SET	NUMERIC_ROUNDABORT	is	set	at	execute	or	run	time
and	not	at	parse	time.

SET	NUMERIC_ROUNDABORT	must	be	OFF	when	creating	or	manipulating
indexes	on	computed	columns	or	indexed	views.	If	SET
NUMERIC_ROUNDABORT	is	ON,	CREATE,	UPDATE,	INSERT,	and
DELETE	statements	on	tables	with	indexes	on	computed	columns	or	indexed
views	will	fail.	For	more	information	about	required	SET	option	settings	with
indexed	views	and	indexes	on	computed	columns,	see	Considerations	When
Using	SET	Statements	in	SET.

Permissions
SET	NUMERIC_ROUNDABORT	permissions	default	to	all	users.

Examples
This	example	shows	two	values	with	a	precision	of	four	decimal	places	that	are
added	and	stored	in	a	variable	with	a	precision	of	two	decimal	places.	The
expressions	demonstrate	the	effects	of	the	different	SET
NUMERIC_ROUNDABORT	and	SET	ARITHABORT	settings.

--	SET	NOCOUNT	to	ON,	
--	SET	NUMERIC_ROUNDABORT	to	ON,	and	SET	ARITHABORT	to	ON.
SET	NOCOUNT	ON
PRINT	'SET	NUMERIC_ROUNDABORT	ON'
PRINT	'SET	ARITHABORT	ON'
SET	NUMERIC_ROUNDABORT	ON
SET	ARITHABORT	ON
GO
DECLARE	@result	decimal(5,2),
@value_1	decimal(5,4),	@value_2	decimal(5,4)
SET	@value_1	=	1.1234
SET	@value_2	=	1.1234	
SELECT	@result	=	@value_1	+	@value_2
SELECT	@result
GO
--	SET	NUMERIC_ROUNDABORT	to	ON	and	SET	ARITHABORT	to	OFF.
PRINT	'SET	NUMERIC_ROUNDABORT	ON'

PRINT	'SET	ARITHABORT	OFF'
SET	NUMERIC_ROUNDABORT	ON
SET	ARITHABORT	OFF
GO
DECLARE	@result	decimal(5,2),
@value_1	decimal(5,4),	@value_2	decimal(5,4)
SET	@value_1	=	1.1234
SET	@value_2	=	1.1234	
SELECT	@result	=	@value_1	+	@value_2
SELECT	@result
GO
--	SET	NUMERIC_ROUNDABORT	to	OFF	and	SET	ARITHABORT	to	ON.
PRINT	'SET	NUMERIC_ROUNDABORT	OFF'
PRINT	'SET	ARITHABORT	ON'
SET	NUMERIC_ROUNDABORT	OFF
SET	ARITHABORT	ON
GO
DECLARE	@result	decimal(5,2),
@value_1	decimal(5,4),	@value_2	decimal(5,4)
SET	@value_1	=	1.1234
SET	@value_2	=	1.1234	
SELECT	@result	=	@value_1	+	@value_2
SELECT	@result
GO
--	SET	NUMERIC_ROUNDABORT	to	OFF	and	SET	ARITHABORT	to	OFF.
PRINT	'SET	NUMERIC_ROUNDABORT	OFF'
PRINT	'SET	ARITHABORT	OFF'
SET	NUMERIC_ROUNDABORT	OFF
SET	ARITHABORT	OFF
GO
DECLARE	@result	decimal(5,2),
@value_1	decimal(5,4),	@value_2	decimal(5,4)
SET	@value_1	=	1.1234

SET	@value_2	=	1.1234	
SELECT	@result	=	@value_1	+	@value_2
SELECT	@result
GO

See	Also

Data	Types

SET

SET	ARITHABORT

Transact-SQL	Reference

SET	OFFSETS
Returns	the	offset	(position	relative	to	the	start	of	a	statement)	of	specified
keywords	in	Transact-SQL	statements	to	DB-Library	applications.

Syntax
SET	OFFSETS	keyword_list

Arguments
keyword_list

Is	a	comma-separated	list	of	Transact-SQL	constructs	including	SELECT,
FROM,	ORDER,	COMPUTE,	TABLE,	PROCEDURE,	STATEMENT,
PARAM,	and	EXECUTE.

Remarks
SET	OFFSETS	is	used	only	in	DB-Library	applications.

The	setting	of	SET	OFFSETS	is	set	at	parse	time	and	not	at	execute	time	or	run
time.	Setting	at	parse	time	means	that	if	the	SET	statement	is	present	in	the	batch
or	stored	procedure,	it	takes	effect,	regardless	of	whether	code	execution	actually
reaches	that	point;	and	the	SET	statement	takes	effect	before	any	statements	are
executed.	For	example,	even	if	the	set	statement	is	in	an	IF...ELSE	statement
block	that	is	never	reached	during	execution,	the	SET	statement	still	takes	effect
because	the	IF...ELSE	statement	block	is	parsed.

If	SET	OFFSETS	is	set	in	a	stored	procedure,	the	value	of	SET	OFFSETS	is
restored	after	control	is	returned	from	the	stored	procedure.	Therefore,	a	SET
OFFSETS	statement	specified	in	dynamic	SQL	does	not	have	any	effect	on	any
statements	following	the	dynamic	SQL	statement.

Permissions
SET	OFFSETS	permissions	default	to	all	users.

See	Also

SET

SET	PARSEONLY

Transact-SQL	Reference

SET	PARSEONLY
Checks	the	syntax	of	each	Transact-SQL	statement	and	returns	any	error
messages	without	compiling	or	executing	the	statement.

Syntax
SET	PARSEONLY	{	ON	|	OFF	}

Remarks
When	SET	PARSEONLY	is	ON,	Microsoft®	SQL	Server™	only	parses	the
statement.	When	SET	PARSEONLY	is	OFF,	SQL	Server	compiles	and	executes
the	statement.

The	setting	of	SET	PARSEONLY	is	set	at	parse	time	and	not	at	execute	or	run
time.

Do	not	use	PARSEONLY	in	a	stored	procedure	or	a	trigger.	SET	PARSEONLY
returns	offsets	if	the	OFFSETS	option	is	ON	and	no	errors	occur.

Permissions
SET	PARSEONLY	permissions	default	to	all	users.

See	Also

SET

SET	OFFSETS

Transact-SQL	Reference

SET	QUERY_GOVERNOR_COST_LIMIT
Overrides	the	currently	configured	value	for	the	current	connection.

Syntax
SET	QUERY_GOVERNOR_COST_LIMIT	value

Arguments
value

Is	a	numeric	or	integer	value	indicating	if	all	queries	are	allowed	to	run
(value	of	0)	or	if	no	queries	are	allowed	to	run	with	an	estimated	cost	greater
than	the	specified	nonzero	value.	If	a	numeric	value	is	specified,	Microsoft®
SQL	Server™	truncates	it	to	an	integer.

Remarks
Using	SET	QUERY_GOVERNOR_COST_LIMIT	applies	to	the	current
connection	only	and	lasts	the	duration	of	the	current	connection.	Use	the	query
governor	cost	limit	option	of	sp_configure	to	change	the	server-wide	query
governor	cost	limit	value.	For	more	information	about	configuring	this	option,
see	sp_configure	and	Setting	Configuration	Options.

The	setting	of	SET	QUERY_GOVERNOR_COST_LIMIT	is	set	at	execute	or
run	time	and	not	at	parse	time.

Permissions
SET	QUERY_GOVERNOR_COST_LIMIT	permissions	default	to	members	of
the	sysadmin	fixed	server	role.

See	Also

SET

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

SET	QUOTED_IDENTIFIER
Causes	Microsoft®	SQL	Server™	to	follow	the	SQL-92	rules	regarding
quotation	mark	delimiting	identifiers	and	literal	strings.	Identifiers	delimited	by
double	quotation	marks	can	be	either	Transact-SQL	reserved	keywords	or	can
contain	characters	not	usually	allowed	by	the	Transact-SQL	syntax	rules	for
identifiers.

Syntax
SET	QUOTED_IDENTIFIER	{	ON	|	OFF	}

Remarks
When	SET	QUOTED_IDENTIFIER	is	ON,	identifiers	can	be	delimited	by
double	quotation	marks,	and	literals	must	be	delimited	by	single	quotation
marks.	When	SET	QUOTED_IDENTIFIER	is	OFF,	identifiers	cannot	be	quoted
and	must	follow	all	Transact-SQL	rules	for	identifiers.	For	more	information,	see
Using	Identifiers.	Literals	can	be	delimited	by	either	single	or	double	quotation
marks.

When	SET	QUOTED_IDENTIFIER	is	ON,	all	strings	delimited	by	double
quotation	marks	are	interpreted	as	object	identifiers.	Therefore,	quoted
identifiers	do	not	have	to	follow	the	Transact-SQL	rules	for	identifiers.	They	can
be	reserved	keywords	and	can	include	characters	not	usually	allowed	in
Transact-SQL	identifiers.	Double	quotation	marks	cannot	be	used	to	delimit
literal	string	expressions;	single	quotation	marks	must	be	used	to	enclose	literal
strings.	If	a	single	quotation	mark	(')	is	part	of	the	literal	string,	it	can	be
represented	by	two	single	quotation	marks	(").	SET	QUOTED_IDENTIFIER
must	be	ON	when	reserved	keywords	are	used	for	object	names	in	the	database.

When	SET	QUOTED_IDENTIFIER	is	OFF	(default),	literal	strings	in
expressions	can	be	delimited	by	single	or	double	quotation	marks.	If	a	literal
string	is	delimited	by	double	quotation	marks,	the	string	can	contain	embedded
single	quotation	marks,	such	as	apostrophes.

SET	QUOTED_IDENTIFIER	must	be	ON	when	creating	or	manipulating
indexes	on	computed	columns	or	indexed	views.	If	SET

JavaScript:hhobj_1.Click()

QUOTED_IDENTIFIER	is	OFF,	CREATE,	UPDATE,	INSERT,	and	DELETE
statements	on	tables	with	indexes	on	computed	columns	or	indexed	views	will
fail.	For	more	information	about	required	SET	option	settings	with	indexed
views	and	indexes	on	computed	columns,	see	Considerations	When	Using	SET
Statements	in	SET.

The	SQL	Server	ODBC	driver	and	Microsoft	OLE	DB	Provider	for	SQL	Server
automatically	set	QUOTED_IDENTIFIER	to	ON	when	connecting.	This	can	be
configured	in	ODBC	data	sources,	in	ODBC	connection	attributes,	or	OLE	DB
connection	properties.	SET	QUOTED_IDENTIFIER	defaults	to	OFF	for
connections	from	DB-Library	applications.

When	a	stored	procedure	is	created,	the	SET	QUOTED_IDENTIFIER	and	SET
ANSI_NULLS	settings	are	captured	and	used	for	subsequent	invocations	of	that
stored	procedure.

When	executed	inside	a	stored	procedure,	the	setting	of	SET
QUOTED_IDENTIFIER	is	not	changed.

When	SET	ANSI_DEFAULTS	is	ON,	SET	QUOTED_IDENTIFIER	is	enabled.

SET	QUOTED_IDENTIFIER	also	corresponds	to	the	quoted	identifier	setting
of	sp_dboption.	If	SET	QUOTED_IDENTIFIER	is	OFF,	SQL	Server	uses	the
quoted	identifier	setting	of	sp_dboption.	For	more	information	about	database
settings,	see	sp_dboption	and	Setting	Database	Options.

SET	QUOTED_IDENTIFIER	is	set	at	parse	time.	Setting	at	parse	time	means
that	if	the	SET	statement	is	present	in	the	batch	or	stored	procedure,	it	takes
effect,	regardless	of	whether	code	execution	actually	reaches	that	point;	and	the
SET	statement	takes	effect	before	any	statements	are	executed.

Permissions
SET	QUOTED_IDENTIFIER	permissions	default	to	all	users.

Examples

A.	Use	the	quoted	identifier	setting	and	reserved	word	object
names

JavaScript:hhobj_2.Click()

This	example	shows	that	the	SET	QUOTED_IDENTIFIER	setting	must	be	ON,
and	the	keywords	in	table	names	must	be	in	double	quotation	marks	to	create
and	use	objects	with	reserved	keyword	names.

SET	QUOTED_IDENTIFIER	OFF
GO
--	Attempt	to	create	a	table	with	a	reserved	keyword	as	a	name
--	should	fail.
CREATE	TABLE	"select"	("identity"	int	IDENTITY,	"order"	int)
GO

SET	QUOTED_IDENTIFIER	ON
GO

--	Will	succeed.
CREATE	TABLE	"select"	("identity"	int	IDENTITY,	"order"	int)
GO

SELECT	"identity","order"	
FROM	"select"
ORDER	BY	"order"
GO

DROP	TABLE	"SELECT"
GO

SET	QUOTED_IDENTIFIER	OFF
GO

B.	Use	the	quoted	identifier	setting	with	single	and	double	quotes
This	example	shows	the	way	single	and	double	quotation	marks	are	used	in
string	expressions	with	SET	QUOTED_IDENTIFIER	set	to	ON	and	OFF.

SET	QUOTED_IDENTIFIER	OFF

GO
USE	pubs
IF	EXISTS(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.VIEWS
						WHERE	TABLE_NAME	=	'Test')
			DROP	TABLE	Test
GO
USE	pubs
CREATE	TABLE	Test	(Id	int,	String	varchar	(30))	
GO

--	Literal	strings	can	be	in	single	or	double	quotation	marks.
INSERT	INTO	Test	VALUES	(1,"'Text	in	single	quotes'")
INSERT	INTO	Test	VALUES	(2,'''Text	in	single	quotes''')
INSERT	INTO	Test	VALUES	(3,'Text	with	2	''''	single	quotes')
INSERT	INTO	Test	VALUES	(4,'"Text	in	double	quotes"')
INSERT	INTO	Test	VALUES	(5,"""Text	in	double	quotes""")
INSERT	INTO	Test	VALUES	(6,"Text	with	2	""""	double	quotes")
GO

SET	QUOTED_IDENTIFIER	ON
GO

--	Strings	inside	double	quotation	marks	are	now	treated	
--	as	object	names,	so	they	cannot	be	used	for	literals.
INSERT	INTO	"Test"	VALUES	(7,'Text	with	a	single	''	quote')
GO

--	Object	identifiers	do	not	have	to	be	in	double	quotation	marks
--	if	they	are	not	reserved	keywords.
SELECT	*	
FROM	Test
GO

DROP	TABLE	Test
GO

SET	QUOTED_IDENTIFIER	OFF
GO

Here	is	the	result	set:

Id										String																									
-----------	------------------------------	
1											'Text	in	single	quotes'								
2											'Text	in	single	quotes'								
3											Text	with	2	''	single	quotes			
4											"Text	in	double	quotes"								
5											"Text	in	double	quotes"								
6											Text	with	2	""	double	quotes			
7											Text	with	a	single	'	quote					

See	Also

CREATE	DATABASE

CREATE	DEFAULT

CREATE	PROCEDURE

CREATE	RULE

CREATE	TABLE

CREATE	TRIGGER

CREATE	VIEW

Data	Types

EXECUTE

SELECT

SET

SET	ANSI_DEFAULTS

sp_rename

Transact-SQL	Reference

SET	REMOTE_PROC_TRANSACTIONS
Specifies	that	when	a	local	transaction	is	active,	executing	a	remote	stored
procedure	starts	a	Transact-SQL	distributed	transaction	managed	by	the
Microsoft	Distributed	Transaction	Manager	(MS	DTC).

Syntax
SET	REMOTE_PROC_TRANSACTIONS	{	ON	|	OFF	}

Arguments
ON	|	OFF

When	ON,	a	Transact-SQL	distributed	transaction	is	started	when	a	remote
stored	procedure	is	executed	from	a	local	transaction.	When	OFF,	calling	a
remote	stored	procedures	from	a	local	transaction	does	not	start	a	Transact-
SQL	distributed	transaction.

Remarks
When	REMOTE_PROC_TRANSACTIONS	is	ON,	calling	a	remote	stored
procedure	starts	a	distributed	transaction	and	enlists	the	transaction	with	MS
DTC.	The	server	making	the	remote	stored	procedure	call	is	the	transaction
originator	and	controls	the	completion	of	the	transaction.	When	a	subsequent
COMMIT	TRANSACTION	or	ROLLBACK	TRANSACTION	statement	is
issued	for	the	connection,	the	controlling	server	requests	that	MS	DTC	manage
the	completion	of	the	distributed	transaction	across	the	servers	involved.

After	a	Transact-SQL	distributed	transaction	has	been	started,	remote	stored
procedure	calls	can	be	made	to	other	remote	servers.	The	remote	servers	are	all
enlisted	in	the	Transact-SQL	distributed	transaction	and	MS	DTC	ensures	that
the	transaction	is	completed	against	each	server.

REMOTE_PROC_TRANSACTIONS	is	a	connection-level	setting	that	can	be
used	to	override	the	server-level	sp_configure	remote	proc	trans	option.

When	REMOTE_PROC_TRANSACTIONS	is	set	OFF,	remote	stored	procedure

calls	are	not	made	part	of	a	local	transaction.	The	modifications	made	by	the
remote	stored	procedure	are	committed	or	rolled	back	at	the	time	the	stored
procedure	completes.	Subsequent	COMMIT	TRANSACTION	or	ROLLBACK
TRANSACTION	statements	issued	by	the	connection	that	called	the	remote
stored	procedure	have	no	effect	on	the	processing	done	by	the	procedure.

The	REMOTE_PROC_TRANSACTIONS	option	is	a	compatibility	option	that
affects	only	remote	stored	procedure	calls	made	to	remote	servers	defined	using
sp_addserver.	For	more	information,	see	Remote	Stored	Procedure
Architecture.	The	option	does	not	apply	to	distributed	queries	that	execute	a
stored	procedure	on	a	linked	server	defined	using	sp_addlinkedserver.	For
more	information,	see	Distributed	Query	Architecture.

The	setting	of	SET	REMOTE_PROC_TRANSACTIONS	is	set	at	execute	or	run
time	and	not	at	parse	time.

Permissions
SET	REMOTE_PROC_TRANSACTIONS	permissions	default	to	all	users.

See	Also

BEGIN	DISTRIBUTED	TRANSACTION

Distributed	Transactions

SET

Transactions

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Transact-SQL	Reference

SET	ROWCOUNT
Causes	Microsoft®	SQL	Server™	to	stop	processing	the	query	after	the
specified	number	of	rows	are	returned.

Syntax
SET	ROWCOUNT	{	number	|	@number_var	}

Arguments
number	|	@number_var

Is	the	number	(an	integer)	of	rows	to	be	processed	before	stopping	the	given
query.

Remarks
It	is	recommended	that	DELETE,	INSERT,	and	UPDATE	statements	currently
using	SET	ROWCOUNT	be	rewritten	to	use	the	TOP	syntax.	For	more
information,	see	DELETE,	INSERT,	or	UPDATE.

The	setting	of	the	SET	ROWCOUNT	option	is	ignored	for	INSERT,	UPDATE,
and	DELETE	statements	against	remote	tables	and	local	and	remote	partitioned
views.

To	turn	this	option	off	(so	that	all	rows	are	returned),	specify	SET	ROWCOUNT
0.

Note		Setting	the	SET	ROWCOUNT	option	causes	most	Transact-SQL
statements	to	stop	processing	when	they	have	been	affected	by	the	specified
number	of	rows.	This	includes	triggers	and	data	modification	statements	such	as
INSERT,	UPDATE,	and	DELETE.	The	ROWCOUNT	option	has	no	effect	on
dynamic	cursors,	but	it	limits	the	rowset	of	keyset	and	insensitive	cursors.	This
option	should	be	used	with	caution	and	primarily	with	the	SELECT	statement.

SET	ROWCOUNT	overrides	the	SELECT	statement	TOP	keyword	if	the
rowcount	is	the	smaller	value.

The	setting	of	SET	ROWCOUNT	is	set	at	execute	or	run	time	and	not	at	parse
time.

Permissions
SET	ROWCOUNT	permissions	default	to	all	users.

Examples
SET	ROWCOUNT	stops	processing	after	the	specified	number	of	rows.	In	this
example,	note	that	x	rows	meet	the	criteria	of	advances	less	than	or	equal	to
$5,000.	However,	from	the	number	of	rows	returned	by	the	update,	you	can	see
that	not	all	rows	were	processed.	ROWCOUNT	affects	all	Transact-SQL
statements.

USE	pubs
GO
SELECT	count(*)	AS	Cnt
FROM	titles	
WHERE	advance	>=	5000
GO

Here	is	the	result	set:

Cnt							

11										

(1	row(s)	affected)

Now,	set	ROWCOUNT	to	4	and	update	all	rows	with	an	advance	of	$5,000	or
more.

--	SET	ROWCOUNT	to	4.
SET	ROWCOUNT	4
GO
UPDATE	titles

SET	advance	=	5000
WHERE	advance	>=	5000
GO

See	Also

SET

Transact-SQL	Reference

SET	SHOWPLAN_ALL
Causes	Microsoft®	SQL	Server™	not	to	execute	Transact-SQL	statements.
Instead,	SQL	Server	returns	detailed	information	about	how	the	statements	are
executed	and	provides	estimates	of	the	resource	requirements	for	the	statements.

Syntax
SET	SHOWPLAN_ALL	{	ON	|	OFF	}

Remarks
The	setting	of	SET	SHOWPLAN_ALL	is	set	at	execute	or	run	time	and	not	at
parse	time.

When	SET	SHOWPLAN_ALL	is	ON,	SQL	Server	returns	execution
information	for	each	statement	without	executing	it,	and	Transact-SQL
statements	are	not	executed.	After	this	option	is	set	ON,	information	about	all
subsequent	Transact-SQL	statements	are	returned	until	the	option	is	set	OFF.	For
example,	if	a	CREATE	TABLE	statement	is	executed	while	SET
SHOWPLAN_ALL	is	ON,	SQL	Server	returns	an	error	message	from	a
subsequent	SELECT	statement	involving	that	same	table;	the	specified	table
does	not	exist.	Therefore,	subsequent	references	to	this	table	fail.	When	SET
SHOWPLAN_ALL	is	OFF,	SQL	Server	executes	the	statements	without
generating	a	report.

SET	SHOWPLAN_ALL	is	intended	to	be	used	by	applications	written	to	handle
its	output.	Use	SET	SHOWPLAN_TEXT	to	return	readable	output	for	Microsoft
MS-DOS®	applications,	such	as	the	osql	utility.

SET	SHOWPLAN_TEXT	and	SET	SHOWPLAN_ALL	cannot	be	specified
inside	a	stored	procedure;	they	must	be	the	only	statements	in	a	batch.

SET	SHOWPLAN_ALL	returns	information	as	a	set	of	rows	that	form	a
hierarchical	tree	representing	the	steps	taken	by	the	SQL	Server	query	processor
as	it	executes	each	statement.	Each	statement	reflected	in	the	output	contains	a
single	row	with	the	text	of	the	statement,	followed	by	several	rows	with	the
details	of	the	execution	steps.	The	table	shows	the	columns	that	the	output

contains.

Column	name Description
StmtText For	rows	that	are	not	of	type	PLAN_ROW,	this

column	contains	the	text	of	the	Transact-SQL
statement.	For	rows	of	type	PLAN_ROW,	this
column	contains	a	description	of	the	operation.	This
column	contains	the	physical	operator	and	may
optionally	also	contain	the	logical	operator.	This
column	may	also	be	followed	by	a	description	that	is
determined	by	the	physical	operator.	For	more
information,	see	Logical	and	Physical	Operators.

StmtId Number	of	the	statement	in	the	current	batch.
NodeId ID	of	the	node	in	the	current	query.
Parent Node	ID	of	the	parent	step.
PhysicalOp Physical	implementation	algorithm	for	the	node.	For

rows	of	type	PLAN_ROWS	only.
LogicalOp Relational	algebraic	operator	this	node	represents.	For

rows	of	type	PLAN_ROWS	only.
Argument Provides	supplemental	information	about	the

operation	being	performed.	The	contents	of	this
column	depend	on	the	physical	operator.

DefinedValues Contains	a	comma-separated	list	of	values	introduced
by	this	operator.	These	values	may	be	computed
expressions	which	were	present	in	the	current	query
(for	example,	in	the	SELECT	list	or	WHERE	clause),
or	internal	values	introduced	by	the	query	processor
in	order	to	process	this	query.	These	defined	values
may	then	be	referenced	elsewhere	within	this	query.
For	rows	of	type	PLAN_ROWS	only.

EstimateRows Estimated	number	of	rows	output	by	this	operator.	For
rows	of	type	PLAN_ROWS	only.

EstimateIO Estimated	I/O	cost	for	this	operator.	For	rows	of	type
PLAN_ROWS	only.

EstimateCPU Estimated	CPU	cost	for	this	operator.	For	rows	of
type	PLAN_ROWS	only.

JavaScript:hhobj_1.Click()

AvgRowSize Estimated	average	row	size	(in	bytes)	of	the	row
being	passed	through	this	operator.

TotalSubtreeCost Estimated	(cumulative)	cost	of	this	operation	and	all
child	operations.

OutputList Contains	a	comma-separated	list	of	columns	being
projected	by	the	current	operation.

Warnings Contains	a	comma-separated	list	of	warning	messages
relating	to	the	current	operation.	Warning	messages
may	include	the	string	"NO	STATS:()"	with	a	list	of
columns.	This	warning	message	means	that	the	query
optimizer	attempted	to	make	a	decision	based	on	the
statistics	for	this	column,	but	none	were	available.
Consequently,	the	query	optimizer	had	to	make	a
guess,	which	may	have	resulted	in	the	selection	of	an
inefficient	query	plan.	For	more	information	about
creating	or	updating	column	statistics	(which	help	the
query	optimizer	choose	a	more	efficient	query	plan),
see	UPDATE	STATISTICS.	This	column	may
optionally	include	the	string	"MISSING	JOIN
PREDICATE",	which	means	that	a	join	(involving
tables)	is	taking	place	without	a	join	predicate.
Accidentally	dropping	a	join	predicate	may	result	in	a
query	which	takes	much	longer	to	run	than	expected,
and	returns	a	huge	result	set.	If	this	warning	is
present,	verify	that	the	absence	of	a	join	predicate	is
intentional.

Type Node	type.	For	the	parent	node	of	each	query,	this	is
the	Transact-SQL	statement	type	(for	example,
SELECT,	INSERT,	EXECUTE,	and	so	on).	For
subnodes	representing	execution	plans,	the	type	is
PLAN_ROW.

Parallel 0	=	Operator	is	not	running	in	parallel.
1	=	Operator	is	running	in	parallel.

EstimateExecutionsEstimated	number	of	times	this	operator	will	be
executed	while	running	the	current	query.

Permissions
SET	SHOWPLAN_ALL	permissions	default	to	all	users.

Examples
The	two	statements	that	follow	use	the	SET	SHOWPLAN_ALL	settings	to	show
the	way	SQL	Server	analyzes	and	optimizes	the	use	of	indexes	in	queries.

The	first	query	uses	the	Equals	comparison	operator	(=)	in	the	WHERE	clause
on	an	indexed	column.	This	results	in	the	Clustered	Index	Seek	value	in	the
LogicalOp	column	and	the	name	of	the	index	in	the	Argument	column.

The	second	query	uses	the	LIKE	operator	in	the	WHERE	clause.	This	forces
SQL	Server	to	use	a	clustered	index	scan	and	find	the	data	meeting	the	WHERE
clause	condition.	This	results	in	the	Clustered	Index	Scan	value	in	the
LogicalOp	column	with	the	name	of	the	index	in	the	Argument	column,	and	the
Filter	value	in	the	LogicalOp	column	with	the	WHERE	clause	condition	in	the
Argument	column.

The	values	in	the	EstimateRows	and	the	TotalSubtreeCost	columns	are	smaller
for	the	first	indexed	query,	indicating	that	it	is	processed	much	faster	and	uses
less	resources	than	the	nonindexed	query.

USE	pubs
GO
SET	SHOWPLAN_ALL	ON
GO
--	First	query.
SELECT	au_id	
FROM	authors	
WHERE	au_id	=	'409-56-7008'
GO
--	Second	query.
SELECT	city
FROM	authors
WHERE	city	LIKE	'San%'
GO

SET	SHOWPLAN_ALL	OFF
GO

See	Also

SET

SET	SHOWPLAN_TEXT

Transact-SQL	Reference

SET	SHOWPLAN_TEXT
Causes	Microsoft®	SQL	Server™	not	to	execute	Transact-SQL	statements.
Instead,	SQL	Server	returns	detailed	information	about	how	the	statements	are
executed.

Syntax
SET	SHOWPLAN_TEXT	{	ON	|	OFF	}

Remarks
The	setting	of	SET	SHOWPLAN_TEXT	is	set	at	execute	or	run	time	and	not	at
parse	time.

When	SET	SHOWPLAN_TEXT	is	ON,	SQL	Server	returns	execution
information	for	each	Transact-SQL	statement	without	executing	it.	After	this
option	is	set	ON,	information	about	all	subsequent	Transact-SQL	statements	is
returned	until	the	option	is	set	OFF.	For	example,	if	a	CREATE	TABLE
statement	is	executed	while	SET	SHOWPLAN_TEXT	is	ON,	SQL	Server
returns	an	error	message	from	a	subsequent	SELECT	statement	involving	that
same	table;	the	specified	table	does	not	exist.	Therefore,	subsequent	references
to	this	table	fail.	When	SET	SHOWPLAN_TEXT	is	OFF,	SQL	Server		executes
statements	without	generating	a	report.

SET	SHOWPLAN_TEXT	is	intended	to	return	readable	output	for	Microsoft
MS-DOS®	applications	such	as	the	osql	utility.	SET	SHOWPLAN_ALL	returns
more	detailed	output	intended	to	be	used	with	programs	designed	to	handle	its
output.

SET	SHOWPLAN_TEXT	and	SET	SHOWPLAN_ALL	cannot	be	specified	in	a
stored	procedure;	they	must	be	the	only	statements	in	a	batch.

SET	SHOWPLAN_TEXT	returns	information	as	a	set	of	rows	that	form	a
hierarchical	tree	representing	the	steps	taken	by	the	SQL	Server	query	processor
as	it	executes	each	statement.	Each	statement	reflected	in	the	output	contains	a
single	row	with	the	text	of	the	statement,	followed	by	several	rows	with	the
details	of	the	execution	steps.	The	table	shows	the	column	that	the	output

contains.

Column	name Description
StmtText For	rows	which	are	not	of	type	PLAN_ROW,	this	column

contains	the	text	of	the	Transact-SQL	statement.	For	rows
of	type	PLAN_ROW,	this	column	contains	a	description	of
the	operation.	This	column	contains	the	physical	operator
and	may	optionally	also	contain	the	logical	operator.	This
column	may	also	be	followed	by	a	description	which	is
determined	by	the	physical	operator.	For	more	information
about	physical	operators,	see	the	Argument	column	in
SET	SHOWPLAN_ALL.

For	more	information	about	the	physical	and	logical	operators	that	can	be	seen	in
showplan	output,	see	Logical	and	Physical	Operators.

Permissions
SET	SHOWPLAN_TEXT	permissions	default	to	all	users.

Examples
This	example	shows	how	indexes	are	used	by	SQL	Server	as	it	processes	the
statements.

This	is	the	query	using	an	index:

SET	SHOWPLAN_TEXT	ON
GO
USE	pubs
SELECT	*
FROM	roysched
WHERE	title_id	=	'PS1372'
GO
SET	SHOWPLAN_TEXT	OFF
GO

Here	is	the	result	set:

JavaScript:hhobj_1.Click()

StmtText																																															
--	
USE	pubs

SELECT	*
FROM	roysched
WHERE	title_id	=	'PS1372'

(2	row(s)	affected)

StmtText																																																																
--
		|--Bookmark	Lookup(BOOKMARK:([Bmk1000]),	OBJECT:([pubs].[dbo].[roysched]))
							|--Index	Seek(OBJECT:([pubs].[dbo].[roysched].[titleidind]),	SEEK:([roysched].[title_id]='PS1372')	ORDERED)

(2	row(s)	affected)

Here	is	the	query	not	using	an	index:

SET	SHOWPLAN_TEXT	ON
GO
USE	pubs
SELECT	*
FROM	roysched
WHERE	lorange	<	5000
GO
SET	SHOWPLAN_TEXT	OFF
GO

Here	is	the	result	set:

StmtText																																										

USE	pubs

SELECT	*
FROM	roysched
WHERE	lorange	<	5000

(2	row(s)	affected)

StmtText																																																																
--
		|--Table	Scan(OBJECT:([pubs].[dbo].[roysched]),	WHERE:([roysched].[lorange]<5000))

(1	row(s)	affected)

See	Also

Operators

SET

SET	SHOWPLAN_ALL

Transact-SQL	Reference

SET	STATISTICS	IO
Causes	Microsoft®	SQL	Server™	to	display	information	regarding	the	amount
of	disk	activity	generated	by	Transact-SQL	statements.

Syntax
SET	STATISTICS	IO	{	ON	|	OFF	}

Remarks
When	STATISTICS	IO	is	ON,	statistical	information	is	displayed.	When	OFF,
the	information	is	not	displayed.

After	this	option	is	set	ON,	all	subsequent	Transact-SQL	statements	return	the
statistical	information	until	the	option	is	set	to	OFF.

There	are	five	output	items.

Output	item Meaning
Table Name	of	the	table.
scan	count Number	of	scans	performed.
logical	reads Number	of	pages	read	from	the	data	cache.
physical	reads Number	of	pages	read	from	disk.
read-ahead	reads Number	of	pages	placed	into	the	cache	for	the

query.

The	setting	of	SET	STATISTICS	IO	is	set	at	execute	or	run	time	and	not	at	parse
time.

Permissions
SET	STATISTICS	IO	permissions	default	to	all	users.

See	Also

SET

SET	SHOWPLAN_ALL

SET	STATISTICS	TIME

Transact-SQL	Reference

SET	STATISTICS	PROFILE
Displays	the	profile	information	for	a	statement.	STATISTICS	PROFILE	works
for	ad	hoc	queries,	views,	triggers,	and	stored	procedures.

Syntax
SET	STATISTICS	PROFILE	{	ON	|	OFF	}

Remarks
When	STATISTICS	PROFILE	is	ON,	each	executed	query	returns	its	regular
result	set,	followed	by	an	additional	result	set	that	shows	a	profile	of	the	query
execution.

The	additional	result	set	contains	the	SHOWPLAN_ALL	columns	for	the	query
and	these	additional	columns.

Column	name Description
Rows Actual	number	of	rows	produced	by	each	operator
Executes Number	of	times	the	operator	has	been	executed

Permissions
SET	STATISTICS	PROFILE	permissions	default	to	all	users.

See	Also

SET

SET	SHOWPLAN_ALL

SET	STATISTICS	TIME

SET	STATISTICS	IO

Transact-SQL	Reference

SET	STATISTICS	TIME
Displays	the	number	of	milliseconds	required	to	parse,	compile,	and	execute
each	statement.

Syntax
SET	STATISTICS	TIME	{	ON	|	OFF	}

Remarks
When	SET	STATISTICS	TIME	is	ON,	the	time	statistics	for	a	statement	are
displayed.	When	OFF,	the	time	statistics	are	not	displayed.

The	setting	of	SET	STATISTICS	TIME	is	set	at	execute	or	run	time	and	not	at
parse	time.

Microsoft®	SQL	Server™	is	unable	to	provide	accurate	statistics	in	fiber	mode,
which	is	activated	when	you	enable	the	lightweight	pooling	configuration
option.

The	cpu	column	in	the	sysprocesses	table	is	only	updated	when	a	query	executes
with	SET	STATISTICS	TIME	ON.	When	SET	STATISTICS	TIME	is	OFF,	a	0
is	returned.

ON	and	OFF	settings	also	affect	the	CPU	column	in	the	Process	Info	View	for
Current	Activity	in	SQL	Server	Enterprise	Manager.

Permissions
SET	STATISTICS	TIME	permissions	default	to	all	users.

See	Also

SET

SET	STATISTICS	IO

Transact-SQL	Reference

SET	TEXTSIZE
Specifies	the	size	of	text	and	ntext	data	returned	with	a	SELECT	statement.

Syntax
SET	TEXTSIZE	{	number	}

Arguments
number

Is	the	size	(an	integer)	of	text	data,	in	bytes.	The	maximum	setting	for	SET
TEXTSIZE	is	2	gigabytes	(GB),	specified	in	bytes.	A	setting	of	0	resets	the
size	to	the	default	(4	KB).

Remarks
Setting	SET	TEXTSIZE	affects	the	@@TEXTSIZE	function.

The	DB-Library	variable	DBTEXTLIMIT	also	limits	the	size	of	text	data
returned	with	a	SELECT	statement.	If	DBTEXTLIMIT	is	set	to	a	smaller	size
than	TEXTSIZE,	only	the	amount	specified	by	DBTEXTLIMIT	is	returned.	For
more	information,	see	"Programming	DB-Library	for	C"	in	SQL	Server	Books
Online.

The	SQL	Server	ODBC	driver	and	Microsoft	OLE	DB	Provider	for	SQL	Server
automatically	set	TEXTSIZE	to	2147483647	when	connecting.

The	setting	of	set	TEXTSIZE	is	set	at	execute	or	run	time	and	not	at	parse	time.

Permissions
SET	TEXTSIZE	permissions	default	to	all	users.

See	Also

Data	Types

SET

@@TEXTSIZE

Transact-SQL	Reference

SET	TRANSACTION	ISOLATION	LEVEL
Controls	the	default	transaction	locking	behavior	for	all	Microsoft®	SQL
Server™	SELECT	statements	issued	by	a	connection.

Syntax
SET	TRANSACTION	ISOLATION	LEVEL	
				{	READ	COMMITTED	
								|	READ	UNCOMMITTED	
								|	REPEATABLE	READ	
								|	SERIALIZABLE	
				}

Arguments
READ	COMMITTED

Specifies	that	shared	locks	are	held	while	the	data	is	being	read	to	avoid
dirty	reads,	but	the	data	can	be	changed	before	the	end	of	the	transaction,
resulting	in	nonrepeatable	reads	or	phantom	data.	This	option	is	the	SQL
Server	default.

READ	UNCOMMITTED

Implements	dirty	read,	or	isolation	level	0	locking,	which	means	that	no
shared	locks	are	issued	and	no	exclusive	locks	are	honored.	When	this	option
is	set,	it	is	possible	to	read	uncommitted	or	dirty	data;	values	in	the	data	can
be	changed	and	rows	can	appear	or	disappear	in	the	data	set	before	the	end	of
the	transaction.	This	option	has	the	same	effect	as	setting	NOLOCK	on	all
tables	in	all	SELECT	statements	in	a	transaction.	This	is	the	least	restrictive
of	the	four	isolation	levels.

REPEATABLE	READ

Locks	are	placed	on	all	data	that	is	used	in	a	query,	preventing	other	users
from	updating	the	data,	but	new	phantom	rows	can	be	inserted	into	the	data
set	by	another	user	and	are	included	in	later	reads	in	the	current	transaction.
Because	concurrency	is	lower	than	the	default	isolation	level,	use	this	option

only	when	necessary.

SERIALIZABLE

Places	a	range	lock	on	the	data	set,	preventing	other	users	from	updating	or
inserting	rows	into	the	data	set	until	the	transaction	is	complete.	This	is	the
most	restrictive	of	the	four	isolation	levels.	Because	concurrency	is	lower,
use	this	option	only	when	necessary.	This	option	has	the	same	effect	as
setting	HOLDLOCK	on	all	tables	in	all	SELECT	statements	in	a	transaction.

Remarks
Only	one	of	the	options	can	be	set	at	a	time,	and	it	remains	set	for	that
connection	until	it	is	explicitly	changed.	This	becomes	the	default	behavior
unless	an	optimization	option	is	specified	at	the	table	level	in	the	FROM	clause
of	the	statement.

The	setting	of	SET	TRANSACTION	ISOLATION	LEVEL	is	set	at	execute	or
run	time	and	not	at	parse	time.

Examples
This	example	sets	the	TRANSACTION	ISOLATION	LEVEL	for	the	session.
For	each	Transact-SQL	statement	that	follows,	SQL	Server	holds	all	of	the
shared	locks	until	the	end	of	the	transaction.

SET	TRANSACTION	ISOLATION	LEVEL	REPEATABLE	READ
GO
BEGIN	TRANSACTION
SELECT	*	FROM	publishers
SELECT	*	FROM	authors
...
COMMIT	TRANSACTION

See	Also

Adjusting	Transaction	Isolation	Levels

DBCC	USEROPTIONS

JavaScript:hhobj_1.Click()

Isolation	Levels

SELECT

SET

JavaScript:hhobj_2.Click()

Transact-SQL	Reference

SET	XACT_ABORT
Specifies	whether	Microsoft®	SQL	Server™	automatically	rolls	back	the	current
transaction	if	a	Transact-SQL	statement	raises	a	run-time	error.

Syntax
SET	XACT_ABORT	{	ON	|	OFF	}

Remarks
When	SET	XACT_ABORT	is	ON,	if	a	Transact-SQL	statement	raises	a	run-time
error,	the	entire	transaction	is	terminated	and	rolled	back.	When	OFF,	only	the
Transact-SQL	statement	that	raised	the	error	is	rolled	back	and	the	transaction
continues	processing.	Compile	errors,	such	as	syntax	errors,	are	not	affected	by
SET	XACT_ABORT.

It	is	required	that	XACT_ABORT	be	set	ON	for	data	modification	statements	in
an	implicit	or	explicit	transaction	against	most	OLE	DB	providers,	including
SQL	Server.	The	only	case	where	this	option	is	not	required	is	if	the	provider
supports	nested	transactions.	For	more	information,	see	Distributed	Queries	and
Distributed	Transactions.

The	setting	of	SET	XACT_ABORT	is	set	at	execute	or	run	time	and	not	at	parse
time.

Examples
This	example	causes	a	foreign	key	violation	error	in	a	transaction	that	has	other
Transact-SQL	statements.	In	the	first	set	of	statements,	the	error	is	generated,	but
the	other	statements	execute	successfully	and	the	transaction	is	successfully
committed.	In	the	second	set	of	statements,	the	SET	XACT_ABORT	setting	is
turned	ON.	This	causes	the	statement	error	to	terminate	the	batch	and	the
transaction	is	rolled	back.

CREATE	TABLE	t1	(a	int	PRIMARY	KEY)
CREATE	TABLE	t2	(a	int	REFERENCES	t1(a))

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

GO
INSERT	INTO	t1	VALUES	(1)
INSERT	INTO	t1	VALUES	(3)
INSERT	INTO	t1	VALUES	(4)
INSERT	INTO	t1	VALUES	(6)
GO
SET	XACT_ABORT	OFF
GO
BEGIN	TRAN
INSERT	INTO	t2	VALUES	(1)
INSERT	INTO	t2	VALUES	(2)	/*	Foreign	key	error	*/
INSERT	INTO	t2	VALUES	(3)
COMMIT	TRAN
GO

SET	XACT_ABORT	ON
GO

BEGIN	TRAN
INSERT	INTO	t2	VALUES	(4)
INSERT	INTO	t2	VALUES	(5)	/*	Foreign	key	error	*/
INSERT	INTO	t2	VALUES	(6)
COMMIT	TRAN
GO

/*	Select	shows	only	keys	1	and	3	added.	
			Key	2	insert	failed	and	was	rolled	back,	but
			XACT_ABORT	was	OFF	and	rest	of	transaction
			succeeded.
			Key	5	insert	error	with	XACT_ABORT	ON	caused
			all	of	the	second	transaction	to	roll	back.	*/

SELECT	*	

FROM	t2
GO

DROP	TABLE	t2
DROP	TABLE	t1
GO

See	Also

BEGIN	TRANSACTION

COMMIT	TRANSACTION

ROLLBACK	TRANSACTION

SET

@@TRANCOUNT

Transact-SQL	Reference

SETUSER
Allows	a	member	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	to	impersonate	another	user.

IMPORTANT		SETUSER	is	included	in	Microsoft®	SQL	Server™	2000	only	for
backward	compatibility,	and	its	usage	is	not	recommended.	SETUSER	may	not
be	supported	in	a	future	release	of	SQL	Server.

Syntax
SETUSER	['username'	[WITH	NORESET]]

Arguments
'username'

Is	the	name	of	a	SQL	Server	or	Microsoft	Windows	NT®	user	in	the	current
database	that	is	impersonated.	When	username	is	not	specified,	the	original
identity	of	the	system	administrator	or	database	owner	impersonating	the
user	is	reestablished.

WITH	NORESET

Specifies	that	subsequent	SETUSER	statements	(with	no	specified
username)	do	not	reset	to	the	system	administrator	or	database	owner.

Remarks
SETUSER	can	be	used	by	members	of	the	sysadmin	or	db_owner	roles	to	adopt
the	identity	of	another	user	in	order	to	test	the	permissions	of	the	other	user.

Only	use	SETUSER	with	SQL	Server	users.	It	is	not	supported	with	Windows
users.	When	SETUSER	has	been	used	to	assume	the	identity	of	another	user,	any
objects	that	are	created	are	owned	by	the	user	being	impersonated.	For	example,
if	the	database	owner	assumes	the	identity	of	user	Margaret	and	creates	a	table
called	orders,	the	orders	table	is	owned	by	Margaret	not	the	system
administrator.

SETUSER	is	not	required	to	create	an	object	owned	by	another	user,	because	the
object	can	be	created	with	a	qualified	name	that	specifies	the	other	user	as	the
owner	of	the	new	object.	For	example,	if	user	Andrew,	who	is	a	member	of	the
db_owner	database	role,	creates	a	table	Margaret.customers,	user	Margaret
owns	customers	not	user	Andrew.

SETUSER	remains	in	effect	until	another	SETUSER	statement	is	issued	or	until
the	current	database	is	changed	with	the	USE	statement.

Permissions
SETUSER	permissions	default	to	members	of	the	sysadmin	fixed	server	role
and	are	not	transferable.

Examples

A.	Use	SETUSER
This	example	shows	how	the	database	owner	can	adopt	the	identity	of	another
user.	User	mary	has	created	a	table	called	computer_types.	Using	SETUSER,
the	database	owner	impersonates	mary	to	grant	user	joe	access	to	the
computer_types	table.

SETUSER	'mary'
go
GRANT	SELECT	ON	computer_types	TO	joe
go
SETUSER

B.	Use	the	NORESET	option
This	example	shows	how	a	database	owner	must	create	some	objects	and	then
test	their	usability	with	minimal	permissions.	For	simplicity,	the	database	owner
wants	to	maintain	only	the	permission	granted	to	mary	for	the	entire	session.

SETUSER	'mary'	WITH	NORESET
go
CREATE	TABLE	computer_types2

.

.

.
GRANT	...
go
SETUSER						/*	This	statement	has	no	effect.	*/

Note		If	SETUSER	WITH	NORESET	is	used,	the	database	owner	or	system
administrator	must	log	off	and	then	log	on	again	to	reestablish	his	or	her	own
rights.

See	Also

DENY

GRANT

REVOKE

USE

Transact-SQL	Reference

SHUTDOWN
Immediately	stops	Microsoft®	SQL	Server™.

Syntax
SHUTDOWN	[WITH	NOWAIT]

Arguments
WITH	NOWAIT

Shuts	down	SQL	Server	immediately,	without	performing	checkpoints	in
every	database.	SQL	Server	exits	after	attempting	to	terminate	all	user
processes,	and	a	rollback	operation	occurs	for	each	active	transaction.

Remarks
Unless	members	of	the	sysadmin	fixed	server	role	specify	the	WITH	NOWAIT
option,	SHUTDOWN	tries	to	shut	down	SQL	Server	in	an	orderly	fashion	by:

1.	 Disabling	logins	(except	for	members	of	the	sysadmin	fixed	server
role).	To	see	a	listing	of	all	current	users,	execute	sp_who.

2.	 Waiting	for	currently	executing	Transact-SQL	statements	or	stored
procedures	to	finish.	To	see	a	listing	of	all	active	processes	and	locks,
execute	sp_lock	and	sp_who.

3.	 Performing	a	checkpoint	in	every	database.

Using	the	SHUTDOWN	statement	minimizes	the	amount	of	automatic	recovery
work	needed	when	members	of	the	sysadmin	fixed	server	role	restart	SQL
Server.

These	tools	and	methods	can	also	be	used	to	stop	SQL	Server.	Each	of	these
performs	a	checkpoint	in	all	databases.	All	committed	data	from	data	cache	is
flushed,	and	then	the	server	is	stopped:

By	using	SQL	Server	Enterprise	Manager.

By	using	net	stop	mssqlserver	from	a	command	prompt.

By	using	Services	in	Control	Panel.

By	using	SQL	Server	Service	Manager.

If	sqlservr.exe	was	started	from	the	command-prompt,	pressing	CTRL+C	shuts
down	SQL	Server.	However,	pressing	CTRL+C	does	not	perform	a	checkpoint.

Note		The	SQL	Server	Enterprise	Manager,	net	stop,	Control	Panel,	and	SQL
Server	Service	Manager	methods	of	stopping	SQL	Server	produce	the	identical
service	control	message	of	SERVICE_CONTROL_STOP	to	SQL	Server.

Permissions
SHUTDOWN	permissions	default	to	members	of	the	sysadmin	and
serveradmin	fixed	server	roles,	and	are	not	transferable.

See	Also

CHECKPOINT

sp_lock

sp_who

sqlservr	Application

Stopping	SQL	Server

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

SIGN
Returns	the	positive	(+1),	zero	(0),	or	negative	(-1)	sign	of	the	given	expression.

Syntax
SIGN	(numeric_expression)

Arguments
numeric_expression

Is	an	expression	of	the	exact	numeric	or	approximate	numeric	data	type
category,	except	for	the	bit	data	type.

Return	Types
float

Examples
This	example	returns	the	SIGN	values	of	numbers	from	-1	to	1.

DECLARE	@value	real
SET	@value	=	-1
WHILE	@value	<	2
			BEGIN
						SELECT	SIGN(@value)
						SET	NOCOUNT	ON
						SELECT	@value	=	@value	+	1
						SET	NOCOUNT	OFF
			END
SET	NOCOUNT	OFF
GO

Here	is	the	result	set:

(1	row(s)	affected)

-1.0																					

(1	row(s)	affected)

0.0																						

(1	row(s)	affected)

1.0																						

(1	row(s)	affected)

See	Also

Mathematical	Functions

Transact-SQL	Reference

SIN
Returns	the	trigonometric	sine	of	the	given	angle	(in	radians)	in	an	approximate
numeric	(float)	expression.

Syntax
SIN	(float_expression)

Arguments
float_expression

Is	an	expression	of	type	float.

Return	Types
float

Examples
This	example	calculates	the	SIN	for	a	given	angle.

DECLARE	@angle	float
SET	@angle	=	45.175643
SELECT	'The	SIN	of	the	angle	is:	'	+	CONVERT(varchar,SIN(@angle))
GO

Here	is	the	result	set:

The	SIN	of	the	angle	is:	0.929607																							

(1	row(s)	affected)

See	Also

Mathematical	Functions

Transact-SQL	Reference

smalldatetime
For	information	about	the	smalldatetime	data	type,	see	datetime	and
smalldatetime.

See	Also

Data	Type	Conversion

Data	Types

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

smallint
For	information	about	the	smallint	data	type,	see	int,	bigint,	smallint,	and
tinyint.

See	Also

Data	Type	Conversion

Data	Types

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

smallmoney
For	information	about	the	smallmoney	data	type,	see	money	and	smallmoney.

See	Also

Data	Type	Conversion

Data	Types

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

SOME	|	ANY
Compares	a	scalar	value	with	a	single-column	set	of	values.

Syntax
scalar_expression	{	=	|	<	>	|	!	=	|	>	|	>	=	|	!	>	|	<	|	<	=	|	!	<	}	
				{	SOME	|	ANY	}	(subquery)

Arguments
scalar_expression

Is	any	valid	Microsoft®	SQL	Server™	expression.

{	=	|	<>	|	!=	|	>	|	>=	|	!>	|	<	|	<=	|	!<	}

Is	any	valid	comparison	operator.

SOME	|	ANY

Specifies	that	a	comparison	should	be	made.

subquery

Is	a	subquery	that	has	a	result	set	of	one	column.	The	data	type	of	the	column
returned	must	be	the	same	data	type	as	scalar_expression.

Result	Types
Boolean

Result	Value
SOME	or	ANY	returns	TRUE	when	the	comparison	specified	is	TRUE	for	ANY
pair	(scalar_expression,	x)	where	x	is	a	value	in	the	single-column	set.
Otherwise,	returns	FALSE.

See	Also

CASE

Expressions

Functions

Operators	(Logical	Operators)

SELECT

WHERE

Transact-SQL	Reference

SOUNDEX
Returns	a	four-character	(SOUNDEX)	code	to	evaluate	the	similarity	of	two
strings.

Syntax
SOUNDEX	(character_expression)

Arguments
character_expression

Is	an	alphanumeric	expression	of	character	data.	character_expression	can	be
a	constant,	variable,	or	column.

Return	Types
char

Remarks
SOUNDEX	converts	an	alpha	string	to	a	four-character	code	to	find	similar-
sounding	words	or	names.	The	first	character	of	the	code	is	the	first	character	of
character_expression	and	the	second	through	fourth	characters	of	the	code	are
numbers.	Vowels	in	character_expression	are	ignored	unless	they	are	the	first
letter	of	the	string.	String	functions	can	be	nested.

Examples
This	example	shows	the	SOUNDEX	function	and	the	related	DIFFERENCE
function.	In	the	first	example,	the	standard	SOUNDEX	values	are	returned	for
all	consonants.	Returning	the	SOUNDEX	for	Smith	and	Smythe	returns	the
same	SOUNDEX	result	because	all	vowels,	the	letter	y,	doubled	letters,	and	the
letter	h,	are	not	included.

--	Using	SOUNDEX
SELECT	SOUNDEX	('Smith'),	SOUNDEX	('Smythe')

Here	is	the	result	set:

-----	-----	
S530		S530		

(1	row(s)	affected)

The	DIFFERENCE	function	compares	the	difference	of	the	SOUNDEX	pattern
results.	The	first	example	shows	two	strings	that	differ	only	in	vowels.	The
difference	returned	is	4	(lowest	possible	difference).

--	Using	DIFFERENCE
SELECT	DIFFERENCE('Smithers',	'Smythers')
GO

Here	is	the	result	set:

4											

(1	row(s)	affected)

In	this	example,	the	strings	differ	in	consonants,	so	the	difference	returned	is	2
(higher	difference).

SELECT	DIFFERENCE('Anothers',	'Brothers')
GO

Here	is	the	result	set:

2											

(1	row(s)	affected)

See	Also

String	Functions

Transact-SQL	Reference

SPACE
Returns	a	string	of	repeated	spaces.

Syntax
SPACE	(integer_expression)

Arguments
integer_expression

Is	a	positive	integer	that	indicates	the	number	of	spaces.	If
integer_expression	is	negative,	a	null	string	is	returned.

Return	Types
char

Remarks
To	include	spaces	in	Unicode	data,	use	REPLICATE	instead	of	SPACE.

Examples
This	example	trims	the	authors'	last	names	and	concatenates	a	comma,	two
spaces,	and	the	authors'	first	names.

USE	pubs
GO
SELECT	RTRIM(au_lname)	+	','	+	SPACE(2)	+		LTRIM(au_fname)
FROM	authors
ORDER	BY	au_lname,	au_fname
GO

Here	is	the	result	set:

Name																																																												

Bennet,		Abraham																																																
Blotchet-Halls,		Reginald																																							
Carson,		Cheryl																																																	
DeFrance,		Michel																																															
del	Castillo,		Innes																																												
Dull,		Ann																																																						
Green,		Marjorie																																																
Greene,		Morningstar																																												
Gringlesby,		Burt																																															
Hunter,		Sheryl																																																	
Karsen,		Livia																																																		
Locksley,		Charlene																																													
MacFeather,		Stearns																																												
McBadden,		Heather																																														
O'Leary,		Michael																																															
Panteley,		Sylvia																																															
Ringer,		Albert																																																	
Ringer,		Anne																																																			
Smith,		Meander																																																	
Straight,		Dean																																																	
Stringer,		Dirk																																																	
White,		Olivier																																																	
Yokomoto,		Akiko																																																

(23	row(s)	affected)

See	Also

String	Functions

Transact-SQL	Reference

sql_variant
A	data	type	that	stores	values	of	various	SQL	Server-supported	data	types,
except	text,	ntext,	image,	timestamp,	and	sql_variant.

sql_variant	may	be	used	in	columns,	parameters,	variables,	and	return	values	of
user-defined	functions.	sql_variant	allows	these	database	objects	to	support
values	of	other	data	types.

Syntax
sql_variant

Remarks
A	column	of	type	sql_variant	may	contain	rows	of	different	data	types.	For
example,	a	column	defined	as	sql_variant	can	store	int,	binary,	and	char
values.	The	only	types	of	values	that	cannot	be	stored	using	sql_variant	are
text,	ntext,	image,	timestamp,	and	sql_variant.

sql_variant	can	have	a	maximum	length	of	8016	bytes.

An	sql_variant	data	type	must	first	be	cast	to	its	base	data	type	value	before
participating	in	operations	such	as	addition	and	subtraction.

sql_variant	may	be	assigned	a	default	value.	This	data	type	also	may	have
NULL	as	its	underlying	value,	but	the	NULL	values	will	not	have	an	associated
base	type.	In	addition,	sql_variant	may	not	have	another	sql_variant	as	its	base
type.

A	UNIQUE,	primary,	or	foreign	key	may	include	columns	of	type	sql_variant,
but	the	total	length	of	the	data	values	comprising	the	key	of	a	given	row	should
not	be	greater	than	the	maximum	length	of	an	index	(currently	900	bytes).

A	table	may	have	any	number	of	sql_variant	columns.

sql_variant	cannot	be	used	in	CONTAINSTABLE	and	FREETEXTTABLE.

ODBC	does	not	fully	support	sql_variant.	Hence,	queries	of	sql_variant	columns
are	returned	as	binary	data	when	using	Microsoft	OLE	DB	Provider	for	ODBC

(MSDASQL).	For	example,	an	sql_variant	column	containing	the	character
string	data	'PS2091'	is	returned	as	0x505332303931.

Comparing	sql_variant	values
The	sql_variant	data	type	belongs	to	the	top	of	the	data	type	hierarchy	list	for
conversion.	For	sql_variant	comparisons,	the	SQL	Server	data	type	hierarchy
order	is	grouped	into	data	type	families.

Data	Type	Hierarchy Data	Type	Family
sql_variant sql_variant
datetime datetime
smalldatetime datetime
float approximate	number
real approximate	number
decimal exact	number
money exact	number
smallmoney exact	number
bigint exact	number
int exact	number
smallint exact	number
tinyint exact	number
bit exact	number
nvarchar Unicode
nchar Unicode
varchar Unicode
char Unicode
varbinary binary
binary binary
uniqueidentifier uniqueidentifier

These	rules	apply	to	sql_variant	comparisons:

When	sql_variant	values	of	different	base	data	types	are	compared,	and
the	base	data	types	are	in	different	data	type	families,	the	value	whose
data	type	family	is	higher	in	the	hierarchy	chart	is	considered	the	higher

of	the	two	values.

When	sql_variant	values	of	different	base	data	types	are	compared,	and
the	base	data	types	are	in	the	same	data	type	family,	the	value	whose
base	data	type	is	lower	in	the	hierarchy	chart	is	implicitly	converted	to
the	other	data	type	and	the	comparison	is	then	made.

When	sql_variant	values	of	the	char,	varchar,	nchar,	or	varchar	data
types	are	compared,	they	are	evaluated	based	on	the	following	criteria:
LCID,	LCID	version,	comparison	flags,	and	sort	ID.		Each	of	these
criteria	are	compared	as	integer	values,	and	in	the	order	listed.

See	Also

CAST	and	CONVERT

Using	sql_variant_Data

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

SQL_VARIANT_PROPERTY
Returns	the	base	data	type	and	other	information	about	a	sql_variant	value.

Syntax
SQL_VARIANT_PROPERTY	(expression,	property)

Arguments
expression

Is	an	expression	of	type	sql_variant.

property

Contains	the	name	of	the	sql_variant	property	for	which	information	is	to	be
provided.	property	is	varchar(128),	and	can	be	any	of	the	following	values.

Value Description
Base	type	of
sql_variant	returned

BaseType The	SQL	Server	data	type,	such	as:

char
int
money
nchar
ntext
numeric
nvarchar
real
smalldatetime
smallint
smallmoney
text
timestamp
tinyint
uniqueidentifier

sysname

Invalid	input	=	NULL

varbinary
varchar

Precision The	number	of	digits	of	the	numeric
base	data	type:

datetime	=	23
smalldatetime	=	16
float	=	53
real	=	24
decimal	(p,s)	and	numeric	(p,s)	=	p	
money	=	19
smallmoney	=	10
int	=	10
smallint	=	5
tinyint	=	3
bit	=	1
all	other	types	=	0

int

Invalid	input	=	NULL

Scale The	number	of	digits	to	the	right	of
the	decimal	point	of	the	numeric	base
data	type:

decimal	(p,s)	and	numeric	(p,s)	=	s
money	and	smallmoney	=	4
datetime	=	3
all	other	types	=	0

int

Invalid	input	=	NULL

TotalBytes The	number	of	bytes	required	to	hold
both	the	meta	data	and	data	of	the
value.	This	information	would	be
useful	in	checking	the	maximum	side
of	data	in	a	sql_variant	column.	If
the	value	is	greater	than	900,	index
creation	will	fail.

int

Invalid	input	=	NULL

Collation Represents	the	collation	of	the
particular	sql_variant	value.

sysname

Invalid	input	=	NULL

MaxLength The	maximum	data	type	length,	in int

bytes.	For	example,	MaxLength	of
nvarchar(50)	is	100,	MaxLength	of
int	is	4.

Invalid	input	=	NULL

Return	Types
sql_variant

Examples
This	example	retrieves	SQL_VARIANT_PROPERTY	information	on	the	colA
value	46279.1	where	colB	=1689,	given	that	tableA	has	colA	that	is	of	type
sql_variant	and	colB.

CREATE			TABLE	tableA(colA	sql_variant,	colB	int)
INSERT	INTO	tableA	values	(cast	(46279.1	as	decimal(8,2)),	1689)
SELECT			SQL_VARIANT_PROPERTY(colA,'BaseType'),
									SQL_VARIANT_PROPERTY(colA,'Precision'),
									SQL_VARIANT_PROPERTY(colA,'Scale')
FROM						tableA
WHERE						colB	=	1689

Here	is	the	result	set.	(Note	that	each	of	these	three	values	is	a	sql_variant.)

decimal 8 2

See	Also

sql_variant

Using	sql_variant_Data

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

SQUARE
Returns	the	square	of	the	given	expression.

Syntax
SQUARE	(float_expression)

Arguments
float_expression

Is	an	expression	of	type	float.

Return	Types
float

Examples
This	example	returns	the	volume	of	a	cylinder	having	a	radius	of	1	inch	and	a
height	of	5	inches.

DECLARE	@h	float,	@r	float
SET	@h	=	5
SET	@r	=	1
SELECT	PI()*	SQUARE(@r)*	@h	AS	'Cyl	Vol'

Here	is	the	result:

Cyl	Vol

15.707963267948966

See	Also

Mathematical	Functions

Transact-SQL	Reference

SQRT
Returns	the	square	root	of	the	given	expression.

Syntax
SQRT	(float_expression)

Arguments
float_expression

Is	an	expression	of	type	float.

Return	Types
float

Examples
This	example	returns	the	square	root	of	numbers	between	1.00	and	10.00.

DECLARE	@myvalue	float
SET	@myvalue	=	1.00
WHILE	@myvalue	<	10.00
			BEGIN
						SELECT	SQRT(@myvalue)
						SELECT	@myvalue	=	@myvalue	+	1
			END
GO

Here	is	the	result	set:

1.0																						

1.4142135623731										

1.73205080756888									

2.0																						

2.23606797749979									

2.44948974278318									

2.64575131106459									

2.82842712474619									

3.0

See	Also

Mathematical	Functions

Transact-SQL	Reference

STATS_DATE
Returns	the	date	that	the	statistics	for	the	specified	index	were	last	updated.

Syntax
STATS_DATE	(table_id	,	index_id)

Arguments
table_id

Is	the	ID	of	the	table	used.

index_id

Is	the	ID	of	the	index	used.

Return	Types
datetime

Remarks
System	functions	can	be	used	in	the	select	list,	in	the	WHERE	clause,	and
anywhere	an	expression	is	allowed.

Examples
This	example	returns	the	date	of	the	last	time	that	the	statistics	were	updated	for
the	specified	object.

USE	master
GO
SELECT	'Index	Name'	=	i.name,	
			'Statistics	Date'	=	STATS_DATE(i.id,	i.indid)
FROM	sysobjects	o,	sysindexes	i
WHERE	o.name	=	'employee'	AND	o.id	=	i.id

GO

See	Also

System	Functions

WHERE

Transact-SQL	Reference

STDEV
Returns	the	statistical	standard	deviation	of	all	values	in	the	given	expression.

Syntax
STDEV	(expression)

Arguments
expression

Is	a	numeric	expression.	Aggregate	functions	and	subqueries	are	not
permitted.	expression	is	an	expression	of	the	exact	numeric	or	approximate
numeric	data	type	category,	except	for	the	bit	data	type.

Return	Types
float

Remarks
If	STDEV	is	used	on	all	items	in	a	SELECT	statement,	each	value	in	the	result
set	is	included	in	the	calculation.	STDEV	can	be	used	with	numeric	columns
only.	Null	values	are	ignored.

Examples
This	example	returns	the	standard	deviation	for	all	royalty	payments	in	the	titles
table.

USE	pubs
SELECT	STDEV(royalty)
FROM	titles

See	Also

Aggregate	Functions

Transact-SQL	Reference

STDEVP
Returns	the	statistical	standard	deviation	for	the	population	for	all	values	in	the
given	expression.

Syntax
STDEVP	(expression)

Arguments
expression

Is	a	numeric	expression.	Aggregate	functions	and	subqueries	are	not
permitted.	expression	is	an	expression	of	the	exact	numeric	or	approximate
numeric	data	type	category,	except	for	the	bit	data	type.

Return	Types
float

Remarks
If	STDEVP	is	used	on	all	items	in	a	SELECT	statement,	each	value	in	the	result
set	is	included	in	the	calculation.	STDEVP	can	be	used	with	numeric	columns
only.	Null	values	are	ignored.

Examples
This	example	returns	the	standard	deviation	for	the	population	for	all	royalty
values	in	the	titles	table.

USE	pubs
SELECT	STDEVP(royalty)
FROM	titles

See	Also

Aggregate	Functions

Transact-SQL	Reference

STR
Returns	character	data	converted	from	numeric	data.

Syntax
STR	(float_expression	[,	length	[,	decimal]])

Arguments
float_expression

Is	an	expression	of	approximate	numeric	(float)	data	type	with	a	decimal
point.	Do	not	use	a	function	or	subquery	as	the	float_expression	in	the	STR
function.

length

Is	the	total	length,	including	decimal	point,	sign,	digits,	and	spaces.	The
default	is	10.

decimal

Is	the	number	of	places	to	the	right	of	the	decimal	point.

Return	Types
char

Remarks
If	supplied,	the	values	for	length	and	decimal	parameters	to	STR	should	be
positive.	The	number	is	rounded	to	an	integer	by	default	or	if	the	decimal
parameter	is	0.	The	specified	length	should	be	greater	than	or	equal	to	the	part	of
the	number	before	the	decimal	point	plus	the	number's	sign	(if	any).	A	short
float_expression	is	right-justified	in	the	specified	length,	and	a	long
float_expression	is	truncated	to	the	specified	number	of	decimal	places.	For
example,	STR(12,10)	yields	the	result	of	12,	which	is	right-justified	in	the	result
set.	However,	STR(1223,	2)	truncates	the	result	set	to	**.	String	functions	can	be

nested.

Note		To	convert	to	Unicode	data,	use	STR	inside	a	CONVERT	or	CAST
conversion	function.

Examples

A.	Use	STR
This	example	converts	an	expression	consisting	of	five	digits	and	a	decimal
point	to	a	six-position	character	string.	The	fractional	part	of	the	number	is
rounded	to	one	decimal	place.

SELECT	STR(123.45,	6,	1)
GO

Here	is	the	result	set:

	123.5

(1	row(s)	affected)

When	the	expression	exceeds	the	specified	length,	the	string	returns	**	for	the
specified	length.

SELECT	STR(123.45,	2,	2)
GO

Here	is	the	result	set:

--
**

(1	row(s)	affected)

Even	when	numeric	data	is	nested	within	STR,	the	result	is	character	data	with
the	specified	format.

SELECT	STR	(FLOOR	(123.45),	8,	3)
GO

Here	is	the	result	set:

	123.000

(1	row(s)	affected)

B.	Use	the	STR	and	CONVERT	functions
This	example	compares	the	results	of	STR	and	CONVERT.

SELECT	STR(3.147)	AS	'STR',
							STR(3.147,	5,	2)	AS	'2	decimals',
							STR(3.147,	5,	3)	AS	'3	decimals'
GO

Here	is	the	result	set:

STR								2	decimals	3	decimals	
----------	----------	----------	
									3		3.15						3.147						

(1	row(s)	affected)

--	Use	CONVERT.
SELECT	CONVERT(char(1),	3.147)	AS	'CHAR(1)',
							CONVERT(char(3),	3.147)	AS	'CHAR(3)',
							CONVERT(char(5),	3.147)	AS	'CHAR(5)'
GO

Here	is	the	result	set:

CHAR(1)	CHAR(3)	CHAR(5)	

-------	-------	-------	
(null)		(null)		3.147			

(1	row(s)	affected)

See	Also

String	Functions

Transact-SQL	Reference

STUFF
Deletes	a	specified	length	of	characters	and	inserts	another	set	of	characters	at	a
specified	starting	point.

Syntax
STUFF	(character_expression	,	start	,	length	,	character_expression)

Arguments
character_expression

Is	an	expression	of	character	data.	character_expression	can	be	a	constant,
variable,	or	column	of	either	character	or	binary	data.

start

Is	an	integer	value	that	specifies	the	location	to	begin	deletion	and	insertion.
If	start	or	length	is	negative,	a	null	string	is	returned.	If	start	is	longer	than
the	first	character_expression,	a	null	string	is	returned.

length

Is	an	integer	that	specifies	the	number	of	characters	to	delete.	If	length	is
longer	than	the	first	character_expression,	deletion	occurs	up	to	the	last
character	in	the	last	character_expression.

Return	Types
Returns	character	data	if	character_expression	is	one	of	the	supported	character
data	types.	Returns	binary	data	if	character_expression	is	one	of	the	supported
binary	data	types.

Remarks
String	functions	can	be	nested.

Examples

This	example	returns	a	character	string	created	by	deleting	three	characters	from
the	first	string	(abcdef)	starting	at	position	2	(at	b)	and	inserting	the	second	string
at	the	deletion	point.

SELECT	STUFF('abcdef',	2,	3,	'ijklmn')
GO

Here	is	the	result	set:

aijklmnef	

(1	row(s)	affected)

See	Also

Data	Types

String	Functions

Transact-SQL	Reference

SUBSTRING
Returns	part	of	a	character,	binary,	text,	or	image	expression.	For	more
information	about	the	valid	Microsoft®	SQL	Server™	data	types	that	can	be
used	with	this	function,	see	Data	Types.

Syntax
SUBSTRING	(expression	,	start	,	length)

Arguments
expression

Is	a	character	string,	binary	string,	text,	image,	a	column,	or	an	expression
that	includes	a	column.	Do	not	use	expressions	that	include	aggregate
functions.

start

Is	an	integer	that	specifies	where	the	substring	begins.

length

Is	an	integer	that	specifies	the	length	of	the	substring	(the	number	of
characters	or	bytes	to	return).

Note		Because	start	and	length	specify	the	number	of	bytes	when	SUBSTRING
is	used	on	text	data,	DBCS	data,	such	as	Kanji,	may	result	in	split	characters	at
the	beginning	or	end	of	the	result.	This	behavior	is	consistent	with	the	way	in
which	READTEXT	handles	DBCS.	However,	because	of	the	occasional	strange
result,	it	is	advisable	to	use	ntext	instead	of	text	for	DBCS	characters.

Return	Types
Returns	character	data	if	expression	is	one	of	the	supported	character	data	types.
Returns	binary	data	if	expression	is	one	of	the	supported	binary	data	types.

The	returned	string	is	the	same	type	as	the	given	expression	with	the	exceptions
shown	in	the	table.

Given	expression Return	type
text varchar
image varbinary
ntext nvarchar

Remarks
Offsets	(start	and	length)	using	the	ntext,	char,	or	varchar	data	types	must	be
specified	in	number	of	characters.	Offsets	using	the	text,	image,	binary,	or
varbinary	data	types	must	be	specified	in	number	of	bytes.

Note		Compatibility	levels	can	affect	return	values.	For	more	information	about
compatibility	levels,	see	sp_dbcmptlevel.

Examples

A.	Use	SUBSTRING	with	a	character	string
This	example	shows	how	to	return	only	a	portion	of	a	character	string.	From	the
authors	table,	this	query	returns	the	last	name	in	one	column	with	only	the	first
initial	in	the	second	column.

USE	pubs
SELECT	au_lname,	SUBSTRING(au_fname,	1,	1)
FROM	authors
ORDER	BY	au_lname

Here	is	the	result	set:

au_lname																																			
--	-	
Bennet																																			A	
Blotchet-Halls																											R	
Carson																																			C	
DeFrance																																	M	
del	Castillo																													I	
...

Yokomoto																																	A	

(23	row(s)	affected)

Here	is	how	to	display	the	second,	third,	and	fourth	characters	of	the	string
constant	abcdef.

SELECT	x	=	SUBSTRING('abcdef',	2,	3)

Here	is	the	result	set:

x

bcd

(1	row(s)	affected)

B.	Use	SUBSTRING	with	text,	ntext,	and	image	data
This	example	shows	how	to	return	the	first	200	characters	from	each	of	a	text
and	image	data	column	in	the	publishers	table	of	the	pubs	database.	text	data	is
returned	as	varchar,	and	image	data	is	returned	as	varbinary.

USE	pubs
SELECT	pub_id,	SUBSTRING(logo,	1,	10)	AS	logo,	
			SUBSTRING(pr_info,	1,	10)	AS	pr_info
FROM	pub_info
WHERE	pub_id	=	'1756'

Here	is	the	result	set:

pub_id	logo																			pr_info				
------	----------------------	----------	
1756			0x474946383961E3002500	This	is	sa

(1	row(s)	affected)

This	example	shows	the	effect	of	SUBSTRING	on	both	text	and	ntext	data.
First,	this	example	creates	a	new	table	in	the	pubs	database	named	npr_info.
Second,	the	example	creates	the	pr_info	column	in	the	npr_info	table	from	the
first	80	characters	of	the	pub_info.pr_info	column	and	adds	an	ü	as	the	first
character.	Lastly,	an	INNER	JOIN	retrieves	all	publisher	identification	numbers
and	the	SUBSTRING	of	both	the	text	and	ntext	publisher	information	columns.

IF	EXISTS	(SELECT	table_name	FROM	INFORMATION_SCHEMA.TABLES	
						WHERE	table_name	=	'npub_info')
			DROP	TABLE	npub_info
GO
--	Create	npub_info	table	in	pubs	database.	Borrowed	from	instpubs.sql.
USE	pubs
GO
CREATE	TABLE	npub_info
(
	pub_id									char(4)											NOT	NULL
									REFERENCES	publishers(pub_id)
									CONSTRAINT	UPKCL_npubinfo	PRIMARY	KEY	CLUSTERED,
	pr_info								ntext													NULL
)

GO

--	Fill	the	pr_info	column	in	npub_info	with	international	data.
RAISERROR('Now	at	the	inserts	to	pub_info...',0,1)

GO

INSERT	npub_info	VALUES('0736',	N'üThis	is	sample	text	data	for	New	Moon	Books,	publisher	0736	in	the	pubs	database')
INSERT	npub_info	values('0877',	N'üThis	is	sample	text	data	for	Binnet	&	Hardley,	publisher	0877	in	the	pubs	databa')
INSERT	npub_info	values('1389',	N'üThis	is	sample	text	data	for	Algodata	Infosystems,	publisher	1389	in	the	pubs	da')
INSERT	npub_info	values('9952',	N'üThis	is	sample	text	data	for	Scootney	Books,	publisher	9952	in	the	pubs	database')
INSERT	npub_info	values('1622',	N'üThis	is	sample	text	data	for	Five	Lakes	Publishing,	publisher	1622	in	the	pubs	d')

INSERT	npub_info	values('1756',	N'üThis	is	sample	text	data	for	Ramona	Publishers,	publisher	1756	in	the	pubs	datab')
INSERT	npub_info	values('9901',	N'üThis	is	sample	text	data	for	GGG&G,	publisher	9901	in	the	pubs	database.	GGG&G	i')
INSERT	npub_info	values('9999',	N'üThis	is	sample	text	data	for	Lucerne	Publishing,	publisher	9999	in	the	pubs	data')
GO
--	Join	between	npub_info	and	pub_info	on	pub_id.
SELECT	pr.pub_id,	SUBSTRING(pr.pr_info,	1,	35)	AS	pr_info,
			SUBSTRING(npr.pr_info,	1,	35)	AS	npr_info
FROM	pub_info	pr	INNER	JOIN	npub_info	npr
			ON	pr.pub_id	=	npr.pub_id
ORDER	BY	pr.pub_id	ASC

See	Also

String	Functions

Transact-SQL	Reference

SUM
Returns	the	sum	of	all	the	values,	or	only	the	DISTINCT	values,	in	the
expression.	SUM	can	be	used	with	numeric	columns	only.	Null	values	are
ignored.

Syntax
SUM	([ALL	|	DISTINCT]	expression)

Arguments
ALL

Applies	the	aggregate	function	to	all	values.	ALL	is	the	default.

DISTINCT

Specifies	that	SUM	return	the	sum	of	unique	values.

expression

Is	a	constant,	column,	or	function,	and	any	combination	of	arithmetic,
bitwise,	and	string	operators.	expression	is	an	expression	of	the	exact
numeric	or	approximate	numeric	data	type	category,	except	for	the	bit	data
type.	Aggregate	functions	and	subqueries	are	not	permitted.

Return	Types
Returns	the	summation	of	all	expression	values	in	the	most	precise	expression
data	type.

Expression	result Return	type
integer	category int
decimal	category	(p,	s) decimal(38,	s)
money	and	smallmoney	category money
float	and	real	category float

	

IMPORTANT		Distinct	aggregates,	for	example	AVG(DISTINCT	column_name),
COUNT(DISTINCT	column_name),	MAX(DISTINCT	column_name),
MIN(DISTINCT	column_name),	and	SUM(DISTINCT	column_name),	are	not
supported	when	using	CUBE	or	ROLLUP.	If	used,	Microsoft®	SQL	Server™
returns	an	error	message	and	cancels	the	query.

Examples

A.	Use	SUM	for	aggregates	and	row	aggregates
These	examples	show	the	differences	between	aggregate	functions	and	row
aggregate	functions.	The	first	shows	aggregate	functions	giving	summary	data
only,	and	the	second	shows	row	aggregate	functions	giving	detail	and	summary
data.

USE	pubs
GO
--	Aggregate	functions
SELECT	type,	SUM(price),	SUM(advance)
FROM	titles
WHERE	type	LIKE	'%cook'
GROUP	BY	type
ORDER	BY	type
GO

Here	is	the	result	set:

type																																																															
------------	--------------------------	--------------------------	
mod_cook					22.98																						15,000.00																		
trad_cook				47.89																						19,000.00																		

(2	row(s)	affected)

USE	pubs
GO

--	Row	aggregates
SELECT	type,	price,	advance
FROM	titles
WHERE	type	LIKE	'%cook'
ORDER	BY	type
COMPUTE	SUM(price),	SUM(advance)	BY	type

Here	is	the	result	set:

type									price																						advance																				
------------	--------------------------	--------------------------	
mod_cook					19.99																						0.00																							
mod_cook					2.99																							15,000.00																		

													sum
													==========================
													22.98																						
																																								sum
																																								==========================
																																								15,000.00																		

type									price																						advance																				
------------	--------------------------	--------------------------	
trad_cook				20.95																						7,000.00																			
trad_cook				11.95																						4,000.00																			
trad_cook				14.99																						8,000.00																			

													sum
													==========================
													47.89																						
																																								sum
																																								==========================
																																								19,000.00																	

(7	row(s)	affected)

B.	Calculate	group	totals	with	more	than	one	column
This	example	calculates	the	sum	of	the	prices	and	advances	for	each	type	of
book.

USE	pubs
GO
SELECT	type,	SUM(price),	SUM(advance)
FROM	titles
GROUP	BY	type
ORDER	BY	type
GO

Here	is	the	result	set:

type																																																															
------------	--------------------------	--------------------------	
business					54.92																						25,125.00																		
mod_cook					22.98																						15,000.00																		
popular_comp	42.95																						15,000.00																		
psychology			67.52																						21,275.00																		
trad_cook				47.89																						19,000.00																		
UNDECIDED				(null)																					(null)																					

(6	row(s)	affected)

See	Also

Aggregate	Functions

Transact-SQL	Reference

SUSER_ID
Returns	the	user's	login	identification	number.

IMPORTANT		SUSER_ID	always	returns	NULL	when	used	in	Microsoft®	SQL
Server™	2000.	This	system	built-in	function	is	included	only	for	backward
compatibility.	Use	SUSER_SID	instead.

Syntax
SUSER_ID	(['login'])

Arguments
'login'

Is	the	user's	login	identification	name.	login,	which	is	optional,	is	nchar.	If
login	is	specified	as	char,	it	is	implicitly	converted	to	nchar.	login	can	be
any	SQL	Server	login	or	Microsoft	Windows	NT®	user	or	group	that	has
permission	to	connect	to	SQL	Server.	If	login	is	not	specified,	the	login
identification	number	for	the	current	user	is	returned.

Return	Types
int

Remarks
In	SQL	Server	7.0,	the	security	identification	number	(SID)	replaces	the	server
user	identification	number	(SUID).

SUSER_SID	returns	a	SUID	only	for	a	login	that	has	an	entry	in	the	syslogins
system	table.

System	functions	can	be	used	in	the	select	list,	in	the	WHERE	clause,	and
anywhere	an	expression	is	allowed,	and	must	always	be	followed	by	parentheses
(even	if	no	parameter	is	specified).

Examples
This	example	returns	the	login	identification	number	for	the	sa	login.

SELECT	SUSER_ID('sa')

See	Also

Managing	Security

System	Functions

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

SUSER_NAME
Returns	the	user's	login	identification	name.

IMPORTANT		SUSER_NAME	always	returns	NULL	when	used	in	Microsoft®
SQL	Server™	2000.	This	system	built-in	function	is	included	only	for	backward
compatibility.	Use	SUSER_SNAME	instead.

Syntax
SUSER_NAME	([server_user_id])

Arguments
server_user_id

Is	the	user's	login	identification	number.	server_user_id,	which	is	optional,	is
int.	server_user_id	can	be	the	login	identification	number	of	any	SQL	Server
login	or	Microsoft	Windows	NT®	user	or	group	that	has	permission	to
connect	to	SQL	Server.	If	server_user_id	is	not	specified,	the	login
identification	name	for	the	current	user	is	returned.

Return	Types
nchar

Remarks
In	SQL	Server	7.0,	the	security	identification	number	(SID)	replaces	the	server
user	identification	number	(SUID).

SUSER_NAME	returns	a	login	name	only	for	a	login	that	has	an	entry	in	the
syslogins	system	table.

System	functions	can	be	used	in	the	select	list,	in	the	WHERE	clause,	and
anywhere	an	expression	is	allowed,	and	must	always	be	followed	by	parentheses
(even	if	no	parameter	is	specified).

Examples
This	example	returns	the	user's	login	identification	name	for	a	login
identification	number	of	1.

SELECT	SUSER_NAME(1)

See	Also

Managing	Security

System	Functions

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

SUSER_SID
Returns	the	security	identification	number	(SID)	for	the	user's	login	name.

Syntax
SUSER_SID	(['login'])

Arguments
'login'

Is	the	user's	login	name.	login	is	sysname.	login,	which	is	optional,	can	be	a
Microsoft®	SQL	Server™	login	or	Microsoft	Windows	NT®	user	or	group.
If	login	is	not	specified,	information	about	the	current	user	is	returned.

Return	Types
varbinary(85)

Remarks
When	specifying	a	SQL	Server	login	using	SQL	Server	Authentication,	the	user
must	be	granted	permission	to	connect	to	SQL	Server.	Use	sp_addlogin	or	SQL
Server	Enterprise	Manager	to	grant	this	permission.	However,	when	specifying	a
Windows	NT	user	or	group	using	Windows	Authentication,	this	user	or	group
does	not	have	to	be	granted	permission	to	connect	to	SQL	Server.

SUSER_SID	can	be	used	as	a	DEFAULT	constraint	in	either	ALTER	TABLE	or
CREATE	TABLE.

System	functions	can	be	used	in	the	select	list,	in	the	WHERE	clause,	and
anywhere	an	expression	is	allowed,	and	must	always	be	followed	by	parentheses
(even	if	no	parameter	is	specified).

Examples

A.	Use	SUSER_SID

This	example	returns	the	security	identification	number	for	the	SQL	Server	sa
login.

SELECT	SUSER_SID('sa')

B.	Use	SUSER_SID	with	a	Windows	NT	username
This	example	returns	the	security	identification	number	for	the	Windows	NT
user	London\Workstation1.

SELECT	SUSER_SID('London\Workstation1')

C.	Use	SUSER_SID	as	a	DEFAULT	constraint
This	example	uses	SUSER_SID	as	a	DEFAULT	constraint	in	a	CREATE
TABLE	statement.

USE	pubs
GO
CREATE	TABLE	sid_example
(
login_sid			varbinary(85)	DEFAULT	SUSER_SID(),
login_name		varchar(30)	DEFAULT	SYSTEM_USER,
login_dept		varchar(10)	DEFAULT	'SALES',
login_date		datetime	DEFAULT	GETDATE()
)	
GO
INSERT	sid_example	DEFAULT	VALUES
GO

See	Also

ALTER	TABLE

binary	and	varbinary

CREATE	TABLE

Managing	Security

JavaScript:hhobj_1.Click()

sp_addlogin

sp_grantlogin

System	Functions

Transact-SQL	Reference

SUSER_SNAME
Returns	the	login	identification	name	from	a	user's	security	identification
number	(SID).

Syntax
SUSER_SNAME	([server_user_sid])

Arguments
server_user_sid

Is	the	user	security	identification	number.	server_user_sid,	which	is	optional,
is	varbinary(85).	server_user_sid	can	be	the	security	identification	number
of	any	Microsoft®	SQL	Server™	login	or	Microsoft	Windows	NT®	user	or
group.	If	server_user_sid	is	not	specified,	information	about	the	current	user
is	returned.

Return	Types
nvarchar(256)

Remarks
When	specifying	a	SQL	Server	login	using	SQL	Server	Authentication,	the	user
must	be	granted	permission	to	connect	to	SQL	Server.	Use	sp_addlogin	or	SQL
Server	Enterprise	Manager	to	grant	this	permission.	However,	when	specifying	a
Windows	NT	user	or	group	using	Windows	Authentication,	this	user	or	group
does	not	have	to	be	granted	permission	to	connect	to	SQL	Server.

SUSER_SNAME	can	be	used	as	a	DEFAULT	constraint	in	either	ALTER
TABLE	or	CREATE	TABLE.

System	functions	can	be	used	in	the	select	list,	in	the	WHERE	clause,	and
anywhere	an	expression	is	allowed,	and	must	always	be	followed	by	parentheses
(even	if	no	parameter	is	specified).

Examples

A.	Use	SUSER_SNAME
This	example	returns	the	login	name	for	the	security	identification	number	with
a	value	of	0x01.

SELECT	SUSER_SNAME(0x01)

B.	Use	SUSER_SNAME	with	a	Windows	NT	user's	security
identification	number
This	example	returns	the	login	name	for	the	Windows	NT	user's	security
identification	number,	obtained	by	using	SUSER_SID.

SELECT	SUSER_SNAME(0x010500000000000515000000a065cf7e784b9b5fe77c87705a2e0000)

C.	Use	SUSER_SNAME	as	a	DEFAULT	constraint
This	example	uses	SUSER_SNAME	as	a	DEFAULT	constraint	in	a	CREATE
TABLE	statement.

USE	pubs
GO
CREATE	TABLE	sname_example
(
login_sname	sysname	DEFAULT	SUSER_SNAME(),
employee_id	uniqueidentifier	DEFAULT	NEWID(),
login_date		datetime	DEFAULT	GETDATE()
)	
GO
INSERT	sname_example	DEFAULT	VALUES
GO

See	Also

ALTER	TABLE

binary	and	varbinary

CREATE	TABLE

Managing	Security

sp_addlogin

sp_grantlogin

System	Functions

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

System	Stored	Procedures
Many	administrative	and	informational	activities	in	Microsoft®	SQL	Server™
can	be	performed	through	system	stored	procedures.	The	system	stored
procedures	are	grouped	into	these	categories.

Category Description
Active	Directory	Procedures Used	to	register	instances	of	SQL

Server	and	SQL	Server	databases	in
Microsoft	Windows®	2000	Active
Directory™.

Catalog	Procedures Implements	ODBC	data	dictionary
functions	and	isolates	ODBC
applications	from	changes	to
underlying	system	tables.

Cursor	Procedures Implements	cursor	variable
functionality.

Database	Maintenance	Plan
Procedures

Used	to	set	up	core	maintenance	tasks
necessary	to	ensure	database
performance.

Distributed	Queries	Procedures Used	to	implement	and	manage
Distributed	Queries.

Full-Text	Search	Procedures Used	to	implement	and	query	full-text
indexes.

Log	Shipping	Procedures Used	to	configure	and	manage	log
shipping.

OLE	Automation	Procedures Allows	standard	OLE	automation
objects	to	be	used	within	a	standard
Transact-SQL	batch.

Replication	Procedures Used	to	manage	replication.
Security	Procedures Used	to	manage	security.
SQL	Mail	Procedures Used	to	perform	e-mail	operations	from

within	SQL	Server.
SQL	Profiler	Procedures Used	by	SQL	Profiler	to	monitor

performance	and	activity.
SQL	Server	Agent	Procedures Used	by	SQL	Server	Agent	to	manage

scheduled	and	event-driven	activities.
System	Procedures Used	for	general	maintenance	of	SQL

Server.
Web	Assistant	Procedures Used	by	the	Web	Assistant.
XML	Procedures Used	for	Extensible	Markup	Language

(XML)	text	management.
General	Extended	Procedures Provides	an	interface	from	SQL	Server

to	external	programs	for	various
maintenance	activities.

Note		Unless	specifically	documented	otherwise,	all	system	stored	procedures
return	a	value	of	0,	which	indicates	success.	To	indicate	failure,	a	nonzero	value
is	returned.

Active	Directory	Procedures
sp_ActiveDirectory_Obj sp_ActiveDirectory_SCP

Catalog	Procedures
sp_column_privileges sp_special_columns
sp_columns sp_sproc_columns
sp_databases sp_statistics
sp_fkeys sp_stored_procedures
sp_pkeys sp_table_privileges
sp_server_info sp_tables

Cursor	Procedures
sp_cursor_list sp_describe_cursor_columns
sp_describe_cursor sp_describe_cursor_tables

Database	Maintenance	Plan	Procedures
sp_add_maintenance_plan sp_delete_maintenance_plan_db
sp_add_maintenance_plan_db sp_delete_maintenance_plan_job
sp_add_maintenance_plan_job sp_help_maintenance_plan
sp_delete_maintenance_plan 	

Distributed	Queries	Procedures
sp_addlinkedserver sp_indexes
sp_addlinkedsrvlogin sp_linkedservers
sp_catalogs sp_primarykeys
sp_column_privileges_ex sp_serveroption
sp_columns_ex sp_table_privileges_ex
sp_droplinkedsrvlogin sp_tables_ex
sp_foreignkeys 	

Full-Text	Search	Procedures
sp_fulltext_catalog sp_help_fulltext_catalogs_cursor
sp_fulltext_column sp_help_fulltext_columns
sp_fulltext_database sp_help_fulltext_columns_cursor
sp_fulltext_service sp_help_fulltext_tables
sp_fulltext_table sp_help_fulltext_tables_cursor
sp_help_fulltext_catalogs 	

Log	Shipping	Procedures
sp_add_log_shipping_database sp_delete_log_shipping_database
sp_add_log_shipping_plan sp_delete_log_shipping_plan
sp_add_log_shipping_plan_database sp_delete_log_shipping_plan_database
sp_add_log_shipping_primary sp_delete_log_shipping_primary
sp_add_log_shipping_secondary sp_delete_log_shipping_secondary
sp_can_tlog_be_applied sp_get_log_shipping_monitor_info

sp_change_monitor_role sp_remove_log_shipping_monitor
sp_change_primary_role sp_resolve_logins
sp_change_secondary_role sp_update_log_shipping_monitor_info
sp_create_log_shipping_monitor_account sp_update_log_shipping_plan
sp_define_log_shipping_monitor sp_update_log_shipping_plan_database

OLE	Automation	Extended	Stored	Procedures
sp_OACreate sp_OAMethod
sp_OADestroy sp_OASetProperty
sp_OAGetErrorInfo sp_OAStop
sp_OAGetProperty Object	Hierarchy	Syntax

Replication	Procedures
sp_add_agent_parameter sp_enableagentoffload
sp_add_agent_profile sp_enumcustomresolvers
sp_addarticle sp_enumdsn
sp_adddistpublisher sp_enumfullsubscribers
sp_adddistributiondb sp_expired_subscription_cleanup
sp_adddistributor sp_generatefilters
sp_addmergealternatepublisher sp_getagentoffloadinfo
sp_addmergearticle sp_getmergedeletetype
sp_addmergefilter sp_get_distributor
sp_addmergepublication sp_getqueuedrows
sp_addmergepullsubscription sp_getsubscriptiondtspackagename
sp_addmergepullsubscription_agent sp_grant_publication_access
sp_addmergesubscription sp_help_agent_default
sp_addpublication sp_help_agent_parameter
sp_addpublication_snapshot sp_help_agent_profile
sp_addpublisher70 sp_helparticle
sp_addpullsubscription sp_helparticlecolumns
sp_addpullsubscription_agent sp_helparticledts

sp_addscriptexec sp_helpdistpublisher
sp_addsubscriber sp_helpdistributiondb
sp_addsubscriber_schedule sp_helpdistributor
sp_addsubscription sp_helpmergealternatepublisher
sp_addsynctriggers sp_helpmergearticle
sp_addtabletocontents sp_helpmergearticlecolumn
sp_adjustpublisheridentityrange sp_helpmergearticleconflicts
sp_article_validation sp_helpmergeconflictrows
sp_articlecolumn sp_helpmergedeleteconflictrows
sp_articlefilter sp_helpmergefilter
sp_articlesynctranprocs sp_helpmergepublication
sp_articleview sp_helpmergepullsubscription
sp_attachsubscription sp_helpmergesubscription
sp_browsesnapshotfolder sp_helppublication
sp_browsemergesnapshotfolder sp_help_publication_access
sp_browsereplcmds sp_helppullsubscription
sp_change_agent_parameter sp_helpreplfailovermode
sp_change_agent_profile sp_helpreplicationdboption
sp_changearticle sp_helpreplicationoption
sp_changedistpublisher sp_helpsubscriberinfo
sp_changedistributiondb sp_helpsubscription
sp_changedistributor_password sp_ivindexhasnullcols
sp_changedistributor_property sp_helpsubscription_properties
sp_changemergearticle sp_link_publication
sp_changemergefilter sp_marksubscriptionvalidation
sp_changemergepublication sp_mergearticlecolumn
sp_changemergepullsubscription sp_mergecleanupmetadata
sp_changemergesubscription sp_mergedummyupdate
sp_changepublication sp_mergesubscription_cleanup
sp_changesubscriber sp_publication_validation
sp_changesubscriber_schedule sp_refreshsubscriptions
sp_changesubscriptiondtsinfo sp_reinitmergepullsubscription
sp_changesubstatus sp_reinitmergesubscription

sp_change_subscription_properties sp_reinitpullsubscription

sp_check_for_sync_trigger sp_reinitsubscription
sp_copymergesnapshot sp_removedbreplication
sp_copysnapshot sp_repladdcolumn
sp_copysubscription sp_replcmds
sp_deletemergeconflictrow sp_replcounters
sp_disableagentoffload sp_repldone
sp_drop_agent_parameter sp_repldropcolumn
sp_drop_agent_profile sp_replflush
sp_droparticle sp_replicationdboption
sp_dropanonymouseagent sp_replication_agent_checkup
sp_dropdistpublisher sp_replqueuemonitor
sp_dropdistributiondb sp_replsetoriginator
sp_dropmergealternatepublisher sp_replshowcmds
sp_dropdistributor sp_repltrans
sp_dropmergearticle sp_restoredbreplication
sp_dropmergefilter sp_revoke_publication_access
	 sp_scriptsubconflicttable
sp_dropmergepublication sp_script_synctran_commands
sp_dropmergepullsubscription sp_setreplfailovermode
	 sp_showrowreplicainfo
sp_dropmergesubscription sp_subscription_cleanup
sp_droppublication sp_table_validation
sp_droppullsubscription sp_update_agent_profile
sp_dropsubscriber sp_validatemergepublication
sp_dropsubscription sp_validatemergesubscription
sp_dsninfo sp_vupgrade_replication
sp_dumpparamcmd 	

Security	Procedures
sp_addalias sp_droprolemember
sp_addapprole sp_dropserver

sp_addgroup sp_dropsrvrolemember
sp_addlinkedsrvlogin sp_dropuser
sp_addlogin sp_grantdbaccess
sp_addremotelogin sp_grantlogin
sp_addrole sp_helpdbfixedrole
sp_addrolemember sp_helpgroup
sp_addserver sp_helplinkedsrvlogin
sp_addsrvrolemember sp_helplogins
sp_adduser sp_helpntgroup
sp_approlepassword sp_helpremotelogin
sp_changedbowner sp_helprole
sp_changegroup sp_helprolemember
sp_changeobjectowner sp_helprotect
sp_change_users_login sp_helpsrvrole
sp_dbfixedrolepermission sp_helpsrvrolemember
sp_defaultdb sp_helpuser
sp_defaultlanguage sp_MShasdbaccess
sp_denylogin sp_password
sp_dropalias sp_remoteoption
sp_dropapprole sp_revokedbaccess
sp_dropgroup sp_revokelogin
sp_droplinkedsrvlogin sp_setapprole
sp_droplogin sp_srvrolepermission
sp_dropremotelogin sp_validatelogins
sp_droprole 	

SQL	Mail	Procedures
sp_processmail xp_sendmail
xp_deletemail xp_startmail
xp_findnextmsg xp_stopmail
xp_readmail 	

SQL	Profiler	Procedures
sp_trace_create sp_trace_setfilter
sp_trace_generateevent sp_trace_setstatus
sp_trace_setevent 	

SQL	Server	Agent	Procedures
sp_add_alert sp_help_jobhistory
sp_add_category sp_help_jobschedule
sp_add_job sp_help_jobserver
sp_add_jobschedule sp_help_jobstep
sp_add_jobserver sp_help_notification
sp_add_jobstep sp_help_operator
sp_add_notification sp_help_targetserver
sp_add_operator sp_help_targetservergroup
sp_add_targetservergroup sp_helptask
sp_add_targetsvrgrp_member sp_manage_jobs_by_login
sp_addtask sp_msx_defect
sp_apply_job_to_targets sp_msx_enlist
sp_delete_alert sp_post_msx_operation
sp_delete_category sp_purgehistory
sp_delete_job sp_purge_jobhistory
sp_delete_jobschedule sp_reassigntask
sp_delete_jobserver sp_remove_job_from_targets
sp_delete_jobstep sp_resync_targetserver
sp_delete_notification sp_start_job
sp_delete_operator sp_stop_job
sp_delete_targetserver sp_update_alert
sp_delete_targetservergroup sp_update_category
sp_delete_targetsvrgrp_member sp_update_job
sp_droptask sp_update_jobschedule
sp_help_alert sp_update_jobstep
sp_help_category sp_update_notification

sp_help_downloadlist sp_update_operator
sp_helphistory sp_update_targetservergroup
sp_help_job sp_updatetask
	 xp_sqlagent_proxy_account

System	Procedures
sp_add_data_file_recover_suspect_db sp_helpconstraint
sp_addextendedproc sp_helpdb
sp_addextendedproperty sp_helpdevice
sp_add_log_file_recover_suspect_db sp_helpextendedproc
sp_addmessage sp_helpfile
sp_addtype sp_helpfilegroup
sp_addumpdevice sp_helpindex
sp_altermessage sp_helplanguage
sp_autostats sp_helpserver
sp_attach_db sp_helpsort
sp_attach_single_file_db sp_helpstats
sp_bindefault sp_helptext
sp_bindrule sp_helptrigger
sp_bindsession sp_indexoption
sp_certify_removable sp_invalidate_textptr
sp_configure sp_lock
sp_create_removable sp_monitor
sp_createstats sp_procoption
sp_cycle_errorlog sp_recompile
sp_datatype_info sp_refreshview
sp_dbcmptlevel sp_releaseapplock
sp_dboption sp_rename
sp_dbremove sp_renamedb
sp_delete_backuphistory sp_resetstatus
sp_depends sp_serveroption
sp_detach_db sp_setnetname

sp_dropdevice sp_settriggerorder
sp_dropextendedproc sp_spaceused
sp_dropextendedproperty sp_tableoption
sp_dropmessage sp_unbindefault
sp_droptype sp_unbindrule
sp_executesql sp_updateextendedproperty
sp_getapplock sp_updatestats
sp_getbindtoken sp_validname
sp_help sp_who

Web	Assistant	Procedures
sp_dropwebtask sp_makewebtask
sp_enumcodepages sp_runwebtask

XML	Procedures
sp_xml_preparedocument sp_xml_removedocument

General	Extended	Procedures
xp_cmdshell xp_logininfo
xp_enumgroups xp_msver
xp_findnextmsg xp_revokelogin
xp_grantlogin xp_sprintf
xp_logevent xp_sqlmaint
xp_loginconfig xp_sscanf

API	System	Stored	Procedures
Users	running	SQL	Profiler	against	ADO,	OLE	DB,	ODBC,	and	DB-Library
applications	may	notice	the	use	of	system	stored	procedures	that	are	not	covered

in	the	Transact-SQL	Reference.	These	stored	procedures	are	used	by	the
Microsoft	OLE	DB	Provider	for	SQL	Server,	the	SQL	Server	ODBC	driver,	and
the	DB-Library	dynamic-link	library	(DLL)	to	implement	the	functionality	of	a
database	API.	These	stored	procedures	are	simply	the	mechanism	the	provider	or
drivers	use	to	communicate	user	requests	to	SQL	Server.	They	are	intended	only
for	the	internal	use	of	the	OLE	DB	Provider	for	SQL	Server,	the	SQL	Server
ODBC	driver,	and	the	DB-Library	DLL.	Calling	them	explicitly	from	an	SQL
Server	application	is	not	supported.

The	complete	functionality	from	these	stored	procedures	is	made	available	to
SQL	Server	applications	through	the	API	functions	they	support.	For	example,
the	cursor	functionality	of	the	sp_cursor	system	stored	procedures	is	made
available	to	OLE	DB	applications	through	the	OLE	DB	API	cursor	properties
and	methods,	to	ODBC	applications	through	the	ODBC	cursor	attributes	and
functions,	and	to	DB-Library	applications	through	the	DB-Library	Cursor
Library.

These	system	stored	procedures	support	the	cursor	functionality	of	ADO,	OLE
DB,	ODBC,	and	the	DB-Library	Cursor	Library:

sp_cursor sp_cursorclose sp_cursorexecute
sp_cursorfetch sp_cursoropen sp_cursoroption
sp_cursorprepare sp_cursorunprepare 	

These	system	stored	procedures	support	the	prepare/execute	model	of	executing
Transact-SQL	statements	in	ADO,	OLE	DB,	and	ODBC:

sp_execute sp_prepare sp_unprepare

The	sp_createorphan	and	sp_droporphans	stored	procedures	are	used	for
ODBC	ntext,	text,	and	image	processing.

The	sp_reset_connection	stored	procedure	is	used	by	SQL	Server	to	support
remote	stored	procedure	calls	in	a	transaction.

The	sp_sdidebug	stored	procedure	is	used	by	SQL	Server	for	debugging
Transact-SQL	statements.

Transact-SQL	Reference

Object	Hierarchy	Syntax
The	propertyname	parameter	of	sp_OAGetProperty	and	sp_OASetProperty
and	the	methodname	of	sp_OAMethod	support	an	object	hierarchy	syntax
similar	to	Microsoft®	Visual	Basic®.	When	this	special	syntax	is	used,	these
parameters	have	the	general	form:

Syntax
'TraversedObject.PropertyOrMethod'

Arguments
TraversedObject

Is	an	OLE	object	in	the	hierarchy	under	the	objecttoken	specified	in	the
stored	procedure.	Use	Visual	Basic	syntax	to	specify	a	series	of	collections,
object	properties,	and	methods	that	return	objects.	Each	object	specifier	in
the	series	must	be	separated	by	a	period	(.).

An	item	in	the	series	can	be	the	name	of	a	collection.	Use	this	syntax	to
specify	a	collection:

Collection("item")

The	double	quotation	marks	(")	around	item	are	required.	The	Visual	Basic
exclamation	point	(!)	syntax	for	collections	is	not	supported.

PropertyOrMethod

Is	the	name	of	a	property	or	method	of	the	TraversedObject.

To	specify	all	index	or	method	parameters	by	using	sp_OAGetProperty,
sp_OASetProperty,	or	sp_OAMethod	parameters	(including	support	for
sp_OAMethod	output	parameters),	use	this	syntax:

PropertyOrMethod

To	specify	all	index	or	method	parameters	inside	the	parentheses	(causing	all
index	or	method	parameters	of	sp_OAGetProperty,	sp_OASetProperty,	or
sp_OAMethod	to	be	ignored)	use	this	syntax:

PropertyOrMethod([ParameterName	:=]	"parameter"	[,...])

The	double	quotation	marks	(")	around	each	parameter	are	required.	All
named	parameters	must	be	specified	after	all	positional	parameters	are
specified.

Remarks
If	TraversedObject	is	not	specified,	PropertyOrMethod	is	required.

If	PropertyOrMethod	is	not	specified,	the	TraversedObject	is	returned	as	an
object	token	output	parameter	from	the	OLE	Automation	stored	procedure.	If
PropertyOrMethod	is	specified,	the	property	or	method	of	the	TraversedObject
is	called,	and	the	property	value	or	method	return	value	is	returned	as	an	output
parameter	from	the	OLE	Automation	stored	procedure.

If	any	item	in	the	TraversedObject	list	does	not	return	an	OLE	object,	an	error
occurs.

For	more	information	about	Visual	Basic	OLE	object	syntax,	see	the	Visual
Basic	documentation.

For	more	information	about	HRESULT	Return	Codes,	see	HRESULT	Return
Codes	in	the	sp_OACreate	section.

Examples
These	are	examples	of	object	hierarchy	syntax	using	a	SQL-DMO	SQLServer
object.

--	Call	the	Connect	method	of	the	SQLServer	object.
EXEC	@hr	=	sp_OAMethod	@object,
				'Connect("my_server",	"my_login",	"my_password")'

--	Get	the	pubs..authors	Table	object.
EXEC	@hr	=	sp_OAGetProperty	@object,
				'Databases("pubs").Tables("authors")',
				@table	OUT

--	Get	the	Rows	property	of	the	pubs..authors	table.
EXEC	@hr	=	sp_OAGetProperty	@object,
				'Databases("pubs").Tables("authors").Rows',
				@rows	OUT

--	Call	the	CheckTable	method	of	the	pubs..authors	table.
EXEC	@hr	=	sp_OAMethod	@object,
				'Databases("pubs").Tables("authors").CheckTable',
				@checkoutput	OUT

See	Also

Data	Type	Conversions	Using	OLE	Automation	Stored	Procedures

OLE	Automation	Sample	Script

How	to	create	an	OLE	Automation	object	(Transact-SQL)

System	Stored	Procedures	(OLE	Automation	Extended	Stored	Procedures)

How	to	debug	a	custom	OLE	Automation	server	(Transact-SQL)

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Transact-SQL	Reference

sp_ActiveDirectory_Obj
Controls	the	registration	of	a	Microsoft®	SQL	Server™	database	in	the
Microsoft	Windows®	2000	Active	Directory™.

Syntax
sp_ActiveDirectory_Obj	[@Action	=]	N'action'

				[,	[@ObjType	=]	N'database']

				,	[@ObjName	=]	N'database_name'

Arguments
[@Action	=]	N'action'

Specifies	whether	the	Active	Directory	object	registering	the	SQL	Server
database	is	to	be	created,	updated,	or	deleted.	action	is	nvarchar(20)	with	a
default	of	N'create'.

Value Description
create Registers	the	SQL	Server	database	in	the	Active

Directory	by	creating	an	MS-SQL-SQLDatabase
object	in	the	directory.	The	MS-SQL-
SQLDatabase	object	records	the	attributes	of	the
database	at	the	time	the	create	action	is	performed.
If	you	specify	create	and	the	database	is	already
registered,	an	update	action	is	performed.

update Refreshes	the	attributes	registered	for	the	database
in	the	Active	Directory	by	updating	the	attributes
recorded	in	the	MS-SQL-SQLDatabase	object	in
the	Active	Directory.	If	you	specify	update	and	the
database	is	not	registered,	a	create	action	is
performed.

delete Removes	the	Active	Directory	registration	for	the
database	by	deleting	the	MS-SQL_SQLDatabase

object	from	the	Active	Directory.

[@ObjType	=]	N'database']

Specifies	that	sp_ActiveDirectory_Obj	perform	the	requested	action	on	a
database	object	in	the	Active	Directory.	N'database'	is	nvarchar(15),	with	a
default	of	N'database'.	In	SQL	Server	2000,	N'database'	is	the	only	supported
value.

[@ObjName	=]	N'database_name'

Specifies	the	name	of	the	database	for	which	the	registration	action	is
performed.	database_name	is	sysname,	and	you	must	specify	a	value.
database_name	must	specify	the	name	of	a	database	that	exists	in	the
instance	of	SQL	Server	in	which	sp_ActiveDirectory_Obj	is	executed.
database_name	must	conform	to	the	rules	for	identifiers.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
The	current	instance	of	SQL	Server	must	be	registered	in	the	Active	Directory
before	you	can	register	any	of	the	databases	in	the	instance.	If	you	remove	the
registration	of	the	instance	from	the	Active	Directory,	all	of	the	registrations	for
databases	in	that	instance	are	also	removed.

In	SQL	Server	2000,	databases	are	the	only	entities	you	can	register	in	the
Active	Directory	using	sp_ActiveDirectory_Obj	directly.	To	control	the
registration	of	instances	of	SQL	Server	in	the	Active	Directory,	use
sp_ActiveDirectory_SCP.	To	control	the	registration	of	replication	publications
in	the	Active	Directory,	use	the	replication	stored	procedures:
sp_addpublication,	sp_changepublication,	sp_addmergepublication,	and
sp_changemergepublication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	and	the	db_owner	fixed
database	role	can	execute	sp_ActiveDirectory_SCP.

Examples
This	example	registers	the	Northwind	database	from	the	current	instance	of
SQL	Server	in	the	Active	Directory.

DECLARE	@RetCode	INT

EXEC	@RetCode	=	sp_ActiveDirectory_Obj	@Action	=	N'create',
					@ObjType	=	N'database',
					@ObjName	=	'Northwind'

PRINT	'Return	code	=	'	+	CAST(@RetCode	AS	VARCHAR)

See	Also

Active	Directory	Integration

Active	Directory	Services

sp_ActiveDirectory_SCP

sp_addmergepublication

sp_addpublication

sp_changemergepublication

sp_changepublication

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

sp_ActiveDirectory_SCP
Controls	the	registration	of	an	instance	of	Microsoft®	SQL	Server™	in	the
Microsoft	Windows®	2000	Active	Directory™.	The	actions	of
sp_ActiveDirectory_SCP	always	apply	to	the	instance	of	SQL	Server	to	which
you	are	currently	connected.

Syntax
sp_ActiveDirectory_SCP	[@Action	=]	N'action'

Arguments
[@Action	=]	N'action'

Specifies	whether	the	Active	Directory	object	registering	the	instance	of	SQL
Server	is	to	be	created,	updated,	or	deleted.	action	is	nvarchar(20)	with	a
default	of	N'create'.

Value Description
create Registers	the	instance	of	SQL	Server	in	the	Active

Directory	by	creating	an	MS-SQL-SQLServer
object	in	the	directory.	The	MS-SQL-SQLServer
object	records	the	attributes	of	the	instance	of	SQL
Server	at	the	time	the	create	action	is	performed.	If
you	specify	create	and	the	instance	is	already
registered,	an	update	action	is	performed.

update Refreshes	the	attributes	registered	for	the	current
instance	of	SQL	Server	in	the	Active	Directory.
Updates	the	attributes	recorded	in	the	MS-SQL-
SQLServer	object	in	the	Active	Directory.	If	you
specify	update	and	the	instance	is	not	registered,	a
create	action	is	performed.

delete Removes	the	Active	Directory	registration	for	the
current	instance	of	SQL	Server.	Deletes	the	MS-
SQL_SQLServer	object	from	the	Active

Directory.	Also	removes	the	registrations	of	any
databases	and	publications	in	the	instance.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
After	registering	an	instance	of	SQL	Server	in	the	Active	Directory,	you	can	use
sp_ActiveDirectory_Obj	to	register	any	of	the	databases	in	the	instance,	and
you	can	use	sp_addpublication	or	sp_addmergepublication	to	register
publications.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_ActiveDirectory_SCP.

Examples
This	example	registers	the	current	instance	of	SQL	Server	in	the	Active
Directory.

DECLARE	@RetCode	INT

EXEC	@RetCode	=	sp_ActiveDirectory_SCP	@Action	=	N'create'

PRINT	'Return	code	=	'	+	CAST(@RetCode	AS	VARCHAR)

See	Also

Active	Directory	Integration_active_directory_integration

Active	Directory	Services

sp_ActiveDirectory_Obj_sp_activedirectory_obj

sp_addmergepublication

sp_addpublication

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_add_alert
Creates	an	alert.

Syntax
sp_add_alert	[@name	=]	'name'	
				[,	[@message_id	=]	message_id]	
				[,	[@severity	=]	severity]	
				[,	[@enabled	=]	enabled]
				[,	[@delay_between_responses	=]	delay_between_responses]	
				[,	[@notification_message	=]	'notification_message']	
				[,	[@include_event_description_in	=]	include_event_description_in]	
				[,	[@database_name	=]	'database']	
				[,	[@event_description_keyword	=]	'event_description_keyword_pattern']
				[,	{	[@job_id	=]	job_id	|	[@job_name	=]	'job_name'	}]	
				[,	[@raise_snmp_trap	=]	raise_snmp_trap]	
				[,	[@performance_condition	=]	'performance_condition']	
				[,	[@category_name	=]	'category']

Arguments
[@name	=]	'name'

Is	the	name	of	the	alert.	The	name	appears	in	the	e-mail	or	pager	message
sent	in	response	to	the	alert.	It	must	be	unique	and	can	contain	the	percent
(%)	character.	name	is	sysname,	with	no	default.

[@message_id	=]	message_id

Is	the	message	error	number	that	defines	the	alert.	(It	usually	corresponds	to
an	error	number	in	the	sysmessages	table.)	message_id	is	int,	with	a	default
of	0.	If	severity	is	used	to	define	the	alert,	message_id	must	be	0	or	NULL.

Note		Only	sysmessages	errors	written	to	the	Microsoft®	Windows	NT®
application	log	can	cause	an	alert	to	be	sent.

[@severity	=]	severity

Is	the	severity	level	(from	1	through	25)	that	defines	the	alert.	Any	Microsoft
SQL	Server™	message	stored	in	the	sysmessages	table	sent	to	the	Microsoft
Windows	NT	application	log	with	the	indicated	severity	causes	the	alert	to	be
sent.	severity	is	int,	with	a	default	of	0.	If	message_id	is	used	to	define	the
alert,	severity	must	be	0.

[@enabled	=]	enabled

Indicates	the	current	status	of	the	alert.	enabled	is	tinyint,	with	a	default	of	1
(enabled).	If	0,	the	alert	is	not	enabled	and	does	not	fire.

[@delay_between_responses	=]	delay_between_responses

Is	the	wait	period,	in	seconds,	between	responses	to	the	alert.
delay_between_responses	is	int,	with	a	default	of	0,	which	means	there	is	no
waiting	between	responses	(each	occurrence	of	the	alert	generates	a
response).	The	response	can	be	in	either	or	both	of	these	forms:

One	or	more	notifications	sent	through	e-mail	or	pager.

A	job	to	execute.

By	setting	this	value,	it	is	possible	to	prevent,	for	example,
unwanted	e-mail	messages	from	being	sent	when	an	alert	repeatedly
occurs	in	a	short	period	of	time.

[@notification_message	=]	'notification_message'

Is	an	optional	additional	message	sent	to	the	operator	as	part	of	the	e-mail,
net	send,	or	pager	notification.	notification_message	is	nvarchar(512),	with
a	default	of	NULL.	Specifying	notification_message	is	useful	for	adding
special	notes	such	as	remedial	procedures.

[@include_event_description_in	=]	include_event_description_in

Is	whether	the	description	of	the	SQL	Server	error	should	be	included	as	part
of	the	notification	message.	include_event_description_in	is	tinyint,	with	a
default	of	5	(e-mail	and	net	send),	and	can	have	one	or	more	of	these	values
combined	with	an	OR	logical	operator.

Value Description

0	(default) None
1 E-mail
2 Pager
4 net	send

[@database_name	=]	'database'

Is	the	database	in	which	the	error	must	occur	for	the	alert	to	fire.	If	database
is	not	supplied,	the	alert	fires	regardless	of	where	the	error	occurred.
database	is	sysname,	with	a	default	of	NULL.

[@event_description_keyword	=]	'event_description_keyword_pattern'

Is	the	sequence	of	characters	that	the	description	of	the	SQL	Server	error
must	be	like.	Transact-SQL	LIKE	expression	pattern-matching	characters
can	be	used.	event_description_keyword_pattern	is	nvarchar(100),	with	a
default	of	NULL.	This	parameter	is	useful	for	filtering	object	names	(for
example,	%customer_table%).

[@job_id	=]	job_id

Is	the	job	identification	number	of	the	job	to	run	in	response	to	this	alert.
job_id	is	uniqueidentifier,	with	a	default	of	NULL.

[@job_name	=]	'job_name'

Is	the	name	of	the	job	to	be	executed	in	response	to	this	alert.	job_name	is
sysname,	with	a	default	of	NULL.

Note		Either	job_id	or	job_name	must	be	specified,	but	both	cannot	be	specified.

[@raise_snmp_trap	=]	raise_snmp_trap

Not	implemented	in	SQL	Server	version	7.0.

[@performance_condition	=]	'performance_condition'

Is	a	value	expressed	in	the	format	'item	comparator	value'.
performance_condition	is	nvarchar(512)	with	a	default	of	NULL,	and
consists	of	these	elements.

Format	element Description

Item A	performance	object,	performance	counter,	or
named	instance	of	the	counter

Comparator One	of	these	operators:	>,	<,	or	=
Value Numeric	value	of	the	counter

Note		Performance	condition	alerts	are	only	available	for	the	first	99	databases.	
Any	databases	created	after	the	first	99	databases	will	not	be	included	in	the
sysperfinfo	system	table,	and	using	the	sp_add_alert	procedure	will	return	an
error.

[@category_name	=]	'category'

The	name	of	the	alert	category.	category	is	sysname,	with	a	default	of
NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
sp_add_alert	must	be	run	from	the	msdb	database.

These	are	the	circumstances	under	which	errors/messages	generated	by	SQL
Server	and	SQL	Server	applications	are	sent	to	the	Windows	NT	application	log
and	can	therefore	raise	alerts:

Severity	19	or	higher	sysmessages	errors

Any	RAISERROR	statement	invoked	with	WITH	LOG	syntax

Any	sysmessages	error	modified	or	created	using	sp_altermessage

Any	event	logged	using	xp_logevent

SQL	Server	Enterprise	Manager	provides	an	easy,	graphical	way	to	manage	the
entire	alerting	system	and	is	the	recommended	way	to	configure	an	alert
infrastructure.

If	an	alert	is	not	functioning	properly,	check	whether:

The	SQL	Server	Agent	service	is	running.

The	event	appeared	in	the	Windows	NT	application	log.

The	alert	is	enabled.

Permissions

Only	members	of	the	sysadmin	fixed	server	role	can	execute	sp_add_alert.

Examples
This	example	adds	an	alert	(Test	Alert)	that	invokes	the	Back	up	the	Customer
Database	job	when	fired.

Note		This	example	assumes	that	the	message	55001	and	the	Back	up	the
Customer	Database	job	already	exist.	The	example	is	shown	for	illustrative
purposes	only.

USE	msdb
EXEC	sp_add_alert	@name	=	'Test	Alert',	@message_id	=	55001,	
			@severity	=	0,	
			@notification_message	=	'Error	55001	has	occurred.	The	database	will	
			be	backed	up...',	
			@job_name	=	'Back	up	the	Customer	Database'

See	Also

sp_add_notification

sp_addtask

sp_altermessage

sp_delete_alert

sp_help_alert

sp_update_alert

sysperfinfo

System	Stored	Procedures

Transact-SQL	Reference

sp_addalias
Maps	a	login	to	a	user	in	a	database.	sp_addalias	is	provided	for	backward
compatibility.	Microsoft®	SQL	Server™	version	7.0	provides	roles	and	the
ability	to	grant	permissions	to	roles	as	an	alternative	to	using	aliases.

Syntax
sp_addalias	[@loginame	=]	'login'	
				,	[@name_in_db	=]	'alias_user'

Arguments
[@loginame	=]	'login'

Is	the	name	of	the	login	to	be	aliased.	login	is	sysname	with	no	default.	login
must	be	a	valid	SQL	Server	login	or	Microsoft	Windows	NT®	user	with
permission	to	connect	to	SQL	Server.	login	cannot	already	exist	or	be	aliased
to	an	existing	user	in	the	database.

[@name_in_db	=]	'alias_user'

Is	the	name	of	the	user	the	login	is	mapped	to.	alias_user	is	sysname,	with
no	default.	alias_user	must	be	a	valid	Windows	NT	or	SQL	Server	user	in
the	database	in	which	the	login	is	aliased.	When	specifying	Windows	NT
users,	specify	the	name	the	Windows	NT	user	is	known	by	in	the	database
(added	using	sp_grantdbaccess).

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
A	login	can	be	mapped	to	users	in	any	database.	Execute	sp_addalias	only	in	the
database	in	which	the	user	must	be	aliased.	When	users	connect	to	SQL	Server
with	login,	they	can	perform	activities	in	the	database	under	the	permissions
applied	to	alias_user.

Note		The	sa	login	cannot	be	aliased.

A	login	can	use	a	database	if:

The	login	has	an	associated	user	account	in	the	database.

The	login	has	a	user	alias	in	the	database,	which	has	been	added	by	the
database	owner	or	member	of	the	sysadmin	fixed	server	role	with
sp_addalias.	

The	guest	account	has	been	added	to	the	database.

sp_addalias	cannot	be	executed	from	within	a	user-defined	transaction.

The	table	shows	several	system	stored	procedures	used	in	conjunction	with
sp_addalias.

Stored	procedure Description
sp_helplogins Returns	a	list	of	valid	login	values.
sp_helpuser Returns	a	list	of	valid	alias_user	values	in	the

database	in	which	the	login	is	used.
sp_dropalias Removes	an	alias	mapping.

Permissions
Only	members	of	the	sysadmin	fixed	server	role,	and	the	db_accessadmin	and
db_owner	fixed	database	roles	can	execute	sp_addalias.

Examples
This	example	allows	the	SQL	Server	login	Victoria,	which	is	not	a	user	in	the
current	database,	to	use	the	current	database	and	alias	Victoria	to	an	existing
user	(Albert)	in	the	current	database.

EXEC	sp_addalias	'Victoria',	'Albert'

See	Also

sp_addlogin

sp_addrole

sp_adduser

sp_dropalias

sp_helplogins

sp_helpuser

System	Stored	Procedures

Transact-SQL	Reference

sp_addapprole
Adds	a	special	type	of	role	in	the	current	database	used	for	application	security.

Syntax
sp_addapprole	[@rolename	=]	'role'	
				,	[@password	=]	'password'

Arguments
[@rolename	=]	'role'

Is	the	name	of	the	new	role.	role	is	sysname,	with	no	default.	role	must	be	a
valid	identifier	and	cannot	already	exist	in	the	current	database.

[@password	=]	'password'

Is	the	password	required	to	activate	the	role.	password	is	sysname,	with	no
default.	password	is	stored	in	encrypted	form.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
Microsoft®	SQL	Server™	roles	can	contain	from	1	through	128	characters,
including	letters,	symbols,	and	numbers.	However,	roles	cannot:

Contain	a	backslash	(\).

Be	NULL	or	an	empty	string.

The	fundamental	differences	between	standard	and	application	roles	are:

Application	roles	contain	no	members.	Users,	Microsoft	Windows	NT®
groups,	and	roles	cannot	be	added	to	application	roles;	the	permissions
of	the	application	role	are	gained	when	the	application	role	is	activated

for	the	user's	connection	through	a	specific	application(s).	A	user's
association	with	an	application	role	results	from	being	able	to	run	an
application	that	activates	the	role,	rather	than	being	a	member	of	the
role.

Application	roles	are	inactive	by	default.	They	are	activated	by	using
sp_setapprole	and	require	a	password.	The	password	can	be	provided
by	the	user,	for	example,	through	an	application	prompt;	however,	the
password	is	usually	incorporated	within	the	application.	The	password
can	be	encrypted	as	it	is	sent	to	SQL	Server.

When	an	application	role	is	activated	for	a	connection	by	the
application,	the	connection	permanently	loses	all	permissions	applied	to
the	login,	user	account,	or	other	groups	or	database	roles	in	all	databases
for	the	duration	of	the	connection.	The	connection	gains	the	permissions
associated	with	the	application	role	for	the	database	in	which	the
application	role	exists.	Because	application	roles	are	applicable	only	to
the	database	in	which	they	exist,	the	connection	can	gain	access	to
another	database	only	through	permissions	granted	to	the	guest	user
account	in	the	other	database.	Therefore,	if	the	guest	user	account	does
not	exist	in	a	database,	the	connection	cannot	gain	access	to	that
database.	If	the	guest	user	account	does	exist	in	the	database	but
permissions	to	access	an	object	are	not	explicitly	granted	to	guest,	the
connection	cannot	access	that	object,	regardless	of	who	created	the
object.	The	permissions	the	user	gained	from	the	application	role
remain	in	effect	until	the	connection	logs	off	from	SQL	Server.

sp_addapprole	cannot	be	executed	from	within	a	user-defined	transaction.

Permissions
Only	members	of	the	sysadmin	fixed	server	role,	and	the	db_owner	and
db_securityadmin	fixed	database	roles	can	execute	sp_addapprole.

Examples
This	example	adds	the	new	application	role	SalesApp	to	the	current	database

with	the	password	xyz_123.

EXEC	sp_addapprole	'SalesApp',	'xyz_123'

See	Also

Application	Security	and	Application	Roles

Rules	for	SQL	Server	Logins,	Users,	Roles,	and	Passwords

sp_dropapprole

sp_setapprole

System	Stored	Procedures

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

sp_add_data_file_recover_suspect_db
Adds	a	data	file	to	a	filegroup	when	recovery	cannot	complete	on	a	database	due
to	an	"insufficient	space"	(1105)	error	on	the	filegroup.	After	the	file	is	added,
this	stored	procedure	turns	off	the	suspect	setting	and	completes	the	recovery	of
the	database.	The	parameters	are	the	same	as	those	for	ALTER	DATABASE
ADD	FILE.

IMPORTANT		This	stored	procedure	should	be	used	only	as	described	in	the
Troubleshooting	Recovery	section.

Syntax
sp_add_data_file_recover_suspect_db	[@dbName	=]	'database'	,	
				[@filegroup	=]	'filegroup_name'	,	
				[@name	=]	'logical_file_name'	,	
				[@filename	=]	'os_file_name'	,	
				[@size	=]	'size'	,	
				[@maxsize	=]	'max_size'	,	
				[@filegrowth	=]	'growth_increment'

Arguments
[@dbName	=]	'database'

Is	the	name	of	the	database.	database	is	sysname,	with	no	default.

[@filegroup	=]	'filegroup_name'

Is	the	filegroup	in	which	to	add	the	file.	filegroup_name	is	nvarchar(260),
with	a	default	of	NULL,	which	indicates	the	PRIMARY	file.

[@name	=]	'logical_file_name'

Is	the	name	used	in	Microsoft®	SQL	Server™	when	referencing	the	file.	The
name	must	be	unique	in	the	server.	logical_file_name	is	nvarchar(260),	with
no	default.

[@filename	=]	'os_file_name'

Is	the	path	and	file	name	used	by	the	operating	system	for	the	file.	The	file
must	reside	on	an	instance	of	SQL	Server.	os_file_name	is	nvarchar(260),
with	no	default.

[@size	=]	'size'

Is	the	initial	size	of	the	file.	The	MB	and	KB	suffixes	can	be	used	to	specify
megabytes	or	kilobytes.	The	default	is	MB.	Specify	a	whole	number;	do	not
include	a	decimal.	The	minimum	value	for	size	is	512	KB,	and	the	default	is
1	MB,	if	size	is	not	specified.	size	is	nvarchar(20),	with	a	default	of	NULL.

[@maxsize	=]	'max_size'

Is	the	maximum	size	to	which	the	file	can	grow.	The	MB	and	KB	suffixes
can	be	used	to	specify	megabytes	or	kilobytes.	The	default	is	MB.	Specify	a
whole	number;	do	not	include	a	decimal.	If	max_size	is	not	specified,	the	file
will	grow	until	the	disk	is	full.	The	Microsoft	Windows	NT®	application	log
warns	an	administrator	when	a	disk	is	about	to	become	full.	max_size	is
nvarchar(20),	with	a	default	of	NULL.

[@filegrowth	=]	'growth_increment'

Is	the	amount	of	space	added	to	the	file	each	time	new	space	is	required.	A
value	of	0	indicates	no	growth.	The	value	can	be	specified	in	MB,	KB,	or	%.
Specify	a	whole	number;	do	not	include	a	decimal.	When	%	is	specified,	the
growth	increment	is	the	specified	percentage	of	the	size	of	the	file	at	the	time
the	increment	occurs.	If	a	number	is	specified	without	an	MB,	KB,	or	%
suffix,	the	default	is	MB.	The	default	value	if	growth_increment	is	not
specified	is	10%,	and	the	minimum	value	is	64	KB.	The	size	specified	is
rounded	to	the	nearest	64	KB.	growth_increment	is	nvarchar(20),	with	a
default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Permissions
Execute	permissions	default	to	members	of	the	sysadmin	fixed	server	role.
These	permissions	are	not	transferable.

Examples
In	this	example,	database	db1	was	marked	suspect	during	recovery	due	to
insufficient	space	(error	1105)	in	filegroup	fg1.

sp_add_data_file_recover_suspect_db	db1,	fg1,	file2,
			'c:\Program	Files\Microsoft	SQL	Server\MSSQL\Data\db1_file2.mdf',	'1MB'

See	Also

ALTER	DATABASE

sp_add_log_file_recover_suspect_db

System	Stored	Procedures

Transact-SQL	Reference

sp_addextendedproc
Registers	the	name	of	a	new	extended	stored	procedure	to	Microsoft®	SQL
Server™.

Syntax
sp_addextendedproc	[@functname	=]	'procedure'	,	
				[@dllname	=]	'dll'

Arguments
[@functname	=]	'procedure'

Is	the	name	of	the	function	to	call	within	the	dynamic-link	library	(DLL).
procedure	is	nvarchar(517),	with	no	default.	procedure	optionally	can
include	the	owner	name	in	the	form	owner.function.

[@dllname	=]	'dll'

Is	the	name	of	the	DLL	containing	the	function.	dll	is	varchar(255),	with	no
default.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
Programmers	using	Microsoft	Open	Data	Services	can	create	extended	stored
procedures.	After	an	extended	stored	procedure	is	created,	it	must	be	added	to
SQL	Server	using	sp_addextendedproc.	For	more	information,	see	Creating
Extended	Stored	Procedures.

Only	add	an	extended	stored	procedure	to	the	master	database.	To	execute	an

JavaScript:hhobj_1.Click()

extended	stored	procedure	from	a	database	other	than	master,	qualify	the	name
of	the	extended	stored	procedure	with	master.

sp_addextendedproc	adds	entries	to	the	sysobjects	table,	registering	the	name
of	the	new	extended	stored	procedure	with	SQL	Server.	It	also	adds	an	entry	in
the	syscomments	table.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_addextendedproc.

Examples
This	example	adds	the	xp_hello	extended	stored	procedure.

USE	master
EXEC	sp_addextendedproc	xp_hello,	'xp_hello.dll'

See	Also

EXECUTE

GRANT

REVOKE

sp_dropextendedproc

sp_helpextendedproc

System	Stored	Procedures

Transact-SQL	Reference

sp_addextendedproperty
Adds	a	new	extended	property	to	a	database	object.	If	the	property	already
exists,	the	procedure	fails.

Syntax
sp_addextendedproperty					[@name	=]	{	'property_name'	}
				[,	[@value	=]	{	'value'	}	
								[,	[@level0type	=]	{	'level0_object_type'	}	
									,	[@level0name	=]	{	'level0_object_name'	}	
												[,	[@level1type	=]	{	'level1_object_type'	}	
													,	[@level1name	=]	{	'level1_object_name'	}	
																				[,	[@level2type	=]	{	'level2_object_type'	}	
																					,	[@level2name	=]	{	'level2_object_name'	}	
]	
]	
]	
]

Arguments
[@name	=]	{	'property_name'	}

Is	the	name	of	the	property	to	be	added.	property_name	is	sysname	and
cannot	be	NULL.	Names	may	also	include	blank	or	non-alphanumeric
character	strings,	and	binary	values.

[@value	=]	{	'value'	}

Is	the	value	to	be	associated	with	the	property.	value	is	sql_variant,	with	a
default	of	NULL.	The	size	of	value	may	not	be	more	than	7,500	bytes;
otherwise,	SQL	Server	raises	an	error.

[@level0type	=]	{	'level0_object_type'	}

Is	the	user	or	user-defined	type.	level0_object_type	is	varchar(128),	with	a
default	of	NULL.	Valid	inputs	are	USER,	TYPE,	and	NULL.

[@level0name	=]	{	'level0_object_name'	}

Is	the	name	of	the	level	0	object	type	specified.	level0_object_name	is
sysname	with	a	default	of	NULL.

[@level1type	=]	{	'level1_object_type'	}

Is	the	type	of	level	1	object.	level1_object_type	is	varchar(128),	with	a
default	of	NULL.	Valid	inputs	are	TABLE,	VIEW,	PROCEDURE,
FUNCTION,	DEFAULT,	RULE,	and	NULL.

[@level1name	=]	{	'level1_object_name'	}

Is	the	name	of	the	level	1	object	type	specified.	level1_object_name	is
sysname,	with	a	default	of	NULL.

[@level2type	=]	{	'level2_object_type'	}

Is	the	type	of	level	2	object.	level2_object_type	is	varchar(128),	with	a
default	of	NULL.	Valid	inputs	are	COLUMN,	PARAMETER,	INDEX,
CONSTRAINT,	TRIGGER,	and	NULL.

[@level2name	=]	{	'level2_object_name'	}

Is	the	name	of	the	level	2	object	type	specified.	level2_object_name	is
sysname,	with	a	default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
Extended	properties	are	not	allowed	on	system	objects.

The	objects	are	distinguished	according	to	levels,	with	level	0	as	the	highest	and
level	2	the	lowest.	When	a	user	adds,	updates,	or	deletes	an	extended	property,
that	user	must	specify	all	higher	level	objects.	For	example,	if	the	user	adds	an
extended	property	to	a	level	1	object,	that	user	must	specify	all	level	0
information.	If	the	user	adds	an	extended	property	to	a	level	2	object,	all
information	about	levels	0	and	1	must	be	supplied.

At	each	level,	object	type	and	object	name	uniquely	identify	an	object.	If	one

part	of	the	pair	is	specified,	the	other	part	must	also	be	specified.

Given	a	valid	property_name	and	value,	if	all	object	types	and	names	are	null,
then	the	property	belongs	to	the	current	database.	If	an	object	type	and	name	are
specified,	then	a	parent	object	and	type	also	must	be	specified.	Otherwise,	SQL
Server	raises	an	error.

Permissions
Members	of	the	db_owner	and	db_ddladmin	fixed	database	roles	may	add
extended	properties	to	any	object.	Users	may	add	extended	properties	to	objects
they	own.	However,	only	db_owner	may	add	properties	to	user	names.

Examples
This	example	adds	the	property	('caption,'	'Employee	ID')	to	column	'ID'	in	table
'T1.'

CREATE			table	T1	(id	int	,	name	char	(20))
GO
EXEC			sp_addextendedproperty	'caption',	'Employee	ID',	'user',	dbo,	'table',	T1,	'column',	id

See	Also

fn_listextendedproperty

Transact-SQL	Reference

sp_addgroup
Creates	a	group	in	the	current	database.	sp_addgroup	is	included	for	backward
compatibility.	Microsoft®	SQL	Server™	version	7.0	uses	roles	instead	of
groups.	Use	sp_addrole	to	add	a	role.

Syntax
sp_addgroup	[@grpname	=]	'group'

Arguments
[@grpname	=]	'group'

Is	the	name	of	the	group	to	add.	group	is	sysname,	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_addgroup	calls	sp_addrole	to	add	the	new	group.

Permissions
Only	members	of	sysadmin	fixed	server	role,	and	the	db_securityadmin	and
db_owner	fixed	database	roles	can	execute	sp_addgroup.

Examples
This	example	creates	the	group	accounting.

EXEC	sp_addgroup	'accounting'

See	Also

sp_addrole

sp_changegroup

sp_dropgroup

sp_helpgroup

sp_helprole

System	Stored	Procedures

Transact-SQL	Reference

sp_add_category
Adds	the	specified	category	of	jobs,	alerts,	or	operators	to	the	server.

Syntax
sp_add_category	[[@class	=]	'class',]	
				[[@type	=]	'type',]	
				{	[@name	=]	'name'	}

Arguments
[@class	=]	'class'

Is	the	class	of	the	category	to	be	added.	class	is	varchar(8)	with	a	default
value	of	JOB,	and	can	be	one	of	these	values.

Value Description
JOB Adds	a	job	category.
ALERT Adds	an	alert	category.
OPERATOR Adds	an	operator	category.

[@type	=]	'type'

Is	the	type	of	category	to	be	added.	type	is	varchar(12),	with	a	default	value
of	LOCAL,	and	can	be	one	of	these	values.

Value Description
LOCAL A	local	job	category.
MULTI	-SERVER A	multiserver	job	category.
NONE A	category	for	a	class	other	than	JOB.

[@name	=]	'name'

Is	the	name	of	the	category	to	be	added.	The	name	must	be	unique	within	the

specified	class.	name	is	sysname,	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
sp_add_category	must	be	executed	in	the	msdb	database.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed
database	role	can	execute	sp_add_category.

Examples
This	example	creates	a	local	job	category	named	AdminJobs.

USE	msdb
EXEC	sp_add_category	'JOB',	'LOCAL',	'AdminJobs'

See	Also

sp_delete_category

sp_help_category

sp_update_category

sysjobs

sysjobservers

System	Stored	Procedures

Transact-SQL	Reference

sp_add_job
Adds	a	new	job	executed	by	the	SQLServerAgent	service.

Syntax
sp_add_job	[@job_name	=]	'job_name'	
				[,	[@enabled	=]	enabled]	
				[,	[@description	=]	'description']	
				[,	[@start_step_id	=]	step_id]	
				[,	[@category_name	=]	'category']	
				[,	[@category_id	=]	category_id]	
				[,	[@owner_login_name	=]	'login']	
				[,	[@notify_level_eventlog	=]	eventlog_level]	
				[,	[@notify_level_email	=]	email_level]	
				[,	[@notify_level_netsend	=]	netsend_level]	
				[,	[@notify_level_page	=]	page_level]	
				[,	[@notify_email_operator_name	=]	'email_name']	
				[,	[@notify_netsend_operator_name	=]	'netsend_name']	
				[,	[@notify_page_operator_name	=]	'page_name']	
				[,	[@delete_level	=]	delete_level]	
				[,	[@job_id	=]	job_id	OUTPUT]

Arguments
[@job_name	=]	'job_name'

Is	the	name	of	the	job.	The	name	must	be	unique	and	cannot	contain	the
percent	(%)	character.	job_name	is	sysname,	with	no	default.

[@enabled	=]	enabled

Indicates	the	status	of	the	added	job.	enabled	is	tinyint,	with	a	default	of	1
(enabled).	If	0,	the	job	is	not	enabled	and	does	not	run	according	to	its
schedule;	however,	it	can	be	run	manually.

[@description	=]	'description'

Is	the	description	of	the	job.	description	is	nvarchar(512),	with	a	default	of

NULL.	If	description	is	omitted,	"No	description	available"	is	used.

[@start_step_id	=]	step_id

Is	the	identification	number	of	the	first	step	to	execute	for	the	job.	step_id	is
int,	with	a	default	of	1.

[@category_name	=]	'category'

Is	the	category	for	the	job.	category	is	sysname,	with	a	default	of	NULL.

[@category_id	=]	category_id

Is	a	language-independent	mechanism	for	specifying	a	job	category.
category_id	is	int,	with	a	default	of	NULL.

[@owner_login_name	=]	'login'

Is	the	name	of	the	login	that	owns	the	job.	login	is	sysname,	with	a	default	of
NULL,	which	is	interpreted	as	the	current	login	name.

[@notify_level_eventlog	=]	eventlog_level

Is	a	value	indicating	when	to	place	an	entry	in	the	Microsoft®	Windows
NT®	application	log	for	this	job.	eventlog_level	is	int,	and	can	be	one	of
these	values.

Value Description
0 Never
1 On	success
2	(default) On	failure
3 Always

[@notify_level_email	=]	email_level

Is	a	value	that	indicates	when	to	send	an	e-mail	upon	the	completion	of	this
job.	email_level	is	int,	with	a	default	of	0,	which	indicates	success.
email_level	uses	the	same	values	as	eventlog_level.

[@notify_level_netsend	=]	netsend_level

Is	a	value	that	indicates	when	to	send	a	network	message	upon	the

completion	of	this	job.	netsend_level	is	int,	with	a	default	of	0,	which
indicates	never.	netsend_level	uses	the	same	values	as	eventlog_level.

[@notify_level_page	=]	page_level

Is	a	value	that	indicates	when	to	send	a	page	upon	the	completion	of	this	job.
page_level	is	int,	with	a	default	of	0,	which	indicates	never.	page_level	uses
the	same	values	as	eventlog_level.

[@notify_email_operator_name	=]	'email_name'

Is	the	e-mail	name	of	the	person	to	send	e-mail	to	when	email_level	is
reached.	email_name	is	sysname,	with	a	default	of	NULL.

[@notify_netsend_operator_name	=]	'netsend_name'

Is	the	name	of	the	operator	to	whom	the	network	message	is	sent	upon
completion	of	this	job.	netsend_name	is	sysname,	with	a	default	of	NULL.

[@notify_page_operator_name	=]	'page_name'

Is	the	name	of	the	person	to	page	upon	completion	of	this	job.	page_name	is
sysname,	with	a	default	of	NULL.

[@delete_level	=]	delete_level

Is	a	value	that	indicates	when	to	delete	the	job.	delete_value	is	int,	with	a
default	of	0,	which	means	never.	delete_level	uses	the	same	values	as
eventlog_level.

Note		When	delete_level	is	3,	the	job	is	executed	only	once,	regardless	of	any
schedules	defined	for	the	job.	Furthermore,	if	a	job	deletes	itself,	all	history	for
the	job	is	also	deleted.

[@job_id	=]	job_id	OUTPUT

Is	the	job	identification	number	assigned	to	the	job	if	created	successfully.
job_id	is	an	output	variable	of	type	uniqueidentifer,	with	a	default	of
NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
@originating_server	exists	in	sp_add_job,	but	is	not	listed	under	Arguments.
@originating_server	is	reserved	for	internal	use.

After	sp_add_job	has	been	executed	to	add	a	job,	sp_add_jobstep	can	be	used
to	add	steps	that	perform	the	activities	for	the	job.	sp_add_jobschedule	can	be
used	to	create	the	schedule	that	SQLServerAgent	service	uses	to	execute	the	job.

SQL	Server	Enterprise	Manager	provides	an	easy,	graphical	way	to	manage	jobs,
and	is	the	recommended	way	to	create	and	manage	the	job	infrastructure.

Permissions
Execute	permissions	default	to	the	public	role.

Examples

A.	Add	a	job
This	example	adds	a	new	job	named	NightlyBackups.

USE	msdb
EXEC	sp_add_job	@job_name	=	'NightlyBackups'

B.	Add	a	job	with	pager,	e-mail,	and	net	send	information
This	example	creates	a	job	named	Ad	hoc	Sales	Data	Backup	that	notifies	janetl
(by	pager,	e-mail,	or	network	pop-up	message)	if	the	job	fails,	and	deletes	the
job	upon	successful	completion.

USE	msdb
EXEC	sp_add_job	@job_name	=	'Ad	hoc	Sales	Data	Backup',	
			@enabled	=	1,
			@description	=	'Ad	hoc	backup	of	sales	data',

			@owner_login_name	=	'janet1',
			@notify_level_eventlog	=	2,
			@notify_level_email	=	2,
			@notify_level_netsend	=	2,
			@notify_level_page	=	2,
			@notify_email_operator_name	=	'janet1',
			@notify_netsend_operator_name	=	'janet1',	
			@notify_page_operator_name	=	'janet1',
			@delete_level	=	1

See	Also

sp_add_jobschedule

sp_add_jobstep

sp_delete_job

sp_help_job

sp_help_jobstep

sp_update_job

System	Stored	Procedures

Transact-SQL	Reference

sp_add_jobschedule
Creates	a	schedule	for	a	job.

Syntax
sp_add_jobschedule	[@job_id	=]	job_id,	|	[@job_name	=]	'job_name',	
				[@name	=]	'name'	
				[,	[@enabled	=]	enabled]	
				[,	[@freq_type	=]	freq_type]
				[,	[@freq_interval	=]	freq_interval]	
				[,	[@freq_subday_type	=]	freq_subday_type]	
				[,	[@freq_subday_interval	=]	freq_subday_interval]	
				[,	[@freq_relative_interval	=]	freq_relative_interval]	
				[,	[@freq_recurrence_factor	=]	freq_recurrence_factor]	
				[,	[@active_start_date	=]	active_start_date]	
				[,	[@active_end_date	=]	active_end_date]	
				[,	[@active_start_time	=]	active_start_time]	
				[,	[@active_end_time	=]	active_end_time]

Arguments
[@jobid	=]	job_id

Is	the	job	identification	number	of	the	job	to	which	the	schedule	is	added.
job_id	is	uniqueidentifier,	with	a	default	of	NULL.

[@job_name	=]	'job_name'

Is	the	name	of	the	job	to	which	the	schedule	is	added.	job_name	is	sysname,
with	a	default	of	NULL.

Note		Either	job_id	or	job_name	must	be	specified,	but	both	cannot	be	specified.

[@name	=]	'name'

Is	the	name	of	the	schedule.	name	is	sysname,	with	no	default.

[@enabled	=]	enabled

Indicates	the	current	status	of	the	schedule.	enabled	is	tinyint,	with	a	default
of	1	(enabled).	If	0,	the	schedule	is	not	enabled.	When	the	schedule	is
disabled,	the	job	will	not	be	run.

[@freq_type	=]	freq_type

Is	a	value	indicating	when	the	job	is	to	be	executed.	freq_type	is	int,	with	a
default	of	0,	and	can	be	one	of	these	values.

Value Description
1 Once
4 Daily
8 Weekly
16 Monthly
32 Monthly,	relative	to	freq	interval
64 Run	when	SQLServerAgent	service	starts
128 Run	when	the	computer	is	idle

[@freq_interval	=]	freq_interval

Is	the	days	that	the	job	is	executed.	freq_interval	is	int,	with	a	default	of	0,
and	depends	on	the	value	of	freq_type.

Value	of	freq_type Effect	on	freq_interval
1	(once) freq_interval	is	unused.
4	(daily) Every	freq_interval	days.
8	(weekly) freq_interval	is	one	or	more	of	the

following	(combined	with	an	OR	logical
operator):	

1	=	Sunday
2	=	Monday
4	=	Tuesday
8	=	Wednesday
16	=	Thursday
32	=	Friday
64	=	Saturday

16	(monthly) On	the	freq_interval	day	of	the	month.
32	(monthly	relative) freq_interval	is	one	of	the	following:

1	=	Sunday	
2	=	Monday	
3	=	Tuesday	
4	=	Wednesday	
5	=	Thursday	
6	=	Friday	
7	=	Saturday	
8	=	Day	
9	=	Weekday
10	=	Weekend	day

64	(when	SQLServerAgent
service	starts)

freq_interval	is	unused.

128 freq_interval	is	unused.

[@freq_subday_type	=]	freq_subday_type

Specifies	the	units	for	freq_subday_interval.	freq_subday_type	is	int,	with	a
default	of	0,	and	can	be	one	of	these	values.

Value Description	(unit)
0x1 At	the	specified	time
0x4 Minutes
0x8 Hours

[@freq_subday_interval	=]	freq_subday_interval

Is	the	number	of	freq_subday_type	periods	to	occur	between	each	execution
of	the	job.	freq_subday_interval	is	int,	with	a	default	of	0.

[@freq_relative_interval	=]	freq_relative_interval

Is	the	scheduled	job's	occurrence	of	freq_interval	in	each	month,	if
freq_interval	is	32	(monthly	relative).	freq_relative_interval	is	int,	with	a

default	of	0,	and	can	be	one	of	these	values.

Value Description	(unit)
1 First
2 Second
4 Third
8 Fourth
16 Last

[@freq_recurrence_factor	=]	freq_recurrence_factor

Is	the	number	of	weeks	or	months	between	the	scheduled	execution	of	the
job.	freq_recurrence_factor	is	used	only	if	freq_type	is	8,	16,	or	32.
freq_recurrence_factor	is	int,	with	a	default	of	0.

[@active_start_date	=]	active_start_date

Is	the	date	on	which	execution	of	the	job	can	begin.	active_start_date	is	int,
with	a	default	of	NULL,	which	indicates	today's	date.	The	date	is	formatted
as	YYYYMMDD.	If	active_start_date	is	not	NULL,	the	date	must	be	greater
than	or	equal	to	19900101.

[@active_end_date	=]	active_end_date

Is	the	date	on	which	execution	of	the	job	can	stop.	active_end_date	is	int,
with	a	default	of	99991231,	which	indicates	December	31,	9999.	Formatted
as	YYYYMMDD.

[@active_start_time	=]	active_start_time

Is	the	time	on	any	day	between	active_start_date	and	active_end_date	to
begin	execution	of	the	job.	active_start_time	is	int,	with	a	default	of	000000,
which	indicates	12:00:00	A.M.	on	a	24-hour	clock,	and	must	be	entered
using	the	form	HHMMSS.

[@active_end_time	=]	active_end_time

Is	the	time	on	any	day	between	active_start_date	and	active_end_date	to	end
execution	of	the	job.	active_end_time	is	int,	with	a	default	of	235959,	which
indicates	11:59:59	P.M.	on	a	24-hour	clock,	and	must	be	entered	using	the

form	HHMMSS.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
SQL	Server	Enterprise	Manager	provides	an	easy,	graphical	way	to	manage	jobs,
and	is	the	recommended	way	to	create	and	manage	the	job	infrastructure.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	assumes	the	job	NightlyBackup	has	been	created	to	back	up	a
database.	It	adds	the	job	to	the	schedule	with	the	name	ScheduledBackup	and
executes	every	day	at	1:00	A.M.

USE	msdb
EXEC	sp_add_jobschedule	@job_name	=	'NightlyBackup',	
			@name	=	'ScheduledBackup',
			@freq_type	=	4,	--	daily
			@freq_interval	=	1,
			@active_start_time	=	10000

See	Also

Modifying	and	Viewing	Jobs

sp_delete_jobschedule

sp_help_jobschedule

JavaScript:hhobj_1.Click()

sp_update_jobschedule

System	Stored	Procedures

Transact-SQL	Reference

sp_add_jobserver
Targets	the	specified	job	at	the	specified	server.

Syntax
sp_add_jobserver	[@job_id	=]	job_id	|	[@job_name	=]	'job_name'		
				[,	[@server_name	=]	'server']

Arguments
[@job_id	=]	job_id

Is	the	identification	number	of	the	job.	job_id	is	uniqueidentifer,	with	a
default	of	NULL.

[@job_name	=]	'job_name'

Is	the	name	of	the	job.	job_name	is	sysname,	with	a	default	of	NULL.

Note		Either	job_id	or	job_name	must	be	specified,	but	both	cannot	be	specified.

[@server_name	=]	'server'

Is	the	name	of	the	server	at	which	to	target	the	job.	server	is	nvarchar(30),
with	a	default	of	N'(LOCAL)'.	server	can	be	either	(LOCAL)	for	a	local
server,	or	the	name	of	an	existing	target	server.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
@automatic_post	exists	in	sp_add_jobserver,	but	is	not	listed	under
Arguments.	@automatic_post	is	reserved	for	internal	use.

SQL	Server	Enterprise	Manager	provides	an	easy,	graphical	way	to	manage	jobs,
and	is	the	recommended	way	to	create	and	manage	the	job	infrastructure.

Permissions
Execute	permissions	default	to	the	public	role	for	local	jobs.	Only	members	of
the	sysadmin	fixed	server	role	can	execute	sp_add_jobserver	for	multiserver
jobs.

Examples
This	example	assigns	the	SEATTLE2	server	to	the	multiserver	job,	Weekly
Sales	Data	Backup	job.

Note		This	example	assumes	that	the	Weekly	Sales	Data	Backup	job	already
exists.

USE	msdb
EXEC	sp_add_jobserver	@job_name	=	'Weekly	Sales	Data	Backup',	
			@server_name	=	'SEATTLE2'

See	Also

sp_apply_job_to_targets

sp_delete_jobserver

System	Stored	Procedures

Transact-SQL	Reference

sp_add_jobstep
Adds	a	step	(operation)	to	a	job.

Syntax
sp_add_jobstep	[@job_id	=]	job_id	|	[@job_name	=]	'job_name'	
				[,	[@step_id	=]	step_id]	
				{	,	[@step_name	=]	'step_name'	}	
				[,	[@subsystem	=]	'subsystem']	
				[,	[@command	=]	'command']	
				[,	[@additional_parameters	=]	'parameters']	
				[,	[@cmdexec_success_code	=]	code]	
				[,	[@on_success_action	=]	success_action]	
				[,	[@on_success_step_id	=]	success_step_id]	
				[,	[@on_fail_action	=]	fail_action]	
				[,	[@on_fail_step_id	=]	fail_step_id]	
				[,	[@server	=]	'server']	
				[,	[@database_name	=]	'database']	
				[,	[@database_user_name	=]	'user']	
				[,	[@retry_attempts	=]	retry_attempts]	
				[,	[@retry_interval	=]	retry_interval]	
				[,	[@os_run_priority	=]	run_priority]	
				[,	[@output_file_name	=]	'file_name']	
				[,	[@flags	=]	flags]

Arguments
[@job_id	=]	job_id

Is	the	identification	number	of	the	job	to	which	to	add	the	step.	job_id	is
uniqueidentifier,	with	a	default	of	NULL.

[@job_name	=]	'job_name'

Is	the	name	of	the	job	to	which	to	add	the	step.	job_name	is	sysname,	with	a
default	of	NULL.

Note		Either	job_id	or	job_name	must	be	specified,	but	both	cannot	be	specified.

[@step_id	=]	step_id]

Is	the	sequence	identification	number	for	the	job	step.	Step	identification
numbers	start	at	1	and	increment	without	gaps.	If	a	step	is	inserted	in	the
existing	sequence,	the	sequence	numbers	are	adjusted	automatically.	A	value
is	provided	if	step_id	is	not	specified.	step_id	is	int,	with	a	default	of	NULL.

[@step_name	=]	'step_name'

Is	the	name	of	the	step.	step_name	is	sysname,	with	no	default.

[@subsystem	=]	'subsystem'

Is	the	subsystem	used	by	SQL	Server	Agent	service	to	execute	command.
subsystem	is	nvarchar(40),	and	can	be	one	of	these	values.

Value Description
'ACTIVESCRIPTING' Active	Script
'CMDEXEC' Operating-system	command	or	executable	program
'DISTRIBUTION' Replication	Distribution	Agent	job
'SNAPSHOT' Replication	Snapshot	Agent	job
'LOGREADER' Replication	Log	Reader	Agent	job
'MERGE' Replication	Merge	Agent	job
'TSQL'	(default) Transact-SQL	statement

[@command	=]	'command'

Is	the	command(s)	to	be	executed	by	SQLServerAgent	service	through
subsystem.	command	is	nvarchar(3200),	with	a	default	of	NULL.	command
can	include	one	or	more	of	the	following	case-sensitive	tokens	which	are
replaced	at	run	time.

Value Description
[A-DBN] Database	name.	If	the	job	is	run	by	an	alert,	this

token	automatically	replaces	the	version	6.5	[DBN]
token	during	the	conversion	process.

[A-SVR] Server	name.	If	the	job	is	run	by	an	alert,	this	token

automatically	replaces	the	version	6.5	[SVR]	token
during	the	conversion	process.

[A-ERR] Error	number.	If	this	job	is	run	by	an	alert,	this
token	automatically	replaces	the	version	6.5	[ERR]
token	during	the	conversion	process.

[A-SEV] Error	severity.	If	the	job	is	run	by	an	alert,	this
token	automatically	replaces	the	version	6.5	[SEV]
token	during	the	conversion	process.

[A-MSG] Message	text.	If	the	job	is	run	by	an	alert,	this	token
automatically	replaces	the	version	6.5	[MSG]	token
during	the	conversion	process.

[DATE] Current	date	(in	YYYYMMDD	format).
[JOBID] Job	ID.
[MACH] Computer	name.
[MSSA] Master	SQLServerAgent	service	name.
[SQLDIR] The	directory	in	which	SQL	Server	is	installed.	By

default,	this	value	is	C:\Program	Files\Microsoft
SQL	Server\MSSQL.

[STEPCT] A	count	of	the	number	of	times	this	step	has
executed	(excluding	retires).	Can	be	used	by	the
step	command	to	force	termination	of	a	multistep
loop.

[STEPID] Step	ID.
[TIME] Current	time	(in	HHMMSS	format).
[STRTTM] The	time	(in	HHMMSS	format)	that	the	job	began

executing.
[STRTDT] The	date	(in	YYYYMMDD	format)	that	the	job

began	executing.

[@additional_parameters	=]	'parameters'

Reserved.	parameters	is	ntext,	with	a	default	of	NULL.

[@cmdexec_success_code	=]	code

Is	the	value	returned	by	a	CmdExec	subsystem	command	to	indicate	that

command	executed	successfully.	code	is	int,	with	a	default	of	0.

[@on_success_action	=]	success_action

Is	the	action	to	perform	if	the	step	succeeds.	success_action	is	tinyint,	and
can	be	one	of	these	values.

Value Description	(action)
1	(default) Quit	with	success
2 Quit	with	failure
3 Go	to	next	step
4 Go	to	step	on_success_step_id

[@on_success_step_id	=]	success_step_id

Is	the	ID	of	the	step	in	this	job	to	execute	if	the	step	succeeds	and
success_action	is	4.	success_step_id	is	int,	with	a	default	of	0.

[@on_fail_action	=]	fail_action

Is	the	action	to	perform	if	the	step	fails.	fail_action	is	tinyint,	and	can	be	one
of	these	values.

Value Description	(action)
1 Quit	with	success
2	(default) Quit	with	failure
3 Go	to	next	step
4 Go	to	step	on_fail_step_id

[@on_fail_step_id	=]	fail_step_id

Is	the	ID	of	the	step	in	this	job	to	execute	if	the	step	fails	and	fail_action	is	4.
fail_step_id	is	int,	with	a	default	of	0.

[@server	=]	'server'

Reserved.	server	is	nvarchar(30),	with	a	default	of	NULL.

[@database_name	=]	'database'

Is	the	name	of	the	database	in	which	to	execute	a	TSQL	step.	database	is
sysname,	with	a	default	of	NULL,	in	which	case	the	master	database	is
used.

[@database_user_name	=]	'user'

Is	the	name	of	the	user	account	to	use	when	executing	a	TSQL	step.	user	is
sysname,	with	a	default	of	NULL.	When	user	is	NULL,	the	step	runs	in	the
job	owner's	user	context	on	database.

[@retry_attempts	=]	retry_attempts

Is	the	number	of	retry	attempts	to	use	if	this	step	fails.	retry_attempts	is	int,
with	a	default	of	0,	which	indicates	no	retry	attempts.

[@retry_interval	=]	retry_interval

Is	the	amount	of	time	in	minutes	between	retry	attempts.	retry_interval	is	int,
with	a	default	of	0,	which	indicates	a	0-minute	interval.

[@os_run_priority	=]	run_priority

Reserved.

[@output_file_name	=]	'file_name'

Is	the	name	of	the	file	in	which	the	output	of	this	step	is	saved.	file_name	is
nvarchar(200),	with	a	default	of	NULL.	file_name	can	include	one	or	more
of	the	tokens	listed	under	command.	This	parameter	is	valid	only	with
commands	running	on	the	TSQL	or	CmdExec	subsystems.

[@flags	=]	flags

Is	an	option	that	controls	behavior.	flags	is	int,	and	can	be	one	of	these
values.

Value Description
2 Append	to	output	file
4 Overwrite	output	file
0	(default) No	options	set

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
SQL	Server	Enterprise	Manager	provides	an	easy,	graphical	way	to	manage	jobs,
and	is	the	recommended	way	to	create	and	manage	the	job	infrastructure.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	creates	a	job	step	that	changes	database	access	to	read-only	for	a
database	named	sales.	In	addition,	this	example	specifies	five	retry	attempts
every	5	minutes.

Note		This	example	assumes	that	the	Weekly	Sales	Data	Backup	job	already
exists.

USE	msdb
EXEC	sp_add_jobstep	@job_name	=	'Weekly	Sales	Data	Backup',
			@step_name	=	'Set	database	to	read	only',
			@subsystem	=	'TSQL',
			@command	=	'exec	sp_dboption	''sales'',	''read	only'',	''true''',	
			@retry_attempts	=	5,
			@retry_interval	=	5

See	Also

Modifying	and	Viewing	Jobs

sp_add_job

JavaScript:hhobj_1.Click()

sp_add_jobschedule

sp_delete_jobstep

sp_help_job

sp_help_jobstep

sp_update_jobstep

System	Stored	Procedures

Transact-SQL	Reference

sp_addlinkedserver
Creates	a	linked	server,	which	allows	access	to	distributed,	heterogeneous
queries	against	OLE	DB	data	sources.	After	creating	a	linked	server	with
sp_addlinkedserver,	this	server	can	then	execute	distributed	queries.	If	the
linked	server	is	defined	as	Microsoft®	SQL	Server™,	remote	stored	procedures
can	be	executed.

Syntax
sp_addlinkedserver	[@server	=]	'server'	
				[,	[@srvproduct	=]	'product_name']	
				[,	[@provider	=]	'provider_name']	
				[,	[@datasrc	=]	'data_source']	
				[,	[@location	=]	'location']	
				[,	[@provstr	=]	'provider_string']	
				[,	[@catalog	=]	'catalog']

Arguments
[@server	=]	'server'

Is	the	local	name	of	the	linked	server	to	create.	server	is	sysname,	with	no
default.

With	multiple	instances	of	SQL	Server,	server	may	be
servername\instancename.	The	linked	server	then	may	be	referenced	as	the
data	source	for

SELECT	*FROM				[servername\instancename.]pubs.dbo.authors.	

If	data_source	is	not	specified,	server	is	the	actual	name	of	the	instance.

[@srvproduct	=]	'product_name'

Is	the	product	name	of	the	OLE	DB	data	source	to	add	as	a	linked	server.
product_name	is	nvarchar(128),	with	a	default	of	NULL.	If	SQL	Server,
provider_name,	data_source,	location,	provider_string,	and	catalog	do	not

need	to	be	specified.

[@provider	=]	'provider_name'

Is	the	unique	programmatic	identifier	(PROGID)	of	the	OLE	DB	provider
corresponding	to	this	data	source.	provider_name	must	be	unique	for	the
specified	OLE	DB	provider	installed	on	the	current	computer.
provider_name	is	nvarchar(128),	with	a	default	of	NULL.	The	OLE	DB
provider	is	expected	to	be	registered	with	the	given	PROGID	in	the	registry.

[@datasrc	=]	'data_source'

Is	the	name	of	the	data	source	as	interpreted	by	the	OLE	DB	provider.
data_source	is	nvarchar(4000),	with	a	default	of	NULL.	data_source	is
passed	as	the	DBPROP_INIT_DATASOURCE	property	to	initialize	the	OLE
DB	provider.

When	the	linked	server	is	created	against	the	SQL	Server	OLE	DB	provider,
data_source	can	be	specified	in	the	form	of	servername\instancename,
which	can	be	used	to	connect	to	a	specific	instance	of	SQL	Server	running	on
the	specified	computer.	servername	is	the	name	of	the	computer	on	which
SQL	Server	is	running,	and	instancename	is	the	name	of	the	specific	SQL
Server	instance	to	which	the	user	will	be	connected.

[@location	=]	'location'

Is	the	location	of	the	database	as	interpreted	by	the	OLE	DB	provider.
location	is	nvarchar(4000),	with	a	default	of	NULL.	location	is	passed	as
the	DBPROP_INIT_LOCATION	property	to	initialize	the	OLE	DB	provider.

[@provstr	=]	'provider_string'

Is	the	OLE	DB	provider-specific	connection	string	that	identifies	a	unique
data	source.	provider_string	is	nvarchar(4000),	with	a	default	of	NULL.
provstr	is	passed	as	the	DBPROP_INIT_PROVIDERSTRING	property	to
initialize	the	OLE	DB	provider.

When	the	linked	server	is	created	against	the	SQL	Server	OLE	DB	provider,
the	instance	can	be	specified	using	the	SERVER	keyword	as
SERVER=servername\instancename	to	specify	a	specific	instance	of	SQL
Server.	servername	is	the	name	of	the	computer	on	which	SQL	Server	is
running,	and	instancename	is	the	name	of	the	specific	SQL	Server	instance

to	which	the	user	will	be	connected.

[@catalog	=]	'catalog'

Is	the	catalog	to	be	used	when	making	a	connection	to	the	OLE	DB	provider.
catalog	is	sysname,	with	a	default	of	NULL.	catalog	is	passed	as	the
DBPROP_INIT_CATALOG	property	to	initialize	the	OLE	DB	provider.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
sp_addlinkedserver	returns	this	message	if	no	parameters	are	specified:

Procedure	'sp_addlinkedserver'	expects	parameter	'@server',	which	was	not	supplied.

sp_addlinkedserver	used	with	the	appropriate	OLE	DB	provider	and
parameters	returns	this	message:

Server	added.

Remarks
The	following	table	shows	the	ways	that	a	linked	server	can	be	set	up	for	data
sources	accessible	through	OLE	DB.	A	linked	server	can	be	set	up	using	more
than	one	way	for	a	given	data	source;	there	may	be	more	than	one	row	for	a	data
source	type.	This	table	also	shows	the	sp_addlinkedserver	parameter	values	to
be	used	for	setting	up	the	linked	server.

Remote
OLE	DB
data
source

OLE	DB
provider product_name provider_name data_source

SQL	Server Microsoft
OLE	DB
Provider
for	SQL

SQL	Server	(1)
(default)

- -

Server
SQL	Server Microsoft

OLE	DB
Provider
for	SQL
Server

SQL	Server SQLOLEDB Network	name	of	SQL
Server	(for	default
instance)

SQL	Server Microsoft
OLE	DB
Provider
for	SQL
Server

- SQLOLEDB Servername\instancename
(for	specific	instance)

Oracle Microsoft
OLE	DB
Provider
for
Oracle

Any	(2) MSDAORA SQL*Net	alias	for	Oracle
database

Access/Jet Microsoft
OLE	DB
Provider
for	Jet

Any Microsoft.Jet.OLEDB.4.0 Full	path	name	of	Jet
database	file

ODBC	data
source

Microsoft
OLE	DB
Provider
for
ODBC

Any MSDASQL System	DSN	of	ODBC
data	source

ODBC	data
source

Microsoft
OLE	DB
Provider
for
ODBC

Any MSDASQL -

File	system Microsoft
OLE	DB
Provider
for
Indexing
Service

Any MSIDXS Indexing	Service	catalog
name

Microsoft
Excel
Spreadsheet

Microsoft
OLE	DB
Provider
for	Jet

Any Microsoft.Jet.OLEDB.4.0 Full	path	name	of	Excel
file

IBM	DB2
Database

Microsoft
OLE	DB
Provider
for	DB2

Any DB2OLEDB -

(1)	This	way	of	setting	up	a	linked	server	forces	the	name	of	the	linked	server	to	be	the	same	as	the
network	name	of	the	remote	SQL	Server.	Use	server	to	specify	the	server.
(2)	"Any"	indicates	that	the	product	name	can	be	anything.

The	data_source,	location,	provider_string,	and	catalog	parameters	identify	the
database(s)	the	linked	server	points	to.	If	any	of	these	parameters	are	NULL,	the
corresponding	OLE	DB	initialization	property	is	not	set.

Note		To	use	the	Microsoft	OLE	DB	Provider	for	SQL	Server	2000	in	SQL
Server	version	6.x,	run	the	\Microsoft	SQL	Server\MSSQL\Install\Instcat.sql
script	against	the	version	6.x	SQL	Server.	This	script	is	essential	for	running
distributed	queries	against	an	SQL	Server	6.x	server.

In	a	clustered	environment,	when	specifying	file	names	to	point	to	OLE	DB	data
sources,	use	the	universal	naming	convention	name	(UNC)	or	a	shared	drive	to
specify	the	location

Permissions
Execute	permissions	default	to	members	of	the	sysadmin	and	setupadmin	fixed
server	roles.

Examples

A.	Use	the	Microsoft	OLE	DB	Provider	for	SQL	Server
1.	 Creating	a	linked	server	using	OLE	DB	for	SQL	Server

This	example	creates	a	linked	server	named	SEATTLESales	that	uses
the	Microsoft	OLE	DB	Provider	for	SQL	Server.

USE	master
GO
EXEC	sp_addlinkedserver	
				'SEATTLESales',
				N'SQL	Server'
GO

2.	 Creating	a	linked	server	on	an	instance	of	SQL	Server

This	example	creates	a	linked	server	S1_instance1	on	an	instance	of
SQL	Server,	using	the	OLE	DB	Provider	for	SQL	Server.

EXEC				sp_addlinkedserver				@server='S1_instance1',	@srvproduct='',
																																@provider='SQLOLEDB',	@datasrc='S1\instance1'

B.	Use	the	Microsoft	OLE	DB	Provider	for	Jet
This	example	creates	a	linked	server	named	SEATTLE	Mktg.

Note		This	example	assumes	that	both	Microsoft	Access	and	the	sample
Northwind	database	are	installed	and	that	the	Northwind	database	resides	in
C:\Msoffice\Access\Samples.

USE	master
GO
--	To	use	named	parameters:
EXEC	sp_addlinkedserver	
			@server	=	'SEATTLE	Mktg',	
			@provider	=	'Microsoft.Jet.OLEDB.4.0',	
			@srvproduct	=	'OLE	DB	Provider	for	Jet',
			@datasrc	=	'C:\MSOffice\Access\Samples\Northwind.mdb'
GO
--	OR	to	use	no	named	parameters:
USE	master
GO
EXEC	sp_addlinkedserver	
			'SEATTLE	Mktg',	

			'OLE	DB	Provider	for	Jet',
			'Microsoft.Jet.OLEDB.4.0',	
			'C:\MSOffice\Access\Samples\Northwind.mdb'
GO

C.	Use	the	Microsoft	OLE	DB	Provider	for	Oracle
This	example	creates	a	linked	server	named	LONDON	Mktg	that	uses	the
Microsoft	OLE	DB	Provider	for	Oracle	and	assumes	that	the	SQL*Net	alias	for
the	Oracle	database	is	MyServer.

USE	master
GO
--	To	use	named	parameters:
EXEC	sp_addlinkedserver
			@server	=	'LONDON	Mktg',
			@srvproduct	=	'Oracle',
			@provider	=	'MSDAORA',
			@datasrc	=	'MyServer'
GO
--	OR	to	use	no	named	parameters:
USE	master
GO
EXEC	sp_addlinkedserver	
			'LONDON	Mktg',	
			'Oracle',	
			'MSDAORA',
			'MyServer'
GO

D.	Use	the	Microsoft	OLE	DB	Provider	for	ODBC	with	the
data_source	parameter
This	example	creates	a	linked	server	named	SEATTLE	Payroll	that	uses	the
Microsoft	OLE	DB	Provider	for	ODBC	and	the	data_source	parameter.

Note		The	specified	ODBC	data	source	name	must	be	defined	as	System	DSN	in
the	server	before	executing	sp_addlinkedserver.

USE	master
GO
--	To	use	named	parameters:
EXEC	sp_addlinkedserver	
			@server	=	'SEATTLE	Payroll',	
			@provider	=	'MSDASQL',	
			@datasrc	=	'LocalServer'
GO
--	OR	to	use	no	named	parameters:
USE	master
GO
EXEC	sp_addlinkedserver	
			'SEATTLE	Payroll',	
			'',	
			'MSDASQL',
			'LocalServer'
GO

E.	Use	the	Microsoft	OLE	DB	Provider	for	ODBC	with	the
provider_string	parameter
This	example	creates	a	linked	server	named	LONDON	Payroll	that	uses	the
Microsoft	OLE	DB	Provider	for	ODBC	and	the	provider_string	parameter.

Note		For	more	information	about	ODBC	connect	strings,	see
SQLDriverConnect	and	How	to	allocate	handles	and	connect	to	SQL	Server
(ODBC).

USE	master
GO
--	To	use	named	parameters:
EXEC	sp_addlinkedserver	
			@server	=	'LONDON	Payroll',	

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

			@provider	=	'MSDASQL',
			@provstr	=	'DRIVER={SQL	Server};SERVER=MyServer;UID=sa;PWD=;'
GO
--	OR	to	use	no	named	parameters:
USE	master
GO
EXEC	sp_addlinkedserver	
			'LONDON	Payroll',	
			'',	
			'MSDASQL',
			NULL,
			NULL,
			'DRIVER={SQL	Server};SERVER=MyServer;UID=sa;PWD=;'
GO

F.	Use	the	Microsoft	OLE	DB	Provider	for	Jet	on	an	Excel
Spreadsheet
To	create	a	linked	server	definition	using	the	Microsoft	OLE	DB	Provider	for	Jet
to	access	an	Excel	spreadsheet,	first	create	a	named	range	in	Excel	specifying	the
columns	and	rows	of	the	Excel	worksheet	to	select.	The	name	of	the	range	can
then	be	referenced	as	a	table	name	in	a	distributed	query.

EXEC	sp_addlinkedserver	'ExcelSource',
			'Jet	4.0',
			'Microsoft.Jet.OLEDB.4.0',
			'c:\MyData\DistExcl.xls',
			NULL,
			'Excel	5.0'
GO

In	order	to	access	data	from	an	Excel	spreadsheet,	associate	a	range	of	cells	with
a	name.	A	given	named	range	can	be	accessed	by	using	the	name	of	the	range	as
the	table	name.	The	following	query	can	be	used	to	access	a	named	range	called
SalesData	using	the	linked	server	set	up	as	above.

SELECT	*
FROM	EXCEL...SalesData
GO

G.	Use	the	Microsoft	OLE	DB	Provider	for	Indexing	Service
This	example	creates	a	linked	server	and	uses	OPENQUERY	to	retrieve
information	from	both	the	linked	server	and	the	file	system	enabled	for	Indexing
Service.

EXEC	sp_addlinkedserver	FileSystem,
			'Index	Server',
			'MSIDXS',
			'Web'
GO
USE	pubs
GO
IF	EXISTS(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.TABLES
						WHERE	TABLE_NAME	=	'yEmployees')
			DROP	TABLE	yEmployees
GO
CREATE	TABLE	yEmployees
	(
		id							int									NOT	NULL,
		lname				varchar(30)	NOT	NULL,
		fname				varchar(30)	NOT	NULL,
		salary			money,
		hiredate	datetime
)
GO
INSERT	yEmployees	VALUES
	(
		10,
		'Fuller',

		'Andrew',
		$60000,
		'9/12/98'
)
GO
IF	EXISTS(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.VIEWS
						WHERE	TABLE_NAME	=	'DistribFiles')
			DROP	VIEW	DistribFiles
GO
CREATE	VIEW	DistribFiles	
	AS
	SELECT	*
	FROM	OPENQUERY(FileSystem,
																	'SELECT	Directory,	
																				FileName,
																				DocAuthor,
																				Size,
																				Create,
																				Write
																		FROM	SCOPE(''	"c:\My	Documents"	'')
																		WHERE	CONTAINS(''Distributed'')	>	0	
																				AND	FileName	LIKE	''%.doc%''	')
	WHERE	DATEPART(yy,	Write)	=	1998
GO
SELECT	*	
FROM	DistribFiles
GO
SELECT	Directory,
		FileName,	
		DocAuthor,	
		hiredate
FROM	DistribFiles	D,	yEmployees	E
WHERE	D.DocAuthor	=	E.FName	+	'	'	+	E.LName

GO

H.	Use	the	Microsoft	OLE	DB	Provider	for	Jet	to	access	a	text	file
This	example	creates	a	linked	server	for	directly	accessing	text	files,	without
linking	the	files	as	tables	in	an	Access	.mdb	file.	The	provider	is
Microsoft.Jet.OLEDB.4.0	and	the	provider	string	is	'Text'.

The	data	source	is	the	full	pathname	of	the	directory	that	contains	the	text	files.
A	schema.ini	file,	which	describes	the	structure	of	the	text	files,	must	exist	in	the
same	directory	as	the	text	files.	For	more	information	about	creating	a
schema.ini	file,	refer	to	Jet	Database	Engine	documentation.

--Create	a	linked	server
EXEC	sp_addlinkedserver	txtsrv,	'Jet	4.0',	
			'Microsoft.Jet.OLEDB.4.0',
			'c:\data\distqry',
			NULL,
			'Text'
GO

--Set	up	login	mappings
EXEC	sp_addlinkedsrvlogin	txtsrv,	FALSE,	Admin,	NULL
GO

--List	the	tables	in	the	linked	server
EXEC	sp_tables_ex	txtsrv
GO

--Query	one	of	the	tables:	file1#txt
--using	a	4-part	name	
SELECT	*	
FROM	txtsrv...[file1#txt]

I.	Use	the	Microsoft	OLE	DB	Provider	for	DB2

This	example	creates	a	linked	server	named	DB2	that	uses	the	Microsoft	OLE
DB	Provider	for	DB2.

EXEC	sp_addlinkedserver
			@server='DB2',
			@srvproduct='Microsoft	OLE	DB	Provider	for	DB2',
			@catalog='DB2',
			@provider='DB2OLEDB',
			@provstr='Initial	Catalog=PUBS;Data	Source=DB2;HostCCSID=1252;Network	Address=XYZ;Network	Port=50000;Package	Collection=admin;Default	Schema=admin;'

See	Also

Configuring	Linked	Servers

OLE	DB	Providers	Tested	with	SQL	Server

sp_addlinkedsrvlogin

sp_addserver

sp_dropserver

sp_serveroption

sp_setnetname

System	Stored	Procedures

System	Tables

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Transact-SQL	Reference

sp_addlinkedsrvlogin
Creates	or	updates	a	mapping	between	logins	on	the	local	instance	of
Microsoft®	SQL	Server™	and	remote	logins	on	the	linked	server.

Syntax
sp_addlinkedsrvlogin	[@rmtsrvname	=]	'rmtsrvname'	
				[,	[@useself	=]	'useself']	
				[,	[@locallogin	=]	'locallogin']	
				[,	[@rmtuser	=]	'rmtuser']	
				[,	[@rmtpassword	=]	'rmtpassword']

Arguments
[@rmtsrvname	=]	'rmtsrvname'

Is	the	name	of	a	linked	server	that	the	login	mapping	applies	to.	rmtsrvname
is	sysname,	with	no	default.

[@useself	=]	'useself'

Determines	the	name	of	the	login	used	to	connect	to	the	remote	server.
useself	is	varchar(8),	with	a	default	of	TRUE.	A	value	of	true	specifies	that
SQL	Server	authenticated	logins	use	their	own	credentials	to	connect	to
rmtsrvname,	with	the	rmtuser	and	rmtpassword	arguments	being	ignored.
false	specifies	that	the	rmtuser	and	rmtpassword	arguments	are	used	to
connect	to	rmtsrvname	for	the	specified	locallogin.	If	rmtuser	and
rmtpassword	are	also	set	to	NULL,	no	login	or	password	is	used	to	connect
to	the	linked	server.	true	for	useself	is	invalid	for	a	Windows	NT
authenticated	login	unless	the	Microsoft	Windows	NT®	environment
supports	security	account	delegation	and	the	provider	supports	Windows
Authentication	(in	which	case	creating	a	mapping	with	a	value	of	true	is	no
longer	required	but	still	valid).

[@locallogin	=]	'locallogin'

Is	a	login	on	the	local	server.	locallogin	is	sysname,	with	a	default	of	NULL.
NULL	specifies	that	this	entry	applies	to	all	local	logins	that	connect	to

rmtsrvname.	If	not	NULL,	locallogin	can	be	a	SQL	Server	login	or	a
Windows	NT	user.	The	Windows	NT	user	must	have	been	granted	access	to
SQL	Server	either	directly,	or	through	its	membership	in	a	Windows	NT
group	granted	access.

[@rmtuser	=]	'rmtuser'

Is	the	username	used	to	connect	to	rmtsrvname	when	useself	is	false.	rmtuser
is	sysname,	with	a	default	of	NULL.

[@rmtpassword	=]	'rmtpassword'

Is	the	password	associated	with	rmtuser.	rmtpassword	is	sysname,	with	a
default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
When	a	user	logs	on	to	the	local	server	and	executes	a	distributed	query	that
accesses	a	table	on	the	linked	server,	the	local	server	must	log	on	to	the	linked
server	on	behalf	of	the	user	to	access	that	table.	Use	sp_addlinkedsrvlogin	to
specify	the	login	credentials	that	the	local	server	uses	to	log	on	to	the	linked
server.

A	default	mapping	between	all	logins	on	the	local	server	and	remote	logins	on
the	linked	server	is	automatically	created	by	executing	sp_addlinkedserver.	The
default	mapping	states	that	SQL	Server	uses	the	local	login's	user	credentials
when	connecting	to	the	linked	server	on	behalf	of	the	login	(equivalent	to
executing	sp_addlinkedsrvlogin	with	@useself	set	to	true	for	the	linked
server).	Use	sp_addlinkedsrvlogin	only	to	change	the	default	mapping	or	to	add
new	mappings	for	specific	local	logins.	To	delete	the	default	mapping	or	any
other	mapping,	use	sp_droplinkedsrvlogin.

Rather	than	having	to	use	sp_addlinkedsrvlogin	to	create	a	predetermined	login
mapping,	SQL	Server	can	automatically	use	the	Windows	NT	security
credentials	(Windows	NT	username	and	password)	of	a	user	issuing	the	query	to
connect	to	a	linked	server	when	all	these	conditions	exist:

A	user	is	connected	to	SQL	Server	using	Windows	Authentication
Mode.

Security	account	delegation	is	available	on	the	client	and	sending
server.

The	provider	supports	Windows	Authentication	Mode	(for	example,
SQL	Server	running	on	Windows	NT).

After	the	authentication	has	been	performed	by	the	linked	server	using	the
mappings	defined	by	executing	sp_addlinkedsrvlogin	on	the	local	SQL	Server,
the	permissions	on	individual	objects	in	the	remote	database	are	determined	by
the	linked	server,	not	the	local	server.

sp_addlinkedsrvlogin	cannot	be	executed	from	within	a	user-defined
transaction.

Permissions
Only	members	of	the	sysadmin	and	securityadmin	fixed	server	roles	can
execute	sp_addlinkedsrvlogin.

Examples

A.	Connect	all	local	logins	to	the	linked	server	using	their	own
user	credentials
This	example	creates	a	mapping	to	ensure	that	all	logins	to	the	local	server
connect	through	to	the	linked	server	Accounts	using	their	own	user	credentials.

EXEC	sp_addlinkedsrvlogin	'Accounts'

Or

EXEC	sp_addlinkedsrvlogin	'Accounts',	'true'

B.	Connect	all	local	logins	to	the	linked	server	using	a	specified

user	and	password
This	example	creates	a	mapping	to	ensure	that	all	logins	to	the	local	server
connect	through	to	the	linked	server	Accounts	using	the	same	login	SQLUser
and	password	Password.

EXEC	sp_addlinkedsrvlogin	'Accounts',	'false',	NULL,	'SQLUser',	'Password'

C.	Connect	all	local	logins	to	the	linked	server	without	using	any
user	credentials
This	example	creates	a	mapping	to	ensure	that	all	logins	to	the	local	server
connect	through	to	the	linked	server	mydb	without	using	a	login	or	password
(mydb	does	not	require	a	login	or	password).

EXEC	sp_addlinkedsrvlogin	'mydb',	'false',	NULL,	NULL,	NULL

-or-

EXEC	sp_addlinkedsrvlogin	'mydb',	'false'

D.	Connects	a	specific	login	to	the	linked	server	using	different
user	credentials
This	example	creates	a	mapping	to	ensure	that	only	the	Windows	NT	user	
Domain\Mary	connects	through	to	the	linked	server	Accounts	using	the	login
MaryP	and	password	NewPassword.

EXEC	sp_addlinkedsrvlogin	'Accounts',	'false',	'Domain\Mary',	'MaryP',	'NewPassword'

E.	Connects	a	specific	login	to	an	Excel	spreadsheet	(the	linked
server)
This	example	first	creates	a	linked	server	named	ExcelSource,	defined	as	the
Microsoft	Excel	spreadsheet	DistExcl.xls,	and	then	creates	a	mapping	to	allow
the	SQL	Server	login	sa	to	connect	through	to	ExcelSource	using	the	Excel
login	Admin	and	no	password.

EXEC	sp_addlinkedserver	'ExcelSource',	'Jet	4.0',
			'Microsoft.Jet.OLEDB.4.0',

			'c:\MyData\DistExcl.xls',
			NULL,
			'Excel	5.0'
GO
EXEC	sp_addlinkedsrvlogin	'ExcelSource',	'false',	'sa',	'Admin',	NULL

See	Also

Configuring	Linked	Servers

Security	for	Linked	Servers

sp_addlinkedserver

sp_droplinkedsrvlogin

System	Stored	Procedures

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

sp_add_log_file_recover_suspect_db
Adds	a	log	file	to	a	filegroup	when	recovery	cannot	complete	on	a	database	due
to	an	"insufficient	log	space"	(9002)	error.	After	the	file	is	added,	this	stored
procedure	turns	off	the	suspect	setting	and	completes	the	recovery	of	the
database.	The	parameters	are	the	same	as	those	for	ALTER	DATABASE	ADD
LOG	FILE.

IMPORTANT		This	stored	procedure	should	be	used	only	as	described	in	the
Troubleshooting	Recovery	section.

Syntax
sp_add_log_file_recover_suspect_db	[@dbName	=]	'database'	,	
				[@name	=]	'logical_file_name'	,	
				[@filename	=]	'os_file_name'	,	
				[@size	=]	'size'	,	
				[@maxsize	=]	'max_size'	,	
				[@filegrowth	=]	'growth_increment'

Arguments
[@dbName	=]	'database'

Is	the	name	of	the	database.	database	is	sysname,	with	no	default.

[@name	=]	'logical_file_name'

Is	the	name	used	in	Microsoft®	SQL	Server™	when	referencing	the	file.	The
name	must	be	unique	in	the	server.	logical_file_name	is	nvarchar(260),	with
no	default.

[@filename	=]	'os_file_name'

Is	the	path	and	file	name	used	by	the	operating	system	for	the	file.	The	file
must	reside	in	the	server	in	which	SQL	Server	is	installed.	os_file_name	is
nvarchar(260),	with	no	default.

[@size	=]	'size'

Is	the	initial	size	of	the	file.	The	MB	and	KB	suffixes	can	be	used	to	specify
megabytes	or	kilobytes.	The	default	is	MB.	Specify	a	whole	number;	do	not
include	a	decimal.	The	minimum	value	for	size	is	512	KB,	and	the	default	if
size	is	not	specified	is	1	MB.	size	is	nvarchar(20),	with	a	default	of		NULL.

[@maxsize	=]	'max_size'

Is	the	maximum	size	to	which	the	file	can	grow.	The	MB	and	KB	suffixes
can	be	used	to	specify	megabytes	or	kilobytes.	The	default	is	MB.	Specify	a
whole	number;	do	not	include	a	decimal.	If	max_size	is	not	specified,	the	file
will	grow	until	the	disk	is	full.	The	Microsoft	Windows	NT®	application	log
warns	an	administrator	when	a	disk	is	about	to	become	full.	max_size	is
nvarchar(20),	with	a	default	of	NULL.

[@filegrowth	=]	'growth_increment'

Is	the	amount	of	space	added	to	the	file	each	time	new	space	is	needed.	A
value	of	0	indicates	no	growth.	The	value	can	be	specified	in	MB,	KB,	or
percent	(%).	Specify	a	whole	number;	do	not	include	a	decimal.	When	%	is
specified,	the	growth	increment	is	the	specified	percentage	of	the	size	of	the
file	at	the	time	the	increment	occurs.	If	a	number	is	specified	without	an	MB,
KB,	or	%	suffix,	the	default	is	MB.	The	default	value	if	growth_increment	is
not	specified	is	10%,	and	the	minimum	value	is	64	KB.	The	size	specified	is
rounded	to	the	nearest	64	KB.	growth_increment	is	nvarchar(20),	with	a
default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Permissions
Execute	permissions	default	to	members	of	the	sysadmin	fixed	server	role.
These	permissions	are	not	transferable.

Examples

In	this	example	database	db1	was	marked	suspect	during	recovery	due	to
insufficient	log	space	(error	9002).

sp_add_log_file_recover_suspect_db	db1,	logfile2,
			'c:\Program	Files\Microsoft	SQL	Server\MSSQL\Data\db1_logfile2.ldf',
			'1MB'

See	Also

ALTER	DATABASE

sp_add_data_file_recover_suspect_db

System	Stored	Procedures

Transact-SQL	Reference

sp_addlogin
Creates	a	new	Microsoft®	SQL	Server™	login	that	allows	a	user	to	connect	to
an	instance	of	SQL	Server	using	SQL	Server	Authentication.

Syntax
sp_addlogin	[@loginame	=]	'login'	
				[,	[@passwd	=]	'password']	
				[,	[@defdb	=]	'database']	
				[,	[@deflanguage	=]	'language']	
				[,	[@sid	=]	sid]	
				[,	[@encryptopt	=]	'encryption_option']

Arguments
[@loginame	=]	'login'

Is	the	name	of	the	login.	login	is	sysname,	with	no	default.

[@passwd	=]	'password'

Is	the	login	password.	password	is	sysname,	with	a	default	of	NULL.	After
sp_addlogin	has	been	executed,	the	password	is	encrypted	and	stored	in	the
system	tables.

[@defdb	=]	'database'

Is	the	default	database	of	the	login	(the	database	the	login	is	connected	to
after	logging	in).	database	is	sysname,	with	a	default	of	master.

[@deflanguage	=]	'language'

Is	the	default	language	assigned	when	a	user	logs	on	to	SQL	Server.
language	is	sysname,	with	a	default	of	NULL.	If	language	is	not	specified,
language	is	set	to	the	server's	current	default	language	(defined	by	the
sp_configure	configuration	variable	default	language).	Changing	the
server's	default	language	does	not	change	the	default	language	for	existing
logins.	language	remains	the	same	as	the	default	language	used	when	the
login	was	added.

[@sid	=]	sid

Is	the	security	identification	number	(SID).	sid	is	varbinary(16),	with	a
default	of	NULL.	If	sid	is	NULL,	the	system	generates	a	SID	for	the	new
login.		Despite	the	use	of	a	varbinary	data	type,	values	other	than	NULL
must	be	exactly	16	bytes	in	length,	and	must	not	already	exist.	SID	is	useful,
for	example,	when	you	are	scripting	or	moving	SQL	Server	logins	from	one
server	to	another	and	you	want	the	logins	to	have	the	same	SID	between
servers.

[@encryptopt	=]	'encryption_option'

Specifies	whether	the	password	is	encrypted	when	stored	in	the	system
tables.	encryption_option	is	varchar(20),	and	can	be	one	of	these	values.

Value Description
NULL The	password	is	encrypted.	This	is	the	default.
skip_encryption The	password	is	already	encrypted.	SQL	Server

should	store	the	value	without	re-encrypting	it.
skip_encryption_old The	supplied	password	was	encrypted	by	a

previous	version	of	SQL	Server.		SQL	Server
should	store	the	value	without	re-encrypting	it.
This	option	is	provided	for	upgrade	purposes	only.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
SQL	Server	logins	and	passwords	can	contain	from	1	through	128	characters,
including	letters,	symbols,	and	numbers.	However,	logins	cannot:

Contain	a	backslash	(\).

Be	a	reserved	login	name,	for	example	sa	or	public,	or	already	exist.

Be	NULL	or	an	empty	string	('').

If	the	name	of	a	default	database	is	supplied,	you	can	connect	to	the	specified
database	without	executing	the	USE	statement.	However,	you	cannot	use	the
default	database	until	given	access	to	that	database	by	the	database	owner	(using
sp_adduser	or	sp_addrolemember)	or	sp_addrole.

The	SID	number	is	the	unique	Microsoft	Windows	NT®	user	identification
number.	The	SID	is	guaranteed	to	unique	for	each	user	in	a	Windows	NT
domain.	SQL	Server	automatically	uses	the	Windows	NT	SID	to	identify
Windows	NT	users	and	groups,	and	generates	a	SID	for	SQL	Server	logins.

Using	skip_encryption	to	suppress	password	encryption	is	useful	if	the
password	is	already	in	encrypted	form	when	the	login	is	added	to	SQL	Server.	If
the	password	was	encrypted	by	a	previous	version	of	SQL	Server,	use
skip_encryption_old.

sp_addlogin	cannot	be	executed	from	within	a	user-defined	transaction.

This	table	shows	several	stored	procedures	used	in	conjunction	with
sp_addlogin.

Stored	procedure Description
sp_grantlogin Adds	a	Windows	NT	user	or	group.
sp_password Changes	a	user's	password.
sp_defaultdb Changes	a	user's	default	database.
sp_defaultlanguage Changes	a	user's	default	language.

Permissions
Only	members	of	the	sysadmin	and	securityadmin	fixed	server	roles	can
execute	sp_addlogin.

Examples

A.	Create	a	login	ID	with	no	password	and	master	default
database

This	example	creates	an	SQL	Server	login	for	the	user	Victoria,	without
specifying	a	password	or	default	database.

EXEC	sp_addlogin	'Victoria'

B.	Create	a	login	ID	and	default	database
This	example	creates	a	SQL	Server	login	for	the	user	Albert,	with	a	password	of
food	and	a	default	database	of	corporate.

EXEC	sp_addlogin	'Albert',	'food',	'corporate'

C.	Create	a	login	ID	with	a	different	default	language
This	example	creates	an	SQL	Server	login	for	the	user	Claire	Picard,	with	a
password	of	caniche,	a	default	database	of	public_db,	and	a	default	language	of
French.

EXEC	sp_addlogin	'Claire	Picard',	'caniche',	'public_db',	'french'

D.	Create	a	login	ID	with	a	specific	SID
This	example	creates	an	SQL	Server	login	for	the	user	Michael,	with	a	password
of	chocolate,	a	default	database	of	pubs,	a	default	language	of	us_english,	and
an	SID	of	0x0123456789ABCDEF0123456789ABCDEF.

EXEC	sp_addlogin	'Michael',	'chocolate',	'pubs',	'us_english',	0x0123456789ABCDEF0123456789ABCDEF

E.	Create	a	login	ID	and	do	not	encrypt	the	password
This	example	creates	an	SQL	Server	login	for	the	user	Margaret	with	a
password	of	Rose	on	Server1,	extracts	the	encrypted	password,	and	then	adds
the	login	for	the	user	Margaret	to	Server2	using	the	previously	encrypted
password	but	does	not	further	encrypt	the	password.	User	Margaret	can	then	log
on	to	Server2	using	the	password	Rose.

--	Server1
EXEC	sp_addlogin	Margaret,	Rose

--Results

New	login	created.

--	Extract	encrypted	password	for	Margaret
SELECT	CONVERT(VARBINARY(32),	password)
			FROM	syslogins	
			WHERE	name	=	'Margaret'

--Results
--	
0x2131214A212B57304F5A552A3D513453

(1	row(s)	affected)

--	Server2
EXEC	sp_addlogin	'Margaret',	0x2131214A212B57304F5A552A3D513453,	
			@encryptopt	=	'skip_encryption'

See	Also

sp_addrole

sp_addrolemember

sp_adduser

sp_defaultdb

sp_defaultlanguage

sp_droplogin

sp_grantlogin

sp_helpuser

sp_password

sp_revokelogin

xp_logininfo

Transact-SQL	Reference

sp_add_log_shipping_database
Specifies	that	a	database	on	the	primary	server	is	being	log	shipped.

Syntax
sp_add_log_shipping_database	[@db_name	=]	'db_name'	,	
				[@maintenance_plan_id	=]	maintenance_plan_id

Arguments
[@db_name	=]	'db_name'

The	name	of	the	database	log	shipped.	The	name	must	exist	in	sysdatabases.
db_name	is	sysname.

[@maintenance_plan_id	=]	maintenance_plan_id

The	maintenance	plan	responsible	for	backing	up	the	transaction	log	of	this
database.	maintenance_plan_id	is	uniqueidentifier,	with	a	default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_add_log_shipping_database.

Examples

EXEC			msdb.dbo.sp_add_log_shipping_database	N'pubs'

Transact-SQL	Reference

sp_add_log_shipping_plan
Creates	a	new	log	shipping	plan.	Inserts	a	row	in	the	log_shipping_plans	table.

Syntax
sp_add_log_shipping_plan	[@plan_name	=]	'plan_name'	,	
				[@description	=]	'description'	,	
				[@source_server	=]	'source_server'	,	
				[@source_dir	=]	'source_dir'	,	
				[@destination_dir	=]	'destination_dir'	,	
				[@history_retention_period	=]	history_retention_period	,	
				[@file_retention_period	=]	file_retention_period	,	
				[@copy_frequency	=]	copy_frequency	,	
				[@restore_frequency	=]	restore_frequency	,	
				[@plan_id	=]	plan_id	OUTPUT

Arguments
[@plan_name	=]	'plan_name'

Is	the	name	of	the	plan.	The	name	must	be	unique	and	cannot	contain	the
percent	(%)	character.	plan_name	is	sysname,	with	no	default.

[@description	=]	'description'

Is	the	description	of	the	plan.	description	is	nvarchar(500),	and	the	default
is	NULL.

[@source_server	=]	'source_server'

Is	the	name	of	the	source	server.	source_server	is	sysname.

[@source_dir	=]	'source_dir'

Is	the	full	path	to	the	directory	from	which	the	transaction	log	files	will	be
copied.	source_dir	is	nvarchar(500).

[@destination_dir	=]	'destination_dir'

Is	the	directory	in	which	the	transaction	log	is	to	be	copied.	destination_dir	is

nvarchar(500).

[@history_retention_period	=]	history_retention_period

Is	the	length	of	time	in	minutes	in	which	the	history	is	retained	in	the
log_shipping_history	table	before	deletion.	history_retention_period	is	int,
with	a	default	of	2,880	minutes	(two	days).

[@file_retention_period	=]	file_retention_period

Is	the	length	of	time	in	minutes	in	which	the	transaction	log	files	are	stored
on	the	secondary	server	before	deletion.	file_retention_period	is	int,	with	a
default	of	2,880	minutes	(two	days).

[@copy_frequency	=]	copy_frequency

Is	the	frequency	in	minutes	in	which	the	plan	is	copied.	copy_frequency	is
int,	with	a	default	of	five	minutes.

[@restore_frequency	=]	restore_frequency

Is	the	frequency	in	minutes	in	which	the	restore	job	for	this	plan	takes	place.
restore_frequency	is	int,	with	a	default	of	five	minutes.

[@plan_id	=]	plan_id	OUTPUT

Is	the	plan	identification	number	assigned	to	the	plan	that	was	created
successfully.	plan_id	is	an	output	variable	of	type	uniqueidentifier,	with	a
default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_add_log_shipping_plan	also	can	be	used	to	create	two	jobs	to	perform	the
copy	and	load	for	this	plan.

After	sp_add_log_shipping_plan	executes	successfully,	sp_add_log_shipping
plan_database	can	be	executed	to	add	databases	to	the	plan.

Permissions

Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_add_log_shipping_plan.

Examples

EXEC			msdb.dbo.sp_add_log_shipping_plan
			@plan_name=N'Pubs	database	backup'
			@description=	N'Log	shipping	the	pubs	database',
			@source_server=	N'my_source',
			@source_dir=	N'\\my_source\pubs_logshipping',
			@destination_dir=	N'c:\logshipping\pubs',
			@history_retention_period=	60,		--	1	hour
			@file_retention_period=	1440,		--	1	day
			@copy_frequency=	10,		--	copy	files	every	10	minutes
			@restore_frequency=	30		--	load	files	every	30	minutes

Transact-SQL	Reference

sp_add_log_shipping_plan_database
Adds	a	new	database	to	an	existing	log	shipping	plan.

Syntax
sp_add_log_shipping_plan_database					{	[@plan_id	=]	plan_id	|	[
@plan_name	=]	'plan_name'	}	
				{	,	[@source_database	=]	'source_database'	}	
				{	,	[@destination_database	=]	'destination_database'	}	
				[,	[@load_delay	=]	load_delay]	
				[,	[@load_all	=]	load_all]	
				[,	[@copy_enabled	=]	copy_enabled]	
				[,	[@load_enabled	=]	load_enabled]

Arguments
[@plan_id	=]	plan_id

Is	the	plan	identification	number	to	which	the	database	will	be	added.
plan_id	is	uniqueidentifier,	with	a	default	of	NULL.

[@plan_name	=]	'plan_name'

Is	the	name	of	the	plan	to	which	the	database	will	be	added.	plan_name	is
sysname,	with	a	default	of	NULL.

Note		Either	the	plan_id	or	the	plan_name	must	be	specified.	Both	cannot	be
specified	at	the	same	time.

[@source_database	=]	'source_database'

Is	the	name	of	the	database	on	the	source	server.	source_database	is
sysname,	with	no	default.

[@destination_database	=]	'destination_database'

Is	the	name	of	the	destination	database.	destination_database	is	sysname,
with	no	default.	The	destination	database	must	be	unique	in	the
log_shipping_plan_database	table.

[@load_delay	=]	load_delay

Is	the	length	of	time	in	minutes	to	wait	before	loading	the	transaction	log.
load_delay	is	int,	with	a	default	of	zero	(0).

[@load_all	=]	load_all

Specifies	that	all	newly	copied	transaction	logs	should	be	loaded	when	the
job	is	run.	If	the	value	is	set	to	zero	(0),	only	one	transaction	log	will	be
loaded	when	the	job	is	run.	If	the	value	is	one	(1),	all	copied	transaction	logs
will	be	loaded.	load_all	is	bit,	with	a	default	of	one	(1).

[@copy_enabled	=]	copy_enabled

Specifies	whether	a	copy	for	this	database	will	be	executed.	copy_enabled	is
bit.	The	value	of	one	(1)	means	a	copy	should	be	performed;	zero	(0)	means
no	copy	is	made.

[@load_enabled	=]	load_enabled

Specifies	whether	a	load	of	the	transaction	logs	for	this	database	should	be
performed.	load_enabled	is	bit.	The	value	of	one	(1)	means	a	load	should	be
performed;	zero	(0)	means	no	load	is	performed.

Return	Code	Values
0	(success)	or	1	failure

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_add_log_shipping_plan_database.

Examples
Note	this	example	assumes	that	the	'Pubs	database	backup'	plan	already	exists.

EXECUTE			msdb.dbo.sp_add_log_shipping_plan_database
			@plan_name	=	N'Pubs	database	backup',
			@source_database	=	N'Pubs',
			@destination_database	=	N'pubs_standby',

			@load_delay	=	60		––	wait	an	hour	before	loading	the	transaction	logs

Transact-SQL	Reference

sp_add_log_shipping_primary
Adds	a	new	primary	server	to	log_shipping_primaries	table.

Syntax
sp_add_log_shipping_primary					{	[@primary_server_name	=]
'primary_server_name'	,	
				{	[@primary_database_name	=]	'primary_database_name'	}	
				[,	[@maintenance_plan_id	=]	maintenance_plan_id]	
				[,	[@backup_threshold	=]	backup_threshold]	
				[,	[@threshold_alert	=]	threshold_alert]	
				[,	[@threshold_alert_enabled	=]	threshold_alert_enabled]	
				[,	[@planned_outage_start_time	=]	planned_outage_start_time]	
				[,	[@planned_outage_end_time	=]	planned_outage_end_time]	
				[,	[@planned_outage_weekday_mask	=]	planned_outage_weekday_mask
]	
				[,	[@primary_id	=]	primary_id	OUTPUT]

Arguments
[@primary_server_name	=]	'primary_server_name'

Is	the	name	of	the	primary	server.	primary_server_name	is	sysname,	with	no
default.

[@primary_database_name	=]	'primary_database_name'

Is	the	name	of	the	database	on	the	primary	server.	primary_database_name
is	sysname,	with	no	default.

[@maintenance_plan_id	=]	maintenance_plan_id

Is	the	ID	of	the	maintenance	plan	that	backs	up	the	transaction	log.
maintenance_plan_id	is	uniqueidentifier,	with	a	default	of	NULL.

[@backup_threshold	=]	backup_threshold

Is	the	length	of	time,	in	minutes,	after	the	last	backup	before	a
threshold_alert	error	is	raised.	backup_threshold	is	int,	with	a	default	of	60

minutes.

[@threshold_alert	=]	threshold_alert

Is	the	error	raised	when	the	backup	threshold	is	exceeded.	threshold_alert	is
int,	with	a	default	of	14,420.

[@threshold_alert_enabled	=]	threshold_alert_enabled

Specifies	whether	an	alert	will	be	raised	when	backup_threshold	is	exceeded.
The	value	of	one	(1),	the	default,	means	that	the	alert	will	be	raised.
threshold_alert_enabled	is	bit.

[@planned_outage_start_time	=]	planned_outage_start_time

Is	the	time,	in	HHMMSS	format,	a	planned	outage	starts.	During	a	planned
outage,	alerts	will	not	be	raised	if	the	backup	threshold	is	exceeded.
planned_outage_start_time	is	int,	with	a	default	of	zero	(0).

[@planned_outage_end_time	=]	planned_outage_end_time

Is	the	time,	in	HHMMSS	format,	a	planned	outage	ends.
planned_outage_end_time	is	int,	with	a	default	of	zero	(0).

[@planned_outage_weekday_mask	=]	planned_outage_weekday_mask

Is	the	day	of	the	week	that	a	planned	outage	occurs.
planned_outage_weekday_mask	is	int,	with	a	default	of	zero	(0).	It	can	be
one	or	more	of	the	following	values.

Value Day
1 Sunday
2 Monday
4 Tuesday
8 Wednesday
16 Thursday
32 Friday
64 Saturday

[@primary_id	=]	primary_id	OUTPUT

Is	the	unique	ID	for	the	new	primary	server	and	database	pair.	primary_id	is
uniqueidentifier.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
To	specify	that	a	primary	server	should	be	monitored,	execute
sp_add_log_shipping_primary	on	the	monitor	server.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_add_log_shipping_primary.

Transact-SQL	Reference

sp_add_log_shipping_secondary
Adds	a	secondary	server	to	log_shipping_secondaries	table.

Syntax
sp_add_log_shipping_secondary	{	[@primary_id	=]	primary_id	}	
				{	,	[@secondary_server_name	=]	'secondary_server_name'	}	
				{	,	[@secondary_database_name	=]	'seconday_database_name'	}	
				[,	[@secondary_plan_id	=]	secondary_plan_id]	
				[,	[@copy_enabled	=]	copy_enabled]	
				[,	[@load_enabled	=]	load_enabled]	
				[,	[@out_of_sync_threshold	=]	out_of_sync_threshold]	
				[,	[@threshold_alert	=]	'threshold_alert']	
				[,	[@threshold_alert_enabled	=]	threshold_alert_enabled]	
				[,	[@planned_outage_start_time	=]	planned_outage_start_time]	
				[,	[@planned_outage_end_time	=]	planned_outage_end_time]	
				[,	[@planned_outage_weekday_mask	=]	planned_outage_weekday_mask
]

Arguments
[@primary_id	=]	primary_id

Is	the	ID	of	the	primary	server.	primary_id	is	int,	with	no	default.

[@secondary_server_name	=]	'secondary_server_name'

Is	the	name	of	the	secondary	server.	secondary_server_name	is	sysname,
with	no	default.

[@secondary_database_name	=]	'seconday_database_name'

Is	the	name	of	the	secondary	database.	secondary_database_name	is
sysname,	with	no	default.

[@secondary_plan_id	=]	secondary_plan_id

Is	the	ID	of	the	log	shipping	plan	on	the	secondary	server.
secondary_plan_id	is	uniqueidentifier,	with	a	default	of	NULL.

[@copy_enabled	=]	copy_enabled

Specifies	whether	the	copy	for	the	database	is	enabled	on	the	secondary
server.	The	default	value	of	one	(1)	means	the	copy	is	enabled;	zero	(0)
means	copy	is	not	enabled.	copy_enabled	is	bit.

[@load_enabled	=]	load_enabled

Specifies	whether	the	load	for	the	database	is	enabled	on	the	secondary
server.	The	value	of	one	(1),	the	default,	means	the	load	is	enabled;	zero	(0)
indicates	it	is	not.	load_enabled	is	bit.

[@out_of_sync_threshold	=]	out_of_sync_threshold

Is	the	length	of	time,	in	minutes,	after	the	last	load	before	an	error	is	raised.
out_of_sync_threshold	is	int,	with	a	default	of	60	minutes.

[@threshold_alert	=]	'threshold_alert'

Is	the	error	raised	when	the	out-of-sync	threshold	is	exceeded.
threshold_alert	is	int,	with	a	default	of	14,421.

[@threshold_alert_enabled	=]	threshold_alert_enabled

Specifies	whether	an	alert	will	be	raised	when	an	out-of-sync	threshold	is
exceeded.	The	default	value	of	one	(1)	means	an	alert	will	be	raised;	zero	(0)
means	an	alert	will	not	be	raised.	threshold_alert_enabled	is	bit.

[@planned_outage_start_time	=]	planned_outage_start_time

Is	the	time	in	HHMMSS	format	that	a	planned	outage	begins.	During	a
planned	outage,	alerts	will	not	be	raised	if	the	out-of-sync	threshold	is
exceeded.	planned_outage_start_time	is	int,	with	a	default	of	zero	(0).

[@planned_outage_end_time	=]	planned_outage_end_time

Is	the	time	in	HHMMSS	format	that	the	planned	outage	ends.
planned_outage_end_time	is	int,	with	a	default	of	zero	(0).

[@planned_outage_weekday_mask	=]	planned_outage_weekday_mask

Is	the	day	of	the	week	that	a	planned	outage	occurs.
planned_outage_weekday_mask	is	int,	with	a	default	of	zero	(0).	It	can	be
one	or	more	of	the	following	values.

Value Day
1 Sunday
2 Monday
4 Tuesday
8 Wednesday
16 Thursday
32 Friday
64 Saturday

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
This	procedure	is	used	to	add	a	secondary	database	to	an	existing	primary
database.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_add_log_shipping_secondary.

Transact-SQL	Reference

sp_add_maintenance_plan
Adds	a	maintenance	plan	and	returns	the	plan	ID.

Syntax
sp_add_maintenance_plan	[@plan_name	=]	'plan_name'	,	
				@plan_id	=	'plan_id'	OUTPUT

Arguments
[@plan_name	=]	'plan_name'

Specifies	the	name	of	the	maintenance	plan	to	be	added.	plan_name	is
varchar(128).

@plan_id	=	'plan_id'

Specifies	the	ID	of	the	maintenance	plan.	plan_id	is	uniqueidentifier.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_add_maintenance_plan	must	be	run	from	the	msdb	database	and	creates	a
new,	but	empty,	maintenance	plan.	To	add	one	or	more	databases	and	associate
them	with	a	job	or	jobs,	execute	sp_add_maintenance_plan_db	and
sp_add_maintenance_plan_job.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_add_maintenance_plan.

Examples
Create	a	maintenance	plan	called	Myplan.

DECLARE			@myplan_id	UNIQUEIDENTIFIER
EXECUTE			sp_add_maintenance_plan	N'Myplan',@plan_id=@myplan_id	OUTPUT
PRINT			'The	id	for	the	maintenance	plan	"Myplan"	is:'+convert(varchar(256),@myplan_id)
GO

Success	in	creating	the	maintenance	plan	will	return	the	plan	ID.

'The	id	for	the	maintenance	plan	"Myplan"	is:'	FAD6F2AB-3571-11D3-9D4A-00C04FB925FC

Transact-SQL	Reference

sp_add_maintenance_plan_db
Associates	a	database	with	a	maintenance	plan.

Syntax
sp_add_maintenance_plan_db	[@plan_id	=]	'plan_id'	,	
				[@db_name	=]	'database_name'

Arguments
[@plan_id	=]	'plan_id'

Specifies	the	plan	ID	of	the	maintenance	plan.	plan_id	is	uniqueidentifier,
and	must	be	a	valid	ID.

[@db_name	=]	'database_name'

Specifies	the	name	of	the	database	to	be	added	to	the	maintenance	plan.	The
database	must	be	created	or	exist	prior	to	its	addition	to	the	plan.
database_name	is	sysname.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_add_maintenance_plan_db	must	be	run	from	the	msdb	database.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_add_maintenance_plan_db.

Examples
This	example	adds	the	Northwind	database	to	the	maintenance	plan	created	in
sp_add_maintenance_plan.

Execute			sp_add_maintenance_plan_db	N'FAD6F2AB-3571-11D3-9D4A-00C04FB925FC',N'Northwind'

Transact-SQL	Reference

sp_add_maintenance_plan_job
Associates	a	maintenance	plan	with	an	existing	job.

Syntax
sp_add_maintenance_plan_job	[@plan_id	=]	'plan_id'	
,	[@job_id	=]	'job_id'

Arguments
[@plan_id	=]	'plan_id'

Specifies	the	ID	of	the	maintenance	plan.	plan_id	is	uniqueidentifier,	and
must	be	a	valid	ID.

[@job_id	=]	'job_id'

Specifies	the	ID	of	the	job	to	be	associated	with	the	maintenance	plan.	job_id
is	uniqueidentifier,	and	must	be	a	valid	ID.	To	create	a	job	or	jobs,	execute
sp_add_job,	or	use	SQL	Server	Enterprise	Manager.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_add_maintenance_plan_job	must	be	run	from	the	msdb	database.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_add_maintenance_plan_job.

Examples
This	example	adds	the	job	"B8FCECB1-E22C-11D2-AA64-00C04F688EAE"	to
the	maintenance	plan	created	with	sp_add_maintenance_plan_job.

EXECUTE			sp_add_maintenance_plan_job	N'FAD6F2AB-3571-11D3-9D4A-00C04FB925FC',	N'B8FCECB1-E22C-11D2-AA64-00C04F688EAE'

Transact-SQL	Reference

sp_addmessage
Adds	a	new	error	message	to	the	sysmessages	table.

Syntax
sp_addmessage	[@msgnum	=]	msg_id	,					[@severity	=]	severity	,	
				[@msgtext	=]	'msg'	
				[,	[@lang	=]	'language']	
				[,	[@with_log	=]	'with_log']	
				[,	[@replace	=]	'replace']

Arguments
[@msgnum	=]	msg_id

Is	the	ID	of	the	message.	msg_id	is	int,	with	a	default	of	NULL.	Acceptable
values	for	user-defined	error	messages	start	with	50001.	The	combination	of
msg_id	and	language	must	be	unique;	an	error	is	returned	if	the	ID	already
exists	for	the	specified	language.

[@severity	=]	severity

Is	the	severity	level	of	the	error.	severity	is	smallint,	with	a	default	of	NULL.
Valid	levels	are	from	1	through	25.	Only	the	system	administrator	can	add	a
message	with	a	severity	level	from	19	through	25.

[@msgtext	=]	'msg'

Is	the	text	of	the	error	message.	msg	is	nvarchar(255),	with	a	default	of
NULL.

[@lang	=]	'language'

Is	the	language	for	this	message.	language	is	sysname,	with	a	default	of
NULL.	Because	multiple	languages	can	be	installed	on	the	same	server,
language	specifies	the	language	in	which	each	message	is	written.	When
language	is	omitted,	the	language	is	the	default	language	for	the	session.

[@with_log	=]	'with_log'

Is	whether	the	message	is	to	be	written	to	the	Microsoft®	Windows	NT®
application	log	when	it	occurs.	with_log	is	varchar(5),	with	a	default	of
FALSE.	If	true,	the	error	is	always	written	to	the	Windows	NT	application
log.	If	false,	the	error	is	not	always	written	to	the	Windows	NT	application
log	but	can	be	written,	depending	on	how	the	error	was	raised.	Only
members	of	the	sysadmin	server	role	can	use	this	option.

Note		If	a	message	is	written	to	the	Windows	NT	application	log,	it	is	also
written	to	the	Microsoft	SQL	Server™	error	log	file.

[@replace	=]	'replace'

If	specified	as	the	string	REPLACE,	an	existing	error	message	is
overwritten	with	new	message	text	and	severity	level.	replace	is	varchar(7),
with	a	default	of	NULL.	This	option	must	be	specified	if	msg_id	already
exists.	If	you	replace	a	U.S.	English	message,	the	severity	level	is	replaced
for	all	messages	in	all	other	languages	that	have	the	same	msg_id.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
For	localization,	the	U.S.	English	version	of	a	message	must	already	exist	before
the	message	in	another	language	can	be	added.	The	severity	of	the	messages
must	match.

When	localizing	messages	that	contain	parameters,	use	parameter	numbers	that
correspond	to	the	parameters	in	the	original	message.	Insert	an	exclamation	point
(!)	after	each	parameter	number.

Original	message Localized	message
'Original	message	param	1:	%s,

param	2:	%d'

'Localized	message	param	1:	%1!,

param	2:	%2!'

Because	of	language	syntax	differences,	the	parameter	numbers	in	the	localized
message	may	not	occur	in	the	same	sequence	as	in	the	original	message.

Permissions
Only	members	of	the	sysadmin	and	serveradmin	fixed	server	roles	can	execute
this	procedure.

Examples

A.	Define	a	custom	message
This	example	adds	a	custom	message	to	sysmessages.

USE	master
EXEC	sp_addmessage	50001,	16,	
			N'Percentage	expects	a	value	between	20	and	100.	
			Please	reexecute	with	a	more	appropriate	value.'

B.	Add	a	message	in	two	languages
This	example	first	adds	a	message	in	U.S.	English	and	then	adds	the	same
message	in	French.

USE	master
EXEC	sp_addmessage	@msgnum	=	60000,	@severity	=	16,	
			@msgtext	=	N'The	item	named	%s	already	exists	in	%s.',	
			@lang	=	'us_english'

EXEC	sp_addmessage	@msgnum	=	60000,	@severity	=	16,	
			@msgtext	=	N'L''élément	nommé	%1!	existe	déjà	dans	%2!',	
			@lang	=	'French'

See	Also

Error	Message	Severity	Levels

RAISERROR

sp_altermessage

sp_dropmessage

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_add_notification
Sets	up	a	notification	for	an	alert.

Syntax
sp_add_notification	[@alert_name	=]	'alert'	,	
				[@operator_name	=]	'operator'	,	
				[@notification_method	=]	notification_method

Arguments
[@alert_name	=]	'alert'

Is	the	alert	for	this	notification.	alert	is	sysname,	with	no	default.

[@operator_name	=]	'operator'

Is	the	operator	to	be	notified	when	the	alert	occurs.	operator	is	sysname,
with	no	default.

[@notification_method	=]	notification_method

Is	the	method	by	which	the	operator	is	notified.	notification_method	is
tinyint,	with	no	default.	notification_method	can	be	one	or	more	of	these
values	combined	with	an	OR	logical	operator.

Value Description
1 E-mail
2 Pager
4 net	send

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

None

Remarks
sp_add_notification	must	be	run	from	the	msdb	database.

SQL	Server	Enterprise	Manager	provides	an	easy,	graphical	way	to	manage	the
entire	alerting	system.	Using	SQL	Server	Enterprise	Manager	is	the
recommended	way	to	configure	your	alert	infrastructure.

To	send	a	notification	in	response	to	an	alert,	you	must	first	configure
Microsoft®	SQL	Server™	Agent	to	send	mail.	For	more	information,	see
Configuring	the	SQLServerAgent	Service.

If	a	failure	occurs	when	sending	an	e-mail	message	or	pager	notification,	the
failure	is	reported	in	the	SQL	Server	Agent	service	error	log.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_add_notification.

Examples
This	example	adds	an	e-mail	notification	for	the	specified	alert	(Test	Alert).

Note		This	example	assumes	that	Test	Alert	already	exists	and	that	stevenb	is	a
valid	operator	name.

USE	msdb
GO
EXEC	sp_add_notification	'Test	Alert',	'stevenb',	1

See	Also

sp_delete_notification

sp_help_notification

sp_update_notification

JavaScript:hhobj_1.Click()

System	Stored	Procedures

Transact-SQL	Reference

sp_add_operator
Creates	an	operator	(notification	recipient)	for	use	with	alerts	and	jobs.

Syntax
sp_add_operator	[@name	=]	'name'	
				[,	[@enabled	=]	enabled]	
				[,	[@email_address	=]	'email_address']	
				[,	[@pager_address	=]	'pager_address']	
				[,	[@weekday_pager_start_time	=]	weekday_pager_start_time]	
				[,	[@weekday_pager_end_time	=]	weekday_pager_end_time]	
				[,	[@saturday_pager_start_time	=]	saturday_pager_start_time]	
				[,	[@saturday_pager_end_time	=]	saturday_pager_end_time]	
				[,	[@sunday_pager_start_time	=]	sunday_pager_start_time]	
				[,	[@sunday_pager_end_time	=]	sunday_pager_end_time]	
				[,	[@pager_days	=]	pager_days]	
				[,	[@netsend_address	=]	'netsend_address']	
				[,	[@category_name	=]	'category']

Arguments
[@name	=]	'name'

Is	the	name	of	an	operator	(notification	recipient).	This	name	must	be	unique
and	cannot	contain	the	percent	(%)	character.	name	is	sysname,	with	no
default.

[@enabled	=]	enabled

Indicates	the	current	status	of	the	operator.	enabled	is	tinyint,	with	a	default
of	1	(enabled).	If	0,	the	operator	is	not	enabled	and	does	not	receive
notifications.

[@email_address	=]	'email_address'

Is	the	e-mail	address	of	the	operator.	This	string	is	passed	directly	to	the	e-
mail	system.	email_address	is	nvarchar(100),	with	a	default	of	NULL.

Note		If	email_address	or	pager_address	is	a	physical	address
('SMTP:jdoe@xyz.com')	rather	than	an	alias	('jdoe'),	the	value	must	be	enclosed
in	square	brackets:	'[SMTP:jdoe@xyz.com]'.

[@pager_address	=]	'pager_address'

Is	the	pager	address	of	the	operator.	This	string	is	passed	directly	to	the	e-
mail	system.	pager_addresss	is	narchar(100),	with	a	default	of	NULL.

[@weekday_pager_start_time	=]	weekday_pager_start_time

Is	the	time	after	which	Microsoft®	SQL	Server™	Agent	sends	pager
notification	to	the	specified	operator	on	the	weekdays,	from	Monday	through
Friday.	weekday_pager_start_time	is	int,	with	a	default	of	090000,	which
indicates	9:00	A.M.	on	a	24-hour	clock,	and	must	be	entered	using	the	form
HHMMSS.

[@weekday_pager_end_time	=]	weekday_pager_end_time

Is	the	time	after	which	SQLServerAgent	service	no	longer	sends	pager
notification	to	the	specified	operator	on	the	weekdays,	from	Monday	through
Friday.	weekday_pager_end_time	is	int,	with	a	default	of	180000,	which
indicates	6:00	P.M.	on	a	24-hour	clock,	and	must	be	entered	using	the	form
HHMMSS.

[@saturday_pager_start_time	=]	saturday_pager_start_time

Is	the	time	after	which	SQL	Server	Agent	service	sends	pager	notification	to
the	specified	operator	on	Saturdays.	saturday_pager_start_time	is	int,	with	a
default	of	090000,	which	indicates	9:00	A.M.	on	a	24-hour	clock,	and	must
be	entered	using	the	form	HHMMSS.

[@saturday_pager_end_time	=]	saturday_pager_end_time

Is	the	time	after	which	SQLServerAgent	service	no	longer	sends	pager
notification	to	the	specified	operator	on	Saturdays.	saturday_pager_end_time
is	int,	with	a	default	of	180000,	which	indicates	6:00	P.M.	on	a	24-hour
clock,	and	must	be	entered	using	the	form	HHMMSS.

[@sunday_pager_start_time	=]	sunday_pager_start_time

Is	the	time	after	which	SQLServerAgent	service	sends	pager	notification	to
the	specified	operator	on	Sundays.	sunday_pager_start_time	is	int,	with	a

default	of	090000,	which	indicates	9:00	A.M.	on	a	24-hour	clock,	and	must
be	entered	using	the	form	HHMMSS.

[@sunday_pager_end_time	=]	sunday_pager_end_time

Is	the	time	after	which	SQLServerAgent	service	no	longer	sends	pager
notification	to	the	specified	operator	on	Sundays.	sunday_pager_end_time	is
int,	with	a	default	of	180000,	which	indicates	6:00	P.M.	on	a	24-hour	clock,
and	must	be	entered	using	the	form	HHMMSS.

[@pager_days	=]	pager_days

Is	a	number	that	indicates	the	days	that	the	operator	is	available	for	pages
(subject	to	the	specified	start/end	times).	pager_days	is	tinyint,	with	a
default	of	0	indicating	the	operator	is	never	available	to	receive	a	page.	Valid
values	are	from	0	through	127.	pager_days	is	calculated	by	adding	the
individual	values	for	the	required	days.	For	example,	from	Monday	through
Friday	is	2+4+8+16+32	=	62.

Value Description
1 Sunday
2 Monday
4 Tuesday
8 Wednesday
16 Thursday
32 Friday
64 Saturday

[@netsend_address	=]	'netsend_address'

Is	the	network	address	of	the	operator	to	whom	the	network	message	is	sent.
netsend_address	is	nvarchar(100),	with	a	default	of	NULL.

[@category_name	=]	'category'

Is	the	name	of	the	category	for	this	alert.	category	is	sysname,	with	a	default
of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
sp_add_operator	must	be	run	from	the	msdb	database.

Paging	is	supported	by	the	e-mail	system,	which	must	have	an	e-mail-to-pager
capability	if	you	want	to	use	paging.

SQL	Server	Enterprise	Manager	provides	an	easy,	graphical	way	to	manage	jobs,
and	is	the	recommended	way	to	create	and	manage	the	job	infrastructure.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute	sp_add_operator.

Examples
This	example	sets	up	the	operator	information	for	janetl.	The	operator
information	is	enabled,	and	she	is	to	be	notified	by	pager	from	Monday	through
Friday	from	8	A.M.	to	5	P.M.

use	msdb
exec	sp_add_operator	@name	=	'Janet	Leverling',
			@enabled	=	1,
			@email_address	='janetl',
			@pager_address	=	'5673219@mypagerco.com',
			@weekday_pager_start_time	=	080000,
			@weekday_pager_end_time	=	170000,
			@pager_days	=	62

See	Also

sp_delete_operator

sp_help_operator

sp_update_operator

System	Stored	Procedures

Transact-SQL	Reference

sp_addremotelogin
Adds	a	new	remote	login	ID	on	the	local	server,	allowing	remote	servers	to
connect	and	execute	remote	procedure	calls.

Syntax
sp_addremotelogin	[@remoteserver	=]	'remoteserver'	
				[,	[@loginame	=]	'login']	
				[,	[@remotename	=]	'remote_name']

Arguments
[@remoteserver	=]	'remoteserver'

Is	the	name	of	the	remote	server	that	the	remote	login	applies	to.
remoteserver	is	sysname,	with	no	default.	If	only	remoteserver	is	given,	all
users	on	remoteserver	are	mapped	to	existing	logins	of	the	same	name	on	the
local	server.	The	server	must	be	known	to	the	local	server	(added	using
sp_addserver).	When	users	on	remoteserver	connect	to	the	local	server
running	Microsoft®	SQL	Server™	to	execute	a	remote	stored	procedure,
they	connect	as	the	local	login	that	matches	their	own	login	on	remoteserver.
remoteserver	is	the	server	that	initiates	the	remote	procedure	call.

[@loginame	=]	'login'

Is	the	login	ID	of	the	user	on	the	local	SQL	Server.	login	is	sysname,	with	a
default	of	NULL.	login	must	already	exist	on	the	local	SQL	Server.	If	login
is	specified,	all	users	on	remoteserver	are	mapped	to	that	specific	local	login.
When	users	on	remoteserver	connect	to	the	local	SQL	Server	to	execute	a
remote	stored	procedure,	they	connect	as	login.

[@remotename	=]	'remote_name'

Is	the	login	ID	of	the	user	on	the	remote	server.	remote_name	is	sysname,
with	a	default	of	NULL.	remote_name	must	exist	on	remoteserver.	If
remote_name	is	specified,	the	specific	user	remote_name	is	mapped	to	login
on	the	local	server.	When	remote_name	on	remoteserver	connects	to	the
local	SQL	Server	to	execute	a	remote	stored	procedure,	it	connects	as	login.

The	login	ID	of	remote_name	can	be	different	from	the	login	ID	on	the
remote	server,	login.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
To	execute	distributed	queries,	use	sp_addlinkedsrvlogin.

Every	remote	login	entry	has	a	status.	The	default	status	is	not	trusted.	When	a
remote	login	with	not	trusted	status	is	received,	SQL	Server	checks	the
password.	To	not	have	the	password	checked,	use	sp_remoteoption	to	change
the	status	to	trusted.

sp_addremotelogin	cannot	be	used	inside	a	user-defined	transaction.

Permissions
Only	members	of	the	sysadmin	and	securityadmin	fixed	server	roles	can
execute	sp_addremotelogin.

Examples

A.	Map	one	to	one
This	example	maps	remote	names	to	local	names	when	the	remote	server
Accounts	and	local	server	have	the	same	user	logins.

EXEC	sp_addremotelogin	'ACCOUNTS'

B.	Map	many	to	one
This	example	creates	an	entry	that	maps	all	users	from	the	remote	server
Accounts	to	the	local	login	ID	Albert.

EXEC	sp_addremotelogin	'ACCOUNTS',	'Albert'

C.	Use	explicit	one-to-one	mapping

This	example	maps	a	remote	login	from	the	remote	user	Chris	on	the	remote
server	Accounts	to	the	local	user	salesmgr.

EXEC	sp_addremotelogin	'ACCOUNTS',	'salesmgr',	'Chris'

See	Also

Security	for	Remote	Servers

sp_addlinkedsrvlogin

sp_addlogin

sp_addserver

sp_dropremotelogin

sp_grantlogin

sp_helpremotelogin

sp_helpserver

sp_remoteoption

sp_revokelogin

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_addrole
Creates	a	new	Microsoft®	SQL	Server™	role	in	the	current	database.

Syntax
sp_addrole	[@rolename	=]	'role'	
				[,	[@ownername	=]	'owner']

Arguments
[@rolename	=]	'role'

Is	the	name	of	the	new	role.	role	is	sysname,	with	no	default.	role	must	be	a
valid	identifier	and	must	not	already	exist	in	the	current	database.

[@ownername	=]	'owner'

Is	the	owner	of	the	new	role.	owner	is	sysname,	with	a	default	of	dbo.	owner
must	be	a	user	or	role	in	the	current	database.	When	specifying	Microsoft
Windows	NT®	users,	specify	the	name	the	Windows	NT	user	is	known	by	in
the	database	(added	using	sp_grantdbaccess).

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
SQL	Server	roles	can	contain	from	1	to	128	characters,	including	letters,
symbols,	and	numbers.	However,	roles	cannot:

Contain	a	backslash	character	(\).

Be	NULL,	or	an	empty	string	('').

After	adding	a	role,	use	sp_addrolemember	to	add	security	accounts	as
members	of	the	role.	When	using	the	GRANT,	DENY,	or	REVOKE	statements

to	apply	permissions	to	the	role,	members	of	the	role	inherit	the	permissions	as	if
the	permissions	were	applied	directly	to	their	accounts.

