
SQL-DMO

Developing	SQL-DMO	Applications
SQL	Distributed	Management	Objects	(SQL-DMO)	is	a	collection	of	objects
encapsulating	Microsoft®	SQL	Server™	database	and	replication	management.

SQL-DMO	is	a	dual	interface	COM,	in-process	server	implemented	as	a
dynamic-link	library	(DLL).	When	creating	a	SQL-DMO	application,	you	can
use	any	OLE	Automation	controller	or	COM	client	development	platform	using
C	or	C++.

SQL-DMO	automates:

Repetitive	or	commonly	performed	SQL	Server	administrative	tasks.

SQL	Server	object	creation	and	administration.

Creation	and	administration	of	SQL	Server	Agent	jobs,	alerts,	and
operators.

SQL	Server	replication	installation	and	configuration.

SQL-DMO	documentation	covers	the	components	of	SQL-DMO,	their	use	in
developing	applications,	and	SQL-DMO	application	construction.	It	also
includes	a	detailed	component	reference.

See	Also

Scripting	Data	Access	Controls	in	Internet	Explorer

JavaScript:hhobj_1.Click()

SQL-DMO

Getting	Started	with	SQL-DMO
In	this	section,	you	will	find	SQL-DMO	syntax	conventions	and	information
about	SQL-DMO	system	requirements	and	installation.

SQL-DMO

SQL-DMO	Syntax	Conventions
SQL-DMO	typographical	conventions	are	based	on	those	used	in	Microsoft®
Visual	Basic®	reference	materials.

Convention Used	for
UPPERCASE Transact-SQL	statements,	macro	names,	and	terms	used

at	the	operating	system	level.
monospace Sample	command	lines	and	program	code.

italic Information	that	the	user	or	the	application	must
provide.

bold SQL-DMO	objects;	object	events,	methods	or
properties;	data	types;	and	other	syntax	that	must	be
typed	exactly	as	shown.

Note		Automation	allows	SQL-DMO	to	expose	object	properties,	methods,
events,	and	constants	through	intelligent	and	easy-to-use	automation	controllers,
simplifying	the	development	task.

When	using	an	automation	controller,	such	as	Visual	Basic,	assistance	built	into
the	controller	exposes	SQL-DMO	object	properties,	methods,	and	events	as
defined,	and	prompts	for	required	or	optional	parameters	as	part	of	the
development	process.	When	using	C	or	C++,	every	object	property	and	method
appears	as	an	object	member	function,	and	the	distinction	disappears.

The	SQL-DMO	documentation	is	directed	at	the	user	of	an	automation
controller.	Properties	are	documented	as	properties,	not	member	functions.
Prototypes	for	SQL-DMO	object	member	functions	are	included	in	each	topic
for	the	C	or	C++	developer.

SQL-DMO

System	Requirements	for	SQL-DMO
SQL-DMO	uses	the	Microsoft®	SQL	Server™	ODBC	driver	to	connect	to	and
communicate	with	instances	of	SQL	Server.	Stored	procedures	supporting	SQL-
DMO	are	installed	on	each	instance	of	SQL	Server.

SQL-DMO	clients	require	one	of	these	operating	systems:

Microsoft	Windows	NT®	version	4.0	(Service	Pack	5	or	later).	

Microsoft	Windows®	98	or	Microsoft	Windows®	95.

Or

Microsoft	Windows®	2000.

SQL-DMO	clients	require	SQL	Server	ODBC	Driver,	version	3.80	or	later,
which	ships	with	SQL	Server	2000.	The	client	network	library	must	be	properly
configured.

SQL-DMO	locates	instances	of	SQL	Server	using	the	SQL	Server	instance
name.	SQL-DMO	does	not	use	ODBC	data	source	definitions	for	connection,
and	you	need	not	use	the	ODBC	Administrator	to	create	data	source	definitions
for	servers	administered	by	SQL-DMO	applications.

Stored	procedures	that	support	SQL-DMO	are	created	as	part	of	an	instance	of
SQL	Server	2000.	The	Transact-SQL	script	Sqldmo.sql	is	shipped	with	SQL
Server	2000	and	can	be	used	to	reinstall	the	required	stored	procedures	if
necessary.

See	Also

Hardware	and	Software	Requirements	for	Installing	SQL	Server	2000

Configuring	Client	Network	Connections

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL-DMO

Installing	SQL-DMO
All	required	SQL-DMO	components	are	installed	as	part	of	an	instance	of
Microsoft®	SQL	Server™	server	or	client.	SQL-DMO	is	implemented	in	a
single	dynamic-link	library	(DLL).	You	may	develop	SQL-DMO	applications	on
either	a	client	or	a	server.	When	using	an	OLE	Automation	controller	as	a
development	platform,	such	as	Microsoft	Visual	Basic®,	no	additional	files	are
required.	Application	development	using	C	or	C++	requires	the	SQL-DMO
header	files.

SQL-DMO	sample	applications,	providing	additional	reference	material	for
SQL-DMO	application	development,	are	included	with	SQL	Server.

Directory File Description
C:\Program
Files\Microsoft	SQL
Server\80\Tools\Binn

Sqldmo.dll DLL	implementing	SQL-DMO
objects.

C:\Program
Files\Microsoft	SQL
Server\80\Tools\Binn

Sqldmo80.hlp SQL-DMO	help	file	used	within
the	development	environment	to
provide	context	sensitive	help
about	SQL-DMO	objects,
properties	and	methods.

C:\Program
Files\Microsoft	SQL
Server\80\Tools\Binn\
Resources\xxxx

Sqldmo.rll Localized	resource	file.	The
resource	directory	varies	based	on
the	national	language	of	the
instance	of	SQL	Server	client	or
server.	For	example,	the	directory
1033	is	a	decimal	representation
of	the	language	identifier
0X0409,	indicating	English,	U.S.

C:\Program
Files\Microsoft	SQL
Server\80\Tools\
Devtools\Include

Sqldmo.h C/C++	header	file	containing
SQL-DMO	member	function
prototypes,	enumerated	data
types,	and	macros.

C:\Program
Files\Microsoft	SQL

Sqldmoid.h C/C++	header	file	containing
SQL-DMO	interface	and	class

Server\80\Tools\
Devtools\Include

identifiers.

\Program	Files\Microsoft
SQL
Server\MSSQL\Install

Sqldmo.sql Transact-SQL	script
implementing	stored	procedures
that	support	SQL-DMO.
Available	on	SQL	Server	server-
instance	only.

C:\Program
Files\Microsoft	SQL
Server\80\Tools\
Devtools\Samples\Sqldmo

ALL Sample	applications	illustrating
SQL-DMO	use.

To	register	the	SQL-DMO	components	on	a	client	computer

From	C:\Program	Files\Microsoft	SQL	Server
\80\Tools\Binn\Resources\<language>	directory,	execute:
\Program	Files\Microsoft	SQL	Server	\80\Tools\Binn\REGSVR32	SQLDMO.DLL

From	any	directory,	execute:
C:\Program	Files\Microsoft	SQL	Server	\80\Tools\Binn\REGSVR32.EXE	

C:\Program	Files\Microsoft	SQL	Server	\80\Tools\Binn\resources\1033\SQLDMO.RLL

See	Also

Overview	of	Installing	SQL	Server	2000

JavaScript:hhobj_1.Click()

SQL-DMO

SQL-DMO	Objects	and	SQL	Server	Administration
SQL-DMO	encapsulates	Microsoft®	SQL	Server™	components,	presenting	the
attributes	of	the	component	piece	to	you	as	the	properties	of	an	object	instance.
Alter	the	properties	of	the	instance,	or	use	object	methods	to	automate	SQL
Server	administration.

An	instance	of	SQL	Server	may	be	viewed	as	a	collection	of	components.	A
component	is	not	simply	a	database	object	or	a	system	database	record,	such	as
that	defining	an	operator.	It	can	be	a	more	abstract	construct,	such	as	the	current
configuration	of	an	instance	of	SQL	Server.	For	example:

An	instance	of	SQL	Server	is	installed	by	a	user.	The	name	of	the	user
whom	installs	SQL	Server	is	captured	in	the	registry	of	the	computer	on
which	an	instance	of	SQL	Server	resides.

The	SQL	Server	Northwind	sample	database	is	implemented	in
physical	files	in	a	specific	subdirectory	of	a	disk	drive.	At	any	given
point	in	time,	the	usage	of	space	within	those	physical	files	can	be
measured.

The	Northwind..Categories	table	has	four	columns.

With	SQL-DMO,	you	can	use:

The	Registry	object	RegisteredOwner	property	as	part	of	an
installation	of	an	instance	of	SQL	Server.

The	Database	object	PrimaryFilePath	and	DataSpaceUsage
properties	as	part	of	an	automated	data	integrity	check	system.

The	Count	property	of	the	Columns	collection	of	a	Table	object	to	set
the	number	of	pages	on	a	property	sheet	that	presents	column
definitions.

Essentially,	SQL-DMO	has	three	object	types:

An	object	is	a	stand-alone	object	that	references	a	single	SQL	Server
component,	such	as	the	Table	object.

A	collection	is	a	container	object	that	allows	members	to	be	added	and
removed,	such	as	the	Tables	collection.

A	list	is	a	container	object	that	is	fixed	in	membership,	such	as	the
SQLObjectList	object	list.

All	SQL-DMO	objects	expose	properties,	such	as	Name	or	Count,	identifying
instance	data.	Most	expose	methods,	such	as	BindToColumn	or	MSXEnlist,
which	act	upon	an	instance	and	usually	modify	instance	data	in	some	fashion.	A
few	objects	support	events,	such	as	PercentComplete,	which	provide	object
state	or	other	data	back	to	the	client	application.

SQL-DMO

SQL-DMO	Object
For	SQL-DMO,	an	object	references	a	single	Microsoft®	SQL	Server™
component.	The	referenced	component	may	be	a	new	or	existing	database
object,	a	replication	or	SQL	Server	Agent	component,	or	could	encapsulate	a
SQL	Server	management	process	such	as	database	restore.

SQL-DMO

Object	Properties
SQL-DMO	object	properties	provide	access	to	instance	data.	For	those	SQL-
DMO	objects	that	reference	specific	Microsoft®	SQL	Server™	components,
instance	data	identifies	the	referenced	component	for	the	application.	For
example:

The	value	of	the	Name	property	in	a	Table	object	instance	referencing
the	Northwind..Employees	table	is	Employees.

The	value	of	the	Name	property	in	a	Table	object	instance	referencing
the	Northwind..Products	table	is	Products.

Many	properties	are	read-only,	which	expose	informational	data	to	the
application.	For	example:

The	Name	property	of	a	SystemDatatype	object	provides	the	name	of	a
SQL	Server	data	type;	it	can	be	used	to	assist	users	in	column	definition
for	table	creation.

The	OccurrenceCount	property	of	an	Alert	object	reports	the	number
of	times	that	an	event	has	caused	SQL	Server	Agent	alert	notification;
an	application	could	take	exceptional	action	if	the	value	is	greater	than
25.

Some	properties	can	be	both	read	and	written.	Altering	the	value	of	a	read/write
property	causes	alteration	in	the	referenced	component.	For	example:

The	Length	property	of	a	Column	object	exposes	the	number	of
characters	or	bytes	in	a	fixed	length	or	variable	length	data	type	column.
A	column	defined	as	varchar(12)	reports	12	in	the	Length	property	of
a	referencing	Column	object.	Setting	the	property	to	15	causes	the
execution	of	an	ALTER	TABLE	statement	that	changes	the	data	type
definition	on	SQL	Server.

The	CreationScriptOptions	property	of	a	TransArticle	object
specifies	the	attributes	of	table	creation	for	the	initial	snapshot
supporting	the	referenced	article.	By	default,	creation	of	a	declarative
referential	integrity	PRIMARY	KEY	constraint	is	not	included	as	part
of	the	table	creation	script.	Setting	the	CreationScriptOptions	property
so	that	creation	of	a	PRIMARY	KEY	constraint	is	included	records	the
desired	change	in	object	creation	scripting.	The	change	in	behavior,
initiated	in	the	SQL-DMO	object,	is	reflected	in	the	script	created	when
the	snapshot	is	next	generated.

IMPORTANT		Modifying	property	values	can	have	unintended
consequences.	For	example,	changing	the	Datatype	or	Length	property
of	a	Column	object	referencing	an	existing	column	alters	the	table
containing	the	column	and	attempts	to	convert	all	data	to	the	new	data
type.	The	process	can	be	time-consuming	and	can	fail.	Applications	that
allow	user	property	change	should	notify	the	user	through	a	message	or
busy	pointer	and	should	provide	appropriate	error	handling.

Some	properties	can	be	read	or	written	when	they	do	not	reference	an	existing
SQL	Server	component,	but	are	read-only	when	they	do.	Typically,	these
properties	name	or	identify	a	SQL	Server	component.	For	example:

The	Name	property	of	a	LinkedServer	object	can	be	set	when	the
LinkedServer	object	has	been	created	by	an	application	and	will	be
added	to	the	LinkedServers	collection	of	a	SQLServer	object.	After
LinkedServer	has	been	added	successfully	to	the	LinkedServers
collection,	the	object	references	an	existing	linked	server,	and	the	Name
property	is	no	longer	modifiable.

The	FillFactor	property	of	an	Index	or	Key	object	provides	an
argument	for	index	creation.	When	the	index	exists,	the	FillFactor
property	is	not	evaluated.

A	few	properties	are	write-only.	Write-only	properties	are	used	to	specify
arguments	for	component	creation	only.

SQL-DMO

Object	Methods
Many	SQL-DMO	object	methods	act	upon	a	Microsoft®	SQL	Server™
component,	modifying	an	instance	of	SQL	Server	in	some	fashion.	For	example:

The	BindToColumn	method	of	a	Default	object	binds	a	SQL	Server
default	to	the	column	identified	in	the	method.	Selecting	the	referencing
Column	object	displays	the	bound	default	by	name	in	the	Default
property.

The	ResetOccurrenceCount	method	of	the	Alert	object	resets	the
occurrence	count	start	date	and	time	to	the	current	date	and	time	and
sets	count	of	alert	notifications	attempted	after	that	time	to	zero.

Some	SQL-DMO	object	methods	use	a	SQL	Server	component	for	source	data,
providing	usable	output	for	other	SQL	Server	management	tasks.	For	example:

The	Script	method	of	a	MergeArticle	object	generates	a	Transact-SQL
script	that	can	be	used	to	define	the	referenced	merge	replication	article
on	any	similarly	configured	instance	of	SQL	Server.

The	ScriptDestinationObject	method	of	a	MergeArticle	object
generates	a	Transact-SQL	script	that	can	be	used	to	create	the
referenced	merge	replication	article's	source	table	on	any	similarly
configured	instance	of	SQL	Server.

SQL-DMO	methods	also	perform	basic	administration	tasks.	For	example:

The	Start	method	of	the	JobServer	object	attempts	to	start	the
SQLServerAgent	service	on	the	server	referenced	by	the	SQLServer
object	from	which	the	JobServer	object	was	selected.

The	SQLBackup	method	of	the	Backup	object	is	used	to	back	up	SQL
Server	database	data	and	log	files.

SQL-DMO

Object	Events
Some	SQL-DMO	objects	support	events.	Automated	OLE	object	events	provide
a	callback	mechanism	and	SQL-DMO	uses	events	to	signal	an	application
conditionally.	The	SQL-DMO	application	can	handle	raised	events	to	provide
intelligent	interaction	with	the	user	during	a	long-running	process	and	to	handle
abnormal	conditions.	For	example:

The	PercentComplete	event	of	a	Backup	object	informs	the
application	of	backup	progress.	The	application	can	use	the	callback	to
update	a	progress	control	or	check	for	a	user	action,	such	as	a	request
for	cancellation.

The	ConnectionBroken	event	of	a	SQLServer	object	informs	the
application	that	the	network	connection	between	the	client	and	an
instance	of	Microsoft®	SQL	Server™	has	been	lost.	The	application
could	notify	the	user	and	prompt	for	authorization	information	for	a
reconnection	attempt.

SQL-DMO

Creating	SQL	Server	Components	Using	SQL-DMO
Objects
Using	SQL-DMO	to	define	new	Microsoft®	SQL	Server™	components	is
always	a	three-step	process.	The	application:

1.	 Requests	a	new	object	from	SQL-DMO.

2.	 Configures	the	object	to	reflect	the	desired	attributes	of	the	SQL
Server	component.

3.	 Adds	the	appropriately	configured	object	to	the	containing	collection.

For	most	administrative	tasks	automated	with	SQL-DMO,	the	simple,	three-step
process	is	quickly	evident.

The	Microsoft	Visual	Basic®	example	shows	adding	a	computed	row	total
column:

Dim	oColumn	As	New	SQLDMO.Column

oColumn.Name	=	"SubTotalNoDiscount"
oColumn.Datatype	=	"money"
oColumn.ComputedText	=	"CONVERT(money,		Quantity	*	UnitPrice)"
oColumn.IsComputed	=	True

oSQLServer.Databases("Northwind").Tables("[Order	Details]").Columns.Add	oColumn

The	complexity	of	a	DBMS	implementation	may	sometimes	obscure	this	simple
process.	For	example,	to	define	a	SQL	Server	database	using	SQL-DMO:

Request	a	new	Database	object	from	SQL-DMO.

Configure	the	Database	object	by:

Setting	Database	properties.

Requesting	a	new	DBFile	object	from	SQL-DMO.

Configuring	the	DBFile	object.

Adding	the	DBFile	object	to	the	DBFiles	collection	of	the
FileGroup	object	named	PRIMARY.

Requesting	a	new	LogFile	object	from	SQL-DMO.

Configuring	the	LogFile	object.

Adding	the	LogFile	object	to	the	LogFiles	collection	of	the
Database	object.

Add	the	Database	object	to	the	Databases	collection	of	a	SQLServer
object.

The	database	is	created	by	successively	applying	nested	iterations	of	the	three-
step	process.	This	example	is	still	simple,	and	does	not	include	details	such	as
multiple	filegroups	with	multiple	database	files	or	multiple	log	files.

For	more	information	about	the	details	of	creating	a	specific	SQL	Server
component	using	a	SQL-DMO	object,	see	Objects.

SQL-DMO

SQL-DMO	Objects	and	Existing	SQL	Server
Components
When	a	SQL-DMO	object	references	an	existing	Microsoft®	SQL	Server™
component,	you	can	use	the	object	to	configure	or	tune	the	instance	of	SQL
Server.

Applications	do	not	generally	alter	the	properties	of	SQL-DMO	objects	that
reference	existing	SQL	Server	components.	For	these	objects,	properties	often
provide	identifying	data	or	data	that	is	the	source	for	application	logic.	SQL-
DMO	object	methods	then	become	a	much	more	important	tool	for	database
administration.	For	example:

The	UpdateStatisticsWith	method	of	a	Column,	Index,	or	Table
object	forces	an	update	of	data	distribution	statistics,	assisting	SQL
Server	query	optimization.

The	CheckTables	method	of	a	Database	object	performs	data	file
integrity	validation	on	the	tables	in	a	database.

The	AddNotification	method	of	an	Alert	object	configures	a	SQL
Server	Agent	alert	with	a	new	operator	to	notify	on	an	event	condition.

The	SQLRestore	method	of	a	Restore	object	restores	log	or	data	file
data	after	recovery	from	hardware	failure.

Some	SQL-DMO	objects	support	the	Remove	method	directly.	Remove	drops
or	deletes	the	referenced	SQL	Server	component	and	removes	the	object	from	its
containing	collection.

SQL-DMO

Programming	Extended	SQL-DMO	Objects
SQL-DMO	in	Microsoft®	SQL	Server™	2000	features	a	number	of	new	objects
compatible	only	with	this	release.	Most	of	these	new	objects	are	named	in	the
form	of	ObjectName2,	and	extend	the	functionality	of	similarly	named	objects
supported	by	SQL	Server	version	7.0.	For	example,	the	UserDefinedDataType2
object	extends	the	functionality	of	the	UserDefinedDataType	object	by
exposing	the	Collation	property.	Objects	such	as	UserDefinedDataType2
inherit	the	methods	and	properties	of	their	base	objects.	Therefore,	an
application	can	always	use	the	UserDefinedDataType2	object	to	call	the
methods	and	properties	of	the	UserDefinedDataType	object.

It	is	unnecessary	to	modify	existing	SQL	Server	version	7.0	applications,
because	they	do	not	reference	the	new	objects,	methods,	and	properties	exposed
in	SQL	Server	2000.

Using	C++	with	the	Extended	SQL-DMO	Objects
C++	applications	that	use	the	new	SQL-DMO	objects	do	not	need	to	take	any
extra	programmatic	steps	if	the	application	will	only	be	used	with	SQL	Server
2000.	However,	C++	applications	that	use	the	new	SQL-DMO	objects	and	also
are	used	with	SQL	Server	version	7.0	will	encounter	an	error	if	trying	to	use	a
new	object.	Therefore,	the	application	must	call	the
IUnknown::QueryInterface	method	to	use	an	ObjectName2	object	with	the
related	object	from	which	it	inherits,	and	to	handle	errors	gracefully.

These	examples	demonstrate	how	to	use	ObjectName2	objects	using	the
Collation	property	of	the	UserDefinedDataType2	object.	The	first	example
demonstrates	usage	in	an	application	that	runs	with	SQL	Server	2000	only.	The
second	example	demonstrates	usage	in	an	application	that	might	also	run	with
SQL	Server	version	7.0.

Examples

A.	Referencing	the	extended	SQL-DMO	objects	with	SQL	Server
2000

//Define	variable.
LPSQLDMOUSERDEFINEDDATATYPE2	oUDDT2	=	NULL;

//Do	CoCreate	Instance	for	UserDefinedDataType.
CoCreateInstance(CLSID_SQLDMOUserDefinedDataType,	NULL,	CLSCTX_INPROC_SERVER,	IID_ISQLDMOUserDefinedDataType2,	(LPVOID*)	&oUDDT2))

oUDDT2->SetCollation(L"German_Phonebook_CI_AI_KI_WI");

//Now	add	the	UserDefinedDataType	object	to	the	UserDefinedDataTypes	collection.

B.	Referencing	the	extended	SQL-DMO	objects	with	SQL	Server
2000	or	SQL	Server	version	7.0

//Define	variables.
LPSQLDMOUSERDEFINEDDATATYPE	oUDDT	=	NULL;
LPSQLDMOUSERDEFINEDDATATYPE2	oUDDT2	=	NULL;
HRESULT	hr;

//Do	CoCreate	Instance	for	UserDefinedDataType.
CoCreateInstance(CLSID_SQLDMOUserDefinedDataType2,	NULL,	CLSCTX_INPROC_SERVER,	IID_ISQLDMOUserDefinedDataType,	(LPVOID*)	&oUDDT))

//QueryInterface	UserDefinedDataType2.
//Gracefully	handle	error	situations	arising	from	use	with	version	7.0.
hr=oUDDT->QueryInterface(IID_ISQLDMOUserDefinedDatatype2,&oUDDT2);
if	(SUCCEEDED(hr))
oUDDT2->SetCollation(L"German_Phonebook_CI_AI_KI_WI");
else
			//oUDDT2	is	not	supported.	Perform	error	handling	routine.

//Now	add	the	UserDefinedDataType	object	to	the	UserDefinedDataTypes	collection.

Using	Visual	Basic	with	the	Extended	SQL-DMO	Objects
Visual	Basic	applications	that	use	the	new	SQL-DMO	objects	do	not	need	to

take	any	extra	programmatic	steps	if	the	application	will	only	be	used	with	SQL
Server	2000.	No	extra	steps	are	required	for	Visual	Basic	applications	that	use
late	binding.	However,	Visual	Basic	applications	that	use	early	binding	must	be
precise	in	setting	an	ObjectName2	object	variable.	For	example,	in	this	code
sample,	the	StoredProcedures.Item	method	returns	a	StoredProcedure	object,
not	a	StoredProcedure2	object:

Dim	oSQLSvr2	as	New	SQLServer2
oSQLSvr2.Connect	"Myserver","sa",""
MsgBox	oSQLSrv2.Databases("northwind").StoredProcedures(1).Name

However,	using	this	approach,	the	StoredProcedures.Item	method	calls	the
IUnknown::QueryInterface	method	for	the	StoredProcedure2	object:

Dim	oStoredProc2	as	SQLDMO.StoredProcedure2
Set	oStoredProc2	=	oSQLSrv2.Databases("northwind").StoredProcedures(1)
oStoredProc2.IsDeleted

SQL-DMO

Using	SQL-DMO	Multistrings
SQL-DMO	multistrings	are	used	in	numerous	parameters	in	SQL-DMO
properties	and	methods.	Using	multistrings,	a	user	can	supply	one	or	more
delimited	strings	to	the	parameter,	and	SQL-DMO	parses	the	input	into	multiple
strings.

Database	objects	in	instances	of	Microsoft®	SQL	Server™	version	6.5	and
earlier	could	not	contain	special	characters	such	as	spaces,	commas,	and
semicolons.	Therefore,	these	characters	could	be	used	interchangeably	as	string
delimiter	characters.	For	example,	this	multistring	contains	four	separate	strings:

S1	S2,S3;S4

However,	database	objects	in	instances	of	SQL	Server	2000	and	SQL	Server
version	7.0	can	contain	any	valid	Microsoft	Windows	NT®	or	Microsoft
Windows®	2000	characters,	including	spaces,	commas,	and	semicolons.	To
accommodate	this	change,	SQL-DMO	multistring	format	uses	left	and	right
brackets	([])	as	delimiters.	The	use	of	spaces,	commas,	and	semicolons	between
bracketed	strings	is	optional.	For	example	these	two	multistrings,	which	contain
four	strings,	are	identical:

[S1]	[S2]	[S3]	[S4]
[S1]	[S2],[S3];[S4]

A	right	bracket	is	used	as	the	escape	character	for	a	string	that	contains	a	right
bracket.	For	example,	the	string	"My]object"	should	be	specified	as:

[My]]object]

No	escape	character	is	required	for	a	left	bracket	because	SQL-DMO	parses
multistrings	from	left	to	right.

To	maintain	backward	compatibility,	the	original	multistring	format	is	still
supported	if	the	string	does	not	contain	any	spaces,	commas,	semicolons,	or
brackets.	If	an	application	uses	the	newer	multistring	format	for	one	string,	then
the	same	format	must	be	used	for	all	strings	in	the	multistring	parameter.

SQL-DMO	multistrings	are	used	by	these	properties	and	methods:

Properties

DatabaseFileGroups	Property RelocateFiles	Property
DatabaseFiles	Property RpcList	Property
Days	Property ShortMonths	Property
Devices	Property StandbyFiles	Property
IndexedColumns	Property SuperSocketList	Property
Months	Property Tapes	Property
Pipes	Property ViaRecognizedVendors	Property

Methods

AddReplicatedColumns	Method Grant	Method	(StoredProcedure,
UserDefinedFunction)

AttachDB	Method Grant	Method	(Table,	View)
Deny	Method	(Database) RemoveReplicatedColumns	Method
Deny	Method	(StoredProcedure) Revoke	Method	(Database)
Deny	Method	(Table,	View) Revoke	Method	(StoredProcedure)
Deny	Method
(UserDefinedFunction)

Revoke	Method	(Table,	View)

GetRangeString	Method Revoke	Method
(UserDefinedFunction)

Grant	Method	(Database) ValidateSubscriptions	Method

SQL-DMO

SQL-DMO	Collections	and	SQL	Server
Administration
Within	SQL-DMO,	collections	represent	a	group	of	Microsoft®	SQL	Server™
components.	The	meaning	of	the	collection,	the	components	referenced	from	the
objects	contained,	is	visible	in	the	collection's	name.	For	example,	the
Operators	collection	contains	Operator	objects	that	reference	SQL	Server
Agent	operators.

Because	collections	represent	the	sum	total	of	components	within	a	given	scope,
altering	the	number	of	objects	in	the	collection	by	adding	a	new	object	or
removing	an	existing	one	administers	a	server	running	SQL	Server	by	creating	or
dropping	a	referenced	component.

SQL-DMO

SQL-DMO	Collections
Microsoft®	Visual	Basic®	defines	a	collection	as	any	object	containing	other
objects	in	a	list.	For	a	specific	Visual	Basic	application,	a	document	collection
can	contain	a	Microsoft	Word	document	and	two	Microsoft	Excel	spreadsheets,
in	no	particular	order.	SQL-DMO	applies	a	much	stricter	definition	for	a
collection.	A	SQL-DMO	collection	is	a	container	object	for	SQL-DMO	objects
of	identical	type.

For	example,	the	Database	object	exposes	a	Tables	collection.	Each	SQL-DMO
object	referenced	from	a	Tables	collection	is	a	Table	object,	and	each	Table
object	exposes	the	attributes	of	a	specific	Microsoft	SQL	Server™	table.
Therefore,	the	Tables	collection	of	the	Database	object	exposes	all	defined
tables	within	the	SQL	Server	database.	Working	with	any	given	Tables
collection,	you	will	not	find	a	MergeArticle	object	or	two,	or	the	odd	Operator
object.

Because	SQL-DMO	collections	are	COM	objects,	they	expose	properties	and
methods.	All	SQL-DMO	collections	expose	the	Count	property,	which	reports
the	number	of	contained	objects.	Most	collections	expose	the	Add	and	Remove
methods.	A	collection	exposing	Add	and	Remove	can	be	used	to	create	or	drop
SQL	Server	components.

Note		To	enable	more	efficient	processing,	SQL-DMO	caches	much	of	the
information	about	SQL	Server	components	referenced	by	objects	maintained	in	a
collection.	When	component	data	is	cached,	administrative	activity	of	another
SQL	Server	session	is	not	visible	to	the	SQL-DMO	session.	The	Refresh
method	queries	the	organization	server,	filling	the	collection	with	the	most	up-to-
date	component	information.

SQL-DMO

Collection	Properties
All	SQL-DMO	collections	expose	the	Count	and	TypeOf	properties.

The	Count	property	returns	the	number	of	members	in	a	collection	and	is	often
used	for	application	control-of-flow	logic,	for	example,	in	a	for...next	loop.

For	SQL-DMO	collections,	the	TypeOf	property	reports	the	TypeOf	property
value	for	the	objects	contained	within	the	collection.	For	example,	the	TypeOf
property	value	for	the	Databases	collection	returns	SQLDMOObj_Database,
which	is	the	TypeOf	property	value	of	a	Database	object.

All	SQL-DMO	collection	properties	are	read-only.

SQL-DMO

Collection	Methods
All	collections	support	some	form	of	the	Item	method.	As	its	name	implies,	the
Item	method	is	used	to	dereference	a	collection	member.	For	most	collections,
SQL-DMO	supports	the	ItemByName	and	ItemByOrd	methods.

With	the	ItemByName	method,	you	can	refer	to	a	specific	member	using	its
name.	This	Microsoft®	Visual	Basic®	example	shows	selecting	a	database	by
name:

Dim	oDatabase	as	SQLDMO.Database
Set	oDatabase	=	oSQLServer.Databases("Northwind")

With	the	ItemByOrd	method,	you	can	refer	to	a	specific	member	by	its	ordinal
location	within	the	collection.	This	Visual	Basic	example	shows	setting	a	combo
box	to	list	the	databases	on	a	server:

Dim	nDatabase	as	Integer
For	nDatabase	=	1	to	oSQLServer.Databases.Count
				Combo1.AddItem	oSQLServer.Databases(nDatabase).Name
Next	nDatabase

Note		For	more	information	about	specific	collection	support	for	ItemByName
and	ItemByOrd,	see	Collections.

Most	collections	expose	the	Add	and	Remove	methods.	The	Add	method	forms
part	of	the	SQL-DMO	three-step	process	for	creating	Microsoft	SQL	Server™
components.	The	Remove	method	drops	or	deletes	a	SQL	Server	component.

Some	collections	expose	other	methods.	For	example,	the	TransPublications
collection	supports	the	Script	method.	When	invoked	on	the	collection,	the
Script	method	generates	a	single	Transact-SQL	script	that	could	be	used	to	re-
create	all	transaction	replication	publications	defined	for	a	SQL	Server	database.

SQL-DMO

Creating	SQL	Server	Components	Using	SQL-DMO
Collections
Using	SQL-DMO	to	create	a	Microsoft®	SQL	Server™	component	is	always	a
three-step	process.	The	application:

1.	 Requests	a	new	object	from	SQL-DMO.

2.	 Configures	the	object	to	reflect	the	desired	attributes	of	the	SQL
Server	component.

3.	 Adds	the	appropriately	configured	object	to	the	containing	collection.

When	an	application	modifies	SQL-DMO	collection	membership	by	adding
objects,	SQL-DMO	attempts	to	convert	the	application	action	to	an	appropriate
SQL	Server	component	creation	Transact-SQL	script.

Adding	a	SQL-DMO	object	to	its	containing	collection	can	cause	an	immediate
update	of	the	indicated	server	running	SQL	Server.	In	other	instances,	the	same
application	action	can	cause	a	delayed	update	of	the	indicated	server.

For	example,	adding	a	Column	object	to	the	Columns	collection	of	a	new	Table
object	generates	no	Transact-SQL	statement.	Instead,	the	properties	of	Column
objects	in	the	collection	define	the	attributes	of	columns	in	a	CREATE	TABLE
statement	submitted	when	the	Table	object	is	added	to	a	Tables	collection.

By	default,	SQL-DMO	generates	a	Transact-SQL	ALTER	TABLE	statement
when	a	new,	configured	Column	object	is	added	to	the	Columns	collection
referencing	the	columns	of	an	existing	SQL	Server	table.

When	the	application	uses	the	BeginAlter	method	of	the	Table	object,	adding	a
Column	object	to	the	Columns	collection	does	not	generate	an	ALTER	TABLE
statement.	The	referenced	SQL	Server	table	is	modified	by	an	ALTER	TABLE
statement	created	and	submitted	when	the	application	invokes	the	DoAlter
method	of	the	Table	object.

SQL-DMO	performs	some	error	checking	for	object	consistency	when	a	new

object	is	added	to	a	containing	collection.	For	example,	SQL-DMO	checks	to
ensure	that	the	Name	and	data	type	defining	properties	of	a	Column	object	are
set	and	valid	when	the	Column	object	is	added	to	the	Columns	collection	of	a
Table	object.

Other	errors	can	occur	as	the	component-creating	script	is	submitted	to	SQL
Server.	For	example,	when	defining	a	new	column	in	an	existing	table,	the
default	error	checking	provided	by	SQL-DMO	does	not	attempt	to	validate
column	null	acceptance.	As	SQL	Server	is	the	ultimate	arbiter	of	null
acceptance,	SQL-DMO	relies	on	SQL	Server	for	error	determination	in	this	case.

IMPORTANT		A	SQL	Server	administrative	action	directed	by	collection
membership	modification	can	be	time-consuming	and	can	fail.	Applications	that
allow	collection	membership	change	should	notify	the	user	through	a	message	or
busy	pointer,	and	should	provide	appropriate	error	handling.

SQL-DMO

Removing	SQL	Server	Components	Using	SQL-DMO
Collections
An	application	can	use	the	Remove	method	of	a	SQL-DMO	collection	to	delete
a	referenced	Microsoft®	SQL	Server™	component	permanently.

When	Remove	is	invoked,	SQL-DMO	translates	the	application	action	into
appropriate	Transact-SQL	statements.	For	example,	using	the	Remove	method
of	the	Tables	collection	generates	and	submits	a	Transact-SQL	DROP	TABLE
statement.	Using	the	Remove	method	of	the	DatabaseRoles	collection	executes
Transact-SQL,	calling	either	the	sp_droprole	or	sp_dropapprole	system	stored
procedures.

Any	collection	Remove	method	may	be	constrained	by	rules	applying	to	the
referenced	objects.	For	example,	SQL	Server	does	not	delete	a	table	if	it	is
referenced	by	a	FOREIGN	KEY	constraint	defined	on	another	table.	Using	the
Remove	method	of	the	Tables	collection	to	drop	a	table	used	as	a	foreign	key
reference	fails,	returning	an	appropriate	error	to	the	application.

A	collection	Remove	method	requires	qualification,	identifying	the	targeted
object	by	name	or	ordinal	position.	For	example:

oSQLServer.DatabaseRoles.Remove("Northwind_Users")

Or

oServer.Databases("Northwind").Users.Remove(5)

Collections	referencing	owned,	SQL	Server	database	objects	allow	additional
qualification	by	owner	name.	For	example:

oServer.Databases("Northwind").Tables.Remove("Orders",	"anne")

IMPORTANT		A	SQL	Server	administrative	action	directed	by	collection
membership	modification	can	be	time-consuming	and	can	fail.	Applications	that
allow	collection	membership	change	should	notify	the	user	through	a	message	or
busy	pointer,	and	should	provide	appropriate	error	handling.

SQL-DMO

Description	of	the	SQLServer	Object
The	SQLServer	object	is	the	core	of	SQL-DMO.	It	is	through	the	SQLServer
object	that	an	application	connects	to	and	alters	the	properties	of	instances	of
Microsoft®	SQL	Server™.

Many	SQL-DMO	objects	are	exposed	as	properties	of	other	SQL-DMO	objects.
Any	SQL-DMO	object	that	references	an	existing	SQL	Server	component	can	be
selected	by	navigating	from	the	SQLServer	object.	This	implementation	detail
creates	a	tree	that	structures	SQL-DMO	objects	logically	to	guide	and	ease
development.

Regardless	of	the	development	tool	used	to	create	an	application,	all	SQL-DMO
applications	share	basic	logical	elements.	A	SQL-DMO	application	will:

Create	a	SQLServer	object.

Use	the	Connect	method	of	the	SQLServer	object	to	establish	a
session	with	an	instance	of	SQL	Server.

Use	the	SQL-DMO	object	selection	methods	of	the	SQLServer	object
to	choose	specific	objects	for	modification.

These	topics	introduce	the	SQLServer	object	and	describe	the	relationship	of
objects	in	SQL-DMO.

SQL-DMO

Creating	and	Connecting	a	SQLServer	Object
A	SQL-DMO	application	creates	a	SQLServer	object	and	uses	the	Connect
method	when	a	session	is	required	on	a	specific	instance	of	Microsoft®	SQL
Server™.	Some	applications	may	create	only	a	single	SQLServer	object,	using
it	for	all	interaction	with	a	server.	Others	may	create	multiple	SQLServer
objects,	connected	to	one	or	more	servers,	providing	multiple	server
administration	functions.

SQL-DMO	offers	application	developers	flexibility	in	locating	servers	as
administration	targets.	Regardless	of	the	method	used	to	identify	a	server,	the
application	creates	a	new	SQLServer	object	for	each	session.

For	example,	an	installation	routine	may	collect	a	SQL	Server	instance	name,	a
system	administrator	user	identifier,	and	a	password	as	part	of	its	functioning,	as
shown	in	the	illustration.

A	Microsoft	Visual	Basic®	installation	routine	using	the	example	dialog	box	and
the	Connect	method	of	a	SQLServer	object	might	look	something	like:

Private	Sub	cmd_Install_Click()
				On	Error	GoTo	ErrorHandler
				
				Dim	oSQLServer	As	New	SQLDMO.SQLServer
				Dim	bConnected	As	Boolean
				
				bConnected	=	False
				
				oSQLServer.LoginTimeout	=	30
				
				If	chk_Integrated.Value	=	1	Then
								oSQLServer.LoginSecure	=	True
								oSQLServer.Connect	txt_SQLServer.Text
				Else

								oSQLServer.Connect	txt_SQLServer.Text,	txt_Login.Text,	_
								txt_Password.Text
				End	If
				
'			...	do	installation	...

				oSQLServer.DisConnect
				Exit	Sub
				
ErrorHandler:
				MsgBox	(Err.Description)
				If	bConnected	=	True	Then
								oSQLServer.DisConnect
				End	If
End	Sub

Another	application	automating	backup	by	using	organization	standard	backup
media	and	procedures	may	query	the	RegisteredServers	collection	of	the
Application	object,	returning	the	list	of	user-registered	servers	in	a	combo	box
or	other	control	allowing	selection.	Based	on	user	action,	the	application	would
use	the	properties	of	the	selected	RegisteredServer	object	when	using	the
Connect	method	of	a	SQLServer	object.

Likewise,	an	application	could	use	the	ListAvailableSQLServers	method	of	the
Application	object	to	locate	all	instances	of	SQL	Server	in	an	organization.

SQL-DMO

SQL-DMO	Object	Tree
SQL-DMO	objects	are	exposed	as	properties	of	other	SQL-DMO	objects.	The
relationship	provides	developers	with	a	logical,	tree-like	structure	for	SQL-DMO
that	simplifies	programming	with	automation	controllers.	Many	objects	can	be
referenced	using	the	familiar	dot	notation	used	to	reference	properties	or
methods.

For	example,	the	Database	object	exposes	a	Tables	collection.	Each	Table
object	within	the	collection	represents	a	single	table	of	an	instance	of
Microsoft®	SQL	Server™.	Obtaining	a	SQL-DMO	Table	object	referencing	a
specific	table	can	be	done	with	the	following	syntax:

Set	oTable	=	oDatabase.Tables("Employees")

The	SQLServer	object	forms	the	trunk	of	the	SQL-DMO	object	tree.	Three
main	branches	are	visible	in	the	tree:

Objects	implemented	as	properties	of	the	Database	object	implement
SQL	Server	database	construction	and	maintenance	tasks.

Objects	implemented	as	properties	of	the	JobServer	object	implement
SQL	Server	Agent	job,	operator,	and	alert	administration.

Objects	implemented	as	properties	of	the	Replication	object	implement
transactional,	snapshot,	and	merge	replication	publication	and
subscription	construction	and	maintenance.

SQL-DMO

Developing	SQL-DMO	Applications	Using	Visual
Basic
When	using	an	OLE	Automation	controller,	such	as	Microsoft®	Visual	Basic®,
as	a	SQL-DMO	application	development	tool,	you	should	indicate	that	the
application	references	the	SQL-DMO	object	library.	A	specific	OLE	Automation
controller	defines	which	object	library	reference	methods	it	supports.

For	example,	using	the	Visual	Basic	Project	menu	item	References,	you	can
indicate	that	SQL-DMO	will	be	used	by	the	project.	When	you	indicate	that	a
specific	object	library	is	referenced,	Visual	Basic	can	use	OLE	Automation	to
query	the	object	library's	type	library	for	more	information	about	objects
contained	in	the	library.	Visual	Basic	uses	type	library	data	to	both	enrich	the
development	experience	and	optimize	the	executable	application.

When	an	OLE	Automation	controller	can	support	an	object	library	reference	at
the	application	or	project	level,	it	is	recommended	that	you	use	the	feature.
Though	the	level	of	programming	assistance	varies	from	controller	to	controller,
all	OLE	Automation	controllers	can	use	the	object	library	reference	to	optimize
the	executable	application.	Making	the	controller	aware	of	the	SQL-DMO
library	at	the	earliest	opportunity	allows	it	to	provide	you	with	the	most	efficient
SQL-DMO	application.

For	more	information	about	support	for	add-in	object	libraries,	see	the	OLE
Automation	controller	documentation.

SQL-DMO

Object	Creation
An	OLE	Automation	controller	provides	at	least	one	mechanism	for	creating	an
instance	of	an	object.	Creating	a	SQL-DMO	object,	specifically	an	instance	of	a
SQLServer	object,	is	part	of	almost	any	SQL-DMO	application.

OLE	object	creation	can	be	a	resource-intensive	process.	It	is	recommended	that
you	consider	the	costs	of	object	creation	for	an	application.

All	OLE	Automation	controllers	provide	a	function	that	creates	an	instance	of	a
specified	object.	The	Microsoft®	Visual	Basic®	or	Microsoft	ActiveX®	script
function	is	CreateObject.	CreateObject	has	a	single	argument	that	identifies
the	OLE	object	by	application	identifier	and	object	class	name.	The	SQL-DMO
application	identifier	is	SQLDMO,	and	the	following	example	illustrates
creating	an	instance	of	a	Database	object:

Dim	oDatabase
Set	oDatabase	=	CreateObject	("SQLDMO.Database")

Using	CreateObject	does	not	require	an	application	or	project	level	reference	to
the	SQL-DMO	object	library.	All	information	necessary	for	object	creation	is
contained	in	the	function's	single	argument.

CreateObject	represents	the	least	efficient	method	for	object	creation	and	use
and	should	be	used	only	when	no	other	alternative	exists.	When	you	use	the
Visual	Basic	project	reference	method	to	indicate	use	of	the	SQL-DMO	object
library,	the	Visual	Basic	keyword,	New,	can	be	used	to	create	an	instance	of	a
SQL-DMO	object.	For	example:

Dim	oDatabase	as	SQLDMO.Database
Set	oDatabase	=	New	SQLDMO.Database

Or

Dim	oDatabase	as	New	SQLDMO.Database

When	the	New	keyword	is	used,	the	Visual	Basic	application	is	built	so	that
object	creation	is	accomplished	in	the	most	optimal	fashion.	Further,	the	Visual

Basic	compiler	can	ensure	that	object	references,	such	as	those	required	to	get	or
set	property	values,	are	resolved	efficiently.

SQL-DMO

Properties	Collection
OLE	Automation	controllers,	such	as	Microsoft®	Visual	Basic®,	commonly
expose	properties	using	an	object.	Visual	Basic,	Visual	Basic	for	Applications,
and	Microsoft	ActiveX®	implement	a	Property	object	and	a	containing
Properties	collection.	When	using	the	Property	object	and	Properties
collection,	the	application	can	retrieve	information	about	SQL-DMO	object
properties.

Like	any	other	OLE	Automation	objects,	the	Property	object	and	Properties
collection	expose	properties	and	methods.	For	example,	Name,	Value,	and	Type
are	all	properties	of	a	Property	object.	Count	is	a	property	of	the	Properties
collection,	and	the	collection	exposes	the	Item	method.

For	more	information	about	the	Property	object	and	the	Properties	collection,
see	the	OLE	Automation	controller	documentation.

For	a	detailed	example	of	the	Properties	collection	and	its	use,	see	the	SQL-
DMO	Visual	Basic	sample	Explore.

SQL-DMO

SQL-DMO	Constants
SQL-DMO	constants,	implemented	as	enumerated	data	types,	are	visible
through	the	type	library.	When	constants	are	made	visible	in	this	fashion,
automation	controllers	providing	syntax	completion	enrich	the	development
experience	by	providing	available	choices	from	an	enumerated	type.

Though	the	names	of	SQL-DMO	constants	can	be	quite	long	and	can	represent	a
significant	portion	of	automation	script,	consider	using	the	constants	when
possible.	Descriptive	constant	names	are	one	tactic	used	to	make	self-
documenting	code	a	reality.

For	example,	these	two	statements	accomplish	exactly	the	same	task.

oSchedule.FrequencyInterval	=	42

oSchedule.FrequencyInterval	=	(SQLDMOWeek_Monday	Or	_
				SQLDMOWeek_Wednesday	Or	SQLDMOWeek_Friday)

SQL-DMO

Handling	SQL-DMO	Events
Some	SQL-DMO	objects	raise	events.	For	example,	the	Backup	object	raises
events	indicating	a	percent	of	the	operation	is	complete,	that	a	specified	media	is
full	and	requires	operator	action	to	provide	an	empty	media,	and	that	backup	is
done.	Microsoft®	Visual	Basic®	implements	the	keyword,	WithEvents,	on
object	variable	dimensioning	statements	to	enable	application	handling	of	SQL-
DMO	events.

WithEvents	imposes	restrictions	on	object	dimensioning.	An	object	variable
allowing	event	handling	must	be	declared	within	an	object	module,	such	as	that
associated	with	a	Visual	Basic	form.	Further,	WithEvents	restricts	the	use	of	the
keyword,	New,	disallowing	its	use	for	shorthand	object	dimensioning	and
creation.	This	Visual	Basic	statement	will	return	an	error:

Private	WithEvents	oBackup	as	New	SQLDMO.Backup

Object	dimensioning	must	be	accomplished	in	a	separate	step,	as	in:

Private	WithEvents	oBackup	as	SQLDMO.Backup
Set	oBackup	=	New	SQLDMO.Backup

When	a	SQL-DMO	application	indicates	that	it	will	handle	events	raised	by	an
instance	of	a	SQL-DMO	object,	the	application	must	supply	subroutines	to
handle	every	event	raised	by	the	object.	You	must	ensure	that	executable
creation	does	not	inadvertently	remove	subroutines	handling	an	event.

For	example,	an	application	may	want	to	respond	to	only	the	PercentComplete
event	of	the	Backup	object,	ignoring	the	Complete	and	NextMedia	events.	You
can	implement	the	Complete	and	NextMedia	handlers	using	a	single,	processor-
inexpensive	statement	as	shown	here:

Private	Sub	oBackup_Complete(ByVal	Message	As	String)
				Exit	Sub
End	Sub

Private	Sub	oBackup_NextMedia(ByVal	Message	As	String)

				Exit	Sub
End	Sub

You	can	then	handle	the	PercentComplete	event,	updating	a	progress	bar
control	on	a	form	as	shown	below:

Private	Sub	oBackup_PercentComplete(ByVal	Message	As	String,	ByVal	Percent	As	Long)
				frmBackup.ProgressBar.Value	=	Percent
End	Sub

The	SQL-DMO	Explore	sample	illustrates	handling	events	in	a	Visual	Basic
application.	For	more	information,	see	Explore.	For	more	information	about
Visual	Basic	support	for	events,	see	the	Visual	Basic	documentation.

Note		As	indicated	earlier,	Visual	Basic	allows	application	response	to	raised
events.	To	support	SQL-DMO	event	handling,	Visual	Basic	requires	that	the
project	reference	the	SQL-DMO	object	library.	Event	handling	is	not	supported
when	a	SQL-DMO	object	is	created	using	the	CreateObject	function.	Your
OLE	Automation	controller	may	impose	similar	restrictions.

SQL-DMO

Handling	SQL-DMO	Errors
Microsoft®	SQL	Server™	administration	can	be	a	complex	task.	Realistically,
an	administrative	application	guides	users,	streamlining	tasks	and	limiting	the
range	of	possible	errors.	Nonetheless,	errors	can	occur,	and	a	SQL-DMO
application	should	supply	error	handling	code	to	prevent	abnormal	termination.

Microsoft	Visual	Basic®	or	Microsoft	ActiveX®	scripts	support	error	traps
(error	handlers)	created	using	the	On	Error	statement.	SQL-DMO	supports	the
Visual	Basic	Err	object,	allowing	application	error	handlers	to	respond
intelligently	to	errors	raised.

Note		Error	handling	in	your	OLE	Automation	controller	may	differ	from	that
described	earlier.	For	more	information	about	error	handling,	see	the	OLE
Automation	controller	documentation.

SQL-DMO

Developing	SQL-DMO	Applications	Using	C	or	C++
A	SQL-DMO	application	built	using	C	or	C++	follows	the	same	general
guidelines	as	any	application	using	a	COM	object	library.	The	application	will:

Initialize	class	identifiers	as	part	of	application	construction.

Initialize	COM	on	application	start.

Use	the	SQL-DMO	object	library	during	application	execution.

Free	COM	on	application	exit.

Initializing	class	identifiers	is	performed	one	time,	at	global	scope,	for	an
application	unit	(.exe	or	.dll).	Use	the	supported	#include	<Initguid.h>	method
for	identifier	initialization,	as	in:

#include	<initguid.h>
#include	<sqldmoid.h>
//	Other	includes,	such	as	sqldmo.h

When	initializing	class	identifiers,	read-only	data,	in	this	case,	SQL-DMO
globally	unique	identifiers	(GUIDs)	is	added	to	your	application	unit.	Other
modules,	including	Sqldmoid.h,	are	not	initialized.	Those	modules	contain
declarations,	resolved	by	the	linker,	for	data	external	to	the	module.

Errors	in	SQL-DMO	class	identifier	initialization	are	reported	as	linker	errors.	If
an	unresolved	external	symbol	error	occurs	on	application	unit	linking,	the	class
identifiers	have	not	been	initialized.	Include	Initguid.h	in	a	likely	module	in	your
application	unit.	During	linking,	if	you	receive	a	multiply-defined	symbol	error
with	a	SQL-DMO	symbol	specified,	then	SQL-DMO	class	identifiers	have	been
initialized	more	than	one	time.	Remove	the	initialization	from	all	modules	but
one.

COM	initialization	is	performed	through	any	of	a	number	of	mechanisms.	For
some	applications,	the	CoInitialize	function	is	used.	Other	applications,	for

example,	applications	using	compound	document	support	or	other	functions	of
the	OLE	library,	use	OleInitialize,	which	itself	calls	CoInitialize.

Remember	that	initializing	COM	can	fail.	If	COM	initialization	fails,	SQL-DMO
is	unavailable.	An	application	should	be	built	to	handle	this	abnormal	condition
gracefully.

The	functions	CoUninitialize	and	OleUninitialize	free	COM.	When	using
CoInitialize	to	initialize	COM,	use	CoUninitialize	to	free	COM.	Likewise,	use
OleUninitialize	to	free	OLE	and	COM	when	OleInitialize	is	used	by	the
application.	For	example:

BOOL	OnInitInstance()
				{
				m_bCOMAvailable	=	SUCCEEDED(OleInitialize(NULL));
				//	Other	initialization....
				return	(TRUE);
				}

				//	The	remainder	of	the	application	uses	SQL-DMO.

void	OnExitInstance()
				{
				if	(m_bCOMAvailable)
								OleUninitialize();

				//	Other	dynamic	resource	freeing....
				}

Application	development	frameworks	may	support	other,	easy	to	use	methods.
For	example,	the	MFC	function	AfxOleInit	handles	both	OLE	and	COM
initialization.	Freeing	COM	and	OLE	is	performed	by	framework	code	included
as	your	application	is	built,	so	there	is	no	need	to	free	COM	explicitly	when
using	MFC	AfxOleInit.

SQL-DMO

Objects,	References,	and	Reference	Counting
Any	COM	application	receives	an	object	reference	through	which	it	controls	an
instance	of	a	SQL-DMO	object.	This	is	true	regardless	of	the	application
development	tool.

COM	defines	reference	counting	as	the	mechanism	for	COM	server-created
object	lifetime	management.	When	a	COM	client	application	receives	an	object
reference,	the	reference	count	on	the	object	instance	is	implicitly	incremented.
When	the	COM	client	is	finished	with	the	object	reference,	it	decrements	the
reference	count	using	the	Release	function.	When	the	reference	count	is	zero,
the	COM	server	may,	at	its	discretion,	free	resources	used	to	implement	the
object	instance.

When	using	an	OLE	Automation	controller,	such	as	Microsoft®Visual	Basic®,
the	controller	generally	maintains	references	and	reference	counts	as	directed	by
the	scope	of	the	variable	referencing	the	object.	For	example,	this	Visual	Basic
subroutine	shows	an	application	receiving	a	reference	to	a	Databases	collection,
and	references	to	multiple	SQL-DMO	Database	and	OLE	BSTR	objects:

Private	Sub	ListDatabases(oSQLServer	as	SQLDMO.SQLServer)
				Dim	oDatabase	as	SQLDMO.Database
				For	Each	oDatabase	in	oSQLServer.Databases
								lstDatabases.AddItem	oDatabase.Name
				Next	oDatabase
End	Sub

No	reference	is	ever	released	explicitly	by	the	developer.	Instead,	Database
object	references	are	released	as	the	object	variable	is	reassigned	in	the	For	Each
loop.	The	reference	maintained	on	the	Databases	collection	and	the	last
reference	obtained	on	a	Database	object	in	the	collection	are	released	as	the
variables	go	out	of	scope	with	the	End	Sub	statement.	The	OLE	BSTR	object
references	are	hidden,	and	handled,	even	more	effectively.

The	C/C++	application	developer	must	be	aware	of	and	control	reference	counts
as	necessary.	When	an	object	reference	is	received	from	the	SQL-DMO	library,
the	application	implicitly	increases	the	reference	count	on	an	instance	of	the

SQL-DMO	object,	as	shown	here:

void	CDlgSelectDatabase::GetDatabases(LPSQLDMOSERVER	pServer)
				{
				LPSQLDMODATABASE				pDatabase;
				BSTR																bstrDBName;
				LONG																nDatabase;
				LONG																nDatabases;

				HRESULT													hr;

				if	(FAILED(hr	=	pServer->GetDatabaseCount(&nDatabases)))
								return;

				for	(nDatabase	=	0;	nDatabase	<	nDatabases	&&	SUCCEEDED(hr);
								nDatabase++)
								{
								pDatabase	=	NULL;
								bstrDBName	=	NULL;

								//	Getting	the	next	Database	object	from	the	collection
								//	increases	the	client	initiated	reference	count	by	one.
								hr	=	pServer->GetDatabaseByOrd(nDatabase,	&pDatabase);

								//	Getting	a	string	back	from	SQL-DMO	is	also	getting	a
								//	reference	on	an	object.	Be	sure	to	release	it.
								if	(SUCCEEDED(hr))
												hr	=	pDatabase->GetName(&bstrDBName);

								if	(SUCCEEDED(hr))
												m_listboxDatabases->AddString(bstrDBName);

								if	(bstrDBName	!=	NULL)
												SysFreeString(bstrDBName);

								if	(pDatabase	!=	NULL)
												pDatabase->Release();
								}
				}

For	the	C++	developer,	SQL-DMO	defines	in	Sqldmo.h	the	scope-aware,
template	classes	CTempOLERef	and	CTempBSTR	that	can	simplify
development.

See	Also

CTempBSTR

CTempOLERef

SQL-DMO

Object	Creation
For	applications	built	with	C/C++,	use	COM	functions	to	create	an	object
instance.	Choose	the	method	most	suited	to	the	application	to	create	an	instance
or	instances.	Use	CoCreateInstance	when	a	single	object	instance	is	required.
For	example:

HRESULT													hr;
LPSQLDMOSERVER						pSQLServer;
hr	=	CoCreateInstance(CLSID_SQLDMOServer,	NULL,
								CLSCTX_INPROC_SERVER,	IID_ISQLDMOServer,	(void**)	&pSQLServer);

				//	Do	something	with	the	object,	then	release	the	reference.

pSQLServer->Release();

For	applications	requiring	multiple	instances	of	the	same	object,	consider	using	a
class	factory	interface	on	the	SQL-DMO	object	library	to	optimize	object
creation.	For	example:

HRESULT	CDlgColumns::MakeColumns(UINT	nCols,	LPSQLDMOCOLUMN**	ppColumns)
				{
				LPSQLDMOCOLUMN*	apColumns;
				HRESULT									hr	=	NOERROR;
				LPCLASSFACTORY		pIClassFactory;
				UINT												nCol;

				*ppColumns	=	NULL;

				apColumns	=	new	LPSQLDMOCOLUMN[nCols];
				if	(apColumns	==	NULL)
								return	(E_OUTOFMEMORY);

				memset(apColumns,	0,	nCols	*	sizeof(LPSQLDMOCOLUMN));

				hr	=	CoGetClassObject(CLSID_SQLDMOColumn,	CLSCTX_INPROC_SERVER,
								NULL,	IID_IClassFactory,	(void**)	&pIClassFactory);

				if	(FAILED(hr))
								{
								//	Handle	error....
								return	(hr);
								}

				for	(nCol	=	0;	nCol	<	nCols	&&	!FAILED(hr);	nCol++)
								{
								hr	=	pIClassFactory->CreateInstance(NULL,	IID_IUnknown,
												(void**)	&(apColumns[nCol]));
								}

				if	(FAILED(hr))
								{
								//	Handle	error,	and	clean	any	bad	items.

								for	(nCol	=	0;	nCol	<	nCols	&&	apColumns[nCol]	!=	NULL;	nCol++)
												(apColumns[nCol])->Release();

								delete	[]	apColumns;
								apColumns	=	NULL;
								}

				pIClassFactory->Release();

				*ppColumns	=	apColumns;
				return	(hr);
				}

Remember,	creating	an	instance	of	an	object	increases	the	reference	count	on	the
object.	You	must	release	this	initial	reference	regardless	of	the	use	of	the	object.
For	example,	adding	an	array	of	created	Column	objects	to	the	Columns
collection	of	a	new	Table	object	does	nothing	to	the	reference	your	application
maintains	on	each	Column	object.	For	example:

LPSQLDMOTABLE			pTable;

const	UINT						NCOLS	=	5;
LPSQLDMOCOLUMN*	apColumns;
UINT												nCol;
HRESULT									hr	=	NOERROR;

if	(SUCCEEDED(MakeColumns(NCOLS,	&apColumns)))
				{
				hr	=	CoCreateInstance(CLSID_SQLDMOTable,	NULL,
								CLSCTX_INPROC_SERVER,	IID_ISQLDMOTable,	(void**)	&pTable);

				//	Defining	columns	using	the	array	of	Column	objects	not	shown.

				//	Use	the	array	of	Column	objects	to	define	the	new	table.
				for	(nCol	=	0;	nCol	<	NCOLS	&&	SUCCEEDED(hr);	nCol++)
								hr	=	pTable->AddColumn(apColumns[nCol]);

				//	Release	references	on	each	Column	object.
				for	(nCol	=	0;	nCol	<	NCOLS;	nCol++)
								(apColumns[nCol])->Release();

				delete	[]	apColumns;

				//	Release	the	reference	on	the	Table	object.
				pTable->Release();
				}

See	Also

Object	Class	Identifiers	and	Type	Definitions

SQL-DMO

Member	Functions	(Properties	and	Methods)
All	SQL-DMO	properties	and	methods	are	exposed	as	object	member	functions
for	the	C/C++	application	developer.

SQL-DMO	properties	are	implemented	using	either	one	or	two	member
functions	depending	on	the	modifiability	of	the	property	value.	Read-only	and
write-only	properties	are	implemented	in	a	single	function,	a	get	or	set.
Read/write	properties	are	exposed	through	both	a	get	and	a	set	function.

SQL-DMO	property-exposing	functions	are	consistently	named.	When	a
property	supports	value	retrieval,	the	name	of	the	member	function	exposing	the
property	is	formed	from	the	word,	Get,	and	the	property	name.	When	a	property
supports	value	modification,	the	name	of	the	member	function	is	formed	from
the	word,	Set,	and	the	property	name.	For	example,	the	functions	implementing
the	read/write	property	LoginTimeout	on	the	SQLServer	object	are
GetLoginTimeout	and	SetLoginTimeout.

As	with	any	COM	function,	SQL-DMO	object	member	functions	that	expose
properties	return	an	HRESULT.	A	property	value	is	retrieved	through	an	indirect
pointer.	For	example:

LPSQLDMOSERVER		pServer;
long												lLoginTimeout;

HRESULT									hr;

hr	=	pServer->GetLoginTimeout(&lLoginTimeout);
if	(FAILED(hr))
				{
				//	Handle	get	property	error.
				}

SQL-DMO	methods	are	exposed	in	the	same	fashion.	For	example,	the
EnumJobs	method	of	the	JobServer	object	lists	those	SQL	Server	Agent	jobs
matching	the	criteria	specified	in	the	filter	object	as	shown	here:

LPSQLDMOJOBSERVER							pJobServer	=	NULL;
LPSQLDMOQUERYRESULTS				PQR	=	NULL;
LPSQLDMOJOBFILTER							pJobFilter	=	NULL;
HRESULT																	hr;

//	Create	and	connect	object	instance	pSQLServer	not	shown.
hr	=	pSQLServer->GetJobServer(&pJobServer);

if	(SUCCEEDED(hr))
				hr	=	pJobServer->GetJobFilter(&pJobFilter);

//	Filter	for	Microsoft	Search,	full-text	indexing	jobs.
if	(SUCCEEDED(hr))
				hr	=	pJobFilter->SetCategory(L"Full-Text");

//	Get	the	job	list...
if	(SUCCEEDED(hr))
				hr	=	pJobServer->EnumJobs(&pQR,	pJobFilter);

if	(SUCCEEDED(hr))
				//	...display	the	results	of	job	enumeration.

if	(pQR	!=	NULL)
				pQR->Release();

if	(pJobFilter	!=	NULL)
				pJobFilter->Release();

if	(pJobServer	!=	NULL)
				pJobServer->Release();

Many	SQL-DMO	method-implementing	member	functions	define	logical
default	values	for	the	C++	using	application	developer.	For	more	information

about	a	specific	property	or	method	member	function,	see	Properties	or
Methods.

SQL-DMO

SQL-DMO	Strings
SQL-DMO	uses	the	OLE	BSTR	object	to	return	strings	to	the	client	application.
By	definition,	an	OLE	BSTR	object	is	composed	of	Unicode	characters.

Further,	when	an	OLE	BSTR	object	is	returned,	the	reference	count	on	the
string-implementing	resource	is	implicitly	incremented.	String	references	are
released	using	the	COM	SysFreeString	function.	For	example:

LPSQLDMODATABASE				pDatabase;
BSTR																bstrDBName	=	NULL;

HRESULT													hr;

//	Getting	a	string	back	from	SQL-DMO	is	also	getting	a
//	reference	on	an	object.	Be	sure	to	release	it.
hr	=	pDatabase->GetName(&bstrDBName);

if	(SUCCEEDED(hr))
				SysFreeString(bstrDBName);

When	setting	a	SQL-DMO	property,	or	providing	a	string	as	a	method	argument,
be	sure	to	use	Unicode	character	strings.	A	number	of	macros	exist	to	aid	in
coding	constant	values.	For	example:

LPSQLDMOCOLUMN		pColumn;
WCHAR*										szColumnName	=	L"EmployeeID";			//	Use	L	macro	to	force
																																																//	Unicode	character
																																																//	string.	Could	use
																																																//	OLESTR()	macro	as
																																																//	well.

HRESULT	hr;

hr	=	CoCreateInstance(CLSID_SQLDMOColumn,	NULL,
								CLSCTX_INPROC_SERVER,	IID_ISQLDMOColumn,	(void**)	&pColumn);
if	(SUCCEEDED(hr))
				pColumn->SetName(szColumnName);

When	developing	an	application	for	operating	systems	that	do	not	provide	native
Unicode	support,	such	as	Microsoft®	Windows®	95,	you	need	to	convert	strings
as	required	to	ensure	that	the	correct	character	set	is	used.	The	Windows	API
functions	MultiByteToWideChar	and	WideCharToMultiByte	provide
conversion	between	ANSI	or	other	multibyte	character	sets	and	Unicode.	If
using	MFC,	objects	of	the	CString	class	can	be	used	to	convert	strings	easily
from	ANSI	to	Unicode	and	vice	versa.

SQL-DMO

SQL-DMO	Properties	Collection
The	Properties	collection	and	the	Property	object	are	implemented	for	OLE
Automation	controllers.	The	C/C++	SQL-DMO	application	has	access	to	these
objects	only	through	automation	interfaces,	such	as	those	that	query	the	type
library.

Through	querying	the	SQL-DMO	type	library,	traversing	object	definitions	and
interpreting	SQL-DMO	member	functions	exposed	as	properties	or	methods	are
available	to	the	application	developer.	These	topics	are	covered	in	other
references	and	are	therefore	considered	outside	the	scope	of	this	documentation.

For	more	information,	see	the	Microsoft	Platform	SDK.

SQL-DMO

SQL-DMO	Data	Types
Type	definitions	included	in	Sqldmo.h,	or	in	header	files	on	which	Sqldmo.h
depends,	provide	the	application	with	types	defined	by	the	Microsoft®	Platform
SDK.	With	the	exception	of	OLE	date	data	type	handling,	there	is	nothing
unique	about	SQL-DMO	data	types.

Dates
For	the	C/C++	developer,	SQL-DMO	does	not	directly	support	a	data	type
exposing	a	date	and/or	time	value.	Object	properties	returning	an	OLE	date	data
type	to	an	application	developed	using	an	OLE	Automation	controller	will,
instead,	return	a	packed	long	integer	to	the	C/C++	application.

For	example,	the	LastOccurrenceDate	property	of	the	Alert	object	exposes	a
date	value	to	a	Microsoft	Visual	Basic®/ActiveX®	script	application.	The	Alert
object	member	functions	implementing	LastOccurrenceDate	are
GetLastOccurrenceDate	and	SetLastOccurrenceDate	with	the	following
prototypes:

HRESULT	GetLastOccurrenceDate(LPLONG	pRetVal);

HRESULT	SetLastOccurrenceDate(long	NewValue);

SQL-DMO	does	not	specify	a	function	argument	type	wide	enough	to	capture
the	precision	expressed	in	an	OLE	date.	Instead,	the	member	functions	extract
and	set	only	the	date	portion	of	a	date	and	time	value.

For	C/C++,	SQL-DMO	addresses	the	date/time	data	type	width	problem	by
implementing	a	group	of	member	functions.	One	member	function	pair	extracts
the	date	portion	of	the	property	value	and	a	second	extracts	the	time	portion.	For
read/write	properties,	a	second	function	pair	implements	setting	the	date	value.

When	SQL-DMO	uses	a	scaled	long	integer	to	represent	a	date,	the	integer	is
built	as	a	sum	of	the	year	scaled	by	10000,	the	month	scaled	by	100,	and	the	day.
For	example,	the	date	April	19,	1997	is	represented	by	the	long	integer	value
19970419.

When	SQL-DMO	uses	a	scaled	long	integer	to	represent	a	time,	the	integer	is

built	as	a	sum	of	the	hour	scaled	by	10000,	the	minute	scaled	by	100,	and	the
seconds.	The	time	value	uses	a	24-hour	clock.	For	example,	the	time	1:03:09
P.M.	is	represented	by	the	long	integer	value	130309.

SQL-DMO

Handling	SQL-DMO	Events
The	SQL-DMO	Backup,	BulkCopy,	Replication,	Restore,	SQLServer,	and
Transfer	objects	are	connectable	COM	objects,	supporting	callback	to	the	client
application.

For	connectable	objects,	COM	defines	the	responsibilities	for	servers	and	clients.
A	connectable	object	exposes	the	IConnectionPointContainer	interface,
through	which	the	client	obtains	the	IConnectionPoint	interface.	The	client
implements	functions	to	handle	callbacks	from	the	server,	called	a	sink.	Using
the	IConnectionPoint	interface,	the	client	notifies	the	server	of	its	ability	to
handle	callbacks,	providing	its	sink	implementation	as	an	argument.

The	client-implemented	sink	is	a	COM	object.	As	with	any	COM	application
development	task,	implementing	a	sink	for	any	SQL-DMO	connectable	object	is
fairly	painless	when	using	C++.	The	client	application	defines	a	class,	inheriting
from	a	defined	SQL-DMO	sink	interface	definition,	then	implements	members
to	handle	the	callbacks	of	interest.	The	example	below	illustrates	class	definition
and	partial	inline	implementation	for	a	COM	object	that	can	be	connected	to	a
SQLServer	object	instance:

class	CSQLServerSink	:	public	ISQLDMOServerSink
{
public:
				CSQLServerSink();

				~CSQLServerSink()
								{	;	}

				//	IUnknown	interface	on	all	COM	objects.
				STDMETHOD(QueryInterface)	(THIS_	REFIID	riid,	LPVOID*	ppvObj);

				//	AddRef	has	an	inline	implementation.
				STDMETHOD_(ULONG,	AddRef)	(THIS)
								{return	(++m_uiRefCount);}

				STDMETHOD_(ULONG,	Release)	(THIS);

				//	Sink	properties	and	methods.	Implement	CommandSent,
				//	ConnectionBroken,	QueryTimeout	and	RemoteLoginFailed	as	no
				//	operation.
				STDMETHOD(CommandSent)	(THIS_	SQLDMO_LPCSTR	strSQL)
								{return	(NOERROR);}

				STDMETHOD(ConnectionBroken)	(THIS_	SQLDMO_LPCSTR	strMsg,
								LPBOOL	pbRetry)
								{return	(NOERROR);}

				STDMETHOD(QueryTimeout)	(THIS_	SQLDMO_LPCSTR	strMsg,
								LPBOOL	pbContinue)
								{return	(NOERROR);}

				STDMETHOD(RemoteLoginFailed)	(THIS_	long	lMsgSeverity,
								long	lMsgNumber,	long	MsgState,	SQLDMO_LPCSTR	strMsg)
								{return	(NOERROR);}

				//	Code	implementing	sink	method	ServerMessage	is	shown	elsewhere.
				STDMETHOD(ServerMessage)	(THIS_	long	lMsgSeverity,	long	lMsgNumber,
								long	MsgState,	SQLDMO_LPCSTR	strMsg);

private:
				//	Keeping	track	of	ourselves.
				UINT												m_uiRefCount;

				//	Used	to	format	status	messages	from	handled	ServerMessage	event.
				TCHAR											m_acMessage[2048];
};

Implementing	the	QueryInterface	and	Release	functions	is	done	in	standard
fashion	as:

HRESULT	STDMETHODCALLTYPE	CSQLServerSink::QueryInterface(
				THIS_	REFIID	riid,	LPVOID*	ppvObj)
				{
				if	((riid	==	IID_IUnknown)	||	(riid	==	IID_IWSQLDMOServerSink))
								{
								AddRef();
								*ppvObj	=	this;

								return	(NOERROR);
								}

				return	(E_NOINTERFACE);
				}

and:

ULONG	STDMETHODCALLTYPE	CSQLServerSink::Release(THIS)
				{
				--m_uiRefCount;

				if	(m_uiRefCount	==	0)
								delete	this;

				return	(m_uiRefCount);
				}

Reference	counting	on	COM	objects	implies	a	constructor	such	as	the	following:

CSQLServerSink::CSQLServerSink()
				{
				m_uiRefCount	=	0;
				}

And	finally,	the	implementation	of	the	function	handling	the	ServerMessage
callback.	The	example	shows	using	a	message	box	to	display	the	status	messages
received	by	the	application:

HRESULT	STDMETHODCALLTYPE	CSQLServerSink::ServerMessage
				(
				THIS_	long	lMsgSeverity,
				long	lMsgNumber,
				long	MsgState,
				SQLDMO_LPCSTR	szMsg
)
				{
#ifdef	UNICODE
				swprintf(m_acMessage,	L"%s",	szMsg);
#else
				sprintf(m_acMessage,	"%S",	szMsg);
#endif

				MessageBox(NULL,	m_acMessage,	_T("SQLServer	Status	Message"),
								MB_OK	|	MB_ICONINFORMATION);

				return	(NOERROR);
				}

With	the	class	defined	and	its	members	implemented,	an	object	instance	of	the
class	can	be	connected	to	a	SQLServer	object	instance,	as	shown	here:

BOOL	CSQLServerHandler::InstallConnectionPoint(
				LPSQLDMOSQLSERVER	pSQLServer)
				{
				LPCONNECTIONPOINTCONTAINER		piCPContainer	=	NULL;
				HRESULT													hr;
				CSQLServerSink*					pSQLServerSink;

				//	Create	an	instance	of	the	SQLServer	sink.

				pSQLServerSink	=	new	CSQLServerSink;

				if	(pSQLServerSink	!=	NULL)
								{
								hr	=	pSQLServer->QueryInterface(
												IID_IConnectionPointContainer,	(void**)	&piCPContainer);

								if	(SUCCEEDED(hr))
												{
												//	m_pCP	is	a	CSQLServerHandler	member	variable	(a	pointer
												//	to	an	IConnectionPoint).	The	connection	point	will	be
												//	used	both	to	advise	the	SQLServer	object	of	event
												//	handling	and	to	terminate	event	handling	later.	For	that
												//	reason,	the	variable	is	not	local	in	scope	to	this
												//	function.
												hr	=	piCPContainer->FindConnectionPoint(
																IID_ISQLDMOServerSink,	&m_pCP);

												if	(SUCCEEDED(hr))
																m_pCP->Advise(pSQLServerSink,	&m_dwCookie);

												piCPContainer->Release();
												}
								}

				//	If	anything	fails,	delete	the	instance	of	CSQLServerSink	that
				//	was	created.	Otherwise,	the	self-destruct	mechanism	in
				//	CSQLServerSink::Release	will	handle	object	destruction.
				if	(FAILED(hr))
								{
								hrDisplayError(hr);
								
								delete	pSQLServerSink;

								}

				return	(SUCCEEDED(hr));
				}

When	an	application	connects	to	a	connectable	object,	it	becomes	responsible	for
breaking	that	connection	when	no	longer	required.	An	example	is	shown	here:

void	CSQLServerHandler::ReleaseConnectionPoint()
				{
				if	(m_dwCookie	!=	_BAD_COOKIE)
								m_pCP->Unadvise(m_dwCookie);

				if	(m_pCP	!=	NULL)
								{
								m_pCP->Release();
								m_pCP	=	NULL;
								}
				}

Note		The	details	of	COM	connectable	object	implementation	are	beyond	the
scope	of	this	documentation.	For	more	information	about	COM	connectable
objects,	IConnectionPointContainer,	and	IConnectionPoint,	see	a	reliable
COM/OLE	reference.

SQL-DMO

Handling	SQL-DMO	Errors
At	the	highest	level,	a	SQL-DMO	object	member	function	succeeds	or	fails.
Every	COM	function	returns	an	HRESULT	value	indicating	success	or	failure.
The	operating	system	reserves	ranges	of	function	return	values	for	COM	and
OLE	errors	and	defines	specific	error	conditions,	such	as	success	and	success
with	additional	information.

All	SQL-DMO	interfaces	support	the	IErrorInfo	interface.	With	an	instance	of
any	SQL-DMO	object,	QueryInterface	for	an	ISupportErrorInfo	interface
returns	a	valid	interface	pointer,	and
ISupportErrorInfo::InterfaceSupportsErrorInfo	returns	NOERROR.
Therefore,	the	COM	GetErrorInfo	function	returns	an	IErrorInterface
reference	for	any	error	raised	by	SQL-DMO	(HRESULT	is	greater	than
CO_E_LAST),	and	the	SQL-DMO	application	can	avoid	querying	for
ISupportErrorInfo.

The	SQL-DMO	errors	enumerated	data	type	SQLDMO_ERROR_TYPE	is
defined	as	groups	of	related	errors.	The	macro	SQLDMO_ECAT_MASK,
defined	in	Sqldmo.h,	can	be	used	to	determine	the	error	category	allowing	error
handling	based	on	type	of	error	returned.	For	example,
SQLDMO_ERROR_TYPE	defines
SQLDMO_ECAT_UNPRIVILEGEDLOGIN,	a	category	indicating	that	the
currently	connected	user	is	not	a	member	of	a	role	with	sufficient	privilege	to
perform	a	requested	action.	An	application	may	decide	to	branch	to
extraordinary	error	handling	code	when	receiving	errors	of	this	category.

SQL-DMO

SQL-DMO	Reference
SQL	Distributed	Management	Objects	(SQL-DMO)	is	a	collection	of	objects
encapsulating	Microsoft®	SQL	Server™	2000	database	and	replication
management.	SQL-DMO	Reference	contains	detailed	information	about	objects,
collections,	properties,	methods,	events,	constants,	and	sample	programs.

SQL-DMO

Objects
A	SQL-DMO	object	exposes	the	attributes	of	a	Microsoft®	SQL	Server™	2000
component.

Properties

Parent	Property UserData	Property
TypeOf	Property 	

Remarks
All	SQL-DMO	objects	expose	properties.	For	a	specific	instance	of	an	object,
the	properties	identify	a	specific	SQL	Server	component.	For	example,	the
SystemDatatype	object	with	a	Name	value	varchar	has	properties	that	define
the	SQL	Server	data	type	varchar.

Some	objects	expose	methods	that	act	on	a	component	as	directed	by	the
application.	For	example,	the	Script	method	of	a	StoredProcedure	object
creates	a	Transact-SQL	script	that	can	re-create	the	referenced	SQL	Server	stored
procedure.

Some	objects	support	events.	Events	communicate	from	the	SQL-DMO	object	to
the	application.	For	example,	the	PercentComplete	event	of	a	Backup	object
provides	notification	that	the	backup	operation	specified	has	reached	an
application-defined	point.

SQL-DMO

A

SQL-DMO

Alert	Object
The	Alert	object	represents	a	single	SQL	Server	Agent	alert.	Alerts	respond	to
either	specific	Microsoft®	SQL	Server™	2000	error	messages	or	SQL	Server
errors	of	a	specified	severity.

Properties

Category	Property JobID	Property
CountResetDate	Property JobName	Property
CountResetTime	Property LastOccurrenceDate	Property
DatabaseName	Property LastOccurrenceTime	Property
DelayBetweenResponses	Property LastResponseDate	Property
Enabled	Property LastResponseTime	Property
EventCategoryID	Property MessageID	Property
EventDescriptionKeyword	Property Name	Property
EventID	Property NotificationMessage	Property
EventSource	Property OccurrenceCount	Property
HasNotification	Property PerformanceCondition	Property
ID	Property Severity	Property
IncludeEventDescription	Property Type	Property	(Alert)

Methods

AddNotification	Method Remove	Method	(Objects)
BeginAlter	Method RemoveNotification	Method
CancelAlter	Method ResetOccurrenceCount	Method
DoAlter	Method Script	Method
EnumNotifications	Method UpdateNotification	Method

Refresh	Method 	

Remarks
You	can	use	the	Alert	object	to	create	and	manage	SQL	Server	Agent	alerts:

Create	an	alert	to	respond	to	a	specific	SQL	Server	error.

Change	the	properties	of	an	existing	alert	to	modify	its	behavior.

Change	the	notified	operators	on	an	instance	of	the	error	condition.

The	Name	property	of	an	Alert	object	uses	the	SQL	Server	data	type	sysname.
The	string	must	be	a	unique	value	for	each	Alert	object	in	the	Alerts	collection.

SQL	Server	does	not	allow	the	creation	of	more	than	one	alert	on	any	given	error
condition	or	severity	level.	More	than	one	alert	can	be	defined	on	a	specific
message	identifier;	however,	each	alert	defined	must	be	limited	in	scope	by
associating	the	alert	with	a	specific	database.

SQL	Server	alerts	are	enabled	by	default.	However,	an	alert	created	with	the
minimum	required	values	will	fire	no	notifications.	You	must	assign	operators	to
the	alert	by	using	the	AddNotification	method	of	the	Alert	or	Operator	object.

To	create	an	alert

1.	 Create	an	Alert	object.

2.	 Set	the	Name	property.

3.	 Set	the	response	type	for	the	alert	by	setting	the	value	of	the	Severity
property	or	the	MessageID	property.

4.	 Set	optional	properties	as	desired.	For	example,	set	the
DatabaseName	property	to	limit	the	alert's	action	to	a	specific

database,	or	use	the	AddNotification	method	to	add	operators	to	the
alert.

5.	 Add	the	Alert	object	to	the	Alerts	collection	of	a	connected
JobServer	object.

To	alter	an	existing	alert

1.	 Get	an	Alert	object	from	the	Alerts	collection	of	a	connected
JobServer	object.

2.	 Use	the	BeginAlter	method	to	mark	the	beginning	of	the	changes.

3.	 Set	the	Alert	object	properties	to	reflect	changes	in	alert	behaviors.

4.	 Use	the	DoAlter	method	to	submit	the	alert	changes	to	SQL	Server.

See	Also

Defining	Alerts

Operator	Object

JavaScript:hhobj_1.Click()

SQL-DMO

AlertSystem	Object
The	AlertSystem	object	represents	properties	and	behaviors	of	the	SQL	Server
Agent	alert	notification	for	all	defined	alerts.

Properties

FailSafeOperator	Property PagerCCTemplate	Property
ForwardAlways	Property PagerSendSubjectOnly	Property
ForwardingServer	Property PagerSubjectTemplate	Property
ForwardingSeverity	Property PagerToTemplate	Property
NotificationMethod	Property 	

Methods

BeginAlter	Method DoAlter	Method
CancelAlter	Method Refresh	Method

Remarks
The	AlertSystem	object	represents	properties	set	for	a	single	instance	of	SQL
Server	Agent.	There	is	a	single	AlertSystem	object	for	a	SQLServer	object,	and
new	AlertSystem	objects	cannot	be	created.

With	the	AlertSystem	object,	you	can:

Register	an	operator	for	fail-safe	response.

Change	the	look	of	address	lines	on	e-mail	and	pager	notices	sent	as
part	of	alert	notification.

To	change	the	alert	notification	behaviors	of	a	SQL	Server	Agent

1.	 Get	the	AlertSystem	object	from	the	JobServer	object	of	a	connected
SQLServer	object.

2.	 Use	the	BeginAlter	method	to	mark	the	start	of	changes	to	the	object
properties.

3.	 Change	property	values	to	reflect	changes	in	alert	notification
behavior.

4.	 Use	the	DoAlter	method	to	mark	the	end	of	changes	and	submit	them
to	the	SQL	Server	Agent.

See	Also

Defining	Operators

Managing	Events

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL-DMO

Application	Object
The	Application	object	represents	properties	of	SQL-DMO	objects	and	the	user
application.

Properties

BlockingTimeout	Property ODBCVersionString	Property
FullName	Property UseCurrentUserServerGroups

Property
GroupRegistrationServer	Property VersionBuild	Property
GroupRegistrationVersion	Property VersionMajor	Property
Name	Property VersionMinor	Property

Methods

ListAvailableSQLServers	Method Quit	Method

Remarks
The	Name	property	of	the	Application	object	cannot	be	set.	SQL-DMO	uses	the
version	information	structure	of	the	user	executable	file	or	dynamic-link	library
(DLL)	to	fill	this	value	when	the	version	information	structure	exists.

With	the	Application	object,	you	can:

Generate	a	list	of	available	instances	of	Microsoft®	SQL	Server™
2000.

Report	version	information	for	major	components	of	SQL-DMO.

Set	a	blocking	time-out	for	all	SQLServer	objects	created	in	the
application.

SQL-DMO

B

SQL-DMO

Backup	Object
The	Backup	object	defines	a	Microsoft®	SQL	Server™	2000	database	or	log
backup	operation.

Properties

Action	Property	(Backup) Initialize	Property
BackupSetDescription	Property MediaDescription	Property
BackupSetName	Property MediaName	Property
BlockSize	Property PercentCompleteNotification

Property
Database	Property Pipes	Property
DatabaseFileGroups	Property Restart	Property
DatabaseFiles	Property RetainDays	Property
Devices	Property SkipTapeHeader	Property
ExpirationDate	Property Tapes	Property
Files	Property TruncateLog	Property	(Backup)
FormatMedia	Property UnloadTapeAfter	Property

Methods

Abort	Method SQLBackup	Method
GenerateSQL	Method	(Backup,
Restore)

	

Events

Complete	Event PercentComplete	Event

NextMedia	Event 	

Remarks
With	the	Backup	object,	you	can:

Back	up	a	SQL	Server	database	or	database	transaction	log.

Generate	a	Transact-SQL	BACKUP	statement	defining	a	backup.

Monitor	a	backup	operation,	reporting	status	to	the	user.

For	SQL	Server,	a	database	delimits	the	largest	backup	unit.	Though	many
different	database	backup	images	can	be	maintained	on	any	single	medium,	a
backup	cannot	span	more	than	a	single	database.	By	default,	backup	operations
performed	with	the	Backup	object	back	up	a	complete	database.

SQL	Server	can	write	a	backup	to	one	of	four	media	types:	disk,	tape,	named
pipe,	or	a	proprietary	media	called	a	backup	device.	SQL	Server	supports	backup
striping.	A	striped	backup	is	one	directed	to	more	than	a	single	device.	When
striped,	a	backup	is	written	across	the	devices	in	equal	chunks.	Striping	is
supported	to	a	single	media	type	only.	That	is,	a	backup	can	be	written	to	two
tape	devices.	However,	SQL	Server	cannot	write	one-half	of	a	backup	to	a	tape
device,	and	the	other	half	to	a	disk.

At	a	minimum,	you	must	supply	values	for	a	backup	source	and	a	backup	target
when	using	the	Backup	object.	The	Database	property	specifies	the	backup
operation	source.	SQL-DMO	implements	supported	media	types	in	the	Backup
object	properties	Files,	Devices,	Pipes,	and	Tapes.	Use	one	media	type	property
to	specify	the	backup	operation	target.

To	perform	a	complete	database	backup

1.	 Create	a	new	Backup	object.

2.	 Set	the	Database	property,	naming	the	database	backed	up.

3.	 Set	a	media	property	to	name	the	target	device(s).

4.	 Call	the	SQLBackup	method.

In	many	installations,	complete	database	backup	is	not	a	viable	option.	The
Backup	object	offers	access	to	a	number	of	strategies	that	ensure	data	integrity
by	capturing	a	subset	of	the	database	image.

To	back	up	a	database	transaction	log

1.	 Create	a	new	Backup	object.

2.	 Set	the	Database	property,	naming	the	database	backed	up.

3.	 Set	the	Action	property	to	SQLDMOBackup_Log.

4.	 Set	a	media	property	to	name	the	target	device(s).

5.	 Call	the	SQLBackup	method.

To	perform	a	differential	backup

1.	 Create	a	new	Backup	object.

2.	 Set	the	Database	property,	naming	the	database	backed	up.

3.	 Set	the	Action	property	to	SQLDMOBackup_Incremental.

4.	 Set	a	media	property	to	name	the	target	device(s).

5.	 Call	the	SQLBackup	method.

To	back	up	specific	filegroups

1.	 Create	a	new	Backup	object.

2.	 Set	the	Database	property,	naming	the	database	backed	up.

3.	 Set	the	DatabaseFileGroups	property,	naming	the	filegroup(s)
providing	backup	source	data.

4.	 Set	a	media	property	to	name	the	target	device(s).

5.	 Call	the	SQLBackup	method.

To	back	up	specific	files

1.	 Create	a	new	Backup	object.

2.	 Set	the	Database	property,	naming	the	database	backed	up.

3.	 Set	the	Action	property	to	SQLDMOBackup_Files.

4.	 Set	the	DatabaseFiles	property,	naming	the	file(s)	providing	backup
source	data.

5.	 Set	a	media	property	to	name	the	target	device(s).

6.	 Call	the	SQLBackup	method.

Settings	for	any	other	Backup	object	properties	are	optional.	Use	the	optional
settings	when	conditions	require	extraordinary	processing.	For	example,	the
MediaName	and	MediaDescription	properties	provide,	primarily,	data	used	to
ensure	media	availability	for	tape	devices	and	are	applicable	when	the	backup
operation	defined	will	initialize	the	media.	For	more	information	about	property
applicability	and	use,	see	individual	property	documentation.

Note		The	Backup	object	is	compatible	with	instances	of	SQL	Server	2000	and
SQL	Server	version	7.0.	However,	the	Backup2	object	extends	the	functionality
of	the	Backup	object	for	use	with	features	that	are	new	in	SQL	Server	2000.

See	Also

Backup2	Object

SQL-DMO

Backup2	Object
The	Backup2	object	defines	a	Microsoft®	SQL	Server™	2000	database	or	log
backup	operation	and	extends	the	functionality	of	the	Backup	object.

Properties

MediaPassword	Property Password	Property
NoRewind	Property 	

Remarks
The	Backup2	object	extends	the	functionality	of	the	Backup	object	for	use	with
features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the	properties	and
methods	of	the	Backup	object.	With	the	Backup2	object,	you	can:

Retrieve	or	specify	a	Microsoft	SQL	Server	2000	backup	or	media	set
password.

The	properties	of	the	Backup2	object	may	not	be	compatible	with	instances	of
SQL	Server	version	7.0	or	earlier.	For	information	about	using	the	Backup2
object	in	an	application	that	also	runs	with	an	instance	of	SQL	Server	7.0,	refer
to	the	Remarks	section	for	specific	properties.	For	more	information,	see
Programming	Extended	SQL-DMO	Objects.

See	Also

Backup	Object

SQL-DMO

BackupDevice	Object
The	BackupDevice	object	represents	the	properties	of	a	Microsoft®	SQL
Server™	2000	backup	device.

Properties

DeviceNumber	Property Status	Property	(BackupDevice)
Name	Property SystemObject	Property
PhysicalLocation	Property Type	Property	(BackupDevice)
SkipTapeLabel	Property 	

Methods

ReadBackupHeader	Method
(BackupDevice)

Remove	Method	(Objects)

ReadMediaHeader	Method
(BackupDevice)

Script	Method	(BackupDevice
Object)

Remarks
SQL	Server	backup	devices	specify	the	behavior	of	specific	backup	media,
usually	tape.	Backup	devices	are	not	required	when	issuing	a	BACKUP	or
RESTORE	statement	and	are	not	required	by	the	Backup	object.

With	the	BackupDevice	object,	you	can:

Define	a	new	backup	device	for	a	server	running	SQL	Server.

Change	the	definition	of	an	existing	SQL	Server	backup	device.

The	Name	property	of	the	BackupDevice	object	must	match	the	definition	of
the	sysname	SQL	Server	data	type.

To	create	a	backup	device

1.	 Create	a	BackupDevice	object.

2.	 Set	the	Name	property.

3.	 Set	properties	that	define	the	behavior	or	use	of	the	device,	such	as	the
tape	label	skip	parameter	or	the	physical	location.

4.	 Add	the	BackupDevice	object	to	the	BackupDevices	collection	of	a
connected	SQLServer	object.

To	change	the	definition	of	an	existing	backup	device

1.	 Get	the	appropriate	BackupDevice	object	from	the	BackupDevices
collection	of	a	connected	SQLServer	object.

2.	 Set	properties	to	reflect	changes	in	behavior	or	use.	Changes	to
property	values	are	applied	to	the	referenced	SQL	Server	backup
device	as	they	are	made.

SQL-DMO

BulkCopy	Object
The	BulkCopy	object	represents	the	parameters	of	a	single	bulk	copy	command
issued	against	a	Microsoft®	SQL	Server™	2000	database.

Properties

CodePage	Property MaximumErrorsBeforeAbort
Property

ColumnDelimiter	Property RowDelimiter	Property
DataFilePath	Property ServerBCPDataFileType	Property
DataFileType	Property ServerBCPKeepIdentity	Property
ErrorFilePath	Property ServerBCPKeepNulls	Property
ExportWideChar	Property SuspendIndexing	Property
FirstRow	Property TruncateLog	Property	(BulkCopy)
FormatFilePath	Property Use6xCompatible	Property
ImportRowsPerBatch	Property UseBulkCopyOption	Property
IncludeIdentityValues	Property UseExistingConnection	Property
LastRow	Property UseServerSideBCP	Property
LogFilePath	Property 	

Methods

Abort	Method SetCodePage	Method

Events

BatchImported	Event RowsCopied	Event

Remarks
The	BulkCopy	object	is	used	as	a	parameter	to	the	ImportData	method	of	the
Table	object	and	the	ExportData	method	of	the	Table	and	View	objects.

With	the	BulkCopy	object,	you	can:

Specify	format	values	for	the	data	file	used	for	bulk	copy	operations.

Set	bulk	copy	command	parameters,	such	as	error	file	name	and
maximum	number	of	errors	to	allow	before	terminating.

Stop	an	in-process	bulk	copy.

Respond	to	bulk	copy	events	to	report	the	number	of	rows	processed	or
the	percent	complete.

Note		The	BulkCopy	object	is	compatible	with	instances	of	SQL	Server	2000
and	SQL	Server	version	7.0.	However,	the	BulkCopy2	object	extends	the
functionality	of	the	BulkCopy	object	for	use	with	features	that	are	new	in	SQL
Server	2000.

See	Also

BulkCopy2	Object

ExportData	Method

ImportData	Method

SQL-DMO

BulkCopy2	Object
The	BulkCopy2	object	represents	the	parameters	of	a	single	bulk	copy
command	issued	against	a	Microsoft®	SQL	Server™	2000	database	and	extends
the	functionality	of	the	BulkCopy	object.

Properties

TableLock	Property

Remarks
The	BulkCopy2	object	extends	the	functionality	of	the	BulkCopy	object	for	use
with	features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the	properties	and
methods	of	the	BulkCopy	object.

The	TableLock	property	of	the	BulkCopy2	object	may	not	be	compatible	with
instances	of	SQL	Server	version	7.0	or	earlier.	For	information	about	using	the
BulkCopy2	object	in	an	application	that	also	runs	with	an	instance	of	SQL
Server	7.0,	refer	to	the	Remarks	section	of	the	TableLock	property.	For	more
information,	see	Programming	Extended	SQL-DMO	Objects.

See	Also

BulkCopy	Object

SQL-DMO

C

SQL-DMO

Category	Object
The	Category	object	represents	the	attributes	of	a	SQL	Server	Agent	alert,	job,
or	operator	category.

Properties

ID	Property Type	Property	(Category)
Name	Property 	

Methods

BeginAlter	Method Refresh	Method
CancelAlter	Method Remove	Method	(Objects)
DoAlter	Method 	

Remarks
SQL	Server	Agent	categories	are	optional	attributes	that	group	alerts,	jobs,	and
operators.	With	the	Category	object,	you	can:

Create	groupings	for	alerts,	jobs,	and	operators.

Use	the	Name	property	value	to	view	specific	jobs	when	applying	a
JobFilter	object.

The	Name	property	of	a	Category	object	uses	the	Microsoft®	SQL	Server™
2000	data	type	sysname.	For	each	type	of	SQL	Server	category,	the	category

name	must	be	unique.

The	Type	property	applies	only	to	categories	used	for	SQL	Server	Agent	jobs.
When	used	with	a	job,	the	Type	property	value	can	be	set.	Setting	it	for	SQL
Server	alert	or	operator	categories	results	in	an	error.

To	create	a	SQL	Server	job	category

1.	 Create	a	Category	object.

2.	 Set	the	Name	property.

3.	 Set	the	Type	property,	if	desired.

4.	 Add	the	Category	object	to	the	JobCategories	collection	of	a
connected	JobServer	object.

To	create	a	SQL	Server	operator	category

1.	 Create	a	Category	object.

2.	 Set	the	Name	property.

3.	 Add	the	Category	object	to	the	OperatorCategories	collection	of	a
connected	JobServer	object.

See	Also

JobFilter	Object

SQL-DMO

Check	Object
The	Check	object	represents	the	attributes	of	a	single	Microsoft®	SQL	Server™
2000	integrity	constraint.

Properties

Checked	Property Name	Property
ExcludeReplication	Property Text	Property

Methods

Remove	Method	(Objects) Script	Method

Remarks
A	SQL	Server	integrity	constraint	can	be	defined	as	part	of	a	CREATE	TABLE
statement	or	can	be	added	to,	or	removed	from,	a	table	as	part	of	an	ALTER
TABLE	statement.

