Transact-SQL Reference

Transact-SQL Overview

Transact-SQL is central to the use of Microsoft® SQL Server™. All applications
that communicate with SQL Server do so by sending Transact-SQL statements to
the server, regardless of an application's user interface.

Transact-SQL is generated from many kinds of applications, including:

e General office productivity applications.

e Applications that use a graphical user interface (GUI) to allow users to
select the tables and columns from which they want to see data.

e Applications that use general language sentences to determine what data
a user wants to see.

¢ Line of business applications that store their data in SQL Server
databases. These can include both applications from other vendors and
applications written in-house.

e Transact-SQL scripts that are run using utilities such as osql.

e Applications created with development systems such as Microsoft
Visual C++®, Microsoft Visual Basic®, or Microsoft Visual J++® that

use database application programming interfaces (APIs) such as ADO,
OLE DB, and ODBC.

e Web pages that extract data from SQL Server databases.

e Distributed database systems from which data from SQL Server is
replicated to various databases or distributed queries are executed.

e Data warehouses in which data is extracted from online transaction
processing (OLTP) systems and summarized for decision-support
analysis.

For information about how Transact-SQL interacts with APIs and application
components such as transaction control, cursors, and locking, see Accessing and
Changing Relational Data Overview.

JavaScript:hhobj_1.Click()

Transact-SQL Reference

Transact-SQL Syntax Conventions

The syntax diagrams in the Transact-SQL Reference use these conventions.

Convention Used for
UPPERCASE Transact-SQL keywords.
italic User-supplied parameters of Transact-SQL syntax.

| (vertical bar)

Separating syntax items within brackets or braces. You
can choose only one of the items.

[] (brackets)

Optional syntax items. Do not type the brackets.

{} (braces)

Required syntax items. Do not type the braces.

[,...n]

Indicating that the preceding item can be repeated n
number of times. The occurrences are separated by
commas.

[...n]

Indicating that the preceding item can be repeated n
number of times. The occurrences are separated by
blanks.

bold

Database names, table names, column names, index
names, stored procedures, utilities, data type names,
and text that must be typed exactly as shown.

<label> ::=

The name for a block of syntax. This convention is
used to group and label portions of lengthy syntax or a
unit of syntax that can be used in more than one place
within a statement. Each location in which the block of
syntax can be used is indicated with the label enclosed

in chevrons: <label>.

Unless specified otherwise, all Transact-SQL references to the name of a
database object can be a four-part name in the form:

[

server_name.[database_name].[owner_name].
| database_name.[owner_namel].

| owner_name.

]

]

object_name

e server_name specifies a linked server name or remote server name.

e database_name specifies the name of a Microsoft® SQL Server™
database when the object resides in a SQL Server database. It specifies
an OLE DB catalog when the object is in a linked server.

e owner_name specifies the user that owns the object if the object is in a
SQL Server database. It specifies an OLE DB schema name when the
object is in a linked server.

e object_name refers to the name of the object.

When referencing a specific object, you do not always have to specify the server,
database, and owner for SQL Server to identify the object. Intermediate nodes
can be omitted; use periods to indicate these positions. The valid formats of
object names are:

server.database.owner.object
server.database..object
server..owner.object
server...object
database.owner.object
database..object
owner.object

object

Code Example Conventions

Unless stated otherwise, the examples were tested using SQL Query Analyzer
and its default settings for these options:

e QUOTED_IDENTIFIER
e ANSI_NULLS

e ANSI_WARNINGS

e ANSI_PADDING

e ANSI_NULL_DFLT_ON

e CONCAT_NULL_YIELDS_NULL

Most code examples in the Transact-SQL Reference have been tested on servers
running a case-sensitive sort order. The test servers were usually running the
ANSI/ISO 1252 code page.

Transact-SQL Data Type Categories

Data types with similar characteristics are classified into categories. Categories
that contain two or three data types generally have a category name derived from
the data types in that category. For example, the money and smallmoney
category contains the money data type and the smallmoney data type. Data type
names always appear in bold, even when used as part of a category name.

Transact-SQL Data Type Hierarchy

The following data type hierarchy shows the SQL Server data type categories,
subcategories, and data types used in the SQL Server documentation. For
example, the exact numeric category contains three subcategories: integers,
decimal, and money and smallmoney.

The exact numeric category also contains all of the data types in these three
subcategories: bigint, int, smallint, tinyint, bit, decimal, money, and
smallmoney. Any reference to exact numeric in the Transact-SQL Reference
refers to these eight data types.

In this hierarchy the category names built from two or more data types use the
conjunction "and." The conjunction "or" may be used in the Transact-SQL
Reference if it is more appropriate for the context in which the name is used.

The data types specified in this hierarchy also pertain to synonyms. For example,
int refers to both int and its synonym integer. For more information, see Data

Types.

numeric
exact numeric
integer
bigint
int
smallint
tinyint
bit
decimal and numeric
decimal
numeric
money and smallmoney
money
smallmoney
approximate numeric
float
real
datetime and smalldatetime
datetime
smalldatetime

character and binary string
character string
char, varchar, and text
char and varchar
char
varchar
text
Unicode character string
nchar and nvarchar
nchar

nvarchar
ntext
binary strings
binary and varbinary
binary
varbinary
image

cursor
sql_variant
table

timestamp
uniqueidentifier

Additional data type categories used in the Transact-SQL Reference are
described in these two hierarchies:

text, ntext, and image
text and ntext
text
ntext
image

short string
short character
char and varchar
char
varchar
nchar and nvarchar
nchar
nvarchar
binary and varbinary
binary
varbinary

Transact-SQL Reference

New and Enhanced Features in Transact-SQL

Transact-SQL in Microsoft® SQL Server™ 2000 provides new and enhanced
statements, stored procedures, functions, data types, DBCC statements, and

information schema views.

Data Types

New data types

bigint

—
QO
—
(g»)

sqgl_variant

Database Console Commands (DBCC)

New commands

DBCC CHECKCONSTRAINTS

DBCC DROPCLEANBUFFERS

DBCC CLEANTABLE

DBCC FREEPROCCACHE

DBCC
CONCURRENCYVIOLATION

DBCC INDEXDEFRAG

Enhanced commands

DBCC CHECKALLOC

DBCC CHECKFILEGROUP

DBCC CHECKDB

DBCC SHOWCONTIG

DBCC CHECKTABLE

Functions

New functions

BINARY_ CHECKSUM

fn_virtualfilestats

CHECKSUM

GETUTCDATE

CHECKSUM_ AGG

HAS_DBACCESS

COLLATIONPROPERTY

IDENT_CURRENT

COUNT_BIG INDEXKEY PROPERTY
DATABASEPROPERTYEX OBJECTPROPERTY
fn_helpcollations OPENDATASOURCE
fn_listextendedproperty OPENXML

fn_servershareddrives

ROWCOUNT_BIG

fn_trace geteventinfo

SCOPE_IDENTITY

fn_trace getfilterinfo SERVERPROPERTY
fn_trace getinfo SESSIONPROPERTY

fn_trace gettable

SQL_VARIANT_PROPERTY

Information Schema Views

New information schema views

PARAMETERS

ROUTINE_COLUMNS

ROUTINES

Replication Stored Procedures

New replication stored procedures

sp_addmergealternatepublisher

sp_getqueuedrows

sp_addscriptexec

sp_getsubscriptiondtspackagename

sp_adjustpublisheridentityrange

sp_helparticledts

sp_attachsubscription

sp_helpmergealternatepublisher

sp_browsesnapshotfolder

sp_helpreplicationoption

sp_browsemergesnapshotfolder

sp_ivindexhasnullcols

sp_changesubscriptiondtsinfo

sp_marksubscriptionvalidation

sp_copysnapshot

sp_mergearticlecolumn

sp_disableagentoffload

sp_repladdcolumn

Sp dro panonymouseagent

sp_repldropcolumn

sp_dropmergealternatepublisher

sp_restoredbreplication

sp_enableagentoffload

sp_resyncmergesubscription

sp_getagentoffloadinfo

sp_vupgrade_replication

Reserved Keywords

COLLATE, FUNCTION, and OPENXML are reserved keywords in SQL Server

2000.

The following words have been unreserved.

AVG COMMITTED
CONFIRM CONTROLROW
COUNT ERROREXIT
FLOPPY ISOLATION
LEVEL MAX

MIN MIRROREXIT
ONCE ONLY

PERM PERMANENT
PIPE PREPARE
PRIVILEGES REPEATABLE
SERIALIZABLE SUM

TAPE TEMP
TEMPORARY UNCOMMITTED
WORK

Statements

New statements

ALTER FUNCTION DROP FUNCTION

CREATE FUNCTION

Enhanced statements

ALTER DATABASE CREATE TABLE
ALTER TABLE CREATE TRIGGER
BACKUP INDEXPROPERTY
COLUMNPROPERTY OBJECTPROPERTY
CREATE INDEX RESTORE

CREATE STATISTICS

System Stored Procedures

New system stored procedures

sp_addextendedproperty

sp_delete_maintenance_plan_job

sp_add_log_shipping_ database

sp_dropextendedproperty

sp_add_log_shipping plan

sp_get_log shipping monitor_info

sp_add_log_shipping plan_database

sp_helpconstraint

sp_add_log_shipping_primary

sp_helpindex

sp_add_log_shipping secondary

sp_help_maintenance_plan

sp_add_maintenance_plan

sp_invalidate_textptr

sp_add_maintenance_plan_db

sp_remove_log shipping monitor

sp_add_maintenance_plan_job

sp_resolve_logins

sp_can_tlog be_applied

sp_settriggerorder

sp_change monitor_role

Sp_trace_create

sp_change primary_role

Sp_trace_generateevent

sp_change_secondary_role

Sp_trace_setevent

sp_create_log_shipping monitor account

sp_trace_setfilter

sp_define log_shipping_monitor

Sp_trace_setstatus

sp_delete_log_shipping_database

sp_updateextendedproperty

sp_delete_log_shipping_plan

sp_update_log_shipping_monitor_infa

sp_delete_log shipping plan_database

sp_update_log_shipping_plan

sp_delete_log_shipping primary

sp_update_log_shipping_plan_databas

sp_delete_log_shipping secondary

sp_xml_preparedocument

sp_delete_maintenance_plan

sp_xml_removedocument

sp_delete_maintenance plan_db |

Enhanced system stored procedures

sp_helptrigger sp_serveroption
sp_tableoption sp_who

System Tables

New system tables

logmarkhistory MSsync_states
log_shipping databases sysdbmaintplan_databases
log shipping monitor sysdbmaintplan_history
log shipping plan_databases sysdbmaintplan_jobs
log shipping plan_histor sysdbmaintplans

log shipping_plans sysmergeschemaarticles
log_shipping secondaries sysopentapes
Mssub_identity range

Transact-SQL Reference

+ (Add)

Adds two numbers. This addition arithmetic operator can also add a number, in
days, to a date.

Syntax

expression + expression

Arguments
expression

Is any valid Microsoft® SQL Server™ expression of any of the data types in
the numeric category except the bit data type.

Result Types

Returns the data type of the argument with the higher precedence. For more
information, see Data Type Precedence.

Examples

A. Use the addition operator to calculate the total units available
for customers to order

This example adds the current number of products in stock and the number of
units currently on order for all products in the Products table.

USE Northwind

GO

SELECT ProductName, UnitsInStock + UnitsOnOrder
FROM Products

ORDER BY ProductName ASC

GO

B. Use the addition operator to add days to date and time values

This example adds a number of days to a datetime date.

USE master

GO

SET NOCOUNT ON

DECLARE @startdate datetime, @adddays int

SET @startdate = '1/10/1900 12:00 AM'

SET @adddays = 5

SET NOCOUNT OFF

SELECT @startdate + 1.25 AS 'Start Date’,
@startdate + @adddays AS 'Add Date'

Here is the result set:

Start Date Add Date

Jan 11 1900 6:00AM Jan 15 1900 12:00AM
(1 row(s) affected)

C. Add character and integer data types

This example adds an int data type value and a character value by converting the
character data type to int. If an invalid character exists in the char string, SQL
Server returns an error.

DECLARE @addvalue int
SET @addvalue = 15
SELECT '125127' + @addvalue

Here is the result set:

125142

(1 row(s) affected)

See Also

CAST and CONVERT

Data Type Conversion

Data Types
Expressions

Functions

Operators
SELECT

JavaScript:hhobj_1.Click()

Transact-SQL Reference

+ (Positive)

A unary operator that returns the positive value of a numeric expression (a unary
operator).

Syntax

+ numeric_expression

Arguments
numeric_expression

Is any valid Microsoft® SQL Server™ expression of any of the data types in
the numeric data type category except the datetime or smalldatetime data

types.

Result Types

Returns the data type of numeric_expression, except that an unsigned tinyint
expression is promoted to a smallint result.

Examples

This example sets a variable to a positive value.

DECLARE @MyNumber decimal(10,2)
SET @MyNumber = +123.45

See Also

Data Types
Expressions
Operators

Transact-SQL Reference

+ (String Concatenation)

An operator in a string expression that concatenates two or more character or
binary strings, columns, or a combination of strings and column names into one
expression (a string operator).

Syntax

expression + expression

Arguments
expression

Is any valid Microsoft® SQL Server™ expression of any of the data types in
the character and binary data type category, except the image, ntext, or text
data types. Both expressions must be of the same data type, or one
expression must be able to be implicitly converted to the data type of the
other expression.

An explicit conversion to character data must be used when concatenating
binary strings and any characters between the binary strings. The following
example shows when CONVERT (or CAST) must be used with binary
concatenation and when CONVERT (or CAST) does not need to be used.

DECLARE @mybinl binary(5), @mybin2 binary(5)
SET @mybin1 = OxFF
SET @mybin2 = 0xA5
-- No CONVERT or CAST function is necessary because this example
-- concatenates two binary strings.
SELECT @mybinl + @mybin2
-- A CONVERT or CAST function is necessary because this example
-- concatenates two binary strings plus a space.
SELECT CONVERT(varchar(5), @mybinl) + "'
+ CONVERT (varchar(5), @mybin2)
-- Here is the same conversion using CAST

SELECT CAST(@mybin1 AS varchar(5)) + "'
+ CAST(@mybin2 AS varchar(5))

Result Types

Returns the data type of the argument with the highest precedence. For more
information, see Data Type Precedence.

Remarks

When you concatenate null values, either the concat null yields null setting of
sp_dboption or SET CONCAT_NULL_YIELDS_NULL determines the
behavior when one expression is NULL. With either concat null yields null or
SET CONCAT_NULL_YIELDS_NULL enabled ON, 'string' + NULL returns
NULL. If either concat null yields null or SET
CONCAT_NULL_YIELDS_NULL is disabled, the result is 'string'.

Examples

A. Use string concatenation

This example creates a single column (under the column heading Name) from
multiple character columns, with the author's last name followed by a comma, a
single space, and then the author's first name. The result set is in ascending,
alphabetical order by the author's last name, and then by the author's first name.

USE pubs

SELECT (au_Ilname +',' + au_fname) AS Name
FROM authors

ORDER BY au_Iname ASC, au_fname ASC

Here is the result set:

Bennet, Abraham
Blotchet-Halls, Reginald

Carson, Cheryl
DeFrance, Michel
del Castillo, Innes
Dull, Ann

Green, Marjorie
Greene, Morningstar
Gringlesby, Burt
Hunter, Sheryl
Karsen, Livia
Locksley, Charlene
MacFeather, Stearns
McBadden, Heather
O'Leary, Michael
Panteley, Sylvia
Ringer, Albert
Ringer, Anne
Smith, Meander
Straight, Dean
Stringer, Dirk
White, Johnson
Yokomoto, Akiko

(23 row(s) affected)

B. Combine numeric and date data types

This example uses the CAST function to concatenate numeric and date data
types.

USE pubs

SELECT 'The order date is ' + CAST(ord_date AS varchar(30))
FROM sales

WHERE ord_num ='A2976'

ORDER BY ord_num

Here is the result set:

The order date is May 24 1993 12:00AM
(1 row(s) affected)

C. Use multiple string concatenation

This example concatenates multiple strings to form one long string. To display
the last name and the first initial of each author living in the state of California, a
comma is placed after the last name and a period after the first initial.

USE pubs

SELECT (au_Iname + '’ + SPACE(1) + SUBSTRING(au_fname, 1, 1)
FROM authors

WHERE state = 'CA'

ORDER BY au_Iname ASC, au_fname ASC

Here is the result set:

Bennet, A.
Carson, C.
Dull, A.
Green, M.
Gringlesby, B.
Hunter, S.
Karsen, L.
Locksley, C.
MacFeather, S.
McBadden, H.
O'Leary, M.
Straight, D.
Stringer, D.

White, J.
Yokomoto, A.

(15 row(s) affected)

See Also

CAST and CONVERT

Data Type Conversion

Data Types
Expressions
Functions
Operators
SELECT
SET

Setting Database Options

sp_dboption

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL Reference

- (Negative)

Is a unary operator that returns the negative value of a numeric expression (a
unary operator).

Syntax

- numeric_expression

Arguments
numeric_expression

Is any valid Microsoft® SQL Server™ expression of any of the data types of
the numeric data type category except the datetime or smalldatetime data

types.

Result Types

Returns the data type of numeric_expression, except that an unsigned tinyint
expression is promoted to a signed smallint result.

Examples

A. Set a variable to a negative value

This example sets a variable to a negative value.

DECLARE @MyNumber decimal(10,2)
@MyNumber = -123.45

B. Negate a value

This example negates a variable.

DECLARE @Numl int
SET @Numl =5

SELECT -@Numl

See Also

Data Types
Expressions
Operators

Transact-SQL Reference

- (Subtract)

Subtracts two numbers. This subtraction arithmetic operator can also subtract a
number, in days, from a date.

Syntax

expression - expression

Arguments
expression

Is any valid Microsoft® SQL Server™ expression of any of the data types of
the numeric data type category except the bit data type.

Result Types

Returns the data type of the argument with the higher precedence. For more
information, see Data Type Precedence.

Examples

A. Use subtraction in a SELECT statement

This example returns the amount of the year-to-date revenues retained by the
company for each book title.

USE pubs
GO
SELECT title,
(
(price * ytd_sales) * CAST(((100 - royalty) / 100.0)
AS MONEY)

) AS IncomeAfterRoyalty

FROM titles

WHERE royalty <> 0
ORDER BY title_id ASC
GO

Parentheses can be used to change the order of execution. Calculations inside
parentheses are evaluated first. If parentheses are nested, the most deeply nested
calculation has precedence. For example, the result and meaning of the
preceding query can be changed if you use parentheses to force the evaluation of
subtraction before multiplication, which in this case would yield a meaningless
number.

B. Use date subtraction

This example subtracts a number of days from a datetime date.

USE pubs

GO

DECLARE @altstartdate datetime

SET @altstartdate = '1/10/1900 3:00 AM'
SELECT @altstartdate - 1.5 AS 'Subtract Date'

Here is the result set:

Subtract Date

Jan 8 1900 3:00PM
(1 row(s) affected)

See Also

Data Types
Expressions

Functions

Operators

SELECT

Transact-SQL Reference

* (Multiply)

Multiplies two expressions (an arithmetic multiplication operator).

Syntax

expression * expression

Arguments
expression

Is any valid Microsoft® SQL Server™ expression of any of the data types of
the numeric data type category except the datetime or smalldatetime data

types.

Result Types

Returns the data type of the argument with the higher precedence. For more
information, see Data Type Precedence.

Examples

This example retrieves the title identification number and the price of modern
cookbooks, and uses the * arithmetic operator to multiply the price by 1.15.

USE pubs

SELECT title_id, price * 1.15 AS NewPrice
FROM titles

WHERE type = 'mod_cook’

ORDER BY title_id ASC

See Also

Data Types
Expressions

Functions
Operators
SELECT
WHERE

Transact-SQL Reference

/ (Divide)

Divides one number by another (an arithmetic division operator).

Syntax

dividend / divisor

Arguments
dividend

Is the numeric expression to divide. dividend can be any valid Microsoft®
SQL Server™ expression of any of the data types of the numeric data type
category except the datetime and smalldatetime data types.

divisor

Is the numeric expression to divide the dividend by. divisor can be any valid
SQL Server expression of any of the data types of the numeric data type
category except the datetime and smalldatetime data types.

Result Types

Returns the data type of the argument with the higher precedence. For more
information about data type precedence, see Data Type Precedence.

If an integer dividend is divided by an integer divisor, the result is an integer that
has any fractional part of the result truncated.

Remarks

The actual value returned by the / operator is the quotient of the first expression
divided by the second expression.

Examples

This example uses the division arithmetic operator to calculate the royalty
amounts due for authors who have written business books.

USE pubs

GO

SELECT ((ytd_sales * price) * royalty)/100 AS 'Royalty Amount'
FROM titles

WHERE type = 'business'

ORDER BY title_id

See Also

Data Types
Expressions
Functions
Operators
SELECT
WHERE

Transact-SQL Reference

% (Modulo)

Provides the remainder of one number divided by another.

Syntax

dividend % divisor

Arguments
dividend

Is the numeric expression to divide. dividend must be any valid Microsoft®
SQL Server™ expression of the integer data type category. (A modulo is the
integer that remains after two integers are divided.)

divisor

Is the numeric expression to divide the dividend by. divisor must be any
valid SQL Server expression of any of the data types of the integer data type
category.

Result Types

int

Remarks

The modulo arithmetic operator can be used in the select list of the SELECT
statement with any combination of column names, numeric constants, or any
valid expression of the integer data type category.

Examples

This example returns the book title number and any modulo (remainder) of
dividing the price (converted to an integer value) of each book into the total
yearly sales (ytd_sales * price).

USE pubs

GO
SELECT title_id,
CAST((ytd_sales * price) AS int) % CAST(price AS int) AS Modulc
FROM titles
WHERE price IS NOT NULL and type = 'trad_cook’
ORDER BY title_id
GO

See Also

Expressions

Functions

LIKE

Operators
SELECT

Transact-SQL Reference

% (Wildcard - Character(s) to Match)

Matches any string of zero or more characters. This wildcard character can be
used as either a prefix or a suffix.

See Also

LIKE

Transact-SQL Reference

& (Bitwise AND)

Performs a bitwise logical AND operation between two integer values.

Syntax

expression & expression

Arguments
expression

Is any valid Microsoft® SQL Server™ expression of any of the data types of
the integer data type category. expression is an integer parameter that is
treated and transformed into a binary number for the bitwise operation.

Result Types

Returns an int if the input values are int, a smallint if the input values are
smallint, or a tinyint if the input values are tinyint.

Remarks

The bitwise & operator performs a bitwise logical AND between the two
expressions, taking each corresponding bit for both expressions. The bits in the
result are set to 1 if and only if both bits (for the current bit being resolved) in
the input expressions have a value of 1; otherwise, the bit in the result is set to 0.

The & bitwise operator can be used only on expressions of the integer data type
category.

If the left and right expressions have different integer data types (for example,
the left expression is smallint and the right expression is int), the argument of
the smaller data type is converted to the larger data type. In this example, the
smallint expression is converted to an int.

Examples

This example creates a table with int data types to show the values, and puts the
table into one row.

USE master

GO

IF EXISTS (SELECT * FROM INFORMATION_SCHEMA.TABLES

WHERE TABLE_NAME = 'bitwise")

DROP TABLE bitwise

GO

CREATE TABLE bitwise

(

a_int_value int NOT NULL,

b_int_value int NOT NULL

)

GO

INSERT bitwise VALUES (170, 75)

GO

This query performs the bitwise AND between the a_int_value and b_int_value
columns.

USE MASTER

GO

SELECT a_int_value & b_int_value
FROM bitwise

GO

Here is the result set:

(1 row(s) affected)

The binary representation of 170 (a_int_value or A, below) is 0000 0000 1010
1010. The binary representation of 75 (b_int_value or B, below) is 0000 0000

0100 1011. Performing the bitwise AND operation on these two values produces
the binary result 0000 0000 0000 1010, which is decimal 10.

(A & B)
0000 0000 1010 1010
0000 0000 0100 1011

0000 0000 0000 1010

See Also

Expressions
Operators (Bitwise Operators)

Transact-SQL Reference

| (Bitwise OR)

Performs a bitwise logical OR operation between two given integer values as
translated to binary expressions within Transact-SQL statements.

Syntax

expression | expression

Arguments
expression

Is any valid Microsoft® SQL Server™ expression of any of the data types of
the integer data type category. expression is an integer that is treated and
transformed into a binary number for the bitwise operation.

Result Types

Returns an int if the input values are int, a smallint if the input values are
smallint, or a tinyint if the input values are tinyint.

Remarks

The bitwise | operator performs a bitwise logical OR between the two
expressions, taking each corresponding bit for both expressions. The bits in the
result are set to 1 if either or both bits (for the current bit being resolved) in the
input expressions have a value of 1; if neither bit in the input expressions is 1,
the bit in the result is set to 0.

The | bitwise operator requires two expressions, and it can be used on
expressions of only the integer data type category.

If the left and right expressions have different integer data types (for example,
the left expression is smallint and the right expression is int), the argument of
the smaller data type is converted to the larger data type. In this example, the
smallint expression is converted to an int.

Examples

This example creates a table with int data types to show the original values and
puts the table into one row.

USE master

GO

IF EXISTS (SELECT * FROM INFORMATION_SCHEMA.TABLES

WHERE TABLE_NAME = 'bitwise")

DROP TABLE bitwise

GO

CREATE TABLE bitwise

(

a_int_value int NOT NULL,

b_int_value int NOT NULL

)

GO

INSERT bitwise VALUES (170, 75)

GO

This query performs the bitwise OR on the a_int_value and b_int_value
columns.

USE MASTER

GO

SELECT a_int_value | b_int_value
FROM bitwise

GO

Here is the result set:

(1 row(s) affected)

The binary representation of 170 (a_int_value or A, below) is 0000 0000 1010
1010. The binary representation of 75 (b_int_value or B, below) is 0000 0000
0100 1011. Performing the bitwise OR operation on these two values produces
the binary result 0000 0000 1110 1011, which is decimal 235.

(A|B)
0000 0000 1010 1010
0000 0000 0100 1011

0000 0000 1110 1011

See Also

Expressions
Operators (Bitwise Operators)

Transact-SQL Reference

A (Bitwise Exclusive OR)

Performs a bitwise exclusive OR operation between two given integer values as
translated to binary expressions within Transact-SQL statements.

Syntax

expression N expression

Arguments
expression

Is any valid Microsoft® SQL Server™ expression of any of the data types of
the integer data type category, or of the binary or varbinary data type.
expression is an integer that is treated and transformed into a binary number
for the bitwise operation.

Note Only one expression can be of either binary or varbinary data type in a
bitwise operation.

Result Types

Returns an int if the input values are int, a smallint if the input values are
smallint, or a tinyint if the input values are tinyint.

Remarks

The bitwise A operator performs a bitwise logical A between the two expressions,
taking each corresponding bit for both expressions. The bits in the result are set
to 1 if either (but not both) bits (for the current bit being resolved) in the input
expressions have a value of 1; if both bits are either a value of 0 or 1, the bit in
the result is cleared to a value of 0.

The A bitwise operator can be used only on columns of the integer data type
category.

If the left and right expressions have different integer data types (for example,

the left expression is smallint and the right expression is int), then the argument
of the smaller data type is converted to the larger data type. In this example, the
smallint expression is converted to an int.

Examples

This example creates a table with int data types to show the original values, and
puts the table into one row.

USE master

GO

IF EXISTS (SELECT * FROM INFORMATION_SCHEMA.TABLES

WHERE TABLE_NAME = 'bitwise")

DROP TABLE bitwise

GO

CREATE TABLE bitwise

(

a_int_value int NOT NULL,

b_int_value int NOT NULL

)

GO

INSERT bitwise VALUES (170, 75)

GO

This query performs the bitwise exclusive OR on the a_int_value and
b_int_value columns.

USE MASTER

GO

SELECT a_int_value A b_int_value
FROM bitwise

GO

Here is the result set:

225

(1 row(s) affected)

The binary representation of 170 (a_int_value or A, below) is 0000 0000 1010
1010. The binary representation of 75 (b_int_value or B, below) is 0000 0000
0100 1011. Performing the bitwise exclusive OR operation on these two values
produces the binary result 0000 0000 1110 0001, which is decimal 225.

(ANB)
0000 0000 1010 1010
0000 0000 0100 1011

0000 0000 1110 0001

See Also

Expressions
Operators (Bitwise Operators)

Transact-SQL Reference

~ (Bitwise NOT)

Performs a bitwise logical NOT operation for one given integer value as
translated to binary expressions within Transact-SQL statements.

Syntax

~ expression

Arguments
expression

Is any valid Microsoft® SQL Server™ expression of any of the data types of
the integer data type category, or of the binary or varbinary data type.
expression is an integer that is treated and transformed into a binary number
for the bitwise operation.

Result Types

Returns an int if the input values are int, a smallint if the input values are
smallint, a tinyint if the input values are tinyint, or a bit if the input values are
bit.

Remarks

The bitwise ~ operator performs a bitwise logical NOT for the expression, taking
each corresponding bit. The bits in the result are set to 1 if one bit (for the
current bit being resolved) in expression has a value of 0; otherwise, the bit in
the result is cleared to a value of 1.

The ~ bitwise operator can be used only on columns of the integer data type
category.

ImporTANT When performing any kind of bitwise operation, the storage length
of the expression used in the bitwise operation is important. It is recommended
that you use the same number of bytes when storing values. For example, storing
the decimal value of 5 as a tinyint, smallint, or int produces a value stored with

different numbers of bytes. tinyint stores data using 1 byte, smallint stores data
using 2 bytes, and int stores data using 4 bytes. Therefore, performing a bitwise
operation on an int decimal value can produce different results as compared to a
direct binary or hexidecimal translation, especially when the ~ (bitwise NOT)
operator is used. The bitwise NOT operation may occur on a variable of a shorter
length that, when converted to a longer data type variable, may not have the bits
in the upper 8 bits set to the expected value. It is recommended that you convert
the smaller data type variable to the larger data type, and then perform the NOT
operation on the result.

Examples

This example creates a table with int data types to show the values, and puts the
table into one row.

USE master

GO

IF EXISTS (SELECT * FROM INFORMATION_SCHEMA.TABLES

WHERE TABLE_NAME = 'bitwise")

DROP TABLE bitwise

GO

CREATE TABLE bitwise

(

a_int_value tinyint NOT NULL,

b_int_value tinyint NOT NULL

)

GO

INSERT bitwise VALUES (170, 75)

GO

This query performs the bitwise NOT on the a_int_value and b_int_value
columns.

USE MASTER
GO
SELECT ~ a_int_value, ~ b_int_value

FROM bitwise

Here is the result set:

(1 row(s) affected)

The binary representation of 170 (a_int_value or A, below) is 0000 0000 1010
1010. Performing the bitwise NOT operation on this value produces the binary
result 0000 0000 0101 0101, which is decimal 85.

(~A)
0000 0000 1010 1010

0000 0000 0101 0101

See Also

Expressions
Operators (Bitwise Operators)

Transact-SQL Reference

= (Equals)

Compares two expressions (a comparison operator). When you compare nonnull
expressions, the result is TRUE if both operands are equal; otherwise, the result
is FALSE. If either or both operands are NULL and SET ANSI_NULLS is set to
ON, the result is NULL. If SET ANSI_NULLS is set to OFF, the result is
FALSE if one of the operands is NULL, and TRUE if both operands are NULL.

Syntax

expression = expression

Arguments
expression

Is any valid Microsoft® SQL Server™ expression. Both expressions must
have implicitly convertible data types. The conversion depends on the rules
of data type precedence. For more information, see Data Type Precedence.

Result Types

Boolean

See Also

Data Types

Expressions
Operators (Comparison Operators)

Transact-SQL Reference

> (Greater Than)

Compares two expressions (a comparison operator). When you compare nonnull
expressions, the result is TRUE if the left operand has a higher value than the
right operand; otherwise, the result is FALSE. If either or both operands are
NULL and SET ANSI_NULLS is set to ON, the result is NULL. If SET
ANSI_NULLS is set to OFF, the result is FALSE if one of the operands is
NULL, and TRUE if both operands are NULL.

Syntax

expression > expression

Arguments
expression

Is any valid Microsoft® SQL Server™ expression. Both expressions must
have implicitly convertible data types. The conversion depends on the rules
of data type precedence. For more information, see Data Type Precedence.

Result Types

Boolean

See Also

Data Types

Expressions
Operators (Comparison Operators)

Transact-SQL Reference

< (Less Than)

Compares two expressions (a comparison operator). When you compare nonnull
expressions, the result is TRUE if the left operand has a lower value than the
right operand; otherwise, the result is FALSE. If either or both operands are
NULL and SET ANSI_NULLS is set to ON, the result is NULL. If SET
ANSI_NULLS is set to OFF, the result is FALSE if one of the operands is
NULL, and TRUE if both operands are NULL.

Syntax

expression < expression

Arguments
expression

Is any valid Microsoft® SQL Server™ expression. Both expressions must
have implicitly convertible data types. The conversion depends on the rules
of data type precedence. For more information, see Data Type Precedence.

Result Types

Boolean

See Also

Data Types

Expressions
Operators (Comparison Operators)

Transact-SQL Reference

>= (Greater Than or Equal To)

Compares two expressions (a comparison operator). When you compare nonnull
expressions, the result is TRUE if the left operand has a higher or equal value
than the right operand; otherwise, the result is FALSE. If either or both operands
are NULL and SET ANSI_NULLS is set to ON, the result is NULL. If SET
ANSI_NULLS is set to OFF, the result is FALSE if one of the operands is
NULL, and TRUE if both operands are NULL.

Syntax

expression > = expression

Arguments
expression

Is any valid Microsoft® SQL Server™ expression. Both expressions must
have implicitly convertible data types. The conversion depends on the rules
of data type precedence. For more information, see Data Type Precedence.

Result Types

Boolean

See Also

Data Types

Expressions
Operators (Comparison Operators)

Transact-SQL Reference

<= (Less Than or Equal To)

Compares two expressions (a comparison operator). When you compare nonnull
expressions, the result is TRUE if the left operand has a lower or equal value
than the right operand; otherwise, the result is FALSE. If either or both operands
are NULL and SET ANSI_NULLS is set to ON, the result is NULL. If SET
ANSI_NULLS is set to OFF, the result is FALSE if one of the operands is
NULL, and TRUE if both operands are NULL.

Syntax

expression = < expression

Arguments
expression

Is any valid Microsoft® SQL Server™ expression. Both expressions must
have implicitly convertible data types. The conversion depends on the rules
of data type precedence. For more information, see Data Type Precedence.

Result Types

Boolean

See Also

Data Types

Expressions
Operators (Comparison Operators)

Transact-SQL Reference

<> (Not Equal To)

Compares two expressions (a comparison operator). When you compare nonnull
expressions, the result is TRUE if the left operand is not equal to the right
operand; otherwise, the result is FALSE. If either or both operands are NULL
and SET ANSI_NULLS is set to ON, the result is NULL. If SET ANSI_NULLS
is set to OFF, the result is FALSE if one of the operands is NULL, and TRUE if
both operands are NULL.

Syntax

expression < > expression

Arguments
expression

Is any valid Microsoft® SQL Server™ expression. Both expressions must
have implicitly convertible data types. The conversion depends on the rules
of data type precedence. For more information, see Data Type Precedence.

Result Types

Boolean

See Also

Data Types

Expressions
Operators (Comparison Operators)

Transact-SQL Reference

1< (Not Less Than)

Compares two expressions (a comparison operator). When you compare nonnull
expressions, the result is TRUE if the left operand does not have a lower value
than the right operand; otherwise, the result is FALSE. If either or both operands
are NULL and SET ANSI_NULLS is set to ON, the result is NULL. If SET
ANSI_NULLS is set to OFF, the result is FALSE if one of the operands is
NULL, and TRUE if both operands are NULL.

Syntax

expression ! < expression

Arguments
expression

Is any valid Microsoft® SQL Server™ expression. Both expressions must
have implicitly convertible data types. The conversion depends on the rules
of data type precedence. For more information, see Data Type Precedence.

Result Types

Boolean

See Also

Data Types

Expressions
Operators (Comparison Operators)

Transact-SQL Reference

1= (Not Equal To)

Tests whether one expression is not equal to another expression (a comparison
operator). Functions the same as the Not Equal To (<>) comparison operator.

See Also

Expressions
<> (Not Equal To)

Operators (Comparison Operators)

Transact-SQL Reference

!> (Not Greater Than)

Compares two expressions (a comparison operator). When you compare nonnull
expressions, the result is TRUE if the left operand does not have a higher value
than the right operand; otherwise, the result is FALSE. If either or both operands
are NULL and SET ANSI_NULLS is set to ON, the result is NULL. If SET
ANSI_NULLS is set to OFF, the result is FALSE if one of the operands is
NULL, and TRUE if both operands are NULL.

Syntax

expression ! > expression

Arguments
expression

Is any valid Microsoft® SQL Server™ expression. Both expressions must
have implicitly convertible data types. The conversion depends on the rules
of data type precedence. For more information, see Data Type Precedence.

Result Types

Boolean

See Also

Data Types

Expressions
Operators (Comparison Operators)

Transact-SQL Reference

-- (Comment)

Indicates user-provided text. Comments can be inserted on a separate line, nested
(-- only) at the end of a Transact-SQL command line, or within a Transact-SQL
statement. The comment is not evaluated by the server. Two hyphens (--) is the
SQL-92 standard indicator for comments.

Syntax

-- text_of_comment

Arguments
text_of_comment

Is the character string containing the text of the comment.

Remarks

Use -- for single-line or nested comments. Comments inserted with -- are
delimited by the newline character.

There is no maximum length for comments.

Note Including a GO command within a comment generates an error message.

Examples

This example uses the -- commenting characters.

-- Choose the pubs database.

USE pubs

-- Choose all columns and all rows from the titles table.

SELECT *

FROM titles

ORDER BY title_id ASC -- We don't have to specify ASC because tha
-- is the default.

See Also

[*...*%/ (Comment

Control-of-Flow Language
Using Comments

JavaScript:hhobj_1.Click()

Transact-SQL Reference

/*...*/ (Comment)

Indicates user-provided text. The text between the /* and */ commenting
characters is not evaluated by the server.

Syntax

/ * text_of_comment * /

Arguments
text_of_comment

Is the character string(s) containing the text of the comment.

Remarks

Comments can be inserted on a separate line or within a Transact-SQL
statement. Multiple-line comments must be indicated by /* and */. A stylistic
convention often used for multiple-line comments is to begin the first line with
/*, subsequent lines with **, and end with */.

There is no maximum length for comments.

Note Including a GO command within a comment generates an error message.

Examples

This example uses comments to document and test the behavior during different
phases of development for a trigger. In this example, parts of the trigger are
commented out to narrow down problems and test only one of the conditions.
Both styles of comments are used; SQL-92 style (--) comments are shown both
alone and nested.

Note The following CREATE TRIGGER statement fails because a trigger
named employee_insupd already exists in the pubs database.

CREATE TRIGGER employee_insupd
/>I<

Because CHECK constraints can only reference the column(s)
on which the column- or table-level constraint has

been defined, any cross-table constraints (in this case,
business rules) need to be defined as triggers.

Employee job_lvls (on which salaries are based) should be within
the range defined for their job. To get the appropriate range,

the jobs table needs to be referenced. This trigger will be

invoked for INSERT and UPDATES only.

*/

ON employee

FOR INSERT, UPDATE

AS

/* Get the range of level for this job type from the jobs table. */

DECLARE @min_lvl tinyint, -- Minimum level var. declaration
@max_lvl tinyint, -- Maximum level var. declaration
@emp_lvl tinyint, -- Employee level var. declaration
@job_id smallint -- Job ID var. declaration

SELECT @min_lvl = min_lvl, -- Set the minimum level
@max_lvl = max_lvl, -- Set the maximum level
@emp_lvl =i.job_lvl, -- Set the proposed employee level
@job_id = i.job_id -- Set the Job ID for comparison

FROM employee e, jobs j, inserted i
WHERE e.emp_id = i.emp_id AND i.job_id = j.job_id
IF (@job_id = 1) and (@emp_lvl <> 10)
BEGIN
RAISERROR ('Job id 1 expects the default level of 10., 16, 1)
ROLLBACK TRANSACTION
END
/* Only want to test first condition. Remaining ELSE is commented ou
-- Comments within this section are unaffected by this commenting sty
ELSE
IF NOT (@emp_Ilvl BETWEEN @min_Ilvl AND @max_lvl) -- Check

BEGIN
RAISERROR ('The level for job_id:%d should be between %d and
16, 1, @job_id, @min_lvl, @max_Ivl)
ROLLBACK TRANSACTION
END
*/
GO

See Also

-- (Comment)

Control-of-Flow Language

Using Comments

JavaScript:hhobj_1.Click()

Transact-SQL Reference

[1 (Wildcard - Character(s) to Match)

Matches any single character within the specified range or set that is specified
inside the square brackets.

See Also

LIKE

Transact-SQL Reference

[A] (Wildcard - Character(s) Not to Match)

Matches any single character not within the specified range or set that is
specified inside the square brackets.

See Also

LIKE

Transact-SQL Reference

_ (Wildcard - Match One Character)

Matches any single character, and can be used as either a prefix or suffix.

See Also

LIKE

Transact-SQL Reference

@@CONNECTIONS

Returns the number of connections, or attempted connections, since Microsoft®
SQL Server™ was last started.

Syntax
@@CONNECTIONS

Return Types

integer

Remarks

Connections are different from users. Applications, for example, can open
multiple connections to SQL Server without the user observing the connections.

To display a report containing several SQL Server statistics, including
connection attempts, run sp_monitor.

Examples

This example shows the number of login attempts as of the current date and
time.

SELECT GETDATE() AS "Today's Date and Time',
@@CONNECTIONS AS 'Login Attempts'
Here is the result set:

Today's Date and Time Login Attempts

1998-04-09 14:28:46.940 18

See Also

Configuration Functions

Sp_monitor

Transact-SQL Reference

@@CPU_BUSY

Returns the time in milliseconds (based on the resolution of the system timer)
that the CPU has spent working since Microsoft® SQL Server™ was last started.

Syntax
@@CPU_BUSY

Return Types

integer

Remarks

To display a report containing several SQL Server statistics, including CPU
activity, run sp_monitor.

Examples

This example shows SQL Server CPU activity as of the current date and time.

SELECT @@CPU_BUSY AS 'CPU ms', GETDATE() AS 'As of'

Here is the result set:

20 1998-04-18 14:43:08.180

See Also

@@IDLE
@@I10_BUSY

Sp_monitor

System Statistical Functions

Transact-SQL Reference

@@CURSOR_ROWS

Returns the number of qualifying rows currently in the last cursor opened on the
connection. To improve performance, Microsoft® SQL Server™ can populate
large keyset and static cursors asynchronously. @ @CURSOR_ROWS can be
called to determine that the number of the rows that qualify for a cursor are
retrieved at the time @ @CURSOR_ROWS is called.

Return value Description

-m The cursor is populated asynchronously. The value
returned (-m) is the number of rows currently in the
keyset.

-1 The cursor is dynamic. Because dynamic cursors reflect

all changes, the number of rows that qualify for the cursor
is constantly changing. It can never be definitely stated
that all qualified rows have been retrieved.

0 No cursors have been opened, no rows qualified for the
last opened cursor, or the last-opened cursor is closed or
deallocated.

n The cursor is fully populated. The value returned (n) is the

total number of rows in the cursor.

Syntax
@@CURSOR_ROWS

Return Types

integer

Remarks

The number returned by @ @CURSOR_ROWS is negative if the last cursor was
opened asynchronously. Keyset-driver or static cursors are opened
asynchronously if the value for sp_configure cursor threshold is greater than 0,
and the number of rows in the cursor result set is greater than the cursor

threshold.

Examples

This example declares a cursor and uses SELECT to display the value of
@@CURSOR_ROWS. The setting has a value of 0 before the cursor is opened,
and a value of -1 to indicate that the cursor keyset is populated asynchronously.

SELECT @@CURSOR_ROWS
DECLARE authors_cursor CURSOR FOR
SELECT au_Iname FROM authors

OPEN authors_cursor

FETCH NEXT FROM authors_cursor
SELECT @@CURSOR_ROWS

CLOSE authors_cursor

DEALLOCATE authors_cursor

(1 row(s) affected)

au_lname

(1 row(s) affected)

See Also

Asynchronous Population

Cursor Functions

OPEN

JavaScript:hhobj_1.Click()

Transact-SQL Reference

@@DATEFIRST

Returns the current value of the SET DATEFIRST parameter, which indicates
the specified first day of each week: 1 for Monday, 2 for Wednesday, and so on
through 7 for Sunday.

Syntax
@@DATEFIRST

Return Types

tinyint

Remarks

The U.S. English default is 7, Sunday.

Examples

This example sets the first day of the week to 5 (Friday), and assumes the current
day to be Saturday. The SELECT statement returns the DATEFIRST value and
the number of the current day of the week.

SET DATEFIRST 5
SELECT @@DATEFIRST AS '1st Day', DATEPART(dw, GETDATE;

Here is the result set. Counting from Friday, today (Saturday) is day 2.
1st Day Today

See Also

DATEPART

Configuration Functions

SET DATEFIRST

Transact-SQL Reference

@@DBTS

Returns the value of the current timestamp data type for the current database.
This timestamp is guaranteed to be unique in the database.

Syntax
@@DBTS

Return Types

varbinary

Remarks

@@DBTS returns the current database's last-used timestamp value. A new
timestamp value is generated when a row with a timestamp column is inserted
or updated.

Examples

This example returns the current timestamp from the pubs database.

USE pubs
SELECT @@DBTS

See Also

Configuration Functions

Cursor Concurrency

Data Types

JavaScript:hhobj_1.Click()

Transact-SQL Reference

@@ERROR

Returns the error number for the last Transact-SQL statement executed.

Syntax
@@ERROR

Return Types

integer

Remarks

When Microsoft® SQL Server™ completes the execution of a Transact-SQL
statement, @@ERROR is set to 0 if the statement executed successfully. If an
error occurs, an error message is returned. @ @ERROR returns the number of
the error message until another Transact-SQL statement is executed. You can
view the text associated with an @@ERROR error number in the sysmessages
system table.

Because @@ERROR is cleared and reset on each statement executed, check it
immediately following the statement validated, or save it to a local variable that
can be checked later.

Examples

A. Use @@ERROR to detect a specific error

This example uses @@ERROR to check for a check constraint violation (error
#547) in an UPDATE statement.

USE pubs

GO

UPDATE authors SET au_id ='172 32 1176
WHERE au_id = "172-32-1176"

IF @@ERROR = 547
print "A check constraint violation occurred"

B. Use @@ERROR to conditionally exit a procedure

The IF...ELSE statements in this example test @ @ERROR after an INSERT
statement in a stored procedure. The value of the @@ERROR variable
determines the return code sent to the calling program, indicating success or
failure of the procedure.

USE pubs
GO

-- Create the procedure.

CREATE PROCEDURE add_author

@au_id varchar(11),@au_Iname varchar(40),

@au_fname varchar(20),@phone char(12),

@address varchar(40) = NULL,@city varchar(20) = NULL,
@state char(2) = NULL,@zip char(5) = NULL,

@contract bit = NULL

AS

-- Execute the INSERT statement.

INSERT INTO authors

(au_id, au_lname, au_fname, phone, address,

city, state, zip, contract) values
(@au_id,@au_lname,@au_fname,@phone,@address,

@city,@state,@zip,@contract)

-- Test the error value.
IF @@ERROR <> 0
BEGIN
-- Return 99 to the calling program to indicate failure.
PRINT "An error occurred loading the new author information"

RETURN(99)

END

ELSE

BEGIN
-- Return 0 to the calling program to indicate success.
PRINT "The new author information has been loaded"
RETURN(0)

END

GO

C. Use @@ERROR to check the success of several statements

This example depends on the successful operation of the INSERT and DELETE
statements. Local variables are set to the value of @@ERROR after both
statements and are used in a shared error-handling routine for the operation.

USE pubs

GO

DECLARE @del_error int, @ins_error int
-- Start a transaction.