Note		It	is	not	possible	to	create	new	fixed	server	roles.	Roles	can	only	be
created	at	the	database	level.

sp_addrole	cannot	be	used	inside	a	user-defined	transaction.

Permissions
Only	members	of	the	sysadmin	fixed	server	role,	and	the	db_securityadmin
and	db_owner	fixed	database	roles	can	execute	sp_addrole.

Examples
This	example	adds	the	new	role	called	Managers	to	the	current	database.

EXEC	sp_addrole	'Managers'

See	Also

Creating	User-Defined	SQL	Server	Database	Roles

sp_addrolemember

sp_droprole

sp_helprole

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_addrolemember
Adds	a	security	account	as	a	member	of	an	existing	Microsoft®	SQL	Server™
database	role	in	the	current	database.

Syntax
sp_addrolemember	[@rolename	=]	'role'	,	
				[@membername	=]	'security_account'

Arguments
[@rolename	=]	'role'

Is	the	name	of	the	SQL	Server	role	in	the	current	database.	role	is	sysname,
with	no	default.

[@membername	=]	'security_account'

Is	the	security	account	being	added	to	the	role.	security_account	is	sysname,
with	no	default.	security_account	can	be	any	valid	SQL	Server	user,	SQL
Server	role,	or	any	Microsoft	Windows	NT®	user	or	group	granted	access	to
the	current	database.	When	adding	Windows	NT	users	or	groups,	specify	the
name	that	the	Windows	NT	user	or	group	is	known	by	in	the	database	(added
using	sp_grantdbaccess).

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
When	using	sp_addrolemember	to	add	a	security	account	to	a	role,	any
permissions	applied	to	the	role	are	inherited	by	the	new	member.

When	adding	a	SQL	Server	role	as	a	member	of	another	SQL	Server	role,	you
cannot	create	circular	roles.	For	example,	MyRole	cannot	be	added	as	a	member
of	YourRole	if	YourRole	is	already	a	member	of	MyRole.	Additionally,	you
cannot	add	a	fixed	database	or	fixed	server	role,	or	dbo	to	other	roles.	For

example,	the	db_owner	fixed	database	role	cannot	be	added	as	a	member	of	the
user-defined	role	YourRole.

Only	use	sp_addrolemember	to	add	a	member	to	a	SQL	Server	role.	Use
sp_addsrvrolemember	to	add	a	member	to	a	fixed	server	role.	Adding	a
member	to	a	Windows	NT®	group	in	SQL	Server	is	not	possible.

sp_addrolemember	cannot	be	used	inside	a	user-defined	transaction.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	and	the	db_owner	fixed
database	role	can	execute	sp_addrolemember	to	add	a	member	to	fixed
database	roles.	Role	owners	can	execute	sp_addrolemember	to	add	a	member
to	any	SQL	Server	role	they	own.	Members	of	the	db_securityadmin	fixed
database	role	can	add	users	to	any	user-defined	role.

Examples

A.	Add	a	Windows	NT	user
This	example	adds	the	Windows	NT	user	Corporate\JeffL	to	the	Sales	database
as	user	Jeff.	Jeff	is	then	added	to	the	Sales_Managers	role	in	the	Sales
database.

Note		Because	Corporate\JeffL	is	known	as	the	user	Jeff	in	the	Sales	database,
the	username	Jeff	must	be	specified	using	sp_addrolemember.

USE	Sales
GO
EXEC	sp_grantdbaccess	'Corporate\JeffL',	'Jeff'
GO
EXEC	sp_addrolemember	'Sales_Managers',	'Jeff'

B.	Add	a	SQL	Server	user
This	example	adds	the	SQL	Server	user	Michael	to	the	Engineering	role	in	the
current	database.

EXEC	sp_addrolemember	'Engineering',	'Michael'

See	Also

Adding	a	Member	to	a	SQL	Server	Database	Role

sp_addsrvrolemember

sp_droprolemember

sp_grantdbaccess

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_addserver
Defines	a	remote	server	or	the	name	of	the	local	Microsoft®	SQL	Server™.
sp_addserver	is	provided	for	backward	compatibility.	Use	sp_addlinkedserver.

Syntax
sp_addserver	[@server	=]	'server'	
				[,	[@local	=]	'local']	
				[,	[@duplicate_ok	=]	'duplicate_OK']

Arguments
[@server	=]	'server'

Is	the	name	of	the	server.	Server	names	must	be	unique	and	follow	the	rules
for	Microsoft	Windows	NT®	computer	names,	although	spaces	are	not
allowed.	server	is	sysname,	with	no	default.

With	multiple	instances	of	SQL	Server,	server	may	be
servername\instancename.

[@local	=]	'LOCAL'

Specifies	whether	the	server	that	is	being	added	is	a	local	or	remote	server.
@local	is	varchar(10),	with	a	default	of	NULL.	Specifying	@local	as
LOCAL	defines	@server	as	the	name	of	the	local	server	and	causes	the
@@SERVERNAME	function	to	return	server.	(The	Setup	program	sets	this
variable	to	the	computer	name	during	installation.	It	is	recommended	that	the
name	not	be	changed.	By	default,	the	computer	name	is	the	way	users
connect	to	SQL	Server	without	requiring	additional	configuration.)	The	local
definition	takes	effect	only	after	the	server	is	shut	down	and	restarted.	Only
one	local	server	can	be	defined	in	each	server.

[@duplicate_ok	=]	'duplicate_OK'

Specifies	whether	or	not	a	duplicate	server	name	is	allowed.
@duplicate_OK	is	varchar(13),	with	a	default	of	NULL.	@duplicate_OK
can	only	have	the	value	duplicate_OK	or	NULL.	If	duplicate_OK	is

specified	and	the	server	name	that	is	being	added	already	exists,	then	no
error	is	raised.	@local	must	be	specified	if	named	parameters	are	not	used.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
To	execute	a	stored	procedure	on	a	remote	server	(remote	procedure	calls)
running	an	earlier	version	of	SQL	Server,	add	the	remote	server	using
sp_addserver.	To	execute	a	stored	procedure	(or	any	distributed	query)	on	a
remote	server	running	SQL	Server	version	7.0,	use	sp_addlinkedserver	to	add
the	server.

To	set	or	clear	server	options,	use	sp_serveroption.

sp_addserver	cannot	be	used	inside	a	user-defined	transaction.

Permissions
Only	members	of	the	setupadmin	and	sysadmin	fixed	server	roles	can	execute
sp_addserver.

Examples
This	example	creates	an	entry	for	the	remote	the	server	ACCOUNTS	on	the
local	server.

sp_addserver	'ACCOUNTS'

See	Also

sp_addlinkedserver

sp_addremotelogin

sp_dropremotelogin

sp_dropserver

sp_helpremotelogin

sp_helpserver

sp_serveroption

System	Stored	Procedures

Transact-SQL	Reference

sp_addsrvrolemember
Adds	a	login	as	a	member	of	a	fixed	server	role.

Syntax
sp_addsrvrolemember	[@loginame	=]	'login'	
				,	[@rolename	=]	'role'

Arguments
[@loginame	=]	'login'

Is	the	name	of	the	login	being	added	to	the	fixed	server	role.	login	is
sysname,	with	no	default.	login	can	be	a	Microsoft®	SQL	Server™	login	or
a	Microsoft	Windows	NT®	user	account.	If	the	Windows	NT	login	has	not
already	been	granted	access	to	SQL	Server,	access	is	granted	automatically.

[@rolename	=]	'role'

Is	the	name	of	the	fixed	server	role	in	which	the	login	is	being	added.	role	is
sysname,	with	a	default	of	NULL,	and	must	be	one	of	these	values:

sysadmin

securityadmin

serveradmin

setupadmin

processadmin

diskadmin

dbcreator

bulkadmin

Return	Code	Values

0	(success)	or	1	(failure)

Remarks
When	a	login	is	added	to	a	fixed	server	role,	the	login	gains	the	permissions
associated	with	that	fixed	server	role.

The	role	membership	of	the	sa	login	cannot	be	changed.

Use	sp_addrolemember	to	add	a	member	to	a	fixed	database	or	user-defined
role.

sp_addsrvrolemember	stored	procedure	cannot	be	executed	within	a	user-
defined	transaction.

Permissions
Members	of	the	sysadmin	fixed	server	role	can	add	members	to	any	fixed	server
role.	Members	of	a	fixed	server	role	can	execute	sp_addsrvrolemember	to	add
members	only	to	the	same	fixed	server	role.

Examples
This	example	adds	the	Windows	NT	user	Corporate\HelenS	to	the	sysadmin
fixed	server	role.

EXEC	sp_addsrvrolemember	'Corporate\HelenS',	'sysadmin'

See	Also

sp_addrolemember

sp_dropsrvrolemember

System	Stored	Procedures

Transact-SQL	Reference

sp_addtask
Creates	a	scheduled	task.

sp_addtask	is	provided	for	backward	compatibility	only.	For	more	information
about	the	replacement	procedures	for	Microsoft®	SQL	Server™	version	7.0,	see
SQL	Server	Backward	Compatibility	Details.

IMPORTANT		For	more	information	about	syntax	used	in	earlier	versions	of	SQL
Server,	see	the	Microsoft	SQL	Server	Transact-SQL	Reference	for	version	6.x.

Remarks
If	you	create	a	task	by	using	sp_addtask,	the	task	can	be	deleted	only	by
sp_droptask.	For	task	management,	use	SQL	Server	Enterprise	Manager.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

sp_droptask

sp_helphistory

sp_helptask

sp_purgehistory

sp_updatetask

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_addtype
Creates	a	user-defined	data	type.

Syntax
sp_addtype	[@typename	=]	type,	
				[@phystype	=]	system_data_type	
				[,	[@nulltype	=]	'null_type']	
				[,	[@owner	=]	'owner_name']

Arguments
[@typename	=]	type

Is	the	name	of	the	user-defined	data	type.	Data	type	names	must	follow	the
rules	for	identifiers	and	must	be	unique	in	each	database.	type	is	sysname,
with	no	default.

[@phystype	=]	system_data_type

Is	the	physical,	or	Microsoft®	SQL	Server™-supplied,	data	type	(decimal,
int,	and	so	on)	on	which	the	user-defined	data	type	is	based.
system_data_type	is	sysname,	with	no	default,	and	can	be	one	of	these
values:

'binary(n)' image smalldatetime
Bit int smallint
'char(n)' 'nchar(n)' text
Datetime ntext tinyint
Decimal numeric uniqueidentifier
'decimal[(p	[,	s])]' 'numeric[(p	[,	s])]' 'varbinary(n)'
Float 'nvarchar(n)' 'varchar(n)'
'float(n)' real 	

Quotation	marks	are	required	around	all	parameters	that	have	embedded

blank	spaces	or	punctuation	marks.	For	more	information	about	available
data	types,	see	Data	Types.

n
Is	a	nonnegative	integer	indicating	the	length	for	the	chosen	data	type.

p
Is	a	nonnegative	integer	indicating	the	maximum	total	number	of	decimal
digits	that	can	be	stored,	both	to	the	left	and	to	the	right	of	the	decimal
point.	For	more	information,	see	decimal	and	numeric.	

s
Is	a	nonnegative	integer	indicating	the	maximum	number	of	decimal
digits	that	can	be	stored	to	the	right	of	the	decimal	point,	and	it	must	be
less	than	or	equal	to	the	precision.	For	more	information,	see	"decimal
and	numeric"	in	this	volume.

[@nulltype	=]	'null_type'

Indicates	the	way	the	user-defined	data	type	handles	null	values.	null_type	is
varchar(8),	with	a	default	of	NULL,	and	must	be	enclosed	in	single
quotation	marks	('NULL',	'NOT	NULL',	or	'NONULL').	If	null_type	is	not
explicitly	defined	by	sp_addtype,	it	is	set	to	the	current	default	nullability.
Use	the	GETANSINULL	system	function	to	determine	the	current	default
nullability,	which	can	be	adjusted	by	using	the	SET	statement	or
sp_dboption.	Nullability	should	be	explicitly	defined.

Note		The	null_type	parameter	only	defines	the	default	nullability	for	this	data
type.	If	nullability	is	explicitly	defined	when	the	user-defined	data	type	is	used
during	table	creation,	it	takes	precedence	over	the	defined	nullability.	For	more
information,	see	ALTER	TABLE	and	CREATE	TABLE.

[@owner	=]	'owner_name'

Specifies	the	owner	or	creator	of	the	new	data	type.	owner_name	is
sysname.	When	not	specified,	owner_name	is	the	current	user.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
A	user-defined	data	type	name	must	be	unique	in	the	database,	but	user-defined
data	types	with	different	names	can	have	the	same	definition.

Executing	sp_addtype	creates	a	user-defined	data	type	and	adds	it	to	the
systypes	system	table	for	a	specific	database,	unless	sp_addtype	is	executed
with	master	as	the	current	database.	If	the	user-defined	data	type	must	be
available	in	all	new	user-defined	databases,	add	it	to	model.	After	a	user	data
type	is	created,	you	can	use	it	in	CREATE	TABLE	or	ALTER	TABLE,	as	well	as
bind	defaults	and	rules	to	the	user-defined	data	type.

User-defined	data	types	cannot	be	defined	using	the	SQL	Server	timestamp	data
type.

Permissions
Execute	permissions	default	to	the	public	role.

Examples

A.	Create	a	user-defined	data	type	that	does	not	allow	null	values
This	example	creates	a	user-defined	data	type	named	ssn	(social	security
number)	that	is	based	on	the	SQL	Server-supplied	varchar	data	type.	The	ssn
data	type	is	used	for	columns	holding	11-digit	social	security	numbers	(999-99-
9999).	The	column	cannot	be	NULL.

Notice	that	varchar(11)	is	enclosed	in	single	quotation	marks	because	it	contains
punctuation	(parentheses).

USE	master
EXEC	sp_addtype	ssn,	'VARCHAR(11)',	'NOT	NULL'

B.	Create	a	user-defined	data	type	that	allows	null	values

This	example	creates	a	user-defined	data	type	(based	on	datetime)	named
birthday	that	allows	null	values.

USE	master
EXEC	sp_addtype	birthday,	datetime,	'NULL'

C.	Create	additional	user-defined	data	types
This	example	creates	two	additional	user-defined	data	types,	telephone	and	fax,
for	both	domestic	and	international	telephone	and	fax	numbers.

USE	master
EXEC	sp_addtype	telephone,	'varchar(24)',	'NOT	NULL'
EXEC	sp_addtype	fax,	'varchar(24)',	'NULL'

See	Also

CREATE	DEFAULT

CREATE	RULE

sp_bindefault

sp_bindrule

sp_droptype

sp_rename

sp_unbindefault

sp_unbindrule

System	Stored	Procedures

Transact-SQL	Reference

sp_add_targetservergroup
Adds	the	specified	server	group.

Syntax
sp_add_targetservergroup	[@name	=]	'name'

Arguments
[@name	=]	'name'

Is	the	name	of	the	server	group	to	create.	name	is	sysname,	with	no	default.
name	cannot	contain	commas.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
Target	server	groups	provide	an	easy	way	to	target	a	job	at	a	collection	of	target
servers.	For	more	information,	see	"sp_apply_job_to_targets"	in	this	volume.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute	this	procedure.

Examples
This	example	creates	the	target	server	group	named	Servers	Processing
Customer	Orders.

USE	msdb

EXEC	sp_add_targetservergroup	'Servers	Processing	Customer	Orders'

See	Also

sp_delete_targetservergroup

sp_help_targetservergroup

sp_update_targetservergroup

System	Stored	Procedures

Transact-SQL	Reference

sp_addumpdevice
Adds	a	backup	device	to	Microsoft®	SQL	Server™.

Syntax
sp_addumpdevice	[@devtype	=]	'device_type'	,	
				[@logicalname	=]	'logical_name'	,	
				[@physicalname	=]	'physical_name'	
				[,	{	[@cntrltype	=]	controller_type	
												|	[@devstatus	=]	'device_status'	
								}	
]

Arguments
[@devtype	=]	'device_type',

Is	the	type	of	backup	device.	device_type	is	varchar(20),	with	no	default,
and	can	be	one	of	these	values.

Value Description
disk Hard	disk	file	as	a	backup	device.
pipe Named	pipe.
tape Any	tape	devices	supported	by	Microsoft

Windows	NT®.	If	device	is	tape,	noskip	is	the
default.

[@logicalname	=]	'logical_name'

Is	the	logical	name	of	the	backup	device	used	in	the	BACKUP	and
RESTORE	statements.	logical_name	is	sysname,	with	no	default,	and
cannot	be	NULL.

[@physicalname	=]	'physical_name'

Is	the	physical	name	of	the	backup	device.	Physical	names	must	follow	the

rules	for	operating-system	file	names	or	universal	naming	conventions	for
network	devices,	and	must	include	a	full	path.	physical_name	is
nvarchar(260),	with	no	default	value,	and	cannot	be	NULL.

When	creating	a	backup	device	on	a	remote	network	location,	be	sure	that
the	name	under	which	SQL	Server	was	started	has	appropriate	write
capabilities	on	the	remote	computer.

If	you	are	adding	a	tape	device,	this	parameter	must	be	the	physical	name
assigned	to	the	local	tape	device	by	Windows	NT®,	for	example,	\\.\TAPE0
for	the	first	tape	device	on	the	computer.	The	tape	device	must	be	attached	to
the	server	computer;	it	cannot	be	used	remotely.	Enclose	names	containing
nonalphanumeric	characters	in	quotation	marks.

[@cntrltype	=]	controller_type

Is	not	required	when	creating	backup	devices.	It	is	acceptable	to	supply	this
parameter	for	scripts,	but	SQL	Server	ignores	it.	controller_type	is	smallint,
with	a	default	of	NULL,	and	can	be	one	of	these	values.

Value Description
2 Use	when	device_type	is	disk.
5 Use	when	device_type	is	tape.
6 Use	when	device_type	is	pipe.

[@devstatus	=]	'device_status'

Is	whether	ANSI	tape	labels	are	read	(noskip)	or	ignored	(skip).
device_status	is	varchar(40),	with	a	default	value	of	noskip.

Note		Either	specify	controller_type	or	device_status,	but	not	both.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
sp_addumpdevice	adds	a	backup	device	to	the	master.dbo.sysdevices	table.	It
can	then	be	referred	to	logically	in	BACKUP	and	RESTORE	statements.

Ownership	and	permissions	problems	can	interfere	with	the	use	of	disk	or	file
backup	devices.	Make	sure	that	appropriate	file	permissions	are	given	to	the
account	under	which	SQL	Server	was	started.

SQL	Server	supports	tape	backups	to	tape	devices	that	are	supported	by
Windows	NT.	For	more	information	about	Windows	NT-supported	tape	devices,
see	the	hardware	compatibility	list	for	Windows	NT.	To	view	the	tape	devices
available	on	the	computer,	use	SQL	Server	Enterprise	Manager.

Use	only	the	recommended	tapes	for	the	specific	tape	drive	(as	suggested	by	the
drive	manufacturer).	If	you	are	using	DAT	drives,	use	computer-grade	DAT
tapes	(Digital	Data	Storage-DDS).

sp_addumpdevice	cannot	be	executed	inside	a	transaction.

Permissions
Only	members	of	the	sysadmin	and	diskadmin	fixed	server	roles	can	execute
this	procedure.

Examples

A.	Add	a	disk	dump	device
This	example	adds	a	disk	backup	device	named	MYDISKDUMP,	with	the
physical	name	C:\Dump\Dump1.bak.

USE	master
EXEC	sp_addumpdevice	'disk',	'mydiskdump',	'c:\dump\dump1.bak'

B.	Add	a	network	disk	backup	device
This	example	shows	a	remote	disk	backup	device.	The	name	under	which	SQL
Server	was	started	must	have	permissions	to	that	remote	file.

USE	master

EXEC	sp_addumpdevice	'disk',	'networkdevice',
			'\\servername\sharename\path\filename.ext'

C.	Add	a	tape	backup	device
This	example	adds	the	TAPEDUMP1	device	with	the	physical	name	\\.\Tape0.

USE	master
EXEC	sp_addumpdevice	'tape',	'tapedump1',
			'\\.\tape0'

See	Also

BACKUP

RESTORE

sp_dropdevice

sp_helpdevice

System	Stored	Procedures

Transact-SQL	Reference

sp_add_targetsvrgrp_member
Adds	the	specified	target	server	to	the	specified	target	server	group.

Syntax
sp_add_targetsvrgrp_member	[@group_name	=]	'group_name'	,	
				[@server_name	=]	'server_name'

Arguments
[@group_name	=]	'group_name'

Is	the	name	of	the	group.	group_name	is	sysname,	with	no	default.

[@server_name	=]	'server_name'

Is	the	name	of	the	server	that	should	be	added	to	the	specified	group.
server_name	is	nvarchar(30),	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
A	target	server	can	be	a	member	of	more	than	one	target	server	group.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute	this	procedure.

Examples
This	example	adds	the	group	Servers	Maintaining	Customer	Information	and

adds	the	LONDON1	server	to	that	group.

USE	msdb
EXEC	sp_add_targetsvrgrp_member	'Servers	Maintaining	Customer	Information',	'LONDON1'

See	Also

sp_delete_targetsvrgrp_member

System	Stored	Procedures

Transact-SQL	Reference

sp_adduser
Adds	a	security	account	for	a	new	user	in	the	current	database.	This	procedure	is
included	for	backward	compatibility.	Use	sp_grantdbaccess.

Syntax
sp_adduser	[@loginame	=]	'login'	
				[,	[@name_in_db	=]	'user']	
				[,	[@grpname	=]	'group']

Arguments
[@loginame	=]	'login'

Is	the	name	of	the	user's	login.	login	is	sysname,	with	no	default.	login	must
be	an	existing	Microsoft®	SQL	Server™	login	or	Microsoft	Windows	NT®
user.

[@name_in_db	=]	'user'

Is	the	name	for	the	new	user.	user	is	sysname,	with	a	default	of	NULL.	If
user	is	not	specified,	the	name	of	the	user	defaults	to	the	login	name.
Specifying	user	gives	the	new	user	a	name	in	the	database	different	from	the
login	ID	on	SQL	Server.

[@grpname	=]	'group'

Is	the	group	or	role	that	the	new	user	automatically	becomes	a	member	of.
group	is	sysname,	with	a	default	of	NULL.	group	must	be	a	valid	group	or
role	in	the	current	database.	Microsoft	SQL	Server	version	7.0	uses	roles
instead	of	groups.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks

SQL	Server	usernames	can	contain	from	1	to	128	characters,	including	letters,
symbols,	and	numbers.	However,	usernames	cannot:

Contain	a	backslash	character	(\).

Be	NULL,	or	an	empty	string	('').

After	a	user	has	been	added,	use	the	GRANT,	DENY,	and	REVOKE	statements
to	define	the	permissions	controlling	the	activities	performed	by	the	user.

Use	sp_helplogin	to	display	a	list	of	valid	login	names.

Use	sp_helprole	to	display	a	list	of	the	valid	role	names.	When	specifying	a
role,	the	user	automatically	gains	the	permissions	that	are	defined	for	the	role.	If
a	role	is	not	specified,	the	user	gains	the	permissions	granted	to	the	default
public	role.	To	add	a	user	to	a	role,	a	value	for	username	must	be	supplied
(username	can	be	the	same	as	login_id.)

To	access	a	database,	a	login	must	be	granted	access	by	using	sp_adduser	or
sp_grantdbaccess,	or	the	guest	security	account	must	exist	in	the	database.

sp_adduser	cannot	be	executed	inside	a	user-defined	transaction.

Permissions
Only	the	dbo	and	members	of	the	sysadmin	fixed	server	role	can	execute
sp_adduser.

Examples

A.	Add	a	user
This	example	adds	the	user	Victoria	to	the	existing	fort_mudge	role	in	the
current	database,	using	the	existing	login	Victoria.

EXEC	sp_adduser	'Victoria',	'Victoria',	'fort_mudge'

B.	Add	a	username	with	the	same	login	ID
This	example	adds	the	default	username	Margaret	to	the	current	database	for

the	login	Margaret,	which	belongs	to	the	default	public	role.

EXEC	sp_adduser	'Margaret'

C.	Add	a	user	who	uses	a	different	username
This	example	adds	the	Haroldq	login	to	the	current	database	with	a	username	of
Harold,	which	belongs	to	the	fort_mudge	role.

EXEC	sp_adduser	'Haroldq',	'Harold',	'fort_mudge'

See	Also

sp_addrole

sp_dropuser

sp_grantdbaccess

sp_grantlogin

sp_helpuser

System	Stored	Procedures

Transact-SQL	Reference

sp_altermessage
Alters	the	state	of	a	sysmessages	error.

Syntax
sp_altermessage	[@message_id	=]	message_number	
				,	[@parameter	=]	'write_to_log'	
				,	[@parameter_value	=]	'value'

Arguments
[@message_id	=]	message_number

Is	the	sysmessages	error	or	message	number	to	alter.	message_number	is	int,
with	no	default.

[@parameter	=]	'write_to_log'

Indicates	that	the	message	is	written	to	the	Microsoft®	Windows	NT®
application	log.	write_to_log	is	sysname,	with	no	default	value.	If
write_to_log	is	WITH_LOG,	the	message	is	written	to	the	Microsoft
Windows	NT	log	when	it	occurs.

Note		If	a	message	is	written	to	the	Windows	NT	application	log,	it	is	also
written	to	the	Microsoft	SQL	Server™	error	log	file.

[@parameter_value	=]	'value'

Is	whether	the	error	is	written	to	the	Windows	NT	application	log.	value	is
varchar(5),	with	no	default.	If	true,	the	error	is	always	written	to	the
Windows	NT	application	log.	If	false,	the	error	is	not	always	written	to	the
Windows	NT	application	log	but	can	be	written,	depending	on	how	the	error
was	raised.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
The	effect	of	sp_altermessage	with	the	WITH_LOG	option	is	similar	to	that	of
the	RAISERROR	WITH	LOG	parameter,	except	that	sp_altermessage	changes
the	logging	behavior	of	an	existing	message.	If	a	message	has	been	altered	to	be
WITH_LOG,	it	is	always	written	to	the	Windows	NT	application	log,	regardless
of	how	a	user	invokes	the	error.	Even	if	RAISERROR	is	executed	without	the
WITH	LOG	option,	the	error	is	written	to	the	Windows	NT	application	log.

System	messages	(such	as	605),	as	well	as	user	messages	added	by
sp_addmessage,	can	be	modified	by	using	sp_altermessage.

Permissions
Only	members	of	the	sysadmin	and	serveradmin	fixed	server	roles	can	execute
this	procedure.

Examples
This	example	causes	existing	message	55001	to	be	logged	to	the	Windows	NT
application	log.

sp_altermessage	55001,	'WITH_LOG',	'true'

See	Also

sp_addmessage

sp_dropmessage

System	Stored	Procedures

Transact-SQL	Reference

sp_apply_job_to_targets
Applies	a	job	to	one	or	more	target	servers	or	to	the	target	servers	belonging	to
one	or	more	target	server	groups.

Syntax
sp_apply_job_to_targets	[@job_id	=]	job_id	|	[@job_name	=]	'job_name'	
				[,	[@target_server_groups	=]	'target_server_groups']	
				[,	[@target_servers	=]	'target_servers']	
				[,	[@operation	=]	'operation']

Arguments
[@job_id	=]	job_id

Is	the	job	identification	number	of	the	job	to	apply	to	the	specified	target
servers	or	target	server	groups.	job_id	is	uniqueidentifier,	with	a	default	of
NULL.

[@job_name	=]	'job_name'

Is	the	name	of	the	job	to	apply	to	the	specified	the	associated	target	servers
or	target	server	groups.	job_name	is	sysname,	with	a	default	of	NULL.

Note		Either	job_id	or	job_name	must	be	specified,	but	both	cannot	be	specified.

[@target_server_groups	=]	'target_server_groups'

Is	a	comma-separated	list	of	target	server	groups	to	which	the	specified	job	is
to	be	applied.	target_server_groups	is	nvarchar(1024),	with	a	default	of
NULL.

[@target_servers	=]	'target_servers'

Is	a	comma-separated	list	of	target	servers	to	which	the	specified	job	is	to	be
applied.	target_servers	is	nvarchar(1024),	with	a	default	of	NULL.

[@operation	=]	'operation'

Is	whether	the	specified	job	should	be	applied	to	or	removed	from	the

specified	target	servers	or	target	server	groups.	operation	is	varchar(7),	with
a	default	of	APPLY.	Valid	operations	are	APPLY	and	REMOVE.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_apply_job_to_targets	provides	an	easy	way	to	apply	(or	remove)	a	job	from
multiple	target	servers,	and	is	an	alternative	to	calling	sp_add_jobserver	(or
sp_delete_jobserver)	once	for	each	target	server	required.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_apply_job_to_targets.

Examples
This	example	applies	the	previously	created	Backup	Customer	Information	job
to	all	the	target	servers	in	the	Servers	Maintaining	Customer	Information	group.

USE	msdb
EXEC	sp_apply_job_to_targets	@job_name	=	'Backup	Customer	Information',				@target_server_groups	=	'Servers	Maintaining	Customer	Information',	
			@operation	=	'APPLY'

See	Also

sp_add_jobserver

sp_delete_jobserver

sp_remove_job_from_targets

System	Stored	Procedures

Transact-SQL	Reference

sp_approlepassword
Changes	the	password	of	an	application	role	in	the	current	database.

Syntax
sp_approlepassword	[@rolename	=]	'role'	
				,	[@newpwd	=]	'password'

Arguments
[@rolename	=]	'role'

Is	the	name	of	the	application	role.	role	is	sysname,	with	no	default.	role
must	exist	in	the	current	database.

[@newpwd	=]	'password'

Is	the	new	password	for	the	application	role.	password	is	sysname,	with	no
default.	The	new	password	is	encrypted	when	stored	in	the	Microsoft®	SQL
Server™	system	tables.	password	cannot	be	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_approlepassword	cannot	be	executed	within	a	user-defined	transaction.

Permissions
Only	members	of	the	sysadmin	fixed	server	role,	and	the	db_securityadmin
and	db_owner	fixed	database	roles	can	execute	sp_approlepassword.

Examples
This	example	sets	the	password	for	the	PayrollAppRole	application	role	to
Valentine.

EXEC	sp_approlepassword	'PayrollAppRole',	'Valentine'

See	Also

Application	Security	and	Application	Roles

sp_addapprole

sp_setapprole

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_attach_db
Attaches	a	database	to	a	server.

Syntax
sp_attach_db	[@dbname	=]	'dbname'	
				,	[@filename1	=]	'filename_n'	[,...16]

Arguments
[@dbname	=]	'dbname'

Is	the	name	of	the	database	to	be	attached	to	the	server.	The	name	must	be
unique.	dbname	is	sysname,	with	a	default	of	NULL.

[@filename1	=]	'filename_n'

Is	the	physical	name,	including	path,	of	a	database	file.	filename_n	is
nvarchar(260),	with	a	default	of	NULL.	There	can	be	up	to	16	file	names
specified.	The	parameter	names	start	at	@filename1	and	increment	to
@filename16.	The	file	name	list	must	include	at	least	the	primary	file,	which
contains	the	system	tables	that	point	to	other	files	in	the	database.	The	list
must	also	include	any	files	that	were	moved	after	the	database	was	detached.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
sp_attach_db	should	only	be	executed	on	databases	that	were	previously
detached	from	the	database	server	using	an	explicit	sp_detach_db	operation.	If
more	than	16	files	must	be	specified,	use	CREATE	DATABASE	with	the	FOR

ATTACH	clause.

If	you	attach	a	database	to	a	server	other	than	the	server	from	which	the	database
was	detached,	and	the	detached	database	was	enabled	for	replication,	you	should
run	sp_removedbreplication	to	remove	replication	from	the	database.

Permissions
Only	members	of	the	sysadmin	and	dbcreator	fixed	server	roles	can	execute
this	procedure.

Examples
This	example	attaches	two	files	from	pubs	to	the	current	server.

EXEC	sp_attach_db	@dbname	=	N'pubs',	
			@filename1	=	N'c:\Program	Files\Microsoft	SQL	Server\MSSQL\Data\pubs.mdf',	
			@filename2	=	N'c:\Program	Files\Microsoft	SQL	Server\MSSQL\Data\pubs_log.ldf'

See	Also

CREATE	DATABASE

sp_attach_single_file_db

sp_detach_db

sp_helpfile

sp_removedbreplication

System	Stored	Procedures

Transact-SQL	Reference

sp_attach_single_file_db
Attaches	a	database	having	only	one	data	file	to	the	current	server.

Syntax
sp_attach_single_file_db	[@dbname	=]	'dbname'	
				,	[@physname	=]	'physical_name'

Arguments
[@dbname	=]	'dbname'

Is	the	name	of	the	database	to	be	attached	to	the	server.	dbname	is	sysname,
with	a	default	of	NULL.

[@physname	=]	'phsyical_name'

Is	the	physical	name,	including	path,	of	the	database	file.	physical_name	is
nvarchar(260),	with	a	default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
When	sp_attach_single_file_db	attaches	the	database	to	the	server,	it	builds	a
new	log	file	and	performs	additional	cleanup	work	to	remove	replication	from
the	newly	attached	database.

Used	sp_attach_single_file_db	only	on	databases	that	were	previously	detached
from	the	server	using	an	explicit	sp_detach_db	operation.

Permissions

Only	members	of	the	sysadmin	and	dbcreator	fixed	server	roles	can	execute
this	procedure.

Examples
This	example	detaches	pubs	and	then	attaches	one	file	from	pubs	to	the	current
server.

EXEC	sp_detach_db	@dbname	=	'pubs'
EXEC	sp_attach_single_file_db	@dbname	=	'pubs',	
			@physname	=	'c:\Program	Files\Microsoft	SQL	Server\MSSQL\Data\pubs.mdf'

See	Also

sp_attach_db

sp_detach_db

sp_helpfile

System	Stored	Procedures

Transact-SQL	Reference

sp_autostats
Displays	or	changes	the	automatic	UPDATE	STATISTICS	setting	for	a	specific
index	and	statistics,	or	for	all	indexes	and	statistics	for	a	given	table	or	indexed
view	in	the	current	database.

Note		In	the	context	of	this	stored	procedure,	the	term	index	refers	to	statistics	on
the	table	or	view.

Syntax
sp_autostats	[@tblname	=]	'table_name'	
				[,	[@flagc	=]	'stats_flag']	
				[,	[@indname	=]	'index_name']

Arguments
[@tblname	=]	'table_name'

Is	the	name	of	the	table	or	view	for	which	to	display	the	automatic	UPDATE
STATISTICS	setting.	table_name	is	nvarchar(776),	with	no	default.	If
index_name	is	supplied,	Microsoft	SQL	Server	enables	the	automatic
UPDATE	STATISTICS	setting	for	that	index.

[@flagc	=]	'stats_flag'

Is	whether	the	automatic	UPDATE	STATISTICS	setting	for	the	specified
table,	view,	or	index	is	enabled	(ON)	or	disabled	(OFF).	stats_flag	is
varchar(10),	with	a	default	of	NULL.

[@indname	=]	'index_name'

Is	the	name	of	the	index	for	which	to	enable	or	disable	the	automatic
UPDATE	STATISTICS	setting.	index_name	is	sysname,	with	a	default	of
NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
If	stats_flag	is	specified,	this	procedure	reports	the	action	that	was	taken	but
returns	no	result	set.

If	stats_flag	is	not	specified,	sp_autostats	returns	this	is	the	result	set.

Column	name Data	type Description
Index	Name varchar(60) Name	of	the	index.
AUTOSTATS varchar(3) Current	automatic	UPDATE

STATISTICS	setting:	OFF	or	ON.
Last	Updated datetime Date	the	statistics	was	last	updated.

Permissions
Only	members	of	the	sysadmin	fixed	server	role,	the	db_owner	and
db_ddladmin	fixed	database	roles,	and	the	table	owner	can	execute
sp_autostats.

Examples

A.	Display	the	current	status	of	all	indexes	for	a	table
This	example	displays	the	current	statistics	status	of	all	indexes	on	the	authors
table.

USE	pubs
EXEC	sp_autostats	authors

B.	Enable	automatic	statistics	for	all	indexes	of	a	table
This	example	enables	the	automatic	statistics	setting	for	all	indexes	of	the
authors	table.

USE	pubs
EXEC	sp_autostats	authors,	'ON'

C.	Disable	automatic	statistics	for	a	specific	index
This	example	disables	the	automatic	statistics	setting	for	the	au_id	index	of	the
authors	table.

USE	pubs
EXEC	sp_autostats	authors,	'OFF',	au_id

See	Also

CREATE	INDEX

CREATE	STATISTICS

DBCC	SHOW_STATISTICS

DROP	STATISTICS

sp_createstats

sp_dboption

System	Stored	Procedures

UPDATE	STATISTICS

Transact-SQL	Reference

sp_bindefault
Binds	a	default	to	a	column	or	to	a	user-defined	data	type.

Syntax
sp_bindefault	[@defname	=]	'default'	,	
				[@objname	=]	'object_name'	
				[,	[@futureonly	=]	'futureonly_flag']

Arguments
[@defname	=]	'default'

Is	the	name	of	the	default	created	by	the	CREATE	DEFAULT	statement.
default	is	nvarchar(776),	with	no	default.

[@objname	=]	'object_name'

Is	the	name	of	table	and	column	or	the	user-defined	data	type	to	which	the
default	is	to	be	bound.	object_name	is	nvarchar(517),	with	no	default.	If
object_name	is	not	of	the	form	table.column,	it	is	assumed	to	be	a	user-
defined	data	type.	By	default,	existing	columns	of	the	user-defined	data	type
inherit	default	unless	a	default	has	been	bound	directly	to	the	column.	A
default	cannot	be	bound	to	a	column	of	timestamp	data	type,	a	column	with
the	IDENTITY	property,	or	a	column	that	already	has	a	DEFAULT
constraint.

Note		object_name	can	contain	the	[and]	characters	as	delimited	identifier
characters.	For	more	information,	see	Delimited	Identifiers.

[@futureonly	=]	'futureonly_flag'

Is	used	only	when	binding	a	default	to	a	user-defined	data	type.
futureonly_flag	is	varchar(15),	with	a	default	of	NULL.	This	parameter
when	set	to	futureonly	prevents	existing	columns	of	that	data	type	from
inheriting	the	new	default.	It	is	never	used	when	binding	a	default	to	a
column.	If	futureonly_flag	is	NULL,	the	new	default	is	bound	to	any
columns	of	the	user-defined	data	type	that	currently	have	no	default	or	that

JavaScript:hhobj_1.Click()

are	using	the	existing	default	of	the	user-defined	data	type.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
You	can	bind	a	new	default	to	a	column	(although	using	the	DEFAULT
constraint	is	preferred)	or	to	a	user-defined	data	type	with	sp_bindefault	without
unbinding	an	existing	default.	The	old	default	is	overridden.	You	cannot	bind	a
default	to	a	Microsoft®	SQL	Server™	data	type.	If	the	default	is	not	compatible
with	the	column	to	which	you	have	bound	it,	SQL	Server	returns	an	error
message	when	it	tries	to	insert	the	default	value	(not	when	you	bind	it).

Existing	columns	of	the	user-defined	data	type	inherit	the	new	default	unless
they	have	a	default	bound	directly	to	them	or	unless	futureonly_flag	is	specified
as	futureonly.	New	columns	of	the	user-defined	data	type	always	inherit	the
default.

When	you	bind	a	default	to	a	column,	related	information	is	added	to	the
syscolumns	table.	When	you	bind	a	default	to	a	user-defined	data	type,	related
information	is	added	to	the	systypes	table.

Permissions
Only	members	of	the	sysadmin	fixed	server	role,	the	db_owner	and
db_ddladmin	fixed	database	roles,	and	the	table	owner	can	execute
sp_bindefault.

Examples

A.	Bind	a	default	to	a	column
Assuming	that	a	default	named	today	has	been	defined	in	the	current	database
by	the	CREATE	DEFAULT	statement,	this	example	binds	the	default	to	the	hire
date	column	of	the	employees	table.	Whenever	a	row	is	added	to	the	employees
table	and	data	for	the	hire	date	column	is	not	supplied,	the	column	gets	the
value	of	the	default	today.

USE	master
EXEC	sp_bindefault	'today',	'employees.[hire	date]'

B.	Bind	a	default	to	a	user-defined	data	type
Assuming	that	a	default	named	def_ssn	and	a	user-defined	data	type	named	ssn
exist,	this	example	binds	the	default	def_ssn	to	the	ssn	user-defined	data	type.
The	default	is	inherited	by	all	columns	that	are	assigned	the	user-defined	data
type	ssn	when	a	table	is	created.	Existing	columns	of	type	ssn	also	inherit	the
default	def_ssn	unless	futureonly	is	specified	for	futureonly_flag	value,	or
unless	the	column	has	a	default	bound	directly	to	it.	Defaults	bound	to	columns
always	take	precedence	over	those	bound	to	data	types.

USE	master
EXEC	sp_bindefault	'def_ssn',	'ssn'

C.	Use	the	futureonly_flag
This	example	binds	the	default	def_ssn	to	the	user-defined	data	type	ssn.
Because	futureonly	is	specified,	no	existing	columns	of	type	ssn	are	affected.

USE	master
EXEC	sp_bindefault	'def_ssn',	'ssn',	'futureonly'

D.	Use	delimited	identifiers
This	example	shows	the	use	of	delimited	identifiers	in	object_name.

USE	master
CREATE	TABLE	[t.1]	(c1	int)	
--	Notice	the	period	as	part	of	the	table	name.
EXEC	sp_bindefault	'default1',	'[t.1].c1'	
--	The	object	contains	two	periods;	
--	the	first	is	part	of	the	table	name,	
--	and	the	second	distinguishes	the	table	name	from	the	column	name.

See	Also

CREATE	DEFAULT

DROP	DEFAULT

sp_unbindefault

System	Stored	Procedures

Transact-SQL	Reference

sp_bindrule
Binds	a	rule	to	a	column	or	to	a	user-defined	data	type.

Syntax
sp_bindrule	[@rulename	=]	'rule'	,	
				[@objname	=]	'object_name'	
				[,	[@futureonly	=]	'futureonly_flag']

Arguments
[@rulename	=]	'rule'

Is	the	name	of	a	rule	created	by	the	CREATE	RULE	statement.	rule	is
nvarchar(776),	with	no	default.

[@objname	=]	'object_name'

Is	the	table	and	column,	or	the	user-defined	data	type	to	which	the	rule	is	to
be	bound.	object_name	is	nvarchar(517),	with	no	default.	If	object_name	is
not	of	the	form	table.column,	it	is	assumed	to	be	a	user-defined	data	type.	By
default,	existing	columns	of	the	user-defined	data	type	inherit	rule	unless	a
rule	has	been	bound	directly	to	the	column.

Note		object_name	can	contain	the	[and]	characters	as	delimited	identifier
characters.	For	more	information,	see	Delimited	Identifiers.

[@futureonly	=]	'futureonly_flag'

Is	used	only	when	binding	a	rule	to	a	user-defined	data	type.
future_only_flag	is	varchar(15),	with	a	default	of	NULL.	This	parameter
when	set	to	futureonly	prevents	existing	columns	of	a	user-defined	data	type
from	inheriting	the	new	rule.	If	futureonly_flag	is	NULL,	the	new	rule	is
bound	to	any	columns	of	the	user-defined	data	type	that	currently	have	no
rule	or	that	are	using	the	existing	rule	of	the	user-defined	data	type.

Return	Code	Values

JavaScript:hhobj_1.Click()

0	(success)	or	1	(failure)

Remarks
You	can	bind	a	new	rule	to	a	column	(although	using	a	CHECK	constraint	is
preferred)	or	to	a	user-defined	data	type	with	sp_bindrule	without	unbinding	an
existing	rule.	The	old	rule	is	overridden.	If	a	rule	is	bound	to	a	column	with	an
existing	CHECK	constraint,	all	restrictions	are	evaluated.	You	cannot	bind	a	rule
to	a	Microsoft®	SQL	Server™	data	type.

The	rule	is	enforced	when	an	INSERT	statement	is	attempted,	not	at	binding.
You	can	bind	a	character	rule	to	a	column	of	numeric	data	type,	although	such
an	INSERT	is	illegal.

Existing	columns	of	the	user-defined	data	type	inherit	the	new	rule	unless
futureonly_flag	is	specified	as	futureonly.	New	columns	defined	with	the	user-
defined	data	type	always	inherit	the	rule.	However,	if	the	ALTER	COLUMN
clause	of	an	ALTER	TABLE	statement	changes	the	data	type	of	a	column	to	a
user-defined	data	type	bound	to	a	rule,	the	rule	bound	to	the	data	type	is	not
inherited	by	the	column.	The	rule	must	be	specifically	bound	to	the	column
using	sp_bindrule.

When	you	bind	a	rule	to	a	column,	related	information	is	added	to	the
syscolumns	table.	When	you	bind	a	rule	to	a	user-defined	data	type,	related
information	is	added	to	the	systypes	table.

Permissions
Only	members	of	the	sysadmin	fixed	server	role,	the	db_owner	and
db_ddladmin	fixed	database	roles,	and	the	table	owner	can	execute
sp_bindrule.

Examples

A.	Bind	a	rule	to	a	column
Assuming	that	a	rule	named	today	has	been	created	in	the	current	database	by
the	CREATE	RULE	statement,	this	example	binds	the	rule	to	the	hire	date
column	of	the	employees	table.	When	a	row	is	added	to	employees,	the	data	for

the	hire	date	column	is	checked	against	the	today	rule.

USE	master
EXEC	sp_bindrule	'today',	'employees.[hire	date]'

B.	Bind	a	rule	to	a	user-defined	data	type
Assuming	the	existence	of	a	rule	named	rule_ssn	and	a	user-defined	data	type
named	ssn,	this	example	binds	rule_ssn	to	ssn.	In	a	CREATE	TABLE	statement,
columns	of	type	ssn	inherit	the	rule_ssn	rule.	Existing	columns	of	type	ssn	also
inherit	the	rule_ssn	rule	unless	futureonly	is	specified	for	futureonly_flag,	or
ssn	has	a	rule	bound	directly	to	it.	Rules	bound	to	columns	always	take
precedence	over	those	bound	to	data	types.

USE	master
EXEC	sp_bindrule	'rule_ssn',	'ssn'

C.	Use	the	futureonly_flag
This	example	binds	the	rule_ssn	rule	to	the	user-defined	data	type	ssn.	Because
futureonly	is	specified,	no	existing	columns	of	type	ssn	are	affected.

USE	master
EXEC	sp_bindrule	'rule_ssn',	'ssn',	'futureonly'

D.	Use	delimited	identifiers
This	example	shows	the	use	of	delimited	identifiers	in	object_name.

USE	master
CREATE	TABLE	[t.2]	(c1	int)	
--	Notice	the	period	as	part	of	the	table	name.
EXEC	sp_binderule	rule1,	'[t.2].c1'	
--	The	object	contains	two	periods;	
--	the	first	is	part	of	the	table	name	
--	and	the	second	distinguishes	the	table	name	from	the	column	name.

See	Also

CREATE	RULE

DROP	RULE

sp_unbindrule

System	Stored	Procedures

Transact-SQL	Reference

sp_bindsession
Binds	or	unbinds	a	connection	to	other	transactions	in	the	same	instance	of
Microsoft	SQL	Server	2000.	A	bound	connection	allows	two	or	more
connections	to	participate	in	the	same	transaction	and	share	the	transaction	until
a	ROLLBACK	TRANSACTION	or	COMMIT	TRANSACTION	is	issued.

For	more	information	about	bound	connections,	see	Using	Bound	Connections.

Syntax
sp_bindsession	{	'bind_token'	|	NULL	}

Arguments
'bind_token'

Is	the	token	that	identifies	the	transaction	originally	obtained	by	using
sp_getbindtoken	or	the	Open	Data	Services	srv_getbindtoken	function.
bind_token	is	varchar(8000).

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_bindsession	uses	a	bind	token	to	bind	two	or	more	existing	client
connections.	These	client	connections	must	be	on	the	same	instance	of	SQL
Server	2000	from	which	the	binding	token	was	obtained.	A	connection	is	a	client
executing	a	command.	Bound	database	connections	share	a	transaction	and	lock
space.

A	bind	token	obtained	from	one	instance	of	SQL	Server	2000	cannot	be	used	for
a	client	connection	that	is	on	another	instance	even	for	DTC	transactions.	A	bind
token	is	valid	only	locally	inside	each	SQL	Server	and	cannot	be	shared	across
multiple	instances	of	SQL	Server.	For	a	client	connection	on	another	instance	of
SQL	Server,	you	must	obtain	a	different	bind	token	by	executing

JavaScript:hhobj_1.Click()

sp_getbindtoken.

sp_bindsession	will	fail	with	an	error	if	it	uses	a	token	that	is	not	active.

Unbind	from	a	session	either	by	omitting	bind_token	or	by	passing	NULL	in
bind_token.

sp_bindsession	can	be	executed	through	ODBC,	DB-LIBRARY	functions,	or
the	isql	utility.

IMPORTANT		Prior	to	executing	sp_bindsession,	you	must	obtain	a	bind	token	by
running	sp_getbindtoken	or	the	Open	Data	Services	srv_getbindtoken
function.

To	obtain	and	pass	a	bind	token,	run	sp_getbindtoken	prior	to	executing
sp_bindsession	for	sharing	the	same	transaction.	If	you	obtain	a	bind	token,
sp_bindsession	runs	correctly.

Permissions
Execute	permissions	default	to	public	role.

Examples
This	example	binds	the	specified	bind	token	to	the	current	session.

Note		The	bind	token	shown	in	the	example	was	obtained	by	executing
sp_getbindtoken	prior	to	executing	sp_bindsession.

USE	master
EXEC	sp_bindsession	'BP9---5---->KB?-V'<>1E:H-7U-]ANZ'

See	Also

sp_getbindtoken

srv_getbindtoken

System	Stored	Procedures

JavaScript:hhobj_2.Click()

Transact-SQL	Reference

sp_can_tlog_be_applied
Verify	that	a	transaction	log	can	be	applied	to	a	database.

Syntax
sp_can_tlog_be_applied	[@backup_file_name	=]	'backup_file_name'	
				,	[@database_name	=]	'database_name'	
				,	[@result	=]	result	OUTPUT

Arguments
[@backup_file_name	=]	'backup_file_name'

Is	the	name	of	the	backup	file.	backup_file_name	is	nvarchar(128).

[@database_name	=]	'database_name'

Is	the	name	of	the	database.	database_name	is	sysname.

[@result	=]	result	OUTPUT

Indicates	whether	the	transaction	log	can	be	applied	to	the	database.	The
value	one	(1)	means	the	log	can	be	applied;	zero	(0)	means	it	cannot.	result	is
bit.

Return	Code	Values
0	(success)	or	1	(failure)

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_can_tlog_be_applied.

Transact-SQL	Reference

sp_catalogs
Returns	the	list	of	catalogs	in	the	specified	linked	server,	which	is	equivalent	to
databases	in	Microsoft®	SQL	Server™.

Syntax
sp_catalogs	[@server_name	=]	'linked_svr'

Arguments
[@server_name	=]	'linked_svr'

Is	the	name	of	a	linked	server.	linked_svr	is	sysname,	with	no	default.

Result	Sets

Column	name Data	type Description
catalog_name nvarchar(128) Name	of	the	catalog
Description nvarchar(4000) Description	of	the	catalog

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	returns	catalog	information	for	the	linked	server	named	OLE	DB
ODBC	Linked	Server	#3.

Note		For	sp_catalogs	to	provide	useful	information,	the	OLE	DB	ODBC
Linked	Server	#3	must	already	exist.

USE	master
EXEC	sp_catalogs	'OLE	DB	ODBC	Linked	Server	#3'

See	Also

sp_addlinkedserver

sp_columns_ex

sp_column_privileges

sp_foreignkeys

sp_indexes

sp_linkedservers

sp_primarykeys

sp_tables_ex

sp_table_privileges

System	Stored	Procedures

Transact-SQL	Reference

sp_certify_removable
Verifies	that	a	database	is	configured	properly	for	distribution	on	removable
media	and	reports	any	problems	to	the	user.

Syntax
sp_certify_removable	[@dbname	=]	'dbname'					[,	[@autofix	=]	'auto']

Arguments
[@dbname	=]	'dbname'

Specifies	the	database	to	be	verified.	dbname	is	sysname.

[@autofix	=]	'auto'

Gives	ownership	of	the	database	and	all	database	objects	to	the	system
administrator,	and	drops	any	user-created	database	users	and	nondefault
permissions.	auto	is	nvarchar(4),	with	a	default	of	NULL.	auto	has	the
value	auto.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
If	the	database	is	configured	properly,	sp_certify_removable	sets	the	database
offline	so	the	files	can	be	copied.	It	updates	statistics	on	all	tables	and	reports
any	ownership	or	user	problems.	It	also	marks	the	data	filegroups	as	read-only	so
these	files	can	be	copied	to	read-only	media.

The	system	administrator	must	be	the	owner	of	the	database	and	all	database
objects.	The	system	administrator	is	a	known	user	that	exists	on	all	servers
running	Microsoft®	SQL	Server™	and	can	be	counted	on	to	exist	when	the
database	is	later	distributed	and	installed.

If	you	run	sp_certify_removable	without	the	auto	value	and	it	returns

information	indicating	that	the	system	administrator	is	not	the	database	owner,
that	user-created	users	exist,	that	the	system	administrator	does	not	own	all
objects	in	the	database,	or	that	nondefault	permissions	have	been	granted,	you
can	correct	those	conditions	in	two	ways:

Use	SQL	Server	tools	and	procedures,	and	then	run
sp_certify_removable	again.

Simply	run	sp_certify_removable	with	the	auto	value.

Note	that	this	stored	procedure	only	checks	for	users	and	user	permissions.	It	is
permissible	to	add	groups	to	the	database	and	to	grant	permissions	to	those
groups.	For	more	information,	see	GRANT.

This	procedure	writes	verification	information	to	a	text	file	that	has	the
following	file	name	format:

CertifyR_[dbname].txt

Note		The	permissions	on	xp_cmdshell	must	permit	this	file	write.

Permission
EXECUTE	permissions	are	restricted	to	members	of	the	sysadmin	fixed	server
role.

Examples
This	example	certifies	that	the	inventory	database	is	ready	to	be	removed.

sp_certify_removable	inventory,	AUTO

See	Also

sp_attach_db

sp_create_removable

sp_dboption

sp_dbremove

System	Stored	Procedures

Transact-SQL	Reference

sp_change_monitor_role
Performs	a	role	change	on	the	log	shipping	monitor,	setting	the	current
secondary	database	a	primary	database.

Syntax
sp_change_monitor_role	[@primary_server	=]	'primary_server'	
				,	[@secondary_server	=]	'secondary_server'
				,	[@database	=]	'secondary_database'
				,	[@new_source	=]	'new_tlog_source_directory'

Arguments
[@primary_server	=]	'primary_server'

Is	the	name	of	the	primary	server	being	replaced.	primary_server	is
sysname,	with	no	default.

[@secondary_server	=]	'secondary_server'

Is	the	name	of	the	secondary	server	being	converted	to	a	primary.
secondary_server	is	sysname,	with	no	default.

[@database	=]	'secondary_database'

Is	the	name	of	the	secondary	database	being	converted	to	a	primary.
secondary_database	is	sysname,	with	no	default.

[@new_source	=]	'new_tlog_source_directory'

Is	the	path	to	the	directory	where	the	new	primary	server	will	dump	its
transaction	logs.	new_tlog_source_directory	is	nvarchar(128),	with	no
default.

Return	Code	Values
None

Result	Sets

None

Remarks
sp_change_monitor_role	must	be	run	on	the	instance	of	SQL	Server	marked	as
the	log	shipping	monitor.

In	order	to	complete	a	log	shipping	role	change,	you	must	perform	several	steps
in	addition	to	running	this	procedure.	For	more	information,	see	How	to	set	up
and	perform	a	log	shipping	role	change	(Transact-SQL).

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_change_monitor_role.

Examples
This	example	shows	how	to	change	the	monitor	to	reflect	a	new	primary
database.	Database	'db2'	becomes	the	new	primary	database,	and	will	dump	its
transaction	logs	to	directory	'\\newprisrv1\tlogs\'.

EXEC	sp_change_monitor_role	@primary_server	=	'srv1',
			@secondary_server	=	'srv2'
			@database	=	'db2',
			@new_source	=	'\\newprisrv1\tlogs\'

See	Also

sp_change_primary_role

sp_change_secondary_role

sp_resolve_logins

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_change_primary_role
Removes	the	primary	database	from	a	log	shipping	plan.

Syntax
sp_change_primary_role	[@db_name	=]	'db_name'	
				,	[@backup_log	=]	backup_log
				,	[@terminate	=]	terminate
				,	[@final_state	=]	final_state
				,	[@access_level	=]	access_level

Arguments
[@db_name	=]	'db_name'

Specifies	the	name	of	the	primary	database	to	be	removed.	db_name	is
sysname,	with	no	default.

[@backup_log	=]	backup_log

Backs	up	the	tail	end	of	the	primary	database	transaction	log.	backup_log	is
bit,	with	a	default	of	1.

[@terminate	=]	terminate

Specifies	that	all	pending	transactions	be	immediately	rolled	back,	and	the
primary	database	placed	in	single	user	mode	for	the	duration	of	this	stored
procedure.	terminate	is	bit,	with	a	default	of	1.

[@final_state	=]	final_state

Specifies	the	recovery	state	of	the	database	after	completion	of	this	stored
procedure.	final_state	is	smallint,	with	a	default	of	1,	and	can	be	any	of
these	values.

Value Description
1 RECOVERY
2 NO	RECOVERY

3 STANDBY

For	more	information	about	the	meaning	of	these	options,	see	RESTORE.

[@access_level	=]	access_level

Specifies	the	access	level	of	the	database	after	completion	of	this	stored
procedure.	access_level	is	smallint,	with	a	default	of	1,	and	can	be	any	of
these	values.

Value Description
1 MULTI_USER
2 RESTRICTED_USER
3 SINGLE_USER

For	more	information	about	the	meaning	of	these	options,	see	ALTER
DATABASE.

Return	Code	Values
1	(failure)	or	none	(success)

Result	Sets
None

Remarks
sp_change_primary_role	must	be	run	on	the	instance	of	SQL	Server	marked	as
the	current	primary	server.

In	order	to	complete	a	log	shipping	role	change,	you	must	perform	several	steps
in	addition	to	running	this	procedure.	For	more	information,	see	How	to	set	up
and	perform	a	log	shipping	role	change	(Transact-SQL).

The	database	transaction	logs	are	backed	up	before	removing	it	from	the	log
shipping	plan.

JavaScript:hhobj_1.Click()

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_change_primary_role.

Examples
This	example	shows	how	to	remove	the	primary	database	from	a	log	shipping
plan.

EXEC	sp_change_primary_role	@db_name	=	'db1',
			@job_id	=	'6F9619FF-8B86-D011-B42D-00C04FC964FF',

See	Also

sp_change_monitor_role

sp_change_secondary_role

sp_resolve_logins

Transact-SQL	Reference

sp_change_secondary_role
Converts	the	secondary	database	of	a	log	shipping	plan	into	a	primary	database.

Syntax
sp_change_secondary_role	[@db_name	=]	'db_name'	
				,	[@do_load	=]	do_load
				,	[@force_load	=]	force_load
				,	[@final_state	=]	final_state
				,	[@access_level	=]	access_level
				,	[@terminate	=]	terminate
				,	[@keep_replication	=]	keep_replication
				,	[@stopat	=]	stop_at_time

Arguments
[@db_name	=]	db_name

Specifies	the	name	of	the	secondary	database.	db_name	is	sysname,	with	no
default.

[@do_load	=]	do_load

Specifies	that	any	pending	transaction	logs	be	copied	and	restored	before
converting	db_name	to	a	primary	database.	do_load	is	bit,	with	a	default	of
1.

[@force_load	=]	force_load

Specifies	that	the	–ForceLoad	option	be	used	in	restoring	any	pending
transaction	logs	to	the	secondary	database.	This	option	is	ignored	unless
do_load	is	set	to	1.	force_load	is	bit,	with	a	default	of	1.

[@final_state	=]	final_state

Specifies	the	recovery	state	of	the	database	after	completion	of	this	stored
procedure.	final_state	is	smallint,	with	a	default	of	1,	and	can	be	any	of
these	values.

Value Description
1 RECOVERY
2 NO	RECOVERY
3 STANDBY

For	more	information	about	the	meaning	of	these	options,	see	RESTORE.

[@access_level	=]	access_level

Specifies	the	access	level	of	the	database	after	completion	of	this	stored
procedure.	access_level	is	smallint,	with	a	default	of	1,	and	can	be	any	of
these	values.

Value Description
1 MULTI_USER
2 RESTRICTED_USER
3 SINGLE_USER

For	more	information	about	the	meaning	of	these	options,	see	ALTER
DATABASE.

[@terminate	=]	terminate

Specifies	that	all	pending	transactions	be	immediately	rolled	back,	and	the
secondary	database	placed	in	single	user	mode	for	the	duration	of	this	stored
procedure.	terminate	is	bit,	with	a	default	of	1.

[@keep_replication	=]	keep_replication

Specifies	that	replication	settings	be	preserved	when	restoring	any	pending
transaction	logs	on	the	secondary	database.	This	option	is	ignored	unless
do_load	is	set	to	1.	keep_replication	is	bit,	with	a	default	of	0.

[@stopat	=]	stop_at_time

Specifies	that	when	applying	any	pending	transaction	logs,	the	secondary
database	be	restored	to	the	state	it	was	in	as	of	the	specified	date	and	time.
This	option	is	ignored	unless	do_load	is	set	to	1.	stop_at_time	is	datetime,

with	a	default	of	NULL.

Return	Code	Values
0	(success)	or	–1	(failure)

Result	Sets
None

Remarks
sp_change_secondary_role	must	be	run	on	the	instance	of	SQL	Server	marked
as	the	current	primary	server.

In	order	to	complete	a	log	shipping	role	change,	you	must	perform	several	steps
in	addition	to	running	this	procedure.	For	more	information,	see	How	to	set	up
and	perform	a	log	shipping	role	change	(Transact-SQL).

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_change_secondary_role.

Examples
This	example	shows	how	to	convert	the	secondary	database	to	a	primary
database.	Previously	shipped	transaction	logs	are	applied	on	the	secondary
database	before	it	is	converted.

EXEC	sp_change_secondary_role	@db_name	=	'db2',
			@do_load	=	1,
			@final_state	=	1,
			@access_level	=	3

See	Also

sp_change_monitor_role

JavaScript:hhobj_1.Click()

sp_change_primary_role

sp_resolve_logins

Transact-SQL	Reference

sp_change_users_login
Changes	the	relationship	between	a	Microsoft®	SQL	Server™	login	and	a	SQL
Server	user	in	the	current	database.

Syntax
sp_change_users_login	[@Action	=]	'action'	
				[,	[@UserNamePattern	=]	'user']	
				[,	[@LoginName	=]	'login']

Arguments
[@Action	=]	'action'

Describes	the	action	to	be	performed	by	the	procedure.	action	is
varchar(10),	and	can	be	one	of	these	values.

Value Description
Auto_Fix Links	user	entries	in	the	sysusers	table	in	the	current

database	to	logins	of	the	same	name	in	syslogins.	It	is
recommended	that	the	result	from	the	Auto_Fix	statement
be	checked	to	confirm	that	the	links	made	are	the	intended
outcome.	Avoid	using	Auto_Fix	in	security-sensitive
situations.	Auto_Fix	makes	best	estimates	on	links,
possibly	allowing	a	user	more	access	permissions	than
intended.

user	must	be	a	valid	user	in	the	current	database,	and	login
must	be	NULL,	a	zero-length	string	(''),	or	not	specified.

Report Lists	the	users,	and	their	corresponding	security	identifiers
(SID),	that	are	in	the	current	database,	not	linked	to	any
login.

user	and	login	must	be	NULL,	a	zero-length	string	(''),	or
not	specified.

Update_One Links	the	specified	user	in	the	current	database	to	login.
login	must	already	exist.	user	and	login	must	be	specified.

[@UserNamePattern	=]	'user'

Is	the	name	of	a	SQL	Server	user	in	the	current	database.	user	is	sysname,
with	a	default	of	NULL.	sp_change_users_login	can	be	used	only	with	the
security	accounts	of	SQL	Server	logins	and	users;	it	cannot	be	used	with
Microsoft	Windows	NT®	users.

[@LoginName	=]	'login'

Is	the	name	of	a	SQL	Server	login.	login	is	sysname,	with	a	default	of
NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
UserName sysname Login	name.
UserSID varbinary(85) Login	security	identifier.

Remarks
Use	this	procedure	to	link	the	security	account	for	a	user	in	the	current	database
with	a	different	login.	If	the	login	for	a	user	has	changed,	use
sp_change_users_login	to	link	the	user	to	the	new	login	without	losing	the
user's	permissions.

login	cannot	be	sa,	and	user	cannot	be	the	dbo,	guest,	or
INFORMATION_SCHEMA	users.

sp_change_users_login	cannot	be	executed	within	a	user-defined	transaction.

Permissions
Any	member	of	the	public	role	can	execute	sp_change_users_login	with	the
Report	option.	Only	members	of	the	sysadmin	fixed	server	role	can	specify	the
Auto_Fix	option.	Only	members	of	the	sysadmin	or	db_owner	roles	can
specify	the	Update_One	option.

Examples

A.	Show	a	report	of	the	current	user	to	login	mappings
This	example	produces	a	report	of	the	users	in	the	current	database	and	their
security	identifiers.

EXEC	sp_change_users_login	'Report'

B.	Change	the	login	for	a	user
This	example	changes	the	link	between	user	Mary	in	the	pubs	database	and	the
existing	login,	to	the	new	login	NewMary	(added	with	sp_addlogin).

--Add	the	new	login.
USE	master
go
EXEC	sp_addlogin	'NewMary'
go

--Change	the	user	account	to	link	with	the	'NewMary'	login.
USE	pubs
go
EXEC	sp_change_users_login	'Update_One',	'Mary',	'NewMary'

See	Also

sp_addlogin

sp_adduser

sp_helplogins

System	Stored	Procedures

Transact-SQL	Reference

sp_changedbowner
Changes	the	owner	of	the	current	database.

Syntax
sp_changedbowner	[@loginame	=]	'login'					[,	[@map	=]
remap_alias_flag]

Arguments
[@loginame	=]	'login'

Is	the	login	ID	of	the	new	owner	of	the	current	database.	login	is	sysname,
with	no	default.	login	must	be	Microsoft®	SQL	Server™	login	or	a
Microsoft	Windows	NT®	user	that	already	exists.	login	cannot	become	the
owner	of	the	current	database	if	it	already	has	access	to	the	database	through
an	existing	alias	or	user	security	account	within	the	database.	To	avoid	this,
drop	the	alias	or	user	within	the	current	database	first.

[@map	=]	remap_alias_flag

Is	the	value	true	or	false,	which	indicates	whether	existing	aliases	to	the	old
database	owner	(dbo)	are	mapped	to	the	new	owner	of	the	current	database
or	dropped.	remap_alias_flag	is	varchar(5),	with	a	default	of	NULL,
indicating	any	existing	aliases	to	the	old	dbo	are	mapped	to	the	new	owner
of	the	current	database.	false	indicates	that	existing	aliases	to	the	old
database	owner	are	dropped.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
After	sp_changedbowner	is	executed,	the	new	owner	is	known	as	the	dbo	user
inside	the	database.	The	dbo	has	implied	permissions	to	perform	all	activities	in
the	database.

The	owner	of	the	master,	model,	or	tempdb	system	databases	cannot	be
changed.

To	display	a	list	of	the	valid	login	values,	execute	the	sp_helplogins	stored
procedure.

Executing	sp_changedbowner	with	only	the	login	parameter	changes	database
ownership	to	login	and	maps	the	aliases	of	users	who	were	previously	aliased	to
dbo	to	the	new	database	owner.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	the	owner	of	the	current
database	can	execute	sp_changedbowner.

Examples
This	example	makes	the	user	Albert	the	owner	of	the	current	database	and	maps
existing	aliases	to	the	old	database	owner	to	Albert.

EXEC	sp_changedbowner	'Albert'

See	Also

CREATE	DATABASE

sp_dropalias

sp_dropuser

sp_helpdb

sp_helplogins

System	Stored	Procedures

Transact-SQL	Reference

sp_changegroup
Changes	the	role	membership	for	the	security	account	of	a	user	in	the	current
database.	This	procedure	is	provided	for	backward	compatibility.	Microsoft®
SQL	Server™	version	7.0	uses	roles	instead	of	groups.	Use	sp_addrolemember
instead.

Syntax
sp_changegroup	[@grpname	=]	'role'	
				,	[@username	=]	'user'

Arguments
[@grpname	=]	'role'

Is	the	role	to	which	the	user	is	added.	role	is	sysname,	with	no	default.	role
must	exist	in	the	current	database.

[@username	=]	'user'

Is	the	user	to	add	to	the	role.	user	is	sysname,	with	no	default.	The	user	must
already	exist	in	the	current	database.	When	specifying	Windows	NT	users,
specify	the	name	the	Windows	NT	user	is	known	by	in	the	database	(added
using	sp_grantdbaccess).

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
Roles	provide	a	mechanism	for	managing	the	permissions	applied	to	the
members	of	the	role.	When	adding	a	user	to	a	role,	the	user	gains	the
permissions	defined	for	the	role.

When	sp_changegroup	is	executed,	the	security	account	for	user	is	added	as	a
member	of	role,	and	removed	from	all	other	roles.	sp_addrolemember	and
sp_droprolemember	can	be	used	to	change	role	membership	in	a	single	role

without	affecting	membership	in	other	roles.

New	database	users	can	be	added	to	roles	at	the	same	time	they	are	given	access
to	the	database	with	sp_adduser.

Every	user	is	a	member	of	the	default	role	public,	if	not	explicitly	added	to	some
other	role	by	sp_addrolemember.

sp_changegroup	cannot	be	executed	within	a	user-defined	transaction.

Permissions
Members	of	the	sysadmin	fixed	server	role,	and	the	db_owner	and
db_securityadmin	fixed	database	roles	can	execute	sp_changegroup	for	any
role	in	the	database.

Role	owners	can	execute	sp_changegroup.	The	role	owner	must	own	both	the
new	role	and	the	current	role	of	the	user.

Examples
This	example	makes	the	user	Albert	a	member	of	the	developers	role.

EXEC	sp_changegroup	'developers',	'Albert'

See	Also

sp_addrole

sp_addrolemember

sp_adduser

sp_dropgroup

sp_helpgroup

System	Stored	Procedures

Transact-SQL	Reference

sp_changeobjectowner
Changes	the	owner	of	an	object	in	the	current	database.

Syntax
sp_changeobjectowner	[@objname	=]	'object'	,	[@newowner	=]	'owner'

Arguments
[@objname	=]	'object'

Is	the	name	of	an	existing	table,	view,	or	stored	procedure	in	the	current
database.	object	is	nvarchar(517),	with	no	default.	object	can	be	qualified
with	the	existing	object	owner,	in	the	form	existing_owner.object.

[@newowner	=]	'owner'

Is	the	name	of	the	security	account	that	will	be	the	new	owner	of	the	object.
owner	is	sysname,	with	no	default.	owner	must	be	a	valid	Microsoft®	SQL
Server™	user	or	role,	or	Microsoft	Windows	NT®	user	or	group	in	the
current	database.	When	specifying	Windows	NT	users	or	groups,	specify	the
name	the	Windows	NT	user	or	group	is	known	by	in	the	database	(added
using	sp_grantdbaccess).

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
The	owner	of	an	object	(or	the	members	of	the	group	or	role	owning	the	object)
has	special	permissions	for	the	object.	Object	owners	can	execute	any	of	the
Transact-SQL	statements	related	to	the	object	(for	example,	INSERT,	UPDATE,
DELETE,	SELECT,	or	EXECUTE)	and	can	also	manage	the	permissions	for	the
object.

Use	sp_changeobjectowner	to	change	the	owner	of	an	object	if	the	security
account	that	owns	the	object	has	to	be	dropped	but	the	object	must	be	retained.

This	procedure	removes	all	existing	permissions	from	the	object.	You	will	need
to	reapply	any	permissions	you	want	to	keep	after	running
sp_changeobjectowner.

For	this	reason,	it	is	recommended	that	you	script	out	existing	permissions
before	running	sp_changeobjectowner.	Once	ownership	of	the	object	has	been
changed,	you	may	use	the	script	to	reapply	permissions.	You	will	need	to	modify
the	object	owner	in	the	permissions	script	before	running.	For	more	information
about	database	scripting,	see	Documenting	and	Scripting	Databases.

Use	sp_changedbowner	to	change	the	owner	of	a	database.

Permissions
Only	members	of	sysadmin	fixed	server	role,	the	db_owner	fixed	database	role,
or	a	member	of	both	the	db_ddladmin	and	db_securityadmin	fixed	database
roles	can	execute	sp_changeobjectowner.

Examples
This	example	changes	the	owner	of	the	authors	table	to	Corporate\GeorgeW.

EXEC	sp_changeobjectowner	'authors',	'Corporate\GeorgeW'

See	Also

CREATE	TABLE

sp_changedbowner

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_column_privileges
Returns	column	privilege	information	for	a	single	table	in	the	current
environment.

Syntax
sp_column_privileges	[@table_name	=]	'table_name'	
				[,	[@table_owner	=]	'table_owner']	
				[,	[@table_qualifier	=]	'table_qualifier']	
				[,	[@column_name	=]	'column']

Arguments
[@table_name	=]	'table_name'

Is	the	table	used	to	return	catalog	information.	table_name	is	sysname,	with
no	default.	Wildcard	pattern	matching	is	not	supported.

[@table_owner	=]	'table_owner'

Is	the	owner	of	the	table	used	to	return	catalog	information.	table_owner	is
sysname,	with	a	default	of	NULL.	Wildcard	pattern	matching	is	not
supported.	If	table_owner	is	not	specified,	the	default	table	visibility	rules	of
the	underlying	database	management	system	(DBMS)	apply.

In	Microsoft®	SQL	Server™,	if	the	current	user	owns	a	table	with	the
specified	name,	that	table's	columns	are	returned.	If	table_owner	is	not
specified	and	the	current	user	does	not	own	a	table	with	the	specified
table_name,	sp_column	privileges	looks	for	a	table	with	the	specified
table_name	owned	by	the	database	owner.	If	one	exists,	that	table's	columns
are	returned.

[@table_qualifier	=]	'table_qualifier'

Is	the	name	of	the	table	qualifier.	table_qualifier	is	sysname,	with	a	default
of	NULL.	Various	DBMS	products	support	three-part	naming	for	tables
(qualifier.owner.name).	In	SQL	Server,	this	column	represents	the	database
name.	In	some	products,	it	represents	the	server	name	of	the	table's	database

environment.

[@column_name	=]	'column'

Is	a	single	column	used	when	only	one	column	of	catalog	information	is
being	obtained.	column	is	nvarchar(384),	with	a	default	of	NULL.	If	column
is	not	specified,	all	columns	are	returned.	In	SQL	Server,	column	represents
the	column	name	as	listed	in	the	syscolumns	table.	column	can	include
wildcard	characters	using	wildcard	matching	patterns	of	the	underlying
DBMS.	For	maximum	interoperability,	the	gateway	client	should	assume
only	SQL-92	standard	pattern	matching	(the	%	and	_	wildcard	characters).

Result	Sets
sp_column_privileges	is	equivalent	to	SQLColumnPrivileges	in	ODBC.	The
results	returned	are	ordered	by	TABLE_QUALIFIER,	TABLE_OWNER,
TABLE_NAME,	COLUMN_NAME,	and	PRIVILEGE.

Column	name Data	type Description
TABLE_QUALIFIER sysname Table	qualifier	name.	This	field	can

be	NULL.
TABLE_OWNER sysname Table	owner	name.	This	field	always

returns	a	value.
TABLE_NAME sysname Table	name.	This	field	always	returns

a	value.
COLUMN_NAME sysname Column	name,	for	each	column	of	the

TABLE_NAME	returned.	This	field
always	returns	a	value.

GRANTOR sysname Database	username	that	has	granted
permissions	on	this
COLUMN_NAME	to	the	listed
GRANTEE.	In	SQL	Server,	this
column	is	always	the	same	as	the
TABLE_OWNER.	This	field	always
returns	a	value.

The	GRANTOR	column	can	be
either	the	database	owner

(TABLE_OWNER)	or	a	user	to
whom	the	database	owner	granted
permissions	by	using	the	WITH
GRANT	OPTION	clause	in	the
GRANT	statement.

GRANTEE sysname Database	username	that	has	been
granted	permissions	on	this
COLUMN_NAME	by	the	listed
GRANTOR.	In	SQL	Server,	this
column	always	includes	a	database
user	from	the	sysusers	table.	This
field	always	returns	a	value.

PRIVILEGE varchar(32) One	of	the	available	column
permissions.	Column	permissions	can
be	one	of	the	following	values	(or
other	values	supported	by	the	data
source	when	implementation	is
defined):

SELECT	=	GRANTEE	can	retrieve
data	for	the	columns.

INSERT	=	GRANTEE	can	provide
data	for	this	column	when	new	rows
are	inserted	(by	the	GRANTEE)	into
the	table.

UPDATE	=	GRANTEE	can	modify
existing	data	in	the	column.

REFERENCES	=	GRANTEE	can
reference	a	column	in	a	foreign	table
in	a	primary	key/foreign	key
relationship.	Primary	key/foreign	key
relationships	are	defined	with	table
constraints.

IS_GRANTABLE varchar(3) Indicates	whether	the	GRANTEE	is
permitted	to	grant	permissions	to

other	users	(often	referred	to	as	"grant
with	grant"	permission).	Can	be	YES,
NO,	or	NULL.	An	unknown	(or
NULL)	value	refers	to	a	data	source
for	which	"grant	with	grant"	is	not
applicable.

Remarks
With	SQL	Server,	permissions	are	given	with	the	GRANT	statement	and	taken
away	by	the	REVOKE	statement.

Permissions
Execute	permission	defaults	to	public	role.

Examples
This	example	returns	column	privilege	information	for	a	table.

EXEC	sp_column_privileges	Employees

See	Also

Distributed	Queries

GRANT

REVOKE

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_column_privileges_ex
Returns	column	privileges	for	the	specified	table	on	the	specified	linked	server.

Syntax
sp_column_privileges_ex	[@table_server	=]	'table_server'	
				[,	[@table_name	=]	'table_name']	
				[,	[@table_schema	=]	'table_schema']	
				[,	[@table_catalog	=]	'table_catalog']	
				[,	[@column_name	=]	'column_name']

Arguments
[@table_server	=]	'table_server'

Is	the	name	of	the	linked	server	for	which	to	return	information.	table_server
is	sysname,	with	no	default.

[@table_name	=]	'table_name'

Is	the	name	of	the	table	that	contains	the	specified	column.	table_name	is
sysname,	with	a	default	of	NULL.

[@table_schema	=]	'table_schema'

Is	the	table	schema.	table_schema	is	sysname,	with	a	default	of	NULL.

[@table_catalog	=]	'table_catalog'

Is	the	name	of	the	database	in	which	the	specified	table_name	resides.
table_catalog	is	sysname,	with	a	default	of	NULL.

[@column_name	=]	'column_name'

Is	the	name	of	the	column	for	which	to	provide	privilege	information.
column_name	is	sysname,	with	a	default	of	NULL	(all	common).

Result	Sets
This	table	show	the	result	set	columns.	The	results	returned	are	ordered	by

TABLE_QUALIFIER,	TABLE_OWNER,	TABLE_NAME,
COLUMN_NAME,	and	PRIVILEGE.

Column	name Data	type Description
TABLE_CAT sysname Table	qualifier	name.	Various	DBMS

products	support	three-part	naming	for
tables	(qualifier.owner.name).	In
Microsoft®	SQL	Server™,	this	column
represents	the	database	name.	In	some
products,	it	represents	the	server	name
of	the	table's	database	environment.	This
field	can	be	NULL.

TABLE_SCHEM sysname Table	owner	name.	In	SQL	Server,	this
column	represents	the	name	of	the
database	user	who	created	the	table.
This	field	always	returns	a	value.

TABLE_NAME sysname Table	name.	This	field	always	returns	a
value.

COLUMN_NAME sysname Column	name,	for	each	column	of	the
TABLE_NAME	returned.	This	field
always	returns	a	value.

GRANTOR sysname Database	username	that	has	granted
permissions	on	this	COLUMN_NAME
to	the	listed	GRANTEE.	In	SQL	Server,
this	column	is	always	the	same	as	the
TABLE_OWNER.	This	field	always
returns	a	value.

The	GRANTOR	column	can	be	either
the	database	owner	(TABLE_OWNER)
or	someone	to	whom	the	database	owner
granted	permissions	by	using	the	WITH
GRANT	OPTION	clause	in	the	GRANT
statement.

GRANTEE sysname Database	username	who	has	been
granted	permissions	on	this

COLUMN_NAME	by	the	listed
GRANTOR.	This	field	always	returns	a
value.

PRIVILEGE varchar(32) One	of	the	available	column
permissions.	Column	permissions	can	be
one	of	the	following	values	(or	other
values	supported	by	the	data	source
when	implementation	is	defined):

SELECT	=	GRANTEE	can	retrieve
data	for	the	columns.
INSERT	=	GRANTEE	can	provide	data
for	this	column	when	new	rows	are
inserted	(by	the	GRANTEE)	into	the
table.
UPDATE	=	GRANTEE	can	modify
existing	data	in	the	column.
REFERENCES	=	GRANTEE	can
reference	a	column	in	a	foreign	table	in
a	primary	key/foreign	key	relationship.
Primary	key/foreign	key	relationships
are	defined	with	table	constraints.

IS_GRANTABLE varchar(3) Indicates	whether	the	GRANTEE	is
permitted	to	grant	permissions	to	other
users	(often	referred	to	as	"grant	with
grant"	permission).	Can	be	YES,	NO,	or
NULL.	An	unknown	(or	NULL)	value
refers	to	a	data	source	where	"grant	with
grant"	is	not	applicable.

Permissions
Execute	permission	defaults	to	the	public	role.

Examples

This	example	returns	column	privilege	information	for	a	table	on	the	specified
linked	server.

EXEC	sp_column_privileges_ex	@table_server	=	'Linked_Server',	
			@table_name	=	'Customers',	@table_catalog	=	'Northwind'

See	Also

sp_table_privileges_ex

System	Stored	Procedures

Transact-SQL	Reference

sp_columns
Returns	column	information	for	the	specified	tables	or	views	that	can	be	queried
in	the	current	environment.

Syntax
sp_columns	[@table_name	=]	object					[,	[@table_owner	=]	owner]	
				[,	[@table_qualifier	=]	qualifier]	
				[,	[@column_name	=]	column]	
				[,	[@ODBCVer	=]	ODBCVer]

Arguments
[@table_name	=]	object

Is	the	name	of	the	table	or	view	used	to	return	catalog	information.
object_name	is	nvarchar(384),	with	no	default.	Wildcard	pattern	matching
is	not	supported.

[@table_owner	=]	owner

Is	the	object	owner	of	the	table	or	view	used	to	return	catalog	information.
owner	is	nvarchar(384),	with	a	default	of	NULL.	Wildcard	pattern	matching
is	not	supported.	If	owner	is	not	specified,	the	default	table	or	view	visibility
rules	of	the	underlying	DBMS	apply.

In	Microsoft®	SQL	Server™,	if	the	current	user	owns	a	table	or	view	with
the	specified	name,	that	table's	columns	are	returned.	If	owner	is	not
specified	and	the	current	user	does	not	own	a	table	or	view	with	the	specified
object,	sp_columns	looks	for	a	table	or	view	with	the	specified	object	owned
by	the	database	owner.	If	one	exists,	that	table's	columns	are	returned.

[@table_qualifier	=]	qualifier

Is	the	name	of	the	table	or	view	qualifier.	qualifier	is	sysname,	with	a	default
of	NULL.	Various	DBMS	products	support	three-part	naming	for	tables
(qualifier.owner.name).	In	SQL	Server,	this	column	represents	the	database
name.	In	some	products,	it	represents	the	server	name	of	the	table's	database

environment.

[@column_name	=]	column

Is	a	single	column	and	is	used	when	only	one	column	of	catalog	information
is	wanted.	column	is	nvarchar(384),	with	a	default	of	NULL.	If	column	is
not	specified,	all	columns	are	returned.	In	SQL	Server,	column	represents	the
column	name	as	listed	in	the	syscolumns	table.	column	can	include	wildcard
characters	using	the	underlying	DBMS's	wildcard	matching	patterns.	For
maximum	interoperability,	the	gateway	client	should	assume	only	SQL-92
standard	pattern	matching	(the	%	and	_	wildcard	characters).

[@ODBCVer	=]	ODBCVer

Is	the	version	of	ODBC	being	used.	ODBCVer	is	int,	with	a	default	of	2,
indicating	ODBC	Version	2.	Valid	values	are	2	or	3.	Refer	to	the	ODBC
SQLColumns	specification	for	the	behavior	differences	between	versions	2
and	3.

Return	Code	Values
None

Result	Sets
The	sp_columns	catalog	stored	procedure	is	equivalent	to	SQLColumns	in
ODBC.	The	results	returned	are	ordered	by	TABLE_QUALIFIER,
TABLE_OWNER,	and	TABLE_NAME.

Column	name Data	type Description
TABLE_QUALIFIER sysname Table	or	view	qualifier

name.	This	field	can	be
NULL.

TABLE_OWNER sysname Table	or	view	owner	name.
This	field	always	returns	a
value.

TABLE_NAME sysname Table	or	view	name.	This
field	always	returns	a	value.

COLUMN_NAME sysname Column	name,	for	each

column	of	the
TABLE_NAME	returned.
This	field	always	returns	a
value.

DATA_TYPE smallint Integer	code	for	ODBC	data
type.	If	this	is	a	data	type
that	cannot	be	mapped	to	an
ODBC	type,	it	is	NULL.	The
native	data	type	name	is
returned	in	the
TYPE_NAME	column.

TYPE_NAME varchar(13) String	representing	a	data
type.	The	underlying	DBMS
presents	this	data	type	name.

PRECISION int Number	of	significant	digits.
The	return	value	for	the
PRECISION	column	is	in
base	10.

LENGTH int Transfer	size	of	the	data.1

SCALE smallint Number	of	digits	to	the	right
of	the	decimal	point.

RADIX smallint Base	for	numeric	datatypes.
NULLABLE smallint Specifies	nullability.

1	=	NULL	is	possible.	
0	=	NOT	NULL.

REMARKS varchar(254) This	field	always	returns
NULL.

COLUMN_DEF nvarchar(4000)Default	value	of	the	column.
SQL_DATA_TYPE smallint Value	of	the	SQL	data	type

as	it	appears	in	the	TYPE
field	of	the	descriptor.	This
column	is	the	same	as	the
DATA_TYPE	column,
except	for	the	datetime	and
SQL-92	interval	data	types.

This	column	always	returns
a	value.

SQL_DATETIME_SUB smallint Subtype	code	for	datetime
and	SQL-92	interval	data
types.	For	other	data	types,
this	column	returns	NULL.

CHAR_OCTET_LENGTH int Maximum	length	in	bytes	of
a	character	or	integer	data
type	column.	For	all	other
data	types,	this	column
returns	NULL.

ORDINAL_POSITION int Ordinal	position	of	the
column	in	the	table.	The	first
column	in	the	table	is	1.	This
column	always	returns	a
value.

IS_NULLABLE varchar(254) Nullability	of	the	column	in
the	table.	ISO	rules	are
followed	to	determine
nullability.	An	ISO	SQL-
compliant	DBMS	cannot
return	an	empty	string.

YES	=	Column	can	include
NULLS.	
NO	=	Column	cannot
include	NULLS.

This	column	returns	a	zero-
length	string	if	nullability	is
unknown.

The	value	returned	for	this
column	is	different	from	the
value	returned	for	the
NULLABLE	column.

SS_DATA_TYPE tinyint SQL	Server	data	type,	used

by	Open	Data	Services
extended	stored	procedures.
For	more	information,	see
Data	Types.

1.	 For	more	information,	see	the	Microsoft	ODBC	documentation.

Permissions
Execute	permission	defaults	to	the	public	role.

Examples
This	example	returns	column	information	for	a	specified	table.

EXEC	sp_columns	@table_name	=	'customers'

See	Also

sp_tables

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_columns_ex
Returns	the	column	information,	one	row	per	column,	for	the	given	linked	server
table(s).	sp_columns_ex	returns	column	information	only	for	the	given	column
if	column	is	specified.

Syntax
sp_columns_ex	[@table_server	=]	'table_server'	
				[,	[@table_name	=]	'table_name']	
				[,	[@table_schema	=]	'table_schema']	
				[,	[@table_catalog	=]	'table_catalog']	
				[,	[@column_name	=]	'column']	
				[,	[@ODBCVer	=]	'ODBCVer']

Arguments
[@table_server	=]	'table_server'

Is	the	name	of	the	linked	server	for	which	to	return	column	information.
table_server	is	sysname,	with	no	default.

[@table_name	=]	'table_name'

Is	the	name	of	the	table	for	which	to	return	column	information.	table_name
is	sysname,	with	a	default	of	NULL.

[@table_schema	=]	'table_schema'

Is	the	schema	name	of	the	table	for	which	to	return	column	information.
table_schema	is	sysname,	with	a	default	of	NULL.

[@table_catalog	=]	'table_catalog'

Is	the	catalog	name	of	the	table	for	which	to	return	column	information.
table_catalog	is	sysname,	with	a	default	of	NULL.

[@column_name	=]	'column'

Is	the	name	of	the	database	column	for	which	to	provide	information.	column
is	sysname,	with	a	default	of	NULL.

[@ODBCVer	=]	'ODBCVer'

Is	the	version	of	ODBC	being	used.	ODBCVer	is	int,	with	a	default	of	2,
indicating	ODBC	Version	2.	Valid	values	are	2	or	3.	Refer	to	the	ODBC
SQLColumns	specification	for	the	behavior	differences	between	versions	2
and	3.

Return	Code	Values
None

Result	Sets

Column	name Data	type Description
TABLE_CAT sysname Table	or	view	qualifier	name.

Various	DBMS	products
support	three-part	naming	for
tables	(qualifier.owner.name).
In	Microsoft®	SQL	Server™,
this	column	represents	the
database	name.	In	some
products,	it	represents	the
server	name	of	the	table's
database	environment.	This
field	can	be	NULL.

TABLE_SCHEM sysname Table	or	view	owner	name.	In
SQL	Server,	this	column
represents	the	name	of	the
database	user	that	created	the
table.	This	field	always	returns
a	value.

TABLE_NAME sysname Table	or	view	name.	This	field
always	returns	a	value.

COLUMN_NAME sysname Column	name,	for	each
column	of	the
TABLE_NAME	returned.
This	field	always	returns	a

value.
DATA_TYPE smallint Integer	value	corresponding	to

ODBC	type	indicators.	If	this
is	a	data	type	that	cannot	be
mapped	to	an	ODBC	type,	it	is
NULL.	The	native	data	type
name	is	returned	in	the
TYPE_NAME	column.

TYPE_NAME varchar(13) String	representing	a	data	type.
The	underlying	DBMS
presents	this	data	type	name.

COLUMN_SIZE int Number	of	significant	digits.
The	return	value	for	the
PRECISION	column	is	in
base	10.

BUFFER_LENGTH int Transfer	size	of	the	data.1

DECIMAL_DIGITS smallint Number	of	digits	to	the	right	of
the	decimal	point.

NUM_PREC_RADIX smallint Is	the	base	for	numeric	data
types.

NULLABLE smallint Specifies	nullability.

1	=	NULL	is	possible.	
0	=	NOT	NULL.

REMARKS varchar(254) This	field	always	returns
NULL.

COLUMN_DEF varchar(254) Default	value	of	the	column.
SQL_DATA_TYPE smallint Value	of	the	SQL	data	type	as

it	appears	in	the	TYPE	field	of
the	descriptor.	This	column	is
the	same	as	the	DATA_TYPE
column,	except	for	the
datetime	and	SQL-92	interval
data	types.	This	column
always	returns	a	value.

SQL_DATETIME_SUB smallint Subtype	code	for	datetime	and

SQL-92	interval	data	types.
For	other	data	types,	this
column	returns	NULL.

CHAR_OCTET_LENGTH int Maximum	length	in	bytes	of	a
character	or	integer	data	type
column.	For	all	other	data
types,	this	column	returns
NULL.

ORDINAL_POSITION int Ordinal	position	of	the	column
in	the	table.	The	first	column
in	the	table	is	1.	This	column
always	returns	a	value.

IS_NULLABLE varchar(254) Nullability	of	the	column	in
the	table.	ISO	rules	are
followed	to	determine
nullability.	An	ISO	SQL-
compliant	DBMS	cannot
return	an	empty	string.

YES	=	Column	can	include
NULLS.	
NO	=	Column	cannot	include
NULLS.

This	column	returns	a	zero-
length	string	if	nullability	is
unknown.

The	value	returned	for	this
column	is	different	from	the
value	returned	for	the
NULLABLE	column.

SS_DATA_TYPE tinyint SQL	Server	data	type,	used	by
Open	Data	Services	extended
stored	procedures.	For	more
information	see	Data	Types.

JavaScript:hhobj_1.Click()

1.	 For	more	information,	see	the	Microsoft	ODBC	documentation.

Remarks
sp_columns_ex	is	executed	by	querying	the	COLUMNS	rowset	of	the
IDBSchemaRowset	interface	of	the	OLE	DB	provider	corresponding	to
table_server.	The	table_name,	table_schema,	table_catalog,	and	column
parameters	are	passed	to	this	interface	to	restrict	the	rows	returned.

sp_columns_ex	returns	an	empty	result	set	if	the	OLE	DB	provider	of	the
specified	linked	server	does	not	support	the	COLUMNS	rowset	of	the
IDBSchemaRowset	interface.

Permissions
Execute	permission	defaults	to	the	public	role.

Examples
This	example	returns	the	data	type	of	the	title_id	column	of	the	titles	table.

USE	master
EXEC	sp_columns_ex	'LONDON1',	'titles',	'dbo',	'pubs',	
			'title_id'

See	Also

sp_catalogs

sp_foreignkeys

sp_indexes

sp_linkedservers

sp_primarykeys

sp_tables_ex

sp_table_privileges

System	Stored	Procedures

Transact-SQL	Reference

sp_configure
Displays	or	changes	global	configuration	settings	for	the	current	server.

Syntax
sp_configure	[[@configname	=]	'name']	
				[,	[@configvalue	=]	'value']

Arguments
[@configname	=]	'name'

Is	the	name	of	a	configuration	option.	name	is	varchar(35),	with	a	default	of
NULL.	Microsoft®	SQL	Server™	understands	any	unique	string	that	is	part
of	the	configuration	name.	If	not	specified,	the	entire	list	of	options	is
returned.

[@configvalue	=]	value

Is	the	new	configuration	setting.	value	is	int,	with	a	default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
When	executed	with	no	parameters,	sp_configure	returns	a	result	set	with	five
columns	and	orders	the	options	in	alphabetically	ascending	order.	The
config_value	and	the	run_value	do	not	necessarily	have	to	be	equivalent.	For
example,	the	system	administrator	may	have	changed	an	option	with
sp_configure,	but	has	not	executed	the	RECONFIGURE	statement	(for	dynamic
options)	or	restarted	SQL	Server	(for	nondynamic	options).

Column	name Data	type Description
name nvarchar(70) Name	of	the	configuration	option.
minimum int Minimum	value	of	the	configuration

option.
maximum int Maximum	value	of	the	configuration

option.
config_value int Value	to	which	the	configuration	option

was	set	using	sp_configure	(value	in
sysconfigures.value).

run_value int Value	for	the	configuration	option
(value	in	syscurconfigs.value).

Remarks
Some	options	supported	by	sp_configure	are	designated	as	Advanced.	By
default,	these	options	are	not	available	for	viewing	and	changing;	setting	the
Show	Advanced	Options	configuration	option	to	1	makes	these	options
available.	For	more	information	about	the	available	configuration	options	and
their	settings,	see	Setting	Configuration	Options.

When	using	sp_configure	to	change	a	setting,	use	the	RECONFIGURE	WITH
OVERRIDE	statement	for	the	change	to	take	immediate	effect.	Otherwise,	the
change	takes	effect	after	SQL	Server	is	restarted.

Note		Minimum	and	maximum	memory	configurations	are	dynamic	in	SQL
Server.	You	can	change	them	without	restarting	the	server.

Use	sp_configure	to	display	or	change	server-level	settings.	Use	sp_dboption	to
change	database	level	settings,	and	the	SET	statement	to	change	settings	that
affect	only	the	current	user	session.

Note		If	the	specified	config_value	is	too	high	for	an	option,	the	run_value
setting	reflects	the	fact	that	SQL	Server	defaulted	to	dynamic	memory,	rather
than	use	an	invalid	setting.

Permissions
Execute	permissions	on	sp_configure	with	no	parameters,	or	with	only	the	first
parameter,	default	to	all	users.	Execute	permissions	for	sp_configure	with	both
parameters,	used	to	change	a	configuration	option,	default	to	the	sysadmin	and
serveradmin	fixed	server	roles.	RECONFIGURE	permissions	default	to	the

JavaScript:hhobj_1.Click()

sysadmin	fixed	server	role	and	serveradmin	fixed	server	role,	and	are	not
transferable.

Examples

A.	List	the	advanced	configuration	options
This	example	shows	how	to	set	and	list	all	configuration	options.	Advanced
configuration	options	are	displayed	by	first	setting	the	show	advanced	option	to
1.	After	this	has	been	changed,	executing	sp_configure	with	no	parameters
displays	all	configuration	options.

USE	master
EXEC	sp_configure	'show	advanced	option',	'1'

--Here	is	the	message:
Configuration	option	'show	advanced	options'	changed	from	0	to	1.	
Run	the	RECONFIGURE	command	to	install.

RECONFIGURE
EXEC	sp_configure

B.	Change	a	configuration	option
This	example	sets	the	system	recovery	interval	to	3	minutes.

USE	master
EXEC	sp_configure	'recovery	interval',	'3'
RECONFIGURE	WITH	OVERRIDE

See	Also

RECONFIGURE

SET

sp_dboption

System	Stored	Procedures

Transact-SQL	Reference

sp_create_log_shipping_monitor_account
Creates	the	log_shipping_monitor_probe	login	on	the	monitor	server,	and
assigns	update	permissions	to	msdb.dbo.log_shipping_primaries	and
msdb.dbo.log_shipping_secondaries	tables.

Syntax
sp_create_log_shipping_monitor_account	[@password	=]	'password'

Arguments
[@password	=]	'password'

Is	the	password	for	the	log_shipping_monitor_probe	account.	password	is
sysname,	with	a	default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
The	log_shipping_monitor_probe	account	is	used	by	the	primary	and	secondary
servers	to	update	msdb.dbo.log_shipping_primaries	and
msdb.dbo.log_shipping_secondaries	tables	when	a	transaction	log	has	been
backed	up,	copied,	or	restored.

Permissions
Only	the	members	of	the	sysadmin	fixed	server	role	can	execute
sp_create_log_shipping_monitor_account.

Examples
This	example	creates	a	log	shipping	monitor	account	with	the	password
"Pwrdx!5."

EXEC			sp_create_log_shipping_monitor_account	@password	=	N'Pwrdx!5'

Transact-SQL	Reference

sp_create_removable
Creates	a	removable	media	database.	Creates	three	or	more	files	(one	for	the
system	catalog	tables,	one	for	the	transaction	log,	and	one	or	more	for	the	data
tables)	and	places	the	database	on	those	files.

Syntax
sp_create_removable	[@dbname	=]	'dbname'	
				,	[@syslogical	=]	'syslogical'	
				,	[@sysphysical	=]	'sysphysical'	
				,	[@syssize	=]	syssize	
				,	[@loglogical	=]	'loglogical'	
				,	[@logphysical	=]	'logphysical'	
				,	[@logsize	=]	logsize	
				,	[@datalogical1	=]	'datalogical1'	
				,	[@dataphysical1	=]	'dataphysical1'	
				,	[@datasize1	=]	datasize1	
				,	[@datalogical16	=]	'datalogical16'	
				,	[@dataphysical16	=]	'dataphysical16'	
				,	[@datasize16	=]	datasize16]

Arguments
[@dbname	=]	'dbname'

Is	the	name	of	the	database	to	create	for	use	on	removable	media.	dbname	is
sysname.

[@syslogical	=]	'syslogical'

Is	the	logical	name	of	the	file	that	contains	the	system	catalog	tables.
syslogical	is	sysname.

[@sysphysical	=]	'sysphysical'

Is	the	physical	name,	including	a	fully	qualified	path,	of	the	file	that	holds
the	system	catalog	tables.	sysphysical	is	nvarchar(260).

[@syssize	=]	syssize

Is	the	size,	in	megabytes,	of	the	file	that	holds	the	system	catalog	tables.
syssize	is	int.	The	minimum	syssize	is	1.

[@loglogical	=]	'loglogical'

Is	the	logical	name	of	the	file	that	contains	the	transaction	log.	loglogical	is
sysname.

[@logphysical	=]	'logphysical'

Is	the	physical	name,	including	a	fully	qualified	path,	of	the	file	that	contains
the	transaction	log.	logphysical	is	nvarchar(260).

[@logsize	=]	logsize

Is	the	size,	in	megabytes,	of	the	file	that	contains	the	transaction	log.	logsize
is	int.	The	minimum	logsize	is	1.

[@datalogical1	=]	'datalogical'

Is	the	logical	name	of	a	file	that	contains	the	data	tables.	datalogical	is
sysname.

There	must	be	from	1	through	16	data	files.	Usually,	more	than	one	data	file
is	created	when	the	database	is	expected	to	be	large	and	must	be	distributed
on	multiple	disks.

[@dataphysical1	=]	'dataphysical'

Is	the	physical	name,	including	a	fully	qualified	path,	of	a	file	that	contains
data	tables.	dataphysical	is	nvarchar(260).

[@datasize1	=]	'datasize'

Is	the	size,	in	megabytes,	of	a	file	that	contains	data	tables.	datasize	is	int.
The	minimum	datasize	is	1.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

None

Remarks
If	you	want	to	make	a	copy	of	your	database	on	removable	media	(such	as	a
compact	disc)	and	distribute	the	database	to	other	users,	use	this	stored
procedure.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_create_removable.

Examples
This	example	creates	the	database	inventory	as	a	removable	database.

sp_create_removable	'inventory',	
			'invsys',
			'c:\Program	Files\Microsoft	SQLServer\MSSQL\Data\invsys.mdf',	2,	
			'invlog',
			'c:\Program	Files\Microsoft	SQLServer\MSSQL\Data\invlog.ldf',	4,
			'invdata',
			'c:\Program	Files\Microsoft	SQLServer\MSSQL\Data\invdata.ndf',	10

See	Also

sp_attach_db

sp_attach_single_file_db

sp_certify_removable

sp_dboption

sp_dbremove

sp_detach_db

sp_helpfile

sp_helpfilegroup

System	Stored	Procedures

Transact-SQL	Reference

sp_createstats
Creates	single-column	statistics	for	all	eligible	columns	for	all	user	tables	in	the
current	database.	The	new	statistic	has	the	same	name	as	the	column	on	which	it
is	created.	Computed	columns	and	columns	of	the	ntext,	text,	or	image	data
types	cannot	be	specified	as	statistics	columns.	Columns	already	having	statistics
are	not	touched	(for	example,	the	first	column	of	an	index	or	a	column	with
explicitly	created	statistics).	A	CREATE	STATISTICS	statement	is	executed	for
each	column	that	satisfies	the	above	restrictions.	FULLSCAN	is	executed	if
fullscan	is	specified.

Syntax
sp_createstats	[[@indexonly	=]	'indexonly']									[,	[@fullscan	=]
'fullscan']	
								[,	[@norecompute	=]	'norecompute']

Arguments
[@indexonly	=]	'indexonly'

Specifies	that	only	the	columns	participating	in	an	index	should	be
considered	for	statistics	creation.	indexonly	is	char(9),	with	a	default	of	NO.

[@fullscan	=]	'fullscan'

Specifies	that	the	FULLSCAN	option	is	used	with	the	CREATE
STATISTICS	statement.	If	fullscan	is	omitted,	Microsoft®	SQL	Server™
performs	a	default	sample	scan.	fullscan	is	char(9),	with	a	default	of	NO.

[@norecompute	=]	'norecompute'

Specifies	that	automatic	recomputation	of	statistics	is	disabled	for	the	newly
created	statistics.	norecompute	is	char(12)	with	a	default	of	NO.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Permissions
Permissions	default	to	members	of	the	sysadmin	fixed	server	role,	the
db_owner	fixed	database	role,	and	the	owner	of	the	objects.

Examples
This	example	creates	statistics	for	all	eligible	columns	for	all	user	tables	in	the
current	database.

EXEC	sp_createstats

This	example	creates	statistics	for	only	the	columns	participating	in	an	index.

EXEC	sp_createstats	'indexonly'

See	Also

CREATE	STATISTICS

DBCC	SHOW_STATISTICS

DROP	STATISTICS

System	Stored	Procedures

UPDATE	STATISTICS

Transact-SQL	Reference

sp_cursor_list
Reports	the	attributes	of	server	cursors	currently	open	for	the	connection.

Syntax
sp_cursor_list	[@cursor_return	=]	cursor_variable_name	OUTPUT	
				,	[@cursor_scope	=]	cursor_scope

Arguments
[@cursor_return	=]	cursor_variable_name	OUTPUT

Is	the	name	of	a	declared	cursor	variable.	cursor_variable_name	is	cursor,
with	no	default.	The	cursor	is	a	scrollable,	dynamic,	read-only	cursor.

[@cursor_scope	=]	cursor_scope

Specifies	the	level	of	cursors	to	report.	cursor_scope	is	int,	with	no	default,
and	can	be	one	of	these	values.

Value Description
1 Report	all	local	cursors.
2 Report	all	global	cursors.
3 Report	both	local	and	global	cursors.

Return	Code	Values
None

Cursors	Returned
sp_cursor_list	returns	its	report	as	a	Transact-SQL	cursor	output	parameter,	not
as	a	result	set.	This	allows	Transact-SQL	batches,	stored	procedures,	and	triggers
to	work	with	the	output	one	row	at	a	time.	It	also	means	the	procedure	cannot	be
called	directly	from	database	API	functions.	The	cursor	output	parameter	must

be	bound	to	a	program	variable,	but	the	database	APIs	do	not	support	binding
cursor	parameters	or	variables.

This	is	the	format	of	the	cursor	returned	by	sp_cursor_list.	The	format	of	the
cursor	is	the	same	as	the	format	returned	by	sp_describe_cursor.

Column	name Data	type Description
reference_name sysname Name	used	to	refer	to	the	cursor.	If	the

reference	to	the	cursor	was	through	the
name	given	on	a	DECLARE	CURSOR
statement,	the	reference	name	is	the	same	as
cursor	name.	If	the	reference	to	the	cursor
was	through	a	variable,	the	reference	name
is	the	name	of	the	cursor	variable.

cursor_name sysname Name	of	the	cursor	from	a	DECLARE
CURSOR	statement.	If	the	cursor	was
created	by	setting	a	cursor	variable	to	a
cursor,	the	cursor	name	is	a	system-
generated	name.

cursor_scope smallint 1	=	LOCAL
2	=	GLOBAL

status smallint Same	values	as	reported	by	the
CURSOR_STATUS	system	function:

1	=	The	cursor	referenced	by	the	cursor
name	or	variable	is	open.	If	the	cursor	is
insensitive,	static,	or	keyset,	it	has	at	least
one	row.	If	the	cursor	is	dynamic,	the	result
set	has	zero	or	more	rows.
0	=	The	cursor	referenced	by	the	cursor
name	or	variable	is	open	but	has	no	rows.
Dynamic	cursors	never	return	this	value.
-1	=	The	cursor	referenced	by	the	cursor
name	or	variable	is	closed.
-2	=	Applies	only	to	cursor	variables.	There
is	no	cursor	assigned	to	the	variable.
Possibly,	an	OUTPUT	parameter	assigned	a
cursor	to	the	variable,	but	the	stored

procedure	closed	the	cursor	before
returning.
-3	=	A	cursor	or	cursor	variable	with	the
specified	name	does	not	exist,	or	the	cursor
variable	has	not	had	a	cursor	allocated	to	it.

model smallint 1	=	Insensitive	(or	static)
2	=	Keyset
3	=	Dynamic
4	=	Fast	Forward

concurrency smallint 1	=	Read-only
2	=	Scroll	locks
3	=	Optimistic

scrollable smallint 0	=	Forward-only
1	=	Scrollable

open_status smallint 0	=	Closed
1	=	Open

cursor_rows int Number	of	qualifying	rows	in	the	result	set.
For	more	information,	see
@@CURSOR_ROWS.

fetch_status smallint Status	of	the	last	fetch	on	this	cursor.	For
more	information,	see
@@FETCH_STATUS.

0	=	Fetch	successful.
-1	=	Fetch	failed	or	is	beyond	the	bounds	of
the	cursor.
-2	=	The	requested	row	is	missing.
-9	=	There	has	been	no	fetch	on	the	cursor.

column_count smallint Number	of	columns	in	the	cursor	result	set.
row_count smallint Number	of	rows	affected	by	the	last

operation	on	the	cursor.	For	more
information,	see	@@ROWCOUNT.

last_operation smallint Last	operation	performed	on	the	cursor:

0	=	No	operations	have	been	performed	on
the	cursor.

1	=	OPEN
2	=	FETCH
3	=	INSERT
4	=	UPDATE
5	=	DELETE
6	=	CLOSE
7	=	DEALLOCATE

cursor_handle int A	unique	value	that	identifies	the	cursor
within	the	scope	of	the	server.

Remarks
sp_cursor_list	produces	a	list	of	the	current	server	cursors	opened	by	the
connection	and	describes	the	attributes	global	to	each	cursor,	such	as	the
scrollability	and	updatability	of	the	cursor.	The	cursors	listed	by	sp_cursor_list
include:

Transact-SQL	server	cursors.

API	server	cursors	opened	by	an	ODBC	application	that	then	called
SQLSetCursorName	to	name	the	cursor.

Use	sp_describe_cursor_columns	for	a	description	of	the	attributes	of	the	result
set	returned	by	the	cursor.	Use	sp_describe_cursor_tables	for	a	report	of	the
base	tables	referenced	by	the	cursor.	sp_describe_cursor	reports	the	same
information	as	sp_cursor_list,	but	only	for	a	specified	cursor.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	opens	a	global	cursor	and	uses	sp_cursor_list	to	report	on	the
attributes	of	the	cursor.

USE	Northwind
GO
--	Declare	and	open	a	keyset-driven	cursor.
DECLARE	abc	CURSOR	KEYSET	FOR
SELECT	LastName
FROM	Employees
WHERE	LastName	LIKE	'S%'
OPEN	abc

--	Declare	a	cursor	variable	to	hold	the	cursor	output	variable
--	from	sp_cursor_list.
DECLARE	@Report	CURSOR

--	Execute	sp_cursor_list	into	the	cursor	variable.
EXEC	master.dbo.sp_cursor_list	@cursor_return	=	@Report	OUTPUT,
						@cursor_scope	=	2

--	Fetch	all	the	rows	from	the	sp_cursor_list	output	cursor.
FETCH	NEXT	from	@Report
WHILE	(@@FETCH_STATUS	<>	-1)
BEGIN
			FETCH	NEXT	from	@Report
END

--	Close	and	deallocate	the	cursor	from	sp_cursor_list.
CLOSE	@Report
DEALLOCATE	@Report
GO

--	Close	and	deallocate	the	original	cursor.
CLOSE	abc
DEALLOCATE	abc
GO

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_cycle_errorlog
Closes	the	current	error	log	file	and	cycles	the	error	log	extension	numbers	just
like	a	server	restart.	The	new	error	log	contains	version	and	copyright
information	and	a	line	indicating	that	the	new	log	has	been	created.

Syntax
sp_cycle_errorlog

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
Every	time	SQL	Server	is	started,	the	current	error	log	is	renamed	to	errorlog.1;
errorlog.1	becomes	errorlog.2,	errorlog.2	becomes	errorlog.3,	and	so	on.
sp_cycle_errorlog	enables	you	to	cycle	the	error	log	files	without	stopping	and
starting	the	server.

Permissions
Execute	permissions	for	sp_cycle_errorlog	are	restricted	to	members	of	the
sysadmin	fixed	server	role.

Examples

EXEC	sp_cycle_errorlog

See	Also

System	Stored	Procedures

Viewing	the	SQL	Server	Error	Log

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_databases
Lists	databases	that	reside	in	an	instance	of	Microsoft®	SQL	Server™	or	are
accessible	through	a	database	gateway.

Syntax
sp_databases

Return	Code	Values
None

Result	Sets

Column	name Data	type Description
DATABASE_NAMEsysname Name	of	the	database.	In	SQL

Server,	this	column	represents	the
database	name	as	stored	in	the
sysdatabases	system	table.

DATABASE_SIZE int Size	of	database,	in	kilobytes.
REMARKS varchar(254) For	SQL	Server,	this	field	always

returns	NULL.

Remarks
In	SQL	Server,	sp_databases	returns	the	databases	listed	in	the	sysdatabases
system	table.	Because	some	database	management	systems	(DBMS)	accessed	by
database	gateways	do	not	have	the	concept	of	a	database,	this	stored	procedure
may	return	no	rows	if	sent	to	a	Microsoft	Open	Data	Services-based	gateway.

Database	names	that	are	returned	can	be	used	as	parameters	in	the	USE
statement	to	change	the	current	database	context.

sp_databases	has	no	equivalent	in	Open	Database	Connectivity	(ODBC).

Permissions
Execute	permissions	default	to	the	public	role.

Transact-SQL	Reference

sp_datatype_info
Returns	information	about	the	data	types	supported	by	the	current	environment.

Syntax
sp_datatype_info	[[@data_type	=]	data_type]	
				[,	[@ODBCVer	=]	odbc_version]

Arguments
[@data_type	=]	data_type

Is	the	code	number	for	the	specified	data	type.	To	obtain	a	list	of	all	data
types,	omit	this	parameter.	data_type	is	int,	with	a	default	of	0.

[@ODBCVer	=]	odbc_version

Is	the	version	of	ODBC	used.	odbc_version	is	tinyint,	with	a	default	of	2.

Return	Code	Values
None

Result	Sets

Column	name Data	type Description
TYPE_NAME sysname DBMS-dependent	data	type.
DATA_TYPE smallint Code	for	the	ODBC	type	to

which	all	columns	of	this	type
are	mapped.

PRECISION int Maximum	precision	of	the	data
type	on	the	data	source.	NULL	is
returned	for	data	types	for	which
precision	is	not	applicable.	The
return	value	for	the
PRECISION	column	is	in	base

10.
LITERAL_PREFIX varchar(32) Character(s)	used	before	a

constant.	For	example,	a	single
quotation	mark	(')	for	character
types	and	0x	for	binary	in
Microsoft®	SQL	Server™.

LITERAL_SUFFIX varchar(32) Character(s)	used	to	terminate	a
constant.	For	example,	a	single
quotation	mark	(')	for	character
types	and	none	for	binary.

CREATE_PARAMS varchar(32) Description	of	the	creation
parameters	for	this	data	type.	For
example,	decimal	is	"precision,
scale",	float	is	NULL,	and
varchar	is	"max_length".

NULLABLE smallint Specifies	nullability.

1	=	Allows	null	values.
0	=	Does	not	allow	null	values.

CASE_SENSITIVE smallint Specifies	case	sensitivity.

1	=	All	columns	of	this	type	are
case-sensitive	(for	collations).	
0	=	All	columns	of	this	type	are
case-insensitive.

SEARCHABLE smallint Column	type.

1	=	Columns	of	this	type	can	be
used	in	a	WHERE	clause.
0	=	Columns	of	this	type	cannot
be	used	in	a	WHERE	clause.

UNSIGNED_ATTRIBUTE smallint Specifies	the	sign	of	the	data
type.

1	=	Data	type	unsigned.	
0	=	Data	type	signed.

MONEY smallint Specifies	the	money	data	type.	
1	=	money	data	type.
0	=	Not	a	money	data	type.

AUTO_INCREMENT smallint Specifies	autoincrementing.

1	=	Autoincrementing.
0	=	Not	autoincrementing.
NULL	=	Attribute	not
applicable.

An	application	can	insert	values
into	a	column	that	has	this
attribute,	but	it	cannot	update	the
values	in	the	column.
AUTO_INCREMENT	is	valid
only	for	category	data	types.

LOCAL_TYPE_NAME sysname Localized	version	of	the	data
source-dependent	name	of	the
data	type.	For	example,
DECIMAL	is	DECIMALE	in
French.	NULL	is	returned	if	a
localized	name	is	not	supported
by	the	data	source.

MINIMUM_SCALE smallint Minimum	scale	of	the	data	type
on	the	data	source.	If	a	data	type
has	a	fixed	scale,	the
MINIMUM_SCALE	and
MAXIMUM_SCALE	columns
both	contain	this	value.	NULL	is
returned	where	scale	is	not
applicable.

MAXIMUM_SCALE smallint Maximum	scale	of	the	data	type
on	the	data	source.	If	the
maximum	scale	is	not	defined
separately	on	the	data	source,
but	is	instead	defined	to	be	the
same	as	the	maximum	precision,

this	column	contains	the	same
value	as	the	PRECISION
column.

SQL_DATA_TYPE smallint Value	of	the	SQL	data	type	as	it
appears	in	the	TYPE	field	of	the
descriptor.	This	column	is	the
same	as	the	DATA_TYPE
column,	except	for	the	datetime
and	ANSI	interval	data	types.
This	field	always	returns	a	value.

SQL_DATETIME_SUB smallint datetime	or	ANSI	interval
subcode	if	the	value	of
SQL_DATA_TYPE	is
SQL_DATETIME	or
SQL_INTERVAL.	For	data
types	other	than	datetime	and
ANSI	interval,	this	field	is
NULL.

NUM_PREC_RADIX int Number	of	bits	or	digits	for
calculating	the	maximum
number	that	a	column	can	hold.
If	the	data	type	is	an
approximate	numeric	data	type,
this	column	contains	the	value	2
to	indicate	a	number	of	bits.	For
exact	numeric	types,	this	column
contains	the	value	10	to	indicate
a	number	of	decimal	digits.
Otherwise,	this	column	is
NULL.	By	combining	the
precision	with	radix,	the
application	can	calculate	the
maximum	number	that	the
column	can	hold.

INTERVAL_PRECISION smallint Value	of	interval	leading

precision	if	data_type	is
interval;	otherwise	NULL.

USERTYPE smallint usertype	value	from	the
systypes	table.

Remarks
sp_datatype_info	is	equivalent	to	SQLGetTypeInfo	in	ODBC.	The	results
returned	are	ordered	by	DATA_TYPE	and	then	by	how	closely	the	data	type
maps	to	the	corresponding	ODBC	SQL	data	type.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	retrieves	information	for	the	sysname	and	nvarchar	data	types	by
specifying	the	DATA_TYPE	value	of	-9.

USE	master
EXEC	sp_datatype_info	-9

See	Also

Data	Types

System	Stored	Procedures

Transact-SQL	Reference

sp_dbcmptlevel
Sets	certain	database	behaviors	to	be	compatible	with	the	specified	earlier
version	of	Microsoft®	SQL	Server™.

Syntax
sp_dbcmptlevel	[[@dbname	=]	name]	
				[,	[@new_cmptlevel	=]	version]

Arguments
[@dbname	=]	name

Is	the	name	of	the	database	whose	compatibility	level	is	to	be	changed.
Database	names	must	conform	to	the	rules	for	identifiers.	name	is	sysname,
with	a	default	of	NULL.

[@new_cmptlevel	=]	version

Is	the	version	of	SQL	Server	with	which	the	database	is	to	be	made
compatible.	version	is	tinyint,	with	a	default	of	NULL.	The	value	must	be
80,	70,	65,	or	60.

Note		The	only	difference	between	levels	70	and	80	is	that	several	reserved
keywords	introduced	in	SQL	Server	2000	are	not	supported	in	level	70.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
sp_dbcmptlevel	returns	this	message	if	no	parameters	are	specified	or	if	the
name	parameter	is	not	specified:

Valid	values	of	database	compatibility	level	are	60,	65,	70,	or	80.

If	name	is	specified	with	no	version,	SQL	Server	displays	a	message	with	the

compatibility	setting	for	the	named	database.

Remarks
In	SQL	Server	2000,	the	master	database	has	a	compatibility	level	of	80,	which
cannot	be	modified.

For	installations	of	all	instances	of	SQL	Server	2000,	the	default	level	for	all
databases	is	80.	For	upgrades	from	SQL	Server	7.0	to	SQL	Server	2000,	the
default	level	for	all	databases	is	80.	For	upgrades	from	SQL	Server	6.5	and	SQL
Server	6.0	to	SQL	Server	2000,	the	existing	default	compatibility	level	is
retained.

Use	sp_dbcmptlevel	as	an	interim	migration	aid.	If	existing	SQL	Server	version
6.x	applications	are	affected	by	the	differences	in	SQL	Server	version	7.0		or
SQL	Server	2000	behaviors	that	are	controlled	by	the	compatibility	level	setting
of	sp_dbcmptlevel,	use	this	procedure	to	set	the	earlier	version	behaviors	until
the	application	can	be	converted	to	work	properly	with	the	SQL	Server	2000
compatibility	level.	sp_dbcmptlevel	does	not	restore	full	backward
compatibility.

sp_dbcmptlevel	affects	the	behaviors	in	the	specified	database,	not	the	entire
server.	The	compatibility	setting	for	a	database	takes	effect	when	the	database	is
made	the	current	database	with	the	USE	statement,	or	if	the	database	is	the
default	database	for	the	login.	When	a	stored	procedure	is	executed,	the	current
compatibility	level	of	the	database	in	which	the	procedure	is	defined	is	used.	All
stored	procedures	in	the	database	are	recompiled	when	the	compatibility	setting
is	changed	in	that	database.

Setting	the	compatibility	level	to	65	or	60	affects	these	behaviors.	For	more
information	about	backward	compatible	behaviors,	see	SQL	Server	Backward
Compatibility	Details.

Compatibility	level	setting	of
either	60	or	65

Compatibility	level	setting	of	70	or
80	(default)

The	result	sets	of	SELECT
statements	with	a	GROUP	BY
clause	and	no	ORDER	BY	clause
are	sorted	by	the	GROUP	BY

A	GROUP	BY	clause	does	no	sorting
on	its	own.	An	ORDER	BY	clause
must	be	explicitly	specified	for	SQL
Server	to	sort	any	result	set.	For	more

JavaScript:hhobj_1.Click()

columns. information,	see	SELECT.
Columns	prefixed	with	table	aliases
are	accepted	in	the	SET	clause	of	an
UPDATE	statement.

Table	aliases	are	not	accepted	in	the
SET	clause	of	an	UPDATE	statement.
The	table	or	view	specified	in	the	SET
clause	must	match	that	specified
immediately	following	the	UPDATE
keyword.	For	more	information,	see
UPDATE.

bit	columns	created	without	an
explicit	NULL	or	NOT	NULL
option	in	CREATE	TABLE	or
ALTER	TABLE	are	created	as	NOT
NULL.

The	nullability	of	bit	columns	without
explicit	nullability	is	determined	by
either	the	session	setting	of	SET
ANSI_NULL_DFLT_ON	or	SET
ANSI_NULL_DFLT_OFF;	or	the
database	setting	of	SET	ANSI	NULL
DEFAULT.	For	more	information,	see
SET.

The	ALTER	COLUMN	clause
cannot	be	used	on	ALTER	TABLE.

The	ALTER	COLUMN	clause	can	be
used	on	ALTER	TABLE.	For	more
information,	see	ALTER	TABLE.

A	trigger	created	for	a	table
replaces	any	existing	triggers	of	the
same	type	(INSERT,	UPDATE,
DELETE).	The	WITH	APPEND
option	of	CREATE	TRIGGER	can
be	used	to	create	multiple	triggers
of	the	same	type.

Triggers	of	the	same	type	are
appended.	Trigger	names	must	be
unique.	The	WITH	APPEND	option	is
assumed.	For	more	information,	see
CREATE	TRIGGER.

When	a	batch	or	procedure	contains
invalid	object	names,	a	warning	is
returned	when	the	batch	is	parsed	or
compiled,	and	an	error	message	is
returned	when	the	batch	is
executed.

No	warning	is	returned	when	the	batch
is	parsed	or	compiled,	and	an	error
message	is	returned	when	the	batch	is
executed.	For	more	information	about
deferred	name	resolution,	see
CREATE	PROCEDURE	(Level	4).

Queries	of	the	following	form	are
properly	executed	by	ignoring	table
Y	and	inserting	the	SELECT
statement	results	into	table	X.

SQL	Server	returns	a	syntax	error
when	this	same	query	is	executed.

JavaScript:hhobj_2.Click()

INSERT	X
SELECT	select_list	INTO	Y

The	empty	string	literal	('	')	is
interpreted	as	a	single	blank.

The	empty	string	literal	('	')	is
interpreted	as	an	empty	string.

DATALENGTH('')	returns	1	(''
parsed	as	a	single	space).
DATALENGTH(N'')	returns	2	(N''
parsed	as	a	single	Unicode	space).
LEFT('123',	m)	returns	NULL	when
m	=	0.
LEFT(N'123',	m)	returns	NULL
when
m	=	0.
LTRIM('					')	returns	NULL.
LTRIM(N'					')	returns	NULL.
REPLICATE('123',	m)	returns
NULL	when	m	=	0.
REPLICATE(N'123',	m)	returns
NULL	when	m	=	0.
RIGHT(N'123',	m)	returns	NULL
when
m	=	0.
RIGHT('123',	m)	returns	NULL
when	
m	=	0.	
RIGHT('123',	m)	returns	NULL
when	m	is	negative.
RIGHT(N'123',	m)	returns	NULL
when	m	is	negative.
RTRIM('					')	returns	NULL.
RTRIM(N'					')	returns	NULL.
SPACE(0)	returns	NULL.
SUBSTRING('123',	m,	n)	returns
NULL	when	m	<	length	of	the
string	or	when	
n	=	0.

DATALENGTH('')	returns	0.
DATALENGTH(N'')	returns	0.
LEFT('123',	m)	returns	an	empty	string
when	m	=	0.
LEFT(N'123',	m)	returns	an	empty
string	when	m	=	0.
LTRIM('					')	returns	an	empty	string.
LTRIM(N'					')	returns	an	empty
string.
REPLICATE('123',	m)	returns	an
empty	string	when	m	=	0.
REPLICATE(N'123',	m)	returns	an
empty	string	when	m	=	0.
RIGHT('123',	m)	returns	an	empty
string	when	m	=	0.
RIGHT(N'123',	m)	returns	an	empty
string	when	m	=	0.
RIGHT('123',	m)	returns	error	when	m
is	negative.
RIGHT(N'123',	m)	returns	error	when
m	is	negative.
RTRIM('					')	returns	an	empty	string.
RTRIM(N'					')	returns	an	empty
string.
SPACE(0)	returns	an	empty	string.
SUBSTRING('123',	m,	n)	returns	an
empty	string	when	m	<	length	of	the
string	or	when	n	=	0.
SUBSTRING(N'123',	m,	n)	returns	an
empty	string	when	m	>	length	of	the
string	or	when	n	=	0.
UPDATETEXT	table.textcolumn

SUBSTRING(N'123',	m,	n)	returns
NULL	when	m	>	length	of	the
string	or	when
n	=	0.
UPDATETEXT	table.textcolumn
textpointer	>	0	NULL	NULL
results	in	a	NULL	value.

textpointer	>	0	NULL	NULL	results	in
empty	text.

The	CHARINDEX	and	PATINDEX
functions	return	null	only	if	both
the	pattern	and	the	expression	are
null.

The	CHARINDEX	and	PATINDEX
functions	return	NULL	when	any	input
parameters	are	NULL.

References	to	text	or	image
columns	in	the	inserted	and
deleted	tables	appear	as	NULL.

References	to	text	or	image	columns
in	the	inserted	and	deleted	tables	are
not	allowed.

Allows	UPDATETEXT	to	initialize
text	columns	to	NULL.

UPDATETEXT	initializes	text
columns	to	an	empty	string.
WRITETEXT	initializes	text	columns
to	NULL.

The	concatenation	of	null	yields
null	setting	of	sp_dboption	is	off
(disabled)	which	returns	an	empty
string	if	any	operands	in	a
concatenation	operation	is	null.

The	concatenation	of	null	yields	null
setting	of	sp_dboption	is	on
(enabled),	which	returns	a	NULL	if
any	operands	in	a	concatenation
operation	is	null.

In	an	INSERT	statement,	a
SELECT	returning	a	scalar	value	is
allowed	in	the	VALUES	clause.

The	INSERT	statement	cannot	have	a
SELECT	statement	in	the	VALUES
clause	as	one	of	the	values	to	be
inserted.

A	ROLLBACK	statement	in	a
stored	procedure	referenced	in	an
INSERT	table	EXEC	procedure
statement	causes	the	INSERT	to	be
rolled	back,	but	the	batch	continues.

A	ROLLBACK	statement	in	a	stored
procedure	referenced	by	an
INSERT...EXEC	statement	causes	the
entire	transaction	to	be	rolled	back	and
the	batch	stops	executing.

Retrieving	text	or	image	columns
from	the	inserted	or	deleted	tables
inside	a	trigger	returns	NULL
values	for	text	or	image	columns.

Retrieving	text	or	image	columns
from	the	inserted	or	deleted	tables
inside	a	trigger	is	not	allowed	and
causes	an	error.

The	compatibility	setting	also	has	an	effect	on	reserved	keywords.	This	table
shows	the	words	reserved	at	the	specified	level,	but	valid	for	use	in	object	names
at	lower	levels.	At	lower	compatibility	levels,	the	language	features
corresponding	to	the	reserved	keywords	in	upper	levels	are	not	available.

Compatibility
level	setting Reserved	keywords
80 COLLATE,	FUNCTION,	OPENXML
70 BACKUP,	CONTAINS,	CONTAINSTABLE,	DENY,

FREETEXT,	FREETEXTTABLE,	PERCENT,
RESTORE,	ROWGUIDCOL,	TOP

65 AUTHORIZATION,	CASCADE,	CROSS,
DISTRIBUTED,	ESCAPE,	FULL,	INNER,	JOIN,
LEFT,	OUTER,	PRIVILEGES,	RESTRICT,	RIGHT,
SCHEMA,	WORK

The	compatibility	level	setting	cannot	be	changed	in	the	master	database,	but	it
can	be	changed	in	the	model	database	to	take	effect	in	all	new	databases.	The
compatibility	level	cannot	be	changed	inside	a	stored	procedure	or	in	Transact-
SQL	strings	executed	with	the	EXEC('string')	syntax.	The	compatibility	level
should	not	be	changed	inside	a	batch	of	Transact-SQL	statements.

Permissions
Only	the	DBO,	members	of	the	sysadmin	fixed	server	role,	and	the	db_owner
fixed	database	role	(if	the	database	whose	compatibility	level	is	to	be	changed	is
the	current	database)	can	execute	this	procedure.

Examples
This	example	creates	a	procedure	named	distributed,	which	is	an	SQL	Server
reserved	keyword,	by	setting	the	compatibility	level	setting	for	the	pubs
database	to	60.

CREATE	PROCEDURE	distributed	

AS
PRINT	'This	won't	happen'

EXEC	sp_dbcmptlevel	'pubs',	60

CREATE	PROCEDURE	distributed	
AS
PRINT	'You	are	in	a	procedure	that	could	not	be	defined'
PRINT	'in	a	version	of	SQL	Server	6.5	or	later'
PRINT	'without	the	compatibility	setting.'

EXEC	distributed

Here	is	the	result	set:

Msg	156,	Level	15,	State	1
Incorrect	syntax	near	the	keyword	'distributed'.
DBCC	execution	completed.	If	DBCC	printed	error	messages,	see	your	System	Administrator.
You	are	in	a	procedure	that	could	not	be	defined
in	a	version	of	SQL	Server	6.5	or	greater
without	the	compatibility	setting.

See	Also

EXECUTE

Reserved	Keywords

Setting	Database	Options

sp_dboption

SQL	Server	Backward	Compatibility	Details

System	Stored	Procedures

Using	Identifiers

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Transact-SQL	Reference

sp_dbfixedrolepermission
Displays	the	permissions	for	each	fixed	database	role.

Syntax
sp_dbfixedrolepermission	[[@rolename	=]	'role']

Arguments
[@rolename	=]	'role'

Is	the	name	of	a	valid	Microsoft®	SQL	Server™	fixed	database	role.	role	is
sysname,	with	a	default	of	NULL.	If	role	is	not	specified,	the	permissions
for	all	fixed	database	roles	are	displayed.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
DbFixedRole sysname Name	of	the	fixed	database	role
Permission nvarchar(70) Permissions	associated	with

DbFixedRole

Remarks
To	display	a	list	of	the	fixed	database	roles,	execute	sp_helpdbfixedrole.	These
are	the	fixed	database	roles.

Fixed	database	role Description
db_owner Database	owners
db_accessadmin Database	access	administrators
db_securityadmin Database	security	administrators

db_ddladmin Database	DDL	administrators
db_backupoperator Database	backup	operators
db_datareader Database	data	readers
db_datawriter Database	data	writers
db_denydatareader Database	deny	data	readers
db_denydatawriter Database	deny	data	writers

The	permissions	of	the	db_owner	fixed	database	role	span	all	of	the	other	fixed
database	roles.	To	display	the	permissions	for	fixed	server	roles,	execute
sp_srvrolepermission.

The	permissions	listed	in	the	result	set	include	the	Transact-SQL	statements	that
can	be	executed,	as	well	as	other	special	activities	that	can	be	performed	by
members	of	the	database	role.

Permissions
All	users	have	permissions	to	execute	sp_dbfixedrolepermission.

Examples
This	example	displays	the	permissions	for	all	fixed	database	roles.

EXEC	sp_dbfixedrolepermission

See	Also

sp_addrolemember

sp_droprolemember

sp_helpdbfixedrole

sp_srvrolepermission

System	Stored	Procedures

Transact-SQL	Reference

sp_dboption
Displays	or	changes	database	options.	sp_dboption	should	not	be	used	on	either
the	master	or	tempdb	databases.	sp_dboption	is	supported	for	backward
compatibility.	Use	ALTER	DATABASE	to	set	database	options.

Syntax
sp_dboption	[[@dbname	=]	'database']	
				[,	[@optname	=]	'option_name']	
				[,	[@optvalue	=]	'value']

Arguments
[@dbname	=]	'database'

Is	the	name	of	the	database	in	which	to	set	the	specified	option.	database	is
sysname,	with	a	default	of	NULL.

[@optname	=]	'option_name'

Is	the	name	of	the	option	to	set.	It	is	not	necessary	to	enter	the	complete
option	name.	Microsoft®	SQL	Server™	recognizes	any	part	of	the	name	that
is	unique.	Enclose	the	option	name	with	quotation	marks	if	it	includes
embedded	blanks	or	is	a	keyword.	If	this	parameter	is	omitted,	sp_dboption
lists	the	options	that	are	on.	option_name	is	varchar(35),	with	a	default	of
NULL.

[@optvalue	=]	'value'

Is	the	new	setting	for	option_name.	If	this	parameter	is	omitted,
sp_dboption	returns	current	setting.	value	can	be	true	or	false	or	on	or	off.
value	is	varchar(10),	with	a	default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

If	no	parameters	are	supplied,	this	is	the	result	set.

Column	name Data	type Description
Settable	database
options

nvarchar(35) All	of	the	settable	database
options.

If	database	is	the	only	supplied	parameter,	this	is	the	result	set.

Column	name Data	type Description
The	following	options
are	set:

nvarchar(35) The	options	that	are	set	for	the
database.

If	option_name	is	supplied,	this	is	the	result	set.

Column	name Data	type Description
OptionName nvarchar(35) Name	of	the	option.
CurrentSetting char(3) Whether	the	option	is	on	or	off.

If	value	is	supplied,	sp_dboption	does	not	return	a	result	set.

Remarks
These	are	the	options	set	by	sp_dboption.	For	more	information	about	each
option,	see	Setting	Database	Options.

Option Description
auto	create	statistics When	true,	any	missing	statistics	needed	by	a

query	for	optimization	are	automatically	built
during	optimization.	For	more	information,	see
CREATE	STATISTICS.

auto	update	statistics When	true,	any	out-of-date	statistics	needed	by	a
query	for	optimization	are	automatically	built
during	optimization.	For		more	information,	see
UPDATE	STATISTICS.

JavaScript:hhobj_1.Click()

autoclose When	true,	the	database	is	shutdown	cleanly	and
its	resources	are	freed	after	the	last	user	logs	off.

autoshrink When	true,	the	database	files	are	candidates	for
automatic	periodic	shrinking.

ANSI	null	default When	true,	CREATE	TABLE	follows	the	SQL-92
rules	to	determine	if	a	column	allows	null	values.

ANSI	nulls When	true,	all	comparisons	to	a	null	value	evaluate
to	UNKNOWN.	When	false,	comparisons	of	non-
UNICODE	values	to	a	null	value	evaluate	to	TRUE
if	both	values	are	NULL.

ANSI	warnings When	true,	errors	or	warnings	are	issued	when
conditions	such	as	"divide	by	zero"	occur.

arithabort When	true,	an	overflow	or	divide-by-zero	error
causes	the	query	or	batch	to	terminate.	If	the	error
occurs	in	a	transaction,	the	transaction	is	rolled
back.	When	false,	a	warning	message	is	displayed,
but	the	query,	batch,	or	transaction	continues	as	if
no	error	occurred.

concat	null	yields	nullWhen	true,	if	either	operand	in	a	concatenation
operation	is	NULL,	the	result	is	NULL.

cursor	close	on
commit

When	true,	any	cursors	that	are	open	when	a
transaction	is	committed	or	rolled	back	are	closed.
When	false,	such	cursors	remain	open	when	a
transaction	is	committed.	When	false,	rolling	back
a	transaction	closes	any	cursors	except	those
defined	as	INSENSITIVE	or	STATIC.

dbo	use	only When	true,	only	the	database	owner	can	use	the
database.

default	to	local
cursor

When	true,	cursor	declarations	default	to	LOCAL.

merge	publish When	true,	the	database	can	be	published	for	a
merge	replication.

numeric	roundabort When	true,	an	error	is	generated	when	loss	of
precision	occurs	in	an	expression.	When	false,
losses	of	precision	do	not	generate	error	messages
and	the	result	is	rounded	to	the	precision	of	the

column	or	variable	storing	the	result.
offline When	true,	the	database	is	offline.
published When	true,	the	database	can	be	published	for

replication.
quoted	identifier When	true,	double	quotation	marks	can	be	used	to

enclose	delimited	identifiers.
read	only When	true,	users	can	only	read	data	in	the

database,	not	modify	it.	The	database	cannot	be	in
use	when	a	new	value	for	the	read	only	option	is
specified.	The	master	database	is	the	exception,
and	only	the	system	administrator	can	use	master
while	the	read	only	option	is	being	set.

recursive	triggers When	true,	enables	recursive	firing	of	triggers.
When	false,	prevents	direct	recursion	only.	To
disable	indirect	recursion,	set	the	nested	triggers
server	option	to	0	using	sp_configure.

select	into/bulkcopy When	true,	the	SELECT	INTO	statement	and	fast
bulk	copies	are	allowed.

single	user When	true,	only	one	user	at	a	time	can	access	the
database.

subscribed When	true,	the	database	can	be	subscribed	for
publication.

torn	page	detection When	true,	incomplete	pages	can	be	detected.
trunc.	log	on	chkpt. When	true,	a	checkpoint	truncates	the	inactive	part

of	the	log	when	the	database	is	in	log	truncate
mode.	This	is	the	only	option	you	can	set	for	the
master	database.

The	database	owner	or	system	administrator	can	set	or	turn	off	particular
database	options	for	all	new	databases	by	executing	sp_dboption	on	the	model
database.

After	sp_dboption	has	been	executed,	a	checkpoint	executes	in	the	database	for
which	the	option	was	changed.	This	causes	the	change	to	take	effect
immediately.

sp_dboption	changes	settings	for	a	database.	Use	sp_configure	to	change
server-level	settings,	and	the	SET	statement	to	change	settings	that	affect	only
the	current	session.

Permissions
Execute	permissions	to	display	the	list	of	possible	database	options,	the	list	of
options	currently	set	in	a	database,	and	the	current	value	of	an	option	in	a
database	(using	sp_dboption	with	0,	1,	or	2	parameters)	default	to	all	users.

Execute	permissions	to	change	an	option	(using	sp_dboption	with	all
parameters)	default	to	members	of	the	sysadmin	and	dbcreator	fixed	server
roles	and	the	db_owner	fixed	database	role.	These	permissions	are	not
transferable.

Examples

A.	Set	a	database	to	read-only
This	example	makes	the	pubs	database	read-only.

USE	master
EXEC	sp_dboption	'pubs',	'read	only',	'TRUE'

Here	is	the	result	set:

CHECKPOINTing	database	that	was	changed.

B.	Turn	off	an	option
This	example	makes	the	pubs	database	writable	again.

USE	master
EXEC	sp_dboption	'pubs',	'read	only',	'FALSE'

Here	is	the	result	set:

CHECKPOINTing	database	that	was	changed.

C.	Take	a	database	offline
This	example	takes	the	sales	database	offline	if	there	are	no	users	accessing	the
database.

USE	master
EXEC	sp_dboption	'sales',	'offline',	'TRUE'	

Here	is	the	result	set:

CHECKPOINTing	database	that	was	changed.

See	Also

ALTER	DATABASE

SET

sp_configure

System	Stored	Procedures

Transact-SQL	Reference

sp_dbremove
Removes	a	database	and	all	files	associated	with	that	database.

IMPORTANT		This	procedure	is	provided	for	backward	compatibility	only.	For
removable	media	databases,	use	sp_detach_db	to	remove	a	database	from	the
server.

Syntax
sp_dbremove	[@dbname	=]	'database'	
				[,	[@dropdev	=]	'dropdev']

Arguments
[@dbname	=]	'database'

Is	the	name	of	the	database	to	be	removed.	database	is	sysname,	with	a
default	value	of	NULL.

[@dropdev	=]	'dropdev'

Is	a	flag	provided	for	backward	compatibility	only	and	is	currently	ignored.
dropdev	has	the	value	dropdev.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Permissions
Execute	permissions	default	to	members	of	the	sysadmin	fixed	server	role	for
the	database	for	which	the	drop	will	be	performed.

Examples

This	example	removes	a	database	named	sales	and	all	files	associated	with	it.

sp_dbremove	sales

See	Also

ALTER	DATABASE

CREATE	DATABASE

DBCC

sp_detach_db

Transact-SQL	Reference

sp_defaultdb
Changes	the	default	database	for	a	login.

Syntax
sp_defaultdb	[@loginame	=]	'login'	,	
				[@defdb	=]	'database'

Arguments
[@loginame	=]	'login'

Is	the	login	name.	login	is	sysname,	with	no	default.	login	can	be	an	existing
Microsoft®	SQL	Server™	login	or	a	Microsoft	Windows	NT®	user	or
group.	If	the	Windows	NT	user	or	group	does	not	exist	in	SQL	Server,	it	is
automatically	added.

[@defdb	=]	'database'

Is	the	name	of	the	new	default	database.	database	is	sysname,	with	no
default.	database	must	already	exist.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
When	a	client	connects	with	SQL	Server,	the	default	database	defined	for	its
login	becomes	the	current	database	without	an	explicit	USE	statement.	The
default	database	can	be	defined	when	the	login	is	added	with	sp_addlogin.
When	executing	sp_addlogin	the	master	database	is	the	default	database	if	a
database	is	not	specified.

After	sp_defaultdb	is	executed,	the	login	is	connected	to	the	new	database	the
next	time	the	user	logs	in.	However,	sp_defaultdb	does	not	automatically	give
the	login	access	to	that	database.	The	database	owner	(dbo)	must	give	database
access	to	the	login	through	sp_grantdbaccess,	or	there	must	be	a	guest	user

specified	in	the	database.

It	is	recommended	that	sp_defaultdb	be	used	to	change	the	default	database	for
all	logins	other	than	members	of	the	sysadmin	fixed	server	role.	This	prevents
users	from	inadvertently	trying	to	use	or	create	objects	in	the	master	database.

sp_defaultdb	cannot	be	executed	within	a	user-defined	transaction.

Permissions
Execute	permissions	default	to	the	public	role	for	users	changing	the	default
database	for	their	own	logins.	Only	members	of	the	syadmin	or	securityadmin
fixed	server	roles	can	execute	sp_defaultdb	for	other	logins.

Examples
This	example	sets	pubs	as	the	default	database	for	user	Victoria.

EXEC	sp_defaultdb	'Victoria',	'pubs'

See	Also

sp_addlogin

sp_droplogin

sp_grantdbaccess

System	Stored	Procedures

USE

Transact-SQL	Reference

sp_defaultlanguage
Changes	the	default	language	of	a	login.

Syntax
sp_defaultlanguage	[@loginame	=]	'login'	
				[,	[@language	=]	'language']

Arguments
[@loginame	=]	'login'

Is	the	login	name.	login	is	sysname,	with	no	default.	login	can	be	an	existing
Microsoft®	SQL	Server™	login	or	a	Microsoft	Windows	NT®	user	or
group.	If	the	Windows	NT	user	or	group	does	not	exist	in	SQL	Server,	it	is
automatically	added.

[@language	=]	'language'

Is	the	default	language	of	the	login.	language	is	sysname,	with	a	default	of
NULL.	language	must	be	a	valid	language	on	the	server.	If	language	is	not
specified,	language	is	set	to	the	server	default	language;	default	language	is
defined	by	the	sp_configure	configuration	variable	default	language.
Changing	the	server	default	language	does	not	change	the	default	language
for	existing	logins.	language	remains	the	same	as	the	default	language	used
when	sp_defaultlanguage	was	executed.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
A	default	language	can	be	set	by	using	either	sp_defaultlanguage	or
sp_addlogin	when	the	login	is	initially	added	to	SQL	Server.	Use
sp_helplanguage	to	display	a	list	of	the	valid	language	options.

Any	user	can	use	the	SET	LANGUAGE	statement	to	change	the	language

setting	for	the	duration	of	the	current	session.	Use	the	@@LANGUAGE
function	to	show	the	current	language	setting.

If	the	default	language	of	a	login	is	dropped	from	the	server,	the	default	language
of	the	server	is	used	as	the	initial	language	setting,	and	a	message	is	displayed.

sp_defaultlanguage	cannot	be	executed	within	a	user-defined	transaction.

Permissions
Execute	permissions	default	to	the	public	role	for	users	changing	the	default
language	for	their	login.	Only	members	of	the	sysadmin	or	securityadmin	fixed
server	roles	can	execute	sp_defaultlanguage	for	other	logins.

Examples
This	example	sets	the	default	language	for	login	Claire	to	French.

EXEC	sp_defaultlanguage	'Claire',	'french'

See	Also

@@LANGUAGE

SET

sp_addlogin

sp_helplanguage

System	Stored	Procedures

Transact-SQL	Reference

sp_define_log_shipping_monitor
Sets	up	the	log	shipping	monitor	account	on	the	monitor	server.

Syntax
sp_define_log_shipping_monitor	[@monitor_name	=]	'monitor_name'	,	
				[@logon_type	=]	logon_type	
				[,	[@password	=]	'password']	
				[,	[@delete_existing	=]	delete_existing]

Arguments
[@monitor_name	=]	'monitor_name'

Is	the	name	of	the	monitor	server.	monitor_name	is	sysname,	with	no
default.

[@logon_type	=]	logon_type

Is	the	type	of	logon	that	sqlmaint	will	use	to	contact	the	monitor	server.
logon_type	is	int.	Valid	values	are	1	(Windows	NT)	or	2	(SQL	Server).

[@password	=]	'password'

Is	the	password	for	the	log_shipping_monitor_probe	account.	password	is
nvarchar(63).	password	is	ignored	if	the	logon	type	is	one	(1).

[@delete_existing	=]	delete_existing

Specifies	the	deletion	of	an	existing	row	from	the	log_shipping_monitor
table.	The	one	(1)	value	means	an	existing	row	will	be	deleted;	zero	(0)
means	an	existing	row	will	not	be	deleted.	delete_existing	is	bit,	with	a
default	of	zero	(0).

Return	Code	Values
0	(success)	or	1	(failure)

Remarks

Only	one	monitor	server	can	be	defined	for	each	primary	or	secondary	server.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_define_log_shipping_monitor.

Transact-SQL	Reference

sp_delete_alert
Removes	an	alert.

Syntax
sp_delete_alert	[@name	=]	'name'

Arguments
[@name	=]	'name'

Is	the	name	of	the	alert.	name	is	sysname,	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
Removing	an	alert	also	removes	any	notifications	associated	with	the	alert.

sp_delete_alert	must	be	executed	in	the	msdb	database.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute	sp_delete_alert.

Examples
This	example	removes	an	alert	named	Test	Alert.

sp_delete	'Test	Alert'

See	Also

sp_add_alert

sp_help_alert

System	Stored	Procedures

Transact-SQL	Reference

sp_delete_backuphistory
Deletes	the	entries	in	the	backup	and	restore	history	tables	for	backup	sets	older
than	oldest_date.	Because	additional	rows	are	added	to	the	backup	and	restore
history	tables	when	a	backup	or	restore	operation	is	performed,
sp_delete_backuphistory	can	be	used	to	reduce	the	size	of	the	history	tables	in
the	msdb	database.

Syntax
sp_delete_backuphistory	[@oldest_date	=]	'oldest_date'

Arguments
[@oldest_date	=]	'oldest_date'

Is	the	oldest	date	retained	in	the	backup	and	restore	history	tables.
oldest_date	is	datetime,	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
sp_delete_backuphistory	must	be	run	from	the	msdb	database.

Permissions
Execute	permissions	default	to	members	of	the	sysadmin	fixed	server	role,	but
can	be	granted	to	other	users.

Examples

This	example	deletes	all	entries	older	than	August	20,	1998,	12:00	A.M.,	in	the
backup	and	restore	history	tables.

USE	msdb
EXEC	sp_delete_backuphistory	'08/20/98'

See	Also

BACKUP

backupfile

backupmediafamily

backupmediaset

backupset

DUMP

LOAD

RESTORE

restorefile

restorehistory

SQL	Server:	Buffer	Manager	Object

SQL	Server:	Cache	Manager	Object

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

sp_delete_category
Removes	the	specified	category	of	jobs,	alerts,	or	operators	from	the	current
server.

Syntax
sp_delete_category	[@class	=]	'class'	,	
				[@name	=]	'name'

Arguments
[@class	=]	'class'

Is	the	class	of	the	category.	class	is	varchar(8),	with	no	default,	and	must
have	one	of	these	values.

Value Description
JOB Deletes	a	job	category.
ALERT Deletes	an	alert	category.
OPERATOR Deletes	an	operator	category.

[@name	=]	'name'

Is	the	name	of	the	category	to	be	removed.	name	is	sysname,	with	no
default.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks

sp_delete_category	must	be	executed	in	the	msdb	database.

Deleting	a	category	recategorizes	any	jobs,	alerts,	or	operators	in	that	category	to
the	default	category	for	the	class.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed
database	role	can	execute,	or	grant	permissions	to	execute,	sp_delete_category
in	the	current	database.

Examples
This	example	deletes	the	job	category	named	AdminJobs.

USE	msdb
EXEC	sp_delete_category	'JOB',	'AdminJobs'

See	Also

sp_add_category

sp_help_category

sp_update_category

System	Stored	Procedures

Transact-SQL	Reference

sp_delete_database_backuphistory
Deletes	information	about	the	specified	database	from	the	backup	history	tables.

Syntax
sp_delete_database_backuphistory	[@db_nm	=]	'database_name'

Arguments
[@db_nm	=]	database_name

Specifies	the	name	of	the	database	involved	in	backup	and	restore
operations.	database_name	is	sysname,	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
sp_delete_database_backuphistory	deletes	information	about	the	specified
database	from	the	backup	history	tables.

For	example,	after	the	removal	of	a	log	shipping	pair,	you	may	want	to	remove
outdated	or	irrelevant	information	about	the	backup	and	restore	of	the	pair's
member	databases.	To	do	this,	run	sp_delete_database_backuphistory	on	both
the	former	primary	and	former	secondary	servers.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_change_secondary_role.

See	Also

How	to	remove	a	log	shipping	pair	from	the	Log	Shipping	Monitor	(Transact-
SQL)

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_delete_job
Deletes	a	job.

Syntax
sp_delete_job	[@job_id	=]	job_id	|	[@job_name	=]	'job_name'	
				[,	[@originating_server	=]	'server']

Arguments
[@job_id	=]	job_id

Is	the	identification	number	of	the	job	to	be	deleted.	job_id	is
uniqueidentifier,	with	a	default	of	NULL.

[@job_name	=]	'job_name'

Is	the	name	of	the	job	to	be	deleted.	job_name	is	sysname,	with	a	default	of
NULL.

Note		Either	job_id	or	job_name	must	be	specified;	both	cannot	be	specified.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
Two	parameters,	@delete_history	and	@originating_server,	exist	in
sp_delete_job,	but	are	reserved	for	internal	use.

SQL	Server	Enterprise	Manager	provides	an	easy,	graphical	way	to	manage	jobs,
and	is	the	recommended	way	to	create	and	manage	the	job	infrastructure.

Permissions
Anyone	can	delete	jobs	he	owns.	Only	members	of	the	sysadmin	fixed	server
role	can	execute	sp_delete_job	to	delete	any	job.

Examples
This	example	deletes	the	job	Nightly	Backups.

USE	msdb
EXEC	sp_delete_job	@job_name	=	'Nightly	Backups'

See	Also

sp_add_job

sp_help_job

sp_update_job

System	Stored	Procedures

Transact-SQL	Reference

sp_delete_jobschedule
Removes	a	schedule	from	a	job.

Syntax
sp_delete_jobschedule	[@job_id	=]	job_id	,	|	[@job_name	=]	'job_name'	,	
				[@name	=]	'sched_job_name'

Arguments
[@job_id	=]	job_id

Is	the	identification	number	of	the	job	from	which	to	delete	the	schedule.
job_id	is	uniqueidentifier,	with	a	default	of	NULL.

[@job_name	=]	'job_name'

Is	the	name	of	the	job	from	which	to	delete	the	schedule.	job_name	is
sysname,	with	a	default	of	NULL.

Note		Either	job_id	or	job_name	must	be	specified;	both	cannot	be	specified.

[@name	=]	'sched_job_name'

Is	the	name	of	the	schedule	to	delete.	sched_job_name	is	sysname,	with	no
default.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
Removing	a	schedule	from	a	job	prevents	Microsoft®	SQLServerAgent	from
executing	the	job	according	to	that	schedule.	sp_update_jobschedule	can	be

used	to	disable	a	scheduled	job	without	removing	it	from	the	schedule.

SQL	Server	Enterprise	Manager	provides	an	easy,	graphical	way	to	manage	jobs,
and	is	the	recommended	way	to	create	and	manage	the	job	infrastructure.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	removes	the	Nightly	Backup	schedule	from	the	Database	Backup
job.

USE	msdb
EXEC	sp_delete_jobschedule	@job_name	=	N'Database	Backup',	
			@name	=	N'Nightly	Backup'

See	Also

Modifying	and	Viewing	Jobs

sp_add_jobschedule

sp_help_jobschedule

sp_update_jobschedule

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_delete_jobserver
Removes	the	specified	target	server.

Syntax
sp_delete_jobserver	[@job_id	=]	job_id	,	|	[@job_name	=]	'job_name'	,	
				[@server_name	=]	'server'

Arguments
[@job_id	=]	job_id

Is	the	identification	number	of	the	job	from	which	the	specified	target	server
will	be	removed.	job_id	is	uniqueidentifier,	with	a	default	of	NULL.

[@job_name	=]	'job_name'

Is	the	name	of	the	job	from	which	the	specified	target	server	will	be
removed.	job_name	is	sysname,	with	a	default	of	NULL.

Note		Either	job_id	or	job_name	must	be	specified;	both	cannot	be	specified.

[@server_name	=]	'server'

Is	the	name	of	the	target	server	to	remove	from	the	specified	job.	server	is
nvarchar(30),	with	no	default.	server	can	be	(LOCAL)	or	the	name	of	a
remote	target	server.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	removes	the	server	LONDON1	from	processing	the	Backup
Customer	Information	job.

Note		This	example	assumes	that	the	Backup	Customer	Information	job	was
created	earlier.

USE	msdb
EXEC	sp_delete_jobserver	
			@job_name	=	'Backup	Customer	Information',	
			@server_name	=	'LONDON1'

See	Also

sp_add_jobserver

sp_help_jobserver

System	Stored	Procedures

Transact-SQL	Reference

sp_delete_jobstep
Removes	a	job	step	from	a	job.

Syntax
sp_delete_jobstep	[@job_id	=]	job_id	,	|	[@job_name	=]	'job_name'	,	
				[@step_id	=]	step_id

Arguments
[@job_id	=]	job_id

Is	the	identification	number	of	the	job	from	which	the	step	will	be	removed.
job_id	is	uniqueidentifier,	with	a	default	of	NULL.

[@job_name	=]	'job_name'

Is	the	name	of	the	job	from	which	the	step	will	be	removed.	job_name	is
sysname,	with	a	default	of	NULL.

Note		Either	job_id	or	job_name	must	be	specified;	both	cannot	be	specified.

[@step_id	=]	step_id

Is	the	identification	number	of	the	step	being	removed.	step_id	is	int,	with	no
default.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
Removing	a	job	step	automatically	updates	the	other	job	steps	that	reference	the
deleted	step.

For	more	information	about	the	steps	associated	with	a	particular	job,	run
sp_help_jobstep.

Microsoft	SQL	Server	Enterprise	Manager	provides	an	easy,	graphical	way	to
manage	jobs,	and	is	the	recommended	way	to	create	and	manage	the	job
infrastructure.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	removes	job	step	1	from	the	job	Nightly	Backups.

USE	msdb
EXEC	sp_delete_jobstep	@job_name	=	'Nightly	Backups',	
			@step_id	=	1

See	Also

Modifying	and	Viewing	Jobs

sp_add_jobstep

sp_update_jobstep

sp_help_jobstep

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_delete_log_shipping_database
Deletes	a	database	from	the	log_shipping_databases	table	on	the	primary
server.

Syntax
sp_delete_log_shipping_database	[@db_name	=]	'db_name'

Arguments
[@db_name	=]	'db_name'

Is	the	name	of	the	database	no	longer	log	shipped.	db_name	is	sysname.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
Execute	this	stored	procedure	to	indicate	that	the	database	is	no	longer	being	log
shipped.	After	this	action	takes	place,	sqlmaint	will	stop	updating	the	monitor
server	when	transaction	logs	for	this	database	are	backed	up.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_delete_log_shipping_database.

Examples
This	example	assumes	that	the	pubs	database	was	previously	added	by
executing	the	sp_add_log_shipping_database.

EXEC			msdb.dbo.sp_delete_log_shipping_database	@db_name	=	N'pubs'

Transact-SQL	Reference

sp_delete_log_shipping_monitor_info
Removes	a	log	shipping	pair	from	a	log	shipping	monitor.

Syntax
sp_delete_log_shipping_monitor_info					[@primary_server_name	=]
'primary_server_name'	,	
				[@primary_database_name	=]	'primary_database_name'	,	
				[@secondary_server_name	=]	'secondary_server_name'	,	
				[@secondary_database_name	=]	'secondary_database_name'	}

Arguments
[@primary_server_name	=]	'primary_server_name'

Is	the	name	of	the	primary	server.	primary_server_name	is	sysname.

[@primary_database_name	=]	'primary_database_name'

Is	the	name	of	the	primary	database.	primary_database_name	is	sysname.

[@secondary_server_name	=]	'secondary_server_name'

Is	the	name	of	the	secondary	server.	primary_server_name	is	sysname.

[@secondary_database_name	=]	'secondary_database_name'

Is	the	name	of	the	secondary	database.	primary_database_name	is	sysname.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
Run	sp_delete_log_shipping_monitor_info	to	notify	the	monitor	server	which
log	shipping	pair	will	be	deleted	from	the	monitor.	This	stored	procedure	must
be	executed	on	the	instance	of	Microsoft®	SQL	Server™	2000	that	is	acting	as
the	monitor.

Note	that	the	actual	log	shipping	pair	is	not	deleted.	Only	the	monitor	is	affected
by	this	operation.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_delete_log_shipping_monitor_info.

Transact-SQL	Reference

sp_delete_log_shipping_plan
Deletes	a	log	shipping	plan.

Syntax
sp_delete_log_shipping_plan	[@plan_id	=]	plan_id	|	
				[@plan_name	=]	'plan_name'	
				[,	[@del_plan_db	=]	del_plan_db]

Arguments
[@plan_id	=]	plan_id

Is	the	identification	number	of	the	plan	to	delete.	plan_id	is
uniqueidentifier,	with	a	default	of	NULL.

[@plan_name	=]	'plan_name'

Is	the	name	of	the	plan	to	delete.	plan_name	is	sysname,	with	a	default	of
NULL.

Note		Either	plan_id	or	plan_name	must	be	specified;	both	cannot	be	specified.

[@del_plan_db	=]	del_plan_db

Specifies	that	all	rows	from	log_shipping_databases	table	that	belong	to
this	plan	will	be	deleted.	del_plan_db	is	bit,	with	a	default	of	0.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
If	there	are	corresponding	rows	in	the	log_shipping_databases	table,	then
del_plan_db	must	be	set	to	one	(1)	or	the	stored	procedure	will	fail.

Permissions

Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_delete_log_shipping_plan.

Examples
This	example	deletes	the	plan	"Pubs	database	backup"	and	any	databases	added
to	the	plan.

EXEC			msdb.dbo.sp_delete_log_shipping_plan	@plan_name	=	N'Pubs	database	backup',	@del_plan_db	=	1

Transact-SQL	Reference

sp_delete_log_shipping_plan_database
Removes	a	database	from	a	log	shipping	plan.

Syntax
sp_delete_log_shipping_plan_database	[@plan_id	=]	plan_id	,	
				[@plan_name	=]	'plan_name'	,	
				[@destination_database	=]	'destination_database'

Arguments
[@plan_id	=]	plan_id

Is	the	identification	number	of	the	plan	in	which	the	database	belongs.
plan_id	is	uniqueidentifier,	with	a	default	of	NULL.

[@plan_name	=]	'plan_name'

Is	the	name	of	the	plan	in	which	the	database	belongs.	plan_name	is
sysname,	with	a	default	of	NULL.

Note		Either	plan_id	or	plan_name	must	be	specified;	both	cannot	be	specified.

[@destination_database	=]	'destination_database'

Is	the	name	of	the	database	to	be	removed	from	the	plan.
destination_database	is	sysname	with	a	default	of	NULL.	Wildcard	pattern
matching	is	supported.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
Removes	matching	databases	from	log_shipping_plan_databases	table.

Permissions

Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_delete_log_shipping_plan.

Examples
This	example	removes	"pubs2"	from	the	plan	"Pubs	database	backup."

EXEC			msdb.dbo.sp_delete_log_shipping_plan_database	@plan_name	=	N'Pubs	database	backup',	@destination_database	=	N'pubs2'

Transact-SQL	Reference

sp_delete_log_shipping_primary
Deletes	the	primary	server	from	the	log_shipping_primaries	table.

Syntax
sp_delete_log_shipping_primary					[@primary_server_name	=]
'primary_server_name'	,	
				[@primary_database_name	=]	'primary_database_name'	,	
				{	[@delete_secondaries	=]	delete_secondaries	}

Arguments
[@primary_server_name	=]	'primary_server_name'

Is	the	name	of	the	primary	server.	primary_server_name	is	sysname.

[@primary_database_name	=]	'primary_database_name'

Is	the	name	of	the	secondary	server.	primary_database_name	is	sysname.

[@delete_secondaries	=]	delete_secondaries

Specifies	that	the	delete	action	is	also	applied	to	log_shipping_secondaries
table.	delete_secondaries	is	bit,	with	a	default	of	zero	(0).

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
This	stored	procedure	only	removes	the	primary	and	secondary	server	from	the
monitor.	Log	shipping	still	has	to	be	removed	from	the	primary	and	secondary
servers.

sp_delete_log_shipping_primary	deletes	a	log	shipping	primary	table.	If	there
are	corresponding	rows	in	the	log_shipping_databases	table,
delete_secondaries	must	be	set	to	one	(1)	or	the	stored	procedure	will	fail.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_delete_log_shipping_primaries.

Examples
This	example	deletes	the	source	database	"pubs"	from	the	server	"source".	There
are	no	corresponding	rows	in	log_shipping_secondaries	table.

EXEC			sp_delete_log_shipping_primary	@primary_server_name	=	N'source',	@primary_database_name	=	N'pubs'

Transact-SQL	Reference

sp_delete_log_shipping_secondary
Removes	a	secondary	server	from	log_shipping_secondaries	table.

Syntax
sp_delete_log_shipping_secondary					[@secondary_server_name	=]
'secondary_server_name'	,	
				[@secondary_database_name	=]	'secondary_database_name'

Arguments
[@secondary_server_name	=]	'secondary_server_name'

Is	the	secondary	server	name.	secondary_server_name	is	sysname.

[@secondary_database_name	=]	'secondary_database_name'

Is	the	secondary	database	name.	secondary_database_name	is	sysname.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
This	stored	procedure	removes	matching	databases	from
log_shipping_secondaries	table.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute	the
sp_delete_log_shipping_secondary.

Transact-SQL	Reference

sp_delete_maintenance_plan
Deletes	the	specified	maintenance	plan.

Syntax
sp_delete_maintenance_plan	[@plan_id	=]	'plan_id'

Arguments
[@plan_id	=]	'plan_id'

Specifies	the	ID	of	the	maintenance	plan	to	be	deleted.	plan_id	is
uniqueidentifier,	and	must	be	a	valid	ID.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_delete_maintenance_plan	must	be	run	from	the	msdb	database.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_delete_maintenance_plan.

Examples
Deletes	the	maintenance	plan	created	with	sp_add_maintenance_plan.

EXECUTE	sp_delete_maintenance_plan	'FAD6F2AB-3571-11D3-9D4A-00C04FB925FC'

Transact-SQL	Reference

sp_delete_maintenance_plan_db
Disassociates	the	specified	maintenance	plan	from	the	specified	database.

Syntax
sp_delete_maintenance_plan_db	[@plan_id	=]	'plan_id'	,	
				[@db_name	=]	'database_name'

Arguments
[@plan_id	=]	'plan_id'

Specifies	the	maintenance	plan	ID.	plan_id	is	uniqueidentifier.

[@db_name	=]	'database_name'

Specifies	the	database	name	to	be	deleted	from	the	maintenance	plan.
database_name	is	sysname.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_delete_maintenance_plan_db	must	be	run	from	the	msdb	database.

The	sp_delete_maintenance_plan_db	stored	procedure	removes	the	association
between	the	maintenance	plan	and	the	specified	database;	it	does	not	drop	or
destroy	the	database.

When	sp_delete_maintenance_plan_db	removes	the	last	database	from	the
maintenance	plan,	the	stored	procedure	also	deletes	the	maintenance	plan.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_delete_maintenance_plan_db.

Examples
Deletes	the	Northwind	database,	previously	added	with
sp_add_maintenance_plan_db.

EXECUTE			sp_delete_maintenance_plan_db	N'FAD6F2AB-3571-11D3-9D4A-00C04FB925FC',	N'Northwind'

Transact-SQL	Reference

sp_delete_maintenance_plan_job
Disassociates	the	specified	maintenance	plan	from	the	specified	job.

Syntax
sp_delete_maintenance_plan_job	[@plan_id	=]	'plan_id'	,	
				[@job_id	=]	'job_id'

Arguments
[@plan_id	=]	'plan_id'

Specifies	the	ID	of	the	maintenance	plan.	plan_id	is	uniqueidentifier,	and
must	be	a	valid	ID.

[@job_id	=]	'job_id'

Specifies	the	ID	of	the	job	with	which	the	maintenance	plan	is	associated.
job_id	is	uniqueidentifier,	and	must	be	a	valid	ID.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_delete_maintenance_plan_job	must	be	run	from	the	msdb	database.

When	all	jobs	have	been	removed	from	the	maintenance	plan,	it	is	recommended
that	users	execute	sp_delete_maintenance_plan_db	to	remove	the	remaining
databases	from	the	plan.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_delete_maintenance_plan_job.

Examples

This	example	deletes	the	job	"B8FCECB1-E22C-11D2-AA64-00C04F688EAE"
from	the	maintenance	plan.

EXECUTE			sp_delete_maintenance_plan_job	N'FAD6F2AB-3571-11D3-9D4A-00C04FB925FC',	N'B8FCECB1-E22C-11D2-AA64-00C04F688EAE'

Transact-SQL	Reference

sp_delete_notification
Removes	all	notifications	sent	to	a	particular	operator	in	response	to	an	alert.

Syntax
sp_delete_notification	[@alert_name	=]	'alert'	,	
				[@operator_name	=]	'operator'

Arguments
[@alert_name	=]	'alert'

Is	the	name	of	the	alert.	alert	is	sysname,	with	no	default.

[@operator_name	=]	'operator'

Is	the	name	of	the	operator.	operator	is	sysname,	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
Removing	a	notification	removes	only	the	notification;	the	alert	and	the	operator
are	left	intact.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_delete_notification.

Examples

This	example	removes	all	notifications	sent	to	operator	stevenb	when	alert	'Error
1101'	occurs.

USE	msdb
EXEC	sp_delete_notification	'Error	11001',	'stevenb'

See	Also

sp_add_alert

sp_add_notification

sp_add_operator

sp_delete_alert

sp_help_alert

sp_help_notification

sp_help_operator

sp_update_notification

System	Stored	Procedures

Transact-SQL	Reference

sp_delete_operator
Removes	an	operator.

Syntax
sp_delete_operator	[@name	=]	'name'	
				[,	[@reassign_to_operator	=]	'reassign_operator']

Arguments
[@name	=]	'name'

Is	the	name	of	the	operator	to	delete.	name	is	sysname,	with	no	default.

[@reassign_to_operator	=]	'reassign_operator'

Is	the	name	of	an	operator	to	whom	the	specified	operator's	alerts	can	be
reassigned.	reassign_operator	is	sysname,	with	a	default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
When	an	operator	is	removed,	all	the	notifications	associated	with	the	operator
are	also	removed.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_delete_operator.

Examples
This	example	deletes	operator	janetl.

USE	msdb
EXEC	sp_delete_operator	'janetl'

See	Also

sp_add_operator

sp_help_operator

sp_update_operator

System	Stored	Procedures

Transact-SQL	Reference

sp_delete_targetserver
Removes	the	specified	server	from	the	list	of	available	target	servers.

Syntax
sp_delete_targetserver	[@server_name	=]	'server'

Arguments
[@server_name	=]	'server'

Is	name	of	the	server	to	remove	as	an	available	target	server.	server	is
nvarchar(30),	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
The	@clear_downloadlist	and	@post_defection	parameters	also	exist	in
sp_delete_targetserver,	but	are	reserved	for	internal	use	only.

The	normal	way	to	delete	a	target	server	is	to	call	sp_msx_defect	at	the	target
server.	Use	sp_delete_targetserver	only	when	a	manual	defection	is	necessary.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed
database	role	can	execute	sp_delete_targetserver.

Examples

This	example	removes	the	server	LONDON1	from	the	available	job	servers.

USE	msdb
EXEC	sp_delete_targetserver	'LONDON1'

See	Also

sp_help_targetserver

sp_msx_defect

System	Stored	Procedures

Transact-SQL	Reference

sp_delete_targetservergroup
Deletes	the	specified	target	server	group.

Syntax
sp_delete_targetservergroup	[@name	=]	'name'

Arguments
[@name	=]	'name'

Is	the	name	of	the	target	server	group	to	remove.	name	is	sysname,	with	no
default.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed
database	role	can	execute	sp_delete_targetservergroup.

Examples
This	example	removes	the	target	server	group	Servers	Maintaining	Customer
Information.

USE	msdb
EXEC	sp_delete_targetservergroup	
			@name	=	N'Servers	Maintaining	Customer	Information'

See	Also

sp_add_targetservergroup

sp_help_targetservergroup

sp_update_targetservergroup

System	Stored	Procedures

Transact-SQL	Reference

sp_delete_targetsvrgrp_member
Removes	a	target	server	from	a	target	server	group.

Syntax
sp_delete_targetsvrgrp_member	[@group_name	=]	'group_name'	,	
				[server_name	=]	'server_name'

Arguments
[@group_name	=]	'group_name'

Is	the	name	of	the	group.	group_name	is	sysname,	with	no	default.

[@server_name	=]	'server_name'

Is	the	name	of	the	server	to	remove	from	the	specified	group.	server_name	is
nvarchar(30),	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed
database	role	can	execute	sp_delete_targetsvrgrp_member.

Examples
This	example	removes	the	server	LONDON1	from	the	Servers	Maintaining
Customer	Information	group.

USE	msdb

EXEC	sp_delete_targetsvrgrp_member	
			@group_name	=	N'Servers	Maintaining	Customer	Information',
			@server_name	=	N'LONDON1'

See	Also

sp_add_targetsvrgrp_member

System	Stored	Procedures

Transact-SQL	Reference

sp_denylogin
Prevents	a	Microsoft®	Windows	NT®	user	or	group	from	connecting	to
Microsoft	SQL	Server™.

Syntax
sp_denylogin	[@loginame	=]	'login'

Arguments
[@loginame	=]	'login'

Is	the	name	of	the	Windows	NT	user	or	group.	login	is	sysname,	with	no
default.	If	the	Windows	NT	user	or	group	does	not	exist	in	SQL	Server,	it	is
automatically	added.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_denylogin	can	be	used	only	with	Windows	NT	accounts	in	the	form
Domain\User,	for	example	London\Joeb.	sp_denylogin	cannot	be	used	with
SQL	Server	logins	added	with	sp_addlogin.

Use	sp_grantlogin	to	reverse	the	effects	of	sp_denylogin	and	allow	the	user	to
connect.

sp_denylogin	cannot	be	executed	within	a	user-defined	transaction.

Permissions
Only	members	of	the	securityadmin	or	sysadmin	fixed	server	roles	can	execute
sp_denylogin.

Examples

This	example	prevents	user	Corporate\GeorgeW	from	logging	in	to	SQL
Server.

EXEC	sp_denylogin	'Corporate\GeorgeW'

Or

EXEC	sp_denylogin	[Corporate\GeorgeW]

See	Also

Denying	Login	Access	to	Windows	NT	Accounts

sp_grantlogin

sp_revokelogin

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_depends
Displays	information	about	database	object	dependencies	(for	example,	the
views	and	procedures	that	depend	on	a	table	or	view,	and	the	tables	and	views
that	are	depended	on	by	the	view	or	procedure).	References	to	objects	outside
the	current	database	are	not	reported.

Syntax
sp_depends	[@objname	=]	'object'

Arguments
[@objname	=]	'object'

The	database	object	to	examine	for	dependencies.	The	object	can	be	a	table,
view,	stored	procedure,	or	trigger.	object	is	nvarchar(776),	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
sp_depends	displays	two	result	sets.

This	result	set	shows	the	objects	on	which	object	depends.

Column	name Data	type Description
name nvarchar(40) Name	of	the	item	for	which	a	dependency

exists.
type nvarchar(16) Type	of	the	item.
updated nvarchar(7) Whether	the	item	is	updated.
selected nvarchar(8) Whether	the	item	is	used	in	a	SELECT

statement.
column sysname Column	or	parameter	on	which	the

dependency	exists.

This	result	set	shows	the	objects	that	depend	on	object.

Column	name Data	type Description
name nvarchar(40) Name	of	the	item	for	which	a	dependency

exists.
type nvarchar(16) Type	of	the	item.

Remarks
An	object	that	references	another	object	is	considered	dependent	on	that	object.
sp_depends	determines	the	dependencies	by	looking	at	the	sysdepends	table.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	lists	the	database	objects	that	depend	on	the	Customers	table.

USE	Northwind
EXEC	sp_depends	'Customers'

See	Also

CREATE	PROCEDURE

CREATE	TABLE

CREATE	VIEW

EXECUTE

sp_help

System	Stored	Procedures

Transact-SQL	Reference

sp_describe_cursor
Reports	the	attributes	of	a	server	cursor.

Syntax
sp_describe_cursor	[@cursor_return	=]	output_cursor_variable	OUTPUT	
				{	[,	[@cursor_source	=]	N'local'
								,	[@cursor_identity	=]	N'local_cursor_name']	
												|	[,	[@cursor_source	=]	N'global'
								,	[@cursor_identity	=]	N'global_cursor_name']	
												|	[,	[@cursor_source	=]	N'variable'	
								,	[@cursor_identity	=]	N'input_cursor_variable']	
				}

Arguments
[@cursor_return	=]	output_cursor_variable	OUTPUT

Is	the	name	of	a	declared	cursor	variable	to	receive	the	cursor	output.
output_cursor_variable	is	cursor,	with	no	default,	and	must	not	be
associated	with	any	cursors	at	the	time	sp_describe_cursor	is	called.	The
cursor	returned	is	a	scrollable,	dynamic,	read-only	cursor.

[@cursor_source	=]	{	N'local'	|	N'global'	|	N'variable'	}

Specifies	whether	the	cursor	being	reported	on	is	specified	using	the	name	of
a	local	cursor,	a	global	cursor,	or	a	cursor	variable.	The	parameter	is
nvarchar(30).

[@cursor_identity	=]	N'local_cursor_name']

Is	the	name	of	a	cursor	created	by	a	DECLARE	CURSOR	statement	either
having	the	LOCAL	keyword,	or	that	defaulted	to	LOCAL.
local_cursor_name	is	nvarchar(128).

[@cursor_identity	=]	N'global_cursor_name']

Is	the	name	of	a	cursor	created	by	a	DECLARE	CURSOR	statement	either
having	the	GLOBAL	keyword,	or	that	defaulted	to	GLOBAL.	It	can	also	be

the	name	of	an	API	server	cursor	opened	by	an	ODBC	application	that	then
named	the	cursor	by	calling	SQLSetCursorName.	global_cursor_name	is
nvarchar(128).

[@cursor_identity	=]	N'input_cursor_variable']

Is	the	name	of	a	cursor	variable	associated	with	an	open	cursor.
input_cursor_variable	is	nvarchar(128).

Return	Code	Values
None

Cursors	Returned
sp_describe_cursor	encapsulates	its	result	set	in	a	Transact-SQL	cursor	output
parameter.	This	allows	Transact-SQL	batches,	stored	procedures,	and	triggers	to
work	with	the	output	one	row	at	a	time.	It	also	means	that	the	procedure	cannot
be	called	directly	from	database	API	functions.	The	cursor	output	parameter
must	be	bound	to	a	program	variable,	but	the	database	APIs	do	not	support
binding	cursor	parameters	or	variables.

This	is	the	format	of	the	cursor	returned	by	sp_describe_cursor.	The	format	of
the	cursor	is	the	same	as	the	format	returned	by	sp_cursor_list.

Column	name Data	type Description
reference_name sysname Name	used	to	refer	to	the	cursor.	If	the

reference	to	the	cursor	was	through	the
name	given	on	a	DECLARE	CURSOR
statement,	the	reference	name	is	the	same
as	cursor	name.	If	the	reference	to	the
cursor	was	through	a	variable,	the
reference	name	is	the	name	of	the
variable.

cursor_name sysname Name	of	the	cursor	from	a	DECLARE
CURSOR	statement.	If	the	cursor	was
created	by	setting	a	cursor	variable	to	a
cursor,	the	cursor	name	is	a	system-
generated	name.

cursor_scope tinyint 1	=	LOCAL
2	=	GLOBAL

status int Same	values	as	reported	by	the
CURSOR_STATUS	system	function:

1	=	The	cursor	referenced	by	the	cursor
name	or	variable	is	open.	If	the	cursor	is
insensitive,	static,	or	keyset,	it	has	at	least
one	row.	If	the	cursor	is	dynamic,	the
result	set	has	zero	or	more	rows.
0	=	The	cursor	referenced	by	the	cursor
name	or	variable	is	open	but	has	no	rows.
Dynamic	cursors	never	return	this	value.
-1	=	The	cursor	referenced	by	the	cursor
name	or	variable	is	closed.
-2	=	Applies	only	to	cursor	variables.
There	is	no	cursor	assigned	to	the
variable.	Possibly,	an	OUTPUT
parameter	assigned	a	cursor	to	the
variable,	but	the	stored	procedure	closed
the	cursor	before	returning.
-3	=	A	cursor	or	cursor	variable	with	the
specified	name	does	not	exist,	or	the
cursor	variable	has	not	had	a	cursor
allocated	to	it.

model tinyint 1	=	Insensitive	(or	static)
2	=	Keyset
3	=	Dynamic
4	=	Fast	Forward

concurrency tinyint 1	=	Read-only
2	=	Scroll	locks
3	=	Optimistic

scrollable tinyint 0	=	Forward-only
1	=	Scrollable

open_status tinyint 0	=	Closed
1	=	Open

cursor_rows decimal(10,0) Number	of	qualifying	rows	in	the	result
set.	For	more	information,	see
@@CURSOR_ROWS.

fetch_status smallint Status	of	the	last	fetch	on	this	cursor.	For
more	information,	see
@@FETCH_STATUS.

0	=	Fetch	successful.
-1	=	Fetch	failed	or	is	beyond	the	bounds
of	the	cursor.
-2	=	The	requested	row	is	missing.
-9	=	There	has	been	no	fetch	on	the
cursor.

column_count smallint Number	of	columns	in	the	cursor	result
set.

row_count decimal(10,0) Number	of	rows	affected	by	the	last
operation	on	the	cursor.	For	more
information,	see	@@ROWCOUNT.

last_operation tinyint Last	operation	performed	on	the	cursor:

0	=	No	operations	have	been	performed
on	the	cursor.
1	=	OPEN
2	=	FETCH
3	=	INSERT
4	=	UPDATE
5	=	DELETE
6	=	CLOSE
7	=	DEALLOCATE

cursor_handle int A	unique	value	for	the	cursor	within	the
scope	of	the	server.

Remarks
sp_describe_cursor	describes	the	attributes	that	are	global	to	a	server	cursor,

such	as	the	ability	to	scroll	and	update.	Use	sp_describe_cursor_columns	for	a
description	of	the	attributes	of	the	result	set	returned	by	the	cursor.	Use
sp_describe_cursor_tables	for	a	report	of	the	base	tables	referenced	by	the
cursor.	Use	sp_cursor_list	to	get	a	report	of	the	Transact-SQL	server	cursors
visible	on	the	connection.

A	DECLARE	CURSOR	statement	may	request	a	cursor	type	that	Microsoft®
SQL	Server™	cannot	support	with	the	SELECT	statement	contained	in	the
DECLARE	CURSOR.	SQL	Server	implicitly	converts	the	cursor	to	a	type	it	can
support	with	the	SELECT	statement.	If	TYPE_WARNING	is	specified	in	the
DECLARE	CURSOR	statement	SQL	Server	sends	the	application	an
informational	message	that	a	conversion	has	been	done.	sp_describe_cursor	can
then	be	called	to	determine	the	type	of	cursor	that	has	been	implemented.

Permissions
Execute	permission	defaults	to	the	public	role.

Examples
This	example	opens	a	global	cursor	and	uses	sp_describe_cursor	to	report	on
the	attributes	of	the	cursor.

USE	Northwind

GO
--	Declare	and	open	a	global	cursor.
DECLARE	abc	CURSOR	STATIC	FOR
SELECT	LastName
FROM	Employees

OPEN	abc

--	Declare	a	cursor	variable	to	hold	the	cursor	output	variable
--	from	sp_describe_cursor.
DECLARE	@Report	CURSOR

--	Execute	sp_describe_cursor	into	the	cursor	variable.
EXEC	master.dbo.sp_describe_cursor	@cursor_return	=	@Report	OUTPUT,
								@cursor_source	=	N'global',	@cursor_identity	=	N'abc'

--	Fetch	all	the	rows	from	the	sp_describe_cursor	output	cursor.
FETCH	NEXT	from	@Report
WHILE	(@@FETCH_STATUS	<>	-1)
BEGIN
				FETCH	NEXT	from	@Report
END

--	Close	and	deallocate	the	cursor	from	sp_describe_cursor.
CLOSE	@Report
DEALLOCATE	@Report
GO

--	Close	and	deallocate	the	original	cursor.
CLOSE	abc
DEALLOCATE	abc
GO

See	Also

Cursors

CURSOR_STATUS

DECLARE	CURSOR

sp_cursor_list

sp_describe_cursor_columns

sp_describe_cursor_tables

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_describe_cursor_columns
Reports	the	attributes	of	the	columns	in	the	result	set	of	a	server	cursor.

Syntax
sp_describe_cursor_columns	
				[@cursor_return	=]	output_cursor_variable	OUTPUT	
				{	[,	[@cursor_source	=]	N'local'	
								,	[@cursor_identity	=]	N'local_cursor_name']	
												|	[,	[@cursor_source	=]	N'global'	
								,	[@cursor_identity	=]	N'global_cursor_name']	
												|	[,	[@cursor_source	=]	N'variable'	
								,	[@cursor_identity	=]	N'input_cursor_variable']	
				}

Arguments
[@cursor_return	=]	output_cursor_variable	OUTPUT

Is	the	name	of	a	declared	cursor	variable	to	receive	the	cursor	output.
output_cursor_variable	is	cursor,	with	no	default,	and	must	not	be
associated	with	any	cursors	at	the	time	sp_describe_cursor_columns	is
called.	The	cursor	returned	is	a	scrollable,	dynamic,	read-only	cursor.

[@cursor_source	=]	{	N'local'	|	N'global'	|	N'variable'	}

Specifies	whether	the	cursor	being	reported	on	is	specified	using	the	name	of
a	local	cursor,	a	global	cursor,	or	a	cursor	variable.	The	parameter	is
nvarchar(30).

[@cursor_identity	=]	N'local_cursor_name'

Is	the	name	of	a	cursor	created	by	a	DECLARE	CURSOR	statement	either
having	the	LOCAL	keyword,	or	that	defaulted	to	LOCAL.
local_cursor_name	is	nvarchar(128).

[@cursor_identity	=]	N'global_cursor_name'

Is	the	name	of	a	cursor	created	by	a	DECLARE	CURSOR	statement	either

having	the	GLOBAL	keyword,	or	that	defaulted	to	GLOBAL.	It	can	also	be
the	name	of	an	API	server	cursor	opened	by	an	ODBC	application	that	then
named	the	cursor	by	calling	SQLSetCursorName.	global_cursor_name	is
nvarchar(128).

[@cursor_identity	=]	N'input_cursor_variable'

Is	the	name	of	a	cursor	variable	associated	with	an	open	cursor.
input_cursor_variable	is	nvarchar(128).

Return	Code	Values
None

Cursors	Returned
sp_describe_cursor_columns	encapsulates	its	report	as	a	Transact-SQL	cursor
output	parameter.	This	allows	Transact-SQL	batches,	stored	procedures,	and
triggers	to	work	with	the	output	one	row	at	a	time.	It	also	means	that	the
procedure	cannot	be	called	directly	from	database	API	functions.	The	cursor
output	parameter	must	be	bound	to	a	program	variable,	but	the	database	APIs	do
not	support	binding	cursor	parameters	or	variables.

This	is	the	format	of	the	cursor	returned	by	sp_describe_cursor_columns.

Column	name Data	type Description
column_name sysname

nullable

Name	assigned	to	the	result	set
column.	The	column	is	NULL
if	the	column	was	specified
without	an	accompanying	AS
clause.

ordinal_position int Relative	position	of	the	column
from	the	leftmost	column	in	the
result	set.	The	first	column	is	in
position	1.	The	value	for	any
hidden	columns	is	0.

column_characteristics_flags int A	bitmask	indicating	the
information	stored	in
DBCOLUMNFLAGS	in	OLE

DB.	Can	be	one	of	the
following:

1	=	Bookmark
2	=	Fixed	length
4	=	Nullable
8	=	Row	versioning
16	=	Updatable	column	(set	for
projected	columns	of	a	cursor
that	has	no	FOR	UPDATE
clause	and,	if	there	is	such	a
column,	can	be	only	one	per
cursor).

column_size int Maximum	possible	size	for	a
value	in	this	column.

data_type_sql smallint Number	indicating	the	SQL
Server	data	type	of	the	column.

column_precision tinyint Maximum	precision	of	the
column	as	per	the	bPrecision
value	in	OLE	DB.

column_scale tinyint Number	of	digits	to	the	right	of
the	decimal	point	for	the
numeric	or	decimal	data	types
as	per	the	bScale	value	in	OLE
DB.

order_position int If	the	column	participates	in	the
ordering	of	the	result	set,	the
position	of	the	column	in	the
order	key	relative	to	the
leftmost	column.

order_direction varchar(1),
nullable

A	=	The	column	is	in	the	order
key	and	the	ordering	is
ascending.
D	=	The	column	is	in	the	order
key	and	the	ordering	is
descending.

NULL	=	The	column	does	not
participate	in	ordering.

hidden_column smallint If	a	value	of	0,	this	column
appears	in	the	select	list.	The
value	1	is	reserved	for	future
use.

columnid int Column	ID	of	the	base	column.
If	the	result	set	column	was
built	from	an	expression,
columnid	is	-1.

objectid int Object	ID	of	the	base	table
supplying	the	column.	If	the
result	set	column	was	built
from	an	expression,	objectid	is
-1.

dbid int ID	of	the	database	containing
the	base	table	supplying	the
column.	If	the	result	set	column
was	built	from	an	expression,
dbid	is	-1.

dbname sysname

nullable

Name	of	the	database
containing	the	base	table
supplying	the	column.	If	the
result	set	column	was	built
from	an	expression,	dbname	is
NULL.

Remarks
sp_describe_cursor_columns	describes	the	attributes	of	the	columns	in	the
result	set	of	a	server	cursor,	such	as	the	name	and	data	type	of	each	cursor.	Use
sp_describe_cursor	for	a	description	of	the	global	attributes	of	the	server
cursor.	Use	sp_describe_cursor_tables	for	a	report	of	the	base	tables	referenced
by	the	cursor.	Use	sp_cursor_list	to	get	a	report	of	the	Transact-SQL	server
cursors	visible	on	the	connection.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	opens	a	global	cursor	and	uses	sp_describe_cursor_columns	to
report	on	the	columns	used	in	the	cursor.

USE	Northwind
GO
--	Declare	and	open	a	global	cursor.
DECLARE	abc	CURSOR	KEYSET	FOR
SELECT	LastName
FROM	Employees
GO
OPEN	abc

--	Declare	a	cursor	variable	to	hold	the	cursor	output	variable
--	from	sp_describe_cursor_columns.
DECLARE	@Report	CURSOR

--	Execute	sp_describe_cursor_columns	into	the	cursor	variable.
EXEC	master.dbo.sp_describe_cursor_columns
						@cursor_return	=	@Report	OUTPUT,
						@cursor_source	=	N'global',	@cursor_identity	=	N'abc'

--	Fetch	all	the	rows	from	the	sp_describe_cursor_columns	output	cursor.
FETCH	NEXT	from	@Report
WHILE	(@@FETCH_STATUS	<>	-1)
BEGIN
			FETCH	NEXT	from	@Report
END

--	Close	and	deallocate	the	cursor	from	sp_describe_cursor_columns.

CLOSE	@Report
DEALLOCATE	@Report
GO
--	Close	and	deallocate	the	original	cursor.
CLOSE	abc
DEALLOCATE	abc
GO

See	Also

Cursors

CURSOR_STATUS

DECLARE	CURSOR

sp_describe_cursor

sp_cursor_list

sp_describe_cursor_tables

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_describe_cursor_tables
Reports	the	base	tables	referenced	by	a	server	cursor.

Syntax
sp_describe_cursor_tables					[@cursor_return	=]	output_cursor_variable
OUTPUT	
				{	[,	[@cursor_source	=]	N'local'	
								,	[@cursor_identity	=]	N'local_cursor_name']	
												|	[,	[@cursor_source	=]	N'global'	
								,	[@cursor_identity	=]	N'global_cursor_name']	
												|	[,	[@cursor_source	=]	N'variable'	
								,	[@cursor_identity	=]	N'input_cursor_variable']	
				}

Arguments
[@cursor_return	=]	output_cursor_variable	OUTPUT

Is	the	name	of	a	declared	cursor	variable	to	receive	the	cursor	output.
output_cursor_variable	is	cursor,	with	no	default,	and	must	not	be
associated	with	any	cursors	at	the	time	sp_describe_cursor_tables	is	called.
The	cursor	returned	is	a	scrollable,	dynamic,	read-only	cursor.

[@cursor_source	=]	{	N'local'	|	N'global'	|	N'variable'	}

Specifies	whether	the	cursor	being	reported	on	is	specified	using	the	name	of
a	local	cursor,	a	global	cursor,	or	a	cursor	variable.	The	parameter	is
nvarchar(30).

[@cursor_identity	=]	N'local_cursor_name'

Is	the	name	of	a	cursor	created	by	a	DECLARE	CURSOR	statement	either
having	the	LOCAL	keyword,	or	that	defaulted	to	LOCAL.
local_cursor_name	is	nvarchar(128).

[@cursor_identity	=]	N'global_cursor_name'

Is	the	name	of	a	cursor	created	by	a	DECLARE	CURSOR	statement	either

having	the	GLOBAL	keyword,	or	that	defaulted	to	GLOBAL.	It	can	also	be
the	name	of	an	API	server	cursor	opened	by	an	ODBC	application	that	then
named	the	cursor	by	calling	SQLSetCursorName.global_cursor_name	is
nvarchar(128).

[@cursor_identity	=]	N'input_cursor_variable'

Is	the	name	of	a	cursor	variable	associated	with	an	open	cursor.
input_cursor_variable	is	nvarchar(128).

Return	Code	Values
None

Cursors	Returned
sp_describe_cursor_tables	encapsulates	its	report	as	a	Transact-SQL	cursor
output	parameter.	This	allows	Transact-SQL	batches,	stored	procedures,	and
triggers	to	work	with	the	output	one	row	at	a	time.	It	also	means	that	the
procedure	cannot	be	called	directly	from	database	API	functions.	The	cursor
output	parameter	must	be	bound	to	a	program	variable,	but	the	database	APIs	do
not	support	bind	cursor	parameters	or	variables.

This	is	the	format	of	the	cursor	returned	by	sp_describe_cursor_tables.

Column	name Data	type Description
table	owner sysname User	ID	of	the	table	owner.
Table_name sysname Name	of	the	base	table.
Optimizer_hints smallint Bitmap	consisting	of	one	or	more	of:

1	=	Row-level	locking	(ROWLOCK)
4	=	Page-level	locking	(PAGELOCK)
8	=	Table	Lock	(TABLOCK)
16	=	Exclusive	table	lock	(TABLOCKX)
32	=	Update	lock	(UPDLOCK)
64	=	No	lock	(NOLOCK)
128	=	Fast	first-row	option	(FASTFIRST)
4096	=	Read	repeatable	semantic	when
used

with	declare	cursor	(HOLDLOCK)

When	multiple	options	are	supplied,	the
system	uses	the	most	restrictive.	However,
sp_describe_cursor_tables	shows	the
flags	as	specified	in	the	query.

lock_type smallint Scroll-lock	type	requested	either	explicitly
or	implicitly	for	each	base	table	that
underlies	this	cursor.	The	value	can	be:

0	=	None
1	=	Shared
3	=	Update

server_name sysname,
nullable

Name	of	the	linked	server	the	table	resides
on.	NULL	if	OPENQUERY	or
OPENROWSET	are	used.

Objectid int Object	ID	of	the	table.	0	if	OPENQUERY
or	OPENROWSET	are	used.

dbid int ID	of	the	database	the	table	resides	in.	0	if
OPENQUERY	or	OPENROWSET	are
used.

dbname sysname,
nullable

Name	of	the	database	the	table	resides	in.
NULL	if	OPENQUERY	or
OPENROWSET	are	used.

Remarks
sp_describe_cursor_tables	describes	the	base	tables	referenced	by	a	server
cursor.	Use	sp_describe_cursor_columns	for	a	description	of	the	attributes	of
the	result	set	returned	by	the	cursor.	Use	sp_describe_cursor	for	a	description
of	the	global	characteristics	of	the	cursor,	such	as	its	scrollability	and
updatability.	Use	sp_cursor_list	to	get	a	report	of	the	Transact-SQL	server
cursors	visible	on	the	connection.

Permissions

Execute	permissions	default	to	the	public	role.

Examples
This	example	opens	a	global	cursor	and	uses	sp_describe_cursor_tables	to
report	on	the	tables	referenced	by	the	cursor.

USE	Northwind
GO
--	Declare	and	open	a	global	cursor.
DECLARE	abc	CURSOR	KEYSET	FOR
SELECT	LastName
FROM	Employees
WHERE	LastName	LIKE	'S%'

OPEN	abc
GO
--	Declare	a	cursor	variable	to	hold	the	cursor	output	variable
--	from	sp_describe_cursor_tables.
DECLARE	@Report	CURSOR

--	Execute	sp_describe_cursor_tables	into	the	cursor	variable.
EXEC	master.dbo.sp_describe_cursor_tables
						@cursor_return	=	@Report	OUTPUT,
						@cursor_source	=	N'global',	@cursor_identity	=	N'abc'

--	Fetch	all	the	rows	from	the	sp_describe_cursor_tables	output	cursor.
FETCH	NEXT	from	@Report
WHILE	(@@FETCH_STATUS	<>	-1)
BEGIN
			FETCH	NEXT	from	@Report
END

--	Close	and	deallocate	the	cursor	from	sp_describe_cursor_tables.

CLOSE	@Report
DEALLOCATE	@Report
GO

--	Close	and	deallocate	the	original	cursor.
CLOSE	abc
DEALLOCATE	abc
GO

See	Also

Cursors

CURSOR_STATUS

DECLARE	CURSOR

sp_cursor_list

sp_describe_cursor

sp_describe_cursor_columns

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_detach_db
Detaches	a	database	from	a	server	and,	optionally,	runs	UPDATE	STATISTICS
on	all	tables	before	detaching.

Syntax
sp_detach_db	[@dbname	=]	'dbname'	
				[,	[@skipchecks	=]	'skipchecks']

Arguments
[@dbname	=]	'dbname'

Is	the	name	of	the	database	to	be	detached.	dbname	is	sysname,	with	a
default	value	of	NULL.

[@skipchecks	=]	'skipchecks'

skipchecks	is	nvarchar(10),	with	a	default	value	of	NULL.	If	true,	UPDATE
STATISTICS	is	skipped.	If	false,	UPDATE	STATISTICS	is	run.	This	option
is	useful	for	databases	that	are	to	be	moved	to	read-only	media.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
The	detached	files	remain	and	can	be	reattached	using	sp_attach_db	or
sp_attach_single_file_db.	The	files	can	also	be	moved	to	another	server	and
attached.

Permissions

Only	members	of	the	sysadmin	fixed	server	role	can	execute	sp_detach_db.

Examples
This	example	detaches	the	pubs	database	with	skipchecks	set	to	true.

EXEC	sp_detach_db	'pubs',	'true'

See	Also

sp_attach_db

sp_attach_single_file_db

Transact-SQL	Reference

sp_dropalias
Removes	an	alias	to	a	user	in	the	current	database	from	a	login.	sp_dropalias	is
provided	for	backward	compatibility	only.	Use	roles	and	the
sp_droprolemember	stored	procedure	instead	of	aliases.

Syntax
sp_dropalias	[@loginame	=]	'login'

Arguments
[@loginame	=]	'login'

Is	the	name	of	the	Microsoft®	SQL	Server™	login	or	Microsoft	Windows
NT®	user	or	group	from	which	the	alias	is	to	be	removed.	login	is	sysname,
with	no	default.	login	must	already	exist.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
Aliases	allow	logins	to	assume	the	identity	of	a	user	in	a	database,	thereby
gaining	the	permissions	of	that	user	while	working	in	that	database.

When	the	alias	is	removed,	the	login	can	no	longer	perform	the	activities
associated	with	the	user	to	whom	they	were	aliased	in	the	current	database.

sp_dropalias	cannot	be	executed	within	a	user-defined	transaction.

Permissions
Only	members	of	the	sysadmin	fixed	server	role,	the	db_accessadmin	and
db_owner	fixed	database	roles	can	execute	sp_dropalias.

Examples

This	example	removes	the	alias	to	user	Victoria	in	the	current	database.

EXEC	sp_dropalias	'Victoria'

See	Also

sp_addalias

sp_addrolemember

sp_droprolemember

System	Stored	Procedures

Transact-SQL	Reference

sp_dropapprole
Removes	an	application	role	from	the	current	database.

Syntax
sp_dropapprole	[@rolename	=]	'role'

Arguments
[@rolename	=]	'role'

Is	the	application	role	to	remove.	role	is	sysname,	with	no	default.	role	must
exist	in	the	current	database.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_dropapprole	can	only	be	used	to	remove	application	roles.	Use	sp_droprole
to	remove	a	standard	Microsoft®	SQL	Server™	role.	An	application	role	cannot
be	removed	if	it	owns	any	objects.	Either	remove	the	objects	before	removing
the	application	role,	or	use	sp_changeobjectowner	to	change	the	owner	of	any
objects	that	must	not	be	removed.

sp_dropapprole	cannot	be	executed	within	a	user-defined	transaction.

Permissions
Only	members	of	the	sysadmin	fixed	server	role,	the	db_securityadmin	and
db_owner	fixed	database	roles	can	execute	sp_dropapprole.

Examples
This	example	removes	the	SalesApp	application	role	from	the	current	database.

EXEC	sp_dropapprole	'SalesApp'

See	Also

sp_addapprole

sp_changeobjectowner

sp_setapprole

System	Stored	Procedures

Transact-SQL	Reference

sp_dropdevice
Drops	a	database	device	or	backup	device	from	Microsoft®	SQL	Server™,
deleting	the	entry	from	master.dbo.sysdevices.

Syntax
sp_dropdevice	[@logicalname	=]	'device'	
				[,	[@delfile	=]	'delfile']

Arguments
[@logicalname	=]	'device'

Is	the	logical	name	of	the	database	device	or	backup	device	as	listed	in
master.dbo.sysdevices.name.	device	is	sysname,	with	no	default.

[@delfile	=]	'delfile'

Is	whether	or	not	the	physical	backup	device	file	should	be	deleted.	delfile	is
varchar(7).	If	specified	as	DELFILE,	the	physical	backup	device	disk	file	is
deleted.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
sp_dropdevice	cannot	be	used	inside	a	transaction.

Permissions
Execute	permissions	default	to	members	of	the	sysadmin	and	diskadmin	fixed
server	roles.

Examples
This	example	drops	the	TAPEDUMP1	tape	dump	device	from	SQL	Server.

sp_dropdevice	'TAPEDUMP1'

See	Also

DROP	DATABASE

sp_addumpdevice

sp_helpdb

sp_helpdevice

System	Stored	Procedures

Transact-SQL	Reference

sp_dropextendedproc
Drops	an	extended	stored	procedure.

Syntax
sp_dropextendedproc	[@functname	=]	'procedure'

Arguments
[@functname	=]	'procedure'

Is	the	name	of	the	extended	stored	procedure	to	drop.	procedure	is
nvarchar(517),	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
Executing	sp_dropextendedproc	drops	the	extended	stored	procedure	name
from	the	sysobjects	table	and	removes	the	entry	from	the	syscomments	table.

sp_dropextendedproc	cannot	be	executed	inside	a	transaction.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_dropextendedproc.

Examples
This	example	drops	the	xp_diskfree	extended	stored	procedure.

Note		This	extended	stored	procedure	must	already	exist	for	this	example	to
work	without	returning	an	error	message.

USE	master
EXEC	sp_dropextendedproc	'xp_hello'

See	Also

sp_addextendedproc

sp_helpextendedproc

System	Stored	Procedures

Transact-SQL	Reference

sp_dropextendedproperty
Drops	an	existing	extended	property.

Syntax
sp_dropextendedproperty					[@name	=]	{	'property_name'	}	
				[,	[@value	=]	{	'value'	}	
								[,	[@level0type	=]	{	'level0_object_type'	}	
								,	[@level0name	=]	{	'level0_object_name'	}	
												[,	[@level1type	=]	{	'level1_object_type'	}	
												,	[@level1name	=]	{	'level1_object_name'	}	
																				[,	[@level2type	=]	{	'level2_object_type'	}	
																				,	[@level2name	=]	{	'level2_object_name'	}	
]	
]	
]	
]

Arguments
[@name	=]{'property_name'}

Is	the	name	of	the	property	to	be	dropped.	property_name	is	sysname	and
cannot	be	NULL.

[@value	=]{'value'}

Is	the	value	to	be	associated	with	the	property.	value	is	sql_variant,	with	a
default	of	NULL.	The	size	of	value	may	not	be	more	than	7,500	bytes;
otherwise,	SQL	Server	raises	an	error.

[@level0type	=]{'level0_object_type'}

Is	the	user	or	user-defined	type.	level0_object_type	is	varchar(128),	with	a
default	of	NULL.	Valid	inputs	are	USER,	TYPE,	and	NULL.

[@level0name	=]{'level0_object_name'}

Is	the	name	of	the	level	1	object	type	specified.	level0_object_name	is

sysname	with	a	default	of	NULL.

[@level1type	=]{'level1_object_type'}

Is	the	type	of	level	1	object.	level1_object_type	is	varchar(128)	with	a
default	of	NULL.	Valid	inputs	are	TABLE,	VIEW,	PROCEDURE,
FUNCTION,	DEFAULT,	RULE,	and	NULL.

[@level1name	=]{'level1_object_name'}

Is	the	name	of	the	level	1	object	type	specified.	level1_object_name	is
sysname	with	a	default	of	NULL.

[@level2type	=]{'level2_object_type'}

Is	the	type	of	level	2	object.	level2_object_type	is	varchar(128)	with	a
default	of	NULL.	Valid	inputs	are	COLUMN,	PARAMETER,	INDEX,
CONSTRAINT,	TRIGGER,	and	NULL.

[@level2name	=]{'level2_object_name'}

Is	the	name	of	the	level	2	object	type	specified.	level2_object_name	is
sysname	with	a	default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
Extended	properties	are	not	allowed	on	system	objects.

The	objects	are	distinguished	according	to	levels,	with	level	0	as	the	highest	and
level	2	the	lowest.	When	a	user	adds,	updates,	or	deletes	an	extended	property,
that	user	must	specify	all	higher	level	objects.	For	example,	if	the	user	adds	an
extended	property	to	a	level	1	object,	that	user	must	specify	all	level	0
information.	If	the	user	adds	an	extended	property	to	a	level	2	object,	all
information	on	levels	0	and	1	must	be	supplied.

At	each	level,	object	type	and	object	name	uniquely	identify	an	object.	If	one
part	of	the	pair	is	specified,	the	other	part	must	also	be	specified.

Given	a	valid	property_name,	if	all	object	types	and	names	are	null	and	a	current

database	property	exists,	that	database	property	is	deleted.	If	an	object	type	and
name	are	specified,	then	a	parent	object	and	type	also	must	be	specified.
Otherwise,	SQL	Server	raises	an	error.

Permissions
Members	of	the	db_owner	and	db_ddladmin	fixed	database	roles	may	drop
extended	properties	of	any	object.	Users	may	drop	extended	properties	to	objects
they	own.	However,	only	db_owner	may	drop	properties	to	user	names.

Examples
This	example	removes	the	property	'caption'	from	column	'id'	in	table	'T1,'
owned	by	the	dbo.

CREATE			table	T1	(id	int	,	name	char	(20))
GO
EXEC			sp_addextendedproperty	'caption',	'Employee	ID',	'user',	dbo,	'table',	'T1',	'column',	id
EXEC	sp_dropextendedproperty	'caption',	'user',	dbo,	'table',	'T1',	'column',	id

See	Also

fn_listextendedproperty

Transact-SQL	Reference

sp_dropgroup
Removes	a	role	from	the	current	database.	sp_dropgroup	is	provided	for
backward	compatibility.	In	Microsoft®	SQL	Server™	version	7.0,	groups	are
implemented	as	roles.

Syntax
sp_dropgroup	[@rolename	=]	'role'

Arguments
[@rolename	=]	'role'

Is	the	role	to	remove	from	the	current	database.	role	is	sysname,	with	no
default.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
Name sysname The	name	of	the	existing	member	of	the

role.

Remarks
sp_dropgroup	calls	sp_droprole	with	the	role	value	to	remove	the	role.	The
public,	fixed	server,	fixed	database,	or	application	roles	cannot	be	removed.	Use
sp_dropapprole	to	remove	an	application	role.

A	role	cannot	be	removed	if	it	owns	any	objects.	Either	remove	the	objects
before	removing	the	role,	or	use	sp_changeobjectowner	to	change	the	owner	of
any	objects	that	must	not	be	removed.

Additionally,	the	role	cannot	be	removed	if	there	are	any	members	of	the	role.

Use	sp_droprolemember	to	remove	the	user	from	the	role.	If	any	users	are	still
members	of	the	role,	sp_dropgroup	displays	those	members.

sp_dropgroup	cannot	be	executed	within	a	user-defined	transaction.

Permissions
Only	members	of	the	sysadmin	fixed	server	role,	the	db_securityadmin	or
db_owner	fixed	database	roles,	or	the	owner	of	the	role,	can	execute
sp_dropgroup.

Examples
This	example	removes	the	role	my_role	from	the	current	database.

EXEC	sp_dropgroup	'my_role'

See	Also

sp_addrole

sp_droprole

sp_dropapprole

System	Stored	Procedures

Transact-SQL	Reference

sp_droplinkedsrvlogin
Removes	an	existing	mapping	between	a	login	on	the	local	server	running
Microsoft®	SQL	Server™	and	a	login	on	the	linked	server.

Syntax
sp_droplinkedsrvlogin	[@rmtsrvname	=]	'rmtsrvname'	,	
				[@locallogin	=]	'locallogin'

Arguments
[@rmtsrvname	=]	'rmtsrvname'

Is	the	name	of	a	linked	server	that	the	SQL	Server	login	mapping	applies	to.
rmtsrvname	is	sysname,	with	no	default.	rmtsrvname	must	already	exist.

[@locallogin	=]	'locallogin'

Is	the	SQL	Server	login	on	the	local	server	that	has	a	mapping	to	the	linked
server	rmtsrvname.	locallogin	is	sysname,	with	no	default.	A	mapping	for
locallogin	to	rmtsrvname	must	already	exist.	If	NULL,	the	default	mapping
created	by	sp_addlinkedserver,	which	maps	all	logins	on	the	local	server	to
logins	on	the	linked	server,	is	deleted.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
When	the	existing	mapping	for	a	login	is	deleted,	the	local	server	uses	the
default	mapping	created	by	sp_addlinkedserver	when	connecting	to	the	linked
server	on	behalf	of	that	login.	To	change	the	default	mapping,	use
sp_addlinkedsrvlogin.

If	the	default	mapping	is	also	deleted,	only	logins	that	have	been	explicitly	given
a	login	mapping	to	the	linked	server,	using	sp_addlinkedsrvlogin,	can	access
the	linked	server.

sp_droplinkedsrvlogin	cannot	be	executed	from	within	a	user-defined
transaction.

Permissions
Only	members	of	the	sysadmin	and	securityadmin	fixed	server	roles	can
execute	sp_droplinkedsrvlogin.

Examples

A.	Remove	the	login	mapping	for	an	existing	user
This	example	removes	the	mapping	for	the	login	Mary	from	the	local	server	to
the	linked	server	Accounts;	as	a	result,	login	Mary	uses	the	default	login
mapping.

EXEC	sp_droplinkedsrvlogin	'Accounts',	'Mary'

B.	Remove	the	default	login	mapping
This	example	removes	the	default	login	mapping	originally	created	by	executing
sp_addlinkedserver	on	the	local	server	Accounts.

EXEC	sp_droplinkedsrvlogin	'Accounts',	NULL

See	Also

Security	for	Linked	Servers

sp_addlinkedserver

sp_addlinkedsrvlogin

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_droplogin
Removes	a	Microsoft®	SQL	Server™	login,	preventing	access	to	SQL	Server
using	that	login	name.

Syntax
sp_droplogin	[@loginame	=]	'login'

Arguments
[@loginame	=]	'login'

Is	the	login	to	be	removed.	login	is	sysname,	with	no	default.	login	must
already	exist	in	SQL	Server.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
A	login	mapped	to	an	existing	user	in	any	database	cannot	be	removed.	The	user
must	be	removed	first	by	using	sp_dropuser.	Additionally,	these	logins	cannot
be	removed:

The	system	administrator	(sa)	login.

A	login	that	owns	an	existing	database.

A	login	that	owns	jobs	in	the	msdb	database.

A	login	that	is	currently	in	use	and	connected	to	SQL	Server.

Use	sp_changedbowner	to	change	the	owner	of	a	database.

Removing	a	login	also	deletes	any	remote	and	linked	server	logins	mapped	to

the	login.

sp_droplogin	cannot	be	executed	within	a	user-defined	transaction.

Permissions
Only	members	of	the	sysadmin	and	securityadmin	fixed	server	roles	can
execute	sp_droplogin.

sp_droplogin	must	check	all	databases	on	the	server	to	determine	if	any	user
accounts	in	those	databases	are	associated	with	the	login	being	deleted.
Therefore,	for	each	database	on	the	server,	one	of	these	must	apply:

The	user	executing	sp_droplogin	must	have	permissions	to	access	the
database.

The	guest	user	account	must	exist	in	the	database.

If	a	database	cannot	be	accessed,	the	login	can	still	be	deleted.	However,	error
message	15622	is	generated	and	any	users	who	were	associated	with	the	deleted
login	become	orphaned	in	the	databases	that	could	not	be	accessed.	To	determine
the	orphaned	users,	execute	sp_change_users_login	REPORT	in	each	database
that	could	not	be	accessed	by	sp_droplogin.

Examples
This	example	removes	the	login	Victoria	from	SQL	Server.

EXEC	sp_droplogin	'Victoria'

See	Also

sp_addlogin

sp_changedbowner

sp_change_users_login

sp_dropuser

sp_helpuser

System	Stored	Procedures

Transact-SQL	Reference

sp_dropmessage
Drops	a	specified	error	message	from	the	sysmessages	system	table.

Syntax
sp_dropmessage	[@msgnum	=]	message_number	
				[,	[@lang	=]	'language']

Arguments
[@msgnum	=]	message_number

Is	the	message	number	to	drop.	message_number	must	be	a	user-defined
message	with	a	message	number	greater	than	50000.	message_number	is	int,
with	a	default	of	NULL.

[@lang	=]	'language'

Is	the	language	of	the	message	to	drop.	If	all	is	specified,	all	language
versions	of	message_number	are	dropped.	language	is	sysname,	with	a
default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Permissions
Only	members	of	the	sysadmin	and	serveradmin	fixed	server	roles	can	execute
this	procedure.

Examples
This	example	drops	the	message	(number	50001)	from	sysmessages.

USE	master
EXEC	sp_dropmessage	50001

Here	is	the	result:

Message	dropped.

See	Also

CREATE	TABLE

RAISERROR

sp_addmessage

sp_altermessage

System	Stored	Procedures

Transact-SQL	Reference

sp_dropremotelogin
Removes	a	remote	login	mapped	to	a	local	login	used	to	execute	remote	stored
procedures	against	the	local	server	running	Microsoft®	SQL	Server™.

Syntax
sp_dropremotelogin	[@remoteserver	=]	'remoteserver'	
				[,	[@loginame	=]	'login']	
				[,	[@remotename	=]	'remote_name']

Arguments
[@remoteserver	=]	'remoteserver'

Is	the	name	of	the	remote	server	mapped	to	the	remote	login	that	is	to	be
removed.	remoteserver	is	sysname,	with	no	default.	remoteserver	must
already	exist.

[@loginame	=]	'login'

Is	the	optional	login	name	on	the	local	server	that	is	associated	with	the
remote	server.	login	is	sysname,	with	a	default	of	NULL.	login	must	already
exist	if	specified.

[@remotename	=]	'remote_name'

Is	the	optional	name	of	the	remote	login	that	is	mapped	to	login	when
logging	in	from	the	remote	server.	remote_name	is	sysname,	with	a	default
of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
If	only	remoteserver	is	specified,	all	remote	logins	for	that	remote	server	are
removed	from	the	local	server.	If	login	is	additionally	specified,	all	remote	logins

from	remoteserver	mapped	to	that	specific	local	login	are	removed	from	the
local	server.	If	remote_name	is	also	specified,	only	the	remote	login	for	that
remote	user	from	remoteserver	is	removed	from	the	local	server.

To	add	local	server	users,	use	sp_addlogin.	To	remove	local	server	users,	use
sp_droplogin.

Remote	logins	are	only	required	when	using	earlier	versions	of	SQL	Server.	SQL
Server	version	7.0	uses	linked	server	logins	instead.	Use	sp_addlinkedsrvlogin
and	sp_droplinkedsrvlogin	to	add	and	remove	linked	server	logins.

sp_dropremotelogin	cannot	be	executed	within	a	user-defined	transaction.

Permissions
Only	members	of	the	sysadmin	or	securityadmin	fixed	server	roles	can	execute
sp_dropremotelogin.

Examples

A.	Drop	all	remote	logins	for	a	remote	server
This	example	removes	the	entry	for	the	remote	server	ACCOUNTS,	thereby
removing	all	mappings	between	logins	on	the	local	server	and	remote	logins	on
the	remote	server.

EXEC	sp_dropremotelogin	'ACCOUNTS'

B.	Drop	a	login	mapping
This	example	removes	the	entry	for	mapping	remote	logins	from	the	remote
server	ACCOUNTS	to	the	local	login	Albert.

EXEC	sp_dropremotelogin	'ACCOUNTS',	'Albert'

C.	Drop	a	remote	user
This	example	removes	the	login	for	the	remote	login	Chris	on	the	remote	server
ACCOUNTS	that	was	mapped	to	the	local	login	salesmgr.

EXEC	sp_dropremotelogin	'ACCOUNTS',	'salesmgr',	'Chris'

See	Also

sp_addlinkedsrvlogin

sp_addlogin

sp_addremotelogin

sp_addserver

sp_droplinkedsrvlogin

sp_droplogin

sp_helpremotelogin

System	Stored	Procedures

Transact-SQL	Reference

sp_droprole
Removes	a	Microsoft®	SQL	Server™	role	from	the	current	database.

Syntax
sp_droprole	[@rolename	=]	'role'

Arguments
[@rolename	=]	'role'

Is	the	name	of	the	role	to	remove	from	the	current	database.	role	is	sysname,
with	no	default.	role	must	already	exist	in	the	current	database.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
Name sysname The	name	of	the	existing	member	of	the

role.

Remarks
Only	standard	user	roles	can	be	removed	using	sp_droprole.	To	remove	an
application	role,	use	sp_dropapprole.

A	role	with	existing	members	cannot	be	removed.	All	members	of	the	role	must
first	be	removed	from	the	role	before	the	role	can	be	removed.	To	remove	users
from	a	role,	use	sp_droprolemember.	If	any	users	are	still	members	of	the	role,
sp_droprole	displays	those	members.

Fixed	roles	and	the	public	role	cannot	be	removed.

A	role	cannot	be	removed	if	it	owns	any	objects.	Either	remove	the	objects

before	removing	the	role,	or	use	sp_changeobjectowner	to	change	the	owner	of
any	objects	that	must	not	be	removed.

sp_droprole	cannot	be	executed	from	within	a	user-defined	transaction.

Permissions
Only	members	of	the	sysadmin	fixed	server	role,	the	db_owner	and
db_securityadmin	fixed	database	roles,	or	the	owner	of	the	role,	can	execute
sp_droprole.

Examples
This	example	removes	the	SQL	Server	role	Sales.

EXEC	sp_droprole	'Sales'

See	Also

sp_addrole

sp_dropapprole

System	Stored	Procedures

Transact-SQL	Reference

sp_droprolemember
Removes	a	security	account	from	a	Microsoft®	SQL	Server™	role	in	the	current
database.

Syntax
sp_droprolemember	[@rolename	=]	'role'	,	
				[@membername	=]	'security_account'

Arguments
'role'

Is	the	name	of	the	role	that	the	member	is	being	removed	from.	role	is
sysname,	with	no	default.	role	must	exist	in	the	current	database.

'security_account'

Is	the	name	of	the	security	account	being	removed	from	the	role.
security_account	is	sysname,	with	no	default.	security_account	can	be	a
SQL	Server	user	or	another	SQL	Server	role,	or	a	Microsoft	Windows	NT®
user	or	group.	security_account	must	exist	in	the	current	database.	When
specifying	a	Windows	NT	user	or	group,	specify	the	name	that	the	Windows
NT	user	or	group	is	known	by	in	the	database	(added	using
sp_grantdbaccess).

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_droprolemember	removes	a	role	member	by	deleting	a	row	from	the
sysmembers	table.	When	removing	a	member	from	a	role,	the	permissions
applied	to	the	role	are	no	longer	applied	to	the	former	member	of	the	role.

sp_droprolemember	cannot	be	used	to	remove	a	Windows	NT	user	from	a
Windows	NT	group;	this	must	be	done	in	the	Windows	NT	security	system.	To

remove	a	user	from	a	fixed	server	role,	use	sp_dropsrvrolemember.	Users
cannot	be	removed	from	the	public	role,	and	dbo	cannot	be	removed	from	any
role.

Use	sp_helpuser	to	see	the	members	of	a	SQL	Server	role,	and	use
sp_addrolemember	to	add	a	member	to	a	role.

sp_droprolemember	cannot	be	executed	from	within	a	user-defined	transaction.

Permissions
Only	members	of	the	sysadmin	fixed	server	role,	the	db_owner	and
db_securityadmin	fixed	database	roles	can	execute	sp_droprolemember.	Only
a	member	of	the	db_owner	fixed	database	role	can	remove	users	from	a	fixed
database	role.

Examples
This	example	removes	the	user	JonB	from	the	role	Sales.

EXEC	sp_droprolemember	'Sales',	'Jonb'

See	Also

sp_addrolemember

sp_droprole

sp_dropsrvrolemember

sp_helpuser

System	Stored	Procedures

Transact-SQL	Reference

sp_dropserver
Removes	a	server	from	the	list	of	known	remote	and	linked	servers	on	the	local
Microsoft®	SQL	Server™.

Syntax
sp_dropserver	[@server	=]	'server'	
				[,	[@droplogins	=]	{	'droplogins'	|	NULL}]

Arguments
[@server	=]	'server'

Is	the	server	to	be	removed.	server	is	sysname,	with	no	default.	server	must
exist.

[@droplogins	=]	'droplogins'	|	NULL

Indicates	that	related	remote	and	linked	server	logins	for	server	must	also	be
removed	if	droplogins	is	specified.	@droplogins	is	char(10),	with	a	default
of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
Running	sp_dropserver	on	a	server	that	has	associated	remote	and	linked	server
login	entries	results	in	an	error	message	stating	that	logins	must	be	removed
before	removing	the	remote	or	linked	server.	To	remove	all	remote	and	linked
server	logins	for	a	server	when	removing	the	server,	use	the	droplogins
argument.

sp_dropserver	cannot	be	executed	inside	a	user-defined	transaction.

Permissions

Only	members	of	the	sysadmin	or	setupadmin	fixed	server	roles	can	execute
sp_dropserver.

Examples
This	example	removes	the	remote	server	ACCOUNTS	and	all	associated	remote
logins	from	the	local	SQL	Server.

sp_dropserver	'ACCOUNTS',	'droplogins'

See	Also

sp_addserver

sp_dropremotelogin

sp_helpremotelogin

sp_helpserver

System	Stored	Procedures

Transact-SQL	Reference

sp_dropsrvrolemember
Removes	a	Microsoft®	SQL	Server™	login	or	a	Microsoft	Windows	NT®	user
or	group	from	a	fixed	server	role.

Syntax
sp_dropsrvrolemember	[@loginame	=]	'login'	,	[@rolename	=]	'role'

Arguments
[@loginame	=]	'login'

Is	the	name	of	a	login	to	remove	from	the	fixed	server	role.	login	is
sysname,	with	no	default.	login	must	exist.

[@rolename	=]	'role'

Is	the	name	of	a	server	role.	role	is	sysname,	with	a	default	of	NULL.	role
must	be	a	valid	fixed	server	role,	and	must	be	one	of	these	values:

sysadmin

securityadmin

serveradmin

setupadmin

processadmin

diskadmin

dbcreator

bulkadmin

Return	Code	Values

0	(success)	or	1	(failure)

Remarks
Only	sp_dropsrvrolemember	can	be	used	to	remove	a	login	from	a	server	role.
Use	sp_droprolemember	to	remove	a	member	from	a	standard	SQL	Server	role.

When	a	login	has	been	removed	from	a	server	role,	that	login	can	no	longer
perform	activities	based	on	the	permissions	associated	with	the	server	role.

The	sa	login	cannot	be	removed	from	any	fixed	server	role.

sp_dropsrvrolemember	cannot	be	executed	from	within	a	user-defined
transaction.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_dropsrvrolemember	to	remove	any	login	from	a	fixed	server	role.	Members
of	a	fixed	server	role	can	remove	other	members	of	the	same	fixed	server	role.

Examples
This	example	removes	the	login	JackO	from	the	sysadmin	fixed	server	role.

EXEC	sp_dropsrvrolemember	'JackO',	'sysadmin'

See	Also

sp_addsrvrolemember

sp_droprolemember

System	Stored	Procedures

Transact-SQL	Reference

sp_droptask
sp_droptask	is	provided	for	backward	compatibility	only.	For	information	about
the	Microsoft	SQL®	Server™	version	7.0	replacement	procedures,	see	SQL
Server	Backward	Compatibility	Details.

Removes	a	scheduled	task.

IMPORTANT		For	information	about	syntax	used	in	earlier	versions	of	SQL	Server,
see	the	Microsoft	SQL	Server	Transact-SQL	Reference	for	version	6.x.

Remarks
If	you	create	a	task	by	using	sp_addtask,	that	task	must	be	deleted	only	by	using
sp_droptask.	For	task	management,	use	SQL	Server	Enterprise	Manager.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

sp_addtask

sp_helptask

sp_purgehistory

sp_updatetask

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_droptype
Deletes	a	user-defined	data	type	from	systypes.

Syntax
sp_droptype	[@typename	=]	'type'

Arguments
[@typename	=]	'type'

Is	the	name	of	a	user-defined	data	type	that	you	own.	type	is	sysname,	with
no	default.

Return	Code	Type
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
The	type	user-defined	data	type	cannot	be	dropped	if	tables	or	other	database
objects	reference	it.

Note		A	user-defined	data	type	cannot	be	dropped	if	the	user-defined	data	type	is
used	within	a	table	definition	or	if	a	rule	or	default	is	bound	to	it.

Permissions
Execute	permissions	default	to	members	of	sysadmin	fixed	server	role,	and	the
db_ddladmin	and	db_owner	fixed	database	roles,	and	the	data	type	owner.

Examples

This	example	drops	the	user-defined	data	type	birthday.

Note		This	user-defined	data	type	must	already	exist	or	this	example	returns	an
error	message.

USE	master
EXEC	sp_droptype	'birthday'

See	Also

sp_addtype

sp_rename

System	Stored	Procedures

Transact-SQL	Reference

sp_dropuser
Removes	a	Microsoft®	SQL	Server™	user	or	Microsoft	Windows	NT®	user
from	the	current	database.	sp_dropuser	is	provided	for	backward	compatibility.
Use	sp_revokedbaccess	to	remove	a	user.

Syntax
sp_dropuser	[@name_in_db	=]	'user'

Arguments
[@name_in_db	=]	'user'

Is	the	name	of	the	user	to	remove.	user	is	sysname,	with	no	default.	user
must	exist	in	the	current	database.	When	specifying	a	Windows	NT	user,
specify	the	name	that	the	Windows	NT	user	is	known	by	in	the	database
(added	using	sp_grantdbaccess).

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_dropuser	executes	sp_revokedbaccess	to	remove	the	user	from	the	current
database.

Use	sp_helpuser	to	display	a	list	of	the	usernames	that	can	be	removed	from	the
current	database.

When	the	security	account	for	a	user	is	removed,	any	aliases	to	that	user	are	also
removed.	A	user	cannot	be	removed	if	the	user	owns	any	objects	in	the	database.
Ownership	of	the	objects	must	be	changed	to	another	user	using
sp_changeobjectowner.	Removing	a	user	automatically	removes	the
permissions	associated	with	the	user	and	removes	them	from	any	roles	of	which
the	user	is	a	member.

sp_dropuser	cannot	be	used	to	remove	the	dbo	or

INFORMATION_SCHEMA	users,	nor	the	guest	user	from	the	master	or
tempdb	databases.

sp_dropuser	cannot	be	executed	from	within	a	user-defined	transaction.

Permissions
Only	members	of	the	sysadmin	fixed	server	role,	the	db_owner	or
db_accessadmin	fixed	database	roles	can	execute	sp_dropuser.

Examples
This	example	removes	the	user	Albert	from	the	current	database.

EXEC	sp_dropuser	'Albert'

See	Also

sp_grantdbaccess

sp_revokedbaccess

System	Stored	Procedures

Transact-SQL	Reference

sp_dropwebtask
Deletes	a	previously	defined	Web	task.

Note		All	Web	tasks	or	jobs	are	categorized	as	Web	Assistant	in	the	Job
Categories	dialog	box	in	SQL	Server	Enterprise	Manager.	For	more
information,	see	Defining	Jobs.

Syntax
sp_dropwebtask	{	[@procname	=]	'procname'	|	[,	@outputfile	=]
'outputfile'	}

Arguments
[@procname	=]	'procname'

Is	the	name	of	the	procedure	that	defines	the	query	for	the	task.	procname	is
nvarchar(128),	with	a	default	of	NULL.

[@outputfile	=]	'outputfile'

Is	the	name	of	the	HTML	output	file	to	be	deleted.	putputfile	is
nvarchar(255),	with	a	default	of	NULL.

Return	Code	Values
0	(success)	or	a	nonzero	(failure)

IMPORTANT		The	return	code	values	have	changed	from	earlier	versions	of
Microsoft®	SQL	Server™.

Result	Sets
None

Remarks
sp_dropwebtask	accepts	either	or	both	parameters.	If	outputfile	is	specified

JavaScript:hhobj_1.Click()

without	procname,	a	placeholder	value	of	NULL	can	be	specified	for	procname,
or	the	parameter	name	@procname	can	be	used.	These	examples	are	equivalent:

sp_dropwebtask	NULL,'filename.htm'
sp_dropwebtask	@procname	=	'filename.htm'

sp_dropwebtask	must	be	executed	in	the	database	specified	in	the	dbname
parameter	of	sp_makewebtask.

Running	sp_dropwebtask	on	a	database	of	a	version	earlier	than	Microsoft	SQL
Server	version	7.0	returns	an	error.

Permissions
Only	the	owner	of	the	specified	procedure	can	execute	sp_dropwebtask	to
delete	the	Web	task.

Examples
This	example	deletes	a	Web	task	with	the	output	file	C:\Web\Myfile.html	and	a
procedure	named	MYHTML.

sp_dropwebtask	'MYHTML',	'C:\WEB\MYFILE.HTML'

See	Also

sp_makewebtask

sp_runwebtask

System	Stored	Procedures

Transact-SQL	Reference

sp_enumcodepages
Returns	a	list	of	the	code	pages	and	character	sets	supported	by
sp_makewebtask.

Syntax
sp_enumcodepages

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
Code	Page integer Code	page	supporting	the	character	set.
Character	Set varchar(50) Character	set	alias	code	recognized	by

Microsoft®	Internet	Explorer	and	other
browsers.

Description varchar(255) Description	of	the	character	set.

Remarks
The	appropriate	.nls	files	must	be	installed	by	the	operating	system	and	made
available	so	that	sp_makewebtask	can	create	the	.htm	file	from	the	proper	code
page.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	returns	a	list	of	supported	code	pages	and	character	sets	supported
by	sp_makewebtask.

EXEC	sp_enumcodepages

See	Also

sp_makewebtask

System	Stored	Procedures

Transact-SQL	Reference

sp_executesql
Executes	a	Transact-SQL	statement	or	batch	that	can	be	reused	many	times,	or
that	has	been	built	dynamically.	The	Transact-SQL	statement	or	batch	can
contain	embedded	parameters.

Syntax
sp_executesql	[@stmt	=]	stmt	[
				{,	[@params	=]	N'@parameter_name		data_type	[,...n]'	}	
				{,	[@param1	=]	'value1'	[,...n]	}
]

Arguments
[@stmt	=]	stmt

Is	a	Unicode	string	containing	a	Transact-SQL	statement	or	batch.	stmt	must
be	either	a	Unicode	constant	or	a	variable	that	can	be	implicitly	converted	to
ntext.	More	complex	Unicode	expressions	(such	as	concatenating	two
strings	with	the	+	operator)	are	not	allowed.	Character	constants	are	not
allowed.	If	a	constant	is	specified,	it	must	be	prefixed	with	an	N.	For
example,	the	Unicode	constant	N'sp_who'	is	legal,	but	the	character	constant
'sp_who'	is	not.	The	size	of	the	string	is	limited	only	by	available	database
server	memory.

stmt	can	contain	parameters	having	the	same	form	as	a	variable	name,	for
example:

N'SELECT	*	FROM	Employees	WHERE	EmployeeID	=	@IDParameter'

Each	parameter	included	in	stmt	must	have	a	corresponding	entry	in	both	the
@params	parameter	definition	list	and	the	parameter	values	list.