With	the	Check	object,	you	can:

Define	a	new	integrity	constraint	for	a	SQL	Server	table.

Remove	an	existing	constraint	from	a	SQL	Server	table.

Generate	a	Transact-SQL	script	to	document	an	existing	integrity
constraint.

The	Name	property	represents	a	constraint	name.	It	is	character	data	and	must	be
unique	within	a	SQL	Server	database.

To	create	a	SQL	Server	integrity	constraint

1.	 Create	a	Check	object.

2.	 Set	the	Name	property.

3.	 Set	the	Text	property	to	define	the	constraint.

Adding	the	Check	object	to	its	containing	collection	generates	the
appropriate	CREATE	statement.	Specify	only	the	integrity	test
condition	in	the	Text	property.

4.	 Set	the	ExcludeReplication	property.

5.	 Add	the	Check	object	to	the	Checks	collection	of	a	Table	object.

To	remove	a	SQL	Server	integrity	constraint

1.	 Get	the	appropriate	Table	object	from	the	Tables	collection	of	a
Database	object.

2.	 Use	the	BeginAlter	method	of	the	Table	object	to	mark	the	start	of
alterations	on	the	SQL	Server	table.

3.	 Get	the	desired	Check	object	from	the	Checks	collection	of	the	Table
object.

4.	 Use	the	Remove	method	of	the	Check	object	to	drop	its	integrity
constraint	from	the	SQL	Server	table.

5.	 Use	the	DoAlter	method	of	the	Table	object	to	submit	the	change	to
the	SQL	Server.

See	Also

ALTER	TABLE

CREATE	TABLE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL-DMO

Column	Object
The	Column	object	represents	the	properties	of	a	single	column	in	a	Microsoft®
SQL	Server™	2000	table.

Properties

AllowNulls	Property InPrimaryKey	Property
AnsiPaddingStatus	Property IsComputed	Property
ComputedText	Property IsRowGuidCol	Property
Datatype	Property Length	Property
Default	Property	(Column,
UserDefinedDatatype)

Name	Property

DefaultOwner	Property NotForRepl	Property
FullTextIndex	Property NumericPrecision	Property
ID	Property NumericScale	Property
Identity	Property PhysicalDatatype	Property
IdentityIncrement	Property Rule	Property
IdentitySeed	Property RuleOwner	Property

Methods

BindDefault	Method Remove	Method	(Objects)
BindRule	Method UpdateStatisticsWith	Method

(Column,	Index)
ListKeys	Method 	

Remarks
With	the	Column	object,	you	can:

Define	columns	of	a	new	SQL	Server	table.

Define	a	new	column	for	an	existing	SQL	Server	table.

Drop	an	existing	column	from	a	SQL	Server	table.

List	the	references	of	a	SQL	Server	column.

The	Name	property	of	a	Column	object	uses	the	SQL	Server	data	type	sysname.
The	Name	property	must	be	unique	within	the	names	of	columns	in	the	SQL
Server	table.

Column	object	properties	can	be	set	prior	to	adding	the	Column	object	to	the
Columns	collection	of	a	Table	object.

To	define	columns	for	a	new	SQL	Server	table

1.	 Create	a	Table	object.

2.	 Set	the	Name	property	of	the	Table	object.

3.	 Create	a	Column	object.

4.	 Set	the	Name	property	of	the	Column	object.

5.	 Set	properties	that	define	the	column	data	type.	For	example,	to
specify	a	column	with	a	char(5)	data	type,	set	the	Datatype	property
to	char	and	the	Length	property	to	5.

6.	 Set	other	properties.

7.	 Add	the	Column	object	to	the	Columns	collection	of	the	Table	object.

8.	 Repeat	Steps	from	3	through	7	until	all	columns	are	defined.

9.	 Add	the	Table	object	to	the	Tables	collection	of	a	Database	object.

To	add	a	new	column	to	a	SQL	Server	table

1.	 Create	a	Column	object.

2.	 Set	the	Name	property.

3.	 Set	properties	that	define	the	column	data	type.	For	example,	to
specify	a	column	with	a	char(5)	data	type,	set	the	Datatype	property
to	char	and	the	Length	property	to	5.

4.	 Set	other	properties.

5.	 Get	the	desired	Table	object	from	the	Tables	collection	of	a	Database
object.

6.	 Use	the	BeginAlter	method	of	the	Table	object	to	mark	the	beginning
of	changes	to	the	SQL	Server	table.

7.	 Add	the	Column	object	to	the	Columns	collection	of	the	Table	object.

8.	 Use	the	DoAlter	method	of	the	Table	object	to	submit	the	changed
table	definition	to	the	SQL	Server.

To	drop	a	column	from	a	SQL	Server	table

1.	 Get	the	desired	Table	object	from	the	Tables	collection	of	a	Database
object.

2.	 Use	the	BeginAlter	method	of	the	Table	object	to	mark	the	beginning
of	changes	to	the	SQL	Server	table.

3.	 Get	the	desired	Column	object	from	the	Columns	collection	of	the
Table	object.

4.	 Use	the	Remove	method	of	the	Column	object	to	drop	the	column
from	the	SQL	Server	table.

5.	 Use	the	DoAlter	method	of	the	Table	object	to	submit	the	changed
table	definition	to	the	SQL	Server.

Note		The	Column	object	is	compatible	with	instances	of	SQL	Server	2000	and
SQL	Server	version	7.0.	However,	the	Column2	object	extends	the	functionality
of	the	Column	object	for	use	with	new	features	in	SQL	Server	2000.

See	Also

Column2	Object

SQL-DMO

Column2	Object
The	Column2	object	represents	the	properties	of	a	single	column	in	a
Microsoft®	SQL	Server™	2000	table	and	extends	the	functionality	of	the
Column	object.

Properties

Collation	Property FullTextImageColumnType	Property
FullTextColumnLanguageID
Property

	

Methods

AlterDataType	Method SetFullTextIndexWithOptions	Method

Remarks
The	Column2	object	extends	the	functionality	of	the	Column	object	for	use
with	new	features	in	SQL	Server	2000.	It	also	inherits	the	properties	and
methods	of	the	Column	object.	With	the	Column2	object,	you	can:

Retrieve	information	about	column-level	collation.

Set	and	retrieve	attributes	of	image	columns	used	in	a	full-text	index.

Alter	the	data	type	of	a	column

The	methods	and	properties	of	the	Column2	object	may	not	be	compatible	with
instances	of	SQL	Server	version	7.0	or	earlier.	For	more	information	about	using
the	Column2	object	in	an	application	that	also	runs	with	an	instance	of	SQL
Server	7.0,	refer	to	the	Remarks	section	for	specific	methods	and	properties.	For

more	information,	see	Programming	Extended	SQL-DMO	Objects.

See	Also

Column	Object

SQL-DMO

Configuration	Object
The	Configuration	object	represents	Microsoft®	SQL	Server™	2000	engine-
configurable	parameters	and	values.

Properties

ShowAdvancedOptions	Property

Methods

ReconfigureCurrentValues	Method ReconfigureWithOverride	Method

Remarks
With	the	Configuration	object,	you	can:

Get	current	SQL	Server	configuration	options.

Reset	one	or	more	SQL	Server	configuration	options.

The	ShowAdvancedOptions	property	of	the	Configuration	object	controls	the
membership	of	the	ConfigValues	collection.	Each	ConfigValue	object	in	the
collection	represents	a	specific	SQL	Server	configuration	option.	For	more
information	about	advanced	options,	see	Setting	Configuration	Options.

Some	SQL	Server	configuration	options	do	not	take	effect	until	the	SQL	Server
service	has	been	stopped	and	restarted.	You	can	force	the	server	to	immediately
accept	changes	in	some	options	using	the	ReconfigureWithOverride	method.

JavaScript:hhobj_1.Click()

To	set	a	configuration	option

1.	 Get	the	Configuration	object	from	a	connected	SQLServer	object.

2.	 Get	the	ConfigValue	object	of	the	desired	configuration	option	from
the	ConfigValues	collection	of	the	Configuration	object.

3.	 Set	the	CurrentValue	property	of	the	ConfigValue	object	to	reflect
the	desired	change.

4.	 Use	either	the	ReconfigureCurrentValues	or	the
ReconfigureWithOverride	method	of	the	Configuration	object	to
apply	the	change	to	an	instance	of	SQL	Server.

5.	 If	necessary,	use	the	Shutdown	and	Start	methods	of	the	SQLServer
object	to	restart	the	server	with	the	changed	configuration	options.

SQL-DMO

ConfigValue	Object
The	ConfigValue	object	represents	the	attributes	of	a	single	Microsoft®	SQL
Server™	2000	configuration	option.

Properties

CurrentValue	Property MaximumValue	Property
Description	Property MinimumValue	Property
DynamicReconfigure	Property Name	Property
ID	Property RunningValue	Property

Remarks
Some	SQL	Server	configuration	options	do	not	take	effect	until	the	SQL	Server
service	(MSSQLServer)	has	been	stopped	and	restarted.	You	can	force	the	server
to	immediately	accept	changes	in	some	options	by	using	the
ReconfigureWithOverride	method.	The	DynamicReconfigure	property
indicates	whether	the	ConfigValue	object	requires	a	restart.

The	ConfigValue	object	contains	four	value	properties.	The	MinimumValue
and	MaximumValue	properties	represent	bounds	for	the	given	configuration
option.	The	RunningValue	property	indicates	the	current	setting	of	the	option
on	an	instance	of	SQL	Server.	Prior	to	changing	the	configuration	option	setting,
the	CurrentValue	and	the	RunningValue	properties	return	identical	values.

Set	the	CurrentValue	property	to	change	the	setting	of	the	given	SQL	Server
configuration	option.	Undo	your	changes	by	resetting	the	CurrentValue
property	to	the	value	of	the	RunningValue	property.	After	a	change	is	applied,
the	values	of	these	two	properties	are	again	equal.

To	set	a	configuration	option

1.	 Get	the	Configuration	object	from	a	connected	SQLServer	object.

2.	 Get	the	ConfigValue	object	of	the	desired	configuration	option	from
the	ConfigValues	collection	of	the	Configuration	object.

3.	 Set	the	CurrentValue	property	of	the	ConfigValue	object	to	reflect
the	desired	change.

4.	 Use	either	the	ReconfigureCurrentValues	or	the
ReconfigureWithOverride	method	of	the	Configuration	object	to
apply	the	change	to	the	instance	of	SQL	Server.

5.	 If	the	ConfigValue	object	requires	a	restart	to	take	effect	(the	value	of
DynamicReconfigure	is	FALSE),	use	the	Shutdown	and	Start
methods	of	the	SQLServer	object	to	restart	the	server	with	the
changed	configuration	options.

SQL-DMO

D

SQL-DMO

Database	Object
The	Database	object	represents	the	properties	of	a	single	Microsoft®	SQL
Server™	2000.

Properties

CompatibilityLevel	Property
(Database)

Isdb_securityadmin	Property

CreateDate	Property IsFullTextEnabled	Property
CreateForAttach	Property Name	Property
DataSpaceUsage	Property Owner	Property	(Database,

UserDefinedFunction)
DboLogin	Property Permissions	Property
ID	Property PrimaryFilePath	Property
IndexSpaceUsage	Property Size	Property
Isdb_accessadmin	Property SpaceAvailable	Property

Isdb_backupoperator	Property SpaceAvailableInMB	Property
Isdb_datareader	Property Status	Property	(Database)
Isdb_datawriter	Property SystemObject	Property
Isdb_ddladmin	Property UserName	Property
Isdb_denydatareader	Property UserProfile	Property
Isdb_denydatawriter	Property Version	Property
Isdb_owner	Property 	

Methods

CheckAllocations	Method FullTextIndexScript	Method
CheckAllocationsDataOnly	Method GenerateSQL	Method	(Database)
CheckCatalog	Method GetDatatypeByName	Method
CheckIdentityValues	Method GetMemoryUsage	Method
Checkpoint	Method GetObjectByName	Method
CheckTables	Method Grant	Method	(Database)
CheckTablesDataOnly	Method IsUser	Method
Deny	Method	(Database) IsValidKeyDatatype	Method
DisableFullTextCatalogs	Method ListDatabasePermissions	Method
EnableFullTextCatalogs	Method ListObjectPermissions	Method
EnumCandidateKeys	Method ListObjects	Method
EnumDependencies	Method RecalcSpaceUsage	Method
EnumFileGroups	Method Remove	Method	(Objects)
EnumFiles	Method	(Database) RemoveFullTextCatalogs	Method
EnumLocks	Method Revoke	Method	(Database)
EnumLoginMappings	Method Script	Method
EnumMatchingSPs	Method ScriptTransfer	Method
EnumNTGroups	Method SetOwner	Method
EnumUsers	Method Shrink	Method
ExecuteImmediate	Method
(Database,	SQLServer)

Transfer	Method

ExecuteWithResults	Method UpdateIndexStatistics	Method
ExecuteWithResultsAndMessages 	

Method

Remarks
Because	it	represents	a	SQL	Server	database,	the	Database	object	is	a	major
component	of	the	SQL-DMO	object	tree.	The	Database	object	contains
collections	that	define	the	tables,	stored	procedures,	data	types,	and	users	of	a
database.	Methods	of	the	Database	object	allow	you	to	perform	essential
database	maintenance	functions,	such	as	backup.

With	the	Database	object,	you	can:

Create	a	SQL	Server	database.

Add	database	roles,	rules,	stored	procedures,	tables,	user-defined	data
types,	users,	and	views	to	an	existing	SQL	Server	database.

Remove	or	drop	database	objects	(tables,	views,	and	so	on)	from	an
existing	SQL	Server	database.

Modify	the	disk	resource	used	by	the	database	for	storage.

Backup	or	restore	an	existing	SQL	Server	database	or	its	transaction
log.

Control	SQL	Server	database	security	by	adding	users	and	granting,
denying,	or	revoking	access	rights	to	the	database.

Check	SQL	Server	database	integrity.

Check	current	usage	in	the	database;	specifically,	check	the	status	of
locks	applied	against	database	resources.

The	Name	property	of	a	Database	object	is	a	character	string.	Name	must	be	a
valid	string	for	the	SQL	Server	sysname	data	type.

To	create	a	SQL	Server	database

1.	 Create	a	Database	object.

2.	 Set	the	Name	property	of	the	Database	object.

3.	 Create	a	DBFile	object.

4.	 Set	the	Name	property	of	the	DBFile	object.

5.	 Set	the	PhysicalName	property	of	the	DBFile	object.

6.	 Set	DBFile	object	properties	optional	for	new	database	files,	such	as
Size.

7.	 Add	the	DBFile	object	to	the	new	Database	object	FileGroup	object
named	PRIMARY.

8.	 Add	the	Database	object	to	the	Databases	collection	of	a	connected
SQLServer	object.

If	you	do	not	set	the	Size	property	of	the	DBFile	object	or	specify	a	transaction
log	file,	SQL	Server	defaults	are	used.	For	more	information,	see	CREATE
DATABASE.

You	can	specify	a	transaction	log	file	during	SQL	Server	database	creation.
Specify	the	log	file	prior	to	adding	the	Database	object	to	the	Databases
collection.

To	specify	a	log	file

1.	 Create	a	LogFile	object.

JavaScript:hhobj_1.Click()

2.	 Set	the	Name	property.	

3.	 Set	the	PhysicalName	property.

4.	 Set	the	LogFile	Size	property.

5.	 Add	the	LogFile	object	to	the	LogFiles	collection	of	the
TransactionLog	object	of	the	new	Database	object.

Note		The	Database	object	is	compatible	with	instances	of	SQL	Server	2000	and
SQL	Server	version	7.0.	However,	the	Database2	object	extends	the
functionality	of	the	Database	object	for	use	with	features	that	are	new	in	SQL
Server	2000.

See	Also

Database2	Object

SQL-DMO

Database2	Object
The	Database2	object	represents	the	properties	of	a	single	Microsoft®	SQL
Server™	2000	and	extends	the	functionality	of	the	Database	object.

Properties

Collation	Property IsDeleted	Property
CurrentCompatibility	Property SizeInKB	Property

Methods

CheckAllocationsDataOnlyWithResult
Method

CheckRuleSyntax	Method

CheckAllocationsWithResult	Method CheckTablesDataOnlyWithResult
Method

CheckCatalogWithResult	Method CheckTablesWithResult	Method
CheckDefaultSyntax	Method IsObjectDeleted	Method

Remarks
The	Database2	object	extends	the	functionality	of	the	Database	object	for	use
with	features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the	properties	and
methods	of	the	Database	object.	With	the	Database2	object,	you	can:

Set	and	retrieve	column-level	collation	settings.

Check	SQL	Server	database	integrity	with	results	returned	in	tabular
format.

The	methods	and	properties	of	the	Database2	object	may	not	be	compatible	with
instances	of	SQL	Server	version	7.0	or	earlier.	For	more	information	about	using
the	Database2	object	in	an	application	that	also	runs	with	an	instance	of	SQL

Server	7.0,	refer	to	the	Remarks	section	for	specific	methods	and	properties.	For
more	information,	see	Programming	Extended	SQL-DMO	Objects.

See	Also

Database	Object

SQL-DMO

DatabaseRole	Object
The	DatabaseRole	object	represents	the	properties	of	a	single	Microsoft®	SQL
Server™	database	role.

Properties

AppRole	Property Password	Property
Name	Property 	

Methods

AddMember	Method ListDatabasePermissions	Method
DropMember	Method ListObjectPermissions	Method
EnumDatabaseRoleMember	Method Remove	Method	(Objects)
EnumFixedDatabaseRolePermission
Method

Script	Method

IsFixedRole	Method 	

Remarks
SQL	Server	database	roles	establish	groups	of	users	with	similar	security
attributes.	Database	permissions	can	be	granted	by	role,	simplifying	database
security	planning	and	administration.	With	the	DatabaseRole	object,	you	can:

Create	a	SQL	Server	database	role.

Administer	an	existing	SQL	Server	database	role	by	adding	or	dropping
role	members.

The	Name	property	of	a	DatabaseRole	object	uses	the	SQL	Server	data	type
sysname.

To	create	a	SQL	Server	database	role

1.	 Create	a	DatabaseRole	object.

2.	 Set	the	Name	property.

3.	 If	creating	a	SQL	Server	application	role,	set	the	AppRole	property	to
TRUE.	Set	the	Password	property	on	the	application	role	(optional).

4.	 Add	the	DatabaseRole	object	to	the	DatabaseRoles	collection	of	a
connected	Database	object.

5.	 Add	members	to	the	DatabaseRole.	Members	can	be	drawn	from	the
Name	property	of	User	objects	in	the	Users	collection	of	the
Database	object.

After	creating	the	new	SQL	Server	database	role,	you	can	use	the	Grant	and
Deny	methods	of	the	Database,	StoredProcedure,	Table,	and	View	objects	to
set	permissions	for	the	new	SQL	Server	database	role.

To	administer	an	existing	SQL	Server	database	role

1.	 Get	the	DatabaseRole	object	that	references	the	SQL	Server	database
role	from	the	DatabaseRoles	collection	of	a	connected	SQLServer
Database	object.

2.	 Use	the	AddMember	or	DropMember	method	to	add	or	remove	a
specified	user.	SQL-DMO	applies	the	changes	to	the	SQL	Server
database	role	as	you	make	them.

Note		The	DatabaseRole	object	is	compatible	with	instances	of	SQL	Server
2000	and	SQL	Server	version	7.0.	However,	the	DatabaseRole2	object	extends
the	functionality	of	the	DatabaseRole	object	for	use	with	features	that	are	new

in	SQL	Server	2000.

See	Also

Establishing	Application	Security	and	Application	Roles

DatabaseRole2	Object

JavaScript:hhobj_1.Click()

SQL-DMO

DatabaseRole2	Object
The	DatabaseRole2	object	represents	the	properties	of	a	single	Microsoft®	SQL
Server™	2000	database	role	and	extends	the	functionality	of	the	DatabaseRole
object.

Properties

IsDeleted	Property

Remarks
The	DatabaseRole2	object	extends	the	functionality	of	the	DatabaseRole	object
for	use	with	features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the
properties	and	methods	of	the	DatabaseRole	object.

The	IsDeleted	property	of	the	DatabaseRole2	object	may	not	be	compatible
with	instances	of	SQL	Server	version	7.0	or	earlier.	For	more	information	about
using	the	DatabaseRole2	object	in	an	application	that	also	runs	with	an	instance
of	SQL	Server	7.0,	refer	to	the	Remarks	section	of	the	IsDeleted	property.	For
more	information,	see	Programming	Extended	SQL-DMO	Objects.

See	Also

DatabaseRole	Object

SQL-DMO

DBFile	Object
The	DBFile	object	represents	the	properties	of	an	operating	system	file	used	by
Microsoft®	SQL	Server™	2000	for	table	and	index	data	storage.

Properties

FileGrowth	Property PhysicalName	Property
FileGrowthInKB	Property PrimaryFile	Property
FileGrowthType	Property Size	Property
ID	Property SpaceAvailableInMB	Property
MaximumSize	Property SizeInKB	Property
Name	Property 	

Methods

Remove	Method	(Objects) Shrink	Method

Remarks
SQL	Server	can	direct	data	storage	for	tables	and	indexes	to	specific	operating
system	files.	A	single	operating	system	file	can	contain	data	from	only	a	single
database.	Within	SQL	Server,	database	data	files	are	categorized	by	filegroup.	A
SQL	Server	database	contains	one	or	more	filegroups	containing	one	or	more
data	files.	This	organization	is	reflected	in	the	FileGroup	and	DBFile	objects
and	collections.

All	SQL	Server	databases	contain	a	filegroup	named	PRIMARY.	This	filegroup
contains	the	database	primary	data	file.	When	using	SQL-DMO	to	create	a	new

SQL	Server	database,	add	a	DBFile	object	to	the	FileGroup	object	named
PRIMARY.	After	database	creation,	additional	data	files	can	be	created	and
added	to	either	the	PRIMARY	filegroup	or	to	filegroups	added	to	the	database.

With	the	DBFile	object,	you	can:

Create	new	operating	system	files	for	SQL	Server	database	storage.

Manage	the	properties	of	SQL	Server	database	growth.

Shrink	the	operating	system	files	used	by	a	database	to	reflect	actual
space	used.

The	Name	property	of	a	DBFile	object	uses	the	SQL	Server	data	type	sysname.
The	Name	property	value	is	used	for	the	logical_file_name	parameter	in	the
CREATE	DATABASE	and	ALTER	DATABASE	statements	when	adding	files.
The	restrictions	imposed	on	the	logical_file_name	parameter	apply	to	the
DBFile	Name	property.

To	create	a	data	file	for	SQL	Server	database	storage

1.	 Create	a	DBFile	object.

2.	 Set	the	Name	property.

3.	 Set	the	PhysicalName	property	to	the	path	and	file	name	of	the
desired	data	file.

4.	 Set	the	Size	property.	The	size	property	determines	the	size	of	the
created	data	file	and	is	specified	in	megabytes.

5.	 Set	optional	properties,	such	as	the	Maximum	(size)	property.

6.	 Get	a	FileGroup	object	from	the	FileGroups	collection	of	a	connected
Database	object.

7.	 Add	the	DBFile	object	to	the	DBFiles	collection	of	the	selected
FileGroup	object.

See	Also

ALTER	DATABASE

CREATE	DATABASE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL-DMO

DBObject	Object
The	DBObject	object	represents	properties	of	a	Microsoft®	SQL	Server™	2000
database	object,	such	as	a	table	or	stored	procedure.

Properties

CreateDate	Property SystemObject	Property
ID	Property Type	Property	(DBObject)
Name	Property TypeName	Property
Owner	Property	(Database	Objects) 	

Methods

EnumDependencies	Method Remove	Method	(Objects)
ListPermissions	Method Script	Method
ListUserPermissions	Method 	

Remarks
The	DBObject	object	is	used	as	a	parameter	to	the	GetObjectByName	method
of	the	Database	object	and	the	AddObject	method	of	the	Transfer	object.

You	can	use	the	DBObject	object	to	refer	to	SQL	Server	defaults,	rules,	stored
procedures,	tables,	triggers,	user-defined	data	types,	and	views.

With	the	DBObject	object,	you	can:

Query	a	database	by	object	name	to	determine	if	the	specified	object
exists.

Add	a	list	of	SQL	Server	database	objects	to	a	script	transferring	objects
and	data	from	one	SQL	Server	database	to	another.

Determine	the	dependencies	on	a	named	SQL	Server	database	object.

List	the	permissions	granted	on	a	named	SQL	Server	database	object.

The	Name	property	of	DBObject	refers	to	the	name	of	the	selected	Database
object.	Database	object	names	are	defined	with	the	SQL	Server	data	type
sysname,	and	the	value	of	the	DBObject	Name	property	matches	the
specification	of	sysname.

SQL-DMO

DBOption	Object
The	DBOption	object	represents	the	settings	for	Microsoft®	SQL	Server™
database	options	for	a	specific	SQL	Server	database.

Properties

AssignmentDiag	Property DefaultCursor	Property
AutoClose	Property Offline	Property
AutoCreateStat	Property QuoteDelimiter	Property
AutoShrink	Property ReadOnly	Property
AutoUpdateStat	Property RecursiveTriggers	Property
ColumnsNullByDefault	Property SelectIntoBulkCopy	Property
CompareNull	Property SingleUser	Property
ContactNull	Property TornPageDetection	Property
CursorCloseOnCommit	Property TruncateLogOnCheckpoint	Property
DBOUseOnly	Property 	

Methods
Refresh	Method

Remarks
SQL	Server	database	options	control	access	to	and	behaviors	for	a	specific	SQL
Server	database.	You	can	use	the	DBOption	object	to	set	the	values	for	SQL
Server	database	options.

To	set	a	SQL	Server	database	option

1.	 Get	the	DBOption	object	from	a	Database	object	of	a	connected
SQLServer	object.

2.	 Set	the	desired	property	to	reflect	the	change	you	want	in	behavior.	For
example,	set	the	value	of	the	ReadOnly	property	to	TRUE	to	enable
read-only	access	to	the	database.

Changes	to	DBOption	properties	are	reflected	in	the	SQL	Server	database	as
they	are	made.

Note		The	DBOption	object	is	compatible	with	instances	of	SQL	Server	2000
and	SQL	Server	version	7.0.	However,	the	DBOption2	object	extends	the
functionality	of	the	DBOption	object	for	use	with	features	that	are	new	in	SQL
Server	2000.

See	Also

DBOption2	Object

SQL-DMO

DBOption2	Object
The	DBOption2	object	represents	the	settings	for	Microsoft®	SQL	Server™
2000	database	options	for	a	specific	SQL	Server	database.

Properties

RecoveryModel	Property 	

Remarks
The	DBOption2	object	extends	the	functionality	of	the	DBOption	object	for	use
with	features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the	properties	and
methods	of	the	DBOption	object.	With	the	DBOption2	object,	you	can:

Specify	the	recovery	model	for	a	database.

The	methods	and	properties	of	the	DBOption2	object	may	not	be	compatible
with	instances	of	SQL	Server	version	7.0	or	earlier.	For	information	about	using
the	DBOption2	object	in	an	application	that	also	runs	with	an	instance	of	SQL
Server	7.0,	refer	to	the	Remarks	section	for	specific	methods	and	properties.	For
more	information,	see	Programming	Extended	SQL-DMO	Objects.

See	Also

DBOption	Object

SQL-DMO

Default	Object
The	Default	object	represents	the	attributes	of	a	single	Microsoft®	SQL
Server™	2000	default.	SQL	Server	defaults	provide	data	to	columns	and	user-
defined	data	types	when	no	other	data	is	available	on	an	INSERT	statement
execution.

Properties

CreateDate	Property Owner	Property	(Database	Objects)
ID	Property Text	Property
Name	Property 	

Methods

BindToColumn	Method Remove	Method	(Objects)
BindToDatatype	Method Script	Method
ListBoundColumns	Method UnbindFromColumn	Method
ListBoundDatatypes	Method UnbindFromDatatype	Method

Remarks
SQL	Server	defaults	allow	a	nonredundant	method	of	default-value	specification.
SQL	Server	columns	can	contain	a	DEFAULT	constraint,	but	each	column
receiving	a	specific	default	value	must	be	constrained	to	receive	it.	Alternately,	a
single	default	can	be	created	and	then	bound	to	columns	or	user-defined	data
types,	allowing	the	developer	to	specify	the	default	value	one	time.

With	the	Default	object,	you	can:

Create	a	SQL	Server	default.

Bind	or	unbind	an	existing	SQL	Server	default	to	a	column	or	user-
defined	data	type.

Remove	a	SQL	Server	default	from	a	database.

The	Name	property	of	a	Default	object	uses	the	SQL	Server	data	type	sysname.
The	value	of	the	Name	property	must	be	unique	within	a	SQL	Server	database
when	constrained	by	the	value	of	the	Owner	property.

To	create	a	SQL	Server	default

1.	 Create	a	Default	object.

2.	 Set	the	Name	property.

3.	 Set	the	Text	property	to	establish	the	default	value	generated	for	an
INSERT	statement.	The	value	of	the	Text	property	must	match	the
constraints	of	the	constant_expression	parameter	of	the	CREATE
DEFAULT	statement.	For	more	information	about	how	to	set	the	Text
property,	see	CREATE	DEFAULT.	

4.	 Add	the	Default	object	to	the	Defaults	collection	of	a	connected
Database	object.

After	the	SQL	Server	default	has	been	created,	use	the	BindToColumn	and
BindToDatatype	methods	of	the	Default	object	to	bind	the	SQL	Server	default
to	SQL	Server	columns	and	user-defined	data	types.

Note		The	Default	object	is	compatible	with	SQL	Server	2000	and	SQL	Server
7.0.	However,	the	Default2	object	extends	the	functionality	of	the	Default	object
for	use	with	features	that	are	new	in	SQL	Server	2000.

See	Also

JavaScript:hhobj_1.Click()

Default2	Object

SQL-DMO

Default2	Object
The	Default	object	represents	the	attributes	of	a	single	Microsoft®	SQL
Server™	2000	default.	SQL	Server	defaults	provide	data	to	columns	and	user-
defined	data	types	when	no	other	data	is	available	on	an	INSERT	statement
execution.	The	Default2	object	extends	the	functionality	of	the	Default	object.

Properties

IsDeleted	Property 	

Remarks
The	Default2	object	extends	the	functionality	of	the	Default	object	for	use	with
features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the	properties	and
methods	of	the	Default	object.

The	IsDeleted	property	of	the	Default2	object	may	not	be	compatible	with	SQL
Server	7.0	or	earlier.	For	more	information	about	using	the	Default2	object	in	an
application	that	also	runs	with	SQL	Server	version	7.0,	refer	to	the	Remarks
section	for	the	IsDeleted	property.	For	more	information,	see	Programming
Extended	SQL-DMO	Objects.

See	Also

Default	Object

SQL-DMO

DistributionArticle	Object
The	DistributionArticle	object	exposes	the	properties	of	a	Distributor's	image
of	a	replicated	article.

Properties

Description	Property SourceObjectName	Property
ID	Property SourceObjectOwner	Property
Name	Property 	

Methods

BeginAlter	Method DoAlter	Method
CancelAlter	Method Remove	Method	(Objects)

Remarks
For	snapshot	and	transactional	replication,	a	replication	Distributor	maintains	an
image	of	the	published	article.	The	Distributor	replicates	the	article	image	to
Subscribers,	enabling	one	type	of	replication	load	balancing.

There	is	no	requirement	that	an	instance	of	Microsoft®	SQL	Server™	2000
create	the	Distributor-maintained	data	image.	Snapshot	and	transactional
replication	publications	created	on	the	Distributor	enable	one	type	of	third-party,
or	heterogeneous,	replication.

With	the	DistributionArticle	object,	you	can:

Create	an	article	in	a	heterogeneous	replication	publication.

Remove	an	article	from	a	heterogeneous	replication	publication.

For	more	information	about	using	SQL-DMO	in	heterogeneous	replication,	see
Programming	Snapshot	or	Transactional	Replication	from	Heterogeneous	Data
Sources.

Note		The	DistributionArticle	object	is	compatible	with	instances	of	SQL
Server	2000	and	SQL	Server	version	7.0.	However,	the	DistributionArticle2
object	extends	the	functionality	of	the	DistributionArticle	object	for	use	with
features	that	are	new	in	SQL	Server	2000.

See	Also

DistributionArticle2	Object

JavaScript:hhobj_1.Click()

SQL-DMO

DistributionArticle2	Object
The	DistributionArticle2	object	exposes	the	properties	of	a	Distributor's	image
of	a	replicated	article	and	extends	the	functionality	of	the	DistributionArticle
object.

Properties

ID	Property	(DistributionArticle2)

Remarks
The	DistributionArticle2	object	extends	the	functionality	of	the
DistributionArticle	object	for	use	with	features	that	are	new	in	SQL	Server
2000.	It	also	inherits	the	properties	and	methods	of	the	DistributionArticle
object.

The	ID	Property	of	the	DistributionArticle2	object	may	not	be	compatible	with
instances	of	SQL	Server	version	7.0	or	earlier.	For	more	information	about	using
the	DistributionArticle2	object	in	an	application	that	also	runs	with	an	instance
of	SQL	Server	7.0,	refer	to	the	Remarks	section	of	the	ID	Property	of	the
DistributionArticle2	object.	For	more	information,	see	Programming
Replication	from	Heterogeneous	Data	Sources.

See	Also

DistributionArticle	Object

JavaScript:hhobj_1.Click()

SQL-DMO

DistributionDatabase	Object
The	DistributionDatabase	object	represents	a	database	located	at	the
Distributor	used	to	store	replication	information.	A	Distributor	can	have	multiple
distribution	databases.

Properties

AgentsStatus	Property LogFileSize	Property
DataFile	Property LogFolder	Property
DataFileSize	Property MaxDistributionRetention	Property
DataFolder	Property MinDistributionRetention	Property
DistributionCleanupTaskName
Property

Name	Property

HistoryCleanupTaskName	Property SecurityMode	Property
(DistributionDatabase,
IntegratedSecurity)

HistoryRetention	Property StandardLogin	Property
LogFile	Property StandardPassword	Property

Methods

BeginAlter	Method Refresh	Method
CancelAlter	Method Remove	Method	(Objects)
DoAlter	Method Script	Method	(Replication	Objects)

Remarks

With	the	DistributionDatabase	object,	you	can:

Create	a	new	distribution	database.

Change	the	properties	of	an	existing	distribution	database.

To	add	a	distribution	database	to	the	Distributor

1.	 Create	a	new	DistributionDatabase	object.

2.	 Set	the	Name	property	to	the	name	of	the	new	distribution	database.

3.	 Set	the	SecurityMode	property	as	appropriate.

4.	 If	the	SecurityMode	property	is	set	to	SQLDMOSecurity_Normal,	set
the	StandardLogin	and	StandardPassword	properties	as	appropriate.

5.	 Add	the	DistributionDatabase	object	to	the	DistributionDatabases
collection	of	a	connected	Distributor	object.

To	alter	an	existing	distribution	database

1.	 Get	a	DistributionDatabase	object	from	the	DistributionDatabases
collection	of	a	connected	Distributor	object.

2.	 Use	the	BeginAlter	method	to	mark	the	beginning	of	the	changes.

3.	 Set	the	DistributionDatabase	properties	to	reflect	the	changes	to	the
distribution	database.

4.	 Use	the	DoAlter	method	to	submit	the	changes	to	Microsoft®	SQL
Server™.

Note		The	DistributionDatabase	object	is	compatible	with	instances	of	SQL

Server	2000	and	SQL	Server	version	7.0.	However,	the	DistributionDatabase2
object	extends	the	functionality	of	the	DistributionDatabase	object	for	use	with
features	that	are	new	in	SQL	Server	2000.

See	Also

DistributionDatabase2	Object

SQL-DMO

DistributionDatabase2	Object
The	DistributionDatabase2	object	represents	a	database	located	at	the
Distributor	used	to	store	replication	information.	A	Distributor	can	have	multiple
distribution	databases.	The	DistributionDatabase2	object	extends	the
functionality	of	the	DistributionDatabase	object.

Methods

EnumAgentErrorRecords	Method EnumQueueReaderAgentSessions
Method

EnumQueueReaderAgentSessionDetails
Method

	

Remarks
The	DistributionDatabase2	object	extends	the	functionality	of	the
DistributionDatabase	object	for	use	with	features	that	are	new	in	SQL	Server
2000.	It	also	inherits	the	properties	and	methods	of	the	DistributionDatabase
object.	With	the	DistributionDatabase2	object,	you	can:

Retrieve	detailed	information	about	replication	agent	errors.

Retrieve	detailed	information	about	the	Queue	Reader	Agent.

The	methods	and	properties	of	the	DistributionDatabase2	object	may	not	be
compatible	with	instances	of	SQL	Server	version	7.0	or	earlier.	For	more
information	about	using	the	DistributionDatabase2	object	in	an	application	that
also	runs	with	an	instance	of	SQL	Server	7.0,	refer	to	the	Remarks	section	for
specific	methods	and	properties.	For	more	information,	see	Programming
Extended	SQL-DMO	Objects.

See	Also

DistributionDatabase	Object

SQL-DMO

DistributionPublication	Object
The	DistributionPublication	object	exposes	the	properties	of	a	Distributor's
image	of	a	snapshot,	transactional,	or	merge	replication	publication.

Properties

Description	Property PublicationDB	Property
ID	Property PublicationType	Property
LogReaderAgent	Property SnapshotAgent	Property
Name	Property VendorName	Property
PublicationAttributes	Property 	

Methods

BeginAlter	Method EnumSnapshotAgentView	Method
CancelAlter	Method EnumSubscriptionViews	Method
DoAlter	Method GetAgentsStatus	Method

(DistributionPublication,
DistributionPublisher)

EnumLogReaderAgentView	Method Remove	Method	(Objects)

Remarks
For	snapshot	and	transactional	replication,	a	replication	Distributor	maintains	an
image	of	articles	defining	a	publication.	The	Distributor	replicates	the	articles	to

Subscribers,	enabling	one	type	of	replication	load	balancing.

Use	DistributionPublication	object	methods	to	monitor	merge	replication.

There	is	no	requirement	that	an	instance	of	Microsoft®	SQL	Server™	2000
create	Distributor-maintained	data	images.	Snapshot	and	transactional
replication	publications	created	on	the	Distributor	enable	one	type	of	third-party,
or	heterogeneous,	replication.

With	the	DistributionPublication	object,	you	can:

Create	a	heterogeneous	replication	publication.

Configure	replication	agent	use.

Remove	a	heterogeneous	replication	publication.

Monitor	replication	agents	implementing	publications.

For	more	information	about	using	SQL-DMO	in	heterogeneous	replication,	see
Programming	Replication	from	Heterogeneous	Data	Sources.

Note		DistributionPublication	object	properties	are	read/write	only	when	using
the	object	to	create	a	distribution	publication.	When	a	DistributionPublication
object	references	a	Distributor's	image	of	an	existing	publication,	all	properties
are	read-only.

The	DistributionPublication	object	is	compatible	with	instances	of	SQL
Server	2000	and	SQL	Server	version	7.0.	However,	the
DistributionPublication2	object	extends	the	functionality	of	the
DistributionPublication	object	for	use	with	features	that	are	new	in	SQL
Server	2000.

See	Also

DistributionPublication2	Object

JavaScript:hhobj_1.Click()

SQL-DMO

DistributionPublication2	Object
The	DistributionPublication2	object	exposes	the	properties	of	a	Distributor's
image	of	a	snapshot,	transactional,	or	merge	replication	publication	and	extends
the	functionality	of	the	DistributionPublication	object.

Properties

SnapshotJobID	Property ThirdPartyOptions	Property

Methods

EnumQueueReaderAgentView
Method

GetAgentsStatus2	Method
(DistributionPublication2,
DistributionPublisher2)

EnumSubscriptionViews2	Method 	

Remarks
The	DistributionPublication2	object	extends	the	functionality	of	the
DistributionPublication	object	for	use	with	features	that	are	new	in	SQL	Server
2000.	It	also	inherits	the	properties	and	methods	of	the	DistributionPublication
object.

The	methods	and	properties	of	the	DistributionPublication2	object	may	not	be
compatible	with	instances	of	SQL	Server	version	7.0	or	earlier.	For	more
information	about	using	the	DistributionPublication2	object	in	an	application
that	also	runs	with	an	instance	of	SQL	Server	7.0,	refer	to	the	Remarks	section
for	specific	methods	and	properties.	For	more	information,	see	Programming
Extended	SQL-DMO	Objects.

See	Also

DistributionPublication	Object

SQL-DMO

DistributionPublisher	Object
The	DistributionPublisher	object	represents	a	Publisher	using	this	Distributor
for	replication.

Properties

DistributionDatabase	Property Name	Property
DistributionWorkingDirectory
Property

ThirdParty	Property

Enabled	Property TrustedDistributorConnection
Property

Methods

BeginAlter	Method EnumMergeAgentSessionDetails
Method

CancelAlter	Method EnumMergeAgentSessions	Method
DoAlter	Method EnumSnapshotAgentSessionDetails

Method
EnumAgentErrorRecords	Method EnumSnapshotAgentSessions

Method
EnumDistributionAgentSessionDetails
Method

GetAgentsStatus	Method
(DistributionPublication,
DistributionPublisher)

EnumDistributionAgentSessions Refresh	Method

Method
EnumLogReaderAgentSessionDetails
Method

Remove	Method	(Objects)

EnumLogReaderAgentSessions
Method

Script	Method	(Replication	Objects)

Remarks
With	the	DistributionPublisher	object,	you	can:

Add	a	Publisher	to	the	Distributor.

Change	the	properties	of	an	existing	Publisher.

To	add	a	Publisher	to	the	Distributor

1.	 Create	a	new	DistributionPublisher	object.

2.	 Set	the	Name	property	to	the	server	name	of	the	Publisher.

3.	 Set	the	DistributionDatabase	property.

4.	 Set	the	DistributionWorkingDirectory	property.

5.	 Add	the	DistributionPublisher	object	to	the	DistributionPublishers
collection	of	a	connected	Distributor	object.

To	alter	an	existing	Publisher

1.	 Get	a	DistributionPublisher	object	from	the	DistributionPublishers
collection	of	a	connected	Distributor	object.

2.	 Use	the	BeginAlter	method	to	mark	the	beginning	of	the	changes.

3.	 Set	the	DistributionPublisher	properties	to	reflect	the	changes	to	the
Publisher.

4.	 Use	the	DoAlter	method	to	submit	the	changes	to	Microsoft®	SQL
Server™.

Note		The	DistributionPublisher	object	is	compatible	with	instances	of	SQL
Server	2000	and	SQL	Server	version	7.0.	However,	the	DistributionPublisher2
object	extends	the	functionality	of	the	DistributionPublisher	object	for	use	with
features	that	are	new	in	SQL	Server	2000.

See	Also

DistributionPublisher2	Object

SQL-DMO

DistributionPublisher2	Object
The	DistributionPublisher2	object	represents	a	Publisher	using	the	referenced
Distributor	for	replication	and	extends	the	functionality	of	the
DistributionPublisher	object.

Methods

DisableAgentOffload	Method EnumMergeAgentSessionDetails2
Method

EnableAgentOffload	Method EnumMergeAgentSessions2	Method
EnumDistributionAgentSessionDetails2
Method

EnumSnapshotAgentSessionDetails2
Method

EnumDistributionAgentSessions2
Method

EnumSnapshotAgentSessions2
Method

EnumLogReaderAgentSessionDetails2
Method

GetAgentsStatus2	Method
(DistributionPublication2,
DistributionPublisher2)

EnumLogReaderAgentSessions2
Method

ReadAgentOffloadInfo	Method

DisableAgentOffload	Method EnumSnapshotAgentSessionDetails2
Method

EnableAgentOffload	Method EnumSnapshotAgentSessions2
Method

EnumDistributionAgentSessions2
Method

GetAgentsStatus2	Method
(DistributionPublication2,
DistributionPublisher2)

EnumLogReaderAgentSessions2
Method

ReadAgentOffloadInfo	Method

EnumMergeAgentSessions2	Method 	

Remarks

The	DistributionPublisher2	object	extends	the	functionality	of	the
DistributionPublisher	object	for	use	with	features	that	are	new	in	SQL	Server
2000.	It	also	inherits	the	properties	and	methods	of	the	DistributionPublisher
object.	With	the	DistributionPublisher2	object,	you	can:

Manipulate	the	capability	of	a	replication	agent	to	run	at	a	remote
Subscriber.

The	methods	and	properties	of	the	DistributionPublisher2	object	may	not	be
compatible	with	instances	of	SQL	Server	version	7.0	or	earlier.	For	more
information	about	using	the	DistributionPublisher2	object	in	an	application
that	also	runs	with	an	instance	of	SQL	Server	7.0,	refer	to	the	Remarks	section
for	specific	methods	and	properties.	For	more	information,	see	Programming
Extended	SQL-DMO	Objects.

See	Also

DistributionPublisher	Object

SQL-DMO

DistributionSubscription	Object
The	DistributionSubscription	object	exposes	the	properties	of	subscription	to	a
publication	maintained	by	a	Distributor.

Properties

DistributionAgent	Property SubscriptionDB	Property
Name	Property SubscriptionType	Property
Status	Property	(Subscription
Objects)

SyncType	Property

Subscriber	Property 	

Methods

BeginAlter	Method DoAlter	Method
CancelAlter	Method Remove	Method	(Objects)

Remarks
For	snapshot	and	transactional	replication,	a	replication	Distributor	maintains	an
image	of	articles	defining	a	publication.	The	Distributor	replicates	the	articles	to
Subscribers,	that	enable	one	type	of	replication	load	balancing.

There	is	no	requirement	that	an	instance	of	Microsoft®	SQL	Server™	create
Distributor-maintained	data	images.	Snapshot	and	transactional	replication
publications	created	on	the	Distributor	enable	one	type	of	third-party,	or
heterogeneous,	replication.

With	the	DistributionSubscription	object,	you	can:

Create	a	Distributor-originated	(push)	subscription	to	a	heterogeneous
replication	publication.

Enable	or	disable	a	subscription	to	a	publication	maintained	by	the
Distributor.

Remove	a	push	subscription	to	a	heterogeneous	replication	publication.

For	more	information	about	using	SQL-DMO	in	heterogeneous	replication,	see
Programming	Replication	from	Heterogeneous	Data	Sources.

Note		DistributionSubscription	object	properties	are	read/write	only	when
using	the	object	to	create	a	subscription.	When	a	DistributionSubscription
object	references	a	Distributor's	image	of	an	existing	subscription,	all	properties
are	read-only.

The	DistributionSubscription	object	is	compatible	with	instances	of	SQL
Server	2000	and	SQL	Server	version	7.0.	However,	the
DistributionSubscription2	object	extends	the	functionality	of	the
DistributionSubscription	object	for	use	with	features	that	are	new	in	SQL
Server	2000.

See	Also

DistributionSubscription2	Object

JavaScript:hhobj_1.Click()

SQL-DMO

DistributionSubscription2	Object
The	DistributionSubscription2	object	exposes	the	properties	of	a	specific
subscription	to	a	publication	maintained	by	a	Distributor	and	extends	the
functionality	of	the	DistributionPublisher	object.

Methods

DistributionJobID	Property

Remarks
The	DistributionSubscription2	object	extends	the	functionality	of	the
DistributionSubscription	object,	and	inherits	the	properties	and	methods	of	the
DistributionSubscription	object.	You	will	need	to	take	extra	programmatic
steps	when	using	the	DistributionSubscription2	object	in	an	application	that
also	runs	with	SQL	Server	version	7.0.

Note		The	DistributionSubscription2	object	may	not	be	compatible	with	SQL
Server	7.0	or	earlier.

The	DistributionSubscription2	object	extends	the	functionality	of	the
DistributionSubscription	object	for	use	with	features	that	are	new	in	SQL
Server	2000.	It	also	inherits	the	properties	and	methods	of	the
DistributionSubscription	object.

The	DistributionJobID	method	of	the	DistributionSubscription2	object	may
not	be	compatible	with	instances	of	SQL	Server	version	7.0	or	earlier.	For	more
information	about	using	the	DistributionSubscription2	object	in	an	application
that	also	runs	with	an	instance	of	SQL	Server	7.0,	refer	to	the	Remarks	section	of
the	DistributionJobID	method.	For	more	information,	see	Programming
Extended	SQL-DMO	Objects.

See	Also

DistributionSubscription	Object

SQL-DMO

Distributor	Object
The	Distributor	object	represents	the	replication	Distributor	for	an	instance	of
Microsoft®	SQL	Server™	2000.

Properties

AgentCheckupInterval	Property DistributorInstalled	Property
DistributionDatabase	Property DistributorLocal	Property
DistributionServer	Property HasRemoteDistributionPublisher

Property
DistributorAvailable	Property IsDistributionPublisher	Property

Methods

ChangeAgentProfile	Method EnumSnapshotAgentViews	Method
CleanUpDistributionPublisherByName
Method

EnumThirdPartyPublications	Method

CreateAgentProfile	Method GetAgentsStatus	Method	(Distributor)
DeleteAgentProfile	Method Install	Method
EnumAgentProfiles	Method Refresh	Method
EnumAgentParameters	Method RemoveDefunctAnonymousSubscriptionMethod
EnumDistributionAgentViews	Method Script	Method	(Replication	Objects)
EnumLogReaderAgentViews	Method SetUpDistributorPassword	Method
EnumMergeAgentViews	Method Uninstall	Method
UpdateDefaultAgentProfile	Method UpdateAgentProfile	Method

Remarks
With	the	Distributor	object,	you	can:

Install	a	local	Distributor	or	configure	remote	distribution	for	a
Publisher.

Uninstall	a	local	Distributor	or	stop	remote	distribution.

To	install	a	local	Distributor	and	distribution	database

1.	 Create	a	new	DistributionDatabase	object.

2.	 Set	the	Name	property	to	the	name	of	the	new	distribution	database.

3.	 Add	the	DistributionDatabase	object	to	the	DistributionDatabases
collection	of	a	connected	Distributor	object.

4.	 Set	the	DistributionServer	property	of	a	connected	Distributor
object	to	the	name	of	the	local	instance	of	SQL	Server	(available	in	the
TrueName	property	of	a	connected	SQLServer	object).

5.	 Use	the	Install	method	of	the	connected	Distributor	object.

To	uninstall	a	local	Distributor	and	distribution	database

Use	the	Uninstall	method	of	a	connected	Distributor	object.

Note		The	Distributor	object	is	compatible	with	instances	of	SQL	Server	2000
and	SQL	Server	version	7.0.	However,	the	Distributor2	object	extends	the
functionality	of	the	Distributor	object	for	use	with	features	that	are	new	in	SQL
Server	2000.

See	Also

Publishers,	Distributors,	and	Subscribers

JavaScript:hhobj_1.Click()

Distributor2	Object

SQL-DMO

Distributor2	Object
The	Distributor2	object	represents	the	replication	Distributor	for	an	instance	of
Microsoft®	SQL	Server™	2000	and	extends	the	functionality	of	the
DistributionPublisher	object.

Methods

EnumDistributionAgentViews2
Method

EnumThirdPartyVendorNames	Method

EnumMergeAgentViews2
Method

GetAgentsStatus2	Method	(Distributor2)

EnumQueueReaderAgentViews
Method

RemoveDefunctAnonymousSubscription
Method

EnumThirdPartyPublications2
Method

	

Remarks
The	Distributor2	object	extends	the	functionality	of	the	Distributor	object	for
use	with	features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the	properties
and	methods	of	the	Distributor	object.	With	the	Distributor2	object,	you	can:

Retrieve	information	about	third-party	publications.

Retrieve	the	execution	status	of	Queue	Reader	Agents.

The	methods	of	the	Distributor2	object	may	not	be	compatible	with	instances	of
SQL	Server	version	7.0	or	earlier.	For	more	information	about	using	the
Distributor2	object	in	an	application	that	also	runs	with	an	instance	of	SQL
Server	7.0,	refer	to	the	Remarks	section	for	specific	methods.	For	more
information,	see	Programming	Extended	SQL-DMO	Objects.

See	Also

Distributor	Object

SQL-DMO

DRIDefault	Object
The	DRIDefault	object	represents	the	properties	of	a	Microsoft®	SQL	Server™
2000	column	DEFAULT	constraint.

Properties

Name	Property Text	Property

Methods

Remove	Method	(Objects) Script	Method

Remarks
The	SQL	Server	column	DEFAULT	constraint	is	used	to	generate	data	for	the
column	when	none	is	supplied	by	the	user	on	INSERT	statement	execution.	With
the	DRIDefault	object,	you	can:

Set	the	DEFAULT	constraint	for	a	SQL	Server	column.

Remove	the	DEFAULT	constraint	from	a	SQL	Server	column.

The	Name	property	of	the	DRIDefault	object	uses	the	SQL	Server	data	type
sysname.	Name	is	optional	when	using	the	object	to	create	a	DEFAULT
constraint	for	a	SQL	Server	column.	When	Name	is	not	specified,	SQL-DMO
will	generate	an	appropriate	value.

When	setting	the	Text	property	of	a	DRIDefault	object,	specify	only	the	text	for
the	default.	You	do	not	need	to	build	the	constraint	clause	because	SQL-DMO
does	that.	The	Text	property	value	must	evaluate	to	a	constant.	For	more

information	about	limitations	on	the	Text	property,	see	the	description	of	the
DEFAULT	constraint	in	CREATE	TABLE.

Delimiters	that	specify	constant	strings	must	be	present	in	the	Text	property
value	when	specifying	string	data	as	part	of	the	property.	For	example,	to	specify
the	string	"unknown"	as	the	default,	use	'unknown'.

To	set	a	DEFAULT	constraint	on	a	new	SQL	Server	column

1.	 Create	a	Table	object.	

2.	 Create	a	Column	object.	

3.	 Get	the	DRIDefault	object	from	the	new	Column	object.

4.	 Set	the	Text	property	of	the	DRIDefault	object	to	the	desired	default
for	the	column.

5.	 Add	the	Column	object	to	the	Columns	collection	of	the	new	Table
object.

6.	 Add	the	Table	object	to	the	Tables	collection	of	a	connected	Database
object.

To	set	a	DEFAULT	constraint	on	an	existing	SQL	Server	column

1.	 Get	a	Table	object	from	the	Tables	collection	of	a	connected
Database	object.

2.	 Use	the	BeginAlter	method	of	the	Table	object	to	mark	the	beginning
of	changes	to	the	SQL	Server	table.

3.	 Get	the	desired	Column	object	from	the	Columns	collection	of	the
selected	Table	object.

JavaScript:hhobj_1.Click()

4.	 Get	the	DRIDefault	object	from	the	new	Column	object.

5.	 Set	the	Text	property	of	the	DRIDefault	object	to	the	desired	default
for	the	column.

6.	 Use	the	DoAlter	method	of	the	Table	object	to	submit	changes	to	the
SQL	Server.

See	Also

Column	Object

Table	Object

SQL-DMO

F

SQL-DMO

FileGroup	Object
The	FileGroup	object	exposes	the	attributes	of	a	Microsoft®	SQL	Server™
2000	filegroup.

Properties

Default	Property	(FileGroup) ReadOnly	Property
ID	Property Size	Property
Name	Property 	

Methods

CheckFilegroup	Method EnumObjects	Method
CheckFilegroupDataOnly	Method Remove	Method	(Objects)
EnumFiles	Method	(FileGroup) 	

Remarks
A	SQL	Server	filegroup	categorizes	the	operating	system	files	containing	data
from	a	single	SQL	Server	database	to	simplify	database	administration	tasks,
such	as	backup.	A	filegroup	is	a	property	of	a	SQL	Server	database	and	cannot
contain	the	operating	system	files	of	more	than	one	database,	though	a	single
database	can	contain	more	than	one	filegroup.

When	a	database	is	created,	it	is	created	on	exactly	one	filegroup	named
PRIMARY.	After	database	creation,	filegroups	can	be	added	to	the	database.	A
filegroup	name	can	be	specified	in	a	CREATE	TABLE	or	CREATE	INDEX
statement,	directing	data	storage	for	a	database.

With	the	FileGroup	object,	you	can:

Create	a	SQL	Server	filegroup.

Remove	an	existing	SQL	Server	filegroup.

Manage	the	physical	storage	of	a	SQL	Server	database	by	adding	or
removing	DBFile	objects	to	the	DBFiles	collection.

The	Name	property	of	a	FileGroup	object	uses	the	SQL	Server	data	type
sysname.	The	Name	property	must	be	unique	within	the	list	of	filegroups	of	a
SQL	Server	database.

To	create	a	SQL	Server	filegroup

1.	 Create	a	FileGroup	object.

2.	 Set	the	Name	property.

3.	 Add	the	FileGroup	object	to	the	FileGroups	collection	of	a	connected
Database	object.

Note		The	FileGroup	object	is	compatible	with	instances	of	SQL	Server	2000
and	SQL	Server	version	7.0.	However,	the	FileGroup2	object	extends	the
functionality	of	the	FileGroup	object	for	use	with	features	that	are	new	in	SQL
Server	2000.

See	Also

CREATE	INDEX

CREATE	TABLE

FileGroup2	Object

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL-DMO

FileGroup2	Object
The	FileGroup2	object	exposes	the	attributes	of	a	Microsoft®	SQL	Server™
2000	filegroup	and	extends	the	functionality	of	the	FileGroup	object.

Methods

CheckFileGroupDataOnlyWithResult
Method

CheckFileGroupWithResult	Method

Remarks
The	FileGroup2	object	extends	the	functionality	of	the	FileGroup	object	for	use
with	features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the	properties	and
methods	of	the	FileGroup	object.	With	the	FileGroup2	object,	you	can:

Check	file	group	integrity	with	results	that	are	returned	in	tabular
format.

The	methods	and	properties	of	the	FileGroup2	object	may	not	be	compatible
with	instances	of	SQL	Server	version	7.0	or	earlier.	For	more	information	about
using	the	FileGroup2	object	in	an	application	that	also	runs	with	an	instance	of
SQL	Server	7.0,	see	the	Remarks	section	for	specific	methods	and	properties.
For	more	information,	see	Programming	Extended	SQL-DMO	Objects.

When	used	with	SQL	Server	2000,	the	Name	property	can	be	set	on	an	existing
FileGroup	object	if	it	is	not	a	primary	file	group.

See	Also

FileGroup	Object

SQL-DMO

FullTextCatalog	Object
The	FullTextCatalog	object	exposes	the	properties	of	a	single	Microsoft	Search
persistent	data	store.

Properties

ErrorLogSize	Property PopulateCompletionAge	Property
FullTextCatalogID	Property PopulateCompletionDate	Property
FullTextIndexSize	Property PopulateStatus	Property
HasFullTextIndexedTables	Property RootPath	Property
ItemCount	Property UniqueKeyCount	Property
Name	Property 	

Methods

GenerateSQL	Method
(FullTextCatalog)

Script	Method

Rebuild	Method Start	Method	(FullTextCatalog)
Remove	Method	(Objects) Stop	Method

Remarks
Microsoft	Search	enables	full-text	queries	on	data	maintained	by	Microsoft®
SQL	Server™	2000.	The	service	builds	both	the	indexes	providing	full-text
query	capability	and	participates	in	query	resolution	by	providing	result	data
during	a	full-text	query.	Index	data	is	maintained	within	a	full-text	catalog.	A
FullTextCatalog	exposes	the	properties	of	a	Microsoft	Search	full-text	catalog.

With	the	FullTextCatalog	object,	you	can:

Define	a	new	Microsoft	Search	full-text	catalog.

Rebuild	the	Microsoft	Search	full-text	catalog.

Control	index	population.

Remove	a	Microsoft	Search	full-text	catalog.

The	Name	property	of	a	FullTextCatalog	object	uses	the	SQL	Server	data	type
sysname.	The	value	of	the	Name	property	must	be	unique	within	a	SQL	Server
database.

By	default,	a	user	must	have	database	owner	permissions	to	create,	remove,	or
modify	Microsoft	Search	full-text	catalogs.

Note		The	FullTextCatalog	object	is	compatible	with	instances	of	SQL	Server
2000	and	SQL	Server	version	7.0.	However,	the	FullTextCatalog2	object
extends	the	functionality	of	the	FullTextCatalog	object	for	use	with	features	that
are	new	in	SQL	Server	2000.

See	Also

FullTextCatalog2	Object

SQL-DMO

FullTextCatalog2	Object
The	FullTextCatalog2	object	exposes	the	properties	of	a	single	Microsoft
Search	persistent	data	store	and	extends	the	functionality	of	the	FullTextCatalog
object.

Methods

Refresh	Method 	

Remarks
The	FullTextCatalog2	object	extends	the	functionality	of	the	FullTextCatalog
object	for	use	with	features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the
properties	and	methods	of	the	FullTextCatalog	object.

The	Refresh	method	of	the	FullTextCatalog2	object	may	not	be	compatible
with	instances	of	SQL	Server	version	7.0	or	earlier.	For	more	information	about
using	the	FullTextCatalog2	object	in	an	application	that	also	runs	with	an
instance	of	SQL	Server	7.0,	refer	to	the	Remarks	section	of	the	Refresh	method.
For	more	information,	see	Programming	Extended	SQL-DMO	Objects.

See	Also

FullTextCatalog	Object

SQL-DMO

FullTextService	Object
The	FullTextService	object	exposes	attributes	of	the	Microsoft	Search	full-text
indexing	service.

Properties

ConnectTimeout	Property ResourceUsage	Property
DefaultPath	Property Status	Property	(Services)
IsFullTextInstalled	Property 	

Methods

CleanUp	Method Stop	Method
Start	Method	(FullTextService,
JobServer)

	

Remarks
The	Microsoft	Search	full-text	indexing	service	enables	full-text	queries	on	data
maintained	by	Microsoft®	SQL	Server™	2000.	Microsoft	Search	both	builds	the
indexes	providing	full-text	query	capability	and	participates	in	query	resolution
by	providing	result	data	during	a	full-text	query.

With	the	FullTextService	object,	you	can:

Start	or	stop	Microsoft	Search.

Configure	the	Microsoft	Search	service.

Perform	full-text	catalog	maintenance	as	required.

Microsoft	Search	is	a	service	only	available	on	Microsoft	Windows	NT®	4.0	or
Microsoft	Windows®	2000	Servers.	To	configure	Microsoft	Search	using	the
FullTextService	object,	the	connection	must	have	Windows	NT	4.0	or	Windows
2000	administrator	account	privileges.

The	ConnectTimeout,	IsFullTextInstalled,	and	ResourceUsage	properties	of
the	FullTextService	object	are	only	compatible	with	SQL	Server	version	7.0	or
later.	However,	the	SQLServer2	object	supports	the	IsFullTextInstalled
property	in	SQL	Server	2000.

SQL-DMO

I

SQL-DMO

Index	Object
The	Index	object	exposes	the	attributes	of	a	single	Microsoft®	SQL	Server™
2000	index.

Properties

FileGroup	Property Name	Property
FillFactor	Property NoRecompute	Property
ID	Property SpaceUsed	Property
IndexedColumns	Property StatisticsIndex	Property
IsFullTextKey	Property Type	Property	(Index)

Methods

CheckIndex	Method RecalcSpaceUsage	Method
EnumStatistics	Method Remove	Method	(Objects)
GenerateCreationSQL	Method Script	Method
GenerateSQL	Method	(Index) UpdateStatistics	Method
ListIndexedColumns	Method UpdateStatisticsWith	Method

(Column,	Index)
Rebuild	Method 	

Remarks
A	SQL	Server	index	optimizes	access	to	data	in	SQL	Server	tables.	Indexes	are
also	used	to	enforce	some	constraints,	such	as	UNIQUE	and	PRIMARY	KEY
constraints.

With	the	Index	object,	you	can:

Create	a	SQL	Server	index.

Create	SQL	Server	data	distribution	statistics.

Remove	a	SQL	Server	index.

Remove	SQL	Server	data	distribution	statistics.

Rebuild	a	SQL	Server	index.

Update	data	distribution	statistics.

The	Name	property	of	an	Index	object	uses	the	SQL	Server	data	type	sysname.
Within	a	SQL	Server	database,	all	index	names	must	be	unique.

To	create	a	SQL	Server	index

1.	 Create	an	Index	object.

2.	 Set	the	Name	property.

3.	 Set	the	IndexedColumns	property	to	the	column	or	columns
participating	in	the	index.

4.	 Set	the	Type	property	of	the	Index	object	to	control	the	attributes	of
the	index	created	(optional).	If	not	set,	a	nonclustered	index	allowing
duplicate	values	is	created.	For	more	information	about	SQL	Server
index	types	and	limitations	on	indexes	applied	to	tables,	see	CREATE
INDEX.	

5.	 Set	optional	properties,	such	as	FileGroup.

JavaScript:hhobj_1.Click()

6.	 Get	the	Table	object	that	references	the	SQL	Server	table	you	want
from	the	Tables	collection	of	a	connected	Database	object.

7.	 Use	the	BeginAlter	method	of	the	Table	object	to	mark	the	start	of
changes	to	the	SQL	Server	table.

8.	 Add	the	Index	object	to	the	Indexes	collection	of	the	selected	Table
object.

9.	 Use	the	DoAlter	method	of	the	Table	object	to	mark	the	end	of
changes	and	create	the	index	on	the	SQL	Server.

To	remove	an	existing	SQL	Server	index

1.	 Get	the	Table	object	that	references	the	SQL	Server	table	you	want
from	the	Tables	collection	of	a	connected	Database	object.

2.	 Use	the	BeginAlter	method	of	the	Table	object	to	mark	the	start	of
changes	to	the	SQL	Server	table.

3.	 Get	the	Index	object	representing	the	SQL	Server	index	to	remove
from	the	Indexes	collection	of	the	selected	Table	object.

4.	 Use	the	Remove	method	of	the	Index	object	to	remove	the	Index
object	from	the	Indexes	collection	of	the	Table	object.

5.	 Use	the	DoAlter	method	of	the	Table	object	to	mark	the	end	of
changes	and	remove	the	SQL	Server	index	from	the	SQL	Server	table.

Note		The	Index	object	is	compatible	with	instances	of	SQL	Server	2000	and
SQL	Server	version	7.0.	However,	the	Index2	object	extends	the	functionality	of
the	Index	object	for	use	with	features	that	are	new	in	SQL	Server	2000.

See	Also

Index2	Object

SQL-DMO

Index2	Object
The	Index2	object	exposes	the	attributes	of	a	single	Microsoft®	SQL	Server™
2000	index	and	extends	the	functionality	of	the	Index	object.

Properties

IndexOnTable	Property IsOnComputed	Property

Methods

CheckIndexWithResult	Method GetIndexedColumnDESC	Method
GenerateCreationSQLOnView
Method

SetIndexedColumnDESC	Method

GenerateSQLOnView	Method 	

Remarks
The	Index2	object	extends	the	functionality	of	the	Index	object	for	use	with
features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the	properties	and
methods	of	the	Index	object.	With	the	Index2	object,	you	can:

Retrieve	information	about	indexes	created	on	views	or	computed
columns.

Specify	a	column	to	sort	in	descending	order	as	part	of	an	index.

The	methods	and	properties	of	the	Index2	object	may	not	be	compatible	with
instances	of	SQL	Server	version	7.0	or	earlier.	For	more	information	about	using
the	Index2	object	in	an	application	that	also	runs	with	an	instance	of	SQL	Server
7.0,	refer	to	the	Remarks	section	for	specific	methods	and	properties.	For	more
information,	see	Programming	Extended	SQL-DMO	Objects.

See	Also

Index	Object

SQL-DMO

IntegratedSecurity	Object
The	IntegratedSecurity	object	exposes	configurable	parameters	that	affect	all
logins	to	Microsoft®	SQL	Server™	2000	regardless	of	the	login	authentication
type.

Properties

AuditLevel	Property ImpersonateClient	Property
DefaultDomain	Property SecurityMode	Property

(DistributionDatabase,
IntegratedSecurity)

DefaultLogin	Property SetHostName	Property

Methods

Refresh	Method 	

Remarks
SQL	Server	implements	two	ways	to	control	access	to	SQL	Server	data:
Windows	Authentication,	implementing	trusted	connections,	and	SQL	Server
Authentication.

With	SQL	Server,	login	record	naming	is	expanded.	Properties	of	the
IntegratedSecurity	object	that	provide	default	domain	naming	are	maintained
for	compatibility	with	previous	versions	of	SQL	Server	and	SQL-DMO.

For	more	information	about	SQL	Server	7.0	security	and	access	control,	see
Managing	Security.

JavaScript:hhobj_1.Click()

SQL-DMO

J

SQL-DMO

Job	Object
The	Job	object	exposes	the	attributes	of	a	single	SQL	Server	Agent	job.

Properties

Category	Property LastRunOutcome	Property
CurrentRunRetryAttempt	Property LastRunTime	Property
CurrentRunStatus	Property Name	Property
CurrentRunStep	Property NetSendLevel	Property
DateCreated	Property NextRunDate	Property
DateLastModified	Property NextRunScheduleID	Property
DeleteLevel	Property NextRunTime	Property
Description	Property OperatorToEmail	Property
EmailLevel	Property OperatorToNetSend	Property
Enabled	Property OperatorToPage	Property
EventlogLevel	Property OriginatingServer	Property
HasSchedule	Property Owner	Property	(Job,	JobFilter)
HasServer	Property PageLevel	Property
HasStep	Property StartStepID	Property
JobID	Property Type	Property	(Job,	JobFilter)
LastRunDate	Property VersionNumber	Property

Methods

AddStepToJob	Method PurgeHistory	Method

ApplyToTargetServer	Method Refresh	Method
ApplyToTargetServerGroup	Method Remove	Method	(Objects)
BeginAlter	Method RemoveAllJobSchedules	Method
CancelAlter	Method RemoveAllJobSteps	Method
DoAlter	Method RemoveFromTargetServer	Method
EnumAlerts	Method RemoveFromTargetServerGroup

Method
EnumHistory	Method Script	Method
EnumTargetServers	Method Start	Method	(Job)
Invoke	Method Stop	Method

Remarks
A	SQL	Server	Agent	job	is	a	scheduled	series	of	executable	steps.	Jobs	are
typically	used	to	automate	administrative	tasks	performed	against	a	Microsoft®
SQL	Server™	2000	database.	With	SQL	Server	version	7.0,	jobs	can	contain
multiple	steps	with	branch	logic	based	on	the	success	or	failure	of	any	individual
step.	A	SQL	Server	7.0	job	can	contain	one	or	more	schedules	setting	run	times
for	the	task	defined	by	the	steps	of	the	job.

With	the	Job	object,	you	can:

Create	a	SQL	Server	Agent	job,	setting	the	steps	to	perform	and	the
scheduled	run	times.

Execute	an	existing	job	or	interrupt	job	execution.

Enable	and	disable	scheduled	job	execution.

Edit	existing	jobs	by	adding	or	removing	job	steps	or	changing	times	of
execution.

Set	the	distribution	properties	of	a	job	for	servers	participating	in

multiserver	administration.

The	Name	property	of	a	Job	object	uses	the	SQL	Server	data	type	sysname.	The
string	must	be	unique	for	all	jobs	defined	on	a	server	running	SQL	Server.

Using	SQL-DMO	and	the	Job	object,	you	must	create	a	SQL	Server	Agent	job
before	you	can	add	job	steps	to	it.	A	job	must	have	at	least	one	job	step	and	a
target	server	to	be	executable	by	SQL	Server	Agent.

After	a	SQL	Server	Agent	job	has	at	least	one	step	and	an	execution	target,	you
can	use	the	Start	method	of	the	Job	object	to	execute	the	job.	To	schedule	the
job	for	execution	by	SQL	Server	Agent,	use	the	JobSchedule	object.

To	create	a	SQL	Server	Agent	job

1.	 Create	a	Job	object.

2.	 Set	the	Name	property.

3.	 Add	the	Job	object	to	the	Jobs	collection	of	a	connected	JobServer
object	to	create	the	SQL	Server	Agent	job.

To	complete	the	definition	of	a	SQL	Server	Agent	job

1.	 Use	the	JobStep	object	to	define	a	job	step.

2.	 Add	the	JobStep	object	to	the	JobSteps	collection	of	the	Job	object.

3.	 Set	the	StartStepID	property	of	the	Job	object	to	the	value	of	the
StepID	property	of	the	JobStep	added.

4.	 Use	the	ApplyToTargetServer	or	ApplyToTargetServerGroup
method	of	the	Job	object	to	set	the	execution	target	for	the	SQL	Server
Agent	job.	Use	the	string	(local)	to	indicate	the	server	on	which	the	job
is	located.

SQL-DMO

JobFilter	Object
The	JobServer	object	has	a	JobFilter	object.	The	JobFilter	object	does	not
represent	a	Microsoft®	SQL	Server™	2000	component.	It	is	used	to	constrain
the	output	of	the	EnumJobs	method	of	the	JobServer	object.

Properties

Category	Property Enabled	Property
CurrentExecutionStatus	Property Owner	Property	(Job,	JobFilter)
DateFindOperand	Property StepSubsystem	Property
DateJobCreated	Property Type	Property	(Job,	JobFilter)
DateJobLastModified	Property 	

See	Also

EnumJobs	Method

SQL-DMO

JobHistoryFilter	Object
The	JobServer	object	exposes	a	JobHistoryFilter	object.	The
JobHistoryFilter	object	does	not	represent	a	Microsoft®	SQL	Server™	2000
component.	It	is	used	to	control	JobServer	object	methods.	When	used	as	a
parameter	to	the	EnumJobHistory	method,	a	JobHistoryFilter	object
constrains	the	output	of	the	method.	When	used	with	the	PurgeJobHistory
method,	the	JobHistoryFilter	object	restricts	the	scope	of	the	method.

Properties

EndRunDate	Property OldestFirst	Property
EndRunTime	Property OutcomeTypes	Property
JobID	Property SQLMessageID	Property
JobName	Property SQLSeverity	Property
MinimumRetries	Property StartRunDate	Property
MinimumRunDuration	Property StartRunTime	Property

See	Also

EnumJobHistory	Method

PurgeJobHistory	Method

SQL-DMO

JobSchedule	Object
The	JobSchedule	object	exposes	the	attributes	of	a	single	SQL	Server	Agent
executable	job	schedule.

Properties

DateCreated	Property Name	Property
Enabled	Property ScheduleID	Property

Methods

BeginAlter	Method Refresh	Method
CancelAlter	Method Remove	Method	(Objects)
DoAlter	Method 	

Remarks
SQL	Server	Agent	jobs	can	be	scheduled	for	execution	by	using	SQL	Server
Agent.	Scheduling	jobs	automates	job	execution	when	SQL	Server	Agent	is
enabled	but	jobs	are	not	required	to	be	scheduled.	They	can	be	executed	on
demand	by	a	sufficiently	privileged	user.	Jobs	can	have	more	than	one	active
schedule	and	SQL	Server	Agent	evaluates	all	schedules	to	determine	when	to	run
the	job.

With	the	JobSchedule	object,	you	can:

Create	a	schedule	for	a	SQL	Server	Agent	job.

Remove	a	schedule	from	an	existing	SQL	Server	Agent	job.

Manage	job	schedules	either	by	enabling	a	schedule	or	adjusting	run
times	or	frequencies.

The	Name	property	of	a	JobSchedule	object	can	contain	up	to	100	characters.
The	value	of	the	Name	property	must	be	unique	within	a	job.

To	schedule	a	SQL	Server	Agent	job	for	execution	by	SQL	Server	Agent

1.	 Create	a	JobSchedule	object.

2.	 Set	the	Name	property.

3.	 Get	the	Schedule	object	from	the	specified	JobSchedule	object.

4.	 Set	the	properties	of	the	Schedule	object.

5.	 Add	the	JobSchedule	object	to	the	JobSchedules	collection	of	a	Job
object	that	references	an	existing	SQL	Server	Agent	job.

SQL-DMO

JobServer	Object
The	JobServer	object	exposes	attributes	associated	with	SQL	Server	Agent.
SQL	Server	Agent	is	responsible	for	executing	scheduled	jobs	and	notifying
operators	of	Microsoft®	SQL	Server™	2000	error	conditions	or	other	SQL
Server	execution	or	job	states.

Properties

AutoStart	Property Status	Property	(Services)
MSXServerName	Property Type	Property	(JobServer)
StartupAccount	Property 	

Methods

BeginAlter	Method ReAssignJobsByLogin	Method
CancelAlter	Method Refresh	Method
DoAlter	Method RemoveJobByID	Method
EnumJobHistory	Method RemoveJobsByLogin	Method
EnumJobs	Method RemoveJobsByServer	Method

EnumSubSystems	Method Start	Method	(FullTextService,
JobServer)

GetJobByID	Method StartMonitor	Method
MSXDefect	Method Stop	Method
MSXEnlist	Method StopMonitor	Method
PurgeJobHistory	Method 	

Remarks
With	the	JobServer	object,	you	can:

Start	or	stop	SQL	Server	Agent	on	a	server	running	SQL	Server.

Manage	alerts,	jobs,	and	operators.

Enlist	the	server	in	a	multiserver	administration	group.

Note		The	JobServer	object	is	compatible	with	instances	of	SQL	Server	2000
and	SQL	Server	version	7.0.	However,	the	JobServer2	object	extends	the
functionality	of	the	JobServer	object	for	use	with	features	that	are	new	in	SQL
Server	2000.

See	Also

JobServer2	Object

SQL-DMO

JobServer2	Object
The	JobServer2	object	exposes	attributes	associated	with	SQL	Server	Agent.
SQL	Server	Agent	is	responsible	for	executing	scheduled	jobs	and	notifying
operators	of	error	conditions	in	Microsoft®	SQL	Server™	2000	or	other	SQL
Server	execution	or	job	states.	The	JobServer2	object	extends	the	functionality
of	the	JobServer	object.

Properties

ServiceName	Property 	

Remarks
The	JobServer2	object	extends	the	functionality	of	the	JobServer	object	for	use
with	features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the	properties	and
methods	of	the	JobServer	object.

The	ServiceName	property	of	the	JobServer2	object	may	not	be	compatible
with	SQL	Server	7.0	or	earlier.	For	information	about	using	the	JobServer2
object	in	an	application	that	also	runs	with	SQL	Server	version	7.0,	refer	to	the
Remarks	section	of	the	ServiceName	property.	For	more	information,	see
Programming	Extended	SQL-DMO	Objects.

See	Also

JobServer	Object

SQL-DMO

JobStep	Object
The	JobStep	object	exposes	the	attributes	of	a	single	SQL	Server	Agent
executable	job	step.

Properties

AdditionalParameters	Property OnFailAction	Property
CmdExecSuccessCode	Property OnFailStep	Property
Command	Property OnSuccessAction	Property
DatabaseName	Property OnSuccessStep	Property
DatabaseUserName	Property OSRunPriority	Property
Flags	Property OutputFileName	Property
LastRunDate	Property RetryAttempts	Property
LastRunDuration	Property RetryInterval	Property
LastRunOutcome	Property Server	Property
LastRunRetries	Property StepID	Property
LastRunTime	Property SubSystem	Property
Name	Property 	

Methods

BeginAlter	Method Refresh	Method
CancelAlter	Method Remove	Method	(Objects)
DoAlter	Method 	

Remarks

SQL	Server	Agent	jobs	contain	one	or	more	execution	units	called	steps.	Each
job	step	contains	a	textual	command,	type	of	execution	that	specifies	command
interpretation,	and	logic	that	determines	the	behavior	of	the	job	if	the	step
succeeds	or	fails.	For	example,	a	job	step	may	contain:

The	command	text:
DBCC	CHECKDB	('Northwind')	WITH	NO_INFOMSGS

A	job	step	execution	type	of	Transact-SQL.

An	indication	that	the	job	should	stop	if	the	step	fails.

With	the	JobStep	object,	you	can:

Create	a	SQL	Server	Agent	job	step.

Remove	a	job	step	from	a	SQL	Server	Agent	job.

Manage	existing	job	steps	by	changing,	for	example,	the	command	text
or	the	actions	taken	on	success	or	failure	of	the	step.

Obtain	details	about	the	last	attempted	execution	of	the	step.

The	Name	property	of	a	JobStep	object	can	contain	up	to	100	characters.	The
value	of	the	Name	property	must	be	unique	within	a	job.

After	creation,	the	job	step	is	appended	to	the	list	of	steps	in	the	SQL	Server
Agent	job.

When	creating	job	steps	by	using	the	JobStep	object,	the	default	logic	for
success	or	failure	is	that	the	job	stops.	SQL-DMO	checks	new	steps	to	ensure
that	exit	conditions	are	set	correctly.	When	adding	a	series	of	steps	to	a	job	by
using	SQL-DMO,	use	the	BeginAlter	and	DoAlter	methods	of	the	Job	object	to
wrap	the	process	so	that	step	logic	is	checked	for	all	steps	added	to	the	job.

To	create	a	SQL	Server	Agent	job	step

1.	 Create	a	JobStep	object.

2.	 Set	the	Name	property.

3.	 Set	the	StepID	property.

4.	 Set	the	Command	property.	The	default	execution	type	for	a	job	step
defined	by	a	new	JobStep	object	is	Transact-SQL.	If	the	command	is
an	operating	system	executable	or	batch	file,	set	the	SubSystem
property	to	CmdExec.

5.	 Add	the	JobStep	object	to	the	JobSteps	collection	of	a	Job	object	that
references	an	existing	SQL	Server	Agent	job.

To	remove	a	SQL	Server	Agent	job	step

1.	 Get	the	desired	Job	object	from	the	Jobs	collection	of	a	connected
JobServer	object.

2.	 Use	the	BeginAlter	method	of	the	Job	object	to	mark	the	beginning	of
changes	to	the	SQL	Server	Agent	job.

3.	 Get	the	desired	JobStep	object	from	the	JobSteps	collection	of	the
Job	object.

4.	 Use	the	Remove	method	of	the	JobStep	object	to	remove	the	step
from	the	list	of	steps	in	the	SQL	Server	Agent	job.

5.	 As	appropriate,	get	JobStep	objects	that	indicate	the	removed	step	in
their	logic.	Adjust	the	OnFailStep	and	OnSuccessStep	properties	of
those	JobStep	objects	to	correct	their	logic.

6.	 Use	the	DoAlter	method	of	the	Job	object	to	mark	the	end	of	changes,

and	then	submit	the	changes	to	the	server.

SQL-DMO

K

SQL-DMO

Key	Object
The	Key	object	exposes	the	attributes	of	Microsoft®	SQL	Server™	2000	table
keys.

Properties

Checked	Property Name	Property
Clustered	Property ReferencedKey	Property
ExcludeReplication	Property ReferencedTable	Property
FileGroup	Property Type	Property	(Key)
FillFactor	Property 	

Methods

RebuildIndex	Method Script	Method
Remove	Method	(Objects) 	

Remarks
SQL	Server	tables	can	contain	key	constraints.	The	constraints	apply	declarative
referential	integrity	to	the	data	contained	in	the	table.	Keys	can	be	primary	or
foreign.	A	single	primary	key	can	be	defined	on	a	table,	though	many	foreign
keys	can	be	defined,	constraining	data	for	a	column	or	columns	to	values
existing	as	primary	key	values	in	other	tables.

With	the	Key	object,	you	can:

Define	a	PRIMARY	KEY	constraint	for	a	SQL	Server	table.

Remove	a	PRIMARY	KEY	constraint	from	a	SQL	Server	table.

Define	a	FOREIGN	KEY	constraint	for	a	SQL	Server	table.

Remove	a	FOREIGN	KEY	constraint	from	a	SQL	Server	table.

Rebuild	the	index	used	to	maintain	a	PRIMARY	KEY	constraint	on	a
table.

The	Name	property	of	a	Key	object	uses	the	SQL	Server	data	type	sysname.
The	value	of	the	Name	property	must	be	unique	within	a	SQL	Server	database.
The	Name	property	is	not	required	when	using	a	Key	object	to	define	a	new
SQL	Server	PRIMARY	or	FOREIGN	KEY	constraint.	When	not	specified,
SQL-DMO	generates	a	Name	property.

To	define	a	PRIMARY	KEY	constraint	on	a	SQL	Server	table

1.	 Create	a	Key	object.

2.	 Set	the	Type	property	to	SQLDMOKey_Primary.

3.	 Set	the	Clustered	property	to	TRUE	to	create	a	SQL	Server	clustered
index	if	clustering	is	a	desired	attribute	of	the	PRIMARY	KEY
constraint.

4.	 Get	the	KeyColumns	Names	collection	from	the	Key	object.

5.	 Add	the	PRIMARY	KEY	column	names	to	the	Names	collection.	The
order	in	which	column	names	are	added	determines	the	order	of
column	participation	in	the	index	maintaining	the	PRIMARY	KEY
constraint.

6.	 Add	the	Key	object	to	the	Keys	collection	of	a	Table	object	that
exposes	the	attributes	of	the	SQL	Server	table.

To	define	a	FOREIGN	KEY	constraint	on	a	SQL	Server	table

1.	 Create	a	Key	object.

2.	 Set	the	Type	property	to	SQLDMOKey_Foreign.

3.	 Get	the	KeyColumns	Names	collection	from	the	Key	object.

4.	 Add	the	FOREIGN	KEY	column	names	to	the	Names	collection.	The
Names	collection	contains	the	names	of	the	column	or	columns	that
make	up	the	FOREIGN	KEY	constraint.

5.	 Set	the	ReferencedTable	property	to	the	name	of	the	SQL	Server	table
containing	the	PRIMARY	KEY	constraint	to	be	referenced	by	the
FOREIGN	KEY	constraint.

6.	 Get	the	ReferencedColumns	Names	collection	from	the	Key	object.

7.	 Add	the	name	of	the	columns	participating	in	the	PRIMARY	KEY
constraint	of	the	specified	table	to	the	ReferencedColumns	Names
collection.

8.	 Add	the	Key	object	to	the	Keys	collection	of	a	Table	object	that
exposes	the	attributes	of	the	SQL	Server	table	to	receive	the
FOREIGN	KEY	constraint.

SQL-DMO

L

SQL-DMO

Language	Object
The	Language	object	exposes	the	properties	of	an	installed	Microsoft®	SQL
Server™	2000	language	record.

Properties

Alias	Property Month	Property
Day	Property Months	Property
Days	Property Name	Property
FirstDayOfWeek	Property ShortMonth	Property
ID	Property ShortMonths	Property
LangDateFormat	Property Upgrade	Property

Remarks
SQL	Server	language	record	identifiers	categorize	system	messages	so	that	error
and	status	information	can	be	presented	as	localized	text.	A	language	record
specifies	the	format	for	dates	displayed	in	system	messages.

With	the	Language	object,	you	can	query	language	records	to	determine	the
format	of	dates	and	strings	that	specify	day	and	month	names.

SQL-DMO

LinkedServer	Object
The	LinkedServer	object	exposes	the	properties	of	an	OLE	DB	data	source	and
allows	directed	Transact-SQL	queries	against	defined	data	sources.

Properties

Catalog	Property Options	Property
DataSource	Property ProductName	Property
DropLogins	Property ProviderName	Property
Location	Property	(LinkedServer) ProviderString	Property
Name	Property 	

Methods

EnumColumns	Method ExecuteWithResultsAndMessages
Method

EnumTables	Method Remove	Method	(Objects)
ExecuteImmediate	Method
(LinkedServer,	RemoteServer)

SetOptions	Method

ExecuteWithResults	Method 	

Remarks
Microsoft®	SQL	Server™	2000	supports	Transact-SQL	queries	against	data
stored	in	one	or	more	SQL	Server	and	heterogeneous	databases.	SQL	Server
distributed	queries	use	OLE	DB	to	access	a	nonlocal	data	store.

OLE	DB	defines	a	provider	as	an	OLE	DB	component	that	can	deliver	data	from

a	store.	Typically,	OLE	DB	providers	can	discriminate	among	applicable,
available	data	stores.	OLE	DB	defines	a	data	source	as	that	information
necessary	for	the	successful	delivery	of	data	from	the	store	(such	as	a	user
identifier	and	password).

SQL	Server	implements	persistent	storage	of	an	OLE	DB	provider	name	and
data	source	definition	called	a	linked	server.

With	the	LinkedServer	object,	you	can:

Create	an	OLE	DB	data	source	definition,	usable	as	a	data	provider	for
a	distributed	query.

List	the	tables	of	a	data	source	or	the	columns	contained	in	a	data	source
table.

Execute	a	Transact-SQL	statement	against	a	SQL	Server	OLE	DB	data
source.

Remove	existing	data	source	defining	records.

The	Name	property	of	a	LinkedServer	object	uses	the	SQL	Server	data	type
sysname.	The	value	of	the	Name	property	must	be	unique	within	an	instance	of
SQL	Server.

To	create	a	linked	server

1.	 Create	a	LinkedServer	object.

2.	 Set	the	Name	property.

3.	 Set	the	ProviderName	property	to	indicate	the	OLE	DB	provider.	For
more	information	about	providers	available	for	SQL	Server,	see	OLE
DB	Providers	Tested	with	SQL	Server.	

4.	 Set	any	additional	property	values	required	by	the	provider.	For	more

JavaScript:hhobj_1.Click()

information	about	provider-required	values,	see	the	OLE	DB	provider
documentation.

5.	 Add	the	LinkedServer	object	to	the	LinkedServers	collection	of	a
connected	SQLServer	object.

Note		When	a	linked	server	is	created,	SQL	Server	creates	a	default
linked	server	login	record.	When	using	SQL-DMO	to	create	a	linked
server,	adding	the	LinkedServer	object	to	its	containing	collection
creates	the	linked	server	and	the	default	linked	server	login.	The
object's	LinkedServerLogins	collection	contains	one	member.	For
more	information	about	the	default	linked	server	login	created,	see
sp_addlinkedsrvlogin.

The	LinkedServer	object	is	compatible	with	instances	of	SQL
Server	2000	and	SQL	Server	version	7.0.	However,	the
LinkedServer2	object	extends	the	functionality	of	the
LinkedServer	object	for	use	with	features	that	are	new	in	SQL
Server	2000.

See	Also

LinkedServer2	Object

JavaScript:hhobj_2.Click()

SQL-DMO

LinkedServer2	Object
The	LinkedServer2	object	exposes	the	properties	of	an	OLE	DB	data	source,
allows	directed	Transact-SQL	queries	against	defined	data	sources,	and	extends
the	functionality	of	the	LinkedServer	object.

Properties

CollationName	Property QueryTimeout	Property
ConnectTimeout	Property 	

Methods

ExecuteWithResultsAndMessages2
Method

Refresh	Method

Remarks
The	LinkedServer2	object	extends	the	functionality	of	the	LinkedServer	object
for	use	with	new	features	in	Microsoft®	SQL	Server™	2000.	It	also	inherits	the
properties	and	methods	of	the	LinkedServer	object.

The	methods	and	properties	of	the	LinkedServer2	object	may	not	be	compatible
with	instances	of	SQL	Server	version	7.0	or	earlier.	For	more	information	about
using	the	LinkedServer2	object	in	an	application	that	also	runs	with	an	instance
of	SQL	Server	7.0,	refer	to	the	Remarks	section	for	specific	methods	and
properties.	For	more	information,	see	Programming	Extended	SQL-DMO
Objects.

See	Also

LinkedServer	Object

SQL-DMO

LinkedServerLogin	Object
The	LinkedServerLogin	object	exposes	the	properties	of	an	authentication
record	mapping	used	when	an	instance	of	Microsoft®	SQL	Server™	2000
attempts	to	connect	to	a	linked	server.

Properties

LocalLogin	Property RemotePassword	Property
Impersonate	Property RemoteUser	Property

Methods

Remove	Method	(Objects) 	

Remarks
SQL	Server	supports	Transact-SQL	queries	against	data	stored	in	one	or	more
SQL	Server	and	heterogeneous	databases.	SQL	Server	distributed	queries	use
OLE	DB	to	access	a	nonlocal	data	store.

OLE	DB	defines	a	provider	as	an	OLE	DB	component	that	can	deliver	data	from
a	store.	Typically,	OLE	DB	providers	can	discriminate	among	applicable,
available	data	stores.	OLE	DB	defines	a	data	source	as	that	information
necessary	for	the	successful	delivery	of	data	from	the	store	(such	as	a	user
identifier	and	password).

SQL	Server	implements	persistent	storage	of	an	OLE	DB	provider	name	and
data	source	definition	called	a	linked	server.	A	record	maintaining	authentication
data	for	a	linked	server	is	called	a	linked	server	login.

With	the	LinkedServerLogin	object,	you	can:

Map	SQL	Server	authentication	data	to	authentication	data	required	by	a
linked	server.

Configure	existing	authentication	mappings.

Remove	an	existing	authentication	mapping,	disabling	linked	server
accessibility	for	the	SQL	Server	login	record	mapped.

To	create	a	linked	server	login

1.	 Create	a	LinkedServerLogin	object.

2.	 Set	the	LocalLogin	property.

3.	 If	authentication	impersonation	is	supported	and	desired,	set	the
Impersonate	property.	Otherwise,	set	the	RemoteUser	and
RemotePassword	properties	to	authentication	data	values	valid	for	the
linked	server.

4.	 Add	the	LinkedServerLogin	object	to	the	LinkedServerLogins
collection	of	a	LinkedServer	object	referencing	the	appropriate	linked
server.

Note		When	a	linked	server	is	created,	SQL	Server	creates	a	default
linked	server	login	specifying	a	NULL	local	login	name	and
authentication	impersonation.	This	special	purpose	login	mapping
record	provides	authentication	data	mapping	for	those	logins	not
mapped	explicitly.

SQL-DMO

LogFile	Object
The	LogFile	object	exposes	the	attributes	of	an	operating	system	file	used	to
maintain	transaction	log	records	for	a	Microsoft®	SQL	Server™	2000	database.

Properties

FileGrowth	Property Name	Property
FileGrowthInKB	Property PhysicalName	Property
FileGrowthType	Property Size	Property
ID	Property SizeInKB	Property
MaximumSize	Property 	

Methods

Shrink	Method 	

Remarks
SQL	Server	logs	transactions	applied	to	a	database.	Transaction	logs	assist	in
recovering	database	integrity	in	the	event	of	system	failure.	Transaction	log
records	for	a	single	database	are	maintained	on	one	or	more	operating	system
files	called	log	files.

With	the	LogFile	object,	you	can:

Create	a	database	log	file	and	add	it	to	the	list	of	operating	system	files
available	to	a	SQL	Server	database.

Determine	the	usage	of	a	database	log	file.

Shrink	the	operating	system	file	to	reflect	actual	transaction	log	use.

The	Name	property	of	a	LogFile	object	can	contain	up	to	128	characters.	The
value	of	the	Name	property	must	be	unique	for	all	files,	both	log	and	data,	used
by	a	database.

To	create	an	operating	system	file	for	transaction	log	records

1.	 Create	a	LogFile	object.

2.	 Set	the	Name	property.

3.	 Set	the	PhysicalName	property	to	the	full	operating	system	path	and
file	name	for	the	operating	system	file.

4.	 Set	the	Size	property	to	the	initial	size	for	the	operating	system	file	in
megabytes	(MB).	If	you	do	not	specify	a	file	size,	a	2-MB	file	is
created.

5.	 Add	the	LogFile	object	to	the	LogFiles	collection	of	a	connected
Database	object.

SQL-DMO

Login	Object
The	Login	object	exposes	the	attributes	of	a	single	SQL	Server	Authentication
record.

Properties

Database	Property Name	Property
DenyNTLogin	Property NTLoginAccessType	Property
Language	Property SystemObject	Property
LanguageAlias	Property Type	Property	(Login)

Methods

EnumDatabaseMappings	Method Remove	Method	(Objects)
GetUserName	Method Script	Method
IsMember	Method SetPassword	Method
ListMembers	Method	(Login,	User) 	

Remarks
Microsoft®	SQL	Server™	2000	uses	two	ways	to	validate	connections	to	SQL
Server	databases:	Windows	Authentication	and	SQL	Server	Authentication.	SQL
Server	Authentication	uses	login	records	to	validate	the	connection.	A	Login
object	exposes	a	SQL	Server	login	record.

With	a	Login	object,	you	can:

Create	a	SQL	Server	login	record	for	a	SQL	Server	Authentication
connection.

Set	the	attributes	of	a	SQL	Server	login	record,	such	as	the	password	or
the	default	database	for	the	login.

Determine	the	role	membership	of	a	SQL	Server	login.

Remove	a	login	record	from	SQL	Server,	disabling	its	use.

Note		To	view,	create,	or	remove	SQL	Server	logins	by	using	the	Login
object,	the	connected	user	must	be	a	member	of	the	SQL	Server
securityadmin	fixed	server	role.

The	Name	property	of	a	Login	object	uses	the	SQL	Server	data	type	sysname.
The	value	of	the	Name	property	must	be	unique	for	an	instance	of	SQL	Server.

A	SQL	Server	login	is	created	with	no	password	and	no	rights	to	any	database	on
the	server.	After	successful	creation	of	a	SQL	Server	login,	you	can	use	the
SetPassword	method	of	the	Login	object	to	assign	a	password	to	the	login.	Use
the	Database	User	object	and	Users	collection	to	grant	login	access	to	server
resources.

To	add	a	login	to	a	server	running	SQL	Server

1.	 Create	a	Login	object.

2.	 Set	the	Name	property.

3.	 Set	the	Type	property.	By	default,	a	login	is	created	for	use	by	SQL
Server	Authentication.	Alternately	specify	the	login	type	to	map	a
Microsoft	Windows	NT®	4.0	or	Microsoft	Windows	2000®	user	or
group.

4.	 Add	the	Login	object	to	the	Logins	collection	of	a	connected
SQLServer	object	to	create	the	SQL	Server	login.

Note		The	Login	object	is	compatible	with	instances	of	SQL	Server

2000	and	SQL	Server	version	7.0.	However,	the	Login2	object	extends
the	functionality	of	the	Login	object	for	use	with	features	that	are	new
in	SQL	Server	2000.