BEGIN TRAN

-- Execute the DELETE statement.
DELETE authors
WHERE au_id = '409-56-7088'

-- Set a variable to the error value for
-- the DELETE statement.
SELECT @del_error = @ @ERROR

-- Execute the INSERT statement.

INSERT authors
VALUES('409-56-7008', 'Bennet', 'Abraham’, '415 658-9932',
'6223 Bateman St.', 'Berkeley', 'CA’, '94705', 1)

-- Set a variable to the error value for
-- the INSERT statement.
SELECT @ins_error = @ @ERROR

-- Test the error values.
IF @del_error = 0 AND @ins_error =0
BEGIN
-- Success. Commit the transaction.
PRINT "The author information has been replaced"
COMMIT TRAN
END
ELSE
BEGIN
-- An error occurred. Indicate which operation(s) failed
-- and roll back the transaction.
IF @del_error <> 0
PRINT "An error occurred during execution of the DELETE
statement."

IF @ins_error <> 0
PRINT "An error occurred during execution of the INSERT
statement."

ROLLBACK TRAN
END
GO

D. Use @@ERROR with @@ROWCOUNT

This example uses @@ERROR with @@ROWCOUNT to validate the
operation of an UPDATE statement. The value of @@ERROR is checked for
any indication of an error, and @@ROWCOUNT is used to ensure that the
update was successfully applied to a row in the table.

USE pubs

GO

CREATE PROCEDURE change_publisher
@title_id tid,

@new_pub_id char(4)

AS

-- Declare variables used in error checking.
DECLARE @error_var int, @rowcount_var int

-- Execute the UPDATE statement.
UPDATE titles SET pub_id = @new_pub_id
WHERE title_id = @title_id

-- Save the @@ERROR and @ @ROWCOUNT values in local
-- variables before they are cleared.
SELECT @error_var = @ @ERROR, @rowcount_var = @@ROWCQC

-- Check for errors. If an invalid @new_pub_id was specified
-- the UPDATE statement returns a foreign-key violation error #547.
IF @error_var <> 0
BEGIN
IF @error_var = 547
BEGIN
PRINT "ERROR: Invalid ID specified for new publisher"
RETURN(1)
END
ELSE
BEGIN
PRINT "ERROR: Unhandled error occurred"
RETURN(2)
END
END

-- Check the rowcount. @rowcount_var is set to 0

-- if an invalid @title_id was specified.

IF @rowcount_var =0

BEGIN
PRINT "Warning: The title_id specified is not valid"
RETURN(1)

END

ELSE

BEGIN
PRINT "The book has been updated with the new publisher"
RETURN(0)

END

GO

See Also

Error Handling
@@ROWCOUNT

SET @local_variable

sysimessages

System Functions

JavaScript:hhobj_1.Click()

Transact-SQL Reference

@@FETCH_STATUS

Returns the status of the last cursor FETCH statement issued against any cursor
currently opened by the connection.

Return value Description

0 FETCH statement was successful.

-1 FETCH statement failed or the row was beyond the
result set.

-2 Row fetched is missing.

Syntax

@@FETCH_STATUS

Return Types

integer

Remarks

Because @@FETCH_STATUS is global to all cursors on a connection, use
@@FETCH_STATUS carefully. After a FETCH statement is executed, the test
for @@FETCH_STATUS must occur before any other FETCH statement is
executed against another cursor. The value of @ @FETCH_STATUS is
undefined before any fetches have occurred on the connection.

For example, a user executes a FETCH statement from one cursor, and then calls
a stored procedure that opens and processes the results from another cursor.
When control is returned from the called stored procedure,
@@FETCH_STATUS reflects the last FETCH executed in the stored procedure,
not the FETCH statement executed before the stored procedure is called.

Examples

This example uses @@FETCH_STATUS to control cursor activities in a
WHILE loop.

DECLARE Employee_Cursor CURSOR FOR
SELECT LastName, FirstName FROM Northwind.dbo.Employees
OPEN Employee_Cursor
FETCH NEXT FROM Employee_Cursor
WHILE @@FETCH_STATUS =0
BEGIN
FETCH NEXT FROM Employee_Cursor
END
CLOSE Employee_Cursor
DEALLOCATE Employee_Cursor

See Also

Cursor Functions

FETCH

Transact-SQL Reference

@@IDENTITY

Returns the last-inserted identity value.

Syntax
@@IDENTITY

Return Types

numeric

Remarks

After an INSERT, SELECT INTO, or bulk copy statement completes,
@@IDENTITY contains the last identity value generated by the statement. If the
statement did not affect any tables with identity columns, @ @IDENTITY
returns NULL. If multiple rows are inserted, generating multiple identity values,
@@IDENTITY returns the last identity value generated. If the statement fires
one or more triggers that perform inserts that generate identity values, calling
@@IDENTITY immediately after the statement returns the last identity value
generated by the triggers. The @ @IDENTITY value does not revert to a
previous setting if the INSERT or SELECT INTO statement or bulk copy fails,
or if the transaction is rolled back.

@@IDENTITY, SCOPE_IDENTITY, and IDENT_CURRENT are similar

functions in that they return the last value inserted into the IDENTITY column
of a table.

@@IDENTITY and SCOPE_IDENTITY will return the last identity value
generated in any table in the current session. However, SCOPE_IDENTITY
returns the value only within the current scope; @@IDENTITY is not limited to
a specific scope.

IDENT_CURRENT is not limited by scope and session; it is limited to a
specified table. IDENT_CURRENT returns the identity value generated for a
specific table in any session and any scope. For more information, see
IDENT_CURRENT.

Examples

This example inserts a row into a table with an identity column and uses
@@IDENTITY to display the identity value used in the new row.

INSERT INTO jobs (job_desc,min_lvl,max_lvl)
VALUES ('Accountant’,12,125)
SELECT @@IDENTITY AS 'Identity’

See Also

CREATE TABLE
IDENT_CURRENT
INSERT
SCOPE_IDENTITY
SELECT

System Functions

Transact-SQL Reference

@@IDLE

Returns the time in milliseconds (based on the resolution of the system timer)
that Microsoft® SQL Server™ has been idle since last started.

Syntax
@@IDLE

Return Types

integer

Remarks

To display a report containing several SQL Server statistics, run sp_monitor.

Examples

This example shows the number of milliseconds SQL Server was idle between
the start time and the current time.

SELECT @@IDLE AS 'Idle ms', GETDATE() AS 'As of'

Here is the result set:

Idle Ms As of
277593 1998-04-18 16:41:07.160
See Also

@@CPU_BUSY

sp_monitor
@@I1O0_BUSY

System Statistical Functions

Transact-SQL Reference

@@I0_BUSY

Returns the time in milliseconds (based on the resolution of the system timer)
that Microsoft® SQL Server™ has spent performing input and output operations
since it was last started.

Syntax
@@10_BUSY

Return Types

integer

Remarks

To display a report containing several SQL Server statistics, run sp_monitor.

Examples

This example shows the number of milliseconds SQL Server has spent
performing input/output operations between start time and the current time.

SELECT @@10_BUSY AS 'O ms', GETDATE() AS 'As of’

Here is the result set:

10 ms As of
31 1998-04-18 16:49:49.650
See Also

@@CPU_BUSY

Sp_monitor

System Statistical Functions

Transact-SQL Reference

@@LANGID

Returns the local language identifier (ID) of the language currently in use.

Syntax
@@LANGID

Return Types

smallint

Remarks

To view information about language settings (including language ID numbers),
run sp_helplanguage with no parameter specified.

Examples

This example sets the language for the current session to Italian, and then uses
@@LANGID to return the ID for Italian.

SET LANGUAGE 'Ttalian'
SELECT @@LANGID AS 'Language ID'

Here is the result set:

Language ID

See Also

Configuration Functions

SET LANGUAGE

sp_helplanguage

Transact-SQL Reference

@@LANGUAGE

Returns the name of the language currently in use.

Syntax
@@LANGUAGE

Return Types

nvarchar

Remarks

To view information about language settings (including valid official language
names), run sp_helplanguage with no parameter specified.

Examples

This example returns the language for the current session.

SELECT @@LANGUAGE AS 'Language Name'

Here is the result set:

Language Name

us_english

See Also

Configuration Functions

SET LANGUAGE

sp_helplanguage

Transact-SQL Reference

@@LOCK_TIMEOUT

Returns the current lock time-out setting, in milliseconds, for the current session.

Syntax
@@LOCK_TIMEOUT

Return Types

integer

Remarks

SET LOCK_TIMEOUT allows an application to set the maximum time that a
statement waits on a blocked resource. When a statement has waited longer than
the LOCK_TIMEOUT setting, the blocked statement is automatically canceled,
and an error message is returned to the application.

At the beginning of a connection, @ @LOCK_TIMEOUT returns a value of -1.

Examples

This example shows the result set when a LOCK_TIMEOUT value is not set.
SELECT @@LOCK_TIMEOUT

Here is the result set:

This example sets LOCK_TIMEOUT to 1800 milliseconds, and then calls
@@LOCK_TIMEOUT.

SET LOCK_TIMEOUT 1800
SELECT @@LOCK_TIMEOUT

Here is the result set:

See Also

Configuration Functions

Customizing the L.ock Time-out
SET LOCK_TIMEOUT

JavaScript:hhobj_1.Click()

Transact-SQL Reference

@@MAX_CONNECTIONS

Returns the maximum number of simultaneous user connections allowed on a
Microsoft® SQL Server™., The number returned is not necessarily the number
currently configured.

Syntax
@@MAX_CONNECTIONS

Return Types

integer

Remarks

The actual number of user connections allowed also depends on the version of
SQL Server installed and the limitations of your application(s) and hardware.

To reconfigure SQL Server for fewer connections, use sp_configure.

Examples

This example assumes that SQL Server has not been reconfigured for fewer user
connections.

SELECT @@MAX_CONNECTIONS

Here is the result set:

See Also

sp_configure

Configuration Functions

user connections Option

JavaScript:hhobj_1.Click()

Transact-SQL Reference

@@MAX_PRECISION

Returns the precision level used by decimal and numeric data types as currently
set in the server.

Syntax
@@MAX_PRECISION

Return Types

tinyint

Remarks

By default, the maximum precision returns 38.

Examples
SELECT @@MAX_PRECISION

See Also

Configuration Functions

decimal and numeric

Precision, Scale, and Length

Transact-SQL Reference

@@NESTLEVEL

Returns the nesting level of the current stored procedure execution (initially 0).

Syntax
@@NESTLEVEL

Return Types

integer

Remarks

Each time a stored procedure calls another stored procedure, the nesting level is
incremented. When the maximum of 32 is exceeded, the transaction is
terminated.

Examples

This example creates two procedures: one that calls the other, and one that
displays the @@NESTLEVEL setting of each.

CREATE PROCEDURE innerproc as
select @@NESTLEVEL AS 'Inner Level'
GO

CREATE PROCEDURE outerproc as
select @@NESTLEVEL AS 'Outer Level'

EXEC innerproc
GO

EXECUTE outerproc
GO

Here is the result set:

Outer Level

See Also

Configuration Functions

Creating a Stored Procedure

@@TRANCOUNT

JavaScript:hhobj_1.Click()

Transact-SQL Reference

@@OPTIONS

Returns information about current SET options.

Syntax
@@OPTIONS

Return Types

integer

Remarks

SET options can be modified as a whole by using the sp_configure user options
configuration option. Each user has an @@OPTIONS function that represents
the configuration. When first logging on, all users are assigned a default
configuration set by the system administrator.

You can change the language and query-processing options by using the SET
statement.

Examples

This example sets NOCOUNT ON and then tests the value of @@OPTIONS.
The NOCOUNT ON option prevents the message about the number of rows
affected from being sent back to the requesting client for every statement in a
session. The value of @@OPTIONS is set to 512 (0x0200), which represents the
NOCOUNT option. This example tests whether the NOCOUNT option is
enabled on the client. For example, it can help track performance differences on
a client.

SET NOCOUNT ON
IF @@OPTIONS & 512 >0
RAISERROR ('Current user has SET NOCOUNT turned on.',1,1)

See Also

Configuration Functions

sp_configure
user options Option

JavaScript:hhobj_1.Click()

Transact-SQL Reference

@@PACK_RECEIVED

Returns the number of input packets read from the network by Microsoft® SQL
Server™ since last started.

Syntax
@@PACK_RECEIVED

Return Types

integer

Remarks

To display a report containing several SQL Server statistics, including packets
sent and received, run sp_monitor.

Examples
SELECT @@PACK_RECEIVED

See Also

@@PACK_SENT

Sp_monitor

System Statistical Functions

Transact-SQL Reference

@@PACK_SENT

Returns the number of output packets written to the network by Microsoft® SQL
Server™ since last started.

Syntax
@@PACK_SENT

Return Types

integer

Remarks

To display a report containing several SQL Server statistics, including packets
sent and received, run sp_monitor.

Examples
SELECT @@PACK_SENT

See Also

@@PACK_RECEIVED

Sp_monitor

System Statistical Functions

Transact-SQL Reference

@@PACKET_ERRORS

Returns the number of network packet errors that have occurred on Microsoft®
SQL Server™ connections since SQL Server was last started.

Syntax
@@PACKET_ERRORS

Return Types

integer

Remarks

To display a report containing several SQL Server statistics, including packet
eITors, run Sp_monitor.

Examples
SELECT @@PACKET_ERRORS
See Also

@@PACK_RECEIVED
@@PACK_SENT

Sp_monitor

System Statistical Functions

Transact-SQL Reference

@@PROCID

Returns the stored procedure identifier (ID) of the current procedure.

Syntax
@@PROCID

Return Types

integer

Examples

This example creates a procedure that uses SELECT to display the @ @PROCID
setting from inside the procedure.

CREATE PROCEDURE testprocedure AS
SELECT @@PROCID AS 'ProcID’

GO

EXEC testprocedure

GO

See Also

CREATE PROCEDURE

Metadata Functions

Transact-SQL Reference

@@REMSERVER

Returns the name of the remote Microsoft® SQL Server™ database server as it
appears in the login record.

Syntax
@@REMSERVER

Return Types
nvarchar(256)

Remarks

@@REMSERVER enables a stored procedure to check the name of the database
server from which the procedure is run.

Examples

This example creates a procedure, check_server, that returns the name of the
remote server.

CREATE PROCEDURE check_server
AS
SELECT @@REMSERVER

The stored procedure is created on SEATTLE], the local server. The user logs
on to a remote server, LONDON?2, and runs check_server.

exec SEATTLEI1...check_server

Here is the result set:

LONDON2

See Also

Configuration Functions

Configuring Remote Servers

JavaScript:hhobj_1.Click()

Transact-SQL Reference

@@ROWCOUNT

Returns the number of rows affected by the last statement.

Syntax
@@ROWCOUNT

Return Types

integer

Remarks

This variable is set to 0 by any statement that does not return rows, such as an IF
statement.

Examples

This example executes UPDATE and uses @ @ROWCOUNT to detect if any
rows were changed.

UPDATE authors SET au_Iname = 'Jones'
WHERE au_id ='999-888-7777'
IF @@ROWCOUNT =0

print 'Warning: No rows were updated'

See Also

@@ERROR

System Functions

Transact-SQL Reference

@@SERVERNAME

Returns the name of the local server running Microsoft® SQL Server™.,

Syntax
@@SERVERNAME

Return Types

nvarchar

Remarks

SQL Server Setup sets the server name to the computer name during installation.
Change @ @SERVERNAME by using sp_addserver and then restarting SQL
Server. This method, however, is not usually required.

With multiple instances of SQL Server installed, @ @SERVERNAME returns
the following local server name information if the local server name has not
been changed since setup.

Instance Server information

Default instance 'servername’

Named instance 'servername\instancename'
Virtual server - default instance 'virtualservername'

Virtual server - named instance 'Virtualservername\instancename'

Although the @@SERVERNAME function and the SERVERNAME property of
SERVERPROPERTY function may return strings with similar formats, the
information can be different. The SERVERNAME property automatically
reports changes in the network name of the computer.

In contrast, @ @SERVERNAME does not report such changes.
@@SERVERNAME reports changes made to the local server name using the
sp_addserver or sp_dropserver stored procedure.

Examples

SELECT @ @SERVERNAME

See Also

Configuration Functions

SERVERPROPERTY

sp_addserver

Transact-SQL Reference

@@SERVICENAME

Returns the name of the registry key under which Microsoft® SQL Server™ is
running. @ @SERVICENAME returns MSSQLServer if the current instance is
the default instance; this function returns the instance name if the current
instance is a named instance.

Syntax
@@SERVICENAME

Return Types

nvarchar

Remarks

SQL Server runs as a service named MSSQLServer on Microsoft Windows
NT®. It does not run as a service on Windows® 95/98 because the operating
system does not support services.

Examples
SELECT @@SERVICENAME

Here is the result set:

MSSQLServer

See Also

Configuration Functions

MSSQLServer Service

JavaScript:hhobj_1.Click()

Transact-SQL Reference

@@SPID

Returns the server process identifier (ID) of the current user process.

Syntax
@@SPID

Return Types

smallint

Remarks

@@SPID can be used to identify the current user process in the output of
sp_who.

Examples

This example returns the process ID, login name, and user name for the current
user process.

SELECT @@SPID AS 'ID', SYSTEM_USER AS 'Login Name', USE

Here is the result set:

ID Login Name User Name

See Also

Configuration Functions

sp_lock
sp_who

Transact-SQL Reference

@@TEXTSIZE

Returns the current value of the TEXTSIZE option of the SET statement, which
specifies the maximum length, in bytes, of text or image data that a SELECT
statement returns.

Syntax
@@TEXTSIZE

Return Types

integer

Remarks

The default size is 4096 bytes.

Examples

This example uses SELECT to display the @ @TEXTSIZE value before and
after it is changed with the SET TEXTSIZE statement.

SELECT @@TEXTSIZE
SET TEXTSIZE 2048
SELECT @@TEXTSIZE

Here is the result set:

See Also

Configuration Functions

SET TEXTSIZE

Transact-SQL Reference

@@TIMETICKS

Returns the number of microseconds per tick.

Syntax
@@TIMETICKS

Return Types

integer

Remarks

The amount of time per tick is computer-dependent. Each tick on the operating
system is 31.25 milliseconds, or one thirty-second of a second.

Examples

SELECT @@TIMETICKS

See Also

System Statistical Functions

Transact-SQL Reference

@@TOTAL_ERRORS

Returns the number of disk read/write errors encountered by Microsoft® SQL
Server™ since last started.

Syntax
@@TOTAL_ERRORS

Return Types

integer

Remarks

To display a report containing several SQL Server statistics, including total
number of errors, run sp_monitor.

Examples

This example shows the number of errors encountered by SQL Server as of the
current date and time.

SELECT @@TOTAL_ERRORS AS 'Errors', GETDATE() AS 'As of’

Here is the result set:

Errors As of

0 1998-04-21 22:07:30.013

See Also

Sp_monitor

System Statistical Functions

Transact-SQL Reference

@@TOTAL_READ

Returns the number of disk reads (not cache reads) by Microsoft® SQL Server™
since last started.

Syntax
@@TOTAL_READ

Return Types

integer

Remarks

To display a report containing several SQL Server statistics, including read and
write activity, run sp_monitor.

Examples

This example shows the total number of disk read and writes as of the current
date and time.

SELECT @@TOTAL_READ AS 'Reads’, @@TOTAL_WRITE AS 'V

Here is the result set:

Reads Writes As of

978 124 1998-04-21 22:14:22.37

See Also

Sp_monitor

System Statistical Functions

@@TOTAL_WRITE

Transact-SQL Reference

@@TOTAL_WRITE

Returns the number of disk writes by Microsoft® SQL Server™ since last
started.

Syntax
@@TOTAL_WRITE

Return Types

integer

Remarks

To display a report containing several SQL Server statistics, including read and
write activity, run sp_monitor.

Examples

This example shows the total number of disk reads and writes as of the current
date and time.

SELECT @@TOTAL_READ AS 'Reads’, @@TOTAL_WRITE AS 'V

Here is the result set:

Reads Writes As of

978 124 1998-04-21 22:14:22.37

See Also

Sp_monitor

System Statistical Functions

@@TOTAL_READ

Transact-SQL Reference

@@TRANCOUNT

Returns the number of active transactions for the current connection.

Syntax
@@TRANCOUNT

Return Types

integer

Remarks

The BEGIN TRANSACTION statement increments @ @TRANCOUNT by 1.
ROLLBACK TRANSACTION decrements @ @TRANCOUNT to 0, except for
ROLLBACK TRANSACTION savepoint_name, which does not affect
@@TRANCOUNT. COMMIT TRANSACTION or COMMIT WORK
decrement @@TRANCOUNT by 1.

Examples

This example uses @@TRANCOUNT to test for open transactions that should
be committed.

BEGIN TRANSACTION
UPDATE authors SET au_lname = upper(au_Ilname)
WHERE au_Iname = "White'
IF @@ROWCOUNT = 2
COMMIT TRAN

IF @@TRANCOUNT > 0

BEGIN
PRINT 'A transaction needs to be rolled back’
ROLLBACK TRAN

END

See Also

BEGIN TRANSACTION
COMMIT TRANSACTION
ROLLBACK TRANSACTION

System Functions

Transact-SQL Reference

@@VERSION

Returns the date, version, and processor type for the current installation of
Microsoft® SQL Server™,

Syntax
@@VERSION

Return Types

nvarchar

Remarks

The information returned by @@VERSION is similar to the product name,
version, platform, and file data returned by the xp_msver stored procedure,
which provides more detailed information.

Examples

This example returns the date, version, and processor type for the current
installation.

SELECT @@VERSION

See Also

Configuration Functions

Xp_msver

Transact-SQL Reference

ABS

Returns the absolute, positive value of the given numeric expression.

Syntax

ABS (numeric_expression)

Arguments
numeric_expression

Is an expression of the exact numeric or approximate numeric data type
category, except for the bit data type.

Return Types

Returns the same type as numeric_expression.

Examples

This example shows the effect of the ABS function on three different numbers.

SELECT ABS(-1.0), ABS(0.0), ABS(1.0)

Here is the result set:

The ABS function can produce an overflow error, for example:

SELECT ABS(convert(int, -2147483648))

Here is the error message:

Server: Msg 8115, Level 16, State 2
Arithmetic overflow error converting expression to type int.

See Also

CAST and CONVERT

Data Types

Mathematical Functions

Transact-SQL Reference

ACOS

Returns the angle, in radians, whose cosine is the given float expression; also
called arccosine.

Syntax
ACOS (float_expression)

Arguments
float_expression

Is an expression of the type float or real, with a value from -1 through 1.
Values outside this range return NULL and report a domain error.

Return Types
float

Examples

This example returns the ACOS of the given angle.

SET NOCOUNT OFF

DECLARE @angle float

SET @angle = -1

SELECT 'The ACOS of the angle is: ' + CONVERT (varchar, ACOS((@

Here is the result set:

The ACOS of the angle is: 3.14159

(1 row(s) affected)

This example sets @angle to a value outside the valid range.

SET NOCOUNT OFF

DECLARE @angle float

SET @angle = 1.01

SELECT 'The ACOS of the angle is: ' + CONVERT (varchar, ACOS((@

Here is the result set:

(1 row(s) affected)
A domain error occurred.

See Also

Mathematical Functions

Transact-SQL Reference

ALL

Compares a scalar value with a single-column set of values.

Syntax

scalar_expression { = | <>|1=|>|>=|!>|<|<=|!< } ALL (subquery)

Arguments
scalar_expression
Is any valid Microsoft® SQL Server™ expression.
(=1 1= >|>=| > | <| <= 1<}
Is a comparison operator.
subquery

Is a subquery that returns a result set of one column. The data type of the
returned column must be the same data type as the data type of
scalar_expression.

Is a restricted SELECT statement (the ORDER BY clause, the COMPUTE
clause, and the INTO keyword are not allowed).

Return Types

Boolean

Result Value

Returns TRUE when the comparison specified is TRUE for all pairs
(scalar_expression, x) where x is a value in the single-column set; otherwise
returns FALSE.

See Also

CASE

Expressions

Functions

LIKE

Operators (Logical Operators)
SELECT (Subqueries)
WHERE

Transact-SQL Reference

ALTER DATABASE

Adds or removes files and filegroups from a database. Can also be used to
modify the attributes of files and filegroups, such as changing the name or size
of a file. ALTER DATABASE provides the ability to change the database name,
filegroup names, and the logical names of data files and log files.

ALTER DATABASE supports the setting of database options. In previous
versions of Microsoft® SQL Server™, these options could be set with the
sp_dboption stored procedure. SQL Server continues to support sp_dboption in
this release but may not do so in the future. Use the
DATABASEPROPERTYEX function to retrieve current settings for database
options.

Syntax

ALTER DATABASE database

{ ADD FILE < filespec > [,...n] [TO FILEGROUP filegroup_name]
| ADD LOG FILE < filespec > [,...n]

| REMOVE FILE logical_file_name

| ADD FILEGROUP filegroup_name

| REMOVE FILEGROUP filegroup_name

| MODIFY FILE < filespec >

| MODIFY NAME = new_dbname

| MODIFY FILEGROUP filegroup_name {filegroup_property | NAME =
new_filegroup_name }

| SET < optionspec > [,...n] [WITH < termination >]

| COLLATE < collation_name >

}

< filespec > ::=
< optionspec > ::=
< state_option > ::=

{ SINGLE_USER | RESTRICTED_USER | MULTI_USER }
| { OFFLINE | ONLINE }

| { READ_ONLY | READ_WRITE }

< termination > ::=
ROLLBACK AFTER integer [SECONDS]
| ROLLBACK IMMEDIATE
| NO_WAIT

< cursor_option > ::=
CURSOR_CLOSE_ON_COMMIT { ON | OFF }
| CURSOR_DEFAULT { LOCAL | GLOBAL }

< auto_option > ::=
AUTO_CLOSE { ON | OFF }
| AUTO_CREATE_STATISTICS { ON | OFF }
| AUTO_SHRINK { ON | OFF }
| AUTO_UPDATE_STATISTICS { ON | OFF }

< sql_option > ::=
ANSI_NULL_DEFAULT { ON | OFF }
| ANSI_NULLS { ON | OFF }
| ANSI_PADDING { ON | OFF }
| ANSI_WARNINGS { ON | OFF }
| ARITHABORT { ON | OFF }
| CONCAT_NULL_YIELDS_NULL { ON | OFF }
| NUMERIC_ROUNDABORT { ON | OFF }
| QUOTED_IDENTIFIER { ON | OFF }
| RECURSIVE_TRIGGERS { ON | OFF }

< recovery_option > ::=
RECOVERY { FULL | BULK_LOGGED | SIMPLE }
| TORN_PAGE_DETECTION { ON | OFF }

Arguments
database

Is the name of the database changed.
ADD FILE

Specifies that a file is added.

TO FILEGROUP

Specifies the filegroup to which to add the specified file.
filegroup_name

Is the name of the filegroup to add the specified file to.
ADD LOG FILE

Specifies that a log file be added to the specified database.
REMOVE FILE

Removes the file description from the database system tables and deletes the
physical file. The file cannot be removed unless empty.

ADD FILEGROUP

Specifies that a filegroup is to be added.
filegroup_name

Is the name of the filegroup to add or drop.
REMOVE FILEGROUP

Removes the filegroup from the database and deletes all the files in the
filegroup. The filegroup cannot be removed unless empty.

MODIFY FILE

Specifies the given file that should be modified, including the FILENAME,
SIZE, FILEGROWTH, and MAXSIZE options. Only one of these properties
can be changed at a time. NAME must be specified in the <filespec> to
identify the file to be modified. If SIZE is specified, the new size must be
larger than the current file size. FILENAME can be specified only for files in
the tempdb database, and the new name does not take effect until Microsoft
SQL Server is restarted.

To modify the logical name of a data file or log file, specify in NAME the
logical file name to be renamed, and specify for NEWNAME the new logical
name for the file.

Thus:

MODIFY FILE (NAME = logical_file_name, NEWNAME =
new_logical_name...).

For optimum performance during multiple modify-file operations, several
ALTER DATABASE database MODIFY FILE statements can be run
concurrently.

MODIFY NAME = new_dbname
Renames the database.

MODIFY FILEGROUP filegroup_name { filegroup_property | NAME =
new_filegroup_name }

Specifies the filegroup to be modified and the change needed.

If filegroup_name and NAME = new_filegroup_name are specified, changes
the filegroup name to the new_filegroup_name.

If filegroup_name and filegroup_property are specified, indicates the given
filegroup property be applied to the filegroup. The values for
filegroup_property are:

READONLY
Specifies the filegroup is read-only. Updates to objects in it are not
allowed. The primary filegroup cannot be made read-only. Only users
with exclusive database access can mark a filegroup read-only.

READWRITE
Reverses the READONLY property. Updates are enabled for the objects
in the filegroup. Only users who have exclusive access to the database
can mark a filegroup read/write.

DEFAULT
Specifies the filegroup as the default database filegroup. Only one
database filegroup can be default. CREATE DATABASE sets the
primary filegroup as the initial default filegroup. New tables and indexes
are created in the default filegroup—if no filegroup is specified in the
CREATE TABLE, ALTER TABLE, or CREATE INDEX statements.

WITH <termination>

Specifies when to roll back incomplete transactions when the database is
transitioned from one state to another. Only one termination clause can be
specified and it follows the SET clauses.

ROLLBACK AFTER integer [SECONDS] | ROLLBACK IMMEDIATE
Specifies whether to roll back after the specified number of seconds or
immediately. If the termination clause is omitted, transactions are
allowed to commit or roll back on their own.

NO_WAIT
Specifies that if the requested database state or option change cannot
complete immediately without waiting for transactions to commit or roll
back on their own, the request will fail.

COLLATE < collation_name >

Specifies the collation for the database. Collation name can be either a
Windows collation name or a SQL collation name. If not specified, the
database is assigned the default collation of the SQL Server instance.

For more information about the Windows and SQL collation names, see
COLLATE.

<filespec>

Controls the file properties.

NAME
Specifies a logical name for the file.

logical_file_name
Is the name used in Microsoft SQL Server when referencing the file. The
name must be unique within the database and conform to the rules for
identifiers. The name can be a character or Unicode constant, a regular
identifier, or a delimited identifier. For more information, see Using
Identifiers.

FILENAME
Specifies an operating system file name. When used with MODIFY
FILE, FILENAME can be specified only for files in the tempdb

JavaScript:hhobj_1.Click()

database. The new tempdb file name takes effect only after SQL Server
is stopped and restarted.

'os_file_name'
Is the path and file name used by the operating system for the file. The
file must reside in the server in which SQL Server is installed. Data and
log files should not be placed on compressed file systems.

If the file is on a raw partition, os_file_name must specify only
the drive letter of an existing raw partition. Only one file can be
placed on each raw partition. Files on raw partitions do not
autogrow; therefore, the MAXSIZE and FILEGROWTH
parameters are not needed when os_file_name specifies a raw
partition.

SIZE
Specifies the file size.

size
Is the size of the file. The KB, MB, GB, and TB suffixes can be used to
specify kilobytes, megabytes, gigabytes, or terabytes. The default is MB.
Specify a whole number; do not include a decimal. The minimum value
for size is 512 KB, and the default if size is not specified is 1 MB. When
specified with ADD FILE, size is the initial size for the file. When
specified with MODIFY FILE, size is the new size for the file, and must
be larger than the current file size.

MAXSIZE
Specifies the maximum file size.

max_size
Is the maximum file size. The KB, MB, GB, and TB suffixes can be used
to specify kilobytes, megabytes, gigabytes, or terabytes. The default is
MB. Specify a whole number; do not include a decimal. If max_size is
not specified, the file size will increase until the disk is full. The
Microsoft Windows NT® application log warns an administrator when a
disk is about to become full.

UNLIMITED

Specifies that the file increases in size until the disk is full.

FILEGROWTH
Specifies file increase increment.

growth_increment
Is the amount of space added to the file each time new space is needed. A
value of 0 indicates no increase. The value can be specified in MB, KB,
or %. Specify a whole number; do not include a decimal. When % is
specified, the increment size is the specified percentage of the file size at
the time the increment occurs. If a number is specified without an MB,
KB, or % suffix, the default is MB. The default value if FILEGROWTH
is not specified is 10%, and the minimum value is 64 KB. The size
specified is rounded to the nearest 64 KB.

<state_option>

Controls user access to the database, whether the database is online, and
whether writes are allowed.

SINGLE_USER | RESTRICTED_USER | MULTI_USER
Controls which users may access the database. When SINGLE_USER is
specified, only one user at a time can access the database. When
RESTRICTED_USER is specified, only members of the db_owner,
dbcreator, or sysadmin roles can use the database. MULTI_USER
returns the database to its normal operating state.

OFFLINE | ONLINE
Controls whether the database is offline or online.

READ_ONLY | READ_WRITE
Specifies whether the database is in read-only mode. In read-only mode,
users can read data from the database, not modify it. The database cannot
be in use when READ_ONLY is specified. The master database is the
exception, and only the system administrator can use master while
READ_ONLY is set. READ_WRITE returns the database to read/write
operations.

<cursor_option>

Controls cursor options.

CURSOR_CLOSE_ON_COMMIT ON | OFF
If ON is specified, any cursors open when a transaction is committed or
rolled back are closed. If OFF is specified, such cursors remain open
when a transaction is committed; rolling back a transaction closes any
cursors except those defined as INSENSITIVE or STATIC.

CURSOR_DEFAULTLOCAL | GLOBAL
Controls whether cursor scope defaults to LOCAL or GLOBAL.

<auto_option>

Controls automatic options.

AUTO_CLOSE ON | OFF
If ON is specified, the database is shut down cleanly and its resources are
freed after the last user exits. If OFF is specified, the database remains
open after the last user exits.

AUTO_CREATE_STATISTICS ON | OFF
If ON is specified, any missing statistics needed by a query for
optimization are automatically built during optimization.

AUTO_SHRINK ON | OFF
If ON is specified, the database files are candidates for automatic
periodic shrinking.

AUTO_UPDATE_STATISTICS ON | OFF
If ON is specified, any out-of-date statistics required by a query for
optimization are automatically built during optimization. If OFF is
specified, statistics must be updated manually.

<sql_option>
Controls the ANSI compliance options.
ANSI_NULL_DEFAULT ON | OFF

If ON is specified, CREATE TABLE follows SQL-92 rules to determine
whether a column allows null values.

ANSI_NULLS ON | OFF
If ON is specified, all comparisons to a null value evaluate to
UNKNOWN. If OFF is specified, comparisons of non-UNICODE values
to a null value evaluate to TRUE if both values are NULL.

ANSI_PADDING ON | OFF
If ON is specified, strings are padded to the same length before
comparison or insert. If OFF is specified, strings are not padded.

ANSI_WARNINGS ON | OFF
If ON is specified, errors or warnings are issued when conditions such as
divide-by-zero occur.

ARITHABORT ON | OFF
If ON is specified, a query is terminated when an overflow or divide-by-
zero error occurs during query execution.

CONCAT_NULL_YIELDS_NULL ON | OFF
If ON is specified, the result of a concatenation operation is NULL when
either operand is NULL. If OFF is specified, the null value is treated as
an empty character string. The default is OFF.

QUOTED_IDENTIFIER ON | OFF
If ON is specified, double quotation marks can be used to enclose
delimited identifiers.

NUMERIC_ROUNDABORT ON | OFF
If ON is specified, an error is generated when loss of precision occurs in
an expression.

RECURSIVE_TRIGGERS ON | OFF
If ON is specified, recursive firing of triggers is allowed.
RECURSIVE_TRIGGERS OFF, the default, prevents direct recursion
only. To disable indirect recursion as well, set the nested triggers server
option to 0 using sp_configure.

<recovery_options>

Controls database recovery options.

RECOVERY FULL | BULK_LOGGED | SIMPLE
If FULL is specified, complete protection against media failure is
provided. If a data file is damaged, media recovery can restore all
committed transactions.

If BULK_LOGGED is specified, protection against media failure is
combined with the best performance and least amount of log memory
usage for certain large scale or bulk operations. These operations include
SELECT INTO, bulk load operations (bcp and BULK INSERT),
CREATE INDEX, and text and image operations (WRITETEXT and
UPDATETEXT).

Under the bulk-logged recovery model, logging for the entire class is
minimal and cannot be controlled on an operation-by-operation basis.

If SIMPLE is specified, a simple backup strategy that uses minimal log
space is provided. Log space can be automatically reused when no longer
needed for server failure recovery.

ImpoRTANT The simple recovery model is easier to manage than the other
two models but at the expense of higher data loss exposure if a data file
is damaged. All changes since the most recent database or differential
database backup are lost and must be re-entered manually.

The default recovery model is determined by the recovery model of the
model database. To change the default for new databases, use ALTER
DATABASE to set the recovery option of the model database.

TORN_PAGE_DETECTION ON | OFF
If ON is specified, incomplete pages can be detected. The default is ON.

Remarks

To remove a database, use DROP DATABASE. To rename a database, use
sp_renamedb. For more information about decreasing the size of a database, see
DBCC SHRINKDATABASE.

Before you apply a different or new collation to a database, ensure the following
conditions are in place:

1. You are the only one currently using the database.

2. No schema bound object is dependent on the collation of the database.

If the following objects, which are dependent on the database
collation, exist in the database, the ALTER DATABASE database

COLLATE statement will fail. SQL Server will return an error
message for each object blocking the ALTER action:

e User-defined functions and views created with
SCHEMABINDING.

e Computed columns.

e CHECK constraints.

e Table-valued functions that return tables with character
columns with collations inherited from the default database
collation.

3. Altering the database collation does not create duplicates among any
system names for the database objects.

These namespaces may cause the failure of a database collation
alteration if duplicate names result from the changed collation:

e Object names (such as procedure, table, trigger, or view).

e Schema names (such as group, role, or user).

e Scalar-type names (such as system and user-defined types).

e Full-text catalog names.

e Column or parameter names within an object.

e Index names within a table.

Duplicate names resulting from the new collation will cause the alter
action to fail and SQL Server will return an error message specifying
the namespace where the duplicate was found.

You cannot add or remove a file while a BACKUP statement is executing.

To specify a fraction of a megabyte in the size parameters, convert the value to
kilobytes by multiplying the number by 1024. For example, specify 1536 KB
instead of 1.5MB (1.5 x 1024 = 1536).

Permissions

ALTER DATABASE permissions default to members of the sysadmin and
dbcreator fixed server roles, and to members of the db_owner fixed database
roles. These permissions are not transferable.

Examples

A. Add a file to a database

This example creates a database and alters it to add a new 5-MB data file.

USE master

GO

CREATE DATABASE Testl ON

(

NAME = Testldatl1,

FILENAME = 'c:\Program Files\Microsoft SQL Server\MSSQL\Data'
SIZE = MB,

MAXSIZE = 100MB,

FILEGROWTH = 5MB

)
GO

ALTER DATABASE Test1

ADD FILE

(

NAME = Testldat?2,

FILENAME = 'c:\Program Files\Microsoft SQL Server\MSSQL\Data'
SIZE = SMB,

MAXSIZE = 100MB,

FILEGROWTH = 5MB

)
GO

B. Add a filegroup with two files to a database

This example creates a filegroup in the Test 1 database created in Example A
and adds two 5-MB files to the filegroup. It then makes Test1FG1 the default
filegroup.

USE master

GO

ALTER DATABASE Test1
ADD FILEGROUP Test1FG1
GO

ALTER DATABASE Test1
ADD FILE
(NAME = test1dat3,
FILENAME = 'c:\Program Files\Microsoft SQL Server\MSSQL\Data
SIZE = 5MB,
MAXSIZE = 100MB,
FILEGROWTH = 5MB),
(NAME = test1dat4,
FILENAME = 'c:\Program Files\Microsoft SQL Server\MSSQL\Data

SIZE = 5MB,

MAXSIZE = 100MB,

FILEGROWTH = 5MB)
TO FILEGROUP Test1FG1

ALTER DATABASE Test1
MODIFY FILEGROUP Test1FG1 DEFAULT
GO

C. Add two log files to a database

This example adds two 5-MB log files to a database.

USE master
GO
ALTER DATABASE Test1
ADD LOG FILE
(NAME = testllog?2,
FILENAME = 'c:\Program Files\Microsoft SQL Server\MSSQL\Data
SIZE = MB,
MAXSIZE = 100MB,
FILEGROWTH = 5MB),
(NAME = testllog3,
FILENAME = 'c:\Program Files\Microsoft SQL Server\MSSQL\Data
SIZE = 5MB,
MAXSIZE = 100MB,
FILEGROWTH = 5MB)
GO

D. Remove a file from a database

This example removes one of the files added to the Test1 database in Example
B.

USE master

GO

ALTER DATABASE Test1
REMOVE FILE test1dat4
GO

E. Modify a file

This example increases the size of one of the files added to the Test1 database in
Example B.

USE master
GO
ALTER DATABASE Test1
MODIFY FILE
(NAME = testldat3,
SIZE = 20MB)
GO

F. Make the primary filegroup the default

This example makes the primary filegroup the default filegroup if another
filegroup was made the default earlier.

USE master

GO

ALTER DATABASE MyDatabase

MODIFY FILEGROUP [PRIMARY] DEFAULT
GO

See Also

CREATE DATABASE
DROP DATABASE

sp_helpdb
sp_helpfile

sp_helpfilegroup
sp_renamedb
sp_spaceused

Using Recovery Models

JavaScript:hhobj_2.Click()

Transact-SQL Reference

ALTER FUNCTION

Alters an existing user-defined function, previously created by executing the
CREATE FUNCTION statement, without changing permissions and without
affecting any dependent functions, stored procedures, or triggers.

For more information about the parameters used in the ALTER FUNCTION
statement, see CREATE FUNCTION.

Syntax
Scalar Functions

ALTER FUNCTION [owner_name.] function_name
([{ @parameter_name scalar_parameter_data_type [= default] } [,..n]11])

RETURNS scalar_return_data_type
[WITH < function_option> [,...n]]
[AS]

BEGIN
function_body

RETURN scalar_expression
END

Inline Table-valued Functions

ALTER FUNCTION [owner_name.] function_name
([{ @parameter_name scalar_parameter_data_type [= default] } [,..n]11])

RETURNS TABLE

[WITH < function_option > [,...n]]
[AS]

RETURN [(] select-stmt[)]
Multi-statement Table-valued Functions

ALTER FUNCTION [owner_name.] function_name

([{ @parameter_name scalar_parameter_data_type [= default] } [,..n]])
RETURNS @return_variable TABLE < table_type_definition >
[WITH < function_option > [,...n]]
[AS]

BEGIN
function_body
RETURN

END

< function_option > ::=
{ ENCRYPTION | SCHEMABINDING }

< table_type_definition > :: =
({ column_definition | table_constraint } [,...n])

Arguments
owner_name

Is the name of the user ID that owns the user-defined function to be changed.
owner_name must be an existing user ID.

function_name

Is the user-defined function to be changed. Function names must conform to
the rules for identifiers and must be unique within the database and to its
owner.

(@parameter_name

Is a parameter in the user-defined function. One or more parameters can be
declared. A function can have a maximum of 1,024 parameters. The value of
each declared parameter must be supplied by the user when the function is
executed (unless a default for the parameter is defined). When a parameter of
the function has a default value, the keyword "default" must be specified
when calling the function in order to get the default value. This behavior is
different from parameters with default values in stored procedures in which
omitting the parameter also implies the default value.

Specify a parameter name using an at sign (@) as the first character. The
parameter name must conform to the rules for identifiers. Parameters are
local to the function; the same parameter names can be used in other
functions. Parameters can take the place only of constants; they cannot be
used in place of table names, column names, or the names of other database

objects.
scalar_parameter_data_type

Is the parameter data type. All scalar data types, including bigint and
sql_variant, can be used as a parameter for user-defined functions. The
timestamp data type is not supported. Nonscalar types such as cursor and
table cannot be specified.

scalar_return_data_type

Is the return value of a scalar user-defined function. scalar_return_data_type
can be any of the scalar data types supported by SQL Server, except text,
ntext, image, and timestamp.

scalar_expression
Specifies that the scalar function returns a scalar value.

TABLE
Specifies that the return value of the table-valued function is a table.

In inline table-valued functions, the TABLE return value is defined through a
single SELECT statement. Inline functions do not have associated return
variables.

In multi-statement table-valued functions, @return_variable is a TABLE
variable, used to store and accumulate the rows that should be returned as the
value of the function.

function_body

Specifies that a series of Transact-SQL statements, which together do not
produce a side effect, define the value of the function. function_body is used
only in scalar functions and multi-statement table-valued functions.

In scalar functions, function_body is a series of Transact-SQL statements that
together evaluate to a scalar value.

In multi-statement table-valued functions, function_body is a series of
Transact-SQL statements that populate a table return variable.

select-stmt

Is the single SELECT statement that defines the return value of an inline
table-valued function.

ENCRYPTION

Indicates that SQL Server encrypts the system table columns containing the
text of the CREATE FUNCTION statement. Using ENCRYPTION prevents
the function from being published as part of SQL Server replication.

SCHEMABINDING

Specifies that the function is bound to the database objects that it references.
This condition will prevent changes to the function if other schema bound
objects are referencing it.

The binding of the function to the objects it references is removed only when
one of two actions take place:

e The function is dropped.

¢ The function is altered (using the ALTER statement) with the
SCHEMABINDING option not specified.

For a list of conditions that must be met before a function can be schema
bound, see CREATE FUNCTION.

Remarks

ALTER FUNCTION cannot be used to change a scalar-valued function to a
table-valued function, or vice versa. Also, ALTER FUNCTION cannot be used
to change an inline function to a multistatement function, or vice versa.

Permissions

ALTER FUNCTION permissions default to members of the sysadmin fixed
server role, and the db_owner and db_ddladmin fixed database roles, and the

owner of the function, and are not transferable.

Owners of functions have EXECUTE permission on their functions. However,
other users may be granted such permissions as well.

See Also

CREATE FUNCTION
DROP FUNCTION

Transact-SQL Reference

ALTER PROCEDURE

Alters a previously created procedure, created by executing the CREATE
PROCEDURE statement, without changing permissions and without affecting
any dependent stored procedures or triggers. For more information about the
parameters used in the ALTER PROCEDURE statement, see CREATE
PROCEDURE.

Syntax

ALTER PROC [EDURE] procedure_name [; number]
[{ @parameter data_type }
[VARYING] [= default] [OUTPUT]
1[,..n]
[WITH
{ RECOMPILE | ENCRYPTION
| RECOMPILE , ENCRYPTION
}
]
[FOR REPLICATION]
AS
sql_statement [...n]

Arguments
procedure_name

Is the name of the procedure to change. Procedure names must conform to
the rules for identifiers.

snumber

Is an existing optional integer used to group procedures of the same name so
that they can be dropped together with a single DROP PROCEDURE
statement.

@parameter

Is a parameter in the procedure.

data_type
Is the data type of the parameter.
VARYING

Specifies the result set supported as an output parameter (constructed
dynamically by the stored procedure and whose contents can vary). Applies
only to cursor parameters.

default
Is a default value for the parameter.
OouTPUT

Indicates that the parameter is a return parameter.

Is a placeholder indicating up to 2,100 parameters can be specified.
{RECOMPILE | ENCRYPTION | RECOMPILE, ENCRYPTION}

RECOMPILE indicates that Microsoft® SQL Server™ does not cache a plan
for this procedure and the procedure is recompiled at run time.

ENCRYPTION indicates that SQL Server encrypts the syscomments table
entry that contains the text of the ALTER PROCEDURE statement. Using
ENCRYPTION prevents the procedure from being published as part of SQL
Server replication.

Note During an upgrade, SQL Server uses the encrypted comments stored in
syscomments to re-create encrypted procedures.

FOR REPLICATION

Specifies that stored procedures created for replication cannot be executed on
the Subscriber. A stored procedure created with the FOR REPLICATION
option is used as a stored procedure filter and only executed during
replication. This option cannot be used with the WITH RECOMPILE option.

AS

Are the actions the procedure is to take.

sql_statement

Is any number and type of Transact-SQL statements to be included in the
procedure. Some limitations do apply. For more information, see
sql_statement Limitations in CREATE PROCEDURE.

n
Is a placeholder indicating that multiple Transact-SQL statements can be
included in the procedure. For more information, see CREATE
PROCEDURE.