[@params	=]	N'@parameter_name		data_type	[,...n]'

Is	one	string	that	contains	the	definitions	of	all	parameters	that	have	been
embedded	in	stmt.	The	string	must	be	either	a	Unicode	constant	or	a	variable

that	can	be	implicitly	converted	to	ntext.	Each	parameter	definition	consists
of	a	parameter	name	and	a	data	type.	n	is	a	placeholder	indicating	additional
parameter	definitions.	Every	parameter	specified	in	stmt	must	be	defined	in
@params.	If	the	Transact-SQL	statement	or	batch	in	stmt	does	not	contain
parameters,	@params	is	not	needed.	The	default	value	for	this	parameter	is
NULL.

[@param1	=]	'value1'

Is	a	value	for	the	first	parameter	defined	in	the	parameter	string.	The	value
can	be	a	constant	or	a	variable.	There	must	be	a	parameter	value	supplied	for
every	parameter	included	in	stmt.	The	values	are	not	needed	if	the	Transact-
SQL	statement	or	batch	in	stmt	has	no	parameters.

n

Is	a	placeholder	for	the	values	of	additional	parameters.	Values	can	be	only
constants	or	variables.	Values	cannot	be	more	complex	expressions	such	as
functions,	or	expressions	built	using	operators.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
Returns	the	result	sets	from	all	the	SQL	statements	built	into	the	SQL	string.

Remarks
sp_executesql	has	the	same	behavior	as	EXECUTE	with	regard	to	batches,	the
scope	of	names,	and	database	context.	The	Transact-SQL	statement	or	batch	in
the	sp_executesql	stmt	parameter	is	not	compiled	until	the	sp_executesql
statement	is	executed.	The	contents	of	stmt	are	then	compiled	and	executed	as	an
execution	plan	separate	from	the	execution	plan	of	the	batch	that	called
sp_executesql.	The	sp_executesql	batch	cannot	reference	variables	declared	in
the	batch	calling	sp_executesql.	Local	cursors	or	variables	in	the	sp_executesql
batch	are	not	visible	to	the	batch	calling	sp_executesql.	Changes	in	database
context	last	only	to	the	end	of	the	sp_executesql	statement.

sp_executesql	can	be	used	instead	of	stored	procedures	to	execute	a	Transact-
SQL	statement	a	number	of	times	when	the	change	in	parameter	values	to	the
statement	is	the	only	variation.	Because	the	Transact-SQL	statement	itself
remains	constant	and	only	the	parameter	values	change,	the	Microsoft®	SQL
Server™	query	optimizer	is	likely	to	reuse	the	execution	plan	it	generates	for	the
first	execution.

Note		If	object	names	in	the	statement	string	are	not	fully	qualified,	the
execution	plan	is	not	reused.

sp_executesql	supports	the	setting	of	parameter	values	separately	from	the
Transact-SQL	string:

DECLARE	@IntVariable	INT
DECLARE	@SQLString	NVARCHAR(500)
DECLARE	@ParmDefinition	NVARCHAR(500)

/*	Build	the	SQL	string	once.*/
SET	@SQLString	=
					N'SELECT	*	FROM	pubs.dbo.employee	WHERE	job_lvl	=	@level'
SET	@ParmDefinition	=	N'@level	tinyint'
/*	Execute	the	string	with	the	first	parameter	value.	*/
SET	@IntVariable	=	35
EXECUTE	sp_executesql	@SQLString,	@ParmDefinition,
																						@level	=	@IntVariable
/*	Execute	the	same	string	with	the	second	parameter	value.	*/
SET	@IntVariable	=	32
EXECUTE	sp_executesql	@SQLString,	@ParmDefinition,
																						@level	=	@IntVariable

Being	able	to	substitute	parameters	in	sp_executesql	offers	these	advantages	to
using	the	EXECUTE	statement	to	execute	a	string:

Because	the	actual	text	of	the	Transact-SQL	statement	in	the
sp_executesql	string	does	not	change	between	executions,	the	query
optimizer	will	probably	match	the	Transact-SQL	statement	in	the
second	execution	with	the	execution	plan	generated	for	the	first

execution.	Therefore,	SQL	Server	does	not	have	to	compile	the	second
statement.

The	Transact-SQL	string	is	built	only	once.

The	integer	parameter	is	specified	in	its	native	format.	Casting	to
Unicode	is	not	required.

Permissions

Execute	permissions	default	to	the	public	role.

Examples

A.	Execute	a	simple	SELECT	statement
This	example	creates	and	executes	a	simple	SELECT	statement	that	contains	an
embedded	parameter	named	@level.

execute	sp_executesql	
										N'select	*	from	pubs.dbo.employee	where	job_lvl	=	@level',
										N'@level	tinyint',
										@level	=	35

B.	Execute	a	dynamically	built	string
This	example	shows	using	sp_executesql	to	execute	a	dynamically	built	string.
The	example	stored	procedure	is	used	to	insert	data	into	a	set	of	tables	used	to
partition	sales	data	for	a	year.	There	is	one	table	for	each	month	of	the	year	with
the	following	format:

CREATE	TABLE	May1998Sales
				(OrderID						INT						PRIMARY	KEY,
				CustomerID						INT						NOT	NULL,
				OrderDate						DATETIME			NULL
								CHECK	(DATEPART(yy,	OrderDate)	=	1998),

				OrderMonth						INT
								CHECK	(OrderMonth	=	5),
				DeliveryDate			DATETIME			NULL,
								CHECK	(DATEPART(mm,	OrderDate)	=	OrderMonth)
)

For	more	information	about	retrieving	data	from	these	partitioned	tables,	see
Using	Views	with	Partitioned	Data.

The	name	of	each	table	consists	of	the	first	three	letters	of	the	month	name,	the
four	digits	of	the	year,	and	the	constant	Sales.	The	name	can	be	built
dynamically	from	an	order	date:

/*	Get	the	first	three	characters	of	the	month	name.	*/
SUBSTRING(DATENAME(mm,	@PrmOrderDate),	1,	3)	+
/*	Concatenate	the	four-digit	year;	cast	as	character.	*/
CAST(DATEPART(yy,	@PrmOrderDate)	AS	CHAR(4))	+
/*	Concatenate	the	constant	'Sales'.	*/
'Sales'

This	sample	stored	procedure	dynamically	builds	and	executes	an	INSERT
statement	to	insert	new	orders	into	the	correct	table.	It	uses	the	order	date	to
build	the	name	of	the	table	that	should	contain	the	data,	then	incorporates	that
name	into	an	INSERT	statement.	(This	is	a	simple	example	for	sp_executesql.	It
does	not	contain	error	checking	and	does	not	include	checks	for	business	rules,
such	as	ensuring	that	order	numbers	are	not	duplicated	between	tables.)

CREATE	PROCEDURE	InsertSales	@PrmOrderID	INT,	@PrmCustomerID	INT,
																	@PrmOrderDate	DATETIME,	@PrmDeliveryDate	DATETIME
AS
DECLARE	@InsertString	NVARCHAR(500)
DECLARE	@OrderMonth	INT

--	Build	the	INSERT	statement.
SET	@InsertString	=	'INSERT	INTO	'	+
							/*	Build	the	name	of	the	table.	*/

JavaScript:hhobj_1.Click()

							SUBSTRING(DATENAME(mm,	@PrmOrderDate),	1,	3)	+
							CAST(DATEPART(yy,	@PrmOrderDate)	AS	CHAR(4))	+
							'Sales'	+
							/*	Build	a	VALUES	clause.	*/
							'	VALUES	(@InsOrderID,	@InsCustID,	@InsOrdDate,'	+
							'	@InsOrdMonth,	@InsDelDate)'

/*	Set	the	value	to	use	for	the	order	month	because
			functions	are	not	allowed	in	the	sp_executesql	parameter
			list.	*/
SET	@OrderMonth	=	DATEPART(mm,	@PrmOrderDate)

EXEC	sp_executesql	@InsertString,
					N'@InsOrderID	INT,	@InsCustID	INT,	@InsOrdDate	DATETIME,
							@InsOrdMonth	INT,	@InsDelDate	DATETIME',
					@PrmOrderID,	@PrmCustomerID,	@PrmOrderDate,
					@OrderMonth,	@PrmDeliveryDate

GO

Using	sp_executesql	in	this	procedure	is	more	efficient	than	using	EXECUTE	to
execute	a	string.	When	sp_executesql	is	used,	there	are	only	12	versions	of	the
INSERT	string	generated,	1	for	each	monthly	table.	With	EXECUTE,	each
INSERT	string	is	unique	because	the	parameter	values	are	different.	Although
both	methods	generate	the	same	number	of	batches,	the	similarity	of	the	INSERT
strings	generated	by	sp_executesql	makes	it	more	likely	that	the	query	optimizer
will	reuse	execution	plans.

See	Also

Batches

EXECUTE

Building	Statements	at	Run	Time

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

System	Stored	Procedures

Transact-SQL	Reference

sp_fkeys
Returns	logical	foreign	key	information	for	the	current	environment.	This
procedure	shows	foreign	key	relationships	including	disabled	foreign	keys.

Syntax
sp_fkeys	[@pktable_name	=]	'pktable_name'	
				[,	[@pktable_owner	=]	'pktable_owner']	
				[,	[@pktable_qualifier	=]	'pktable_qualifier']	
				{	,	[@fktable_name	=]	'fktable_name'	}	
				[,	[@fktable_owner	=]	'fktable_owner']	
				[,	[@fktable_qualifier	=]	'fktable_qualifier']

Arguments
[@pktable_name	=]	'pktable_name'

Is	the	name	of	the	table	(with	the	primary	key)	used	to	return	catalog
information.	pktable_name	is	sysname,	with	a	default	of	NULL.	Wildcard
pattern	matching	is	not	supported.	This	parameter	or	the	fktable_name
parameter,	or	both,	must	be	supplied.

[@pktable_owner	=]	'pktable_owner'

Is	the	name	of	the	owner	of	the	table	(with	the	primary	key)	used	to	return
catalog	information.	pktable_owner	is	sysname,	with	a	default	of	NULL.
Wildcard	pattern	matching	is	not	supported.	If	pktable_owner	is	not
specified,	the	default	table	visibility	rules	of	the	underlying	DBMS	apply.

In	Microsoft®	SQL	Server™,	if	the	current	user	owns	a	table	with	the
specified	name,	that	table's	columns	are	returned.	If	pktable_owner	is	not
specified	and	the	current	user	does	not	own	a	table	with	the	specified
pktable_name,	the	procedure	looks	for	a	table	with	the	specified
pktable_name	owned	by	the	database	owner.	If	one	exists,	that	table's
columns	are	returned.

[@pktable_qualifier	=]	'pktable_qualifier'

Is	the	name	of	the	table	(with	the	primary	key)	qualifier.	pktable_qualifier	is
sysname,	with	a	default	of	NULL.	Various	DBMS	products	support	three-
part	naming	for	tables	(qualifier.owner.name).	In	SQL	Server,	the	qualifier
represents	the	database	name.	In	some	products,	it	represents	the	server	name
of	the	table's	database	environment.

[@fktable_name	=]	'fktable_name'

Is	the	name	of	the	table	(with	a	foreign	key)	used	to	return	catalog
information.	fktable_name	is	sysname,	with	a	default	of	NULL.	Wildcard
pattern	matching	is	not	supported.	This	parameter	or	the	pktable_name
parameter,	or	both,	must	be	supplied.

[@fktable_owner	=]	'fktable_owner'

Is	the	name	of	the	owner	of	the	table	(with	a	foreign	key)	used	to	return
catalog	information.	fktable_owner	is	sysname,	with	a	default	of	NULL.
Wildcard	pattern	matching	is	not	supported.	If	fktable_owner	is	not	specified,
the	default	table	visibility	rules	of	the	underlying	DBMS	apply.

In	SQL	Server,	if	the	current	user	owns	a	table	with	the	specified	name,	that
table's	columns	are	returned.	If	fktable_owner	is	not	specified	and	the	current
user	does	not	own	a	table	with	the	specified	fktable_name,	the	procedure
looks	for	a	table	with	the	specified	fktable_name	owned	by	the	database
owner.	If	one	exists,	that	table's	columns	are	returned.

[@fktable_qualifier	=]	'fktable_qualifier'

Is	the	name	of	the	table	(with	a	foreign	key)	qualifier.	fktable_qualifier	is
sysname,	with	a	default	of	NULL.	In	SQL	Server,	the	qualifier	represents	the
database	name.	In	some	products,	it	represents	the	server	name	of	the	table's
database	environment.

Return	Code	Values
None

Result	Sets

Column	name Data	type Description

PKTABLE_QUALIFIER sysname Name	of	the	table	(with	the
primary	key)	qualifier.	This	field
can	be	NULL.

PKTABLE_OWNER sysname Name	of	the	table	(with	the
primary	key)	owner.	This	field
always	returns	a	value.

PKTABLE_NAME sysname Name	of	the	table	(with	the
primary	key).	This	field	always
returns	a	value.

PKCOLUMN_NAME sysname Name	of	the	primary	key
column(s),	for	each	column	of	the
TABLE_NAME	returned.	This
field	always	returns	a	value.

FKTABLE_QUALIFIER sysname Name	of	the	table	(with	a	foreign
key)	qualifier.	This	field	can	be
NULL.

FKTABLE_OWNER sysname Name	of	the	table	(with	a	foreign
key)	owner.	This	field	always
returns	a	value.

FKTABLE_NAME sysname Name	of	the	table	(with	a	foreign
key).	This	field	always	returns	a
value.

FKCOLUMN_NAME varchar(32) Name	of	the	foreign	key
column(s),	for	each	column	of	the
TABLE_NAME	returned.	This
field	always	returns	a	value.

KEY_SEQ smallint Sequence	number	of	the	column
in	a	multicolumn	primary	key.
This	field	always	returns	a	value.

UPDATE_RULE smallint Action	applied	to	the	foreign	key
when	the	SQL	operation	is	an
update.	SQL	Server	returns	0	or	1
for	these	columns.	Open	Data
Services	gateways	can	return
values	of	0,	1,	or	2:

0=CASCADE	changes	to	foreign
key.
1=NO	ACTION	changes	if
foreign	key	is	present.
2=SET_NULL;	set	foreign	key	to
NULL.

DELETE_RULE smallint Action	applied	to	the	foreign	key
when	the	SQL	operation	is	a
deletion.	SQL	Server	returns	0	or
1	for	these	columns.	Open	Data
Services	gateways	can	return
values	of	0,	1,	or	2:

0=CASCADE	changes	to	foreign
key.
1=NO	ACTION	changes	if
foreign	key	is	present.
2=SET_NULL;	set	foreign	key	to
NULL.

FK_NAME sysname Foreign	key	identifier.	It	is	NULL
if	not	applicable	to	the	data
source.	SQL	Server	returns	the
FOREIGN	KEY	constraint	name.

PK_NAME sysname Primary	key	identifier.	It	is	NULL
if	not	applicable	to	the	data
source.	SQL	Server	returns	the
PRIMARY	KEY	constraint	name.

The	results	returned	are	ordered	by	FKTABLE_QUALIFIER,
FKTABLE_OWNER,	FKTABLE_NAME,	and	KEY_SEQ.

Remarks
Application	coding	that	includes	tables	with	disabled	foreign	keys	can	be
implemented	by:

Temporarily	disabling	constraint	checking	(ALTER	TABLE
NOCHECK	or	CREATE	TABLE	NOT	FOR	REPLICATION)	while
working	with	the	tables,	and	enabling	it	again	later.

Using	triggers	or	application	code	to	enforce	relationships.

If	the	primary	key	table	name	is	supplied	and	the	foreign	key	table	name	is
NULL,	sp_fkeys	returns	all	tables	that	include	a	foreign	key	to	the	given	table.	If
the	foreign	key	table	name	is	supplied	and	the	primary	key	table	name	is	NULL,
sp_fkeys	returns	all	tables	related	by	a	primary	key/foreign	key	relationship	to
foreign	keys	in	the	foreign	key	table.

The	sp_fkeys	stored	procedure	is	equivalent	to	SQLForeignKeys	in	ODBC.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	retrieves	a	list	of	foreign	keys	for	the	Customers	table	in	the
Northwind	database.

USE	Northwind
EXEC	sp_fkeys	@pktable_name	=	N'Customers'

See	Also

sp_pkeys

Transact-SQL	Reference

sp_foreignkeys
Returns	the	foreign	keys	that	reference	primary	keys	on	the	table	in	the	linked
server.

Syntax
sp_foreignkeys	[@table_server	=]	'table_server'	
				[,	[@pktab_name	=]	'pktab_name']	
				[,	[@pktab_schema	=]	'pktab_schema']	
				[,	[@pktab_catalog	=]	'pktab_catalog']	
				[,	[@fktab_name	=]	'fktab_name']	
				[,	[@fktab_schema	=]	'fktab_schema']	
				[,	[@fktab_catalog	=]	'fktab_catalog']

Arguments
[@table_server	=]	'table_server'

Is	the	name	of	the	linked	server	for	which	to	return	table	information.
table_server	is	sysname,	with	no	default.

[@pktab_name	=]	'pktab_name'

Is	the	name	of	the	table	with	a	primary	key.	pktab_name	is	sysname,	with	a
default	of	NULL.

[@pktab_schema	=]	'pktab_schema'

Is	the	name	of	the	schema	with	a	primary	key.	pktab_schema	is	sysname,
with	a	default	of	NULL.	In	Microsoft®	SQL	Server™,	this	contains	the
owner	name.

[@pktab_catalog	=]	'pktab_catalog'

Is	the	name	of	the	catalog	with	a	primary	key.	pktab_catalog	is	sysname,
with	a	default	of	NULL.	In	SQL	Server,	this	contains	the	database	name.

[@fktab_name	=]	'fktab_name'

Is	the	name	of	the	table	with	a	foreign	key.	fktab_name	is	sysname,	with	a

default	of	NULL.

[@fktab_schema	=]	'fktab_schema'

Is	the	name	of	the	schema	with	a	foreign	key.	fktab_schema	is	sysname,	with
a	default	of	NULL.

[@fktab_catalog	=]	'fktab_catalog'

Is	the	name	of	the	catalog	with	a	foreign	key.	fktab_catalog	is	sysname,	with
a	default	of	NULL.

Return	Code	Values
None

Result	Sets
Various	DBMS	products	support	three-part	naming	for	tables
(catalog.schema.table),	which	is	represented	in	the	result	set.

Column	name Data	type Description
PKTABLE_CAT sysname Catalog	for	the	table	in	which	the

primary	key	resides.
PKTABLE_SCHEM sysname Schema	for	the	table	in	which	the

primary	key	resides.
PKTABLE_NAME sysname Name	of	the	table	(with	the	primary

key).	This	field	always	returns	a	value.
PKCOLUMN_NAMEsysname Name	of	the	primary	key	column(s),

for	each	column	of	the
TABLE_NAME	returned.	This	field
always	returns	a	value.

FKTABLE_CAT sysname Catalog	for	the	table	in	which	the
foreign	key	resides.

FKTABLE_SCHEM sysname Schema	for	the	table	in	which	the
foreign	key	resides.

FKTABLE_NAME sysname Name	of	the	table	(with	a	foreign	key).
This	field	always	returns	a	value.

FKCOLUMN_NAMEsysname Name	of	the	foreign	key	column(s),	for

each	column	of	the	TABLE_NAME
returned.	This	field	always	returns	a
value.

KEY_SEQ smallint Sequence	number	of	the	column	in	a
multicolumn	primary	key.	This	field
always	returns	a	value.

UPDATE_RULE smallint Action	applied	to	the	foreign	key	when
the	SQL	operation	is	an	update.	SQL
Server	returns	0	or	1	for	these	columns.
Open	Data	Services	gateways	can
return	values	of	0,	1,	or	2:

0=CASCADE	changes	to	foreign	key.
1=NO	ACTION	changes	if	foreign	key
is	present.
2=SET_NULL;	set	foreign	key	to
NULL.

DELETE_RULE smallint Action	applied	to	the	foreign	key	when
the	SQL	operation	is	a	deletion.	SQL
Server	returns	0	or	1	for	these	columns.
Open	Data	Services	gateways	can
return	values	of	0,	1,	or	2:

0=CASCADE	changes	to	foreign	key.
1=NO	ACTION	changes	if	foreign	key
is	present.
2=SET_NULL;	set	foreign	key	to
NULL.

FK_NAME sysname Foreign	key	identifier.	It	is	NULL	if	not
applicable	to	the	data	source.	SQL
Server	returns	the	FOREIGN	KEY
constraint	name.

PK_NAME sysname Primary	key	identifier.	It	is	NULL	if
not	applicable	to	the	data	source.	SQL
Server	returns	the	PRIMARY	KEY
constraint	name.

DEFERRABILITY smallint Indicates	whether	constraint	checking
is	deferrable.

In	the	result	set,	the	FK_NAME	and	PK_NAME	columns	always	return	NULL.

Remarks
sp_foreignkeys	queries	the	FOREIGN_KEYS	rowset	of	the
IDBSchemaRowset	interface	of	the	OLE	DB	provider	that	corresponds	to
table_server.	The	table_name,	table_schema,	table_catalog,	and	column
parameters	are	passed	to	this	interface	to	restrict	the	rows	returned.

Examples
This	example	returns	foreign	key	information	about	the	Customers	table	in	the
Northwind	database.

USE	master
EXEC	sp_foreignkeys	@table_server	=	N'LONDON1',	
			@pktab_name	=	N'Customers',	
			@pktab_catalog	=	N'Northwind'

See	Also

sp_catalogs

sp_column_privileges

sp_indexes

sp_linkedservers

sp_primarykeys

sp_tables_ex

sp_table_privileges

System	Stored	Procedures

Transact-SQL	Reference

sp_fulltext_catalog
Creates	and	drops	a	full-text	catalog,	and	starts	and	stops	the	indexing	action	for
a	catalog.	Multiple	full-text	catalogs	can	be	created	for	each	database.

Syntax
sp_fulltext_catalog	[@ftcat	=]	'fulltext_catalog_name'	,	
				[@action	=]	'action'	
				[,	[@path	=]	'root_directory']

Arguments
[@ftcat	=]	'fulltext_catalog_name'

Is	the	name	of	the	full-text	catalog.	Catalog	names	must	be	unique	for	each
database.	fulltext_catalog_name	is	sysname.

[@action	=]	'action'

Is	the	action	to	be	performed.	action	is	varchar(20),	and	can	be	one	of	these
values.

Note		Full-text	catalogs	can	be	created,	dropped,	and	modified	as	needed;
however,	avoid	making	schema	changes	on	multiple	catalogs	at	the	same	time.
These	actions	can	be	performed	using	the	sp_fulltext_table	stored	procedure,
which	is	the	recommended	way.

Value Description
Create Creates	an	empty,	new	full-text	catalog	in	the	file

system	and	adds	an	associated	row	in
sysfulltextcatalogs	with	the	fulltext_catalog_name
and	root_directory	(if	present)	values.
fulltext_catalog_name	must	be	unique	within	the
database.

Drop Drops	fulltext_catalog_name	by	removing	it	from	the
file	system	and	deleting	the	associated	row	in
sysfulltextcatalogs.	This	action	fails	if	this	catalog

contains	indexes	for	one	or	more	tables.
sp_fulltext_table	'table_name',	'drop'	should	be
executed	to	drop	the	tables	from	the	catalog.

An	error	is	displayed	if	the	catalog	does	not	exist.

start_incremental Starts	an	incremental	population	for
fulltext_catalog_name.	An	error	is	displayed	if	the
catalog	does	not	exist.	If	a	full-text	index	population	is
already	active,	a	warning	is	displayed	but	no
population	action	occurs.	With	incremental	population,
only	changed	rows	are	retrieved	for	full-text	indexing,
provided	there	is	a	timestamp	column	present	in	the
table	being	full-text	indexed.

start_full Starts	a	full	population	for	fulltext_catalog_name.
Every	row	of	every	table	associated	with	this	full-text
catalog	is	retrieved	for	full-text	indexing,	even	if
indexed.

Stop Stops	an	index	population	for	fulltext_catalog_name.
An	error	is	displayed	if	the	catalog	does	not	exist.	No
warning	is	displayed	if	population	is	already	stopped.

Rebuild Rebuilds	fulltext_catalog_name	by	deleting	the
existing	full-text	catalog	from	the	file	system,	re-
creating	the	full-text	catalog,	and	reassociating	the
full-text	catalog	with	all	the	tables	that	have	full-text
indexing	references.

Rebuilding	does	not	change	any	full-text	metadata	in
the	database	system	tables,	nor	does	it	cause	the
repopulation	of	the	newly	created	full-text	catalog.	To
repopulate,	sp_fulltext_catalog	must	be	executed	with
the	start_full	or	start_incremental	action.

[@path	=]	'root_directory'

Is	the	root	directory	(not	the	complete	physical	path)	for	a	create	action.
root_directory	is	nvarchar(100)	and	has	a	default	value	of	NULL,	which

indicates	the	use	of	the	default	location	specified	at	setup.	This	is	the	Ftdata
subdirectory	in	the	Mssql	directory;	for	example,	C:\Program	Files\Microsoft
SQL	Server\Mssql\Ftdata.	The	specified	root	directory	must	reside	on	a	drive
on	the	same	computer,	consist	of	more	than	just	the	drive	letter,	and	cannot
be	a	relative	path.	Network	drives,	removable	drives,	floppy	disks,	and	UNC
paths	are	not	supported.	Full-text	catalogs	must	be	created	on	a	local	hard
drive	associated	with	an	instance	of	Microsoft®	SQL	Server™.

@path	is	valid	only	when	action	is	create.	For	actions	other	than	create
(stop,	rebuild,	and	so	on),	@path	must	be	NULL	or	omitted.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
The	start_full	action	is	used	to	create	a	complete	snapshot	of	the	full-text	data	in
fulltext_catalog_name.	The	start_incremental	action	is	used	to	reindex	only	the
changed	rows	in	the	database.	For	an	incremental	index,	a	timestamp	column	is
required	in	one	column	of	the	table.

Full-text	catalog	and	index	data	is	stored	in	files	created	in	a	full-text	catalog
directory.	The	full-text	catalog	directory	is	created	as	a	sub-directory	of	the
directory	specified	in	@path,	or	in	the	server	default	full-text	catalog	directory	if
@path	is	not	specified.	The	name	of	the	full-text	catalog	directory	is	built	in	a
way	that	guarantees	it	will	be	unique	on	the	server.	Therefore,	all	full-text
catalog	directories	on	a	server	can	share	the	same	path.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	and	the	db_owner	(or	higher)
fixed	database	roles	can	execute	sp_fulltext_catalog.

Examples

A.	Create	a	full-text	catalog
This	example	creates	an	empty	full-text	catalog,	Cat_Desc,	in	the	Northwind
database.

USE	Northwind
EXEC	sp_fulltext_catalog	'Cat_Desc',	'create'

B.	To	rebuild	a	full-text	catalog
This	example	rebuilds	an	existing	full-text	catalog,	Cat_Desc,	in	the	Northwind
database.

USE	Northwind
EXEC	sp_fulltext_catalog	'Cat_Desc',	'rebuild'

C.	Start	the	population	of	a	full-text	catalog
This	example	begins	a	full	population	of	the	Cat_Desc	catalog.

USE	Northwind
EXEC	sp_fulltext_catalog	'Cat_Desc',	'start_full'

D.	Stop	the	population	of	a	full-text	catalog
This	example	stops	the	population	of	the	Cat_Desc	catalog.

USE	Northwind
EXEC	sp_fulltext_catalog	'Cat_Desc',	'stop'

E.	To	remove	a	full-text	catalog
This	example	removes	the	Cat_Desc	catalog.

USE	Northwind
EXEC	sp_fulltext_catalog	'Cat_Desc',	'drop'

See	Also

FULLTEXTCATALOGPROPERTY

sp_fulltext_database

sp_help_fulltext_catalogs

sp_help_fulltext_catalogs_cursor

System	Stored	Procedures

Transact-SQL	Reference

sp_fulltext_column
Specifies	whether	or	not	a	particular	column	of	a	table	participates	in	full-text
indexing.

Syntax
sp_fulltext_column	[@tabname	=]	'qualified_table_name'	,	
				[@colname	=]	'column_name'	,	
				[@action	=]	'action'	
				[,	[@language	=]	'language']	
				[,	[@type_colname	=]	'type_column_name']

Arguments
[@tabname	=]	'qualified_table_name'

Is	a	one-	or	two-part	table	name.	The	table	must	exist	in	the	current	database.
The	table	must	have	a	full-text	index.	qualified_table_name	is
nvarchar(517),	with	no	default	value.

[@colname	=]	'column_name'

Is	the	name	of	a	column	in	qualified_table_name.	The	column	must	be	either
a	character	or	an	image	column	and	cannot	be	a	computed	column.
column_name	is	sysname,	with	no	default.

Note		SQL	Server	can	create	full-text	indexes	of	text	data	stored	in	columns	that
are	of	image	data	type.	Images	or	pictures	are	not	indexed.

[@action	=]	'action'

Is	the	action	to	be	performed.	action	is	varchar(20),	with	no	default	value,
and	can	be	one	of	these	values.

Value Description
add Adds	the	column_name	of	the	qualified_table_name	to	the

table's	inactive	full-text	index.	This	action	enables	the
column	for	full-text	indexing.

drop Removes	column_name	of	qualified_table_name	from	the
table's	inactive	full-text	index.	

[@language	=]	'language'

Is	the	language	of	the	data	stored	in	the	column.	The	following	table	lists
languages	included	in	SQL	Server.

Note		Use	'Neutral'	when	a	column	contains	data	in	multiple	languages	or	in	an
unsupported	language.	The	default	is	specified	by	the	configuration	option
'default	full-text	language'.

Locale Locale	ID
Neutral 0
Chinese_Simplified 0x0804
Chinese_Traditional 0x0404
Dutch 0x0413
English_UK 0x0809
English_US 0x0409
French 0x040c
German 0x0407
Italian 0x0410
Japanese 0x0411
Korean 0x0412
Spanish_Modern 0x0c0a
Swedish_Default 0x041d

[@type_colname	=]	'type_column_name'

Is	the	name	of	a	column	in	qualified_table_name	that	holds	the	document
type	of	column_name.	This	column	must	be	char,	nchar,	varchar,	or
nvarchar.	It	is	only	used	when	the	data	type	of	column_name	is	an	image.
type_column_name	is	sysname,	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
If	the	full-text	index	is	active,	any	ongoing	population	is	stopped.	Furthermore,
if	a	table	with	an	active	full-text	index	has	change	tracking	enabled,	SQL	server
ensures	that	the	index	is	current.	For	example,	SQL	Server	stops	any	current
population	on	the	table,	drops	the	existing	index,	and	starts	a	new	population.

If	change	tracking	is	on	and	columns	need	to	be	added	or	dropped	from	the	full-
text	index	while	preserving	the	index,	the	table	should	be	deactivated,	and	the
required	columns	should	be	added	or	dropped.	These	actions	freeze	the	index.
The	table	can	be	activated	later	when	starting	a	population	is	practical.

Permissions
Only	members	of	the	sysadmin	fixed	server	role,	db_owner	and	db_ddladmin
fixed	database	roles,	and	the	object	owner	can	execute	sp_fulltext_column.

Examples

Adding	a	column	to	a	full-text	index
1.	 This	example	adds	the	Description	column	from	the	Categories	table

to	the	table's	full-text	index.
USE	Northwind
EXEC	sp_fulltext_column	Categories,	Description,	'add'

2.	 This	example	assumes	you	created	a	full-text	index	on	spanishTbl
table.	To	add	the	spanishCol	column:
sp_fulltext_column	'spanishTbl',	'spanishCol',	'add',	0xC0A

When	you	run	this	query:

SELECT	*	
FROM	spanishTbl	
WHERE	CONTAINS(spanishCol,	'formsof(inflectional,	trabajar)')

Your	result	set	would	include	rows	with	different	forms	of	trabajar(to
work),	such	as	trabajo,	trabajamos,	and	trabajan.

Note		All	columns	listed	in	a	single	full-text	query	function	clause
must	use	the	same	language.

See	Also

OBJECTPROPERTY

sp_help_fulltext_columns

sp_help_fulltext_columns_cursor

sp_help_fulltext_tables

sp_help_fulltext_tables_cursor

System	Stored	Procedures

Transact-SQL	Reference

sp_fulltext_database
Initializes	full-text	indexing	or	removes	all	full-text	catalogs	from	the	current
database.

Syntax
sp_fulltext_database	[@action	=]	'action'

Arguments
[@action	=]	'action'

Is	the	action	to	be	performed.	action	is	varchar(20),	and	can	be	one	of	these
values.

Value Description
enable Enables	full-text	indexing	within	the	current	database.

IMPORTANT		Use	carefully.	If	full-text	catalogs	already	exist,
this	procedure	drops	all	full-text	catalogs,	re-creates	any	full-
text	indexing	indicated	in	the	system	tables,	and	marks	the
database	as	full-text	enabled.

This	action	does	not	cause	index	population	to	begin;	an
explicit	start_full	or	start_incremental	on	each	catalog	must
be	issued	using	sp_fulltext_catalog	to	populate	or	repopulate
the	full-text	index.

disable Removes	all	full-text	catalogs	in	the	file	system	for	the
current	database	and	marks	the	database	as	being	disabled	for
full-text	indexing.	This	action	does	not	change	any	full-text
index	metadata	at	the	full-text	catalog	or	table	level.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
Disabling	full-text	indexing	does	not	remove	rows	from	sysfulltextcatalogs	and
does	not	indicate	that	full-text	enabled	tables	are	no	longer	marked	for	full-text
indexing.	All	the	full-text	metadata	definitions	are	still	in	the	system	tables.	It
does	indicate	that	full-text	indexing	is	turned	off	for	the	database	and	no	full-text
indexing	activity	can	occur.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	and	db_owner	fixed	database
role	can	execute	sp_fulltext_database.

Examples

A.	To	enable	a	database	for	full-text	indexing
This	example	enables	full-text	indexing	for	the	Northwind	database.

USE	Northwind
EXEC	sp_fulltext_database	'enable'

B.	To	remove	all	catalogs	from	a	database
This	example	disables	full-text	indexing	for	the	Northwind	database.

USE	Northwind
EXEC	sp_fulltext_database	'disable'

See	Also

DATABASEPROPERTY

FULLTEXTSERVICEPROPERTY

System	Stored	Procedures

Transact-SQL	Reference

sp_fulltext_service
Changes	Microsoft®	Search	Service	(Full-text	Search)	properties.

Syntax
sp_fulltext_service	[@action	=]	'action'	
				[,	[@value	=]	'value']

Arguments
[@action	=]	'action'

Is	the	property	to	be	changed	or	reset.	action	is	varchar(20),	with	no	default,
and	can	be	one	of	these	values.

Value Description
resource_usage Specifies	the	amount	of	resources	to	be	used	for	the

Microsoft	Search	Service.
clean_up Searches	for	and	removes	the	full-text	catalog

resources	in	the	file	system	that	do	not	have
corresponding	entries	in	sysfulltextcatalogs.

connect_timeout Is	the	number	of	seconds	that	Microsoft	Search
Service	will	wait	for	connections	to	Microsoft®	SQL
Server™	for	full-text	populations	before	timing	out.

If	a	time-out	occurs	before	SQL	Server	responds	to	a
database	request,	the	population	fails	to	complete.

data_timeout Is	the	number	of	seconds	that	Microsoft	Search
Service	will	wait	for	data	to	be	returned	by	the	SQL
Server	database	server	for	full-text	index	population
before	timing	out.	If	a	time-out	occurs	before	SQL
Server	responds	to	a	database	request,	the	index
population	will	not	complete.

[@value	=]	'value'

Is	the	value	of	the	specified	property.	value	is	int,	with	a	default	value	of
NULL.	This	table	shows	the	required	values	for	the	properties.

Property Value
resource_usage From	1	(background)	through	5	(dedicated),	with	a

default	of	3
clean_up NULL
connect_timeout From	1	through	32767
data_timeout From	1	through	32767

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
There	may	be	times	when	the	metadata	for	a	full-text	catalog	is	changed	(for
example,	when	the	full-text	catalog	is	dropped	or	the	database	is	dropped)	while
the	Microsoft	Search	Service	(MSSearch)	is	not	running.	The	drop	action
changes	the	metadata	related	to	the	full-text	catalogs	but	is	unable	to	complete
execution	because	the	Microsoft	Search	Service	is	not	running.	This	leads	to
inconsistency	between	the	full-text	metadata	in	SQL	Server	and	the	associated
physical	full-text	catalog	in	the	file	system.	This	inconsistency	can	be	corrected
by	using	the	clean_up	action	of	sp_fulltext_service.	Microsoft	Search	Service
must	be	running.

Permissions
Only	members	of	the	serveradmin	fixed	server	role	or	the	system	administrator
can	execute	sp_fulltext_service.

Examples
This	example	performs	a	cleanup	operation	on	the	full-text	catalogs.

EXEC	sp_fulltext_service	'clean_up'

See	Also

FULLTEXTSERVICEPROPERTY

System	Stored	Procedures

Transact-SQL	Reference

sp_fulltext_table
Marks	or	unmarks	a	table	for	full-text	indexing.

Syntax
sp_fulltext_table	[@tabname	=]	'qualified_table_name'	
				,	[@action	=]	'action'	
				[,	[@ftcat	=]	'fulltext_catalog_name'	
				,	[@keyname	=]	'unique_index_name']

Arguments
[@tabname	=]	'qualified_table_name'

Is	a	one-	or	two-part	table	name.	The	table	must	exist	in	the	current	database.
qualified_table_name	is	nvarchar(517),	with	no	default.

[@action	=]	'action'

Is	the	action	to	be	performed.	action	is	varchar(20),	with	no	default,	and	can
be	one	of	these	values.

Value Description
Create Creates	the	metadata	for	a	full-text	index

for	the	table	referenced	by
qualified_table_name	and	specifies	that
the	full-text	index	data	for	this	table
should	reside	in	fulltext_catalog_name.
This	action	also	designates	the	use	of
unique_index_name	as	the	full-text	key
column.	This	unique	index	must	already
be	present	and	must	be	defined	on	one
column	of	the	table.

A	full-text	search	cannot	be	performed
against	this	table	until	the	full-text
catalog	is	populated.

Drop Drops	the	metadata	on	the	full-text	index
for	qualified_table_name.	If	the	full-text
index	is	active,	it	is	automatically
deactivated	before	being	dropped.	It	is
not	necessary	to	remove	columns	before
dropping	the	full-text	index.

Activate Activates	the	ability	for	full-text	index
data	to	be	gathered	for
qualified_table_name,	after	it	has	been
deactivated.	There	must	be	at	least	one
column	participating	in	the	full-text	index
before	it	can	be	activated.

A	full-text	index	is	automatically	made
active	(for	population)	as	soon	as	the	first
column	is	added	for	indexing.	If	the	last
column	is	dropped	from	the	index,	the
index	becomes	inactive.	If	change
tracking	is	on,	activating	an	inactive
index	starts	a	new	population.

Note	that	this	does	not	actually	populate
the	full-text	index,	but	simply	registers
the	table	in	the	full-text	catalog	in	the	file
system	so	that	rows	from
qualified_table_name	can	be	retrieved
during	the	next	full-text	index
population.

Deactivate Deactivates	the	full-text	index	for
qualified_table_name	so	that	full-text
index	data	can	no	longer	be	gathered	for
the	qualified_table_name.	The	full-text
index	metadata	remains	and	the	table	can
be	reactivated.

If	change	tracking	is	on,	deactivating	an
active	index	freezes	the	state	of	the
index:	any	ongoing	population	is

stopped,	and	no	more	changes	are
propagated	to	the	index.

start_change_tracking Start	an	incremental	population	of	the
full-text	index.	If	the	table	does	not	have
a	timestamp,	start	a	full	population	of	the
full-text	index.	Start	tracking	changes	to
the	table.

Full-text	change	tracking	does	not	track
any	WRITETEXT	or	UPDATETEXT
operations	performed	on	full-text	indexed
columns	that	are	of	type	image,	text,	or
ntext.

stop_change_tracking Stop	tracking	changes	to	the	table.
update_index Propagate	the	current	set	of	tracked

changes	to	the	full-text	index.
start_background_updateindex Start	propagating	tracked	changes	to	the

full-text	index	as	they	occur.
stop_background_updateindex Stop	propagating	tracked	changes	to	the

full-text	index	as	they	occur.
start_full Start	a	full	population	of	the	full-text

index	for	the	table.
start_incremental Start	an	incremental	population	of	the

full-text	index	for	the	table.
Stop Stop	a	full	or	incremental	population.

[@ftcat	=]	'fulltext_catalog_name'

Is	a	valid,	existing	full-text	catalog	name	for	a	create	action.	For	all	other
actions,	this	parameter	must	be	NULL.		fulltext_catalog_name	is	sysname,
with	a	default	of	NULL.

[@keyname	=]	'unique_index_name'

Is	a	valid	single-key-column,	unique	nonnullable	index	on
qualified_table_name	for	a	create	action.	For	all	other	actions,	this

parameter	must	be	NULL.	unique_index_name	is	sysname,	with	a	default	of
NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
After	a	full-text	index	is	deactivated	for	a	particular	table,	the	existing	full-text
index	remains	in	place	until	the	next	full	population;	however,	this	index	is	not
used	because	Microsoft®	SQL	Server™	blocks	queries	on	deactivated	tables.

If	the	table	is	reactivated	and	the	index	is	not	repopulated,	the	old	index	is	still
available	for	queries	against	any	remaining,	but	not	new,	full-text	enabled
columns.	Data	from	deleted	columns	are	matched	in	queries	that	specify	an	all-
full-text	column	(*)	search.

After	a	table	has	been	defined	for	full-text	indexing,	switching	the	full-text
unique	key	column	from	one	data	type	to	another,	either	by	changing	the	data
type	of	that	column	or	changing	the	full-text	unique	key	from	one	column	to
another,	without	a	full	repopulation	may	cause	a	failure	to	occur	during	a
subsequent	query	and	returning	the	error	message:	"Conversion	to	type
data_type	failed	for	full-text	search	key	value	key_value."	To	prevent	this,	drop
the	full-text	definition	for	this	table	using	the	drop	action	of	sp_fulltext_table
and	redefine	it	using	sp_fulltext_table	and	sp_fulltext_column.

If	the	full-text	unique	key	column	is	a	character	or	Unicode	character	column,	it
must	be	defined	to	be	450	bytes	or	less.

Permissions
Only	members	of	the	sysadmin	fixed	server	role,	db_owner	and	db_ddladmin
fixed	database	roles,	and	the	object	owner	can	execute	sp_fulltext_table.

Examples

A.	To	enable	a	table	for	full-text	indexing
This	example	creates	full-text	index	metadata	for	the	Categories	table	of	the
Northwind	database.	Cat_Desc	is	a	full-text	catalog.	PK_Categories	is	a
unique,	single-column	index	on	Categories.

USE	Northwind
EXEC	sp_fulltext_table	'Categories',	'create',	'Cat_Desc',	'PK_Categories'
..	Add	some	columns
EXEC	sp_fulltext_column	'Categories','Description','add'
..	Activate	the	index
EXEC	sp_fulltext_table	'Categories','activate'

B.	To	activate	and	propagate	track	changes

This	example	activates	and	starts	propagating	tracked	changes	to	the	full-text
index	as	they	occur.

USE	Northwind
GO
EXEC	sp_fulltext_table	Categories,	'Start_change_tracking'
EXEC	sp_fulltext_table	Categories,	'Start_background_updateindex'

C.	To	remove	a	full-text	index
This	example	removes	the	full-text	index	metadata	for	the	Categories	table	of
the	Northwind	database.

USE	Northwind

EXEC	sp_fulltext_table	'Categories',	'drop'

See	Also

INDEXPROPERTY

OBJECTPROPERTY

sp_help_fulltext_tables

sp_help_fulltext_tables_cursor

sp_helpindex

System	Stored	Procedures

Transact-SQL	Reference

sp_getapplock
Places	a	lock	on	an	application	resource.	

Syntax
sp_getapplock	[@Resource	=]	'resource_name',	
				[@LockMode	=]	'lock_mode'	
				[,	[@LockOwner	=]	'lock_owner']	
				[,	[@LockTimeout	=]	'value']

Arguments
[@Resource	=]	'resource_name'

Is	a	lock	resource	name	specified	by	the	client	application.	The	application
must	ensure	the	resource	is	unique.	The	specified	name	is	hashed	internally
into	a	value	that	can	be	stored	in	the	SQL	Server	lock	manager.	resource
name	is	nvarchar(255),	with	no	default.

[@LockMode	=]	'lock_mode'

Is	a	lock	mode.	lock_mode	is	nvarchar(32),	with	no	default,	and	can	be	one
of	these	values:	Shared,	Update,	Exclusive,	IntentExclusive,
IntentShared.

[@LockOwner	=]	'lock_owner'

Is	the	lock	owner.	lock_owner	is	nvarchar(32)	and	can	be	Transaction	(the
default),	or	Session.	When	the	lock_owner	value	is	the	default,	or	when
Transaction	is	specified	explicitly,	sp_getapplock	must	be	executed	from
within	a	transaction.

[@LockTimeout	=]	'value'

Is	a	lock	time-out	value,	in	milliseconds.	The	default	value	is	the	same	as	the
value	returned	by	@@LOCK_TIMEOUT.	To	indicate	that	lock	requests	that
cannot	be	granted	immediately	should	return	an	error	rather	than	wait	for	the
lock,	specify	0.

Return	Code	Values
>=	0	(success)	or	<	0	(failure)

Value Result
0 Lock	was	successfully	granted	synchronously.
1 Lock	was	granted	successfully	after	waiting	for	other

incompatible	locks	to	be	released.
-1 Lock	request	timed	out.
-2 Lock	request	was	cancelled.
-3 Lock	request	was	chosen	as	a	deadlock	victim.
-999 Parameter	validation	or	other	call	error.

Remarks
Locks	placed	on	a	resource	are	associated	with	either	the	current	transaction	or
the	current	session.	Locks	associated	with	the	current	transaction	are	released
when	the	transaction	commits	or	rolls	back.	Locks	associated	with	the	session
are	released	when	the	session	is	logged	out.	When	the	server	shuts	down	for	any
reason,	the	locks	are	released.

Locks	can	be	explicitly	released	with	sp_releaseapplock.	If	an	application	calls
sp_getapplock	multiple	times	for	the	same	lock	resource,	sp_releaseapplock
must	be	called	the	same	number	of	times	to	release	the	lock.

If	sp_getapplock	is	called	multiple	times	for	the	same	lock	resource,	but
specifies	different	lock	modes,	the	effect	on	the	resource	is	a	union	of	the	two
lock	modes.	In	most	cases,	this	means	the	lock	mode	is	promoted	to	the	stronger
of	the	existing	mode	and	the	newly	requested	mode.	This	stronger	lock	mode	is
held	until	the	lock	is	ultimately	released,	even	if	lock	release	calls	have	occurred.
For	example,	in	the	following	sequence	of	calls,	the	resource	is	held	in	Exclusive
rather	than	Shared	mode.

USE	Northwind
GO
BEGIN	TRAN

DECLARE	@result	int
EXEC	@result	=	sp_getapplock	@Resource	=	'Form1',	
												@LockMode	=	'Shared'
EXEC	@result	=	sp_getapplock	@Resource	=	'Form1',	
												@LockMode	=	'Exclusive'
EXEC	@result	=	sp_releaseapplock	@Resource	=	'Form1'
COMMIT	TRAN

A	deadlock	with	an	application	lock	does	not	roll	back	the	transaction	that
requested	the	application	lock.	Any	rollback	that	potentially	may	be	required	as
a	result	of	the	return	value	must	be	done	manually.	Consequently,	it	is
recommended	that	error	checking	be	included	in	the	code	such	that	if	certain
values	are	returned	(for	example,	-3),	a	ROLLBACK	TRANSACTION,	or
alternative	action,	is	initiated.

Here	is	an	example:

USE	Northwind
GO
BEGIN	TRAN
DECLARE	@result	int
EXEC	@result	=	sp_getapplock	@Resource	=	'Form1',	
												@LockMode	=	'Exclusive'
IF	@result	=	'-3'
BEGIN
						ROLLBACK	TRAN
END
ELSE
BEGIN
			EXEC	@result	=	sp_releaseapplock	@Resource	=	'Form1'
			COMMIT	TRAN
END

SQL	Server	uses	the	current	database	ID	to	qualify	the	resource.	Therefore,	if
sp_getapplock	is	executed,	even	with	identical	parameter	values,	on	different

databases,	the	result	is	separate	locks	on	separate	resources.

Use	sp_lock	to	examine	lock	information	or	the	SQL	Profiler	to	monitor	locks.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	places	a	shared	lock,	associated	with	the	current	transaction,	on	the
resource	'Form1'	in	the	Northwind	database.

USE	Northwind
GO
BEGIN	TRAN
DECLARE	@result	int
EXEC	@result	=	sp_getapplock	@Resource	=	'Form1',	
																			@LockMode	=	'Shared'
COMMIT	TRAN

See	Also

sp_releaseapplock

Transact-SQL	Reference

sp_getbindtoken
Returns	a	unique	identifier	for	the	transaction.	This	unique	identifier	is	referred
to	as	a	bind	token.	sp_getbindtoken	returns	a	string	representation	to	be	used	to
share	transactions	between	clients.

Syntax
sp_getbindtoken	[@out_token	=]	'return_value'	OUTPUT	[,	@for_xp_flag]

Arguments
[@out_token	=]	'return_value'

Is	the	token	to	use	to	share	a	transaction.	return_value	is	varchar(255),	with
no	default.

@for_xp_flag

Is	a	constant.	If	equal	to	1,	a	bind	token	is	created	that	can	be	passed	to	an
extended	stored	procedure	to	call	back	into	the	server.

Return	Code	Values
None

Result	Sets
None

Remarks
In	Microsoft	SQL	Server	2000,	sp_getbindtoken	will	return	a	valid	token	only
when	the	stored	procedure	is	executed	inside	an	active	transaction.	Otherwise,
SQL	Server	will	return	an	error	message.	For	example:

Note		In	SQL	Server	7.0,	sp_getbindtoken	returns	a	valid	token	even	if	the
stored	procedure	is	executed	outside	an	active	transaction.	The	example	works	in
SQL	Server	7.0.

/*open	a	database*/
USE	MYDB
GO
/*declare	bind	token;	no	active	transaction*/
DECLARE	@bind_token	varchar(255)
/*return	bind	token*/
EXECUTE	sp_getbindtoken	@bind_token	OUTPUT
/*get	an	error	message*/
Server:	Msg	3921,	Level	16,	State	1,	Procedure	sp_getbindtoken,	Line	4
Cannot	get	a	transaction	token	if	there	is	no	transaction	active.
Reissue	the	statement	after	a	transaction	has	been	started.

When	sp_getbindtoken	is	used	to	enlist	a	distributed	transaction	connection
inside	an	open	transaction,	SQL	Server	2000	returns	the	same	token.	For
example:

USE	MYDB
			DECLARE	@bind_token	varchar(255)
			BEGIN	TRAN
						EXECUTE	sp_getbindtoken	@bind_token	OUTPUT
						SELECT	@bind_token	AS	Token
						BEGIN	DISTRIBUTED	TRAN
									EXECUTE	sp_getbindtoken	@bind_token	OUTPUT
									SELECT	@bind_token	AS	Token
/*returns	the	same	token*/
Token

PKb'gN5<9aGEedk_16>8U=5---/5G=--
(1	row(s_)	affected)

Token

PKb'gN5<9aGEedk_16>8U=5---/5G=--
(1	row(s_)	affected)

The	bind	token	can	be	used	with	sp_bindsession	to	bind	new	sessions	to	the
same	transaction.	The	bind	token	is	only	valid	locally	inside	each	SQL	Server
and	cannot	be	shared	across	multiple	instances	of	SQL	Server.

To	obtain	and	pass	a	bind	token,	you	must	run	sp_getbindtoken	prior	to
executing	sp_bindsession	for	sharing	the	same	lock	space.	If	you	obtain	a	bind
token,	sp_bindsession	runs	correctly.

Note		It	is	recommended	that	you	use	the	srv_getbindtoken	Open	Data	Services
API	to	obtain	a	bind	token	to	be	used	from	an	extended	stored	procedure.

Permissions
Execute	permissions	default	to	the	public	role.

Examples

A.	Obtain	a	bind	token
This	example	obtains	a	bind	token	and	displays	the	bind	token	name.

DECLARE	@bind_token	varchar(255)
BEGIN	TRAN
EXECUTE	sp_getbindtoken	@bind_token	OUTPUT
SELECT	@bind_token	AS	Token

This	is	the	result	set:

Token
--
\0]---5^PJK51bP<1F<-7U-]ANZ

B.	Use	the	@for_xp_flag	parameter
This	example	specifies	a	constant	to	use	for	calling	back	to	the	server.

DECLARE	@bind_token	varchar(255)
BEGIN	TRAN
EXECUTE	sp_getbindtoken	@bind_token	OUTPUT,	1

SELECT	@bind_token	AS	Token

If	a	constant	is	not	used	for	@for_xp_flag,	this	error	message	is	returned:

Msg	214,	Level	16,	State	1,	Server	<server_name>,	Procedure	<procedure_name>,	Line	5
Cannot	convert	parameter	@for_xp_flag	to	type	constant	expected	by	procedure.

See	Also

sp_bindsession

System	Stored	Procedures

srv_getbindtoken

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_get_log_shipping_monitor_info
Returns	status	information	about	a	"Log	Shipping	Pair."	A	log	shipping	pair	is	a
set	of	primary	server-primary	database	and	secondary	server-secondary	database.

Syntax
sp_get_log_shipping_monitor_info					[@primary_server_name	=]
'primary_server_name',
				[@primary_database_name	=]	'primary_database_name',	
				[@secondary_server_name	=]	'secondary_server_name',	
				[@secondary_database_name	=]	'secondary_database_name'

Arguments
[@primary_server_name	=]	'primary_server_name'

Is	the	name	or	pattern	of	the	primary	server.	primary_server_name	is
sysname,	with	a	default	of	'%'.

[@primary_database_name	=]	'primary_database_name'

Is	the	name	or	pattern	of	the	primary	database.	primary_database_name	is
sysname,	with	a	default	of	'%'.

[@secondary_server_name	=]	'secondary_server_name'

Is	the	name	or	pattern	of	the	secondary	server.	secondary_server_name	is
sysname,	with	a	default	of	'%'.

[@secondary_database_name	=]	'secondary_database_name'

Is	the	name	or	pattern	of	the	secondary	database.	secondary_database_name
is	sysname,	with	a	default	of	'%'.

Result	Sets
This	table	shows	the	information	contained	in	the	result	set.

Column	name Data	type Description

primary_server_name sysname Primary	server	name.
primary_database_name sysname Primary	database

name.
secondary_server_name sysname Secondary	server

name.
secondary_database_name sysname Secondary	database

name.
backup_threshold int The	length	of	time	in

minutes	after	the	last
backup	before	raising
a	threshold	alert	error.

backup_threshold_alert int The	error	that	will	be
raised	when	the
threshold	backup	has
been	exceeded.

backup_threshold_alert_enabled bit Specifies	whether	an
alert	will	be	raised
when	the	threshold
backup	has	been
exceeded.

1=Alert.
0=No	alert.

last_backup_filename nvarchar(500) The	name	of	the	last
file	that	was	backed
up.

last_backup_last_updated datetime The	date-time	when
the	last	file	was
backed	up.

backup_outage_start_time int The	time	in
HHMMSS	that	a
planned	outage	begins
on	the	primary	server.
During	a	planned
outage,	alerts	will	not
be	raised	if	the	backup

threshold	is	exceeded.

backup_outage_end_time int The	time	in
HHMMSS	that	a
planned	outage	ends
on	the	primary	server.
During	a	planned
outage,	alerts	will	not
be	raised	if	the	backup
threshold	is	exceeded.

backup_outage_weekday_mask int The	day	of	the	week
that	a	planned	outage
will	occur.

backup_in_sync int Indicates	whether	the
last	backup	occurred
within	the	backup
sync	threshold.

1=Occurred	within	the
backup	sync
threshold.
-1=Occurred	in	an
outage	window.

last_copied_filename nvarchar(500) The	name	of	the	last
file	copied.

last_copied_last_updated datetime The	date	and	time	the
last	file	was	backed
up.

last_loaded_filename nvarchar(500) The	name	of	the	last
file	that	was	loaded.

last_loaded_last_updated datetime The	date	and	time	that
the	last	file	was
loaded.

copy_enabled bit Indicates	whether
copy	is	enabled	for
the	secondary
database.

1=Enabled.
0=Not	enabled.

load_enabled bit Indicates	whether	load
is	enabled	for	the
secondary	database.

1=Enabled.
0=Not	enabled.

out_of_sync_threshold int The	length	of	time	in
minutes	after	the	last
load	before	an	error	is
raised.

load_threshold_alert int The	error	to	be	raised
when	the	out-of-sync
threshold	has	been
exceeded.

load_threshold_alert_enabled bit Indicates	whether	an
alert	will	be	raised
when	the	out-of-sync
threshold	has	been
exceeded.

1=Alert.
0=No	alert.

load_outage_start_time int The	start	time	in
HHMMSS	that	a
planned	outage
begins.	During	a
planned	outage,	alerts
will	not	be	raised	if
the	out-of-sync
threshold	is	exceeded.

load_outage_end_time int The	end	time	in
HHMMSS	that	the
planned	outage

begins.	During	a
planned	outage,	alerts
will	not	be	raised	if
the	out-of-sync
threshold	is	exceeded.

load_outage_weekday_mask int The	day	of	the	week
that	a	planned	outage
will	occur.

load_in_sync int Indicates	whether	the
last	backup	occurred
within	the	backup
sync	threshold.

1=Occurred	within
threshold.
-1=Occurred	in	the
outage	window.

maintenance_plan_id uniqueidentifierThe	ID	of	the
maintenance	plan	on
the	primary	server.
maintenance_plan_id
may	be	NULL.

secondary_plan_id uniqueidentifierThe	ID	of	the	log
shipping	plan	on	the
secondary	server.

allow_role_change bit Indicates	whether	the
role	of	the	secondary
server	can	be
changed.

1=Role	can	be
changed.
0=Role	cannot	be
changed.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_get_log_shipping_monitor_info.

Examples
This	example	returns	information	about	all	log	shipping	pairs	with	a	destination
database	that	starts	with	"pubs."

EXEC			sp_get_log_shipping_monitor_info	@secondary_database_name	=	'pubs%'

Transact-SQL	Reference

sp_grantdbaccess
Adds	a	security	account	in	the	current	database	for	a	Microsoft®	SQL	Server™
login	or	Microsoft	Windows	NT®	user	or	group,	and	enables	it	to	be	granted
permissions	to	perform	activities	in	the	database.

Syntax
sp_grantdbaccess	[@loginame	=]	'login'					[,[@name_in_db	=]	'name_in_db'
[OUTPUT]]

Arguments
[@loginame	=]	'login'

Is	the	name	of	the	login	for	the	new	security	account	in	the	current	database.
Windows	NT	groups	and	users	must	be	qualified	with	a	Windows	NT
domain	name	in	the	form	Domain\User,	for	example	LONDON\Joeb.	The
login	cannot	already	be	aliased	to	an	account	in	the	database.	login	is
sysname,	with	no	default.

[@name_in_db	=]	'name_in_db'	[OUTPUT]

Is	the	name	for	the	account	in	the	database.	name_in_db	is	an	OUTPUT
variable	with	a	data	type	of	sysname,	and	a	default	of	NULL.	If	not
specified,	login	is	used.	If	specified	as	an	OUTPUT	variable	with	a	value	of
NULL,	@name_in_db	is	set	to	login.	name_in_db	must	not	already	exist	in
the	current	database.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
SQL	Server	usernames	can	contain	from	1	to	128	characters,	including	letters,
symbols,	and	numbers.	However,	usernames	cannot:

Contain	a	backslash	character	(\).

Be	NULL,	or	an	empty	string	('').

The	security	account	must	be	granted	access	to	the	current	database	before	it	can
use	the	database.	Only	accounts	in	the	current	database	can	be	managed	using
sp_grantdbaccess.	To	remove	an	account	from	a	database,	use
sp_revokedbaccess.

A	security	account	for	guest	can	be	added	if	it	does	not	already	exist	in	the
current	database,	and	the	login	is	also	guest.

The	sa	login	cannot	be	added	to	a	database.

sp_grantdbaccess	cannot	be	executed	from	within	a	user-defined	transaction.

Permissions
Only	members	of	the	sysadmin	fixed	server	role,	the	db_accessadmin	and
db_owner	fixed	database	roles	can	execute	sp_grantdbaccess.

Examples
This	example	adds	an	account	for	the	Windows	NT	user	Corporate\GeorgeW
to	the	current	database	and	gives	it	the	name	Georgie.

EXEC	sp_grantdbaccess	'Corporate\GeorgeW',	'Georgie'

See	Also

sp_revokedbaccess

System	Stored	Procedures

Transact-SQL	Reference

sp_grantlogin
Allows	a	Microsoft®	Windows	NT®	user	or	group	account	to	connect	to
Microsoft	SQL	Server™	using	Windows	Authentication.

Syntax
sp_grantlogin	[@loginame	=]	'login'

Arguments
[@loginame	=]	'login'

Is	the	name	of	the	Windows	NT	user	or	group	to	be	added.	The	Windows	NT
user	or	group	must	be	qualified	with	a	Windows	NT	domain	name	in	the
form	Domain\User,	for	example	London\Joeb.	login	is	sysname,	with	no
default.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
Use	sp_grantlogin	to	reverse	the	effects	of	a	previous	sp_denylogin	that	has
been	executed	for	a	Windows	NT	user.

Use	sp_addlogin	to	allow	a	SQL	Server	login	to	connect	to	SQL	Server.

Although	a	login	can	connect	to	SQL	Server	after	sp_grantlogin	has	been
executed,	access	to	user	databases	is	denied	until	a	user	account	for	the	login	is
created	in	each	database	that	the	login	must	access.	Use	sp_grantdbaccess	to
create	a	user	account	in	each	user	database.

sp_grantlogin	cannot	be	executed	within	a	user-defined	transaction.

Permissions
Only	members	of	the	sysadmin	or	securityadmin	fixed	server	roles	can	execute

sp_grantlogin.

Examples
This	example	allows	the	Windows	NT	user	Corporate\BobJ	to	connect	to	SQL
Server.

EXEC	sp_grantlogin	'Corporate\BobJ'

Or

EXEC	sp_grantlogin	[Corporate\BobJ]

See	Also

sp_addlogin

sp_revokelogin

sp_denylogin

System	Stored	Procedures

Transact-SQL	Reference

sp_help
Reports	information	about	a	database	object	(any	object	listed	in	the	sysobjects
table),	a	user-defined	data	type,	or	a	data	type	supplied	by	Microsoft®	SQL
Server™.

Syntax
sp_help	[[@objname	=]	name]

Arguments
[@objname	=]	name

Is	the	name	of	any	object,	in	sysobjects	or	any	user-defined	data	type	in	the
systypes	table.	name	is	nvarchar(776),	with	a	default	of	NULL.	Database
names	are	not	acceptable.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
The	result	sets	returned	depend	on	whether	name	is	specified,	and	when
specified,	what	database	object	it	is.

1.	 If	sp_help	is	executed	with	no	arguments,	summary	information	of
objects	of	all	types	that	exist	in	the	current	database	is	returned.

Column	name Data	type Description
Name nvarchar(128)Object	name
Owner nvarchar(128)Object	owner
Object_type nvarchar(31) Object	type

2.	 If	name	is	a	SQL	Server	data	type	or	user-defined	data	type,	sp_help

returns	this	result	set.

Column	name Data	type Description
Type_name nvarchar(128)Data	type	name.
Storage_type nvarchar(128)SQL	Server	type	name.
Length smallint Physical	length	of	the	data

type	(in	bytes).
Prec int Precision	(total	number	of

digits).
Scale int Number	of	digits	to	the	right

of	the	decimal.
Nullable varchar(35) Indicates	whether	NULL

values	are	allowed:	Yes	or	No.
Default_name nvarchar(128)Name	of	a	default	bound	to

this	type.	NULL,	if	no	default
is	bound.

Rule_name nvarchar(128)Name	of	a	rule	bound	to	this
type.	NULL,	if	no	default	is
bound.

Collation sysname Collation	of	the	data	type.
NULL	for	non-character	data
types.

3.	 If	name	is	any	database	object	(other	than	a	data	type),	sp_help	returns
this	result	set,	as	well	as	additional	result	sets	based	on	the	type	of
object	specified.

Column	name Data	type Description
Name nvarchar(128)Table	name
Owner nvarchar(128)Table	owner
Type nvarchar(31) Table	type
Created_datetime datetime Date	table	created

Depending	on	the	database	object	specified,	sp_help	returns	additional
result	sets.

If	name	is	a	system	table,	user	table,	or	view,	sp_help	returns	these
result	sets	(except	the	result	set	describing	where	the	data	file	is
located	on	a	file	group	is	not	returned	for	a	view).

Additional	result	set	returned	on	column	objects:

Column	name Data	type Description
Column_name nvarchar(128)Column	name.
Type nvarchar(128)Column	data

type.
Computed varchar(35) Indicates	whether

the	values	in	the
column	are
computed:	(Yes
or	No).

Length int Column	length	in
bytes.

Prec char(5) Column
precision.

Scale char(5) Column	scale.
Nullable varchar(35) Indicates	whether

NULL	values	are
allowed	in	the
column:	Yes	or
No.

TrimTrailingBlanks varchar(35) Trim	the	trailing
blanks	(yes	or
no).

FixedLenNullInSource varchar(35) For	backward
compatibility
only.

Collation sysname Collation	of	the
column.	NULL
for	non-character

data	types.

Additional	result	set	returned	on	identity	columns:

Column	nameData	type Description
Identity nvarchar(128)Column	name	whose	data

type	is	declared	as	identity.
Seed numeric Starting	value	for	the

identity	column.
Increment numeric Increment	to	use	for

values	in	this	column.
Not	For
Replication

int IDENTITY	property	is	not
enforced	when	a
replication	login,	such	as
sqlrepl,	inserts	data	into
the	table:
1	=	True
0	=	False

Additional	result	set	returned	on	columns:

Column	name Data	type Description
RowGuidCol sysname Name	of	the	global	unique

identifier	column.

Additional	result	set	returned	on	filegroups:

Column	name Data	type Description
Data_located_on_filegroup nvarchar(128)The

filegroup	in
which	the
data	is
located

(Primary,
Secondary,
or
Transaction
Log).

Additional	result	set	returned	on	index:

Column	name Data	type Description
index_name sysname Index	name.
Index_description varchar(210) Description	of	the

index.
index_keys nvarchar(2078)Column	name(s)	on

which	the	index	is
built.

Additional	result	set	returned	on	constraints:

Column	name Data	type Description
constraint_type nvarchar(146) Type	of

constraint.
constraint_name nvarchar(128) Name	of	the

constraint.
delete_action nvarchar(9) Indicates

whether	the
DELETE	action
is:	No	Action,
CASCADE,	or
N/A.

(Only	applicable
to	FOREIGN
KEY
constraints.)

update_action nvarchar(9) Indicates
whether	the
UPDATE	action
is:	No	Action,
Cascade,	or	N/A.

(Only	applicable
to	FOREIGN
KEY
constraints.)

status_enabled varchar(8) Indicates
whether	the
constraint	is
enabled:
Enabled,
Disabled	or	N/A.
(Only	applicable
to	CHECK	and
FOREIGN	KEY
constraints.

status_for_replication varchar(19) Indicates
whether	the
constraint	is	for
replication.
(Only	applicable
to	CHECK	and
FOREIGN	KEY
constraints.)

constraint_keys nvarchar(2078)Names	of	the
columns	that
make	up	the
constraint	or,	in
the	case	for
defaults	and
rules,	the	text
that	defines	the
default	or	rule.

Additional	result	set	returned	on	referencing	objects:

Column
name Data	type Description
Table	is
referenced	by

nvarchar(516) Identifies	other	database
objects	that	reference	the
table.

4.	 If	name	is	a	system	stored	procedure	or	an	extended	stored	procedure,
sp_help	returns	this	result	set.

Column	name Data	type Description
Parameter_name nvarchar(128)Stored	procedure	parameter

name.
Type nvarchar(128)Data	type	of	the	stored

procedure	parameter.
Length smallint Maximum	physical	storage

length	(in	bytes).
Prec int Precision	(total	number	of

digits).
Scale int Number	of	digits	to	the	right

of	the	decimal	point.
Param_order smallint Order	of	the	parameter.

Remarks

The	sp_help	procedure	looks	for	an	object	in	the	current	database	only.

When	name	is	not	specified,	sp_help	lists	object	names,	owners,	and	object
types	for	all	objects	in	the	current	database.	sp_helptrigger	provides
information	about	triggers.

Permissions
Execute	permissions	default	to	the	public	role.

Examples

A.	Return	information	about	all	objects
This	example	lists	information	about	each	object	in	sysobjects.

USE	master
EXEC	sp_help

B.	Return	information	about	a	single	object
This	example	displays	information	about	the	publishers	table.

USE	pubs
EXEC	sp_help	publishers

See	Also

sp_helpgroup

sp_helpindex

sp_helprotect

sp_helpserver

sp_helptrigger

sp_helpuser

System	Stored	Procedures

Transact-SQL	Reference

sp_help_alert
Reports	information	about	the	alerts	defined	for	the	server.

Syntax
sp_help_alert	[[@alert_name	=]	'alert_name']					[,	[@order_by	=]
'order_by']	
				[,	[@alert_id	=]	alert_id]	
				[,	[@category_name	=]	'category']

Arguments
[@alert_name	=]	'alert_name'

Is	the	alert	name.	alert_name	is	nvarchar(128).	If	alert_name	is	not
specified,	information	about	all	alerts	is	returned	.

[@order_by	=]	'order_by'

Is	the	sorting	order	to	use	for	producing	the	results.	order_by	is	sysname,
with	a	default	of	N	'name'.

[@alert_id	=]	alert_id]

Is	the	identification	number	of	the	alert	to	report	information	about.	alert_id
is	int,	with	a	default	of	NULL.

[@category_name	=]	'category'

Is	the	category	for	the	alert.	category	is	sysname,	with	a	default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
id int System-assigned	unique

integer	identifier.
name sysname Alert	name	(for	example,

Demo:	Full	msdb	log).
event_source nvarchar(100) Source	of	the	event.	It	will

always	be	MSSQLServer
for	Microsoft®	SQL
Server™	version	7.0

event_category_id int Reserved.
event_id int Reserved.
message_id int Message	error	number	that

defines	the	alert.	(Usually
corresponds	to	an	error
number	in	the	sysmessages
table).	If	severity	is	used	to
define	the	alert,	message_id
is	0	or	NULL.

severity int Severity	level	(from	9
through	25,	110,	120,	130,
or	140)	that	defines	the
alert.

enabled tinyint Status	of	whether	the	alert
is	currently	enabled	(1)	or
not	(0).	A	nonenabled	alert
is	not	sent.

delay_between_responses int Wait	period,	in	seconds,
between	responses	to	the
alert.

last_occurrence_date int Data	the	alert	last	occurred.
last_occurrence_time int Time	the	alert	last	occurred.
last_response_date int Date	the	alert	was	last

responded	to	by	the
SQLServerAgent	service.

last_response_time int Time	the	alert	was	last
responded	to	by	the
SQLServerAgent	service.

notification_message nvarchar(512) Optional	additional
message	sent	to	the	operator
as	part	of	the	e-mail	or
pager	notification.

include_event_description tinyint Is	whether	the	description
of	the	SQL	Server	error
from	the	Microsoft
Windows	NT®	application
log	should	be	included	as
part	of	the	notification
message.

database_name sysname Database	in	which	the	error
must	occur	for	the	alert	to
fire.	If	the	database	name	is
NULL,	the	alert	fires
regardless	of	where	the
error	occurred.

event_description_keyword nvarchar(100) Description	of	the	SQL
Server	error	in	the	Windows
NT	application	log	that
must	be	like	the	supplied
sequence	of	characters.

occurrence_count int Number	of	times	the	alert
occurred.

count_reset_date int Date	the	occurrence_count
was	last	reset.

count_reset_time int Time	the
occurrence_count	was	last
reset.

job_id uniqueidentifier Job	identification	number.	
job_name sysname An	on-demand	job	to	be

executed	in	response	to	an
alert.

has_notification int Nonzero	if	one	or	more
operators	are	notified	for

this	alert.	The	value	is	one
or	more	of	the	following
values	(ORed	together):

1=has	e-mail	notification
2=has	pager	notification
4=has	netsend	noticication.

Flags int Reserved.
performance_condition nvarchar(512) If	type	is	2,	this	column

shows	the	definition	of	the
performance	condition;
otherwise,	the	column	is
NULL.

category_name sysname Reserved.	Will	always	be
'[Uncategorized]'	for	SQL
Server	7.0.

type int 1	=	SQL	Server	event	alert
2	=	SQL	Server
performance	alert

Remarks
sp_help_alert	must	be	run	from	the	msdb	database.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute	sp_help_alert	.

Examples
This	example	reports	information	about	the	Demo:	Sev.	25	Errors	alert.

EXEC	sp_help_alert	'Demo:	Sev.	25	Errors'

See	Also

sp_add_alert

sp_update_alert

System	Stored	Procedures

Transact-SQL	Reference

sp_help_category
Provides	information	about	the	specified	classes	of	jobs,	alerts,	or	operators.

Syntax
sp_help_category	[[@class	=]	'class']	
				[,	[@type	=]	'type']	
				[,	[@name	=]	'name']	
				[,	[@suffix	=]	suffix]

Arguments
[@class	=]	'class'

Is	the	class	about	which	information	is	requested.	class	is	varchar(8),	with	a
default	value	of	JOB.	class	can	be	one	of	these	values.

Value Description
JOB Provides	information	about	a	job	category.
ALERT Provides	information	about	an	alert	category.
OPERATOR Provides	information	about	an	operator

category.

[@type	=]	'type'

Is	the	type	of	category	for	which	information	is	requested.	type	is
varchar(12),	with	a	default	of	NULL,	and	can	be	one	of	these	values.

Value Description
LOCAL Local	job	category.
MULTI	-SERVER Multiserver	job	category.
NONE Category	for	a	class	other	than	JOB.

[@name	=]	'name'

Is	the	name	of	the	category	for	which	information	is	requested.	name	is
sysname,	with	a	default	of	NULL.

[@suffix	=]	suffix

Specifies	whether	the	category_type	column	in	the	result	set	is	an	ID	or	a
name.	suffix	is	bit,	with	a	default	of	0.	1	shows	the	category_type	as	a	name,
and	0	shows	it	as	an	ID.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
category_id int Category	ID
category_type tinyint Type	of	category:

1	=	Local
2	=	Multiserver
3	=	None

name sysname Category	name

Remarks
sp_help_category	must	be	executed	in	the	msdb	database.

If	no	parameters	are	specified,	the	result	set	provides	information	about	all	of	the
job	categories.

Permissions
Execute	permissions	default	to	the	public	role.	Anyone	who	can	execute	this
procedure	can	also	create,	delete,	or	update	a	job,	job	step,	job	category,	job
schedule,	job	server,	task,	or	job	history	information.

Examples

A.	Return	local	job	information
This	example	returns	information	about	jobs	that	are	administered	locally.

USE	msdb
EXEC	sp_help_category	@type	=	'LOCAL'

B.	Return	alert	information
This	example	returns	information	about	the	Replication	alert	category.

USE	msdb
EXEC	sp_help_category	@class	=	'ALERT',	@name	=	'Replication'

See	Also

sp_add_category

sp_delete_category

sp_update_category

System	Stored	Procedures

Transact-SQL	Reference

sp_helpconstraint
Returns	a	list	of	all	constraint	types,	their	user-defined	or	system-supplied	name,
the	columns	on	which	they	have	been	defined,	and	the	expression	that	defines
the	constraint	(for	DEFAULT	and	CHECK	constraints	only).

Syntax
sp_helpconstraint	[@objname	=]	'table'	
				[,	[@nomsg	=]	'no_message']

Arguments
[@objname	=]	'table'

Is	the	table	about	which	constraint	information	is	returned.	The	table
specified	must	be	local	to	the	current	database.	table	is	nvarchar(776),	with
no	default.

[@nomsg	=]	'no_message'

Is	an	optional	parameter	that	prints	the	table	name.	no_message	is
varchar(5),	with	a	default	of	msg.	nomsg	suppresses	the	printing.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
sp_helpconstraint	displays	a	descending	indexed	column	if	it	participated	in
primary	keys.	The	descending	indexed	column	will	be	listed	in	the	result	set	with
a	minus	sign	(-)	following	its	name.	The	default,	an	ascending	indexed	column,
will	be	listed	by	its	name	alone.

Remarks
Executing	sp_help	table	reports	all	information	about	the	specified	table.	To	see

only	the	constraint	information,	use	sp_helpconstraint.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	shows	all	constraints	for	the	authors	table.

USE	pubs
EXEC	sp_helpconstraint	authors

See	Also

ALTER	TABLE

CREATE	TABLE

sp_help

System	Stored	Procedures

Transact-SQL	Reference

sp_helpdb
Reports	information	about	a	specified	database	or	all	databases.

Syntax
sp_helpdb	[[@dbname=]	'name']

Arguments
[@dbname=]	'name'

Is	the	name	of	the	database	for	which	to	provide	information.	name	is
sysname,	with	no	default.	If	name	is	not	specified,	sp_helpdb	reports	on	all
databases	in	master.dbo.sysdatabases.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
name nvarchar(24) Database	name.
db_size nvarchar(13) Total	size	of	the	database.
owner nvarchar(24) Database	owner	(such	as	sa).
dbid smallint Numeric	database	ID.
created char(11) Date	the	database	was	created.
status varchar(340) Comma-separated	list	of	values	of

database	options	that	are	currently	set
on	the	database.

Boolean-valued	options	are	listed
only	if	they	are	enabled.	Nonboolean
options	are	listed	with	their
corresponding	values	in	the	form	of

option_name=value.

See	ALTER	DATABASE	for	more
information.

compatibility_level tinyint Database	compatibility	level	(60,	65,
70,	and	80)

If	name	is	specified,	there	is	an	additional	result	set	that	shows	the	file	allocation
for	the	specified	database.

Column	name Data	type Description
name nchar(128) Logical	file	name.
fileid smallint Numeric	file	identifier.
file	name nchar(260) Operating-system	file	name	(physical

file	name).
filegroup nvarchar(128) Group	in	which	the	file	belongs.

Database	files	can	be	grouped	in	file
groups	for	allocation	and
administration	purposes.	Log	files
are	never	a	part	of	a	filegroup.

size nvarchar(18) File	size.
maxsize nvarchar(18) Maximum	size	to	which	the	file	can

grow.	UNLIMITED	value	in	this
field	indicate	that	the	file	grows	until
the	disk	is	full.

growth nvarchar(18) Growth	increment	of	the	file.	This
indicates	the	amount	of	space	added
to	the	file	each	time	new	space	is
needed.

usage varchar(9) Usage	of	the	file.	For	data	file,	the
usage	is	data	only	and	for	the	log	file
the	usage	is	log	only.

Remarks

The	status	column	in	the	result	set	reports	which	bits	have	been	turned	on	in	the
status	column	of	sysdatabases.	Information	from	the	status2	column	of
sysdatabases	is	not	reported.

Permissions
Execute	permissions	default	to	the	public	role.

sp_helpdb	must	access	the	database(s)	on	the	server	to	determine	the
information	to	be	displayed	about	the	database.	Therefore,	for	each	database	on
the	server,	one	of	these	must	apply:

The	user	executing	sp_helpdb	must	have	permissions	to	access	the
database.

The	guest	user	account	must	exist	in	the	database.

If	a	database	cannot	be	accessed,	sp_helpdb	displays	error	message	15622	and
as	much	information	about	the	database	as	it	can.

Examples

A.	Return	information	about	a	single	database
This	example	displays	information	about	the	pubs	database.

exec	sp_helpdb	pubs

B.	Return	information	about	all	databases
This	example	displays	information	about	all	databases	on	the	server	running
Microsoft®	SQL	Server™.

exec	sp_helpdb

See	Also

ALTER	DATABASE

CREATE	DATABASE

sp_configure

sp_dboption

sp_renamedb

System	Stored	Procedures

Transact-SQL	Reference

sp_helpdbfixedrole
Returns	a	list	of	the	fixed	database	roles.

Syntax
sp_helpdbfixedrole	[[@rolename	=]	'role']

Arguments
[@rolename	=]	'role'

Is	the	name	of	a	fixed	database	role.	role	is	sysname,	with	a	default	of
NULL.	If	role	is	specified,	only	information	about	that	role	is	returned;
otherwise,	a	list	and	description	of	all	fixed	database	roles	is	returned.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
DbFixedRole sysname Name	of	the	fixed	database

role.
Description nvarchar(70) Description	of	DbFixedRole.

Remarks
Fixed	database	roles	are	defined	at	the	database	level	and	have	permissions	to
perform	specific	database-level	administrative	activities.	Fixed	database	roles
cannot	be	added,	removed,	or	changed.

Fixed	database	role Description
db_owner Database	owners
db_accessadmin Database	access	administrators

db_securityadmin Database	security	administrators
db_ddladmin Database	DDL	administrators
db_backupoperator Database	backup	operators
db_datareader Database	data	readers
db_datawriter Database	data	writers
db_denydatareader Database	deny	data	readers
db_denydatawriter Database	deny	data	writers

The	table	shows	stored	procedures	used	for	modifying	database	roles.

Stored	procedure Action
sp_addrolemember Adds	a	login	account	to	a	fixed	database	role.
sp_helprole Displays	a	list	of	the	members	of	a	fixed	database

role.
sp_droprolemember Removes	a	member	from	a	fixed	database	role.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	shows	a	list	of	all	fixed	database	roles.

EXEC	sp_helpdbfixedrole

See	Also

sp_addrolemember

sp_dbfixedrolepermission

sp_droprolemember

sp_helprole

sp_helprolemember

System	Stored	Procedures

Transact-SQL	Reference

sp_helpdevice
Reports	information	about	Microsoft®	SQL	Server™	database	files.
sp_helpdevice	is	used	for	backward	compatibility	with	earlier	versions	of	SQL
Server	that	used	the	term	device	for	a	database	file.

Syntax
sp_helpdevice	[[@devname=]	'name']

Arguments
[@devname=]	'name'

Is	the	name	of	the	device	for	which	to	provide	information.	name	is
sysname,	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
device_name sysname Device	name	(or	file	name).
physical_name nvarchar(46) Physical	file	name.
description nvarchar(255) Description	of	the	device.
status int A	number	that	corresponds	to	the

status	description	in	the	description
column.

cntrltype smallint Controller	number	of	the	device:

2	=	Hard	disk	device
3	or	4	=	Disk	dump	device
5	=	Tape	device
0	=	Database	device

size int Device	size	in	2	kb	pages.

Remarks
If	name	is	specified,	sp_helpdevice	displays	information	about	the	specified
database	device	or	dump	device.	If	name	is	not	specified,	sp_helpdevice
displays	information	about	all	database	devices	and	dump	devices	in
master.dbo.sysdevices.

Old	style	database	devices	are	added	to	the	system	with	the	DISK	INIT
statement.	Dump	devices	are	added	to	the	system	by	sp_addumpdevice.

The	device_number	column	is	0	for	dump	devices,	0	for	the	MASTER
database	device,	and	a	value	from	1	through	255	for	other	database	devices.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	reports	information	about	all	database	devices	and	dump	devices
on	SQL	Server.

sp_helpdevice

See	Also

sp_dropdevice

sp_helpdb

Transact-SQL	Reference

sp_help_downloadlist
Lists	all	rows	in	the	sysdownloadlist	system	table	for	the	supplied	job,	or	all
rows	if	no	job	is	specified.

Syntax
sp_help_downloadlist	[[@job_id	=]	job_id	|	[@job_name	=]	'job_name']	
				[,	[@operation	=]	'operation']	
				[,	[@object_type	=]	'object_type']	
				[,	[@object_name	=]	'object_name']	
				[,	[@target_server	=]	'target_server']	
				[,	[@has_error	=]	has_error]	
				[,	[@status	=]	status]	
				[,	[@date_posted	=]	date_posted]

Arguments
[@job_id	=]	job_id

Is	the	job	identification	number	for	which	to	return	information.	job_id	is
uniqueidentifier,	with	a	default	of	NULL.

[@job_name	=]	'job_name'

Is	the	name	of	the	job.	job_name	is	sysname,	with	a	default	of	NULL.

[@operation	=]	'operation'

Is	the	valid	operation	for	the	specified	job.	operation	is	varchar(64),	with	a
default	of	NULL,	and	can	be	one	of	these	values.

Value Description
DEFECT Server	operation	that	requests	the	target	server	to

defect	from	the	Master	SQLServerAgent	service.
DELETE Job	operation	that	removes	an	entire	job.
INSERT Job	operation	that	inserts	an	entire	job	or	refreshes	an

existing	job.	This	operation	includes	all	job	steps	and

schedules,	if	applicable.
RE-ENLIST Server	operation	that	causes	the	target	server	to	resend

its	enlistment	information,	including	the	polling
interval	and	time	zone	to	the	multiserver	domain.	The
target	server	also	redownloads	the	MSXOperator
details.

SET-POLL Server	operation	that	sets	the	interval,	in	seconds,	for
target	servers	to	poll	the	multiserver	domain.	If
specified,	value	is	interpreted	as	the	required	interval
value,	and	can	be	a	value	from	10	to	28,800.

START Job	operation	that	requests	the	start	of	job	execution.
STOP Job	operation	that	requests	the	stop	of	job	execution.
SYNC-TIME Server	operation	that	causes	the	target	server	to

synchronize	its	system	clock	with	the	multiserver
domain.	Because	this	is	a	costly	operation,	perform
this	operation	on	a	limited,	infrequent	basis.

UPDATE Job	operation	that	updates	only	the	sysjobs
information	for	a	job,	not	the	job	steps	or	schedules.	Is
automatically	called	by	sp_update_job.

[@object_type	=]	'object_type'

Is	the	type	of	object	for	the	specified	job.	object_type	is	varchar(64),	with	a
default	of	NULL.	object_type	can	be	either	JOB	or	SERVER.	For	more
information	about	valid	object_type	values,	see	sp_add_category.

[@object_name	=]	'object_name'

Is	the	name	of	the	object.	object_name	is	sysname,	with	a	default	of	NULL.
If	object_type	is	JOB,	object_name	is	the	job	name.	If	object_type	is
SERVER,	object_name	is	the	server	name.

[@target_server	=]	'target_server'

Is	the	name	of	the	target	server.	target_server	is	varchar(30),	with	a	default
of	NULL.

[@has_error	=]	has_error

Is	whether	the	job	should	acknowledge	errors.	has_error	is	tinyint,	with	a
default	of	NULL,	which	indicates	no	errors	should	be	acknowledged.	1
indicates	that	all	errors	should	be	acknowledged.

[@status	=]	status

Is	the	status	for	the	job.	status	is	tinyint,	with	a	default	value	of	NULL.

[@date_posted	=]	date_posted

Is	the	date	and	time	for	which	all	entries	made	on	or	after	the	specified	date
and	time	should	be	included	in	the	result	set.	date_posted	is	datetime,	with	a
default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
instance_id int Unique	integer	identification	number

of	the	instruction.
source_server nvarchar(30) Computer	name	of	the	server	the

instruction	came	from.	In	Microsoft®
SQL	Server™	7.0,	this	is	always	the
computer	name	of	the	master	(MSX)
server.

operation_code nvarchar(4000) Operation	code	for	the	instruction.
object_name sysname Object	affected	by	the	instruction.
object_id uniqueidentifier Identification	number	of	the	object

affected	by	the	instruction	(job_id	for
a	job	object,	or	0x00	for	a	server
object)	or	a	data	value	specific	to	the
operation_code.

target_server nvarchar(30) Target	server	that	this	instruction	is	to
be	downloaded	by.

error_message nvarchar(1024) Error	message	(if	any)	from	the	target

server	if	it	encountered	a	problem
while	processing	this	instruction.	
NOTE:		Any	error	message	blocks	all
further	downloads	by	the	target	server.

date_posted datetime Date	the	instruction	was	posted	to	the
table.

date_downloadeddatetime Date	the	instruction	was	downloaded
by	the	target	server.

Status tinyint Status	of	the	job:

0	=	Not	yet	downloaded
1	=	Successfully	downloaded.

Permissions
Permissions	to	execute	this	procedure	default	to	the	sysadmin	fixed	server	role
or	the	db_owner	fixed	database	role,	who	can	grant	permissions	to	other	users.

Examples
This	example	lists	rows	in	the	sysdownloadlist	for	the	Weekly	Sales	Data
Backup	job.

USE	msdb
EXEC	sp_help_downloadlist	@job_name='Weekly	Sales	Data	Backup',				@operation='UPDATE',	
			@object_type='JOB',	
			@object_name='Weekly	Sales	Backup',	
			@target_server='SEATTLE2',	
			@has_error=1,	
			@status=NULL,	
			@date_posted=NULL

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_helpextendedproc
Displays	the	currently	defined	extended	stored	procedures	and	the	name	of	the
dynamic-link	library	to	which	the	procedure	(function)	belongs.

Syntax
sp_helpextendedproc	[[@funcname	=]	'procedure']

Arguments
[@funcname	=]	'procedure'

Is	the	name	of	the	extended	stored	procedure	for	which	to	display
information.	procedure	is	sysname,	with	a	default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	Type Description
name sysname Name	of	the	extended	stored

procedure.
dll nvarchar(255) Name	of	the	dynamic	link	library.

Remarks
When	procedure	is	specified,	sp_helpextendedproc	reports	on	the	specified
extended	stored	procedure.	When	not	supplied,	sp_helpextendedproc	returns	all
extended	stored	procedure	names	and	the	DLL	names	to	which	each	extended
stored	procedure	belongs.

Permissions
Execute	permissions	default	to	the	public	role.

Examples

A.	Report	help	on	all	extended	stored	procedures
This	example	reports	on	all	extended	stored	procedures.

USE	master
EXEC	sp_helpextendedproc

B.	Report	help	on	a	single	extended	stored	procedure
This	example	reports	on	the	xp_cmdshell	extended	stored	procedure.

USE	master
EXEC	sp_helpextendedproc	xp_cmdshell

See	Also

sp_addextendedproc

sp_dropextendedproc

System	Stored	Procedures

Transact-SQL	Reference

sp_helpfile
Returns	the	physical	names	and	attributes	of	files	associated	with	the	current
database.	Use	this	stored	procedure	to	determine	the	names	of	files	to	attach	to
or	detach	from	the	server.

Syntax
sp_helpfile	[[@filename	=]	'name']

Arguments
[@filename	=]	'name'

Is	the	logical	name	of	any	file	in	the	current	database.	name	is	sysname,	with
a	default	of	NULL.	If	name	is	not	specified,	the	attributes	of	all	files	in	the
current	database.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
name sysname Logical	file	name.
fileid smallint Numeric	identifier	of	the	file.
filename nchar(260) Physical	file	name.
filegroup sysname Group	to	which	the	file	belongs.	Database

files	can	be	grouped	in	file	groups	for
allocation	and	administration	purposes.	Log
files	are	never	a	part	of	a	file	group.

size nvarchar(18) File	size.
maxsize nvarchar(18) Maximum	size	to	which	the	file	can	grow.

UNLIMITED	value	in	this	field	indicate
that	the	file	grows	until	the	disk	is	full.

growth nvarchar(18) Growth	increment	of	the	file.	This	indicates
the	amount	of	space	added	to	the	file	each
time	new	space	is	needed.

usage varchar(9) Usage	of	the	file.	For	a	data	file,	the	usage
is	data	only	and	for	the	log	file	the	usage	is
log	only.

Permissions
Execute	permission	defaults	to	the	public	role.

Examples
This	example	returns	information	about	the	files	in	pubs.

USE	pubs
EXEC	sp_helpfile

See	Also

sp_attach_db

sp_attach_single_file_db

sp_detach_db

sp_helpfilegroup

System	Stored	Procedures

Transact-SQL	Reference

sp_helpfilegroup
Returns	the	names	and	attributes	of	filegroups	associated	with	the	current
database.

Syntax
sp_helpfilegroup	[[@filegroupname	=]	'name']

Arguments
[@filegroupname	=]	'name'

Is	the	logical	name	of	any	filegroup	in	the	current	database.	name	is
sysname,	with	a	default	of	NULL.	If	name	is	not	specified,	the	attributes	of
all	filegroups	in	the	current	database	are	listed.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
groupname sysname Name	of	the	file	group.
groupid smallint Numeric	group	identifier.
filecount integer Number	of	files	in	the	file

group.

Permissions
Execute	permission	defaults	to	the	public	role.

Examples
This	example	returns	information	about	the	filegroups	in	pubs.

USE	pubs
EXEC	sp_helpfilegroup

See	Also

sp_attach_db

sp_attach_single_file_db

sp_detach_db

sp_helpfile

System	Stored	Procedures

Transact-SQL	Reference

sp_help_fulltext_catalogs
Returns	the	ID,	name,	root	directory,	status,	and	number	of	full-text	indexed
tables	for	the	specified	full-text	catalog.

Syntax
sp_help_fulltext_catalogs	[@fulltext_catalog_name	=]
'fulltext_catalog_name'

Arguments
[@fulltext_catalog_name	=]	'fulltext_catalog_name'

Is	the	name	of	the	full-text	catalog.	fulltext_catalog_name	is	sysname.	If	this
parameter	is	omitted	or	has	the	value	NULL,	information	about	all	full-text
catalogs	associated	with	the	current	database	is	returned.

Return	Code	Values
0	(success)	or	(1)	failure

Result	Sets
This	table	shows	the	result	set,	which	is	ordered	by	ftcatid.

Column	name Data	type Description
ftcatid smallint Full-text	catalog

identifier.
NAME sysname Name	of	the	full-text

catalog.
PATH nvarchar(260) Physical	location	of

the	full-text	catalog
root	directory.	NULL
indicates	the	default
directory	determined
during	installation.

(This	is	the	Ftdata
subdirectory	under	the
Microsoft®	SQL
Server™	directory;	for
example,
C:\Mssql\Ftdata.)

STATUS integer Full-text	index
population	status	of
the	catalog:

0	=	Idle
1	=	Full	population	in
progress
2	=	Paused
3	=	Throttled
4	=	Recovering
5	=	Shutdown
6	=	Incremental
population	in	progress
7	=	Building	index
8	=	Disk	is	full.
Paused
9	=	Change	tracking

NUMBER_FULLTEXT_TABLES integer Number	of	full-text
indexed	tables
associated	with	the
catalog.

Permissions
Execute	permissions	default	to	members	of	the	public	role.

Examples
This	example	returns	information	about	the	Cat_Desc	full-text	catalog.

USE	Northwind
EXEC	sp_help_fulltext_catalogs	'Cat_Desc'	

See	Also

FULLTEXTCATALOGPROPERTY

sp_fulltext_catalog

sp_help_fulltext_catalogs_cursor

System	Stored	Procedures

Transact-SQL	Reference

sp_help_fulltext_catalogs_cursor
Uses	a	cursor	to	return	the	ID,	name,	root	directory,	status,	and	number	of	full-
text	indexed	tables	for	the	specified	full-text	catalog.

Syntax
sp_help_fulltext_catalogs	[@cursor_return	=]	@cursor_variable	OUTPUT	,
				[@fulltext_catalog_name	=]	'fulltext_catalog_name'

Arguments
[@cursor_return	=]	@cursor_variable	OUTPUT

Is	the	output	variable	of	type	cursor.	The	cursor	is	a	read-only,	scrollable,
dynamic	cursor.

[@fulltext_catalog_name	=]	'fulltext_catalog_name'

Is	the	name	of	the	full-text	catalog.	fulltext_catalog_name	is	sysname.	If	this
parameter	is	omitted	or	is	NULL,	information	about	all	full-text	catalogs
associated	with	the	current	database	is	returned.

Return	Code	Values
0	(success)	or	(1)	failure

Result	Sets

Column	name Data	type Description
ftcatid smallint Full-text	catalog

identifier.
NAME sysname Name	of	the	full-text

catalog.
PATH nvarchar(260)Physical	location	of

the	full-text	catalog
root	directory.	NULL

indicates	the	default
directory	determined
during	installation.
(This	is	the	Ftdata
subdirectory	under	the
Microsoft®	SQL
Server™	directory;	for
example,
C:\Mssql\Ftdata.)

STATUS integer Full-text	index
population	status	of
the	catalog:

0	=	Idle
1	=	Full	population	in
progress
2	=	Paused
3	=	Throttled
4	=	Recovering
5	=	Shutdown
6	=	Incremental
population	in	progress
7	=	Building	index
8	=	Disk	is	full.
Paused
9	=	Change	tracking

NUMBER_FULLTEXT_TABLES integer Number	of	full-text
indexed	tables
associated	with	the
catalog.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	returns	information	about	the	Cat_Desc	full-text	catalog.

USE	Northwind
GO
DECLARE	@mycursor	CURSOR
EXEC	sp_help_fulltext_catalogs_cursor	@mycursor	OUTPUT,	'Cat_Desc'
FETCH	NEXT	FROM	@mycursor
WHILE	(@@FETCH_STATUS	<>	-1)
			BEGIN
						FETCH	NEXT	FROM	@mycursor
			END
CLOSE	@mycursor
DEALLOCATE	@mycursor
GO	

See	Also

FULLTEXTCATALOGPROPERTY

sp_fulltext_catalog

sp_help_fulltext_catalogs

System	Stored	Procedures

Transact-SQL	Reference

sp_help_fulltext_columns
Returns	the	columns	designated	for	full-text	indexing.

Syntax
sp_help_fulltext_columns	[[@table_name	=]	'table_name']]	
				[,	[@column_name	=]	'column_name']

Arguments
[@table_name	=]	'table_name'

Is	the	one-	or	two-part	table	name	for	which	full-text	index	information	is
requested.	table_name	is	nvarchar(517),	with	a	default	value	of	NULL.	If
table_name	is	omitted,	full-text	index	column	information	is	retrieved	for
every	full-text	indexed	table.

[@column_name	=]	'column_name'

Is	the	name	of	the	column	for	which	full-text	index	metadata	is	requested.
column_name	is	sysname,	with	a	default	value	of	NULL.	If	column_name	is
omitted	or	is	NULL,	full-text	column	information	is	returned	for	every	full-
text	indexed	column	for	table_name.	If	table_name	is	also	omitted	or	is
NULL,	full-text	index	column	information	is	returned	for	every	full-text
indexed	column	for	all	tables	in	the	database.

Return	Code	Values
0	(success)	or	(1)	failure

Result	Sets

Column	name Data	type Description
TABLE_OWNER sysname Table	owner.	This	is	the

name	of	the	database
user	that	created	the
table.

TABLE_ID integer ID	of	the	table.
TABLE_NAME sysname Name	of	the	table.
FULLTEXT_COLID integer Column	ID	of	the	full-

text	indexed	column.
FULLTEXT_COLUMN_NAME sysname Column	in	a	full-text

indexed	table	that	is
designated	for	indexing.

FULLTEXT_BLOBTP_COLNAME sysname Column	in	a	full-text
indexed	table	that
specifies	the	document
type	of	the	full-text
indexed	column.	This
value	is	only	applicable
when	the	full-text
indexed	column	is	an
image	column.

FULLTEXT_BLOBTP_COLID integer Column	ID	of	the
document	type	column.
This	value	is	only
applicable	when	the	full-
text	indexed	column	is
an	image	column.

FULLTEXT_LANGUAGE sysname Language	used	for	the
full-text	search	of	the
column.

Permissions
Execute	permissions	default	to	members	of	the	public	role.

Examples
This	example	returns	information	about	the	columns	that	have	been	designated
for	full-text	indexing	in	the	Categories	table.

USE	Northwind
EXEC	sp_help_fulltext_columns	Categories

Here	is	the	result	set:

TABLE_OWNER					TABLE_NAME				FULLTEXT_COLID		FULLTEXT_COLUMN_NAME
-----------					-----------			--------------		--------------------
dbo													Categories				3															Description									

See	Also

COLUMNPROPERTY

sp_fulltext_column

sp_help_fulltext_columns_cursor

System	Stored	Procedures

Transact-SQL	Reference

sp_help_fulltext_columns_cursor
Uses	a	cursor	to	return	the	columns	designated	for	full-text	indexing.

Syntax
sp_help_fulltext_columns_cursor	[@cursor_return	=]	@cursor_variable
OUTPUT	
				[,	[@table_name	=]	'table_name']	
				[,	[@column_name	=]	'column_name']

Arguments
[@cursor_return	=]	@cursor_variable	OUTPUT

Is	the	output	variable	of	type	cursor.	The	resulting	cursor	is	a	read-only,
scrollable,	dynamic	cursor.

[@table_name	=]	'table_name'

Is	the	one-	or	two-part	table	name	for	which	full-text	index	information	is
requested.	table_name	is	nvarchar(517),	with	a	default	value	of	NULL.	If
table_name	is	omitted,	full-text	index	column	information	is	retrieved	for
every	full-text	indexed	table.

[@column_name	=]	'column_name'

Is	the	name	of	the	column	for	which	full-text	index	metadata	is	desired.
column_name	is	sysname	with	a	default	value	of	NULL.	If	column_name	is
omitted	or	is	NULL,	full-text	column	information	is	returned	for	every	full-
text	indexed	column	for	table_name.	If	table_name	is	also	omitted	or	is
NULL,	full-text	index	column	information	is	returned	for	every	full-text
indexed	column	for	all	tables	in	the	database.

Return	Code	Values
0	(success)	or	(1)	failure

Result	Sets

Column	name Data	type Description
TABLE_OWNER sysname Table	owner.	This	is	the

name	of	the	database
user	that	created	the
table.

TABLE_ID integer ID	of	the	table.
TABLE_NAME sysname Table	name.
FULLTEXT_COLID integer Column	ID	of	the	full-

text	indexed	column.
FULLTEXT_COLUMN_NAME sysname Column	in	a	full-text

indexed	table	that	is
designated	for	indexing.

FULLTEXT_BLOBTP_COLNAME sysname Column	in	a	full-text
indexed	table	that
specifies	the	document
type	of	the	full-text
indexed	column.	This
value	is	only	applicable
when	the	full-text
indexed	column	is	an
image	column.

FULLTEXT_BLOBTP_COLID integer Column	ID	of	the
document	type	column.
This	value	is	only
applicable	when	the	full-
text	indexed	column	is
an	image	column.

FULLTEXT_LANGUAGE sysname Language	used	for	the
full-text	search	of	the
column.

Permissions
Execute	permissions	default	to	members	of	the	public	role.

Examples
This	example	returns	information	about	the	columns	that	have	been	designated
for	full-text	indexing	in	all	of	the	tables	in	the	database.

USE	Northwind
GO
DECLARE	@mycursor	CURSOR
EXEC	sp_help_fulltext_columns_cursor	@mycursor	OUTPUT
FETCH	NEXT	FROM	@mycursor
WHILE	(@@FETCH_STATUS	<>	-1)
			BEGIN
						FETCH	NEXT	FROM	@mycursor
			END
CLOSE	@mycursor
DEALLOCATE	@mycursor
GO	

See	Also

COLUMNPROPERTY

sp_fulltext_column

sp_help_fulltext_columns

System	Stored	Procedures

Transact-SQL	Reference

sp_help_fulltext_tables
Returns	a	list	of	tables	that	are	registered	for	full-text	indexing.

Syntax
sp_help_fulltext_tables	[[@fulltext_catalog_name	=]
'fulltext_catalog_name']	
				[,	[@table_name	=]	'table_name']

Arguments
[@fulltext_catalog_name	=]	'fulltext_catalog_name'

Is	the	name	of	the	full-text	catalog.	fulltext_catalog_name	is	sysname,	with	a
default	of	NULL.	If	fulltext_catalog_name	is	omitted	or	is	NULL,	all	full-
text	indexed	tables	associated	with	the	database	are	returned.	If
fulltext_catalog_name	is	specified,	but	table_name	is	omitted	or	is	NULL,
the	full-text	index	information	is	retrieved	for	every	full-text	indexed	table
associated	with	this	catalog.	If	both	fulltext_catalog_name	and	table_name
are	specified,	a	row	is	returned	if	table_name	is	associated	with
fulltext_catalog_name;	otherwise,	an	error	is	raised.

[@table_name	=]	'table_name'

Is	the	one-	or	two-part	table	name	for	which	the	full-text	metadata	is
requested.	table_name	is	nvarchar(517),	with	a	default	value	of	NULL.	If
only	table_name	is	specified,	only	the	row	relevant	to	table_name	is
returned.

Return	Code	Values
0	(success)	or	(1)	failure

Result	Sets

Column	name
Data
type Description

TABLE_OWNER sysname Table	owner.	This	is	the
name	of	the	database	user
that	created	the	table.

TABLE_NAME sysname Table	name.
FULLTEXT_KEY_INDEX_NAMEsysname Index	imposing	the

UNIQUE	constraint	on	the
column	designated	as	the
unique	key	column.

FULLTEXT_KEY_COLID integer Column	ID	of	the	unique
index	identified	by
FULLTEXT_KEY_NAME.

FULLTEXT_INDEX_ACTIVE integer Specifies	whether	columns
marked	for	full-text
indexing	in	this	table	are
eligible	for	queries:

0	=	Inactive
1	=	Active

FULLTEXT_CATALOG_NAME sysname Full-text	catalog	in	which
the	full-text	index	data
resides.

Permissions
Execute	permissions	default	to	members	of	the	public	role.

Examples
This	example	returns	the	names	of	the	full-text	indexed	tables	associated	with
the	Cat_Desc	full-text	catalog.

USE	Northwind
EXEC	sp_help_fulltext_tables	'Cat_Desc'

See	Also

INDEXPROPERTY

OBJECTPROPERTY

sp_fulltext_table

sp_help_fulltext_tables_cursor

System	Stored	Procedures

Transact-SQL	Reference

sp_help_fulltext_tables_cursor
Uses	a	cursor	to	return	a	list	of	tables	that	are	registered	for	full-text	indexing.

Syntax
sp_help_fulltext_tables_cursor	[@cursor_return	=]	@cursor_variable
OUTPUT	
				[,	[@fulltext_catalog_name	=]	'fulltext_catalog_name']	
				[,	[@table_name	=]	'table_name']

Arguments
[@cursor_return	=]	@cursor_variable	OUTPUT

Is	the	output	variable	of	type	cursor.	The	cursor	is	a	read-only,	scrollable,
dynamic	cursor.

[@fulltext_catalog_name	=]	'fulltext_catalog_name'

Is	the	name	of	the	full-text	catalog.	fulltext_catalog_name	is	sysname,	with	a
default	of	NULL.	If	fulltext_catalog_name	is	omitted	or	is	NULL,	all	full-
text	indexed	tables	associated	with	the	database	are	returned.	If
fulltext_catalog_name	is	specified,	but	table_name	is	omitted	or	is	NULL,
the	full-text	index	information	is	retrieved	for	every	full-text	indexed	table
associated	with	this	catalog.	If	both	fulltext_catalog_name	and	table_name
are	specified,	a	row	is	returned	if	table_name	is	associated	with
fulltext_catalog_name;	otherwise,	an	error	is	raised.

[@table_name	=]	'table_name'

Is	the	one-	or	two-part	table	name	for	which	the	full-text	metadata	is
requested.	table_name	is	nvarchar(517),	with	a	default	value	of	NULL.	If
only	table_name	is	specified,	only	the	row	relevant	to	table_name	is
returned.

Return	Code	Values
0	(success)	or	(1)	failure

Result	Sets

Column	name
Data
type Description

TABLE_OWNER sysname Table	owner.	This	is	the
name	of	the	database	user
that	created	the	table.

TABLE_NAME sysname Table	name.
FULLTEXT_KEY_INDEX_NAMEsysname Index	imposing	the

UNIQUE	constraint	on	the
column	designated	as	the
unique	key	column.

FULLTEXT_KEY_COLID integer Column	ID	of	the	unique
index	identified	by
FULLTEXT_KEY_NAME.

FULLTEXT_INDEX_ACTIVE integer Specifies	whether	columns
marked	for	full-text
indexing	in	this	table	are
eligible	for	queries:

0	=	Inactive
1	=	Active

FULLTEXT_CATALOG_NAME sysname Full-text	catalog	in	which
the	full-text	index	data
resides.

Permissions
Execute	permissions	default	to	members	of	the	public	role.

Examples
This	example	returns	the	names	of	the	full-text	indexed	tables	associated	with
the	Cat_Desc	full-text	catalog.

USE	Northwind

GO
DECLARE	@mycursor	CURSOR
EXEC	sp_help_fulltext_tables_cursor	@mycursor	OUTPUT,	'Cat_Desc'
FETCH	NEXT	FROM	@mycursor
WHILE	(@@FETCH_STATUS	<>	-1)
			BEGIN
						FETCH	NEXT	FROM	@mycursor
			END
CLOSE	@mycursor
DEALLOCATE	@mycursor
GO	

See	Also

INDEXPROPERTY

OBJECTPROPERTY

sp_fulltext_table

sp_help_fulltext_tables

System	Stored	Procedures

Transact-SQL	Reference

sp_helpgroup
Reports	information	about	a	role,	or	all	roles,	in	the	current	database.	This
procedure	is	included	for	backward	compatibility.	Microsoft®	SQL	Server™
version	7.0	uses	roles	instead	of	groups.	Use	sp_helprole.

Syntax
sp_helpgroup	[[@grpname	=]	'role']

Arguments
[@grpname	=]	'role'

Is	the	name	of	a	role.	role	must	exist	in	the	current	database.	role	is	sysname,
with	a	default	of	NULL.	If	role	is	specified,	information	about	the	name	of
the	role	and	the	members	of	the	role	is	returned;	otherwise,	information
about	all	the	roles	in	the	current	database	is	returned.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
role	is	not	specified.

Column	name Data	type Description
Group_name sysname Name	of	the	role	in	the	current

database.
Group_id smallint Role	ID	for	the	role	in	the	current

database.

role	is	specified.

Column	name Data	type Description
Group_name sysname Name	of	the	role	in	the	current

database.
Group_id smallint Role	ID	for	the	role	in	the	current

database.
Users_in_group sysname Member	of	the	role	in	the	current

database.
Userid smallint User	ID	for	the	member	of	the	role.

Remarks
To	view	the	permissions	associated	with	the	role,	use	sp_helprotect.

Permissions
Execute	permissions	default	to	the	public	role.

Examples

A.	Return	information	about	a	single	role
This	example	returns	information	about	the	hackers	role.

EXEC	sp_helpgroup	'hackers'

B.	Return	information	about	all	roles
This	example	returns	information	about	all	roles	in	the	current	database.

EXEC	sp_helpgroup

See	Also

sp_helprotect

sp_helprole

sp_helpuser

System	Stored	Procedures

Transact-SQL	Reference

sp_helphistory
sp_helphistory	is	provided	for	backward	compatibility.	For	more	information
about	the	replacement	procedures	for	Microsoft®	SQL	Server™	2000,	see	SQL
Server	SQL	Server	Backward	Compatibility	Details.

Remarks
The	results	of	sp_helphistory	are	determined	by	a	match	on	all	specified
parameters.

Permissions
Execute	permissions	default	to	the	public	role.	Anyone	who	can	execute	this
procedure	can	also	create,	delete,	or	update	a	job,	job	step,	job	category,	job
schedule,	job	server,	task,	or	job	history	information.

See	Also

sp_addtask

sp_purgehistory

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_help_job
Returns	information	about	jobs	that	are	used	by	SQLServerAgent	service	to
perform	automated	activities	in	Microsoft®	SQL	Server™.

Syntax
sp_help_job	[[@job_id	=]	job_id]	
				[,	[@job_name	=]	'job_name']	
				[,	[@job_aspect	=]	'job_aspect']	
				[,	[@job_type	=]	'job_type']	
				[,	[@owner_login_name	=]	'login_name']	
				[,	[@subsystem	=]	'subsystem']	
				[,	[@category_name	=]	'category']	
				[,	[@enabled	=]	enabled]	
				[,	[@execution_status	=]	status]	
				[,	[@date_comparator	=]	'date_comparison']	
				[,	[@date_created	=]	date_created]	
				[,	[@date_last_modified	=]	date_modified]	
				[,	[@description	=]	'description_pattern']

Arguments
[@job_id	=]	job_id

Is	the	job	identification	number.	job_id	is	uniqueidentifier,	with	a	default	of
NULL.

[@job_name	=]	'job_name'

Is	the	name	of	the	job.	job_name	is	sysname,	with	a	default	of	NULL.

Note		Either	job_id	or	job_name	must	be	specified,	but	both	cannot	be	specified.

[@job_aspect	=]	'job_aspect'

Is	the	job	attribute	to	display.	job_aspect	is	varchar(9),	with	a	default	of
NULL,	and	can	be	one	of	these	values.

Value Description
ALL Job	aspect	information
JOB Job	information
SCHEDULES Schedule	information
STEPS Job	step	information
TARGETS Target	information

[@job_type	=]	'job_type'

Is	the	type	of	jobs	to	include	in	the	report.	job_type	is	varchar(12),	with	a
default	of	NULL.	job_type	can	be	LOCAL	or	MULTI-SERVER.

[@owner_login_name	=]	'login_name'

Is	the	login	name	of	the	owner	of	the	job.	login_name	is	sysname,	with	a
default	of	NULL.

[@subsystem	=]	'subsystem'

Is	the	name	of	the	subsystem.	subsystem	is	nvarchar(60),	with	a	default	of
NULL.

[@category_name	=]	'category'

Is	the	name	of	the	category.	category	is	sysname,	with	a	default	of	NULL.

[@enabled	=]	enabled

Is	a	number	indicating	whether	information	is	shown	for	enabled	jobs	or
disabled	jobs.	enabled	is	tinyint,	with	a	default	of	NULL.	1	indicates
enabled	jobs,	and	0	indicates	disabled	jobs.

[@execution_status	=]	status

Is	the	execution	status	for	the	jobs.	status	is	int,	with	a	default	of	NULL,	and
can	be	one	of	these	values.

Value Description
0 Returns	only	those	jobs	that	are	not	idle	or

suspended.
1 Executing.

2 Waiting	for	thread.
3 Between	retries.
4 Idle.
5 Suspended.
7 Performing	completion	actions.

[@date_comparator	=]	'date_comparison'

Is	the	comparison	operator	to	use	in	comparisons	of	date_created	and
date_modified.	date_comparison	is	char(1),	and	can	be		=,	<,	or	>.

[@date_created	=]	date_created

Is	the	date	the	job	was	created.	date_created	is	datetime,	with	a	default	of
NULL.

[@date_last_modified	=]	date_modified

Is	the	date	the	job	was	last	modified.	date_modified	is	datetime,	with	a
default	of	NULL.

[@description	=]	'description_pattern'

Is	the	description	of	the	job.	description_pattern	is	nvarchar(512),	with	a
default	of	NULL.	description_pattern	can	include	the	SQL	Server	wildcard
characters	for	pattern	matching.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
If	no	arguments	are	specified,	sp_help_job	returns	this	result	set.

Column	name Data	type Description
job_id uniqueidentifier Unique	ID	of	the	job.
originating_server nvarchar(30) Name	of	the	server	from

which	the	job	came.

name sysname Name	of	the	job.
enabled tinyint Indicates	whether	the	job	is

enabled	to	be	executed.
description nvarchar(512) Description	for	the	job.
start_step_id int ID	of	the	step	in	the	job	where

execution	should	begin.
category sysname Job	category.
owner sysname Job	owner.
notify_level_eventlog int Bitmask	indicating	under

what	circumstances	a
notification	event	should	be
logged	to	the	Microsoft
Windows	NT®	application
log.	Can	be	one	of	these
values:

0	=	Never
1	=	When	a	job	succeeds
2	=	When	the	job	fails
3	=	Whenever	the	job
completes	(regardless	of	the
job	outcome)

notify_level_email int Bitmask	indicating	under
what	circumstances	a
notification	e-mail	should	be
sent	when	a	job	completes.
Possible	values	are	the	same
as	for	notify_level_eventlog.

notify_level_netsend int Bitmask	indicating	under
what	circumstances	a	network
message	should	be	sent	when
a	job	completes.	Possible
values	are	the	same	as	for
notify_level_eventlog.

notify_level_page int Bitmask	indicating	under
what	circumstances	a	page

should	be	sent	when	a	job
completes.	Possible	values	are
the	same	as	for
notify_level_eventlog.

notify_email_operator sysname E-mail	name	of	the	operator
to	notify.

notify_netsend_operator sysname Name	of	the	computer	or	user
used	when	sending	network
messages.

notify_page_operator sysname Name	of	the	computer	or	user
used	when	sending	a	page.

delete_level int Bitmask	indicating	under
what	circumstances	the	job
should	be	deleted	when	a	job
completes.	Possible	values	are
the	same	as	for
notify_level_eventlog.

date_created datetime Date	the	job	was	created.
date_modified datetime Date	the	job	was	last

modified.
version_number int Version	of	the	job

(automatically	updated	each
time	the	job	is	modified).

last_run_date int Date	the	job	last	started
execution.

last_run_time int Time	the	job	last	started
execution.

last_run_outcome int Outcome	of	the	job	the	last
time	it	ran:

0	=	Failed
1	=	Succeeded
3	=	Canceled
5	=	Unknown

next_run_date int Date	the	job	is	scheduled	to

run	next.
next_run_time int Time	the	job	is	scheduled	to

run	next.
next_run_schedule_id int Identification	number	of	the

next	run	schedule.
current_execution_status int Current	execution	status.
current_execution_step sysname Current	execution	step	in	the

job.
current_retry_attempt int If	the	job	is	running	and	the

step	has	been	retried,	this	is
the	current	retry	attempt.

has_step int Number	of	job	steps	the	job
has.

has_schedule int Number	of	job	schedules	the
job	has.

has_target int Number	of	target	servers	the
job	has.

Type int 1	=	Local	job.
2	=	Multiserver	job.
0	=	Job	has	no	target	servers.

If	job_id	or	job_name	is	specified,	sp_help_job	returns	these	additional	result
sets	for	job	steps,	job	schedules,	and	job	target	servers.

This	is	the	result	set	for	job	steps.

Column	name Data	type Description
step_id int Unique	(for	this	job)	identifier

for	the	step.
step_name sysname Name	of	the	step.
Subsystem nvarchar(40) Subsystem	in	which	to	execute

the	step	command.
Command nvarchar(3200) Command	to	execute.
Flags nvarchar(4000) Bitmask	of	values	that	control

step	behavior.

cmdexec_success_code int For	a	CmdExec	step,	this	is	the
process	exit	code	of	a	successful
command.

on_success_action nvarchar(4000) What	to	do	if	the	step	succeeds:

1	=	Quit	with	success.
2	=	Quit	with	failure.
3	=	Go	to	next	step.
4	=	Go	to	step.

on_success_step_id int If	on_success_action	is	4,	this
indicates	the	next	step	to
execute.

on_fail_action nvarchar(4000) Action	to	take	if	the	step	fails.
Values	are	the	same	as	for
on_success_action.

on_fail_step_id int If	on_fail_action	is	4,	this
indicates	the	next	step	to
execute.

Server sysname Reserved.
database_name sysname For	a	Transact=SQL	step,	this	is

the	database	in	which	the
command	will	executes.

database_user_name sysname For	a	Transact=SQL	step,	this	is
the	database	user	context	in
which	the	command	executes.

retry_attempts int Maximum	number	of	times	the
command	should	be	retried	(if	it
is	unsuccessful)	before	the	step
is	deemed	to	have	failed.

retry_interval int Interval	(in	minutes)	between
any	retry	attempts.

os_run_priority varchar(4000) Reserved.
output_file_name varchar(200) File	to	which	command	output

should	be	written
(Transact=SQL	and	CmdExec
steps	only).

last_run_outcome int Outcome	of	the	step	the	last	time
it	ran:

0	=	Failed
1	=	Succeeded
3	=	Canceled
5	=	Unknown

last_run_duration int Duration	(in	seconds)	of	the	step
the	last	time	it	ran.

last_run_retries int Number	of	times	the	command
was	retried	the	last	time	the	step
ran.

last_run_date int Date	the	step	last	started
execution.

last_run_time int Time	the	step	last	started
execution.

This	is	the	result	set	for	job	schedules.

Column	name Data	type Description
schedule_id int Identifier	of	the	schedule

(unique	across	all	jobs).
schedule_name sysname Name	of	the	schedule	(unique

for	this	job	only).
Enabled int Whether	the	schedule	is	active

(1)	or	not	(0).
freq_type int Value	indicating	when	the	job	is

to	be	executed:

1	=	Once
4	=	Daily
8	=	Weekly
16	=	Monthly
32	=	Monthly,	relative	to	the
freq_interval

64	=	Run	when
SQLServerAgent	service	starts.

freq_interval int Days	when	the	job	is	executed.
The	value	depends	on	the	value
of	freq_type.	For	more
information,	see
sp_add_jobschedule.

freq_subday_type int Units	for
freq_subday_interval.	For
more	information,	see
sp_add_jobschedule.

freq_subday_interval int Number	of	freq_subday_type
periods	to	occur	between	each
execution	of	the	job.	For	more
information,	see
sp_add_jobschedule.

freq_relative_interval int Scheduled	job's	occurrence	of
the	freq_interval	in	each
month.	For	more	information,
see	sp_add_jobschedule.

freq_recurrence_factor int Number	of	months	between	the
scheduled	execution	of	the	job.

active_start_date int Date	to	begin	execution	of	the
job.

active_end_date int Date	to	end	execution	of	the
job.

active_start_time int Time	to	begin	the	execution	of
the	job	on	active_start_date.

active_end_time int Time	to	end	execution	of	the	job
on	active_end_date.

date_created datetime Date	the	schedule	is	created.
schedule_description nvarchar(4000) An	English	description	of	the

schedule	(if	requested).
next_run_date int Date	the	schedule	will	next

cause	the	job	to	run.

next_run_time int Time	the	schedule	will	next
cause	the	job	to	run.

This	is	the	result	set	for	job	target	servers.

Column	name Data	type Description
server_id int Identifier	of	the	target	server.
server_name nvarchar(30) Computer	name	of	the	target

server.
enlist_date datetime Date	the	target	server	enlisted

into	the	master	server	(MSX).
last_poll_date datetime Date	the	target	server	last	polled

the	MSX.
last_run_date int Date	the	job	last	started

execution	on	this	target	server.
last_run_time int Time	the	job	last	started

execution	on	this	target	server.
last_run_duration int Duration	of	the	job	the	last	time

it	ran	on	this	target	server.
last_run_outcome tinyint Outcome	of	the	job	the	last	time

it	ran	on	this	server:

0	=	Failed
1	=	Succeeded
3	=	Canceled
5	=	Unknown

last_outcome_message nvarchar(1024) Outcome	message	from	the	job
the	last	time	it	ran	on	this	target
server.

Permissions
Execute	permissions	default	to	the	public	role	in	the	msdb	database.	A	user	who
can	execute	this	procedure	and	is	a	member	of	the	sysadmin	fixed	role	can	also

create,	delete,	or	update	a	job,	job	step,	job	category,	job	schedule,	job	server,
task,	or	job	history	information.	A	user	who	is	not	a	member	of	the	sysadmin
fixed	role	can	use	sp_help_job	to	view	only	the	jobs	he/she	owns.

When	sp_help_job	is	invoked	by	a	user	who	is	a	member	of	the	sysadmin	fixed
server	role,	sp_help_job	will	be	executed	under	the	security	context	in	which
the	SQL	Server	service	is	running.	When	the	user	is	not	a	member	of	the
sysadmin	group,	sp_help_job	will	impersonate	the	SQL	Server	Agent	proxy
account,	which	is	specified	using	xp_sqlagent_proxy_account.	If	the	proxy
account	is	not	available,	sp_help_job	will	fail.	This	is	true	only	for	Microsoft®
Windows	NT®	4.0	and	Windows	2000.	On	Windows	9.x,	there	is	no
impersonation	and	sp_help_job	is	always	executed	under	the	security	context	of
the	Windows	9.x	user	who	started	SQL	Server.

Examples

A.	List	information	for	all	jobs
This	example	executes	the	sp_help_job	procedure	with	no	parameters	to	return
the	information	for	all	of	the	jobs	currently	defined	in	the	msdb	database.

USE	msdb
EXEC	sp_help_job	

B.	List	information	for	a	specific	job
This	example	lists	all	job	aspect	information	for	the	multiserver	job	named
Archive	Tables,	in	which	the	job	is	enabled	and	has	been	modified	since	its
creation.

USE	msdb
EXEC	sp_help_job	NULL,	'Archive	Tables',	'ALL',	'MULTI-SERVER',	'janetl',
			NULL,	NULL,	1,	1,	'<',	'12/01/97',	'6/25/98',	NULL

See	Also

sp_add_job

sp_delete_job

sp_update_job

System	Stored	Procedures

Transact-SQL	Reference

sp_help_jobhistory
Provides	information	about	the	jobs	for	servers	in	the	multiserver	administration
domain.

Syntax
sp_help_jobhistory	[[@job_id	=]	job_id]	
				[,	[@job_name	=]	'job_name']	
				[,	[@step_id	=]	step_id]	
				[,	[@sql_message_id	=]	sql_message_id]	
				[,	[@sql_severity	=]	sql_severity]	
				[,	[@start_run_date	=]	start_run_date]	
				[,	[@end_run_date	=]	end_run_date]	
				[,	[@start_run_time	=]	start_run_time]	
				[,	[@end_run_time	=]	end_run_time]	
				[,	[@minimum_run_duration	=]	minimum_run_duration]	
				[,	[@run_status	=]	run_status]	
				[,	[@minimum_retries	=]	minimum_retries]	
				[,	[@oldest_first	=]	oldest_first]	
				[,	[@server	=]	'server']	
				[,	[@mode	=]	'mode']

Arguments
[@job_id	=]	job_id

Is	the	job	identification	number.	job_id	is	uniqueidentifier,	with	a	default	of
NULL.

[@job_name	=]	'job_name'

Is	the	name	of	the	job.	job_name	is	sysname,	with	a	default	of	NULL.

[@step_id	=]	step_id

Is	the	step	identification	number.	step_id	is	int,	with	a	default	of	NULL.

[@sql_message_id	=]	sql_message_id

Is	the	identification	number	of	the	error	message	returned	by	Microsoft®
SQL	Server™	when	executing	the	job.	sql_message_id	is	int,	with	a	default
of	NULL.

[@sql_severity	=]	sql_severity

Is	the	severity	level	of	the	error	message	returned	by	SQL	Server	when
executing	the	job.	sql_severity	is	int,	with	a	default	of	NULL.

[@start_run_date	=]	start_run_date

Is	the	date	the	job	was	started.	start_run_date	is	int,	with	a	default	of	NULL.
start_run_date	must	be	entered	in	the	form	YYYYMMDD,	where	YYYY	is
a	four-character	year,	MM	is	a	two-character	month	name,	and	DD	is	a	two-
character	day	name.

[@end_run_date	=]	end_run_date

Is	the	date	the	job	was	completed.	end_run_date	is	int,	with	a	default	of
NULL.	end_run_date	must	be	entered	in	the	form	YYYYMMDD,	where
YYYY	is	a	four-character	year,	MM	is	a	two-character	month	name,	and	DD
is	a	two-character	day	name.

[@start_run_time	=]	start_run_time

Is	the	time	the	job	was	started.	start_run_time	is	int,	with	a	default	of	NULL.
start_run_time	must	be	entered	in	the	form	HHMMSS,	where	HH	is	a	two-
character	hour	of	the	day,	MM	is	a	two-character	minute	of	the	day,	and	SS	is
a	two-character	second	of	the	day.

[@end_run_time	=]	end_run_time

Is	the	time	the	job	completed	its	execution.	end_run_time	is	int,	with	a
default	of	NULL.	end_run_time	must	be	entered	in	the	form	HHMMSS,
where	HH	is	a	two-character	hour	of	the	day,	MM	is	a	two-character	minute
of	the	day,	and	SS	is	a	two-character	second	of	the	day.

[@minimum_run_duration	=]	minimum_run_duration

Is	the	minimum	length	of	time	for	the	completion	of	the	job.
minimum_run_duration	is	int,	with	a	default	of	NULL.
minimum_run_duration	must	be	entered	in	the	form	HHMMSS,	where	HH	is
a	two-character	hour	of	the	day,	MM	is	a	two-character	minute	of	the	day,

and	SS	is	a	two-character	second	of	the	day.

[@run_status	=]	run_status

Is	the	execution	status	of	the	job.	run_status	is	int,	with	a	default	of	NULL,
and	can	be	one	of	these	values.

Value Description
0 Failed
1 Succeeded
2 Retry	(step	only)
3 Canceled
4 In-progress	message
5 Unknown

[@minimum_retries	=]	minimum_retries

Is	the	minimum	number	of	times	a	job	should	retry	running.
minimum_retries	is	int,	with	a	default	of	NULL.

[@oldest_first	=]	oldest_first

Is	whether	to	present	the	output	with	the	oldest	jobs	first.	oldest_first	is	int,
with	a	default	of	0,	which	presents	the	newest	jobs	first.	1	presents	the	oldest
jobs	first.

[@server	=]	'server'

Is	the	name	of	the	server	on	which	the	job	was	performed.	server	is
nvarchar(30),	with	a	default	of	NULL.

[@mode	=]	'mode'

Is	whether	SQL	Server	prints	all	columns	in	the	result	set	(FULL)	or	a
summary	of	the	columns.	mode	is	varchar(7),	with	a	default	of
SUMMARY.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
The	actual	column	list	depends	on	the	value	of	mode.	The	most	comprehensive
set	of	columns	is	shown	below	and	is	returned	when	mode	is	FULL.

Column	name Data	type Description
instance_id int History	entry	identification	number.
job_id uniqueidentifier Job	identification	number.
job_name sysname Job	name.
step_id int Step	identification	number	(will	be	0

for	a	job	history).
step_name sysname Step	name	(will	be	NULL	for	a	job

history).
sql_message_id int For	Transact-SQL	step,	the	most

recent	Transact-SQL	error	number
encountered	while	running	the
command.

sql_severity int For	a	Transact-SQL	step,	the	highest
Transact-SQL	error	severity
encountered	while	running	the
command.

message nvarchar(1024) Job	or	step	history	message.
run_status int Outcome	of	the	job	or	step.
run_date int Date	the	job	or	step	began

executing.
run_time int Time	the	job	or	step	began

executing.
run_duration int Elapsed	time	in	the	execution	of	the

job	or	step	in	HHMMSS	format.
operator_emailed nvarchar(20) Operator	who	was	e-mailed

regarding	this	job	(is	NULL	for	step
history).

operator_netsent nvarchar(20) Operator	who	was	sent	a	network
message	regarding	this	job	(is
NULL	for	step	history).

operator_paged nvarchar(20) Operator	who	was	paged	regarding

this	job	(is	NULL	for	step	history).
retries_attempted int Number	of	times	the	step	was

retried	(always	0	for	a	job	history).
server nvarchar(30) Server	the	step	or	job	executes	on.	Is

always	(local).

Remarks
sp_help_jobhistory	returns	a	report	with	the	history	of	the	specified	scheduled
jobs.	If	no	parameters	are	specified,	the	report	contains	the	history	for	all
scheduled	jobs.

Permissions
Permissions	to	execute	this	procedure	default	to	the	sysadmin	fixed	server	role
or	the	db-owner	fixed	database	role,	who	can	grant	permissions	to	other	users.

Example
This	example	prints	all	columns	and	all	job	information	for	any	failed	jobs	and
failed	job	steps	with	an	error	message	of	50100	(a	user-defined	error	message),	a
severity	of	20,	and	a	start	date	of	June	1,	1998,	on	the	LONDON2	server.

USE	msdb
EXEC	sp_help_jobhistory	NULL,	NULL,	NULL,	50100,	20,	19980601,	NULL,	
			NULL,	NULL,	NULL,	0,	NULL,	1,	'LONDON2',	'FULL'

See	Also

sp_purge_jobhistory

System	Stored	Procedures

Transact-SQL	Reference

sp_help_jobschedule
Returns	information	about	the	scheduling	of	jobs	used	by	SQL	Server	Enterprise
Manager	to	perform	automated	activities.

Syntax
sp_help_jobschedule	
				[@job_id	=]	job_id	|	
				[@job_name	=]	'job_name'	
				[,	[@schedule_name	=]	'schedule_name']	|	
				[,	[@schedule_id	=]	schedule_id]

Arguments
[@job_id	=]	job_id

Is	the	job	identification	number.	job_id	is	uniqueidentifier,	with	a	default	of
NULL.

[@job_name	=]	'job_name'

Is	the	name	of	the	job.	job_name	is	varchar(100),	with	a	default	of	NULL.

Note		Either	job_id	or	job_name	must	be	specified,	but	both	cannot	be	specified.

[@schedule_name	=]	'schedule_name'

Is	the	name	of	the	schedule	item	for	the	job.	schedule_name	is	varchar(100),
with	a	default	of	NULL.

{[@schedule_id	=]	schedule_id

Is	the	identification	number	of	the	schedule	item	for	the	job.	schedule_id	is
int,	with	a	default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
schedule_id int Schedule	identifier	number.
schedule_name sysname Name	of	the	schedule.
enabled int Whether	the	schedule	enabled	(1)

or	not	enabled	(0).
freq_type int Value	indicating	when	the	job	is

to	be	executed.

1	=	Once
4	=	Daily
8	=	Weekly
16	=	Monthly
32	=	Monthly,	relative	to	the
freq_	interval
64	=	Run	when	SQLServerAgent
service	starts.

freq_interval int Days	when	the	job	is	executed.
The	value	depends	on	the	value
of	freq_type.	For	more
information,	see
sp_add_jobschedule.

freq_subday_type int Units	for	freq_subday_interval.
For	more	information,	see
sp_add_jobschedule.

freq_subday_interval int Number	of	freq_subday_type
periods	to	occur	between	each
execution	of	the	job.	For	more
information,	see
sp_add_jobschedule.

freq_relative_interval int Scheduled	job's	occurrence	of	the
freq_interval	in	each	month.	For
more	information,	see
sp_add_jobschedule.

freq_recurrence_factor int Number	of	months	between	the

scheduled	execution	of	the	job.
active_start_date int Date	the	schedule	is	activated.
active_end_date int End	date	of	the	schedule.
active_start_time int Time	of	the	day	the	schedule

starts.
active_end_time int Time	of	the	day	schedule	ends.
date_created datetime Date	the	schedule	is	created.
schedule_description nvarchar(4000)An	English	description	of	the

schedule	(if	scheduled).
next_run_date int Date	the	schedule	will	next	cause

the	job	to	run.
next_run_time int Time	the	schedule	will	next

cause	the	job	to	run.

Remarks
The	parameters	of	sp_help_jobschedule	can	be	used	only	in	certain
combinations.	If	schedule_id	is	specified,	neither	job_id	nor	job_name	can	be
specified.	Otherwise,	the	job_id	or	job_name	parameters	can	be	used	with
schedule_name.

Permissions
Execute	permissions	default	to	the	public	role.	Anyone	who	can	execute	this
procedure	can	also	create,	delete,	or	update	a	job,	job	step,	job	category,	job
schedule,	job	server,	task,	or	job	history	information.

Examples

A.	Return	the	job	schedule	for	a	specific	job
This	example	returns	the	scheduling	information	for	a	job	named	Archive
Tables.

USE	msdb

EXEC	sp_help_jobhistory	@job_name	=	'Archive	Tables'

B.	Return	the	job	schedule	for	a	named	item	in	the	schedule
This	example	returns	the	history	for	a	job	named	Archive	Tables	and	for	its
schedule	item	Weekly	Archive.

USE	msdb
EXEC	sp_help_jobhistory	@job_name	=	'Archive	Tables',	
			@schedule_name	=	'Weekly	Archive'

See	Also

sp_add_jobschedule

sp_delete_jobschedule

sp_update_jobschedule

System	Stored	Procedures

Transact-SQL	Reference

sp_help_jobserver
Returns	information	about	the	server	for	a	given	job.

Syntax
sp_help_jobserver	[@job_id	=]	job_id	|	
				[@job_name	=]	'job_name'	
				[,	[@show_last_run_details	=]	show_last_run_details]

Arguments
[@job_id	=]	job_id

Is	the	job	identification	number	for	which	to	return	information.	job_id	is
uniqueidentifier,	with	a	default	of	NULL.

[@show_last_run_detail	=]	'job_name'

Is	the	job	name	for	which	to	return	information.	job_name	is	sysname,	with
a	default	of	NULL.

Note		Either	job_id	or	job_name	must	be	specified,	but	both	cannot	be	specified.

[@show_last_run_details	=]	show_last_run_details

Is	whether	the	last-run	execution	information	is	part	of	the	result	set.
show_last_run_details	is	tinyint,	with	a	default	of	0.	0	does	not	include	last-
run	information,	and	1	does.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
server_id int Identification	number	of	the	target

server.

server_name nvarchar(30) Computer	name	of	the	target	server.
enlist_date datetime Date	the	target	server	enlisted	into

the	master	server	(MSX).
last_poll_date datetime Date	the	target	server	last	polled	the

MSX.

If	sp_help_jobserver	is	executed	with	show_last_run_details	set	to	1,	the	result
set	has	these	additional	columns.

Column	name Data	type Description
last_run_date Int Date	the	job	last	started

execution	on	this	target	server.
last_run_time Int Time	the	job	last	started

execution	on	this	server.
last_run_duration Int Duration	of	the	job	the	last	time

it	ran	on	this	target	server	(in
seconds).

last_outcome_message nvarchar(1024) Outcome	of	the	job	the	last	time
it	ran	on	this	server:

0	=	Failed
1	=	Succeeded
3	=	Canceled
5	=	Unknown

Permissions
Permissions	to	execute	this	procedure	default	to	the	sysadmin	fixed	server	role
or	the	db_owner	fixed	data	base	role,	who	can	grant	permissions	to	other	users.

Examples
This	example	returns	information,	including	last-run	information,	about	the
Archive	Tables	job.

USE	msdb
EXEC	sp_help_jobserver	@job_name	=	'Archive	Tables',
			@show_last_run_details	=	1

See	Also

sp_add_jobserver

sp_delete_jobserver

System	Stored	Procedures

Transact-SQL	Reference

sp_help_jobstep
Returns	information	for	the	steps	in	a	job	used	by	SQLServerAgent	service	to
perform	automated	activities.

Syntax
sp_help_jobstep	[@job_id	=]	'job_id'	|	
				[@job_name	=]	'job_name'	
				[,	[@step_id	=]	step_id]	
				[,	[@step_name	=]	'step_name']	
				[,	[@suffix	=]	suffix]

Arguments
[@job_id	=]	'job_id'

Is	the	job	identification	number	for	which	to	return	job	information.	job_id	is
uniqueidentifier,	with	a	default	of	NULL.

[@job_name	=]	'job_name'

Is	the	name	of	the	job.	job_name	is	sysname,	with	a	default	NULL.

Note		Either	job_id	or	job_name	must	be	specified,	but	both	cannot	be	specified.

[@step_id	=]	step_id

Is	the	identification	number	of	the	step	in	the	job.	If	not	included,	all	steps	in
the	job	are	included.	step_id	is	int,	with	a	default	of	NULL.

[@step_name	=]	'step_name'

Is	the	name	of	the	step	in	the	job.	step_name	is	sysname,	with	a	default	of
NULL.

[@suffix	=]	suffix

Is	a	flag	indicating	whether	a	text	description	is	appended	to	the	flags
column	in	the	output.	suffix	is	bit,	with	the	default	of	0.	If	suffix	is	1,	a
description	is	appended.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
step_id Int Unique	identifier	for	the	step.
step_name sysname Name	of	the	step	in	the	job.
subsystem nvarchar(40) Subsystem	in	which	to	execute

the	step	command.
command nvarchar(3200) Command	executed	in	the	step.
flags Int A	bitmask	of	values	that	control

step	behavior.
cmdexec_success_code Int For	a	CmdExec	step,	this	is	the

process	exit	code	of	a	successful
command.

on_success_action timyint Action	to	take	if	the	step
succeeds:

1	=	Quit	the	job	reporting
success.
2	=	Quit	the	job	reporting	failure.
3	=	Go	to	the	next	step.
4	=	Go	to	step.

on_success_step_id Int If	on_success_action	is	4,	this
indicates	the	next	step	to	execute.

on_fail_action Tinyint What	to	do	if	the	step	fails.
Values	are	same	as
on_success_action.

on_fail_step_id Int If	on_fail_action	is	4,	this
indicates	the	next	step	to	execute.

server sysname Reserved.
database_name sysname For	a	Transact-SQL	step,	this	is

the	database	in	which	the
command	executes.

database_user_name sysname For	a	Transact-SQL	step,	this	is
the	database	user	context	in
which	the	command	executes.

retry_attempts Int Maximum	number	of	times	the
command	should	be	retried	(if	it
is	unsuccessful).

retry_interval Int Interval	(in	minutes)	for	any	retry
attempts.

os_run_priority Int Reserved.
output_file_name nvarchar(200) File	to	which	command	output

should	be	written	(Transact-SQL
and	CmdExec	steps	only).

last_run_outcome Int Outcome	of	the	step	the	last	time
it	ran:

0	=	Failed
1	=	Succeeded
2	=	Retry
3	=	Canceled
5	=	Unknown

last_run_duration Int Duration	(in	seconds)	of	the	step
the	last	time	it	ran.

last_run_retries Int Number	of	times	the	command
was	retried	the	last	time	the	step
ran.

last_run_date Int Date	the	step	last	started
execution.

last_run_time Int Time	the	step	last	started
execution.

Permissions
Execute	permissions	default	to	the	public	role.	Anyone	who	can	execute	this
procedure	can	also	create,	delete,	or	update	a	job,	job	step,	job	category,	job
schedule,	job	server,	task,	or	job	history	information.

Examples

A.	Return	information	for	all	steps	in	a	specific	job
This	example	returns	all	the	job	steps	for	a	job	named	Backup	Files.

USE	msdb
EXEC	sp_help_jobstep	@job_name	=	'Backup	Files'

B.	Return	information	about	a	specific	job	step
This	example	returns	information	about	the	first	job	step	for	the	job	named
Backup	Files.

USE	msdb
EXEC	sp_help_jobstep	@job_name	=	'Backup	Files',	@step_id	=	1

See	Also

sp_add_jobstep

sp_delete_jobstep

sp_help_job

sp_update_jobstep

System	Stored	Procedures

Transact-SQL	Reference

sp_helpindex
Reports	information	about	the	indexes	on	a	table	or	view.

Syntax
sp_helpindex	[@objname	=]	'name'

Arguments
[@objname	=]	'name'

Is	the	name	of	a	table	or	view	in	the	current	database.	name	is
nvarchar(776),	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
index_name sysname Index	name.
index_description varchar(210) Index	description.
index_keys nvarchar(2078) Table	or	view	column(s)

upon	which	the	index	is
built.

A	descending	indexed	column	will	be	listed	in	the	result	set	with	a	minus	sign	(-)
following	its	name;	an	ascending	indexed	column,	the	default,	will	be	listed	by
its	name	alone.

Remarks
If	indexes	have	been	set	with	the	NORECOMPUTE	option	of	UPDATE
STATISTICS,	that	information	is	shown	in	the	result	set	of	sp_helpindex.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	reports	on	the	types	of	indexes	on	the	sysobjects	table.

sp_helpindex	sysobjects

See	Also

CREATE	INDEX

DROP	INDEX

DROP	STATISTICS

sp_help

sp_statistics

System	Stored	Procedures

UPDATE	STATISTICS

Transact-SQL	Reference

sp_helplanguage
Reports	information	about	a	particular	alternate	language	or	about	all	languages.

Syntax
sp_helplanguage	[[@language	=]	'language']

Arguments
[@language	=]	'language'

Is	the	name	of	the	alternate	language	for	which	to	display	information.	language
is	sysname,	with	a	default	of	NULL.	If	language	is	specified,	information	about
the	specified	language	is	returned.	If	language	is	not	specified,	information	about
all	languages	in	the	syslanguages	system	table	is	returned.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
langid smallint Language	identification	number.
dateformat nchar(3) Format	of	the	date.
datefirst tinyint First	day	of	the	week:	1	for	Monday,	2

for	Tuesday,	and	so	on	through	7	for
Sunday.

upgrade int Microsoft®	SQL	Server™	version	of
the	last	upgrade	for	this	language.

name sysname Language	name.
alias sysname Alternate	name	of	the	language.
months nvarchar(372) Month	names.
shortmonths nvarchar(132) Short	month	names.
days nvarchar(217) Day	names.

lcid int Microsoft	Windows	NT®	locale	ID	for
the	language.

msglangid smallint SQL	Server	message	group	ID.

Permissions
Execute	permissions	default	to	the	public	role.

Examples

A.	Return	information	about	a	single	language
This	example	displays	information	about	the	alternate	language	French.

sp_helplanguage	french

B.	Return	information	about	all	languages
This	example	displays	information	about	all	installed	alternate	languages.

sp_helplanguage

See	Also

@@LANGUAGE

SET	LANGUAGE

System	Stored	Procedures

Transact-SQL	Reference

sp_helplinkedsrvlogin
Provides	information	about	login	mappings	defined	against	a	specific	linked
server	used	for	distributed	queries	and	remote	stored	procedures.

Syntax
sp_helplinkedsrvlogin	[[@rmtsrvname	=]	'rmtsrvname']	
				[,	[@locallogin	=]	'locallogin']

Arguments
[@rmtsrvname	=]	'rmtsrvname'

Is	the	name	of	the	linked	server	that	the	login	mapping	applies	to.
rmtsrvname	is	sysname,	with	a	default	of	NULL.	If	NULL,	all	login
mappings	defined	against	all	the	linked	servers	defined	in	the	local	computer
running	Microsoft®	SQL	Server™	are	returned.

[@locallogin	=]	'locallogin'

Is	the	SQL	Server	login	on	the	local	server	that	has	a	mapping	to	the	linked
server	rmtsrvname.	locallogin	is	sysname,	with	a	default	of	NULL.	NULL
specifies	that	all	login	mappings	defined	on	rmtsrvname	are	returned.	If	not
NULL,	a	mapping	for	locallogin	to	rmtsrvname	must	already	exist.
locallogin	can	be	an	SQL	Server	login	or	a	Microsoft	Windows	NT®	user.
The	Windows	NT	user	must	have	been	granted	access	to	SQL	Server	either
directly	or	through	its	membership	in	a	Windows	NT	group	that	has	been
granted	access.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
Linked	Server sysname Linked	server	name.

Local	Login sysname Local	login	for	which	the	mapping	applies.
Is	Self	Mapping smallint 0	=	Local	Login	is	mapped	to	Remote

Login	when	connecting	to	Linked	Server.
1	=	Local	Login	is	mapped	to	the	same	login
and	password	when	connecting	to	Linked
Server.

Remote	Login sysname Login	name	on	Linked	Server	that	is
mapped	to	Local	Login	when	Is	Self
Mapping	is	0.	If	Is	Self	Mapping	is	1,
Remote	Login	is	NULL.

Remarks
Before	deleting	login	mappings,	use	sp_helplinkedsrvlogin	to	determine	the
linked	servers	that	are	involved.

Permissions
Execution	permissions	default	to	the	public	role.

Examples

A.	Display	all	login	mappings	for	all	linked	servers
This	example	displays	all	login	mappings	for	all	linked	servers	defined	on	the
local	computer	running	SQL	Server.

EXEC	sp_helplinkedsrvlogin
go

Linked	Server				Local	Login			Is	Self	Mapping	Remote	Login	
----------------	-------------	---------------	--------------	
Accounts									NULL										1															NULL
Sales												NULL										1															NULL
Sales												Mary										0															sa

Marketing								NULL										1															NULL

(4	row(s)	affected)

B.	Display	all	login	mappings	for	a	linked	server
This	example	displays	all	locally	defined	login	mappings	for	the	Sales	linked
server.

EXEC	sp_helplinkedsrvlogin	'Sales'
go

Linked	Server				Local	Login			Is	Self	Mapping	Remote	Login	
----------------	-------------	---------------	--------------	
Sales												NULL										1															NULL
Sales												Mary										0															sa

(2	row(s)	affected)

C.	Display	all	login	mappings	for	a	local	login
This	example	displays	all	locally	defined	login	mappings	for	the	login	Mary.

EXEC	sp_helplinkedsrvlogin	NULL,	'Mary'
go

Linked	Server				Local	Login			Is	Self	Mapping	Remote	Login	
----------------	-------------	---------------	--------------	
Sales												NULL										1															NULL
Sales												Mary										0															sa

(2	row(s)	affected)

See	Also

Establishing	Security	for	Linked	Servers

JavaScript:hhobj_1.Click()

sp_addlinkedserver

sp_droplinkedsrvlogin

System	Stored	Procedures

Transact-SQL	Reference

sp_helplogins
Provides	information	about	logins	and	the	associated	users	in	each	database.

Syntax
sp_helplogins	[[@LoginNamePattern	=]	'login']

Arguments
[@LoginNamePattern	=]	'login'

Is	a	login	name.	login	is	sysname,	with	a	default	of	NULL.	login	must	exist
if	specified.	If	login	is	not	specified,	information	about	all	logins	is	returned.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
The	first	report	contains	information	about	each	login	specified.

Column	name Data	type Description
LoginName sysname Login	name.
SID varbinary(85) Login	security	identifier.
DefDBName sysname Default	database	that	LoginName	uses

when	connecting	to	Microsoft®	SQL
Server™.

DefLangName sysname Default	language	used	by	LoginName.
Auser char(5) Yes	=	LoginName	has	an	associated	user

name	in	a	database.
No	=	LoginName	does	not	have	an
associated	user	name.

ARemote char(7) Yes	=	LoginName	has	an	associated
remote	login.

No	=	LoginName	does	not	have	an
associated	login.

The	second	report	contains	information	about	users	and	aliases	associated	with
each	login.

Column	name Data	type Description
LoginName sysname Login	name.
DBName sysname Default	database	that	LoginName	uses

when	connecting	to	SQL	Server.
UserName sysname User	account	that	LoginName	is	mapped

to	in	DBName,	and	the	roles	that
LoginName	is	a	member	of	in
DBName.

UserOrAlias char(8) MemberOf	=	UserName	is	a	role.
User	=	UserName	is	a	user	account.

Remarks
Before	removing	logins,	use	sp_helplogins	to	determine	the	user	accounts	the
login	maps	to.

Permissions
Only	members	of	the	sysadmin	and	securityadmin	fixed	server	roles	can
execute	sp_helplogins.

sp_helplogins	must	check	all	databases	on	the	server	to	determine	the	user
accounts	in	those	databases	associated	with	the	logins.	Therefore,	for	each
database	on	the	server,	one	of	these	must	apply:

The	user	executing	sp_helplogins	must	have	permissions	to	access	the
database.

The	guest	user	account	must	exist	in	the	database.

If	a	database	cannot	be	accessed,	sp_helplogins	displays	error	message	15622
and	as	much	information	as	it	can	for	logins	associated	with	user	accounts	in
those	databases.

Examples
This	example	reports	information	about	the	login	John.

EXEC	sp_helplogins	'John'
go

LoginName	SID																								DefDBName	DefLangName	AUser	ARemote	
---------	--------------------------	---------	-----------	-----	-------	
John						0x23B348613497D11190C100C		master				us_english		yes			no

(1	row(s)	affected)

LoginName			DBName			UserName			UserOrAlias	
---------			------			--------			-----------	
John								pubs					John							User								

(1	row(s)	affected)

See	Also

sp_helpuser

System	Stored	Procedures

Transact-SQL	Reference

sp_help_maintenance_plan
Returns	information	about	the	specified	maintenance	plan.	If	a	plan	is	not
specified,	this	stored	procedure	returns	information	about	all	maintenance	plans.

Syntax
sp_help_maintenance_plan	[[@plan_id	=]	'plan_id']

Arguments
[@plan_id	=]	'plan_id'

Specifies	the	plan	ID	of	the	maintenance	plan.	plan_id	is
UNIQUEIDENTIFIER.	The	default	is	NULL.

Return	Code	Values
None

Result	Sets
If	plan_id	is	specified,	sp_help_maintenance_plan	will	return	three	tables:
Plan,	Database,	and	Job.

Plan	Table

Column	name Data	type Description
plan_id uniqueidentifier Maintenance	plan	ID.
plan_name sysname Maintenance	plan	name.
date_created datetime Date	the	maintenance

plan	was	created.
owner sysname Owner	of	the

maintenance	plan.
max_history_rows int Maximum	number	of

rows	allotted	for
recording	the	history	of

the	maintenance	plan	in
the	system	table.

remote_history_server int The	name	of	the	remote
server	to	which	the
history	report	could	be
written.

max_remote_history_rows int Maximum	number	of
rows	allotted	in	the
system	table	on	a	remote
server	to	which	the
history	report	could	be
written.

user_defined_1 int Default	is	NULL.
user_defined_2 nvarchar(100) Default	is	NULL.
user_defined_3 datetime Default	is	NULL.
user_defined_4 uniqueidentifier Default	is	NULL.

Database	Table

Column	name Description
database_name Name	of	all	databases	associated	with	the

maintenance	plan.	database_name	is	sysname.

Job	Table

Column	name Description
job_id ID	of	all	jobs	associated	with	the	maintenance

plan.	job_id	is	uniqueidentifier.

If	no	plan	ID	is	specified,	or	is	NULL,	sp_help_maintenance_plan	will	return
information	about	all	existing	maintenance	plans.

Column	name Data	type Description
plan_id uniqueidentifier Maintenance	plan	ID.

plan_name sysname Maintenance	plan	name.
date_created datetime Date	the	maintenance

plan	was	created.
owner sysname Maintenance	plan	owner.
max_history_rows int Maximum	number	of

rows	allotted	for
recording	the	history	of
the	maintenance	plan	in
the	system	table.

remote_history_server int Name	of	the	remote
server	to	which	the
history	report	could	be
written.

max_remote_history_rows int Maximum	number	of
rows	allotted	in	the
system	table	on	a	remote
server	to	which	the
history	report	could	be
written.

user_defined_1 int Default	is	NULL.
user_defined_2 nvarchar(100) Default	is	NULL.
user_defined_3 datetime Default	is	NULL.
user_defined_4 uniqueidentifier Default	is	NULL.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_help_maintenance_plan.

Transact-SQL	Reference

sp_help_notification
Reports	a	list	of	alerts	for	a	given	operator	or	a	list	of	operators	for	a	given	alert.

Syntax
sp_help_notification	[@object_type	=]	'object_type'	,	
				[@name	=]	'name'	,	
				[@enum_type	=]	'enum_type'	,	
				[@notification_method	=]	notification_method	
				[,	[@target_name	=]	'target_name']

Arguments
[@object_type	=]	'object_type'

Is	the	type	of	information	to	be	returned.	object_type	is	char(9),	with	no
default.	object_type	can	be	ALERTS,	which	lists	the	alerts	assigned	to	the
supplied	operator	name,	or	OPERATORS,	which	lists	the	operators
responsible	for	the	supplied	alert	name.

[@name	=]	'name'

Is	either	an	alert	name	(if	object_type	is	ALERTS)	or	an	operator	name	(if
object_type	is	OPERATORS).	name	is	sysname,	with	no	default.

[@enum_type	=]	'enum_type'

Is	the	object_type	information	that	is	returned.	enum_type	is	ACTUAL	in
most	cases.	enum_type	is	char(10),	with	no	default,	and	can	be	one	of	these
values.

Value Description
ACTUAL Lists	only	the	object_types	associated	with

name.
ALL Lists	all	the	object_types	including	those	that	are

not	associated	with	name.
TARGET Lists	only	the	object_types	matching	the

supplied	target_name,	regardless	of	association
with	name.

[@notification_method	=]	notification_method

Is	a	numeric	value	that	determines	the	notification	method	columns	to	return.
notification_method	is	tinyint,	and	can	be	one	of	the	following	values.

Value Description
1 E-mail:	returns	only	the	use_email	column.
2 Pager:	returns	only	the	use_pager	column.
4 NetSend:	returns	only	the	use_netsend	column.
7 All:	returns	all	columns.

[@target_name	=]	'target_name'

Is	an	alert	name	to	search	for	(if	object_type	is	ALERTS)	or	an	operator
name	to	search	for	(if	object_type	is	OPERATORS).	target_name	is	needed
only	if	enum_type	is	TARGET.	target_name	is	sysname,	with	a	default	of
NULL.

Return	Code	Valves
0	(success)	or	1	(failure)

Result	Sets
If	object_type	is	ALERTS,	the	result	set	lists	all	the	alerts	for	a	given	operator.

Column	name Data	type Description
alert_id int Alert	identifier	number.
alert_name sysname Alert	name.
use_email int E-mail	is	used	to	notify	the	operator:

1	=	Yes
0	=	No

use_pager int Pager	is	used	to	notify	operator:

1	=	Yes
0	=	No

use_netsend int Network	pop-up	is	used	to	notify	the
operator:

1	=	Yes
0	=	No

has_email int Number	of	e-mail	notifications	sent	for
this	alert.

has_pager int Number	of	pager	notifications	sent	for
this	alert.

has_netsend int Number	of	netsend	notifications	sent
for	this	alert.

If	object_type	is	OPERATORS,	the	result	set	lists	all	the	operators	for	a	given
alert.

Column	name Data	type Description
operator_id int Operator	identification	number.
operator_name sysname Operator	name.
use_email int E-mail	is	used	to	send	notification	of

the	operator:

1	=	Yes
0	=	No

use_pager int Pager	is	used	to	send	notification	of	the
operator:

1	=	Yes
0	=	No

use_netsend int Is	a	network	pop-up	used	to	notify	the
operator:

1	=	Yes
0	=	No

has_email int Operator	has	an	e-mail	address:

1	=	Yes
0	=	No

has_pager int Operator	has	a	pager	address:

1	=	Yes
0	=	No

Remarks
This	stored	procedure	must	be	run	from	the	msdb	database.

Permissions
Permissions	to	execute	this	procedure	default	to	the	sysadmin	fixed	server	role
and	the	db_owner	fixed	database	role,	who	can	grant	permissions	to	other	users.

Examples

A.	List	alerts	for	a	specific	operator
This	example	returns	all	alerts	for	which	the	operator	John	Doe	receives	any
kind	of	notification.

USE	msdb
EXEC	sp_help_notification	'ALERTS',	'John	Doe',	'ACTUAL',	7

B.	List	operators	for	a	specific	alert
This	example	returns	all	operators	who	receive	any	kind	of	notification	for	the
Test	Alert	alert.

USE	msdb

EXEC	sp_help_notification	'OPERATORS',	'Test	Alert',	'ACTUAL',	7

See	Also

sp_add_notification

sp_delete_notification

sp_update_notification

System	Stored	Procedures

Transact-SQL	Reference

sp_helpntgroup
Reports	information	about	Microsoft®	Windows	NT®	groups	with	accounts	in
the	current	database.

Syntax
sp_helpntgroup	[[@ntname	=]	'name']

Arguments
[@ntname	=]	'name'

Is	the	name	of	the	Windows	NT	group.	name	is	sysname,	with	a	default	of
NULL.	name	must	be	a	valid	Windows	NT	group	in	the	current	database.	If
name	is	not	specified,	all	Windows	NT	groups	in	the	current	database	are
included	in	the	output.	Specify	the	name	that	the	Windows	NT	group	is
known	by	in	the	database	(added	using	sp_grantdbaccess).

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
NTGroupName sysname Name	of	the	Windows	NT	group.
NTGroupId smallint Group	ID.
SID varbinary(85) Security	identifier	of

NTGroupName.
HasDbAccess int 1	=	Windows	NT	group	has

permission	access	to	the	database.

Remarks
To	see	a	list	of	the	Microsoft	SQL	Server™	roles	in	the	current	database,	use

sp_helprole.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	prints	a	list	of	the	Windows	NT	groups	in	the	current	database.

EXEC	sp_helpntgroup

See	Also

sp_grantdbaccess

sp_helprole

sp_revokedbaccess

System	Stored	Procedures

Transact-SQL	Reference

sp_help_operator
Reports	information	about	the	operators	defined	for	the	server.

Syntax
sp_help_operator	[[@operator_name	=]	'operator_name']	
				[,	[@operator_id	=]	operator_id]

Arguments
[@operator_name	=]	'operator_name'

Is	the	operator	name.	operator_name	is	sysname.	If	operator_name	is	not
specified,	information	about	all	operators	is	returned.

[@operator_id	=]	operator_id

Is	the	identification	number	of	the	operator	for	which	information	is
requested.	operator_id	is	int,	with	a	default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
id int Operator	identification

number.
name sysname Operator	Name.
enabled tinyint Operator	is	available	to

receive	any	notifications:

1	=	Yes
0	=	No

email_address nvarchar(100)Operator	e-mail	address.

last_email_date int Date	the	operator	was	last
notified	by	e-mail.

last_email_time int Time	the	operator	was	last
notified	by	e-mail.

pager_address nvarchar(100)Operator	pager	address.
last_pager_date int Date	the	operator	was	last

notified	by	pager.
last_pager_time int Time	the	operator	was	last

notified	by	pager.
weekday_pager_start_time int The	start	of	the	time	period

during	which	the	operator	is
available	to	receive	pager
notifications	on	a	weekday.

weekday_pager_end_time int The	end	of	the	time	period
during	which	the	operator	is
available	to	receive	pager
notifications	on	a	weekday.

Saturday_pager_start_time int The	start	of	the	time	period
during	which	the	operator	is
available	to	receive	pager
notifications	on	Saturdays.

Saturday_pager_end_time int The	end	of	the	time	period
during	which	the	operator	is
available	to	receive	pager
notifications	on	Saturdays.

Sunday_pager_start_time int The	start	of	the	time	period
during	which	the	operator	is
available	to	receive	pager
notifications	on	Sundays.

Sunday_pager_end_time int The	end	of	the	time	period
during	which	the	operator	is
available	to	receive	pager
notifications	on	Sundays.

pager_days tinyint A	bitmask	(1	=	Sunday,	64	=
Saturday)	of	days-of-the	week
indicating	when	the	operator

is	available	to	receive	pager
notifications.

netsend_address nvarchar(100)Operator	address	for	network
pop-up	notifications.

last_netsend_date int Date	the	operator	was	last
notified	by	network	pop-up.

last_netsend_time int Time	the	operator	was	last
notified	by	network	pop-up.

category_name sysname Name	of	the	operator
category	to	which	this
operator	belongs.

Remarks
sp_help_operator	must	be	run	from	the	msdb	database.

Permissions
Permissions	to	execute	this	procedure	default	to	the	sysadmin	fixed	server	role
and	the	db_owner	fixed	database	role,	who	can	grant	permissions	to	other	users.

Examples
This	example	reports	information	about	operator	andrewf.

USE	msdb
EXEC	sp_help_operator	'andrewf'

See	Also

sp_add_operator

sp_delete_operator

sp_update_operator

System	Stored	Procedures

Transact-SQL	Reference

sp_helpremotelogin
Reports	information	about	remote	logins	for	a	particular	remote	server,	or	for	all
remote	servers,	defined	on	the	local	server.

Syntax
sp_helpremotelogin	[[@remoteserver	=]	'remoteserver']	
				[,	[@remotename	=]	'remote_name']

Arguments
[@remoteserver	=]	'remoteserver'

Is	the	remote	server	about	which	the	remote	login	information	is	returned.
remoteserver	is	sysname,	with	a	default	of	NULL.	If	remoteserver	is	not
specified,	information	about	all	remote	servers	defined	on	the	local	server	is
returned.

[@remotename	=]	'remote_name'

Is	a	specific	remote	login	on	the	remote	server.	remote_name	is	sysname,
with	a	default	of	NULL.	If	remote_name	is	not	specified,	information	about
all	remote	users	defined	for	remoteserver	is	returned.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
server sysname Name	of	a	remote	server	defined	on	the

local	server.
local_user_name sysname Login	on	the	local	server	that	remote

logins	from	server	map	to.
remote_user_name sysname Login	on	the	remote	server	that	maps	to

local_user_name.
options sysname Trusted	=	The	remote	login	does	not	need

to	supply	a	password	when	connecting	to
the	local	server	from	the	remote	server.

Untrusted	(or	blank)	=	The	remote	login
is	prompted	for	a	password	when
connecting	to	the	local	server	from	the
remote	server.

Remarks
Use	sp_helpserver	to	list	the	names	of	remote	servers	defined	on	the	local
server.

Permissions
Execute	permissions	default	to	the	public	role.

Examples

A.	Report	help	on	a	single	server
This	example	displays	information	about	all	remote	users	on	the	remote	server
Accounts.

EXEC	sp_helpremotelogin	'Accounts'

B.	Report	help	on	all	remote	users
This	example	displays	information	about	all	remote	users	on	all	remote	servers
known	to	the	local	server.

EXEC	sp_helpremotelogin

See	Also

sp_addremotelogin

sp_dropremotelogin

sp_helpserver

sp_remoteoption

System	Stored	Procedures

Transact-SQL	Reference

sp_helprole
Returns	information	about	the	roles	in	the	current	database.

Syntax
sp_helprole	[[@rolename	=]	'role']

Arguments
[@rolename	=]	'role'

Is	the	name	of	a	role	in	the	current	database.	role	is	sysname,	with	a	default
of	NULL.	role	must	exist	in	the	current	database.	If	role	is	not	specified,
information	about	all	roles	in	the	current	database	is	returned.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
RoleName sysname Name	of	the	role	in	the	current

database.
RoleId smallint ID	of	RoleName.
IsAppRole int 0	=	RoleName	is	not	an	application

role.
1	=	RoleName	is	an	application	role.

Remarks
To	view	the	permissions	associated	with	the	role,	use	sp_helprotect.

To	view	the	members	of	a	database	role,	use	sp_helprolemember.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	displays	all	the	roles	in	the	current	database.

EXEC	sp_helprole

See	Also

sp_addapprole

sp_addrole

sp_droprole

sp_helprolemember

sp_helpsrvrolemember

System	Stored	Procedures

Transact-SQL	Reference

sp_helprolemember
Returns	information	about	the	members	of	a	role	in	the	current	database.

Syntax
sp_helprolemember	[[@rolename	=]	'role']

Arguments
[@rolename	=]	'role'

Is	the	name	of	a	role	in	the	current	database.	role	is	sysname,	with	a	default
of	NULL.	role	must	exist	in	the	current	database.	If	role	is	not	specified,	then
all	roles	that	contain	at	least	one	member	from	the	current	database	are
returned.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
DbRole sysname Name	of	the	role	in	the	current

database.
MemberName sysname Name	of	a	member	of	DbRole.
MemberSID varbinary(85) Security	identifier	of	MemberName.

Remarks
If	a	subrole	is	a	member	of	the	specified	role,	use	sp_helprolemember	with	the
name	of	the	subrole	to	see	the	members	of	the	subrole.

Use	sp_helpsrvrolemember	to	display	the	members	of	a	fixed	server	role.

Permissions

Execute	permissions	default	to	the	public	role.

Examples
This	example	displays	the	members	of	the	Sales	role.

EXEC	sp_helprolemember	'Sales'

See	Also

sp_addrolemember

sp_droprolemember

sp_helprole

sp_helpsrvrolemember

System	Stored	Procedures

Transact-SQL	Reference

sp_helprotect
Returns	a	report	with	information	about	user	permissions	for	an	object,	or
statement	permissions,	in	the	current	database.

Syntax
sp_helprotect	[[@name	=]	'object_statement']	
				[,	[@username	=]	'security_account']	
				[,	[@grantorname	=]	'grantor']	
				[,	[@permissionarea	=]	'type']

Arguments
[@name	=]	'object_statement'

Is	the	name	of	the	object	in	the	current	database,	or	a	statement,	with	the
permissions	to	report.	object_statement	is	nvarchar(776),	with	a	default	of
NULL,	which	returns	all	object	and	statement	permissions.	If	the	value	is	an
object	(table,	view,	stored	procedure,	or	extended	stored	procedure),	it	must
be	a	valid	object	in	the	current	database.	The	object	name	can	include	an
owner	qualifier	in	the	form	owner.object.

If	object_statement	is	a	statement,	it	can	be:

CREATE	DATABASE

CREATE	DEFAULT

CREATE	FUNCTION

CREATE	PROCEDURE

CREATE	RULE

CREATE	TABLE

CREATE	VIEW

BACKUP	DATABASE

BACKUP	LOG

[@username	=]	'security_account'

Is	the	name	of	the	security	account	for	which	permissions	are	returned.
security_account	is	sysname,	with	a	default	of	NULL,	which	returns	all
security	accounts	in	the	current	database.	security_account	must	be	a	valid
security	account	in	the	current	database.	When	specifying	a	Microsoft®
Windows	NT®	user,	specify	the	name	the	Windows	NT	user	is	known	by	in
the	database	(added	using	sp_grantdbaccess).

[@grantorname	=]	'grantor'

Is	the	name	of	the	security	account	that	has	granted	permissions.	grantor	is
sysname,	with	a	default	of	NULL,	which	returns	all	information	for
permissions	granted	by	any	security	account	in	the	database.	When
specifying	a	Windows	NT	user,	specify	the	name	that	the	Windows	NT	user
is	known	by	in	the	database	(added	using	sp_grantdbaccess).

[@permissionarea	=]	'type'

Is	a	character	string	indicating	whether	to	display	object	permissions
(character	string	o),	statement	permissions	(character	string	s),	or	both	(o	s).
type	is	varchar(10),	with	a	default	of	o	s.	type	may	be	any	combination	of	o
and	s,	with	or	without	commas	or	spaces	between	o	and	s.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
Owner sysname Name	of	the	object	owner.
Object sysname Name	of	the	object.
Grantee sysname Name	of	the	person	granted	permissions.
Grantor sysname Name	of	the	person	who	granted

permissions	to	the	specified	grantee.
ProtectType char(10) Name	of	the	type	of	protection:

GRANT
REVOKE

Action varchar(20) Name	of	the	permission:

REFERENCES
SELECT
INSERT
DELETE
UPDATE
CREATE	TABLE
CREATE	DATABASE
CREATE	FUNCTION
CREATE	RULE
CREATE	VIEW
CREATE	PROCEDURE
EXECUTE
BACKUP	DATABASE
CREATE	DEFAULT
BACKUP	LOG

Column sysname Type	of	permission:

All	=	Permission	covers	all	current
columns	of	the	object.
New	=	Permission	covers	any	new
columns	that	might	be	altered	(by	using
the	ALTER	statement)	on	the	object	in
the	future.
All+New	=	Combination	of	All	and
New.

Remarks
All	of	the	parameters	of	this	procedure	are	optional.	If	executed	with	no
parameters,	sp_helprotect	displays	all	of	the	permissions	that	have	been	granted
or	denied	in	the	current	database.

If	some,	but	not	all	of	the	parameters	are	specified,	use	named	parameters	to
identify	the	particular	parameter,	or	NULL	as	a	placeholder.	For	example,	to
report	all	permissions	for	the	grantor	dbo,	execute:

EXEC	sp_helprotect	NULL,	NULL,	dbo

Or

EXEC	sp_helprotect	@grantorname	=	'dbo'

The	output	report	is	sorted	by	permission	category,	owner,	object,	grantee,
grantor,	protection	type	category,	protection	type,	action,	and	column	sequential
ID.

Permissions
Execute	permissions	default	to	the	public	role.

Examples

A.	List	the	permissions	for	a	table
This	example	lists	the	permissions	for	the	titles	table.

EXEC	sp_helprotect	'titles'

B.	List	the	permissions	for	a	user
This	example	lists	all	permissions	that	user	Judy	has	in	the	current	database.

EXEC	sp_helprotect	NULL,	'Judy'

C.	List	the	permissions	granted	by	a	specific	user
This	example	lists	all	permissions	that	were	granted	by	user	Judy	in	the	current
database,	using	a	NULL	as	a	placeholder	for	the	missing	parameters.

EXEC	sp_helprotect	NULL,	NULL,	'Judy'

D.	List	the	statement	permissions	only
This	example	lists	all	the	statement	permissions	in	the	current	database,	using
NULL	as	a	placeholder	for	the	missing	parameters.

EXEC	sp_helprotect	NULL,	NULL,	NULL,	's'

See	Also

DENY

GRANT

REVOKE

System	Stored	Procedures

Transact-SQL	Reference

sp_helpserver
Reports	information	about	a	particular	remote	or	replication	server,	or	about	all
servers	of	both	types.	Provides	the	server	name,	the	server's	network	name,	the
server's	replication	status,	the	server's	identification	number,	collation	name,	and
time-out	values	for	connecting	to,	or	queries	against,	linked	servers.

Syntax
sp_helpserver	[[@server	=]	'server']	
				[,	[@optname	=]	'option']	
				[,	[@show_topology	=]	'show_topology']

Arguments
[@server	=]	'server'

Is	the	server	about	which	information	is	reported.	When	no	server	is
supplied,	reports	about	all	servers	in	master.dbo.sysservers.	server	is
sysname,	with	a	default	of	NULL.

[@optname	=]	'option'

Is	the	option	describing	the	server.	option	is	varchar(35),	with	a	default	of
NULL,	and	must	be	one	of	these	values.

Value Description
collation	compatible Affects	the	Distributed	Query	execution	against

linked	servers.	If	this	option	is	set	to	true,
Microsoft®	SQL	Server™	assumes	that	all
characters	in	the	linked	server	are	compatible
with	the	local	server,	with	regard	to	character	set
and	collation	sequence	(or	sort	order).

data	access Enables	and	disables	a	linked	server	for
distributed	query	access.

dist Distributor.
dpub Remote	Publisher	to	this	Distributor.

lazy	schema	validation Skips	schema	checking	of	remote	tables	at	the
beginning	of	the	query.

pub Publisher.
rpc Enables	RPC	from	the	given	server.
rpc	out Enables	RPC	to	the	given	server.
sub Subscriber.
system For	internal	use	only.
use	remote	collation Uses	the	collation	of	a	remote	column	rather

than	that	of	the	local	server.

[@show_topology	=]	'show_topology'

Is	the	relationship	of	the	given	server	to	other	servers.	show_topology	is
varchar(1),	with	a	default	of	NULL.	If	show_topology	is	not	equal	to	t	or	is
NULL,	sp_helpserver	returns	columns	listed	in	the	Result	Sets	section.	If
show_topology	is	equal	to	t,	in	addition	to	the	columns	listed	in	the	Result
Sets,	sp_helpserver	also	returns	topx	and	topy	information.

Return	Code	Values
0	(success)	or	1	(failure).

Result	Sets

Column	name Data	type Description
name sysname Server	name.
network_name sysname Server's	network	name.
status varchar(70) Server	status.
id char(4) Server's	identification	number.
collation_name sysname Server's	collation.
connect_timeout int Time-out	value	for	connecting	to	linked

server.
query_timeout int Time-out	value	for	queries	against	linked

server.

Remarks
A	server	can	have	more	than	one	status.

Permissions
Execute	permissions	default	to	the	public	role.

Examples

A.	Display	information	about	all	servers
This	example	displays	information	about	all	servers	(sp_helpserver	with	no
parameters).

USE	master
EXEC	sp_helpserver

B.	Display	information	about	a	specific	server
This	example	displays	all	information	about	the	SEATTLE2	server.

USE	master
EXEC	sp_helpserver	'SEATTLE2'

See	Also

sp_adddistpublisher

sp_addserver

sp_addsubscriber

sp_changesubscriber

sp_dboption

sp_dropserver

sp_dropsubscriber

sp_helpdistributor

sp_helpremotelogin

sp_helpsubscriberinfo

sp_serveroption

System	Stored	Procedures

Transact-SQL	Reference

sp_helpsort
Displays	the	Microsoft®	SQL	Server™	sort	order	and	character	set.

Syntax
sp_helpsort

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
Returns	server	default	collation.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	displays	the	name	of	the	server's	default	sort	order,	its	character
set,	and	a	table	of	its	primary	sort	values.

sp_helpsort
go

This	is	the	result	set.

Server	default	collation

Latin1-General,	case-sensitive,	accent-sensitive,	kanatype-insensitive,	width-insensitive	for	Unicode	Data,	SQL	Server	Sort	Order	51	on	Code	Page	1252	for	non-Unicode	Data.

See	Also

COLLATE

Collations

fn_helpcollations

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_helpsrvrole
Returns	a	list	of	the	Microsoft®	SQL	Server™	fixed	server	roles.

Syntax
sp_helpsrvrole	[[@srvrolename	=]	'role']

Arguments
[@srvrolename	=]	'role'

Is	the	name	of	the	fixed	server	role.	role	is	sysname,	with	a	default	of
NULL,	and	can	be	any	of	these	values.

Fixed	server	role Description
sysadmin System	administrators
securityadmin Security	administrators
serveradmin Server	administrators
setupadmin Setup	administrators
processadmin Process	administrators
diskadmin Disk	administrators
dbcreator Database	creators
bulkadmin Can	execute	BULK	INSERT

statements

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
ServerRole sysname Name	of	the	server	role
Description sysname Description	of	ServerRole

Remarks
Fixed	server	roles	are	defined	at	the	server	level	and	have	permissions	to
perform	specific	server-level	administrative	activities.	Fixed	server	roles	cannot
be	added,	removed,	or	changed.

The	table	shows	stored	procedures	that	can	be	used	to	modify	server	roles.

Stored	procedure Action
sp_addsrvrolemember Adds	a	login	account	to	a	fixed	server	role.
sp_helpsrvrolemember Displays	a	list	of	the	members	of	a	fixed	server

role.
sp_dropsrvrolemember Removes	a	member	of	a	server	role.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	shows	the	list	of	available	fixed	server	roles.

EXEC	sp_helpsrvrole

See	Also

sp_addsrvrolemember

sp_dropsrvrolemember

sp_helpsrvrolemember

System	Stored	Procedures

Transact-SQL	Reference

sp_helpsrvrolemember
Returns	information	about	the	members	of	a	Microsoft®	SQL	Server™	fixed
server	role.

Syntax
sp_helpsrvrolemember	[[@srvrolename	=]	'role']

Arguments
[@srvrolename	=]	'role'

Is	the	name	of	a	fixed	server	role	about	whose	members	information	is
returned.	role	is	sysname,	with	a	default	of	NULL.	If	role	is	not	specified,
the	result	set	includes	information	regarding	all	fixed	server	roles.

role	can	be	any	of	these	values.

Fixed	server	role Description
sysadmin System	administrators
securityadmin Security	administrators
serveradmin Server	administrators
setupadmin Setup	administrators
processadmin Process	administrators
diskadmin Disk	administrators
dbcreator Database	creators
bulkadmin Can	execute	BULK	INSERT

statements

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
ServerRole sysname Name	of	the	server	role
MemberName sysname Name	of	a	member	of	ServerRole
MemberSID varbinary(85) Security	identifier	of

MemberName

Remarks
Use	sp_helprolemember	to	display	the	members	of	a	database	role.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	lists	the	members	of	the	sysadmin	fixed	server	role.

EXEC	sp_helpsrvrolemember	'sysadmin'

See	Also

sp_addsrvrolemember

sp_dropsrvrolemember

sp_helprole

sp_helprolemember

System	Stored	Procedures

Transact-SQL	Reference

sp_helpstats
Returns	statistics	information	about	columns	and	indexes	on	the	specified	table.

Syntax
sp_helpstats[@objname	=]	'object_name'	
				[,	[@results	=]	'value']

Arguments
[@objname	=]	'object_name'

Specifies	the	table	on	which	to	provide	statistics	information.	object_name	is
nvarchar(520)	and	cannot	be	null.

[@results	=]	'value'

Specifies	the	extent	of	information	to	provide.	Valid	entries	are	ALL	and
STATS.	ALL	lists	statistics	for	all	indexes	as	well	as	columns	that	have
statistics	created	on	them;	STATS	only	lists	statistics	not	associated	with	an
index.	value	is	nvarchar(5)	with	a	default	of	STATS.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
This	table	describes	the	columns	in	the	result	set.

Column	name Description
statistics_name The	name	of	the	statistics.	Returns

sysname	and	cannot	be	null.
statistics_keys The	keys	on	which	statistics	are	based.

Returns	nvarchar(2078)	and	cannot	be
null.

Remarks
Use	DBCC	SHOW_STATISTICS	to	display	detailed	statistics	information	about
any	particular	index	or	statistics.	In	SQL	Server	7.0	Books	Online,	see	DBCC
SHOW_STATISTICS	and	sp_helpindex	for	related	information.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
Create	single-column	statistics	for	all	eligible	columns	for	all	user	tables	in	the
Northwind	database	by	executing	sp_createstats.	To	find	out	the	resultant
statistics	created	on	the	Customers	table,	execute	sp_helpstats.

This	table	lists	the	contents	of	the	result	set.

statistics_name statistics_keys
PK_Customers CustomerID
City City
CompanyName CompanyName
PostalCode PostalCode
Region Region
ContactName ContactName
ContactTitle ContactTitle
Address Address
Country Country
Phone Phone
Fax Fax

Transact-SQL	Reference

sp_help_targetserver
Lists	all	target	servers.

Syntax
sp_help_targetserver	[[@server_name	=]	'server_name']

Argument
[@server_name	=]	'server_name'

Is	the	name	of	the	server	for	which	to	return	information.	server_name	is
nvarchar(30),	with	a	default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
If	server_name	is	not	specified,	sp_help_targetserver	returns	this	result	set.

Column	name Data	type Description
server_id int Server	identification	number.
server_name nvarchar(30) Server	name.
location nvarchar(200) Location	of	the	specified	server.
time_zone_adjustment int Time	zone	adjustment,	in	hours,

from	Greenwich	mean	time
(GMT).

enlist_date datetime Date	of	the	specified	server's
enlistment.

last_poll_date datetime Date	the	server	was	last	polled
for	jobs.

status int Status	of	the	specified	server.
unread_instructions int Whether	the	server	has	unread

instructions.	(If	all	rows	have
been	downloaded,	this	column	is
0.)

local_time datetime Local	date	and	time	on	the	target
server,	which	is	based	on	the
local	time	on	the	target	server	as
of	the	last	poll	of	the	master
server.

Enlisted_by_nt_user nvarchar(100) Microsoft®	Windows	NT®	user
that	enlisted	the	target	server.

poll_interval int Frequency	with	which	the	target
server	polls	the	Master
SQLServerAgent	service	in	order
to	download	jobs	and	upload	job
status.

Permissions
Permissions	to	execute	this	procedure	default	to	the	sysadmin	fixed	server	role
and	the	db_owner	fixed	database	role,	who	can	grant	permissions	to	other	users.

Examples
This	example	lists	information	for	all	servers,	and	then	only	for	the	LONDON1
target	server.

USE	msdb
EXEC	sp_help_targetserver
EXEC	sp_help_targetserver	'LONDON1'

See	Also

sp_add_targetservergroup

sp_delete_targetserver

sp_delete_targetservergroup

sp_update_targetservergroup

sysdownloadlist

System	Stored	Procedures

Transact-SQL	Reference

sp_help_targetservergroup
Lists	all	target	servers	in	the	specified	group.	If	no	group	is	specified,
Microsoft®	SQL	Server™	returns	information	about	all	target	server	groups.

Syntax
sp_help_targetservergroup	[[@name	=]	'name']

Argument
[@name	=]	'name'

Is	the	name	of	the	target	server	group	for	which	to	return	information.	name
is	varchar(100),	with	a	default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
servergroup_id int Identification	number	of	the	server

group
name sysname Name	of	the	server	group

Permissions
Permissions	to	execute	this	procedure	default	to	the	sysadmin	fixed	server	role
and	the	db_owner	fixed	database	role,	who	can	grant	permissions	to	other	users.

Examples
This	example	lists	all	target	server	groups	first,	followed	by	all	other	target
servers	in	the	Servers	Maintaining	Customer	Information	target	server	group.

USE	msdb
EXEC	sp_help_targetservergroup	
EXEC	sp_help_targetservergroup	'Servers	Maintaining	Customer	Information'

See	Also

sp_add_targetservergroup

sp_delete_targetservergroup

sp_update_targetservergroup

System	Stored	Procedures

Transact-SQL	Reference

sp_helptask
sp_helptask	is	provided	for	backward	compatibility	only.	For	more	information
about	the	procedures	used	in	Microsoft®	SQL	Server™	version	7.0,	see	SQL
Server	Backward	Compatibility	Details.

Provides	information	about	one	or	more	tasks	that	the	user	owns.	sp_helptask
prevents	sensitive	information	stored	in	the	systasks	table	from	being	returned	to
all	users.

IMPORTANT		For	more	information	about	syntax	used	in	earlier	versions	of	SQL
Server,	see	the	Microsoft	SQL	Server	Transact-SQL	Reference	for	version	6.x.

Permissions
Execute	permissions	default	to	the	public	role.	Anyone	who	can	execute	this
procedure	can	also	create,	delete,	or	update	a	job,	job	step,	job	category,	job
schedule,	job	server,	task,	or	job	history	information.

See	Also

sp_addtask

sp_droptask

sp_purgehistory

sp_updatetask

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_helptext
Prints	the	text	of	a	rule,	a	default,	or	an	unencrypted	stored	procedure,	user-
defined	function,	trigger,	or	view.

Syntax
sp_helptext	[@objname	=]	'name'

Arguments
[@objname	=]	'name'

Is	the	name	of	the	object	for	which	to	display	definition	information.	The
object	must	be	in	the	current	database.	name	is	nvarchar(776),	with	no
default.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
Text nvarchar(255) Object	definition	text

Remarks
sp_helptext	prints	out	the	text	used	to	create	an	object	in	multiple	rows,	each
with	255	characters	of	the	Transact-SQL	definition.	The	definition	resides	in	the
text	in	the	syscomments	table	of	the	current	database	only.

Permissions
Execute	permissions	default	to	the	public	role.

Examples

This	example	displays	the	text	of	the	employee_insupd	trigger,	which	is	in	the
pubs	database.

USE	pubs
EXEC	sp_helptext	'employee_insupd'

See	Also

CREATE	PROCEDURE

CREATE	TRIGGER

CREATE	VIEW

sp_help

System	Stored	Procedures

Transact-SQL	Reference

sp_helptrigger
Returns	the	type	or	types	of	triggers	defined	on	the	specified	table	for	the	current
database.

Syntax
sp_helptrigger	[@tabname	=]	'table'	
				[,	[@triggertype	=]	'type']

Arguments
[@tabname	=]	'table'

Is	the	name	of	the	table	in	the	current	database	for	which	to	return	trigger
information.	table	is	nvarchar(776),	with	no	default.

[@triggertype	=]	'type'

Is	the	type	of	trigger	to	return	information	about.	type	is	char(6),	with	a
default	of	NULL,	and	can	be	one	of	these	values.

Value Description
DELETE Returns	DELETE	trigger	information.
INSERT Returns	INSERT	trigger	information.
UPDATE Returns	UPDATE	trigger	information.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
This	table	shows	the	information	contained	in	the	result	set.

Column	name Data	type Description

trigger_name sysname Name	of	the	trigger.
trigger_owner sysname Name	of	the	trigger	owner.
isupdate int 1=UPDATE	trigger

0=Not	an	UPDATE	trigger
isdelete int 1=DELETE	trigger

0=Not	a	DELETE	trigger
isinsert int 1=INSERT	trigger

0=Not	an	INSERT	trigger
isafter int 1=AFTER	trigger

0=Not	an	AFTER	trigger
isinsteadof int 1=INSTEAD	OF	trigger

0=Not	an	INSTEAD	OF	trigger

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	creates	a	trigger	named	sales_warn	that	raises	error	50010	when
the	amount	of	books	sold	is	10.	Then,	sp_helptrigger	is	executed	to	produce
information	about	the	trigger(s)	on	the	sales	table.

USE	pubs
CREATE	TRIGGER	sales_warn
ON	sales
FOR	INSERT,	UPDATE	
AS	RAISERROR	(50010,	16,	10)

EXEC	sp_helptrigger	sales

Here	is	the	result	set:

trigger_name		trigger_owner											isupdate				isdelete				isinsert				
-------------	-----------------------	-----------	-----------	---------

sales_warn								dbo																	1											0									1											

(1	row(s)	affected)

See	Also

ALTER	TRIGGER

CREATE	TRIGGER

DROP	TRIGGER

System	Stored	Procedures

Transact-SQL	Reference

sp_helpuser
Reports	information	about	Microsoft®	SQL	Server™	users,	Microsoft	Windows
NT®	users,	and	database	roles	in	the	current	database.

Syntax
sp_helpuser	[[@name_in_db	=]	'security_account']

Arguments
[@name_in_db	=]	'security_account'

Is	the	name	of	a	SQL	Server	user,	Windows	NT	user,	or	database	role	in	the
current	database.	security_account	must	exist	in	the	current	database.
security_account	is	sysname,	with	a	default	of	NULL.	If	security_account	is
not	specified,	the	system	procedure	reports	on	all	users,	Windows	NT	users,
and	roles	in	the	current	database.	When	specifying	a	Windows	NT	user,
specify	the	name	that	the	Windows	NT	user	is	known	by	in	the	database
(added	using	sp_grantdbaccess).

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
Neither	a	user	account	nor	an	SQL	Server	or	Windows	NT	user	is	specified	for
security_account.

Column	name Data	type Description
UserName sysname Users	and	Windows	NT	users	in	the

current	database.
GroupName sysname Roles	to	which	UserName	belongs.
LoginName sysname Login	of	UserName.
DefDBName sysname Default	database	of	UserName.
UserID smallint ID	of	UserName	in	the	current	database.

SID smallint User's	security	identification	number
(SID).

No	user	account	is	specified	and	aliases	exist	in	the	current	database.

Column	name Data	type Description
LoginName sysname Logins	aliased	to	users	in	the	current

database.
UserNameAliasedTo sysname User	name	in	the	current	database	that

the	login	is	aliased	to.

A	role	is	specified	for	security_account.

Column	name Data	type Description
Group_name sysname Name	of	the	role	in	the	current	database.
Group_id smallint Role	ID	for	the	role	in	the	current

database.
Users_in_group sysname Member	of	the	role	in	the	current

database.
Userid smallint User	ID	for	the	member	of	the	role.

Remarks
Use	sp_helpsrvrole	and	sp_helpsrvrolemember	to	return	information	about
fixed	server	roles.

Executing	sp_helpuser	for	a	database	role	is	equivalent	to	executing
sp_helpgroup	for	that	database	role.

Permissions
Execute	permissions	default	to	the	public	role.

Examples

A.	List	all	users
This	example	lists	all	users	in	the	current	database.

EXEC	sp_helpuser

B.	List	information	for	a	single	user
This	example	lists	information	about	the	user	dbo.

EXEC	sp_helpuser	'dbo'

C.	List	information	for	a	database	role
This	example	lists	information	about	the	db_securityadmin	fixed	database	role.

EXEC	sp_helpuser	'db_securityadmin'

See	Also

sp_adduser

sp_dropuser

sp_helpgroup

sp_helprole

sp_helpsrvrole

sp_helpsrvrolemember

System	Stored	Procedures

Transact-SQL	Reference

sp_indexes
Returns	index	information	for	the	specified	remote	table.

Syntax
sp_indexes	[@table_server	=]	'table_server'	
				[,	[@table_name	=]	'table_name']	
				[,	[@table_schema	=]	'table_schema']	
				[,	[@table_catalog	=]	'table_db']	
				[,	[@index_name	=]	'index_name']	
				[,	[@is_unique	=]	'is_unique']

Arguments
[@table_server	=]	'table_server'

Is	the	name	of	a	linked	server	running	Microsoft®	SQL	Server™	for	which
table	information	is	being	requested.	table_server	is	sysname,	with	no
default.

[@table_name	=]	'table_name'

Is	the	name	of	the	remote	table	for	which	to	provide	index	information.
table_name	is	sysname,	with	a	default	of	NULL.	If	NULL,	all	tables	in	the
specified	database	are	returned.

[@table_schema	=]	'table_schema'

Specifies	the	table	schema.	In	the	Microsoft	SQL	Server	environment,	this
corresponds	to	the	table	owner.	table_schema	is	sysname,	with	a	default	of
NULL.

[@table_catalog	=]	'table_db'

Is	the	name	of	the	database	in	which	table_name	resides.	table_db	is
sysname,	with	a	default	of	NULL.	If	NULL,	table_db	defaults	to	master.

[@index_name	=]	'index_name'

Is	the	name	of	the	index	for	which	information	is	being	requested.	index	is

sysname,	with	a	default	of	NULL.

[@is_unique	=]	'is_unique'

Is	the	type	of	index	for	which	to	return	information.	is_unique	is	bit,	with	a
default	of	NULL,	and	can	be	one	of	these	values.

Value Description
1 Returns	information	about	unique	indexes.
0 Returns	information	about	indexes	that	are	not	unique.
NULL Returns	information	about	all	indexes.

Result	Sets

Column	name Data	type Description
TABLE_CAT sysname Name	of	the	database	in	which

the	specified	table	resides.
TABLE_SCHEM sysname Schema	for	the	table.
TABLE_NAME sysname Name	of	the	remote	table.
NON_UNIQUE smallint Whether	the	index	is	unique	or

not	unique:

0	=	Unique
1	=	Not	unique

INDEX_QUALIFER sysname Name	of	the	index	owner.
Some	DBMS	products	allow
users	other	than	the	table
owner	to	create	indexes.	In
SQL	Server,	this	column	is
always	the	same	as
TABLE_NAME.

INDEX_NAME sysname Name	of	the	index.
TYPE smallint Type	of	index:

0	=	Statistics	for	a	table
1	=	Clustered

2	=	Hashed
3	=	Other

ORDINAL_POSITION int Ordinal	position	of	the	column
in	the	table.	The	first	column	in
the	table	is	1.	This	column
always	returns	a	value.

COLUMN_NAME sysname Is	the	corresponding	name	of
the	column	for	each	column	of
the	TABLE_NAME	returned.

ASC_OR_DESC varchar Is	the	order	used	in	collation:

A	=	Ascending
D	=	Descending
NULL	=	Not	applicable

SQL	Server	always	returns	A.

CARDINALITY int Is	the	number	of	rows	in	the
table	or	unique	values	in	the
index.

PAGES int Is	the	number	of	pages	to	store
the	index	or	table.

FILTER_CONDITION nvarchar(4000) SQL	Server	does	not	return	a
value.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	returns	all	index	information	from	the	Employees	table	of	the
Northwind	database	on	the	LONDON1	database	server.

EXEC	sp_indexes	@table_server	=	'LONDON1',	
			@table_name	=	'Employees',	

			@table_catalog	=	'Northwind',	
			@is_unique	=	0

See	Also

sp_catalogs

sp_column_privileges

sp_foreignkeys

sp_indexes

sp_linkedservers

sp_tables_ex

sp_table_privileges

System	Stored	Procedures

Transact-SQL	Reference

sp_indexoption
Sets	option	values	for	user-defined	indexes.

Note		Microsoft®	SQL	Server™	automatically	makes	choices	of	page-,	row-,	or
table-level	locking.	It	is	not	necessary	to	set	these	options	manually.
sp_indexoption	is	provided	for	expert	users	who	know	with	certainty	that	a
particular	type	of	lock	is	always	appropriate.

Syntax
sp_indexoption	[@IndexNamePattern	=]	'index_name'	
				,	[@OptionName	=]	'option_name'	
				,	[@OptionValue	=]	'value'

Arguments
[@IndexNamePattern	=]	'index_name'

Is	the	qualified	or	nonqualified	name	of	a	user-defined	database	table	or
index.	Quotation	marks	are	not	necessary	if	a	single	index	or	table	name	is
specified.	Even	if	a	fully	qualified	table	name,	including	a	database	name,	is
provided,	the	database	name	must	be	the	name	of	the	current	database.	If	a
table	name	is	given	with	no	index,	the	specified	option	value	is	set	for	all
indexes	on	that	table.	index_pattern	is	nvarchar(1035),	with	no	default.

[@OptionName	=]	'option_name'

Is	an	index	option	name.	option_name	is	varchar(35),	with	no	default.
option_name	can	have	these	values.

Value				 Description
AllowRowLocks When	FALSE,	row	locks	are	not	used.	Access

to	the	specified	indexes	is	obtained	using	page-
and	table-level	locks.

AllowPageLocks When	FALSE,	page	locks	are	not	used.	Access
to	the	specified	indexes	is	obtained	using	row-
and	table-level	locks.

DisAllowRowLocks When	TRUE,	row	locks	are	not	used.	Access	to
the	specified	indexes	is	obtained	using	page-
and	table-level	locks.

DisAllowPageLocks When	TRUE,	page	locks	are	not	used.	Access
to	the	specified	indexes	is	obtained	using	row-
and	table-level	locks.

[@OptionValue	=]	'value'

Specifies	whether	the	option_name	setting	is	enabled	(TRUE,	on,	or	1)	or
disabled	(FALSE,	off,	or	0).	value	is	varchar(12),	with	no	default.

Return	Code	Values
0	(success)	or	greater	than	0	(failure)

Remarks
sp_indexoption	can	be	used	only	to	set	option	values	for	user-defined	indexes.
To	display	index	properties,	use	INDEXPROPERTY.

Permissions
Members	of	the	sysadmin	fixed	server	role,	the	db_owner	and	db_ddladmin
fixed	database	roles,	and	the	table	owner	can	modify	the
AllowRowLocks/DisAllowRowLocks	and
AllowPageLocks/DisAllowPageLocks	options	for	any	user-defined	indexes.

Other	users	can	modify	options	only	for	tables	they	own.

Examples
This	example	disallows	page	locks	on	the	City	index	on	the	Customers	table.

USE	Northwind
GO
EXEC	sp_indexoption	'Customers.City',	
			'disallowpagelocks',	

			TRUE

See	Also

INDEXPROPERTY

System	Stored	Procedures

Transact-SQL	Reference

sp_invalidate_textptr
Makes	the	specified	in-row	text	pointer,	or	all	in-row	text	pointers,	in	the
transaction	invalid.	sp_invalidate_textptr	can	be	used	only	on	in-row	text
pointers,	which	are	from	tables	with	the	text	in	row	option	enabled.

Syntax
sp_invalidate_textptr	[[@TextPtrValue	=]	textptr_value]

Arguments
[@TextPtrValue	=]	textptr_value

Is	the	in-row	text	pointer	that	will	be	invalidated.	textptr_value	is
varbinary(16),	with	a	default	of	NULL.	If	NULL,	sp_invalidate_textptr
will	invalidate	all	in-row	text	pointers	in	the	transaction.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
SQL	Server	allows	a	maximum	of	1024	active	valid	in-row	text	pointers	per
transaction	per	database;	however,	a	transaction	spanning	more	than	one
database	can	have	1024	in-row	text	pointers	in	each	database.
sp_invalidate_textptr	can	be	used	to	invalidate	in-row	text	pointers	and	thus
free	up	space	for	additional	in-row	text	pointers.

For	more	information	about	the	text	in	row	option,	see	sp_tableoption.

Permissions
Execute	permissions	for	sp_invalidate_textptr	default	to	all	users.

See	Also

Managing	ntext,	text,	and	image	Data

sp_tableoption

TEXTPTR

TEXTVALID

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_linkedservers
Returns	the	list	of	linked	servers	defined	in	the	local	server.

Syntax
sp_linkedservers

Return	Code	Values
0	(success)	or	a	nonzero	number	(failure)

Result	Sets

Column	name Data	type Description
SRV_NAME sysname Name	of	the	linked	server.
SRV_PROVIDERNAME nvarchar(128) Friendly	name	of	the	OLE

DB	provider	managing
access	to	the	specified
linked	server.

SRV_PRODUCT nvarchar(128) Product	name	of	the	linked
server.

SRV_DATASOURCE nvarchar(4000) OLE	DB	data	source
property	corresponding	to
the	specified	linked	server.

SRV_PROVIDERSTRINGnvarchar(4000) OLE	DB	provider	string
property	corresponding	to
the	linked	server.

SRV_LOCATION nvarchar(4000) OLE	DB	location	property
corresponding	to	the
specified	linked	server.

SRV_CAT sysname OLE	DB	catalog	property
corresponding	to	the
specified	linked	server.

See	Also

sp_catalogs

sp_column_privileges

sp_columns_ex

sp_foreignkeys

sp_indexes

sp_primarykeys

sp_table_privileges

sp_tables_ex

System	Stored	Procedures

Transact-SQL	Reference

sp_lock
Reports	information	about	locks.

Syntax
sp_lock	[[@spid1	=]	'spid1']	[,[@spid2	=]	'spid2']

Arguments
[@spid1	=]	'spid1'

Is	the	Microsoft®	SQL	Server™	process	ID	number	from
master.dbo.sysprocesses.	spid1	is	int,	with	a	default	of	NULL.	Execute
sp_who	to	obtain	process	information	about	the	lock.	If	spid1	is	not
specified,	information	about	all	locks	is	displayed.

[@spid2	=]	'spid2'

Is	another	SQL	Server	process	ID	number	to	check	for	lock	information.
spid2	is	int,	with	a	default	of	NULL.	spid2	is	another	spid	that	may	have	a
lock	at	the	same	time	as	spid1,	and	on	which	the	user	also	wants	information.

Note		sp_who	can	have	zero,	one,	or	two	parameters.	These	parameters
determine	whether	the	stored	procedure	displays	locking	information	on	all,	one,
or	two	spid	processes.

Return	Code	Values
0	(success)

Result	Sets

Column	name Data	type Description
spid smallint The	SQL	Server	process	ID	number.
dbid smallint The	database	identification	number

requesting	a	lock.

ObjId int The	object	identification	number	of	the
object	requesting	a	lock.

IndId smallint The	index	identification	number.
Type nchar(4) The	lock	type:

DB	=	Database
FIL	=	File
IDX	=	Index
PG	=	PAGE
KEY	=	Key	
TAB	=	Table
EXT	=	Extent
RID	=	Row	identifier

Resource nchar(16) The	lock	resource	that	corresponds	to	the
value	in	syslockinfo.restext.

Mode nvarchar(8) The	lock	requester's	lock	mode.	This	lock
mode	represents	the	granted	mode,	the
convert	mode,	or	the	waiting	mode.

Status int The	lock	request	status:

GRANT
WAIT
CNVRT

Remarks
Users	can	control	locking	by	adding	an	optimizer	hint	to	the	FROM	clause	of	a
SELECT	statement,	or	by	setting	the	SET	TRANSACTION	ISOLATION
LEVEL	option.	For	syntax	and	restrictions,	see	SELECT	and	SET
TRANSACTION	ISOLATION	LEVEL.

In	general,	read	operations,	acquire	shared	locks,	and	write	operations	acquire
exclusive	locks.	Update	locks	are	acquired	during	the	initial	portion	of	an	update
operation	when	the	data	is	being	read.	Update	locks	are	compatible	with	shared
locks.	Later,	if	the	data	is	changed,	the	update	locks	are	promoted	to	exclusive
locks.	There	are	times	when	changing	data	that	an	update	lock	is	briefly	acquired

prior	to	an	exclusive	lock.	This	update	lock	will	then	be	automatically	promoted
to	an	exclusive	lock.

Different	levels	of	data	can	be	locked	including	an	entire	table,	one	or	more
pages	of	the	table,	and	one	or	more	rows	of	a	table.	Intent	locks	at	a	higher	level
of	granularity	mean	locks	are	either	being	acquired	or	intending	to	be	acquired	at
a	lower	level	of	lock	granularity.	For	example,	a	table	intent	lock	indicates	the
intention	to	acquire	a	shared	or	exclusive	page	level	lock.	An	intent	lock
prevents	another	transaction	from	acquiring	a	table	lock	for	that	table.

An	extent	lock	is	held	on	a	group	of	eight	database	pages	while	they	are	being
allocated	or	freed.	Extent	locks	are	set	while	a	CREATE	or	DROP	statement	is
running	or	while	an	INSERT	or	UPDATE	statement	that	requires	new	data	or
index	pages	is	running.

When	reading	sp_lock	information,	use	the	OBJECT_NAME()	function	to	get
the	name	of	a	table	from	its	ID	number,	for	example:

SELECT	object_name(16003088)

All	distributed	transactions	not	associated	with	a	SPID	value	are	orphaned
transactions.	SQL	Server	2000	assigns	all	orphaned	distributed	transactions	the
SPID	value	of	'-2',	making	it	easier	for	a	user	to	identify	blocking	distributed
transactions.	For	more	information,	see	KILL.

For	more	information	about	using	the	Windows	NT	Performance	Monitor	to
view	information	about	a	specific	process	ID,	see	DBCC.

Permissions
Execute	permissions	default	to	the	public	role.

Examples

A.	List	all	locks
This	example	displays	information	about	all	locks	currently	held	in	SQL	Server.

USE	master
EXEC	sp_lock

B.	List	a	lock	from	a	single-server	process
This	example	displays	information,	including	locks,	on	process	ID	53.

USE	master
EXEC	sp_lock	53

See	Also

Functions

KILL

Locking

sp_who

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_makewebtask
Creates	a	task	that	produces	an	HTML	document	containing	data	returned	by
executed	queries.

Note		All	Web	jobs	are	categorized	as	Web	Assistant	in	the	Job	Categories
dialog	box	in	SQL	Server	Enterprise	Manager.	For	more	information,	see
Defining	Jobs.

Syntax
sp_makewebtask	[@outputfile	=]	'outputfile',	[@query	=]	'query'
				[,	[@fixedfont	=]	fixedfont]	
				[,	[@bold	=]	bold]	
				[,	[@italic	=]	italic]	
				[,	[@colheaders	=]	colheaders]	
				[,	[@lastupdated	=]	lastupdated]	
				[,	[@HTMLheader	=]	HTMLheader]	
				[,	[@username	=]	username]	
				[,	[@dbname	=]	dbname]	
				[,	[@templatefile	=]	'templatefile']	
				[,	[@webpagetitle	=]	'webpagetitle']	
				[,	[@resultstitle	=]	'resultstitle']
				[
								[,	[@URL	=]	'URL',	[@reftext	=]	'reftext']	
								|	[,	[@table_urls	=]	table_urls,	[@url_query	=]	'url_query']
]
				[,	[@whentype	=]	whentype]	
				[,	[@targetdate	=]	targetdate]
				[,	[@targettime	=]	targettime]	
				[,	[@dayflags	=]	dayflags]
				[,	[@numunits	=]	numunits]	
				[,	[@unittype	=]	unittype]
				[,	[@procname	=]	procname]	
				[,	[@maketask	=]	maketask]
				[,	[@rowcnt	=]	rowcnt]	

JavaScript:hhobj_1.Click()

				[,	[@tabborder	=]	tabborder]
				[,	[@singlerow	=]	singlerow]	
				[,	[@blobfmt	=]	blobfmt]
				[,	[@nrowsperpage	=]	n]	
				[,	[@datachg	=]	table_column_list]
				[,	[@charset	=]	characterset]
				[,	[@codepage	=]	codepage]

Arguments
[@outputfile	=]	'outputfile'

Is	the	location	of	the	generated	HTML	file	on	an	instance	of	Microsoft®
SQL	Server™.	It	can	be	a	UNC	name	if	the	file	is	to	be	created	on	a	remote
computer.	outputfile	is	nvarchar(255),	with	no	default.

[@query	=]	'query'

Is	the	query	to	be	run.	query	is	ntext,	with	no	default.	Query	results	are
displayed	in	the	HTML	document	in	a	table	format	when	the	task	is	run	with
sp_runwebtask.	Multiple	SELECT	queries	can	be	specified	and	result	in
multiple	tables	being	displayed	in	outputfile.

[@fixedfont	=]	fixedfont

Specifies	that	the	query	results	be	displayed	in	a	fixed	font	(1)	or	a
proportional	font	(0).	fixedfont	is	tinyint,	with	a	default	of	1.

[@bold	=]	bold

Specifies	that	the	query	results	be	displayed	in	a	bold	font	(1)	or	nonbold
font	(0).	bold	is	tinyint,	with	a	default	of	0.

[@italic	=]	italic

Specifies	that	the	query	results	be	displayed	in	an	italic	font	(1)	or	nonitalic
font	(0).	italic	is	tinyint,	with	a	default	of	0.

[@colheaders	=]	colheaders

Specifies	that	the	query	results	be	displayed	with	column	headers	(1)	or	no
column	headers	(0).	colheaders	is	tinyint,	with	a	default	of	1.

[@lastupdated	=]	lastupdated

Specifies	whether	the	generated	HTML	document	displays	a	"Last	updated:"
timestamp	indicating	the	last	updated	date	and	time	(1)	or	no	timestamp	(0).
The	timestamp	appears	one	line	before	the	query	results	in	the	HTML
document.	lastupdated	is	tinyint,	with	a	default	of	1.

[@HTMLheader	=]	HTMLheader

Specifies	the	HTML	formatting	code	for	displaying	the	text	contained	in
resultstitle.	HTMLheader	is	tinyint,	and	can	be	one	of	these	values.

Value HTML	formatting	code
1 H1
2 H2
3 H3
4 H4
5 H5
6 H6

[@username	=]	username

Is	the	username	for	executing	the	query.	username	is	nvarchar(128),	with	a
default	of	the	current	user.	The	system	administrator	or	database	owner	can
specify	another	username.

[@dbname	=]	dbname

Is	the	database	name	to	run	the	query	on.	dbname	is	nvarchar(128),	with	a
default	of	the	current	database.

[@templatefile	=]	'templatefile'

Is	the	path	of	the	template	file	used	to	generate	the	HTML	document.	The
template	file	contains	information	on	the	formatting	characteristics	of	HTML
documents	and	contains	the	tag	<%insert_data_here%>,	which	indicates	the
position	to	which	the	query	results	will	be	added	in	an	HTML	table.
templatefile	is	nvarchar(255).

There	are	two	ways	to	specify	the	location	of	the	results	of	a	query	in	a

template	file:

Specify	a	general	table	format	by	including	the	<%insert_data_here%>
marker,	which	indicates	the	position	to	add	the	query	results	in	an
HTML	table.	There	are	no	spaces	in	the	tag.	When
<%insert_data_here%>	is	used,	the	fixedfont,	bold,	italic,	colheaders,
and	tabborders	values	are	applied	to	the	query	results.

Specify	a	complete	row	format	to	produce	a	more	precise	layout.	Use
the	<%begindetail%>	and	<%enddetail%>	markers	and	define	a
complete	row	format	between	them	with	<TR>,	</TR>,	<TD>,	and
</TD>	HTML	tags.	For	each	column	to	be	displayed	in	the	result	set,
insert	the	<%insert_data_here%>	marker.	When	the	complete	row
format	is	used,	these	sp_makewebtask	parameters	are	ignored:

Bold lastupdated table_urls
Colheaders reftext URL
Fixedfont resultstitle url_query
HTMLheader singlerow webpagetitle
Italic tabborder 	

The	extended	procedure	that	is	called	by	sp_makewebtask	can	read
both	Unicode	and	non-Unicode	template	files.	If	a	Unicode	file
contains	a	signature	header,	the	header	is	removed	when	the	HTML
file	is	generated.

[@webpagetitle	=]	'webpagetitle'

Is	the	title	of	the	HTML	document.	webpagetitle	is	nvarchar(255),	with	a
default	of	SQL	Server	Web	Assistant.	For	a	blank	title,	specify	two	space
characters	for	the	title,	or	edit	the	HTML	source	to	remove	the	<TITLE>	and
</TITLE>	tags	and	the	text	of	the	title	between	the	tags.

[@resultstitle	=]	'resultstitle'

Is	the	title	displayed	above	the	query	results	in	the	HTML	document.
resultstitle	is	nvarchar(255),	with	a	default	of	Query	Results.

[@URL	=]	'URL'

Is	a	hyperlink	to	another	HTML	document.	The	hyperlink	is	placed	after	the
query	results	and	at	the	end	of	the	HTML	document.	URL	is	nvarchar(255).
If	URL	is	specified,	reftext	must	also	be	specified,	and	table_urls	and
url_query	cannot	be	specified.

[@reftext	=]	'reftext'

Is	the	hyperlink	that	describes	to	which	HTML	document	the	hyperlink
should	take	the	user.	reftext	is	nvarchar(255).	The	hyperlink	text	describes
the	destination	and	the	hyperlink	address	comes	from	URL.

[@table_urls	=]	table_urls

Is	whether	hyperlinks	are	included	on	the	HTML	document	and	come	from	a
SELECT	statement	executed	on	SQL	Server.	table_urls	is	tinyint,	with	a
default	of	0,	which	indicates	that	no	query	will	generate	hyperlinks.	A	value
of	1	indicates	that	a	list	of	hyperlinks	will	be	created	by	using	url_query.

IMPORTANT		If	table_urls	is	1,	url_query	must	be	included	to	specify	the	query	to
be	executed	for	retrieving	hyperlink	information,	and	URL	and	reftext	cannot	be
specified.

[@url_query	=]	'url_query'

Is	the	SELECT	statement	to	create	the	URL	and	its	hyperlink	text.	URLs	and
hyperlink	text	come	from	a	SQL	Server	table.	With	this	parameter,	multiple
URLs	with	associated	hyperlinks	can	be	generated.	Use	url_query	with
table_urls.	url_query	is	nvarchar(255).	url_query	must	return	a	result	set
containing	two	columns:	the	first	column	is	the	address	of	a	hyperlink;	the
second	column	describes	the	hyperlink.	The	number	of	hyperlinks	inserted
into	the	HTML	document	equals	the	number	of	rows	returned	by	executing
url_query.

[@whentype	=]	whentype

Specifies	when	to	run	the	task	that	creates	the	HTML	document.	whentype	is
tinyint,	and	can	have	these	values.

Value Description
1	(default) Create	page	now.	The	Web	job	is	created,	executed

immediately,	and	deleted	immediately	after	execution.
2 Create	page	later.	The	stored	procedure	for	creating	the

HTML	document	is	created	immediately,	but	execution	of
the	Web	job	is	deferred	until	the	date	and	time	specified	by
targetdate	and	targettime	(optional).	If	targettime	is	not
specified,	the	Web	job	is	executed	at	12:00	A.M.	targetdate
is	required	when	whentype	is	2.	This	Web	job	is	deleted
automatically	after	the	targeted	date	and	time	have	passed.

3 Create	page	every	n	day(s)	of	the	week.	The	HTML
document	is	created	on	day(s)	specified	in	dayflags	and	at
the	time	specified	by	targettime	(optional),	beginning	with
the	date	in	targetdate.	If	targettime	is	omitted,	the	default	is
12:00	A.M.	targetdate	is	required	when	whentype	is	3.	The
day(s)	of	the	week	are	specified	in	dayflags,	and	more	than
one	day	of	the	week	can	be	specified.	Web	jobs	created	with
whentype	is	3	are	not	deleted	automatically	and	continue	to
run	on	the	specified	day(s)	of	the	week	until	the	user	deletes
them	with	sp_dropwebtask.

4 Create	page	every	n	minutes,	hours,	days,	or	weeks.	The
HTML	document	is	created	every	n	time	period	beginning
with	the	date	and	time	specified	in	targetdate	and	targettime.
If	targettime	is	not	specified,	the	Web	job	is	executed	at
12:00	A.M.	targetdate	is	required	in	this	case.	The	job	runs
automatically	every	n	minutes,	hours,	days,	or	weeks	as
specified	by	numunits	and	unittype,	and	continues	to	run
until	the	user	deletes	them	with	sp_dropwebtask.

5 Create	page	upon	request.	The	procedure	is	created	without
automatic	scheduling.	The	user	creates	a	HTML	document
by	running	sp_runwebtask	and	deletes	it	only	with
sp_dropwebtask.

6 Create	page	now	and	later.	The	HTML	document	is	created
immediately	and	re-created,	as	when	whentype	is	2.

7 Create	page	now	and	every	n	day(s)	of	the	week.	The	HTML
document	is	created	immediately	and	re-created,	as	when
whentype	is	3,	except	targetdate	is	not	required.

8 Create	page	now	and	periodically	thereafter.	The	HTML

document	is	created	immediately	and	re-created,	as	when
whentype	is	4,	except	targetdate	is	not	required.

9 Create	page	now	and	upon	request.	The	HTML	document	is
created	immediately	and	re-created,	as	when	whentype	is	5.
The	task	must	be	deleted	manually.

10 Create	page	now	and	when	data	changes.	Creates	the	page
immediately	and	later	when	table	data	changes.	datachg	is
required	with	this	value.

IMPORTANT		SQL	Server	Agent	must	be	running	when	a	job	is	scheduled	to	run
periodically;	otherwise,	the	HTML	page	is	not	generated.

[@targetdate	=]	targetdate

Specifies	the	date	the	page	should	be	built.	The	format	is	YYYYMMDD.
When	targetdate	is	omitted,	the	current	date	is	used.	If	whentype	is	2	(later),
3	(dayofweek),	4	(periodic),	or	6	(now	and	later),	targetdate	is	required.
targetdate	is	int,	with	a	default	of	0.

[@targettime	=]	targettime

Specifies	the	time	the	HTML	document	should	be	created.	targettime	is	int,
with	a	default	of	12:00	A.M.	The	format	is	HHMMSS.

[@dayflags	=]	dayflags

Specifies	the	day	of	the	week	to	update	the	HTML	document.	dayflags	is
required	when	whentype	is	3	(dayofweek)	or	7	(now	and	dayofweek).
dayflags	is	tinyint,	and	can	be	one	of	these	values.

Value Day	of	the	week
1	(default) Sunday
2 Monday
4 Tuesday
8 Wednesday
16 Thursday
32 Friday
64 Saturday

To	specify	multiple	days,	add	the	values.	For	example,	to	specify	Monday
and	Thursday,	set	dayflags	to	18.

[@numunits	=]	numunits

Specifies	how	often	to	update	the	HTML	document.	numunits	is	used	only
when	whentype	is	4	(periodic)	or	8	(now	and	periodically	thereafter).	For
example,	if	whentype	is	4,	numunits	is	6,	and	unittype	is	1	(hours),	the
specified	HTML	document	is	updated	every	six	hours.	numunits	is	tinyint,
with	a	default	of	1.	Values	can	range	from	1	through	255.

[@unittype	=]	unittype

Specifies	how	often	the	HTML	document	should	be	updated	when	numunits
is	4	(periodic)	or	whentype	is	8	(now	and	later).	unittype	is	tinyint,	and	can
be	one	of	these	values.

Value Description
1	(default) Hours
2 Days
3 Weeks
4 Minutes

[@procname	=]	procname

Is	the	procedure	or	task	name	for	the	HTML	document.	If	procname	is	not
specified,	the	procedure	name	generated	by	sp_makewebtask	is	in	the	form
of	Web_YYMMDDHHMMSS<spid>.	If	procname	is	user-specified,	the
procedure	name	must	meet	the	conditions	for	valid	procedure	names,	and
must	be	unique.	procname	is	nvarchar(128).	If	procname	is	longer,	it	is
truncated.

[@maketask	=]	maketask

Specifies	whether	a	task	should	be	created	to	execute	an	internal	stored
procedure	that	generates	an	HTML	document.	maketask	is	int,	and	can	be
one	of	these	values.

Value Description
0 Generates	an	unencrypted	stored	procedure	but	does	not

create	the	task.
1 Generates	an	encrypted	stored	procedure	and	generates

the	task.
2	(default) Generates	an	unencrypted	stored	procedure	and	generates

the	task.

[@rowcnt	=]	rowcnt

Specifies	the	maximum	number	of	rows	to	display	in	the	generated	HTML
document.	rowcnt	is	int,	with	a	default	of	0,	which	specifies	that	all	rows
satisfying	the	given	query	be	displayed	in	the	HTML	document.

[@tabborder	=]	tabborder

Specifies	whether	a	border	should	be	drawn	around	the	results	table.
tabborder	is	tinyint.	If	tabborder	is	1	(the	default),	a	border	is	drawn.	If	0,
no	border	is	drawn.

[@singlerow	=]	singlerow

Specifies	whether	the	results	are	to	be	displayed	as	one	row	per	page.
singlerow	is	tinyint.	If	singlerow	is	0	(the	default),	all	results	appear	on	the
same	page	and	in	the	same	table.	If	singlerow	is	1,	a	new	HTML	page	is
generated	for	every	qualifying	row	in	the	result	set.	Successive	HTML	pages
are	generated	with	a	number	appended	to	the	specified	output_filename.	For
example,	if	Web.html	is	specified	as	the	output	file	name,	pages	are	called
Web1.html,	Web2.html,	and	so	on.

[@blobfmt	=]	blobfmt

Specifies	whether	all	columns	of	ntext	or	image	data	types	should	be
embedded	in	the	same	results	page	(NULL,	the	default),	or	whether	these
columns	should	be	saved	in	another	page	and	linked	to	the	main	HTML
document	by	a	URL.	blobfmt	is	ntext	or	image.

To	place	the	ntext	or	image	data	in	a	separate	HTML	page,	use	this	format	to
specify	a	value	for	blobfmt:

"%n%	FILE=output_filename	TPLT=template_filename	URL=url_link_name..."

where

n
Is	the	column	number	in	the	result	list	corresponding	to	a	text	field,	and
n+1	is	the	URL	hyperlink	text	to	the	separate	ntext	or	image	HTML	file.

Note		Do	not	add	spaces	before	or	after	the	equal	sign	(=)	and	do	not	put
file	names	in	quotation	marks	(').

Output	file	names	end	with	a	number	that	indicates	successive
rows,	similar	to	singlerow.	output_filename	is	required,	but
template_filename	and	url_link_name	are	optional.	The	FILE	=
output_filename	is	the	full	path	to	the	output	file	location.	If
provided,	url_link_name	is	the	http://	link	to	the	file	that	is
accessible	through	the	World	Wide	Web.	If	url_link_name	is	not
provided,	the	full	physical	file	name	preceded	by	the	file:///	tag	is
used	as	the	url_link_name.	The	same	syntax	in	blobfmt	(%n%
FILE=...)	can	be	repeated	for	multiple	text	or	image	columns.

If	template_filename	is	provided,	use	the	<%insert_data_here%>
method	to	indicate	the	data	insertion	point.

The	URL	text	is	part	of	the	result	set	and	is	always	the	column
after	the	original	ntext	or	image	column.	This	URL	text	column
is	not	displayed	as	a	separate	column	in	the	result	set.

[@nrowsperpage	=]	n

Specifies	that	the	result	set	should	be	displayed	in	multiple	pages	of	n	rows
in	each	page,	and	the	successive	pages	are	linked	with	NEXT	and
PREVIOUS	URLs.	n	is	int,	with	a	default	of	0,	which	means	all	results	are
to	be	displayed	in	a	single	page.	If	singlerow	is	specified,	this	parameter
cannot	be	used.

[@datachg	=]	table_column_list

Is	the	list	of	table	and	optional	column	names	that	triggers	the	new	page
creation	when	the	data	changes.	table_columns_list	is	ntext.	The	format	of

this	value	is:

{TABLE=name[COLUMN=name]}[,...]

This	parameter	is	required	when	whentype	is	10.	With	this	option,	three
triggers	(UPDATE,	INSERT,	and	DELETE)	are	created	on	the	specified
table	and	columns,	executing	the	Web	task	when	these	triggers	are	fired.	If
there	are	preexisting	triggers	on	the	table,	sp_runwebtask	is	added	to	the
end	of	the	trigger,	provided	that	the	trigger	is	not	created	with	WITH
ENCRYPTION,	and	the	COLUMN	field	specification	in	this	parameter	is
ignored.	If	there	is	an	existing	trigger	on	the	table	created	with	the	WITH
ENCRYPTION	option,	sp_makewebtask	fails.

[@charset	=]	characterset

Is	a	character	set	alias	code	that	is	recognized	by	Microsoft	Internet	Explorer
or	compatible	browsers.	characterset	is	nvarchar(25)	with	a	default	value	of
N'utf-8'.	characterset	is	used	to	specify	a	value	for	the	META	element
charset	tag	in	the	.htm	file.

[@codepage	=]	codepage

Is	a	numeric	value	corresponding	to	the	character	set.	For	example,	code
page	65001	corresponds	to	character	set	UTF-8.	codepage	is	int	with	a
default	of	65001.	For	a	complete	list	of	supported	code	pages,	use
sp_enumcodepages.

Return	Code	Values
0	(success)	or	nonzero	(failure)

IMPORTANT		The	return	code	values	have	changed	from	earlier	versions	of
Microsoft	SQL	Server.

Result	Sets
None

Remarks
For	scheduled	tasks,	all	errors	are	reported	in	the	Microsoft	Windows	NT®

application	log	on	an	instance	of	SQL	Server,	and	have	a	source	of	xpsqlweb.

IMPORTANT		The	sp_dropwebtask,	sp_makewebtask,	and	sp_runwebtask
stored	procedures	can	be	run	only	on	SQL	Server	versions	6.5	and	later.

The	SQL	Server	Web	Assistant	provides	an	interface	for	using	the
sp_makewebtask	stored	procedure.	For	more	information	about	creating	Web
pages	with	the	Web	Assistant,	see	Using	the	Web	Assistant	Wizard.

Fonts	available	for	HTML	documents	depend	upon	the	capabilities	of	your	Web
browser	software.	For	more	information	about	font	availability	and	HTML
formatting,	see	the	browser	software	documentation.

IMPORTANT		All	Microsoft	Windows®	95	and	Microsoft	Windows	98	Web
Assistant	users	must	have	user	accounts	in	the	database	being	used.	Use
sp_adduser	to	add	accounts	to	each	database	a	user	may	access.	When	running
the	Windows	95	or	Windows	98	operating	system,	an	on-demand	task	can	only
be	run	by	the	task	owner	or	the	system	administrator.

Permissions
The	user	must	have	SELECT	permissions	to	run	the	specified	query	and
CREATE	PROCEDURE	permissions	in	the	database	in	which	the	query	will
run.	The	SQL	Server	account	must	have	permissions	to	write	the	generated
HTML	document	to	the	specified	location.	Only	the	members	of	the	sysadmin
fixed	server	role	can	impersonate	other	users.

Examples

A.	Create	multiple	queries	by	using	a	template	file
This	example	creates	an	HTML	document,	and	upon	request,	retrieves	five	book
titles	and	prices,	five	publisher	names,	and	five	authors	first	and	last	names.	In
this	document,	the	placement	of	data	is	specified	by	the	<%insert_data_here%>
marker.

This	section	shows	the	template	file	named	C:\Web\Multiple.tpl.

Note		For	this	example	to	work	properly,	the	template	file	code	presented	here
must	be	saved	in	a	file	named	C:\Web\Multiple.tpl.	You	must	also	create	the

JavaScript:hhobj_2.Click()

C:\Web	directory	before	saving	the	template	in	the	C:\Web	directory.

<HTML>
		
<HEAD>
		
<TITLE>SQL	Server	Multiple	Queries	with	Template	Web	Sample</TITLE>
		
<BODY>
		
<H1>Books	For	Sale</H1>
<HR>
		
		
<P>
<TABLE	BORDER>
<TR>	<TH><I>Title</I></TH>	<TH>Price</TH>	</TR>
<%begindetail%>
<TR>	<TD><I>	<%insert_data_here%>	</I>	</TD>
				<TD	ALIGN=RIGHT>	$<%insert_data_here%></TD>	</TR>
<%enddetail%>
</TABLE>
<P>
		
<HR>
		
<%insert_data_here%>
		
		
<P>
		
<TABLE	BORDER>
<TR>	<TH	ALIGN=CENTER>ID</TH>	<TH	ALIGN=LEFT><I>Publisher's	Name</I></TH>	</TR>
<%begindetail%>

<TR>	<TD>	<%insert_data_here%>	</TD>
				<TD	ALIGN=LEFT><I>	<%insert_data_here%></I></TD>	</TR>
<%enddetail%>
</TABLE>
		
<HR>
		
<%insert_data_here%>
		
		
<P>
		
		
Microsoft<P>
MSDN<P>
		
		
</BODY>
		
</HTML>

This	section	of	the	example	shows	using	sp_makewebtask	to	execute	the	query.

USE	pubs
GO
EXECUTE	sp_makewebtask	@outputfile	=	'C:\WEB\MULTIPLE.HTM',
@query	=	'SELECT	title,	price	FROM	titles	SELECT	au_lname,	au_fname	
FROM	authors	SELECT	pub_id,	pub_name	FROM	publishers	SELECT	au_lname,	
au_fname	FROM	authors',	@templatefile	=	'C:\WEB\MULTIPLE.TPL',
@dbname	=	'pubs',	@rowcnt	=	5,	@whentype	=	9
GO

Here	is	the	result	set:

<HTML>
		
<HEAD>
		
<TITLE>SQL	Server	Multiple	Queries	with	Template	Web	Sample</TITLE>
		
<BODY>
		
<H1>Books	For	Sale</H1>
<HR>
		
		
<P>
<TABLE	BORDER>
<TR>	<TH><I>Title</I></TH>	<TH>Price</TH>	</TR>

<TR>	<TD><I>	The	Busy	Executive's	Database	Guide	</I>	</TD>
				<TD	ALIGN=RIGHT>	$19.9900</TD>	</TR>

<TR>	<TD><I>	Cooking	with	Computers:	Surreptitious	Balance	Sheets	</I>	</TD>
				<TD	ALIGN=RIGHT>	$11.9500</TD>	</TR>

<TR>	<TD><I>	You	Can	Combat	Computer	Stress!	</I>	</TD>
				<TD	ALIGN=RIGHT>	$2.9900</TD>	</TR>

<TR>	<TD><I>	Straight	Talk	About	Computers	</I>	</TD>
				<TD	ALIGN=RIGHT>	$19.9900</TD>	</TR>

<TR>	<TD><I>	Silicon	Valley	Gastronomic	Treats	</I>	</TD>
				<TD	ALIGN=RIGHT>	$19.9900</TD>	</TR>

</TABLE>
<P>

		
<HR>
		

<P>
<P><TABLE	BORDER=1>
<TR><TH	ALIGN=LEFT>au_lname</TH><TH	ALIGN=LEFT>au_fname</TH></TR>
<TR><TD><TT>Bennet</TT></TD><TD><TT>Abraham</TT></TD></TR>
<TR><TD><TT>Blotchet-Halls</TT></TD><TD><TT>Reginald</TT></TD></TR>
<TR><TD><TT>Carson</TT></TD><TD><TT>Cheryl</TT></TD></TR>
<TR><TD><TT>DeFrance</TT></TD><TD><TT>Michel</TT></TD></TR>
<TR><TD><TT>del	Castillo</TT></TD><TD><TT>Innes</TT></TD></TR>
</TABLE>
<HR>

		
		
<P>
		
<TABLE	BORDER>
<TR>	<TH	ALIGN=CENTER>ID</TH>	<TH	ALIGN=LEFT><I>Publisher's	Name</I></TH>	</TR>

<TR>	<TD>	0736	</TD>
				<TD	ALIGN=LEFT><I>	New	Moon	Books</I></TD>	</TR>

<TR>	<TD>	0877	</TD>
				<TD	ALIGN=LEFT><I>	Binnet	&	Hardley</I></TD>	</TR>

<TR>	<TD>	1389	</TD>
				<TD	ALIGN=LEFT><I>	Algodata	Infosystems</I></TD>	</TR>

<TR>	<TD>	1622	</TD>
				<TD	ALIGN=LEFT><I>	Five	Lakes	Publishing</I></TD>	</TR>

<TR>	<TD>	1756	</TD>
				<TD	ALIGN=LEFT><I>	Ramona	Publishers</I></TD>	</TR>

</TABLE>
		
<HR>
		

<P>
<P><TABLE	BORDER=1>
<TR><TH	ALIGN=LEFT>au_lname</TH><TH	ALIGN=LEFT>au_fname</TH></TR>
<TR><TD><TT>Bennet</TT></TD><TD><TT>Abraham</TT></TD></TR>
<TR><TD><TT>Blotchet-Halls</TT></TD><TD><TT>Reginald</TT></TD></TR>
<TR><TD><TT>Carson</TT></TD><TD><TT>Cheryl</TT></TD></TR>
<TR><TD><TT>DeFrance</TT></TD><TD><TT>Michel</TT></TD></TR>
<TR><TD><TT>del	Castillo</TT></TD><TD><TT>Innes</TT></TD></TR>
</TABLE>
<HR>

		
		
<P>
		
		
Microsoft<P>
MSDN<P>
		
		
</BODY>
		
</HTML>

B.	Create	hyperlinks
This	example	creates	a	two-column	table	called	my_favorite_sites.	The	first
column	url_def	is	the	URL	to	a	specific	Web	location,	and	the	second	column
display_text	is	the	hyperlink	text	for	the	corresponding	URL.	After	creating	the
table	and	filling	it	with	values,	the	HTML	document	is	created.