See	Also

Login2	Object

Managing	Security

JavaScript:hhobj_1.Click()

SQL-DMO

Login2	Object
The	Login2	object	exposes	the	attributes	of	a	single	SQL	Server	Authentication
record	and	extends	the	functionality	of	the	Login	object.

Properties

IsDeleted	Property 	

Remarks
The	Login2	object	extends	the	functionality	of	the	Login	object	for	use	with
features	that	are	new	in	Microsoft®	SQL	Server™	2000.	It	also	inherits	the
properties	and	methods	of	the	Login	object.

The	IsDeleted	property	of	the	Login2	object	may	not	be	compatible	with
instances	of	SQL	Server	version	7.0	or	earlier.	For	more	information	about	using
the	Login2	object	in	an	application	that	also	runs	with	an	instance	of	SQL	Server
7.0,	refer	to	the	Remarks	section	of	the	IsDeleted	property.	For	more
information,	see	Programming	Extended	SQL-DMO	Objects.

See	Also

Login	Object

SQL-DMO

M

SQL-DMO

MergeArticle	Object
The	MergeArticle	object	represents	a	table	published	as	part	of	a	merge
publication.

Properties

ArticleResolver	Property PreCreationMethod	Property
ArticleType	Property ResolverInfo	Property
ColumnTracking	Property SnapshotObjectName	Property
ConflictTable	Property SnapshotObjectOwner	Property
CreationScriptOptions	Property SourceObjectName	Property
CreationScriptPath	Property SourceObjectOwner	Property
Description	Property Status	Property	(MergeArticle)
ID	Property SubsetFilterClause	Property
Name	Property 	

Methods

BeginAlter	Method Remove	Method	(Objects)
CancelAlter	Method Script	Method	(Replication	Objects)
DoAlter	Method ScriptDestinationObject	Method

Remarks
With	the	MergeArticle	object,	you	can:

Add	an	article	to	a	merge	publication.

Change	the	properties	of	an	existing	merge	article.

To	add	an	article	(table)	to	a	merge	publication

1.	 Create	a	new	MergeArticle	object.

2.	 Set	the	Name	property.

3.	 Set	the	SourceObjectName	property	to	the	name	of	a	table.

4.	 Set	the	SourceObjectOwner	property	to	the	owner	of	the	table.

5.	 Add	the	MergeArticle	object	to	the	MergeArticles	collection	of	a
connected	MergePublication	object.

To	alter	an	existing	article	(table)	of	an	existing	merge	publication

1.	 Get	a	MergeArticle	object	from	the	MergeArticles	collection	of	a
connected	MergePublication	object.

2.	 Use	the	BeginAlter	method	to	mark	the	beginning	of	the	changes.

3.	 Set	the	MergeArticle	properties	to	reflect	the	changes	to	the	article.

4.	 Use	the	DoAlter	method	to	submit	the	changes	to	Microsoft®	SQL
Server™.

Note		The	MergeArticle	object	is	compatible	with	instances	of	SQL
Server	2000	and	SQL	Server	version	7.0.	However,	the
MergeArticle2	object	extends	the	functionality	of	the	MergeArticle
object	for	use	with	features	that	are	new	in	SQL	Server	2000.

See	Also

MergeArticle2	Object

SQL-DMO

MergeArticle2	Object
The	MergeArticle2	object	represents	a	table	published	as	part	of	a	merge
publication	and	extends	the	functionality	of	the	MergeArticle	object.

Properties

AllowInteractiveResolver	Property IdentityRangeThreshold	Property
AutoIdentityRange	Property MultipleColumnUpdate	Property
CheckPermissions	Property PublisherIdentityRangeSize	Property
DestinationObjectName	Property SubscriberIdentityRangeSize	Property
DestinationOwnerName	Property VerifyResolverSignature	Property

Methods

AddReplicatedColumns	Method RemoveReplicatedColumns	Method
ListReplicatedColumns	Method ScriptDestinationObject2	Method

(MergeArticle2)

Remarks
The	MergeArticle2	object	extends	the	functionality	of	the	MergeArticle	object
for	use	with	features	that	are	new	in	Microsoft®	SQL	Server™	2000.	It	also
inherits	the	properties	and	methods	of	the	MergeArticle	object.	With	the
MergeArticle2	object,	you	can:

Add,	remove,	or	retrieve	information	about	vertical	partitions	in	a
replication	article.

Configure	and	retrieve	information	about	identity	ranges.

The	methods	and	properties	of	the	MergeArticle2	object	may	not	be	compatible

with	instances	of	SQL	Server	version	7.0	or	earlier.	For	information	about	using
the	MergeArticle2	object	in	an	application	that	also	runs	with	an	instance	of
SQL	Server	7.0,	refer	to	the	Remarks	section	for	specific	methods	and
properties.	For	more	information,	see	Programming	Extended	SQL-DMO
Objects.

See	Also

MergeArticle	Object

SQL-DMO

MergeDynamicSnapshotJob	Object
The	MergeDynamicSnapshotJob	object	represents	a	dynamic	snapshot	job	that
is	part	of	a	merge	publication.

Methods

BeginAlter	Method CancelAlter	Method
DoAlter	Method Remove	Method	(Objects)

Properties

DynamicFilterHostName	Property DynamicSnapshotLocation	Property
DynamicFilterLogin	Property Name	Property
DynamicSnapshotJobId	Property 	

Remarks
With	the	MergeDynamicSnapshotJob	object,	you	can:

Add	a	dynamic	snapshot	job	to	a	merge	publication.

Set	the	properties	of	a	dynamic	snapshot	job	prior	to	its	creation.

Remove	a	dynamic	snapshot	job	from	a	merge	publication.

To	add	a	dynamic	snapshot	job	to	a	merge	publication

1.	 Create	a	new	MergeDynamicSnapshotJob	object.

2.	 Optionally	set	the	Name	property,	specifying	a	name	that	is	unique
among	all	job	names	at	the	Distributor.

3.	 Set	the	DynamicFilterHostName	property	to	the	name	of	a
Subscriber.

4.	 Set	the	DynamicFilterLogin	property	to	the	login	ID	of	a	Subscriber.

5.	 Set	the	DynamicSnapshotLocation	property	to	the	path	where	the
dynamic	snapshot	files	are	generated.

6.	 Add	the	MergeDynamicSnapshotJob	object	to	the
MergeDynamicSnapshotJobs	collection	of	a	connected
MergePublication	object.

Note		If	the	Name	property	is	not	set,	a	default	name	is	generated	in	the	form	of
dyn_	+	(job	name	of	the	regular	snapshot	job	of	the	publication)	+	string	GUID.

To	remove	a	dynamic	snapshot	job	from	a	merge	publication

1.	 Get	a	MergeDynamicSnapshotJob	object	from	the
MergeDynamicSnapshotJobs	collection	of	a	connected
MergePublication	object.

2.	 Use	the	Remove	method	to	remove	the	dynamic	snapshot	job.

Note		The	MergeDynamicSnapshotJob	object	is	only	compatible
with	instances	of	SQL	Server	2000.

See	Also

Dynamic	Snapshots

JavaScript:hhobj_1.Click()

SQL-DMO

MergePublication	Object
The	MergePublication	object	represents	a	merge	publication.	A	publication
contains	one	or	more	articles	(tables)	that	contain	the	replicated	data.

Properties

CentralizedConflicts	Property Priority	Property
DynamicFilters	Property PublicationAttributes	Property
Description	Property RetentionPeriod	Property
Enabled	Property SnapshotAvailable	Property
HasSubscription	Property SnapshotJobID	Property
ID	Property SnapshotMethod	Property
Name	Property 	

Methods

BeginAlter	Method GenerateFilters	Method
CancelAlter	Method GrantPublicationAccess	Method
DoAlter	Method RefreshChildren	Method
EnumAllSubsetFilters	Method ReInitializeAllSubscriptions	Method
EnumGeneratedSubsetFilters	Method Remove	Method	(Objects)
EnumPublicationAccesses	Method RevokePublicationAccess	Method
EnumPublicationReferences	Method Script	Method	(Replication	Objects)
EnumSubscriptions	Method 	

Remarks
With	the	MergePublication	object,	you	can:

Create	a	new	merge	publication.

Change	the	properties	of	an	existing	merge	publication.

To	create	a	merge	publication

1.	 Create	a	new	MergePublication	object.

2.	 Set	the	Name	property.

3.	 Set	the	PublicationAttributes	property	as	appropriate.

To	enable	push	subscriptions,	use
SQLDMOPubAttrib_AllowPush.

To	enable	pull	subscriptions,	use
SQLDMOPubAttrib_AllowPull.

To	enable	anonymous	subscriptions,	use
SQLDMOPubAttrib_AllowPull	and
SQLDMOPubAttrib_AllowAnonymous.

To	enable	Internet	subscriptions,	use
SQLDMOPubAttrib_InternetEnabled.

4.	 Add	the	MergePublication	object	to	the	MergePublications
collection	of	a	connected	ReplicationDatabase	object.

To	alter	a	merge	publication

1.	 Get	a	MergePublication	object	from	the	MergePublications

collection	of	a	connected	ReplicationDatabase	object.

2.	 Use	the	BeginAlter	method	to	mark	the	beginning	of	the	changes.

3.	 Set	the	MergePublication	properties	to	reflect	the	changes	to	the
merge	publication.

4.	 Use	the	DoAlter	method	to	submit	the	changes	to	Microsoft®	SQL
Server™.

Note		The	MergePublication	object	is	compatible	with	instances	of
SQL	Server	2000	and	SQL	Server	version	7.0.	However,	the
MergePublication2	object	extends	the	functionality	of	the
MergePublication	object	for	use	with	features	that	are	new	in	SQL
Server	2000.

See	Also

MergePublication2	Object

SQL-DMO

MergePublication2	Object
The	MergePublication2	object	represents	a	merge	publication.	A	publication
contains	one	or	more	articles	(tables)	that	contain	the	replicated	data.	The
MergePublication2	object	extends	the	functionality	of	the	MergePublication
object.

Properties

AllowSyncToAlternate	Property FTPSubdirectory	Property
AltSnapshotFolder	Property InActiveDirectory	Property
CompatibilityLevel	Property
(MergePublication2,
TransPublication2)

KeepPartitionChanges	Property

ConflictRetention	Property MaxConcurrentMerge	Property
FTPAddress	Property MaxConcurrentDynamicSnapshots

Property
FTPLogin	Property PostSnapshotScript	Property
FTPPassword	Property PreSnapshotScript	Property
FTPPort	Property ValidateSubscriberInfo	Property

Methods

AddAlternatePublisher	Method RemoveAlternatePublisher	Method
BrowseSnapshotFolder	Method
(MergePublication2)

ReplicateUserDefinedScript	Method

CopySnapshot	Method
(MergePublication2)

ReSynchronizeSubscription	Method

EnumAlternatePublishers	Method ValidatePublication	Method
(MergePublication2)

ReadLastValidationDateTimes
Method

ValidateSubscription	Method

ReInitializeAllSubscriptions2 	

Method

Remarks
The	MergePublication2	object	extends	the	functionality	of	the
MergePublication	object	for	use	with	features	that	are	new	in	Microsoft®	SQL
Server™	2000.	It	also	inherits	the	properties	and	methods	of	the
MergePublication	object.	With	the	MergePublication2	object,	you	can:

Configure	and	manage	alternate	Publishers.

Perform	data	validation	operations	on	a	Publisher	and	its	Subscribers.

The	methods	and	properties	of	the	MergePublication2	object	may	not	be
compatible	with	instances	of	SQL	Server	version	7.0	or	earlier.	For	information
about	using	the	MergePublication2	object	in	an	application	that	also	runs	with
an	instance	of	SQL	Server	7.0,	refer	to	the	Remarks	section	for	specific	methods
and	properties.	For	more	information,	see	Programming	Extended	SQL-DMO
Objects.

See	Also

MergePublication	Object

SQL-DMO

MergePullSubscription	Object
The	MergePullSubscription	object	represents	a	Subscriber-initiated	pull	or
anonymous	subscription	to	a	merge	publication.

Properties

Description	Property Publication	Property
Distributor	Property PublicationDB	Property
EnabledForSyncMgr	Property Publisher	Property
FTPAddress	Property SubscriberLogin	Property
FTPLogin	Property SubscriberPassword	Property
FTPPassword	Property SubscriberSecurityMode	Property
FTPPort	Property SubscriberType	Property

(MergePullSubscription,
MergeSubscription)

MergeJobID	Property SubscriptionType	Property
Name	Property SyncType	Property
Priority	Property 	

Methods

BeginAlter	Method ReInitialize	Method
CancelAlter	Method Remove	Method	(Objects)
DoAlter	Method Script	Method	(Replication	Objects)
EnumJobInfo	Method 	

Remarks
With	the	MergePullSubscription	object,	you	can:

Add	a	pull	subscription	to	a	merge	publication	from	the	Subscriber.

Change	the	properties	of	an	existing	merge	pull	subscription.

Add	an	anonymous	subscription	to	a	merge	publication	from	the
Subscriber.

Change	the	properties	of	an	existing	merge	anonymous	subscription.

To	create	a	merge	pull	subscription	at	the	Subscriber

1.	 Create	a	new	MergePullSubscription	object.

2.	 Set	the	Publisher	property	to	the	name	of	an	existing	Publisher.

3.	 Set	the	Distributor	property	to	the	name	of	the	Distributor.

4.	 Set	the	PublicationDB	property	to	the	name	of	the	database	(at	the
Publisher)	where	the	publication	is	located.

5.	 Set	the	Publication	property	to	the	name	of	the	publication	to	which	to
subscribe.

6.	 Set	the	SubscriberType	property	to
SQLDMOMergeSubscriber_Global	or
SQLDMOMergeSubscriber_Local.

7.	 Set	the	SecurityMode	property	of	the	DistributorSecurity	object
property	as	appropriate.

8.	 If	the	SecurityMode	property	of	the	DistributorSecurity	object
property	is	set	to	SQLDMOReplSecurity_Normal,	set	the
StandardLogin	and	StandardPassword	properties	of	the
DistributorSecurity	object	property.

9.	 Set	the	SecurityMode	property	of	the	PublisherSecurity	object
property	as	appropriate.

10.	 If	the	SecurityMode	property	of	the	PublisherSecurity	object
property	is	set	to	SQLDMOReplSecurity_Normal,	set	the
StandardLogin	and	StandardPassword	properties	of	the
PublisherSecurity	object	property.

11.	 Note	that	the	Name	property	defaults	to
publisher:publication_database:publication.

12.	 Add	the	MergePullSubscription	object	to	the
MergePullSubscriptions	collection	of	a	connected
ReplicationDatabase	object	at	the	Subscriber.

13.	 Get	a	ReplicationDatabase	object	that	contains	the	publication	from
the	ReplicationDatabases	collection	of	the	Replication	object
connected	to	the	Publisher.

14.	 Use	the	EnableMergeSubscription	method	of	the
ReplicationDatabase	object	that	is	connected	to	the	Publisher.

To	alter	an	existing	merge	pull	subscription	at	the	Subscriber

1.	 Get	a	MergePullSubscription	object	from	the
MergePullSubscriptions	collection	of	a	connected

ReplicationDatabase	object	at	the	Subscriber.

2.	 Use	the	BeginAlter	method	to	mark	the	beginning	of	the	changes.

3.	 Set	the	MergePullSubscription	object	properties	to	reflect	the
changes	to	the	merge	pull	subscription.

4.	 Use	the	DoAlter	method	to	submit	the	changes	to	Microsoft®	SQL
Server™.

To	create	a	merge	anonymous	subscription	at	the	Subscriber

1.	 Create	a	new	MergePullSubscription	object.

2.	 Set	the	Publisher	property	to	the	name	of	an	existing	Publisher.

3.	 Set	the	PublicationDB	property	to	the	name	of	the	database	(at	the
Publisher)	where	the	publication	is	located.

4.	 Set	the	Publication	property	to	the	name	of	the	publication	to	which	to
subscribe.

5.	 Set	the	SubscriberType	property	to
SQLDMOMergeSubscriber_Anonymous.

6.	 Set	the	SecurityMode	property	of	the	DistributorSecurity	object
property	as	appropriate.

7.	 If	the	SecurityMode	property	of	the	DistributorSecurity	object
property	is	set	to	SQLDMOReplSecurity_Normal,	set	the
StandardLogin	and	StandardPassword	properties	of	the
DistributorSecurity	object	property.

8.	 Set	the	SecurityMode	property	of	the	PublisherSecurity	object
property	as	appropriate.

9.	 If	the	SecurityMode	property	of	the	PublisherSecurity	object
property	is	set	to	SQLDMOReplSecurity_Normal,	set	the
StandardLogin	and	StandardPassword	properties	of	the
PublisherSecurity	object	property.

10.	 Note	that	the	Name	property	defaults	to
publisher:publication_database:publication.

11.	 Add	the	MergePullSubscription	object	to	the
MergePullSubscriptions	collection	of	a	connected
ReplicationDatabase	object	at	the	Subscriber.

To	alter	an	existing	merge	anonymous	subscription	at	the	Subscriber

1.	 Get	a	MergePullSubscription	object	from	the
MergePullSubscriptions	collection	of	a	connected
ReplicationDatabase	object	at	the	Subscriber.

2.	 Use	the	BeginAlter	method	to	mark	the	beginning	of	the	changes.

3.	 Set	the	MergePullSubscription	object	properties	to	reflect	the
changes	to	the	merge	pull	subscription.

4.	 Use	the	DoAlter	method	to	submit	the	changes	to	SQL	Server.

The	MergePublication2	object	now	supports	the	FTP-related	properties,	still
supported	by	the	MergePullSubscription	object.	Previously,	if	it	was	necessary
to	modify	these	properties,	changes	had	to	be	made	at	each	Subscriber.	Now
changes	can	be	made	at	the	Publisher.

Note		The	MergePullSubscription	object	is	compatible	with	instances	of	SQL
Server	2000	and	SQL	Server	version	7.0.	However,	the
MergePullSubscription2	object	extends	the	functionality	of	the
MergePullSubscription	object	for	use	with	features	that	are	new	in	SQL	Server
2000.

See	Also

MergePullSubscription2	Object

SQL-DMO

MergePullSubscription2	Object
The	MergePullSubscription2	object	represents	a	Subscriber-initiated	pull	or
anonymous	subscription	to	a	merge	publication	and	extends	the	functionality	of
the	MergePullSubscription	object.

Properties

AgentOffload	Property LastMergedTime	Property
AgentOffloadServer	Property SubscriptionID	Property
AltSnapshotFolder	Property UseFTP	Property
DynamicSnapshotLocation
Property

UseInteractiveResolver	Property

LastMergedStatus	Property WorkingDirectory	Property
LastMergedSummary	Property 	

Methods

EnumAlternatePublishers	Method ReInitialize2	Method

Remarks
The	MergePullSubscription2	object	extends	the	functionality	of	the
MergePullSubscription	object	for	use	with	features	that	are	new	in	Microsoft®
SQL	Server™	2000.	It	also	inherits	the	properties	and	methods	of	the
MergePullSubscription	object.	With	the	MergePullSubscription2	object,	you
can:

Set	and	retrieve	information	about	Distribution	Agents	offloaded	to
remote	servers.

Use	an	interactive	resolver.

The	methods	and	properties	of	the	MergePullSubscription2	object	may	not	be
compatible	with	instances	of	SQL	Server	version	7.0	or	earlier.	For	information
about	using	the	MergePullSubscription2	object	in	an	application	that	also	runs
with	an	instance	of	SQL	Server	7.0,	refer	to	the	Remarks	section	for	specific
methods	and	properties.	For	more	information,	see	Programming	Extended
SQL-DMO	Objects.

See	Also

MergePullSubscription	Object

SQL-DMO

MergeSubscription	Object
The	MergeSubscription	object	represents	a	push	subscription	(made	from	the
Publisher)	to	a	merge	publication.

Properties

Description	Property Subscriber	Property
EnabledForSyncMgr	Property SubscriberType	Property

(MergePullSubscription,
MergeSubscription)

MergeJobID	Property SubscriptionDB	Property
Name	Property SubscriptionType	Property
Priority	Property SyncType	Property
Status	Property	(Subscription
Objects)

	

Methods

BeginAlter	Method ReInitialize	Method
CancelAlter	Method Remove	Method	(Objects)
DoAlter	Method Script	Method	(Replication	Objects)

Remarks
With	the	MergeSubscription	object,	you	can:

Add	a	push	subscription	to	a	merge	publication.

Change	the	properties	of	an	existing	push	merge	subscription.

To	create	a	merge	push	subscription	at	the	Publisher

1.	 Create	a	new	MergeSubscription	object.

2.	 Set	the	Subscriber	property	to	the	name	of	an	existing	Subscriber.

3.	 Set	the	SubscriptionDB	property	to	the	name	of	the	database	(at	the
Subscriber)	where	the	subscription	data	will	be	stored.

4.	 Note	that	the	Name	property	defaults	to
subscriber:subscription_database.

5.	 Add	the	MergeSubscription	object	to	the	MergeSubscriptions
collection	of	a	connected	MergePublication	object.

To	alter	an	existing	merge	push	subscription

1.	 Get	a	MergeSubscription	object	from	the	MergeSubscriptions
collection	of	a	connected	MergePublication	object.

2.	 Use	the	BeginAlter	method	to	mark	the	beginning	of	the	changes.

3.	 Set	the	MergeSubscription	object	properties	to	reflect	the	changes	to
the	merge	push	subscription.

4.	 Use	the	DoAlter	method	to	submit	the	changes	to	Microsoft®	SQL
Server™.

Note		The	MergeSubscription	object	is	compatible	with	instances	of	SQL
Server	2000	and	SQL	Server	version	7.0.	However,	the	MergeSubscription2
object	extends	the	functionality	of	the	MergeSubscription	object	for	use	with

features	that	are	new	in	SQL	Server	2000.

See	Also

MergeSubscription2	Object

SQL-DMO

MergeSubscription2	Object
The	MergeSubscription2	object	represents	a	push	subscription	(made	from	the
Publisher)	to	a	merge	publication	and	extends	the	functionality	of	the
MergeSubscription	object.

Properties

AgentOffload	Property UseInteractiveResolver	Property
AgentOffloadServer	Property 	

Methods
ReInitialize2	Method

Remarks
The	MergeSubscription2	object	extends	the	functionality	of	the
MergeSubscription	object	for	use	with	features	that	are	new	in	Microsoft®
SQL	Server™	2000.	It	also	inherits	the	properties	and	methods	of	the
MergeSubscription	object.	With	the	MergeSubscription2	object,	you	can:

Set	and	retrieve	information	about	Distribution	Agents	offloaded	to
remote	servers.

Use	an	interactive	resolver.

The	methods	and	properties	of	the	MergeSubscription2	object	may	not	be
compatible	with	instances	of	SQL	Server	version	7.0	or	earlier.	For	information
about	using	the	MergeSubscription2	object	in	an	application	that	also	runs	with
an	instance	of	SQL	Server	7.0,	refer	to	the	Remarks	section	for	specific	methods
and	properties.	For	more	information,	see	Programming	Extended	SQL-DMO
Objects.

See	Also

MergeSubscription	Object

SQL-DMO

MergeSubsetFilter	Object
The	MergeSubsetFilter	object	represents	a	filter	(or	partition)	of	the	data	in	one
article	based	on	filtered	data	in	another	article.	Both	articles	must	be	part	of	the
same	merge	publication.

Methods

BeginAlter	Method DoAlter	Method
CancelAlter	Method Remove	Method	(Objects)

Properties

ID	Property JoinUniqueKey	Property
JoinArticleName	Property Name	Property
JoinFilterClause	Property 	

Remarks
A	MergeSubsetFilter	object	is	commonly	used	when	two	tables	have	a	primary
key	to	foreign	key	relationship.	If	the	MergeArticle	object	representing	the
primary	key	table	has	a	SubsetFilterClause	object	defined,	add	a
MergeSubsetFilter	object	(that	references	the	primary	key	article)	to	the
MergeArticle	object	representing	the	foreign	key	table.

With	the	MergeSubsetFilter	object,	you	can:

Add	a	merge	filter.

Change	the	properties	of	an	existing	merge	filter.

To	add	a	merge	filter	to	a	merge	article

1.	 Create	a	new	MergeSubsetFilter	object.

2.	 Set	the	Name	property.

3.	 Set	the	JoinArticleName	property.

4.	 Set	the	JoinFilterClause	property.

5.	 Add	the	MergeSubsetFilter	object	to	the	MergeSubsetFilters
collection	of	a	connected	MergeArticle	object.

To	alter	an	existing	merge	filter	of	a	merge	article

1.	 Get	a	MergeSubsetFilter	object	from	the	MergeSubsetFilters
collection	of	a	connected	MergeArticle	object.

2.	 Use	the	BeginAlter	method	to	mark	the	beginning	of	the	changes.

3.	 Set	the	MergeSubsetFilter	properties	to	reflect	the	changes	to	the
merge	filter.

4.	 Use	the	DoAlter	method	to	submit	the	changes	to	Microsoft®	SQL
Server™.

SQL-DMO

N

SQL-DMO

NameList	Object
The	NameList	object	is	a	string	container	object	returned	by	methods	that
enumerate	Microsoft®	SQL	Server™	components	by	name.

Properties

Count	Property 	

Methods

FindName	Method Refresh	Method
Item	Method 	

Remarks
SQL-DMO	implements	object	enumerating	methods	that	return	the	names	of
servers	running	SQL	Server	or	SQL	Server	database	objects,	such	as	users	or
indexes.	Commonly,	the	name	of	the	SQL	Server	component	is	used	by	an
application	in	logic	that	directs	the	selection	of	a	component.	That	component
may	then	be	referenced	by	name	in	another	method.

For	example,	the	ListAvailableSQLServers	method	of	the	Application	object
returns	a	NameList	object	that	enumerates	SQL	Server	server	names.	An
application	can	use	the	Item	method	of	the	NameList	object	to	populate	a
control,	such	as	a	combo	box,	allowing	user	selection	of	a	SQL	Server
installation	by	name.	The	name	selected	could	then	be	used	in	the	Connect
method	of	the	SQLServer	object.

See	Also

ListAvailableSQLServers	Method

ListMemberServers	Method

ListAvailableUniqueIndexesForFullText	Method

ListObjectNames	Method

ListMembers	Method	(Login,	User)

SQL-DMO

O

SQL-DMO

Operator	Object
The	Operator	object	represents	a	single	Microsoft®	SQL	Server™	operator.
SQL	Server	operators	receive	alert	and	job	status	notification	in	response	to
events	generated	by	the	server.

Properties

Category	Property Name	Property
EmailAddress	Property NetSendAddress	Property
Enabled	Property PagerAddress	Property
ID	Property PagerDays	Property
LastEmailDate	Property SaturdayPagerEndTime	Property
LastEmailTime	Property SaturdayPagerStartTime	Property
LastNetSendDate	Property SundayPagerEndTime	Property
LastNetSendTime	Property SundayPagerStartTime	Property
LastPageDate	Property WeekdayPagerEndTime	Property
LastPageTime	Property WeekdayPagerStartTime	Property

Methods

AddNotification	Method Refresh	Method
BeginAlter	Method Remove	Method	(Operator)
CancelAlter	Method RemoveNotification	Method
DoAlter	Method Script	Method
EnumJobNotifications	Method UpdateNotification	Method
EnumNotifications	Method 	

Remarks
Use	the	Operator	object	to	manage	the	SQL	Server	operators	defined	for	an
instance	of	SQL	Server.	With	the	Operator	object,	you	can:

Define	new	operators	on	an	instance	of	SQL	Server.

Assign	alert	notifications	to	the	operator.

Change	the	scheduled	response	times	for	an	existing	operator.

The	Name	property	of	an	Operator	object	is	required	when	creating	an	operator
on	SQL	Server.	The	Name	property	uses	the	SQL	Server	data	type
varchar(100).

A	SQL	Server	operator	created	with	the	minimum	required	values	has	no
schedule	information	and	is	assigned	no	notifications.

To	create	a	SQL	Server	operator

1.	 Create	an	Operator	object.

2.	 Set	the	Name	property.

3.	 Add	the	Operator	object	to	the	Operators	collection	of	a	connected
JobServer	object.

To	modify	an	existing	SQL	Server	operator

1.	 Get	an	Operator	object	from	the	Operators	collection	of	a	connected
JobServer	object.

2.	 Use	the	BeginAlter	method	to	mark	the	start	of	changes	to	existing
property	values.

3.	 Change	property	values	to	reflect	changes	in	behavior.

4.	 Use	the	DoAlter	method	to	mark	the	end	of	changes	and	make
changes	in	the	SQL	Server	operator.

See	Also

Defining	Operators

JavaScript:hhobj_1.Click()

SQL-DMO

P

SQL-DMO

Permission	Object
The	Permission	object	exposes	Microsoft®	SQL	Server™	object-access	rights.

Properties

Granted	Property ObjectType	Property
Grantee	Property ObjectTypeName	Property
ObjectID	Property PrivilegeType	Property
ObjectName	Property PrivilegeTypeName	Property
ObjectOwner	Property 	

Methods
ListPrivilegeColumns	Method

Remarks
The	Permission	object	is	contained	within	SQL-DMO	list	objects	and	is	used
solely	for	reporting	object-access	rights.	For	example,	the	Table	object	has
Permissions	and	UserPermissions	lists	reporting	the	access	rights	to	a	specific
SQL	Server	table.	Membership	in	these	object	lists	is	affected	by	granting,
revoking,	or	denying	object-specific	access	rights	to	SQL	Server	users	and
database	roles.	You	can	use	the	containing	object's	Grant,	Revoke,	and	Deny
methods	to	control	SQL	Server	access	rights	and	affect	list	membership.

All	properties	of	the	Permission	object	are	read-only.

Note		The	Permission	object	is	compatible	with	instances	of	SQL	Server	2000
and	SQL	Server	version	7.0.	However,	the	Permission2	object	extends	the
functionality	of	the	Permission	object	for	use	with	features	that	are	new	in	SQL
Server	2000.

See	Also

Database	Object

Permission2	Object

StoredProcedure	Object

Table	Object

View	Object

ListPermissions	Method

ListUserPermissions	Method

SQL-DMO

Permission2	Object
The	Permission2	object	exposes	Microsoft®	SQL	Server™	object-access	rights
and	extends	the	functionality	of	the	Permission	object.

Properties

GrantedGranted	Property

Remarks
The	Permission2	object	extends	the	functionality	of	the	Permission	object	for
use	with	features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the	properties
and	methods	of	the	Permission	object.

The	GrantedGranted	property	of	the	Permission2	object	may	not	be
compatible	with	instances	of	SQL	Server	version	7.0	or	earlier.	For	information
about	using	the	Permission2	object	in	an	application	that	also	runs	with	an
instance	of	SQL	Server	7.0,	refer	to	the	Remarks	section	of	the
GrantedGranted	property.	For	more	information,	see	Programming	Extended
SQL-DMO	Objects.

See	Also

Permission	Object

SQL-DMO

Property	Object
The	Property	object	exposes	the	attributes	of	a	SQL-DMO	object	property.

Properties

Get	Property Type	Property	(Property)
Name	Property Value	Property
Set	Property 	

Remarks
Object	properties	implement	instance	data	for	OLE	objects.	SQL-DMO	is
implemented	as	a	dual-interface	object	library.	Its	objects	are	exposed	as	OLE
Automated	objects	and	as	COM	objects,	enabling	you	to	use	either	an
automation	controller	or	a	C/C++	compiler	as	an	application	development
platform.

OLE	Automation	controllers,	such	as	Microsoft®	Visual	Basic®,	typically
enrich	the	development	experience	by	providing	syntax	completion	and	other
development	aids.	Because	it	exposes	the	attributes	of	object	properties,	the
Property	object	is	a	central	component	of	automated	developer	assistance.

Note		The	Property	object	is	implemented	for	OLE	Automation	controllers.	The
C/C++	SQL-DMO	application	has	no	direct	access	to	the	Property	object.

SQL-DMO

Publisher	Object
The	Publisher	object	represents	the	replication	properties	of	a	Microsoft®	SQL
Server™	Publisher.

Note		The	Publisher	object	is	compatible	with	instances	of	SQL	Server	2000
and	SQL	Server	version	7.0.	However,	the	Publisher2	object	extends	the
functionality	of	the	Publisher	object	for	use	with	features	that	are	new	in	SQL
Server	2000.

Methods

Script	Method	(Replication	Objects) Uninstall	Method

See	Also

Publisher2	Object

SQL-DMO

Publisher2	Object
The	Publisher2	object	represents	the	replication	properties	of	a	Microsoft®	SQL
Server™	Publisher	and	extends	the	functionality	of	the	Publisher	object.

Methods

CleanUpAnonymousAgentInfo
Method

EnumPublications2	Method

Remarks
The	Publisher2	object	extends	the	functionality	of	the	Publisher	object	for	use
with	features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the	properties	and
methods	of	the	Publisher	object.

The	methods	and	properties	of	the	Publisher2	object	may	not	be	compatible
with	instances	of	SQL	Server	version	7.0	or	earlier.	For	information	about	using
the	Publisher2	object	in	an	application	that	also	runs	with	an	instance	of	SQL
Server	7.0,	refer	to	the	Remarks	section	for	specific	methods	and	properties.	For
more	information,	see	Programming	Extended	SQL-DMO	Objects.

See	Also

Publisher	Object

SQL-DMO

Q

SQL-DMO

QueryResults	Object
The	QueryResults	object	presents	tabular	data	to	the	SQL-DMO	application.
SQL-DMO	enumeration	methods,	such	as	the	EnumLocks	method	of	the
Database	object,	return	a	QueryResults	object	to	report	their	data.	SQL-DMO
statement	execution	methods,	such	as	the	ExecuteWithResults	method	of
Database	and	SQLServer	objects,	also	return	a	QueryResults	object.

Properties

ColumnMaxLength	Property CurrentResultSet	Property
ColumnName	Property ResultSets	Property
Columns	Property Rows	Property
ColumnType	Property 	

Methods

GetColumnBinary	Method GetColumnFloat	Method
GetColumnBinaryLength	Method GetColumnGUID	Method
GetColumnBool	Method GetColumnLong	Method
GetColumnDate	Method GetColumnString	Method
GetColumnDouble	Method GetRangeString	Method

Remarks
The	QueryResults	object	is	a	reporting	tool.	All	properties	of	the	QueryResults
object	are	read-only.	With	the	QueryResults	object,	you	can:

Navigate	data	returned	from	a	server	running	Microsoft®	SQL	Server™
as	the	result	of	statement	execution.

Retrieve	specific	data	values	in	a	data	type	usable	by	your	application.

Get	the	data	result	of	a	statement	execution	as	a	delimited	string	of
values.

Note		The	QueryResults	object	is	compatible	with	instances	of	SQL
Server	2000	and	SQL	Server	version	7.0.	However,	the	QueryResults2
object	extends	the	functionality	of	the	QueryResults	object	for	use	with
features	that	are	new	in	SQL	Server	2000.

See	Also

QueryResults2	Object

SQL-DMO

QueryResults2	Object
The	QueryResults2	object	presents	tabular	data	to	the	SQL-DMO	application
and	extends	the	functionality	of	the	QueryResults	object.

Methods

GetColumnBigInt	Method GetColumnSQLVARIANTLength
Method

GetColumnSQLVARIANT	Method GetColumnSQLVARIANTToString
Method

GetColumnSQLVARIANTDataType
Method

	

Remarks
The	QueryResults2	object	extends	the	functionality	of	the	QueryResults	object
for	use	with	features	that	are	new	in	Microsoft®	SQL	Server™	2000.	It	also
inherits	the	properties	and	methods	of	the	QueryResults	object.	With	the
QueryResults2	object,	you	can:

Retrieve	specific	sql_variant	data	values	in	a	data	type	usable	by	your
application.

The	methods	of	the	QueryResults2	object	may	not	be	compatible	with	instances
of	SQL	Server	version	7.0	or	earlier.	For	information	about	using	the
QueryResults2	object	in	an	application	that	also	runs	with	an	instance	of	SQL
Server	7.0,	refer	to	the	Remarks	section	for	specific	methods.	For	more
information,	see	Programming	Extended	SQL-DMO	Objects.

See	Also

QueryResults	Object

SQL-DMO

R

SQL-DMO

RegisteredServer	Object
The	RegisteredServer	object	exposes	the	attributes	of	a	single,	registry-listed
instance	of	Microsoft®	SQL	Server™.

Properties

Login	Property SaLogin	Property
Name	Property UseTrustedConnection	Property
Password	Property VersionMajor	Property
PersistFlags	Property VersionMinor	Property

Methods
Remove	Method	(Objects)

Remarks
SQL-DMO	applications	can	maintain	lists	of	some	or	all	instances	of	SQL
Server	in	an	organization	in	the	registry	of	a	Microsoft	Windows	NT®	4.0,
Microsoft	Windows	2000®,	or	Microsoft	Windows®	98	system.	The	lists
establish	categories	for	instances	of	SQL	Server.

For	example,	to	group	and	view	servers	by	division	in	a	SQL-DMO	application,
SQL-DMO	would	represent	each	division	as	a	ServerGroup	object.	The
division's	ServerGroup	name	is	maintained	by	SQL-DMO	as	a	Windows	NT	or
Windows	95	registry	key.	Within	this	registry	entry,	separate	keys	list	each
instance	of	SQL	Server	in	the	division.	The	list	of	these	keys	forms	the	members
of	the	SQL-DMO	RegisteredServers	collection,	while	each	key's	data	is
exposed	by	a	RegisteredServer	object.

With	the	RegisteredServer	object,	you	can:

Create	a	Windows	NT	or	Windows	95	registry	entry	that	lists	an
organization	server.

Remove	a	Windows	NT	or	Windows	95	registry	entry	that	lists	an
instance	of	SQL	Server.

Manage	a	Windows	NT	or	Windows	95	registry	entry	that	lists	an
instance	of	SQL	Server	by	setting	connection-validation	attributes.

The	Name	property	of	the	RegisteredServer	object	refers	to	the	instance	of
SQL	Server	registered.	SQL-DMO	does	not	attempt	to	validate	the	Name
property	value	when	registering	an	instance	of	SQL	Server.	The
RegisteredServer	object	Name	property	is	validated	when	the	object	is	used	in
an	attempt	to	connect	to	an	instance	of	SQL	Server.

After	an	instance	of	SQL	Server	is	registered,	SQL-DMO	uses	the	properties	of
the	registered	server	when	connecting	and	when	attempting	to	reconnect	after	a
connection	failure.	For	example,	SQL-DMO	ignores	the	szLogin	and	szPassword
parameters	of	the	Connect	method	of	the	SQLServer	object	when	that	object
references	an	instance	of	SQL	Server	registered	to	use	Windows	NT
Authentication	Mode.

To	create	a	registry	entry	listing	an	instance	of	SQL	Server

1.	 Create	a	RegisteredServer	object.

2.	 Set	the	properties	determining	connection	validation	appropriately.	For
example,	set	the	UseTrustedConnection	property	to	TRUE	to	enable
Windows	NT	Authentication	Mode.

3.	 Add	the	RegisteredServer	object	to	the	RegisteredServers	collection
of	the	ServerGroup	object	of	an	Application	object.

SQL-DMO

RegisteredSubscriber	Object
The	RegisteredSubscriber	object	represents	what	information	a	Publisher	has
about	a	Subscriber.

Properties

Description	Property Type	Property
(RegisteredSubscriber)

Name	Property 	

Methods

BeginAlter	Method Refresh	Method
CancelAlter	Method Remove	Method	(Objects)
DoAlter	Method Script	Method	(Replication	Objects)

Remarks
With	the	RegisteredSubscriber	object,	you	can:

Add	a	Subscriber	at	the	Distributor	or	Publisher.

Change	the	properties	of	an	existing	Subscriber	at	the	Distributor	or
Publisher.

To	add	a	Subscriber	at	the	Publisher

1.	 Create	a	new	RegisteredSubscriber	object.

2.	 Set	the	Name	property	to	the	server	name	of	the	Subscriber.

3.	 Add	the	RegisteredSubscriber	object	to	the	RegisteredSubscribers
collection	of	a	connected	Publisher	object.

To	add	a	Subscriber	at	the	Distributor

1.	 Create	a	new	RegisteredSubscriber	object.

2.	 Set	the	Name	property	to	the	server	name	of	the	Subscriber.

3.	 Add	the	RegisteredSubscriber	object	to	the	RegisteredSubscribers
collection	of	a	connected	DistributionPublishers	object.

To	alter	an	existing	Subscriber	at	the	Publisher

1.	 Get	a	RegisteredSubscriber	object	from	the	RegisteredSubscribers
collection	of	a	connected	Publisher	object.

2.	 Use	the	BeginAlter	method	to	mark	the	beginning	of	the	changes.

3.	 Set	the	RegisteredSubscriber	object	properties	to	reflect	the	changes
to	the	Subscriber.

4.	 Use	the	DoAlter	method	to	submit	the	changes	to	Microsoft®	SQL
Server™.

To	alter	an	existing	Subscriber	at	the	Distributor

1.	 Get	a	RegisteredSubscriber	object	from	the	RegisteredSubscribers
collection	of	a	connected	DistributionPublishers	object.

2.	 Use	the	BeginAlter	method	to	mark	the	beginning	of	the	changes.

3.	 Set	the	RegisteredSubscriber	object	properties	to	reflect	the	changes
to	the	Subscriber.

4.	 Use	the	DoAlter	method	to	submit	the	changes	to	SQL	Server.

SQL-DMO

Registry	Object
The	Registry	object	exposes	the	Microsoft®	Windows	NT®	4.0,	Microsoft®
Windows	2000®,	or	Microsoft	Windows®	98	registry	settings	that	maintain	an
instance	of	Microsoft	SQL	Server™	and	run-time	parameters.

Properties

AutostartDTC	Property NumberOfProcessors	Property
AutostartLicensing	Property PerfMonMode	Property
AutostartMail	Property PhysicalMemory	Property
AutostartServer	Property RegisteredOrganization	Property
CaseSensitive	Property RegisteredOwner	Property
CharacterSet	Property ReplicationInstalled	Property
ErrorLogPath	Property SortOrder	Property
MailAccountName	Property SQLDataRoot	Property
MailPassword	Property SQLRootPath	Property
MasterDBPath	Property TapeLoadWaitTime	Property
NTEventLogging	Property 	

Remarks
With	the	Registry	object,	you	can:

Retrieve	SQL	Server	parameters	set	during	installation,	such	as	the
registered	owner,	character	set,	and	sort	order.

Set	system	start	behavior	for	an	instance	of	SQL	Server.

Configure	SQL	Server	mail	account	information.

Configure	SQL	Server	default	data-	and	error-log	paths,	or	set	the	path
for	the	SQL	Server	master	database.

Changes	to	property	values	of	the	Registry	object	are	applied	to	the	referenced
instance	of	SQL	Server	as	they	are	made.

To	set	a	SQL	Server	run-time	parameter

1.	 Get	the	Registry	object	from	a	connected	SQLServer	object.

2.	 Set	the	parameter.	For	example,	to	cause	the	SQL	Server	service
(MSSQLServer)	to	start	automatically	when	the	system	is	started,	set
the	AutostartServer	property	to	TRUE.

Note		The	Registry	object	is	compatible	with	instances	of	SQL	Server
2000	and	SQL	Server	version	7.0.	However,	the	Registry2	object
extends	the	functionality	of	the	Registry	object	for	use	with	features
that	are	new	in	SQL	Server	2000.

See	Also

Registry2	Object

SQL-DMO

Registry2	Object
The	Registry2	object	exposes	the	Microsoft®	Windows	NT®	4.0,	Microsoft®
Windows	2000®	or	Microsoft	Windows®	95	registry	settings	that	maintain	an
instance	of	Microsoft	SQL	Server™	and	run-time	parameters.	The	Registry2
object	extends	the	functionality	of	the	Registry	object.

Properties

Adsp	Property SpxServiceName	Property
AgentLogFile	Property SQLCurrentVersion	Property
BackupDirectory	Property SuperSocketEncrypt	Property
NP	Property SuperSocketList	Property
RpcEncrypt	Property TcpFlag	Property
RpcList	Property TcpPort	Property
RpcMaxCalls	Property ViaListenInfo	Property
RpcMinCalls	Property ViaRecognizedVendors	Property
SNMP	Property ViaVendor	Property
SNMPCurrentVersion	Property VinesGroupName	Property
SNMPExtensionAgents	Property VinesItemName	Property
SNMPExtensionAgentsData
Property

VinesOrgName	Property

SpxFlag	Property WSProxyAddress	Property
SpxPort	Property WSProxyPort	Property

Methods
EnumFullTextLanguages	Method

Remarks
The	Registry2	object	extends	the	functionality	of	the	Registry	object	for	use
with	features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the	properties	and

methods	of	the	Registry	object.	With	the	Registry2	object,	you	can:

Specify	non-default	locations	for	backup	and	agent	log	files	when
running	multiple	instances	of	SQL	Server.

Manage	Net-Library	settings	for	multiple	instances	of	SQL	Server.

The	methods	and	properties	of	the	Registry2	object	may	not	be	compatible	with
instances	of	SQL	Server	version	7.0	or	earlier.	For	more	information	about	using
the	Registry2	object	in	an	application	that	also	runs	with	an	instance	of	SQL
Server	7.0,	refer	to	the	Remarks	section	for	specific	methods	and	properties.	For
more	information,	see	Programming	Extended	SQL-DMO	Objects.

See	Also

Registry	Object

SQL-DMO

RemoteLogin	Object
The	RemoteLogin	object	exposes	the	properties	of	a	single	login	mapping
record	for	connections	to	an	instance	of	Microsoft®	SQL	Server™	originating
from	another,	known	instance	of	SQL	Server.

Properties

LocalName	Property Trusted	Property
RemoteName	Property 	

Methods
Remove	Method	(Objects)

Remarks
An	instance	of	SQL	Server	can	maintain	authentication	information	for
connections	originating	from	other	instances	of	SQL	Server.	Server-originated
connections	are	attempted	when,	for	example,	remote	procedure	calls	are	part	of
a	Transact-SQL	script.

Each	instance	of	SQL	Server	in	an	organization	can	control	access	by	listing	the
servers	from	which	it	accepts	connections.	For	each	of	these	remote	servers,
login-account	mappings	specify	the	local	login	used	by	a	remote	server
connection	when	that	remote	server	connects	as	part	of	a	process	run	by	the
remote	login.

With	the	RemoteLogin	object,	you	can:

Map	a	login	record	on	one	instance	of	SQL	Server	to	an	existing	login
record	on	another	instance	of	SQL	Server.

Configure	the	local	login	attributes	for	a	login	defined	on	a	remote
instance	of	SQL	Server.

Remove	a	remote	login	record	from	the	list	of	logins	mapped	for	the
remote	instance	of	SQL	Server.

SQL-DMO

RemoteServer	Object
The	RemoteServer	object	exposes	the	attributes	of	an	instance	of	Microsoft®
SQL	Server™,	known	as	a	remote	server,	to	another	server.

Methods

ExecuteImmediate	Method
(LinkedServer,	RemoteServer)

Remove	Method	(Objects)

ExecuteWithResults	Method SetOptions	Method
ExecuteWithResultsAndMessages
Method

SetTopologyXY	Method

Properties

ID	Property Options	Property
Name	Property TopologyX	Property
NetName	Property TopologyY	Property

Remarks
To	facilitate	connections	between	instances	of	SQL	Server	in	an	organization,
SQL	Server	uses	remote-server	naming.

A	instance	of	SQL	Server	can	maintain	authentication	information	for
connections	originating	from	other	instances	of	SQL	Server.	Each	instance	of
SQL	Server	in	an	organization	can	control	access	by	listing	the	instances	of	SQL
Server	from	which	it	accepts	connections.

When	a	remote	server	is	named	on	an	instance	of	SQL	Server,	the	server

maintaining	the	name	list	can,	in	turn,	originate	a	connection	to	a	named	remote
server.

With	the	RemoteServer	object,	you	can:

Name	a	new	SQL	Server	remote	server.

Adjust	the	Mixed	Mode	attributes	of	a	named	remote	server.

Execute	Transact-SQL	scripts	on	a	named	remote	server.

Remove	a	remote	server	definition.

Note		The	RemoteServer	object	is	compatible	with	instances	of	SQL
Server	2000	and	SQL	Server	version	7.0.	However,	the	RemoteServer2
object	extends	the	functionality	of	the	RemoteServer	object	for	use
with	features	that	are	new	in	SQL	Server	2000.

See	Also

RemoteServer2	Object

SQL-DMO

RemoteServer2	Object
The	RemoteServer2	object	exposes	the	attributes	of	an	instance	of	Microsoft®
SQL	Server™,	known	as	a	remote	server,	to	another	server	and	extends	the
functionality	of	the	RemoteServer	object.

Methods

ExecuteWithResultsAndMessages2	Method

Remarks
The	RemoteServer2	object	extends	the	functionality	of	the	RemoteServer
object	for	use	with	features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the
properties	and	methods	of	the	RemoteServer	object.

The	ExecuteWithResultsAndMessages	method	of	the	RemoteServer2	object
may	not	be	compatible	with	instances	of	SQL	Server	version	7.0	or	earlier.	For
more	information	about	using	the	RemoteServer2	object	in	an	application	that
also	runs	with	an	instance	of	SQL	Server	7.0,	refer	to	the	Remarks	section	of	the
ExecuteWithResultsAndMessages	method.	For	more	information,	see
Programming	Extended	SQL-DMO	Objects.

See	Also

RemoteServer	Object

SQL-DMO

Replication	Object
The	Replication	object	represents	the	entire	replication	system	for	an	instance	of
Microsoft®	SQL	Server™,	and	it	is	the	root	of	all	replication	objects.

Methods

EnumCustomResolvers	Method Uninstall	Method
EnumDataSourceNames	Method ValidateDataSource	Method
Script	Method	(Replication	Objects) 	

Events

PercentComplete	Event StatusMessage	Event

Remarks
With	the	Replication	object,	you	can	uninstall	the	replication	system.

To	uninstall	the	replication	system

Use	the	Uninstall	method	of	a	connected	Replication	object.

Note		The	Replication	object	is	compatible	with	instances	of	SQL
Server	2000	and	SQL	Server	version	7.0.	However,	the	Replication2
object	extends	the	functionality	of	the	Replication	object	for	use	with
features	that	are	new	in	SQL	Server	2000.

See	Also

Replication2	Object

SQL-DMO

Replication2	Object
The	Replication2	object	represents	the	entire	replication	system	for	an	instance
of	Microsoft®	SQL	Server™,	and	it	is	the	root	of	all	replication	objects.	The
Replication2	object	extends	the	functionality	of	the	Replication	object.

Methods

AttachSubscriptionDatabase	Method

Remarks
The	Replication2	object	extends	the	functionality	of	the	Replication	object	for
use	with	features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the	properties
and	methods	of	the	Replication	object.	With	the	Replication2	object,	you	can:

Attach	a	subscription	database	to	a	Subscriber.

The	AttachSubscriptionDatabase	method	of	the	Replication2	object	may	not
be	compatible	with	instances	of	SQL	Server	version	7.0	or	earlier.	For	more
information	about	using	the	Replication2	object	in	an	application	that	also	runs
with	an	instance	of	SQL	Server	7.0,	refer	to	the	Remarks	section	of	the
AttachSubscriptionDatabase	method.	For	more	information,	see	Programming
Extended	SQL-DMO	Objects.

See	Also

Replication	Object

SQL-DMO

ReplicationDatabase	Object
The	ReplicationDatabase	object	represents	a	user	database	that	can	participate
in	replication.

Properties

AllowMergePublication	Property EnableTransPublishing	Property
DBOwner	Property Name	Property
EnableMergePublishing	Property 	

Methods

DisableMergeSubscription	Method EnumConflictTables	Method
DisableTransSubscription	Method EnumInitialAccesses	Method
EnableMergeSubscription	Method RefreshChildren	Method
EnableTransSubscription	Method Script	Method	(Replication	Objects)

Remarks
With	the	ReplicationDatabase	object,	you	can:

Enable	and	disable	transactional	publishing.

Enable	and	disable	merge	publishing.

To	enable	transactional	publishing	for	a	database

Set	the	EnableTransPublishing	property	of	a	connected
ReplicationDatabase	object	to	TRUE.

To	disable	transactional	publishing	for	a	database

Set	the	EnableTransPublishing	property	of	a	connected
ReplicationDatabase	object	to	FALSE.

To	enable	merge	publishing	for	a	database

Set	the	EnableMergePublishing	property	of	a	connected
ReplicationDatabase	object	to	TRUE.

To	disable	merge	publishing	for	a	database

Set	the	EnableMergePublishing	property	of	a	connected
ReplicationDatabase	object	to	FALSE.

Note		The	ReplicationDatabase	object	is	compatible	with	instances	of
Microsoft®	SQL	Server™	2000	and	SQL	Server	version	7.0.	However,	the
ReplicationDatabase2	object	extends	the	functionality	of	the
ReplicationDatabase	object	for	use	with	features	that	are	new	in	SQL	Server
2000.

See	Also

ReplicationDatabase2	Object

SQL-DMO

ReplicationDatabase2	Object
The	ReplicationDatabase2	object	represents	a	user	database	that	can	participate
in	replication	and	extend	the	functionality	of	the	ReplicationDatabase	object.

Properties

DBReadOnly	Property

Methods

CopySubscriptionDatabase	Method WriteReplicationFailOverMode
Method

ReadReplicationFailOverMode
Method

	

Remarks
The	ReplicationDatabase2	object	extends	the	functionality	of	the
ReplicationDatabase	object	for	use	with	features	that	are	new	in	Microsoft®
SQL	Server™	2000.	It	also	inherits	the	properties	and	methods	of	the
ReplicationDatabase	object.	With	the	ReplicationDatabase2	object,	you	can:

Set	and	retrieve	the	attributes	of	a	subscription	that	uses	immediate
updating	with	queued	updating	as	a	failover	option.

The	methods	and	properties	of	the	ReplicationDatabase2	object	may	not	be
compatible	with	instances	of	SQL	Server	version	7.0	or	earlier.	For	more
information	about	using	the	ReplicationDatabase2	object	in	an	application	that
also	runs	with	an	instance	of	SQL	Server	7.0,	refer	to	the	Remarks	section	for
specific	methods	and	properties.	For	more	information,	see	Programming
Extended	SQL-DMO	Objects.

See	Also

ReplicationDatabase	Object

SQL-DMO

ReplicationSecurity	Object
The	ReplicationSecurity	object	represents	authentication	information	used
when	connecting	to	a	Distributor	or	Publisher.	It	is	commonly	used	with	pull	and
anonymous	subscriptions.

Properties

SecurityMode	Property
(ReplicationSecurity)

StandardPassword	Property

StandardLogin	Property 	

Remarks
With	the	ReplicationSecurity	object,	you	can:

Enable	Windows	NT	Authentication.

Enable	SQL	Server	Authentication.

To	enable	Windows	NT	Authentication

Set	the	SecurityMode	property	to	SQLDMOReplSecurity_Integrated.

To	enable	SQL	Server	NT	Authentication

1.	 Set	the	SecurityMode	property	to	SQLDMOReplSecurity_Normal.

2.	 Set	the	StandardLogin	property	to	a	Microsoft®	SQL	Server™	login.

3.	 Set	the	StandardPassword	property	to	the	password	for	the	SQL
Server	login.

SQL-DMO

ReplicationStoredProcedure	Object
The	ReplicationStoredProcedure	object	represents	a	user	stored	procedure	in	a
database	that	can	participate	in	replication.

Properties

Name	Property SystemObject	Property
Owner	Property	(Database	Objects) 	

Methods

EnumDependencies	Method EnumPublicationArticles	Method

See	Also

ReplicationStoredProcedure2	Object

SQL-DMO

ReplicationStoredProcedure2	Object
The	ReplicationStoredProcedure2	object	represents	the	replication	properties
of	a	Microsoft®	SQL	Server™	stored	procedure	and	extends	the	functionality	of
the	ReplicationStoredProcedure	object.

Properties

Encrypted	Property

Remarks
The	ReplicationStoredProcedure2	object	extends	the	functionality	of	the
ReplicationStoredProcedure2	object	for	use	with	features	that	are	new	in	SQL
Server	2000.	It	also	inherits	the	properties	and	methods	of	the
ReplicationStoredProcedure	object.

The	methods	and	properties	of	the	ReplicationStoredProcedure2	object	may
not	be	compatible	with	instances	of	SQL	Server	version	7.0	or	earlier.	For
information	about	using	the	ReplicationStoredProcedure2	object	in	an
application	that	also	runs	with	an	instance	of	SQL	Server	7.0,	refer	to	the
Remarks	section	of	the	Encrypted	property.	For	more	information,	see
Programming	Extended	SQL-DMO	Objects.

See	Also

ReplicationStoredProcedure	Object

SQL-DMO

ReplicationTable	Object
The	ReplicationTable	object	represents	a	user	table	in	a	database	that	can
participate	in	replication.

Properties

HasGuidColumn	Property Name	Property
HasPrimaryKey	Property Owner	Property	(Database	Objects)
HasTimeStampColumn	Property 	

Methods
EnumPublicationArticles	Method

Remarks
The	ReplicationTable	object	is	compatible	with	instances	of	Microsoft®	SQL
Server™	2000	and	SQL	Server	version	7.0.	However,	the	ReplicationTable2
object	extends	the	functionality	of	the	ReplicationTable	object	for	use	with
features	that	are	new	in	SQL	Server	2000.

See	Also

ReplicationTable2	Object

SQL-DMO

ReplicationTable2	Object
The	ReplicationTable2	object	represents	a	user	table	in	a	database	that	can
participate	in	replication	and	extends	the	functionality	of	the	ReplicationTable
object.

Properties

HasBigIntColumn	Property HasSQLVariantColumn	Property
HasBigIntIdentityColumn	Property ID	Property
HasIdentityColumn	Property PublishedInMerge	Property
HasIdentityNotForReplColumn
Property

PublishedInQueuedTransactions
Property

HasRowVersionColumn	Property 	

Methods

EnumIdentityRangeInfo	Method ReplicationDropColumn	Method
ReplicationAddColumn	Method 	

Remarks
The	ReplicationTable2	object	extends	the	functionality	of	the	ReplicationTable
object	for	use	with	features	that	are	new	in	Microsoft®	SQL	Server™	2000.	It
also	inherits	the	properties	and	methods	of	the	DistributionPublisher	object.

The	methods	and	properties	of	the	ReplicationTable	object	may	not	be
compatible	with	instances	of	SQL	Server	version	7.0	or	earlier.	For	more
information	about	using	the	ReplicationTable2	object	in	an	application	that	also
runs	with	an	instance	of	SQL	Server	7.0,	refer	to	the	Remarks	section	for
specific	methods	and	properties.	For	more	information,	see	Programming
Extended	SQL-DMO	Objects.

See	Also

ReplicationTable	Object

SQL-DMO

Restore	Object
The	Restore	object	defines	the	behavior	of	a	RESTORE	statement	for	a
Microsoft®	SQL	Server™	database	or	log.

Properties

Action	Property	(Restore) PercentCompleteNotification
Property

Database	Property Pipes	Property
DatabaseFileGroups	Property RelocateFiles	Property
DatabaseFiles	Property ReplaceDatabase	Property
Devices	Property Restart	Property
FileNumber	Property StandbyFiles	Property
Files	Property Tapes	Property
LastRestore	Property ToPointInTime	Property
LoadHistory	Property UnloadTapeAfter	Property
MediaName	Property 	

Methods

Abort	Method ReadMediaHeader	Method	(Restore)
GenerateSQL	Method	(Backup,
Restore)

SQLRestore	Method

ReadBackupHeader	Method
(Restore)

SQLVerify	Method

ReadFileList	Method 	

Events

Complete	Event PercentComplete	Event
NextMedia	Event 	

Remarks
With	the	Restore	object	you	can:

Restore	all	or	part	of	a	database.

Restore	backup	images	of	transaction	log	records.

Verify	the	integrity	of	backup	media.

Report	the	contents	of	backup	media.

Monitor	a	restore	operation,	reporting	status	to	the	user.

SQL	Server	can	write	a	backup	to	one	of	four	media	types:	disk,	tape,	named
pipe,	or	a	backup	device.	SQL	Server	supports	backup	striping.	A	striped	backup
is	one	directed	to	more	than	a	single	device.	Striping	is	supported	to	a	single
media	type	only.	That	is,	a	backup	can	be	written	to	two	tape	devices.	A	backup
cannot	be	written	half	to	a	tape	device	and	the	other	half	to	a	disk.

At	a	minimum,	supply	values	for	a	restore	source	when	using	the	Restore	object.
SQL-DMO	implements	supported	media	types	in	the	Restore	object	properties
Files,	Devices,	Pipes,	and	Tapes.	Use	one	media	type	property	to	specify	the
restore	operation	source.

Setting	other	properties	in	the	Restore	object	may	be	required	by	the	restore
operation	desired.	For	example,	before	using	the	SQLRestore	method,	the
Database	property	of	the	Restore	object	must	be	set.

To	perform	a	complete	database	restore

1.	 Create	a	Restore	object.

2.	 Set	a	media	property,	naming	the	source	device(s).

3.	 Set	the	Database	property	to	indicate	the	target	database.

4.	 If	necessary,	set	the	ReplaceDatabase	property	to	force	database
creation.

5.	 Call	the	SQLRestore	method.

To	restore	a	single	unit	of	a	database	log

1.	 Create	a	Restore	object.

2.	 Set	the	Action	property	to	SQLDMORestore_Log.

3.	 Set	a	media	property,	naming	the	source	device(s).

4.	 Set	the	Database	property	to	indicate	the	target	database.

5.	 Call	the	SQLRestore	method.

To	restore	a	database	log	chain

1.	 Create	a	Restore	object.

2.	 Set	the	Action	property	to	SQLDMORestore_Log.

3.	 Set	the	Database	property	to	indicate	the	target	database.

4.	 Set	the	LastRestore	property	to	FALSE.

5.	 Set	a	media	property,	naming	the	source	device(s).

6.	 Call	the	SQLRestore	method.

7.	 Repeat	Steps	5	and	6	for	all	but	the	last	unit	in	the	database	log	chain.

8.	 Set	the	LastRestore	property	to	TRUE.

9.	 Call	the	SQLRestore	method	to	restore	the	last	unit.

To	verify	the	integrity	of	backup	media

1.	 Create	a	Restore	object.

2.	 Set	a	media	property,	naming	the	source	device(s).

3.	 Call	the	SQLVerify	method.

Note		The	Restore	object	is	compatible	with	instances	of	SQL	Server
2000	and	SQL	Server	version	7.0.	However,	the	Restore2	object
extends	the	functionality	of	the	Restore	object	for	use	with	features
that	are	new	in	SQL	Server	2000.

See	Also

Restore2	Object

SQL-DMO

Restore2	Object
The	Restore2	object	defines	the	behavior	of	a	RESTORE	statement	for	a
Microsoft®	SQL	Server™	database	or	log	and	extends	the	functionality	of	the
Restore	object.

Properties

KeepReplication	Property NoRewind	Property
MediaPassword	Property Password	Property

Remarks
The	Restore2	object	extends	the	functionality	of	the	Restore	object	for	use	with
features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the	properties	and
methods	of	the	Restore	object.	With	the	Restore2	object,	you	can:

Retrieve	or	specify	a	Microsoft®	SQL	Server™	2000	backup	or	media
set	password.

Maintain	replication	configuration	settings	during	a	restore	operation.

The	properties	of	the	Restore2	object	may	not	be	compatible	with	instances	of
SQL	Server	version	7.0	or	earlier.	For	more	information	about	using	the
Restore2	object	in	an	application	that	also	runs	with	an	instance	of	SQL	Server
7.0,	refer	to	the	Remarks	section	for	specific	properties.	For	more	information,
see	Programming	Extended	SQL-DMO	Objects.

See	Also

Restore	Object

SQL-DMO

Rule	Object
The	Rule	object	exposes	the	attributes	of	a	single	Microsoft®	SQL	Server™
data-integrity	rule.

Properties

CreateDate	Property Owner	Property	(Database	Objects)
ID	Property Text	Property
Name	Property 	

Methods

BindToColumn	Method Remove	Method	(Objects)
BindToDatatype	Method Script	Method
ListBoundColumns	Method UnbindFromColumn	Method
ListBoundDatatypes	Method UnbindFromDatatype	Method

Remarks
SQL	Server	offers	several	mechanisms	for	ensuring	data	integrity.	A	SQL	Server
rule	is	a	Transact-SQL	condition_expression	syntax	element	that	defines	a	data-
integrity	constraint.	A	rule	can	be	bound	to	a	column	or	user-defined	data	type.
condition_expression	is	executed	to	validate	data	for	a	single	column	when	a
value	is	inserted	into	the	column	bound	by	the	rule.	For	more	information,	see
CREATE	RULE.

With	the	Rule	object,	you	can:

Create	a	SQL	Server	rule	that	defines	an	integrity	constraint.

JavaScript:hhobj_1.Click()

Bind	an	existing	SQL	Server	rule	to	a	column	or	user-defined	data	type.

Remove	the	constraint	from	a	column	or	user-defined	data	type	by
unbinding	a	SQL	Server	rule.

Remove	a	SQL	Server	rule	definition	from	a	SQL	Server	database.

Generate	a	Transact-SQL	script	to	create	the	rule	represented	by	the
object.

The	Name	property	of	a	Rule	object	uses	the	SQL	Server	data	type	sysname.
The	value	of	the	Name	property	must	be	unique	for	a	database.

After	you	have	created	the	rule,	use	the	BindToColumn	and	BindToDatatype
methods	of	the	Rule	object	to	apply	the	constraint	to	SQL	Server	columns	and
user-defined	data	types.

To	create	a	SQL	Server	rule

1.	 Create	a	Rule	object.

2.	 Set	the	Name	property.

3.	 Set	the	Text	property	with	the	Transact-SQL	script	that	validates	data
integrity	for	the	columns	bound	by	the	rule.	

4.	 Add	the	Rule	object	to	the	Rules	collection	of	a	connected	Database
object.

To	remove	a	rule	from	a	SQL	Server	database

1.	 Get	the	referring	Rule	object	from	the	Rules	collection	of	a	connected
Database	object.

2.	 Use	the	ListBoundColumns	and	ListBoundDatatypes	methods	to
determine	affected	SQL	Server	columns	and	user-defined	data	types.

3.	 Use	the	UnbindFromColumn	and	UnbindFromDatatype	methods	to
remove	the	constraint	from	columns	and	user-defined	data	types	bound
by	the	rule.

4.	 Use	the	Remove	method	of	the	Rule	object	to	remove	it	from	the	SQL
Server	database.

Note		The	Rule	object	is	compatible	with	instances	of	SQL	Server
2000	and	SQL	Server	version	7.0.	However,	the	Rule2	object	extends
the	functionality	of	the	Rule	object	for	use	with	features	that	are	new
in	SQL	Server	2000.

See	Also

Rule2	Object

SQL-DMO

Rule2	Object
The	Rule2	object	exposes	the	attributes	of	a	single	Microsoft®	SQL	Server™
data-integrity	rule	and	extends	the	functionality	of	the	Rule	object.

Properties

IsDeleted	Property

Remarks
The	Rule2	object	extends	the	functionality	of	the	Rule	object	for	use	with
features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the	properties	and
methods	of	the	Rule	object.

The	IsDeleted	property	of	the	Rule2	object	may	not	be	compatible	with
instances	of	SQL	Server	version	7.0	or	earlier.	For	more	information	about	using
the	Rule2	object	in	an	application	that	also	runs	with	an	instance	of	SQL	Server
7.0,	refer	to	the	Remarks	section	of	the	IsDeleted	property.	For	more
information,	see	Programming	Extended	SQL-DMO	Objects.

See	Also

Rule	Object

SQL-DMO

S

SQL-DMO

Schedule	Object
The	Schedule	object	exposes	the	attributes	of	a	timetable	for	automated
Microsoft®	SQL	Server™	tasks,	such	as	jobs	and	replication	publication.

Properties

ActiveEndDate	Property FrequencyRecurrenceFactor	Property
ActiveEndTimeOfDay	Property FrequencyRelativeInterval	Property
ActiveStartDate	Property FrequencySubDay	Property
ActiveStartTimeOfDay	Property FrequencySubDayInterval	Property
FrequencyInterval	Property FrequencyType	Property

Methods

BeginAlter	Method DoAlter	Method
CancelAlter	Method Refresh	Method

Remarks
SQL	Server	Agent	automates	administration	and	replication	tasks.	Any	task
automated	by	the	SQL	Server	Agent	can	be	scheduled	for	one-time	or	repeated
execution.	The	timetable	for	repeated	execution	can	be	elaborate,	specifying	that

the	task	execute	monthly	on	a	given	day	of	a	given	week,	weekly	on	one	or	more
days,	or	every	minute	of	every	day.

With	the	Schedule	object,	you	can:

Set	or	adjust	the	execution	timetable	for	a	SQL	Server	Agent	job
schedule.

Set	or	adjust	the	execution	timetable	for	SQL	Server	replication	article
publication	and	pull	subscriptions.

To	schedule	one-time	execution	of	a	SQL	Server	executable	task

1.	 Get	the	Schedule	object	required	from	the	appropriate	object
referencing	the	task.	For	example,	to	adjust	a	SQL	Server	Agent	job
schedule,	get	the	Schedule	object	from	the	JobSchedule	object	that
references	the	SQL	Server	Agent	job	schedule.

2.	 Use	the	BeginAlter	method	of	the	Schedule	object	to	mark	the	start	of
changes	to	the	timetable.

3.	 Set	the	ActiveStartDate	property	to	the	date	you	want	the	task	to
execute.	The	date	properties	of	a	Schedule	object	pack	a	date	string
into	a	long	integer	value	as	the	year,	scaled	by	10,000,	plus	the	month,
scaled	by	100,	plus	the	day.	For	example,	December	1,	1997	is
represented	by	the	integer	19971201.

4.	 Set	the	ActiveStartTimeOfDay	property	to	the	time	you	want	the	task
to	execute.

5.	 Set	the	ActiveEndDate	and	ActiveEndTimeOfDay	properties	to	a
day	and	time	later	than	the	day	and	time	you	want	the	task	to	execute.

6.	 Set	the	FrequencyType	property	to	SQLDMOFreq_OneTime.

7.	 Use	the	DoAlter	method	to	mark	the	end	of	changes	to	the	Schedule
object	and	submit	those	changes	to	SQL	Server.

To	schedule	a	SQL	Server	executable	task	for	weekly	execution	on	specified
days

1.	 Get	the	Schedule	object	required	from	the	appropriate	object
referencing	the	task.

2.	 Use	the	BeginAlter	method	of	the	Schedule	object	to	mark	the	start	of
changes	to	the	timetable.

3.	 Set	the	ActiveStartDate	and	ActiveEndDate	properties	to	the	dates
you	want	the	timetable	to	become	effective	and	no	longer	effective.

4.	 Set	the	ActiveStartTimeOfDay	property	to	the	time	you	want	SQL
Server	Agent	to	execute	the	task.

5.	 Set	the	ActiveEndTimeOfDay	property	to	a	time	greater	than	the	start
time	for	the	task.

6.	 Set	the	FrequencyType	property	to	SQLDMOFreq_Weekly.

7.	 Set	the	FrequencyInterval	property	to	the	days	the	task	should	run.
The	value	can	be	specified	as	a	single-day	constant	or	a	binary	OR	of
day	constants.	For	example,	to	set	the	property	for	weekly	execution	of
the	task	on	Sunday,	use	the	constant	SQLDMOWeek_Sunday.	To
specify	Monday,	Wednesday,	and	Friday,	use	a	binary	OR	of	the
constants	SQLDMOWeek_Monday,	SQLDMOWeek_Wednesday,	and
SQLDMOWeek_Friday.

8.	 Use	the	DoAlter	method	to	mark	the	end	of	changes	to	the	Schedule
object	and	submit	the	changes	to	SQL	Server.

SQL-DMO

ServerGroup	Object
The	ServerGroup	object	exposes	the	attributes	of	a	Microsoft®	Windows	NT®
4.0,	Microsoft®	Windows	2000®,	or	Microsoft	Windows®	98	user	registry	key
that	organizes	registered	instances	of	Microsoft	SQL	Server™.

Properties

Name	Property

Methods
Remove	Method	(Objects)

Remarks
SQL-DMO	applications	can	maintain	lists	of	some	or	all	instances	of	SQL
Server	in	an	organization	in	the	registry	of	a	Windows	NT	or	Windows	95
system.	The	user	can	establish	categories	for	the	listed	instances	of	SQL	Server.

For	example,	to	group	and	view	instances	of	SQL	Server	by	division	in	a	SQL-
DMO	application,	SQL-DMO	represents	each	division	as	a	ServerGroup
object.	The	ServerGroup	name	of	the	division	is	maintained	by	SQL-DMO	as	a
Windows	NT	or	Windows	95	registry	key.	Within	this	registry	entry,	separate
keys	list	each	instance	of	SQL	Server	in	the	division.

A	ServerGroup	object	has	a	ServerGroups	collection,	allowing	multiple	levels
of	categories	for	an	organization.

With	the	ServerGroup	object	you	can:

Create	a	category	for	instances	of	SQL	Server	within	your	organization.

Add	or	remove	instances	of	SQL	Server	in	a	category.

Remove	a	category	for	instances	of	SQL	Server.

The	value	of	the	Name	property	of	a	ServerGroup	object	must	be	a	valid
Windows	NT	or	Windows	95	registry-key	character	string.	It	must	be	unique	for
a	Windows	NT	or	Windows	95	user.

SQL-DMO

ServerRole	Object
The	ServerRole	object	exposes	the	attributes	of	a	single	Microsoft®	SQL
Server™	security	role	not	constrained	to	operation	within	a	single	database.

Properties

Description	Property Name	Property
FullName	Property 	

Methods

AddMember	Method EnumServerRoleMember	Method
DropMember	Method EnumServerRolePermission	Method

Remarks
SQL	Server	security	roles	establish	rights	to	SQL	Server	resources	for	more	than
a	single	user	and	can	be	established	within	the	constraint	of	a	single	database.
Security	roles	can	also	grant	permissions	to	an	authenticated	user	for	an	instance
of	SQL	Server.	For	example,	the	server	role	securityadmin	has	permissions	that
allow	members	to	add,	change,	and	remove	SQL	Server	logins.

With	the	ServerRole	object,	you	can:

Assign	membership	in	a	server	role	to	a	SQL	Server	login.

Remove	a	member	login	from	a	SQL	Server	security	role.

SQL	Server	establishes	server	roles.	New	server	roles	cannot	be	defined	by	the

user.	For	more	information	about	a	list	of	valid	ServerRole	Name	strings,	see
sp_addsrvrolemember.

JavaScript:hhobj_1.Click()

SQL-DMO

SQLObjectList	Object
The	SQLObjectList	object	is	a	fixed-membership	container	for	objects
enumerated	by	an	object	listing	method.

Properties

Count	Property

Methods

Item	Method Refresh	Method

Remarks
SQL-DMO	implements	a	number	of	container	objects	expressing,	through	their
relationships,	a	logical	structure	for	creating,	viewing,	and	managing	Microsoft®
SQL	Server™	components.	The	SQL-DMO	collection	is	one	such	container.	The
SQLObjectList	object	is	another.

Collections,	exposing	the	Add	and	Remove	methods,	implement	SQL	Server
component	management	by	mapping	collection	membership	changes	to
component	creation	or	deletion.	The	SQLObjectList	object	does	not	expose
membership-modifying	methods.	Instead,	applications	create	object	lists	to
extract	a	subset	of	SQL	Server	components	for	viewing	or	management.

Unlike	a	collection,	SQLObjectList	does	not	guarantee	that	all	objects
contained	have	the	same	type.	Some	implemented	lists,	such	as	the	list	returned
by	the	ListObjects	method	of	the	Database	object,	return	a	user-specified
selection	of	objects.	Use	the	TypeOf	property	of	an	object	to	check	SQL-DMO
object	type	when	using	lists	of	multiple	kinds	of	objects.

In	general,	use	the	SQLObjectList	object	to	get	SQL-DMO	objects	that
reference	SQL	Server	components	when	an	object-listing	method	is	an
appropriate	mechanism.	When	the	SQLObjectList	is	not	an	appropriate
container,	such	as	when	application	logic	is	built	to	remove	a	SQL	Server
component,	use	the	component	referencing	collection	instead.	The	Microsoft
Visual	Basic®	example	below	illustrates	removing	the	column	binding	for	all
rules	in	a	database:

Dim	oRule	As	SQLDMO.Rule
Dim	oColumn	As	SQLDMO.Column
Dim	oColList	As	SQLDMO.SQLObjectList
Dim	oTable	As	SQLDMO.Table

For	Each	oRule	In	oCurDB.Rules
				Set	oColList	=	oRule.ListBoundColumns
				For	Each	oColumn	In	oRule.ListBoundColumns
								Set	oTable	=	oColumn.Parent
								oRule.UnbindFromColumn	oTable.Name,	oColumn.Name
				Next	oColumn
Next	oRule

Note		For	C/C++,	Sqldmo.h	defines	a	number	of	list	object	types.	When	an
object	listing	method	returns	a	SQLObjectList	object	whose	members	are
identical,	such	as	the	ListPermissions	method,	the	member	function	defines	its
return	argument	using	the	list	object	type.

See	Also

Defined	List	Types

ListObjects	Method

ListBoundColumns	Method

ListOwnedObjects	Method

ListBoundDatatypes	Method

ListPermissions	Method

ListColumns	Method

ListPrivilegeColumns	Method

ListDatabasePermissions	Method

ListReplicatedColumns	Method

ListIndexedColumns	Method

ListStartupProcedures	Method

ListKeys	Method

ListUserPermissions	Method

ListObjectPermissions	Method

SQL-DMO

SQLServer	Object
The	SQLServer	object	exposes	the	attributes	of	an	instance	of	Microsoft®	SQL
Server™.

Properties

AnsiNulls	Property NetName	Property
ApplicationName	Property NetPacketSize	Property
AutoReConnect	Property NextDeviceNumber	Property
BlockingTimeout	Property ODBCPrefix	Property
CodePage	Property Password	Property
CommandTerminator	Property ProcessID	Property
ConnectionID	Property ProcessInputBuffer	Property
EnableBcp	Property ProcessOutputBuffer	Property
HostName	Property QueryTimeout	Property

Isdbcreator	Property QuotedIdentifier	Property
Isdiskadmin	Property RegionalSetting	Property
Isprocessadmin	Property SaLogin	Property
Issecurityadmin	Property Status	Property	(Services)
Isserveradmin	Property StatusInfoRefetchInterval	Property
Issetupadmin	Property TranslateChar	Property
Issysadmin	Property TrueLogin	Property
Language	Property TrueName	Property
Login	Property UserProfile	Property
LoginSecure	Property VersionMajor	Property
LoginTimeout	Property VersionMinor	Property
MaxNumericPrecision	Property VersionString	Property
Name	Property 	

Methods

AddStartParameter	Method ExecuteWithResults	Method
AttachDB	Method ExecuteWithResultsAndMessages

Method
AttachDBWithSingleFile	Method IsLogin	Method
BeginTransaction	Method IsNTGroupMember	Method
Close	Method IsOS	Method
CommandShellImmediate	Method IsPackage	Method
CommandShellWithResults	Method KillDatabase	Method
CommitTransaction	Method KillProcess	Method
Connect	Method ListMembers	Method	(SQLServer)
Continue	Method ListStartupProcedures	Method
DetachDB	Method Pause	Method
DisConnect	Method PingSQLServerVersion	Method
EnumAccountInfo	Method ReadBackupHeader	Method

(SQLServer)
EnumAvailableMedia	Method ReadErrorLog	Method
EnumDirectories	Method ReConnect	Method

EnumErrorLogs	Method RollbackTransaction	Method
EnumLocks	Method SaveTransaction	Method
EnumLoginMappings	Method Shutdown	Method
EnumNTDomainGroups	Method Start	Method	(SQLServer)
EnumProcesses	Method Stop	Method
EnumServerAttributes	Method UnloadODSDLL	Method
EnumVersionInfo	Method VerifyConnection	Method
ExecuteImmediate	Method
(Database,	SQLServer)

	

Events

CommandSent	Event RemoteLoginFailed	Event
ConnectionBroken	Event ServerMessage	Event
QueryTimeout	Event 	

Remarks
The	SQLServer	object	contains	the	objects	and	collections	that	implement	SQL
Server	administrative	tasks	for	SQL-DMO.	The	object	allows	SQL-DMO
applications	to	connect	to	an	instance	of	SQL	Server	by	name,	establishing	the
context	for	administrative	tasks.

With	the	SQLServer	object,	you	can:

Connect	to	an	instance	of	SQL	Server.

Query	an	instance	of	SQL	Server	to	determine	its	installed	configuration
and	run-time	parameters.

Add	and	remove	SQL	Server	objects,	such	as	backup	devices,
databases,	and	logins.

Execute	Transact-SQL	or	operating	system	commands	on	the	server.

Disable	processes	on	an	instance	of	SQL	Server.

Trap	SQL	Server	events	and	SQLServer	object	events,	providing	status
information	to	SQL-DMO	application	users	or	debugging	information
to	SQL-DMO	application	developers.

Note		The	SQLServer	object	is	compatible	with	instances	of	SQL	Server	2000
and	SQL	Server	version	7.0.	However,	the	SQLServer2	object	extends	the
functionality	of	the	SQLServer	object	for	use	with	features	that	are	new	in	SQL
Server	2000.

See	Also

SQLServer2	Object

SQL-DMO

SQLServer2	Object
The	SQLServer2	object	exposes	the	attributes	of	an	instance	of	Microsoft®
SQL	Server™	and	extends	the	functionality	of	the	SQLServer	object.

Properties

AutoStart	Property IsFullTextInstalled	Property
Collation	Property PID	Property
InstanceName	Property ProductLevel	Property
Isbulkadmin	Property ServiceName	Property
IsClustered	Property StartupAccount	Property

Methods

AttachDBWithSingleFile2	Method ListCompatibilityLevels	Method
DetachedDBInfo	Method ListDetachedDBFiles	Method
EnumCollations	Method ListDetachedLogFiles	Method
ExecuteWithResultsAndMessages2
Method

ListInstalledInstances	Method

IsDetachedPrimaryFile	Method ServerLoginMode	Method
ListCollations	Method 	

Remarks
The	SQLServer2	object	extends	the	functionality	of	the	SQLServer	object	for
use	with	features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the	properties
and	methods	of	the	SQLServer	object.	With	the	SQLServer2	object,	you	can:

Retrieve	column-level	collation	settings.

Retrieve	information	about	detached	database	and	log	files.

Retrieve	information	related	to	installed	instances.

The	methods	and	properties	of	the	SQLServer2	object	may	not	be	compatible
with	instances	of	SQL	Server	version	7.0	or	earlier.	For	more	information	about
using	the	SQLServer2	object	in	an	application	that	also	runs	with	an	instance	of
SQL	Server	7.0,	refer	to	the	Remarks	section	for	specific	methods	and
properties.	For	more	information,	see	Programming	Extended	SQL-DMO
Objects.

See	Also

SQLServer	Object

SQL-DMO

StoredProcedure	Object
The	StoredProcedure	object	exposes	the	attributes	of	a	single	Microsoft®	SQL
Server™	user-defined	or	system	stored	procedure.

Properties

AnsiNullsStatus	Property QuotedIdentifierStatus	Property
CreateDate	Property Startup	Property
ID	Property SystemObject	Property
Name	Property Text	Property
Owner	Property	(Database	Objects) Type	Property	(StoredProcedure)

Methods

Alter	Method ListPermissions	Method
Deny	Method	(StoredProcedure) ListUserPermissions	Method
EnumDependencies	Method Remove	Method	(Objects)
EnumParameters	Method Revoke	Method	(StoredProcedure)
Grant	Method	(StoredProcedure,
UserDefinedFunction)

Script	Method

Remarks
SQL	Server	has	facilities	for	creation	and	persistent	storage	of	compiled
Transact-SQL	scripts.	These	stored	procedures	can	be	executed	by	users	with
sufficient	permissions.	With	the	StoredProcedure	object,	you	can:

Create	a	SQL	Server	stored	procedure.

Change	the	Transact-SQL	script	of	an	existing	SQL	Server	stored
procedure.

Enable	a	SQL	Server	stored	procedure	for	execution	on	SQL	Server
startup.

Control	access	rights	to	an	existing	SQL	Server	stored	procedure.

Delete	an	existing	SQL	Server	stored	procedure.

Generate	a	Transact-SQL	script	to	re-create	a	SQL	Server	stored
procedure.

The	Name	property	of	a	StoredProcedure	object	uses	the	SQL	Server	data	type
sysname.	The	value	of	the	Name	property	must	be	unique	(named	by	owner)
within	a	SQL	Server	database.

To	create	a	SQL	Server	stored	procedure

1.	 Create	a	StoredProcedure	object.

2.	 Set	the	Name	property.

3.	 Set	the	Text	property	to	contain	the	Transact-SQL	script	you	want.
SQL	Server	stored	procedures	can	contain	input	and	output	parameters
and	can	return	the	results	of	one	or	more	SELECT	statements	or	a
single	long	integer.	For	more	information	about	valid	Transact-SQL
scripts	for	the	Text	property,	see	CREATE	PROCEDURE.	

4.	 Set	optional	property	values.	For	example,	set	the	Startup	property	to
TRUE	to	enable	the	stored	procedure	for	execution	when	the	SQL
Server	starts.

JavaScript:hhobj_1.Click()

5.	 Add	the	StoredProcedure	object	to	the	StoredProcedures	collection
of	a	connected	Database	object.

Note		The	StoredProcedure	object	is	compatible	with	instances	of
SQL	Server	2000	and	SQL	Server	version	7.0.	However,	the
StoredProcedure2	object	extends	the	functionality	of	the
StoredProcedure	object	for	use	with	features	that	are	new	in	SQL
Server	2000.

See	Also

StoredProcedure2	Object

SQL-DMO

StoredProcedure2	Object
The	StoredProcedure2	object	exposes	the	attributes	of	a	Microsoft®	SQL
Server™	user-defined	or	system	stored	procedure	and	extends	the	functionality
of	the	StoredProcedure	object.

Properties

AnsiNullsStatus	Property IsDeleted	Property
Encrypted	Property 	

Remarks
The	StoredProcedure2	object	extends	the	functionality	of	the	StoredProcedure
object	for	use	with	features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the
properties	and	methods	of	the	StoredProcedure	object.

The	methods	and	properties	of	the	StoredProcedure2	object	may	not	be
compatible	with	instances	of	SQL	Server	version	7.0	or	earlier.	For	more
information	about	using	the	StoredProcedure2	object	in	an	application	that	also
runs	with	an	instance	of	SQL	Server	7.0,	refer	to	the	Remarks	section	for
specific	methods	and	properties.	For	more	information,	see	Programming
Extended	SQL-DMO	Objects.

See	Also

StoredProcedure	Object

SQL-DMO

Subscriber	Object
The	Subscriber	object	represents	the	replication	properties	of	a	Microsoft®
SQL	Server™	Subscriber.

Methods

Script	Method	(Replication	Objects)

The	Subscriber	object	is	compatible	with	instances	of	SQL	Server	2000	and
SQL	Server	version	7.0.	However,	the	Subscriber2	object	extends	the
functionality	of	the	Subscriber	object	for	use	with	features	that	are	new	in	SQL
Server	2000.

See	Also

Subscriber2	Object

SQL-DMO

Subscriber2	Object
The	Subscriber2	object	represents	the	replication	properties	of	a	Microsoft®
SQL	Server™	Subscriber	and	extends	the	functionality	of	the	Subscriber	object.

Methods

EnumAllSubscriptions	Method

Remarks
The	Subscriber2	object	extends	the	functionality	of	the	Subscriber	object	for
use	with	features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the	properties
and	methods	of	the	Subscriber	object.

The	EnumAllSubscriptions	method	of	the	Subscriber2	object	may	not	be
compatible	with	instances	of	SQL	Server	version	7.0	or	earlier.	For	more
information	about	using	the	Subscriber2	object	in	an	application	that	also	runs
with	an	instance	of	SQL	Server	7.0,	refer	to	the	Remarks	section	of	the
EnumAllSubscriptions	method.	For	more	information,	see	Programming
Extended	SQL-DMO	Objects.

See	Also

Subscriber	Object

SQL-DMO

SystemDatatype	Object
The	SystemDatatype	object	exposes	the	attributes	of	a	Microsoft®	SQL
Server™	base	data	type.

Properties

AllowIdentity	Property IsVariableLength	Property
AllowLength	Property MaximumChar	Property
AllowNulls	Property MaximumLength	Property
IsNumeric	Property Name	Property

Remarks
SQL	Server	defines	base	data	types,	such	as	varchar	or	smallint.	The	types
constrain	data	in	SQL	Server	columns	to	certain	fundamental	properties,	such	as
numeric	precision	or	value	representation.	SQL	Server	base	data	types	have	an
established	precedence	for	mixed-data	type	arithmetic	performed	on	an	instance
of	SQL	Server.

A	SystemDatatype	object	exists	for	each	base	data	type	defined	by	SQL	Server.

The	Name	property	of	a	SystemDatatype	cannot	be	set	by	the	user.

Note		The	SystemDatatype	object	is	compatible	with	instances	of	SQL	Server
2000	and	SQL	Server	version	7.0.	However,	the	SystemDatatype2	object
extends	the	functionality	of	the	SystemDatatype	object	for	use	with	features
that	are	new	in	SQL	Server	2000.

See	Also

Data	Types

JavaScript:hhobj_1.Click()

SystemDataType2	Object

SQL-DMO

SystemDataType2	Object
The	SystemDatatype2	object	exposes	the	attributes	of	a	Microsoft®	SQL
Server™	base	data	type	and	extends	the	functionality	of	the	SystemDatatype
object.

Properties

Collation	Property

Remarks
The	SystemDatatype2	object	extends	the	functionality	of	the	SystemDatatype
object	for	use	with	features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the
properties	and	methods	of	the	SystemDatatype	object.	With	the
SystemDatatype2	object,	you	can:

Set	and	retrieve	column-level	collation	settings.

The	Collation	property	of	the	SystemDatatype2	object	may	not	be	compatible
with	instances	of	SQL	Server	version	7.0	or	earlier.	For	more	information	about
using	the	SystemDatatype2	object	in	an	application	that	also	runs	with	an
instance	of	SQL	Server	7.0,	refer	to	the	Remarks	section	of	the	Collation
property.	For	more	information,	see	Programming	Extended	SQL-DMO	Objects.

See	Also

SystemDatatype	Object

SQL-DMO

T

SQL-DMO

Table	Object
The	Table	object	exposes	the	attributes	of	a	single	Microsoft®	SQL	Server™
table.

Properties

Attributes	Property HasIndex	Property
CreateDate	Property ID	Property
DataSpaceUsed	Property InAlter	Property
FakeSystemTable	Property IndexSpaceUsed	Property
FileGroup	Property Name	Property
FullTextCatalogName	Property Owner	Property	(Database	Objects)
FullTextIndex	Property Rows	Property
FullTextIndexActive	Property SystemObject	Property
FullTextKeyColumn	Property TextFileGroup	Property
HasClusteredIndex	Property UniqueIndexForFullText	Property

Methods

BeginAlter	Method GenerateSQL	Method	(Table,
UserDefinedDatatype)

CancelAlter	Method ImportData	Method
CheckIdentityValue	Method InsertColumn	Method
CheckTable	Method ListAvailableUniqueIndexesForFullText

Method
CheckTableDataOnly	Method ListPermissions	Method
Deny	Method	(Table,	View) ListUserPermissions	Method
DoAlter	Method RebuildIndexes	Method
DoAlterWithNoCheck	Method RecalcSpaceUsage	Method
EnumDependencies	Method ReCompileReferences	Method
EnumLastStatisticsUpdates
Method

Refresh	Method

EnumReferencedKeys	Method Remove	Method	(Objects)
EnumReferencedTables	Method Revoke	Method	(Table,	View)
EnumReferencingKeys	Method Script	Method	(Table	Object)
EnumReferencingTables	Method TruncateData	Method
ExportData	Method UpdateStatistics	Method
FullTextIndexScript	Method UpdateStatisticsWith	Method	(Table)
Grant	Method	(Table,	View) 	

Remarks
SQL	Server	Table	objects	contain	columns	that	define	a	table,	and	row	data	that
populate	it.	Table	columns	can	maintain	declarative	referential	integrity
constraints,	such	as	PRIMARY	KEY	and	FOREIGN	KEY.	Indexes	defined	on
table	columns	can	enforce	a	UNIQUE	constraint	or	can	provide	optimized	row
access.	Tables	participate	in	SQL	Server	user-based	security.

With	the	Table	object,	you	can:

Create	a	SQL	Server	table.

Change	an	existing	SQL	Server	table	by	adding	or	dropping	columns.

Export	data	from,	or	import	data	to,	an	existing	SQL	Server	table.

Establish	optimal	data-access	paths	by	adding,	dropping,	and	rebuilding
table	indexes.

Enforce	business	rules	by	adding	or	modifying	table	triggers	executed
when	data	is	added	or	updated	within	the	table.

Generate	a	Transact-SQL	script	to	recreate	an	existing	SQL	Server
table.

Remove	a	table	from	a	SQL	Server	database.

The	Name	property	of	a	Table	object	uses	the	SQL	Server	data	type	sysname.
When	a	server	running	SQL	Server	uses	quoted	identifiers,	the	Name	property
string	can	contain	spaces.	The	value	of	the	Name	property	is	unique	for	tables
with	a	specific	owner	within	a	specific	database.

Note		The	Table	object	is	compatible	with	instances	of	SQL	Server	2000	and
SQL	Server	version	7.0.	However,	the	Table2	object	extends	the	functionality	of
the	Table	object	for	use	with	features	that	are	new	in	SQL	Server	2000.

See	Also

Table2	Object

SQL-DMO

Table2	Object
The	Table2	object	exposes	the	attributes	of	a	single	Microsoft®	SQL	Server™
table	and	extends	the	functionality	of	the	Table	object.

Properties

AnsiNullsStatus	Property QuotedIdentifierStatus	Property
FullTextPopulateStatus	Property TableFullTextChangeTrackingOn

Property
IsDeleted	Property TableFullTextUpdateIndexOn	Property

Methods

CheckTableDataOnlyWithResult
Method

FullTextUpdateIndex	Method

CheckTableWithResult	Method ListUserColumnPermissions	Method
FullTextPopulation	Method 	

Remarks
The	Table2	object	extends	the	functionality	of	the	Table	object	for	use	with
features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the	properties	and
methods	of	the	Table	object.	With	the	Table2	object,	you	can:

Manage	full-text	table	population.

Check	SQL	Server	table	integrity	with	results	returned	in	tabular
format.

The	methods	and	properties	of	the	Table2	object	may	not	be	compatible	with
instances	of	SQL	Server	version	7.0	or	earlier.	For	information	about	using	the
Table2	object	in	an	application	that	also	runs	with	an	instance	of	SQL	Server

7.0,	refer	to	the	Remarks	section	for	specific	methods	and	properties.	For	more
information,	see	Programming	Extended	SQL-DMO	Objects.

See	Also

Table	Object

SQL-DMO

TargetServer	Object
The	TargetServer	object	represents	an	instance	of	Microsoft®	SQL	Server™	on
which	a	SQL	Server	Agent	job	will	execute.

Properties

EnlistDate	Property PollingInterval	Property
LastPollDate	Property ServerID	Property
LocalTime	Property ServerName	Property
Location	Property	(TargetServer) Status	Property	(TargetServer)
PendingInstructions	Property TimeZoneAdjustment	Property

Methods
Refresh	Method

Remarks
A	SQL	Server	Agent	job	has	an	execution	target.	For	an	instance	of	SQL	Server
version	7.0,	the	SQL	Server	Agent	of	one	server	can	direct	job	execution	on
other	servers	running	SQL	Server	within	an	organization.	Servers	can	enlist	in
the	domain	specified	by	a	master	SQL	Server	Agent.	When	a	server	enlists	in	a
domain,	it	becomes	a	target	server	for	job	execution	managed	by	the	master	SQL
Server	Agent.

Any	instance	on	which	SQL	Server	Agent	is	executing	provides	the	local
instance	as	a	valid	target	for	job	execution.

Target	servers	are	defined	only	on	a	master	SQL	Server	Agent,	and	the	SQL-
DMO	TargetServers	collection	and	each	TargetServer	object	are	populated
only	when	SQL-DMO	applications	connect	to	an	instance	of	SQL	Server

identified	as	the	master	in	a	multiserver	administration	group.

With	the	TargetServer	object,	you	can:

Report	the	properties	of	a	server	that	is	an	existing	target	in	a
multiserver	administration	group.

Set	the	location	string	for	a	server	that	is	an	existing	target	in	a
multiserver	administration	group.

SQL-DMO

TargetServerGroup	Object
The	TargetServerGroup	object	exposes	the	attributes	of	a	multiserver
administration	target	identification	shortcut.

Properties

GroupID	Property Name	Property

Methods

AddMemberServer	Method ListMemberServers	Method
BeginAlter	Method Refresh	Method
CancelAlter	Method Remove	Method	(Objects)
DoAlter	Method RemoveMemberServer	Method

Remarks
With	Microsoft®	SQL	Server™	version	7.0,	SQL	Server	Agent	provides
multiserver	administration.	The	SQL	Server	Agent	of	an	instance	of	SQL	Server
can	direct	job	execution	to	another	target	server.	Servers	can	enlist	in	the	domain
specified	by	a	master	SQL	Server	Agent.	When	a	server	enlists	in	a	domain,	it
becomes	a	target	server	for	job	execution	managed	by	the	master	SQL	Server
Agent.

The	master	SQL	Server	Agent	allows	group	definition	for	its	target	servers.
When	target	servers	are	grouped,	jobs	created	on	the	master	server	can	identify
the	group	as	an	execution	target.	The	job	is	executed	on	each	target	server	in	the
group.

Target	server	groups	are	defined	only	on	a	master	SQL	Server	Agent,	and	the
TargetServerGroups	collection	and	each	TargetServerGroup	object	are
populated	only	when	SQL-DMO	applications	connect	to	an	instance	of	SQL
Server	identified	as	the	master	in	a	multiserver	administration	group.