Remarks

For more information about ALTER PROCEDURE, see Remarks in CREATE
PROCEDURE.

Note If a previous procedure definition was created using WITH
ENCRYPTION or WITH RECOMPILE, these options are only enabled if they
are included in ALTER PROCEDURE.

Permissions

ALTER PROCEDURE permissions default to members of the sysadmin fixed
server role, and the db_owner and db_ddladmin fixed database roles, and the
owner of the procedure, and are not transferable.

Permissions and the startup property remain unchanged for a procedure modified
with ALTER PROCEDURE.

Examples

This example creates a procedure called Oakland_authors that, by default,
contains all authors from the city of Oakland, California. Permissions are
granted. Then, when the procedure must be changed to retrieve all authors from
California, ALTER PROCEDURE is used to redefine the stored procedure.

USE pubs
GO
IF EXISTS(SELECT name FROM sysobjects WHERE name = 'Oakla

DROP PROCEDURE Oakland_authors
GO
-- Create a procedure from the authors table that contains author
-- information for those authors who live in Oakland, California.
USE pubs
GO
CREATE PROCEDURE Oakland_authors
AS
SELECT au_fname, au_lname, address, city, zip
FROM pubs..authors
WHERE city = 'Oakland’
and state = 'CA'
ORDER BY au_Iname, au_fname
GO
-- Here is the statement to actually see the text of the procedure.
SELECT o.id, c.text
FROM sysobjects o INNER JOIN syscomments ¢ ON o.id = c.id
WHERE o.type = 'P' and o.name = 'Oakland_authors'
-- Here, EXECUTE permissions are granted on the procedure to public
GRANT EXECUTE ON Oakland_authors TO public
GO
-- The procedure must be changed to include all
-- authors from California, regardless of what city they live in.
-- If ALTER PROCEDURE is not used but the procedure is dropped
-- and then re-created, the above GRANT statement and any
-- other statements dealing with permissions that pertain to this
-- procedure must be re-entered.
ALTER PROCEDURE Oakland_authors
WITH ENCRYPTION
AS
SELECT au_fname, au_lname, address, city, zip
FROM pubs..authors
WHERE state = 'CA'

ORDER BY au_Iname, au_fname

GO

-- Here is the statement to actually see the text of the procedure.
SELECT o.id, c.text

FROM sysobjects o INNER JOIN syscomments ¢ ON o.id = c.id
WHERE o.type = 'P' and o.name = 'Oakland_authors'

GO

See Also

Data Types
DROP PROCEDURE

EXECUTE
Programming Stored Procedures

System Tables

Using Identifiers

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL Reference

ALTER TABLE

Modifies a table definition by altering, adding, or dropping columns and
constraints, or by disabling or enabling constraints and triggers.

Syntax

ALTER TABLE table
{[ALTER COLUMN column_name
{ new_data_type [(precision [, scale])]
[COLLATE < collation_name > |
[NULL | NOT NULL]
| {ADD | DROP } ROWGUIDCOL }
]
| ADD
{[< column_definition > |
| column_name AS computed_column_expression
Yl,..n]
| [WITH CHECK | WITH NOCHECK] ADD
{ < table_constraint > } [,...n]
| DROP
{ [CONSTRAINT] constraint_name
| COLUMN column } [,...n]
| { CHECK | NOCHECK } CONSTRAINT
{ ALL | constraint_name [,...n] }
| { ENABLE | DISABLE } TRIGGER
{ ALL | trigger_name [,...n] }
}

< column_definition > ::=
{ column_name data_type }
[[DEFAULT constant_expression] [WITH VALUES]
| [IDENTITY [(seed, increment) [NOT FOR REPLICATION]]]
]
[ROWGUIDCOL]
[COLLATE < collation_name > |

[< column_constraint >][...n]

< column_constraint > ::=
[CONSTRAINT constraint_name]
{ [NULL | NOT NULL]
|[{ PRIMARY KEY | UNIQUE }
[CLUSTERED | NONCLUSTERED]
[WITH FILLFACTOR = fillfactor]
[ON { filegroup | DEFAULT }]
]
| [[FOREIGN KEY]
REFERENCES ref_table [(ref_column))]
[ON DELETE { CASCADE | NO ACTION }]
[ON UPDATE { CASCADE | NO ACTION }]
[NOT FOR REPLICATION]
]
| CHECK [NOT FOR REPLICATION]
(logical_expression)

}

< table_constraint > ::=
[CONSTRAINT constraint_name |
{ [{ PRIMARY KEY | UNIQUE }
[CLUSTERED | NONCLUSTERED]
{(column[,..n])}
[WITH FILLFACTOR = fillfactor]
[ON {filegroup | DEFAULT }]
]
| FOREIGN KEY
[(column[,..n])]
REFERENCES ref_table [(ref_column[,..n])]
[ON DELETE { CASCADE | NO ACTION }]
[ON UPDATE { CASCADE | NO ACTION }]
[NOT FOR REPLICATION]
| DEFAULT constant_expression
[FOR column] [WITH VALUES |
| CHECK [NOT FOR REPLICATION]
(search_conditions)

Arguments
table

Is the name of the table to be altered. If the table is not in the current
database or owned by the current user, the database and owner can be
explicitly specified.

ALTER COLUMN

Specifies that the given column is to be changed or altered. ALTER
COLUMN is not allowed if the compatibility level is 65 or earlier. For more
information, see sp_dbcmptlevel.

The altered column cannot be:

¢ A column with a text, image, ntext, or timestamp data type.

e The ROWGUIDCOL for the table.

e A computed column or used in a computed column.

e Areplicated column.

e Used in an index, unless the column is a varchar, nvarchar, or
varbinary data type, the data type is not changed, and the new size is
equal to or larger than the old size.

e Used in statistics generated by the CREATE STATISTICS statement.
First remove the statistics using the DROP STATISTICS statement.
Statistics automatically generated by the query optimizer are
automatically dropped by ALTER COLUMN.

e Used in a PRIMARY KEY or [FOREIGN KEY] REFERENCES

constraint.

e Used in a CHECK or UNIQUE constraint, except that altering the
length of a variable-length column used in a CHECK or UNIQUE

constraint is allowed.

e Associated with a default, except that changing the length, precision, or
scale of a column is allowed if the data type is not changed.

Some data type changes may result in a change in the data. For example,
changing an nchar or nvarchar column to char or varchar can result in the
conversion of extended characters. For more information, see CAST and
CONVERT. Reducing the precision and scale of a column may result in data
truncation.

column_name

Is the name of the column to be altered, added, or dropped. For new
columns, column_name can be omitted for columns created with a
timestamp data type. The name timestamp is used if no column_name is
specified for a timestamp data type column.

new_data_type

Is the new data type for the altered column. Criteria for the new_data_type of
an altered column are:

e The previous data type must be implicitly convertible to the new data
type.

e new_data_type cannot be timestamp.

e ANSI null defaults are always on for ALTER COLUMN; if not
specified, the column is nullable.

e ANSI padding is always on for ALTER COLUMN.

e If the altered column is an identity column, new_data_type must be a
data type that supports the identity property.

e The current setting for SET ARITHABORT is ignored. ALTER TABLE
operates as if the ARITHABORT option is ON.

precision

Is the precision for the specified data type. For more information about valid
precision values, see Precision, Scale, and Length.

scale

Is the scale for the specified data type. For more information about valid
scale values, see Precision, Scale, and L.ength.

COLLATE < collation_name >

Specifies the new collation for the altered column. Collation name can be
either a Windows collation name or a SQL collation name. For a list and
more information, see Windows Collation Name and SQL Collation Name.

The COLLATE clause can be used to alter the collations only of columns of
the char, varchar, text, nchar, nvarchar, and ntext data types. If not
specified, the column is assigned the default collation of the database.

ALTER COLUMN cannot have a collation change if any of the following
conditions apply:

e If a check constraint, foreign key constraint, or computed columns
reference the column changed.

¢ If any index, statistics, or full-text index are created on the column.
Statistics created automatically on the column changed will be dropped
if the column collation is altered.

e [f a SCHEMABOUND view or function references the column.

For more information about the COLLATE clause, see COLIL ATE.

NULL | NOT NULL

Specifies whether the column can accept null values. Columns that do not
allow null values can be added with ALTER TABLE only if they have a
default specified. A new column added to a table must either allow null
values, or the column must be specified with a default value.

If the new column allows null values and no default is specified, the new
column contains a null value for each row in the table. If the new column
allows null values and a default definition is added with the new column, the
WITH VALUES option can be used to store the default value in the new
column for each existing row in the table.

If the new column does not allow null values, a DEFAULT definition must
be added with the new column, and the new column automatically loads with
the default value in the new columns in each existing row.

NULL can be specified in ALTER COLUMN to make a NOT NULL column
allow null values, except for columns in PRIMARY KEY constraints. NOT
NULL can be specified in ALTER COLUMN only if the column contains no
null values. The null values must be updated to some value before the
ALTER COLUMN NOT NULL is allowed, such as:

UPDATE MyTable SET NullCol = N'some_value' WHERE NullCol IS

ALTER TABLE MyTable ALTER COLUMN NullCOl NVARCHAR(:

If NULL or NOT NULL is specified with ALTER COLUMN,
new_data_type [(precision [, scale])] must also be specified. If the data type,
precision, and scale are not changed, specify the current column values.

[{ADD | DROP} ROWGUIDCOL]

Specifies the ROWGUIDCOL property is added to or dropped from the
specified column. ROWGUIDCOL is a keyword indicating that the column
is a row global unique identifier column. Only one uniqueidentifier column
per table can be designated as the ROWGUIDCOL column. The
ROWGUIDCOL property can be assigned only to a uniqueidentifier
column.

The ROWGUIDCOL property does not enforce uniqueness of the values

stored in the column. It also does not automatically generate values for new
rows inserted into the table. To generate unique values for each column,
either use the NEWID function on INSERT statements or specify the
NEWID function as the default for the column.

ADD

Specifies that one or more column definitions, computed column definitions,
or table constraints are added.

computed_column_expression

Is an expression that defines the value of a computed column. A computed
column is a virtual column not physically stored in the table but computed
from an expression using other columns in the same table. For example, a
computed column could have the definition: cost AS price * qty. The
expression can be a noncomputed column name, constant, function, variable,
and any combination of these connected by one or more operators. The
expression cannot be a subquery.

Computed columns can be used in select lists, WHERE clauses, ORDER BY
clauses, or any other locations where regular expressions can be used, with
these exceptions:

e A computed column cannot be used as a DEFAULT or FOREIGN KEY
constraint definition or with a NOT NULL constraint definition.
However, a computed column can be used as a key column in an index
or as part of any PRIMARY KEY or UNIQUE constraint, if the
computed column value is defined by a deterministic expression and the
data type of the result is allowed in index columns.

For example, if the table has integer columns a and b, the computed
column a+b may be indexed but computed column a+DATEPART(dd,
GETDATE()) cannot be indexed because the value may change in
subsequent invocations.

¢ A computed column cannot be the target of an INSERT or UPDATE
statement.

Note Because each row in a table may have different values for
columns involved in a computed column, the computed column may not

have the same result for each row.

Is a placeholder indicating that the preceding item can be repeated n number
of times.

WITH CHECK | WITH NOCHECK

Specifies whether the data in the table is or is not validated against a newly
added or re-enabled FOREIGN KEY or CHECK constraint. If not specified,
WITH CHECK is assumed for new constraints, and WITH NOCHECK is
assumed for re-enabled constraints.

The WITH CHECK and WITH NOCHECK clauses cannot be used for
PRIMARY KEY and UNIQUE constraints.

If you do not want to verify new CHECK or FOREIGN KEY constraints
against existing data, use WITH NOCHECK. This is not recommended
except in rare cases. The new constraint will be evaluated in all future
updates. Any constraint violations suppressed by WITH NOCHECK when
the constraint is added may cause future updates to fail if they update rows
with data that does not comply with the constraint.

Constraints defined WITH NOCHECK are not considered by the query
optimizer. These constraints are ignored until all such constraints are re-
enabled using ALTER TABLE table CHECK CONSTRAINT ALL.

DROP { [CONSTRAINT] constraint_name | COLUMN column_name }

Specifies that constraint_name or column_name is removed from the table.
DROP COLUMN is not allowed if the compatibility level is 65 or earlier.
Multiple columns and constraints can be listed. A column cannot be dropped
if it is:

e Areplicated column.

e Used in an index.

e Used in a CHECK, FOREIGN KEY, UNIQUE, or PRIMARY KEY
constraint.

e Associated with a default defined with the DEFAULT keyword, or
bound to a default object.

¢ Bound to a rule.

{ CHECK | NOCHECK} CONSTRAINT

Specifies that constraint_name is enabled or disabled. When disabled, future
inserts or updates to the column are not validated against the constraint
conditions. This option can only be used with FOREIGN KEY and CHECK

constraints.

ALL
Specifies that all constraints are disabled with the NOCHECK option, or

enabled with the CHECK option.
{ENABLE | DISABLE} TRIGGER

Specifies that trigger_name is enabled or disabled. When a trigger is
disabled it is still defined for the table; however, when INSERT, UPDATE, or
DELETE statements are executed against the table, the actions in the trigger
are not performed until the trigger is re-enabled.

ALL
Specifies that all triggers in the table are enabled or disabled.

trigger_name
Specifies the name of the trigger to disable or enable.
column_name data_type

Is the data type for the new column. data_type can be any Microsoft® SQL
Server™ or user-defined data type.

DEFAULT

Is a keyword that specifies the default value for the column. DEFAULT
definitions can be used to provide values for a new column in the existing

rows of data. DEFAULT definitions cannot be added to columns that have a
timestamp data type, an IDENTITY property, an existing DEFAULT
definition, or a bound default. If the column has an existing default, the
default must be dropped before the new default can be added. To maintain
compatibility with earlier versions of SQL Server, it is possible to assign a
constraint name to a DEFAULT.

IDENTITY

Specifies that the new column is an identity column. When a new row is
added to the table, SQL Server provides a unique, incremental value for the
column. Identity columns are commonly used in conjunction with
PRIMARY KEY constraints to serve as the unique row identifier for the
table. The IDENTITY property can be assigned to a tinyint, smallint, int,
bigint, decimal(p,0), or numeric(p,0) column. Only one identity column
can be created per table. The DEFAULT keyword and bound defaults cannot
be used with an identity column. Either both the seed and increment must be
specified, or neither. If neither are specified, the default is (1,1).

Seed
Is the value used for the first row loaded into the table.

Increment
Is the incremental value added to the identity value of the previous row
loaded.
NOT FOR REPLICATION

Specifies that the IDENTITY property should not be enforced when a
replication login, such as sqlrepl, inserts data into the table. NOT FOR
REPLICATION can also be specified on constraints. The constraint is not
checked when a replication login inserts data into the table.

CONSTRAINT

Specifies the beginning of a PRIMARY KEY, UNIQUE, FOREIGN KEY, or
CHECK constraint, or a DEFAULT definition.

constraint_name

Is the new constraint. Constraint names must follow the rules for identifiers,

except that the name cannot begin with a number sign (#). If
constraint_name is not supplied, a system-generated name is assigned to the

constraint.
PRIMARY KEY

Is a constraint that enforces entity integrity for a given column or columns
through a unique index. Only one PRIMARY KEY constraint can be created
for each table.

UNIQUE

Is a constraint that provides entity integrity for a given column or columns
through a unique index.

CLUSTERED | NONCLUSTERED

Specifies that a clustered or nonclustered index is created for the PRIMARY
KEY or UNIQUE constraint. PRIMARY KEY constraints default to
CLUSTERED; UNIQUE constraints default to NONCLUSTERED.

If a clustered constraint or index already exists on a table, CLUSTERED
cannot be specified in ALTER TABLE. If a clustered constraint or index
already exists on a table, PRIMARY KEY constraints default to
NONCLUSTERED.

WITH FILLFACTOR = fillfactor

Specifies how full SQL Server should make each index page used to store
the index data. User-specified fillfactor values can be from 1 through 100. If
a value is not specified, the default is 0. A lower fillfactor value creates an
index with more space available for new index entries without having to
allocate new space. For more information, see CREATE INDEX.

ON ({filegroup | DEFAULT}

Specifies the storage location of the index created for the constraint. If
filegroup is specified, the index is created in the named filegroup. If
DEFAULT is specified, the index is created in the default filegroup. If ON is
not specified, the index is created in the filegroup that contains the table. If
ON is specified when adding a clustered index for a PRIMARY KEY or
UNIQUE constraint, the entire table is moved to the specified filegroup
when the clustered index is created.

DEFAULT, in this context, is not a keyword. DEFAULT is an identifier for
the default filegroup and must be delimited, as in ON "DEFAULT" or ON
[DEFAULT].

FOREIGN KEY...REFERENCES

Is a constraint that provides referential integrity for the data in the column.
FOREIGN KEY constraints require that each value in the column exists in
the specified column in the referenced table.

ref_table
Is the table referenced by the FOREIGN KEY constraint.
ref_column

Is a column or list of columns in parentheses referenced by the new
FOREIGN KEY constraint.

ON DELETE {CASCADE | NO ACTION}

Specifies what action occurs to a row in the table altered, if that row has a
referential relationship and the referenced row is deleted from the parent
table. The default is NO ACTION.

If CASCADE is specified, a row is deleted from the referencing table if that
row is deleted from the parent table. If NO ACTION is specified, SQL

Server raises an error and the delete action on the row in the parent table is
rolled back.

The CASCADE action ON DELETE cannot be defined if an INSTEAD OF
trigger ON DELETE already exists on the table in question.

For example, in the Northwind database, the Orders table has a referential
relationship with the Customers table. The Orders.CustomerID foreign
key references the Customers.CustomerID primary key.

If a DELETE statement is executed on a row in the Customers table, and an
ON DELETE CASCADE action is specified for Orders.CustomerID, SQL
Server checks for one or more dependent rows in the Orders table. If any
exist, the dependent row in the Orders table will be deleted, as well as the
row referenced in the Customers table.

On the other hand, if NO ACTION is specified, SQL Server raises an error
and rolls back the delete action on the Customers row if there is at least one
row in the Orders table that references it.

ON UPDATE {CASCADE | NO ACTION}

Specifies what action occurs to a row in the table altered, if that row has a
referential relationship and the referenced row is updated in the parent table.
The default is NO ACTION.

If CASCADE is specified, the row is updated in the referencing table if that
row is updated in the parent table. If NO ACTION is specified, SQL Server
raises an error and the update action on the row in the parent table is rolled
back.

The CASCADE action ON UPDATE cannot be defined if an INSTEAD OF
trigger ON UPDATE already exists on the table in question.

For example, in the Northwind database, the Orders table has a referential
relationship with the Customers table. The Orders.CustomerID foreign
key references the Customers.CustomerID primary key.

If an UPDATE statement is executed on a row in the Customers table, and
an ON UPDATE CASCADE action is specified for Orders.CustomerID,
SQL Server checks for one or more dependent rows in the Orders table. If
any exist, the dependent row in the Orders table will be updated, as well as
the row referenced in the Customers table.

On the other hand, if NO ACTION is specified, SQL Server raises an error
and rolls back the update action on the Customers row if there is at least one
row in the Orders table that references it.

[ASC | DESC]

Specifies the order in which the column or columns participating in table
constraints are sorted. The default is ASC.

WITH VALUES

Specifies that the value given in DEFAULT constant_expression is stored in
a new column added to existing rows. WITH VALUES can be specified only
when DEFAULT is specified in an ADD column clause. If the added column
allows null values and WITH VALUES is specified, the default value is

stored in the new column added to existing rows. If WITH VALUES is not
specified for columns that allow nulls, the value NULL is stored in the new
column in existing rows. If the new column does not allow nulls, the default
value is stored in new rows regardless of whether WITH VALUES is
specified.

columnl,...n]
Is a column or list of columns in parentheses used in a new constraint.
constant_expression

Is a literal value, a NULL, or a system function used as the default column
value.

FOR column
Specifies the column associated with a table-level DEFAULT definition.
CHECK

Is a constraint that enforces domain integrity by limiting the possible values
that can be entered into a column or columns.

logical_expression

Is a logical expression used in a CHECK constraint and returns TRUE or
FALSE. Logical_expression used with CHECK constraints cannot reference
another table but can reference other columns in the same table for the same
row.

Remarks

To add new rows of data, use the INSERT statement. To remove rows of data,
use the DELETE or TRUNCATE TABLE statements. To change the values in
existing rows, use UPDATE.

The changes specified in ALTER TABLE are implemented immediately. If the
changes require modifications of the rows in the table, ALTER TABLE updates
the rows. ALTER TABLE acquires a schema modify lock on the table to ensure
no other connections reference even the meta data for the table during the
change. The modifications made to the table are logged and fully recoverable.
Changes that affect all the rows in very large tables, such as dropping a column

or adding a NOT NULL column with a default, can take a long time to complete
and generate many log records. These ALTER TABLE statements should be
executed with the same care as any INSERT, UPDATE, or DELETE statement
that affects a large number of rows.

If there are any execution plans in the procedure cache referencing the table,
ALTER TABLE marks them to be recompiled on their next execution.

If the ALTER TABLE statement specifies changes on column values referenced
by other tables, either of two events occurs depending on the action specified by
ON UPDATE or ON DELETE in the referencing tables.

e If no value or NO ACTION (the default) is specified in the referencing
tables, an ALTER TABLE statement against the parent table that causes
a change to the column value referenced by the other tables will be
rolled back and SQL Server raises an error.

e [f CASCADE is specified in the referencing tables, changes caused by
an ALTER TABLE statement against the parent table are applied to the
parent table and its dependents.

ALTER TABLE statements that add a sql_variant column can generate the
following warning;:

The total row size (xx) for table 'yy' exceeds the maximum number of t

This warning occurs because sql_variant can have a maximum length of 8016
bytes. When a sql_variant column contains values close to the maximum
length, it can overshoot the row's maximum size limit.

The restrictions that apply to ALTER TABLE statements on tables with schema
bound views are the same as the restrictions currently applied when altering
tables with a simple index. Adding a column is allowed. However, removing or
changing a column that participates in any schema bound view is not allowed. If
the ALTER TABLE statement requires altering a column used in a schema
bound view, the alter action fails and SQL Server raises an error message. For
more information about SCHEMABINDING and indexed views, see CREATE
VIEW.

Adding or removing triggers on base tables is not affected by creating a schema
bound view referencing the tables.

Indexes created as part of a constraint are dropped when the constraint is
dropped. Indexes that were created with CREATE INDEX must be dropped with
the DROP INDEX statement. The DBCC DBREINDEX statement can be used
to rebuild an index part of a constraint definition; the constraint does not need to
be dropped and added again with ALTER TABLE.

All indexes and constraints based on a column must be removed before the
column can be removed.

When constraints are added, all existing data is verified for constraint violations.
If any violations occur, the ALTER TABLE statement fails and an error is
returned.

When a new PRIMARY KEY or UNIQUE constraint is added to an existing
column, the data in the column(s) must be unique. If duplicate values are found,
the ALTER TABLE statement fails. The WITH NOCHECK option has no effect
when adding PRIMARY KEY or UNIQUE constraints.

Each PRIMARY KEY and UNIQUE constraint generates an index. The number
of UNIQUE and PRIMARY KEY constraints cannot cause the number of
indexes on the table to exceed 249 nonclustered indexes and 1 clustered index.

If a column is added having a uniqueidentifier data type, it can be defined with
a default that uses the NEWID() function to supply the unique identifier values
in the new column for each existing row in the table.

SQL Server does not enforce an order in which DEFAULT, IDENTITY,
ROWGUIDCOL, or column constraints are specified in a column definition.

The ALTER COLUMN clause of ALTER TABLE does not bind or unbind any
rules on a column. Rules must be bound or unbound separately using
sp_bindrule or sp_unbindrule.

Rules can be bound to a user-defined data type. CREATE TABLE then
automatically binds the rule to any column defined having the user-defined data
type. ALTER COLUMN does not unbind the rule when changing the column
data type. The rule from the original user-defined data type remains bound to the
column. After ALTER COLUMN has changed the data type of the column, any
subsequent sp_unbindrule execution that unbinds the rule from the user-defined

data type does not unbind it from the column for which data type was changed.
If ALTER COLUMN changes the data type of a column to a user-defined data
type bound to a rule, the rule bound to the new data type is not bound to the
column.

Permissions

ALTER TABLE permissions default to the table owner, members of the
sysadmin fixed server role, and the db_owner and db_ddladmin fixed database
roles, and are not transferable.

Examples

A. Alter a table to add a new column

This example adds a column that allows null values and has no values provided
through a DEFAULT definition. Each row will have a NULL in the new column.

CREATE TABLE doc_exa (column_a INT)

GO

ALTER TABLE doc_exa ADD column_b VARCHAR(20) NULL
GO

EXEC sp_help doc_exa

GO

DROP TABLE doc_exa

GO

B. Alter a table to drop a column

This example modifies a table to remove a column.

CREATE TABLE doc_exb (column_a INT, column_b VARCHAR(20
GO

ALTER TABLE doc_exb DROP COLUMN column_b

GO

EXEC sp_help doc_exb

GO

DROP TABLE doc_exb
GO

C. Alter a table to add a column with a constraint

This example adds a new column with a UNIQUE constraint.

CREATE TABLE doc_exc (column_a INT)

GO

ALTER TABLE doc_exc ADD column_b VARCHAR(20) NULL
CONSTRAINT exb_unique UNIQUE

GO

EXEC sp_help doc_exc

GO

DROP TABLE doc_exc

GO

D. Alter a table to add an unverified constraint

This example adds a constraint to an existing column in the table. The column
has a value that violates the constraint; therefore, WITH NOCHECK is used to
prevent the constraint from being validated against existing rows, and to allow
the constraint to be added.

CREATE TABLE doc_exd (column_a INT)
GO

INSERT INTO doc_exd VALUES (-1)

GO

ALTER TABLE doc_exd WITH NOCHECK
ADD CONSTRAINT exd_check CHECK (column_a > 1)
GO

EXEC sp_help doc_exd

GO

DROP TABLE doc_exd

GO

E. Alter a table to add several columns with constraints

This example adds several columns with constraints defined with the new
column. The first new column has an IDENTITY property; each row in the table
has new incremental values in the identity column.

CREATE TABLE doc_exe (column_a INT CONSTRAINT column_a,
GO
ALTER TABLE doc_exe ADD

/* Add a PRIMARY KEY identity column. */
column_b INT IDENTITY
CONSTRAINT column_b_pk PRIMARY KEY,

/* Add a column referencing another column in the same table. */
column_c INT NULL

CONSTRAINT column_c_fk

REFERENCES doc_exe(column_a),

/* Add a column with a constraint to enforce that */

/* nonnull data is in a valid phone number format. */
column_d VARCHAR(16) NULL

CONSTRAINT column_d_chk

CHECK

(column_d IS NULL OR

column_d LIKE "[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]" OR
column_d LIKE

"([0-9][0-9][0-9]) [0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]"),

/* Add a nonnull column with a default. */
column_e DECIMAL(3,3)

CONSTRAINT column_e_default
DEFAULT .081

GO

EXEC sp_help doc_exe
GO
DROP TABLE doc_exe
GO

F. Add a nullable column with default values

This example adds a nullable column with a DEFAULT definition, and uses
WITH VALUES to provide values for each existing row in the table. If WITH
VALUES is not used, each row has the value NULL in the new column.

ALTER TABLE MyTable

ADD AddDate smalldatetime NULL
CONSTRAINT AddDateDflt
DEFAULT getdate() WITH VALUES

G. Disable and reenable a constraint

This example disables a constraint that limits the salaries accepted in the data.
WITH NOCHECK CONSTRAINT is used with ALTER TABLE to disable the
constraint and allow an insert that would normally violate the constraint. WITH
CHECK CONSTRAINT re-enables the constraint.

CREATE TABLE cnst_example
(id INT NOT NULL,
name VARCHAR(10) NOT NULL,
salary MONEY NOT NULL
CONSTRAINT salary_cap CHECK (salary < 100000)

)

-- Valid inserts
INSERT INTO cnst_example VALUES (1,"Joe Brown",65000)
INSERT INTO cnst_example VALUES (2,"Mary Smith",75000)

-- This insert violates the constraint.
INSERT INTO cnst_example VALUES (3,"Pat Jones",105000)

-- Disable the constraint and try again.
ALTER TABLE cnst_example NOCHECK CONSTRAINT salary_cag
INSERT INTO cnst_example VALUES (3,"Pat Jones",105000)

-- Reenable the constraint and try another insert, will fail.
ALTER TABLE cnst_example CHECK CONSTRAINT salary_cap
INSERT INTO cnst_example VALUES (4,"Eric James",110000)

H. Disable and reenable a trigger

This example uses the DISABLE TRIGGER option of ALTER TABLE to
disable the trigger and allow an insert that would normally violate the trigger. It
then uses ENABLE TRIGGER to re-enable the trigger.

CREATE TABLE trig_example

(id INT,

name VARCHAR(10),

salary MONEY)

go

-- Create the trigger.

CREATE TRIGGER trigl ON trig_example FOR INSERT

as

IF (SELECT COUNT(*) FROM INSERTED

WHERE salary > 100000) > 0

BEGIN

print "TRIG1 Error: you attempted to insert a salary > $100,000"
ROLLBACK TRANSACTION

END

GO

-- Attempt an insert that violates the trigger.

INSERT INTO trig_example VALUES (1,"Pat Smith",100001)
GO

-- Disable the trigger.

ALTER TABLE trig_example DISABLE TRIGGER trigl

GO

-- Attempt an insert that would normally violate the trigger
INSERT INTO trig_example VALUES (2,"Chuck Jones",100001)
GO

-- Re-enable the trigger.

ALTER TABLE trig_example ENABLE TRIGGER trigl

GO

-- Attempt an insert that violates the trigger.

INSERT INTO trig_example VALUES (3,"Mary Booth",100001)
GO

See Also

DROP TABLE

sp_help

Transact-SQL Reference

ALTER TRIGGER

Alters the definition of a trigger created previously by the CREATE TRIGGER
statement. For more information about the parameters used in the ALTER
TRIGGER statement, see CREATE TRIGGER.

Syntax

ALTER TRIGGER trigger_name
ON (table | view)

[WITH ENCRYPTION]

{

{ (FOR | AFTER | INSTEAD OF) { [DELETE][,][INSERT][,][
UPDATE] }

[NOT FOR REPLICATION]
AS
sql_statement [...n]

}

|
{ (FOR | AFTER | INSTEAD OF) { [INSERT][,] [UPDATE] }
[NOT FOR REPLICATION |
AS
{ IF UPDATE (column)
[{ AND | OR } UPDATE (column)]
[..n]
| IF (COLUMNS_UPDATED () { bitwise_operator } updated_bitmask)
{ comparison_operator } column_bitmask [...n]

}

sql_statement [...n]

Arguments
trigger_name

Is the existing trigger to alter.

table | view
Is the table or view on which the trigger is executed.
WITH ENCRYPTION

Encrypts the syscomments entries that contain the text of the ALTER
TRIGGER statement. Using WITH ENCRYPTION prevents the trigger from
being published as part of SQL Server replication.

Note If a previous trigger definition was created using WITH ENCRYPTION or
RECOMPILE, these options are only enabled if they are included in ALTER
TRIGGER.

AFTER

Specifies that the trigger is fired only after the triggering SQL statement is
executed successfully. All referential cascade actions and constraint checks
also must have been successful before this trigger executes.

AFTER is the default, if only the FOR keyword is specified.
AFTER triggers may be defined only on tables.
INSTEAD OF

Specifies that the trigger is executed instead of the triggering SQL statement,
thus overriding the actions of the triggering statements.

At most, one INSTEAD OF trigger per INSERT, UPDATE, or DELETE
statement can be defined on a table or view. However, it is possible to define
views on views where each view has its own INSTEAD OF trigger.

INSTEAD OF triggers are not allowed on views created with WITH
CHECK OPTION. SQL Server will raise an error if an INSTEAD OF trigger
is added to a view for which WITH CHECK OPTION was specified. The
user must remove that option using ALTER VIEW before defining the
INSTEAD OF trigger.

{ [IDELETE] [,] [INSERT] [,] [UPDATE] } | { [INSERT] [,] [UPDATE]}

Are keywords that specify which data modification statements, when
attempted against this table or view, activate the trigger. At least one option
must be specified. Any combination of these in any order is allowed in the

trigger definition. If more than one option is specified, separate the options
with commas.

For INSTEAD OF triggers, the DELETE option is not allowed on tables that
have a referential relationship specifying a cascade action ON DELETE.
Similarly, the UPDATE option is not allowed on tables that have a referential
relationship specifying a cascade action ON UPDATE. For more
information, see ALTER TABLE.

NOT FOR REPLICATION

Indicates that the trigger should not be executed when a replication login
such as sqlrepl modifies the table involved in the trigger.

AS
Are the actions the trigger is to take.
sql_statement

Is the trigger condition(s) and action(s).

Is a placeholder indicating that multiple Transact-SQL statements can be
included in the trigger.

IF UPDATE (column)

Tests for an INSERT or UPDATE action to a specified column and is not
used with DELETE operations.

UPDATE(column) can be used anywhere inside the body of the trigger.
{AND | OR}

Specifies another column to test for either an INSERT or UPDATE action.
column

Is the name of the column to test for either an INSERT or UPDATE action.
IF (COLUMNS_UPDATED())

Tests to see, in an INSERT or UPDATE trigger only, whether the mentioned
column or columns were inserted or updated. COLUMNS_UPDATED

returns a varbinary bit pattern that indicates which columns of the table
were inserted or updated.

COLUMNS_UPDATED can be used anywhere inside the body of the
trigger.

bitwise_operator
Is the bitwise operator to use in the comparison.
updated_bitmask

Is the integer bitmask of those columns actually updated or inserted. For
example, table t1 contains columns C1, C2, C3, C4, and C5. To check
whether columns C2, C3, and C4 are all updated (with table t1 having an
UPDATE trigger), specify a value of 14. To check whether only C2 is
updated, specify a value of 2.

Comparison_operator

Is the comparison operator. Use the equal sign (=) to check whether all
columns specified in updated_bitmask are actually updated. Use the greater
than symbol (>) to check whether any or not all columns specified in the
updated_bitmask are updated.

column_bitmask

Is the integer bitmask of the columns to check.

Remarks

For more information about ALTER TRIGGER, see Remarks in CREATE
TRIGGER.

Note Because Microsoft does not support the addition of user-defined triggers
on system tables, it is recommended that no user-defined triggers be created on
system tables.

ALTER TRIGGER supports manually updateable views through INSTEAD OF
triggers on tables and views. Microsoft® SQL Server™ applies ALTER
TRIGGER the same way for all types of triggers (AFTER, INSTEAD-OF).

The first and last AFTER triggers to be executed on a table may be specified by

using sp_settriggerorder. Only one first and one last AFTER trigger may be
specified on a table; if there are other AFTER triggers on the same table, they
will be executed in an undefined sequence.

If an ALTER TRIGGER statement changes a first or last trigger, the first or last
attribute set on the modified trigger is dropped, and the order value must be reset
with sp_settriggerorder.

An AFTER trigger is executed only after the triggering SQL statement, including
all referential cascade actions and constraint checks associated with the object
updated or deleted, is executed successfully. The AFTER trigger operation
checks for the effects of the triggering statement as well as all referential cascade
UPDATE and DELETE actions caused by the triggering statement.

When a DELETE action to a child or referencing table is the result of a
CASCADE on a DELETE from the parent table, and an INSTEAD OF trigger
on DELETE is defined on that child table, the trigger is ignored and the
DELETE action is executed.

Permissions

ALTER TRIGGER permissions default to members of the db_owner and
db_ddladmin fixed database roles, and to the table owner. These permissions
are not transferable.

Examples

This example creates a trigger that prints a user-defined message to the client
when a user tries to add or change data in the roysched table. Then, the trigger is
altered using ALTER TRIGGER to apply the trigger only on INSERT activities.
This trigger is helpful because it reminds the user who updates or inserts rows
into this table to also notify the book authors and publishers.

USE pubs

GO

CREATE TRIGGER royalty_reminder
ON roysched

WITH ENCRYPTION

FOR INSERT, UPDATE

AS RAISERROR (50009, 16, 10)

-- Now, alter the trigger.

USE pubs

GO

ALTER TRIGGER royalty_reminder
ON roysched

FOR INSERT

AS RAISERROR (50009, 16, 10)

Message 50009 is a user-defined message in sysmessages. For more information
about creating user-defined messages, see sp_addmessage.

See Also

DROP TRIGGER

Programming Stored Procedures
sp_addmessage

Transactions

Using Identifiers

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL Reference

ALTER VIEW

Alters a previously created view (created by executing CREATE VIEW),
including indexed views, without affecting dependent stored procedures or
triggers and without changing permissions. For more information about the
parameters used in the ALTER VIEW statement, see CREATE VIEW.

Syntax
ALTER VIEW [< database_name > .][< owner > .] view_name [(column [
1 1)]
[WITH < view_attribute > [,...n]]
AS
select_statement
[WITH CHECK OPTION]

< view_attribute > ::=
{ ENCRYPTION | SCHEMABINDING | VIEW_METADATA }

Arguments
view_name

Is the view to change.
column

Is the name of one or more columns, separated by commas, to be part of the
given view.

ImPORTANT Column permissions are maintained only when columns have the
same name before and after ALTER VIEW is performed.

Note In the columns for the view, the permissions for a column name apply
across a CREATE VIEW or ALTER VIEW statement, regardless of the source of
the underlying data. For example, if permissions are granted on the title_id
column in a CREATE VIEW statement, an ALTER VIEW statement can rename
the title_id column (for example, to qty) and still have the permissions

associated with the view using title_id.
n

Is a placeholder indicating the column can be repeated n number of times.
WITH ENCRYPTION

Encrypts the syscomments entries that contain the text of the ALTER VIEW
statement. Using WITH ENCRYPTION prevents the view from being
published as part of SQL Server replication.

SCHEMABINDING

Binds the view to the schema. When SCHEMABINDING is specified, the
select_statement must include the two-part name (owner.object) of tables,
views, or user-defined functions referenced.

Views or tables participating in a view created with the schema binding
clause cannot be dropped unless that view is dropped or changed so it no
longer has schema binding. Otherwise, SQL Server raises an error. In
addition, ALTER TABLE statements on tables that participate in views
having schema binding will fail if these statements affect the view definition.

VIEW_METADATA

Specifies that SQL Server will return to the DBLIB, ODBC, and OLE DB
APIs the meta data information about the view, instead of the base table or
tables, when browse-mode meta data is being requested for a query that
references the view. Browse-mode meta data is additional meta data returned
by SQL Server to the client-side DB-LIB, ODBC, and OLE DB APIs, which
allow the client-side APIs to implement updatable client-side cursors.
Browse-mode meta data includes information about the base table that the
columns in the result set belong to.

For views created with VIEW_METADATA option, the browse-mode meta
data returns the view name as opposed to the base table names when
describing columns from the view in the result set.

When a view is created WITH VIEW_METADATA, all its columns (except
for timestamp) are updatable if the view has INSERT or UPDATE
INSTEAD OF triggers. See Updatable Views in CREATE VIEW.

AS

Are the actions the view is to take.
select_statement

Is the SELECT statement that defines the view.
WITH CHECK OPTION

Forces all data modification statements executed against the view to adhere
to the criteria set within the select_statement defining the view.

Remarks

For more information about ALTER VIEW, see Remarks in CREATE VIEW.

Note If the previous view definition was created using WITH ENCRYPTION or
CHECK OPTION, these options are enabled only if included in ALTER VIEW.

If a view currently in use is modified by using ALTER VIEW, Microsoft® SQL
Server™ takes an exclusive schema lock on the view. When the lock is granted,
and there are no active users of the view, SQL Server deletes all copies of the
view from the procedure cache. Existing plans referencing the view remain in
the cache but are recompiled when invoked.

ALTER VIEW can be applied to indexed views. However, ALTER VIEW
unconditionally drops all indexes on the view.

Permissions

ALTER VIEW permissions default to members of the db_owner and
db_ddladmin fixed database roles, and to the view owner. These permissions
are not transferable.

To alter a view, the user must have ALTER VIEW permission along with
SELECT permission on the tables, views, and table-valued functions being
referenced in the view, and EXECUTE permission on the scalar-valued functions
being invoked in the view.

In addition, to alter a view WITH SCHEMABINDING, the user must have
REFERENCES permissions on each table, view, and user-defined function that
is referenced.

Examples

A. Alter a view

This example creates a view that contains all authors called All_authors.
Permissions are granted to the view, but requirements are changed to select
authors from Utah. Then, ALTER VIEW is used to replace the view.

-- Create a view from the authors table that contains all authors.
CREATE VIEW All_authors (au_fname, au_lname, address, city, zip)
AS

SELECT au_fname, au_lname, address, city, zip

FROM pubs..authors

GO

-- Grant SELECT permissions on the view to public.

GRANT SELECT ON All_authors TO public

GO

-- The view needs to be changed to include all authors

-- from Utah.

-- If ALTER VIEW is not used but instead the view is dropped and
-- re-created, the above GRANT statement and any other statements
-- dealing with permissions that pertain to this view

-- must be re-entered.

ALTER VIEW All_authors (au_fname, au_lname, address, city, zip)
AS

SELECT au_fname, au_lname, address, city, zip

FROM pubs..authors

WHERE state = 'UT"

GO

B. Use @@ROWCOUNT function in a view
This example uses the @@ROWCOUNT function as part of the view definition.

USE pubs

GO
CREATE VIEW yourview
AS
SELECT title_id, title, mycount = @@ROWCOUNT, ytd_sales
FROM titles
GO
SELECT *
FROM yourview
GO
-- Here, the view is altered.
USE pubs
GO
ALTER VIEW yourview
AS
SELECT title, mycount = @@ ROWCOUNT, ytd_sales
FROM titles
WHERE type = 'mod_cook’
GO
SELECT *
FROM yourview
GO

See Also

CREATE TABLE

CREATE VIEW
DROP VIEW

Programming Stored Procedures
SELECT

Using Identifiers

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL Reference

AND

Combines two Boolean expressions and returns TRUE when both expressions
are TRUE. When more than one logical operator is used in a statement, AND
operators are evaluated first. You can change the order of evaluation by using
parentheses.

Syntax

boolean_expression AND boolean_expression

Arguments
boolean_expression

Is any valid Microsoft® SQL Server™ expression that returns a Boolean
value: TRUE, FALSE, or UNKNOWN.

Result Types

Boolean

Result Value
Returns TRUE when both expressions are TRUE.

Remarks

This chart outlines the outcomes when you compare TRUE and FALSE values
using the AND operator.

TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN | UNKNOWN FALSE UNKNOWN

See Also

Expressions

Functions

Operators (Logical Operators)
SELECT

WHERE

Transact-SQL Reference

ANY

Compares a scalar value with a single-column set of values. For more
information, see SOME | ANY.

Transact-SQL Reference

APP_NAME

Returns the application name for the current session if set by the application.

Syntax
APP_NAME ()

Return Types
nvarchar(128)

Examples

This example checks whether the client application that initiated this process is a
SQL Query Analyzer session.

DECLARE @CurrentApp varchar(35)

SET @CurrentApp = APP_NAME()

IF @CurrentApp <> 'MS SQL Query Analyzer'

PRINT 'This process was not started by a SQL Query Analyzer query ¢

See Also

System Functions

Transact-SQL Reference

ASCII

Returns the ASCII code value of the leftmost character of a character expression.

Syntax

ASCII (character_expression)

Arguments
character_expression

Is an expression of the type char or varchar.

Return Types

int

Examples

This example, which assumes an ASCII character set, returns the ASCII value
and char character for each character in the string "Du monde entier."

SET TEXTSIZE 0
SET NOCOUNT ON
-- Create the variables for the current character string position
-- and for the character string.
DECLARE @position int, @string char(15)
-- Initialize the variables.
SET @position = 1
SET @string = 'Du monde entier'
WHILE @position <= DATALENGTH(@string)
BEGIN
SELECT ASCII(SUBSTRING(@string, @position, 1)),
CHAR(ASCII(SUBSTRING(@string, @position, 1)))
SET @position = @position + 1

END
SET NOCOUNT OFF
GO

Here is the result set:

68 D
17
n
109 m
oo
1o n
100 d
01 e

110 n
16t
05 i
01 e
14 v
See Also

String Functions

Transact-SQL Reference

ASIN

Returns the angle, in radians, whose sine is the given float expression (also
called arcsine).

Syntax
ASIN (float_expression)

Arguments
float_expression

Is an expression of the type float, with a value from -1 through 1. Values
outside this range return NULL and report a domain error.

Return Types
float

Examples

This example takes a float expression and returns the ASIN of the given angle.

-- First value will be -1.01, which fails.

DECLARE @angle float

SET @angle =-1.01

SELECT 'The ASIN of the angle is: ' + CONVERT (varchar, ASIN(@a
GO

-- Next value is -1.00.

DECLARE @angle float

SET @angle = -1.00

SELECT 'The ASIN of the angle is: ' + CONVERT (varchar, ASIN(@a
GO

-- Next value is 0.1472738.

DECLARE @angle float

SET @angle = 0.1472738

SELECT 'The ASIN of the angle is: ' + CONVERT (varchar, ASIN(@a
GO

Here is the result set:

The ASIN of the angle is:

(1 row(s) affected)

Domain error occurred.

The ASIN of the angle is: -1.5708
(1 row(s) affected)

The ASIN of the angle is: 0.147811
(1 row(s) affected)

See Also

CEILING

Mathematical Functions

SET ARITHIGNORE

SET ARITHABORT

Transact-SQL Reference

ATAN

Returns the angle in radians whose tangent is the given float expression (also
called arctangent).

Syntax
ATAN (float_expression)

Arguments
float_expression

Is an expression of the type float.

Return Types
float

Examples

This example takes a float expression and returns the ATAN of the given angle.

SELECT 'The ATAN of -45.01 is: ' + CONVERT(varchar, ATAN(-45.(
SELECT 'The ATAN of -181.01 is: ' + CONVERT(varchar, ATAN(-18
SELECT 'The ATAN of 0 is: ' + CONVERT(varchar, ATAN(0))
SELECT 'The ATAN of 0.1472738 is: ' + CONVERT(varchar, ATAN((
SELECT 'The ATAN of 197.1099392 is: ' + CONVERT(varchar, ATAI
GO

Here is the result set:

The ATAN of -45.01 is: -1.54858

(1 row(s) affected)

The ATAN of -181.01 is: -1.56527

(1 row(s) affected)

The ATAN of 0 is: O

(1 row(s) affected)

The ATAN of 0.1472738 is: 0.146223
(1 row(s) affected)

The ATAN of 197.1099392 is: 1.56572
(1 row(s) affected)

See Also

CEILING

Mathematical Functions

Transact-SQL Reference

ATN2

Returns the angle, in radians, whose tangent is between the two given float
expressions (also called arctangent).

Syntax

ATN?2 (float_expression , float_expression)

Arguments
float_expression

Is an expression of the float data type.

Return Types
float

Examples

This example calculates the ATN2 for the given angles.

DECLARE @anglel float

DECLARE @angle?2 float

SET @anglel = 35.175643

SET @angle2 = 129.44

SELECT 'The ATN?2 of the angle is: ' + CONVERT(varchar,ATN2(@a
GO

Here is the result set:

The ATN?2 of the angle is: 0.265345
(1 row(s) affected)

See Also

CAST and CONVERT

float and real

Mathematical Functions

Transact-SQL Reference

AVG

Returns the average of the values in a group. Null values are ignored.

Syntax
AVG ([ALL | DISTINCT] expression)

Arguments
ALL

Applies the aggregate function to all values. ALL is the default.
DISTINCT

Specifies that AVG be performed only on each unique instance of a value,
regardless of how many times the value occurs.

expression

Is an expression of the exact numeric or approximate numeric data type
category, except for the bit data type. Aggregate functions and subqueries are
not permitted.

Return Types
The return type is determined by the type of the evaluated result of expression.
Expression result Return type
integer category int
decimal category (p, s) decimal(38, s) divided by decimal(10,
0)
money and smallmoney category money
float and real category float

ImporTANT Distinct aggregates, for example, AVG(DISTINCT column_name),
COUNT(DISTINCT column_name), MAX(DISTINCT column_name),
MIN(DISTINCT column_name), and SUM(DISTINCT column_name), are not

supported when using CUBE or ROLLUP. If used, Microsoft® SQL Server™
returns an error message and cancels the query.