USE	pubs
GO
CREATE	TABLE	my_favorite_web_sites(url_def	varchar(255),	display_text	varchar(255)	NULL)
GO
INSERT	my_favorite_web_sites(url_def,	display_text)	
VALUES	('http://www.microsoft.com',	'Microsoft	Home	Page')
INSERT	my_favorite_web_sites(url_def)	VALUES	('http://www.widgets.microsoft.com')
GO
EXECUTE	sp_makewebtask	@outputfile	=	'C:\WEB\URL.HTM',	
@query='SELECT	title,	price	FROM	titles	ORDER	BY	price	desc',	
@table_urls	=	1,	@tabborder	=	0,	@lastupdated=0,	@colheaders	=	0,	
@url_query=	'SELECT	url_def,	display_text	FROM	
my_favorite_web_sites',	@whentype	=	9
GO

Here	is	the	result	set:

<HTML>

<HEAD>

<TITLE>Microsoft	SQL	Server	Web	Assistant</TITLE>

</HEAD>

<BODY>

<H1>Query	Results</H1>

<HR>

<P>
<P><TABLE	BORDER=0>
<TR><TD><TT>But	Is	It	User	Friendly?</TT></TD><TD><TT>22.9500</TT></TD></TR>
<TR><TD><TT>Computer	Phobic	AND	Non-Phobic	Individuals:	Behavior	Variations</TT></TD><TD><TT>21.5900</TT></TD></TR>
<TR><TD><TT>Onions,	Leeks,	and	Garlic:	Cooking	Secrets	of	the	Mediterranean</TT></TD><TD><TT>20.9500</TT></TD></TR>
<TR><TD><TT>Secrets	of	Silicon	Valley</TT></TD><TD><TT>20.0000</TT></TD></TR>
<TR><TD><TT>The	Busy	Executive's	Database	Guide</TT></TD><TD><TT>19.9900</TT></TD></TR>
<TR><TD><TT>Straight	Talk	About	Computers</TT></TD><TD><TT>19.9900</TT></TD></TR>
<TR><TD><TT>Silicon	Valley	Gastronomic	Treats</TT></TD><TD><TT>19.9900</TT></TD></TR>
<TR><TD><TT>Prolonged	Data	Deprivation:	Four	Case	Studies</TT></TD><TD><TT>19.9900</TT></TD></TR>
<TR><TD><TT>Sushi,	Anyone?</TT></TD><TD><TT>14.9900</TT></TD></TR>
<TR><TD><TT>Cooking	with	Computers:	Surreptitious	Balance	Sheets</TT></TD><TD><TT>11.9500</TT></TD></TR>
<TR><TD><TT>Fifty	Years	in	Buckingham	Palace	Kitchens</TT></TD><TD><TT>11.9500</TT></TD></TR>
<TR><TD><TT>Is	Anger	the	Enemy?</TT></TD><TD><TT>10.9500</TT></TD></TR>
<TR><TD><TT>Emotional	Security:	A	New	Algorithm</TT></TD><TD><TT>7.9900</TT></TD></TR>
<TR><TD><TT>Life	Without	Fear</TT></TD><TD><TT>7.0000</TT></TD></TR>
<TR><TD><TT>You	Can	Combat	Computer	Stress!</TT></TD><TD><TT>2.9900</TT></TD></TR>
<TR><TD><TT>The	Gourmet	Microwave</TT></TD><TD><TT>2.9900</TT></TD></TR>
<TR><TD><TT>The	Psychology	of	Computer	Cooking</TT></TD><TD>n/a</TD></TR>
<TR><TD><TT>Net	Etiquette</TT></TD><TD>n/a</TD></TR>
</TABLE>
<HR>
Microsoft	Home	Page<P>
http://www.widgets.microsoft.com<P>

</BODY>

</HTML>

C.	Execute	multiple	queries	with	single-row	mode

This	example	creates	eight	HTML	documents	from	multiple	queries	and	uses	the
single-row	mode.

Here	is	the	query:

USE	pubs
GO
EXECUTE	sp_makewebtask	@outputfile	=	'C:\WEB\SROW.HTM',	
@query	=	'SELECT	title,	price	FROM	titles	ORDER	BY	price	desc	
SELECT	au_lname,	au_fname	FROM	authors	WHERE	state	=	''CA''	',	
@fixedfont	=	0,	@webpagetitle	=	'Single	row	SQL	Web	Assistant',	
@resultstitle	=	'One	row	per	page	results',	@singlerow	=	1,	
@rowcnt	=	4,@URL	=	"http://www.microsoft.com",	
@reftext	=	'Microsoft	Home	Page'
GO

Here	is	the	first	file	of	the	result	set	called	C:\Web\Srow1.htm:

<HTML>

<HEAD>

<TITLE>Single	row	SQL	Web	Assistant</TITLE>

</HEAD>

<BODY>

<H1>One	row	per	page	results</H1>
<HR>

<PRE>Last	updated:	Jun	17	1997		9:14AM</PRE>

<P>
<P><TABLE	BORDER=1>

<TR><TH	ALIGN=LEFT>title</TH><TH	ALIGN=LEFT>price</TH></TR>
<TR><TD>But	Is	It	User	Friendly?</TD><TD>22.9500</TD></TR>
</TABLE>
<HR>
Microsoft	Home	Page<P>
<TABLE	BORDER=0	CELLPADDING=6>
<TR><TD>More	results	can	be	found	in:</TD>
<TD>Next</TD>
</TR></TABLE>

</BODY>

</HTML>

Here	is	the	second	file	of	the	result	set	called	C:\Web\Srow2.htm:

<HTML>

<HEAD>

<TITLE>Single	row	SQL	Web	Assistant</TITLE>

</HEAD>

<BODY>

<H1>One	row	per	page	results</H1>
<HR>

<PRE>Last	updated:	Jun	17	1997		9:14AM</PRE>

<P>
<P><TABLE	BORDER=1>
<TR><TH	ALIGN=LEFT>title</TH><TH	ALIGN=LEFT>price</TH></TR>

<TR><TD>Computer	Phobic	AND	Non-Phobic	Individuals:	Behavior	Variations</TD><TD>21.5900</TD></TR>
</TABLE>
<HR>
Microsoft	Home	Page<P>
<TABLE	BORDER=0	CELLPADDING=6>
<TR><TD>More	results	can	be	found	in:</TD>
<TD>First</TD>
<TD>Previous</TD>
<TD>Next</TD>
</TR></TABLE>

</BODY>

</HTML>

D.	Execute	multiple	queries	using	data	insert	markers	and	a
template
This	example	creates	two	HTML	documents	from	multiple	queries	by	using	a
template	that	places	each	book	title	and	price	in	separate	HTML	files.

This	is	the	template	file	named	C:\Web\Datains.tpl:

<HTML>
		
<HEAD>
		
<TITLE>SQL	Server	Multiple	Queries,	Data	Insert	Markers,	&	Template	Web	Sample</TITLE>
		
<BODY>
		
<H1>Books	For	Sale</H1>
<HR>
		
		

<P>
<TABLE	BORDER>
<TR>	<TH><I>Title</I></TH>	<TH>Price</TH>	</TR>
<%begindetail%>
<TR>	<TD><I>	<%insert_data_here%>	</I>	</TD>
				<TD	ALIGN=RIGHT>	$<%insert_data_here%></TD>	</TR>
<%enddetail%>
</TABLE>
<P>
		
<HR>
		
		
Microsoft<P>
MSDN<P>
		
</BODY>
		
</HTML>

Here	is	the	query:

USE	pubs
GO
EXECUTE	sp_makewebtask	@outputfile	=	'C:\WEB\DATAINS.HTM',
@query	=	'SELECT	title,	price	FROM	titles',	
@templatefile	=	'C:\WEB\DATAINS.TPL',	@dbname	=	'pubs',	
@rowcnt	=	2,	@whentype	=	9,	@singlerow	=	1
GO

Here	is	the	first	file	of	the	result	set	called	C:\Web\Datains1.htm:

<HTML>
		

<HEAD>
		
<TITLE>SQL	Server	Multiple	Queries,	Data	Insert	Markers,	&	Template	Web	Sample</TITLE>
		
<BODY>
		
<H1>Books	For	Sale</H1>
<HR>
		
		
<P>
<TABLE	BORDER>
<TR>	<TH><I>Title</I></TH>	<TH>Price</TH>	</TR>

<TR>	<TD><I>	The	Busy	Executive's	Database	Guide	</I>	</TD>
				<TD	ALIGN=RIGHT>	$19.9900</TD>	</TR>

</TABLE>
<P>
		
<HR>
		
		
Microsoft<P>
MSDN<P>
		
<TABLE	BORDER=0	CELLPADDING=6>
<TR><TD>More	results	can	be	found	in:</TD>
<TD>Next</TD>
</TR></TABLE></BODY>
		
</HTML>

Here	is	the	second	file	of	the	result	set	called	C:\Web\Datains2.htm:

<HTML>
		
<HEAD>
		
<TITLE>SQL	Server	Multiple	Queries,	Data	Insert	Markers,	&	Template	Web	Sample</TITLE>
		
<BODY>
		
<H1>Books	For	Sale</H1>
<HR>
		
		
<P>
<TABLE	BORDER>
<TR>	<TH><I>Title</I></TH>	<TH>Price</TH>	</TR>

<TR>	<TD><I>	Cooking	with	Computers:	Surreptitious	Balance	Sheets	</I>	</TD>
				<TD	ALIGN=RIGHT>	$11.9500</TD>	</TR>

</TABLE>
<P>
		
<HR>
		
		
Microsoft<P>
MSDN<P>
		
<TABLE	BORDER=0	CELLPADDING=6>
<TR><TD>More	results	can	be	found	in:</TD>
<TD>First</TD>
<TD>Previous</TD>

</TR></TABLE></BODY>
		
</HTML>

E.	Execute	query	using	@blobfmt
This	example	executes	a	single	query	and	places	the	information	in	HTML
documents.	The	publishers	table	is	linked	with	the	pub_info	table	to	provide
company	logos	in	the	HTML	documents.

This	is	the	template	file	called	C:\Web\Blobsmp.tpl:

<HTML>

<HEAD>

<TITLE>Publishers	PR	Info</TITLE>

</HEAD>

<BODY>

<HR>

<PRE>

<%insert_data_here%>

</PRE>

</BODY>

</HTML>

This	is	the	query:

USE	pubs
GO
EXECUTE	sp_makewebtask	@outputfile	=	'C:\WEB\BLOBSMP.HTM',				
@query	=	'SELECT	pr_info,	pub_name,	city,	state,	country,	logo,	
pub_info.pub_id	FROM	pub_info,	publishers	
WHERE	pub_info.pub_id	=	publishers.pub_id',	
@webpagetitle	=	'Publishers	Home	Page',	
@resultstitle	=	'Premier	Publishers	and	Their	Home	Page	Links',	
@whentype	=	9,	@blobfmt='%1%	FILE=C:\WEB\BLOBSMP.HTM	
TPLT=C:\WEB\BLOBSMP.TPL	%6%	FILE=C:\WEB\PUBLOGO.GIF',	@rowcnt	=	2
GO

This	is	the	main	HTML	document	Blobsmp.htm,	which	contains	hyperlinks	to
the	logo	bitmaps	and	to	the	Publisher's	Home	Web	pages:

<HTML>

<HEAD>

<TITLE>Publishers	Home	Page</TITLE>

<BODY>

<H1>Premier	Publishers	and	Their	Home	Page	Links</H1>
<HR>

<PRE><TT>Last	updated:	Jun	28	1996		3:15PM</TT></PRE>

<P>
<P><TABLE	BORDER=1>
<TR><TH	ALIGN=LEFT>pr_info</TH><TH	ALIGN=LEFT>city</TH><TH	ALIGN=LEFT>state</TH><TH	ALIGN=LEFT>country</TH><TH	ALIGN=LEFT>logo</TH></TR>

<TR><TD	NOWRAP>New	Moon	Books</TD><TD	NOWRAP><TT>Boston</TT></TD><TD	NOWRAP><TT>MA</TT></TD><TD	NOWRAP><TT>USA</TT></TD><TD	NOWRAP>0736</TD></TR>
<TR><TD	NOWRAP>Binnet	&	Hardley</TD><TD	NOWRAP><TT>Washington</TT></TD><TD	NOWRAP><TT>DC</TT></TD><TD	NOWRAP><TT>USA</TT></TD><TD	NOWRAP>0877</TD></TR>
</TABLE>
<HR>

</BODY>

</HTML>

Here	are	the	first	few	lines	of	the	first	file	of	the	result	set	called
C:\Web\Blobsmp1.htm:

Note		Not	all	output	lines	are	shown	here.	Complete	output	appears	in
C:\Web\Blobsmp1.htm.

<HTML>

<HEAD>

<TITLE>Publishers	PR	Info</TITLE>

</HEAD>

<BODY>

<HR>

<PRE>

This	is	sample	text	data	for	New	Moon	Books,	publisher	0736	in	the	pubs	database.	New	Moon	Books	is	located	in	Boston,	Massachusetts.

...

This	is	sample	text	data	for	New	Moon	Books,	publisher	0736	in	the	pubs	database.	New	Moon	Books	is	located	in	Boston,	Massachusetts.

</PRE>

</BODY>

</HTML>

Here	is	the	second	file	of	the	result	set	called	C:\Web\Blobsmp2.htm:

<HTML>

<HEAD>

<TITLE>Publishers	PR	Info</TITLE>

</HEAD>

<BODY>

<HR>

<PRE>

This	is	sample	text	data	for	Binnet	&	Hardley,	publisher	0877	in	the	pubs	database.	Binnet	&	Hardley	is	located	in	Washington,	D.C.

...

This	is	sample	text	data	for	Binnet	&	Hardley,	publisher	0877	in	the	pubs	database.	Binnet	&	Hardley	is	located	in	Washington,	D.C.

</PRE>

</BODY>

</HTML>

See	Also

sp_enumcodepages

sp_runwebtask

System	Stored	Procedures

Transact-SQL	Reference

sp_manage_jobs_by_login
Deletes	or	reassigns	jobs	that	belongs	to	the	specified	login.

Syntax
sp_manage_jobs_by_login	[@action	=]	'action'
				[,	[@current_owner_login_name	=]	'current_owner_login_name']
				[,	[@new_owner_login_name	=]	'new_owner_login_name']

Arguments
[@action	=]	'action'

Is	the	action	to	take	for	the	specified	login.	action	is	varchar(10),	with	no
default.	When	action	is	DELETE,	sp_manage_jobs_by_login	deletes	all
jobs	owned	by	current_owner_login_name.	When	action	is	REASSIGN,	all
jobs	are	assigned	to	new_owner_login_name.

[@current_owner_login_name	=]	'current_owner_login_name'

Is	the	login	name	of	the	current	job	owner.	current_owner_login_name	is
sysname,	with	no	default.

[@new_owner_login_name	=]	'new_owner_login_name'

Is	the	login	name	of	the	new	job	owner.	Use	this	parameter	only	if	action	is
REASSIGN.	new_owner_login_name	is	sysname,	with	a	default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Permissions

Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_manage_jobs_by_login.

Examples
This	example	reassigns	all	jobs	from	janetl	to	stevenb.

USE	msdb
EXEC	sp_manage_jobs_by_login	'REASSIGN',	'janetl',	'stevenb'

See	Also

sp_delete_job

System	Stored	Procedures

Transact-SQL	Reference

sp_monitor
Displays	statistics	about	Microsoft®	SQL	Server™.

Syntax
sp_monitor

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Description
last_run Time	sp_monitor	was	last	run.
current_run Time	sp_monitor	is	being	run.
seconds Number	of	elapsed	seconds	since	sp_monitor	was	run.
cpu_busy Number	of	seconds	that	the	server	computer's	CPU	has

been	doing	SQL	Server	work.
io_busy Number	of	seconds	that	SQL	Server	has	spent	doing

input	and	output	operations.
idle Number	of	seconds	that	SQL	Server	has	been	idle.
packets_received Number	of	input	packets	read	by	SQL	Server.
packets_sent Number	of	output	packets	written	by	SQL	Server.
packet_errors Number	of	errors	encountered	by	SQL	Server	while

reading	and	writing	packets.
total_read Number	of	reads	by	SQL	Server.
total_write Number	of	writes	by	SQL	Server.
total_errors Number	of	errors	encountered	by	SQL	Server	while

reading	and	writing.
connections Number	of	logins	or	attempted	logins	to	SQL	Server.

Remarks

SQL	Server	keeps	track,	through	a	series	of	functions,	of	how	much	work	it	has
done.	Executing	sp_monitor	displays	the	current	values	returned	by	these
functions	and	shows	how	much	they	have	changed	since	the	last	time	the
procedure	was	run.

For	each	column,	the	statistic	is	printed	in	the	form	number(number)-number%
or	number(number).	The	first	number	refers	to	the	number	of	seconds	(for
cpu_busy,	io_busy,	and	idle)	or	the	total	number	(for	the	other	variables)	since
SQL	Server	was	restarted.	The	number	in	parentheses	refers	to	the	number	of
seconds	or	total	number	since	the	last	time	sp_monitor	was	run.	The	percentage
is	the	percentage	of	time	since	sp_monitor	was	last	run.	For	example,	if	the
report	shows	cpu_busy	as	4250(215)-68%,	the	CPU	has	been	busy	4250
seconds	since	SQL	Server	was	last	started	up,	215	seconds	since	sp_monitor
was	last	run,	and	68	percent	of	the	total	time	since	sp_monitor	was	last	run.

Permissions
Execute	permissions	default	to	members	of	the	sysadmin	fixed	server	role.

Examples
This	example	reports	information	about	how	busy	SQL	Server	has	been.

USE	master
EXEC	sp_monitor

Here	is	the	result	set:

last_run current_run Seconds
------------------ -------------------- -------------
Mar	29	1998	11:55AM Apr	4	1993	2:22	PM 561

cpu_busy io_busy idle
----------------- --------------- -------------
190(0)-0% 187(0)-0% 148(556)-99%

packets_received packets_sent packet_errors
----------------- ----------------- -------------
16(1) 20(2) 0(0)

total_read total_write total_errors connections
----------------- ----------------- ------------- ------------
141(0) 54920(127) 0(0) 4(0)

See	Also

sp_who

System	Stored	Procedures

Using	Variables	and	Parameters

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_MShasdbaccess
Lists	the	name	and	owner	of	all	the	databases	to	which	the	user	has	access.

Syntax
sp_MShasdbaccess

Return	Code	Values
0	(success)	or	1	(failure)

Permissions
Execute	permission	defaults	to	the	public	role.

Transact-SQL	Reference

sp_msx_defect
Removes	the	current	server	from	multiserver	operations.

CAUTION		sp_msx_defect	edits	the	registry.	Manual	editing	of	the	registry	is	not
recommended	because	inappropriate	or	incorrect	changes	can	cause	serious
configuration	problems	for	your	system.	Therefore,	only	experienced	users
should	use	the	Registry	Editor	program	to	edit	the	registry.	For	more
information,	see	the	Microsoft®	Windows	NT®	or	Microsoft	Windows®	95
documentation.

Syntax
sp_msx_defect	[@forced_defection	=]	forced_defection

Arguments
[@forced_defection	=]	forced_defection

Is	whether	or	not	to	force	the	defection	to	occur	if	the	Master
SQLServerAgent	has	been	permanently	lost	due	to	an	irreversibly	corrupt
msdb	database,	or	no	msdb	database	backup.	forced_defection	is	bit,	with	a
default	of	0,	which	indicates	that	no	forced	defection	should	occur.	A	value
of	1	forces	defection.

After	forcing	a	defection	by	executing	sp_msx_defect,	a	member	of	the
sysadmin	fixed	server	role	at	the	Master	SQLServerAgent	must	run	the
following	command	to	complete	the	defection:

EXECUTE	msdb.dbo.sp_delete_targetserver	@server_name	=	'tsx-server',	@post_defection	=		0

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
When	sp_msx_defect	properly	completes,	a	message	is	returned:

Server	defected	from	MSX	''.	n	Job(s)	deleted.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute	sp_msx_defect.

See	Also

sp_msx_enlist

System	Stored	Procedures

Transact-SQL	Reference

sp_msx_enlist
Adds	the	current	server	to	the	list	of	target	servers	available	for	multiserver
operations.	Only	a	Microsoft®	SQL	Server™	version	7.0	database	server
running	on	Windows	NT®	can	be	enlisted.

CAUTION		sp_msx_enlist	edits	the	registry.	Manual	editing	of	the	registry	is	not
recommended	because	inappropriate	or	incorrect	changes	can	cause	serious
configuration	problems	for	your	system.	Therefore,	only	experienced	users
should	use	the	Registry	Editor	program	to	edit	the	registry.	For	more
information,	see	the	Microsoft®	Windows	NT®	or	Microsoft	Windows®	95
documentation.

Syntax
sp_msx_enlist	[@msx_server_name	=]	'msx_server'	
				[,	[@location	=]	'location']

Arguments
[@msx_server_name	=]	'msx_server'

Is	the	name	of	the	multiserver	administration	server	(master	server)	to	add.
msx_server	is	nvarchar(30),	with	no	default.

[@location	=]	'location'

Is	the	location	of	the	target	server	that	is	enlisting.	location	is
nvarchar(100),	with	a	default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute	sp_msx_enlist.

Examples
This	example	enlists	the	current	server	into	the	LONDON2	master	server.

USE	msdb
EXEC	sp_msx_enlist	'LONDON2',	
			'Paris	Subsidiary,	Bldg	21,	Room	309,	Rack	5'

See	Also

sp_msx_defect

System	Stored	Procedures

xp_cmdshell

Transact-SQL	Reference

sp_OACreate
Creates	an	instance	of	the	OLE	object	on	an	instance	of	Microsoft®	SQL
Server™.

Syntax
sp_OACreate	progid,	|	clsid,	
				objecttoken	OUTPUT	
				[,	context]

Arguments
progid

Is	the	programmatic	identifier	(ProgID)	of	the	OLE	object	to	create.	This
character	string	describes	the	class	of	the	OLE	object	and	has	the	form:

'OLEComponent.Object'

OLEComponent	is	the	component	name	of	the	OLE	Automation	server,	and
Object	is	the	name	of	the	OLE	object.	The	specified	OLE	object	must	be
valid	and	must	support	the	IDispatch	interface.

For	example,	SQLDMO.SQLServer	is	the	ProgID	of	the	SQL-DMO
SQLServer	object.	SQL-DMO	has	a	component	name	of	SQLDMO,	the
SQLServer	object	is	valid,	and	(like	all	SQL-DMO	objects)	the	SQLServer
object	supports	IDispatch.

clsid

Is	the	class	identifier	(CLSID)	of	the	OLE	object	to	create.	This	character
string	describes	the	class	of	the	OLE	object	and	has	the	form:

'{nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn}'

The	specified	OLE	object	must	be	valid	and	must	support	the	IDispatch
interface.

For	example,	{00026BA1-0000-0000-C000-000000000046}	is	the	CLSID	of
the	SQL-DMO	SQLServer	object.

objecttoken	OUTPUT

Is	the	returned	object	token,	and	must	be	a	local	variable	of	data	type	int.
This	object	token	identifies	the	created	OLE	object	and	is	used	in	calls	to	the
other	OLE	Automation	stored	procedures.

context

Specifies	the	execution	context	in	which	the	newly	created	OLE	object	runs.
If	specified,	this	value	must	be	one	of	the	following:

1	=	In-process	(.dll)	OLE	server	only
4	=	Local	(.exe)	OLE	server	only
5	=	Both	in-process	and	local	OLE	server	allowed

If	not	specified,	the	default	value	is	5.	This	value	is	passed	as	the
dwClsContext	parameter	of	the	call	to	CoCreateInstance.

If	an	in-process	OLE	server	is	allowed	(by	using	a	context	value	of	1	or	5	or
by	not	specifying	a	context	value),	it	has	access	to	memory	and	other
resources	owned	by	SQL	Server.	An	in-process	OLE	server	may	damage
SQL	Server	memory	or	resources	and	cause	unpredictable	results,	such	as	a
SQL	Server	access	violation.

When	you	specify	a	context	value	of	4,	a	local	OLE	server	does	not	have
access	to	any	SQL	Server	resources,	and	it	cannot	damage	SQL	Server
memory	or	resources.

Note		The	parameters	for	this	stored	procedure	are	specified	by	position,	not	by
name.

Return	Code	Values
0	(success)	or	a	nonzero	number	(failure)	that	is	the	integer	value	of	the
HRESULT	returned	by	the	OLE	Automation	object.

For	more	information	about	HRESULT	Return	Codes,	see	OLE	Automation
Return	Codes	and	Error	Information.

Remarks
The	created	OLE	object	is	automatically	destroyed	at	the	end	of	the	Transact-

JavaScript:hhobj_1.Click()

SQL	statement	batch.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute	sp_OACreate.

Examples

A.	Use	Prog	ID
This	example	creates	a	SQL-DMO	SQLServer	object	by	using	its	ProgID.

DECLARE	@object	int
DECLARE	@hr	int
DECLARE	@src	varchar(255),	@desc	varchar(255)
EXEC	@hr	=	sp_OACreate	'SQLDMO.SQLServer',	@object	OUT
IF	@hr	<>	0
BEGIN
			EXEC	sp_OAGetErrorInfo	@object,	@src	OUT,	@desc	OUT	
			SELECT	hr=convert(varbinary(4),@hr),	Source=@src,	Description=@desc
				RETURN
END

B.	Use	CLSID
This	example	creates	a	SQL-DMO	SQLServer	object	by	using	its	CLSID.

DECLARE	@object	int
DECLARE	@hr	int
DECLARE	@src	varchar(255),	@desc	varchar(255)
EXEC	@hr	=	sp_OACreate	'{00026BA1-0000-0000-C000-000000000046}',
				@object	OUT
IF	@hr	<>	0
BEGIN
			EXEC	sp_OAGetErrorInfo	@object,	@src	OUT,	@desc	OUT	
			SELECT	hr=convert(varbinary(4),@hr),	Source=@src,	Description=@desc

				RETURN
END

See	Also

Data	Type	Conversions	Using	OLE	Automation	Stored	Procedures

How	to	create	an	OLE	Automation	object	(Transact-SQL)

How	to	debug	a	custom	OLE	Automation	server	(Transact-SQL)

OLE	Automation	Sample	Script

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Transact-SQL	Reference

sp_OADestroy
Destroys	a	created	OLE	object.

Syntax
sp_OADestroy	objecttoken

Arguments
objecttoken

Is	the	object	token	of	an	OLE	object	previously	created	by	sp_OACreate.

Return	Code	Values
0	(success)	or	a	nonzero	number	(failure)	that	is	the	integer	value	of	the
HRESULT	returned	by	the	OLE	Automation	object.

For	more	information	about	HRESULT	Return	Codes,	see	OLE	Automation
Return	Codes	and	Error	Information.

Remarks
If	sp_OADestroy	is	not	called,	the	created	OLE	object	is	automatically
destroyed	at	the	end	of	the	batch.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute	sp_OADestroy.

Examples
This	example	destroys	the	previously	created	SQLServer	object.

EXEC	@hr	=	sp_OADestroy	@object
IF	@hr	<>	0
BEGIN

JavaScript:hhobj_1.Click()

			EXEC	sp_OAGetErrorInfo	@object
				RETURN
END

See	Also

Data	Type	Conversions	Using	OLE	Automation	Stored	Procedures

How	to	create	an	OLE	Automation	object	(Transact-SQL)

How	to	debug	a	custom	OLE	Automation	server	(Transact-SQL)

OLE	Automation	Sample	Script

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Transact-SQL	Reference

sp_OAGetErrorInfo
Obtains	OLE	Automation	error	information.

Syntax
sp_OAGetErrorInfo	[objecttoken]	
				[,	source	OUTPUT]	
				[,	description	OUTPUT]	
				[,	helpfile	OUTPUT]	
				[,	helpid	OUTPUT]

Arguments
objecttoken

Is	either	the	object	token	of	an	OLE	object	previously	created	by
sp_OACreate	or	it	is	NULL.	If	objecttoken	is	specified,	error	information
for	that	object	is	returned.	If	NULL	is	specified,	the	error	information	for	the
entire	batch	is	returned.

source	OUTPUT

Is	the	source	of	the	error	information.	If	specified,	it	must	be	a	local	char,
nchar,	varchar,	or	nvarchar	variable.	The	return	value	is	truncated	to	fit	the
local	variable	if	necessary.

description	OUTPUT

Is	the	description	of	the	error.	If	specified,	it	must	be	a	local	char,	nchar,
varchar,	or	nvarchar	variable.	The	return	value	is	truncated	to	fit	the	local
variable	if	necessary.

helpfile	OUTPUT

Is	the	Help	file	for	the	OLE	object.	If	specified,	it	must	be	a	local	char,
nchar,	varchar,	or	nvarchar	variable.	The	return	value	is	truncated	to	fit	the
local	variable	if	necessary.

helpid	OUTPUT

Is	the	Help	file	context	ID.	If	specified,	it	must	be	a	local	int	variable.

Note		The	parameters	for	this	stored	procedure	are	specified	by	position,	not
name.

Return	Code	Values
0	(success)	or	a	nonzero	number	(failure)	that	is	the	integer	value	of	the
HRESULT	returned	by	the	OLE	Automation	object.

For	more	information	about	HRESULT	Return	Codes,	see	OLE	Automation
Return	Codes	and	Error	Information.

Result	Sets
If	no	output	parameters	are	specified,	the	error	information	is	returned	to	the
client	as	a	result	set.

Column	names Data	type Description
Error binary(4) Binary	representation	of	the	error

number.
Source nvarchar(nn) Source	of	the	error.
Description nvarchar(nn) Description	of	the	error.
Helpfile nvarchar(nn) Help	file	for	the	source.
HelpID Int Help	context	ID	in	the	Help	source

file.

Remarks
Each	call	to	an	OLE	Automation	stored	procedure	(except
sp_OAGetErrorInfo)	resets	the	error	information;	therefore,
sp_OAGetErrorInfo	obtains	error	information	only	for	the	most	recent	OLE
Automation	stored	procedure	call.	Note	that	because	sp_OAGetErrorInfo	does
not	reset	the	error	information,	it	can	be	called	multiple	times	to	get	the	same
error	information.

This	table	lists	OLE	Automation	errors	and	their	common	causes.

JavaScript:hhobj_1.Click()

Error	and	HRESULT Common	cause
Bad	variable	type
(0x80020008)

Data	type	of	a	Transact-SQL	value	passed	as	a
method	parameter	did	not	match	the	Microsoft®
Visual	Basic®	data	type	of	the	method	parameter,
or	a	NULL	value	was	passed	as	a	method
parameter.

Unknown	name
(0x8002006)

Specified	property	or	method	name	was	not
found	for	the	specified	object.

Invalid	class	string
(0x800401f3)

Specified	ProgID	or	CLSID	is	not	registered	as
an	OLE	object	on	an	instance	of	Microsoft®	SQL
Server™.	Custom	OLE	automation	servers	need
to	be	registered	before	they	can	be	instantiated
using	sp_OACreate.	This	can	be	done	using	the
regsvr32.exe	utility	for	inprocess	(.dll)	servers,	or
the	/REGSERVER	command-line	switch	for
local	(.exe)	servers.

Server	execution	failed
(0x80080005)

Specified	OLE	object	is	registered	as	a	local	OLE
server	(.exe	file)	but	the	.exe	file	could	not	be
found	or	started.

The	specified	module
could	not	be	found
(0x8007007e)

Specified	OLE	object	is	registered	as	an	in-
process	OLE	server	(.dll	file),	but	the	.dll	file
could	not	be	found	or	loaded.

Type	mismatch
(0x80020005)

Data	type	of	a	Transact-SQL	local	variable	used
to	store	a	returned	property	value	or	a	method
return	value	did	not	match	the	Visual	Basic	data
type	of	the	property	or	method	return	value.	Or,
the	return	value	of	a	property	or	a	method	was
requested,	but	it	does	not	return	a	value.

Datatype	or	value	of
the	'context'	parameter
of	sp_OACreate	is
invalid.	(0x8004275B)

The	value	of	the	context	parameter	should	be	one
of	1,	4,	or	5.

For	more	information	about	processing	HRESULT	Return	Codes,	see	OLE
Automation	Return	Codes	and	Error	Information.

JavaScript:hhobj_2.Click()

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_OAGetErrorInfo.

Examples
This	example	displays	OLE	Automation	error	information.

DECLARE	@output	varchar(255)
DECLARE	@hr	int
DECLARE	@source	varchar(255)
DECLARE	@description	varchar(255)
PRINT	'OLE	Automation	Error	Information'
EXEC	@hr	=	sp_OAGetErrorInfo	@object,	@source	OUT,	@description	OUT
IF	@hr	=	0
BEGIN
				SELECT	@output	=	'		Source:	'	+	@source
				PRINT	@output
				SELECT	@output	=	'		Description:	'	+	@description
				PRINT	@output
END
ELSE
BEGIN
				PRINT	'		sp_OAGetErrorInfo	failed.'
				RETURN
END

See	Also

Data	Type	Conversions	Using	OLE	Automation	Stored	Procedures

How	to	create	an	OLE	Automation	object	(Transact-SQL)

How	to	debug	a	custom	OLE	Automation	server	(Transact-SQL)

OLE	Automation	Sample	Script

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Transact-SQL	Reference

sp_OAGetProperty
Gets	a	property	value	of	an	OLE	object.

Syntax
sp_OAGetProperty	objecttoken,					propertyname	
				[,	propertyvalue	OUTPUT]	
				[,	index...]

Arguments
objecttoken

Is	the	object	token	of	an	OLE	object	previously	created	by	sp_OACreate.

propertyname

Is	the	property	name	of	the	OLE	object	to	return.

propertyvalue	OUTPUT

Is	the	returned	property	value.	If	specified,	it	must	be	a	local	variable	of	the
appropriate	data	type.

If	the	property	returns	an	OLE	object,	propertyvalue	must	be	a	local	variable
of	data	type	int.	An	object	token	is	stored	in	the	local	variable,	and	this
object	token	can	be	used	with	other	OLE	Automation	stored	procedures.

If	the	property	returns	a	single	value,	either	specify	a	local	variable	for
propertyvalue,	which	returns	the	property	value	in	the	local	variable,	or	do
not	specify	propertyvalue,	which	returns	the	property	value	to	the	client	as	a
single-column,	single-row	result	set.

When	the	property	returns	an	array,	if	propertyvalue	is	specified,	it	is	set	to
NULL.

If	propertyvalue	is	specified,	but	the	property	does	not	return	a	value,	an
error	occurs.	If	the	property	returns	an	array	with	more	than	two	dimensions,
an	error	occurs.

index

Is	an	index	parameter.	If	specified,	it	must	be	a	value	of	the	appropriate	data
type.

Some	properties	have	parameters.	These	properties	are	called	indexed
properties,	and	the	parameters	are	called	index	parameters.	A	property	can
have	multiple	index	parameters.

Note		The	parameters	for	this	stored	procedure	are	specified	by	position,	not
name.

Return	Code	Values
0	(success)	or	a	nonzero	number	(failure)	that	is	the	integer	value	of	the
HRESULT	returned	by	the	OLE	Automation	object.

For	more	information	about	HRESULT	Return	Codes,	see	OLE	Automation
Return	Codes	and	Error	Information.

Result	Sets
If	the	property	returns	an	array	with	one	or	two	dimensions,	the	array	is	returned
to	the	client	as	a	result	set:

A	one-dimensional	array	is	returned	to	the	client	as	a	single-row	result
set	with	as	many	columns	as	there	are	elements	in	the	array.	In	other
words,	the	array	is	returned	as	columns.

A	two-dimensional	array	is	returned	to	the	client	as	a	result	set	with	as
many	columns	as	there	are	elements	in	the	first	dimension	of	the	array
and	with	as	many	rows	as	there	are	elements	in	the	second	dimension	of
the	array.	In	other	words,	the	array	is	returned	as	(columns,	rows).

When	a	property	return	value	or	method	return	value	is	an	array,
sp_OAGetProperty	or	sp_OAMethod	returns	a	result	set	to	the	client.	(Method
output	parameters	cannot	be	arrays.)	These	procedures	scan	all	the	data	values	in
the	array	to	determine	the	appropriate	Microsoft®	SQL	Server™	data	types	and
data	lengths	to	use	for	each	column	in	the	result	set.	For	a	particular	column,
these	procedures	use	the	data	type	and	length	required	to	represent	all	data

JavaScript:hhobj_1.Click()

values	in	that	column.

When	all	data	values	in	a	column	share	the	same	data	type,	that	data	type	is	used
for	the	whole	column.	When	data	values	in	a	column	use	different	data	types,	the
data	type	of	the	whole	column	is	chosen	based	on	the	following	chart.

	 int float money datetime varchar nvarchar
int int float money varchar varchar nvarchar
float float float money varchar varchar nvarchar
money money money money varchar varchar nvarchar
datetime varchar varchar varchar datetime varchar nvarchar
varchar varchar varchar varchar varchar varchar nvarchar
nvarchar nvarchar nvarchar nvarchar nvarchar nvarchar nvarchar

Remarks
You	can	also	use	sp_OAMethod	to	get	a	property	value.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_OAGetProperty.

Examples

A.	Use	local	variable
This	example	gets	the	HostName	property	(of	the	previously	created
SQLServer	object)	and	stores	it	in	a	local	variable.

DECLARE	@property	varchar(255)
EXEC	@hr	=	sp_OAGetProperty	@object,	'HostName',	@property	OUT
IF	@hr	<>	0
BEGIN
			EXEC	sp_OAGetErrorInfo	@object
				RETURN

END
PRINT	@property

B.	Use	result	set
This	example	gets	the	HostName	property	(of	the	previously	created
SQLServer	object)	and	returns	it	to	the	client	as	a	result	set.

EXEC	@hr	=	sp_OAGetProperty	@object,	'HostName'
IF	@hr	<>	0
BEGIN
			EXEC	sp_OAGetErrorInfo	@object
				RETURN
END

See	Also

Data	Type	Conversions	Using	OLE	Automation	Stored	Procedures

How	to	create	an	OLE	Automation	object	(Transact-SQL)

How	to	debug	a	custom	OLE	Automation	server	(Transact-SQL)

OLE	Automation	Sample	Script

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Transact-SQL	Reference

sp_OAMethod
Calls	a	method	of	an	OLE	object.

Syntax
sp_OAMethod	objecttoken,					methodname	
				[,	returnvalue	OUTPUT]	
				[,	[@parametername	=]	parameter	[OUTPUT]	
				[...n]]

Arguments
objecttoken

Is	the	object	token	of	an	OLE	object	previously	created	by	sp_OACreate.

methodname

Is	the	method	name	of	the	OLE	object	to	call.

returnvalue	OUTPUT

Is	the	return	value	of	the	method	of	the	OLE	object.	If	specified,	it	must	be	a
local	variable	of	the	appropriate	data	type.

If	the	method	returns	a	single	value,	either	specify	a	local	variable	for
returnvalue,	which	returns	the	method	return	value	in	the	local	variable,	or
do	not	specify	returnvalue,	which	returns	the	method	return	value	to	the
client	as	a	single-column,	single-row	result	set.

If	the	method	return	value	is	an	OLE	object,	returnvalue	must	be	a	local
variable	of	data	type	int.	An	object	token	is	stored	in	the	local	variable,	and
this	object	token	can	be	used	with	other	OLE	Automation	stored	procedures.

When	the	method	return	value	is	an	array,	if	returnvalue	is	specified,	it	is	set
to	NULL.

An	error	occurs	when:

returnvalue	is	specified,	but	the	method	does	not	return	a	value.

The	method	returns	an	array	with	more	than	two	dimensions.

The	method	returns	an	array	as	an	output	parameter.

[@parametername	=]	parameter	[OUTPUT]

Is	a	method	parameter.	If	specified,	parameter	must	be	a	value	of	the
appropriate	data	type.

To	obtain	the	return	value	of	an	output	parameter,	parameter	must	be	a	local
variable	of	the	appropriate	data	type,	and	OUTPUT	must	be	specified.	If	a
constant	parameter	is	specified,	or	if	OUTPUT	is	not	specified,	any	return
value	from	an	output	parameter	is	ignored.

If	specified,	parametername	must	be	the	name	of	the	Microsoft®	Visual
Basic®	named	parameter.	Note	that	@parametername	is	not	a	Transact-SQL
local	variable.	The	at	sign	(@)	is	removed,	and	parametername	is	passed	to
the	OLE	object	as	the	parameter	name.	All	named	parameters	must	be
specified	after	all	positional	parameters	are	specified.

n

Is	a	placeholder	indicating	that	multiple	parameters	can	be	specified.

Note		@parametername	can	be	a	named	parameter	because	it	is	part	of	the
specified	method	and	is	passed	through	to	the	object.	The	other	parameters	for
this	stored	procedure	are	specified	by	position,	not	name.

Return	Code	Values
0	(success)	or	a	nonzero	number	(failure)	that	is	the	integer	value	of	the
HRESULT	returned	by	the	OLE	Automation	object.

For	more	information	about	HRESULT	Return	Codes,	OLE	Automation	Return
Codes	and	Error	Information.

Result	Sets
If	the	method	return	value	is	an	array	with	one	or	two	dimensions,	the	array	is

JavaScript:hhobj_1.Click()

returned	to	the	client	as	a	result	set:

A	one-dimensional	array	is	returned	to	the	client	as	a	single-row	result
set	with	as	many	columns	as	there	are	elements	in	the	array.	In	other
words,	the	array	is	returned	as	(columns).

A	two-dimensional	array	is	returned	to	the	client	as	a	result	set	with	as
many	columns	as	there	are	elements	in	the	first	dimension	of	the	array
and	with	as	many	rows	as	there	are	elements	in	the	second	dimension	of
the	array.	In	other	words,	the	array	is	returned	as	(columns,	rows).

When	a	property	return	value	or	method	return	value	is	an	array,
sp_OAGetProperty	or	sp_OAMethod	returns	a	result	set	to	the	client.	(Method
output	parameters	cannot	be	arrays.)	These	procedures	scan	all	the	data	values	in
the	array	to	determine	the	appropriate	Microsoft	SQL	Server™	data	types	and
data	lengths	to	use	for	each	column	in	the	result	set.	For	a	particular	column,
these	procedures	use	the	data	type	and	length	required	to	represent	all	data
values	in	that	column.

When	all	data	values	in	a	column	share	the	same	data	type,	that	data	type	is	used
for	the	whole	column.	When	data	values	in	a	column	use	different	data	types,	the
data	type	of	the	whole	column	is	chosen	based	on	the	following	chart.

	 int float Money datetime varchar nvarchar
int int float Money varchar varchar nvarchar
float float float Money varchar varchar nvarchar
money money money Money varchar varchar nvarchar
datetime varchar varchar Varchar datetime varchar nvarchar
varchar varchar varchar Varchar varchar varchar nvarchar
nvarchar nvarchar nvarchar Nvarchar nvarchar nvarchar nvarchar

Remarks
You	can	also	use	sp_OAMethod	to	get	a	property	value.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute	sp_OAMethod.

Examples

A.	Call	a	method
This	example	calls	the	Connect	method	of	the	previously	created	SQLServer
object.

EXEC	@hr	=	sp_OAMethod	@object,	'Connect',	NULL,	'my_server',
				'my_login',	'my_password'
IF	@hr	<>	0
BEGIN
			EXEC	sp_OAGetErrorInfo	@object
				RETURN
END

B.	Get	a	property
This	example	gets	the	HostName	property	(of	the	previously	created
SQLServer	object)	and	stores	it	in	a	local	variable.

DECLARE	@property	varchar(255)
EXEC	@hr	=	sp_OAMethod	@object,	'HostName',	@property	OUT
IF	@hr	<>	0
BEGIN
			EXEC	sp_OAGetErrorInfo	@object
				RETURN
END
PRINT	@property

See	Also

Data	Type	Conversions	Using	OLE	Automation	Stored	Procedures

JavaScript:hhobj_2.Click()

How	to	create	an	OLE	Automation	object	(Transact-SQL)

How	to	debug	a	custom	OLE	Automation	server	(Transact-SQL)

OLE	Automation	Sample	Script

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Transact-SQL	Reference

sp_OASetProperty
Sets	a	property	of	an	OLE	object	to	a	new	value.

Syntax
sp_OASetProperty	objecttoken,					propertyname,	
				newvalue	
				[,	index...]

Arguments
objecttoken

Is	the	object	token	of	an	OLE	object	previously	created	by	sp_OACreate.

propertyname

Is	the	property	name	of	the	OLE	object	to	set	to	a	new	value.

newvalue

Is	the	new	value	of	the	property,	and	must	be	a	value	of	the	appropriate	data
type.

index

Is	an	index	parameter.	If	specified,	it	must	be	a	value	of	the	appropriate	data
type.

Some	properties	have	parameters.	These	properties	are	called	indexed
properties,	and	the	parameters	are	called	index	parameters.	A	property	can
have	multiple	index	parameters.

Note		The	parameters	for	this	stored	procedure	are	specified	by	position,	not
name.

Return	Code	Values
0	(success)	or	a	nonzero	number	(failure)	that	is	the	integer	value	of	the
HRESULT	returned	by	the	OLE	Automation	object.

For	more	information	about	HRESULT	Return	Codes,	see	OLE	Automation
Return	Codes	and	Error	Information.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_OASetProperty.

Examples
This	example	sets	the	HostName	property	(of	the	previously	created
SQLServer	object)	to	a	new	value.

EXEC	@hr	=	sp_OASetProperty	@object,	'HostName',	'Gizmo'
IF	@hr	<>	0
BEGIN
			EXEC	sp_OAGetErrorInfo	@object
				RETURN
END

See	Also

Data	Type	Conversions	Using	OLE	Automation	Stored	Procedures

How	to	create	an	OLE	Automation	object	(Transact-SQL)

How	to	debug	a	custom	OLE	Automation	server	(Transact-SQL)

OLE	Automation	Sample	Script

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Transact-SQL	Reference

sp_OAStop
Stops	the	server-wide	OLE	Automation	stored	procedure	execution	environment.

Syntax
sp_OAStop

Return	Code	Values
0	(success)	or	a	nonzero	number	(failure)	that	is	the	integer	value	of	the
HRESULT	returned	by	the	OLE	Automation	object.

For	more	information	about	HRESULT	Return	Codes,	see	OLE	Automation
Return	Codes	and	Error	Information.

Remarks
After	Microsoft®	SQL	Server™	is	started,	the	shared	OLE	Automation	stored
procedure	execution	environment	is	automatically	started	when	sp_OACreate	is
first	called	by	a	client.	A	single	execution	environment	is	shared	by	all	clients
using	the	OLE	Automation	stored	procedures.

It	is	not	necessary	to	call	sp_OAStop.	If	sp_OAStop	is	not	called,	the	execution
environment	is	automatically	stopped	when	SQL	Server	is	shut	down.	After	the
execution	environment	has	been	stopped,	any	call	to	sp_OACreate	restarts	the
execution	environment.

Note		If	one	client	calls	sp_OAStop	to	stop	the	execution	environment,	any
client	currently	executing	a	statement	batch	that	uses	the	OLE	Automation
stored	procedures	receives	an	error	message	when	any	OLE	Automation	stored
procedure	(except	sp_OACreate)	is	called.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute	sp_OAStop.

Examples

JavaScript:hhobj_1.Click()

This	example	stops	the	shared	OLE	Automation	execution	environment.

EXEC	sp_OAStop

See	Also

Data	Type	Conversions	Using	OLE	Automation	Stored	Procedures

How	to	create	an	OLE	Automation	object	(Transact-SQL)

How	to	debug	a	custom	OLE	Automation	server	(Transact-SQL)

OLE	Automation	Sample	Script

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Transact-SQL	Reference

sp_password
Adds	or	changes	a	password	for	a	Microsoft®	SQL	Server™	login.

Syntax
sp_password	[[@old	=]	'old_password'	,]	
				{	[@new	=]	'new_password'	}	
				[,	[@loginame	=]	'login']

Arguments
[@old	=]	'old_password'

Is	the	old	password.	old_password	is	sysname,	with	a	default	of	NULL.

[@new	=]	'new_password'

Is	the	new	password.	new_password	is	sysname,	with	no	default.
old_password	must	be	specified	if	named	parameters	are	not	used.

[@loginame	=]	'login'

Is	the	name	of	the	login	affected	by	the	password	change.	login	is	sysname,
with	a	default	of	NULL.	login	must	already	exist	and	can	only	be	specified
by	a	member	of	the	sysadmin	fixed	server	role.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
SQL	Server	passwords	can	contain	from	1	to	128	characters,	including	any
letters,	symbols,	and	numbers.

The	new	password	is	updated	and	stored	in	an	encrypted	form	so	that	no	user,
not	even	system	administrators,	can	view	the	password.

When	members	of	the	sysadmin	or	securityadmin	fixed	server	role	reset	their

own	password	using	sp_password	with	all	three	arguments,	the	audit	record	will
reflect	that	they	are	changing	someone	else's	password.

sp_password	cannot	be	used	with	Microsoft	Windows	NT®	security	accounts.
Users	connecting	to	SQL	Server	through	their	Windows	NT	network	account	are
authenticated	by	Windows	NT;	therefore	their	passwords	can	be	changed	only	in
Windows	NT.

sp_password	cannot	be	executed	within	a	user-defined	transaction.

Permissions
Execute	permissions	default	to	the	public	role	for	a	user	changing	the	password
for	his	or	her	own	login.	Only	members	of	the	sysadmin	role	can	change	the
password	for	another	user's	login.

Examples

A.	Change	the	password	of	a	login	without	the	former	password
This	example	changes	the	password	for	the	login	Victoria	to	ok.

EXEC	sp_password	NULL,	'ok',	'Victoria'

B.	Change	a	password
This	example	changes	the	password	for	the	login	Victoria	from	ok	to	coffee.

EXEC	sp_password	'ok',	'coffee'

See	Also

sp_addlogin

sp_adduser

sp_grantlogin

sp_revokelogin

System	Stored	Procedures

Transact-SQL	Reference

sp_pkeys
Returns	primary	key	information	for	a	single	table	in	the	current	environment.

Syntax
sp_pkeys	[@table_name	=]	'name'	
				[,	[@table_owner	=]	'owner']	
				[,	[@table_qualifier	=]	'qualifier']

Arguments
[@table_name	=]	'name'

Is	the	table	for	which		to	return	information.	name	is	sysname,	with	no
default.	Wildcard	pattern	matching	is	not	supported.

[@table_owner	=]	'owner'

Specifies	the	table	owner	of	the	specified	table.	owner	is	sysname,	with	a
default	of	NULL.	Wildcard	pattern	matching	is	not	supported.	If	owner	is	not
specified,	the	default	table	visibility	rules	of	the	underlying	DBMS	apply.

In	Microsoft®	SQL	Server™,	if	the	current	user	owns	a	table	with	the
specified	name,	the	columns	of	that	table	are	returned.	If	the	owner	is	not
specified	and	the	current	user	does	not	own	a	table	with	the	specified	name,
this	procedure	looks	for	a	table	with	the	specified	name	owned	by	the
database	owner.	If	one	exists,	the	columns	of	that	table	are	returned.

[@table_qualifier	=]	'qualifier'

Is	the	table	qualifier.	qualifier	is	sysname,	with	a	default	of	NULL.	Various
DBMS	products	support	three-part	naming	for	tables	(qualifier.owner.name).
In	SQL	Server,	this	column	represents	the	database	name.	In	some	products,
it	represents	the	server	name	of	the	database	environment	of	the	table.

Return	Code	Values
None

Result	Sets

Column	name Data	type Description
TABLE_QUALIFIER sysname Name	of	the	table	qualifier.	This	field

can	be	NULL.
TABLE_OWNER sysname Name	of	the	table	owner.	This	field

always	returns	a	value.
TABLE_NAME sysname Name	of	the	table.	In	SQL	Server,	this

column	represents	the	table	name	as
listed	in	the	sysobjects	table.	This	field
always	returns	a	value.

COLUMN_NAME sysname Name	of	the	column,	for	each	column
of	the	TABLE_NAME	returned.	In
SQL	Server,	this	column	represents	the
column	name	as	listed	in	the
syscolumns	table.	This	field	always
returns	a	value.

KEY_SEQ smallint Sequence	number	of	the	column	in	a
multicolumn	primary	key.

PK_NAME sysname Primary	key	identifier.	Returns	NULL
if	not	applicable	to	the	data	source.

Remarks
sp_pkeys	returns	information	about	columns	explicitly	defined	with	a
PRIMARY	KEY	constraint.	Because	not	all	systems	support	explicitly	named
primary	keys,	the	gateway	implementer	determines	what	constitutes	a	primary
key.	Note	that	the	term	primary	key	refers	to	a	logical	primary	key	for	a	table.	It
is	expected	that	every	key	listed	as	being	a	logical	primary	key	has	a	unique
index	defined	on	it.	This	unique	index	is	also	returned	in	sp_statistics.

The	sp_pkeys	stored	procedure	is	equivalent	to	SQLPrimaryKeys	in	ODBC.
The	results	returned	are	ordered	by	TABLE_QUALIFIER,	TABLE_OWNER,
TABLE_NAME,	and	KEY_SEQ.

Permissions
Execute	permissions	default	to	the	public	role.

Transact-SQL	Reference

sp_primarykeys
Returns	the	primary	key	columns,	one	row	per	key	column,	for	the	specified
remote	table.

Syntax
sp_primarykeys	[@table_server	=]	'table_server'	
				[,	[@table_name	=]	'table_name']	
				[,	[@table_schema	=]	'table_schema']	
				[,	[@table_catalog	=]	'table_catalog']

Arguments
[@table_server	=]	'table_server'

Is	the	name	of	the	linked	server	from	which	to	return	primary	key
information.	table_server	is	sysname,	with	no	default.

[@table_name	=]	'table_name'

Is	the	name	of	the	table	for	which	to	provide	primary	key	information.
table_name	is	sysname,	with	a	default	of	NULL.

[@table_schema	=]	'table_schema'

Is	the	table	schema.	table_schema	is	sysname,	with	a	default	of	NULL.	In
the	Microsoft®	SQL	Server™	environment,	this	corresponds	to	the	table
owner.

[@table_catalog	=]	'table_catalog'

Is	the	name	of	the	catalog	in	which	the	specified	table_name	resides.	In	the
Microsoft	SQL	Server	environment,	this	corresponds	to	the	database	name.
table_catalog	is	sysname,	with	a	default	of	NULL.

Return	Code	Values
None

Result	Sets

Column	name Data	type Description
TABLE_CAT sysname Table	catalog.	
TABLE_SCHEM sysname Table	schema.
TABLE_NAME sysname Name	of	the	table.
COLUMN_NAME sysname Name	of	the	column.
KEY_SEQ int Sequence	number	of	the	column	in

a	multicolumn	primary	key.
PK_NAME sysname Primary	key	identifier.	Returns

NULL	if	not	applicable	to	the	data
source.

Remarks
sp_primarykeys	is	executed	by	querying	the	PRIMARY_KEYS	rowset	of	the
IDBSchemaRowset	interface	of	the	OLE	DB	provider	corresponding	to
table_server.	The	table_name,	table_schema,	table_catalog,	and	column
parameters	are	passed	to	this	interface	to	restrict	the	rows	returned.

sp_primarykeys	returns	an	empty	result	set	if	the	OLE	DB	provider	of	the
specified	linked	server	does	not	support	the	PRIMARY_KEYS	rowset	of	the
IDBSchemaRowset	interface.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	returns	primary	key	columns	from	the	LONDON1	server	for	the
Customers	table	in	the	Northwind	database.

USE	master
EXEC	sp_primarykeys	@table_server	=	N'LONDON1',	
			@table_name	=	N'Customers',

			@table_catalog	=	N'Northwind',
			@table_schema	=	N'dbo'

See	Also

sp_catalogs

sp_column_privileges

sp_foreignkeys

sp_indexes

sp_linkedservers

sp_tables_ex

sp_table_privileges

System	Stored	Procedures

Transact-SQL	Reference

sp_post_msx_operation
Inserts	operations	(rows)	into	the	sysdownloadlist	system	table	for	target	servers
to	download	and	execute.

Syntax
sp_post_msx_operation	[@operation	=]	'operation'	
				[,	[@object_type	=]	'object']	
				{	,	[@job_id	=]	job_id	}	
				[,	[@specific_target_server	=]	'target_server']	
				[,	[@value	=]	value]

Arguments
[@operation	=]	'operation'

Is	the	type	of	operation	for	the	posted	operation.	operation	is	varchar(64),
with	no	default.	Valid	operations	depend	upon	object_type.

Object	type Operation
JOB INSERT

UPDATE
DELETE
START
STOP

SERVER RE-ENLIST
DEFECT
SYNC-TIME
SET-POLL

[@object_type	=]	'object'

Is	the	type	of	object	for	which	to	post	an	operation.	Valid	types	are	JOB	and
SERVER.	object	is	varchar(64),	with	a	default	of	JOB.

[@job_id	=]	job_id

Is	the	job	identification	number	of	the	job	to	which	the	operation	applies.
job_id	is	uniqueidentifier,	with	no	default.	0x00	indicates	ALL	jobs.	If
object	is	SERVER,	then	job_id	is	not	required.

[@specific_target_server	=]	'target_server'

Is	the	name	of	the	target	server	for	which	the	specified	operation	applies.	If
job_id	is	specified,	but	target_server	is	not	specified,	the	operations	are
posted	for	all	job	servers	of	the	job.	target_server	is	nvarchar(30),	with	a
default	of	NULL.

[@value	=]	value

Is	the	polling	interval,	in	seconds.	value	is	int,	with	a	default	of	NULL.
Specify	this	parameter	only	if	operation	is	SET-POLL.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
sp_post_msx_operation	must	be	run	from	the	msdb	database.

sp_post_msx_operation	can	always	be	called	safely	because	it	first	determines
if	the	current	server	is	a	multiserver	SQL	Server	Agent	and,	if	so,	whether	object
is	a	multiserver	job.

After	an	operation	has	been	posted,	it	appears	in	the	sysdownloadlist	table.
After	a	job	has	been	created	and	posted,	subsequent	changes	to	that	job	must
also	be	communicated	to	the	target	servers	(TSX).	This	is	also	accomplished
using	the	download	list.

It	is	highly	recommended	that	the	download	list	be	managed	by	using	the	SQL
Server	Enterprise	Manager.	For	more	information,	see	Modifying	and	Viewing
Jobs.

JavaScript:hhobj_1.Click()

Permissions
Anyone	can	execute	this	procedure,	but	the	procedure	will	only	have	an	effect	if
it	is	executed	by	a	member	of	the	sysadmin	fixed	server	role.

See	Also

sp_add_jobserver

sp_delete_job

sp_delete_jobserver

sp_delete_targetserver

sp_resync_targetserver

sp_start_job

sp_stop_job

sp_update_job

sp_update_operator

System	Stored	Procedures

Transact-SQL	Reference

sp_processmail
Uses	extended	stored	procedures	(xp_findnextmsg,	xp_readmail,	and
xp_deletemail)	to	process	incoming	mail	messages	(expected	to	be	only	a	single
query)	from	the	inbox	for	Microsoft®	SQL	Server™.	It	uses	the	xp_sendmail
extended	stored	procedure	to	return	the	result	set	to	the	message	sender.

Syntax
sp_processmail	[[@subject	=]	'subject']	
				[,	[@filetype	=]	'filetype']	
				[,	[@separator	=]	'separator']	
				[,	[@set_user	=]	'user']	
				[,	[@dbuse	=]	'dbname']

Arguments
[@subject	=]	'subject'

Is	the	subject	line	of	mail	messages	to	interpret	as	queries	for	SQL	Server.
subject	is	varchar(255),	with	a	default	of	NULL.	When	specified,
sp_processmail	processes	only	messages	that	have	this	subject.	By	default,
SQL	Server	processes	all	mail	messages	as	though	they	were	queries.

[@filetype	=]	'filetype'

Is	the	file	extension	to	be	used	when	sending	the	result	set	file	back	to	the
message	sender.	filetype	is	varchar(3),	with	a	default	of	txt.

[@separator	=]	'separator'

Is	the	column	separator	(field	terminator)	for	each	column	of	the	result	set.
This	information	is	passed	to	the	xp_sendmail	extended	stored	procedure	to
return	the	result	set	to	the	message	sender.	separator	is	varchar(3),	with	a
default	of	tab,	which	is	a	special	case	for	the	tab	character	to	be	used
between	columns.

[@set_user	=]	'user'

Is	the	security	context	in	which	the	query	should	be	run.	user	is	sysname.	If

user	is	not	specified,	the	security	context	defaults	to	that	of	the	user
executing	xp_sendmail.

[@dbuse	=]	'dbname'

Is	the	database	context	in	which	the	query	should	be	run.	dbname	is
sysname,	with	a	default	of	master.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
Incoming	e-mail	is	expected	to	have	a	single	valid	SQL	Server	query	as	the
message	text.	The	results	of	the	query	are	returned	to	the	message	sender	and
copied	to	any	e-mail	users	on	the	CC:	list	of	the	original	message.	After
messages	are	processed,	they	are	deleted	from	the	inbox.	If	e-mail	is	often	sent
to	the	server,	sp_processmail	should	be	run	frequently.	To	set	up	regular	e-mail
processing,	you	can	use	SQL	Server	Agent	to	schedule	an	sp_processmail	job.
This	processes	mail	at	the	specified	frequency	and	records	an	informational
message	with	the	number	of	queries	processed	in	the	job	history.

Results	are	sent	as	an	attached	file.	The	complete	file	name	sent	consists	of	Sql
followed	by	a	random	string	of	numbers	and	then	the	specified	extension	(file
type),	for	example,	Sql356.txt.

IMPORTANT		To	attach	an	appropriate	icon	to	the	mail	message,	make	sure	the	file
type	is	associated	properly.	To	create	a	file	association,	double-click	My
Computer	on	your	desktop	and	select	Options	from	the	View	menu.	On	the	File
Types	tab,	in	the	Options	dialog	box,	specify	the	application	to	use	to	open	the
file.

Errors	received	when	the	query	is	processed	are	returned	to	the	message	sender
through	the	message	text.	When	the	result	set	is	returned	to	the	client,
xp_sendmail	is	called	with	the	@echo_error	parameter	set	to	true.	The

messages	sent	also	include	a	rowcount	(number	of	rows	affected)	by	the	query.

Different	sp_processmail	jobs	can	be	set	up	for	queries	in	different	databases.
For	example,	you	could	adopt	the	convention	that	queries	to	the	pubs	database
must	have	a	subject	of	SQL:pubs.	Then,	you	could	run	sp_processmail	with
subject	=	SQL:pubs	and	dbname	=	pubs.	Different	database	queries	and
groupings	can	have	other	formatting	structures.	For	example,	distribution	tasks
can	have	subject	=	SQL:distribution	and	dbname	=	distribution.	Any	of	these
can	be	scheduled	jobs	with	the	SQL	Server	Agent.

The	sp_processmail	system	stored	procedure	can	also	be	customized	in	many
ways	by	retrieving	the	text	of	the	procedure	with	the	sp_helptext	system	stored
procedure	and	then	modifying	the	Transact-SQL	code.	Possible	changes	include:

Process	only	certain	custom	message	types	using	the	@type	parameter
with	the	xp_readmail	extended	stored	procedure.

Mark	the	message	as	read	but	do	not	delete	the	message	after
processing	(execute	xp_readmail	a	second	time	with	peek	set	to	false).

Send	the	query	results	in	the	body	of	the	e-mail	message	by	calling
xp_sendmail	with	attach_result	set	to	false.

Set	the	security	context	to	run	the	query	in	a	user	context	based	on	the
message	sender.	If	the	e-mail	usernames	are	the	same	as	your	SQL
Server	usernames,	this	is	as	simple	as	changing	the	call	to	xp_sendmail
to	use	set_user	=	@originator.	If	your	mail	usernames	are	not	valid
SQL	Server	usernames	(for	example,	if	they	contain	embedded	blanks),
you	could	do	a	table	lookup	or	character	substitution	to	get	the
appropriate	SQL	Server	username	to	pass	to	xp_sendmail.

Permissions

Only	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed
database	role	can	execute	this	procedure.

Examples
This	example	processes	all	messages	in	the	pubs	database	with	result	sets
returned	to	the	client	in	CSV	(comma	separated	values)	format.

sp_processmail	@filetype	=	'CSV',	@separator	=	',',	@dbuse	=	'pubs'

See	Also

sp_addtask

System	Stored	Procedures

xp_deletemail

xp_findnextmsg

xp_readmail

xp_sendmail

Transact-SQL	Reference

sp_procoption
Sets	procedure	options.

Syntax
sp_procoption	[@ProcName	=]	'procedure'	
				,	[@OptionName	=]	'option'	
				,	[@OptionValue	=]	'value'

Arguments
[@ProcName	=]	'procedure'

Is	the	name	of	the	procedure	for	which	to	set	or	view	an	option.	procedure	is
nvarchar(776),	with	no	default.

[@OptionName	=]	'option'

Is	the	name	of	the	option	to	set.	The	only	value	for	option	is	startup,	which
sets	stored	procedure	for	autoexecution.	A	stored	procedure	that	is	set	to
autoexection	runs	every	time	Microsoft®	SQL	Server™	is	started.

[@OptionValue	=]	'value'

Is	whether	to	set	the	option	on	(true	or	on)	or	off	(false	or	off).	value	is
varchar(12),	with	no	default.

Return	Code	Values
0	(success)	or	error	number	(failure)

Permissions
Execute	permissions	default	to	members	of	the	sysadmin	fixed	server	roles.
Startup	procedures	must	be	owned	by	the	database	owner	in	the	master
database.

See	Also

OBJECTPROPERTY

System	Stored	Procedures

Transact-SQL	Reference

sp_purgehistory
sp_purgehistory	is	provided	for	backward	compatibility	only.	For	more
information	about	the	replacement	procedures	for	Microsoft®	SQL	Server™
2000,	see	SQL	Server	Backward	Compatibility	Details.

Removes	information	from	the	history	log.

IMPORTANT		For	more	information	about	syntax	used	in	earlier	versions	of	SQL
Server,	see	the	Microsoft	SQL	Server	Transact-SQL	Reference	for	version	6.x.

Remarks
For	task	management,	use	SQL	Server	Enterprise	Manager.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

sp_addtask

sp_helphistory

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_purge_jobhistory
Removes	the	history	records	for	a	job.

Syntax
sp_purge_jobhistory	[@job_name	=]	'job_name'	|	[@job_id	=]	job_id

Arguments
[@job_name	=]	'job_name'

Is	the	name	of	the	job	for	which	to	delete	the	history	records.	job_name	is
sysname,	with	a	default	of	NULL.	Either	job_id	or	job_name	must	be
specified,	but	both	cannot	be	specified.

[@job_id	=]	job_id

Is	the	job	identification	number	of	the	job	for	the	records	to	be	deleted.
job_id	is	uniqueidentifier,	with	a	default	of	NULL.	Either	job_id	or
job_name	must	be	specified,	but	both	cannot	be	specified.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Permissions
Execute	permissions	default	to	the	public	role.	If	no	parameters	are	supplied,	all
history	records	are	removed;	however,	only	members	of	the	sysadmin	fixed
server	role	have	permission	to	do	this.

Examples

A.	Remove	history	for	a	specific	job
This	example	removes	the	history	for	a	job	named	Table	Archives.

USE	msdb
EXEC	sp_purge_jobhistory	@job_name	=	'Table	Archives'

B.	Remove	history	for	all	jobs
This	example	executes	the	procedure	with	no	parameters	to	remove	all	history
records.

USE	msdb
EXEC	sp_purge_jobhistory

See	Also

sp_help_job

sp_help_jobhistory

System	Stored	Procedures

Transact-SQL	Reference

sp_reassigntask
This	procedure	is	provided	for	backward	compatibility	only.	For	more
information	about	the	replacement	procedures	for	Microsoft®	SQL	Server™
version	7.0,	see	SQL	Server	Backward	Compatibility	Details.

sp_reassigntask	changes	the	owner	of	a	job	(formerly	referred	to	as	a	task),	or
all	jobs	owned	by	a	specified	login.	If	a	job	was	created	by	using	sp_addtask,
the	job	must	be	deleted	by	using	sp_droptask.

IMPORTANT		For	syntax	information	used	in	earlier	versions	of	SQL	Server,	see
the	Microsoft®	SQL	Server™	version	6.x	Transact-SQL	Reference.	For	task
management,	use	SQL	Server	Enterprise	Manager.

See	Also

sp_update_job

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_recompile
Causes	stored	procedures	and	triggers	to	be	recompiled	the	next	time	they	are
run.

Syntax
sp_recompile	[@objname	=]	'object'

Arguments
[@objname	=]	'object'

Is	the	qualified	or	unqualified	name	of	a	stored	procedure,	trigger,	table,	or
view	in	the	current	database.	object	is	nvarchar(776),	with	no	default.	If
object	is	the	name	of	a	stored	procedure	or	trigger,	the	stored	procedure	or
trigger	will	be	recompiled	the	next	time	it	is	run.	If	object	is	the	name	of	a
table	or	view,	all	the	stored	procedures	that	reference	the	table	or	view	will
be	recompiled	the	next	time	they	are	run.

Return	Code	Values
0	(success)	or	a	nonzero	number	(failure)

Remarks
sp_recompile	looks	for	an	object	in	the	current	database	only.

The	queries	used	by	stored	procedures	and	triggers	are	optimized	only	when	they
are	compiled.	As	indexes	or	other	changes	that	affect	statistics	are	made	to	the
database,	compiled	stored	procedures	and	triggers	may	lose	efficiency.	By
recompiling	stored	procedures	and	triggers	that	act	on	a	table,	you	can
reoptimize	the	queries.

Note		Microsoft®	SQL	Server™	automatically	recompiles	stored	procedures	and
triggers	when	it	is	advantageous	to	do	so.

Permissions

Execute	permissions	default	to	the	public	role.	Users	that	are	not	members	of	the
sysadmin	fixed	server	role	or	the	db_owner	fixed	database	role	can	affect	only
their	own	tables.

Examples
This	example	causes	the	triggers	and	stored	procedures	that	uses	the	titles	table
to	be	recompiled	the	next	time	they	are	run.

EXEC	sp_recompile	titles

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_refreshview
Refreshes	the	metadata	for	the	specified	view.	Persistent	metadata	for	a	view	can
become	outdated	because	of	changes	to	the	underlying	objects	upon	which	the
view	depends.

Syntax
sp_refreshview	[@viewname	=]	'viewname'

Arguments
[@viewname	=]	'viewname'

Is	the	name	of	the	view.	viewname,	which	can	be	a	multipart	identifier,	is
nvarchar,	with	no	default.

Return	Code	Values
0	(success)	or	a	nonzero	number	(failure)

Permissions
Members	of	the	sysadmin	fixed	server	role,	the	db_owner	and	db_ddladmin
fixed	database	roles,	and	the	view	owner	can	execute	sp_refreshview	on	a	view.

Examples
This	example	refreshes	the	metadata	for	the	view	titleview.

exec	sp_refreshview	titleview

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_releaseapplock
Releases	a	lock	on	an	application	resource.

Syntax
sp_releaseapplock	[@Resource	=]	'resource_name'	
				[,	[@LockOwner	=]	'lock_owner']

Arguments
[@Resource	=]	'resource_name'

Is	the	lock	resource	name	specified	by	the	client	application	when	the	lock
was	requested.	resource	name	is	nvarchar(255),	with	no	default.

[@LockOwner	=]	'lock_owner'

Is	the	lock	owner	and	must	match	the	lock_owner	value	specified	when	the
lock	was	requested.	lock_owner	is	nvarchar(32),	and	can	be	Transaction
(the	default)	or	Session.

Return	Code	Values
>=	0	(success)	or	<	0	(failure)

Value Result
0 Lock	was	successfully	released.
-999 Parameter	validation	or	other	call	error.

Remarks
If	an	application	calls	sp_getapplock	multiple	times	on	the	same	lock	resource,
sp_releaseapplock	must	be	called	the	same	number	of	times	to	release	the	lock.

When	the	server	shuts	down	for	any	reason,	the	locks	are	released.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	releases	the	lock	associated	with	the	current	transaction	on	the
resource	Form1	in	the	Northwind	database.	

USE	Northwind
EXEC	sp_releaseapplock	@Resource	=	'Form1'

See	Also

sp_getapplock

Transact-SQL	Reference

sp_remoteoption
Displays	or	changes	options	for	a	remote	login	defined	on	the	local	server
running	Microsoft®	SQL	Server™.

Syntax
sp_remoteoption	[[@remoteserver	=]	'remoteserver']	
				[,	[@loginame	=]	'loginame']	
				[,	[@remotename	=]	'remotename']	
				[,	[@optname	=]	'optname']	
				[,	[@optvalue	=]	'optvalue']

Arguments
[@remoteserver	=]	'remoteserver'

Is	the	name	of	the	remote	server	that	the	remote	login	applies	to.
remoteserver	is	sysname,	with	a	default	of	NULL.	The	server	must	be
known	to	the	local	server	(added	using	sp_addserver).	remoteserver	is	the
server	that	initiates	remote	procedure	calls	to	the	local	server.

[@loginame	=]	'loginame'

Is	the	login	ID	of	the	user	on	the	local	SQL	Server.	login	is	sysname,	with	a
default	of	NULL.	login	must	already	exist	on	the	local	SQL	Server.

[@remotename	=]	'remotename'

Is	the	login	ID	of	the	user	on	remoteserver.	remote_name	is	sysname,	with	a
default	of	NULL.	remotename	must	exist	on	remoteserver.

[@optname	=]	'optname'

Is	the	option	to	set	or	turn	off.	optname	is	varchar(35),	with	a	default	of
NULL.	trusted	is	the	only	option.	When	the	option	is	set,	the	local	server
accepts	remote	logins	from	remote	servers	without	verifying	user	access	for
the	particular	remote	login.	The	default	server	behavior	is	untrusted
(trusted	set	to	FALSE),	resulting	in	password	verification	of	the	remote
login	when	connecting	to	the	local	SQL	Server	from	the	remote	server.

[@optvalue	=]	'optvalue'

Is	the	value	for	optname.	optvalue	is	varchar(10),	with	a	default	of	NULL.
Set	to	TRUE	to	set	optname,	FALSE	to	turn	it	off.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
remotelogin_option sysname Remote	login	option.	Only	trusted	is

valid.

Remarks
To	display	a	list	of	the	remote	login	options,	execute	sp_remoteoption	with	no
parameters.

sp_remoteoption	cannot	be	executed	within	a	user-defined	transaction.

Permissions
Only	members	of	the	sysadmin	and	securityadmin	fixed	server	roles	can
execute	sp_remoteoption	with	parameters.	All	users	can	execute
sp_remoteoption	(no	parameters)	to	display	the	list	of	remote	login	options.

Examples

A.	List	options
This	example	lists	the	remote	login	options.

EXEC	sp_remoteoption
go

Settable	remotelogin	options.
remotelogin_option
--
trusted

B.	Accept	trusted	logins
This	example	defines	a	remote	login	chris,	mapped	to	the	local	login	salesmgr,
from	the	remote	server	ACCOUNTS	to	be	trusted	(the	password	is	not
checked).

EXEC	sp_remoteoption	'ACCOUNTS',	'salesmgr',	'chris',	'trusted',	'TRUE'

C.	Verify	untrusted	logins
This	example	defines	a	remote	login	chris,	mapped	to	the	local	login	salesmgr,
from	the	remote	server	ACCOUNTS	to	be	untrusted	(the	password	is	checked).

EXEC	sp_remoteoption	'ACCOUNTS',	'salesmgr',	'chris',	'trusted',	'FALSE'

See	Also

Configuring	Remote	Servers

sp_addremotelogin

sp_helpremotelogin

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_remove_job_from_targets
Removes	the	specified	job	from	the	given	target	servers	or	target	server	groups.

Syntax
sp_remove_job_from_targets	[@job_id	=]	job_id	
				|	[@job_name	=]	'job_name'	
				[,	[@target_server_groups	=]	'target_server_groups']	
				[,	[@target_servers	=]	'target_servers']

Arguments
[@job_id	=]	job_id

Is	the	job	identification	number	of	the	job	from	which	to	remove	the
specified	target	servers	or	target	server	groups.	Either	job_id	or	job_name
must	be	specified,	but	both	cannot	be	specified.	job_id	is	uniqueidentifier,
with	a	default	of	NULL.

[@job_name	=]	'job_name'

Is	the	name	of	the	job	from	which	to	remove	the	specified	target	servers	or
target	server	groups.	Either	job_id	or	job_name	must	be	specified,	but	both
cannot	be	specified.	job_name	is	sysname,	with	a	default	of	NULL.

[@target_server_groups	=]	'target_server_groups'

Is	a	comma-separated	list	of	target	server	groups	to	be	removed	from	the
specified	job.	target_server_groups	is	nvarchar(1024),	with	a	default	of
NULL.

[@target_servers	=]	'target_servers'

Is	a	comma-separated	list	of	target	servers	to	be	removed	from	the	specified
job.	target_servers	is	nvarchar(1024),	with	a	default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_remove_job_from_targets.

Examples
This	example	removes	the	previously	created	Weekly	Sales	Data	Backup	job
from	the	Sales	Server	target	server	group,	and	from	the	SEATTLE1	and
SEATTLE2	servers.

USE	msdb
EXEC	sp_remove_job_from_targets	@job_name	=	'Weekly	Sales	Data	Backup',
			@target_servers	=	'Sales	Servers',	
			@target_server_groups	=	'SEATTLE2,SEATTLE1'

See	Also

sp_apply_job_to_targets

sp_delete_jobserver

System	Stored	Procedures

Transact-SQL	Reference

sp_remove_log_shipping_monitor
Deletes	the	log	shipping	monitor	information	from	the	log_shipping_monitor
table.

Syntax
sp_remove_log_shipping_monitor

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
This	stored	procedure	removes	the	monitor	from	either	the	primary	or	secondary
server.	sp_remove_log_shipping_monitor	should	be	executed	after	all	rows
from	the	log_shipping_databases	and	log_shipping_plans	have	been	removed.
Otherwise,	this	stored	procedure	will	fail.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_remove_log_shipping_monitor.

Examples

EXEC			msdb.dbo.sp_remove_log_shipping_monitor

Transact-SQL	Reference

sp_rename
Changes	the	name	of	a	user-created	object	(for	example,	table,	column,	or	user-
defined	data	type)	in	the	current	database.

Syntax
sp_rename	[@objname	=]	'object_name'	,	
				[@newname	=]	'new_name'	
				[,	[@objtype	=]	'object_type']

Arguments
[@objname	=]	'object_name'

Is	the	current	name	of	the	user	object	(table,	view,	column,	stored	procedure,
trigger,	default,	database,	object,	or	rule)	or	data	type.	If	the	object	to	be
renamed	is	a	column	in	a	table,	object_name	must	be	in	the	form
table.column.	If	the	object	to	be	renamed	is	an	index,	object_name	must	be
in	the	form	table.index.	object_name	is	nvarchar(776),	with	no	default.

[@newname	=]	'new_name'

Is	the	new	name	for	the	specified	object.	new_name	must	be	a	one-part	name
and	must	follow	the	rules	for	identifiers.	newname	is	sysname,	with	no
default.

[@objtype	=]	'object_type'

Is	the	type	of	object	being	renamed.	object_type	is	varchar(13),	with	a
default	of	NULL,	and	can	be	one	of	these	values.

Value Description
COLUMN A	column	to	be	renamed.
DATABASE A	user-defined	database.	This	option	is	required	when

renaming	a	database.
INDEX A	user-defined	index.
OBJECT An	item	of	a	type	tracked	in	sysobjects.	For	example,

OBJECT	could	be	used	to	rename	objects	including
constraints	(CHECK,	FOREIGN	KEY,
PRIMARY/UNIQUE	KEY),	user	tables,	views,	stored
procedures,	triggers,	and	rules.

USERDATATYPE A	user-defined	data	type	added	by	executing
sp_addtype.

Return	Code	Values
0	(success)	or	a	nonzero	number	(failure)

Remarks
You	can	change	the	name	of	an	object	or	data	type	in	the	current	database	only.
The	names	of	most	system	data	types	and	system	objects	cannot	be	changed.

When	you	rename	a	view,	information	about	the	view	is	updated	in	the
sysobjects	table.	When	you	rename	a	stored	procedure,	information	about	the
procedure	is	changed	in	the	sysobjects	table.

sp_rename	automatically	renames	the	associated	index	whenever	a	PRIMARY
KEY	or	UNIQUE	constraint	is	renamed.	If	a	renamed	index	is	tied	to	a
PRIMARY	KEY	constraint,	the	primary	key	is	also	automatically	renamed	by
sp_rename.

IMPORTANT		After	renaming	stored	procedures	and	views,	flush	the	procedure
cache	to	ensure	all	dependent	stored	procedures	and	views	are	recompiled.

Stored	procedures	and	views	can	be	dropped	and	re-created	quickly	because
neither	object	stores	data.	For	best	results	renaming	textual	objects,	drop	and	re-
create	the	object	by	its	new	name.

Permissions
Members	of	the	sysadmin	fixed	server	role,	the	db_owner	and	db_ddladmin
fixed	database	roles,	or	the	owner	of	the	object	can	execute	sp_rename.	Only
members	of	the	sysadmin	and	dbcreator	fixed	server	roles	can	execute
sp_rename	with	'database'	as	the	object_type.

Examples

A.	Rename	a	table
This	example	renames	the	customers	table	to	custs.

EXEC	sp_rename	'customers',	'custs'

B.	Rename	a	column
This	example	renames	the	contact	title	column	in	the	customers	table	to	title.

EXEC	sp_rename	'customers.[contact	title]',	'title',	'COLUMN'

See	Also

ALTER	TABLE

CREATE	DEFAULT

CREATE	PROCEDURE

CREATE	RULE

CREATE	TABLE

CREATE	TRIGGER

CREATE	VIEW

Data	Types

SETUSER

sp_addtype

sp_depends

sp_renamedb

System	Stored	Procedures

Transact-SQL	Reference

sp_renamedb
Changes	the	name	of	a	database.

Syntax
sp_renamedb	[@dbname	=]	'old_name'	,	
				[@newname	=]	'new_name'

Arguments
[@dbname	=]	'old_name'

Is	the	current	name	of	the	database.	old_name	is	sysname,	with	no	default.

[@newname	=]	'new_name'

Is	the	new	name	of	the	database.	new_name	must	follow	the	rules	for
identifiers.	new_name	is	sysname,	with	no	default.

Return	Code	Values
0	(success)	or	a	nonzero	number	(failure)

Permissions
Only	members	of	the	sysadmin	and	dbcreator	fixed	server	roles	can	execute
sp_renamedb.

Examples
This	example	changes	the	name	of	the	accounting	database	to	financial.

EXEC	sp_renamedb	'accounting',	'financial'

See	Also

CREATE	DATABASE

sp_changedbowner

sp_dboption

sp_depends

sp_helpdb

sp_rename

System	Stored	Procedures

Transact-SQL	Reference

sp_resetstatus
Resets	the	status	of	a	suspect	database.

Syntax
sp_resetstatus	[@DBName	=]	'database'

Arguments
[@DBName	=]	'database'

Is	the	name	of	the	database	to	reset.	database	is	sysname,	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_resetstatus	turns	off	the	suspect	flag	on	a	database.	This	procedure	updates
the	mode	and	status	columns	of	the	named	database	in	sysdatabases.	The	SQL
Server	error	log	should	be	consulted	and	all	problems	resolved	before	running
this	procedure.	Stop	and	restart	SQL	Server	after	executing	sp_resetstatus.

A	database	can	become	suspect	for	several	reasons.	Possible	causes	include
denial	of	access	to	a	database	resource	by	the	operating	system,	and	the
unavailability	or	corruption	of	one	or	more	database	files.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute	sp_resetstatus.

Examples
This	example	resets	the	status	of	the	PUBS	database.

EXEC	sp_resetstatus	'PUBS'

See	Also

Insufficient	Disk	Space

Resetting	the	Suspect	Status

Troubleshooting	Recovery

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Transact-SQL	Reference

sp_resolve_logins
Resolves	logins	on	the	new	primary	server	against	logins	from	the	former
primary	server.

Syntax
sp_resolve_logins	[@dest_db	=]	'dest_db'	
				,	[@dest_path	=]	'dest_path'
				,	[@filename	=]	'filename'

Arguments
[@dest_db	=]	'dest_db'

Is	the	name	of	the	new	primary	database.	dest_db	is	sysname,	with	no
default.

[@dest_path	=]	dest_path

Is	the	path	to	the	directory	where	filename	is	stored.	dest_path	is
nvarchar(255),	with	no	default.

[@filename	=]	filename

Is	the	name	of	the	file	containing	a	bulk	copy	of	the	syslogins	table	from	the
former	primary	database.	filename	is	nvarchar(255),	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
sp_resolve_logins	must	be	run	on	the	instance	of	SQL	Server	marked	as	the	new

primary	server	(former	secondary	server).	You	must	run	this	stored	procedure
from	the	target	database.

In	order	to	complete	a	log	shipping	role	change,	you	must	perform	several	steps
in	addition	to	running	this	procedure.	For	more	information,	see	How	to	set	up
and	perform	a	log	shipping	role	change	(Transact-SQL).

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute	sp_resolve_logins.

Examples
This	example	shows	how	to	resolve	logins	on	the	new	primary	server	against
logins	from	the	former	primary	server.	'db2'	is	the	name	of	the	new	primary
database.	'syslogins.dat'	contains	a	bulk	copy	of	the	syslogins	table	from	the
former	primary	database	and	is	stored	in	directory	'c:\bulkoutput\'.

EXEC	sp_resolve_logins	@dest_db	=	'db2',
			@dest_path	=	'c:\bulkoutput\',
			@dest_filename	=	'syslogins.dat'

See	Also

sp_change_monitor_role

sp_change_primary_role

sp_change_secondary_role

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_resync_targetserver
Resynchronizes	all	multiserver	jobs	in	the	specified	target	server.

Syntax
sp_resync_targetserver	[@server_name	=]	'server'

Arguments
[@server_name	=]	'server'

Is	the	name	of	the	server	to	resynchronize.	server	is	nvarchar(30),	with	no
default.	If	ALL	is	specified,	all	target	servers	are	resynchronized.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
Reports	the	result	of	sp_post_msx_operation	actions.

Remarks
sp_resync_targetserver	deletes	the	current	set	of	instructions	for	the	target
server	and	posts	a	new	set	for	the	target	server	to	download.	The	new	set	consists
of	an	instruction	to	delete	all	multiserver	jobs,	followed	by	an	insert	for	each	job
currently	targeted	at	the	server.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_resync_targetserver.

Examples
This	example	resynchronizes	the	LONDON1	target	server.

USE	msdb
EXEC	sp_resync_targetserver	'LONDON1'

See	Also

sp_help_downloadlist

sp_post_msx_operation

System	Stored	Procedures

Transact-SQL	Reference

sp_revokedbaccess
Removes	a	security	account	from	the	current	database.

Syntax
sp_revokedbaccess	[@name_in_db	=]	'name'

Arguments
[@name_in_db	=]	'name'

Is	the	name	of	the	account	to	be	removed.	name	is	sysname	with	no	default.
name	can	be	the	name	of	a	Microsoft®	SQL	Server™	user,	or	Microsoft
Windows	NT®	user	or	group,	and	must	exist	in	the	current	database.	When
specifying	a	Windows	NT	user	or	group,	specify	the	name	the	Windows	NT
user	or	group	is	known	by	in	the	database	(added	using	sp_grantdbaccess).

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
When	the	account	is	removed,	the	permissions	and	aliases	that	depend	on	the
account	are	automatically	removed.

You	can	only	remove	accounts	in	the	current	database	using
sp_revokedbaccess.	To	add	an	account	in	the	database,	use	sp_grantdbaccess.
To	remove	a	SQL	Server	role,	use	sp_droprole.	When	removing	an	account	that
owns	objects	in	the	current	database,	you	must	either	remove	the	object,	or
change	the	owner	of	the	object	using	sp_changeobjectowner,	before	executing
sp_revokedbaccess.

The	sp_revokedbaccess	stored	procedure	cannot	remove:

The	public	role,	or	dbo	or	INFORMATION_SCHEMA	users.

The	fixed	roles	in	the	database.

The	guest	user	account	in	the	master	and	tempdb	databases.

A	Windows	NT	user	from	a	Windows	NT	group.

sp_revokedbaccess	cannot	be	executed	from	within	a	user-defined	transaction.

Permissions
Only	members	of	the	sysadmin	fixed	server	role,	and	the	db_accessadmin	and
db_owner	fixed	database	roles	can	execute	sp_revokedbaccess.

Examples
This	example	removes	the	account	Corporate\GeorgeW	from	the	current
database.

EXEC	sp_revokedbaccess	'Corporate\GeorgeW'

See	Also

sp_changeobjectowner

sp_droprole

sp_grantdbaccess

System	Stored	Procedures

Transact-SQL	Reference

sp_revokelogin
Removes	the	login	entries	from	Microsoft®	SQL	Server™	for	a	Microsoft
Windows	NT®	user	or	group	created	with	sp_grantlogin	or	sp_denylogin.

Syntax
sp_revokelogin	[@loginame	=]	'login'

Arguments
[@loginame	=]	'login'

Is	the	name	of	the	Windows	NT	user	or	group.	login	is	sysname,	with	no
default.	login	can	be	any	existing	Windows	NT	username	or	group	in	the
form	Domain\User.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_revokelogin	does	not	explicitly	prevent	Windows	NT	users	from	connecting
to	SQL	Server,	but	prevents	Windows	NT	users	from	doing	so	through	their
Windows	NT	user	accounts.	However,	Windows	NT	users	can	still	connect	if
they	are	members	of	a	Windows	NT	group	that	has	been	granted	access	to	SQL
Server	using	the	sp_grantlogin	stored	procedure.	For	example,	if	Windows	NT
user	REDMOND\john	is	a	member	of	the	Windows	NT	group
REDMOND\Admins,	and	REDMOND\john	is	revoked	access	using:

sp_revokelogin	[REDMOND\john]

REDMOND\john	can	still	connect	if	REDMOND\Admins	is	granted	access.
Similarly,	if	REDMOND\Admins	is	revoked	access	but	REDMOND\john	is
granted	access,	REDMOND\john	can	still	connect.

Use	sp_denylogin	to	explicitly	prevent	users	from	connecting	with	SQL	Server,

regardless	of	their	Windows	NT	group	memberships.

Use	sp_droplogin	to	remove	a	SQL	Server	login	added	with	sp_addlogin.

sp_revokelogin	cannot	be	executed	within	a	user-defined	transaction.

Permissions
Only	members	of	the	sysadmin	or	securityadmin	fixed	server	roles	can	execute
sp_revokelogin.

Examples
This	example	removes	the	login	entries	for	the	Windows	NT	user
Corporate\MollyA.

EXEC	sp_revokelogin	'Corporate\MollyA'

Or

EXEC	sp_revokelogin	[Corporate\MollyA]

See	Also

sp_denylogin

sp_droplogin

sp_grantlogin

System	Stored	Procedures

Transact-SQL	Reference

sp_runwebtask
Executes	a	previously	defined	Web	job	and	generates	the	HTML	document.	The
task	to	run	is	identified	by	the	output	file	name,	by	the	procedure	name,	or	by
both	parameters.

Note		All	Web	jobs	are	categorized	as	Web	Assistant	in	the	Job	Categories
dialog	box	in	SQL	Server	Enterprise	Manager.	For	more	information,	see
Defining	Jobs.

Syntax
sp_runwebtask	[[@procname	=]	'procname']	
				[,	[@outputfile	=]	'outputfile'

Arguments
[@procname	=]	'procname'

Is	the	name	of	the	Web	job	procedure	to	run.	The	named	procedure	defines
the	query	for	the	Web	job.	procname	is	nvarchar(128),	with	no	default.

[@outputfile	=]	'outputfile'

Is	the	name	of	the	output	file	for	the	specified	Web	job.	outputfile	is
nvarchar(255),	with	no	default.

Return	Code	Values
0	(success)	or	a	nonzero	number	(failure)

Remarks
sp_runwebtask	must	be	executed	in	the	same	database	specified	in	dbname	of
sp_makewebtask.

System	administrators	should	not	use	SETUSER	to	test	sp_runwebtask.	The
extended	procedure	does	not	honor	the	security	context	of	the	new	user.	To	test
for	proper	security	authentication,	create	a	temporary	user	ID	and	password.	Use

JavaScript:hhobj_1.Click()

this	temporary	account	to	log	in	and	test	sp_runwebtask.	Remove	the	temporary
account	after	testing	is	completed.

Output	produced	by	sp_runwebtask	is	the	actual	HTML	source.	You	can	view
the	source	document	with	most	word	processing	application.

IMPORTANT		sp_dropwebtask,	sp_makewebtask,	and	sp_runwebtask	can	be
run	only	on	Microsoft®	SQL	Server™	version	6.5	and	later	databases.	Running
these	procedures	on	a	database	of	an	earlier	version	will	return	errors.

The	SQL	Server	Agent	must	be	running	when	a	job	is	scheduled	to	run
periodically.	Otherwise,	generation	of	the	.htm	page	will	not	occur.

All	Microsoft	Windows®	95/98	Web	Assistant	users	must	have	user	accounts	in
the	database	being	used.	Use	sp_adduser	to	add	accounts	to	each	database	a
user	may	access.	When	running	the	Windows	95/98	operating	system,	an	on-
demand	task	can	be	run	only	by	the	job	owner	or	the	system	administrator.

Permissions
The	user	must	have	SELECT	permissions	to	run	the	specified	query	used	by	the
Web	job.

Examples
This	example	runs	a	Web	job	by	using	the	@outputfile	of	C:\Web\Myfile.html
and	an	@procname	of	MYHTML.

sp_runwebtask	@procname	=	'MYHTML',	@outputfile	=	'C:\WEB\MYFILE.HTML'	

See	Also

sp_dropwebtask

sp_makewebtask

System	Stored	Procedures

Transact-SQL	Reference

sp_server_info
Returns	a	list	of	attribute	names	and	matching	values	for	Microsoft®	SQL
Server™,	the	database	gateway,	or	the	underlying	data	source.

Syntax
sp_server_info	[[@attribute_id	=]	'attribute_id']

Arguments
[@attribute_id	=]	'attribute_id'

Is	the	integer	ID	of	the	attribute.	attribute_id	is	int,	with	a	default	of	NULL.

Return	Code	Values
None

Result	Sets

Column	name Data	type Description
ATTRIBUTE_ID int ID	number	of	the	attribute.
ATTRIBUTE_NAME varchar(60) Attribute	name.
ATTRIBUTE_VALUEvarchar(255) Current	setting	of	the	attribute.

These	are	the	attributes.	Microsoft	DB-Library	and	ODBC	client	libraries
currently	use	attributes	1,	2,	18,	22,	and	500	at	connection	time.

ATTRIBUTE_ID
ATTRIBUTE_NAME
Description ATTRIBUTE_VALUE

1 DBMS_NAME Microsoft	SQL	Server
2 DBMS_VER Microsoft	SQL	Server

2000	-	8.00.xxx	(Intel
X86)	
May	31	2000	00:54:06
Copyright	(c)	1988-2000

Microsoft	Corporation
10 OWNER_TERM owner
11 TABLE_TERM table
12 MAX_OWNER_NAME_LENGTH128
13 TABLE_LENGTH

Specifies	the	maximum	number	of
characters	for	a	table	name.

128

14 MAX_QUAL_LENGTH

Specifies	the	maximum	length	of
the	name	for	a	table	qualifier	(the
first	part	of	a	three-part	table
name).

128

15 COLUMN_LENGTH

Specifies	the	maximum	number	of
characters	for	a	column	name.

128

16 IDENTIFIER_CASE

Specifies	the	user-defined	names
(table	names,	column	names,	stored
procedure	names)	in	the	database
(the	case	of	the	objects	in	the
system	catalogs).

SENSITIVE

17 TX_ISOLATION

Specifies	the	initial	transaction
isolation	level	the	server	assumes,
which	corresponds	to	an	isolation
level	defined	in	SQL-92.

2

18 COLLATION_SEQ

Specifies	the	ordering	of	the
character	set	for	this	server.

charset=iso_1
sort_order=dictionary_iso
charset_num=1
sort_order_num=51

19 SAVEPOINT_SUPPORT Y

Specifies	whether	the	underlying
DBMS	supports	named	savepoints.

20 MULTI_RESULT_SETS

Specifies	whether	the	underlying
database	or	the	gateway	itself
supports	multiple	result	sets
(multiple	statements	can	be	sent
through	the	gateway	with	multiple
result	sets	returned	to	the	client).

Y

22 ACCESSIBLE_TABLES

Specifies	whether	in	sp_tables,	the
gateway	returns	only	tables,	views,
and	so	on,	accessible	by	the	current
user	(that	is,	the	user	who	has	at
least	SELECT	permissions	for	the
table).

Y

100 USERID_LENGTH

Specifies	the	maximum	number	of
characters	for	a	username.

128

101 QUALIFIER_TERM

Specifies	the	DBMS	vendor	term
for	a	table	qualifier	(the	first	part	of
a	three-part	name).

database

102 NAMED_TRANSACTIONS

Specifies	whether	the	underlying
DBMS	supports	named
transactions.

Y

103 SPROC_AS_LANGUAGE

Specifies	whether	stored
procedures	can	be	executed	as

Y

language	events.

104 ACCESSIBLE_SPROC

Specifies	whether	in
sp_stored_procedures,	the
gateway	returns	only	stored
procedures	that	are	executable	by
the	current	user.

Y

105 MAX_INDEX_COLS

Specifies	the	maximum	number	of
columns	in	an	index	for	the	DBMS.

16

106 RENAME_TABLE

Specifies	whether	tables	can	be
renamed.

Y

107 RENAME_COLUMN

Specifies	whether	columns	can	be
renamed.

Y

108 DROP_COLUMN

Specifies	whether	columns	can	be
dropped.

Returns	Y,	if	SQL	Server
2000	is	running	and	N,
for	earlier	releases.

109 INCREASE_COLUMN_LENGTH

Specifies	whether	column	size	can
be	increased.

Returns	Y,	if	SQL	Server
2000	is	running	and	N,
for	earlier	releases.

110 DDL_IN_TRANSACTION

Specifies	whether	DDL	statements
can	appear	in	transactions.

Returns	Y,	if	SQL	Server
version	6.5	or	later	is
running	and	N,	for	earlier
releases.

111 DESCENDING_INDEXES

Specifies	whether	descending
indexes	are	supported.

Returns	Y,	if	SQL	Server
2000	is	running	and	N,
for	earlier	releases.

112 SP_RENAME

Specifies	whether	a	stored
procedure	can	be	renamed.

Y

113 REMOTE_SPROC

Specifies	whether	stored
procedures	can	be	executed	through
the	remote	stored	procedure
functions	in	DB-Library.

Y

500 SYS_SPROC_VERSION

Specifies	the	version	of	the	catalog
stored	procedures	currently
implemented.

Current	version	number

Remarks
sp_server_info	returns	a	subset	of	the	information	provided	by	SQLGetInfo	in
ODBC.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_serveroption
Sets	server	options	for	remote	servers	and	linked	servers.

In	this	release,	sp_serveroption	has	been	enhanced	with	two	new	options,	use
remote	collation	and	collation	name,	that	support	collations	in	linked	servers.

Syntax
sp_serveroption	[@server	=]	'server'	
				,[@optname	=]	'option_name'
				,[@optvalue	=]	'option_value'

Arguments
[@server	=]	'server'

Is	the	name	of	the	server	for	which	to	set	the	option.	server	is	sysname,	with
no	default.

[@optname	=]	'option_name'

Is	the	option	to	set	for	the	specified	server.	option_name	is	varchar(35),	with
no	default.	option_name	can	be	any	of	the	following	values.

Value Description
collation	compatible Affects	Distributed	Query	execution	against

linked	servers.	If	this	option	is	set	to	true,
Microsoft®	SQL	Server™	assumes	that	all
characters	in	the	linked	server	are	compatible	with
the	local	server,	with	regard	to	character	set	and
collation	sequence	(or	sort	order).	This	enables
SQL	Server	to	send	comparisons	on	character
columns	to	the	provider.	If	this	option	is	not	set,
SQL	Server	always	evaluates	comparisons	on
character	columns	locally.

This	option	should	be	set	only	if	it	is	certain	that
the	data	source	corresponding	to	the	linked	server

has	the	same	character	set	and	sort	order	as	the
local	server.

collation	name Specifies	the	name	of	the	collation	used	by	the
remote	data	source	if	use	remote	collation	is	true
and	the	data	source	is	not	a	SQL	Server	data
source.	The	name	must	be	one	of	the	collations
supported	by	SQL	Server.

Use	this	option	when	accessing	an	OLE	DB	data
source	other	than	SQL	Server,	but	whose	collation
matches	one	of	the	SQL	Server	collations.

The	linked	server	must	support	a	single	collation
to	be	used	for	all	columns	in	that	server.	Do	not
set	this	option	if	the	linked	server	supports
multiple	collations	within	a	single	data	source,	or
if	the	linked	server's	collation	cannot	be
determined	to	match	one	of	the	SQL	Server
collations.

connect	timeout Time-out	value	for	connecting	to	a	linked	server.

If	0,	use	the	sp_configure	default.

data	access Enables	and	disables	a	linked	server	for
distributed	query	access.	Can	be	used	only	for
sysserver	entries	added	through
sp_addlinkedserver.

dist Distributor.
dpub Remote	Publisher	to	this	Distributor.
lazy	schema	validation Determines	whether	the	schema	of	remote	tables

will	be	checked.

If	true,	skip	schema	checking	of	remote	tables	at
the	beginning	of	the	query.

pub Publisher.
query	timeout Time-out	value	for	queries	against	a	linked	server.

If	0,	use	the	sp_configure	default.

rpc Enables	RPC	from	the	given	server.
rpc	out Enables	RPC	to	the	given	server.
sub Subscriber.
system For	internal	use	only.
use	remote	collation Determines	whether	the	collation	of	a	remote

column	or	of	a	local	server	will	be	used.

If	true,	the	collation	of	remote	columns	is	used
for	SQL	Server	data	sources,	and	the	collation
specified	in	collation	name	is	used	for	non-SQL
Server	data	sources.

If	false,	distributed	queries	will	always	use	the
default	collation	of	the	local	server,	while
collation	name	and	the	collation	of	remote
columns	are	ignored.	The	default	is	false.	(The
false	value	is	compatible	with	the	collation
semantics	used	in	SQL	Server	7.0.)

[@optvalue	=]	'option_value'

Specifies	whether	or	not	the	option_name	should	be	enabled	(TRUE	or	on)
or	disabled	(FALSE	or	off).	option_value	is	varchar(10),	with	no	default.

option_value	may	be	a	nonnegative	integer	for	the	connect	timeout	and
query	timeout	options.	For	the	collation	name	option,	option_value	may	be
a	collation	name	or	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
If	the	collation	compatible	option	is	set	to	TRUE,	collation	name	automatically
will	be	set	to	NULL.	If	collation	name	is	set	to	a	non	NULL	value,	collation

compatible	automatically	will	be	set	to	FALSE.

Permissions
Only	members	of	the	sysadmin	and	setupadmin	fixed	server	role	can	execute
sp_serveroption.

Examples

A.	Enable	a	Publisher/Subscriber	server
This	example	sets	the	server	as	a	combination	Publisher/Subscriber	server.

USE	master
EXEC	sp_serveroption	'ACCOUNTS',	'dpub',	'TRUE'

B.	Disable	a	distribution	server
This	example	turns	off	the	dist	option	for	the	SEATTLE2	server.

USE	master
EXEC	sp_serveroption	'SEATTLE2',	'dist',	'off'

C.	Enable	a	linked	server	to	be	collation	compatible	with	a	local
SQL	Server
This	example	configures	a	linked	server	corresponding	to	another	SQL	Server,
SEATTLE3,	to	be	collation	compatible	with	the	local	SQL	Server.

USE	master
EXEC	sp_serveroption	'SEATTLE3',	'collation	compatible',	'true'

See	Also

sp_adddistpublisher

sp_addlinkedserver

sp_dropdistpublisher

sp_helpserver

System	Stored	Procedures

Transact-SQL	Reference

sp_setapprole
Activates	the	permissions	associated	with	an	application	role	in	the	current
database.

Syntax
sp_setapprole	[@rolename	=]	'role'	,
				[@password	=]	{Encrypt	N	'password'}	|	'password'
				[,[@encrypt	=]	'encrypt_style']

Arguments
[@rolename	=]	'role'

Is	the	name	of	the	application	role	defined	in	the	current	database.	role	is
sysname,	with	no	default.	role	must	exist	in	the	current	database.

[@password	=]	{Encrypt	N	'password'}	|	'password'

Is	the	password	required	to	activate	the	application	role.	password	is
sysname,	with	no	default.	password	can	be	encrypted	using	the	ODBC
canonical	Encrypt	function.	When	using	the	Encrypt	function,	the
password	must	be	converted	to	a	Unicode	string	by	preceding	the	password
with	N.

[@encrypt	=]	'encrypt_style'

Specifies	the	encryption	style	used	by	password.	encrypt_style	is
varchar(10),	and	can	be	one	of	these	values.

Value Description
None The	password	is	not	encrypted	and	is	passed	to	Microsoft®	SQL

Server™	as	plaintext.	This	is	the	default.
Odbc The	password	is	encrypted	using	the	ODBC	canonical	Encrypt

function	before	being	sent	to	SQL	Server.	This	can	only	be
specified	when	using	either	an	ODBC	client	or	the	OLE	DB
Provider	for	SQL	Server.	DB-Library	clients	cannot	use	this

option.

Return	Code	Values
0	(success)	and	1	(failure)

Remarks
Application	roles	do	not	have	members;	therefore,	the	user	does	not	have	to	be
added	to	the	application	role.	When	an	application	role	is	not	activated,
sp_setapprole	has	no	effect	on	a	user's	membership	in	other	roles	or	groups	in
the	current	database.

When	an	application	role	is	activated,	the	permissions	usually	associated	with
the	user's	connection	that	activated	the	application	role	are	ignored.	The	user's
connection	gains	the	permissions	associated	with	the	application	role	for	the
database	in	which	the	application	role	is	defined.	The	user's	connection	can	gain
access	to	another	database	only	through	permissions	granted	to	the	guest	user
account	in	that	database.	Therefore,	if	the	guest	user	account	does	not	exist	in	a
database,	the	connection	cannot	gain	access	to	that	database.

After	an	application	role	is	activated	with	sp_setapprole,	the	role	cannot	be
deactivated	in	the	current	database	until	the	user	disconnects	from	SQL	Server.

To	protect	your	application	role	password,	encrypt	the	password	using	the
ODBC	Encrypt	function	and	specify	odbc	as	the	encryption	method.

The	sp_setapprole	stored	procedure	can	be	executed	only	by	direct	Transact-
SQL	statements;	it	cannot	be	executed	within	another	stored	procedure	or	from
within	a	user-defined	transaction.

Permissions
Any	user	can	execute	sp_setapprole	by	providing	the	correct	password	for	the
role.

Examples

A.	Activate	an	application	role	without	encrypting	the	password
This	example	activates	an	application	role	named	SalesAppRole,	with	the
plaintext	password	AsDeFXX,	created	with	permissions	specifically	designed
for	the	application	used	by	the	current	user.

EXEC	sp_setapprole	'SalesApprole',	'AsDeFXX'

B.	Activate	an	application	role	and	encrypt	the	password
This	example	activates	the	Test	application	role	with	the	password	pswd,	but
encrypts	the	password	before	sending	it	to	SQL	Server.

EXEC	sp_setapprole	'Test',	{Encrypt	N	'pswd'},	'odbc'

See	Also

Establishing	Application	Security	and	Application	Roles

sp_addapprole

sp_dropapprole

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_setnetname
Sets	the	network	names	in	sysservers	to	their	actual	network	computer	names
for	remote	instances	of	Microsoft®	SQL	Server™.	This	procedure	can	be	used
to	enable	execution	of	remote	stored	procedure	calls	to	computers	that	have
network	names	containing	invalid	SQL	Server	identifiers.

Syntax
sp_setnetname	@server	=	'server',	
				@netname	=	'network_name'

Arguments
@server	=	'server'

Is	the	name	of	the	remote	server	as	referenced	in	user-coded	remote	stored
procedure	call	syntax.	Exactly	one	row	in	sysservers	must	already	exist	to
use	this	server.	server	is	sysname,	with	no	default.

@netname	=	'network_name'

Is	the	network	name	of	the	computer	to	which	remote	stored	procedure	calls
are	made.	network_name	is	sysname,	with	no	default.

This	name	must	match	the	Microsoft	Windows	NT®	computer	name,	and	it
can	include	characters	that	are	not	allowed	in	SQL	Server	identifiers.

If	a	DB-Library	alias	matching	the	network_name	is	defined	on	the	SQL
Server	computer,	the	connection	string	information	in	that	alias	is	used	to
connect	to	the	remote	SQL	Server.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
Some	remote	stored	procedure	calls	to	Windows	NT	computers	can	encounter
problems	if	the	computer	name	contains	invalid	identifiers.	Use	this	procedure	to
differentiate	the	values	in	sysservers.srvname	versus	sysservers.srvnetname.

Because	linked	servers	and	remote	servers	reside	in	the	same	namespace,	they
cannot	have	the	same	name.	It	is	possible,	however,	to	define	both	a	linked
server	and	a	remote	server	against	a	given	server	by	assigning	different	names
and	using	sp_setnetname	to	set	the	network	name	of	one	of	them	to	the
underlying	server's	network	name.

--Assume	sqlserv2	is	actual	name	of	SQL	Server	
--database	server
EXEC	sp_addlinkedserver	'sqlserv2'
GO
EXEC	sp_addserver	'rpcserv2'
GO
EXEC	sp_setnetname	'rpcserv2',	'sqlserv2'

Note		Using	sp_setnetname	to	point	a	linked	server	back	to	the	local	server	is
not	supported.	Servers	referenced	in	this	manner	cannot	participate	in	a
distributed	transaction.

Permissions
Only	members	of	the	sysadmin	and	setupadmin	fixed	server	roles	can	execute
this	procedure.

Examples
This	example	shows	a	typical	administrative	sequence	used	on	SQL	Server	to
issue	the	remote	stored	procedure	call.

USE	master
EXEC	sp_addserver	'Win_NT1'
EXEC	sp_setnetname	'Win_NT1','Win-NT1'
EXEC	Win_NT1.master.dbo.sp_who	

See	Also

sp_addlinkedserver

sp_addserver

System	Stored	Procedures

Transact-SQL	Reference

sp_settriggerorder
Specifies	which	AFTER	triggers	associated	with	a	table	will	be	fired	first	or	last.
The	AFTER	triggers	that	will	be	fired	between	the	first	and	last	triggers	will	be
executed	in	undefined	order.

Syntax
sp_settriggerorder[@triggername	=]	'triggername'	
				,	[@order	=]	'value'	
				,	[@stmttype	=]	'statement_type'

Argument
[@triggername	=]	'triggername'

Is	the	name	of	the	trigger	whose	order	will	be	set	or	changed.	triggername	is
sysname.	If	the	name	does	not	correspond	to	a	trigger	or	if	the	name
corresponds	to	an	INSTEAD	OF	trigger,	the	procedure	will	return	an	error.

[@order	=]	'value'

Is	the	setting	for	the	new	trigger	order.	value	is	varchar(10)	and	it	can	be
any	of	the	following	values.

IMPORTANT		The	First	and	Last	triggers	must	be	two	different	triggers.

Value Description
First Trigger	will	be	fired	first.
Last Trigger	will	be	fired	last.
None Trigger	will	be	fired	in	undefined	order.

[@stmttype	=]	'statement_type'

Specifies	which	SQL	statement	fires	the	trigger.	statement_type	is
varchar(10)	and	can	be	INSERT,	UPDATE,	or	DELETE.	A	trigger	can	be
designated	as	the	First	or	Last	trigger	for	a	statement	type	only	after	that

trigger	has	been	defined	as	a	trigger	for	that	statement	type.	For	example,
trigger	TR1	can	be	designated	First	for	INSERT	on	table	T1	if	TR1	is
defined	as	an	INSERT	trigger.	SQL	Server	will	return	an	error	if	TR1,	which
has	been	defined	only	as	an	INSERT	trigger,	is	set	as	a	First	(or	Last)	trigger
for	an	UPDATE	statement.	For	more	information,	see	the	Remarks	section.

Return	Code	Values
0	(success)	and	1	(failure)

Remarks
There	can	be	only	one	First	and	one	Last	trigger	for	each	of	INSERT,	UPDATE,
or	DELETE	statement	on	a	single	table.

If	a	First	trigger	is	already	defined	on	the	table,	you	cannot	designate	a	new
trigger	as	First	for	the	same	table	for	the	same	operation	(INSERT,	UPDATE,	or
DELETE).	This	restriction	also	applies	Last	triggers.

As	part	of	SQL	Server	replication,	a	First	trigger	can	be	designated	on	a
published	table;	however,	if	a	conflict	with	the	user-defined	trigger	exists,	the
designation	of	the	user-defined	trigger	must	be	changed	to	None	before	the	table
can	be	published.

If	an	ALTER	TRIGGER	statement	changes	a	first	or	last	trigger,	the	First	or
Last	attribute	originally	set	on	the	trigger	is	dropped,	and	the	value	is	replaced
by	None.	The	order	value	must	be	reset	with	sp_settriggerorder.

If	the	same	trigger	has	to	be	designated	as	the	first	or	last	order	for	more	than
one	statement	type,	sp_settriggerorder	must	be	executed	for	each	statement
type.	Also,	the	trigger	must	be	first	defined	for	a	statement	type	before	it	can	be
designated	as	the	First	or	Last	trigger	to	fire	for	the	statement	type.

Permissions
The	owner	of	the	trigger	and	the	table	on	which	the	trigger	is	defined	has
execute	permissions	for	sp_settriggerorder.	Members	of	db_owner	and
db_ddladmin	roles	in	the	current	database,	as	well	as	the	sysadmin	server	role
can	execute	this	stored	procedure.

Examples

sp_settriggerorder	@triggername=	'MyTrigger',	@order='first',	@stmttype	=	'UPDATE'

Transact-SQL	Reference

sp_scriptsubconflicttable
Generates	script	for	creating	a	conflict	table	on	the	Subscriber	for	a	given
queued	subscription	article.	The	script	that	is	generated	is	executed	at	the
Subscriber	on	the	subscription	database.	This	stored	procedure	is	executed	at	the
Publisher	on	the	publication	database.

Syntax
sp_scriptsubconflicttable	[@publication	=]	'publication'
				,	[@article	=]	'article'

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication	that	contains	the	article.	The	name	must	be
unique	in	the	database.	publication	is	sysname,	with	no	default.

[@article	=]	'article'

Is	the	name	of	the	subscription	article.	article	is	sysname,	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
cmdtext nvarchar(4000)Returns	the	Transact-SQL	script	for

creating	the	conflict	table	on	the
Subscriber	for	the	queued	subscription
article.	This	script	is	executed	on	the
Subscriber	in	the	subscription	database.

Remarks
sp_scriptsubconflicttable	is	used	for	Subscribers	that	have	subscriptions	where
the	initial	snapshot	is	applied	manually.	The	conflict	table	is	an	optional	table	at
the	Subscriber.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_scriptsubconflicttable.

See	Also

How	Queued	Updating	Works

System	Stored	Procedures

Queued	Updating	Conflict	Detection	and	Resolution

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

sp_spaceused
Displays	the	number	of	rows,	disk	space	reserved,	and	disk	space	used	by	a	table
in	the	current	database,	or	displays	the	disk	space	reserved	and	used	by	the	entire
database.

Syntax
sp_spaceused	[[@objname	=]	'objname']	
				[,[@updateusage	=]	'updateusage']

Arguments
[@objname	=]	'objname'

Is	the	name	of	the	table	for	which	space	usage	information	(reserved	and
allocated	space)	is	requested.	objname	is	nvarchar(776),	with	a	default	of
NULL.

[@updateusage	=]	'updateusage'

Indicates	whether	or	not	DBCC	UPDATEUSAGE	should	be	run	within	the
database	(when	no	objname	is	specified)	or	on	a	specific	object	(when
objname	is	specified).	Values	can	be	true	or	false.	updateusage	is
varchar(5),	with	a	default	of	FALSE.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
If	objname	is	omitted,	two	result	sets	are	returned.

Column	name Data	type Description
database_name varchar(18) Name	of	the	current	database.
database_size varchar(18) Size	of	the	current	database.
unallocated	space varchar(18) Unallocated	space	for	the	database.

Column	name Data	type Description
reserved varchar(18) Total	amount	of	reserved	space.
Data varchar(18) Total	amount	of	space	used	by	data.
index_size varchar(18) Space	used	by	indexes.
Unused varchar(18) Amount	of	unused	space.

If	parameters	are	specified,	this	is	the	result	set.

Column	name Data	type Description
Name nvarchar(20) Name	of	the	table	for	which	space

usage	information	was	requested.
Rows char(11) Number	of	rows	existing	in	the

objname	table.
reserved varchar(18) Amount	of	total	reserved	space	for

objname.
Data varchar(18) Amount	of	space	used	by	data	in

objname.
index_size varchar(18) Amount	of	space	used	by	the	index

in	objname.
Unused varchar(18) Amount	of	unused	space	in

objname.

Remarks
sp_spaceused	computes	the	amount	of	disk	space	used	for	data	and	indexes,	and
the	disk	space	used	by	a	table	in	the	current	database.	If	objname	is	not	given,
sp_spaceused	reports	on	the	space	used	by	the	entire	current	database.

When	updateusage	is	specified,	Microsoft®	SQL	Server™	scans	the	data	pages
in	the	database	and	makes	any	necessary	corrections	to	the	sysindexes	table
regarding	the	storage	space	used	by	each	table.	There	are	some	situations,	for
example,	after	an	index	is	dropped,	when	the	sysindexes	information	for	the

table	may	not	be	current.	This	process	can	take	some	time	to	run	on	large	tables
or	databases.	Use	it	only	when	you	suspect	incorrect	values	are	being	returned
and	when	the	process	will	not	have	an	adverse	effect	on	other	users	or	processes
in	the	database.	If	preferred,	DBCC	UPDATEUSAGE	can	be	run	separately.

Permissions
Execute	permissions	default	to	the	public	role.

Examples

A.	Space	information	about	a	table
This	example	reports	the	amount	of	space	allocated	(reserved)	for	the	titles
table,	the	amount	used	for	data,	the	amount	used	for	index(es),	and	the	unused
space	reserved	by	database	objects.

USE	pubs
EXEC	sp_spaceused	'titles'

B.	Updated	space	information	about	a	complete	database
This	example	summarizes	space	used	in	the	current	database	and	uses	the
optional	parameter	@updateusage.

USE	pubs
sp_spaceused	@updateusage	=	'TRUE'

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

CREATE	INDEX

CREATE	TABLE

DBCC	SQLPERF

DROP	INDEX

DROP	TABLE

sp_help

sp_helpindex

System	Stored	Procedures

Transact-SQL	Reference

sp_special_columns
Returns	the	optimal	set	of	columns	that	uniquely	identify	a	row	in	the	table.	Also
returns	columns	automatically	updated	when	any	value	in	the	row	is	updated	by
a	transaction.

Syntax
sp_special_columns	[@name	=]	'name'	
				[,[owner	=]	'owner']	
				[,[@qualifier	=]	'qualifier']	
				[,[@col_type	=]	'col_type']	
				[,[@scope	=]	'scope']
				[,[@nullable	=]	'nullable']	
				[,[@ODBCVer	=]	'ODBCVer']

Arguments
[@name	=]	'name'

Is	the	name	of	the	table	used	to	return	catalog	information.	name	is	sysname,
with	no	default.	Wildcard	pattern	matching	is	not	supported.

[owner	=]	'owner'

Is	the	table	owner	of	the	table	used	to	return	catalog	information.	owner	is
sysname,	with	a	default	of	NULL.	Wildcard	pattern	matching	is	not
supported.	If	owner	is	not	specified,	the	default	table	visibility	rules	of	the
underlying	DBMS	apply.

In	Microsoft®	SQL	Server™,	if	the	current	user	owns	a	table	with	the
specified	name,	the	columns	of	that	table	are	returned.	If	owner	is	not
specified	and	the	current	user	does	not	own	a	table	of	the	specified	name,
this	procedure	looks	for	a	table	of	the	specified	name	owned	by	the	database
owner.	If	the	table	exists,	its	columns	are	returned.

[@qualifier	=]	'qualifier'

Is	the	name	of	the	table	qualifier.	qualifier	is	sysname,	with	a	default	of

NULL.	Various	DBMS	products	support	three-part	naming	for	tables
(qualifier.owner.name).	In	SQL	Server,	this	column	represents	the	database
name.	In	some	products,	it	represents	the	server	name	of	the	database
environment	of	the	table.

[@col_type	=]	'col_type'

Is	the	column	type.	col_type	is	char(1),	with	a	default	of	R.	Type	R	returns
the	optimal	column	or	set	of	columns	that,	by	retrieving	values	from	the
column	or	columns,	allows	any	row	in	the	specified	table	to	be	uniquely
identified.	A	column	can	be	either	a	pseudocolumn	specifically	designed	for
this	purpose,	or	the	column	or	columns	of	any	unique	index	for	the	table.
Type	V	returns	the	column	or	columns	in	the	specified	table,	if	any,	that	are
automatically	updated	by	the	data	source	when	any	value	in	the	row	is
updated	by	any	transaction.

[@scope	=]	'scope'

Is	the	minimum	required	scope	of	the	ROWID.	scope	is	char(1),	with	a
default	of	T.	Scope	C	specifies	that	the	ROWID	is	valid	only	when
positioned	on	that	row.	Scope	T	specifies	that	the	ROWID	is	valid	for	the
transaction.

[@nullable	=]	'nullable'

Is	whether	or	not	the	special	columns	can	accept	a	null	value.	nullable	is
char(1),	with	a	default	of	U.	O	specifies	special	columns	that	do	not	allow
null	values.	U	specifies	columns	that	are	partially	nullable.

[@ODBCVer	=]	'ODBCVer'

Is	the	ODBC	version	being	used.	ODBCVer	is	int(4),	with	a	default	of	2,
which	indicates	ODBC	version	2.0.	For	more	information	about	the
difference	between	ODBC	version	2.0	and	ODBC	version	3.0,	see	the
ODBC	SQLSpecialColumns	specification	for	ODBC	version	3.0.

Return	Code	Values
None

Result	Sets

Column	name Data	type Description
SCOPE smallint Actual	scope	of	the	row	ID.	Can	be	0,	1,

or	2.	SQL	Server	always	returns	0.	This
field	always	returns	a	value.

0	=	SQL_SCOPE_CURROW.	The	row
ID	is	guaranteed	to	be	valid	only	while
positioned	on	that	row.	A	later	reselect
using	the	row	ID	may	not	return	a	row	if
the	row	was	updated	or	deleted	by
another	transaction.

1	=	SQL_SCOPE_TRANSACTION.	The
row	ID	is	guaranteed	to	be	valid	for	the
duration	of	the	current	transaction.

2	=	SQL_SCOPE_SESSION.	The	row
ID	is	guaranteed	to	be	valid	for	the
duration	of	the	session	(across
transaction	boundaries).

COLUMN_NAME sysname Column	name	for	each	column	of	the
table	returned.	This	field	always	returns	a
value.

DATA_TYPE smallint ODBC	SQL	data	type.
TYPE_NAME sysname Data	source-dependent	data	type	name;

for	example,	char,	varchar,	money,	or
text.

PRECISION Int Precision	of	the	column	on	the	data
source.	This	field	always	returns	a	value.

LENGTH Int Length,	in	bytes,	required	for	the	data
type	in	its	binary	form	in	the	data	source,
for	example,	10	for	char(10),	4	for
integer,	and	2	for	smallint.

SCALE smallint Scale	of	the	column	on	the	data	source.
NULL	is	returned	for	data	types	for
which	scale	is	not	applicable.

PSEUDO_COLUMN smallint Indicates	whether	the	column	is	a
pseudocolumn.	SQL	Server	always
returns	2:
0	=	SQL_PC_UNKNOWN
1	=	SQL_PC_PSEUDO
2	=	SQL_PC_NOT_PSEUDO

Remarks
sp_special_columns	is	equivalent	to	SQLSpecialColumns	in	ODBC.	The
results	returned	are	ordered	by	SCOPE.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_sproc_columns
Returns	column	information	for	a	single	stored	procedure	or	user-defined
function	in	the	current	environment.

Syntax
sp_sproc_columns	[[@procedure_name	=]	'name']	
				[,[@procedure_owner	=]	'owner']	
				[,[@procedure_qualifier	=]	'qualifier']	
				[,[@column_name	=]	'column_name']
				[,[@ODBCVer	=]	'ODBCVer']

Arguments
[@procedure_name	=]	'name'

Is	the	name	of	the	procedure	used	to	return	catalog	information.	name	is
nvarchar(390),	with	a	default	of	%,	which	means	all	tables	in	the	current
database.	Wildcard	pattern	matching	is	not	supported.

[@procedure_owner	=]	'owner'

Is	the	name	of	the	owner	of	the	procedure.	owner	is	nvarchar(384),	with	a
default	of	NULL.	Wildcard	pattern	matching	is	not	supported.	If	owner	is	not
specified,	the	default	procedure	visibility	rules	of	the	underlying	DBMS
apply.

In	Microsoft®	SQL	Server™,	if	the	current	user	owns	a	procedure	with	the
specified	name,	information	about	that	procedure	is	returned.	If	owner	is	not
specified	and	the	current	user	does	not	own	a	procedure	with	the	specified
name,	sp_sproc_columns	looks	for	a	procedure	with	the	specified	name	that
is	owned	by	the	database	owner.	If	the	procedure	exists,	information	about	its
columns	is	returned.

[@procedure_qualifier	=]	'qualifier'

Is	the	name	of	the	procedure	qualifier.	qualifier	is	sysname,	with	a	default	of
NULL.	Various	DBMS	products	support	three-part	naming	for	tables

(qualifier.owner.name).	In	SQL	Server,	this	parameter	represents	the
database	name.	In	some	products,	it	represents	the	server	name	of	the	table's
database	environment.

[@column_name	=]	'column_name'

Is	a	single	column	and	is	used	when	only	one	column	of	catalog	information
is	desired.	column_name	is	nvarchar(384),	with	a	default	of	NULL.	If
column_name	is	omitted,	all	columns	are	returned.	The	value	specified	can
include	wildcard	characters	using	the	wildcard	matching	patterns	of	the
underlying	DBMS.	For	maximum	interoperability,	the	gateway	client	should
assume	only	SQL-92-standard	pattern	matching	(the	%	and	_	wildcard
characters).

[@ODBCVer	=]	'ODBCVer'

Is	the	version	of	ODBC	being	used.	ODBCVer	is	int,	with	a	default	of	2,
which	indicates	ODBC	version	2.0.	For	more	information	about	the
difference	between	ODBC	version	2.0	and	ODBC	version	3.0,	refer	to	the
ODBC	SQLProcedureColumns	specification	for	ODBC	version	3.0

Return	Code	Values
None

Result	Sets

Column	name Data	type Description
PROCEDURE_QUALIFIER sysname Procedure	qualifier	name.	This

column	can	be	NULL.
PROCEDURE_OWNER sysname Procedure	owner	name.	This

column	always	returns	a	value.
PROCEDURE_NAME nvarchar(134) Procedure	name.	This	column

always	returns	a	value.
COLUMN_NAME sysname Column	name	for	each	column	of

the	TABLE_NAME	returned.	This
column	always	returns	a	value.

COLUMN_TYPE smallint This	field	always	returns	a	value:

0	=
SQL_PARAM_TYPE_UNKNOWN
1	=	SQL_PARAM_TYPE_INPUT
2	=
SQL_PARAM_TYPE_OUTPUT
3	=	SQL_RESULT_COL
4	=	SQL_PARAM_OUTPUT
5	=	SQL_RETURN_VALUE

DATA_TYPE smallint Integer	code	for	an	ODBC	data
type.	If	this	data	type	cannot	be
mapped	to	an	SQL-92	type,	the
value	is	NULL.	The	native	data	type
name	is	returned	in	the
TYPE_NAME	column.

TYPE_NAME sysname String	representation	of	the	data
type.	This	is	the	data	type	name	as
presented	by	the	underlying	DBMS.

PRECISION int Number	of	significant	digits.	The
return	value	for	the	PRECISION
column	is	in	base	10.

LENGTH int Transfer	size	of	the	data.
SCALE smallint Number	of	digits	to	the	right	of	the

decimal	point.
RADIX smallint Is	the	base	for	numeric	types.
NULLABLE smallint Specifies	nullability:

1	=	Data	type	can	be	created
allowing	null	values
0	=	Null	values	are	not	allowed

REMARKS varchar(254) Description	of	the	procedure
column.	SQL	Server	does	not	return
a	value	for	this	column.

COLUMN_DEF nvarchar(4000)Default	value	of	the	column.
SQL_DATA_TYPE smallint Value	of	the	SQL	data	type	as	it

appears	in	the	TYPE	field	of	the

descriptor.	This	column	is	the	same
as	the	DATA_TYPE	column,
except	for	the	datetime	and	SQL-92
interval	data	types.	This	column
always	returns	a	value.

SQL_DATETIME_SUB smallint The	datetime	SQL-92	interval
subcode	if	the	value	of
SQL_DATA_TYPE	is
SQL_DATETIME	or
SQL_INTERVAL.	For	data	types
other	than	datetime	and	SQL-92
interval,	this	field	is	NULL.

CHAR_OCTET_LENGTH int Maximum	length	in	bytes	of	a
character	or	binary	data	type
column.	For	all	other	data	types,
this	column	returns	a	NULL.

ORDINAL_POSITION int Ordinal	position	of	the	column	in
the	table.	The	first	column	in	the
table	is	1.	This	column	always
returns	a	value.

IS_NULLABLE varchar(254) Nullability	of	the	column	in	the
table.	ISO	rules	are	followed	to
determine	nullability.	An	ISO	SQL-
compliant	DBMS	cannot	return	an
empty	string.

Displays	YES	if	the	column	can
include	NULLS	and	NO	if	the
column	cannot	include	NULLS.

This	column	returns	a	zero-length
string	if	nullability	is	unknown.

The	value	returned	for	this	column
is	different	from	the	value	returned
for	the	NULLABLE	column.

SS_DATA_TYPE tinyint SQL	Server	data	type	used	by	Open

Data	Services	extended	stored
procedures.	For	more	information,
see	Data	Types.

Remarks
The	returned	columns	belong	to	the	parameters	or	result	set	of	a	stored
procedure.	If	the	SP_NUM_PARAMETERS	and	SP_NUM_RESULT_SETS
columns	returned	by	sp_stored_procedures	for	a	particular	stored	procedure	are
-1	(indeterminate),	sp_sproc_columns	returns	no	rows	for	that	stored	procedure.
In	SQL	Server,	only	the	column	information	about	input	and	output	parameters
for	the	stored	procedure	are	returned.

sp_sproc_columns	is	equivalent	to	SQLProcedureColumns	in	ODBC.	The
results	returned	are	ordered	by	PROCEDURE_QUALIFIER,
PROCEDURE_OWNER,	PROCEDURE_NAME,	and	the	order	that	the
parameters	appear	in	the	procedure	definition.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_srvrolepermission
Returns	the	permissions	applied	to	a	fixed	server	role.

Syntax
sp_srvrolepermission	[[@srvrolename	=]	'role']

Arguments
[@srvrolename	=]	'role'

Is	the	name	of	the	fixed	server	role	for	which	permissions	are	returned.	role
is	sysname,	with	a	default	of	NULL.	If	not	specified,	the	permissions	for	all
fixed	server	roles	are	returned.	role	can	be	one	of	these	values.

Value Description
Sysadmin System	administrators
Securityadmin Security	administrators
Serveradmin Server	administrators
Setupadmin Setup	administrators
Processadmin Process	administrators
Diskadmin Disk	administrators
Dbcreator Database	creators
Bulkadmin Can	execute	BULK	INSERT	statements

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
ServerRole sysname Name	of	a	fixed	server	role
Permission sysname Permission	associated	with

ServerRole

Remarks
The	permissions	applied	to	members	of	fixed	server	roles	are	managed	internally
and	are	not	part	of	the	security	system	used	to	manage	the	permissions	for	the
other	types	of	security	accounts.

The	permissions	listed	include	the	Transact-SQL	statements	that	can	be
executed,	as	well	as	other	special	activities	performed	by	members	of	the	fixed
server	role.	To	display	a	list	of	the	fixed	server	roles,	execute	sp_helpsrvrole.

The	sysadmin	fixed	server	role	has	the	permissions	of	all	the	other	fixed	server
roles.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	displays	the	permissions	associated	with	the	sysadmin	fixed
server	role.

EXEC	sp_srvrolepermission	'sysadmin'

See	Also

sp_addsrvrolemember

sp_dropsrvrolemember

sp_helpsrvrole

System	Stored	Procedures

Transact-SQL	Reference

sp_start_job
Instructs	SQL	Server	Agent	to	execute	a	job	immediately.

Syntax
sp_start_job	[@job_name	=]	'job_name'	|	[@job_id	=]	job_id
				[,[@error_flag	=]	error_flag]
				[,[@server_name	=]	'server_name']
				[,[@step_name	=]	'step_name']
				[,[@output_flag	=]	output_flag]

Arguments
[@job_name	=]	'job_name'

Is	the	name	of	the	job	to	start.	Either	job_id	or	job_name	must	be	specified,
but	both	cannot	be	specified.	job_name	is	sysname,	with	a	default	of	NULL.

[@job_id	=]	job_id

Is	the	identification	number	of	the	job	to	start.	Either	job_id	or	job_name
must	be	specified,	but	both	cannot	be	specified.	job_id	is	uniqueidentifier,
with	a	default	of	NULL.

[@error_flag	=]	error_flag

Reserved.

[@server_name	=]	'server_name'

Is	the	target	server	on	which	to	start	the	job.	server_name	is	nvarchar(30),
with	a	default	of	NULL.	server_name	must	be	one	of	the	target	servers	to
which	the	job	is	currently	targeted.

[@step_name	=]	'step_name'

Is	the	name	of	the	step	at	which	to	begin	execution	of	the	job.	Applies	only
to	local	jobs.	step_name	is	sysname,	with	a	default	of	NULL

[@output_flag	=]	output_flag

Reserved.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Permissions
Execute	permissions	default	to	the	public	role	in	the	msdb	database.	A	user	who
can	execute	this	procedure	and	is	a	member	of	the	sysadmin	fixed	role	can	start
any	job.	A	user	who	is	not	a	member	of	the	sysadmin	role	can	use	sp_start_job
to	start	only	the	jobs	he/she	owns.

When	sp_start_job	is	invoked	by	a	user	who	is	a	member	of	the	sysadmin	fixed
server	role,	sp_start_job	will	be	executed	under	the	security	context	in	which
the	SQL	Server	service	is	running.	When	the	user	is	not	a	member	of	the
sysadmin	fixed	server	role,	sp_start_job	will	impersonate	the	SQL	Server
Agent	proxy	account,	which	is	specified	using	xp_sqlagent_proxy_account.	If
the	proxy	account	is	not	available,	sp_start_job	will	fail.	This	is	only	true	for
Microsoft®	Windows	NT®	4.0	and	Windows	2000.	On	Windows	9.x,	there	is	no
impersonation	and	sp_start_job	is	always	executed	under	the	security	context	of
the	Windows	9.x	user	who	started	SQL	Server.

Examples
This	example	starts	a	job	named	Nightly	Backup.

USE	msdb
EXEC	sp_start_job	@job_name	=	'Nightly	Backup'

See	Also

sp_delete_job

sp_help_job

sp_stop_job

sp_update_job

System	Stored	Procedures

Transact-SQL	Reference

sp_statistics
Returns	a	list	of	all	indexes	and	statistics	on	a	specified	table	or	indexed	view.

Syntax
sp_statistics	[@table_name	=]	'table_name'
				[,[@table_owner	=]	'owner']	
				[,[@table_qualifier	=]	'qualifier']	
				[,[@index_name	=]	'index_name']	
				[,[@is_unique	=]	'is_unique']
				[,[@accuracy	=]	'accuracy']

Arguments
[@table_name	=]	'name'

Specifies	the	table	used	to	return	catalog	information.	table_name	is
sysname,	with	no	default.	Wildcard	pattern	matching	is	not	supported.

[@table_owner	=]	'owner'

Is	the	name	of	the	table	owner	of	the	table	used	to	return	catalog	information.
table_owner	is	sysname,	with	a	default	of	NULL.	Wildcard	pattern	matching
is	not	supported.	If	owner	is	not	specified,	the	default	table	visibility	rules	of
the	underlying	DBMS	apply.

In	Microsoft®	SQL	Server™,	if	the	current	user	owns	a	table	with	the
specified	name,	the	indexes	of	that	table	are	returned.	If	owner	is	not
specified	and	the	current	user	does	not	own	a	table	with	the	specified	name,
this	procedure	looks	for	a	table	with	the	specified	name	owned	by	the
database	owner.	If	one	exists,	the	indexes	of	that	table	are	returned.

[@table_qualifier	=]	'qualifier'

Is	the	name	of	the	table	qualifier.	qualifier	is	sysname,	with	a	default	of
NULL.	Various	DBMS	products	support	three-part	naming	for	tables
(qualifier.owner.name).	In	SQL	Server,	this	parameter	represents	the
database	name.	In	some	products,	it	represents	the	server	name	of	the	table's

database	environment.

[@index_name	=]	'index_name'

Is	the	index	name.	index_name	is	sysname,	with	a	default	of	%.

[@is_unique	=]	'is_unique'

Is	whether	only	unique	indexes	(if	Y)	are	to	be	returned.	is_unique	is
char(1),	with	a	default	of	N.

[@accuracy	=]	'accuracy'

Is	the	level	of	cardinality	and	page	accuracy	for	statistics.	accuracy	is
char(1),	with	a	default	of	Q.	Specify	E	to	ensure	that	statistics	are	updated	so
that	cardinality	and	pages	are	accurate.

Result	Sets

Column	name Data	type Description
TABLE_QUALIFIER sysname Table	qualifier	name.	This	field

can	be	NULL.
TABLE_OWNER sysname Table	owner	name.	This	field

always	returns	a	value.
TABLE_NAME sysname Table	name.	This	field	always

returns	a	value.
NON_UNIQUE smallint NOT	NULL.	

0	=	Unique
1	=	Not	unique

INDEX_QUALIFIER sysname Index	owner	name.	Some	DBMS
products	allow	users	other	than	the
table	owner	to	create	indexes.	In
SQL	Server,	this	column	is	always
the	same	as	TABLE_NAME.

INDEX_NAME sysname Is	the	name	of	the	index.	This	field
always	returns	a	value.

TYPE smallint This	field	always	returns	a	value.
SQL	Server	returns	0,	1,	2,	or	3:
0	=	Statistics	for	a	table

1	=	Clustered
2	=	Hashed
3	=	Other

SEQ_IN_INDEX smallint Position	of	the	column	within	the
index.

COLUMN_NAME sysname Column	name	for	each	column	of
the	TABLE_NAME	returned.
This	field	always	returns	a	value.

COLLATION char(1) Order	used	in	collation.	SQL
Server	always	returns	A.	Can	be:
A	=	Ascending
D	=	Descending
NULL	=	Not	applicable

CARDINALITY int Number	of	rows	in	the	table	or
unique	values	in	the	index.

PAGES int Number	of	pages	to	store	the	index
or	table.

FILTER_CONDITION varchar(128) SQL	Server	does	not	return	a
value.

Return	Code	Values
None

Remarks
The	indexes	in	the	result	set	appear	in	ascending	order	by	the	columns
NON_UNIQUE,	TYPE,	INDEX_NAME,	and	SEQ_IN_INDEX.

The	index	type	clustered	refers	to	an	index	in	which	table	data	is	stored	in	the
order	of	the	index.	This	corresponds	to	SQL	Server	clustered	indexes.

The	index	type	hashed	accepts	exact	match	or	range	searches,	but	pattern
matching	searches	do	not	use	the	index.

sp_statistics	is	equivalent	to	SQLStatistics	in	ODBC.	The	results	returned	are
ordered	by	NON_UNIQUE,	TYPE,	INDEX_QUALIFIER,	INDEX_NAME,

and	SEQ_IN_INDEX.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_stop_job
Instructs	SQLServerAgent	to	stop	the	execution	of	a	job.

Syntax
sp_stop_job	[@job_name	=]	'job_name'
				|	[@job_id	=]	job_id	
				|	[@originating_server	=]	'master_server'	
				|	[@server_name	=]	'target_server'

Arguments
[@job_name	=]	'job_name'

Is	the	name	of	the	job	to	stop.	job_name	is	sysname,	with	a	default	of
NULL.

[@job_id	=]	job_id

Is	the	identification	number	of	the	job	to	stop.	job_id	is	uniqueidentifier,
with	a	default	of	NULL.

[@originating_server	=]	'master_server'

Is	the	name	of	the	master	server.	If	specified,	all	multiserver	jobs	are
stopped.	master_server	is	nvarchar(30),	with	a	default	of	NULL.	Specify
this	parameter	only	when	calling	sp_stop_job	at	a	target	server.

Note		Only	one	of	the	first	three	parameters	can	be	specified.

[@server_name	=]	'target_server'

Is	the	name	of	the	specific	target	server	on	which	to	stop	a	multiserver	job.
target_server	is	nvarchar(30),	with	a	default	of	NULL.	Specify	this
parameter	only	when	calling	sp_stop_job	at	a	master	server	for	a	multiserver
job.

Return	Code	Values

0	(success)	or	1	(failure)

Result	Sets
None

Remarks
If	a	job	is	currently	executing	a	step	of	type	CmdExec,	the	process	being	run	(for
example,	MyProgram.exe)	is	forced	to	end	prematurely.	Premature	ending	can
result	in	unpredictable	behavior	such	as	files	in	use	by	the	process	being	held
open.	Consequently,	sp_stop_job	should	be	used	only	in	extreme	circumstances
if	the	job	contains	steps	of	type	CmdExec.

Permissions
Execute	permissions	default	to	the	public	role	in	the	msdb	database.	A	user	who
can	execute	this	procedure	and	is	a	member	of	the	sysadmin	fixed	role	can	stop
any	job.	A	user	who	is	not	a	member	of	the	sysadmin	role	can	use	sp_stop_job
to	stop	only	the	jobs	he/she	owns.

When	sp_stop_job	is	invoked	by	a	user	who	is	a	member	of	the	sysadmin	fixed
server	role,	sp_stop_job	will	be	executed	under	the	security	context	in	which	the
SQL	Server	service	is	running.	When	the	user	is	not	a	member	of	the	sysadmin
group,	sp_stop_job	will	impersonate	the	SQL	Server	Agent	proxy	account,
which	is	specified	using	xp_sqlagent_proxy_account.	If	the	proxy	account	is
not	available,	sp_stop_job	will	fail.	This	is	only	true	for	Microsoft®	Windows®
NT	4.0	and	Windows	2000.	On	Windows	9.x,	there	is	no	impersonation	and
sp_stop_job	is	always	executed	under	the	security	context	of	the	Windows	9.x
user	who	started	SQL	Server.

Examples
This	example	stops	a	job	named	Archive	Tables.

USE	msdb
EXEC	sp_stop_job	@job_name	=	'Archive	Tables'

See	Also

sp_delete_job

sp_help_job

sp_start_job

sp_update_job

System	Stored	Procedures

Transact-SQL	Reference

sp_stored_procedures
Returns	a	list	of	stored	procedures	in	the	current	environment.

Syntax
sp_stored_procedures	[[@sp_name	=]	'name']	
				[,[@sp_owner	=]	'owner']	
				[,[@sp_qualifier	=]	'qualifier']

Arguments
[@sp_name	=]	'name'

Is	the	name	of	the	procedure	used	to	return	catalog	information.	name	is
nvarchar(390),	with	a	default	of	NULL.	Wildcard	pattern	matching	is
supported.

[@sp_owner	=]	'owner'

Is	the	name	of	the	owner	of	the	procedure.	owner	is	nvarchar(384),	with	a
default	of	NULL.	Wildcard	pattern	matching	is	supported.	If	owner	is	not
specified,	the	default	procedure	visibility	rules	of	the	underlying	DBMS
apply.

In	Microsoft®	SQL	Server™,	if	the	current	user	owns	a	procedure	with	the
specified	name,	that	procedure	is	returned.	If	owner	is	not	specified	and	the
current	user	does	not	own	a	procedure	with	the	specified	name,	this
procedure	looks	for	a	procedure	with	the	specified	name	owned	by	the
database	owner.	If	one	exists,	that	procedure	is	returned.

[@qualifier	=]	'qualifier'

Is	the	name	of	the	procedure	qualifier.	qualifier	is	sysname,	with	a	default	of
NULL.	Various	DBMS	products	support	three-part	naming	for	tables
(qualifier.owner.name).	In	SQL	Server,	this	column	represents	the	database
name.	In	some	products,	it	represents	the	server	name	of	the	table's	database
environment.

Return	Code	Values
None

Result	Sets

Column	name Data	type Description
PROCEDURE_QUALIFIER sysname Procedure	qualifier	name.

This	field	can	be	NULL.
PROCEDURE_OWNER sysname Procedure	owner	name.

This	field	always	returns	a
value.

PROCEDURE_NAME nvarchar(134)Procedure	name.	This	field
always	returns	a	value.

NUM_INPUT_PARAMS int Reserved	for	future	use.
NUM_OUTPUT_PARAMS int Reserved	for	future	use.
NUM_RESULT_SETS int Reserved	for	future	use.
REMARKS varchar(254) Description	of	the

procedure.	SQL	Server	does
not	return	a	value	for	this
column.

PROCEDURE_TYPE smallint Procedure	type.	SQL	Server
always	returns	2.0.	Can	be:

0	=	SQL_PT_UNKNOWN
1	=
SQL_PT_PROCEDURE
2	=	SQL_PT_FUNCTION

Remarks
For	maximum	interoperability,	the	gateway	client	should	assume	only	SQL-92-
standard	pattern	matching	(the	%	and	_	wildcards).

The	privilege	information	about	the	current	user's	execute	access	to	a	specific

stored	procedure	is	not	necessarily	checked,	so	access	is	not	guaranteed.	Note
that	only	three-part	naming	is	used,	so	that	only	local	stored	procedures,	not
remote	stored	procedures	(which	need	four-part	naming),	are	returned	when
implemented	against	SQL	Server.	If	the	server	attribute	ACCESSIBLE_SPROC
is	Y	in	the	result	set	for	sp_server_info,	only	stored	procedures	that	can	be
executed	by	the	current	user	are	returned.

sp_stored_procedures	is	equivalent	to	SQLProcedures	in	ODBC.	The	results
returned	are	ordered	by	PROCEDURE_QUALIFIER,
PROCEDURE_OWNER,	and	PROCEDURE_NAME.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_tableoption
Sets	option	values	for	user-defined	tables.	sp_tableoption	may	be	used	to	turn
on	the	text	in	row	feature	on	tables	with	text,	ntext,	or	image	columns.

Syntax
sp_tableoption	[@TableNamePattern	=]	'table'	
				,	[@OptionName	=]	'option_name'	
				,	[@OptionValue	=]	'value'

Arguments
[@TableNamePattern	=]	'table'

Is	the	qualified	or	nonqualified	name	of	a	user-defined	database	table.	If	a
fully	qualified	table	name,	including	a	database	name,	is	provided,	the
database	name	must	be	the	name	of	the	current	database.	Table	options	for
multiple	tables	can	not	be	set	at	the	same	time.	table_pattern	is
nvarchar(776),	with	no	default.

[@OptionName	=]	'option_name'

Is	a	table	option	name.	option_name	is	varchar(35),	with	no	default	of
NULL.	option_name	can	have	these	values.

Value Description
pintable When	disabled	(the	default),	it	marks	the	table	as

no	longer	RAM-resident.	When	enabled,	marks
the	table	as	RAM-resident.

table	lock	on	bulk	load When	disabled	(the	default),	it	causes	the	bulk
load	process	on	user-defined	tables	to	obtain	row
locks.	When	enabled,	it	causes	the	bulk	load
processes	on	user-defined	tables	to	obtain	a	bulk
update	lock.

insert	row	lock Not	supported	in	Microsoft®	SQL	Server™	2000.

For	SQL	Server	version	6.5,	enabled	or	disabled

Insert	Row	Locking	(IRL)	operations	on	the
specified	table.	Row-level	locking	is	enabled	by
default	in	SQL	Server	version	7.0.	The	locking
strategy	of	SQL	Server	is	row	locking	with
possible	promotion	to	page	or	table	locking.	This
option	does	not	alter	the	locking	behavior	of	SQL
Server	(it	has	no	effect)	and	is	included	only	for
compatibility	of	existing	scripts	and	procedures.

text	in	row When	OFF	or	0	(disabled,	the	default),	it	does	not
change	current	behavior,	and	there	is	no	BLOB	in
row.

When	specified	and	@OptionValue	is	ON
(enabled)	or	an	integer	value	from	24	through
7000,	new	text,	ntext,	or	image	strings	are	stored
directly	in	the	data	row.	All	existing	BLOB	(text,
ntext,	or	image	data)	will	be	changed	to	text	in
row	format	when	the	BLOB	value	is	updated.	See
Remarks	section	for	more	information.

[@OptionValue	=]	'value'

Is	whether	the	option_name	is	enabled	(true,	on,	or	1)	or	disabled	(false,	off,
or	0).	value	is	varchar(12),	with	no	default.	value	is	case	insensitive.

For	the	text	in	row	option,	valid	option	values	are	0,	on,	off,	or	an	integer
from	24	through	7000.	When	value	is	on,	the	limit	defaults	to	256	bytes.

Return	Code	Values
0	(success)	or	error	number	(failure)

Remarks
sp_tableoption	can	be	used	only	to	set	option	values	for	user-defined	tables.	To
display	table	properties,	use	OBJECTPROPERTY.

The	text	in	row	option	in	sp_tableoption	may	be	enabled	or	disabled	only	on
tables	that	contain	text	columns.	If	the	table	does	not	have	a	text	column,	SQL
Server	raises	an	error.

When	the	text	in	row	option	is	enabled,	the	@OptionValue	parameter	allows
users	to	specify	the	maximum	size	to	be	stored	in	a	row	for	a	BLOB	(binary
large	objects:	text,	ntext,	or	image	data).	The	default	is	256	bytes,	but	values
may	range	from	24	through	7000	bytes.

text,	ntext,	or	image	strings	are	stored	in	the	data	row	if	the	following
conditions	apply:

text	in	row	is	enabled.

The	length	of	the	string	is	shorter	than	the	limit	specified	in
@OptionValue

There	is	enough	space	available	in	the	data	row.

When	BLOB	strings	are	stored	in	the	data	row,	reading	and	writing	the	text,
ntext,	or	image	strings	can	be	as	fast	as	reading	or	writing	character	and	binary
strings.	SQL	Server	does	not	have	to	access	separate	pages	to	read	or	write	the
BLOB	string.

If	a	text,	ntext,	or	image	string	is	larger	than	the	specified	limit	or	the	available
space	in	the	row,	pointers	are	stored	in	the	row	instead.	The	conditions	for
storing	the	BLOB	strings	in	the	row	still	apply	though:	There	must	be	enough
space	in	the	data	row	to	hold	the	pointers.

BLOB	strings	and	pointers	stored	in	the	row	of	a	table	are	treated	similarly	to
variable-length	strings.	SQL	Server	uses	only	the	number	of	bytes	needed	to
store	the	string	or	the	pointer.

Existing	BLOB	strings	are	not	converted	immediately	when	text	in	row	is	first
enabled.	The	strings	are	converted	only	when	they	are	updated.	Likewise,	when
the	text	in	row	option	limit	is	increased,	the	text,	ntext,	or	image	strings	already
in	the	data	row	will	not	be	converted	to	adhere	to	the	new	limit	until	the	time
they	are	updated.

Note		Disabling	the	text	in	row	option	or	reducing	the	option's	limit	will	require

the	conversion	of	all	BLOBs,	so	the	process	can	be	long,	depending	on	the
number	of	BLOB	strings	that	must	be	converted.	The	table	is	locked	during	the
conversion	process.

A	table	variable,	including	a	function	that	returns	a	table	variable,	automatically
has	the	text	in	row	option	enabled	with	a	default	inline	limit	of	256.	This	option
cannot	be	changed.

text	in	row	supports	the	TEXTPTR,	WRITETEXT,	UPDATETEXT,	and
READTEXT	functions.	Users	can	read	parts	of	a	BLOB	with	the
SUBSTRING()	function,	but	must	keep	in	mind	that	in-row	text	pointers	have
different	duration	and	number	limits	than	other	text	pointers.	For	more
information,	see	Managing	ntext,	text,	and	image	Data.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	modify	the	pintable	table
option.

Members	of	the	sysadmin	fixed	server	role,	the	db_owner	and	db_ddladmin
fixed	database	roles,	and	the	table	owner	can	modify	the	table	lock	on	bulk
load,	and	text	in	row	options	for	any	user-defined	table.	Other	users	can	modify
options	only	for	tables	they	own.

Examples

A.	Enable	the	'text	in	row'	option	for	table	'orders'	in	the
Northwind	database.

EXEC	sp_tableoption	'orders',	'text	in	row',	'ON'

B.	Enable	the	'text	in	row'	option	for	table	'orders'	in	the
Northwind	database,	and	set	the	inline	limit	to	1000.

EXEC	sp_tableoption	'orders',	'text	in	row',	'1000'

C.	Enable	the	'text	in	row'	option	for	table	'orders'	in	the
Northwind	database,	and	set	the	inline	limit	to	23,	which	is

JavaScript:hhobj_1.Click()

beyond	the	allowable	range.
sp_tableoption	'orders',	'text	in	row',	'23'

You	will	get	an	error	saying	the	parameter	is	out	of	range.

D.	Disable	the	'text	in	row'	option	for	table	'orders'	in	the
Northwind	database.

EXEC	sp_tableoption	'orders',	'text	in	row',	'off'

-or-

EXEC	sp_tableoption	'orders',	'text	in	row',	'0'

See	Also

DBCC	PINTABLE

DBCC	UNPINTABLE

OBJECTPROPERTY

System	Stored	Procedures

Transact-SQL	Reference

sp_table_privileges
Returns	a	list	of	table	permissions	(such	as	INSERT,	DELETE,	UPDATE,
SELECT,	REFERENCES)	for	the	specified	table(s).

Syntax
sp_table_privileges	[@table_name_pattern	=]	'table_name_pattern'	
				[,	[@table_owner_pattern	=]	'table_owner_pattern']	
				[,	[@table_qualifier	=]	'table_qualifier']

Arguments
[@table_name_pattern	=]	'table_name_pattern'

Is	the	table	used	to	return	catalog	information.	table_name_pattern	is
nvarchar(384),	with	no	default.	Wildcard	pattern	matching	is	supported.

[@table_owner_pattern	=]	'table_owner_pattern'

Is	the	table	owner	of	the	table	used	to	return	catalog	information.
table_owner_pattern	is	nvarchar(384),	with	a	default	of	NULL.	Wildcard
pattern	matching	is	supported.	If	the	owner	is	not	specified,	the	default	table
visibility	rules	of	the	underlying	DBMS	apply.

In	Microsoft®	SQL	Server™,	if	the	current	user	owns	a	table	with	the
specified	name,	the	columns	of	that	table	are	returned.	If	owner	is	not
specified	and	the	current	user	does	not	own	a	table	with	the	specified	name,
this	procedure	looks	for	a	table	with	the	specified	table_name_pattern	owned
by	the	database	owner.	If	one	exists,	the	columns	of	that	table	are	returned.

[@table_qualifier	=]	'table_qualifier'

Is	the	name	of	the	table	qualifier.	table_qualifier	is	sysname,	with	a	default
of	NULL.	Various	DBMS	products	support	three-part	naming	for	tables
(qualifier.owner.name).	In	SQL	Server,	this	column	represents	the	database
name.	In	some	products,	it	represents	the	server	name	of	the	table's	database
environment.

Return	Code	Values
None

Result	Sets

Column	name Data	type Description
TABLE_QUALIFIER sysname Table	qualifier	name.	In	SQL	Server,

this	column	represents	the	database
name.	This	field	can	be	NULL.

TABLE_OWNER sysname Table	owner	name.	This	field	always
returns	a	value.

TABLE_NAME sysname Table	name.	This	field	always	returns	a
value.

GRANTOR sysname Database	username	that	has	granted
permissions	on	this	TABLE_NAME	to
the	listed	GRANTEE.	In	SQL	Server,
this	column	is	always	the	same	as	the
TABLE_OWNER.	This	field	always
returns	a	value.	Also,	the	GRANTOR
column	may	be	either	the	database
owner	(TABLE_OWNER)	or	a	user	to
whom	the	database	owner	granted
permission	by	using	the	WITH	GRANT
OPTION	clause	in	the	GRANT
statement.

GRANTEE sysname Database	username	that	has	been
granted	permissions	on	this
TABLE_NAME	by	the	listed
GRANTOR.	In	SQL	Server,	this
column	always	includes	a	database	user
from	the	sysusers	table.	This	field
always	returns	a	value.

PRIVILEGE sysname One	of	the	available	table	permissions.
Table	permissions	can	be	one	of	the
following	values	(or	other	values

supported	by	the	data	source	when
implementation	is	defined):	SELECT	=
GRANTEE	can	retrieve	data	for	one	or
more	of	the	columns.	
INSERT	=	GRANTEE	can	provide	data
for	new	rows	for	one	or	more	of	the
columns.
UPDATE	=	GRANTEE	can	modify
existing	data	for	one	or	more	of	the
columns.
DELETE	=	GRANTEE	can	remove
rows	from	the	table.	
REFERENCES	=	GRANTEE	can
reference	a	column	in	a	foreign	table	in
a	primary	key/foreign	key	relationship.
In	SQL	Server,	primary	key/foreign	key
relationships	are	defined	with	table
constraints.

The	scope	of	action	given	to	the
GRANTEE	by	a	given	table	privilege	is
data	source-dependent.	For	example,	the
UPDATE	privilege	may	permit	the
GRANTEE	to	update	all	columns	in	a
table	on	one	data	source	and	only	those
columns	for	which	the	GRANTOR	has
UPDATE	privilege	on	another	data
source.

IS_GRANTABLE sysname Indicates	whether	or	not	the
GRANTEE	is	permitted	to	grant
permissions	to	other	users	(often
referred	to	as	"grant	with	grant"
permission).	Can	be	YES,	NO,	or
NULL.	An	unknown	(or	NULL)	value
refers	to	a	data	source	for	which	"grant
with	grant"	is	not	applicable.

Remarks
The	sp_table_privileges	stored	procedure	is	equivalent	to	SQLTablePrivileges
in	ODBC.	The	results	returned	are	ordered	by	TABLE_QUALIFIER,
TABLE_OWNER,	TABLE_NAME,	and	PRIVILEGE.

Permissions
Execute	permission	default	to	public	role.

Examples
This	example	returns	privilege	information	about	all	tables	with	names
beginning	with	the	word	sales,	owned	by	a	user	with	an	owner	name	beginning
with	janet,	from	all	servers	with	names	beginning	with	the	word	LONDON.

USE	master
EXEC	sp_table_privileges	'LONDON%',	'janet%',	'sales%'

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_table_privileges_ex
Returns	privilege	information	about	the	specified	table	from	the	specified	linked
server.

Syntax
sp_table_privileges_ex	[@table_server	=]	'table_server'	
				[,	[@table_name	=]	'table_name']	
				[,	[@table_schema	=]	'table_schema']	
				[,	[@table_catalog	=]	'table_catalog']

Arguments
[@table_server	=]	'table_server'

Is	the	name	of	the	linked	server	for	which	to	return	information.	table_server
is	sysname,	with	no	default.

[@table_name	=]	'table_name']

Is	the	name	of	the	table	for	which	to	provide	table	privilege	information.
table_name	is	sysname,	with	a	default	of	NULL.

[@table_schema	=]	'table_schema'

Is	the	table	schema,	which	in	some	DBMS	environments	is	the	table	owner.
table_schema	is	sysname,	with	a	default	of	NULL.

[@table_catalog	=]	'table_catalog'

Is	the	name	of	the	database	in	which	the	specified	table_name	resides.
table_catalog	is	sysname,	with	a	default	of	NULL.

Return	Code	Values
None

Result	Sets

Column	name Data	type Description
TABLE_CAT sysname Table	qualifier	name.	Various	DBMS

products	support	three-part	naming	for
tables	(qualifier.owner.name).	In	SQL
Server,	this	column	represents	the
database	name.	In	some	products,	it
represents	the	server	name	of	the	table's
database	environment.	This	field	can	be
NULL.

TABLE_SCHEM sysname Table	owner	name.	In	SQL	Server,	this
column	represents	the	name	of	the
database	user	who	created	the	table.	This
field	always	returns	a	value.

TABLE_NAME sysname Table	name.	This	field	always	returns	a
value.

GRANTOR sysname Database	username	that	has	granted
permissions	on	this	TABLE_NAME	to
the	listed	GRANTEE.	In	SQL	Server,	this
column	is	always	the	same	as	the
TABLE_OWNER.	This	field	always
returns	a	value.	Also,	the	GRANTOR
column	may	be	either	the	database	owner
(TABLE_OWNER)	or	a	user	to	whom
the	database	owner	granted	permission	by
using	the	WITH	GRANT	OPTION	clause
in	the	GRANT	statement.

GRANTEE sysname Database	username	that	has	been	granted
permissions	on	this	TABLE_NAME	by
the	listed	GRANTOR.	This	field	always
returns	a	value.

PRIVILEGE varchar(32) One	of	the	available	table	permissions.
Table	permissions	can	be	one	of	the
following	values	(or	other	values
supported	by	the	data	source	when
implementation	is	defined):
SELECT	=	GRANTEE	can	retrieve	data

for	one	or	more	of	the	columns.	
INSERT	=	GRANTEE	can	provide	data
for	new	rows	for	one	or	more	of	the
columns.	
UPDATE	=	GRANTEE	can	modify
existing	data	for	one	or	more	of	the
columns.	
DELETE	=	GRANTEE	can	remove	rows
from	the	table.	
REFERENCES	=	GRANTEE	can
reference	a	column	in	a	foreign	table	in	a
primary	key/foreign	key	relationship.	In
SQL	Server,	primary	key/foreign	key
relationships	are	defined	with	table
constraints.

The	scope	of	action	given	to	the
GRANTEE	by	a	given	table	privilege	is
data	source-dependent.	For	example,	the
UPDATE	privilege	may	permit	the
GRANTEE	to	update	all	columns	in	a
table	on	one	data	source	and	only	those
columns	for	which	the	GRANTOR	has
UPDATE	privilege	on	another	data
source.

IS_GRANTABLE varchar(3) Indicates	whether	or	not	the	GRANTEE
is	permitted	to	grant	permissions	to	other
users	(often	referred	to	as	"grant	with
grant"	permission).	Can	be	YES,	NO,	or
NULL.	An	unknown	(or	NULL)	value
refers	to	a	data	source	in	which	"grant
with	grant"	is	not	applicable.

Remarks

The	results	returned	are	ordered	by	TABLE_QUALIFIER,	TABLE_OWNER,
TABLE_NAME,	and	PRIVILEGE.

Permissions
Execute	permission	default	to	public	role.

Examples
This	example	returns	privilege	information	about	the	Customers	table,	owned
by	the	dbo,	in	the	Northwind	database	from	the	specified	linked	server	(SQL
Server	is	assumed	as	the	linked	server).

EXEC	sp_table_privileges_ex	London1,	Customers,	dbo,	Northwind

See	Also

sp_column_privileges_ex

Transact-SQL	Reference

sp_tables
Returns	a	list	of	objects	that	can	be	queried	in	the	current	environment	(any
object	that	can	appear	in	a	FROM	clause).

Syntax
sp_tables	[[@table_name	=]	'name']	
				[,	[@table_owner	=]	'owner']	
				[,	[@table_qualifier	=]	'qualifier']	
				[,	[@table_type	=]	"type"]

Arguments
[@table_name	=]	'name'

Is	the	table	used	to	return	catalog	information.	name	is	nvarchar(384),	with
a	default	of	NULL.	Wildcard	pattern	matching	is	supported.

[@table_owner	=]	'owner'

Is	the	table	owner	of	the	table	used	to	return	catalog	information.	owner	is
nvarchar(384),	with	a	default	of	NULL.	Wildcard	pattern	matching	is
supported.	If	the	owner	is	not	specified,	the	default	table	visibility	rules	of
the	underlying	DBMS	apply.

In	Microsoft®	SQL	Server™,	if	the	current	user	owns	a	table	with	the
specified	name,	the	columns	of	that	table	are	returned.	If	the	owner	is	not
specified	and	the	current	user	does	not	own	a	table	with	the	specified	name,
this	procedure	looks	for	a	table	with	the	specified	name	owned	by	the
database	owner.	If	one	exists,	the	columns	of	that	table	are	returned.

[@table_qualifier	=]	'qualifier'

Is	the	name	of	the	table	qualifier.	qualifier	is	sysname,	with	a	default	of
NULL.	Various	DBMS	products	support	three-part	naming	for	tables
(qualifier.owner.name).	In	SQL	Server,	this	column	represents	the	database
name.	In	some	products,	it	represents	the	server	name	of	the	table's	database
environment.

[,[@table_type	=]	"'type'"]

Is	a	list	of	values,	separated	by	commas,	that	gives	information	about	all
tables	of	the	table	type(s)	specified,	including	TABLE,	SYSTEM	TABLE,
and	VIEW.	type	is	varchar(100),	with	a	default	of	NULL.

Note		Single	quotation	marks	must	surround	each	table	type,	and	double
quotation	marks	must	enclose	the	entire	parameter.	Table	types	must	be
uppercase.	If	SET	QUOTED_IDENTIFIER	is	ON,	each	single	quotation	mark
must	be	doubled	and	the	entire	parameter	must	be	surrounded	by	single
quotation	marks.

Return	Code	Values
None

Result	Sets

Column	name Data	type Description
TABLE_QUALIFIER sysname Table	qualifier	name.	In	SQL	Server,

this	column	represents	the	database
name.	This	field	can	be	NULL.

TABLE_OWNER sysname Table	owner	name.	In	SQL	Server,
this	column	represents	the	name	of
the	database	user	who	created	the
table.	This	field	always	returns	a
value.

TABLE_NAME sysname Table	name.	This	field	always
returns	a	value.

TABLE_TYPE varchar(32) Table,	system	table,	or	view.
REMARKS varchar(254)SQL	Server	does	not	return	a	value

for	this	column.

Remarks
For	maximum	interoperability,	the	gateway	client	should	assume	only	SQL-92-

standard	SQL	pattern	matching	(the	%	and	_	wildcards).

Privilege	information	about	the	current	user's	read	or	write	access	to	a	specific
table	is	not	always	checked,	so	access	is	not	guaranteed.	This	result	set	includes
not	only	tables	and	views,	but	also	synonyms	and	aliases	for	gateways	to	DBMS
products	that	support	those	types.	If	the	server	attribute
ACCESSIBLE_TABLES	is	Y	in	the	result	set	for	sp_server_info,	only	tables
that	are	accessible	by	the	current	user	are	returned.

sp_tables	is	equivalent	to	SQLTables	in	ODBC.	The	results	returned	are
ordered	by	TABLE_TYPE,	TABLE_QUALIFIER,	TABLE_OWNER,	and
TABLE_NAME.

Permissions
Execute	permission	default	to	public	role.

Examples

A.	Return	a	list	of	objects	that	can	be	queried	in	the	current
environment

EXEC	sp_tables

B.	Return	information	about	the	syscolumns	table	in	the
Company	database

EXEC	sp_tables	syscolumns,	dbo,	Company,	"'SYSTEM	TABLE'"

Transact-SQL	Reference

sp_tables_ex
Returns	table	information	about	the	tables	from	the	specified	linked	server.

Syntax
sp_tables_ex	[@table_server	=]	'table_server'	
				[,	[@table_name	=]	'table_name']	
				[,	[@table_schema	=]	'table_schema']
				[,	[@table_catalog	=]	'table_catalog']	
				[,	[@table_type	=]	'table_type']

Arguments
[@table_server	=]	'table_server'

Is	the	name	of	the	linked	server	for	which	to	return	table	information.
table_server	is	sysname,	with	no	default.

[,[@table_name	=]	'table_name']

Is	the	name	of	the	table	for	which	to	return	data	type	information.
table_name	is	sysname,	with	a	default	of	NULL.

[@table_schema	=]	'table_schema']

Is	the	table	schema.	table_schema	is	sysname,	with	a	default	of	NULL.

[@table_catalog	=]	'table_catalog'

Is	the	name	of	the	database	in	which	the	specified	table_name	resides.
table_catalog	is	sysname,	with	a	default	of	NULL.

[@table_type	=]	'table_type'

Is	the	type	of	the	table	to	return.	table_type	is	sysname,	with	a	default	of
NULL,	and	can	have	one	of	these	values.

Value Description
ALIAS Name	of	an	alias.

GLOBAL
TEMPORARY

Name	of	a	temporary	table	available	system
wide.

LOCAL	TEMPORARY Name	of	a	temporary	table	available	only	to	the
current	job.

SYNONYM Name	of	a	synonym.
SYSTEM	TABLE Name	of	a	system	table.
TABLE Name	of	a	user	table.
VIEW Name	of	a	view.

Return	Code	Values
None

Result	Sets

Column	name Data	type Description
TABLE_CAT sysname Table	qualifier	name.	Various	DBMS

products	support	three-part	naming	for
tables	(qualifier.owner.name).	In	SQL
Server,	this	column	represents	the
database	name.	In	some	products,	it
represents	the	server	name	of	the	table's
database	environment.	This	field	can	be
NULL.

TABLE_SCHEMsysname Table	owner	name.	In	SQL	Server,	this
column	represents	the	name	of	the
database	user	who	created	the	table.
This	field	always	returns	a	value.

TABLE_NAME sysname Table	name.	This	field	always	returns	a
value.

TABLE_TYPE varchar(32) Table,	system	table,	or	view.
REMARKS varchar(254) SQL	Server	does	not	return	a	value	for

this	column.

Remarks
sp_tables_ex	is	executed	by	querying	the	TABLES	rowset	of	the
IDBSchemaRowset	interface	of	the	OLE	DB	provider	corresponding	to
table_server.	The	table_name,	table_schema,	table_catalog,	and	column
parameters	are	passed	to	this	interface	to	restrict	the	rows	returned.

sp_tables_ex	returns	an	empty	result	set	if	the	OLE	DB	provider	of	the	specified
linked	server	does	not	support	the	TABLES	rowset	of	the	IDBSchemaRowset
interface.

Permissions
Execute	permission	default	to	the	public	role.

Examples
This	example	returns	table	information	about	the	titles	table	in	the	pubs
database,	on	the	LONDON2	linked	server.

USE	master
EXEC	sp_tables_ex	'LONDON2',	'titles',	'dbo',	'pubs',	NULL

See	Also

sp_catalogs

sp_columns_ex

sp_column_privileges

sp_foreignkeys

sp_indexes

sp_linkedservers

sp_table_privileges

System	Stored	Procedures

Transact-SQL	Reference

sp_trace_create
Creates	a	trace	definition.	The	new	trace	will	be	in	a	stopped	state.

Syntax
sp_trace_create	[@traceid	=]	trace_id	OUTPUT	
				,	[@options	=]	option_value	
				,	[@tracefile	=]	'trace_file'	
				[,	[@maxfilesize	=]	max_file_size]
				[,	[@stoptime	=]	'stop_time']

Arguments
[@traceid	=]	trace_id

Is	the	number	assigned	by	Microsoft®	SQL	Server™	2000	to	the	new	trace.
Any	user-provided	input	will	be	ignored.	trace_id	is	int,	with	a	default	of
NULL.	The	user	employs	the	trace_id	value	to	identify,	modify,	and	control
the	trace	defined	by	this	stored	procedure.

[@options	=]	option_value

Specifies	the	options	set	for	the	trace.	option_value	is	int,	with	no	default.
Users	may	choose	a	combination	of	these	options	by	specifying	the	sum
value	of	options	picked.	For	example,	to	turn	on	both	the	options
TRACE_FILE_ROLLOVER	and	SHUTDOWN_ON_ERROR,	specify	6	for
option_value.

This	table	lists	the	options,	descriptions,	and	their	values.

Option	name
Option
value Description

TRACE_PRODUCE_ROWSET 1 Specifies	that	the	trace	will	produce
a	rowset.

TRACE_FILE_ROLLOVER 2 Specifies	that	when	the
max_file_size	is	reached,	the
current	trace	file	is	closed	and	a

new	file	is	created.	All	new	records
will	be	written	to	the	new	file.	The
new	file	will	have	the	same	name
as	the	previous	file,	but	an	integer
will	be	appended	to	indicate	its
sequence.	For	example,	if	the
original	trace	file	is	named
filename.trc,	the	next	trace	file	is
named	filename_1.trc,	the
following	trace	file	is
filename_2.trc,	and	so	on.

As	more	rollover	trace	files	are
created,	the	integer	value	appended
to	the	file	name	increases
sequentially.

SQL	Server	uses	the	default	value
of	max_file_size	(5	MB)	if	this
option	is	specified	without
specifying	a	value	for
max_file_size.

SHUTDOWN_ON_ERROR 4 Specifies	that	if	the	trace	cannot	be
written	to	the	file	for	whatever
reason,	SQL	Server	shuts	down.
This	option	is	useful	when
performing	security	audit	traces.

TRACE_PRODUCE_BLACKBOX8 Specifies	that	a	record	of	the	last	5
MB	of	trace	information	produced
by	the	server	will	be	saved	by	the
server.
TRACE_PRODUCE_BLACKBOX
is	incompatible	with	all	other
options.

[@tracefile	=]	'trace_file'

Specifies	the	location	and	file	name	to	which	the	trace	will	be	written.
trace_file	is	nvarchar	(245)	with	no	default.	trace_file	can	be	either	a	local
directory	(such	as	N	'C:\MSSQL\Trace\trace.trc')	or	a	UNC	to	a	share	or	path
(N'\\Servername\Sharename\Directory\trace.trc').

SQL	Server	will	append	a	.trc	extension	to	all	trace	file	names.	If	the
TRACE_FILE_ROLLOVER	option	and	a	max_file_size	are	specified,	SQL
Server	creates	a	new	trace	file	when	the	original	trace	file	grows	to	its
maximum	size.	The	new	file	has	the	same	name	as	the	original	file,	but	_n	is
appended	to	indicate	its	sequence,	starting	with	1.	For	example,	if	the	first
trace	file	is	named	filename.trc,	the	second	trace	file	is	named	filename_1.trc.

trace_file	cannot	be	specified	when	the	TRACE_PRODUCE_BLACKBOX
option	is	used.

[@maxfilesize	=]	max_file_size

Specifies	the	maximum	size	in	megabytes	(MB)	a	trace	file	can	grow.
max_file_size	is	bigint,	with	a	default	value	of	5.

If	this	parameter	is	specified	without	the	TRACE_FILE_ROLLOVER
option,	the	trace	stops	recording	to	the	file	when	the	disk	space	used	exceeds
the	amount	specified	by	max_file_size.

[@stoptime	=]	'stop_time'

Specifies	the	date	and	time	the	trace	will	be	stopped.	stop_time	is	datetime,
with	a	default	of	NULL.	If	NULL,	the	trace	will	run	until	it	is	manually
stopped	or	until	the	server	shuts	down.

If	both	stop_time	and	max_file_size	are	specified,	and
TRACE_FILE_ROLLOVER	is	not	specified,	the	trace	will	stop	when	either
the	specified	stop	time	or	maximum	file	size	is	reached.	If	stop_time,
max_file_size,	and	TRACE_FILE_ROLLOVER	are	specified,	the	trace	will
stop	at	the	specified	stop	time,	assuming	the	trace	does	not	fill	up	the	drive.

Return	Code	Values
This	table	describes	the	code	values	that	users	may	get	following	completion	of
the	stored	procedure.

Return	code Description
0 No	error.
1 Unknown	error.
10 Invalid	options.	Returned	when	options

specified	are	incompatible.
12 File	not	created.
13 Out	of	memory.	Returned	when	there	is	not

enough	memory	to	perform	the	specified
action.

14 Invalid	stop	time.	Returned	when	the	stop
time	specified	has	already	happened.

15 Invalid	parameters.	Returned	when	the	user
supplied	incompatible	parameters.

Remarks
sp_trace_create	is	a	Microsoft	SQL	Server	2000	stored	procedure	that	performs
many	of	the	actions	previously	executed	by	xp_trace_*	extended	stored
procedures	available	in	earlier	versions	of	SQL	Server.	Use	sp_trace_create
instead	of:

xp_trace_addnewqueue

xp_trace_setqueuecreateinfo

xp_trace_setqueuedestination

sp_trace_create	only	creates	a	trace	definition.	This	stored	procedure	cannot	be
used	to	start	or	change	a	trace.

Parameters	of	all	SQL	Trace	stored	procedures	(sp_trace_xx)	are	strictly	typed.
If	these	parameters	are	not	called	with	the	correct	input	parameter	data	types,	as
specified	in	the	argument	description,	the	stored	procedure	will	return	an	error.

Permissions

Only	members	of	the	sysadmin	fixed	server	role	can	execute	sp_trace_create.

Examples

See	Also

sp_trace_generateevent

sp_trace_setevent

sp_trace_setfilter

sp_trace_setstatus

Transact-SQL	Reference

sp_trace_generateevent
Creates	a	user-defined	event.

Syntax
sp_trace_generateevent	[@eventid	=]	event_id	
				[,	[@userinfo	=]	'user_info']
				[,	[@userdata	=]	user_data]

Arguments
[@eventid	=]	event_id

Is	the	ID	of	the	event	to	turn	on.	event_id	is	int,	with	no	default.	The	ID	must
be	one	of	the	event	numbers	from	82	through	91,	which	represent	user-
defined	events	as	set	with	sp_trace_setevent.

[@userinfo	=]	'user_info'

Is	the	optional	user-defined	string	identifying	the	reason	for	the	event.
user_info	is	nvarchar(128),	with	a	default	of	NULL.

[@userdata	=]	user_data

Is	the	optional	user-specified	data	for	the	event.	user_data	is
varbinary(8000),	with	a	default	of	NULL.

Return	Code	Values
This	table	describes	the	code	values	that	users	may	get	following	completion	of
the	stored	procedure.

Return	code Description
0 No	error.
1 Unknown	error.
3 The	specified	Event	is	not	valid.	The	Event	may	not

exist	or	it	is	not	an	appropriate	one	for	the	store
procedure.

13 Out	of	memory.	Returned	when	there	is	not	enough
memory	to	perform	the	specified	action.

Remarks
sp_trace_generateevent	is	a	Microsoft	SQL	Server	2000	stored	procedure	that
performs	many	of	the	actions	previously	executed	by	xp_trace_*	extended
stored	procedures	available	in	earlier	versions	of	SQL	Server.	Use
sp_trace_generateevent	instead	of	xp_trace_generate_event.

Only	ID	numbers	of	user-defined	events	may	be	used	with
sp_trace_generateevent.	SQL	Server	will	raise	an	error	if	other	event	ID
numbers	are	used.

Parameters	of	all	SQL	Trace	stored	procedures	(sp_trace_xx)	are	strictly	typed.
If	these	parameters	are	not	called	with	the	correct	input	parameter	data	types,	as
specified	in	the	argument	description,	the	stored	procedure	will	return	an	error.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_trace_generateevent.

Examples

See	Also

fn_trace_geteventinfo

sp_trace_setevent

Transact-SQL	Reference

sp_trace_setevent
Adds	or	removes	an	event	or	event	column	to	a	trace.	sp_trace_setevent	may	be
executed	only	on	existing	traces	that	are	stopped	(status	is	0).	Microsoft®	SQL
Server™	2000	will	return	an	error	if	this	stored	procedure	is	executed	on	a	trace
that	does	not	exist	or	whose	status	is	not	0.

Syntax
sp_trace_setevent	[@traceid	=]	trace_id	
				,	[@eventid	=]	event_id
				,	[@columnid	=]	column_id
				,	[@on	=]	on

Arguments
[@traceid	=]	trace_id

Is	the	ID	of	the	trace	to	be	modified.	trace_id	is	int,	with	no	default.	The
user	employs	this	trace_id	value	to	identify,	modify,	and	control	the	trace.

[@eventid	=]	event_id

Is	the	ID	of	the	event	to	turn	on.	event_id	is	int,	with	no	default.

This	table	lists	the	events	that	can	be	added	to	or	removed	from	a	trace.

Event
number Event	name Description
0-9 Reserved 	
10 RPC:Completed Occurs	when	a	remote	procedure

call	(RPC)	has	completed.
11 RPC:Starting Occurs	when	an	RPC	has	started.
12 SQL:BatchCompleted Occurs	when	a	Transact-SQL

batch	has	completed.
13 SQL:BatchStarting Occurs	when	a	Transact-SQL

batch	has	started.

14 Login Occurs	when	a	user	successfully
logs	in	to	SQL	Server.

15 Logout Occurs	when	a	user	logs	out	of
SQL	Server.

16 Attention Occurs	when	attention	events,	such
as	client-interrupt	requests	or
broken	client	connections,	happen.

17 ExistingConnection Detects	all	activity	by	users
connected	to	SQL	Server	before
the	trace	started.

18 ServiceControl Occurs	when	the	SQL	Server
service	state	is	modified.

19 DTCTransaction Tracks	Microsoft	Distributed
Transaction	Coordinator	(MS
DTC)	coordinated	transactions
between	two	or	more	databases.

20 Login	Failed Indicates	that	a	login	attempt	to
SQL	Server	from	a	client	failed.

21 EventLog Indicates	that	events	have	been
logged	in	the	Microsoft	Windows
NT®	application	log.

22 ErrorLog Indicates	that	error	events	have
been	logged	in	the	SQL	Server
error	log.

23 Lock:Released Indicates	that	a	lock	on	a	resource,
such	as	a	page,	has	been	released.

24 Lock:Acquired Indicates	acquisition	of	a	lock	on	a
resource,	such	as	a	data	page.

25 Lock:Deadlock Indicates	that	two	concurrent
transactions	have	deadlocked	each
other	by	trying	to	obtain
incompatible	locks	on	resources
the	other	transaction	owns.

26 Lock:Cancel Indicates	that	the	acquisition	of	a
lock	on	a	resource	has	been

canceled	(for	example,	due	to	a
deadlock).

27 Lock:Timeout Indicates	that	a	request	for	a	lock
on	a	resource,	such	as	a	page,	has
timed	out	due	to	another
transaction	holding	a	blocking	lock
on	the	required	resource.	Time-out
is	determined	by	the
@@LOCK_TIMEOUT	function,
and	can	be	set	with	the	SET
LOCK_TIMEOUT	statement.

28 DOP	Event Occurs	before	a	SELECT,
INSERT,	or	UPDATE	statement	is
executed.

29-31 Reserved Use	Event	28	instead.
32 Reserved 	
33 Exception Indicates	that	an	exception	has

occurred	in	SQL	Server.
34 SP:CacheMiss Indicates	when	a	stored	procedure

is	not	found	in	the	procedure
cache.

35 SP:CacheInsert Indicates	when	an	item	is	inserted
into	the	procedure	cache.

36 SP:CacheRemove Indicates	when	an	item	is	removed
from	the	procedure	cache.

37 SP:Recompile Indicates	that	a	stored	procedure
was	recompiled.

38 SP:CacheHit Indicates	when	a	stored	procedure
is	found	in	the	procedure	cache.

39 SP:ExecContextHit Indicates	when	the	execution
version	of	a	stored	procedure	has
been	found	in	the	procedure	cache.

40 SQL:StmtStarting Occurs	when	the	Transact-SQL
statement	has	started.

41 SQL:StmtCompleted Occurs	when	the	Transact-SQL
statement	has	completed.

42 SP:Starting Indicates	when	the	stored
procedure	has	started.

43 SP:Completed Indicates	when	the	stored
procedure	has	completed.

44 Reserved Use	Event	40	instead.
45 Reserved Use	Event	41	instead.
46 Object:Created Indicates	that	an	object	has	been

created,	such	as	for	CREATE
INDEX,	CREATE	TABLE,	and
CREATE	DATABASE	statements.

47 Object:Deleted Indicates	that	an	object	has	been
deleted,	such	as	in	DROP	INDEX
and	DROP	TABLE	statements.

48 Reserved 	
49 Reserved 	
50 SQL	Transaction Tracks	Transact-SQL	BEGIN,

COMMIT,	SAVE,	and
ROLLBACK	TRANSACTION
statements.

51 Scan:Started Indicates	when	a	table	or	index
scan	has	started.

52 Scan:Stopped Indicates	when	a	table	or	index
scan	has	stopped.

53 CursorOpen Indicates	when	a	cursor	is	opened
on	a	Transact-SQL	statement	by
ODBC,	OLE	DB,	or	DB-Library.

54 Transaction	Log Tracks	when	transactions	are
written	to	the	transaction	log.

55 Hash	Warning Indicates	that	a	hashing	operation
(for	example,	hash	join,	hash
aggregate,	hash	union,	and	hash
distinct)	that	is	not	processing	on	a
buffer	partition	has	reverted	to	an

alternate	plan.	This	can	occur
because	of	recursion	depth,	data
skew,	trace	flags,	or	bit	counting.

56-57 Reserved 	
58 Auto	Update	Stats Indicates	an	automatic	updating	of

index	statistics	has	occurred.
59 Lock:Deadlock	Chain Produced	for	each	of	the	events

leading	up	to	the	deadlock.
60 Lock:Escalation Indicates	that	a	finer-grained	lock

has	been	converted	to	a	coarser-
grained	lock	(for	example,	a	row
lock	escalated	or	converted	to	a
page	lock).

61 OLE	DB	Errors Indicates	that	an	OLE	DB	error
has	occurred.

62-66 Reserved 	
67 Execution	Warnings Indicates	any	warnings	that

occurred	during	the	execution	of	a
SQL	Server	statement	or	stored
procedure.

68 Execution	Plan Displays	the	plan	tree	of	the
Transact-SQL	statement	executed.

69 Sort	Warnings Indicates	sort	operations	that	do
not	fit	into	memory.	Does	not
include	sort	operations	involving
the	creating	of	indexes;	only	sort
operations	within	a	query	(such	as
an	ORDER	BY	clause	used	in	a
SELECT	statement).

70 CursorPrepare Indicates	when	a	cursor	on	a
Transact-SQL	statement	is
prepared	for	use	by	ODBC,	OLE
DB,	or	DB-Library.

71 Prepare	SQL ODBC,	OLE	DB,	or	DB-Library
has	prepared	a	Transact-SQL
statement	or	statements	for	use.

72 Exec	Prepared	SQL ODBC,	OLE	DB,	or	DB-Library
has	executed	a	prepared	Transact-
SQL	statement	or	statements.

73 Unprepare	SQL ODBC,	OLE	DB,	or	DB-Library
has	unprepared	(deleted)	a
prepared	Transact-SQL	statement
or	statements.

74 CursorExecute A	cursor	previously	prepared	on	a
Transact-SQL	statement	by
ODBC,	OLE	DB,	or	DB-Library	is
executed.

75 CursorRecompile A	cursor	opened	on	a	Transact-
SQL	statement	by	ODBC	or	DB-
Library	has	been	recompiled	either
directly	or	due	to	a	schema	change.

Triggered	for	ANSI	and	non-ANSI
cursors.

76 CursorImplicitConversion A	cursor	on	a	Transact-SQL
statement	is	converted	by	SQL
Server	from	one	type	to	another.

Triggered	for	ANSI	and	non-ANSI
cursors.

77 CursorUnprepare A	prepared	cursor	on	a	Transact-
SQL	statement	is	unprepared
(deleted)	by	ODBC,	OLE	DB,	or
DB-Library.

78 CursorClose A	cursor	previously	opened	on	a
Transact-SQL	statement	by
ODBC,	OLE	DB,	or	DB-Library	is
closed.

79 Missing	Column	Statistics Column	statistics	that	could	have
been	useful	for	the	optimizer	are
not	available.

80 Missing	Join	Predicate Query	that	has	no	join	predicate	is
being	executed.	This	could	result
in	a	long-running	query.

81 Server	Memory	Change Microsoft	SQL	Server	memory
usage	has	increased	or	decreased
by	either	1	megabyte	(MB)	or	5
percent	of	the	maximum	server
memory,	whichever	is	greater.

82-91 User	Configurable	(0-9) Event	data	defined	by	the	user.
92 Data	File	Auto	Grow Indicates	that	a	data	file	was

extended	automatically	by	the
server.

93 Log	File	Auto	Grow Indicates	that	a	data	file	was
extended	automatically	by	the
server.

94 Data	File	Auto	Shrink Indicates	that	a	data	file	was
shrunk	automatically	by	the	server.

95 Log	File	Auto	Shrink Indicates	that	a	log	file	was	shrunk
automatically	by	the	server.

96 Show	Plan	Text Displays	the	query	plan	tree	of	the
SQL	statement	from	the	query
optimizer.

97 Show	Plan	ALL Displays	the	query	plan	with	full
compile-time	details	of	the	SQL
statement	executed.

98 Show	Plan	Statistics Displays	the	query	plan	with	full
run-time	details	of	the	SQL
statement	executed.

99 Reserved 	
100 RPC	Output	Parameter Produces	output	values	of	the

parameters	for	every	RPC.
101 Reserved 	
102 Audit	Statement	GDR Occurs	every	time	a	GRANT,

DENY,	REVOKE	for	a	statement
permission	is	issued	by	any	user	in

SQL	Server.
103 Audit	Object	GDR Occurs	every	time	a	GRANT,

DENY,	REVOKE	for	an	object
permission	is	issued	by	any	user	in
SQL	Server.

104 Audit	Add/Drop	Login Occurs	when	a	SQL	Server	login	is
added	or	removed;	for
sp_addlogin	and	sp_droplogin.

105 Audit	Login	GDR Occurs	when	a	Microsoft
Windows®	login	right	is	added	or
removed;	for	sp_grantlogin,
sp_revokelogin,	and
sp_denylogin.

106 Audit	Login	Change	Property Occurs	when	a	property	of	a	login,
except	passwords,	is	modified;	for
sp_defaultdb	and
sp_defaultlanguage.

107 Audit	Login	Change	Password Occurs	when	a	SQL	Server	login
password	is	changed.

Passwords	are	not	recorded.

108 Audit	Add	Login	to	Server
Role

Occurs	when	a	login	is	added	or
removed	from	a	fixed	server	role;
for	sp_addsrvrolemember,	and
sp_dropsrvrolemember.

109 Audit	Add	DB	User Occurs	when	a	login	is	added	or
removed	as	a	database	user
(Windows	or	SQL	Server)	to	a
database;	for	sp_grantdbaccess,
sp_revokedbaccess,	sp_adduser,
and	sp_dropuser.

110 Audit	Add	Member	to	DB Occurs	when	a	login	is	added	or
removed	as	a	database	user	(fixed
or	user-defined)	to	a	database;	for
sp_addrolemember,
sp_droprolemember,	and

sp_changegroup.
111 Audit	Add/Drop	Role Occurs	when	a	login	is	added	or

removed	as	a	database	user	to	a
database;	for	sp_addrole	and
sp_droprole.

112 App	Role	Pass	Change Occurs	when	a	password	of	an
application	role	is	changed.

113 Audit	Statement	Permission Occurs	when	a	statement
permission	(such	as	CREATE
TABLE)	is	used.

114 Audit	Object	Permission Occurs	when	an	object	permission
(such	as	SELECT)	is	used,	both
successfully	or	unsuccessfully.

115 Audit	Backup/Restore Occurs	when	a	BACKUP	or
RESTORE	command	is	issued.

116 Audit	DBCC Occurs	when	DBCC	commands
are	issued.

117 Audit	Change	Audit Occurs	when	audit	trace
modifications	are	made.

118 Audit	Object	Derived
Permission

Occurs	when	a	CREATE,	ALTER,
and	DROP	object	commands	are
issued.

[@columnid	=]	column_id

Is	the	ID	of	the	column	to	be	added	for	the	event.	column_id	is	int,	with	no
default.

This	table	lists	the	columns	that	can	be	added	for	an	event.

Column
number Column	name Description
1 TextData Text	value	dependent	on	the	event

class	that	is	captured	in	the	trace.
2 BinaryData Binary	value	dependent	on	the

event	class	captured	in	the	trace.

3 DatabaseID ID	of	the	database	specified	by	the
USE	database	statement,	or	the
default	database	if	no	USE
database	statement	is	issued	for	a
given	connection.

The	value	for	a	database	can	be
determined	by	using	the	DB_ID
function.

4 TransactionID System-assigned	ID	of	the
transaction.

5 Reserved 	
6 NTUserName Microsoft	Windows	NT®	user

name.
7 NTDomainName Windows	NT	domain	to	which	the

user	belongs.
8 ClientHostName Name	of	the	client	computer	that

originated	the	request.
9 ClientProcessID ID	assigned	by	the	client	computer

to	the	process	in	which	the	client
application	is	running.

10 ApplicationName Name	of	the	client	application	that
created	the	connection	to	an
instance	of	SQL	Server.	This
column	is	populated	with	the
values	passed	by	the	application
rather	than	the	displayed	name	of
the	program.

11 SQLSecurityLoginName SQL	Server	login	name	of	the
client.

12 SPID Server	Process	ID	assigned	by
SQL	Server	to	the	process
associated	with	the	client.

13 Duration Amount	of	elapsed	time	(in
milliseconds)	taken	by	the	event.
This	data	column	is	not	populated

by	the	Hash	Warning	event.

14 StartTime Time	at	which	the	event	started,
when	available.

15 EndTime Time	at	which	the	event	ended.
This	column	is	not	populated	for
starting	event	classes,	such	as
SQL:BatchStarting	or
SP:Starting.	It	is	also	not
populated	by	the	Hash	Warning
event.

16 Reads Number	of	logical	disk	reads
performed	by	the	server	on	behalf
of	the	event.	This	column	is	not
populated	by	the	Lock:Released
event.

17 Writes Number	of	physical	disk	writes
performed	by	the	server	on	behalf
of	the	event.

18 CPU Amount	of	CPU	time	(in
milliseconds)	used	by	the	event.

19 Permissions Represents	the	bitmap	of
permissions;	used	by	Security
Auditing.

20 Severity Severity	level	of	an	exception.
21 EventSubClass Type	of	event	subclass.	This	data

column	is	not	populated	for	all
event	classes.

22 ObjectID System-assigned	ID	of	the	object.
23 Success Success	of	the	permissions	usage

attempt;	used	for	auditing.

1	=	success
0	=	failure

24 IndexID ID	for	the	index	on	the	object
affected	by	the	event.	To	determine

the	index	ID	for	an	object,	use	the
indid	column	of	the	sysindexes
system	table.

25 IntegerData Integer	value	dependent	on	the
event	class	captured	in	the	trace.

26 ServerName Name	of	the	instance	of	SQL
Server	(either	servername	or
servername\instancename)	being
traced.

27 EventClass Type	of	event	class	being	recorded.
28 ObjectType Type	of	object	(such	as	table,

function,	or	stored	procedure).
29 NestLevel The	nesting	level	at	which	this

stored	procedure	is	executing.	See
@@NESTLEVEL.

30 State Server	state,	in	case	of	an	error.
31 Error Error	number.
32 Mode Lock	mode	of	the	lock	acquired.

This	column	is	not	populated	by
the	Lock:Released	event.

33 Handle Handle	of	the	object	referenced	in
the	event.

34 ObjectName Name	of	object	accessed.
35 DatabaseName Name	of	the	database	specified	in

the	USE	database	statement.
36 Filename Logical	name	of	the	file	name

modified.
37 ObjectOwner Owner	ID	of	the	object	referenced.
38 TargetRoleName Name	of	the	database	or	server-

wide	role	targeted	by	a	statement.
39 TargetUserName User	name	of	the	target	of	some

action.
40 DatabaseUserName SQL	Server	database	username	of

the	client.
41 LoginSID Security	identification	number

(SID)	of	the	logged-in	user.

42 TargetLoginName Login	name	of	the	target	of	some
action.

43 TargetLoginSID SID	of	the	login	that	is	the	target
of	some	action.

44 ColumnPermissionsSet Column-level	permissions	status;
used	by	Security	Auditing.

[@on	=]	on

Specifies	whether	to	turn	the	event	ON	(1)	or	OFF	(0).	@on	is	bit,	with	no
default.

If	on	is	set	to	1,	and	column_id	is	NULL,	then	the	Event	is	set	to	ON	and	all
columns	are	cleared.	If	column_id	is	not	null,	then	the	Column	is	set	to	ON
for	that	event.

If	on	is	set	to	0,	and	column_id	is	NULL,	then	the	Event	is	turned	OFF	and
all	columns	are	cleared.	If	column_id	is	not	null,	then	the	Column	is	turned
OFF.

This	table	illustrates	the	interaction	between	@on	and	@columnid.

@on @columnid Result
ON	(1) NULL Event	is	turned	ON.

All	Columns	are	cleared.

	 NOT	NULL Column	is	turned	ON	for	the	specified
Event.

OFF	(0) NULL Event	is	turned	OFF.

All	Columns	are	cleared.

	 NOT	NULL Column	is	turned	OFF	for	the	specified
Event.

Return	Code	Values
This	table	describes	the	code	values	that	users	may	get	following	completion	of
the	stored	procedure.

Return	code Description
0 No	error.
1 Unknown	error.
2 The	trace	is	currently	running.	Changing	the	trace	at	this

time	will	result	in	an	error.
3 The	specified	Event	is	not	valid.	The	Event	may	not

exist	or	it	is	not	an	appropriate	one	for	the	store
procedure.

4 The	specified	Column	is	not	valid.
9 The	specified	Trace	Handle	is	not	valid.
11 The	specified	Column	is	used	internally	and	cannot	be

removed.
13 Out	of	memory.	Returned	when	there	is	not	enough

memory	to	perform	the	specified	action.
16 The	function	is	not	valid	for	this	trace.

Remarks
sp_trace_setevent	is	a	Microsoft	SQL	Server	2000	stored	procedure	that
performs	many	of	the	actions	previously	executed	by	extended	stored	procedures
available	in	earlier	versions	of	SQL	Server.	Use	sp_trace_setevent	instead	of:

xp_trace_addnewqueue

xp_trace_eventclassrequired

xp_trace_seteventclassrequired

Users	must	execute	sp_trace_setevent	for	each	column	added	for	each	event.
During	each	execution,	if	@on	is	set	to	1,	sp_trace_setevent	adds	the	specified

event	to	the	list	of	events	of	the	trace.	If	@on	is	set	to	0,	sp_trace_setevent
removes	the	specified	event	from	the	list.

Parameters	of	all	SQL	Trace	stored	procedures	(sp_trace_xx)	are	strictly	typed.
If	these	parameters	are	not	called	with	the	correct	input	parameter	data	types,	as
specified	in	the	argument	description,	the	stored	procedure	will	return	an	error.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_trace_setevent.

See	Also

fn_trace_geteventinfo

fn_trace_getinfo

sp_trace_generateevent

Transact-SQL	Reference

sp_trace_setfilter
Applies	a	filter	to	a	trace.	sp_trace_setfilter	may	be	executed	only	on	existing
traces	that	are	stopped	(status	is	0).	SQL	Server	2000	will	return	an	error	if	this
stored	procedure	is	executed	on	a	trace	that	does	not	exist	or	whose	status	is	not
0.

Syntax
sp_trace_setfilter	[@traceid	=]	trace_id	
				,	[@columnid	=]	column_id
				,	[@logical_operator	=]	logical_operator
				,	[@comparison_operator	=]	comparison_operator
				,	[@value	=]	value

Arguments
[@traceid	=]	trace_id

Is	the	ID	of	the	trace	to	which	the	filter	will	be	set.	trace_id	is	int,	with	no
default.	The	user	employs	this	trace_id	value	to	identify,	modify,	and	control
the	trace.

[@columnid	=]	column_id

Is	the	ID	of	the	column	on	which	the	filter	will	be	applied.	column_id	is	int,
with	no	default.	If	column_id	is	NULL,	SQL	Server	clears	all	filters	for	the
specified	trace.

[@logical_operator	=]	logical_operator

Specifies	whether	the	AND	(0)	or	OR	(1)	operator	will	be	applied.
logical_operator	is	int,	with	no	default.

[@comparison_operator	=]	comparison_operator

Specifies	the	type	of	comparison	to	be	made.	comparison_operator	is	int,
with	no	default.	The	table	contains	the	comparison	operators	and	their
representative	values.

Value Comparison	operator
0 =	(Equal)
1 <>	(Not	Equal)
2 >	(Greater	Than)
3 <	(Less	Than)
4 >=	(Greater	Than	Or	Equal)
5 <=	(Less	Than	Or	Equal)
6 LIKE
7 NOT	LIKE

[@value	=]	value

Specifies	the	value	on	which	to	filter.	The	data	type	of	value	must	match	the
data	type	of	the	column	to	be	filtered.	Thus,	if	the	filter	is	set	on	an	Object
ID	column	that	is	an	int	data	type,	value	must	be	int.	NULL	values	and
empty	strings	are	not	allowed;	when	a	column	value	is	null	for	an	event,	SQL
Server	will	pass	any	filter	defined	on	that	column.	If	value	is	nvarchar	or
varbinary,	it	can	have	a	maximum	length	of	8000.

When	the	comparison	operator	is	LIKE	or	NOT	LIKE,	the	logical	operator
can	include	"%"	or	other	filter	appropriate	for	the	LIKE	operation.

To	apply	the	filter	between	a	range	of	column	values,	sp_trace_setfilter
must	be	executed	twice	--	once	with	a	'>='	comparison	operator,	and	another
time	with	a	'<='	operator.

Return	Code	Values
This	table	describes	the	code	values	that	users	may	get	following	completion	of
the	stored	procedure.

Return	code Description
0 No	error.
1 Unknown	error.
2 The	trace	is	currently	running.	Changing

the	trace	at	this	time	will	result	in	an

error.
4 The	specified	Column	is	not	valid.
5 The	specified	Column	is	not	allowed	for

filtering.	This	value	is	returned	only	from
sp_trace_setfilter.

6 The	specified	Comparison	Operator	is	not
valid.

7 The	specified	Logical	Operator	is	not
valid.

9 The	specified	Trace	Handle	is	not	valid.
13 Out	of	memory.	Returned	when	there	is

not	enough	memory	to	perform	the
specified	action.

16 The	function	is	not	valid	for	this	trace.

Remarks
sp_trace_setfilter	is	a	Microsoft®	SQL	Server™	2000	stored	procedure	that
performs	many	of	the	actions	previously	executed	by	extended	stored	procedures
available	in	earlier	versions	of	SQL	Server.	Use	sp_trace_setfilter	instead	of	the
xp_trace_set*filter	extended	stored	procedures	to	create,	apply,	remove,	or
manipulate	filters	on	traces.	For	more	information,	see	Creating	and	Managing
Templates.

All	filters	for	a	particular	column	must	be	enabled	together	in	one	execution	of
sp_trace_setfilter.	For	example,	if	a	user	intends	to	apply	two	filters	on	the
application	name	column	and	one	filter	on	the	username	column,	the	user	must
specify	the	filters	on	application	name	in	sequence.	SQL	Server	will	return	an
error	if	the	user	attempts	to	specify	a	filter	on	application	name	in	one	stored
procedure	call,	followed	by	a	filter	on	username,	then	another	filter	on
application	name.

Parameters	of	all	SQL	Trace	stored	procedures	(sp_trace_xx)	are	strictly	typed.
If	these	parameters	are	not	called	with	the	correct	input	parameter	data	types,	as
specified	in	the	argument	description,	the	stored	procedure	will	return	an	error.

JavaScript:hhobj_1.Click()

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute	sp_trace_setfilter.

Examples
This	example	sets	three	filters	on	Trace	1.	The	filters	N'SQLT%'	and	N'MS%'
operate	on	one	column	(AppName,	value	10)	using	the	"LIKE"	comparison
operator.	The	filter	N'joe'	operates	on	a	different	column	(UserName,	value	11)
using	the	"EQUAL"	comparison	operator.

sp_trace_setfilter		1,	10,	0,	6,	N'SQLT%'
sp_trace_setfilter		1,	10,	0,	6,	N'MS%'
sp_trace_setfilter		1,	11,	0,	0,	N'joe'

See	Also

fn_trace_getfilterinfo

fn_trace_getinfo

Transact-SQL	Reference

sp_trace_setstatus
Modifies	the	current	state	of	the	specified	trace.

Syntax
sp_trace_setstatus	[@traceid	=]	trace_id	
				,	[@status	=]	status

Arguments
[@traceid	=]	trace_id

Is	the	ID	of	the	trace	to	be	modified.	trace_id	is	int,	with	no	default.	The
user	employs	this	trace_id	value	to	identify,	modify,	and	control	the	trace.

[@status	=]	status

Specifies	the	action	to	implement	on	the	trace.	status	is	int,	with	no	default.

This	table	lists	the	status	that	may	be	specified.

Status Description
0 Stops	the	specified	trace.
1 Starts	the	specified	trace.
2 Closes	the	specified	trace	and	deletes	its

definition	from	the	server.

Note		A	trace	must	be	stopped	first	before	it	can	be	closed.

Return	Code	Values
This	table	describes	the	code	values	that	users	may	get	following	completion	of
the	stored	procedure.

Return	code Description
0 No	error.

1 Unknown	error.
8 The	specified	Status	is	not	valid.
9 The	specified	Trace	Handle	is	not	valid.
13 Out	of	memory.	Returned	when	there	is	not

enough	memory	to	perform	the	specified
action.

If	the	trace	is	already	in	the	state	specified,	SQL	Server	will	return	0.

Remarks
sp_trace_setstatus	is	a	Microsoft	SQL	Server	2000	stored	procedure	that
performs	many	of	the	actions	previously	executed	by	xp_trace_*	extended
stored	procedures	available	in	earlier	versions	of	SQL	Server.	Use
sp_trace_setstatus	instead	of:

xp_trace_destroyqueue

xp_trace_pausequeue

xp_trace_restartqueue

xp_trace_startconsumer

Parameters	of	all	SQL	Trace	stored	procedures	(sp_trace_xx)	are	strictly	typed.
If	these	parameters	are	not	called	with	the	correct	input	parameter	data	types,	as
specified	in	the	argument	description,	the	stored	procedure	will	return	an	error.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_trace_setstatus.

Examples

See	Also

fn_trace_geteventinfo

fn_trace_getfilterinfo

fn_trace_getinfo

sp_trace_generateevent

sp_trace_setevent

sp_trace_setfilter

Transact-SQL	Reference

sp_unbindefault
Unbinds	(removes)	a	default	from	a	column	or	from	a	user-defined	data	type	in
the	current	database.

Syntax
sp_unbindefault	[@objname	=]	'object_name'	
				[,	[@futureonly	=]	'futureonly_flag']

Arguments
[@objname	=]	'object_name'

Is	the	name	of	the	table	and	column	or	the	user-defined	data	type	from	which
the	default	is	to	be	unbound.	object_name	is	nvarchar(776),	with	no	default.
If	the	parameter	is	not	of	the	form	table.column,	object_name	is	assumed	to
be	a	user-defined	data	type.	When	unbinding	a	default	from	a	user-defined
data	type,	any	columns	of	that	data	type	that	have	the	same	default	are	also
unbound.	Columns	of	that	data	type	with	defaults	bound	directly	to	them	are
unaffected.

Note		object_name	can	contain	the	[and]	characters	as	delimited	identifier
characters.	For	more	information,	see	Delimited	Identifiers.

[@futureonly	=]	'futureonly_flag'

Is	used	only	when	unbinding	a	default	from	a	user-defined	data	type.
futureonly_flag	is	varchar(15),	with	a	default	of	NULL.	When
futureonly_flag	is	futureonly,	existing	columns	of	the	data	type	do	not	lose
the	specified	default.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks

JavaScript:hhobj_1.Click()

To	display	the	text	of	a	default,	execute	sp_helptext	with	the	name	of	the	default
as	the	parameter.

When	a	default	is	bound	to	a	column,	the	information	about	binding	is	removed
from	the	syscolumns	table.	When	a	default	is	bound	to	a	user-defined	data	type,
the	information	is	removed	from	the	systypes	table.

Permissions
Only	members	of	the	sysadmin	fixed	server	role,	the	db_owner	and
db_ddladmin	fixed	database	roles,	and	the	table	owner	can	execute
sp_unbindefault.

Examples

A.	Unbind	a	default	from	a	column
This	example	unbinds	the	default	from	the	hiredate	column	of	an	employees
table.

EXEC	sp_unbindefault	'employees.hiredate'

B.	Unbind	a	default	from	a	user-defined	data	type
This	example	unbinds	the	default	from	the	user-defined	data	type	ssn.	It	unbinds
existing	and	future	columns	of	that	type.

EXEC	sp_unbindefault	'ssn'

C.	Use	the	futureonly_flag
This	example	unbinds	future	uses	of	the	user-defined	data	type	ssn	without
affecting	existing	ssn	columns.

EXEC	sp_unbindefault	'ssn',	'futureonly'

D.	Use	delimited	identifiers
This	example	shows	the	use	of	delimited	identifiers	in	object_name.

CREATE	TABLE	[t.3]	(c1	int)	--	Notice	the	period	as	part	of	the	table	
--	name.
CREATE	DEFAULT	default2	AS	0
GO
EXEC	sp_bindefault	'default2',	'[t.3].c1'	
--	The	object	contains	two	periods;
--	the	first	is	part	of	the	table	name	and	the	second	
--	distinguishes	the	table	name	from	the	column	name.
EXEC	sp_unbindefault	'[t.3].c1'

See	Also

CREATE	DEFAULT

DROP	DEFAULT

sp_bindefault

sp_helptext

System	Stored	Procedures

Transact-SQL	Reference

sp_unbindrule
Unbinds	a	rule	from	a	column	or	a	user-defined	data	type	in	the	current	database.

Syntax
sp_unbindrule	[@objname	=]	'object_name'					[,	[@futureonly	=]
'futureonly_flag']

Arguments
[@objname	=]	'object_name'

Is	the	name	of	the	table	and	column	or	the	user-defined	data	type	from	which
the	rule	is	unbound.	object_name	is	nvarchar(776),	with	no	default.	If	the
parameter	is	not	of	the	form	table.column,	object_name	is	assumed	to	be	a
user-defined	data	type.	When	unbinding	a	rule	from	a	user-defined	data	type,
any	columns	of	the	data	type	that	have	the	same	rule	are	also	unbound.
Columns	of	that	data	type	with	rules	bound	directly	to	them	are	unaffected.

Note		object_name	can	contain	the	[and]	characters	as	delimited	identifier
characters.	For	more	information,	see	Delimited	Identifiers.

[@futureonly	=]	'futureonly_flag'

Is	used	only	when	unbinding	a	rule	from	a	user-defined	data	type.
futureonly_flag	is	varchar(15),	with	a	default	of	NULL.	When
futureonly_flag	is	futureonly,	existing	columns	of	that	data	type	do	not	lose
the	specified	rule.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
To	display	the	text	of	a	rule,	execute	sp_helptext	with	the	rule	name	as	the
parameter.

JavaScript:hhobj_1.Click()

When	a	rule	is	unbound,	the	information	about	the	binding	is	removed	from	the
syscolumns	table	if	the	rule	was	bound	to	a	column,	and	from	the	systypes	table
if	the	rule	was	bound	to	a	user-defined	data	type.

When	a	rule	is	unbound	from	a	user-defined	data	type,	it	is	also	unbound	from
any	columns	having	that	user-defined	data	type.	The	rule	may	also	still	be	bound
to	columns	whose	data	types	were	later	changed	by	the	ALTER	COLUMN
clause	of	an	ALTER	TABLE	statement,	you	must	specifically	unbind	the	rule
from	these	columns	using	sp_unbindrule	and	specifying	the	column	name.

Permissions
Only	members	of	the	sysadmin	fixed	server	role,	the	db_owner	and
db_ddladmin	fixed	database	roles,	and	the	table	owner	can	execute
sp_unbindrule.

Examples

A.	Unbind	a	rule	from	a	column
This	example	unbinds	the	rule	from	the	startdate	column	of	an	employees	table.

EXEC	sp_unbindrule	'employees.startdate'

B.	Unbind	a	rule	from	a	user-defined	data	type
This	example	unbinds	the	rule	from	the	user-defined	data	type	ssn.	It	unbinds	the
rule	from	existing	and	future	columns	of	that	type.

EXEC	sp_unbindrule	ssn

C.	Use	futureonly_flag
This	example	unbinds	the	rule	from	the	user-defined	data	type	ssn	without
affecting	existing	ssn	columns.

EXEC	sp_unbindrule	'ssn',	'futureonly'

D.	Use	delimited	identifiers

This	example	shows	the	use	of	delimited	identifiers	in	the	object_name.

CREATE	TABLE	[t.4]	(c1	int)	--	Notice	the	period	as	part	of	the	table	
--	name.
GO
CREATE	RULE	rule2	AS	@value	>	100
GO
EXEC	sp_bindrule	rule2,	'[t.4].c1'	--	The	object	contains	two	
--	periods;	the	first	is	part	of	the	table	name	and	the	second	
--	distinguishes	the	table	name	from	the	column	name.
GO
EXEC	sp_unbindrule	'[t.4].c1'

See	Also

CREATE	RULE

DROP	RULE

sp_bindrule

sp_helptext

System	Stored	Procedures

Transact-SQL	Reference

sp_update_alert
Updates	the	settings	of	an	existing	alert.

Syntax
sp_updatealert	[@name	=]	'name'	
				[,	[@new_name	=]	'new_name']	
				[,	[@enabled	=]	enabled]	
				[,	[@message_id	=]	message_id]	
				[,	[@severity	=]	severity]	
				[,	[@delay_between_responses	=]	delay_between_responses]	
				[,	[@notification_message	=]	'notification_message']	
				[,	[@include_event_description_in	=]	include_event_description_in]	
				[,	[@database_name	=]	'database_name']	
				[,	[@event_description_keyword	=]	'event_description_keyword']	
				[,	[@job_id	=]	job_id	|	[@job_name	=]	'job_name']	
				[,	[@occurrence_count	=]	occurrence_count]	
				[,	[@count_reset_date	=]	count_reset_date]	
				[,	[@count_reset_time	=]	count_reset_time]	
				[,	[@last_occurrence_date	=]	last_occurrence_date]	
				[,	[@last_occurrence_time	=]	last_occurrence_time]	
				[,	[@last_response_date	=]	last_response_date]	
				[,	[@last_response_time	=]	last_response	_time]
				[,	[@raise_snmp_trap	=]	raise_snmp_trap]
				[,	[@performance_condition	=]	'performance_condition']	
				[,	[@category_name	=]	'category']

Arguments
[@name	=]	'name'

Is	the	name	of	the	alert	that	is	to	be	updated.	name	is	sysname,	with	no
default.

[@new_name	=]	'new_name'

Is	a	new	name	for	the	alert.	The	name	must	be	unique.	new_name	is

sysname,	with	a	default	of	NULL.

[@enabled	=]	enabled

Specifies	whether	the	alert	is	enabled	(1)	or	not	enabled	(0).	enabled	is
tinyint,	with	a	default	of	NULL.	An	alert	must	be	enabled	to	fire.

[@message_id	=]	message_id

Is	a	new	message	or	error	number	for	the	alert	definition.	Typically,
message_id	corresponds	to	an	error	number	in	the	sysmessages	table.
message_id	is	int,	with	a	default	of	NULL.	A	message	ID	can	be	used	only	if
the	severity	level	setting	for	the	alert	is	0.

[@severity	=]	severity

Is	a	new	severity	level	(from	1	through	25)	for	the	alert	definition.	Any
Microsoft®	SQL	Server™	message	sent	to	the	Windows	NT®	application
log	with	the	specified	severity	will	activate	the	alert.	severity	is	int,	with	a
default	of	NULL.	A	severity	level	can	be	used	only	if	the	message	ID	setting
for	the	alert	is	0.

[@delay_between_responses	=]	delay_between_responses

Is	the	new	waiting	period,	in	seconds,	between	responses	to	the	alert.
delay_between_responses	is	int,	with	a	default	of	NULL.

[@notification_message	=]	'notification_message'

Is	the	revised	text	of	an	additional	message	sent	to	the	operator	as	part	of	the
e-mail,	net	send,	or	pager	notification.	notification_message	is
nvarchar(512),	with	a	default	of	NULL.

[@include_event_description_in	=]	include_event_description_in

Is	whether	the	description	of	the	SQL	Server	error	from	the	Windows	NT
application	log	should	be	included	in	the	notification	message.
include_event_description_in	is	tinyint,	with	a	default	of	NULL,	and	can	be
one	or	more	of	these	values.

Value Description
0 None
1 E-mail

2 Pager
4 net	send

[@database_name	=]	'database_name'

Is	the	name	of	the	database	in	which	the	error	must	occur	for	the	alert	to	fire.
database_name	is	sysname,	with	a	default	of	NULL.

[@event_description_keyword	=]	'event_description_keyword'

Is	a	sequence	of	characters	that	must	be	found	in	the	description	of	the	error
in	the	error	message	log.	Transact-SQL	LIKE	expression	pattern-matching
characters	can	be	used.	event_description_keyword	is	nvarchar(100),	with	a
default	of	NULL.	This	parameter	is	useful	for	filtering	object	names	(for
example,	%customer_table%).

[@job_id	=]	job_id

Is	the	job	identification	number.	job_id	is	uniqueidentifier,	with	a	default	of
NULL.	If	job_id	is	specified,	job_name	must	be	omitted.

[@job_name	=]	'job_name'

Is	the	name	of	the	job	that	executes	in	response	to	this	alert.	job_name	is
sysname,	with	a	default	of	NULL.	If	job_name	is	specified,	job_id	must	be
omitted.

[@occurrence_count	=]	occurrence_count

Resets	the	number	of	times	the	alert	has	occurred.	occurrence_count	is	int,
with	a	default	of	NULL,	and	can	be	set	only	to	0.

[@count_reset_date	=]	count_reset_date

Resets	the	date	the	occurrence	count	was	last	reset.	count_reset_date	is	int,
with	a	default	of	NULL.

[@count_reset_time	=]	count_reset_time

Resets	the	time	the	occurrence	count	was	last	reset.	count_reset_time	is	int,
with	a	default	of	NULL.

[@last_occurrence_date	=]	last_occurrence_date

Resets	the	date	the	alert	last	occurred.	last_occurrence_date	is	int,	with	a
default	of	NULL,	and	can	be	set	only	to	0.

[@last_occurrence_time	=]	last_occurrence_time

Resets	the	time	the	alert	last	occurred.	last_occurrence_time	is	int,	with	a
default	of	NULL,	and	can	be	set	only	to	0.

[@last_response_date	=]	last_response_date

Resets	the	date	the	alert	was	last	responded	to	by	the	SQLServerAgent
service.	last_response_date	is	int,	with	a	default	of	NULL,	and	can	be	set
only	to	0.

[@last_response_time	=]	last_response_time

Resets	the	time	the	alert	was	last	responded	to	by	the	SQLServerAgent
service.	last_response_time	is	int,	with	a	default	of	NULL,	and	can	be	set
only	to	0.

[@raise_snmp_trap	=]	raise_snmp_trap

Reserved.

[@performance_condition	=]	'performance_condition'

Is	a	value	expressed	in	the	format	'item	comparator	value'.
performance_condition	is	nvarchar(512),	with	a	default	of	NULL,	and
consists	of	these	elements.

Format	element Description
Item A	performance	object,	performance	counter,	or

named	instance	of	the	counter
Comparator One	of	these	operators:	>,	<,	=
Value Numeric	value	of	the	counter

[@category_name	=]	'category'

The	name	of	the	alert	category.	category	is	sysname	with	a	default	of	NULL.

Return	Code	Values

0	(success)	or	1	(failure)

Remarks
sp_update_alert	must	be	run	from	the	msdb	database.

Only	sysmessages	written	to	the	Microsoft®	Windows	NT®	application	log	can
fire	an	alert.

sp_update_alert	changes	only	those	alert	settings	for	which	parameter	values
are	supplied.	If	a	parameter	is	omitted,	the	current	setting	is	retained.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute	sp_update_alert.

Examples
This	example	changes	the	enabled	setting	of	Test	Alert	to	0.

sp_updatealert	@name	=	'Test	Alert',	@enabled	=	0

See	Also

sp_add_alert

sp_help_alert

System	Stored	Procedures

Transact-SQL	Reference

sp_update_category
Changes	the	name	of	a	category.

Syntax
sp_update_category	[@class	=]	'class',	
				[@name	=]	'old_name',
				[@new_name	=]	'new_name'

Arguments
[@class	=]	'class'

Is	the	class	of	the	category	to	update.	class	is	varchar(8),	with	no	default,
and	can	be	one	of	these	values.

Value Description
ALERT Updates	an	alert	category.
JOB Updates	a	job	category.
OPERATOR Updates	an	operator	category.

[@name	=]	'old_name'

Is	the	current	name	of	the	category.	old_name	is	sysname,	with	no	default.

[@new_name	=]	'new_name'

Is	the	new	name	for	the	category.	new_name	is	sysname,	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_update_category	must	be	run	from	the	msdb	database.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_update_category.

Examples
This	example	renames	a	job	category	from	Table	Archixes	to	Table	Archives.

USE	msdb
EXEC	sp_update_category	'JOB',	'Table	Archixes',	'Table	Archives'

See	Also

sp_add_category

sp_delete_category

sp_help_category

System	Stored	Procedures

Transact-SQL	Reference

sp_updateextendedproperty
Updates	the	value	of	an	existing	extended	property.

Syntax
sp_updateextendedproperty					[@name	=]{'property_name'}	
				[,	[@value	=]{'value'}
								[,	[@level0type	=]{'level0_object_type'}
									,	[@level0name	=]{'level0_object_name'}
												[,	[@level1type	=]{'level1_object_type'}
													,	[@level1name	=]{'level1_object_name'}
																				[,	[@level2type	=]{'level2_object_type'}
																					,	[@level2name	=]{'level2_object_name'}
]
]
]
]

Arguments
[@name	=]{'property_name'}

Is	the	name	of	the	property	to	be	updated.	property_name	is	sysname,	and
cannot	be	NULL.

[@value	=]{'value'}

Is	the	value	associated	with	the	property.	value	is	sql_variant,	with	a	default
of	NULL.	The	size	of	value	may	not	be	more	than	7,500	bytes;	otherwise,
SQL	Server™	raises	an	error.

[@level0type	=]{'level0_object_type'}

Is	the	user	or	user-defined	type.	level0_object_type	is	varchar(128),	with	a
default	of	NULL.	Valid	inputs	are	USER,	TYPE,	and	NULL.

[@level0name	=]{'level0_object_name'}

Is	the	name	of	the	level	1	object	type	specified.	level0_object_name	is

sysname,	with	a	default	of	NULL.

[@level1type	=]{'level1_object_type'}

Is	the	type	of	level	1	object.	level1_object_type	is	varchar(128),	with	a
default	of	NULL.	Valid	inputs	are	TABLE,	VIEW,	PROCEDURE,
FUNCTION,	DEFAULT,	RULE,	and	NULL.

[@level1name	=]{'level1_object_name'}

Is	the	name	of	the	level	1	object	type	specified.	level1_object_name	is
sysname,	with	a	default	of	NULL.

[@level2type	=]{'level2_object_type'}

Is	the	type	of	level	2	object.	level2_object_type	is	varchar(128)	with	a
default	of	NULL.	Valid	inputs	are	COLUMN,	PARAMETER,	INDEX,
CONSTRAINT,	TRIGGER,	and	NULL.

[@level2name	=]{'level2_object_name'}

Is	the	name	of	the	level	2	object	type	specified.	level2_object_name	is
sysname,	with	a	default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
Extended	properties	are	not	allowed	on	system	objects.

The	objects	are	distinguished	according	to	levels,	with	level	0	as	the	highest	and
level	2	the	lowest.	When	a	user	adds,	updates,	or	deletes	an	extended	property,
that	user	must	specify	all	higher	level	objects.	For	example,	if	the	user	adds	an
extended	property	to	a	level	1	object,	that	user	must	specify	all	level	0
information.	If	the	user	adds	an	extended	property	to	a	level	2	object,	all
information	on	levels	0	and	1	must	be	supplied.

At	each	level,	object	type	and	object	name	uniquely	identify	an	object.	If	one
part	of	the	pair	is	specified,	the	other	part	must	also	be	specified.

Given	a	valid	property_name	and	value,	if	all	object	types	and	names	are	null,

the	property	updated	belongs	to	the	current	database.	If	an	object	type	and	name
are	specified,	then	a	parent	object	and	type	also	must	be	specified.	Otherwise,
SQL	Server	raises	an	error.

Permissions
Members	of	the	db_owner	and	db_ddladmin	fixed	database	roles	may	update
the	extended	properties	of	any	object.	Users	may	update	extended	properties	to
objects	they	own.	However,	only	db_owner	may	update	properties	to	user
names.

Examples
This	example	updates	the	property	('caption,'	'Employee	1	ID')	to	column	'ID'	in
table	'T1'.

CREATE			table	T1	(id	int	,	name	char	(20))
EXEC			sp_addextendedproperty	'caption',	'Employee	ID',	'user',	dbo,	'table',	'T1',	'column',	id
EXEC			sp_updateextendedproperty	'caption',	'Employee	1	ID',	'user',	dbo,	'table',	'T1',	'column',	id

See	Also

fn_listextendedproperty

Property	Management

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_update_job
Changes	the	attributes	of	a	job.

Syntax
sp_update_job	[@job_id	=]	job_id	|	[@job_name	=]	'job_name'
				[,	[@new_name	=]	'new_name']	
				[,	[@enabled	=]	enabled]
				[,	[@description	=]	'description']	
				[,	[@start_step_id	=]	step_id]
				[,	[@category_name	=]	'category']	
				[,	[@owner_login_name	=]	'login']
				[,	[@notify_level_eventlog	=]	eventlog_level]
				[,	[@notify_level_email	=]	email_level]
				[,	[@notify_level_netsend	=]	netsend_level]
				[,	[@notify_level_page	=]	page_level]
				[,	[@notify_email_operator_name	=]	'email_name']
				[,	[@notify_netsend_operator_name	=]	'netsend_operator']
				[,	[@notify_page_operator_name	=]	'page_operator']
				[,	[@delete_level	=]	delete_level]	
				[,	[@automatic_post	=]	automatic_post]

Arguments
[@job_id	=]	job_id

Is	the	identification	number	of	the	job	to	be	updated.	job_id	is
uniqueidentifier,	with	a	default	of	NULL.

[@job_name	=]	'job_name'

Is	the	name	of	the	job.	job_name	is	sysname,	with	a	default	of	NULL.

Note		Either	job_id	or	job_name	must	be	specified	but	both	cannot	be	specified.

[@new_name	=]	'new_name'

Is	the	new	name	for	the	job.	new_name	is	sysname,	with	a	default	of	NULL.

[@enabled	=]	enabled

Specifies	whether	the	job	is	enabled	(1)	or	not	abled	(0).	enabled	is	tinyint,
with	a	default	of	NULL.

[@description	=]	'description'

Is	the	description	of	the	job.	description	is	nvarchar(512),	with	a	default	of
NULL.

[@start_step_id	=]	step_id

Is	the	identification	number	of	the	first	step	to	execute	for	the	job.	step_id	is
int,	with	a	default	of	NULL.

[@category_name	=]	'category'

Is	the	category	of	the	job.	category	is	sysname,	with	a	default	of	NULL.

[@owner_login_name	=]	'login'

Is	the	name	of	the	login	that	owns	the	job.	login	is	sysname,	with	a	default	of
NULL.	Only	members	of	the	sysadmin	fixed	server	role	can	change	job
ownership.

[@notify_level_eventlog	=]	eventlog_level

Specifies	when	to	place	an	entry	in	the	Microsoft®	Windows	NT®
application	log	for	this	job.	eventlog_level	is	int,	with	a	default	of	NULL,
and	can	be	one	of	these	values.

Value Description	(action)
0 Never
1 On	success
2 On	failure
3 Always

[@notify_level_email	=]	email_level

Specifies	when	to	send	an	e-mail	upon	the	completion	of	this	job.
email_level	is	int,	with	a	default	of	NULL.	email_level	uses	the	same	values
as	eventlog_level.

[@notify_level_netsend	=]	netsend_level

Specifies	when	to	send	a	network	message	upon	the	completion	of	this	job.
netsend_level	is	int,	with	a	default	of	NULL.	netsend_level	uses	the	same
values	as	eventlog_level.

[@notify_level_page	=]	page_level

Specifies	when	to	send	a	page	upon	the	completion	of	this	job.	page_level	is
int,	with	a	default	of	NULL.	page_level	uses	the	same	values	as
eventlog_level.

[@notify_email_operator_name	=]	'email_name'

Is	the	e-mail	name	of	the	person	to	whom	the	e-mail	is	sent	when	email_level
is	reached.	email_name	is	sysname,	with	a	default	of	NULL.

[@notify_netsend_operator_name	=]	'netsend_operator'

Is	the	name	of	the	operator	to	whom	the	network	message	is	sent.
netsend_operator	is	sysname,	with	a	default	of	NULL.

[@notify_page_operator_name	=]	'page_operator'

Is	the	name	of	the	operator	to	whom	a	page	is	sent.	page_operator	is
sysname,	with	a	default	of	NULL.

[@delete_level	=]	delete_level

Specifies	when	to	delete	the	job.	delete_value	is	int,	with	a	default	of	NULL.
delete_level	uses	the	same	values	as	eventlog_level.

[@automatic_post	=]	automatic_post

Reserved.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_update_job	must	be	run	from	the	msdb	database.

sp_update_job	changes	only	those	settings	for	which	parameter	values	are

supplied.	If	a	parameter	is	omitted,	the	current	setting	is	retained.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	changes	the	name	and	description,	and	disables	the	job	Archive
Tables.

USE	msdb
EXEC	sp_update_job	@job_name	=	'Archive	Tables',
			@new_name	=	'Archive	Tables	-	Disabled',
			@description	=	'Job	disabled	until	end	of	project',
			@enabled	=	0

See	Also

sp_add_job

sp_delete_job

sp_help_job

System	Stored	Procedures

Transact-SQL	Reference

sp_update_jobschedule
Changes	the	schedule	settings	for	the	specified	job.

Syntax
sp_update_jobschedule	[@job_id	=]	job_id,	|	[@job_name	=]	'job_name',
				[@name	=]	'name'	
				[,	[@new_name	=]	'new_name']
				[,	[@enabled	=]	enabled]	
				[,	[@freq_type	=]	freq_type]
				[,	[@freq_interval	=]	freq_interval]
				[,	[@freq_subday_type	=]	freq_subday_type]
				[,	[@freq_subday_interval	=]	freq_subday_interval]
				[,	[@freq_relative_interval	=]	freq_relative_interval]
				[,	[@freq_recurrence_factor	=]	freq_recurrence_factor]
				[,	[@active_start_date	=]	active_start_date]
				[,	[@active_end_date	=]	active_end_date]
				[,	[@active_start_time	=]	active_start_time]
				[,	[@active_end_time	=]	active_end_time]

Arguments
[@job_id	=]	job_id

Is	the	identification	number	of	the	job	to	which	the	schedule	belongs.	job_id
is	uniqueidentifier,	with	a	default	of	NULL.

[@job_name	=]	'job_name'

Is	the	name	of	the	job	to	which	the	schedule	belongs.	Each	job	name	must	be
unique.	job_name	is	sysname,	with	a	default	of	NULL.

Note		Either	job_id	or	job_name	must	be	specified	but	both	cannot	be	specified.

[@name	=]	'name'

Is	the	name	of	the	schedule	to	modify.	name	is	sysname,	with	no	default.

[@new_name	=]	'new_name'

Is	a	new	name	for	the	schedule.	new_name	is	sysname,	with	a	default	of
NULL.

[@enabled	=]	enabled

Specifies	whether	the	schedule	is	enabled	(1)	or	not	enabled	(0).	enabled	is
tinyint,	with	a	default	of	NULL.

[@freq_type	=]	freq_type

Specifies	how	often	the	job	is	run.	freq_type	is	int,	with	a	default	of	NULL,
and	can	be	one	of	these	values.

Value Description
1 Once.
4 Daily.
8 Weekly.
16 Monthly.
32 Monthly,	relative	to	the	freq_interval.
64 Run	when	SQL	Server	Agent	starts.
128 Run	when	the	computer	is	idle.

[@freq_interval	=]	freq_interval

Specifies	the	days	that	the	job	is	run.	freq_interval	is	int,	with	a	default	of
NULL.	The	value	of	freq_interval	depends	on	the	value	of	freq_type.

Value	of	freq_type Effect	on	freq_interval
1	(once) freq_interval	is	unused.
4	(daily) Every	freq_interval	days.
8	(weekly) freq_interval	is	one	or	more	of	the

following	(ORed	together):

1	=	Sunday
2	=	Monday
4	=	Tuesday
8	=	Wednesday
16	=	Thursday

32	=	Friday
64	=	Saturday

16	(monthly) On	the	freq_interval	day	of	the	month.
32	(monthly	relative) freq_interval	can	be	one	of	these	values:

1	=	Sunday	
2	=	Monday	
3	=	Tuesday	
4	=	Wednesday	
5	=	Thursday	
6	=	Friday	
7	=	Saturday	
8	=	Day	
9	=	Weekday
10	=	Weekend	day

64	(when	SQL	Server	Agent
starts)

freq_interval	is	unused.

[@freq_subday_type	=]	freq_subday_type

Specifies	the	units	for	freq_subday_interval.	freq_subday_type	is	int,	with	a
default	of	NULL,	and	can	be	one	of	these	values.

Value Description	(unit)
0x1 At	the	specified	time.
0x4 Minutes.
0x8 Hours.

[@freq_subday_interval	=]	freq_subday_interval

Specifies	the	number	of	freq_subday_type	periods	to	occur	between	each
execution	of	the	job.	freq_subday_interval	is	int,	with	a	default	of	NULL.

[@freq_relative_interval	=]	freq_relative_interval

Specifies	the	scheduled	job's	occurrence	of	the	freq_interval	in	each	month,

if	freq_interval	is	32	(monthly	relative).	freq_relative_interval	is	int,	with	a
default	of	NULL,	and	can	be	one	of	these	values.

Value Description	(unit)
1 First
2 Second
4 Third
8 Fourth
16 Last

[@freq_recurrence_factor	=]	freq_recurrence_factor

Specifies	the	number	of	months	between	the	scheduled	execution	of	the	job.
freq_recurrence_factor	is	used	only	if	freq_type	is	8,	16,	or	32.
freq_recurrence_factor	is	int,	with	a	default	of	NULL.