With	the	TargetServerGroup	object,	you	can:

Create	a	SQL	Server	Agent	target	server	group	on	a	master	SQL	Server
Agent	server.

Add	or	remove	target	servers	from	a	SQL	Server	Agent	target	server
group.

Remove	a	target	server	group	from	a	master	SQL	Server	Agent	server.

The	Name	property	of	the	TargetServerGroup	object	can	contain	a	maximum
of	100	characters.

SQL-DMO

TransactionLog	Object
The	TransactionLog	object	exposes	the	attributes	of	the	transaction	log	of	a
Microsoft®	SQL	Server™	database.

Properties

CreateDate	Property SpaceAllocatedOnFiles	Property
LastBackup	Property SpaceAvailable	Property
Size	Property SpaceAvailableInMB	Property

Methods
Truncate	Method

Remarks
A	SQL	Server	transaction	log	maintains	a	record	of	modifications	to	the
operating	system	files	containing	the	data	of	a	SQL	Server	database.	The
transaction	log	provides	data-recovery	assistance	in	the	event	of	system	failure,
and	a	SQL	Server	database	has	at	least	one	operating	system	file	that	stores
transaction	log	records.	A	transaction	log	can	be	written	to	more	than	one
operating	system	file.	Each	SQL	Server	database	maintains	its	own	transaction
log,	and	the	operating	system	file	or	files	that	store	log	records	cannot	be	shared
with	another	database.

With	the	TransactionLog	object,	you	can:

Define	the	properties	of	a	database	transaction	log	when	creating	a	SQL
Server	database.

Add	operating	system	files	to	those	used	by	an	existing	SQL	Server
database	transaction	log.

Back	up	or	restore	the	transaction	log	of	a	SQL	Server	database.

Truncate	a	transaction	log	after	database	backup,	removing	all	log
records	for	a	SQL	Server	database	and	reinitializing	the	transaction	log.

Generate	a	Transact-SQL	script	to	use	in	other	tools	to	back	up	a	SQL
Server	database	transaction	log.

SQL-DMO

TransArticle	Object
The	TransArticle	object	represents	a	table	or	a	stored	procedure	published	using
a	transactional	or	a	snapshot	publication.

Properties

ArticleType	Property Name	Property
CreationScriptOptions	Property PreCreationMethod	Property
CreationScriptPath	Property ReplicateAllColumns	Property
CommandOptions	Property ReplicationFilterProcName	Property
DeleteCommand	Property ReplicationFilterProcOwner	Property
Description	Property SnapshotObjectName	Property
DestinationObjectName	Property SnapshotObjectOwner	Property
DestinationOwnerName	Property SourceObjectName	Property
FilterClause	Property SourceObjectOwner	Property
ID	Property UpdateCommand	Property
InsertCommand	Property 	

Methods

AddReplicatedColumns	Method Remove	Method	(Objects)
BeginAlter	Method RemoveReplicatedColumns	Method
CancelAlter	Method Script	Method	(Replication	Objects)
DoAlter	Method ScriptDestinationObject	Method
ListReplicatedColumns	Method 	

Remarks
With	the	TransArticle	object,	you	can:

Add	a	table	or	stored	procedure	article	to	a	transactional	publication.

Change	the	properties	of	an	existing	table	or	stored	procedure	article	of
a	transactional	publication.

Add	a	table	or	stored	procedure	article	to	a	snapshot	publication.

Change	the	properties	of	an	existing	table	or	stored	procedure	article	of
a	snapshot	publication.

To	add	a	table	article	to	a	transactional	publication

1.	 Create	a	new	TransArticle	object.

2.	 Set	the	Name	property	to	the	name	of	the	new	article.

3.	 Set	the	SourceObjectName	property	to	the	name	of	a	table.

4.	 Set	the	SourceObjectOwner	property	to	the	owner	of	the	table.

5.	 Add	the	TransArticle	object	to	the	TransArticles	collection	of	a
connected	TransPublication	object	containing	a	transactional
publication.

To	add	a	stored	procedure	article	to	a	transactional	publication

1.	 Create	a	new	TransArticle	object.

2.	 Set	the	Name	property	to	the	name	of	the	new	article.

3.	 Set	the	SourceObjectName	property	to	the	name	of	a	stored
procedure.

4.	 Set	the	SourceObjectOwner	property	to	the	owner	of	the	stored
procedure.

5.	 Set	the	ArticleType	property	to	SQLDMORep_ProcExecution	or
SQLDMORep_SerializableProcExecution.

6.	 Add	the	TransArticle	object	to	the	TransArticles	collection	of	a
connected	TransPublication	object	containing	a	transactional
publication.

To	alter	an	existing	table	article	of	an	existing	transactional	publication

1.	 Get	a	TransArticle	object	containing	a	table	article	from	the
TransArticles	collection	of	a	connected	TransPublication	object.

2.	 Use	the	BeginAlter	method	to	mark	the	beginning	of	the	changes.

3.	 Set	the	TransArticle	object	properties	to	reflect	the	changes	to	the
table	article.

4.	 Use	the	DoAlter	method	to	submit	the	changes	to	Microsoft®	SQL
Server™.

To	alter	an	existing	stored	procedure	article	of	an	existing	transactional
publication

1.	 Get	a	TransArticle	object	containing	a	stored	procedure	article	from
the	TransArticles	collection	of	a	connected	TransPublication	object.

2.	 Use	the	BeginAlter	method	to	mark	the	beginning	of	the	changes.

3.	 Set	the	TransArticle	object	properties	to	reflect	the	changes	to	the
stored	procedure	article.

4.	 Use	the	DoAlter	method	to	submit	the	changes	to	SQL	Server.

To	add	a	table	article	to	a	snapshot	publication

1.	 Create	a	new	TransArticle	object.

2.	 Set	the	Name	property	to	the	name	of	the	new	article.

3.	 Set	the	SourceObjectName	property	to	the	name	of	a	table.

4.	 Set	the	SourceObjectOwner	property	to	the	owner	of	the	table.

5.	 Add	the	TransArticle	object	to	the	TransArticles	collection	of	a
connected	TransPublication	object	containing	a	snapshot	publication.

To	add	a	stored	procedure	article	to	a	snapshot	publication

1.	 Create	a	new	TransArticle	object.

2.	 Set	the	Name	property	to	the	name	of	the	new	article.

3.	 Set	the	SourceObjectName	property	to	the	name	of	a	stored
procedure.

4.	 Set	the	SourceObjectOwner	property	to	the	owner	of	the	stored
procedure.

5.	 Set	the	ArticleType	property	to	SQLDMORep_ProcExecution	or
SQLDMORep_SerializableProcExecution.

6.	 Add	the	TransArticle	object	to	the	TransArticles	collection	of	a
connected	TransPublication	object	containing	a	snapshot	publication.

To	alter	an	existing	table	article	of	an	existing	snapshot	publication

1.	 Get	a	TransArticle	object	containing	a	table	article	from	the
TransArticles	collection	of	a	connected	TransPublication	object
containing	a	snapshot	publication.

2.	 Use	the	BeginAlter	method	to	mark	the	beginning	of	the	changes.

3.	 Set	the	TransArticle	object	properties	to	reflect	the	changes	to	the
table	article.

4.	 Use	the	DoAlter	method	to	submit	the	changes	to	SQL	Server.

To	alter	an	existing	stored	procedure	article	of	an	existing	snapshot
publication

1.	 Get	a	TransArticle	object	containing	a	stored	procedure	article	from
the	TransArticles	collection	of	a	connected	TransPublication	object
containing	a	snapshot	publication.

2.	 Use	the	BeginAlter	method	to	mark	the	beginning	of	the	changes.

3.	 Set	the	TransArticle	object	properties	to	reflect	the	changes	to	the
stored	procedure	article.

4.	 Use	the	DoAlter	method	to	submit	the	changes	to	SQL	Server.

Note		The	TransArticle	object	is	compatible	with	instances	of	SQL	Server	2000
and	SQL	Server	version	7.0.	However,	the	TransArticle2	object	extends	the
functionality	of	the	TransArticle	object	for	use	with	features	that	are	new	in
SQL	Server	2000.

See	Also

TransArticle2	Object

SQL-DMO

TransArticle2	Object
The	TransArticle2	object	represents	a	table	or	a	stored	procedure	published
using	a	transactional	or	a	snapshot	publication	and	extends	the	functionality	of
the	TransArticle	object.

Properties

AutoIdentityRange	Property PublisherIdentityRangeSize	Property
IdentityRangeThreshold	Property SubscriberIdentityRangeSize	Property

Remarks
The	TransArticle2	object	extends	the	functionality	of	the	TransArticle	object
for	use	with	features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the
properties	and	methods	of	the	TransArticle	object.	With	the	TransArticle2
object,	you	can:

Configure	and	retrieve	information	about	identity	ranges.

The	methods	and	properties	of	the	TransArticle2	object	may	not	be	compatible
with	instances	of	SQL	Server	version	7.0	or	earlier.	For	information	about	using
the	TransArticle2	object	in	an	application	that	also	runs	with	an	instance	of
SQL	Server	7.0,	refer	to	the	Remarks	section	for	specific	methods	and
properties.	For	more	information,	see	Programming	Extended	SQL-DMO
Objects.

See	Also

TransArticle	Object

SQL-DMO

Transfer	Object
The	Transfer	object	is	used	as	a	parameter	for	methods	of	the	Database	object.
The	Transfer	object	defines	schema	and	data	elements	moved	from	one
Microsoft®	SQL	Server™	database	to	another.

Properties

CopyAllDefaults	Property DestLogin	Property
CopyAllObjects	Property DestPassword	Property
CopyAllRules	Property DestServer	Property
CopyAllStoredProcedures	Property DestUseTrustedConnection	Property
CopyAllTables	Property DropDestObjectsFirst	Property
CopyAllTriggers	Property IncludeDependencies	Property
CopyAllUserDefinedDatatypes
Property

IncludeLogins	Property

CopyAllViews	Property IncludeUsers	Property
CopyData	Property Script2Type	Property
CopySchema	Property ScriptType	Property
DestDatabase	Property 	

Methods

Abort	Method AddObjectByName	Method
AddObject	Method ListObjectNames	Method

Events

PercentCompleteAtStep	Event StatusMessage	Event

ScriptTransferPercentComplete
Event

TransferPercentComplete	Event

Remarks
SQL	Server	provides	a	database	object-scripting	and	data	export	and	import
mechanism	to	move	schema	and	data	from	one	database	to	another.	SQL-DMO
provides	access	to	the	database-transfer	utility	through	the	Transfer	object	and
the	ScriptTransfer	and	Transfer	methods	of	the	Database	object.

With	the	Transfer	object,	you	can:

Identify	schema	or	data	to	move	from	one	SQL	Server	database	to
another.

Identify	the	destination	for	schema	and	data	transferred.

Monitor	the	progress	of	the	ScriptTransfer	and	Transfer	methods	of
the	Database	object.

Stop	an	in-progress	database-to-database	transfer	operation.

Note		The	Transfer	object	is	compatible	with	instances	of	SQL	Server
2000	and	SQL	Server	version	7.0.	However,	the	Transfer2	object
extends	the	functionality	of	the	Transfer	object	for	use	with	features
that	are	new	in	SQL	Server	2000.

See	Also

Transfer2	Object

SQL-DMO

Transfer2	Object
The	Transfer2	object	is	used	as	a	parameter	for	methods	of	the	Transfer2
object.	The	Transfer2	object	defines	schema	and	data	elements	moved	from	one
Microsoft®	SQL	Server™	database	to	another.	The	Transfer2	object	extends
the	functionality	of	the	Transfer	object.

Properties

CopyAllFunctions	Property SourceTranslateChar	Property
DestTranslateChar	Property UseCollation	Property
IncludeDB	Property UseDestTransaction	Property
Script2Type	Property 	

Methods
RemoveAllObjects	Method

Remarks
The	Transfer2	object	extends	the	functionality	of	the	Transfer	object	for	use
with	features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the	properties	and
methods	of	the	Transfer	object.	With	the	Transfer2	object,	you	can:

Create	the	source	database	during	a	transfer	operation.

Transfer	user-defined	functions	and	column-level	collation	settings.

Specify	whether	character	data	translation	is	performed	on	a	source	or
target	server.

The	methods	and	properties	of	the	Transfer2	object	may	not	be	compatible	with
instances	of	SQL	Server	version	7.0	or	earlier.	For	information	about	using	the
Transfer2	object	in	an	application	that	also	runs	with	an	instance	of	SQL	Server

7.0,	refer	to	the	Remarks	section	for	specific	methods	and	properties.	For	more
information,	see	Programming	Extended	SQL-DMO	Objects.

See	Also

Programming	Extended	SQL-DMO	Objects

Transfer	Object

SQL-DMO

TransPublication	Object
The	TransPublication	object	represents	a	transactional	or	snapshot	publication.
A	publication	contains	one	or	more	articles	(tables	or	stored	procedures)	that
contain	replicated	data.

Properties

AllowSynchronousTransactions
Property

PublicationAttributes	Property

AutogenerateSyncProcedures
Property

ReplicationFrequency	Property

Description	Property RetentionPeriod	Property
Enabled	Property SnapshotAvailable	Property
HasSubscription	Property SnapshotJobID	Property
ID	Property SnapshotMethod	Property
Name	Property 	

Methods

ActivateSubscriptions	Method GrantPublicationAccess	Method
BeginAlter	Method RefreshChildren	Method
CancelAlter	Method ReInitializeAllSubscriptions	Method
DoAlter	Method Remove	Method	(Objects)
EnumPublicationAccesses	Method RevokePublicationAccess	Method
EnumSubscriptions	Method Script	Method	(Replication	Objects)

Remarks
With	the	TransPublication	object,	you	can:

Create	a	transactional	publication.

Change	the	properties	of	an	existing	transactional	publication.

Enable	a	transactional	publication	after	all	articles	are	added.

Create	a	snapshot	publication.

Change	the	properties	of	an	existing	snapshot	publication.

Enable	a	snapshot	publication	after	all	articles	are	added.

To	create	a	transactional	publication

1.	 Create	a	new	TransPublication	object.

2.	 Set	the	Name	property.

3.	 Note	that	the	ReplicationFrequency	property	defaults	to
SQLDMORepFreq_Continuous,	which	specifies	a	transactional
publication.

4.	 Set	the	PublicationAttributes	property	as	appropriate.

To	enable	push	subscriptions,	use
SQLDMOPubAttrib_AllowPush.

To	enable	pull	subscriptions,	use
SQLDMOPubAttrib_AllowPull.

To	enable	anonymous	subscriptions,	use
SQLDMOPubAttrib_AllowPull,
SQLDMOPubAttrib_AllowAnonymous,	and
SQLDMOPubAttrib_ImmediateSync.

To	enable	Internet	subscriptions,	use
SQLDMOPubAttrib_InternetEnabled.

5.	 Add	the	TransPublication	object	to	the	TransPublications	collection
of	a	connected	ReplicationDatabase	object.

To	alter	a	transactional	publication

1.	 Get	a	TransPublication	object	from	the	TransPublications	collection
of	a	connected	ReplicationDatabase	object.

2.	 Use	the	BeginAlter	method	to	mark	the	beginning	of	the	changes.

3.	 Set	the	TransPublication	object	properties	to	reflect	the	changes	to
the	transactional	publication.

4.	 Use	the	DoAlter	method	to	submit	the	changes	to	Microsoft®	SQL
Server™.

To	enable	a	transactional	publication	after	all	articles	have	been	added

1.	 Get	a	TransPublication	object	from	the	TransPublications	collection
of	a	connected	ReplicationDatabase	object.

2.	 Set	the	Enabled	property	to	TRUE.

To	create	a	snapshot	publication

1.	 Create	a	new	TransPublication	object.

2.	 Set	the	Name	property.

3.	 Set	the	ReplicationFrequency	property	to
SQLDMORepFreq_Snapshot.

4.	 Set	the	PublicationAttributes	property	as	appropriate.

To	enable	push	subscriptions,	use
SQLDMOPubAttrib_AllowPush.

To	enable	pull	subscriptions,	use
SQLDMOPubAttrib_AllowPull.

To	enable	anonymous	subscriptions,	use
SQLDMOPubAttrib_AllowPull,
SQLDMOPubAttrib_AllowAnonymous,	and
SQLDMOPubAttrib_ImmediateSync.

To	enable	Internet	subscriptions,	use
SQLDMOPubAttrib_InternetEnabled.

5.	 Add	the	TransPublication	object	to	the	TransPublications	collection
of	a	connected	ReplicationDatabase	object.

To	alter	a	snapshot	publication

1.	 Get	a	TransPublication	object	from	the	TransPublications	collection
of	a	connected	ReplicationDatabase	object.

2.	 Use	the	BeginAlter	method	to	mark	the	beginning	of	the	changes.

3.	 Set	the	TransPublication	object	properties	to	reflect	the	changes	to
the	snapshot	publication.

4.	 Use	the	DoAlter	method	to	submit	the	changes	to	SQL	Server.

To	enable	a	snapshot	publication	after	all	articles	have	been	added

1.	 Get	a	TransPublication	object	from	the	TransPublications	collection
of	a	connected	ReplicationDatabase	object.

2.	 Set	the	Enabled	property	to	TRUE.

Note		The	TransPublication	object	is	compatible	with	instances	of	SQL	Server
2000	and	SQL	Server	version	7.0.	However,	the	TransPublication2	object
extends	the	functionality	of	the	TransPublication	object	for	use	with	features
that	are	new	in	SQL	Server	2000.

See	Also

TransPublication2	Object

SQL-DMO

TransPublication2	Object
The	TransPublication2	object	represents	a	transactional	or	snapshot
publication.	A	publication	contains	one	or	more	articles	(tables	or	stored
procedures)	that	contain	replicated	data.	The	TransPublication2	object	extends
the	functionality	of	the	TransPublication	object.

Properties

AllowDTS	Property FTPLogin	Property
AllowQueuedTransactions	Property FTPPassword	Property
AltSnapshotFolder	Property FTPPort	Property
CentralizedConflicts	Property FTPSubdirectory	Property
CompatibilityLevel	Property
(MergePublication2,
TransPublication2)

InActiveDirectory	Property

ConflictPolicy	Property PostSnapshotScript	Property
ConflictRetention	Property PreSnapshotScript	Property
FTPAddress	Property QueueType	Property

Methods

BrowseSnapshotFolder	Method
(TransPublication2)

ValidatePublication	Method
(TransPublication2)

CopySnapshot	Method
(TransPublication2)

ValidateSubscriptions	Method

ReplicateUserDefinedScript
Method

	

Remarks
The	TransPublication2	object	extends	the	functionality	of	the

TransPublication	object	for	use	with	features	that	are	new	in	Microsoft®	SQL
Server™	2000.	It	also	inherits	the	properties	and	methods	of	the
TransPublication	object.	With	the	TransPublication2	object,	you	can:

Enable	queued	transactions.

Enable	the	Distribution	Agent	to	use	Data	Transformation	Services
(DTS)	packages.

Manage	conflict	retention	policy.

The	methods	and	properties	of	the	TransPublication2	object	may	not	be
compatible	with	instances	of	SQL	Server	version	7.0	or	earlier.	For	information
about	using	the	TransPublication2	object	in	an	application	that	also	runs	with
an	instance	of	SQL	Server	7.0,	refer	to	the	Remarks	section	for	specific	methods
and	properties.	For	more	information,	see	Programming	Extended	SQL-DMO
Objects.

See	Also

TransPublication	Object

SQL-DMO

TransPullSubscription	Object
The	TransPullSubscription	object	represents	a	Subscriber-originated	pull	or	an
anonymous	subscription	to	a	transactional	or	snapshot	publication.

Methods

BeginAlter	Method ReInitialize	Method
CancelAlter	Method Remove	Method	(Objects)
DoAlter	Method Script	Method	(Replication	Objects)
EnumJobInfo	Method 	

Properties

Description	Property Publication	Property
DistributionJobID	Property PublicationAttributes	Property
Distributor	Property PublicationDB	Property
EnabledForSyncMgr	Property Publisher	Property
FTPAddress	Property SubscriberLogin	Property
FTPLogin	Property SubscriberPassword	Property
FTPPassword	Property SubscriberSecurityMode	Property
FTPPort	Property SubscriberType	Property

(TransPullSubscription,
TransSubscription)

LastDistributionDate	Property SubscriptionType	Property
Name	Property 	

Remarks
With	the	TransPullSubscription	object,	you	can:

Add	a	pull	or	anonymous	subscription	to	a	transactional	publication.

Change	the	properties	of	an	existing	pull	or	anonymous	subscription	to
a	transactional	publication.

Add	a	pull	or	anonymous	subscription	to	a	snapshot	publication.

Change	the	properties	of	an	existing	pull	or	anonymous	subscription	to
a	snapshot	publication.

To	create	a	transactional	pull	subscription	at	the	Subscriber

1.	 Create	a	new	TransPullSubscription	object.

2.	 Set	the	Publisher	property	to	the	name	of	an	existing	Publisher.

3.	 Set	the	Distributor	property	to	the	name	of	the	Distributor.

4.	 Set	the	PublicationDB	property	to	the	name	of	the	database	(at	the
Publisher)	where	the	publication	is	located.

5.	 Set	the	Publication	property	to	the	name	of	the	publication	to	which	to
subscribe.

6.	 Set	the	SubscriptionType	property	to	SQLDMOSubscription_Pull.

7.	 Set	the	SecurityMode	property	of	the	DistributorSecurity	object

property	as	appropriate.

8.	 If	the	SecurityMode	property	of	the	DistributorSecurity	object
property	is	set	to	SQLDMOReplSecurity_Normal,	set	the
StandardLogin	and	StandardPassword	properties	of	the
DistributorSecurity	object	property.

9.	 Set	the	SecurityMode	property	of	the	PublisherSecurity	object
property	as	appropriate.

10.	 If	the	SecurityMode	property	of	the	PublisherSecurity	object
property	is	set	to	SQLDMOReplSecurity_Normal,	set	the
StandardLogin	and	StandardPassword	properties	of	the
PublisherSecurity	object	property.

11.	 Note	that	the	Name	property	defaults	to
publisher:publication_database:publication.

12.	 Add	the	TransPullSubscription	object	to	the
TransPullSubscriptions	collection	of	a	connected
ReplicationDatabase	object	at	the	Subscriber.

13.	 Get	a	ReplicationDatabase	object	that	contains	the	publication	from
the	ReplicationDatabases	collection	of	a	Replication	object
connected	to	the	Publisher.

14.	 Use	the	EnableTransSubscription	method	of	the
ReplicationDatabase	object	that	is	connected	to	the	Publisher.

To	create	a	transactional	anonymous	subscription	at	the	Subscriber

1.	 Create	a	new	TransPullSubscription	object.

2.	 Set	the	Publisher	property	to	the	name	of	an	existing	Publisher.

3.	 Set	the	PublicationDB	property	to	the	name	of	the	database	(at	the
Publisher)	where	the	publication	is	located.

4.	 Set	the	Publication	property	to	the	name	of	the	publication	to	which	to
subscribe.

5.	 Set	the	SubscriptionType	property	to
SQLDMOSubscription_Anonymous.

6.	 Set	the	SecurityMode	property	of	the	DistributorSecurity	object
property	as	appropriate.

7.	 If	the	SecurityMode	property	of	the	DistributorSecurity	object
property	is	set	to	SQLDMOReplSecurity_Normal,	set	the
StandardLogin	and	StandardPassword	properties	of	the
DistributorSecurity	object	property.

8.	 Set	the	SecurityMode	property	of	the	PublisherSecurity	object
property	as	appropriate.

9.	 If	the	SecurityMode	property	of	the	PublisherSecurity	object
property	is	set	to	SQLDMOReplSecurity_Normal,	set	the
StandardLogin	and	StandardPassword	properties	of	the
PublisherSecurity	object	property.

10.	 Note	that	the	Name	property	defaults	to
publisher:publication_database:publication.

11.	 Add	the	TransPullSubscription	object	to	the
TransPullSubscriptions	collection	of	a	connected

ReplicationDatabase	object	at	the	Subscriber.

To	alter	an	existing	transactional	pull	subscription	at	the	Subscriber

1.	 Get	a	TransPullSubscription	object	from	the
TransPullSubscriptions	collection	of	a	connected
ReplicationDatabase	object	at	the	Subscriber.

2.	 Use	the	BeginAlter	method	to	mark	the	beginning	of	the	changes.

3.	 Set	the	TransPullSubscription	object	properties	to	reflect	the	changes
to	the	transactional	pull	subscription.

4.	 Use	the	DoAlter	method	to	submit	the	changes	to	Microsoft®	SQL
Server™.

To	alter	an	existing	transactional	anonymous	subscription	at	the	Subscriber

1.	 Get	a	TransPullSubscription	object	containing	a	transactional
anonymous	subscription	from	the	TransPullSubscriptions	collection
of	a	connected	ReplicationDatabase	object	at	the	Subscriber.

2.	 Use	the	BeginAlter	method	to	mark	the	beginning	of	the	changes.

3.	 Set	the	TransPullSubscription	object	properties	to	reflect	the	changes
to	the	transactional	anonymous	subscription.

4.	 Use	the	DoAlter	method	to	submit	the	changes	to	SQL	Server.

To	create	a	snapshot	pull	subscription	at	the	Subscriber

1.	 Create	a	new	TransPullSubscription	object.

2.	 Set	the	Publisher	property	to	the	name	of	an	existing	Publisher.

3.	 Set	the	PublicationDB	property	to	the	name	of	the	database	(at	the
Publisher)	where	the	snapshot	publication	is	located.

4.	 Set	the	Publication	property	to	the	name	of	the	snapshot	publication
to	which	to	subscribe.

5.	 Set	the	SubscriptionType	property	to	SQLDMOSubscription_Pull.

6.	 Set	the	SecurityMode	property	of	the	DistributorSecurity	object
property	as	appropriate.

7.	 If	the	SecurityMode	property	of	the	DistributorSecurity	object
property	is	set	to	SQLDMOReplSecurity_Normal,	set	the
StandardLogin	and	StandardPassword	properties	of	the
DistributorSecurity	object	property.

8.	 Set	the	SecurityMode	property	of	the	PublisherSecurity	object
property	as	appropriate.

9.	 If	the	SecurityMode	property	of	the	PublisherSecurity	object
property	is	set	to	SQLDMOReplSecurity_Normal,	set	the
StandardLogin	and	StandardPassword	properties	of	the
PublisherSecurity	object	property.

10.	 Note	that	the	Name	property	defaults	to
publisher:publication_database:publication.

11.	 Add	the	TransPullSubscription	object	to	the
TransPullSubscriptions	collection	of	a	connected
ReplicationDatabase	object	at	the	Subscriber.

12.	 Get	a	ReplicationDatabase	object	that	contains	the	publication	from

the	ReplicationDatabases	collection	of	a	Replication	object
connected	to	the	Publisher.

13.	 Use	the	EnableTransSubscription	method	of	the
ReplicationDatabase	object	connected	to	the	Publisher.

To	create	a	snapshot	anonymous	subscription	at	the	Subscriber

1.	 Create	a	new	TransPullSubscription	object.

2.	 Set	the	Publisher	property	to	the	name	of	an	existing	Publisher.

3.	 Set	the	PublicationDB	property	to	the	name	of	the	database	(at	the
Publisher)	where	the	snapshot	publication	is	located.

4.	 Set	the	Publication	property	to	the	name	of	the	snapshot	publication
to	subscribe	to.

5.	 Set	the	SubscriptionType	property	to
SQLDMOSubscription_Anonymous.

6.	 Set	the	SecurityMode	property	of	the	DistributorSecurity	object
property	as	appropriate.

7.	 If	the	SecurityMode	property	of	the	DistributorSecurity	object
property	is	set	to	SQLDMOReplSecurity_Normal,	set	the
StandardLogin	and	StandardPassword	properties	of	the
DistributorSecurity	object	property.

8.	 Set	the	SecurityMode	property	of	the	PublisherSecurity	object
property	as	appropriate.

9.	 If	the	SecurityMode	property	of	the	PublisherSecurity	object
property	is	set	to	SQLDMOReplSecurity_Normal,	set	the
StandardLogin	and	StandardPassword	properties	of	the
PublisherSecurity	object	property.

10.	 Note	that	the	Name	property	defaults	to
publisher:publication_database:publication.

11.	 Add	the	TransPullSubscription	object	to	the
TransPullSubscriptions	collection	of	a	connected
ReplicationDatabase	object	at	the	Subscriber.

To	alter	an	existing	snapshot	pull	subscription	at	the	Subscriber

1.	 Get	a	TransPullSubscription	object	containing	a	snapshot	pull
subscription	from	the	TransPullSubscriptions	collection	of	a
connected	ReplicationDatabase	object	at	the	Subscriber.

2.	 Use	the	BeginAlter	method	to	mark	the	beginning	of	the	changes.

3.	 Set	the	TransPullSubscription	object	properties	to	reflect	the	changes
to	the	snapshot	pull	subscription.

4.	 Use	the	DoAlter	method	to	submit	the	changes	to	SQL	Server.

To	alter	an	existing	snapshot	anonymous	subscription	at	the	Subscriber

1.	 Get	a	TransPullSubscription	object	containing	a	snapshot	anonymous
subscription	from	the	TransPullSubscriptions	collection	of	a
connected	ReplicationDatabase	object	at	the	Subscriber.

2.	 Use	the	BeginAlter	method	to	mark	the	beginning	of	the	changes.

3.	 Set	the	TransPullSubscription	object	properties	to	reflect	the	changes

to	the	snapshot	anonymous	subscription.

4.	 Use	the	DoAlter	method	to	submit	the	changes	to	SQL	Server.

The	TransPublication2	object	now	supports	the	FTP-related	properties,
formerly	supported	by	the	TransPullSubscription	object.	Previously,	if	it	was
necessary	to	modify	these	properties,	changes	had	to	be	made	at	each	Subscriber.
Now	changes	can	be	made	at	the	Publisher.

Note		The	TransPullSubscription	object	is	compatible	with	instances	of	SQL
Server	2000	and	SQL	Server	version	7.0.	However,	the	TransPullSubscription2
object	extends	the	functionality	of	the	TransPullSubscription	object	for	use
with	features	that	are	new	in	SQL	Server	2000.

See	Also

TransPullSubscription2	Object

SQL-DMO

TransPullSubscription2	Object
The	TransPullSubscription2	object	represents	a	Subscriber-originated	pull	or
anonymous	subscription	to	a	transactional	or	snapshot	publication	and	extends
the	functionality	of	the	TransPullSubscription	object.

Properties

AgentOffload	Property LastDistributionSummary	Property
AgentOffloadServer	Property LastDistributionSummaryTime

Property
AltSnapshotFolder	Property PublicationType	Property
DTSPackageLocation	Property SubscriptionID	Property
DTSPackageName	Property UseFTP	Property
DTSPackagePassword	Property WorkingDirectory	Property
LastDistributionStatus	Property 	

Remarks
The	TransPullSubscription2	object	extends	the	functionality	of	the
TransPullSubscription	object	for	use	with	features	that	are	new	in	Microsoft®
SQL	Server™	2000.	It	also	inherits	the	properties	and	methods	of	the
TransPullSubscription	object.	With	the	TransPullSubscription2	object,	you
can:

Set	and	retrieve	information	about	Distribution	Agents	offloaded	to
remote	servers.

Manage	attributes	of	a	Data	Transformation	Services	(DTS)	package
used	during	a	replication	operation.

The	properties	of	the	TransPullSubscription2	object	may	not	be	compatible
with	instances	of	SQL	Server	version	7.0	or	earlier.	For	information	about	using
the	TransPullSubscription2	object	in	an	application	that	also	runs	with	an

instance	of	SQL	Server	7.0,	refer	to	the	Remarks	section	for	specific	properties.
For	more	information,	see	Programming	Extended	SQL-DMO	Objects.

See	Also

TransPullSubscription	Object

SQL-DMO

TransSubscription	Object
The	TransSubscription	object	represents	a	push	subscription	(made	from	the
Publisher)	to	a	transactional	or	snapshot	publication.

Properties

DistributionJobID	Property Subscriber	Property
EnabledForSyncMgr	Property SubscriberType	Property

(TransPullSubscription,
TransSubscription)

FullSubscription	Property SubscriptionDB	Property
Name	Property SubscriptionType	Property
Status	Property	(Subscription
Objects)

SyncType	Property

Methods

BeginAlter	Method ReInitialize	Method
CancelAlter	Method Remove	Method	(Objects)
DoAlter	Method Script	Method	(Replication	Objects)

Remarks
With	the	TransSubscription	object,	you	can:

Add	a	push	subscription	to	a	transactional	publication.

Change	the	properties	of	an	existing	push	subscription	to	a	transactional
publication.

Add	a	push	subscription	to	a	snapshot	publication.

Change	the	properties	of	an	existing	push	subscription	to	a	snapshot
publication.

To	create	a	transactional	push	subscription	at	the	Publisher

1.	 Create	a	new	TransSubscription	object.

2.	 Set	the	Subscriber	property	to	the	name	of	an	existing	Subscriber.

3.	 Set	the	SubscriptionDB	property	to	the	name	of	the	database	(at	the
Subscriber)	where	the	subscription	data	will	be	stored.

4.	 Note	that	the	Name	property	defaults	to
Subscriber:subscription_database.

5.	 Add	the	TransSubscription	object	to	the	TransSubscriptions
collection	of	a	connected	TransPublication	object.

To	alter	an	existing	transactional	push	subscription

1.	 Get	a	TransSubscription	object	from	the	TransSubscriptions
collection	of	a	connected	TransPublication	object.

2.	 Use	the	BeginAlter	method	to	mark	the	beginning	of	the	changes.

3.	 Set	the	TransSubscription	object	properties	to	reflect	the	changes	to
the	transactional	push	subscription.

4.	 Use	the	DoAlter	method	to	submit	the	changes	to	Microsoft®	SQL
Server™.

To	create	a	snapshot	push	subscription	at	the	Publisher

1.	 Create	a	new	TransSubscription	object.

2.	 Set	the	Subscriber	property	to	the	name	of	an	existing	Subscriber.

3.	 Set	the	SubscriptionDB	property	to	the	name	of	the	database	(at	the
Subscriber)	where	the	subscription	data	will	be	stored.

4.	 Note	that	the	Name	property	defaults	to
Subscriber:subscription_database.

5.	 Add	the	TransSubscription	object	to	the	TransSubscriptions
collection	of	a	connected	TransPublication	object	containing	a
snapshot	publication.

To	alter	an	existing	snapshot	push	subscription

1.	 Get	a	TransSubscription	object	from	the	TransSubscriptions
collection	of	a	connected	TransPublication	object	containing	a
snapshot	publication.

2.	 Use	the	BeginAlter	method	to	mark	the	beginning	of	the	changes.

3.	 Set	the	TransSubscription	properties	to	reflect	the	changes	to	the
snapshot	push	subscription.

4.	 Use	the	DoAlter	method	to	submit	the	changes	to	SQL	Server.

Note		The	TransSubscription	object	is	compatible	with	instances	of	SQL
Server	2000	and	SQL	Server	version	7.0.	However,	the	TransSubscription2

object	extends	the	functionality	of	the	TransSubscription	object	for	use	with
features	that	are	new	in	SQL	Server	2000.

See	Also

TransSubscription2	Object

SQL-DMO

TransSubscription2	Object
The	TransSubscription2	object	represents	a	push	subscription	(made	from	the
Publisher)	to	a	transactional	or	snapshot	publication	and	extends	the
functionality	of	the	TransSubscription	object.

Properties

AgentOffload	Property DTSPackageName	Property
AgentOffloadServer	Property DTSPackagePassword	Property
DTSPackageLocation	Property 	

Remarks
The	TransSubscription2	object	extends	the	functionality	of	the
TransSubscription	object	for	use	with	features	that	are	new	in	Microsoft®	SQL
Server™	2000.	It	also	inherits	the	properties	and	methods	of	the
TransSubscription	object.	With	the	TransSubscription2	object,	you	can:

Set	and	retrieve	information	about	Distribution	Agents	offloaded	to
remote	servers.

Manage	attributes	of	a	Data	Transformation	Services	(DTS)	package
used	during	a	replication	operation.

The	properties	of	the	TransSubscription2	object	may	not	be	compatible	with
instances	of	SQL	Server	version	7.0	or	earlier.	For	information	about	using	the
TransSubscription2	object	in	an	application	that	also	runs	with	an	instance	of
SQL	Server	7.0,	refer	to	the	Remarks	section	for	specific	properties.	For	more
information,	see	Programming	Extended	SQL-DMO	Objects.

See	Also

TransSubscription	Object

SQL-DMO

Trigger	Object
The	Trigger	object	exposes	the	attributes	of	a	single	Microsoft®	SQL	Server™
trigger.

Properties

AnsiNullsStatus	Property Owner	Property	(Database	Objects)
CreateDate	Property QuotedIdentifierStatus	Property
Enabled	Property SystemObject	Property
ID	Property Text	Property
Name	Property Type	Property	(Trigger)

Methods

Alter	Method Remove	Method	(Objects)
EnumDependencies	Method Script	Method

Remarks
SQL	Server	supports	using	triggers	as	a	kind	of	stored	procedure.	Triggers	are
executed	when	a	specified	data	modification,	such	as	an	attempt	to	delete	a	row,
is	attempted	on	the	table	on	which	the	trigger	is	defined.	With	the	Trigger
object,	you	can:

Create	a	SQL	Server	trigger	on	an	existing	SQL	Server	table.

Remove	an	existing	SQL	Server	trigger	from	a	SQL	Server	table.

Generate	a	Transact-SQL	script	to	use	in	other	tools	to	recreate	an
existing	SQL	Server	trigger.

Change	ownership	of	an	existing	SQL	Server	trigger.

The	Name	property	of	a	Trigger	object	is	a	character	string.	The	value	of	the
property	identifies	a	SQL	Server	trigger	by	name	and	must	conform	to	the	rules
for	trigger	naming.	The	Name	property	is	required	when	creating	a	SQL	Server
trigger.

To	create	a	trigger	on	an	existing	SQL	Server	table

1.	 Create	a	Trigger	object.

2.	 Set	the	Name	property.

3.	 Set	the	Text	property	to	contain	the	Transact-SQL	script	defining	the
SQL	Server	trigger	behavior.	For	more	information	about	trigger
scripts,	see	CREATE	TRIGGER.	

4.	 Get	the	Table	object	referencing	the	SQL	Server	table	you	want	from
the	Tables	collection	of	the	appropriate	Database	object.

5.	 Use	the	BeginAlter	method	of	the	Table	object	to	mark	the	start	of
changes	to	the	SQL	Server	table	definition.

6.	 Add	the	new	Trigger	object	to	the	Triggers	collection	of	the	selected
Table	object.

7.	 Use	the	DoAlter	method	of	the	Table	object	to	mark	the	end	of
changes	and	create	the	SQL	Server	trigger.

Note		The	Trigger	object	is	compatible	with	instances	of	SQL	Server	2000	and
SQL	Server	version	7.0.	However,	the	Trigger2	object	extends	the	functionality

JavaScript:hhobj_1.Click()

of	the	Trigger	object	for	use	with	features	that	are	new	in	SQL	Server	2000.

See	Also

Trigger2	Object

SQL-DMO

Trigger2	Object
The	Trigger2	object	exposes	the	attributes	of	a	single	Microsoft®	SQL	Server™
trigger	and	extends	the	functionality	of	the	Trigger	object.

Properties

AfterTrigger	Property InsteadOfTrigger	Property
AnsiNullsStatus	Property IsDeleted	Property
Encrypted	Property 	

Remarks
The	Trigger2	object	extends	the	functionality	of	the	Trigger	object	for	use	with
features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the	properties	and
methods	of	the	Trigger	object.	With	the	Trigger2	object,	you	can:

Determine	whether	a	trigger	is	defined	as	an	AFTER	trigger	or	an
INSTEAD	OF	trigger.

The	properties	of	the	Trigger2	object	may	not	be	compatible	with	instances	of
SQL	Server	version	7.0	or	earlier.	For	information	about	using	the	Trigger2
object	in	an	application	that	also	runs	with	an	instance	of	SQL	Server	7.0,	refer
to	the	Remarks	section	for	specific	properties.	For	more	information,	see
Programming	Extended	SQL-DMO	Objects.

See	Also

Trigger	Object

SQL-DMO

U

SQL-DMO

User	Object
The	User	object	exposes	the	attributes	of	a	single	Microsoft®	SQL	Server™
database	user.

Properties

HasDBAccess	Property ID	Property
Login	Property Name	Property
Role	Property SystemObject	Property

Methods

IsMember	Method ListOwnedObjects	Method
ListDatabasePermissions	Method Remove	Method	(Objects)
ListMembers	Method	(Login,	User) Script	Method
ListObjectPermissions	Method 	

Remarks
A	database	user	is	a	security	principal	enabling	object	access	permission	control
at	the	finest	level	of	granularity.	A	user	represents	a	single	SQL	Server	login
within	the	scope	of	the	database	in	which	the	user	is	defined.

With	the	User	object,	you	can:

Create	a	database	user.

Enumerate	objects	owned	by	a	user	and	permissions	on	database

objects.

Remove	a	database	user.

The	Name	property	of	a	User	object	is	a	character	string.	Name	must	be	a	valid
string	for	the	SQL	Server	sysname	data	type	and	cannot	include	a	backslash
character	(\).

When	creating	a	database	user	by	using	the	User	object,	setting	the	Name
property	is	optional.	When	the	Name	property	is	not	set,	a	user	is	created	having
the	same	name	as	the	value	specified	by	using	the	Login	property.

To	create	a	database	user

1.	 Create	a	User	object.

2.	 Set	the	Login	property	indicating	an	existing	SQL	Server	login.

3.	 Set	optional	properties	as	desired.

4.	 Add	the	User	object	to	the	Users	collection	of	a	connected
SQLServer	Database	object.

A	database	user	cannot	be	removed	if	the	user	owns	objects	in	the	database.	With
SQL-DMO,	use	the	Owner	property	to	reassign	database	object	ownership.

To	remove	a	database	user

1.	 Get	the	appropriate	User	object	from	the	Users	collection	of	a
connected	SQLServer	Database	object.

2.	 Use	the	ListOwnedObjects	method	of	the	User	object	to	enumerate
database	objects	owned	by	the	user.

3.	 Use	the	Owner	property	to	reassign	ownership	for	all	owned	objects.

4.	 Use	the	Remove	method	of	the	User	object	to	remove	the	database
user.

Note		The	User	object	is	compatible	with	instances	of	SQL	Server
2000	and	SQL	Server	version	7.0.	However,	the	User2	object	extends
the	functionality	of	the	User	object	for	use	with	features	that	are	new
in	SQL	Server	2000.

See	Also

User2	Object

SQL-DMO

User2	Object
The	User2	object	exposes	the	attributes	of	a	single	Microsoft®	SQL	Server™
database	user	and	extends	the	functionality	of	the	User	object.

Properties

IsDeleted	Property

Remarks
The	User2	object	extends	the	functionality	of	the	User	object	for	use	with
features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the	properties	and
methods	of	the	User	object.

The	IsDeleted	property	of	the	User2	object	may	not	be	compatible	with
instances	of	SQL	Server	version	7.0	or	earlier.	For	information	about	using	the
User2	object	in	an	application	that	also	runs	with	an	instance	of	SQL	Server	7.0,
refer	to	the	Remarks	section	of	the	IsDeleted	property.	For	more	information,
see	Programming	Extended	SQL-DMO	Objects.

See	Also

User	Object

SQL-DMO

UserDefinedDatatype	Object
The	UserDefinedDatatype	object	exposes	the	attributes	of	a	single	Microsoft®
SQL	Server™	user-specified	data	type.

Properties

AllowIdentity	Property MaxSize	Property
AllowNulls	Property Name	Property
BaseType	Property NumericPrecision	Property
Default	Property	(Column,
UserDefinedDatatype)

NumericScale	Property

DefaultOwner	Property Owner	Property	(Database,
UserDefinedFunction)

ID	Property Rule	Property
IsVariableLength	Property RuleOwner	Property
Length	Property 	

Methods

BindDefault	Method ListBoundColumns	Method
BindRule	Method Remove	Method	(Objects)
GenerateSQL	Method	(Table,
UserDefinedDatatype)

Script	Method

Remarks
SQL	Server	allows	specification	of	data	types.	User-specified	data	types	consist

of	a	SQL	Server	base	data	type,	the	data	length	(if	applicable),	the	data	precision
or	scale	(if	applicable),	and	an	indication	of	the	ability	of	the	data	type	to	accept
NULL	values.

User-specified	data	types	are	targets	for	SQL	Server	rule	binding.	The	user-
specified	data	type	can	be	used	in	place	of	a	SQL	Server	base	data	type	when
specifying	the	columns	of	a	SQL	Server	table.

With	the	UserDefinedDatatype	object,	you	can:

Create	a	SQL	Server	user-defined	data	type.

List	columns	in	a	database	that	use	the	data	type.

Generate	a	Transact-SQL	script	to	re-create	the	data	type.

Remove	a	SQL	Server	user-defined	data	type.

The	Name	property	of	a	UserDefinedDatatype	object	is	the	type	parameter	of
the	sp_addtype	system	stored	procedure,	which	is	unique	within	a	database.

To	create	a	SQL	Server	user-specified	data	type

1.	 Create	a	UserDefinedDatatype	object.

2.	 Set	the	Name	property.

3.	 Set	the	BaseType	property	to	the	name	of	the	SQL	Server	base	data
type.	The	names	of	SQL	Server	base	data	types	are	visible	as	the
Name	property	of	the	SystemDatatype	object.

4.	 Set	the	Length	property	(if	applicable).	For	example,	to	define	a	data
type	for	variable	character	data	of	up	to	20	characters,	set	the
BaseType	property	to	varchar	and	set	the	Length	property	to	20.

5.	 Set	the	NumericPrecision	and	NumericScale	properties	as	applicable.

For	example,	to	define	a	numeric	data	type	having	1	digit	to	the	left	of
the	decimal	and	5	to	the	right,	set	the	BaseType	property	to	decimal,
the	NumericPrecision	property	to	6,	and	the	NumericScale	property
to	5.

6.	 Set	the	AllowNulls	property.

7.	 Add	the	UserDefinedDatatype	object	to	the	UserDefinedDatatypes
collection	of	a	connected	SQLServer	Database	object.

To	remove	a	SQL	Server	user-specified	data	type

1.	 Get	the	appropriate	UserDefinedDatatype	object	from	the
UserDefinedDatatypes	collection	of	a	connected	SQLServer
Database	object.

2.	 Use	the	ListBoundColumns	method	to	determine	the	SQL	Server
columns	that	depend	on	the	data	type.	Drop	these	columns	to	free	the
data	type	of	dependencies.	You	can	use	the	Remove	method	of	the
Column	object	to	drop	columns	dependent	on	the	data	type.

3.	 Use	the	Remove	method	of	the	UserDefinedDatatype	to	remove	the
data	type	definition	from	the	SQL	Server.

Note		The	UserDefinedDatatype	object	is	compatible	with	instances
of	SQL	Server	2000	and	SQL	Server	version	7.0.	However,	the
UserDefinedDatatype2	object	extends	the	functionality	of	the
UserDefinedDatatype	object	for	use	with	features	that	are	new	in
SQL	Server	2000.

See	Also

sp_addtype

UserDefinedDataType2	Object

JavaScript:hhobj_1.Click()

SQL-DMO

UserDefinedDataType2	Object
The	UserDefinedDatatype2	object	exposes	the	attributes	of	a	single	Microsoft®
SQL	Server™	user-defined	data	type	and	extends	the	functionality	of	the
UserDefinedDatatype	object.

Properties

Collation	Property IsDeleted	Property

Remarks
The	UserDefinedDatatype2	object	extends	the	functionality	of	the
UserDefinedDatatype	object	for	use	with	features	that	are	new	in	SQL	Server
2000.	It	also	inherits	the	properties	and	methods	of	the	UserDefinedDatatype
object.	With	the	UserDefinedDatatype2	object,	you	can:

Retrieve	information	about	column-level	collation.

The	properties	of	the	UserDefinedDatatype2	object	may	not	be	compatible	with
instances	of	SQL	Server	version	7.0	or	earlier.	For	information	about	using	the
UserDefinedDatatype2	object	in	an	application	that	also	runs	with	an	instance
of	SQL	Server	7.0,	refer	to	the	Remarks	section	for	specific	properties.	For	more
information,	see	Programming	Extended	SQL-DMO	Objects.

See	Also

UserDefinedDatatype	Object

SQL-DMO

UserDefinedFunction	Object
The	UserDefinedFunction	object	exposes	the	attributes	of	a	single	user-defined
function.

Properties

AnsiNullsStatus	Property Name	Property
CreateDate	Property Owner	Property	(Database,

UserDefinedFunction)
Encrypted	Property QuotedIdentifierStatus	Property
ID	Property SystemObject	Property
IsDeleted	Property Text	Property
IsDeterministic	Property Type	Property	(UserDefinedFunction)
IsSchemaBound	Property 	

Methods

Alter	Method ListPermissions	Method
Deny	Method
(UserDefinedFunction)

ListUserPermissions	Method

EnumDependencies	Method Remove	Method	(Objects)
EnumOutputs	Method Revoke	Method

(UserDefinedFunction)
EnumParameters	Method Script	Method
Grant	Method	(StoredProcedure,
UserDefinedFunction)

	

Remarks
With	the	UserDefinedFunction	object,	you	can:

Create	a	Microsoft®	SQL	Server™	user-defined	function.

Change	the	definition	of	an	existing	SQL	Server	user-defined	function.

Control	access	rights	to	an	existing	SQL	Server	user-defined	function.

Delete	an	existing	SQL	Server	user-defined	function.

Generate	a	Transact-SQL	script	to	re-create	a	SQL	Server	user-defined
function.

The	Name	property	of	a	UserDefinedFunction	object	uses	the	SQL	Server
sysname	data	type.	The	value	of	the	Name	property	must	be	unique	(named	by
owner)	within	a	SQL	Server	database.

To	create	a	SQL	Server	user-defined	function

1.	 Create	a	UserDefinedFunction	object.

2.	 Set	the	Name	property.

3.	 Set	the	Text	property	to	contain	the	user-defined	function.

4.	 Set	optional	property	values.

5.	 Add	the	UserDefinedFunction	object	to	the	UserDefinedFunctions
collection	of	a	connected	Database	object.

After	a	user-defined	function	is	created,	you	cannot	reset	the	Name	property.	To
change	the	name	of	a	user-defined	function,	you	must	call	the	Remove	method
to	drop	and	then	re-create	the	object.

Note		The	UserDefinedFunction	object	is	only	compatible	with	SQL	Server
2000.

SQL-DMO

V

SQL-DMO

View	Object
The	View	object	exposes	the	attributes	of	a	Microsoft®	SQL	Server™	view
table.

Properties

AnsiNullsStatus	Property Owner	Property	(Database	Objects)
CreateDate	Property QuotedIdentifierStatus	Property
ID	Property SystemObject	Property
Name	Property Text	Property

Methods

Alter	Method ListPermissions	Method
Deny	Method	(Table,	View) ListUserPermissions	Method
EnumDependencies	Method Remove	Method	(Objects)
ExportData	Method Revoke	Method	(Table,	View)
Grant	Method	(Table,	View) Script	Method
ListColumns	Method 	

Remarks
SQL	Server	supports	the	definition	of	data	views	as	tables.	With	the	View	object,
you	can:

Create	a	SQL	Server	view	table.

Export	data	from	a	defined	view	table.

Generate	a	Transact-SQL	script	to	re-create	a	view	table.

Grant,	deny,	or	revoke	access	to	an	existing	SQL	Server	view	table.

Remove	a	view	table	from	a	server	running	SQL	Server.

The	Name	property	of	a	View	object	references	the	name	of	a	SQL	Server	view
table.	Its	value	is	constrained	by	the	rules	constraining	the	name	of	a	view	table.

To	create	a	new	SQL	Server	view	table

1.	 Create	a	View	object.

2.	 Set	the	Name	property.

3.	 Set	the	Text	property	to	the	Transact-SQL	SELECT	statement	defining
the	view	table.	For	more	information	about	valid	SELECT	statements
for	view	table	definition,	see	CREATE	VIEW.	

4.	 Add	the	View	object	to	the	Views	collection	of	a	connected	Database
object.

Note		The	View	object	is	compatible	with	instances	of	SQL	Server	2000	and
SQL	Server	version	7.0.	However,	the	View2	object	extends	the	functionality	of
the	View	object	for	use	with	features	that	are	new	in	SQL	Server	2000.

See	Also

View2	Object

JavaScript:hhobj_1.Click()

SQL-DMO

View2	Object
The	View2	object	exposes	the	attributes	of	a	Microsoft®	SQL	Server™	view
table	and	extends	the	functionality	of	the	View	object.

Properties

AnsiNullsStatus	Property IsDeleted	Property
Encrypted	Property IsSchemaBound	Property

Methods
ListUserColumnPermissions	Method

Remarks
The	View2	object	extends	the	functionality	of	the	View	object	for	use	with
features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the	properties	and
methods	of	the	View	object.

The	methods	and	properties	of	the	View2	object	may	not	be	compatible	with
instances	of	SQL	Server	version	7.0	or	earlier.	For	information	about	using	the
View2	object	in	an	application	that	also	runs	with	an	instance	of	SQL	Server	7.0,
refer	to	the	Remarks	section	for	specific	methods	and	properties.	For	more
information,	see	Programming	Extended	SQL-DMO	Objects.

See	Also

View	Object

SQL-DMO

Collections
SQL-DMO	collections	are	containers	for	objects	of	identical	type.	That	is,	the
TypeOf	property	returns	the	same	value	for	any	object	contained	in	a	given
collection.	For	example,	the	Tables	collection	contains	only	SQL-DMO	Table
objects.

All	SQL-DMO	collections	expose	the	Application,	Count,	Parent,	TypeOf,
and	UserData	properties,	and	support	the	Item	method.	The	Item	method
selects	a	contained	object	from	the	collection,	using	a	supplied	ordinal	or	name
string	to	identify	the	desired	collection	member.	For	information	about	Item
method	variations,	see	each	collection.

Properties

Count	Property TypeOf	Property
Parent	Property UserData	Property

Methods

Item	Method 	

SQL-DMO

A

SQL-DMO

AlertCategories	Collection
The	AlertCategories	collection	contains	Category	objects	that	reference	SQL
Server	Agent	alert	categories.

Methods

Add	Method Refresh	Method
ItemByID	Method Remove	Method	(Collections)

Remarks
With	the	AlertCategories	collection,	you	can	create	and	maintain	names	that
group	Microsoft®	SQL	Server™	alerts.

The	AlertCategories	collection	contains,	at	a	minimum,	a	Category	object
named	[Uncategorized]	and	one	named	Replication.

To	create	an	alert	category

1.	 Create	a	Category	object.

2.	 Set	the	Name	property	of	the	Category	object.	Alert	category	names
are	unique	on	a	server	running	SQL	Server.

3.	 Add	the	Category	object	to	the	AlertCategories	collection	of	a
connected	JobServer	object.

To	remove	an	alert	category

Use	the	Remove	method	of	the	AlertCategories	collection	of	a
connected	JobServer	object.	Indicate	the	targeted	alert	category	using

the	category	name	or	the	ordinal	location	in	the	collection,	as	in:
oJobServer.AlertCategories.Remove("Northwind")

Note		Alerts	are	recategorized	as	necessary	when	an	alert	category	is
removed.	Any	alerts	previously	exhibiting	the	removed	category	exhibit
the	category	[Uncategorized]	after	the	Remove	method	completes.

SQL-DMO

Alerts	Collection
The	Alerts	collection	contains	Alert	objects	that	reference	SQL	Server	Agent
alerts.

Methods

Add	Method Remove	Method	(Collections)
ItemByID	Method Script	Method
Refresh	Method 	

Remarks
With	the	Alerts	collection,	you	can:

Create	a	Microsoft®	SQL	Server™	alert.

Completely	remove	a	SQL	Server	alert.

For	information	about	creating	SQL	Server	alerts,	see	Alert	Object.

To	remove	an	alert

Use	the	Remove	method	of	the	Alerts	collection	of	a	connected
JobServer	object.	Indicate	the	targeted	alert	using	the	alert	name	or	the
ordinal	location	in	the	collection,	as	in:
oJobServer.Alerts.Remove("Full	Northwind")

SQL-DMO

B

SQL-DMO

BackupDevices	Collection
The	BackupDevices	collection	contains	BackupDevice	objects	that	expose	the
backup	devices	defined	on	a	server	running	Microsoft®	SQL	Server™.

Methods

Add	Method Remove	Method	(Collections)
Refresh	Method 	

Remarks
SQL	Server	backup	devices	specify	the	behavior	of	specific	backup	media,
usually	tape.	Backup	devices	are	not	required	when	issuing	a	BACKUP	or
RESTORE	statement	and	are	not	required	by	the	Backup	object	for	its
functioning.

With	the	BackupDevices	collection,	you	can:

Create	a	new	backup	device	definition	for	a	server	running	SQL	Server.

Remove	a	backup	device	definition.

For	more	information	about	creating	backup	devices,	see	BackupDevice	Object.

To	remove	a	backup	device

Use	the	Remove	method	of	the	BackupDevices	collection	of	a
connected	SQLServer	object.	Indicate	the	targeted	backup	device	using
the	backup	device	name	or	the	ordinal	location	in	the	collection,	as	in:
oSQLServer.BackupDevices.Remove("Northwind_Tape")

SQL-DMO

C

SQL-DMO

Checks	Collection
The	Checks	collection	contains	Check	objects	that	expose	Microsoft®	SQL
Server™	integrity	constraints	defined	on	the	columns	of	a	table.

Methods

Add	Method Remove	Method	(Collections)
Refresh	Method 	

Remarks
With	the	Checks	collection,	you	can:

Define	an	integrity	constraint	on	a	SQL	Server	column.

Remove	an	existing	constraint	from	a	SQL	Server	column.

SQL	Server	integrity	constraints	can	be	defined	as	part	of	a	CREATE	TABLE	or
ALTER	TABLE	statement.

When	creating	a	SQL	Server	table	using	the	Table	object,	an	empty	Checks
collection	is	created	as	part	of	the	Table	object	creation.	Adding	Check	objects
to	the	Checks	collection	adds	constraint	definition	text	to	the	CREATE	TABLE
statement	generated	when	the	Table	object	is	added	to	the	Tables	collection	of	a
Database	object.

If	a	Table	object	references	an	existing	SQL	Server	table,	changes	to	the	Checks
collection	generate	ALTER	TABLE	statements.

For	more	information	about	creating	integrity	constraints,	see	Check	Object.

To	remove	a	CHECK	constraint

1.	 Get	the	desired	Table	object	from	the	Tables	collection	of	a	Database
object.

2.	 Use	the	BeginAlter	method	of	the	Table	object	to	mark	the	beginning
of	changes	to	the	SQL	Server	table.

3.	 Use	the	Remove	method	of	the	Checks	collection	of	a	Table	object.
Indicate	the	targeted	integrity	constraint	using	the	constraint	name	or
the	ordinal	location	in	the	collection,	as	in:
oTables("Order	Details").Checks.Remove("CK_Order	Details_Discount")

4.				Use	the	DoAlter	method	of	the	Table	object	to	submit	the	changed	table
definition	to	SQL	Server.

See	Also

ALTER	TABLE

CREATE	TABLE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL-DMO

Columns	Collection
The	Columns	collection	contains	Column	objects	that	expose	the	columns	of	a
Microsoft®	SQL	Server™	table.

Methods

Add	Method Refresh	Method
ItemByID	Method Remove	Method	(Collections)

Remarks
With	the	Columns	collection,	you	can:

Add	a	column	to	a	SQL	Server	table.

Remove	a	column	from	a	SQL	Server	table.

Columns	in	SQL	Server	tables	are	defined	as	part	of	a	CREATE	TABLE	or
ALTER	TABLE	statement.

When	creating	a	SQL	Server	table	using	the	Table	object,	an	empty	Columns
collection	is	created	as	part	of	the	Table	object	creation.	Adding	Column	objects
to	the	Columns	collection	adds	column	definition	text	to	the	CREATE	TABLE
statement	generated	when	the	Table	object	is	added	to	the	Tables	collection	of	a
Database	object.

If	a	Table	object	references	an	existing	SQL	Server	table,	changes	to	the
Columns	collection	generate	ALTER	TABLE	statements.

For	more	information	about	creating	columns,	see	Column	Object.

To	remove	a	column	from	a	SQL	Server	table

1.	 Get	the	desired	Table	object	from	the	Tables	collection	of	a	Database
object.

2.	 Use	the	BeginAlter	method	of	the	Table	object	to	mark	the	beginning
of	changes	to	the	SQL	Server	table.

3.	 Use	the	Remove	method	of	the	Columns	collection	of	a	Table	object.
Indicate	the	targeted	column	using	the	column	name	or	the	ordinal
location	in	the	collection,	as	in:
oTables("Employees").Columns.Remove("Photo")

4.	 Use	the	DoAlter	method	of	the	Table	object	to	submit	the	changed
table	definition	to	SQL	Server.

Note		Dropping	a	column	from	a	SQL	Server	table	is	bound	by
dependencies	on	the	column,	and	can	fail.

SQL-DMO

ConfigValues	Collection
The	ConfigValues	collection	contains	ConfigValue	objects	that	expose	settings
for	configurable	Microsoft®	SQL	Server™	engine	parameters.

Methods

ItemByID	Method Refresh	Method

Remarks
The	ConfigValues	collection	is	fixed	in	membership	and	does	not	expose	Add
and	Remove	methods.	The	ShowAdvancedOptions	property	of	the
Configuration	object	controls	the	membership	of	the	ConfigValues	collection.

Use	the	ConfigValues	collection	to	reference	a	specific	SQL	Server	engine
parameter,	for	example:

Set	oConfigValue	=	oSQLServer.Configuration.ConfigValues("remote	query	timeout")

See	Also

Setting	Configuration	Options

JavaScript:hhobj_1.Click()

SQL-DMO

D

SQL-DMO

DatabaseRoles	Collection
The	DatabaseRoles	collection	contains	DatabaseRole	objects	that	expose
Microsoft®	SQL	Server™	security	privilege	roles	defined	within	a	database.

Properties

Count	Property 	

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)

Remarks
A	SQL	Server	database	role	can	contain	one	or	more	members	(database	users).
A	properly	authenticated	user	can	create	database	roles;	add	members	or	remove
them	from	the	role;	and	grant	or	deny	database	privileges	to	the	role	to
administer	privileges	for	one	or	more	users,	logically	organized.	With	the
DatabaseRoles	collection,	you	can:

Create	a	SQL	Server	database	role.

Remove	a	SQL	Server	database	role.

For	more	information	about	creating	database	roles,	see	the	DatabaseRole
Object	section.

To	remove	a	database	role

1.	 Use	the	DropMember	method	of	the	DatabaseRole	object	to	remove
all	members	from	the	role.

2.	 Use	the	Remove	method	of	the	DatabaseRoles	collection	to	remove
the	role	from	the	SQL	Server	database,	as	in:
oDatabase.DatabaseRoles.Remove("Clerical")

Note		You	cannot	remove	a	database	role	from	a	SQL	Server	database	if	the	role
contains	members.	The	EnumDatabaseRoleMember	method	of	the
DatabaseRole	object	can	be	used	to	list	the	current	members	of	a	role.	Use	the
results	of	the	method	to	remove	members,	then	remove	the	role.

When	using	the	Item	or	Remove	method,	the	DatabaseRoles	collection
supports	member	identification	using	either	name	or	ordinal	reference	syntax.
For	example:

Set	oDatabaseRole	=	oDatabase.DatabaseRoles("Clerical")

Or

Set	oDatabaseRole	=	oDatabase.DatabaseRoles(4)

Note		Inspecting	or	modifying	database	roles	using	the	DatabaseRoles
collection	requires	appropriate	privilege.	The	SQL	Server	login	used	for
SQLServer	object	connection	must	be	a	member	of	the	fixed	role
db_securityadmin	or	a	role	with	greater	privilege.

SQL-DMO

Databases	Collection
The	Databases	collection	contains	Database	objects	that	expose	Microsoft®
SQL	Server™	databases.

Properties

Count	Property 	

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)
ItemByID	Method 	

Remarks
With	the	Databases	collection,	you	can:

Create	a	SQL	Server	database.

Remove	a	SQL	Server	database.

For	more	information	about	creating	databases,	see	Database	Object.

To	remove	a	database

1.	 Use	the	Item	or	ItemByID	method	of	the	Databases	collection	to
extract	the	Database	object	referencing	the	target	database.	When
extracting	a	Database	object	by	name,	use	the	database	owner	name	to

qualify	the	database	name,	as	in:
Set	oDatabase	=	oSQLServer.Databases("Northwind",	"stevenb")

2.	 Use	the	Remove	method	of	the	Database	object	to	drop	the	referenced
database.

Note		Using	the	Remove	method	of	the	Database	object	or	Databases
collection	drops	the	referenced	database	on	an	instance	of	SQL	Server.
The	action	is	not	recoverable.

The	Item	method	of	the	Databases	collection	supports	member	selection	using
the	database	name	or	the	ordinal	position	of	the	object	in	the	collection.
Additionally,	when	using	the	database	name	to	select	an	object	from	the
collection,	the	Item	method	allows	owner	name	qualification	of	the	targeted
SQL	Server	database.	For	example:

Set	oDatabase	=	oSQLServer.Databases("Northwind",	"stevenb")

The	Remove	method	of	the	Databases	collection	supports	member	targeting
using	either	the	database	name	or	the	ordinal	position	of	the	object	in	the
collection.	The	Remove	method	does	not	support	database	owner	name
qualification	when	using	the	method	to	drop	a	database.	When	using	the
Databases	collection	to	remove	a	SQL	Server	database,	it	is	suggested	that	you
use	either	the	Item	or	ItemByID	method	of	the	collection	to	extract	the	object,
referencing	the	correct	database.	Then	use	the	Remove	method	of	the	Database
object.

Note		Creating	or	removing	databases	by	using	the	Databases	collection
requires	appropriate	privilege.	The	SQL	Server	login	used	for	SQLServer	object
connection	must	be	a	member	of	one	of	the	fixed	roles	sysadmin	or	dbcreator.

SQL-DMO

DBFiles	Collection
The	DBFiles	collection	contains	DBFile	objects	that	expose	operating	system
files	used	by	Microsoft®	SQL	Server™	for	table	and	index	data	storage.

Properties

Count	Property 	

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)
ItemByID	Method 	

Remarks
With	the	DBFiles	collection,	you	can:

Create	a	new	operating	system	file	to	contain	table	or	index	data.

Remove	an	operating	system	file	from	the	list	of	files	available	for	table
or	index	data	storage.

The	DBFiles	collection	supports	item	selection	using	ordinal	position	and
identifier	only.	Get	the	identifier	by	using	the	ID	property	of	the	DBFile	object.
When	referencing	a	DBFile	object	within	the	collection,	refer	to	it	by	using	its
position	or	its	identifier,	as	in:

Set	oDBFile	=	oDatabase.FileGroups("PRIMARY").DBFiles(1)

Or

Dim					oDBFileID	as	long

oDBFileID	=	oDatabase.FileGroups("Northwind_Idx").DBFiles(4).ID

Set	oDBFile	=	_
				oDatabase.FileGroups("Northwind_Idx").DBFiles.ItemByID(oDBFileID)

The	DBFiles	collection	supports	removing	a	database	data	file	by	using	ordinal
position	only,	as	in:

oDatabase.FileGroups("Northwind_Text").DBFiles.Remove(1)

Note		Removing	an	operating	system	file	used	to	maintain	SQL	Server	database
data	is	constrained	by	use	of	the	file	itself.	If	any	data	is	currently	maintained	in
the	file,	the	Remove	method	of	the	DBFiles	collection	will	fail.	Remove	and	re-
create	tables,	or	move	table	data	by	creating	or	re-creating	clustered	indexes	to
remove	database	dependence	on	a	specific	operating	system	file.

Using	the	DBFiles	collection	to	create	or	remove	operating	system	files	used
to	maintain	SQL	Server	database	data	requires	appropriate	privilege.	The
SQL	Server	login	used	for	SQLServer	object	connection	must	be	a	member
of	one	of	the	fixed	roles	sysadmin	or	diskadmin.

SQL-DMO

Defaults	Collection
The	Defaults	collection	contains	Default	objects	that	reference	Microsoft®	SQL
Server™	defaults.

Properties

Count	Property 	

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)
ItemByID	Method 	

Remarks
With	the	Defaults	collection,	you	can:

Create	a	default.

Remove	a	default.

A	process	called	binding	enables	a	SQL	Server	default.	A	default	can	be	bound
to	one	or	more	columns	or	user-defined	data	types.	A	bound	default	cannot	be
removed.

To	remove	a	SQL	Server	default

1.	 Get	the	Default	object	referencing	the	targeted	default	from	the

Defaults	collection	by	using	the	Item	or	ItemByID	method.	When
extracting	a	Default	object	using	the	name	of	the	referenced	default,
use	the	default	owner	name	to	qualify	the	default	name,	as	in:
Set	oDefault	=	oDatabase.Defaults("UnitPrice",	"dbo")

2.	 Use	the	ListBoundColumns	and	ListBoundDatatypes	methods	of
the	Default	object	to	report	affected	columns	or	user-defined	data
types.	If	either	method	returns	items,	use	the	UnbindFromColumn	or
UnbindFromDatatype	method	to	resolve	dependencies.

3.	 Use	the	Remove	method	of	the	Defaults	collection	to	remove	the
targeted	default.

The	Item	method	of	the	Defaults	collection	supports	member	selection	using	the
default	name	or	the	ordinal	position	of	the	object	in	the	collection.	Additionally,
when	using	the	default	name	to	select	an	object	from	the	collection,	the	Item
method	allows	owner	name	qualification	of	the	targeted	SQL	Server	default.	For
example:

Set	oDefault	=	oDatabase.Defaults("UnitPrice",	"stevenb")

The	Remove	method	of	the	Defaults	collection	supports	member	targeting	using
either	the	default	name	or	the	ordinal	position	of	the	object	in	the	collection.	The
Remove	method	does	not	support	default	owner	name	qualification	when	using
the	method	to	drop	a	default.	When	using	the	Defaults	collection	to	remove	a
SQL	Server	default,	it	is	suggested	that	you	use	either	the	Item	or	ItemByID
method	of	the	collection	to	extract	the	object,	referencing	the	correct	default,	as
illustrated	earlier.

Note		Creating	or	removing	defaults	by	using	the	Defaults	collection	requires
appropriate	privilege.	The	SQL	Server	login	used	for	SQLServer	object
connection	must	be	a	member	of	the	fixed	role	db_ddladmin	or	a	role	with
greater	privilege.

SQL-DMO

DistributionArticles	Collection
The	DistributionArticles	collection	contains	DistributionArticle	objects	that
expose	the	properties	of	a	Distributor's	image	of	a	replicated	article.

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)
ItemByID	Method 	

Remarks
With	the	DistributionArticles	collection,	you	can:

Create	an	article	in	a	heterogeneous	replication	publication.

Remove	an	article	from	a	heterogeneous	replication	publication.

For	more	information	about	using	the	DistributionArticles	collection,	see	the
DistributionArticle	Object	section.

SQL-DMO

DistributionDatabases	Collection
The	DistributionDatabases	collection	contains	DistributionDatabase	objects
that	expose	the	properties	of	Microsoft®	SQL	Server™	databases	used	by	the
replication	Distributor	for	replicated	image	storage	and	other	tasks.

Methods

Add	Method Remove	Method	(Collections)
Item	Method Script	Method	(Replication	Objects)
Refresh	Method 	

Remarks
The	DistributionDatabases	collection	stores	a	list	of	distribution	databases
available	at	the	Distributor.	A	Publisher	using	the	Distributor	selects	a	single
distribution	database	for	each	publication	managed	by	the	Distributor.

With	the	DistributionDatabases	collection,	you	can:

Create	a	SQL	Server	database	for	Distributor	use.

Generate	a	Transact-SQL	command	batch	to	script	database	creation	for
all	databases	used	by	a	Distributor.

Remove	a	distribution	database.

To	remove	a	distribution	database	from	the	Distributor

1.	 Get	a	DistributionDatabase	object	from	the	DistributionDatabases
collection	of	a	connected	Distributor	object.

2.	 Use	the	Remove	method.

SQL-DMO

DistributionPublications	Collection
The	DistributionPublications	collection	contains	DistributionPublication
objects	that	expose	the	properties	of	publications	managed	by	the	Distributor.

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)

Remarks
With	the	DistributionPublications	collection,	you	can:

Create	a	Distributor-managed	replication	publication.

Remove	a	Distributor-managed	replication	publication.

For	more	information	about	Distributor-managed	publications,	see	the
DistributionPublication	section.

The	Item	method	of	the	DistributionPublications	collection	supports	member
selection	using	the	publication	name	or	the	ordinal	position	of	the	object	in	the
collection.	Additionally,	when	using	the	publication	name	to	select	an	object
from	the	collection,	the	Item	method	allows	name	qualification	of	the	targeted
publication	by	using	the	publication	database.	For	example:

Set	oDistPublication	=	_
				oDistPublisher.DistributionPublications("products",	"northwind")

The	Remove	method	of	the	DistributionPublications	collection	supports
member	targeting	using	either	the	unqualified	publication	name	or	the	ordinal

position	of	the	object	in	the	collection.	When	using	the
DistributionPublications	collection	to	remove	a	publication,	it	is	suggested	that
you	use	the	Item	method	of	the	collection	to	extract	the	object	referencing	the
correct	publication,	then	use	the	Remove	method	of	the
DistributionPublication	method	to	remove	the	targeted	publication.

SQL-DMO

DistributionPublishers	Collection
The	DistributionPublishers	collection	contains	DistributionPublisher	objects
that	expose	the	properties	of	Publishers	using	the	referenced	Distributor.

Methods

Add	Method Remove	Method	(Collections)
Item	Method Script	Method	(Replication	Objects)
Refresh	Method 	

Remarks
With	the	DistributionPublishers	collection,	you	can:

Add	a	Publisher	to	a	Distributor.

Generate	a	Transact-SQL	command	batch	to	script	Publisher
configuration	for	all	Publishers	using	a	Distributor.

Remove	a	Publisher	from	a	Distributor.

To	remove	a	Publisher	from	a	Distributor

1.	 Get	a	DistributionPublisher	object	from	the	DistributionPublishers
collection	of	a	connected	Distributor	object.

2.	 Use	the	Remove	method.

SQL-DMO

DistributionSubscriptions	Collection
The	DistributionSubscriptions	collection	contains	DistributionSubscription
objects	that	expose	the	properties	of	subscriptions	to	a	publication	maintained	by
the	referenced	Distributor.

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)

Remarks
With	the	DistributionSubscriptions	collection,	you	can:

Create	a	Distributor-originated	(push)	subscription	to	a	Distributor-
maintained	publication.

Remove	a	push	subscription	to	a	Distributor-maintained	publication.

For	more	information	about	using	the	DistributionSubscriptions	collection,	see
the	DistributionSubscription	Object	section.

SQL-DMO

F

SQL-DMO

FileGroups	Collection
The	FileGroups	collection	contains	FileGroup	objects	that	reference	the
filegroups	of	a	Microsoft®	SQL	Server™	database.

Properties

Count	Property 	

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)
ItemByID	Method 	

Remarks
SQL	Server	filegroups	can	be	used	to	associate	the	operating	system	files	used	to
maintain	database	data.	Filegroups	can	simplify	administrative	tasks	such	as
backup	and	restore	operations.	By	default,	a	SQL	Server	database	is	created	on
exactly	one	filegroup	called	PRIMARY.

With	the	FileGroups	collection,	you	can:

Create	a	new	SQL	Server	filegroup.

Remove	a	SQL	Server	filegroup.

When	using	the	Item	or	Remove	method,	the	FileGroups	collection	supports
member	identification	using	either	name	or	ordinal	reference	syntax.	For

example:

Set	oFileGroup	=	oDatabase.FileGroups("PRIMARY")

Or

Set	oFileGroup	=	oDatabase.FileGroups(1)

Note		Using	the	FileGroups	collection	to	create	or	remove	SQL	Server	database
filegroups	requires	appropriate	privilege.	The	SQL	Server	login	used	for
SQLServer	object	connection	must	be	a	member	of	one	of	the	fixed	roles
sysadmin	or	diskadmin.

SQL-DMO

FullTextCatalogs	Collection
The	FullTextCatalogs	collection	contains	FullTextCatalog	objects	that
reference	Microsoft	Search	persistent	data	organized	in	full-text	catalogs.

Properties

Count	Property 	

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)

Remarks
With	the	FullTextCatalogs	collection,	you	can:

Create	a	new	Microsoft	Search	full-text	indexing	catalog.

Remove	a	Microsoft	Search	full-text	indexing	catalog.

To	remove	a	Microsoft	Search	full-text	indexing	catalog

Use	the	Remove	method	of	the	FullTextCatalogs	collection.

Note		Removing	a	Microsoft	Search	full-text	indexing	catalog	removes
all	data	maintaining	catalog	definition	and	is	not	recoverable.	The	Stop
method	of	the	FullTextCatalog	object	inactivates	a	Microsoft	Search
full-text	indexing	catalog	and	does	not	affect	index	defining	data.

When	using	the	Item	or	Remove	method,	the	FullTextCatalogs	collection
supports	member	identification	using	either	name	or	ordinal	reference	syntax.
For	example:

Set	oFullTextCatalog	=	oDatabase.FullTextCatalogs("People")

Or

Set	oFullTextCatalog	=	oDatabase.FullTextCatalogs(2)

Note		Using	the	FullTextCatalogs	collection	to	create	or	remove	Microsoft
Search	full-text	indexing	catalogs	requires	appropriate	privilege.	The
Microsoft®	SQL	Server™	login	used	for	SQLServer	object	connection	must	be
a	member	of	the	fixed	role	db_ddladmin	or	a	role	with	greater	privilege.

SQL-DMO

I

SQL-DMO

Indexes	Collection
The	Indexes	collection	contains	Index	objects	that	reference	indexes	that
implement	Microsoft®	SQL	Server™	constraints	and	user-defined	access	paths.

Properties

Count	Property 	

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)
ItemByID	Method 	

Remarks
With	the	Indexes	collection,	you	can:

Create	a	user-defined	access	path	or	unique	constraint	on	data
maintained	by	a	SQL	Server	index.

Remove	a	SQL	Server	index.

For	more	information	about	creating	a	SQL	Server	index	using	SQL-DMO,	see
Index	Object.

To	remove	a	SQL	Server	index:

Use	the	Remove	method	of	the	Indexes	collection,	as	in:

oTables("Employees").Indexes.Remove("LastName")

When	using	the	Item	or	Remove	method,	the	Indexes	collection	supports
member	identification	using	either	name	or	ordinal	reference	syntax.	For
example:

Set	oIndex	=	oTable.Indexes("LastName")

Or

Set	oIndex	=	oTable.Indexes(2)

Note		Creating	or	removing	indexes	by	using	the	Indexes	collection	requires
appropriate	privilege.	The	SQL	Server	login	used	for	SQLServer	object
connection	must	be	a	member	of	the	fixed	role	db_ddladmin	or	a	role	with
greater	privilege.

SQL-DMO

J

SQL-DMO

JobCategories	Collection
The	JobCategories	collection	contains	Category	objects	that	expose	a	SQL
Server	Agent	job-organizing	method.

Properties

Count	Property 	

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)
ItemByID	Method 	

Remarks
For	SQL	Server	Agent,	categories	offer	a	mixed	system	and	user-defined	method
for	grouping	alerts,	operators,	and	jobs.	When	using	SQL-DMO	to	administer
jobs,	a	job	category	can	be	used	to	filter	job	lists	that	streamline	administrative
tasks,	such	as	job	execution.

With	the	JobCategories	collection,	you	can:

Create	a	new	category	for	SQL	Server	Agent	jobs.

Remove	a	SQL	Server	Agent	job	category.

For	more	information	about	creating	a	SQL	Server	Agent	job	category,	see	the
Category	Object	section.

To	remove	a	job	category

Use	the	Remove	method	of	the	JobCategories	collection,	as	in:
oJobServer.JobCategories.Remove("Northwind_Backup")

Note		When	using	the	Remove	method	of	the	JobCategories	collection,	existing
SQL	Server	Agent	jobs	are	reclassified	as	necessary.	If	a	locally-defined	job
exhibits	the	removed	category,	it	is	assigned	the	system-defined	category
[Uncategorized	(Local)]	when	the	existing	category	is	removed.	If	a	job	targets
multiple	TSX	servers,	it	is	assigned	the	system-defined	category	[Uncategorized
(Multi-Server)]	when	the	existing	category	is	removed.

When	using	the	Item	or	Remove	method,	the	JobCategories	collection	supports
member	identification	using	either	name	or	ordinal	reference	syntax.	For
example:

Set	oCategory	=	oJobServer.JobCategories("Northwind_Backup")

Or

Set	oCategory	=	oJobServer.JobCategories(7)

SQL-DMO

Jobs	Collection
The	Jobs	collection	contains	Job	objects	that	reference	all	SQL	Server	Agent
jobs	defined	on	an	instance	of	Microsoft®	SQL	Server™.

Properties

Count	Property 	

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)
ItemByID	Method Script	Method

Remarks
With	the	Jobs	collection,	you	can:

Create	a	SQL	Server	Agent	job.

Remove	a	SQL	Server	Agent	job.

Generate	Transact-SQL	scripts	used	as	part	of	job	administration
strategy	for	an	instance	of	SQL	Server.

For	more	information	about	creating	a	SQL	Server	Agent	job,	see	Job	Object.

To	remove	a	SQL	Server	Agent	job

Use	the	Remove	method	of	the	Jobs	collection,	as	in:
oJobServer.Jobs.Remove("Northwind_Backup_Diff")

When	using	the	Item	or	Remove	method,	the	Jobs	collection	supports	member
identification	using	either	name	or	ordinal	reference	syntax.	For	example:

Set	oJob	=	oJobServer.Jobs("Northwind_Backup_Log")

Or

Set	oJob	=	oJobServer.Jobs(22)

Note		Creating	or	removing	SQL	Server	Agent	jobs	by	using	the	Jobs	collection
requires	appropriate	privilege.	The	SQL	Server	login	used	for	SQLServer	object
connection	must	be	a	member	of	the	fixed	role	public	in	the	system	database
msdb.	With	public	membership,	the	connection	may	create	jobs	and	schedule,
execute,	and	remove	jobs	belonging	to	the	connected	login.	Members	of	the
db_owner	role	in	msdb,	or	members	of	a	role	with	greater	privilege,	can	modify
or	delete	any	SQL	Server	Agent	job.

SQL-DMO

JobSchedules	Collection
The	JobSchedules	collection	contains	JobSchedule	objects,	each	referencing
one	execution	schedule	for	a	SQL	Server	Agent	job.

Properties

Count	Property 	

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)
ItemByID	Method 	

Remarks
A	SQL	Server	Agent	job	defines	an	administrative	task.	A	job	may	or	may	not	be
scheduled.	When	scheduled,	SQL	Server	Agent	evaluates	the	schedule	or
schedules	associated	with	the	job	and	attempts	automated	execution	of	the	job	at
the	time(s)	defined	by	the	schedule(s).	When	not	scheduled,	a	job	may	be
executed	on	demand	by	a	properly	authorized	user.

When	a	SQL	Server	Agent	job	is	scheduled,	the	JobSchedules	collection	of	the
Job	object	that	references	the	job	contains	one	or	more	JobSchedule	objects.
Use	the	Count	property	to	determine	the	number	of	schedules	established	for	the
job.	When	the	Count	property	of	a	JobSchedules	collection	returns	0,	the	job
has	no	automated	execution	schedule.	Use	the	Start	method	of	the	Job	object	to

execute	the	referenced	job.

With	the	JobSchedules	collection,	you	can:

Define	an	execution	schedule	for	a	SQL	Server	Agent	job.

Stop	automated	execution	of	a	SQL	Server	Agent	job	by	removing	an
execution	schedule.

For	more	information	about	scheduling	job	execution	by	adding	a	JobSchedule
to	the	JobSchedules	collection,	see	the	JobSchedule	Object	section.

To	stop	automated	execution	of	a	SQL	Server	Agent	job

Use	the	Remove	method	of	the	JobSchedules	collection,	as	in:
oJob.JobSchedules.Remove("Northwind_Hourly_Log_Backup")

When	using	the	Item	or	Remove	method,	the	JobSchedules	collection	supports
member	identification	using	either	name	or	ordinal	reference	syntax.	For
example:

Set	oJobSchedule	=	oJob.JobSchedules("Northwind_Backup_DB")

Or

Set	oJobSchedule	=	oJob.JobSchedules(1)

Note		Scheduling	automated	execution	of	SQL	Server	Agent	jobs	using	the
JobSchedules	collection	requires	appropriate	privilege.	The	Microsoft®	SQL
Server™	login	used	for	SQLServer	object	connection	must	be	a	member	of	the
fixed	role	public	in	the	system	database	msdb.	With	public	membership,	the
connection	may	schedule	jobs	belonging	to	the	connected	login.	Members	of	the
db_owner	role	in	msdb,	or	members	of	a	role	with	greater	privilege,	can
schedule	any	SQL	Server	Agent	job.

SQL-DMO

JobSteps	Collection
The	JobSteps	collection	contains	JobStep	objects	defining	the	administrative
tasks	automated	by	a	SQL	Server	Agent	job.

Properties

Count	Property 	

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)
ItemByID	Method 	

Remarks
When	using	SQL-DMO	to	create	and	manage	a	SQL	Server	Agent	job,	an
administrative	task,	called	a	step,	is	referenced	by	a	single	JobStep	object.
Adding	a	JobStep	object	to	the	JobSteps	collection	adds	the	task	to	the
referenced	job,	allowing	automated	task	execution.

With	the	JobSteps	collection,	you	can:

Add	a	step	(administrative	task)	to	a	SQL	Server	Agent	job.

Remove	a	step	from	a	SQL	Server	Agent	job.

For	more	information	about	configuring	job	tasks	by	adding	a	JobStep	object	to
or	removing	it	from	the	JobSteps	collection,	see	the	Job	Object	and	JobStep

Object	sections.

When	using	the	Item	or	Remove	method,	the	JobSteps	collection	supports
member	identification	using	either	name	or	ordinal	reference	syntax.	For
example:

Set	oJobStep	=	oJob.JobSteps("DBCC_CHECKDB_Northwind")

Or

Set	oJobStep	=	oJob.JobSteps(3)

Note		Defining	SQL	Server	Agent	job	steps	using	the	JobSteps	collection
requires	appropriate	privilege.	The	Microsoft®	SQL	Server™	login	used	for
SQLServer	object	connection	must	be	a	member	of	the	fixed	role	public	in	the
system	database	msdb.	With	public	membership,	the	connection	may	add	steps
to,	and	remove	steps	from,	jobs	belonging	to	the	connected	login.	Members	of
the	db_owner	role	in	msdb,	or	members	of	a	role	with	greater	privilege,	can
modify	any	SQL	Server	Agent	job.

SQL-DMO

K

SQL-DMO

Keys	Collection
The	Keys	collection	contains	Key	objects	that	reference	referential	integrity
declarations	that	are	implemented	by	Microsoft®	SQL	Server™	PRIMARY
KEY	and	FOREIGN	KEY	constraints.

Properties

Count	Property 	

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)

Remarks
With	the	Keys	collection,	you	can:

Implement	key-based	referential	integrity	by	creating	SQL	Server
PRIMARY	KEY	and	FOREIGN	KEY	constraints.

Remove	key-based	referential	integrity.

For	more	information	about	using	the	Keys	collection	to	create	SQL	Server
PRIMARY	KEY	and	FOREIGN	KEY	constraints,	see	"Key	Object"	in	this
volume.

To	remove	a	SQL	Server	constraint	implementing	key-based	referential
integrity

Use	the	Remove	method	of	the	Keys	collection,	as	in:
oTable.Keys.Remove("FK_Order_Details_Products")

When	using	the	Item	or	Remove	method,	the	Keys	collection	supports	member
identification	using	either	name	or	ordinal	reference	syntax.	For	example:

Set	oKey	=	oTable.Keys("PK_Order_Details")

Or:

Set	oKey	=	oTable.Keys(2)

Note		Creating	or	removing	SQL	Server	constraints	implementing	key-based
referential	integrity	by	using	the	Keys	collection	requires	appropriate	privilege.
The	SQL	Server	login	used	for	SQLServer	object	connection	must	be	a	member
of	the	fixed	role	db_ddladmin	or	a	role	with	greater	privilege.

SQL-DMO

L

SQL-DMO

Languages	Collection
The	Languages	collection	contains	Language	objects	referencing	the	language
records	of	an	instance	of	Microsoft®	SQL	Server™.

Properties

Count	Property

Methods

Item	Method ItemByID	Method

Remarks
With	SQL	Server	version	7.0,	all	supported	language	records	are	installed	when
the	product	is	installed.	Therefore,	the	properties	of	the	SQL-DMO	Language
object	are	read-only.	Membership	in	the	Languages	collection	is	fixed.

When	using	the	Item	method,	the	Languages	collection	supports	member
identification	using	either	name	or	ordinal	reference	syntax.	For	example:

Set	oLanguage	=	oSQLServer.Languages("Norsk")

Or:

Set	oLanguage	=	oSQLServer.Languages(2)

SQL-DMO

LinkedServerLogins	Collection
The	LinkedServerLogins	collection	contains	LinkedServerLogin	objects
referencing	Microsoft®	SQL	Server™	linked	server	logins.

Properties

Count	Property

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)

Remarks
SQL	Server	implements	persistent	storage	of	an	OLE	DB	provider	name	and
data	source	definition	called	a	linked	server.	For	each	linked	server,	you	can
establish	mappings	for	SQL	Server	logins.	Each	mapping,	called	a	linked	server
login,	determines	the	authentication	data	provided	when	a	connection	to	the	OLE
DB	data	source	is	required.

With	the	LinkedServerLogins	collection,	you	can:

Create	a	SQL	Server	login	mapping	record	for	a	linked	server.

Remove	a	login	mapping	for	a	linked	server	disabling	authentication	for
the	SQL	Server	login.

For	more	information	about	mapping	SQL	Server	logins	for	OLE	DB	data

sources	by	using	the	LinkedServerLogins,	see	LinkedServerLogin	Object.

To	remove	a	login	mapping	for	a	linked	server

Use	the	Remove	method	of	the	LinkedServerLogins	collection,	as	in:
oLinkedServer.LinkedServerLogins.Remove("stevenb")

Note		All	login	mapping	records	defined	for	a	linked	server	must	be
removed	before	you	can	remove	the	linked	server	and	disable
distributed	query	on	the	OLE	DB	data	source.	Before	attempting	to
remove	a	linked	server	using	the	LinkedServer	object,	either	use	the
Remove	method	of	the	LinkedServerLogins	collection	or	set	the
DropLogins	property	of	the	LinkedServer	object	to	True.

When	using	the	Item	or	Remove	method,	the	LinkedServerLogins	collection
supports	member	identification	using	either	name	or	ordinal	reference	syntax.
For	example:

Set	oLinkedServerLogin	=	oLinkedServer.LinkedServerLogins("stevenb")

Or:

Set	oLinkedServerLogin	=	oLinkedServer.LinkedServerLogins(1)

Note		Creating	or	removing	SQL	Server	constraints	implementing	key-based
referential	integrity	using	the	LinkedServerLogins	collection	requires
appropriate	privilege.	The	SQL	Server	login	used	for	SQLServer	object
connection	must	be	a	member	of	the	fixed	role	securityadmin	or	a	role	with
greater	privilege.

SQL-DMO

LinkedServers	Collection
The	LinkedServers	collection	contains	LinkedServer	objects	exposing	the
properties	of	an	OLE	DB	data	source.

Properties

Count	Property

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)

Remarks
Microsoft®	SQL	Server™	implements	persistent	storage	of	an	OLE	DB
provider	name	and	data	source	definition	called	a	linked	server.

With	the	LinkedServers	collection,	you	can:

Create	a	linked	server,	usable	as	a	data	provider	for	a	distributed	query.

Remove	an	OLE	DB	linked	server.

For	more	information	about	creating	a	linked	server	by	using	the	LinkedServer
object	and	LinkedServers	collection,	see	the	LinkedServer	Object	section.

To	remove	a	linked	server

1.	 Get	the	LinkedServer	object	referencing	the	target	linked	server	from

the	LinkedServers	collection.

2.	 Set	the	DropLogins	property	of	the	LinkedServer	object	to	True,	or
remove	all	associated	linked	server	login	mappings	by	using	the
Remove	method	of	the	LinkedServerLogins	collection.

3.	 Use	the	Remove	method	of	the	LinkedServer	object	to	remove	the
OLE	DB	data	source	definition.

When	using	the	Item	or	Remove	method,	the	LinkedServers	collection
supports	member	identification	using	either	name	or	ordinal	reference	syntax.
For	example:

Set	oLinkedServer	=	oSQLServer.LinkedServers("SEATTLE1")

Or:

Set	oLinkedServer	=	oSQLServer.LinkedServers(1)

Note		Creating	or	removing	OLE	DB	data	source	definitions	persisted	as	SQL
Server	linked	servers	using	the	LinkedServers	collection	requires	appropriate
privilege.	The	SQL	Server	login	used	for	SQLServer	object	connection	must	be
a	member	of	the	fixed	role	sysadmin.

SQL-DMO

LogFiles	Collection
The	LogFiles	collection	contains	LogFile	objects	that	reference	operating
system	files	that	maintain	the	transaction	log	records	of	a	Microsoft®	SQL
Server™	database.

Properties

Count	Property

Methods

Add	Method ItemByID	Method
Item	Method Refresh	Method

Remarks
With	the	LogFiles	collection,	you	can	configure	SQL	Server	transaction	log	disk
usage.	For	more	information	about	creating	operating	system	files	for	transaction
log	use,	see	LogFile	Object.

When	using	the	Item	method,	the	LogFiles	collection	supports	member
identification	using	only	ordinal	reference	syntax.	For	example:

Set	oLogFile	=	oTransactionLog.LogFiles(1)

Note		The	LogFiles	collection	is	compatible	with	instances	of	SQL	Server	2000
and	SQL	Server	version	7.0.	However,	the	LogFiles2	collection	extends	the
functionality	of	the	LogFiles	collection	for	use	with	features	that	are	new	in	SQL
Server	2000.

See	Also

LogFiles2	Collection

SQL-DMO

LogFiles2	Collection
The	LogFiles2	collection	contains	LogFile2	objects.	These	objects	reference
operating	system	files	that	maintain	the	transaction	log	records	of	a	Microsoft®
SQL	Server™	database.	The	LogFiles2	collection	extends	the	functionality	of
the	LogFiles	collection.

Methods

Remove	Method	(Collections)

Remarks
The	LogFiles2	collection	extends	the	functionality	of	the	LogFiles	collection	for
use	with	features	that	are	new	in	SQL	Server	2000.	It	also	inherits	the	properties
and	methods	of	the	LogFiles	collection.

The	Remove	method	of	the	LogFiles2	collection	may	not	be	compatible	with
instances	of	SQL	Server	version	7.0	or	earlier.	For	more	information	about	using
the	LogFiles2	collection	in	an	application	that	also	runs	with	an	instance	of	SQL
Server	7.0,	refer	to	the	Remarks	section	of	the	Remove	method.	For	more
information,	see	Programming	Extended	SQL-DMO	Objects.

See	Also

LogFiles	Collection

SQL-DMO

Logins	Collection
The	Logins	collection	contains	Login	objects	that	reference	login	records	that
form	one	part	of	Microsoft®	SQL	Server™	security.

Properties

Count	Property

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)

Remarks
With	the	Logins	collection,	you	can:

Create	SQL	Server	login	records	used	for	SQL	Server	Authentication	or
used	by	Windows	NT	Authentication	for	security	account	identification.

Remove	login	records,	disabling	SQL	Server	Authentication	for	the
login	or	removing	configured	behavior	for	a	Microsoft	Windows	NT®
security	account.

For	more	information	about	creating	SQL	Server	login	records	using	the	Login
object	and	Logins	collection,	see	Login	Object.

To	remove	a	login	record

Use	the	Remove	method	of	the	Logins	collection,	as	in:
oSQLServer.Logins.Remove("anned")

When	using	the	Item	or	Remove	method,	the	Logins	collection	supports
member	identification	using	either	name	or	ordinal	reference	syntax.	For
example:

Set	oLogin	=	oSQLServer.Logins("stevenb")

Or:

Set	oLogin	=	oSQLServer.Logins(1)

Note		Creating	or	removing	SQL	Server	logins	by	using	the	Logins	collection
requires	appropriate	privilege.	The	SQL	Server	login	used	for	SQLServer	object
connection	must	be	a	member	of	the	fixed	role	securityadmin	or	a	role	with
greater	privilege.

SQL-DMO

M

SQL-DMO

MergeArticles	Collection
The	MergeArticles	collection	is	a	group	of	MergeArticle	objects.

Methods

Add	Method Refresh	Method
ItemByID	Method Remove	Method	(Collections)

Remarks
With	the	MergeArticles	collection,	you	can:

Remove	an	article	from	a	merge	publication.

To	remove	an	article	(table)	from	a	merge	publication

1.	 Get	a	MergeArticle	object	from	the	MergeArticles	collection	of	a
connected	MergePublication	object.

2.	 Use	the	Remove	method.

SQL-DMO

MergeDynamicSnapshotJobs	Collection
The	MergeDynamicSnapshotJobs	collection	is	a	group	of
MergeDynamicSnapshotJob	objects.

Methods

Add	Method Refresh	Method
ItemByID	Method 	

Remarks
With	the	MergeDynamicSnapshotJobs	collection,	you	can:

Add	a	dynamic	snapshot	job	to	a	merge	publication.