Examples

A. Use SUM and AVG functions for calculations

This example calculates the average advance and the sum of year-to-date sales
for all business books. Each of these aggregate functions produces a single
summary value for all of the retrieved rows.

USE pubs

SELECT AVG(advance), SUM(ytd_sales)
FROM titles
WHERE type = 'business'

Here is the result set:

6,281.25 30788
(1 row(s) affected)

B. Use SUM and AVG functions with a GROUP BY clause

When used with a GROUP BY clause, each aggregate function produces a single
value for each group, rather than for the whole table. This example produces
summary values for each type of book that include the average advance for each
type of book and the sum of year-to-date sales for each type of book.

USE pubs

SELECT type, AVG(advance), SUM(ytd_sales)
FROM titles

GROUP BY type

ORDER BY type

Here is the result set:

type

business 6,281.25 30788
mod_cook 7,500.00 24278
popular_comp 7,500.00 12875
psychology 4,255.00 9939
trad_cook 6,333.33 19566
UNDECIDED NULL NULL
(6 row(s) affected)

C. Use AVG with DISTINCT

This statement returns the average price of business books.

USE pubs

SELECT AVG(DISTINCT price)
FROM titles
WHERE type = 'business'

Here is the result set:

(1 row(s) affected)

D. Use AVG without DISTINCT

Without DISTINCT, the AVG function finds the average price of all business
titles in the titles table.

USE pubs

SELECT AVG(price)
FROM titles
WHERE type = 'business'

Here is the result set:

(1 row(s) affected)

See Also

Aggregate Functions

Transact-SQL Reference

BACKUP

Backs up an entire database, transaction log, or one or more files or filegroups.
For more information about database backup and restore operations, see Backing
Up and Restoring Databases.

Syntax
Backing up an entire database:

BACKUP DATABASE { database_name | @database_name_var }
TO < backup_device > [,...n]
[WITH

[BLOCKSIZE = { blocksize | @blocksize_variable }]

[[,] DESCRIPTION = { 'text' | @text_variable }]

[[,] DIFFERENTIAL]

[[,] EXPIREDATE = { date | @date_var }

| RETAINDAYS = { days | @days_var }]

[[,] PASSWORD = { password | @password_variable }]

[[,] FORMAT | NOFORMAT]

[[,]{INIT|NOINIT }]

[[,] MEDIADESCRIPTION = { 'text' | @text_variable }]

[[,] MEDIANAME = { media_name | @media_name_variable }]

[[,] MEDIAPASSWORD = { mediapassword | @mediapassword_variable }

[[,] NAME = { backup_set_name | @backup_set_name_var }]
[[,]1{NOSKIP|SKIP}]
[[,]{NOREWIND | REWIND }]
[[,]{NOUNLOAD | UNLOAD }]
[[,] RESTART]
[[,]STATS [= percentage]]

]

Backing up specific files or filegroups:

BACKUP DATABASE { database_name | @database_name_var }
< file_or_filegroup > [,...n]

JavaScript:hhobj_1.Click()

TO < backup_device > [,...n]
[WITH

]

]

[BLOCKSIZE = { blocksize | @blocksize_variable }]
[[,] DESCRIPTION = { 'text' | @text_variable }]
[[,] DIFFERENTIAL]
[[,] EXPIREDATE = { date | @date_var }
| RETAINDAYS = { days | @days_var }]
[[,] PASSWORD = { password | @password_variable }]
[[,] FORMAT | NOFORMAT]
[[,]{INIT|NOINIT }]
[[,] MEDIADESCRIPTION = { 'text' | @text_variable }]
[[,] MEDIANAME = { media_name | @media_name_variable }]
[[,] MEDIAPASSWORD = { mediapassword | @mediapassword_variable }

[[,] NAME = { backup_set_name | @backup_set_name_var }]
[[,]{NOSKIP|SKIP}]

[[,]{NOREWIND | REWIND }]

[[,]{ NOUNLOAD | UNLOAD }]

[[,] RESTART]

[[,]STATS [= percentage]]

Backing up a transaction log:

BACKUP LOG { database_name | @database_name_var }

{

TO < backup_device > [,...n]
[WITH
[BLOCKSIZE = { blocksize | @blocksize_variable }]
[[,] DESCRIPTION = { 'text' | @text_variable }]
[[,] EXPIREDATE = { date | @date_var }
| RETAINDAYS = { days | @days_var }]
[[,] PASSWORD = { password | @password_variable }]
[[,] FORMAT | NOFORMAT]
[[,]{INIT|NOINIT }]
[[,] MEDIADESCRIPTION = { 'text' | @text_variable }]
[[,] MEDIANAME = { media_name | @media_name_variable }]
[[,] MEDIAPASSWORD = { mediapassword |

@mediapassword_variable }]
[[,] NAME = { backup_set_name | @backup_set_name_var }]
[[,] NO_TRUNCATE]
[[,]{ NORECOVERY | STANDBY = undo_file_name }]
[[,]{ NOREWIND | REWIND }]
[[,]{NOSKIP|SKIP}]
[[,]{NOUNLOAD | UNLOAD }]
[[,] RESTART]
[[,]STATS [= percentage]]

]
}

< backup_device > ::=
{

{ logical_backup_device_name | @logical_backup_device_name_var }

|
{ DISK | TAPE } =

{ 'physical_backup_device_name" |
@physical_backup_device_name_var }

}

< file_or_filegroup > ::=
{
FILE = { logical_file_name | @logical_file_name_var }

|
FILEGROUP = { logical_filegroup_name | @logical_filegroup_name_var

}
}

Truncating the transaction log:

BACKUP LOG { database_name | @database_name_var }

{
[WITH

{ NO_LOG | TRUNCATE_ONLY }]

Arguments

DATABASE

Specifies a complete database backup. If a list of files and filegroups is
specified, only those files and filegroups are backed up.

Note During a full database or differential backup, Microsoft® SQL Server™
backs up enough of the transaction log to produce a consistent database for when
the database is restored. Only a full database backup can be performed on the
master database.

{ database_name | @database_name_var }

Is the database from which the transaction log, partial database, or complete
database is backed up. If supplied as a variable (@database_name_var), this
name can be specified either as a string constant (@database_name_var =
database name) or as a variable of character string data type, except for the
ntext or text data types.

< backup_device >

Specifies the logical or physical backup device to use for the backup
operation. Can be one or more of the following:

{ logical_backup_device_name } | { @logical_backup_device_name_var }
Is the logical name, which must follow the rules for identifiers, of the
backup device(s) (created by sp_addumpdevice) to which the database
is backed up. If supplied as a variable
(@logical_backup_device_name_var), the backup device name can be
specified either as a string constant (@logical_backup_device_name_var
= logical backup device name) or as a variable of character string data
type, except for the ntext or text data types.

{ DISK | TAPE } =

'physical_backup_device_name' | @physical_backup_device_name_var
Allows backups to be created on the specified disk or tape device. The
physical device specified need not exist prior to executing the BACKUP
statement. If the physical device exists and the INIT option is not
specified in the BACKUP statement, the backup is appended to the
device.

When specifying TO DISK or TO TAPE, enter the complete path and file
name. For example, DISK = 'C:\Program Files\Microsoft SQL
Server\MSSQL\BACKUP\Mybackup.dat' or TAPE = "\\\TAPEQ'.

Note If a relative path name is entered for a backup to disk, the backup
file is placed in the default backup directory. This directory is set during
installation and stored in the BackupDirectory registry key under
KEY_LOCAL_MACHINE\Software\Microsoft\tMSSQL Server\MSSQLS

If using a network server with a Uniform Naming Convention (UNC)
name or using a redirected drive letter, specify a device type of disk.

When specifying multiple files, logical file names (or variables) and
physical file names (or variables) can be mixed. However, all devices
must be of the same type (disk, tape, or pipe).

Backup to tape is not supported on Windows 98.

Is a placeholder that indicates multiple backup devices may be specified. The
maximum number of backup devices is 64.

BLOCKSIZE = { blocksize | @blocksize_variable }

Specifies the physical block size, in bytes. On Windows NT systems, the
default is the default block size of the device. Generally, this parameter is not
required as SQL Server will choose a blocksize that is appropriate to the
device. On Windows 2000-based computers, the default is 65,536 (64 KB,
which is the maximum size SQL Server supports).

For DISK, BACKUP automatically determines the appropriate block size for
disk devices.

Note To transfer the resulting backup set to a CD-ROM and then restore from
that CD-ROM, set BLOCKSIZE to 2048.

The default BLOCKSIZE for tape is 65,536 (64 KB). Explicitly stating a
block size overrides SQL Server's selection of a block size.

DESCRIPTION = { 'text' | @text_variable }

Specifies the free-form text describing the backup set. The string can have a

maximum of 255 characters.
DIFFERENTIAL

Specifies the database or file backup should consist only of the portions of
the database or file changed since the last full backup. A differential backup
usually takes up less space than a full backup. Use this option so that all
individual log backups since the last full backup do not need to be applied.
For more information, see Differential Database Backups and File
Differential Backups.

Note During a full database or differential backup, SQL Server backs up enough
of the transaction log to produce a consistent database when the database is
restored.

EXPIREDATE = { date | @date_var }

Specifies the date when the backup set expires and can be overwritten. If
supplied as a variable (@date_var), this date is specified as either a string
constant (@date_var = date), as a variable of character string data type
(except for the ntext or text data types), a smalldatetime, or datetime
variable, and must follow the configured system datetime format.

RETAINDAYS = { days | @days_var }

Specifies the number of days that must elapse before this backup media set
can be overwritten. If supplied as a variable (@days_var), it must be
specified as an integer.

ImporTANT If EXPIREDATE or RETAINDAYS is not specified, expiration is
determined by the media retention configuration setting of sp_configure. These
options only prevent SQL Server from overwriting a file. Tapes can be erased
using other methods, and disk files can be deleted through the operating system.
For more information about expiration verification, see SKIP and FORMAT in
this topic.

PASSWORD = { password | @password_variable }

Sets the password for the backup set. PASSWORD is a character string. If a
password is defined for the backup set, the password must be supplied to
perform any restore operation from the backup set.

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

ImporTANT A backup set password protects the contents of the backup set from
unauthorized access through SQL Server 2000 tools, but does not protect the
backup set from being overwritten.

For more information about using passwords, see the Permissions section.
FORMAT

Specifies that the media header should be written on all volumes used for
this backup operation. Any existing media header is overwritten. The
FORMAT option invalidates the entire media contents, ignoring any existing
content.

ImporRTANT Use FORMAT carefully. Formatting one backup device or medium
renders the entire media set unusable. For example, if a single tape belonging to
an existing striped media set is initialized, the entire media set is rendered
useless.

By specifying FORMAT, the backup operation implies SKIP and INIT; these
do not need to be explicitly stated.

NOFORMAT

Specifies the media header should not be written on all volumes used for this
backup operation and does not rewrite the backup device unless INIT is
specified.

INIT

Specifies that all backup sets should be overwritten, but preserves the media
header. If INIT is specified, any existing backup set data on that device is
overwritten.

The backup media is not overwritten if any one of the following conditions is
met:

e All backup sets on the media have not yet expired. For more
information, see the EXPIREDATE and RETAINDAY'S options.

e The backup set name given in the BACKUP statement, if provided,
does not match the name on the backup media. For more information,
see the NAME clause.

Use the SKIP option to override these checks. For more information about
interactions when using SKIP, NOSKIP, INIT, and NOINIT, see the Remarks
section.

Note If the backup media is password protected, SQL Server does not write to
the media unless the media password is supplied. This check is not overridden
by the SKIP option. Password-protected media may be overwritten only by
reformatting it. For more information, see the FORMAT option.

NOINIT

Indicates that the backup set is appended to the specified disk or tape device,
preserving existing backup sets. NOINIT is the default.

The FILE option of the RESTORE command is used to select the appropriate
backup set at restore time. For more information, see RESTORE.

If a media password is defined for the media set, the password must be
supplied.

MEDIADESCRIPTION = { text | @text_variable }

Specifies the free-form text description, maximum of 255 characters, of the
media set.

MEDIANAME = { media_name | @media_name_variable }

Specifies the media name, a maximum of 128 characters, for the entire
backup media set. [f MEDIANAME is specified, it must match the
previously specified media name already existing on the backup volume(s).
If not specified or if the SKIP option is specified, there is no verification
check of the media name.

MEDIAPASSWORD = { mediapassword | @mediapassword_variable }

Sets the password for the media set. MEDIAPASSWORD is a character
string.

If a password is defined for the media set, the password must be supplied to
create a backup set on that media set. In addition, that media password also
must be supplied to perform any restore operation from the media set.
Password-protected media may be overwritten only by reformatting it. For
more information, see the FORMAT option.

For more information about using passwords, see the Permissions section.
NAME = { backup_set_name | @backup_set_var }

Specifies the name of the backup set. Names can have a maximum of 128
characters. If NAME is not specified, it is blank.

NORECOVERY

Used only with BACKUP LOG. Backs up the tail of the log and leaves the
database in the Restoring state. NORECOVERY is useful when failing over
to a secondary database or when saving the tail of the log prior to a
RESTORE operation.

STANDBY = undo_file_name

Used only with BACKUP LOG. Backs up the tail of the log and leaves the
database in read-only and standby mode. The undo file name specifies
storage to hold rollback changes which must be undone if RESTORE LOG
operations are to be subsequently applied.

If the specified undo file name does not exist, SQL Server creates it. If the
file does exist, SQL Server overwrites it. For more information, see Using
Standby Servers.

NOREWIND

Specifies that SQL Server will keep the tape open after the backup operation.
NOREWIND implies NOUNLOAD. SQL Server will retain ownership of
the tape drive until a BACKUP or RESTORE command is used WITH
REWIND.

If a tape is inadvertently left open, the fastest way to release the tape is by
using the following RESTORE command:

RESTORE LABELONLY FROM TAPE = <name> WITH REWIND

A list of currently open tapes can be found by querying the sysopentapes
table in the master database.

REWIND

Specifies that SQL Server will release and rewind the tape. If neither

JavaScript:hhobj_4.Click()

NOREWIND nor REWIND is specified, REWIND is the default.
NOSKIP

Instructs the BACKUP statement to check the expiration date of all backup
sets on the media before allowing them to be overwritten.

SKIP

Disables the backup set expiration and name checking usually performed by
the BACKUP statement to prevent overwrites of backup sets. For more
information, see the Remarks section.

NOUNLOAD

Specifies the tape is not unloaded automatically from the tape drive after a
backup. NOUNLOAD remains set until UNLOAD is specified. This option
is used only for tape devices.

UNLOAD

Specifies that the tape is automatically rewound and unloaded when the
backup is finished. UNLOAD is set by default when a new user session is
started. It remains set until that user specifies NOUNLOAD. This option is
used only for tape devices.

RESTART

Specifies that SQL Server restarts an interrupted backup operation. The
RESTART option saves time because it restarts the backup operation at the
point it was interrupted. To RESTART a specific backup operation, repeat the
entire BACKUP statement and add the RESTART option. Using the
RESTART option is not required but can save time.

ImporTANT This option can only be used for backups directed to tape media and
for backups that span multiple tape volumes. A restart operation never occurs on
the first volume of the backup.

STATS [= percentage]

Displays a message each time another percentage completes, and is used to
gauge progress. If percentage is omitted, SQL Server displays a message
after each 10 percent is completed.

< file_or_filegroup >

Specifies the logical names of the files or filegroups to include in the
database backup. Multiple files or filegroups may be specified.

FILE = { logical_file_name | @logical_file_name_var }
Names one or more files to include in the database backup.
FILEGROUP = { logical_filegroup_name | @logical_filegroup_name_var }

Names one or more filegroups to include in the database backup.

Note Back up a file when the database size and performance requirements make
a full database backup impractical. To back up the transaction log separately, use
BACKUP LOG.

ImporTANT ToO recover a database using file and filegroup backups, a separate
backup of the transaction log must be provided by using BACKUP LOG. For
more information about file backups, see Backing up Using File Backups.

File and filegroup backups are not allowed if the recovery model is simple.

Is a placeholder indicating that multiple files and filegroups may be
specified. There is no maximum number of files or filegroups.

LOG

Specifies a backup of the transaction log only. The log is backed up from the
last successfully executed LOG backup to the current end of the log. Once
the log is backed up, the space may be truncated when no longer required by
replication or active transactions.

Note If backing up the log does not appear to truncate most of the log, an old
open transaction may exist in the log. Log space can be monitored with DBCC
SQLPERF (LOGSPACE). For more information, see Transaction L.og Backups.

NO_LOG | TRUNCATE_ONLY

Removes the inactive part of the log without making a backup copy of it and
truncates the log. This option frees space. Specifying a backup device is
unnecessary because the log backup is not saved. NO_LOG and

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

TRUNCATE_ONLY are synonyms.

After backing up the log using either NO_LOG or TRUNCATE_ONLY, the
changes recorded in the log are not recoverable. For recovery purposes,
immediately execute BACKUP DATABASE.

NO_TRUNCATE

Allows backing up the log in situations where the database is damaged.

Remarks

Database or log backups can be appended to any disk or tape device, allowing a
database, and its transaction logs, to be kept within one physical location.

SQL Server uses an online backup process to allow a database backup while the
database is still in use. The following list includes operations that cannot run
during a database or transaction log backup:

e File management operations such as the ALTER DATABASE statement
with either the ADD FILE or REMOVE FILE options; INSERT,
UPDATE, or DELETE statements are allowed during a backup
operation.

e Shrink database or shrink file. This includes autoshrink operations.

If a backup is started when one of these operations is in progress, the backup
ends. If a backup is running and one of these operations is attempted, the
operation fails.

Cross-platform backup operations, even between different processor types, can
be performed as long as the collation of the database is supported by the
operating system. For more information, see SQL Server Collation
Fundamentals.

Backup File Format

SQL Server backups can coexist on tape media with Windows NT backups
because the SQL Server 2000 backup format conforms to Microsoft Tape Format
(MTF); the same format used by Windows NT tape backups. To ensure

JavaScript:hhobj_7.Click()

interoperability, the tape should be formatted by NTBackup.

Backup Types
Backup types supported by SQL Server include:

e Full database backup, which backs up the entire database including the

transaction log.

Differential database backup performed between full database backups.

Transaction log backup.

A sequence of log backups provides for a continuous chain of
transaction information to support recovery forward from database,
differential, or file backups.

File(s) and Filegroup(s) backup.

Use BACKUP to back up database files and filegroups instead of the
full database when time constraints make a full database backup
impractical. To back up a file instead of the full database, put
procedures in place to ensure that all files in the database are backed up
regularly. Also, separate transaction log backups must be performed.
After restoring a file backup, apply the transaction log to roll the file
contents forward to make it consistent with the rest of the database.

Backup devices used in a stripe set must always be used in a stripe set (unless
reinitialized at some point with FORMAT) with the same number of devices.
After a backup device is defined as part of a stripe set, it cannot be used for a
single devicebackup unless FORMAT is specified. Similarly, a backup device
that contains nonstriped backups cannot be used in a stripe set unless FORMAT
is specified. Use FORMAT to split a striped backup set.

If neither MEDIANAME nor MEDIADESCRIPTION is specified when a media
header is written, the media header field corresponding to the blank item is

empty.

BACKUP LOG cannot be used if the recovery model is SIMPLE. Use BACKUP

DATABASE instead.

Interaction of SKIP, NOSKIP, INIT, and NOINIT
This table shows how the { INIT | NOINIT } and { NOSKIP | SKIP } clauses

interact.

Note In all these interactions, if the tape media is empty or the disk backup file
does not exist, write a media header and proceed. If the media is not empty and
does not contain a valid media header, give feedback that this is not valid MTF

media and abort the backup.

media header, perform the
following checks:

e Verify the media
password.?

If MEDIANAME was
specified, verify that the
given media name
matches the media
header's media name.

INIT NOINIT

SKIP If the volume contains a valid! If the volume contains a valid
media header, verify the media |media header, verify the media
password and overwrite any password and append the
backup sets on the media, backup set, preserving all
preserving only the media header. [existing backup sets.
If the volume does not contain a |If the volume does not contain
valid media header, generate one [a valid media header, an error
with the given MEDIANAME, |occurs.
MEDIAPASSWORD, and
MEDIADESCRIPTION, if any.

NOSKIP|If the volume contains a valid If the volume contains a valid

media header, verify the media
password* and verify that the
media name matches the given
MEDIANAME, if any. If it
matches, append the backup
set, preserving all existing
backup sets.

If the volume does not contain
a valid media header, an error
oCCurs.

e Verify that there are no
unexpired backup set(s)
already on the media.

If there are, abort the
backup.

If these checks pass, overwrite
any backup sets on the media,
preserving only the media header.

If the volume does not contain a
valid media header, generate one
with the given MEDIANAME,
MEDIAPASSWORD, and
MEDIADESCRIPTION, if any.

1. Validity includes the MTF version number and other header information. If the version specified is
unsupported or an unexpected value, an error occurs.

2. The user must belong to the appropriate fixed database or server roles and provide the correct media
password to perform a backup operation.

Note To maintain backward compatibility, the DUMP keyword can be used in
place of the BACKUP keyword in the BACKUP statement syntax. In addition,
the TRANSACTION keyword can be used in place of the LOG keyword.

Backup History Tables

SQL Server includes these backup history tables that track backup activity:

e backupfile

e backupmediafamily

e backupmediaset

e backupset

When a RESTORE is performed, the backup history tables are modified.

Compatibility Considerations

CautioNn Backups created with Microsoft® SQL Server™ 2000 cannot be
restored in earlier versions of SQL Server.

Permissions

BACKUP DATABASE and BACKUP LOG permissions default to members of
the sysadmin fixed server role and the db_owner and db_backupoperator
fixed database roles.

In addition, the user may specify passwords for a media set, a backup set, or
both. When a password is defined on a media set, it is not enough that a user is a
member of appropriate fixed server and database roles to perform a backup. The
user also must supply the media password to perform these operations. Similarly,
restore is not allowed unless the correct media password and backup set
password are specified in the restore command.

Defining passwords for backup sets and media sets is an optional feature in the
BACKUP statement. The passwords will prevent unauthorized restore operations
and unauthorized appends of backup sets to media using SQL Server 2000 tools,
but passwords do not prevent overwrite of media with the FORMAT option.

Thus, although the use of passwords can help protect the contents of media from
unauthorized access using SQL Server tools, passwords do not protect contents
from being destroyed. Passwords do not fully prevent unauthorized access to the
contents of the media because the data in the backup sets is not encrypted and
could theoretically be examined by programs specifically created for this
purpose. For situations where security is crucial, it is important to prevent access
to the media by unauthorized individuals.

It is an error to specify a password for objects that were not created with
associated passwords.

BACKUP creates the backup set with the backup set password supplied through
the PASSWORD option. In addition, BACKUP will normally verify the media
password given by the MEDIAPASSWORD option prior to writing to the media.
The only time that BACKUP will not verify the media password is when it
formats the media, which overwrites the media header. BACKUP formats the
media only:

e If the FORMAT option is specified.
e If the media header is invalid and INIT is specified.

o If the operation is writing a continuation volume.

If BACKUP writes the media header, BACKUP will assign the media set
password to the value specified in the MEDIAPASSWORD option.

For more information about the impact of passwords on SKIP, NOSKIP, INIT,
and NOINIT options, see the Remarks section.

Ownership and permission problems on the backup device's physical file can
interfere with a backup operation. SQL Server must be able to read and write to
the device; the account under which the SQL Server service runs must have
write permissions. However, sp_addumpdevice, which adds an entry for a
device in the system tables, does not check file access permissions. Such
problems on the backup device's physical file may not appear until the physical
resource is accessed when the backup or restore is attempted.

Examples

A. Back up the entire MyNwind database
Note The MyNwind database is shown for illustration only.

This example creates a logical backup device in which a full backup of the
MyNwind database is placed.

-- Create a logical backup device for the full MyNwind backup.
USE master
EXEC sp_addumpdevice 'disk’, MyNwind_1"',
DISK ='c:\Program Files\Microsoft SQL Server\MSSQL\BACKUP\|

-- Back up the full MyNwind database.
BACKUP DATABASE MyNwind TO MyNwind_1

B. Back up the database and log

This example creates both a full database and log backup. The database is
backed up to a logical backup device called MyNwind_2, and then the log is
backed up to a logical backup device called MyNwindLog1.

Note Creating a logical backup device needs to be done only once.

-- Create the backup device for the full MyNwind backup.
USE master
EXEC sp_addumpdevice 'disk’, MyNwind_2',
'c:\Program Files\Microsoft SQL Server\MSSQL\BACKUP\MyNwil

--Create the log backup device.
USE master
EXEC sp_addumpdevice 'disk’, ' MyNwindLog1',
'c:\Program Files\Microsoft SQL Server\MSSQL\BACKUP\MyNwil

-- Back up the full MyNwind database.
BACKUP DATABASE MyNwind TO MyNwind_2

-- Update activity has occurred since the full database backup.

-- Back up the log of the MyNwind database.
BACKUP LOG MyNwind
TO MyNwindLog1

See Also

Backup Formats

DBCC SQLPERF
RESTORE

RESTORE FILELISTONLY
RESTORE HEADERONLY

JavaScript:hhobj_8.Click()

RESTORE LABELONLY

RESTORE VERIFYONLY

sp_addumpdevice
sp_configure

sp_dboption

sp_helpfile

sp_helpfilegroup

Using Identifiers

Using Media Sets and Families

JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()

Transact-SQL Reference

BEGIN...END

Encloses a series of Transact-SQL statements so that a group of Transact-SQL
statements can be executed. BEGIN and END are control-of-flow language
keywords.

Syntax

BEGIN
{

sql_statement
| statement_block

}
END

Arguments
{ sql_statement | statement_block }

Is any valid Transact-SQL statement or statement grouping as defined with a
statement block.

Remarks
BEGIN...END blocks can be nested.

Although all Transact-SQL statements are valid within a BEGIN...END block,
certain Transact-SQL statements should not be grouped together within the same
batch (statement block). For more information, see Batches and the individual
statements used.

Examples

In this example, BEGIN and END define a series of Transact-SQL statements
that execute together. If the BEGIN...END block were not included, the IF
condition would cause only the ROLLBACK TRANSACTION to execute, and
the print message would not be returned.

JavaScript:hhobj_1.Click()

USE pubs
GO
CREATE TRIGGER deltitle
ON titles
FOR delete
AS
IF (SELECT COUNT(*) FROM deleted, sales
WHERE sales.title_id = deleted.title_id) > 0
BEGIN
ROLLBACK TRANSACTION
PRINT "You can't delete a title with sales."'
END

See Also

ALTER TRIGGER

Control-of-Flow Language
CREATE TRIGGER
END (BEGIN...END)

Transact-SQL Reference

BEGIN DISTRIBUTED TRANSACTION

Specifies the start of a Transact-SQL distributed transaction managed by
Microsoft Distributed Transaction Coordinator (MS DTC).

Syntax

BEGIN DISTRIBUTED TRAN [SACTION]
[transaction_name | @tran_name_variable]

Arguments
transaction_name

Is a user-defined transaction name used to track the distributed transaction
within MS DTC utilities. transaction_name must conform to the rules for
identifiers but only the first 32 characters are used.

@tran_name_variable

Is the name of a user-defined variable containing a transaction name used to
track the distributed transaction within MS DTC utilities. The variable must
be declared with a char, varchar, nchar, or nvarchar data type.

Remarks

The server executing the BEGIN DISTRIBUTED TRANSACTION statement is
the transaction originator and controls the completion of the transaction. When a
subsequent COMMIT TRANSACTION or ROLLBACK TRANSACTION
statement is issued for the connection, the controlling server requests that MS
DTC manage the completion of the distributed transaction across the servers
involved.

There are two ways remote SQL servers are enlisted in a distributed transaction:

¢ A connection already enlisted in the distributed transaction performs a
remote stored procedure call referencing a remote server.

¢ A connection already enlisted in the distributed transaction executes a
distributed query referencing a remote server.

For example, if BEGIN DISTRIBUTED TRANSACTION is issued on
ServerA, the connection calls a stored procedure on ServerB and another stored
procedure on ServerC, and the stored procedure on ServerC executes a
distributed query against ServerD, then all four SQL servers are involved in the
distributed transaction. ServerA is the originating, controlling server for the
transaction.

The connections involved in Transact-SQL distributed transactions do not get a
transaction object they can pass to another connection for it to explicitly enlist in
the distributed transaction. The only way for a remote server to enlist in the
transaction is to be the target of a remote stored procedure call or a distributed

query.

The sp_configure remote proc trans option controls whether calls to remote
stored procedures in a local transaction automatically cause the local transaction
to be promoted to a distributed transaction managed by MS DTC. The
connection-level SET option REMOTE_PROC_TRANSACTIONS can be used
to override the server default established by sp_configure remote proc trans.
With this option set on, a remote stored procedure call causes a local transaction
to be promoted to a distributed transaction. The connection that creates the MS
DTC transaction becomes the originator for the transaction. COMMIT
TRANSACTION initiates an MS DTC coordinated commit. If the sp_configure
remote proc trans option is set on, remote stored procedure calls in local
transactions are automatically protected as part of distributed transactions
without having to rewrite applications to specifically issue BEGIN
DISTRIBUTED TRANSACTION instead of BEGIN TRANSACTION.

When a distributed query is executed in a local transaction, the transaction is
automatically promoted to a distributed transaction if the target OLE DB data
source supports ITransactionLocal. If the target OLE DB data source does not
support ITransactionLocal, only read-only operations are allowed in the
distributed query.

For more information about the distributed transaction environment and process,
see the Microsoft Distributed Transaction Coordinator documentation.

Permissions

BEGIN DISTRIBUTED TRANSACTION permissions default to any valid user.

Examples

This example updates the author's last name on the local and remote databases.
The local and remote databases will both either commit or roll back the
transaction.

Note Unless MS DTC is currently installed on the computer running
Microsoft® SQL Server™, this example produces an error message. For more
information about installing MS DTC, see the Microsoft Distributed Transaction
Coordinator documentation.

USE pubs
GO
BEGIN DISTRIBUTED TRANSACTION
UPDATE authors
SET au_Iname = 'McDonald' WHERE au_id = '409-56-7008'
EXECUTE remote.pubs.dbo.changeauth_Iname '409-56-7008','McDor
COMMIT TRAN
GO

See Also

BEGIN TRANSACTION
COMMIT TRANSACTION
COMMIT WORK

Distributed Transactions
ROLLBACK TRANSACTION
ROLLBACK WORK

SAVE TRANSACTION

JavaScript:hhobj_1.Click()

Transact-SQL Reference

BEGIN TRANSACTION

Marks the starting point of an explicit, local transaction. BEGIN
TRANSACTION increments @ @TRANCOUNT by 1.

Syntax

BEGIN TRAN [SACTION] [transaction_name | @tran_name_variable
[WITH MARK ['description']]]

Arguments
transaction_name

Is the name assigned to the transaction. transaction_name must conform to
the rules for identifiers but identifiers longer than 32 characters are not
allowed. Use transaction names only on the outermost pair of nested
BEGIN...COMMIT or BEGIN...ROLLBACK statements.

@tran_name_variable

Is the name of a user-defined variable containing a valid transaction name.
The variable must be declared with a char, varchar, nchar, or nvarchar
data type.

WITH MARK ['description']

Specifies the transaction is marked in the log. description is a string that
describes the mark.

If WITH MARK is used, a transaction name must be specified. WITH
MARK allows for restoring a transaction log to a named mark.

Remarks

BEGIN TRANSACTION represents a point at which the data referenced by a
connection is logically and physically consistent. If errors are encountered, all
data modifications made after the BEGIN TRANSACTION can be rolled back
to return the data to this known state of consistency. Each transaction lasts until

either it completes without errors and COMMIT TRANSACTION is issued to
make the modifications a permanent part of the database, or errors are

encountered and all modifications are erased with a ROLLBACK
TRANSACTION statement.

BEGIN TRANSACTION starts a local transaction for the connection issuing the
statement. Depending on the current transaction isolation level settings, many
resources acquired to support the Transact-SQL statements issued by the
connection are locked by the transaction until it is completed with either a
COMMIT TRANSACTION or ROLLBACK TRANSACTION statement.
Transactions left outstanding for long periods of time can prevent other users
from accessing these locked resources.

Although BEGIN TRANSACTION starts a local transaction, it is not recorded
in the transaction log until the application subsequently performs an action that
must be recorded in the log, such as executing an INSERT, UPDATE, or
DELETE statement. An application can perform actions such as acquiring locks
to protect the transaction isolation level of SELECT statements, but nothing is
recorded in the log until the application performs a modification action.

Naming multiple transactions in a series of nested transactions with a transaction
name has little effect on the transaction. Only the first (outermost) transaction
name is registered with the system. A rollback to any other name (other than a
valid savepoint name) generates an error. None of the statements executed before
the rollback are in fact rolled back at the time this error occurs. The statements
are rolled back only when the outer transaction is rolled back.

BEGIN TRANSACTION starts a local transaction. The local transaction is
escalated to a distributed transaction if the following actions are performed
before it is committed or rolled back:

e An INSERT, DELETE, or UPDATE statement is executed that
references a remote table on a linked server. The INSERT, UPDATE, or
DELETE statement fails if the OLE DB provider used to access the
linked server does not support the I'TransactionJoin interface.

e A call is made to a remote stored procedure when the
REMOTE_PROC_TRANSACTIONS option is set to ON.

The local copy of SQL Server becomes the transaction controller and uses MS
DTC to manage the distributed transaction.

Marked Transactions

The WITH MARK option causes the transaction name to be placed in the
transaction log. When restoring a database to an earlier state, the marked
transaction can be used in place of a date and time. For more information, see
Restoring a Database to a Prior State, Recovering to a Named Transaction, and
RESTORE.

Additionally, transaction log marks are necessary if you need to recover a set of
related databases to a logically consistent state. Marks can be placed in the
transaction logs of the related databases by a distributed transaction. Recovering
the set of related databases to these marks results in a set of databases that are
transactionally consistent. Placement of marks in related databases requires
special procedures. For more information, see Backup and Recovery of Related
Databases.

The mark is placed in the transaction log only if the database is updated by the
marked transaction. Transactions that do not modify data are not marked.

BEGIN TRAN new_name WITH MARK can be nested within an already
existing transaction that is not marked. Upon doing so, new_name becomes the
mark name for the transaction, despite the name that the transaction may already
have been given. In the following example, M2 is the name of the mark.

BEGIN TRAN T1

UPDATE tablel ...

BEGIN TRAN M2 WITH MARK
UPDATE table? ...

SELECT * from tablel

COMMIT TRAN M2

UPDATE table3 ...

COMMIT TRAN T1

Attempting to mark a transaction that is already marked results in a warning (not
error) message:

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

BEGIN TRAN T1 WITH MARK
UPDATE tablel ...
BEGIN TRAN M2 WITH MARK

Server: Msg 3920, Level 16, State 1, Line 3
WITH MARK option only applies to the first BEGIN TRAN WITH M
The option is ignored.

Permissions

BEGIN TRANSACTION permissions default to any valid user.
Examples

A. Naming a transaction

This example demonstrates how to name a transaction. Upon committing the
named transaction, royalties paid for all popular computer books are increased
by 10 percent.

DECLARE @TranName VARCHAR(20)
SELECT @TranName = 'MyTransaction'

BEGIN TRANSACTION @TranName
GO

USE pubs

GO

UPDATE roysched

SET royalty = royalty * 1.10

WHERE title_id LIKE "Pc%'

GO

COMMIT TRANSACTION MyTransaction
GO

B. Marking a transaction

This example demonstrates how to mark a transaction. The transaction named
"RoyaltyUpdate" is marked.

BEGIN TRANSACTION RoyaltyUpdate
WITH MARK 'Update royalty values'
GO
USE pubs
GO
UPDATE roysched
SET royalty = royalty * 1.10
WHERE title_id LIKE '"Pc%'
GO
COMMIT TRANSACTION RoyaltyUpdate
GO

See Also

BEGIN DISTRIBUTED TRANSACTION
COMMIT TRANSACTION
COMMIT WORK

RESTORE

Recovering to a Named Transaction
ROLLBACK TRANSACTION
ROLLBACK WORK

SAVE TRANSACTION

Transactions

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Transact-SQL Reference

BETWEEN

Specifies a range to test.

Syntax
test_expression [NOT] BETWEEN begin_expression AND end_expression

Arguments
test_expression

Is the expression to test for in the range defined by begin_expression and
end_expression. test_expression must be the same data type as both
begin_expression and end_expression.

NOT
Specifies that the result of the predicate be negated.
begin_expression

Is any valid Microsoft® SQL Server™ expression. begin_expression must be
the same data type as both test_expression and end_expression.

end_expression

Is any valid SQL Server expression. end_expression must be the same data
type as both test_expression and begin_expression.

AND

Acts as a placeholder indicating that test_expression should be within the
range indicated by begin_expression and end_expression.

Result Types

Boolean

Result Value

BETWEEN returns TRUE if the value of test_expression is greater than or equal
to the value of begin_expression and less than or equal to the value of
end_expression.

NOT BETWEEN returns TRUE if the value of test_expression is less than the
value of begin_expression or greater than the value of end_expression.

Remarks

To specify an exclusive range, use the greater than (>) and less than operators
(<). If any input to the BETWEEN or NOT BETWEEN predicate is NULL, the
result is UNKNOWN.

Examples

A. Use BETWEEN

This example returns title identifiers for books with year-to-date unit sales from
4,095 through 12,000.

USE pubs

GO

SELECT title_id, ytd_sales

FROM titles

WHERE ytd_sales BETWEEN 4095 AND 12000
GO

Here is the result set:

title_id ytd_sales
BU1032 4095
BU7832 4095
PC1035 8780
PC8888 4095
TC7777 4095

(5 row(s) affected)

B. Use > and < instead of BETWEEN

This example, which uses greater than (>) and less than (<) operators, returns
different results because these operators are not inclusive.

USE pubs

GO

SELECT title_id, ytd_sales

FROM titles

WHERE ytd_sales > 4095 AND ytd_sales < 12000
GO

Here is the result set:

title_id ytd_sales

PC1035 8780
(1 row(s) affected)

C. Use NOT BETWEEN

This example finds all rows outside a specified range (from 4,095 through
12,000).

USE pubs

GO

SELECT title_id, ytd_sales

FROM titles

WHERE ytd_sales NOT BETWEEN 4095 AND 12000
GO

Here is the result set:

title_id ytd_sales

BU1111 3876
BU2075 18722
MC2222 2032
MC3021 22246
PS1372 375
PS2091 2045
PS2106 111
PS3333 4072
PS7777 3336
TC3218 375
TC4203 15096

(11 row(s) affected)

See Also

> (Greater Than)

< (Less Than)

Expressions

Functions

Operators (Logical Operators)
SELECT (Subqueries)
WHERE

Transact-SQL Reference

binary and varbinary

Binary data types of either fixed-length (binary) or variable-length (varbinary).
binary [(n)]

Fixed-length binary data of n bytes. n must be a value from 1 through 8,000.
Storage size is n+4 bytes.

varbinary [(n)]

Variable-length binary data of n bytes. n must be a value from 1 through
8,000. Storage size is the actual length of the data entered + 4 bytes, not n
bytes. The data entered can be 0 bytes in length. The SQL-92 synonym for
varbinary is binary varying.

Remarks

When n is not specified in a data definition, or variable declaration statement,
the default length is 1. When n is not specified with the CAST function, the
default length is 30.

Use binary when column data entries are consistent in size.

Use varbinary when column data entries are inconsistent in size.

See Also

ALTER TABLE
CAST and CONVERT
CREATE TABLE

Data Type Conversion

Data Types
DECLARE @]local_variable

DELETE

JavaScript:hhobj_1.Click()

INSERT
SET @local_variable
UPDATE

Transact-SQL Reference

BINARY_CHECKSUM

Returns the binary checksum value computed over a row of a table or over a list
of expressions. BINARY_CHECKSUM can be used to detect changes to a row
of a table.

Syntax
BINARY_CHECKSUM (* | expression [,..n])

Arguments

%

Specifies that the computation is over all the columns of the table.
BINARY_CHECKSUM ignores columns of noncomparable data types in its
computation. Noncomparable data types are text, ntext, image, and cursor,
as well as sql_variant with any of the above types as its base type.

expression

Is an expression of any type. BINARY_CHECKSUM ignores expressions of
noncomparable data types in its computation.

Remarks

BINARY_CHECKSUM(*), computed on any row of a table, returns the same
value as long the row is not subsequently modified. BINARY_CHECKSUM(*)
will return a different value for most, but not all, changes to the row, and can be
used to detect most row modifications.

BINARY_CHECKSUM can be applied over a list of expressions, and returns the
same value for a given list. BINARY_CHECKSUM applied over any two lists of
expressions returns the same value if the corresponding elements of the two lists
have the same type and byte representation. For this definition, NULL values of
a given type are considered to have the same byte representation.

BINARY_CHECKSUM and CHECKSUM are similar functions: they can be
used to compute a checksum value on a list of expressions, and the order of

expressions affects the resultant value. The order of columns used in the case of
BINARY_CHECKSUM(¥*) is the order of columns specified in the table or view
definition, including computed columns.

CHECKSUM and BINARY_CHECKSUM return different values for the string
data types, where locale can cause strings with different representation to
compare equal. The string data types are char, varchar, nchar, nvarchar, or
sql_variant (if the base type of sql_variant is a string data type). For example,
the BINARY_CHECKSUM values for the strings "McCavity" and "Mccavity"
are different. In contrast, in a case-insensitive server, CHECKSUM returns the
same checksum values for those strings. CHECKSUM values should not be
compared against BINARY_CHECKSUM values.

Examples

A. Use BINARY_CHECKSUM to detect changes in the rows of a
table.

This example uses BINARY_CHECKSUM to detect changes in a row of the
Products table in the Northwind database.

/*Get the checksum value before the values in the specific rows (#13-1
USE Northwind
GO
CREATE TABLE TableBC (ProductID int, bchecksum int)
INSERT INTO TableBC
SELECT ProductID, BINARY_CHECKSUM(*)
FROM Products
/*TableBC contains a column of 77 checksum values corresponding to

--A large company bought products 13-15.

--The new company modified the products names and unit prices.
--Change the values of ProductsName and UnitPrice for rows 13, 14, a
UPDATE Products

SET ProductName='0ishi Konbu', UnitPrice=5

WHERE ProductName="Konbu'

UPDATE Products
SET ProductName='Oishi Tofu', UnitPrice=20
WHERE ProductName="Tofu'

UPDATE Products
SET ProductName='0Oishi Genen Shouyu', UnitPrice=12
WHERE ProductName='Genen Shouyu'

--Determine the rows that have changed.
SELECT ProductID
FROM TableBC
WHERE EXISTS (
SELECT ProductID
FROM Products
WHERE Products.ProductID = TableBC.ProductID
AND BINARY_CHECKSUM(*) <> TableBC.bchecksum)

Here is the result set:

ProductID
13
14
15

See Also

CHECKSUM
CHECKSUM_AGG

Transact-SQL Reference

bit
Integer data type 1, 0, or NULL.

Remarks
Columns of type bit cannot have indexes on them.

Microsoft® SQL Server™ optimizes the storage used for bit columns. If there
are 8 or fewer bit columns in a table, the columns are stored as 1 byte. If there
are from 9 through 16 bit columns, they are stored as 2 bytes, and so on.

See Also

ALTER TABLE
CAST and CONVERT
CREATE TABLE

Data Type Conversion

Data Types

DECLARE @local_variable
DELETE

INSERT

SET @local_variable

syscolumns
UPDATE

JavaScript:hhobj_1.Click()

Transact-SQL Reference

BREAK

Exits the innermost WHILE loop. Any statements following the END keyword
are ignored. BREAK is often, but not always, activated by an IF test.

See Also

Control-of-Flow Language

WHILE

Transact-SQL Reference

BULK INSERT

Copies a data file into a database table or view in a user-specified format.

Syntax

BULK INSERT [['database_name'.] ['owner'].] { 'table_name' FROM
'data_file' } [WITH

(

[BATCHSIZE [= batch_size] |
[[,] CHECK_CONSTRAINTS]
[[,] CODEPAGE [='ACP' | 'OEM' | 'RAW' | 'code_page']]
[[,] DATAFILETYPE [=
{ 'char’ | 'native'| 'widechar' | 'widenative' }]]
[[,] FIELDTERMINATOR [= 'field_terminator']]
[[,] FIRSTROW [= first_row]]
[[,]FIRE_ TRIGGERS]
[[,] FORMATFILE = 'format_file_path']
[[,] KEEPIDENTITY]
[[,] KEEPNULLS]
[[,] KILOBYTES_PER_BATCH [= kilobytes_per_batch]]
[[,] LASTROW [= last_row] |
[[,] MAXERRORS [= max_errors]]
[[,] ORDER ({ column[ASC|DESC]}[,..n])]
[[,] ROWS_PER_BATCH [= rows_per_batch]]
[[,] ROWTERMINATOR [= 'row_terminator']]
[[,] TABLOCK]

Arguments

'database_name'

Is the database name in which the specified table or view resides. If not
specified, this is the current database.

'owner"'

Is the name of the table or view owner. owner is optional if the user
performing the bulk copy operation owns the specified table or view. If
owner is not specified and the user performing the bulk copy operation does
not own the specified table or view, Microsoft® SQL Server™ returns an
error message, and the bulk copy operation is canceled.

'table_name'

Is the name of the table or view to bulk copy data into. Only views in which
all columns refer to the same base table can be used. For more information
about the restrictions for copying data into views, see INSERT.

'data_file'

Is the full path of the data file that contains data to copy into the specified
table or view. BULK INSERT can copy data from a disk (including network,
floppy disk, hard disk, and so on).

data_file must specify a valid path from the server on which SQL Server is
running. If data_file is a remote file, specify the Universal Naming
Convention (UNC) name.

BATCHSIZE [= batch_size |

Specifies the number of rows in a batch. Each batch is copied to the server as
one transaction. SQL Server commits or rolls back, in the case of failure, the
transaction for every batch. By default, all data in the specified data file is
one batch.

CHECK_CONSTRAINTS

Specifies that any constraints on table_name are checked during the bulk
copy operation. By default, constraints are ignored.

CODEPAGE [='ACP' | 'OEM' | 'RAW' | 'code_page']

Specifies the code page of the data in the data file. CODEPAGE is relevant
only if the data contains char, varchar, or text columns with character
values greater than 127 or less than 32.

CODEPAGE

value Description

ACP Columns of char, varchar, or text data type are
converted from the ANSI/Microsoft Windows® code
page (ISO 1252) to the SQL Server code page.

OEM (default) Columns of char, varchar, or text data type are
converted from the system OEM code page to the SQL
Server code page.

RAW No conversion from one code page to another occurs;
this is the fastest option.

code_page Specific code page number, for example, 850.

DATAFILETYPE [= {'char' | 'native' | 'widechar' | 'widenative' }]

Specifies that BULK INSERT performs the copy operation using the

specified default.

DATAFILETYPE
value Description
char (default) Performs the bulk copy operation from a data file

containing character data.

native

Performs the bulk copy operation using the native
(database) data types. The data file to load is created
by bulk copying data from SQL Server using the bcp
utility.

widechar

Performs the bulk copy operation from a data file
containing Unicode characters.

widenative

Performs the same bulk copy operation as native,
except char, varchar, and text columns are stored as
Unicode in the data file. The data file to be loaded was
created by bulk copying data from SQL Server using
the bep utility. This option offers a higher performance
alternative to the widechar option, and is intended for
transferring data from one computer running SQL
Server to another by using a data file. Use this option
when transferring data that contains ANSI extended
characters in order to take advantage of native mode

|performance.

FIELDTERMINATOR [= 'field_terminator"]

Specifies the field terminator to be used for char and widechar data files.
The default is \t (tab character).

FIRSTROW [= first_row]

Specifies the number of the first row to copy. The default is 1, indicating the
first row in the specified data file.

FIRE_TRIGGERS

Specifies that any insert triggers defined on the destination table will execute
during the bulk copy operation. If FIRE_TRIGGERS is not specified, no
insert triggers will execute.