[@active_start_date	=]	active_start_date

Is	the	date	on	which	execution	of	the	job	can	begin.	active_start_date	is	int,
with	a	default	of	NULL.	Values	must	be	formatted	as	YYYYMMDD.	If
active_start_date	is	not	NULL,	the	date	must	be	greater	than	or	equal	to
19900101.

[@active_end_date	=]	active_end_date

Is	the	date	on	which	execution	of	the	job	can	stop.	active_end_date	is	int,
with	a	default	of	NULL.	Values	must	be	formatted	as	YYYYMMDD.

[@active_start_time	=]	active_start_time

Is	the	time	on	any	day	between	active_start_date	and	active_end_date	to
begin	execution	of	the	job.	active_start_time	is	int,	with	a	default	of	NULL.
Values	must	be	entered	using	the	form	HHMMSS.

[@active_end_time	=]	active_end_time

Is	the	time	on	any	day	between	active_start_date	and	active_end_date	to	end
execution	of	the	job.	active_end_time	is	int,	with	a	default	of	NULL.	Values
must	be	entered	using	the	form	HHMMSS.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_update_jobschedule	must	be	run	from	the	msdb	database.

Updating	a	job	schedule	increments	the	job	version	number.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	disables	and	changes	the	name	of	the	Monday	Archive	schedule	of
the	Archive	Tables	job.

USE	msdb
EXEC	sp_update_jobschedule	@job_name	=	'Archive	Tables',	
			@name	=	'Monday	Archive',
			@new_name	=	'Monday	Archive	-	DEACTIVATED',
			@enabled	=	0

See	Also

Modifying	and	Viewing	Jobs

sp_add_jobschedule

sp_delete_jobschedule

sp_help_jobschedule

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_update_jobstep
Changes	the	setting	for	a	step	in	a	job	that	is	used	to	perform	automated
activities.

Syntax
sp_update_jobstep	[@job_id	=]	job_id,	|	[@job_name	=]	'job_name',	
				[@step_id	=]	step_id	
				[,	[@step_name	=]	'step_name']
				[,	[@subsystem	=]	'subsystem']	
				[,	[@command	=]	'command']
				[,	[@additional_parameters	=]	'parameters']
				[,	[@cmdexec_success_code	=]	success_code]
				[,	[@on_success_action	=]	success_action]	
				[,	[@on_success_step_id	=]	success_step_id]
				[,	[@on_fail_action	=]	fail_action]	
				[,	[@on_fail_step_id	=]	fail_step_id]
				[,	[@server	=]	'server']	
				[,	[@database_name	=]	'database']
				[,	[@database_user_name	=]	'user']	
				[,	[@retry_attempts	=]	retry_attempts]
				[,	[@retry_interval	=]	retry_interval]	
				[,	[@os_run_priority	=]	run_priority]
				[,	[@output_file_name	=]	'file_name']	
				[,	[@flags	=]	flags]

Arguments
[@job_id	=]	job_id

Is	the	identification	number	of	the	job	to	which	the	step	belongs.	job_id	is
uniqueidentifier,	with	a	default	of	NULL.

[@job_name	=]	'job_name'

Is	the	name	of	the	job	to	which	the	step	belongs.	job_name	is	sysname,	with
a	default	of	NULL.

Note		Either	job_id	or	job_name	must	be	specified	but	both	cannot	be	specified.

[@step_id	=]	step_id

Is	the	identification	number	for	the	job	step	to	be	modified.	This	number
cannot	be	changed.	step_id	is	int,	with	no	default.

[@step_name	=]	'step_name'

Is	a	new	name	for	the	step.	step_name	is	sysname,	with	a	default	of	NULL.

[@subsystem	=]	'subsystem'

Is	the	subsystem	used	by	SQL	Server	Agent	to	execute	command.	subsystem
is	nvarchar(40),	with	a	default	of	NULL.

[@command	=]	'command'

Is	the	command(s)	to	be	executed	through	subsystem.	command	is
nvarchar(3200),	with	a	default	of	NULL.

[@additional_parameters	=]	'parameters'

Reserved.

[@cmdexec_success_code	=]	success_code

Is	the	value	returned	by	a	CmdExec	subsystem	command	to	indicate	that
command	executed	successfully.	success_code	is	int,	with	a	default	of
NULL.

[@on_success_action	=]	success_action

Is	the	action	to	perform	if	the	step	succeeds.	success_action	is	tinyint,	with	a
default	of	NULL,	and	can	be	one	of	these	values.

Value Description	(action)
1 Quit	with	success
2 Quit	with	failure
3 Go	to	next	step
4 Go	to	step	success_step_id

[@on_success_step_id	=]	success_step_id

Is	the	identification	number	of	the	step	in	this	job	to	execute	if	step	succeeds
and	success_action	is	4.	success_step_id	is	int,	with	a	default	of	NULL.

[@on_fail_action	=]	fail_action

Is	the	action	to	perform	if	the	step	fails.	fail_action	is	tinyint,	with	a	default
of	NULL	and	can	have	one	of	these	values.

Value Description	(action)
1 Quit	with	success.
2 Quit	with	failure.
3 Go	to	next	step.
4 Go	to	step	fail_step_id.

[@on_fail_step_id	=]	fail_step_id

Is	the	identification	number	of	the	step	in	this	job	to	execute	if	the	step	fails
and	fail_action	is	4.	fail_step_id	is	int,	with	a	default	of	NULL.

[@server	=]	'server'

Reserved.	server	is	nvarchar(30),	with	a	default	of	NULL.

[@database_name	=]	'database'

Is	the	name	of	the	database	in	which	to	execute	a	TSQL	step.	database	is
sysname,	with	a	default	of	NULL.

[@database_user_name	=]	'user'

Is	the	name	of	the	user	account	to	use	when	executing	a	TSQL	step.	user	is
sysname,	with	a	default	of	NULL.

[@retry_attempts	=]	retry_attempts

Is	the	number	of	retry	attempts	to	use	if	this	step	fails.	retry_attempts	is	int,
with	a	default	of	NULL.

[@retry_interval	=]	retry_interval

Is	the	amount	of	time	in	minutes	between	retry	attempts.	retry_interval	is	int,
with	a	default	of	NULL.

[@os_run_priority	=]	run_priority

Reserved.

[@output_file_name	=]	'file_name'

Is	the	name	of	the	file	in	which	the	output	of	this	step	is	saved.	file_name	is
nvarchar(200),	with	a	default	of	NULL.	This	parameter	is	only	valid	with
commands	running	in	TSQL	or	CmdExec	subsystems.

[@flags	=]	flag

Is	an	option	that	controls	behavior.	flags	is	int,	and	can	be	one	of	these
values.

Value Description
2 Append	to	output	file.
4 Overwrite	output	file.
0	(default) No	options	set.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_update_jobstep	must	be	run	from	the	msdb	database.

Updating	a	job	step	increments	the	job	version	number.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	changes	the	name	of	step	4	of	the	Archive	Tables	job	to	Sales
Detail.

USE	msdb

EXEC	sp_update_jobstep	@job_name	=	'Archive	Tables',	@step_id	=	4,
			@step_name	=	'Sales	Detail'

See	Also

Modifying	and	Viewing	Jobs

sp_delete_jobstep

sp_help_jobstep

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_update_log_shipping_monitor_info
Updates	the	monitoring	information	about	a	log	shipping	pair.

Syntax
sp_update_log_shipping_monitor_info					[@primary_server_name	=]
'primary_server_name',	
				[@primary_database_name	=]	'primary_database_name',	
				[@secondary_server_name	=]	'secondary_server_name',	
				[@secondary_database_name	=]	'secondary_database_name'	
				[,[@backup_threshold	=]	backup_threshold]	
				[,[@backup_threshold_alert	=]	backup_threshold_alert]	
				[,[@backup_threshold_alert_enabled	=]	backup_threshold_alert_enabled]	
				[,[@backup_outage_start_time	=]	backup_outage_start_time]	
				[,[@backup_outage_end_time	=]	backup_outage_end_time]
				[,[@backup_outage_weekday_mask	=]	backup_outage_weekday_mask]	
				[,[@copy_enabled	=]	copy_enabled]	
				[,[@load_enabled	=]	load_enabled]	
				[,[@out_of_sync_threshold	=]	out_of_sync_threshold]	
				[,[@out_of_sync_threshold_alert	=]	out_of_sync_threshold_alert]
				[,[@out_of_sync_threshold_alert_enabled	=]
out_of_sync_threshold_alert_enabled]
				[,[@out_of_sync_outage_start_time	=]out_of_sync_outage_start_time]
				[,[@out_of_sync_outage_end_time	=]	out_of_sync_outage_end_time]
				[,[@out_of_sync_outage_weekday_mask	=]
out_of_sync_outage_weekday_mask]

Arguments
[@primary_server_name	=]	'primary_server_name'

Is	the	name	of	the	primary	server.	primary_server_name	is	sysname,	with	no
default.

[@primary_database_name	=]	'primary_database_name'

Is	the	name	of	the	database	on	the	primary	server.	primary_database_name

is	sysname,	with	no	default.

[@secondary_server_name	=]	'secondary_server_name'

Is	the	name	of	the	secondary	server.	secondary_server_name	is	sysname,
with	no	default.

[@secondary_database_name	=]	'secondary_database_name'

Is	the	name	of	the	database	on	the	secondary	server.
secondary_database_name	is	sysname,	with	no	default.

[@backup_threshold	=]	backup_threshold

Is	the	length	of	time	in	minutes	after	the	last	backup	before	a	threshold	alert
error	is	raised.	backup_threshold	is	int,	with	a	default	of	NULL.

[@backup_threshold_alert	=]	backup_threshold_alert

Is	the	error	raised	when	the	backup	threshold	has	been	exceeded.
backup_threshold_alert	is	int,	with	a	default	of	NULL.

[@backup_threshold_alert_enabled	=]	backup_threshold_alert_enabled

Specifies	whether	an	alert	will	be	raised	when	backup_threshold	has	been
exceeded.	The	one	(1)	indicates	an	alert	will	be	raised.
backup_threshold_alert_enabled	is	bit,	with	a	default	of	NULL.

[@backup_outage_start_time	=]	backup_outage_start_time

Is	the	time	in	HHMMSS	that	a	planned	outage	begins.	During	a	planned
outage,	alerts	will	not	be	raised	if	the	backup	threshold	is	exceeded.
backup_outage_start_time	is	int,	with	a	default	of	NULL.

[@backup_outage_end_time	=]	backup_outage_end_time

Is	the	time	in	HHMMSS	that	a	planned	outage	ends.
backup_outage_end_time	is	int,	with	a	default	of	NULL.

[@backup_outage_weekday_mask	=]	backup_outage_weekday_mask

Is	the	day	of	the	week	that	a	planned	outage	occurs.
backup_outage_weekday_mask	is	int,	with	a	default	of	NULL.	It	can	be	one
or	more	of	the	following	values.

Value Day
1 Sunday
2 Monday
4 Tuesday
8 Wednesday
16 Thursday
32 Friday
64 Saturday

[@copy_enabled	=]	copy_enabled

Specifies	whether	the	copy	for	the	database	is	enabled	on	the	secondary
server.	The	one	(1)	value	means	that	copy	is	enabled.	copy_enabled	is	bit,
with	a	default	of	NULL.

[@load_enabled	=]	load_enabled

Specifies	whether	the	load	for	the	database	is	enabled	on	the	secondary
server.	load_enabled	is	bit,	with	a	default	of	NULL.

[@out_of_sync_threshold	=]	out_of_sync_threshold

The	length	of	time	in	minutes	after	the	last	load	before	an	error	is	raised.
out_of_sync_threshold	is	int,	with	a	default	of	NULL.

[@out_of_sync_threshold_alert	=]	out_of_sync_threshold_alert

Is	the	error	raised	when	the	out-of-sync	threshold	has	been	exceeded.
out_of_sync_threshold_alert	is	int,	with	a	default	of	NULL.

[@out_of_sync_threshold_alert_enabled	=]
out_of_sync_threshold_alert_enabled

Specifies	whether	an	alert	will	be	raised	when	the	out-of-sync	threshold	has
been	exceeded.	The	one	(1)	value	means	an	alert	will	be	raised.
out_of_sync_threshold_alert_enabled	is	bit,	with	a	default	of	NULL.

[@out_of_sync_outage_start_time	=]	out_of_sync_outage_start_time

Is	the	time	in	HHMMSS	that	a	planned	outage	begins.	During	a	planned
outage,	alerts	will	not	be	raised	if	the	out-of-sync	threshold	is	exceeded.

out_of_sync_outage_start_time	is	int,	with	a	default	of	NULL.

[@out_of_sync_outage_end_time	=]	out_of_sync_outage_end_time

Is	the	time	in	HHMMSS	that	a	planned	outage	ends.
out_of_sync_outage_end_time	is	int,	with	a	default	of	NULL.

[@out_of_sync_outage_weekday_mask	=]
out_of_sync_outage_weekday_mask

Is	the	day	of	the	week	that	a	planned	outage	occurs.
out_of_sync_outage_weekday_mask	is	int,	with	a	default	of	NULL.	It	can	be
one	or	more	of	the	following	values.

Value Day
1 Sunday
2 Monday
4 Tuesday
8 Wednesday
16 Thursday
32 Friday
64 Saturday

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
This	stored	procedure	updates	both	the	primary	server	in
log_shipping_primaries	table	and	the	secondary	server	in
log_shipping_secondaries	table.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute	the
sp_update_log_shipping_monitor_info.

Transact-SQL	Reference

sp_update_log_shipping_plan
Updates	information	about	an	existing	log	shipping	plan.

Syntax
sp_update_log_shipping_plan	[@plan_id	=]	plan_id,	
				[@plan_name	=]	'plan_name',	
				[@description	=]	'description',	
				[@source_server	=]	'source_server',	
				[@source_dir	=]	'source_dir',	
				[@destination_dir	=]	'destination_dir',	
				[@copy_job_id	=]	copy_job_id,	
				[@load_job_id	=]	load_job_id,	
				[@history_retention_period	=]	history_retention_period,	
				[@file_retention_period	=]	file_retention_period

Arguments
[@plan_id	=]	plan_id

Is	the	identification	number	of	the	plan	to	which	the	database	belongs.
plan_id	is	uniqueidentifier,	with	a	default	of	NULL.

[@plan_name	=]	'plan_name'

Is	the	name	of	the	plan	to	which	the	database	belongs.	plan_name	is
sysname,	with	a	default	of	null.

Note		Either	plan_id	or	plan_name	must	be	specified,	not	both.

[@description	=]	'description'

Is	the	description	of	the	plan.	description	is	nvarchar(500),	with	a	default	of
NULL.

[@source_server	=]	'source_server'

Is	the	name	of	the	source	server.	source_server	is	sysname,	with	a	default	of
NULL.

[@source_dir	=]	'source_dir'

Is	the	full	path	to	the	directory	from	where	the	transaction	log	files	will	be
copied.	source_dir	is	nvarchar(500),	with	a	default	of	NULL.

[@destination_dir	=]	'destination_dir'

Is	the	directory	to	which	the	transaction	log	files	will	be	copied.
destination_dir	is	nvarchar(500),	with	a	default	of	NULL.

[@copy_job_id	=]	copy_job_id

Is	the	job	ID	of	the	copy	job.	copy_job_id	is	uniqueidentifier,	with	a	default
of	NULL.

[@load_job_id	=]	load_job_id

Is	the	job	ID	of	the	load	job.	load_job_id	is	uniqueidentifier,	with	a	default
of	NULL.

[@history_retention_period	=]	history_retention_period

Is	the	length	of	time	in	minutes	in	which	the	history	will	be	retained.
history_retention_period	is	int,	with	a	default	of	NULL.

[@file_retention_period	=]	file_retention_period

Is	the	length	of	time	the	transaction	log	files	will	be	retained	after	they	are
copied.	file_retention_period	is	int,	with	a	default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_update_log_shipping_plan.

Examples
This	example	updates	the	plan	"Pubs	database	backup"	with	a	new	destination
directory	and	file	retention	period.

EXEC			msdb.dbo.sp_update_log_shipping_plan
			@plan_name	=	N'Pubs	database	backup',
			@destination_dir	=	N'e:\log	shipping',
			@history_retention_period	=	4320

Transact-SQL	Reference

sp_update_log_shipping_plan_database
Updates	an	existing	database	that	is	part	of	a	log	shipping	plan.

Syntax
sp_update_log_shipping_plan_database					[@destination_database	=]
'destination_database',
				[@load_delay	=]	load_delay,
				[@load_all	=]	load_all,
				[@file_retention_period	=]	file_retention_period,
				[@copy_enabled	=]	copy_enabled,
				[@load_enabled	=]	load_enabled
				[@recover_db	=]	recover_db
				[@terminate_users	=]	terminate_users

Arguments
[@destination_database	=]	'destination_database'

Is	the	name	of	the	secondary	database.	destination_database	is	sysname	and
must	be	supplied.

[@load_delay	=]	load_delay

Is	the	length	of	time,	in	minutes,	before	the	transaction	log	is	loaded.
load_delay	is	int,	with	a	default	of	zero	(0).

[@load_all	=]	load_all

Specifies	whether	all	newly	copied	transaction	logs	are	loaded	when	the	job
is	run.	A	value	of	zero	(0)	means	that	only	one	transaction	log	will	be	loaded.
load_all	is	bit,	with	a	default	of	one	(1).

[@file_retention_period	=]	file_retention_period

Is	the	length	of	time	in	minutes	in	which	the	transaction	log	files	are	stored
on	the	secondary	server	before	deletion.	file_retention_period	is	int,	with	a
default	of	2,880	minutes	(two	days).

[@copy_enabled	=]	copy_enabled

Specifies	whether	a	copy	should	be	performed.	The	value	of	one	(1)	means
that	a	copy	should	be	performed;	zero	(0)	means	no	copy	is	made.
copy_enabled	is	bit.

[@load_enabled	=]	load_enabled

Specifies	whether	a	load	should	be	performed.	The	value	of	one	(1)	means
that	a	load	should	be	performed;	zero	(0)	means	no	load	is	made.
load_enabled	is	bit.

[@recover_db	=]	recover_db

Specifies	the	state	of	the	database.	The	value	of	one	(1)	means	restore	logs
with	STANDBY;	zero	(0)	means	restore	logs	with	NORECOVERY.
recover_db	is	bit.

[@terminate_users	=]	terminate_users

Specifies	whether	the	secondary	server	should	terminate	users.	The	value	of
one	(1)	means	that	users	should	be	terminated;	zero	(0)	means	users	should
not	be	terminated.	terminate_users	is	bit.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
This	stored	procedure	should	be	executed	on	the	secondary	server,	which	is	the
destination	database.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_update_log_shipping_plan_database.

Examples
This	example	removes	the	load	delay	from	the	database	"pubs_standby."

EXEC			msdb.dbo.sp_update_log_shipping_plan_database
			@destination_database	=	N'pubs_standby',
			@load_delay	=	0

Transact-SQL	Reference

sp_update_notification
Updates	the	notification	method	of	an	alert	notification.

Syntax
sp_update_notification	[@alert_name	=]	'alert',	
				[@operator_name	=]	'operator',	
				[@notification_method	=]	notification

Arguments
[@alert_name	=]	'alert'

Is	the	name	of	the	alert	associated	with	this	notification.	alert	is	sysname,
with	no	default.

[@operator_name	=]	'operator'

Is	the	operator	who	will	be	notified	when	the	alert	occurs.	operator	is
sysname,	with	no	default.

[@notification_method	=]	notification

Is	the	method	by	which	the	operator	is	notified.	notification	is	tinyint,	with
no	default,	and	can	be	one	or	more	of	these	values.

Value Description
1 E-mail
2 Pager
4 net	send
7 All	methods

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_update_notification	must	be	run	from	the	msdb	database.

You	can	update	a	notification	for	an	operator	who	does	not	have	the	necessary
address	information	using	the	specified	notification_method.	If	a	failure	occurs
when	sending	an	e-mail	message	or	pager	notification,	the	failure	is	reported	in
the	SQL	Server	Agent	error	log.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_update_notification.

Examples
This	example	modifies	the	notification	method	for	notifications	sent	to	stevenb
for	the	alert	Test	Alert.

USE	msdb
EXEC	sp_update_notification	'Test	Alert',	'stevenb',	7

See	Also

sp_add_notification

sp_delete_notification

sp_help_notification

System	Stored	Procedures

Transact-SQL	Reference

sp_update_operator
Updates	information	about	an	operator	(notification	recipient)	for	use	with	alerts
and	jobs.

Syntax
sp_update_operator	[@name	=]	'name'	
				[,	[@new_name	=]	'new_name']	
				[,	[@enabled	=]	enabled]	
				[,	[@email_address	=]	'email_address']
				[,	[@pager_address	=]	'pager_number']	
				[,	[@weekday_pager_start_time	=]	weekday_pager_start_time]
				[,	[@weekday_pager_end_time	=]	weekday_pager_end_time]	
				[,	[@saturday_pager_start_time	=]	saturday_pager_start_time]
				[,	[@saturday_pager_end_time	=]	saturday_pager_end_time]	
				[,	[@sunday_pager_start_time	=]	sunday_pager_start_time]
				[,	[@sunday_pager_end_time	=]	sunday_pager_end_time]	
				[,	[@pager_days	=]	pager_days]	
				[,	[@netsend_address	=]	'netsend_address']	
				[,	[@category_name	=]	'category']

Arguments
[@name	=]	'name'

Is	the	name	of	the	operator	to	modify.	name	is	sysname,	with	no	default.

[@new_name	=]	'new_name'

Is	the	new	name	for	the	operator.	This	name	must	be	unique.	new_name	is
sysname,	with	a	default	of	NULL.

[@enabled	=]	enabled

Is	a	number	indicating	the	operator's	current	status	(1	if	currently	enabled,	0
if	not).	enabled	is	tinyint,	with	a	default	of	NULL.	If	not	enabled,	an
operator	will	not	receive	alert	notifications.

[@email_address	=]	'email_address'

Is	the	e-mail	address	of	the	operator.	This	string	is	passed	directly	to	the	e-
mail	system.	email_address	is	nvarchar(100),	with	a	default	of	NULL.

[@pager_address	=]	'pager_number'

Is	the	pager	address	of	the	operator.	This	string	is	passed	directly	to	the	e-
mail	system.	pager_number	is	nvarchar(100),	with	a	default	of	NULL.

[@weekday_pager_start_time	=]	weekday_pager_start_time

Specifies	the	time	after	which	a	pager	notification	can	be	sent	to	this
operator,	from	Monday	through	Friday.	weekday_pager_start_time	is	int,
with	a	default	of	NULL,	and	must	be	entered	in	the	form	HHMMSS	for	use
with	a	24-hour	clock.

[@weekday_pager_end_time	=]	weekday_pager_end_time

Specifies	the	time	after	which	a	pager	notification	cannot	be	sent	to	the
specified	operator,	from	Monday	through	Friday.	weekday_pager_end_time
is	int,	with	a	default	of	NULL,	and	must	be	entered	in	the	form	HHMMSS
for	use	with	a	24-hour	clock.

[@saturday_pager_start_time	=]	saturday_pager_start_time

Specifies	the	time	after	which	a	pager	notification	can	be	sent	to	the
specified	operator	on	Saturdays.	saturday_pager_start_time	is	int,	with	a
default	of	NULL,	and	must	be	entered	in	the	form	HHMMSS	for	use	with	a
24-hour	clock.

[@saturday_pager_end_time	=]	saturday_pager_end_time

Specifies	the	time	after	which	a	pager	notification	cannot	be	sent	to	the
specified	operator	on	Saturdays.	saturday_pager_end_time	is	int,	with	a
default	of	NULL,	and	must	be	entered	in	the	form	HHMMSS	for	use	with	a
24-hour	clock.

[@sunday_pager_start_time	=]	sunday_pager_start_time

Specifies	the	time	after	which	a	pager	notification	can	be	sent	to	the
specified	operator	on	Sundays.	sunday_pager_start_time	is	int,	with	a
default	of	NULL,	and	must	be	entered	in	the	form	HHMMSS	for	use	with	a
24-hour	clock.

[@sunday_pager_end_time	=]	sunday_pager_end_time

Specifies	the	time	after	which	a	pager	notification	cannot	be	sent	to	the
specified	operator	on	Sundays.	sunday_pager_end_time	is	int,	with	a	default
of	NULL,	and	must	be	entered	in	the	form	HHMMSS	for	use	with	a	24-hour
clock.

[@pager_days	=]	pager_days

Specifies	the	days	that	the	operator	is	available	to	receive	pages	(subject	to
the	specified	start/end	times).	pager_days	is	tinyint,	with	a	default	of	NULL,
and	must	be	a	value	from	0	through	127.	pager_days	is	calculated	by	adding
the	individual	values	for	the	required	days.	For	example,	from	Monday
through	Friday	is	2+4+8+16+32	=	62.

Value Description
1 Sunday
2 Monday
4 Tuesday
8 Wednesday
16 Thursday
32 Friday
64 Saturday

[@netsend_address	=]	'netsend_address'

Is	the	network	address	of	the	operator	to	whom	the	network	message	is	sent.
netsend_address	is	nvarchar(100),	with	a	default	of	NULL.

[@category_name	=]	'category'

Is	the	name	of	the	category	for	this	alert.	category	is	sysname,	with	a	default
of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_update_operator	must	be	run	from	the	msdb	database.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_update_operator.

Examples
This	example	updates	the	operator	status	to	enabled,	and	sets	the	days	(from
Monday	through	Friday,	from	8	A.M.	through	5	P.M.)	when	he	can	be	paged.

USE	msdb
EXEC	sp_update_operator	@name	=	'Steven	Buchanan',	@enabled	=	1,
			@email_address	=	'stevenb',
			@pager_address	=	'5673218@mypagerco.com',	
			@weekday_pager_start_time	=	080000,	
			@weekday_pager_end_time	=	170000,	
			@pager_days	=	62

See	Also

sp_add_operator

sp_delete_operator

sp_help_operator

System	Stored	Procedures

Transact-SQL	Reference

sp_updatestats
Runs	UPDATE	STATISTICS	against	all	user-defined	tables	in	the	current
database.

Syntax
sp_updatestats	[[@resample	=]	'resample']

Return	Code	Values
0	(success)	or	1	(failure)

Arguments
[@resample=]	'resample'

Specifies	that	sp_updatestats	will	use	the	RESAMPLE	option	of	the
UPDATE	STATISTICS	command.	New	statistics	will	inherit	the	sampling
ratio	from	the	old	statistics.	If	'resample'	is	not	specified,	sp_updatestats
updates	statistics	using	the	default	sampling.	This	parameter	is	varchar(8)
with	a	default	value	of	'NO'.

Remarks
sp_updatestats	displays	messages	indicating	its	progress.	When	the	update	is
completed,	it	reports	that	statistics	have	been	updated	for	all	tables.

Permissions
Only	the	DBO	and	members	of	the	sysadmin	fixed	server	role	can	execute	this
procedure.

Examples
This	example	updates	the	statistics	for	tables	in	the	pubs	database.

USE	pubs

EXEC	sp_updatestats	

See	Also

CREATE	INDEX

CREATE	STATISTICS

DBCC	SHOW_STATISTICS

DROP	STATISTICS

sp_autostats

sp_createstats

sp_dboption

System	Stored	Procedures

UPDATE	STATISTICS

Transact-SQL	Reference

sp_update_targetservergroup
Changes	the	name	of	the	specified	target	server	group.

Syntax
sp_update_targetservergroup	[@name	=]	'current_name'	
				[,	[@new_name	=]	'new_name']

Arguments
[@name	=]	'current_name'

Is	the	name	of	the	target	server	group.	current_name	is	sysname,	with	no
default.

[@new_name	=]	'new_name'

Is	the	new	name	for	the	target	server	group.	new_name	is	sysname,	with	no
default.

Return	Code	Values
0	(success)	or	1	(failure)

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_update_targetservergroup.

Remarks
sp_update_targetservergroup	must	be	run	from	the	msdb	database.

Examples
This	example	updates	the	target	server	group	of	Weekly	Bakups	to	Weekly
Backups.

USE	msdb
EXEC	sp_update_targetservergroup	'Weekly	Bakups',	'Weekly	Backups'

See	Also

sp_add_targetservergroup

sp_delete_targetservergroup

sp_help_targetservergroup

System	Stored	Procedures

Transact-SQL	Reference

sp_updatetask
sp_updatetask	is	provided	for	backward	compatibility	only.	For	more
information	about	the	replacement	procedures	for	Microsoft®	SQL	Server™
version	7.0,	see	SQL	Server	Backward	Compatibility	Details.

Updates	information	about	a	task.

IMPORTANT		For	more	information	about	syntax	used	in	earlier	versions	of	SQL
Server,	see	the	Microsoft	SQL	Server	Transact-SQL	Reference	for	version	6.x.

Remarks
For	task	management,	use	SQL	Server	Enterprise	Manager.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

sp_addtask

sp_droptask

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_validname
Checks	for	valid	Microsoft®	SQL	Server™	identifier	names.	All	nonbinary	and
nonzero	data,	including	Unicode	data	that	can	be	stored	by	using	the	nchar,
nvarchar,	or	ntext	data	types,	are	accepted	as	valid	characters	for	identifier
names.

Syntax
sp_validname	[@name	=]	'name'	
				[,	[@raise_error	=]	raise_error]

Arguments
[@name	=]	'name'

Is	the	name	of	the	identifier	for	which	to	check	validity.	name	is	sysname,
with	no	default.	name	cannot	be	NULL,	cannot	be	an	empty	string,	and
cannot	contain	a	binary-zero	character.

[@raise_error	=]	raise_error

Specifies	whether	to	raise	an	error.	raise_error	is	bit,	with	a	default	of	1,
which	means	that	errors	should	appear.	0	causes	no	error	messages	to	appear.

Return	Code	Values
0	(success)	or	1	(failure)

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

Data	Types

NCHAR

nchar	and	nvarchar

ntext,	text,	and	image

System	Stored	Procedures

Using	Identifiers

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_validatelogins
Reports	information	about	orphaned	Microsoft®	Windows	NT®	users	and
groups	that	no	longer	exist	in	the	Windows	NT	environment	but	still	have	entries
in	the	Microsoft	SQL	Server™	system	tables.

Syntax
sp_validatelogins

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
SID varbinary(85) Windows	NT	security	identifier	of

the	Windows	NT	user	or	group.
NT	Login sysname Name	of	the	Windows	NT	user	or

group.

Remarks
The	entries	in	the	system	tables	for	the	orphaned	Windows	NT	users	and	groups
can	only	be	removed	by	using	sp_revokelogin.	If	the	Windows	NT	user	or
group	has	a	user	account	in	a	database,	the	user	account	can	be	removed	using
sp_revokedbaccess.	The	user	account	in	the	database	must	be	removed	before
the	login	can	be	revoked	access	to	connect	to	SQL	Server.

If	the	Windows	NT	user	or	group	owns	objects	in	a	database,	these	objects	must
be	removed,	or	their	ownership	must	be	given	to	another	user	using
sp_changeobjectowner.

Permissions
Only	members	of	the	sysadmin	or	securityadmin	fixed	server	roles	can	execute

sp_validatelogins.

Examples
This	example	displays	the	Windows	NT	users	and	groups	that	no	longer	exist	but
are	still	granted	access	to	connect	to	SQL	Server.

EXEC	sp_validatelogins
GO

SID																																																								NT	Login
--	-----------
0x0105000000000005150000007961275C521FE65395177650FC030000	dom\andrew
0x0105000000000005150000007961275C521FE65395177650FA030000	dom\joe
0x0105000000000005150000007961275C521FE65395177650FB030000	dom\margaret
0x0105000000000005150000007961275C521FE65395177650F3030000	dom\mike

See	Also

sp_changeobjectowner

sp_revokedbaccess

sp_revokelogin

System	Stored	Procedures

Transact-SQL	Reference

sp_who
Provides	information	about	current	Microsoft®	SQL	Server™	users	and
processes.	The	information	returned	can	be	filtered	to	return	only	those
processes	that	are	not	idle.

Syntax
sp_who	[[@login_name	=]	'login']

Arguments
[@login_name	=]	'login'

Is	a	user	login	name	on	SQL	Server.	login	is	sysname,	with	a	default	of
NULL.	If	no	name	is	specified,	the	procedure	reports	all	active	users	of	SQL
Server.	login	can	also	be	a	specific	process	identification	number	(SPID).	To
return	information	on	active	processes,	specify	ACTIVE.	ACTIVE	excludes
from	the	report	processes	that	are	waiting	for	the	next	command	from	the
user.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
sp_who	returns	a	result	set	with	the	following	information.

Column Data	type Description
spid smallint The	system	process	ID.
ecid smallint The	execution	context	ID	of	a	given	thread

associated	with	a	specific	SPID.

ECID	=	{0,	1,	2,	3,	...n},	where	0	always
represents	the	main	or	parent	thread,	and	{1,
2,	3,	...n}	represent	the	sub-threads.

status nchar(30) The	process	status.
loginame nchar(128) The	login	name	associated	with	the	particular

process.
hostname nchar(128) The	host	or	computer	name	for	each	process.
blk char(5) The	system	process	ID	for	the	blocking

process,	if	one	exists.	Otherwise,	this	column
is	zero.

When	a	transaction	associated	with	a	given
spid	is	blocked	by	an	orphan	distributed
transaction,	this	column	will	return	a	'-2'	for
the	blocking	orphan	transaction.

dbname nchar(128) The	database	used	by	the	process.
cmd nchar(16) The	SQL	Server	command	(Transact-SQL

statement,	SQL	Server	internal	engine
process,	and	so	on)	executing	for	the	process.

The	sp_who	result	set	will	be	sorted	in	ascending	order	according	to	the	spid
values.	In	case	of	parallel	processing,	sub-threads	are	created	for	the	specific
spid.	The	main	thread	is	indicated	as	spid	=xxx	and	ecid	=0.	The	other	sub-
threads	have	the	same	spid	=	xxx,	but	with	ecid	>	0.	Thus,	multiple	rows	for	that
spid	number	will	be	returned	--	grouped	together	within	that	spid's	placement	in
the	overall	list.	The	sub-threads	will	be	listed	in	random	order,	except	for	the
parent	thread	(ecid	=	0),	which	will	be	listed	first	for	that	spid.

Remarks
A	blocking	process	(which	may	have	an	exclusive	lock)	is	one	that	is	holding
resources	that	another	process	needs.

In	SQL	Server	2000,	all	orphaned	DTC	transactions	are	assigned	the	SPID	value
of	'-2'.	Orphaned	DTC	transactions	are	distributed	transactions	that	are	not
associated	with	any	SPID.	Thus,	when	an	orphaned	transaction	is	blocking
another	process,	this	orphaned	distributed	transaction	can	be	identified	by	its
distinctive	'-2'	SPID	value.	For	more	information,	see	KILL.

SQL	Server	2000	reserves	SPID	values	from	1	through	50	for	internal	use,	while
SPID	values	51	or	higher	represent	user	sessions.

Permissions
Execute	permissions	default	to	the	public	role.

Examples

A.	List	all	current	processes
This	example	uses	sp_who	without	parameters	to	report	all	current	users.

USE	master
EXEC	sp_who

Here	is	the	result	set:

spid	ecid	status					loginame							hostname		blk	dbname	cmd																		
----	----	------					------------			--------		---	------	-----																
1				0				background	sa																							0			pubs			LAZY	WRITER										
2				0				sleeping			sa																							0			pubs			LOG	WRITER											
3				0				background	sa																							0			master	SIGNAL	HANDLER							
4				0				background	sa																							0			pubs			RA	MANAGER											
5				0				background	sa																							0			master	TASK	MANAGER									
6				0				sleeping			sa																							0			pubs			CHECKPOINT	SLEEP					
7				0				background	sa																							0			master	TASK	MANAGER									
8				0				background	sa																							0			master	TASK	MANAGER									
9				0				background	sa																							0			master	TASK	MANAGER									
10			0				background	sa																							0			master	TASK	MANAGER									
11			0				background	sa																							0			master	TASK	MANAGER									
51			0				runnable			DOMAIN\loginX		serverX			0			Nwind		BACKUP	DATABASE						
51			2				runnable			DOMAIN\loginX		serverX			0			Nwind		BACKUP	DATABASE						
51			1				runnable			DOMAIN\loginX		serverX			0			Nwind		BACKUP	DATABASE						
52			0				sleeping			DOMAIN\loginX		serverX			0			master	AWAITING	COMMAND					
53			0				runnable			DOMAIN\loginX		serverX			0			pubs			SELECT															
(16	row(s)	affected)

B.	List	a	specific	user's	process

This	example	shows	how	to	view	information	about	a	single	current	user	by
login	name.

USE	master
EXEC	sp_who	'janetl'

C.	Display	all	active	processes

USE	master
EXEC	sp_who	'active'

D.	Display	a	specific	process	with	process	ID

USE	master
EXEC	sp_who	'10'	--specifies	the	process_id

See	Also

KILL

sp_lock

sysprocesses

System	Stored	Procedures

Transact-SQL	Reference

sp_xml_preparedocument
Reads	the	Extensible	Markup	Language	(XML)	text	provided	as	input,	then
parses	the	text	using	the	MSXML	parser	(Msxml2.dll),	and	provides	the	parsed
document	in	a	state	ready	for	consumption.	This	parsed	document	is	a	tree
representation	of	the	various	nodes	(elements,	attributes,	text,	comments,	and	so
on)	in	the	XML	document.

sp_xml_preparedocument	returns	a	handle	that	can	be	used	to	access	the	newly
created	internal	representation	of	the	XML	document.	This	handle	is	valid	for
the	duration	of	the	connection	to	Microsoft®	SQL	Server™	2000,	until	the
connection	is	reset,	or	until	the	handle	is	invalidated	by	executing
sp_xml_removedocument.

Note		A	parsed	document	is	stored	in	the	internal	cache	of	SQL	Server	2000.	The
MSXML	parser	uses	one-eighth	the	total	memory	available	for	SQL	Server.	To
avoid	running	out	of	memory,	run	sp_xml_removedocument	to	free	up	the
memory.

Syntax
sp_xml_preparedocument	hdoc	OUTPUT
[,	xmltext]
[,	xpath_namespaces]

Arguments
hdoc

Is	the	handle	to	the	newly	created	document.	hdoc	is	an	integer.

[xmltext]

Is	the	original	XML	document.	The	MSXML	parser	parses	this	XML
document.		xmltext	is	a	text	(char,	nchar,	varchar,	nvarchar,	text,	or	ntext)
parameter.	The	default	value	is	NULL,	in	which	case	an	internal
representation	of	an	empty	XML	document	is	created.

[xpath_namespaces]

Specifies	the	namespace	declarations	that	are	used	in	row	and	column	XPath
expressions	in	OPENXML.	The	default	value	is	<root
xmlns:mp="urn:schemas-microsoft-com:xml-metaprop">.
xpath_namespaces	provides	the	namespace	URIs	for	the	prefixes	used	in	the
XPath	expressions	in	OPENXML	by	means	of	a	well-formed	XML
document.	xpath_namespaces	declares	the	prefix	that	must	be	used	to	refer
to	the	namespace	urn:schemas-microsoft-com:xml-metaprop,	which
provides	meta	data	about	the	parsed	XML	elements.	Although	you	can
redefine	the	namespace	prefix	for	the	metaproperty	namespace	using	this
technique,	this	namespace	is	not	lost.	The	prefix	mp	is	still	valid	for
urn:schemas-microsoft-com:xml-metaprop	even	if	xpath_namespaces
contains	no	such	declaration.	xpath_namespaces	is	a	text	(char,	nchar,
varchar,	nvarchar,	text,	or	ntext)	parameter.

Return	Code	Values
0	(success)	or	>0	(failure)

Permissions
Execute	permissions	default	to	the	public	role.

Examples

A.	Prepare	an	internal	representation	for	a	well-formed	XML
document
This	example	returns	a	handle	to	the	newly	created	internal	representation	of	the
XML	document	that	is	provided	as	input.	In	the	call	to
sp_xml_preparedocument,	a	default	namespace	prefix	mapping	is	used.

DECLARE	@hdoc	int
DECLARE	@doc	varchar(1000)
SET	@doc	='
<ROOT>
<Customer	CustomerID="VINET"	ContactName="Paul	Henriot">
			<Order	CustomerID="VINET"	EmployeeID="5"	OrderDate="1996-07-04T00:00:00">

						<OrderDetail	OrderID="10248"	ProductID="11"	Quantity="12"/>
						<OrderDetail	OrderID="10248"	ProductID="42"	Quantity="10"/>
			</Order>
</Customer>
<Customer	CustomerID="LILAS"	ContactName="Carlos	Gonzlez">
			<Order	CustomerID="LILAS"	EmployeeID="3"	OrderDate="1996-08-16T00:00:00">
						<OrderDetail	OrderID="10283"	ProductID="72"	Quantity="3"/>
			</Order>
</Customer>
</ROOT>'
--Create	an	internal	representation	of	the	XML	document.
EXEC	sp_xml_preparedocument	@hdoc	OUTPUT,	@doc
--	Remove	the	internal	representation.
exec	sp_xml_removedocument	@hdoc

B.	Prepare	an	internal	representation	for	a	well-formed	XML
document	with	a	DTD
This	example	returns	a	handle	to	the	newly	created	internal	representation	of	the
XML	document	that	is	provided	as	input.	The	stored	procedure	validates	the
document	loaded	against	the	DTD	included	in	the	document.	In	the	call	to
sp_xml_preparedocument,	a	default	namespace	prefix	mapping	is	used.

DECLARE	@hdoc	int
DECLARE	@doc	varchar(2000)
SET	@doc	=	'
<?xml	version="1.0"	encoding="UTF-8"	?>	
<!DOCTYPE	root	
[<!ELEMENT	root	(Customers)*>
<!ELEMENT	Customers	EMPTY>
<!ATTLIST	Customers	CustomerID	CDATA	#IMPLIED	ContactName	CDATA	#IMPLIED>]>
<root>
<Customers	CustomerID="ALFKI"	ContactName="Maria	Anders"/>
</root>'

EXEC	sp_xml_preparedocument	@hdoc	OUTPUT,	@doc

C.	Specify	a	namespace	URI
This	example	returns	a	handle	to	the	newly	created	internal	representation	of	the
XML	document	that	is	provided	as	input.	The	call	to	sp_xml_preparedocument
preserves	the	mp	prefix	to	the	metaproperty	namespace	mapping	and	adds	the
xyz	mapping	prefix	to	the	namespace	urn:MyNamespace.

DECLARE	@hdoc	int
DECLARE	@doc	varchar(1000)
SET	@doc	='
<ROOT>
<Customer	CustomerID="VINET"	ContactName="Paul	Henriot">
			<Order	CustomerID="VINET"	EmployeeID="5"	
											OrderDate="1996-07-04T00:00:00">
						<OrderDetail	OrderID="10248"	ProductID="11"	Quantity="12"/>
						<OrderDetail	OrderID="10248"	ProductID="42"	Quantity="10"/>
			</Order>
</Customer>
<Customer	CustomerID="LILAS"	ContactName="Carlos	Gonzlez">
			<Order	CustomerID="LILAS"	EmployeeID="3"	
											OrderDate="1996-08-16T00:00:00">
						<OrderDetail	OrderID="10283"	ProductID="72"	Quantity="3"/>
			</Order>
</Customer>
</ROOT>'
--Create	an	internal	representation	of	the	XML	document.
EXEC	sp_xml_preparedocument	@hdoc	OUTPUT,	@doc,	'<root	xmlns:xyz="run:MyNamespace"/>'

See	Also

sp_xml_removedocument

Transact-SQL	Reference

sp_xml_removedocument
Removes	the	internal	representation	of	the	XML	document	specified	by	the
document	handle	and	invalidates	the	document	handle.

Note		A	parsed	document	is	stored	in	the	internal	cache	of	Microsoft®	SQL
Server™	2000.	The	MSXML	parser	uses	one-eighth	the	total	memory	available
for	SQL	Server.	To	avoid	running	out	of	memory,	run
sp_xml_removedocument	to	free	up	the	memory.

Syntax
sp_xml_removedocument	hdoc

Arguments
hdoc

Is	the	handle	to	the	newly	created	document.	An	invalid	handle	returns	an
error.	hdoc	is	an	integer.

Return	Code	Values
0	(success)	or	>0	(failure)

Permissions
Execute	permissions	default	to	the	public	role.

Examples

A.	Remove	an	XML	document
This	example	removes	the	internal	representation	of	an	XML	document.	The
handle	to	the	document	is	provided	as	input.

EXEC	sp_xml_removedocument	@hdoc

See	Also

sp_xml_preparedocument

Transact-SQL	Reference

Replication	Stored	Procedures
Replication	system	stored	procedures	are	documented	and	available	as	a	method
for	implementing	replication	in	special	circumstances	or	for	use	in	batch	files
and	scripts.	However,	in	most	cases,	you	are	better	served	by	using	the
programming	interfaces	provided	by	SQL-DMO	and	the	replication	ActiveX®
controls	for	programming	replication	rather	than	writing	direct	calls	to	the
system	stored	procedures.

An	advantage	to	using	scripts	based	on	system	stored	procedures	is	that	you	can
implement	replication,	create	publications	and	subscriptions	on	a	server,
generate	the	script	automatically	through	SQL	Server	Enterprise	Manager,	and
then	use	that	script	at	other	servers	to	implement	replication	components,	often
with	only	minor	modifications.	Executing	a	script	can	be	faster	and	more
efficient	than	performing	the	same	steps	repeatedly	using	SQL	Server	Enterprise
Manager.

For	more	information,	see	Scripting	Replication.

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_add_agent_parameter
Adds	a	new	parameter	and	its	value	to	an	agent	profile.	This	stored	procedure	is
executed	at	the	Distributor	where	the	agent	is	running,	on	any	database.

Syntax
sp_add_agent_parameter	[@profile_id	=]	profile_id	
				,	[@parameter_name	=]	'parameter_name'	
				,	[@parameter_value	=]	'parameter_value'

Arguments
[@profile_id	=]	profile_id

Is	the	ID	of	the	configuration	from	the	MSagent_profiles	table	in	the	msdb
database.	profile_id	is	int,	with	no	default.

[@parameter_name	=]	'parameter_name'

Is	the	name	of	the	parameter.	parameter_name	is	sysname,	with	no	default.
For	system	profiles,	the	parameters	that	can	be	changed	depend	on	the	type
of	agent.	To	find	out	what	agent	type	this	profile_id	represents,	find	the
profile_id	in	the	Msagent_profiles	table,	and	note	the	agent_type	field	value.
For	a	Snapshot	Agent,	which	has	a	value	of	1	in	the	agent_type	field,	the
following	properties	can	be	changed:

bcpbatchsize

historyverboselevel

logintimeout

maxbcpthreads

querytimeout

For	a	Log	Reader	Agent,	which	has	a	value	of	2	in	the	agent_type
field,	the	following	properties	can	be	changed:

historyverboselevel

logintimeout

pollinginterval

querytimeout

readbatchsize

readbatchthreshold

For	a	Distribution	Agent,	which	has	a	value	of	3	in	the	agent_type
field,	the	following	properties	can	be	changed:

bcpbatchsize

commitbatchsize

commitbatchthreshold

historyverboselevel

logintimeout

maxbcpthreads

maxdeliveredtransactions

pollinginterval

querytimeout

transactionsperhistory

skiperrors

For	a	Merge	Agent,	which	has	a	value	of	4	in	the	agent_type	field,
the	following	properties	can	be	changed:

pollinginterval

validateinterval

logintimeout

querytimeout

maxuploadchanges

maxdownloadchanges

uploadgenerationsperbatch

downloadgenerationsperbatch

uploadreadchangesperbatch

downloadreadchangesperbatch

uploadwritechangesperbatch

downloadwritechangesperbatch

validate

fastrowcount

historyverboselevel

changesperhistory

bcpbatchsize

numdeadlockretries

For	custom	profiles,	the	parameters	that	can	be	changed	depend	on
the	parameters	defined.	To	see	what	parameters	have	been	defined,
run	sp_help_agent_profile	to	see	the	profile_name	associated	with
the	profile_id.	With	the	appropriate	profile_id,	next	run
sp_help_agent_parameters	using	that	profile_id	to	see	the
parameters	associated	with	the	profile.

[@parameter_value	=]	'parameter_value'

Is	the	value	to	be	assigned	to	the	parameter.	parameter_value	is
nvarchar(255),	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_add_agent_parameter	is	used	in	snapshot	replication,	transactional

replication,	and	merge	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_add_agent_parameter.

See	Also

Distribution	Agent	Profile

Log	Reader	Agent	Profile

Merge	Agent	Profile

Snapshot	Agent	Profile

sp_add_agent_profile

sp_change_agent_profile

sp_drop_agent_parameter

sp_help_agent_parameter

System	Stored	Procedures

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Transact-SQL	Reference

sp_add_agent_profile
Creates	a	new	profile	for	a	replication	agent.	This	stored	procedure	is	executed	at
the	Distributor	on	any	database.

Syntax
sp_add_agent_profile	[[@profile_id	=]	profile_id	OUTPUT]
				{	,	[@profile_name	=]	'profile_name'	[,	[@agent_type	=]	'agent_type']	}
				[,	[@profile_type	=]	profile_type]
				,	[@description	=]	'description'
				[,	[@default	=]	default]

Arguments
[@profile_id	=]	profile_id

Is	the	ID	associated	with	the	newly	inserted	profile.	profile_id	is	int	and	is	an
optional	OUTPUT	parameter.	If	specified,	the	value	is	set	to	the	new	profile
ID.

[@profile_name	=]	'profile_name'

Is	the	name	of	the	profile.	profile_name	is	sysname,	with	no	default.

[@agent_type	=]	'agent_type'

Is	the	type	of	replication	agent.	agent_type	is	int,	with	no	default,	and	can	be
one	of	these	values.

Value Description
1 Snapshot	Agent
2 Log	Reader	Agent
3 Distribution	Agent
4 Merge	Agent
9 Queue	Reader	Agent

[@profile_type	=]	profile_type

Is	the	type	of	profile.	profile_type	is	int,	with	a	default	of	1.	0	indicates	a
system	profile.	1	indicates	a	custom	profile.	Only	custom	profiles	can	be
created	using	this	stored	procedure.	Only	SQL	Server	creates	system	profiles.

[@description	=]	'description'

Is	a	description	of	the	profile.	description	is	nvarchar(3000),	with	no
default.

[@default	=]	default

Indicates	whether	the	profile	is	the	default	for	agent_type.	default	is	bit,	with
a	default	of	0.	0	indicates	that	the	profile	is	not	a	default.	1	indicates	that	the
profile	being	added	will	become	the	new	default	profile	for	the	agent
specified	by	the	@agent_type	parameter.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_add_agent_profile	is	used	in	snapshot	replication,	transactional	replication,
and	merge	replication.

A	row	is	added	for	the	configuration	in	the	MSagent_profiles	table.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_add_agent_profile.

See	Also

sp_add_agent_parameter

sp_change_agent_parameter

sp_change_agent_profile

sp_drop_agent_parameter

sp_drop_agent_profile

sp_help_agent_parameter

sp_help_agent_profile

System	Stored	Procedures

Transact-SQL	Reference

sp_addarticle
Creates	an	article	and	adds	it	to	a	publication.	This	stored	procedure	is	executed
at	the	Publisher	on	the	publication	database.

Syntax
sp_addarticle	[@publication	=]	'publication'	
				,	[@article	=]	'article'	
				,	[@source_table	=]	'source_table'	
				[,	[@destination_table	=]	'destination_table']	
				[,	[@vertical_partition	=]	'vertical_partition']	
				[,	[@type	=]	'type']	
				[,	[@filter	=]	'filter']	
				[,	[@sync_object	=]	'sync_object']	
				[,	[@ins_cmd	=]	'ins_cmd']	
				[,	[@del_cmd	=]	'del_cmd']	
				[,	[@upd_cmd	=]	'upd_cmd']	
				[,	[@creation_script	=]	'creation_script']	
				[,	[@description	=]	'description']	
				[,	[@pre_creation_cmd	=]	'pre_creation_cmd']	
				[,	[@filter_clause	=]	'filter_clause']	
				[,	[@schema_option	=]	schema_option]	
				[,	[@destination_owner	=]	'destination_owner']	
				[,	[@status	=]	status]	
				[,	[@source_owner	=]	'source_owner']	
				[,	[@sync_object_owner	=]	'sync_object_owner']	
				[,	[@filter_owner	=]	'filter_owner']	
				[,	[@source_object	=]	'source_object']	
				[,	[@artid	=]	article_ID	OUTPUT]	
				[,	[@auto_identity_range	=]	'auto_identity_range']	
				[,	[@pub_identity_range	=]	pub_identity_range]	
				[,	[@identity_range	=]	identity_range]	
				[,	[@threshold	=]	threshold]	
				[,	[@force_invalidate_snapshot	=]	force_invalidate_snapshot]

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication	that	contains	the	article.	The	name	must	be
unique	in	the	database.	publication	is	sysname,	with	no	default.

[@article	=]	'article'

Is	the	name	of	the	article.	The	name	must	be	unique	within	the	publication.
article	is	sysname,	with	no	default.

[@source_table	=]	'source_table'

Is	the	name	of	the	underlying	table	represented	by	the	article	or	stored
procedure.	source_table	is	nvarchar(386),	which	must	be	on	the	local	SQL
Server	computer,	conform	to	the	rules	for	identifiers,	and	be	a	table	(not	a
view	or	another	database	object).	source_table	is	supported	for	backward
compatibility	only;	use	source_object	instead.

[@destination_table	=]	'destination_table'

Is	the	name	of	the	destination	(subscription)	table,	if	different	from
source_table	or	the	stored	procedure.	destination_table	is	sysname,	with	a
default	of	NULL,	which	means	that	source_table	equals	destination_table.

[@vertical_partition	=]	'vertical_partition'

Enables	and	disables	column	filtering	on	a	table	article.	vertical_partition	is
nchar(5),	with	a	default	of	FALSE.	false	indicates	there	is	no	vertical
filtering	and	publishes	all	columns.	true	clears	all	columns	except	the
declared	primary	key.	Columns	are	added	using	sp_articlecolumn.

[@type	=]	'type'

Is	the	type	of	article.	type	is	sysname,	and	can	be	one	of	these	values.

Value Description
logbased Log-based	article.
logbased	manualfilter Log-based	article	with	manual	filter.
logbased	manualview Log-based	article	with	manual	view.
logbased	manualboth Log-based	article	with	manual	filter	and	manual

view.
proc	exec Replicates	the	execution	of	the	stored	procedure

to	all	Subscribers	of	the	article.
serializable	proc	exec Replicates	the	execution	of	the	stored	procedure

only	if	it	is	executed	within	the	context	of	a
serializable	transaction.

NULL	(default)

[@filter	=]	'filter'

Is	the	stored	procedure	(created	with	FOR	REPLICATION)	used	to	filter	the
table	horizontally.	filter	is	nvarchar(386),	with	a	default	of	NULL.
sp_articleview	and	sp_articlefilter	must	be	executed	manually	to	create	the
view	and	filter	stored	procedure.	If	not	NULL,	the	filter	procedure	is	not
created	(assumes	the	stored	procedure	is	created	manually).

[@sync_object	=]	'sync_object'

Is	the	name	of	the	table	or	view	used	for	producing	the	data	file	used	to
represent	the	snapshot	for	this	article.	sync_object	is	nvarchar(386),	with	a
default	of	NULL.	If	NULL,	sp_articleview	is	called	to	automatically	create
the	view	used	to	generate	the	output	file.	This	occurs	after	adding	any
columns	with	sp_articlecolumn.	If	not	NULL,	a	view	is	not	created
(assumes	the	view	is	manually	created).

[@ins_cmd	=]	'ins_cmd'

Is	the	replication	command	type	used	when	replicating	inserts	for	this	article.
ins_cmd	is	nvarchar(255),	and	can	be	one	of	these	values.

Value Description
NONE No	action	is	taken.
CALL	sp_MSins_article

-or-

CALL
custom_stored_procedure_name

Calls	a	stored	procedure	to	be	executed	at	the	Subscriber.	To	use	this	method	of	replication,
use	@schema_option	to	specify	automatic	creation	of	the	stored	procedure,	or	create	the
specified	stored	procedure	in	the	destination	database	of	each	Subscriber	of	the	article.
custom_stored_procedure	is	the	name	of	a	user-created	stored	procedure.	sp_Msins_
contains	the	name	of	the	article	in	place	of	the	
for	the	Categories	table,	the	parameter	would	be	CALL	sp_Msins_Categories.

(default)

SQL	or	NULL Replicates	an	INSERT	statement.	The	INSERT	statement	is	provided	values	for	all	columns
published	in	the	article.	This	command	is	replicated	on	inserts:
INSERT	INTO	<table	name>	VALUES	(c1value,	c2value,	c3value,	...,	cnvalue)

[@del_cmd	=]	'del_cmd'

Is	the	replication	command	type	used	when	replicating	deletes	for	this
article.	del_cmd	is	nvarchar(255),	and	can	be	one	of	these	values.

Value Description
NONE No	action	is	taken.
CALL	sp_MSdel_article	-or-

CALL
custom_stored_procedure_name

(default)

Calls	a	stored	procedure	to	be	executed	at	the	Subscriber.	To	use	this	method	of	replication,	use	
specify	automatic	creation	of	the	stored	procedure,	or	create	the	specified	stored	procedure	in	the	destination	database	of
each	Subscriber	of	the	article.	custom_stored_procedure
contains	the	name	of	the	article	in	place	of	the	
parameter	would	be	CALL	sp_Msins_Categories.

XCALL	sp_MSdel_article Calls	a	stored	procedure	taking	XCALL	style	parameters.	To	use	this	method	of	replication,	use	
specify	automatic	creation	of	the	stored	procedure,	or	create	the	specified	stored	procedure	in	the	destination	database	of
each	Subscriber	of	the	article.

SQL	or	NULL Replicates	a	DELETE	statement.	The	DELETE	statement	is	provided	all	primary	key	column	values.	This	command	is
replicated	on	deletes:
DELETE	FROM	<table	name>	WHERE	pkc1	=	pkc1value	AND	pkc2	=	pkc2value	AND	pkcn	=	pkcnvalue

Note		The	CALL,	MCALL,	and	XCALL	syntax	vary	the	amount	of	data
propagated	to	the	subscriber.	The	CALL	syntax	passes	all	values	for	all	inserted
and	deleted	columns.	The	MCALL	syntax	passes	values	only	for	affected
columns.	The	XCALL	syntax	passes	values	for	all	columns,	whether	changed	or
not,	plus	the	"before"	value	of	the	column.	For	more	information,	see	Using
Custom	Stored	Procedures	in	Articles.

[@upd_cmd	=]	'upd_cmd'

JavaScript:hhobj_1.Click()

Is	the	replication	command	type	used	when	replicating	updates	for	this
article.	upd_cmd	is	nvarchar(255),	and	can	be	one	of	these	values.

Value Description
NONE No	action	is	taken.
CALL
sp_MSupd_article

Calls	a	stored	procedure	to	be	executed	at	the	Subscriber.	To	use	this	method	of	replication,	use	
the	specified	stored	procedure	in	the	destination	database	of	each	Subscriber	of	the	article.

MCALL
sp_MSupd_article
(default)

Calls	a	stored	procedure	taking	MCALL	style	parameters.	To	use	this	method	of	replication,	use	
the	specified	stored	procedure	in	the	destination	database	of	each	Subscriber	of	the	article.	
sp_Msins_article	contains	the	name	of	the	article	in	place	of	the	
sp_Msins_Categories.

XCALL
sp_MSupd_article

Calls	a	stored	procedure	taking	XCALL	style	parameters.	To	use	this	method	of	replication,	use	
the	specified	stored	procedure	in	the	destination	database	of	each	Subscriber	of	the	article.

SQL	or	NULL Replicates	an	UPDATE	statement.	The	UPDATE	statement	is	provided	on	all	column	values	and	the	primary	key	column	values.	This	command	is	replicated	on	updates:
UPDATE	<table	name>	SET	c1	=	c1value,	SET	c2	=	c2value,	SET	cn	=	cnvalue	WHERE	pkc1	=	pkc1value	AND	pkc2	=	pkc2value	AND	pkcn	=	pkcnvalue

Note		The	CALL,	MCALL,	and	XCALL	syntax	vary	the	amount	of	data
propagated	to	the	subscriber.	The	CALL	syntax	passes	all	values	for	all	inserted
and	deleted	columns.	The	MCALL	syntax	passes	values	only	for	affected
columns.	The	XCALL	syntax	passes	values	for	all	columns,	whether	changed	or
not,	including	the	previous	value	of	the	column.	For	more	information,	see
Using	Custom	Stored	Procedures	in	Articles.

[@creation_script	=]	'creation_script'

Is	the	path	and	name	of	an	article	schema	script	used	to	create	target	table.
creation_script	is	nvarchar(127),	with	a	default	of	NULL.

[@description	=]	'description'

Is	a	descriptive	entry	for	the	article.	description	is	nvarchar(255),	with	a
default	of	NULL.

[@pre_creation_cmd	=]	'pre_creation_cmd'

Specifies	what	the	system	should	do	if	it	detects	an	existing	object	of	the
same	name	at	the	subscriber	when	applying	the	snapshot	for	this	article.

JavaScript:hhobj_2.Click()

pre_creation_cmd	is	nvarchar(10),	and	can	be	one	of	these	values.

Value Description
none Does	not	use	a	command.
delete Deletes	the	destination	table.
drop	(default) Drops	the	destination	table.
truncate Truncates	the	destination	table.	Is	not	valid	for

ODBC	or	OLE	DB	Subscribers.

[@filter_clause	=]	'filter_clause'

Is	a	restriction	(WHERE)	clause	that	defines	a	horizontal	filter.	When
entering	the	restriction	clause,	omit	the	keyword	WHERE.	filter_clause	is
ntext,	with	a	default	of	NULL.	For	more	information,	see	Generate	Filters
Automatically.

[@schema_option	=]	schema_option

Is	a	bitmask	of	the	schema	generation	option	for	the	given	article.	It	specifies
the	automatic	creation	of	the	stored	procedure	in	the	destination	database	for
all	CALL/MCALL/XCALL.	schema_option	is	binary(8),	and	can	be	a
combination	of	these	values.	If	this	value	is	NULL,	the	system	will	auto-
generate	a	valid	schema	option	for	the	article.	The	table	given	in	the
Remarks	shows	the	value	that	will	be	chosen	based	upon	the	combination	of
the	article	type	and	the	replication	type.

Value Description
0x00 Disables	scripting	by	the	Snapshot	Agent	and	uses

creation_script.
0x01 Generates	the	object	creation	(CREATE	TABLE,

CREATE	PROCEDURE,	and	so	on).	This	value	is
the	default	for	stored	procedure	articles.

0x02 Generates	custom	stored	procedures	for	the
article,	if	defined.

0x10 Generates	a	corresponding	clustered	index.
0x20 Converts	user-defined	data	types	to	base	data

types.

JavaScript:hhobj_3.Click()

0x40 Generates	corresponding	nonclustered	index(es).
0x80 Includes	declared	referential	integrity	on	the

primary	keys.
0x100 Replicates	user	triggers	on	a	table	article,	if

defined.
0x200 Replicates	foreign	key	constraints.	If	the

referenced	table	is	not	part	of	a	publication,	all
foreign	key	constraints	on	a	published	table	will
not	be	replicated.

0x400 Replicates	check	constraints.
0x800 Replicates	defaults.
0x1000 Replicates	column-level	collation.
0x2000 Replicates	extended	properties	associated	with	the

published	article	source	object.
0x4000 Replicates	unique	keys	if	defined	on	a	table

article.
0x8000 Replicates	primary	key	and	unique	keys	on	a	table

article	as	constraints	using	ALTER	TABLE
statements.

NULL 	

Not	all	@schema_option	values	are	valid	for	every	type	of	replication	and
article	type.	The	Valid	Schema	Option	table	given	in	the	Remarks	shows	the
valid	schema	options	that	can	be	chosen	based	upon	the	combination	of	the
article	type	and	the	replication	type.

[@destination_owner	=]	'destination_owner'

Is	the	name	of	the	owner	of	the	destination	object.	destination_owner	is
sysname,	with	a	default	of	NULL.	If	ODBC	Subscribers	can	subscribe	to	the
publication,	destination_owner	must	be	NULL.

[@status	=]	status

Is	the	bitmask	of	the	article	options.	status	is	tinyint,	and	can	be	one	of	these
values.

Value Description
0 No	additional	properties.
8 Includes	the	column	name	in	INSERT	statements.
16	(default) Uses	parameterized	statements.
24 Includes	the	column	name	in	INSERT	statements

and	uses	parameterized	statements.

[@source_owner	=]	'source_owner'

Is	the	owner	of	the	source	object.	source_owner	is	sysname,	with	a	default
of	NULL.

[@sync_object_owner	=]	'sync_object_owner'

Is	the	owner	of	the	synchronization	object.	sync_object_owner	is	sysname,
with	a	default	of	NULL.

[@filter_owner	=]	'filter_owner'

Is	the	owner	of	the	filter.	filter_owner	is	sysname,	with	a	default	of	NULL.

[@source_object	=]	'source_object'

Is	the	table	or	stored	procedure	to	be	published.	source_object	is	sysname,
with	a	default	of	NULL.	If	source_table	is	NULL,	source_object	cannot	be
NULL.	source_object	should	be	used	instead	of	source_table.	source_table
is	provided	for	backward	compatibility	with	SQL	Server	6.x	Publishers.

[@artid	=]	article_ID	OUTPUT

Is	the	article	ID	of	the	new	article.	article_ID	is	int	with	a	default	of	NULL,
and	it	is	an	OUTPUT	parameter.

[@auto_identity_range	=]	'auto_identity_range'

Enables	and	disables	automatic	identity	range	handling	on	a	publication	at
the	time	it	is	created.	auto_identity_range	is	nvarchar(5),	with	a	default	of
FALSE.	true	enables	automatic	identity	range	handling;	false	disables	it.
Note	that	identity	range	management	only	pertains	to	snapshot	or
transactional	publications	that	allow	immediate	updating	or	queued	updating.
For	more	information,	see	Managing	Identity	Values.

JavaScript:hhobj_4.Click()

[@pub_identity_range	=]	pub_identity_range

Controls	the	range	size	at	the	Publisher	if	the	article	has	auto_identity_range
set	to	true.	pub_identity_range	is	bigint,	with	a	default	of	NULL.

[@identity_range	=]	identity_range

Controls	the	range	size	at	the	Subscriber	if	the	article	has
auto_identity_range	set	to	true.	identity_range	is	bigint,	with	a	default	of
NULL.	Used	when	auto_identity_range	is	set	to	true.

[@threshold	=]	threshold

Is	the	percentage	value	that	controls	when	the	Distribution	Agent	assigns	a
new	identity	range.	When	the	percentage	of	values	specified	in	threshold	is
used,	the	Distribution	Agent	creates	a	new	identity	range.	threshold	is	bigint,
with	a	default	of	NULL.	Used	when	auto_identity_range	is	set	to	true.

[@force_invalidate_snapshot	=]	force_invalidate_snapshot

Acknowledges	that	the	action	taken	by	this	stored	procedure	may	invalidate
an	existing	snapshot.	force_invalidate_snapshot	is	a	bit,	with	a	default	of	0.
0	specifies	that	adding	an	article	will	not	cause	the	snapshot	to	be	invalid.	If
the	stored	procedure	detects	that	the	change	does	require	a	new	snapshot,	an
error	will	occur	and	no	changes	will	be	made.	1	specifies	that	adding	an
article	may	cause	the	snapshot	to	be	invalid,	and	if	there	are	existing
subscriptions	that	would	require	a	new	snapshot,	gives	permission	for	the
existing	snapshot	to	be	marked	as	obsolete	and	a	new	snapshot	to	be
generated.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_addarticle	is	used	in	snapshot	replication	or	transactional	replication.

If	vertical_partition	is	set	to	true,	sp_addarticle	defers	the	creation	of	the	view
until	sp_articleview	is	called	(after	the	last	sp_articlecolumn	is	added).

If	the	publication	allows	immediate-updating	subscriptions	and	the	published

table	does	not	have	a	uniqueidentifier	column,	sp_addarticle	adds	a
uniqueidentifier	column	to	the	table	automatically.

The	table	describes	the	default	@schema_option	value	that	will	be	chosen	for
the	stored	procedure	if	a	NULL	value	is	passed	in	by	the	user.	The	default	value
is	based	upon	the	replication	type	shown	across	the	top,	and	the	article	type
shown	down	the	first	column.		Empty	cells	are	article	and	replication	type	pairs
that	are	not	valid	combinations,	and	therefore,	have	no	default.

Article	Type Replication	Type
	 Transactional Snapshot
logbased 0xF3 0x71
logbased	manualfilter 0xF3 0x71
logbased	manualview 0xF3 0x71
indexed	view	logbased 0xF3 0x71
indexed	view	logbased
manualfilter

0xF3 0x71

indexed	view	logbased
manualview

0xF3 0x71

indexed	view	logbase
manualboth

0xF3 0x71

proc	exec 0x01 0x01
serialized	proc	exec 0x01 0x01
proc	schema	only 0x01 0x01
view	schema	only 0x01 0x01
func	schema	only 0x01 0x01
indexed	view	schema
only

0x01 0x01

table 	 	

Note		If	a	publication	is	enabled	for	queued	updating,	the	@schema_option
values	of	0x8000	and	0x0080	will	be	added	to	the	default	value	shown	in	the
table.

Valid	Schema	Option	Table

Article	Type Replication	Type
	 Transactional Snapshot
logbased All	options All	options	but	0x02
logbased	manualfilter All	options All	options	but	0x02
logbased	manualview All	options All	options	but	0x02
indexed	view	logbased All	options All	options	but	0x02
indexed	view	logbased
manualfilter

All	options All	options	but	0x02

indexed	view	logbased
manualview

All	options All	options	but	0x02

indexed	view	logbase
manualboth

All	options All	options	but	0x02

proc	exec 0x01	and	0x2000 0x01	and	0x2000
serialized	proc	exec 0x01	and	0x2000 0x01	and	0x2000
proc	schema	only 0x01	and	0x2000 0x01	and	0x2000
view	schema	only 0x01,	0x0100,	and

0x2000
0x01,	0x0100,	and
0x2000

func	schema	only 0x01	and	0x2000 0x01	and	0x2000
indexed	view	schema
only

0x01,	0x10,	0x040,
0x0100,	and	0x2000

0x01,	0x10,	0x040,
0x0100,	and	0x2000

table 	 	

Note		For	queued	updating	publications,	the	@schema_option	values	of	0x8000
and	0x80	must	be	enabled.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_addarticle.

See	Also

Enhancing	Transactional	Replication	Performance

sp_addpublication

JavaScript:hhobj_5.Click()

sp_articlecolumn

sp_articlefilter

sp_articleview

sp_changearticle

sp_changepublication

sp_droparticle

sp_droppublication

sp_enumfullsubscribers

sp_helparticle

sp_helparticlecolumns

sp_helppublication

System	Stored	Procedures

Transact-SQL	Reference

sp_adddistpublisher
Configures	a	Publisher	to	use	a	specified	distribution	database.	This	stored
procedure	is	executed	at	the	Distributor	on	any	database.	Note	that	the	stored
procedures	sp_adddistributor	and	sp_adddistributiondb	must	have	been	run
prior	to	using	this	stored	procedure.

Syntax
sp_adddistpublisher	[@publisher	=]	'publisher'	
				[,	@distribution_db	=]	'distribution_db'	
				[,	[@security_mode	=]	security_mode]	
				[,	[@login	=]	'login']	
				[,	[@password	=]	'password']	
				{	,	[@working_directory	=]	'working_directory'	}	
				[,	[@trusted	=]	'trusted']	
				[,	[@encrypted_password	=]	encrypted_password]	
				[,	[@thirdparty_flag	=]	thirdparty_flag]

Arguments
[@publisher	=]	'publisher'

Is	the	Publisher	name.	publisher	is	sysname,	with	no	default.

[@distribution_db	=]	'distribution_db'

Is	the	name	of	the	distribution	database.	distributor_db	is	sysname,	with	no
default.	This	parameter	is	used	by	replication	agents	to	connect	to	the
Publisher.

[@security_mode	=]	security_mode

Is	the	implemented	security	mode.	This	parameter	is	used	by	replication
agents	to	connect	to	the	Publisher.	security_mode	is	int,	and	can	be	one	of
these	values.

Value Description
0 Replication	agents	at	the	Distributor	use	SQL	Server

Authentication	to	connect	to	the	Publisher.
1 Replication	agents	at	the	Distributor	use	Windows

Authentication	to	connect	to	the	Publisher.
NULL
(default)

System	will	change	the	value	to	0	if	the	server	(Distributor)	is
running	on	the	Windows®	95	or	Windows	98	operating
system.	System	will	change	the	value	to	1	if	the	server
(Distributor)	is	on	a	Windows	NT®	4.0	or	Windows	2000
operating	system.

[@login	=]	'login'

Is	the	login.	This	parameter	is	required	if	security_mode	is	0.	login	is
sysname,	with	a	default	of	sa.	This	parameter	is	used	by	replication	agents	to
connect	to	the	Publisher.

[@password	=]	'password']

Is	the	password.	password	is	sysname,	with	a	default	of	NULL.	This
parameter	is	used	by	replication	agents	to	connect	to	the	Publisher.

[@working_directory	=]	'working_directory'

Is	the	name	of	the	working	directory	used	to	store	data	and	schema	files	for
the	publication.	working_directory	is	nvarchar(255).	The	name	should	be
specified	in	UNC	format.

[@trusted	=]	'trusted'

Is	when	the	remote	Publisher	uses	the	same	password	as	the	local
Distributor.	trusted	is	nvarchar(5),	and	can	be	one	of	these	values.

Value Description
True One	trusted	login	mapping	is	added:	sa	to

distributor_admin.	Because	the	mapping	is	trusted,	no
password	is	needed	at	the	remote	Publisher	to	connect	to	the
Distributor.

False One	nontrusted	mapping	is	added:	distributor_admin	to
distributor_admin.	A	password	is	needed	at	the	remote
Publisher	to	make	a	connection.

NULL
(default)

If	the	distribution	Publisher	is	local,	the	system	will	change
the	value	to	false	(nontrusted).	Any	password	set	for	the
Distributor	is	also	set	for	the	local	distribution	Publisher
(linked	server	connection	back	to	local	Distributor).	If	the
distribution	Publisher	is	remote,	the	system	will	change	the
value	to	true	(trusted)	and	no	password	is	needed	at	the
remote	Publisher.	If	the	user	changes	the	distributor_admin
password	directly,	instead	of	using
sp_changedistributor_password,	the	local	link	is	broken.

[@encrypted_password	=]	encrypted_password

Is	when	the	password	is	encrypted.	encrypted_password	is	bit,	with	a	default
of	0.	If	1,	password	is	stored	in	encrypted	form.

[@thirdparty_flag	=]	thirdparty_flag

Is	when	the	Publisher	is	Microsoft®	SQL	Server™.	thirdparty_flag	is	bit,
and	can	be	one	of	these	values.

Value Description
0	(default) Microsoft	SQL	Server	database.
1 Database	other	than	SQL	Server.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_adddistpublisher	is	used	by	snapshot	replication,	transactional	replication,
and	merge	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_adddistpublisher.

See	Also

sp_changedistpublisher

sp_dropdistpublisher

sp_helpdistpublisher

System	Stored	Procedures

Transact-SQL	Reference

sp_adddistributiondb
Creates	a	new	distribution	database	and	installs	the	Distributor	schema.	The
distribution	database	stores	procedures,	schema,	and	meta	data	used	in
replication.	This	stored	procedure	is	executed	at	the	Distributor	on	the	master
database	in	order	to	create	the	distribution	database,	and	install	the	necessary
tables	and	stored	procedures	required	to	enable	the	replication	distribution.

Syntax
sp_adddistributiondb	[@database	=]	'database'	
				[,	[@data_folder	=]	'data_folder']	
				[,	[@data_file	=]	'data_file']	
				[,	[@data_file_size	=]	data_file_size]	
				[,	[@log_folder	=]	'log_folder']	
				[,	[@log_file	=]	'log_file']	
				[,	[@log_file_size	=]	log_file_size]	
				[,	[@min_distretention	=]	min_distretention]	
				[,	[@max_distretention	=]	max_distretention]	
				[,	[@history_retention	=]	history_retention]	
				[,	[@security_mode	=]	security_mode]	
				[,	[@login	=]	'login']	
				[,	[@password	=]	'password']	
				[,	[@createmode	=]	createmode]

Arguments
[@database	=]	'database'

Is	the	name	of	the	distribution	database	to	be	created.	database	is	sysname,
with	no	default.

[@data_folder	=]	'data_folder'

Is	the	name	of	the	directory	used	to	store	the	distribution	database	data	file.
data_folder	is	nvarchar(255),	with	a	default	of	NULL.	If	NULL,	the	data
directory	for	that	instance	of	Microsoft®	SQL	Server™	is	used,	for	example,
'C:\Program	Files\Microsoft	SQL	Server\Mssql\Data'.

[@data_file	=]	'data_file'

Is	the	name	of	the	database	file.	data_file	is	nvarchar(255),	with	a	default	of
database.	If	NULL,	the	stored	procedure	constructs	a	file	name	using	the
database	name.

[@data_file_size	=]	data_file_size

Is	the	initial	data	file	size	in	megabytes	(MB).	data_file_size	is	int,	with	a
default	of	2	MB.

[@log_folder	=]	'log_folder'

Is	the	name	of	the	directory	for	the	database	log	file.	log_folder	is
nvarchar(255),	with	a	default	of	NULL.	If	NULL,	the	data	directory	for	that
instance	of	SQL	Server	is	used	(for	example,	'C:\Program	Files\Microsoft
SQL	Server\Mssql\Data').

[@log_file	=]	'log_file'

Is	the	name	of	the	log	file.	log_file	is	nvarchar(255),	with	a	default	of
NULL.	If	NULL,	the	stored	procedure	constructs	a	file	name	using	the
database	name.

[@log_file_size	=]	log_file_size

Is	the	initial	log	file	size	in	megabytes	(MB).	log_file_size	is	int,	with	a
default	of	0	MB,	which	means	the	file	size	is	created	using	the	smallest	log
file	size	allowed	by	SQL	Server.

[@min_distretention	=]	min_distretention

Is	the	minimum	retention	period,	in	hours,	before	transactions	are	deleted
from	the	distribution	database.	min_distretention	is	int,	with	a	default	of	0
hours.

[@max_distretention	=]	max_distretention

Is	the	maximum	retention	period,	in	hours,	before	transactions	are	deleted.
max_distretention	is	int,	with	a	default	of	72	hours.	Subscriptions	that	have
not	received	replicated	commands	that	are	older	than	the	maximum
distribution	retention	period	are	marked	as	inactive	and	need	to	be
reinitialized.	RAISERROR	21011	is	issued	for	each	inactive	subscription.

[@history_retention	=]	history_retention

Is	the	number	of	hours	to	retain	history.	history_retention	is	int,	with	a
default	of	48	hours.

[@security_mode	=]	security_mode

Is	the	security	mode	to	use	when	creating	the	distribution	database	objects.
security_mode	is	int,	with	a	default	of	0.	0	specifies	SQL	Server
Authentication;	1	specifies	Windows	Authentication.

[@login	=]	'login'

Is	the	login	name	used	when	connecting	to	the	Distributor	to	create	the
distribution	database	objects	when	running	instdist.sql.	This	is	required	if
security_mode	is	set	to	0.	login	is	sysname,	with	a	default	of	sa.

[@password	=]	'password'

Is	the	password	used	when	connecting	to	the	Distributor	to	run	instdist.sql.
This	is	required	if	security_mode	is	set	to	0.	password	is	sysname,	with	a
default	of	NULL.

[@createmode	=]	createmode

createmode	is	int,	with	a	default	of	0,	and	can	be	one	of	these	values.

Value Description
0	(default) CREATE	DATABASE	by	attaching	the

distribution	database	using	a	copy	of	the
distribution	database	model	files	(distmdl.mdf)

1 CREATE	DATABASE	or	use	existing	database
and	then	apply	instdist.sql	file	to	create
replication	objects	in	the	distribution	database.

2 For	internal	use	only.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_adddistributiondb	is	used	in	all	types	of	replication.	However,	this	stored
procedure	only	runs	at	a	distributor.

Run	sp_adddistributor	prior	to	running	sp_adddistributiondb.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_adddistributiondb.

See	Also

sp_changedistributiondb

sp_dropdistributiondb

sp_helpdistributiondb

System	Stored	Procedures

Transact-SQL	Reference

sp_adddistributor
Creates	an	entry	in	the	sysservers	table	(if	there	is	not	one),	marks	the	server
entry	as	a	Distributor,	and	stores	property	information.	This	stored	procedure	is
executed	at	the	Distributor	on	the	master	database	to	register	and	mark	the	server
as	a	distributor.	In	the	case	of	a	remote	distributor,	it	is	also	executed	at	the
Publisher	from	the	master	database	to	register	the	remote	distributor.

Syntax
sp_adddistributor	[@distributor	=]	'distributor'	
				[,	[@heartbeat_interval	=]	heartbeat_interval]	
				[,	[@password	=]	'password']	
				[,	[@from_scripting	=]	from_scripting]

Arguments
[@distributor	=]	'distributor'

Is	the	distribution	server	name.	distributor	is	sysname,	with	no	default.	This
parameter	is	only	used	if	setting	up	a	remote	Distributor.	It	adds	entries	for
the	Distributor	properties	in	the	msdb..MSdistributor	table.

[@heartbeat_interval	=]	heartbeat_interval

Is	the	maximum	number	of	minutes	that	an	agent	can	go	without	logging	a
progress	message.	heartbeat_interval	is	int,	with	a	default	of	10	minutes.	A
SQL	Agent	Job	is	created	that	wakes	up	on	this	interval	to	check	the	status	of
the	replication	agents	that	are	running.

[@password	=]	'password']

Is	the	password	of	the	distributor_admin	login.	password	is	sysname,	with
a	default	of	NULL.	If	NULL	or	N,	password	is	reset	to	a	random	value.	The
password	must	be	configured	when	the	first	remote	distributor	that	is	not
trusted	is	added.	distributor_admin	login	and	password	are	stored	for
linked	server	entry	used	for	a	distributor	RPC	connection,	including	local
connections.	If	distributor	is	local,	the	password	for	distributor_admin	is
set	to	a	new	value.

[@from_scripting	=]	from_scripting

For	internal	use	only.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_adddistributor	is	used	in	snapshot	replication,	transactional	replication,	and
merge	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_adddistributor.

See	Also

sp_changedistributor_property

sp_dropdistributor

sp_helpdistributor

System	Stored	Procedures

Transact-SQL	Reference

sp_addmergealternatepublisher
Adds	the	ability	for	a	Subscriber	to	use	an	alternate	synchronization	partner.	The
publication	properties	must	specify	that	Subscribers	can	synchronize	with	other
Publishers.	This	stored	procedure	is	executed	at	the	Subscriber	on	the
subscription	database.

Syntax
sp_addmergealternatepublisher	[@publisher	=]	'publisher'	
				,	[@publisher_db	=]	'publisher_db'	
				,	[@publication	=]	'publication'	
				,	[@alternate_publisher	=]	'alternate_synchronization_partner'	
				,	[@alternate_publisher_db	=]	'alternate_publisher_db'	
				,	[@alternate_publication	=]	'alternate_synchronization_partner'	
				,	[@alternate_distributor	=]	'alternate_distributor'	
				[,	[@friendly_name	=]	'friendly_name']	
				[,	[@reserved=]	'reserved']

Arguments
[@publisher	=]	'publisher'

Is	the	name	of	the	Publisher.	publisher	is	sysname,	with	no	default.

[@publisher_db	=]	'publisher_db'

Is	the	name	of	the	publication	database.	publisher_db	is	sysname,	with	no
default.

[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	no	default.

[@alternate_publisher	=]	'alternate_synchronization_partner'

Is	the	name	of	the	alternate	Publisher.	alternate_synchronization_partner	is
sysname,	with	no	default.

[@alternate_publisher_db	=]	'alternate_publisher_db'

Is	the	name	of	the	publication	database	on	the	alternate	publisher.
alternate_publisher_db	is	sysname,	with	no	default.

[@alternate_publication	=]	'alternate_synchronization_partner'

Is	the	name	of	the	publication	on	the	alternate	synchronization	partner.
alternate_synchronization_partner	is	sysname,	with	no	default.

[@alternate_distributor	=]	'alternate_distributor'

Is	the	name	of	the	Distributor	for	the	alternate	synchronization	partner.
alternate_distributor	is	sysname,	with	no	default.

[@friendly_name	=]	'friendly_name'

Is	a	display	name	by	which	the	association	of	Publisher,	publication,	and
Distributor	that	makes	up	an	alternate	synchronization	partner	can	be
identified.	friendly_name	is	nvarchar(255),	with	a	default	of	NULL.

[@reserved	=]	'reserved'

For	internal	use	only.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_addmergealternatepublisher	is	used	in	merge	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_addmergealternatepublisher.

See	Also

Alternate	Synchronization	Partners

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_addmergearticle
Adds	an	article	to	an	existing	merge	publication.	This	stored	procedure	is
executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_addmergearticle	[@publication	=]	'publication'	
				,	[@article	=]	'article'	
				,	[@source_object	=]	'source_object'	
				[,	[@type	=]	'type']	
				[,	[@description	=]	'description']	
				[,	[@column_tracking	=]	'column_tracking']	
				[,	[@status	=]	'status']	
				[,	[@pre_creation_cmd	=]	'pre_creation_cmd']	
				[,	[@creation_script	=]	'creation_script']	
				[,	[@schema_option	=]	schema_option]	
				[,	[@subset_filterclause	=]	'subset_filterclause']	
				[,	[@article_resolver	=]	'article_resolver']	
				[,	[@resolver_info	=]	'resolver_info']	
				[,	[@source_owner	=]	'source_owner']	
				[,	[@destination_owner	=]	'destination_owner']	
				[,	[@vertical_partition=]	'vertical_partition']	
				[,	[@auto_identity_range	=]	'auto_identity_range']	
				[,	[@pub_identity_range	=]	pub_identity_range]	
				[,	[@identity_range	=]	identity_range]	
				[,	[@threshold	=]	threshold]	
				[,	[@verify_resolver_signature	=]	verify_resolver_signature]	
				[,	[@destination_object	=]	'destination_object']	
				[,	[@allow_interactive_resolver	=]	'allow_interactive_resolver']	
				[,	[@fast_multicol_updateproc	=]	'fast_multicol_updateproc']	
				[,	[@check_permissions	=]	check_permissions]	
				[,	[@force_invalidate_snapshot	=]	force_invalidate_snapshot]

Arguments

[@publication	=]	'publication'

Is	the	name	of	the	publication	that	contains	the	article.	publication	is
sysname,	with	no	default.

[@article	=]	'article'

Is	the	name	of	the	article.	article	is	sysname,	with	no	default.	article	must	be
on	the	local	SQL	Server	computer,	and	must	conform	to	the	rules	for
identifiers.

[@source_object	=]	'source_object'

Is	the	name	of	the	source	object	from	which	to	add	the	article.	source_object
is	sysname,	with	no	default.

[@type	=]	'type'

Is	the	type	of	article.	type	is	sysname,	with	a	default	of	table,	and	can	be	one
of	these	values.

Value Description
table	(default) Article	monitors	a	table	to	determine	replicated

data.
indexed	view	schema
only

Article	monitors	an	indexed	view	and	schema	to
determine	source	data.

view	schema	only Article	monitors	a	view	and	schema	to	determine
source	data.

proc	schema	only Article	uses	stored	procedure	execution	and
schema	to	determine	source	data.

func	schema	only Article	uses	user-defined	function	execution	and
schema	to	determine	source	data.

NULL	(default) 	

[@description	=]	'description'

Is	a	description	of	the	article.	description	is	nvarchar(255),	with	a	default	of
NULL.

[@column_tracking	=]	'column_tracking'

Is	the	setting	for	column-level	tracking.	column_tracking	is	nvarchar(10),
with	a	default	of	FALSE.	true	turns	on	column	tracking.	false	turns	off
column	tracking	and	leaves	conflict	detection	at	the	row	level.	If	the	table	is
already	published	in	other	merge	publications,	you	must	use	the	same
column	tracking	value	used	by	existing	articles	based	on	this	table.	This
parameter	is	specific	to	table	articles	only.

[@status	=]	'status'

Is	the	status	of	the	article.	status	is	nvarchar(10),	with	a	default	of
unsynced.	If	active,	the	initial	processing	script	to	publish	the	table	is	run.	If
unsynced,	the	initial	processing	script	to	publish	the	table	is	run	at	the	next
time	the	Snapshot	Agent	runs.

[@pre_creation_cmd	=]	'pre_creation_cmd'

Specifies	what	the	system	is	to	do	if	the	table	exists	at	the	subscriber	when
applying	the	snapshot.	pre_creation_cmd	is	nvarchar(10),	and	can	be	one	of
these	values.

Value Description
None If	the	table	already	exists	at	the	Subscriber,	no	action	is

taken.
Delete Issues	a	delete	based	on	the	WHERE	clause	in	the	subset

filter.
drop	(default) Drops	the	table	before	re-creating	it.
Truncate Same	as	delete,	but	deletes	pages	instead	of	rows.	Does	not

accept	a	WHERE	clause.

[@creation_script	=]	'creation_script'

Is	the	optional	schema	precreation	script	for	the	article.	creation_script	is
nvarchar(255),	with	a	default	of	NULL.

[@schema_option	=]	schema_option

Is	a	bitmap	of	the	schema	generation	option	for	the	given	article.
schema_option	is	binary(8),	and	can	be	one	of	these	values.	If	this	value	is
NULL,	the	system	will	auto-generate	a	valid	schema	option	for	the	article.

The	table	given	in	the	Remarks	shows	the	value	that	will	be	chosen	based
upon	the	combination	of	the	article	type	and	the	replication	type.	Also,	not
all	@schema_option	values	are	valid	for	every	type	of	replication	and	article
type.	The	Valid	Schema	Option	table	given	in	the	Remarks	shows	the	valid
schema	options	that	can	be	chosen	based	upon	the	combination	of	the	article
type	and	the	replication	type.

Value Description
0x00 Disables	scripting	by	the	Snapshot	Agent	and	uses

the	provided	CreationScript.
0x01 Generates	the	object	creation	(CREATE	TABLE,

CREATE	PROCEDURE,	and	so	on).	This	is	the
default	value	for	stored	procedure	articles.

0x10 Generates	a	corresponding	clustered	index.
0x20 Converts	user-defined	data	types	to	base	data

types.
0x40 Generates	corresponding	nonclustered	index(es).
0x80 Includes	declared	referential	integrity	on	the

primary	keys.
0x100 Replicates	user	triggers	on	a	table	article,	if

defined.
0x200 Replicates	foreign	key	constraints.	If	the

referenced	table	is	not	part	of	a	publication,	all
foreign	key	constraints	on	a	published	table	will
not	be	replicated.

0x400 Replicates	check	constraints.
0x800 Replicates	defaults.
0x1000 Replicates	column-level	collation.
0x2000 Replicates	extended	properties	associated	with	the

published	article	source	object.
0x4000 Replicates	unique	keys	if	defined	on	a	table

article.
0x8000 Replicates	a	primary	key	and	unique	keys	on	a

table	article	as	constraints	using	ALTER	TABLE
statements.

[@subset_filterclause	=]	'subset_filterclause'

Is	a	WHERE	clause	specifying	the	horizontal	filtering	of	a	table	article
without	the	word	WHERE	included.	subset_filterclause	is	of
nvarchar(1000),	with	a	default	of	an	empty	string.	For	more	information,
see	Generate	Filters	Automatically.

[@article_resolver	=]	'article_resolver'

Is	the	resolver	used	to	resolve	conflicts	on	the	table	article.	article_resolver
is	varchar(255),	with	a	default	of	NULL.	Available	values	for	this	parameter
are	listed	in	Microsoft	Resolver	Descriptions.	If	the	value	provided	is	not	one
of	the	Microsoft	Resolvers,	SQL	Server	uses	the	specified	resolver	instead	of
the	system-supplied	resolver.	Use	sp_enumcustomresolvers	to	enumerate
the	list	of	available	custom	resolvers.

[@resolver_info	=]	'resolver_info'

Is	used	to	specify	additional	information	required	by	a	custom	resolver.
Some	of	the	Microsoft	Resolvers	require	a	column	provided	as	input	to	the
resolver.	resolver_info	is	nvarchar(255),	with	a	default	of	NULL.	For	more
information,	see	Microsoft	Resolver	Descriptions.

[@source_owner	=]	'source_owner'

Is	the	name	of	the	owner	of	the	source_object.	source_owner	is	sysname,
with	a	default	of	NULL.	If	NULL,	the	current	user	is	assumed	to	be	the
owner.

[@destination_owner	=]	'destination_owner'

Is	the	owner	of	the	object	in	the	subscription	database,	if	not	'dbo'.
destination_owner	is	sysname,	with	a	default	of	NULL.	If	NULL,	'dbo'	is
assumed	to	be	the	owner.

[@vertical_partition	=]	'column_filter'

Enables	and	disables	column	filtering	on	a	table	article.	vertical_partition	is
nvarchar(5)	with	a	default	of	FALSE.	false	indicates	there	is	no	vertical
filtering	and	publishes	all	columns.	true	clears	all	columns	except	the
declared	primary	key	and	ROWGUID	columns.	Columns	are	added	using

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

sp_articlecolumn.

[@auto_identity_range	=]	'automatic_identity_range'

Enables	and	disables	automatic	identity	range	handling	for	this	table	article
on	a	publication	at	the	time	it	is	created.	auto_identity_range	is	nvarchar(5),
with	a	default	of	FALSE.	true	enables	automatic	identity	range	handling,
while	false	disables	it.	For	more	information,	see	Managing	Identity	Values.

[@pub_identity_range	=]	pub_identity_range

Controls	the	range	size	at	the	Publisher	if	the	article	has	auto_identity_range
set	to	true.	auto_identity_range	is	bigint,	with	a	default	of	NULL.

[@identity_range	=]	identity_range

Controls	the	range	size	at	the	Subscriber	if	the	article	has
auto_identity_range	set	to	true.	identity_range	is	bigint,	with	a	default	of
NULL.

[@threshold	=]	threshold

Percentage	value	that	controls	when	the	Merge	Agent	assigns	a	new	identity
range.	When	the	percentage	of	values	specified	in	threshold	is	used,	the
Merge	Agent	creates	a	new	identity	range.	threshold	is	int,	with	a	default	of
NULL.	Used	when	auto_identity_range	is	set	to	true.

[@verify_resolver_signature	=]	verify_resolver_signature

Specifies	if	a	digital	signature	is	verified	before	using	a	resolver	in	merge
replication.	verify_resolver_signature	is	int,	with	a	default	of	0.	0	specifies
that	the	signature	will	not	be	verified.	1	specifies	that	the	signature	will	be
verified	to	see	if	it	is	from	a	trusted	source.	For	more	information,	see
Replication	Signature	Verification
Constants(SQLDMO_VERIFYSIGNATURE_TYPE).

[@destination_object	=]	'destination_object'

Is	the	name	of	the	object	in	the	subscription	database.	destination_object	is
sysname,	with	a	default	value	of	what	is	in	@source_object.	This	parameter
can	be	specified	only	if	the	article	is	a	schema-only	article,	such	as	stored
procedures,	views,	and	UDFs.	If	the	article	specified	is	a	table	article,	the
value	in	@source_object	will	override	the	value	in	destination_object.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

[@allow_interactive_resolver	=]	'allow_interactive_resolver'

Enables	or	disables	the	use	of	the	Interactive	Resolver	on	an	article.
allow_interactive_resolver	is	nvarchar(5),	with	a	default	of	FALSE.	true
enables	the	use	of	the	Interactive	Resolver	on	the	article;	false	disables	it.

[@fast_multicol_updateproc	=]	'fast_multicol_updateproc'

Enables	or	disables	the	Merge	Agent	to	apply	changes	to	multiple	columns	in
the	same	row	in	one	UPDATE	statement.	fast_multicol_updateproc	is
nvarchar(5),	with	a	default	of	TRUE.	true	updates	multiple	columns	in	one
statement.	false	issues	a	separate	UPDATE	for	each	column	changed.	For
performance	reasons,	it	is	desirable	to	set	the	value	to	true	if	two	or	more
columns	are	being	updated.	However,	the	option	should	be	set	to	false	if
there	is	a	user	trigger	on	the	table	that	raises	an	error	on	updates	to	a	specific
column,	detected	via	the	IF	UPDATE(col).	Even	if	that	column	is	not
updated	to	a	new	value,	the	IF	UPDATE(col)	will	detect	a	column	update
and	raise	the	error.	This	is	because	with	the	option	set	to	true,	all	columns
(except	special	columns	like	ones	involved	in	filters)	are	set	in	one	UPDATE
statement.	If	the	value	of	a	particular	column	didn't	change,	it	is	set	to	the	old
value.

[@check_permissions	=]	check_permissions

Is	a	bitmap	of	the	table-level	permissions	that	will	be	verified	when	the
Merge	Agent	applies	changes	to	the	Publisher.	If	the	Publisher	login/user
account	used	by	the	merge	process	does	not	have	the	correct	table
permissions,	the	invalid	changes	will	be	logged	as	conflicts.
check_permissions	is	int,	and	can	have	one	of	these	values.

Value Description
0x00	(default) Permissions	will	not	be	checked.
0x10 Checks	permissions	at	the	Publisher	before	INSERTs	made

at	a	Subscriber	can	be	uploaded.
0x20 Checks	permissions	at	the	Publisher	before	UPDATEs

made	at	a	Subscriber	can	be	uploaded.
0x40 Checks	permissions	at	the	Publisher	before	DELETEs

made	at	a	Subscriber	can	be	uploaded.

[@force_invalidate_snapshot	=]	force_invalidate_snapshot

Acknowledges	that	the	action	taken	by	this	stored	procedure	may	invalidate
an	existing	snapshot.	force_invalidate_snapshot	is	a	bit,	with	a	default	of	0.
0	specifies	that	adding	an	article	will	not	cause	the	snapshot	to	be	invalid.	If
the	stored	procedure	detects	that	the	change	does	require	a	new	snapshot,	an
error	will	occur	and	no	changes	will	be	made.	1	specifies	that	adding	an
article	may	cause	the	snapshot	to	be	invalid,	and	if	there	are	existing
subscriptions	that	require	a	new	snapshot,	gives	permission	for	the	existing
snapshot	to	be	marked	as	obsolete	and	a	new	snapshot	generated.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_addmergearticle	is	used	in	merge	replication.

The	table	describes	the	default	@schema_option	value	that	will	be	chosen	for
the	stored	procedure	if	a	NULL	value	is	passed	in	by	the	user.	The	default	value
is	based	upon	the	replication	type	shown	across	the	top,	and	the	article	type
shown	down	the	first	column.		Empty	cells	are	article	and	replication	type	pairs
that	are	not	valid	combinations,	and	therefore,	have	no	default.

Article	Type Replication	Type
	 Merge
logbased 	
logbased	manualfilter 	
logbased	manualview 	
indexed	view	logbased 	
indexed	view	logbased	manualfilter 	
indexed	view	logbased	manualview 	
indexed	view	logbase	manualboth 	
proc	exec 	
serialized	proc	exec 	
proc	schema	only 0x01

view	schema	only 0x01
func	schema	only 0x01
indexed	view	schema	only 0x01
table 0xccf1

Valid	Schema	Option	Table

Article	Type Replication	Type
	 Merge
logbased 	
logbased	manualfilter 	
logbased	manualview 	
indexed	view	logbased 	
indexed	view	logbased	manualfilter 	
indexed	view	logbased	manualview 	
indexed	view	logbase	manualboth 	
proc	exec 0x01	and	0x2000
serialized	proc	exec 0x01	and	0x2000
proc	schema	only 0x01	and	0x2000
view	schema	only 0x01,	0x0100,	and	0x2000
func	schema	only 0x01	and	0x2000
indexed	view	schema	only 0x01,	0x10,	0x040,	0x0100,	and

0x2000
table All	options	but	0x02	and	0x8000

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_addmergearticle.

See	Also

Managing	Identity	Values

JavaScript:hhobj_6.Click()

Row-Level	Tracking	and	Column-Level	Tracking

sp_changemergearticle

sp_dropmergearticle

sp_helpmergearticle

System	Stored	Procedures

Specifying	a	Custom	Resolver

JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

Transact-SQL	Reference

sp_addmergefilter
Adds	a	new	merge	filter	to	create	a	partition	based	on	a	join	with	another	table.
This	stored	procedure	is	executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_addmergefilter	[@publication	=]	'publication'
					,	[@article	=]	'article'
					,	[@filtername	=]	'filtername'
					,	[@join_articlename	=]	'join_articlename'
					,	[@join_filterclause	=]	join_filterclause
				[,	[@join_unique_key	=]	join_unique_key]
				[,	[@force_invalidate_snapshot	=]	force_invalidate_snapshot]
				[,	[@force_reinit_subscription	=]	force_reinit_subscription]

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication	that	contains	the	article.	publication	is
sysname,	with	no	default.

[@article	=]	'article'

Is	the	name	of	the	article.	article	is	sysname,	with	no	default.

[@filtername	=]	'filtername'

Is	the	name	of	the	filter.	filtername	is	a	required	parameter.	filtername	is
sysname,	with	no	default.

[@join_articlename	=]	'join_articlename'

Is	the	article	name	of	the	join	table.	join_articlename	is	sysname,	with	no
default.	The	article	must	be	in	the	publication	given	by	publication.

[@join_filterclause	=]	join_filterclause

Is	the	filter	clause	qualifying	the	join.	join_	filterclause	is	nvarchar(2000).
join_filterclause	defines	only	Boolean	filters	in	this	stored	procedure.

[@join_unique_key	=]	join_unique_key

Specifies	if	the	join	is	on	a	unique	key	in	the	table	specified	in	@article.
join_unique_key	is	int,	with	a	default	of	0.	0	indicates	a	nonunique	key.	1
indicates	a	unique	key	in	@join_articlename.

[@force_invalidate_snapshot	=]	force_invalidate_snapshot

Acknowledges	that	the	action	taken	by	this	stored	procedure	may	invalidate
an	existing	snapshot.	force_invalidate_snapshot	is	a	bit,	with	a	default	0.	0
specifies	that	changes	to	the	merge	article	will	not	cause	the	snapshot	to	be
invalid.	If	the	stored	procedure	detects	that	the	change	does	require	a	new
snapshot,	and	error	will	occur	and	no	changes	will	be	made.	1	specifies	that
changes	to	the	merge	article	may	cause	the	snapshot	to	be	invalid,	and	if
there	are	existing	subscriptions	that	would	require	a	new	snapshot,	gives
permission	for	the	existing	snapshot	to	be	marked	as	obsolete	and	a	new
snapshot	generated.

[@force_reinit_subscription	=]	force_reinit_subscription

Acknowledges	that	the	action	taken	by	this	stored	procedure	may	require
existing	subscriptions	to	be	reinitialized.	force_reinit_subscription	is	a	bit,
with	a	default	of	0.	0	specifies	that	changes	to	the	merge	article	will	not
cause	the	subscription	to	be	reinitialized.	If	the	stored	procedure	detects	that
the	change	would	require	subscriptions	to	be	reinitialized,	an	error	will	occur
and	no	changes	will	be	made.	1	specifies	that	changes	to	the	merge	article
will	cause	existing	subscriptions	to	be	reinitialized,	and	gives	permission	for
the	subscription	reinitialization	to	occur.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_addmergefilter	is	used	in	merge	replication.

Typically,	this	option	is	used	for	an	article	that	has	a	foreign	key	reference	to	a
published	primary	key	table,	and	the	primary	key	table	has	a	filter	defined	in	its
article.	The	subset	of	primary	key	rows	is	used	to	determine	the	foreign	key	rows
that	are	replicated	to	the	Subscriber.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_	addmergefilter.

See	Also

sp_changemergefilter

sp_dropmergefilter

sp_helpmergefilter

System	Stored	Procedures

Transact-SQL	Reference

sp_addmergepublication
Creates	a	new	merge	publication.	This	stored	procedure	is	executed	at	the
Publisher	on	any	database.

Syntax
sp_addmergepublication	[@publication	=]	'publication'	
				[,	[@description	=]	'description'	
				[,	[@retention	=]	retention]	
				[,	[@sync_mode	=]	'sync_mode']	
				[,	[@allow_push	=]	'allow_push']	
				[,	[@allow_pull	=]	'allow_pull']	
				[,	[@allow_anonymous	=]	'allow_anonymous']	
				[,	[@enabled_for_internet	=]	'enabled_for_internet']	
				[,	[@centralized_conflicts	=]	'centralized_conflicts']	
				[,	[@dynamic_filters	=]	'dynamic_filters']	
				[,	[@snapshot_in_defaultfolder	=]	'snapshot_in_default_folder']	
				[,	[@alt_snapshot_folder	=]	'alternate_snapshot_folder']	
				[,	[@pre_snapshot_script	=]	'pre_snapshot_script']	
				[,	[@post_snapshot_script	=]	'post_snapshot_script']	
				[,	[@compress_snapshot	=]	'compress_snapshot']	
				[,	[@ftp_address	=]	'ftp_address']	
				[,	[@ftp_port=]	ftp_port]	
				[,	[@ftp_subdirectory	=]	'ftp_subdirectory']	
				[,	[@ftp_login	=]	'ftp_login']	
				[,	[@ftp_password	=]	'ftp_password']	
				[,	[@conflict_retention	=]	conflict_retention]	
				[,	[@keep_partition_changes	=]	'keep_partition_changes']	
				[,	[@allow_subscription_copy	=]	'allow_subscription_copy']	
				[,	[@allow_synctoalternate	=]	'allow_synctoalternate']	
				[,	[@validate_subscriber_info	=]	'validate_subscriber_info']	
				[,	[@add_to_active_directory	=]	'add_to_active_directory']	
				[,	[@max_concurrent_merge	=]	maximum_concurrent_merge]	
				[,	[@max_concurrent_dynamic_snapshots	=]
max_concurrent_dynamic_snapshots]

Arguments

[@publication	=]	'publication'

Is	the	name	of	the	merge	publication	to	create.	publication	is	sysname,	with
no	default,	and	must	not	be	the	keyword	ALL.	The	name	of	the	publication
must	be	unique	within	the	database.

[@description	=]	'description'

Is	the	publication	description.	description	is	nvarchar(255),	with	a	default	of
NULL.

[@retention	=]	retention

Is	the	number	of	days	for	which	to	save	changes	for	the	given	publication.
retention	is	int,	with	a	default	of	14	days.	If	the	subscription	does	not	merge
within	the	retention	period,	the	subscription	expires	and	is	removed.

[@sync_mode	=]	'sync_mode'

Is	the	mode	of	the	initial	synchronization	of	subscribers	to	the	publication.
sync_mode	is	nvarchar(10),	with	a	default	of	native.	If	native,	native-mode
bulk	copy	program	output	of	all	tables	is	produced.	If	character,	character-
mode	bulk	copy	program	output	of	all	tables	is	produced.	Non-SQL	Server
subscribers	require	the	use	of	character.

[@allow_push	=]	'allow_push'

Specifies	if	push	subscriptions	can	be	created	for	the	given	publication.
allow_push	is	nvarchar(5),	with	a	default	of	TRUE,	which	allows	push
subscriptions	on	the	publication.

[@allow_pull	=]	'allow_pull'

Specifies	if	pull	subscriptions	can	be	created	for	the	given	publication.
allow_pull	is	nvarchar(5),	with	a	default	of	TRUE,	which	allows	pull
subscriptions	on	the	publication.

[@allow_anonymous	=]	'allow_anonymous'

Specifies	if	anonymous	subscriptions	can	be	created	for	the	given
publication.	allow_anonymous	is	nvarchar(5),	with	a	default	of	FALSE,
which	does	not	allow	anonymous	subscriptions	on	the	publication.

[@enabled_for_internet	=]	'enabled_for_internet'

Specifies	if	the	publication	is	enabled	for	the	Internet,	and	determines	if	FTP
can	be	used	to	transfer	the	snapshot	files	to	a	subscriber.
enabled_for_internet	is	nvarchar(5),	with	a	default	of	FALSE.	If	true,	the
synchronization	files	for	the	publication	are	put	into	the	C:\Program
Files\Microsoft	SQL	Server\MSSQL\Repldata\Ftp	directory.	The	user	must
create	the	Ftp	directory.	If	false,	the	publication	is	not	enabled	for	Internet
access.

[@centralized_conflicts	=]	'centralized_conflicts'

Specifies	if	conflict	records	are	stored	on	the	Publisher.	centralized_conflicts
is	nvarchar(5),	with	a	default	of	TRUE.	If	true,	all	conflict	records	are
stored	at	the	Publisher.	If	false,	conflict	records	are	stored	at	both	the
publisher	and	at	the	subscriber	that	caused	the	conflict.

[@dynamic_filters	=]	'dynamic_filters'

Enables	the	merge	publication	to	allow	dynamic	filters.	dynamic_filter	is
nvarchar(5),	with	a	default	of	FALSE.

[@snapshot_in_defaultfolder	=]	'snapshot_in_default_folder'

Specifies	if	the	snapshot	files	are	stored	in	the	default	folder.
snapshot_in_default_folder	is	nvarchar(5),	with	a	default	of	TRUE.	If	true,
snapshot	files	can	be	found	in	the	default	folder.	If	false,	snapshot	files	will
be	stored	in	the	alternate	location	specified	by	alternate_snapshot_folder.
Alternate	locations	can	be	on	another	server,	on	a	network	drive,	or	on	a
removable	media	(such	as	CD-ROM	or	removable	disks).	You	can	also	save
the	snapshot	files	to	a	File	Transfer	Protocol	(FTP)	site,	for	retrieval	by	the
Subscriber	at	a	later	time.	Note	that	this	parameter	can	be	true	and	still	have
a	location	in	the	@alt_snapshot_folder	parameter.	This	combination
specifies	that	the	snapshot	files	will	be	stored	in	both	the	default	and
alternate	locations.

[@alt_snapshot_folder	=]	'alternate_snapshot_folder'

Specifies	the	location	of	the	alternate	folder	for	the	snapshot.
alternate_snapshot_folder	is	nvarchar(255),	with	a	default	of	NULL.

[@pre_snapshot_script	=]	'pre_snapshot_script'

Specifies	a	pointer	to	an	.sql	file	location.	pre_snapshot_script	is
nvarchar(255),	with	a	default	of	NULL.	The	Merge	Agent	will	run	the	pre-
snapshot	script	before	any	of	the	replicated	object	scripts	when	applying	the
snapshot	at	a	Subscriber.

[@post_snapshot_script	=]	'post_snapshot_script'

Specifies	a	pointer	to	an	.sql	file	location.	post_snapshot_script	is
nvarchar(255),	with	a	default	of	NULL.	The	Distribution	Agent	or	Merge
Agent	will	run	the	post-snapshot	script	after	all	the	other	replicated	object
scripts	and	data	have	been	applied	during	an	initial	synchronization.

[@compress_snapshot	=]	'compress_snapshot'

Specifies	that	the	snapshot	written	to	the	@alt_snapshot_folder	location	is
to	be	compressed	into	the	Microsoft®	CAB	format.	compress_snapshot	is
nvarchar(5),	with	a	default	of	FALSE.	false	specifies	that	the	snapshot	will
not	be	compressed;	true	specifies	that	the	snapshot	is	to	be	compressed.	The
snapshot	in	the	default	folder	cannot	be	compressed.

[@ftp_address	=]	'ftp_address'

Is	the	network	address	of	the	FTP	service	for	the	Distributor.		ftp_address	is
sysname,	with	a	default	of	NULL.	Specifies	where	publication	snapshot	files
are	located	for	the	Distribution	Agent	or	Merge	Agent	of	a	subscriber	to	pick
up.	Since	this	property	is	stored	for	each	publication,	each	publication	can
have	a	different	ftp_address.	The	publication	must	support	propagating
snapshots	using	FTP.	For	more	information,	see	Configuring	a	Publication	to
Allow	Subscribers	to	Retrieve	Snapshots	Using	FTP.

[@ftp_port=]	ftp_port

Is	the	port	number	of	the	FTP	service	for	the	Distributor.	ftp_port	is	int,	with
a	default	of	21.	Specifies	where	the	publication	snapshot	files	are	located	for
the	Distribution	Agent	or	Merge	Agent	of	a	subscriber	to	pick	up.	Since	this
property	is	stored	for	each	publication,	each	publication	can	have	its	own
ftp_port.

[@ftp_subdirectory	=]	'ftp_subdirectory'

Specifies	where	the	snapshot	files	will	be	available	for	the	Merge	Agent	of
the	subscriber	to	pick	up	if	the	publication	supports	propagating	snapshots

JavaScript:hhobj_1.Click()

using	FTP.	ftp_subdirectory	is	nvarchar(255),	with	a	default	of	NULL.
Since	this	property	is	stored	for	each	publication,	each	publication	can	have
its	own	ftp_subdirctory	or	choose	to	have	no	subdirectory,	indicated	with	a
NULL	value.

[@ftp_login	=]	'ftp_login'

Is	the	username	used	to	connect	to	the	FTP	service.	ftp_login	is	sysname,
with	a	default	of	'anonymous'.

[@ftp_password	=]	'ftp_password'

Is	the	user	password	used	to	connect	to	the	FTP	service.	ftp_password	is
sysname,	with	a	default	of	NULL.

[@conflict_retention	=]	conflict_retention

Specifies	the	retention	period,	in	days,	for	which	conflicts	are	retained.
conflict_retention	is	int,	with	a	default	of	14	days	before	the	conflict	row	is
purged	from	the	conflict	table.

[@keep_partition_changes	=]	'keep_partition_changes'

Specifies	whether	synchronization	optimization	should	occur.
keep_partition_changes	is	nvarchar(5),	with	a	default	of	FALSE.	false
means	that	synchronization	is	not	optimized,	and	the	partitions	sent	to	all
Subscribers	will	be	verified	when	data	changes	in	a	partition.	true	means
that	synchronization	is	optimized,	and	only	Subscribers	having	rows	in	the
changed	partition(s)	are	affected.	For	more	information,	see	Optimizing
Synchronization.

[@allow_subscription_copy	=]	'allow_subscription_copy'

Enables	or	disables	the	ability	to	copy	the	subscription	databases	that
subscribe	to	this	publication.	allow_subscription_copy	is	nvarchar(5),	with
a	default	of	FALSE.

[@allow_synctoalternate	=]	'allow_synctoalternate'

Enables	an	alternate	synchronization	partner	to	synchronize	with	this
Publisher.	allow_synctoalternate	is	nvarchar(5),	with	a	default	of	FALSE.

[@validate_subscriber_info	=]	'validate_subscriber_info'

JavaScript:hhobj_2.Click()

Lists	the	functions	that	are	being	used	to	retrieve	Subscriber	information,	and
validates	the	dynamic	filtering	criteria	being	used	for	the	Subscriber	to	verify
that	the	information	is	partitioned	consistently	with	each	merge.
validate_subscriber_info	is	nvarchar(500),	with	a	default	of	NULL.	For
example,	if	SUSER_SNAME()	is	used	in	the	dynamic	filter,	the	parameter
should	be	@validate_subscriber_info=N'SUSER_SNAME()'.	For	more
information,	see	Validate	Subscriber	Information.

[@add_to_active_directory	=]	'add_to_active_directory'

Specifies	if	the	publication	information	is	published	to	the	Microsoft	Active
Directory™.	add_to_active_directory	is	nvarchar(5),	with	a	default	of
FALSE.	This	feature	is	available	only	for	servers	running	on	the	Windows®
2000	operating	system.	A	value	of	true	will	add	the	publication	information
to	the	Microsoft	Active	Directory.

[@max_concurrent_merge	=]	maximum_concurrent_merge

The	maximum	number	of	concurrent	merge	processes.	A	value	of	0	for	this
property	means	that	there	is	no	limit	to	the	number	of	concurrent	merge
processes	running	at	any	given	time.	This	property	sets	a	limit	on	the	number
of	concurrent	merge	processes	that	can	be	run	against	a	merge	publication	at
one	time.	If	there	are	more	snapshot	processes	scheduled	at	the	same	time
than	the	value	allows	to	run,	then	the	excess	jobs	will	be	put	into	a	queue	and
wait	until	a	currently-running	merge	process	finishes.

[@max_concurrent_dynamic_snapshots	=]
max_concurrent_dynamic_snapshots

The	maximum	number	of	concurrent	dynamic	snapshot	sessions	that	can	be
running	against	the	merge	publication.	If	0,	there	is	no	limit	to	the	maximum
number	of	concurrent	dynamic	snapshot	sessions	that	can	run	simultaneously
against	the	publication	at	any	given	time.	This	property	sets	a	limit	on	the
number	of	concurrent	snapshot	processes	that	can	be	run	against	a	merge
publication	at	one	time.	If	there	are	more	snapshot	processes	scheduled	at	the
same	time	than	the	value	allows	to	run,	then	the	excess	jobs	will	be	put	into	a
queue	and	wait	until	a	currently-running	merge	process	finishes.

Return	Code	Values

JavaScript:hhobj_3.Click()

0	(success)	or	1	(failure)

Remarks
sp_addmergepublication	is	used	in	merge	replication.

To	list	publication	objects	to	the	Active	Directory	using	the
@add_to_active_directory	parameter,	the	SQL	Server	object	must	already	be
created	in	the	Active	Directory.	For	more	information,	see	Active	Directory
Services.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_addmergepublication.

See	Also

Configuring	a	Publication	to	Allow	Subscribers	to	Retrieve	Snapshots	Using
FTP

Executing	Scripts	Before	and	After	the	Snapshot	is	Applied

sp_changemergepublication

sp_dropmergepublication

sp_helpmergepublication

System	Stored	Procedures

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Transact-SQL	Reference

sp_addmergepullsubscription
Adds	a	pull	subscription	to	a	merge	publication.	This	stored	procedure	is
executed	at	the	Subscriber	on	the	subscription	database.

Syntax
sp_addmergepullsubscription	[@publication	=]	'publication'	
				[,	[@publisher	=]	'publisher']	
				[,	[@publisher_db	=]	'publisher_db']	
				[,	[@subscriber_type	=]	'subscriber_type']	
				[,	[@subscription_priority	=]	subscription_priority]	
				[,	[@sync_type	=]	'sync_type']	
				[,	[@description	=]	'description']

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	no	default.

[@publisher	=]	'publisher'

Is	the	name	of	the	Publisher.	publisher	is	sysname,	with	a	default	of	the	local
server	name.	The	Publisher	must	be	a	valid	server.

[@publisher_db	=]	'publisher_db

Is	the	name	of	the	Publisher	database.	publisher_db	is	sysname,	with	a
default	of	NULL.

[@subscriber_type	=]	'subscriber_type'

Is	the	type	of	Subscriber.	subscriber_type	is	nvarchar(15),	and	can	be
global,	local	or	anonymous.

[@subscription_priority	=]	subscription_priority

Is	the	subscription	priority.	subscription_priority	is	real,	with	a	default	of
NULL.	For	local	and	anonymous	subscriptions,	the	priority	is	0.0.	The
priority	is	used	by	the	default	resolver	to	pick	a	winner	when	conflicts	are

detected.	For	global	subscribers,	the	subscription	priority	must	be	less	than
100,	which	is	the	priority	of	the	publisher.

[@sync_type	=]	'sync_type'

Is	the	subscription	synchronization	type.	sync_type	is	nvarchar(15),	with	a
default	of	automatic.	Can	be	automatic	or	none.	If	automatic,	the	schema
and	initial	data	for	published	tables	are	transferred	to	the	Subscriber	first.	If
none,	it	is	assumed	the	Subscriber	already	has	the	schema	and	initial	data	for
published	tables.	System	tables	and	data	are	always	transferred.

[@description	=]	'description'

Is	a	brief	description	of	this	pull	subscription.	description	is	nvarchar(255),
with	a	default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_addmergepullsubscription	is	used	for	merge	replication.

sp_addmergepullsubscription	implements	similar	functionality	to
sp_addmergesubscription	regarding	pull	subscriptions,	except	that	it	does	not
create	an	agent	for	this	subscription.	The	current	server	name	and	current
database	name	are	assumed	to	be	subscriber	and	subscriber_db,	and	do	not
appear	in	the	parameter	list.

If	creating	a	global	subscription,	the	sp_addmergesubscription	and
sp_addsubscriber	stored	procedures	must	be	run	at	the	Publisher	in	addition	to
running	sp_addmergepullsubscription	at	the	Subscriber.

If	using	SQL	Agent	to	synchronize	the	subscription,	the
sp_addmergepullsubscription_agent	stored	procedure	must	be	run	at	the
Subscriber	to	create	an	agent	and	job	to	synchronize	with	the	Publication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database

role	can	execute	sp_addmergepullsubscription.

See	Also

sp_changemergepullsubscription

sp_dropmergepullsubscription

sp_helpmergepullsubscription

System	Stored	Procedures

Transact-SQL	Reference

sp_addmergepullsubscription_agent
Adds	an	agent	for	a	pull	subscription	to	a	merge	publication.	This	stored
procedure	is	executed	at	the	Subscriber	on	the	subscription	database.

Syntax
sp_addmergepullsubscription_agent	[[@name	=]	'name']					,	[@publisher
=]	'publisher'	
					,	[@publisher_db	=]	'publisher_db'	
					,	[@publication	=]	'publication'	
				[,	[@publisher_security_mode	=]	publisher_security_mode]	
				[,	[@publisher_login	=]	'publisher_login']	
				[,	[@publisher_password	=]	'publisher_password']	
				[,	[@publisher_encrypted_password	=]	publisher_encrypted_password]	
				[,	[@subscriber	=]	'subscriber']	
				[,	[@subscriber_db	=]	'subscriber_db']	
				[,	[@subscriber_security_mode	=]	subscriber_security_mode]	
				[,	[@subscriber_login	=]	'subscriber_login']	
				[,	[@subscriber_password	=]	'subscriber_password']	
				[,	[@distributor	=]	'distributor']	
				[,	[@distributor_security_mode	=]	distributor_security_mode]	
				[,	[@distributor_login	=]	'distributor_login']	
				[,	[@distributor_password	=]	'distributor_password']	
				[,	[@encrypted_password	=]	encrypted_password]	
				[,	[@frequency_type	=]	frequency_type]	
				[,	[@frequency_interval	=]	frequency_interval]	
				[,	[@frequency_relative_interval	=]	frequency_relative_interval]	
				[,	[@frequency_recurrence_factor	=]	frequency_recurrence_factor]	
				[,	[@frequency_subday	=]	frequency_subday]	
				[,	[@frequency_subday_interval	=]	frequency_subday_interval]	
				[,	[@active_start_time_of_day	=]	active_start_time_of_day]	
				[,	[@active_end_time_of_day	=]	active_end_time_of_day]	
				[,	[@active_start_date	=]	active_start_date]	
				[,	[@active_end_date	=]	active_end_date]	
				[,	[@optional_command_line	=]	'optional_command_line']	

				[,	[@merge_jobid	=]	merge_jobid]	
				[,	[@enabled_for_syncmgr	=]	'enabled_for_syncmgr']	
				[,	[@ftp_address	=]	'ftp_address']	
				[,	[@ftp_port	=]	ftp_port]	
				[,	[@ftp_login	=]	'ftp_login']	
				[,	[@ftp_password	=]	'ftp_password']		
				[,	[@alt_snapshot_folder	=]	'alternate_snapshot_folder']	
				[,	[@working_directory	=]	'working_directory']	
				[,	[@use_ftp=]	'use_ftp']	
				[,	[@reserved=]	'reserved']	
				[,	[@use_interactive_resolver	=]	'use_interactive_resolver']	
				[,	[@offloadagent	=]	'remote_agent_activation']	
				[,	[@offloadserver	=]	'remote_agent_server_name']	
				[,	[@job_name=]	'job_name']	
				[,	[@dynamic_snapshot_location=]	'dynamic_snapshot_location']

Arguments
[@name	=]	'name'

Is	the	name	of	the	agent.	name	is	sysname,	with	a	default	of	NULL.

[@publisher	=]	'publisher'

Is	the	name	of	the	Publisher	server.	publisher	is	sysname,	with	no	default.

[@publisher_db	=]	'publisher_db'

Is	the	name	of	the	Publisher	database.	publisher_db	is	sysname,	with	no
default.

[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	no	default.

[@publisher_security_mode	=]	publisher_security_mode

Is	the	security	mode	to	use	when	connecting	to	a	Publisher	when
synchronizing.	publisher_security_mode	is	int,	with	a	default	of	1.	If	0,
specifies	SQL	Server	Authentication.	If	1,	specifies	Windows
Authentication.

[@publisher_login	=]	'publisher_login'

Is	the	login	to	use	when	connecting	to	a	Publisher	when	synchronizing.
publisher_login	is	sysname,	with	a	default	of	NULL.

[@publisher_password	=]	'publisher_password'

Is	the	password	used	when	connecting	to	the	Publisher.	publisher_password
is	sysname,	with	a	default	of	NULL.

[@publisher_encrypted_password	=]	publisher_encrypted_password

Specifies	if	the	password	is	stored	in	encrypted	format.
publisher_encrypted_password	is	bit,	with	a	default	of	0.

[@subscriber	=]	'subscriber'

Is	the	name	of	the	Subscriber.	subscriber	is	sysname,	with	a	default	of
NULL.

[@subscriber_db	=]	'subscriber_db'

Is	the	name	of	the	subscription	database.	subscriber_db	is	sysname,	with	a
default	of	NULL.

[@subscriber_security_mode	=]	subscriber_security_mode

Is	the	security	mode	to	use	when	connecting	to	a	Subscriber	when
synchronizing.	subscriber_security_mode	is	int,	with	a	default	of	NULL.	If
0,	specifies	SQL	Server	Authentication.	If	1,	specifies	Windows
Authentication.

[@subscriber_login	=]	'subscriber_login'

Is	the	Subscriber	login	to	use	when	connecting	to	a	Subscriber	when
synchronizing.	subscriber_login	is	required	if	subscriber_security_mode	is
set	to	0.	subscriber_login	is	sysname,	with	a	default	of	NULL.

[@subscriber_password	=]	'subscriber_password'

Is	the	Subscriber	password.	subscriber_password	is	required	if
subscriber_security_mode	is	set	to	0.	subscriber_password	is	sysname,	with
a	default	of	NULL.	If	a	subscriber	password	is	used,	it	is	automatically
encrypted.

[@distributor	=]	'distributor'

Is	the	name	of	the	Distributor.	distributor	is	sysname,	with	a	default	of
publisher;	that	is,	the	Publisher	is	also	the	Distributor.

[@distributor_security_mode	=]	distributor_security_mode

Is	the	security	mode	to	use	when	connecting	to	a	Distributor	when
synchronizing.	distributor_security_mode	is	int,	with	a	default	of	0.	0
specifies	SQL	Server	Authentication.	1	specifies	Windows	Authentication.

[@distributor_login	=]	'distributor_login'

Is	the	Distributor	login	to	use	when	connecting	to	a	Distributor	when
synchronizing.	distributor_login	is	required	if	distributor_security_mode	is
set	to	0.	distributor_login	is	sysname,	with	a	default	of	NULL.

[@distributor_password	=]	'distributor_password'

Is	the	Distributor	password.	distributor_password	is	required	if
distributor_security_mode	is	set	to	0.	distributor_password	is	sysname,	with
a	default	of	NULL.

[@encrypted_password	=]	encrypted_password

Specifies	if	the	Distributor	password	is	encrypted.	encrypted_password	is
bit,	with	a	default	of	0.	This	is	used	in	generating	replication	scripts.

[@frequency_type	=]	frequency_type

Is	the	frequency	with	which	to	schedule	the	Merge	Agent.	frequency_type	is
int,	and	can	be	one	of	these	values.

Value Description
1 One	time
2 On	demand
4 Daily
8 Weekly
16 Monthly
32 Monthly	relative
64 Autostart
124 Recurring

NULL	(default) 	

[@frequency_interval	=]	frequency_interval

The	days	that	the	Merge	Agent	runs.	frequency_interval	is	int,	and	can	be
one	of	these	values.

Value Description
1 Sunday
2 Monday
3 Tuesday
4 Wednesday
5 Thursday
6 Friday
7 Saturday
8 Day
9 Weekdays
10 Weekend	days
NULL	(default) 	

[@frequency_relative_interval	=]	frequency_relative_interval

Is	the	date	of	the	Merge	Agent.	This	parameter	is	used	when	frequency_type
is	set	to	32	(monthly	relative).	frequency_relative_interval	is	int,	and	can	be
one	of	these	values.

Value Description
1 First
2 Second
4 Third
8 Fourth
16 Last
NULL	(default) 	

[@frequency_recurrence_factor	=]	frequency_recurrence_factor

Is	the	recurrence	factor	used	by	frequency_type.	frequency_recurrence_factor
is	int,	with	a	default	of	NULL.

[@frequency_subday	=]	frequency_subday

Is	how	often	to	reschedule	during	the	defined	period.	frequency_subday	is
int,	and	can	be	one	of	these	values.

Value Description
1 Once
2 Second
4 Minute
8 Hour
NULL	(default) 	

[@frequency_subday_interval	=]	frequency_subday_interval

Is	the	interval	for	frequency_subday.	frequency_subday_interval	is	int,	with
a	default	of	NULL.

[@active_start_time_of_day	=]	active_start_time_of_day

Is	the	time	of	day	when	the	Merge	Agent	is	first	scheduled,	formatted	as
HHMMSS.	active_start_time_of_day	is	int,	with	a	default	of	NULL.

[@active_end_time_of_day	=]	active_end_time_of_day

Is	the	time	of	day	when	the	Merge	Agent	stops	being	scheduled,	formatted	as
HHMMSS.	active_end_time_of_day	is	int,	with	a	default	of	NULL.

[@active_start_date	=]	active_start_date

Is	the	date	when	the	Merge	Agent	is	first	scheduled,	formatted	as
YYYYMMDD.	active_start_date	is	int,	with	a	default	of	NULL.

[@active_end_date	=]	active_end_date

Is	the	date	when	the	Merge	Agent	stops	being	scheduled,	formatted	as
YYYYMMDD.	active_end_date	is	int,	with	a	default	of	NULL.

[@optional_command_line	=]	'optional_command_line'

Is	an	optional	command	prompt	that	is	supplied	to	the	Merge	Agent.	For
example,	-DefinitionFile	C:\Distdef.txt	or	-CommitBatchSize	10.
optional_command_line	is	nvarchar(255),	with	a	default	of	''.

[@merge_jobid	=]	merge_jobid

Is	the	output	parameter	for	the	job	ID.	merge_jobid	is	binary(16),	with	a
default	of	NULL.

[@enabled_for_syncmgr	=]	'enabled_for_syncmgr'

Specifies	if	the	subscription	can	be	synchronized	through	Windows
Synchronization	Manager.	enabled_for_syncmgr	is	nvarchar(5),	with	a
default	of	FALSE.	If	false,	the	subscription	is	not	registered	with
Synchronization	Manager.	If	true,	the	subscription	is	registered	with
Synchronization	Manager	and	can	be	synchronized	without	starting	SQL
Server	Enterprise	Manager.

[@ftp_address	=]	'ftp_address'

For	backward	compatibility	only.

[@ftp_port	=]	ftp_port

For	backward	compatibility	only.

[@ftp_login	=]	'ftp_login'

For	backward	compatibility	only.

[@ftp_password	=]	'ftp_password'

For	backward	compatibility	only.

[@alt_snapshot_folder	=]	'alternate_snapshot_folder'

Specifies	the	location	from	which	to	pick	up	the	snapshot	files.
alternate_snapshot_folder	is	nvarchar(255),	with	a	default	of	NULL.	If
NULL,	the	snapshot	files	will	be	picked	up	from	the	default	location
specified	by	the	Publisher.

[@working_directory	=]	'working_directory'

Is	the	name	of	the	working	directory	used	to	temporarily	store	data	and

schema	files	for	the	publication	when	FTP	is	used	to	transfer	snapshot	files.
working_directory	is	nvarchar(255),	with	a	default	of	NULL.	

[@use_ftp	=]	'use_ftp'

Specifies	the	use	of	FTP	instead	of	the	typical	protocol	to	retrieve	snapshots.
use_ftp	is	nvarchar(5),	with	a	default	of	FALSE.

[@reserved	=]	'reserved'

For	internal	use	only.

[@use_interactive_resolver	=]	'use_interactive_resolver']

Uses	interactive	resolver	to	resolve	conflicts	for	all	articles	that	allow
interactive	resolution.	use_interactive_resolver	is	nvarchar(5),	with	a
default	of	FALSE.

[@offloadagent	=]	'remote_agent_activation'

Specifies	that	the	agent	can	be	activated	remotely.	remote_agent_activation
is	nvarchar(5),	with	a	default	of	FALSE.	false	specifies	the	agent	cannot	be
activated	remotely.	true	specifies	the	agent	will	be	activated	remotely,	and
on	the	remote	computer	specified	by	remote_agent_server_name.

[@offloadserver	=]	'remote_agent_server_name'

Specifies	the	network	name	of	server	to	be	used	for	remote	agent	activation.
remote_agent_server_name	is	sysname,	with	a	default	of	NULL.

[@job_name	=]	'job_name']

For	internal	use	only.

[@dynamic_snapshot_location	=]	'dynamic_snapshot_location']

The	path	to	the	folder	where	the	snapshot	files	will	be	read	from	if	a	dynamic
snapshot	is	to	be	used.	dynamic_snapshot_location	is	nvarchar(260),	with	a
default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_addmergepullsubscription_agent	is	used	in	merge	replication	and	uses
functionality	similar	to	sp_addsubsubscriber_agent.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_addmergepullsubscription_agent.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_addmergesubscription
Creates	a	push	or	pull	merge	subscription.	This	stored	procedure	is	executed	at
the	Publisher	on	the	publication	database.

Syntax
sp_addmergesubscription	[@publication	=]	'publication'
				[,	[@subscriber	=]	'subscriber']
				[,	[@subscriber_db	=]	'subscriber_db']
				[,	[@subscription_type	=]	'subscription_type']
				[,	[@subscriber_type	=]	'subscriber_type']
				[,	[@subscription_priority	=]	subscription_priority]
				[,	[@sync_type	=]	'sync_type']
				[,	[@frequency_type	=]	frequency_type]
				[,	[@frequency_interval	=]	frequency_interval]
				[,	[@frequency_relative_interval	=]	frequency_relative_interval]
				[,	[@frequency_recurrence_factor	=]	frequency_recurrence_factor]
				[,	[@frequency_subday	=]	frequency_subday]
				[,	[@frequency_subday_interval	=]	frequency_subday_interval]
				[,	[@active_start_time_of_day	=]	active_start_time_of_day]
				[,	[@active_end_time_of_day	=]	active_end_time_of_day]
				[,	[@active_start_date	=]	active_start_date]
				[,	[@active_end_date	=]	active_end_date]
				[,	[@optional_command_line	=]	'optional_command_line']
				[,	[@description	=]	'description']
				[,	[@enabled_for_syncmgr	=]	'enabled_for_syncmgr']
				[,	[@offloadagent	=]	remote_agent_activation]
				[,	[@offloadserver	=]	'remote_agent_server_name']
				[,	[@use_interactive_resolver	=]	'use_interactive_resolver']
				[,	[@merge_job_name	=]	'merge_job_name']

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	no	default.	The

publication	must	already	exist.

[@subscriber	=]	'subscriber'

Is	the	name	of	the	Subscriber.	subscriber	is	sysname,	with	a	default	of
NULL.

[@subscriber_db	=]	'subscriber_db'

Is	the	name	of	the	subscription	database.	subscriber_db	is	sysname,	with	a
default	of	NULL.

[@subscription_type	=]	'subscription_type'

Is	the	type	of	subscription.	subscription_type	is	nvarchar(15),	with	a	default
of	PUSH.	If	push,	a	push	subscription	is	added	and	the	Merge	Agent	is
added	at	the	Distributor.	If	pull,	a	pull	subscription	is	added	without	adding	a
Merge	Agent	at	the	Distributor.

Note		Anonymous	subscriptions	do	not	need	to	use	this	stored	procedure.

[@subscriber_type	=]	'subscriber_type'

Is	the	type	of	Subscriber.	subscriber_type	is	nvarchar(15),	and	can	be	one	of
these	values.

Value Description
local	(default) Subscriber	known	only	to	the	Publisher.
global Subscriber	known	to	all	servers.

[@subscription_priority	=]	subscription_priority

Is	a	number	indicating	the	priority	for	the	subscription.	subscription_priority
is	real,	with	a	default	of	NULL.	For	local	and	anonymous	subscriptions,	the
priority	is	0.0.	For	global	subscriptions,	the	priority	must	be	less	than	100.0.
For	more	information,	see	Subscriber	Types	and	Conflicts.

[@sync_type	=]	'sync_type'

Is	the	subscription	synchronization	type.	sync_type	is	nvarchar(15),	with	a
default	of	automatic.	Can	be	automatic	or	none.	If	automatic,	the	schema
and	initial	data	for	published	tables	are	transferred	to	the	Subscriber	first.	If

JavaScript:hhobj_1.Click()

none,	it	is	assumed	the	Subscriber	already	has	the	schema	and	initial	data	for
published	tables.	System	tables	and	data	are	always	transferred.

[@frequency_type	=]	frequency_type

Is	a	value	indicating	when	the	Merge	Agent	will	run.	frequency_type	is	int,
and	can	be	one	of	these	values.

Value Description
1 Once
4 Daily
8 Weekly
10 Monthly
20 Monthly,	relative	to	the	frequency	interval
40 When	SQL	Server	Agent	starts
NULL	(default) 	

[@frequency_interval	=]	frequency_interval

The	days	that	the	Merge	Agent	runs.	frequency_interval	is	int,	and	can	be
one	of	these	values.

Value Description
1 Sunday
2 Monday
3 Tuesday
4 Wednesday
5 Thursday
6 Friday
7 Saturday
8 Day
9 Weekdays
10 Weekend	days
NULL	(default) 	

[@frequency_relative_interval	=]	frequency_relative_interval

Is	the	scheduled	merge	occurrence	of	the	frequency	interval	in	each	month.
frequency_relative_interval	is	int,	and	can	be	one	of	these	values.

Value Description
1 First
2 Second
4 Third
8 Fourth
16 Last
NULL	(default) 	

[@frequency_recurrence_factor	=]	frequency_recurrence_factor

Is	the	recurrence	factor	used	by	frequency_type.	frequency_recurrence_factor
is	int,	with	a	default	of	NULL.

[@frequency_subday	=]	frequency_subday

Is	the	units	for	freq_subday_interval.	frequency_subday	is	int,	and	can	be
one	of	these	values.

Value Description
1 Once
2 Second
4 Minute
8 Hour
NULL	(default) 	

[@frequency_subday_interval	=]	frequency_subday_interval

Is	the	frequency	for	frequency_subday	to	occur	between	each	merge.
frequency_subday_interval	is	int,	with	a	default	of	NULL.

[@active_start_time_of_day	=]	active_start_time_of_day

Is	the	time	of	day	when	the	Merge	Agent	is	first	scheduled,	formatted	as
HHMMSS.	active_start_time_of_day	is	int,	with	a	default	of	NULL.

[@active_end_time_of_day	=]	active_end_time_of_day

Is	the	time	of	day	when	the	Merge	Agent	stops	being	scheduled,	formatted	as
HHMMSS.	active_end_time_of_day	is	int,	with	a	default	of	NULL.

[@active_start_date	=]	active_start_date

Is	the	date	when	the	Merge	Agent	is	first	scheduled,	formatted	as
YYYYMMDD.	active_start_date	is	int,	with	a	default	of	NULL.

[@active_end_date	=]	active_end_date

Is	the	date	when	the	Merge	Agent	stops	being	scheduled,	formatted	as
YYYYMMDD.	active_end_date	is	int,	with	a	default	of	NULL.

[@optional_command_line	=]	'optional_command_line'

Is	the	optional	command	prompt	to	execute.	optional_command_line	is
nvarchar(4000),	with	a	default	of	NULL.	This	parameter	is	used	to	add	a
command	that	captures	the	output	and	saves	it	to	a	file	or	to	specify	a
configuration	file	or	attribute.

[@description	=]	'description'

Is	a	brief	description	of	this	merge	subscription.	description	is
nvarchar(255),	with	a	default	of	NULL.

[@enabled_for_syncmgr	=]	'enabled_for_syncmgr'

Specifies	if	the	subscription	can	be	synchronized	through	Microsoft
Windows	Synchronization	Manager.	enabled_for_syncmgr	is	nvarchar(5),
with	a	default	of	FALSE.	If	false,	the	subscription	is	not	registered	with
Synchronization	Manager.	If	true,	the	subscription	is	registered	with
Synchronization	Manager	and	can	be	synchronized	without	starting	SQL
Server	Enterprise	Manager.

[@offloadagent	=]	remote_agent_activation

Specifies	that	the	agent	can	be	activated	remotely.	remote_agent_activationis
bit	with	a	default	of	0.	0	specifies	the	agent	cannot	be	activated	remotely.	1
specifies	the	agent	will	be	activated	remotely,	and	on	the	remote	computer

specified	by	remote_agent_server_name.

[@offloadserver	=]	'remote_agent_server_name'

Specifies	the	network	name	of	server	to	be	used	for	remote	agent	activation.
remote_agent_server_name	is	sysname,	with	a	default	of	NULL.

[@use_interactive_resolver	=]	'use_interactive_resolver'

Allows	conflicts	to	be	resolved	interactively	for	all	articles	that	allow
interactive	resolution.	use_interactive_resolver	is	nvarchar(5),	with	a
default	of	FALSE.

[@merge_job_name	=]	'merge_job_name'

For	internal	only	use.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_addmergesubscription	is	used	in	merge	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_addmergesubscription.

See	Also

Interactive	Resolver

sp_changemergesubscription

sp_dropmergesubscription

sp_helpmergesubscription

System	Stored	Procedures

JavaScript:hhobj_2.Click()

Transact-SQL	Reference

sp_addpublication
Creates	a	snapshot	or	transactional	publication.	This	stored	procedure	is
executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_addpublication	[@publication	=]	'publication'
				[,	[@taskid	=]	tasked]
				[,	[@restricted	=]	'restricted']
				[,	[@sync_method	=]	'sync_method']
				[,	[@repl_freq	=]	'repl_freq']
				[,	[@description	=]	'description']
				[,	[@status	=]	'status']
				[,	[@independent_agent	=]	'independent_agent']
				[,	[@immediate_sync	=]	'immediate_sync']
				[,	[@enabled_for_internet	=]	'enabled_for_internet']
				[,	[@allow_push	=]	'allow_push'
				[,	[@allow_pull	=]	'allow_pull']
				[,	[@allow_anonymous	=]	'allow_anonymous']
				[,	[@allow_sync_tran	=]	'allow_sync_tran']
				[,	[@autogen_sync_procs	=]	'autogen_sync_procs']
				[,	[@retention	=]	retention]
				[,	[@allow_queued_tran=]	'allow_queued_updating']
				[,	[@snapshot_in_defaultfolder=]	'snapshot_in_default_folder']
				[,	[@alt_snapshot_folder=]	'alternate_snapshot_folder']
				[,	[@pre_snapshot_script=]	'pre_snapshot_script']
				[,	[@post_snapshot_script=]	'post_snapshot_script']
				[,	[@compress_snapshot=]	'compress_snapshot']
				[,	[@ftp_address	=]	'ftp_address']
				[,	[@ftp_port=]	ftp_port]
				[,	[@ftp_subdirectory	=]	'ftp_subdirectory']
				[,	[@ftp_login	=]	'ftp_login']
				[,	[@ftp_password	=]	'ftp_password']
				[,	[@allow_dts	=]	'allow_transformable_subscriptions']
				[,	[@allow_subscription_copy	=]	'allow_subscription_copy']

				[,	[@conflict_policy	=]	'conflict_policy']
				[,	[@centralized_conflicts	=]	'centralized_conflicts']
				[,	[@conflict_retention	=]	conflict_retention]
				[,	[@queue_type	=]	'queue_type']
				[,	[@add_to_active_directory	=]	'add_to_active_directory']
				[,	[@logreader_job_name	=]	'logreader_agent_name']
				[,	[@qreader_job_name	=]	'queue_reader_agent_name']

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication	to	create.	publication	is	sysname,	with	no
default.	The	name	must	be	unique	within	the	database.

[@taskid	=]	taskid

Supported	for	backward	compatibility	only;	use
sp_addpublication_snapshot.

[@restricted	=]	'restricted'

Supported	for	backward	compatibility	only;	use	default_access.

[@sync_method	=]	'sync_method'

Is	the	synchronization	mode.	sync_method	is	nvarchar(13),	and	can	be	one
of	these	values.

Value Description
native
(default)

Produces	native-mode	bulk	copy	program	output	of	all
tables.

character Produces	character-mode	bulk	copy	program	output	of	all
tables.

concurrent Produces	native-mode	bulk	copy	program	output	of	all
tables	but	does	not	lock	tables	during	the	snapshot.

concurrent_c Produces	character-mode	bulk	copy	program	output	of	all
tables	but	does	not	lock	tables	during	the	snapshot.

Note		The	values	concurrent	and	concurrent_c	are	available	for	transactional
and	merge	replication,	but	not	snapshot	replication.

[@repl_freq	=]	'repl_freq'

Is	the	type	of	replication	frequency.	replication_frequency	is	nvarchar(10),
with	a	default	of	continuous.	If	continuous,	the	Publisher	provides	output	of
all	log-based	transactions.	If	Snapshot,	the	Publisher	produces	only
scheduled	synchronization	events.

[@description	=]	'description'

Is	an	optional	description	for	the	publication.	description	is	nvarchar(255),
with	a	default	of	NULL.

[@status	=]	'status'

Specifies	if	publication	data	is	available.	status	is	nvarchar(8),	and	can	be
one	of	these	values.

Value Description
active Publication	data	is	available	for	Subscribers	immediately.
inactive
(default)

Publication	data	is	not	available	for	Subscribers	when	the
publication	is	first	created	(they	can	subscribe,	but	the
subscriptions	are	not	processed).

[@independent_agent	=]	'independent_agent'

Specifies	if	there	is	a	stand-alone	Distribution	Agent	for	this	publication.
independent_agent	is	nvarchar(5),	with	a	default	of	FALSE.	If	true,	there	is
a	stand-alone	Distribution	Agent	for	this	publication.	If	false,	the	publication
uses	a	shared	Distribution	Agent,	and	each	Publisher	database/Subscriber
database	pair	has	a	single,	shared	Agent.

[@immediate_sync	=]	'immediate_synchronization'

Specifies	if	the	synchronization	files	for	the	publication	are	created	each	time
the	Snapshot	Agent	runs.	immediate_synchronization	is	nvarchar(5),	with	a
default	of	FALSE.	If	true,	the	synchronization	files	are	created	or	re-created
each	time	the	Snapshot	Agent	runs.	Subscribers	are	able	to	get	the

synchronization	files	immediately	if	the	Snapshot	Agent	has	completed
before	the	subscription	is	created.	New	subscriptions	get	the	newest
synchronization	files	generated	by	the	most	recent	execution	of	the	Snapshot
Agent.	independent_agent	must	be	true	for	immediate_synchronization	to	be
true.	If	false,	the	synchronization	files	are	created	only	if	there	are	new
subscriptions.	Subscribers	cannot	receive	the	synchronization	files	after	the
subscription	until	the	Snapshot	Agents	are	started	and	completed.

[@enabled_for_internet	=]	'enabled_for_internet'

Specifies	if	the	publication	is	enabled	for	the	Internet,	and	determines	if	FTP
can	be	use	to	transfer	the	snapshot	files	to	a	subscriber.	enabled_for_internet
is	nvarchar(5),	with	a	default	of	FALSE.	If	true,	the	synchronization	files
for	the	publication	are	put	into	the	C:\Program	Files\Microsoft	SQL
Server\MSSQL\Repldata\Ftp	directory.	The	user	must	create	the	Ftp
directory.

[@allow_push	=]	'allow_push'

Specifies	if	push	subscriptions	can	be	created	for	the	given	publication.
allow_push	is	nvarchar(5),	with	a	default	of	TRUE,	which	allows	push
subscriptions	on	the	publication.

[@allow_pull	=]	'allow_pull'

Specifies	if	pull	subscriptions	can	be	created	for	the	given	publication.
allow_pull	is	nvarchar(5),	with	a	default	of	FALSE.	If	false,	pull
subscriptions	are	not	allowed	on	the	publication.

[@allow_anonymous	=]	'allow_anonymous'

Specifies	if	anonymous	subscriptions	can	be	created	for	the	given
publication.	allow_anonymous	is	nvarchar(5),	with	a	default	of	FALSE.	If
true,	immediate_synchronization	must	also	be	set	to	true.	If	false,
anonymous	subscriptions	are	not	allowed	on	the	publication.

[@allow_sync_tran	=]	'allow_sync_tran'

Specifies	if	immediate-updating	subscriptions	are	allowed	on	the	publication.
allow_sync_tran	is	nvarchar(5),	with	a	default	of	FALSE.

[@autogen_sync_procs	=]	'autogen_sync_procs'

Specifies	if	the	synchronizing	stored	procedure	for	immediate-updating
subscriptions	is	generated	at	the	Publisher.	autogen_sync_procs	is
nvarchar(5),	with	a	default	of	TRUE.

[@retention	=]	retention]

Is	the	retention	period	in	hours	for	subscription	activity.	retention	is	int,	with
a	default	of	336	hours.	If	a	subscription	is	not	active	within	the	retention
period,	it	expires	and	is	removed.	The	value	can	be	greater	than	the
maximum	retention	period	of	the	distribution	database	used	by	the	Publisher.
If	0,	well-known	subscriptions	to	the	publication	will	never	expire	and	be
removed	by	the	Expired	Subscription	Cleanup	Agent.	For	more	information,
see	Subscription	Deactivation	and	Expiration.

[@allow_queued_tran	=]	'allow_queued_updating'

Enables	or	disables	queuing	of	changes	at	the	Subscriber	until	they	can	be
applied	at	the	Publisher.	allow_queued_updating	is	nvarchar(5)	with	a
default	of	FALSE.	If	false,	changes	at	the	Subscriber	are	not	queued.

[@snapshot_in_defaultfolder	=]	'snapshot_in_default_folder'

Specifies	if	snapshot	files	are	stored	in	the	default	folder.
snapshot_in_default_folder	is	nvarchar(5)	with	a	default	of	TRUE.	If	true,
snapshot	files	can	be	found	in	the	default	folder.	If	false,	snapshot	files	have
been	stored	in	the	alternate	location	specified	by	alternate_snapshot_folder.
Alternate	locations	can	be	on	another	server,	on	a	network	drive,	or	on
removable	media	(such	as	CD-ROM	or	removable	disks).	You	can	also	save
the	snapshot	files	to	a	File	Transfer	Protocol	(FTP)	site,	for	retrieval	by	the
Subscriber	at	a	later	time.	Note	that	this	parameter	can	be	true	and	still	have
a	location	in	the	@alt_snapshot_folder	parameter.	This	combination
specifies	that	the	snapshot	files	will	be	stored	in	both	the	default	and
alternate	locations.

[@alt_snapshot_folder	=]	'alternate_snapshot_folder'

Specifies	the	location	of	the	alternate	folder	for	the	snapshot.
alternate_snapshot_folder	is	nvarchar(255)	with	a	default	of	NULL.

[@pre_snapshot_script	=]	'pre_snapshot_script'

Specifies	a	pointer	to	an	.sql	file	location.	pre_snapshot_script	is

JavaScript:hhobj_1.Click()

nvarchar(255),	with	a	default	of	NULL.	The	Distribution	Agent	will	run	the
pre-snapshot	script	before	running	any	of	the	replicated	object	scripts	when
applying	a	snapshot	at	a	Subscriber.

[@post_snapshot_script	=]	'post_snapshot_script'

Specifies	a	pointer	to	an	.sql	file	location.	post_snapshot_script
isnvarchar(255),	with	a	default	of	NULL.	The	Distribution	Agent	will	run
the	post-snapshot	script	after	all	the	other	replicated	object	scripts	and	data
have	been	applied	during	an	initial	synchronization.

[@compress_snapshot	=]	'compress_snapshot'

Specifies	that	the	snapshot	that	is	written	to	the	@alt_snapshot_folder
location	is	to	be	compressed	into	the	Microsoft®	CAB	format.
compress_snapshot	is	nvarchar(5),	with	a	default	of	FALSE.	false	specifies
that	the	snapshot	will	not	be	compressed;	true	specifies	that	the	snapshot
will	be	compressed.	The	snapshot	in	the	default	folder	cannot	be
compressed.

[@ftp_address	=]	'ftp_address'

Is	the	network	address	of	the	FTP	service	for	the	Distributor.		ftp_address	is
sysname,	with	a	default	of	NULL.	Specifies	where	publication	snapshot	files
are	located	for	the	Distribution	Agent	or	Merge	Agent	of	a	subscriber	to	pick
up.	Since	this	property	is	stored	for	each	publication,	each	publication	can
have	a	different	ftp_address.	The	publication	must	support	propagating
snapshots	using	FTP.	For	more	information,	see	Configuring	a	Publication	to
Allow	Subscribers	to	Retrieve	Snapshots	Using	FTP.

[@ftp_port	=]	ftp_port

Is	the	port	number	of	the	FTP	service	for	the	Distributor.	ftp_port	is	int,	with
a	default	of	21.	Specifies	where	the	publication	snapshot	files	are	located	for
the	Distribution	Agent	or	Merge	Agent	of	a	subscriber	to	pick	up.	Since	this
property	is	stored	for	each	publication,	each	publication	can	have	its	own
ftp_port.

[@ftp_subdirectory	=]	'ftp_subdirectory'

Specifies	where	the	snapshot	files	will	be	available	for	the	Distribution
Agent	or	Merge	Agent	of	subscriber	to	pick	up	if	the	publication	supports

JavaScript:hhobj_2.Click()

propagating	snapshots	using	FTP.	ftp_subdirectory	is	nvarchar(255),	with	a
default	of	NULL.	Since	this	property	is	stored	for	each	publication,	each
publication	can	have	its	own	ftp_subdirctory	or	choose	to	have	no
subdirectory,	indicated	with	a	NULL	value.

[@ftp_login	=]	'ftp_login'

Is	the	username	used	to	connect	to	the	FTP	service.	ftp_login	is	sysname,
with	a	default	of	ANONYMOUS.

[@ftp_password	=]	'ftp_password'

Is	the	user	password	used	to	connect	to	the	FTP	service.	ftp_password	is
sysname,	with	a	default	of	NULL.

[@allow_dts	=]	'allow_transformable_subscriptions'

Specifies	that	the	publication	allows	data	transformations.	You	can	specify	a
DTS	package	when	creating	a	subscription.
allow_transformable_subscriptions	is	nvarchar(5)	with	a	default	of	FALSE,
which	does	not	allow	DTS	transformations.

[@allow_subscription_copy	=]	'allow_subscription_copy'

Enables	or	disables	the	ability	to	copy	the	subscription	databases	that
subscribe	to	this	publication.	allow_subscription_copy	is	nvarchar(5),	with
a	default	of	FALSE.

[@conflict_policy	=]	'conflict_policy'

Specifies	the	conflict	resolution	policy	followed	when	the	queued	updating
subscriber	option	is	used.	conflict_policy	is	nvarchar(100)	with	a	default	of
NULL,	and	can	be	one	of	these	values.

Value Description
pub	wins Publisher	wins	the	conflict.
sub	reinit Reinitialize	the	subscription.
sub	wins Subscriber	wins	the	conflict.
NULL	(default) If	NULL,	and	the	publication	is	a	snapshot	publication,

the	default	policy	becomes	sub	reinit.	If	NULL	and	the
publication	is	not	a	snapshot	publication,	the	default
becomes	pub	wins.

[@centralized_conflicts	=]	'centralized_conflicts'

Specifies	if	conflict	records	are	stored	on	the	Publisher.	centralized_conflicts
is	nvarchar(5),	with	a	default	of	TRUE.	If	true,	conflict	records	are	stored
at	the	Publisher.	If	false,	conflict	records	are	stored	at	both	the	publisher	and
at	the	subscriber	that	caused	the	conflict.

[@conflict_retention	=]	conflict_retention

Specifies	the	conflict	retention	period,	in	days.	conflict_retention	is	int,	with
a	default	of	14.

[@queue_type	=]	'queue_type'

Specifies	which	type	of	queue	is	used.	queue_type	is	nvarchar(10),	with	a
default	of	NULL,	and	can	be	one	of	these	values.

Value Description
msmq Use	Microsoft	Message	Queuing	to

store	transactions.
sql Use	SQL	Server	to	store	transactions.
NULL	(default) Defaults	to	sql,	which	specifies	to

use	SQL	Server	to	store	transactions.

[@add_to_active_directory	=]	'add_to_active_directory'

Specifies	if	the	publication	information	is	published	to	the	Microsoft	Active
Directory™.	add_to_active_directory	is	nvarchar(10),	with	a	default	of
FALSE.	This	feature	is	available	only	for	servers	running	the	Microsoft
Windows®	2000	operating	system.

[@logreader_job_name	=]	'logreader_agent_name'

For	internal	use	only.

[@qreader_job_name	=]	'queue_reader_agent_name'

For	internal	use	only.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_addpublication	is	used	in	snapshot	replication	and	transactional	replication.

To	list	publication	objects	to	the	Active	Directory	using	the
@add_to_active_directory	parameter,	the	SQL	Server	object	must	already	be
created	in	the	Active	Directory.	For	more	information,	see	Active	Directory
Services.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_addpublication.

See	Also

sp_addarticle

sp_articlecolumn

sp_changearticle

sp_changepublication

sp_droparticle

sp_droppublication

sp_enumfullsubscribers

sp_helparticle

sp_helparticlecolumns

sp_helppublication

System	Stored	Procedures

JavaScript:hhobj_3.Click()

Transact-SQL	Reference

sp_addpublication_snapshot
Creates	the	Snapshot	Agent	for	the	specified	publication.	This	stored	procedure
is	executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_addpublication_snapshot	[@publication	=]	'publication'
				[,	[@frequency_type	=]	frequency_type]
				[,	[@frequency_interval	=]	frequency_interval]
				[,	[@frequency_subday	=]	frequency_subday]
				[,	[@frequency_subday_interval	=]	frequency_subday_interval]
				[,	[@frequency_relative_interval	=]	frequency_relative_interval]
				[,	[@frequency_recurrence_factor	=]	frequency_recurrence_factor]
				[,	[@active_start_date	=]	active_start_date]
				[,	[@active_end_date	=]	active_end_date]
				[,	[@active_start_time_of_day	=]	active_start_time_of_day]
				[,	[@active_end_time_of_day	=]	active_end_time_of_day]
				[,	[@snapshot_job_name	=]	'snapshot_agent_name']

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	no	default.

[@frequency_type	=]	frequency_type

Is	the	frequency	with	which	the	Snapshot	Agent	is	executed.	frequency_type
is	int,	and	can	be	one	of	these	values.

Value Description
1 Once.
4	(default) Daily.
8 Weekly.
10 Monthly.
20 Monthly,	relative	to	the	frequency

interval.
40 When	SQL	Server	Agent	starts.

[@frequency_interval	=]	frequency_interval

Is	the	value	to	apply	to	the	frequency	set	by	frequency_type.
frequency_interval	is	int,	with	a	default	of	1,	which	means	daily.

[@frequency_subday	=]	frequency_subday

Is	the	units	for	freq_subday_interval.	frequency_subday	is	int,	and	can	be
one	of	these	values.

Value Description
1 Once
2 Second
4	(default) Minute
8 Hour

[@frequency_subday_interval	=]	frequency_subday_interval

Is	the	interval	for	frequency_subday.	frequency_subday_interval	is	int,	with
a	default	of	5,	which	means	every	5	minutes.

[@frequency_relative_interval	=]	frequency_relative_interval

Is	the	date	the	Snapshot	Agent	runs.	frequency_relative_interval	is	int,	with	a
default	of	1.

[@frequency_recurrence_factor	=]	frequency_recurrence_factor

Is	the	recurrence	factor	used	by	frequency_type.	frequency_recurrence_factor
is	int,	with	a	default	of	0.

[@active_start_date	=]	active_start_date

Is	the	date	when	the	Snapshot	Agent	is	first	scheduled,	formatted	as
YYYYMMDD.	active_start_date	is	int,	with	a	default	of	0.

[@active_end_date	=]	active_end_date

Is	the	date	when	the	Snapshot	Agent	stops	being	scheduled,	formatted	as
YYYYMMDD.	active_end_date	is	int,	with	a	default	of	99991231,	which
means	December	31,	9999.

[@active_start_time_of_day	=]	active_start_time_of_day

Is	the	time	of	day	when	the	Snapshot	Agent	is	first	scheduled,	formatted	as
HHMMSS.	active_start_time_of_day	is	int,	with	a	default	of	0.

[@active_end_time_of_day	=]	active_end_time_of_day

Is	the	time	of	day	when	the	Snapshot	Agent	stops	being	scheduled,	formatted
as	HHMMSS.	active_end_time_of_day	is	int,	with	a	default	of	235959,
which	means	11:59:59	P.M.	as	measured	on	a	24-hour	clock.

[@snapshot_job_name	=]	'snapshot_agent_name'

For	internal	use	only.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_addpublication_snapshot	is	used	in	snapshot	replication	and	transactional
replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_addpublication_snapshot.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_addpublisher70
Adds	a	Microsoft®	SQL	Server™	version	7.0	or	SQL	Server	2000	Publisher	at	a
SQL	Server	version	6.5	Subscriber.	This	stored	procedure	is	executed	at	the	SQL
Server	6.5	Subscriber	on	any	database.

Syntax
sp_addpublisher70	[@publisher	=]	'publisher'	,
				[@dist_account	=]	'dist_account'

Arguments
[@publisher	=]	'publisher'

Is	the	name	of	the	Publisher.	publisher	is	varchar(30),	with	no	default.

[@dist_account	=]	'dist_account'

Is	the	Microsoft	Windows®	account	used	by	the	Distribution	Agent	at	the
Distributor.	In	most	cases,	it	is	the	Windows	account	of	the	SQL	Server
Agent	at	the	Distributor.	dist_account	is	varchar(255),	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_addpublisher70	is	used	in	snapshot	replication	and	transactional	replication.

To	add	a	SQL	Server	7.0	Publisher	or	SQL	Server	2000	Publisher	at	a	SQL
Server	6.5	Subscriber,	apply	a	script	to	the	SQL	Server	version	6.5	server	that
creates	the	sp_addpublisher70	stored	procedure.	The	script	is	in	the	file
Replp70.sql	located	in	the	\Mssql7\Install	directory.

Permissions
On	servers	running	SQL	Server	6.5,	execute	permission	defaults	to	the	system

administrator.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_addpullsubscription
Adds	a	pull	or	anonymous	subscription	to	a	snapshot	or	transactional
publication.	This	stored	procedure	is	executed	at	the	Subscriber	on	the	database
where	the	pull	subscription	is	to	be	created.

Syntax
sp_addpullsubscription	[@publisher	=]	'publisher'
				,	[@publisher_db	=]	'publisher_db'
				,	[@publication	=]	'publication'
				[,	[@independent_agent	=]	'independent_agent']
				[,	[@subscription_type	=]	'subscription_type']
				[,	[@description	=]	'description']
				[,	[@update_mode	=]	'update_mode']
				[,	[@immediate_sync	=]	immediate_sync]

Arguments
[@publisher	=]	'publisher'

Is	the	name	of	the	Publisher.	publisher	is	sysname,	with	no	default.

[@publisher_db	=]	'publisher_db'

Is	the	name	of	the	Publisher	database.	publisher_db	is	sysname,	with	no
default.

[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	no	default.

[@independent_agent	=]	'independent_agent'

Specifies	if	there	is	a	stand-alone	Distribution	Agent	for	this	publication.
independent_agent	is	nvarchar(5),	with	a	default	of	TRUE.	If	true,	there	is
a	stand-alone	Distribution	Agent	for	this	publication.	If	false,	there	is	one
Distribution	Agent	for	each	Publisher	database/Subscriber	database	pair.
independent_agent	is	a	property	of	the	publication	and	must	have	the	same
value	here	as	it	has	at	the	Publisher.

[@subscription_type	=]	'subscription_type'

Is	the	subscription	type	of	the	publication.	subscription_type	is	nvarchar(9),
and	can	be	one	of	these	values.

Value Description
pull Pull	subscription
anonymous	(default) Anonymous	subscription

[@description	=]	'description'

Is	the	description	of	the	publication.	description	is	nvarchar(100),	with	a
default	of	NULL.

[@update_mode	=]	'update_mode'

Is	the	type	of	update.	update_mode	is	nvarchar(15),	and	can	be	one	of	these
values.

Value Description
read-only	(default) The	subscription	is	read-only.	The	changes	at	the

Subscriber	will	not	be	sent	back	to	the	Publisher.
synctran Enables	support	for	immediate	updating

subscriptions.
queued	tran Enables	the	subscription	for	queued	updating.

Data	modifications	can	be	made	at	the	Subscriber,
stored	in	a	queue,	and	then	propagated	to	the
Publisher.

failover Enables	the	subscription	for	immediate	updating
with	queued	updating	as	a	failover.	Data
modifications	can	be	made	at	the	Subscriber	and
propagated	to	the	Publisher	immediately.	If	the
Publisher	and	Subscriber	are	not	connected,	data
modifications	made	at	the	Subscriber	can	be
stored	in	a	queue	until	the	Subscriber	and
Publisher	are	reconnected.

[@immediate_sync	=]	immediate_sync

Is	whether	the	synchronization	files	are	created	or	re-created	each	time	the
Snapshot	Agent	runs.	immediate_sync	is	bit	with	a	default	of	1,	and	must	be
set	to	the	same	value	as	immediate_sync	in	sp_addpublication.
immediate_sync	is	a	property	of	the	publication	and	must	have	the	same
value	here	as	it	has	at	the	Publisher.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_addpullsubscription	is	used	in	snapshot	replication	and	transactional
replication.

If	the	MSreplication_subscriptions	table	does	not	exist	at	the	Subscriber,
sp_addpullsubscription	creates	it.	It	also	adds	a	row	to	the
MSreplication_subscriptions	table.	For	pull	subscriptions,	sp_addsubscription
should	be	called	at	the	Publisher	first.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_addpullsubscription.

See	Also

sp_droppullsubscription

sp_helppullsubscription

System	Stored	Procedures

Transact-SQL	Reference

sp_addpullsubscription_agent
Adds	a	new	agent	to	the	Subscriber	database.	This	stored	procedure	is	executed
at	the	Subscriber	on	the	subscription	database.

Syntax
sp_addpullsubscription_agent	[@publisher	=]	'publisher'
				,	[@publisher_db	=]	'publisher_db'
				,	[@publication	=]	'publication'
				[,	[@subscriber	=]	'subscriber']
				[,	[@subscriber_db	=]	'subscriber_db']
				[,	[@subscriber_security_mode	=]	subscriber_security_mode]
				[,	[@subscriber_login	=]	'subscriber_login']
				[,	[@subscriber_password	=]	'subscriber_password']
				[,	[@distributor	=]	'distributor']
				[,	[@distribution_db	=]	'distribution_db']
				[,	[@distributor_security_mode	=]	distributor_security_mode]
				[,	[@distributor_login	=]	'distributor_login']
				[,	[@distributor_password	=]	'distributor_password']
				[,	[@optional_command_line	=]	'optional_command_line']
				[,	[@frequency_type	=]	frequency_type]
				[,	[@frequency_interval	=]	frequency_interval]
				[,	[@frequency_relative_interval	=]	frequency_relative_interval]
				[,	[@frequency_recurrence_factor	=]	frequency_recurrence_factor]
				[,	[@frequency_subday	=]	frequency_subday]
				[,	[@frequency_subday_interval	=]	frequency_subday_interval]
				[,	[@active_start_time_of_day	=]	active_start_time_of_day]
				[,	[@active_end_time_of_day	=]	active_end_time_of_day]
				[,	[@active_start_date	=]	active_start_date]
				[,	[@active_end_date	=]	active_end_date]
				[,	[@distribution_jobid	=]	distribution_jobid	OUTPUT]
				[,	[@encrypted_distributor_password	=]	encrypted_distributor_password
]
				[,	[@enabled_for_syncmgr	=]	'enabled_for_syncmgr']
				[,	[@ftp_address	=]	'ftp_address']

				[,	[@ftp_port	=]	ftp_port]
				[,	[@ftp_login	=]	'ftp_login']
				[,	[@ftp_password	=]	'ftp_password']
				[,	[@alt_snapshot_folder	=]	'alternate_snapshot_folder']
				[,	[@working_directory	=]	'working_directory']
				[,	[@use_ftp	=]	'use_ftp']
				[,	[@publication_type=]	publication_type]
				[,	[@dts_package_name	=]	'dts_package_name']
				[,	[@dts_package_password	=]	'dts_package_password']
				[,	[@dts_package_location	=]	'dts_package_location']
				[,	[@reserved	=]	'reserved']
				[,	[@offloadagent	=]	'remote_agent_activation']
				[,	[@offloadserver	=]	'remote_agent_server_name']
				[,	[@job_name	=]	'job_name']

Arguments
[@publisher	=]	'publisher'

Is	the	name	of	the	Publisher.	publisher	is	sysname,	with	no	default.

[@publisher_db	=]	'publisher_db'

Is	the	name	of	the	Publisher	database.	publisher_db	is	sysname,	with	no
default.

[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	no	default.

[@subscriber	=]	'subscriber'

Is	the	name	of	the	Subscriber.	subscriber	is	sysname,	with	a	default	of
NULL.

[@subscriber_db	=]	'subscriber_db'

Is	the	name	of	the	subscription	database.	subscriber_db	is	sysname,	with	a
default	of	NULL.

[@subscriber_security_mode	=]	subscriber_security_mode

Is	the	security	mode	to	use	when	connecting	to	a	Subscriber	when

synchronizing.	subscriber_security_mode	is	int,	with	a	default	of	NULL.	0
specifies	Microsoft	SQL	Server	Authentication.	1	specifies	Microsoft
Windows	Authentication.

[@subscriber_login	=]	'subscriber_login'

Is	the	Subscriber	login	to	use	when	connecting	to	a	Subscriber	when
synchronizing.	subscriber_login	is	sysname,	with	a	default	of	NULL.

[@subscriber_password	=]	'subscriber_password'

Is	the	Subscriber	password.	subscriber_password	is	required	if
subscriber_security_mode	is	set	to	0.	subscriber_password	is	sysname,	with
a	default	of	NULL.	If	a	subscriber	password	is	used,	it	is	automatically
encrypted.

[@distributor	=]	'distributor'

Is	the	name	of	the	Distributor.	distributor	is	sysname,	with	a	default	of	the
value	specified	by	publisher.

[@distribution_db	=]	'distribution_db'

Is	the	name	of	the	Distributor.	distribution_db	is	sysname,	with	no	default.

[@distributor_security_mode	=]	distributor_security_mode

Is	the	security	mode	to	use	when	connecting	to	a	Distributor	when
synchronizing.	distributor_security_mode	is	int,	with	a	default	of	0.	0
specifies	Microsoft	SQL	Server	Authentication.	1	specifies	Microsoft
Windows	Authentication.

[@distributor_login	=]	'distributor_login'

Is	the	Distributor	login	to	use	when	connecting	to	a	Distributor	when
synchronizing.	distributor_login	is	required	if	distributor_security_mode	is
set	to	0.	distributor_login	is	sysname,	with	a	default	of	sa.

[@distributor_password	=]	'distributor_password'

Is	the	Distributor	password.	distributor_password	is	required	if
distributor_security_mode	is	set	to	0.	distributor_password	is	sysname,	with
a	default	of	NULL.

[@optional_command_line	=]	'optional_command_line'

Is	an	optional	command	prompt	supplied	to	the	Distribution	Agent.	For
example,	-DefinitionFile	C:\Distdef.txt	or	-CommitBatchSize	10.
optional_command_line	is	nvarchar(4000),	with	a	default	of	empty	string.

[@frequency_type	=]	frequency_type

Is	the	frequency	with	which	to	schedule	the	Distribution	Agent.
frequency_type	is	int,	and	can	be	one	of	these	values.

Value Description
1 One	time
2	(default) On	demand
4 Daily
8 Weekly
16 Monthly
32 Monthly	relative
64 Autostart
124 Recurring

[@frequency_interval	=]	frequency_interval

Is	the	value	to	apply	to	the	frequency	set	by	frequency_type.
frequency_interval	is	int,	with	a	default	of	1.

[@frequency_relative_interval	=]	frequency_relative_interval

Is	the	date	of	the	Distribution	Agent.	This	parameter	is	used	when
frequency_type	is	set	to	32	(monthly	relative).	frequency_relative_interval	is
int,	and	can	be	one	of	these	values.

Value Description
1	(default) First
2 Second
4 Third
8 Fourth
16 Last

[@frequency_recurrence_factor	=]	frequency_recurrence_factor

Is	the	recurrence	factor	used	by	frequency_type.	frequency_recurrence_factor
is	int,	with	a	default	of	1.

[@frequency_subday	=]	frequency_subday

Is	how	often	to	reschedule	during	the	defined	period.	frequency_subday	is
int,	and	can	be	one	of	these	values.

Value Description
1	(default) Once
2 Second
4 Minute
8 Hour

[@frequency_subday_interval	=]	frequency_subday_interval

Is	the	interval	for	frequency_subday.	frequency_subday_interval	is	int,	with
a	default	of	1.

[@active_start_time_of_day	=]	active_start_time_of_day

Is	the	time	of	day	when	the	Distribution	Agent	is	first	scheduled,	formatted
as	HHMMSS.	active_start_time_of_day	is	int,	with	a	default	of	0.

[@active_end_time_of_day	=]	active_end_time_of_day

Is	the	time	of	day	when	the	Distribution	Agent	stops	being	scheduled,
formatted	as	HHMMSS.	active_end_time_of_day	is	int,	with	a	default	of	0.

[@active_start_date	=]	active_start_date

Is	the	date	when	the	Distribution	Agent	is	first	scheduled,	formatted	as
YYYYMMDD.	active_start_date	is	int,	with	a	default	of	0.

[@active_end_date	=]	active_end_date

Is	the	date	when	the	Distribution	Agent	stops	being	scheduled,	formatted	as
YYYYMMDD.	active_end_date	is	int,	with	a	default	of	0.

[@distribution_jobid	=]	distribution_jobid	OUTPUT

Is	the	ID	of	the	Distribution	Agent	for	this	job.	distribution_jobid	is
binary(16),	with	a	default	of	NULL,	and	it	is	an	OUTPUT	parameter.

[@encrypted_distributor_password	=]	encrypted_distributor_password

For	internal	use	only.

[@enabled_for_syncmgr	=]	'enabled_for_syncmgr'

Is	whether	the	subscription	can	be	synchronized	through	Microsoft
Synchronization	Manager.	enabled_for_syncmgr	is	nvarchar(5),	with	a
default	of	FALSE.	If	false,	the	subscription	is	not	registered	with
Synchronization	Manager.	If	true,	the	subscription	is	registered	with
Synchronization	Manager	and	can	be	synchronized	without	starting	SQL
Server	Enterprise	Manager.

[@ftp_address	=]	'ftp_address'

For	backward	compatibility	only.

[@ftp_port	=]	ftp_port

For	backward	compatibility	only.

[@ftp_login	=]	'ftp_login'

For	backward	compatibility	only.

[@ftp_password	=]	'ftp_password'

For	backward	compatibility	only.

[@alt_snapshot_folder	=]	'alternate_snapshot_folder'

Specifies	the	location	of	the	alternate	folder	for	the	snapshot.
alternate_snapshot_folder	is	nvarchar(255),	with	a	default	of	NULL.

[@working_directory	=]	'working_director'

Is	the	name	of	the	working	directory	used	to	store	data	and	schema	files	for
the	publication.	working_directory	is	nvarchar(255),	with	a	default	of
NULL.	The	name	should	be	specified	in	UNC	format.

[@use_ftp	=]	'use_ftp'

Specifies	the	use	of	FTP	instead	of	the	regular	protocol	to	retrieve	snapshots.
use_ftp	is	nvarchar(5),	with	a	default	of	FALSE.

[@publication_type	=]	publication_type

Specifies	the	replication	type	of	the	publication.	publication_type	is	a	tinyint
with	a	default	of	0.	If	0,	publication	is	a	transaction	type.	If	1,	publication	is	a
snapshot	type.	If	2,	publication	is	a	merge	type.

[@dts_package_name	=]	'dts_package_name'

Specifies	the	name	of	the	DTS	package.	dts_package_name	is	a	sysname
with	a	default	of	NULL.	For	example,	to	specify	a	package	of
DTSPub_Package,	the	parameter	would	be	@dts_package_name	=
N'DTSPub_Package'.

[@dts_package_password	=]	'dts_package_password'

Specifies	the	password	on	the	package,	if	there	is	one.
dts_package_password	is		sysname	with	a	default	of	NULL,	which	means	a
password	is	not	on	the	package.

[@dts_package_location	=]	'dts_package_location'

Specifies	the	package	location.	dts_package_location	is	a	nvarchar(12),
with	a	default	of	SUBSCRIBER.	The	location	of	the	package	can	be
distributor	or	subscriber.

[@reserved	=]	'reserved'

For	internal	use	only.

[@offloadagent	=]	'remote_agent_activation'

Specifies	that	the	agent	can	be	activated	remotely.	remote_agent_activation
is	bit,	with	a	default	of	0.	0	specifies	the	agent	cannot	be	activated	remotely.
1	specifies	the	agent	will	be	activated	remotely,	and	on	the	remote	computer
specified	by	remote_agent_server_name.

[@offloadserver	=]	'remote_agent_server_name'

Specifies	the	network	name	of	server	to	be	used	for	remote	activation.
remote_agent_server_name	is	sysname,	with	a	default	of	NULL.

[@job_name	=]	'job_name'

For	internal	use	only.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_addpullsubscription_agent	is	used	in	snapshot	replication	and	transactional
replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_addpullsubscription_agent.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_addscriptexec
Posts	a	SQL	script	(.sql	file)	to	all	subscribers	of	a	publication.	This	stored
procedure	is	executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_addscriptexec	[@publication	=]	publication
				[,	[@scriptfile	=]	'scriptfile']
				[,	[@skiperror	=]	'skiperror']

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	no	default.

[@scriptfile	=]	'scriptfile'

Is	the	full	path	to	the	SQL	script	file.	scriptfile	is	nvarchar(4000),	with	no
default.

[@skiperror	=]	'skiperror'

Inicates	whether	the	Distribution	Agent	or	Merge	Agent	should	stop	when	an
error	is	encountered	during	script	processing.	SkipError	is	bit,	with	a	default
of	0.	If	0,	the	Distribution	Agent	or	Merge	Agent	stops.	If	1,	the	Distribution
Agent	or	Merge	Agent	continues	the	script	and	ignores	the	error.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_addscriptexec	is	used	in	transactional	replication	and	merge	replication.

sp_addscriptexec	is	not	used	for	snapshot	replication.

sp_addscriptexec	is	useful	in	applying	scripts	to	subscribers,	and	uses	osql.exe

to	apply	the	contents	of	the	script	to	the	Subscriber.	However,	because
Subscriber	configurations	can	vary,	scripts	tested	prior	to	posting	to	the
Publisher	may	still	cause	errors	on	a	Subscriber.	The	SkipError	bit	gives	the	user
the	ability	to	have	the	Distribution	Agent	or	Merge	Agent	ignore	errors	and
continue	on.	Use	osql.exe	to	test	scripts	prior	to	running	sp_addscriptexec.

Note	that	skipped	errors	will	continue	to	be	logged	in	the	Agent	history	for
reference.	For	more	information,	see	Viewing	Agent	History.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_addscriptexec.

See	Also

Agents	and	Monitors

How	to	monitor	replication	agent	history	(Enterprise	Manager)

System	Stored	Procedures

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Transact-SQL	Reference

sp_addsubscriber
Adds	a	new	Subscriber	to	a	Publisher,	enabling	it	to	receive	publications.	This
stored	procedure	is	executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_addsubscriber	[@subscriber	=]	'subscriber'
				[,	[@type	=]	type]	
				[,	[@login	=]	'login']
				[,	[@password	=]	'password']
				[,	[@commit_batch_size	=]	commit_batch_size]
				[,	[@status_batch_size	=]	status_batch_size]
				[,	[@flush_frequency	=]	flush_frequency]
				[,	[@frequency_type	=]	frequency_type]
				[,	[@frequency_interval	=]	frequency_interval]
				[,	[@frequency_relative_interval	=]	frequency_relative_interval]
				[,	[@frequency_recurrence_factor	=]	frequency_recurrence_factor]
				[,	[@frequency_subday	=]	frequency_subday]
				[,	[@frequency_subday_interval	=]	frequency_subday_interval]
				[,	[@active_start_time_of_day	=]	active_start_time_of_day]
				[,	[@active_end_time_of_day	=]	active_end_time_of_day]
				[,	[@active_start_date	=]	active_start_date]
				[,	[@active_end_date	=]	active_end_date]
				[,	[@description	=]	'description']
				[,	[@security_mode	=]	security_mode]
				[,	[@encrypted_password	=]	encrypted_password]

Arguments
[@subscriber	=]	'subscriber'

Is	the	name	of	the	server	to	be	added	as	a	valid	Subscriber	to	the	publications
on	this	server.	subscriber	is	sysname,	with	no	default.

[@type	=]	type

Is	the	type	of	Subscriber.	type	is	tinyint,	and	can	be	one	of	these	values.

Value Description
0	(default) Microsoft®	SQL	Server™	Subscriber
1 ODBC	data	source	server
2 Microsoft	Jet	database
3 OLE	DB	provider

[@login	=]	'login'

Is	the	login	ID	for	SQL	Server	Authentication.	login	is	sysname,	with	a
default	of	sa.

[@password	=]	'password

Is	the	password	for	SQL	Server	Authentication.	password	is	sysname,	with	a
default	of	NULL.

[@commit_batch_size	=]	commit_batch_size

Supported	for	backward	compatibility	only.

[@status_batch_size	=]	status_batch_size

Supported	for	backward	compatibility	only.

[@flush_frequency	=]	flush_frequency

Supported	for	backward	compatibility	only.

[@frequency_type	=]	frequency_type

Is	the	frequency	with	which	to	schedule	the	Distribution	Agent.
frequency_type	is	int,	and	can	be	one	of	these	values.

Value Description
1 One	time
2 On	demand
4 Daily
8 Weekly
16 Monthly
32 Monthly	relative

64	(default) Autostart
124 Recurring

[@frequency_interval	=]	frequency_interval

Is	the	value	applied	to	the	frequency	set	by	frequency_type.
frequency_interval	is	int,	with	a	default	of	1.

[@frequency_relative_interval	=]	frequency_relative_interval

Is	the	date	of	the	Distribution	Agent.	This	parameter	is	used	when
frequency_type	is	set	to	32	(monthly	relative).	frequency_relative_interval	is
int,	and	can	be	one	of	these	values.

Value Description
1	(default) First
2 Second
4 Third
8 Fourth
16 Last

[@frequency_recurrence_factor	=]	frequency_recurrence_factor

Is	the	recurrence	factor	used	by	frequency_type.	frequency_recurrence_factor
is	int,	with	a	default	of	0.

[@frequency_subday	=]	frequency_subday

Is	how	often	to	reschedule	during	the	defined	period.	frequency_subday	is
int,	and	can	be	one	of	these	values.

Value Description
1 Once
2 Second
4	(default) Minute
8 Hour

[@frequency_subday_interval	=]	frequency_subday_interval

Is	the	interval	for	frequency_subday.	frequency_subday_interval	is	int,	with
a	default	of	5.

[@active_start_time_of_day	=]	active_start_time_of_day

Is	the	time	of	day	when	the	Distribution	Agent	is	first	scheduled,	formatted
as	HHMMSS.	active_start_time_of_day	is	int,	with	a	default	of	0.

[@active_end_time_of_day	=]	active_end_time_of_day

Is	the	time	of	day	when	the	Distribution	Agent	stops	being	scheduled,
formatted	as	HHMMSS.	active_end_time_of_day	is	int,	with	a	default	of
235959,	which	means	11:59:59	P.M.	as	measured	on	a	24-hour	clock.

[@active_start_date	=]	active_start_date

Is	the	date	when	the	Distribution	Agent	is	first	scheduled,	formatted	as
YYYYMMDD.	active_start_date	is	int,	with	a	default	of	0.

[@active_end_date	=]	active_end_date

Is	the	date	when	the	Distribution	Agent	stops	being	scheduled,	formatted	as
YYYYMMDD.	active_end_date	is	int,	with	a	default	of	99991231,	which
means	December	31,	9999.

[@description	=]	'description'

Is	a	text	description	of	the	Subscriber.	description	is	nvarchar(255),	with	a
default	of	NULL.

[@security_mode	=]	security_mode

Is	the	implemented	security	mode.	security_mode	is	int,	with	a	default	of	1.
0	specifies	SQL	Server	Authentication.	1	specifies	Windows	Authentication.

[@encrypted_password	=]	encrypted_password

For	internal	use	only.

Return	Code	Values

0	(success)	or	1	(failure)

Remarks
sp_addsubscriber	is	used	in	snapshot	replication,	transactional	replication,	and
merge	replication.

sp_addsubscriber	writes	to	the	MSsubscriber_info	table	in	the	distribution
database.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_addsubscriber.

See	Also

sp_addremotelogin

sp_addserver

sp_changesubscriber

sp_dboption

sp_dropsubscriber

sp_helpdistributor

sp_helpserver

sp_helpsubscriberinfo

sp_remoteoption

sp_serveroption

System	Stored	Procedures

Transact-SQL	Reference

sp_addsubscriber_schedule
Adds	a	schedule	for	the	Distribution	Agent	and	Merge	Agent.	This	stored
procedure	is	executed	at	the	Publisher	on	any	database.

Syntax
sp_addsubscriber_schedule	[@subscriber	=]	'subscriber'
				[,	[@agent_type	=]	agent_type]
				[,	[@frequency_type	=]	frequency_type]
				[,	[@frequency_interval	=]	frequency_interval]
				[,	[@frequency_relative_interval	=]	frequency_relative_interval]
				[,	[@frequency_recurrence_factor	=]	frequency_recurrence_factor]
				[,	[@frequency_subday	=]	frequency_subday]
				[,	[@frequency_subday_interval	=]	frequency_subday_interval]
				[,	[@active_start_time_of_day	=]	active_start_time_of_day]
				[,	[@active_end_time_of_day	=]	active_end_time_of_day]
				[,	[@active_start_date	=]	active_start_date]
				[,	[@active_end_date	=]	active_end_date]

Arguments
[@subscriber	=]	'subscriber'

Is	the	name	of	the	Subscriber.	subscriber	is	sysname.	The	name	of	the
Subscriber	must	be	unique	in	the	database,	must	not	already	exist,	and	cannot
be	NULL.

[@agent_type	=]	agent_type

Is	the	type	of	agent.	agent_type	is	smallint,	and	can	be	one	of	these	values.

Value Description
0	(default) Distribution	Agent
1 Merge	Agent

[@frequency_type	=]	frequency_type

Is	the	frequency	with	which	to	schedule	the	Distribution	Agent.
frequency_type	is	int,	and	can	be	one	of	these	values.

Value Description
1 One	time
2 On	demand
4 Daily
8 Weekly
16 Monthly
32 Monthly	relative
64	(default) Autostart
124 Recurring

[@frequency_interval	=]	frequency_interval

Is	the	value	to	apply	to	the	frequency	set	by	frequency_type.
frequency_interval	is	int,	with	a	default	of	1.

[@frequency_relative_interval	=]	frequency_relative_interval

Is	the	date	of	the	Distribution	Agent.	This	parameter	is	used	when
frequency_type	is	set	to	32	(monthly	relative).	frequency_relative_interval	is
int,	and	can	be	one	of	these	values.

Value Description
1	(default) First
2 Second
4 Third
8 Fourth
16 Last

[@frequency_recurrence_factor	=]	frequency_recurrence_factor

Is	the	recurrence	factor	used	by	frequency_type.	frequency_recurrence_factor

is	int,	with	a	default	of	0.

[@frequency_subday	=]	frequency_subday

Is	how	often	to	reschedule	during	the	defined	period.	frequency_subday	is
int,	and	can	be	one	of	these	values.

Value Description
1 Once
2 Second
4	(default) Minute
8 Hour

[@frequency_subday_interval	=]	frequency_subday_interval

Is	the	interval	for	frequency_subday.	frequency_subday_interval	is	int,	with
a	default	of	5.

[@active_start_time_of_day	=]	active_start_time_of_day

Is	the	time	of	day	when	the	Distribution	Agent	is	first	scheduled,	formatted
as	HHMMSS.	active_start_time_of_day	is	int,	with	a	default	of	0.

[@active_end_time_of_day	=]	active_end_time_of_day

Is	the	time	of	day	when	the	Distribution	Agent	stops	being	scheduled,
formatted	as	HHMMSS.	active_end_time_of_day	is	int,	with	a	default	of
235959,	which	means	11:59:59	P.M.	as	measured	on	a	24-hour	clock.

[@active_start_date	=]	active_start_date

Is	the	date	when	the	Distribution	Agent	is	first	scheduled,	formatted	as
YYYYMMDD.	active_start_date	is	int,	with	a	default	of	0.

[@active_end_date	=]	active_end_date

Is	the	date	when	the	Distribution	Agent	stops	being	scheduled,	formatted	as
YYYYMMDD.	active_end_date	is	int,	with	a	default	of	99991231,	which
means	December	31,	9999.

Return	Code	Values

0	(success)	or	1	(failure)

Remarks
sp_addsubscriber_schedule	is	used	in	snapshot	replication,	transactional
replication,	and	merge	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_addsubscriber_schedule.

See	Also

sp_changesubscriber_schedule

System	Stored	Procedures

Transact-SQL	Reference

sp_addsubscription
Adds	a	subscription	to	a	publication	and	sets	the	Subscriber	status.	This	stored
procedure	is	executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_addsubscription	[@publication	=]	'publication'
				[,	[@article	=]	'article']
				[,	[@subscriber	=]	'subscriber']
				[,	[@destination_db	=]	'destination_db']
				[,	[@sync_type	=]	'sync_type']
				[,	[@status	=]	'status'
				[,	[@subscription_type	=]	'subscription_type']
				[,	[@update_mode	=]	'update_mode']
				[,	[@loopback_detection	=]	'loopback_detection']
				[,	[@frequency_type	=]	frequency_type]
				[,	[@frequency_interval	=]	frequency_interval]
				[,	[@frequency_relative_interval	=]	frequency_relative_interval]
				[,	[@frequency_recurrence_factor	=]	frequency_recurrence_factor]
				[,	[@frequency_subday	=]	frequency_subday]
				[,	[@frequency_subday_interval	=]	frequency_subday_interval]
				[,	[@active_start_time_of_day	=]	active_start_time_of_day]
				[,	[@active_end_time_of_day	=]	active_end_time_of_day]
				[,	[@active_start_date	=]	active_start_date]
				[,	[@active_end_date	=]	active_end_date]
				[,	[@optional_command_line	=]	'optional_command_line']
				[,	[@reserved	=]	'reserved']
				[,	[@enabled_for_syncmgr	=]	'enabled_for_syncmgr']
				[,	[@offloadagent	=]	remote_agent_activation]
				[,	[@offloadserver	=]	'remote_agent_server_name']
				[,	[@dts_package_name	=]	'dts_package_name']
				[,	[@dts_package_password	=]	'dts_package_password']
				[,	[@dts_package_location	=]	'dts_package_location']
				[,	[@distribution_job_name	=]	'distribution_job_name']

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	no	default.

[@article	=]	'article'

Is	the	article	to	which	the	publication	is	subscribed.	article	is	sysname,	with
a	default	of	all.	The	article	name	must	be	unique	within	the	publication.	If	all
or	not	supplied,	a	subscription	is	added	to	all	articles	in	that	publication.

[@subscriber	=]	'subscriber'

Is	the	name	of	the	Subscriber.	subscriber	is	sysname,	with	a	default	of
NULL.

[@destination_db	=]	'destination_db'

Is	the	name	of	the	destination	database	in	which	to	place	replicated	data.
destination_db	is	sysname,	with	a	default	of	NULL,	and	uses	the	same	name
as	the	publication	database.

[@sync_type	=]	'sync_type'

Is	the	subscription	synchronization	type.	sync_type	is	nvarchar(15),	with	a
default	of		automatic.	Can	be	automatic	or	none.	If	automatic,	the	schema
and	initial	data	for	published	tables	are	transferred	to	the	Subscriber	first.	If
none,	it	is	assumed	the	Subscriber	already	has	the	schema	and	initial	data	for
published	tables.	System	tables	and	data	are	always	transferred.

[@status	=]	'status'

Is	the	subscription	status.	status	is	sysname,	and	can	be	one	of	these	values.

Value Description
Active If	sync_type	is	none,	the	default	for	status	is	active.

To	enable	a	Subscriber	to	see	articles	in	a	restricted
publication	article,	a	placeholder	subscription	must	be
created	with	inactive	status.	If	sync_type	is
automatic,	status	cannot	be	set	to	active.

Subscribed If	sync_type	is	other	than	none,	the	default	for	status
is	subscribed.

NULL	(default) 	

[@subscription_type	=]	'subscription_type'

Is	the	type	of	subscription.	subscription_type	is	nvarchar(4),	with	a	default	of
push.	Can	be	push	or	pull.	The	Distribution	Agents	of	push	subscriptions	reside
at	the	Distributor,	and	the	Distribution	Agents	of	pull	subscriptions	reside	at	the
Subscriber.	subscription_type	can	be	pull	to	create	a	named	pull	subscription
that	is	known	to	the	Publisher.	For	more	information,	see	Subscribing	to
Publications.

Note		Anonymous	subscriptions	do	not	need	to	use	this	stored	procedure.

[@update_mode	=]	'update_mode'

Is	the	type	of	update.	update_mode	is	nvarchar(30),	and	can	be	one	of	these
values.

Value Description
read	only	(default) The	subscription	is	read-only.	The	changes	at	the

Subscriber	will	not	be	sent	to	the	Publisher.
sync	tran Enables	support	for	immediate	updating

subscriptions.
queued	tran Enables	the	subscription	for	queued	updating.	Data

modifications	can	be	made	at	the	Subscriber,	stored	in
a	queue,	and	then	propagated	to	the	Publisher.

failover Enables	the	subscription	for	immediate	updating	with
queued	updating	as	a	failover.	Data	modifications	can
be	made	at	the	Subscriber	and	propagated	to	the
Publisher	immediately.	If	the	Publisher	and
Subscriber	are	not	connected,	data	modifications
made	at	the	Subscriber	can	be	stored	in	a	queue	until
the	Subscriber	and	Publisher	are	reconnected.

Note	that	the	values	synctran	and	queued	tran	are	not	allowed	if	the
publication	being	subscribed	to	allows	DTS.

JavaScript:hhobj_1.Click()

[@loopback_detection	=]	'loopback_detection'

Specifies	if	the	Distribution	Agent	sends	transactions	that	originated	at	the
Subscriber	back	to	the	Subscriber.	loopback_detection	is	nvarchar(5),	and
can	be	one	of	these	values.

Value Description
true Distribution	Agent	does	not	send	transactions

originated	at	the	Subscriber	back	to	the	Subscriber.
The	value	can	be	set	to	true	only	if	the	subscription
update_mode	is	synctran	and	the	article	table	has	a
published	timestamp	column.

false Distribution	Agent	sends	transactions	that	originated
at	the	Subscriber	back	to	the	Subscriber.

NULL	(default) 	

[@frequency_type	=]	frequency_type

Is	the	frequency	with	which	to	schedule	the	Distribution	Agent.
frequency_type	is	int,	with	a	default	of	NULL.	If	no	value	is	specified,
sp_addsubscription	uses	the	value	specified	in	sp_addsubscriber.

[@frequency_interval	=]	frequency_interval

Is	the	value	to	apply	to	the	frequency	set	by	frequency_type.
frequency_interval	is	int,	with	a	default	of	NULL.

[@frequency_relative_interval	=]	frequency_relative_interval

Is	the	date	of	the	Distribution	Agent.	This	parameter	is	used	when
frequency_type	is	set	to	32	(monthly	relative).	frequency_relative_interval	is
int,	and	can	be	one	of	these	values.

Value Description
1 First
2 Second
4 Third
8 Fourth

16 Last
NULL	(default) 	

[@frequency_recurrence_factor	=]	frequency_recurrence_factor

Is	the	recurrence	factor	used	by	frequency_type.	frequency_recurrence_factor
is	int,	with	a	default	of	NULL.

[@frequency_subday	=]	frequency_subday

Is	how	often,	in	minutes,	to	reschedule	during	the	defined	period.
frequency_subday	is	int,	and	can	be	one	of	these	values.

Value Description
1 Once
2 Second
4 Minute
8 Hour
NULL 	

[@frequency_subday_interval	=]	frequency_subday_interval

Is	the	interval	for	frequency_subday.	frequency_subday_interval	is	int,	with
a	default	of	NULL.

[@active_start_time_of_day	=]	active_start_time_of_day

Is	the	time	of	day	when	the	Distribution	Agent	is	first	scheduled,	formatted
as	HHMMSS.	active_start_time_of_day	is	int,	with	a	default	of	NULL.

[@active_end_time_of_day	=]	active_end_time_of_day

Is	the	time	of	day	when	the	Distribution	Agent	stops	being	scheduled,
formatted	as	HHMMSS.	active_end_time_of_day	is	int,	with	a	default	of
NULL.

[@active_start_date	=]	active_start_date

Is	the	date	when	the	Distribution	Agent	is	first	scheduled,	formatted	as

YYYYMMDD.	active_start_date	is	int,	with	a	default	of	NULL.

[@active_end_date	=]	active_end_date

Is	the	date	when	the	Distribution	Agent	stops	being	scheduled,	formatted	as
YYYYMMDD.	active_end_date	is	int,	with	a	default	of	NULL.

[@optional_command_line	=]	'optional_command_line'

Is	the	optional	command	prompt	to	execute.	optional_command_line	is
nvarchar(4000),	with	a	default	of	NULL.

[@reserved	=]	'reserved'

For	internal	use	only.

[@enabled_for_syncmgr	=]	'enabled_for_syncmgr'

Is	whether	the	subscription	can	be	synchronized	through	Microsoft	Windows
Synchronization	Manager.	enabled_for_syncmgr	is	nvarchar(5),	with	a
default	of	FALSE.	If	false,	the	subscription	is	not	registered	with	Windows
Synchronization	Manager.	If	true,	the	subscription	is	registered	with
Windows	Synchronization	Manager	and	can	be	synchronized	without
starting	SQL	Server	Enterprise	Manager.

[@offloadagent	=]	'remote_agent_activation'

Specifies	that	the	agent	can	be	activated	remotely.	remote_agent_activation
is	bit	with	a	default	of	0.	0	specifies	the	agent	cannot	be	activated	remotely.	1
specifies	the	agent	can	be	activated	remotely.

[@offloadserver	=]	'remote_agent_server_name'

Specifies	the	network	name	of	server	to	be	used	for	remote	activation.
remote_agent_server_name	is	sysname,	with	a	default	of	NULL.

[@dts_package_name	=]	'dts_package_name'

Specifies	the	name	of	the	DTS	package.		dts_package_name	is	a	sysname
with	a	default	of	NULL.	For	example,	to	specify	a	package	of
DTSPub_Package,	the	parameter	would	be	@dts_package_name	=
N'DTSPub_Package'.	This	parameter	is	available	for	push	subscriptions.	To
add	DTS	package	information	to	a	pull	subscription,	use
sp_addpullsubscription_agent.

[@dts_package_password	=]	'dts_package_password'

Specifies	the	password	on	the	package,	if	there	is	one.
dts_package_password	is		sysname	with	a	default	of	NULL,	which	means	a
password	in	not	on	the	package.

[@dts_package_location	=]	'dts_package_location'

Specifies	the	package	location.	dts_package_location	is	a	nvarchar(12),
with	a	default	of	DISTRIBUTOR.	The	location	of	the	package	can	be
distributor	or	subscriber.

[@distribution_job_name	=]	'distribution_job_name'

For	internal	use	only.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_addsubscription	is	used	in	snapshot	replication	and	transactional	replication.

sp_addsubscription	prevents	ODBC	and	OLE	DB	Subscribers	access	to
publications	that:

Were	created	with	the	native	@sync_method	in	the	call	to
sp_addpublication.

Contain	articles	that	were	added	to	the	publication	with	an
sp_addarticle	stored	procedure	that	had	a	pre_creation_cmd	parameter
value	of	3	(truncate).

Attempt	to	set	@update_mode	to	synchtran.

Have	an	article	configured	to	use	parameterized	statements.

In	addition,	if	a	publication	has	the	allow_queued_tran	option	set	to	true	(which

enables	queuing	of	changes	at	the	Subscriber	until	they	can	be	applied	at	the
Publisher),	the	timestamp	column	in	an	article	will	be	scripted	out	as	timestamp,
and	changes	on	that	column	will	be	sent	to	the	Subscriber.	The	Subscriber	will
generate	and	update	the	timestamp	column	value.	For	an	ODBC/OLE	DB
Subscriber,	sp_addsubscription	will	fail	if	an	attempt	is	made	to	subscribe	to	a
publication	that	has	allow_queued_tran	set	to	true	and	articles	with	timestamp
columns	in	it.

If	a	subscription	does	not	use	a	DTS	package,	it	cannot	subscribe	to	a
publication	that	is	set	to	allow_transformable_subscriptions.	If	the	table	from
the	publication	needs	to	be	replicated	to	both	a	DTS	subscription	and	non-DTS
subscription,	two	separate	publications	will	have	to	be	created:	one	for	each	type
of	subscription.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_addsubscription.	For	pull	subscriptions,	users	with	logins
in	the	publication	access	list	can	execute	sp_addsubscription.

See	Also

sp_changesubstatus

sp_dropsubscription

sp_helpsubscription

System	Stored	Procedures

Transact-SQL	Reference

sp_addsynctriggers
Creates	triggers	at	the	Subscriber	used	with	all	types	of	updatable	subscriptions
(Immediate,	Queued,	and	Immediate	Updating	with	Queued	Updating	as
Failover).	This	stored	procedure	is	executed	at	the	Subscriber	on	the	subscription
database.

Syntax
sp_addsynctriggers	[@sub_table	=]	'sub_table'
				,	[@sub_table_owner	=]	'sub_table_owner'
				,	[@publisher	=]	'publisher'	,
				,	[@publisher_db	=]	'publisher_db'
				,	[@publication	=]	'publication'
				,	[@ins_proc	=]	'ins_proc'
				,	[@upd_proc	=]	'upd_proc'
				,	[@del_proc	=]	'del_proc'
				,	[@cftproc	=]	'cftproc'
				,	[@proc_owner	=]	'proc_owner'
				,	[,	[@identity_col	=]	'identity_col']
				,	[,	[@ts_col	=]	'timestamp_col']
				,	[,	[@filter_clause	=]	'filter_clause']	,
				,	[@primary_key_bitmap	=]	'primary_key_bitmap'	,
				[,	[@identity_support	=]	identity_support]
				[,	[@independent_agent	=]	independent_agent]
				,	[@distributor	=]	'distributor'

Arguments
[@sub_table	=]	'sub_table'

Is	the	name	of	the	Subscriber	table.	sub_table	is	sysname,	with	no	default.

[@sub_table_owner	=]	'sub_table_owner'

Is	the	name	of	the	owner	of	the	Subscriber	table.	sub_table_owner	is
sysname,	with	no	default.

[@publisher	=]	'publisher'

Is	the	name	of	the	Publisher	server.	publisher	is	sysname,	with	no	default.

[@publisher_db	=]	'publisher_db'

Is	the	name	of	the	Publisher	database.	publisher_db	is	sysname,	with	no
default.	If	NULL,	the	current	database	is	used.

[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	no	default.

[@ins_proc	=]	'ins_proc'

Is	the	name	of	the	stored	procedure	that	supports	synchronous	transaction
inserts	at	the	Publisher.	ins_proc	is	sysname,	with	no	default.

[@upd_proc	=]	'upd_proc'

Is	the	name	of	the	stored	procedure	that	supports	synchronous	transaction
updates	at	the	Publisher.	ins_proc	is	sysname,	with	no	default.

[@del_proc	=]	'del_proc'

Is	the	name	of	the	stored	procedure	that	supports	synchronous	transaction
deletes	at	the	Publisher.	ins_proc	is	sysname,	with	no	default.

[@cftproc	=]	'cftproc'

Is	the	name	of	the	auto-generated	procedure	used	by	publications	that	allow
queued	updating.	cftproc	is	sysname,	with	no	default.	For	publications	that
allow	immediate	updating,	this	value	is	NULL.	This	parameter	applies	to
publications	that	allow	queued	updating	(Queued	Updating	and	Immediate
Updating	with	Queued	Updating	as	Failover).

[@proc_owner	=]	'proc_owner'

Specifies	the	user	account	in	the	Publisher	under	which	all	the	auto-
generated	stored	procedures	for	updating	publication	(queued	and/or
immediate)	were	created.	proc_owner	is	sysname	with	no	default.

[@identity_col	=]	'identity_col'

Is	the	name	of	the	identity	column	at	the	Publisher.	identity_col	is	sysname,
with	a	default	of	NULL.

[@ts_col	=]	'timestamp_col'

Is	the	name	of	the	timestamp	column	at	the	Publisher.	timestamp_col	is
sysname,	with	a	default	of	NULL.

[@filter_clause	=]	'filter_clause'

Is	a	restriction	(WHERE)	clause	that	defines	a	horizontal	filter.	When
entering	the	restriction	clause,	omit	the	keyword	WHERE.	filter_clause	is
nvarchar(4000),	with	a	default	of	NULL.

[@primary_key_bitmap	=]	'primary_key_bitmap'

Is	a	bit	map	of	the	primary	key	columns	in	the	table.	primary_key_bitmap	is
varbinary(4000),	with	no	default.

[@identity_support	=]	identity_support

Enables	and	disables	automatic	identity	range	handling	when	queued
updating	is	used.	identity_support	is	a	bit,	with	a	default	of	0.	0	means	that
there	is	no	identity	range	support,	1	enables	automatic	identity	range
handling.

[@independent_agent	=]	independent_agent

Indicates	whether	there	is	a	single	Distribution	Agent	(an	independent	agent)
for	this	publication,	or	one	Distribution	Agent	per	publication	database	and
subscription	database	pair	(a	shared	agent).	This	value	reflects	the	value	of
the	independent_agent	property	of	the	publication	defined	at	the	Publisher.
independent_agent	is	a	bit	with	a	default	of	0.	If	0,	the	agent	is	a	Shared
Agent.	If	1,	the	agent	is	an	independent	agent.

[@distributor	=]	'distributor'

Is	the	name	of	the	Distributor.	distributor	is	sysname,	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_addsynctriggers	is	used	by	the	Distribution	Agent	as	part	of	subscription

initialization.	This	stored	procedure	is	not	commonly	run	by	users,	but	may	be
useful	if	the	user	needs	to	manually	set	up	a	nosync	subscription.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_addsynctriggers.

See	Also

Immediate	Updating	with	Queued	Updating	as	a	Failover

Planning	for	Replication	Options

sp_articlesynctranprocs

sp_script_synctran_commands

System	Stored	Procedures

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

sp_addtabletocontents
Inserts	references	into	the	merge	tracking	tables	for	any	rows	in	a	source	table
that	are	not	currently	included	in	the	tracking	tables.	Use	this	option	if	you	have
bulk-loaded	a	large	amount	of	data	using	bcp,	which	will	not	file	merge	tracking
triggers.	This	stored	procedure	is	executed	at	the	Publisher	on	the	publication
database.

Syntax
sp_addtabletocontents	[@table_name	=]	'table_name'
				[,	[@owner_name	=]	'owner_name']

Arguments
[@table_name	=]	'table_name'

Is	the	name	of	the	table.	table_name	is	sysname,	with	no	default.

[@owner_name	=]	'owner_name'

Is	the	name	of	the	owner	of	the	table.	owner_name	is	sysname,	with	a
default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_addtabletocontents	is	used	only	in	merge	replication.

The	rows	in	the	table_name	are	referred	to	by	their	rowguidcol	and	the
references	are	added	to	the	merge	tracking	tables.	sp_addtabletocontents
should	be	used	after	bulk	copying	data	into	a	table	that	is	published	using	merge
replication.	The	stored	procedure	initiates	tracking	of	the	rows	that	were	copied
and	ensures	that	the	new	rows	will	be	included	in	the	next	synchronization.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_addtabletocontents.

See	Also

Adding	Rows	Using	Bulk	Copy	Operations

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_adjustpublisheridentityrange
Adjusts	the	identity	range	on	a	publication	and	reallocates	new	ranges	based	on
the	threshold	value	on	the	publication.	This	stored	procedure	is	executed	at	the
Publisher	on	the	publication	database.

Syntax
sp_adjustpublisheridentityrange	[@publication	=]	'publication'
				[@table_name	=]	'table_name'
				[@table_owner=]	'table_owner'

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication	in	which	the	article	exists.	publication	is
sysname,	with	a	default	of	NULL.

[@table_name	=]	'table_name'

Is	the	name	of	the	table.	table_name	is	sysname,	with	a	default	of	NULL.

[@table_owner	=]	'table_owner'

Is	the	name	of	the	owner	of	the	Subscriber	table.	table_owner	is	sysname,
with	a	default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_adjustpublisheridentityrange	is	used	in	all	types	of	replication.

For	a	publication	which	has	the	auto	identity	range	enabled,	the	Distribution
Agent	or	Merge	Agent	is	responsible	for	automatically	adjusting	the	identity
range	in	a	publication	based	on	its	threshold	value.	However,	if	for	some	reason
the	Distribution	Agent	or	Merge	Agent	has	not	been	run	for	a	period	of	time,	and

identity	range	resource	have	been	consumed	heavily	to	the	point	of	threshold,
users	can	call	sp_adjustpublisheridentityrange	to	allocate	a	new	range	of
values	for	a	Publisher.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_adjustpublisheridentityrange.

See	Also

Managing	Identity	Values

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_article_validation
Initiates	a	data	validation	request	for	the	specified	article.	This	stored	procedure
is	executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_article_validation	[@publication	=]	'publication'
				[,	[@article	=]	'article']
				[,	[@rowcount_only	=]	type_of_check_requested]
				[,	[@full_or_fast	=]	full_or_fast]
				[,	[@shutdown_agent	=]	shutdown_agent]
				[,	[@subscription_level	=]	subscription_level]
				[,	[@reserved	=]	reserved]

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication	in	which	the	article	exists.	publication	is
sysname,	with	no	default.

[@article	=]'article'

Is	the	name	of	the	article	to	change.	article	is	sysname,	with	no	default.

[@rowcount_only	=]	type_of_check_requested

Specifies	if	only	the	rowcount	for	the	table	is	returned.	.
type_of_check_requested	is	smallint,	with	a	default	of	1.	If	0,	perform	a	SQL
Server	7.0	compatible	checksum.	If	1,	perform	a	rowcount	check	only.	If	2,
perform	a	rowcount	and	checksum.

[@full_or_fast	=]	full_or_fast

Is	the	method	used	to	calculate	the	rowcount.	full_or_fast	is	tinyint,	and	can
be	one	of	these	values.

Value Description
0 Performs	full	count	using	COUNT(*).

1 Performs	fast	count	from	sysindexes.rows.	Counting
rows	in	sysindexes	is	faster	than	counting	rows	in	the
actual	table.	However,	sysindexes	is	updated	lazily,	and
the	rowcount	may	not	be	accurate.

2	(default) Performs	conditional	fast	counting	by	first	trying	the	fast
method.	If	fast	method	shows	differences,	reverts	to	full
method.	If	expected_rowcount	is	NULL	and	the	stored
procedure	is	being	used	to	get	the	value,	a	full	COUNT(*)
is	always	used.

[@shutdown_agent	=]	shutdown_agent

Specifies	if	the	Distribution	agent	should	shut	down	immediately	upon
completion	of	the	validation.	shutdown_agent	is	bit,	with	a	default	of	0.	If	0,
the	Distribution	Agent	does	not	shut	down.	If	1,	the	Distribution	Agent	shuts
down	after	the	article	is	validated.

[@subscription_level	=]	subscription_level

Specifies	whether	or	not	the	validation	is	picked	up	by	a	set	of	subscribers.
subscription_level	is	bit,	with	a	default	of	0.	If	0,	validation	will	be	applied
to	all	Subscribers.	If	1,	validation	will	only	be	applied	to	a	subset	of	the
Subscribers	specified	by	calls	to	sp_marksubscriptionvalidation	in	the
current	open	transaction.

[@reserved	=]	reserved

For	internal	use	only.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_article_validation	is	used	in	snapshot	replication	and	transactional
replication.

sp_article_validation	causes	validation	information	to	be	gathered	on	the

specified	article	and	posts	a	validation	request	to	the	transaction	log.	When	the
Distribution	Agent	receives	this	request,	the	Distribution	Agent	compares	the
validation	information	in	the	request	to	the	Subscriber	table.	The	results	of	the
validation	are	displayed	in	the	Replication	Monitor	and	in	SQL	Server	Agent
alerts.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_article_validation.

See	Also

sp_marksubscriptionvalidation

sp_publication_validation

sp_table_validation

System	Stored	Procedures

Transact-SQL	Reference

sp_articlecolumn
Specifies	columns	used	in	an	article.	Use	sp_articlecolumn	to	filter	the	data	in	a
table	vertically.	This	stored	procedure	is	executed	at	the	Publisher	on	the
publication	database.

Syntax
sp_articlecolumn	[@publication	=]	'publication'
				,	[@article	=]	'article'
				[,	[@column	=]	'column']
				[,	[@operation	=]	'operation']
				[,	[@refresh_synctran_procs	=]	refresh_synctran_procs]
				[,	[@ignore_distributor	=]	ignore_distributor]
				[,	[@change_active	=]	change_actve]
				[,	[@force_invalidate_snapshot	=]	force_invalidate_snapshot]
				[,	[@force_reinit_subscription	=]	force_reinit_subscription]

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication	that	contains	this	article.	publication	is
sysname,	with	no	default.

[@article	=]	'article'

Is	the	name	of	the	article.	article	is	sysname,	with	no	default.

[@column	=]	'column'

Is	the	name	of	the	column	to	be	added	or	dropped.	column	is	sysname,	with
a	default	of	NULL.	If	NULL,	all	columns	are	published.

[@operation	=]	'operation'

Is	the	replication	status.	operation	is	nvarchar(4),	with	a	default	of	add.	add
marks	the	column	for	replication.	drop	unmarks	the	column.

[@refresh_synctran_procs	=]	refresh_synctran_procs

Specifies	whether	to	add	or	drop	columns	in	an	article.
refresh_synctran_procs	is	bit,	with	a	default	of	1.	If	1,	the	stored	procedures
supporting	synchronous	transactions	are	regenerated	to	match	the	number	of
columns	replicated.

[@ignore_distributor	=]	ignore_distributor

Indicates	if	this	stored	procedure	executes	without	connecting	to	the
Distributor.	ignore_distributor	is	bit,	with	a	default	of	0.	If	0,	the	database
must	be	enabled	for	publishing,	and	the	article	cache	should	be	refreshed	to
reflect	the	new	columns	replicated	by	the	article.	If	1,	allows	article	columns
to	be	dropped	for	articles	that	reside	in	an	unpublished	database;	should	be
used	only	in	recovery	situations.

[@change_active	=]	change_active

Allows	modifying	the	columns	in	publications	that	have	subscriptions.
change_active	is	an	int	with	a	default	of	0.	If	0,	columns	will	not	be
modified.	If	1,	columns	can	be	added	or	dropped	from	active	articles	that
have	subscriptions.

[@force_invalidate_snapshot	=]	force_invalidate_snapshot

Acknowledges	that	the	action	taken	by	this	stored	procedure	may	invalidate
an	existing	snapshot.	force_invalidate_snapshot	is	a	bit,	with	a	default	of	0.
0	specifies	that	changes	to	the	article	will	not	cause	the	snapshot	to	be
invalid.	If	the	stored	procedure	detects	that	the	change	does	require	a	new
snapshot,	an	error	will	occur	and	no	changes	will	be	made.	1	specifies	that
changes	to	the	article	may	cause	the	snapshot	to	be	invalid,	and	if	there	are
existing	subscriptions	that	would	require	a	new	snapshot,	gives	permission
for	the	existing	snapshot	to	be	marked	as	obsolete	and	a	new	snapshot
generated.

[@force_reinit_subscription	=]	force_reinit_subscription

Acknowledges	that	the	action	taken	by	this	stored	procedure	may	require
existing	subscriptions	to	be	reinitialized.	force_reinit_subscription	is	a	bit,
with	a	default	of	0.	0	specifies	that	changes	to	the	article	will	not	cause	the
subscription	to	be	reinitialized.	If	the	stored	procedure	detects	that	the
change	would	require	subscriptions	to	be	reinitialized,	an	error	will	occur
and	no	changes	will	be	made.	1	specifies	that	changes	to	the	article	will

cause	existing	subscriptions	to	be	reinitialized,	and	gives	permission	for	the
subscription	reinitialization	to	occur.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_articlecolumn	is	used	in	snapshot	replication	and	transactional	replication.

sp_articlecolumn	sets	a	bit	in	sysarticles.	Only	an	unsubscribed	article	can	be
filtered	using	sp_articlecolumn.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_articlecolumn.

See	Also

sp_addarticle

sp_addpublication

sp_articleview

sp_changearticle

sp_changepublication

sp_droparticle

sp_droppublication

sp_enumfullsubscribers

sp_helparticle

sp_helparticlecolumns

sp_helppublication

System	Stored	Procedures

Transact-SQL	Reference

sp_articlefilter
Filters	data	that	will	be	published	based	on	a	table	article.	Only	articles	without
subscriptions	can	be	modified	by	this	stored	procedure.	This	stored	procedure	is
executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_articlefilter	[@publication	=]	'publication'
				,	[@article	=]	'article'
				[,	[@filter_name	=]	'filter_name']
				[,	[@filter_clause	=]	'filter_clause']
				[,	[@force_invalidate_snapshot	=]	force_invalidate_snapshot]
				[,	[@force_reinit_subscription	=]	force_reinit_subscription]

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication	that	contains	the	article.	publication	is
sysname,	with	no	default.

[@article	=]	'article'

Is	the	name	of	the	article.	article	is	sysname,	with	no	default.

[@filter_name	=]	'filter_name'

Is	the	name	of	the	filter	stored	procedure	to	be	created	from	the	filter_name.
filter_name	is	nvarchar(386),	with	a	default	of	NULL.

[@filter_clause	=]	'filter_clause'

Is	a	restriction	(WHERE)	clause	that	defines	a	horizontal	filter.	When
entering	the	restriction	clause,	omit	the	keyword	WHERE.	filter_clause	is
ntext,	with	a	default	of	NULL.

[@force_invalidate_snapshot	=]	force_invalidate_snapshot

Acknowledges	that	the	action	taken	by	this	stored	procedure	may	invalidate
an	existing	snapshot.	force_invalidate_snapshot	is	a	bit,	with	a	default	of	0.

0	specifies	that	changes	to	the	article	will	not	cause	the	snapshot	to	be
invalid.	If	the	stored	procedure	detects	that	the	change	does	require	a	new
snapshot,	an	error	will	occur	and	no	changes	will	be	made.	1	specifies	that
changes	to	the	article	may	cause	the	snapshot	to	be	invalid,	and	if	there	are
existing	subscriptions	that	would	require	a	new	snapshot,	gives	permission
for	the	existing	snapshot	to	be	marked	as	obsolete	and	a	new	snapshot
generated.

[@force_reinit_subscription	=]	force_reinit_subscription

Acknowledges	that	the	action	taken	by	this	stored	procedure	may	require
existing	subscriptions	to	be	reinitialized.	force_reinit_subscription	is	a	bit,
with	a	default	of	0.	0	specifies	that	changes	to	the	article	will	not	cause	a
need	for	subscriptions	to	be	reinitialized.	If	the	stored	procedure	detects	that
the	change	would	require	subscriptions	to	be	reinitialized,	an	error	will	occur
and	no	changes	will	be	made.	1	specifies	that	changes	to	the	article	will
cause	existing	subscriptions	to	be	reinitialized,	and	gives	permission	for	the
subscription	reinitialization	to	occur.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_article_filter	is	used	in	snapshot	replication	and	transactional	replication.

sp_articlefilter	creates	the	filter,	inserts	the	ID	of	the	filter	stored	procedure	in
the	filter	column	of	the	sysarticles	table,	and	then	inserts	the	text	of	the
restriction	clause	in	the	filter_clause	column.

To	create	an	article	with	a	horizontal	filter,	execute	sp_addarticle	with	no	filter
parameter.	Execute	sp_articlefilter,	providing	all	parameters	including
filter_clause,	and	then	execute	sp_articleview,	providing	all	parameters
including	the	identical	filter_clause.	If	the	filter	already	exists	and	if	the	type	in
sysarticles	is	1	(log-based	article),	the	previous	filter	is	deleted	and	a	new	filter
is	created.

If	filter_name	and	filter_clause	are	not	provided,	the	previous	filter	is	deleted
and	the	filter	ID	is	set	to	0.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_articlefilter.

See	Also

sp_addarticle

sp_articlecolumn

sp_articleview

System	Stored	Procedures

Transact-SQL	Reference

sp_articlesynctranprocs
Generates	procedures	at	the	Publisher	that	are	called	by	updating	(Immediate,
Queued,	Immediate	with	Queued	Failover)	subscriber	triggers.		This	stored
procedure	is	executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_articlesynctranprocs	[@publication	=]	'publication'
				,	[@article	=]	'article'
				,	[@ins_proc	=]	'ins_proc'
				,	[@upd_proc	=]	'upd_proc'
				,	[@del_proc	=]	'del_proc'
				[,	[@autogen	=]	'autogen']
				,	[@upd_trig	=]	'update_trigger']

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	no	default.

[@article	=]	'article'

Is	the	name	of	the	article.	article	is	sysname,	with	no	default.

[@ins_proc	=]	'ins_proc'

Is	the	name	of	the	stored	procedure	that	supports	immediate	updating
Subscriber	inserts	associated	with	this	article.	ins_proc	is	sysname,	with	no
default.

[@upd_proc	=]	'upd_proc'

Is	the	name	of	the	stored	procedure	that	supports	immediate	updating
Subscriber	updates	associated	with	this	article.	upd_proc	is	sysname,	with
no	default.

[@del_proc	=]	'del_proc'

Is	the	name	of	the	stored	procedure	that	supports	immediate	updating

Subscriber	deletes	associated	with	this	article.	del_proc	is	sysname,	with	no
default.

[@autogen	=]	'autogen'

Specifies	if	stored	procedures	are	generated	automatically.	autogen	is
nvarchar(5),	with	a	default	of	TRUE.

[@upd_trig	=]	'update_trigger'

For	internal	use	only.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_articlesynctranprocs	is	used	in	snapshot	replication	and	transactional
replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_articlesynctranprocs.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_articleview
Creates	the	synchronization	object	for	an	article	when	a	table	is	filtered
vertically	or	horizontally.	This	synchronization	object	is	a	view	that	is	used	as
the	filtered	source	of	the	schema	and	data	for	the	destination	tables.	Only
unsubscribed	articles	can	be	modified	by	this	stored	procedure.	This	stored
procedure	is	executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_articleview	[@publication	=]	'publication'
				,	[@article	=]	'article'
				[,	[@view_name	=]	'view_name']
				[,	[@filter_clause	=]	'filter_clause']
				[,	[@change_active	=]	change_active]
				[,	[@force_invalidate_snapshot	=]	force_invalidate_snapshot]
				[,	[@force_reinit_subscription	=]	force_reinit_subscription]

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication	that	contains	the	article.	publication	is
sysname,	with	no	default.

[@article	=]	'article'

Is	the	name	of	the	article.	article	is	sysname,	with	no	default.

[@view_name	=]	'view_name'

Is	the	name	of	the	synchronization	object.	view_name	is	nvarchar(386),
with	a	default	of	NULL.

[@filter_clause	=]	'filter_clause'

Is	a	restriction	(WHERE)	clause	that	defines	a	horizontal	filter.	When
entering	the	restriction	clause,	omit	the	WHERE	keyword.	filter_clause	is
ntext,	with	a	default	of	NULL.

[@change_active	=]	change_active

Allows	modifying	the	columns	in	publications	that	have	subscriptions.
change_active	is	an	int,	with	a	default	of	0.	If	0,	columns	will	not	be	change.
If	1,	views	can	be	created	or	re-created	on	active	articles	that	have
subscriptions.

[@force_invalidate_snapshot	=]	force_invalidate_snapshot

Acknowledges	that	the	action	taken	by	this	stored	procedure	may	invalidate
an	existing	snapshot.	force_invalidate_snapshot	is	a	bit,	with	a	default	of	0.
0	specifies	that	changes	to	the	article	will	not	cause	the	snapshot	to	be
invalid.	If	the	stored	procedure	detects	that	the	change	does	require	a	new
snapshot,	an	error	will	occur	and	no	changes	will	be	made.	1	specifies	that
changes	to	the	article	may	cause	the	snapshot	to	be	invalid,	and	if	there	are
existing	subscriptions	that	would	require	a	new	snapshot,	gives	permission
for	the	existing	snapshot	to	be	marked	as	obsolete	and	a	new	snapshot
generated.

[@force_reinit_subscription	=]	force_reinit_subscription

Acknowledges	that	the	action	taken	by	this	stored	procedure	may	require
existing	subscriptions	to	be	reinitialized.	force_reinit_subscription	is	a	bit
with	a	default	of	0.	0	specifies	that	changes	to	the	article	will	not	cause	the
subscription	to	be	reinitialized.	If	the	stored	procedure	detects	that	the
change	would	require	subscriptions	to	be	reinitialized,	an	error	will	occur
and	no	changes	will	be	made.	1	specifies	that	changes	to	the	article	will
cause	existing	subscription	to	be	reinitialized,	and	gives	permission	for	the
subscription	reinitialization	to	occur.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_articleview	creates	the	view	and	inserts	the	ID	of	the	synchronization	object
(the	view)	in	the	sync_objid	column	of	the	sysarticles	table,	and	inserts	the	text
of	the	restriction	clause	in	the	filter_clause	column.	If	all	columns	are	replicated
and	there	is	no	filter_clause,	the	sync_objid	in	the	sysarticles	table	is	set	to	the

ID	of	the	base	table,	and	the	use	of	sp_articleview	is	not	required.

To	publish	a	vertically	filtered	table	(that	is,	to	filter	columns)	first	run
sp_addarticle	with	no	sync_object	parameter,	run	sp_articlecolumn	once	for
each	column	to	be	replicated	(defining	the	vertical	filter),	and	then	run
sp_articleview	to	create	the	synchronization	object.

To	publish	a	horizontally	filtered	table	(that	is,	to	filter	rows),	run	sp_addarticle
with	no	filter	parameter.	Run	sp_articlefilter,	providing	all	parameters	including
filter_clause.	Then	run	sp_articleview,	providing	all	parameters	including	the
identical	filter_clause.

To	publish	a	vertically	and	horizontally	filtered	table,	run	sp_addarticle	with	no
sync_object	or	filter	parameters.	Run	sp_articlecolumn	once	for	each	column	to
be	replicated,	and	then	run	sp_articlefilter	and	sp_articleview.

If	the	article	already	has	a	synchronization	object	(a	view),	sp_articleview	drops
the	existing	view	and	creates	a	new	one	automatically.	If	the	view	was	created
manually	(type	in	sysarticles	is	5),	the	existing	view	is	not	dropped.

If	you	create	a	custom	filter	stored	procedure	and	a	synchronization	object
manually,	do	not	run	sp_articleview.	Instead,	provide	these	as	the	filter	and
sync_object	parameters	to	sp_addarticle,	along	with	the	appropriate	type	value.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_articleview.

See	Also

sp_addarticle

sp_articlecolumn

sp_articlefilter

System	Stored	Procedures

Transact-SQL	Reference

sp_attachsubscription
Attaches	an	existing	subscription	database	to	any	Subscriber.	This	stored
procedure	is	executed	at	the	new	Subscriber	on	the	master	database.

Syntax
sp_attachsubscription	[@dbname	=]	'dbname'
				,	[@filename	=]	'filename'
				[,	[@subscriber_security_mode	=]	'subscriber_security_mode']
				[,	[@subscriber_login	=]	'subscriber_login']
				[,	[@subscriber_password	=]	'subscriber_password']

Arguments
[@dbname	=]	'dbname'

Is	the	string	that	specifies	an	existing	database	by	name.	dbname	is	sysname,
with	no	default.

[@filename	=]	'filename'

Is	the	name	and	physical	location	of	the	primary	MDF	(master	data	file).	file
name	is	nvarchar(260),	with	no	default.

[@subscriber_security_mode	=]	'subscriber_security_mode'

Is	the	security	mode	of	the	Subscriber	to	use	when	connecting	to	a
Subscriber	when	synchronizing.	subscriber_security_mode	is	int,	with	a
default	of	NULL.	If	0,	the	security	mode	is	SQL	Server	Authentication.	If	1,
the	security	mode	is	Windows	Authentication.

[@subscriber_login	=]	'subscriber_login'

Is	the	Subscriber	login	name	to	use	when	connecting	to	a	Subscriber	when
synchronizing.	subscriber_login	is	sysname,	with	a	default	of	NULL.	If
subscriber_security_mode	is	0,	this	parameter	must	be	specified.

[@subscriber_password	=]	'subscriber_password'

Is	the	Subscriber	password.	subscriber_password	is	sysname,	with	a	default

of	NULL.	If	SubscriberSecurityMode	is	0,	this	parameter	must	be
specified.	If	a	subscriber	password	is	used,	it	is	automatically	encrypted.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_attachsubscription	is	used	in	snapshot	replication,	transactional	replication,
and	merge	replication.

A	subscription	cannot	be	attached	to	the	publication	if	the	publication	retention
period	has	expired.	If	a	subscription	with	an	elapsed	retention	period	is	specified,
an	error	will	occur	either	when	the	subscription	is	attached	or	when	it	is	first
synchronized.	Publications	with	a	publication	retention	period	of	0	(never
expire)	are	ignored.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_attachsubscription.

See	Also

Attachable	Subscription	Databases

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_browsesnapshotfolder
Returns	the	complete	path	for	the	latest	snapshot	generated	for	a	publication.
This	stored	procedure	is	executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_browsesnapshotfolder	[@publication	=]	'publication'
				{	[,	[@subscriber	=]	'subscriber']
					[,	[@subscriber_db	=]	'subscriber_db']	}

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication	that	contains	the	article.	publication	is
sysname,	with	no	default.

[@subscriber	=]	'subscriber'

Is	the	name	of	the	Subscriber.	subscriber	is	sysname,	with	a	default	of
NULL.

[@subscriber_db=]	'subscriber_db'

Is	the	name	of	the	subscription	database.	subscriber_db	is	sysname,	with	a
default	of	NULL.

Result	Sets

Column	name Data	type Description
snapshot_folder nvarchar(512) Full	path	to	the	snapshot

directory.

Remarks
sp_browsesnapshotfolder	is	used	in	snapshot	replication	and	transactional

replication.

If	the	subscriber	and	subscriber_db	fields	are	left	NULL,	the	stored	procedure
will	return	the	snapshot	folder	of	the	most	recent	snapshot	it	can	find	for	the
publication.	If	the	subscriber	and	subscriber_db	fields	are	specified,	the	stored
procedure	will	return	the	snapshot	folder	for	the	specified	subscription.	If	a
snapshot	has	not	been	generated	for	the	publication,	an	empty	result	set	will	be
returned.

If	the	publication	is	set	up	to	generate	snapshot	files	in	both	the	Publisher
working	directory	and	Publisher	snapshot	folder,	the	result	set	will	contain	two
rows:;	.	the	first	row		will	contain		the	publication	snapshot	folder	and	the	second
row	will	contain	the	publisher	working	directory.sp_browsesnapshotfolder	is
useful	for	determining	the	directory	where	snapshot	files	are	generated.

Permissions
Members	of	the	public	role	can	execute	sp_browsesnapshotfolder.

See	Also

Exploring	Snapshots

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_browsemergesnapshotfolder
Returns	the	complete	path	for	the	latest	snapshot	generated	for	a	merge
publication.	This	stored	procedure	is	executed	at	the	Publisher	on	the	publication
database.

Syntax
sp_browsesnapshotfolder	[@publication	=]	'publication'

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	no	default.

Result	Sets

Column	name Data	type Description
snapshot_folder nvarchar(2000) Full	path	to	the	snapshot

directory.

Remarks
sp_browsemergesnapshotfolder	is	used	in	merge	replication.

If	the	publication	is	set	up	to	generate	snapshot	files	in	both	the	Publisher
working	directory	and	Publisher	snapshot	folder,	the	result	set	will	contain	two
rows:	the	first	row		will	contain	the	publication	snapshot	folder	and	the	second
row	will	contain	the	publisher	working	directory.

sp_browsemergesnapshotfolder	is	useful	for	determining	the	directory	where
the	merge	snapshot	files	are	generated.		This	folder/path	and	its	contents	can
then	be	copied	to	removable	media,	and	the	snapshot	used	to	synchronize	a
subscription	from	an	alternate	snapshot	location.

Permissions

Members	of	the	public	role	can	execute	sp_browsesnapshotfolder.

See	Also

Exploring	Snapshots

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_browsereplcmds
Returns	a	result	set	in	a	readable	version	of	the	replicated	commands	stored	in
the	distribution	database.	This	stored	procedure	is	executed	at	the	Distributor	on
the	distribution	database.