To	add	a	dynamic	snapshot	job	to	a	merge	publication

1.	 Create	a	new	MergeDynamicSnapshotJob	object.

2.	 Optionally	set	the	Name	property,	specifying	a	name	that	is	unique
among	all	job	names	at	the	Distributor.

3.	 Set	the	DynamicFilterHostName	property	to	the	name	of	a
Subscriber.

4.	 Set	the	DynamicFilterLogin	property	to	the	login	ID	of	a	Subscriber.

5.	 Set	the	DynamicSnapshotLocation	property	to	the	path	where	the
dynamic	snapshot	files	are	generated.

6.	 Add	the	MergeDynamicSnapshotJob	object	to	the
MergeDynamicSnapshotJobs	collection	of	a	connected
MergePublication	object.

Note		If	the	Name	property	is	not	set,	a	default	name	is	generated	in	the	form	of
dyn_	+	(job	name	of	the	regular	snapshot	job	of	the	publication)	+	string	GUID.

Note		The	UserDefinedFunctions	collection	is	not	compatible	with	Microsoft®
SQL	Server™	version	7.0	or	earlier.

SQL-DMO

MergePublications	Collection

Methods

Add	Method Remove	Method	(Collections)
ItemByID	Method Script	Method	(Replication	Objects)
Refresh	Method 	

Remarks
With	the	MergePublications	collection,	you	can:

Remove	a	merge	publication.

To	delete	a	merge	publication

1.	 Get	a	MergePublication	object	from	the	MergePublications
collection	of	a	connected	ReplicationDatabase	object.

2.	 Use	the	Remove	method.

SQL-DMO

MergePullSubscriptions	Collection
The	MergePullSubscriptions	collection	is	a	group	of	MergePullSubscription
objects.

Methods

Add	Method Remove	Method	(Collections)
Refresh	Method Script	Method	(Replication	Objects)

Remarks
With	the	MergePullSubscriptions	collection,	you	can:

Remove	a	merge	pull	subscription	at	the	Subscriber.

Remove	a	merge	anonymous	subscription	at	the	Subscriber.

To	delete	a	merge	pull	subscription	at	the	Subscriber

1.	 Get	a	MergePullSubscription	object	from	the
MergePullSubscriptions	collection	of	a	connected
ReplicationDatabase	object	at	the	Subscriber.

2.	 Use	the	Remove	method.

To	delete	a	merge	anonymous	subscription	at	the	Subscriber

1.	 Get	a	MergePullSubscription	object	from	the
MergePullSubscriptions	collection	of	a	connected
ReplicationDatabase	object	at	the	Subscriber.

2.	 Use	the	Remove	method.

SQL-DMO

MergeSubscriptions	Collection

Methods

Add	Method Remove	Method	(Collections)
Refresh	Method Script	Method	(Replication	Objects)

Remarks
With	the	MergeSubscriptions	collection,	you	can:

Remove	a	merge	push	subscription	at	the	Publisher.

To	delete	a	merge	push	subscription	at	the	Publisher

1.	 Get	a	MergeSubscription	object	from	the	MergeSubscriptions
collection	of	a	connected	MergePublication	object.

2.	 Use	the	Remove	method.

SQL-DMO

MergeSubsetFilters	Collection

Methods

Add	Method Refresh	Method
ItemByID	Method Remove	Method	(Collections)

Remarks
With	the	MergeSubsetFilters	collection,	you	can:

Remove	a	merge	filter	from	an	article	of	a	merge	publication.

To	remove	a	merge	filter	from	a	merge	article

1.	 Get	a	MergeSubsetFilter	object	from	the	MergeSubsetFilters
collection	of	a	connected	MergeArticle	object.

2.	 Use	the	Remove	method.

SQL-DMO

N

SQL-DMO

Names	Collection
The	Names	collection	is	a	string	container	used	to	manipulate	a	list	of	named
objects.

Properties

Count	Property 	

Methods

Add	Method Refresh	Method
FindName	Method Remove	Method	(Collections)
Insert	Method Replace	Method
Item	Method 	

Remarks
The	Names	collection	is	implemented	for	the	Parameters	property	of	the
Configuration	object,	and	for	the	KeyColumns	and	ReferencedColumns
properties	of	the	Key	object.	For	more	information	about	using	the	Names
collection	in	Microsoft®	SQL	Server™	administration,	see	Configuration	Object
and	Key	Object.

When	using	the	Item	method,	the	Names	collection	supports	member
identification	using	only	ordinal	reference	syntax.	For	example:

Dim					strKeyColumnName	as	String
Dim					iColumn	as	Integer
For	iColumn	=	1	to	oKey.KeyColumns.Count
				strKeyColumnName	=	oKey.KeyColumns(iColumn)

Next	iColumn

When	using	the	Remove	method,	the	Names	collection	supports	member
identification	using	either	name	or	ordinal	reference	syntax.	For	example:

oKey.KeyColumns.Remove("EmployeeID")

Or:

oKey.KeyColumns.Remove(1)

SQL-DMO

O

SQL-DMO

OperatorCategories	Collection
The	OperatorCategories	collection	contains	Category	objects	that	reference	a
classification	method	for	SQL	Server	Agent	operators.

Properties

Count	Property 	

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)
ItemByID	Method 	

Remarks
For	SQL	Server	Agent,	categories	offer	a	mixed	system	and	user-defined	method
for	grouping	alerts,	operators,	and	jobs.

With	the	OperatorCategories	collection,	you	can:

Create	a	new	classification	for	SQL	Server	Agent	operators.

Remove	a	SQL	Server	Agent	operator	classification.

For	more	information	about	creating	a	SQL	Server	Agent	operator	category,	see
Category	Object.

To	remove	an	operator	category

Use	the	Remove	method	of	the	OperatorCategories	collection,	as	in:
oJobServer.OperatorCategories.Remove("Page")

Note		When	using	the	Remove	method	of	the	OperatorCategories	collection,
existing	SQL	Server	Agent	jobs	are	reclassified	as	necessary.	Any	operators
previously	exhibiting	the	removed	category	exhibit	the	category	[Uncategorized]
after	the	Remove	method	completes.

When	using	the	Item	or	Remove	method,	the	OperatorCategories	collection
supports	member	identification	using	either	name	or	ordinal	reference	syntax.
For	example:

Set	oCategory	=	oJobServer.OperatorCategories("Page")

Or:

Set	oCategory	=	oJobServer.OperatorCategories(1)

SQL-DMO

Operators	Collection
The	Operators	collection	contains	Operator	objects	referencing	SQL	Server
Agent	operators.

Properties

Count	Property 	

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Operators)
ItemByID	Method Script	Method

Remarks
With	the	Operators	collection,	you	can:

Create	a	SQL	Server	Agent	operator.

Remove	a	SQL	Server	Agent	operator.

Generate	a	Transact-SQL	script	that	can	be	used	as	part	of	a	SQL	Server
administrative	task,	such	as	installation	backup.

For	more	information	about	creating	a	SQL	Server	Agent	operator	by	using	the
Operator	object	and	Operators	collection,	see	Operator	Object.

To	remove	a	SQL	Server	Agent	operator

Use	the	Remove	method	of	the	Operators	collection,	as	in:
oJobServer.Operators.Remove("stevenb")

When	using	the	Item	or	Remove	method,	the	Operators	collection	supports
member	identification	using	either	name	or	ordinal	reference	syntax.	For
example:

Set	oOperator	=	oJobServer.Operators("anned")

Or:

Set	oOperator	=	oJobServer.Operators(1)

Note		Creating	or	removing	a	SQL	Server	Agent	operator	by	using	the
Operators	collection	requires	appropriate	privilege.	The	SQL	Server	login	used
for	SQLServer	object	connection	must	be	a	member	of	the	fixed	role	sysadmin.

SQL-DMO

P

SQL-DMO

Properties	Collection
The	Properties	collection	contains	Property	objects	that	expose	the	attributes	of
a	SQL-DMO	object	property.

Properties

Count	Property 	

Methods

Item	Method 	

Remarks
Object	properties	implement	instance	data	for	OLE	objects.	SQL-DMO	is
implemented	as	a	dual-interface	object	library.	Its	objects	are	exposed	as	OLE
Automated	objects	and	as	COM	objects,	allowing	developers	to	use	either	an
OLE	Automation	controller	or	a	C/C++	compiler	as	an	application	development
platform.

Automation	controllers,	such	as	Microsoft®	Visual	Basic®,	typically	enrich	the
development	experience	by	providing	syntax	completion	and	other	development
aids.	Because	it	exposes	the	attributes	of	object	properties,	the	Property	object
is	a	central	component	of	automated	developer	assistance.

When	using	the	Item	method,	the	Properties	collection	supports	member
identification	using	either	name	or	ordinal	reference	syntax.	For	example:

Set	oProperty	=	oSQLServer.Properties("Name")

Or:

Set	oProperty	=	oSQLServer.Properties(1)

Note		The	Properties	collection	is	implemented	for	OLE	Automation
controllers.	The	C/C++	SQL-DMO	application	has	no	direct	access	to	the
Property	object.

SQL-DMO

R

SQL-DMO

RegisteredServers	Collection
The	RegisteredServers	collection	contains	RegisteredServer	objects	that
expose	the	attributes	of	a	single	registry-listed	instance	of	Microsoft®	SQL
Server™.

Properties

Count	Property

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)

Remarks
SQL-DMO	applications	can	maintain	lists	of	some	or	all	of	instances	of	SQL
Server	in	an	organization.	The	lists	are	stored	in	the	registry	of	a	Microsoft
Windows	NT®	or	Microsoft	Windows®	95/98	system.

With	the	RegisteredServers	collection,	you	can:

Create	a	Windows	NT	or	Windows	95	registry	entry	that	lists	an
instance	of	SQL	Server	by	SQL	Server	name.

Remove	a	Windows	NT	or	Windows	95	registry	entry	listing	an
instance	of	SQL	Server.

For	more	information	about	creating	registry	entries	that	organize	instances	of

SQL	Server,	see	the	RegisteredServer	Object	section.

To	remove	a	registry	entry	that	lists	an	instance	of	SQL	Server

Use	the	Remove	method	of	the	RegisteredServers	collection,	as	in:
oApplication.RegisteredServers.Remove("SEATTLE1")

When	using	the	Item	or	Remove	method,	the	RegisteredServers	collection
supports	member	identification	using	either	name	or	ordinal	reference	syntax.
For	example:

Set	oRegisteredServer	=	oApplication.RegisteredServers("LONDON2")

Or:

Set	oRegisteredServer	=	oApplication.RegisteredServers(2)

SQL-DMO

RegisteredSubscribers	Collection
The	RegisteredSubscribers	collection	contains	RegisteredSubscriber	objects
that	reference	instances	of	Microsoft®	SQL	Server™	maintained	as	registry
entries.	These	objects	are	visible	to	replication	as	targets	for	Publisher-originated
(push)	subscriptions.

Properties

Count	Property

Methods

Add	Method Remove	Method	(Collections)
Item	Method Script	Method	(Replication	Objects)
Refresh	Method 	

Remarks
SQL	Server	replication	enhances	the	registry-maintained	lists	of	instances	of
SQL	Server	by	associating	replication	components,	such	as	schedules	and
security,	with	registry-listed	instances.	SQL-DMO	makes	this	association	visible
through	the	RegisteredSubscriber	object	and	RegisteredSubscribers
collection.

For	more	information	about	registry-maintained	lists	of	instances	of	SQL	Server,
see	RegisteredServer	Object.

With	the	RegisteredSubscribers	collection,	you	can:

Configure	a	registered	instance	of	SQL	Server	for	push	subscription	by
associating	replication	schedules	and	security	with	the	named	instance.

Remove	replication	schedules	and	security	for	an	instance	of	SQL
Server	registered	and	configured	for	push	subscription,	disabling	push
subscription	to	the	instance.

Generate	Transact-SQL	script	that	can	be	used	as	part	of	replication
administration,	such	as	a	script	re-creating	configuration	parameters	for
all	SQL	Server	instances.

For	more	information	about	configuring	push-subscription	capable	instances
using	the	RegisteredSubscriber	object	and	RegisteredSubscribers	collection,
see	RegisteredSubscriber	Object.

To	disable	a	push	subscription	to	a	registered	instance

1.	 Get	the	appropriate	RegisteredSubscribers	collection.	When
disabling	a	subscription	at	the	Publisher	of	the	data,	use	the
RegisteredSubscribers	collection	of	the	Publisher	object	that
references	the	publishing	instance.	When	disabling	a	subscription	at
the	Distributor	of	the	data,	use	the	RegisteredSubscribers	collection
of	the	DistributionPublisher	object	referencing	the	source	of	the
published	data.

2.	 Use	the	Remove	method	of	the	RegisteredSubscribers	collection.

When	using	the	Item	or	Remove	method,	the	RegisteredSubscribers	collection
supports	member	identification	using	either	name	or	ordinal	reference	syntax.
For	example:

Set	oRegisteredSubscriber	=	oPublisher.RegisteredSubscribers("LONDON2")

Or:

Set	oRegisteredSubscriber	=	oPublisher.RegisteredSubscribers(2)

SQL-DMO

RemoteLogins	Collection
The	RemoteLogin	object	exposes	the	properties	of	a	single	login	mapping
record	for	connections	to	an	instance	of	Microsoft®	SQL	Server™	that
originates	from	another,	known	instance	of	SQL	Server.

Properties

Count	Property

Methods

Add	Method Remove	Method	(Collections)
Item	Method 	

Remarks
An	instance	of	SQL	Server	can	maintain	authentication	information	for
connections	originating	from	other	instances	of	SQL	Server.	Server-originated
connections	are	attempted	when,	for	example,	remote	procedure	calls	are	part	of
a	Transact-SQL	script.

Each	instance	of	SQL	Server	in	an	organization	can	control	access	by	listing	the
servers	it	accepts	connections	from.	For	each	of	these	remote	servers,	login-
account	mappings	specify	the	local	login	used	by	a	remote	server	connection
when	that	remote	server	connects	as	part	of	a	process	run	by	the	remote	login.

With	the	RemoteLogins	collection,	you	can:

Map	a	login	record	on	an	instance	of	SQL	Server	to	an	existing	login
record	on	another	instance	of	SQL	Server.

Remove	a	remote	login	record	from	the	list	of	logins	mapped	for	a
remote	instance	of	SQL	Server.

To	create	a	remote	login

1.	 Create	a	RemoteLogin	object.

2.	 Configure	the	RemoteLogin	object	by	setting	the	RemoteName
property	to	the	name	of	a	login	on	the	remote	(or	connecting)	instance
of	SQL	Server.

3.	 Configure	the	RemoteLogin	object	by	setting	the	LocalName
property	to	the	name	of	a	login	on	the	local	(or	connected	to)	instance
of	SQL	Server.

4.	 Add	the	RemoteLogin	object	to	the	RemoteLogins	collection	of	a
RemoteServer	object	that	references	an	existing	remote	server
definition.

To	remove	a	remote	login

Use	the	Remove	method	of	the	RemoteLogins	collection	as	in:
oRemoteServer.RemoteLogins.Remove("stevenb")

When	using	the	Item	or	Remove	method,	the	RemoteLogins	collection
supports	member	identification	using	either	name	or	ordinal	reference	syntax.
For	example:

Set	oRemoteLogin	=	oRemoteServer.RemoteLogins("stevenb")

Or:

Set	oRemoteLogin	=	oRemoteServer.RemoteLogins(2)

Note		Creating	or	removing	remote	server	login	mappings	by	using	the
RemoteLogins	collection	requires	appropriate	privilege.	The	SQL	Server	login

used	for	SQLServer	object	connection	must	be	a	member	of	the	fixed	role
securityadmin	or	a	role	with	greater	privilege.

SQL-DMO

RemoteServers	Collection
The	RemoteServers	collection	contains	RemoteServer	objects	that	expose	the
attributes	of	an	instance	of	Microsoft®	SQL	Server™	visible	as	a	remote	server.

Properties

Count	Property

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)
ItemByID	Method 	

Remarks
SQL	Server	provides	several	mechanisms	to	help	manage	connections	between
instances	of	SQL	Server	in	an	organization.	One	mechanism	is	remote-server
naming.

An	instance	of	SQL	Server	can	maintain	authentication	information	for
connections	originating	from	other	instances	of	SQL	Server.	Each	instance	of
SQL	Server	in	an	organization	can	control	access	by	listing	instances	of	SQL
Server	from	which	it	accepts	connections.

Additionally,	when	a	remote	server	is	named	at	an	instance	of	SQL	Server,	the
server	maintaining	the	name	list	can,	in	turn,	originate	a	connection	to	a	named
remote	server.

Note		Remote	server	naming	is	one	method	for	configuring	server-initiated

access	for	instances	of	SQL	Server	in	an	organization.	SQL	Server	version	7.0
implements	distributed	queries	using	persisted	OLE	DB	data	source	definitions
called	linked	servers.	For	more	information,	see	LinkedServer	Object.

With	the	RemoteServers	collection,	you	can:

Identify	an	instance	of	SQL	Server	as	a	remote	server.

Remove	remote	server	naming.

Rename	an	instance	of	SQL	Server.

To	identify	an	instance	of	SQL	Server	as	a	remote	server

1.	 Create	a	RemoteServer	object.

2.	 Configure	the	RemoteServer	object	by	setting	the	Name,	NetName,
and	Options	properties.

3.	 Add	the	RemoteServer	object	to	the	RemoteServers	collection	of	a
connected	SQLServer	object.

To	remove	a	named	remote	server,	disabling	access	to	or	from	the	instance

Use	the	Remove	method	of	the	RemoteServers	collection,	as	in:
oSQLServer.RemoteServers.Remove("LONDON1")

To	rename	an	instance	of	SQL	Server

1.	 Use	the	Remove	method	of	the	RemoteServers	collection,	providing
the	existing	SQL	Server	instance	name	in	the	method	call.

2.	 Create	a	RemoteServer	object.

3.	 Configure	the	RemoteServer	object	by	setting	the	Name	property	to
the	desired	new	name.

4.	 Configure	the	RemoteServer	object	by	setting	the	NetName	property
to	the	network	name	of	the	instance	of	SQL	Server.

5.	 Add	the	RemoteServer	object	to	the	RemoteServers	collection	of	the
SQLServer	object.

6.	 Use	the	Shutdown	and	Start	methods	of	the	SQLServer	object	to
restart	the	instance	of	SQL	Server.

When	using	the	Item	or	Remove	method,	the	RemoteServers	collection
supports	member	identification	using	either	name	or	ordinal	reference	syntax.
For	example:

Set	oRemoteServer	=	oSQLServer.RemoteServers("SEATTLE2")

Or:

Set	oRemoteServer	=	oSQLServer.RemoteServers(2)

Note		Creating	or	removing	remote	server	entries	by	using	the	RemoteServers
collection	requires	appropriate	privilege.	The	SQL	Server	login	used	for
SQLServer	object	connection	must	be	a	member	of	the	fixed	role	setupadmin
or	a	role	with	greater	privilege.

SQL-DMO

ReplicationDatabases	Collection
The	ReplicationDatabases	collection	contains	ReplicationDatabase	objects
that	enumerate	the	user-defined	databases.

Properties

Count	Property

Methods

Item	Method Refresh	Method
ItemByID	Method Script	Method	(Replication	Objects)

Remarks
Microsoft®	SQL	Server™	replication	publications	derive	article	data	from	only
user-defined	databases.	To	simplify	replication	configuration	when	using	SQL-
DMO,	SQL-DMO	implements	the	ReplicationDatabases	collection,	which	lists
user-defined	databases.

With	the	ReplicationDatabases	collection,	you	can:

Enumerate	user-defined	databases	on	an	instance	of	SQL	Server.

Generate	a	Transact-SQL	script	to	automate	creation	or	other
administration	of	all	user-defined	databases.

When	using	the	Item	method,	the	ReplicationDatabases	collection	supports
member	identification	using	either	name	or	ordinal	reference	syntax.	For

example:

Set	oReplicationDatabase	=	_
oSQLServer.Replication.oReplicationDatabases("Northwind")

Or:

Set	oReplicationDatabase	=	_
oSQLServer.Replication.oReplicationDatabases(1)

SQL-DMO

ReplicationStoredProcedures	Collection
The	ReplicationStoredProcedures	collection	contains
ReplicationStoredProcedure	objects	that	reference	the	user-defined	stored
procedures	of	a	Microsoft®	SQL	Server™	database.

Properties

Count	Property

Methods

Item	Method Refresh	Method

Remarks
SQL	Server	replication	publications	and	subscriptions	can	be	used	to	automate
replication	of	user	data.	To	simplify	replication	configuration	when	using	SQL-
DMO,	SQL-DMO	implements	the	ReplicationTables	and
ReplicationStoredProcedures	collections,	which	list	user-defined	tables	and
stored	procedures.

With	the	ReplicationStoredProcedures	collection,	you	can	enumerate	those
stored	procedures	that	can	participate	in	transactional	or	merge	replication	as	a
source	for	article	data.

When	using	the	Item	method,	the	ReplicationStoredProcedures	collection
supports	member	identification	using	either	name	or	ordinal	reference	syntax.
For	example:

Set	oReplicationStoredProcedure	=	_

	oRepDb.oReplicationStoredProcedures("Inventory_Update")

Or:

Set	oReplicationStoredProcedure	=	oRepDb.oReplicationStoredProcedures(1)

Additionally,	when	using	the	stored	procedure	name	to	select	an	object	from	the
collection,	the	Item	method	allows	owner	name	qualification.	For	example:

Set	oReplicationStoredProcedure	=	_
	oRepDb.oReplicationStoredProcedures("Inventory_Update",	"dbo")

SQL-DMO

ReplicationTables	Collection
The	ReplicationTables	collection	contains	ReplicationTable	objects	that
reference	the	user-defined	tables	of	a	Microsoft®	SQL	Server™	database.

Properties

Count	Property

Methods

Item	Method Refresh	Method

Remarks
SQL	Server	replication	publications	and	subscriptions	can	be	used	to	automate
replication	of	user	data.	To	simplify	replication	configuration	when	using	SQL-
DMO,	SQL-DMO	implements	the	ReplicationTables	and
ReplicationStoredProcedures	collections,	which	list	user-defined	tables	and
stored	procedures.

With	the	ReplicationTables	collection,	you	can	enumerate	those	tables	that	can
participate	in	replication	as	a	source	for	article	data.

When	using	the	Item	method,	the	ReplicationTables	collection	supports
member	identification	using	either	name	or	ordinal	reference	syntax.	For
example:

Set	oReplicationTable	=	_
oReplicationDatabase.oReplicationTables("[Order	Details]")

Or:

Set	oReplicationTable	=	oReplicationDatabase.oReplicationTables(3)

Additionally,	when	using	the	table	name	to	select	an	object	from	the	collection,
the	Item	method	allows	owner	name	qualification.	For	example:

Set	oReplicationTable	=	_
oReplicationDatabase.oReplicationTables("Orders",	"dbo")

SQL-DMO

Rules	Collection
The	Rules	collection	contains	Rule	objects	that	reference	Microsoft®	SQL
Server™	data	integrity	constraints	implemented	as	database	Rule	objects.

Properties

Count	Property

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)
ItemByID	Method 	

Remarks
With	the	Rules	collection,	you	can:

Create	SQL	Server	integrity	constraints	implemented	as	rules.

Remove	a	rule	definition	from	an	instance	of	SQL	Server.

For	more	information	about	creating	SQL	Server	rules,	see	Rule	Object.

To	remove	a	SQL	Server	data	integrity	constraint	implemented	as	a	rule

1.	 Get	the	Rule	object	that	references	the	targeted	constraint	from	the
Rules	collection	using	the	Item	or	ItemByID	method.	When
extracting	a	Rule	object	using	the	name	of	the	referenced	rule,	use	the

owner	name	to	qualify	the	rule	name,	as	in:
Set	oRule	=	oDatabase.Rules("Rule_RowIDs",	"dbo")

2.	 Use	the	ListBoundColumns	and	ListBoundDatatypes	methods	of
the	Rule	object	to	report	affected	columns	or	user-defined	data	types.
If	either	method	returns	items,	use	the	UnbindFromColumn	or
UnbindFromDatatype	methods	to	resolve	dependencies.

3.	 Use	the	Remove	method	of	the	Rule	object	to	remove	the	targeted
constraint.

When	using	the	Item	method,	the	Rules	collection	supports	member
identification	using	either	name	or	ordinal	reference	syntax.	Additionally,	when
using	the	rule	name	to	select	an	object	from	the	collection,	the	Item	method
allows	owner	name	qualification	of	the	targeted	SQL	Server	constraint.	For
example:

Set	oRule	=	oDatabase.Rules("Rule_RowIDs",	"stevenb")

Or:

Set	oRule	=	oDatabase.Rules(2)

The	Remove	method	of	the	Rules	collection	supports	member	targeting	using
either	the	rule	name	or	the	ordinal	position	of	the	object	in	the	collection.	The
Remove	method	does	not	support	rule	owner	name	qualification	when	using	the
method	to	drop	a	constraint.	When	using	the	Rules	collection	to	remove	a	SQL
Server	database	rule,	it	is	suggested	that	you	use	either	the	Item	or	ItemByID
method	of	the	collection	to	extract	the	object	referencing	the	correct	rule	as
illustrated	earlier,	then	use	the	Remove	method	of	the	Rule	object	to	remove	the
constraint.

Note		Creating	or	removing	SQL	Server	data	integrity	constraints	implemented
as	a	database	rule	by	using	the	Rules	collection	requires	appropriate	privilege.
The	SQL	Server	login	used	for	SQLServer	object	connection	must	be	a	member
of	the	fixed	role	db_ddladmin	or	a	role	with	greater	privilege.

SQL-DMO

S

SQL-DMO

ServerGroups	Collection
The	ServerGroups	collection	contains	ServerGroup	objects	that	expose	a
classification	system	for	the	registry-maintained	list	of	instances	of	Microsoft®
SQL	Server™.

Properties

Count	Property 	

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)

Remarks
SQL-DMO	applications	can	maintain	lists	of	some	or	all	instances	of	SQL
Server	in	an	organization.	The	lists	are	stored	in	the	registry	of	a	Microsoft
Windows	NT®	or	Microsoft	Windows®	95/98	system.

Each	registry-maintained	list	is	visible	in	a	SQL-DMO	application	through	the
RegisteredServers	collection.	A	ServerGroup	object	classifies	a	list,	providing
a	meaningful	name	for	a	list	of	instances	of	SQL	Server.

With	the	ServerGroups	collection,	you	can:

Create	a	category	used	to	classify	a	registry-maintained	list	of	instances
of	SQL	Server.

Remove	a	category	classifying	registry-maintained	lists	of	instances	of
SQL	Server.

To	create	a	classification	for	registry-maintained	lists	of	instances	of	SQL
Server

1.	 Create	a	ServerGroup	object.

2.	 Set	the	Name	property	of	the	ServerGroup	object.

3.	 Add	the	ServerGroup	object	to	the	ServerGroups	collection	of	the
Application	object.

To	remove	an	organization	server	classification

1.	 Get	the	ServerGroup	object	referencing	the	target	classification	from
the	ServerGroups	collection	of	the	Application	object.

2.	 Use	the	Remove	method	of	the	RegisteredServers	collection	of	the
target	ServerGroup	object	to	remove	any	instances	maintained	under
the	classification.

3.	 Use	the	Remove	method	of	the	ServerGroup	object	to	remove	the
classification.

IMPORTANT		When	using	the	ServerGroups	collection	to	remove	an	existing
registry-maintained	classification,	the	RegisteredServers	collection	of	the	target
ServerGroup	object	must	be	empty.

When	using	the	Item	or	Remove	method,	the	ServerGroups	collection	supports
member	identification	using	either	name	or	ordinal	reference	syntax.	For
example:

Set	oServerGroup	=	oApplication.ServerGroups("London")

Or:

Set	oServerGroup	=	oApplication.ServerGroups(1)

SQL-DMO

ServerRoles	Collection
The	ServerRoles	collection	contains	ServerRole	objects	that	enumerate	the
security	administration	units	used	to	configure	instance-affecting	permissions.

Properties

Count	Property 	

Methods

Item	Method Refresh	Method

Remarks
Microsoft®	SQL	Server™	defines	a	fixed	number	of	instance-affecting	security
administration	units,	called	server	roles.	Because	the	number	is	fixed,	the
ServerRoles	collection	has	fixed	membership	and	does	not	support	the	Add	or
Remove	methods.

When	using	the	Item	method,	the	ServerRoles	collection	supports	member
identification	using	either	name	or	ordinal	reference	syntax.	For	example:

Set	oServerRole	=	oSQLServer.ServerRoles("sysadmin")

Or:

Set	oServerRole	=	oSQLServer.ServerRoles(2)

SQL-DMO

SQLServers	Collection
The	SQLServers	collection	contains	SQLServer	objects	created	by	the	SQL-
DMO	application.

Properties

Count	Property 	

Methods

Item	Method ItemByID	Method

Remarks
SQL-DMO	maintains	the	SQLServers	collection.	Members	are	added	when	the
application	creates	a	new	instance	of	a	SQLServer	object	and	are	removed	when
the	application	releases	all	references	it	holds	on	the	member.	For	example:

Dim					oSQLServer	as	SQLDMO.SQLServer					'	SQLServer	object	not
																																											'	created.	No	member	in
																																											'	SQLServers	collection.

Set	oSQLServer	=	New	SQLDMO.SQLServer						'	SQLServer	object	is	now
																																											'	a	member	of	the	SQLServers
																																											'	collection.

Set	oSQLServer	=	Nothing																			'	SQLServer	object	references
																																											'	released	and	member	removed

																																											'	from	SQLServers	collection.

When	using	the	Item	method,	the	SQLServers	collection	supports	member
identification	using	either	name	or	ordinal	reference	syntax.	For	example:

Set	oSQLServer	=	oApplication.SQLServers("SEATTLE1")

Or:

Set	oSQLServer	=	oApplication.SQLServers(2)

SQL-DMO

StoredProcedures	Collection
The	StoredProcedures	collection	contains	StoredProcedure	objects	that
reference	the	system	and	user-defined	stored	procedures	of	a	Microsoft®	SQL
Server™	database.

Properties

Count	Property 	

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)
ItemByID	Method 	

Remarks
With	the	StoredProcedures	collection,	you	can:

Create	a	stored	procedure.

Remove	a	stored	procedure.

For	more	information	about	creating	stored	procedures	using	the
StoredProcedure	object	and	StoredProcedures	collection,	see	the
StoredProcedure	Object	section.

To	remove	a	stored	procedure

1.	 Get	the	StoredProcedure	object	referencing	the	targeted	stored
procedure	from	the	StoredProcedures	collection	using	the	Item	or
ItemByID	method.	When	extracting	a	StoredProcedure	object	using
the	name	of	the	referenced	stored	procedure,	use	the	owner	name	to
qualify	the	name,	as	in:
Set	oStoredProcedure	=	_
oDatabase.StoredProcedures("[Sales	By	Year]",	"dbo")

2.	 Use	the	Remove	method	of	the	StoredProcedure	object	to	remove	the
targeted	stored	procedure.

When	using	the	Item	or	Remove	method,	the	StoredProcedures	collection
supports	member	identification	using	either	name	or	ordinal	reference	syntax.
For	example:

Set	oStoredProcedure	=	_
oDatabase.StoredProcedures("[Ten	Most	Expensive	Products]")

Or:

Set	oStoredProcedure	=	oDatabase.StoredProcedures(1)

Additionally,	when	using	name-based	item	selection,	the	Item	method	allows
owner	name	qualification	of	the	targeted	SQL	Server	stored	procedure	as	shown
earlier.	When	using	the	Remove	method,	the	StoredProcedures	collection	does
not	support	qualification	of	targeted	object	by	owner	name.	It	is	suggested	that
you	use	the	Item	method	to	extract	the	target,	then	use	the	Remove	method	of
the	StoredProcedure	object	to	drop	a	stored	procedure.

Note		Creating	or	removing	SQL	Server	stored	procedures	by	using	the
StoredProcedures	collection	requires	appropriate	privilege.	The	SQL	Server
login	used	for	SQLServer	object	connection	must	be	a	member	of	the	fixed	role
db_ddladmin	or	a	role	with	greater	privilege.

SQL-DMO

SystemDatatypes	Collection
The	SystemDatatypes	collection	contains	SystemDatatype	objects	that
enumerate	the	base	data	types	of	an	instance	of	Microsoft®	SQL	Server™.

Properties

Count	Property 	

Methods

Item	Method 	

Remarks
SQL	Server	defines	a	fixed	number	of	base	data	types.	Because	the	number	is
fixed,	the	SystemDatatypes	collection,	representing	those	data	types,	has	fixed
membership	and	does	not	support	the	Add	or	Remove	methods.

When	using	the	Item	method,	the	SystemDatatypes	collection	supports	member
identification	using	either	name	or	ordinal	reference	syntax.	For	example:

Set	oSystemDatatype	=	oSQLServer.SystemDatatypes("ntext")

Or:

Set	oSystemDatatype	=	oSQLServer.SystemDatatypes(7)

SQL-DMO

T

SQL-DMO

Tables	Collection
The	Tables	collection	contains	Table	objects	that	reference	the	system	and	user-
defined	tables	of	a	Microsoft®	SQL	Server™	database.

Properties

Count	Property 	

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)
ItemByID	Method 	

Remarks
With	the	Tables	collection,	you	can:

Create	a	table.

Remove	a	table.

To	remove	a	table

1.	 Get	the	Table	object	referencing	the	targeted	table	from	the	Tables
collection	by	using	the	Item	or	ItemByID	method.	When	extracting	a
Table	object	using	the	name	of	the	referenced	table,	use	the	owner
name	to	qualify	the	table	name,	as	in:
Set	oTable	=	oDatabase.Tables("[Order	Details]",	"dbo")

2.	 Use	the	Remove	method	of	the	Table	object	to	remove	the	targeted
table.

When	using	the	Item	or	Remove	method,	the	Tables	collection	supports
member	identification	using	either	name	or	ordinal	reference	syntax.	For
example:

Set	oTable	=	oDatabase.Tables("[Employees]")

Or:

Set	oTable	=	oDatabase.Tables(1)

Additionally,	when	using	name-based	item	selection,	the	Item	method	allows
owner	name	qualification	of	the	targeted	SQL	Server	table,	as	shown	earlier.
When	using	the	Remove	method,	the	Tables	collection	does	not	support
qualification	of	targeted	object	by	owner	name.	It	is	suggested	that	you	use	the
Item	method	to	extract	the	target,	then	use	the	Remove	method	of	the	Table
object	to	drop	a	table.

Note		Creating	or	removing	SQL	Server	tables	using	the	Tables	collection
requires	appropriate	privilege.	The	SQL	Server	login	used	for	SQLServer	object
connection	must	be	a	member	of	the	fixed	role	db_ddladmin	or	a	role	with
greater	privilege.

SQL-DMO

TargetServerGroups	Collection
The	TargetServerGroups	collection	contains	TargetServerGroup	objects	that
classify	lists	of	multiserver	administration	target	servers	(TSXs)	referenced	by
the	TargetServers	collection.

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)
ItemByID	Method 	

Remarks
A	SQL	Server	Agent	job	has	an	execution	target.	With	Microsoft®	SQL
Server™	version	7.0,	the	SQL	Server	Agent	of	one	server	can	direct	job
execution	on	other	instances	of	SQL	Server	within	an	organization.	A	server
directing	job	execution	is	a	master	server	(MSX).	Each	MSX	server	in	an
organization	can	maintain	and	organize	lists	of	TSXs,	called	target	server
groups.

A	SQL	Server	Agent	job	execution	target	can	be:

The	instance	of	SQL	Server	on	which	a	SQL	Server	Agent	is	executing.

One	or	more	TSX	servers,	specified	using	either	the	names	of	the	TSX
servers	and/or	the	names	of	target	server	groups.

With	the	TargetServerGroups	collection,	you	can:

Create	a	target	server	group	on	a	SQL	Server	Agent	acting	as	an	MSX
server	in	an	organization.

Remove	a	target	server	group	from	an	MSX	server.

To	create	a	target	server	group

1.	 Create	a	TargetServerGroup	object.

2.	 Configure	the	TargetServerGroup	object	by	setting	the	Name
property.

3.	 Add	the	TargetServerGroup	object	to	the	TargetServerGroups
collection	of	a	JobServer	object	referencing	an	MSX	server.

To	remove	a	target	server	group

Use	the	Remove	method	of	the	TargetServerGroups	object,	as	in:
oJobServer.TargetServerGroups.Remove("[Seattle_TSX]")

When	using	the	Item	or	Remove	method,	the	TargetServerGroups	collection
supports	member	identification	using	either	name	or	ordinal	reference	syntax.
For	example:

Set	oTargetServerGroup	=	oJobServer.TargetServerGroups("London_TSX")

Or:

Set	oTargetServerGroup	=	oJobServer.TargetServerGroups(2)

SQL-DMO

TargetServers	Collection
The	TargetServers	collection	contains	TargetServer	objects	that	reference
multiserver	administration	TSX	servers.

Properties

Count	Property 	

Methods

Item	Method Refresh	Method
ItemByID	Method Remove	Method	(Collections)

Remarks
A	SQL	Server	Agent	job	has	an	execution	target.	With	Microsoft®	SQL
Server™	version	7.0,	the	SQL	Server	Agent	of	one	server	can	direct	job
execution	on	other	instances	of	SQL	Server	within	an	organization.	A	server
directing	job	execution	is	a	master	(MSX),	server.	Each	MSX	server	in	an
organization	can	have	a	unique	list	of	target	(TSX)	servers.

A	SQL	Server	Agent	job	execution	target	can	be:

The	instance	of	SQL	Server	on	which	a	SQL	Server	Agent	executes.

One	or	more	TSX	servers,	specified	by	using	the	names	of	the	TSX
servers	and/or	the	names	of	target	server	groups.

For	any	MSX	server,	TSX	servers	enlist	or	defect	in	the	list	of	targets	available

for	the	MSX	server.	When	a	TSX	enlists	at	an	MSX,	a	TargetServer	object
referencing	the	TSX	is	added	to	the	TargetServers	collection	of	the	JobServer
object	referencing	the	MSX	server.	When	a	TSX	server	defects,	the
TargetServer	object	referencing	the	TSX	server	will	be	removed	from	the
TargetServers	collection	when	the	collection	is	refreshed.	For	more
information,	see	MSXEnlist	Method	and	MSXDefect	Method.

When	using	the	Item	method,	the	TargetServers	collection	supports	member
identification	using	either	name	or	ordinal	reference	syntax.	For	example:

Set	oTargetServer	=	oJobServer.TargetServers("LONDON1")

Or:

Set	oTargetServer	=	oJobServer.TargetServers(1)

SQL-DMO

TransArticles	Collection
The	TransArticles	collection	contains	TransArticle	objects	that	reference	the
articles	defined	in	a	Microsoft®	SQL	Server™	transactional	or	snapshot
replication	publication.

Properties

Count	Property 	

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)
ItemByID	Method 	

Remarks
With	the	TransArticles	collection,	you	can:

Create	an	article	in	a	transactional	or	snapshot	replication	publication.

Remove	an	article	from	a	transactional	or	snapshot	replication
publication.

For	more	information	about	creating	transactional	or	snapshot	replication	articles
by	using	the	TransArticle	object	and	TransArticles	collection,	see	the
TransArticle	Object	section.

To	remove	an	article	from	a	transactional	or	snapshot	replication

publication

Use	the	Remove	method	of	the	TransArticles	collection,	as	in:
oTransPublication.TransArticles.Remove("[Orders]")

When	using	the	Item	or	Remove	method,	the	TransArticles	collection	supports
member	identification	using	either	name	or	ordinal	reference	syntax.	For
example:

Set	oTransArticle	=	oTransPublication.TransArticles("[Products]")

Or:

Set	oTransArticle	=	oTransPublication.TransArticles(7)

SQL-DMO

TransPublications	Collection
The	TransPublications	collection	contains	TransPublication	objects	that
reference	Microsoft®	SQL	Server™	transactional	and	snapshot	replication
publications.

Properties

Count	Property 	

Methods

Add	Method Script	Method	(Replication	Objects)
Item	Method Refresh	Method
ItemByID	Method Remove	Method	(Collections)

Remarks
With	the	TransPublications	object,	you	can:

Create	a	transactional	or	snapshot	replication	publication.

Generate	a	Transact-SQL	script	that	can	be	used	as	part	of	the
administration	of	all	transactional	or	snapshot	publications	defined	on
an	instance	of	SQL	Server.

Remove	a	transactional	or	snapshot	replication	publication.

To	remove	a	transactional	or	snapshot	replication	publication

1.	 Get	a	TransPublication	object	from	the	TransPublications	collection
of	a	connected	ReplicationDatabase	object.

2.	 For	each	TransSubscription	object	in	the	TransSubscriptions
collection,	test	the	SubscriptionType	property.	If	the
SubscriptionType	property	value	for	all	referenced	subscriptions	is
SQLDMOSubscription_Push,	you	can	safely	remove	the	referenced
transactional	or	snapshot	replication	publication.	If	pull	subscriptions
are	defined	on	the	publication,	take	appropriate	action	to	disable	the
pull	subscription	at	the	Subscriber	prior	to	removing	the	publication.

3.	 Use	the	Remove	method	of	the	TransPublication	object	to	remove
the		referenced	publication.

Note		Removing	a	publication	by	using	the	Remove	method	of	a
TransPublication	or	MergePublication	object	removes	all	article
definitions	and	all	known	subscription	entries.	Removing	a	publication
does	not	remove	a	replicated	copy	of	the	publication	articles	at	any
Subscriber.

When	using	the	Item	or	Remove	method,	the	TransPublications	collection
supports	member	identification	using	either	name	or	ordinal	reference	syntax.
For	example:

Set	oTransPublication	=	_	
oReplicationDatabase.TransPublications("[Northwind_Snap]")

Or:

Set	oTransPublication	=	oReplicationDatabase.TransPublications(7)

SQL-DMO

TransPullSubscriptions	Collection
The	TransPullSubscriptions	collection	contains	TransPullSubscription
objects	that	reference	Subscriber-originated	(pull)	subscriptions	to	publications
defined	on	other	data	sources.

Properties

Count	Property 	

Methods

Add	Method Remove	Method	(Collections)
Item	Method Script	Method	(Replication	Objects)
Refresh	Method 	

Remarks
With	the	TransPullSubscriptions	collection,	you	can:

Subscribe	to	a	transactional	or	snapshot	publication	of	another	data
source	in	an	organization.

Generate	a	Transact-SQL	script	that	can	be	used	as	part	of	administering
all	of	an	installation's	pull	subscriptions	to	transactional	and	snapshot
publications.

Remove	a	pull	subscription	to	a	transactional	or	snapshot	publication.

For	more	information	about	creating	pull	subscriptions	to	transactional	or
snapshot	replication	publications	using	the	TransPullSubscription	object	and
TransPullSubscriptions	collection,	see	TransPullSubscription	Object.

To	remove	a	pull	subscription	to	a	transactional	or	snapshot	replication
publication

Use	the	Remove	method	of	the	TransPullSubscriptions	collection,	as
in:
oRepDb.TransPullSubscriptions.Remove("[SEATTLE1_Northwind_Trans]")

Note		Removing	a	subscription	using	the	Remove	method	of	the
TransPullSubscriptions	collection	does	not	remove	the	replicated	copy	of	the
publication	articles	at	the	Subscriber.

When	using	the	Item	or	Remove	method,	the	TransPullSubscriptions
collection	supports	member	identification	using	either	name	or	ordinal	reference
syntax.	For	example:

Set	oTransPullSubscription	=	_	
oReplicationDatabase.TransPullSubscriptions("[LONDON2_Northwind_Snap]")

Or:

Set	oTransPullSubscription	=	_	
oReplicationDatabase.TransPullSubscriptions(2)

SQL-DMO

TransSubscriptions	Collection
The	TransSubscriptions	collection	contains	TransSubscription	objects	that
reference	all	known	(nonanonymous)	subscriptions	to	a	transactional	or	snapshot
publication.

Properties

Count	Property 	

Methods

Add	Method Remove	Method	(Collections)
Item	Method Script	Method	(Replication	Objects)
Refresh	Method 	

Remarks
With	the	TransSubscriptions	object,	you	can:

Create	a	Publisher-initiated	(push)	subscription	to	a	transactional	or
snapshot	replication	publication.

Generate	a	Transact-SQL	script	that	can	be	used	as	part	of	the
administration	of	all	subscriptions	to	a	transactional	or	snapshot
publication.

Remove	a	push	subscription	to	a	transactional	or	snapshot	replication
publication.

For	more	information	about	creating	push	subscriptions	to	transactional	or
snapshot	publications	by	using	the	TransSubscription	object	and
TransSubscriptions	collection,	see	the	TransSubscription	Object	section.

To	remove	a	transactional	or	snapshot	replication	push	subscription

1.	 Get	the	TransSubscription	object	that	references	the	target
subscription	from	the	TransSubscriptions	collection	of	the
TransPublication	object	referencing	the	publication.

2.	 Query	the	SubscriptionType	property	of	the	TransSubscription
object.

3.	 If	SubscriptionType	returns	SQLDMOSubscription_Push,	the
referenced	subscription	is	a	push	subscription	and	can	be	safely
removed	at	the	Publisher.	Use	the	Remove	method	of	the
TransSubscription	object	to	remove	the	subscription.

Note		Removing	a	subscription	by	using	the	Remove	method	of	a
TransSubscription	object	does	not	remove	a	replicated	copy	of	the	publication
articles	at	any	Subscriber.

When	using	the	Item	or	Remove	method,	the	TransSubscriptions	collection
supports	member	identification	using	either	name	or	ordinal	reference	syntax.
For	example:

Set	oTransSubscription	=	_	
oTransPublication.TransSubscriptions("[LONDON2_Push]")

Or:

Set	oTransSubscription	=	oTransPublication.TransSubscriptions(2)

SQL-DMO

Triggers	Collection
The	Triggers	collection	contains	Trigger	objects	that	reference	the	triggers
defined	on	a	Microsoft®	SQL	Server™	table.

Properties

Count	Property 	

Methods

Add	Method ItemByID	Method
Item	Method Remove	Method	(Collections)

Remarks
SQL	Server	implements	triggers	as	a	special	type	of	stored	procedure,
automatically	invoked	based	on	the	trigger	definition	and	modification	to	data	in
a	table	or	view.

With	the	Triggers	collection,	you	can:

Create	a	SQL	Server	trigger.

Remove	a	SQL	Server	trigger.

For	more	information	about	creating	a	SQL	Server	trigger	by	using	the	Trigger
object	and	Triggers	collection,	see	the	Trigger	Object	section.

To	remove	a	trigger

1.	 Get	the	Trigger	object	referencing	the	targeted	trigger	from	the
Triggers	collection	using	the	Item	or	ItemByID	method.	When
extracting	a	Trigger	object	using	the	name	of	the	referenced	trigger,
use	the	owner	name	to	qualify	the	trigger	name,	as	in:
Set	oTrigger	=	oTable.Triggers("[trigEmployees_Insert]",	"dbo")

2.	 Use	the	Remove	method	of	the	Trigger	object	to	remove	the	targeted
trigger.

Note		Removing	a	trigger	using	the	Trigger	object	completely
removes	its	definition	from	an	instance	of	SQL	Server.	SQL	Server
triggers	can	be	disabled	but	remain	defined;	that	is,	an	instance	of	SQL
Server	maintains	the	trigger	text,	but	the	trigger	does	not	fire	on	data
modification.	Trigger	execution	can	be	enabled	or	disabled	using	SQL-
DMO	using	the	Enabled	property	of	the	referencing	Trigger	object.
For	more	information,	see	Enabled	Property.

When	using	the	Item	or	Remove	method,	the	Triggers	collection	supports
member	identification	using	either	name	or	ordinal	reference	syntax.	For
example:

Set	oTrigger	=	oTable.Triggers("[trigEmployees_Delete]")

Or:

Set	oTrigger	=	oTable.Triggers(1)

Additionally,	when	using	name-based	item	selection,	the	Item	method	allows
owner	name	qualification	of	the	targeted	SQL	Server	trigger	as	shown	earlier.
When	using	the	Remove	method,	the	Triggers	collection	does	not	support
qualification	of	targeted	object	by	owner	name.	It	is	recommended	that	you	use
the	Item	method	to	extract	the	target,	then	use	the	Remove	method	of	the
Trigger	object	to	drop	a	trigger.

Note		Creating	or	removing	SQL	Server	triggers	by	using	the	Triggers
collection	requires	appropriate	privilege.	The	SQL	Server	login	used	for
SQLServer	object	connection	must	be	the	owner	of	the	table	or	view	on	which

the	trigger	is	defined,	or	a	member	of	a	role	with	equal	privilege.

SQL-DMO

U

SQL-DMO

UserDefinedDatatypes	Collection
The	UserDefinedDatatypes	collection	contains	UserDefinedDatatype	objects
that	reference	a	Microsoft®	SQL	Server™	data	integrity	mechanism	called	a
user-defined	data	type.

Properties

Count	Property

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)
ItemByID	Method 	

Remarks
With	the	UserDefinedDatatypes	collection,	you	can:

Create	a	new	user-defined	data	type.

Remove	a	user-defined	data	type.

For	more	information	about	creating	and	removing	user-defined	data	types	by
using	the	UserDefinedDatatype	object	and	UserDefinedDatatypes	collection,
see	UserDefinedDatatype	Object.

When	using	the	Item	or	Remove	method,	the	UserDefinedDatatypes	collection
supports	member	identification	using	either	name	or	ordinal	reference	syntax.

For	example:

Set	oUDT	=	oDatabase.UserDefinedDatatypes("EmployeeID")

Or:

Set	oUDT	=	oDatabase.UserDefinedDatatypes(2)

Additionally,	when	using	name-based	item	selection,	the	Item	method	allows
owner	name	qualification	of	the	targeted	SQL	Server	user-defined	data	type.	For
example:

Set	oUDT	=	oDatabase.UserDefinedDatatypes("EmployeeID",	"dbo")

When	using	the	Remove	method,	the	UserDefinedDatatypes	collection	does
not	support	qualification	of	targeted	object	by	owner	name.	It	is	suggested	that
you	use	the	Item	method	to	extract	the	target,	then	use	the	Remove	method	of
the	UserDefinedDatatype	object	to	drop	a	user-defined	data	type.

Note		Creating	or	removing	SQL	Server	data	integrity	constraints	implemented
as	user-defined	data	types	by	using	the	UserDefinedDatatypes	collection
requires	appropriate	privilege.	The	SQL	Server	login	used	for	SQLServer	object
connection	must	be	a	member	of	the	fixed	role	db_ddladmin	or	a	role	with
greater	privilege.

SQL-DMO

UserDefinedFunctions	Collection
The	UserDefinedFunctions	collection	contains	UserDefinedFunction	objects
that	reference	the	Microsoft®	SQL	Server™	user-defined	functions.

Properties

Count	Property UserData	Property
TypeOf	Property 	

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)
ItemByID	Method 	

Remarks
With	the	UserDefinedFunctions	collection,	you	can:

Create	a	user-defined	function.

Remove	a	user-defined	function.

For	more	information	about	creating	user-defined	functions	by	using	the
UserDefinedFunction	object	and	UserDefinedFunctions	collection,	see
UserDefinedFunction	Object.

To	remove	a	user-defined	function

1.	 Use	the	Item	or	ItemByID	method	to	reference	the	targeted	user-
defined	function	through	the	UserDefinedFunction	object	in	the
UserDefinedFunctions	collection.	When	extracting	a
UserDefinedFunction	object	using	the	name	of	the	referenced	user-
defined	function,	use	the	owner	name	to	qualify	the	name,	as	in:
Set	oUDF	=	_
oDatabase.UserDefinedFunctions("SummarizeSales",	"dbo")	

2.	 Use	the	Remove	method	of	the	UserDefinedFunction	object	to
remove	the	targeted	user-defined	function.

When	using	the	Item	or	Remove	method,	the	UserDefinedFunctions	collection
supports	member	identification	using	either	name	or	ordinal	reference	syntax.
For	example:

Set	oUDF	=	_
oDatabase.UserDefinedFunctions("SummarizeSales",	"dbo").Remove

Or:

Set	oUDF	=	oDatabase.UserDefinedFunctions(1).Remove

Additionally,	when	using	name-based	item	selection,	the	Item	method	allows
qualification	by	owner	name	of	the	targeted	SQL	Server	user-defined	function,
as	shown	earlier.	When	using	the	Remove	method,	the	UserDefinedFunctions
collection	supports	qualification	of	the	targeted	object	by	owner	name	if	the
Remove	method	contains	a	string	with	a	valid	owner	name	as	a	parameter.	If	the
Remove	method	contains	an	integer	as	a	parameter,	no	owner	name	can	be
specified.	In	this	case,	it	is	suggested	that	you	use	the	Item	method	to	extract	the
target,	and	then	use	the	Remove	method	of	the	UserDefinedFunction	object	to
drop	a	user-defined	function.

Note		Creating	or	removing	SQL	Server	user-defined	functions	by	using	the
UserDefinedFunctions	collection	requires	appropriate	permissions.

The	UserDefinedFunctions	collection	is	not	compatible	with	SQL	Server
version	7.0	or	earlier.

See	Also

Managing	Security

JavaScript:hhobj_1.Click()

SQL-DMO

Users	Collection
The	Users	collection	contains	User	objects	that	reference	Microsoft®	SQL
Server™	database	user	definitions.

Properties

Count	Property

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)
ItemByID	Method 	

Remarks
A	SQL	Server	user	forms	one	part	of	SQL	Server	security	implementation.	A
user	represents	either	a	SQL	Server	login	or	Microsoft	Windows	NT®	security
account	with	data	access	privilege	within	a	SQL	Server	database.

With	the	Users	collection,	you	can:

Create	a	SQL	Server	database	user.

Remove	a	SQL	Server	database	user.

For	more	information	about	creating	and	removing	SQL	Server	database	users
by	using	the	User	object	and	Users	collection,	see	User	Object.

When	using	the	Item	or	Remove	method,	the	Users	collection	supports	member
identification	using	either	name	or	ordinal	reference	syntax.	For	example:

Set	oUser	=	oDatabase.Users("anned")

Or:

Set	oUser	=	oDatabase.Users(2)

Note		Creating	or	removing	SQL	Server	database	users	by	using	the	Users
collection	requires	appropriate	privilege.	The	SQL	Server	login	used	for
SQLServer	object	connection	must	be	a	member	of	the	fixed	role
db_accessadmin	or	a	role	with	greater	privilege.

SQL-DMO

V

SQL-DMO

Views	Collection
The	Views	collection	contains	View	objects	that	reference	the	view	tables
defined	in	a	Microsoft®	SQL	Server™	database.

Properties

Count	Property 	

Methods

Add	Method Refresh	Method
Item	Method Remove	Method	(Collections)
ItemByID	Method 	

Remarks
With	the	Views	collection,	you	can:

Create	a	view	table.

Remove	a	view	table.

For	more	information	about	creating	a	view	table	by	using	the	View	object	and
Views	collection,	see	View	Object.

To	remove	a	SQL	Server	view	table

1.	 Get	the	View	object	that	references	the	targeted	view	table	from	the
Views	collection	by	using	the	Item	or	ItemByID	method.	When

extracting	a	View	object	using	the	name	of	the	referenced	view	table,
use	the	view	owner	name	to	qualify,	as	in:
Set	oView	=	oDatabase.Views("Invoices",	"dbo")

2.	 Use	the	Remove	method	of	the	View	object	to	remove	the	targeted
view	table.

The	Item	method	of	the	Views	collection	supports	member	selection	using	view
name	or	the	ordinal	position	of	the	object	in	the	collection.	Additionally,	when
using	the	name	to	select	an	object	from	the	collection,	the	Item	method	allows
owner	name	qualification	of	the	targeted	SQL	Server	view.	For	example:

Set	oView	=	oDatabase.Views("[Current	Product	List]",	"dbo")

The	Remove	method	of	the	Views	collection	supports	member	targeting	using
either	view	name	or	the	ordinal	position	of	the	object	in	the	collection.	The
Remove	method	does	not	support	view	owner	name	qualification	when	using
the	method	to	drop	a	view.	When	using	the	Views	collection	to	remove	a	SQL
Server	view	table,	it	is	suggested	that	you	use	either	the	Item	or	ItemByID
method	of	the	collection	to	extract	the	object	referencing	the	correct	view	as
illustrated	earlier.

Note		Creating	or	removing	view	tables	by	using	the	Views	collection	requires
appropriate	privilege.	The	SQL	Server	login	used	for	SQLServer	object
connection	must	be	a	member	of	the	fixed	role	db_ddladmin	or	a	role	with
greater	privilege.

SQL-DMO

Properties
The	values	of	SQL-DMO	properties	identify	a	specific	Microsoft®	SQL
Server™	component.	Some	properties	can	be	set,	allowing	configuration	of	a
SQL	Server	component.	Others	are	read-only,	providing	information	about	a
specific	component.

All	SQL-DMO	objects	expose	the	Parent,	TypeOf,	and	UserData	properties.
Other	properties	may	be	shared	by	objects,	but	many	properties	are	specific	to	a
component,	clearly	associating	the	property	with	a	specific	task	or	configured
value	of	the	component.

See	Also

Parent	Property

UserData	Property

TypeOf	Property

SQL-DMO

A

SQL-DMO

Action	Property	(Backup)
The	Action	property	controls	the	type	of	backup	performed	against	a
Microsoft®	SQL	Server™	database.

Applies	To

Backup	Object

Syntax
object.Action	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	specifying	the	backup	as	described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAction(SQLDMO_BACKUP_TYPE*	pRetVal);

HRESULT	SetAction(SQLDMO_BACKUP_TYPE	NewValue);

Settings

Constant Value Description
SQLDMOBackup_Database 0 Back	up	the	database
SQLDMOBackup_Files 2 Back	up	only	specified	files
SQLDMOBackup_Incremental 1 Back	up	rows	changed	after	the

most	recent	full	database	or
differential	backup

SQLDMOBackup_Log 3 Back	up	only	the	database
transaction	log

Remarks
SQL	Server	can	back	up	an	entire	database,	that	portion	of	a	database	changed
after	the	last	backup,	one	or	more	operating	system	files	containing	table	or
index	data,	or	the	transaction	log	of	a	database.

The	value	of	the	Action	property	determines	applicability	and	interpretation	of
related	Backup	object	properties.	For	example,	when	Action	is
SQLDMOBackup_Files,	either	the	DatabaseFileGroups	or	DatabaseFiles
property	must	specify	filegroups	or	files	backed	up.

SQL-DMO

Action	Property	(Restore)
The	Action	property	specifies	a	restore	operation	target	or	type.

Applies	To

Restore	Object

Syntax
object.Action	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	specifying	a	restore	operation	as	described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAction(SQLDMO_RESTORE_TYPE*	pRetVal);

HRESULT	SetAction(SQLDMO_RESTORE_TYPE	NewValue);

Settings

Constant Value Description
SQLDMORestore_Database 0 Restore	the	database
SQLDMORestore_Files 1 Restore	only	files	indicated
SQLDMORestore_Log 2 Restore	records	to	the	database

transaction	log

Remarks
Microsoft®	SQL	Server™	can	restore	a	database,	one	or	more	operating	system
files	containing	table	or	index	data,	or	part	or	all	of	the	transaction	log	of	a
database.

SQL-DMO

ActiveEndDate	Property
The	ActiveEndDate	property	indicates	the	last	effective	date	for	a	schedule.

Applies	To

Schedule	Object

Syntax
object.ActiveEndDate	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	representing	a	date

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetActiveEndDate(LPLONG	pRetVal);

HRESULT	SetActiveEndDate(LONG	NewValue);

Remarks

Scheduled	SQL	Server	Agent	activities,	such	as	jobs,	can	have	start	and	end
dates.	A	job	is	run	at	the	points	indicated	in	a	schedule	only	between	the	start
date	and	time	and	the	end	date	and	time.	Alter	the	ActiveEndDate	property	to
set	the	date	at	which	the	schedule	is	no	longer	in	effect.

Note		When	SQL-DMO	uses	a	scaled	long	integer	to	represent	a	date,	the	integer
is	built	as	a	sum	of	the	year	scaled	by	10000,	the	month	scaled	by	100,	and	the
day.	For	example,	the	date	April	19,	1998	is	represented	by	the	long	integer
value	19980419.

SQL-DMO

ActiveEndTimeOfDay	Property
The	ActiveEndTimeOfDay	property	indicates	the	last	effective	time	for	a
schedule.

Applies	To

Schedule	Object

Syntax
object.ActiveEndTimeOfDay	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	representing	a	time

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetActiveEndTimeOfDay(LPLONG	pRetVal);

HRESULT	SetActiveEndTimeOfDay(LONG	NewValue);

Remarks
Scheduled	SQL	Server	Agent	activities,	such	as	jobs,	can	have	begin	and	end
times.	A	job	is	run	at	the	points	indicated	in	a	schedule	only	between	the	begin
time	and	the	end	time.	Alter	the	ActiveEndTimeOfDay	property	to	set	the	time
at	which	the	schedule	is	no	longer	in	effect.

A	schedule	can	have	an	ending	time	of	day	and	yet	not	have	an	ending	date.
Schedules	with	an	ending	time,	but	no	ending	date	are	effective	for	every
scheduled	occurrence	between	the	begin	and	end	time.	For	example,	a	schedule
may	specify	job	execution	every	hour,	beginning	at	12	A.M.	and	ending	at	6
A.M.

Note		When	SQL-DMO	uses	a	scaled	long	integer	to	represent	a	time,	the
integer	is	built	as	a	sum	of	the	hour	scaled	by	10000,	the	minute	scaled	by	100,
and	the	seconds.	The	time	value	uses	a	24-hour	clock.	For	example,	the	time
1:03:09	P.M.	is	represented	by	the	long	integer	value	130309.

SQL-DMO

ActiveStartDate	Property
The	ActiveStartDate	property	indicates	the	first	effective	date	for	a	schedule.

Applies	To

Schedule	Object

Syntax
object.ActiveStartDate	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	representing	a	date

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetActiveStartDate(LPLONG	pRetVal);

HRESULT	SetActiveStartDate(LONG	NewValue);

Remarks

Scheduled	SQL	Server	Agent	activities,	such	as	jobs,	can	have	start	and	end
dates.	A	job	is	run	at	the	points	indicated	in	a	schedule	only	between	the	start
date	and	time	and	the	end	date	and	time.	Alter	the	ActiveStartDate	property	to
set	the	date	at	which	the	schedule	becomes	effective.

Note		When	SQL-DMO	uses	a	scaled	long	integer	to	represent	a	date,	the	integer
is	built	as	a	sum	of	the	year	scaled	by	10000,	the	month	scaled	by	100,	and	the
day.	For	example,	the	date	April	19,	1998	is	represented	by	the	long	integer
value	19980419.

SQL-DMO

ActiveStartTimeOfDay	Property
The	ActiveStartTimeOfDay	property	indicates	the	first	effective	time	for	a
schedule.

Applies	To

Schedule	Object

Syntax
object.ActiveStartTimeOfDay	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	representing	a	time

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetActiveStartTimeOfDay(LPLONG	pRetVal);

HRESULT	SetActiveStartTimeOfDay(LONG	NewValue);

Remarks
Scheduled	SQL	Server	Agent	activities,	such	as	jobs,	can	have	begin	and	end
times.	A	job	is	run	at	the	points	indicated	in	a	schedule	only	between	the	begin
time	and	the	end	time.	Alter	the	ActiveStartTimeOfDay	property	to	set	the	time
at	which	the	schedule	becomes	effective.

Note		When	SQL-DMO	uses	a	scaled	long	integer	to	represent	a	time,	the
integer	is	built	as	a	sum	of	the	hour	scaled	by	10000,	the	minute	scaled	by	100,
and	the	seconds.	The	time	value	uses	a	24-hour	clock.	For	example,	the	time
1:03:09	P.M.	is	represented	by	the	long	integer	value	130309.

SQL-DMO

AdditionalParameters	Property
The	AdditionalParameters	property	is	reserved	for	future	use.

Applies	To

JobStep	Object

Syntax
object.AdditionalParameters	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Reserved

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAdditionalParameters(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetAdditionalParameters(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the

reference	by	using	SysFreeString.

SQL-DMO

Adsp	Property
The	Adsp	property	specifies	an	AppleTalk	(ADSP)	service	object	name	on	a
computer	running	Microsoft®	SQL	Server™.

Applies	To

Registry2	Object

Syntax
object.Adsp	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	the	ADSP	service	object	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAdsp(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetAdsp(SQLDMO_LPCSTR	NewValue);

Remarks
To	set	the	Adsp	property,	you	must	be	a	member	of	the	sysadmin	fixed	server
role.	Typically,	the	computer	name	of	the	server	(for	example,	ACCOUNTING1)
is	used	for	consistency.

IMPORTANT		Setting	the	Adsp	property	changes	registry	settings,	and	should	be
used	with	caution.

Note		The	AppleTalk	Net-Library	is	not	supported	on	Microsoft	Windows®
95/Windows	98,	and	does	not	support	server	enumeration.

Note		If	an	application	calls	Adsp	on	an	instance	of	SQL	Server	version	7.0,	the
constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This	property	or
method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

AfterTrigger	Property
The	AfterTrigger	property	indicates	whether	a	trigger	is	an	AFTER	trigger.

Applies	To

Trigger2	Object

Syntax
object.AfterTrigger

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetAfterTrigger(LPBOOL	pRetVal);

Remarks
AFTER	triggers	fire	after	the	triggering	action	(INSERT,	UPDATE,	or
DELETE)	and	after	any	constraints	have	been	processed.	AFTER	triggers	can
only	be	created	on	tables.

All	triggers	created	using	Microsoft®	SQL	Server™	version	7.0	or	earlier	are

AFTER	triggers.

Note		If	an	application	calls	AfterTrigger	on	an	instance	of	SQL	Server7.0,	the
constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This	property	or
method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

InsteadOfTrigger	Property

SQL-DMO

AgentCheckupInterval	Property
The	AgentCheckupInterval	property	specifies	the	default	time	slice	for
scheduled	replication	agent	activities.

Applies	To

Distributor	Object

Syntax
object.AgentCheckupInterval	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Long	integer	specifying	the	number	of	minutes.	The	default	is	10.

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAgentCheckupInterval(LPLONG	pRetVal);

HRESULT	SetAgentCheckupInterval(long	lVal);

Remarks
When	configuring	replication,	jobs	are	created	that	test	and	clean	supporting
databases	and	tables.	By	default,	these	replication	"check-up"	jobs	are	scheduled
to	occur	every	ten	minutes.

To	alter	the	default,	set	the	AgentCheckupInterval	property	after	installing	the
replication	Distributor.

SQL-DMO

AgentLogFile	Property
The	AgentLogFile	property	specifies	the	SQL	Server	Agent	log	path	and	file
name.

Applies	To

Registry2	Object

Syntax
object.AgentLogFile	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	the	path	and	file	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAgentLogFile(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetAgentLogFile(SQLDMO_LPCSTR	NewValue);

Remarks
By	default,	the	SQL	Server	Agent	log	is	stored	as	x:\Mssql75\Log\Sqlagent.out.
Use	the	AgentLogFile	property	to	specify	a	location	other	than	the	default	when
running	multiple	instances	of	SQL	Server	Agent.

Note		AgentLogFile	can	be	used	with	Microsoft®	SQL	Server™	2000	and	SQL
Server	version	7.0.

SQL-DMO

AgentOffload	Property
The	AgentOffload	property	specifies	whether	the	Merge	or	Distribution	Agent
runs	on	a	computer	other	than	the	computer	on	which	the	agent	is	created.

Applies	To

MergePullSubscription2	Object TransPullSubscription2	Object
MergeSubscription2	Object TransSubscription2	Object

Syntax
object.AgentOffload	[=value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAgentOffload(LPBOOL	pRetVal);

HRESULT	SetAgentOffload(BOOL	NewValue);

Remarks
Set	the	AgentOffload	property	to	TRUE	to	run	the	Merge	or	Distribution	Agent
on	a	remote	computer	that	is	not	the	computer	on	which	the	agent	is	created.
Specify	the	remote	computer	name	by	setting	the	AgentOffloadServer	property
after	setting	AgentOffload	to	TRUE.	Specifying	a	remote	computer	to	run	a
Merge	or	Distribution	Agent	can	enhance	performance	if	the	default	computer
must	handle	many	agent	processes.

If	AgentOffload	is	not	set	or	is	set	to	FALSE,	the	Merge	or	Distribution	Agent
runs	on	the	default	computer	on	which	the	agent	is	created.	By	default,	Merge	or
Distribution	Agents	run	at	the	Distributor	for	push	subscriptions,	and	run	at	the
Subscriber	for	pull	subscriptions.

Note		If	an	application	calls	AgentOffload	on	an	instance	of	Microsoft®	SQL
Server™	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

AgentOffloadServer	Property

SQL-DMO

AgentOffloadServer	Property
The	AgentOffloadServer	property	specifies	the	network	name	of	a	computer
that	runs	a	Merge	or	Distribution	Agent.

Applies	To

MergePullSubscription2	Object TransPullSubscription2	Object
MergeSubscription2	Object TransSubscription2	Object

Syntax
object.AgentOffloadServer	[=value]

Parts
Object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	the	network	name	of	a	computer	that	runs	a	Merge	or
Distribution	Agent

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAgentOffloadServer(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetAgentOffloadServer(SQLDMO_LPCSTR	NewValue);

Remarks
Use	the	AgentOffloadServer	property	to	specify	a	computer	other	than	the
default	computer	to	run	a	Merge	or	Distribution	Agent	process.	For	push
subscriptions,	the	Merge	or	Distribution	Agent	runs	at	the	Distributor	by	default.
For	pull	subscriptions,	the	Merge	or	Distribution	Agent	runs	at	the	Subscriber	by
default.

Prior	to	setting	AgentOffloadServer,	set	the	AgentOffload	property	to	TRUE
to	override	the	default	setting.

Note		If	an	application	calls	AgentOffloadServer	on	an	instance	of	Microsoft®
SQL	Server™	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the
message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

See	Also

AgentOffload	Property

SQL-DMO

AgentsStatus	Property
The	AgentsStatus	property	returns	a	value	representing,	roughly,	the	current
state	of	replication	jobs	affecting	a	distribution	database	or	providing	services	for
a	distribution	Publisher.

Applies	To

DistributionDatabase	Object

Syntax
object.AgentsStatus

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetAgentsStatus(SQLDMO_TASKSTATUS_TYPE*	pRetVal);

Returns

Constant Value Description
SQLDMOTask_Failed 6 At	least	one	job	has	failed	to

execute	successfully
SQLDMOTask_Idle 4 All	jobs	are	scheduled	and	idle
SQLDMOTask_Pending 0 All	jobs	are	waiting	to	start
SQLDMOTask_Retry 5 At	least	one	job	is	attempting	to

execute	after	a	previous	failure
SQLDMOTask_Running 3 At	least	one	job	is	executing
SQLDMOTask_Starting 1 One	or	more	jobs	are	starting
SQLDMOTask_Succeeded 2 All	jobs	have	successfully	executed

SQL-DMO

Alias	Property
The	Alias	property	identifies	an	alternate	name	for	a	Microsoft®	SQL	Server™
language.

Applies	To

Language	Object

Syntax
object.Alias

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetAlias(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	by	using	SysFreeString.

Remarks

For	localized	versions	of	SQL	Server,	the	Alias	property	is	an	English	name	for
the	language	record.	For	all	other	versions,	Alias	is	the	localized	language	name.

SQL-DMO

AllowDTS	Property
The	AllowDTS	property	specifies	whether	a	publication	enables	the	Distribution
Agent	to	use	a	Data	Transformation	Services	(DTS)	package	to	transform	data
before	changes	are	applied	to	a	Subscriber.

Applies	To

TransPublication2	Object

Syntax
object.AllowDTS	[=value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAllowDTS(LPBOOL	pRetVal);

HRESULT	SetAllowDTS(BOOL	NewValue);

Remarks
Set	the	AllowDTS	property	to	TRUE	to	specify	that	the	Distribution	Agent
executes	the	tasks	in	a	DTS	package	before	data	changes	are	applied	to	a
Subscriber.

You	must	create	the	DTS	package	before	you	create	the	subscription.

Note		If	an	application	calls	AllowDTS	on	an	instance	of	Microsoft®	SQL
Server™	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

DTSPackageLocation	Property

DTSPackageName	Property

DTSPackagePassword	Property

SQL-DMO

AllowIdentity	Property
The	AllowIdentity	property	exposes	the	ability	of	a	data	type	to	participate	in	a
Microsoft®	SQL	Server™	column	defined	with	the	identity	property.

Applies	To

SystemDatatype	Object UserDefinedDatatype	Object

Syntax
object.AllowIdentity

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetAllowIndentity(LPBOOL	pRetVal);

Remarks
The	SQL	Server	identity	property	is	defined	for	data	types	that	can	accept
numeric	values.	A	column	defined	with	the	identity	property	is	defined	with	a
starting	value	and	a	step	value.	SQL	Server	generates	values	for	the	column	by

querying	the	last	applicable	value	and	adding	the	step	value.

SQL-DMO

AllowInteractiveResolver	Property
The	AllowInteractiveResolver	property	specifies	whether	to	allow
subscriptions	to	invoke	an	interactive	resolver	when	conflicts	occur	while
synchronizing	data	with	an	article.

Applies	To

MergeArticle2	Object

Syntax
object.AllowInteractiveResolver	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Boolean	that	specifies	whether	to	allow	subscriptions	to	use	an	interactive
resolver

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAllowInteractiveResolver(LPBOOL	pRetVal);

HRESULT	SetAllowInteractiveResolver(BOOL	NewValue);

Remarks
Set	the	AllowInteractiveResolver	property	to	TRUE	to	enable	a	subscription	to
use	an	interactive	resolver	to	resolve	conflicts	while	synchronizing	with	a	merge
article.	If	a	custom	resolver	is	specified	using	the	ArticleResolver	property,	that
custom	resolver	is	invoked	by	the	Microsoft®	Interactive	Conflict	Resolver.	If
ArticleResolver	is	not	set,	the	default	Microsoft	SQL	Server™	conflict	resolver
is	used.

MergePullSubscription2	or	MergeSubscription2	objects	must	also	have	the
UseInteractiveResolver	property	set	to	TRUE.

Note		If	an	application	calls	AllowInteractiveResolver	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

UseInteractiveResolver	Property

Interactive	Resolver

JavaScript:hhobj_1.Click()

SQL-DMO

AllowLength	Property
The	AllowLength	property	exposes	the	ability	to	qualify	a	data	type	using	a
length	parameter.

Applies	To

SystemDatatype	Object

Syntax
object.AllowLength

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetAllowLength(LPBOOL	pRetVal);

Remarks
AllowLength	is	TRUE	for	data	types	that	accept	a	length	qualification.	For
example,	the	property	is	TRUE	for	the	SystemDatatype	object	referencing	the
varchar	data	type.

SQL-DMO

AllowMergePublication	Property
The	AllowMergePublication	property	returns	TRUE	when	the	referenced
Microsoft®	SQL	Server™	database	can	be	published	in	merge	replication.

Applies	To

ReplicationDatabase	Object

Syntax
object.AllowMergePublication

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetAllowMergePublication(LPBOOL	pRetVal);

Remarks
SQL	Server	merge	publications	cannot	be	created	in	a	database	currently
configured	as	a	target	for	a	local	or	anonymous	merge	Subscriber-originated
(pull)	subscription.	The	AllowMergePublication	property	returns	FALSE	when

local	or	anonymous	merge	pull	subscriptions	target	the	referenced	database.

When	using	SQL-DMO	to	create	merge	publications,	remove	all	local	or
anonymous	pull	subscriptions	targeting	the	database	by	using	the	Remove
method	of	the	MergePullSubscription	object,	then	create	the	publication.	Re-
establish	local	or	anonymous	pull	subscriptions	after	successful	creation	of	the
publication.

SQL-DMO

AllowNulls	Property
The	AllowNulls	property	exposes	the	ability	of	a	data	type	to	accept	NULL	as	a
value.

Applies	To

Column	Object UserDefinedDatatype	Object
SystemDatatype	Object 	

Syntax
object.AllowNulls	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read-only	for	SystemDatatype	objects.	Read/write	for	Column	and
UserDefinedDatatype	objects.

Prototype	(C/C++)
HRESULT	GetAllowNulls(LPBOOL	pRetVal);

HRESULT	SetAllowNulls(BOOL	NewValue);

Remarks
If	TRUE,	the	Microsoft®	SQL	Server™	data	type	or	column	referenced	can
accept	NULL	as	a	value.

If	FALSE,	NULL	is	not	allowed.

Set	the	AllowNulls	property	to	set	NULL	as	an	accepted	value	for	columns	and
user-defined	data	types.

SQL-DMO

AllowQueuedTransactions	Property
The	AllowQueuedTransactions	property	specifies	whether	a	publication	allows
queued-transaction	updates	to	be	performed	at	the	Subscriber.

Applies	To

TransPublication2	Object

Syntax
object.AllowQueuedTransactions	[=value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write	when	using	a	SQL-DMO	object	to	create	a	replication	component.
Read-only	when	the	object	references	an	existing	component.

Prototype	(C/C++)
HRESULT	GetAllowQueuedTransactions(LPBOOL	pRetVal);

HRESULT	SetAllowQueuedTransactions(BOOL	NewValue);

Remarks
If	the	AllowQueuedTransactions	property	is	set	to	TRUE,	the	publication
allows	its	subscriptions	to	perform	queued-transaction	updates	at	the	Subscriber.
If	AllowQueuedTransactions	is	set	to	FALSE,	the	publication	does	not	allow	its
subscriptions	to	perform	queued-transaction	updates	at	the	Subscriber.

If	AllowQueuedTransactions	is	set	to	TRUE,	you	can	use	the	QueueType
property	to	specify	the	type	of	queuing	to	use.

Note		If	an	application	calls	AllowQueuedTransactions	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

QueueType	Property

SQL-DMO

AllowSynchronousTransactions	Property
The	AllowSynchronousTransactions	property	configures	a	snapshot	or
transactional	replication	publication.

Applies	To

TransPublication	Object

Syntax
object.AllowSynchronousTransactions	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write	when	using	the	SQL-DMO	object	to	create	a	publication.	Read-only
when	the	object	references	an	existing	publication.

Prototype	(C/C++)
HRESULT	GetAllowSynchronousTransactions(LPBOOL	pRetVal);

HRESULT	SetAllowSynchronousTransactions(BOOL	NewValue);

Remarks
When	TRUE,	the	publication	allows	synchronous	update	by	a	Subscriber.

When	FALSE,	synchronous	update	by	a	Subscriber	is	not	allowed.

SQL-DMO

AllowSyncToAlternate	Property
The	AllowSyncToAlternate	property	specifies	whether	to	allow	Subscribers	to
synchronize	with	an	alternate	Publisher.	This	is	especially	useful	for	pull
subscriptions.

Applies	To

MergePublication2	Object

Syntax
object.AllowSyncToAlternate	[=value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAllowSyncToAlternate(LPBOOL	pRetVal);

HRESULT	SetAllowSyncToAlternate(BOOL	NewValue);

Remarks
Using	alternate	Publishers	provides	an	efficient	mechanism	for	synchronizing	a
mobile	Subscriber	that	is	not	connected	to	the	Publisher	with	which	it	ordinarily
synchronizes	data	changes.	Subscribers	can	synchronize	with	any	listed	alternate
Publisher	as	long	as	it	publishes	the	exact	data	and	schema	required	by	the
subscription.

Set	the	AllowSyncToAlternate	property	to	TRUE	to	allow	Subscribers	to
synchronize	with	an	alternate	Publisher.	A	Publisher	can	run	the
EnumAlternatePublishers	method	of	a	MergePublication2	object	to	obtain	a
list	of	enabled	alternate	Publishers	and	potential	alternate	Publishers.	Subscribers
can	run	the	EnumAlternatePublishers	method	of	a	MergePullSubscription2
object	to	obtain	a	list	of	enabled	alternate	Publishers.

Use	the	AddAlternatePublisher	method	to	add	a	server	to	a	list	of	enabled
alternate	Publishers.

Note		If	an	application	calls	AllowSyncToAlternate	on	an	instance	of
Microsoft®	SQL	Server™	version	7.0,	the	constant,
SQLDMO_E_SQL80ONLY,	and	the	message	"This	property	or	method	requires
Microsoft	SQL	Server	2000"	are	returned.

See	Also

AddAlternatePublisher	Method

EnumAlternatePublishers	Method

RemoveAlternatePublisher	Method

SQL-DMO

AltSnapshotFolder	Property
The	AltSnapshotFolder	property	specifies	an	alternate	path	to	use	for	snapshot
file	creation	or	application.

Applies	To

MergePublication2	Object TransPublication2	Object
MergePullSubscription2	Object TransPullSubscription2	Object

Syntax
object.AltSnapshotFolder	[=value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	an	alternate	path	for	snapshot	files

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAltSnapshotFolder(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetAltSnapshotFolder(SQLDMO_LPCSTR	NewValue);

Remarks
When	used	with	the	MergePublication2	or	TransPublication2	objects,	the
AltSnapshotFolder	property	specifies	an	alternate	location	to	use	for	snapshot
file	creation	when	a	snapshot	must	be	transported	to	a	Subscriber.	When	used
with	the	MergePullSubscription2	or	TransPullSubscription2	objects,
AltSnapshotFolder	specifies	an	alternate	location	to	use	for	snapshot	file
application.

Transporting	a	snapshot	file	using	portable	media,	such	a	removable	hard	drive,
can	be	useful	in	situations	where	a	Subscriber	is	not	continuously	connected.
Transporting	a	snapshot	file	may	also	be	desirable	in	a	situation	where	a	large
amount	of	data	might	otherwise	have	to	be	applied	using	an	expensive
connection.

AltSnapshotFolder	is	required	if	the	publication	attribute
SQLDMOPubAttrib_InternetEnabled	is	set.

Note		If	an	application	sets	AltSnapshotFolder	with	the	MergePublication2	or
TransPublication2	object	after	the	initial	snapshot	has	been	created,	a	new
snapshot	must	be	generated.	Snapshots	are	applied	when	the	next	scheduled
snapshot	agent	runs.

Note		If	an	application	calls	AltSnapshotFolder	on	an	instance	of	Microsoft®
SQL	Server™	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the
message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

SQL-DMO

AnsiNulls	Property
The	AnsiNulls	property	reports	the	NULL	acceptance	behavior	for	new
columns.

Applies	To

SQLServer	Object

Syntax
object.AnsiNulls	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAnsiNulls(LPBOOL	pRetVal);

HRESULT	SetAnsiNulls(BOOL	NewValue);

Remarks
By	default,	Microsoft®	SQL	Server™	creates	columns	that	do	not	accept	NULL
when	the	user	does	not	explicitly	declare	the	ability	to	accept	NULL.	Further,
SQL	Server	returns	TRUE	when	evaluating	the	expression	NULL	=	NULL.
These	default	behaviors	are	nonstandard.

When	AnsiNulls	is	TRUE,	new	columns	accept	NULL	by	default	and	any
comparison	of	NULL	to	any	other	value,	including	NULL,	returns	NULL.

The	AnsiNulls	property	affects	NULL	handling	behaviors	for	the	user's
connection	only	and	overrides	any	database	specific	settings	for	column	creation
and	NULL	comparison.

SQL-DMO

AnsiNullsStatus	Property
The	AnsiNullsStatus	property	returns	TRUE	when	the	database	object
referenced	depends	on	a	table	exhibiting	SQL-92	NULL	handling	behavior.

Applies	To

StoredProcedure	Object Trigger2	Object
StoredProcedure2	Object UserDefinedFunction	Object
Table2	Object View	Object
Trigger	Object View2	Object

Syntax
object.AnsiNullsStatus

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read/write	when	creating	a	StoredProcedure2,	Trigger2,
UserDefinedFunction,	or	View2	object.	Read-only	when	using	a
StoredProcedure,	Trigger,	or	View	object,	or	after	a	StoredProcedure2,
Trigger2,	UserDefinedFunction,	or	View2	object	is	created.

Prototype	(C/C++)
HRESULT	GetAnsiNullsStatus(LPBOOL	pRetVal);

Remarks
By	default,	Microsoft®	SQL	Server™	creates	columns	that	do	not	accept	NULL
when	the	user	does	not	explicitly	declare	the	ability	to	accept	NULL.	Further,
SQL	Server	returns	TRUE	when	evaluating	the	expression	NULL	=	NULL.
These	default	behaviors	are	nonstandard.

Database	and	client	connection	options	override	default	SQL	Server	behavior.
When	the	default	is	overridden,	tables	created	exhibit	SQL-92	standard	NULL
handling	and	objects	that	depend	upon	those	tables	function	as	specified	by
SQL-92.

Note		If	an	application	calls	AnsiNullsStatuson	an	instance	of	SQL	Server
version	7.0	with	the	Table2	object,	the	constant,	SQLDMO_E_SQL80ONLY,
and	the	message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"
are	returned.

SQL-DMO

AnsiPaddingStatus	Property
The	AnsiPaddingStatus	property	returns	TRUE	if	the	referenced	column	is
defined	to	exhibit	SQL-92	character	padding	behavior.

Applies	To

Column	Object

Syntax
object.AnsiPaddingStatus

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetAnsiPaddingStatus(LPBOOL	pRetVal);

Remarks
By	default,	Microsoft®	SQL	Server™	trims	trailing	blanks,	or	null	bytes,	from
variable	length	character	or	binary	column	data	when	values	are	inserted.	The
SQL-92	standard	requires	that	trailing	blanks	and	null	bytes	are	not	trimmed	as

data	is	inserted.

See	Also

SET	ANSI_PADDING

JavaScript:hhobj_1.Click()

SQL-DMO

ApplicationName	Property
The	ApplicationName	property	identifies	the	client	application	to	Microsoft®
SQL	Server™.

Applies	To

SQLServer	Object

Syntax
object.ApplicationName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String

Data	Type
String

Modifiable
Read/write	when	the	SQLServer	object	is	not	connected	to	a	SQL	Server
installation.	Read-only	when	the	SQLServer	object	is	connected.

Prototype	(C/C++)
HRESULT	GetApplicationName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetApplicationName(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	by	using	SysFreeString.

Remarks
The	ApplicationName	property	is	visible	on	the	SQL	Server	installation	when
tools	such	as	SQL	Server	Profiler	are	used	to	investigate	server	activity.	If	the
client	does	not	set	the	property,	a	default	is	provided	by	SQL-DMO.

SQL-DMO

AppRole	Property
The	AppRole	property	exposes	the	security	context	for	a	database	role.

Applies	To

DatabaseRole	Object

Syntax
object.AppRole	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAppRole(LPBOOL	pRetVal);

HRESULT	SetAppRole(BOOL	NewValue);

Remarks

Microsoft®	SQL	Server™	supports	database	roles	defined	specifically	for	use
by	client	applications.	For	more	information	about	database	roles	used	by	client
applications,	see	Establishing	Application	Security	and	Application	Roles.

A	password	is	required	for	any	application	role.	When	AppRole	is	TRUE,	a
value	must	be	supplied	for	the	DatabaseRole	object	Password	property.

JavaScript:hhobj_1.Click()

SQL-DMO

ArticleResolver	Property
The	ArticleResolver	property	identifies	the	COM	module	responsible	for
resolving	conflicts.

Applies	To

MergeArticle	Object

Syntax
object.ArticleResolver	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Identifies	a	merge	replication	conflict	resolving	module	by	its	registered
name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetArticleResolver(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetArticleResolver(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	by	using	SysFreeString.

Remarks
Use	an	empty	string	to	specify	the	default	resolving	agent.

SQL-DMO

ArticleType	Property
The	ArticleType	property	indicates	the	method	used	to	determine	source	data
for	replication	and	user-overrides	of	default	replication	behaviors.

Applies	To

MergeArticle	Object TransArticle	Object

Syntax
object.ArticleType	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	specifying	replication	article	data	source	as	described	in
Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetArticleType(SQLDMO_ARTICLE_TYPE*	pRetVal);

HRESULT	SetArticleType(SQLDMO_ARTICLE_TYPE	NewValue);

Settings

Constant Value Description
SQLDMORep_FuncSchemaOnly 128 Article	uses	user-defined	function

execution	and	schema	to	determine	source
data.

SQLDMORep_IndexedView 256 Underlying	object	of	the	article	is	an
indexed	view.

SQLDMORepIndexedViewLogBased 257 Article	monitors	an	indexed	view	and	the
transaction	log	to	determine	source	data.
TransArticle	object	only.

SQLDMORepIndexedViewLogBasedManualBoth 263 Article	monitors	an	indexed	view	and	the
transaction	log	to	determine	source	data.
The	default	filter	procedure	has	been
overridden.	TransArticle	object	only.

SQLDMORepIndexedViewLogBasedManualFilterProc 259 Article	monitors	an	indexed	view	and	the
transaction	log	to	determine	source	data.
The	default	filter	procedure	has	been
overridden.	TransArticle	object	only.

SQLDMORepIndexedViewLogBasedManualSyncView 261 Article	monitors	an	indexed	view	and	the
transaction	log	to	determine	source	data.
The	default	view	has	been	overridden.
TransArticle	object	only.

SQLDMORepIndexedViewSchemaOnly 320 Article	monitors	an	indexed	view	and
schema	to	determine	source	data.

SQLDMORep_LogBased 1 Article	monitors	the	transaction	log	to
determine	source	data.

SQLDMORepLogBasedManualBoth 7 Article	monitors	the	transaction	log	to
determine	source	data.	The	default	view
and	filter	procedure	have	been	overridden.

SQLDMORepLogBasedManualFilterProc 3 Article	monitors	the	transaction	log	to
determine	source	data.	The	default	filter
procedure	has	been	overridden.

SQLDMORepLogBasedManualSyncView 5 Article	monitors	the	transaction	log	to
determine	source	data.	The	default	view
has	been	overridden.

SQLDMORepLogBasedVerticalPartition 6 Article	monitors	the	transaction	log	to
determine	source	data.	The	source	data	has
been	partitioned	by	column.

SQLDMORepManualFilterProc 2 Default	filter	procedure	has	been
overridden.

SQLDMORepManualSyncView 4 Default	view	has	been	overridden.
SQLDMORep_Max 320 SQLDMORep_SerializableProcExecution.
SQLDMORep_Min 0 Not	set	or	an	error	condition.
SQLDMORepProcExecution 8 Article	uses	stored	procedure	execution	to

determine	source	data.
SQLDMORepProcSchemaOnly 32 Article	uses	stored	procedure	execution

and	schema	to	determine	source	data.
SQLDMORepSerializableProcExecution 24 Article	uses	stored	procedure	execution	to

determine	source	data.	The	stored
procedure	is	executed	within	a	serializable
transaction.

SQLDMORep_TableBased 10 Article	monitors	a	table	to	determine
replicated	data.

SQLDMORepViewSchemaOnly 64 Article	monitors	a	view	and	schema	to
determine	source	data.

Note		If	an	application	sets	ArticleType	with	the	TransArticle	object	after	the
initial	snapshot	has	been	created,	a	new	snapshot	must	be	generated	and
reapplied	to	each	subscription.	Snapshots	are	applied	when	the	next	scheduled
snapshot	and	distribution	agent	run.

SQL-DMO

AssignmentDiag	Property
The	AssignmentDiag	property	enables	SQL-92	standard	behavior	for	NULL	in
aggregate,	data	truncation,	divide-by-zero,	and	arithmetic	overflow	errors.

Applies	To

DBOption	Object

Syntax
object.AssignmentDiag	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAssignmentDiag(LPBOOL	pRetVal);

HRESULT	SetAssignmentDiag(BOOL	NewValue);

Remarks
When	TRUE,	SQL-92	standard	behavior	is	enabled.	If	NULL	is	involved	in	an
aggregate,	data	is	truncated	on	an	INSERT	or	UPDATE	statement	execution,	or	a
divide-by-zero	or	arithmetic	overflow	occurs,	these	events	follow:

The	statement	is	aborted.	

Any	transactions	are	rolled	back.

An	error	is	returned	to	the	client.

When	FALSE,	SQL-92	behavior	is	disabled.	If	NULL	is	returned	for	an	affected
column	or	data	is	truncated	on	an	INSERT	or	UPDATE,	these	events	follow:

Transactions	are	not	rolled	back.

The	client	receives	either	an	error,	success	with	information,	or	a
success	return	code.

See	Also

SET	ANSI_WARNINGS

JavaScript:hhobj_1.Click()

SQL-DMO

Attributes	Property
The	Attributes	property	exposes	various	properties	of	a	referenced	table.

Applies	To

Table	Object

Syntax
object.Attributes

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long,	enumerated

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetAttributes(LPLONG	pRetVal);

Returns
The	Attributes	property	returns	a	bit-packed	value	unpacked	using	these	values.

Constant Value Description
SQLDMOTabAtt_Check 128 Referenced	table	has	at	least	one

integrity	constraint.
SQLDMOTabAtt_Default 2048 Referenced	table	has	at	least	one

DRI	default	defined.
SQLDMOTabAtt_ForeignKey 4 Referenced	table	has	at	least	one

foreign	key.
SQLDMOTabAttHasConstraint 7300 Referenced	table	has	at	least	one

DRI	constraint.
SQLDMOTabAtt_Identity 1 Referenced	table	has	a	column

exposing	the	identity	property.
SQLDMOTabAtt_PrimaryKey 512 Referenced	table	has	a	primary

key.
SQLDMOTabAtt_Published 32 Referenced	table	is	published	for

replication.
SQLDMOTabAtt_Referenced 8 Referenced	table	is	referenced	by

at	least	one	other	table's	foreign
key.

SQLDMOTabAtt_ReplCheck 4096 Referenced	table	has	at	least	one
integrity	constraint	not	fired	when
replicated	data	is	inserted.

SQLDMOTabAtt_Replica 256 At	least	one	Subscriber	has
referenced	the	table's	publication.

SQLDMOTabAtt_Replicated 64 Referenced	table	is	actively
subscribed	to	a	Publisher.

SQLDMOTabAttSystemObject 2 Referenced	table	is	a	Microsoft®
SQL	Server™	system	object.

SQLDMOTabAtt_Unique 1024 Referenced	table	has	at	least	one
UNIQUE	constraint.

SQL-DMO

AuditLevel	Property
The	AuditLevel	property	exposes	SQL	Server	Authentication	logging	behavior.

Applies	To

IntegratedSecurity	Object

Syntax
object.AuditLevel	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	specifying	an	authentication	outcome	as	described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAuditType(SQLDMO_AUDIT_TYPE*	pRetVal);

HRESULT	SetAuditType(SQLDMO_AUDIT_TYPE	NewValue);

Settings

Constant Value Description
SQLDMOAudit_All 3 Log	all	authentication	attempts

regardless	of	success	or	failure
SQLDMOAudit_Failure 2 Log	failed	authentication
SQLDMOAudit_None 0 Do	not	log	authentication	attempts
SQLDMOAudit_Success 1 Log	successful	authentication

Remarks
SQL	Server	Authentication	logging	writes	log	entries	to	both	the	Microsoft®
SQL	Server™	error	log	and	the	Microsoft	Windows	NT®	4.0	application	log.

For	more	information	about	SQL	Server	security	and	access	control,	see
Managing	Security.

JavaScript:hhobj_1.Click()

SQL-DMO

AutoClose	Property
The	AutoClose	property	exposes	server	behavior	for	databases	not	accessed	by	a
user.

Applies	To

DBOption	Object

Syntax
object.AutoClose	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAutoClose(LPBOOL	pRetVal);

HRESULT	SetAutoClose(BOOL	NewValue);

Remarks
If	TRUE,	the	database	is	closed,	and	its	resources	are	freed	when	no	user
connection	accesses	the	database.

If	FALSE,	the	server	maintains	the	database	in	an	open	and	ready	state
regardless	of	user	activity.

SQL-DMO

AutoCreateStat	Property
The	AutoCreateStat	property	exposes	Microsoft®	SQL	Server™	data
distribution	statistics	creation	behavior.

Applies	To

DBOption	Object

Syntax
object.AutoCreateStat	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAutoCreateStat(LPBOOL	pRetVal);

HRESULT	SetAutoCreateStat(BOOL	NewValue);

Remarks
If	TRUE,	the	optimizer	directs	automatic	creation	of	supporting	data	distribution
statistics	as	required.

If	FALSE,	the	optimizer	does	not	direct	statistics	creation.

SQL-DMO

AutogenerateSyncProcedures	Property
The	AutogenrateSyncProcedures	property	configures	a	snapshot	or
transactional	replication	publication.

Applies	To

TransPublication	Object

Syntax
object.AutogenerateSyncProcedures	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write	when	using	the	SQL-DMO	object	to	create	a	publication.	Read-only
when	the	object	references	an	existing	publication.

Prototype	(C/C++)
HRESULT	GetAutogenerateSyncProcedures(LPBOOL	pRetVal);

HRESULT	SetAutogenerateSyncProcedures(BOOL	NewValue);

Remarks
When	TRUE,	synchronous	procedures	are	generated	automatically.

When	FALSE,	synchronous	procedures	are	not	generated	automatically.

SQL-DMO

AutoIdentityRange	Property
The	AutoIdentityRange	property	specifies	whether	to	automatically	assign	an
identity	range	to	a	table	that	has	an	identity	column	and	is	an	article	in	a
publication	that	allows	queued	updates.	The	identity	range	is	assigned	at	both	the
Publisher	and	Subscriber.

Applies	To

MergeArticle2	Object TransArticle2	Object

Syntax
object.AutoIdentityRange	[=value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write	when	creating	an	article.	Read-only	when	referencing	an	existing
article.

Prototype	(C/C++)
HRESULT	GetAutoIdentityRange(LPBOOL	pRetVal);

HRESULT	SetAutoIdentityRange(BOOL	NewValue);

Remarks
Assigning	an	automatic	identity	range	helps	avoid	conflicts	in	identity	column
values	when	data	is	inserted	at	the	Subscriber	in	merge	replication,	or	in
transactional	replication	that	allows	queued	updates.	The	identity	range	specifies
the	maximum	number	of	new	rows	that	can	be	inserted	into	an	identity	column
in	a	table	at	a	Publisher	or	Subscriber	before	a	new	identity	range	must	be
allocated.