FORMATFILE [= 'format_file_path']

Specifies the full path of a format file. A format file describes the data file
that contains stored responses created using the bep utility on the same table
or view. The format file should be used in cases in which:

¢ The data file contains greater or fewer columns than the table or view.

e The columns are in a different order.

e The column delimiters vary.

e There are other changes in the data format. Format files are usually
created by using the bep utility and modified with a text editor as
needed. For more information, see bcp Utility.

KEEPIDENTITY

Specifies that the values for an identity column are present in the file
imported. If KEEPIDENTITY is not given, the identity values for this
column in the data file imported are ignored, and SQL Server automatically

JavaScript:hhobj_1.Click()

assigns unique values based on the seed and increment values specified
during table creation. If the data file does not contain values for the identity
column in the table or view, use a format file to specify that the identity
column in the table or view should be skipped when importing data; SQL
Server automatically assigns unique values for the column. For more
information, see DBCC CHECKIDENT.

KEEPNULLS

Specifies that empty columns should retain a null value during the bulk copy
operation, rather than have any default values for the columns inserted.

KILOBYTES_PER_BATCH [= kilobytes_per_batch]

Specifies the approximate number of kilobytes (KB) of data per batch (as
kilobytes_per_batch). By default, KILOBYTES_PER_BATCH is unknown.

LASTROW [= last_row |

Specifies the number of the last row to copy. The default is 0, indicating the
last row in the specified data file.

MAXERRORS [= max_errors |

Specifies the maximum number of errors that can occur before the bulk copy
operation is canceled. Each row that cannot be imported by the bulk copy
operation is ignored and counted as one error. If max_errors is not specified,
the default is 10.

ORDER ({ column [ASC|DESC]} [,..n])

Specifies how the data in the data file is sorted. Bulk copy operation
performance is improved if the data loaded is sorted according to the
clustered index on the table. If the data file is sorted in a different order, or
there is no clustered index on the table, the ORDER clause is ignored. The
column names supplied must be valid columns in the destination table. By
default, the bulk insert operation assumes the data file is unordered.

Is a placeholder indicating that multiple columns can be specified.

ROWS_PER_BATCH [= rows_per_batch]

Specifies the number of rows of data per batch (as rows_per_batch). Used
when BATCHSIZE is not specified, resulting in the entire data file sent to the
server as a single transaction. The server optimizes the bulk load according
to rows_per_batch. By default, ROWS_PER_BATCH is unknown.

ROWTERMINATOR [= 'row_terminator"]

Specifies the row terminator to be used for char and widechar data files.
The default is \n (newline character).

TABLOCK

Specifies that a table-level lock is acquired for the duration of the bulk copy
operation. A table can be loaded concurrently by multiple clients if the table
has no indexes and TABLOCK is specified. By default, locking behavior is
determined by the table option table lock on bulk load. Holding a lock only
for the duration of the bulk copy operation reduces lock contention on the
table, significantly improving performance.

Remarks

The BULK INSERT statement can be executed within a user-defined
transaction. Rolling back a user-defined transaction that uses a BULK INSERT
statement and BATCHSIZE clause to load data into a table or view using
multiple batches rolls back all batches sent to SQL Server.

Permissions

Only members of the sysadmin and bulkadmin fixed server roles can execute
BULK INSERT.

Examples

This example imports order detail information from the specified data file using
a pipe (|) as the field terminator and |\n as the row terminator.

BULK INSERT Northwind.dbo.[Order Details]
FROM 'f:\orders\lineitem.tbl'
WITH

(

FIELDTERMINATOR ="|,
ROWTERMINATOR = "\n'

)

This example specifies the FIRE_TRIGGERS argument.

BULK INSERT Northwind.dbo.[Order Details]
FROM 'f:\orders\lineitem.tbl'
WITH

(
FIELDTERMINATOR =[]

ROWTERMINATOR = "\n',
FIRE_TRIGGERS

)
See Also

bep Utility
Collations

Copying Data Between Different Collations

Copying Data Using bcp or BULK INSERT

Parallel Data I.oads

sp_tableoption

Using Format Files

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

Transact-SQL Reference

CASE

Evaluates a list of conditions and returns one of multiple possible result
expressions.

CASE has two formats:

e The simple CASE function compares an expression to a set of simple
expressions to determine the result.

e The searched CASE function evaluates a set of Boolean expressions to
determine the result.

Both formats support an optional ELSE argument.

Syntax
Simple CASE function:

CASE input_expression
WHEN when_expression THEN result_expression

[..n]
[

ELSE else_result_expression

]
END

Searched CASE function:

CASE
WHEN Boolean_expression THEN result_expression
[..n]
[

ELSE else_result_expression

]
END

Arguments

input_expression

Is the expression evaluated when using the simple CASE format.
input_expression is any valid Microsoft® SQL Server™ expression.

WHEN when_expression

Is a simple expression to which input_expression is compared when using
the simple CASE format. when_expression is any valid SQL Server
expression. The data types of input_expression and each when_expression
must be the same or must be an implicit conversion.

Is a placeholder indicating that multiple WHEN when_expression THEN
result_expression clauses, or multiple WHEN Boolean_expression THEN
result_expression clauses can be used.

THEN result_expression

Is the expression returned when input_expression equals when_expression
evaluates to TRUE, or Boolean_expression evaluates to TRUE. result
expression is any valid SQL Server expression.

ELSE else_result_expression

Is the expression returned if no comparison operation evaluates to TRUE. If
this argument is omitted and no comparison operation evaluates to TRUE,
CASE returns NULL. else_result_expression is any valid SQL Server
expression. The data types of else_result_expression and any
result_expression must be the same or must be an implicit conversion.

WHEN Boolean_expression

Is the Boolean expression evaluated when using the searched CASE format.
Boolean_expression is any valid Boolean expression.

Result Types

Returns the highest precedence type from the set of types in result_expressions
and the optional else_result_expression. For more information, see Data Type
Precedence.

Result Values

Simple CASE function:

e Evaluates input_expression, and then, in the order specified, evaluates
input_expression = when_expression for each WHEN clause.

e Returns the result_expression of the first (input_expression =
when_expression) that evaluates to TRUE.

e If no input_expression = when_expression evaluates to TRUE, SQL
Server returns the else_result_expression if an ELSE clause is specified,
or a NULL value if no ELSE clause is specified.

Searched CASE function:

e Evaluates, in the order specified, Boolean_expression for each WHEN
clause.

e Returns result_expression of the first Boolean_expression that evaluates
to TRUE.

¢ If no Boolean_expression evaluates to TRUE, SQL Server returns the
else_result_expression if an ELSE clause is specified, or a NULL value
if no ELSE clause is specified.

Examples

A. Use a SELECT statement with a simple CASE function

Within a SELECT statement, a simple CASE function allows only an equality
check; no other comparisons are made. This example uses the CASE function to
alter the display of book categories to make them more understandable.

USE pubs

GO
SELECT Category =
CASE type
WHEN 'popular_comp' THEN "Popular Computing'
WHEN 'mod_cook' THEN "Modern Cooking'
WHEN 'business' THEN 'Business'
WHEN 'psychology' THEN 'Psychology"
WHEN 'trad_cook' THEN "Traditional Cooking'
ELSE 'Not yet categorized'
END,
CAST(title AS varchar(25)) AS 'Shortened Title',
price AS Price
FROM titles
WHERE price IS NOT NULL
ORDER BY type, price
COMPUTE AVG(price) BY type
GO

Here is the result set:

Category Shortened Title Price
Business You Can Combat Computer S 2.99
Business Cooking with Computers: S 11.95
Business The Busy Executive's Data 19.99
Business Straight Talk About Compu 19.99
avg
13.73
Category Shortened Title Price

Modern Cooking The Gourmet Microwave 2.99

Modern Cooking Silicon Valley Gastronomi 19.99

Category Shortened Title Price
Popular Computing Secrets of Silicon Valley 20.00
Popular Computing But Is It User Friendly? 22.95

Category Shortened Title Price
Psychology Life Without Fear 7.00
Psychology Emotional Security: A New 7.99
Psychology Is Anger the Enemy? 10.95
Psychology Prolonged Data Deprivatio 19.99
Psychology Computer Phobic AND Non-P 21.59

Category Shortened Title Price
Traditional Cooking Fifty Years in Buckingham 11.95
Traditional Cooking Sushi, Anyone? 14.99
Traditional Cooking Onions, Leeks, and Garlic 20.95

(21 row(s) affected)

B. Use a SELECT statement with simple and searched CASE
function

Within a SELECT statement, the searched CASE function allows values to be
replaced in the result set based on comparison values. This example displays the
price (a money column) as a text comment based on the price range for a book.

USE pubs
GO
SELECT 'Price Category' =
CASE
WHEN price IS NULL THEN 'Not yet priced'
WHEN price < 10 THEN '"Very Reasonable Title'
WHEN price >= 10 and price < 20 THEN 'Coffee Table Title'
ELSE 'Expensive book!'
END,
CAST(title AS varchar(20)) AS 'Shortened Title'
FROM titles
ORDER BY price
GO

Here is the result set:

Price Category Shortened Title

Not yet priced Net Etiquette

Not yet priced The Psychology of Co

Very Reasonable Title The Gourmet Microwav
Very Reasonable Title You Can Combat Compu

Very Reasonable Title Life Without Fear

Very Reasonable Title Emotional Security:

Coffee Table Title Is Anger the Enemy?

Coffee Table Title Cooking with Compute

Coffee Table Title Fifty Years in Bucki
Coffee Table Title Sushi, Anyone?

Coffee Table Title Prolonged Data Depri

Coffee Table Title Silicon Valley Gastr
Coffee Table Title Straight Talk About
Coffee Table Title The Busy Executive's
Expensive book! Secrets of Silicon V

Expensive book! Onions, Leeks, and G

Expensive book! Computer Phobic And

Expensive book! But Is It User Frien

(18 row(s) affected)

C. Use CASE with SUBSTRING and SELECT

This example uses CASE and THEN to produce a list of authors, the book
identification numbers, and the book types each author has written.

USE pubs

SELECT SUBSTRING((RTRIM(a.au_fname) + ' '+
RTRIM(a.au_lname) +'"), 1, 25) AS Name, a.au_id, ta.title_id,

Type =

CASE
WHEN SUBSTRING(ta.title_id, 1, 2) =
WHEN SUBSTRING(ta.title_id, 1, 2) =
WHEN SUBSTRING(ta.title_id, 1, 2) =
WHEN SUBSTRING(ta.title_id, 1, 2) =
WHEN SUBSTRING(ta.title_id, 1, 2) =

END

'BU' THEN 'Business'

'MC' THEN 'Modern Cook
'PC' THEN 'Popular Compt
'PS' THEN 'Psychology’
"TC' THEN 'Traditional Cot

FROM titleauthor ta JOIN authors a ON ta.au_id = a.au_id

Here is the result set:

Name au_id title_id Type

Johnson White 172-32-1176 PS3333 Psychology
Marjorie Green 213-46-8915 BU1032 Business

Marjorie Green 213-46-8915 BU2075 Business

Cheryl Carson 238-95-7766 PC1035 Popular Computing
Michael O'Leary 267-41-2394 BU1111 Business

Michael O'Leary 267-41-2394 TC7777 Traditional Cooking
Dean Straight 274-80-9391 BU7832 Business

Abraham Bennet 409-56-7008 BU1032 Business

Ann Dull 427-17-2319 PC8888 Popular Computing
Burt Gringlesby 472-27-2349 TC7777 Traditional Cooking

Charlene Locksley 486-29-1786 PC9999 Popular Computing
Charlene Locksley 486-29-1786 PS7777 Psychology
Reginald Blotchet-Halls 648-92-1872 TC4203 Traditional Cooking

Akiko Yokomoto 672-71-3249 TC7777 Traditional Cooking
Innes del Castillo 712-45-1867 M(C2222 Modern Cooking
Michel DeFrance 722-51-5454 MC3021 Modern Cooking

Stearns MacFeather 724-80-9391 BU1111 Business
Stearns MacFeather 724-80-9391 PS1372 Psychology

Livia Karsen 756-30-7391 PS1372 Psychology

Sylvia Panteley 807-91-6654 TC3218 Traditional Cooking
Sheryl Hunter 846-92-7186 PC8888 Popular Computing
Anne Ringer 899-46-2035 MC3021 Modern Cooking
Anne Ringer 899-46-2035 PS2091 Psychology

Albert Ringer 998-72-3567 PS2091 Psychology

Albert Ringer 998-72-3567 PS2106 Psychology

(25 row(s) affected)

See Also

Data Type Conversion

Data Types

Expressions
SELECT

System Functions
UPDATE
WHERE

JavaScript:hhobj_1.Click()

Transact-SQL Reference

CAST and CONVERT

Explicitly converts an expression of one data type to another. CAST and
CONVERT provide similar functionality.

Syntax

Using CAST:

CAST (expression AS data_type)

Using CONVERT:

CONVERT (data_type [(length)], expression [, style])

Arguments
expression

Is any valid Microsoft® SQL Server™ expression. For more information,
see Expressions.

data_type

Is the target system-supplied data type, including bigint and sql_variant.
User-defined data types cannot be used. For more information about
available data types, see Data Types.

length

Is an optional parameter of nchar, nvarchar, char, varchar, binary, or
varbinary data types.

style

Is the style of date format used to convert datetime or smalldatetime data to
character data (nchar, nvarchar, char, varchar, nchar, or nvarchar data
types), or the string format when converting float, real, money, or
smallmoney data to character data (nchar, nvarchar, char, varchar, nchar,
or nvarchar data types).

SQL Server supports the date format in Arabic style, using Kuwaiti

algorithm.

In the table, the two columns on the left represent the style values for

datetime or smalldatetime conversion to character data. Add 100 to a style

value to get a four-place year that includes the century (yyyy).

Without With century

century (yy) (Yyyy) Standard Input/Output**

- 0 or 100 (*) |Default mon dd yyyy
hh:miAM (or PM)

1 101 USA mm/dd/yy

2 102 ANSI yy.mm.dd

3 103 British/French dd/mm/yy

4 104 German dd.mm.yy

5 105 Italian dd-mm-yy

6 106 - dd mon yy

7 107 - Mon dd, yy

8 108 - hh:mm:ss

- 9or109 (*) |Default + mon dd yyyy

milliseconds hh:mi:ss:mmmAM

(or PM)

10 110 USA mm-dd-yy

11 111 JAPAN yy/mm/dd

12 112 ISO yymmdd

- 13 or 113 (*) |Europe default + |dd mon yyyy

milliseconds hh:mm:ss:mmm(24h)

14 114 - hh:mi:ss:mmm(24h)

- 20 or 120 (*) |ODBC canonical |yyyy-mm-dd
hh:mi:ss(24h)

- 21 0or 121 (*) |ODBC canonical |yyyy-mm-dd

(with milliseconds)

hh:mi:ss.mmm(24h)

- 126(+**) ISO8601 yyyy-mm-dd
Thh:mm:ss:mmm(no
spaces)

- 130* Kuwaiti dd mon yyyy

hh:mi:ss:mmmAM

- 131* Kuwaiti dd/mm/yy
hh:mi:ss:mmmAM

* The default values (style 0 or 100, 9 or 109, 13 or 113, 20 or 120, and 21 or 121) always return the
century (yyyy).

** Input when converting to datetime; output when converting to character data.

*** Designed for XML use. For conversion from datetime or smalldatetime to character data, the output
format is as described in the table. For conversion from float, money, or smallmoney to character data,
the output is equivalent to style 2. For conversion from real to character data, the output is equivalent to
style 1.

ImporTANT By default, SQL Server interprets two-digit years based on a cutoff
year of 2049. That is, the two-digit year 49 is interpreted as 2049 and the two-
digit year 50 is interpreted as 1950. Many client applications, such as those
based on OLE Automation objects, use a cutoff year of 2030. SQL Server
provides a configuration option (two digit year cutoff) that changes the cutoff
year used by SQL Server and allows the consistent treatment of dates. The safest
course, however, is to specify four-digit years.

When you convert to character data from smalldatetime, the styles that
include seconds or milliseconds show zeros in these positions. You can
truncate unwanted date parts when converting from datetime or
smalldatetime values by using an appropriate char or varchar data type
length.

This table shows the style values for float or real conversion to character
data.

Value Output

0 (default) |Six digits maximum. Use in scientific notation, when
appropriate.

1 Always eight digits. Always use in scientific notation.

2 Always 16 digits. Always use in scientific notation.

In the following table, the column on the left represents the style value for
money or smallmoney conversion to character data.

Value Output

0 (default) No commas every three digits to the left of the decimal point,
and two digits to the right of the decimal point; for example,
4235.98.

1 Commas every three digits to the left of the decimal point, and
two digits to the right of the decimal point; for example,
3,510.92.

2 No commas every three digits to the left of the decimal point,
and four digits to the right of the decimal point; for example,
4235.9819.

Return Types

Returns the same value as data type O.

Remarks

Implicit conversions are those conversions that occur without specifying either
the CAST or CONVERT function. Explicit conversions are those conversions
that require the CAST (CONVERT) function to be specified. This chart shows
all explicit and implicit data type conversions allowed for SQL Server system-
supplied data types, including bigint and sql_variant.

Note Because Unicode data always uses an even number of bytes, use caution
when converting binary or varbinary to or from Unicode supported data types.
For example, this conversion does not return a hexadecimal value of 41, but of

4100: SELECT CAST(CAST(0x41 AS nvarchar) AS varbinary)

Automatic data type conversion is not supported for the text and image data
types. You can explicitly convert text data to character data, and image data to
binary or varbinary, but the maximum length is 8000. If you attempt an
incorrect conversion (for example, if you convert a character expression that
includes letters to an int), SQL Server generates an error message.

When the output of CAST or CONVERT is a character string, and the input is a
character string, the output has the same collation and collation label as the
input. If the input is not a character string, the output has the default collation of

the database, and a collation label of coercible-default. For more information,
see Collation Precedence.

To assign a different collation to the output, apply the COLLATE clause to the
result expression of the CAST or CONVERT function. For example:

SELECT CAST(‘abc' AS varchar(5)) COLLATE French_CS_AS

There is no implicit conversion on assignment from the sql_variant data type
but there is implicit conversion to sql_variant.

When converting character or binary expressions (char, nchar, nvarchar,
varchar, binary, or varbinary) to an expression of a different data type, data
can be truncated, only partially displayed, or an error is returned because the
result is too short to display. Conversions to char, varchar, nchar, nvarchar,
binary, and varbinary are truncated, except for the conversions shown in this

table.

From data type To data type Result

int, smallint, or tinyint char &
varchar *
nchar E
nvarchar E

money, smallmoney, numeric, char E

decimal, float, or real
varchar E
nchar E
nvarchar E

* Result length too short to display.

E Error returned because result length is too short to display.

Microsoft SQL Server guarantees that only roundtrip conversions, conversions
that convert a data type from its original data type and back again, will yield the

same values from release to release. This example shows such a roundtrip
conversion:

DECLARE @myval decimal (5, 2)
SET @myval = 193.57

SELECT CAST(CAST(@myval AS varbinary(20)) AS decimal(10,5))
-- Or, using CONVERT
SELECT CONVERT(decimal(10,5), CONVERT (varbinary(20), @my

Do not attempt to construct, for example, binary values and convert them to a
data type of the numeric data type category. SQL Server does not guarantee that
the result of a decimal or numeric data type conversion to binary will be the
same between releases of SQL Server.

This example shows a resulting expression too small to display.

USE pubs

SELECT SUBSTRING(title, 1, 25) AS Title, CAST(ytd_sales AS chai
FROM titles

WHERE type = 'trad_cook'

Here is the result set:

Onions, Leeks, and Garlic *
Fifty Years in Buckingham *
Sushi, Anyone? *

(3 row(s) affected)

When data types are converted with a different number of decimal places, the
value is truncated to the most precise digit. For example, the result of SELECT
CAST(10.6496 AS int) is 10.

When data types in which the target data type has fewer decimal points than the
source data type are converted, the value is rounded. For example, the result of
CAST(10.3496847 AS money) is $10.3497.

SQL Server returns an error message when non-numeric char, nchar, varchar,
or nvarchar data is converted to int, float, numeric, or decimal. SQL Server
also returns an error when an empty string (" ") is converted to numeric or
decimal.

Using Binary String Data

When binary or varbinary data is converted to character data and an odd
number of values is specified following the x, SQL Server adds a 0 (zero) after
the x to make an even number of values.

Binary data consists of the characters from 0 through 9 and from A through F (or
from a through f), in groups of two characters each. Binary strings must be
preceded by Ox. For example, to input FF, type OxFF. The maximum value is a
binary value of 8000 bytes, each of which is FF. The binary data types are not
for hexadecimal data but rather for bit patterns. Conversions and calculations of
hexadecimal numbers stored as binary data can be unreliable.

When specifying the length of a binary data type, every two characters count as
one. A length of 10 signifies that 10 two-character groupings will be entered.

Empty binary strings, represented by 0x, can be stored as binary data.
Examples

A. Use both CAST and CONVERT

Each example retrieves the titles for those books that have a 3 in the first digit of
year-to-date sales, and converts their ytd_sales to char(20).

-- Use CAST.

USE pubs

GO

SELECT SUBSTRING(title, 1, 30) AS Title, ytd_sales
FROM titles

WHERE CAST(ytd_sales AS char(20)) LIKE '3%'
GO

-- Use CONVERT.

USE pubs

GO

SELECT SUBSTRING(title, 1, 30) AS Title, ytd_sales
FROM titles

WHERE CONVERT(char(20), ytd_sales) LIKE '3%'
GO

Here is the result set (for either query):

Title ytd_sales

Cooking with Computers: Surrep 3876
Computer Phobic AND Non-Phobic 375
Emotional Security: A New Algo 3336
Onions, Leeks, and Garlic: Coo 375

(4 row(s) affected)

B. Use CAST with arithmetic operators

This example calculates a single column computation (Copies) by dividing the
total year-to-date sales (ytd_sales) by the individual book price (price). This
result is converted to an int data type after being rounded to the nearest whole
number.

USE pubs

GO

SELECT CAST(ROUND(ytd_sales/price, 0) AS int) AS 'Copies'
FROM titles

GO

Here is the result set:

7440
NULL
383
205
NULL
17

187

16
204
418

18
1263
273

(18 row(s) affected)

C. Use CAST to concatenate

This example concatenates noncharacter, nonbinary expressions using the CAST
data type conversion function.

USE pubs

GO

SELECT 'The price is ' + CAST(price AS varchar(12))
FROM titles

WHERE price > 10.00

GO

Here is the result set:

The price is 19.99
The price is 11.95
The price is 19.99
The price is 19.99

The price is 22.95
The price is 20.00
The price is 21.59
The price is 10.95
The price is 19.99
The price is 20.95
The price is 11.95
The price is 14.99

(12 row(s) affected)

D. Use CAST for more readable text

This example uses CAST in the select list to convert the title column to a
char(50) column so the results are more readable.

USE pubs

GO

SELECT CAST(title AS char(50)), ytd_sales
FROM titles

WHERE type = 'trad_cook'

GO

Here is the result set:

ytd_sales

Onions, Leeks, and Garlic: Cooking Secrets of the 375

Fifty Years in Buckingham Palace Kitchens 15096
Sushi, Anyone? 4095
(3 row(s) affected)

E. Use CAST with LIKE clause

This example converts an int column (the ytd_sales column) to a char(20)

column so that it can be used with the LIKE clause.

USE pubs

GO

SELECT title, ytd_sales

FROM titles

WHERE CAST(ytd_sales AS char(20)) LIKE '15%'
AND type = 'trad_cook'

GO

Here is the result set:

title ytd_sales

Fifty Years in Buckingham Palace Kitchens 15096
(1 row(s) affected)

See Also

Data Type Conversion

SELECT

System Functions

JavaScript:hhobj_1.Click()

Transact-SQL Reference

CEILING

Returns the smallest integer greater than, or equal to, the given numeric
expression.

Syntax
CEILING (numeric_expression)

Arguments
numeric_expression

Is an expression of the exact numeric or approximate numeric data type
category, except for the bit data type.

Return Types

Returns the same type as numeric_expression.

Examples

This example shows positive numeric, negative, and zero values with the
CEILING function.

SELECT CEILING($123.45), CEILING($-123.45), CEILING($0.0)
GO

Here is the result set:

124.00 -123.00 0.00
(1 row(s) affected)

See Also

System Functions

Transact-SQL Reference

char and varchar

Fixed-length (char) or variable-length (varchar) character data types.
char[(n)]

Fixed-length non-Unicode character data with length of n bytes. n must be a
value from 1 through 8,000. Storage size is n bytes. The SQL-92 synonym
for char is character.

varchar[(n)]

Variable-length non-Unicode character data with length of n bytes. n must be
a value from 1 through 8,000. Storage size is the actual length in bytes of the
data entered, not n bytes. The data entered can be 0 characters in length. The
SQL-92 synonyms for varchar are char varying or character varying.

Remarks

When n is not specified in a data definition or variable declaration statement, the
default length is 1. When n is not specified with the CAST function, the default
length is 30.

Objects using char or varchar are assigned the default collation of the database,
unless a specific collation is assigned using the COLLATE clause. The collation
controls the code page used to store the character data.

Sites supporting multiple languages should consider using the Unicode nchar or
nvarchar data types to minimize character conversion issues. If you use char or
varchar:

e Use char when the data values in a column are expected to be
consistently close to the same size.

¢ Use varchar when the data values in a column are expected to vary
considerably in size.

If SET ANSI_PADDING is OFF when CREATE TABLE or ALTER TABLE is
executed, a char column defined as NULL is handled as varchar.

When the collation code page uses double-byte characters, the storage size is
still n bytes. Depending on the character string, the storage size of n bytes may
be less than n characters.

See Also

CAST and CONVERT
COLLATE

Collations

Data Type Conversion

Data Types

sp_dbcmptlevel

Specifying Collations

Using char and varchar Data
Using Unicode Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Transact-SQL Reference

CHAR

A string function that converts an int ASCII code to a character.

Syntax
CHAR (integer_expression)

Arguments
integer_expression

Is an integer from O through 255. NULL is returned if the integer expression
is not in this range.

Return Types
char(1)

Remarks

CHAR can be used to insert control characters into character strings. The table
shows some commonly used control characters.

Control character Value

Tab CHAR(9)
Line feed CHAR(10)
Carriage return CHAR(13)
Examples

A. Use ASCII and CHAR to print ASCII values from a string

This example prints the ASCII value and character for each character in the
string New Moon.

SET TEXTSIZE 0

-- Create variables for the character string and for the current
-- position in the string.
DECLARE @position int, @string char(8)
-- Initialize the current position and the string variables.
SET @position = 1
SET @string = 'New Moon'
WHILE @position <= DATALENGTH(@string)
BEGIN
SELECT ASCII(SUBSTRING(@string, @position, 1)),
CHAR(ASCII(SUBSTRING(@string, @position, 1)))
SET @position = @position + 1
END
GO

Here is the result set:

78 N
01 e
19w
n
7 M

B. Use CHAR to insert a control character

This example uses CHAR(13) to print name, address, and city information on
separate lines, when the results are returned in text.

USE Northwind

SELECT FirstName + "'+ LastName, + CHAR(13) + Address,
+ CHAR(13) + City, + Region

FROM Employees

WHERE EmployeelD = 1

Here is the result set:

Nancy Davolio
507 - 20th Ave. E.
Apt. 2A

Seattle WA

Note In this record, the data in the Address column also contains a control
character.

See Also

+ (String Concatenation)

String Functions

Transact-SQL Reference

CHARINDEX

Returns the starting position of the specified expression in a character string.

Syntax
CHARINDEX (expressionl , expression?2 [, start_location])

Arguments
expressionl

Is an expression containing the sequence of characters to be found.
expressionl is an expression of the short character data type category.

expression2

Is an expression, usually a column searched for the specified sequence.
expression?2 is of the character string data type category.

start_location

Is the character position to start searching for expressionl in expression2. If
start_location is not given, is a negative number, or is zero, the search starts
at the beginning of expression2.

Return Types

int

Remarks

If either expressionl or expressionZ is of a Unicode data type (nvarchar or
nchar) and the other is not, the other is converted to a Unicode data type.

If either expressionl or expression2 is NULL, CHARINDEX returns NULL
when the database compatibility level is 70 or later. If the database compatibility
level is 65 or earlier, CHARINDEX returns NULL only when both expression1
and expression2 are NULL.

If expression1 is not found within expression2, CHARINDEX returns 0.

Examples

The first code example returns the position at which the sequence "wonderful"
begins in the notes column of the titles table. The second example uses the
optional start_location parameter to begin looking for wonderful in the fifth
character of the notes column. The third example shows the result set when
expressionl is not found within expression2.

USE pubs

GO

SELECT CHARINDEX('wonderful', notes)
FROM titles

WHERE title_id = 'TC3218'

GO

-- Use the optional start_location parameter to start searching
-- for wonderful starting with the fifth character in the notes
-- column.

USE pubs

GO

SELECT CHARINDEX(‘wonderful', notes, 5)

FROM titles

WHERE title_id = '"TC3218'

GO

Here is the result set for the first and second queries:

(1 row(s) affected)

USE pubs

GO

SELECT CHARINDEX('wondrous', notes)
FROM titles

WHERE title_id="TC3218'

GO

Here is the result set.

(1 row(s) affected)

See Also

+ (String Concatenation)

String Functions

Transact-SQL Reference

CHECKPOINT

Forces all dirty pages for the current database to be written to disk. Dirty pages
are data or log pages modified after entered into the buffer cache, but the
modifications have not yet been written to disk. For more information about log
truncation, see Truncating the Transaction [.og.

Syntax
CHECKPOINT

Remarks

The CHECKPOINT statement saves time in a subsequent recovery by creating a
point at which all modifications to data and log pages are guaranteed to have
been written to disk.

Checkpoints also occur:

¢ When a database option is changed with ALTER DATABASE. A
checkpoint is executed in the database in which the option is changed.

e When a server is stopped, a checkpoint is executed in each database on
the server. These methods of stopping Microsoft® SQL Server™ 2000
checkpoint each database:

e Using SQL Server Service Manager.

e Using SQL Server Enterprise Manager.

o Using the SHUTDOWN statement.

¢ Using the Windows NT command net stop mssqlserver on the
command prompt.

JavaScript:hhobj_1.Click()

e Using the services icon in the Windows NT control panel,
selecting the mssqlserver service, and clicking the stop button.

The SHUTDOWN WITH NOWAIT statement shuts down SQL Server without
executing a checkpoint in each database. This may cause the subsequent restart
to take a longer time than usual to recover the databases on the server.

SQL Server 2000 also automatically checkpoints any database where the lesser
of these conditions occur:

e The active portion of the log exceeds the size that the server could
recover in the amount of time specified in the recovery interval server
configuration option.

e If the database is in log truncate mode and the log becomes 70 percent
full.

A database is in log truncate mode when both these conditions are TRUE.:

e The database is using the simple recovery model.

¢ One of these events has occurred after the last BACKUP DATABASE
statement referencing the database was executed:

e A BACKUP LOG statement referencing the database is
executed with either the NO_LOG or TRUNCATE_ONLY
clauses.

¢ A nonlogged operation is performed in the database, such as a
nonlogged bulk copy operation or a nonlogged WRITETEXT
statement is executed.

e An ALTER DATABASE statement that adds or deletes a file in
the database is executed.

Permissions

CHECKPOINT permissions default to members of the sysadmin fixed server
role and the db_owner and db_backupoperator fixed database roles, and are
not transferable.

See Also

ALTER DATABASE

Checkpoints and the Active Portion of the L.og

recovery interval Option

Setting Database Options
SHUTDOWN

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Transact-SQL Reference

CHECKSUM

Returns the checksum value computed over a row of a table, or over a list of
expressions. CHECKSUM is intended for use in building hash indices.

Syntax
CHECKSUM (* | expression [,..n])

Arguments

%

Specifies that computation is over all the columns of the table. CHECKSUM
returns an error if any column is of noncomparable data type.
Noncomparable data types are text, ntext, image, and cursor, as well as
sql_variant with any of the above types as its base type.

expression

Is an expression of any type except a noncomparable data type.

Return Types

int

Remarks

CHECKSUM computes a hash value, called the checksum, over its list of
arguments. The hash value is intended for use in building hash indices. If the
arguments to CHECKSUM are columns, and an index is built over the computed
CHECKSUM value, the result is a hash index, which can be used for equality
searches over the columns.

CHECKSUM satisfies the properties of a hash function: CHECKSUM applied
over any two lists of expressions returns the same value if the corresponding
elements of the two lists have the same type and are equal when compared using
the equals (=) operator. For the purpose of this definition, NULL values of a
given type are considered to compare as equal. If one of the values in the

expression list changes, the checksum of the list also usually changes. However,
there is a small chance that the checksum will not change.

BINARY_CHECKSUM and CHECKSUM are similar functions: they can be
used to compute a checksum value on a list of expressions, and the order of
expressions affects the resultant value. The order of columns used in the case of
CHECKSUMC(*) is the order of columns specified in the table or view definition,
including computed columns.

CHECKSUM and BINARY_CHECKSUM return different values for the string
data types, where locale can cause strings with different representation to
compare equal. The string data types are char, varchar, nchar, nvarchar, or
sql_variant (if its base type is a string data type). For example, the
BINARY_CHECKSUM values for the strings "McCavity" and "Mccavity" are
different. In contrast, in a case-insensitive server, CHECKSUM returns the same
checksum values for those strings. CHECKSUM values should not be compared
against BINARY_CHECKSUM values.

Examples

Using CHECKSUM to build hash indices

The CHECKSUM function may be used to build hash indices. The hash index is
built by adding a computed checksum column to the table being indexed, then
building an index on the checksum column.

-- Create a checksum index.

SET ARITHABORT ON

USE Northwind

GO

ALTER TABLE Products

ADD cs_Pname AS checksum(ProductName)

CREATE INDEX Pname_index ON Products (cs_Pname)

The checksum index can be used as a hash index, particularly to improve
indexing speed when the column to be indexed is a long character column. The
checksum index can be used for equality searches.

/*Use the index in a SELECT query. Add a second search
condition to catch stray cases where checksums match,
but the values are not identical.*/

SELECT *

FROM Products

WHERE checksum(N'Vegie-spread') = cs_Pname

AND ProductName = N'Vegie-spread'

Creating the index on the computed column materializes the checksum column,
and any changes to the ProductName value will be propagated to the checksum
column. Alternatively, an index could be built directly on the column indexed.
However, if the key values are long, a regular index is not likely to perform as
well as a checksum index.

See Also

BINARY_ CHECKSUM
CHECKSUM_AGG

Transact-SQL Reference

CHECKSUM_AGG

Returns the checksum of the values in a group. Null values are ignored.

Syntax
CHECKSUM_AGG ([ALL | DISTINCT] expression)

Arguments
ALL

Applies the aggregate function to all values. ALL is the default.
DISTINCT

Specifies that CHECKSUM_AGG return the checksum of unique values.
expression

Is a constant, column, or function, and any combination of arithmetic,
bitwise, and string operators. expression is an expression of the int data type.
Aggregate functions and subqueries are not allowed.

Return Types

Returns the checksum of all expression values as int.

Remarks

CHECKSUM_AGG can be used along with BINARY_CHECKSUM to detect
changes in a table.

The order of the rows in the table does not affect the result of
CHECKSUM_AGG. In addition, CHECKSUM_AGG functions may be used
with the DISTINCT keyword and the GROUP BY clause.

If one of the values in the expression list changes, the checksum of the list also
usually changes. However, there is a small chance that the checksum will not
change.

CHECKSUM_AGG has similar functionality with other aggregate functions.
For more information, see Aggregate Functions.

Examples

A. Use CHECKSUM_AGG with BINARY_CHECKSUM to detect
changes in a table.

This example uses CHECKSUM_AGG with the BINARY_CHECKSUM
function to detect changes in the Products table.

USE Northwind

GO

SELECT CHECKSUM_AGG(BINARY_CHECKSUM(*))
FROM Products

B. Use CHECKSUM_AGG with BINARY_CHECKSUM to detect
changes in a column of a table.

This example detects changes in UnitsInStock column of the Products table in
the Northwind database.

--Get the checksum value before the column value is changed.
USE Northwind

GO

SELECT CHECKSUM_AGG(CAST(UnitsInStock AS int))
FROM Products

Here is the result set:

57

--Change the value of a row in the column
UPDATE Products --

SET UnitsInStock=135

WHERE UnitsInStock=125

--Get the checksum of the modified column.
SELECT CHECKSUM_AGG(CAST(UnitsInStock AS int))
FROM Products

Here is the result set:

195

See Also

BINARY_ CHECKSUM
CHECKSUM

Transact-SQL Reference

CLOSE

Closes an open cursor by releasing the current result set and freeing any cursor
locks held on the rows on which the cursor is positioned. CLOSE leaves the data
structures accessible for reopening, but fetches and positioned updates are not
allowed until the cursor is reopened. CLOSE must be issued on an open cursor;
it is not allowed on cursors that have only been declared or are already closed.

Syntax
CLOSE { { [GLOBAL] cursor_name } | cursor_variable_name }

Arguments
GLOBAL

Specifies that cursor_name refers to a global cursor.
cursor_name

Is the name of an open cursor. If both a global and a local cursor exist with
cursor_name as their name, cursor_name refers to the global cursor when
GLOBAL is specified; otherwise, cursor_name refers to the local cursor.

cursor_variable_name

Is the name of a cursor variable associated with an open cursor.

Examples

This example shows the correct placement of the CLOSE statement in a cursor-
based process.

USE pubs
GO

DECLARE authorcursor CURSOR FOR
SELECT au_fname, au_lname
FROM authors

ORDER BY au_fname, au_Iname

OPEN authorcursor
FETCH NEXT FROM authorcursor
WHILE @@FETCH_STATUS =0
BEGIN

FETCH NEXT FROM authorcursor
END

CLOSE authorcursor
DEALLOCATE authorcursor
GO

See Also

Cursors

DEALLOCATE

JavaScript:hhobj_1.Click()

Transact-SQL Reference

COALESCE

Returns the first nonnull expression among its arguments.

Syntax
COALESCE (expression [,...n])

Arguments
expression

Is an expression of any type.

Is a placeholder indicating that multiple expressions can be specified. All
expressions must be of the same type or must be implicitly convertible to the
same type.

Return Types

Returns the same value as expression.

Remarks
If all arguments are NULL, COALESCE returns NULL.
COALESCE(expressionl,...n) is equivalent to this CASE function:

CASE
WHEN (expressionl IS NOT NULL) THEN expression1

WHEN (expressionN IS NOT NULL) THEN expressionN
ELSE NULL

Examples

In this example, the wages table is shown to include three columns with

information about an employee's yearly wage: hourly_wage, salary, and
commission. However, an employee receives only one type of pay. To determine
the total amount paid to all employees, use the COALESCE function to receive
only the nonnull value found in hourly_wage, salary, and commission.

SET NOCOUNT ON
GO
USE master
IF EXISTS (SELECT TABLE_NAME FROM INFORMATION_SCH
WHERE TABLE_NAME = 'wages")

DROP TABLE wages
GO
CREATE TABLE wages
(

emp_id tinyint identity,

hourly_wage decimal NULL,

salary decimal NULL,

commission decimal NULL,

num_sales tinyint NULL
)
GO
INSERT wages VALUES(10.00, NULL, NULL, NULL)
INSERT wages VALUES(20.00, NULL, NULL, NULL)
INSERT wages VALUES(30.00, NULL, NULL, NULL)
INSERT wages VALUES(40.00, NULL, NULL, NULL)
INSERT wages VALUES(NULL, 10000.00, NULL, NULL)
INSERT wages VALUES(NULL, 20000.00, NULL, NULL)
INSERT wages VALUES(NULL, 30000.00, NULL, NULL)
INSERT wages VALUES(NULL, 40000.00, NULL, NULL)
INSERT wages VALUES(NULL, NULL, 15000, 3)
INSERT wages VALUES(NULL, NULL, 25000, 2)
INSERT wages VALUES(NULL, NULL, 20000, 6)
INSERT wages VALUES(NULL, NULL, 14000, 4)
GO

SET NOCOUNT OFF
GO
SELECT CAST(COALESCE(hourly_wage * 40 * 52,
salary,
commission * num_sales) AS money) AS "Total Salary'
FROM wages
GO

Here is the result set:

Total Salary
20800.0000
41600.0000
62400.0000
83200.0000
10000.0000
20000.0000
30000.0000
40000.0000
45000.0000
50000.0000
120000.0000
56000.0000

(12 row(s) affected)

See Also

CASE

System Functions

Transact-SQL Reference

COLLATE

A clause that can be applied to a database definition or a column definition to
define the collation, or to a character string expression to apply a collation cast.

Syntax
COLLATE < collation_name >

< collation_name > :: =
{ Windows_collation_name } | { SQL_collation_name }

Arguments
collation_name

Is the name of the collation to be applied to the expression, column
definition, or database definition. collation_name can be only a specified
Windows_collation_name or a SQL_collation_name.

Windows_ collation_name
Is the collation name for Windows collation. See Windows Collation
Names.

SQL_collation_name
Is the collation name for a SQL collation. See SQL Collation Names.

Remarks

The COLLATE clause can be specified at several levels, including the following:
1. Creating or altering a database.

You can use the COLLATE clause of the CREATE DATABASE or
ALTER DATABASE statement to specify the default collation of the
database. You can also specify a collation when you create a database
using SQL Server Enterprise Manager. If you do not specify a
collation, the database is assigned the default collation of the SQL

Server instance.

2. Creating or altering a table column.

You can specify collations for each character string column using the
COLLATE clause of the CREATE TABLE or ALTER TABLE
statement. You can also specify a collation when you create a table
using SQL Server Enterprise Manager. If you do not specify a
collation, the column is assigned the default collation of the database.

You can also use the database_default option in the COLLATE clause
to specify that a column in a temporary table use the collation default
of the current user database for the connection instead of tempdb.

3. Casting the collation of an expression.

You can use the COLLATE clause to cast a character expression to a
certain collation. Character literals and variables are assigned the
default collation of the current database. Column references are
assigned the definition collation of the column. For the collation of an
expression, see Collation Precedence.

The collation of an identifier depends on the level at which it is defined.
Identifiers of instance-level objects, such as logins and database names, are
assigned the default collation of the instance. Identifiers of objects within a
database, such as tables, views, and column names, are assigned the default
collation of the database. For example, two tables with names differing only in
case may be created in a database with case-sensitive collation, but may not be
created in a database with case-insensitive collation.

Variables, GOTO labels, temporary stored procedures, and temporary tables can
be created when the connection context is associated with one database, and then
referenced when the context has been switched to another database. The
identifiers for variables, GOTO labels, temporary stored procedures, and
temporary tables are in the default collation of the instance.

The COLLATE clause can be applied only for the char, varchar, text, nchar,
nvarchar, and ntext data types.

Collations are generally identified by a collation name. The exception is in Setup
where you do not specify a collation name for Windows collations, but instead

specify the collation designator, and then select check boxes to specify binary
sorting or dictionary sorting that is either sensitive or insensitive to either case or
accents.

You can execute the system function fn_helpcollations to retrieve a list of all the
valid collation names for Windows collations and SQL collations:

SELECT *
FROM ::fn_helpcollations()

SQL Server can support only code pages that are supported by the underlying
operating system. When you perform an action that depends on collations, the
SQL Server collation used by the referenced object must use a code page
supported by the operating system running on the computer. These actions can
include:

e Specifying a default collation for a database when you create or alter the
database.

e Specifying a collation for a column when creating or altering a table.

e When restoring or attaching a database, the default collation of the
database and the collation of any char, varchar, and text columns or
parameters in the database must be supported by the operating system.

Code page translations are supported for char and varchar data types,
but not for text data type. Data loss during code page translations is not
reported.

If the collation specified or the collation used by the referenced object, uses a
code page not supported by Windows®, SQL Server issues error. For more
information, see the Collations section in the SQL Server Architecture chapter of
the SQL Server Books Online.

See Also

ALTER TABLE

Collation Options for International Support

Collation Precedence

Collations

Constants

CREATE DATABASE
CREATE TABLE
DECLARE @local_variable

table

Using Unicode Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Transact-SQL Reference

Windows Collation Name

Specifies the Windows collation name in the COLLATE clause. The Windows
collations name is composed of the collation designator and the comparison
styles.

Syntax
< Windows_collation_name > :: =
CollationDesignator_<ComparisonStyle>

< ComparisonStyle > :: =
CaseSensitivity_AccentSensitivity
[_KanatypeSensitive [_WidthSensitive]]
| _BIN

Arguments
CollationDesignator

Specifies the base collation rules used by the Windows collation. The base
collation rules cover:

e The alphabet or language whose sorting rules are applied when
dictionary sorting is specified

e The code page used to store non-Unicode character data.

Examples are Latin1_General or French, both of which use code page
1252, or Turkish, which uses code page 1254.

CaseSensitivity
CI specifies case-insensitive, CS specifies case-sensitive.
AccentSensitivity

Al specifies accent-insensitive, AS specifies accent-sensitive.

KanatypeSensitive

Omitted specifies case-insensitive, KS specifies kanatype-sensitive.

WidthSensitivity

Omitted specifies case-insensitive, WS specifies case-sensitive.

BIN

Specifies the binary sort order is to be used.

Remarks

The collation designators for Microsoft® SQL Server™ 2000 Windows

collations are:

SQL Server 2000 Collation
Designator

Code Page for
non-Unicode
data

Supported Windows Locales

Albanian

1250

Albanian

Arabic

1256

Arabic (Algeria), Arabic
(Bahrain), Arabic (Egypt),
Arabic (Iraq), Arabic (Jordan),
Arabic (Kuwait), Arabic
(Lebanon), Arabic (Libya),
Arabic (Morocco), Arabic
(Oman), Arabic (Qatar),
Arabic (Saudi Arabia), Arabic
(Syria), Arabic (Tunisia),
Arabic (United Arab
Emirates), Arabic (Yemen),
Farsi, Urdu

Chinese PRC

936

Chinese (Hong Kong S.A.R.),
Chinese (People's Republic of
China), Chinese (Singapore)

Chinese PRC_Stroke

936

Stroke sort with Chinese
(PRC)

Chinese_Taiwan_Bopomofo

950

Bopomofo with Chinese

(Taiwan)

Chinese_Taiwan_Stroke 950 Chinese (Taiwan)

Croatian 1250 Croatian

Cyrillic_General 1251 Bulgarian, Byelorussian,
Russian, Serbian

Czech 1250 Czech

Danish_Norwegian 1252 Danish, Norwegian (Bokmal),
Norwegian (Nyorsk)

Estonian 1257 Estonian

Finnish Swedish 1252 Finnish, Swedish

French 1252 French (Belgium), French
(Canada), French
(Luxemburg), French
(Standard), French
(Switzerland)

Georgian_Modern_Sort 1252 Modern Sort with Georgian

German_PhoneBook 1252 PhoneBook sort with German

Greek 1253 Greek

Hebrew 1255 Hebrew

Hindi For Unicode |Hindi

data types only

Hungarian 1250 Hungarian

Hungarian_Technical 1250

Icelandic 1252 Icelandic

Japanese 932 Japanese

Japanese_Unicode 932

Korean_Wansung 949 Korean

Korean_Wansung_Unicode 949

Latinl General 1252 Afrikaans, Basque, Catalan,

Dutch (Belgium), Dutch
(Standard), English
(Australia), English (Britain),
English (Canada), English
(Carribbean) English

(Ireland), English (Jamaican),
English (New Zealand),
English (South Africa),
English (United States),
Faeroese, German (Austria),
German (Liechtenstein),
German (Luxembourg),
German (Standard), German
(Switzerland), Indonesian,
Italian, Italian (Switzerland),
Portuguese (Brazil),
Portuguese (Standard)

Latvian 1257 Latvian

Lithuanian 1257 Lithuanian

Lithuanian_Classic 1257

Macedonian 1251 Macedonian

Mexican_Trad_Spanish 1252 Spanish (Mexican), Spanish
(Traditional Sort)

Modern_Spanish 1252 Spanish (Argentina), Spanish
(Bolivia), Spanish (Chile),
Spanish (Colombia), Spanish
(Costa Rica), Spanish
(Dominican Republic),
Spanish (Ecuador), Spanish
(Guatemala), Spanish
(Modern Sort), Spanish
(Panama), Spanish (Paraguay),
Spanish (Peru), Spanish
(Uruguay), Spanish
(Venezuela)

Polish 1250 Polish

Romanian 1250 Romanian

Slovak 1250 Slovak

Slovenian 1250 Slovenian

Thai 874 Thai

Turkish 1254 Turkish
Ukrainian 1251 Ukrainian
Vietnamese 1258 Vietnamese
Examples

These are some examples of Windows collation names:
e Latinl General CI_AS

Collation uses the Latinl General dictionary sorting rules, code page
1252. Is case-insensitive and accent-sensitive.

e Estonian_CS_AS

Collation uses the Estonian dictionary sorting rules, code page 1257. Is
case-sensitive and accent-sensitive.

e Latinl General BIN

Collation uses code page 1252 and binary sorting rules. The Latin1
General dictionary sorting rules are ignored.