Syntax
sp_browsereplcmds	[[@xact_seqno_start	=]	'xact_seqno_start']
				[,	[@xact_seqno_end	=]	'xact_seqno_end']	
				[,	[@originator_id	=]	'originator_id']
				[,	[@publisher_database_id	=]	'publisher_database_id']
				[,	[@article_id	=]	'article_id']
				[,	[@command_id	=]	command_id]
				[,	[@results_table	=]	'results_table']

Arguments
[@xact_seqno_start	=]	'xact_seqno_start'

Specifies	the	lowest	valued	exact	sequence	number	to	return.
xact_seqno_start	is	nchar(22),	with	a	default	of	0x00000000000000000000.

[@xact_seqno_end	=]	'xact_seqno_end'

Specifies	the	highest	exact	sequence	number	to	return.	xact_seqno_end	is
nchar(22),	with	a	default	of	0xFFFFFFFFFFFFFFFFFFFF.

[@originator_id	=]	'originator_id'

Specifies	if	commands	with	the	specified	originator_id	are	returned.	
originator_id	is	int,	with	a	default	of	NULL.

[@publisher_database_id	=]	'publisher_database_id'

Specifies	if	commands	with	the	specified	publisher_database_id	are
returned.	publisher_database_id	is	int,	with	a	default	of	NULL.

[@article_id	=]	'article_id'

Specifies	if	commands	with	the	specified	article_id	are	returned.	article_id	is

int,	with	a	default	of	NULL.

[@command_id	=]	command_id

Is	the	location	of	the	command	in	MSrepl_commands	to	be	decoded.
command_id	is	int,	with	a	default	of		NULL.	If	specified,	all	other
parameters	must	be	specified	also,	and	xact_seqno_start	must	be	identical	to
xact_seqno_end.

[@results_table	=]	'results_table'

Specifies	that	a	table	by	this	name	will	be	created,	and	the	result	set	should
be	saved	to	this	table	instead	of	being	returned	to	the	client.	results_table	is
sysname	with	a	default	of	NULL.	The	table	can	then	be	used	in	additional
queries,	such	as	sorting	the	result	set	in	a	different	order	or	manipulating	it
further.

Result	Sets
sp_browsereplcmds	is	a	diagnostic	utility	used	to	examine	replicated
commands	stored	in	the	distribution	database.	sp_browsereplcmds	returns	this
result	set.

Column	name Data	type Description
xact_seqno varbinary(16) Sequence	number	of	the

command.
originator_id int ID	of	the	command	originator.
publisher_database_id int ID	of	the	Publisher	database.
article_id int ID	of	the	article.
type int Type	of	command.
command nvarchar(1024) Transact-SQL	command.

Long	commands	can	be	split	across	several	rows	in	the	result	sets.

Remarks
sp_browsereplcmds	is	used	in	transactional	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_browsereplcmds.

See	Also

sp_dumpparamcmd

sp_replcmds

sp_replshowcmds

System	Stored	Procedures

Transact-SQL	Reference

sp_change_agent_parameter
Changes	a	parameter	of	a	replication	agent	profile	stored	in
MSagent_parameters.	This	stored	procedure	is	executed	at	the	Distributor
where	the	agent	is	running,	on	any	database.

Syntax
sp_change_agent_parameter	[@profile_id	=]	profile_id
				,	[@parameter_name	=]	'parameter_name'
				,	[@parameter_value	=]	'parameter_value'

Arguments
[@profile_id	=]	profile_id,

Is	the	ID	of	the	profile.	profile_id	is	int,	with	no	default.

[@parameter_name	=]	'parameter_name'

Is	the	name	of	the	parameter.	parameter_name	is	sysname,	with	no	default.
For	system	profiles,	the	parameters	that	can	be	changed	depend	on	the	type
of	agent.	To	find	out	what	type	of	agent	this	profile_id	represents,	find	the
profile_id	in	the	Msagent_profiles	table,	and	note	the	agent_type	field	value.
For	a	Snapshot	Agent,	which	has	a	value	of	1	in	the	agent_type	field,	the
following	properties	can	be	changed:

bcpbatchsize

historyverboselevel

logintimeout

maxbcpthreads

querytimeout

For	a	Log	Reader	Agent,	which	has	a	value	of	2	in	the	agent_type
field,	the	following	properties	can	be	changed:

historyverboselevel

logintimeout

pollinginterval

querytimeout

readbatchsize

readbatchthreshold

For	a	Distribution	Agent,	which	has	a	value	of	3	in	the	agent_type
field,	the	following	properties	can	be	changed:

bcpbatchsize

commitbatchsize

commitbatchthreshold

historyverboselevel

logintimeout

maxbcpthreads

maxdeliveredtransactions

pollinginterval

querytimeout

transactionsperhistory

skiperrors

For	a	Merge	Agent,	which	has	a	value	of	4	in	the	agent_type	field,
the	following	properties	can	be	changed:

pollinginterval

validateinterval

logintimeout

querytimeout

maxuploadchanges

maxdownloadchanges

uploadgenerationsperbatch

downloadgenerationsperbatch

uploadreadchangesperbatch

downloadreadchangesperbatch

uploadwritechangesperbatch

downloadwritechangesperbatch

validate

fastrowcount

historyverboselevel

changesperhistory

bcpbatchsize

numdeadlockretries

For	custom	profiles,	the	parameters	that	can	be	changed	depend	on
the	parameters	defined.	To	see	what	parameters	have	been	defined,
run	sp_help_agent_profile	to	see	the	profile_name	associated	with
the	profile_id.	With	the	appropriate	profile_id,	next	run
sp_help_agent_parameters	using	that	profile_id	to	see	the
parameters	associated	with	the	profile.

[@parameter_value	=]	'parameter_value'

Is	the	new	value	of	the	parameter.	parameter_value	is	nvarchar(255),	with
no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_change_agent_parameter	is	used	in	all	types	of	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_change_agent_parameter.

See	Also

Distribution	Agent	Profile

Log	Reader	Agent	Profile

Merge	Agent	Profile

Snapshot	Agent	Profile

sp_add_agent_parameter

sp_drop_agent_parameter

sp_help_agent_parameter

System	Stored	Procedures

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Transact-SQL	Reference

sp_change_agent_profile
Changes	a	parameter	of	a	replication	agent	profile	stored	in	MSagent_profiles.
This	stored	procedure	is	executed	at	the	Distributor	on	any	database.

Syntax
sp_change_agent_profile	[@profile_id	=]	profile_id
				,	[@property	=]	'property'
				,	[@value	=]	'value'

Arguments
[@profile_id	=]	profile_id

Is	the	ID	of	the	profile.	profile_id	is	int,	with	no	default.

[@property	=]	'property'

Is	the	name	of	the	property.	property	is	sysname,	with	no	default.

[@value	=]	'value'

Is	the	new	value	of	the	property.	value	is	nvarchar(3000),	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_change_agent_profile	is	used	in	all	types	of	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_change_agent_profile.

See	Also

sp_add_agent_profile

sp_drop_agent_profile

sp_help_agent_profile

System	Stored	Procedures

Transact-SQL	Reference

sp_changearticle
Changes	the	properties	of	an	article	in	a	transactional	or	snapshot	publication.
This	stored	procedure	is	executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_changearticle	[[@publication	=]	'publication']
				[,	[@article	=]	'article']
				[,	[@property	=]	'property']
				[,	[@value	=]	'value']
				[,	[@force_invalidate_snapshot	=]	force_invalidate_snapshot]
				[,	[@force_reinit_subscription	=]	force_reinit_subscription]

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication	that	contains	the	article.	publication	is
sysname,	with	a	default	of	NULL.

[@article	=]	'article'

Is	the	name	of	the	article	whose	property	is	to	be	changed.	article	is
sysname,	with	a	default	of	NULL.

[@property	=]	'property'

Is	an	article	property	to	change.	property	is	nvarchar(20).

[@value	=]	'value'

Is	the	new	value	of	the	article	property.	value	is	nvarchar(255).

This	table	describes	the	properties	of	articles	and	the	values	for	those
properties.

Property Values Description
description 	 New	descriptive	entry	for	the

publication	job.

sync_object 	 Name	of	the	table	or	view	used	to
produce	a	synchronization	output
file.	The	default	is	NULL.

type logbased	(default)
=	Log-based	article.
logbased
manualfilter	=
Log-based	article
with	manual	filter.
logbased
manualview=	Log-
based	article	with
manual	view.
logbased
manualboth	=
Log-based	article
with	both	manual
filter	and	manual
view.

Article	type.

ins_cmd 	 INSERT	statement	to	execute;
otherwise,	it	is	constructed	from
the	log.

del_cmd 	 DELETE	statement	to	execute;
otherwise,	it	is	constructed	from
the	log.

upd_cmd 	 UPDATE	statement	to	execute;
otherwise,	it	is	constructed	from
the	log.

filter 	 New	stored	procedure	to	be	used
to	filter	the	table	(horizontal
filtering).	The	default	is	NULL.

dest_table 	 New	destination	table.
dest_object 	 Provided	for	backward

compatibility.	Use	dest_table.
creation_script 	 Path	and	name	of	an	article

schema	script	used	to	create	target

tables.	The	default	is	NULL.

pre_creation_cmd Precreation	command	that	can
drop,	delete,	or	truncate	the
destination	table	before
synchronization	is	applied.

none Does	not	use	a	command.
drop Drops	the	destination	table.
delete Deletes	the	destination	table.
truncate Truncates	the	destination	table.

status Specifies	the	new	status	of	the
property.

include	column
names

Allows	column	names	in	the
replicated	INSERT	statement.

no	column	names Allows	no	column	names	in	the
replicated	INSERT	statement.

owner	qualified Allows	owner-qualified	table
names.

not	owner
qualified

Allows	table	names	that	are	not
owner-qualified.

string	literals	|
parameters

Specifies	whether	the	logreader-
generated	commands	use	the
standard	string_literal	command
format	or	the	new	parameterized
command	format.

schema_option Specifies	the	bitmap	of	the
schema	generation	option	for	the
given	article.	schema_option	is
binary(8).	If	this	value	is	NULL,
the	system	will	auto-generate	a
valid	schema	option	for	the
article.	The	table	given	in	the
Remarks	shows	the	value	that	will
be	chosen	based	upon	the
combination	of	the	article	type
and	the	replication	type.	Also,	not

all	schema_option	values	are	valid
for	every	type	of	replication	and
article	type.	The	Valid	Schema
Option	table	given	in	the	Remarks
shows	the	valid	schema	options
that	can	be	chosen,	based	upon
the	combination	of	the	article	type
and	the	replication	type.

0x00 Disables	scripting	by	InitialSync
and	uses	the	provided
CreationScript.

0x01 Generates	the	object	creation
(CREATE	TABLE,	CREATE
PROCEDURE,	and	so	on).

0x10 Generates	a	corresponding
clustered	index.

0x20 Converts	user-defined	data	types
to	base	data	types.

0x40 Generates	corresponding
nonclustered	index(es).

0x80 Includes	declared	referential
integrity	on	the	primary	keys.

	 0x100 Replicates	user	triggers	on	a	table
article,	if	defined.

	 0x200 Replicates	foreign	key	constraints.
If	the	referenced	table	is	not	part
of	a	publication,	all	foreign	key
constraints	on	a	published	table
will	not	be	replicated.

	 0x400 Replicates	check	constraints.
	 0x800 Replicates	defaults.
	 0x1000 Replicates	column-level	collation.
	 0x2000 Replicates	extended	properties

associated	with	the	published
article	source	object.

	 0x4000 Replicates	unique	keys	if	defined
on	a	table	article.

	 0x8000 Replicates	primary	key	and
unique	keys	on	a	table	article	as
constraints	using	ALTER	TABLE
statements.

destination_owner destination_owner Name	of	the	owner	of	the
destination	object.

NULL NULL 	

[@force_invalidate_snapshot	=]	force_invalidate_snapshot

Acknowledges	that	the	action	taken	by	this	stored	procedure	may	invalidate
an	existing	snapshot.	force_invalidate_snapshot	is	a	bit,	with	a	default	of	0.
0	specifies	that	changes	to	the	article	will	not	cause	the	snapshot	to	be
invalid.	If	the	stored	procedure	detects	that	the	change	does	require	a	new
snapshot,	an	error	will	occur	and	no	changes	will	be	made.	1	specifies	that
changes	to	the	article	may	cause	the	snapshot	to	be	invalid,	and	if	there	are
existing	subscriptions	that	would	require	a	new	snapshot,	gives	permission
for	the	existing	snapshot	to	be	marked	as	obsolete	and	a	new	snapshot
generated.

[@force_reinit_subscription	=]	force_reinit_subscription

Acknowledges	that	the	action	taken	by	this	stored	procedure	may	require
existing	subscriptions	to	be	reinitialized.	force_reinit_subscription	is	a	bit
with	a	default	of	0.	0	specifies	that	changes	to	the	article	will	not	cause	the
subscription	to	be	reinitialized.	If	the	stored	procedure	detects	that	the
change	would	require	existing	subscriptions	to	be	reinitialized,	an	error	will
occur	and	no	changes	will	be	made.	1	specifies	that	changes	to	the	article
will	cause	existing	subscriptions	to	be	reinitialized,	and	gives	permission	for
the	subscription	reinitialization	to	occur.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_changearticle	is	used	in	snapshot	replication	and	transactional	replication.

Within	an	existing	publication,	you	can	use	sp_changearticle	to	change	an
article		without	having	to	drop	and	re-create	the	entire	publication.

The	table	describes	the	default	@schema_option	value	that	will	be	chosen	for
the	stored	procedure	if	a	NULL	value	is	passed	in	by	the	user.	The	default	value
is	based	upon	the	replication	type	shown	across	the	top,	and	the	article	type
shown	down	the	first	column.		Empty	cells	are	article	type	and	replication	types
that	are	not	valid	pairs,	and	therefore,	would	have	no	default.

Article	Type Replication	Type
	 Transactional Snapshot
logbased 0xF3 0x71
logbased	manualfilter 0xF3 0x71
logbased	manualview 0xF3 0x71
indexed	view	logbased 0xF3 0x71
indexed	view	logbased
manualfilter

0xF3 0x71

indexed	view	logbased
manualview

0xF3 0x71

indexed	view	logbase
manualboth

0xF3 0x71

proc	exec 0x01 0x01
serialized	proc	exec 0x01 0x01
proc	schema	only 0x01 0x01
view	schema	only 0x01 0x01
func	schema	only 0x01 0x01
indexed	view	schema
only

0x01 0x01

table 	 	

Note		If	a	publication	is	enabled	for	queued	updating,	the	@schema_option
values	of	0x8000	and	0x0080	will	be	added	to	the	default	value	shown	in	the

table.

Valid	Schema	Option	Table

Article	Type Replication	Type
	 Transactional Snapshot
logbased All	options All	options	but	0x02
logbased	manualfilter All	options All	options	but	0x02
logbased	manualview All	options All	options	but	0x02
indexed	view	logbased All	options All	options	but	0x02
indexed	view	logbased
manualfilter

All	options All	options	but	0x02

indexed	view	logbased
manualview

All	options All	options	but	0x02

indexed	view	logbase
manualboth

All	options All	options	but	0x02

proc	exec 0x01	and	0x2000 0x01	and	0x2000
serialized	proc	exec 0x01	and	0x2000 0x01	and	0x2000
proc	schema	only 0x01	and	0x2000 0x01	and	0x2000
view	schema	only 0x01,	0x0100,	and

0x2000
0x01,	0x0100,	and
0x2000

func	schema	only 0x01	and	0x2000 0x01	and	0x2000
indexed	view	schema
only

0x01,	0x10,	0x040,
0x0100,	and	0x2000

0x01,	0x10,	0x040,
0x0100,	and	0x2000

table 	 	

Note		For	queued	updating	publications,	the	@schema_option	values	of	0x8000
and	0x80	must	be	enabled.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_changearticle.

See	Also

sp_addarticle

sp_addpublication

sp_articlecolumn

sp_changepublication

sp_droparticle

sp_droppublication

sp_enumfullsubscribers

sp_helparticle

sp_helparticlecolumns

sp_helppublication

System	Stored	Procedures

Transact-SQL	Reference

sp_changedistpublisher
Changes	the	properties	of	the	distribution	Publisher.	This	stored	procedure	is
executed	at	the	Distributor	on	any	database.

Syntax
sp_changedistpublisher	[@publisher	=]	'publisher'
				[,	[@property	=]	'property']
				[,	[@value	=]	'value']

Arguments
[@publisher	=]	'publisher'

Is	the	Publisher	name.	publisher	is	sysname,	with	no	default.

[@property	=]	'property'

Is	a	property	to	change	for	the	given	Publisher.	property	is	sysname	and	can
be	one	of	these	values.

Value Description
active Active	status	value.
distribution_db Distribution	database	status	value.
login Login	status	value.
password Password	status	value.
security_mode Security	mode	status	value.
working_directory Working	directory	status	value.
NULL	(default) All	available	property	options	are	printed.

[@value	=]	'value'

Is	the	value	for	the	given	property.	value	is	nvarchar(255),	with	a	default	of
NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_changedistpublisher	is	used	in	all	types	of	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_changedistpublisher.

See	Also

sp_adddistpublisher

sp_dropdistpublisher

sp_helpdistpublisher

System	Stored	Procedures

Transact-SQL	Reference

sp_changedistributiondb
Changes	the	properties	of	the	distribution	database.	This	stored	procedure	is
executed	at	the	Distributor	on	the	distribution	database.

Syntax
sp_changedistributiondb	[@database	=]	'database'	
				[,	[@property	=]	'property']	
				[,	[@value	=]	'value']

Arguments
[@database	=]	'database'

Is	the	name	of	the	database.	database	is	sysname,	with	no	default.

[@property	=]	'property'

Is	the	property	to	change	for	the	given	database.	property	is	sysname,	and
can	be	one	of	these	values.

Value Description
history_retention History	table	retention	period.
max_distretention Maximum	distribution	retention	period.	This	value

must	be	greater	than	or	equal	to	the	retention	period
of	all	transactional	publications	in	the	distribution
database.

min_distretention Minimum	distribution	retention	period.
NULL	(default) All	available	property	values	are	printed.

[@value	=]	'value'

Is	the	new	value	for	the	specified	property.	value	is	nvarchar(255),	with	a
default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_changedistributiondb	is	used	in	all	types	of	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_changedistributiondb.

See	Also

sp_adddistributiondb

sp_dropdistributiondb

sp_helpdistributiondb

System	Stored	Procedures

Transact-SQL	Reference

sp_changedistributor_password
Changes	the	password	for	a	Distributor.	This	stored	procedure	is	executed	at	the
Publisher	on	the	distribution	database.

Syntax
sp_changedistributor_password	[@password	=]	'password'

Arguments
[@password	=]	'password'

Is	the	new	password.	password	is	sysname,	with	no	default.	If	the
Distributor	is	local,	the	password	of	the	distributor_admin	system	login	is
changed.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_changedistributor_password	is	used	in	all	types	of	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_changedistributor_password.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_changedistributor_property
Changes	the	properties	of	the	Distributor.	This	stored	procedure	is	executed	at
the	Distributor	on	the	distribution	database.

Syntax
sp_changedistributor_property	[[@property	=]	'property']
				[,	[@value	=]	'value']

Arguments
[@property	=]	'property'

Is	the	property	for	a	given	Distributor.	property	is	sysname,	and	can	be	one
of	these	values.

Value Description
heartbeat_interval Maximum	number	of	minutes	that	an	agent	can

run	without	logging	a	progress	message.
NULL	(default) All	available	property	values	are	printed.

[@value	=]	'value'

Is	the	value	for	the	given	Distributor	property.	value	is	varchar(255),	with	a
default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_changedistributor_property	is	used	in	all	types	of	replication.

Permissions

Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_changedistributor_property.

See	Also

sp_adddistributor

sp_dropdistributor

sp_helpdistributor

System	Stored	Procedures

Transact-SQL	Reference

sp_changemergearticle
Changes	the	properties	of	a	merge	article.	This	stored	procedure	is	executed	at
the	Publisher	on	the	publication	database.

Syntax
sp_changemergearticle	[@publication	=]	'publication'
				,	[@article	=]	'article'
				[,	[@property	=]	'property']
				[,	[@value	=]	'value']
				[,	[@force_invalidate_snapshot	=]	force_invalidate_snapshot]
				[,	[@force_reinit_subscription	=]	force_reinit_subscription]

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication	in	which	the	article	exists.	publication	is
sysname,	with	no	default.

[@article	=]	'article'

Is	the	name	of	the	article	to	change.	article	is	sysname,	with	no	default.

[@property	=]	'property'

Is	the	property	to	change	for	the	given	article	and	publication.	property	is
nvarchar(30),	and	can	be	one	of	the	values	listed	in	the	table.

[@value	=]	'value'

Is	the	new	value	for	the	specified	property.	value	is	nvarchar(1000),	and	can
be	one	of	the	values	listed	in	the	table.

This	table	describes	the	properties	of	articles	and	the	values	for	those
properties.

Property Values Description
description 	 Descriptive	entry	for

the	article.
pre_creation_command none:	If	the	table

already	exists	at	the
Subscriber,	no	action
is	taken.

drop:Issues	a	delete
based	on	the	WHERE
clause	in	the	subset
filter.

delete:Drops	the	table
before	re-creating	it.

truncate:	Same	as
delete,	but	deletes
pages	instead	of	rows.
Does	not	accept	a
WHERE	clause.

Specifies	what	the
system	is	to	do	if	the
tables	exists	at	the
subscriber	when
applying	the	snapshot.

creation_script 	 Path	and	name	of	an
optional	article	schema
script	used	to	create
target	table.

column_tracking true	or	false Setting	for	column
level	tracking.	true
turns	on	column	level
tracking.	false	turns	off
column	level	tracking
and	leaves	conflict
detection	at	the	row
level.	If	the	table	is
already	published
inother	merge
publications,	the
column	tracking	must
be	the	same	as	the
value	being	used	by
existing	articles	based

on	this	table.	This
parameter	is	specific	to
table	articles	only.

article_resolver 	 Custom	resolver	for	the
article.

resolver_info 	 Name	of	the	stored
procedure	used	as	a
custom	resolver.

status active	or	unsynced,	or Status	of	the	article.	If
active,	the	intial
processing	script	to
publish	the	table	is	run.
If	unsynced,	the	intial
processing	script	to
publish	the	table	is	run
at	the	next	time	the
Snapshot	Agent	runs.

subset_filterclause 	 WHERE	clause
specifying	the
horizontal	filtering.

schema_option 0x00:	Disables
scripting	by	the
Snapshot	Agent	and
uses	the	script
provided	in
creation_script.

0x01:	Generates	the
object	creation
(CREATE	TABLE,
CREATE
PROCEDURE,	and	so
on).

0x10:	Generates	a
corresponding
clustered	index.

Bitmap	of	the	schema
generation	option	for
the	given	article.	If	this
value	is	NULL,	the
system	will	auto-
generate	a	valid
schema	option	for	the
article.	The	table	given
in	the	Remarks	shows
the	value	that	will	be
chosen	based	upon	the
combination	of	the
article	type	and	the
replication	type.	Also,
not	all
@schema_option

0x20:Converts	user-
defined	data	types	to
base	data	types.

0x40:	Generates
corresponding
nonclustered
index(es).

0x80:	Includes
declared	referential
integrity	on	the
primary	keys.

0x100:	Replicates	user
triggers	on	a	table
article,	if	defined.

0x200:Replicates
foreign	key
constraints.	If	the
referenced	table	is	not
part	of	a	publication,
all	foreign	key
constraints	on	a
published	table	will
not	be	replicated.

0x400:	Replicates
check	constraints.

0x800:	Replicates
defaults.

0x1000:	Replicates
column-level
collation.

0x2000:	Replicates
extended	properties
associated	with	the

values	are	valid	for
every	type	of
replication	and	article
type.	The	Valid	Schema
Option	table	given	in
the	Remarks	shows	the
valid	schema	options
that	can	be	chosen
based	upon	the
combination	of	the
article	type	and	the
replication	type.

published	article
source	object.

0x4000:Replicates
unique	keys	if	defined
on	a	table	article.

0x8000:	Replicates
primary	key	and
unique	keys	on	a	table
article	as	constraints
using	ALTER	TABLE
statements.

destination_owner 	 Name	of	the	owner	of
the	object	in	the
subscription	database,
if	not	'dbo'.

destination_object 	 New	name	of	the
destination	object,	'',	or
NULL.	If	NULL	or	'',
the	value	will	be	reset
to	be	equivalent	to	the
current	value	in	the
source_object	property
for	the	article.

Valid	for	merge	stored
procedures,	views,	and
UDF	schema	articles
only.	Modifying	the
destination_object	of	a
merge	table	article	will
result	in	an	error.

pub_identity_range 	 Range	size	at	the
Publisher	if	the	article
has
auto_identity_range	set

to	true.	Applies	to	a
table	article	only.

identity_range 	 The	range	size	at	the
Subscriber	if	the	article
has
auto_identity_range	set
to	true.	Applies	to	a
table	article	only.

threshold 	 Percentage	value	that
controls	when	the
merge	agent	assigns	a
new	identity	range.
When	the	percentage	of
values	specified	in
threshold	is	used,	the
Merge	Agent	creates	a
new	identity	range.
Used	when	the
auto_identity_range	is
set	to	true.	Applies	to	a
table	article	only.

verify_resolver_signature 0	or	1 A	bit	value	that
specifies	if	a	digital
signature	is	verified
before	using	a	resolver
in	merge	replication.	A
value	of	0	specifies	that
the	signature	will	not
be	verified.	A	value	of
1	specifies	that	the
signature	will	be
verified	to	see	if	it	is
from	a	trusted	source.

allow_interactive_resolver true	or	false A	bit	value	that	enables
or	disables	the	use	of
the	Interactive	Resolver

on	an	article.	A	value
of	true	enables	the	use
of	the	Interactive
Resolver	on	the	article;
a	value	of	false
disables	it.

check_permissions A	value	of	0x00
specifies	that
permissions	will	not
be	checked.

A	value	of	0x10
specifies	that
permissions	will	be
checked	at	the
Publisher	before
INSERTs,	which	have
been	made	at	a
Subscriber,	can	be
uploaded.

A	value	of	0x20
specifies	that
permissions	will	be
checked	at	the
Publisher	before
UPDATEs,	which
have	been	made	at	a
Subscriber,	can	be
uploaded.

A	value	of	0x40
specifies	that
permissions	will	be
checked	at	the
Publisher	before
DELETEs,	which
have	been	made	at	a

Bitmap	of	the	table-
level	permissions	that
will	be	verified	when
the	Merge	Agent
applies	changes	to	the
Publisher.	If	the
Publisher	login/user
account	used	by	the
merge	process	does	not
have	the	correct	table
permissions,	the	invalid
changes	will	be	logged
as	conflicts.
check_permissions	is
int.

Subscriber,	can	be
uploaded.

NULL	(default) 	 	

[@force_invalidate_snapshot	=]	force_invalidate_snapshot

Acknowledges	that	the	action	taken	by	this	stored	procedure	may	invalidate
an	existing	snapshot.	force_invalidate_snapshot	is	a	bit,	with	a	default	of	0.
0	specifies	that	changes	to	the	merge	article	will	not	cause	the	snapshot	to	be
invalid.	If	the	stored	procedure	detects	that	the	change	does	require	a	new
snapshot,	an	error	will	occur	and	no	changes	will	be	made.	1	means	that
changes	to	the	merge	article	may	cause	the	snapshot	to	be	invalid,	and	if
there	are	existing	subscriptions	that	would	require	a	new	snapshot,	gives
permission	for	the	existing	snapshot	to	be	marked	as	obsolete	and	a	new
snapshot	generated.

[@force_reinit_subscription	=]	force_reinit_subscription

Acknowledges	that	the	action	taken	by	this	stored	procedure	may	require
existing	subscriptions	to	be	reinitialized.	force_reinit_subscription	is	a	bit,
with	a	default	of	0.	0	specifies	that	changes	to	the	merge	article	will	not
cause	the	subscription	to	be	reinitialized.If	the	stored	procedure	detects	that
the	change	would	require	existing	subscriptions	to	be	reinitialized,	an	error
will	occur	and	no	changes	will	be	made.	1	means	that	changes	to	the	merge
article	will	cause	existing	subscriptions	to	be	reinitialized,	and	gives
permission	for	the	subscription	reinitialization	to	occur.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_changemergearticle	is	used	in	merge	replication.

The	table	describes	the	default	@schema_option	value	that	will	be	chosen	for
the	stored	procedure	if	a	NULL	value	is	passed	in	by	the	user.	The	default	value
is	based	upon	the	replication	type	shown	across	the	top,	and	the	article	type

shown	down	the	first	column.		Empty	cells	are	article	and	replication	type	pairs
that	are	not	valid	combinations,	and	therefore,	have	no	default.

Article	Type Replication	Type
	 Merge
logbased 	
logbased	manualfilter 	
logbased	manualview 	
indexed	view	logbased 	
indexed	view	logbased	manualfilter 	
indexed	view	logbased	manualview 	
indexed	view	logbase	manualboth 	
proc	exec 	
serialized	proc	exec 	
proc	schema	only 0x01
view	schema	only 0x01
func	schema	only 0x01
indexed	view	schema	only 0x01
table 0xCFF1

Valid	Schema	Option	Table

Article	Type Replication	Type
	 Merge
logbased 	
logbased	manualfilter 	
logbased	manualview 	
indexed	view	logbased 	
indexed	view	logbased	manualfilter 	
indexed	view	logbased	manualview 	
indexed	view	logbase	manualboth 	
proc	exec 0x01	and	0x2000
serialized	proc	exec 0x01	and	0x2000

proc	schema	only 0x01	and	0x2000
view	schema	only 0x01,	0x0100,	and	0x2000
func	schema	only 0x01	and	0x2000
indexed	view	schema	only 0x01,	0x10,	0x040,	0x0100,	and

0x2000
table All	options	but	0x02	and	0x8000

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_changemergearticle.

See	Also

sp_addmergearticle

sp_dropmergearticle

sp_helpmergearticle

System	Stored	Procedures

Transact-SQL	Reference

sp_changemergefilter
Changes	some	merge	filter	properties.	The	merge	filter	properties	that	can	be
changed	include	filtername	and	join_filterclause.	This	stored	procedure	is
executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_changemergefilter	[@publication	=]	'publication'
				,	[@article	=]	'article'
				,	[@filtername	=]	'filtername'
				,	[@property	=]	'property'
				,	[@value	=]	'value'
				[,	[@force_invalidate_snapshot	=]	force_invalidate_snapshot]
				[,	[@force_reinit_subscription	=]	force_reinit_subscription]

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	no	default.

[@article	=]'article'

Is	the	name	of	the	article.	article	is	sysname,	with	no	default.

[@filtername	=]	'filtername'

Is	the	current	name	of	the	filter.	filtername	is	sysname,	with	no	default.

[@property	=]	'property'

Is	the	name	of	the	property	to	change.	property	is	sysname,	with	no	default,
and	can	be	one	of	these	values.

Value Description
filtername Name	of	the	filter.
join_filterclause Filter	clause.
join_articlename Name	of	the	join	article.

[@value	=]	'value'

Is	the	new	value	for	the	specified	property.	value	is	nvarchar(2000),	with	no
default.

[@force_invalidate_snapshot	=]	force_invalidate_snapshot

Acknowledges	that	the	action	taken	by	this	stored	procedure	may	invalidate
an	existing	snapshot.	force_invalidate_snapshot	is	a	bit,	with	a	default	0.	0
specifies	that	changes	to	the	merge	article	will	not	cause	the	snapshot	to	be
invalid.	If	the	stored	procedure	detects	that	the	change	does	require	a	new
snapshot,	an	error	will	occur	and	no	changes	will	be	made.	1	means	that
changes	to	the	merge	article	may	cause	the	snapshot	to	be	invalid,	and	if
there	are	existing	subscriptions	that	would	require	a	new	snapshot,	gives
permission	for	the	existing	snapshot	to	be	marked	as	obsolete	and	a	new
snapshot	generated.

[@force_reinit_subscription	=]	force_reinit_subscription

Acknowledges	that	the	action	taken	by	this	stored	procedure	may	require
existing	subscriptions	to	be	reinitialized.	force_reinit_subscription	is	a	bit
with	a	default	of	0.	0	specifies	that	changes	to	the	merge	article	will	not
cause	the	subscription	to	be	reinitialized.	If	the	stored	procedure	detects	that
the	change	would	require	existing	subscriptions	to	be	reinitialized,	an	error
will	occur	and	no	changes	will	be	made.	1	means	that	changes	to	the	merge
article	will	cause	existing	subscriptions	to	be	reinitialized,	and	gives
permission	for	the	subscription	reinitialization	to	occur.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_changemergefilter	is	used	in	merge	replication.

Changing	the	filter	on	a	merge	article	requires	the	snapshot,	if	one	exists,	to	be
redone.	This	is	performed	by	setting	the	@force_invalidate_snapshot	to	1.	Also,
if	there	are	subscriptions	to	this	article,	the	subscription	need	to	be	reinitialized.

This	is	done	by	setting	the	@force_reinit_subscription	to	1.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_changemergefilter.

See	Also

sp_addmergefilter

sp_dropmergefilter

sp_helpmergefilter

System	Stored	Procedures

Transact-SQL	Reference

sp_changemergepublication
Changes	the	properties	of	a	merge	publication.	This	stored	procedure	is	executed
at	the	Publisher	on	the	publication	database.

Syntax
sp_changemergepublication	[@publication	=]	'publication'
				[,	[@property	=]	'property']
				[,	[@value	=]	'value']
				[,	[@force_invalidate_snapshot	=]	force_invalidate_snapshot]
				[,	[@force_reinit_subscription	=]	force_reinit_subscription]

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	no	default.

[@property	=]	'property'

Is	the	property	to	change	for	the	given	publication.	property	is	sysname,	and
can	be	one	of	the	values	listed	in	the	table.

[@value	=]	'value'

Is	the	new	value	for	the	specified	property.	value	is	nvarchar(255),	and	can
be	one	of	the	values	listed	in	the	table.

This	table	describes	the	properties	of	the	publication	that	can	be	changed	and
restrictions	on	the	values	for	those	properties.

Property Values Description
description 	 Description	of	the	publication.
status active	or

unsynced
Status	of	the	publication.

retention 	 Number	of	days	for	which	to	save	changes	for	the
given	publication.

sync_mode native	or Mode	of	the	intial	synchronization	of	subscribers

character to	the	publication.	If	native,	native-mode	bulk
copy	program	output	of	all	tables	is	produced.	If
character,	character-mode	bulk	copy	program
output	of	all	tables	is	produced.	Non-SQL	Server
subscribers	require	the	use	of	character

Allow_push true	or
false

Push	subscriptions	are	allowed	for	the	given
publication.

Allow_pull true	or
false

Pull	subscriptions	are	allowed	for	the	given
publication.

allow_anonymous true	or
false

Anonymous	subscriptions	are	allowed	for	the
given	publication.

enabled_for_internet true	or
false

Publication	is	enabled	for	the	Internet,	and
specifies	if	FTP	can	be	use	to	transfer	the	snapshot
files	to	a	subscriber.	If	true,	the	synchronization
files	for	the	publication	are	put	into	the
C:\Program	Files\Microsoft	SQL
Server\MSSQL\Repldata\ftp	directory.

centalized_conflicts true	or
false

Conflict	records	are	stored	on	the	given	Publisher
if	true.	If	false,	conflict	records	are	stored	at	the
server	where	the	conflict	was	detected,	which
could	be	at	the	Publisher	or	the	Subscriber.

snapshot_ready true	or
false

Snapshot	for	the	publication	is	available.

snapshot_in_defaultfolder true	or
false

Specifies	if	the	snapshot	is	stored	in	the	default
folder.	If	true,	snapshot	files	can	be	found	in	the
default	folder.	If	false,	snapshot	files	will	be	stored
in	the	alternate	location	specified	by	the
alt_snapshot_folder.	Note	that	this	parameter	can
be	true	and	have	a	location	specified	in	the
alt_snapshot_folder	parameter.	This	combination
specifies	that	the	snapshot	files	will	be	stored	in
both	the	default	and	alternate	locations.

alt_snapshot_folder 	 Specifies	the	location	of	the	alternate	folder	for	the
snapshot.

pre_snapshot_script 	 Specifies	a	pointer	to	an	.sql	file	location.
pre_snapshot_script	is	nvarchar(255)

default	of	NULL.	The	Merge	Agent	will	run	the
pre-snapshot	script	before	any	of	the	replicated
object	scripts	when	applying	a	snapshot	at	a
Subscriber.

post_snapshot_script 	 Specifies	a	pointer	to	an	.sql	file	location.	The
Distribution	Agent	or	Merge	Agent	will	run	the
post-snapshot	script	after	all	the	other	replicated
object	scripts	and	data	have	been	applied	during	an
initial	synchronization.

compress_snapshot true	or
false

Specifies	that	the	snapshot	that	is	written	to	the
@alt_snapshot_folder	location	is	to	be	compressed
into	a	Microsoft®	CAB	format.
compress_snapshot	is	nvarchar(5)
of	FALSE.	false	specifies	that	the	snapshot	will
not	be	compressed,	while	true
snapshot	is	to	be	compressed.	The	snapshot	in	the
default	folder	cannot	be	compressed.

ftp_address 	 Is	the	network	address	of	the	FTP	service	for	the
Distributor.	Specifies	where	publication	snapshot
files	are	stored.

ftp_port 	 Is	the	port	number	of	the	FTP	service	for	the
Distributor.	Specifies	the	TCP	port	number	of	the
FTP	site	where	the	publication	snapshot	files	are
stored.

ftp_subdirectory 	 Specifies	where	the	snapshot	files	are	created	if	the
publication	supports	propagating	snapshots	using
FTP.

ftp_login 	 Is	the	username	used	to	connect	to	the	FTP
service.

ftp_password 	 Is	the	user	password	used	to	connect	to	the	FTP
service.

conflict_retention 	 Specifies	the	retention	period,	in	days,	for	which
conflicts	are	retained.

allow_subscription_copy true	or
false

Enables	or	disables	the	ability	to	copy	the
subscription	databases	that	subscribe	to	this
publication.

allow_synctoalternate true	or
false

Enables	an	alternate	synchronization	partner	to
synchronize	with	this	Publisher.

validate_subscriber_info 	 Lists	the	functions	that	are	being	used	to	retrieve
Subscriber	information,	and	validates	the	dynamic
filtering	criteria	being	used	for	the	Subscriber	to
verify	that	the	information	is	partitioned
consistently.	For	example,	if	SUSER_SNAME()	is
used	in	the	dynamic	filter,	this	parameter	should	be
specified	as
@validate_subscriber_info=N'SUSER_SNAME()'.
For	more	information,	see	Validate	Subscriber
Information.

publish_to_activedirectory 	 Specifies	whether	the	publication	information	is
published	to	the	Microsoft	Active	Directory™.
This	feature	is	available	only	for	servers	running
the	Microsoft	Windows®	2000	operating	system.
A	value	of	true	will	add	the	publication
information	to	the	Microsoft	Active	Directory.

dynamic_filters true	or
false

Specifies	whether	the	publication	is	filtered	on	a
dynamic	clause.

max_concurrent_merge 	 The	maximum	number	of	concurrent	merge
processes.	A	value	of	0	for	this	property	means
that	there	is	no	limit	to	the	number	of	concurrent
merge	processes	running	at	any	given	time.	This
property	sets	a	limit	on	the	number	of	concurrent
merge	processes	that	can	be	run	against	a	merge
publication	at	one	time.	If	there	are	more	snapshot
processes	scheduled	at	the	same	time	than	the
value	allows	to	run,	then	the	excess	jobs	will	be
put	into	a	queue	and	wait	until	a	currently-running
merge	process	finishes.

max_concurrent_dynamic_snapshots 	 The	maximum	number	of	concurrent	dynamic
snapshot	sessions	that	can	be	running	against	the
merge	publication.	If	0,	there	is	no	limit	to	the
maximum	number	of	concurrent	dynamic	snapshot
sessions	that	can	run	simultaneously	against	the

JavaScript:hhobj_1.Click()

publication	at	any	given	time.	This	property	sets	a
limit	on	the	number	of	concurrent	snapshot
processes	that	can	be	run	against	a	merge
publication	at	one	time.	If	there	are	more	snapshot
processes	scheduled	at	the	same	time	than	the
value	allows	to	run,	then	the	excess	jobs	will	be
put	into	a	queue	and	wait	until	a	currently-running
merge	process	finishes.

NULL	(default) 	

[@force_invalidate_snapshot	=]	force_invalidate_snapshot

Acknowledges	that	the	action	taken	by	this	stored	procedure	may	invalidate
an	existing	snapshot.	force_invalidate_snapshot	is	a	bit,	with	a	default	of	0.
0	specifies	that	changing	the	publication	will	not	cause	the	snapshot	to	be
invalid.	If	the	stored	procedure	detects	that	the	change	does	require	a	new
snapshot,	an	error	will	occur	and	no	changes	will	be	made.	1	specifies	that
changing	the	publication	may	cause	the	snapshot	to	be	invalid,	and	if	there
are	existing	subscriptions	that	would	require	a	new	snapshot,	gives
permission	for	the	existing	snapshot	to	be	marked	as	obsolete	and	a	new
snapshot	generated.

[@force_reinit_subscription	=]	force_reinit_subscription

Acknowledges	that	the	action	taken	by	this	stored	procedure	may	require
existing	subscriptions	to	be	reinitialized.	force_reinit_subscription	is	a	bit
with	a	default	of	0.	0	specifies	that	changing	the	publication	will	not	cause	a
need	for	subscriptions	to	be	reinitialized.	If	the	stored	procedure	detects	that
the	change	would	require	existing	subscriptions	to	be	reinitialized,	an	error
will	occur	and	no	changes	will	be	made.	1	specifies	that	changing	the
publication	will	cause	existing	subscriptions	to	be	reinitialized,	and	gives
permission	for	the	subscription	reinitialization	to	occur.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_changemergepublication	is	used	in	merge	replication.

To	list	publication	objects	to	the	Active	Directory	using	the
@publish_to_active_directory	parameter,	the	SQL	Server	object	must	already
be	created	in	the	Active	Directory.	For	more	information,	see	Active	Directory
Services.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_changemergepublication.

See	Also

sp_addmergepublication

sp_dropmergepublication

sp_helpmergepublication

System	Stored	Procedures

JavaScript:hhobj_2.Click()

Transact-SQL	Reference

sp_changemergepullsubscription
Changes	the	properties	of	the	merge	pull	subscription.	This	stored	procedure	is
executed	at	the	Subscriber	on	the	subscription	database.

Syntax
sp_changemergepullsubscription	[[@publication	=]	'publication']
				[,	[@publisher	=]	'publisher']
				[,	[@publisher_db	=]	'publisher_db']
				[,	[@property	=]	'property']
				[,	[@value	=]	'value']

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	a	default	of	%.

[@publisher	=]	'publisher'

Is	the	name	of	the	Publisher.	publisher	is	sysname,	with	a	default	of	%.

[@publisher_db	=]	'publisher_db'

Is	the	name	of	the	Publisher	database.	publisher_db	is	sysname,	with	a
default	of	%.

[@property	=]	'property'

Is	the	name	of	the	property	to	change.	property	is	sysname,	and	can	be	one
of	the	values	in	the	table.

[@value	=]	'value'

Is	the	new	value	for	the	specified	property.	value	is	nvarchar(255),	and	can
be	one	of	the	values	in	the	table.

Property Value Description
sync_type automatic	or

none
Is	the	subscription
synchronization	type.

sync_type	is	nvarchar(15),
with	a	default	of	automatic.
Can	be	automatic	or	none.	If
automatic,	the	schema	and
initial	data	for	published	tables
are	transferred	to	the
Subscriber	first.	If	none,	it	is
assumed	the	Subscriber
already	has	the	schema	and
initial	data	for	published
tables.	System	tables	and	data
are	always	transferred.

priority 	 Available	for	backward
compatibility	only;	run
sp_changemergesubscription
at	the	Publisher	instead	to
modify	the	priority	of	a
subscription.

description 	 Description	of	this	merge	pull
subscription.

publisher_login 	 Login	ID	used	at	the	Publisher
for	SQL	Server
Authentication.

publisher_password 	 Password	(encrypted)	used	at
the	Publisher	for	SQL	Server
Authentication.

publisher_security_mode 0	=	SQL	Server
Authentication
1	=	Windows
Authentication
2	=	The
synchronization
triggers	use	a
static
sysservers
entry	to	do

Security	mode	implemented	at
the	Publisher.

RPC,	and	the
Publisher	must
be	defined	in
the	sysservers
table	as	a
remote	server
or	linked	server

distributor 	 Name	of	the	Distributor.
distributor_login 	 Login	ID	used	at	the

Distributor	for	SQL	Server
Authentication

distributor_password 	 Password	(encrypted)	used	at
the	Distributor	for	SQL	Server
Authentication.

distributor_security_mode 0	=	SQL	Server
Authentication
1	=	Windows
Authentication

Security	mode	implemented	at
the	Distributor.

ftp_address 	 Available	for	backward
compatibility	only.	Is	the
network	address	of	the	FTP
service	for	the	Distributor.

ftp_port 	 Available	for	backward
compatibility	only.	Is	the	port
number	of	the	FTP	service	for
the	Distributor.

ftp_login 	 Available	for	backward
compatibility	only.	Is	the
username	used	to	connect	to
the	FTP	service.

ftp_password 	 Available	for	backward
compatibility	only.	Is	the	user
password	used	to	connect	to
the	FTP	service.

alt_snapshot_folder 	 Location	where	the	snapshot
folder	is	stored	if	the	location

is	other	than	or	in	addition	to
the	default	location.

working_directory 	 Fully	qualified	path	to	the
directory	where	snapshot	files
are	transferred	using	FTP
when	that	option	is	specified.

use_ftp 	 Subscription	is	subscribing	to
Publication	over	the	Internet
and	FTP	addressing	properties
are	configured.	If	0,
Subscription	is	not	using	FTP.
If	1,	subscription	is	using	FTP.

use_interactive_resolver 0	or	1 Determines	whether	or	not	the
interactive	resolver	is	used
during	reconciliation.	If	0,	the
interactive	resolver	is	not
used.

offload_agent 0	or	1	bit Specifies	if	the	agent	can	be
activated	and	run	remotely.	If
0,	the	agent	cannot	be
remotely	activated.

offload_server 	 Name	of	the	server	used	for
remote	activation.

dynamic_snapshot_location 	 Path	to	the	folder	where	the
snapshot	files	are	saved.

NULL	(default) 	 	

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_changemergepullsubscription	is	used	in	merge	replication.

The	current	server	and	current	database	are	assumed	to	be	the	Subscriber	and

Subscriber	database.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_changemergepullsubscription.

See	Also

sp_addmergepullsubscription

sp_dropmergepullsubscription

sp_helpmergepullsubscription

System	Stored	Procedures

Transact-SQL	Reference

sp_changemergesubscription
Changes	a	merge	push	or	pull	subscription.	This	stored	procedure	is	executed	at
the	Publisher	on	the	publication	database.

Syntax
sp_changemergesubscription	[[@publication	=]	'publication']
				[,	[@subscriber	=]	'subscriber'
				[,	[@subscriber_db	=]	'subscriber_db']
				[,	[@property	=]	'property']
				[,	[@value	=]	'value']

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication	to	change.	publication	is	sysname,	with	a
default	of	NULL.	The	publication	must	already	exist	and	must	conform	to
the	rules	for	identifiers.

[@subscriber	=]	'subscriber'

Is	the	name	of	the	Subscriber.	subscriber	is	sysname,	with	a	default	of
NULL.

[@subscriber_db	=]	'subscriber_db'

Is	the	name	of	the	subscription	database.	subscriber_db	is	sysname,	with	a
default	of	NULL.

[@property	=]	'property'

Is	the	property	to	change	for	the	given	publication.	property	is	sysname,	and
can	be	one	of	the	values	in	the	table.

[@value	=]	'value'

Is	the	new	value	for	the	specified	property.	value	is	nvarchar(255),	and	can
be	one	of	the	values	in	the	table.

Property Value Description
sync_type automatic	or

none
Is	the	subscription	synchronization	type.
sync_type	is	nvarchar(15),	with	a	default
of	automatic.	Can	be	automatic	or	none.
If	automatic,	the	schema	and	initial	data
for	published	tables	are	transferred	to	the
Subscriber	first.	If	none,	it	is	assumed	the
Subscriber	already	has	the	schema	and
initial	data	for	published	tables.	System
tables	and	data	are	always	transferred.

priority 	 Is	the	subscription	priority.			The	priority
is	used	by	the	default	resolver	to	pick	a
winner	when	conflicts	are	detected.

description 	 Description	of	this	merge	subscription.
NULL	(default) NULL

(default)
	

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_changemergesubscription	is	used	in	merge	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_changemergesubscription.

See	Also

sp_addmergesubscription

sp_dropmergesubscription

sp_helpmergesubscription

System	Stored	Procedures

Transact-SQL	Reference

sp_changepublication
Changes	the	properties	of	a	publication.	This	stored	procedure	is	executed	at	the
Publisher	on	the	publication	database.

Syntax
sp_changepublication	[[@publication	=]	'publication']
				[,	[@property	=]	'property']
				[,	[@value	=]	'value']
				[,	[@force_invalidate_snapshot	=]	force_invalidate_snapshot]
				[,	[@force_reinit_subscription	=]	force_reinit_subscription]

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	a	default	of
NULL.

[@property	=]	'property'

Is	the	publication	property	to	change.	property	is	nvarchar(20),	and	can	be
one	of	these	values.

Value Description
taskid Unique	scheduler	task	ID	created	using

sp_addtask.	For	backward	compatibility	only.
sync_method Synchronization	method.	Can	be:

native	=	produces	native-mode	bulk	copy	output	of
all	tables
character	=	produces	a	character-mode	bulk	copy
output	of	all	tables
concurrent	=	produces	native-mode	bulk	copy
program	output	of	all	tables	but	does	not	lock	tables
during	the	snapshot
concurrent_c	=	produces	character-mode	bulk

copy	program	output	of	all	tables	but	does	not	lock
tables	during	the	snapshot.
Note	that	the	values	concurrent	and	concurrent_c
are	available	for	transactional	and	merge
replication,	but	not	snapshot	replication.

repl_freq Frequency	of	replication.	Can	be	continuous
(provides	output	of	all	log-based	transactions)	or
snapshot	(produces	only	scheduled
synchronization	events).

description Optional	entry	describing	the	publication.
status Publication	status.	Can	be	inactive	(publication

data	will	not	be	available	for	Subscribers	when	the
publication	is	first	created)	or	active	(publication
data	is	available	immediately	for	Subscribers).

independent_agent Specifies	if	there	is	a	stand-alone	Distribution
Agent	for	this	publication.	If	true,	there	is	a	stand-
alone	Distribution	Agent	for	this	publication.	If
false,	the	publication	uses	a	shared	Distribution
Agent,	and	each	Publisher	database/Subscriber
database	pair	has	a	shared	agent.

immediate_sync Specifies	if	the	synchronization	files	for	the
publication	are	created	each	time	the	Snapshot
Agent	runs.	If	true,	the	synchronization	files	are
created	or	re-created	each	time	the	Snapshot	Agent
runs.	Subscribers	are	able	to	receive	the
synchronization	files	immediately	after	the
subscription	if	the	Snapshot	Agent	has	been
completed	once	before	the	subscription.	New
subscriptions	get	the	newest	synchronization	files
generated	by	the	most	recent	execution	of	the
Snapshot	Agent.	independent_agent	must	be	true
for	immediate_sync	to	be	true.	If	false,	the
synchronization	files	are	created	only	if	there	are
new	subscriptions.	Subscribers	cannot	receive	the
synchronization	files	after	the	subscription	until	the
Snapshot	Agent	is	started	and	completes.

enabled_for_internet Specifies	if	the	publication	is	enabled	for	the
Internet.	If	true,	the	synchronization	files	for	the
publication	are	put	into	the	\Repldata\Ftp	directory.

allow_push Specifies	if	push	subscriptions	can	be	created	for
the	given	publication.	If	true,	push	subscriptions
are	allowed	on	the	publication.

allow_pull Specifies	if	pull	subscriptions	can	be	created	for	the
given	publication.	If	true,	pull	subscriptions	are
allowed	on	the	publication.

allow_anonymous Specifies	if	anonymous	subscriptions	can	be
created	for	the	given	publication.	If	true,
immediate_sync	must	also	be	set	to	true.	If	true,
anonymous	subscriptions	are	allowed	on	the
publication.

retention Retention	period	in	hours	for	subscription	activity.
If	a	subscription	is	not	active	within	the	retention
period,	it	is	removed.

snapshot_in_
defaultfolder

Specifies	if	snapshot	files	are	stored	in	the	default
folder.	snapshot_in_defaultfolder	is	nvarchar(5).	If
true,	snapshot	files	can	be	found	in	the	default
folder.	If	false,	snapshot	files	have	been	stored	in
the	alternate	location	specified	by
alt_snapshot_folder.	Alternate	locations	can	be	on
another	server,	on	a	network	drive,	or	on	removable
media	(such	as	CD-ROM	or	removable	disks).	You
can	also	save	the	snapshot	files	to	a	File	Transfer
Protocol	(FTP)	site,	for	retrieval	by	the	Subscriber
at	a	later	time.	Note	that	this	parameter	can	be	true
and	still	have	a	location	in	the
@alt_snapshot_folder	parameter.	This
combination	specifies	that	the	snapshot	files	will	be
stored	in	both	the	default	and	alternate	locations.

alt_snapshot_folder Specifies	the	location	of	the	alternate	folder	for	the
snapshot.	alternate_snapshot_folder	is
nvarchar(255).

pre_snapshot_script Specifies	a	pointer	to	an	.sql	file	location.

pre_snapshot_script	is	nvarchar(255).	The
Distribution	Agent	will	run	the	pre-snapshot	script
before	running	any	of	the	replicated	object	scripts
when	applying	a	snapshot	at	a	Subscriber.

post_snapshot_script Specifies	a	pointer	to	an	.sql	file	location.
post_snapshot_script	isnvarchar(255).	The
Distribution	Agent	will	run	the	post-snapshot	script
after	all	the	other	replicated	object	scripts	and	data
have	been	applied	during	an	initial	synchronization.

compress_snapshot Specifies	that	the	snapshot	that	is	written	to	the
@alt_snapshot_folder	location	is	to	be
compressed	into	the	Microsoft®	CAB	format.
compress_snapshot	is	nvarchar(5).	false	specifies
that	the	snapshot	will	not	be	compressed;	true
specifies	that	the	snapshot	will	be	compressed.	The
snapshot	in	the	default	folder	cannot	be
compressed.

ftp_address Is	the	network	address	of	the	FTP	service	for	the
Distributor.	ftp_address	is	sysname.	Specifies
where	publication	snapshot	files	are	located	for	the
Distribution	Agent	or	Merge	Agent	of	a	subscriber
to	pick	up.	Because	this	property	is	stored	for	each
publication,	each	publication	can	have	a	different
ftp_address.	The	publication	must	support
propagating	snapshots	using	FTP.	For	more
information,	see	Configuring	a	Publication	to
Allow	Subscribers	to	Retrieve	Snapshots	Using
FTP.

ftp_port Is	the	port	number	of	the	FTP	service	for	the
Distributor.	ftp_port	is	int.	The	default	is	21.
Specifies	where	the	publication	snapshot	files	are
located	for	the	Distribution	Agent	or	Merge	Agent
of	a	subscriber	to	pick	up.	Because	this	property	is
stored	for	each	publication,	each	publication	can
have	its	own	ftp_port.

ftp_subdirectory Specifies	where	the	snapshot	files	will	be	available

JavaScript:hhobj_1.Click()

for	the	Distribution	Agent	or	Merge	Agent	of	the
Subscriber	to	pick	up	if	the	publication	supports
propagating	snapshots	using	FTP.	ftp_subdirectory
is	nvarchar(255).	Because	this	property	is	stored
for	each	publication,	each	publication	can	have	its
own	ftp_subdirctory	or	choose	to	have	no
subdirectory,	indicated	with	a	NULL	value.

ftp_login Is	the	user	name	used	to	connect	to	the	FTP	service.
ftp_login	is	sysname.	The	value	ANONYMOUS	is
allowed.

ftp_password Is	the	user	password	used	to	connect	to	the	FTP
service.	ftp_password	is	sysname.

conflict_policy Specifies	the	conflict	resolution	policy	followed
when	the	queued	updating	subscriber	option	is
used.	conflict_policy	is	nvarchar(100),	and	can	be
one	of	these	values:

pub	wins	=	Publisher	wins	the	conflict.	
sub	reinit	=	Reinitialize	the	subscription.	
sub	wins	=	Subscriber	wins	the	conflict.	
NULL	=	If	NULL,	and	the	publication	is	a
snapshot	publication,	the	default	policy	becomes
sub	reinit.	If	NULL	and	the	publication	is	not	a
snapshot	publication,	the	default	becomes	pub
wins.

This	property	can	be	changed	only	if	there	are	no
active	subscriptions.

centralized_conflicts Specifies	if	conflict	records	are	stored	on	the
Publisher.	centralized_conflicts	is	nvarchar(5).	If
true,	conflict	records	are	stored	at	the	Publisher.	If
false,	conflict	records	are	stored	at	both	the
publisher	and	at	the	subscriber	that	caused	the
conflict.

This	property	can	be	changed	only	if	there	are	no
active	subscriptions.

conflict_retention Specifies	the	conflict	retention	period,	in	days.
conflict_retention	is	int.	The	default	retention	is
usually	14	days.

queue_type Specifies	which	type	of	queue	is	used.	queue_type
is	nvarchar(10),	and	can	be	one	of	these	values:

msmq	=	Use	Microsoft	Message	Queuing	to	store
transactions.
sql	=	Use	SQL	Server	to	store	transactions.
NULL	=	Defaults	to	sql,	which	specifies	to	use
SQL	Server	to	store	transactions.

This	property	can	be	changed	only	if	there	are	no
active	subscriptions.

publish_to_
ActiveDirectory

Specifies	if	the	publication	information	is	published
to	the	Microsoft	Active	Directory™.
add_to_active_directory	is	nvarchar(10)	This
feature	is	available	only	for	servers	running	the
Microsoft	Windows®	2000	operating	system.	Valid
values	are:

true	=	publication	information	is	published.
false	=	publication	information	is	not	published.

NULL	(default)

[@value	=]	'value'

Is	the	new	property	value.	value	is	nvarchar(255),	with	a	default	of	NULL.

[@force_invalidate_snapshot	=]	force_invalidate_snapshot

Acknowledges	that	the	action	taken	by	this	stored	procedure	may	invalidate
an	existing	snapshot.	force_invalidate_snapshot	is	a	bit,	with	a	default	of	0.
0	specifies	that	changes	to	the	article	will	not	cause	the	snapshot	to	be
invalid.	If	the	stored	procedure	detects	that	the	change	does	require	a	new
snapshot,	an	error	will	occur	and	no	changes	will	be	made.	1	specifies	that
changes	to	the	article	may	cause	the	snapshot	to	be	invalid,	and	if	there	are
existing	subscriptions	that	would	require	a	new	snapshot,	gives	permission

for	the	existing	snapshot	to	be	marked	as	obsolete	and	a	new	snapshot
generated.

[@force_reinit_subscription	=]	force_reinit_subscription

Acknowledges	that	the	action	taken	by	this	stored	procedure	may	require
existing	subscriptions	to	be	reinitialized.	force_reinit_subscription	is	a	bit
with	a	default	of	0.	0	specifies	that	changes	to	the	article	will	not	cause	the
subscription	to	be	reinitialized.	If	the	stored	procedure	detects	that	the
change	would	require	existing	subscriptions	to	be	reinitialized,	an	error	will
occur	and	no	changes	will	be	made.	1	specifies	that	changes	to	the	article
will	cause	the	existing	subscription	to	be	reinitialized,	and	gives	permission
for	the	subscription	reinitialization	to	occur.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_changepublication	is	used	in	snapshot	replication	and	transactional
replication.

To	list	publication	objects	in	the	Active	Directory	using	the
@publish_to_Active_Directory	parameter,	the	SQL	Server	object	must	already
be	created	in	the	Active	Directory.	For	more	information,	see	Active	Directory
Services.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_changepublication.

See	Also

sp_addarticle

sp_addpublication

sp_articlecolumn

JavaScript:hhobj_2.Click()

sp_changearticle

sp_droparticle

sp_droppublication

sp_enumfullsubscribers

sp_helparticle

sp_helparticlecolumns

sp_helppublication

System	Stored	Procedures

Transact-SQL	Reference

sp_changesubscriber
Changes	the	options	for	a	Subscriber.	Any	distribution	task	for	the	Subscribers	to
this	Publisher	is	updated.	This	stored	procedure	writes	to	the
MSsubscriber_info	table	in	the	distribution	database.	This	stored	procedure	is
executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_changesubscriber	[@subscriber	=]	'subscriber'
				[,	[@type	=]	type]
				[,	[@login	=]	'login']
				[,	[@password	=]	'password']
				[,	[@commit_batch_size	=]	commit_batch_size]
				[,	[@status_batch_size	=]	status_batch_size]
				[,	[@flush_frequency	=]	flush_frequency]
				[,	[@frequency_type	=]	frequency_type]
				[,	[@frequency_interval	=]	frequency_interval]
				[,	[@frequency_relative_interval	=]	frequency_relative_interval]
				[,	[@frequency_recurrence_factor	=]	frequency_recurrence_factor]
				[,	[@frequency_subday	=]	frequency_subday]
				[,	[@frequency_subday_interval	=]	frequency_subday_interval]
				[,	[@active_start_time_of_day	=]	active_start_time_of_day]
				[,	[@active_end_time_of_day	=]	active_end_time_of_day]
				[,	[@active_start_date	=]	active_start_date]
				[,	[@active_end_date	=]	active_end_date]
				[,	[@description	=]	'description']
				[,	[@security_mode	=]	security_mode]

Arguments
[@subscriber	=]	'subscriber'

Is	the	name	of	the	Subscriber	on	which	to	change	the	options.	subscriber	is
sysname,	with	no	default.

[@type	=]	type

Is	the	Subscriber	type.	type	is	tinyint,	with	a	default	of	NULL.	0	indicates	a
Microsoft®	SQL	Server™	Subscriber.	1	specifies	a	non-SQL	Server	or	other
ODBC	data	source	server	Subscriber.

[@login	=]	'login'

Is	the	SQL	Server	Authentication	login	ID.	login	is	sysname,	with	a	default
of	NULL.

[@password	=]	'password'

Is	the	SQL	Server	Authentication	password.	password	is	sysname,	with	a
default	of	%.	%	indicates	there	is	no	change	to	the	password	property.

[@commit_batch_size	=]	commit_batch_size

Supported	for	backward	compatibility	only.

[@status_batch_size	=]	status_batch_size

Supported	for	backward	compatibility	only.

[@flush_frequency	=]	flush_frequency

Supported	for	backward	compatibility	only.

[@frequency_type	=]	frequency_type

Is	the	frequency	with	which	to	schedule	the	distribution	task.	frequency_type
is	int,	and	can	be	one	of	these	values.

Value Description
1 One	time
2 On	demand
4 Daily
8 Weekly
16 Monthly
32 Monthly	relative
64 Autostart
128 Recurring
NULL	(default) 	

[@frequency_interval	=]	frequency_interval

Is	the	interval	for	frequency_type.	frequency_interval	is	int,	with	a	default	of
NULL.

[@frequency_relative_interval	=]	frequency_relative_interval

Is	the	date	of	the	distribution	task.	This	parameter	is	used	when
frequency_type	is	set	to	32	(monthly	relative).	frequency_relative_interval	is
int,	and	can	be	one	of	these	values.

Value Description
1 First
2 Second
4 Third
8 Fourth
16 Last
NULL	(default) 	

[@frequency_recurrence_factor	=]	frequency_recurrence_factor

Is	how	often	the	distribution	task	should	recur	during	the	defined
frequency_type.	frequency_recurrence_factor	is	int,	with	a	default	of	NULL.

[@frequency_subday	=]	frequency_subday

Is	how	often	to	reschedule	during	the	defined	period.	frequency_subday	is
int,	and	can	be	one	of	these	values.

Value Description
1	(default) Once
2 Second
4 Minute
8 Hour

[@frequency_subday_interval	=]	frequency_subday_interval

Is	the	interval	for	frequence_subday.	frequency_subday_interval	is	int,	with
a	default	of	NULL.

[@active_start_time_of_day	=]	active_start_time_of_day

Is	the	time	of	day	when	the	distribution	task	is	first	scheduled,	formatted	as
HHMMSS.	active_start_time_of_day	is	int,	with	a	default	of	NULL.

[@active_end_time_of_day	=]	active_end_time_of_day

Is	the	time	of	day	when	the	distribution	task	stops	being	scheduled,
formatted	as	HHMMSS.	active_end_time_of_day	is	int,	with	a	default	of
NULL.

[@active_start_date	=]	active_start_date

Is	the	date	when	the	distribution	task	is	first	scheduled,	formatted	as
YYYYMMDD.	active_start_date	is	int,	with	a	default	of	NULL.

[@active_end_date	=]	active_end_date

Is	the	date	when	the	distribution	task	stops	being	scheduled,	formatted	as
YYYYMMDD.	active_end_date	is	int,	with	a	default	of	NULL.

[@description	=]	'description'

Is	an	optional	text	description.	description	is	nvarchar(255),	with	a	default
of	NULL.

[@security_mode	=]	security_mode

Is	the	implemented	security	mode.	security_mode	is	int,	and	can	be	one	of
these	values.

Value Description
0 SQL	Server	Authentication
1 Windows	Authentication
NULL	(default) 	

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_changesubscriber	is	used	in	all	types	of	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_changesubscriber.

See	Also

sp_addsubscriber

sp_dropsubscriber

sp_helpdistributiondb

sp_helpserver

sp_helpsubscriberinfo

System	Stored	Procedures

Transact-SQL	Reference

sp_changesubscriber_schedule
Changes	the	Distribution	Agent	or	Merge	Agent	schedule	for	a	subscriber.	This
stored	procedure	is	executed	at	the	Publisher	on	any	database.

Syntax
sp_changesubscriber_schedule	[@subscriber	=]	'subscriber'
				,	[@agent_type	=]	type
				[,	[@frequency_type	=]	frequency_type]
				[,	[@frequency_interval	=]	frequency_interval]
				[,	[@frequency_relative_interval	=]	frequency_relative_interval]
				[,	[@frequency_recurrence_factor	=]	frequency_recurrence_factor]
				[,	[@frequency_subday	=]	frequency_subday]
				[,	[@frequency_subday_interval	=]	frequency_subday_interval]
				[,	[@active_start_time_of_day	=]	active_start_time_of_day]
				[,	[@active_end_time_of_day	=]	active_end_time_of_day]
				[,	[@active_start_date	=]	active_start_date]
				[,	[@active_end_date	=]	active_end_date]

Arguments
[@subscriber	=]	'subscriber'

Is	the	name	of	the	Subscriber.	subscriber	is	sysname.	The	name	of	the
Subscriber	must	be	unique	in	the	database,	must	not	already	exist,	and	cannot
be	NULL.

[@agent_type	=]	type

Is	the	type	of	agent.	agent_type	is	smallint,	with	a	default	of	0.	0	indicates	a
Distribution	Agent.	1	indicates	a	Merge	Agent.

[@frequency_type	=]	frequency_type

Is	the	frequency	with	which	to	schedule	the	distribution	task.	frequency_type
is	int,	with	a	default	of	64.	There	are	10	schedule	columns.

[@frequency_interval	=]	frequency_interval

Is	the	value	applied	to	the	frequency	set	by	frequency_type.
frequency_interval	is	int,	with	a	default	of	1.

[@frequency_relative_interval	=]	frequency_relative_interval

Is	the	date	of	the	distribution	task.	frequency_relative_interval	is	int,	with	a
default	of	1.

[@frequency_recurrence_factor	=]	frequency_recurrence_factor

Is	the	recurrence	factor	used	by	frequency_type.	frequency_recurrence_factor
is	int,	with	a	default	of	0.

[@frequency_subday	=]	frequency_subday

Is	how	often,	in	minutes,	to	reschedule	during	the	defined	period.
frequency_subday	is	int,	with	a	default	of	4.

[@frequency_subday_interval	=]	frequency_subday_interval

Is	the	interval	for	frequency_subday.	frequency_subday_interval	is	int,	with
a	default	of	5.

[@active_start_time_of_day	=]	active_start_time_of_day

Is	the	time	of	day	when	the	distribution	task	is	first	scheduled.
active_start_time_of_day	is	int,	with	a	default	of	0.

[@active_end_time_of_day	=]	active_end_time_of_day

Is	the	time	of	day	when	the	distribution	task	stops	being	scheduled.
active_end_time_of_day	is	int,	with	a	default	of	235959,	which	means
11:59:59	P.M.	on	a	24-hour	clock.

[@active_start_date	=]	active_start_date

Is	the	date	when	the	distribution	task	is	first	scheduled,	formatted	as
YYYYMMDD.	active_start_date	is	int,	with	a	default	of	0.

[@active_end_date	=]	active_end_date

Is	the	date	when	the	distribution	task	stops	being	scheduled,	formatted	as
YYYYMMDD.	active_end_date	is	int,	with	a	default	of	99991231,	which
means	December	31,	9999.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_changesubscriber_schedule	is	used	in	all	types	of	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_changesubscriber_schedule.

See	Also

sp_addsubscriber_schedule

System	Stored	Procedures

Transact-SQL	Reference

sp_changesubscriptiondtsinfo
Changes	the	DTS	package	properties	of	a	subscription.	This	stored	procedure	is
executed	at	the	Subscriber	on	the	subscription	database.

Syntax
sp_changesubscriptiondtsinfo	[[@job_id	=]	job_id]
				[,	[@dts_package_name	=]	'dts_package_name']
				[,	[@dts_package_password	=]	'dts_package_password']
				[,	[@dts_package_location	=]	'dts_package_location']

Arguments
[@job_id	=]	job_id

Is	the	job	ID	of	the	Distribution	Agent	for	the	push	subscription.	job_id	is
varbinary(16),	with	no	default.	To	find	the	Distribution	Job	ID,	run
sp_helpsubscription	or	sp_helppullsubscription.

[@dts_package_name	=]	'dts_package_name'

Specifies	the	name	of	the	DTS	package.	dts_package_name	is	a	sysname,
with	a	default	of	NULL.	For	example,	to	specify	a	package	of
DTSPub_Package,	the	parameter	would	be	@dts_package_name	=
N'DTSPub_Package'.

[@dts_package_password	=]	'dts_package_password'

Specifies	the	password	on	the	package,	if	there	is	one.
dts_package_password	is		sysname	with	a	default	of	NULL,	which	specifies
that	the	password	property	is	to	be	left	unchanged.	If	an	empty	string	is	put
in	the	parameter,	this	specifies	that	the	DTS	package	is	to	have	no	password.

[@dts_package_location	=]	'dts_package_location'

Specifies	the	package	location.	dts_package_location	is	a	nvarchar(12),
with	a	default	of	NULL,	which	specifies	that	the	package	location	is	to	be
left	unchanged.	The	location	of	the	package	can	be	changed	to	distributor	or
subscriber.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_changesubscriptiondtsinfo	is	used	for	snapshot	replication	and	transactional
replication	that	are	push	subscriptions	only.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_changesubscriptiondtsinfo.

Transact-SQL	Reference

sp_changesubstatus
Changes	the	status	of	an	existing	Subscriber.	This	stored	procedure	is	executed
at	the	Publisher	on	the	publication	database.

Syntax
sp_changesubstatus	[[@publication	=]	'publication']
				[,	[@article	=]	'article']
				[,	[@subscriber	=]	'subscriber']
				,	[@status	=]	'status'
				[,	[@previous_status	=]	'previous_status']
				[,	[@destination_db	=]	'destination_db']
				[,	[@frequency_type	=]	frequency_type]
				[,	[@frequency_interval	=]	frequency_interval]
				[,	[@frequency_relative_interval	=]	frequency_relative_interval]
				[,	[@frequency_recurrence_factor	=]	frequency_recurrence_factor]
				[,	[@frequency_subday	=]	frequency_subday]
				[,	[@frequency_subday_interval	=]	frequency_subday_interval]
				[,	[@active_start_time_of_day	=]	active_start_time_of_day]
				[,	[@active_end_time_of_day	=]	active_end_time_of_day]
				[,	[@active_start_date	=]	active_start_date]
				[,	[@active_end_date	=]	active_end_date]
				[,	[@optional_command_line	=]	'optional_command_line']
				[,	[@distribution_jobid	=]	distribution_jobid]
				[,	[@from_auto_sync	=]	from_auto_sync]
				[,	[@ignore_distributor	=]	ignore_distributor]
				[,	[@offloadagent	=]	remote_agent_activation]
				[,	[@offloadserver	=]	'remote_agent_server_name']
				[,	[@dts_package_name	=]	'dts_package_name']
				[,	[@dts_package_password	=]	'dts_package_password']
				[,	[@dts_package_location	=]	dts_package_location]
				[,	[@schemastabilityonly	=]	schema_stability_only]
				[,	[@distribution_job_name	=]	'distribution_job_name']

Arguments

[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	a	default	of	%.
If	publication	is	not	specified,	all	publications	are	affected.

[@article	=]	'article'

Is	the	name	of	the	article.	It	must	be	unique	to	the	publication.	article	is
sysname,	with	a	default	of	%.	If	article	is	not	specified,	all	articles	are
affected.

[@subscriber	=]	'subscriber'

Is	the	name	of	the	Subscriber	to	change	the	status	of	.subscriber	is	sysname,
with	a	default	of	%.	If	subscriber	is	not	specified,	status	is	changed	for	all
Subscribers	to	the	specified	article.

[@status	=]	'status'

Is	the	subscription	status	in	the	syssubscriptions	table.	status	is	sysname,
with	no	default,	and	can	be	one	of	these	values.

Value Description
active Subscriber	is	synchronized	and	is	receiving	data.
inactive Subscriber	entry	exists	without	a	subscription.
subscribed Subscriber	is	requesting	data,	but	is	not	yet

synchronized.

[@previous_status	=]	'previous_status'

Is	the	previous	status	for	the	subscription.	previous_status	is	sysname,	with	a
default	of	NULL.	This	parameter	allows	you	to	change	any	subscriptions	that
currently	have	that	status,	thus	allowing	group	functions	on	a	specific	set	of
subscriptions	(for	example,	setting	all	active	subscriptions	back	to
subscribed).

[@destination_db	=]	'destination_db'

Is	the	name	of	the	destination	database.	destination_db	is	sysname,	with	a
default	of	%.

[@frequency_type	=]	frequency_type

Is	the	frequency	with	which	to	schedule	the	distribution	task.	frequency_type
is	int,	with	a	default	of	NULL.	If	no	value	is	provided	for	frequency_type,
sp_changesubstatus	uses	the	frequency_type	value	used	by
sp_addsubscriber.

[@frequency_interval	=]	frequency_interval

Is	the	value	to	apply	to	the	frequency	set	by	frequency_type.
frequency_interval	is	int,	with	a	default	of	NULL.

[@frequency_relative_interval	=]	frequency_relative_interval

Is	the	date	of	the	distribution	task.	This	parameter	is	used	when
frequency_type	is	set	to	32	(monthly	relative).	frequency_relative	interval	is
int,	and	can	be	one	of	these	values.

Value Description
1 First
2 Second
4 Third
8 Fourth
16 Last
NULL	(default) 	

[@frequency_recurrence_factor	=]	frequency_recurrence_factor

Is	the	recurrence	factor	used	by	frequency_type.	frequency_recurrence_factor
is	int,	with	a	default	of	NULL.

[@frequency_subday	=]	frequency_subday

Is	how	often,	in	minutes,	to	reschedule	during	the	defined	period.
frequency_subday	is	int,	and	can	be	one	of	these	values.

Value Description
1 Once
2 Second

4 Minute
8 Hour
NULL	(default) 	

[@frequency_subday_interval	=]	frequency_subday_interval

Is	the	interval	for	frequency_subday.	frequency_subday_interval	is	int,	with
a	default	of	NULL.

[@active_start_time_of_day	=]	active_start_time_of_day

Is	the	time	of	day	when	the	distribution	task	is	first	scheduled,	formatted	as
HHMMSS.	active_start_time_of_day	is	int,	with	a	default	of	NULL.

[@active_end_time_of_day	=]	active_end_time_of_day

Is	the	time	of	day	when	the	distribution	task	stops	being	scheduled,
formatted	as	HHMMSS.	active_end_time_of_day	is	int,	with	a	default	of
NULL.

[@active_start_date	=]	active_start_date

Is	the	date	when	the	distribution	task	is	first	scheduled,	formatted	as
YYYYMMDD.	active_start_date	is	int,	with	a	default	of	NULL.

[@active_end_date	=]	active_end_date

Is	the	date	when	the	distribution	task	stops	being	scheduled,	formatted	as
YYYYMMDD.	active_end_date	is	int,	with	a	default	of	NULL.

[@optional_command_line	=]	'optional_command_line'

Is	an	optional	command	prompt.	optional_command_line	is	nvarchar(4000),
with	a	default	of	NULL.

[@distribution_jobid	=]	distribution_jobid

Is	the	job	ID	of	the	Distribution	Agent	at	the	Distributor	for	the	subscription
when	changing	the	subscription	status	from	inactive	to	active.	In	other	cases,
it	is	not	defined.	If	more	than	one	Distribution	Agent	is	involved	in	a	single
call	to	this	stored	procedure,	the	result	is	not	defined.	distribution_jobid	is
binary(16),	with	a	default	of	NULL.

[@from_auto_sync	=]	from_auto_sync

For	internal	use	only.

[@ignore_distributor	=]	ignore_distributor

For	internal	use	only.

[@offloadagent	=]	remote_agent_activation

Specifies	that	the	agent	can	be	activated	remotely.	remote_agent_activationt
is	bit,	with	a	default	of	0.	0	specifies	the	agent	cannot	be	activated	remotely.
1	specifies	the	agent	can	be	activated	remotely,	and	on	the	remote	computer
specified	by	remote_agent_server_name.

[@offloadserver	=]	'remote_agent_server_name'

Specifies	the	network	name	of	server	to	be	used	for	remote	activation.
remote_agent_server_name	is	sysname,	with	a	default	of	NULL.

[@dts_package_name	=]	'dts_package_name'

Specifies	the	name	of	the	DTS	package.	dts_package_name	is	a	sysname,
with	a	default	of	NULL.	For	example,	to	specify	a	package	of
DTSPub_Package,	the	parameter	would	be	@dts_package_name	=
N'DTSPub_Package'.

[@dts_package_password	=]	'dts_package_password'

Specifies	the	password	on	the	package,	if	there	is	one.
dts_package_password	is		sysname,	with	a	default	of	NULL,	which	means
that	there	is	not	a	password	on	the	package.

[@dts_package_location	=]	dts_package_location

Specifies	the	package	location.	dts_package_location	is	an	int,	with	a	default
of	0.	If	0,	the	package	location	is	at	the	Distributor.	If	1,	the	package	location
is	at	the	Subscriber.	The	location	of	the	package	can	be	distributor	or
subscriber.

[@schemastabilityonly	=]	schema_stability_only

For	internal	use	only.

[@distribution_job_name	=]	'distribution_job_name'

Is	the	name	of	the	distribution	job.	distribution_job_name	is	sysname,	with	a
default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_changesubstatus	is	used	in	snapshot	replication	and	transactional
replication.

sp_changesubstatus	changes	the	status	of	the	Subscriber	in	the
syssubscriptions	table	with	the	changed	status.	If	required,	it	updates	the	article
status	in	the	sysarticles	table	to	indicate	active	or	inactive.	If	required,	it	sets	the
replication	flag	on	or	off	in	the	sysobjects	table	for	the	replicated	table.

Permissions
Only	members	of	the	sysadmin	fixed	server	role,	db_owner	fixed	database	role,
or	the	creator	of	the	subscription	can	execute	sp_changesubstatus.

See	Also

sp_addsubscription

sp_dropsubscription

sp_helpdistributor

sp_helpsubscription

System	Stored	Procedures

Transact-SQL	Reference

sp_change_subscription_properties
Updates	the	security	information	in	the	MSsubscription_properties	table.	This
stored	procedure	is	executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_change_subscription_properties	[@publisher	=]	'publisher'
				,	[@publisher_db	=]	'publisher_db'
				,	[@publication	=]	'publication'
				,	[@property	=]	'property'
				,	[@value	=]	'value'
				[,	[@publication_type	=]	publication_type]

Arguments
[@publisher	=]	'publisher'

Is	the	name	of	the	Publisher.	publisher	is	sysname,	with	no	default.

[@publisher_db	=]	'publisher_db'

Is	the	name	of	the	Publisher	database.	publisher_db	is	sysname,	with	no
default.

[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	no	default.

[@property	=]	'property'

Is	the	property	to	be	changed.	property	is	sysname,	and	can	be	one	of	these
values.

Value Description
publisher_login Publisher	login.
publisher_password Publisher	password.
publisher_security_mode Security	mode	implemented	at	the

Publisher.	Can	be:

0	=	SQL	Server	Authentication
1	=	Windows	Authentication

distributor_login Distributor	login.
distributor_password Distributor	password.
distributor_security_mode Security	mode	implemented	at	the

Distributor.	Can	be:

0	=	SQL	Server	Authentication
1	=	Windows	Authentication

encrypted_distributor_passwordFor	internal	use	only.
ftp_address For	backward	compatibility	only.
ftp_port For	backward	compatibility	only.
ftp_login For	backward	compatibility	only.
ftp_password For	backward	compatibility	only.
alt_snapshot_folder Specifies	the	location	of	the	alternate

folder	for	the	snapshot.
alt_snapshot_folder	is	nvarchar(255).
If	set	to	NULL,	the	snapshot	files	will
be	picked	up	from	the	default	location
specified	by	the	Publisher.

working_directory Name	of	the	working	directory	used	to
temporarily	store	data	and	schema	files
for	the	publication	when	FTP	is	used	to
transfer	snapshot	files.	
working_directory	is	nvarchar(255).

use_ftp Specifies	the	use	of	FTP	instead	of	the
regular	protocol	to	retrieve	snapshots.	If
1,	FTP	is	used.	use_ftp	is	a	bit	field.

ofload_agent Specifies	if	the	agent	can	be	activated
remotely.	If	0,	the	agent	cannot	be
activated	remotely.	offload_agent	is	a
bit	field.

offload_server Specifies	the	network	name	of	the
server	used	for	remote	activation.

dts_package_name Specifies	the	name	of	the	DTS	package.

This	value	can	be	specified	only	if	the
publication	is	transactional	or	snapshot.

dts_package_password Specifies	the	password	on	the	package,
if	there	is	one.	A	value	of	NULL	means
that	the	package	has	no	password.	This
value	can	be	specified	only	if	the
publication	is	transactional	or	snapshot.

dts_package_location Location	where	the	DTS	package	is
stored.	This	value	can	be	specified	only
if	the	publication	is	transactional	or
snapshot.

dynamic_snapshot_location Specifies	the	path	to	the	folder	where
the	snapshot	files	are	saved.	This	value
can	be	specified	only	if	the	publication
is	a	merge	publication.

[@value	=]	'value'

Is	the	new	value	of	the	property.	value	is	nvarchar(1000),	with	no	default.

[@publication_type	=]	publication_type

Specifies	the	replication	type	of	the	publication.	publication_type	is	int,	with
a	default	of	NULL.	If	NULL,	specifies	an	unknown	publication	type	and	the
stored	procecure	looks	at	all	transaction	tables	to	find	out	the	publication
type.	Because	the	stored	proc	must	look	through	multiple	tables,	this	option
will	be	slower	than	when	the	exact	publication	type	of	0,	1,	or	2	is	specified.
If	0,	publication	is	a	transaction	type.	If	1,	publication	is	a	snapshot	type.	If
2,	publication	is	a	merge	type.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_change_subscription_properties	is	used	in	all	types	of	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_change_subscription_properties.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_check_for_sync_trigger
Determines	if	a	user-defined	trigger	or	stored	procedure	is	being	called	in	the
context	of	an	updatable	subscription.	This	stored	procedure	is	executed	at	the
Publisher	on	the	publication	database.

Syntax
sp_check_for_sync_trigger	[@tabid	=]	'tabid'	
				[,	[@trigger_op	=]	'trigger_output_parameters'	OUTPUT]

Arguments
[@tabid	=]	'tabid'

Is	the	object	ID	of	the	table	being	checked	for	immediate-updating	triggers.
tabid	is	int,	with	no	default.

[@trigger_op	=]	'trigger_output_parameters'	OUTPUT

Specifies	if	the	output	parameter	is	to	return	the	type	of	trigger	it	is	being
called	from.	trigger_output_parameters	is	char(10),	and	can	be	one	of	these
values.

Value Description
Ins INSERT	trigger
Upd UPDATE	trigger
Del DELETE	trigger
NULL	(default) 	

Return	Code	Values
0	indicates	that	the	stored	procedure	is	not	being	called	within	the	context	of	an
immediate-updating	trigger.	1	indicates	that	it	is	being	called	within	the	context
of	an	immediate-updating	trigger	and	is	the	type	of	trigger	being	returned	in
@trigger_op.

Remarks
sp_check_for_sync_trigger	is	used	in	snapshot	replication	and	transactional
replication.

Permissions
Members	of	the	public	role	can	execute	sp_check_for_sync_trigger.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_copymergesnapshot
Copies	the	snapshot	folder	of	the	specified	publication	to	the	folder	listed	in	the
@destination_folder.	This	stored	procedure	is	executed	at	the	Publisher	on	the
publication	database.

Syntax
sp_copymergesnapshot	[@publication	=]	'publication'
				,	[@destination_folder	=]	'destination_folder'

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication	whose	snapshot	contents	are	to	be	copied.
publication	is	sysname,	with	no	default.

[@destination_folder	=]	'destination_folder'

Is	the	name	of	the	folder	where	the	contents	of	the	publication	snapshot	is	to
be	copied.	destination_folder	is	nvarchar(255),	with	no	default.	The
destination_folder	can	be	an	alternate	location	such	as	on	another	server,	on
a	network	drive,	or	on	removable	media	(such	as	CD-ROMs	or	removable
disks).

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_copymergesnapshot	is	used	in	merge	replication.	Subscribers	running
Microsoft®	SQL	Server™	version	7.0	and	earlier	cannot	use	the	alternate
snapshot	location.

Permissions

Members	of	the	public	role	can	execute	sp_copymergesnapshot.

See	Also

Alternate	Snapshot	Locations

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_copysnapshot
Copies	the	snapshot	folder	of	the	specified	publication	to	the	folder	listed	in	the
@destination_folder.	This	stored	procedure	is	executed	at	the	Publisher	on	the
publication	database.	This	stored	procedure	is	useful	for	copying	a	snapshot	to
removable	media,	such	as	CD-ROM.

Syntax
sp_copysnapshot	[@publication	=]	'publication'
				,	[@destination_folder	=]	'destination_folder']
				[,	[@subscriber	=]	'subscriber']
				[,	[@subscriber_db	=]	'subscriber_db']

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication	whose	snapshot	contents	are	to	be	copied.
publication	is	sysname,	with	no	default.

[@destination_folder	=]	'destination_folder'

Is	the	name	of	the	folder	where	the	contents	of	the	publication	snapshot	are
to	be	copied.	destination_folder	is	nvarchar(255),	with	no	default.	The
destination_folder	can	be	an	alternate	location	such	as	on	another	server,	on
a	network	drive,	or	on	removable	media	(such	as	CD-ROMs	or	removable
disks).

[@subscriber	=]	'subscriber'

Is	the	name	of	the	Subscriber.	subscriber	is	sysname,	with	a	default	of
NULL.

[@subscriber_db	=]	'subscriber_db'

Is	the	name	of	the	subscription	database.	subscriber_db	is	sysname,	with	a
default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_copysnapshot	is	used	in	all	types	of	replication.	Subscribers	running
Microsoft®	SQL	Server™	version	7.0	and	earlier	cannot	use	the	alternate
snapshot	location.

Permissions
Members	of	the	public	role	can	execute	sp_copysnapshot.

See	Also

Alternate	Snapshot	Locations

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_copysubscription
Copies	a	subscription	database	that	has	pull	subscriptions,	but	no	push
subscriptions.	Only	single	file	databases	can	be	copied.	This	stored	procedure	is
executed	at	the	Subscriber	on	the	subscription	database.

Syntax
sp_copysubscription	[@filename	=]	'file	name'
				[,	[@temp_dir	=]	'temp_dir']
				[,	[@overwrite_existing_file	=]	overwrite_existing_file]

Arguments
[@filename	=]	'file	name'

Is	the	string	that	specifies	the	complete	path,	including	file	name,	to	which	a
copy	of	the	data	file	(.mdf)	is	saved.	file	name	is	nvarchar(260),	with	no
default.

[@temp_dir	=]	'temp_dir'

Is	the	name	of	the	directory	that	contains	the	temp	files.	temp_dir	is
nvarchar(260),	with	a	default	of	NULL.	If	NULL,	the	SQL	Server	default
data	directory	will	be	used.	The	directory	should	have	enough	space	to	hold	a
file	the	size	of	all	the	subscriber	database	files	combined.

[@overwrite_existing_file	=]	'overwrite_existing_file'

Is	an	optional	Boolean	flag	that	specifies	whether	or	not	to	overwrite	an
existing	file	of	the	same	name	specified	in	@filename.
overwrite_existing_file	is	bit,	with	a	default	of	0.	If	1,	it	overwrites	the	file
specified	by	@filename,	if	it	exists.	If	0,the	stored	procedure	fails	if	the	file
exists,	and	the	file	is	not	overwritten.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_copysubscription	is	used	in	all	types	of	replication	to	copy	a	subscription
database	to	a	file	as	an	alternative	to	applying	a	snapshot	at	the	Subscriber.	The
database	must	be	configured	to	support	only	pull	subscriptions.	Users	having
appropriate	permissions	can	make	copies	of	the	subscription	database	and	then
e-mail,	copy,	or	transport	the	subscription	file	(.msf)	to	another	Subscriber,
where	it	can	then	be	attached	as	a	subscription.

This	technique	is	useful	for	copying	highly	customized	databases	that	contain
user-defined	objects,	such	as	triggers,	stored	procedures,	views,	UDFs,	and
objects	such	as	defaults	and	rules,	which	are	not	otherwise	delivered	through
replication.

Permissions
Members	of	the	public	role	can	execute	sp_copysubscription.

See	Also

Alternate	Snapshot	Locations

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_deletemergeconflictrow
Deletes	rows	from	a	conflict	table	or	the	MSmerge_delete_conflicts	table.	This
stored	procedure	is	executed	at	the	computer	where	the	conflict	table	is	stored,	in
any	database.

Syntax
sp_deletemergeconflictrow	[[@conflict_table	=]	'conflict_table']
				[,	[@source_object	=]	'source_object']
				{	,	[@rowguid	=]	'rowguid'
				,	[@origin_datasource	=]	'origin_datasource']	}
				[,	[@drop_table_if_empty	=]	'drop_table_if_empty']

Arguments
[@conflict_table	=]	'conflict_table'

Is	the	name	of	the	conflict	table.	conflict_table	is	sysname,	with	a	default	of
%.	If	the	conflict_table	is	specified	as	NULL	or	%,	the	conflict	is	assumed	to
be	a	delete	conflict	and	the	row	matching	rowguid	and	origin_datasource
and	source_object	is	deleted	from	the	MSmerge_delete_conflicts	table.

[@source_object	=]	'source_object'

Is	the	name	of	the	source	table.	source_object	is	nvarchar(386),	with	a
default	of	NULL.

[@rowguid	=]	'rowguid'

Is	the	row	identifier	for	the	delete	conflict.	rowguid	is	uniqueidentifier,	with
no	default.

[@origin_datasource	=]	'origin_datasource'

Is	the	origin	of	the	conflict.	origin_datasource	is	varchar(255),	with	no
default.

[@drop_table_if_empty	=]	'drop_table_if_empty'

Is	a	flag	indicating	that	the	conflict_table	is	to	be	dropped	if	is	empty.

drop_table_if_empty	is	varchar(10),	with	a	default	of	FALSE.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_deletemergeconflictrow	is	used	in	merge	replication.

MSmerge_delete_conflicts	is	a	system	table	and	is	not	deleted	from	the
database,	even	if	it	is	empty.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_deletemergeconflictrow.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_disableagentoffload
Disables	remote	push	agent	activation	of	the	replication	push	agent	that	is
identified	by	the	@job_id	parameter.	This	stored	procedure	is	executed	at	the
Publisher	on	the	publication	database.

Syntax
sp_disableagentoffload	[@job_id	=]	job_id
				[,	[@offloadserver	=]	'remote_agent_server_name']
				[,	[@agent_type	=]	'agent_type']

Arguments
[@job_id	=]	'job_id'

Specifies	the	SQL	Server	Agent	job	identifier	of	the	replication	agent	to	be
disabled	from	remote	activation.	job_id	is	varbinary(16),	with	no	default.

[@offloadserver	=]	'remote_agent_server_name'

Specifies	the	network	name	of	server	to	be	used	for	remote	agent	activation.
remote_agent_server_name	is	sysname,	with	a	default	of	NULL.	If	NULL,
then	the	current	offload_server	in	the	MSDistribution_agents	table	is	used.

[@agent_type	=]	'agent_type'

Is	the	type	of	agent.	agent_type	is	sysname,	with	a	default	of	NULL,	which
specifies	that	the	system	will	determine	if	the	agent	type	is	distribution	or
merge.	Valid	values	are	distribution	or	merge,	or	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_disableagentoffload	is	used	to	remove	the	ability	to	run	the	Distribution
Agent	or	Merge	Agent	processing	on	another	server.

Upon	successful	completion	of	sp_disableagentoffload,	the	–Offload
offloadserver	parameter	will	be	removed	from	the	replication	agent	command
line.	Also,	the	offload_enabled	field	for	the	agent	in	MSDistribution_agents
will	be	set	to	0,	and	the	offload-server	field	will	be	updated	with	the	new	value
specified	in	the	'remote_agent_server_name',	if	provided.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	or	the	subscription	owner	of	the	specified	agent	can	execute
sp_disableagentoffload.

See	Also

DTS	Package	Details

MSmerge_delete_conflicts

Remote	Agent	Activation

sp_enableagentoffload

System	Stored	Procedures

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

sp_drop_agent_parameter
Drops	one	or	all	parameters	from	a	profile	in	the	MSagent_parameters	table.
This	stored	procedure	is	executed	at	the	Distributor	where	the	agent	is	running,
on	any	database.

Syntax
sp_drop_agent_parameter	[@profile_id	=]	profile_id
				[,	[@parameter_name	=]	'parameter_name']

Arguments
[@profile_id	=]	profile_id

Is	the	ID	of	the	profile	for	which	a	parameter	is	to	be	dropped.	profile_id	is
int,	with	no	default.

[@parameter_name	=]	'parameter_name'

Is	the	name	of	the	parameter	to	be	dropped.	parameter_name	is	sysname,
with	a	default	of	%.	If	%,	all	parameters	for	the	specified	profile	are	dropped.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_drop_agent_parameter	is	used	in	all	types	of	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_drop_agent_parameter.

See	Also

sp_add_agent_parameter

sp_help_agent_parameter

System	Stored	Procedures

Transact-SQL	Reference

sp_drop_agent_profile
Drops	a	profile	from	the	MSagent_profiles	table.	This	stored	procedure	is
executed	at	the	Distributor	on	any	database.

Syntax
sp_drop_agent_profile	[@profile_id	=]	profile_id

Arguments
[@profile_id	=]	profile_id

Is	the	ID	of	the	profile	to	be	dropped.	profile_id	is	int,	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_drop_agent_profile	is	used	in	all	types	of	replication.

The	parameters	of	the	given	profile	are	also	dropped	from	the
MSagent_parameters	table.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_drop_agent_profile.

See	Also

sp_add_agent_profile

sp_change_agent_profile

sp_help_agent_profile

System	Stored	Procedures

Transact-SQL	Reference

sp_dropanonymouseagent
Drops	an	anonymous	agent	for	replication	monitoring	at	the	distributor	from	the
Publisher.	This	stored	procedure	is	executed	at	the	Publisher	on	any	database.

Syntax
sp_dropanonymousagent	[@subid	=]	sub_id					,	[@type	=]	type

Arguments
[@subid	=]	sub_id

Is	the	global	identifier	for	an	anonymous	subscription.	sub_id	is
uniqueidentifier,	with	no	default.	This	identifier	can	be	retrieved	at	the
Subscriber	using	sp_helppullsubscription.	The	value	in	the	subid	field	of
the	returned	result	set	is	this	global	identifier.

[@type	=]	type

Is	the	type	of	subscription.	type	is	int,	with	no	default.	Valid	values	are	1	or
2.	Specify	1,	if	snapshot	replication	or	transactional	replication	using	the
Distribution	Agent.	Specify	2,	if	merge	replication	using	the	Merge	Agent.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_dropanonymousagent	is	used	in	all	types	of	replication.

This	stored	procedure	is	used	to	drop	anonymous	subscription	agents	only	and
cannot	be	used	to	drop	well-known	subscriptions.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	or	the	login	of	the	user	that	initiated	the	first	run	of	the	agent	can	execute

sp_dropanonymousagent.

Transact-SQL	Reference

sp_droparticle
Drops	an	article	from	a	snapshot	or	transactional	publication.	An	article	cannot
be	removed	if	one	or	more	subscriptions	to	it	exist.	This	stored	procedure	is
executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_droparticle	[@publication	=]	'publication'
				,	[@article	=]	'article'
				[,	[@ignore_distributor	=]	ignore_distributor]
				[,	[@force_invalidate_snapshot	=]	force_invalidate_snapshot]

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication	that	contains	the	article	to	be	dropped.
publication	is	sysname,	with	no	default.

[@article	=]	'article'

Is	the	name	of	the	article	to	be	dropped.	article	is	sysname,	with	no	default.

[@ignore_distributor	=]	ignore_distributor

For	internal	use	only.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_droparticle	is	used	in	all	types	of	replication.

For	horizontally	filtered	articles,	sp_droparticle	checks	the	type	column	of	the
article	in	the	sysarticles	table	to	determine	whether	a	view	or	filter	should	also
be	dropped.	If	a	view	or	filter	was	autogenerated,	it	is	dropped	with	the	article.	If
it	was	manually	created,	it	is	not	dropped.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_droparticle.

See	Also

sp_addarticle

sp_addpublication

sp_articlecolumn

sp_changearticle

sp_changepublication

sp_droppublication

sp_enumfullsubscribers

sp_helparticle

sp_helparticlecolumns

sp_helppublication

System	Stored	Procedures

Transact-SQL	Reference

sp_dropdistpublisher
Drops	a	distribution	Publisher.	This	stored	procedure	is	executed	at	the
Distributor	on	any	database.

Syntax
sp_dropdistpublisher	[@publisher	=]	'publisher'
				[,	[@no_checks	=]	no_checks]

Arguments
[@publisher	=]	'publisher'

Is	the	Publisher	to	drop.	publisher	is	sysname,	with	no	default.

[@no_checks	=]	no_checks

Specifies	whether	sp_dropdistpublisher	checks	that	the	Publisher	has
uninstalled	the	server	as	the	Distributor.	no_checks	is	bit,	with	a	default	of	0.
If	0	and	the	distribution	publisher	is	remote,	the	stored	procedure	verifies
that	the	remote	publisher	has	uninstalled	the	local	server	as	the	distributor.	If
0	and	the	distribution	Publisher	is	local,	the	stored	procedure	verifies	that
there	are	no	publication	or	distribution	objects	remaining	on	the	local	server.
If	1,	all	the	replication	objects	associated	with	the	distribution	Publisher	are
dropped.	After	doing	this,	the	remote	Publisher	must	uninstall	replication
using	sp_dropdistributor	with	@ignore_distributor	=	1.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_dropdistpublisher	is	used	in	all	types	of	replication.

Permissions

Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_dropdistpublisher.

See	Also

sp_adddistpublisher

sp_changedistpublisher

sp_helpdistpublisher

System	Stored	Procedures

Transact-SQL	Reference

sp_dropdistributiondb
Drops	a	distribution	database.	Drops	the	physical	files	used	by	the	database	if
they	are	not	used	by	another	database.	This	stored	procedure	is	executed	at	the
Distributor	on	any	database.

Syntax
sp_dropdistributiondb	[@database	=]	'database'

Arguments
[@database	=]	'database'

Is	the	database	to	drop.	database	is	sysname,	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_dropdistributiondb	is	used	in	all	types	of	replication.

This	stored	procedure	must	be	executed	before	dropping	the	Distributor	by
executing	sp_dropdistributor.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_dropdistributiondb.

See	Also

sp_adddistributiondb

sp_changedistributiondb

sp_helpdistributiondb

System	Stored	Procedures

Transact-SQL	Reference

sp_dropdistributor
Uninstalls	the	Distributor.	This	stored	procedure	is	executed	at	the	Distributor	on
any	database.

Syntax
sp_dropdistributor	[[@no_checks	=]	no_checks]	
				[,	[@ignore_distributor	=]	ignore_distributor]

Arguments
[@no_checks	=]	no_checks

Indicates	whether	to	check	for	dependent	objects	before	dropping	the
Distributor.	no_checks	is	bit,	with	a	default	of	0.	If	0,	sp_dropdistributor
checks	to	make	sure	that	all	publishing	and	distribution	objects	in	addition	to
the	Distributor	have	been	dropped.	If	1,	sp_dropdistributor	drops	all	the
publishing	and	distribution	objects	without	checking.

[@ignore_distributor	=]	ignore_distributor

Indicates	whether	this	stored	procedure	is	executed	without	connecting	to	the
Distributor.	ignore_distributor	is	bit,	with	a	default	of	0.	If	0,
sp_dropdistributor	connects	to	the	Distributor	and	removes	all	replication
objects.	If	sp_dropdistributor	is	unable	to	connect	to	the	Distributor,	the
stored	procedure	fails.	If	1,	no	connection	is	made	to	the	Distributor	and	the
replication	objects	are	not	removed.	This	is	used	if	the	Distributor	is	being
uninstalled	or	is	permanently	offline.	The	objects	for	this	Publisher	at	the
Distributor	will	not	be	removed	until	the	Distributor	is	reinstalled	at	some
future	time.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks

sp_dropdistributor	is	used	in	all	types	of	replication.

If	other	Publisher	or	distribution	objects	exist	on	the	server,	sp_dropdistributor
fails	unless	@no_checks	is	set	to	1.

This	stored	procedure	must	be	executed	after	dropping	the	distribution	database
by	executing	sp_dropdistributiondb.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_dropdistributor.

See	Also

sp_adddistributor

sp_changedistributor_property

sp_helpdistributor

System	Stored	Procedures

Transact-SQL	Reference

sp_dropmergealternatepublisher
Removes	an	alternate	Publisher	from	a	merge	publication.	This	stored	procedure
is	executed	at	the	Subscriber	on	the	subscription	database.

Syntax
sp_dropmergealaternatepublisher	[@publisher	=]	'publisher'
				,	[@publisher_db	=]	'publisher_db'
				,	[@publication	=]	'publication'
				,	[@alternate_publisher	=]	'alternate_publisher'
				,	[@alternate_publisher_db	=]	'alternate_publisher_db'
				,	[@alternate_publication	=]	'alternate_publication'

Arguments
[@publisher	=]	'publisher'

Is	the	name	of	the	current	Publisher.	publisher	is	sysname,	with	no	default.

[@publisher_db	=]	'publisher_db'

Is	the	name	of	the	current	publication	database.	publisher_db	is	sysname,
with	no	default.

[@publication	=]	'publication'

Is	the	name	of	the	current	publication.	publication	is	sysname,	with	no
default.

[@alternate_publisher	=]	'alternate_publisher'

Is	the	name	of	the	alternate	Publisher	to	drop	as	the	alternate	synchronization
partner.	alternate_publisher	is	sysname,	with	no	default.

[@alternate_publisher_db	=]	'alternate_publisher_db'

Is	the	name	of	the	publication	database	to	drop	as	the	alternate
synchronization	partner	publication	database.	alternate_publisher_db	is
sysname,	with	no	default.

[@alternate_publication	=]	'alternate_publication'

Is	the	name	of	the	publication	to	drop	as	the	alternate	synchronization	partner
publication.	alternate_publication	is	sysname,	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_dropmergealternatepublisher	is	used	in	merge	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed
database	role	can	execute	sp_dropmergelternatepublisher.

Transact-SQL	Reference

sp_dropmergearticle
Removes	an	article	from	a	merge	publication.	This	stored	procedure	is	executed
at	the	Publisher	on	the	publication	database.

Syntax
sp_dropmergearticle	[@publication	=]	'publication'		
				,	[@article	=]	'article'	
				[,	[@ignore_distributor	=]	ignore_distributor	
				[,	[@reserved	=]	reserved	
				[,	[@force_invalidate_snapshot	=]	force_invalidate_snapshot]

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication	from	which	to	drop	an	article.	publication	is
sysname,	with	no	default.

[@article	=]	'article'

Is	the	name	of	the	article	to	drop	from	the	given	publication.	article	is
sysname,	with	no	default.	If	all,	all	existing	articles	in	the	specified	merge
publication	are	removed.	Even	if	article	is	all,	the	publication	still	must	be
dropped	separately	from	the	article.

[@ignore_distributor	=]	ignore_distributor

Indicates	whether	this	stored	procedure	is	executed	without	connecting	to	the
Distributor.	ignore_distributor	is	bit,	with	a	default	of	0.

[@reserved	=]	reserved

Is	reserved	for	future	use.	reserved	is	nvarchar(20),	with	a	default	of	NULL.

[@force_invalidate_snapshot	=]	force_invalidate_snapshot

Enables	or	disables	the	ability	to	have	a	snapshot	invalidated.
force_invalidate_snapshot	is	a	bit,	with	a	default	0.	0	specifies	that	changes
to	the	merge	article	will	not	cause	the	snapshot	to	be	invalid.	1	means	that

changes	to	the	merge	article	may	cause	the	snapshot	to	be	invalid,	and	if	that
is	the	case,	a	value	of	1	gives	permission	for	the	new	snapshot	to	occur.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_dropmergearticle	is	used	in	merge	replication.	sp_dropmergearticle	is
allowed	only	when	there	is	no	active	subscription	for	the	current	publication.	If
there	is	an	existing	subscription,	dropping	an	article	or	articles	is	not	allowed.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed
database	role	can	execute	sp_dropmergearticle.

See	Also

sp_addmergearticle

sp_changemergearticle

sp_helpmergearticle

System	Stored	Procedures

Transact-SQL	Reference

sp_dropmergefilter
Drops	a	merge	filter.	sp_dropmergefilter	drops	all	the	merge	filter	columns
defined	on	the	merge	filter	that	is	to	be	dropped.	This	stored	procedure	is
executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_dropmergefilter	[@publication	=]	'publication'		
				,	[@article	=]	'article'	
				,	[@filtername	=]	'filtername'
				[,	[@force_invalidate_snapshot	=]	force_invalidate_snapshot]

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	no	default.

[@article	=]	'article'

Is	the	name	of	the	article.	article	is	sysname,	with	no	default.

[@filtername	=]	'filtername'

Is	the	name	of	the	filter	to	be	dropped.	filtername	is	sysname,	with	no
default.

[@force_invalidate_snapshot	=]	force_invalidate_snapshot

Enables	or	disables	the	ability	to	have	a	snapshot	invalidated.
force_invalidate_snapshot	is	a	bit,	with	a	default	0.	0	specifies	that	changes
to	the	merge	article	will	not	cause	the	snapshot	to	be	invalid.	1	means	that
changes	to	the	merge	article	may	cause	the	snapshot	to	be	invalid,	and	if	that
is	the	case,	a	value	of	1	gives	permission	for	the	new	snapshot	to	occur.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_dropmergefilter	is	used	in	merge	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed
database	role	can	execute	sp_dropmergefilter.

See	Also

sp_addmergefilter

sp_changemergefilter

sp_helpmergefilter

System	Stored	Procedures

Transact-SQL	Reference

sp_dropmergepublication
Drops	a	merge	publication	and	its	associated	Snapshot	Agent.	All	subscriptions
must	be	dropped	before	dropping	merge	publications.	The	articles	in	the
publication	are	dropped	automatically.	This	stored	procedure	is	executed	at	the
Publisher	on	the	publication	database.

Syntax
sp_dropmergepublication	[@publication	=]	'publication'	
				[,	[@ignore_distributor	=]	ignore_distributor]	
				[,	[@reserved	=]	reserved]

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication	to	drop.	publication	is	sysname,	with	no
default.	If	all,	all	existing	merge	publications	are	removed	as	well	as	the
snapshot	associated	with	them.	If	other	values	are	specified,	the	Snapshot
Agent	associated	with	that	publication	is	dropped.

[@ignore_distributor	=]	ignore_distributor

ignore_distributor	is	bit,	with	a	default	of	0.	This	parameter	can	be	used	to
drop	a	publication	without	doing	cleanup	tasks	at	the	Distributor.	It	is	also
useful	if	you	had	to	reinstall	the	Distributor.

[@reserved	=]	reserved

Is	reserved	for	future	use.	reserved	is	bit,	with	a	default	of	0.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_dropmergepublication	is	used	in	merge	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed
database	role	can	execute	sp_dropmergepublication.

See	Also

sp_addmergepublication

sp_changemergepublication

sp_helpmergepublication

System	Stored	Procedures

Transact-SQL	Reference

sp_dropmergepullsubscription
Drops	a	merge	pull	subscription.	This	stored	procedure	is	executed	at	the
Subscriber	on	the	subscription	database.

Syntax
sp_dropmergepullsubscription	[[@publication	=]	'publication']	
				[,	[@publisher	=]	'publisher']	
				[,	[@publisher_db	=]	'publisher_db']	
				[,	[@reserved	=]	'reserved']

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	a	default	of
NULL.

[@publisher	=]	'publisher'

Is	the	name	of	the	Publisher.	publisher	is	sysname,	with	a	default	of	NULL.

[@publisher_db	=]	'publisher_db'

Is	the	name	of	the	Publisher	database.	publisher_db	is	sysname,	with	a
default	of	NULL.

[@reserved	=]	reserved

Is	reserved	for	future	use.	reserved	is	bit,	with	a	default	of	0.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_dropmergepullsubscription	is	used	in	merge	replication.

sp_dropmergepullsubscription	drops	the	Merge	Agent	for	this	merge	pull

subscription,	although	the	Merge	Agent	is	not	created	in
sp_addmergepullsubscription.	Also	note	that	the	local	server	and	current
database	are	assumed	to	be	the	subscriber	and	subscriber_db.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed
database	role	can	execute	sp_dropmergepullsubscription.

See	Also

sp_addmergepullsubscription

sp_changemergepullsubscription

sp_helpmergepullsubscription

System	Stored	Procedures

Transact-SQL	Reference

sp_dropmergesubscription
Drops	a	subscription	to	a	merge	publication	and	its	associated	Merge	Agent.
This	stored	procedure	is	executed	at	the	Publisher	on	the	publication	database	.

Syntax
sp_dropmergesubscription	[[@publication	=]	'publication']	
				[,	[@subscriber	=]	'subscriber'	
				[,	[@subscriber_db	=]	'subscriber_db']	
				[,	[@subscription_type	=]	'subscription_type']	
				[,	[@ignore_distributor	=]	ignore_distributor]	
				[,	[@reserved	=]	reserved]

Arguments
[@publication	=]	'publication'

Is	the	publication	name.	publication	is	sysname,	with	a	default	of	NULL.
The	publication	must	already	exist	and	conform	to	the	rules	for	identifiers.

[@subscriber	=]	'subscriber'

Is	the	name	of	the	Subscriber.	subscriber	is	sysname,	with	a	default	of
NULL.

[@subscriber_db	=]	'subscriber_db'

Is	the	name	of	the	subscription	database.	subscription_database	is	sysname,
with	a	default	of	NULL.

[@subscription_type	=]	'subscription_type'

Is	the	type	of	subscription.	subscription_type	is	nvarchar(15),	and	can	be
one	of	these	values.

Value Description
push Push	subscription.
pull Pull	subscription.

both	(default) Both	a	push	and	pull	subscription.

[@ignore_distributor	=]	ignore_distributor

Indicates	whether	this	stored	procedure	is	executed	without	connecting	to	the
Distributor.	ignore_distributor	is	bit,	with	a	default	of	0.	This	parameter	can
be	used	to	drop	a	subscription	without	doing	cleanup	tasks	at	the	Distributor.
It	is	also	useful	if	you	had	to	reinstall	the	Distributor.

[@reserved	=]	reserved

Is	reserved	for	future	use.	reserved	is	bit,	with	a	default	of	0.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_dropmergesubscription	is	used	in	merge	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed
database	role	can	execute	sp_dropmergesubscription.

See	Also

sp_addmergesubscription

sp_changemergesubscription

sp_helpmergesubscription

System	Stored	Procedures

Transact-SQL	Reference

sp_droppublication
Drops	a	publication	and	its	associated	articles.	This	stored	procedure	is	executed
at	the	Publisher	on	the	publication	database.

Syntax
sp_droppublication	[@publication	=]	'publication'	
				[,	[@ignore_distributor	=]	ignore_distributor]

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication	to	be	dropped.	publication	is	sysname,	with
no	default.	If	all	is	specified,	all	publications	are	dropped	from	the
publication	database,	except	for	those	with	subscriptions.

[@ignore_distributor	=]	ignore_distributor

For	internal	use	only.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_droppublication	is	used	in	snapshot	replication	and	transactional	replication.

sp_droppublication	recursively	drops	all	articles	associated	with	a	publication
and	then	drops	the	publication	itself.	A	publication	cannot	be	removed	if	it	has
one	or	more	subscriptions	to	it.	The	associated	sync	task	is	also	dropped.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_droppublication.

See	Also

sp_addarticle

sp_addpublication

sp_articlecolumn

sp_changearticle

sp_changepublication

sp_droparticle

sp_enumfullsubscribers

sp_helparticle

sp_helparticlecolumns

sp_helppublication

System	Stored	Procedures

Transact-SQL	Reference

sp_droppullsubscription
Drops	a	subscription	at	the	current	database	of	the	Subscriber.	This	stored
procedure	is	executed	at	the	Subscriber	on	the	pull	subscription	database.

Syntax
sp_droppullsubscription	[@publisher	=]	'publisher'
				,	[@publisher_db	=]	'publisher_db'
				,	[@publication	=]	'publication'
				[,	[@reserved	=]	reserved]

Arguments
[@publisher	=]	'publisher'

Is	the	remote	server	name.	publisher	is	sysname,	with	no	default.	If	all,	the
subscription	is	dropped	at	all	the	Publishers.

[@publisher_db	=]	'publisher_db'

Is	the	name	of	the	Publisher	database.	publisher_db	is	sysname,	with	no
default.	all	means	all	the	Publisher	databases.

[@publication	=]	'publication'

Is	the	publication	name.	publication	is	sysname,	with	no	default.	If	all,	the
subscription	is	dropped	to	all	the	publications.

[@reserved	=]	reserved

For	internal	use	only.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_droppullsubscription	is	used	in	snapshot	replication	and	transactional

replication.

sp_droppullsubscription	deletes	the	corresponding	row	in	the
MSreplication_subscriptions	table	and	the	corresponding	Distributor	Agent	at
the	Subscriber.	If	no	rows	are	left	in	Msreplication_subscriptions,	it	drops	the
table.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_droppullsubscription.

See	Also

sp_addpullsubscription

System	Stored	Procedures

Transact-SQL	Reference

sp_dropsubscriber
Removes	the	Subscriber	designation	from	a	registered	server.	This	stored
procedure	is	executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_dropsubscriber	[@subscriber	=]	'subscriber'	
				[,	[@reserved	=]	'reserved']	
				[,	[@ignore_distributor	=]	ignore_distributor]

Arguments
[@subscriber	=]	'subscriber'

Is	the	name	of	the	Subscriber	to	be	dropped.	subscriber	is	sysname,	with	no
default.

[@reserved	=]	'reserved'

For	internal	use	only.

[@ignore_distributor	=]	ignore_distributor

For	internal	use	only.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_dropsubscriber	is	used	in	all	types	of	replication.

This	stored	procedure	removes	the	server	sub	option	and	removes	the	remote
login	mapping	of	system	administrator	to	repl_subscriber.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute

sp_dropsubscriber.

See	Also

sp_addsubscriber

sp_changesubscriber

sp_dboption

sp_helpdistributor

sp_helpserver

sp_helpsubscriberinfo

System	Stored	Procedures

Transact-SQL	Reference

sp_dropsubscription
Drops	subscriptions	to	a	particular	article,	publication,	or	set	of	subscriptions	on
the	Publisher.	This	stored	procedure	is	executed	at	the	Publisher	on	the
publication	database.

Syntax
sp_dropsubscription	[[@publication	=]	'publication']
				[,	[@article	=]	'article']
				[@subscriber	=]	'subscriber'
				[,	[@destination_db	=]	'destination_db']
				[,	[@ignore_distributor	=]	ignore_distributor]
				[,	[@reserved	=]	'reserved']

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	associated	publication.	publication	is	sysname,	with	a
default	of	NULL.	If	all,	all	subscriptions	for	all	publications	for	the	specified
Subscriber	are	canceled.

[@article	=]	'article'

Is	the	name	of	the	article.	article	is	sysname,	with	a	default	of	NULL.	If	all,
subscriptions	to	all	articles	for	each	specified	publication	and	Subscriber	are
dropped.	If	article	is	not	supplied,	subscriptions	are	dropped	for	all	articles	in
the	publication.	Use	all	for	immediate-sync	publications.

[@subscriber	=]	'subscriber'

Is	the	name	of	the	Subscriber	that	will	have	its	subscriptions	dropped.
subscriber	is	sysname,	with	no	default.	If	all,	all	subscriptions	for	all
Subscribers	are	dropped.

[@destination_db	=]	'destination_db'

Is	the	name	of	the	destination	database.	destination_db	is	sysname,	with	a
default	of	NULL.	If	NULL,	all	the	subscriptions	from	that	Subscriber	are

dropped.

[@ignore_distributor	=]	ignore_distributor

For	internal	use	only.

[@reserved	=]	'reserved'

For	internal	use	only.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_dropsubscription	is	used	in	snapshot	and	transactional	replication.

If	you	drop	the	subscription	on	an	article	in	an	immediate-sync	publication,	you
cannot	add	it	back	unless	you	drop	the	subscriptions	on	all	the	articles	in	the
publication	and	add	them	all	back	at	once.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_dropsubscription.	A	remote	connection	from	the
Subscriber	can	drop	a	subscription	to	an	existing	publication	or	article.

See	Also

sp_addsubscription

sp_changesubstatus

sp_helpsubscription

System	Stored	Procedures

Transact-SQL	Reference

sp_dsninfo
Returns	ODBC	or	OLE	DB	data	source	information	from	the	Distributor
associated	with	the	current	server.	This	stored	procedure	is	executed	at	the
Distributor	on	any	database.

Syntax
sp_dsninfo	[@dsn	=]	'dsn'	
				[,	[@infotype	=]	'info_type']	
				[,	[@login	=]	'login']	
				[,	[@password	=]	'password']
				[,	[@dso_type	=]	dso_type]

Arguments
[@dsn	=]	'dsn'

Is	the	name	of	the	ODBC	DSN	or	OLE	DB	linked	server.	dsn	is
varchar(128),	with	no	default.

[@infotype	=]	'info_type'

Is	the	type	of	information	to	return.	If	info_type	is	not	specified	or	if	NULL
is	specified,	all	information	types	are	returned.	info_type	is	varchar(128),
with	a	default	of	NULL,	and	can	be	one	of	these	values.

Value Description
DBMS_NAME Specifies	the	data	source	vendor	name.
DBMS_VERSION Specifies	the	data	source	version.
DATABASE_NAME Specifies	the	database	name.
SQL_SUBSCRIBER Specifies	the	data	source	can	be	a

Subscriber.

[@login	=]	'login'

Is	the	login	for	the	data	source.	If	the	data	source	includes	a	login,	specify

NULL	or	omit	the	parameter.	login	is	varchar(128),	with	a	default	of	NULL.

[@password	=]	'password'

Is	the	password	for	the	login.	If	the	data	source	includes	a	login,	specify
NULL	or	omit	the	parameter.	password	is	varchar(128),	with	a	default	of
NULL.

[@dso_type	=]	dso_type

Is	the	data	source	type.	dso_type	is	int,	and	can	be	one	of	these	values.

Value Description
1	(default) ODBC	data	source
3 OLE	DB	data	source

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
Information	Type nvarchar(64) Information	types	such	as

DBMS_NAME,	DBMS_VERSION,
DATABASE_NAME,
SQL_SUBSCRIBER.

Value nvarchar(512) Value	of	the	associated	information
type.

Remarks
sp_dsninfo	is	used	in	all	types	of	replication.

sp_dsninfo	retrieves	ODBC	or	OLE	DB	data	source	information	that	shows
whether	the	database	can	be	used	for	replication	or	querying.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute	sp_dsninfo.

See	Also

sp_enumdsn

System	Stored	Procedures

Transact-SQL	Reference

sp_dumpparamcmd
Returns	detailed	information	for	a	parameterized	command	that	has	been	stored
in	the	distribution	database.	This	stored	procedure	is	executed	at	the	Distributor
on	the	distribution	database.

Syntax
sp_dumpparamcmd	[@originator_id	=]	'originator_id'
				,	[@publisher_database_id	=]	'publisher_database_id'
				,	[@article_id	=]	'article_id'
				,	[@xact_seqno	=]	'xact_seqno'

Arguments
[@originator_id	=]	'originator_id'

Is	the	originator_id	for	which	to	return	parameterized	commands.
originator_id	is	int,	with	no	default.

[@publisher_database_id	=]	'publisher_database_id'

Is	the	publisher_database_id	for	which	to	return	parameterized	commands.
publisher_database_id	is	int,	with	no	default.

[@article_id	=]	'article_id'

Is	the	article_id	for	which	to	return	parameterized	commands.	article_id	is
int,	with	no	default.

[@xact_seqno	=]	'xact_seqno'

Is	the	exact	sequence	number	for	which	to	display	parameterized	commands.
xact_seqno	is	nchar(22),	with	no	default.

Result	Sets
sp_dumpparamcmd	is	a	diagnostic	procedure	used	to	retrieve	detailed
information	on	parameterized	commands	within	a	single	transaction.
sp_dumpparamcmd	returns	two	result	sets	for	each	parameterized	command

within	the	transaction.

Column	name Data	type Description
bytes int Number	of	bytes	of	Transact-SQL.
params smallint Number	of	parameters	in	the

statement.
command nvarchar(1024) Transact-SQL	command.

Note		Long	commands	may	be	split	across	several	rows	in	the	result	set.	Long
values	may	also	be	split	across	several	rows	in	the	result	set.

The	second	result	set	contains	one	or	more	rows	for	each	parameter.

Column	name Data	type Description
paramid smallint ID	of	the	parameter.
offset int Byte	offset	within	the	data	stream.
repltype nvarchar(20) Type	information.
storage nvarchar(20) Storage	information.
align int Alignment	of	data.
ctype nvarchar(20) ODBC	C	type	information.
sqltype nvarchar(20) ODBC	SQL	type	information.
prec int Precision	of	the	value.
scale smallint Scale	of	the	value.
token_fragment nvarchar(1024) Displays	the	value	stored	in	this

token	in	a	text	format.

Remarks
sp_dumpparamcmd	is	used	in	transactional	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute	sp_
dumpparamcmd.

See	Also

sp_browsereplcmds

sp_replcmds

sp_replshowcmds

System	Stored	Procedures

Transact-SQL	Reference

sp_enableagentoffload
Enables	remote	agent	activation	of	the	replication	push	agent	that	is	identified	by
the	@job_id	parameter.	This	stored	procedure	is	run	at	the	computer	that	is
currently	the	remote	agent	server.	This	stored	procedure	is	executed	at	the
Publisher	on	the	publication	database.

Syntax
sp_enableagentoffload	[@job_id	=]	job_id
				[,	[@offloadserver	=]	'remote_agent_server_name']
				[,	[@agent_type	=]	'agent_type']

Arguments
[@job_id	=]	'job_id'

Specifies	the	SQL	Server	Agent	job	identifier	of	the	replication	agent	to	be
enabled	for	remote	activation.	job_id	is	varbinary(16),	with	no	default.

[@offloadserver	=]	'remote_agent_server_name'

Specifies	the	network	name	of	server	to	be	enabled	for	remote	agent
activation.	remote_agent_server_name	is	sysname,	with	a	default	of	NULL.
If	NULL,	then	the	current	offload_server	in	the	MSDistribution_agents
table	is	used.

[@agent_type	=]	'agent_type'

Is	the	type	of	agent.	agent_type	is	sysname,	with	a	default	of	NULL,	which
specifies	that	the	system	will	determine	if	the	agent	type	is	distribution	or
merge.	Valid	values	are	distribution	or	merge,	or	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks

sp_enableagentoffload	is	used	to	enable	the	running	of	the	Distribution	Agent
or	Merge	Agent	processing	to	another	server.

Upon	successful	completion	of	sp_enableagentoffload,	the	–Offload
offloadserver	parameter	will	be	appended	to	the	replication	agent	command	line,
or	updated	with	the	new	remote_agent_server_name	if	the	–Offload
offloadserver	parameter	already	exists	in	the	command	line.

Also,	the	offload_enabled	field	for	the	agent	in	MSDistribution_agents	will	be
set	to	1,	and	the	offload-server	field	will	be	updated	with	the	new	value	specified
in	the	'remote_agent_server_name',	if	provided.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	or	the	subscription	owner	of	the	specified	agent	can	execute
sp_enableagentoffload.

See	Also

DTS	Package	Details

Remote	Agent	Activation

System	Stored	Procedures

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

sp_enumcustomresolvers
Returns	a	list	of	all	available	custom	resolvers.	This	stored	procedure	is	executed
at	the	Publisher	on	any	database.

Syntax
sp_enumcustomresolvers	[[@distributor	=]	'distributor']

Arguments
[@distributor	=]	'distributor'

Is	the	name	of	the	Distributor	where	the	custom	resolver	is	located.
distributor	is	sysname,	with	a	default	of	NULL.

Result	Sets

Column	name Data	type Description
value ntext Name	of	the	custom	resolver.
data ntext Class	ID	of	the	custom	resolver.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_enumcustomresolvers	is	used	in	merge	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	and	the	db_owner	fixed
database	role	can	execute	sp_enumcustomresolvers.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_enumdsn
Returns	a	list	of	all	defined	ODBC	and	OLE	DB	data	source	names	for	a	server
running	under	a	specific	Microsoft®	Windows®	user	account.	This	stored
procedure	is	executed	at	the	Publisher	on	any	database.

Syntax
sp_enumdsn

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
Data	Source	Name sysname Name	of	the	data	source.
Description varchar(255) Description	of	the	data	source.
Type int Type	of	data	source:

1	=	ODBC	DSN
3	=	OLE	DB	data	source

Provider	Name varchar(255) Name	of	the	OLE	DB	provider.
Value	is	NULL	for	ODBC
DSN.

Remarks
Every	Microsoft	SQL	Server™	service	has	a	user	context.	A	user	context	is	a	set
of	Registry	entries	that	includes	the	definitions	of	the	ODBC	data	sources	for	the
user.	The	user	context	is	provided	by	the	username	under	which	the	SQL	Server
is	running.

For	example,	if	the	server	is	running	under	the	system	account	user	context,	the

DSNs	that	are	returned	will	all	be	system	DSNs	that	are	associated	with	the
system	account.	If	the	server	is	running	under	a	private	user	account,	only	the
DSNs	defined	for	that	private	account	of	that	user	is	returned.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute	sp_enumdsn.

See	Also

sp_dsninfo

System	Stored	Procedures

Transact-SQL	Reference

sp_enumfullsubscribers
Returns	a	list	of	Subscribers	who	have	subscribed	to	all	articles	in	a	specified
publication.	This	stored	procedure	is	executed	at	the	Publisher	on	the	publication
database.

Syntax
sp_enumfullsubscribers	[[@publication	=]	'publication']

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	a	default	of	%.
If	publication	is	not	specified,	all	publications	are	returned.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Set

Column	name Data	type Description
subscriber sysname Name	of	the	subscribing	server

Remarks
sp_enumfullsubscribers	is	used	in	snapshot	replication,	transactional
replication,	and	merge	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_enumfullsubscribers.

See	Also

sp_addarticle

sp_addpublication

sp_articlecolumn

sp_changearticle

sp_changepublication

sp_droparticle

sp_droppublication

sp_helparticle

sp_helparticlecolumns

sp_helppublication

System	Stored	Procedures

Transact-SQL	Reference

sp_expired_subscription_cleanup
Periodically	checks	the	status	of	all	the	subscriptions	of	every	publication	and
identifies	those	that	have	expired.	This	stored	procedure	is	executed	at	the
Publisher	on	any	database.

Syntax
sp_expired_subscription_cleanup

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_expired_subscription_cleanup	is	used	in	all	types	of	replication.

sp_expired_subscription_cleanup	checks	the	status	of	all	subscriptions	every
24	hours.	If	any	of	the	subscriptions	are	out-of-date,	that	is,	have	lost	contact
with	the	Publisher	for	too	long	a	period,	the	publication	is	declared	expired	and
the	traces	of	the	subscription	are	cleaned	up	at	the	Publisher.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_expired_subscription_cleanup.

See	Also

sp_mergesubscription_cleanup

sp_subscription_cleanup

System	Stored	Procedures

Transact-SQL	Reference

sp_generatefilters
Creates	filters	on	foreign	key	tables	when	a	specified	table	is	replicated.	This
stored	procedure	is	executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_generatefilters	[@publication	=]	'publication'

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication	to	be	filtered.	publication	is	sysname,	with	no
default.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_generatefilters	is	used	in	merge	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed
database	role	can	execute	sp_generatefilters.

See	Also

sp_bindsession

System	Stored	Procedures

Transact-SQL	Reference

sp_getagentoffloadinfo
Retrieves	information	about	the	offloading	status	of	an	agent	from	the
Distributor.	This	stored	procedure	is	executed	at	the	Publisher	on	the	publication
database.

Syntax
sp_getagentoffloadinfo	[@job_id	=]	job_id

Arguments
[@job_id	=]	job_id

Is	the	replication	agent	Job	ID.	job_id	is	varbinary(16),	with	no	default.

Result	Sets

Column	name Data	type Description
offload_enabled int Specifies	if	offload

execution	of	a	replication
agent	has	been	set	to	run	at
the	Subscriber.	If	0,	agent	is
run	at	the	Publisher.	If	1,
agent	is	run	at	the
Subscriber.

offload_server sysname Name	of	the	server	where
the	agent	is	running.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_getagentoffloadinfo	is	used	for	all	types	of	replication,	but	on	push
subscriptions	only.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_getagentoffloadinfo.

Transact-SQL	Reference

sp_getmergedeletetype
Returns	the	type	of	merge	delete.	This	stored	procedure	is	executed	at	the
Publisher	on	the	publication	database	or	at	the	Subscriber	on	the	subscription
database.

Syntax
sp_getmergedeletetype	[@source_object	=]	'source_object'
				,	[@rowguid	=]	'rowguid'
				,	[@delete_type	=]	delete_type	OUTPUT

Arguments
[@source_object	=]	'source_object'

Is	the	name	of	the	source	object.	source_object	is	nvarchar(386),	with	no
default.

[@rowguid	=]	'rowguid'

Is	the	row	identifier	for	the	delete	type.	rowguid	is	uniqueidentifier,	with	no
default.

[@delete_type	=]	delete_type	OUTPUT

Is	the	code	indicating	the	type	of	delete.	delete_type	is	int,	with	no	default.
delete_type	is	also	an	OUTPUT	parameter,	and	can	be	one	of	these	values.

Value Description
1 User	delete
5 Partial	delete
6 System	delete

Remarks
sp_getmergedeletetype	is	used	in	merge	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed
database	role	can	execute	sp_getmergedeletetype.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_get_distributor
Determines	whether	a	Distributor	is	installed	on	a	server.	This	stored	procedure
is	executed	at	the	computer	where	the	Distributor	is	being	looked	for,	on	any
database.

Syntax
sp_get_distributor

Result	Sets

Column	name Data	type Description
installed int 0	=	No

1	=	Yes
distribution	server sysname Name	of	the	Distributor

server
distribution	db	installed int 0	=	No

1	=	Yes
is	distribution	publisher int 0	=	No

1	=	Yes
has	remote	distribution
publisher

int 0	=	No
1	=	Yes

Remarks
sp_get_distributor	is	used	primarily	by	the	Microsoft	SQL	Server	Enterprise
Manager	in	snapshot,	transactional,	and	merge	replication.

Permissions
Members	of	the	public	role	can	execute	sp_get_distributor.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_getqueuedrows
Retrieves	rows	at	the	Subscriber	that	have	updates	pending	in	the	queue.	This
stored	procedure	is	executed	at	the	Subscriber	on	the	subscription	database.

Syntax
sp_getqueuedrows	[@tablename	=]	'tablename'
				[,	[@owner	=]	'owner'
				[,	[@tranid	=]	'transaction_id']

Arguments
[@tablename	=]	'tablename'

Is	the	name	of	the	table.	tablename	is	sysname,	with	no	default.	The	table
must	be	a	part	of	a	queued	subscription.

[@owner	=]	'owner'

Is	the	subscription	owner.	owner	is	sysname,	with	a	default	of	NULL.

[@tranid	=]	'transaction_id'

Allows	the	output	to	be	filtered	by	the	transaction	ID.	transaction_id	is
nvarchar(70),	with	a	default	of	NULL.	If	specified,	the	transaction	ID
associated	with	the	queued	command	is	displayed.	If	NULL,	all	the
commands	in	the	queue	are	displayed.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
Shows	all	rows	that	currently	have	at	least	one	queued	transaction	for	the
subscribed	table.

Column	name Data	type Description

Action nvarchar(10) Type	of	action	to	be	taken
when	synchronization
occurs.	INS=	insert
DEL	=	delete
UPD	=	update

Tranid nvarchar(70) Transaction	ID	that	the
command	was	executed
under.

table	column1...n 	 The	value	for	each	column
of	the	table	specified	in
tablename.

msrepl_tran_version uniqueidentifier This	column	is	used	for
tracking	changes	to
replicated	data	and	to
perform	conflict	detection
at	the	Publisher.	This
column	is	added	to	the
table	automatically.

Remarks
sp_getqueuedrows	is	used	at	Subscribers	participating	in	queued	updating.

sp_getqueuedrows	finds	rows	of	a	given	table	on	a	subscription	database	that
have	participated	in	a	queued	update,	yet	currently	have	not	been	resolved	by	the
queue	reader	agent.

Permissions
Members	of	the	public	role	can	execute	sp_getqueuedrows.

See	Also

Immediate	Updating

Immediate	Updating	Considerations

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Queued	Updating	Conflict	Detection	and	Resolution

System	Stored	Procedures

JavaScript:hhobj_3.Click()

Transact-SQL	Reference

sp_getsubscriptiondtspackagename
Returns	the	name	of	the	DTS	package	used	to	transform	data	before	they	are	sent
to	a	Subscriber.	This	stored	procedure	is	executed	at	the	Publisher	on	any
database.

Syntax
sp_getsubscriptiondtspackagename	[@publication	=]	'publication'	
				[,	[@subscriber	=]	'subscriber']

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	'publication'	is	sysname,	with	no	default.

[@subscriber=]	'subscriber'

Is	the	name	of	the	Subscriber.	subscriber	is	sysname,	with	a	default	of
NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
new_package_name sysname The	name	of	the	DTS

package.

Remarks
sp_getsubscriptiondtspackagename	is	used	in	snapshot	replication	and
transactional	replication.

Permissions
Members	of	the	public	role	can	execute	sp_getsubscriptiondtspackagename.

See	Also

How	Transformable	Subscriptions	Works

System	Stored	Procedures

Transforming	Published	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

sp_grant_publication_access
Adds	a	login	to	the	access	list	of	the	publication.	This	stored	procedure	is
executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_grant_publication_access	[@publication	=]	'publication'	
				,	[@login	=]	'login'	
				[,	[@reserved	=]	'reserved']

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication	to	access.	'publication'	is	sysname,	with	no
default.

[@login	=]	'login'

Is	the	login	ID.	'login'	is	sysname,	with	no	default.

[@reserved	=]	'reserved'

For	internal	use	only.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_grant_publication_access	is	used	in	snapshot,	transactional,	and	merge
replication.

This	stored	procedure	can	be	called	repeatedly.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed

database	role	can	execute	sp_grant_publication_access.

See	Also

sp_help_publication_access

sp_revoke_publication_access

System	Stored	Procedures

Transact-SQL	Reference

sp_help_agent_default
Retrieves	the	ID	of	the	default	configuration	for	the	agent	type	passed	as
parameter.	This	stored	procedure	is	executed	at	Distributor	on	any	database.

Syntax
sp_help_agent_default	[@profile_id	=]	profile_id	OUTPUT	
				,	[@agent_type	=]	agent_type

Arguments
[@profile_id	=]	profile_id	OUTPUT

Is	the	ID	of	the	default	configuration	for	the	type	of	agent.	profile_id	is	int,
with	no	default.	profile_id	is	also	an	OUTPUT	parameter	and	returns	the	ID
of	the	default	configuration	for	the	type	of	agent.

[@agent_type	=]	'agent_type'

Is	the	type	of	agent.	agent_type	is	int,	with	no	default,	and	can	be	one	of
these	values.

Value Description
1 Snapshot	Agent.
2 Log	Reader	Agent.
3 Distribution	Agent.
4 Merge	Agent.

Remarks
sp_help_agent_default	is	used	in	all	types	of	replication.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_help_agent_parameter
Returns	all	the	parameters	of	a	profile	from	the	MSagent_parameters	system
table.	This	stored	procedure	is	executed	at	the	Distributor	where	the	agent	is
running,	on	any	database.

Syntax
sp_help_agent_parameter	[[@profile_id	=]	profile_id]

Arguments
[@profile_id	=]	profile_id

Is	the	ID	of	the	profile	from		the	MSagent_profiles	table.	profile_id	is	int,
with	a	default	of	-1,	which	returns	all	parameters.

Result	Sets

Column	name Data	type Description
profile_id int ID	of	the	agent	profile.
parameter_name sysname Name	of	the	parameter.
value nvarchar(255) Value	of	the	parameter.

Remarks
sp_help_agent_parameter	is	used	in	all	types	of	replication.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

sp_add_agent_parameter

sp_drop_agent_parameter

System	Stored	Procedures

Transact-SQL	Reference

sp_help_agent_profile
Displays	the	profile	of	a	specified	agent.	This	stored	procedure	is	executed	at	the
Distributor	on	any	database.

Syntax
sp_help_agent_profile	[[@agent_type	=]	agent_type]	
				[,	[@profile_id	=]	profile_id]

Arguments
[@agent_type	=]	agent_type

Is	the	type	of	agent.	agent_type	is	int,	with	a	default	of	0,	and	can	be	one	of
these	values.

Value Description
1 Snapshot	Agent
2 Log	Reader	Agent
3 Distribution	Agent
4 Merge	Agent

[@profile_id	=]	profile_id

Is	the	ID	of	the	profile	to	be	displayed.	profile_id	is	int,	with	a	default	of	-1,
which	returns	all	the	profiles	in	the	MSagent_profiles	table.

Result	Sets

Column	name Data	type Description
profile_id int ID	of	the	profile.
profile_name sysname Unique	for	agent	type.
agent_type int 1	=	Snapshot	Agent

2	=	Log	Reader	Agent

3	=	Distribution	Agent
4	=	Merge	Agent

Type int 0	=	System
1	=	Custom

description varchar(3000) Description	of	the	profile.
def_profile bit Specifies	whether	this	profile	is	the

default	for	this	agent	type.

Remarks
sp_help_agent_profile	is	used	in	all	types	of	replication.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_helparticle
Displays	information	about	an	article.	This	stored	procedure	is	executed	at	the
Publisher	on	the	publication	database.

Syntax
sp_helparticle	[@publication	=]	'publication'	
				[,	[@article	=]	'article']
				[,	[@returnfilter	=]	returnfilter]

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	no	default.

[@article	=]	'article'

Is	the	name	of	an	article	in	the	publication.	article	is	sysname,	with	a	default
of	%.	If	article	is	not	supplied,	information	on	all	articles	for	the	specified
publication	is	returned.

[@returnfilter	=]	returnfilter

Specifies	whether	the	filter	clause	should	be	returned.	returnfilter	is	bit,	with
a	default	of	1,	which	returns	the	filter	clause.

Result	Sets

Column	name Data	type Description
article	id int ID	of	the	article.
article	name sysname Name	of	the	article.
base	object nvarchar(257) Name	of	the	underlying	table

represented	by	the	article	or
stored	procedure.

destination	object sysname Name	of	the	destination
(subscription)	table,	if

different	from	source_table	or
the	stored	procedure.

synchronization	object nvarchar(257) Name	of	the	table	or	view
used	for	producing	a
synchronization	output	file.

type tinyint Type	of	article.
status tinyint Bitmask	of	the	article	name:

0	=	For	internal	use	only.
1	=	Active.
8	=	Include	the	column	name
in	insert	statements.
16	=	Use	parameterized
statements.
24	=	Include	the	column	name
in	INSERT	statements	and	use
parameterized	statements.

filter nvarchar(257) Stored	procedure	(created
with	FOR	REPLICATION)
used	to	filter	the	table
(horizontal	filtering).

description nvarchar(255) Descriptive	entry	for	the
article.

insert_command nvarchar(255) Call	to	the	stored	procedure	to
execute	upon	insert.

update_command nvarchar(255) Call	to	the	stored	procedure	to
execute	upon	update.

delete_command nvarchar(255) Call	to	the	stored	procedure	to
execute	upon	delete.

creation	script	path nvarchar(255) Path	and	name	of	an	article
schema	script	used	to	create
target	tables.

vertical	partition bit Columns	to	replicate.
pre_creation_cmd tinyint Precreation	command	for

DROP	TABLE,	DELETE
TABLE,	or	TRUNCATE

TABLE.

filter_clause ntext WHERE	clause	specifying	the
horizontal	filtering.

schema_option binary(8) Bitmap	of	the	schema
generation	option	for	the
given	article.

dest_owner sysname Name	of	the	owner	of	the
destination	object.

source_owner sysname Owner	of	the	source	object.
unqualified_source_object sysname Name	of	the	source	object,

without	the	owner	name.
sync_object_owner sysname Owner	of	the	synchronization

object.
unqualified_sync_object sysname Name	of	the	synchronization

object,	without	the	owner
name.

filter_owner sysname Owner	of	the	filter.
unqualified_filter sysname Name	of	the	filter,	without	the

owner	name.
auto_identity_range int Flag	indicating	if	automatic

identity	range	handling	was
turned	on	at	the	publication	at
the	time	it	was	created.	1
means	that	automatic	identity
range	is	enabled;	0	means	it	is
disabled.	Note	that	identity
range	management	only
pertains	to	snapshot	or
transactional	publications	that
allow	immediate	updating	or
queued	updating

publisher_identity_range int Range	size	of	the	identity
range	at	the	Publisher	if	the
article	has
auto_identity_range	set	to

true.
identity_range bigint Range	size	of	the	identity

range	at	the	Subscriber	if	the
article	has
auto_identity_range	set	to
true.

threshold bigint Percentage	value	indicating
when	the	Distribution	Agent
assigns	a	new	identity	range.

Remarks
sp_helparticle	is	used	in	snapshot	replication	and	transactional	replication.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

sp_addarticle

sp_addpublication

sp_articlecolumn

sp_changearticle

sp_changepublication

sp_droparticle

sp_droppublication

sp_enumfullsubscribers

sp_helppublication

System	Stored	Procedures

Transact-SQL	Reference

sp_helparticlecolumns
Returns	all	columns	in	the	underlying	table.	This	stored	procedure	is	executed	at
the	Publisher	on	the	publication	database.

Syntax
sp_helparticlecolumns	[@publication	=]	'publication'
					,	[@article	=]	'article'

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication	that	contains	the	article.	publication	is
sysname,	with	no	default.

[@article	=]	'article'

Is	the	name	of	the	article	that	has	its	columns	returned.	article	is	sysname,
with	no	default.

Return	Code	Values
0	(columns	that	are	not	published)	or	1	(columns	that	are	published)

Result	Sets

Column	name Data	type Description
column	id int Object	ID	of	the	table	to	which	this	column

belongs.
column sysname Name	of	the	column.
published bit Whether	column	is	published:

0	=	No
1	=	Yes

Remarks
sp_helparticlecolumns	is	used	in	snapshot	and	transactional	replication.

sp_helparticlecolumns	is	useful	in	checking	a	vertical	partition.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

sp_addarticle

sp_addpublication

sp_articlecolumn

sp_changearticle

sp_changepublication

sp_droparticle

sp_droppublication

sp_enumfullsubscribers

sp_helppublication

System	Stored	Procedures

Transact-SQL	Reference

sp_helparticledts
Used	to	get	information	on	the	correct	custom	task	names	to	use	when	creating	a
transformation	subscription	using	Visual	Basic®.	This	stored	procedure	is
executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_helparticledts	[@publication	=]	'publication'	
				,	[@article	=]	'article'

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	no	default.

[@article	=]	'article'

Is	the	name	of	an	article	in	the	publication.	article	is	sysname,	with	no
default.

Result	Sets

Column	name Data	type Description
pre_script_ignore_error_task_name sysname Task	name	for	the

programming	task	that
occurs	before	the
snapshot	data	is	copied,
and	program	execution
should	continue	if	a
script	error	is
encountered.

pre_script_task_name sysname Task	name	for	the
programming	task	that
occurs	before	the
snapshot	data	is	copied.

Program	execution	halts
on	error.

transformation_task_name sysname Task	name	for	the
programming	task	when
using	a	Data	Driven
Query	task.

post_script_ignore_error_task_name sysname Task	name	for	the
programming	task	that
occurs	after	the	snapshot
data	is	copied,	and
program	execution
should	continue	if	a
script	error	is
encountered.

post_script_task_name sysname Task	name	for	the
programming	task	that
occurs	after	the	snapshot
data	is	copied.	Program
execution	halts	on	error.

Remarks
sp_helparticledts	is	used	in	snapshot	replication	and	transactional	replication.

There	are	naming	conventions,	required	by	the	replication	agents,	which	must	be
followed	when	naming	tasks	in	a	replication	DTS	program.	For	custom	tasks,
such	as	an	Execute	SQL	task,	the	name	is	a	concatenated	string	consisting	of	the
article	name,	a	prefix,	and	an	optional	part.	When	writing	the	code,	if	you	are
unsure	what	the	task	names	should	be,	the	result	set	gives	the	task	names	that
should	be	used.	For	more	information,	see	Creating	a	Transformable
Subscription	Using	Visual	Basic.

Permissions
Execute	permissions	default	to	the	public	role.

JavaScript:hhobj_1.Click()

See	Also

Creating	a	Transformable	Subscription	Using	Visual	Basic

How	Transformable	Subscriptions	Works

System	Stored	Procedures

Transforming	Published	Data

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Transact-SQL	Reference

sp_helpdistpublisher
Returns	properties	of	a	Publisher	that	serves	as	its	own	Distributor.	This	stored
procedure	is	executed	at	the	Distributor	on	any	database.

Syntax
sp_helpdistpublisher	[[@publisher	=]	'publisher']	
				[,	[@check_user	=]	check_user

Arguments
[@publisher	=]	'publisher'

Is	the	Publisher	for	which	properties	are	returned.	publisher	is	sysname,	with
a	default	of	%.

[@check_user	=]	check_user

For	internal	use	only.

Result	Sets

Column	name Data	type Description
name sysname Name	of	Publisher.
distribution_db sysname Distribution	database	for	the	specified

Publisher.
security_mode int Security	mode	used	by	the	replication

agent	in	a	push	subscription	to	connect
to	the	Publisher.

login sysname Login	name	used	by	the	replication
agent	in	a	push	subscription	to	connect
to	the	Publisher.

password sysname Password	returned	(in	simple
encrypted	form).	Password	is	NULL
for	users	other	than	sysadmin.

active bit Whether	a	remote	Publisher	is	using

the	local	server	as	a	Distributor:

0	=	No
1	=	Yes

working_directory nvarchar(255) Name	of	the	working	directory.
trusted bit Security	mode	implemented	at	the

Distributor:

0	=	SQL	Server	Authentication
1	=	Windows	Authentication

thirdparty_flag bit Whether	the	publication	is	a
Microsoft®	SQL	Server™	database:

0	=	Microsoft	SQL	Server
1	=	Data	source	other	than	Microsoft
SQL	Server

Remarks
sp_helpdistpublisher	is	used	in	all	types	of	replication.

sp_helpdistpublisher	will	not	display	the	publisher	login	or	password	in	the
result	set	for	non-sysadmin	logins.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

sp_adddistpublisher

sp_changedistpublisher

sp_dropdistpublisher

System	Stored	Procedures

Transact-SQL	Reference

sp_helpdistributiondb
Returns	properties	of	the	specified	distribution	database(s).	This	stored
procedure	is	executed	at	the	Distributor	on	the	distribution	database.

Syntax
sp_helpdistributiondb	[[@database	=]	'database_name']

Arguments
[@database	=]	'database_name'

Is	the	database	name	for	which	properties	are	returned.	database_name	is
sysname,	with	a	default	of	%	for	all	databases.

Result	Sets

Column	name Data	type Description
distribution_database sysname Name	of	the	database.
min_distretention int Minimum	retention	period,	in

hours,	before	transactions	are
deleted.

max_distretention int Maximum	retention	period,	in
hours,	before	transactions	are
deleted.

history	retention int Number	of	hours	to	retain
history.

history_cleanup_agent sysname Name	of	the	History	Cleanup
Agent.

distribution_cleanup_agent sysname Name	of	the	Distribution
Cleanup	Agent.

status int Not	supported.
data_folder nvarchar(255) Name	of	the	directory	used	to

store	the	database	files.

data_file nvarchar(255) Name	of	the	database	file.
data_file_size int Initial	data	file	size	in

megabytes.
log_folder nvarchar(255) Name	of	the	directory	for	the

database	log	file.
log_file nvarchar(255) Name	of	the	log	file.
log_file_size int Initial	log	file	size	in

megabytes.

Remarks
sp_helpdistributiondb	is	used	in	all	types	of	replication.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

sp_adddistributiondb

sp_changedistributiondb

sp_dropdistributiondb

System	Stored	Procedures

Transact-SQL	Reference

sp_helpdistributor
Lists	information	about	the	Distributor,	distribution	database,	working	directory,
and	SQL	Server	Agent	user	account.	This	stored	procedure	is	executed	at	the
Distributor	on	any	database.

Syntax
sp_helpdistributor	[[@distributor	=]	'distributor'	OUTPUT]
				[,	[@distribdb	=]	'distribdb'	OUTPUT]
				[,	[@directory	=]	'directory'	OUTPUT]
				[,	[@account	=]	'account'	OUTPUT]
				[,	[@min_distretention	=]	min_distretention	OUTPUT]
				[,	[@max_distretention	=]	max_distretention	OUTPUT]
				[,	[@history_retention	=]	history_retention	OUTPUT]
				[,	[@history_cleanupagent	=]	'history_cleanupagent'	OUTPUT]
				[,	[@distrib_cleanupagent	=]	'distrib_cleanupagent'	OUTPUT]
				[,	[@publisher	=]	'publisher']	
				[,	[@local	=]	'local']
				[,	[@rpcsrvname	=]	'rpcsrvname'	OUTPUT]

Arguments
[@distributor	=]	'distributor'	OUTPUT

Is	the	name	of	the	Distributor.	Distributor	is	sysname,	with	a	default	of	%,
which	is	the	only	value	that	returns	a	result	set.

[@distribdb	=]	'distribdb'	OUTPUT

Is	the	name	of	the	distribution	database.	distribdb	is	sysname,	with	a	default
of	%,	which	is	the	only	value	that	returns	a	result	set.

[@directory	=]	'directory'	OUTPUT

Is	the	working	directory.	directory	is	nvarchar(255),	with	a	default	of	%,
which	is	the	only	value	that	returns	a	result	set.

[@account	=]	'account'	OUTPUT

Is	the	Windows®	user	account.	account	is	nvarchar(255),	with	a	default	of
%,	which	is	the	only	value	that	returns	a	result	set.

[@min_distretention	=]	min_distretention	OUTPUT

Is	the	minimum	distribution	retention	period,	in	hours.	min_distretention	is
int,	with	a	default	of	-1.

[@max_distretention	=]	max_distretention	OUTPUT

Is	the	maximum	distribution	retention	period,	in	hours.	max_distretention	is
int,	with	a	default	of	-1.

[@history_retention	=]	history_retention	OUTPUT

Is	the	history	retention	period,	in	hours.	history_retention	is	int,	with	a
default	of	-1.

[@history_cleanupagent	=]	'history_cleanupagent'	OUTPUT

Is	the	name	of	the	history	cleanup	agent.	history_cleanupagent	is
nvarchar(100),	with	a	default	of	%,	which	is	the	only	value	that	returns	a
result	set.

[@distrib_cleanupagent	=]	'distrib_cleanupagent'	OUTPUT

Is	the	name	of	the	history	cleanup	agent.	distrib_cleanupagent	is
nvarchar(100),	with	a	default	of	%,	which	is	the	only	value	that	returns	a
result	set.

[@publisher	=]	'publisher'

Is	the	name	of	the	Publisher.	publisher	is	sysname,	with	a	default	of	NULL.

[@local	=]	'local'

Is	whether	Microsoft®	SQL	Server™	should	get	local	server	values.	local	is
nvarchar(5),	with	a	default	of	NULL.

[@rpcsrvname	=]	'rpcsrvname'	OUTPUT

Is	the	name	of	the	server	that	issues	remote	procedure	calls.	rpcsrvname	is
sysname,	with	a	default	of	%,	which	is	the	only	value	that	returns	a	result
set.

Result	Sets

Column	name Data	type Description
Distributor sysname Name	of	the	Distributor.
distribution	database sysname Name	of	the	distribution	database.
Directory nvarchar(255) Name	of	the	working	directory.
Account nvarchar(255) Name	of	the	Windows	user

account.
min	distrib	retention int Minimum	distribution	retention

period.
max	distrib	retention int Maximum	distribution	retention

period.
history	retention int History	retention	period.
history	cleanup	agent nvarchar(100) Name	of	the	History	Cleanup

Agent.
distribution	cleanup
agent

nvarchar(100) Name	of	the	Distribution	Cleanup
Agent.

rpc	server	name sysname Name	of	the	remote	or	local
Distributor.

rpc	login	name sysname Login	used	for	remote	procedure
calls	to	the	remote	Distributor.

If	the	distribution	database	is	not	installed,	a	NULL	value	is	returned.

Remarks
sp_helpdistributor	is	used	in	all	types	of	replication.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

sp_adddistpublisher

sp_addsubscriber

sp_changesubscriber

sp_changesubstatus

sp_dboption

sp_dropsubscriber

sp_helpserver

sp_helpsubscriberinfo

System	Stored	Procedures

Transact-SQL	Reference

sp_helpmergealternatepublisher
Returns	a	list	of	all	servers	enabled	as	alternate	Publishers	for	merge
publications.	This	stored	procedure	is	executed	at	the	Subscriber	on	the
subscription	database.

Syntax
sp_helpmergealternatepublisher	[[@publisher	=]	'publisher']
					,	[@publisher_db	=]	'publisher_db'
					,	[@publication	=]	'publication'

Arguments
[@publisher	=]	'publisher'

Is	the	name	of	the	alternate	publisher.	publisher	is	sysname,	with	no	default.

[@publisher_db	=]	'publisher_db'

Is	the	name	of	the	publication	database.	publisher_db	is	sysname,	with	no
default.

[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	no	default.

Result	Sets

Column	name Data	type Description
alternate	publisher sysname Name	of	the	alternate	Publisher.
alternate	publisher
db

sysname Name	of	the	publication	database.

alternate	publication sysname Name	of	the	publication.
alternate	distributor sysname Name	of	the	distributor.
friendly	name nvarchar(255) Description	of	the	alternate

Publisher.
enabled bit Specifies	if	the	server	is	an

alternate	Publisher.	1	specifies	that
the	Publisher	is	enabled	as	an
alternate	Publisher.	0	specifies	that
it	is	not	enabled.

Remarks
sp_helpmergealternatepublisher	is	used	in	merge	replication.

During	every	merge	session,	the	system	queries	both	the	Publisher	and
Subscriber	for	each	one's	list	of	alternate	publishers.	The	list	of	alternate
publishers	on	both	the	Publisher	and	Subscriber	has	entries	added	or	dropped	as
appropriate.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_helpmergearticle
Returns	information	about	an	article.	This	stored	procedure	is	executed	at	the
Publisher	on	the	publication	database.

Syntax
sp_helpmergearticle	[[@publication	=]	'publication']
				[,	[@article	=]	'article']

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication	about	which	to	retrieve	information.
publication	is	sysname,	with	a	default	of	%,	which	returns	information	about
all	merge	articles	contained	in	all	publications	in	the	current	database.

[@article	=]	'article'

Is	the	name	of	the	article	for	which	to	return	information.	article	is	sysname,
with	a	default	of	%,	which	returns	information	about	all	merge	articles	in	the
given	publication.

Result	Set

Column	name Data	type Description
name sysname Name	of	the	article.
source_object_owner sysname Name	of	the	owner	of	the	source

object.
source_object sysname Name	of	the	source	object	from

which	to	add	the	article.
sync_object_owner sysname Name	of	the	owner	of	the

synchronization	object.
sync_object sysname Name	of	the	custom	object	used

to	establish	the	initial	data	for
the	partition.

description nvarchar(255) Description	of	the	article.
status tinyint Status	of	the	article.
creation_script nvarchar(127) Optional	precreation	script	for

the	article.
conflict_table nvarchar(258) Name	of	the	table	storing	the

insert	or	update	conflicts.
pre_creation_command tinyint Precreation	method.
schema_option binary(8) Bitmap	of	the	schema	generation

option	for	the	article.
type tinyint Type	of	article.
column_tracking int Setting	for	column-level

tracking.
article_resolver nvarchar(255) Custom	resolver	for	the	article.
subset_filterclause nvarchar(2000)WHERE	clause	specifying	the

horizontal	filtering.
resolver_info sysname Name	of	the	article	resolver.
destination_object sysname Name	of	the	destination	object.

Applicable	to	merge	stored
procedures,	views,	and	UDF
schema	articles	only.

Remarks
sp_helpmergearticle	is	used	in	merge	replication.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

sp_addmergearticle

sp_changemergearticle

sp_dropmergearticle

System	Stored	Procedures

Transact-SQL	Reference

sp_helpmergearticlecolumn
Returns	the	list	of	columns	in	the	specified	table	or	view	article	for	a	merge
publication.	Because	stored	procedures	do	not	have	columns,	this	stored
procedure	returns	an	error	if	a	stored	procedure	is	specified	as	the	article.	This
stored	procedure	is	executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_helpmergearticlecolumn	[@publication	=]	'publication']
				,	[@article	=]	'article']

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	no	default.

[@article	=]	'article'

Is	the	name	of	a	table	or	view	that	is	the	article	to	retrieve	information	on.
article	is	sysname,	with	no	default.

Result	Sets

Column	name Data	type Description
column_id sysname Is	the	identification	number	of	the

column.
column_name sysname Is	the	name	of	the	column	for	a

table	or	view.
published bit Specifies	if	the	column	name	is

published.	1	specifies	that	the
column	is	being	published.	0
specifies	that	it	is	not	published.

Remarks
sp_helpmergearticlecolumn	is	used	in	merge	replication.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_helpmergearticleconflicts
Returns	the	articles	in	the	publication	that	have	conflicts.	This	stored	procedure
is	executed	at	the	Publisher	on	the	publication	database,	or	at	the	Subscriber	on
the	merge	subscription	database.

Syntax
sp_helpmergearticleconflicts	[[@publication	=]	'publication']
				[,	[@publisher	=]	'publisher']
				[,	[@publisher_db	=]	'publsher_db']

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	merge	publication.	publication	is	sysname,	with	a	default
of	%,	which	returns	all	articles	in	the	database	that	have	conflicts.

[@publisher	=]	'publisher'

Is	the	name	of	the	Publisher.	publisher	is	sysname,	with	a	default	of	NULL.

[@publisher_db	=]	'publisher_db'

Is	the	name	of	the	publisher	database.	publisher_db	is	sysname,	with	a
default	of	NULL.

Result	Sets

Column	name Data	type Description
article sysname Name	of	the	article.
source_object nvarchar(386) Name	of	the	source	object.
conflict_table nvarchar(258) Name	of	the	table	storing	the	insert

or	update	conflicts.
guidcolname sysname Name	of	the	RowGuidCol	for	the

source	object.
centralized_conflicts int Whether	conflict	records	are	stored

on	the	given	Publisher.

If	the	article	has	only	delete	conflicts	and	no	conflict_table	rows,	the	name	of
the	conflict_table	in	the	result	set	is	NULL.

Remarks
sp_helpmergearticleconflicts	is	used	in	merge	replication.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_helpmergeconflictrows
Returns	the	rows	in	the	specified	conflict	table.	This	stored	procedure	is	run	on
the	computer	where	the	conflict	table	is	stored.

Syntax
sp_helpmergeconflictrows	[[@publication	=]	'publication']
				,	[@conflict_table	=]	'conflict_table'
				[,	[@publisher	=]	'publisher']	
				[,	[@publisher_db	=]	'publsher_db']

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	a	default	of	%.
If	the	publication	is	specified,	all	conflicts	qualified	by	the	publication	are
returned.	For	example,	if	the	Conflict_Customers	table	has	conflict	rows	for
the	WA	and	the	CA	publications,	passing	in	a	publication	name	CA	retrieves
conflicts	that	pertain	to	the	CA	publication.

[@conflict_table	=]	'conflict_table'

Is	the	name	of	the	conflict	table.	conflict_table	is	sysname,	with	no	default.

[@publisher	=]	'publisher'

Is	the	name	of	the	Publisher.	publisher	is	sysname,	with	a	default	of	NULL.

[@publisher_db	=]	'publisher_db'

Is	the	name	of	the	publisher	database.	publisher_db	is	sysname,	with	a
default	of	NULL.

Result	Sets
sp_helpmergeconflictrows	returns	a	result	set	consisting	of	the	base	table
structure	and	these	additional	columns.

Column	name Data	type Description
origin_datasource varchar(255) Origin	of	the	conflict.
conflict_type int Code	indicating	the	type	of

conflict:

1	=	UpdateConflict:	Conflict	is
detected	at	the	row	level.
2	=	ColumnUpdateConflict:
Conflict	detected	at	the	column
level.
3	=	UpdateDeleteWinsConflict:
Delete	wins	the	conflict.
4	=	UpdateWinsDeleteConflict:
The	deleted	rowguid	that	loses	the
conflict	is	recorded	in	this	table.
5	=	UploadInsertFailed:	Insert	from
Subscriber	could	not	be	applied	at
the	Publisher.
6	=	DownloadInsertFailed:	Insert
from	Publisher	could	not	be	applied
at	the	Subscriber.
7	=	UploadDeleteFailed:	Delete	at
Subscriber	could	not	be	uploaded	to
the	Publisher.
8	=	DownloadDeleteFailed:	Delete
at	Publisher	could	not	be
downloaded	to	the	Subscriber.
9	=	UploadUpdateFailed:	Update	at
Subscriber	could	not	be	applied	at
the	Publisher.
10	=	DownloadUpdateFailed:
Update	at	Publisher	could	not	be
applied	to	the	Subscriber.

reason_code int Error	code	that	can	be	context-
sensitive.

reason_text varchar(720) Error	description	that	can	be

context-sensitive.
Pubid uniqueidentifier Publication	identifier.

Remarks
sp_helpmergeconflictrows	is	used	in	merge	replication.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_helpmergedeleteconflictrows
Returns	the	rows	in	the	specified	msmerge_delete_conflicts	table.	This	stored
procedure	is	executed	at	the	Publisher	on	the	merge	publication	database.

Syntax
sp_helpmergedeleteconflictrows	[[@publication	=]	'publication']
				[,	[@source_object	=]	'source_object']
				[,	[@publisher	=]	'publisher'
				[,	[@publisher_db	=]	'publsher_db'

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	a	default	of	%.
If	the	publication	is	specified,	all	conflicts	qualified	by	the	publication	are
returned.	For	example,	if	the	msmerge_delete_conflicts	table	has	conflict
rows	for	the	WA	and	the	CA	publications,	passing	in	a	publication	name	CA
retrieves	conflicts	that	pertain	to	the	CA	publication	only.

[@source_object	=]	'source_object'

Is	the	name	of	the	source	object.	source_object	is	nvarchar(386),	with	a
default	of	NULL.

[@publisher	=]	'publisher'

Is	the	name	of	the	Publisher.	publisher	is	sysname,	with	a	default	of	NULL.

[@publisher_db	=]	'publisher_db'

Is	the	name	of	the	publisher	database.	publisher_db	is	sysname,	with	a
default	of	NULL.

Result	Sets

Column	name Data	type Description

source_object nvarchar(386) Source	object	for	the	delete
conflict.

rowguid uniqueidentifier Row	identifier	for	the	delete
conflict.

conflict_type Int Code	indicating	type	of	conflict:

1	=	UpdateConflict:	Conflict	is
detected	at	the	row	level.
2	=	ColumnUpdateConflict:
Conflict	detected	at	the	column
level.
3	=	UpdateDeleteWinsConflict:
Delete	wins	the	conflict.
4	=	UpdateWinsDeleteConflict:
The	deleted	rowguid	that	loses	the
conflict	is	recorded	in	this	table.
5	=	UploadInsertFailed:	Insert	from
Subscriber	could	not	be	applied	at
the	Publisher.
6	=	DownloadInsertFailed:	Insert
from	Publisher	could	not	be	applied
at	the	Subscriber.
7	=	UploadDeleteFailed:	Delete	at
Subscriber	could	not	be	uploaded	to
the	Publisher.
8	=	DownloadDeleteFailed:	Delete
at	Publisher	could	not	be
downloaded	to	the	Subscriber.
9	=	UploadUpdateFailed:	Update	at
Subscriber	could	not	be	applied	at
the	Publisher.
10	=	DownloadUpdateFailed:
Update	at	Publisher	could	not	be
applied	to	the	Subscriber.

reason_code Int Error	code	that	can	be	context-
sensitive.

reason_text varchar(720) Error	description	that	can	be
context-sensitive.

origin_datasource varchar(255) Origin	of	the	conflict.
pubid uniqueidentifier Publication	identifier.

Remarks
sp_helpmergedeleteconflictrows	is	used	in	merge	replication.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_helpmergefilter
Returns	information	about	merge	filter(s).	This	stored	procedure	is	executed	at
the	Publisher	on	the	publication	database.

Syntax
sp_helpmergefilter	[@publication	=]	'publication'	
				[,	[@article	=]	'article']
				[,	[@filtername	=]	'filtername']

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	no	default.

[@article	=]	'article'

Is	the	name	of	the	article.	article	is	sysname,	with	a	default	of	%,	which
returns	the	names	of	all	articles.

[@filtername	=]	'filtername'

Is	the	name	of	the	filter	about	which	to	return	information.	filtername	is
sysname,	with	a	default	of	%,	which	returns	information	about	all	the	filters
defined	on	the	article	or	publication.

Result	Sets

Column	name Data	type Description
join_filterid int ID	of	the	join	filter.
filtername sysname Name	of	the	filter.
join	article	name sysname Name	of	the	join	article.
join_filterclause nvarchar(2000) Filter	clause	qualifying	the	join.
join_unique_key int Whether	the	join	is	on	a	unique

key.
base	table	owner sysname Name	of	the	owner	of	the	base

table.
base	table	name sysname Name	of	the	base	table.
join	table	owner sysname Name	of	the	owner	of	the	table

being	joined	to	the	base	table.
join	table	name sysname Name	of	the	table	being	joined	to

the	base	table.
article	name sysname Name	of	the	article.

Remarks
sp_helpmergefilter	is	used	in	merge	replication.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

sp_addmergefilter

sp_changemergefilter

sp_dropmergefilter

System	Stored	Procedures

Transact-SQL	Reference

sp_helpmergepublication
Returns	information	about	a	merge	publication.	This	stored	procedure	is
executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_helpmergepublication	[[@publication	=]	'publication']
				[,	[@found	=]	'found'OUTPUT]
				[,	[@publication_id	=]	'publication_id'	OUTPUT]
				[,	[@reserved	=]	'reserved']

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	a	default	of	%,
which	returns	information	about	all	merge	publications	in	the	current
database.

[@found	=]	'found'	OUTPUT

Is	a	flag	to	indicate	returning	rows.	found	is	int	and	an	OUTPUT	parameter,
with	a	default	of	NULL.	1	indicates	the	publication	is	found.	0	indicates	the
publication	is	not	found.

[@publication_id	=]	'publication_id'	OUTPUT

Is	the	publication	identification	number.	publication_id	is	uniqueidentifier
and	an	OUTPUT	parameter,	with	a	default	of	NULL.

[@reserved	=]	'reserved'

Is	reserved	for	future	use.	reserved	is	nvarchar(20),	with	a	default	of	NULL.

Result	Sets

Column	name Data	type Description
id int Sequential	order	of	the

publication	in	the	list.
name sysname Name	of	the	publication.
description nvarchar(255) Description	of	the

publication.
status tinyint When	publication	data	will

be	available.
retention int Amount	of	change,	in	days,

to	save	for	the	given
publication.

sync_mode tinyint Synchronization	mode	of
this	publication:

0	=	Native	bulk	copy
program	(bcp	utility)
1	=	Character	bulk	copy

allow_push int Whether	push	subscriptions
can	be	created	for	the	given
publication.	0	means	that	a
push	subscription	is	not
allowed.

allow_pull int Whether	pull	subscriptions
can	be	created	for	the	given
publication.	0	means	that	a
pull	subscription	is	not
allowed.

allow_anonymous int Whether	anonymous
subscriptions	can	be	created
for	the	given	publication.	
means	that	an	anonymous
subscription	is	not	allowed.

centralized_conflicts int Whether	conflict	records	are
stored	on	the	given
Publisher:

0	=	conflict	records	are
stored	at	both	the	publisher

and	at	the	subscriber	that
caused	the	conflict.
1	=	all	conflict	records	are
stored	at	the	Publisher.

priority float(8) Priority	of	the	loop-back
subscription.

snapshot_ready tinyint Whether	the	snapshot	of	this
publication	is	ready:

0	=	Snapshot	is	ready	for
use.
1	=	Snapshot	is	not	ready	for
use.

publication_type int Type	of	publication:

0	=	Snapshot.
1	=	Transactional.
2	=	Merge.

pubid uniqueidentifierUnique	identifier	of	this
publication.

snapshot_jobid binary(16) Job	ID	of	the	Snapshot
Agent.

enabled_for_internet int Whether	the	publication	is
enabled	for	the	Internet.	If	
the	synchronization	files	for
the	publication	are	put	into
the	C:\Program
Files\Microsoft	SQL
Server\MSSQL\Repldata\Ftp
directory.	The	user	must
create	the	Ftp	directory.	If	
the	publication	is	not
enabled	for	Internet	access.

dynamic_filter int Whether	a	dynamic	filter	is
used.	0	means	a	dynamic
filter	is	not	used.

has_subscription bit Whether	the	publication	has
any	subscriptions.	0	means
there	are	currently	no
subscriptions	to	this
publication.

snapshot_in_default_folder Bit Specifies	if	the	snapshot
files	are	stored	in	the	default
folder.	If	0,	snapshot	files
can	be	found	in	the	default
folder.	If	1,	snapshot	files
will	be	stored	in	the	alternate
location	specified	by
alt_snapshot_folder.
Alternate	locations	can	be	on
another	server,	on	a	network
drive,	or	on	a	removable
media	(such	as	CD-ROM	or
removable	disks).	You	can
also	save	the	snapshot	files
to	a	File	Transfer	Protocol
(FTP)	site,	for	retrieval	by
the	Subscriber	at	a	later
time.	Note	that	this
parameter	can	be	true	and
still	have	a	location	in	the
@alt_snapshot_folder
parameter.	That	combination
specifies	that	the	snapshot
files	will	be	stored	in	both
the	default	and	alternate
locations.

alt_snapshot_folder nvarchar(255) Specifies	the	location	of	the
alternate	folder	for	the
snapshot.

pre_snapshot_script nvarchar(255) Specifies	a	pointer	to	an	
file	that	the	Merge	Agent
runs	before	any	of	the

replicated	object	scripts
when	applying	the	snapshot
at	a	Subscriber.

post_snapshot_script nvarchar(255) Specifies	a	pointer	to	an	
file	that	the	Merge	Agent
will	run	after	all	the	other
replicated	object	scripts	and
data	have	been	applied
during	an	initial
synchronization.

compress_snapshot Bit Specifies	that	the	snapshot
that	is	written	to	the
@alt_snapshot_folder
location	is	compressed	into
the	Microsoft®	CAB	format.

ftp_address sysname Is	the	network	address	of	the
FTP	service	for	the
Distributor.	Specifies	where
publication	snapshot	files	are
located	for	the	Merge	Agent
to	pick	up.

ftp_port int Is	the	port	number	of	the
FTP	service	for	the
Distributor.	ftp_port	has	a
default	of	21.	Specifies
where	the	publication
snapshot	files	are	located	for
the	Merge	Agent	to	pick	up.

ftp_subdirectory nvarchar(255) Specifies	where	the	snapshot
files	will	be	available	for	the
Merge	Agent	to	pick	up.

ftp_login sysname Is	the	username	used	to
connect	to	the	FTP	service.

conflict_retention int Specifies	the	retention
period,	in	days,	for	which
conflicts	are	retained.	After

the	specified	number	of	days
has	passed,	the	conflict	row
is	purged	from	the	conflict
table.

keep_partition_changes int Specifies	whether
synchronization	optimization
is	occurring	for	this
publication	.
keep_partition_changes
a	default	of	0.	0	means	that
synchronization	is	not
optimized,	and	the	partitions
sent	to	all	Subscribers	will
be	verified	when	data
changes	in	a	partition.	1
means	that	synchronization
is	optimized,	and	only
Subscribers	having	rows	in
the	changed	partition	are
affected.	For	more
information,	see	Optimizing
Synchronization.

allow_subscription_copy int Specifies	whether	the	ability
to	copy	the	subscription
databases	that	subscribe	to
this	publication	has	been
enabled.	0	means	copying	is
not	allowed.

allow_synctoalternate int Specifies	whether	an
alternate	synchronization
partner	is	allowed	to
synchronize	with	this
Publisher.	0	means	a
synchronization	partner	is
not	allowed.

validate_subscriber_info nvarchar(500) Lists	the	functions	that	are
being	used	to	retrieve

JavaScript:hhobj_1.Click()

Subscriber	information	and
validate	the	dynamic
filtering	criteria	on	the
Subscriber.	Assists	in
verifying	that	the
information	is	partitioned
consistently	with	each
merge.

backward_comp_level int Database	compatibility	level
(60,	65,	70,	and	80).

publish_to_activedirectory bit Specifies	if	the	publication
information	is	published	to
the	Microsoft	Active
Directory™.	0	means	the
publication	information	is
not	available	from	the
Microsoft	Active	Directory.

max_concurrent_merge int The	number	of	concurrent
merge	processes.	A	value	of
0	for	this	property	means
that	there	is	no	limit	to	the
number	of	concurrent	merge
processes	running	at	any
given	time.

max_concurrent_dynamic_snapshots int The	maximum	number	of
concurrent	dynamic
snapshot	sessions	that	can	be
running	against	the	merge
publication.	If	0,	there	is	no
limit	to	the	maximum
number	of	concurrent
dynamic	snapshot	sessions
that	can	run	simultaneously
against	the	publication	at
any	given	time.

Remarks
sp_helpmergepublication	is	used	in	merge	replication.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

sp_addmergepublication

sp_changemergepublication

sp_dropmergepublication

System	Stored	Procedures

Transact-SQL	Reference

sp_helpmergepullsubscription
Returns	information	about	the	pull	subscription.	This	stored	procedure	is
executed	at	the	Subscriber	on	the	subscription	database.

Syntax
sp_helpmergepullsubscription	[[@publication	=]	'publication']
				[,	[@publisher	=]	'publisher']
				[,	[@publisher_db	=]	'publisher_db']
				[,	[@subscription_type	=]	'subscription_type']

Argument
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	a	default	of	%.
If	publication	is	%,	information	about	all	merge	publications	and
subscriptions	in	the	current	database	is	returned.

[@publisher	=]	'publisher'

Is	the	name	of	the	Publisher.	publisher	is	sysname,	with	a	default	of	%.

[@publisher_db	=]	'publisher_db'

Is	the	name	of	the	Publisher	database.	publisher_db	is	sysname,	with	a
default	of	%.

[@subscription_type	=]	'subscription_type'

Is	whether	to	show	pull	subscriptions.	subscription_type	is	nvarchar(10),
with	a	default	of	'pull'.	Valid	values	are	'push',	'pull',	or	'both'.

Result	Sets

Column	name Data	type Description
subscription_name nvarchar(1000) Name	of	the	subscription.
publication sysname Name	of	the	publication.

publisher sysname Name	of	the	Publisher.
publisher_db sysname Name	of	the	Publisher

database.
subscriber sysname Name	of	the	Subscriber.
subscription_db sysname Name	of	the	subscription

database.
status Int Subscription	status:

0	=	All	jobs	are	waiting	to
start
1	=	One	or	more	jobs	are
starting
2	=	All	jobs	have
successfully	executed
3	=	At	least	one	job	is
executing
4	=	All	jobs	are	scheduled
and	idle
5	=	At	least	one	job	is
attempting	to	execute	after
a	previous	failure
6	=	At	least	one	job	has
failed	to	execute
successfully

subscriber_type int Type	of	Subscriber:

1	=	Global
2	=	Local
3	=	Anonymous

subscription_type int Type	of	subscription:

0	=	Push
1	=	Pull
2	=	Anonymous

priority float(8) Subscription	priority.	The
value	must	be	less	than

100.00.
sync_type tinyint Subscription

synchronization	type:

1	=	Automatic
2	=	Nosync

description nvarchar(255) Brief	description	of	this
pull	subscription.

merge_jobid binary(16) Job	ID	of	the	Merge	Agent.
enabled_for_synmgr int Whether	the	subscription

can	be	synchronized
through	the	Microsoft
Synchronization	Manager.

last_updated nvarchar(26) Date	publication	was	last
updated.

publisher_login sysname The	Publisher	login	name.
publisher_password sysname The	Publisher	password.
publisher_security_mode int Specifies	the	security	mode

of	the	Publisher:

0	=	SQL	Server
Authentication
1	=	Windows
Authentication

distributor sysname Name	of	the	Distributor.
distributor_login sysname The	Distributor	login	name.
distributor_password sysname The	Distributor	password.
distributor_security_mode int Specifies	the	security	mode

of	the	Distributor:

0	=	SQL	Server
Authentication
1	=	Windows
Authentication

ftp_address sysname Available	for	backward

compatibility	only.	Is	the
network	address	of	the	FTP
service	for	the	Distributor.

ftp_port int Available	for	backward
compatibility	only.	Is	the
port	number	of	the	FTP
service	for	the	Distributor.

ftp_login sysname Available	for	backward
compatibility	only.	Is	the
username	used	to	connect
to	the	FTP	service.

ftp_password sysname Available	for	backward
compatibility	only.	Is	the
user	password	used	to
connect	to	the	FTP	service.

alt_snapshot_folder nvarchar(255) Location	where	snapshot
folder	is	stored	if	the
location	is	other	than	or	in
addition	to	the	default
location.

working_directory nvarchar(255) Fully	qualified	path	to	the
directory	where	snapshot
files	are	transferred	using
FTP	when	that	option	is
specified.

use_ftp bit Subscription	is	subscribing
to	Publication	over	the
Internet	and	FTP	addressing
properties	are	configured.	If
0,	Subscription	is	not	using
FTP.	If	1,	subscription	is
using	FTP.

offload_agent bit Specifies	if	the	agent	can	be
activated	and	run	remotely.
If	0,	the	agent	cannot	be
remotely	activated.

offload_server sysname Name	of	the	server		used
for	remote	activation.

use_interactive_resolver 	 Returns	whether	or	not	the
interactive	resolver	is	used
during	reconciliation.	If	0,
the	interactive	resolver	is
not	used.

subid uniqueidentifier ID	of	the	Subscriber.
dynamic_snapshot_location nvarchar(255) The	path	to	the	folder

where	the	snapshot	files	are
saved.

last_sync_status int Subscription	status:

0	=	All	jobs	are	waiting	to
start
1	=	One	or	more	jobs	are
starting
2	=	All	jobs	have	executed
successfully
3	=	At	least	one	job	is
executing
4	=	All	jobs	are	scheduled
and	idle
5	=	At	least	one	job	is
attempting	to	execute	after
a	previous	failure
6	=	At	least	one	job	has
failed	to	execute
successfully

last_sync_summary sysname Description	of	last
synchronization	results.

Remarks
sp_helpmergepullsubscription	is	used	in	merge	replication.	In	the	result	set,	the

date	returned	in	last_updated	is	formatted	as	YYYYMMDD	hh:mm:ss.fff.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

sp_addmergepullsubscription

sp_changemergepullsubscription

sp_dropmergepullsubscription

System	Stored	Procedures

Transact-SQL	Reference

sp_helpmergesubscription
Returns	information	about	a	push	subscription.	This	stored	procedure	is	executed
at	the	Publisher	on	the	publication	database.

Syntax
sp_helpmergesubscription	[[@publication	=]	'publication']
				[,	[@subscriber	=]	'subscriber']
				[,	[@subscriber_db	=]	'subscriber_db']
				[,	[@publisher	=]	'publisher']
				[,	[@publisher_db	=]	'publisher_db']
				[,	[@subscription_type	=]	'subscription_type']
				[,	[@found	=]	'found'	OUTPUT]

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	a	default	of	%.
The	publication	must	already	exist	and	conform	to	the	rules	for	identifiers.	If
NULL	or	%,	information	about	all	merge	publications	and	subscriptions	in
the	current	database	is	returned.

[@subscriber	=]	'subscriber'

Is	the	name	of	the	Subscriber.	subscriber	is	sysname,	with	a	default	of	%.	If
NULL	or	%,	information	about	all	subscriptions	to	the	given	publication	is
returned.

[@subscriber_db	=]	'subscriber_db'

Is	the	name	of	the	subscription	database.	subscriber_db	is	sysname,	with	a
default	of	%,	which	returns	information	about	all	subscription	databases.

[@publisher	=]	'publisher'

Is	the	name	of	the	Publisher.	The	Publisher	must	be	a	valid	server.	publisher
is	sysname,	with	a	default	of	%,	which	returns	information	about	all
Publishers.

[@publisher_db	=]	'publisher_db'

Is	the	name	of	the	Publisher	database.	publisher_db	is	sysname,	with	a
default	of	%,	which	returns	information	about	all	Publisher	databases.

[@subscription_type	=]	'subscription_type'

Is	the	type	of	subscription.	subscription_type	is	nvarchar(15),	and	can	be
one	of	these	values.

Value Description
push	(default) Push	subscription.
Pull Pull	subscription.
Both Both	a	push	and	pull	subscription.

[@found	=]	'found'	OUTPUT

Is	a	flag	to	indicate	returning	rows.	found	is	int	and	an	OUTPUT	parameter,
with	a	default	of	NULL.	1	indicates	the	publication	is	found.	0	indicates	the
publication	is	not	found.

Result	Sets

Column	name Data	type Description
subscription_name 	 Name	of	the	subscription.
Publication sysname Name	of	the	publication.
Publisher sysname Name	of	the	Publisher.
publisher_db sysname Name	of	the	Publisher	database.
Subscriber sysname Name	of	the	Subscriber.
subscriber_db sysname Name	of	the	subscription

database.
Status int Status	of	the	subscription:

0	=	All	jobs	are	waiting	to	start

1	=	One	or	more	jobs	are	starting

2	=	All	jobs	have	executed

successfully

3	=	At	least	one	job	is	executing

4	=	All	jobs	are	scheduled	and
idle

5	=	At	least	one	job	is	attempting
to	execute	after	a	previous	failure

6	=	At	least	one	job	has	failed	to
execute	successfully

subscriber_type int Type	of	Subscriber.
subscription_type int Type	of	subscription:

0	=	Push
1	=	Pull
2	=	Both

Priority float(8) Number	indicating	the	priority
for	the	subscription.

sync_type tinyint Subscription	sync	type.
description nvarchar(255) Brief	description	of	this	merge

subscription.
merge_jobid binary(16) Job	ID	of	the	Merge	Agent.
full_publication tinyint Whether	the	subscription	is	to	a

full	or	filtered	publication.
offload_enabled 	 Specifies	if	offload	execution	of

a	replication	agent	has	been	set
to	run	at	the	Subscriber.	If
NULL,	execution	is	run	at	the
Publisher.

offload_server 	 Name	of	the	server	to	where	the
agent	is	running.

use_interactive_resolver 	 Returns	whether	or	not	the
interactive	resolver	is	used
during	reconciliation.	If	0,	the
interactive	resolver	not	is	used.

Remarks
sp_helpmergesubscription	is	used	in	merge	replication.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

sp_addmergesubscription

sp_changemergesubscription

sp_dropmergesubscription

System	Stored	Procedures

Transact-SQL	Reference

sp_helppublication
Returns	information	about	a	publication.	This	stored	procedure	is	executed	at	the
Publisher	on	the	publication	database.

Syntax
sp_helppublication	[[@publication	=]	'publication']
				[,	[@found	=]	found	OUTPUT]

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication	to	be	viewed.	publication	is	sysname,	with	a
default	of	%,	which	returns	information	about	all	publications.

[@found	=]	'found'	OUTPUT

Is	a	flag	to	indicate	returning	rows.	found	is	int	and	an	OUTPUT	parameter,
with	a	default	of	23456.	1	indicates	the	publication	is	found.	0	indicates	the
publication	is	not	found.

Result	Sets

Column	name Data	type Description
pubid int ID	for	the	publication.
name sysname Name	of	the	publication.
restricted int Not	used,	set	to	0.
status tinyint When	publication	data	will	be

available.
task 	 Used	for	backward	compatibility.
replication	frequency tinyint Type	of	replication	frequency:

0	=	Transaction	based
1	=	Scheduled	table	refresh

synchronization tinyint Synchronization	mode:

method 0	=	Native	bulk	copy	program
(bcp	utility)
1	=	Character	bulk	copy
3	=	Concurrent,	which	means	that
native	bulk	copy	(bcp	utility)	is
used	but	tables	are	not	locked
during	the	snapshot
4	=	Concurrent_c,	which	means
that	character	bulk	copy	is	used
but	tables	are	not	locked	during
the	snapshot

description nvarchar(255) Optional	description	for	the
publication.

immediate_sync bit Whether	the	synchronization	files
are	created	or	re-created	each	time
the	Snapshot	Agent	runs.

enabled_for_internet bit Whether	the	synchronization	files
for	the	publication	are	exposed	to
the	Internet,	through	FTP	and
other	services.

allow_push bit Whether	push	subscriptions	are
allowed	on	the	publication.

allow_pull bit Whether	pull	subscriptions	are
allowed	on	the	publication.

allow_anonymous bit Whether	anonymous	subscriptions
are	allowed	on	the	publication.

independent_agent bit Whether	there	is	a	stand-alone
Distribution	Agent	for	this
publication.

immediate_sync_ready bit Whether	or	not	the	Snapshot
Agent	generated	a	snapshot	that	is
ready	to	be	used	by	new
subscriptions.	This	parameter	is
defined	only	if	the	publication	is
set	to	always	have	a	snapshot

available	for	new	or	reinitialized
subscriptions.

allow_sync_tran bit Whether	immediate-updating
subscriptions	are	allowed	on	the
publication.

autogen_sync_procs bit Whether	to	automatically	generate
stored	procedures	to	support
immediate-updating	subscriptions.

snapshot_jobid binary(16) Scheduled	task	ID.
retention int Amount	of	change,	in	hours,	to

save	for	the	given	publication.

Remarks
sp_helppublication	is	used	in	snapshot	and	transactional	replication.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

sp_addarticle

sp_addpublication

sp_articlecolumn

sp_changepublication

sp_changearticle

sp_droparticle

sp_droppublication

sp_enumfullsubscribers

sp_helparticle

sp_helparticlecolumns

System	Stored	Procedures

Transact-SQL	Reference

sp_help_publication_access
Returns	a	list	of	all	granted	logins	for	a	publication.	This	stored	procedure	is
executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_help_publication_access	[@publication	=]	'publication'
				[,	[@return_granted	=]	'return_granted']	
				[,	[@login	=]	'login']
				[,	[@initial_list	=]	initial_list]

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication	to	access.	publication	is	sysname,	with	no
default.

[@return_granted	=]	'return_granted'

Is	the	login	ID.	return_granted	is	bit,	with	a	default	of	1.	If	0	is	specified	and
SQL	Server	Authentication	is	used,	the	available	logins	that	appear	at	the
Publisher	but	not	at	the	Distributor	are	returned.	If	0	is	specified	and
Windows	Authentication	is	used,	the	logins	not	specifically	denied	access	at
either	the	Publisher	or	Distributor	are	returned.

[@login	=]	'login'

Is	the	standard	security	login	ID.	login	is	sysname,	with	a	default	of	%.

[@initial_list	=]	initial_list

Specifies	whether	to	obtain	the	initial	publication	access	list	for	the	new
publication.	initial_list	is	bit,	with	a	default	of	0.	If	1,	returns	the	publication
access	list,	which	includes	all	the	members	of	the	sysadmin	that	have	valid
logins	at	the	Distributor	and	the	current	login.

Result	Sets

Column	name Data	type Description
Loginname nvarchar(256) Actual	login	name.
Isntname int 0	=	Login	is	a	Microsoft	SQL	Server

login.
1	=	Login	is	a	Windows®	user	or
group.

Isntgroup int 0	=	Login	is	a	Microsoft	SQL	Server
login.
1	=	Login	is	a	Windows	user	or	group.

Remarks
sp_help_publication_access	is	used	in	all	types	of	replication.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

sp_grant_publication_access

sp_revoke_publication_access

System	Stored	Procedures

Transact-SQL	Reference

sp_helppullsubscription
Displays	information	about	one	or	more	subscriptions	at	the	Subscriber.	This
stored	procedure	is	executed	at	the	Subscriber	on	the	subscription	database.

Syntax
sp_helppullsubscription	[[@publisher	=]	'publisher']
				[,	[@publisher_db	=]	'publisher_db']	
				[,	[@publication	=]	'publication']
				[,	[@show_push	=]	'show_push']

Arguments
[@publisher	=]	'publisher'

Is	the	name	of	the	remote	server.	publisher	is	sysname,	with	a	default	of	%,
which	returns	all	the	Publishers.

[@publisher_db	=]	'publisher_db'

Is	the	name	of	the	Publisher	database.	publisher_db	is	sysname,	with	a
default	of	%,	which	returns	all	the	Publisher	databases.

[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	a	default	of	%,
which	returns	all	the	publications.

[@show_push	=]	'show_push'

Is	whether	all	push	subscriptions	are	to	be	returned.	show_push	is
nvarchar(5),	with	a	default	of	FALSE,	which	does	not	return	all	push
subscriptions.

Result	Sets

Column	name Data	type Description
publisher sysname Name	of	the	Publisher.

publisher	database sysname Name	of	the	Publisher
database.

publication sysname Name	of	the	publication.
independent_agent bit Indicates	whether	there	is	a

stand-alone	Distribution
Agent	for	this	publication.

subscription	type int Subscription	type	to	the
publication.

distribution	agent nvarchar(100) Distribution	Agent	handling
the	subscription.

publication	description nvarchar(255) Description	of	the
publication.

last	updating	time date Time	the	subscription
information	was	updated.
This	is	a	UNICODE	string	of
ISO	date	(114)	+	ODBC	time
(121).	The	format	is
yyyymmdd	hh:mi:sss.mmm
where	'yyyy'	is	year,	'mm'	is
month,	'dd'	is	day,	'hh'	is	hour,
'mi'	is	minute,	'sss'	is	seconds,
'mmm'	is	milliseconds.

subscription	name varchar(386) Name	of	the	subscription.
last	transaction	timestamp varbinary(16) Timestamp	of	the	last

replicated	transaction.
update	mode tinyint Type	of	updates	allowed.
distribution	agent	job_id int Job	ID	of	the	Distribution

Agent.
enabled_for_synmgr int Whether	the	subscription	can

be	synchronized	through	the
Microsoft®	Synchronization
Manager.

subscription	guid binary(16) Global	identifier	for	the
version	of	the	subscription	on
the	publication.

subid binary(16) Global	identifier	for	an
anonymous	subscription.

immediate_sync bit Whether	the	synchronization
files	are	created	or	re-created
each	time	the	Snapshot	Agent
runs.

publisher	login sysname Login	ID	used	at	the
Publisher	for	SQL	Server
Authentication.

publisher	password nvarchar(524) Password	(encrypted)	used	at
the	Publisher	for	SQL	Server
Authentication.

publisher	security_mode int Security	mode	implemented
at	the	Publisher:

0	=	SQL	Server
Authentication
1	=	Windows	Authentication
2	=	The	synchronization
triggers	use	a	static
sysservers	entry	to	do	RPC,
and	publisher	must	be	defined
in	the	sysservers	table	as	a
remote	server	or	linked	server.

distributor sysname Name	of	the	Distributor.
distributor_login sysname Login	ID	used	at	the

Distributor	for	SQL	Server
Authentication.

distributor_password nvarchar(524) Password	(encrypted)	used	at
the	Distributor	for	SQL
Server	Authentication.

distributor_security_mode int Security	mode	implemented
at	the	Distributor:

0	=	SQL	Server
Authentication
1	=	Windows	Authentication

ftp_address sysname For	backward	compatibility
only.

ftp_port int For	backward	compatibility
only.

ftp_login sysname For	backward	compatibility
only.

ftp_password nvarchar(524) For	backward	compatibility
only.

alt_snapshot_folder nvarchar(255) Location	where	snapshot
folder	is	stored	if	the	location
is	other	than	or	in	addition	to
the	default	location.

working_directory nvarchar(255) Fully	qualified	path	to	the
directory	where	snapshot	files
are	transferred	using	FTP
when	that	option	is	specified.

use_ftp bit Subscription	is	subscribing	to
Publication	over	the	Internet
and	FTP	addressing	properties
are	configured.	If	0,
Subscription	is	not	using	FTP.
If	1,	subscription	is	using
FTP.

publication_type int Specifies	the	replication	type
of	the	publication:

0	=	Transactional	replication
1	=	Snapshot	replication
2	=	Merge	replication

dts_package_name sysname Specifies	the	name	of	the
DTS	package.

dts_package_location int Location	where	the	DTS
package	is	stored:

0	=	Distributor

1	=	Subscriber

offload_agent bit Specifies	if	the	agent	can	be
activated	remotely.	If	0,	the
agent	cannot	be	activated
remotely.

offload_server sysname Specifies	the	network	name	of
the	server	used	for	remote
activation.

last_sync_status int Subscription	status:

0	=	All	jobs	are	waiting	to
start
1	=	One	or	more	jobs	are
starting
2	=	All	jobs	have	executed
successfully
3	=	At	least	one	job	is
executing
4	=	All	jobs	are	scheduled	and
idle
5	=	At	least	one	job	is
attempting	to	execute	after	a
previous	failure
6	=	At	least	one	job	has	failed
to	execute	successfully

last_sync_summary sysname Description	of	last
synchronization	results.

last_sync_time datetime Time	the	subscription
information	was	updated.
This	is	a	UNICODE	string	of
ISO	date	(114)	+	ODBC	time
(121).	The	format	is
yyyymmdd	hh:mi:sss.mmm
where	'yyyy'	is	year,	'mm'	is
month,	'dd'	is	day,	'hh'	is	hour,
'mi'	is	minute,	'sss'	is	seconds,

'mmm'	is	milliseconds.

Remarks
sp_helppullsubscription	is	used	in	snapshot	and	transactional	replication.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

sp_addpullsubscription

sp_droppullsubscription

System	Stored	Procedures

Transact-SQL	Reference

sp_helpreplfailovermode
Displays	the	current	failover	mode	of	a	subscription	for	immediate	updating	with
queued	updating	as	a	standby	in	case	of	a	failure.	This	stored	procedure	is
executed	at	the	Subscriber	on	any	database.

Syntax
sp_helpreplfailovermode	[@publisher	=]	'publisher'	
				[,	[@publisher_db	=]	'publisher_db']	
				[,	[@publication	=]	'publication']	
				[,	[@failover_mode_id	=]	'failover_mode_id'OUTPUT]	
				[,	[@failover_mode	=]	'failover_mode'OUTPUT]

Arguments
[@publisher	=]	'publisher'

Is	the	name	of	the	Publisher	that	is	participating	in	the	update	of	this
Subscriber.	publisher	is	sysname,	with	no	default.	The	Publisher	must
already	be	configured	for	publishing.

[@publisher_db	=]	'publisher_db'

Is	the	name	of	the	publication	database.	publisher_db	is	sysname,	with	no
default.

[@publication	=]	'publication'

Is	the	name	of	the	publication	that	is	participating	in	the	update	of	this
Subscriber.	publication	is	sysname,	with	no	default.

[@failover_mode_id	=]	'failover_mode_id'	OUTPUT

Returns	the	integer	value	of	the	failover	mode	and	is	an	OUTPUT	parameter.
failover_mode_id	is	a	tinyint	with	a	default	of	0.	It	returns	0	for	immediate
updating	and	1	for	queued	updating.

[@failover_mode	=]	'failover_mode'	OUTPUT

Returns	the	mode	in	which	data	modifications	are	made	at	the	Subscriber.

failover_mode	is	a	nvarchar(10)	with	a	default	of	NULL.	Is	an	OUTPUT
parameter.

Value Description
immediate Immediate	updating:	updates	made	at	the	Subscriber

are	immediately	propagated	to	the	Publisher	using	two-
phase	commit	protocol	(2PC).

queued Queued	updating:	updates	made	at	the	Subscriber	are
stored	in	a	queue.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_helpreplfailovermode	is	used	in	snapshot	replication	or	transactional
replication	for	which	subscriptions	are	enabled	for	immediate	updating	with
queued	updating	as	failover	in	case	of	failure.

Permissions
Members	of	the	public	role	can	execute	sp_helpreplfailovermode.

See	Also

sp_setreplfailovermode

Transact-SQL	Reference

sp_helpreplicationdboption
Shows	the	databases	that	have	the	replication	option	enabled.	This	stored
procedure	is	executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_helpreplicationdboption	[[@dbname	=]	'dbname']
				[,	[@type	=]	'type']

Arguments
[@dbname	=]	'dbname'

Is	the	name	of	the	database.	dbname	is	sysname,	with	a	default	of	%.	If	%,
then	the	result	set	will	contain	all	databases	on	the	machine	where	the	stored
procedure	was	run.

[@type	=]	'type'

Is	whether	replication	is	allowed.	type	is	sysname,	and	can	be	one	of	the
following	values.

Value Description
publish Transactional	replication	allowed.
merge	publish Merge	replication	allowed.
replication	allowed
(default)

Either	transactional	or	merge	replication
allowed.

Result	Sets

Column	name Data	type Description
name sysname Name	of	the	database.
id sysname ID	of	the	database.

Remarks
sp_helpreplicationdboption	is	used	in	snapshot,	transactional,	and	merge
replication.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_helpreplicationoption
Shows	the	types	of	replication	options	enabled	for	a	server.	This	stored
procedure	is	executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_helpreplicationoption	[[@optname	=]	'option_name']

Arguments
[@optname	=]	'option_name'

Is	the	name	of	the	replication	option	to	query	for.	option_name	is	sysname,
with	a	default	of	NULL.	If	NULL,	then	the	result	set	will	contain	all	types	of
replication	options	activated	on	that	database.	If	transactional,	the	result	set
will	contain	information	only	about	the	transactional	publication.	If	merge,
the	result	set	will	contain	information	about	the	merge	publication	only.

Result	Sets

Column	name Data	type Description
optname sysname Name	of	the	replication	option

type.
value bit For	internal	use	only.
major_version int For	internal	use	only.
minor_version int For	internal	use	only.
revision int For	internal	use	only.
install_failures int For	internal	use	only.

Remarks
sp_helpreplicationoption	is	used	to	get	information	on	transactional	replication
and	merge	replication	on	a	particular	server.	To	get	information	on	a	particular
database,	use	sp_helpreplicationdboption.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_helpsubscriberinfo
Displays	information	about	a	Subscriber.	This	stored	procedure	is	executed	at	the
Publisher	on	any	database.

Syntax
sp_helpsubscriberinfo	[[@subscriber	=]	'subscriber']

Arguments
[@subscriber	=]	'subscriber'

Is	the	name	of	the	Subscriber.	subscriber	is	sysname,	with	a	default	of	%,
which	returns	all	information.

Result	Sets

Column	name Data	type Description
publisher sysname Name	of	the	Publisher.
subscriber sysname Name	of	the	Subscriber.
type tinyint Type	of	Subscriber:

0	=	Microsoft®	SQL
Server™	database
1	=	ODBC	data	source

login sysname Login	ID	for	SQL	Server
Authentication.

password sysname Password	for	SQL	Server
Authentication.

commit_batch_size int Not	supported.
status_batch_size int Not	supported.
flush_frequency int Not	supported.
frequency_type int Frequency	with	which	the

Distribution	Agent	is	run:

1	=	One	time
2	=	On	demand
4	=	Daily
8	=	Weekly
16	=	Monthly
32	=	Monthly	relative
64	=	Autostart
124	=	Recurring

frequency_interval int Value	applied	to	the
frequency	set	by
frequency_type.

frequency_relative_interval int Date	of	the	Distribution
Agent	Used	when
frequency_type	is	set	to	32
(monthly	relative):

1	=	First	
2	=	Second
4	=	Third
8	=	Fourth
16	=	Last

frequency_recurrence_factor int Recurrence	factor	used	by
frequency_type.

frequency_subday int How	often	to	reschedule
during	the	defined	period:

1	=	Once
2	=	Second
4	=	Minute	
8	=	Hour

frequency_subday_interval int Interval	for
frequency_subday.

active_start_time_of_day int Time	of	day	when	the
Distribution	Agent	is	first
scheduled,	formatted	as
HHMMSS.

active_end_time_of_day int Time	of	day	when	the
Distribution	Agent	stops
being	scheduled,	formatted
as	HHMMSS.

active_start_date int Date	when	the	Distribution
Agent	is	first	scheduled,
formatted	as
YYYYMMDD.

active_end_date int Date	when	the	Distribution
Agent	stops	being
scheduled,	formatted	as
YYYYMMDD.

retryattempt int Not	supported.
retrydelay int Not	supported.
description nvarchar(255) Text	description	of	the

Subscriber.
security_mode int Implemented	security

mode:

0	=	SQL	Server
Authentication
1	=	Windows
Authentication

Remarks
sp_helpsubscriberinfo	is	used	in	snapshot	replication,	transactional	replication,
and	merge	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_helpsubscriberinfo.

See	Also

sp_adddistpublisher

sp_addsubscriber

sp_changesubscriber

sp_dboption

sp_dropsubscriber

sp_helpdistributor

sp_helpserver

System	Stored	Procedures

Transact-SQL	Reference

sp_helpsubscription
Lists	subscription	information	associated	with	a	particular	publication,	article,
Subscriber,	or	set	of	subscriptions.	This	stored	procedure	is	executed	at	a
Publisher	on	the	publication	database.

Syntax
sp_helpsubscription	[[@publication	=]	'publication']	
				[,	[@article	=]	'article']
				[,	[@subscriber	=]	'subscriber']
				[,	[@destination_db	=]	'destination_db']	
				[,	[@found	=]	found	OUTPUT]

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	associated	publication.	publication	is	sysname,	with	a
default	of	%,	which	returns	all	subscription	information	for	this	server.

[@article	=]	'article'

Is	the	name	of	the	article.	article	is	sysname,	with	a	default	of	%,	which
returns	all	subscription	information	for	the	selected	publications	and
Subscribers.	If	all,	only	one	entry	is	returned	for	the	full	subscription	on	a
publication.

[@subscriber	=]	'subscriber'

Is	the	name	of	the	Subscriber	on	which	to	obtain	subscription	information.
subscriber	is	sysname,	with	a	default	of	%,	which	returns	all	subscription
information	for	the	selected	publications	and	articles.

[@destination_db	=]	'destination_db'

Is	the	name	of	the	destination	database.	destination_db	is	sysname,	with	a
default	of	%.

[@found	=]	'found'	OUTPUT

Is	a	flag	to	indicate	returning	rows.	found	is	int	and	an	OUTPUT	parameter,
with	a	default	of	23456.	1	indicates	the	publication	is	found.	0	indicates	the
publication	is	not	found.

Result	Sets

Column	name Data	type Description
subscriber sysname Name	of	the	Subscriber.
publication sysname Name	of	the	publication.
article sysname Name	of	the	article.
destination	database sysname Name	of	the	destination	database

in	which	replicated	data	is	placed.
subscription	status tinyint Subscription	status:

0	=	Inactive
1	=	Subscribed
2	=	Active

synchronization	type tinyint Subscription	synchronization
type:

1	=	Automatic
2	=	None

subscription	type int Type	of	subscription:

0	=	Push
1	=	Pull
2	=	Anonymous

full	subscription bit Whether	subscription	is	to	all
articles	in	the	publication:

0	=	No
1	=	Yes

subscription	name nvarchar(255) Name	of	the	subscription.
update	mode int 0	=	Read-only

1	=	Immediate-updating
subscription

distribution	job	id binary(16) Job	ID	of	the	Distribution	Agent.
loopback_detection bit 0	=	No

1	=	Yes
offload_enabled bit Specifies	whether	offload

execution	of	a	replication	agent
has	been	set	to	run	at	the
Subscriber.	If	0,	agent	is	run	at	the
Publisher.	If	1,	agent	is	run	at	the
Subscriber.

offload_server sysname Name	of	the	server	enabled	for
remote	agent	activation.	If	NULL,
then	the	current	offload_server
listed	in	MSDistribution_agents
table	is	used.

dts_package_name sysname Specifies	the	name	of	the	DTS
package.

dts_package_location int Location	of	the	DTS	package,	if
one	is	assigned	to	the
subscription.	If	there	is	a	package,
a	value	of	0	specifies	the	package
location	at	the	distributor.	A
value	of	1	specifies	the
subscriber.

Remarks
sp_helpsubscription	is	used	in	snapshot,	transactional,	and	merge	replication.

Permissions
Execute	permissions	default	to	the	public	role.	However,	sysadmin	fixed	server
role	or	db_owner	fixed	database	role	can	see	all	subscriptions,	while	the	other
users	get	a	result	set	listing	only	their	own	subscriptions.

See	Also

sp_addsubscription

sp_changesubstatus

sp_dropsubscription

System	Stored	Procedures

Transact-SQL	Reference

sp_helpsubscription_properties
Retrieves	security	information	from	the	MSsubscription_properties	table.	This
stored	procedure	is	executed	at	the	machine	where	the	DTS	package	is	stored.

Syntax
sp_helpsubscription_properties	[[@publisher	=]	'publisher']
				[,	[@publisher_db	=]	'publisher_db']	
				[,	[@publication	=]	'publication']
				[,	[@publication_type	=]	publication_type]

Arguments
[@publisher	=]	'publisher'

Is	the	name	of	the	Publisher.	publisher	is	sysname,	with	a	default	of	%,
which	returns	information	on	all	Publishers.

[@publisher_db	=]	'publisher_db'

Is	the	name	of	the	Publisher	database.	publisher_db	is	sysname,	with	a
default	of	%,	which	returns	information	on	all	Publisher	databases.

[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	a	default	of	%,
which	returns	information	on	all	publications.

[@publication_type	=]	publication_type

Is	the	type	of	publication.	publication_type	is	int,	with	a	default	of	NULL.

Result	Sets

Column	name Data	type Description
publisher sysname Name	of	the	Publisher.
publisher_db sysname Name	of	the	Publisher

database.

publication sysname Name	of	the	publication.
publication_type int Type	of	publication:

0	=	Snapshot
1	=	Transactional
2	=	Merge

publisher_login sysname Login	ID	used	at	the
Publisher	for	SQL	Server
Authentication.

publisher_password sysname Password	used	at	the
Publisher	for	SQL	Server
Authentication	(encrypted).

publisher_security_mode int Security	mode	used	at	the
Publisher:

0	=	SQL	Server
Authentication
1	=	Windows	Authentication

distributor sysname Name	of	the	Distributor.
distributor_login sysname Distributor	login.
distributor_password sysname Distributor	password

(encrypted).
distributor_security_mode int Security	mode	used	at	the

Distributor:

0	=	SQL	Server
Authentication
1	=	Windows	Authentication

ftp_address sysname For	backward	compatibility
only.	Network	address	of	the
FTP	service	for	the
Distributor.

ftp_port int For	backward	compatibility
only.	Port	number	of	the	FTP
service	for	the	Distributor.

ftp_login sysname For	backward	compatibility
only.	User	name	used	to
connect	to	the	FTP	service.

ftp_password sysname For	backward	compatibility
only.	User	password	used	to
connect	to	the	FTP	service.

alt_snapshot_folder nvarchar(255)Specifies	the	location	of	the
alternate	folder	for	the
snapshot.

working_directory nvarchar(255)Name	of	the	working
directory	used	to	store	data
and	schema	files.

use_ftp bit Specifies	the	use	of	FTP
instead	of	the	regular	protocol
to	retrieve	snapshots.	If	1,
FTP	is	used.

dts_package_name sysame Specifies	the	name	of	the
DTS	package.

dts_package_password nvarchar(524)Specifies	the	password	on	the
package,	if	there	is	one.	A
value	of	NULL	means	that
the	package	has	no	password.

dts_package_location int Location	where	the	DTS
package	is	stored.	If	0,	the
package	location	is	at	the
Distributor.	If	1,	the	package
location	is	at	the	Subscriber.

offload_agent bit Specifies	if	the	agent	can	be
activated	remotely.	If	0,	the
agent	cannot	be	activated
remotely.

offload_server sysname Specifies	the	network	name
of	the	server	used	for	remote
activation.

dynamic_snapshot_location nvarchar(255)Specifies	the	path	to	the
folder	where	the	snapshot

files	are	saved.

Remarks
sp_helpsubscription_properties	is	used	in	snapshot	replication,	transactional
replication,	and	merge	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_helpsubscription_properties.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_ivindexhasnullcols
Validates	that	the	clustered	index	of	the	indexed	view	is	unique	and	does	not
contain	any	column	that	can	be	null	when	the	indexed	view	is	going	to	be	used
to	create	a	transactional	publication.	This	stored	procedure	is	executed	at	the
Publisher	on	the	publication	database.

Syntax
sp_ivindexhasnullcols	[@viewname	=]	'view_name'
				,	[@fhasnullcols=]	field_has_null_columns	OUTPUT

Arguments
[@viewname	=]	'view_name'

Is	the	name	of	the	view	to	verify.	view_name	is	sysname,	with	no	default.

[@fhasnullcols	=]	field_has_null_columns	OUTPUT

Is	the	flag	indicating	whether	the	view	index	has	columns	that	allow	NULL.
view_name	is	sysname,	with	no	default.	Returns	a	value	of	1	if	the	view
index	has	columns	that	allow	NULL.	Returns	a	value	of	0	if	the	view	does
not	contain	columns	that	allow	NULLS.	Note	that	if	the	stored	procedure
itself	returns	a	return	code	of	1,	meaning	the	stored	procedure	execution	had
a	failure,	this	value	will	be	0	and	should	be	ignored.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_ivindexhasnullcols	is	used	by	transactional	replication.

By	default,	indexed	view	articles	in	a	publication	are	created	as	tables	at	the
Subscribers.	However,	when	the	indexed	column	allows	NULL	values,	the
indexed	view	is	created	as	an	indexed	view	at	the	Subscriber	instead	of	a	table.
By	executing	this	stored	procedure,	it	can	alert	the	user	to	whether	or	not	this

problem	exists	with	the	current	indexed	view.

Permissions
Members	of	the	public	role	can	execute	sp_ivindexhasnullcols.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_link_publication
Sets	the	configuration	and	security	information	used	by	synchronization	triggers
of	all	updatable	subscriptions	when	connecting	to	the	Publisher.	This	stored
procedure	is	executed	at	the	Subscriber	on	the	subscription	database.

Syntax
sp_link_publication	[@publisher	=]	'publisher'
				,	[@publisher_db	=]	'publisher_db'
				,	[@publication	=]	'publication'
				,	[@security_mode	=]	security_mode
				[,	[@login	=]	'login']
				[,	[@password	=]	'password']
				[,	[@distributor	=]	'distributor']

Arguments
[@publisher	=]	'publisher'

Is	the	name	of	the	Publisher	to	link	to.	publisher	is	sysname,	with	no	default.

[@publisher_db	=]	'publisher_db'

Is	the	name	of	the	Publisher	database	to	link	to.	publisher_db	is	sysname,
with	no	default.

[@publication	=]	'publication'

Is	the	name	of	the	publication	to	link	to.	publication	is	sysname,	with	no
default.

[@security_mode	=]	security_mode

Is	the	security	mode	used	when	linking	to	the	Publisher.	security_mode	is
int,	with	no	default.	If	0,	the	synchronization	triggers	use	a	dynamic	RPC
connection	to	the	Publisher.	If	2,	the	synchronization	triggers	use	a	static
sysservers	entry	to	do	RPC,	and	publisher	must	be	defined	in	the	sysservers
table	as	a	remote	server	or	linked	server.

[@login	=]	'login'

Is	the	login.	login	is	sysname,	with	a	default	of	NULL.

[@password	=]	'password'

Is	the	password.	password	is	sysname,	with	a	default	of	NULL.

[@distributor	=]	'distributor'

Is	the	name	of	the	Distributor.	distributor	is	sysname,	with	a	default	of
NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_link_publication	is	used	by	all	updatable	subscriptions	in	snapshot
replication	and	transactional	replication.

sp_link_publication	can	be	used	for	both	push	and	pull	subscriptions.	It	can	be
called	before	or	after	the	subscription	is	created.	An	entry	is	inserted	or	updated
in	the	MSsubscription_properties	system	table.	Use
sp_helpsubscription_properties	to	view	the	values
(publisher_security_mode,	publisher_login,	publisher_password)	being	set.

For	push	subscriptions,	the	entry	can	be	cleaned	up	by
sp_subscription_cleanup.	For	pull	subscriptions,	the	entry	can	be	cleaned	up	by
sp_droppullsubscription	or	sp_subscription_cleanup.	You	can	also	call
sp_link_publisher	with	a	NULL	password	to	clear	the	entry	in	the
MSsubscription_properties	system	table	for	security	concerns.

The	default	mode	used	by	an	immediate	updating	Subscriber	when	it	connects	to
the	Publisher	does	not	allow	a	connection	using	Windows	Authentication.	To
connect	with	a	mode	of	Windows	Authentication,	a	linked	server	will	have	to	be
set	up	to	the	Publisher,	and	the	immediate	updating	Subscriber	should	use	this
connection	when	updating	the	Subscriber.	This	requires	the	sp_link_publication
to	be	run	with	security_mode	=	2.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_link_publication.

See	Also

sp_droppullsubscription

sp_helpsubscription_properties

sp_subscription_cleanup

System	Stored	Procedures

Transact-SQL	Reference

sp_marksubscriptionvalidation
Marks	the	current	open	transaction	to	be	a	subscription	level	validation
transaction	for	the	specified	subscriber.	It	must	be	used	together	with
sp_article_validation	having	@subscription_level	equal	to	1.	It	can	be	used
with	other	calls	to	sp_marksubscriptionvalidation	to	mark	the	current	open
transaction	for	other	subscribers.	This	stored	procedure	is	executed	at	the
Publisher	on	the	publication	database.

Syntax
sp_marksubscriptionvalidation	[@publication	=]	'publication'
				,	[@subscriber	=]	'subscriber'
				,	[@destination_db	=]	'destination_db'

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	Publication	is	sysname,	with	no	default.

[@subscriber	=]	'subscriber'

Is	the	name	of	the	Subscriber.	subscriber	is	sysname,	with	no	default.

[@destination_db	=]	'destination_db'

Is	the	name	of	the	destination	database.	destination_db	is	sysname,	with	no
default.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_marksubscriptionvalidation

Is	used	in	all	types	of	replication.	This	stored	procedure	does	not	support
heterogeneous	Subscribers.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_marksubscriptionvalidation.

Examples
The	following	query	can	be	applied	to	the	publishing	database	to	post
subscription-level	validation	commands.	These	commands	are	picked	up	by	the
Distribution	Agents	of	specified	Subscribers.

begin	tran

exec	sp_marksubscriptionvalidation	@publication	=	'pub1',
	@subscriber	=	'Sub',	@destination_db	=	'SubDB'

exec	sp_marksubscriptionvalidation	@publication	=	'pub1',
	@subscriber	=	'Sub2',	@destination_db	=	'SubDB'

exec	sp_article_validation	@publication	=	'pub1',	@article	=	'art1',
	@rowcount_only	=	0,	@full_or_fast	=	0,	@shutdown_agent	=	0,
	@subscription_level	=	1

commit	tran

begin	tran

exec	sp_marksubscriptionvalidation	@publication	=	'pub1',
	@subscriber	=	'Sub',	@destination_db	=	'SubDB'

exec	sp_marksubscriptionvalidation	@publication	=	'pub1',
	@subscriber	=	'Sub2',	@destination_db	=	'SubDB'

exec	sp_article_validation	@publication	=	'pub1',	@article	=	'art2',
	@rowcount_only	=	0,	@full_or_fast	=	0,	@shutdown_agent	=	0,

	@subscription_level	=	1

commit	tran

Note	that	the	first	transaction	validates	article	'art1',	while	the	second	transaction
validates	'art2'.	Also	note	that	the	calls	to	sp_marksubscriptionvalidation	and
sp_articlevalidation	have	been	encapsulated	in	a	transaction.	It	is	advised	that
there	is	only	one	call	to	sp_articlevalidation	per	transaction.	This	is	because
sp_article_validation	holds	a	shared	table	lock	on	the	source	table	for	the
duration	of	the	transaction.	You	should	keep	the	transaction	short	to	maximize
concurrency.

See	Also

System	Stored	Procedures

Validating	Replicated	Data

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_mergearticlecolumn
Partitions	a	merge	publication	vertically.	This	stored	procedure	is	executed	at	the
Publisher	on	the	publication	database.

Syntax
sp_mergearticlecolumn	[@publication	=]	'publication'
				,	[@article	=]	'article'
				[,	[@column	=]	'column'
				[,	[@operation	=]	'operation'	
				[,	[@schema_replication	=]	'schema_replication']
				[,	[@force_invalidate_snapshot	=]	force_invalidate_snapshot]	
				[,	[@force_reinit_subscription	=]	force_reinit_subscription]

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	Publication	is	sysname,	with	no	default.

[@article	=]	'article'

Is	the	name	of	the	article	in	the	publication.	article	is	sysname,	with	no
default.

[@column	=]	'column'

Identifies	the	columns	on	which	to	create	the	vertical	partition.	column	is
sysname,	with	a	default	of	NULL.	If	NULL,	all	columns	in	a	table
referenced	by	the	article	are	replicated	by	default.

[@operation	=]	'operation'

Is	the	replication	status.	operation	is	nvarchar(4),	with	a	default	of	ADD.
add	marks	the	column	for	replication.	drop	unmarks	the	column.

[@schema_replication=]	'schema_replication'

Specifies	that	a	schema	change	will	be	propagated	when	the	Distribution
Agent	or	Merge	Agent	runs.	schema_replication	is	nvarchar(5),	with	a

default	of	FALSE.	If	false,	a	schema	change	will	not	be	propagated.

[@force_invalidate_snapshot	=]	force_invalidate_snapshot

Enables	or	disables	the	ability	to	have	a	snapshot	invalidated.
force_invalidate_snapshot	is	a	bit,	with	a	default	of	0.	0	specifies	that
changes	to	the	merge	article	will	not	cause	the	snapshot	to	be	invalid.	1
specifies	that	changes	to	the	merge	article	may	cause	the	snapshot	to	be
invalid,	and	if	that	is	the	case,	a	value	of	1	gives	permission	for	the	new
snapshot	to	occur.

[@force_reinit_subscription	=]	force_reinit_subscription

Enables	or	disables	the	ability	to	have	the	subscription	reinitializated.
force_reinit_subscription	is	a	bit	with	a	default	of	0.	0	specifies	that	changes
to	the	merge	article	will	not	cause	the	subscription	to	be	reinitialized.	1
specifies	that	changes	to	the	merge	article	may	cause	the	subscription	to	be
reinitialized,	and	if	that	is	the	case,	a	value	of	1	gives	permission	for	the
subscription	reinitialization	to	occur.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_mergearticlecolumn	is	used	in	merge	replication.

If	an	application	sets	a	new	vertical	partition	after	the	initial	snapshot	is	created,
a	new	snapshot	must	be	generated	and	reapplied	to	each	subscription.	Snapshots
are	applied	when	the	next	scheduled	snapshot	and	distribution	or	merge	agent
run.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_mergearticlecolumn.

See	Also

How	Merge	Replication	Works

How	to	filter	publications	vertically	using	the	Create	Publication	Wizard
(Enterprise	Manager)

System	Stored	Procedures

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

sp_mergecleanupmetadata
Allows	administrators	to	clean	up	meta	data	in	the	MSmerge_contents	and
MSmerge_tombstone	system	tables.	This	stored	procedure	is	executed	at	the
Publisher	on	the	publication	database.

Syntax
sp_mergecleanupmetadata	[[@publication	=]	'publication']
				[,	[@reinitialize_subscriber	=]	'reinitialize_subscriber']

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	a	default	of	%,
which	returns	information	for	all	publications.	The	publication	must	already
exist	if	explicitly	specified.

[@reinitialize_subscriber	=]	'subscriber'

Specifies	whether	to	reinitialize	the	Subscriber.	reinitialize_subscriber	is
nvarchar(5),	can	be	true	or	false,	with	a	default	of	TRUE.	If	true,
subscriptions	are	marked	for	reinitialization.	If	false,	the	subscriptions	are
not	marked	for	reinitialization.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_mergecleanupmetadata	is	used	in	merge	replication	and	allows
administrators	to	clean	up	meta	data	in	the	MSmerge_contents	and
MSmerge_tombstone	system	tables.	Although	these	tables	can	expand
infinitely,	in	some	cases	it	improves	merge	performance	to	clean	up	the	meta
data.	This	procedure	can	be	used	to	save	space	by	reducing	the	size	of	these
tables	at	the	Publisher	and	Subscribers.

By	default,	the	@reinitialize_subscriber	parameter	is	set	to	true,	and	all
subscriptions	are	marked	for	reinitialization.	If	you	set	the
@reinitialize_subscriber	parameter	to	false,	the	subscriptions	are	not	marked
for	reinitialization.	Setting	the	parameter	to	false	should	be	used	with	caution
because	if	you	choose	not	to	have	the	subscriptions	reinitialized,	you	must	make
sure	that	data	at	the	Publisher	and	Subscriber	is	synchronized.

If	you	want	to	run	sp_mergecleanupmetadata	without	the	subscriptions	being
marked	for	reinitialization,	you	should:

Synchronize	all	Subscribers.

Stop	all	updates	to	the	publication	and	subscription	databases.

Execute	a	merge	by	running	the	Merge	Agent.	It	is	recommended	you
use	the	–Validate	agent	command	line	option	at	each	Subscriber	when
your	run	the	Merge	Agent.

Execute	sp_mergecleanupmetadata.	After	the	procedure	has	run,	you
can	allow	users	to	modify	data	at	the	publication	and	subscription
databases	again.

When	running	this	stored	procedure,	be	aware	of	the	necessary	and	potentially
large	growth	of	the	log	file	on	the	computer	on	which	the	stored	procedure	is
running.

IMPORTANT		A	backup	of	the	publication	database	should	be	performed	after	a
merge	meta	data	clean	up	has	been	run.	Failure	to	do	so	can	cause	a	merge
failure	after	a	restore	of	the	publication	database.

sp_mergecleanupmetadata	fails	if	there	are	ongoing	merge	processes	that	are
attempting	to	upload	changes	to	the	Publisher	at	the	time	the	stored	procedure	is
invoked.	Attempt	to	run	the	stored	procedure	only	when	all	merges	have
completed,	including	continuous-mode	merges.

The	administrator	can	deactivate	the	publication	and	reactivate	it	after	the	merge
cleanup	has	completed.	Here	is	sample	code	that	demonstrates	how	an
administrator	would	accomplish	this	task.

1.	 Execute	this	stored	procedure	at	the	Publisher.	This	stored	procedure
ensures	that	any	continuous-mode	merges	that	are	polling	for	the
publication	status	fail;	this	deactivates	the	Publisher.

EXEC	central..sp_changemergepublication	@publication	=	'dynpart_pubn',	@property	=	'status',	@value	=	'inactive'

2.	 After	all	the	continuous-mode	merges	have	been	terminated,	execute
the	following	stored	procedures.	These	stored	procedures	run	the	meta
data	cleanup,	and	then	reactivate	the	continuous-mode	merges.

EXEC	central..sp_mergecleanupmetadata	@publication	=	'dynpart_pubn',	@reinitialize_subscriber	=	'false'
EXEC	central..sp_changemergepublication	@publication	=	'dynpart_pubn',	@property	=	'status',	@value	=	'active'

If	a	merge	cleanup	is	propagated	to	a	Subscriber	that	is	a	republisher,	and	this
republisher	is	not	yet	inactive,	an	error	is	returned	explaining	that	the	cleanup	of
meta	data	at	a	republisher	could	not	be	performed	because	of	ongoing	merge
processes.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_mergesubscription.

To	use	this	stored	procedure,	the	Publisher	must	be	running	Microsoft®	SQL
Server™	2000.	The	Subscribers	must	be	running	either	Microsoft	SQL	Server
2000	or	Microsoft	SQL	Server	7.0,	Service	Pack	2.

See	Also

How	Merge	Replication	Works

MSmerge_contents

MSmerge_tombstone

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_mergedummyupdate
Does	a	dummy	update	on	the	given	row	so	that	it	will	be	sent	again	during	the
next	merge.	This	stored	procedure	can	be	executed	at	the	Publisher,	on	the
publication	database,	or	at	the	Subscriber,	on	the	subscription	database.

Syntax
sp_mergedummyupdate	[@source_object	=]	'source_object'
				,	[@rowguid	=]	'rowguid'

Arguments
[@source_object	=]	'source_object'

Is	the	name	of	the	source	object.	source_object	is	nvarchar(386),	with	no
default.

[@rowguid	=]	'rowguid'

Is	the	row	identifier.	rowguid	is	uniqueidentifier,	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_mergedummyupdate	is	used	in	merge	replication.

sp_mergedummyupdate	is	useful	if	you	write	your	own	alternative	to	the
Replication	Conflict	Viewer	(Wzcnflct.exe).

Permissions
Only	members	of	the	db_owner	fixed	database	role	can	execute
sp_mergedummyupdate.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_mergesubscription_cleanup
Removes	meta	data	such	as	triggers	and	entries	in	sysmergesubscriptions	and
sysmergearticles	when	a	merge	subscription	is	dropped	at	a	Subscriber.	This
stored	procedure	is	executed	at	the	Publisher	on	any	database.

Syntax
sp_mergesubscription_cleanup	[@publisher	=]	'publisher'
				,	[@publisher_db	=]	'publisher_db'
				,	[@publication	=]	'publication'

Arguments
[@publisher	=]	'publisher'

Is	the	name	of	the	Publisher.	publisher	is	sysname,	with	no	default.

[@publisher_db	=]	'publisher_db'

Is	the	name	of	the	Publisher	database.	publisher_db	is	sysname,	with	no
default.

[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_mergesubscription_cleanup	is	used	in	merge	replication.

sp_mergesubscription_cleanup	periodically	checks	the	status	of	all	the
subscriptions	of	every	merge	publication.	If	any	of	them	is	out-of-date,	that	is,
has	lost	contact	with	the	Publisher	for	too	long	a	period,	the	publication	is
declared	expired	and	the	traces	of	the	subscription	are	cleaned	up	at	the
Publisher.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed
database	role	can	execute	sp_mergesubscription_cleanup.

See	Also

sp_expired_subscription_cleanup

sp_subscription_cleanup

System	Stored	Procedures

Transact-SQL	Reference

sp_publication_validation
Initiates	an	article	validation	request	for	each	article	in	the	specified	publication.
This	stored	procedure	is	executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_publication_validation	[@publication	=]	'publication'
				[,	[@rowcount_only	=]	type_of_check_requested]
				[,	[@full_or_fast	=]	full_or_fast]
				[,	[@shutdown_agent	=]	shutdown_agent]

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	no	default.

[@rowcount_only	=]	type_of_check_requested

Is	whether	to	return	only	the	rowcount	for	the	table.	rowcount_only	is
smallint,	with	a	default	of	1.	type_of_check_requested	is	smallint,	with	a
default	of	1.	If	0,	perform	a	SQL	Server	7.0	compatible	checksum.	If	1,
perform	a	rowcount	check	only.	If	2,	perform	a	rowcount	and	checksum.

[@full_or_fast	=]	full_or_fast

Is	the	method	used	to	calculate	the	rowcount.	full_or_fast	is	tinyint,	with	a
default	of	2,	and	can	be	one	of	these	values.

Value Description
0 Does	full	count	using	COUNT(*).
1 Does	fast	count	from	sysindexes.rows.	Counting	rows	in

sysindexes	is	much	faster	than	counting	rows	in	the	actual
table.	However,	because	sysindexes	is	lazily	updated,	the
rowcount	may	not	be	accurate.

2	(default) Does	conditional	fast	counting	by	first	trying	the	fast
method.	If	fast	method	shows	differences,	reverts	to	full

method.	If	expected_rowcount	is	NULL	and	the	stored
procedure	is	being	used	to	get	the	value,	a	full	COUNT(*)
is	always	used.

[@shutdown_agent	=]	shutdown_agent

Is	whether	the	Distribution	Agent	should	shut	down	immediately	upon
completion	of	the	validation.	shutdown_agent	is	bit,	with	a	default	of	0.	If	0,
the	replication	agent	does	not	shut	down.	If	1,	the	replication	agent	shuts
down	after	the	last	article	is	validated.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_publication_validation	is	used	in	snapshot	and	transactional	replication.

sp_publication_validation	can	be	called	at	any	time	after	the	articles	associated
with	the	publication	have	been	activated.	The	procedure	can	be	run	manually
(one	time)	or	as	part	of	a	regularly	scheduled	job	that	validates	the	data.

If	your	application	has	immediate-updating	Subscribers,
sp_publication_validation	may	detect	spurious	errors.
sp_publication_validation	first	calculates	the	rowcount	or	checksum	at	the
Publisher	and	then	at	the	Subscriber.	Because	the	immediate-updating	trigger
could	propagate	an	update	from	the	Subscriber	to	the	Publisher	after	the
rowcount	or	checksum	is	completed	at	the	Publisher,	but	before	the	rowcount	or
checksum	is	completed	at	the	Subscriber,	the	values	could	not	change.	To	ensure
that	the	values	at	the	Subscriber	and	Publisher	do	not	change	while	validating	a
publication,	stop	the	MSDTC	service	at	the	Publisher	during	validation.

Permissions
Unless	executed	by	a	member	of	sysadmin	or	db_owner,	you	must	have
SELECT	permissions	on	all	columns	of	the	base	table	used	in	the	article	(even	if
the	article	is	partitioned	vertically)	to	execute	sp_publication_validation.

See	Also

sp_article_validation

sp_table_validation

System	Stored	Procedures

Transact-SQL	Reference

sp_refreshsubscriptions
Add	subscriptions	to	new	articles	in	a	pull	subscription	for	all	the	existing
Subscribers	to	the	publication.	This	stored	procedure	is	executed	at	the	Publisher
on	the	publication	database.

Syntax
sp_refreshsubscriptions	[@publication	=]	'publication'

Arguments
[@publication	=]	'publication'

Is	the	publication	to	refresh	subscriptions	for.	publication	is	sysname,	with
no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
None

Remarks
sp_refreshsubscriptions	is	used	in	snapshot,	transactional,	and	merge
replication.

sp_refreshsubscriptions	is	called	by	sp_addarticle	for	an	immediate-updating
publication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed
database	role	can	execute	sp_refreshsubscriptions.

See	Also

sp_addarticle

System	Stored	Procedures

Transact-SQL	Reference

sp_reinitmergepullsubscription
Marks	a	merge	pull	subscription	for	reinitialization	the	next	time	the	Merge
Agent	runs.	This	stored	procedure	is	executed	at	the	Subscriber	in	the
subscription	database.

Syntax
sp_reinitmergepullsubscription	[[@publisher	=]	'publisher']
				[,	[@publisher_db	=]	'publisher_db']
				[,	[@publication	=]	'publication']
				[,	[@upload_first	=]	'upload_first'

Arguments
[@publisher	=]	'publisher'

Is	the	name	of	the	Publisher.	publisher	is	sysname,	with	a	default	of	ALL.

[@publisher_db	=]	'publisher_db'

Is	the	name	of	the	Publisher	database.	publisher_db	is	sysname,	with	a
default	of	ALL.

[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	a	default	of
ALL.