Use	the	PublisherIdentityRangeSize	and	SubscriberIdentityRangeSize
properties	to	set	identity	range	sizes.	Use	the	IdentityRangeThreshold	property
to	control	when	a	new	identity	range	is	allocated.	When	the	number	of	new	rows
reaches	the	percentage	specified	by	IdentityRangeTreshold,	the	new	range	is
allocated.

When	the	AutoIdentityRange	property	is	set	to	TRUE,	identity	ranges	can	be
assigned	to	an	identity	column	that	contains	unique	values	within	a	table.	Unique
values	in	an	identity	column	are	assigned	automatically	when	new	rows	are
inserted	into	the	target	table	at	the	Publisher	or	Subscriber.

To	configure	the	use	of	automatic	identity	ranges

1.	 Use	the	HasIdentityColumn	property	to	determine	whether	a	table
has	an	identity	column.	If	you	are	using	AutoIdentityRange	with	a
TransArticle2	object,	use	the	AllowedQueuedTransactions	property
to	determine	whether	the	publication	allows	queued	updates.

2.	 If	HasIdentityColumn	returns	TRUE	(and	if
AllowedQueuedTransactions	returns	TRUE	for	a	transactional
publication),	set	AutoIdentityRange	to	TRUE.

3.	 Use	the	PublisherIdentityRangeSize	property	to	set	the	identity	range
size	at	the	Publisher.

4.	 Use	the	SubscriberIdentityRangeSize	property	to	set	the	identity
range	size	at	the	Subscriber.

5.	 Use	the	IdentityRangeThreshold	property	to	specify	(as	a	percentage
of	a	Publisher's	or	Subscriber's	range	size)	when	a	new	identity	range
is	allocated.

Note		If	an	application	calls	AutoIdentityRange	on	an	instance	of
Microsoft®	SQL	Server™	version	7.0,	the	constant,
SQLDMO_E_SQL80ONLY,	and	the	message	"This	property	or
method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

HasIdentityColumn	Property

IdentityRangeThreshold	Property

PublisherIdentityRangeSize	Property

SubscriberIdentityRangeSize	Property

SQL-DMO

AutoReConnect	Property
The	AutoReConnect	property	controls	SQLServer	object	behavior	when	the
client	application	loses	its	connection	to	a	Microsoft®	SQL	Server™
installation.

Applies	To

SQLServer	Object

Syntax
object.AutoReConnect	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAutoReConnect(LPBOOL	pRetVal);

HRESULT	SetAutoReConnect(BOOL	NewValue);

Remarks
If	TRUE,	the	SQLServer	object	attempts	to	reconnect	if	it	loses	its	connection
at	any	time.

If	FALSE,	the	SQLServer	object	does	not	attempt	to	reconnect	a	lost
connection.

SQL-DMO

AutoShrink	Property
The	AutoShrink	property	exposes	Microsoft®	SQL	Server™	sizing	behavior
for	operating	system	files	maintaining	table	and	index	data.

Applies	To

DBOption	Object

Syntax
object.AutoShrink	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAutoShrink(LPBOOL	pRetVal);

HRESULT	SetAutoShrink(BOOL	NewValue);

Remarks
If	TRUE,	operating	system	files	maintaining	table	and	index	data	are	evaluated
for	downward	resizing	when	the	server	periodically	checks	for	unused	space.

If	FALSE,	the	operating	system	files	storing	the	database	are	not	evaluated
during	periodic	checks	for	unused	space.

SQL-DMO

AutoStart	Property
The	AutoStart	property	exposes	default	agent	service	behavior	when	an
operating	system	start	occurs.

Applies	To

JobServer	Object SQLServer2	Object

Syntax
object.AutoStart	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAutoStart(LPBOOL	pRetVal);

HRESULT	SetAutoStart(BOOL	NewValue);

Remarks
If	TRUE,	the	agent	service	attempts	to	start	when	the	operating	system	starts.

If	FALSE,	the	agent	service	is	not	launched	as	part	of	an	operating	system	start.
The	agent	service	must	be	started	manually.

SQL-DMO

AutostartDTC	Property
The	AutostartDTC	property	controls	Microsoft®	Distributed	Transaction
Coordinator	service	(MSDTC)	behavior	on	computer	start.

Applies	To

Registry	Object

Syntax
object.AutostartDTC	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAutostartDTC(LPBOOL	pRetVal);

HRESULT	SetAutostartDTC(BOOL	NewValue);

Remarks
If	TRUE,	the	MSDTC	service	is	started	when	the	computer	starts.

If	FALSE,	the	MSDTC	service	must	be	started	manually.

SQL-DMO

AutostartLicensing	Property
The	AutostartLicensing	property	exposes	license	logging	service	behavior	for
Microsoft®	SQL	Server™.

Applies	To

Registry	Object

Syntax
object.AutostartLicensing	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAutostartLicensing(LPBOOL	pRetVal);

HRESULT	SetAutostartLicensing(BOOL	NewValue);

Remarks
If	TRUE,	the	license	logging	service	is	started	when	SQL	Server	starts.

If	FALSE,	license	logging	must	be	started	manually.

SQL-DMO

AutostartMail	Property
The	AutostartMail	property	exposes	the	Microsoft®	SQL	Server™	mail	startup
behavior.

Applies	To

Registry	Object

Syntax
object.AutostartMail	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAutostartMail(LPBOOL	pRetVal);

HRESULT	SetAutostartMail(BOOL	NewValue);

Remarks
If	TRUE,	an	attempt	to	start	the	SQL	Server	workgroup	post	office	is	made
when	SQL	Server	starts.

If	FALSE,	no	attempt	is	made	to	start	the	post	office	when	SQL	Server	starts.
SQL	Server	mail	can	be	started	manually.

SQL-DMO

AutostartServer	Property
The	AutostartServer	property	exposes	Microsoft®	SQL	Server™	startup
behavior	upon	operating	system	start.

Applies	To

Registry	Object

Syntax
object.AutostartServer	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAutostartServer(LPBOOL	pRetVal);

HRESULT	SetAutostartServer(BOOL	NewValue);

Remarks
If	TRUE,	an	attempt	is	made	to	start	SQL	Server	when	the	operating	system
starts.

If	FALSE,	no	attempt	is	made	to	start	SQL	Server.	SQL	Server	can	be	started
manually.

Note		AutostartServer	is	only	valid	on	the	Microsoft®	Windows	NT®	4.0	or
Microsoft®	Windows	2000	operating	system.

SQL-DMO

AutoUpdateStat	Property
The	AutoUpdateStat	property	exposes	Microsoft®	SQL	Server™	data
distribution	statistics	creation	behavior.

Applies	To

DBOption	Object

Syntax
object.AutoUpdateStat	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAutoUpdateStat(LPBOOL	pRetVal);

HRESULT	SetAutoUpdateStat(BOOL	NewValue);

Remarks
If	TRUE,	the	optimizer	directs	automatic	rebuild	of	supporting	data	distribution
statistics	as	required.

If	FALSE,	the	optimizer	does	not	direct	statistics	rebuild.

SQL-DMO

B

SQL-DMO

BackupDirectory	Property
The	BackupDirectory	property	specifies	the	backup	directory.

Applies	To

Registry2	Object 	

Syntax
object.BackupDirectory	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	the	backup	directory	path

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetBackupDirectory(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetBackupDirectory(SQLDMO_LPCSTR	NewValue);

Remarks

Use	the	BackupDirectory	property	to	specify	a	location	other	than	the	default
directory	location	when	running	multiple	instances	of	Microsoft®	SQL
Server™.

By	default,	the	default	instance	of	SQL	Server	2000	stores	backup	files	in	the
C:\Program	Files\Microsoft	SQL	Server\Mssql\Backup	directory.	By	default,	a
named	instance	of	SQL	Server	2000	stores	backup	files	in	the	C:\Program
Files\Microsoft	SQL	Server\Mssql$InstanceName\Backup	directory,	where
InstanceName	is	the	name	of	a	non-default	instance	of	SQL	Server.

Note		BackupDirectory	can	be	used	with	Microsoft®	SQL	Server™	2000	and
SQL	Server	version	7.0.

SQL-DMO

BackupSetDescription	Property
The	BackupSetDescription	property	provides	descriptive	or	identifying	text	for
the	result	of	a	backup	operation.

Applies	To

Backup	Object 	

Syntax
object.BackupSetDescription	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetBackupSetDescription(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetBackupSetDescription(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	BackupSetDescription	property	value	is	limited	to	255	characters.	There	is
no	default	value.

SQL-DMO

BackupSetName	Property
The	BackupSetName	property	identifies	a	unit	of	backup	work.

Applies	To

Backup	Object 	

Syntax
object.BackupSetName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetBackupSetName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetBackupSetName(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the

reference	using	SysFreeString.

Remarks
The	BackupSetName	property	value	is	limited	to	128	characters.	There	is	no
default	value.

SQL-DMO

BaseType	Property
The	BaseType	property	exposes	the	system	data	type	from	which	a	user-defined
data	type	has	been	derived.

Applies	To

UserDefinedDatatype	Object 	

Syntax
object.BaseType	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Text	string	that	identifies	a	Microsoft®	SQL	Server™	system	data	type

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetBaseType(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetBaseType(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	by	using	SysFreeString.

Remarks
The	BaseType	property	is	only	modifiable	before	the	UserDefinedDatatype
object	has	been	added	to	the	UserDefinedDatatypes	collection	of	a	Database
object.	After	the	object	is	added	to	the	collection	and	the	user-defined	data	type
is	created	on	an	instance	of	SQL	Server,	the	property	is	read-only.

SQL-DMO

BlockingTimeout	Property
The	BlockingTimeout	property	specifies	a	timeout	interval	for	resource	requests
that	are	blocked	due	to	conflicting	resource	lock	requests.

Applies	To

Application	Object SQLServer	Object

Syntax
object.BlockingTimeout	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	number	of	milliseconds

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetBlockingTimeout(LPLONG	pRetVal);

HRESULT	SetBlockingTimeout(long	NewValue);

Remarks
For	SQL-DMO	applications,	the	default	value	for	BlockingTimeout	is	10,000
milliseconds	(10	seconds).

The	BlockingTimeout	property	determines	the	number	of	milliseconds	waited
when	the	SQL-DMO	application	needs	sole	access	to	a	client	resource.	For	the
SQLServer	object,	the	LoginTimeout	and	QueryTimeout	properties	control
time-out	behavior	when	an	application	request	for	a	Microsoft®	SQL	Server™
resource	is	made.

An	attempt	to	set	the	BlockingTimeout	property	to	a	negative	value	returns	the
setting	to	the	default	10	seconds	(10,000).

SQL-DMO

BlockSize	Property
The	BlockSize	property	specifies	the	formatting	size	unit	for	tapes	formatted	as
part	of	a	backup.

Applies	To

Backup	Object 	

Syntax
object.BlockingSize	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	represents	a	number	of	bytes

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetBlockSize(LPLONG	pRetVal);

HRESULT	SetBlockSize(long	NewValue);

Remarks
When	directing	a	backup	to	a	backup	device	or	to	files,	BlockSize	is	ignored.

SQL-DMO

C

SQL-DMO

CaseSensitive	Property
The	CaseSensitive	property	indicates	the	comparison	method	for	multibyte
character	data	on	an	instance	of	Microsoft®	SQL	Server™.

Applies	To

Registry	Object

Syntax
object.CaseSensitive

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetCaseSensitive(LPBOOL	pRetVal);

Remarks
If	TRUE,	a	character	comparison	for	equality	and	order	is	case-sensitive	for
multibyte	character	data	on	an	instance	of	SQL	Server.	For	example,	A	is	less
than	a.

If	FALSE,	character	comparison	for	equality	and	order	is	not	case-sensitive.	For
example,	A	is	equal	to	a.

SQL-DMO

Catalog	Property
The	Catalog	property	specifies	the	default	or	initial	catalog	for	the	referenced
OLE	DB	data	source	definition.

Applies	To

LinkedServer	Object

Syntax
object.Catalog	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	a	data	source	catalog

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCatalog(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetCatalog(SQLDMO_LPCSTR	NewVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	Catalog	property	provides	a	value	for	the	OLE	DB
DBPROP_INIT_CATALOG	initialization	property	when	a	connection	is
attempted	to	the	data	source	referenced	by	the	LinkedServer	object.	For	more
information	about	values	for	the	Catalog	property,	see	the	OLE	DB	provider
documentation.

SQL-DMO

Category	Property
The	Category	property	represents	the	name	of	a	category	for	SQL	Server	Agent
alerts,	jobs,	and	operators.

Applies	To

Alert	Object JobFilter	Object
Job	Object Operator	Object

Syntax
object.Category	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Specifies	a	SQL	Server	Agent	category	by	name.	A	SQL	Server	Agent
category	name	can	contain	a	maximum	of	100	characters.

Data	Type
String

Modifiable
Read/write.	When	setting	the	property	for	an	Alert,	Job,	or	Operator	object,	the
value	must	reference	an	existing	SQL	Server	Agent	alert,	job,	or	operator
category.

Prototype	(C/C++)

HRESULT	GetCategory(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetCategory(SQLDMO_LPCSTR	NewVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
Microsoft®	SQL	Server™	alert,	job,	and	operator	categories	group	SQL	Server
Agent	objects.	The	Category	property	of	SQL-DMO	Alert,	Job,	and	Operator
objects	references	the	applicable	SQL	Server	Agent	category.

Setting	the	Category	property	for	the	JobFilter	object	restricts	listed	SQL
Server	Agent	jobs	to	those	having	the	category	when	using	the	EnumJobs
method	of	the	JobServer	object.

SQL-DMO

CentralizedConflicts	Property
The	CentralizedConflicts	property	controls	the	distribution	of	conflict	records
for	merge	replication.

Applies	To

MergePublication	Object TransPublication2	Object

Syntax
object.CentralizedConflicts	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCentralizedConflicts(LPBOOL	pRetVal);

HRESULT	SetCentralizedConflicts(BOOL	NewValue);

Remarks
If	TRUE,	conflict	records	are	sent	to	and	stored	at	the	Publisher	of	the	data.

If	FALSE,	conflict	records	are	stored	at	each	Subscriber.

SQL-DMO

CharacterSet	Property
The	CharacterSet	property	identifies	the	code	page	used	by	an	instance	of
Microsoft®	SQL	Server™	to	interpret	multibyte	character	data.

Applies	To

Registry	Object

Syntax
object.CharacterSet

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetCharacterSet(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

The	CharacterSet	property	is	applicable	only	to	multibyte	character	data.	The
setting	has	no	effect	on	Unicode	character	data.

SQL-DMO

Checked	Property
The	Checked	property	enables	or	disables	integrity	or	FOREIGN	KEY
constraint	evaluation	for	an	existing	integrity	or	FOREIGN	KEY	constraint.

Applies	To

Check	Object Key	Object

Syntax
object.Checked	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write	when	the	SQL-DMO	object	references	an	existing	Microsoft®	SQL
Server™	component.

Prototype	(C/C++)
HRESULT	GetChecked(LPBOOL	pRetVal);

HRESULT	SetChecked(BOOL	NewValue);

Remarks
If	TRUE,	an	attempt	is	made	to	enforce	an	integrity	or	FOREIGN	KEY
constraint	when	rows	are	added	to	the	table	on	which	the	constraint	is	defined.
An	error	occurs	if	data	fails	constraint	checking.

If	FALSE,	no	attempt	is	made	to	enforce	the	integrity	or	FOREIGN	KEY
constraint	when	rows	are	added	to	the	table	on	which	the	constraint	is	defined.

See	Also

ALTER	TABLE

JavaScript:hhobj_1.Click()

SQL-DMO

CheckPermissions	Property
The	CheckPermissions	property	specifies	how	the	permissions	are	checked	at
Publisher	before	a	Subscriber	INSERT,	UPDATE,	or	DELETE	operation	can	be
uploaded.

Applies	To

MergeArticle2	Object

Syntax
object.CheckPermissions	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	permissions	checking	behaviors	as	described	in
Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCheckPermissions(SQLDMO_CHECKPERMISSIONS_TYPE
FAR*	pRetVal);

HRESULT	SetCheckPermissions(SQLDMO_CHECKPERMISSIONS_TYPE
NewValue);

Settings
Set	value	using	these	SQLDMO_CHECKPERMISSIONS_TYPE	values.
SQLDMO_CHECKPERMISSIONS_TYPE	is	a	bitmask;	therefore	multiple
options	can	be	specified	at	the	same	time.

Constant Value Description
SQLDMOCheckPermissions_DeleteCheck 4 Check	permissions	at

the	Publisher	before	a
Subscriber-side
DELETE	can	be
uploaded.

SQLDMOCheckPermissions_InsertCheck 1 Check	permissions	at
the	Publisher	before	a
Subscriber-side
INSERT	can	be
uploaded.

SQLDMOCheckPermissions_NoCheck 0 Do	not	check
permissions.

SQLDMOCheckPermissions_UpdateCheck 2 Check	permissions	at
the	Publisher	before	a
Subscriber-side
UPDATE	can	be
uploaded.

Remarks
An	application	can	set	the	CheckPermissions	property	using	a	combination	of
the	values	described	in	Settings.

Note		If	an	application	sets	CheckPermissions	after	the	initial	snapshot	has	been
created,	a	new	snapshot	must	be	generated	and	reapplied	to	each	subscription.
Snapshots	are	applied	when	the	next	scheduled	snapshot	and	merge	agent	run

If	an	application	calls	CheckPermissions	on	an	instance	of	Microsoft®	SQL
Server™	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the
message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

SQL-DMO

Clustered	Property
The	Clustered	property	reports	index	clustering	on	Microsoft®	SQL	Server™
primary	keys.

Applies	To

Key	Object

Syntax
object.Clustered	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write	before	the	SQL	Server	primary	key	is	created.	Read-only	when	the
Key	object	references	an	existing	primary	key.

Prototype	(C/C++)
HRESULT	GetClustered(LPBOOL	pRetVal);

HRESULT	SetClustered(BOOL	NewValue);

Remarks
The	Clustered	property	has	meaning	when	the	Key	object	references	a	SQL
Server	table	primary	key.	If	the	Key	object	references	a	foreign	key,	the	value	is
always	FALSE.

If	TRUE,	the	referenced	primary	key	either	has,	or	will	be	created	with,	a
clustered	index	supporting	it.

If	FALSE,	the	referenced	primary	key	has,	or	will	be	created	with,	a
nonclustered	index.	The	default	for	new	Key	objects	is	FALSE.

SQL-DMO

CmdExecSuccessCode	Property
The	CmdExecSuccessCode	property	records	the	process	exit	code	of	a
command	shell	process	executed	as	a	job	step.

Applies	To

JobStep	Object

Syntax
object.CmdExecSuccessCode	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer

Remarks
A	job	step	that	executes	a	command	shell	process	relies	on	the	process	exit	code
to	determine	the	success	or	failure	of	the	job	step.	Set	the
CmdExecSuccessCode	property	to	the	successful	return	code	of	a	command
shell	process	to	enable	logic	and	notifications	based	on	the	success	or	failure	of
the	job	step.

Data	Type
Long

Modifiable

Read/write

Prototype	(C/C++)
HRESULT	GetCmdExecSuccessCode(LPLONG	pRetVal);

HRESULT	SetCmdExecSuccessCode(LONG	NewValue);

SQL-DMO

CodePage	Property
The	CodePage	property	returns	the	identifier	of	the	character	set	used	by	an
instance	of	Microsoft®	SQL	Server™	or	is	used	to	interpret	data	for	a	bulk-copy
operation.

Applies	To

BulkCopy	Object SQLServer	Object

Syntax
object.CodePage

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetCodePage(LPLONG	pRetVal);

Remarks
A	character	set	(code	page)	is	used	to	interpret	multibyte	character	data,
determining	character	value,	and	therefore	sort	order.	Code	page	settings	apply

only	to	multibyte	character	data,	not	to	Unicode	character	data.	A	code	page	is
chosen	for	an	instance	of	SQL	Server	during	setup.

By	default,	bulk-copy	operations	interpret	character	data	assuming	the	code	page
used	by	an	instance	of	SQL	Server	that	is	either	the	source	or	the	destination	for
the	copied	data.	This	default	behavior	can	be	changed	using	the	SetCodePage
method.

See	Also

SetCodePage	Method

SQL-DMO

Collation	Property
The	Collation	property	returns	the	column-level	collation	of	an	object.

Applies	To

Column2	Object SystemDataType2	Object
Database2	Object UserDefinedDataType2	Object
SQLServer2	Object 	

Syntax
object.Collation

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	returns	a	valid	Microsoft®	SQL	Server™	collation	name

Data	Type
String

Modifiable
Varies	(See	Remarks)

Prototype	(C/C++)
HRESULT	GetCollation(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetCollation(SQLDMO_LPCSTR	NewValue);

Remarks
Collation	is	a	read-write	property	of	the	Column2	and	Database2	objects.	A
Collation	setting	for	a	Database2	object	overrides	the	default	collation	specified
in	model.	All	tables	in	the	database	then	inherit	the	Collation	setting.

Collation	is	a	read-only	property	of	the	SQLServer2,	SystemDataType2,	and
UserDefinedDatatype2	objects	and	is	used	to	retrieve	the	current	collation	for
string	data	types.

If	Collation	is	not	set,	the	default	collation	is	used.	Collation	can	only	be	set
when	creating	a	new	database	or	user-defined	data	type.	Prior	to	setting	the
Collation	property,	use	the	ListCollations	method	to	retrieve	a	list	of	valid
collation	names.

Note		If	an	application	calls	Collation	on	an	instance	of	SQL	Server	version	7.0,
the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This	property	or
method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

ListCollations	Method

SQL-DMO

CollationName	Property
The	CollationName	property	retrieves	or	sets	the	collation	name	of	a	linked
server.

Applies	To

LinkedServer2	Object

Syntax
object.CollationName	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	a	valid	collation	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCollationName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetCollationName(SQLDMO_LPCSTR	NewValue);

Remarks
If	CollationName	is	not	set,	the	default	collation	is	used.	When	set	to	the	default
collation,	CollationName	returns	NULL.	Prior	to	setting	the	CollationName
property,	use	the	ListCollations	method	to	retrieve	a	list	of	valid	collation
names.	Setting	CollationName	to	NULL	or	an	empty	string	results	in	setting	the
collation	back	to	the	default.

Note		If	an	application	calls	CollationName	on	an	instance	of	Microsoft®	SQL
Server™	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

ColumnDelimiter	Property
The	ColumnDelimiter	property	specifies	one	or	more	characters	used	to	delimit
a	row	of	data	in	a	bulk	copy	data	file.

Applies	To

BulkCopy	Object

Syntax
object.ColumnDelimiter	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	one	or	more	characters

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetColumnDelimiter(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetColumnDelimiter(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	ColumnDelimiter	property	has	meaning	only	when	the	BulkCopy	object
property	DataFileType	is	SQLDMODataFile_SpecialDelimtedChar.

SQL-DMO

ColumnMaxLength	Property
The	ColumnMaxLength	property	exposes	the	maximum	number	of	characters
required	to	store	the	data	of	a	column	in	the	current	result	set	of	a	QueryResults
object.

Applies	To

QueryResults	Object

Syntax
object.ColumnMaxLength(OrdinalColumn)

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

OrdinalColumn

Long	integer	that	specifies	the	column	in	the	results	by	position

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetColumnMaxLength(long	nColumn,	LPLONG	pRetVal);

Remarks
Interpret	the	value	of	the	ColumnMaxLength	property	with	respect	to	the	data
type	of	the	column	in	the	result	set.	Retrieve	the	data	type	using	the

ColumnType	property.

ColumnType	property ColumnMaxLength
SQLDMO_DTypeBinary,
SQLDMO_DTypeNText,
SQLDMO_DTypeText,
SQLDMO_DTypeVarBinary,
SQLDMO_DTypeGUID,	or
SQLDMO_DTypeImage

System-defined	value.	Use	the
GetColumnBinaryLength	method	to
determine	the	length	of	a	specified	row
value.

SQLDMO_DTypeBit,
SQLDMO_DTypeInt1,
SQLDMO_DTypeFloat8,
SQLDMO_DTypeInt2,
SQLDMO_DTypeInt4,
SQLDMO_DTypeMoney,	or
SQLDMO_DTypeMoney4

Maximum	precision	of	a	value	of	the	type.

SQLDMO_DTypeChar,
SQLDMO_DTypeVarchar,
SQLDMO_DTypeUChar,	or
SQLDMO_DTypeUVarchar

Count	of	bytes	required	to	represent	the	data
as	a	Unicode	character	string	(two	bytes	per
character).	Count	incremented	to	include	the
count	of	bytes	in	a	string	terminator.

SQLDMO_DTypeDateTime
or
SQLDMO_DTypeDateTime4

System	defined	value.

SQL-DMO

ColumnName	Property
The	ColumnName	property	exposes	a	descriptive	identifier	for	a	column	in	the
current	result	set	of	a	QueryResults	object.

Applies	To

QueryResults	Object

Syntax
object.ColumnName(OrdinalColumn)

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

OrdinalColumn

Long	integer	that	specifies	the	column	in	the	results	by	position

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetColumnName(long	nColumn,SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

ColumnName	is	an	empty	string	for	unnamed	columns,	such	as	the	unqualified
results	of	a	Transact-SQL	expression.

SQL-DMO

Columns	Property
The	Columns	property	exposes	the	number	of	columns	contained	in	the	current
result	set	of	a	QueryResults	object.

Applies	To

QueryResults	Object

Syntax
object.Columns

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetColumns(LPLONG	pRetVal);

SQL-DMO

ColumnsNullByDefault	Property
The	ColumnsNullByDefault	property	controls	column	default	value	behavior
when	a	table	is	created	in	the	Microsoft®	SQL	Server™	database.

Applies	To

DBOption	Object

Syntax
object.ColumnsNullByDefault	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetColumnsNullByDefault(LPBOOL	pRetVal);

HRESULT	SetColumnsNullByDefault(BOOL	NewValue);

Remarks
If	TRUE,	columns	in	new	tables	allow	NULL.

If	FALSE,	columns	in	new	tables	do	not	allow	NULL.

The	default	behavior	can	be	changed	on	a	column-by-column	basis.	For	more
information,	see	AllowNulls	Property.

SQL-DMO

ColumnTracking	Property
The	ColumnTracking	property	exposes	conflict	resolution	behavior	for	rows	of
data	merged	through	replication.

Applies	To

MergeArticle	Object

Syntax
object.ColumnTracking	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetColumnTracking(LPBOOL	pRetVal);

HRESULT	SetColumnTracking(BOOL	NewValue);

Remarks
If	TRUE,	each	column	in	a	row	participates	individually	in	conflict

determination	and	resolution.	If	more	than	one	site	modifies	the	row,	but	each
site	modifies	a	unique	set	of	columns,	no	conflict	is	found	and	all	changes	are
merged.

If	FALSE,	the	entire	row	is	evaluated	to	determine	conflicts.

Note		If	an	application	sets	ColumnTracking	after	the	initial	snapshot	has	been
created,	a	new	snapshot	must	be	generated	and	reapplied	to	each	subscription.
Snapshots	are	applied	when	the	next	scheduled	snapshot	and	merge	agent	run.

SQL-DMO

ColumnType	Property
The	ColumnType	property	returns	the	base	data	type	of	a	column	in	the	current
result	set	of	a	QueryResults	object.

Applies	To

QueryResults	Object

Syntax
object.ColumnType(OrdinalColumn)

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

OrdinalColumn

Long	integer	that	specifies	the	column	in	the	results	by	position

Data	Type
Long,	enumerated

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetColumnType(long	nColumn,
SQLDMO_QUERY_DATATYPE*	pRetVal);

Returns
The	value	returned	by	ColumnType	is	evaluated	using	these
SQLDMO_QUERY_DATATYPE	values.

Constant Value Description
SQLDMO_DtypeBigint -5 bigint	data	type.
SQLDMO_DTypeBinary -2 Fixed	length	binary	data.
SQLDMO_DTypeBit -7 Unsigned	integer	data.	The	width	of

the	integer	is	one	byte.
SQLDMO_DTypeChar 1 Fixed	length	character.
SQLDMO_DTypeDateTime -2 ODBC

SQL_TIMESTAMP_STRUCT.
SQLDMO_DTypeDateTime4 93 ODBC

SQL_TIMESTAMP_STRUCT.
SQLDMO_DTypeFloat4 7 Approximate	numeric	data.	The

width	of	the	numeric	value	is	four
bytes.

SQLDMO_DTypeFloat8 8 Approximate	numeric	data.	The
width	of	the	numeric	value	is	eight
bytes.

SQLDMO_DTypeGUID -11 Globally	unique	identifier	(GUID).
The	data	is	a	data	structure	16	bytes
in	length.

SQLDMO_DTypeImage -4 Long,	variable	length	binary	data.
SQLDMO_DTypeInt1 -6 Unsigned	integer	data.	The	width	of

the	integer	is	one	byte.
SQLDMO_DTypeInt2 5 Signed	integer	data.	The	width	of	the

integer	is	two	bytes.
SQLDMO_DTypeInt4 4 Signed	integer	data.	The	width	of	the

integer	is	four	bytes.
SQLDMO_DTypeMoney 3 Scaled	integer	data	represented	as	a

string	value.
SQLDMO_DTypeMoney4 3 Scaled	integer	data	represented	as	a

string	value.
SQLDMO_DTypeNText -10 Long,	variable	length,	Unicode

character	data.
SQLDMO_DtypeSQLVariant -150 sql_variant	data	type.
SQLDMO_DTypeText -1 Long,	variable	length	character	data.
SQLDMO_DTypeUChar -8 Fixed	length,	Unicode	character	data.

SQLDMO_DTypeUnknown 0 Bad	or	not	supported	data	type	value.
SQLDMO_DTypeUVarchar -9 Variable	length,	Unicode	character

data.
SQLDMO_DTypeVarBinary -3 Variable	length	binary	data.
SQLDMO_DTypeVarchar 12 Variable	length	character	data.

SQL-DMO

Command	Property
The	Command	property	specifies	the	task	of	a	job	step.

Applies	To

JobStep	Object

Syntax
object.Command	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCommand(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetCommand(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	Command	property	specifies	the	execution	string	for	a	SQL	Server	Agent.
Failure	or	success	of	execution	determines	failure	or	success	of	the	job	step.

The	text	specified	by	the	Command	property	is	run	by	the	SQL	Server	Agent
using	the	executable	subsystem	indicated	by	the	JobStep	object	Subsystem
property.	Job	step	subsystem	selection	determines	valid	syntax	for	Command
Property	text.

See	Also

SubSystem	Property

SQL-DMO

CommandOptions	Property
The	CommandOptions	property	controls	Transact-SQL	statement	generation
and	stored	procedure	parameter	binding	for	data	and	stored	procedures	replicated
by	the	referenced	transactional	article.

Applies	To

TransArticle	Object

Syntax
object.CommandOptions	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	command	generation	behavior	as	described	in
Settings

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCommandOptions(
SQLDMO_COMMANDOPTION_TYPE	FAR	*	pRetVal);

HRESULT	SetCommandOptions(
SQLDMO_COMMANDOPTION_TYPE	NewValue);

Settings

Constant Value Description
SQLDMOCommandOption_BinaryParameters 16 Default.	Send

the	stored
procedure
parameters	in
binary	format
when
replicating
commands	as
stored
procedures	for
an	article	in	a
transactional
publication.

SQLDMOCommandOption_IncludeInsertColumnNames 8 Include
column	names
in	destination
table	INSERT
statements.

SQLDMOCommandOption_DTSHorizontalPartition 64 Enable	Data
Transformation
Services	(DTS)
transformation
servers	to
manage	rows
in	horizontal
partitions.

Remarks
If	an	application	sets	CommandOptions	with	a	setting	of
SQLDMOCommandOption_DTSHorizontalPartition	after	the	initial	snapshot
has	been	created,	a	new	snapshot	must	be	generated	and	reapplied	to	each

subscription.	Snapshots	are	applied	when	the	next	scheduled	snapshot	and
distribution	agent	run.

SQL-DMO

CommandTerminator	Property
The	CommandTerminator	property	specifies	the	Transact-SQL	batch	delimiter.

Applies	To

SQLServer	Object

Syntax
object.CommandTerminator	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCommandTerminator(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetCommandTerminator(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
Transact-SQL	script	can	be	sent	to	a	server	running	Microsoft®	SQL	Server™	in
batches,	which	can	offer	optimizations	in	many	circumstances.	The	default	batch
delimiter	is	GO.

SQL-DMO

CompareNull	Property
The	CompareNull	property	controls	evaluation	of	NULL	for	equality.

Applies	To

DBOption	Object

Syntax
object.CompareNull	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCompareNull(LPBOOL	pRetVal);

HRESULT	SetCompareNull(BOOL	NewValue);

Remarks
If	TRUE,	the	expression	NULL	=	NULL	evaluates	as	NULL.

If	FALSE,	the	expression	NULL	=	NULL	evaluates	as	TRUE.

Any	value	for	CompareNull	is	overridden	by	the	AnsiNulls	property,	which
controls	NULL	evaluation	for	a	client	session.

SQL-DMO

CompatibilityLevel	Property	(Database)
The	CompatibilityLevel	property	controls	the	behavior	of	an	instance	of
Microsoft®	SQL	Server™,	setting	behavior	to	match	either	the	current	or	earlier
version.

Applies	To

Database	Object

Syntax
object.CompatibilityLevel	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	an	instance	of	SQL	Server	as	described	in
Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCompatibilityLevel(
SQLDMO_COMP_LEVEL_TYPE*	pRetVal);

HRESULT	SetCompatibilityLevel(
SQLDMO_COMP_LEVEL_TYPE	NewValue);

Settings
Set	CompatibilityLevel	using	these	SQLDMO_COMP_LEVEL_TYPE	values.

Constant Value Description
SQLDMOCompLevel_60 60 Force	SQL	Server	version	6.0

behavior.
SQLDMOCompLevel_65 65 Force	SQL	Server	version	6.5

behavior.
SQLDMOCompLevel_70 70 Force	SQL	Server	version	7.0

behavior.
SQLDMOCompLevel_80 80 Default.	Instance	behaves	as

documented	for	SQL	Server
2000.

SQLDMOCompLevel_Unknown 0 Bad	or	invalid	value.

See	Also

Backward	Compatibility

JavaScript:hhobj_1.Click()

SQL-DMO

CompatibilityLevel	Property	(MergePublication2,
TransPublication2)
The	CompatibilityLevel	property	returns	a	
SQLDMO_REPLCOMPLEVEL_TYPE	constant	that	indicates	the	feature	set
currently	supported	by	the	publication.

Applies	To

MergePublication2	Object TransPublication2	Object

Syntax
object.CompatibilityLevel

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long,	enumerated

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetCompatibilityLevel(SQLDMO_REPLCOMPLEVEL_TYPE
*pRetVal);

Returns

Constant Value Description
SQLDMOReplCompatibilityLevel_70 10 Microsoft®	SQL

Server™	version	7.0
SQLDMOReplCompatibilityLevel_70SP1 20 SQL	Server	7.0	Service

Pack	1
SQLDMOReplCompatibilityLevel_70SP2 30 SQL	Server	7.0	Service

Pack	2
SQLDMOReplCompatibilityLevel_80 40 SQL	Server	2000

Remarks
If	an	application	calls	CompatibilityLevel	on	an	instance	of	SQL	Server,	the
constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This	property	or
method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

ComputedText	Property
The	ComputedText	property	contains	the	Transact-SQL	expression	used	to
generate	the	value	of	a	computed	column.

Applies	To

Column	Object

Syntax
object.ComputedText	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetComputedText(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetComputedText(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
A	number	of	restrictions	apply	to	the	Transact-SQL	statements	available	when
defining	a	computed	column.	For	more	information,	see	CREATE	TABLE.

JavaScript:hhobj_1.Click()

SQL-DMO

ConflictPolicy	Property
The	ConflictPolicy	property	specifies	whether	the	Publisher	or	Subscriber	wins
a	conflict	that	occurs	during	a	queued-transaction	operation.

Applies	To

TransPublication2	Object

Syntax
object.ConflictPolicy	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	SQLDMO_CONFLICTPOLICY_TYPE
constant	as	described	in	Settings

Type
Long	integer

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetConflictPolicy(SQLDMO_CONFLICTPOLICY_TYPE
*pRetVal);

HRESULT	SetConflictPolicy(SQLDMO_CONFLICTPOLICY_TYPE
NewValue);

Settings
Set	the	ConflictPolicy	property	using	these	values.

Constant Value Description
SQLDMOConflictPolicy_PublisherWin 1 Publisher	wins	the

conflict
SQLDMOConflictPolicy_ReinitSubscription 3 Reinitialize	the

subscription
SQLDMOConflictPolicy_SubscriberWin 2 Subscriber	wins	the

conflict

Remarks
Unlike	merge	replication,	transactional	replication	does	not	use	a	conflict
resolver	to	determine	how	conflicts	that	occur	during	a	queued-transaction
operation	are	resolved.	Use	a	SQLDMO_CONFLICTPOLICY_TYPE	constant
setting	to	specify	that	changes	made	at	either	the	Publisher	or	Subscriber	prevail,
or	that	the	subscription	must	be	reinitialized	if	a	conflict	occurs.

The	default	setting	is	SQLDMOConflictPolicy_PublisherWin.

Note		If	an	application	calls	ConflictPolicy	on	an	instance	of	Microsoft®	SQL
Server™	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

ConflictRetention	Property
The	ConflictRetention	property	specifies	the	conflict	retention	period	in	days.

Applies	To

MergePublication2	Object TransPublication2	Object

Syntax
object.ConflictRetention	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	the	number	of	days	that	conflict	information	is
retained

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetConflictRetention(LPDWORD	pRetVal);

HRESULT	SetConflictRetention(DWORD	NewValue);

Remarks
Conflict	information	is	retained	for	14	days	by	default.

Note		If	an	application	calls	ConflictRetention	on	an	instance	of	Microsoft®
SQL	Server™	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the
message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

SQL-DMO

ConflictTable	Property
The	ConflictTable	property	is	reserved	for	future	use.

Applies	To

MergeArticle	Object

Syntax
object.ConflictTable

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetConflictTable(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

ConnectionID	Property
The	ConnectionID	is	a	SQL-DMO	generated	identifier	for	a	connected
SQLServer	object.

Applies	To

SQLServer	Object

Syntax
object.ConnectionID

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetConnectionID(LPLONG	plConnectionID);

Remarks
The	value	has	meaning	only	after	the	SQLServer	object	has	successfully
established	a	connection	to	a	server	running	an	instance	of	Microsoft®	SQL
Server™.	It	is	unique	for	each	connection.

SQL-DMO

ConnectTimeout	Property
The	ConnectTimeout	property	specifies	a	time	interval	used	by	the	Microsoft
Search	service	when	attempting	a	connection	to	an	instance	of	Microsoft®	SQL
Server™	version	7.0	enabled	for	full-text	search.

Applies	To

FullTextService	Object LinkedServer2	Object

Syntax
object.ConnectTimeout	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Positive,	long	integer	that	specifies	a	number	of	seconds

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetConnectTimeout(LPLONG	pRetVal);

HRESULT	SetConnectTimeout(long	NewValue);

Remarks

The	Microsoft	Search	service	must	connect	to	an	enabled	instance	of	SQL	Server
7.0	to	populate	full-text	catalogs.

The	default	value	is	20.

Note		The	Microsoft	Search	service	must	be	running	on	the	referenced	server
before	the	connection	time-out	value	is	altered	using	the	ConnectTimeout
property.	The	ConnectTimeout	property	can	be	used	with	SQL	Server	2000	and
SQL	Server	7.0.

SQL-DMO

ContactNull	Property
The	ContactNull	property	specifies	NULL	value	handling	for	catenation.

Applies	To

DBOption	Object

Syntax
object.ContactNull	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetContactNull(LPBOOL	pRetVal);

HRESULT	SetContactNull(BOOL	NewValue);

Remarks
If	TRUE,	A	+	NULL,	where	A	is	a	string,	yields	NULL.

If	FALSE,	A	+	NULL,	where	A	is	a	string,	yields	A.

Any	value	for	ContactNull	is	overridden	by	the	AnsiNulls	property	which
controls	NULL	catenation	behavior	for	a	client	session.

SQL-DMO

CopyAllDefaults	Property
The	CopyAllDefaults	property	controls	the	transfer	of	Microsoft®	SQL
Server™	defaults	from	the	source	to	the	target	database.

Applies	To

Transfer	Object

Syntax
object.CopyAllDefaults	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCopyAllDefaults(LPBOOL	pRetVal);

HRESULT	SetCopyAllDefaults(BOOL	NewValue);

Remarks
If	TRUE,	all	SQL	Server	defaults	in	the	source	database	are	copied	to	the	target.

If	FALSE,	only	defaults	indicated	by	the	AddObject	and	AddObjectByName
methods	are	copied.

See	Also

AddObject	Method

AddObjectByName	Method

SQL-DMO

CopyAllFunctions	Property
The	CopyAllFunctions	property	controls	the	transfer	of	Microsoft®	SQL
Server™	user-defined	functions	from	the	source	to	the	target	database.

Applies	To

Transfer2	Object

Syntax
object.CopyAllFunctions	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCopyAllFunctions(LPBOOL	pRetVal);

HRESULT	SetCopyAllFunctions(BOOL	NewValue);

Remarks
If	TRUE,	all	SQL	Server	user-defined	functions	in	the	source	database	are

copied	to	the	target.

If	FALSE,	only	user-defined	functions	specified	by	the	AddObject	and
AddObjectByName	methods	are	copied.

Note		If	an	application	calls	CopyAllFunctions	on	an	instance	of	SQL	Server
version	7.0,	the	operation	is	ignored.

SQL-DMO

CopyAllObjects	Property
The	CopyAllObjects	property	controls	the	transfer	of	Microsoft®	SQL	Server™
database	objects	from	the	source	to	the	target	database.	SQL	Server	database
objects	are	defaults,	rules,	stored	procedures,	tables,	triggers,	user-defined	data
types,	and	views.

Applies	To

Transfer	Object

Syntax
object.CopyAllObjects	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCopyAllObjects(LPBOOL	pRetVal);

HRESULT	SetCopyAllObjects(BOOL	NewValue);

Remarks

If	TRUE,	all	SQL	Server	database	objects	in	the	source	database	are	copied	to
the	target.

If	FALSE,	only	database	objects	indicated	by	the	AddObject	and
AddObjectByName	methods	are	copied.

See	Also

AddObject	Method

AddObjectByName	Method

SQL-DMO

CopyAllRules	Property
The	CopyAllRules	property	controls	the	transfer	of	Microsoft®	SQL	Server™
rules	from	the	source	to	the	target	database.

Applies	To

Transfer	Object

Syntax
object.CopyAllRules	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCopyAllRules(LPBOOL	pRetVal);

HRESULT	SetCopyAllRules(BOOL	NewValue);

Remarks
If	TRUE,	all	SQL	Server	rules	in	the	source	database	are	copied	to	the	target.

If	FALSE,	only	rules	indicated	by	the	AddObject	and	AddObjectByName
methods	are	copied.

See	Also

AddObject	Method

AddObjectByName	Method

SQL-DMO

CopyAllStoredProcedures	Property
The	CopyAllStoredProcedures	property	controls	the	transfer	of	Microsoft®
SQL	Server™	stored	procedures	from	the	source	to	the	target	database.

Applies	To

Transfer	Object

Syntax
object.CopyAllStoredProcedures	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCopyAllStoredProcedures(LPBOOL	pRetVal);

HRESULT	SetCopyAllStoredProcedures(BOOL	NewValue);

Remarks
If	TRUE,	all	SQL	Server	stored	procedures	in	the	source	database	are	copied	to

the	target.

If	FALSE,	only	stored	procedures	indicated	by	the	AddObject	and
AddObjectByName	methods	are	copied.

See	Also

AddObject	Method

AddObjectByName	Method

SQL-DMO

CopyAllTables	Property
The	CopyAllTables	property	controls	the	transfer	of	Microsoft®	SQL	Server™
table	definitions	from	the	source	to	the	target	database.

Applies	To

Transfer	Object

Syntax
object.CopyAllTables	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCopyAllTables(LPBOOL	pRetVal);

HRESULT	SetCopyAllTables(BOOL	NewValue);

Remarks
If	TRUE,	all	SQL	Server	table	definitions	in	the	source	database	are	copied	to

the	target.

If	FALSE,	only	table	definitions	indicated	by	the	AddObject	and
AddObjectByName	methods	are	copied.

Note		The	CopyAllTables	property	indicates	only	that	the	definition,	or	schema,
of	the	table	is	copied	to	the	target	database.	Data	transfer	is	controlled	separately
using	the	CopyData	property.

See	Also

AddObject	Method

AddObjectByName	Method

SQL-DMO

CopyAllTriggers	Property
The	CopyAllTriggers	property	controls	the	transfer	of	Microsoft®	SQL
Server™	triggers	from	the	source	to	the	target	database.

Applies	To

Transfer	Object

Syntax
object.CopyAllTriggers	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCopyAllTriggers(LPBOOL	pRetVal);

HRESULT	SetCopyAllTriggers(BOOL	NewValue);

Remarks
If	TRUE,	all	SQL	Server	triggers	in	the	source	database	are	copied	to	the	target.

If	FALSE,	only	triggers	indicated	by	the	AddObject	and	AddObjectByName
methods	are	copied.

See	Also

AddObject	Method

AddObjectByName	Method

SQL-DMO

CopyAllUserDefinedDatatypes	Property
The	CopyAllUserDefinedDatatypes	property	controls	the	transfer	of
Microsoft®	SQL	Server™	user-defined	data	types	from	the	source	to	the	target
database.

Applies	To

Transfer	Object

Syntax
object.CopyAllUserDefinedDatatypes	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCopyAllUserDefinedDatatypes(LPBOOL	pRetVal);

HRESULT	SetCopyAllUserDefinedDatatypes(BOOL	NewValue);

Remarks

If	TRUE,	all	SQL	Server	user-defined	data	types	in	the	source	database	are
copied	to	the	target.

If	FALSE,	only	user-defined	data	types	indicated	by	the	AddObject	and
AddObjectByName	methods	are	copied.

See	Also

AddObject	Method

AddObjectByName	Method

SQL-DMO

CopyAllViews	Property
The	CopyAllViews	property	controls	the	transfer	of	Microsoft®	SQL	Server™
views	from	the	source	to	the	target	database.

Applies	To

Transfer	Object

Syntax
object.CopyAllViews	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCopyAllViews(LPBOOL	pRetVal);

HRESULT	SetCopyAllViews(BOOL	NewValue);

Remarks
If	TRUE,	all	SQL	Server	views	in	the	source	database	are	copied	to	the	target.

If	FALSE,	only	views	indicated	by	the	AddObject	and	AddObjectByName
methods	are	copied.

See	Also

AddObject	Method

AddObjectByName	Method

SQL-DMO

CopyData	Property
The	CopyData	property	controls	data	transfer	from	a	source	to	a	target	database.

Applies	To

Transfer	Object

Syntax
object.CopyData	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	data	handling	as	described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCopyData(
SQLDMO_COPYDATA_TYPE*	pRetVal);

HRESULT	SetCopyData(
SQLDMO_COPYDATA_TYPE	NewValue);

Settings

Constant Value Description
SQLDMOCopyData_Append 2 Copy	data.	Data	copied	will	be

appended	to	existing	tables.
SQLDMOCopyData_False 0 Do	not	copy	data.	Copy	schema

only.
SQLDMOCopyData_Replace 1 Copy	data.	Existing	data	will	be

replaced	by	data	copied.

Remarks
When	CopyData	is	SQLDMOCopyData_Replace,	and	the
DropDestObjectsFirst	property	is	FALSE,	data	is	removed	from	existing	tables
on	the	target	database	using	a	bulk-logged	operation.	For	more	information,	see
TRUNCATE	TABLE.

See	Also

DropDestObjectsFirst	Property

JavaScript:hhobj_1.Click()

SQL-DMO

CopySchema	Property
The	CopySchema	property	controls	table	creation	on	data	transfer.

Applies	To

Transfer	Object

Syntax
object.CopySchema	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCopySchema(LPBOOL	pRetVal);

HRESULT	SetCopySchema(BOOL	NewValue);

Remarks
If	TRUE,	transfer	processing	creates	tables	prior	to	attempting	to	copy	data.

If	FALSE,	tables	are	not	created	prior	to	data	copying.	All	tables	indicated	in	the

transfer	operation	must	exist	in	the	target	database.

SQL-DMO

Count	Property
The	CountProperty	indicates	the	number	of	items	in	a	list	or	collection.

Applies	To
All	collections	and	lists.

Syntax
object.Count

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetCount(LPLONG	plConnectionID);

Remarks
The	Count	property	is	modified	when	items	are	added	or	removed	from	a
collection	or	list,	or	when	the	Refresh	method	retrieves	new	values	from	an
instance	of	Microsoft®	SQL	Server™.	The	property	always	reflects	the	number
of	items	currently	in	the	collection	or	list.

SQL-DMO

CountResetDate	Property
The	CountResetDate	property	represents	the	day	and	time	at	which	the	SQL
Server	Agent	alert	occurrence	count	was	reset	to	0.

Applies	To

Alert	Object

Syntax
object.CountResetDate

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Date

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetCountResetDate(LPLONG	pRetVal);

Note		SQL-DMO	uses	a	scaled	long	integer	to	represent	a	date.	The	integer	is
built	as	a	sum	of	the	year	scaled	by	10000,	the	month	scaled	by	100,	and	the	day.
For	example,	the	date	April	19,	1998	is	represented	by	the	long	integer	value
19980419.

Remarks
The	SQL	Server	Agent	alert	occurrence	count	represents	the	number	of	times	the

alert	has	fired	after	a	specific	date	and	time.	Use	the	ResetOccurrenceCount
method	to	set	the	occurrence	count	to	0	and	set	the	CountResetDate	property	to
the	current	date	and	time.

Note		For	C/C++,	two	SQL-DMO	functions	implement	the	CountResetDate
property.	The	GetCountResetDate	and	SetCountResetDate	functions	represent
only	the	date	portion	of	the	SQL	Server	Agent	alert	occurrence	count	reset	date.
The	time	portion	is	represented	by	the	CountResetTime	property.

See	Also

OccurrenceCount	Property

ResetOccurrenceCount	Method

SQL-DMO

CountResetTime	Property
The	CountResetTime	property	represents	the	time	at	which	the	Microsoft®
SQL	Server™	Agent	alert	occurrence	count	was	reset	to	0.

Applies	To

Alert	Object

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetCountResetTime(LPLONG	pRetVal);

Note		SQL-DMO	uses	a	scaled	long	integer	to	represent	a	time.	The	integer	is
built	as	a	sum	of	the	hour	scaled	by	10000,	the	minute	scaled	by	100,	and	the
seconds.	The	time	value	uses	a	24-hour	clock.	For	example,	the	time	1:03:09
P.M.	is	represented	by	the	long	integer	value	130309.

Remarks
The	CountResetTime	property	is	implemented	for	C/C++	applications	only.
The	value	represents	the	time	portion	of	a	date	and	time	value.	The	date	portion
of	the	value	is	represented	by	the	CountResetDate	property.

SQL-DMO

CreateDate	Property
The	CreateDate	property	indicates	the	date	and	time	the	referenced	SQLServer
object	was	created.

Applies	To

Database	Object Table	Object
DBObject	Object TransactionLog	Object
Default	Object Trigger	Object
Rule	Object UserDefinedFunction	Object
StoredProcedure	Object View	Object

Syntax
object.CreateDate

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetCreateDate(SQLDMO_LPBSTR	pRetVal);

Remarks
The	string	returned	is	formatted	using	the	locale	setting	of	the	workstation	if	the

RegionalSetting	property	of	the	SQLServer	object	is	set	to	TRUE.

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

See	Also

RegionalSetting	Property

SQL-DMO

CreateForAttach	Property
The	CreateForAttach	property	controls	database	file	creation	when	the
Database	object	is	added	to	the	Databases	collection	of	a	connected
SQLServer	object.

Applies	To

Database	Object

Syntax
object.CreateForAttach	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCreateForAttach(LPBOOL	pRetVal);

HRESULT	SetCreateForAttach(BOOL	NewValue);

Remarks

If	TRUE,	the	database	is	created	from	files	specified	in	the	FileGroups	and
LogFiles	collections.

If	FALSE,	data	files	are	created	as	directed	by	the	FileGroups	and	LogFiles
collections.

Creating	databases	from	existing	data	files	is	constrained.	For	more	information,
see	CREATE	DATABASE.

Note		CreateForAttach	can	only	be	set	when	the	database	is	initially	created.

JavaScript:hhobj_1.Click()

SQL-DMO

CreationScriptOptions	Property
The	CreationScriptOptions	property	specifies	creation	attributes	for	database
objects	implementing	a	replication	article.

Applies	To

MergeArticle	Object TransArticle	Object

Syntax
object.CreationScriptOptions	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Specifies	article-implementing	object	creation	as	described	in	Settings

Settings

Constant Value Description
SQLDMOCreationScript_ClusteredIndexes 16 Include	clustered

index	creation	on
tables	in	the	script

SQLDMOCreationScript_Collation 4096 Replicate	column-
level	collation

SQLDMOCreationScript_CustomProcs 2 Generates	custom
stored	procedures
for	the	article	if
defined
(transactional
replication	only)

SQLDMOCreationScript_DisableScripting 0 Do	not	script

SQLDMOCreationScript_DRI_Checks 1024 Include	creation	of
check	constraints
during	creation	of
tables	in	the	script

SQLDMOCreationScript_DRI_Defaults 2048 Include	creation	of
column	defaults
during	creation	of
tables	in	the	script

SQLDMOCreationScript_DRI_ForeignKeys 512 Include	creation	of
foreign	keys	during
creation	of	tables	in
the	script

SQLDMOCreationScript_DRI_PrimaryKey 128 Include	definition
of	primary	keys	on
tables	in	the	script

SQLDMOCreationScript_DRI_UniqueKeys 16384 Include	creation	of
unique	key	during
creation	of	tables	in
the	script

SQLDMOCreationScript_ExtendedProperties 8192 Replicate	extended
properties

SQLDMOCreationScript_NonClusteredIndexes 64 Include
nonclustered	index
creation	on	tables
in	the	script

SQLDMOCreationScript_PKUKAsConstraints 32768 Include	creation	of
primary	key	and
unique	key	during
creation	of	tables	as
constraints	instead
of	as	indexes	in	the
script

SQLDMOCreationScript_PrimaryObject 1 Include	object
creation	in	the
script

SQLDMOCreationScript_UDDTsToBaseTypes 32 Convert	all	user-

defined	data	types
to	their	Microsoft®
SQL		Server™	base
types	when
defining	columns	in
table	creation	in	the
script

SQLDMOCreationScript_UserTriggers 256 Include	creation	of
trigger	during
creation	of	tables	in
the	script

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCreationScriptOptions(
SQLDMO_CREATIONSCRIPT_TYPE*	pRetVal);

HRESULT	SetCreationScriptOptions(
SQLDMO_CREATIONSCRIPT_TYPE	NewValue);

Remarks
The	enumerated	value	is	bit-packed.	To	specify	multiple	script	creation	options,
combine	individual	enumeration	values	using	the	OR	logical	operator	to	define
the	behavior	required.

When	publishing	an	indexed	view	as	an	indexed	view	at	a	subscriber,	only
SQLDMOCreationScript_ExtendedProperties,
SQLDMOCreationScript_NonClusteredIndexes,	and

SQLDMOCreationScript_UserTriggers	are	allowed.
SQLDMOCreationScript_ClusteredIndexes	and
SQLDMOCreationScript_PrimaryObject	must	also	be	used.

Note		If	an	application	sets	CreationScriptOptions	after	the	initial	snapshot	has
been	created,	a	new	snapshot	must	be	generated	and	reapplied	to	each
subscription.	Snapshots	are	applied	when	the	next	scheduled	snapshot	and
distribution	or	merge	agent	run.

SQL-DMO

CreationScriptPath	Property
The	CreationScriptPath	property	is	reserved	for	future	use.

Applies	To

MergeArticle	Object TransArticle	Object

Syntax
object.CreationScriptPath	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	an	operating	system	file

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCreationScriptPath(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetCreationScriptPath(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
If	an	application	sets	CreationScriptPath	after	the	initial	snapshot	has	been
created,	a	new	snapshot	must	be	generated	and	reapplied	to	each	subscription.
Snapshots	are	applied	when	the	next	scheduled	snapshot	and	distribution	or
merge	agent	run.

SQL-DMO

CurrentCompatibility	Property
The	CurrentCompatibility	property	specifies	the	current	database	compatibility
level.

Applies	To

Database2	Object

Syntax
object.CurrentCompatibility	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	value	retrieved	using	the	ListCompatibilityLevels	method

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	SetCurrentCompatibility(SQLDMO_LPCSTR	NewValue);

HRESULT	GetCurrentCompatibility(SQLDMO_LPBSTR	pbstrName);

Remarks
When	upgrading	existing	systems	with	existing	applications,	use	database

compatibility	level	settings	to	retain	earlier	behaviors	if	existing	applications
depend	on	those	behaviors.	Many	applications,	however,	are	not	affected	by	such
changes	in	behavior	and	work	at	the	compatibility	level	of	Microsoft®	SQL
Server™	2000.

ListCompatibilityLevels	returns	a	list	of	all	available	SQL	Server	version
compatibility	levels.	An	application	can	use	one	of	the	returned	values	to	set	the
compatibility	of	a	database	using	the	CurrentCompatibility	property.

Note		CurrentCompatibility	can	be	used	withSQL	Server	2000	and	SQL	Server
version	7.0.

SQL-DMO

CurrentExecutionStatus	Property
The	CurrentExecutionStatus	property	filters	jobs	listed	in	the	JobServer
object	EnumJobs	method,	restricting	the	returned	QueryResults	object	to	list
only	those	jobs	whose	execution	state	matches	the	value	set.

Applies	To

JobFilter	Object

Syntax
object.CurrentExecutionStatus	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Specifies	a	job	execution	status	as	described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCurrentExecutionStatus(
SQLDMO_JOBEXECUTION_STATUS*	pRetVal);

HRESULT	SetCurrentExecutionStatus(
SQLDMO_JOBEXECUTION_STATUS	NewValue);

Settings

Constant Value Description
SQLDMOJobExecution_BetweenRetries 3 List	only

jobs	waiting
for	a	retry
attempt	time
slice	to	end

SQLDMOJobExecution_Executing 1 List	only
executing
jobs

SQLDMOJobExecution_Idle 4 List	only
jobs
awaiting
scheduled
execution

SQLDMOJobExecution_PerformingCompletionActions 7 List	only
jobs	logging
job	history
or
performing
other
cleanup
tasks

SQLDMOJobExecution_Suspended 5 List	only
suspended
jobs

SQLDMOJobExecution_Unknown 0 Ignore
execution
status	when
filtering

SQLDMOJobExecution_WaitingForStepToFinish 6 List	only
jobs	waiting
for	a	step	to
finish

SQLDMOJobExecution_WaitingForWorkerThread 2 List	only

jobs
blocked	by
waiting	for
an
execution
thread
resource

SQL-DMO

CurrentResultSet	Property
The	CurrentResultSet	property	controls	access	to	the	result	sets	of	a
QueryResults	object.

Applies	To

QueryResults	Object

Syntax
object.CurrentResultSet	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCurrentResultSet(LPLONG	pRetVal);

HRESULT	SetCurrentResultSet(LONG	NewValue);

Remarks
A	QueryResults	object	may	contain	multiple	result	sets	of	data.	For	example,

each	result	of	an	individual	command	in	a	Transact-SQL	batch	is	returned	to	the
client	in	its	own	set.	Use	the	CurrentResultSet	property	to	select	the	result	set
desired.

The	ResultSets	property	reports	the	number	of	result	sets	in	the	QueryResults
object.

SQL-DMO

CurrentRunRetryAttempt	Property
The	CurrentRunRetryAttempt	property	indicates	the	number	of	times	SQL
Server	Agent	has	attempted	job	execution	without	success.

Applies	To

Job	Object

Syntax
object.CurrentRunRetryAttempt

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetCurrentRunRetryAttempt(LPLONG	pRetVal);

SQL-DMO

CurrentRunStatus	Property
The	CurrentRunStatus	property	returns	the	executing	state	of	a	SQL	Server
Agent	job.

Applies	To

Job	Object

Syntax
object.CurrentRunStatus

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long,	enumerated.

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetCurrentRunStatus(
SQLDMO_JOBEXECUTION_STATUS*	pRetVal);

Returns
The	CurrentRunStatus	value	is	interpreted	using	these	values.

Constant Value Description
SQLDMOJobExecution_BetweenRetries 3 Job	is

waiting	on	a

job	step
retry
attempt.

SQLDMOJobExecution_Executing 1 Job	is
executing.

SQLDMOJobExecution_Idle 4 Job	is	idle,
awaiting	its
next
scheduled
execution.

SQLDMOJobExecution_PerformingCompletionActions 7 All
executable
job	steps
complete.
Job	history
logging	in
progress.

SQLDMOJobExecution_Suspended 5 Job	is
suspended.

SQLDMOJobExecution_Unknown 0 State	cannot
be
determined.

SQLDMOJobExecution_WaitingForStepToFinish 6 Job	is
waiting	on
the	outcome
of	a	step.

SQLDMOJobExecution_WaitingForWorkerThread 2 Job	is
blocked,
unable	to
obtain	a
thread
resource.

SQL-DMO

CurrentRunStep	Property
The	CurrentRunStep	property	reports	the	currently	executing	step	of	a	SQL
Server	Agent	job.

Applies	To

Job	Object

Syntax
object.CurrentRunStep

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetCurrentRunStep(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
For	executing	jobs,	the	property	reports	the	job	step	by	number,	and	the	name	of
the	job	step	as	a	string,	for	example:	2	(Run	Replication	Agent.).

CurrentRunStep	is	0	(Unknown)	for	idle	jobs	or	whose	execution	status	cannot
be	determined	(CurrentRunStatus	can	be	SQLDMOJobExecution_Idle,
SQLDMOJobExecution_Suspended,	or	SQLDMOJobExecution_Unknown).

SQL-DMO

CurrentValue	Property
The	CurrentValue	property	specifies	a	configuration	parameter	value	for	a	point
in	time.

Applies	To

ConfigValue	Object

Syntax
object.CurrentValue	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCurrentValue(LPLONG	pRetVal);

HRESULT	SetCurrentValue(LONG	NewValue);

Remarks
Modify	the	CurrentValue	property	to	change	Microsoft®	SQL	Server™

configuration	parameter	values.	The	MinimumValue	and	MaximumValue
properties	provide	the	range	of	values	acceptable	for	the	CurrentValue	property.

Setting	the	CurrentValue	property	does	not	change	the	value	of	the
configuration	parameter.	If	the	DynamicReconfigure	property	is	TRUE,	use	the
ReconfigureCurrentValues	or	ReconfigureWithOverride	method	of	the
Configuration	object	to	apply	the	change.	If	DynamicReconfigure	is	FALSE,
the	server	must	be	restarted	to	apply	the	change.

SQL-DMO

CursorCloseOnCommit	Property
The	CursorCloseOnCommit	property	specifies	cursor	behavior	when
modifications	made	within	a	transaction	are	committed	or	rolled	back.

Applies	To

DBOption	Object

Syntax
object.CursorCloseOnCommit	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCursorCloseOnCommit(LPBOOL	pRetVal);

HRESULT	SetCursorCloseOnCommit(BOOL	NewValue);

Remarks
If	TRUE	Microsoft®	SQL	Server™	cursors	are	closed	when	an	action	ends	a

transaction,	such	as	the	CommitTransaction	method	of	the	SQLServer	object.
TRUE	is	the	default.

If	FALSE,	cursors	remain	open	after	a	transaction-ending	action.	The	cursor
should	be	closed	by	the	application	when	the	cursor	is	no	longer	needed.

Setting	the	property	affects	all	statements	executed	on	the	SQLServer	object
from	which	the	DBOption	object	is	selected.

SQL-DMO

D

SQL-DMO

Database	Property
The	Database	property	identifies	a	Microsoft®	SQL	Server™	database.

Applies	To

Backup	Object Restore	Object
Login	Object 	

Syntax
object.Database	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	a	SQL	Server	database	by	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDatabase(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDatabase(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
For	a	Login	object,	the	Database	property	identifies	the	default	database	for	the
SQL	Server	login	referenced.

For	a	Backup	or	Restore	object,	the	Database	property	identifies	the	source	or
target	database	for	a	Transact-SQL	BACKUP	or	RESTORE	statement.	The
property	is	a	required	element	and	must	be	set	prior	to	calling	the	SQLBackup
method	of	the	Backup	object	or	the	SQLRestore	method	of	the	Restore	object.

SQL-DMO

DatabaseFileGroups	Property
The	DatabaseFileGroups	property	identifies	filegroups	targeted	by	a	backup	or
restore	operation.

Applies	To

Backup	Object Restore	Object

Syntax
object.DatabaseFileGroups	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

SQL-DMO	multistring	identifying	one	or	more	filegroups	by	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDatabaseFileGroups(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDatabaseFileGroups(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
Setting	DatabaseFileGroups	directs	backup	or	restore	processing	to	include
only	those	filegroups	listed.

Set	DatabaseFileGroups	to	an	empty	string	to	reset	processing	and	target	the
entire	database.

For	more	information	about	setting	multistring	parameters,	see	Using	SQL-
DMO	Multistrings.

SQL-DMO

DatabaseFiles	Property
The	DatabaseFiles	property	identifies	operating	system	files	that	store	table	or
index	data	as	targets	of	a	backup	or	restore	operation.

Applies	To

Backup	Object Restore	Object

Syntax
object.DatabaseFiles	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

SQL-DMO	multistring	that	identifies	one	or	more	operating	system	files	by
logical	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDatabaseFiles(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDatabaseFiles(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
Setting	DatabaseFiles	directs	backup	or	restore	processing	to	include	only	those
operating	system	files	listed.	To	specify	an	operating	system	file,	use	its	logical
name	as	visible	to	Microsoft®	SQL	Server™,	not	its	physical	or	operating
system	name.

Set	DatabaseFiles	to	an	empty	string	to	reset	processing	and	target	the	entire
database.

For	more	information	about	setting	multistring	parameters,	see	Using	SQL-
DMO	Multistrings.

SQL-DMO

DatabaseName	Property
The	DatabaseName	property	represents	the	name	of	an	existing	Microsoft®
SQL	Server™	database.	It	constrains	SQLServerAgent	service	alerts	or	directs
execution	of	SQLServerAgent	job	steps.

Applies	To

Alert	Object JobStep	Object

Syntax
object.DatabaseName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Specifies	an	existing	SQL	Server	database	by	name

Data	Type
String

Modifiable
Read/write.	When	setting	the	property	for	an	Alert	or	JobStep,	the	value	must
reference	an	existing	SQL	Server	database.

Prototype	(C/C++)
HRESULT	GetDatabaseName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDatabaseName(SQLDMO_LPCSTR	NewVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
SQLServerAgent	alerts	can	be	fired	when	a	specified	system	message	is
generated	by	an	action	occurring	on	an	instance	of	SQL	Server.	Alerts	based	on
messages	can	be	constrained	so	the	alert	is	only	fired	when	the	action	occurs
within	a	single	database.	For	example,	system	message	1105	is	generated	when	a
database	is	full	and	can	accept	no	more	rows.	An	Alert	object	representing	this
alert	for	the	Northwind	database	would	have	a	MessageID	value	of	1105	and	a
DatabaseName	value	of	Northwind.

Each	step	of	a	SQL	Server	Agent	job	can	execute	in	a	specified	database.	Setting
the	DatabaseName	property	of	a	JobStep	object	directs	the	execution	of	the
represented	step.

SQL-DMO

DatabaseUserName	Property
The	DatabaseUserName	property	exposes	the	execution	context	of	a	SQL
Server	Agent	service	job	step.

Applies	To

JobStep	Object

Syntax
object.DatabaseUserName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDatabaseUserName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDatabaseUserName(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
A	SQL	Server	Agent	job	step	can	execute	by	assuming	the	privilege	of	a
database	user.	Change	the	DatabaseUserName	property	to	set	the	user
execution	context	for	a	job	step.	The	default	value	is	"dbo",	and	job	steps
execute	using	database	owner	permissions.

SQL-DMO

DataFile	Property
The	DataFile	property	specifies	the	operating	system	name	of	the	primary	file
implementing	the	referenced	Microsoft®	SQL	Server™	replication	distribution
database.

Applies	To

DistributionDatabase	Object

Syntax
object.DataFile	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	an	operating	system	file	by	name

Data	Type
String

Modifiable
Read/write	when	using	the	DistributionDatabase	object	to	create	a	replication
distribution	database.	Read-only	when	a	DistributionDatabase	object
references	an	existing	SQL	Server	database.

Prototype	(C/C++)
HRESULT	GetDataFile(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDataFile(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
Data	storage	for	a	SQL	Server	database	is	implemented	in	one	or	more	operating
system	files.	One	operating	system	file	maintains	database-specific	system	table
data	and	is	identified	as	the	primary	database	file.

When	using	the	DistributionDatabase	object	to	create	a	replication	distribution
database,	fully	specify	an	operating	system	file	by	setting	the	DataFolder	and
DataFile	properties.

See	Also

DataFolder	Property

SQL-DMO

DataFilePath	Property
The	DataFilePath	property	indicates	the	target	or	source	for	a	Microsoft®	SQL
Server™	bulk	copy	operation.

Applies	To

BulkCopy	Object

Syntax
object.DataFilePath	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	an	operating	system	file

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDataFilePath(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDataFilePath(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	operating	system	file	specified	by	the	DataFilePath	property	is	the
destination	for	the	data	copy	performed	by	the	ExportData	method	of	Table	and
View	objects.	It	is	the	source	file	for	the	ImportData	method	of	Table	objects.

SQL-DMO

DataFileSize	Property
The	DataFileSize	property	exposes	the	size	of	a	Microsoft®	SQL	Server™
database	used	for	replication	distribution.

Applies	To

DistributionDatabase	Object

Syntax
object.DataFileSize	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	file	size	in	MB

Data	Type
Long

Modifiable
Read/write	when	using	the	DistributionDatabase	object	to	create	a	replication
distribution	database.	Read-only	when	a	DistributionDatabase	object
references	an	existing	SQL	Server	database.

Prototype	(C/C++)
HRESULT	GetDataFileSize(LPDWORD	pRetVal);

HRESULT	SetDataFileSize(DWORD	NewValue);

Remarks
DataFileSize	returns	the	current	size	of	the	primary	file	implementing	a	SQL
Server	replication	distribution	database.

Set	DataFileSize	to	control	the	initial	size	of	the	database	primary	file	created
when	using	the	DistributionDatabase	object	to	create	a	SQL	Server	database
for	replication	distribution.

SQL-DMO

DataFileType	Property
Microsoft®	SQL	Server™	bulk	copy	operations	can	copy	to	or	read	from	files
containing	data	in	a	number	of	formats.	Use	the	DataFileType	property	to
indicate	the	format	type	of	the	file	desired	or	in	use.

Applies	To

BulkCopy	Object

Syntax
object.DataFileType	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Specifies	the	data	content	of	the	target	or	source	of	the	bulk	copy	operation
as	described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDataFileType(SQLDMO_DATAFILE_TYPE*	pRetVal);

HRESULT	SetDataFileType(SQLDMO_DATAFILE_TYPE	NewValue);

Settings

Constant Value Description
SQLDMODataFile_CommaDelimitedChar 1 Columns	are	delimited	using	a	comma

character.	Each	data	row	is	delimited	by	a
carriage	return/linefeed	character	pair.

SQLDMODataFile_Default 1 SQLDMODataFile_CommaDelimitedChar.
SQLDMODataFile_NativeFormat 4 SQL	Server	bulk	copy	native	format.
SQLDMODataFile_SpecialDelimitedChar 3 User-defined	by	the	ColumnDelimiter

RowDelimiter	properties	of	the	
object.

SQLDMODataFile_TabDelimitedChar 2 Columns	are	delimited	using	a	tab
character.	Each	data	row	is	delimited	by	a
carriage	return/linefeed	character	pair.

SQLDMODataFile_UseFormatFile 5 Bulk	copy	uses	the	file	identified	in	the
FormatFilePath	property	of	the
BulkCopy	object.

Remarks
When	DataFileType	property	is	SQLDMODataFile_NativeFormat,	use	the
Use6xCompatible	property	to	specify	SQL	Server	version	compatibility.

See	Also

ColumnDelimiter	Property

RowDelimiter	Property

FormatFilePath	Property

Use6xCompatible	Property

SQL-DMO

DataFolder	Property
The	DataFolder	property	specifies	the	path	of	the	operating	system	files
implementing	the	referenced	Microsoft®	SQL	Server™	replication	distribution
database.

Applies	To

DistributionDatabase	Object

Syntax
object.DataFolder	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	an	operating	system	path	by	name

Data	Type
String

Modifiable
Read/write	when	using	the	DistributionDatabase	object	to	create	a	replication
distribution	database.	Read-only	when	a	DistributionDatabase	object
references	an	existing	SQL	Server	database.

Prototype	(C/C++)
HRESULT	GetDataFolder(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDataFolder(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
When	using	the	DistributionDatabase	object	to	create	a	replication	distribution
database,	fully	specify	an	operating	system	file	by	setting	the	DataFolder	and
DataFile	properties.

See	Also

DataFile	Property

SQL-DMO

DataSource	Property
The	DataSource	property	specifies	the	OLE	DB	data	source	part	of	initialization
properties	used	by	a	provider	to	locate	a	data	store.

Applies	To

LinkedServer	Object

Syntax
object.DataSource	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

OLE	DB	provider-defined	string

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDataSource(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDataSource(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
DataSource	provides	a	value	for	the	OLE	DB	initialization	property
DBPROP_INIT_DATASOURCE.	Initialization	properties	are	set	for	the
provider	when	an	attempt	is	made	to	connect	to	the	OLE	DB	data	source
referenced	by	the	LinkedServer	object.	For	more	information	about	values	for
the	DataSource	property,	see	the	OLE	DB	provider	documentation.

See	Also

Location	Property	(LinkedServer)

SQL-DMO

DataSpaceUsage	Property
The	DataSpaceUsage	property	indicates	the	physical	disk	resource	used	to
maintain	the	data	of	a	database.

Applies	To

Database	Object

Syntax
object.DataSpaceUsage

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Float

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetDataSpaceUsage(LPFLOAT	pRetVal);

Remarks
The	value	reflects	the	amount	of	space	in	use	and	reserved	for	use.	The	actual
data	space	used	by	any	given	table	is	reported	by	the	DataSpaceUsed	property
of	the	Table	object.	The	value	represents	an	amount	in	kilobytes	and	is	accurate

to	two	decimal	places.

SQL-DMO

DataSpaceUsed	Property
The	DataSpaceUsed	property	reports	the	storage	space,	in	kilobytes,	used	by	the
rows	of	the	referenced	table.

Applies	To

Table	Object

Syntax
object.DataSpaceUsed

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetDataSpaceUsed(LPLONG	pRetVal);

Remarks
The	value	is	the	actual	amount	of	disk	space	required	to	store	the	row	data	of	the
referenced	table.	Microsoft®	SQL	Server™	may	allocate	additional,	unused
space	to	a	Table	object.

SQL-DMO

Datatype	Property
The	Datatype	property	exposes	the	data	type	name	for	the	referenced	column.

Applies	To

Column	Object

Syntax
object.Datatype	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Text	string	that	identifies	a	Microsoft®	SQL	Server™	system	or	user-defined
data	type

Data	Type
String

Modifiable
Read/write	before	column	creation.	Read-only	when	referencing	an	existing
column.

Prototype	(C/C++)
HRESULT	GetDatatype(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDatatype(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	Datatype	property	may	not	completely	define	the	data	type	of	a	column.
Columns	requiring	width	specification,	such	as	varchar,	or	specification	of	scale
and	precision,	such	as	decimal,	are	defined	using	the	Datatype	property	in
concert	with	Length,	NumericPrecision,	and	NumericScale	properties.

Use	the	AlterDataType	method	to	change	the	data	type	of	an	existing	column.

See	Also

AlterDataType	Method

Length	Property

NumericScale	Property

NumericPrecision	Property

SQL-DMO

DateCreated	Property
The	DateCreated	property	indicates	the	creation	date	and	time	of	the	referenced
Microsoft®	SQL	Server™	job	or	job	schedule.

Applies	To

Job	Object JobSchedule	Object

Syntax
object.DateCreated

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetDataCreated(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

The	creation	date	is	returned	as	a	string,	formatted	using	the	client	locale.

SQL-DMO

DateFindOperand	Property
The	DateFindOperand	property	directs	evaluation	of	the	DateJobCreated	and
DateJobLastModified	properties.

Applies	To

JobFilter	Object

Syntax
object.DateFindOperand	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	comparison	operand	as	described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDateFindOperand(SQLDMO_FIND_OPERAND*	pRetVal);

HRESULT	SetDateFindOperand(SQLDMO_FIND_OPERAND	NewValue);

Settings

Constant Value Description
SQLDMOFindOperand_EqualTo 1 Default.	Return	values	equal

to	the	user-defined,
qualifying	value.

SQLDMOFindOperand_GreaterThan 2 Return	values	greater	than	the
user-defined,	qualifying
value.

SQLDMOFindOperand_LessThan 3 Return	values	less	than	the
user-defined,	qualifying
value.

SQLDMOFindOperand_Unknown 0 Do	not	apply	filtering	on
comparison	against	the
qualifying	value.

Remarks
The	EnumJobs	method	of	the	JobServer	object	lists	SQLServerAgent	jobs.	Set
the	properties	of	the	method's	JobFilter	part	to	direct	job	enumeration.

The	DateJobCreated	property	filters	results	by	creation	date.	The
DateJobLastModified	property	filters	results	by	modification	date.	By	default,
the	EnumJobs	method	evaluates	filter	properties	for	equality.	Set	the
DateFindOperand	property	to	direct	evaluation	of	the	filter	dates,	for	example,
to	list	jobs	created	after	a	given	date.

SQL-DMO

DateJobCreated	Property
The	DateJobCreated	property	controls	result	set	membership	for	the
EnumJobs	method	of	the	JobServer	object.

Applies	To

JobFilter	Object

Syntax
object.DateJobCreated	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

String	that	specifies	a	date.	For	more	information	about	valid	string	formats,
see	Using	Date	and	Time	Data.	

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDateJobCreated(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDateJobCreated(SQLDMO_LPBSTR	pRetVal);

JavaScript:hhobj_1.Click()

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	EnumJobs	method	of	the	JobServer	object	lists	SQLServerAgent	jobs.	Set
the	properties	of	the	method's	JobFilter	part	to	direct	job	enumeration.

The	DateJobCreated	property	filters	results	by	creation	date.

SQL-DMO

DateJobLastModified	Property
The	DateJobLastModified	property	controls	result	set	membership	for	the
EnumJobs	method	of	the	JobServer	object.

Applies	To

JobFilter	Object

Syntax
object.DateJobLastModified	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

String	that	specifies	a	date.	For	more	information	about	valid	string	formats,
see	Using	Date	and	Time	Data.	

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDateJobLastModified(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDateJobLastModified(SQLDMO_LPBSTR	pRetVal);

JavaScript:hhobj_1.Click()

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	EnumJobs	method	of	the	JobServer	object	lists	SQLServerAgent	jobs.	Set
the	properties	of	the	method's	JobFilter	part	to	direct	job	enumeration.

The	DateJobLastModified	property	filters	results	by	most	recent	change	date.

SQL-DMO

DateLastModified	Property
The	DateLastModified	property	exposes	the	most	recent	date	on	which	a
change	was	applied	to	the	referenced	SQLServerAgent	job.

Applies	To

Job	Object

Syntax
object.DateLastModified

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetDateLastModified(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

The	date	is	returned	as	a	string,	formatted	using	the	client	locale	setting.

SQL-DMO

Day	Property
The	Day	property	returns	the	text	string	representing	the	name	of	a	day	in	the
referenced	language.

Applies	To

Language	Object

Syntax
object.Day(OrdinalDay)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

OrdinalDay

Long	integer	that	specifies	a	day	of	the	week

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetDay(long	nDay,	SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	Day	property	is	used	to	retrieve	the	days	of	the	week,	singly,	by	their	ordinal
value	where	Monday	is	represented	as	day	1.	For	example,	a	Language	object
referencing	an	installed	Microsoft®	SQL	Server™	German	language	might
return	the	string	Mittwoch	when	the	property	Day(3)	is	referenced.

SQL-DMO

Days	Property
The	Days	property	identifies	the	names	of	the	days	of	the	week	for	a	Microsoft®
SQL	Server™	language	record.

Applies	To

Language	Object

Syntax
object.Days

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetDays(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

The	Days	property	string	contains	seven	members	in	a	SQL-DMO	multistring.
The	first	member	is	the	day	name	for	Monday.	The	locale	start	of	the	calendar
week	is	set	using	the	FirstDayOfWeek	property.

For	example,	the	string
Montag,Dienstag,Mittwoch,Donnerstag,Freitag,Samstag,Sonntag	is	the	Days
property	for	the	German	(Deutsch)	language	record.	For	the	language	record,	the
FirstDayOfWeek	property	is	1,	indicating	that	Monday	(Montag)	is	the	start	of
the	calendar	week.

For	more	information	about	setting	multistring	parameters,	see	Using	SQL-
DMO	Multistrings.

SQL-DMO

DboLogin	Property
The	DboLogin	property	identifies	database	ownership	privilege	for	the	current
session.

Applies	To

Database	Object

Syntax
object.DboLogin

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetDboLogin(LPBOOL	pRetVal);

Remarks
If	TRUE,	the	user	mapping	the	login	used	for	client	application	connection
authentication	has	database	ownership	privilege.

If	FALSE,	the	user	mapping	the	login	does	not	have	database	ownership

privilege.

SQL-DMO

DBOUseOnly	Property
The	DBOUseOnly	property	toggles	access	rights	to	a	Microsoft®	SQL	Server™
database.

Applies	To

DBOption	Object

Syntax
object.DBOUseOnly	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDBOUseOnly(LPBOOL	pRetVal);

HRESULT	SetDBOUseOnly(BOOL	NewValue);

Remarks
If	TRUE,	only	users	with	database	ownership	privileges	can	access	the	database.

If	FALSE,	any	authorized	user	can	access	the	database.

SQL-DMO

DBOwner	Property
The	DBOwner	property	returns	database	ownership	rights	for	the	current
connection	for	a	referenced	Microsoft®	SQL	Server™	database	available	for
replication.

Applies	To

ReplicationDatabase	Object

Syntax
object.DBOwner

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetDBOwner(LPBOOL	pRetVal);

Remarks
If	TRUE,	the	user	authenticated	for	the	current	connection	is	a	member	of	the
fixed	database	role	db_owner	and	has	ownership	rights	in	the	referenced

database.

If	FALSE,	the	user	of	the	current	connection	is	not	a	member	of	the	fixed
database	role	db_owner.

SQL-DMO

DBReadOnly	Property
The	DBReadOnly	property	returns	TRUE	if	the	current	Microsoft®	SQL
Server™	database	is	read-only.

Applies	To

ReplicationDatabase2	Object

Syntax
object.DBReadOnly

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetDBReadOnly(LPBOOL	pRetVal);

Remarks
If	a	database	is	in	read-only	mode,	no	objects	can	be	added	to,	modified	in,	or
removed	from	the	database.	This	includes	replication	objects	such	as
publications	and	subscriptions.	A	database	should	not	be	in	read-only	mode	if	a

user	expects	replication	to	function	properly.

Note		If	an	application	calls	DBReadOnly	on	an	instance	of	SQL	Server	version
7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This	property
or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

Default	Property	(Column,	UserDefinedDatatype)
The	Default	property	identifies	a	Microsoft®	SQL	Server™	default	bound	to	a
column	or	user-defined	data	type.

Applies	To

Column	Object UserDefinedDatatype	Object

Syntax
object.Default	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Name	of	a	default	defined	in	the	SQL	Server	database

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDefault(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDefault(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	BindToColumn	and	BindToDatatype	methods	of	the	Default	object	can
also	set	this	property.

SQL-DMO

Default	Property	(FileGroup)
The	Default	property	indicates	the	filegroup	used	when	no	filegroup	is	specified
as	part	of	table	or	index	creation.

Applies	To

FileGroup	Object

Syntax
object.Default	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDefault(LPBOOL	pRetVal);

HRESULT	SetDefault(BOOL	NewValue);

Remarks
If	TRUE,	the	referenced	filegroup	is	used	to	implement	table	or	index	data
storage	when	a	table	or	index	is	created	and	no	filegroup	is	specified.

If	FALSE,	the	referenced	filegroup	is	not	used	as	the	default	in	table	and	index
creation.	The	filegroup	may	be	specified	by	name	to	direct	creation.

SQL-DMO

DefaultCursor	Property
The	DefaultCursor	property	controls	the	visibility	of	cursors	created	in
Transact-SQL	batches.

Applies	To

DBOption	Object

Syntax
object.DefaultCursor	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDefaultCursor(LPBOOL	pRetVal);

HRESULT	SetDefaultCursor(BOOL	NewValue);

Remarks
Microsoft®	SQL	Server™	cursor	scope	may	be	local,	meaning	visible	only
within	the	scope	of	a	batch,	or	global,	meaning	visible	to	any	process	within	the
scope	of	the	session.

If	TRUE,	cursors	declared	in	a	batch	are	created	with	local	scope.

If	FALSE,	cursors	declared	in	a	batch	are	created	with	global	scope.

For	more	information,	see	DECLARE	CURSOR.

JavaScript:hhobj_1.Click()

SQL-DMO

DefaultDomain	Property
The	DefaultDomain	property	is	maintained	for	compatibility	with	earlier
versions	of	SQL-DMO.

Applies	To

IntegratedSecurity	Object

Syntax
object.DefaultDomain	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Reserved

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDefaultDomain(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDefaultDomain(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
For	more	information	about	Microsoft®	SQL	Server™	security	and	access
control,	see	Managing	Security.

JavaScript:hhobj_1.Click()

SQL-DMO

DefaultLogin	Property
The	DefaultLogin	property	is	maintained	for	compatibility	with	earlier	versions
of	SQL-DMO.

Applies	To

IntegratedSecurity	Object

Syntax
object.DefaultLogin	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Reserved

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDefaultLogin(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDefaultLogin(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
For	more	information	about	Microsoft®	SQL	Server™	security	and	access
control,	see	Managing	Security.

JavaScript:hhobj_1.Click()

SQL-DMO

DefaultOwner	Property
The	DefaultOwner	property	returns	the	name	of	the	Microsoft®	SQL	Server™
database	user	owning	the	default	bound	to	the	referenced	column	or	user-defined
data	type.

Applies	To

Column	Object UserDefinedDatatype	Object

Syntax
object.DefaultOwner

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetDefaultOwner(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
When	the	referenced	column	or	user-defined	data	type	has	no	default	bound	to	it,
the	DefaultOwner	property	returns	an	empty	string.

SQL-DMO

DefaultPath	Property
The	DefaultPath	property	returns	the	operating	system	path	naming	a	directory
used	as	a	root	for	Microsoft	Search	full-text	catalog	implementation	if	no	user-
specified	path	is	supplied	during	full-text	catalog	creation.

Applies	To

FullTextService	Object

Syntax
object.DefaultPath

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetDefaultPath(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
Specify	a	full-text	catalog-specific	path	using	the	RootPath	property.

See	Also

RootPath	Property

SQL-DMO

DelayBetweenResponses	Property
The	DelayBetweenResponses	property	represents	the	number	of	seconds
SQLServerAgent	waits	before	it	generates	another	response	for	an	alert.

Applies	To

Alert	Object

Syntax
object.DelayBetweenResponses	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	number	of	seconds	to	wait

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDelayBetweenResponses(LPLONG	pRetVal);

HRESULT	SetDelayBetweenResponses(long	NewValue);

Remarks
SQLServerAgent	sends	e-mail	or	a	network	pop-up	message	to	an	operator,
pages	an	operator,	or	logs	a	message	in	response	to	a	raised	alert.	An	alert	can	be
raised	many	times	in	a	short	period	of	time.	By	default,	each	time	the	alert	is
raised,	a	response	is	made.	Using	the	DelayBetweenResponses	property,	the
alert	can	be	tailored	so	that	no	matter	how	many	times	it	is	raised	in	a	period	of
time,	only	a	single	response	is	generated.

SQL-DMO

DeleteCommand	Property
The	DeleteCommand	property	exposes	the	Transact-SQL	script	used	to
replicate	a	row	delete	operation	in	a	transactional	replication	article.

Applies	To

TransArticle	Object

Syntax
object.DeleteCommand	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	a	Transact-SQL	script

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDeleteCommand(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDeleteCommand(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	format	and	contents	of	the	DeleteCommand	property	must	match	those
specified	for	the	@del_cmd	argument	of	the	system	stored	procedure
sp_addarticle.	For	more	information,	see	sp_addarticle.

Note		If	an	application	sets	DeleteCommand	after	the	initial	snapshot	has	been
created,	a	new	snapshot	must	be	generated	and	reapplied	to	each	subscription.
Snapshots	are	applied	when	the	next	scheduled	snapshot	and	distribution	agent
run.

JavaScript:hhobj_1.Click()

SQL-DMO

DeleteLevel	Property
The	DeleteLevel	property	controls	post-execution	processing	for
SQLServerAgent	jobs.

Applies	To

Job	Object

Syntax
object.DeleteLevel	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	job	completion	status	as	described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDeleteLevel(SQLDMO_COMPLETION_TYPE*	pRetVal);

HRESULT	SetDeleteLevel(SQLDMO_COMPLETION_TYPE	NewValue);

Settings

Constant Value Description
SQLDMOComp_All 6 Delete	regardless	of	success	or

failure.
SQLDMOComp_Always 3 Delete	regardless	of	success	or

failure.
SQLDMOComp_Failure 2 Delete	on	failed	completion.
SQLDMOComp_None 0 Default.	Ignore	any	completion

status.	Do	not	delete.
SQLDMOComp_Success 1 Delete	on	successful	completion.

Remarks
If	directed,	SQLServerAgent	can	delete	a	job	definition	when	execution
succeeds	or	fails.	By	default,	jobs	are	not	deleted	when	execution	completes,
regardless	of	the	success	or	failure	of	the	job.

Set	DeleteLevel	to	control	agent	deletion	of	jobs	after	execution.

SQL-DMO

DenyNTLogin	Property
The	DenyNTLogin	property	controls	access	to	an	instance	of	Microsoft®	SQL
Server™	for	login	records	that	identify	Microsoft	Windows	NT®	users	or
groups.

Applies	To

Login	Object

Syntax
object.DenyNTLogin	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDenyNTLogin(LPBOOL	pRetVal);

HRESULT	SetDenyNTLogin(BOOL	NewValue);

Remarks
When	TRUE,	any	Windows	NT	authenticated	connection	attempt	that	specifies
the	user	or	group	name	fails	authentication.

When	FALSE,	the	Windows	NT	user	or	group	is	allowed	access	to	the	instance
of	SQL	Server	on	which	the	login	is	defined.	Access	rights	are	established
through	login	and	user	role	memberships	and	permissions	explicitly	granted	on
databases	and	database	objects.

Use	DenyNTLogin	to	specifically	deny	access	to	Windows	NT	users	and
groups.

SQL-DMO

Description	Property
The	Description	property	specifies	informational	text	for	a	Microsoft®	SQL
Server™	or	SQLServerAgent	object.

Applies	To

ConfigValue	Object MergeSubscription	Object
DistributionArticle	Object RegisteredSubscriber	Object
DistributionPublication	Object ServerRole	Object
Job	Object TransArticle	Object
MergeArticle	Object TransPublication	Object
MergePublication	Object TransPullSubscription	Object
MergePullSubscription	Object 	

Syntax
object.Description	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	contains	descriptive	text

Data	Type
String

Modifiable
Read-only	for	a	ConfigValue	or	ServerRole	object.	Read/write	for	all	other

objects.

Prototype	(C/C++)
HRESULT	GetDescription(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDescription(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

DestDatabase	Property
The	DestDatabase	property	specifies	the	transfer	target	database.

Applies	To

Transfer	Object

Syntax
object.DestDatabase	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	is	valid	as	a	Microsoft®	SQL	Server™	database	identifier

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDestDatabase(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDestDatabase(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the

reference	using	SysFreeString.

SQL-DMO

DestinationObjectName	Property
The	DestinationObjectName	property	specifies	the	name	of	table	or	stored
procedure	created	as	the	target	of	a	transactional	replication	article.

Applies	To

MergeArticle2	Object TransArticle	Object

Syntax
object.DestinationObjectName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	a	valid	Microsoft®	SQL	Server™	table	or	stored
procedure	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDestinationObjectName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDestinationObjectName(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
For	a	TransArticle	object,	the	SourceObjectName	property	provides	the
default	for	DestinationObjectName.

Specify	an	alternate	owner	for	the	published	object	using	the
DestinationOwnerName	property.

Although	the	DestinationObjectName	property	is	a	read/write	property	of	the
TransArticle	object,	setting	DestinationObjectName	for	a	MergeArticle2
object	has	no	effect.	The	value	of	the	DestinationObjectName	property	of	the
MergeArticle2	object	is	always	the	same	as	the	value	of	the
SourceObjectName	property.

Note		If	an	application	sets	DestinationObjectName	with	the	TransArticle
object	after	the	initial	snapshot	has	been	created,	a	new	snapshot	must	be
generated	and	reapplied	to	each	subscription.	Snapshots	are	applied	when	the
next	scheduled	snapshot	and	distribution	agent	run.

See	Also

DestinationOwnerName	Property

SourceObjectName	Property

SQL-DMO

DestinationOwnerName	Property
The	DestinationOwnerName	property	specifies	a	Microsoft®	SQL	Server™
user	owning	the	table	or	stored	procedure	created	as	the	target	of	a	transactional
replication	article.

Applies	To

MergeArticle2	Object TransArticle	Object

Syntax
object.DestinationOwnerName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	a	SQL	Server	user	existing	at	the	Subscriber	and	having
object	ownership	rights	in	the	replication	target	database

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDestinationOwnerName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDestinationOwnerName(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
By	default,	DestinationOwnerName	is	an	empty	string	and	replicated	objects
are	created	by	the	user	specified	through	Subscriber	authentication	settings.

Note		If	an	application	sets	DestinationOwnerName	after	the	initial	snapshot
has	been	created,	a	new	snapshot	must	be	generated	and	reapplied	to	each
subscription.	Snapshots	are	applied	when	the	next	scheduled	snapshot	and
distribution	or	merge	agent	run.

SQL-DMO

DestLogin	Property
The	DestLogin	property	provides	a	login	account	used	to	connect	to	a	transfer
target	server.

Applies	To

Transfer	Object

Syntax
object.DestLogin	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	a	valid	Microsoft®	SQL	Server™	login	ID

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDestLogin(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDestLogin(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	DestLogin	property	is	queried	when	the	Transfer	object	uses	SQL	Server
Authentication	to	connect	to	the	transfer	target	server.	The
DestUseTrustedConnection	property	controls	Transfer	object	use	of	SQL
Server	Authentication.

See	Also

DestUseTrustedConnection	Property

SQL-DMO

DestPassword	Property
The	DestPassword	property	provides	a	password	used	to	connect	to	a	transfer
target	server.

Applies	To

Transfer	Object

Syntax
object.DestPassword	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Valid	Microsoft®	SQL	Server™	password	string

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDestPassword(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDestPassword(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	DestPassword	property	is	queried	when	the	Transfer	object	uses	SQL
Server	Authentication	to	connect	to	the	transfer	target	server.	The
DestUseTrustedConnection	property	controls	the	Transfer	object	use	of	SQL
Server	Authentication.

See	Also

DestUseTrustedConnection	Property

SQL-DMO

DestServer	Property
The	DestServer	property	identifies	an	instance	of	Microsoft®	SQL	Server™
that	contains	the	target	database	for	a	transfer	operation.

Applies	To

Transfer	Object

Syntax
object.DestServer	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Identifies	an	instance	of	SQL	Server,	by	name,	in	the	organization

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDestServer(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDestServer(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

DestTranslateChar	Property
The	DestTranslateChar	property	performs	character	data	translation	on	a
destination	server	during	a	transfer	operation.

Applies	To

Transfer2	Object

Syntax
object.DestTranslateChar	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDestTranslateChar(LPBOOL	pRetVal);

HRESULT	SetDestTranslateChar(BOOL	NewValue);

Remarks
Performing	character	data	translation	during	a	transfer	operation	can
significantly	impact	server	performance	if	a	large	amount	of	data	must	be
translated.	Set	DestTranslateChar	to	TRUE	to	perform	character	translation	on
the	destination	server.

Set	SourceTranslateChar	to	TRUE	to	resume	character	translation	on	the
source	server.

DestTranslateChar	is	set	to	FALSE	by	default.

Note		DestTranslateChar	can	be	used	with	Microsoft®	SQL	Server™	2000	and
SQL	Server	version	7.0.

See	Also

SourceTranslateChar	Property

SQL-DMO

DestUseTrustedConnection	Property
The	DestUseTrustedConnection	property	requests	Windows	NT	Authentication
for	the	connection	of	the	Transfer	object	to	the	target	server.

Applies	To

Transfer	Object

Syntax
object.DestUseTrustedConnection	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDestUseTrustedConnection(LPBOOL	pRetVal);

HRESULT	SetDestUseTrustedConnection(BOOL	NewValue);

Remarks
If	TRUE,	Windows	NT	Authentication	is	used	in	an	attempt	to	connect	to	the
target	server.

If	FALSE,	SQL	Server	Authentication	is	used	in	the	connection	attempt.	The
DestLogin	and	DestPassword	properties	of	the	Transfer	object	provide	login
authentication	parameters.

See	Also

DestLogin	Property

DestPassword	Property

SQL-DMO

DeviceNumber	Property
The	DeviceNumber	property	is	maintained	for	compatibility	with	earlier
versions	of	SQL-DMO.