See Also

ALTER TABLE
Collation Settings in Setup

Constants

CREATE DATABASE

CREATE TABLE
DECLARE @]local_variable

table

Windows Collation Names Table

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL Reference

SQL Collation Name

A single string that specifies the collation name for a SQL collation.

Syntax
< SQL_collation_name > :: =

SQL._SortRules[_Pref]_CPCodepage_<ComparisonStyle>
<ComparisonStyle> ::=
_CaseSensitivity_AccentSensitivity | _BIN

Arguments
SortRules

A string identifying the alphabet or language whose sorting rules are applied
when dictionary sorting is specified. Examples are Latin1_General or Polish.

Pref
Specifies uppercase preference.
Codepage

Specifies a one to four digit number identifying the code page used by the
collation. CP1 specifies code page 1252, for all other code pages the
complete code page number is specified. For example, CP1251 specifies
code page 1251 and CP850 specifies code page 850.

CaseSensitivity

CI specifies case-insensitive, CS specifies case-sensitive.
AccentSensitivity

Al specifies accent-insensitive, AS specifies accent-sensitive.
BIN

Specifies the binary sort order is to be used.

Remarks

This table lists the SQL collation names.

Sort order ID SQL collation name

30 SQL_Latin1_General_Cp437_BIN

31 SQL_Latin1_General_Cp437_CS_AS

32 SQL_Latin1_General_Cp437_CI_AS

33 SQL_Latinl_General_Pref CP437_CI_AS
34 SQL_Latin1_General_Cp437_CI_AI

40 SQL_Latin1_General_Cp850_BIN

41 SQL_Latin1_General_Cp850_CS_AS

42 SQL_Latin1_General_Cp850_CI_AS

43 SQL_Latinl_General_Pref CP850_CI_AS
44 SQL_Latin1_General_Cp850_CI_AI

49 SQL_1Xcompat_CP850_CI_AS

50 Latinl General BIN

51 SQL_Latin1_General_Cp1_CS_AS

52 SQL_Latin1_General_Cp1_CI_AS

53 SQL_Latinl_General_Pref CP1_CI_AS
54 SQL_Latin1_General_Cp1_CI_AI

55 SQL_AltDiction_Cp850_CS_AS

56 SQL_AltDiction_Pref CP850_CI_AS

57 SQL_AltDiction_Cp850_CI_AI

58 SQL_Scandinavian_Pref_Cp850_CI_AS
59 SQL_Scandinavian_Cp850_CS_AS

60 SQL_Scandinavian_Cp850_CI_AS

61 SQL_AltDiction_Cp850_CI_AS

71 Latinl General CS_AS

72 Latinl General CI_AS

73 Danish_Norwegian_CS_AS

74 Finnish Swedish_ CS_AS

75 Icelandic_CS_AS

80 Hungarian_BIN (or Albanian_BIN, Czech_BIN,

and so on)!
81 SQL_Latin1_General_Cp1250_CS_AS
82 SQL_Latin1_General_Cp1250_CI_AS
83 SQL_Czech_Cp1250_CS_AS
84 SQL_Czech_Cp1250_CI_AS
85 SQL_Hungarian_Cp1250_CS_AS
86 SQL_Hungarian_Cp1250_CI_AS
87 SQL_Polish_Cp1250_CS_AS
88 SQL_Polish_Cp1250_CI_AS
89 SQL_Romanian_Cp1250_CS_AS
90 SQL_Romanian_Cp1250_CI_AS
91 SQL_Croatian_Cp1250_CS_AS
92 SQL_Croatian_Cp1250_CI_AS
93 SQL_Slovak_Cp1250_CS_AS
94 SQL_Slovak_Cp1250_CI_AS
95 SQL_Slovenian_Cp1250_CS_AS
96 SQL_Slovenian_Cp1250_CI_AS
104 Cyrillic_General_BIN (or Ukrainian_BIN,
Macedonian_BIN)
105 SQL_Latin1_General_Cp1251_CS_AS
106 SQL_Latin1_General_Cp1251_CI_AS
107 SQL_Ukrainian_Cp1251_CS_AS
108 SQL_Ukrainian_Cp1251_CI_AS
112 Greek BIN
113 SQL_Latin1_General_Cp1253_CS_AS
114 SQL_Latin1_General_Cp1253_CI_AS
120 SQL_MixDiction_Cp1253_CS_AS
121 SQL_AltDiction_Cp1253_CS_AS
124 SQL_Latin1_General_Cp1253_CI_AI
128 Turkish_ BIN
129 SQL_Latin1_General_Cp1254_CS_AS
130 SQL_Latin1_General_Cp1254_CI_AS
136 Hebrew_BIN

137 SQL_Latin1_General_Cp1255_CS_AS
138 SQL_Latin1_General_Cp1255_CI_AS
144 Arabic_BIN

145 SQL_Latin1_General_Cp1256_CS_AS
146 SQL_Latin1_General_Cp1256_CI_AS
153 SQL_Latin1_General_Cp1257_CS_AS
154 SQL_Latin1_General_Cp1257_CI_AS
155 SQL_Estonian_Cp1257_CS_AS

156 SQL_Estonian_Cp1257_CI_AS

157 SQL_Latvian_Cp1257_CS_AS

158 SQL_Latvian_Cp1257_CI_AS

159 SQL_Lithuanian_Cp1257_CS_AS

160 SQL_Lithuanian_Cp1257_CI_AS

183 SQL_Danish_Pref Cp1_CI_AS

184 SQL_SwedishPhone_Pref_Cp1_CI_AS
185 SQL_SwedishStd_Pref_Cp1_CI_AS
186 SQL_Icelandic_Pref_Cp1_CI_AS

192 Japanese_BIN

193 Japanese_CI_AS

194 Korean_Wansung_BIN

195 Korean_Wansung CI_AS

196 Chinese_Taiwan_Stroke BIN

197 Chinese_Taiwan_Stroke CI_AS

198 Chinese_ PRC_BIN

199 Chinese PRC_CI_AS

200 Japanese_CS_AS

201 Korean_Wansung CS_AS

202 Chinese_Taiwan_Stroke CS_AS

203 Chinese PRC_CS_AS

204 Thai_BIN

205 Thai_CI_AS

206 Thai_CS_AS

210 SQL_EBCDIC037_CP1_CS_AS

211 SQL_EBCDIC273_CP1_CS_AS
212 SQL_EBCDIC277_CP1_CS_AS
213 SQL_EBCDIC278_CP1_CS_AS
214 SQL_EBCDIC280_CP1_CS_AS
215 SQL_EBCDIC284_CP1_CS_AS
216 SQL_EBCDIC285_CP1_CS_AS
217 SQL_EBCDIC297_CP1_CS_AS

IFor Sort Order ID 80, use any of the Window collations with the code page of 1250, and binary order. For
example: Albanian_BIN, Croatian_BIN, Czech_BIN, Romanian_BIN, Slovak_BIN, Slovenian_BIN.

See Also

ALTER TABLE

Collation Settings in Setup

Constants

CREATE DATABASE
CREATE TABLE
DECLARE @local_variable

table

SQL Collation Names Table (Compatibility collations)

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL Reference

COLLATIONPROPERTY

Returns the property of a given collation.

Syntax
COLLATIONPROPERTY/(collation_name, property)

Arguments
collation_name

Is the name of the collation. collation_name is nvarchar(128), and has no
default.

property

Is the property of the collation. property is varchar(128), and can be any of
these values:

Property name Description
CodePage The nonUnicode code page of the collation.
LCID The Windows LCID of the collation.
Returns NULL for SQL collations.
ComparisonStyle The Windows comparison style of the
collation.
Returns NULL for binary or SQL collations.

Return Types

sql_variant

Examples
SELECT COLLATIONPROPERTY ('Traditional_Spanish_CS_AS_KE

Result Set
1252

See Also

fn_helpcollations

Transact-SQL Reference

COL_LENGTH

Returns the defined length (in bytes) of a column.

Syntax
COL_LENGTH ('table' , 'column')

Arguments
"table’

Is the name of the table for which to determine column length information.
table is an expression of type nvarchar.

'column'

Is the name of the column for which to determine length. column is an
expression of type nvarchar.

Return Types

int

Examples

This example shows the return values for a column of type varchar(40) and a
column of type nvarchar(40).

USE pubs
GO
CREATE TABLE t1
(c1 varchar(40),
c2 nvarchar(40)
)
GO
SELECT COL_LENGTH('t1','c1")AS "VarChar',

COL_LENGTH('t1",'c2")AS 'NVarChar'
GO
DROP TABLE t1

Here is the result set.

VarChar NVarChar
40 80

See Also

Expressions

Metadata Functions

Transact-SQL Reference

COL_NAME

Returns the name of a database column given the corresponding table
identification number and column identification number.

Syntax
COL_NAME (table_id , column_id)

Arguments
table_id

Is the identification number of the table containing the database column.
table_id is of type int.

column_id
Is the identification number of the column. column_id parameter is of type
int.

Return Types

sysname

Remarks
The table_id and column_id parameters together produce a column name string.

For more information about obtaining table and column identification numbers,
see OBJECT_ID.

Examples

This example returns the name of the first column in the Employees table of the
Northwind database.

USE Northwind
SET NOCOUNT OFF

SELECT COL_NAME(OBJECT_ID('Employees), 1)

Here is the result set:

EmployeelD
(1 row(s) affected)

See Also

Expressions

Metadata Functions

sysobjects

Transact-SQL Reference

COLUMNPROPERTY

Returns information about a column or procedure parameter.

Syntax
COLUMNPROPERTY (id, column , property)

Arguments
id

Is an expression containing the identifier (ID) of the table or procedure.
column

Is an expression containing the name of the column or parameter.
property

Is an expression containing the information to be returned for id, and can be
any of these values.

Value Description Value returned
AllowsNull Allows null values. 1 =TRUE
0 = FALSE

NULL = Invalid input
IsComputed The column is a computed 1 =TRUE

column. 0 = FALSE

NULL = Invalid input
IsCursorType The procedure parameter is of |1 = TRUE

type CURSOR. 0 = FALSE

NULL = Invalid input
IsDeterministic The column is deterministic. |1 = TRUE

This property applies only to |0 = FALSE

computed columns and view | NULL = Invalid input.
columns. Not a computed column
or view column.

IsFulltextIndexed

The column has been registered
for full-text indexing.

1 =TRUE
0 = FALSE
NULL = Invalid input

IsIdentity The column uses the 1 =TRUE
IDENTITY property. 0 = FALSE
NULL = Invalid input
IsIdNotForRepl The column checks for the 1 =TRUE
IDENTITY_INSERT setting. If 0 = FALSE
IDENTITY NOT FOR NULL = Invalid input
REPLICATION is specified,
the IDENTITY_INSERT
setting is not checked.
IsIndexable The column can be indexed. |1 =TRUE
0 = FALSE
NULL = Invalid input
IsOutParam The procedure parameter is an |1 = TRUE
output parameter. 0 = FALSE
NULL = Invalid input
IsPrecise The column is precise. This 1 =TRUE
property applies only to 0 = FALSE
deterministic columns. NULL = Invalid input.
Not a deterministic
column
IsRowGuidCol The column has the 1 =TRUE
uniqueidentifier data type and |0 = FALSE
is defined with the NULL = Invalid input
ROWGUIDCOL property.
Precision Precision for the data type of |The precision of the
the column or parameter. specified column data
type
NULL = Invalid input
Scale Scale for the data type of the |The scale
column or parameter. NULL = Invalid input
UsesAnsiTrim |ANSI padding setting was ON |1= TRUE

when the table was initially 0= FALSE
created. NULL = Invalid input

Return Types

int

Remarks

When checking a column's deterministic property, test first whether the column
is a computed column. IsDeterministic returns NULL for noncomputed
columns.

Computed columns can be specified as index columns.

Examples

This example returns the length of the au_Ilname column.

SELECT COLUMNPROPERTY (OBJECT_ID('authors'),'au_lname','l

See Also

Metadata Functions

OBJECTPROPERTY

TYPEPROPERTY

Transact-SQL Reference

COMMIT TRANSACTION

Marks the end of a successful implicit or user-defined transaction. If
@@TRANCOUNT is 1, COMMIT TRANSACTION makes all data
modifications performed since the start of the transaction a permanent part of the
database, frees the resources held by the connection, and decrements
@@TRANCOUNT to 0. If @@TRANCOUNT is greater than 1, COMMIT
TRANSACTION decrements @@TRANCOUNT only by 1.

Syntax
COMMIT [TRAN [SACTION] [transaction_name | @tran_name_variable]]

Arguments
transaction_name

Is ignored by Microsoft® SQL Server™. transaction_name specifies a
transaction name assigned by a previous BEGIN TRANSACTION.
transaction_name must conform to the rules for identifiers, but only the first
32 characters of the transaction name are used. transaction_name can be
used as a readability aid by indicating to programmers which nested BEGIN
TRANSACTION the COMMIT TRANSACTION is associated with.

@tran_name_variable

Is the name of a user-defined variable containing a valid transaction name.
The variable must be declared with a char, varchar, nchar, or nvarchar
data type.

Remarks

It is the responsibility of the Transact-SQL programmer to issue COMMIT
TRANSACTION only at a point when all data referenced by the transaction is
logically correct.

If the transaction committed was a Transact-SQL distributed transaction,
COMMIT TRANSACTION triggers MS DTC to use a two-phase commit

protocol to commit all the servers involved in the transaction. If a local
transaction spans two or more databases on the same server, SQL Server uses an
internal two-phase commit to commit all the databases involved in the
transaction.

When used in nested transactions, commits of the inner transactions do not free
resources or make their modifications permanent. The data modifications are
made permanent and resources freed only when the outer transaction is
committed. Each COMMIT TRANSACTION issued when @ @TRANCOUNT
is greater than 1 simply decrements @ @TRANCOUNT by 1. When
@@TRANCOUNT is finally decremented to 0, the entire outer transaction is
committed. Because transaction_name is ignored by SQL Server, issuing a
COMMIT TRANSACTION referencing the name of an outer transaction when
there are outstanding inner transactions only decrements @ @ TRANCOUNT by
1.

Issuing a COMMIT TRANSACTION when @@TRANCOUNT is 0 results in
an error that there is no corresponding BEGIN TRANSACTION.

You cannot roll back a transaction after a COMMIT TRANSACTION statement
is issued because the data modifications have been made a permanent part of the
database.

Examples

A. Commit a transaction.

This example increases the advance to be paid to an author when year-to-date
sales of a title are greater than $8,000.

BEGIN TRANSACTION
USE pubs

GO

UPDATE titles

SET advance = advance * 1.25
WHERE ytd_sales > 8000

GO

COMMIT

GO

B. Commit a nested transaction.

This example creates a table, generates three levels of nested transactions, and
then commits the nested transaction. Although each COMMIT TRANSACTION
statement has a transaction_name parameter, there is no relationship between the
COMMIT TRANSACTION and BEGIN TRANSACTION statements. The
transaction_name parameters are simply readability aids to help the programmer
ensure the proper number of commits are coded to decrement
@@TRANCOUNT to 0, and thereby commit the outer transaction.

CREATE TABLE TestTran (Cola INT PRIMARY KEY, Colb CHAR(:
GO

BEGIN TRANSACTION OuterTran -- @@TRANCOUNT set to 1.
GO

INSERT INTO TestTran VALUES (1, 'aaa’)

GO

BEGIN TRANSACTION Innerl -- @@TRANCOUNT set to 2.

GO

INSERT INTO TestTran VALUES (2, 'bbb')

GO

BEGIN TRANSACTION Inner2 -- @@TRANCOUNT set to 3.

GO

INSERT INTO TestTran VALUES (3, 'ccc')

GO

COMMIT TRANSACTION Inner2 -- Decrements @@ TRANCOUNT
-- Nothing committed.

GO

COMMIT TRANSACTION Innerl -- Decrements @@ TRANCOUN'T
-- Nothing committed.

GO

COMMIT TRANSACTION OuterTran -- Decrements @ @TRANCOTU
-- Commits outer transaction OuterTran.

GO

See Also

BEGIN DISTRIBUTED TRANSACTION
BEGIN TRANSACTION

COMMIT WORK

ROLLBACK TRANSACTION
ROLLBACK WORK

SAVE TRANSACTION
@@TRANCOUNT

Transactions

JavaScript:hhobj_1.Click()

Transact-SQL Reference

COMMIT WORK

Marks the end of a transaction.

Syntax
COMMIT [WORK]

Remarks

This statement functions identically to COMMIT TRANSACTION, except
COMMIT TRANSACTION accepts a user-defined transaction name. This
COMMIT syntax, with or without specifying the optional keyword WORK, is
compatible with SQL-92.

See Also

BEGIN DISTRIBUTED TRANSACTION
BEGIN TRANSACTION

COMMIT TRANSACTION

ROLLBACK TRANSACTION
ROLLBACK WORK

SAVE TRANSACTION
@@TRANCOUNT

Transact-SQL Reference

Constants

A constant, also known as a literal or a scalar value, is a symbol that represents a
specific data value. The format of a constant depends on the data type of the
value it represents.

Character string constants

Character string constants are enclosed in single quotation marks and include
alphanumeric characters (a-z, A-Z, and 0-9) and special characters, such as
exclamation point (!), at sign (@), and number sign (#). Character string
constants are assigned the default collation of the current database, unless the
COLLATE clause is used to specify a collation. Character strings typed by
users are evaluated through the code page of the computer and are translated
to the database default code page if necessary. For more information, see
Collations.

If the QUOTED_IDENTIFIER option has been set OFF for a connection,
character strings can also be enclosed in double quotation marks, but the
Microsoft® OLE DB Provider for Microsoft SQL Server™ and ODBC
driver automatically use SET QUOTED_IDENTIFIER ON. The use of
single quotation marks is recommended.

If a character string enclosed in single quotation marks contains an
embedded quotation mark, represent the embedded single quotation mark
with two single quotation marks. This is not necessary in strings embedded
in double quotation marks.

Examples of character strings are:

'‘Cincinnati'

'‘O"Brien’

'Process X is 50% complete.'

"The level for job_id: %d should be between %d and %d.’
"O'Brien"

Empty strings are represented as two single quotation marks with nothing in
between. In 6.x compatibility mode, an empty string is treated as a single

JavaScript:hhobj_1.Click()

space.
Character string constants support enhanced collations.
Unicode strings

Unicode strings have a format similar to character strings but are preceded
by an N identifier (N stands for National Language in the SQL-92 standard).
The N prefix must be uppercase. For example, 'Michél' is a character
constant while N'Michél' is a Unicode constant. Unicode constants are
interpreted as Unicode data, and are not evaluated using a code page.
Unicode constants do have a collation, which primarily controls comparisons
and case sensitivity. Unicode constants are assigned the default collation of
the current database, unless the COLLATE clause is used to specify a
collation. Unicode data is stored using two bytes per character, as opposed to
one byte per character for character data. For more information, see Using
Unicode Data.

Unicode string constants support enhanced collations.
Binary constants

Binary constants have the suffix Ox and are a string of hexadecimal numbers.
They are not enclosed in quotation marks. Examples of binary strings are:

0xAE

Ox12Ef
0x69048AEFDDO010E
Ox (empty binary string)

bit constants

bit constants are represented by the numbers zero or one, and are not
enclosed in quotation marks. If a number larger than one is used, it is
converted to one.

datetime constants

datetime constants are represented using character date values in specific
formats, enclosed in single quotation marks. For more information about the
formats for datetime constants, see Using Date and Time Data. Examples of
date constants are:

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

'April 15, 1998'
'15 April, 1998'
'980415'
'04/15/98'

Examples of time constants are:

'14:30:24'
'04:24 PM'

integer constants

integer constants are represented by a string of numbers not enclosed in
quotation marks and do not contain decimal points. integer constants must
be whole numbers; they cannot contain decimals. Examples of integer
constants are:

1894
2

decimal constants

decimal constants are represented by a string of numbers that are not
enclosed in quotation marks and contain a decimal point. Examples of
decimal constants are:

1894.1204
2.0

float and real constants

float and real constants are represented using scientific notation. Examples
of float or real values are:

101.5E5
0.5E-2

money constants

money constants are represented as string of numbers with an optional
decimal point and an optional currency symbol as a prefix. They are not
enclosed in quotation marks. Examples of money constants are:

$12
$542023.14

uniqueidentifier constants

uniqueidentifier constants are a string representing a globally unique
identifier (GUID) value. They can be specified in either a character or binary
string format. Both of these examples specify the same GUID:

'6F9619FF-8B86-D011-B42D-00C04FCO64FF'
0xff19966{868b11d0b42d00c04fco641f

Specifying Negative and Positive Numbers

To indicate whether a number is positive or negative, apply the + or - unary
operators to a numeric constant. This creates a numeric expression that
represents the signed numeric value. Numeric constants default to positive if the
+ or - unary operators are not applied.

e Signed integer expressions:
+145345234
-2147483648

e Signed decimal expressions:
+145345234.2234
-2147483648.10

e Signed float expressions:
+123E-3
-12E5

¢ Signed money expressions:
-$45.56
+$423456.99

Enhanced Collations

SQL Server 2000 supports character and Unicode string constants that support
enhanced collations.

To utilize enhanced collation, use the COLIL ATE clause.

See Also

Collations

Data Types
Expressions
Operators

Using Constants

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Transact-SQL Reference

CONTAINS

Is a predicate used to search columns containing character-based data types for
precise or fuzzy (less precise) matches to single words and phrases, the
proximity of words within a certain distance of one another, or weighted
matches. CONTAINS can search for:

e A word or phrase.

e The prefix of a word or phrase.

e A word near another word.

¢ A word inflectionally generated from another (for example, the word
drive is the inflectional stem of drives, drove, driving, and driven).

e A word that has a higher designated weighting than another word.

Syntax

CONTAINS
({ column | * } , '< contains_search_condition >'

)

< contains_search_condition > ::=
{ < simple_term >
| < prefix_term >
| < generation_term >
| < proximity_term >
| < weighted_term >
}
| { (< contains_search_condition >)
{ AND | AND NOT | OR } < contains_search_condition > [...n]

}

< simple_term > ::=
word | "' phrase "

< prefix term > ::=
{ "word * " | "phrase * " }

< generation_term > ::=
FORMSOF (INFLECTIONAL, < simple_term > [,..n])

< proximity_term > ::=
{ < simple_term > | < prefix_term > }
{ {NEAR |~ } { <simple_term > | < prefix_term >} } [...n]

< weighted_term > ::=
ISABOUT
({{
< simple_term >
| < prefix_term >
| < generation_term >
| < proximity_term >
}
[WEIGHT (weight_value)]
}Lseen]
)

Arguments
column

Is the name of a specific column that has been registered for full-text
searching. Columns of the character string data types are valid full-text
searching columns.

Specifies that all columns in the table registered for full-text searching
should be used to search for the given contains search condition(s). If more
than one table is in the FROM clause, * must be qualified by the table name.

<contains_search_condition>

Specifies some text to search for in column. Variables cannot be used for the

search condition.
word

Is a string of characters without spaces or punctuation.
phrase

Is one or more words with spaces between each word.

Note Some languages, such as those in Asia, can have phrases that consist of
one or more words without spaces between them.

<simple_term>

Specifies a match for an exact word (one or more characters without spaces
or punctuation in single-byte languages) or a phrase (one or more
consecutive words separated by spaces and optional punctuation in single-
byte languages). Examples of valid simple terms are "blue berry", blueberry,
and "Microsoft SQL Server". Phrases should be enclosed in double quotation
marks (""). Words in a phrase must appear in the same order as specified in
<contains_search_condition> as they appear in the database column. The
search for characters in the word or phrase is case insensitive. Noise words
(such as a, and, or the) in full-text indexed columns are not stored in the full-
text index. If a noise word is used in a single word search, SQL Server
returns an error message indicating that only noise words are present in the
query. SQL Server includes a standard list of noise words in the directory
\Mssql\Ftdata\Sqlserver\Config.

Punctuation is ignored. Therefore, CONTAINS(testing, "computer failure")
matches a row with the value, "Where is my computer? Failure to find it
would be expensive."

<prefix_term>

Specifies a match of words or phrases beginning with the specified text.
Enclose a prefix term in double quotation marks ("") and add an asterisk (*)
before the ending quotation mark, so that all text starting with the simple
term specified before the asterisk is matched. The clause should be specified
this way: CONTAINS (column, "'text*"") The asterisk matches zero,
one, or more characters (of the root word or words in the word or phrase). If
the text and asterisk are not delimited by double quotation marks, as in

CONTAINS (column, 'text*"), full-text search considers the asterisk as a
character and will search for exact matches to text*.

When <prefix_term> is a phrase, each word contained in the phrase is
considered to be a separate prefix. Therefore, a query specifying a prefix
term of "local wine *" matches any rows with the text of "local winery",
"locally wined and dined", and so on.

<generation_term>

Specifies a match of words when the included simple terms include variants
of the original word for which to search.

INFLECTIONAL
Specifies that the plural and singular, as well as the gender and neutral
forms of nouns, verbs, and adjectives should be matched. The various
tenses of verbs should be matched too.

A given <simple_term> within a <generation_term> will not
match both nouns and verbs.

<proximity_term>

Specifies a match of words or phrases that must be close to one another.
<proximity_term> operates similarly to the AND operator: both require that
more than one word or phrase exist in the column being searched. As the
words in <proximity_term> appear closer together, the better the match.

NEAR | ~
Indicates that the word or phrase on the left side of the NEAR or ~
operator should be approximately close to the word or phrase on the right
side of the NEAR or ~ operator. Multiple proximity terms can be
chained, for example:

a NEAR b NEAR c

This means that word or phrase a should be near word or phrase
b, which should be near word or phrase c.

Microsoft® SQL Server™ ranks the distance between the left and
right word or phrase. A low rank value (for example, 0) indicates

a large distance between the two. If the specified words or
phrases are far apart from each other, the query is considered to
be satisfied; however, the query has a very low (0) rank value.
However, if <contains_search_condition> consists of only one or
more NEAR proximity terms, SQL Server does not return rows
with a rank value of 0. For more information about ranking, see
CONTAINSTABLE.

<weighted_term>

Specifies that the matching rows (returned by the query) match a list of
words and phrases, each optionally given a weighting value.

ISABOUT
Specifies the <weighted_term> keyword.

WEIGHT (weight_value)
Specifies a weight value which is a number from 0.0 through 1.0. Each
component in <weighted_term> may include a weight_value.
weight_value is a way to change how various portions of a query affect
the rank value assigned to each row matching the query. Weighting
forces a different measurement of the ranking of a value because all the
components of <weighted_term> are used together to determine the
match. A row is returned if there is a match on any one of the ISABOUT
parameters, whether or not a weight value is assigned. To determine the
rank values for each returned row that indicates the degree of matching
between the returned rows, see CONTAINSTABLE.

AND | AND NOT | OR

Specifies a logical operation between two contains search conditions. When
<contains_search_condition> contains parenthesized groups, these
parenthesized groups are evaluated first. After evaluating parenthesized
groups, these rules apply when using these logical operators with contains
search conditions:

e NOT is applied before AND.

e NOT can only occur after AND, as in AND NOT. The OR NOT

operator is not allowed. NOT cannot be specified before the first term
(for example, CONTAINS (mycolumn, 'NOT "phrase_to_search_for" '

).

e AND is applied before OR.

¢ Boolean operators of the same type (AND, OR) are associative and can
therefore be applied in any order.

Is a placeholder indicating that multiple contains search conditions and terms
within them can be specified.

Remarks

CONTAINS is not recognized as a keyword if the compatibility level is less than
70. For more information, see sp_dbcmptlevel.

Examples

A. Use CONTAINS with <simple_term>

This example finds all products with a price of $15.00 that contain the word
"bottles."

USE Northwind
GO
SELECT ProductName
FROM Products
WHERE UnitPrice = 15.00
AND CONTAINS(QuantityPerUnit, 'bottles')
GO

B. Use CONTAINS and phrase in <simple_term>

This example returns all products that contain either the phrase "sasquatch ale"

or "steeleye stout."

USE Northwind

GO

SELECT ProductName

FROM Products

WHERE CONTAINS(ProductName, ' "sasquatch ale" OR "steeleye st
GO

C. Use CONTAINS with <prefix_term>

This example returns all product names with at least one word starting with the
prefix choc in the ProductName column.

USE Northwind

GO

SELECT ProductName

FROM Products

WHERE CONTAINS(ProductName, ' "choc*" ")
GO

D. Use CONTAINS and OR with <prefix_term>

This example returns all category descriptions containing the strings "sea" or
"bread."

USE Northwind

SELECT CategoryName

FROM Categories

WHERE CONTAINS(Description, "'sea*" OR "bread*"')
GO

E. Use CONTAINS with <proximity_term>

This example returns all product names that have the word "Boysenberry" near
the word "spread."

USE Northwind

GO

SELECT ProductName

FROM Products

WHERE CONTAINS(ProductName, 'spread NEAR Boysenberry')
GO

F. Use CONTAINS with <generation_term>

This example searches for all products with words of the form dry: dried, drying,
and so on.

USE Northwind

GO

SELECT ProductName

FROM Products

WHERE CONTAINS(ProductName, ' FORMSOF (INFLECTIONAL,
GO

G. Use CONTAINS with <weighted_term>

This example searches for all product names containing the words spread,
sauces, or relishes, and different weightings are given to each word.

USE Northwind

GO

SELECT CategoryName, Description

FROM Categories

WHERE CONTAINS(Description, TSABOUT (spread weight (.8),
sauces weight (.4), relishes weight (.2))")

GO

H. Use CONTAINS with variables

This example uses a variable instead of a specific search term.

USE pubs
GO

DECLARE @SearchWord varchar(30)
SET @SearchWord ="Moon'
SELECT pr_info FROM pub_info WHERE CONTAINS(pr_info, @S¢

See Also

FREETEXT
FREETEXTTABLE

Using the CONTAINS Predicate
WHERE

JavaScript:hhobj_1.Click()

Transact-SQL Reference

CONTAINSTABLE

Returns a table of zero, one, or more rows for those columns containing
character-based data types for precise or fuzzy (less precise) matches to single
words and phrases, the proximity of words within a certain distance of one
another, or weighted matches. CONTAINSTABLE can be referenced in the
FROM clause of a SELECT statement as if it were a regular table name.

Queries using CONTAINSTABLE specify contains-type full-text queries that
return a relevance ranking value (RANK) for each row. The CONTAINSTABLE
function uses the same search conditions as the CONTAINS predicate.

Syntax

CONTAINSTABLE (table , { column | * } , ' < contains_search_condition > '
[, top_n_by_rank])

< contains_search_condition > ::=
{ < simple_term >
| < prefix_term >
| < generation_term >
| < proximity_term >
| <weighted_term >
}
| { (< contains_search_condition >)
{ AND | AND NOT | OR } < contains_search_condition > [...n]

}

< simple_term > ::=
word | "' phrase "

< prefix term > ::=
{ "word * " | "phrase * " }

< generation_term > ::=
FORMSOF (INFLECTIONAL, < simple_term > [,..n])

< proximity_term > ::=
{ < simple_term > | < prefix_term > }

{ {NEAR |~ } { <simple_term > | < prefix_term >} } [...n]

< weighted_term > ::=
ISABOUT
({{
< simple_term >
| < prefix_term >
| < generation_term >
| < proximity_term >
}
[WEIGHT (weight_value)]
}Lseen]
)

Arguments
table

Is the name of the table that has been marked for full-text querying. table can
be a one-, two-, or three-part database object name. For more information,
see Transact-SQL Syntax Conventions. table cannot specify a server name
and cannot be used in queries against linked servers.

column

Is the name of the column to search, which resides in table. Columns of the
character string data types are valid full-text searching columns.

Specifies that all columns in the table that have been registered for full-text
searching should be used to search for the given contains search condition(s).

top_n_by_rank

Specifies that only the n highest ranked matches, in descending order, are
returned. Applies only when an integer value, n, is specified.

<contains_search_condition>

Specifies some text to search for in column. Variables cannot be used for the
search condition. For more information, see CONTAINS.

Remarks

The table returned has a column named KEY that contains full-text key values.
Each full-text indexed table has a column whose values are guaranteed to be
unique, and the values returned in the KEY column are the full-text key values
of the rows that match the selection criteria specified in the contains search
condition. The TableFulltextKeyColumn property, obtained from the
OBJECTPROPERTY function, provides the identity for this unique key column.
To obtain the rows you want from the original table, specify a join with the
CONTAINSTABLE rows. The typical form of the FROM clause for a SELECT
statement using CONTAINSTABLE is:

SELECT select_list

FROM table AS FT_TBL INNER JOIN
CONTAINSTABLE(table, column, contains_search_condition) AS F
ON FT_TBL.unique_key_column = KEY_TBL.[KEY]

The table produced by CONTAINSTABLE includes a column named RANK.
The RANK column is a value (from 0 through 1000) for each row indicating
how well a row matched the selection criteria. This rank value is typically used
in one of these ways in the SELECT statement:

e In the ORDER BY clause to return the highest-ranking rows as the first
rows in the table.

e In the select list to see the rank value assigned to each row.

¢ In the WHERE clause to filter out rows with low rank values.

CONTAINSTABLE is not recognized as a keyword if the compatibility level is
less than 70. For more information, see sp_dbcmptlevel.

Permissions

Execute permissions are available only by users with the appropriate SELECT
privileges on the table or the referenced table's columns.

Examples

A. Return rank values using CONTAINSTABLE

This example searches for all product names containing the words breads, fish,
or beers, and different weightings are given to each word. For each returned row
matching this search criteria, the relative closeness (ranking value) of the match
is shown. In addition, the highest ranking rows are returned first.

USE Northwind
GO
SELECT FT_TBL.CategoryName, FI_TBL.Description, KEY_TBL.F
FROM Categories AS FI_TBL INNER JOIN
CONTAINSTABLE(Categories, Description,
'ISABOUT (breads weight (.8),
fish weight (.4), beers weight (.2))’) AS KEY_TBL
ON FT_TBL.CategorylD = KEY_TBL.[KEY]
ORDER BY KEY_TBL.RANK DESC
GO

B. Return rank values greater than specified value using
CONTAINSTABLE

This example returns the description and category name of all food categories
for which the Description column contains the words "sweet and savory" near
either the word "sauces" or the word "candies." All rows with a category name
"Seafood" are disregarded. Only rows with a rank value of 2 or higher are
returned.

USE Northwind

GO

SELECT FT_TBL.Description,
FT_TBL.CategoryName,
KEY_TBL.RANK

FROM Categories AS FI_TBL INNER JOIN
CONTAINSTABLE (Categories, Description,

'("sweet and savory" NEAR sauces) OR
("sweet and savory" NEAR candies)'
) ASKEY_TBL
ON FT_TBL.CategorylD = KEY_TBL.[KEY]
WHERE KEY_TBL.RANK > 2
AND FT_TBL.CategoryName <> 'Seafood'
ORDER BY KEY_TBL.RANK DESC

C. Return top 10 ranked results using CONTAINSTABLE and
Top_n_by_rank

This example returns the description and category name of the top 10 food
categories where the Description column contains the words "sweet and savory"
near either the word "sauces" or the word "candies."

SELECT FT_TBL.Description,
FT_TBL.CategoryName,
KEY_TBL.RANK
FROM Categories AS FI_TBL INNER JOIN
CONTAINSTABLE (Categories, Description,
'("sweet and savory" NEAR sauces) OR
("sweet and savory" NEAR candies)'
, 10
) AS KEY_TBL
ON FT_TBL.CategorylD = KEY_TBL.[KEY]

See Also

CONTAINS

Full-text Querying SQL Server Data

Rowset Functions
SELECT
WHERE

JavaScript:hhobj_1.Click()

Transact-SQL Reference

CONTINUE

Restarts a WHILE loop. Any statements after the CONTINUE keyword are
ignored. CONTINUE is often, but not always, activated by an IF test. For more
information, see WHILE and Control-of-Flow Language.

Transact-SQL Reference

Control-of-Flow Language

The table shows the Transact-SQL control-of-flow keywords.

Keyword Description

BEGIN...END Defines a statement block.

BREAK Exits the innermost WHILE loop.

CONTINUE Restarts a WHILE loop.

GOTO label Continues processing at the statement following
the label as defined by label.

IF...ELSE Defines conditional, and optionally, alternate
execution when a condition is FALSE.

RETURN Exits unconditionally.

WAITFOR Sets a delay for statement execution.

WHILE Repeats statements while a specific condition is
TRUE.

Other Transact-SQL statements that can be used with control-of-flow language
statements are:

CASE

[*..*/ (Comment

-- (Comment)

DECLARE @local_variable
EXECUTE

PRINT

RAISERROR

Transact-SQL Reference

COS

A mathematic function that returns the trigonometric cosine of the given angle
(in radians) in the given expression.

Syntax
COS (float_expression)

Arguments
float_expression

Is an expression of type float.

Return Types
float

Examples

This example returns the COS of the given angle.

DECLARE @angle float

SET @angle = 14.78

SELECT 'The COS of the angle is: ' + CONVERT(varchar,COS(@ang
GO

Here is the result set:

The COS of the angle is: -0.599465
(1 row(s) affected)

See Also

Mathematical Functions

Transact-SQL Reference

COT

A mathematic function that returns the trigonometric cotangent of the specified
angle (in radians) in the given float expression.

Syntax
COT (float_expression)

Arguments
float_expression

Is an expression of type float.

Return Types
float

Examples

This example returns the COT for the given angle.

DECLARE @angle float

SET @angle = 124.1332

SELECT 'The COT of the angle is: ' + CONVERT (varchar,COT(@ang
GO

Here is the result set:

The COT of the angle is: -0.040312
(1 row(s) affected)

See Also

Mathematical Functions

Transact-SQL Reference

COUNT

Returns the number of items in a group.

Syntax
COUNT ({ [ALL | DISTINCT] expression] | * })

Arguments
ALL

Applies the aggregate function to all values. ALL is the default.
DISTINCT

Specifies that COUNT returns the number of unique nonnull values.
expression

Is an expression of any type except uniqueidentifier, text, image, or ntext.
Aggregate functions and subqueries are not permitted.

Specifies that all rows should be counted to return the total number of rows
in a table. COUNT(*) takes no parameters and cannot be used with
DISTINCT. COUNT(*) does not require an expression parameter because,
by definition, it does not use information about any particular column.
COUNT(*) returns the number of rows in a specified table without
eliminating duplicates. It counts each row separately, including rows that
contain null values.

ImpoRTANT Distinct aggregates, for example AVG(DISTINCT column_name),
COUNT(DISTINCT column_name), MAX(DISTINCT column_name),
MIN(DISTINCT column_name), and SUM(DISTINCT column_name), are not
supported when using CUBE or ROLLUP. If used, Microsoft® SQL Server™
returns an error message and cancels the query.

Return Types

int

Remarks

COUNT(*) returns the number of items in a group, including NULL values and
duplicates.

COUNT(ALL expression) evaluates expression for each row in a group and
returns the number of nonnull values.

COUNT(DISTINCT expression) evaluates expression for each row in a group
and returns the number of unique, nonnull values.

Examples

A. Use COUNT and DISTINCT

This example finds the number of different cities in which authors live.

USE pubs

GO

SELECT COUNT(DISTINCT city)
FROM authors

GO

Here is the result set:

(1 row(s) affected)

B. Use COUNT(*)

This example finds the total number of books and titles.

USE pubs
GO
SELECT COUNT(*)

FROM titles
GO

Here is the result set:

(1 row(s) affected)

C. Use COUNT(*) with other aggregates

The example shows that COUNT(*) can be combined with other aggregate
functions in the select list.

USE pubs

GO

SELECT COUNT(*), AVG(price)
FROM titles

WHERE advance > $1000

GO

Here is the result set:

(1 row(s) affected)

See Also

Aggregate Functions

Transact-SQL Reference

COUNT_BIG

Returns the number of items in a group. COUNT_BIG works like the COUNT
function. The only difference between them is their return values: COUNT_BIG
always returns a bigint data type value. COUNT always returns an int data type
value.

Syntax
COUNT_BIG ({ [ALL | DISTINCT] expression } | *)

Arguments
ALL

Applies the aggregate function to all values. ALL is the default.
DISTINCT

Specifies that COUNT_BIG returns the number of unique nonnull values.
expression

Is an expression of any type except uniqueidentifier, text, image, or ntext.
Aggregate functions and subqueries are not permitted.

Specifies that all rows should be counted to return the total number of rows
in a table. COUNT_BIG(*) takes no parameters and cannot be used with
DISTINCT. COUNT_BIG(*) does not require an expression parameter
because, by definition, it does not use information about any particular
column. COUNT_BIG(*) returns the number of rows in a specified table
without eliminating duplicates. It counts each row separately, including rows
that contain null values.

Return Types
bigint

Remarks

COUNT_BIG(*) returns the number of items in a group, including NULL values
and duplicates.

COUNT_BIG(ALL expression) evaluates expression for each row in a group and
returns the number of nonnull values.

COUNT_BIG(DISTINCT expression) evaluates expression for each row in a
group and returns the number of unique, nonnull values.

See Also

int, bigint, smallint, and tinyint

Transact-SQL Reference

CREATE DATABASE

Creates a new database and the files used to store the database, or attaches a
database from the files of a previously created database.

Note For more information about backward compatibility with DISK INIT, see
Devices (Level 3) in Microsoft® SQL Server™ Backward Compatibility
Details.

Syntax

CREATE DATABASE database_name
[ON
[<filespec > [,...n]]
[, < filegroup > [,...n]]
]
[LOG ON { < filespec > [,...n] }]
[COLLATE collation_name |
[FOR LOAD | FOR ATTACH]

< filespec > ::=

[PRIMARY |
([NAME = logical_file_name ,]
FILENAME = 'os_file_name'
[, SIZE = size |
[, MAXSIZE = { max_size | UNLIMITED }]
[, FILEGROWTH = growth_increment]) [,...n]

< filegroup > ::=

FILEGROUP filegroup_name < filespec > [,...n]

Arguments
database_name

Is the name of the new database. Database names must be unique within a
server and conform to the rules for identifiers. database_name can be a

JavaScript:hhobj_1.Click()

maximum of 128 characters, unless no logical name is specified for the log.
If no logical log file name is specified, Microsoft® SQL Server™ generates
a logical name by appending a suffix to database_name. This limits
database_name to 123 characters so that the generated logical log file name
is less than 128 characters.

ON

Specifies that the disk files used to store the data portions of the database
(data files) are defined explicitly. The keyword is followed by a comma-
separated list of <filespec> items defining the data files for the primary
filegroup. The list of files in the primary filegroup can be followed by an
optional, comma-separated list of <filegroup> items defining user filegroups
and their files.

n
Is a placeholder indicating that multiple files can be specified for the new
database.

LOG ON

Specifies that the disk files used to store the database log (log files) are
explicitly defined. The keyword is followed by a comma-separated list of
<filespec> items defining the log files. If LOG ON is not specified, a single
log file is automatically created with a system-generated name and a size that
is 25 percent of the sum of the sizes of all the data files for the database.

FOR LOAD

This clause is supported for compatibility with earlier versions of Microsoft
SQL Server. The database is created with the dbo use only database option
turned on, and the status is set to loading. This is not required in SQL Server
version 7.0 because the RESTORE statement can recreate a database as part
of the restore operation.

FOR ATTACH

Specifies that a database is attached from an existing set of operating system
files. There must be a <filespec> entry specifying the first primary file. The
only other <filespec> entries needed are those for any files that have a
different path from when the database was first created or last attached. A

<filespec> entry must be specified for these files. The database attached must
have been created using the same code page and sort order as SQL Server.
Use the sp_attach_db system stored procedure instead of using CREATE
DATABASE FOR ATTACH directly. Use CREATE DATABASE FOR
ATTACH only when you must specify more than 16 <filespec> items.

If you attach a database to a server other than the server from which the
database was detached, and the detached database was enabled for
replication, you should run sp_removedbreplication to remove replication
from the database.

collation_name

Specifies the default collation for the database. Collation name can be either
a Windows collation name or a SQL collation name. If not specified, the
database is assigned the default collation of the SQL Server instance.

For more information about the Windows and SQL collation names, see
COLLATE.

PRIMARY

Specifies that the associated <filespec> list defines the primary file. The
primary filegroup contains all of the database system tables. It also contains
all objects not assigned to user filegroups. The first <filespec> entry in the
primary filegroup becomes the primary file, which is the file containing the
logical start of the database and its system tables. A database can have only
one primary file. If PRIMARY is not specified, the first file listed in the
CREATE DATABASE statement becomes the primary file.

NAME

Specifies the logical name for the file defined by the <filespec>. The NAME
parameter is not required when FOR ATTACH is specified.

logical_file_name

Is the name used to reference the file in any Transact-SQL statements
executed after the database is created. logical_file_name must be unique in
the database and conform to the rules for identifiers. The name can be a
character or Unicode constant, or a regular or delimited identifier.

FILENAME

Specifies the operating-system file name for the file defined by the
<filespec>.

'os_file_name'

Is the path and file name used by the operating system when it creates the
physical file defined by the <filespec>. The path in os_file_name must
specify a directory on an instance of SQL Server. os_file_name cannot
specify a directory in a compressed file system.

If the file is created on a raw partition, os_file_name must specify only the
drive letter of an existing raw partition. Only one file can be created on each
raw partition. Files on raw partitions do not autogrow; therefore, the
MAXSIZE and FILEGROWTH parameters are not needed when
os_file_name specifies a raw partition.

SIZE

Specifies the size of the file defined in the <filespec>. When a SIZE
parameter is not supplied in the <filespec> for a primary file, SQL Server
uses the size of the primary file in the model database. When a SIZE
parameter is not specified in the <filespec> for a secondary or log file, SQL
Server makes the file 1 MB.

size

Is the initial size of the file defined in the <filespec>. The kilobyte (KB),
megabyte (MB), gigabyte (GB), or terabyte (TB) suffixes can be used. The
default is MB. Specify a whole number; do not include a decimal. The
minimum value for size is 512 KB. If size is not specified, the default is 1
MB. The size specified for the primary file must be at least as large as the
primary file of the model database.

MAXSIZE

Specifies the maximum size to which the file defined in the <filespec> can
grow.

max_size

Is the maximum size to which the file defined in the <filespec> can grow.
The kilobyte (KB), megabyte (MB), gigabyte (GB), or terabyte (TB) suffixes

can be used. The default is MB. Specify a whole number; do not include a
decimal. If max_size is not specified, the file grows until the disk is full.

Note The Microsoft Windows NT® S/B system log warns the SQL Server
system administrator if a disk is almost full.

UNLIMITED
Specifies that the file defined in the <filespec> grows until the disk is full.
FILEGROWTH

Specifies the growth increment of the file defined in the <filespec>. The
FILEGROWTH setting for a file cannot exceed the MAXSIZE setting.

growth_increment

Is the amount of space added to the file each time new space is needed.
Specify a whole number; do not include a decimal. A value of 0 indicates no
growth. The value can be specified in MB, KB, GB, TB, or percent (%). If a
number is specified without an MB, KB, or % suffix, the default is MB.
When % is specified, the growth increment size is the specified percentage
of the size of the file at the time the increment occurs. If FILEGROWTH is
not specified, the default value is 10 percent and the minimum value is 64
KB. The size specified is rounded to the nearest 64 KB.