[@upload_first	=]	'upload_first'

Is	the	name	of	the	Subscriber	database.	upload_first	is	nvarchar(5),	with	a
default	of	FALSE.	If	true,	changes	are	uploaded	before	the	subscription	is
reinitialized.	If	false,	changes	are	not	uploaded.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks

sp_reinitmergepullsubscription	is	used	in	merge	replication.

sp_reinitmergepullsubscription	can	be	called	from	the	Subscriber.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed
database	role	can	execute	sp_reinitmergepullsubscription.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_reinitmergesubscription
Marks	a	merge	subscription	for	reinitialization	the	next	time	the	Merge	Agent
runs.	This	stored	procedure	is	executed	at	the	Publisher	in	the	publication
database.

Syntax
sp_reinitmergesubscription	[[@publication	=]	'publication'
				[,	[@subscriber	=]	'subscriber'
				[,	[@subscriber_db	=]	'subscriber_db'
				[,	[@upload_first	=]	'upload_first'

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	a	default	of	all.

[@subscriber	=]	'subscriber'

Is	the	name	of	the	Subscriber.	subscriber	is	sysname,	with	a	default	of	all.

[@subscriber_db	=]	'subscriber_db'

Is	the	name	of	the	Subscriber	database.	subscriber_db	is	sysname,	with	a
default	of	all.

[@upload_first	=]	'upload_first'

Is	the	name	of	the	Subscriber	database.	upload_first	is	nvarchar(5),	with	a
default	of	FALSE.	If	true,	changes	are	uploaded	before	the	subscription	is
reinitialized.	If	false,	changes	are	not	uploaded.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks

sp_reinitmergesubscription	is	used	in	merge	replication.

sp_reinitmergesubscription	can	be	called	from	the	Publisher	to	reinitialize
merge	subscriptions.	It	is	advisable	to	rerun	the	Snapshot	Agent	as	well.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed
database	role	can	execute	sp_reinitmergesubscription.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_reinitpullsubscription
Marks	a	transactional	pull	or	anonymous	subscription	for	reinitialization	the	next
time	the	Distribution	Agent	runs.	This	stored	procedure	is	executed	at	the
Subscriber	on	the	pull	subscription	database.

Syntax
sp_reinitpullsubscription	[@publisher	=]	'publisher'
				,	[@publisher_db	=]	'publisher_db'
				,	[@publication	=]	'publication'

Arguments
[@publisher	=]	'publisher'

Is	the	name	of	the	Publisher.	publisher	is	sysname,	with	no	default.

[@publisher_db	=]	'publisher_db'

Is	the	name	of	the	Publisher	database.	publisher_db	is	sysname,	with	no
default.

[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	a	default	of	all,
which	marks	all	subscriptions	for	reinitialization.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_reinitpullsubscription	is	used	in	transactional	replication.

sp_reinitpullsubscription	can	be	called	from	the	Subscriber	to	reinitialize	the
subscription,	during	the	next	run	of	the	Distribution	Agent.	Note	that	the
subscriptions	of	non_immediate_sync	type	publications	cannot	be	reinitialized
from	the	Subscriber.

You	can	reinitialize	a	pull	subscription	by	either	executing
sp_reinitpullsubscription	at	the	Subscriber	or	sp_reinitsubscription	at	the
Publisher.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed
database	role	can	execute	sp_reinitpullsubscription.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_reinitsubscription
Marks	the	subscription	for	reinitialization.	This	stored	procedure	is	executed	at
the	Publisher	for	push	subscriptions.

Syntax
sp_reinitsubscription	[[@publication	=]	'publication']
				[,	[@article	=]	'article']
				,	[@subscriber	=]	'subscriber'
				[,	[@destination_db	=]	'destination_db']
				[,	[@for_schema_change	=]	'for_schema_change']

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	a	default	of	all.

[@article	=]	'article'

Is	the	name	of	the	article.	article	is	sysname,	with	a	default	of	all.	For	an
immediate-updating	publication,	article	must	be	all;	otherwise,	the	stored
procedure	skips	the	publication	and	reports	an	error.

[@subscriber	=]	'subscriber'

Is	the	name	of	the	Subscriber.	subscriber	is	sysname,	with	no	default.

[@destination_db	=]	'destination_db'

Is	the	name	of	the	destination	database.	destination_db	is	sysname,	with	a
default	of	all.

[@for_schema_change	=]	'for_schema_change'

Indicates	whether	reinitialization	occurs	as	a	result	of	a	schema	change	at	the
publication	database.	for_schema_change	is	bit,	with	a	default	of	0.	If	0,
active	subscriptions	for	publications	that	allow	immediate	updating	will	be
reactived	as	long	as	the	whole	publication,	and	not	just	some	of	its	articles,
are	reinitialized.	This	means	that	the	reinitialization	is	being	called	as	a	result

of	schema	changes.	If	1,	active	subscriptions	will	not	be	reactivated	until	the
Snapshot	Agent	runs.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_reinitsubscription	is	used	in	transactional	replication.

For	subscriptions	where	the	initial	snapshot	is	applied	automatically	and	where
the	publication	does	not	allow	updatable	subscriptions,	the	Snapshot	Agent	must
be	run	after	this	stored	procedure	is	executed	so	that	schema	and	bulk	copy
program	files	are	prepared	and	the	Distribution	Agents	will	then	be	able	to
resynchronize	the	subscriptions.

For	subscriptions	where	the	initial	snapshot	is	applied	automatically	and	the
publication	allows	updatable	subscriptions,	the	Distribution	Agent
resynchronizes	the	subscription	using	the	most	recent	schema	and	bulk	copy
program	files	previously	created	by	the	Snapshot	Agent.	The	Distribution	Agent
resynchronizes	the	subscription	immediately	after	the	user	executes
sp_reinitsubscription,	if	the	Distribution	Agent	is	not	busy;	otherwise,
synchronization	may	occur	after	the	message	interval	(specified	by	Distribution
Agent	command-prompt	parameter:	MessageInterval).

For	subscriptions	where	the	initial	snapshot	is	applied	manually,	it	is	up	to	the
user	to	make	sure	that	the	tables	at	the	Subscriber	are	in	synchronization	with
those	at	the	Publisher	and	that	there	are	no	undelivered	replication	commands	for
the	Subscriber	pending	before	executing	this	stored	procedure.

To	resynchronize	anonymous	subscriptions	to	a	publication,	pass	in	all	or	NULL
as	subscriber.

Transactional	replication	supports	subscription	reinitialization	at	the	article	level.
The	snapshot	of	the	article	will	be	reapplied	at	the	Subscriber	during	the	next
synchronization	after	the	article	is	marked	for	reinitialization.	However,	if	there
are	dependent	articles	that	are	also	subscribed	to	by	the	same	Subscriber,
reapplying	the	snapshot	on	the	article	might	fail	unless	dependent	articles	in	the
publication	are	also	automatically	reinitialized	under	certain	circumstances:

If	the	precreation	command	on	the	article	is	'drop',	articles	for	schema-
bound	views	and	schema-bound	stored	procedures	on	the	base	object	of
that	article	will	be	marked	for	reinitialization	as	well.

If	the	schema	option	on	the	article	includes	scripting	of	declared
referential	integrity	on	the	primary	keys,	articles	that	have	base	tables
with	foreign	key	relationships	to	base	tables	of	the	reinitialized	article
will	be	marked	for	reinitialization	as	well.

Permissions

Only	members	of	the	sysadmin	fixed	server	role,	members	of	the	db_owner
fixed	database	role,	or	the	creator	of	the	subscription	can	execute
sp_reinitsubscription.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_removedbreplication
Removes	all	replication	objects	from	a	database	without	updating	data	at	the
Distributor.	This	stored	procedure	is	executed	at	the	Publisher	on	the	publication
database	or	at	the	Subscriber,	on	the	subscription	database.

Syntax
sp_removedbreplication	[@dbname	=]	'dbname'

Arguments
[@dbname	=]	'dbname'

Is	the	name	of	the	database.	dbname	is	sysname,	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_removedbreplication	is	used	in	all	types	of	replication.

sp_removedbreplication	is	useful	when	restoring	a	replicated	database	that	has
no	replication	objects	needing	to	be	restored.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_removedbreplication.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_repladdcolumn
Adds	a	column	to	an	existing	table	article	that	has	been	published.	Allows	the
new	column	to	be	added	to	all	publishers	that	publish	this	table,	or	just	add	the
column	to	a	specific	publication	that	publishes	the	table.	This	stored	procedure	is
executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_repladdcolumn	[@source_object	=]	'source_object'
				,	[@column	=]	'column']
				[,	[@typetext	=]	'typetext']
				[,	[@publication_to_add	=]	'publication_to_add']
				[,	[@schema_change_script	=]	'schema_change_script']
				[,	[@force_invalidate_snapshot	=]	force_invalidate_snapshot]
				[,	[@force_reinit_subscription	=]	force_reinit_subscription]

Arguments
[@source_object	=]	'source_object'

Is	the	name	of	the	table	article	that	contains	the	new	column	to	add.
source_object	is	nvarchar(358),	with	no	default.

[@column	=]	'column'

Is	the	name	of	the	column	in	the	table	to	be	added	for	replication.	column	is
sysname,	with	no	default.

[@typetext	=]	'typetext'

Is	the	definition	of	the	column	being	added.	typetext	is	nvarchar(3000),	with
no	default.	For	example,	if	the	column	order_filled	is	being	added,	and	it	is
a	single	character	field,	not	NULL,	and	has	a	default	value	of	N,
order_filled	would	be	the	column	parameter,	while	the	definition	of	the
column,	"char(1)	NOT	NULL	DEFAULT	'N'"	would	be	the	typetext
parameter	value.

[@publication_to_add	=]	'publication_to_add'

Is	the	name	of	the	publication	to	which	the	new	column	is	added.
publication_to_add	is	nvarchar(4000),	with	a	default	of	ALL.	If	all,	then	all
publications	containing	this	table	will	be	affected.	If	publication_to_add	is
specified,	then	only	this	publication	will	have	the	new	column	added.

[@schema_change_script	=]	'schema_change_script'

Is	the	path	to	the	SQL	script.	schema_change_script	is	nvarchar(4000),	with
a	default	of	NULL.

[@force_invalidate_snapshot	=]	force_invalidate_snapshot

Enables	or	disables	the	ability	to	have	a	snapshot	invalidated.
force_invalidate_snapshot	is	a	bit,	with	a	default	of	1.	1	specifies	that
changes	to	the	article	may	cause	the	snapshot	to	be	invalid,	and	if	that	is	the
case,	a	value	of	1	gives	permission	for	the	new	snapshot	to	occur.	0	specifies
that	changes	to	the	article	will	not	cause	the	snapshot	to	be	invalid.

[@force_reinit_subscription	=]	force_reinit_subscription

Enables	or	disables	the	ability	to	have	the	subscription	reinitializated.
force_reinit_subscription	is	a	bit	with	a	default	of	0.	0	specifies	that	changes
to	the	article	will	not	cause	the	subscription	to	be	reinitialized.	1	specifies
that	changes	to	the	article	may	cause	the	subscription	to	be	reinitialized,	and
if	that	is	the	case,	a	value	of	1	gives	permission	for	the	subscription
reinitialization	to	occur.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_repladdcolumn	is	used	for	all	types	of	replication.

When	using	sp_repladdcolumn,	if	a	schema	change	is	made	to	an	article	that
belongs	to	a	publication	that	uses	a	DTS	package,	the	schema	change	is	not
propagated	to	the	Subscriber,	and	the	custom	procedures	for
INSERT/UPDATE/DELETE	are	not	regenerated	on	the	Subscribers.	The	user
will	need	to	regenerate	the	DTS	package	manually,	and	make	the	corresponding
schema	change	at	the	Subscribers.	If	the	schema	update	is	not	applied,	the

Distribution	Agent	may	fail	to	apply	subsequent	modifications.	Before	making	a
schema	change,	make	sure	there	are	no	pending	transactions	to	be	delivered.	For
more	information,	see	How	Transforming	Published	Data	Works.

Timestamp	and	computed	columns	will	be	filtered	out	for	character	mode
publications.	If	adding	a	timestamp	or	computed	column	using
sp_repladdcolumn,	subscriptions	of	such	publications	will	not	receive	this	new
column.

IMPORTANT		A	backup	of	the	publication	database	should	be	performed	after
sp_repladdcolumn	has	been	executed.	Failure	to	do	so	can	cause	a	merge
failure	after	a	restore	of	the	publication	database.

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_replcmds
Treats	the	first	client	that	runs	sp_replcmds	within	a	given	database	as	the	log
reader.	Returns	the	commands	for	transactions	marked	for	replication.	This
stored	procedure	is	executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_replcmds	[@maxtrans	=]	maxtrans

Arguments
[@maxtrans	=]	maxtrans

Is	the	number	of	transactions	to	return	information	about.	maxtrans	is	int,
with	a	default	of	1,	which	specifies	the	next	transaction	waiting	for
distribution.

Result	Sets
sp_replcmds	is	used	by	the	log	reader	process.	It	returns	information	about	the
publication	database	from	which	it	is	executed.	It	allows	you	to	view
transactions	that	currently	are	not	distributed	(those	transactions	remaining	in	the
transaction	log	that	have	not	been	sent	to	the	Distributor)	with	their	commands,
and	it	returns	article	ID,	partial_command	(true	or	false),	the	command,	page,
row,	and	timestamp.

Remarks
sp_replcmds	is	used	in	transactional	replication.

This	procedure	can	generate	commands	for	owner-qualified	tables	or	not	qualify
the	table	name	(the	default).	Adding	qualified	table	names	allows	replication	of
data	from	tables	owned	by	a	specific	user	in	one	database	to	tables	owned	by	the
same	user	in	another	database.

Note		Because	the	table	name	in	the	source	database	is	qualified	by	the	owner
name,	the	owner	of	the	table	in	the	target	database	must	be	the	same	owner

name.

Clients	who	attempt	to	run	sp_replcmds	within	the	same	database	receive	error
18752	until	the	first	client	disconnects.	After	the	first	client	disconnects,	another
client	can	run	sp_replcmds,	and	becomes	the	new	log	reader.

Note		The	sp_replcmds	procedure	should	be	run	only	to	troubleshoot	problems
with	replication.

A	warning	message	number	18759	is	added	to	both	the	Microsoft®	SQL
Server™	error	log	and	the	Microsoft	Windows®	application	log	if	sp_replcmds
is	unable	to	replicate	a	text	command	because	the	text	pointer	was	not	retrieved
in	the	same	transaction.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed
database	role	can	execute	sp_replcmds.

See	Also

Error	Messages

sp_repldone

sp_replflush

sp_repltrans

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_replcounters
Returns	replication	statistics	about	latency,	throughput,	and	transaction	count	for
each	published	database.	This	stored	procedure	is	executed	at	the	Publisher	on
any	database.

Syntax
sp_replcounters

Result	Sets

Column	name Data	type Description
Database sysname Name	of	the	database.
Replicated
transactions

int Number	of	transactions	in	the	log
awaiting	delivery	to	the	distribution
database.

Replication	rate
trans/sec

float Average	number	of	transactions	per
second	delivered	to	the	distribution
database.

Replication	latency float Average	time,	in	seconds,	that
transactions	were	in	the	log	before
being	distributed.

Replbeginlsn binary(10) Log	sequence	number	of	the	current
truncation	point	in	the	log.

Replendlsn binary(10) Log	sequence	number	of	the	next
commit	record	awaiting	delivery	to	the
distribution	database.

Remarks
sp_replcounters	is	used	in	transactional	replication.

Permissions

Members	of	the	public	role	can	execute	sp_replcounters.

See	Also

sp_replcmds

sp_repldone

sp_replflush

System	Stored	Procedures

Transact-SQL	Reference

sp_repldone
Updates	the	record	that	identifies	the	last	distributed	transaction	of	the	server.
This	stored	procedure	is	executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_repldone	[@xactid	=]	xactid					,	[@xact_seqno	=]	xact_seqno	
				[,	[@numtrans	=]	numtrans]	
				[,	[@time	=]	time	
				[,	[@reset	=]	reset]

Arguments
[@xactid	=]	xactid

Is	the	log	sequence	number	(LSN)	of	the	first	record	for	the	last	distributed
transaction	of	the	server.	xactid	is	binary(10),	with	no	default.

[@xact_seqno	=]	xact_seqno

Is	the	LSN	of	the	last	record	for	the	last	distributed	transaction	of	the	server.
xact_seqno	is	binary(10),	with	no	default.

[@numtrans	=]	numtrans

Is	the	number	of	transactions	distributed.	numtrans	is	int,	with	no	default.

[@time	=]	time

Is	the	number	of	milliseconds,	if	provided,	needed	to	distribute	the	last	batch
of	transactions.	time	is	int,	with	no	default.

[@reset	=]	reset

Is	the	reset	status.	reset	is	int,	with	no	default.	If	1,	all	replicated	transactions
in	the	log	are	marked	as	distributed.	If	0,	the	transaction	log	is	reset	to	the
first	replicated	transaction	and	no	replicated	transactions	are	marked	as
distributed.	reset	is	valid	only	when	both	xactid	and	xact_seqno	are	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_repldone	is	used	in	transactional	replication.

sp_repldone	is	used	by	the	log	reader	process	to	track	which	transactions	have
been	distributed.

CAUTION		If	you	execute	sp_repldone	manually,	you	can	invalidate	the	order	and
consistency	of	delivered	transactions.

With	sp_repldone,	you	can	manually	tell	the	server	that	a	transaction	has	been
replicated	(sent	to	the	Distributor).	It	also	allows	you	to	change	the	transaction
marked	as	the	next	one	awaiting	replication.	You	can	move	forward	or	backward
in	the	list	of	replicated	transactions.	(All	transactions	less	than	or	equal	to	that
transaction	are	marked	as	distributed.)

The	required	parameters	xactid	and	xact_seqno	can	be	obtained	by	using
sp_repltrans	or	sp_replcmds.

Permissions
Members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed	database	role
can	execute	sp_repldone.

Examples
When	xactid	is	NULL,	xact_seqno	is	NULL,	and	reset	is	1,	all	replicated
transactions	in	the	log	are	marked	as	distributed.	This	is	useful	when	there	are
replicated	transactions	in	the	transaction	log	that	are	no	longer	valid	and	you
want	to	truncate	the	log,	for	example:

EXEC	sp_repldone	@xactid	=	NULL,	@xact_segno	=	NULL,	@numtrans	=	0,				@time	=	0,	@reset	=	1

CAUTION		This	procedure	can	be	used	in	emergency	situations	to	allow	truncation
of	the	transaction	log	when	transactions	pending	replication	are	present.	Using
this	procedure	prevents	Microsoft®	SQL	Server™	2000	from	replicating	the
database	until	the	database	is	unpublished	and	republished.

See	Also

sp_replcmds

sp_replflush

sp_repltrans

System	Stored	Procedures

Transact-SQL	Reference

sp_repldropcolumn
Drops	a	column	from	an	existing	table	article	that	has	been	published.	This
stored	procedure	is	executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_repldropcolumn	[@source_object	=]	'source_object'	
				,	[@column	=]	'column'	
				[,	[@schema_change_script	=]	'schema_change_script']	
				[,	[@force_invalidate_snapshot	=]	force_invalidate_snapshot]	
				[,	[@force_reinit_subscription	=]	force_reinit_subscription]

Arguments
[@source_object	=]	'source_object'

Is	the	name	of	the	table	article	that	contains	the	column	to	drop.
source_object	is	nvarchar(258),	with	no	default.

[@column	=]	'column'

Is	the	name	of	the	column	in	the	table	to	be	dropped.	column	is	sysname,
with	no	default.

[@schema_change_script	=]	'schema_change_script'

Is	the	path	to	the	SQL	script.	schema_change_script	is	nvarchar(4000),	with
a	default	of	NULL.

[@force_invalidate_snapshot	=]	force_invalidate_snapshot

Enables	or	disables	the	ability	to	have	a	snapshot	invalidated.
force_invalidate_snapshot	is	a	bit,	with	a	default	of	1.	1	specifies	that
changes	to	the	article	may	cause	the	snapshot	to	be	invalid,	and	if	that	is	the
case,	a	value	of	1	gives	permission	for	the	new	snapshot	to	occur.	0	specifies
that	changes	to	the	article	will	not	cause	the	snapshot	to	be	invalid.

[@force_reinit_subscription	=]	force_reinit_subscription

Enables	or	disables	the	ability	to	have	the	subscription	reinitializated.

force_reinit_subscription	is	a	bit	with	a	default	of	0.	0	specifies	that	changes
to	the	article	will	not	cause	the	subscription	to	be	reinitialized.	1	specifies
that	changes	to	the	article	may	cause	the	subscription	to	be	reinitialized,	and
if	that	is	the	case,	a	value	of	1	gives	permission	for	the	subscription
reinitialization	to	occur.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_repldropcolumn	is	used	for	all	types	of	replication.

When	using	sp_repldropcolumn,	if	a	schema	change	is	made	to	an	article	that
belongs	to	a	publication	that	uses	a	DTS	package,	the	schema	change	is	not
propagated	to	the	Subscriber,	and	the	custom	procedures	for
INSERT/UPDATE/DELETE	are	not	regenerated	on	the	Subscribers.	The	user
will	need	to	regenerate	the	DTS	package	manually,	and	make	the	corresponding
schema	change	at	the	Subscribers.	If	the	schema	update	is	not	applied,	the
Distribution	Agent	may	fail	to	apply	subsequent	modifications.	Before	making	a
schema	change,	make	sure	there	are	no	pending	transactions	to	be	delivered.	For
more	information,	see	How	Transforming	Published	Data	Works.

IMPORTANT		A	backup	of	the	publication	database	should	be	performed	after
sp_repldropcolumn	has	been	executed.	Failure	to	do	so	can	cause	a	merge
failure	after	a	restore	of	the	publication	database.

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_replflush
Flushes	the	article	cache.	This	stored	procedure	is	executed	at	the	Publisher	on
the	publication	database.

Syntax
sp_replflush

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_replflush	is	used	in	transactional	replication.

Article	definitions	are	stored	in	the	cache	for	efficiency.	sp_seplflush	is	used	by
other	replication	stored	procedures	whenever	an	article	definition	is	modified	or
dropped.

Only	one	client	connection	can	have	log	reader	access	to	a	given	database.	If	a
client	has	log	reader	access	to	a	database,	executing	sp_replflush	causes	the
client	to	release	its	access.	Other	clients	can	then	scan	the	transaction	log	using
sp_replcmds	or	sp_replshowcmds.

You	should	not	have	to	execute	this	procedure	manually.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed
database	role	can	execute	sp_replflush.

See	Also

sp_replcmds

sp_repldone

sp_repltrans

System	Stored	Procedures

Transact-SQL	Reference

sp_replicationdboption
Sets	a	replication	database	option	for	the	current	database.	This	stored	procedure
is	executed	at	the	Publisher	on	any	database.

Syntax
sp_replicationdboption	[@dbname	=]	'db_name'	,	
				[@optname	=]	'optname'	,	
				[@value	=]	'value'	
				[,	[@ignore_distributor	=]	ignore_distributor]
				[,	[@from_scripting	=]	from_scripting]

Arguments
[@dbname	=]	'dbname'

Is	the	database	to	drop.	db_name	is	sysname,	with	no	default.

[@optname	=]	'optname'

Is	the	option	to	create	or	drop.	optname	is	sysname,	and	can	be	one	of	these
values.

Value Description
merge	publish Database	can	be	used	for	merge	publications.
publish Database	can	be	used	for	other	types	of

publications.

[@value	=]	'value'

Is	whether	to	create	or	drop	the	given	replication	database	option.	value	is
sysname,	and	can	be	true	or	false.	false	also	drops	the	merge	subscriptions.

[@ignore_distributor	=]	ignore_distributor

Indicates	whether	this	stored	procedure	is	executed	without	connecting	to	the
Distributor.	ignore_distributor	is	bit,	with	a	default	of	0,	meaning	the

Distributor	should	be	connected	to	and	updated	with	the	new	status	of	the
publishing	database.	The	value	1	should	be	specified	only	if	the	Distributor
is	inaccessible	and	sp_replicationdboption	is	being	used	to	disable
publishing.

[@from_scripting	=]	from_scripting

For	internal	use	only.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_replicationdboption	is	used	in	snapshot	replication,	transactional
replication,	and	merge	replication.

This	procedure	creates	or	drops	specific	replication	system	tables,	security
accounts,	and	so	on,	depending	on	the	options	given.	Sets	the	corresponding
category	bit	in	the	master.sysdatabases	system	table	and	creates	the	necessary
system	tables.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_replicationdboption.

See	Also

sysdatabases

System	Stored	Procedures

Transact-SQL	Reference

sp_replication_agent_checkup
Checks	each	distribution	database	for	replication	agents	that	are	running	but
have	not	logged	history	within	the	specified	heartbeat	interval.	This	stored
procedure	is	executed	at	the	Distributor	on	any	database.

Syntax
sp_replication_agent_checkup	[[@heartbeat_interval	=]	heartbeat_interval
]

Arguments
[@heartbeat_interval	=]	'heartbeat_interval'

Is	the	maximum	number	of	minutes	that	an	agent	can	go	without	logging	a
progress	message.	heartbeat_interval	is	int,	with	a	default	of	10	minutes.

Return	Code	Values
sp_replication_agent_checkup	raises	error	14151	for	each	agent	it	detects	as
suspect.	It	also	logs	a	failure	history	message	about	the	agents.

Remarks
sp_replication_agent_checkup	is	used	in	snapshot	replication,	transactional
replication,	and	merge	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_replication_agent_checkup.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sql_replqueuemonitor
Lists	the	queue	messages	from	a	SQL	Server	queue	or	Message	Queuing	for
queued	updating	subscriptions	to	a	specified	publication.	If	SQL	Server	queues
are	used,	this	stored	procedure	is	executed	at	the	Subscriber	on	the	subscription
database.	If	Microsoft	Message	Queuing	is	used,	it	is	executed	at	the	Distributor
on	the	distribution	database.

Syntax
sp_replqueuemonitor	[@publisher	=]	'publisher'
				[,	[@publisherdb	=]	'publisher_db']
				[,	[@publication	=]	'publication']
				[,	[@tranid	=]	'tranid']
				[,	[@queuetype	=]	'queuetype']

Arguments
[@publisher	=]	'publisher'

Is	the	name	of	the	Publisher.	publisher	is	sysname,	with	a	default	of	NULL.
The	server	must	be	configured	for	publishing.	NULL	for	all	Publishers.

[@publisherdb	=]	'publisher_db']

Is	the	name	of	the	publication	database.	publisher_db	is	sysname,	with	a
default	of	NULL.	NULL	for	all	publication	databases.

[@publication	=]	'publication']

Is	the	name	of	the	publication.	publication	is	sysname,	with	a	default	of
NULL.	NULL	for	all	publications.

[@tranid	=]	'tranid']

Is	the	transaction	ID.	tranid	is	sysname,	with	a	default	of	NULL.	NULL	for
all	transactions.

[@queuetype	=]	'queuetype']

Is	the	type	of	queue	that	stores	transactions.	queuetype	is	tinyint	with	a

default	of	0,	and	can	be	one	of	these	values.

Value Description
0 All	types	of	queues
1 Message	Queuing
2 SQL	Server	queue

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_replqueuemonitor	is	used	in	snapshot	replication	or	transactional	replication
with	queued	updating	subscriptions.	The	queue	messages	that	do	not	contain
SQL	commands	or	are	part	of	a	spanning	SQL	command	are	not	displayed.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_addmergesubscription.

See	Also

System	Stored	Procedures

Queued	Updating	Components

Queued	Updating

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

sp_replsetoriginator
Used	to	invoke	loopback	detection	and	handling	in	transactional	replication.
This	stored	procedure	is	executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_replsetoriginator	[@server_name	=]	'server_name'	
				[@database_name	=]	'database_name'

Arguments
[@server_name	=]	'server_name'

Is	the	name	of	the	server	where	the	transaction	is	being	applied.
originating_server	is	sysname,	with	no	default.

[@database_name	=]	'database_name'

Is	the	name	of	the	database	where	the	transaction	is	being	applied.
originating_db	is	sysname,	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_replsetoriginator	is	executed	by	the	Distribution	Agent	to	record	the	source
of	transactions	applied	by	replication.	This	information	is	used	to	invoke
loopback	detection	for	transactional	subscriptions	that	have	the	loopback
property	set.	Immediate-updating	subscriptions	and	bi-directional	transactional
replication	are	used	to	set	the	loopback	detection	property	for	a	subscription.

Permissions
Members	of	the	public	role	can	execute	sp_replsetoriginator.

See	Also

System	Stored	Procedures

Transact-SQL	Reference

sp_replshowcmds
Returns	the	commands	for	transactions	marked	for	replication	in	readable
format.	sp_replshowcmds	can	be	run	only	when	client	connections	(including
the	current	connection)	are	not	reading	replicated	transactions	from	the	log.	This
stored	procedure	is	executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_replshowcmds	[@maxtrans	=]	maxtrans

Arguments
[@maxtrans	=]	maxtrans

Is	the	number	of	transactions	about	which	to	return	information.	maxtrans	is
int,	with	a	default	of	1,	which	specifies	the	maximum	number	of	transactions
pending	replication	for	which	sp_replshowcmds	will	return	information.

Result	Sets
sp_replshowcmds	is	a	diagnostic	procedure	that	returns	information	about	the
publication	database	from	which	it	is	executed.

Column	name Data	type Description
xact_seqno binary(10) Sequence	number	of	the

command.
originator_id int ID	of	the	command	originator,

always	0.
publisher_database_id int ID	of	the	Publisher	database,

always	0.
article_id int ID	of	the	article.
type int Type	of	command.
command nvarchar(1024) Transact-SQL	command.

Remarks

sp_replshowcmds	is	used	in	transactional	replication.

Using	sp_replshowcmds,	you	can	view	transactions	that	currently	are	not
distributed	(those	transactions	remaining	in	the	transaction	log	that	have	not
been	sent	to	the	Distributor).

Clients	that	run	sp_replshowcmds	and	sp_replcmds	within	the	same	database
receive	error	18752.

To	avoid	this	error,	the	first	client	must	disconnect	or	the	role	of	the	client	as	log
reader	must	be	released	by	executing	sp_replflush.	After	all	clients	have
disconnected	from	the	log	reader,	sp_replshowcmds	can	be	run	successfully.

Note		sp_replshowcmds	should	be	run	only	to	troubleshoot	problems	with
replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed
database	role	can	execute	sp_replshowcmds.

See	Also

Error	Messages

sp_replcmds

sp_repldone

sp_replflush

sp_repltrans

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_repltrans
Returns	a	result	set	of	all	the	transactions	in	the	publication	database	transaction
log	that	are	marked	for	replication	but	have	not	been	marked	as	distributed.	This
stored	procedure	is	executed	at	the	Publisher	on	a	publication	database.

Syntax
sp_repltrans

Result	Sets
sp_repltrans	returns	information	about	the	publication	database	from	which	it	is
executed,	allowing	you	to	view	transactions	currently	not	distributed	(those
transactions	remaining	in	the	transaction	log	that	have	not	been	sent	to	the
Distributor).	The	result	set	displays	the	log	sequence	numbers	of	the	first	and	last
records	for	each	transaction.	sp_repltrans	is	similar	to	sp_replcmds	but	does
not	return	the	commands	for	the	transactions.

Remarks
sp_repltrans	is	used	in	transactional	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed
database	role	can	execute	sp_repltrans.

See	Also

sp_replcmds

sp_repldone

sp_replflush

System	Stored	Procedures

Transact-SQL	Reference

sp_restoredbreplication
Removes	replication	settings	if	restoring	a	database	to	the	non-originating	server,
database,	or	system	that	is	otherwise	not	capable	of	running	replication
processes.	When	restoring	a	replicated	database	to	a	server	or	database	other
than	the	one	where	the	backup	was	taken,	replication	settings	cannot	be
preserved.	On	the	restore,	the	server	calls	sp_restoredbreplication	directly	to
automatically	remove	replication	meta	data	from	the	restored	database.

Syntax
sp_restoredbreplication	[@srv_orig	=]	'original_server_name'
				,	[@db_orig	=]	'original_database_name'
				[,	[@keep_replication	=]	keep_replication]

Arguments
[@srv_orig	=]	'original_server_name'

The	name	of	the	server	where	the	back	up	was	created.
original_server_name	is	sysname,	with	no	default.

[@db_orig	=]	'original_database_name'

The	name	of	the	database	that	was	backed	up	.	original_database_name	is
sysname,	with	no	default.

[@keep_replication	=]	keep_replication

For	internal	use	only.

Remarks
sp_restoredbreplication	is	used	in	all	types	of	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed
database	role	can	execute	sp_restoredbreplication.

Transact-SQL	Reference

sp_resyncmergesubscription
Resynchronizes	a	merge	subscription	to	a	known	validation	state	that	you
specify.	This	allows	you	to	force	convergence	or	synchronize	the	subscription
database	to	a	specific	point	in	time,	such	as	the	last	time	there	was	a	successful
validation,	or	to	a	specified	date.	The	snapshot	is	not	reapplied	when
resynchronizing	a	subscription	using	this	method.	This	stored	procedure	is	not
used	for	snapshot	replication	subscriptions	or	transactional	replication
subscriptions.	This	stored	procedure	is	executed	at	the	Publisher,	on	the
publication	database,	or	at	the	Subscriber,	on	the	subscription	database.

Syntax
sp_resyncmergesubscription	[[@publisher	=]	'publisher']
				[,	[@publisher_db	=]	'publisher_db']
				,	[@publication	=]	'publication'	
				[,	[@subscriber	=]	'subscriber']
				[,	[@subscriber_db	=]	'subscriber_db']
				[,	[@resync_type	=]	resync_type]
				[,	[@resync_date_str	=]	resync_date_string]

Arguments
[@publisher	=]	'publisher'

Is	the	name	of	the	Publisher.	publisher	is	sysname,	with	a	default	of	NULL.
A	value	of	NULL	is	valid	if	the	stored	procedure	is	run	at	the	Publisher.	If
the	stored	procedure	is	run	at	the	Subscriber,	a	Publisher	must	be	specified.

[@publisher_db	=]	'publisher_db'

Is	the	name	of	the	publication	database.	publisher_db	is	sysname,	with	a
default	of	NULL.	A	value	of	NULL	is	valid	if	the	stored	procedure	is	run	at
the	Publisher	in	the	publication	database.	If	the	stored	procedure	is	run	at	the
Subscriber,	a	Publisher	must	be	specified.

[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	no	default.

[@subscriber	=]	'subscriber'

Is	the	name	of	the	Subscriber.	subscriber	is	sysname,	with	a	default	of
NULL.	A	value	of	NULL	is	valid	if	the	stored	procedure	is	run	at	the
Subscriber.	If	the	stored	procedure	is	run	at	the	Publisher,	a	Subscriber	must
be	specified.

[@subscriber_db	=]	'subscriber_db'

Is	the	name	of	the	subscription	database.	subscription_db	is	sysname,	with	a
default	of	NULL.	A	value	of	NULL	is	valid	if	the	stored	procedure	is	run	at
the	Subscriber	in	the	subscription	database.	If	the	stored	procedure	is	run	at
the	Publisher,	a	Subscriber	must	be	specified.

[@resync_type	=]	resync_type

Defines	when	the	resynchronization	should	start	at.	resync_type	is	int,	and
can	be	one	of	these	values:

Value Description
0 Synchronization	starts	from	after	the	initial	snapshot.	This

is	the	most	resource-intensive	option,	since	all	changes
since	the	initial	snapshot	are	re-applied	to	the	Subscriber.

1 Synchronization	starts	since	last	successful	validation.	All
new	or	incomplete	generations	originating	since	the	last
successful	validation	will	be	reapplied	to	the	Subscriber.

2 Synchronization	starts	from	the	date	given	in
resync_date_str.	All	new	or	incomplete	generations
originating	after	the	date	will	be	reapplied	to	the
Subscriber

[@resync_date_str	=]	resync_date_string

Defines	the	date	when	the	resynchronization	should	start	at.	resync_type	is
nvarchar(30),	with	a	default	of	NULL.	This	parameter	is	used	when	the
resync_type	is	a	value	of	2.	The	date	given	will	be	converted	to	its	equivalent
datetime	value.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_resyncmergesubscription	is	used	in	merge	replication.

A	value	of	0	for	the	resync_type	parameter,	which	reapplies	all	changes	since	the
initial	snapshot,	may	be	resource-intensive,	but	possibly	a	lot	less	than	a	full
reinitialization.	For	example,	if	the	initial	snapshot	was	delivered	one	month	ago,
this	value	would	cause	data	from	the	past	month	to	be	reapplied.	If	the	initial
snapshot	contained	1	GB	of	data,	but	the	amount	of	changes	from	the	past	month
consisted	of	2	MBs	of	changed	data,	it	would	be	more	efficient	to	reapply	the
data	than	to	reapply	the	full	1	GB	snapshot.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed
database	role	can	execute	sp_resyncmergesubscription.

See	Also

datetime	and	smalldatetime

System	Stored	Procedures

Validating	Replicated	Data

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_revoke_publication_access
Removes	the	login	from	a	publications	access	list.	This	stored	procedure	is
executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_revoke_publication_access	[@publication	=]	'publication'	
				,	[@login	=]	'login'

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication	to	access.	publication	is	sysname,	with	no
default.

[@login	=]	'login'

Is	the	login	ID.	login	is	sysname,	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_revoke_publication_access	is	used	in	snapshot,	transactional,	and	merge
replication.

sp_revoke_publication_access	can	be	called	repeatedly.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed
database	role	can	execute	sp_revoke_publication_access.

See	Also

sp_grant_publication_access

sp_help_publication_access

System	Stored	Procedures

Transact-SQL	Reference

sp_script_synctran_commands
Generates	a	script	that	contains	the	sp_addsynctrigger	calls	to	be	applied	at
Subscribers	for	updatable	subscriptions.	There	is	one	sp_addsynctrigger	call	for
each	article	in	the	publication.	This	stored	procedure	is	executed	at	the	Publisher
on	the	publication	database.

Syntax
sp_script_synctran_commands	[@publication	=]	'publication'
				[,	[@article	=]	'article']

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication	to	be	scripted.	publication	is	sysname,	with	no
default.

[@article	=]	'article'

Is	the	name	of	the	article	to	be	scripted.	article	is	sysname,	with	a	default	of
all,	which	specifies	all	articles	are	scripted.

Return	Code	Values
0	(success)	or	1	(failure)

Results	Set
sp_script_synctran_commands	returns	a	result	set	that	consists	of	a	single
nvarchar(4000)	column.	The	result	set	forms	the	complete	script	necessary	to
create	the	sp_addsynctrigger	calls	to	be	applied	at	Subscribers.

Remarks
sp_script_synctran_commands	is	used	in	snapshot	and	transactional
replication.

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

sp_addsynctriggers

System	Stored	Procedures

Transact-SQL	Reference

sp_setreplfailovermode
Allows	you	to	set	the	failover	operation	mode	for	subscriptions	enabled	for
immediate	updating	with	queued	updating	as	failover.	This	stored	procedure	is
executed	at	the	Subscriber	on	the	subscription	database.

Syntax
sp_setreplfailovermode	[@publisher	=]	'publisher'
				[,	[@publisherdb	=]	'publisher_db']
				[,	[@publication	=]	'publication']
				[,	[@failover_mode	=]	'failover_mode']

Arguments
[@publisher	=]	'publisher'

Is	the	name	of	the	publication.	publication	is	sysname,	with	no	default.	The
publication	must	already	exist.

[@publisher_db	=]	'publisher_db'

Is	the	name	of	the	publication	database.	publisher_db	is	sysname,	with	no
default.

[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	no	default.

[@failover_mode	=]	'failover_mode'

Is	the	failover	mode	for	the	subscription.	failover_mode	is	nvarchar(20)	and
can	be	one	of	these	values:

Value Description
immediate Data	modifications	made	at	the	Subscriber	will	be	bulk

copied	to	the	Publisher	as	they	occur.
queued Data	modifications	will	be	stored	in	either	a	SQL	Server

queue	or	Message	Queuing.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_setreplfailovermode	is	used	in	snapshot	replication	or	transactional
replication	for	which	subscriptions	are	enabled	for	immediate	updating	with
queued	updating	as	a	standby	in	case	of	failure.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_addmergesubscription.

Transact-SQL	Reference

sp_showrowreplicainfo
Displays	information	about	a	row	in	a	table	that	is	being	used	as	an	article	in
merge	replication.	This	stored	procedure	is	executed	at	the	computer	and	in	the
database	where	the	table	is	stored.

Syntax
sp_showrowreplicainfo	[[@ownername	=]	'ownername']
				,	[@tablename	=]	'tablename'	
				,	[@rowguid	=]	rowguid	
				[,	[@show	=]	'show']

Arguments
[@ownername	=]	'ownername'

Is	the	name	of	the	table	owner.	ownername	is	sysname,	with	a	default	of
NULL.		This	parameter	is	useful	to	differentiate	tables	if	a	database	contains
multiple	tables	with	the	same	name,	but	each	table	has	a	different	owner.

[@tablename	=]	'tablename'

Is	the	name	of	the	table	that	contains	the	row	for	which	to	information	is
returned.	tablename	is	sysname,	with	no	default.

[@rowguid	=]	rowguid

Is	the	unique	identifier	of	the	row.	rowguid	is	uniqueidentifier,	with	no
default.

[@show	=]	'show'

Determines	the	amount	of	information	to	return	in	the	result	set.	show	is
nvarchar(20)	with	a	default	of	BOTH.	If	row,	only	row	version	information
will	be	returned.	If	columns,	only	column	version	information	will	be
returned.	If	both,	both	row	and	column	information	will	be	returned.

Result	Sets	for	Row	Information

Column	name Data	type Description
server_name 	 Name	of	the	server	hosting	the

database	that	made	the	row
version	entry.

db_name 	 Name	of	the	database	that	made
this	entry.

db_nickname 	 Nickname	of	the	database	that
made	this	entry.

version 	 Version	of	the	entry.
rowversion_table 	 Indicates	whether	the	row

versions	are	stored	in	the
MSmerge_contents	table	or	the
MSmerge_tombstone	table.

comment 	 Additional	information	about	this
row	version	entry.	Usually,	this
field	is	empty.

Result	Sets	for	Column	Information

Column	name Data	type Description
server_name 	 Name	of	the	server	hosting	the

database	that	made	the	column
version	entry.

db_name 	 Name	of	the	database	that	made
this	entry.

db_nickname 	 Nickname	of	the	database	that
made	this	entry.

version 	 Version	of	the	entry.
colname 	 Name	of	the	article	column	that

the	column	version	entry
represents.

comment 	 Additional	information	about	this
column	version	entry.	Usually,
this	field	is	empty.

Result	Set	for	both
If	the	value	both	is	chosen	for	@show,	then	both	the	row	and	column	result	sets
will	be	returned.

Remarks
sp_showrowreplicainfo	is	used	in	merge	replication.

Permissions
Members	of	the	public	role	can	execute	sp_showrowreplicainfo.

See	Also

Merge	Replication	Conflict	Detection	and	Resolution

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_subscription_cleanup
Removes	meta	data	when	a	subscription	is	dropped	at	a	Subscriber.	For	a	normal
subscription,	the	meta	data	includes	an	entry	in	the	system	table
MSreplication_subscriptions.	For	a	synchronizing	transaction	subscription,	it
also	includes	immediate-updating	triggers.	This	stored	procedure	is	executed	at
the	Subscriber	on	the	subscription	database.

Syntax
sp_subscription_cleanup	[@publisher	=]	'publisher'
				,	[@publisher_db	=]	'publisher_db'
				[,	[@publication	=]	'publication']
				[,	[@reserved	=]	'reserved']

Arguments
[@publisher	=]	'publisher'

Is	the	name	of	the	Publisher.	publisher	is	sysname,	with	no	default.

[@publisher_db	=]	'publisher_db'

Is	the	name	of	the	Publisher	database.	publisher_db	is	sysname,	with	no
default.

[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	a	default	of
NULL.	If	NULL,	subscriptions	using	a	shared	agent	publication	in	the
publishing	database	will	be	deleted.

[@reserved	=]	'reserved'

For	internal	use	only.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_subscription_cleanup	is	used	in	all	types	of	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	the	db_owner	fixed
database	role	can	execute	sp_subscription_cleanup.

See	Also

sp_expired_subscription_cleanup

sp_mergesubscription_cleanup

System	Stored	Procedures

Transact-SQL	Reference

sp_table_validation
Either	returns	rowcount	or	checksum	information	on	a	table	or	indexed	view,	or
compares	the	provided	rowcount	or	checksum	information	with	the	specified
table	or	indexed	view.	This	stored	procedure	is	executed	at	the	Publisher	on	the
publication	database.

Syntax
sp_table_validation	[@table	=]	'table'
				[,	[@expected_rowcount	=]	type_of_check_requested	OUTPUT]
				[,	[@expected_checksum	=]	expected_checksum	OUTPUT]
				[,	[@rowcount_only	=]	rowcount_only]
				[,	[@owner	=]	'owner']
				[,	[@full_or_fast	=]	full_or_fast]
				[,	[@shutdown_agent	=]	shutdown_agent]
				[,	[@table_name	=]	table_name]
				[,	[@column_list	=]	'column_list']

Arguments
[@table	=]	'table'

Is	the	name	of	the	table.	table	is	sysname,	with	no	default.

[@expected_rowcount	=]	expected_rowcount	OUTPUT

Specifies	whether	to	return	the	expected	number	of	rows	in	the	table.
expected_rowcount	is	int,	with	a	default	of	NULL.	If	NULL,	the	actual
rowcount	is	returned	as	an	output	parameter.	If	a	value	is	provided,	that	value
is	checked	against	the	actual	rowcount	to	identify	any	differences.

[@expected_checksum	=]	expected_checksum	OUTPUT

Specifies	whether	to	return	the	expected	checksum	for	the	table.
expected_checksum	is	numeric,	with	a	default	of	NULL.	If	NULL,	the
actual	checksum	is	returned	as	an	output	parameter.	If	a	value	is	provided,
that	value	is	checked	against	the	actual	checksum	to	identify	any	differences.

[@rowcount_only	=]	type_of_check_requested

Specifies	what	type	of	checksum	or	rowcount	to	perform.
type_of_check_requested	is	smallint,	with	a	default	of	1.	If	0,	perform	a	SQL
Server	7.0	compatible	checksum.	If	1,	perform	a	rowcount	check	only.	If	2,
perform	a	rowcount	and	checksum.

[@owner	=]	'owner'

Is	the	name	of	the	owner	of	the	table.	owner	is	sysname,	with	a	default	of
NULL.

[@full_or_fast	=]	full_or_fast

Is	the	method	used	to	calculate	the	rowcount.	full_or_fast	is	tinyint,	with	a
default	of	2,	and	can	be	one	of	these	values.

Value Description
0 Does	full	count	using	COUNT(*).
1 Does	fast	count	from	sysindexes.rows.	Counting	rows	in

sysindexes	is	much	faster	than	counting	rows	in	the	actual
table.	However,	because	sysindexes	is	lazily	updated,	the
rowcount	may	not	be	accurate.

2	(default) Does	conditional	fast	counting	by	first	trying	the	fast
method.	If	fast	method	shows	differences,	reverts	to	full
method.	If	expected_rowcount	is	NULL	and	the	stored
procedure	is	being	used	to	get	the	value,	a	full	COUNT(*)
is	always	used.

[@shutdown_agent	=]	shutdown_agent

If	the	Distribution	Agent	is	executing	sp_table_validation,	specifies
whether	the	Distribution	Agent	should	shut	down	immediately	upon
completion	of	the	validation.	shutdown_agent	is	bit,	with	a	default	of	0.	If	0,
the	replication	agent	does	not	shut	down.	If	1,	error	20578	is	raised	and	the
replication	agent	is	signalled	to	shut	down.

[@table_name	=]	table_name

Is	the	table	name	of	the	view	used	for	output	messages.	table_name	is

sysname,	with	a	default	of	@table.

[@column_list	=]	'column_list'

Is	the	list	of	columns	that	should	be	used	in	the	binary_checksum	function.
column_list	is	nvarchar(4000),	with	a	default	of	NULL.	Enables	validation
of	merge	articles	to	specify	a	column	list	that	excludes	computed	and
timestamp	columns.

Return	Code	Values
If	performing	a	checksum	validation	and	the	expected	checksum	equals	the
checksum	in	the	table,	sp_table_validation	returns	a	message	that	the	table
passed	checksum	validation.	Otherwise,	it	returns	a	message	that	the	table	may
be	out	of	synchronization	and	reports	the	difference	between	the	expected	and
the	actual	number	of	rows.

If	performing	a	rowcount	validation	and	the	expected	number	of	rows	equals	the
number	in	the	table,	sp_table_validation	returns	a	message	that	the	table	passed
rowcount	validation.	Otherwise,	it	returns	a	message	that	the	table	may	be	out	of
synchronization	and	reports	the	difference	between	the	expected	and	the	actual
number	of	rows.

Remarks
sp_table_validation	is	used	in	all	types	of	replication

Checksum	computes	a	32-bit	cyclic	redundancy	check	(CRC)	on	the	entire	row
image	on	the	page.	It	does	not	selectively	check	columns	and	cannot	operate	on
a	view	or	vertical	partition	of	the	table.	Also,	the	checksum	skips	the	contents	of
text	and	image	columns	(by	design).

When	doing	a	checksum,	the	structure	of	the	table	must	be	identical	between	the
two	servers;	that	is,	the	tables	must	have	the	same	columns	existing	in	the	same
order,	same	data	types	and	lengths,	and	same	NULL/NOT	NULL	conditions.	For
example,	if	the	Publisher	did	a	CREATE	TABLE,	then	an	ALTER	TABLE	to
add	columns,	but	the	script	applied	at	the	Publisher	is	a	simple	CREATE	table,
the	structure	is	NOT	the	same.	If	you	are	not	certain	that	the	structure	of	the	two
tables	is	identical,	look	at	syscolumns	and	confirm	that	the	offset	in	each	table	is
the	same.

Floating	point	values	are	likely	to	generate	checksum	differences	if	character-
mode	bcp	was	used,	which	is	the	case	if	the	publication	has	heterogeneous
subscribers.	These	are	due	to	minor	and	unavoidable	differences	in	precision
when	doing	conversion	to	and	from	character	mode.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database
role	can	execute	sp_table_validation.

See	Also

sp_article_validation

sp_publication_validation

System	Stored	Procedures

Transact-SQL	Reference

sp_update_agent_profile
Updates	the	profile	for	a	type	of	replication	agent.	This	stored	procedure	is
executed	at	the	Distributor	on	the	distribution	database.

Syntax
sp_update_agent_profile	[@agent_type	=]	agent_type
				,	[@agent_id	=]	agent_id
				,	[@profile_id	=]	profile_id

Arguments
[@agent_type	=]	'agent_type'

Is	the	type	of	agent.	agent_type	is	int,	with	no	default,	and	can	be	one	of
these	values.

Value Description
1 Snapshot	Agent.
2 Log	Reader	Agent.
3 Distribution	Agent.
4 Merge	Agent.
9 Queue	Reader	Agent.

[@agent_id	=]	agent_id

Is	the	ID	of	the	agent.	agent_id	is	int,	with	no	default.

[@profile_id	=]	profile_id

Is	the	ID	of	the	default	configuration	for	the	type	of	agent.	profile_id	is	int,
with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_update_agent_profile	is	used	in	all	types	of	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_update_agent_profile.

See	Also

sp_add_agent_profile

sp_change_agent_profile

sp_drop_agent_profile

sp_help_agent_profile

System	Stored	Procedures

Transact-SQL	Reference

sp_validatemergepublication
Performs	a	publication-wide	validation	for	which	all	subscriptions	(push,	pull,
and	anonymous)	will	be	validated	once.	This	stored	procedure	is	executed	at	the
Publisher	on	the	publication	database.

Syntax
sp_validatemergepublication	[@publication	=]	'publication'	
				,	[@level	=]	level

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	no	default.

[@level	=]	level

Is	the	type	of	validation	to	perform.	level	is	tinyint,	with	no	default.	Level
can	be	one	of	these	values:

Level	value Description
1 Rowcount-only	validation.
2 Rowcount	and	checksum	validation.
3 Rowcount	and	binary	checksum	validation.

A	validation	level	of	3	is	valid	only	when	Subscribers	are	running	Microsoft®
SQL	Server™	2000.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_validatemergepublication	is	used	in	merge	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_validatemergepublication.

See	Also

System	Stored	Procedures

Validating	Replicated	Data

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sp_validatemergesubscription
Performs	a	validation	for	the	specified	subscription.	This	stored	procedure	is
executed	at	the	Publisher	on	the	publication	database.

Syntax
sp_validatemergesubscription	[@publication	=]	'publication'
				,	[@subscriber	=]	'subscriber'
				,	[@subscriber_db	=]	'subscriber_db'
				,	[@level	=]	level

Arguments
[@publication	=]	'publication'

Is	the	name	of	the	publication.	publication	is	sysname,	with	no	default.

[@subscriber	=]	'subscriber'

Is	the	name	of	the	Subscriber.	subscriber	is	sysname,	with	no	default.

[@subscriber_db	=]	'subscriber_db'

Is	the	name	of	the	subscription	database.	subscriber_db	is	sysname,	with	no
default.

[@level	=]	level

Is	the	type	of	validation	to	perform.	level	is	tinyint,	with	no	default.	Level
can	be	one	of	these	values:

Level	value Description
1 Rowcount-only	validation.
2 Rowcount	and	checksum	validation.
3 Rowcount	and	binary	checksum	validation.

Return	Code	Values

0	(success)	or	1	(failure)

Remarks
sp_validatemergesubscription	is	used	in	merge	replication.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_validatemergesubscription.

See	Also

System	Stored	Procedures

Validating	Replicated	Data

Validate	Subscriber	Information

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

sp_vupgrade_replication
Activated	by	setup	when	upgrading	a	replication	server	from	SQL	Server	7.0	or
later.	Upgrades	schema	and	system	data	as	needed	to	support	replication	at	the
current	product	level.	Creates	new	replication	system	objects	in	system	and	user
databases.	This	stored	procedure	is	executed	at	the	machine	where	the
replication	upgrade	is	to	occur.

Syntax
sp_vupgrade_replication	[[@login	=]	'login']
				[,	[@password	=]	'password']
				[,	[@ver_old	=]	'old_version']
				[,	[@force_remove	=]	'force_removal']
				[,	[@security_mode	=]	security_mode]

Arguments
[@login	=]	'login'

Is	the	system	administrator	login	to	use	when	creating	new	system	objects	in
the	Distribution	database.	login	is	sysname,	with	a	default	of	SA.	This
parameter	is	not	required	if	security_mode	is	set	to	1,	which	is	NT
Authentication.

[@password	=]	'password'

Is	the	system	administrator	password	to	use	when	creating	new	system
objects	in	the	Distribution	database.	password	is	sysname,	with	a	default	of	''
(empty	string).	This	parameter	is	not	required	if	security_mode	is	set	to	1,
which	is	NT	Authentication.

[@ver_old	=]	'old_version'

For	internal	use	only.

[@force_remove	=]	'force_removal'

For	internal	use	only.

[@security_mode	=]	'security_mode'

Is	the	login	security	mode	to	use	when	creating	new	system	objects	in	the
Distribution	database.	security_mode	is	bit	with	a	default	value	of	0.	If	0,
SQL	Server	Authentication	will	be	used.	If	1,	NT	Authentication	will	be
used.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
sp_vupgrade_replication	is	not	used	when	upgrading	from	SQL	Server	6.5.

Permissions
Only	members	of	the	sysadmin	fixed	server	role	can	execute
sp_vupgrade_replication.

See	Also

Overview	of	Installing	SQL	Server	2000

Replication	Overview

System	Stored	Procedures

Help	with	Replication

Upgrading	from	SQL	Server	7.0	to	SQL	Server	2000

Validating	Replicated	Data

Validate	Subscriber	Information

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Transact-SQL	Reference

xp_cmdshell
Executes	a	given	command	string	as	an	operating-system	command	shell	and
returns	any	output	as	rows	of	text.	Grants	nonadministrative	users	permissions	to
execute	xp_cmdshell.

Note		When	executing	xp_cmdshell	with	the	Microsoft®	Windows®	95	or
Microsoft	Windows	98	operating	systems,	the	return	code	from	xp_cmdshell
will	not	be	set	to	the	process	exit	code	of	the	invoked	executable.	The	return
code	will	always	be	0.

Syntax
xp_cmdshell	{'command_string'}	[,	no_output]

Arguments
'command_string'

Is	the	command	string	to	execute	at	the	operating-system	command	shell.
command_string	is	varchar(255)	or	nvarchar(4000),	with	no	default.
command_string	cannot	contain	more	than	one	set	of	double	quotation
marks.	A	single	pair	of	quotation	marks	is	necessary	if	any	spaces	are	present
in	the	file	paths	or	program	names	referenced	by	command_string.	If	you
have	trouble	with	embedded	spaces,	consider	using	FAT	8.3	file	names	as	a
workaround.

no_output

Is	an	optional	parameter	executing	the	given	command_string,	and	does	not
return	any	output	to	the	client.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
Executing	this	xp_cmdshell	statement	returns	a	directory	listing	of	the	current

directory.

xp_cmdshell	'dir	*.exe'

The	rows	are	returned	in	an	nvarchar(255)	column.

Executing	this	xp_cmdshell	statement	returns	the	following	result	set:

xp_cmdshell	'dir	*.exe',	NO_OUTPUT

Here	is	the	result:

The	command(s)	completed	successfully.

Remarks
xp_cmdshell	operates	synchronously.	Control	is	not	returned	until	the	command
shell	command	completes.

When	you	grant	execute	permissions	to	users,	the	users	can	execute	any
operating-system	command	at	the	Microsoft	Windows	NT®	command	shell	that
the	account	running	Microsoft	SQL	Server™	has	the	needed	privileges	to
execute.

By	default,	only	members	of	the	sysadmin	fixed	server	role	can	execute	this
extended	stored	procedure.	You	may,	however,	grant	other	users	permission	to
execute	this	stored	procedure.

When	xp_cmdshell	is	invoked	by	a	user	who	is	a	member	of	the	sysadmin	fixed
server	role,	xp_cmdshell	will	be	executed	under	the	security	context	in	which
the	SQL	Server	service	is	running.	When	the	user	is	not	a	member	of	the
sysadmin	group,	xp_cmdshell	will	impersonate	the	SQL	Server	Agent	proxy
account,	which	is	specified	using	xp_sqlagent_proxy_account.	If	the	proxy
account	is	not	available,	xp_cmdshell	will	fail.	This	is	true	only	for	Microsoft®
Windows	NT®	4.0	and	Windows	2000.	On	Windows	9.x,	there	is	no
impersonation	and	xp_cmdshell	is	always	executed	under	the	security	context	of
the	Windows	9.x	user	who	started	SQL	Server.

Note		In	earlier	versions,	a	user	who	was	granted	execute	permissions	for
xp_cmdshell	ran	the	command	in	the	context	of	the	MSSQLServer	service's
user	account.	SQL	Server	could	be	configured	(through	a	configuration	option)

so	that	users	who	did	not	have	sa	access	to	SQL	Server	could	run	xp_cmdshell
in	the	context	of	the	SQLExecutiveCmdExec	Windows	NT	account.	In	SQL
Server	7.0,	the	account	is	called	SQLAgentCmdExec.	Users	who	are	not
members	of	the	sysadmin	fixed	server	role	now	run	commands	in	the	context	of
this	account	without	specifying	a	configuration	change.

Permissions
Execute	permissions	for	xp_cmdshell	default	to	members	of	the	sysadmin	fixed
server	role,	but	can	be	granted	to	other	users.

IMPORTANT		If	you	choose	to	use	a	Windows	NT	account	that	is	not	a	member	of
the	local	administrator's	group	for	the	MSSQLServer	service,	users	who	are	not
members	of	the	sysadmin	fixed	server	role	cannot	execute	xp_cmdshell.

Examples

A.	Return	a	list	of	executable	files
This	example	shows	the	xp_cmdshell	extended	stored	procedure	executing	a
directory	command.

EXEC	master..xp_cmdshell	'dir	*.exe'

B.	Use	Windows	NT	net	commands
This	example	shows	the	use	of	xp_cmdshell	in	a	stored	procedure.	This	example
notifies	users	(with	net	send)	that	SQL	Server	is	about	to	be	shut	down,	pauses
the	server	(with	net	pause),	and	then	shuts	the	server	down	(with	net	stop).

CREATE	PROC	shutdown10
AS
EXEC	xp_cmdshell	'net	send	/domain:SQL_USERS	''SQL	Server	shutting	down	
			in	10	minutes.	No	more	connections	allowed.',	no_output
EXEC	xp_cmdshell	'net	pause	sqlserver'
WAITFOR	DELAY	'00:05:00'
EXEC	xp_cmdshell	'net	send	/domain:	SQL_USERS	''SQL	Server	shutting	down	
			in	5	minutes.',	no_output

WAITFOR	DELAY	'00:04:00'
EXEC	xp_cmdshell	'net	send	/domain:SQL_USERS	''SQL	Server	shutting	down	
			in	1	minute.	Log	off	now.',	no_output
WAITFOR	DELAY	'00:01:00'
EXEC	xp_cmdshell	'net	stop	sqlserver',	no_output

C.	Return	no	output
This	example	uses	xp_cmdshell	to	execute	a	command	string	without	returning
the	output	to	the	client.

USE	master
EXEC	xp_cmdshell	'copy	c:\sqldumps\pubs.dmp	\\server2\backups\sqldumps',	
			NO_OUTPUT

D.	Use	return	status
In	this	example,	the	xp_cmdshell	extended	stored	procedure	also	suggests	return
status.	The	return	code	value	is	stored	in	the	variable	@result.

DECLARE	@result	int
EXEC	@result	=	xp_cmdshell	'dir	*.exe'
IF	(@result	=	0)
			PRINT	'Success'
ELSE
			PRINT	'Failure'

E.	Write	variable	contents	out	to	file
This	example	writes	the	contents	of	the	current	directory	to	a	file	named
dir_out.txt	in	the	current	server	directory.

DECLARE	@cmd	sysname,	@var	sysname
SET	@var	=	'dir	/p'
SET	@cmd	=	'echo	'	+	@var	+	'	>	dir_out.txt'
EXEC	master..xp_cmdshell	@cmd

See	Also

CREATE	PROCEDURE

EXECUTE

Creating	Security	Accounts

System	Stored	Procedures	(General	Extended	Procedures)

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

xp_deletemail
Deletes	a	message	from	the	Microsoft®	SQL	Server™	inbox.	xp_deletemail	is
used	by	sp_processmail	to	process	mail	in	the	SQL	Server	inbox.

Syntax
xp_deletemail	{'message_number'}

Arguments
'message_number'

Is	the	number	(assigned	by	xp_findnextmsg)	of	the	mail	message	in	the
inbox	that	should	be	deleted.	message_number	is	varchar(255),	with	no
default.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
xp_deletemail	returns	this	result	set	when	passed	a	valid	message	ID.

The	command(s)	completed	successfully.

Remarks
Any	failure	except	an	invalid	parameter	is	logged	to	the	Microsoft	Windows
NT®	application	log.

Permissions
Execute	permissions	for	xp_deletemail	default	to	members	of	the	sysadmin
fixed	server	role	but	can	granted	to	other	users.

Examples

This	example	deletes	the	message	ID	supplied	from	xp_findnextmsg.	The	value
from	xp_findnextmsg	is	placed	in	the	local	variable	@message_id.

DECLARE	@message_id	varchar(255)
SET	@message_id	=	'XA17'	--	Setting	to	a	value	would	go	here.
USE	master
EXEC	xp_deletemail	@message_id

See	Also

sp_processmail

System	Stored	Procedures	(SQL	Mail	Extended	Procedures)

xp_findnextmsg

xp_readmail

xp_sendmail

xp_startmail

xp_stopmail

Transact-SQL	Reference

xp_enumgroups
Provides	a	list	of	local	Microsoft®	Windows	NT®	groups	or	a	list	of	global
groups	defined	in	a	specified	Windows	NT	domain.

Syntax
xp_enumgroups	['domain_name']

Arguments
'domain_name'

Is	the	name	of	the	Windows	NT	domain	for	which	to	enumerate	a	list	of
global	groups.	domain_name	is	sysname,	with	a	default	of	NULL.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
group sysname Name	of	the	Windows	NT	group
comment sysname Description	of	the	Windows	NT

group	provided	by	Windows	NT

Remarks
If	domain_name	is	the	name	of	the	Windows	NT-based	computer	that	Microsoft
SQL	Server™	is	running	on,	or	no	domain	name	is	specified,	xp_enumgroups
enumerates	the	local	groups	from	the	computer	running	SQL	Server.

xp_enumgroups	cannot	be	used	when	SQL	Server	is	running	on	Windows®
95/98.

Permissions

Execute	permissions	for	xp_enumgroups	default	to	members	of	the	db_owner
fixed	database	role	in	the	master	database	and	members	of	the	sysadmin	fixed
server	role,	but	can	be	granted	to	other	users.

Examples
This	example	lists	the	groups	in	the	sales	domain.

EXEC	xp_enumgroups	'sales'

See	Also

sp_grantlogin

sp_revokelogin

System	Stored	Procedures	(General	Extended	Procedures)

xp_loginconfig

xp_logininfo

Transact-SQL	Reference

xp_findnextmsg
Accepts	a	message	ID	for	input	and	returns	the	message	ID	for	output.
xp_findnextmsg	is	used	with	sp_processmail	in	order	to	process	mail	in	the
Microsoft®	SQL	Server™	inbox.

Syntax
xp_findnextmsg	[[@type	=]	type]	
				[,[@unread_only	=]	'unread_value']
				[,[@msg_id	=]	'message_number'	[OUTPUT]]

Arguments
[@type	=]	type

Is	the	input	message	type	based	on	the	MAPI	mail	definition:

IP[M	|	C].Vendorname.subclass

If	type	is	NULL,	message	types	beginning	with	IPM	appear	in	the	inbox	of
the	mail	client	and	are	found	or	read	by	xp_findnextmsg.	Message	types
beginning	with	IPC	do	not	appear	in	the	inbox	of	the	mail	client	and	must	be
found	or	read	by	setting	the	type	parameter.	The	default	is	NULL.

[@unread_only	=]	'unread_value'

Is	whether	only	unread	(true)	messages	are	considered.	The	default	is
FALSE,	which	means	all	messages	are	considered.

[@msg_id	=]	'message_number'

Is	an	input	and	output	parameter	that	specifies	the	string	of	the	message	on
input	and	the	string	of	the	next	message	on	output.

OUTPUT

When	specified,	message_number	is	placed	in	the	output	parameter.	When
not	specified,	message_number	is	returned	as	a	single-column,	single-row
result	set.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
xp_findnextmsg	returns	this	result	set	when	passed	a	valid	message	ID:

The	command(s)	completed	successfully.

Remarks
Any	failure	except	an	invalid	parameter	is	logged	to	the	Microsoft	Windows
NT®	application	log.

Permissions
Execute	permissions	for	xp_findnextmsg	default	to	members	of	the	db_owner
fixed	database	role	in	the	master	database	and	members	of	the	sysadmin	fixed
server	role,	but	can	be	granted	to	other	users.

Examples
This	example	retrieves	the	status	when	searching	for	the	next	message	ID	(for
only	unread	messages).	The	value	from	xp_findnextmsg	is	placed	in	the	local
variable	@message_id.

DECLARE	@status	int,	@message_id	varchar(255)
--	SET	@status	=	value	would	be	here.
--	SET	@message_id	=	value	would	be	here.
EXEC	@status	=	xp_findnextmsg	@msg_id	=	@message_id	OUTPUT

See	Also

sp_processmail

System	Stored	Procedures	(SQL	Mail	Extended	Procedures)

xp_deletemail

xp_readmail

xp_sendmail

xp_startmail

xp_stopmail

Transact-SQL	Reference

xp_grantlogin
Grants	a	Microsoft®	Windows	NT®	group	or	user	access	to	Microsoft	SQL
Server™.	xp_grantlogin	is	provided	for	backward	compatibility.	Use
sp_grantlogin.

Syntax
xp_grantlogin	{[@loginame	=]	'login'}	[,[@logintype	=]	'logintype']

Arguments
[@loginame	=]	'login'

Is	the	name	of	the	Windows	NT	user	or	group	to	be	added.	The	Windows	NT
user	or	group	must	be	qualified	with	a	Windows	NT	domain	name	in	the
form	Domain\User.	login	is	sysname,	with	no	default.

[@logintype	=]	'logintype'

Is	the	security	level	of	the	login	being	granted	access.	logintype	is
varchar(5),	with	a	default	of	NULL.	Only	admin	can	be	specified.	If	admin
is	specified,	login	is	granted	access	to	SQL	Server,	and	added	as	a	member	of
the	sysadmin	fixed	server	role.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
xp_grantlogin	is	now	a	system	stored	procedure	rather	than	an	extended	stored
procedure	and	calls	sp_grantlogin	to	grant	a	Windows	NT-based	group	or	user
access	to	SQL	Server.

See	Also

sp_denylogin

sp_grantlogin

System	Stored	Procedures	(General	Extended	Procedures)

xp_enumgroups

xp_loginconfig

xp_logininfo

sp_revokelogin

Transact-SQL	Reference

xp_logevent
Logs	a	user-defined	message	in	the	Microsoft®	SQL	Server™	log	file	and	in	the
Microsoft	Windows	NT®	Event	Viewer.	xp_logevent	can	be	used	to	send	an
alert	without	sending	a	message	to	the	client.

Syntax
xp_logevent	{error_number,	'message'}	[,	'severity']

Arguments
error_number

Is	a	user-defined	error	number	greater	than	50,000.	The	maximum	value	is
1073741823	(230	-	1).

'message'

Is	a	character	string	of	less	than	8,000	characters.

'severity'

Is	one	of	three	character	strings:	INFORMATIONAL,	WARNING,	or
ERROR.	severity	is	optional,	with	a	default	of	INFORMATIONAL.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
xp_logevent	returns	this	error	message	for	the	included	code	example:

The	command(s)	completed	successfully.

Remarks
When	sending	messages	from	Transact-SQL	procedures,	triggers,	batches,	and
so	on,	use	the	RAISERROR	statement	instead	of	xp_logevent.	xp_logevent

does	not	call	a	client's	message	handler	or	set	@@ERROR.	To	write	messages	to
the	Windows	NT	Event	Viewer	and	to	the	SQL	Server	error	log	file	within	SQL
Server,	execute	the	RAISERROR	statement.

Permissions
Execute	permissions	for	xp_logevent	default	to	members	of	the	db_owner	fixed
database	role	in	the	master	database	and	members	of	the	sysadmin	fixed	server
role,	but	can	be	granted	to	other	users.

Examples
This	example	logs	the	message	(with	variables	passed	to	the	message)	in	the
Windows	NT	Event	Viewer.

DECLARE	@@TABNAME	varchar(30)
DECLARE	@@USERNAME	varchar(30)
DECLARE	@@MESSAGE	varchar(255)
SET	@@TABNAME	=	'customers'
SET	@@USERNAME	=	USER_NAME()
SELECT	@@MESSAGE	=	'The	table	'	+	@@TABNAME	+	'	is	not	owned	by	the	user	
			'	+	@@USERNAME	+	'.'

USE	master
EXEC	xp_logevent	60000,	@@MESSAGE,	informational

See	Also

PRINT

RAISERROR

System	Stored	Procedures	(General	Extended	Procedures)

Transact-SQL	Reference

xp_loginconfig
Reports	the	login	security	configuration	of	Microsoft®	SQL	Server™	when
running	on	Microsoft	Windows	2000	or	Microsoft	Windows	NT®	4.0.

Syntax
xp_loginconfig	['config_name']

Arguments
'config_name'

Is	the	configuration	value	to	be	displayed.	If	config_name	is	not	specified,	all
configuration	values	are	reported.	config_name	is	sysname,	with	a	default	of
NULL,	and	can	be	one	of	these	values.

Value Description
login	mode Login	security	mode.	Possible	values	are	Mixed	and

Windows	Authentication.
default	login Name	of	the	default	SQL	Server	login	ID	for	authorized

users	of	trusted	connections	(for	users	without	matching
login	name).	The	default	login	is	guest.	Provided	for
backward	compatibility.

default	domain Name	of	the	default	Windows	NT	domain	for	network
users	of	trusted	connections.	The	default	domain	is	the
domain	that	the	Windows	NT	computer	running	SQL
Server	is	a	member	of.	Provided	for	backward
compatibility.

audit	level Audit	level.	Possible	values	are	none,	success,	failure,
and	all.	Audits	are	written	to	the	error	log	and	to	the
Windows	NT	Event	Viewer.

set	hostname Indicates	whether	the	hostname	from	the	client	login
record	is	replaced	with	the	Windows	NT	network
username.	Possible	values	are	true	or	false.	If	this	is	set,
the	network	username	appears	in	output	from	sp_who.

map	_ Reports	what	special	Windows	NT	characters	are
mapped	to	the	valid	SQL	Server	character	_
(underscore).	Possible	values	are	domain	separator
(default),	space,	null,	or	any	single	character.	Provided
for	backward	compatibility.

map	$ Reports	what	special	Windows	NT	characters	are
mapped	to	the	valid	SQL	Server	character	$	(dollar	sign).
Possible	values	are	domain	separator,	space,	null,	or
any	single	character.	The	default	is	space.	Provided	for
backward	compatibility.

map	# Reports	what	special	Windows	NT	characters	are
mapped	to	the	valid	SQL	Server	character	#	(number
sign).	Possible	values	are	domain	separator,	space,
null,	or	any	single	character.	Default	is	the	hyphen.
Provided	for	backward	compatibility.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
name sysname Configuration	value
config	value sysname Configuration	value	setting

Remarks
xp_loginconfig	cannot	be	used	to	set	configuration	values.

Use	SQL	Server	Enterprise	Manager	to	set	the	login	mode	and	audit	level.

Permissions
Execute	permissions	for	xp_loginconfig	default	to	members	of	the	db_owner
fixed	database	role	in	the	master	database	and	members	of	the	sysadmin	fixed

server	role,	but	can	be	granted	to	other	users.

Examples

A.	Report	all	configuration	values
This	example	shows	all	of	the	currently	configured	settings.

EXEC	xp_loginconfig

name config_value

---------------- -------------------------

login	mode mixed

default	login guest

default	domain REDMOND

audit	level none

Set	hostname false

Map	_ domain	separator

Map	$ space

Map	# -

B.	Report	login	mode	configuration	value
This	example	shows	the	setting	for	only	the	login	mode.

EXEC	xp_loginconfig	'login	mode'

name config_value

---------------- -------------------------

login	mode mixed

See	Also

sp_denylogin

sp_grantlogin

System	Stored	Procedures	(General	Extended	Procedures)

sp_revokelogin

xp_logininfo

Transact-SQL	Reference

xp_logininfo
Reports	the	account,	the	type	of	account,	the	privilege	level	of	the	account,	the
mapped	login	name	of	the	account,	and	the	permission	path	by	which	an	account
has	access	to	Microsoft®	SQL	Server™.

Syntax
xp_logininfo	[[@acctname	=]	'account_name']	[,[@option	=]	'all'	|
'members']	
				[,[@privelege	=]	variable_name	OUTPUT]

Arguments
[@acctname	=]	'account_name'

Is	the	name	of	a	Microsoft	Windows	NT®	user	or	group	granted	access	to
SQL	Server.	account_name	is	sysname,	with	a	default	of	NULL.	If
account_name	is	not	given,	all	groups	and	users	that	have	been	explicitly
granted	login	permission	are	reported.	The	Windows	NT	user	or	group	must
be	qualified	by	the	Windows	NT	domain	or	computer	name	to	which	the
account	belongs.

'all'	|	'members'

Specifies	whether	to	report	information	about	all	permission	paths	for	the
account,	or	to	report	information	about	the	members	of	the	Windows	NT
group.	@option	is	varchar(10),	with	a	default	of	NULL.	Unless	all	is
specified,	only	the	first	permission	path	is	displayed.

[@privelege	=]	variable_name

Is	an	output	parameter	that	returns	the	privilege	level	of	the	specified
Windows	NT	account.	variable_name	is	varchar(10),	with	a	default	of	'Not
wanted'.	The	privilege	level	returned	is	user,	admin,	or	null.

OUTPUT

When	specified,	places	variable_name	in	the	output	parameter.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

Column	name Data	type Description
account	name nchar(128) Fully	qualified	Windows	NT	account

name.
type char(8) Type	of	Windows	NT	account.	Valid

values	are	user	or	group.
privilege char(9) Access	privilege	for	SQL	Server.	Valid

values	are	admin,	user,	or	null.
mapped	login	name nchar(128) For	user	accounts	with	user	privilege,

mapped	login	name	shows	the
mapped	login	name	that	SQL	Server
tries	to	use	when	logging	in	with	this
account,	using	the	mapped	rules	with
the	domain	name	added	before	it.

permission	path nchar(128) Group	membership	that	allowed	the
account	access.

Remarks
If	account_name	is	specified	as	the	first	parameter,	xp_logininfo	reports	the
highest	privilege	level	access	for	that	account.	If	a	user	has	access	as	a	system
administrator	and	as	a	user,	only	the	system	administrator	level	(highest
privilege)	entry	is	reported.	If	the	user	is	a	member	of	multiple	groups	that	have
the	same	privilege	level,	only	the	first	group	that	matches	is	reported	(the	order
of	the	groups	is	the	order	that	the	groups	were	granted	access	to	SQL	Server),
and	a	maximum	of	one	result	row	is	returned.

If	account_name	is	a	valid	Windows	NT	account	but	that	account	does	not	have
permission	to	access	SQL	Server,	an	empty	result	set	is	returned.	If
account_name	cannot	be	identified	as	a	valid	Windows	NT	account,	an	error
message	is	returned.

If	account_name	and	all	are	specified,	all	permission	paths	for	that	account	are
listed.	If	account_name	is	a	member	of	multiple	groups,	all	of	which	have	been
granted	access	to	SQL	Server,	multiple	rows	are	returned.	The	admin	privilege
rows	are	reported	before	the	user	privilege	rows,	and	within	a	privilege	level	the
row	order	is	the	order	in	which	the	accounts	were	granted	access	to	SQL	Server.
account_name	applies	to	both	individual	users	and	groups.

If	account_name	and	members	is	specified,	a	list	of	the	next-level	members	of
the	group	is	returned.	If	account_name	is	a	local	group,	the	listing	can	include
local	users,	domain	users,	and	global	groups.	If	account_name	is	a	global
account,	the	list	consists	of	domain	users.	If	account_name	is	a	user	account,	an
error	message	is	returned.

Permissions
Execute	permissions	for	xp_logininfo	default	to	members	of	the	db_owner
fixed	database	role	in	the	master	database	and	members	of	the	sysadmin	fixed
server	role,	but	can	be	granted	to	other	users.

Examples
This	example	displays	information	about	the	BUILTIN\Administrators
Windows	NT	group.

EXEC	xp_logininfo	'BUILTIN\Administrators'

See	Also

sp_denylogin

sp_grantlogin

sp_revokelogin

System	Stored	Procedures	(General	Extended	Procedures)

xp_loginconfig

Transact-SQL	Reference

xp_msver
Returns	and	allows	to	be	queried	Microsoft®	SQL	Server™	version	information.
In	addition	to	version	information	regarding	the	actual	build	number	of	the
server,	various	environment	information	is	also	returned.	This	information	can
be	used	within	Transact-SQL	statements,	batches,	stored	procedures,	and	so	on,
to	enhance	logic	for	platform-independent	code.

Syntax
xp_msver	[optname]

Arguments
optname

Is	the	name	of	an	option,	and	can	be	one	of	the	following.

Option/Column	name Description
ProductName Product	name;	for	example,	Microsoft	SQL	Server.
ProductVersion Product	version;	for	example,	7.00.419	where	7.00

is	the	version	and	419	is	the	Microsoft	internal
build	number.

Language The	language	version	of	SQL	Server.
Platform Operating-system	name,	manufacturer	name,	and

chip	family	name	for	the	computer	running	SQL
Server.	For	example,	NT	INTEL	X86	indicates
Microsoft	Windows	NT®	as	the	operating	system,
Intel	as	the	chip	manufacturer,	and	a	486	or	higher
processor.

Comments Miscellaneous	information	about	SQL	Server.
CompanyName Company	name	that	produces	SQL	Server;	for

example,	Microsoft	Corporation.
FileDescription The	operating	system.
FileVersion Version	of	the	SQL	Server	executable.	For

example,	1998.02.01	indicates	a	file	version	of

February	1,	1998,	on	the	Sqlservr.exe	file.
InternalName Microsoft	internal	name	for	SQL	Server;	for

example,	SQLSERVR.
LegalCopyright Legal	copyright	information	required	for	SQL

Server;	for	example,	Copyright©	Microsoft	Corp.
1998.

LegalTrademarks Legal	trademark	information	required	for	SQL
Server.	For	example,	Microsoft®	is	a	registered
trademark	of	Microsoft	Corporation.

OriginalFilename File	name	executed	at	SQL	Server	startup;	for
example,	Sqlservr.exe.

PrivateBuild Reserved.
SpecialBuild Reserved.
WindowsVersion Microsoft	Windows	version	installed	on	the

computer	running	SQL	Server.	For	example,	4.0
indicates	version	4.0	of	Microsoft	Windows	NT,
and	1381	indicates	the	internal	build	number.

ProcessorCount The	number	of	processors	in	the	computer	running
SQL	Server.

ProcessorActiveMask Indicates	what	processors	installed	in	the	computer
running	SQL	Server	are	activated	and	usable	by
Microsoft	Windows	NT.

ProcessorType Processor	type.	Similar	to	Platform.
PhysicalMemory Amount	in	megabytes	(MB)	of	RAM	installed	on

the	computer	running	SQL	Server.	For	example,	32
indicates	32	MB	of	RAM.

Product	ID Product	ID	(PID)	number,	which	is	specified
during	installation.	This	number	is	located	on	a
sticker	on	the	original	SQL	Server	compact	disc
case.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
xp_msver,	without	any	parameters,	returns	this	four-column	result	set	(values
may	vary):

Index		Name																					Internal_Value	Character_Value																																																																																																																																																																																																							
------	------------------------	--------------	----------------	
1						ProductName														NULL											Microsoft	SQL	
																																			Server
2						ProductVersion											458752									7.00.498
3						Language																	1033											English	(United	
																																			States)
4						Platform																	NULL											NT	INTEL	X86
5						Comments																	NULL											NT	INTEL	X86
6						CompanyName														NULL											Microsoft	
																																			Corporation
7						FileDescription										NULL											SQL	Server	
																																			Windows	NT
8						FileVersion														NULL											1998.05.25
9						InternalName													NULL											SQLSERVR
10					LegalCopyright											NULL											Copyright	©	
																																			Microsoft	Corp.	1998
11					LegalTrademarks										NULL											Microsoft®	is	a	
																																			registered	trademark	of																																							Microsoft	Corporation.																																							Windows(TM)	is	a																																													trademark	of	Microsoft																																							Corporation
12					OriginalFilename									NULL											SQLSERVR.EXE
13					PrivateBuild													NULL											NULL
14					SpecialBuild													262242									NULL
15					WindowsVersion											90505220							4.0	(1381)
16					ProcessorCount											1														1
17					ProcessorActiveMask						1														00000001
18					ProcessorType												586												PROCESSOR_INTEL_PENTIUM
19					PhysicalMemory											63													63	(66510848)
20					Product	ID															NULL											NULL

(20	row(s)	affected)

xp_msver,	for	any	option,	returns	the	four-column	headings	with	values	for	that
option.	For	example,	this	result	set	is	returned	when	xp_msver	is	executed	with
the	FileDescription	option.

xp_msver	FileDescription

Index		Name																						Internal_Value	Character_Value																																																																																																																																																																																																							
------	-------------------------	--------------	------------------------
7						FileDescription											NULL											SQL	Server	Windows	NT

(1	row(s)	affected)

Permissions
Execute	permissions	default	to	the	public	role.

See	Also

System	Functions

System	Stored	Procedures	(General	Extended	Procedures)

@@VERSION

Transact-SQL	Reference

xp_readmail
Reads	a	mail	message	from	the	Microsoft®	SQL	Server™	mail	inbox.	This
procedure	is	used	by	sp_processmail	to	process	all	mail	in	the	SQL	Server
inbox.

Syntax
xp_readmail	[[@msg_id	=]	'message_number']
				[,	[@type	=]	'type'	[OUTPUT]]	
				[,[@peek	=]	'peek']
				[,[@suppress_attach	=]	'suppress_attach']
				[,[@originator	=]	'sender'	OUTPUT]
				[,[@subject	=]	'subject'	OUTPUT]
				[,[@message	=]	'message'	OUTPUT]
				[,[@recipients	=]	'recipients	[;...n]'	OUTPUT]
				[,[@cc_list	=]	'copy_recipients	[;...n]'	OUTPUT]
				[,[@bcc_list	=]	'blind_copy_recipients	[;...n]'	OUTPUT]
				[,[@date_received	=]	'date'	OUTPUT]
				[,[@unread	=]	'unread_value'	OUTPUT]
				[,[@attachments	=]	'attachments	[;...n]'	OUTPUT])
				[,[@skip_bytes	=]	bytes_to_skip	OUTPUT]
				[,[@msg_length	=]	length_in_bytes	OUTPUT]
				[,[@originator_address	=]	'sender_address'	OUTPUT]]

Arguments
[@msg_id	=]	'message_number'

Is	the	number	of	the	message	to	read.	message_number	is	varchar(255),
with	no	default.

'type'

Is	the	message	type	to	return	based	on	the	MAPI	mail	definition:

IP[M	|	C].Vendorname.subclass

If	used	on	input,	this	must	define	the	type	for	a	specific	message;	type	is
ignored	on	input	if	the	message_number	is	NULL.	type	is	varchar(255),
with	a	default	of	NULL.

OUTPUT

When	specified,	places	the	value	of	the	specified	parameter	in	the	output
parameter.

[@peek	=]	'peek'

Is	whether	SQL	Server	returns	the	message	of	the	mail	without	changing	the
mail	status	to	read.	peek	is	varchar(5),	with	a	default	of	FALSE.	If	set	to
false,	the	mail	is	treated	as	though	it	has	been	read.	If	set	to	true,	the	mail	is
treated	as	though	it	has	not	been	read.

[@suppress_attach	=]	'suppress_attach'

Is	whether	mail	attachments	are	suppressed.	suppress_attach	is
varchar(255),	with	a	default	of	TRUE	(do	not	create	temporary	files).	If	set
to	true,	SQL	Server	prevents	the	creation	of	temporary	files	when
xp_readmail	reads	a	message	with	attachments.	If	set	to	false,	there	is	no
prevention	of	temporary	files	when	messages	with	attachments	are	read.

[@originator	=]	'sender'

Is	the	returned	mail	address	of	the	sender.	sender	is	varchar(255),	with	no
default.

[@subject	=]	'subject'

Is	the	returned	the	subject	of	the	mail	message.	subject	is	varchar(255),	with
no	default.

[@message	=]	'message'

Is	the	returned	body	or	the	actual	text	of	the	mail	message.	message	is	text,
with	no	default.

[@recipients	=]	'recipients	[;...n]'

Is	the	semicolon-separated	list	of	the	recipients	for	the	mail	message	to	be
returned.	Recipients'	names	are	separated	by	a	semicolon	(;).	recipient_list	is
varchar(255),	with	no	default.

[@cc_list	=]	'copy_recipients	[;...n]'

Is	the	semicolon-separated	list	of	the	copied	recipients	(cc:'ed)	for	the	mail
message	to	be	returned.	Recipients'	names	are	separated	by	a	semicolon	(;).
cc_list	is	varchar(255),	with	no	default.

[@bcc_list	=]	'blind_copy_recipients	[;...n]'

Is	the	semicolon-separated	list	for	the	blind	copy	recipients	(bcc:'ed)	of	the
mail	message	to	be	returned.	Recipients'	names	are	separated	by	a	semicolon
(;).	bcc_list	is	varchar(255),	with	no	default.

[@date_received	=]	'date'

Is	the	returned	date	of	the	mail	message.	date	is	varchar(255),	with	no
default.

[@unread	=]	'unread_value'

Is	whether	a	message	has	been	previously	unread	(true)	or	not	(false).
unread_value	is	varchar(5),	with	a	default	of	TRUE.

[@attachments	=]	'attachments	[;...n]'

Is	the	semicolon-separated	list	of	returned	temporary	paths	of	the	mail
attachments	for	the	message.	Temporary	paths	are	separated	by	a	semicolon
(;).	attachments	is	varchar(255),	with	no	default.

[@skip_bytes	=]	bytes_to_skip	OUTPUT

If	a	value	other	than	0	is	passed	for	input,	this	parameter	specifies	the
number	of	bytes	to	skip	before	reading	the	next	255	bytes	(max)	of	the
message	into	the	body	of	message	output	parameter.	When	bytes_to_skip	is
used,	body_of_message	includes	the	next	portion	of	the	message	and
bytes_to_skip	returns	with	the	next	starting	point	within	the	message	(the
previous	bytes_to_skip	plus	the	length	of	message).	bytes_to_skip	is	int,	with
a	default	of	0.

[@msg_length	=]	length_in_bytes	OUTPUT

Is	the	total	length	of	the	message,	in	bytes.	When	used	with	bytes_to_skip	in
a	stored	procedure,	this	parameter	allows	messages	to	be	read	in	chunks	of
255	bytes.	length_in_bytes	is	int,	with	a	default	of	255	(bytes).

[@originator_address	=]	'sender_address'

Is	the	resolved	mail	address	of	the	originator	of	the	mail	message.
sender_address	is	varchar(255),	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
xp_readmail	returns	a	result	set	with	these	columns	(older	messages	appear
first).

Column	name Description
Originator Sender	of	e-mail	message
Date	Received Date	the	e-mail	message	was	received
Recipients The	people	to	whom	the	message	was	sent
CC	List The	people	on	the	CC'd	line	of	the	e-mail

message
BCC	List The	people	on	the	BCC'd	line	of	the	e-mail

message
Subject Subject	line	of	the	e-mail	message
Message Message	body	(text)
Unread Whether	this	message	is	unread
Attachments Any	attachments	for	the	message
Message	ID Message	ID
Type Message	type

Remarks
Any	failure	except	an	invalid	parameter	is	logged	to	the	Microsoft	Windows
NT®	application	log.

There	are	two	ways	to	use	xp_readmail:

Return	the	contents	of	the	inbox	as	a	result	set	to	the	client.

Read	a	single	message	from	the	inbox.

To	return	the	contents	of	the	inbox	as	a	result	set	to	the	client	either	set
message_number	to	NULL	or	do	not	include	message_number.	In	this	situation,
type	can	be	used	to	read	specific	messages.	You	can	specify	peek	and
suppress_attach	as	input	parameters	to	control	the	way	the	message	is	read.

To	read	a	single	message	from	the	inbox,	supply	a	valid	message_number
returned	by	xp_findnextmsg	as	an	input	parameter	to	xp_readmail.	You	can
specify	peek	and	suppress_attach	as	input	parameters	to	control	the	way	the
message	is	read.	When	using	peek	and	suppress_attach	with	this	method,	all
other	parameters	are	optional	output	parameters	containing	specific	information
from	the	message	to	be	read.

You	can	view	an	example	of	using	xp_findnextmsg	as	an	input	parameter	to
xp_readmail	by	executing	the	following	command:

sp_helptext	'sp_processmail'

When	used	to	read	a	single	message,	xp_readmail	can	read	message	text	of
longer	than	255	bytes	in	sections.	Use	length_in_bytes	and	length_in_bytes	to
read	message	text	of	longer	than	255	bytes	in	sections.	Using	length_in_bytes	as
both	an	input	and	output	parameter	allows	coding	of	a	loop	to	process	the	entire
message	text.	The	following	code	shows	an	example	of	such	a	loop,	assuming
message_number	is	set	to	a	valid	message	identifier	returned	by
xp_findnextmsg.

USE	master
WHILE	(1	=	1)
BEGIN
EXEC	@status	=	xp_readmail	@msg_id	=	@msg_id,
			@message	=	@message	OUTPUT,
			@skip_bytes	=	@skip_bytes	OUTPUT,
			@msg_length	=	@msg_length	OUTPUT

IF	@status	<>	0	BREAK
SELECT	'msg_id'	=	@msg_id,	'msg_part'	=	@message
IF	@skip_bytes	=	@msg_length	BREAK
END

Permissions
Execute	permissions	for	xp_readmail	default	to	members	of	the	db_owner
fixed	database	role	in	the	master	database	and	members	of	the	sysadmin	fixed
server	role,	but	can	be	granted	to	other	users.

Examples

This	example	returns	the	status	when	reading	a	message.	In	this	example,	the
value	of	a	message	ID	from	xp_findnextmsg	is	placed	in	the	local	variable
@message_id	and	passed	to	xp_readmail.

USE	master
EXEC	@status	=	xp_readmail	@msg_id	=	@message_id,
			@originator	=	@originator	OUTPUT,
			@cc_list	=	@cc_list	OUTPUT,
			@subject	=	@msgsubject	OUTPUT,
			@message	=	@query	OUTPUT,
			@peek	=	'TRUE',
			@suppress_attach	=	'TRUE'

See	Also

sp_processmail

System	Stored	Procedures	(SQL	Mail	Extended	Procedures)

xp_deletemail

xp_findnextmsg

xp_sendmail

xp_startmail

xp_stopmail

Transact-SQL	Reference

xp_revokelogin
Revokes	access	from	a	Microsoft®	Windows	NT®	group	or	user	to	Microsoft
SQL	Server™.	xp_revokelogin	is	provided	for	backward	compatibility.	Use
sp_revokelogin.

Syntax
xp_revokelogin	{[@loginame	=]	'login'}

Arguments
[@loginame	=]	'login'

Is	the	name	of	the	Windows	NT	user	or	group	to	be	revoked	access.	The
Windows	NT	user	or	group	must	be	qualified	with	a	Windows	NT	domain
name.	login	is	sysname,	with	no	default.

Return	Code	Values
0	(success)	or	1	(failure)

Remarks
xp_revokelogin	is	now	a	system	stored	procedure	rather	than	an	extended	stored
procedure	and	calls	sp_revokelogin	to	revoke	access	to	SQL	Server	for	a
Windows	NT	group	or	user.

See	Also

sp_denylogin

sp_grantlogin

sp_revokelogin

System	Stored	Procedures	(General	Extended	Procedures)

xp_loginconfig

xp_logininfo

Transact-SQL	Reference

xp_sendmail
Sends	a	message	and	a	query	result	set	attachment	to	the	specified	recipients.

Syntax
xp_sendmail	{[@recipients	=]	'recipients	[;...n]'}					[,[@message	=]
'message']	
				[,[@query	=]	'query']	
				[,[@attachments	=]	'attachments	[;...n]']	
				[,[@copy_recipients	=]	'copy_recipients	[;...n]'
				[,[@blind_copy_recipients	=]	'blind_copy_recipients	[;...n]'
				[,[@subject	=]	'subject']
				[,[@type	=]	'type']	
				[,[@attach_results	=]	'attach_value']
				[,[@no_output	=]	'output_value']	
				[,[@no_header	=]	'header_value']	
				[,[@width	=]	width]	
				[,[@separator	=]	'separator']	
				[,[@echo_error	=]	'echo_value']	
				[,[@set_user	=]	'user']	
				[,[@dbuse	=]	'database']

Arguments
[@recipients	=]	'recipients	[;...n]'

Is	the	semicolon-separated	list	of	the	recipients	of	the	mail.

n

Is	a	placeholder	indicating	that	more	than	one	recipient,	copy_recipient,	or
blind_copy_recipient	can	be	specified.

[@message	=]	'message'

Is	the	message	to	be	sent.	message	can	be	up	to	8,000	bytes.

[@query	=]	'query'

Is	a	valid	Microsoft®	SQL	Server™	query,	the	result	of	which	is	sent	in
mail.	xp_sendmail	uses	a	bound	connection	for	the	query	parameter.	The
query	connection	made	by	SQL	Mail	is	not	blocked	by	locks	held	by	the
client	that	issues	the	xp_sendmail	request.	This	makes	xp_sendmail	easier
to	use	from	within	triggers.	The	query	statement,	however,	cannot	refer	to
the	logical	inserted	and	deleted	tables	that	are	only	available	within	a	trigger.
query	can	be	up	to	8,000	bytes.

[@attachments	=]	'attachments	[;...n]'

Is	a	semicolon-separated	list	of	files	to	attach	to	the	mail	message.

[@copy_recipients	=]	'copy_recipients	[;...n]'

Is	the	semicolon-separated	list	identifying	the	recipients	of	a	copy	of	the	mail
(cc:'ing).

[@blind_copy_recipients	=]	'blind_copy_recipients	[;...n]'

Is	an	optional	semicolon-separated	list	identifying	recipients	of	a	blind	copy
of	the	mail	(bcc:'ing).

[@subject	=]	'subject'

Is	an	optional	parameter	specifying	the	subject	of	the	mail.	If	subject	is	not
specified,	SQL	Server	Message	is	the	default.

[@type	=]	'type'

Is	the	input	message	type	based	on	the	MAPI	mail	definition:

IP[M	|	C].Vendorname.subclass

If	type	is	NULL,	message	types	beginning	with	IPM	appear	in	the	inbox	of
the	mail	client	and	are	found	or	read	by	xp_findnextmsg.	Message	types
beginning	with	IPC	do	not	appear	in	the	inbox	of	the	mail	client	and	must	be
found	or	read	by	setting	the	type	parameter.	The	default	is	NULL.

For	more	information	about	using	custom	message	types,	see	the	Microsoft
Windows	NT	Resource	Kit	or	the	Microsoft	Mail	Technical	Reference,
available	separately.

[@attach_results	=]	'attach_value'

Is	an	optional	parameter	specifying	the	result	set	of	a	query	should	be	sent	in
mail	as	an	attached	file	instead	of	being	appended	to	the	mail.	If	attachments
is	not	NULL	and	attach_results	is	true,	the	first	file	name	in	attachments	is
used	as	the	file	name	for	the	results.	If	attachments	is	NULL,	a	file	name	is
generated	with	a	.txt	extension.	The	default	is	FALSE,	which	means	that	the
result	set	is	appended	to	the	message.

[@no_output	=]	'output_value'

Is	an	optional	parameter	that	sends	the	mail	but	does	not	return	any	output	to
the	client	session	that	sent	the	mail.	The	default	is	FALSE,	which	means	that
the	client	session	of	SQL	Server	receives	output.

[@no_header	=]	'header_value'

Is	an	optional	parameter	that	sends	the	query	results	in	mail	but	does	not
send	column	header	information	with	the	query	results.	The	default	is
FALSE,	which	means	that	column	header	information	is	sent	with	the	query
results.

[@width	=]	width

Is	an	optional	parameter	setting	the	line	width	of	the	output	text	for	a	query.
This	parameter	is	identical	to	the	/w	parameter	in	the	isql	utility.	For	queries
producing	long	output	rows,	use	width	with	attach_results	to	send	the	output
without	line	breaks	in	the	middle	of	output	lines.	The	default	width	is	80
characters.

[@separator	=]	'separator'

Is	the	column-separator	string	for	each	column	of	the	result	set.	By	default,
the	column-separator	is	a	blank	space.	Use	of	a	column-separator	allows
easier	accessibility	of	the	result	set	from	spreadsheets	and	other	applications.
For	example,	use	separator	with	attach_results	to	send	files	with	comma-
separated	values.

[@echo_error	=]	'echo_value'

When	true,	causes	SQL	Mail	to	capture	any	server	messages	or	DB-Library
errors	encountered	while	running	the	query	and	append	them	to	the	mail
message	rather	than	writing	them	to	the	error	log.	Also,	a	count	of	rows
returned/rows	affected	is	appended	to	the	mail	message.

Note		When	echo_error	is	true,	xp_sendmail	returns	a	status	of	0	(success)	if
the	mail	is	successfully	sent,	even	if	DB-Library	errors	or	messages	are
encountered	or	the	query	returns	no	results.

[@set_user	=]	'user'

Is	the	security	context	in	which	the	query	should	be	run.	If	user	is	not
specified,	the	security	context	defaults	to	that	of	the	user	executing
xp_sendmail.

[@dbuse	=]	'database'

Is	the	database	context	in	which	the	query	should	be	run.	The	default	is
NULL,	which	means	the	user	is	placed	in	the	default	database.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
xp_sendmail	returns	this	message:

Mail	sent.

Remarks
The	SQL	Mail	session	must	be	started	prior	to	executing	xp_sendmail.	Sessions
can	be	started	either	automatically	or	with	xp_startmail.	For	more	information
about	setting	up	a	SQL	Mail	session	automatically,	see	Configuring	Mail
Profiles.	One	SQL	Mail	session	supports	all	users	on	the	SQL	Server,	but	only
one	user	at	a	time	can	send	a	message.	Other	users	sending	mail	messages
automatically	wait	their	turns	until	the	first	user's	message	is	sent.

If	query	is	specified,	xp_sendmail	logs	in	to	SQL	Server	as	a	client	and	executes
the	specified	query.	SQL	Mail	makes	a	separate	connection	to	SQL	Server;	it
does	not	share	the	same	connection	as	the	original	client	connection	issuing
xp_sendmail.

Note		query	can	be	blocked	by	a	lock	held	by	the	client	connection	issued
xp_sendmail.	For	example,	if	you	are	updating	a	table	within	a	transaction	and

JavaScript:hhobj_1.Click()

you	create	a	trigger	for	update	that	attempts	to	select	the	same	updated	row
information	as	the	query	parameter,	the	SQL	Mail	connection	is	blocked	by	the
exclusive	lock	held	on	row	by	the	initial	client	connection.

xp_sendmail	runs	in	SQL	Server's	security	context,	which	is	a	local
administrator	account	by	default.	A	valid	user	of	xp_sendmail	can	access	files
for	attachment	to	a	mail	message	in	an	administrator's	security	context.	If
nonsystem	administrator	users	must	access	xp_sendmail	and	you	want	to	guard
against	unsecured	access	to	attachment	files,	the	system	administrator	can	create
a	stored	procedure	that	calls	xp_sendmail	and	provides	the	needed	functionality
but	does	not	expose	the	attachments	parameter.	This	stored	procedure	must	be
defined	in	the	master	database.	The	system	administrator	then	grants	execute
permission	on	the	stored	procedure	to	the	necessary	users	without	granting
permission	to	the	underlying	xp_sendmail	procedure.

xp_sendmail	sends	a	message	and	a	query	result	set	or	an	attachment	to
specified	recipients,	and	uses	a	bound	connection	for	the	query	parameter.	The
query	connection	made	by	SQL	Mail	is	not	blocked	by	locks	held	by	the	client
that	issues	the	xp_sendmail	request.	This	makes	xp_sendmail	easier	to	use	from
within	triggers.	The	query	statement,	however,	cannot	refer	to	the	logical
inserted	and	deleted	tables	that	are	only	available	within	a	trigger.

Note		An	access	violation	can	result	from	an	attempt	to	execute	xp_sendmail
when	the	post	office	and	address	book	are	on	a	file	share	that	the	MSSQLServer
service	cannot	access	due	to	inadequate	permissions.

For	more	information	about	using	a	stored	procedure	for	calling	xp_sendmail,
see	How	to	use	SQL	Mail	(Transact-SQL).

Permissions
Execute	permissions	for	xp_sendmail	default	to	members	of	the	db_owner
fixed	database	role	in	the	master	database	and	members	of	the	sysadmin	fixed
server	role,	but	can	be	granted	to	other	users.

Examples

A.	Use	xp_sendmail	with	no	variables

JavaScript:hhobj_2.Click()

This	example	sends	a	message	to	user	Robert	King	(e-mail	is	robertk)	that	the
master	database	is	full.

EXEC	xp_sendmail	'robertk',	'The	master	database	is	full.'

B.	Use	xp_sendmail	with	variables
This	example	sends	the	message	to	users	Robert	King	and	Laura	Callahan	(e-
mail	is	laurac),	with	copies	sent	to	Anne	Dodsworth	(e-mail	is	anned)	and
Michael	Suyama	(e-mail	is	michaels).	It	also	specifies	a	subject	line	for	the
message.

EXEC	xp_sendmail	@recipients	=	'robertk;laurac',	
			@message	=	'The	master	database	is	full.',
			@copy_recipients	=	'anned;michaels',
			@subject	=	'Master	Database	Status'

C.	Send	results
This	example	sends	the	results	of	the	sp_configure	to	Robert	King.

EXEC	xp_sendmail	'robertk',	@query	=	'sp_configure'

D.	Send	results	as	an	attached	file
This	example	sends	the	results	of	the	query	SELECT	*	FROM
INFORMATION_SCHEMA.TABLES	as	a	text	file	attachment	to	Robert	King.
It	includes	a	subject	line	for	the	mail	and	a	message	that	will	appear	before	the
attachment.	The	@width	parameter	is	used	to	prevent	line	breaks	in	the	output
lines.

EXEC	xp_sendmail	@recipients	=	'robertk',	
			@query	=	'SELECT	*	FROM	INFORMATION_SCHEMA.TABLES',
			@subject	=	'SQL	Server	Report',
			@message	=	'The	contents	of	INFORMATION_SCHEMA.TABLES:',
			@attach_results	=	'TRUE',	@width	=	250

E.	Send	messages	longer	than	7,990	characters

This	example	shows	how	to	send	a	message	longer	than	7,990	characters.
Because	message	is	limited	to	the	length	of	a	varchar	(less	row	overhead,	as	are
all	stored	procedure	parameters),	this	example	writes	the	long	message	into	a
global	temporary	table	consisting	of	a	single	text	column.	The	contents	of	this
temporary	table	are	then	sent	in	mail	using	the	@query	parameter.

CREATE	TABLE	##texttab	(c1	text)
INSERT	##texttab	values	('Put	your	long	message	here.')
DECLARE	@cmd	varchar(56)
SET	@cmd	=	'SELECT	c1	FROM	##texttab'
EXEC	master.dbo.xp_sendmail	'robertk',	
			@query	=	@cmd,	@no_header=	'TRUE'
DROP	TABLE	##texttab

See	Also

sp_processmail

System	Stored	Procedures	(SQL	Mail	Extended	Procedures)

xp_deletemail

xp_findnextmsg

xp_readmail

xp_startmail

xp_stopmail

Transact-SQL	Reference

xp_sprintf
Formats	and	stores	a	series	of	characters	and	values	in	the	string	output
parameter.	Each	format	argument	is	replaced	with	the	corresponding	argument.

Syntax
xp_sprintf	{string	OUTPUT,	format}
				[,	argument	[,...n]]

Arguments
string

Is	a	varchar	variable	that	receives	the	output.

OUTPUT

When	specified,	places	the	value	of	the	variable	in	the	output	parameter.

format

Is	a	format	character	string	with	placeholders	for	argument	values,	similar	to
that	supported	by	the	C-language	sprintf	function.	Currently,	only	the	%s
format	argument	is	supported.

argument

Is	a	character	string	representing	the	value	of	the	corresponding	format
argument.

n

Is	a	placeholder	indicating	that	a	maximum	of	50	arguments	can	be	specified.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets

xp_sprintf	returns	this	message:

The	command(s)	completed	successfully.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	uses	parameter	to	create	an	INSERT	statement.

DECLARE	@ret_string	varchar	(255)
EXEC	xp_sprintf	@ret_string	OUTPUT,	'INSERT	INTO	%s	VALUES	(%s,	%s)',	'table1',	'1',	'2'
PRINT	@ret_string

Here	is	the	result	set:

INSERT	INTO	table1	VALUES	(1,	2)

See	Also

System	Stored	Procedures	(General	Extended	Procedures)

xp_sscanf

Transact-SQL	Reference

xp_sqlagent_proxy_account
Sets	or	retrieves	the	proxy	account	information	used	by	SQL	Server	Agent	and
the	xp_cmdshell	extended	stored	procedure	when	executing	jobs	or	commands
for	users	who	are	not	members	of	the	sysadmin	fixed	server	role.	The	proxy
account	is	a	Microsoft®	Windows®	account	in	whose	security	context	the	jobs
or	command	prompt	commands	are	run.

Syntax
xp_sqlagent_proxy_account

																			{	N'GET'	|

																					N'SET',	N'agent_domain_name',	N'agent_username',
N'agent_password'

																				}

Arguments
N'GET'

Retrieves	the	name	of	the	current	SQL	Server	Agent	proxy	account.	N'GET'
is	nvarchar	with	no	default.

N'SET'

Sets	the	Windows	account	to	be	used	as	the	SQL	Server	Agent	proxy
account.	Use	the	agent_domain_name,	agent_username,	and
agent_password	parameters	to	specify	the	Windows	account	to	use	as	the
proxy	account.	If	you	do	not	specify	valid	Windows	account	information,
such	as	not	specifying	the	correct	password,	sp_sqlagent_proxy_account
will	receive	an	error.	N'SET'	is	nvarchar	with	no	default.

'agent_domain_name'

Is	the	name	of	the	Windows	domain	containing	the	Windows	user	account
specified	in	agent_username.	agent_domain_name	is	nvarchar	with	no
default.

'agent_username'

Is	the	name	of	the	Windows	account	to	be	used	as	the	SQL	Server	Agent
proxy	account.	agent_username	is	nvarchar	with	no	default.

'agent_password'

Is	the	password	for	the	Windows	account	specified	in	agent_username.
agent_password	is	nvarchar	with	no	default.

Note		Parameters	for	xp_sqlagent_proxy_account	must	be	specified	in	order.
Named	parameters	cannot	be	used.

Return	Code	Values
0	(success)	or	1	(failure)

When	the	execution	of	xp_sqlagent_proxy_account	fails,	SQL	Server	generates
an	error	message	with	information	about	the	error.

Result	Sets
If	a	SQL	Server	Agent	proxy	account	has	been	set,	xp_sqlagent_proxy_account
returns	a	result	set	with	the	following	information	when	you	specify	N'GET'.

Column Data	type Description
domain sysname Domain	containing	the

Windows	account	used
as	the	SQL	Server	Agent
proxy	account.

username sysname Windows	account	used
as	the	SQL	Server	Agent
proxy	account.

If	a	SQL	Server	Agent	proxy	account	has	not	been	set,	or	if	N'SET'	is	specified,
no	result	set	is	returned.

Remarks
SQL	Server	Agent	proxy	accounts	allow	SQL	Server	users	who	do	not	belong	to
the	sysadmin	fixed	server	role	to	execute	xp_cmdshell	and	own	SQL	Server

Agent	jobs.	The	administrators	can	assign	appropriate	security	permissions	to
the	proxy	account	to	control	the	ability	of	these	jobs	to	access	resources	in	the
network.

When	a	SQL	Server	user	executes	a	command	prompt	command	using
xp_cmdshell,	the	command	must	execute	in	the	security	context	of	a	Windows
account.	If	the	SQL	Server	user	is	a	member	of	the	sysadmin	fixed	server	role,
SQL	Server	executes	the	command	prompt	command	using	the	Windows
account	under	which	the	SQL	Server	service	is	running.	If	the	SQL	Server	user
executing	xp_cmdshell	is	not	a	member	of	the	sysadmin	fixed	server	role,	SQL
Server	executes	the	command	using	the	Windows	account	specified	as	the	SQL
Server	Agent	proxy	account.	If	no	SQL	Server	Agent	proxy	account	has	been
set,	the	user	gets	an	error.	SQL	Server	Agent	jobs	also	must	execute	in	the
security	context	of	a	Windows	account.	If	the	job	is	owned	by	a	member	of	the
sysadmin	fixed	server	role,	the	job	executes	using	the	Windows	account	under
which	the	SQL	Server	service	is	running.	If	the	job	owner	is	not	in	sysadmin,
the	job	executes	using	the	SQL	Server	Agent	proxy	account,	and	an	error	is
raised	if	no	proxy	account	has	been	set.

xp_sqlagent_proxy_account	sets	or	retrieves	the	proxy	account	for	the	instance
on	which	it	is	executed.	The	SQL	Server	service	for	that	instance	must	be
running	under	a	Windows	administrator	account	to	read	or	set	the	SQL	Server
Agent	proxy	account.

Permissions
Execute	permissions	for	xp_sqlagent_proxy_account	default	to	members	of	the
sysadmin	fixed	server	role.

Examples

A.	Retrieve	the	currently	assigned	SQL	Server	Agent	proxy
account
This	example	retrieves	the	account	currently	assigned	for	use	as	the	SQL	Server
Agent	proxy	account.

EXEC	master.dbo.xp_sqlagent_proxy_account	N'GET'

This	is	the	result	set.

Domain															Username

NETDOMAIN												john

B.	Set	the	SQL	Server	Agent	proxy	account	without	a	password
This	example	sets	the	SQL	Server	Agent	proxy	account	to	LONDON\ralph
without	specifying	a	password.	This	example	will	receive	an	error	that	the
extended	stored	procedure	cannot	log	in	if	the	LONDON/ralph	account	actually
has	a	password.

EXEC	master.dbo.xp_sqlagent_proxy_account	N'SET',
													N'NETDOMAIN',	--	agent_domain_name
													N'ralph',	--	agent_username
													N''	–	agent	password

C.	Set	the	SQL	Server	Agent	proxy	account	with	a	password
This	example	sets	the	SQL	Server	agent	proxy	account	to	LONDON\Ralph	and
specifies	a	password.

EXEC	master.dbo.xp_sqlagent_proxy_account	N'SET',
													N'NETDOMAIN',	--	agent_domain_name
													N'ralph',	--	agent_username
													N'RalphPwd',	–	agent	password

See	Also

SQL	Server	Agent	Properties	(Job	System	Tab)

System	Stored	Procedures

xp_cmdshell

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

xp_sqlmaint
Calls	the	sqlmaint	utility	with	a	string	containing	sqlmaint	switches.	The
sqlmaint	utility	performs	a	set	of	maintenance	operations	on	one	or	more
databases.

Syntax
xp_sqlmaint	'switch_string'

Arguments
'switch_string'

Is	a	string	containing	the	sqlmaint	utility	switches.	The	switches	and	their
values	must	be	separated	by	a	space.

The	-?	switch	is	not	valid	for	xp_sqlmaint.

Return	Code	Values
None.	Returns	an	error	if	the	sqlmaint	utility	fails.

Remarks
If	this	procedure	is	called	by	a	user	logged	on	with	SQL	Server	Authentication,
the	-U	"login_id"	and	-P	"password"	switches	are	prepended	to	switch_string
before	execution.	If	the	user	is	logged	on	with	Windows	Authentication,
switch_string	is	passed	without	change	to	sqlmaint.

Permissions
Execute	permissions	for	xp_sqlmaint	default	to	members	of	the	db_owner
fixed	database	role	in	the	master	database	and	members	of	the	sysadmin	fixed
server	role,	but	can	be	granted	to	other	users.

Examples

In	this	example,	xp_sqlmaint	calls	sqlmaint	to	perform	integrity	checks,	create
a	report	file,	and	update	msdb.dbo.sysdbmaintplan_history.

EXEC	xp_sqlmaint	'-PlanID	02A52657-D546-11D1-9D8A-00A0C9054212	
			-Rpt	"C:\Program	Files\Microsoft	SQL	Server\MSSQL\LOG\DBMaintPlan2.txt"	-WriteHistory		-CkDB	-CkAl'	

Here	is	the	result:

The	command(s)	executed	successfully.

See	Also

sqlmaint	Utility

System	Stored	Procedures

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

xp_sscanf
Reads	data	from	the	string	into	the	argument	locations	given	by	each	format
argument.

Syntax
xp_sscanf	{string	OUTPUT,	format}
				[,	argument	[,...n]]

Arguments
string

Is	the	character	string	to	read	the	argument	values	from.

OUTPUT

When	specified,	places	the	value	of	argument	in	the	output	parameter.

format

Is	a	formatted	character	string	similar	to	what	is	supported	by	the	C-language
sscanf	function.	Currently	only	the	%s	format	argument	is	supported.

argument

Is	a	varchar	variable	set	to	the	value	of	the	corresponding	format	argument.

n

Is	a	placeholder	indicating	that	a	maximum	of	50	arguments	can	be	specified.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
xp_sscanf	returns	this	message:

The	command(s)	completed	successfully.

Permissions
Execute	permissions	default	to	the	public	role.

Examples
This	example	uses	xp_sscanf	to	extract	two	values	from	a	source	string	based	on
their	positions	in	the	format	of	the	source	string.

DECLARE	@filename	varchar	(20),	@message	varchar	(20)
EXEC	xp_sscanf	'sync	-b	-fauthors10.tmp	-rrandom',	'sync	-b	-f%s	-r%s',
			@filename	OUTPUT,	@message	OUTPUT
SELECT	@filename,	@message

Here	is	the	result	set:

--------------------	--------------------	
authors10.tmp								random

See	Also

System	Stored	Procedures	(General	Extended	Procedures)

xp_sprintf

Transact-SQL	Reference

xp_startmail
Starts	a	SQL	Mail	client	session.

Syntax
xp_startmail	[[@user	=]	'mapi_profile_name']
				[,[@password	=]	'mapi_profile_password']

Arguments
[@user	=]	'mapi_profile_name'

Is	an	optional	parameter	specifying	a	mail	user	name.	mapi_profile_name	is
sysname,	with	no	default.

[@password	=]	'mapi_profile_password'

Is	the	mail	password	for	the	specified	mapi_profile_name.
mapi_profile_password	is	sysname,	with	no	default.	A	value	of	NULL	is
allowed	when	the	mail	client	is	started	(on	the	same	computer)	before
running	xp_startmail.

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
xp_startmail	returns	this	message:

SQL	mail	session	started.

Remarks
If	mapi_profile_name	and	mapi_profile_password	are	provided,	Microsoft®
SQL	Server™	attempts	to	log	on	to	Windows	NT	Mail	(or	other	MAPI	provider)
using	that	user	name	and	password.	If	mapi_profile_name	and
mapi_profile_password	are	provided	but	are	incorrect,	an	error	message	is

returned.	If	mapi_profile_name	and	mapi_profile_password	are	not	provided,
SQL	Server	uses	the	user	name	and	password	specified	in	the	SQL	Server
Properties	dialog	box.	If	no	user	name	or	password	is	explicitly	provided,	SQL
Server	will	attempt	to	log	in	to	the	MAPI	provider	using	the	default	MAPI
profile.	Some	MAPI	providers	may	be	configured	to	use	Windows
Authentication,	in	which	a	case,	the	MAPI	password	is	ignored.

Note		If	you	use	xp_startmail	to	start	your	mail	sessions,	you	can	optionally
supply	your	login	name	and	password	so	that	you	do	not	have	to	type	it	at	the
command	prompt.	However,	SQL	Mail	will	not	piggyback	an	existing	client
session	of	Windows	NT	Mail	if	one	is	running.	This	behavior	differs	from	SQL
Server	version	7.0	and	earlier.

If	there	is	an	existing	mail	session,	xp_startmail	does	not	start	a	new	one.	If
mail	is	being	used	on	the	same	computer	on	which	SQL	Server	is	also	running,
the	mail	client	must	be	started	either	before	xp_startmail	is	executed,	or	before
SQL	Server	is	started	if	SQL	Mail	is	configured	to	automatically	start	when	SQL
Server	starts.

Permissions
Execute	permissions	for	xp_startmail	default	to	members	of	the	db_owner
fixed	database	role	in	the	master	database	and	members	of	the	sysadmin	fixed
server	role,	but	can	be	granted	to	other	users.

Examples

A.	Use	no	variables	with	xp_startmail
This	example	starts	mail	using	the	username	and	password	specified	in	SQL
Server	Setup.

USE	master
EXEC	xp_startmail

B.	Use	variables	with	xp_startmail
This	example	starts	mail	using	the	username	janetl	and	the	password	abc12345.

USE	master
EXEC	xp_startmail	'janetl',	'abc12345'

See	Also

sp_processmail

Configuring	Mail	Profiles

System	Stored	Procedures	(SQL	Mail	Extended	Procedures)

xp_deletemail

xp_findnextmsg

xp_readmail

xp_sendmail

xp_stopmail

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

xp_stopmail
Stops	a	Microsoft®	SQL	Server™	mail	client	session.

Syntax
xp_stopmail

Return	Code	Values
0	(success)	or	1	(failure)

Result	Sets
xp_stopmail	returns	this	message:

Stopped	SQL	mail	session.

Remarks
If	there	is	no	existing	SQL	Server	mail	session	to	stop,	a	message	is	returned.

Permissions
Execute	permissions	for	xp_stopmail	default	to	members	of	the	db_owner	fixed
database	role	in	the	master	database	and	members	of	the	sysadmin	fixed	server
role,	but	can	be	granted	to	other	users.

See	Also

sp_processmail

System	Stored	Procedures	(SQL	Mail	Extended	Procedures)

xp_deletemail

xp_findnextmsg

xp_readmail

xp_sendmail

xp_startmail

Transact-SQL	Reference

System	Tables
The	information	used	by	Microsoft®	SQL	Server™	2000	and	its	components	is
stored	in	special	tables	known	as	system	tables.

System	tables	should	not	be	altered	directly	by	any	user.	For	example,	do	not
attempt	to	modify	system	tables	with	DELETE,	UPDATE,	or	INSERT
statements,	or	user-defined	triggers.

Reference	of	documented	columns	in	system	tables	is	permissible.	However,
many	of	the	columns	in	system	tables	are	not	documented.	Applications	should
not	be	written	to	query	undocumented	columns	directly.	Applications	should
instead	use	any	of	these	components	to	retrieve	information	stored	in	the	system
tables:

Information	schema	views

System	stored	procedures

Transact-SQL	statements	and	functions

SQL-DMO

Database	application	programming	interfaces	(API)	catalog	functions

These	components	constitute	a	published	API	for	obtaining	system	information
from	SQL	Server.	Microsoft	maintains	the	compatibility	of	these	components
from	release	to	release.	The	format	of	the	system	tables	is	dependent	upon	the
internal	architecture	of	SQL	Server	and	may	change	from	release	to	release.
Therefore,	applications	that	directly	access	the	undocumented	columns	of	system
tables	may	have	to	be	changed	before	they	can	access	a	later	version	of	SQL
Server.

System	Tables	in	the	master	Database	Only

These	tables	store	server-level	system	information.

sysaltfiles syslockinfo
syscacheobjects syslogins
syscharsets sysmessages
sysconfigures sysoledbusers
syscurconfigs sysperfinfo
sysdatabases sysprocesses
sysdevices sysremotelogins
syslanguages sysservers

System	Tables	in	Every	Database
These	tables	store	database-level	system	information	for	each	database.

syscolumns sysindexkeys
syscomments sysmembers
sysconstraints sysobjects
sysdepends syspermissions
sysfilegroups sysprotects
sysfiles sysreferences
sysforeignkeys systypes
sysfulltextcatalogs sysusers
sysindexes 	

SQL	Server	Agent	Tables	in	the	msdb	Database
These	tables	store	information	used	by	SQL	Server	Agent.

sysalerts sysjobsteps
syscategories sysnotifications
sysdownloadlist sysoperators
sysjobhistory systargetservergroupmembers

sysjobs systargetservergroups
sysjobschedules systargetservers
sysjobservers systaskids

Tables	in	the	msdb	Database
These	tables	store	information	used	by	database	backup	and	restore	operations.

backupfile restorefile
backupmediafamily restorefilegroup
backupmediaset restorehistory
backupset 	

Tables	Used	to	Store	Replication	Information
These	tables	are	used	by	replication	and	stored	in	the	master	database.

sysdatabases sysservers

These	tables	are	used	by	replication	and	stored	in	the	msdb	database.

sysreplicationalerts 	

These	tables	are	used	by	replication	and	stored	in	the	distribution	database.

MSagent_parameters Mspublisher_databases
MSagent_profiles MSreplication_objects
MSarticles MSreplication_subscriptions
MSdistpublishers MSrepl_commands
MSdistributiondbs MSrepl_errors
MSdistribution_agents MSrepl_originators

MSdistribution_history MSrepl_transactions
MSdistributor MSrepl_version
MSlogreader_agents MSsnapshot_agents
MSlogreader_history MSsnapshot_history
MSmerge_agents MSsubscriber_info
MSmerge_history MSsubscriber_schedule
MSmerge_subscriptions MSsubscriptions
MSpublication_access MSsubscription_properties
Mspublications 	

These	tables	are	used	by	replication	and	stored	in	the	publication	database.

MSmerge_contents sysmergearticles
MSmerge_delete_conflicts sysmergepublications
MSmerge_genhistory sysmergeschemachange
MSmerge_replinfo sysmergesubscriptions
MSmerge_tombstone sysmergesubsetfilters
sysarticles syspublications
sysarticleupdates syssubscriptions

Transact-SQL	Reference

backupfile
Contains	one	row	for	each	data	or	log	file	that	is	backed	up.	This	table	is	stored
in	the	msdb	database.

Column	name Data	type Description
backup_set_id int	NOT	NULL

REFERENCES
backupset(backup_
set_id)

Unique	identification
number	of	the	file
containing	the	backup	set.

first_family_number tinyint	NULL Family	number	of	the	first
media	containing	this
backup	file.

first_media_number smallint	NULL Media	number	of	the	first
media	containing	this
backup	file.

filegroup_name nvarchar(128)
NULL

Name	of	the	filegroup
containing	the	database
(data	or	log)	file	backed	up.

page_size int	NULL Size	of	the	page,	in	bytes.
file_number numeric(10,0)	NOT

NULL
Unique	file	identification
number	(FILE_ID).

backed_up_page_count numeric(10,0)
NULL

Number	of	pages	backed	up.

file_type char(1)	NULL File	backed	up.	Can	be
either	D	for	data	or	L	for
log.

source_file_block_size numeric(10,0)
NULL

Device	that	the	original	data
or	log	file	resided	on	when	it
was	backed	up.

file_size numeric(20,0)
NULL

Length	of	the	file	that	is
backed	up,	in	bytes.

logical_name nvarchar(128)
NULL

Logical	name	of	the	file	that
is	backed	up.

physical_drive varchar(260)
NULL

Physical	drive	or	partition
name.

physical_name varchar(260)
NULL

Remainder	of	the	physical
(operating	system)	file
name.

Transact-SQL	Reference

backupmediafamily
Contains	one	row	for	each	media	family.	This	table	is	stored	in	the	msdb
database.

Column	name Data	type Description
media_set_id int	NOT	NULL

REFERENCES
backupmediaset
(media_set_id)

Unique	identification	number
that	identifies	the	media	set
of	which	this	family	is	a
member.

family_sequence_
number

tinyint	NOT	NULL Position	of	this	media	family
in	the	media	set.

media_family_id uniqueidentifier
NULL

Unique	identification	number
that	identifies	the	media
family.

media_count int	NULL Number	of	media	in	the
media	family.

logical_device_name nvarchar(128)
NULL

Name	of	the	backup	device	in
sysdevices.
logical_device_name	is
NULL	if	this	is	a	temporary
backup	device	(as	opposed	to
a	permanent	backup	device
that	exists	in	sysdevices).

physical_device_name nvarchar(260)
NULL

Physical	name	of	the	backup
device.

device_type tinyint	NULL Type	of	backup	device:

Disk
2	=	Temporary.
102	=	Permanent.

Tape
5	=	Temporary.
105	=	Permanent.

Pipe
6	=	Temporary.
106	=	Permanent.

All	permanent	device	names
and	device	numbers	can	be
found	in	sysdevices.

physical_block_size int	NULL Physical	block	size	used	to
write	the	media	family.

Transact-SQL	Reference

backupmediaset
Contains	one	row	for	each	backup	media	set.	This	table	is	stored	in	the	msdb
database.

Column	name Data	type Description
media_set_id int	IDENTITY

PRIMARY	KEY
Unique	media	set
identification	number.

media_uuid uniqueidentifier
NULL

Number	of	media	in	the
media	set.	If	only	one	media
family	in	the	backup	set,	then
this	column	is	NULL
(media_family_count	is	1).

media_family_count tinyint	NULL Number	of	media	families	in
the	media	set.

name nvarchar(128)
NULL

Name	of	the	media	set.	For
more	information,	see
MEDIANAME	and
MEDIADESCRIPTION	in
BACKUP.	

description nvarchar(255)
NULL

Textual	description	of	the
media	set.	For	more
information,	see
MEDIANAME	and
MEDIADESCRIPTION	in
BACKUP.

software_name nvarchar(128)
NULL

Name	of	the	backup	software
that	wrote	the	media	label.

software_vendor_id int	NULL Identification	number	of	the
software	vendor	that	wrote
the	backup	media	label.	The
Microsoft®	SQL	Server™
value	for	this	column	is
hexadecimal	0x1200.

MTF_major_version tinyint	NULL Major	version	number	of

Microsoft	Tape	Format	used
to	generate	this	media	set.

Transact-SQL	Reference

backupset
Contains	a	row	for	each	backup	set.	This	table	is	stored	in	the	msdb	database.

Column	name Data	type Description
backup_set_id int	NOT	NULL

IDENTITY
PRIMARY	KEY

Unique	backup	set
identification	number	that
identifies	the	backup	set.

backup_set_uuid uniqueidentifier
NOT	NULL

Unique	backup	set
identification	number	that
identifies	the	backup	set	on
the	media.

media_set_id int	NOT	NULL
REFERENCES
backupmediaset
(media_set_id)

Unique	media	set
identification	number	that
identifies	the	media	set
containing	the	backup	set.

first_family_number tinyint	NULL Family	number	of	the
media	where	the	backup	set
starts.

first_media_number smallint	NULL Media	number	of	the	media
where	the	backup	set	starts.

last_family_number tinyint	NULL Family	number	of	the
media	where	the	backup	set
ends.

last_media_number smallint	NULL Media	number	of	the	media
where	the	backup	set	ends.

catalog_family_
number

tinyint	NULL Family	number	of	the
media	containing	the	start
of	the	backup	set	directory.

catalog_media_number smallint	NULL Media	number	of	the	media
containing	the	start	of	the
backup	set	directory.

position int	NULL Backup	set	position	used	in
the	restore	operation	to

locate	the	appropriate
backup	set	and	files.	For
more	information,	see	FILE
in	BACKUP.

expiration_date datetime	NULL Date	and	time	the	backup
set	expires.

software_vendor_id int	NULL Identification	number	of	the
software	vendor	writing	the
backup	media	header.

name nvarchar(128)
NULL

Name	of	the	backup	set.

description nvarchar(255)
NULL

Description	of	the	backup
set.

user_name nvarchar(128)
NULL

Name	of	the	user
performing	the	backup
operation.

software_major_version tinyint	NULL Microsoft®	SQL	Server™
major	version	number.

software_minor_
version

tinyint	NULL SQL	Server	minor	version
number.

software_build_version smallint	NULL SQL	Server	build	number.
time_zone smallint	NULL Difference	between	local

time	(where	the	backup
operation	is	taking	place)
and	Universal	Coordinated
Time	(UCT)	in	15-minute
intervals.	Values	can	be	-48
through	+48,	inclusive.	A
value	of	127	indicates
unknown.	For	example,	-20
is	Eastern	Standard	Time
(EST)	or	5	hours	after
UCT.

mtf_minor_version tinyint	NULL Microsoft	Tape	Format
minor	version	number.

first_lsn numeric(25,0)
NULL

Log	sequence	number	of
the	first	or	oldest	log	record
in	the	backup	set.

last_lsn numeric(25,0)
NULL

Log	sequence	number	of
the	last	or	newest	log
record	in	the	backup	set.

checkpoint_lsn numeric(25,0)
NULL

Log	sequence	number	of
the	log	record	where
recovery	must	start.

database_backup_lsn numeric(25,0)
NULL

Log	sequence	number	of
the	most	recent	full
database	backup.

database_creation_date datetime	NULL Date	and	time	the	database
was	originally	created.

backup_start_date datetime	NULL Date	and	time	the	backup
operation	started.

backup_finish_date datetime	NULL Date	and	time	the	backup
operation	finished.

type char(1)	NULL Backup	type.	Can	be:

D	=	Database.
I	=	Database	Differential.
L	=	Log.
F	=	File	or	Filegroup.

sort_order smallint	NULL Sort	order	of	the	server
performing	the	backup
operation.	For	more
information	about	sort
orders	and	collations,	see
Collations.

code_page smallint	NULL Code	page	of	the	server
performing	the	backup
operation.	For	more
information	about	code
pages,	see	Collations.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

compatibility_level tinyint	NULL Compatibility	level	setting
for	the	database.	Can	be:

60	=	SQL	Server	version
6.0.
65	=	SQL	Server	6.5.
70	=	SQL	Server	7.0.

For	more	information	about
compatibility	levels,	see
sp_dbcmptlevel.

database_version int	NULL Database	version	number.
backup_size numeric(20,0)

NULL
Size	of	the	backup	set,	in
bytes.

database_name nvarchar(128)
NULL

Name	of	the	database
involved	in	the	backup
operation.

server_name nvarchar(128)
NULL

Name	of	the	server	running
the	SQL	Server	backup
operation.

machine_name nvarchar(128)
NULL

Name	of	the	computer
running	SQL	Server.

flags int	NULL Flag	bits:

1	=	Backup	contains
minimally	logged	data.
2	=	WITH	SNAPSHOT
was	used.
4	=	Database	was	read-only
at	time	of	backup.
8	=	Database	was	in	single-
user	mode	at	time	of
backup.

unicode_locale int	NULL Unicode	locale.
unicode_compare_style int	NULL Unicode	compare	style.
collation_name nvarchar(128) Collation	name.

NULL

Transact-SQL	Reference

logmarkhistory
Contains	one	row	for	each	marked	transaction	that	has	been	committed.	This
table	is	stored	in	the	msdb	database.

Column	name Data	type Description
database_name nvarchar(128)	NOT

NULL
Local	database	where	marked
transaction	occurred.

mark_name nvarchar(128)	NOT
NULL

User-provided	name	for	marked
transaction.

description nvarchar(255)	NULL User-provided	description	of	the
marked	transaction.

user_name nvarchar(128)	NULL Database	user	name	that
performed	marked	transaction.

lsn numeric(25,0)	NOT
NULL

Log	sequence	number	of
transaction	record	where	mark
occurred.

mark_time datetime	NOT	NULL Commit	time	of	marked
transaction	(local	time).

Transact-SQL	Reference

log_shipping_databases
This	table	is	stored	in	the	msdb	database.

Column	name Data	type Description
database_name sysname Name	of	the	database	being	log

shipped.
maintenance_plan
_id

uniqueidentifier Maintenance	plan	ID.

Transact-SQL	Reference

log_shipping_monitor
This	table	is	stored	in	the	msdb	database.

Column	name Data	type Description
monitor_server_name sysname Name	of	the	log	shipping

monitor	server.
logon_type int Authentication	method:

1	=	Windows	authentication.
2	=	SQL	Server
authentication.

logon_data varbinary(256) Login	name	and	password.

Transact-SQL	Reference

log_shipping_plan_databases
This	table	is	stored	in	the	msdb	database.

Column	name Data	type Description
plan_id uniqueidentifier The	plan	ID	for	the

maintenance	plan	that	exists
on	the	Secondary.

source_database sysname Primary	database	of	a	log
shipping	pair.

destination_database sysname Secondary	database	of	a	log
shipping	pair.

load_delay int Delay	(in	seconds)	before
restoring	a	transaction	log
after	it	is	transferred	to	the
secondary	server.

load_all bit 1	=	Load	all	copied
transaction	logs.

last_file_copied nvarchar(500) File	name	of	last	transaction
log	copied.

date_last_copied datetime Date	that	last	transaction	log
was	copied.

last_file_loaded nvarchar(500) File	name	of	last	transaction
log	loaded.

date_last_loaded datetime Date	that	last	transaction	log
was	loaded.

copy_enabled bit Allow	copying	of	transaction
logs.

0	=	Disable	copying.
1	=	Enable	copying.

load_enabled bit Allow	loading	of	transaction
logs.

0	=	Disable	loading.

1	=	Enable	loading.

recover_db bit Roll	back	all	uncompleted
transactions	after	restore.

0	=	FALSE
1	=	TRUE

terminate_users bit 1	=	Terminate	database	users.

Transact-SQL	Reference

log_shipping_plan_history
This	table	is	stored	in	the	msdb	database.

Column	name Data	type Description
sequence_id int The	sequence	in	which	rows

were	inserted.
plan_id uniqueidentifier Log	shipping	plan	ID.
source_database sysname Name	of	primary	database	in	log

shipping	pair.
destination_
database

sysname Name	of	secondary	database	in
log	shipping	pair.

activity bit The	action	performed.

0	=	Copy.
1	=	Load.

succeeded bit Roll	back	all	uncompleted
transactions	after	restore.

0	=	FALSE
1	=	TRUE

num_files int Number	of	transaction	logs
shipped	to	secondary	server.

last_file nvarchar(256) Name	of	the	last	file	on	which
this	action	was	performed.

end_time datetime Time	and	date	when	which
action	completed.

duration int Amount	of	time	(in	seconds)
taken	to	complete	the	action.

error_number int Last	error	number	encountered
by	the	action.

message nvarchar(500) Last	error	message	encountered
by	the	action.

Transact-SQL	Reference

log_shipping_plans
This	table	is	stored	in	the	msdb	database.

Column	name Data	type Description
plan_id uniqueidentifier Log	shipping	plan	ID.
plan_name sysname Log	shipping	plan	name.
description nvarchar(500) User	provided	description	of	log

shipping	plan.
source_server sysname Primary	server	of	log	shipping

pair.
source_dir nvarchar(500) Transaction	log	source	directory

on	primary	server.
destination_dir nvarchar(500) Transaction	log	destination

directory	on	secondary	server.
copy_job_id uniqueidentifier Copy	job	ID.
load_job_id uniqueidentifier Load	job	ID.
history_retention
_period

int Length	of	time	to	retain	history
rows	for	this	plan.

file_retention_
period

int Length	of	time	to	retain	copied
transaction	log	files.

maintenance_plan
_id

uniqueidentifier Maintenance	plan	ID.

backup_job_id uniqueidentifier Backup	job	ID.
share_name nvarchar(500) Share	name.

Transact-SQL	Reference

log_shipping_primaries
This	table	is	stored	in	the	msdb	database.

Column	name Data	type Description
primary_id int	(IDENTITY) Artificial	unique	key.
primary_server_
name

sysname Name	of	primary	server	in	log
shipping	pair.

primary_database
name

sysname Name	of	primary	database	in
log	shipping	pair.

maintenance_plan
_id

uniqueidentifier Maintenance	plan	ID.

backup_threshold Int Number	of	minutes	without	a
backup	occurring,	before	raising
an	error.

threshold_alert int Error	to	raise	if	transaction	log
backups	stop	occurring.

threshold_alert_
enabled

bit Status	of	threshold	alert.

1	=	Enabled.
0	=	Disabled.

last_backup_
filename

nvarchar(500) File	name	of	the	most	recent
transaction	log	backup.

last_updated datetime Date	(on	the	monitor	server)
that	the	primary	last	updated	the
last_backup_filename	column.

planned_outage_
start_time

int Start	time	of	the	window	during
which	threshold	alerts	will	not
be	raised	(in	HHMMSS	format).

planned_outage_
end_time

int End	time	of	the	window	during
which	threshold	alerts	will	not
be	raised	(in	HHMMSS	format).

planned_outage_
weekday_mask

int 1	=	Sunday
2	=	Monday

4	=	Tuesday
8	=	Wednesday
16	=	Thursday
32	=	Friday
64	=	Saturday

source_directory nvarchar(500) Source	directory.

Transact-SQL	Reference

log_shipping_secondaries
This	table	is	stored	in	the	msdb	database.

Column	name Data	type Description
primary_id int Foreign	key	to

log_shipping_primaries.
secondary_server_name sysname Name	of	secondary	server	in

log	shipping	pair.
secondary_
database_name

sysname Name	of	secondary	database
in	log	shipping	pair.

last_copied_
filename

nvarchar(500) File	name	of	last	transaction
log	copied	to	secondary
server.

last_loaded_
filename

nvarchar(500) File	name	of	last	transaction
log	loaded	by	secondary
server.

last_copied_last_
updated

datetime Modification	time	of	last
transaction	log	file	copied	to
secondary	server.

last_loaded_last_
updated

datetime Modification	time	of	last
transaction	log	file	loaded	by
secondary	server.

secondary_plan_
id

uniqueidentifier Plan	ID	of	the	log	shipping
plan	on	the	secondary	server.

copy_enabled bit Allow	copying	of	transaction
logs.

0	=	Disable	copying.
1	=	Enable	copying.

load_enabled bit Allow	loading	of	transaction
logs.

0	=	Disable	loading.
1	=	Enable	loading.

out_of_sync_
threshold

int Latency	between
last_loaded_filename	and
last_backup_file,	after
which	the	threshold	alert	will
be	raised.

threshold_alert int Error	to	be	raised	if	the
out_of_sync_threshold	is
exceeded.

threshold_alert_
enabled

bit Status	of	threshold	alert.

1	=	Enabled.
0	=	Disabled.

planned_outage_
start_time

int Start	time	of	the	window
during	which	threshold	alerts
will	not	be	raised	(in
HHMMSS	format).

planned_outage_
end_time

int End	time	of	the	window
during	which	threshold	alerts
will	not	be	raised	(in
HHMMSS	format).

planned_outage_
weekday_mask

int 1	=	Sunday
2	=	Monday
4	=	Tuesday
8	=	Wednesday
16	=	Thursday
32	=	Friday
64	=	Saturday

allow_role_
change

bit 1	=	Role	change	allowed.

Transact-SQL	Reference

MSagent_parameters
The	MSagent_parameters	table	contains	parameters	associated	with	an	agent
profile.	The	parameter	names	are	the	same	as	those	supported	by	the	agent.	This
table	is	stored	in	the	msdb	database.

Column	name Data	type Description
profile_id int Profile	ID	from	the	MSagent_profiles

table.
parameter_name sysname Name	of	the	parameter.
value nvarchar(255) Value	of	the	parameter.

Transact-SQL	Reference

MSagent_profiles
The	MSagent_profiles	table	contains	one	row	for	each	defined	replication	agent
profile.	This	table	is	stored	in	the	msdb	database.

Column	name Data	type Description
profile_id int Profile	ID.
profile_name sysname Unique	profile	name	for	agent	type.
agent_type int Type	of	agent:

1	=	Snapshot	Agent
2	=	Log	Reader	Agent
3	=	Distribution	Agent
4	=	Merge	Agent
9	=	Queue	Reader	Agent

type int Type	of	profile:

0	=	System
1	=	Custom

description nvarchar(3000)Description	of	the	profile.
def_profile bit Specifies	whether	this	profile	is	the

default	for	this	agent	type.

Transact-SQL	Reference

MSarticles
The	MSarticles	table	contains	one	row	for	each	article	being	replicated	by	a
Publisher.	This	table	is	stored	in	the	distribution	database.

Column	name Data	type Description
publisher_id smallint ID	of	the	Publisher.
publisher_db sysname Name	of	the	Publisher	database.
publication_id int ID	of	the	publication.
article sysname Name	of	the	article.
article_id int ID	of	the	article.
destination_object sysname Name	of	the	table	created	at	the

Subscriber.
source_owner sysname Name	of	the	owner	of	the	source

table	at	the	Publisher.
source_object sysname Name	of	the	source	object	from

which	to	add	the	article.
description nvarchar(255) Description	of	the	article.

Transact-SQL	Reference

MSdistpublishers
The	MSdistpublishers	table	contains	one	row	for	each	remote	Publisher
supported	by	the	local	Distributor.	This	table	is	stored	in	the	msdb	database.

Column	name Data	type Description
name sysname Name	of	the	Publisher	Distributor.
distribution_db sysname Name	of	the	distribution	database.
working_directory nvarchar(255) Name	of	the	working	directory	used

to	store	data	and	schema	files	for	the
publication.

security_mode int Security	mode	implemented	at	the
Distributor:

0	=	SQL	Server	Authentication.
1	=	Windows	Authentication.

login sysname Login	ID	for	SQL	Server
Authentication.

password nvarchar(524) Password	for	SQL	Server
Authentication.

active bit Indicates	whether	the	local
Distributor	is	in	use	by	the	remote
Publisher.

trusted bit Whether	the	remote	Publisher	uses
the	same	password	as	the	local
Distributor:

0	=	A	password	is	needed	at	the
remote	Publisher	to	connect	to	the
Distributor.
1	=	No	password	is	needed.

third_party bit Whether	the	Publisher	is	an
installation	of	Microsoft®	SQL
Server™:

0	=	SQL	Server	installation.
1	=	Heterogeneous	data	source.

Transact-SQL	Reference

MSdistribution_agents
The	MSdistribution_agents	table	contains	one	row	for	each	Distribution	Agent
running	at	the	local	Distributor.	This	table	is	stored	in	the	distribution	database.

Column	name Data	type Description
id int ID	of	the	Distribution	Agent.
name nvarchar(100) Name	of	the	Distribution	Agent.
publisher_database_id int ID	of	the	Publisher	database.
publisher_id smallint ID	of	the	Publisher.
publisher_db sysname Name	of	the	Publisher	database.
publication sysname Name	of	the	publication.
subscriber_id smallint ID	of	the	Subscriber,	used	by

well-known	agents	only.	For
anonymous	agents,	this	column
is	reserved.

subscriber_db sysname Name	of	the	subscription
database.

subscription_type int Type	of	subscription:

0	=	Push
1	=	Pull
2	=	Anonymous

local_job bit Indicates	whether	there	is	a	SQL
Server	Agent	job	on	the	local
Distributor.

job_id binary(16) Job	identification	number.
subscription_guid binary(16) ID	of	the	subscriptions	of	this

agent.
profile_id int Configuration	ID	from	the

MSagent_profiles	table.
anonymous_subid uniqueidentifier ID	of	an	anonymous	agent.
subscriber_name sysname Name	of	the	Subscriber,	used	by

anonymous	agents	only.

virtual_agent_id int For	internal	use	only.
anonymous_agent_id int For	internal	use	only.
creation_date datetime Datetime	when	the	Distribution

or	Merge	Agent	was	created.
queue_id sysname Identifier	to	locate	the	queue	for

queued	updating	subscriptions.
For	non-queued	subscriptions,
the	value	is	NULL.	For
Microsoft	Message	Queuing-
based	publications,	the	value	is
a	GUID	that	uniquely	identifies
the	queue	to	be	used	for	the
subscription.	For	SQL	Server-
based	queue	publications,	the
column	contains	the	value	SQL.

queue_status int For	internal	use	only.
offload_enabled bit Indicates	whether	the	agent	can

be	activated	remotely.	0
specifies	the	agent	cannot	be
activated	remotely.	1	specifies
the	agent	will	be	activated
remotely,	and	on	the	remote
computer	specified	in	the
offload_server	property.

offload_server sysname Network	name	of	server	to	be
used	for	remote	agent	activation.

dts_package_name sysname Name	of	the	DTS	package.	For
example,	to	specify	a	package	of
DTSPub_Package,	the
parameter	would	be
@dts_package_name	=
N'DTSPub_Package'.

dts_package_password nvarchar(524) Password	on	the	package,	if
there	is	one.	If	NULL,	means	a
password	is	not	on	the	package.

dts_package_location int Package	location.	The	location
of	the	package	can	be
distributor	or	subscriber.

sid varbinary(85) Security	identification	number
(SID)	for	the	Distribution	Agent
or	Merge	Agent	during	its	first
execution.

Transact-SQL	Reference

MSdistribution_history
The	MSdistribution_history	table	contains	history	rows	for	the	Distribution
Agents	associated	with	the	local	Distributor.	This	table	is	stored	in	the
distribution	database.

Column	name Data	type Description
agent_id int ID	of	the	Distribution	Agent.
runstatus int Running	status:

1	=	Start
2	=	Succeed
3	=	In	progress
4	=	Idle
5	=	Retry
6	=	Fail

start_time datetime Time	to	begin	execution	of
the	job.

time datetime Time	the	message	is	logged.
duration int Duration,	in	seconds,	of	the

message	session.
comments nvarchar(255) Message	text.
xact_seqno varbinary(16) Last	processed	transaction

sequence	number.
current_delivery_rate float Average	number	of

commands	delivered	per
second	since	the	last	history
entry.

current_delivery_latency int Latency	between	the
command	entering	the
distribution	database	and
being	applied	to	the
Subscriber	since	the	last
history	entry.

delivered_transactions int Total	number	of	transactions
delivered	in	the	session.

delivered_commands int Total	number	of	commands
delivered	in	the	session.

average_commands int Average	number	of
commands	delivered	in	the
session.

delivery_rate float Average	delivered	commands
per	second.

delivery_latency int Latency	between	the
command	entering	the
distribution	database	and
being	applied	to	the
Subscriber.

total_delivered_commands int Total	number	of	commands
delivered	since	the
subscription	was	created.

error_id int ID	of	the	error	in	the
MSrepl_error	system	table.

updateable_row bit Set	if	the	history	row	can	be
overwritten.

timestamp timestamp Timestamp	column	of	this
table.

Transact-SQL	Reference

MSdistributiondbs
The	MSdistributiondbs	table	contains	one	row	for	each	distribution	database
defined	on	the	local	Distributor.	This	table	is	stored	in	the	msdb	database.

Column	name Data	type Description
name sysname Name	of	the	distribution	database.
min_distretention int Minimum	retention	period,	in	hours,

before	transactions	are	deleted.
max_distretention int Maximum	retention	period,	in	hours,

before	transactions	are	deleted.
history_retention int Number	of	hours	to	retain	history.

Transact-SQL	Reference

MSdistributor
The	MSdistributor	table	contains	the	Distributor	properties.	This	table	is	stored
in	the	msdb	database.

Column	name Data	type Description
property sysname Name	of	the	property
value nvarchar(3000) Value	of	the	property

Transact-SQL	Reference

MSdynamicsnapshotjobs
The	MSdynamicsnapshotjobs	table	tracks	the	dynamic	filter	information
applied	to	a	dynamic	snapshot.	This	table	is	stored	in	the	publication	and
subscription	databases.

Column	name Data	type Description
id int ID	for	the	dynamic

snapshot	job.
name sysname Name	of	the	dynamic

snapshot	job.
pubid uniqueidentifierUnique	identification

number	for	this	publication.
job_id uniqueidentifier ID	of	the	SQL	Server	Agent

job	at	the	Distributor.
dynamic_filter_login sysname Value	used	for	evaluating

the	SUSER_SNAME()
function	in	dynamic	filters
defined	for	the	publication.

dynamic_filter_hostname sysname Value	used	for	evaluating
the	HOSTNAME()	function
in	dynamic	filters	defined
for	the	publication.

dynamic_snapshot_location nvarchar(255) Path	to	the	folder	where	the
snapshot	files	will	be	read
from	if	a	dynamic	snapshot
is	to	be	used.

Transact-SQL	Reference

MSdynamicsnapshotviews
The	MSdynamicsnapshotviews	table	tracks	all	the	temporary	dynamic	snapshot
views	created	by	the	snapshot	agent,	and	is	used	by	the	system	for	cleaning	up
views	in	the	case	of	an	abnormal	shutdown	of	SQL	Server	Agent	or	the	Snapshot
Agent.	This	table	is	stored	in	the	publication	and	subscription	databases.

Column	name Data	type Description
dynamic_snapshot_view_name sysname Name	of	the	temporary

dynamic	snapshot	view.

Transact-SQL	Reference

MSlogreader_agents
The	MSlogreader_agents	table	contains	one	row	for	each	Log	Reader	Agent
running	at	the	local	Distributor.	This	table	is	stored	in	the	distribution	database.

Column	name Data	type Description
id int ID	of	the	Log	Reader	Agent.
name nvarchar(100) Name	of	the	Log	Reader	Agent.
publisher_id smallint ID	of	the	Publisher.
publisher_db sysname Name	of	the	Publisher	database.
publication sysname Name	of	the	publication.
local_job bit Indicates	whether	there	is	a	SQL

Server	Agent	job	on	the	local
Distributor.

job_id binary(16) Job	identification	number.
profile_id int Configuration	ID	from	the

MSagent_profiles	table.

Transact-SQL	Reference

MSlogreader_history
The	MSlogreader_history	table	contains	history	rows	for	the	Log	Reader
Agents	associated	with	the	local	Distributor.	This	table	is	stored	in	the
distribution	database.

Column	name Data	type Description
agent_id int ID	of	the	Log	Reader	Agent.
runstatus int Running	status:

1	=	Start
2	=	Succeed
3	=	In	progress
4	=	Idle
5	=	Retry
6	=	Fail

start_time datetime Time	to	begin	execution	of	the
job.

time datetime Time	the	message	is	logged.
duration int Duration,	in	seconds,	of	the

message	session.
comments nvarchar(255) Message	text.
xact_seqno varbinary(16) Last	processed	transaction

sequence	number.
delivery_time int Time	first	transaction	is	delivered.
delivered_transactions int Total	number	of	transactions

delivered	in	the	session.
delivered_commands int Total	number	of	commands

delivered	in	the	session.
average_commands int Average	number	of	commands

delivered	in	the	session.
delivery_rate float Average	delivered	commands	per

second.
delivery_latency int Latency	between	the	command

entering	the	published	database
and	being	entered	into	the
distribution	database.

error_id int ID	of	the	error	in	the
MSrepl_error	system	table.

timestamp timestamp Timestamp	column	of	this	table.

Transact-SQL	Reference

MSmerge_agents
The	MSmerge_agents	table	contains	one	row	for	each	Merge	Agent	running	at
the	Subscriber.	This	table	is	stored	in	the	distribution	database.

Column	name Data	type Description
id int ID	of	the	Merge	Agent.
name nvarchar(100) Name	of	the	Merge	Agent.
publisher_id smallint ID	of	the	Publisher.
publisher_db sysname Name	of	the	Publisher	database.
publication sysname Name	of	the	publication.
subscriber_id smallint ID	of	the	Subscriber.
subscriber_db sysname Name	of	the	subscription	database.
local_job bit Indicates	whether	there	is	a	SQL

Server	Agent	job	on	the	local
Distributor.

job_id binary(16) Job	identification	number.
profile_id int Configuration	ID	from	the

MSagent_profiles	table.
anonymous_subid uniqueidentifier ID	of	an	anonymous	agent.
subscriber_name sysname Name	of	the	Subscriber.
creation_date datetime Date	and	time	the	Distribution	or

Merge	Agent	was	created.
offload_enabled bit Specifies	that	the	agent	can	be

activated	remotely.	0	specifies	the
agent	cannot	be	activated	remotely.	1
specifies	the	agent	will	be	activated
remotely,	and	on	the	remote
computer	specified	in	the
offload_server	property.

offload_server sysname Specifies	the	network	name	of	server
to	be	used	for	remote	agent
activation.

sid varbinary(85) The	security	identification	number

(SID)	for	the	Distribution	Agent	or
Merge	Agent	during	its	first
execution.

Transact-SQL	Reference

MSmerge_altsyncpartners
The	MSmerge_altsyncpartners	table	tracks	the	association	of	who	the	current
synchronization	partners	are	for	a	Publisher.	This	table	is	stored	in	the
publication	and	subscription	databases.

Column	name Data	type Description
subid uniqueidentifier Identifier	for	the	original	Publisher.
alternate_subid uniqueidentifier Identifier	for	the	Subscriber	who	is

the	alternate	synchronization	partner.
description nvarchar(255) Description	of	the	alternate

synchronization	partner.

Transact-SQL	Reference

MSmerge_contents
The	MSmerge_contents	table	contains	one	row	for	each	row	modified	in	the
current	database	since	it	was	published.	This	table	is	used	by	the	merge	process
to	determine	the	rows	that	have	changed.	This	table	is	stored	in	the	publication
and	subscription	databases.

Column	name Data	type Description
tablenick int Nickname	of	the	published	table.
rowguid uniqueidentifier Row	identifier	for	the	given	row.
generation int Generation	of	the	row	identified	by

the	tablenick	and	rowguid.
partchangegen int The	generation	associated	with	the

last	data	change	that	could	have
changed	whether	the	row	belongs	in
a	filtered	publication.

joinchangegen int The	generation	associated	with	the
last	data	change	to	this	row	that
would	have	changed	whether	related
rows	belong	in	a	filtered	publication.

lineage varbinary(249) Subscriber	nickname,	version
number	pairs	that	are	used	to
maintain	a	history	of	changes	to	this
row.

colvl varbinary(2048) Column	version	information.

Transact-SQL	Reference

MSmerge_delete_conflicts
The	MSmerge_delete_conflicts	table	contains	information	for	rows	that	were
deleted	because	either	they	conflicted	with	an	update	and	lost	the	conflict	or	the
delete	was	undone	to	achieve	data	convergence.	This	table	is	stored	in	the
database	used	for	conflict	logging,	usually	the	publication	database	but	can	be
the	subscription	database	if	there	is	decentralized	conflict	logging.

Column	name Data	type Description
tablenick int Nickname	of	the	table.
rowguid uniqueidentifier Row	identifier	for	the	deleted	row.
origin_datasource varchar(255) Subscription	for	which	the	delete	of

the	row	was	undone	or	the	delete
lost	the	conflict.

conflict_type int Type	of	conflict:

1	=	UpdateConflict:	Conflict	is
detected	at	the	row	level.
2	=	ColumnUpdateConflict:
Conflict	detected	at	the	column
level.
3	=	UpdateDeleteWinsConflict:
Delete	wins	the	conflict.
4	=	UpdateWinsDeleteConflict:
The	deleted	rowguid	that	loses	the
conflict	is	recorded	in	this	table.
5	=	UploadInsertFailed:	Insert	from
Subscriber	could	not	be	applied	at
the	Publisher.
6	=	DownloadInsertFailed:	Insert
from	Publisher	could	not	be	applied
at	the	Subscriber.
7	=	UploadDeleteFailed:	Delete	at
Subscriber	could	not	be	uploaded	to
the	Publisher.
8	=	DownloadDeleteFailed:	Delete

at	Publisher	could	not	be
downloaded	to	the	Subscriber..
9	=	UploadUpdateFailed:	Update	at
Subscriber	could	not	be	applied	at
the	Publisher
10	=	DownloadUpdateFailed:
Update	at	Publisher	could	not	be
applied	to	the	Subscriber.

reason_code int Error	code.	May	be	context-
sensitive-based	on	conflict_type.

reason_text nvarchar(720) Description	of	the	error	code.
pubid uniqueidentifier Publication	identifier.
create_time datetime The	datetime	value	when	the

current	conflict	row	was	logged.

Transact-SQL	Reference

MSmerge_errorlineage
The	MSmerge_errorlineage	table	contains	rows	that	have	been	deleted	at	the
Subscriber,	but	whose	delete	is	not	propagated	to	the	Publisher.	This	table	is
stored	in	the	publication	and	subscription	databases.

Column	name Data	type Description
tablenick int Integer	value	assigned	to	the	table

that	is	published	for	merge
replication.	Corresponds	to	the
nickname	field	in	the
sysmergearticles	table.

rowguid uniqueidentifier Row	identifier.
lineage varbinary(255) Stores	a	history	list	of	which

Subscribers	and	Publishers	have
made	updates	to	a	row.	Used	to
detect	and	resolve	conflict
situations.

Transact-SQL	Reference

MSmerge_genhistory
The	MSmerge_genhistory	table	contains	one	row	for	each	generation	that	a
Subscriber	knows	about	(within	the	retention	period).	It	is	used	to	avoid	sending
common	generations	during	exchanges	and	to	resynchronize	Subscribers	that	are
restored	from	backups.	This	table	is	stored	in	the	publication	and	subscription
databases.

Column	name Data	type Description
guidsrc uniqueidentifier Global	identifier	of	the	changes

identified	by	generation	at	the
Subscriber.

guidlocal uniqueidentifier Local	identifier	of	the	changes
identified	by	generation	at	the
Subscriber.

pubid uniqueidentifier Publication	identifier.
generation int Generation	value.
art_nick int Nickname	for	the	article.
nicknames varbinary(1000) A	list	of	nicknames	of	other

Subscribers	that	are	known	to	already
have	this	generation.	Used	to	avoid
sending	a	generation	to	a	Subscriber
that	has	already	seen	those	changes.
Nicknames	in	the	nicknames	list	are
maintained	in	sorted	order	to	make
searches	more	efficient.	If	there	are
more	nicknames	than	can	fit	in	this
field,	they	will	not	benefit	from	this
optimization.

coldate datetime Date	when	current	generation	is
added	to	the	table.

Transact-SQL	Reference

MSmerge_history
The	MSmerge_history	table	contains	history	rows	for	previous	updates	to
Subscriber.	This	table	is	stored	in	the	distribution	database.

Column	name Data	type Description
agent_id int ID	of	the	agent.
runstatus int Running	status:

1	=	Start
2	=	Succeed
3	=	In	progress
4	=	Idle
5	=	Retry
6	=	Fail

start_time datetime Time	execution	of	the	job
began.

time datetime Time	of	this	history	entry.
duration int Cumulative	duration,	in

seconds,	of	this	session.
comments nvarchar(255) Message	text.
delivery_time int Number	of	seconds	it	took	to

apply	a	batch	of	changes.
delivery_rate float Average	delivered	commands

per	second.
publisher_insertcount int Number	of	inserts	at	the

Publisher.
publisher_updatecount int Number	of	updates	at	the

Publisher.
publisher_deletecount int Number	of	deletes	at	the

Publisher.
publisher_conflictcount int Number	of	conflicts	at	the

Publisher.
subscriber_insertcount int Number	of	inserts	at	the

Subscriber.
subscriber_updatecount int Number	of	updates	at	the

Subscriber.
subscriber_deletecount int Number	of	deletes	at	the

Subscriber.
subscriber_conflictcount int Number	of	conflicts	at	the

Subscriber.
error_id int ID	of	an	error	in	the

MSrepl_error	system	table.
timestamp timestamp Timestamp	column	of	this

table.
updateable_row bit Set	if	the	history	row	can	be

overwritten.

Transact-SQL	Reference

MSmerge_replinfo
The	MSmerge_replinfo	table	contains	one	row	for	each	subscription.	This	table
tracks	internal	information	about	the	sent	and	received	generation.	This	table	is
stored	in	the	publication	and	subscription	databases.

Column	name Data	type Description
repid uniqueidentifier Unique	ID	for	the	replica.
replnickname int Compressed	nickname	for	the

replica.
recgen int Number	of	the	last	generation

received.
recguid uniqueidentifier Unique	ID	of	the	last	generation

received.
sentgen int Number	of	the	last	generation	sent.
sentguid uniqueidentifier Unique	ID	of	the	last	generation	sent.
schemaversion int Number	of	the	last	schema	received.
schemaguid uniqueidentifier Unique	ID	of	the	last	schema

received.
merge_jobid binary(16) Merge	job	ID	for	this	subscription.
snapshot_jobid binary(16) Snapshot	job	ID	servicing	this

publication.

Transact-SQL	Reference

MSmerge_subscriptions
The	MSmerge_subscriptions	table	contains	one	row	for	each	subscription
serviced	by	the	Merge	Agent	at	the	Subscriber.	This	table	is	stored	in	the
distribution	database.

Column	name Data	type Description
publisher_id smallint ID	of	the	Publisher.
publisher_db sysname Name	of	the	Publisher	database.
publication_id int ID	of	the	publication.
subscriber_id smallint ID	of	the	Subscriber.
subscriber_db sysname Name	of	the	subscription	database.
subscription_type int Type	of	subscription:

0	=	Push
1	=	Pull
2	=	Anonymous

sync_type tinyint Type	of	synchronization:

1	=	Automatic
2	=	No	sync

status tinyint Status	of	the	subscription.
subscription_time datetime Time	the	subscription	was	added.

Transact-SQL	Reference

MSmerge_tombstone
The	MSmerge_tombstone	table	contains	information	on	deleted	rows	and
allows	deletes	to	be	propagated	to	other	Subscribers.	This	table	is	stored	in	the
publication	and	subscription	databases.

Column	name Data	type Description
rowguid uniqueidentifier Row	identifier.
tablenick int Nickname	of	the	table.
type tinyint Type	of	delete:

1	=	User	delete
5	=	Row	no	longer	belongs	to	the	filtered
partition
6	=	System	delete

lineage varbinary(249) Indicates	the	version	of	the	record	that
was	deleted,	and	which	updates	were
known	when	it	was	deleted.	Allows	rules
for	consistent	resolution	of	a	conflict
when	one	Subscriber	updates	a	row
while	it	is	being	deleted	at	another
Subscriber.

generation int Is	assigned	when	a	row	is	deleted.	If	a
Subscriber	requests	generation	N,	only
tombstones	with	generation	>=	N	are
sent.

reason nvarchar(255) Text	field	containing	the	reason	that
tombstone	was	created.

Transact-SQL	Reference

MSpub_identity_range
The	MSpub_identity_range	table	provides	identity	range	management	support.
This	table	is	stored	in	the	publication	and	subscription	database.

Column	name Data	type Description
objid int ID	of	the	table	that	has	the	identity

column	being	managed	by	replication.
range bigint Controls	the	range	size	of	the

consecutive	identity	values	that	would
be	assigned	at	the	subscription	in	an
adjustment.

pub_range bigint Controls	the	range	size	of	the
consecutive	identity	values	that	would
be	assigned	at	the	publication	in	an
adjustment.

current_pub_range bigint Current	range	being	used	by	the
publication.	It	can	be	different	than
pub_range	if	viewed	after	being
changed	by	sp_changearticle	and
before	the	next	range	adjustment.

threshold int Percentage	value	that	controls	when	the
Distribution	Agent	assigns	a	new
identity	range.	When	the	percentage	of
values	specified	in	threshold	is	used,	the
Distribution	Agent	creates	a	new
identity	range.

last_seed bigint Lower	bound	of	the	current	range.

Transact-SQL	Reference

MSpublication_access
The	MSpublication_access	table	contains	a	row	for	each	Microsoft®	SQL
Server™	login	that	has	access	to	the	specific	publication	or	Publisher.	This	table
is	stored	in	the	distribution	database.

Column	name Data	type Description
publication_id int ID	of	the	publication
login sysname Microsoft	Windows	accounts	that	exist

at	both	Publisher	and	Distributor	side

Transact-SQL	Reference

MSpublications
The	MSpublications	table	contains	one	row	for	each	publication	that	is
replicated	by	a	Publisher.	This	table	is	stored	in	the	distribution	database.

Column	name Data	type Description
publisher_id smallint ID	of	the	Publisher.
publisher_db sysname Name	of	the	Publisher	database.
publication sysname Name	of	the	publication.
publication_id int ID	of	the	publication.
publication_type int Type	of	publication:

0	=	Transactional	
1	=	Snapshot
2	=	Merge

thirdparty_flag bit Indicates	whether	a	publication
is	a	Microsoft®	SQL	Server™
database:

0	=	SQL	Server
1	=	Data	source	other	than	SQL
Server

independent_agent bit Indicates	whether	there	is	a
stand-alone	Distribution	Agent
for	this	publication.

immediate_sync bit Indicates	whether
synchronization	files	are	created
or	re-created	each	time	the
Snapshot	Agent	runs.

allow_push bit Indicates	whether	push
subscriptions	can	be	created	for
the	given	publication.

allow_pull bit Indicates	whether	pull
subscriptions	can	be	created	for

the	given	publication.
allow_anonymous bit Indicates	whether	anonymous

subscriptions	can	be	created	for
the	given	publication.

description nvarchar(255) Description	of	the	publication.
vendor_name nvarchar(100) Name	of	the	vendor	if	Publisher

is	not	a	SQL	Server	database.
retention int Retention	period	of	the

publication,	in	hours.
sync_method int Synchronization	method:

0	=	native	(produces	native-
mode	bulk	copy	output	of	all
tables)
1	=	character	(produces	a
character-mode	bulk	copy
output	of	all	tables)
3	=	concurrent	(produces
native-mode	bulk	copy	output
of	all	tables	but	does	not	lock
the	table	during	the	snapshot)
4	=	concurrent_c	(produces	a
character-mode	bulk	copy
output	of	all	tables	but	does	not
lock	the	table	during	the
snapshot)

The	values	concurrent	and
concurrent_c	are	available	for
transactional	replication	and
merge	replication,	but	not	for
snapshot	replication.

allow_subscription_copy bit Enables	or	disables	the	ability	to
copy	the	subscription	databases
that	subscribe	to	this
publication.	0	means	that
copying	is	disabled,	and	1

means	it	is	enabled.
thirdparty_options int Specifies	whether	the	display	of

a	publication	in	the	Replication
folder	in	SQL	Server	Enterprise
Manager	is	suppressed:

0	=	display	a	heterogeneous
publication	in	the	Replication
folder	in	SQL	Server	Enterprise
Manager

1	=	suppress	the	display	a
heterogeneous	publication	in	the
Replication	folder	in	SQL
Server	Enterprise	Manager

allow_queued_tran bit Specifies	whether	publication
allows	queued	updating:

0	=	publication	is	non-queued
1	=	publication	is	queued

Transact-SQL	Reference

MSpublisher_databases
The	MSpublisher_databases	table	contains	one	row	for	each
Publisher/Publisher	database	pair	serviced	by	the	local	Distributor.	This	table	is
stored	in	the	distribution	database.

Column	name Data	type Description
publisher_id smallint ID	of	the	Publisher.
publisher_db sysname Name	of	the	Publisher	database.
id int ID	of	the	row.

Transact-SQL	Reference

MSqreader_agents
The	MSqreader_agents	table	contains	one	row	for	each	Queue	Reader	Agent
running	at	the	local	Distributor.	This	table	is	stored	in	the	distribution	database.

Column	name Data	type Description
id int ID	of	the	Queue	Reader	Agent.
name nvarchar(100) Name	of	the	Queue	Reader	Agent.
job_id binary(16) Unique	job	ID	number	from	sysjobs

table.
profile_id int Profile	ID	from	the	MSagent_profiles

table.

Transact-SQL	Reference

MSqreader_history
The	MSqreader_history	table	contains	history	rows	for	the	Queue	Reader
Agents	associated	with	the	local	Distributor.	This	table	is	stored	in	the
distribution	database.

Column	name Data	type Description
agent_id int ID	of	the	Queue	Reader	Agent.
publication_id int ID	of	the	publication.
runstatus int Running	state	of	the	agent:

1	=	Start
2	=	Succeed
3	=	In	progress
4	=	Idle
5	=	Retry
6	=	Fail

start_time datetime Date	and	time	at	which	agent
session	started.

time datetime Date	and	time	of	last	logged
message.

duration int Elapsed	time	of	the	logged
session	activity,	in	seconds.

comments nvarchar(255) Descriptive	text.
transaction_id nvarchar(40) Transaction	ID	stored	with	the

message,	if	applicable.
transaction_status int Status	of	the	transaction.
transactions_processed int Cumulative	number	of

transactions	processed	in	the
session.

commands_processed int Cumulative	number	of
commands	processed	in	the
session.

delivery_rate float(8) Average	number	of	commands

delivered	per	second.
transaction_rate float(8) Rate	of	transactions	processed.
subscriber sysname Name	of	the	Subscriber.
subscriberdb sysname Name	of	the	subscription

database.
error_id int If	not	zero,	the	number

represents	a	Microsoft	SQL
Server	error	message.

timestamp timestamp Timestamp	column	for	the	table.

Transact-SQL	Reference

MSrepl_backup_lsns
The	MSrepl_backup_lsns	table	contains	transaction	log	sequence	numbers	(lsn)
for	supprting	the	'sync	with	backup'	option	of	the	Distribution	database.	This
table	is	stored	in	the	distribution	database.

Column	name Data	type Description
publisher_database_id int ID	of	the	Publisher	database.
valid_xact_id varbinary(16) ID	of	the	transaction	to	be	sent

to	the	Publisher	to	mark	the	log
truncation	point.	Used	only	if
the	Distribution	database	is	in
'sync	with	backup'	mode.
Contains	the	ID	of	the	latest
replicated	transaction	in	the
Distribution	database	that	has
been	backed	up.	It	will	be	sent
to	the	Publisher	to	mark	the	log
truncation	point	by	the	Log
Reader.

valid_xact_seqno varbinary(16) Sequence	number	of	the
transaction	to	be	sent	to	the
Publisher	to	mark	the	log
truncation	point.	Used	only	if
the	Distribution	database	is	in
'sync	with	backup'	mode.	It	is
the	log	sequence	number	of	the
latest	replication	transaction	in
the	Distribution	database	that
has	been	backed	up.	It	will	be
sent	to	the	Publisher	to	mark	the
log	truncation	point	by	the	Log
Reader.

next_xact_id varbinary(16) Temporary	log	sequence	number
used	by	backup	operations.

nextx_xact_seqno varbinary(16) Temporary	log	sequence	number
used	by	backup	operations.

Transact-SQL	Reference

MSrepl_commands
The	MSrepl_commands	table	contains	rows	of	replicated	commands.	This	table
is	stored	in	the	distribution	database.

Column	name Data	type Description
publisher_database_id int ID	of	the	Publisher	database.
xact_seqno varbinary(16) Transaction	sequence	number.
type int Command	type.
article_id int ID	of	the	article.
originator_id int ID	of	the	originator.
command_id int ID	of	the	command.
partial_command bit Indicates	whether	this	is	a

partial	command.
command varbinary(1024) Command	value.

Transact-SQL	Reference

MSrepl_errors
The	MSrepl_errors	table	contains	rows	with	extended	Distribution	Agent	and
Merge	Agent	failure	information.	This	table	is	stored	in	the	distribution
database.

Column	name Data	type Description
id int ID	of	the	error.
time datetime Time	the	error	occurred.
error_type_id int Reserved	for	future	use.
source_type_id int Error	source	type	ID.
source_name nvarchar(100) Name	of	the	error	source.
error_code sysname Error	code.
error_text ntext Error	message.
xact_seqno varbinary(16) Starting	tranaction	log	sequence

number	of	the	failed	execution
batch.	Used	only	by	the	Distribution
Agents,	this	is	the	transaction	log
sequence	number	of	the	first
transaction	in	the	failed	execution
batch.

command_id int Command	ID	of	the	failed	execution
batch.	Used	only	by	the	Distribution
Agents,	this	is	the	command	ID	of
the	first	command	in	the	failed
execution	batch.

Transact-SQL	Reference

MSrepl_identity_range
The	MSrepl_identity_range	table	provides	identity	range	management	support.
This	table	is	stored	in	the	publication,	distribution	and	subscription	databases

Column	name Data	type Description
publisher sysname Name	of	the	Publisher.
publisher_db sysname Name	of	the	publication	database.
tablename sysname Name	of	the	table.
identity_support int Specifies	if	automatic	identity	range

handling	is	enabled.	0	specifies	that
automatic	identity	range	handling	is
not	enabled.

next_seed bigint If	automatic	identity	range	is
enabled,	indicates	the	starting	point
of	the	next	range.

pub_range bigint Publisher	identity	range	size.
range bigint The	size	of	the	consecutive	identity

values	that	would	be	assigned	to
subscribers	in	an	adjustment.

max_identity bigint Maximum	boundary	of	the	identity
range.

threshold int Identity	range	threshold	percentage.
current_max bigint Current	max	that	can	be	assigned	but

not	necessarily	be	assigned.

Transact-SQL	Reference

MSrepl_originators
The	MSrepl_originators	table	contains	one	row	for	each	updatable	Subscriber
from	which	the	transaction	originated.	This	table	is	stored	in	the	distribution
database.

Column	name Data	type Description
id int ID	of	the	updating	Subscriber.
publisher_database_id int ID	of	the	Publisher	database.
srvname sysname Name	of	the	updating	server.
dbname sysname Name	of	the	updating

database.

Transact-SQL	Reference

MSrepl_transactions
The	MSrepl_transactions	table	contains	one	row	for	each	replicated
transaction.	This	table	is	stored	in	the	distribution	database.

Column	name Data	type Description
publisher_database_id int ID	of	the	Publisher	database.
xact_id varbinary(16) ID	of	the	transaction.
xact_seqno varbinary(16) Sequence	number	of	the

transaction.
entry_time datetime Time	the	transaction	entered	the

distribution	database.

Transact-SQL	Reference

MSrepl_version
The	MSrepl_version	table	contains	one	row	with	the	current	version	of
replication	installed.	This	table	is	stored	in	the	distribution	database.

Column	name Data	type Description
major_version int Major	version	number	of	the	distribution

database.
minor_version int Minor	version	number	of	the	distribution

database.
revision int Revision	number.
db_existed bit Indicates	whether	the	distribution	database

exists	before	sp_adddistributiondb	is	called.

Transact-SQL	Reference

MSreplication_objects
The	MSreplication_objects	table	contains	one	row	for	each	object	that	is
associated	with	replication	in	the	Subscriber	database.	This	table	is	stored	in	the
subscription	database.

Column	name Data	type Description
publisher sysname Name	of	the	Publisher.
publisher_db sysname Name	of	the	Publisher	database.
publication sysname Name	of	the	publication.
object_name sysname Name	of	the	object.
object_type char(2) Object	type:

u	=	Table
t	=	Trigger

Transact-SQL	Reference

MSreplication_options
The	MSreplication_options	table	stores	the	type	of	replication	that	is	installed.
This	table	is	stored	in	the	master	database.

Column	name Data	type Description
optname sysname Type	of	replication.	Values	are

transactional	and	merge.
value bit Internal	status	information.
major_version int Reserved	for	future	use.
minor_version int Reserved	for	future	use.
revision int Reserved	for	future	use.
install_failures int Reserved	for	future	use.

Transact-SQL	Reference

MSreplication_queue
The	MSreplication_queue	table	is	used	by	the	replication	process	to	store	the
queued	commands	issued	by	all	the	queued	updating	subscriptions	that	are	using
SQL-based	queued.	.	This	table	is	stored	in	the	subscription	database.

Column	name Data	type Description
publisher sysname Name	of	the	Publisher.
publisher_db sysname Name	of	the	publication	database.
publication sysname Name	of	the	publication.
tranid sysname Transaction	ID	under	which	the

queued	command	was	executed.
data varbinary(8000) Packed	bytestream	that	stored

information	about	the	queued
command.

datalen int Length	of	data,	in	bytes.
commandtype int Type	of	command	being	queued:

1	=	user	command	in	transaction
2	=	subscription	synchronization
command.

insertdate datetime Date	of	insertion.
orderkey bigint Identity	column	that	increases

monotonically.
cmdstate bit Command	state:

0	=	complete
1	=	partial

Transact-SQL	Reference

MSreplication_subscriptions
The	MSreplication_subscriptions	table	contains	one	row	of	replication
information	for	each	Distribution	Agent	servicing	the	local	Subscriber	database.
This	table	is	stored	in	the	subscription	database.

Column	name Data	type Description
publisher sysname Name	of	the	Publisher.
publisher_db sysname Name	of	the	Publisher	database.
publication sysname Name	of	the	publication.
independent_agent bit Indicates	whether	there	is	a

stand-alone	Distribution	Agent
for	this	publication.

subscription_type int Type	of	subscription:

0	=	Push
1	=	Pull
2	=	Anonymous

distribution_agent sysname Name	of	the	Distribution	Agent.
time smalldatetime Time	of	the	last	update	by

Distribution	Agent.
description nvarchar(255) Description	of	the	subscription.
transaction_timestamp varbinary(16) Synctran.
update_mode tinyint Type	of	update.
agent_id binary(16) ID	of	the	agent.
subscription_guid binary(16) Global	identifier	for	the	version

of	the	subscription	on	the
publication.

subid binary(16) Global	identifier	for	an
anonymous	subscription.

immediate_sync bit Indicates	whether
synchronization	files	are	created
or	re-created	each	time	the
Snapshot	Agent	runs.

Transact-SQL	Reference

MSsnapshot_agents
The	MSsnapshot_agents	table	contains	one	row	for	each	Snapshot	Agent
associated	with	the	local	Distributor.	This	table	is	stored	in	the	distribution
database.

Column	name Data	type Description
id int ID	of	the	Snapshot	Agent.
name nvarchar(100) Name	of	the	Snapshot	Agent.
publisher_id smallint ID	of	the	Publisher.
publisher_db sysname Name	of	the	Publisher	database.
publication sysname Name	of	the	publication.
publication_type int Type	of	publication:

0	=	Transactional
1	=	Snapshot
2	=	Merge

local_job bit Indicates	whether	there	is	a	SQL
Server	Agent	job	on	the	local
Distributor.

job_id binary(16) Job	identification	number.
profile_id int Configuration	ID	from	the

MSagent_profiles	table.

Transact-SQL	Reference

MSsnapshot_history
The	MSsnapshot_history	table	contains	history	rows	for	the	Snapshot	Agents
associated	with	the	local	Distributor.	This	table	is	stored	in	the	distribution
database.

Column	name Data	type Description
agent_id int ID	of	the	Snapshot	Agent.
runstatus int Running	status:

1	=	Start
2	=	Succeed
3	=	In	progress
4	=	Idle
5	=	Retry
6	=	Fail

start_time datetime Time	to	begin	execution	of	the
job.

time datetime Time	the	message	is	logged.
duration int Duration,	in	seconds,	of	the

message	session.
comments nvarchar(255) Message	text.
delivered_transactions int Total	number	of	transactions

delivered	in	the	session.
delivered_commands int Number	of	delivered	commands

per	second.
delivery_rate float Average	delivered	commands	per

second.
error_id int ID	of	the	error	in	the

MSrepl_error	system	table.
timestamp timestamp Timestamp	column	of	this	table.

Transact-SQL	Reference

MSsubscriber_info
The	MSsubscriber_info	table	contains	one	row	for	each	Publisher/Subscriber
pair	that	is	being	pushed	subscriptions	from	the	local	Distributor.	This	table	is
stored	in	the	distribution	database.

Column	name Data	type Description
publisher sysname Name	of	the	Publisher.
subscriber sysname Name	of	the	Subscriber.
type tinyint Subscriber	type:

0	=	Microsoft®	SQL	Server™
Subscriber
1	=	ODBC	data	source

login sysname Login	for	SQL	Server
Authentication.	Stored	in	encrypted
format	if	Subscriber	is	added	with
SQL	Server	Authentication	mode.

password nvarchar(524) Password	for	SQL	Server
Authentication.	Stored	in	encrypted
format	if	Subscriber	is	added	with
SQL	Server	Authentication	mode.

description nvarchar(255) Description	of	the	Subscriber.
security_mode int Implemented	security	mode:

0	=	SQL	Server	Authentication
1	=	Windows	Authentication

Transact-SQL	Reference

MSsubscriber_schedule
The	MSsubscriber_schedule	table	contains	default	merge	and	transactional
synchronization	schedules	for	each	Publisher/Subscriber	pair.	This	table	is	stored
in	the	distribution	database.

Column	name Data	type Description
publisher sysname Name	of	the	Publisher.
subscriber sysname Name	of	the	Subscriber.
agent_type smallint Type	of	agent:

0	=	Distribution	Agent
1	=	Merge	Agent

frequency_type int Frequency	with	which	to
schedule	the	Distribution
Agent:

1	=	One	time
2	=	On	demand
4	=	Daily
8	=	Weekly
16	=	Monthly
32	=	Monthly	relative
64	=	Autostart	(default)
124	=	Recurring

frequency_interval int Value	to	apply	to	the	frequency
set	by	frequency_type.

frequency_relative_interval int Date	of	the	Distribution	Agent:

1	=	First	(default)	
2	=	Second
4	=	Third
8	=	Fourth
16	=	Last

frequency_recurrence_factor int Recurrence	factor	used	by

frequency_type.
frequency_subday int How	often	to	reschedule	during

the	defined	period:

1	=	Once
2	=	Second
4	=	Minute	(default)	
8	=	Hour

frequency_subday_interval int Interval	for
frequency_subday.

active_start_time_of_day int Time	of	day	when	the
Distribution	Agent	will	first	be
scheduled,	formatted	as
HHMMSS.

active_end_time_of_day int Time	of	day	when	the
Distribution	Agent	will	stop
being	scheduled,	formatted	as
HHMMSS.

active_start_date int Date	when	the	Distribution
Agent	will	first	be	scheduled,
formatted	as	YYYYMMDD.

active_end_date int Date	when	the	Distribution
Agent	will	stop	being
scheduled,	formatted	as
YYYYMMDD.

Transact-SQL	Reference

MSsubscription_agents
The	MSsubscription_agents	table	is	used	by	Distribution	Agent	and	triggers	of
updateable	subscriptions	to	track	subscription	properties.	This	table	is	stored	in
the	subscription	database.

Column	name Data	type Description
id int ID	of	the	row.
publisher sysname Name	of	the	Publisher.
publisher_db sysname Name	of	the	publication	database.
publication sysname Name	of	the	publication.
subscription_type int Subscription	type:

0	=	push
1	=	pull
2	=	pull	anonymous

queue_id sysname ID	of	the	Microsoft	Message	Queue
at	the	Publisher.	queue_id	is	set	to
SQL	for	SQL-based	queued
updating.

update_mode tinyint Type	of	updating:

0	=	read	only
1	=	immediate	update
2	=	queued	update	using	MSMQ
queue
3	=	immediate	update	with	queued
update	as	failover	using	MSMQ
queue
4	=	queued	update	using	SQL
Server	queue
5	=	immediate	update	with	queued
update	failover,	using	SQL	Server
queue

failover_mode bit If	a	failover	type	of	updating	was

select,	the	type	of	failover	chosen:

0	=	immediate	update	is	being	used.
Failover	is	not	enabled.	
1	=	queued	update	is	being	used.
Failover	is	enabled.	The	queue
being	used	for	failover	is	specified
in	the	update_mode	value.

spid int System	process	ID	for	the
connection	used	by	the	Distribution
Agent	that	is	currently	running	or
has	just	run.

login_time datetime Date	and	time	of	the	Distribution
Agent	connection	that	is	currently
running	or	has	just	run.

allow_subscription_copy bit Specifies	whether	or	not	the	ability
to	copy	the	subscription	database	is
allowed.

attach_state int For	internal	use	only.
attach_version binary(16) Unique	identifier	representing	the

version	of	an	attached	subscription.
last_sync_status int Last	run	status	of	the	Distribution

Agent	that	is	currently	running	or
has	just	run.	Status	can	be:

1	=	Started
2	=	Succeeded
3	=	In	progress
4	=	Idle
5	=	Retry
6	=	Fail

last_sync_summary sysname Last	message	of	the	Distribution
Agent	that	is	currently	running	or
has	just	run.	Status	can	be:

Started
Succeeded

In	progress
Idle
Retry
Fail

last_sync_time datetime datetime	when	the
last_sync_summary	and
last_sync_status	columns	were
updated.	Pull	or	anonymous
distribution	agents	running	as
SqlServer	Agent	Service	jobs	will
not	update	these	columns.	The
history	information	will	instead	be
logged	to	the	job	history	table	in
that	case.

Transact-SQL	Reference

MSsubscription_articles
The	MSsubscription_articles	table	contains	information	regarding	the	articles
in	a	queued	subscription.	This	table	is	populated	only	for	the	replication	types	of
queued	updating	and	immediate	updating	with	queued	updating	as	a	failover.

Column	name Data	type Description
agent_id int ID	of	the	agent	that	services	this	article
artid int Article	ID	from	the	sysarticles	table.
article sysname Name	of	the	article	from	the	sysarticles

table.
dest_table sysname Name	of	the	destination	table	from	the

sysarticles	table.
owner sysname Owner	of	the	subscription.
cft_table sysname Name	of	the	conflict	table	for	this	article,

for	queued	updating	replication	type.
columns binary(32) Bitmap	of	the	replicated	columns	of	the

publication	table	from	the	sysarticles
table.

Transact-SQL	Reference

MSsubscription_properties
The	MSsubscription_properties	table	contains	rows	for	the	parameter
information	for	pull	Distribution	Agents.	This	table	is	stored	in	the	subscription
database.

Column	name Data	type Description
publisher sysname Name	of	the	Publisher.
publisher_db sysname Name	of	the	Publisher

database.
publication sysname Name	of	the	publication.
publication_type int Type	of	publication:

0	=	Transactional
2	=	Merge

publisher_login sysname Login	ID	used	at	the
Publisher	for	SQL	Server
Authentication.

publisher_password sysname Password	(encrypted)	used	at
the	Publisher	for	SQL	Server
Authentication.

publisher_security_mode int Security	mode	implemented
at	the	Publisher:

0	=	SQL	Server
Authentication
1	=	Windows	Authentication
2	=	The	synchronization
triggers	use	a	static
sysservers	entry	to	do	RPC,
and	publisher	must	be
defined	in	the	sysservers
table	as	a	remote	server	or
linked	server.

distributor sysname Name	of	the	Distributor.

distributor_login sysname Login	ID	used	at	the
Distributor	for	SQL	Server
Authentication.

distributor_password sysname Password	(encrypted)	used	at
the	Distributor	for	SQL
Server	Authentication.

distributor_security_mode int Security	mode	implemented
at	the	Distributor:

0	=	SQL	Server
Authentication
1	=	Windows	Authentication

ftp_address sysname Network	address	of	the	FTP
service	for	the	Distributor.

ftp_port int Port	number	of	the	FTP
service	for	the	Distributor.

ftp_login sysname Username	used	to	connect	to
the	FTP	service.

ftp_password sysname User	password	used	to
connect	to	the	FTP	service.

alt_snapshot_folder nvarchar(255)Specifies	the	location	of	the
alternate	folder	for	the
snapshot.

working_directory nvarchar(255)Name	of	the	working
directory	used	to	store	data
and	schema	files.

use_ftp bit Specifies	the	use	of	FTP
instead	of	the	regular	protocol
to	retrieve	snapshots.	If	1,
FTP	is	used.

dts_package_name sysname Specifies	the	name	of	the
DTS	package.

dts_package_password nvarchar(524)Specifies	the	password	on	the
package,	if	there	is	one.	A
value	of	NULL	means	that

the	package	has	no	password.
dts_package_location int Location	where	the	DTS

package	is	stored.
enabled_for_syncmgr bit Specifies	whether	the

subscription	can	be
synchronized	through	the
Microsoft	Synchronization
Manager.	If	0,	subscription	is
not	registered	with
Synchronization	Manager.	If
1,	subscription	is	registered
with	Synchronization
Manager	and	can	be
synchronized	without	starting
SQL	Server	Enterprise
Manager.

offload_agent bit Specifies	if	the	agent	can	be
activated	remotely.	If	0,	the
agent	cannot	be	activated
remotely.

offload_server sysname Specifies	the	network	name
of	the	server	used	for	remote
activation.

dynamic_snapshot_location nvarchar(255)Specifies	the	path	to	the
folder	where	the	snapshot
files	are	saved.

Transact-SQL	Reference

MSsubscriptions
The	MSsubscriptions	table	contains	one	row	for	each	subscription	serviced	by
the	local	Distributor.	This	table	is	stored	in	the	distribution	database.

Column	name Data	type Description
publisher_database_id int ID	of	the	Publisher	database.
publisher_id smallint ID	of	the	Publisher.
publisher_db sysname Name	of	the	Publisher	database.
publication_id int ID	of	the	publication.
article_id int ID	of	the	article.
subscriber_id smallint ID	of	the	Subscriber.
subscriber_db sysname Name	of	the	subscription	database.
subscription_type int Type	of	subscription:

0	=	Push
1	=	Pull
2	=	Anonymous

sync_type tinyint Type	of	synchronization:

1	=	Automatic
2	=	No	sync

status tinyint Status	of	the	subscription:

0	=	Inactive
1	=	Subscribed
2	=	Active

subscription_seqno varbinary(16) Snapshot	transaction	sequence
number.

snapshot_seqno_flag bit 1	=	subscription_seqno	is	the
snapshot	sequence	number.

independent_agent bit Indicates	whether	there	is	a	stand-
alone	Distribution	Agent	for	this
publication.

subscription_time datetime --
loopback_detection bit Whether	the	Distribution	Agent

sends	transactions	originated	at	the
Subscriber	back	to	the	Subscriber:

1	=	Does	not	send	back.
0	=	Sends	back.

agent_id int ID	of	the	agent.
update_mode tinyint Type	of	update.
publisher_seqno varbinary(16) Sequence	number	of	the

transaction	at	the	Publisher	for	this
subscription.

ss_cplt_seqno varbinary(16) Sequence	number	used	to	signify
the	completion	of	the	concurrent
snapshot	processing.

Transact-SQL	Reference

MSsub_identity_range
The	MSsub_identity_range	table	provides	identity	range	management	support
for	subscriptions.	This	table	is	stored	in	the	subscription	databases.

Column	name Data	type Description
objid int ID	of	the	table	that	has	the	identity

column	being	managed	by	replication.
range bigint Controls	the	range	size	of	the

consecutive	identity	values	that	would
be	assigned	at	the	Subscriber	in	an
adjustment.

last_seed bigint Lower	bound	of	the	current	range.
threshold int Percentage	value	that	controls	when	the

Distribution	Agent	assigns	a	new
identity	range.	When	the	percentage	of
values	specified	in	threshold	is	used,	the
Distribution	Agent	creates	a	new
identity	range.

Transact-SQL	Reference

MSsync_states
The	MSsync_states	table	tracks	which	publication	is	still	in	concurrent	snapshot
mode.	This	table	is	stored	in	the	distribution	database.

Column	name Data	type Description
publisher_id smallint ID	of	the	publisher.
publisher_db sysname Name	of	the	publication

database.
publication_id int ID	of	the	publication.

Transact-SQL	Reference

restorefile
The	restorefile	table	contains	one	row	for	each	restored	file,	including	files
restored	indirectly	by	filegroup	name.	This	table	is	stored	in	the	msdb	database.

Column	name Data	type Description
restore_history_id int	NOT	NULL	REFERENCES

restorehistory(restore_history_id)
Unique
identification
number
identifying
the
corresponding
restore
operation.

file_number numeric(10,0)	NULL File
identification
number	of	the
restored	file.
This	number
must	be
unique	within
each
database.

destination_phys_drive varchar(260)	NULL Drive	or
partition	to
which	the	file
was	restored.

destination_phys_name varchar(260)	NULL Name	of	the
file,	without
the	drive	or
partition
information,
where	the	file
was	restored.

Transact-SQL	Reference

restorefilegroup
The	restorefilegroup	table	contains	one	row	for	each	restored	filegroup.	This
table	is	stored	in	the	msdb	database.

Column	name Data	type Description
restore_history_id int	NOT	NULL	REFERENCES

restorehistory(restore_history_id)
Unique
identification
number	identifying
the	corresponding
restore	operation

filegroup_name nvarchar(128)	NULL Name	of	the
filegroup	being
restored

Transact-SQL	Reference

restorehistory
The	restorehistory	table	contains	one	row	for	each	restore	operation.	This	table
is	stored	in	the	msdb	database.

Column	name Data	type Description
restore_history_id int	NOT	NULL

IDENTITY	PRIMARY
KEY

Unique
identification
number
identifying	each
restore	operation.

restore_date datetime	NULL Date	and	time	of
the	restore
operation.

destination_database_name nvarchar(128)	NULL Name	of	the
destination
database	for	the
restore	operation.

user_name nvarchar(128)	NULL Name	of	the	user
who	performed
the	restore
operation.

backup_set_id int	NOT	NULL
REFERENCES
backupset(backup_set_id)

Unique
identification
number
identifying	the
backup	set	being
restored.

restore_type char(1)	NULL Type	of	restore
operation:

D	=	Database
F	=	File
G	=	Filegroup
L	=	Log

V	=	Verifyonly

replace bit	NULL Indicates
whether	the
restore	operation
specified	the
REPLACE
option:

1	=	Specified
0	=	Not	specified

recovery bit	NULL Indicates
whether	the
restore	operation
specified	the
RECOVERY	or
NORECOVERY
option:

1	=	RECOVERY
0	=
NORECOVERY

restart bit	NULL Indicates
whether	the
restore	operation
specified	the
RESTART
option:

1	=	Specified
0	=	Not	specified

stop_at datetime	NULL Point	in	time	to
which	the
database	was
recovered.

device_count tinyint	NULL Number	of

devices	involved
in	the	restore
operation.	This
number	can	be
less	than	the
number	of	media
families	for	the
backup.

stop_at_mark_name nvarchar(128)	NULL Indicates
recovery	to	the
transaction
containing	the
named	mark.

stop_before bit	NULL Indicates
whether	the
transaction
containing	the
named	mark	was
included	in	the
recovery:

0	=	Recovery
halted	before
marked
transaction.
1	=	Recovery
included	marked
transaction.

Transact-SQL	Reference

sysalerts
Contains	one	row	for	each	alert.	An	alert	is	a	message	sent	in	response	to	an
event.	An	alert	can	forward	messages	beyond	the	Microsoft®	SQL	Server™
environment,	and	an	alert	can	be	an	e-mail	or	pager	message.	An	alert	also	can
generate	a	task.

Column	name Data	type Description
id int Alert	ID.
name sysname Alert	name.
event_source nvarchar(100) Source	of	the	event:	SQL

Server.
event_category_id int Reserved	for	future	use.
event_id int Reserved	for	future	use.
message_id int User-defined	message	ID	or

reference	to	sysmessages
message	that	triggers	this
alert.

severity int Severity	that	triggers	this
alert.

enabled tinyint Status	of	the	alert:

0	=	Disabled.
1	=	Enabled.

delay_between_
responses

int Wait	period,	in	seconds,
between	notifications	for
this	alert.

last_occurrence_date int Last	occurrence	(date)	of
the	alert.

last_occurrence_time int Last	occurrence	(time	of
day)	of	the	alert.

last_response_date int Last	notification	(date)	of
the	alert.

last_response_time int Last	notification	(time	of

day)	of	the	alert.
notification_message nvarchar(512) Additional	information	sent

with	the	alert.
include_event_
description

tinyint Bitmask	representing
whether	the	event
description	is	sent	by	either
or	both:

1	=	E-mail.
2	=	Pager.

database_name sysname Database	in	which	this	alert
must	occur	to	trigger	this
alert.

event_description_keyword nvarchar(100) Pattern	the	error	must
match	in	order	for	the	alert
to	trigger.

occurrence_count int Number	of	occurrences	for
this	alert.

count_reset_date int Day	(date)	count	will	be
reset	to	0.

count_reset_time int Time	of	day	count	will	be
reset	to	0.

job_id uniqueidentifier ID	of	the	task	executed
when	this	alert	occurs.

has_notification int Number	of	operators	who
receive	e-mail	notification
when	alert	occurs.

flags int Reserved.
performance_condition nvarchar(512) Reserved.
category_id int Reserved.

Transact-SQL	Reference

sysaltfiles
Under	special	circumstances,	contains	rows	corresponding	to	the	files	in	a
database.	This	table	is	stored	in	the	master	database.

Column	name Data	type Description
fileid smallint File	identification	number	which

is	unique	for	each	database.
groupid smallint Filegroup	identification	number.
size int File	size,	in	8-KB	pages.
maxsize int Maximum	file	size	(in	8-KB

pages).	A	value	of	0	indicates	no
growth,	and	a	value	of	-1
indicates	that	the	file	should	grow
until	the	disk	is	full.

growth int Growth	size	of	the	database.	A
value	of	0	indicates	no	growth.
Can	be	either	the	number	of	pages
or	the	percentage	of	file	size,
depending	on	the	value	of	status.
If	status	is	0x100000,	then
growth	is	the	percentage	of	file
size;	otherwise,	it	is	the	number	of
pages.

status int For	internal	use	only.
perf int Reserved.
dbid smallint Database	identification	number	of

the	database	to	which	this	file
belongs.

name nchar(128) Logical	name	of	the	file.
filename nchar(260) Name	of	the	physical	device,

including	the	full	path	of	the	file.

Transact-SQL	Reference

sysarticles
Contains	a	row	for	each	article	defined	in	the	local	database.	This	table	is	stored
in	the	published	database.

Column	name Data	type Description
artid int Identity	column	that	provides	a

unique	ID	number	for	the	article.
columns varbinary(32) Columns	in	the	tables	that	are

being	published.
creation_script nvarchar(255) Schema	script	for	the	article.
del_cmd nvarchar(255) Command	to	execute	upon

DELETE;	otherwise,	construct
from	the	log.

description nvarchar(255) Descriptive	entry	for	the	article.
dest_table sysname Name	of	the	destination	table.
filter int Stored	procedure	ID,	used	for

horizontal	partitioning.
filter_clause ntext WHERE	clause	of	the	article,

used	for	horizontal	filtering.
ins_cmd nvarchar(255) Command	to	execute	upon

INSERT;	otherwise,	construct
from	the	log.

name sysname Name	associated	with	the	article,
unique	within	the	publication.

objid int Published	table	object	ID.
pubid int ID	of	the	publication	to	which	the

article	belongs.
pre_creation_cmd tinyint Pre	creation	command	for	DROP

TABLE,	DELETE	TABLE,	or
TRUNCATE:

0	=	None	.
1	=	DROP.	
2	=	DELETE.

3	=	TRUNCATE.

status tinyint Bitmask	of	the	article	options.
status	is	tinyint,	and	can	be	one
of	these	values:

0	=	No	additional	properties.
8	=	Include	the	column	name	in
INSERT	statements.
16	(default)	=	Use	parameterized
statements.
24	=	Both	include	the	column
name	in	INSERT	statements	and
use	parameterized	statements.

sync_objid int ID	of	the	table	or	view	that
represents	the	article	definition.

type tinyint Type	of	article:

1	=	Log-based	article.
3	=	Log-based	article	with	manual
filter.
5	=	Log-based	article	with	manual
view.	
7	=	Log-based	article	with	manual
filter	and	manual	view.

upd_cmd nvarchar(255) Command	to	execute	upon
UPDATE;	otherwise,	construct
from	the	log.

schema_option binary(8) Indicates	what	is	to	be	scripted
out.

dest_owner sysname Owner	of	the	table	at	the
destination	database.

Transact-SQL	Reference

sysarticleupdates
Contains	one	row	for	each	article	that	supports	immediate-updating
subscriptions.	This	table	is	stored	in	the	replicated	database.

Column	name Data	type Description
artid int Identity	column	providing	a

unique	ID	number	for	the	article.
pubid int ID	of	the	publication	to	which	the

article	belongs.
sync_ins_proc int ID	of	the	stored	procedure

handling	Insert	Sync	Transactions.
sync_upd_proc int ID	of	the	stored	procedure

handling	Update	Sync
Transactions.

sync_del_proc int ID	of	the	stored	procedure
handling	Delete	Sync
Transactions.

autogen bit Indicates	that	stored	procedures
are	automatically	generated:

0	=	False,	not	automatic.
1	=	True,	automatic.

sync_upd_trig int ID	of	the	automatic	versioning
trigger	on	the	article	table.

conflict_tableid int ID	for	the	conflict	table.
ins_conflict_proc int ID	of	the	procedure	used	to	write

the	conflict	to	the	conflict_table.
identity_support bit Specifies	whether	disables

automatic	identity	range	handling
is	enabled	when	queued	updating
is	used.	0	means	that	there	is	no
identity	range	support.

Transact-SQL	Reference

syscacheobjects
Contains	information	about	how	the	cache	is	used.	syscacheobjects	belongs	to
the	master	database.	The	following	table	shows	cache	lookup	keys.

Column	name Data	type Description
bucketid int Bucket	ID.	Value	indicates	a	range	from	0

through	(directory	size	-	1).	Directory	size
is	the	size	of	the	hash	table.

cacheobjtype nvarchar(34) Type	of	object	in	the	cache:

Compiled	Plan
Executable	Plan
Parse	Tree
Cursor	Parse	Tree
Extended	Stored	Procedure

objtype nvarchar(16) Type	of	object:

Stored	Procedure
Prepared	statement
Ad	hoc	query	(Transact-SQL	submitted	as
language	events	from	isql	or	osql,	as
opposed	to	remote	procedure	calls)
ReplProc	(replication	procedure)
Trigger
View
Default
User	table
System	table
Check
Rule

objid int One	of	the	main	keys	used	for	looking	up
an	object	in	the	cache.	This	is	the	object
ID	stored	in	sysobjects	for	database
objects	(procedures,	views,	triggers,	and

so	on).	For	cache	objects	such	as	ad	hoc	or
prepared	SQL,	objid	is	an	internally
generated	value.

dbid smallint Database	ID	in	which	the	cache	object	was
compiled.

uid smallint Indicates	the	creator	of	the	plan	for	ad	hoc
query	plans	and	prepared	plans.	-2
indicates	the	batch	submitted	does	not
depend	on	implicit	name	resolution	and
can	be	shared	among	different	users.	This
is	the	preferred	method.	Any	other	value
represents	the	user	ID	of	the	user
submitting	the	query	in	the	database.

refcounts int Number	of	other	cache	objects	referencing
this	cache	object.	A	count	of	1	is	the	base.

usecounts int Number	of	times	this	cache	object	has
been	used	since	inception.

pagesused int Number	of	memory	pages	consumed	by
the	cache	object.

setopts int SET	option	settings	that	affect	a	compiled
plan.	These	are	part	of	the	cache	key.
Changes	to	values	in	this	column	indicate
users	have	modified	SET	options.	These
options	include:

ANSI_PADDING
FORCEPLAN
CONCAT_NULL_YIELDS_NULL
ANSI_WARNINGS
ANSI_NULLS
QUOTED_IDENTIFIER
ANSI_NULL_DFLT_ON
ANSI_NULL_DFLT_OFF

langid smallint Language	ID.	ID	of	the	language	of	the
connection	that	created	the	cache	object.

dateformat smallint Date	format	of	the	connection	that	created

the	cache	object.
status int Indicates	whether	the	cache	object	is	a

cursor	plan.	Currently,	only	the	least
significant	bit	is	used.

sqlbytes int Length	of	name	or	batch	submitted.	Can
be	used	to	distinguish	two	names	or
submitted	batches	if	the	first	128
characters	are	the	same.

sql nvarchar(256) Procedure	name	or	first	128	characters	of
the	batch	submitted.

Transact-SQL	Reference

syscategories
Contains	the	categories	used	by	SQL	Server	Enterprise	Manager	to	organize
jobs,	alerts,	and	operators.	This	table	is	stored	in	the	msdb	database.

Column	name Data	type Description
category_id int ID	of	the	category
category_class int Type	of	item	in	the	category:

1	=	Job
2	=	Alert
3	=	Operator

category_type tinyint Type	of	category:

1	=	Local
2	=	Multiserver
3	=	None

name sysname Name	of	the	category

Transact-SQL	Reference

syscharsets
Contains	one	row	for	each	character	set	and	sort	order	defined	for	use	by
Microsoft®	SQL	Server™.	One	of	the	sort	orders	is	marked	in	sysconfigures	as
the	default	sort	order,	which	is	the	only	one	actually	in	use.

Column	name Data	type Description
type smallint Type	of	entity	this	row	represents.	1001

is	a	character	set;	2001	is	a	sort	order.
id tinyint Unique	ID	for	the	character	set	or	sort

order.	Note	sort	orders	and	character	sets
cannot	share	the	same	ID	number.	The
ID	range	of	1	through	240	is	reserved	for
SQL	Server	use.

csid tinyint If	the	row	represents	a	character	set,	this
field	is	unused.	If	the	row	represents	a
sort	order,	this	field	is	the	ID	of	the
character	set	that	the	sort	order	is	built
on.	It	is	assumed	a	character	set	row	with
this	ID	exists	in	this	table.

status smallint Internal	system	status	information	bits.
name sysname Unique	name	for	the	character	set	or	sort

order.	This	field	must	contain	only	the
letters	A-Z	or	a-z,	numbers	0	-	9,	and
underscores(_).	It	must	begin	with	a
letter.

description nvarchar(255) Optional	description	of	the	features	of
the	character	set	or	sort	order.

binarydefinition varbinary(255)For	internal	use	only.
definition image Internal	definition	of	the	character	set	or

sort	order.	The	structure	of	the	data	in
this	field	depends	on	the	type.

Transact-SQL	Reference

syscolumns
Contains	one	row	for	every	column	in	every	table	and	view,	and	a	row	for	each
parameter	in	a	stored	procedure.	This	table	is	in	each	database.

Column	name Data	type Description
name sysname Name	of	the	column	or	procedure

parameter.
id int Object	ID	of	the	table	to	which	this

column	belongs,	or	the	ID	of	the	stored
procedure	with	which	this	parameter	is
associated.

xtype tinyint Physical	storage	type	from	systypes.
typestat tinyint For	internal	use	only.
xusertype smallint ID	of	extended	user-defined	data	type.
length smallint Maximum	physical	storage	length	from

systypes.
xprec tinyint For	internal	use	only.
xscale tinyint For	internal	use	only.
colid smallint Column	or	parameter	ID.
xoffset smallint For	internal	use	only.
bitpos tinyint For	internal	use	only.
reserved tinyint For	internal	use	only.
colstat smallint For	internal	use	only.
cdefault int ID	of	the	default	for	this	column.
domain int ID	of	the	rule	or	CHECK	constraint	for

this	column.
number smallint Subprocedure	number	when	the	procedure

is	grouped	(0	for	nonprocedure	entries).
colorder smallint For	internal	use	only.
autoval varbinary(255)For	internal	use	only.
offset smallint Offset	into	the	row	in	which	this	column

appears;	if	negative,	variable-length	row.

status tinyint Bitmap	used	to	describe	a	property	of	the
column	or	the	parameter:

0x08	=	Column	allows	null	values.
0x10	=	ANSI	padding	was	in	effect	when
varchar	or	varbinary	columns	were
added.	Trailing	blanks	are	preserved	for
varchar	and	trailing	zeros	are	preserved
for	varbinary	columns.
0x40	=	Parameter	is	an	OUTPUT
parameter.
0x80	=	Column	is	an	identity	column.

type tinyint Physical	storage	type	from	systypes.
usertype smallint ID	of	user-defined	data	type	from

systypes.
printfmt varchar(255) For	internal	use	only.
prec smallint Level	of	precision	for	this	column.
scale int Scale	for	this	column.
iscomputed int Flag	indicating	whether	the	column	is

computed:

0	=	Noncomputed.
1	=	Computed.

isoutparam int Indicates	whether	the	procedure	parameter
is	an	output	parameter:

1	=	True.
0	=	False.

isnullable int Indicates	whether	the	column	allows	null
values:

1	=	True.
0	=	False.

Transact-SQL	Reference

syscomments
Contains	entries	for	each	view,	rule,	default,	trigger,	CHECK	constraint,
DEFAULT	constraint,	and	stored	procedure.	The	text	column	contains	the
original	SQL	definition	statements,	which	are	limited	to	a	maximum	size	of	4
MB.	This	table	is	stored	in	each	database.

IMPORTANT		None	of	the	entries	in	syscomments	should	be	deleted.	If	an	entry	in
syscomments	is	manually	removed	or	modified,	the	corresponding	stored
procedure	will	not	function	properly.	To	hide	or	encrypt	stored	procedure
definitions,	use	CREATE	PROCEDURE	with	the	ENCRYPTION	keyword.

Column
name Data	type Description
id int Object	ID	to	which	this	text	applies.
number smallint Number	within	procedure	grouping,	if

grouped.		0	for	entries	that	are	not
procedures.

colid smallint Row	sequence	number	for	object
definitions	longer	than	4,000	characters.

status smallint For	internal	use	only.
ctext varbinary(8000)Actual	text	of	the	SQL	definition

statement.
texttype smallint 0	=	User-supplied	comment.

1	=	System-supplied	comment.
4	=	Encrypted	comment.

language smallint For	internal	use	only.
encrypted bit Indicates	whether	the	procedure	is

encrypted.

0	=	Not	encrypted.
1	=	Encrypted.

compressed bit Indicates	whether	or	not	the	procedure	is
compressed.

0	=	Not	compressed

1	=	Compressed

text nvarchar(4000) Actual	text	of	the	SQL	definition
statement.

Transact-SQL	Reference

sysconfigures
Contains	one	row	for	each	configuration	option	set	by	a	user.	sysconfigures
contains	the	configuration	options	defined	before	the	most	recent	Microsoft®
SQL	Server™	startup,	plus	any	dynamic	configuration	options	set	since	then.
This	table	is	only	in	the	master	database.

Column	name Data	type Description
value int User-modifiable	value	for	the	variable

(being	used	by	SQL	Server	only	if
RECONFIGURE	has	been	executed).

config smallint Configuration	variable	number.
comment nvarchar(255) Explanation	of	the	configuration	option.
status smallint Bitmap	indicating	the	status	for	the	option.

Possible	values	include:

0	=	Static	(The	setting	takes	effect	when
the	server	is	restarted.).
1	=	Dynamic	(The	variable	takes	effect
when	the	RECONFIGURE	statement	is
executed.).
2	=	Advanced	(The	variable	is	displayed
only	when	the	show	advanced	option	is
set.).
3	=	Dynamic	and	advanced.

Transact-SQL	Reference

sysconstraints
Contains	mappings	of	constraints	to	the	objects	that	own	the	constraints.	This
system	catalog	is	stored	in	each	database.

Column	name Data	type Description
constid int Constraint	number.
id int ID	of	the	table	that	owns	the	constraint.
colid smallint ID	of	the	column	on	which	the	constraint	is

defined,	0	if	a	table	constraint.
spare1 tinyint Reserved.
status int Bitmap	indicating	the	status.	Possible

values	include:

1	=	PRIMARY	KEY	constraint.
2	=	UNIQUE	KEY	constraint.
3	=	FOREIGN	KEY	constraint.
4	=	CHECK	constraint.
5	=	DEFAULT	constraint.
16	=	Column-level	constraint.
32	=	Table-level	constraint.

actions int Reserved.
error int Reserved.

Transact-SQL	Reference

syscurconfigs
Contains	an	entry	for	each	of	the	current	configuration	options.	In	addition,	this
table	contains	four	entries	that	describe	the	configuration	structure.
syscurconfigs	is	built	dynamically	when	queried	by	a	user.	For	more
information,	see	sysconfigures.

Column	name Data	type Description
value int User-modifiable	value	for	the	variable

(being	used	by	Microsoft®	SQL	Server™
only	if	RECONFIGURE	has	been
executed).

config smallint Configuration	variable	number.
comment nvarchar(255) Explanation	of	the	configuration	option.
status smallint Bitmap	indicating	the	status	for	the	option.

Possible	values	include:

0	=	Static	(The	setting	takes	effect	when
the	server	is	restarted.).
1	=	Dynamic	(The	variable	takes	effect
when	the	RECONFIGURE	statement	is
executed.).
2	=	Advanced	(The	variable	is	displayed
only	when	the	show	advanced	option	is
set.).
3	=	Dynamic	and	advanced.

Transact-SQL	Reference

sysdatabases
Contains	one	row	for	each	database	on	Microsoft®	SQL	Server™.	When	SQL
Server	is	initially	installed,	sysdatabases	contains	entries	for	the	master,	model,
msdb,	mssqlweb,	and	tempdb	databases.	This	table	is	stored	only	in	the	master
database.

Column	name Data	type Description
name sysname Name	of	the	database.
dbid smallint Database	ID.
sid varbinary(85) System	ID	of	the	database	creator.
mode smallint Used	internally	for	locking	a

database	while	it	is	being	created.
status int Status	bits,	some	of	which	can	be	set

by	the	user	with	sp_dboption	(read
only,	dbo	use	only,	single	user,	and
so	on):

1	=	autoclose;	set	with	sp_dboption.
4	=	select	into/bulkcopy;	set	with
sp_dboption.
8	=	trunc.	log	on	chkpt;	set	with
sp_dboption.
16	=	torn	page	detection,	set	with
sp_dboption.
32	=	loading.
64	=	pre	recovery.
128	=	recovering.
256	=	not	recovered.
512	=	offline;	set	with	sp_dboption.
1024	=	read	only;	set	with
sp_dboption.
2048	=	dbo	use	only;	set	with
sp_dboption.
4096	=	single	user;	set	with
sp_dboption.

32768	=	emergency	mode.
4194304	=	autoshrink.
1073741824	=	cleanly	shutdown.

Multiple	bits	can	be	on	at	the	same
time.

status2 int 16384	=	ANSI	null	default;	set	with
sp_dboption.
65536	=	concat	null	yields	null	,	set
with	sp_dboption.
131072	=	recursive	triggers,	set
with	sp_dboption.	
1048576	=	default	to	local	cursor,
set	with	sp_dboption.
8388608	=	quoted	identifier,	set
with
sp_dboption.
33554432	=	cursor	close	on
commit,	set	with	sp_dboption.	
67108864	=	ANSI	nulls,	set	with
sp_dboption.
268435456	=	ANSI	warnings,	set
with	sp_dboption.
536870912	=	full	text	enabled,	set
with	sp_fulltext_database.

crdate datetime Creation	date.
reserved datetime Reserved	for	future	use.
category int Contains	a	bitmap	of	information

used	for	replication:

1	=	Published.
2	=	Subscribed.
4	=	Merge	Published.
8	=	Merge	Subscribed.

cmptlevel tinyint Compatibility	level	for	the	database.
For	more	information,	see

sp_dbcmptlevel.
filename nvarchar(260) Operating-system	path	and	name	for

the	database's	primary	file.
version smallint Internal	version	number	of	the	SQL

Server	code	with	which	the	database
was	created.	For	internal	use	only	by
SQL	Server	tools	and	in	upgrade
processing.

Transact-SQL	Reference

sysdbmaintplan_databases
Contains	one	row	for	each	database	that	has	an	associated	maintenance	plan.
This	table	is	stored	in	the	msdb	database.

Column	name Data	type Description
plan_id uniqueidentifier Maintenance	plan	ID.
database_name sysname Name	of	the	database	associated

with	the	maintenance	plan.

Transact-SQL	Reference

sysdbmaintplan_history
Contains	one	row	for	each	maintenance	plan	action	performed.	This	table	is
stored	in	the	msdb	database.

Column	name Data	type Description
sequence_id int Sequence	of	history	performed	by

maintenance	plans.
plan_id uniqueidentifier Maintenance	plan	ID.
plan_name sysname Maintenance	plan	name.
database_name sysname Name	of	the	database	associated

with	the	maintenance	plan.
server_name sysname System	name.
activity nvarchar(128) Activity	performed	by	the

maintenance	plan	(for	example,
Backup	transaction	log,	and	so
on.).

succeeded bit 0	=	Success
1	=	Failure

end_time datetime Time	at	which	action	completed.
duration int Length	of	time	required	to

complete	maintenance	plan	action.
start_time datetime Time	at	which	action	began.
error_number int Error	number	reported	on	failure.
message nvarchar(512) Message	generated	by	sqlmaint.

Transact-SQL	Reference

sysdbmaintplan_jobs
Contains	one	row	for	each	maintenance	plan	job.	This	table	is	stored	in	the
msdb	database.

Column	name Data	type Description
plan_id uniqueidentifier Maintenance	plan	ID.
job_id uniqueidentifier ID	of	a	job	associated	with	the

maintenance	plan.

Transact-SQL	Reference

sysdbmaintplans
Contains	one	row	for	each	database	maintenance	plan.	This	table	is	stored	in	the
msdb	database.

Column	name Data	type Description
plan_id uniqueidentifier Maintenance	plan	ID.
plan_name sysname Maintenance	plan	name.
date_created datetime Date	the	maintenance	plan

was	created.
owner sysname Owner	of	the	maintenance

plan.
max_history_rows int Maximum	number	of	rows

allotted	for	recording	the
history	of	the	maintenance
plan	in	the	system	table.

remote_history_server sysname Name	of	the	remote	server
to	which	the	history	report
could	be	written.

max_remote_history_rows int Maximum	number	of	rows
allotted	in	the	system	table
on	a	remote	server	to	which
the	history	report	could	be
written.

user_defined_1 int Default	is	NULL.
user_defined_2 nvarchar(100) Default	is	NULL.
user_defined_3 datetime Default	is	NULL.
user_defined_4 uniqueidentifier Default	is	NULL.
log_shipping bit Log	shipping	status:

0	=	Disabled
1	=	Enabled

Transact-SQL	Reference

sysdepends
Contains	dependency	information	between	objects	(views,	procedures,	and
triggers),	and	the	objects	(tables,	views,	and	procedures)	contained	in	their
definition.	This	table	is	stored	in	each	database.

Column	name Data	type Description
id int Object	ID.
depid int Dependent	object	ID.
number smallint Procedure	number.
depnumber smallint Dependent	procedure	number.
status smallint Internal	status	information.
depdbid smallint Reserved.
depsiteid smallint Reserved.
selall bit On,	if	the	object	is	used	in	a

SELECT	*	statement.
resultobj bit On,	if	the	object	is	being	updated.
readobj bit On,	if	the	object	is	being	read.

Transact-SQL	Reference

sysdevices
Contains	one	row	for	each	disk	backup	file,	tape	backup	file,	and	database	file.
This	table	is	stored	only	in	the	master	database.

IMPORTANT		This	system	table	provides	backward	compatibility	information.	In
earlier	versions	of	Microsoft®	SQL	Server™,	this	table	contained	a	list	of	all
database	files.	For	SQL	Server	version	7.0,	a	list	of	database	files	is	stored	in	the
sysfiles	system	table	of	each	database.

Column	name Data	type Description
name sysname Logical	name	of	the	backup	file	or

database	file.
size int Size	of	the	file	in	2	kilobyte	(KB)

pages.
low int Maintained	for	backward

compatibility	only.
high int Maintained	for	backward

compatibility	only.
status smallint Bitmap	indicating	the	type	of	device:

1	=	Default	disk	
2	=	Physical	disk	
4	=	Logical	disk	
8	=	Skip	header	
16	=	Backup	file	
32	=	Serial	writes	
4096	=	Read-only

cntrltype smallint Controller	type:

0	=	Non-CD-ROM	database	file
2	=	Disk	backup	file
3	-	4	=	Diskette	backup	file
5	=	Tape	backup	file
6	=	Named-pipe	file

phyname nvarchar(260) Name	of	the	physical	file.

Transact-SQL	Reference

sysdownloadlist
Holds	the	queue	of	download	instructions	for	all	target	servers.

Column	name Data	type Description
instance_id int Identity	column	that	provides	the

natural	insertion	sequence	of	rows.
source_server nvarchar(30) Name	of	the	source	server.
operation_code tinyint Operation	code	for	the	job:

1	=	INS	(INSERT)
2	=	UPD	(UPDATE)
3	=	DEL	(DELETE)
4	=	START
5	=	STOP

object_type tinyint Object	type	code.	For	Microsoft®
SQL	Server™	version	7.0,	this
value	can	be	1,	which	corresponds
to	JOB.

object_id1 uniqueidentifierObject	identification	number.
target_server nvarchar(30) Name	of	the	target	server.
error_message nvarchar(1024) Error	message	if	the	target	server

encounters	an	error	when
processing	the	particular	row.

date_posted datetime Date	and	time	the	job	was	posted
to	the	target	server.

date_downloaded datetime Date	and	time	job	was	last
downloaded.

status tinyint Status	of	the	job:

0	=	Not	yet	downloaded
1	=	Successfully	downloaded

deleted_object_name sysname Name	of	deleted	object.
1.	The	object_id	column	can	be	a	value	of	-1,	which	corresponds	to	a	value	of	ALL	if	the	operation_code

column	is	a	value	of	DELETE.

Transact-SQL	Reference

sysfiles
Contains	one	row	for	each	file	in	a	database.	This	system	table	is	a	virtual	table;
it	cannot	be	updated	or	modified	directly.

Column
name Data	type Description
fileid smallint File	identification	number	unique	for	each

database.
groupid smallint Filegroup	identification	number.
size int Size	of	the	file	(in	8-KB	pages).
maxsize int Maximum	file	size	(in	8-KB	pages).	A

value	of	0	indicates	no	growth,	and	a	value
of	-1	indicates	that	the	file	should	grow
until	the	disk	is	full.

growth int Growth	size	of	the	database.	A	value	of	0
indicates	no	growth.	Can	be	either	the
number	of	pages	or	the	percentage	of	file
size,	depending	on	value	of	status.	If	status
contains	0x100000,	then	growth	is	the
percentage	of	file	size;	otherwise,	it	is	the
number	of	pages.

status int Status	bits	for	the	growth	value	in	either
megabytes	(MB)	or	kilobytes	(K).

0x1	=	Default	device.
0x2	=	Disk	file.
0x40	=	Log	device.
0x80	=	File	has	been	written	to	since	last
backup.
0x4000	=	Device	created	implicitly	by	the
CREATE	DATABASE	statement.
0x8000	=	Device	created	during	database
creation.
0x100000	=	Growth	is	in	percentage,	not

pages.

perf int Reserved.
name nchar(128) Logical	name	of	the	file.
filename nchar(260) Name	of	the	physical	device,	including	the

full	path	of	the	file.

Transact-SQL	Reference

sysfilegroups
Contains	one	row	for	each	filegroup	in	a	database.	This	table	is	stored	in	each
database.	There	is	at	least	one	entry	in	this	table	that	is	for	the	primary	filegroup.

Column
name Data	type Description
groupid smallint Group	identification	number	unique	for

each	database.
allocpolicy smallint Reserved.
status int 0x8	=	READ	ONLY

0x10	=	DEFAULT
groupname sysname Name	of	the	filegroup.

Transact-SQL	Reference

sysforeignkeys
Contains	information	regarding	the	FOREIGN	KEY	constraints	that	are	in	table
definitions.	This	table	is	stored	in	each	database.

Column
name Data	type Description
constid int ID	of	the	FOREIGN	KEY	constraint.
fkeyid int Object	ID	of	the	table	with	the	FOREIGN

KEY	constraint.
rkeyid int Object	ID	of	the	table	referenced	in	the

FOREIGN	KEY	constraint.
fkey smallint ID	of	the	referencing	column.
rkey smallint ID	of	the	referenced	column.
keyno smallint Position	of	the	column	in	the	reference

column	list.

Transact-SQL	Reference

sysfulltextcatalogs
Lists	the	set	of	full-text	catalogs.

Column
name Data	type Description
ftcatid smallint Identifier	of	the	full-text	catalog.
name sysname Full-text	catalog	name	given	by	the	user.
status smallint Reserved;	internal	use	only.
path nvarchar(260) Root	path	given	by	the	user.	A	value	of

NULL	means	a	path	was	not	given	and	the
default	(installation)	path	was	used.

Transact-SQL	Reference

sysindexes
Contains	one	row	for	each	index	and	table	in	the	database.	This	table	is	stored	in
each	database.

Column	name Data	type Description
id int ID	of	table	(for	indid	=	0	or	255).

Otherwise,	ID	of	table	to	which	the	index
belongs.

status int Internal	system-status	information.
first binary(6) Pointer	to	the	first	or	root	page.
indid smallint ID	of	index:

1	=	Clustered	index
>1	=	Nonclustered
255	=	Entry	for	tables	that	have	text	or
image	data

root binary(6) For	indid	>=	1	and	<	255,	root	is	the
pointer	to	the	root	page.	For	indid	=	0	or
indid	=	255,	root	is	the	pointer	to	the	last
page.

minlen smallint Minimum	size	of	a	row.
keycnt smallint Number	of	keys.
groupid smallint Filegroup	ID	on	which	the	object	was

created.
dpages int For	indid	=	0	or	indid	=	1,	dpages	is	the

count	of	data	pages	used.	For	indid=255,
it	is	set	to	0.	Otherwise,	it	is	the	count	of
index	pages	used.

reserved int For	indid	=	0	or	indid	=	1,	reserved	is	the
count	of	pages	allocated	for	all	indexes
and	table	data.	For	indid	=	255,	reserved
is	a	count	of	the	pages	allocated	for	text	or
image	data.	Otherwise,	it	is	the	count	of

pages	allocated	for	the	index.
used int For	indid	=	0	or	indid	=	1,	used	is	the

count	of	the	total	pages	used	for	all	index
and	table	data.	For	indid	=	255,	used	is	a
count	of	the	pages	used	for	text	or	image
data.	Otherwise,	it	is	the	count	of	pages
used	for	the	index.

rowcnt bigint Data-level	rowcount	based	on	indid	=	0
and	indid	=	1.	For	indid	=	255,	rowcnt	is
set	to	0.

rowmodctr int Counts	the	total	number	of	inserted,
deleted,	or	updated	rows	since	the	last
time	statistics	were	updated	for	the	table.

xmaxlen smallint Maximum	size	of	a	row.
maxirow smallint Maximum	size	of	a	nonleaf	index	row.
OrigFillFactor tinyint Original	fillfactor	value	used	when	the

index	was	created.	This	value	is	not
maintained;	however,	it	can	be	helpful	if
you	need	to	re-create	an	index	and	do	not
remember	what	fillfactor	was	used.

reserved1 tinyint Reserved.
reserved2 int Reserved.
FirstIAM binary(6) Reserved.
impid smallint Reserved.	Index	implementation	flag.
lockflags smallint Used	to	constrain	the	considered	lock

granularities	for	an	index.	For	example,	a
lookup	table	that	is	essentially	read-only
could	be	set	up	to	do	only	table	level
locking	to	minimize	locking	cost.

pgmodctr int Reserved.
keys varbinary(816) List	of	the	column	IDs	of	the	columns	that

make	up	the	index	key.
name sysname Name	of	table	(for	indid	=	0	or	255).

Otherwise,	name	of	index.
statblob image Statistics	BLOB.

maxlen int Reserved.
rows int Data-level	rowcount	based	on	indid	=	0

and	indid	=	1,	and	the	value	is	repeated
for	indid	>1.	For	indid	=	255,	rows	is	set
to	0.	Provided	for	backward	compatibility.

Transact-SQL	Reference

sysindexkeys
Contains	information	for	the	keys	or	columns	in	an	index.	This	table	is	stored	in
each	database.

Column
name Data	type Description
id int ID	of	the	table
indid smallint ID	of	the	index
colid smallint ID	of	the	column
keyno smallint Position	of	the	column	in	the	index

Transact-SQL	Reference

sysjobhistory
Contains	information	about	the	execution	of	scheduled	jobs	by	SQL	Server
Agent.	This	table	is	stored	in	the	msdb	database.

Column	name Data	type Description
instance_id int Unique	identifier	for	the	row.
job_id uniqueidentifier Job	ID.
step_id int ID	of	the	step	in	the	job.
step_name sysname Name	of	the	step.
sql_message_id int ID	of	any	Microsoft®	SQL

Server™	error	message	returned	if
the	job	failed.

sql_severity int Severity	of	any	SQL	Server	error.
message nvarchar(1024) Text,	if	any,	of	a	SQL	Server	error.
run_status int Status	of	the	job	execution:

0	=	Failed
1	=	Succeeded
2	=	Retry
3	=	Canceled
4	=	In	progress

run_date int Date	the	job	or	step	started
execution.	For	an	In	Progress
history,	this	is	the	date/time	the
history	was	written.

run_time int Time	the	job	or	step	completed.
run_duration int Elapsed	time	in	the	execution	of

the	job	or	step	in	HHMMSS
format.

operator_id_emailed int ID	of	the	operator	notified	when
the	job	completed.

operator_id_netsent int ID	of	the	operator	notified	by	a
message	when	the	job	completed.

operator_id_paged int ID	of	the	operator	notified	by
pager	when	the	job	completed.

retries_attempted int Number	of	retry	attempts	for	the
job	or	step.

server nvarchar(30) Name	of	the	server	where	the	job
was	executed.

Transact-SQL	Reference

sysjobschedules
Contains	schedule	information	for	jobs	to	be	executed	by	SQL	Server	Agent.
This	table	is	stored	in	the	msdb	database.

Column	name Data	type Description
schedule_id int ID	of	the	schedule.
job_id uniqueidentifier ID	of	the	job.
name sysname Name	of	the	schedule.
enabled int Enabled	status	of	the	schedule.
freq_type int Frequency	of	the	schedule

execution:

1	=	Once
4	=	Daily
8	=	Weekly
16	=	Monthly
32	=	Monthly	relative
64	=	When	SQL	Server
Agent	starts

freq_interval int Value	indicating	on	which	days
the	schedule	runs.

If	freq_type	is	4	(daily),	the	value
is	every	freq_interval	days.

If	freq_type	is	8	(weekly),	the
value	is	a	bitmask	indicating	the
days	in	which	weekly	schedules
are	run.	The	freq_interval	values
are:

1	=	Sunday
2	=	Monday
4	=	Tuesday
8	=	Wednesday

16	=	Thursday
32	=	Friday
64	=	Saturday

If	freq_type	is	16	(monthly),	the
value	is	freq_interval	day	of	the
month.

If	freq_type	is	32	(monthly
relative),	freq_interval	can	be
one	of	these	values:

1	=	Sunday
2	=	Monday
3	=	Tuesday
4	=	Wednesday
5	=	Thursday
6	=	Friday
7	=	Saturday
8	=	Day
9	=	Weekday	
10	=	Weekend	day

freq_subday_type int Units	for	the
freq_subday_interval:

1	=	At	the	specified	time
2	=	Seconds
4	=	Minutes
8	=	Hours

freq_subday_interval int Number	of	freq_subday_type
periods	to	occur	between	each
scheduled	execution	of	the	job.

freq_relative_
interval

int Scheduled	job's	occurrence	of	the
freq_interval	in	each	month
when	freq_type	is	32	(monthly
relative):
1	=	First
2	=	Second

4	=	Third
8	=	Fourth
16	=	Last

freq_recurrence_
factor

int Number	of	weeks	or	months
between	the	scheduled	execution
of	the	job.

active_start_date int Date	to	begin	executing	the	job.
active_end_date int Date	to	stop	executing	the	job.
active_start_time int Time	to	start	executing	the	job.
active_end_time int Time	to	stop	executing	the	job.
next_run_date int Date	that	the	job	will	next

execute.
next_run_time int Time	that	the	job	will	next

execute.
date_created datetime Date	the	scheduled	job	entry	was

created.

Transact-SQL	Reference

sysjobs
Stores	the	information	for	each	scheduled	job	to	be	executed	by	SQL	Server
Agent.	This	table	is	stored	in	the	msdb	database.