Applies	To

BackupDevice	Object

Syntax
object.DeviceNumber

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetDeviceNumber(LPLONG	pRetVal);

SQL-DMO

Devices	Property
The	Devices	property	specifies	one	or	more	backup	devices	used	as	a	database
backup	target	or	restore	source.

Applies	To

Backup	Object Restore	Object

Syntax
object.Devices	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

SQL-DMO	multistring	that	specifies	backup	devices	by	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDevices(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDevices(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	backup	medium	for	a	backup	or	restore	operation	is	specified	using	either
the	Devices,	Files,	Pipes,	or	Tapes	properties.	Only	one	medium	type	can	be
specified	for	any	backup	or	restore	operation,	but	multiple	media	may	be
specified.

Set	the	Devices	property	to	specify	one	or	more	Microsoft®	SQL	Server™
backup	devices	as	the	backup	medium.	Specify	more	than	a	single	database	file
to	stripe	the	backup	operation	or	restore	from	a	striped	backup	set.	For	more
information,	see	Using	Multiple	Media	or	Devices.

For	more	information	about	setting	multistring	parameters,	see	Using	SQL-
DMO	Multistrings.

See	Also

Files	Property

Tapes	Property

Pipes	Property

JavaScript:hhobj_1.Click()

SQL-DMO

DistributionAgent	Property
The	DistributionAgent	property	returns	the	name	of	the	SQLServerAgent	job
that	starts	the	replication	agent	providing	distribution.

Applies	To

DistributionSubscription	Object

Syntax
object.DistributionAgent

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetDistributionAgent(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

DistributionCleanupTaskName	Property
The	DistributionCleanupTaskName	property	identifies	the	SQLServerAgent
job	responsible	for	maintenance	of	the	database	used	by	the	replication
Distributor.

Applies	To

DistributionDatabase	Object

Syntax
object.DistributionCleanupTaskName

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetDistributionCleanupTaskName(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

DistributionDatabase	Property
The	DistributionDatabase	property	identifies	the	Microsoft®	SQL	Server™
database	used	by	a	Distributor	or	DistributionPublisher	object	as	a	workspace.

Applies	To

DistributionPublisher	Object Distributor	Object

Syntax
object.DistributionDatabase	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Name	of	an	existing	SQL	Server	database

Data	Type
String

Modifiable
Read/write	for	a	DistributionPublisher	object;	read-only	for	a	Distributor
object.

Prototype	(C/C++)
HRESULT	GetDistributionDatabase(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDistributionDatabase(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

DistributionJobID	Property
The	DistributionJobID	property	identifies	the	SQLServerAgent	job	responsible
for	the	distribution	of	published	data.

Applies	To

DistributionSubscription2	Object TransSubscription	Object
TransPullSubscription	Object 	

Syntax
object.DistributionJobID

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetDistributionJobID(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
DistributionJobID	is	a	32-byte	hexadecimal	character	representation	of	the
unique	identifier	of	the	job.	Microsoft®	SQL	Server™	job	names	are	not	unique.
The	DistributionJobID	property	provides	a	unique	method	of	identification.

SQL-DMO

DistributionServer	Property
The	DistributionServer	property	identifies	an	instance	of	Microsoft®	SQL
Server™	that	acts	as	a	Distributor	for	published	data.

Applies	To

Distributor	Object

Syntax
object.DistributionServer	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Name	of	an	instance	of	SQL	Server	in	the	organization

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDistributionServer(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDistributionServer(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
For	SQL	Server,	replication	Publishers	do	not	need	to	also	distribute	published
data.	One	or	more	instances	of	SQL	Server	may	act	as	Distributors.	If	the
Publisher	is	not	its	own	Distributor,	the	DistributionServer	identifies	that
server.

For	instances	of	SQL	Server	that	act	as	their	own	Distributors,	the
DistributionServer	property	is	equal	to	the	Name	property	of	the	SQLServer
object.

SQL-DMO

DistributionWorkingDirectory	Property
The	DistributionWorkingDirectory	property	specifies	an	operating	system	path
naming	an	existing	directory	used	by	the	referenced	Publisher	for	temporary	or
other	file	storage.

Applies	To

DistributionPublisher	Object

Syntax
object.DistributionWorkingDirectory	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	an	operating	system	directory	by	UNC	or	drive-and-
directory	format	path	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDistributionWorkingDirectory(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDistributionWorkingDirectory(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

Distributor	Property
The	Distributor	property	identifies	an	instance	of	Microsoft®	SQL	Server™
that	acts	as	a	Distributor	for	replicated	data.

Applies	To

MergePullSubscription	Object TransPullSubscription	Object

Syntax
object.Distributor	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	an	instance	of	SQL	Server	by	name

Data	Type
String

Modifiable
Read/write	when	using	the	SQL-DMO	object	to	create	a	new	subscription.	Read-
only	when	the	SQL-DMO	object	references	an	existing	subscription.

Prototype	(C/C++)
HRESULT	GetDistributor(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDistributor(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

DistributorAvailable	Property
The	DistributorAvailable	property	exposes	the	connected	state	of	a	replication
Distributor.

Applies	To

Distributor	Object

Syntax
object.DistributorAvailable

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetDistributorAvailable(LPBOOL	pbDistributorAvailable);

Remarks
For	Microsoft®	SQL	Server™,	replication	Publishers	are	not	required	to	also
distribute	published	data.	One	or	more	instances	of	SQL	Server	may	act	as
Distributors.	If	the	Publisher	data	is	not	its	own	Distributor,	it	relies	on	a

connection	to	an	identified	Distributor.

If	TRUE,	the	instance	of	SQL	Server	can	successfully	connect	to	its	identified
Distributor.

If	FALSE,	the	instance	of	SQL	Server	cannot	successfully	connect	to	its
identified	Distributor.

The	property	is	always	TRUE	for	instances	of	SQL	Server	that	distribute	their
own	publications.

SQL-DMO

DistributorInstalled	Property
The	DistributorInstalled	property	indicates	that	an	instance	of	Microsoft®	SQL
Server™	has	been	configured	to	use	a	replication	Distributor.

Applies	To

Distributor	Object

Syntax
object.DistributorInstalled

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetDistributorInstalled(LPBOOL	pRetVal);

Remarks
If	TRUE,	an	instance	of	SQL	Server	has	been	correctly	configured	to	act	as,	or
use,	a	replication	Distributor.

If	FALSE,	an	instance	of	SQL	Server	has	not	been	configured	to	act	as,	or	use,	a

replication	Distributor.

When	DistributorInstalled	returns	TRUE,	use	the	DistributorLocal	property
to	determine	whether	an	instance	of	SQL	Server	is	a	replication	Distributor.

SQL-DMO

DistributorLocal	Property
The	DistributorLocal	property	indicates	whether	or	not	an	instance	of
Microsoft®	SQL	Server™	is	configured	as,	and	is	using	itself	as,	a	replication
Distributor.

Applies	To

Distributor	Object

Syntax
object.DistributorLocal

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetDistributorLocal(LPBOOL	pbDistributorLocal);

Remarks
If	TRUE,	an	instance	of	SQL	Server	is	configured	as,	and	is	using	itself	as,	a
replication	Distributor.

If	FALSE,	an	instance	of	SQL	Server	is	not	using	itself	as	a	Distributor.

SQL-DMO

DropDestObjectsFirst	Property
The	DropDestObjectsFirst	property	manipulates	Microsoft®	SQL	Server™
database	object	copying.

Applies	To

Transfer	Object

Syntax
object.DropDestObjectsFirst	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDropDestObjectsFirst(LPBOOL	pRetVal);

HRESULT	SetDropDestObjectsFirst(BOOL	NewValue);

Remarks
If	TRUE,	the	transfer	attempts	to	drop	a	database	object	from	the	target	database
before	copying	the	object	from	the	source	database.

If	FALSE,	the	transfer	copies	database	objects.

Note		The	value	of	the	DropDestObjectsFirst	property	applies	only	when
database	objects	are	copied	in	the	transfer.	To	copy	database	objects,	the
CopySchema	property	value	must	be	TRUE.

See	Also

CopySchema	Property

SQL-DMO

DropLogins	Property
The	DropLogins	property	controls	cascaded	deletion	of	dependent	linked	server
login	records	when	a	persisted	OLE	DB	data	source	definition	is	deleted.

Applies	To

LinkedServer	Object

Syntax
object.DropLogins	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDropLogins(LPBOOL	pRetVal);

HRESULT	SetDropLogins(BOOL	NewValue);

Remarks
When	TRUE,	login	mappings	defined	for	the	linked	server	are	deleted	when	the
linked	server	record	itself	is	deleted.

When	FALSE,	deleting	the	linked	server	does	not	affect	login	mappings	for	the
server.

SQL-DMO

DTSPackageLocation	Property
The	DTSPackageLocation	property	specifies	the	location	of	a	Data
Transformation	Services	(DTS)	package	to	be	used	during	a	replication	process.

Applies	To

TransPullSubscription2	Object TransSubscription2	Object

Syntax
object.DTSPackageLocation	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	SQLDMO_REPLDTSLOC_TYPE	constant	as
described	in	Settings.

Data	Type
Long	integer

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDTSPackageLocation(
SQLDMO_REPLDTSLOC_TYPE	pRetVal);

HRESULT	SetDTSPackageLocation(

SQLDMO_REPLDTSLOC_TYPE	NewValue);

Settings
Set	the	DTSPackageLocation	property	using	these	values.

Constant Value Description
SQLDMOReplDTSPackageLocation_Distributor 0 DTS	package

located	at	the
Distributor

SQLDMOReplDTSPackageLocation_Subscriber 1 DTS	package
located	at	the
Subscriber

Remarks
For	push	subscriptions,	a	DTS	package	used	during	the	replication	process	is
located	at	the	Distributor	by	default.	Specify	a
SQLDMO_REPLDTSLOC_TYPE	setting	of
SQLDMOReplDTSPackageLocation_Subscriber	to	specify	to	the	Distribution
Agent	that	the	DTS	package	is	located	at	the	Subscriber.

For	pull	subscriptions,	a	DTS	package	used	during	a	replication	process	is
located	at	the	Subscriber	by	default.	Specify	a
SQLDMO_REPLDTSLOC_TYPE	setting	of
SQLDMOReplDTSPackageLocation_Distributor	to	specify	to	the	Distribution
Agent	that	the	DTS	package	is	located	at	the	Distributor.

The	complexity	and	quantity	of	transformations	performed	by	a	DTS	package
may	significantly	affect	performance	at	the	Distributor	or	Subscriber,	especially
during	periods	of	heavy	processing.	Additionally,	data	transformation
requirements	may	vary	at	different	subscribing	locations.	Use	the
DTSPackageLocation	and	the	AgentOffload	properties	to	reduce	the	network
traffic.	For	example,	in	the	case	of	a	push	subscription,	the	Distribution	Agent
runs	at	the	Distributor	by	default.	If	the	DTS	package	is	located	at	the
Subscriber,	the	Distribution	Agent	must	execute	package	instructions	over	a
network	connection.	However,	if	Distribution	Agent	execution	is	offloaded	to

the	Subscriber,	then	the	Agent	executes	package	steps	at	the	Subscriber.

Note		If	an	application	calls	DTSPackageLocation	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

AllowDTS	Property

DTSPackageName	Property

DTSPackagePassword	Property

SQL-DMO

DTSPackageName	Property
The	DTSPackageName	property	specifies	a	Data	Transformation	Services
(DTS)	package	name	to	use	during	a	replication	operation.

Applies	To

TransPullSubscription2	Object TransSubscription2	Object

Syntax
object.DTSPackageName	[=	value]

Parts
Object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Value

String	that	specifies	the	name	of	the	DTS	package

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDTSPackageName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDTSPackageName(SQLDMO_LPCSTR	NewValue);

Remarks
The	DTSPackageName	property	specifies	a	DTS	package	name	that	the
Distribution	Agent	processes	before	data	changes	are	applied	at	the	Subscriber.

Prior	to	setting	DTSPackageName,	set	AllowDTS	to	TRUE	when	configuring	a
TransPublication	object.	You	must	then	set	the	DTSPackagePassword
property	(if	the	package	is	password	protected),	and	then	set	the
DTSPackageLocation	property.

Note		If	an	application	calls	DTSPackageName	on	an	instance	of	Microsoft®
SQL	Server™	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the
message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

See	Also

AllowDTS	Property

DTSPackageLocation	Property

DTSPackagePassword	Property

SQL-DMO

DTSPackagePassword	Property
The	DTSPackagePassword	property	specifies	a	Data	Transformation	Services
(DTS)	package	password.

Applies	To

TransPullSubscription2	Object TransSubscription2	Object

Syntax
object.DTSPackagePassword

Parts
Object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Value

String	that	specifies	the	password	for	a	DTS	package	used	during	a
replication	operation.

Data	Type
String

Modifiable
Write-only

Prototype	(C/C++)
HRESULT	SetDTSPackagePassword(SQLDMO_LPCSTR	NewValue);

Remarks

Set	the	DTSPackagePassword	property	after	setting	the	DTSPackageName
property.	It	is	only	necessary	to	set	DTSPackagePassword	if	the	DTS	package
is	password	protected.

Note		If	an	application	calls	DTSPackagePassword	on	an	instance	of
Microsoft®	SQL	Server™	version	7.0,	the	constant,
SQLDMO_E_SQL80ONLY,	and	the	message	"This	property	or	method	requires
Microsoft	SQL	Server	2000"	are	returned.

See	Also

AllowDTS	Property

DTSPackageLocation	Property

DTSPackageName	Property

SQL-DMO

DynamicFilterHostName	Property
The	DynamicFilterHostName	property	returns	or	sets	the	name	of	the
Subscriber	when	connecting	to	the	Publisher.

Applies	To

MergeDynamicSnapshotJob	Object

Syntax
object.DynamicFilterHostName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	sets	or	returns	the	hostname

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDynamicFilterHostName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDynamicFilterHostName)(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	DynamicFilterHostName	property	should	be	the	same	as	the	host_name()
of	the	Publisher	connection	that	the	Merge	agent	uses	for	evaluating	the	dynamic
filters	at	the	Publisher.	This	is	usually	equivalent	to	the	Subscriber	machine
name	if	the	Merge	agent	is	running	on	the	Subscriber	machine.

After	the	MergeDynamicSnapshotJob	is	created,	the
DynamicFilterHostName	property	cannot	be	modified.

Note		DynamicFilterHostName	can	be	used	only	with	Microsoft®	SQL
Server™	2000.

SQL-DMO

DynamicFilterLogin	Property
The	DynamicFilterLogin	property	returns	or	sets	the	Subscriber	login	ID	used
when	connecting	to	the	Publisher.

Applies	To

MergeDynamicSnapshotJob	Object

Syntax
object.DynamicFilterLogin	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	sets	or	returns	the	hostname

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDynamicFilterLogin(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDynamicFilterLogin(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	DynamicFilterLogin	property	setting	should	be	the	same	as	Publisher	login
that	the	Merge	Agent	subsequently	uses	when	synchronizing	a	particular
Subscriber.

After	the	MergeDynamicSnapshotJob	is	created,	the	DynamicFilterLogin
property	cannot	be	modified.

Note		DynamicFilterLogin	can	be	used	only	with	Microsoft®	SQL	Server™
2000.

SQL-DMO

DynamicFilters	Property
The	DynamicFilters	property	exposes	filter	clause	interpretation	for	the
referenced	merge	replication	publication.

Applies	To

MergePublication	Object

Syntax
object.DynamicFilters	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDynamicFilters(LPBOOL	pRetVal);

HRESULT	SetDynamicFilters(BOOL	NewValue);

Remarks
When	TRUE,	the	publication	is	filtered	dynamically.

When	FALSE	(default),	the	publication	is	not	filtered	dynamically.

Note		If	an	application	sets	DynamicFilters	after	the	initial	snapshot	has	been
created,	a	new	snapshot	must	be	generated	and	reapplied	to	each	subscription.
Snapshots	are	applied	when	the	next	scheduled	snapshot	and	merge	agent	run.

SQL-DMO

DynamicReconfigure	Property
The	DynamicReconfigure	property	indicates	modifiability	of	the	configuration
value.

Applies	To

ConfigValue	Object

Syntax
object.DynamicReconfigure

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetDynamicReconfigure(LPBOOL	pRetVal);

Remarks
If	TRUE,	a	modification	to	the	value	is	effective	when	a	call	is	made	to	either
the	ReconfigureCurrentValues	or	ReconfigureWithOverride	method	of	the
Configuration	object.

If	FALSE,	modifications	are	visible	only	after	a	call	is	made	to	the
ReconfigureCurrentValues	or	ReconfigureWithOverride	method	and	the
referenced	Microsoft®	SQL	Server™	service	has	been	stopped	and	restarted.

SQL-DMO

DynamicSnapshotJobId	Property
The	DynamicSnapshotJobID	property	returns	the	job	ID	used	when	connecting
to	the	Publisher.

Applies	To

MergeDynamicSnapshotJob	Object

Syntax
object.DynamicSnapshotJobId

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetDynamicSnapshotJobID(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

The	DynamicSnapshotJobID	property	is	the	SQL	Server	Agent	job	id	for	the
scheduled	dynamic	snapshot	job.	It	is	automatically	initialized	upon	successful
creation	of	the	MergeDynamicSnapshotJob	object,	and	is	in	the	form	"0000-
0000-00000000".

Note		DynamicSnapshotJobID	can	be	used	only	with	Microsoft®	SQL
Server™	2000.

SQL-DMO

DynamicSnapshotLocation	Property
The	DynamicSnapshotLocation	property	returns	or	sets	the	folder	location
used	when	connecting	to	the	Publisher.

Applies	To

MergeDynamicSnapshotJob	Object MergePullSubscription2	Object

Syntax
object.DynamicSnapshotLocation	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	returns	or	sets	the	folder	location

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDynamicSnapshotLocation(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetDynamicSnapshotLocation(SQLDMO_LPCSTR	NewValue);

Remarks
DynamicSnapshotLocation	is	a	required	property	of	the
MergeDynamicSnapshotJob	object.	After	the	MergeDynamicSnapshotJob	is
created,	the	DynamicSnapshotLocation	property	cannot	be	modified.	Set	the
DynamicSnapshotLocation	property	using	the	form	"c:\dynsnaps\sub1".

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

E

SQL-DMO

EmailAddress	Property
The	EmailAddress	property	specifies	an	operator's	e-mail	address.

Applies	To

Operator	Object

Syntax
object.EmailAddress	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	an	e-mail	address

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetEmailAddress(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetEmailAddress(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the

reference	using	SysFreeString.

Remarks
The	EmailAddress	property	is	a	Unicode	character	string	with	a	maximum	of
100	characters	in	length.

SQL-DMO

EmailLevel	Property
The	EmailLevel	property	specifies	the	job	completion	status	that	causes	an	e-
mail	notification	to	a	specified	operator.

Applies	To

Job	Object

Syntax
object.EmailLevel	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Specifies	a	job	completion	status	as	described	in	Settings

Settings

Value Description
SQLDMOComp_All SQLDMOComp_Always.
SQLDMOComp_Always Send	e-mail	regardless	of	success	or	failure.
SQLDMOComp_Failure Send	e-mail	if	the	job	failed	to	complete.
SQLDMOComp_None Ignore	any	completion	status.	Do	not	send	e-

mail	when	the	job	completes.
SQLDMOComp_Success Send	e-mail	if	the	job	completes	successfully.

Remarks

To	configure	a	SQL	Server	Agent	job	to	notify	an	operator	of	job	completion,	set
the	OperatorToEmail	property	to	the	operator	name,	then	set	the	EmailLevel
property	to	the	desired	response.

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetEmailLevel(SQLDMO_COMPLETION_TYPE*	pRetVal);

HRESULT	SetEmailLevel(SQLDMO_COMPLETION_TYPE	NewValue);

SQL-DMO

EnableBcp	Property
The	EnableBcp	property	enables	the	use	of	BulkCopy	objects	on	a	SQLServer
object.

Applies	To

SQLServer	Object

Syntax
object.EnableBcp	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetEnableBcp(LPBOOL	pRetVal);

HRESULT	SetEnableBcp(BOOL	NewValue);

Remarks
If	TRUE,	bulk	copy	operations	are	available	on	the	Microsoft®	SQL	Server™
connection	and	the	application	can	use	the	BulkCopy	object.

If	FALSE,	bulk	copy	operations	are	not	available	on	the	SQL	Server	connection.

Note		To	perform	bulk	copying	using	the	BulkCopy	object,	the	EnableBcp
property	must	be	set	to	TRUE	prior	to	using	the	Connect	method	of	a
SQLServer	object	to	connect	to	a	server.

SQL-DMO

Enabled	Property
The	Enabled	property	represents	the	enabled/disabled	state	of	SQL	Server
Agent	and	replication	objects.

Applies	To

Alert	Object JobSchedule	Object
DistributionPublisher	Object MergePublication	Object
Job	Object TransPublication	Object
Operator	Object Trigger	Object
JobFilter	Object 	

Syntax
object.Enabled	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read-only	for	the	DistributionPublisher	object.	Read/write	for	all	other
applicable	objects.

Prototype	(C/C++)
HRESULT	GetEnabled(LPBOOL	pRetVal);

HRESULT	SetEnabled(BOOL	NewValue);

Remarks
Setting	the	Enabled	property	enables	or	disables	a	SQL	Server	Agent	or
replication	element.	For	example,	setting	the	Enabled	property	of	an	Operator
object	to	FALSE	disables	a	SQL	Server	Agent	operator.	A	disabled	operator	will
not	receive	notification	when	an	alert	is	raised.

Setting	the	Enabled	property	of	the	JobFilter	object	restricts	list	output	to	the
appropriate	jobs	when	SQL	Server	Agent	jobs	are	listed	using	the	EnumJobs
method	of	the	JobServer	object.

SQL-DMO

EnabledForSyncMgr	Property
The	EnabledForSyncMgr	property	configures	the	referenced	subscription	for
the	mobile	synchronization	agent.

Applies	To

MergePullSubscription	Object TransPullSubscription	Object
MergeSubscription	Object TransSubscription	Object

Syntax
object.EnabledForSyncMgr	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write	for	the	MergePullSubscription	and	TransPullSubscription	object.

For	the	MergeSubscription	and	TransSubscription	object,	the
EnabledForSyncMgr	property	is	write-only	and	can	be	set	only	when	using	the
object	to	create	a	new	subscription.

Prototype	(C/C++)

HRESULT	GetEnabledForSyncMgr(LPBOOL	pRetVal);

HRESULT	SetEnabledForSyncMgr(BOOL	NewValue);

SQL-DMO

EnableMergePublishing	Property
The	EnableMergePublishing	property	enables	or	disables	merge	replication
publication.

Applies	To

ReplicationDatabase	Object

Syntax
object.EnableMergePublishing	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetEnableMergePublishing(LPBOOL	pRetVal);

HRESULT	SetEnableMergePublishing(BOOL	NewValue);

Remarks
If	TRUE,	the	referenced	replication	database	is	enabled	for	merge	replication.

If	FALSE,	the	referenced	replication	database	cannot	be	used	for	merge
replication.

SQL-DMO

EnableTransPublishing	Property
The	EnableTransPublishing	property	enables	or	disables	transactional
replication	publication.

Applies	To

ReplicationDatabase	Object

Syntax
object.EnableTransPublishing	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetEnableTransPublishing(LPBOOL	pRetVal);

HRESULT	SetEnableTransPublishing(BOOL	NewValue);

Remarks
If	TRUE,	the	referenced	replication	database	is	enabled	for	transactional
replication.

If	FALSE,	the	referenced	replication	database	cannot	be	used	for	transactional
replication.

SQL-DMO

Encrypted	Property
The	Encrypted	property	indicates	whether	the	referenced	stored	procedure	was
created	with	encryption.

Applies	To

ReplicationStoredProcedure2	Object UserDefinedFunction	Object
StoredProcedure2	Object View2	Object
Trigger2	Object 	

Syntax
object.	Encrypted

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetEncrypted(LPBOOL	pRetVal);

Remarks
The	Encrypted	property	returns	TRUE	if	a	stored	procedure	was	created	with

encryption.	This	is	useful	when	determining	whether	a	stored	procedure	can	be
replicated,	because	encrypted	stored	procedures	cannot	be	replicated.

Note		Encrypted	can	be	used	with	Microsoft®	SQL	Server™	2000	and	SQL
Server	version	7.0,	except	when	used	with	the	UserDefinedFunction	object.

SQL-DMO

EndRunDate	Property
The	EndRunDate	property	specifies	the	most	recent	execution	date	of	a	SQL
Server	Agent	job.

Applies	To

JobHistoryFilter	Object

Syntax
object.EndRunDate	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	date	value	as	described	in	Remarks

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetEndRunDate(LPLONG	pRetVal);

HRESULT	SetEndRunDate(long	NewValue);

Remarks
By	default,	EndRunDate	is	0.	When	0,	the	property	is	not	evaluated	as	part	of
job	history	filtering.

Note		When	SQL-DMO	uses	a	scaled	long	integer	to	represent	a	date,	the	integer
is	built	as	a	sum	of	the	year	scaled	by	10000,	the	month	scaled	by	100,	and	the
day.	For	example,	the	date	April	19,	1997	is	represented	by	the	long	integer
value	19970419.

SQL-DMO

EndRunTime	Property
The	EndRunTime	property	specifies	the	most	recent	execution	time	of	a	SQL
Server	Agent	job.

Applies	To

JobHistoryFilter	Object

Syntax
object.EndRunTime	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	date	value	as	described	in	Remarks

Data	type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetEndRunTime(LPLONG	pRetVal);

HRESULT	SetEndRunTime(long	NewValue);

Remarks
To	filter	for	jobs	last	executed	at	a	particular	date	and	time,	set	both	the
EndRunDate	and	EndRunTime	properties.	To	filter	for	jobs	executed	only
before	a	certain	time,	such	as	filtering	for	jobs	that	run	before	6	A.M.	local	time
on	any	date,	set	only	the	EndRunTime	property.

By	default,	EndRunTime	is	0.	When	0,	the	property	is	not	used	as	part	of	job
history	filtering.

Note		When	SQL-DMO	uses	a	scaled	long	integer	to	represent	a	time,	the
integer	is	built	as	a	sum	of	the	hour	scaled	by	10000,	the	minute	scaled	by	100,
and	the	seconds.	The	time	value	uses	a	24-hour	clock.	For	example,	the	time
1:03:09	P.M.	is	represented	by	the	long	integer	value	130309.

SQL-DMO

EnlistDate	Property
The	EnlistDate	property	returns	the	date	and	time	at	which	an	instance	of
Microsoft®	SQL	Server™	became	a	member	of	the	multiserver	administration
group.

Applies	To

TargetServer	Object

Syntax
object.EnlistDate

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetEnlistDate(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	date	and	time	is	returned	as	a	string,	formatted	using	the	client	locale.

SQL-DMO

ErrorFilePath	Property
The	ErrorFilePath	property	specifies	the	full	path	and	full	file	name	of	a	bulk
copy	operation	error	log	file.

Applies	To

BulkCopy	Object

Syntax
object.ErrorFilePath	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	an	operating	system	file

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetErrorFilePath(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetErrorFilePath(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
Microsoft®	SQL	Server™	bulk	copying	logs	errors	to	a	file	when	an	error	file	is
provided	on	bulk	copy	initialization.	When	errors	occur,	the	bulk	copy	operation
continues	to	process	rows	until	a	maximum	number	of	allowed	errors	is	reached.
If	that	maximum	is	reached,	the	error	logging	file	is	closed	and	the	bulk	copy
operation	stops.

Set	the	MaximumErrorsBeforeAbort	property	to	set	the	limiting	number	of
allowed	errors	in	a	bulk	copy	operation.

SQL-DMO

ErrorLogPath	Property
The	ErrorLogPath	property	specifies	the	operating	system	path	and	file	name
of	the	Microsoft®	SQL	Server™	error	log.

Applies	To

Registry	Object

Syntax
object.ErrorLogPath	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	an	operating	system	file

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetErrorLogPath(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetErrorLogPath(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
When	using	the	ErrorLogPath	property	to	specify	an	error	log	file	name,	set
only	the	path-qualified	file	name.	Do	not	specify	a	file	name	extension.	SQL
Server	appends	an	integer	as	an	extension,	using	the	value	to	indicate	the	current
error	log	file.

SQL-DMO

ErrorLogSize	Property
The	ErrorLogSize	property	returns	the	size,	in	bytes,	of	a	Microsoft	Search	full-
text	catalog	error	log.

Applies	To

FullTextCatalog	Object

Syntax
object.ErrorLogSize

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetErrorLogSize(LPLONG	pRetVal);

SQL-DMO

EventCategoryID	Property
The	EventCategoryID	property	is	reserved	for	future	use.

Applies	To

Alert	Object

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetEventCategoryID(LPLONG	pRetVal);

SQL-DMO

EventDescriptionKeyword	Property
The	EventDescriptionKeyword	property	restricts	SQL	Server	Agent	alert
firing.

Applies	To

Alert	Object

Syntax
object.EventDescriptionKeyword	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	to	search	for	in	the	event	message	text

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetEventDescriptionKeyword(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetEventDescriptionKeyword(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
A	SQL	Server	Agent	alert	is	raised	in	response	to	some	condition	occurring	on
an	instance	of	Microsoft®	SQL	Server™.	An	alert	based	on	message	number	or
severity	can	be	constrained	by	indicating	that	a	word	or	phrase	must	exist	in	the
message	text	generated	by	an	instance	of	SQL	Server	in	response	to	the
condition.	The	EventDescriptionKeyword	property	represents	this	constraining
text	for	a	SQL	Server	Agent	alert.

The	SQL	Server	Agent	performs	a	case-insensitive	search	of	message	text	for	the
word	specified	by	the	EventDescriptionKeyword	property.

SQL-DMO

EventID	Property
The	EventID	property	is	reserved	for	future	use.

Applies	To

Alert	Object

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetEventID(LPLONG	pRetVal);

SQL-DMO

EventlogLevel	Property
The	EventlogLevel	property	specifies	the	job	completion	status	that	causes	an
operating	system	log	entry	on	job	completion.

Applies	To

Job	Object

Syntax
object.EventlogLevel	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Specifies	a	job	completion	status

Settings

Value Description
SQLDMOComp_All SQLDMOComp_Always.
SQLDMOComp_Always Log	regardless	of	success	or	failure.
SQLDMOComp_Failure Log	failed	job	completion.
SQLDMOComp_None Ignore	any	completion	status.	Do	not	log

completion.
SQLDMOComp_Success Log	successful	job	completion.

Data	Type

Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetEventlogLevel(SQLDMO_COMPLETION_TYPE*	pRetVal);

HRESULT	SetEventlogLevel(SQLDMO_COMPLETION_TYPE	NewValue);

Remarks
Set	EventlogLevel	to	enable	operating	system	log	entries	for	the	job.

SQL-DMO

EventSource	Property
The	EventSource	property	is	reserved	for	future	use.

Applies	To

Alert	Object

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetEventSource(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

ExcludeReplication	Property
The	ExcludeReplication	property	controls	integrity	and	FOREIGN	KEY
constraint	enforcement	when	replicated	data	is	inserted	into	the	columns	on
which	the	constraint	is	defined.

Applies	To

Check	Object Key	Object

Syntax
object.ExcludeReplication	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write	before	object	creation.	Read-only	when	referencing	an	existing
object.

Prototype	(C/C++)
HRESULT	GetExcludeReplication(LPBOOL	pRetVal);

HRESULT	SetExcludeReplication(BOOL	NewValue);

Remarks
If	TRUE,	the	FOREIGN	KEY	or	integrity	constraint	is	ignored	for	data	inserted
by	replication.

If	FALSE,	the	FOREIGN	KEY	or	integrity	constraint	is	enforced	for	data
inserted	by	replication.

Use	the	ExcludeReplication	property	to	optimize	replication	data	transfer.	The
property	can	be	safely	set	if	each	source	table	for	replicated	data	enforces	the
referenced	constraint	for	all	other	means	of	adding	data.

SQL-DMO

ExpirationDate	Property
The	ExpirationDate	property	specifies	the	last	valid	date	for	the	backup	data.

Applies	To

Backup	Object

Syntax
object.ExpirationDate	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

String	that	specifies	a	date.	For	more	information	about	valid	string	formats,
see	Using	Date	and	Time	Data.

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetExpirationDate(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetExpirationDate(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

JavaScript:hhobj_1.Click()

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	ExpirationDate	property	is	valid	only	for	backup	data	stored	on	disk	or
tape	devices.	Backup	sets	older	than	the	expiration	date	can	be	overwritten	by	a
later	backup.

SQL-DMO

ExportWideChar	Property
The	ExportWideChar	property	controls	character	set	used	in	the	data	file	when
creating	a	data	file	using	the	ExportData	method	of	the	Table	and	View	object.

Applies	To

BulkCopy	Object

Syntax
object.ExportWideChar	[=	value]

Part
object

An	expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetExportWideChar(LPBOOL	pRetVal);

HRESULT	SetExportWideChar(BOOL	NewValue);

Remarks
If	TRUE,	the	data	file	is	created	as	a	Unicode	text	file.

If	FALSE,	the	data	file	is	created	as	a	multibyte	character	text	file.

The	ExportWideChar	property	is	evaluated	only	when	the	BulkCopy	object	is
used	as	an	argument	to	the	ExportData	method,	and	the	bulk-copy	operation
specifies	a	character	format	target	file	(the	DataFileType	property	of	the
BulkCopy	object	is	SQLDMODataFile_CommaDelimitedChar,
SQLDMODataFile_SpecialDelimitedChar,	or
SQLDMODataFile_TabDelimitedChar).

SQL-DMO

F

SQL-DMO

FailSafeOperator	Property
The	FailSafeOperator	property	specifies	an	operator	to	notify	when	no	other
operator	is	defined	or	available	on	SQL	Server	Agent	alert	notification.

Applies	To

AlertSystem	Object

Syntax
object.FailSafeOperator	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	an	existing	Microsoft®	SQL	Server™	operator

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFailSafeOperator(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetFailSafeOperator(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	FailSafeOperator	property	receives	notifications	when	an	alert	does	not
have	an	operator	assigned	to	receive	a	notification	during	the	time	that	the	alert
was	raised,	or	when	an	attempt	to	notify	an	assigned	operator	failed.

SQL-DMO

FakeSystemTable	Property
The	FakeSystemTable	property	returns	TRUE	when	the	Table	object	references
a	Microsoft®	SQL	Server™	system-defined	table	not	implemented	as	a	base	or
view	table.

Applies	To

Table	Object

Syntax
object.FakeSystemTable

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetFakeSystemTable(LPBOOL	pRetVal);

SQL-DMO

FileGroup	Property
The	FileGroup	property	identifies	the	filegroup	used	to	store	Microsoft®	SQL
Server™	table	or	index	data.

Applies	To

Index	Object Table	Object
Key	Object 	

Syntax
object.FileGroup	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	an	existing	SQL	Server	filegroup	by	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFileGroup(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetFileGroup(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
Set	the	FileGroup	property	prior	to	table,	index,	or	key	creation	to	direct	storage
of	table	or	index	data.	After	table	or	index	creation,	the	property	is	read-only.

See	Also

TextFileGroup	Property

SQL-DMO

FileGrowth	Property
The	FileGrowth	property	specifies	the	growth	increment	of	the	operating
system	file	used	to	store	table,	index,	or	log	data.

Applies	To

DBFile	Object LogFile	Object

Syntax
object.FileGrowth	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFileGrowth(LPLONG	pRetVal);

HRESULT	SetFileGrowth(LONG	NewValue);

Remarks
The	FileGrowth	value	is	evaluated	using	the	FileGrowthType	property.

When	FileGrowthType	is	SQLDMOGrowth_MB,	the	value	represents	the
number	of	megabytes	of	disk	space	to	allocate	for	incremental	file	growth.

When	FileGrowthType	is	SQLDMOGrowth_Percent,	the	value	represents	a
percentage	and	must	be	in	the	range	from	1	through	100.	At	no	time	does
Microsoft®	SQL	Server™	increment	a	file	in	units	smaller	than	one	megabyte,
regardless	of	the	result	of	the	percentage	of	file	size	calculation.

SQL-DMO

FileGrowthInKB	Property
The	FileGrowthInKB	property	reports	the	number	of	kilobytes	of	disk	space
allocated	when	an	incremental	increase	occurs	on	an	operating	system	file.

Applies	To

DBFile	Object LogFile	Object

Syntax
object.FileGrowthInKB

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Float

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetFileGrowthInKB(LPFLOAT	pRetVal);

Remarks
The	FileGrowthInKB	property	is	only	calculated	for	those	files	referencing	a
DBFile	or	LogFile	object	whose	FileGrowthType	property	reports
SQLDMOGrowth_MB.

SQL-DMO

FileGrowthType	Property
The	FileGrowthType	property	specifies	the	method	of	incremental	allocation
applied	when	an	operating	system	file	is	extended.

Applies	To

DBFile	Object LogFile	Object

Syntax
object.FileGrowthType	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	application	of	the	FileGrowth	property	as
described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFileGrowthType(SQLDMO_GROWTH_TYPE*	pRetVal);

HRESULT	SetFileGrowthType(SQLDMO_GROWTH_TYPE	NewValue);

Settings

Constant Value Description
SQLDMOGrowth_MB 0 Growth	increment	is	interpreted	as	a

size,	in	megabytes.
SQLDMOGrowth_Percent 1 Default.	Growth	increment	is

interpreted	as	a	percentage	of	the	space
currently	allocated.

Remarks
Set	both	the	FileGrowthType	and	FileGrowth	properties	to	completely	specify
the	growth	increment.

SQL-DMO

FileNumber	Property
The	FileNumber	property	identifies	a	backup	set	by	ordinal	location	on	the
backup	medium.

Applies	To

Restore	Object

Syntax
object.FileNumber	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	equal	to,	or	greater	than,	1

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFileNumber(LPLONG	pRetVal);

HRESULT	SetFileNumber(LONG	NewValue);

SQL-DMO

Files	Property
The	Files	property	specifies	one	or	more	operating	system	files	used	as	a
database	backup	target	or	restore	source.

Applies	To

Backup	Object Restore	Object

Syntax
object.Files	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

SQL-DMO	multistring	that	identifies	one	or	more	operating	system	files	by
name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFiles(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetFiles(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	backup	medium	for	a	backup	or	restore	operation	is	specified	using	either
the	Devices,	Files,	Pipes,	or	Tapes	properties.	Only	one	medium	type	can	be
specified	for	any	backup	or	restore	operation,	but	multiple	media	may	be
specified.

Set	the	Files	property	to	specify	one	or	more	operating	system	files	as	the
backup	medium.	Specify	more	than	a	single	operation	system	file	to	stripe	the
backup	operation	or	to	restore	from	a	striped	backup	set.	For	more	information,
see	Using	Multiple	Media	or	Devices.

See	Also

Devices	Property

Tapes	Property

Pipes	Property

JavaScript:hhobj_1.Click()

SQL-DMO

FillFactor	Property
The	FillFactor	property	exposes	the	percent	of	each	page	used	to	store	index
data	when	the	index	is	created.

Applies	To

Index	Object Key	Object

Syntax
object.FillFactor	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	from	0	through	100

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFillFactor(LPLONG	pRetVal);

HRESULT	SetFillFactor(LONG	NewValue);

Remarks
Microsoft®	SQL	Server™	primary	keys	are	supported	by	unique	indexes	built
on	the	columns	participating	in	the	PRIMARY	KEY	or	UNIQUE	key	constraint.
For	the	Key	object,	the	FillFactor	property	only	has	meaning	if	the	Type
property	reports	SQLDMOKey_Primary.

FillFactor	can	only	be	set	when	creating	an	Index	object.	It	is	a	read-only
property	when	an	Index	object	references	and	existing	SQL	Server	index.

Setting	FillFactor	on	index	or	key	creation	can	cause	unintended	behavior.	For
more	information,	see	CREATE	INDEX.

JavaScript:hhobj_1.Click()

SQL-DMO

FilterClause	Property
The	FilterClause	property	specifies	a	Transact-SQL	WHERE	clause	used	to
filter	row	data	published	in	the	article.

Applies	To

TransArticle	Object

Syntax
object.FilterClause	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Value

String	that	specifies	a	Transact-SQL	expression	valid	as	the	WHERE	clause
of	a	SELECT	statement

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFilterClause(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetFilterClause(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
Filtering	and	horizontal	partitioning	are	two	methods	that	reduce	the	row	data
scope	of	an	article.	Either	method,	or	both,	may	be	used.	The	FilterClause
property	specifies	that	a	row	filter	is	applied	to	determine	available	data	for	an
article.

Note		If	an	application	sets	FilterClause	after	the	initial	snapshot	has	been
created,	a	new	snapshot	must	be	generated	and	reapplied	to	each	subscription.
Snapshots	are	applied	when	the	next	scheduled	snapshot	and	distribution	agent
run.

See	Also

SELECT

sp_articlefilter

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL-DMO

FirstDayOfWeek	Property
The	FirstDayOfWeek	property	returns	the	calendar	start	day	of	the	week	for	a
language	record.

Applies	To

Language	Object

Syntax
object.FirstDayOfWeek

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetFirstDayOfWeek(LPINT	pRetVal);

Remarks
A	Microsoft®	SQL	Server™	language	record	records	the	names	of	the	days	of
the	week	localized	to	the	language.	To	enable	system	selection	of	the	correct	day
name,	the	day	name	string	is	stored	so	that	the	localized	name	for	Monday

appears	first.	For	some	locales,	Monday	is	not	the	starting	calendar	week	day.

SQL-DMO

FirstRow	Property
The	FirstRow	property	is	an	ordinal	value	that	defines	the	starting	point	for	a
bulk	data	copy.

Applies	To

BulkCopy	Object

Syntax
object.FirstRow	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	data	file	or	Microsoft®	SQL	Server™	table	row

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFirstRow(LPLONG	pRetVal);

HRESULT	SetFirstRow(LONG	NewValue);

Remarks
When	data	is	copied	from	SQL	Server	using	the	ExportData	method	of	a	Table
or	View	object,	the	FirstRow	property	indicates	the	starting	row	position	in	the
SQL	Server	table.	When	data	is	copied	to	SQL	Server	using	the	ImportData
method	of	a	Table	object,	the	FirstRow	property	indicates	the	starting	row
position	in	the	source	data	file.

SQL-DMO

Flags	Property
The	Flags	property	is	reserved	for	future	use.

Applies	To

JobStep	Object

Syntax
object.Flags	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Reserved

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFlags(LPLONG	pRetVal);

HRESULT	SetFlags(LONG	NewValue);

SQL-DMO

FormatFilePath	Property
The	FormatFilePath	property	exposes	the	path	and	file	name	of	a	bulk-copy
format	file.

Applies	To

BulkCopy	Object

Syntax
object.FormatFilePath	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	an	operating	system	file

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFormatFilePath(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetFormatFilePath(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
Microsoft®	SQL	Server™	bulk	copy	operations	can	use	a	user-specified	data
format	stored	in	a	text	file.	The	FormatFilePath	indicates	a	data	format	file	to
the	BulkCopy	object.	The	property	has	meaning	only	when	the	DataFileType
property	is	SQLDMODataFile_UseFormatFile.

For	more	information	about	SQL	Server	bulk	copy	format	files,	see	Using
Format	Files.

See	Also

DataFileType	Property

JavaScript:hhobj_1.Click()

SQL-DMO

FormatMedia	Property
The	FormatMedia	property	controls	tape	formatting	on	a	backup	operation.

Applies	To

Backup	Object

Syntax
object.FormatMedia	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFormatMedia(LPBOOL	pRetVal);

HRESULT	SetFormatMedia(BOOL	NewValue);

Remarks

The	FormatMedia	property	applies	only	when	the	backup	medium	is	tape.	The
property	has	no	meaning	for	device,	file,	or	pipe	media.

If	TRUE,	the	Microsoft®	SQL	Server™	backup	operation	attempts	to	format	the
tape	as	an	initial	step.

If	FALSE,	the	SQL	Server	backup	operation	does	not	attempt	to	format	the	tape.

SQL-DMO

ForwardAlways	Property
The	ForwardAlways	property	controls	event	forwarding	for	SQL	Server	Agent.

Applies	To

AlertSystem	Object

Syntax
object.ForwardAlways	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetForwardAlways(LPBOOL	pRetVal);

HRESULT	SetForwardAlways(BOOL	NewValue);

Remarks

SQL	Server	Agent	can	be	configured	to	forward	events	to	another	instance	of
Microsoft®	SQL	Server™.	By	default,	when	an	event	forward	server	is	defined,
the	forwarding	server	forwards	only	events	for	which	no	alert	notification
mechanism	exists.

If	TRUE,	all	events	on	the	forwarding	server	are	directed	to	the	forwarded	server
regardless	of	the	presence	of	notifications	for	the	event	on	the	forwarding	server.

If	FALSE,	only	events	with	no	alert	notification	available	are	forwarded	from	the
forwarding	server.

SQL-DMO

ForwardingServer	Property
The	ForwardingServer	property	identifies	an	instance	of	Microsoft®	SQL
Server™	that	will	receive	forwarded	events.

Applies	To

AlertSystem	Object

Syntax
object.ForwardingServer	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	an	instance	of	SQL	Server	by	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetForwardingServer(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetForwardingServer(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
SQL	Server	Agent	can	be	configured	to	forward	events	to	another	instance	of
SQL	Server.	Alerts	defined	on	the	SQL	Server	Agent	running	on	the	forwarded-
event	server	are	raised	when	a	forwarded	event	is	received.

SQL-DMO

ForwardingSeverity	Property
The	ForwardingSeverity	property	restricts	forwarded	events	by	the	severity	of
the	error	generating	the	event.

Applies	To

AlertSystem	Object

Syntax
object.ForwardingSeverity	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	from	1	through	25

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetForwardingSeverity(LPLONG	pRetVal);

HRESULT	SetForwardingSeverity(LONG	NewValue);

Remarks
SQL	Server	Agent	can	be	configured	to	forward	events	to	another	server	running
Microsoft®	SQL	Server™.	The	ForwardingSeverity	property	is	one
mechanism	used	to	control	the	events	forwarded.

Set	ForwardingSeverity	to	restrict	event	forwarding	to	those	events	generated
by	errors	with	a	severity	greater	than	or	equal	to	the	property	value.	Event
forwarding	may	be	further	restricted	using	the	ForwardAlways	property.

SQL-DMO

FrequencyInterval	Property
The	FrequencyInterval	property	defines	the	most	significant	portion	of	a
Microsoft®	SQL	Server™	schedule	for	daily,	weekly,	or	monthly	schedules.

Applies	To

Schedule	Object

Syntax
object.FrequencyInterval	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	schedule	frequency	interval	as	described	in
Settings

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFrequencyInterval(LPLONG	pRetVal);

HRESULT	SetFrequencyInterval(LONG	NewValue);

Settings
FrequencyInterval	is	always	interpreted	relative	to	the	value	of	the
FrequencyType	property.	For	some	FrequencyType	values,
FrequencyInterval	is	a	bit-packed	long	integer.	FrequencyInterval	is
interpreted	using	these	values.

FrequencyType	value FrequencyInterval	value
SQLDMOFreq_Daily Positive,	long	integer	that	represents	a

number	of	day	units.	For	example,	when
FrequencyInterval	is	3,	the	scheduled
activity	occurs	every	third	day.

SQLDMOFreq_Weekly Bit-packed	long	integer.	Values	are
interpreted	using
SQLDMO_WEEKDAY_TYPE	naming
the	days	of	the	week.	Combine	values
using	an	OR	logical	operator	to	set	more
than	a	single	day.	For	example,	combine
SQLDMOWeek_Tuesday	and
SQLDMOWeek_Friday	to	schedule	an
activity	for	Tuesday	and	Friday.

SQLDMOFreq_Monthly Positive,	long	integer	that	represents	the
ordinal	day	of	the	month	on	which	the
schedule	is	active.	For	example,	4
specifies	the	fourth	day	of	the	month.

SQLDMOFreq_MonthlyRelative Positive,	long	integer	that	represents	a
day	of	the	week	or	a	generic	indication	of
a	day.	Values	are	interpreted	using
SQLDMO_MONTHDAY_TYPE.

Remarks
The	FrequencyInterval	property	is	valid	for	Schedule	objects	with
FrequencyType	SQLDMOFreq_Daily,	SQLDMOFreq_Weekly,
SQLDMOFreq_Monthly,	or	SQLDMOFreq_MonthlyRelative.

SQL-DMO

FrequencyRecurrenceFactor	Property
The	FrequencyRecurrenceFactor	property	controls	evaluation	of	the	most
significant	portion	of	a	Microsoft®	SQL	Server™	schedule.

Applies	To

Schedule	Object

Syntax
object.FrequencyRecurrenceFactor	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	greater	than	or	equal	to	1	and	indicating	a	number	of	weeks	or
months

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFrequencyRecurrenceFactor(LPLONG	pRetVal);

HRESULT	SetFrequencyRecurrenceFactor(LONG	NewValue);

Remarks
The	FrequencyRecurrenceFactor	property	is	evaluated	for	Schedule	objects
with	FrequencyType	values	SQLDMOFreq_Monthly,
SQLDMOFreq_MonthlyRelative,	or	SQLDMOFreq_Weekly.

The	FrequencyRecurrenceFactor	property	indicates	a	number	of	units	of	the
unit	type	indicated	by	the	FrequencyType	property.	For	example,	when
FrequencyType	is	SQLDMOFreq_Weekly,	FrequencyRecurrenceFactor
indicates	a	number	of	weeks.	Setting	FrequencyRecurrenceFactor	to	2
indicates	an	activity	scheduled	to	occur	every	other	week.

FrequencyType	value Action
SQLDMOFreq_Monthly Set	FrequencyInterval	to	indicate	the

day	of	the	month	on	which	the	activity
occurs.

SQLDMOFreq_MonthlyRelative Set	FrequencyInterval	to	indicate	the
single	day	of	the	week	on	which	the
activity	occurs.	Set
FrequencyRelativeInterval	to	indicate
the	day	of	the	week	relative	to	the	start	of
the	month.

SQLDMOFreq_Weekly Set	FrequencyInterval	to	indicate	the
day(s)	of	the	week	on	which	the	activity
occurs.

SQL-DMO

FrequencySubDay	Property
The	FrequencySubDay	property	specifies	the	unit	for	the	least	significant
portion	of	a	scheduled	activity.

Applies	To

Schedule	Object

Syntax
object.FrequencySubDay	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	daily	occurrence	for	the	scheduled	activity	as
described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFrequencySubDay(SQLDMO_FREQSUB_TYPE*	pRetVal);

HRESULT	SetFrequencySubDay(SQLDMO_FREQSUB_TYPE	NewValue);

Settings

Constant Value Description
SQLDMOFreqSub_Hour 8 Schedule	reflects	an	activity

scheduled	using	an	hour	as	the
unit.

SQLDMOFreqSub_Minute 4 Schedule	reflects	an	activity
scheduled	using	a	minute	as	the
unit.

SQLDMOFreqSub_Once 1 Schedule	reflects	an	activity	that
occurs	once	on	a	scheduled	unit.

SQLDMOFreqSub_Unknown 0 Subunits	are	invalid	for	the
scheduled	activity.

SQLDMOFreqSub_Valid 13 Mask	to	test	schedule
subfrequency	validity.

Remarks
The	FrequencySubDay	property	specifies	the	unit	for	schedule	evaluation	for
schedules	for	activities	occurring	several	times	in	one	day.	Set	the
FrequencySubDayInterval	property	to	specify	the	number	units.

SQL-DMO

FrequencySubDayInterval	Property
The	FrequencySubDayInterval	property	specifies	the	number	of	units	elapsed
between	one	scheduled	activity	and	a	second	occurrence	of	the	same	activity.

Applies	To

Schedule	Object

Syntax
object.FrequencySubDayInterval	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFrequencySubDayInterval(LPLONG	pRetVal);

HRESULT	SetFrequencySubDayInterval(LONG	NewValue);

Remarks
FrequencySubDayInterval	has	meaning	only	when	the	FrequencyType
property	of	the	Schedule	object	is	SQLDMOFreq_Daily	and	the
FrequencySubDay	property	is	SQLDMOFreqSub_Hour	or
SQLDMOFreqSub_Minute.

For	example,	to	schedule	an	activity	for	daily	occurrence,	every	15	minutes,	set
FrequencyType	to	SQLDMOFreq_Daily,	set	FrequencySubDay	to
SQLDMOFreqSub_Minute,	and	set	FrequencySubDayInterval	to	15.

SQL-DMO

FrequencyType	Property
The	FrequencyType	property	specifies	the	unit	for	the	most	significant	portion
of	a	Schedule	object.

Applies	To

Schedule	Object

Syntax
object.FrequencyType	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	schedule	evaluation	frequency	as	described	in
Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFrequencyType(SQLDMO_FREQUENCY_TYPE*	pRetVal);

HRESULT	SetFrequencyType(SQLDMO_FREQUENCY_TYPE	NewValue);

Settings

Constant Value Description
SQLDMOFreq_Autostart 64 Scheduled	activity	is	started

when	SQL	Server	Agent	service
starts.

SQLDMOFreq_Daily 4 Schedule	is	evaluated	daily.
SQLDMOFreq_Monthly 16 Schedule	is	evaluated	monthly.
SQLDMOFreq_MonthlyRelative 32 Schedule	is	evaluated	relative	to

a	part	of	a	month,	such	as	the
second	week.

SQLDMOFreq_OneTime 1 Scheduled	activity	will	occur
once	at	a	scheduled	time	or
event.

SQLDMOFreq_OnIdle 128 SQL	Server	Agent	service	will
schedule	the	activity	for	any
time	during	which	the	processor
is	idle.

SQLDMOFreq_Unknown 0 No	schedule	frequency,	or
frequency	not	applicable.

SQLDMOFreq_Valid 255 Mask	to	test	schedule	frequency
validity.

SQLDMOFreq_Weekly 8 Schedule	is	evaluated	weekly.

Remarks
Setting	FrequencyType	may	require	setting	other	property	values	to	schedule	an
activity	accurately.	For	example,	setting	FrequencyType	to
SQLDMOFreq_Weekly	without	setting	the	FrequencyInterval	property	to
specify	days	of	the	week	results	in	an	unscheduled	activity.

For	more	information	about	setting	frequency	values,	see	FrequencyInterval
Property,	FrequencyRecurrenceFactor	Property,	FrequencySubDay	Property,
and	FrequencySubDayInterval	Property.

SQL-DMO

FTPAddress	Property
The	FTPAddress	property	exposes	the	address	of	an	FTP	server	that	maintains
synchronization	images	of	a	Microsoft®	SQL	Server™	publication.

Applies	To

MergePublication2	Object TransPublication2	Object
MergePullSubscription	Object TransPullSubscription	Object

Syntax
object.FTPAddress	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	a	server	enabled	for	FTP

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFTPAddress(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetFTPAddress(SQLDMO_LPCSTR	NewValue);

Remarks
SQL	Server	replication	can	use	FTP	to	transfer	synchronization	images	of
publication	schema	and	data.	Use	the	FTPAddress,	FTPPort,	FTPLogin,	and
FTPPassword	properties	to	enable	use	of	FTP	for	synchronization.

Applications	should	use	the	MergePublication2	or	TransPublication2	objects
when	setting	the	FTPAddress	property.	The	FTPAddress	property	remains	a
property	of	the	TransPullSubscription	and	MergePullSubscription	objects	to
maintain	backward	compatibility.

Note		If	an	application	sets	FTPAddress	with	the	MergePublication2	or
TransPublication2	object	after	the	initial	snapshot	has	been	created,	a	new
snapshot	must	be	generated.	Snapshots	are	applied	when	the	next	scheduled
snapshot	agent	runs.

See	Also

FTPLogin	Property

FTPPassword	Property

FTPPort	Property

FTPSubdirectory	Property

SQL-DMO

FTPLogin	Property
The	FTPLogin	property	exposes	the	security	account	used	to	connect	to	an	FTP
server	that	maintains	replication	subscription	synchronization	images.

Applies	To

MergePublication2	Object TransPublication2	Object
MergePullSubscription	Object TransPullSubscription	Object

Syntax
object.FTPLogin	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	a	server	security	account

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFTPLogin(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetFTPLogin(SQLDMO_LPCSTR	NewValue);

Remarks
Microsoft®	SQL	Server™	replication	can	use	FTP	to	transfer	synchronization
images	of	publication	schema	and	data.	Use	the	FTPAddress,	FTPPort,
FTPLogin,	and	FTPPassword	properties	to	enable	use	of	FTP	for
synchronization.

Applications	should	use	the	MergePublication2	or	TransPublication2	objects
when	setting	the	FTPLogin	property.	The	FTPLogin	property	remains	a
property	of	the	TransPullSubscription	and	MergePullSubscription	objects	to
maintain	backward	compatibility.

Note		If	an	application	sets	FTPLogin	with	the	MergePublication2	or
TransPublication2	object	after	the	initial	snapshot	has	been	created,	a	new
snapshot	must	be	generated.	Snapshots	are	applied	when	the	next	scheduled
snapshot	agent	runs.

See	Also

FTPAddress	Property

FTPPassword	Property

FTPPort	Property

FTPSubdirectory	Property

SQL-DMO

FTPPassword	Property
The	FTPPassword	property	sets	authentication	data	for	the	security	account
used	to	connect	to	an	FTP	server	that	maintains	replication	subscription
synchronization	images.

Applies	To

MergePublication2	Object TransPublication2	Object
MergePullSubscription	Object TransPullSubscription	Object

Syntax
object.FTPPassword	=	value

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	contains	a	valid	password

Data	Type
String

Modifiable
Write-only

Prototype	(C/C++)
HRESULT	SetFTPPassword(SQLDMO_LPCSTR	NewValue);

Remarks
Microsoft®	SQL	Server™	replication	can	use	FTP	to	transfer	synchronization
images	of	publication	schema	and	data.	Use	the	FTPAddress,	FTPPort,
FTPLogin,	and	FTPPassword	properties	to	enable	use	of	FTP	for
synchronization.

Applications	should	use	the	MergePublication2	or	TransPublication2	objects
when	setting	the	FTPPassword	property.	The	FTPPassword	property	remains	a
property	of	the	TransPullSubscription	and	MergePullSubscription	objects	to
maintain	backward	compatibility.

Note		If	an	application	sets	FTPPassword	with	the	MergePublication2	or
TransPublication2	object	after	the	initial	snapshot	has	been	created,	a	new
snapshot	must	be	generated.	Snapshots	are	applied	when	the	next	scheduled
snapshot	agent	runs.

See	Also

FTPAddress	Property

FTPLogin	Property

FTPPort	Property

FTPSubdirectory	Property

SQL-DMO

FTPPort	Property
The	FTPAddress	property	exposes	the	port	of	an	FTP	server	that	maintains
synchronization	images	of	a	Microsoft®	SQL	Server™	publication.

Applies	To

MergePublication2	Object TransPublication2	Object
MergePullSubscription	Object TransPullSubscription	Object

Syntax
object.FTPPort	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Positive	long	integer	that	specifies	a	port	by	number

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFTPPort(LPDWORD	pRetVal);

HRESULT	SetFTPPort(DWORD	NewValue);

Remarks
SQL	Server	replication	can	use	FTP	to	transfer	synchronization	images	of
publication	schema	and	data.	Use	the	FTPAddress,	FTPPort,	FTPLogin,	and
FTPPassword	properties	to	enable	use	of	FTP	for	synchronization.

Applications	should	use	the	MergePublication2	or	TransPublication2	objects
when	setting	the	FTPPort	property.	The	FTPPort	property	remains	a	property
of	the	TransPullSubscription	and	MergePullSubscription	objects	to	maintain
backward	compatibility.

Note		If	an	application	sets	FTPPort	with	the	MergePublication2	or
TransPublication2	object	after	the	initial	snapshot	has	been	created,	a	new
snapshot	must	be	generated.	Snapshots	are	applied	when	the	next	scheduled
snapshot	agent	runs.

See	Also

FTPAddress	Property

FTPLogin	Property

FTPPassword	Property

FTPSubdirectory	Property

SQL-DMO

FTPSubdirectory	Property
The	FTPSubdirectory	property	specifies	the	FTP	subdirectory	where	Internet-
enabled	snapshot	files	are	stored	before	they	are	downloaded.

Applies	To

MergePublication2	Object TransPublication2	Object

Syntax
object.FTPSubdirectory	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	the	directory	in	which	snapshot	files	are	stored

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFTPSubdirectory(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetFTPSubdirectory(SQLDMO_LPCSTR	NewValue);

Remarks
Use	the	FTPSubdirectory	property	to	specify	subdirectory	locations	in	which
Internet-enabled	snapshot	files	are	stored	before	they	are	downloaded.	The
Merge	or	Distribution	Agent	uses	the	FTPSubdirectory	setting	to	locate	the
snapshot	files.

Typically,	an	FTP	subdirectory	is	located	relative	to	the	home	directory	for	the
FTP	site,	and	should	include	the	\Ftp	subdirectory	in	the	path.	For	example,	if
the	home	directory	for	the	FTP	site	is	C:\Public\Ftphome	and	the	snapshot	files
are	located	in	C:\Public\Ftphome\Snapshot\Publication1\Ftp,	set	the
FTPSubdirectory	property	using	the	string	value	'snapshot\publication1\ftp'.

It	is	recommended	that	the	FTPsubdirectory	be	the	same	as	the
AltSnapshotFolder.	If	FTPSubdirectory	is	not	specified,	Internet-enabled
snapshot	files	are	stored	in	the	default	directory.	By	default,	the	default	instance
of	Microsoft®	SQL	Server™	stores	these	files	in	the	C:\Program	Files\Microsoft
SQL	Server\Mssql\Repldata\Ftp	directory.	By	default,	a	named	instance	of	SQL
Server	stores	these	files	in	the	x:\Program	Files\Microsoft	SQL
Server\Mssql$InstanceName\Repldata\Ftp	directory,	where	InstanceName	is	the
name	of	a	non-default	instance	of	SQL	Server.

Using	different	subdirectory	locations	for	different	publications	can	be	useful	in
situations	requiring	varying	levels	of	security	access	to	the	shares	on	a
Distributor.

Note		If	an	application	sets	FTPSubdirectory	with	the	MergePublication2	or
TransPublication2	object	after	the	initial	snapshot	has	been	created,	a	new
snapshot	must	be	generated.	Snapshots	are	applied	when	the	next	scheduled
snapshot	agent	runs.

If	an	application	calls	FTPSubdirectory	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

FTPAddress	Property

FTPLogin	Property

FTPPassword	Property

FTPPort	Property

SQL-DMO

FullName	Property
The	FullName	property	returns	descriptive	data	about	an	Application	or
ServerRole	object.

Applies	To

Application	Object ServerRole	Object

Syntax
object.FullName

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetFullName(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

For	the	Application	object,	FullName	specifies	the	path	and	file	name	of	the
DLL	implementing	SQL-DMO.

For	the	ServerRole	object,	FullName	specifies	a	display	name	for	the	server
role.

SQL-DMO

FullSubscription	Property
The	FullSubscription	property	returns	a	high-level	indication	of	Subscriber
interest	in	a	publication.

Applies	To

TransSubscription	Object

Syntax
object.FullSubscription

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetFullSubscription(LPBOOL	pRetVal);

Remarks
If	TRUE,	the	Subscriber	is	receiving	all	articles	defined	in	the	subscribed-to
publication.

If	FALSE,	the	Subscriber	has	selected	only	articles	of	interest	from	the

publication.

SQL-DMO

FullTextCatalogID	Property
The	FullTextCatalogID	property	returns	a	system-generated	integer	uniquely
that	identifies	a	Microsoft	Search	full-text	catalog.

Applies	To

FullTextCatalog	Object

Syntax
object.FullTextCatalogID

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long	integer

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetFullTextCatalogID(LPLONG	pRetVal);

Remarks
The	full-text	catalog	identifier	appears	as	part	of	event	log	messages	generated
by	the	Microsoft	Search	service.

SQL-DMO

FullTextCatalogName	Property
The	FullTextCatalogName	property	specifies	the	Microsoft	Search	full-text
catalog	that	supports	full-text	query	for	the	referenced	Table	object.

Applies	To

Table	Object

Syntax
object.FullTextCatalogName	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	an	existing	Microsoft	Search	full-text	catalog	by	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFullTextCatalogName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetFullTextCatalogName(SQLDMO_LPCSTR	NewVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
FullTextCatalogName	is	an	empty	string	for	tables	not	participating	in	full-text
indexing.

SQL-DMO

FullTextColumnLanguageID	Property
The	FullTextColumnLanguageID	property	returns	the	language	identifier	if	a
column	is	a	full-text	column.

Applies	To

Column2	Object

Syntax
object.FullTextColumnLanguageID

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetFullTextColumnLanguageID(LPLONG	pRetVal);

Remarks
An	application	can	use	the	FullTextColumnLanguageID	property	to	determine
the	language	identifier	of	a	full-text	column.	FullTextColumnLanguageID
returns	NULL	if	no	language	identifier	is	assigned	to	the	column.

Note		If	an	application	calls	FullTextColumnLanguageID	on	an	instance	of
Microsoft®	SQL	Server™	version	7.0,	the	constant,
SQLDMO_E_SQL80ONLY,	and	the	message	"This	property	or	method	requires
Microsoft	SQL	Server	2000"	are	returned.

See	Also

EnumFullTextLanguages	Method

FullTextImageColumnType	Property

SetFullTextIndexWithOptions	Method

SQL-DMO

FullTextImageColumnType	Property
The	FullTextImageColumnType	property	returns	the	data	type	of	an	image
column	to	be	used	in	a	full-text	index.

Applies	To

Column2	Object

Syntax
object.FullTextImageColumnType

Part
Object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetFullTextImageColumnType(SQLDMO_LPBSTR	pRetVal);

Remarks
An	application	uses	the	FullTextImageColumnType	property	to	determine	the
underlying	data	type	of	an	image	column	prior	to	calling	the
SetFullTextIndexOnImage	method	to	create	a	full-text	index	on	the	column.

Note		If	an	application	calls	FullTextImageColumnType	on	an	instance	of
Microsoft®	SQL	Server™	version	7.0,	the	constant,
SQLDMO_E_SQL80ONLY,	and	the	message	"This	property	or	method	requires
Microsoft	SQL	Server	2000"	are	returned.

See	Also

SetFullTextIndexWithOptions	Method

SQL-DMO

FullTextIndex	Property
The	FullTextIndex	property	identifies	those	tables	and	columns	participating	in
Microsoft	Search	full-text	queries.

Applies	To

Column	Object Table	Object

Syntax
object.FullTextIndex	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFullTextIndex(LPBOOL	pRetVal);

HRESULT	SetFullTextIndex(BOOL	NewVal);

Remarks
If	TRUE,	the	referenced	column	or	table	participates	in	full-text	queries.
FullTextIndex	must	be	TRUE	in	a	Table	object	before	any	Column	object	in
the	Columns	collection	can	be	set	to	TRUE.

If	FALSE,	the	referenced	column	or	table	does	not	participate	in	full-text
queries.

SQL-DMO

FullTextIndexActive	Property
The	FullTextIndexActive	property	controls	Microsoft	Search	service	activity
for	a	table.

Applies	To

Table	Object

Syntax
object.FullTextIndexActive	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFullTextIndexActive(LPBOOL	pRetVal);

HRESULT	SetFullTextIndexActive(BOOL	NewVal);

Remarks
If	TRUE,	the	referenced	table	is	configured	for	participation	in	Microsoft	Search
full-text	indexing.	The	Microsoft	Search	service	will	gather	index	data	from	the
designated	columns	and	populate	the	index	as	directed.

If	FALSE,	Microsoft	Search	will	not	gather	index	data	from	the	referenced	table
regardless	of	configuration	for	full-text	indexing	participation.

Full-text	indexing	must	be	properly	configured	for	the	referenced	table	prior	to
setting	FullTextIndexActive.	For	more	information	about	full-text	index
configuration,	see	FullTextCatalogName	Property,	FullTextIndex	Property,	and
UniqueIndexForFullText	Property.

Note		Setting	FullTextIndexActive	to	TRUE	does	not	populate	the	Microsoft
Search	full-text	catalog	and	the	table	will	not	be	available	for	full-text	queries.
For	more	full-text	on	populating	the	Microsoft	Search	full-text	catalog,	see	Start
Method	(FullTextCatalog).

If	FullTextIndexActive	is	TRUE,	setting	it	to	TRUE	generates	an	error.	An
error	is	also	generated	on	attempts	to	set	FullTextIndexActive	to	TRUE	when
full-text	indexing	has	not	been	properly	configured.

If	FullTextIndexActive	is	TRUE,	setting	it	to	FALSE	simply	removes	the
referenced	table	from	participation	in	full-text	index	build	and	query.	Setting	the
property	does	not	affect	the	established	configuration.

SQL-DMO

FullTextIndexSize	Property
The	FullTextIndexSize	property	returns	the	size,	in	megabytes,	of	the
referenced	Microsoft	Search	full-text	catalog.

Applies	To

FullTextCatalog	Object

Syntax
object.FullTextIndexSize

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetFullTextIndexSize(LPLONG	pRetVal);

SQL-DMO

FullTextKeyColumn	Property
The	FullTextKeyColumn	property	returns	the	identifier	of	the	column	selected
for	row	identification	for	Microsoft	Search.

Applies	To

Table	Object

Syntax
object.FullTextKeyColumn

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetFullTextKeyColumn(LPLONG	pRetVal);

Remarks
Microsoft	Search	requires	that	a	single	column	identify	rows	participating	in	an
index	that	supports	full-text	query.	The	column	designated	must	contain	unique,
nonnull	values	and	must	participate	in	a	table's	PRIMARY	KEY	constraint	or

UNIQUE	index.

Use	UniqueIndexForFullText	to	configure	Microsoft	Search	full-text	index	key
column	use.

See	Also

UniqueIndexForFullText	Property

SQL-DMO

FullTextPopulateStatus	Property
The	FullTextPopulateStatus	property	returns	the	population	state	of	a
Microsoft	Search	full-text	table.

Applies	To

Table2	Object

Syntax
object.FullTextPopulateStatus

Part
Object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Value

Long	integer	that	specifies	a	SQLDMO_FULLTEXT_POPULATE_STATUS
constant	as	described	in	Settings.

Settings
The	FullTextPopulateStatus	property	returns	these
SQLDMO_FULLTEXT_POPULATE_STATUS	constant	values.

Constant Value Description
SQLDMOFullText_Popu_Full 1 Full	population	of	the	table	index

is	in	progress	for	the	full-text
catalog.

SQLDMOFullText_Popu_Inc 2 Incremental	population	of	the	table
index	is	in	progress	for	the	full-
text	catalog.

SQLDMOFullText_Popu_No 0 No	propagation	of	the	table	index
is	in	progress	for	the	full-text
catalog.

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetFullTextPopulateStatus(

SQLDMO_FULLTEXT_POPULATE_STATUS	*pRetVal);

Remarks
Use	the	FullTextPopulation	method	to	start	or	stop	population	of	the	table.

Note		If	an	application	calls	FullTextPopulation	on	an	instance	of	Microsoft®
SQL	Server™	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the
message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

See	Also

FullTextPopulation	Method

FullTextUpdateIndex	Method

TableFullTextUpdateIndexOn	Property

TableFullTextChangeTrackingOn	Property

SQL-DMO

G

SQL-DMO

Get	Property
The	Get	property	returns	TRUE	when	the	application	can	extract	the	value	of
the	referenced	object	property.

Applies	To

Property	Object

Syntax
object.Get

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Typeh
Boolean

Modifiable
Read-only

Remarks
When	TRUE,	the	property	referenced	is	read/write	or	read-only.

When	FALSE,	the	property	referenced	is	write-only.	Attempts	to	get	the	property
value,	such	as	that	expressed	in	a	catenation	of	values,	will	fail.

SQL-DMO

Granted	Property
The	Granted	property	reports	the	access	right	of	a	user	or	login	to	the	object
referenced	by	the	Permission	object.

Applies	To

Permission	Object

Syntax
object.Granted

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetGranted(LPBOOL	pRetVal);

Remarks
If	TRUE,	the	access	privilege	is	granted.

If	FALSE,	the	access	privilege	is	denied.

SQL-DMO

GrantedGranted	Property
The	GrantedGranted	property	reports	the	access	right	of	a	user	or	login	to	the
object	referenced	by	the	Permission2	object.

Applies	To

Permission2	Object

Syntax
object.GrantedGranted

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetGrantedGranted(LPBOOL	pRetVal);

Remarks
If	TRUE,	the	access	privilege	is	GRANT	with	the	GRANT	OPTION.

If	FALSE,	the	access	privilege	is	either	DENY	or	GRANT	without	the	GRANT
OPTION.

Note		GrantedGranted	can	be	used	with	Microsoft®	SQL	Server™	2000	and
SQL	Server	version	7.0.

SQL-DMO

Grantee	Property
The	Grantee	property	reports	the	database	user,	login,	or	database	role	granted
or	denied	access.

Applies	To

Permission	Object

Syntax
object.Grantee

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetGrantee(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

GroupID	Property
The	GroupID	property	returns	a	system-generated,	long	integer	that	uniquely
identifies	a	multiserver	administration,	target	server	group.

Applies	To

TargetServerGroup	Object

Syntax
object.GroupID

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetGroupID(LPLONG	pRetVal);

Remarks
On	any	administrating	instance	of	Microsoft®	SQL	Server™,	administration
target	servers	may	be	grouped.	SQL	Server	multiserver	administration	allows	job
assignment	to	one	or	more	instances	of	SQL	Server	by	name	or	multiserver

administration	group.

See	Also

ApplyToTargetServer	Method

ApplyToTargetServerGroup	Method

SQL-DMO

GroupRegistrationServer	Property

Applies	To

Application	Object

Syntax
object.GroupRegistrationServer	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetGroupRegistrationServer(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetGroupRegistrationServer(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

GroupRegistrationVersion	Property
The	GroupRegistrationVersion	property	is	reserved	for	future	use.

Applies	To

Application	Object

Syntax
object.GroupRegistrationVersion

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetGroupRegistrationVersion(LPLONG	pRetVal);

SQL-DMO

H

SQL-DMO

HasBigIntColumn	Property
The	HasBigIntColumn	property	returns	TRUE	if	the	referenced	table	has	a
bigint	column.

Applies	To

ReplicationTable2	Object

Syntax
object.HasBigIntColumn

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetHasBigIntColumn(LPBOOL	pRetVal);

Remarks
An	application	can	call	the	HasBigIntColumn	property	to	determine	whether	a
table	contains	a	bigint	column.	This	can	be	useful	when	preparing	to	replicate	to
a	heterogeneous	subscriber,	because	not	all	heterogeneous	databases	support	the

bigint	data	type.

Note		If	an	application	calls	HasBigIntColumn	on	an	instance	of	Microsoft®
SQL	Server™	version	7.0,	FALSE	is	returned.

SQL-DMO

HasBigIntIdentityColumn	Property
The	HasBigIntIdentityColumn	property	returns	TRUE	if	the	referenced	table
has	a	bigint	identity	column.

Applies	To

ReplicationTable2	Object

Syntax
object.HasBigIntIdentityColumn

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetHasBigIntIdentityColumn(LPBOOL	pRetVal);

Remarks
An	application	can	call	the	HasBigIntIdentityColumn	property	to	determine
whether	a	table	contains	a	bigint	identity	column.	This	can	be	useful	when
preparing	to	replicate	to	a	heterogeneous	subscriber,	because	not	all

heterogeneous	databases	support	the	bigint	data	type.

Note		If	an	application	calls	HasBigIntIdentityColumn	on	an	instance	of
Microsoft®	SQL	Server™	version	7.0,	FALSE	is	returned.

SQL-DMO

HasClusteredIndex	Property
The	HasClusteredIndex	property	returns	TRUE	when	a	clustered	index	is
defined	on	the	referenced	table.

Applies	To

Table	Object

Syntax
object.HasClusteredIndex

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetHasClusteredIndex(LPBOOL	pRetVal);

Remarks
A	Microsoft®	SQL	Server™	clustered	index	orders	table	data	using	index
values,	structuring	a	table	and	building	a	sorted	index	for	a	table.	For	any	given
table,	SQL	Server	supports,	at	most,	a	single	clustered	index.

See	Also

Using	Clustered	Indexes

JavaScript:hhobj_1.Click()

SQL-DMO

HasDBAccess	Property
The	HasDBAccess	property	reports	whether	a	user	has	explicit	permissions	to
access	a	database.

Applies	To

User	Object

Syntax
object.HasDBAccess

Parts
Object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetHasDBAccess	(LPBOOL	pRetVal);

Remarks
After	a	connection	is	established	to	Microsoft®	SQL	Server™,	an	application
can	use	the	HasDBAccess	property	to	determine	whether	a	user	has	explicit
access	to	a	particular	database.	If	HasDBAccess	returns	FALSE,	the	user	does

not	have	access.	Use	the	Grant,	Deny,	or	Revoke	methods	to	manipulate	user
database	permissions.

SQL-DMO

HasFullTextIndexedTables	Property
The	HasFullTextIndexedTables	property	reports	Microsoft	Search	full-text
catalog	use.

Applies	To

FullTextCatalog	Object

Syntax
object.HasFullTextIndexedTables

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetHasFullTextIndexedTables(LPBOOL	pRetVal);

Remarks
When	TRUE,	at	least	one	table	uses	the	referenced	Microsoft	Search	full-text
catalog	for	index	data	storage.

When	FALSE,	the	full-text	catalog	is	not	currently	used	for	index	data	storage.

SQL-DMO

HasGuidColumn	Property
The	HasGuidColumn	property	reports	the	presence	of	a	globally	unique
identifier	column	in	the	replicated	table.

Applies	To

ReplicationTable	Object

Syntax
object.HasGuidColumn

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetHasGuidColumn(LPBOOL	pRetVal);

Remarks
Merge	replication	articles	rely	on	the	presence	of	a	column	defined	with	the	data
type	uniqueidentifier.

If	TRUE,	the	table	has	a	column	containing	globally	unique	identifiers	and	is

available	for	publication	as	a	merge	article.

If	FALSE,	the	table	does	not	have	a	column	containing	globally	unique
identifiers.

SQL-DMO

HasIdentityColumn	Property
The	HasIdentityColumn	property	specifies	whether	a	table	has	an	identity
column.

Applies	To

ReplicationTable2	Object

Syntax
object.HasIdentityColumn

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetHasIdentityColumn(LPBOOL	pRetVal);

Remarks
The	HasIdentityColumn	property	returns	TRUE	if	a	table	contains	an	identity
column.

If	the	table	contains	an	identity	column,	use	the	AutoIdentityRange	property	to

enable	automatic	assignment	of	a	range	of	values	to	the	identity	columns	at	the
Publisher	and	Subscriber	for	articles	in	merge	publication,	or	articles	in
transactional	or	snapshot	publications	that	allow	queued	updates.

Note		HasIdentityColumn	can	be	used	with	Microsoft®	SQL	Server™	2000
and	SQL	Server	version	7.0.

See	Also

AutoIdentityRange	Property

SQL-DMO

HasIdentityNotForReplColumn	Property
The	HasIdentityNotForReplColumn	property	specifies	whether	a	table	has	an
identity	column	with	the	NOT	FOR	REPLICATION	option	set.

Applies	To

ReplicationTable2	Object 	

Syntax
object.HasIdentityNotForReplColumn

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetHasIdentityNotForReplColumn(LPBOOL	pRelVal);

Remarks
The	HasIdentityNotForReplColumn	property	returns	TRUE	if	a	table	contains
an	identity	column	with	the	NOT	FOR	REPLICATION	option	set.

The	NOT	FOR	REPLICATION	option	is	used	by	Microsoft®	SQL	Server™

2000	replication	to	implement	ranges	of	identity	values	in	a	partitioned
environment.	The	NOT	FOR	REPLICATION	option	is	especially	useful	in
transactional	or	merge	replication	when	a	published	table	is	partitioned	with
rows	from	various	sites.	For	more	information,	see	Using	NOT	FOR
REPLICATION.

Note		HasIdentityNotForReplColumn	can	be	used	with	SQL	Server	2000	and
SQL	Server	version	7.0.

Note		

JavaScript:hhobj_1.Click()

SQL-DMO

HasIndex	Property
The	HasIndex	property	returns	TRUE	if	at	least	one	index,	clustered	or
nonclustered,	is	defined	on	the	referenced	Microsoft®	SQL	Server™	table.

Applies	To

Table	Object

Syntax
object.HasIndex

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetHasIndex(LPBOOL	pRetVal);

SQL-DMO

HasNotification	Property
The	HasNotification	property	returns	the	number	of	SQL	Server	Agent
operators	assigned	to	receive	notification	for	an	alert.

Applies	To

Alert	Object

Syntax
object.HasNotification

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetHasNotification(LPLONG	pRetVal);

Remarks
SQL	Server	Agent	attempts	to	notify	one	or	more	operators	when	an	alert	is
raised.	A	notification	is	sent	based	on	both	assignment	and	the	operator
availability.	The	days	and	hours	that	a	SQL	Server	Agent	operator	is	available

are	set	for	each	operator.	The	HasNotification	property	reports	the	total	number
of	operators	assigned	to	receive	a	notification,	not	the	number	of	operators	who
actually	receive	a	notification	for	any	particular	occurrence	of	the	event	raising
the	alert.

SQL-DMO

HasPrimaryKey	Property
The	HasPrimaryKey	property	returns	TRUE	if	the	referenced	table	has	a
PRIMARY	KEY	constraint	defined	on	a	column.

Applies	To

ReplicationTable	Object

Syntax
object.HasPrimaryKey

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetHasPrimaryKey(LPBOOL	pRetVal);

Remarks
Transactional	replication	requires	a	primary	key	to	identify	rows.	For	an	instance
of	Microsoft®	SQL	Server™,	primary	keys	are	implemented	in	PRIMARY	KEY
and	UNIQUE	key	constraints.

If	TRUE,	the	table	contains	a	PRIMARY	KEY	constraint	and	can	be	published
as	an	article	in	a	transactional	publication.

If	FALSE,	the	table	does	not	contain	support	for	transactional	replication	and
cannot	be	published	as	a	transactional	article.

SQL-DMO

HasRemoteDistributionPublisher	Property
The	HasRemoteDistributionPublisher	property	returns	TRUE	when	an
instance	of	Microsoft®	SQL	Server™	acts	as	a	Distributor	for	data	replicated
(published)	by	at	least	one	other	organization	data	source.

Applies	To

Distributor	Object

Syntax
object.HasRemoteDistributionPublisher

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetHasRemoteDistributionPublisher(
LPBOOL	pHasRemoteDistributionPublisher);

SQL-DMO

HasRowVersionColumn	Property
The	HasRowVersionColumn	property	specifies	whether	a	table	has	a	column
named	msrepl_tran_version.

Applies	To

ReplicationTable2	Object

Syntax
object.HasRowVersionColumn

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetHasRowVersionColumn(LPBOOL	pRetVal);

Remarks

Microsoft®	SQL	Server™	requires	that	all	articles	in	a	transactional	or	snapshot
publication	that	allow	updatable	subscriptions	contain	a	unique	identifier	column
named	msrepl_tran_version,	which	is	used	to	track	changes	to	the	replicated
data.	The	HasRowVersionColumn	property	returns	TRUE	if	a	table	already	has
a	column	named	msrepl_tran_version.	If	HasRowVersionColumn	returns
FALSE,	the	msrepl_tran_version	column	is	added	to	tables	in	transactional	or
snapshot	publications	that	allow	updatable	subscriptions.

Note		If	an	application	calls	HasRowVersionColumn	on	an	instance	of	SQL
Server	version	7.0,	FALSE	is	returned.

SQL-DMO

HasSchedule	Property
The	HasSchedule	property	reports	whether	a	schedule	exists	for	a	SQL	Server
Agent	job.

Applies	To

Job	Object

Syntax
object.HasSchedule

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetHasSchedule(LPBOOL	pRetVal);

Remarks
If	TRUE,	the	job	has	at	least	one	schedule.	Query	the	JobSchedules	collection
to	evaluate	which	schedule	is	enabled	for	the	job.

If	FALSE,	the	job	has	no	schedule.	The	JobSchedules	collection	will	be	empty.

SQL-DMO

HasServer	Property
The	HasServer	property	reports	the	presence	of	a	target	server	for	a	job.

Applies	To

Job	Object

Syntax
object.HasServer

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetHasServer(LPBOOL	pRetVal);

Remarks
If	TRUE,	the	ApplyToTargetServer	or	ApplyToTargetServerGroup	methods
have	completed	successfully,	and	the	job	may	be	available	for	execution.

If	FALSE,	the	job	does	not	have	an	execution	target	set.

SQL	Server	Agent	jobs	must	have	at	least	one	job	step	and	must	be	targeted	to	a
server	to	be	executable.

For	stand-alone	or	multiserver	administration	target	servers,	the	job	can	be
targeted	only	to	the	local	server.	For	a	multiserver	administration	master	server,
the	targeted	server	can	be	itself	or	any	server	enlisted	as	a	multiserver	target.

The	ApplyToTargetServer	and	ApplyToTargetServerGroup	methods	set	the
target	server	of	a	job.

See	Also

ApplyToTargetServer	Method

ApplyToTargetServerGroup	Method

SQL-DMO

HasSQLVariantColumn	Property
The	HasSQLVariantColumn	property	returns	TRUE	if	the	referenced	table	has
a	sql_variant	column.

Applies	To

ReplicationTable2	Object

Syntax
object.HasSQLVariantColumn

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetHasSQLVariantColumn(LPBOOL	pRetVal);

Remarks
An	application	can	call	the	HasSQLVariantColumn	property	to	determine
whether	a	table	contains	a	sql_variant	column.	This	can	be	useful	when
preparing	to	replicate	to	a	heterogeneous	subscriber,	because	not	all

heterogeneous	databases	support	the	sql_variant	data	type.

Note		If	an	application	calls	HasSQLVariantColumn	on	an	instance	of
Microsoft®	SQL	Server™	version	7.0,	FALSE	is	returned.

SQL-DMO

HasStep	Property
The	HasStep	property	reports	the	presence	of	at	least	one	job	step	for	the	job.

Applies	To

Job	Object

Syntax
object.HasStep

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetHasStep(LPBOOL	pRetVal);

Remarks
If	TRUE,	the	job	has	at	least	one	step	(the	JobSteps	collection	of	the	Job	object
contains	at	least	one	member)	and	may	be	available	for	execution.

If	FALSE,	the	job	does	not	have	an	execution	target	set.

SQL	Server	Agent	jobs	must	have	at	least	one	job	step	and	must	be	targeted	to	a
server	to	be	executable.	Define	and	add	JobStep	objects	to	the	JobSteps
collection	of	a	Job	object	to	create	job	steps	and	alter	the	value	of	HasStep.

SQL-DMO

HasSubscription	Property
The	HasSubscription	property	is	TRUE	when	a	subscription	is	visible	to	the
referenced	publication.

Applies	To

MergePublication	Object TransPublication	Object

Syntax
object.HasSubscription

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetHasSubscription(LPBOOL	pRetVal);

Remarks
Anonymous,	Subscriber-originated	(pull)	subscriptions	are	not	visible	until	after
the	Subscriber	has	performed	initial	synchronization.	The	HasSubscription
property	will	return	FALSE	if	all	subscriptions	to	a	publication	are

unsynchronized,	anonymous,	pull	subscriptions.

SQL-DMO

HasTimeStampColumn	Property
The	HasPrimaryKey	property	returns	TRUE	when	the	referenced	table	has	at
least	one	column	defined	on	the	Microsoft®	SQL	Server™	data	type
timestamp.

Applies	To

ReplicationTable	Object

Syntax
object.HasTimeStampColumn

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetHasTimeStampColumn(LPBOOL	pRetVal);

SQL-DMO

HistoryCleanupTaskName	Property
The	HistoryCleanupTaskName	property	returns	the	name	of	a	SQL	Server
Agent	job	responsible	for	cleaning	the	replication	distribution	history	tables.

Applies	To

DistributionDatabase	Object

Syntax
object.HistoryCleanupTaskName

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetHistoryCleanupTaskName(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

HistoryRetention	Property
The	HistoryRetention	property	specifies	the	number	of	hours	to	maintain
replication	distribution	history	data.

Applies	To

DistributionDatabase	Object

Syntax
object.HistoryRetention	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Positive	long	integer.	The	default	is	48	hours.

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetHistoryRetention(LPDWORD	pRetVal);

HRESULT	SetHistoryRetention(DWORD	NewValue);

Remarks
Installing	replication	creates	a	SQL	Server	Agent	job	responsible	for	cleaning
the	replication	history	tables.	Rows	in	the	tables	older	than	the	current	hour
minus	the	retention	period	are	targets	of	the	cleaning.

SQL-DMO

HostName	Property
The	HostName	property	reports	the	network	name	of	the	client	hosting	the
SQL-DMO	application.

Applies	To

SQLServer	Object

Syntax
object.HostName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetHostName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetHostName(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	HostName	property	can	be	set	while	the	SQLServer	object	is	not
connected	to	an	instance	of	Microsoft®	SQL	Server™.

SQL-DMO

I

SQL-DMO

ID	Property
The	ID	property	exists	for	Microsoft®	SQL	Server™	database,	agent,	and
replication	components	with	defined	identifiers.

Applies	To

Alert	Object MergePublication	Object
Category	Object MergeSubsetFilter	Object
Column	Object Operator	Object
ConfigValue	Object RemoteServer	Object
Database	Object ReplicationTable2	Object
DBFile	Object Rule	Object
DBObject	Object StoredProcedure	Object
Default	Object Table	Object
DistributionArticle	Object TransArticle	Object
DistributionPublication	Object TransPublication	Object
FileGroup	Object Trigger	Object
Index	Object User	Object
Language	Object UserDefinedDatatype	Object
LogFile	Object UserDefinedFunction	Object
MergeArticle	Object View	Object

Syntax
object.ID

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetID(LPLONG	plID);

Remarks
The	definitions	of	many	SQL	Server	database,	agent,	and	replication	components
are	implemented	as	records	in	SQL	Server	system	tables.	Within	a	system	table,
one	column	may	be	designated	as	an	identifier.	An	identifier	is	a	value	that	is
unique	for	all	rows	in	the	table.	Identifiers	are	assigned	by	SQL	Server.

The	ID	property	represents	a	SQL	Server	component	identifier	and,	by	using	the
ItemByID	method,	provides	an	alternate	method	for	selecting	a	specific	SQL-
DMO	object	from	its	containing	collection.

The	ID	property	of	the	ReplicationTable2	object	is	designed	to	allow	an
application	to	retrieve	a	table	object	id.	The	ID	property	can	be	retrieved	using
both	SQL	Server	2000	and	SQL	Server	version	7.0.

See	Also

ItemByID	Method

SQL-DMO

ID	Property	(DistributionArticle2)
The	ID	property	exists	for	Microsoft®	SQL	Server™	replication	components
with	defined	identifiers.	It	is	a	read/write	property	when	used	with	the
DistributionArticle2	object.

Applies	To

DistributionArticle2	Object

Syntax

object.ID	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type

Long

Modifiable

Read/write

Prototype	(C/C++)

HRESULT	GetID(LPLONG	pRetVal);

HRESULT	SetID(LONG	lNewValue);

Remarks

The	ID	property	of	the	DistributionArticle2	object	is	designed	to	allow	an
application	to	set	a	user-defined	distribution	article	ID	when	creating	a	third-
party	article.	The	ID	must	be	unique,	or	an	error	occurs.

Note		ID	can	be	set	only	with	instances	of	SQL	Server	2000.	However,	the	value
of	ID	can	be	retrieved	with	SQL	Server	2000	and	SQL	Server	version	7.0.

SQL-DMO

Identity	Property
The	Identity	property	exposes	the	Microsoft®	SQL	Server™	row	identity
property	of	a	column.

Applies	To

Column	Object

Syntax
object.Identity	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write	prior	to	SQL	Server	column	creation.	Read-only	for	existing
columns.

Prototype	(C/C++)
HRESULT	GetIdentity(LPBOOL	pRetVal);

HRESULT	SetIdentity(BOOL	NewValue);

Remarks
SQL	Server	allows	the	row	identity	property	on	a	single	column	within	a	table.
Identity,	like	a	primary	key,	identifies	a	row	uniquely.	SQL	Server	implements
row	identification	using	a	numeric	value.	As	rows	are	inserted,	SQL	Server
generates	the	row	value	for	an	identity	column	by	adding	an	increment	to	the
existing	maximum	value.

A	SQL	Server	column	with	identity	must	have	a	numeric	data	type	that	can	be
represented	as	an	integer.	For	example,	columns	with	the	SQL	Server	data	types
int	and	decimal(4,	0)	can	have	identity	assigned.

If	TRUE,	this	is,	or	will	be,	the	single	identity	column	for	this	table.

If	FALSE,	this	column	does	not	have	the	row	identity	property.

SQL-DMO

IdentityIncrement	Property
The	IdentityIncrement	property	exposes	the	value	Microsoft®	SQL	Server™
adds	to	the	maximum	existing	row	identity	value	as	it	generates	the	next	identity
value.

Applies	To

Column	Object

Syntax
object.IdentityIncrement	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	greater	than	or	equal	to	1

Data	Type
Long

Modifiable
Read/write	prior	to	SQL	Server	column	creation.	Read-only	for	existing
columns.

Prototype	(C/C++)
HRESULT	GetIdentityIncrement(LPLONG	pRetVal);

HRESULT	SetIdentityIncrement(LONG	NewValue);

Remarks
SQL	Server	allows	the	row	identity	property	on	a	single	column	within	a	table.
Identity,	like	a	primary	key,	identifies	a	row	uniquely.	SQL	Server	implements
row	identification	using	a	numeric	value.	As	rows	are	inserted,	SQL	Server
generates	the	row	value	for	an	identity	column	by	adding	an	increment	to	the
existing	maximum	value.

For	example,	the	identity	values	for	the	first	three	rows	inserted	into	a	table
containing	a	column	defined	with	row	identity,	an	identity	seed	of	1,	and	an
increment	value	of	3,	will	be	1,	4,	and	7.

SQL-DMO

IdentityRangeThreshold	Property
The	IdentityRangeThreshold	property	specifies	when	to	assign	a	new	range	of
values	to	an	identity	column	at	a	Publisher	or	Subscriber.

Applies	To

MergeArticle2	Object TransArticle2	Object

Syntax
object.IdentityRangeThreshold	[=	value]

Parts
Object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Value

Long	integer	value	from	1	through	100	that	specifies	(as	a	percentage	of	a
Publisher's	or	Subscriber's	range	size)	when	a	new	identity	range	is	allocated.

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetIdentityRangeThreshold(LPLONG	pRetVal);

HRESULT	SetIdentityRangeThreshold(LONG	NewValue);

Remarks
The	identity	range	size	specifies	the	maximum	number	of	new	rows	that	can	be
inserted	into	an	identity	column	in	a	table	at	a	Publisher	or	Subscriber	before	the
starting	point	of	the	identity	range	must	be	reallocated.	Use
IdentityRangeThreshold	to	control	when	an	identity	range	is	reallocated.

The	identity	range	threshold	is	defined	as	a	percentage	of	the	range	size
specified	by	the	PublisherIdentityRangeSize	or	SubscriberIdentityRangeSize
properties.	For	example,	if	the	identity	range	size	is	50,000,	set
IdentityRangeThreshold	to	80	to	reallocate	an	identity	range	when	the	current
identity	values	used	reaches	40,000	rows.

Prior	to	setting	IdentityRangeThreshold,	set	AutoIdentityRange	to	TRUE,
and	specify	identity	range	sizes	using	the	PublisherIdentityRangeSize	and
SubscriberIdentityRangeSize	properties.

Note		If	an	application	calls	IdentityRangeThreshold	on	an	instance	of
Microsoft®	SQL	Server™	version	7.0,	the	constant,
SQLDMO_E_SQL80ONLY,	and	the	message	"This	property	or	method	requires
Microsoft	SQL	Server	2000"	are	returned.

See	Also

AutoIdentityRange	Property

PublisherIdentityRangeSize	Property

SubscriberIdentityRangeSize	Property

SQL-DMO

IdentitySeed	Property
The	IdentitySeed	property	exposes	the	initial	row	value	for	an	identity	column.

Applies	To

Column	Object

Syntax
object.IdentitySeed	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	greater	than	or	equal	to	1

Data	Type
Long

Modifiable
Read/write	prior	to	Microsoft®	SQL	Server™	column	creation.	Read-only	for
existing	columns.

Prototype	(C/C++)
HRESULT	GetIdentitySeed(LPLONG	pRetVal);

HRESULT	SetIdentitySeed(LONG	NewValue);

Remarks
SQL	Server	allows	the	row	identity	property	on	a	single	column	within	a	table.
Identity,	like	a	primary	key,	identifies	a	row	uniquely.	SQL	Server	implements
row	identification	using	a	numeric	value.	As	rows	are	inserted,	SQL	Server
generates	the	row	value	for	an	identity	column	by	adding	an	increment	to	the
existing	maximum	value.

For	example,	the	identity	values	for	the	first	three	rows	inserted	into	a	table
containing	a	column	defined	with	identity,	an	identity	seed	of	1,	and	an
increment	value	of	3,	will	be	1,	4,	and	7.

SQL-DMO

Impersonate	Property
The	Impersonate	property	specifies	4.0	or	Microsoft®	Windows	2000	login
credential	use	for	connections	attempted	by	the	referenced	OLE	DB	data	source
user.

Applies	To

LinkedServerLogin	Object

Syntax
object.Impersonate	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetImpersonate(LPBOOL	pRetVal);

HRESULT	SetImpersonate(BOOL	NewValue);

Remarks
If	TRUE,	Microsoft	SQL	Server	authenticated	logins	use	their	own	credentials	to
connect	to	the	referenced	OLE	DB	data	source.	TRUE	is	invalid	for	a	Windows
NT	authenticated	login	unless	the	Windows	NT	environment	supports	security
account	delegation	and	the	provider	supports	Windows	NT	Authentication.

If	FALSE,	a	connection	attempt	uses	a	specified	username	and	password.