Remarks

You can use one CREATE DATABASE statement to create a database and the
files that store the database. SQL Server implements the CREATE DATABASE
statement in two steps:

1. SQL Server uses a copy of the model database to initialize the
database and its meta data.

2. SQL Server then fills the rest of the database with empty pages, except
for pages that have internal data recording how the space is used in the
database.

Any user-defined objects in the model database are therefore copied to all newly
created databases. You can add to the model database any objects, such as tables,

views, stored procedures, data types, and so on, to be included in all databases.

Each new database inherits the database option settings from the model database
(unless FOR ATTACH is specified). For example, the database option select
into/bulkcopy is set to OFF in model and any new databases you create. If you
use ALTER DATABASE to change the options for the model database, these
option settings are in effect for new databases you create. If FOR ATTACH is
specified on the CREATE DATABASE statement, the new database inherits the
database option settings of the original database.

A maximum of 32,767 databases can be specified on a server.
There are three types of files used to store a database:

e The primary file contains the startup information for the database. The

primary file is also used to store data. Every database has one primary
file.

e Secondary files hold all of the data that does not fit in the primary data
file. Databases need not have any secondary data files if the primary file
is large enough to hold all of the data in the database. Other databases
may be large enough to need multiple secondary data files, or they may
use secondary files on separate disk drives to spread the data across
multiple disks.

¢ Transaction log files hold the log information used to recover the
database. There must be at least one transaction log file for each
database, although there may be more than one. The minimum size for a
transaction log file is 512 KB.

Every database has at least two files, a primary file and a transaction log file.

Although 'os_file_name' can be any valid operating system file name, the name
more clearly reflects the purpose of the file if you use the following
recommended extensions.

File type File name extension
Primary data file .mdf

Secondary data file .ndf
Transaction log file df

Note The master database should be backed up when a user database is created.

Fractions cannot be specified in the SIZE, MAXSIZE, and FILEGROWTH
parameters. To specify a fraction of a megabyte in SIZE parameters, convert to
kilobytes by multiplying the number by 1,024. For example, specify 1,536 KB
instead of 1.5 MB (1.5 multiplied by 1,024 equals 1,536).

When a simple CREATE DATABASE database_name statement is specified
with no additional parameters, the database is made the same size as the model
database.

All databases have at least a primary filegroup. All system tables are allocated in
the primary filegroup. A database can also have user-defined filegroups. If an
object is created with an ON filegroup clause specifying a user-defined
filegroup, then all the pages for the object are allocated from the specified
filegroup. The pages for all user objects created without an ON filegroup clause,
or with an ON DEFAULT clause, are allocated from the default filegroup. When
a database is first created the primary filegroup is the default filegroup. You can
specify a user-defined filegroup as the default filegroup using ALTER
DATABASE:

ALTER DATABASE database_name MODIFY FILEGROUP filegrou

Each database has an owner who has the ability to perform special activities in
the database. The owner is the user who creates the database. The database
owner can be changed with sp_changedbowner.

To display a report on a database, or on all the databases for an instance of SQL
Server, execute sp_helpdb. For a report on the space used in a database, use
sp_spaceused. For a report on the filegroups in a database use
sp_helpfilegroup, and use sp_helpfile for a report of the files in a database.

Earlier versions of SQL Server used DISK INIT statements to create the files for
a database before the CREATE DATABASE statement was executed. For
backward compatibility with earlier versions of SQL Server, the CREATE
DATABASE statement can also create a new database on files or devices created

with the DISK INIT statement. For more information, see SQL Server Backward
Compatibility Details.

Permissions

CREATE DATABASE permission defaults to members of the sysadmin and
dbcreator fixed server roles. Members of the sysadmin and securityadmin
fixed server roles can grant CREATE DATABASE permissions to other logins.
Members of the sysadmin and dbcreator fixed server role can add other logins
to the dbcreator role. The CREATE DATABASE permission must be explicitly
granted; it is not granted by the GRANT ALL statement.

CREATE DATABASE permission is usually limited to a few logins to maintain
control over disk usage on an instance of SQL Server.

Examples

A. Create a database that specifies the data and transaction log
files

This example creates a database called Sales. Because the keyword PRIMARY
is not used, the first file (Sales_dat) becomes the primary file. Because neither
MB or KB is specified in the SIZE parameter for the Sales_dat file, it defaults to
MB and is allocated in megabytes. The Sales_log file is allocated in megabytes
because the MB suffix is explicitly stated in the SIZE parameter.

USE master

GO

CREATE DATABASE Sales

ON

(NAME = Sales_dat,
FILENAME = 'c:\program files\microsoft sql server\mssql\data\salec
SIZE = 10,
MAXSIZE = 50,
FILEGROWTH =5)

LOG ON

(NAME = 'Sales_log/,

JavaScript:hhobj_2.Click()

FILENAME = 'c:\program files\microsoft sql server\mssql\data\salel
SIZE = 5MB,
MAXSIZE = 25MB,
FILEGROWTH = 5MB)
GO

B. Create a database specifying multiple data and transaction log
files

This example creates a database called Archive with three 100-MB data files
and two 100-MB transaction log files. The primary file is the first file in the list
and is explicitly specified with the PRIMARY keyword. The transaction log files
are specified following the LOG ON keywords. Note the extensions used for the
files in the FILENAME option: .mdf is used for primary data files, .ndf is used
for the secondary data files, and .1df is used for transaction log files.

USE master
GO
CREATE DATABASE Archive
ON
PRIMARY (NAME = Archl,
FILENAME = 'c:\program files\microsoft sql server\mssqgl\data\arc
SIZE = 100MB,
MAXSIZE = 200,
FILEGROWTH = 20),
(NAME = Arch2,
FILENAME = 'c:\program files\microsoft sql server\mssql\data\archu
SIZE = 100MB,
MAXSIZE = 200,
FILEGROWTH = 20),
(NAME = Arch3,
FILENAME = 'c:\program files\microsoft sql server\mssql\data\arch
SIZE = 100MB,
MAXSIZE = 200,
FILEGROWTH = 20)

LOG ON
(NAME = Archlogl,
FILENAME = 'c:\program files\microsoft sql server\mssql\data\arch.
SIZE = 100MB,
MAXSIZE = 200,
FILEGROWTH = 20),
(NAME = Archlog?,
FILENAME = 'c:\program files\microsoft sql server\mssql\data\arch.
SIZE = 100MB,
MAXSIZE = 200,
FILEGROWTH = 20)
GO

C. Create a simple database

This example creates a database called Products and specifies a single file. The
file specified becomes the primary file, and a 1-MB transaction log file is
automatically created. Because neither MB or KB is specified in the SIZE
parameter for the primary file, the primary file is allocated in megabytes.
Because there is no <filespec> for the transaction log file, the transaction log file
has no MAXSIZE and can grow to fill all available disk space.

USE master
GO
CREATE DATABASE Products
ON
(NAME = prods_dat,
FILENAME = 'c:\program files\microsoft sql server\mssql\data\prod
SIZE = 4,
MAXSIZE = 10,
FILEGROWTH =1)
GO

D. Create a database without specifying files

This example creates a database named mytest and creates a corresponding
primary and transaction log file. Because the statement has no <filespec> items,
the primary database file is the size of the model database primary file. The
transaction log is the size of the model database transaction log file. Because
MAXSIZE is not specified, the files can grow to fill all available disk space.

CREATE DATABASE mytest

E. Create a database without specifying SIZE

This example creates a database named products2. The file prods2_dat
becomes the primary file with a size equal to the size of the primary file in the
model database. The transaction log file is created automatically and is 25
percent of the size of the primary file, or 512 KB, whichever is larger. Because
MAXSIZE is not specified, the files can grow to fill all available disk space.

USE master
GO
CREATE DATABASE Products?2
ON
(NAME = prods2_dat,
FILENAME = 'c:\program files\microsoft sql server\mssql\data\prod
GO

F. Create a database with filegroups
This example creates a database named sales with three filegroups:

e The primary filegroup with the files Spril_dat and Spri2_dat. The
FILEGROWTH increments for these files is specified as 15 percent.

¢ A filegroup named SalesGroup1l with the files SGrp1Fil and
SGrplFi2.

o A filegroup named SalesGroup?2 with the files SGrp2Fil and
SGrp2Fi2.

CREATE DATABASE Sales
ON PRIMARY
(NAME = SPril_dat,
FILENAME = 'c:\program files\microsoft sql server\mssql\data\SPri
SIZE = 10,
MAXSIZE = 50,
FILEGROWTH = 15%),
(NAME = SPri2_dat,
FILENAME = 'c:\program files\microsoft sql server\mssql\data\SPri.
SIZE = 10,
MAXSIZE = 50,
FILEGROWTH = 15%),
FILEGROUP SalesGroup1l
(NAME = SGrp1Fil_dat,
FILENAME = 'c:\program files\microsoft sql server\mssgl\data\SG1
SIZE = 10,
MAXSIZE = 50,
FILEGROWTH =5),
(NAME = SGrp1Fi2_dat,
FILENAME = 'c:\program files\microsoft sql server\mssgl\data\SG1
SIZE = 10,
MAXSIZE = 50,
FILEGROWTH =5),
FILEGROUP SalesGroup2
(NAME = SGrp2Fil_dat,
FILENAME = 'c:\program files\microsoft sql server\mssqgl\data\SG2
SIZE = 10,
MAXSIZE = 50,
FILEGROWTH =5),
(NAME = SGrp2Fi2_dat,
FILENAME = 'c:\program files\microsoft sql server\mssgl\data\SG2
SIZE = 10,
MAXSIZE = 50,

FILEGROWTH =5)
LOG ON
(NAME = 'Sales_log/,
FILENAME = 'c:\program files\microsoft sql server\mssql\data\salel
SIZE = 5MB,
MAXSIZE = 25MB,
FILEGROWTH = 5MB)
GO

G. Attach a database

Example B creates a database named Archive with the following physical files:

c:\program files\microsoft sql server\mssqgl\data\archdat1.mdf
c:\program files\microsoft sql server\mssqgl\data\archdat2.ndf
c:\program files\microsoft sql server\mssqgl\data\archdat3.ndf
c:\program files\microsoft sql server\mssqgl\data\archlog1.1df
c:\program files\microsoft sql server\mssqgl\data\archlog?2.1df

The database can be detached using the sp_detach_db stored procedure, and
then reattached using CREATE DATABASE with the FOR ATTACH clause:

sp_detach_db Archive

GO

CREATE DATABASE Archive

ON PRIMARY (FILENAME = 'c:\program files\microsoft sql server\n
FOR ATTACH

GO

H. Use raw partitions

This example creates a database called Employees using raw partitions. The raw
partitions must exist when the statement is executed, and only one file can go on
each raw partition.

USE master

GO
CREATE DATABASE Employees
ON
(NAME = Empl_dat,
FILENAME ="f:,
SIZE = 10,
MAXSIZE = 50,
FILEGROWTH =5)
LOG ON
(NAME = 'Sales_log',
FILENAME ="g:,
SIZE = 5MB,
MAXSIZE = 25MB,
FILEGROWTH =5MB)
GO

I. Use mounted drives

This example creates a database called Employees using mounted drives
pointing to raw partitions. This feature is available only in Microsoft®
Windows® 2000 Server. The mounted drives and raw partitions must exist when
the statement is executed, and only one file can go on each raw partition. When
creating a database file on a mounted drive, a trailing backslash (\) must end the
drive path.

USE master
GO
CREATE DATABASE Employees
ON
(NAME = Empl_dat,
FILENAME = 'd:\sample data dir\,
SIZE = 10,
MAXSIZE = 50,
FILEGROWTH =5)
LOG ON

(NAME = 'Sales_log',
FILENAME = 'd:\sample log dir\',
SIZE = 5MB,
MAXSIZE = 25MB,
FILEGROWTH =5MB)

GO

See Also

ALTER DATABASE
DROP DATABASE

sp_attach_db

sp_changedbowner
sp_detach_db

sp_helpdb
sp_helpfile
sp_helpfilegroup

sp_removedbreplication

sp_renamedb

sp_spaceused

Using Raw Partitions

JavaScript:hhobj_3.Click()

Transact-SQL Reference

CREATE DEFAULT

Creates an object called a default. When bound to a column or a user-defined
data type, a default specifies a value to be inserted into the column to which the
object is bound (or into all columns, in the case of a user-defined data type)
when no value is explicitly supplied during an insert. Defaults, a backward
compatibility feature, perform some of the same functions as default definitions
created using the DEFAULT keyword of ALTER or CREATE TABLE
statements. Default definitions are the preferred, standard way to restrict column
data because the definition is stored with the table and automatically dropped
when the table is dropped. A default is beneficial, however, when the default is
used multiple times for multiple columns.

Syntax

CREATE DEFAULT default
AS constant_expression

Arguments
default

Is the name of the default. Default names must conform to the rules for
identifiers. Specifying the default owner name is optional.

Constant_expression

Is an expression that contains only constant values (it cannot include the
names of any columns or other database objects). Any constant, built-in
function, or mathematical expression can be used. Enclose character and date
constants in single quotation marks ('); monetary, integer, and floating-point
constants do not require quotation marks. Binary data must be preceded by
0x, and monetary data must be preceded by a dollar sign ($). The default
value must be compatible with the column data type.

Remarks

A default name can be created only in the current database. Within a database,

default names must be unique by owner. When a default is created, use
sp_bindefault to bind it to a column or to a user-defined data type.

If the default is not compatible with the column to which it is bound, Microsoft®
SQL Server™ generates an error message when trying to insert the default value.
For example, N/A cannot be used as a default for a numeric column.

If the default value is too long for the column to which it is bound, the value is
truncated.

CREATE DEFAULT statements cannot be combined with other Transact-SQL
statements in a single batch.

A default must be dropped before creating a new one of the same name, and the
default must be unbound by executing sp_unbindefault before it is dropped.

If a column has both a default and a rule associated with it, the default value
must not violate the rule. A default that conflicts with a rule is never inserted,
and SQL Server generates an error message each time it attempts to insert the
default.

When bound to a column, a default value is inserted when:

e A value is not explicitly inserted.

e Either the DEFAULT VALUES or DEFAULT keywords are used with
INSERT to insert default values.

If NOT NULL is specified when creating a column and a default is not created
for it, an error message is generated when a user fails to make an entry in that
column. This table illustrates the relationship between the existence of a default
and the definition of a column as NULL or NOT NULL. The entries in the table
show the result.

Enter
Column No entry, no No entry, Enter NULL, NULL,
definition default default no default default
NULL NULL default NULL NULL
NOT NULL Error default error error

Note Whether SQL Server interprets an empty string as a single space or as a
true empty string is controlled by the sp_dbcmptlevel setting. If the
compatibility level is less than or equal to 65, SQL Server interprets empty
strings as single spaces. If the compatibility level is equal to 70, SQL Server
interprets empty strings as empty strings. For more information, see
sp_dbcmptlevel.

To rename a default, use sp_rename. For a report on a default, use sp_help.

Permissions

CREATE DEFAULT permissions default to members of the sysadmin fixed
server role and the db_ddladmin and db_owner fixed database roles. Members
of the sysadmin, db_owner and db_securityadmin roles can transfer
permissions to other users.

Examples

A. Create a simple character default

This example creates a character default called unknown.

USE pubs
GO
CREATE DEFAULT phonedflt AS 'unknown'

B. Bind a default

This example binds the default created in example A. The default takes effect
only if there is no entry in the phone column of the authors table. Note that no
entry is not the same as an explicit null value.

Because a default named phonedflt does not exist, the following Transact-SQL
statement fails. This example is for illustration only.

USE pubs
GO

sp_bindefault phonedflt, 'authors.phone

See Also

ALTER TABLE

Batches

CREATE RULE
CREATE TABLE
DROP DEFAULT

DROP RULE

Expressions
INSERT

sp_bindefault

sp_help
sp_helptext

Sp_rename

sp_unbindefault

Using Identifiers

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL Reference

CREATE FUNCTION

Creates a user-defined function, which is a saved Transact-SQL routine that
returns a value. User-defined functions cannot be used to perform a set of actions
that modify the global database state. User-defined functions, like system
functions, can be invoked from a query. They also can be executed through an
EXECUTE statement like stored procedures.

User-defined functions are modified using ALTER FUNCTION, and dropped
using DROP FUNCTION.

Syntax
Scalar Functions

CREATE FUNCTION [owner_name.] function_name
([{ @parameter_name [AS] scalar_parameter_data_type [= default] } [
el 1])

RETURNS scalar_return_data_type
[WITH < function_option> [[,] ...n]]
[AS]

BEGIN
function_body

RETURN scalar_expression
END

Inline Table-valued Functions

CREATE FUNCTION [owner_name.] function_name
([{ @parameter_name [AS] scalar_parameter_data_type [= default] } [
el 1])

RETURNS TABLE
[WITH < function_option > [[,] ...n]]
[AS]

RETURN [(] select-stmt [)]
Multi-statement Table-valued Functions

CREATE FUNCTION [owner_name.] function_name
([{ @parameter_name [AS] scalar_parameter_data_type [= default] } [
el 1])

RETURNS @return_variable TABLE < table_type_definition >
[WITH < function_option > [[,] ...n]]
[AS]

BEGIN
function_body
RETURN

END

< function_option > ::=
{ ENCRYPTION | SCHEMABINDING }

< table_type_definition > :: =
({ column_definition | table_constraint } [,...n])

Arguments
owner_name

Is the name of the user ID that owns the user-defined function. owner_name
must be an existing user ID.

function_name

Is the name of the user-defined function. Function names must conform to
the rules for identifiers and must be unique within the database and to its
owner.

(@parameter_name

Is a parameter in the user-defined function. One or more parameters can be
declared in a CREATE FUNCTION statement. A function can have a
maximum of 1,024 parameters. The value of each declared parameter must
be supplied by the user when the function is executed, unless a default for

the parameter is defined. When a parameter of the function has a default
value, the keyword "default" must be specified when calling the function in
order to get the default value. This behavior is different from parameters with
default values in stored procedures in which omitting the parameter also
implies the default value.

Specify a parameter name using an at sign (@) as the first character. The
parameter name must conform to the rules for identifiers. Parameters are
local to the function; the same parameter names can be used in other
functions. Parameters can take the place only of constants; they cannot be
used in place of table names, column names, or the names of other database
objects.

scalar_parameter_data_type

Is the parameter data type. All scalar data types, including bigint and
sql_variant, can be used as a parameter for user-defined functions. The
timestamp data type and user-defined data types not supported. Nonscalar
types such as cursor and table cannot be specified.

scalar_return_data_type

Is the return value of a scalar user-defined function. scalar_return_data_type
can be any of the scalar data types supported by SQL Server, except text,
ntext, image, and timestamp.

scalar_expression

Specifies the scalar value that the scalar function returns.

TABLE

Specifies that the return value of the table-valued function is a table.

In inline table-valued functions, the TABLE return value is defined through a
single SELECT statement. Inline functions do not have associated return
variables.

In multi-statement table-valued functions, @return_variable is a TABLE
variable, used to store and accumulate the rows that should be returned as the
value of the function.

function_body

Specifies that a series of Transact-SQL statements, which together do not
produce a side effect, define the value of the function. function_body is used
only in scalar functions and multi-statement table-valued functions.

In scalar functions, function_body is a series of Transact-SQL statements that
together evaluate to a scalar value.

In multi-statement table-valued functions, function_body is a series of
Transact-SQL statements that populate a table return variable.

select-stmt

Is the single SELECT statement that defines the return value of an inline
table-valued function.

ENCRYPTION

Indicates that SQL Server encrypts the system table columns containing the
text of the CREATE FUNCTION statement. Using ENCRYPTION prevents
the function from being published as part of SQL Server replication.

SCHEMABINDING

Specifies that the function is bound to the database objects that it references.
If a function is created with the SCHEMABINDING option, then the
database objects that the function references cannot be altered (using the
ALTER statement) or dropped (using a DROP statement).

The binding of the function to the objects it references is removed only when
one of two actions take place:

e The function is dropped.

e The function is altered (using the ALTER statement) with the
SCHEMABINDING option not specified.

A function can be schema-bound only if the following conditions are true:

e The user-defined functions and views referenced by the function are
also schema-bound.

e The objects referenced by the function are not referenced using a two-

part name.

e The function and the objects it references belong to the same database.

e The user who executed the CREATE FUNCTION statement has
REFERENCES permission on all the database objects that the function
references.

The CREATE FUNCTION statement with the SCHEMABINDING option
specified will fail if the above conditions are not true.

Remarks

User-defined functions are either scalar-valued or table-valued. Functions are
scalar-valued if the RETURNS clause specified one of the scalar data types.
Scalar-valued functions can be defined using multiple Transact-SQL statements.

Functions are table-valued if the RETURNS clause specified TABLE.
Depending on how the body of the function is defined, table-valued functions
can be classified as inline or multi-statement functions.

If the RETURNS clause specifies TABLE with no accompanying column list,
the function is an inline function. Inline functions are table-valued functions
defined with a single SELECT statement making up the body of the function.
The columns, including the data types, of the table returned by the function are
derived from the SELECT list of the SELECT statement defining the function.

If the RETURNS clause specifies a TABLE type with columns and their data
types, the function is a multi-statement table-valued function.

The following statements are allowed in the body of a multi-statement function.
Statements not in this list are not allowed in the body of a function:

e Assignment statements.

e Control-of-Flow statements.

e DECLARE statements defining data variables and cursors that are local

to the function.

e SELECT statements containing select lists with expressions that assign
values to variables that are local to the function.

e Cursor operations referencing local cursors that are declared, opened,
closed, and deallocated in the function. Only FETCH statements that
assign values to local variables using the INTO clause are allowed;
FETCH statements that return data to the client are not allowed.

e INSERT, UPDATE, and DELETE statements modifying table variables
local to the function.

e EXECUTE statements calling an extended stored procedures.

Function Determinism and Side Effects

Functions are either deterministic or nondeterministic. They are deterministic
when they always return the same result any time they are called with a specific
set of input values. They are nondeterministic when they could return different
result values each time they are called with the same specific set of input values.

Nondeterministic functions can cause side effects. Side effects are changes to
some global state of the database, such as an update to a database table, or to
some external resource, such as a file or the network (for example, modify a file
or send an e-mail message).

Built-in nondeterministic functions are not allowed in the body of user-defined
functions; they are as follows:

@@CONNECTIONS @@TOTAL_ERRORS
@@CPU_BUSY @@TOTAL_READ
@@IDLE @@TOTAL_WRITE
@@I10_BUSY GETDATE
@@MAX_CONNECTIONS GETUTCDATE

@@PACK_RECEIVED NEWID
@@PACK_SENT RAND
@@PACKET_ERRORS TEXTPTR
@@TIMETICKS

Although nondeterministic functions are not allowed in the body of user-defined
functions, these user-defined functions still can cause side effects if they call
extended stored procedures.

Functions that call extended stored procedures are considered nondeterministic
because extended stored procedures can cause side effects on the database.
When user defined functions call extended stored procedures that can have side
effects on the database, do not rely on a consistent result set or execution of the
function.

Calling extended stored procedures from functions

The extended stored procedure, when called from inside a function, cannot
return result sets to the client. Any ODS APIs that return result sets to the client
will return FAIL. The extended stored procedure could connect back to
Microsoft® SQL Server™; however, it should not attempt to join the same
transaction as the function that invoked the extended stored procedure.

Similar to invocations from a batch or stored procedure, the extended stored
procedure will be executed in the context of the Windows® security account
under which SQL Server is running. The owner of the stored procedure should
consider this when giving EXECUTE privileges on it to users.

Function Invocation

Scalar-valued functions may be invoked where scalar expressions are used,
including computed columns and CHECK constraint definitions. When invoking
scalar-valued functions, at minimum use the two-part name of the function.

[database_name.]owner_name.function_name ([argument_expr]l[,...])

If a user-defined function is used to define a computed column, the function's
deterministic quality also defines whether an index may be created on that

computed column. An index can be created on a computed column that uses a
function only if the function is deterministic. A function is deterministic if it
always returns the same value, given the same input.

Table-valued functions can be invoked using a single part name.

[database_name.][owner_name.]function_name ([argument_expr][,...])

System table functions that are included in Microsoft® SQL Server™ 2000 need
to be invoked using a "::' prefix before the function name.

SELECT *
FROM ::fn_helpcollations()

Transact-SQL errors that cause a statement to be stopped and then continued
with the next statement in a stored procedure are treated differently inside a
function. In functions, such errors will cause the function execution to be
stopped. This in turn will cause the statement that invoked the function to be
stopped.

Permissions

Users should have the CREATE FUNCTION permission to execute the
CREATE FUNCTION statement.

CREATE FUNCTION permissions default to members of the sysadmin fixed
server role, and the db_owner and db_ddladmin fixed database roles. Members
of sysadmin and db_owner can grant CREATE FUNCTION permissions to
other logins by using the GRANT statement.

Owners of functions have EXECUTE permission on their functions. Other users
do not have EXECUTE permissions unless EXECUTE permissions on the
specific function are granted to them.

In order to create or alter tables with references to user-defined functions in the
CONSTRAINT, DEFAULT clauses, or computed column definition, the user
must also have REFERENCES permission to the functions.

Examples

A. Scalar-valued user-defined function that calculates the ISO
week

In this example, a user-defined function, ISOweek, takes a date argument and
calculates the ISO week number. For this function to calculate properly, SET
DATEFIRST 1 must be invoked before the function is called.

CREATE FUNCTION ISOweek (@DATE datetime)
RETURNS int
AS
BEGIN
DECLARE @ISOweek int
SET @ISOweek= DATEPART(wk,@DATE)+1
-DATEPART(wk,CAST(DATEPART (yy,@DATE) as CHAR(4))+'l
--Special cases: Jan 1-3 may belong to the previous year
IF (@ISOweek=0)
SET @ISOweek=dbo.ISOweek(CAST(DATEPART (yy,@DATE)-]
AS CHAR(4))+'12'+ CAST(24+DATEPART(DAY,@DATE) AS
--Special case: Dec 29-31 may belong to the next year
IF ((DATEPART(mm,@DATE)=12) AND
((DATEPART(dd,@DATE)-DATEPART(dw,@DATE))>= 28))
SET @ISOweek=1
RETURN(@ISOweek)
END

Here is the function call. Notice that DATEFIRST is set to 1.

SET DATEFIRST 1

SELECT master.dbo.ISOweek('12/26/1999") AS 'ISO Week'
Here is the result set.

ISO Week

B. Inline table-valued function

This example returns an inline table-valued function.

USE pubs
GO
CREATE FUNCTION SalesByStore (@storeid varchar(30))
RETURNS TABLE
AS
RETURN (SELECT title, gty
FROM sales s, titles t
WHERE s.stor_id = @storeid and
t.title_id = s.title_id)

C. Multi-statement table-valued function

Given a table that represents a hierarchical relationship:

CREATE TABLE employees (empid nchar(5) PRIMARY KEY,
empname nvarchar(50),
mgrid nchar(5) REFERENCES employees(empid),
title nvarchar(30)

)

The table-valued function fn_FindReports(InEmpID), which -- given an
Employee ID -- returns a table corresponding to all the employees that report to
the given employee directly or indirectly. This logic is not expressible in a single
query and is a good candidate for implementing as a user-defined function.

CREATE FUNCTION fn_FindReports (@InEmpld nchar(5))
RETURNS @retFindReports TABLE (empid nchar(5) primary key,
empname nvarchar(50) NOT NULL,
mgrid nchar(5),
title nvarchar(30))
/*Returns a result set that lists all the employees who report to given
employee directly or indirectly.*/

AS
BEGIN
DECLARE @RowsAdded int
-- table variable to hold accumulated results
DECLARE @reports TABLE (empid nchar(5) primary key,
empname nvarchar(50) NOT NULL,
mgrid nchar(5),
title nvarchar(30),
processed tinyint default 0)
-- initialize @Reports with direct reports of the given employee
INSERT @reports
SELECT empid, empname, mgrid, title, 0
FROM employees
WHERE empid = @InEmpld
SET @RowsAdded = @@rowcount
-- While new employees were added in the previous iteration
WHILE @RowsAdded > 0
BEGIN
/*Mark all employee records whose direct reports are going to be
found in this iteration with processed=1.*/
UPDATE @reports
SET processed = 1
WHERE processed = 0
-- Insert employees who report to employees marked 1.
INSERT @reports
SELECT e.empid, e.empname, e.mgrid, e.title, 0
FROM employees e, @reports r
WHERE e.mgrid=r.empid and e.mgrid <> e.empid and r.processed
SET @RowsAdded = @@rowcount
/*Mark all employee records whose direct reports have been found
in this iteration.*/
UPDATE @reports
SET processed = 2

WHERE processed = 1
END

-- copy to the result of the function the required columns
INSERT @retFindReports
SELECT empid, empname, mgrid, title
FROM @reports
RETURN
END
GO

-- Example invocation
SELECT *

FROM fn_FindReports('11234")
GO

See Also

ALTER FUNCTION
DROP FUNCTION

Invoking User-defined Functions

User-defined Functions

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL Reference

CREATE INDEX

Creates an index on a given table or view.

Only the table or view owner can create indexes on that table. The owner of a
table or view can create an index at any time, whether or not there is data in the
table. Indexes can be created on tables or views in another database by
specifying a qualified database name.

Syntax

CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED] INDEX
index_name
ON { table | view } (column [ASC |DESC][,...n])
[WITH < index_option > [,...n]]
[ON filegroup]

< index_option > :: =
{ PAD_INDEX |
FILLFACTOR = fillfactor |
IGNORE_DUP_KEY |
DROP_EXISTING |
STATISTICS_NORECOMPUTE |
SORT_IN_TEMPDB

}

Arguments
UNIQUE

Creates a unique index (one in which no two rows are permitted to have the
same index value) on a table or view. A clustered index on a view must be
UNIQUE.

Microsoft® SQL Server™ checks for duplicate values when the index is created
(if data already exists) and checks each time data is added with an INSERT or
UPDATE statement. If duplicate key values exist, the CREATE INDEX

statement is canceled and an error message giving the first duplicate is returned.

Multiple NULL values are considered duplicates when UNIQUE index is
created.

When a unique index exists, UPDATE or INSERT statements that would
generate duplicate key values are rolled back, and SQL Server displays an error
message. This is true even if the UPDATE or INSERT statement changes many
rows but causes only one duplicate. If an attempt is made to enter data for which
there is a unique index and the IGNORE_DUP_KEY clause is specified, only
the rows violating the UNIQUE index fail. When processing an UPDATE
statement, IGNORE_DUP_KEY has no effect.

SQL Server does not allow the creation of a unique index on columns that
already include duplicate values, whether or not IGNORE_DUP_KEY is set. If
attempted, SQL Server displays an error message; duplicates must be eliminated
before a unique index can be created on the column(s).

CLUSTERED

Creates an object where the physical order of rows is the same as the indexed
order of the rows, and the bottom (leaf) level of the clustered index contains
the actual data rows. A table or view is allowed one clustered index at a time.

A view with a clustered index is called an indexed view. A unique clustered
index must be created on a view before any other indexes can be defined on the
same view.

Create the clustered index before creating any nonclustered indexes. Existing
nonclustered indexes on tables are rebuilt when a clustered index is created.

If CLUSTERED is not specified, a nonclustered index is created.

Note Because the leaf level of a clustered index and its data pages are the same
by definition, creating a clustered index and using the ON filegroup clause
effectively moves a table from the file on which the table was created to the new
filegroup. Before creating tables or indexes on specific filegroups, verify which
filegroups are available and that they have enough empty space for the index. It
is important that the filegroup have at least 1.2 times the space required for the
entire table.

NONCLUSTERED

Creates an object that specifies the logical ordering of a table. With a

nonclustered index, the physical order of the rows is independent of their
indexed order. The leaf level of a nonclustered index contains index rows.
Each index row contains the nonclustered key value and one or more row
locators that point to the row that contains the value. If the table does not
have a clustered index, the row locator is the row's disk address. If the table
does have a clustered index, the row locator is the clustered index key for the
row.

Each table can have as many as 249 nonclustered indexes (regardless of how
they are created: implicitly with PRIMARY KEY and UNIQUE constraints, or
explicitly with CREATE INDEX). Each index can provide access to the data in a
different sort order.

For indexed views, nonclustered indexes can be created only on a view with a
clustered index already defined. Thus, the row locator of a nonclustered index on
an indexed view is always the clustered key of the row.

index_name

Is the name of the index. Index names must be unique within a table or view
but do not need to be unique within a database. Index names must follow the
rules of identifiers.

table

Is the table that contains the column or columns to be indexed. Specifying
the database and table owner names is optional.

view

Is the name of the view to be indexed. The view must be defined with
SCHEMABINDING in order to create an index on it. The view definition
also must be deterministic. A view is deterministic if all expressions in the
select list, and the WHERE and GROUP BY clauses are deterministic. Also,
all key columns must be precise. Only nonkey columns of the view may
contain float expressions (expressions that use float data type), and float
expressions cannot be used anywhere else in the view definition.

To find a column in the view that is deterministic, use the
COLUMNPROPERTY function (IsDeterministic property). The IsPrecise
property of the function can be used to determine that the key columns are
precise.

A unique clustered index must be created on a view before any nonclustered
index is created.

Indexed views may be used by the query optimizer in SQL Server Enterprise
or Developer edition to speed up the query execution. The view does not
need to be referenced in the query for the optimizer to consider that view for
a substitution.

When creating indexed views or manipulating rows in tables participating in
an indexed view, seven SET options must be assigned specific values. The
SET options ARITHABORT, CONCAT_NULL_YIELDS_NULL,
QUOTED_IDENTIFIER, ANSI_NULLS, ANSI_PADDING, and
ANSI_WARNING must be ON. The SET option
NUMERIC_ROUNDABORT must be OFF.

If any of these settings is different, data modification statements (INSERT,
UPDATE, DELETE) on any table referenced by an indexed view fail and
SQL Server raises an error listing all SET options that violate setting
requirements. In addition, for a SELECT statement that involves an indexed
view, if the values of any of the SET options are not the required values, SQL
Server processes the SELECT without considering the indexed view
substitution. This ensures correctness of query result in cases where it can be
affected by the above SET options.

If the application uses a DB-Library connection, all seven SET options on
the server must be assigned the required values. (By default, OLE DB and
ODBC connections have set all of the required SET options correctly, except
for ARITHABORT.)

Some operations, like BCP, replication, or distributed queries may fail to
execute their updates against tables participating in indexed views if not all
of the listed SET options have the required value. In the majority of cases,
this issue can be prevented by setting ARITHABORT to ON (through user
options in the server configuration option).

It is strongly recommended that the ARITHABORT user option be set
server-wide to ON as soon as the first indexed view or index on a computed
column is created in any database on the server.

See the Remarks section for more information on considerations and

restrictions on indexed views.
column

Is the column or columns to which the index applies. Specify two or more
column names to create a composite index on the combined values in the
specified columns. List the columns to be included in the composite index
(in sort-priority order) inside the parentheses after table.

Note Columns consisting of the ntext, text, or image data types cannot be
specified as columns for an index. In addition, a view cannot include any text,
ntext, or image columns, even if they are not referenced in the CREATE
INDEX statement.

Composite indexes are used when two or more columns are best searched as
a unit or if many queries reference only the columns specified in the index.
As many as 16 columns can be combined into a single composite index. All
the columns in a composite index must be in the same table. The maximum
allowable size of the combined index values is 900 bytes. That is, the sum of
the lengths of the fixed-size columns that make up the composite index
cannot exceed 900 bytes. For more information about variable type columns
in composite indexes, see the Remarks section.

[ASC | DESC]

Determines the ascending or descending sort direction for the particular
index column. The default is ASC.

Is a placeholder indicating that multiple columns can be specified for any
particular index.

PAD_INDEX

Specifies the space to leave open on each page (node) in the intermediate
levels of the index. The PAD_INDEX option is useful only when
FILLFACTOR is specified, because PAD_INDEX uses the percentage
specified by FILLFACTOR. By default, SQL Server ensures that each index
page has enough empty space to accommodate at least one row of the
maximum size the index can have, given the set of keys on the intermediate
pages. If the percentage specified for FILLFACTOR is not large enough to

accommodate one row, SQL Server internally overrides the percentage to
allow the minimum.

Note The number of rows on an intermediate index page is never less than two,
regardless of how low the value of FILLFACTOR.

FILLFACTOR = fillfactor

Specifies a percentage that indicates how full SQL Server should make the
leaf level of each index page during index creation. When an index page fills
up, SQL Server must take time to split the index page to make room for new
rows, which is quite expensive. For update-intensive tables, a properly
chosen FILLFACTOR value yields better update performance than an
improper FILLFACTOR value. The value of the original FILLFACTOR is
stored with the index in sysindexes.

When FILLFACTOR is specified, SQL Server rounds up the number of rows
to be placed on each page. For example, issuing CREATE CLUSTERED
INDEX ... FILLFACTOR = 33 creates a clustered index with a
FILLFACTOR of 33 percent. Assume that SQL Server calculates that 5.2
rows is 33 percent of the space on a page. SQL Server rounds so that six
rows are placed on each page.

Note An explicit FILLFACTOR setting applies only when the index is first
created. SQL Server does not dynamically keep the specified percentage of
empty space in the pages.

User-specified FILLFACTOR values can be from 1 through 100. If no value
is specified, the default is 0. When FILLFACTOR is set to 0, only the leaf
pages are filled. You can change the default FILLFACTOR setting by
executing sp_configure.

Use a FILLFACTOR of 100 only if no INSERT or UPDATE statements will
occur, such as with a read-only table. If FILLFACTOR is 100, SQL Server
creates indexes with leaf pages 100 percent full. An INSERT or UPDATE
made after the creation of an index with a 100 percent FILLFACTOR causes
page splits for each INSERT and possibly each UPDATE.

Smaller FILLFACTOR values, except 0, cause SQL Server to create new
indexes with leaf pages that are not completely full. For example, a

FILLFACTOR of 10 can be a reasonable choice when creating an index on a
table known to contain a small portion of the data that it will eventually hold.
Smaller FILLFACTOR values also cause each index to take more storage
space.

The following table illustrates how the pages of an index are filled up if
FILLFACTOR is specified.

FILLFACTOR Intermediate page Leaf page

0 percent One free entry 100 percent full

1 - 99 percent One free entry <= FILLFACTOR percent
full

100 percent One free entry 100 percent full

One free entry is the space on the page that can accommodate another index

entry.

ImpoRTANT Creating a clustered index with a FILLFACTOR affects the amount
of storage space the data occupies because SQL Server redistributes the data

when it creates the clustered index.

IGNORE_DUP_KEY

Controls what happens when an attempt is made to insert a duplicate key
value into a column that is part of a unique clustered index. If
IGNORE_DUP_KEY was specified for the index and an INSERT statement
that creates a duplicate key is executed, SQL Server issues a warning and
ignores the duplicate row.

If IGNORE_DUP_KEY was not specified for the index, SQL Server issues

an error message and rolls back the entire INSERT statement.

The table shows when IGNORE_DUP_KEY can be used.

Index type Options

Clustered Not allowed

Unique clustered IGNORE_DUP_KEY allowed
Nonclustered Not allowed

Unique nonclustered IGNORE_DUP_KEY allowed

DROP_EXISTING

Specifies that the named, preexisting clustered or nonclustered index should
be dropped and rebuilt. The index name specified must be the same as a
currently existing index. Because nonclustered indexes contain the clustering
keys, the nonclustered indexes must be rebuilt when a clustered index is
dropped. If a clustered index is recreated, the nonclustered indexes must be
rebuilt to take the new set of keys into account.

The DROP_EXISTING clause enhances performance when re-creating a
clustered index (with either the same or a different set of keys) on a table that
also has nonclustered indexes. The DROP_EXISTING clause replaces the
execution of a DROP INDEX statement on the old clustered index followed
by the execution of a CREATE INDEX statement for the new clustered
index. The nonclustered indexes are rebuilt once, and only if the keys are
different.

If the keys do not change (the same index name and columns as the original
index are provided), the DROP_EXISTING clause does not sort the data
again. This can be useful if the index must be compacted.

A clustered index cannot be converted to a nonclustered index using the
DROP_EXISTING clause; however, a unique clustered index can be
changed to a non-unique index, and vice versa.

Note When executing a CREATE INDEX statement with the
DROP_EXISTING clause, SQL Server assumes that the index is consistent, that
is, there is no corruption in the index. The rows in the specified index should be
sorted by the specified key referenced in the CREATE INDEX statement.

STATISTICS_NORECOMPUTE

Specifies that out-of-date index statistics are not automatically recomputed.
To restore automatic statistics updating, execute UPDATE STATISTICS
without the NORECOMPUTE clause.

ImpoRrTANT Disabling automatic recomputation of distribution statistics may

prevent the SQL Server query optimizer from picking optimal execution plans
for queries involving the table.

SORT_IN_TEMPDB

Specifies that the intermediate sort results used to build the index will be
stored in the tempdb database. This option may reduce the time needed to
create an index if tempdb is on a different set of disks than the user
database, but it increases the amount of disk space used during the index
build.

For more information, see tempdb and Index Creation.
ON filegroup

Creates the specified index on the given filegroup. The filegroup must have
already been created by executing either CREATE DATABASE or ALTER
DATABASE.

Remarks

Space is allocated to tables and indexes in increments of one extent (eight 8-
kilobyte pages) at a time. Each time an extent is filled, another is allocated.
Indexes on very small or empty tables will use single page allocations until eight
pages have been added to the index and then will switch to extent allocations.
For a report on the amount of space allocated and used by an index, use
sp_spaceused.

Creating a clustered index requires space available in your database equal to
approximately 1.2 times the size of the data. This is space in addition to the
space used by the existing table; the data is duplicated in order to create the
clustered index, and the old, nonindexed data is deleted when the index is
complete. When using the DROP_EXISTING clause, the space needed for the
clustered index is the amount of space equal to the space requirements of the
existing index. The amount of additional space required also may be affected by
the FILLFACTOR specified.

When creating an index in SQL Server 2000, you can use the
SORT_IN_TEMPDB option to direct the database engine to store the
intermediate index sort results in tempdb. This option may reduce the time
needed to create an index if tempdb is on a different set of disks than the user

JavaScript:hhobj_1.Click()

database, but it increases the amount of disk space used to create an index. In
addition to the space required in the user database to create the index, tempdb
must have about the same amount of additional space to hold the intermediate
sort results. For more information, see tempdb and Index Creation.

The CREATE INDEX statement is optimized like any other query. The SQL
Server query processor may choose to scan another index instead of performing
a table scan to save on I/O operations. The sort may be eliminated in some
situations.

On multiprocessor computers on SQL Server Enterprise and Developer Editions,
CREATE INDEX automatically uses more processors to perform the scan and
sort, in the same way as other queries do. The number of processors employed to
execute a single CREATE INDEX statement is determined by the configuration
option max degree of parallelism as well as the current workload. If SQL
Server detects that the system is busy, the degree of parallelism of the CREATE
INDEX operation is automatically reduced before statement execution begins.

Entire filegroups affected by a CREATE INDEX statement since the last
filegroup backup must be backed up as a unit. For more information about file
and filegroup backups, see BACKUP.

Backup and CREATE INDEX operations do not block each other. If a backup is
in progress, index is created in a fully logged mode, which may require extra log
space.

To display a report on an object's indexes, execute sp_helpindex.

Indexes can be created on a temporary table. When the table is dropped or the
session ends, all indexes and triggers are dropped.

Variable type columns in indexes

The maximum size allowed for an index key is 900 bytes, but SQL Server 2000
allows indexes to be created on columns that may have large variable type
columns with a maximum size greater than 900 bytes.

During index creation, SQL Server checks the following conditions:

e The sum of all fixed data columns that participate in the index definition
must be less or equal to 900 bytes. When the index to be created is

JavaScript:hhobj_2.Click()

composed of fixed data columns only, the total size of the fixed data
columns must be less or equal to 900 bytes. Otherwise, the index will
not be created and SQL Server will return an error.

e If the index definition is composed of fixed- and variable-type columns,
and the fixed-data columns meet the previous condition (less or equal to
900 bytes), SQL Server still checks the total size of the variable type
columns. If the maximum size of the variable-type columns plus the
size of the fixed-data columns is greater than 900 bytes, SQL Server
creates the index, but returns a warning to the user. The warning alerts
the user that if subsequent insert or update actions on the variable-type
columns result in a total size greater than 900 bytes, the action will fail
and the user will get a run-time error. Likewise, if the index definition is
composed of variable-type columns only, and the maximum total size of
these columns is greater than 900 bytes, SQL Server will create the
index, but return a warning.

For more information, see Maximum Size of Index Keys.

Considerations when indexing computed columns and views

In SQL Server 2000, indexes also can be created on computed columns and
views. Creating a unique clustered index on a view improves query performance
because the view is stored in the database in the same way a table with a
clustered index is stored.

The UNIQUE or PRIMARY KEY may contain a computed column as long as it
satisfies all conditions for indexing. Specifically, the computed column must be
deterministic, precise, and must not contain text, ntext, or image columns. For
more information about determinism, see Deterministic and Nondeterministic
Functions.

Creation of an index on a computed column or view may cause the failure of an
INSERT or UPDATE operation that previously worked. Such a failure may take
place when the computed column results in arithmetic error. For example,
although computed column c in the following table will result in an arithmetic
error, the INSERT statement will work:

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

CREATE TABLE t1 (a int, b int, c AS a/b)
GO

INSERT INTO t1 VALUES ('1,, '0)

GO

If, instead, after creating the table, you create an index on computed column c,
the same INSERT statement now will fail.

CREATE TABLE t1 (a int, b int, c AS a/b)

GO

CREATE UNIQUE CLUSTERED INDEX Idx1 ON tl.c
GO

INSERT INTO t1 VALUES ('1,, '0)

GO

The result of a query using an index on a view defined with numeric or float
expressions may be different from a similar query that does not use the index on
the view. This difference may be the result of rounding errors during INSERT,
DELETE, or UPDATE actions on underlying tables.

To prevent SQL Server from using indexed views, include the OPTION
(EXPAND VIEWS) hint on the query. Also, setting any of the listed options
incorrectly will prevent the optimizer from using the indexes on the views. For
more information about the OPTION (EXPAND VIEWS) hint, see SELECT.

Restrictions on indexed views

The SELECT statement defining an indexed view must not have the TOP,
DISTINCT, COMPUTE, HAVING, and UNION keywords. It cannot have a
subquery.

The SELECT list may not include asterisks (*), 'table.*' wildcard lists,
DISTINCT, COUNT(*), COUNT(<expression>), computed columns from the
base tables, and scalar aggregates.

Nonaggregate SELECT lists cannot have expressions. Aggregate SELECT list
(queries that contain GROUP BY) may include SUM and
COUNT_BIG(<expression>); it must contain COUNT_BIG(*). Other aggregate

functions (MIN, MAX, STDEV,...) are not allowed.

Complex aggregation using AVG cannot participate in the SELECT list of the
indexed view. However, if a query uses such aggregation, the optimizer is
capable of using this indexed view to substitute AVG with a combination of
simple aggregates SUM and COUNT_BIG.

A column resulting from an expression that either evaluates to a float data type
or uses float expressions for its evaluation cannot be a key of an index in an
indexed view or on a computed column in a table. Such columns are called
nonprecise. Use the COLUMNPROPERTY function to determine if a particular
computed column or a column in a view is precise.

Indexed views are subject to these additional restrictions:

e The creator of the index must own the tables. All tables, the view, and
the index, must be created in the same database.

e The SELECT statement defining the indexed view may not contain
views, rowset functions, inline functions, or derived tables. The same
physical table may occur only once in the statement.

¢ In any joined tables, no OUTER JOIN operations are allowed.

e No subqueries or CONTAINS or FREETEXT predicates are allowed in
the search condition.

o If the view definition contains a GROUP BY clause, all grouping
columns as well as the COUNT_BIG(*) expression must appear in the
view's SELECT list. Also, these columns must be the only columns in
the CREATE UNIQUE CLUSTERED INDEX clause.

The body of the definition of a view that can be indexed must be deterministic
and precise, similar to the requirements on indexes on computed columns. See

Creating Indexes on Computed Columns.

Permissions

JavaScript:hhobj_5.Click()

CREATE INDEX permissions default to the sysadmin fixed server role and the
db_ddladmin and db_owner fixed database roles and the table owner, and are
not transferable.