Column	name Data	type Description
job_id uniqueidentifier Unique	ID	of	the	job.
originating_server nvarchar(30) Name	of	the	server	from	which	the

job	came.
name sysname Name	of	the	job.
enabled tinyint Indicates	whether	the	job	is

enabled	to	be	executed.
description nvarchar(512) Description	for	the	job.
start_step_id int ID	of	the	step	in	the	job	where

execution	should	begin.
category_id int ID	of	the	job	category.
owner_sid varbinary(85) System	identification	number

(SID)	of	the	job	owner.
notify_level_
eventlog

int Bitmask	indicating	under	what
circumstances	a	notification	event
should	be	logged	to	the
Microsoft®	Windows	NT®
application	log:

0	=	Never
1	=	When	the	job	succeeds
2	=	When	the	job	fails
3	=	Whenever	the	job	completes
(regardless
of	the	job	outcome)

notify_level_email int Bitmask	indicating	under	what
circumstances	a	notification	e-mail
should	be	sent	when	a	job
completes:

0	=	Never
1	=	When	the	job	succeeds
2	=	When	the	job	fails
3	=	Whenever	the	job	completes
(regardless	of	the	job	outcome)

notify_level_netsend int Bitmask	indicating	under	what
circumstances	a	network	message
should	be	sent	when	a	job
completes:

0	=	Never
1	=	When	the	job	succeeds
2	=	When	the	job	fails
3	=	Whenever	the	job	completes
(regardless	of	the	job	outcome)

notify_level_page int Bitmask	indicating	under	what
circumstances	a	page	should	be
sent	when	a	job	completes:

0	=	Never
1	=	When	the	job	succeeds
2	=	When	the	job	fails
3	=	Whenever	the	job	completes
(regardless	of	the	job	outcome)

notify_email_
operator_id

int E-mail	name	of	the	operator	to
notify.

notify_netsend_
operator_id

int ID	of	the	computer	or	user	used
when	sending	network	messages.

notify_page_
operator_id

int ID	of	the	computer	or	user	used
when	sending	a	page.

delete_level int Bitmask	indicating	under	what
circumstances	the	job	should	be
deleted	when	a	job	completes:

0	=	Never
1	=	When	the	job	succeeds

2	=	When	the	job	fails
3	=	Whenever	the	job	completes
(regardless	of	the	job	outcome)

date_created datetime Date	the	job	was	created.
date_modified datetime Date	the	job	was	last	modified.
version_number int Version	of	the	job.

Transact-SQL	Reference

sysjobservers
Stores	the	association	or	relationship	of	a	particular	job	with	one	or	more	target
servers.

Column	name Data	type Description
job_id uniqueidentifier Job	identification	number.
server_id int Server	identification	number.
last_run_outcome tinyint Outcome	for	the	job's	last	run:

0	=	Succeed
1	=	Fail
2	=	Cancel

last_outcome_
message

nvarchar(1024) Associated	message,	if	any,	with
the	last_run_outcome	column.

last_run_date int Date	the	job	was	last	run.
last_run_time int Time	the	job	was	last	run.
last_run_duration int Duration	of	the	job's	run,	in

seconds.

Transact-SQL	Reference

sysjobsteps
Contains	the	information	for	each	step	in	a	job	to	be	executed	by	SQL	Server
Agent.	This	table	is	stored	in	the	msdb	database.

Column	name Data	type Description
job_id uniqueidentifier ID	of	the	job.
step_id int ID	of	the	step	in	the	job.
step_name sysname Name	of	the	job	step.
subsystem nvarchar(40) Name	of	the	subsystem	used	by

SQL	Server	Agent	to	execute	the
job	step.

command nvarchar(3200) Command	to	be	executed	by
subsystem.

flags int Reserved.
additional_
parameters

ntext Reserved.

cmdexec_success_
code

int Error-level	value	returned	by
CmdExec	subsystem	steps	to
indicate	success.

on_success_action tinyint Action	to	be	performed	when	a
step	is	executed	successfully.

on_success_step_id int ID	of	the	next	step	to	execute	when
a	step	is	executed	successfully.

on_fail_action tinyint Action	to	be	performed	when	a
step	is	not	executed	successfully.

on_fail_step_id int ID	of	the	next	step	to	execute	when
a	step	is	not	executed	successfully.

server sysname Reserved.
database_name sysname Name	of	the	database	in	which

command	is	executed	if
subsystem	is	TSQL.

database_user_name sysname Name	of	the	database	user	whose
account	will	be	used	when

executing	the	step.
retry_attempts int Number	of	retry	attempts	made	if

the	step	fails.
retry_interval int Amount	of	time	to	wait	between

retry	attempts.
os_run_priority int Reserved.
output_file_name nvarchar(200) Name	of	the	file	in	which	the	step's

output	is	saved	when	subsystem	is
TSQL	or	CmdExec.

last_run_outcome int Outcome	of	the	previous	execution
of	the	job	step.

last_run_duration int Amount	of	time	incurred	in	the
previous	execution	of	the	job.

last_run_retries int Number	of	retry	attempts	in	the
last	execution	of	the	job	step.

last_run_date int Date	of	the	job	step's	previous
execution.

last_run_time int Time	of	the	job	step's	previous
execution.

Transact-SQL	Reference

syslanguages
Contains	one	row	for	each	language	present	in	Microsoft®	SQL	Server™.
Although	U.S.	English	is	not	in	syslanguages,	it	is	always	available	to	SQL
Server.	This	table	is	stored	only	in	the	master	database.

Column	name Data	type Description
langid smallint Unique	language	ID.
dateformat nchar(3) Date	order	(for	example,	DMY).
datefirst tinyint First	day	of	the	week:	1	for	Monday,	2

for	Tuesday,	and	so	on	through	7	for
Sunday.

upgrade int Reserved	for	system	use.
name sysname Official	language	name	(for	example,

français).
alias sysname Alternate	language	name	(for	example,

French).
months nvarchar(372) Comma-separated	list	of	full-length

month	names	in	order	from	January
through	December,	with	each	name
containing	as	many	as	20	characters.

shortmonths varchar(132) Comma-separated	list	of	short-month
names	in	order	from	January	through
December,	with	each	name	containing
as	many	as	9	characters.

days nvarchar(217) Comma-separated	list	of	day	names	in
order	from	Monday	through	Sunday,
with	each	name	containing	as	many	as
30	characters.

lcid int Microsoft	Windows	NT®	locale	ID	for
the	language.

mslangid smallint SQL	Server	message	group	ID.

Thirty-three	SQL	Server	provided	languages	are	installed.	Here	is	a	list	of	the
languages.

Name	in
English NT	LCID SQL	Server	Message	Group	ID
English 1033 1033
German 1031 1031
French 1036 1036
Japanese 1041 1041
Danish 1030 1030
Spanish 3082 3082
Italian 1040 1040
Dutch 1043 1043
Norwegian 2068 2068
Portuguese 2070 2070
Finnish 1035 1035
Swedish 1053 1053
Czech 1029 1029
Hungarian 1038 1038
Polish 1045 1045
Romanian 1048 1048
Croatian 1050 1050
Slovak 1051 1051
Slovene 1060 1060
Greek 1032 1032
Bulgarian 1026 1026
Russian 1049 1049
Turkish 1055 1055
British	English 2057 1033
Estonian 1061 1061
Latvian 1062 1062
Lithuanian 1063 1063
Brazilian 1046 1046
Traditional
Chinese

1028 1028

Korean 1042 1042

Simplified
Chinese

2052 2052

Arabic 1025 1025
Thai 1054 1054

Transact-SQL	Reference

syslockinfo
Contains	information	on	all	granted,	converting,	and	waiting	lock	requests.	This
table	is	a	denormalized	tabular	view	of	internal	data	structures	of	the	lock
manager,	and	is	stored	only	in	the	master	database.

Column	name Data	type Description
rsc_text nchar(32) Textual	description	of	a	lock

resource.	Contains	a	portion	of	the
resource	name.

rsc_bin binary(16) Binary	lock	resource.	Contains
the	actual	lock	resource	that	is
contained	in	the	lock	manager.
This	column	is	included	for	tools
that	are	aware	of	the	lock	resource
format	for	generating	their	own
formatted	lock	resource,	and	for
performing	self	joins	on
syslockinfo.

rsc_valblk binary(16) Lock	value	block.	Some	resource
types	may	include	additional	data
in	the	lock	resource	that	is	not
hashed	by	the	lock	manager	to
determine	ownership	of	a
particular	lock	resource.	For
example,	page	locks	are	not
owned	by	a	particular	object	ID.
For	lock	escalation	and	other
purposes,	however,	the	object	ID
of	a	page	lock	may	be	placed	in
the	lock	value	block.

rsc_dbid smallint Database	ID	associated	with	the
resource.

rsc_indid smallint Index	ID	associated	with	the
resource,	if	appropriate.

rsc_objid int Object	ID	associated	with	the
resource,	if	appropriate.

rsc_type tinyint Resource	type.	Can	be:

1	=	NULL	Resource	(not	used).
2	=	Database.
3	=	File.
4	=	Index.
5	=	Table.
6	=	Page.
7	=	Key.
8	=	Extent.
9	=	RID	(Row	ID).
10	=	Application.

rsc_flag tinyint Internal	resource	flags.
req_mode tinyint Lock	request	mode.	This	column

is	the	lock	mode	of	the	requester
and	represents	either	the	granted
mode,	or	the	convert	or	waiting
mode.	Can	be:

0	=	NULL.	No	access	is	granted
to	the	resource.	Serves	as	a
placeholder.
1	=	Sch-S	(Schema	stability).
Ensures	that	a	schema	element,
such	as	a	table	or	index,	is	not
dropped	while	any	session	holds	a
schema	stability	lock	on	the
schema	element.
2	=	Sch-M	(Schema
modification).	Must	be	held	by
any	session	that	wants	to	change
the	schema	of	the	specified
resource.	Ensures	that	no	other
sessions	are	referencing	the
indicated	object.

3	=	S	(Shared).	The	holding
session	is	granted	shared	access	to
the	resource.
4	=	U	(Update).	Indicates	an
update	lock	acquired	on	resources
that	may	eventually	be	updated.	It
is	used	to	prevent	a	common	form
of	deadlock	that	occurs	when
multiple	sessions	lock	resources
for	potential	update	at	a	later	time.
5=	X	(Exclusive).	The	holding
session	is	granted	exclusive
access	to	the	resource.
6	=	IS	(Intent	Shared).	Indicates
the	intention	to	place	S	locks	on
some	subordinate	resource	in	the
lock	hierarchy.
7=	IU	(Intent	Update).	Indicates
the	intention	to	place	U	locks	on
some	subordinate	resource	in	the
lock	hierarchy.
8=	IX	(Intent	Exclusive).
Indicates	the	intention	to	place	X
locks	on	some	subordinate
resource	in	the	lock	hierarchy.
9	=	SIU	(Shared	Intent	Update).
Indicates	shared	access	to	a
resource	with	the	intent	of
acquiring	update	locks	on
subordinate	resources	in	the	lock
hierarchy.
10	=	SIX	(Shared	Intent
Exclusive).	Indicates	shared
access	to	a	resource	with	the
intent	of	acquiring	exclusive	locks
on	subordinate	resources	in	the
lock	hierarchy.

11	=	UIX	(Update	Intent
Exclusive).	Indicates	an	update
lock	hold	on	a	resource	with	the
intent	of	acquiring	exclusive	locks
on	subordinate	resources	in	the
lock	hierarchy.
12	=	BU.	Used	by	bulk
operations.
13	=	RangeS_S	(Shared	Key-
Range	and	Shared	Resource	lock).
Indicates	serializable	range	scan.
14	=	RangeS_U	(Shared	Key-
Range	and	Update	Resource
lock).	Indicates	serializable
update	scan.
15	=	RangeI_N	(Insert	Key-Range
and	Null	Resource	lock).	Used	to
test	ranges	before	inserting	a	new
key	into	an	index.
16	=	RangeI_S.	Key-Range
Conversion	lock,	created	by	an
overlap	of	RangeI_N	and	S	locks.
17	=	RangeI_U.	Key-Range
Conversion	lock,	created	by	an
overlap	of	RangeI_N	and	U	locks.
18	=	RangeI_X.	Key-Range
Conversion	lock,	created	by	an
overlap	of	RangeI_N	and	X	locks.
19	=	RangeX_S.	Key-Range
Conversion	lock,	created	by	an
overlap	of	RangeI_N	and
RangeS_S.	locks.
20	=	RangeX_U.	Key-Range
Conversion	lock,	created	by	an
overlap	of	RangeI_N	and
RangeS_U	locks.
21	=	RangeX_X	(Exclusive	Key-

Range	and	Exclusive	Resource
lock).	This	is	a	conversion	lock
used	when	updating	a	key	in	a
range.

req_status tinyint Status	of	the	lock	request.	Can	be:

1	=	Granted.
2	=	Converting.
3	=	Waiting.

req_refcnt smallint Lock	reference	count.	Each	time	a
transaction	asks	for	a	lock	on	a
particular	resource,	a	reference
count	is	incremented.	The	lock
cannot	be	released	until	the
reference	count	equals	0.

req_cryrefcnt smallint Reserved	for	future	used.	Always
set	to	0.

req_lifetime int Lock	lifetime	bitmap.	During
certain	query	processing
strategies,	locks	must	be
maintained	on	resources	until	the
query	processor	has	completed	a
particular	phase	of	the	query.	The
lock	lifetime	bitmap	is	used	by	the
query	processor	and	transaction
manager	to	denote	groups	of	locks
that	can	be	released	when	a
certain	phase	of	a	query	is
completed.	Certain	bits	in	the
bitmap	are	used	to	denote	locks
that	are	held	until	the	end	of	a
transaction,	even	if	their	reference
count	equals	0.

req_spid int Internal	Microsoft®	SQL
Server™	process	ID	of	the	session

requesting	the	lock.
req_ecid int Execution	context	ID	(ECID).

Used	to	denote	which	thread	in	a
parallel	operation	owns	a
particular	lock.

req_ownertype smallint Type	of	object	associated	with	the
lock.	Can	be	one	of	the	following:

1	=	Transaction.
2	=	Cursor.
3	=	Session.
4	=	ExSession.

Note	that	3	and	4	represent	a
special	version	of	session	locks,
tracking	database	and	filegroup
locks	respectively.

req_transactionID bigint Unique	transaction	ID	used	in
syslockinfo	and	in	profiler	event

req_transactionUOWuniqueidentifier Identifies	the	Unit	of	Work	ID
(UOW)	of	the	DTC	transaction.
For	non	MS	DTC	transactions,
UOW	is	set	to	0.

Transact-SQL	Reference

syslogins
Contains	one	row	for	each	login	account.

Column	name Data	type Description
sid varbinary(85) Security	identifier.
status smallint For	internal	use	only.
createdate datetime Date	the	login	was	added.
updatedate datetime Date	the	login	was	updated.
accdate datetime For	internal	use	only.
totcpu int For	internal	use	only.
totio int For	internal	use	only.
spacelimit int For	internal	use	only.
timelimit int For	internal	use	only.
resultlimit int For	internal	use	only.
name varchar(30) Login	ID	of	the	user.
dbname nvarchar(128) Name	of	the	user's	default	database

when	connection	is	established.
password nvarchar(128) Encrypted	password	of	the	user	(may	be

NULL).
language nvarchar(128) User's	default	language.
denylogin int 1,	if	login	is	a	Microsoft®	Windows

NT®	user	or	group	and	has	been	denied
access.

hasaccess int 1,	if	login	has	been	granted	access	to	the
server.

isntname int 1	if	login	is	a	Windows	NT	user	or
group;	0	if	the	login	is	a	Microsoft	SQL
Server™	login.

isntgroup int 1,	if	login	is	a	Windows	NT	group.
isntuser int 1,	if	login	is	a	Windows	NT	user.
sysadmin int 1,	if	login	is	a	member	of	the	sysadmin

server	role.

securityadmin int 1,	if	login	is	a	member	of	the
securityadmin	server	role.

serveradmin int 1,	if	login	is	a	member	of	the
serveradmin	fixed	server	role.

setupadmin int 1,	if	login	is	a	member	of	the
setupadmin	fixed	server	role.

processadmin int 1,	if	login	is	a	member	of	the
processadmin	fixed	server	role.

diskadmin int 1,	if	login	is	a	member	of	the
diskadmin	fixed	server	role.

dbcreator int 1,	if	login	is	a	member	of	the	dbcreator
fixed	server	role.

loginname nvarchar(128) Actual	name	of	the	login,	which	may	be
different	from	the	login	name	used	by
SQL	Server.

Transact-SQL	Reference

sysmembers
Contains	a	row	for	each	member	of	a	database	role.	This	table	is	stored	in	each
database.

Column	name Data	type Description
memberuid smallint User	ID	for	the	role	member.
groupuid smallint User	ID	for	the	role.

Transact-SQL	Reference

sysmergearticles
Contains	one	row	for	each	merge	article	defined	in	the	local	database.	This	table
is	stored	in	the	publication	database.

Column	name Data	type Description
name sysname Name	of	the	article.
type tinyint Article	type.
objid int Object	identifier.
sync_objid int Object	ID	of	the	view

representing	the
synchronized	data	set.

view_type tinyint Type	of	view:

0	=	Not	a	view;	use	all	of
base	object.
1	=	Permanent	view.
2	=	Temporary	view.

artid uniqueidentifier Identity	column	used	to
provide	a	unique
identification	number	for	the
given	article.	artid	is	derived
from	sysobjects.srcid.

description nvarchar(255) Brief	description	of	the
article.

pre_creation_
command

nvarchar(10) Default	action	to	take	when
the	article	is	created	in	the
subscription	database:

None	=	If	the	table	already
exists	at	the	Subscriber,	no
action	is	taken.
Delete	=	Issues	a	delete
based	on	the	WHERE	clause
in	the	subset	filter.

Drop	(default)	=	Drops	the
table	before	re-creating	it.
Truncate	=	Same	as	delete,
but	deletes	pages	instead	of
rows.	However,	does	not	take
a	WHERE	clause.

pubid uniqueidentifier ID	of	the	publication	to
which	the	current	article
belongs.

nickname int Nickname	mapping	for
article	identification.

column_tracking int Indicates	whether	column
tracking	is	implemented	for
the	article.

status tinyint Bitmap	used	to	indicate	the
status	of	the	article.

conflict_table sysname Name	of	the	local	table	that
contains	the	conflicting
records	for	the	current
article.	This	table	is	supplied
for	information	only,	and	its
contents	may	be	modified	or
deleted	by	custom	conflict
resolution	routines	or
directly	by	the	administrator.

creation_script nvarchar(255) Creation	script	for	this
article.

conflict_script nvarchar(255) Conflict	script	for	this
article.

article_resolver nvarchar(255) Custom	row-level	conflict
resolver	for	this	article.

ins_conflict_proc sysname Procedure	used	to	write
conflict	to	conflict_table.

insert_proc sysname Procedure	used	by	the
default	conflict	resolver	to

insert	rows	during
synchronization.

update_proc sysname Procedure	used	by	the
default	conflict	resolver	to
update	rows	during
synchronization.

select_proc sysname Name	of	an	automatically
generated	stored	procedure
that	the	Merge	Agent	uses	to
accomplish	locking,	and
finding	columns	and	rows	for
an	article.

schema_option binary(8) Indicates	what	is	to	be
scripted	out.

destination_
object

sysname Name	of	the	table	created	at
the	Subscriber.

destination_owner sysname Name	of	the	owner	of	the
destination	object.

resolver_clsid nvarchar(1000) ID	of	the	custom	conflict
resolver.

subset_
filterclause

nvarchar(2000) Filter	clause	for	this	article.

missing_col_
count

int Number	of	missing	columns.

missing_cols varbinary(128) Bitmap	of	missing	columns.
excluded_cols varbinary(128) Bitmap	of	the	columns

excluded	from	the	article
when	it	is	sent	to	the
Subscriber.

excluded_col_count int Number	of	columns
excluded.

columns varbinary(128) Reserved	for	future	use.
resolver_info sysname Storage	for	additional

information	required	by
custom	conflict	resolvers.

view_sel_proc nvarchar(290) The	name	of	a	stored
procedure	that	the	Merge
Agent	uses	for	doing	the
initial	population	of	an
article	in	a	dynamically
filtered	publication,	and	for
enumerating	changed	rows	in
any	filtered	publication.

gen_cur int Generate	number	for	local
changes	to	the	base	table	of
an	article.

vertical_partition int Specifies	whether	column
filtering	is	enabled	on	a	table
article.	0	indicates	there	is	no
vertical	filtering	and
publishes	all	columns.

identity_support int Specifies	whether	automatic
identity	range	handling	is
enabled	when	queued
updating	is	used.	0	means
that	there	is	no	identity	range
support.

before_image_objid int Tracking	table	object	ID.	The
tracking	table	contains
certain	key	column	values
when	a	publication	is	created
with
@keep_partition_changes	=
true.

before_view_objid int Object	ID	of	a	view	table.
The	view	is	on	a	table	that
tracks	whether	a	row
belonged	at	a	particular
Subscriber	before	it	was
deleted	or	updated.	Applies
only	when	a	publication	is

created	with
@keep_partition_changes	=
true.

verify_resolver_signature int Specifies	whether	a	digital
signature	is	verified	before
using	a	resolver	in	merge
replication:

0	=	Signature	will	not	be
verified.
1	=	Signature	will	be	verified
to	see	whether	it	is	from	a
trusted	source.

allow_interactive_resolver bit Specifies	whether	the	use	of
the	Interactive	Resolver	on
an	article	is	enabled.	1
specifies	that	the	Interactive
Resolver	will	be	used	on	the
article.

fast_multicol_updateproc bit Specifies	whether	the	Merge
Agent	has	been	enabled	to
apply	changes	to	multiple
columns	in	the	same	row	in
one	UPDATE	statement.

0	=	Issues	a	separate
UPDATE	for	each	column
changed.
1	=	Issued	on	UPDATE
statement	which	causes
updates	to	occur	to	multiple
columns	in	one	statement.

check_permissions int Bitmap	of	the	table-level
permissions	that	will	be
verified	when	the	Merge
Agent	applies	changes	to	the
Publisher.	check_permissions

can	have	one	of	these	values:

0x00	=	Permissions	will	not
be	checked.
0x10	=	Checks	permissions
at	the	Publisher	before
INSERTs	made	at	a
Subscriber	can	be	uploaded.
0x20	=	Checks	permissions
at	the	Publisher	before
UPDATEs	made	at	a
Subscriber	can	be	uploaded.
0x40	=	Checks	permissions
at	the	Publisher	before
DELETEs	made	at	a
Subscriber	can	be	uploaded.

Transact-SQL	Reference

sysmergepublications
Contains	one	row	for	each	merge	publication	defined	in	the	database.	This	table
is	stored	in	the	publication	and	subscription	databases.

Column	name Data	type Description
publisher sysname Name	of	the	default

server.
publisher_db sysname Name	of	the	default

Publisher	database.
name sysname Name	of	the

publication.
description nvarchar(255) Brief	description	of

the	publication.
retention int Retention	period,

expressed	in	days,
for	the	entire
publication	set.

publication_type tinyint Indicates	the
publication	is
filtered:

0	=	Not	filtered.
1	=	Filtered.

pubid uniqueidentifierUnique
identification
number	for	this
publication;
generated	when	the
publication	is
added.

designmasterid uniqueidentifierReserved	for	future
use.

parentid uniqueidentifier Indicates	the	parent
publication	from

which	the	current
peer	or	subset
publication	was
created	(used	for
hierarchical
publishing
topologies).

sync_mode tinyint Synchronization
mode	of	this
publication:

0	=	Native.
1	=	Character.

allow_push int Indicates	whether
the	publication
allows	push
subscriptions.

allow_pull int Indicates	whether
the	publication
allows	pull
subscriptions.

allow_anonymous int Indicates	whether
the	publication
allows	anonymous
subscriptions.

centralized_
conflicts

int Indicates	whether
the	conflict	records
are	stored	at	the
Publisher:

0	=	Conflict	records
are	stored	at	both
the	Publisher	and	at
the	Subscriber	that
caused	the	conflict.
1	=	All	conflict
records	are	stored	at

the	Publisher.

status tinyint Reserved	for	future
use.

snapshot_ready tinyint Indicates	the
snapshot	of	the
publication	is	ready:

0	=	Snapshot	is
ready	for	use.
1	=	Snapshot	is	not
ready	for	use.

enabled_for_
internet

bit Indicates	whether
the	synchronization
files	for	the
publication	are
exposed	to	the
Internet,	through
FTP	and	other
services.

dynamic_filters bit Indicates	whether
the	publication	is
filtered	on	a
dynamic	property.

snapshot_in_defaultfolder bit Specifies	whether
snapshot	files	are
stored	in	the	default
folder:

0	=	Snapshot	files
are	in	default	folder.
1	=	Snapshot	files
are	stored	in	the
location	specified
by
alt_snapshot_folder.

alt_snapshot_folder nvarchar(255) Location	of	the

alternate	folder	for
the	snapshot.

pre_snapshot_script nvarchar(255) Pointer	to	an	.sql
file	that	the	Merge
Agent	will	run
before	any	of	the
replication	object
scripts	when
applying	the
snapshot	at	the
Subscriber.

post_snapshot_script nvarchar(255) Pointer	to	an	.sql
file	that	the	Merge
Agent	will	run	after
all	the	other
replication	object
scripts	and	data
have	been	applied
during	an	initial
synchronization.

compress_snapshot bit Specifies	whether
the	snapshot	written
to	the
alt_snapshot_folder
location	is
compressed	into	the
Microsoft®	CAB
format.	0	specifies
that	the	file	is	not
compressed.

ftp_address sysname Network	address	of
the	FTP	service	for
the	Distributor.
Specifies	where
publication	snapshot
files	are	located	for
the	Merge	Agent	to

pick	up,	if	FTP	is
enabled.

ftp_port int Port	number	of	the
FTP	service	for	the
Distributor.

ftp_subdirectory nvarchar(255) Subdirectory	of
where	the	snapshot
files	will	be
available	for	the
Merge	Agent	to
pick	up.

ftp_login sysname Username	used	to
connect	to	the	FTP
service.

ftp_password nvarchar(524) User	password	used
to	connect	to	the
FTP	service.

conflict_retention int Specifies	the
retention	period,	in
days,	for	which
conflicts	are
retained.	A	default
of	14	days	is
assigned	before	the
conflict	row	is
purged	from	the
conflict	table.

keep_before_values int Specifies	whether
synchronization
optimization	is
occurring	for	this
publication:

0	=	Synchronization
is	not	optimized,
and	the	partitions
sent	to	all

Subscribers	will	be
verified	when	data
changes	in	a
partition.
1	=	Synchronization
is	optimized,	and
only	Subscribers
having	rows	in	the
changed	partition
are	affected.

allow_subscription_copy bit Specifies	whether
the	ability	to	copy
the	subscription
database	has	been
enabled.	0	means
copying	is	not
allowed.

allow_synctoalternate bit Specifies	whether
an	alternate
synchronization
partner	is	allowed	to
synchronize	with
this	Publisher.	0
means	that	a
synchronization
partner	is	not
allowed.

validate_subscriber_info nvarchar(500) List	the	functions
that	are	being	used
to	retrieve
Subscriber
information	and
validate	the
dynamic	filtering
criteria	on	the
Subscriber.

ad_guidname sysname Specifies	whether
the	publication	is
published	in	the
Microsoft®	Active
Directory™.	A	valid
GUID	specifies	that
the	publication	is
published	in	the
Microsoft	Active
Directory,	and	the
GUID	is	the
corresponding
Active	Directory
publication	object
objectGUID.	If
NULL,	the
publication	is	not
published	in
Microsoft	Active
Directory.

backward_comp_level int Database
compatibility	level
(60,	65,	70,	and	80).

max_concurrent_merge int Maximum	number
of	concurrent	merge
processes.	A	value
of	0	for	this
property	means	that
there	is	no	limit	to
the	number	of
concurrent	merge
processes	running	at
any	given	time.	This
property	sets	a	limit
as	to	the	number	of
concurrent	merge
processes	that	can

be	run	against	a
merge	publication	at
one	time.	If	there
are	more	snapshot
processes	scheduled
at	the	same	time
than	the	value
allows	to	run,	then
the	excess	jobs	will
be	put	into	a	queue
and	wait	until	a
currently-running
merge	process
finishes.

max_concurrent_dynamic_snapshots int Maximum	number
of	concurrent
dynamic	snapshot
sessions	that	can	be
running	against	the
merge	publication.
If	0,	there	is	no	limit
to	the	maximum
number	of
concurrent	dynamic
snapshot	sessions
that	can	run
simultaneously
against	the
publication	at	any
given	time.	This
property	sets	a	limit
as	to	the	number	of
concurrent	snapshot
processes	that	can
be	run	against	a
merge	publication	at
one	time.	If	there

are	more	snapshot
processes	scheduled
at	the	same	time
than	the	value
allows	to	run,	then
the	excess	jobs	will
be	put	into	a	queue
and	wait	until	a
currently-running
merge	process
finishes.

Transact-SQL	Reference

sysmergeschemaarticles
Tracks	schema-only	articles	for	merge	replication.	This	table	is	stored	in	the
publication	and	subscription	databases.

Column	name Data	type Description
name sysname Name	of	the	schema-only

article	in	the	merge	publication
type tinyint Value	indicating	the	type	of

schema-only	article:

0x20	=	Stored	procedure
schema-only	article.
0x40	=	View	schema-only
article	or	indexed	view	schema-
only	article.

objid int Object	identifier	of	the	article
base	object.	Can	be	the	object
identifier	of	a	procedure,	view,
indexed,	view,	or	UDF.

artid uniqueidentifierArticle	ID.
description nvarchar(255) Description	of	the	article.
pre_creation_command tinyint Specifies	what	the	system	is	to

do	if	the	table	exists	at	the
subscriber	when	applying	the
snapshot.

None	=	If	the	table	already
exists	at	the	Subscriber,	no
action	is	taken.
Delete	=	Issues	a	delete	based
on	the	WHERE	clause	in	the
subset	filter.
Drop	(default)	=	Drops	the
table	before	re-creating	it.

Truncate	=	Same	as	delete,	but
deletes	pages	instead	of	rows.
Does	not	take	a	WHERE	clause.

pubid uniqueidentifierUnique	identifier	of	the
publication.

status tinyint Bitmap	used	to	indicate	the
status	of	the	article.

creation_script nvarchar(255) Path	and	name	of	an	optional
article	schema	pre-creation
script	used	to	create	target	table.

schema_option binary(8) Indicates	what	is	to	be	scripted
out.	This	is	a	bitmask	of	the
schema	generation	option	for
the	given	article.	It	specifies	the
automatic	creation	of	the	stored
procedure	in	the	destination
database	for	all
CALL/MCALL/XCALL.

destination_object sysname Name	of	the	destination	object
in	the	subscription	database.
This	value	applies	only	to
schema-only	articles,	such	as
stored	procedures,	views,	and
UDFs.

destination_owner sysname Owner	of	the	object	in	the
subscription	database,	if	not
dbo.

Transact-SQL	Reference

sysmergeschemachange
Contains	information	about	the	published	articles	generated	by	the	Snapshot
Agent.	This	table	is	stored	in	the	publication	and	subscription	databases.

Column	name Data	type Description
pubid uniqueidentifier ID	of	the	publication
artid uniqueidentifier ID	of	the	article
schemaversion int Number	of	the	last	schema	change
schemaguid uniqueidentifierUnique	ID	of	the	last	schema
schematype int Type	of	schema:

1	=	Schema
2	=	System	schema
3	=	Trigger	script

schematext nvarchar(255) Name	of	the	script	file,	or	a	command
which	includes	a	file	name

Transact-SQL	Reference

sysmergesubscriptions
Contains	one	row	for	each	known	Subscriber	and	is	a	local	table	at	the	Publisher.
This	table	is	stored	in	the	publication	and	subscription	databases.

Column	name Data	type Description
subid uniqueidentifierUnique	identification	number

for	Subscription.
partnerid uniqueidentifier ID	of	the	partner	to	which	it

subscribes.
datasource_type int Type	of	data	source:

0	=	Microsoft	SQL	Server.
2	=	Jet	OLE	DB.

datasource_path nvarchar(255) If	a	Jet	datasource,	path	to	the
.mdb	file.

srvid int Contains	the
sysservers.srvguid	and,	with
db_name,	allows	for	the
subscription	to	be	identified	in
the	local	server.

db_name sysname Name	of	the	subscribing
database.

pubid uniqueidentifier ID	of	the	publication	from
which	the	current	subscription
was	created.

status tinyint Status	of	the	subscription:

0	=	Inactive.
1	=	Active.
2	=	Deleted.

subscriber_type int Type	of	Subscriber:

1	=	Global.
2	=	Local.

3	=	Anonymous.

subscription_type int Type	of	subscription:

0	=	Push.
1	=	Pull.
2	=	Anonymous.

priority real Specifies	the	subscription
priority	and	allows	the
implementation	of	priority-
based	conflict	resolution.	0.00
for	all	local	or	anonymous
subscriptions.

sync_type tinyint Type	of	synchronization:

1	=	Automatic.
2	=	No	synchronization.

description nvarchar(255) Brief	description	of	the
subscription.

login_name sysname Name	of	the	user	who	created
the	subscription.

last_validated datetime Time	of	the	last	successful
validation	of	Subscriber	data.

subscriber_server sysname ID	of	the	server.	Used	to	map
the	srvid	field	to	the	server-
specific	value	when	migrating
a	copy	of	the	subscription
database	to	a	different	server.

use_interactive_resolver bit Specifies	whether	the
interactive	resolver	is	used
during	reconciliation.	If	0,	the
interactive	resolver	is	not	used.

publication sysname Name	of	the	publication.
distributor sysname Name	of	the	computer	hosting

the	Distribution	Agent.
validation_level int Type	of	validation	to	perform

on	the	subscription.	The
validation	level	specified	can
be	one	of	these	values:

0	=	No	validation.
1	=	Rowcount-only	validation.
2	=	Rowcount	and	checksum
validation.
3	=	Rowcount	and	binary
checksum	validation.

resync_gen int Generation	number	that	will	be
used	for	resynchronization	of
the	subscription.	A	value	of	–1
indicates	that	the	subscription
is	not	marked	for
resynchronization.

attempted_validate datetime Last	datetime	that	validation
was	attempted	on	the
subscription.

last_sync_date datetime datetime	of	the
synchronization.

last_sync_status int Subscription	status:

0	=	All	jobs	are	waiting	to	start.
1	=	One	or	more	jobs	are
starting.
2	=	All	jobs	have	executed
successfully.
3	=	At	least	one	job	is
executing.
4	=	All	jobs	are	scheduled	and
idle.
5	=	At	least	one	job	is
attempting	to	execute	after	a
previous	failure.
6	=	At	least	one	job	has	failed
to	execute	successfully.

last_sync_summary sysname Description	of	last
synchronization	results.

Transact-SQL	Reference

sysmergesubsetfilters
Contains	join	filter	information	for	partitioned	articles.	This	table	is	stored	in	the
publication	and	subscription	databases.

Column	name Data	type Description
filtername sysname Name	of	the	filter	used	to	create	the

article.
join_filterid int ID	of	the	object	representing	the	join

filter.
pubid uniqueidentifier ID	of	the	publication.
artid uniqueidentifier ID	of	the	article.
art_nickname int Nickname	of	the	article.
join_articlename sysname Name	of	the	table	to	join	to	determine

whether	the	row	belongs.
join_nickname int Nickname	of	the	table	to	join	to

determine	whether	the	row	belongs.
join_unique_key int Indicates	a	join	on	a	unique	key	of

join_tablename:

0	=	Not	a	unique	key.
1	=	A	unique	key.

expand_proc sysname Name	of	the	stored	procedure	used	by
the	Merge	Agent	to	identify	the	rows
that	need	to	be	sent	or	removed	from	a
Subscriber.

join_filterclause nvarchar(1000) Filter	clause	used	for	the	join.

Transact-SQL	Reference

sysmessages
Contains	one	row	for	each	system	error	or	warning	that	can	be	returned	by
Microsoft®	SQL	Server™.	SQL	Server	displays	the	error	description	on	the
user's	screen.

Column	name Data	type Description
error int Unique	error	number.
severity smallint Severity	level	of	the	error.
dlevel smallint For	internal	use	only.
description nvarchar(255) Explanation	of	the	error	with

placeholders	for	parameters.
mslangid smallint System	message	group	ID.

Transact-SQL	Reference

sysnotifications
Contains	one	row	for	each	notification.

Column	name Data	type Description
alert_id int ID	of	the	alert.
operator_id int Operator	ID	to	whom	this	notification

should	be	sent.
notification_method tinyint Method	of	notification:

1	=	E-mail
2	=	Pager
4	=	netsend
7	=	All

Transact-SQL	Reference

sysobjects
Contains	one	row	for	each	object	(constraint,	default,	log,	rule,	stored	procedure,
and	so	on)	created	within	a	database.	In	tempdb	only,	this	table	includes	a	row
for	each	temporary	object.

Column	name Data	type Description
name sysname Object	name.
Id int Object	identification	number.
xtype char(2) Object	type.	Can	be	one	of	these	object

types:

C	=	CHECK	constraint
D	=	Default	or	DEFAULT	constraint
F	=	FOREIGN	KEY	constraint
L	=	Log
FN	=	Scalar	function
IF	=	Inlined	table-function
P	=	Stored	procedure
PK	=	PRIMARY	KEY	constraint	(type
is	K)
RF	=	Replication	filter	stored	procedure	
S	=	System	table
TF	=	Table	function
TR	=	Trigger
U	=	User	table
UQ	=	UNIQUE	constraint	(type	is	K)
V	=	View
X	=	Extended	stored	procedure

uid smallint User	ID	of	owner	object.
info smallint Reserved.	For	internal	use	only.
status int Reserved.	For	internal	use	only.
base_schema_
ver

int Reserved.	For	internal	use	only.

replinfo int Reserved.	For	use	by	replication.

parent_obj int Object	identification	number	of	parent
object	(for	example,	the	table	ID	if	a
trigger	or	constraint).

crdate datetime Date	the	object	was	created.
ftcatid smallint Identifier	of	the	full-text	catalog	for	all

user	tables	registered	for	full-text
indexing,	and	0	for	all	user	tables	not
registered.

schema_ver int Version	number	that	is	incremented
every	time	the	schema	for	a	table
changes.

stats_schema_
ver

int Reserved.	For	internal	use	only.

type char(2) Object	type.	Can	be	one	of	these	values:

C	=	CHECK	constraint	
D	=	Default	or	DEFAULT	constraint
F	=	FOREIGN	KEY	constraint	
FN	=	Scalar	function
IF	=	Inlined	table-function
K	=	PRIMARY	KEY	or	UNIQUE
constraint	
L	=	Log
P	=	Stored	procedure
R	=	Rule
RF	=	Replication	filter	stored	procedure
S	=	System	table	
TF	=	Table	function
TR	=	Trigger
U	=	User	table
V	=	View
X	=	Extended	stored	procedure

userstat smallint Reserved.
sysstat smallint Internal	status	information.

indexdel smallint Reserved.

refdate datetime Reserved	for	future	use.
version int Reserved	for	future	use.
deltrig int Reserved.
instrig int Reserved.
updtrig int Reserved.
seltrig int Reserved.
category int Used	for	publication,	constraints,	and

identity.
cache smallint Reserved.

Transact-SQL	Reference

sysoledbusers
Contains	one	row	for	each	user	and	password	mapping	for	the	specified	linked
server.	This	table	is	stored	in	the	master	database.

Column	name Data	type Description
rmtsrvid smallint SID	(security	identification	number)	of

the	server.
rmtloginame nvarchar(128) Name	of	the	remote	login	that	loginsid

maps	to	for	linked	rmtservid.
rmtpassword nvarchar(128) Encrypted	password	for	the	specified

remote	login	in	linked	rmtsrvid.
loginsid varbinary(85) SID	of	the	local	login	to	be	mapped.
status smallint If	this	value	is	1,	the	mapping	should

use	the	user's	own	credentials.
changedate datetime Date	mapping	information	was	last

changed.

Transact-SQL	Reference

sysopentapes
Contains	one	row	for	each	currently	open	tape	device.	This	view	is	stored	in	the
master	database.

Column	name Data	type Description
openTape nvarchar(64)

NOT	NULL
Physical	file	name	of	open	tape	device.
For	more	information	about	opening	and
releasing	tape	devices,	see	BACKUP
and	RESTORE.

Transact-SQL	Reference

sysoperators
Contains	one	row	for	each	operator.

Column	name Data	type Description
id int ID	of	the	operator.
name sysname Name	of	the	operator.
enabled tinyint Status	of	alert	notifications	(Boolean).	If

1,	this	operator	can	receive	notifications
when	an	alert	occurs.

email_address nvarchar(100) E-mail	address	for	this	operator.
last_email_date int Date	this	operator	last	received	an	e-

mail	alert	notification.
last_email_time int Time	of	day	this	operator	last	received

an	e-mail	alert	notification.
pager_address nvarchar(100) Pager	address	for	this	operator.
last_pager_date int Date	this	operator	last	received	a	pager

alert	notification.
last_pager_time int Time	of	day	this	operator	last	received	a

pager	alert	notification.
weekday_pager_
start_time

int Time	of	day	on	a	weekday	(Monday
through	Friday)	after	which	this
operator	is	available	to	receive	a	pager
alert	notification.

weekday_pager_
end_time

int Time	of	day	on	a	weekday	(Monday
through	Friday)	after	which	this
operator	is	not	available	to	receive	a
pager	alert	notification.

saturday_pager_
start_time

int Time	of	day	on	Saturday	after	which
this	operator	is	available	to	receive	a
pager	alert	notification.

saturday_pager_
end_time

int Time	of	day	on	Saturday	after	which
this	operator	is	not	available	to	receive	a
pager	alert	notification.

sunday_pager_
start_time

int Time	of	day	on	Sunday	after	which	this
operator	is	available	to	receive	a	pager
alert	notification.

sunday_pager_
end_time

int Time	of	day	on	Sunday	after	which	this
operator	is	not	available	to	receive	a
pager	alert	notification.

pager_days tinyint Bitmask	representing	the	days	of	the
week	during	which	this	operator	is
available	to	receive	a	pager	alert
notification.

netsend_address nvarchar(100) Reserved.
last_netsend_
date

int Date	that	the	most	recent	network
message	was	last	sent	to	the	specified
operator	ID.

last_netsend_
time

int Time	that	the	most	recent	network
message	was	last	sent	to	the	specified
operator	ID.

category_id int Reserved.

Transact-SQL	Reference

sysperfinfo
Contains	a	Microsoft®	SQL	Server™	representation	of	the	internal	performance
counters	that	can	be	displayed	through	the	Windows	NT	Performance	Monitor.

Note		The	Windows	NT	Performance	Monitor	is	available	only	when	using
Microsoft	Windows	NT®	4.0	as	the	operating	system.

Performance	condition	alerts	are	only	available	for	the	first	99	databases.	Any
databases	created	after	the	first	99	databases	will	not	be	included	in	the
sysperfinfo	system	table,	and	using	the	sp_add_alert	procedure	will	return	an
error.

Column	name Data	type Description
object_name nchar(128) Performance	object	name,	such	as

SQL	Server:	Lock	Manager	or	SQL
Server:	Buffer	Manager.

counter_name nchar(128) Name	of	the	performance	counter
within	the	object,	such	as	Page
Requests	or	Locks	Requested.

instance_name nchar(128) Named	instance	of	the	counter.	For
example,	there	are	counters	maintained
for	each	type	of	lock,	such	as	Table,
Page,	Key,	and	so	on.	The	instance
name	distinguishes	between	similar
counters.

cntr_value int Actual	counter	value.	In	most	cases,
this	will	be	a	level	or	monotonically
increasing	counter	that	counts
occurrences	of	the	instance	event.

cntr_type int Type	of	counter	as	defined	by	the
Windows	NT	4.0	performance
architecture.

Transact-SQL	Reference

syspermissions
Contains	information	about	permissions	granted	and	denied	to	users,	groups,	and
roles	in	the	database.	This	table	is	stored	in	each	database.

Column	name Data	type Description
id int ID	of	the	object	for	object

permissions;	0	for	statement
permissions.

grantee smallint ID	of	the	user,	group,	or	role	affected
by	the	permission.

grantor smallint ID	of	the	user,	group,	or	role	that
granted	or	revoked	the	permission.

actadd smallint For	internal	use	only.
actmod smallint For	internal	use	only.
seladd varbinary(4000) For	internal	use	only.
selmod varbinary(4000) For	internal	use	only.
updadd varbinary(4000) For	internal	use	only.
updmod varbinary(4000) For	internal	use	only.
refadd varbinary(4000) For	internal	use	only.
refmod varbinary(4000) For	internal	use	only.

Transact-SQL	Reference

sysprocesses
The	sysprocesses	table	holds	information	about	processes	running	on
Microsoft®	SQL	Server™.	These	processes	can	be	client	processes	or	system
processes.	sysprocesses	is	stored	only	in	the	master	database.

Column	name Data	type Description
spid smallint SQL	Server	process	ID.
kpid smallint Microsoft	Windows	NT	4.0®	thread

ID.
blocked smallint Process	ID	(spid)	of	a	blocking

process.
waittype binary(2) Reserved.
waittime int Current	wait	time	in	milliseconds.	Is	0

when	the	process	is	not	waiting.
lastwaittype nchar(32) A	string	indicating	the	name	of	the	last

or	current	wait	type.
waitresource nchar(32) Textual	representation	of	a	lock

resource.
dbid smallint ID	of	the	database	currently	being

used	by	the	process.
uid smallint ID	of	the	user	who	executed	the

command.
cpu int Cumulative	CPU	time	for	the	process.

The	entry	is	updated	for	all	processes,
regardless	of	whether	the	SET
STATISTICS	TIME	ON	option	is	ON
or	OFF.

physical_io int Cumulative	disk	reads	and	writes	for
the	process.

memusage int Number	of	pages	in	the	procedure
cache	that	are	currently	allocated	to
this	process.	A	negative	number
indicates	that	the	process	is	freeing

memory	allocated	by	another	process.
login_time datetime Time	at	which	a	client	process	logged

into	the	server.	For	system	processes,
the	time	at	which	SQL	Server	startup
occurred	is	stored.

last_batch datetime Last	time	a	client	process	executed	a
remote	stored	procedure	call	or	an
EXECUTE	statement.	For	system
processes,	the	time	at	which	SQL
Server	startup	occurred	is	stored.

ecid smallint Execution	context	ID	used	to	uniquely
identify	the	subthreads	operating	on
behalf	of	a	single	process.

open_tran smallint Number	of	open	transactions	for	the
process.

status nchar(30) Process	ID	status	(for	example,
running,	sleeping,	and	so	on).

sid binary(85) Globally	unique	identifier	(GUID)	for
the	user.

hostname nchar(128) Name	of	the	workstation.
program_name nchar(128) Name	of	the	application	program.
hostprocess nchar(8) Workstation	process	ID	number.
cmd nchar(16) Command	currently	being	executed.
nt_domain nchar(128) Windows	NT	4.0	domain	for	the	client

(if	using	Windows	Authentication)	or
a	trusted	connection.

nt_username nchar(128) Windows	NT	4.0	user	name	for	the
process	(if	using	Windows
Authentication)	or	a	trusted
connection.

net_address nchar(12) Assigned	unique	identifier	for	the
network	interface	card	on	each	user's
workstation.	When	the	user	logs	in,
this	identifier	is	inserted	in	the
net_address	column.

net_library nchar(12) Column	in	which	the	client's	network
library	is	stored.	Every	client	process
comes	in	on	a	network	connection.
Network	connections	have	a	network
library	associated	with	them	that
allows	them	to	make	the	connection.
For	more	information,	see	Client	and
Server	Net-Libraries.

loginame nchar(128) Login	name.

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

sysprotects
Contains	information	about	permissions	that	have	been	applied	to	security
accounts	with	the	GRANT	and	DENY	statements.	This	table	is	stored	in	each
database.

Column	name Data	type Description
id int ID	of	object	to	which	these

permissions	apply.
uid smallint ID	of	user	or	group	to	which	these

permissions	apply.
action tinyint Can	have	one	of	these	permissions:

26		=	REFERENCES
178	=	CREATE	FUNCTION
193	=	SELECT
195	=	INSERT
196	=	DELETE
197	=	UPDATE
198	=	CREATE	TABLE
203	=	CREATE	DATABASE
207	=	CREATE	VIEW
222	=	CREATE	PROCEDURE
224	=	EXECUTE
228	=	BACKUP	DATABASE
233	=	CREATE	DEFAULT
235	=	BACKUP	LOG
236	=	CREATE	RULE

protecttype tinyint Can	have	these	values:

204	=	GRANT_W_GRANT
205	=	GRANT
206	=	REVOKE

columns varbinary(4000) Bitmap	of	columns	to	which	these
SELECT	or	UPDATE	permissions

apply.	Bit	0	indicates	all	columns;	bit	1
means	permissions	apply	to	that
column	and	NULL	means	no
information.

grantor smallint User	ID	of	the	user	who	issued	the
GRANT	or	REVOKE	permissions.

Transact-SQL	Reference

syspublications
Contains	one	row	for	each	publication	defined	in	the	database.	This	table	is
stored	in	the	publication	database.

Column	name Data	type Description
description nvarchar(255) Descriptive	entry	for	the

publication.
name sysname Unique	name	associated	with

the	publication.
pubid int Identity	column	providing	a

unique	ID	for	the	publication.
repl_freq tinyint Replication	frequency:

0	=	Transaction	based.
1	=	Scheduled	table	refresh.

status tinyint Status:

0	=	Inactive.
1	=	Active.

sync_method tinyint Synchronization	method:

0	=	Native	bulk	copy	program
(bcp	utility).
1	=	Character	bulk	copy.
3	=	Concurrent,	which	means
that	native	bulk	copy	(bcp
utility)	is	used	but	tables	are
not	locked	during	the
snapshot.
4	=	Concurrent_c,	which
means	that	character	bulk	copy
is	used	but	tables	are	not
locked	during	the	snapshot.

snapshot_jobid binary(16) Scheduled	task	ID.

independent_
agent

bit Specifies	whether	there	is	a
stand-alone	Distribution	Agent
for	this	publication.

0	=	The	publication	uses	a
shared	Distribution	Agent,	and
each	Publisher
database/Subscriber	database
pair	has	a	single,	shared
Agent.
1	=	There	is	a	stand-alone
Distribution	Agent	for	this
publication.

immediate_sync bit Indicates	whether	the
synchronization	files	are
created	or	re-created	each	time
the	Snapshot	Agent	runs.

enabled_for_
internet

bit Indicates	whether	the
synchronization	files	for	the
publication	are	exposed	to	the
Internet	through	FTP	and	other
services.

allow_push bit Indicates	whether	push
subscriptions	are	allowed	on
the	publication.

allow_pull bit Indicates	whether	pull
subscriptions	are	allowed	on
the	publication.

allow_anonymous bit Indicates	whether	anonymous
subscriptions	are	allowed	on
the	publication.

immediate_sync_
ready

bit Indicates	whether	the	snapshot
has	been	generated	by	the
Snapshot	Agent	and	is	ready
for	use	by	new	subscriptions.
It	is	only	meaningful	for

immediate	updating
publications.	0	indicates	that
there	is	no	snapshot	ready.

allow_sync_tran bit Specifies	whether	immediate-
updating	subscriptions	are
allowed	on	the	publication.	0
means	that	immediate-
updating	subscriptions	are	not
allowed.

autogen_sync_
procs

bit Specifies	whether	the
synchronizing	stored
procedure	for	immediate-
updating	subscriptions	is
generated	at	the	Publisher.	1
means	that	it	is	generated	at
the	Publisher.

retention int Amount	of	change,	in	hours,	to
save	for	the	given	publication.

allowed_queued_tran bit Specifies	whether	disables
queuing	of	changes	at	the
Subscriber	until	they	can	be
applied	at	the	Publisher	has
been	enabled.	If	0,	changes	at
the	Subscriber	are	not	queued.

snapshot_in_defaultfolder bit Specifies	whether	snapshot
files	are	stored	in	the	default
folder.	If	0,	snapshot	files	have
been	stored	in	the	alternate
location	specified	by
alternate_snapshot_folder.	If
1,	snapshot	files	can	be	found
in	the	default	folder.

alt_snapshot_folder nvarchar(255) Specifies	the	location	of	the
alternate	folder	for	the
snapshot.

pre_snapshot_script nvarchar(255) Specifies	a	pointer	to	an	.sql

file	location.	The	Distribution
Agent	will	run	the	pre-
snapshot	script	before	running
any	of	the	replicated	object
scripts	when	applying	a
snapshot	at	a	Subscriber.

post_snapshot_script nvarchar(255) Specifies	a	pointer	to	an	.sql
file	location.	The	Distribution
Agent	will	run	the	post-
snapshot	script	after	all	the
other	replicated	object	scripts
and	data	have	been	applied
during	an	initial
synchronization.

compress_snapshot bit Specifies	that	the	snapshot	that
is	written	to	the
@alt_snapshot_folder	location
is	to	be	compressed	into	the
Microsoft®	CAB	format.	0
specifies	that	the	snapshot	will
not	be	compressed.

ftp_address sysname The	network	address	of	the
FTP	service	for	the	Distributor.
Specifies	where	publication
snapshot	files	are	located	for
the	Distribution	Agent	or
Merge	Agent	of	a	subscriber	to
pick	up.

ftp_port int The	port	number	of	the	FTP
service	for	the	Distributor.
Specifies	where	the
publication	snapshot	files	are
located	for	the	Distribution
Agent	or	Merge	Agent	of	a
subscriber	to	pick	up

ftp_subdirectory nvarchar(255) Specifies	where	the	snapshot

files	will	be	available	for	the
Distribution	Agent	or	Merge
Agent	of	subscriber	to	pick	up
if	the	publication	supports
propagating	snapshots	using
FTP.

ftp_login sysname The	username	used	to	connect
to	the	FTP	service.

ftp_password nvarchar(524) The	user	password	used	to
connect	to	the	FTP	service.

allow_dts bit Specifies	that	the	publication
allows	data	transformations.	0
specifies	that	DTS
transformations	are	not
allowed.

allow_subscription_copy bit Specifies	whether	the	ability	to
copy	the	subscription
databases	that	subscribe	to	this
publication	has	been	enabled.
0	means	that	copying	is	not
allowed.

centralized_conflicts bit Specifies	whether	conflict
records	are	stored	on	the
Publisher:

0	=	Conflict	records	are	stored
at	both	the	publisher	and	at	the
subscriber	that	caused	the
conflict.
1	=	Conflict	records	are	stored
at	the	Publisher.

conflict_retention int Specifies	the	conflict	retention
period,	in	days.

conflict_policy int Specifies	the	conflict
resolution	policy	followed
when	the	queued	updating

subscriber	option	is	used.	Can
be	one	of	these	values:

1	=	Publisher	wins	the
conflict.
2	=	Subscriber	wins	the
conflict.
3	=	Subscription	is
reinitialized.

queue_type int Specifies	which	type	of	queue
is	used.	Can	be	one	of	these
values:

msmq	=	Use	Microsoft
Message	Queuing	to	store
transactions.
sql	=	Use	SQL	Server	to	store
transactions.
NULL	=	defaults	to	sql,	which
specifies	to	use	SQL	Server	to
store	transactions.

ad_guidname sysname Specifies	whether	the
publication	is	published	in	the
Microsoft	Active	Directory™.
A	valid	globally	unique
identifier	(GUID)	specifies
that	the	publication	is
published	in	the	Microsoft
Active	Directory,	and	the
GUID	is	the	corresponding
Active	Directory	publication
object	objectGUID.	If	NULL,
the	publication	is	not
published	in	Microsoft	Active
Directory.

backward_comp_level int Database	compatibility	level

(60,	65,	70,	and	80).

Transact-SQL	Reference

sysreferences
Contains	mappings	of	FOREIGN	KEY	constraint	definitions	to	the	referenced
columns.	This	table	is	stored	in	each	database.

Column	name Data	type Description
constid int ID	of	the	FOREIGN	KEY	constraint
fkeyid int ID	of	the	referencing	table
rkeyid int ID	of	the	referenced	table
rkeyindid smallint Index	ID	of	the	unique	index	on	the

referenced	table	covering	the
referenced	key-columns

keycnt smallint Number	of	columns	in	the	key
forkeys varbinary(32) For	internal	use	only
refkeys varbinary(32) For	internal	use	only
fkeydbid smallint Reserved
rkeydbid smallint Reserved
fkey1 smallint Column	ID	of	the	referencing	column
fkey2 smallint Column	ID	of	the	referencing	column
fkey3 smallint Column	ID	of	the	referencing	column
fkey4 smallint Column	ID	of	the	referencing	column
fkey5 smallint Column	ID	of	the	referencing	column
fkey6 smallint Column	ID	of	the	referencing	column
fkey7 smallint Column	ID	of	the	referencing	column
fkey8 smallint Column	ID	of	the	referencing	column
fkey9 smallint Column	ID	of	the	referencing	column
fkey10 smallint Column	ID	of	the	referencing	column
fkey11 smallint Column	ID	of	the	referencing	column
fkey12 smallint Column	ID	of	the	referencing	column
fkey13 smallint Column	ID	of	the	referencing	column
fkey14 smallint Column	ID	of	the	referencing	column
fkey15 smallint Column	ID	of	the	referencing	column
fkey16 smallint Column	ID	of	the	referencing	column

rkey1 smallint Column	ID	of	the	referenced	column
rkey2 smallint Column	ID	of	the	referenced	column
rkey3 smallint Column	ID	of	the	referenced	column
rkey4 smallint Column	ID	of	the	referenced	column
rkey5 smallint Column	ID	of	the	referenced	column
rkey6 smallint Column	ID	of	the	referenced	column
rkey7 smallint Column	ID	of	the	referenced	column
rkey8 smallint Column	ID	of	the	referenced	column
rkey9 smallint Column	ID	of	the	referenced	column
rkey10 smallint Column	ID	of	the	referenced	column
rkey11 smallint Column	ID	of	the	referenced	column
rkey12 smallint Column	ID	of	the	referenced	column
rkey13 smallint Column	ID	of	the	referenced	column
rkey14 smallint Column	ID	of	the	referenced	column
rkey15 smallint Column	ID	of	the	referenced	column
rkey16 smallint Column	ID	of	the	referenced	column

Transact-SQL	Reference

sysremotelogins
Contains	one	row	for	each	remote	user	allowed	to	call	remote	stored	procedures
on	Microsoft®	SQL	Server™.

Column	name Data	type Description
remoteserverid smallint Remote	server	identification.
remoteusername nvarchar(128) User's	login	name	on	a	remote	server.
status smallint Bitmap	of	options.
sid varbinary(85) Microsoft	Windows	NT®	user	security

ID.
changedate datetime Date	and	time	the	remote	user	was

added.

Transact-SQL	Reference

sysreplicationalerts
Contains	information	about	the	conditions	causing	a	replication	alert	to	fire.	This
table	is	stored	in	the	msdb	database.

Column	name Data	type Description
alert_id int ID	of	the	alert.
status int User-defined	value:

0	=	Unserviced
1	=	Serviced

agent_type int Type	of	agent:

1	=	Snapshot	Agent
2	=	Log	Reader	Agent
3	=	Distribution	Agent
4	=	Merge	Agent

agent_id int Agent	ID	from	the	tables
MSsnapshot_agents,
MSlogreader_agents,
MSdistribution_agents,	or
MSmerge_agents.

error_id int ID	of	the	error	stored	in
MSrepl_errors.

alert_error_code int Message	ID	of	the	alert	raised	when
logging	this	record.

time datetime Time	the	record	was	inserted.
publisher sysname Name	of	the	Publisher	associated	with

the	agent	that	fired	this	alert.
publisher_db sysname Publisher	database	associated	with	the

agent	that	fired	this	alert.
publication sysname Publication	associated	with	the	agent

that	fired	this	alert.
publication_type int Type	of	publication:

0	=	Snapshot
1	=	Transactional
2	=	Merge

subscriber sysname Name	of	the	Subscriber	associated	with
the	agent	that	fired	this	alert.

subscriber_db sysname Name	of	the	Subscriber	database
associated	with	the	agent	that	fired	this
alert.

article sysname Name	of	the	article	associated	with	the
agent	that	fired	this	alert.

destination_
object

sysname Name	of	the	subscription	table
associated	with	the	alert.

source_object sysname Name	of	the	published	table	associated
with	the	alert.

alert_error_text ntext Text	of	the	alert.

Transact-SQL	Reference

sysschemaarticles
Tracks	schema-only	articles	for	transactional	and	snapshot	publications.	This
table	is	stored	in	the	publication	database.

Column	name Data	type Description
artid int Article	ID.
creation_script nvarchar(255) Path	and	name	of	an	article

schema	script	used	to	create	the
target	table.

description nvarchar(255) Descriptive	entry	for	the	article.
dest_object sysname Name	of	the	object	in	the

subscription	database	if	the	article
is	a	schema-only	article,	such	as
stored	procedure,	view,	or	UDF.

name sysname Name	of	the	schema-only	article
in	a	publication.

objid int Object	identifier	of	the	article
base	object.	Can	be	the	object
identifier	of	a	procedure,	view,
indexed,	view,	or	UDF.

pubid int ID	for	the	publication.
pre_creation_cmd tinyint Specifies	what	the	system	should

do	if	it	detects	an	existing	object
of	the	same	name	at	the
Subscriber	when	applying	the
snapshot	for	this	article:

0	=	Nothing.
1	=	Delete	destination	table.
2	=	Drop	destination	table.
3	=	Truncate	destination	table.

status int Bitmap	used	to	indicate	the	status
of	the	article.

type tinyint Value	indicating	the	type	of
schema-only	article:

0x20	=	Stored	procedure	schema-
only	article.
0x40	=	View	schema-only	article
or.	indexed	view	schema-only
article.

schema_option binary(8) Bitmask	of	the	schema	generation
option	for	the	given	article.	It
specifies	the	automatic	creation	of
the	stored	procedure	in	the
destination	database	for	all
CALL/MCALL/XCALL.	It	can
be	one	of	these	values:

0x00	=	Disables	scripting	by	the
Snapshot	Agent	and	uses
creation_script.
0x01	=	Generates	the	object
creation	(CREATE	TABLE,
CREATE	PROCEDURE,	and	so
on).	This	value	is	the	default	for
stored	procedure	articles.
0x02	=	Generates	custom	stored
procedures	for	the	article,	if
defined.
0x10	=	Generates	a	corresponding
clustered	index.
0x20	=	Converts	user-defined	data
types	to	base	data	types.
0x40=	Generates	corresponding
nonclustered	index(es).
0x80=	Includes	declared
referential	integrity	on	the
primary	keys.
0x73	=	Generates	the	CREATE

TABLE	statement,	creates
clustered	and	nonclustered
indexes,	converts	user-defined
data	types	to	base	data	types,	and
generates	custom	stored
procedure	scripts	to	be	applied	at
the	Subscriber.	This	value	is	the
default	for	all	articles	except
stored	procedure	articles.
0x100=	Replicates	user	triggers
on	a	table	article,	if	defined.
0x200=	Replicates	foreign	key
constraints.	If	the	referenced	table
is	not	part	of	a	publication,	all
foreign	key	constraints	on	a
published	table	will	not	be
replicated.
0x400=	Replicates	check
constraints.
0x800=	Replicates	defaults.
0x1000=	Replicates	column-level
collation.
0x2000=	Replicates	extended
properties	associated	with	the
published	article	source	object.
0x4000=	Replicates	unique	keys
if	defined	on	a	table	article.
0x8000=	Replicates	primary	key
and	unique	keys	on	a	table	article
as	constraints	using	ALTER
TABLE	statements.

dest_owner sysname Owner	of	the	table	at	the
destination	database.

sysservers
Contains	one	row	for	each	server	that	Microsoft®	SQL	Server™	can	access	as
an	OLE	DB	data	source.

Column	name Data	type Description
srvid smallint ID	(for	local	use	only)	of	the

remote	server.
srvstatus smallint For	internal	use	only.
srvname sysname Name	of	the	server.
srvproduct nvarchar(128) Product	name	for	the	remote

server.
providername nvarchar(128) OLE	DB	provider	name	for

access	to	this	server.
datasource nvarchar(4000) OLE	DB	data	source	value.
location nvarchar(4000) OLE	DB	location	value.
providerstring nvarchar(4000) OLE	DB	provider	string	value.
schemadate datetime Date	this	row	was	last	updated.
topologyx int Used	by	the	SQL	Server

Enterprise	Manager	server
topology	diagram.

topologyy int Used	by	the	SQL	Server
Enterprise	Manager	server
topology	diagram.

catalog sysname Catalog	that	is	used	when	making
a	connection	to	an	OLE	DB
provider.

connecttimeout int Timeout	setting	for	server-
connection.

querytimeout int Timeout	setting	for	queries
against	server.

srvnetname char(30) Reserved	(currently	the	same	as
the	srvname).

isremote bit 1	if	server	is	a	remote	server,	else

0	if	server	is	a	linked	server.
rpc bit 1/0	for	sp_serveroption	rpc	set	to

true/false.
pub bit 1/0	for	sp_serveroption	pub	set	to

true/false.
sub bit 1/0	for	sp_serveroption	sub	set	to

true/false.
dist bit 1/0	for	sp_serveroption	dist	set	to

true/false.
dpub bit 1/0	for	sp_serveroption	dpub	set

to	true/false.
rpcout bit 1/0	for	sp_serveroption	rpc	out

set	to	true/false.
dataaccess bit 1/0	for	sp_serveroption	data

access	set	to	true/false.
collationcompatible bit 1/0	for	sp_serveroption	collation

compatible	set	to	true/false.
system bit 1/0	for	sp_serveroption	system

set	to	true/false.
useremotecollation bit 1/0	for	sp_serveroption	use

remote	collation	set	to	true/false.
lazyschemavalidation bit 1/0	for	sp_serveroption	lazy

schema	validation	set	to
true/false.

collation sysname Server	collation	as	set	by
sp_serveroption	collation	name.

Transact-SQL	Reference

syssubscriptions
Contains	one	row	for	each	subscription	in	the	database.	This	table	is	stored	in	the
publication	database.

Column	name Data	type Description
artid int Unique	ID	of	an	article
srvid smallint Server	ID	of	the	Subscriber
dest_db sysname Name	of	the	destination	database
status tinyint Status:

0	=	Inactive
1	=	Subscribed
2	=	Active

sync_type tinyint Type	of	synchronization:

1	=	Automatic
2	=	None

login_name sysname Login	name	used	when	adding	the
subscription

subscription_type int Type	of	subscription:

0	=	Push	
1	=	Pull

distribution_jobid binary(16) Job	ID	of	the	Distribution	Agent
timestamp timestamp Timestamp
update_mode tinyint Update	mode:

0	=	Read	only
1	=	Immediate-updating

loopback_detection bit Whether	the	Distribution	Agent
sends	transactions	originated	at	the
Subscriber	back	to	the	Subscriber:

True	=	Does	not	send	back

False	=	Sends	back

queued_reinit bit Specifies	whether	the	article	is
marked	for	initialization	or
reinitialization.	A	value	of	1
specifies	that	the	subscribed	article
is	marked	for	initialization	or	re-
initialization.

Transact-SQL	Reference

systargetservergroupmembers
Records	which	target	servers	are	currently	enlisted	in	this	multiserver	group.

Column	name Data	type Description
servergroup_id int Server	group	ID
server_id int Server	ID

Transact-SQL	Reference

systargetservergroups
Records	which	target	server	groups	are	currently	enlisted	in	this	multiserver
environment.

Column	name Data	type Description
servergroup_id int Server	group	ID
name sysname Server	group	name

Transact-SQL	Reference

systargetservers
Records	which	target	servers	are	currently	enlisted	in	this	multiserver	operation
domain.

Column	name Data	type Description
server_id int Server	ID.
server_name nvarchar(30) Server	name.
location nvarchar(200) Location	of	the	specified	target	server.
time_zone_
adjustment

int Time	adjustment	interval,	in	hours,
from	Greenwich	mean	time	(GMT).

enlist_date datetime Date	and	time	that	the	specified	target
server	was	enlisted.

last_poll_date datetime Date	and	time	that	the	specified	target
server	last	polled	the	multiserver's
sysdownloadlist	system	table	for	jobs
to	run.

status int Status	of	the	target	server:

1	=	Normal
2	=	Re-sync	Pending
4	=	Suspected	Offline

local_time_at_
last_poll

datetime Date	and	time	the	target	server	was
last	polled	for	job	operations.

enlisted_by_nt_
user

nvarchar(100) Username	of	the	person	executing
sp_msx_enlist	on	the	target	server.

poll_internal int Number	of	seconds	to	elapse	before
the	target	server	polls	the	master
server	for	new	download	instructions.

Transact-SQL	Reference

systaskids
Contains	a	mapping	of	tasks	created	in	earlier	versions	of	Microsoft®	SQL
Server™	to	SQL	Server	Enterprise	Manager	jobs	in	the	current	version.	This
table	is	stored	in	the	msdb	database.

Column	name Data	type Description
task_id int ID	of	the	task
job_id uniqueidentifier ID	of	the	job	to	which	the	task	is

mapped

Transact-SQL	Reference

systypes
Contains	one	row	for	each	system-supplied	and	each	user-defined	data	type.	This
table	is	stored	in	each	database.

These	are	the	system-supplied	data	types	and	their	ID	numbers.

Column	name Data	type Description
name sysname Data	type	name.
xtype tinyint Physical	storage	type.
status tinyint For	internal	use	only.
xusertype smallint Extended	user	type.
length smallint Physical	length	of	data	type.
xprec tinyint Internal	precision,	as	used	by	server.

(Not	to	be	used	in	queries.)
xscale tinyint Internal	scale,	as	used	by	server.	(Not

to	be	used	in	queries.)
tdefault int ID	of	stored	procedure	that	contains

integrity	checks	for	this	data	type.
domain int ID	of	stored	procedure	that	contains

integrity	checks	for	this	data	type.
uid smallint User	ID	of	data	type	creator.
reserved smallint For	internal	use	only.
usertype smallint User	type	ID.
variable bit Variable-length	data	type	is	1;

otherwise,	0.
allownulls bit Indicates	the	default	nullability	for

this	data	type.	If	nullability	is
specified	with	CREATE	or	ALTER
TABLE,	then	that	value	overrides	the
default	nullability	for	this	data	type.

type tinyint Physical	storage	data	type.
printfmt varchar(255) Reserved.
prec smallint Level	of	precision	for	this	data	type.

scale tinyint Scale	for	this	data	type	(based	on
precision).

Transact-SQL	Reference

sysusers
Contains	one	row	for	each	Microsoft®	Windows	user,	Windows	group,
Microsoft	SQL	Server™	user,	or	SQL	Server	role	in	the	database.

Column	name Data	type Description
uid smallint User	ID,	unique	in	this	database.	1	is

the	database	owner.
status smallint For	internal	use	only.
name sysname Username	or	group	name,	unique	in

this	database.
sid varbinary(85) Security	identifier	for	this	entry.
roles varbinary(2048) For	internal	use	only.
createdate datetime Date	the	account	was	added.
updatedate datetime Date	the	account	was	last	changed.
altuid smallint For	internal	use	only.
password varbinary(256) For	internal	use	only.
gid smallint Group	ID	to	which	this	user	belongs.

If	uid	=	gid,	this	entry	defines	a	group.
environ varchar(255) Reserved.
hasdbaccess int 1,	if	the	account	has	database	access.
islogin int 1,	if	the	account	is	a	Windows	group,

Windows	user,	or	SQL	Server	user
with	a	login	account.

isntname int 1,	if	the	account	is	a	Windows	group
or	Windows	user.

isntgroup int 1,	if	the	account	is	a	Windows	group.
isntuser int 1,	if	the	account	is	a	Windows	user.
issqluser int 1,	if	the	account	is	a	SQL	Server	user.
isaliased int 1,	if	the	account	is	aliased	to	another

user.
issqlrole int 1,	if	the	account	is	a	SQL	Server	role.
isapprole int 1,	if	the	account	is	an	application	role.

Transact-SQL	Reference

SYSTEM_USER
Allows	a	system-supplied	value	for	the	current	system	username	to	be	inserted
into	a	table	when	no	default	value	is	specified.

Syntax
SYSTEM_USER

Remarks
Use	the	SYSTEM_USER	niladic	function	with	DEFAULT	constraints	in	either
the	CREATE	TABLE	or	ALTER	TABLE	statements,	or	use	as	any	standard
function.

If	the	current	user	is	logged	in	to	Microsoft®	SQL	Server™	using	Windows
Authentication,	SYSTEM_USER	returns	the	Windows	2000	or	Windows	NT	4.0
login	identification	name,	for	example,	DOMAIN\user_login_name.	However,	if
the	current	user	is	logged	in	to	SQL	Server	using	SQL	Server	Authentication,
SYSTEM_USER	returns	the	SQL	Server	login	identification	name,	for	example,
sa	for	a	user	logged	in	as	sa.

Examples

A.	Use	SYSTEM_USER	to	return	the	current	system	username
This	example	declares	a	char	variable,	puts	the	current	value	of
SYSTEM_USER	into	the	variable,	and	then	prints	the	variable.

DECLARE	@sys_usr	char(30)
SET	@sys_usr	=	SYSTEM_USER
SELECT	'The	current	system	user	is:	'+	@sys_usr
GO

Here	is	the	result	set:

--	

The	current	system	user	is:	sa																													

(1	row(s)	affected)

B.	Use	SYSTEM_USER	with	DEFAULT	constraints
This	example	creates	a	table	using	SYSTEM_USER	as	a	DEFAULT	constraint
for	the	receptionist	for	a	patient	row.

USE	pubs
GO
CREATE	TABLE	appointments2
(
	patient_id	int	IDENTITY(2000,	1)	NOT	NULL,
	doctor_id		int	NOT	NULL,
	appt_date	datetime	NOT	NULL	DEFAULT	GETDATE(),
	receptionist	varchar(30)	NOT	NULL	DEFAULT	SYSTEM_USER
)
GO
INSERT	appointments2	(doctor_id)
VALUES	(151)
INSERT	appointments2	(doctor_id,	appt_date)
VALUES	(293,	'5/15/98')
INSERT	appointments2	(doctor_id,	appt_date)
VALUES	(27882,	'6/20/98')
INSERT	appointments2	(doctor_id)
VALUES	(21392)
INSERT	appointments2	(doctor_id,	appt_date)
VALUES	(24283,	'11/03/98')
GO

This	is	the	query	to	select	all	the	information	from	the	appointments2	table:

SELECT	*	
FROM	appointments2

ORDER	BY	doctor_id
GO

Here	is	the	result	set:

patient_id		doctor_id			appt_date																receptionist				
-----------	-----------	------------------------	---------------	
2000								151									Mar	4	1998	10:36AM							sa														
2001								293									May	15	1998	12:00AM						sa														
2003								21392							Mar	4	1998	10:36AM							sa														
2004								24283							Nov	3	1998	12:00AM							sa														
2002								27882							Jun	20	1998	12:00AM						sa														

(5	row(s)	affected)

See	Also

Allowing	Null	Values

ALTER	TABLE

CREATE	TABLE

CURRENT_TIMESTAMP

CURRENT_USER

Managing	Security

SESSION_USER

System	Functions

USER

Using	Constraints,	Defaults,	and	Null	Values

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Transact-SQL	Reference

table
A	special	data	type	that	can	be	used	to	store	a	result	set	for	later	processing.	Its
primary	use	is	for	temporary	storage	of	a	set	of	rows,	which	are	to	be	returned	as
the	result	set	of	a	table-valued	function.

Syntax
Note		Use	DECLARE	@local_variable	to	declare	variables	of	type	table.

table_type_definition	::=	
				TABLE	({	column_definition	|	table_constraint	}	[,...n])	

column_definition	::=	
				column_name	scalar_data_type	
				[COLLATE	collation_definition]	
				[[DEFAULT	constant_expression]	|	IDENTITY	[(seed	,	increment)]]	
				[ROWGUIDCOL]	
				[column_constraint]	[...n]	

column_constraint	::=	
				{	[NULL	|	NOT	NULL]	
				|	[PRIMARY	KEY	|	UNIQUE]	
				|	CHECK	(logical_expression)	
				}	

table_constraint	::=	
				{	{	PRIMARY	KEY	|	UNIQUE	}	(column_name	[,...n])	
				|	CHECK	(search_condition)	
				}

Arguments
table_type_definition

Is	the	same	subset	of	information	used	to	define	a	table	in	CREATE	TABLE.
The	table	declaration	includes	column	definitions,	names,	data	types,	and

constraints.	The	only	constraint	types	allowed	are	PRIMARY	KEY,
UNIQUE	KEY,	and	NULL.

For	more	information	about	the	syntax,	see	CREATE	TABLE,	CREATE
FUNCTION,	and	DECLARE	@local_variable.

collation_definition

Is	the	collation	of	the	column	consisting	of	a	Microsoft®	Windows™	locale
and	a	comparison	style,	a	Windows	locale	and	the	binary	notation,	or	a
Microsoft	SQL	Server™	collation.

Remarks
Functions	and	variables	can	be	declared	to	be	of	type	table.	table	variables	can
be	used	in	functions,	stored	procedures,	and	batches.

Use	table	variables	instead	of	temporary	tables,	whenever	possible.	table
variables	provide	the	following	benefits:

A	table	variable	behaves	like	a	local	variable.	It	has	a	well-defined
scope,	which	is	the	function,	stored	procedure,	or	batch	in	which	it	is
declared.

Within	its	scope,	a	table	variable	may	be	used	like	a	regular	table.	It
may	be	applied	anywhere	a	table	or	table	expression	is	used	in
SELECT,	INSERT,	UPDATE,	and	DELETE	statements.	However,	table
may	not	be	used	in	the	following	statements:

INSERT	INTO	table_variable	EXEC	stored_procedure

SELECT	select_list	INTO	table_variable	statements.
table	variables	are	cleaned	up	automatically	at	the	end	of	the	function,
stored	procedure,	or	batch	in	which	they	are	defined.

table	variables	used	in	stored	procedures	result	in	fewer	recompilations
of	the	stored	procedures	than	when	temporary	tables	are	used.

Transactions	involving	table	variables	last	only	for	the	duration	of	an
update	on	the	table	variable.	Thus,	table	variables	require	less	locking

and	logging	resources.

Assignment	operation	between	table	variables	is	not	supported.	In	addition,
because	table	variables	have	limited	scope	and	are	not	part	of	the	persistent
database,	they	are	not	impacted	by	transaction	rollbacks.

See	Also

COLLATE

CREATE	FUNCTION

CREATE	TABLE

DECLARE	@local_variable

Transact-SQL	Reference

TAN
Returns	the	tangent	of	the	input	expression.

Syntax
TAN	(float_expression)

Arguments
float_expression

Is	an	expression	of	type	float	or	real,	interpreted	as	number	of	radians.

Return	Types
float

Examples
This	example	returns	the	tangent	of	PI()/2.

SELECT	TAN(PI()/2)

Here	is	the	result	set:

1.6331778728383844E+16

See	Also

Mathematical	Functions

Transact-SQL	Reference

text
For	information	about	the	text	data	type,	see	ntext,	text,	and	image.

See	Also

Data	Type	Conversion

Data	Types

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

TEXTPTR
Returns	the	text-pointer	value	that	corresponds	to	a	text,	ntext,	or	image	column
in	varbinary	format.	The	retrieved	text	pointer	value	can	be	used	in
READTEXT,	WRITETEXT,	and	UPDATETEXT	statements.

Syntax
TEXTPTR	(column)

Arguments
column

Is	the	text,	ntext,	or	image	column	to	be	used.

Return	Types
varbinary

Remarks
In	Microsoft	SQL	Server™	2000,	for	tables	with	in	row	text,	TEXTPTR	returns
a	handle	for	the	text	to	be	processed.	You	can	obtain	a	valid	text	pointer	even	if
the	text	value	is	null.

If	the	table	does	not	have	in	row	text,	and	if	a	text,	ntext,	or	image	column	has
not	been	initialized	by	an	UPDATETEXT	statement,	TEXTPTR	returns	a	null
pointer.

Use	TEXTVALID	to	check	whether	a	text	pointer	exists.	You	cannot	use
UPDATETEXT,	WRITETEXT,	or	READTEXT	without	a	valid	text	pointer.

These	functions	and	statements	are	also	useful	with	text,	ntext,	and	image	data.

Function	or	statement Description
PATINDEX('%pattern%',
expression)

Returns	the	character	position	of	a	given
character	string	in	text	or	ntext	columns.

DATALENGTH(expression) Returns	the	length	of	data	in	text,	ntext,	and
image	columns.

SET	TEXTSIZE Returns	the	limit,	in	bytes,	of	the	text,	ntext,
or	image	data	to	be	returned	with	a	SELECT
statement.

SUBSTRING(text_column,
start,	length)

Returns	a	varchar	string	specified	by	the
given	start	offset	and	length.	The	length
should	be	less	than	8	KB.

Examples

A.	Use	TEXTPTR
This	example	uses	the	TEXTPTR	function	to	locate	the	image	column	logo
associated	with	New	Moon	Books	in	the	pub_info	table	of	the	pubs	database.
The	text	pointer	is	put	into	a	local	variable	@ptrval.

USE	pubs
GO
DECLARE	@ptrval	varbinary(16)
SELECT	@ptrval	=	TEXTPTR(logo)	
FROM	pub_info	pr,	publishers	p
WHERE	p.pub_id	=	pr.pub_id	
			AND	p.pub_name	=	'New	Moon	Books'
GO

B.	Use	TEXTPTR	with	in	row	text
In	SQL	Server	2000,	the	in	row	text	pointer	must	be	used	inside	a	transaction.
Here	is	an	example.

CREATE	TABLE	t1	(c1	int,	c2	text)
EXEC	sp_tableoption	't1',	'text	in	row',	'on'
INSERT	t1	VALUES	('1',	'This	is	text.')
GO
BEGIN	TRAN

			DECLARE	@ptrval	VARBINARY(16)
			SELECT	@ptrval	=	TEXTPTR(c2)
			FROM	t1
			WHERE	c1	=	1
			READTEXT	t1.c2	@ptrval	0	1
COMMIT

C.	Return	text	data
This	example	selects	the	pub_id	column	and	the	16-byte	text	pointer	of	the
pr_info	column	from	the	pub_info	table.

USE	pubs
GO
SELECT	pub_id,	TEXTPTR(pr_info)
FROM	pub_info
ORDER	BY	pub_id
GO

Here	is	the	result	set:

pub_id																																				
------	----------------------------------	
0736			0x6c0000000000feffb801000001000100	
0877			0x6d0000000000feffb801000001000300	
1389			0x6e0000000000feffb801000001000500	
1622			0x700000000000feffb801000001000900	
1756			0x710000000000feffb801000001000b00	
9901			0x720000000000feffb801000001000d00	
9952			0x6f0000000000feffb801000001000700	
9999			0x730000000000feffb801000001000f00	

(8	row(s)	affected)

This	example	shows	how	to	return	the	first	8,000	bytes	of	text	without	using

TEXTPTR.

USE	pubs
GO
SET	TEXTSIZE	8000
SELECT	pub_id,	pr_info
FROM	pub_info
ORDER	BY	pub_id
GO

Here	is	the	result	set:

pub_id	pr_info																																																																																																																																																																																																																																																									
------	---
0736			New	Moon	Books	(NMB)	has	just	released	another	top	ten	publication.	With	the	latest	publication	this	makes	NMB	the	hottest	new	publisher	of	the	year!																																																																																																											
0877			This	is	sample	text	data	for	Binnet	&	Hardley,	publisher	0877	in	the	pubs	database.	Binnet	&	Hardley	is	located	in	Washington,	D.C.

This	is	sample	text	data	for	Binnet	&	Hardley,	publisher	0877	in	the	pubs	database.	Binnet	&	Hardley	is	located	in	Washi	
1389			This	is	sample	text	data	for	Algodata	Infosystems,	publisher	1389	in	the	pubs	database.	Algodata	Infosystems	is	located	in	Berkeley,	California.

9999			This	is	sample	text	data	for	Lucerne	Publishing,	publisher	9999	in	the	pubs	database.	Lucerne	publishing	is	located	in	Paris,	France.

This	is	sample	text	data	for	Lucerne	Publishing,	publisher	9999	in	the	pubs	database.	Lucerne	publishing	is	located	in	

(8	row(s)	affected)

D.	Return	specific	text	data
This	example	locates	the	text	column	(pr_info)	associated	with	pub_id	0736	in
the	pub_info	table	of	the	pubs	database.	It	first	declares	the	local	variable	@val.
The	text	pointer	(a	long	binary	string)	is	then	put	into	@val	and	supplied	as	a
parameter	to	the	READTEXT	statement,	which	returns	10	bytes	starting	at	the
fifth	byte	(offset	of	4).

USE	pubs
GO

DECLARE	@val	varbinary(16)
SELECT	@val	=	TEXTPTR(pr_info)	
FROM	pub_info
WHERE	pub_id	=	'0736'
READTEXT	pub_info.pr_info	@val	4	10
GO

Here	is	the	result	set:

(1	row(s)	affected)

pr_info																																																																																																																																																																																																																																																									
--
	is	sample

See	Also

DATALENGTH

PATINDEX

READTEXT

SET	TEXTSIZE

Text	and	Image	Functions

UPDATETEXT

WRITETEXT

Transact-SQL	Reference

TEXTVALID
A	text,	ntext,	or	image	function	that	checks	whether	a	given	text	pointer	is
valid.

Syntax
TEXTVALID	('table.column'	,	text_	ptr)

Arguments
table

Is	the	name	of	the	table	to	be	used.

column

Is	the	name	of	the	column	to	be	used.

text_ptr

Is	the	text	pointer	to	be	checked.

Return	Types
int

Remarks
Returns	1	if	the	pointer	is	valid	and	0	if	the	pointer	is	invalid.	Note	that	the
identifier	for	the	text	column	must	include	the	table	name.	You	cannot	use
UPDATETEXT,	WRITETEXT,	or	READTEXT	without	a	valid	text	pointer.

These	functions	and	statements	are	also	useful	with	text,	ntext,	and	image	data.

Function	or	statement Description
PATINDEX('%pattern%',
expression)

Returns	the	character	position	of	a	given
character	string	in	text	and	ntext	columns.

DATALENGTH(expression)Returns	the	length	of	data	in	text,	ntext,	and

image	columns.
SET	TEXTSIZE Returns	the	limit,	in	bytes,	of	the	text,	ntext,

or	image	data	to	be	returned	with	a	SELECT
statement.

Examples
This	example	reports	whether	a	valid	text	pointer	exists	for	each	value	in	the
logo	column	of	the	pub_info	table.

USE	pubs
GO
SELECT	pub_id,	'Valid	(if	1)	Text	data'	
			=	TEXTVALID	('pub_info.logo',	TEXTPTR(logo))	
FROM	pub_info
ORDER	BY	pub_id
GO

Here	is	the	result	set:

pub_id	Valid	(if	1)	Text	data	
------	----------------------	
0736			1																						
0877			1																						
1389			1																						
1622			1																						
1756			1																						
9901			1																						
9952			1																						
9999			1																						

(8	row(s)	affected)

See	Also

DATALENGTH

PATINDEX

SET	TEXTSIZE

Text	and	Image	Functions

TEXTPTR

Transact-SQL	Reference

timestamp
timestamp	is	a		data	type	that	exposes	automatically	generated	binary	numbers,
which	are	guaranteed	to	be	unique	within	a	database.	timestamp	is	used
typically	as	a	mechanism	for	version-stamping	table	rows.	The	storage	size	is	8
bytes.

Remarks
The	Transact-SQL	timestamp	data	type	is	not	the	same	as	the	timestamp	data
type	defined	in	the	SQL-92	standard.	The	SQL-92	timestamp	data	type	is
equivalent	to	the	Transact-SQL	datetime	data	type.

A	future	release	of	Microsoft®	SQL	Server™	may	modify	the	behavior	of	the
Transact-SQL	timestamp	data	type	to	align	it	with	the	behavior	defined	in	the
standard.	At	that	time,	the	current	timestamp	data	type	will	be	replaced	with	a
rowversion	data	type.

Microsoft®	SQL	Server™	2000	introduces	a	rowversion	synonym	for	the
timestamp	data	type.	Use	rowversion	instead	of	timestamp	wherever	possible
in	DDL	statements.	rowversion	is	subject	to	the	behaviors	of	data	type
synonyms.	For	more	information,	see	Data	Type	Synonyms.

In	a	CREATE	TABLE	or	ALTER	TABLE	statement,	you	do	not	have	to	supply	a
column	name	for	the	timestamp	data	type:

CREATE	TABLE	ExampleTable	(PriKey	int	PRIMARY	KEY,	timestamp)

If	you	do	not	supply	a	column	name,	SQL	Server	generates	a	column	name	of
timestamp.	The	rowversion	data	type	synonym	does	not	follow	this	behavior.
You	must	supply	a	column	name	when	you	specify	rowversion.

A	table	can	have	only	one	timestamp	column.	The	value	in	the	timestamp
column	is	updated	every	time	a	row	containing	a	timestamp	column	is	inserted
or	updated.	This	property	makes	a	timestamp	column	a	poor	candidate	for	keys,
especially	primary	keys.	Any	update	made	to	the	row	changes	the	timestamp
value,	thereby	changing	the	key	value.	If	the	column	is	in	a	primary	key,	the	old
key	value	is	no	longer	valid,	and	foreign	keys	referencing	the	old	value	are	no

longer	valid.	If	the	table	is	referenced	in	a	dynamic	cursor,	all	updates	change	the
position	of	the	rows	in	the	cursor.	If	the	column	is	in	an	index	key,	all	updates	to
the	data	row	also	generate	updates	of	the	index.

A	nonnullable	timestamp	column	is	semantically	equivalent	to	a	binary(8)
column.	A	nullable	timestamp	column	is	semantically	equivalent	to	a
varbinary(8)	column.

See	Also

ALTER	TABLE

CAST	and	CONVERT

CREATE	TABLE

Data	Type	Conversion

Data	Types

DECLARE	@local_variable

DELETE

INSERT

SET	@local_variable

UPDATE

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

tinyint
For	information	about	the	tinyint	data	type,	see	int,	bigint,	smallint,	and	tinyint.

See	Also

Data	Type	Conversion

Data	Types

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

Trace	Flags
Trace	flags	are	used	to	temporarily	set	specific	server	characteristics	or	to	switch
off	a	particular	behavior.	For	example,	if	trace	flag	3205	is	set	when	Microsoft®
SQL	Server™	starts,	hardware	compression	for	tape	drivers	is	disabled.	Trace
flags	are	often	used	to	diagnose	performance	issues	or	to	debug	stored
procedures	or	complex	computer	systems.

These	trace	flags	are	available	in	SQL	Server.

Note		Trace	flag	behaviors	may	or	may	not	be	supported	in	future	releases.

Trace	flag Description
260 Prints	versioning	information	about	extended	stored

procedure	dynamic-link	libraries	(DLLs).	For	more
information	about	__GetXpVersion(),	see	Creating	Extended
Stored	Procedures.

1204 Returns	the	type	of	locks	participating	in	the	deadlock	and	the
current	command	affected.

2528 Disables	parallel	checking	of	objects	by	DBCC	CHECKDB,
DBCC	CHECKFILEGROUP,	and	DBCC	CHECKTABLE.
By	default,	the	degree	of	parallelism	is	determined
automatically	by	the	query	processor.		The	maximum	degree
of	parallelism	is	configured	in	the	same	manner	as	that	of
parallel	queries.	For	more	information,	see	max	degree	of
parallelism	Option.

Parallel	DBCC	should	typically	be	left	enabled.	In	the	case	of
DBCC	CHECKDB,	the	query	processor	re-evaluates	and
automatically	adjusts	parallelism	with	each	table	or	batch	of
tables	checked.	In	some	cases,	checking	may	commence
while	the	server	is	virtually	idle.	An	administrator	who	knows
that	the	load	will	increase	before	checking	is	complete	may
want	to	manually	decrease	or	disable	parallelism.

However,	disabling	parallel	checking	can	cause	a	decrease	in
overall	database	performance.	Decreasing	the	degree	of

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

parallelism	increases	the	amount	of	transaction	log	that	must
be	scanned.	This	in	turn	increases	the	demand	for	tempdb
space	and	results	in	a	non-linear	increase	in	the	time	required
for	dbcc	to	complete	its	checks.	If	DBCC	is	run	with	the
TABLOCK	feature	enabled	and	parallelism	turned	off,	tables
may	be	locked	for	longer	periods	of	time.

3205 By	default,	if	a	tape	drive	supports	hardware	compression,
either	the	DUMP	or	BACKUP	statement	uses	it.	With	this
trace	flag,	you	can	disable	hardware	compression	for	tape
drivers.	This	is	useful	when	you	want	to	exchange	tapes	with
other	sites	or	tape	drives	that	do	not	support	compression.

Examples

A.	Set	trace	flags	using	DBCC	TRACEON
This	example	turns	on	trace	flag	3205	by	using	DBCC	TRACEON.

DBCC	TRACEON	(3205)

B.	Set	trace	flags	at	the	command	prompt
This	example	turns	on	trace	flag	3205	at	the	command	prompt.

sqlservr	–d"C:\Program	Files\Microsoft	SQL	Server\MSSQL\Data\master.mdf"	–T3205

See	Also

Data	Types

DBCC	INPUTBUFFER

DBCC	OUTPUTBUFFER

DBCC	TRACEOFF

DBCC	TRACEON

EXECUTE

SELECT

SET	NOCOUNT

sp_dboption

SQL	Server	Backward	Compatibility	Details

sqlservr	Application

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Transact-SQL	Reference

Transactions
A	transaction	is	a	single	unit	of	work.	If	a	transaction	is	successful,	all	of	the	data
modifications	made	during	the	transaction	are	committed	and	become	a
permanent	part	of	the	database.	If	a	transaction	encounters	errors	and	must	be
canceled	or	rolled	back,	then	all	of	the	data	modifications	are	erased.

Microsoft®	SQL	Server™	operates	in	three	transaction	modes:

Autocommit	transactions

Each	individual	statement	is	a	transaction.

Explicit	transactions

Each	transaction	is	explicitly	started	with	the	BEGIN	TRANSACTION
statement	and	explicitly	ended	with	a	COMMIT	or	ROLLBACK	statement.

Implicit	transactions

A	new	transaction	is	implicitly	started	when	the	prior	transaction	completes,
but	each	transaction	is	explicitly	completed	with	a	COMMIT	or
ROLLBACK	statement.

For	more	information,	see	Transactions.

See	Also

BEGIN	DISTRIBUTED	TRANSACTION

BEGIN	TRANSACTION

COMMIT	TRANSACTION

COMMIT	WORK

ROLLBACK	TRANSACTION

ROLLBACK	WORK

SAVE	TRANSACTION

SET	IMPLICIT_TRANSACTIONS

JavaScript:hhobj_1.Click()

@@TRANCOUNT

Transact-SQL	Reference

TRIGGER_NESTLEVEL
Returns	the	number	of	triggers	executed	for	the	UPDATE,	INSERT,	or	DELETE
statement	that	fired	the	trigger.	TRIGGER_NESTLEVEL	is	used	in	triggers	to
determine	the	current	level	of	nesting.

Syntax
TRIGGER_NESTLEVEL	([object_id])

Arguments
object_id

Is	the	object	ID	of	a	trigger.	If	object_id	is	specified,	the	number	of	times	the
specified	trigger	has	been	executed	for	the	statement	is	returned.	If	object_id
is	not	specified,	the	number	of	times	all	triggers	have	been	executed	for	the
statement	is	returned.

When	object_id	is	omitted	(this	is	different	from	a	null	value),
TRIGGER_NESTLEVEL	returns	the	number	of	triggers	on	the	call	stack,
including	itself.	Omission	of	object_id	can	occur	when	a	trigger	executes
commands	causing	another	trigger	to	be	fired	or	creates	a	succession	of
firing	triggers.

Remarks
TRIGGER_NESTLEVEL	returns	0	if	it	is	executed	outside	of	a	trigger	and
object_id	is	not	NULL.

TRIGGER_NESTLEVEL	optionally	receives	an	object	ID	as	its	argument.
When	object_id	is	explicitly	specified	as	NULL	or	an	invalid	object	id	is
referenced,	a	value	of	NULL	is	returned	regardless	of	whether
TRIGGER_NESTLEVEL	was	used	within	or	external	to	a	trigger.

Examples

A.	Test	nesting	level	of	a	specific	trigger

IF	((SELECT	trigger_nestlevel(object_ID('xyz')))	>	5)
			RAISERROR('Trigger	xyz	nested	more	than	5	levels.',16,-1)

B.	Test	nesting	level	of	all	triggers	executed

IF	((SELECT	trigger_nestlevel())	>	5)
			RAISERROR
						('This	statement	nested	over	5	levels	of	triggers.',16,-1)

See	Also

CREATE	TRIGGER

Transact-SQL	Reference

TRUNCATE	TABLE
Removes	all	rows	from	a	table	without	logging	the	individual	row	deletes.

Syntax
TRUNCATE	TABLE	name

Arguments
name

Is	the	name	of	the	table	to	truncate	or	from	which	all	rows	are	removed.

Remarks
TRUNCATE	TABLE	is	functionally	identical	to	DELETE	statement	with	no
WHERE	clause:	both	remove	all	rows	in	the	table.	But	TRUNCATE	TABLE	is
faster	and	uses	fewer	system	and	transaction	log	resources	than	DELETE.

The	DELETE	statement	removes	rows	one	at	a	time	and	records	an	entry	in	the
transaction	log	for	each	deleted	row.	TRUNCATE	TABLE	removes	the	data	by
deallocating	the	data	pages	used	to	store	the	table's	data,	and	only	the	page
deallocations	are	recorded	in	the	transaction	log.

TRUNCATE	TABLE	removes	all	rows	from	a	table,	but	the	table	structure	and
its	columns,	constraints,	indexes	and	so	on	remain.	The	counter	used	by	an
identity	for	new	rows	is	reset	to	the	seed	for	the	column.	If	you	want	to	retain	the
identity	counter,	use	DELETE	instead.	If	you	want	to	remove	table	definition
and	its	data,	use	the	DROP	TABLE	statement.

You	cannot	use	TRUNCATE	TABLE	on	a	table	referenced	by	a	FOREIGN	KEY
constraint;	instead,	use	DELETE	statement	without	a	WHERE	clause.	Because
TRUNCATE	TABLE	is	not	logged,	it	cannot	activate	a	trigger.

TRUNCATE	TABLE	may	not	be	used	on	tables	participating	in	an	indexed
view.

Examples

This	example	removes	all	data	from	the	authors	table.

TRUNCATE	TABLE	authors

Permissions
TRUNCATE	TABLE	permissions	default	to	the	table	owner,	members	of	the
sysadmin	fixed	server	role,	and	the	db_owner	and	db_ddladmin	fixed	database
roles,	and	are	not	transferable.

See	Also

DELETE

DROP	TABLE

Transact-SQL	Reference

TYPEPROPERTY
Returns	information	about	a	data	type.

Syntax
TYPEPROPERTY	(type	,	property)

Arguments
type

Is	the	name	of	the	data	type.

property

Is	the	type	of	information	to	be	returned	for	the	data	type.	property	can	be
one	of	these	values.

Property Description Value	returned
Precision Precision	for	the	data

type.
The	number	of	digits	or
characters.

NULL	=	Data	type	not	found.

Scale Scale	for	the	data	type. The	number	of	decimal	places	for
the	data	type.

NULL	=	Data	type	is	not	numeric
or	not	found.

AllowsNull Data	type	allows	null
values.

1	=	True
0	=	False
NULL	=	Data	type	not	found.

UsesAnsiTrim ANSI	padding	setting
was	ON	when	the	data
type	was	created.

1	=	True
0	=	False
NULL	=	Data	type	not	found,	or	it
is	not	a	binary	or	string	data	type.

Return	Types
int

Examples
This	example	returns	the	precision	or	number	of	digits	for	the	integer	data	type.

SELECT	TYPEPROPERTY('tinyint',	'PRECISION')

See	Also

COLUMNPROPERTY

Metadata	Functions

OBJECTPROPERTY

Transact-SQL	Reference

UNICODE
Returns	the	integer	value,	as	defined	by	the	Unicode	standard,	for	the	first
character	of	the	input	expression.

Syntax
UNICODE	('ncharacter_expression')

Arguments
'ncharacter_expression'

Is	an	nchar	or	nvarchar	expression.

Return	Types
int

Examples

A.	Use	UNICODE	and	NCHAR
This	example	uses	the	UNICODE	and	NCHAR	functions	to	print	the	UNICODE
value	of	the	first	character	of	the	Åkergatan	24-character	string,	and	to	print	the
actual	first	character,	Å.

DECLARE	@nstring	nchar(12)
SET	@nstring	=	N'Åkergatan	24'
SELECT	UNICODE(@nstring),	NCHAR(UNICODE(@nstring))

Here	is	the	result	set:

-----------	-	
197									Å

B.	Use	SUBSTRING,	UNICODE,	and	CONVERT

This	example	uses	the	SUBSTRING,	UNICODE,	and	CONVERT	functions	to
print	the	character	number,	the	Unicode	character,	and	the	UNICODE	value	of
each	of	the	characters	in	the	string	Åkergatan	24.

--	The	@position	variable	holds	the	position	of	the	character	currently
--	being	processed.	The	@nstring	variable	is	the	Unicode	character	
--	string	to	process.
DECLARE	@position	int,	@nstring	nchar(12)
--	Initialize	the	current	position	variable	to	the	first	character	in	
--	the	string.
SET	@position	=	1
--	Initialize	the	character	string	variable	to	the	string	to	process.	
--	Notice	that	there	is	an	N	before	the	start	of	the	string,	which	
--	indicates	that	the	data	following	the	N	is	Unicode	data.
SET	@nstring	=	N'Åkergatan	24'
--	Print	the	character	number	of	the	position	of	the	string	you	are	at,	
--	the	actual	Unicode	character	you	are	processing,	and	the	UNICODE	
--	value	for	this	particular	character.
PRINT	'Character	#'	+	'	'	+	'Unicode	Character'	+	'	'	+	'UNICODE	Value'
WHILE	@position	<=	DATALENGTH(@nstring)
--	While	these	are	still	characters	in	the	character	string,
			BEGIN
			SELECT	@position,	
						CONVERT(char(17),	SUBSTRING(@nstring,	@position,	1)),
						UNICODE(SUBSTRING(@nstring,	@position,	1))
			SELECT	@position	=	@position	+	1
			END

Here	is	the	result	set:

Character	#	Unicode	Character	UNICODE	Value
																																										
-----------	-----------------	-----------	
1											Å																	197									
																																										

-----------	-----------------	-----------	
2											k																	107									
																																										
-----------	-----------------	-----------	
3											e																	101									
																																										
-----------	-----------------	-----------	
4											r																	114									
																																										
-----------	-----------------	-----------	
5											g																	103									
																																										
-----------	-----------------	-----------	
6											a																	97										
																																										
-----------	-----------------	-----------	
7											t																	116									
																																										
-----------	-----------------	-----------	
8											a																	97										
																																										
-----------	-----------------	-----------	
9											n																	110									
																																										
-----------	-----------------	-----------	
10																												32										
																																										
-----------	-----------------	-----------	
11										2																	50										
																																										
-----------	-----------------	-----------	
12										4																	52

See	Also

Data	Types

NCHAR

String	Functions

Using	Unicode	Data

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

UNION
Combines	the	results	of	two	or	more	queries	into	a	single	result	set	consisting	of
all	the	rows	belonging	to	all	queries	in	the	union.	For	more	information,	see
SELECT.

Transact-SQL	Reference

uniqueidentifier
A	globally	unique	identifier	(GUID).

Remarks
A	column	or	local	variable	of	uniqueidentifier	data	type	can	be	initialized	to	a
value	in	two	ways:

Using	the	NEWID	function.

Converting	from	a	string	constant	in	the	following	form	(xxxxxxxx-
xxxx-xxxx-xxxx-xxxxxxxxxxxx,	in	which	each	x	is	a	hexadecimal	digit
in	the	range	0-9	or	a-f).	For	example,	6F9619FF-8B86-D011-B42D-
00C04FC964FF	is	a	valid	uniqueidentifier	value.

Comparison	operators	can	be	used	with	uniqueidentifier	values.	However,
ordering	is	not	implemented	by	comparing	the	bit	patterns	of	the	two	values.	The
only	operations	that	are	allowed	against	a	uniqueidentifier	value	are
comparisons	(=,	<>,	<,	>,	<=,	>=)	and	checking	for	NULL	(IS	NULL	and	IS
NOT	NULL).	No	other	arithmetic	operators	are	allowed.	All	column	constraints
and	properties	except	IDENTITY	are	allowed	on	the	uniqueidentifier	data	type.

See	Also

ALTER	TABLE

CAST	and	CONVERT

CREATE	TABLE

Data	Type	Conversion

Data	Types

DECLARE	@local_variable

DELETE

JavaScript:hhobj_1.Click()

INSERT

NEWID

Replication	Overview

SET	@local_variable

UPDATE

JavaScript:hhobj_2.Click()

Transact-SQL	Reference

UPDATE
Changes	existing	data	in	a	table.

Syntax
UPDATE	
								{	
									table_name	WITH	(<	table_hint_limited	>	[...n])	
									|	view_name	
									|	rowset_function_limited	
								}	
								SET	
								{	column_name	=	{	expression	|	DEFAULT	|	NULL	}	
								|	@variable	=	expression	
								|	@variable	=	column	=	expression	}	[,...n]	

				{	{	[FROM	{	<	table_source	>	}	[,...n]]	

								[WHERE	
												<	search_condition	>]	}	
								|	
								[WHERE	CURRENT	OF	
								{	{	[GLOBAL]	cursor_name	}	|	cursor_variable_name	}	
]	}	
								[OPTION	(<	query_hint	>	[,...n])]

<	table_source	>	::=	
				table_name	[[AS]	table_alias]	[WITH	(<	table_hint	>	[,...n])]	
				|	view_name	[[AS]	table_alias]	
				|	rowset_function	[[AS]	table_alias]	
				|	derived_table	[AS]	table_alias	[(column_alias	[,...n])]	
				|	<	joined_table	>

<	joined_table	>	::=	
				<	table_source	>	<	join_type	>	<	table_source	>	ON	<	search_condition	>	
				|	<	table_source	>	CROSS	JOIN	<	table_source	>	

				|	<	joined_table	>

<	join_type	>	::=	
				[INNER	|	{	{	LEFT	|	RIGHT	|	FULL	}	[OUTER]	}]	
				[<	join_hint	>]	
				JOIN

<	table_hint_limited	>	::=	
				{				FASTFIRSTROW	
								|	HOLDLOCK	
								|	PAGLOCK	
								|	READCOMMITTED	
								|	REPEATABLEREAD	
								|	ROWLOCK	
								|	SERIALIZABLE	
								|	TABLOCK	
								|	TABLOCKX	
								|	UPDLOCK	
				}

<	table_hint	>	::=	
				{				INDEX	(index_val	[,...n])	
								|	FASTFIRSTROW	
								|	HOLDLOCK	
								|	NOLOCK	
								|	PAGLOCK	
								|	READCOMMITTED	
								|	READPAST	
								|	READUNCOMMITTED	
								|	REPEATABLEREAD	
								|	ROWLOCK	
								|	SERIALIZABLE	
								|	TABLOCK	
								|	TABLOCKX	
								|	UPDLOCK	
				}

<	query_hint	>	::=	
				{				{	HASH	|	ORDER	}	GROUP	

								|	{	CONCAT	|	HASH	|	MERGE	}	UNION	
								|	{LOOP	|	MERGE	|	HASH	}	JOIN	
								|	FAST	number_rows	
								|	FORCE	ORDER	
								|	MAXDOP	
								|	ROBUST	PLAN	
								|	KEEP	PLAN	
				}

Arguments
table_name

Is	the	name	of	the	table	to	update.	The	name	can	be	qualified	with	the	linked
server,	database,	and	owner	name	if	the	table	is	not	in	the	current	server	or
database,	or	is	not	owned	by	the	current	user.

WITH	(<	table_hint_limited	>	[...n])

Specifies	one	or	more	table	hints	that	are	allowed	for	a	target	table.	The
WITH	keyword	and	the	parentheses	are	required.	READPAST,	NOLOCK,
and	READUNCOMMITTED	are	not	allowed.	For	information	about	table
hints,	see	FROM.

view_name

Is	the	name	of	the	view	to	update.	The	view	referenced	by	view_name	must
be	updatable.	The	modifications	made	by	the	UPDATE	statement	cannot
affect	more	than	one	of	the	base	tables	referenced	in	the	FROM	clause	of	the
view.	For	more	information	on	updatable	views,	see	CREATE	VIEW.

rowset_function_limited

Is	either	the	OPENQUERY	or	OPENROWSET	function,	subject	to	provider
capabilities.	For	more	information	about	capabilities	needed	by	the	provider,
see	UPDATE	and	DELETE	Requirements	for	OLE	DB	Providers.	For	more
information	about	the	rowset	functions,	see	OPENQUERY	and
OPENROWSET.

SET

Specifies	the	list	of	column	or	variable	names	to	be	updated.

JavaScript:hhobj_1.Click()

column_name

Is	a	column	that	contains	the	data	to	be	changed.	column_name	must	reside
in	the	table	or	view	specified	in	the	UPDATE	clause.	Identity	columns
cannot	be	updated.

If	a	qualified	column	name	is	specified,	the	qualifier	must	match	the	table	or
view	name	in	the	UPDATE	clause.	For	example,	this	is	valid:

UPDATE	authors
				SET	authors.au_fname	=	'Annie'
				WHERE	au_fname	=	'Anne'

A	table	alias	specified	in	a	FROM	clause	cannot	be	used	as	a	qualifier	in	SET
column_name.	For	example,	this	is	not	valid:

UPDATE	titles
				SET	t.ytd_sales	=	t.ytd_sales	+	s.qty
				FROM	titles	t,	sales	s
				WHERE	t.title_id	=	s.title_id
				AND	s.ord_date	=	(SELECT	MAX(sales.ord_date)	FROM	sales)

To	make	the	example	work,	remove	the	t.	alias	from	the	column	name.

UPDATE	titles
				SET	ytd_sales	=	t.ytd_sales	+	s.qty
				FROM	titles	t,	sales	s
				WHERE	t.title_id	=	s.title_id
				AND	s.ord_date	=	(SELECT	MAX(sales.ord_date)	FROM	sales)

expression

Is	a	variable,	literal	value,	expression,	or	a	parenthesized	subSELECT
statement	that	returns	a	single	value.	The	value	returned	by	expression
replaces	the	existing	value	in	column_name	or	@variable.

DEFAULT

Specifies	that	the	default	value	defined	for	the	column	is	to	replace	the

existing	value	in	the	column.	This	can	also	be	used	to	change	the	column	to
NULL	if	the	column	has	no	default	and	is	defined	to	allow	null	values.

@variable

Is	a	declared	variable	that	is	set	to	the	value	returned	by	expression.

SET	@variable	=	column	=	expression	sets	the	variable	to	the	same	value	as
the	column.	This	differs	from	SET	@variable	=	column,	column	=
expression,	which	sets	the	variable	to	the	pre-update	value	of	the	column.

FROM	<	table_source	>

Specifies	that	a	table	is	used	to	provide	the	criteria	for	the	update	operation.
For	more	information,	see	FROM.

table_name	[[AS]	table_alias]
Is	the	name	of	a	table	to	provide	criteria	for	the	update	operation.

If	the	table	being	updated	is	the	same	as	the	table	in	the	FROM
clause,	and	there	is	only	one	reference	to	the	table	in	the	FROM
clause,	table_alias	may	or	may	not	be	specified.	If	the	table	being
updated	appears	more	than	one	time	in	the	FROM	clause,	one
(and	only	one)	reference	to	the	table	must	not	specify	a	table
alias.	All	other	references	to	the	table	in	the	FROM	clause	must
include	a	table	alias.	

view_name	[[AS]	table_alias]
Is	the	name	of	a	view	to	provide	criteria	for	the	update	operation.	A	view
with	an	INSTEAD	OF	UPDATE	trigger	cannot	be	a	target	of	an
UPDATE	with	a	FROM		clause.

WITH	(<	table_hint	>	[...n])
Specifies	one	or	more	table	hints	for	a	source	table.	For	information
about	table	hints,	see	"FROM"	in	this	volume.

rowset_function	[[AS]	table_alias]
Is	the	name	of	any	rowset	function	and	an	optional	alias.	For	information
about	a	list	of	rowset	functions,	see	Rowset	Functions.

derived_table

Is	a	subquery	that	retrieves	rows	from	the	database.	derived_table	is	used
as	input	to	the	outer	query.

column_alias
Is	an	optional	alias	to	replace	a	column	name	in	the	result	set.	Include
one	column	alias	for	each	column	in	the	select	list,	and	enclose	the	entire
list	of	column	aliases	in	parentheses.

<	joined_table	>

Is	a	result	set	that	is	the	product	of	two	or	more	tables,	for	example:

SELECT	*
FROM	tab1	LEFT	OUTER	JOIN	tab2	ON	tab1.c3	=	tab2.c3
				RIGHT	OUTER	JOIN	tab3	LEFT	OUTER	JOIN	tab4
								ON	tab3.c1	=	tab4.c1
								ON	tab2.c3	=	tab4.c3

For	multiple	CROSS	joins,	use	parentheses	to	change	the	natural	order	of	the
joins.

<	join_type	>

Specifies	the	type	of	join	operation.

INNER
Specifies	that	all	matching	pairs	of	rows	are	returned.	Discards
unmatched	rows	from	both	tables.	This	is	the	default	if	no	join	type	is
specified.

LEFT	[OUTER]
Specifies	that	all	rows	from	the	left	table	not	meeting	the	specified
condition	are	included	in	the	result	set	in	addition	to	all	rows	returned	by
the	inner	join.	Output	columns	from	the	left	table	are	set	to	NULL.

RIGHT	[OUTER]
Specifies	that	all	rows	from	the	right	table	not	meeting	the	specified
condition	are	included	in	the	result	set	in	addition	to	all	rows	returned	by
the	inner	join.	Output	columns	from	the	right	table	are	set	to	NULL.

FULL	[OUTER]
If	a	row	from	either	the	left	or	right	table	does	not	match	the	selection
criteria,	specifies	the	row	be	included	in	the	result	set,	and	output
columns	that	correspond	to	the	other	table	be	set	to	NULL.	This	is	in
addition	to	all	rows	usually	returned	by	the	inner	join.

<	join_hint	>
Specifies	a	join	hint	or	execution	algorithm.	If	<join_hint>	is	specified,
INNER,	LEFT,	RIGHT,	or	FULL	must	also	be	explicitly	specified.	For
more	information	about	joint	hints,	see	FROM.

JOIN
Indicates	that	the	specified	tables	or	views	should	be	joined.

ON	<	search_condition	>

Specifies	the	condition	on	which	the	join	is	based.	The	condition	can	specify
any	predicate,	although	columns	and	comparison	operators	are	often	used,
for	example:

FROM	Suppliers	JOIN	Products	
				ON	(Suppliers.SupplierID	=	Products.SupplierID)

When	the	condition	specifies	columns,	the	columns	do	not	have	to	have	the
same	name	or	same	data	type;	however,	if	the	data	types	are	not	identical,
they	must	be	either	compatible	or	types	that	Microsoft®	SQL	Server™	can
implicitly	convert.	If	the	data	types	cannot	be	implicitly	converted,	the
condition	must	explicitly	convert	the	data	type	using	the	CAST	function.

For	more	information	about	search	conditions	and	predicates,	see	Search
Condition.

CROSS	JOIN

Specifies	the	cross-product	of	two	tables.	Returns	the	same	rows	as	if	the
tables	to	be	joined	were	simply	listed	in	the	FROM	clause	and	no	WHERE
clause	was	specified.

WHERE

Specifies	the	conditions	that	limit	the	rows	that	are	updated.	There	are	two

forms	of	update	based	on	which	form	of	the	WHERE	clause	is	used:

Searched	updates	specify	a	search	condition	to	qualify	the	rows	to
delete.

Positioned	updates	use	the	CURRENT	OF	clause	to	specify	a	cursor.
The	update	operation	occurs	at	the	current	position	of	the	cursor.

<	search_condition	>

Specifies	the	condition	to	be	met	for	the	rows	to	be	updated.	The	search
condition	can	also	be	the	condition	upon	which	a	join	is	based.	There	is	no
limit	to	the	number	of	predicates	that	can	be	included	in	a	search	condition.
For	more	information	about	predicates	and	search	conditions,	see	Search
Condition.

CURRENT	OF

Specifies	that	the	update	is	performed	at	the	current	position	of	the	specified
cursor.

GLOBAL

Specifies	that	cursor_name	refers	to	a	global	cursor.

cursor_name

Is	the	name	of	the	open	cursor	from	which	the	fetch	should	be	made.	If	both
a	global	and	a	local	cursor	exist	with	cursor_name	as	their	name,
cursor_name	refers	to	the	global	cursor	if	GLOBAL	is	specified.	If
GLOBAL	is	not	specified,	cursor_name	refers	to	the	local	cursor.	The	cursor
must	allow	updates.

cursor_variable_name

Is	the	name	of	a	cursor	variable.	cursor_variable_name	must	reference	a
cursor	that	allows	updates.

OPTION	(<	query_hint	>	[,...n])

Specifies	that	optimizer	hints	are	used	to	customize	SQL	Server's	processing
of	the	statement.

{	HASH	|	ORDER	}	GROUP
Specifies	that	the	aggregations	specified	in	the	GROUP	BY	or
COMPUTE	clause	of	the	query	should	use	hashing	or	ordering.

{	LOOP	|	MERGE	|	HASH	|}	JOIN
Specifies	that	all	join	operations	are	performed	by	loop	join,	merge	join,
or	hash	join	in	the	whole	query.	If	more	than	one	join	hint	is	specified,
the	query	optimizer	selects	the	least	expensive	join	strategy	for	the
allowed	ones.	If,	in	the	same	query,	a	join	hint	is	also	specified	for	a
specific	pair	of	tables,	it	takes	precedence	in	the	joining	of	the	two	tables.

{	MERGE	|	HASH	|	CONCAT	}	UNION
Specifies	that	all	UNION	operations	should	be	performed	by	merging,
hashing,	or	concatenating	UNION	sets.	If	more	than	one	UNION	hint	is
specified,	the	query	optimizer	selects	the	least	expensive	strategy	from
those	hints	specified.

Note		If	a	join	hint	is	also	specified	for	any	particular	pair	of	joined
tables	in	the	FROM	clause,	it	takes	precedence	over	any	join	hint
specified	in	the	OPTION	clause.

FAST	number_rows
Specifies	that	the	query	is	optimized	for	fast	retrieval	of	the	first
number_rows	(a	nonnegative	integer).	After	the	first	number_rows	are
returned,	the	query	continues	execution	and	produces	its	full	result	set.

FORCE	ORDER
Specifies	that	the	join	order	indicated	by	the	query	syntax	should	be
preserved	during	query	optimization.

MAXDOP	number
Overrides	the	max	degree	of	parallelism	configuration	option	(of
sp_configure)	only	for	the	query	specifying	this	option.	All	semantic
rules	used	with	max	degree	of	parallelism	configuration	option	are
applicable	when	using	the	MAXDOP	query	hint.	For	more	information,
see	max	degree	of	parallelism	Option.

JavaScript:hhobj_2.Click()

ROBUST	PLAN
Forces	the	query	optimizer	to	attempt	a	plan	that	works	for	the	maximum
potential	row	size	at	the	expense	of	performance.	If	no	such	plan	is
possible,	the	query	optimizer	returns	an	error	rather	than	deferring	error
detection	to	query	execution.	Rows	may	contain	variable-length
columns;	SQL	Server	allows	rows	to	be	defined	whose	maximum
potential	size	is	beyond	the	ability	of	SQL	Server	to	process.	Usually,
despite	the	maximum	potential	size,	an	application	stores	rows	that	have
actual	sizes	within	the	limits	that	SQL	Server	can	process.	If	SQL	Server
encounters	a	row	that	is	too	long,	an	execution	error	is	returned.

KEEP	PLAN

Forces	the	query	optimizer	to	relax	the	estimated	recompile	threshold	for	a
query.	The	estimated	recompile	threshold	is	the	point	at	which	a	query	is
automatically	recompiled	when	the	estimated	number	of	indexed	column
changes	(update,	delete	or	insert)	have	been	made	to	a	table.	Specifying
KEEP	PLAN	ensures	that	a	query	will	be	recompiled	less	frequently	when
there	are	multiple	updates	to	a	table.

Remarks
UPDATE	statements	are	allowed	in	the	body	of	user-defined	functions	only	if
the	table	being	modified	is	a	table	variable.

A	table	variable,	in	its	scope,	may	be	accessed	like	a	regular	table.	Thus,	a	table
variable	may	be	used	as	the	table	in	which	data	is	updated	in	an	UPDATE
statement.

A	four-part	name	constructed	with	the	OPENDATASOURCE	function	as	the
server-name	part	may	be	used	as	a	table	source	in	all	places	a	table	name	can
appear	in	UPDATE	statements.

If	an	update	to	a	row	violates	a	constraint	or	rule,	if	it	violates	the	NULL	setting
for	the	column,	or	if	the	new	value	is	an	incompatible	data	type,	the	statement	is
canceled,	an	error	is	returned,	and	no	records	are	updated.

When	an	UPDATE	statement	encounters	an	arithmetic	error	(overflow,	divide	by
zero,	or	a	domain	error)	during	expression	evaluation,	the	update	is	not
performed.	The	remainder	of	the	batch	is	not	executed,	and	an	error	message	is

returned.

If	an	update	to	a	column	or	columns	participating	in	a	clustered	index	causes	the
size	of	the	clustered	index	and	the	row	to	exceed	8,060	bytes,	the	update	fails
and	an	error	message	is	returned.

When	an	INSTEAD-OF	trigger	is	defined	on	UPDATE	actions	against	a	table,
the	trigger	executes	instead	of	the	UPDATE	statement.	Previous	versions	of	SQL
Server	only	support	AFTER	triggers	defined	on	UPDATE	and	other	data
modification	statements.

If	an	update	query	could	alter	more	than	one	row	while	updating	both	the
clustering	key	and	one	or	more	text,	image,	or	Unicode	columns,	the	update
operation	fails	and	SQL	Server	returns	an	error	message.

Modifying	a	text,	ntext,	or	image	column	with	UPDATE	initializes	the	column,
assigns	a	valid	text	pointer	to	it,	and	allocates	at	least	one	data	page	unless
updating	the	column	with	NULL.

Note		The	UPDATE	statement	is	logged.	If	you	are	replacing	or	modifying	large
blocks	of	text,	ntext,	or	image	data,	use	the	WRITETEXT	or	UPDATETEXT
statement	instead	of	the	UPDATE	statement.	The	WRITETEXT	and
UPDATETEXT	statements	(by	default)	are	not	logged.

All	char	and	nchar	columns	are	right-padded	to	the	defined	length.

The	setting	of	the	SET	ROWCOUNT	option	is	ignored	for	UPDATE	statements
against	remote	tables	and	local	and	remote	partitioned	views.

If	ANSI_PADDING	is	set	OFF,	all	trailing	spaces	are	removed	from	data
inserted	into	varchar	and	nvarchar	columns,	except	in	strings	containing	only
spaces.	These	strings	are	truncated	to	an	empty	string.	If	ANSI_PADDING	is	set
ON,	trailing	spaces	are	inserted.	The	Microsoft	SQL	Server	ODBC	driver	and
OLE	DB	Provider	for	SQL	Server	automatically	set	ANSI_PADDING	ON	for
each	connection.	This	can	be	configured	in	ODBC	data	sources	or	by	setting
connection	attributes	or	properties.

A	positioned	update	using	a	WHERE	CURRENT	OF	clause	updates	the	single
row	at	the	current	position	of	the	cursor.	This	can	be	more	accurate	than	a
searched	update	that	uses	a	WHERE	<search_condition>	clause	to	qualify	the
rows	to	be	updated.	A	searched	update	modifies	multiple	rows	when	the	search
condition	does	not	uniquely	identify	a	single	row.

The	results	of	an	UPDATE	statement	are	undefined	if	the	statement	includes	a
FROM	clause	that	is	not	specified	in	such	a	way	that	only	one	value	is	available
for	each	column	occurrence	that	is	updated	(in	other	words,	if	the	UPDATE
statement	is	not	deterministic).	For	example,	given	the	UPDATE	statement	in	the
following	script,	both	rows	in	table	s	meet	the	qualifications	of	the	FROM	clause
in	the	UPDATE	statement,	but	it	is	undefined	which	row	from	s	is	used	to	update
the	row	in	table	t.

CREATE	TABLE	s	(ColA	INT,	ColB	DECIMAL(10,3))
GO
CREATE	TABLE	t	(ColA	INT	PRIMARY	KEY,	ColB	DECIMAL(10,3))
GO
INSERT	INTO	s	VALUES(1,	10.0)
INSERT	INTO	s	VALUES(1,	20.0)
INSERT	INTO	t	VALUES(1,	0.0)
GO
UPDATE	t	
SET	t.ColB	=	t.ColB	+	s.ColB
FROM	t	INNER	JOIN	s	ON	(t.ColA	=	s.ColA)
GO

The	same	problem	can	occur	when	combining	the	FROM	and	WHERE
CURRENT	OF	clauses.	In	this	example,	both	rows	in	table	t2	meet	the
qualifications	of	the	FROM	clause	in	the	UPDATE	statement.	It	is	undefined
which	row	from	t2	is	to	be	used	to	update	the	row	in	table	t1.

CREATE	TABLE	t1(c1	INT	PRIMARY	KEY,	c2	INT)
GO
CREATE	TABLE	t2(d1	INT	PRIMARY	KEY,	d2	INT)
GO
INSERT	INTO	t1	VALUES	(1,	10)
INSERT	INTO	t2	VALUES	(1,	20)
INSERT	INTO	t2	VALUES	(2,	30)
go

DECLARE	abc	CURSOR	LOCAL	FOR
SELECT	*	FROM	t1

OPEN	abc

FETCH	abc

UPDATE	t1	SET	c2	=	c2	+	d2	
FROM	t2	
WHERE	CURRENT	OF	abc
GO

Setting	Variables	and	Columns
Variable	names	can	be	used	in	UPDATE	statements	to	show	the	old	and	new
values	affected.	This	should	only	be	used	when	the	UPDATE	statement	affects	a
single	record;	if	the	UPDATE	statement	affects	multiple	records,	the	variables
only	contain	the	values	for	one	of	the	updated	rows.

Permissions
UPDATE	permissions	default	to	members	of	the	sysadmin	fixed	server	role,	the
db_owner	and	db_datawriter	fixed	database	roles,	and	the	table	owner.
Members	of	the	sysadmin,	db_owner,	and	db_securityadmin	roles,	and	the
table	owner	can	transfer	permissions	to	other	users.

SELECT	permissions	are	also	required	for	the	table	being	updated	if	the
UPDATE	statement	contains	a	WHERE	clause,	or	if	expression	in	the	SET
clause	uses	a	column	in	the	table.

Examples

A.	Use	a	simple	UPDATE
These	examples	show	how	all	rows	can	be	affected	if	a	WHERE	clause	is
eliminated	from	an	UPDATE	statement.

If	all	the	publishing	houses	in	the	publishers	table	move	their	head	offices	to
Atlanta,	Georgia,	this	example	shows	how	the	publishers	table	can	be	updated.

UPDATE	publishers
SET	city	=	'Atlanta',	state	=	'GA'

This	example	changes	the	names	of	all	the	publishers	to	NULL.

UPDATE	publishers
SET	pub_name	=	NULL

You	can	also	use	computed	values	in	an	update.	This	example	doubles	all	prices
in	the	titles	table.

UPDATE	titles
SET	price	=	price	*	2

B.	Use	the	UPDATE	statement	with	a	WHERE	clause
The	WHERE	clause	specifies	the	rows	to	update.	For	example,	consider	the
unlikely	event	that	northern	California	is	renamed	Pacifica	(abbreviated	PC)	and
the	people	of	Oakland	vote	to	change	the	name	of	their	city	to	Bay	City.	This
example	shows	how	to	update	the	authors	table	for	all	former	Oakland	residents
whose	addresses	are	now	out	of	date.

UPDATE	authors
			SET	state	=	'PC',	city	=	'Bay	City'
						WHERE	state	=	'CA'	AND	city	=	'Oakland'

You	must	write	another	statement	to	change	the	name	of	the	state	for	residents	of
other	northern	California	cities.

C.	Use	the	UPDATE	statement	using	information	from	another
table
This	example	modifies	the	ytd_sales	column	in	the	titles	table	to	reflect	the
most	recent	sales	recorded	in	the	sales	table.

UPDATE	titles

			SET	ytd_sales	=	titles.ytd_sales	+	sales.qty
						FROM	titles,	sales
									WHERE	titles.title_id	=	sales.title_id
									AND	sales.ord_date	=	(SELECT	MAX(sales.ord_date)	FROM	sales)

This	example	assumes	that	only	one	set	of	sales	is	recorded	for	a	given	title	on	a
given	date	and	that	updates	are	current.	If	this	is	not	the	case	(if	more	than	one
sale	for	a	given	title	can	be	recorded	on	the	same	day),	the	example	shown	here
does	not	work	correctly.	It	executes	without	error,	but	each	title	is	updated	with
only	one	sale,	regardless	of	how	many	sales	actually	occurred	on	that	day.	This
is	because	a	single	UPDATE	statement	never	updates	the	same	row	twice.

In	the	situation	in	which	more	than	one	sale	for	a	given	title	can	occur	on	the
same	day,	all	the	sales	for	each	title	must	be	aggregated	together	within	the
UPDATE	statement,	as	shown	in	this	example:

UPDATE	titles
			SET	ytd_sales	=	
						(SELECT	SUM(qty)
									FROM	sales
												WHERE	sales.title_id	=	titles.title_id
												AND	sales.ord_date	IN	(SELECT	MAX(ord_date)	FROM	sales))
			FROM	titles,	sales

D.	Use	UPDATE	with	the	TOP	clause	in	a	SELECT	statement
This	example	updates	the	state	column	for	the	first	10	authors	from	the	authors
table.

UPDATE	authors
SET	state	=	'ZZ'	
FROM	(SELECT	TOP	10	*	FROM	authors	ORDER	BY	au_lname)	AS	t1
WHERE	authors.au_id	=	t1.au_id

See	Also

CREATE	INDEX

CREATE	TABLE

CREATE	TRIGGER

Cursors

DELETE

INSERT

SET	ROWCOUNT

Text	and	Image	Functions

Transact-SQL	Reference

UPDATE	STATISTICS
Updates	information	about	the	distribution	of	key	values	for	one	or	more
statistics	groups	(collections)	in	the	specified	table	or	indexed	view.	To	create
statistics	on	columns,	see	CREATE	STATISTICS.

Syntax
UPDATE	STATISTICS	table	|	view	
				[
								index	
								|	(statistics_name	[,...n])	
]	
				[WITH	
								[
												[FULLSCAN]	
												|	SAMPLE	number	{	PERCENT	|	ROWS	}]	
												|	RESAMPLE	
]	
								[[,]	[ALL	|	COLUMNS	|	INDEX]	
								[[,]	NORECOMPUTE]	
]

Arguments
table	|	view

Is	the	name	of	the	table	or	indexed	view	for	which	to	update	statistics.	Table
or	view	names	must	conform	to	the	rules	for	identifiers.	For	more
information,	see	Using	Identifiers.	Because	index	names	are	not	unique
within	each	database,	table	or	view	must	be	specified.	Specifying	the
database,	table,	or	view	owner	is	optional.	Indexed	views	are	supported	only
on	Microsoft®	SQL	Server™	2000,	Enterprise	Edition.

index

Is	the	index	for	which	statistics	are	being	updated.	Index	names	must
conform	to	the	rules	for	identifiers.	If	index	is	not	specified,	the	distribution

JavaScript:hhobj_1.Click()

statistics	for	all	indexes	in	the	specified	table	or	indexed	view	are	updated.
To	see	a	list	of	index	names	and	descriptions,	execute	sp_helpindex	with	the
table	or	view	name.

statistics_name

Is	the	name	of	the	statistics	group	(collection)	to	update.	Statistics	names
must	conform	to	the	rules	for	identifiers.	For	more	information	about
creating	statistics	groups,	see	CREATE	STATISTICS.

n

Is	a	placeholder	indicating	that	multiple	statistics_name	groups	can	be
specified.

FULLSCAN

Specifies	that	all	rows	in	table	or	view	should	be	read	to	gather	the	statistics.
FULLSCAN	provides	the	same	behavior	as	SAMPLE	100	PERCENT.
FULLSCAN	cannot	be	used	with	the	SAMPLE	option.

SAMPLE	number	{	PERCENT	|	ROWS	}

Specifies	the	percentage	of	the	table	or	indexed	view,	or	the	number	of	rows
to	sample	when	collecting	statistics	for	larger	tables	or	views.	Only	integers
are	allowed	for	number	whether	it	is	PERCENT	or	ROWS.	To	use	the
default	sampling	behavior	for	larger	tables	or	views,	use	SAMPLE	number
with	PERCENT	or	ROWS.	Microsoft	SQL	Server	ensures	a	minimum
number	of	values	are	sampled	to	ensure	useful	statistics.	If	the	PERCENT,
ROWS,	or	number	option	results	in	too	few	rows	being	sampled,	SQL	Server
automatically	corrects	the	sampling	based	on	the	number	of	existing	rows	in
the	table	or	view.

Note		The	default	behavior	is	to	perform	a	sample	scan	on	the	target	table	or
indexed	view.	SQL	Server	automatically	computes	the	required	sample	size.

RESAMPLE

Specifies	that	statistics	will	be	gathered	using	an	inherited	sampling	ratio	for
all	existing	statistics	including	indexes.	If	the	sampling	ratio	results	in	too
few	rows	being	sampled,	SQL	Server	automatically	corrects	the	sampling
based	on	the	number	of	existing	rows	in	the	table	or	view.

ALL	|	COLUMNS	|	INDEX

Specifies	whether	the	UPDATE	STATISTICS	statement	affects	column
statistics,	index	statistics,	or	all	existing	statistics.	If	no	option	is	specified,
the	UPDATE	STATISTICS	statement	affects	all	statistics.	Only	one	type
(ALL,	COLUMNS,	or	INDEX)	can	be	specified	per	UPDATE	STATISTICS
statement.

NORECOMPUTE

Specifies	that	statistics	that	become	out	of	date	are	not	automatically
recomputed.	Statistics	become	out	of	date	depending	on	the	number	of
INSERT,	UPDATE,	and	DELETE	operations	performed	on	indexed
columns.	When	specified,	this	option	causes	SQL	Server	to	disable	automatic
statistics	rebuilding.	To	restore	automatic	statistics	recomputation,	reissue
UPDATE	STATISTICS	without	the	NORECOMPUTE	option	or	execute
sp_autostats.

IMPORTANT		Disabling	automatic	statistics	recomputation	can	cause	the	SQL
Server	query	optimizer	to	choose	a	less	optimal	strategy	for	queries	that	involve
the	specified	table.

Remarks
SQL	Server	keeps	statistics	about	the	distribution	of	the	key	values	in	each	index
and	uses	these	statistics	to	determine	which	index(es)	to	use	in	query	processing.
Users	can	create	statistics	on	nonindexed	columns	by	using	the	CREATE
STATISTICS	statement.	Query	optimization	depends	on	the	accuracy	of	the
distribution	steps:

If	there	is	significant	change	in	the	key	values	in	the	index,	rerun
UPDATE	STATISTICS	on	that	index.

If	a	large	amount	of	data	in	an	indexed	column	has	been	added,
changed,	or	removed	(that	is,	if	the	distribution	of	key	values	has
changed),	or	the	table	has	been	truncated	using	the	TRUNCATE
TABLE	statement	and	then	repopulated,	use	UPDATE	STATISTICS.

To	see	when	the	statistics	were	last	updated,	use	the	STATS_DATE	function.

Statistics	can	be	created	or	updated	on	tables	with	computed	columns	only	if	the
conditions	are	such	that	an	index	can	be	created	on	these	columns.	For	more
information	about	the	requirements	and	restrictions	on	creating	indexes	on
computed	columns,	see	CREATE	INDEX.

Permissions
UPDATE	STATISTICS	permissions	default	to	the	table	or	view	owner,	and	are
not	transferable.

Examples

A.	Update	all	statistics	for	a	single	table
This	example	updates	the	distribution	statistics	for	all	indexes	on	the	authors
table.

UPDATE	STATISTICS	authors

B.	Update	only	the	statistics	for	a	single	index
This	example	updates	only	the	distribution	information	for	the	au_id_ind	index
of	the	authors	table.

UPDATE	STATISTICS	authors	au_id_ind

C.	Update	statistics	for	specific	statistics	groups	(collections)	using
50	percent	sampling
This	example	creates	and	then	updates	the	statistics	group	for	the	au_lname	and
au_fname	columns	in	the	authors	table.

CREATE	STATISTICS	anames	
			ON	authors	(au_lname,	au_fname)
			WITH	SAMPLE	50	PERCENT
GO
--	Time	passes.	The	UPDATE	STATISTICS	statement	is	then	executed.
UPDATE	STATISTICS	authors(anames)	

			WITH	SAMPLE	50	PERCENT
GO

D.	Update	statistics	for	a	specific	statistics	groups	(collections)
using	FULLSCAN	and	NORECOMPUTE
This	example	updates	the	anames	statistics	group	(collection)	in	the	authors
table,	forces	a	full	scan	of	all	rows	in	the	authors	table,	and	turns	off	automatic
statistics	updating	for	the	statistics	group	(collection).

UPDATE	STATISTICS	authors(anames)
			WITH	FULLSCAN,	NORECOMPUTE
GO

See	Also

CREATE	INDEX

CREATE	STATISTICS

Cursors

DBCC	SHOW_STATISTICS

DROP	STATISTICS

EXECUTE

Functions

sp_autostats

sp_createstats

sp_dboption

sp_helpindex

sp_updatestats

STATS_DATE

Transact-SQL	Reference

UPDATETEXT
Updates	an	existing	text,	ntext,	or	image	field.	Use	UPDATETEXT	to	change
only	a	portion	of	a	text,	ntext,	or	image	column	in	place.	Use	WRITETEXT	to
update	and	replace	an	entire	text,	ntext,	or	image	field.

Syntax
UPDATETEXT	{	table_name.dest_column_name	dest_text_ptr	}					{	NULL	|
insert_offset	}	
				{	NULL	|	delete_length	}	
				[WITH	LOG]	
				[inserted_data	
								|	{	table_name.src_column_name	src_text_ptr	}]

Arguments
table_name.dest_column_name

Is	the	name	of	the	table	and	text,	ntext,	or	image	column	to	be	updated.
Table	names	and	column	names	must	conform	to	the	rules	for	identifiers.	For
more	information,	see	Using	Identifiers.	Specifying	the	database	name	and
owner	names	is	optional.

dest_text_ptr

Is	a	text	pointer	value	(returned	by	the	TEXTPTR	function)	that	points	to	the
text,	ntext,	or	image	data	to	be	updated.	dest_text_ptr	must	be	binary(16).

insert_offset

Is	the	zero-based	starting	position	for	the	update.	For	text	or	image	columns,
insert_offset	is	the	number	of	bytes	to	skip	from	the	start	of	the	existing
column	before	inserting	new	data.	For	ntext	columns,	insert_offset	is	the
number	of	characters	(each	ntext	character	uses	2	bytes).	The	existing	text,
ntext,	or	image	data	beginning	at	this	zero-based	starting	position	is	shifted
to	the	right	to	make	room	for	the	new	data.	A	value	of	0	inserts	the	new	data
at	the	beginning	of	the	existing	data.	A	value	of	NULL	appends	the	new	data
to	the	existing	data	value.

JavaScript:hhobj_1.Click()

delete_length

Is	the	length	of	data	to	delete	from	the	existing	text,	ntext,	or	image	column,
starting	at	the	insert_offset	position.	The	delete_length	value	is	specified	in
bytes	for	text	and	image	columns	and	in	characters	for	ntext	columns.	Each
ntext	character	uses	2	bytes.	A	value	of	0	deletes	no	data.	A	value	of	NULL
deletes	all	data	from	the	insert_offset	position	to	the	end	of	the	existing	text
or	image	column.

WITH	LOG

Ignored	in	Microsoft®	SQL	Server™	2000.	In	this	release,	logging	is
determined	by	the	recovery	model	in	effect	for	the	database.

inserted_data

Is	the	data	to	be	inserted	into	the	existing	text,	ntext,	or	image	column	at	the
insert_offset	location.	This	is	a	single	char,	nchar,	varchar,	nvarchar,
binary,	varbinary,	text,	ntext,	or	image	value.	inserted_data	can	be	a
literal	or	a	variable.

table_name.src_column_name

Is	the	name	of	the	table	and	text,	ntext,	or	image	column	used	as	the	source
of	the	inserted	data.	Table	names	and	column	names	must	conform	to	the
rules	for	identifiers.

src_text_ptr

Is	a	text	pointer	value	(returned	by	the	TEXTPTR	function)	that	points	to	a
text,	ntext,	or	image	column	used	as	the	source	of	the	inserted	data.

Remarks
Newly	inserted	data	can	be	a	single	inserted_data	constant,	table	name,	column
name,	or	text	pointer.

Update	action UPDATETEXT	parameters
To	replace	existing	data Specify	a	nonnull	insert_offset	value,	a	nonzero

delete_length	value,	and	the	new	data	to	be
inserted.

To	delete	existing	data Specify	a	nonnull	insert_offset	value	and	a

nonzero	delete_length.	Do	not	specify	new	data
to	be	inserted.

To	insert	new	data Specify	the	insert_offset	value,	a	delete_length
of	0,	and	the	new	data	to	be	inserted.

In	SQL	Server	2000,	in	row	text	pointers	to	text,	ntext,	or	image	data	may	exist
but	be	invalid.	For	information	about	the	text	in	row	option,	see	sp_tableoption.
For	information	about	invalidating	text	pointers,	see	sp_invalidate_textptr.

To	initialize	text	columns	to	NULL,	use	UPDATETEXT	when	the	compatibility
level	is	equal	to	65.	If	the	compatibility	level	is	equal	to	70,	use	WRITETEXT	to
initialize	text	columns	to	NULL;	otherwise,	UPDATETEXT	initializes	text
columns	to	an	empty	string.	For	information	about	setting	the	compatibility
level,	see	sp_dbcmptlevel.

Permissions
UPDATETEXT	permissions	default	to	those	users	with	SELECT	permissions	on
the	specified	table.	Permissions	are	transferable	when	SELECT	permissions	are
transferred.

Examples
This	example	puts	the	text	pointer	into	the	local	variable	@ptrval,	and	then	uses
UPDATETEXT	to	update	a	spelling	error.

USE	pubs
GO
EXEC	sp_dboption	'pubs',	'select	into/bulkcopy',	'true'
GO
DECLARE	@ptrval	binary(16)
SELECT	@ptrval	=	TEXTPTR(pr_info)	
			FROM	pub_info	pr,	publishers	p
						WHERE	p.pub_id	=	pr.pub_id	
						AND	p.pub_name	=	'New	Moon	Books'
UPDATETEXT	pub_info.pr_info	@ptrval	88	1	'b'	

GO
EXEC	sp_dboption	'pubs',	'select	into/bulkcopy',	'false'
GO

See	Also

READTEXT

TEXTPTR

WRITETEXT

Transact-SQL	Reference

UPPER
Returns	a	character	expression	with	lowercase	character	data	converted	to
uppercase.

Syntax
UPPER	(character_expression)

Arguments
character_expression

Is	an	expression	of	character	data.	character_expression	can	be	a	constant,
variable,	or	column	of	either	character	or	binary	data.

Return	Types
varchar

Remarks
character_expression	must	be	of	a	data	type	that	is	implicitly	convertible	to
varchar.	Otherwise,	use	the	CAST	function	to	explicitly	convert
character_expression.

Examples
This	example	uses	the	UPPER	and	RTRIM	functions	to	return	the	trimmed,
uppercase	author's	last	name	concatenated	with	the	author's	first	name.

USE	pubs
GO
SELECT	UPPER(RTRIM(au_lname))	+	',	'	+	au_fname	AS	Name
FROM	authors
ORDER	BY	au_lname
GO

Here	is	the	result	set:

Name																																																											
--	
BENNET,	Abraham																																																
BLOTCHET-HALLS,	Reginald																																							
CARSON,	Cheryl																																																	
DEFRANCE,	Michel																																															
DEL	CASTILLO,	Innes																																												
DULL,	Ann																																																						
GREEN,	Marjorie																																																
GREENE,	Morningstar																																												
GRINGLESBY,	Burt																																															
HUNTER,	Sheryl																																																	
KARSEN,	Livia																																																		
LOCKSLEY,	Charlene																																													
MACFEATHER,	Stearns																																												
MCBADDEN,	Heather																																														
O'LEARY,	Michael																																															
PANTELEY,	Sylvia																																															
RINGER,	Albert																																																	
RINGER,	Anne																																																			
SMITH,	Meander																																																	
STRAIGHT,	Dean																																																	
STRINGER,	Dirk																																																	
WHITE,	Johnson																																																	
YOKOMOTO,	Akiko																																																

(23	row(s)	affected)

See	Also

Data	Types

String	Functions

Transact-SQL	Reference

USE
Changes	the	database	context	to	the	specified	database.

Syntax
USE	{	database	}

Arguments
database

Is	the	name	of	the	database	to	which	the	user	context	is	switched.	Database
names	must	conform	to	the	rules	for	identifiers.

Remarks
USE	executes	at	both	compile	and	execution	time	and	takes	effect	immediately.
Therefore,	statements	that	appear	in	a	batch	after	the	USE	statement	are	executed
in	the	specified	database.

When	logging	in	to	Microsoft®	SQL	Server™,	users	are	usually	connected	to
the	master	database	automatically.	Unless	a	default	database	has	been	set	up	for
each	user's	login	ID,	each	user	must	execute	the	USE	statement	to	change	from
master	to	another	database.

To	change	context	to	a	different	database,	a	user	must	have	a	security	account	for
that	database.	The	database	owner	provides	the	security	accounts	for	the
database.

Permissions
USE	permissions	default	to	those	users	who	are	assigned	permissions	by	the	dbo
and	sysadmin	fixed	server	roles	executing	sp_adduser,	or	by	the	sysadmin
fixed	server	role	and	the	db_accessadmin	and	db_owner	fixed	database	roles
executing	sp_grantdbaccess.	Users	without	a	security	account	in	the	destination
database	can	still	be	allowed	access	if	a	guest	user	exists	in	that	database.

See	Also

CREATE	DATABASE

DROP	DATABASE

EXECUTE

sp_addalias

sp_adduser

sp_defaultdb

Using	Identifiers

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

USER
Allows	a	system-supplied	value	for	the	current	user's	database	username	to	be
inserted	into	a	table	when	no	default	value	is	specified.

Syntax
USER

Return	Types
char

Remarks
USER	provides	the	same	functionality	as	the	USER_NAME	system	function.

Use	USER	with	DEFAULT	constraints	in	either	the	CREATE	TABLE	or	ALTER
TABLE	statements,	or	use	as	any	standard	function.

Examples

A.	Use	USER	to	return	the	current	user's	database	username
This	example	declares	a	variable	as	char,	assigns	the	current	value	of	USER	to
it,	and	then	prints	the	variable	with	a	text	description.

DECLARE	@usr	char(30)
SET	@usr	=	user
SELECT	'The	current	user's	database	username	is:	'+	@usr
GO

Here	is	the	result	set:

The	current	user's	database	username	is:	dbo																												

(1	row(s)	affected)

B.	Use	USER	with	DEFAULT	constraints
This	example	creates	a	table	using	USER	as	a	DEFAULT	constraint	for	the
salesperson	of	a	sales	row.

USE	pubs
GO
CREATE	TABLE	inventory2
(
	part_id	int	IDENTITY(100,	1)	NOT	NULL,
	description	varchar(30)	NOT	NULL,
	entry_person	varchar(30)	NOT	NULL	DEFAULT	USER	
)
GO
INSERT	inventory2	(description)
VALUES	('Red	pencil')
INSERT	inventory2	(description)
VALUES	('Blue	pencil')
INSERT	inventory2	(description)
VALUES	('Green	pencil')
INSERT	inventory2	(description)
VALUES	('Black	pencil')
INSERT	inventory2	(description)
VALUES	('Yellow	pencil')
GO

This	is	the	query	to	select	all	information	from	the	inventory2	table:

SELECT	*	
FROM	inventory2
ORDER	BY	part_id
GO

Here	is	the	result	set	(note	the	entry-person	value):

part_id					description																				entry_person																			
-----------	------------------------------	-----------------------------
100									Red	pencil																					dbo																												
101									Blue	pencil																				dbo																												
102									Green	pencil																			dbo																												
103									Black	pencil																			dbo																												
104									Yellow	pencil																		dbo																												

(5	row(s)	affected)

See	Also

ALTER	TABLE

CREATE	TABLE

Creating	and	Modifying	PRIMARY	KEY	Constraints

CURRENT_TIMESTAMP

CURRENT_USER

Modifying	Column	Properties

Security	Functions

SESSION_USER

SYSTEM_USER

USER_NAME

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Reference

USER_ID
Returns	a	user's	database	identification	number.

Syntax
USER_ID	(['user'])

Arguments
'user'

Is	the	username	to	be	used.	user	is	nchar.	If	a	char	value	is	specified,	it	is
implicitly	converted	to	nchar.

Return	Types
smallint

Remarks
When	user	is	omitted,	the	current	user	is	assumed.	Parentheses	are	required.

USER_ID	can	be	used	in	the	select	list,	in	the	WHERE	clause,	and	anywhere	an
expression	is	allowed.	For	more	information,	see	Expressions.

Examples
This	example	returns	the	identification	number	for	user	Harold.

SELECT	USER_ID('Harold')

See	Also

Security	Functions

Transact-SQL	Reference

USER_NAME
Returns	a	user	database	username	from	a	given	identification	number.

Syntax
USER_NAME	([id])

Arguments
id

Is	the	identification	number	used	to	return	a	user's	name.	id	is	int.

Return	Types
nvarchar(256)

Remarks
When	id	is	omitted,	the	current	user	is	assumed.	Parentheses	are	required.

Examples

A.	Use	USER_NAME
This	example	returns	the	username	for	user	number	13.

SELECT	USER_NAME(13)
GO

B.	Use	USER_NAME	without	an	ID
This	example	finds	the	name	of	the	current	user	without	specifying	an	ID.

SELECT	user_name()
GO

Here	is	the	result	set	(for	a	user	who	is	a	member	of	the	sysadmin	fixed	server
role):

dbo																												

(1	row(s)	affected)

C.	Use	USER_NAME	in	the	WHERE	clause
This	example	finds	the	row	in	sysusers	in	which	the	name	is	equal	to	the	result
of	applying	the	system	function	USER_NAME	to	user	identification	number	1.

SELECT	name
FROM	sysusers
WHERE	name	=	USER_NAME(1)
GO

Here	is	the	result	set:

name																											

dbo																												

(1	row(s)	affected)

See	Also

ALTER	TABLE

CREATE	TABLE

CURRENT_TIMESTAMP

CURRENT_USER

Modifying	Column	Properties

SESSION_USER

JavaScript:hhobj_1.Click()

System	Functions

SYSTEM_USER

Transact-SQL	Reference

VAR
Returns	the	statistical	variance	of	all	values	in	the	given	expression.

Syntax
VAR	(expression)

Arguments
expression

Is	an	expression	of	the	exact	numeric	or	approximate	numeric	data	type
category,	except	for	the	bit	data	type.	Aggregate	functions	and	subqueries	are
not	permitted.

Return	Types
float

Remarks
If	VAR	is	used	on	all	items	in	a	SELECT	statement,	each	value	in	the	result	set	is
included	in	the	calculation.	VAR	can	be	used	with	numeric	columns	only.	Null
values	are	ignored.

Examples
This	example	returns	the	variance	for	all	royalty	values	in	the	titles	table.

USE	pubs
SELECT	VAR(royalty)
FROM	titles

See	Also

Aggregate	Functions

Transact-SQL	Reference

varbinary
For	information	about	the	varbinary	data	type,	see	binary	and	varbinary.

See	Also

Data	Type	Conversion

Data	Types

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

varchar
For	information	about	the	varchar	data	type,	see	char	and	varchar.

See	Also

Data	Type	Conversion

Data	Types

JavaScript:hhobj_1.Click()

Transact-SQL	Reference

VARP
Returns	the	statistical	variance	for	the	population	for	all	values	in	the	given
expression.

Syntax
VARP	(expression)

Arguments
expression

Is	an	expression	of	the	exact	numeric	or	approximate	numeric	data	type
category,	except	for	the	bit	data	type.	Aggregate	functions	and	subqueries	are
not	permitted.

Return	Types
float

Remarks
If	VARP	is	used	on	all	items	in	a	SELECT	statement,	each	value	in	the	result	set
is	included	in	the	calculation.	VARP	can	be	used	with	numeric	columns	only.
Null	values	are	ignored.

Examples
This	example	returns	the	variance	for	the	population	for	all	royalty	values	in	the
titles	table.

USE	pubs
SELECT	VARP(royalty)
FROM	titles

See	Also

Aggregate	Functions

Transact-SQL	Reference

WAITFOR
Specifies	a	time,	time	interval,	or	event	that	triggers	the	execution	of	a	statement
block,	stored	procedure,	or	transaction.

Syntax
WAITFOR	{	DELAY	'time'	|	TIME	'time'	}

Arguments
DELAY

Instructs	Microsoft®	SQL	Server™	to	wait	until	the	specified	amount	of
time	has	passed,	up	to	a	maximum	of	24	hours.

'time'

Is	the	amount	of	time	to	wait.	time	can	be	specified	in	one	of	the	acceptable
formats	for	datetime	data,	or	it	can	be	specified	as	a	local	variable.	Dates
cannot	be	specified;	therefore,	the	date	portion	of	the	datetime	value	is	not
allowed.

TIME

Instructs	SQL	Server	to	wait	until	the	specified	time.

Remarks
After	executing	the	WAITFOR	statement,	you	cannot	use	your	connection	to
SQL	Server	until	the	time	or	event	that	you	specified	occurs.

To	see	the	active	and	waiting	processes,	use	sp_who.

Examples

A.	Use	WAITFOR	TIME
This	example	executes	the	stored	procedure	update_all_stats	at	10:20	P.M.

BEGIN
			WAITFOR	TIME	'22:20'
			EXECUTE	update_all_stats
END

For	more	information	about	using	this	procedure	to	update	all	statistics	for	a
database,	see	the	examples	in	UPDATE	STATISTICS.

B.	Use	WAITFOR	DELAY
This	example	shows	how	a	local	variable	can	be	used	with	the	WAITFOR
DELAY	option.	A	stored	procedure	is	created	to	wait	for	a	variable	amount	of
time	and	then	returns	information	to	the	user	as	to	the	number	of	hours,	minutes,
and	seconds	that	have	elapsed.

CREATE	PROCEDURE	time_delay	@@DELAYLENGTH	char(9)
AS
DECLARE	@@RETURNINFO	varchar(255)
BEGIN
			WAITFOR	DELAY	@@DELAYLENGTH
			SELECT	@@RETURNINFO	=	'A	total	time	of	'	+	
																		SUBSTRING(@@DELAYLENGTH,	1,	3)	+
																		'	hours,	'	+
																		SUBSTRING(@@DELAYLENGTH,	5,	2)	+	
																		'	minutes,	and	'	+
																		SUBSTRING(@@DELAYLENGTH,	8,	2)	+	
																		'	seconds,	'	+
																		'has	elapsed!	Your	time	is	up.'
			PRINT	@@RETURNINFO
END
GO
--	This	next	statement	executes	the	time_delay	procedure.
EXEC	time_delay	'000:00:10'
GO

Here	is	the	result	set:

A	total	time	of	000	hours,	00	minutes,	and	10	seconds,	has	elapsed!	Your	time	is	up.

See	Also

Control-of-Flow	Language

datetime	and	smalldatetime

sp_who

Transact-SQL	Reference

WHERE
Specifies	the	condition	for	the	rows	returned	by	a	query.

Syntax
WHERE	<	search_condition	>

Arguments
<search_condition>

Defines	the	condition	to	be	met	for	the	rows	to	be	returned.	There	is	no	limit
to	the	number	of	predicates	in	<search_condition>.

See	Also

DELETE

Predicate

Search	Condition

SELECT

UPDATE

Transact-SQL	Reference

WHILE
Sets	a	condition	for	the	repeated	execution	of	an	SQL	statement	or	statement
block.	The	statements	are	executed	repeatedly	as	long	as	the	specified	condition
is	true.	The	execution	of	statements	in	the	WHILE	loop	can	be	controlled	from
inside	the	loop	with	the	BREAK	and	CONTINUE	keywords.

Syntax
WHILE	Boolean_expression	
				{	sql_statement	|	statement_block	}	
				[BREAK]	
				{	sql_statement	|	statement_block	}	
				[CONTINUE]

Arguments
Boolean_expression

Is	an	expression	that	returns	TRUE	or	FALSE.	If	the	Boolean	expression
contains	a	SELECT	statement,	the	SELECT	statement	must	be	enclosed	in
parentheses.

{sql_statement	|	statement_block}

Is	any	Transact-SQL	statement	or	statement	grouping	as	defined	with	a
statement	block.	To	define	a	statement	block,	use	the	control-of-flow
keywords	BEGIN	and	END.

BREAK

Causes	an	exit	from	the	innermost	WHILE	loop.	Any	statements	appearing
after	the	END	keyword,	marking	the	end	of	the	loop,	are	executed.

CONTINUE

Causes	the	WHILE	loop	to	restart,	ignoring	any	statements	after	the
CONTINUE	keyword.

Remarks
If	two	or	more	WHILE	loops	are	nested,	the	inner	BREAK	exits	to	the	next
outermost	loop.	First,	all	the	statements	after	the	end	of	the	inner	loop	run,	and
then	the	next	outermost	loop	restarts.

Examples

A.	Use	BREAK	and	CONTINUE	with	nested	IF...ELSE	and
WHILE
In	this	example,	if	the	average	price	is	less	than	$30,	the	WHILE	loop	doubles
the	prices	and	then	selects	the	maximum	price.	If	the	maximum	price	is	less	than
or	equal	to	$50,	the	WHILE	loop	restarts	and	doubles	the	prices	again.	This	loop
continues	doubling	the	prices	until	the	maximum	price	is	greater	than	$50,	and
then	exits	the	WHILE	loop	and	prints	a	message.

USE	pubs
GO
WHILE	(SELECT	AVG(price)	FROM	titles)	<	$30
BEGIN
			UPDATE	titles
						SET	price	=	price	*	2
			SELECT	MAX(price)	FROM	titles
			IF	(SELECT	MAX(price)	FROM	titles)	>	$50
						BREAK
			ELSE
						CONTINUE
END
PRINT	'Too	much	for	the	market	to	bear'

B.	Using	WHILE	within	a	procedure	with	cursors
The	following	WHILE	construct	is	a	section	of	a	procedure	named
count_all_rows.	For	this	example,	this	WHILE	construct	tests	the	return	value
of	@@FETCH_STATUS,	a	function	used	with	cursors.	Because

@@FETCH_STATUS	may	return	-2,	-1,	or	0,	all	three	cases	must	be	tested.	If	a
row	is	deleted	from	the	cursor	results	since	the	time	this	stored	procedure	was
executed,	that	row	is	skipped.	A	successful	fetch	(0)	causes	the	SELECT	within
the	BEGIN...END	loop	to	execute.

USE	pubs
DECLARE	tnames_cursor	CURSOR
FOR
			SELECT	TABLE_NAME	
			FROM	INFORMATION_SCHEMA.TABLES
OPEN	tnames_cursor
DECLARE	@tablename	sysname
--SET	@tablename	=	'authors'
FETCH	NEXT	FROM	tnames_cursor	INTO	@tablename
WHILE	(@@FETCH_STATUS	<>	-1)
BEGIN
			IF	(@@FETCH_STATUS	<>	-2)
			BEGIN			
						SELECT	@tablename	=	RTRIM(@tablename)	
						EXEC	('SELECT	'''	+	@tablename	+	'''	=	count(*)	FROM	'	
												+	@tablename)
						PRINT	'	'
			END
			FETCH	NEXT	FROM	tnames_cursor	INTO	@tablename
END
CLOSE	tnames_cursor
DEALLOCATE	tnames_cursor

See	Also

ALTER	TRIGGER

Control-of-Flow	Language

CREATE	TRIGGER

Cursors

SELECT

Transact-SQL	Reference

WRITETEXT
Permits	nonlogged,	interactive	updating	of	an	existing	text,	ntext,	or	image
column.	This	statement	completely	overwrites	any	existing	data	in	the	column	it
affects.	WRITETEXT	cannot	be	used	on	text,	ntext,	and	image	columns	in
views.

Syntax
WRITETEXT	{	table.column	text_ptr	}					[WITH	LOG]	{	data	}

Arguments
table.column

Is	the	name	of	the	table	and	text,	ntext,	or	image	column	to	update.	Table
and	column	names	must	conform	to	the	rules	for	identifiers.	For	more
information,	see	Using	Identifiers.	Specifying	the	database	name	and	owner
names	is	optional.

text_ptr

Is	a	value	that	stores	the	pointer	to	the	text,	ntext	or	image	data.	text_ptr
must	be	binary(16).	To	create	a	text	pointer,	execute	an	INSERT	or
UPDATE	statement	with	data	that	is	not	NULL	for	the	text,	ntext,	or	image
column.	For	more	information	about	creating	a	text	pointer,	see	either
INSERT	or	UPDATE.

WITH	LOG

Ignored	in	Microsoft®	SQL	Server™	2000.	Logging	is	determined	by	the
recovery	model	in	effect	for	the	database.

data

Is	the	actual	text,	ntext	or	image	data	to	store.	data	can	be	a	literal	or	a
variable.	The	maximum	length	of	text	that	can	be	inserted	interactively	with
WRITETEXT	is	approximately	120	KB	for	text,	ntext,	and	image	data.

JavaScript:hhobj_1.Click()

Remarks
Use	WRITETEXT	to	replace	text,	ntext,	and	image	data	and	UPDATETEXT	to
modify	text,	ntext,	and	image	data.	UPDATETEXT	is	more	flexible	because	it
changes	only	a	portion	of	a	text,	ntext,	or	image	column	rather	than	the	entire
column.

If	the	database	recovery	model	is	simple	or	bulk-logged,	WRITETEXT	is	a
nonlogged	operation.	This	means	text,	ntext,	or	image	data	is	not	logged	when
it	is	written	to	the	database;	therefore,	the	transaction	log	does	not	fill	up	with
the	large	amounts	of	data	that	often	make	up	these	data	types.

For	WRITETEXT	to	work	properly,	the	column	must	already	contain	a	valid	text
pointer.

If	the	table	does	not	have	in	row	text,		SQL	Server	saves	space	by	not	initializing
text	columns	when	explicit	or	implicit	null	values	are	placed	in	text	columns
with	INSERT,	and	no	text	pointer	can	be	obtained	for	such	nulls.	To	initialize
text	columns	to	NULL,	use	the	UPDATE	statement.	If	the	table	has	in	row	text,
there	is	no	need	to	initialize	the	text	column	for	nulls	and	you	can	always	get	a
text	pointer.

The	DB-Library	dbwritetext	and	dbmoretext	functions	and	the	ODBC
SQLPutData	function	are	faster	and	use	less	dynamic	memory	than
WRITETEXT.	These	functions	can	insert	up	to	2	gigabytes	of	text,	ntext,	or
image	data.

In	SQL	Server	2000,	in	row	text	pointers	to	text,	ntext,	or	image	data	may	exist
but	be	invalid.	For	information	about	the	text	in	row	option,	see	sp_tableoption.
For	information	about	invalidating	text	pointers,	see	sp_invalidate_textptr.

Permissions
WRITETEXT	permissions	default	to	those	users	with	SELECT	permissions	on
the	specified	table.	Permissions	are	transferable	when	SELECT	permissions	are
transferred.

Examples
This	example	puts	the	text	pointer	into	the	local	variable	@ptrval,	and	then

WRITETEXT	places	the	new	text	string	into	the	row	pointed	to	by	@ptrval.

USE	pubs
GO
EXEC	sp_dboption	'pubs',	'select	into/bulkcopy',	'true'
GO
DECLARE	@ptrval	binary(16)
SELECT	@ptrval	=	TEXTPTR(pr_info)	
FROM	pub_info	pr,	publishers	p
WHERE	p.pub_id	=	pr.pub_id	
			AND	p.pub_name	=	'New	Moon	Books'
WRITETEXT	pub_info.pr_info	@ptrval	'New	Moon	Books	(NMB)	has	just	released	another	top	ten	publication.	With	the	latest	publication	this	makes	NMB	the	hottest	new	publisher	of	the	year!'
GO
EXEC	sp_dboption	'pubs',	'select	into/bulkcopy',	'false'
GO

See	Also

Data	Types

DECLARE	@local_variable

DELETE

SELECT

SET

UPDATETEXT

Transact-SQL	Reference

YEAR
Returns	an	integer	that	represents	the	year	part	of	a	specified	date.

Syntax
YEAR	(date)

Arguments
date

An	expression	of	type	datetime	or	smalldatetime.

Return	Types
int

Remarks
This	function	is	equivalent	to	DATEPART(yy,	date).

Examples
This	example	returns	the	number	of	the	year	from	the	date	03/12/1998.

SELECT	"Year	Number"	=	YEAR('03/12/1998')
GO

Here	is	the	result	set:

Year	Number	

1998												

This	example	specifies	the	date	as	a	number.	Notice	that	Microsoft®	SQL
Server™	database	interprets	0	as	January	1,	1900.

SELECT	MONTH(0),	DAY(0),	YEAR(0)

Here	is	the	result	set:

-----	------	------

1					1						1900

See	Also

Date	and	Time	Functions

Transact-SQL	Reference

SELECT	Clause
Specifies	the	columns	to	be	returned	by	the	query.

Syntax
SELECT	[ALL	|	DISTINCT]
				[TOP	n	[PERCENT]	[WITH	TIES]]	
				<	select_list	>

<	select_list	>	::=

				{				*	
								|	{	table_name	|	view_name	|	table_alias	}.*	
								|					{	column_name	|	expression	|	IDENTITYCOL	|	ROWGUIDCOL	}	
												[[AS]	column_alias]	
								|	column_alias	=	expression	
				}				[,...n]

Arguments
ALL

Specifies	that	duplicate	rows	can	appear	in	the	result	set.	ALL	is	the	default.

DISTINCT

Specifies	that	only	unique	rows	can	appear	in	the	result	set.	Null	values	are
considered	equal	for	the	purposes	of	the	DISTINCT	keyword.

TOP	n	[PERCENT]

Specifies	that	only	the	first	n	rows	are	to	be	output	from	the	query	result	set.
n	is	an	integer	between	0	and	4294967295.	If	PERCENT	is	also	specified,
only	the	first	n	percent	of	the	rows	are	output	from	the	result	set.	When
specified	with	PERCENT,	n	must	be	an	integer	between	0	and	100.

If	the	query	includes	an	ORDER	BY	clause,	the	first	n	rows	(or	n	percent	of
rows)	ordered	by	the	ORDER	BY	clause	are	output.	If	the	query	has	no
ORDER	BY	clause,	the	order	of	the	rows	is	arbitrary.

WITH	TIES

Specifies	that	additional	rows	be	returned	from	the	base	result	set	with	the
same	value	in	the	ORDER	BY	columns	appearing	as	the	last	of	the	TOP	n
(PERCENT)	rows.	TOP	...WITH	TIES	can	only	be	specified	if	an	ORDER
BY	clause	is	specified.

<	select_list	>

The	columns	to	be	selected	for	the	result	set.	The	select	list	is	a	series	of
expressions	separated	by	commas.

*
Specifies	that	all	columns	from	all	tables	and	views	in	the	FROM	clause
should	be	returned.	The	columns	are	returned	by	table	or	view,	as
specified	in	the	FROM	clause,	and	in	the	order	in	which	they	exist	in	the
table	or	view.

table_name	|	view_name	|	table_alias.*
Limits	the	scope	of	the	*	to	the	specified	table	or	view.

column_name
Is	the	name	of	a	column	to	return.	Qualify	column_name	to	prevent	an
ambiguous	reference,	such	as	occurs	when	two	tables	in	the	FROM
clause	have	columns	with	duplicate	names.	For	example,	the	Customers
and	Orders	tables	in	the	Northwind	database	both	have	a	column	named
ColumnID.	If	the	two	tables	are	joined	in	a	query,	the	customer	ID	can
be	specified	in	the	select	list	as	Customers.CustomerID.

expression
Is	a	column	name,	constant,	function,	any	combination	of	column	names,
constants,	and	functions	connected	by	an	operator(s),	or	a	subquery.	

IDENTITYCOL
Returns	the	identity	column.	For	more	information,	see	IDENTITY
(Property),	ALTER	TABLE,	and	CREATE	TABLE.

If	the	more	than	one	table	in	the	FROM	clause	has	a	column	with
the	IDENTITY	property,	IDENTITYCOL	must	be	qualified	with
the	specific	table	name,	such	as	T1.IDENTITYCOL.	

ROWGUIDCOL
Returns	the	row	global	unique	identifier	column.

If	the	more	than	one	table	in	the	FROM	clause	with	the
ROWGUIDCOL	property,	ROWGUIDCOL	must	be	qualified
with	the	specific	table	name,	such	as	T1.ROWGUIDCOL.	

column_alias
Is	an	alternative	name	to	replace	the	column	name	in	the	query	result	set.
For	example,	an	alias	such	as	"Quantity",	or	"Quantity	to	Date",	or	"Qty"
can	be	specified	for	a	column	named	quantity.

Aliases	are	used	also	to	specify	names	for	the	results	of
expressions,	for	example:

USE	Northwind
SELECT	AVG(UnitPrice)	AS	'Average	Price'
FROM	[Order	Details]

column_alias	can	be	used	in	an	ORDER	BY	clause.	However,	it
cannot	be	used	in	a	WHERE,	GROUP	BY,	or	HAVING	clause.	If
the	query	expression	is	part	of	a	DECLARE	CURSOR	statement,
column_alias	cannot	be	used	in	the	FOR	UPDATE	clause.

INTO	Clause

Creates	a	new	table	and	inserts	the	resulting	rows	from	the	query	into	it.

The	user	executing	a	SELECT	statement	with	the	INTO	clause	must	have
CREATE	TABLE	permission	in	the	destination	database.	SELECT...INTO
cannot	be	used	with	the	COMPUTE.	For	more	information,	see	Transactions	and
Explicit	Transactions.

You	can	use	SELECT...INTO	to	create	an	identical	table	definition	(different
table	name)	with	no	data	by	having	a	FALSE	condition	in	the	WHERE	clause.

Syntax
[INTO	new_table]

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Arguments
new_table

Specifies	the	name	of	a	new	table	to	be	created,	based	on	the	columns	in	the
select	list	and	the	rows	chosen	by	the	WHERE	clause.	The	format	of
new_table	is	determined	by	evaluating	the	expressions	in	the	select	list.	The
columns	in	new_table	are	created	in	the	order	specified	by	the	select	list.
Each	column	in	new_table	has	the	same	name,	data	type,	and	value	as	the
corresponding	expression	in	the	select	list.

When	a	computed	column	is	included	in	the	select	list,	the	corresponding
column	in	the	new	table	is	not	a	computed	column.	The	values	in	the	new
column	are	the	values	that	were	computed	at	the	time	SELECT...INTO	was
executed.

In	this	release	of	SQL	Server,	the	select	into/bulkcopy	database	option	has
no	effect	on	whether	you	can	create	a	permanent	table	with	SELECT	INTO.
The	amount	of	logging	for	certain	bulk	operations,	including	SELECT
INTO,	depends	on	the	recovery	model	in	effect	for	the	database.	For	more
information,	see	Using	Recovery	Models.

In	previous	releases,	creating	a	permanent	table	with	SELECT	INTO	was
allowed	only	if	select	into/bulkcopy	was	set.

select	into/bulkcopy	is	available	for	backward	compatibility	purposes,	but
may	not	be	supported	in	future	releases.	Refer	to	the	Recovery	Models	and
Backward	Compatibility	and	ALTER	DATABASE	topics	for	more
information.

JavaScript:hhobj_3.Click()

Transact-SQL	Reference

FROM	Clause
Specifies	the	table(s)	from	which	to	retrieve	rows.	The	FROM	clause	is	required
except	when	the	select	list	contains	only	constants,	variables,	and	arithmetic
expressions	(no	column	names).	For	more	information,	see	FROM.

Syntax
[FROM	{	<	table_source	>	}	[,...n]]	

<	table_source	>	::=	
				table_name	[[AS]	table_alias]	[WITH	(<	table_hint	>	[,...n])]	
				|	view_name	[[AS]	table_alias]	
				|	rowset_function	[[AS]	table_alias]	
				|	OPENXML	
				|	derived_table	[AS]	table_alias	[(column_alias	[,...n])]	
				|	<	joined_table	>

<	joined_table	>	::=	
					<	table_source	>	<	join_type	>	<	table_source	>	ON	<	search_condition	>	
				|	<	table_source	>	CROSS	JOIN	<	table_source	>	
				|	<	joined_table	>

<	join_type	>	::=	
				[INNER	|	{	{	LEFT	|	RIGHT	|	FULL	}	[OUTER]	}]	
				[<	join_hint	>]	
				JOIN

Arguments
<	table_source	>

Specifies	tables,	views,	derived	tables,	and	joined	tables	for	the	SELECT
statement.

table_name	[[AS]	table_alias]
Specifies	the	name	of	a	table	and	an	optional	alias.

view_name	[[AS]	table_alias]
Specifies	the	name,	a	view,	and	an	optional	alias.

rowset_function	[[AS]	table_alias]
Is	the	name	of	a	rowset	function	and	an	optional	alias.	For	more
information	about	a	list	of	rowset	functions,	see	Rowset	Functions.

OPENXML
Provides	rowset	view	over	an	XML	document.	For	more	information	see
OPENXML

WITH	(<	table_hint	>	[,...n])
Specifies	one	or	more	table	hints.	For	more	information	about	table	hints,
see	FROM.

derived_table	[[AS]	table_alias]
Is	a	nested	SELECT	statement,	retrieving	rows	from	the	specified
database	and	table(s).	

column_alias
Is	an	optional	alias	to	replace	a	column	name	in	the	result	set.

<	joined_table	>

Is	a	result	set	that	is	the	product	of	two	or	more	tables.	For	example:

SELECT	*
FROM	tab1	LEFT	OUTER	JOIN	tab2	ON	tab1.c3	=	tab2.c3
				RIGHT	OUTER	JOIN	tab3	LEFT	OUTER	JOIN	tab4
								ON	tab3.c1	=	tab4.c1
								ON	tab2.c3	=	tab4.c3

For	multiple	CROSS	joins,	use	parentheses	to	change	the	natural	order	of	the
joins.

<	join_type	>

Specifies	the	type	of	join	operation.

INNER

Specifies	that	all	matching	pairs	of	rows	are	returned.	Discards
unmatched	rows	from	both	tables.	This	is	the	default	if	no	join	type	is
specified.

LEFT	[OUTER]
Specifies	that	all	rows	from	the	left	table	not	meeting	the	specified
condition	are	included	in	the	result	set	in	addition	to	all	rows	returned	by
the	inner	join.	Output	columns	from	the	left	table	are	set	to	NULL.

RIGHT	[OUTER]
Specifies	that	all	rows	from	the	right	table	not	meeting	the	specified
condition	are	included	in	the	result	set	in	addition	to	all	rows	returned	by
the	inner	join.	Output	columns	from	the	right	table	are	set	to	NULL.

FULL	[OUTER]
If	a	row	from	either	the	left	or	right	table	does	not	match	the	selection
criteria,	specifies	the	row	be	included	in	the	result	set,	and	output
columns	that	correspond	to	the	other	table	be	set	to	NULL.	This	is	in
addition	to	all	rows	usually	returned	by	the	inner	join.

<	join_hint	>
Specifies	a	join	hint	or	execution	algorithm.	If	<join_hint>	is	specified,
INNER,	LEFT,	RIGHT,	or	FULL	must	also	be	explicitly	specified.	For
more	information	about	join	hints,	see	FROM.

JOIN
Indicates	that	the	specified	tables	or	views	should	be	joined.

ON	<	search_condition	>

Specifies	the	condition	on	which	the	join	is	based.	The	condition	can	specify
any	predicate,	although	columns	and	comparison	operators	are	often	used.
For	example:

SELECT	ProductID,	Suppliers.SupplierID
				FROM	Suppliers	JOIN	Products	
				ON	(Suppliers.SupplierID	=	Products.SupplierID)

When	the	condition	specifies	columns,	the	columns	do	not	have	to	have	the

same	name	or	same	data	type.	However,	if	the	data	types	are	not	identical,
they	must	be	either	compatible	or	types	that	Microsoft®	SQL	Server™	can
implicitly	convert.	If	the	data	types	cannot	be	implicitly	converted,	the
condition	must	explicitly	convert	the	data	type	using	the	CAST	function.

For	more	information	about	search	conditions	and	predicates,	see	Search
Condition.

CROSS	JOIN

Specifies	the	cross-product	of	two	tables.	Returns	the	same	rows	as	if	the
tables	to	be	joined	were	simply	listed	in	the	FROM	clause	and	no	WHERE
clause	was	specified.	For	example,	both	of	these	queries	return	a	result	set
that	is	a	cross	join	of	all	the	rows	in	T1	and	T2:

SELECT	*	FROM	T1,	T2
SELECT	*	FROM	T1	CROSS	JOIN	T2

Transact-SQL	Reference

WHERE	Clause
Specifies	a	search	condition	to	restrict	the	rows	returned.

Syntax
[WHERE	<	search_condition	>	|	<	old_outer_join	>]

<	old_outer_join	>	::=	
				column_name	{	*	=	|	=	*	}	column_name

Arguments
<	search_condition	>

Restricts	the	rows	returned	in	the	result	set	through	the	use	of	predicates.
There	is	no	limit	to	the	number	of	predicates	that	can	be	included	in	a	search
condition.	For	more	information	about	search	conditions	and	predicates,	see
Search	Condition.

<	old_outer_join	>

Specifies	an	outer	join	using	the	nonstandard	product-specific	syntax	and	the
WHERE	clause.	The	*=	operator	is	used	to	specify	a	left	outer	join	and	the
=*	operator	is	used	to	specify	a	right	outer	join.

This	example	specifies	a	left	outer	join	in	which	the	rows	from	Tab1,	that	do
not	meet	the	specified	condition,	are	included	in	the	result	set:

SELECT	Tab1.name,	Tab2.id
FROM	Tab1,	Tab2
WHERE	Tab1.id	*=Tab2.id

Note		Using	this	syntax	for	outer	joins	is	discouraged	because	of	the	potential	for
ambiguous	interpretation	and	because	it	is	nonstandard.	Instead,	specify	joins	in
the	FROM	clause.

It	is	possible	to	specify	outer	joins	by	using	join	operators	in	the	FROM
clause	or	by	using	the	non-standard	*=	and	=*	operators	in	the	WHERE

clause.	The	two	methods	cannot	both	be	used	in	the	same	statement.

GROUP	BY	Clause
Specifies	the	groups	into	which	output	rows	are	to	be	placed	and,	if	aggregate
functions	are	included	in	the	SELECT	clause	<select	list>,	calculates	a	summary
value	for	each	group.	When	GROUP	BY	is	specified,	either	each	column	in	any
non-aggregate	expression	in	the	select	list	should	be	included	in	the	GROUP	BY
list,	or	the	GROUP	BY	expression	must	match	exactly	the	select	list	expression.

Note		If	the	ORDER	BY	clause	is	not	specified,	groups	returned	using	the
GROUP	BY	clause	are	not	in	any	particular	order.	It	is	recommended	that	you
always	use	the	ORDER	BY	clause	to	specify	a	particular	ordering	of	the	data.

Syntax
[GROUP	BY	[ALL]	group_by_expression	[,...n]	
								[WITH	{	CUBE	|	ROLLUP	}]	
]

Arguments
ALL

Includes	all	groups	and	result	sets,	even	those	that	do	not	have	any	rows	that
meet	the	search	condition	specified	in	the	WHERE	clause.	When	ALL	is
specified,	null	values	are	returned	for	the	summary	columns	of	groups	that
do	not	meet	the	search	condition.	You	cannot	specify	ALL	with	the	CUBE	or
ROLLUP	operators.

GROUP	BY	ALL	is	not	supported	in	queries	that	access	remote	tables	if
there	is	also	a	WHERE	clause	in	the	query.

group_by_expression

Is	an	expression	on	which	grouping	is	performed.	group_by_expression	is
also	known	as	a	grouping	column.	group_by	expression	can	be	a	column	or	a
nonaggregate	expression	that	references	a	column.	A	column	alias	that	is
defined	in	the	select	list	cannot	be	used	to	specify	a	grouping	column.

Note		Columns	of	type	text,	ntext,	and	image	cannot	be	used	in
group_by_expression.

For	GROUP	BY	clauses	that	do	not	contain	CUBE	or	ROLLUP,	the	number
of	group_by_expression	items	is	limited	by	the	GROUP	BY	column	sizes,
the	aggregated	columns,	and	the	aggregate	values	involved	in	the	query.	This
limit	originates	from	the	limit	of	8,060	bytes	on	the	intermediate	work	table
that	is	needed	to	hold	intermediate	query	results.	A	maximum	of	10	grouping
expressions	is	permitted	when	CUBE	or	ROLLUP	is	specified.

CUBE

Specifies	that	in	addition	to	the	usual	rows	provided	by	GROUP	BY,
summary	rows	are	introduced	into	the	result	set.	A	GROUP	BY	summary
row	is	returned	for	every	possible	combination	of	group	and	subgroup	in	the
result	set.	A	GROUP	BY	summary	row	is	displayed	as	NULL	in	the	result,
but	is	used	to	indicate	all	values.	Use	the	GROUPING	function	to	determine
whether	null	values	in	the	result	set	are	GROUP	BY	summary	values.

The	number	of	summary	rows	in	the	result	set	is	determined	by	the	number
of	columns	included	in	the	GROUP	BY	clause.	Each	operand	(column)	in	the
GROUP	BY	clause	is	bound	under	the	grouping	NULL	and	grouping	is
applied	to	all	other	operands	(columns).	Because	CUBE	returns	every
possible	combination	of	group	and	subgroup,	the	number	of	rows	is	the
same,	regardless	of	the	order	in	which	the	grouping	columns	are	specified.

ROLLUP

Specifies	that	in	addition	to	the	usual	rows	provided	by	GROUP	BY,
summary	rows	are	introduced	into	the	result	set.	Groups	are	summarized	in	a
hierarchical	order,	from	the	lowest	level	in	the	group	to	the	highest.	The
group	hierarchy	is	determined	by	the	order	in	which	the	grouping	columns
are	specified.	Changing	the	order	of	the	grouping	columns	can	affect	the
number	of	rows	produced	in	the	result	set.

IMPORTANT		Distinct	aggregates,	for	example,	AVG(DISTINCT	column_name),
COUNT(DISTINCT	column_name),	and	SUM(DISTINCT	column_name),	are
not	supported	when	using	CUBE	or	ROLLUP.	If	used,	SQL	Server	returns	an
error	message	and	cancels	the	query.

Transact-SQL	Reference

HAVING	Clause
Specifies	a	search	condition	for	a	group	or	an	aggregate.	HAVING	is	usually
used	with	the	GROUP	BY	clause.	When	GROUP	BY	is	not	used,	HAVING
behaves	like	a	WHERE	clause.

Syntax
[HAVING	<	search_condition	>]

Arguments
<	search_condition	>

Specifies	the	search	condition	for	the	group	or	the	aggregate	to	meet.	When
HAVING	is	used	with	GROUP	BY	ALL,	the	HAVING	clause	overrides
ALL.	For	more	information,	see	Search	Condition.

The	text,	image,	and	ntext	data	types	cannot	be	used	in	a	HAVING	clause.

Note		Using	the	HAVING	clause	in	the	SELECT	statement	does	not	affect	the
way	the	CUBE	operator	groups	the	result	set	and	returns	summary	aggregate
rows.

Transact-SQL	Reference

UNION	Operator
Combines	the	results	of	two	or	more	queries	into	a	single	result	set	consisting	of
all	the	rows	belonging	to	all	queries	in	the	union.	This	is	different	from	using
joins	that	combine	columns	from	two	tables.

Two	basic	rules	for	combining	the	result	sets	of	two	queries	with	UNION	are:

The	number	and	the	order	of	the	columns	must	be	identical	in	all
queries.

The	data	types	must	be	compatible.

Syntax

				{	<	query	specification	>	|	(<	query	expression	>)	}	
								UNION	[ALL]	
								<	query	specification	|	(<	query	expression	>)	
												[UNION	[ALL]	<	query	specification	|	(<	query	expression	>)	
																[...n]]

Arguments
<	query_specification	>	|	(<	query_expression	>)

Is	a	query	specification	or	query	expression	that	returns	data	to	be	combined
with	the	data	from	another	query	specification	or	query	expression.	The
definitions	of	the	columns	that	are	part	of	a	UNION	operation	do	not	have	to
be	identical,	but	they	must	be	compatible	through	implicit	conversion.

The	table	shows	the	rules	for	comparing	the	data	types	and	options	of
corresponding	(ith)	columns.

Data	type	of	ith	column
Data	type	of	ith	column	of	results
table

Not	data	type-compatible	(data
conversion	not	handled	implicitly

Error	returned	by	SQL	Server.

by	Microsoft®	SQL	Server™).
Both	fixed-length	char	with
lengths	L1	and	L2.

Fixed-length	char	with	length	equal	to
the	greater	of	L1	and	L2.

Both	fixed-length	binary	with
lengths	L1	and	L2.

Fixed-length	binary	with	length	equal
to	the	greater	of	L1	and	L2.

Either	or	both	variable-length
char.

Variable-length	char	with	length	equal
to	the	maximum	of	the	lengths	specified
for	the	ith	columns.

Either	or	both	variable-length
binary.

Variable-length	binary	with	length
equal	to	the	maximum	of	the	lengths
specified	for	the	ith	columns.

Both	numeric	data	types	(for
example,	smallint,	int,	float,
money).

Data	type	equal	to	the	maximum
precision	of	the	two	columns.	For
example,	if	the	ith	column	of	table	A	is
of	type	int	and	the	ith	column	of	table	B
is	of	type	float,	then	the	data	type	of	the
ith	column	of	the	results	table	is	float
because	float	is	more	precise	than	int.

Both	columns'	descriptions
specify	NOT	NULL.

Specifies	NOT	NULL.

UNION

Specifies	that	multiple	result	sets	are	to	be	combined	and	returned	as	a	single
result	set.

ALL

Incorporates	all	rows	into	the	results,	including	duplicates.	If	not	specified,
duplicate	rows	are	removed.

Transact-SQL	Reference

ORDER	BY	Clause
Specifies	the	sort	for	the	result	set.	The	ORDER	BY	clause	is	invalid	in	views,
inline	functions,	derived	tables,	and	subqueries,	unless	TOP	is	also	specified.

Syntax
[ORDER	BY	{	order_by_expression	[ASC	|	DESC]	}					[,...n]]

Arguments
order_by_expression

Specifies	a	column	on	which	to	sort.	A	sort	column	can	be	specified	as	a
name	or	column	alias	(which	can	be	qualified	by	the	table	or	view	name),	an
expression,	or	a	nonnegative	integer	representing	the	position	of	the	name,
alias,	or	expression	in	select	list.

Multiple	sort	columns	can	be	specified.	The	sequence	of	the	sort	columns	in
the	ORDER	BY	clause	defines	the	organization	of	the	sorted	result	set.

The	ORDER	BY	clause	can	include	items	not	appearing	in	the	select	list.
However,	if	SELECT	DISTINCT	is	specified,	or	if	the	SELECT	statement
contains	a	UNION	operator,	the	sort	columns	must	appear	in	the	select	list.

Furthermore,	when	the	SELECT	statement	includes	a	UNION	operator,	the
column	names	or	column	aliases	must	be	those	specified	in	the	first	select
list.

Note		ntext,	text,	or	image	columns	cannot	be	used	in	an	ORDER	BY	clause.

ASC

Specifies	that	the	values	in	the	specified	column	should	be	sorted	in
ascending	order,	from	lowest	value	to	highest	value.

DESC

Specifies	that	the	values	in	the	specified	column	should	be	sorted	in
descending	order,	from	highest	value	to	lowest	value.

Null	values	are	treated	as	the	lowest	possible	values.

There	is	no	limit	to	the	number	of	items	in	the	ORDER	BY	clause.	However,
there	is	a	limit	of	8,060	bytes	for	the	row	size	of	intermediate	worktables	needed
for	sort	operations.	This	limits	the	total	size	of	columns	specified	in	an	ORDER
BY	clause.

Transact-SQL	Reference

COMPUTE	Clause
Generates	totals	that	appear	as	additional	summary	columns	at	the	end	of	the
result	set.	When	used	with	BY,	the	COMPUTE	clause	generates	control-breaks
and	subtotals	in	the	result	set.	You	can	specify	COMPUTE	BY	and	COMPUTE
in	the	same	query.

Syntax
[COMPUTE	
				{	{	AVG	|	COUNT	|	MAX	|	MIN	|	STDEV	|	STDEVP	
								|	VAR	|	VARP	|	SUM	}	
												(expression)	}	[,...n]	
				[BY	expression	[,...n]]	
]

Arguments
AVG	|	COUNT	|	MAX	|	MIN	|	STDEV	|	STDEVP	|	VAR	|	VARP	|	SUM

Specifies	the	aggregation	to	be	performed.	These	row	aggregate	functions
are	used	with	the	COMPUTE	clause.

Row	aggregate	function Result
AVG Average	of	the	values	in	the	numeric	expression
COUNT Number	of	selected	rows
MAX Highest	value	in	the	expression
MIN Lowest	value	in	the	expression
STDEV Statistical	standard	deviation	for	all	values	in	the

expression
STDEVP Statistical	standard	deviation	for	the	population

for	all	values	in	the	expression
SUM Total	of	the	values	in	the	numeric	expression
VAR Statistical	variance	for	all	values	in	the

expression

VARP Statistical	variance	for	the	population	for	all
values	in	the	expression

There	is	no	equivalent	to	COUNT(*).	To	find	the	summary	information
produced	by	GROUP	BY	and	COUNT(*),	use	a	COMPUTE	clause	without
BY.

These	functions	ignore	null	values.

The	DISTINCT	keyword	is	not	allowed	with	row	aggregate	functions	when
they	are	specified	with	the	COMPUTE	clause.

When	you	add	or	average	integer	data,	SQL	Server	treats	the	result	as	an	int
value,	even	if	the	data	type	of	the	column	is	smallint	or	tinyint.	For	more
information	about	the	return	types	of	added	or	average	data,	see	SUM	and
AVG.

Note		To	reduce	the	possibility	of	overflow	errors	in	ODBC	and	DB-Library
programs,	make	all	variable	declarations	for	the	results	of	averages	or	sums	the
data	type	int.

(expression)

An	expression,	such	as	the	name	of	a	column	on	which	the	calculation	is
performed.	expression	must	appear	in	the	select	list	and	must	be	specified
exactly	the	same	as	one	of	the	expressions	in	the	select	list.	A	column	alias
specified	in	the	select	list	cannot	be	used	within	expression.

Note		ntext,	text,	or	image	data	types	cannot	be	specified	in	a	COMPUTE	or
COMPUTE	BY	clause.

BY	expression

Generates	control-breaks	and	subtotals	in	the	result	set.	expression	is	an
exact	copy	of	an	order_by_expression	in	the	associated	ORDER	BY	clause.
Typically,	this	is	a	column	name	or	column	alias.	Multiple	expressions	can
be	specified.	Listing	multiple	expressions	after	BY	breaks	a	group	into
subgroups	and	applies	the	aggregate	function	at	each	level	of	grouping.

If	you	use	COMPUTE	BY,	you	must	also	use	an	ORDER	BY	clause.	The

expressions	must	be	identical	to	or	a	subset	of	those	listed	after	ORDER	BY,
and	must	be	in	the	same	sequence.	For	example,	if	the	ORDER	BY	clause	is:

ORDER	BY	a,	b,	c

The	COMPUTE	clause	can	be	any	(or	all)	of	these:

COMPUTE	BY	a,	b,	c
COMPUTE	BY	a,	b
COMPUTE	BY	a

Note		In	a	SELECT	statement	with	a	COMPUTE	clause,	the	order	of	columns	in
the	select	list	overrides	the	order	of	the	aggregate	functions	in	the	COMPUTE
clause.	ODBC	and	DB-Library	programmers	must	be	aware	of	this	order
requirement	to	put	the	aggregate	function	results	in	the	correct	place.

You	cannot	use	COMPUTE	in	a	SELECT	INTO	statement	because	statements
including	COMPUTE	generate	tables	and	their	summary	results	are	not	stored	in
the	database.	Therefore,	any	calculations	produced	by	COMPUTE	do	not	appear
in	the	new	table	created	with	the	SELECT	INTO	statement.

You	cannot	use	the	COMPUTE	clause	when	the	SELECT	statement	is	part	of	a
DECLARE	CURSOR	statement.

Transact-SQL	Reference

FOR	Clause
FOR	clause	is	used	to	specify	either	the	BROWSE	or	the	XML	option
(BROWSE	and	XML	are	unrelated	options).

Syntax
[FOR	{	BROWSE	|	XML	{	RAW	|	AUTO	|	EXPLICIT	}	
												[,	XMLDATA]	
												[,	ELEMENTS]
												[,	BINARY	BASE64]
								}	
]

Arguments
BROWSE

Specifies	that	updates	be	allowed	while	viewing	the	data	in	a	DB-Library
browse	mode	cursor.	A	table	can	be	browsed	in	an	application	if	the	table
includes	a	time-stamped	column	(defined	with	the	timestamp	data	type),	the
table	has	a	unique	index,	and	the	FOR	BROWSE	option	is	at	the	end	of	the
SELECT	statement(s)	sent	to	SQL	Server.	For	more	information,	see	Browse
Mode.

Note		It	is	not	possible	to	use	the	<lock_hint>	HOLDLOCK	in	a	SELECT
statement	that	includes	the	FOR	BROWSE	option.

The	FOR	BROWSE	option	cannot	appear	in	SELECT	statements	joined	by
the	UNION	operator.

XML

Specifies	that	the	results	of	a	query	are	to	be	returned	as	an	XML	document.
One	of	these	XML	modes	must	be	specified:	RAW,	AUTO,	EXPLICIT.	For
more	information	about	XML	data	and	SQL	Server,	see	Retrieving	XML
Documents	Using	FOR	XML.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

RAW

Takes	the	query	result	and	transforms	each	row	in	the	result	set	into	an	XML
element	with	a	generic	identifier	<row	/>	as	the	element	tag.	For	more
information,	see	Using	RAW	Mode.

AUTO

Returns	query	results	in	a	simple,	nested	XML	tree.	Each	table	in	the	FROM
clause,	for	which	at	least	one	column	is	listed	in	the	SELECT	clause,	is
represented	as	an	XML	element.	The	columns	listed	in	the	SELECT	clause
are	mapped	to	the	appropriate	element	attributes.	For	more	information,	see
Using	AUTO	Mode.

EXPLICIT

Specifies	that	the	shape	of	the	resulting	XML	tree	is	defined	explicitly.	Using
this	mode,	queries	must	be	written	in	a	particular	way	so	that	additional
information	about	the	desired	nesting	is	specified	explicitly.	For	more
information,	see	Using	EXPLICIT	Mode.

XMLDATA

Returns	the	schema,	but	does	not	add	the	root	element	to	the	result.	If
XMLDATA	is	specified,	it	is	appended	to	the	document.

ELEMENTS

Specifies	that	the	columns	are	returned	as	subelements.	Otherwise,	they	are
mapped	to	XML	attributes.

BINARY	BASE64

Specifies	that	the	query	returns	the	binary	data	in	binary	base64-encoded
format.	In	retrieving	binary	data	using	RAW	and	EXPLICIT	mode,	this
option	must	be	specified.	This	is	the	default	in	AUTO	mode.

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Transact-SQL	Reference

OPTION	Clause
Specifies	that	the	indicated	query	hint	should	be	used	throughout	the	entire
query.	Each	query	hint	can	be	specified	only	once,	although	multiple	query	hints
are	permitted.	Only	one	OPTION	clause	may	be	specified	with	the	statement.
The	query	hint	affects	all	operators	in	the	statement.	If	a	UNION	is	involved	in
the	main	query,	only	the	last	query	involving	a	UNION	operator	can	have	the
OPTION	clause.	If	one	or	more	query	hints	causes	the	query	optimizer	to	not
generate	a	valid	plan,	error	8622	is	produced.

CAUTION		Because	the	query	optimizer	usually	selects	the	best	execution	plan	for
a	query,	it	is	recommended	that	<join_hint>,	<query_hint>,	and	<table_hint>	be
used	only	as	a	last	resort	by	experienced	database	administrators.

Syntax
[OPTION	(<	query_hint	>	[,...n)]

<	query_hint	>	::=					{				{	HASH	|	ORDER	}	GROUP	
				|	{	CONCAT	|	HASH	|	MERGE	}	UNION	
				|	{	LOOP	|	MERGE	|	HASH	}	JOIN	
				|	FAST	number_rows	
				|	FORCE	ORDER	
				|	MAXDOP	number	
				|	ROBUST	PLAN	
				|	KEEP	PLAN	
				|	KEEPFIXED	PLAN
				|	EXPAND	VIEWS	
				}

Arguments
{	HASH	|	ORDER	}	GROUP

Specifies	that	aggregations	described	in	the	GROUP	BY,	DISTINCT,	or
COMPUTE	clause	of	the	query	should	use	hashing	or	ordering.

{	MERGE	|	HASH	|	CONCAT	}	UNION

Specifies	that	all	UNION	operations	are	performed	by	merging,	hashing,	or
concatenating	UNION	sets.	If	more	than	one	UNION	hint	is	specified,	the
query	optimizer	selects	the	least	expensive	strategy	from	those	hints
specified.

{	LOOP	|	MERGE	|	HASH	}	JOIN

Specifies	that	all	join	operations	are	performed	by	loop	join,	merge	join,	or
hash	join	in	the	whole	query.	If	more	than	one	join	hint	is	specified,	the
optimizer	selects	the	least	expensive	join	strategy	from	the	allowed	ones.

If,	in	the	same	query,	a	join	hint	is	also	specified	for	a	specific	pair	of	tables,
this	join	hint	takes	precedence	in	the	joining	of	the	two	tables	although	the
query	hints	still	must	be	honored.	Thus,	the	join	hint	for	the	pair	of	tables
may	only	restrict	the	selection	of	allowed	join	methods	in	the	query	hint.	See
Hints	for	details.

FAST	number_rows

Specifies	that	the	query	is	optimized	for	fast	retrieval	of	the	first
number_rows	(a	nonnegative	integer).	After	the	first	number_rows	are
returned,	the	query	continues	execution	and	produces	its	full	result	set.

FORCE	ORDER

Specifies	that	the	join	order	indicated	by	the	query	syntax	is	preserved	during
query	optimization.

MAXDOP	number

Overrides	the	max	degree	of	parallelism	configuration	option	(of
sp_configure)	only	for	the	query	specifying	this	option.	All	semantic	rules
used	with	max	degree	of	parallelism	configuration	option	are	applicable
when	using	the	MAXDOP	query	hint.	For	more	information,	see	max	degree
of	parallelism	Option.

ROBUST	PLAN

Forces	the	query	optimizer	to	attempt	a	plan	that	works	for	the	maximum
potential	row	size,	possibly	at	the	expense	of	performance.	When	the	query
is	processed,	intermediate	tables	and	operators	may	need	to	store	and	process
rows	that	are	wider	than	any	of	the	input	rows.	The	rows	may	be	so	wide
that,	in	some	cases,	the	particular	operator	cannot	process	the	row.	If	this

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

happens,	SQL	Server	produces	an	error	during	query	execution.	By	using
ROBUST	PLAN,	you	instruct	the	query	optimizer	not	to	consider	any	query
plans	that	may	encounter	this	problem.

KEEP	PLAN

Forces	the	query	optimizer	to	relax	the	estimated	recompile	threshold	for	a
query.	The	estimated	recompile	threshold	is	the	point	at	which	a	query	is
automatically	recompiled	when	the	estimated	number	of	indexed	column
changes	(update,	delete,	or	insert)	have	been	made	to	a	table.	Specifying
KEEP	PLAN	ensures	that	a	query	will	not	be	recompiled	as	frequently	when
there	are	multiple	updates	to	a	table.

KEEPFIXED	PLAN

Forces	the	query	optimizer	not	to	recompile	a	query	due	to	changes	in
statistics	or	to	the	indexed	column	(update,	delete,	or	insert).	Specifying
KEEPFIXED	PLAN	ensures	that	a	query	will	be	recompiled	only	if	the
schema	of	the	underlying	tables	is	changed	or	sp_recompile	is	executed
against	those	tables.

EXPAND	VIEWS

Specifies	that	the	indexed	views	are	expanded	and	the	query	optimizer	will
not	consider	any	indexed	view	as	a	substitute	for	any	part	of	the	query.	(A
view	is	expanded	when	the	view	name	is	replaced	by	the	view	definition	in
the	query	text.)	This	query	hint	virtually	disallows	direct	use	of	indexed
views	and	indexes	on	indexed	views	in	the	query	plan.

The	indexed	view	is	not	expanded	only	if	the	view	is	directly	referenced	in
the	SELECT	part	of	the	query	and	WITH	(NOEXPAND)	or	WITH
(NOEXPAND,	INDEX(index_val	[,...n]))	is	specified.	For	more
information	about	the	query	hint	WITH	(NOEXPAND),	see	FROM.

Only	the	views	in	the	SELECT	portion	of	statements,	including	those	in
INSERT,	UPDATE,	and	DELETE	statements	are	affected	by	the	hint.

Remarks
The	order	of	the	clauses	in	the	SELECT	statement	is	significant.	Any	of	the
optional	clauses	can	be	omitted,	but	when	used,	they	must	appear	in	the

appropriate	order.

SELECT	statements	are	allowed	in	user-defined	functions	only	if	the	select	lists
of	these	statements	contain	expressions	that	assign	values	to	variables	that	are
local	to	the	functions.

A	table	variable,	in	its	scope,	may	be	accessed	like	a	regular	table	and	thus	may
be	used	as	a	table	source	in	a	SELECT	statement.

A	four-part	name	constructed	with	the	OPENDATASOURCE	function	as	the
server-name	part	may	be	used	as	a	table	source	in	all	places	a	table	name	can
appear	in	SELECT	statements.

Some	syntax	restrictions	apply	to	SELECT	statements	involving	remote	tables.
For	information,	see	External	Data	and	Transact-SQL.

The	length	returned	for	text	or	ntext	columns	included	in	the	select	list	defaults
to	the	smallest	of	the	actual	size	of	the	text,	the	default	TEXTSIZE	session
setting,	or	the	hard-coded	application	limit.	To	change	the	length	of	returned	text
for	the	session,	use	the	SET	statement.	By	default,	the	limit	on	the	length	of	text
data	returned	with	a	SELECT	statement	is	4,000	bytes.

SQL	Server	raises	exception	511	and	rolls	back	the	current	executing	statement
if	either	of	these	occur:

The	SELECT	statement	produces	a	result	row	or	an	intermediate	work
table	row	exceeding	8,060	bytes.

The	DELETE,	INSERT,	or	UPDATE	statement	attempts	action	on	a
row	exceeding	8,060	bytes.

In	SQL	Server,	an	error	occurs	if	no	column	name	is	given	to	a	column	created
by	a	SELECT	INTO	or	CREATE	VIEW	statement.

Selecting	Identity	Columns
When	selecting	an	existing	identity	column	into	a	new	table,	the	new	column
inherits	the	IDENTITY	property,	unless	one	of	the	following	conditions	is	true:

The	SELECT	statement	contains	a	join,	GROUP	BY	clause,	or
aggregate	function.

JavaScript:hhobj_3.Click()

Multiple	SELECT	statements	are	joined	with	UNION.

The	identity	column	is	listed	more	than	once	in	the	select	list.

The	identity	column	is	part	of	an	expression.

If	any	of	these	conditions	is	true,	the	column	is	created	NOT	NULL	instead	of
inheriting	the	IDENTITY	property.	All	rules	and	restrictions	for	the	identity
columns	apply	to	the	new	table.

Old-Style	Outer	Joins
Earlier	versions	of	SQL	Server	supported	the	definition	of	outer	joins	that	used
the	*=	and	=*	operators	in	the	WHERE	clause.	SQL	Server	version	7.0	supports
the	SQL-92	standard,	which	provides	join	operators	in	the	FROM	clause.	It	is
recommended	that	queries	be	rewritten	to	use	the	SQL-92	syntax.

Processing	Order	of	WHERE,	GROUP	BY,	and	HAVING	Clauses
This	list	shows	the	processing	order	for	a	SELECT	statement	with	a	WHERE
clause,	a	GROUP	BY	clause,	and	a	HAVING	clause:

1.	 The	WHERE	clause	excludes	rows	not	meeting	its	search	condition.

2.	 The	GROUP	BY	clause	collects	the	selected	rows	into	one	group	for
each	unique	value	in	the	GROUP	BY	clause.

3.	 Aggregate	functions	specified	in	the	select	list	calculate	summary
values	for	each	group.

4.	 The	HAVING	clause	further	excludes	rows	not	meeting	its	search
condition.

Permissions

SELECT	permissions	default	to	members	of	the	sysadmin	fixed	server	role,	the
db_owner	and	db_datareader	fixed	database	roles,	and	the	table	owner.
Members	of	the	sysadmin,	db_owner,	and	db_securityadmin	roles,	and	the
table	owner	can	transfer	permissions	to	other	users.

If	the	INTO	clause	is	used	to	create	a	permanent	table,	the	user	must	have
CREATE	TABLE	permission	in	the	destination	database.

See	Also

CONTAINS

CONTAINSTABLE

CREATE	TRIGGER

CREATE	VIEW

DELETE

EXECUTE

Expressions

FREETEXT

FREETEXTTABLE

Full-text	Querying	SQL	Server	Data

INSERT

Join	Fundamentals

SET	TRANSACTION	ISOLATION	LEVEL

sp_dboption

Subquery	Fundamentals

table

UNION

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

UPDATE

Using	Variables	and	Parameters

WHERE

JavaScript:hhobj_7.Click()

	Transact-SQL Overview
	Transact-SQL Syntax Conventions
	New and Enhanced Features in Transact-SQL
	+ (Add)
	+ (Positive)
	+ (String Concatenation)
	- (Negative)
	- (Subtract)
	* (Multiply)
	/ (Divide)
	% (Modulo)
	% (Wildcard - Character(s) to Match)
	& (Bitwise AND)
	| (Bitwise OR)
	^ (Bitwise Exclusive OR)
	~ (Bitwise NOT)
	= (Equals)
	> (Greater Than)
	< (Less Than)
	>= (Greater Than or Equal To)
	<= (Less Than or Equal To)
	<> (Not Equal To)
	!< (Not Less Than)
	!= (Not Equal To)
	!> (Not Greater Than)
	-- (Comment)
	/*...*/ (Comment)
	[] (Wildcard - Character(s) to Match)
	[^] (Wildcard - Character(s) Not to Match)
	_ (Wildcard - Match One Character)
	@@CONNECTIONS
	@@CPU_BUSY
	@@CURSOR_ROWS
	@@DATEFIRST
	@@DBTS
	@@ERROR
	@@FETCH_STATUS
	@@IDENTITY
	@@IDLE
	@@IO_BUSY
	@@LANGID
	@@LANGUAGE
	@@LOCK_TIMEOUT
	@@MAX_CONNECTIONS
	@@MAX_PRECISION
	@@NESTLEVEL
	@@OPTIONS
	@@PACK_RECEIVED
	@@PACK_SENT
	@@PACKET_ERRORS
	@@PROCID
	@@REMSERVER
	@@ROWCOUNT
	@@SERVERNAME
	@@SERVICENAME
	@@SPID
	@@TEXTSIZE
	@@TIMETICKS
	@@TOTAL_ERRORS
	@@TOTAL_READ
	@@TOTAL_WRITE
	@@TRANCOUNT
	@@VERSION
	ABS
	ACOS
	ALL
	ALTER DATABASE
	ALTER FUNCTION
	ALTER PROCEDURE
	ALTER TABLE
	ALTER TRIGGER
	ALTER VIEW
	AND
	ANY
	APP_NAME
	ASCII
	ASIN
	ATAN
	ATN2
	AVG
	BACKUP
	BEGIN...END
	BEGIN DISTRIBUTED TRANSACTION
	BEGIN TRANSACTION
	BETWEEN
	binary and varbinary
	BINARY_CHECKSUM
	bit
	BREAK
	BULK INSERT
	CASE
	CAST and CONVERT
	CEILING
	char and varchar
	CHAR
	CHARINDEX
	CHECKPOINT
	CHECKSUM
	CHECKSUM_AGG
	CLOSE
	COALESCE
	COLLATE
	Windows Collation Name
	SQL Collation Name

	COLLATIONPROPERTY
	COL_LENGTH
	COL_NAME
	COLUMNPROPERTY
	COMMIT TRANSACTION
	COMMIT WORK
	Constants
	CONTAINS
	CONTAINSTABLE
	CONTINUE
	Control-of-Flow Language
	COS
	COT
	COUNT
	COUNT_BIG
	CREATE DATABASE
	CREATE DEFAULT
	CREATE FUNCTION
	CREATE INDEX
	CREATE PROCEDURE
	CREATE RULE
	CREATE SCHEMA
	CREATE STATISTICS
	CREATE TABLE
	CREATE TRIGGER
	CREATE VIEW
	CURRENT_TIMESTAMP
	CURRENT_USER
	cursor
	CURSOR_STATUS
	Cursors
	DATABASEPROPERTY
	DATABASEPROPERTYEX
	Data Types
	Data Type Precedence
	Collation Precedence
	Precision, Scale, and Length
	Data Type Synonyms

	DATALENGTH
	DATEADD
	DATEDIFF
	DATENAME
	DATEPART
	datetime and smalldatetime
	DAY
	DB_ID
	DB_NAME
	DBCC
	DBCC CHECKALLOC
	DBCC CHECKCATALOG
	DBCC CHECKCONSTRAINTS
	DBCC CHECKDB
	DBCC CHECKFILEGROUP
	DBCC CHECKIDENT
	DBCC CHECKTABLE
	DBCC CLEANTABLE
	DBCC CONCURRENCYVIOLATION
	DBCC DBREPAIR
	DBCC DBREINDEX
	DBCC dllname (FREE)
	DBCC DROPCLEANBUFFERS
	DBCC FREEPROCCACHE
	DBCC HELP
	DBCC INDEXDEFRAG
	DBCC INPUTBUFFER
	DBCC NEWALLOC
	DBCC OPENTRAN
	DBCC OUTPUTBUFFER
	DBCC PINTABLE
	DBCC PROCCACHE
	DBCC ROWLOCK
	DBCC SHOWCONTIG
	DBCC SHOW_STATISTICS
	DBCC SHRINKDATABASE
	DBCC SHRINKFILE
	DBCC SQLPERF
	DBCC TRACEOFF
	DBCC TRACEON
	DBCC TRACESTATUS
	DBCC UNPINTABLE
	DBCC UPDATEUSAGE
	DBCC USEROPTIONS

	DEALLOCATE
	decimal and numeric
	DECLARE @local_variable
	DECLARE CURSOR
	DEGREES
	DELETE
	DENY
	DIFFERENCE
	DROP DATABASE
	DROP DEFAULT
	DROP FUNCTION
	DROP INDEX
	DROP PROCEDURE
	DROP RULE
	DROP STATISTICS
	DROP TABLE
	DROP TRIGGER
	DROP VIEW
	DUMP
	ELSE (IF...ELSE)
	END (BEGIN...END)
	EXECUTE
	EXISTS
	EXP
	Expressions
	FETCH
	FILE_ID
	FILE_NAME
	FILEGROUP_ID
	FILEGROUP_NAME
	FILEGROUPPROPERTY
	FILEPROPERTY
	float and real
	FLOOR
	fn_helpcollations
	fn_listextendedproperty
	fn_servershareddrives
	fn_trace_geteventinfo
	fn_trace_getfilterinfo
	fn_trace_getinfo
	fn_trace_gettable
	fn_virtualfilestats
	fn_virtualservernodes
	FORMATMESSAGE
	FREETEXT
	FREETEXTTABLE
	FROM
	FULLTEXTCATALOGPROPERTY
	FULLTEXTSERVICEPROPERTY
	Functions
	Aggregate Functions
	Configuration Functions
	Cursor Functions
	Date and Time Functions
	Mathematical Functions
	Meta Data Functions
	Rowset Functions
	Security Functions
	String Functions
	System Functions
	System Statistical Functions
	Text and Image Functions

	GETANSINULL
	GETDATE
	GETUTCDATE
	GO
	GOTO
	GRANT
	GROUP BY
	GROUPING
	HAS_DBACCESS
	HAVING
	HOST_ID
	HOST_NAME
	IDENT_CURRENT
	IDENT_INCR
	IDENT_SEED
	IDENTITY (Property)
	IDENTITY (Function)
	IF...ELSE
	image
	IN
	INDEXKEY_PROPERTY
	INDEXPROPERTY
	INDEX_COL
	Information Schema Views
	CHECK_CONSTRAINTS
	COLUMN_DOMAIN_USAGE
	COLUMN_PRIVILEGES
	COLUMNS
	CONSTRAINT_COLUMN_USAGE
	CONSTRAINT_TABLE_USAGE
	DOMAIN_CONSTRAINTS
	DOMAINS
	KEY_COLUMN_USAGE
	PARAMETERS
	REFERENTIAL_CONSTRAINTS
	ROUTINES
	ROUTINE_COLUMNS
	SCHEMATA
	TABLE_CONSTRAINTS
	TABLE_PRIVILEGES
	TABLES
	VIEW_COLUMN_USAGE
	VIEW_TABLE_USAGE
	VIEWS

	INSERT
	int, bigint, smallint, and tinyint
	IS_MEMBER
	IS_SRVROLEMEMBER
	ISDATE
	IS [NOT] NULL
	ISNULL
	ISNUMERIC
	KILL
	LEFT
	LEN
	LIKE
	LOAD
	LOG
	LOG10
	LOWER
	LTRIM
	MAX
	MIN
	money and smallmoney
	MONTH
	NCHAR
	nchar and nvarchar
	NEWID
	Northwind Sample Database
	Categories
	Customers
	CustomerCustomerDemo
	CustomerDemographics
	Employees
	EmployeeTerritories
	Order Details
	Orders
	Products
	Region
	Shippers
	Suppliers
	Territories

	NOT
	ntext, text, and image
	NULLIF
	numeric
	OBJECT_ID
	OBJECT_NAME
	OBJECTPROPERTY
	OPEN
	OPENDATASOURCE
	OPENQUERY
	OPENROWSET
	OPENXML
	Operators
	OR
	ORDER BY
	PARSENAME
	PATINDEX
	PERMISSIONS
	PI
	POWER
	Predicate
	PRINT
	pubs Sample Database
	authors
	discounts
	employee
	jobs
	pub_info
	publishers
	roysched
	sales
	stores
	titleauthor
	titles

	QUOTENAME
	RADIANS
	RAISERROR
	RAND
	READTEXT
	real
	RECONFIGURE
	REPLACE
	REPLICATE
	Reserved Keywords
	RESTORE
	RESTORE FILELISTONLY
	RESTORE HEADERONLY
	RESTORE LABELONLY
	RESTORE VERIFYONLY
	RETURN
	REVERSE
	REVOKE
	RIGHT
	ROLLBACK TRANSACTION
	ROLLBACK WORK
	ROUND
	ROWCOUNT_BIG
	RTRIM
	SAVE TRANSACTION
	SCOPE_IDENTITY
	Search Condition
	SELECT @local_variable
	SELECT
	SELECT Examples

	SERVERPROPERTY
	SESSION_USER
	SESSIONPROPERTY
	SET @local_variable
	SET
	SET ANSI_DEFAULTS
	SET ANSI_NULL_DFLT_OFF
	SET ANSI_NULL_DFLT_ON
	SET ANSI_NULLS
	SET ANSI_PADDING
	SET ANSI_WARNINGS
	SET ARITHABORT
	SET ARITHIGNORE
	SET CONCAT_NULL_YIELDS_NULL
	SET CONTEXT_INFO
	SET CURSOR_CLOSE_ON_COMMIT
	SET DATEFIRST
	SET DATEFORMAT
	SET DEADLOCK_PRIORITY
	SET DISABLE_DEF_CNST_CHK
	SET FIPS_FLAGGER
	SET FMTONLY
	SET FORCEPLAN
	SET IDENTITY_INSERT
	SET IMPLICIT_TRANSACTIONS
	SET LANGUAGE
	SET LOCK_TIMEOUT
	SET NOCOUNT
	SET NOEXEC
	SET NUMERIC_ROUNDABORT
	SET OFFSETS
	SET PARSEONLY
	SET QUERY_GOVERNOR_COST_LIMIT
	SET QUOTED_IDENTIFIER
	SET REMOTE_PROC_TRANSACTIONS
	SET ROWCOUNT
	SET SHOWPLAN_ALL
	SET SHOWPLAN_TEXT
	SET STATISTICS IO
	SET STATISTICS PROFILE
	SET STATISTICS TIME
	SET TEXTSIZE
	SET TRANSACTION ISOLATION LEVEL
	SET XACT_ABORT

	SETUSER
	SHUTDOWN
	SIGN
	SIN
	smalldatetime
	smallint
	smallmoney
	SOME | ANY
	SOUNDEX
	SPACE
	sql_variant
	SQL_VARIANT_PROPERTY
	SQUARE
	SQRT
	STATS_DATE
	STDEV
	STDEVP
	STR
	STUFF
	SUBSTRING
	SUM
	SUSER_ID
	SUSER_NAME
	SUSER_SID
	SUSER_SNAME
	System Stored Procedures
	Object Hierarchy Syntax
	sp_ActiveDirectory_Obj
	sp_ActiveDirectory_SCP
	sp_add_alert
	sp_addalias
	sp_addapprole
	sp_add_data_file_recover_suspect_db
	sp_addextendedproc
	sp_addextendedproperty
	sp_addgroup
	sp_add_category
	sp_add_job
	sp_add_jobschedule
	sp_add_jobserver
	sp_add_jobstep
	sp_addlinkedserver
	sp_addlinkedsrvlogin
	sp_add_log_file_recover_suspect_db
	sp_addlogin
	sp_add_log_shipping_database
	sp_add_log_shipping_plan
	sp_add_log_shipping_plan_database
	sp_add_log_shipping_primary
	sp_add_log_shipping_secondary
	sp_add_maintenance_plan
	sp_add_maintenance_plan_db
	sp_add_maintenance_plan_job
	sp_addmessage
	sp_add_notification
	sp_add_operator
	sp_addremotelogin
	sp_addrole
	sp_addrolemember
	sp_addserver
	sp_addsrvrolemember
	sp_addtask
	sp_addtype
	sp_add_targetservergroup
	sp_addumpdevice
	sp_add_targetsvrgrp_member
	sp_adduser
	sp_altermessage
	sp_apply_job_to_targets
	sp_approlepassword
	sp_attach_db
	sp_attach_single_file_db
	sp_autostats
	sp_bindefault
	sp_bindrule
	sp_bindsession
	sp_can_tlog_be_applied
	sp_catalogs
	sp_certify_removable
	sp_change_monitor_role
	sp_change_primary_role
	sp_change_secondary_role
	sp_change_users_login
	sp_changedbowner
	sp_changegroup
	sp_changeobjectowner
	sp_column_privileges
	sp_column_privileges_ex
	sp_columns
	sp_columns_ex
	sp_configure
	sp_create_log_shipping_monitor_account
	sp_create_removable
	sp_createstats
	sp_cursor_list
	sp_cycle_errorlog
	sp_databases
	sp_datatype_info
	sp_dbcmptlevel
	sp_dbfixedrolepermission
	sp_dboption
	sp_dbremove
	sp_defaultdb
	sp_defaultlanguage
	sp_define_log_shipping_monitor
	sp_delete_alert
	sp_delete_backuphistory
	sp_delete_category
	sp_delete_database_backuphistory
	sp_delete_job
	sp_delete_jobschedule
	sp_delete_jobserver
	sp_delete_jobstep
	sp_delete_log_shipping_database
	sp_delete_log_shipping_monitor_info
	sp_delete_log_shipping_plan
	sp_delete_log_shipping_plan_database
	sp_delete_log_shipping_primary
	sp_delete_log_shipping_secondary
	sp_delete_maintenance_plan
	sp_delete_maintenance_plan_db
	sp_delete_maintenance_plan_job
	sp_delete_notification
	sp_delete_operator
	sp_delete_targetserver
	sp_delete_targetservergroup
	sp_delete_targetsvrgrp_member
	sp_denylogin
	sp_depends
	sp_describe_cursor
	sp_describe_cursor_columns
	sp_describe_cursor_tables
	sp_detach_db
	sp_dropalias
	sp_dropapprole
	sp_dropdevice
	sp_dropextendedproc
	sp_dropextendedproperty
	sp_dropgroup
	sp_droplinkedsrvlogin
	sp_droplogin
	sp_dropmessage
	sp_dropremotelogin
	sp_droprole
	sp_droprolemember
	sp_dropserver
	sp_dropsrvrolemember
	sp_droptask
	sp_droptype
	sp_dropuser
	sp_dropwebtask
	sp_enumcodepages
	sp_executesql
	sp_fkeys
	sp_foreignkeys
	sp_fulltext_catalog
	sp_fulltext_column
	sp_fulltext_database
	sp_fulltext_service
	sp_fulltext_table
	sp_getapplock
	sp_getbindtoken
	sp_get_log_shipping_monitor_info
	sp_grantdbaccess
	sp_grantlogin
	sp_help
	sp_help_alert
	sp_help_category
	sp_helpconstraint
	sp_helpdb
	sp_helpdbfixedrole
	sp_helpdevice
	sp_help_downloadlist
	sp_helpextendedproc
	sp_helpfile
	sp_helpfilegroup
	sp_help_fulltext_catalogs
	sp_help_fulltext_catalogs_cursor
	sp_help_fulltext_columns
	sp_help_fulltext_columns_cursor
	sp_help_fulltext_tables
	sp_help_fulltext_tables_cursor
	sp_helpgroup
	sp_helphistory
	sp_help_job
	sp_help_jobhistory
	sp_help_jobschedule
	sp_help_jobserver
	sp_help_jobstep
	sp_helpindex
	sp_helplanguage
	sp_helplinkedsrvlogin
	sp_helplogins
	sp_help_maintenance_plan
	sp_help_notification
	sp_helpntgroup
	sp_help_operator
	sp_helpremotelogin
	sp_helprole
	sp_helprolemember
	sp_helprotect
	sp_helpserver
	sp_helpsort
	sp_helpsrvrole
	sp_helpsrvrolemember
	sp_helpstats
	sp_help_targetserver
	sp_help_targetservergroup
	sp_helptask
	sp_helptext
	sp_helptrigger
	sp_helpuser
	sp_indexes
	sp_indexoption
	sp_invalidate_textptr
	sp_linkedservers
	sp_lock
	sp_makewebtask
	sp_manage_jobs_by_login
	sp_monitor
	sp_MShasdbaccess
	sp_msx_defect
	sp_msx_enlist
	sp_OACreate
	sp_OADestroy
	sp_OAGetErrorInfo
	sp_OAGetProperty
	sp_OAMethod
	sp_OASetProperty
	sp_OAStop
	sp_password
	sp_pkeys
	sp_primarykeys
	sp_post_msx_operation
	sp_processmail
	sp_procoption
	sp_purgehistory
	sp_purge_jobhistory
	sp_reassigntask
	sp_recompile
	sp_refreshview
	sp_releaseapplock
	sp_remoteoption
	sp_remove_job_from_targets
	sp_remove_log_shipping_monitor
	sp_rename
	sp_renamedb
	sp_resetstatus
	sp_resolve_logins
	sp_resync_targetserver
	sp_revokedbaccess
	sp_revokelogin
	sp_runwebtask
	sp_server_info
	sp_serveroption
	sp_setapprole
	sp_setnetname
	sp_settriggerorder
	sp_scriptsubconflicttable
	sp_spaceused
	sp_special_columns
	sp_sproc_columns
	sp_srvrolepermission
	sp_start_job
	sp_statistics
	sp_stop_job
	sp_stored_procedures
	sp_tableoption
	sp_table_privileges
	sp_table_privileges_ex
	sp_tables
	sp_tables_ex
	sp_trace_create
	sp_trace_generateevent
	sp_trace_setevent
	sp_trace_setfilter
	sp_trace_setstatus
	sp_unbindefault
	sp_unbindrule
	sp_update_alert
	sp_update_category
	sp_updateextendedproperty
	sp_update_job
	sp_update_jobschedule
	sp_update_jobstep
	sp_update_log_shipping_monitor_info
	sp_update_log_shipping_plan
	sp_update_log_shipping_plan_database
	sp_update_notification
	sp_update_operator
	sp_updatestats
	sp_update_targetservergroup
	sp_updatetask
	sp_validname
	sp_validatelogins
	sp_who
	sp_xml_preparedocument
	sp_xml_removedocument
	Replication Stored Procedures
	sp_add_agent_parameter
	sp_add_agent_profile
	sp_addarticle
	sp_adddistpublisher
	sp_adddistributiondb
	sp_adddistributor
	sp_addmergealternatepublisher
	sp_addmergearticle
	sp_addmergefilter
	sp_addmergepublication
	sp_addmergepullsubscription
	sp_addmergepullsubscription_agent
	sp_addmergesubscription
	sp_addpublication
	sp_addpublication_snapshot
	sp_addpublisher70
	sp_addpullsubscription
	sp_addpullsubscription_agent
	sp_addscriptexec
	sp_addsubscriber
	sp_addsubscriber_schedule
	sp_addsubscription
	sp_addsynctriggers
	sp_addtabletocontents
	sp_adjustpublisheridentityrange
	sp_article_validation
	sp_articlecolumn
	sp_articlefilter
	sp_articlesynctranprocs
	sp_articleview
	sp_attachsubscription
	sp_browsesnapshotfolder
	sp_browsemergesnapshotfolder
	sp_browsereplcmds
	sp_change_agent_parameter
	sp_change_agent_profile
	sp_changearticle
	sp_changedistpublisher
	sp_changedistributiondb
	sp_changedistributor_password
	sp_changedistributor_property
	sp_changemergearticle
	sp_changemergefilter
	sp_changemergepublication
	sp_changemergepullsubscription
	sp_changemergesubscription
	sp_changepublication
	sp_changesubscriber
	sp_changesubscriber_schedule
	sp_changesubscriptiondtsinfo
	sp_changesubstatus
	sp_change_subscription_properties
	sp_check_for_sync_trigger
	sp_copymergesnapshot
	sp_copysnapshot
	sp_copysubscription
	sp_deletemergeconflictrow
	sp_disableagentoffload
	sp_drop_agent_parameter
	sp_drop_agent_profile
	sp_dropanonymouseagent
	sp_droparticle
	sp_dropdistpublisher
	sp_dropdistributiondb
	sp_dropdistributor
	sp_dropmergealternatepublisher
	sp_dropmergearticle
	sp_dropmergefilter
	sp_dropmergepublication
	sp_dropmergepullsubscription
	sp_dropmergesubscription
	sp_droppublication
	sp_droppullsubscription
	sp_dropsubscriber
	sp_dropsubscription
	sp_dsninfo
	sp_dumpparamcmd
	sp_enableagentoffload
	sp_enumcustomresolvers
	sp_enumdsn
	sp_enumfullsubscribers
	sp_expired_subscription_cleanup
	sp_generatefilters
	sp_getagentoffloadinfo
	sp_getmergedeletetype
	sp_get_distributor
	sp_getqueuedrows
	sp_getsubscriptiondtspackagename
	sp_grant_publication_access
	sp_help_agent_default
	sp_help_agent_parameter
	sp_help_agent_profile
	sp_helparticle
	sp_helparticlecolumns
	sp_helparticledts
	sp_helpdistpublisher
	sp_helpdistributiondb
	sp_helpdistributor
	sp_helpmergealternatepublisher
	sp_helpmergearticle
	sp_helpmergearticlecolumn
	sp_helpmergearticleconflicts
	sp_helpmergeconflictrows
	sp_helpmergedeleteconflictrows
	sp_helpmergefilter
	sp_helpmergepublication
	sp_helpmergepullsubscription
	sp_helpmergesubscription
	sp_helppublication
	sp_help_publication_access
	sp_helppullsubscription
	sp_helpreplfailovermode
	sp_helpreplicationdboption
	sp_helpreplicationoption
	sp_helpsubscriberinfo
	sp_helpsubscription
	sp_helpsubscription_properties
	sp_ivindexhasnullcols
	sp_link_publication
	sp_marksubscriptionvalidation
	sp_mergearticlecolumn
	sp_mergecleanupmetadata
	sp_mergedummyupdate
	sp_mergesubscription_cleanup
	sp_publication_validation
	sp_refreshsubscriptions
	sp_reinitmergepullsubscription
	sp_reinitmergesubscription
	sp_reinitpullsubscription
	sp_reinitsubscription
	sp_removedbreplication
	sp_repladdcolumn
	sp_replcmds
	sp_replcounters
	sp_repldone
	sp_repldropcolumn
	sp_replflush
	sp_replicationdboption
	sp_replication_agent_checkup
	sp_replqueuemonitor
	sp_replsetoriginator
	sp_replshowcmds
	sp_repltrans
	sp_restoredbreplication
	sp_resyncmergesubscription
	sp_revoke_publication_access
	sp_script_synctran_commands
	sp_setreplfailovermode
	sp_showrowreplicainfo
	sp_subscription_cleanup
	sp_table_validation
	sp_update_agent_profile
	sp_validatemergepublication
	sp_validatemergesubscription
	sp_vupgrade_replication

	xp_cmdshell
	xp_deletemail
	xp_enumgroups
	xp_findnextmsg
	xp_grantlogin
	xp_logevent
	xp_loginconfig
	xp_logininfo
	xp_msver
	xp_readmail
	xp_revokelogin
	xp_sendmail
	xp_sprintf
	xp_sqlagent_proxy_account
	xp_sqlmaint
	xp_sscanf
	xp_startmail
	xp_stopmail

	System Tables
	backupfile
	backupmediafamily
	backupmediaset
	backupset
	logmarkhistory
	log_shipping_databases
	log_shipping_monitor
	log_shipping_plan_databases
	log_shipping_plan_history
	log_shipping_plans
	log_shipping_primaries
	log_shipping_secondaries
	MSagent_parameters
	MSagent_profiles
	MSarticles
	MSdistpublishers
	MSdistribution_agents
	MSdistribution_history
	MSdistributiondbs
	MSdistributor
	MSdynamicsnapshotjobs
	MSdynamicsnapshotviews
	MSlogreader_agents
	MSlogreader_history
	MSmerge_agents
	MSmerge_altsyncpartners
	MSmerge_contents
	MSmerge_delete_conflicts
	MSmerge_errorlineage
	MSmerge_genhistory
	MSmerge_history
	MSmerge_replinfo
	MSmerge_subscriptions
	MSmerge_tombstone
	MSpub_identity_range
	MSpublication_access
	MSpublications
	MSpublisher_databases
	MSqreader_agents
	MSqreader_history
	MSrepl_backup_lsns
	MSrepl_commands
	MSrepl_errors
	MSrepl_identity_range
	MSrepl_originators
	MSrepl_transactions
	MSrepl_version
	MSreplication_objects
	MSreplication_options
	MSreplication_queue
	MSreplication_subscriptions
	MSsnapshot_agents
	MSsnapshot_history
	MSsubscriber_info
	MSsubscriber_schedule
	MSsubscription_agents
	MSsubscription_articles
	MSsubscription_properties
	MSsubscriptions
	Mssub_identity_range
	MSsync_states
	restorefile
	restorefilegroup
	restorehistory
	sysalerts
	sysaltfiles
	sysarticles
	sysarticleupdates
	syscacheobjects
	syscategories
	syscharsets
	syscolumns
	syscomments
	sysconfigures
	sysconstraints
	syscurconfigs
	sysdatabases
	sysdbmaintplan_databases
	sysdbmaintplan_history
	sysdbmaintplan_jobs
	sysdbmaintplans
	sysdepends
	sysdevices
	sysdownloadlist
	sysfiles
	sysfilegroups
	sysforeignkeys
	sysfulltextcatalogs
	sysindexes
	sysindexkeys
	sysjobhistory
	sysjobschedules
	sysjobs
	sysjobservers
	sysjobsteps
	syslanguages
	syslockinfo
	syslogins
	sysmembers
	sysmergearticles
	sysmergepublications
	sysmergeschemaarticles
	sysmergeschemachange
	sysmergesubscriptions
	sysmergesubsetfilters
	sysmessages
	sysnotifications
	sysobjects
	sysoledbusers
	sysopentapes
	sysoperators
	sysperfinfo
	syspermissions
	sysprocesses
	sysprotects
	syspublications
	sysreferences
	sysremotelogins
	sysreplicationalerts
	sysschemaarticles
	syssubscriptions
	systargetservergroupmembers
	systargetservergroups
	systargetservers
	systaskids
	systypes
	sysusers

	SYSTEM_USER
	table
	TAN
	text
	TEXTPTR
	TEXTVALID
	timestamp
	tinyint
	Trace Flags
	Transactions
	TRIGGER_NESTLEVEL
	TRUNCATE TABLE
	TYPEPROPERTY
	UNICODE
	UNION
	uniqueidentifier
	UPDATE
	UPDATE STATISTICS
	UPDATETEXT
	UPPER
	USE
	USER
	USER_ID
	USER_NAME
	VAR
	varbinary
	varchar
	VARP
	WAITFOR
	WHERE
	WHILE
	WRITETEXT
	YEAR