Examples

A. Use a simple index

This example creates an index on the au_id column of the authors table.

SET NOCOUNT OFF
USE pubs
I[F EXISTS (SELECT name FROM sysindexes
WHERE name = 'au_id_ind")
DROP INDEX authors.au_id_ind
GO
USE pubs
CREATE INDEX au_id_ind
ON authors (au_id)
GO

B. Use a unique clustered index

This example creates an index on the employeelID column of the emp_pay table
that enforces uniqueness. This index physically orders the data on disk because
the CLUSTERED clause is specified.

SET NOCOUNT ON
USE pubs
IF EXISTS (SELECT * FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_NAME = 'emp_pay')
DROP TABLE emp_pay
GO
USE pubs
IF EXISTS (SELECT name FROM sysindexes
WHERE name = 'employeelD_ind')

DROP INDEX emp_pay.employeelD_ind
GO
USE pubs
GO
CREATE TABLE emp_pay
(
employeelD int NOT NULL,
base_pay money NOT NULL,
commission decimal(2, 2) NOT NULL
)
INSERT emp_pay
VALUES (1, 500, .10)
INSERT emp_pay
VALUES (2, 1000, .05)
INSERT emp_pay
VALUES (3, 800, .07)
INSERT emp_pay
VALUES (5, 1500, .03)
INSERT emp_pay
VALUES (9, 750, .06)
GO
SET NOCOUNT OFF
CREATE UNIQUE CLUSTERED INDEX employeelD_ind
ON emp_pay (employeelD)
GO

C. Use a simple composite index

This example creates an index on the orderID and employeelD columns of the
order_emp table.

SET NOCOUNT ON
USE pubs
IF EXISTS (SELECT * FROM INFORMATION_SCHEMA.TABLES

WHERE TABLE_NAME = 'order_emp')
DROP TABLE order_emp
GO
USE pubs
[F EXISTS (SELECT name FROM sysindexes
WHERE name = 'emp_order_ind')
DROP INDEX order_emp.emp_order_ind
GO
USE pubs
GO
CREATE TABLE order_emp
(
orderID int IDENTITY (1000, 1),
employeelD int NOT NULL,

orderdate datetime NOT NULL DEFAULT GETDATE(),

orderamount money NOT NULL
)

INSERT order_emp (employeelD, orderdate, orderamount)

VALUES (5, '4/12/98', 315.19)

INSERT order_emp (employeelD, orderdate, orderamount)

VALUES (5, '5/30/98', 1929.04)

INSERT order_emp (employeelD, orderdate, orderamount)

VALUES (1, '1/03/98', 2039.82)

INSERT order_emp (employeelD, orderdate, orderamount)

VALUES (1, '1/22/98', 445.29)

INSERT order_emp (employeelD, orderdate, orderamount)

VALUES (4, '4/05/98', 689.39)

INSERT order_emp (employeelD, orderdate, orderamount)

VALUES (7, '3/21/98', 1598.23)

INSERT order_emp (employeelD, orderdate, orderamount)

VALUES (7, '3/21/98', 445.77)

INSERT order_emp (employeelD, orderdate, orderamount)

VALUES (7, '3/22/98', 2178.98)
GO
SET NOCOUNT OFF
CREATE INDEX emp_order_ind
ON order_emp (orderID, employeelD)

D. Use the FILLFACTOR option

This example uses the FILLFACTOR clause set to 100. A FILLFACTOR of 100
fills every page completely and is useful only when you know that index values
in the table will never change.

SET NOCOUNT OFF

USE pubs

[F EXISTS (SELECT name FROM sysindexes

WHERE name = 'zip_ind')

DROP INDEX authors.zip_ind

GO

USE pubs

GO

CREATE NONCLUSTERED INDEX zip_ind
ON authors (zip)
WITH FILLFACTOR = 100

E. Use the IGNORE_DUP_KEY

This example creates a unique clustered index on the emp_pay table. If a
duplicate key is entered, the INSERT or UPDATE statement is ignored.

SET NOCOUNT ON
USE pubs
IF EXISTS (SELECT * FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_NAME = 'emp_pay')
DROP TABLE emp_pay
GO
USE pubs

[F EXISTS (SELECT name FROM sysindexes
WHERE name = 'employeelD_ind')
DROP INDEX emp_pay.employeelD_ind
GO
USE pubs
GO
CREATE TABLE emp_pay
(
employeelD int NOT NULL,
base_pay money NOT NULL,
commission decimal(2, 2) NOT NULL
)
INSERT emp_pay
VALUES (1, 500, .10)
INSERT emp_pay
VALUES (2, 1000, .05)
INSERT emp_pay
VALUES (3, 800, .07)
INSERT emp_pay
VALUES (5, 1500, .03)
INSERT emp_pay
VALUES (9, 750, .06)
GO
SET NOCOUNT OFF
GO
CREATE UNIQUE CLUSTERED INDEX employeelD_ind
ON emp_pay(employeelD)
WITH IGNORE_DUP_KEY

F. Create an index with PAD_INDEX

This example creates an index on the author's identification number in the
authors table. Without the PAD_INDEX clause, SQL Server creates leaf pages
that are 10 percent full, but the pages above the leaf level are filled almost

completely. With PAD_INDEX, the intermediate pages are also 10 percent full.

Note At least two entries appear on the index pages of unique clustered indexes
when PAD_INDEX is not specified.

SET NOCOUNT OFF
USE pubs
I[F EXISTS (SELECT name FROM sysindexes
WHERE name = 'au_id_ind")
DROP INDEX authors.au_id_ind
GO
USE pubs
CREATE INDEX au_id_ind
ON authors (au_id)
WITH PAD_INDEX, FILLFACTOR = 10

G. Create an index on a view

This example will create a view and an index on that view. Then, two queries are
included using the indexed view.

USE Northwind
GO

--Set the options to support indexed views.

SET NUMERIC_ROUNDABORT OFF

GO

SET ANSI_PADDING,ANSI_WARNINGS,CONCAT_NULL_YIELL
GO

--Create view.

CREATE VIEW V1

WITH SCHEMABINDING

AS
SELECT SUM(UnitPrice*Quantity*(1.00-Discount)) AS Revenue, (
FROM dbo.[Order Details] od, dbo.Orders o

WHERE od.OrderID=0.0OrderID
GROUP BY OrderDate, ProductID
GO

--Create index on the view.
CREATE UNIQUE CLUSTERED INDEX IV1 ON V1 (OrderDate, P1
GO

--This query will use the above indexed view.

SELECT SUM(UnitPrice*Quantity*(1.00-Discount)) AS Rev, OrderD

FROM dbo.[Order Details] od, dbo.Orders o

WHERE o0d.OrderID=0.0OrderID AND ProductID in (2, 4, 25, 13, 7, {
AND OrderDate >='05/01/1998'

GROUP BY OrderDate, ProductID

ORDER BY Rev DESC

--This query will use the above indexed view.

SELECT OrderDate, SUM(UnitPrice*Quantity*(1.00-Discount)) AS '

FROM dbo.[Order Details] od, dbo.Orders o

WHERE o0d.OrderID=0.0rderID AND DATEPART (mm,OrderDate)-=
AND DATEPART(yy,OrderDate) = 1998

GROUP BY OrderDate

ORDER BY OrderDate ASC

See Also

ALTER DATABASE
CREATE DATABASE
CREATE STATISTICS
CREATE TABLE

Data Types
DBCC SHOW_STATISTICS

Designing an Index
DROP INDEX

DROP STATISTICS

Indexes

INSERT
RECONFIGURE
SET

sp_autostats
Sp_createstats
sp_dbcmptlevel
sp_dboption
sp_helpindex
sp_spaceused
sysindexes

Transactions
UPDATE
UPDATE STATISTICS

Using Identifiers

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

Transact-SQL Reference

CREATE PROCEDURE

Creates a stored procedure, which is a saved collection of Transact-SQL
statements that can take and return user-supplied parameters.

Procedures can be created for permanent use or for temporary use within a
session (local temporary procedure) or for temporary use within all sessions
(global temporary procedure).

Stored procedures can also be created to run automatically when Microsoft®
SQL Server™ starts.

Syntax

CREATE PROC [EDURE] procedure_name [; number]

[{ @parameter data_type }
[VARYING] [= default] [OUTPUT]

I[5..n1]

[WITH
{ RECOMPILE | ENCRYPTION | RECOMPILE , ENCRYPTION }]

[FOR REPLICATION]

AS sql_statement [...n]

Arguments
procedure_name

Is the name of the new stored procedure. Procedure names must conform to
the rules for identifiers and must be unique within the database and its owner.
For more information, see Using Identifiers.

Local or global temporary procedures can be created by preceding the
procedure_name with a single number sign (#procedure_name) for local
temporary procedures and a double number sign (##procedure_name) for
global temporary procedures. The complete name, including # or ##, cannot

JavaScript:hhobj_1.Click()

exceed 128 characters. Specifying the procedure owner name is optional.
snumber

Is an optional integer used to group procedures of the same name so they can
be dropped together with a single DROP PROCEDURE statement. For
example, the procedures used with an application called orders may be
named orderproc;1, orderproc;2, and so on. The statement DROP
PROCEDURE orderproc drops the entire group. If the name contains
delimited identifiers, the number should not be included as part of the
identifier; use the appropriate delimiter around procedure_name only.

@parameter

Is a parameter in the procedure. One or more parameters can be declared in a
CREATE PROCEDURE statement. The value of each declared parameter
must be supplied by the user when the procedure is executed (unless a
default for the parameter is defined). A stored procedure can have a
maximum of 2,100 parameters.

Specify a parameter name using an at sign (@) as the first character. The
parameter name must conform to the rules for identifiers. Parameters are
local to the procedure; the same parameter names can be used in other
procedures. By default, parameters can take the place only of constants; they
cannot be used in place of table names, column names, or the names of other
database objects. For more information, see EXECUTE.

data_type

Is the parameter data type. All data types, including text, ntext and image,
can be used as a parameter for a stored procedure. However, the cursor data
type can be used only on OUTPUT parameters. When you specify a data
type of cursor, the VARYING and OUTPUT keywords must also be
specified. For more information about SQL Server - supplied data types and
their syntax, see Data Types.

Note There is no limit on the maximum number of output parameters that can
be of cursor data type.

VARYING

Specifies the result set supported as an output parameter (constructed

dynamically by the stored procedure and whose contents can vary). Applies
only to cursor parameters.

default

Is a default value for the parameter. If a default is defined, the procedure can
be executed without specifying a value for that parameter. The default must
be a constant or it can be NULL. It can include wildcard characters (%, _, [,
and [/]) if the procedure uses the parameter with the LIKE keyword.

OUTPUT

Indicates that the parameter is a return parameter. The value of this option
can be returned to EXEC[UTE]. Use OUTPUT parameters to return
information to the calling procedure. Text, ntext, and image parameters can
be used as OUTPUT parameters. An output parameter using the OUTPUT
keyword can be a cursor placeholder.

Is a placeholder indicating that a maximum of 2,100 parameters can be
specified.

{RECOMPILE | ENCRYPTION | RECOMPILE, ENCRYPTION}

RECOMPILE indicates that SQL Server does not cache a plan for this
procedure and the procedure is recompiled at run time. Use the
RECOMPILE option when using atypical or temporary values without
overriding the execution plan cached in memory.

ENCRYPTION indicates that SQL Server encrypts the syscomments table
entry containing the text of the CREATE PROCEDURE statement. Using
ENCRYPTION prevents the procedure from being published as part of SQL
Server replication.

Note During an upgrade, SQL Server uses the encrypted comments stored in
syscomments to re-create encrypted procedures.

FOR REPLICATION

Specifies that stored procedures created for replication cannot be executed on
the Subscriber. A stored procedure created with the FOR REPLICATION
option is used as a stored procedure filter and only executed during

replication. This option cannot be used with the WITH RECOMPILE option.
AS

Specifies the actions the procedure is to take.
sql_statement

Is any number and type of Transact-SQL statements to be included in the
procedure. Some limitations apply.

n
Is a placeholder that indicates multiple Transact-SQL statements may be
included in this procedure.

Remarks

The maximum size of a stored procedure is 128 MB.

A user-defined stored procedure can be created only in the current database
(except for temporary procedures, which are always created in tempdb). The
CREATE PROCEDURE statement cannot be combined with other Transact-
SQL statements in a single batch.

Parameters are nullable by default. If a NULL parameter value is passed and that
parameter is used in a CREATE or ALTER TABLE statement in which the
column referenced does not allow NULLs, SQL Server generates an error. To
prevent passing a NULL parameter value to a column that does not allow
NULLSs, add programming logic to the procedure or use a default value (with the
DEFAULT keyword of CREATE or ALTER TABLE) for the column.

It is recommended that you explicitly specify NULL or NOT NULL for each
column in any CREATE TABLE or ALTER TABLE statement in a stored
procedure, such as when creating a temporary table. The ANSI_DFLT_ON and
ANSI_DFLT_OFF options control the way SQL Server assigns the NULL or
NOT NULL attributes to columns if not specified in a CREATE TABLE or
ALTER TABLE statement. If a connection executes a stored procedure with
different settings for these options than the connection that created the
procedure, the columns of the table created for the second connection can have
different nullability and exhibit different behaviors. If NULL or NOT NULL is
explicitly stated for each column, the temporary tables are created with the same

nullability for all connections that execute the stored procedure.

SQL Server saves the settings of both SET QUOTED_IDENTIFIER and SET
ANSI_NULLS when a stored procedure is created or altered. These original
settings are used when the stored procedure is executed. Therefore, any client
session settings for SET QUOTED_IDENTIFIER and SET ANSI_NULLS are
ignored during stored procedure execution. SET QUOTED_IDENTIFIER and
SET ANSI_NULLS statements that occur within the stored procedure do not
affect the functionality of the stored procedure.

Other SET options, such as SET ARITHABORT, SET ANSI_WARNINGS, or
SET ANSI_PADDINGS are not saved when a stored procedure is created or
altered. If the logic of the stored procedure is dependent on a particular setting,
include a SET statement at the start of the procedure to ensure the proper setting.
When a SET statement is executed from a stored procedure, the setting remains
in effect only until the stored procedure completes. The setting is then restored to
the value it had when the stored procedure was called. This allows individual
clients to set the options wanted without affecting the logic of the stored
procedure.

Note Whether SQL Server interprets an empty string as either a single space or
as a true empty string is controlled by the compatibility level setting. If the
compatibility level is less than or equal to 65, SQL Server interprets empty
strings as single spaces. If the compatibility level is equal to 70, SQL Server
interprets empty strings as empty strings. For more information, see
sp_dbcmptlevel.

Getting Information About Stored Procedures

To display the text used to create the procedure, execute sp_helptext in the
database in which the procedure exists with the procedure name as the
parameter.

Note Stored procedures created with the ENCRYPTION option cannot be
viewed with sp_helptext.

For a report on the objects referenced by a procedure, use sp_depends.

To rename a procedure, use sp_rename.

Referencing Objects

SQL Server allows the creation of stored procedures that reference objects that
do not yet exist. At creation time, only syntax checking is done. The stored
procedure is compiled to generate an execution plan when executed, if a valid
plan does not already exist in the cache. Only during compilation are all objects
referenced in the stored procedure resolved. Thus, a syntactically correct stored
procedure that references objects which do not exist can be created successfully,
but will fail at run time because referenced objects do not exist. For more
information, see Deferred Name Resolution and Compilation.

Deferred Name Resolution and Compatibility Level

SQL Server allows Transact-SQL stored procedures to refer to tables that do not
exist at creation time. This ability is called deferred name resolution. If,
however, the Transact-SQL stored procedure refers to a table defined within the
stored procedure, a warning is issued at creation time if the compatibility level
setting (set by executing sp_dbcmptlevel) is 65. An error message is returned at
run time if the table referenced does not exist. For more information, see
sp_dbcmptlevel and Deferred Name Resolution and Compilation.

Executing Stored Procedures

When a CREATE PROCEDURE statement is executed successfully, the
procedure name is stored in the sysobjects system table and the text of the
CREATE PROCEDURE statement is stored in syscomments. When executed
for the first time, the procedure is compiled to determine an optimal access plan
to retrieve the data.

Parameters Using the cursor Data Type

Stored procedures can use the cursor data type only for OUTPUT parameters. If
the cursor data type is specified for a parameter, both the VARYING and
OUTPUT parameters are required. If the VARYING keyword is specified for a
parameter, the data type must be cursor and the OUTPUT keyword must be
specified.

Note The cursor data type cannot be bound to application variables through the
database APIs such as OLE DB, ODBC, ADO, and DB-Library. Because

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

OUTPUT parameters must be bound before an application can execute a stored
procedure, stored procedures with cursor OUTPUT parameters cannot be called
from the database APIs. These procedures can be called from Transact-SQL
batches, stored procedures, or triggers only when the cursor OUTPUT variable
is assigned to a Transact-SQL local cursor variable.

Cursor Output Parameters

The following rules pertain to cursor output parameters when the procedure is
executed:

e For a forward-only cursor, the rows returned in the cursor's result set are
only those rows at and beyond the position of the cursor at the
conclusion of the stored procedure executed, for example:

¢ A nonscrollable cursor is opened in a procedure on a result set
named RS of 100 rows.

e The procedure fetches the first 5 rows of result set RS.

e The procedure returns to its caller.

e The result set RS returned to the caller consists of rows from 6
through 100 of RS, and the cursor in the caller is positioned
before the first row of RS.

e For a forward-only cursor, if the cursor is positioned before the first row
upon completion of the stored procedure, the entire result set is returned
to the calling batch, stored procedure, or trigger. When returned, the
cursor position is set before the first row.

e For a forward-only cursor, if the cursor is positioned beyond the end of
the last row upon completion of the stored procedure, an empty result
set is returned to the calling batch, stored procedure, or trigger.

Note An empty result set is not the same as a null value.

e For a scrollable cursor, all the rows in the result set are returned to the
calling batch, stored procedure, or trigger at the conclusion of the
execution of the stored procedure. When returned, the cursor position is
left at the position of the last fetch executed in the procedure.

e For any type of cursor, if the cursor is closed, then a null value is passed
back to the calling batch, stored procedure, or trigger. This will also be
the case if a cursor is assigned to a parameter, but that cursor is never
opened.

Note The closed state matters only at return time. For example, it is valid to
close a cursor part way through the procedure, to open it again later in the
procedure, and return that cursor's result set to the calling batch, stored
procedure, or trigger.

Temporary Stored Procedures

SQL Server supports two types of temporary procedures: local and global. A
local temporary procedure is visible only to the connection that created it. A
global temporary procedure is available to all connections. Local temporary
procedures are automatically dropped at the end of the current session. Global
temporary procedures are dropped at the end of the last session using the
procedure. Usually, this is when the session that created the procedure ends.

Temporary procedures named with # and ## can be created by any user. When
the procedure is created, the owner of the local procedure is the only one who
can use it. Permission to execute a local temporary procedure cannot be granted
for other users. If a global temporary procedure is created, all users can access it;
permissions cannot be revoked explicitly. Explicitly creating a temporary
procedure in tempdb (naming without a number sign) can be performed only by
those with explicit CREATE PROCEDURE permission in the tempdb database.
Permission can be granted and revoked from these procedures.

Note Heavy use of temporary stored procedures can create contention on the
system tables in tempdb and adversely affect performance. It is recommended
that sp_executesql be used instead. sp_executesql does not store data in the
system tables and therefore avoids the problem.

Automatically Executing Stored Procedures

One or more stored procedures can execute automatically when SQL Server
starts. The stored procedures must be created by the system administrator and
executed under the sysadmin fixed server role as a background process. The
procedure(s) cannot have any input parameters.

There is no limit to the number of startup procedures you can have, but be aware
that each consumes one connection while executing. If you must execute
multiple procedures at startup but do not need to execute them in parallel, make
one procedure the startup procedure and have that procedure call the other
procedures. This uses only one connection.

Execution of the stored procedures starts when the last database is recovered at
startup. To skip launching these stored procedures, specify trace flag 4022 as a
startup parameter. If you start SQL Server with minimal configuration (using the
-f flag), the startup stored procedures are not executed. For more information,

see Trace Flags.

To create a startup stored procedure, you must be logged in as a member of the
sysadmin fixed server role and create the stored procedure in the master
database.

Use sp_procoption to:

e Designate an existing stored procedure as a startup procedure.
e Stop a procedure from executing at SQL Server startup.

e View a list of all procedures that execute at SQL Server startup.

Stored Procedure Nesting

Stored procedures can be nested; that is one stored procedure calling another.
The nesting level is incremented when the called procedure starts execution, and
decremented when the called procedure finishes execution. Exceeding the
maximum levels of nesting causes the whole calling procedure chain to fail. The
current nesting level is returned by the @@NESTLEVEL function.

To estimate the size of a compiled stored procedure, use these Performance
Monitor Counters.

Performance Monitor Counter
Performance Monitor object name name

SQLServer: Buffer Manager Cache Size (pages)
SQLServer: Cache Manager Cache Hit Ratio
Cache Pages

Cache Object Counts*

* These counters are available for various categories of cache objects including adhoc sql, prepared sql,
procedures, triggers, and so on.

For more information, see SQL Server: Buffer Manager Object and SQL Server:
Cache Manager Object.

sql_statement Limitations

Any SET statement can be specified inside a stored procedure except SET
SHOWPLAN_TEXT and SET SHOWPLAN_ALL, which must be the only
statements in the batch. The SET option chosen remains in effect during the
execution of the stored procedure and then reverts to its former setting.

Inside a stored procedure, object names used with certain statements must be
qualified with the name of the object owner if other users are to use the stored
procedure. The statements are:

e ALTER TABLE

CREATE INDEX

CREATE TABLE

All DBCC statements

DROP TABLE

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

e DROP INDEX
e TRUNCATE TABLE

e UPDATE STATISTICS

Permissions

CREATE PROCEDURE permissions default to members of the sysadmin fixed
server role, and the db_owner and db_ddladmin fixed database roles. Members
of the sysadmin fixed server role and the db_owner fixed database role can
transfer CREATE PROCEDURE permissions to other users. Permission to
execute a stored procedure is given to the procedure owner, who can then set
execution permission for other database users.

Examples

A. Use a simple procedure with a complex SELECT

This stored procedure returns all authors (first and last names supplied), their
titles, and their publishers from a four-table join. This stored procedure does not
use any parameters.

USE pubs
IF EXISTS (SELECT name FROM sysobjects
WHERE name = 'au_info_all' AND type = 'P")
DROP PROCEDURE au_info_all
GO
CREATE PROCEDURE au_info_all
AS
SELECT au_lname, au_fname, title, pub_name
FROM authors a INNER JOIN titleauthor ta
ON a.au_id =ta.au_id INNER JOIN titles t
ON t.title_id = ta.title_id INNER JOIN publishers p
ON t.pub_id = p.pub_id

GO

The au_info_all stored procedure can be executed in these ways:

EXECUTE au_info_all
-- Or
EXEC au_info_all

Or, if this procedure is the first statement within the batch:

au_info_all

B. Use a simple procedure with parameters

This stored procedure returns only the specified authors (first and last names
supplied), their titles, and their publishers from a four-table join. This stored
procedure accepts exact matches for the parameters passed.

USE pubs
IF EXISTS (SELECT name FROM sysobjects
WHERE name = 'au_info' AND type = 'P")
DROP PROCEDURE au_info
GO
USE pubs
GO
CREATE PROCEDURE au_info
@]lastname varchar(40),
@firstname varchar(20)
AS
SELECT au_lname, au_fname, title, pub_name
FROM authors a INNER JOIN titleauthor ta
ON a.au_id =ta.au_id INNER JOIN titles t
ON t.title_id = ta.title_id INNER JOIN publishers p
ON t.pub_id = p.pub_id
WHERE au_fname = @firsthame
AND au_lname = @lastname

GO

The au_info stored procedure can be executed in these ways:

EXECUTE au_info 'Dull’, 'Ann’

-- Or

EXECUTE au_info @lastname = 'Dull’, @firstname = 'Ann'
-- Or

EXECUTE au_info @firstname = 'Ann’', @lastname = 'Dull’
-- Or

EXEC au_info 'Dull’, 'Ann'

-- Or

EXEC au_info @lastname = 'Dull’, @firstname = 'Ann’

-- Or

EXEC au_info @firstname = 'Ann’, @lastname = 'Dull’

Or, if this procedure is the first statement within the batch:

au_info 'Dull’, 'Ann'

-- Or

au_info @lastname = 'Dull', @firstname = 'Ann’
-- Or

au_info @firstname = 'Ann’', @lastname = 'Dull’

C. Use a simple procedure with wildcard parameters

This stored procedure returns only the specified authors (first and last names
supplied), their titles, and their publishers from a four-table join. This stored
procedure pattern matches the parameters passed or, if not supplied, uses the
preset defaults.

USE pubs
IF EXISTS (SELECT name FROM sysobjects
WHERE name = 'au_info2' AND type = 'P")
DROP PROCEDURE au_info2
GO

USE pubs

GO

CREATE PROCEDURE au_info2
@]lastname varchar(30) = 'D%/,
@firstname varchar(18) = '%'

AS

SELECT au_lname, au_fname, title, pub_name

FROM authors a INNER JOIN titleauthor ta
ON a.au_id =ta.au_id INNER JOIN titles t
ON t.title_id = ta.title_id INNER JOIN publishers p
ON t.pub_id = p.pub_id

WHERE au_fname LIKE @firstname
AND au_lname LIKE @lastname

GO

The au_info2 stored procedure can be executed in many combinations. Only a
few combinations are shown here:

EXECUTE au_info2

-- Or

EXECUTE au_info2 "Wh%'

-- Or

EXECUTE au_info2 @firstname = 'A%’
-- Or

EXECUTE au_info2 '[CK]ars[OE]n'
-- Or

EXECUTE au_info2 Hunter', 'Sheryl'
-- Or

EXECUTE au_info2 'H%', 'S%'

D. Use OUTPUT parameters

OUTPUT parameters allow an external procedure, a batch, or more than one
Transact-SQL statements to access a value set during the procedure execution. In
this example, a stored procedure (titles_sum) is created and allows one optional

il’lpll'[parameter and one output parameter.

First, create the procedure:

USE pubs

GO

IF EXISTS(SELECT name FROM sysobjects

WHERE name = '"titles_sum' AND type = 'P")

DROP PROCEDURE titles_sum

GO

USE pubs

GO

CREATE PROCEDURE titles_sum @@TITLE varchar(40) = '%', @(

AS

SELECT 'Title Name' = title

FROM titles

WHERE title LIKE @@TITLE

SELECT @@SUM = SUM(price)

FROM titles

WHERE title LIKE @@TITLE

GO

Next, use the OUTPUT parameter with control-of-flow language.

Note The OUTPUT variable must be defined during the table creation as well as
during use of the variable.

The parameter name and variable name do not have to match; however, the data
type and parameter positioning must match (unless @@SUM = variable is
used).

DECLARE @@TOTALCOST money
EXECUTE titles_sum 'The%', @ @TOTALCOST OUTPUT
IF @@TOTALCOST < 200
BEGIN
PRINT "'
PRINT 'All of these titles can be purchased for less than $200.'

END
ELSE
SELECT 'The total cost of these titles is $'
+ RTRIM(CAST(@@TOTALCOST AS varchar(20)))

Here is the result set:

Title Name

The Busy Executive's Database Guide
The Gourmet Microwave

The Psychology of Computer Cooking

(3 row(s) affected)
Warning, null value eliminated from aggregate.
All of these titles can be purchased for less than $200.

E. Use an OUTPUT cursor parameter

OUTPUT cursor parameters are used to pass a cursor that is local to a stored
procedure back to the calling batch, stored procedure, or trigger.

First, create the procedure that declares and then opens a cursor on the titles
table:

USE pubs
IF EXISTS (SELECT name FROM sysobjects
WHERE name = 'titles_cursor' and type = 'P")
DROP PROCEDURE titles_cursor
GO
CREATE PROCEDURE titles_cursor @titles_cursor CURSOR VARY
AS
SET @titles_cursor = CURSOR
FORWARD_ONLY STATIC FOR

SELECT *
FROM titles

OPEN @titles_cursor
GO

Next, execute a batch that declares a local cursor variable, executes the
procedure to assign the cursor to the local variable, and then fetches the rows
from the cursor.

USE pubs
GO
DECLARE @MyCursor CURSOR
EXEC titles_cursor @titles_cursor = @MyCursor OUTPUT
WHILE (@ @FETCH_STATUS = 0)
BEGIN

FETCH NEXT FROM @MyCursor
END
CLOSE @MyCursor
DEALLOCATE @MyCursor
GO

F. Use the WITH RECOMPILE option

The WITH RECOMPILE clause is helpful when the parameters supplied to the
procedure will not be typical, and when a new execution plan should not be
cached or stored in memory.

USE pubs
IF EXISTS (SELECT name FROM sysobjects
WHERE name = 'titles_by_author' AND type = 'P')
DROP PROCEDURE titles_by_author
GO
CREATE PROCEDURE titles_by_author @ @LNAME_PATTERN va
WITH RECOMPILE

AS

SELECT RTRIM(au_fname) + "'+ RTRIM(au_Iname) AS 'Authors fu
title AS Title

FROM authors a INNER JOIN titleauthor ta
ON a.au_id =ta.au_id INNER JOIN titles t
ON ta.title_id = t.title_id

WHERE au_Ilname LIKE @@LNAME_PATTERN

GO

G. Use the WITH ENCRYPTION option

The WITH ENCRYPTION clause hides the text of a stored procedure from
users. This example creates an encrypted procedure, uses the sp_helptext system
stored procedure to get information on that encrypted procedure, and then
attempts to get information on that procedure directly from the syscomments
table.

IF EXISTS (SELECT name FROM sysobjects
WHERE name = 'encrypt_this' AND type = 'P")

DROP PROCEDURE encrypt_this

GO

USE pubs

GO

CREATE PROCEDURE encrypt_this

WITH ENCRYPTION

AS

SELECT *

FROM authors

GO

EXEC sp_helptext encrypt_this

Here is the result set:

The object's comments have been encrypted.

Next, select the identification number and text of the encrypted stored procedure
contents.

SELECT c.id, c.text

FROM syscomments ¢ INNER JOIN sysobjects o
ON c.id = o.id

WHERE o.name = 'encrypt_this'

Here is the result set:

Note The text column output is shown on a separate line. When executed, this
information appears on the same line as the id column information.

id text

(1 row(s) affected)

H. Create a user-defined system stored procedure

This example creates a procedure to display all the tables and their
corresponding indexes with a table name beginning with the string emp. If not
specified, this procedure returns all tables (and indexes) with a table name
beginning with sys.

IF EXISTS (SELECT name FROM sysobjects
WHERE name = 'sp_showindexes' AND type = 'P")

DROP PROCEDURE sp_showindexes

GO

USE master

GO

CREATE PROCEDURE sp_showindexes
@@TABLE varchar(30) = 'sys%'

AS

SELECT o.name AS TABLE_NAME,
i.name AS INDEX_NAME,

indid AS INDEX_ID
FROM sysindexes i INNER JOIN sysobjects o

ON o.id = i.id
WHERE o.name LIKE @@TABLE
GO
USE pubs
EXEC sp_showindexes 'emp%'
GO

Here is the result set:

TABLE_NAME INDEX_NAME INDEX_ID
employee employee_ind 1
employee PK_emp_id 2

(2 row(s) affected)

I. Use deferred name resolution

This example shows four procedures and the various ways that deferred name
resolution can be used. Each stored procedure is created, although the table or
column referenced does not exist at compile time.

IF EXISTS (SELECT name FROM sysobjects
WHERE name = 'proc1' AND type = 'P")
DROP PROCEDURE procl
GO
-- Creating a procedure on a nonexistent table.
USE pubs
GO
CREATE PROCEDURE procl
AS
SELECT *
FROM does_not_exist

GO
-- Here is the statement to actually see the text of the procedure.
SELECT o.id, c.text
FROM sysobjects o INNER JOIN syscomments c
ON o.id = c.id
WHERE o.type = 'P' AND o.name = 'procl’
GO
USE master
GO
IF EXISTS (SELECT name FROM sysobjects
WHERE name = 'proc2' AND type = 'P")
DROP PROCEDURE proc2
GO
-- Creating a procedure that attempts to retrieve information from a
-- nonexistent column in an existing table.
USE pubs
GO
CREATE PROCEDURE proc2
AS
DECLARE @middle_init char(1)
SET @middle_init = NULL
SELECT au_id, middle_initial = @middle_init
FROM authors
GO
-- Here is the statement to actually see the text of the procedure.
SELECT o.id, c.text
FROM sysobjects o INNER JOIN syscomments c
ON o.id = c.id
WHERE o.type = 'P' and 0.name = 'proc2’

See Also

ALTER PROCEDURE

Batches

Control-of-Flow Language

Cursors

DBCC

DECLARE @local_variable
DROP PROCEDURE

Functions

GRANT

Programming Stored Procedures
SELECT

sp_addextendedproc
sp_depends
sp_helptext
Sp_procoption
sp_recompile

Sp_rename

System Tables

Using Comments

Using Variables and Parameters

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()

Transact-SQL Reference

CREATE RULE

Creates an object called a rule. When bound to a column or a user-defined data
type, a rule specifies the acceptable values that can be inserted into that column.
Rules, a backward compatibility feature, perform some of the same functions as
check constraints. CHECK constraints, created using the CHECK keyword of
ALTER or CREATE TABLE, are the preferred, standard way to restrict the
values in a column (multiple constraints can be defined on one or multiple
columns). A column or user-defined data type can have only one rule bound to it.
However, a column can have both a rule and one or more check constraints
associated with it. When this is true, all restrictions are evaluated.

Syntax

CREATE RULE rule
AS condition_expression

Arguments
rule

Is the name of the new rule. Rule names must conform to the rules for
identifiers. Specifying the rule owner name is optional.

condition_expression

Is the condition(s) defining the rule. A rule can be any expression valid in a
WHERE clause and can include such elements as arithmetic operators,
relational operators, and predicates (for example, IN, LIKE, BETWEEN). A
rule cannot reference columns or other database objects. Built-in functions
that do not reference database objects can be included.

condition_expression includes one variable. The at sign (@) precedes each
local variable. The expression refers to the value entered with the UPDATE
or INSERT statement. Any name or symbol can be used to represent the

value when creating the rule, but the first character must be the at sign (@).

Remarks

The CREATE RULE statement cannot be combined with other Transact-SQL
statements in a single batch. Rules do not apply to data already existing in the
database at the time the rules are created, and rules cannot be bound to system
data types. A rule can be created only in the current database. After creating a
rule, execute sp_bindrule to bind the rule to a column or to a user-defined data

type.

The rule must be compatible with the column data type. A rule cannot be bound
to a text, image, or timestamp column. Be sure to enclose character and date
constants with single quotation marks (') and to precede binary constants with
Ox. For example, "@value LIKE A%" cannot be used as a rule for a numeric
column. If the rule is not compatible with the column to which it is bound,
Microsoft® SQL Server™ returns an error message when inserting a value, but
not when the rule is bound.

A rule bound to a user-defined data type is activated only when you attempt to
insert a value into, or to update, a database column of the user-defined data type.
Because rules do not test variables, do not assign a value to a user-defined data
type variable that would be rejected by a rule bound to a column of the same
data type.

To get a report on a rule, use sp_help. To display the text of a rule, execute
sp_helptext with the rule name as the parameter. To rename a rule, use
Sp_rename.

A rule must be dropped (using DROP RULE) before a new one with the same
name is created, and the rule must be unbound (using sp_unbindrule) before it
is dropped. Use sp_unbindrule to unbind a rule from a column.

You can bind a new rule to a column or data type without unbinding the previous
one; the new rule overrides the previous one. Rules bound to columns always
take precedence over rules bound to user-defined data types. Binding a rule to a
column replaces a rule already bound to the user-defined data type of that
column. But binding a rule to a data type does not replace a rule bound to a
column of that user-defined data type. The table shows the precedence in effect
when binding rules to columns and to user-defined data types where rules
already exist.

Old rule bound to

New rule bound to user-defined data type = Column
User-defined data type |Old rule replaced No change
Column Old rule replaced Old rule replaced

If a column has both a default and a rule associated with it, the default must fall
within the domain defined by the rule. A default that conflicts with a rule is
never inserted. SQL Server generates an error message each time it attempts to
insert such a default.

Note Whether SQL Server interprets an empty string as a single space or as a
true empty string is controlled by the setting of sp_dbcmptlevel. If the
compatibility level is less than or equal to 65, SQL Server interprets empty
strings as single spaces. If the compatibility level is equal to 70, SQL Server
interprets empty strings as empty strings. For more information, see
sp_dbcmptlevel.

Permissions

CREATE RULE permissions default to the members of the sysadmin fixed
server role and the db_ddladmin and db_owner fixed database roles. Members
of the sysadmin, db_owner and db_securityadmin roles can transfer
permissions to other users.

Examples

A. Rule with a range

This example creates a rule that restricts the range of integers inserted into the
column(s) to which this rule is bound.

CREATE RULE range_rule
AS
@range >= $1000 AND @range < $20000

B. Rule with a list

This example creates a rule that restricts the actual values entered into the

column or columns (to which this rule is bound) to only those listed in the rule.

CREATE RULE list_rule
AS
@list IN ('1389', '0736', '0877")

C. Rule with a pattern

This example creates a rule to follow a pattern of any two characters followed by
a hyphen, any number of characters (or no characters), and ending with an
integer from O through 9.

CREATE RULE pattern_rule
AS
@value LIKE '_ _-%[0-9]'

See Also

ALTER TABLE

Batches
CREATE DEFAULT

CREATE TABLE

DROP DEFAULT
DROP RULE

Expressions
sp_bindrule
sp_help

sp_helptext

Sp_rename

sp_unbindrule

Using Identifiers

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

WHERE

Transact-SQL Reference

CREATE SCHEMA

Creates a schema that can be thought of as a conceptual object containing
definitions of tables, views, and permissions.

Syntax

CREATE SCHEMA AUTHORIZATION owner
[<schema_element >[..n]]

< schema_element > ::=
{ table_definition | view_definition | grant_statement }

Arguments
AUTHORIZATION owner

Specifies the ID of the schema object owner. This identifier must be a valid
security account in the database.

table_definition

Specifies a CREATE TABLE statement that creates a table within the
schema.

view_definition
Specifies a CREATE VIEW statement that creates a view within the schema.
grant_statement

Specifies a GRANT statement that grants permissions for a user or a group
of users.

Remarks

CREATE SCHEMA provides a way to create tables and views and to grant
permissions for objects with a single statement. If errors occur when creating
any objects or granting any permissions specified in a CREATE SCHEMA
statement, none of the objects are created.

The created objects do not have to appear in logical order, except for views that
reference other views. For example, a GRANT statement can grant permission
for an object before the object itself is created, or a CREATE VIEW statement
can appear before the CREATE TABLE statements creating the tables referenced
by the view. Also, CREATE TABLE statements can declare foreign keys to
tables specified later. The exception is that if the select from one view references
another view, the referenced view must be specified before the view that
references it.

Permissions

CREATE SCHEMA permissions default to all users, but they must have
permissions to create the objects that participate in the schema.

Examples

A. Grant access to objects before object creation

This example shows permissions granted before the objects are created.

CREATE SCHEMA AUTHORIZATION ross
GRANT SELECT on v1 TO public

CREATE VIEW v1(cl1) AS SELECT c1 from t1
CREATE TABLE t1(c1 int)

B. Create mutually dependent FOREIGN KEY constraints

This example creates mutually dependent FOREIGN KEY constraints. Other
methods would take several steps to accomplish what is enabled by this
CREATE SCHEMA example.

CREATE SCHEMA AUTHORIZATION ross
CREATE TABLE t1 (c1 INT PRIMARY KEY, c2 INT REFERENCES
CREATE TABLE t2 (c1 INT PRIMARY KEY, c2 INT REFERENCES

Transact-SQL Reference

CREATE STATISTICS

Creates a histogram and associated density groups (collections) over the supplied
column or set of columns.

Syntax

CREATE STATISTICS statistics_name
ON { table | view } (column[,..n])
[WITH
[[FULLSCAN
| SAMPLE number { PERCENT | ROWS }][,]]
[NORECOMPUTE |

]

Arguments
statistics_name

Is the name of the statistics group to create. Statistics names must conform to
the rules for identifiers.

table

Is the name of the table on which to create the named statistics. Table names
must conform to the rules for identifiers. table is the table with which the
column is associated. Specifying the table owner name is optional. Statistics
can be created on tables in another database by specifying a qualified
database name.

view

Is the name of the view on which to create the named statistics. A view must
have a clustered index before statistics can be created on it. View names
must conform to the rules for identifiers. view is the view with which the
column is associated. Specifying the view owner name is optional. Statistics
can be created on views in another database by specifying a qualified
database name.

column

Is the column or set of columns on which to create statistics. Computed
columns and columns of the ntext, text, or image data types cannot be
specified as statistics columns.

Is a placeholder indicating that multiple columns can be specified.
FULLSCAN

Specifies that all rows in table should be read to gather the statistics.
Specifying FULLSCAN provides the same behavior as SAMPLE 100
PERCENT. This option cannot be used with the SAMPLE option.

SAMPLE number { PERCENT | ROWS }

Specifies that a percentage, or a specified number of rows, of the data should
be read using random sampling to gather the statistics. number can be only
an integer: if PERCENT, number should be from 0 through 100; if ROWS,
number can be from 0 to the n total rows.

This option cannot be used with the FULLSCAN option. If no SAMPLE or
FULLSCAN option is given, an automatic sample is computed by
Microsoft® SQL Server™,

NORECOMPUTE

Specifies that automatic recomputation of the statistics should be disabled. If
this option is specified, SQL Server continues to use previously created (old)
statistics even as the data changes. The statistics are not automatically
updated and maintained by SQL Server, which may produce suboptimal
plans.

WARNING It is recommended that this option be used rarely and only by a
trained system administrator.

Remarks

Only the table owner can create statistics on that table. The owner of a table can
create a statistics group (collection) at any time, whether or not there is data in

the table.

CREATE STATISTICS can be executed on views with clustered index, or
indexed views. Statistics on indexed views are used by the optimizer only if the
view is directly referenced in the query and the NOEXPAND hint is specified for
the view. Otherwise, the statistics are derived from the underlying tables before
the indexed view is substituted into the query plan. Such substitution is
supported only on Microsoft SQL Server 2000 Enterprise and Developer
Editions.

Permissions

CREATE STATISTICS permissions default to members of the sysadmin fixed
server role and the db_ddladmin and db_owner fixed database roles and the
table owner, and are not transferable.

Examples

A. Use CREATE STATISTICS with SAMPLE number PERCENT

This example creates the names statistics group (collection), which calculates
random sampling statistics on five percent of the CompanyName and
ContactName columns of the Customers table.

CREATE STATISTICS names
ON Customers (CompanyName, ContactName)
WITH SAMPLE 5 PERCENT

GO

B. Use CREATE STATISTICS with FULLSCAN and
NORECOMPUTE

This example creates the names statistics group (collection), which calculates
statistics for all rows in the CompanyName and ContactName columns of the
Customers table and disables automatic recomputation of statistics.

CREATE STATISTICS names
ON Northwind..Customers (CompanyName, ContactName)

WITH FULLSCAN, NORECOMPUTE
GO

See Also

CREATE INDEX
DBCC SHOW_STATISTICS
DROP STATISTICS

Sp_autostats

Sp_createstats

sp_dboption
UPDATE STATISTICS

Transact-SQL Reference

CREATE TABLE

Creates a new table.

Syntax

CREATE TABLE
[database_name.[owner] .| owner.] table_name
({ < column_definition >
| column_name AS computed_column_expression
| < table_constraint > ::= [CONSTRAINT constraint_name] }

| [{ PRIMARY KEY | UNIQUE } [,...n]
)

[ON { filegroup | DEFAULT }]
[TEXTIMAGE_ON { filegroup | DEFAULT }]

< column_definition > ::= { column_name data_type }
[COLLATE < collation_name > |
[[DEFAULT constant_expression]
| [IDENTITY [(seed , increment) [NOT FOR REPLICATION]]]
]
[ROWGUIDCOL]
[< column_constraint >][...n]

< column_constraint > ::= [CONSTRAINT constraint_name]
{ [NULL | NOT NULL]

|[{ PRIMARY KEY | UNIQUE }
[CLUSTERED | NONCLUSTERED]
[WITH FILLFACTOR = fillfactor]
[ON {filegroup | DEFAULT}]]

]

| [[FOREIGN KEY]
REFERENCES ref_table [(ref_column))]
[ON DELETE { CASCADE | NO ACTION }]

[ON UPDATE { CASCADE | NO ACTION }]
[NOT FOR REPLICATION]

]

| CHECK [NOT FOR REPLICATION]

(logical_expression)

}

< table_constraint > ::= [CONSTRAINT constraint_name]
{ [{ PRIMARY KEY | UNIQUE }
[CLUSTERED | NONCLUSTERED]
{ (column [ASC |DESC][,..n])}
[WITH FILLFACTOR = fillfactor]
[ON { filegroup | DEFAULT }]
]
| FOREIGN KEY
[(column[,..n])]
REFERENCES ref_table [(ref_column[,..n])]
[ON DELETE { CASCADE | NO ACTION 1}]
[ON UPDATE { CASCADE | NO ACTION }]
[NOT FOR REPLICATION |
| CHECK [NOT FOR REPLICATION]
(search_conditions)

}

Arguments

database_name

Is the name of the database in which the table is created. database_name
must specify the name of an existing database. database_name defaults to
the current database if not specified. The login for the current connection
must be associated with an existing user ID in the database specified by
database_name, and that user ID must have create table permissions.

owner

Is the name of the user ID that owns the new table. owner must be an
existing user ID in the database specified by database_name. owner defaults
to the user ID associated with the login for the current connection in the

database specified in database_name. If the CREATE TABLE statement is
executed by a member of the sysadmin fixed server role, or a member of the
db_dbowner or db_ddladmin fixed database roles in the database specified
by database_name, owner can specify a user ID other than the one
associated with the login of the current connection. If the CREATE TABLE
statement is executed by a login associated with a user ID that has only
create table permissions, owner must specify the user ID associated with the
current login. Members of the sysadmin fixed server role, or logins aliased
to the dbo user are associated with the user ID dbo; therefore, tables created
by these users default to having dbo as the owner. Tables created by any
logins not in either of these two roles have owner default to the user ID
associated with the login.

table_name

Is the name of the new table. Table names must conform to the rules for
identifiers. The combination of owner.table_name must be unique within the
database. table_name can contain a maximum of 128 characters, except for
local temporary table names (names prefixed with a single number sign (#))
that cannot exceed 116 characters.

column_name

Is the name of a column in the table. Column names must conform to the
rules for identifiers and must be unique in the table. column_name can be
omitted for columns created with a timestamp data type. The name of a
timestamp column defaults to timestamp if column_name is not specified.

computed_column_expression

Is an expression defining the value of a computed column. A computed
column is a virtual column not physically stored in the table. It is computed
from an expression using other columns in the same table. For example, a
computed column can have the definition: cost AS price * qty. The
expression can be a noncomputed column name, constant, function, variable,
and any combination of these connected by one or more operators. The
expression cannot be a subquery.

Computed columns can be used in select lists, WHERE clauses, ORDER BY
clauses, or any other locations in which regular expressions can be used, with
the following exceptions:

e A computed column cannot be used as a DEFAULT or FOREIGN KEY
constraint definition or with a NOT NULL constraint definition.
However, a computed column can be used as a key column in an index
or as part of any PRIMARY KEY or UNIQUE constraint, if the
computed column value is defined by a deterministic expression and the
data type of the result is allowed in index columns.

For example, if the table has integer columns a and b, the computed
column a+b may be indexed, but computed column a+DATEPART(dd,
GETDATE()) cannot be indexed because the value may change in
subsequent invocations.

e A computed column cannot be the target of an INSERT or UPDATE
statement.

Note Each row in a table can have different values for columns
involved in a computed column, therefore the computed column may
not have the same value for each row.

The nullability of computed columns is determined automatically by
SQL Server based on the expressions used. The result of most
expressions is considered nullable even if only non-nullable columns
are present because possible underflows o