See	Also

RemotePassword	Property

RemoteUser	Property

SQL-DMO

ImpersonateClient	Property
The	ImpersonateClient	property	exposes	the	security	context	for
nonadministrative	users	executing	xp_cmdshell.

Applies	To

IntegratedSecurity	Object

Syntax
object.ImpersonateClient	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetImpersonateClient(LPBOOL	pRetVal);

HRESULT	SetImpersonateClient(BOOL	NewValue);

Remarks
xp_cmdshell,	a	Microsoft®	SQL	Server™	system	stored	procedure,	executes	an
operating	system	command,	returning	any	results	of	command	execution	as	text.

If	TRUE,	xp_cmdshell	runs	in	the	security	context	of	the	client	connection.

If	FALSE,	xp_cmdshell	runs	in	the	security	context	of	SQL	Server	Agent.	The
default	is	FALSE.

SQL-DMO

ImportRowsPerBatch	Property
The	ImportRowsPerBatch	property	specifies	the	number	of	rows	contained	in	a
bulk	copy	transaction.

Applies	To

BulkCopy	Object

Syntax
object.ImportRowsPerBatch	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	greater	than	0

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetImportRowsPerBatch(LPLONG	pRetVal);

HRESULT	SetImportRowsPerBatch(LONG	NewValue);

Remarks
The	Microsoft®	SQL	Server™	bulk	copy	process	can	copy	large	amounts	of
data	from	an	external	data	file	to	a	SQL	Server	table.	By	default,	a	bulk	copy
data-import	operation	inserts	all	rows	in	the	data	file	in	a	single	transaction.	SQL
Server	does	not	guarantee	data	integrity	until	and	unless	a	bulk	copy	transaction
is	committed.

Use	ImportRowsPerBatch	to	adjust	the	size	of	the	bulk	copy	transaction.

See	Also

Batch	Switches

JavaScript:hhobj_1.Click()

SQL-DMO

InActiveDirectory	Property
The	InActiveDirectory	property	specifies	whether	the	referenced	publication	is
represented	as	an	object	in	Microsoft®	Active	Directory™.

Applies	To

MergePublication2	Object TransPublication2	Object

Syntax

object.InActiveDirectory	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type

Boolean

Modifiable

Read/write

Prototype	(C/C++)

HRESULT	GetInActiveDirectory(LPBOOL	pRetVal);

HRESULT	SetInActiveDirectory(BOOL	NewValue);

Remarks

This	property	gives	user	a	way	to	make	a	subset	of	publication	properties
available	to	Active	Directory	so	that	other	users	may	find	this	publication	using
Microsoft	Windows®	Active	Directory	Services	on	the	Windows®	2000

operating	system.	Using	Active	Directory,	you	can	search	publication	objects	to
view	or	retrieve	properties	of	a	Publication	object.	When	a	publication	property
is	changed,	it	is	reflected	in	Active	Directory	if	InActiveDirectory	property	is
set	to	TRUE,	and	if	the	publication	property	is	included	in	the	subset	of
properties	available	to	Active	Directory.	However,	users	are	not	advised	to
change	publication	properties	directly	using	Active	Directory.	Instead,	set
InActiveDirectory	to	TRUE	to	make	a	subset	of	this	publication's	properties
available	to	Active	Directory.

Note		If	an	application	calls	InActiveDirectory	on	an	instance	of	Microsoft	SQL
Server™	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

InAlter	Property
The	InAlter	property	reports	the	change	mode	of	a	Table	object.

Applies	To

Table	Object

Syntax
object.InAlter

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	InAlter(LPBOOL	pRetVal);

Remarks
When	TRUE,	the	BeginAlter	method	has	been	used	to	mark	the	start	of	a	unit	of
change	for	the	Table	object.	The	DoAlter	method	commits	any	changes	made
within	the	unit.	The	CancelAlter	method	rolls	back	any	changes	made.

When	FALSE,	no	change	unit	exists.	Changes	made	to	the	Table	object

properties,	methods	that	affect	the	referenced	Microsoft®	SQL	Server™	table,
and	modification	to	the	Table	object	collections	cause	immediate	update
requests	to	the	instance	of	SQL	Server.

SQL-DMO

IncludeDB	Property
The	IncludeDB	property	specifies	whether	to	create	a	database	on	the
destination	server	during	a	data	transfer	operation.

Applies	To

Transfer2	Object

Syntax
object.IncludeDB	[=	value]

Parts
Object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetIncludeDB(LPBOOL	pRetVal);

HRESULT	SetIncludeDB(BOOL	NewValue);

Remarks
With	the	IncludeDB	property	set	to	TRUE,	a	database	need	not	already	exist	at	a
destination	server	before	database	objects	can	be	copied	during	a	transfer
operation.	The	IncludeDB	property	generates	a	destination	database	creation
statement	at	the	beginning	of	script	execution	during	a	transfer	operation.

The	default	is	FALSE.

Note		IncludeDB	can	be	used	with	Microsoft®	SQL	Server™	2000	and	SQL
Server	version	7.0.

SQL-DMO

IncludeDependencies	Property
The	IncludeDependencies	property	controls	the	addition	of	dependent	database
objects	to	a	user-defined	list	of	Microsoft®	SQL	Server™	database	objects	in	a
transfer	operation.

Applies	To

Transfer	Object

Syntax
object.IncludeDependencies	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetIncludeDependencies(LPBOOL	pRetVal);

HRESULT	SetIncludeDependencies(BOOL	NewValue);

Remarks
If	TRUE,	the	transfer	automatically	copies	the	SQL	Server	database	objects	on
which	user-selected	database	objects	depend.

If	FALSE,	only	the	user-selected	objects	are	copied.

SQL-DMO

IncludeEventDescription	Property
The	IncludeEventDescription	property	indicates	response	notifications	that
receive	alert	error	text	when	a	SQL	Server	Agent	builds	a	notification	message
for	an	alert.

Applies	To

Alert	Object

Syntax
object.IncludeEventDescription	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	response	type	as	described	in	Settings

Settings

Constant Value Description
SQLDMONotify_All 7 Notification	by	e-mail,	e-mail	sent	to

the	pager	address,	and	network	pop-up
message

SQLDMONotify_Email 1 Notification	by	e-mail	sent	to	the
operator	e-mail	address

SQLDMONotify_NetSend 4 Notification	by	network	pop-up
message	posted	to	the	operator
network	address

SQLDMONotify_None 0 No	notification	method	specified	for

the	referenced	operator
SQLDMONotify_Pager 2 Notification	by	e-mail	sent	to	the

operator	pager	address

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetIncludeEventDescription(SQLDMO_NOTIFY_TYPE	*pRetVal);

HRESULT	SetIncludeEventDescription(SQLDMO_NOTIFY_TYPE
NewValue);

Remarks
SQL	Server	Agent	builds	a	notification	message	to	send	in	response	to	a	raised
alert.	For	each	notification	method	(e-mail,	pager,	or	net	send),	SQL	Server
Agent	can	build	a	different	message.	To	include	alert	error	text	in	a	SQL	Server
Agent-built	message,	set	the	IncludeEventDescription	property	of	the	referring
Alert	object.

To	specify	that	more	than	one	notification	method	should	include	error	text,
combine	values	by	using	an	OR	logical	operator.

See	Also

Notification	Method	Constants	(SQLDMO_NOTIFY_TYPE)

NotificationMessage	Property

SQL-DMO

IncludeIdentityValues	Property
The	IncludeIdentityValues	property	controls	the	handling	of	existing	values	for
a	column	with	the	Microsoft®	SQL	Server™	identity	property	when	data	is
copied	to	the	SQL	Server	table.

Applies	To

BulkCopy	Object

Syntax
object.IncludeIdentityValues	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetIncludeIdentityValues(LPBOOL	pRetVal);

HRESULT	SetIncludeIdentityValues(BOOL	NewValue);

Remarks
When	TRUE,	SQL-DMO	executes	a	SET	IDENTITY_INSERT	ON	statement
when	the	ImportData	method	of	a	Table	object	is	called.

When	FALSE,	SQL-DMO	ignores	any	data	values	present	for	a	column	with	the
identity	property.	SQL	Server	generates	data	values	for	the	column	by	using	the
column's	setting	for	identity	seed	and	increment.	The	default	is	FALSE.

See	Also

SET	IDENTITY_INSERT

JavaScript:hhobj_1.Click()

SQL-DMO

IncludeLogins	Property
The	IncludeLogins	property	controls	handling	of	system	administrator-created
logins	in	a	transfer	operation.

Applies	To

Transfer	Object

Syntax
object.IncludeLogins	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetIncludeLogins(LPBOOL	pRetVal);

HRESULT	SetIncludeLogins(BOOL	NewValue);

Remarks
If	TRUE,	all	system	administrator-created	logins	in	the	source	server's	master
database	are	created	in	the	target	server's	master	database	as	part	of	the	transfer.

If	FALSE,	no	logins	are	created	on	the	transfer	target	server.

SQL-DMO

IncludeUsers	Property
The	IncludeUsers	property	controls	handling	of	Microsoft®	SQL	Server™
database	user	records	in	a	transfer	operation.

Applies	To

Transfer	Object

Syntax
object.IncludeUsers	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetIncludeUsers(LPBOOL	pRetVal);

HRESULT	SetIncludeUsers(BOOL	NewValue);

Remarks
If	TRUE,	all	users	in	the	source	database	are	created	in	the	target	database	as
part	of	the	transfer	operation.

If	FALSE,	no	users	are	created	in	the	target	database.

SQL-DMO

IndexedColumns	Property
The	IndexedColumns	property	defines	the	list	of	columns	participating	in	a
Microsoft®	SQL	Server™	index.

Applies	To

Index	Object

Syntax
object.IndexedColumns	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

SQL-DMO	multistring	listing	columns	that	will	participate	in	the	index

Data	Type
String

Modifiable
Write-only

Prototype	(C/C++)
HRESULT	SetIndexedColumns(SQLDMO_LPCSTR	NewValue);

Remarks

The	IndexedColumns	property	is	implemented	for	index	creation	using	SQL-
DMO.

Note		The	IndexedColumns	property	is	write-only.	An	attempt	to	retrieve	the
property	value	generates	an	error.	The	application	cannot	rely	on	the	current
value	of	the	property	in	any	way.

For	example,	the	application	should	not	attempt	to	catenate	an	additional
column	name	to	the	property	value.	Instead,	the	application	should	build	a
catenated	string	of	column	names	and	use	that	string	to	set	the	property
value.

For	more	information	about	setting	multistring	parameters,	see	Using	SQL-
DMO	Multistrings.

SQL-DMO

IndexOnTable	Property
The	IndexOnTable	property	specifies	whether	an	index	is	defined	for	a	table	or
a	view.

Applies	To

Index2	Object

Syntax
object.IndexOnTable

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIndexOnTable(LPBOOL	pRetVal);

Remarks
If	the	IndexOnTable	property	returns	TRUE	(the	default),	the	index	is	defined
for	a	table.

If	IndexOnTable	returns	FALSE,	the	index	is	defined	for	an	indexed	view.

Use	the	Count	property	of	the	Indexes	collection	to	enumerate	indexes	on	a
table	or	view.

Note		If	an	application	calls	IndexOnTable	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

IndexSpaceUsage	Property
The	IndexSpaceUsage	property	returns	the	number	of	kilobytes	assigned	to
index	storage	within	all	operating	system	files	maintaining	indexes	for	the
referenced	database.

Applies	To

Database	Object

Syntax
object.IndexSpaceUsage

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Float

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIndexSpaceUsage(LPFLOAT	pRetVal);

Remarks
Microsoft®	SQL	Server™	assigns	database	storage	for	index	maintenance	as
indexes	are	created.	A	given	index	may	use	all	or	part	of	the	assigned	storage.

SQL-DMO

IndexSpaceUsed	Property
The	IndexSpaceUsed	property	returns	the	number	of	kilobytes	of	disk	space
used	to	store	indexes	built	on	the	referenced	Microsoft®	SQL	Server™	table.

Applies	To

Table	Object

Syntax
object.IndexSpaceUsed

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIndexSpaceUsed(LPLONG	pRetVal);

SQL-DMO

Initialize	Property
The	Initialize	property	controls	backup	device	append	and	overwrite	behavior
for	a	backup	to	one	or	more	specified	devices.

Applies	To

Backup	Object

Syntax
object.Initialize	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetInitialize(LPBOOL	pRetVal);

HRESULT	SetInitialize(BOOL	NewValue);

Remarks
If	TRUE,	the	backup	specified	becomes	the	first	backup	set	on	the	media,
overwriting	any	existing	backup	sets	on	the	media.	The	backup	media	is	not
overwritten	if	either	of	the	following	conditions	is	met:

All	backup	sets	on	the	media	have	not	yet	expired.

The	optionally	specified	backup	set	name	does	not	match	the	name	on
the	backup	media.	Specify	backup	set	name	with	the	BackupSetName
property.

If	FALSE,	the	backup	specified	creates	a	new	backup	set	appended	as	the	last
backup	set	on	the	media.

See	Also

BACKUP

BackupSetName	Property

Backup	Formats

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL-DMO

InPrimaryKey	Property
The	InPrimaryKey	property	exposes	primary	key	participation	for	a
Microsoft®	SQL	Server™	column.

Applies	To

Column	Object

Syntax
object.InPrimaryKey

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetInPrimaryKey(LPBOOL	pRetVal);

Remarks
If	TRUE,	the	referenced	column	is	part	of	a	PRIMARY	KEY	or	UNIQUE	key
constraint	defined	on	the	table.

If	FALSE,	the	referenced	column	is	not	part	of	a	PRIMARY	KEY	or	UNIQUE

key	constraint	defined	on	the	table.

SQL-DMO

InsertCommand	Property
The	InsertCommand	property	specifies	record	insert	when	new	rows	in	the
source	are	published	to	article	Subscribers.

Applies	To

TransArticle	Object

Syntax
object.InsertCommand	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	containing	a	Transact-SQL	script

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetInsertCommand(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetInsertCommand(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	format	and	contents	of	the	InsertCommand	property	must	match	those
specified	for	the	@ins_cmd	argument	of	the	system	stored	procedure	sp_article.
For	more	information,	see	sp_addarticle.

For	each	row	added	to	the	published	table,	a	Transact-SQL	INSERT	statement	is
built.	When	InsertCommand	is	an	empty	string,	or	the	string	SQL,	the	default
behavior	is	used.

Set	InsertCommand	to	NONE	to	specify	that	the	publication	ignore	records
added	to	the	published	table.

Set	InsertCommand	to	CALL	procedure	to	specify	a	Transact-SQL	stored
procedure	executed	for	record	insertion.	The	stored	procedure	must	include
parameters	referencing,	in	order,	the	columns	published	in	the	article,	and	each
Subscriber	must	have	a	copy	of	the	stored	procedure	installed	in	the	destination
database.

Note		If	an	application	sets	InsertCommand	after	the	initial	snapshot	has	been
created,	a	new	snapshot	must	be	generated	and	reapplied	to	each	subscription.
Snapshots	are	applied	when	the	next	scheduled	snapshot	and	distribution	agent
run.

JavaScript:hhobj_1.Click()

SQL-DMO

InstanceName	Property
The	InstanceName	property	returns	the	name	of	an	instance	of	Microsoft®	SQL
Server™.

Applies	To

SQLServer2	Object

Syntax
object.InstanceName

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
STDMETHOD	GetInstanceName(SQLDMO_LPBSTR	pRetVal);

Remarks
Use	the	InstanceName	property	in	conjunction	with	ServiceName	to	uniquely
identify	an	instance	of	SQL	Server.	The	InstanceName	and	ServiceName
properties	return	strings.

Note		If	an	application	calls	InstanceName	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

ServiceName	Property

SQL-DMO

InsteadOfTrigger	Property
The	InsteadOfTrigger	property	indicates	whether	a	trigger	is	an	INSTEAD	OF
trigger.

Applies	To

Trigger2	Object

Syntax
object.InsteadOfTrigger

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetInsteadOfTrigger(LPBOOL	pRetVal);

Remarks
INSTEAD	OF	triggers	are	executed	instead	of	the	triggering	action.	INSTEAD
OF	triggers	can	also	be	defined	on	views,	in	which	case	they	extend	the	types	of
updates	a	view	can	support.	Each	table	or	view	can	have	one	INSTEAD	OF

trigger	for	each	triggering	action	(UPDATE,	DELETE,	and	INSERT).

Note		If	an	application	calls	InsteadOfTrigger	on	an	instance	of	Microsoft®
SQL	Server™	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the
message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

See	Also

AfterTrigger	Property

SQL-DMO

Isbulkadmin	Property
The	Isbulkadmin	property	reports	membership	in	the	fixed	server	role
bulkadmin	for	the	SQL-DMO	connection.

Applies	To

SQLServer2	Object 	

Syntax
object.Isbulkadmin

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIsbulkadmin(LPBOOL	pRetVal);

Remarks
Members	of	the	Microsoft®	SQL	Server™	fixed	server	role	bulkadmin	have
permission	to	execute	BULK	INSERT	statements.	For	more	information	about
adding	members	to	a	server	role,	see	AddMember	Method.

When	TRUE,	the	login	authenticating	client	application	connection	is	a	member
of	the	bulkadmin	role.

When	FALSE,	the	login	authenticating	client	application	connection	is	not	a
member	of	the	role.

Note		If	an	application	calls	Isbulkadmin	on	an	instance	of	SQL	Server	version
7.0,	the	a	value	of	False	is	returned.

SQL-DMO

IsClustered	Property
The	IsClustered	property	specifies	whether	a	server	is	a	clustered	server.

Applies	To

SQLServer2	Object

Syntax
object.IsClustered

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIsClustered(LPBOOL	pRetVal);

Remarks
The	IsClustered	property	is	useful	for	applications	that	need	to	determine	which
servers	are	clustered	servers,	or	to	detect	and	handle	failover	situations.

Note		If	an	application	calls	IsClustered	on	an	instance	of	Microsoft®	SQL
Server™	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message

"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

IsComputed	Property
The	IsComputed	property	reports	whether	the	Column	object	references	a
computed	Microsoft®	SQL	Server™	column.

Applies	To

Column	Object

Syntax
object.IsComputed	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write	before	column	creation.	Read-only	when	referencing	an	existing
column.

Prototype	(C/C++)
HRESULT	GetIsComputed(LPBOOL	pRetVal);

HRESULT	SetIsComputed(BOOL	NewValue);

Remarks
If	TRUE,	the	referenced	column	is,	or	will	be	created	as,	a	computed	column.
When	creating	a	computed	column,	set	IsComputed	to	TRUE	and	set	the
ComputedText	property	to	define	the	column's	computed	expression.

If	FALSE,	the	Column	object	references	a	column	that	can	contain	literal
values.

SQL-DMO

Isdb_accessadmin	Property
The	Isdb_accessadmin	property	reports	membership	in	the	fixed	database	role
db_accessadmin	for	the	SQL-DMO	connection.

Applies	To

Database	Object

Syntax
object.Isdb_accessadmin

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIsdb_accessadmin(LPBOOL	pRetVal);

Remarks
Members	of	the	Microsoft®	SQL	Server™	fixed	database	role	db_accessadmin
have	permission	to	create,	modify,	and	drop	database	users.	For	more
information	about	adding	members	to	a	database	role,	see	AddMember	Method.

When	TRUE,	the	user	mapping	the	login	authenticating	the	client	application
connection	is	a	member	of	the	db_accessadmin	role.

When	FALSE,	the	user	mapping	the	login	authenticating	the	client	application
connection	is	not	a	member	of	the	role.

SQL-DMO

Isdb_backupoperator	Property
The	Isdb_backupoperator	property	reports	membership	in	the	fixed	database
role	db_backupoperator	for	the	SQL-DMO	connection.

Applies	To

Database	Object

Syntax
object.Isdb_backupoperator

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIsdb_backupoperator(LPBOOL	pRetVal);

Remarks
Members	of	the	Microsoft®	SQL	Server™	fixed	database	role
db_backupoperator	have	permission	to	back	up	and	restore	the	database	and	its
log.	For	more	information	about	adding	members	to	a	database	role,	see

AddMember	Method.

When	TRUE,	the	user	mapping	the	login	authenticating	the	client	application
connection	is	a	member	of	the	db_backupoperator	role.

When	FALSE,	the	user	mapping	the	login	authenticating	the	client	application
connection	is	not	a	member	of	the	role.

SQL-DMO

Isdb_datareader	Property
The	Isdb_datareader	property	reports	membership	in	the	fixed	database	role
db_datareader	for	the	SQL-DMO	connection.

Applies	To

Database	Object

Syntax
object.Isdb_datareader

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIsdb_datareader(LPBOOL	pRetVal);

Remarks
Members	of	the	Microsoft®	SQL	Server™	fixed	database	role	db_datareader
have	permission	to	see	data	from	any	user	table	in	the	database.	For	more
information	about	adding	members	to	a	database	role,	see	AddMember	Method.

When	TRUE,	the	user	mapping	the	login	authenticating	the	client	application
connection	is	a	member	of	the	db_datareader	role.

When	FALSE,	the	user	mapping	the	login	authenticating	the	client	application
connection	is	not	a	member	of	the	role.

SQL-DMO

Isdb_datawriter	Property
The	Isdb_datawriter	property	reports	membership	in	the	fixed	database	role
db_datawriter	for	the	SQL-DMO	connection.

Applies	To

Database	Object

Syntax
object.Isdb_datawriter

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIsdb_datawriter(LPBOOL	pRetVal);

Remarks
Members	of	the	Microsoft®	SQL	Server™	fixed	database	role	db_datawriter
have	permission	to	add,	change,	and	delete	data	in	any	user	table	in	the	database.
For	more	information	about	adding	members	to	a	database	role,	see	AddMember

Method.

When	TRUE,	the	user	mapping	the	login	authenticating	the	client	application
connection	is	a	member	of	the	db_datawriter	role.

When	FALSE,	the	user	mapping	the	login	authenticating	the	client	application
connection	is	not	a	member	of	the	role.

SQL-DMO

Isdb_ddladmin	Property
The	Isdb_ddladmin	property	reports	membership	in	the	fixed	database	role
db_ddladmin	for	the	SQL-DMO	connection.

Applies	To

Database	Object

Syntax
object.Isdb_ddladmin

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIsdb_ddladmin(LPBOOL	pRetVal);

Remarks
Members	of	the	Microsoft®	SQL	Server™	fixed	database	role	db_ddladmin
have	permission,	within	a	database,	to	add,	modify,	and	delete	database	objects
such	as	tables	and	stored	procedures.	For	more	information	about	adding

members	to	a	database	role,	see	AddMember	Method.

When	TRUE,	the	user	mapping	the	login	authenticating	the	client	application
connection	is	a	member	of	the	db_ddladmin	role.

When	FALSE,	the	user	mapping	the	login	authenticating	the	client	application
connection	is	not	a	member	of	the	role.

SQL-DMO

Isdb_denydatareader	Property
The	Isdb_denydatareader	property	reports	membership	in	the	fixed	database
role	db_denydatareader	for	the	SQL-DMO	connection.

Applies	To

Database	Object

Syntax
object.Isdb_denydatareader

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIsdb_denydatareader(LPBOOL	pRetVal);

Remarks
Members	of	the	Microsoft®	SQL	Server™	fixed	database	role
db_denydatareader	are	denied	permission	to	see	data	from	any	user	table	in	the
database.	For	more	information	about	adding	members	to	a	database	role,	see

AddMember	Method.

When	TRUE,	the	user	mapping	the	login	authenticating	the	client	application
connection	is	a	member	of	the	db_denydatareader	role.

When	FALSE,	the	user	mapping	the	login	authenticating	the	client	application
connection	is	not	a	member	of	the	role.

SQL-DMO

Isdb_denydatawriter	Property
The	Isdb_denydatawriter	property	reports	membership	in	the	fixed	database
role	db_denydatawriter	for	the	SQL-DMO	connection.

Applies	To

Database	Object

Syntax
object.Isdb_denydatawriter

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIsdb_denydatawriter(LPBOOL	pRetVal);

Remarks
Members	of	the	Microsoft®	SQL	Server™	fixed	database	role
db_denydatawriter	are	denied	permission	to	add,	change,	and	delete	data	in
any	user	table	in	the	database.	For	more	information	about	adding	members	to	a

database	role,	see	AddMember	Method.

When	TRUE,	the	user	mapping	the	login	authenticating	the	client	application
connection	is	a	member	of	the	db_denydatawriter	role.

When	FALSE,	the	user	mapping	the	login	authenticating	the	client	application
connection	is	not	a	member	of	the	role.

SQL-DMO

Isdb_owner	Property
The	Isdb_owner	property	reports	membership	in	the	fixed	database	role
db_owner	for	the	SQL-DMO	connection.

Applies	To

Database	Object

Syntax
object.Isdb_owner

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIsdb_owner(LPBOOL	pRetVal);

Remarks
Members	of	the	Microsoft®	SQL	Server™	fixed	database	role	db_owner	have
full	database	ownership	permission	in	the	database.	For	more	information	about
adding	members	to	a	database	role,	see	AddMember	Method.

When	TRUE,	the	user	mapping	the	login	authenticating	the	client	application
connection	is	a	member	of	the	db_owner	role.

When	FALSE,	the	user	mapping	the	login	authenticating	the	client	application
connection	is	not	a	member	of	the	role.

SQL-DMO

Isdb_securityadmin	Property
The	Isdb_securityadmin	property	reports	membership	in	the	fixed	database	role
db_securityadmin	for	the	SQL-DMO	connection.

Applies	To

Database	Object

Syntax
object.Isdb_securityadmin

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIsdb_securityadmin(LPBOOL	pRetVal);

Remarks
Members	of	the	Microsoft®	SQL	Server™	fixed	database	role
db_securityadmin	have	permission	to	modify	role	membership	and	user
permissions	in	the	database.	For	more	information	about	adding	members	to	a

database	role,	see	AddMember	Method.

When	TRUE,	the	user	mapping	the	login	authenticating	the	client	application
connection	is	a	member	of	the	db_securityadmin	role.

When	FALSE,	the	user	mapping	the	login	authenticating	the	client	application
connection	is	not	a	member	of	the	role.

SQL-DMO

Isdbcreator	Property
The	Isdbcreator	property	reports	membership	in	the	fixed	server	role	dbcreator
for	the	SQL-DMO	connection.

Applies	To

SQLServer	Object

Syntax
object.Isdbcreator

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIsdbcreator(LPBOOL	pRetVal);

Remarks
Members	of	the	Microsoft®	SQL	Server™	fixed	server	role	dbcreator	have
permission	to	create	and	alter	databases.	For	more	information	about	adding
members	to	a	database	role,	see	AddMember	Method.

When	TRUE,	the	login	authenticating	client	application	connection	is	a	member
of	the	dbcreator	role.

When	FALSE,	the	login	authenticating	client	application	connection	is	not	a
member	of	the	role.

SQL-DMO

IsDeleted	Property
The	IsDeleted	property	indicates	whether	the	referenced	object	has	been	deleted
from	an	instance	of	Microsoft®	SQL	Server™.

Applies	To

Database2	Object Table2	Object
DatabaseRole2	Object Trigger2	Object
Default2	Object User2	Object
Login2	Object UserDefinedDataType2	Object
Rule2	Object UserDefinedFunction	Object
StoredProcedure2	Object View2	Object

Syntax

object.IsDeleted

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type

Boolean

Modifiable

Read-only

Prototype	(C/C++)

HRESULT	GetIsDeleted(LPBOOL	pRetVal);

Remarks

If	a	client	session	creates	an	object	using	SQL-DMO,	and	another	client	session
subsequently	deletes	the	object	using	another	tool	(for	example,	SQL	Query
Analyzer),	the	SQL-DMO	application	is	unaware	of	the	deletion.	For	example,	if
a	SQL-DMO	application	creates	a	Tables	collection	that	contains	the	CustReport
table,	and	another	application	subsequently	deletes	the	CustReport	table,	the
CustReport	table	remains	in	the	SQL-DMO	internal	cache	until	the	SQL-DMO
application	refreshes	the	Tables	collection	by	calling	the	Refresh	method.	Until
the	internal	cache	is	refreshed,	if	the	SQL-DMO	application	calls	the	properties
or	methods	of	the	CustReport	Table	object,	SQL-DMO	attempts	to	access	the
deleted	table.

A	SQL-DMO	application	can	use	the	IsDeleted	property	to	verify	the	existence
of	the	object	without	calling	the	Refresh	method,	which	requires	a	round	trip
from	the	computer	running	the	application	to	the	instance	of	Microsoft®	SQL
Server™,	and	then	refreshes	the	entire	collection	of	objects.

IsDeleted	returns	TRUE	the	object	has	been	deleted	from	the	server.	However,
IsDeleted	does	not	clean	up	the	SQL-DMO	internal	cache.	The	application	must
call	the	Refresh	method	to	perform	the	cleanup	process.

Note		IsDeleted	can	be	used	with	SQL	Server	2000	and	SQL	Server	version	7.0.

See	Also

IsObjectDeleted	Method

SQL-DMO

IsDeterministic	Property
The	IsDeterministic	property	specifies	whether	a	user-defined	function	is	a
deterministic	function.

Applies	To

UserDefinedFunction	Object

Syntax
object.IsDeterministic

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIsDeterministic(LPBOOL	pRetVal);

Remarks
A	computed	column	can	be	used	as	a	key	column	in	an	index	or	as	part	of	any
PRIMARY	KEY	or	UNIQUE	constraint,	if	the	computed	column	value	is
defined	by	a	deterministic	expression	and	the	data	type	of	the	result	is	allowed	in

indexed	columns.

An	application	can	use	the	IsDeterministic	property	to	determine	if	a	computed
column	that	depends	on	a	user-defined	function	can	be	used	in	an	index.

IsDeterministic	returns	TRUE	if	a	user-defined	function	is	deterministic.

Note		If	an	application	calls	IsDeterministic	on	an	instance	of	Microsoft®	SQL
Server™	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

Isdiskadmin	Property
The	Isdiskadmin	property	reports	membership	in	the	fixed	server	role
diskadmin	for	the	SQL-DMO	connection.

Applies	To

SQLServer	Object

Syntax
object.Isdiskadmin

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIsdiskadmin(LPBOOL	pRetVal);

Remarks
When	TRUE,	the	login	authenticating	client	application	connection	is	a	member
of	the	diskadmin	role.

When	FALSE,	the	login	authenticating	client	application	connection	is	not	a

member	of	diskadmin	role.

For	more	information	about	adding	members	to	a	database	role,	see	AddMember
Method.

SQL-DMO

IsDistributionPublisher	Property
The	IsDistributionPublisher	property	returns	TRUE	when	an	instance	of
Microsoft®	SQL	Server™,	configured	as	a	replication	Distributor,	is	also	a
Publisher	of	replicated	data.

Applies	To

Distributor	Object

Syntax
object.IsDistributionPublisher

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIsDistributionPublisher(LPBOOL	pIsDistributionPublisher);

SQL-DMO

IsFullTextEnabled	Property
The	IsFullTextEnabled	property	is	TRUE	when	the	referenced	database	is
selected	for	participation	in	Microsoft	Search	full-text	queries.

Applies	To

Database	Object

Syntax
object.IsFullTextEnabled

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIsFullTextEnabled(LPBOOL	pRetVal);

Remarks
Set	database	participation	in	Microsoft	Search	full-text	queries	using	the
EnableFullTextCatalogs	and	DisableFullTextCatalogs	methods.

See	Also

DisableFullTextCatalogs	Method

EnableFullTextCatalogs	Method

SQL-DMO

IsFullTextInstalled	Property
The	IsFullTextInstalled	property	returns	TRUE	when	the	Microsoft	Search
service	is	successfully	installed	on	an	instance	of	Microsoft®	SQL	Server™.

Applies	To

FullTextService	Object

Syntax
object.IsFullTextInstalled

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIsFullTextInstalled(LPBOOL	pRetVal);

Remarks
When	TRUE,	the	application	can	assume	availability	of	the	service	and
configure	Microsoft	Search	by	creating	and	populating	full-text	catalogs.

When	FALSE,	the	service	has	not	installed	successfully.	Attempts	to	configure

Microsoft	Search	fail.

Note		If	an	application	calls	IsFullTextInstalled	on	an	instance	of	SQL	Server
2000	with	the	IsFullTextInstalled	object,	an	error	message	is	returned.
However,	the	SQLServer2	object	supports	the	IsFullTextInstalled	property
with	SQL	Server	2000.

SQL-DMO

IsFullTextKey	Property
The	IsFullTextKey	property	identifies	the	index	used	by	Microsoft	Search	to
support	row	identification.

Applies	To

Index	Object

Syntax
object.IsFullTextKey

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIsFullTextKey(LPBOOL	pRetVal);

Remarks
When	TRUE,	the	referenced	index	is	used	by	Microsoft	Search	for	row
identification.

When	FALSE,	the	referenced	index	is	not	used	by	Microsoft	Search.

Microsoft	Search	requires	that	a	single	column	identify	rows	participating	in	an
index	supporting	full-text	query.	The	column	designated	must	contain	unique,
nonnull	values	and	must	participate	in	a	PRIMARY	KEY	or	UNIQUE	key
constraint.	A	table	that	contains	a	PRIMARY	KEY	constraint	does	not	require	a
separate	unique	index	for	Microsoft	Search	configuration.

Use	UniqueIndexForFullText	to	configure	Microsoft	Search	full-text	index	key
column	use.

See	Also

UniqueIndexForFullText	Property

SQL-DMO

IsNumeric	Property
The	IsNumeric	property	is	TRUE	if	the	system	data	type	referenced	is	an	exact,
numeric	data	type.

Applies	To

SystemDatatype	Object

Syntax
object.IsNumeric

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIsNumeric(LPBOOL	pRetVal);

Remarks
Exact	numeric	data	types	are	scaled	integer	values	represented	as	strings.	When
defining	a	column	using	an	exact	numeric	data	type,	precision	and	scale	are
specified,	as	in	decimal(12,	4).

SQL-DMO

IsOnComputed	Property
The	IsOnComputed	property	indicates	whether	any	column	in	an	index	is	a
computed	column.

Applies	To

Index2	Object

Syntax
object.IsOnComputed

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIsOnComputed	(LPBOOL	pRetVal);

Remarks
The	IsOnComputed	property	is	used	in	conjunction	with	indexed	views	and
returns	TRUE	if	any	column	in	an	index	is	a	computed	column.

Note		If	an	application	calls	IsOnComputed	on	an	instance	of	Microsoft®	SQL

Server™	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

Isprocessadmin	Property
The	Isprocessadmin	property	reports	membership	in	the	fixed	server	role
processadmin	for	the	SQL-DMO	connection.

Applies	To

SQLServer	Object

Syntax
object.Isprocessadmin

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIsprocessadmin(LPBOOL	pRetVal);

Remarks
Members	of	the	Microsoft®	SQL	Server™	fixed	server	role	processadmin	have
permission	to	control	executing	server	processes.	For	more	information	about
adding	members	to	a	server	role,	see	AddMember	Method.

When	TRUE,	the	login	authenticating	client	application	connection	is	a	member
of	the	processadmin	role.

When	FALSE,	the	login	authenticating	client	application	connection	is	not	a
member	of	processadmin	role.

SQL-DMO

IsRowGuidCol	Property
The	IsRowGuidCol	property	identifies	the	column	used	as	the	globally	unique
identifier	(GUID)	for	rows	in	a	Microsoft®	SQL	Server™	table.

Applies	To

Column	Object

Syntax
object.IsRowGuidCol	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetIsRowGuidCol(LPBOOL	pRetVal);

HRESULT	SetIsRowGuidCol(BOOL	NewValue);

Remarks
A	SQL	Server	table	may	contain	one	or	more	columns	defined	using	the
uniqueidentifier	data	type.	A	single	column	with	the	data	type	uniqueidentifier
may	be	identified	as	the	GUID	for	rows.

A	row	GUID	is	required	by	some	forms	of	SQL	Server	replication.

SQL-DMO

IsSchemaBound	Property
The	IsSchemaBound	property	indicates	whether	a	view	is	schema	bound.

Applies	To

UserDefinedFunction	Object View2	Object

Syntax
object.IsSchemaBound

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIsSchemaBound(LPBOOL	pRetVal);

Note		IsSchemaBound	can	be	used	with	Microsoft®	SQL	Server™	2000	and
SQL	Server	version	7.0.

SQL-DMO

Issecurityadmin	Property
The	Issecurityadmin	property	reports	membership	in	the	fixed	server	role
securityadmin	for	the	SQL-DMO	connection.

Applies	To

SQLServer	Object

Syntax
object.Issecurityadmin

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIssecurityadmin(LPBOOL	pRetVal);

Remarks
Members	of	the	Microsoft®	SQL	Server™	fixed	server	role	securityadmin
have	permission	to	create,	modify,	and	drop	server	logins.	For	more	information
about	adding	members	to	a	server	role,	see	AddMember	Method.

When	TRUE,	the	login	authenticating	client	application	connection	is	a	member
of	the	securityadmin	role.

When	FALSE,	the	login	authenticating	client	application	connection	is	not	a
member	of	the	role.

SQL-DMO

Isserveradmin	Property
The	Isserveradmin	property	reports	membership	in	the	fixed	server	role
serveradmin	for	the	SQL-DMO	connection.

Applies	To

SQLServer	Object

Syntax
object.Isserveradmin

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIsserveradmin(LPBOOL	pRetVal);

Remarks
Members	of	the	Microsoft®	SQL	Server™	fixed	server	role	serveradmin	have
permission	to	configure	a	server.	For	more	information	about	adding	members	to
a	server	role,	see	AddMember	Method.

When	TRUE,	the	login	authenticating	client	application	connection	is	a	member
of	the	serveradmin	role.

When	FALSE,	the	login	authenticating	client	application	connection	is	not	a
member	of	the	role.

SQL-DMO

Issetupadmin	Property
The	Issetupadmin	property	reports	membership	in	the	fixed	server	role
setupadmin	for	the	SQL-DMO	connection.

Applies	To

SQLServer	Object

Syntax
object.Issetupadmin

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIssetupadmin(LPBOOL	pRetVal);

Remarks
Members	of	the	Microsoft®	SQL	Server™	fixed	server	role	setupadmin	have
permission	to	install	and	configure	replication,	and	can	install	extended	stored
procedures.	For	more	information	about	adding	members	to	a	server	role,	see

AddMember	Method.

When	TRUE,	the	login	authenticating	client	application	connection	is	a	member
of	the	setupadmin	role.

When	FALSE,	the	login	authenticating	client	application	connection	is	not	a
member	of	the	role.

SQL-DMO

Issysadmin	Property
The	Issysadmin	property	reports	membership	in	the	fixed	server	role	sysadmin
for	the	SQL-DMO	connection.

Applies	To

SQLServer	Object

Syntax
object.Issysadmin

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIssysadmin(LPBOOL	pRetVal);

Remarks
Members	of	the	Microsoft®	SQL	Server™	fixed	server	role	sysadmin	have	all
permissions	on	the	server	and	can	perform	any	activity.	For	more	information
about	adding	members	to	a	server	role,	see	AddMember	Method.

When	TRUE,	the	login	authenticating	client	application	connection	is	a	member
of	the	sysadmin	role.

When	FALSE,	the	login	authenticating	client	application	connection	is	not	a
member	of	the	role.

SQL-DMO

IsVariableLength	Property
The	IsVariableLength	property	specifies	data	length	representation	handling	for
a	data	type.

Applies	To

SystemDatatype	Object UserDefinedDatatype	Object

Syntax
object.IsVariableLength

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIsVariableLength(LPBOOL	pRetVal);

Remarks
When	TRUE,	the	data	type	represents	strings	that	vary	in	length,	such	as	those
defined	as	varchar(4).

When	FALSE,	the	data	type	does	not	represent	strings	that	vary	in	length,	such

as	those	defined	as	char(4).

Variability	in	string	representation	is	easily	visible	in	client	software.	For
example,	the	string	AK	retrieved	from	a	column	defined	as	varchar(4)	is
returned	to	a	client	as	two	characters.	When	retrieved	from	a	column	defined	as
char(4),	the	string	is	padded	using	a	space	character	so	that	four	characters	are
returned.

SQL-DMO

ItemCount	Property
The	ItemCount	property	returns	the	number	of	entries	contained	in	a	Microsoft
Search	full-text	catalog.

Applies	To

FullTextCatalog	Object

Syntax
object.ItemCount

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetItemCount				(LPLONG	pRetVal);

Remarks
For	each	table	indexed	in	the	full-text	catalog,	an	entry	is	made	for	the	table	and
an	entry	is	made	for	each	row	in	the	table.

SQL-DMO

J

SQL-DMO

JobID	Property
The	JobID	property	is	a	string	representing	the	unique	identifier	of	a	SQL
Server	Agent	job.

Applies	To

Alert	Object JobHistoryFilter	Object
Job	Object 	

Syntax
object.JobID	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	representation	of	a	globally	unique	identifier

Data	Type
String

Modifiable
Read/write	for	the	Alert	and	JobHistoryFilter	objects.	Read-only	for	the	Job
object.

Prototype	(C/C++)
HRESULT	GetJobID(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetJobID(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	by	using	SysFreeString.

Remarks
Each	SQL	Server	Agent	job	is	identified	by	a	system-generated,	globally	unique
identifier.	The	identifier	is	a	32-character	string	representing	a	hexadecimal
number.

For	the	Alert	object,	the	JobID	property	represents	the	job	identifier	of	the	SQL
Server	Agent	job	run	in	response	to	the	represented	alert.	The	property	is	used	to
assign	a	job	to	an	alert.	The	JobName	property	of	the	Alert	object	is	read-only.

Setting	the	JobID	property	on	the	JobHistoryFilter	object	restricts	the	output	of
the	EnumJobHistory	method	of	the	JobServer	object.	When	used,	the	output
includes	only	historical	data	for	the	identified	SQL	Server	Agent	job.

SQL-DMO

JobName	Property
The	JobName	property	is	a	string	identifying	a	Microsoft®	SQL	Server™	2000
Agent	job.

Applies	To

Alert	Object JobHistoryFilter	Object

Syntax
object.JobName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	naming	an	existing	SQL	Server	Agent	job

Data	Type
String.	The	JobName	property	is	constrained	by	the	constraints	applicable	to	the
Name	property	of	the	Job	object.

Modifiable
Read/write	for	the	JobHistoryFilter	object.	Read-only	for	the	Alert	object.

Prototype	(C/C++)
HRESULT	GetJobName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetJobName(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	by	using	SysFreeString.

Remarks
For	the	Alert	object,	the	JobName	property	represents	the	name	of	the	SQL
Server	Agent	job	run	in	response	to	the	represented	alert.

Setting	the	JobName	property	on	the	JobHistoryFilter	object	restricts	the
output	of	the	EnumJobHistory	method	of	the	JobServer	object.	When	used,
the	output	includes	only	historical	data	for	the	named	SQL	Server	Agent	job.

SQL-DMO

JoinArticleName	Property
The	JoinArticleName	property	identifies	a	source	article	for	some	types	of
merge	replication	horizontal	partitioning.

Applies	To

MergeSubsetFilter	Object 	

Syntax
object.JoinArticleName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	identifying	an	existing	merge	replication	article	by	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetJoinArticleName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetJoinArticleName(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	by	using	SysFreeString.

Remarks
Use	the	MergeSubsetFilter	object	to	horizontally	partition	data	in	a	merge
replication	article	when	the	partitioning	WHERE	clause	is	defined	in	a	second
article.

Note		If	an	application	sets	JoinArticleName	after	the	initial	snapshot	has	been
created,	a	new	snapshot	must	be	generated.	Snapshots	are	applied	when	the	next
scheduled	snapshot	agent	runs.

SQL-DMO

JoinFilterClause	Property
The	JoinFilterClause	property	specifies	query	construction	when	the	content	of
one	article	participating	in	merge	replication	depends	on	content	in	a	second
article.

Applies	To

MergeSubsetFilter	Object 	

Syntax
object.JoinFilterClause	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	specifying	a	Transact-SQL	join	clause

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetJoinFilterClause(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetJoinFilterClause(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	by	using	SysFreeString.

Note		If	an	application	sets	JoinFilterClause	after	the	initial	snapshot	has	been
created,	a	new	snapshot	must	be	generated.	Snapshots	are	applied	when	the	next
scheduled	snapshot	agent	runs.

SQL-DMO

JoinUniqueKey	Property
The	JoinUniqueKey	property	configures	join	clause	interpretation	for	merge
replication	articles	horizontally	partitioned	by	criteria	established	in	a	second
article.

Applies	To

MergeSubsetFilter	Object 	

Syntax
object.JoinUniqueKey	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetJoinUniqueKey(LPBOOL	pRetVal);

HRESULT	SetJoinUniqueKey(BOOL	NewValue);

Remarks
When	TRUE,	a	join	to	the	article	specified	by	the	JoinArticleName	property	is
based	on	a	unique	value.

When	FALSE,	joining	for	the	article	is	not	based	on	a	unique	value.

Note		If	an	application	sets	JoinUniqueKey	after	the	initial	snapshot	has	been
created,	a	new	snapshot	must	be	generated.	Snapshots	are	applied	when	the	next
scheduled	snapshot	agent	runs.

SQL-DMO

K

SQL-DMO

KeepPartitionChanges	Property
The	KeepPartitionChanges	property	specifies	whether	a	Publisher	retains
information	about	what	data	a	Subscriber	owns	in	a	horizontally	partitioned
merge	replication	topology.

Applies	To

MergePublication2	Object 	

Syntax
object.KeepPartitionChanges	[=value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetKeepPartitionChanges(LPBOOL	pRetVal);

HRESULT	SetKeepPartitionChanges(BOOL	NewValue);

Remarks
In	a	horizontally	partitioned	merge	replication	topology,	a	Publisher	retains
information	about	deletes	and	updates.	If	the	KeepPartitionChanges	property	is
set	to	TRUE,	the	Publisher	can	determine	which	row	belongs	to	which
Subscriber.	Only	changes	to	rows	belonging	to	a	particular	Subscriber	are
replicated.

For	example,	if	the	Subscriber	is	responsible	only	for	tracking	sales	in	northern
Europe,	rows	updated	at	the	Publisher	will	be	kept	in	a	special	table	so	that	the
Subscriber	only	receives	updated	rows	related	to	sales	in	northern	Europe	when
the	Subscriber	and	the	Publisher	synchronize.	Setting	KeepPartitionChanges	to
TRUE	can	result	in	improved	performance	because	Subscribers	only	receive	the
necessary	updates.

When	KeepPartitionChanges	is	set	to	FALSE	(default),	no	extra	information
about	updates	or	deletes	is	kept	at	the	Publisher.

Note		If	an	application	calls	KeepPartitionChanges	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

KeepReplication	Property
The	KeepReplication	property	indicates	whether	to	maintain	a	replication
configuration	during	a	restore	operation.

Applies	To

Restore2	Object 	

Syntax

object.KeepReplication	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type

Boolean

Modifiable

Read/write

Prototype	(C/C++)

HRESULT	GetKeepReplication(LPBOOL	pRetVal);

HRESULT	SetKeepReplication(BOOL	NewValue);

Remarks

If	the	KeepReplication	property	is	set	to	TRUE,	a	replication	configuration	is
retained	during	a	database	restore	operation.	KeepReplication	is	set	to	FALSE
by	default.

Note		If	an	application	calls	KeepReplication	on	an	instance	of	SQL	Server
version	7.0,	the	operation	is	ignored.

SQL-DMO

L

SQL-DMO

LangDateFormat	Property
The	LangDateFormat	property	is	a	three-character	string	describing	the
position	of	the	day,	month,	and	year	members	of	a	date.

Applies	To

Language	Object

Syntax
object.LangDateFormat

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetLangDateFormat(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

The	LangDateFormat	property	reports	day,	month,	and	year	positions	using	the
characters	d,	m,	and	y	respectively.	For	example,	a	Microsoft®	SQL	Server™
2000	language	displaying	dates	in	month/day/year	order	reports	mdy	in	the
LangDateFormat	property	of	the	referencing	Language	object.

SQL-DMO

Language	Property
The	Language	property	exposes	the	language	used	by	an	instance	of	Microsoft®
SQL	Server™	2000	or	a	login.

Applies	To

Login	Object SQLServer	Object

Syntax
object.Language	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	an	installed	SQL	Server	language	by	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetLanguage(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetLanguage(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
SQL	Server	language	records	direct	display	of	error	and	status	messages	by
choosing	localized	text	for	messages	and	localized	formatting	for	date	values.

Set	the	Language	property	of	the	SQLServer	object	to	alter	the	default
language	record	used	by	all	users	on	the	referenced	server.	Set	the	Language
property	of	a	Login	object	to	direct	language	use	for	a	client	connection	using
the	referenced	login.

See	Also

default	language	Option

JavaScript:hhobj_1.Click()

SQL-DMO

LanguageAlias	Property
The	LanguageAlias	property	returns	a	friendly	name	for	a	language	used	by	a
Microsoft®	SQL	Server™	2000	login.

Applies	To

Login	Object

Syntax
object.LanguageAlias

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetLanguageAlias(SQLDMO_LPBSTR	pbstrLanguageAlias);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

LastBackup	Property
The	LastBackup	property	identifies	the	most	recent	date	and	time	at	which	a
backup	operation	was	performed	against	the	referenced	transaction	log.

Applies	To

TransactionLog	Object

Syntax
object.LastBackup

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetLastBackup(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

The	LastBackup	property	date	is	reported	as	a	string,	formatted	as	yyyy/mm/dd
hh:mn:ss.fff	where	yyyy	represents	the	year	in	four	digits;	mm	represents	the
month	in	two	digits;	dd	represents	the	day	in	two	digits;	hh	represents	the	hour	in
two	digits	using	a	twenty-four	hour	clock;	mn	represents	the	minute	in	two
digits;	ss	represents	the	second	in	two	digits;	and	fff	represents	the	thousandth	of
a	second	in	three	digits.

SQL-DMO

LastDistributionDate	Property
The	LastDistributionDate	property	returns	the	date	and	time	when	the	last
transaction	was	applied.

Applies	To

TransPullSubscription	Object

Syntax
object.LastDistributionDate

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetLastDistributionDate(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

LastDistributionDate	returns	the	data	formatted	as	YYYYMMDD	hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four	hour

clock	and	zero	padding.
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three

digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

SQL-DMO

LastDistributionStatus	Property
The	LastDistributionStatus	property	returns	the	current	status	of	the
distribution	agent	synchronizing	the	referenced	subscription.

Applies	To

TransPullSubscription2	Object 	

Syntax
object.LastDistributionStatus

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Returns
The	LastDistributionStatus	property	returns	these
SQLDMO_TASKSTATUS_TYPE	values.

Constant Value Description
SQLDMOTask_Failed 6 At	least	one	job	failed	to

execute.
SQLDMOTask_Idle 4 All	jobs	are	scheduled	and	idle.
SQLDMOTask_Pending 0 All	jobs	are	waiting	to	start.
SQLDMOTask_Retry 5 At	least	one	job	is	attempting

to	execute	after	a	previous
failure.

SQLDMOTask_Running 3 At	least	one	job	is	executing.
SQLDMOTask_Starting 1 One	or	more	jobs	are	starting.
SQLDMOTask_Succeeded 2 All	jobs	executed	successfully.

Data	Type
Long,	enumerated

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetLastDistributionStatus(SQLDMO_TASKSTATUS_TYPE
*pRetVal);

Note		If	an	application	calls	LastDistributionStatus	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

LastDistributionSummary	Property
The	LastDistributionSummary	property	returns	a	string	describing	the	current
status	of	the	distribution	agent	synchronizing	the	referenced	subscription.

Applies	To

TransPullSubscription2	Object 	

Syntax
object.LastDistributionSummary

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetLastDistributionSummary(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	by	using	SysFreeString.

If	an	application	calls	LastDistributionSummary	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the

message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

SQL-DMO

LastDistributionSummaryTime	Property
The	LastDistributionSummaryTime	property	returns	the	date	and	time	when
the	last	synchronization	summary	text	was	logged	by	the	Distribution	Agent.

Applies	To

TransPullSubscription2	Object 	

Syntax
object.LastDistributionSummaryTime

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetLastDistributionSummaryTime(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	by	using	SysFreeString.

Remarks

LastDistributionSummaryTime	returns	the	data	formatted	as	YYYYMMDD
hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four	hour

clock	and	zero	padding.
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three

digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

Note		If	an	application	calls	LastDistributionSummary	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

LastEmailDate	Property
The	LastEmailDate	property	identifies	the	most	recent	date	and	time	that	the
referenced	operator	received	alert	notification	by	e-mail.

Applies	To

Operator	Object

Syntax
object.LastEmailDate

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Date

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetLastEmailDate(LPLONG	pRetVal);

Note		For	C/C++,	two	SQL-DMO	functions	implement	the	LastEmailDate
property.	The	GetLastEmailDate	function	represents	only	the	date	portion	of
the	SQLServerAgent	operator	e-mail	date.	The	time	portion	is	represented	by	the
LastEmailTime	property.

When	SQL-DMO	uses	a	scaled	long	integer	to	represent	a	date,	the	integer	is

built	as	a	sum	of	the	year	scaled	by	10000,	the	month	scaled	by	100,	and	the
day.	For	example,	the	date	April	19,	1997	is	represented	by	the	long	integer
value	19970419.

See	Also

LastEmailTime	Property

SQL-DMO

LastEmailTime	Property
The	LastEmailTime	property	identifies	the	most	recent	time	that	the	referenced
operator	received	alert	notification	by	e-mail.

Applies	To

Operator	Object

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetLastEmailTime(LPLONG	pRetVal);

Note		When	SQL-DMO	uses	a	scaled	long	integer	to	represent	a	time,	the
integer	is	built	as	a	sum	of	the	hour	scaled	by	10000,	the	minute	scaled	by	100,
and	the	seconds.	The	time	value	uses	a	24-hour	clock.	For	example,	the	time
1:03:09	P.M.	is	represented	by	the	long	integer	value	130309.

Remarks
The	LastEmailTime	property	is	implemented	for	C/C++	applications	only.	The
value	represents	the	time	portion	of	a	date	and	time	value.	The	date	portion	of
the	value	is	represented	by	the	LastEmailDate	property.

See	Also

LastEmailDate	Property

SQL-DMO

LastMergedStatus	Property
The	LastMergedStatusproperty	returns	the	current	status	of	the	merge	agent
synchronizing	the	referenced	subscription.

Applies	To

MergePullSubscription2	Object 	

Syntax
object.LastMergedStatus

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Returns
The	LastMergedStatus	property	returns	these
SQLDMO_TASKSTATUS_TYPE	values.

Constant Value Description
SQLDMOTask_Failed 6 At	least	one	job	failed	to

execute.
SQLDMOTask_Idle 4 All	jobs	are	scheduled	and	idle.
SQLDMOTask_Pending 0 All	jobs	are	waiting	to	start.
SQLDMOTask_Retry 5 At	least	one	job	is	attempting

to	execute	after	a	previous
failure.

SQLDMOTask_Running 3 At	least	one	job	is	executing.
SQLDMOTask_Starting 1 One	or	more	jobs	are	starting.
SQLDMOTask_Succeeded 2 All	jobs	executed	successfully.

Data	Type
Long,	enumerated

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetLastMergedStatus(SQLDMO_TASKSTATUS_TYPE	*pRetVal);

Note		If	an	application	calls	LastMergedStatus	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

LastMergedSummary	Property
The	LastMergedSummary	property	returns	a	string	describing	the	current
status	of	the	merge	agent	synchronizing	the	referenced	subscription.

Applies	To

MergePullSubscription2	Object 	

Syntax
object.LastMergedSummary

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetLastMergedSummary(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	by	using	SysFreeString.

If	an	application	calls	LastMergedSummary	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This

property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

LastMergedTime	Property
The	LastMergedTime	property	returns	the	last	time	a	merge	replication
operation	occurred	between	the	Publisher	and	the	Subscriber.

Applies	To

MergePullSubscription2	Object

Syntax
object.LastMergedTime

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetLastMergedTime(SQLDMO_LPBSTR	pRetVal);

Remarks
Use	the	LastMergedTime	property	to	determine	if	replicated	data	at	a	pull
Subscriber	is	up-to-date.

LastMergedTime	returns	the	data	formatted	as	YYYYMMDD	hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four	hour

clock	and	zero	padding.
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three

digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

Note		If	an	application	calls	LastMergedTime	on	an	instance	of	SQL	Server
version	7.0,	an	empty	string	is	returned.

SQL-DMO

LastNetSendDate	Property
The	LastNetSendDate	property	identifies	the	most	recent	date	on	which	the
referenced	operator	received	alert	notification	by	network	pop-up	message.

Applies	To

Operator	Object

Syntax
object.LastNetSendDate

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetLastNetSendDate(LPLONG	pRetVal);

Remarks
The	date	and	time	of	notification	by	network	pop-up	is	represented	by	two	SQL-
DMO	properties.	Investigate	the	LastNetSendDate	property	to	determine	the
most	recent	date.	Query	the	LastNetSendTime	property	to	determine	the	time	at

which	the	notification	was	sent.

Note		When	SQL-DMO	uses	a	scaled	long	integer	to	represent	a	date,	the	integer
is	built	as	a	sum	of	the	year	scaled	by	10000,	the	month	scaled	by	100,	and	the
day.	For	example,	the	date	April	19,	1997	is	represented	by	the	long	integer
value	19970419.

See	Also

LastNetSendTime	Property

SQL-DMO

LastNetSendTime	Property
The	LastNetSendTime	property	identifies	the	most	recent	time	at	which	the
referenced	operator	received	alert	notification	by	network	pop-up	message.

Applies	To

Operator	Object

Syntax
object.LastNetSendTime

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetLastNetSendTime(LPLONG	pRetVal);

Remarks
The	date	and	time	of	notification	by	network	popup	is	represented	by	two	SQL-
DMO	properties.	Investigate	the	LastNetSendDate	property	to	determine	the
most	recent	date.	Query	the	LastNetSendTime	property	to	determine	the	time	at

which	the	notification	was	sent.

Note		When	SQL-DMO	uses	a	scaled	long	integer	to	represent	a	time,	the
integer	is	built	as	a	sum	of	the	hour	scaled	by	10000,	the	minute	scaled	by	100,
and	the	seconds.	The	time	value	uses	a	24-hour	clock.	For	example,	the	time
1:03:09	P.M.	is	represented	by	the	long	integer	value	130309.

See	Also

LastNetSendDate	Property

SQL-DMO

LastOccurrenceDate	Property
The	LastOccurrenceDate	property	identifies	the	most	recent	date	on	which	a
SQL	Server	Agent	alert	was	raised.

Applies	To

Alert	Object

Syntax
object.LastOccurrenceDate	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Date	value	that	specifies	day	and	time

Data	Type
Date

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetLastOccurrenceDate(LPLONG	pRetVal);

HRESULT	SetLastOccurrenceDate(long	NewValue);

Note		For	C/C++,	two	SQL-DMO	functions	implement	the

LastOccurrenceDate	property.	The	GetLastOccurrenceDate	and
SetLastOccurrenceDate	functions	represent	only	the	date	portion	of	the
SQLServerAgent	alert	occurrence	date.	The	time	portion	is	represented	by	the
LastOccurrenceTime	property.

When	SQL-DMO	uses	a	scaled	long	integer	to	represent	a	date,	the	integer	is
built	as	a	sum	of	the	year	scaled	by	10000,	the	month	scaled	by	100,	and	the
day.	For	example,	the	date	April	19,	1997	is	represented	by	the	long	integer
value	19970419.

Remarks
SQLServerAgent	maintains	historical	data	for	alerts	raised	and	handled	by	the
agent.	The	date	of	last	occurrence	is	one	piece	of	historical	information
maintained.

See	Also

LastOccurrenceTime	Property

SQL-DMO

LastOccurrenceTime	Property
The	LastOccurrenceTime	property	identifies	the	most	recent	time	at	which
SQLServerAgent	raised	the	referenced	alert.

Applies	To

Alert	Object

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetLastOccurrenceTime(LPLONG	pRetVal);

HRESULT	SetLastOccurrenceTime(long	NewValue);

Remarks
The	LastOccurrenceTime	property	is	implemented	for	C/C++	applications
only.	The	value	represents	the	time	portion	of	a	date	and	time	value.	The	date
portion	of	the	value	is	represented	by	the	LastOccurrenceDate	property.

Note		When	SQL-DMO	uses	a	scaled	long	integer	to	represent	a	time,	the
integer	is	built	as	a	sum	of	the	hour	scaled	by	10000,	the	minute	scaled	by	100,
and	the	seconds.	The	time	value	uses	a	24-hour	clock.	For	example,	the	time
1:03:09	P.M.	is	represented	by	the	long	integer	value	130309.

See	Also

LastOccurrenceDate	Property

SQL-DMO

LastPageDate	Property
The	LastPageDate	property	identifies	the	most	recent	date	and	time	at	which	the
referenced	operator	received	alert	notification	by	paging.

Applies	To

Operator	Object

Syntax
object.LastPageDate

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Date

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetLastPageDate(LPLONG	pRetVal);

Note		For	C/C++,	two	SQL-DMO	functions	implement	the	LastPageDate
property.	The	GetLastPageDate	function	represents	only	the	date	portion	of	the
SQLServerAgent	operator	page	date.	The	time	portion	is	represented	by	the
LastPageTime	property.

When	SQL-DMO	uses	a	scaled	long	integer	to	represent	a	date,	the	integer	is

built	as	a	sum	of	the	year	scaled	by	10000,	the	month	scaled	by	100,	and	the
day.	For	example,	the	date	April	19,	1997	is	represented	by	the	long	integer
value	19970419.

See	Also

LastPageTime	Property

SQL-DMO

LastPageTime	Property
The	LastPageDate	identifies	the	most	recent	time	at	which	the	referenced
operator	received	alert	notification	by	paging.

Applies	To

Operator	Object

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetLastPageTime(LPLONG	pRetVal);

Note		When	SQL-DMO	uses	a	scaled	long	integer	to	represent	a	time,	the
integer	is	built	as	a	sum	of	the	hour	scaled	by	10000,	the	minute	scaled	by	100,
and	the	seconds.	The	time	value	uses	a	24-hour	clock.	For	example,	the	time
1:03:09	P.M.	is	represented	by	the	long	integer	value	130309.

Remarks
The	LastPageTime	property	is	implemented	for	C/C++	applications	only.	The
value	represents	the	time	portion	of	a	date	and	time	value.	The	date	portion	of
the	value	is	represented	by	the	LastPageDate	property.

See	Also

LastPageDate	Property

SQL-DMO

LastPollDate	Property
The	LastPollDate	property	identifies	the	most	recent	date	and	time	at	which	the
referenced	target	server	successfully	connected	to	its	master	server.

Applies	To

TargetServer	Object

Syntax
object.LastPollDate

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetLastPollDate(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

An	instance	of	Microsoft®	SQL	Server™	2000	may	enlist	with	a	designated
master	server.	Enlisted	servers	can	be	targets	for	administrative	tasks	initiated	by
the	master.	To	implement	execution	of	master-initiated,	administrative	tasks,	the
enlisted	servers	connect	to	the	master	at	defined	intervals	(polling	intervals)	and
download	tasks	assigned	by	the	master	server.

The	value	of	LastPollDate	is	a	localized	string	defining	a	date	and	time.

SQL-DMO

LastResponseDate	Property
The	LastResponseDate	property	identifies	the	most	recent	date	on	which
SQLServerAgent	generated	a	notification	for	a	raised	alert.

Applies	To

Alert	Object

Syntax
object.LastResponseDate	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Name	of	a	SQL	Server	Agent	job

Data	Type
Date

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetLastResponseDate(LPLONG	pRetVal);

HRESULT	SetLastResponseDate(long	NewValue);

Note		For	C/C++,	two	SQL-DMO	functions	implement	the	LastResponseDate

property.	The	GetLastResponseDate	and	SetLastResponseDate	functions
represent	only	the	date	portion	of	the	SQLServerAgent	alert	occurrence	count
reset	date.	The	time	portion	is	represented	by	the	LastResponseTime	property.

SQL-DMO	uses	a	scaled	long	integer	to	represent	a	date.	The	integer	is	built
as	a	sum	of	the	year	scaled	by	10000,	the	month	scaled	by	100,	and	the	day.
For	example,	the	date	April	19,	1997	is	represented	by	the	long	integer	value
19970419.

Remarks
SQLServerAgent	maintains	historical	data	for	alerts	raised	and	handled	by	the
agent.	The	most	recent	date	on	which	a	notification	for	an	alert	was	generated	is
one	piece	of	historical	information	maintained.

See	Also

LastResponseTime	Property

SQL-DMO

LastResponseTime	Property
The	LastResponseTime	property	represents	the	most	recent	time	at	which
SQLServerAgent	generated	a	response	to	a	raised	alert.

Applies	To

Alert	Object

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetLastResponseTime(LPLONG	pRetVal);

HRESULT	SetLastResponseTime(long	NewValue);

Note		SQL-DMO	uses	a	scaled	long	integer	to	represent	a	time.	The	integer	is
built	as	a	sum	of	the	hour	scaled	by	10000,	the	minute	scaled	by	100,	and	the
seconds.	The	time	value	uses	a	24-hour	clock.	For	example,	the	time	1:03:09
P.M.	is	represented	by	the	long	integer	value	130309.

Remarks
The	LastResponseTime	property	is	implemented	for	C/C++	applications	only.
The	value	represents	the	time	portion	of	a	date	and	time	value.	The	date	portion
of	the	value	is	represented	by	the	LastResponseDate	property.

See	Also

LastResponseDate	Property

SQL-DMO

LastRestore	Property
The	LastRestore	property	identifies	the	last	transaction	log	unit	in	a	chain	of	log
backups.

Applies	To

Restore	Object

Syntax
object.LastRestore	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetLastRestore(LPBOOL	pRetVal);

HRESULT	SetLastRestore(BOOL	NewValue);

Remarks
Microsoft®	SQL	Server™	2000	provides	administrators	with	a	variety	of
backup	options	designed	to	enable	efficient	protection	of	an	organization's	data.
One	common	option	uses	a	scheduled	full	database	backup	at	one	interval,	and
related	backups	of	the	transaction	log	performed	at	a	smaller	interval.	In	the
event	of	catastrophic	failure,	the	full	database	backup	is	restored,	then	each	log
backup	made	after	that	point	is	restored	in	order,	which	restores	the	database	to
its	most	recent	verifiable	state.

When	more	than	one	log	unit	exists	for	restoration,	it	is	imperative	that	the
administrator	specify	that	more	than	one	log	unit	will	be	restored.	After	SQL
Server	processes	the	last	log	unit	in	the	chain,	no	log	backups	made	after	that
unit	can	be	applied.

Set	the	LastRestore	property	to	FALSE	when	restoring	a	backup	unit	that	is	not
the	last	in	a	backup	chain.	Set	the	LastRestore	property	to	TRUE	when
restoring	a	backup	unit	that	is	the	last	in	the	chain.

SQL-DMO

LastRow	Property
The	LastRow	property	is	an	ordinal	value	defining	the	end	point	for	a	bulk	data
copy.

Applies	To

BulkCopy	Object

Syntax
object.LastRow	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	data	file	or	Microsoft®	SQL	Server™	2000
table	row

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetLastRow(LPLONG	pRetVal);

HRESULT	SetLastRow(LONG	NewValue);

Remarks
When	data	is	copied	from	SQL	Server	using	the	ExportData	method	of	a	Table
or	View	object,	the	property	indicates	the	end	row	position	in	the	SQL	Server
table.	When	data	is	copied	to	SQL	Server	by	using	the	ImportData	method	of	a
Table	object,	the	property	indicates	the	end	row	position	in	the	source	data	file.
The	row	will	be	the	last	one	copied	to	the	SQL	Server	table.

SQL-DMO

LastRunDate	Property
The	LastRunDate	property	exposes	the	most	recent	date	on	which	a	referenced
job	or	job	step	executed.

Applies	To

Job	Object JobStep	Object

Syntax
object.LastRunDate

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Note		When	SQL-DMO	uses	a	scaled	long	integer	to	represent	a	date,	the	integer
is	built	as	a	sum	of	the	year	scaled	by	10000,	the	month	scaled	by	100,	and	the
day.	For	example,	the	date	April	19,	1997	is	represented	by	the	long	integer
value	19970419.

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetLastRunDate(LPLONG	pRetVal);

SQL-DMO

LastRunDuration	Property
The	LastRunDuration	property	identifies	the	length	of	time,	in	seconds,
required	to	execute	the	referenced	job	step	on	its	most	recent	run	date	and	time.

Applies	To

JobStep	Object

Syntax
object.LastRunDuration

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetLastRunDuration(LPLONG	pRetVal);

SQL-DMO

LastRunOutcome	Property
The	LastRunOutcome	property	returns	the	execution	completion	status	of	the
job	or	job	step	for	the	most	recent	execution	attempt.

Applies	To

Job	Object JobStep	Object

Syntax
object.LastRunOutcome

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long,	enumerated

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetLastRunOutcome(SQLDMO_COMPLETION_TYPE*	pRetVal);

Returns
Interpret	the	LastRunOutcome	property	using	these	values.

Constant Value Description

SQLDMOJobOutcome_Cancelled 3 Execution	canceled	by	user
action.

SQLDMOJobOutcome_Failed 0 Execution	failed.
SQLDMOJobOutcome_InProgress 4 Job	or	job	step	is	executing.
SQLDMOJobOutcome_Succeeded 1 Execution	succeeded.
SQLDMOJobOutcome_Unknown 5 Unable	to	determine

execution	state.

SQL-DMO

LastRunRetries	Property
The	LastRunRetries	property	returns	the	number	of	times	SQLServerAgent
attempted	execution	of	the	referenced	job	step	on	the	last	execution	of	the	step-
containing	job.

Applies	To

JobStep	Object

Syntax
object.LastRunRetries

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetLastRunRetries(LPLONG	pRetVal);

See	Also

RetryAttempts	Property

RetryInterval	Property

SQL-DMO

LastRunTime	Property
The	LastRunTime	property	identifies	the	most	recent	time	at	which
SQLServerAgent	attempted	execution	of	the	referenced	job	or	job	step.

Applies	To

Job	Object JobStep	Object

Syntax
object.LastRunTime

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Note		When	SQL-DMO	uses	a	scaled	long	integer	to	represent	a	time,	the
integer	is	built	as	a	sum	of	the	hour	scaled	by	10000,	the	minute	scaled	by	100,
and	the	seconds.	The	time	value	uses	a	24-hour	clock.	For	example,	the	time
1:03:09	P.M.	is	represented	by	the	long	integer	value	130309.

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetLastRunTime(LPLONG	pRetVal);

SQL-DMO

Length	Property
The	Length	property	specifies	the	maximum	number	of	characters	or	bytes
accepted	by	the	referenced	column	or	user-defined	data	type.

Applies	To

Column	Object UserDefinedDatatype	Object

Syntax
object.Length	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	greater	than	or	equal	to	1

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetLength(LPLONG	pRetVal);

HRESULT	SetLength(LONG	pRetVal);

Remarks
For	SQL-DMO	objects	referencing	columns	and	user-defined	data	types	defined
on	character	data	types,	such	as	char	and	nchar,	interpret	the	Length	property
as	a	number	of	characters.	For	objects	referencing	columns	and	user-defined	data
types	defined	on	binary	data	types,	such	as	varbinary,	interpret	the	Length
property	as	a	number	of	bytes.

SQL-DMO

LoadHistory	Property
The	LoadHistory	property	configures	Restore	object	action	when	the	object	is
used	to	verify	the	integrity	of	a	Microsoft®	SQL	Server™	2000	backup.

Applies	To

Restore	Object

Syntax
object.LoadHistory	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetLoadHistory(LPBOOL	pRetVal);

HRESULT	SetLoadHistory(BOOL	NewValue);

Remarks
If	TRUE,	msdb	backup	history	tables	are	updated	with	backup	set	data	when	the
SQLVerify	method	of	the	Restore	object	directs	backup	set	verification.

If	FALSE,	history	tables	are	not	altered	when	SQLVerify	is	used.

SQL-DMO

LocalLogin	Property
The	LocalLogin	property	identifies	a	Microsoft®	SQL	Server™	2000	login
mapped	by	a	linked	server	login	to	authentication	data	used	for	connection	to	a
linked	server.

Applies	To

LinkedServerLogin	Object

Syntax
object.LocalLogin	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	an	existing	SQL	Server	login

Data	Type
String

Modifiable
Read/write	when	using	the	LinkedServerLogin	object	to	create	a	new	login
mapping.	Read-only	when	the	LinkedServerLogin	object	references	an	existing
login	mapping.

Prototype	(C/C++)
HRESULT	GetLocalLogin(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetLocalLogin(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
SQL	Server	implements	persisted	storage	for	an	OLE	DB	data	source	definition,
called	a	linked	server.	For	each	linked	server,	an	optional	mapping	for	a	SQL
Server	login	can	determine	authentication	data	used	when	a	connection	using
that	login	attempts	a	connection	to	the	linked	server.

SQL-DMO

LocalName	Property
The	LocalName	property	identifies	a	Microsoft®	SQL	Server™	2000	login
record	used	by	a	second	server	for	privilege	determination.

Applies	To

RemoteLogin	Object

Syntax
object.LocalName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	an	existing	SQL	Server	login

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetLocalName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetLocalName(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
An	instance	of	SQL	Server	can	implement	SQL	Server	connection	authorization
for	another	instance	of	SQL	Server.	An	authorized	server	may	connect	to	execute
a	remote	procedure	call	or	for	other	purposes.

To	establish	authorization,	a	remote	server	is	defined	on	the	authorizing	instance
of	SQL	Server.	A	mapping	(remote	login)	for	a	login	established	and	maintained
on	the	remote	server	can	be	built	on	the	authorizing	instance	of	SQL	Server.

For	example,	a	server,	called	AcctPay,	used	by	an	organization's	accounts
payable	department,	may	execute	remote	stored	procedures	on	the	purchasing
department's	Purch	server.	On	Purch,	an	AcctPayRemote	login	is	created	and
given	appropriate	rights	for	all	accounts	payable	department	users.	For	each
authorized	login	on	AcctPay,	a	remote	login	is	created	and	mapped	to
AcctPayRemote.

Note		Remote	server	and	login	records	enable	SQL	Server	Authentication	for
connections	initiated	by	an	instance	of	SQL	Server.

SQL-DMO

LocalTime	Property
The	LocalTime	property	identifies	the	current	date	and	time	for	the	referenced
target	server.

Applies	To

TargetServer	Object

Syntax
object.LocalTime

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetLocalTime(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

Microsoft®	SQL	Server™	2000	multiserver	administration	can	be	configured	to
administer	servers	installed	throughout	the	world.	The	possibility	for	job
scheduling	conflicts	or	errors	can	arise.

For	example,	a	job	created	on	June	1,	1998	for	single	execution	on	that	date,	by
a	master	server	in	Seattle	could	never	execute	on	a	server	enlisted	from	Japan.
The	Japanese	target	server,	having	a	local	date	of	June	2,	will	ignore	the	job	as
its	defined	execution	date	has	passed.

Querying	the	LocalTime	property,	and	using	the	TimeZoneAdjustment
property	in	scheduling,	can	help	avoid	these	potential	errors.

SQL-DMO

Location	Property	(LinkedServer)
The	Location	property	specifies	the	OLE	DB	location	part	of	initialization
properties	used	by	a	provider	to	locate	a	data	store.

Applies	To

LinkedServer	Object

Syntax
object.Location	[=	value]

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

OLE	DB	provider-defined	string

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetLocation(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetLocation(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	Location	property	provides	a	value	for	the	OLE	DB	initialization	property
DBPROP_INIT_LOCATION.	Initialization	properties	are	set	for	the	provider
when	an	attempt	is	made	to	connect	to	the	OLE	DB	data	source	referenced	by
the	LinkedServer	object.	For	more	information	about	values	for	the	Location
property,	see	the	OLE	DB	provider	documentation.

See	Also

DataSource	Property

SQL-DMO

Location	Property	(TargetServer)
The	Location	property	is	a	text	string	describing	the	physical	location	of	the
referenced	target	server.

Applies	To

TargetServer	Object

Syntax
object.Location	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	of	100	characters	or	less

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetLocation(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetLocation(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	Location	property	is	descriptive	text	provided	for	documentation.	The
default	value	of	the	property	is	an	empty	string.

SQL-DMO

LogFile	Property
The	LogFile	property	identifies	the	operating	system	file	maintaining
Microsoft®	SQL	Server™	2000	database	transaction	log	records.

Applies	To

DistributionDatabase	Object

Syntax
object.LogFile	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	names	an	operating	system	file

Data	Type
String

Modifiable
Read/write	when	using	the	DistributionDatabase	object	to	create	a	database
used	by	replication	for	publication	distribution.	Read-only	when	the
DistributionDatabase	object	references	an	existing	replication	distribution
database.

Prototype	(C/C++)
HRESULT	GetLogFile(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetLogFile(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	LogFile	property	is	a	string	of	up	to	260	characters.

Specify	an	operating	system	file	by	using	the	LogFile	property.	Specify	drive
and	directory	using	the	LogFolder	property.

See	Also

LogFolder	Property

SQL-DMO

LogFilePath	Property
The	LogFilePath	property	specifies	the	full	operating	system	path	and	file	name
for	a	bulk	copy	log	file.

Applies	To

BulkCopy	Object

Syntax
object.LogFilePath	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	names	an	operating	system	file

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetLogFilePath(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetLogFilePath(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
For	SQL-DMO,	a	bulk	copy	log	file	contains	statistics	describing	the	number	of
rows	copied	and	the	processing	time.	It	may	also	contain	any	non-bulk	copy
messages	received	from	Microsoft®	SQL	Server™	2000	during	the	bulk	copy.

SQL-DMO

LogFileSize	Property
The	LogFileSize	property	exposes	the	size	of	the	operating	system	file	used	to
maintain	transaction	log	records	for	the	Microsoft®	SQL	Server™	2000
database	referenced.

Applies	To

DistributionDatabase	Object

Syntax
object.LogFileSize	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	represents	a	number	of	megabytes

Data	Type
Long

Modifiable
Read/write	when	using	the	DistributionDatabase	object	to	create	a	database
used	by	replication	for	publication	distribution.	Read-only	when	the
DistributionDatabase	object	references	an	existing	replication	distribution
database.

Prototype	(C/C++)

HRESULT	GetLogFileSize(LPDWORD	pRetVal);

HRESULT	SetLogFileSize(DWORD	NewValue);

SQL-DMO

LogFolder	Property
The	LogFolder	property	identifies	the	operating	system	directory	storing	the	file
that	maintains	Microsoft®	SQL	Server™	2000	database	transaction	log	records.

Applies	To

DistributionDatabase	Object

Syntax
object.LogFolder	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	an	existing	operating	system	directory	by	name

Data	Type
String

Modifiable
Read/write	when	using	the	DistributionDatabase	object	to	create	a	database
used	by	replication	for	publication	distribution.	Read-only	when	the
DistributionDatabase	object	references	an	existing	replication	distribution
database.

Prototype	(C/C++)
HRESULT	GetLogFolder(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetLogFolder(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	LogFolder	property	is	a	string	of	up	to	260	characters.

Specify	an	operating	system	file	using	the	LogFile	property.	Specify	an
operating	system	directory	using	the	LogFolder	property.	Use	drive-and-
directory-based	or	UNC	file	naming.	For	example,	the	strings	C:\Program
Files\Microsoft	SQL	Server\Data	and	\\Seattle1\Program	Files\Microsoft	SQL
Server\Data	are	each	valid	for	LogFolder.

See	Also

LogFile	Property

SQL-DMO

Login	Property
The	Login	property	exposes	the	name	of	a	Microsoft®	SQL	Server™	2000	login
record.

Applies	To

RegisteredServer	Object User	Object
SQLServer	Object 	

Syntax
object.Login	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Valid	SQL	Server	login	record	name	string

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetLogin(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetLogin(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
For	the	RegisteredServer	object,	the	Login	property	identifies	the	login	used	by
default	when	a	connection	is	made	to	an	instance	of	SQL	Server	by	a	Microsoft
client	utility.

For	the	User	object,	the	property	associates	the	referenced	database	user	with	a
specific	SQL	Server	login	record.

For	the	SQLServer	object,	the	Login	property	provides	a	username	for
connecting	when	SQL	Server	Authentication	is	used	to	connect	the	object	to	an
instance	of	SQL	Server.

Note		The	recommended	method	for	connecting	to	an	instance	of	SQL	Server
2000	is	to	use	Windows	Authentication	mode.

SQL-DMO

LoginSecure	Property
The	LoginSecure	property	directs	authentication	mode	use	when	the	application
attempts	to	use	the	Connect	method	of	a	SQLServer	object	to	connect	to	a
server.

Applies	To

SQLServer	Object

Syntax
object.LoginSecure	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetLoginSecure(LPBOOL	pRetVal);

HRESULT	SetLoginSecure(BOOL	NewValue);

Remarks
If	TRUE,	an	attempt	to	connect	to	the	SQLServer	object	uses	Windows
Authentication	Mode.

If	FALSE,	an	attempt	to	connect	the	SQLServer	object	uses	SQL	Server
Authentication.	The	Login	and	Password	properties	are	used	to	specify
authentication	information.

Note		The	recommended	method	for	connecting	to	an	instance	of	SQL	Server
2000	is	to	use	Windows	Authentication	mode.

SQL-DMO

LoginTimeout	Property
The	LoginTimeout	property	specifies	the	number	of	seconds	to	wait	for	a
connection	attempt	to	succeed.

Applies	To

SQLServer	Object

Syntax
object.LoginTimeout	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	number	of	seconds

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetLoginTimeout(LPLONG	pRetVal);

HRESULT	SetLoginTimeout(LONG	NewValue);

Remarks
By	default,	the	LoginTimeout	property	has	a	value	of	-1,	which	is	interpreted
currently	as	60	seconds.

Set	the	LoginTimeout	property	to	0	to	specify	no	connection	attempt	timeout.

SQL-DMO

LogReaderAgent	Property
The	LogReaderAgent	property	identifies	the	SQLServerAgent	job	that	starts
the	replication	agent	responsible	for	transaction	log	interrogation.

Applies	To

DistributionPublication	Object

Syntax
object.LogReaderAgent	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	a	SQL	Server	Agent	job	by	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetLogReaderAgent(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetLogReaderAgent(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

M

SQL-DMO

MailAccountName	Property
The	MailAccountName	property	specifies	the	Microsoft®	Exchange	client
account	used	by	SQL	Mail.

Applies	To

Registry	Object 	

Syntax
object.MailAccountName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetMailAccountName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetMailAccountName(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	SQL	Mail	component	of	Microsoft®	SQL	Server™	2000	enables	a	server	as
an	Exchange	client.	A	correctly	configured	instance	of	SQL	Server	can	send	and
receive	e-mail	messages.

See	Also

SQL	Mail

JavaScript:hhobj_1.Click()

SQL-DMO

MailPassword	Property
The	MailPassword	property	specifies	the	Microsoft®	Exchange	client	account
password	for	SQL	Mail.

Applies	To

Registry	Object 	

Syntax
object.MailPassword	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetMailPassword(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetMailPassword(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	SQL	Mail	component	of	Microsoft®	SQL	Server™	2000	enables	a	server	as
an	Exchange	client.	A	correctly	configured	instance	of	SQL	Server	can	send	and
receive	e-mail	messages.

See	Also

SQL	Mail

JavaScript:hhobj_1.Click()

SQL-DMO

MasterDBPath	Property
The	MasterDBPath	property	specifies	the	full	path	and	file	name	of	the
operating	system	file	containing	the	master	database.

Applies	To

Registry	Object 	

Syntax
object.MasterDBPath	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	names	an	operating	system	file

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetMasterDBPath(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetMasterDBPath(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

MaxConcurrentMerge	Property
The	MaxConcurrentMerge	property	specifies	the	maximum	number	of	Merge
Agents	that	can	synchronize	with	a	publication	concurrently.

Applies	To

MergePublication2	Object 	

Syntax
object.MaxConcurrentMerge	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	the	maximum	number	of	Merge	Agents	that	can
synchronize	concurrently

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	MaxConcurrentMerge(LPLONG	pRetVal);

HRESULT	SetMaxConcurrentMerge(LONG	NewValue);

Remarks
If	MaxConcurrentMerge	is	set	to	zero,	there	is	no	limit	to	the	maximum
number	of	Merge	Agent	sessions	that	can	run	at	any	given	time.

Note		If	an	application	calls	MaxConcurrentMerge	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

MaxConcurrentDynamicSnapshots	Property
The	MaxConcurrentDynamicSnapshots	property	specifies	the	maximum
concurrent	dynamic	snapshot	sessions.

Applies	To

MergePublication2	Object 	

Syntax
object.MaxConcurrentDynamicSnapshots	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	the		maximum	number	of	sessions

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetMaxConcurrentDynamicSnapshots(LPLONG	pRetVal);

HRESULT	SetMaxConcurrentDynamicSnapshots(LONG	NewValue);

Remarks
If	MaxConcurrentDynamicSnapshots	is	set	to	zero,	there	is	no	limit	to	the
maximum	number	of	concurrent	dynamic	snapshot	sessions	that	can	run	at	any
given	time.

Note		If	an	application	calls	MaxConcurrentDynamicSnapshots	on	an	instance
of	SQL	Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the
message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

SQL-DMO

MaxDistributionRetention	Property
The	MaxDistributionRetention	property	specifies	the	greatest	number	of	hours
that	an	image	of	replicated	data	is	maintained	within	the	distribution	database.

Applies	To

DistributionDatabase	Object 	

Syntax
object.MaxDistributionRetention	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	number	of	hours

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetMaxDistributionRetention(LPDWORD	pRetVal);

HRESULT	SetMaxDistributionRetention(DWORD	NewValue);

Remarks
By	default,	replicated	data	is	maintained	in	the	distribution	database	for	72
hours.	Subscriptions	that	have	not	retrieved	the	image	within	the	maximum	time
are	disabled	and	must	be	resynchronized.

SQL-DMO

MaximumChar	Property
The	MaximumChar	property	returns	the	maximum	number	of	characters	used
when	a	value	of	the	data	type	is	converted	to	a	character	string.

Applies	To

SystemDatatype	Object 	

Syntax
object.MaximumChar

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetMaximumChar(LPLONG	pRetVal);

Remarks
Characters	such	as	string	terminators	are	not	included	in	the	character	count.

The	MaximumChar	property	returns	a	character	count,	not	the	number	of	bytes
required	to	store	a	string	of	that	length.	The	MaximumLength	property	can

return	the	number	of	bytes	required	to	store	a	value	for	a	data	type.

For	example,	for	the	SystemDatatype	object	that	references	the	nchar	data
type,	MaximumChar	returns	4,000.	The	MaximumLength	property	for	the
object	returns	8,000,	as	each	nchar	character	requires	two	bytes	for	storage.

SQL-DMO

MaximumErrorsBeforeAbort	Property
The	MaximumErrorsBeforeAbort	property	specifies	the	error	limit	for	a	bulk
copy	operation.

Applies	To

BulkCopy	Object 	

Syntax
object.MaximumErrorsBeforeAbort	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Positive,	long	integer	less	than	65,535

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetMaximumErrorsBeforeAbort(LPLONG	pRetVal);

HRESULT	SetMaximumErrorsBeforeAbort(long	NewValue);

Remarks
The	default	is	10,	and	a	bulk	copy	operation	will	stop	when	ten	errors	occur.
Setting	the	property	to	a	value	greater	than	65,535	results	in	use	of	the
maximum,	65,535.	An	attempt	to	set	the	MaximumErrorsBeforeAbort
property	to	a	value	less	than	1	causes	use	of	the	default.

SQL-DMO

MaximumLength	Property
The	MaximumLength	property	identifies	the	greatest	length	of	a	data	type	in
bytes,	or	the	precision	of	the	type.

Applies	To

SystemDatatype	Object 	

Syntax
object.MaximumLength

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetMaximumLength(LPLONG	pRetVal);

Remarks
For	binary	and	character	data	types,	the	MaximumLength	property	identifies
the	greatest	number	of	bytes	required	to	store	a	string	of	the	type.	For	example,
the	SystemDatatype	object	referencing	the	varchar	data	type	reports	8,000.	The

varchar	data	type	can	contain	up	to	8,000	bytes	of	data.	The	number	of
characters	contained	in	the	string	is	determined	by	the	mix	of	single	and
multibyte	characters	within	it.

For	the	fixed-precision,	numeric	data	types,	the	MaximumLength	property
specifies	the	maximum	precision	of	the	type.

For	all	other	referenced	data	types,	the	MaximumLength	property	identifies	the
number	of	bytes	required	to	store	a	value	of	the	type	in	a	Microsoft®	SQL
Server™	2000	structure	representing	the	type.

SQL-DMO

MaximumSize	Property
The	MaximumSize	property	specifies	an	upper	limit	for	the	size	of	an	operating
system	file	containing	table	and	index	data,	or	maintaining	a	database	transaction
log.

Applies	To

DBFile	Object LogFile	Object

Syntax
object.MaximumSize	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetMaximumSize(LPLONG	pRetVal);

HRESULT	SetMaximumSize(long	NewValue);

SQL-DMO

MaximumValue	Property
The	MaximumValue	property	specifies	an	upper	bound	for	a	configuration
value.

Applies	To

ConfigValue	Object 	

Syntax
object.MaximumValue

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetMaximumValue(LPLONG	pRetVal);

Remarks
Modify	the	CurrentValue	property	to	change	Microsoft®	SQL	Server™	2000
configuration	parameter	values.	The	MinimumValue	and	MaximumValue
properties	provide	the	range	of	values	acceptable	for	the	CurrentValue	property.

SQL-DMO

MaxNumericPrecision	Property
The	MaxNumericPrecision	property	returns	the	greatest	decimal	precision
available	for	exact	numeric	data	types,	including	decimal	and	numeric.

Applies	To

SQLServer	Object 	

Syntax
object.MaxNumericPrecision

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetMaxNumericPrecision(LPLONG	pRetVal);

SQL-DMO

MaxSize	Property
The	MaxSize	property	returns	the	greatest	length	of	a	data	type	in	bytes,	or	the
precision	of	the	type.

Applies	To

UserDefinedDatatype	Object 	

Syntax
object.MaxSize

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetMaxSize(LPLONG	pRetVal);

Remarks
For	binary	and	character	data	types,	the	MaxSize	property	returns	the	greatest
number	of	bytes	required	to	store	a	string	of	the	type.	For	example,	a	user-
defined	data	type	defined	as	varchar(22)	requires	22	bytes.	The	number	of

characters	contained	in	the	string	is	determined	by	the	mix	of	single	and
multibyte	characters	within	it.

For	the	fixed-precision,	numeric	data	types,	the	MaxSize	property	returns	the
maximum	precision	of	the	type.

For	all	other	referenced	data	types,	the	MaxSize	property	returns	the	number	of
bytes	required	to	store	a	value	of	the	type	in	a	Microsoft®	SQL	Server™	2000
structure	representing	the	type.

SQL-DMO

MediaDescription	Property
The	MediaDescription	property	provides	informative	text	to	aid	in
identification	of	a	backup	set

Applies	To

Backup	Object 	

Syntax
object.MediaDescription	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	of	no	more	than	100	characters

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetMediaDescription(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetMediaDescription(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	MediaDescription	and	MediaName	properties	are	written	to	a	tape	media
when	the	media	is	initialized.

SQL-DMO

MediaName	Property
The	MediaName	property	provides	informative	text	to	aid	in	identification	of	a
backup	set.

Applies	To

Backup	Object Restore	Object

Syntax
object.MediaName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	of	no	more	than	100	characters

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetMediaName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetMediaName(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	MediaName	and	MediaDescription	properties	are	written	to	a	tape	media
when	the	media	is	initialized.

SQL-DMO

MediaPassword	Property
The	MediaPassword	property	sets	or	retrieves	the	password	for	a	media	set.

Applies	To

Backup2	Object Restore2	Object

Syntax

object.MediaPassword[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	contains	the	password

Data	Type

String

Modifiable

Read/write

Prototype	(C/C++)

HRESULT	GetMediaPassword(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetMediaPassword(SQLDMO_LPCSTR	NewValue);

Remarks

The	MediaPassword	property	provides	the	password	used	for	a	media	set.	If	a
media	set	password	exists,	it	must	be	supplied	to	perform	any	restore	operation
from	the	media.	If	no	media	set	password	is	passed	by	the	Backup2	object,
MediaPassword	is	set	to	NULL.	An	application	can	set	MediaPassword

multiple	times;	however	once	a	backup	or	restore	operation	has	been	performed,
MediaPassword	cannot	be	altered.

Note		If	an	application	calls	MediaPassword	on	an	instance	of	SQL	Server
version	7.0,	the	operation	is	ignored.

See	Also

Password	Property

JavaScript:hhobj_1.Click()

SQL-DMO

MergeJobID	Property
The	MergeJobID	property	identifies	the	SQL	Server	Agent	job	responsible	for
merging	Subscriber	and	Publisher	images	of	replicated	data.

Applies	To

MergePullSubscription	Object MergeSubscription	Object

Syntax
object.MergeJobID

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetMergeJobID(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

The	string	returned	by	the	MergeJobID	property	is	a	32	character,	hexadecimal
representation	of	the	unique	identifier	of	a	SQL	Server	Agent	job.

SQL-DMO

MessageID	Property
The	MessageID	property	identifies	a	Microsoft®	SQL	Server™	2000	message
to	a	SQL	Server	Agent	alert.

Applies	To

Alert	Object 	

Syntax
object.MessageID	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	identifier	of	a	SQL	Server	system	message

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetMessageID(LPLONG	pRetVal);

HRESULT	SetMessageID(long	NewValue);

Remarks
A	SQL	Server	Agent	alert	is	raised	when	a	SQL	Server	process	raises	a	specific
error	or	an	error	of	a	specific	severity.	Setting	the	MessageID	property	of	an
Alert	object	associates	an	alert	with	a	specific	SQL	Server	system	error
message.

Setting	both	the	MessageID	and	Severity	properties	of	an	Alert	object	attempts
to	associate	an	alert	with	both	an	error	message	and	an	error	message	severity
level,	which	results	in	an	error.

SQL	Server	Agent	alerts	based	on	the	MessageID	property	can	be	restricted	to	a
specific	database.	Use	the	MessageID	and	DatabaseName	properties	of	the
Alert	object	to	restrict	alert	activation.

Multiple	alerts	can	be	defined	for	a	single	error	message,	but	each	alert	defined
on	the	error	message	must	be	restricted	to	a	specific	database.

See	Also

DatabaseName	Property

Severity	Property

SQL-DMO

MinDistributionRetention	Property
The	MinDistributionRetention	property	specifies	the	least	number	of	hours
that	an	image	of	replicated	data	is	maintained	within	the	distribution	database.

Applies	To

DistributionDatabase	Object 	

Syntax
object.MinDistributionRetention	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	number	of	hours

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetMinDistributionRetention(LPDWORD	pRetVal);

HRESULT	SetMinDistributionRetention(DWORD	NewValue);

SQL-DMO

MinimumRetries	Property
The	MinimumRetries	property	specifies	filtering	by	the	number	of	times	SQL
Server	Agent	attempted	to	execute	a	scheduled	job	prior	to	a	successful
execution.

Applies	To

JobHistoryFilter	Object 	

Syntax
object.MinimumRetries	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetMinimumRetries(LPLONG	pRetVal);

HRESULT	SetMinimumRetries(long	NewValue);

Remarks
Set	the	MinimumRetries	property	to	filter	the	job	execution	history	list	based
on	failed	execution	attempts.	For	example,	set	the	MinimumRetries	property	to
1	to	list	only	those	jobs	that	did	not	successfully	execute	on	the	first	attempt.

When	the	MinimumRetries	property	is	0,	the	property	is	not	used	as	part	of	job
execution	history	filtering.

SQL-DMO

MinimumRunDuration	Property
The	MinimumRunDuration	property	specifies	filtering	by	the	amount	of	time
required	for	successful	Microsoft®	SQL	Server™	2000	Agent	job	execution.

Applies	To

JobHistoryFilter	Object 	

Syntax
object.MinimumRunDuration	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	number	of	seconds

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetMinimumRunDuration(LPLONG	pRetVal);

HRESULT	SetMinimumRunDuration(long	NewValue);

Remarks
When	the	MinimumRunDuration	property	is	0,	the	property	is	not	used	as	part
of	job	execution	history	filtering.

SQL-DMO

MinimumValue	Property
The	MinimumValue	property	specifies	a	lower	bound	for	a	configuration	value.

Applies	To

ConfigValue	Object 	

Syntax
object.MinimumValue

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetMinimumValue(LPLONG	pRetVal);

Remarks
Modify	the	CurrentValue	property	to	change	Microsoft®	SQL	Server™	2000
configuration	parameter	values.	The	MinimumValue	and	MaximumValue
properties	provide	the	range	of	values	acceptable	for	the	CurrentValue	property.

SQL-DMO

Month	Property
The	Month	property	returns	the	text	string	representing	the	name	of	a	month	in
the	referenced	language.

Applies	To

Language	Object 	

Syntax
object.Month(OrdinalMonth)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

OrdinalMonth

Long	integer	that	specifies	a	month	of	the	year

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetMonth(int	iMonth,	SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	Month	property	is	used	to	retrieve	the	names	of	months,	singly,	by	their
ordinal	value,	where	January	is	represented	as	month	1.	For	example,	a
Language	object	that	references	an	installed	Microsoft®	SQL	Server™	2000
German	language	might	return	the	string	Februar	when	the	property	Month(2)
is	referenced.

SQL-DMO

Months	Property
The	Months	property	returns	a	SQL-DMO	multistring	containing	unabbreviated
month	names.

Applies	To

Language	Object 	

Syntax
object.Months

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetMonths(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

The	month	names	are	ordered	from	January	through	December.

For	more	information	about	setting	multistring	parameters,	see	Using	SQL-
DMO	Multistrings.

SQL-DMO

MSXServerName	Property
The	MSXServerName	property	identifies	the	master	server	for	an	enlisted
target	server.

Applies	To

JobServer	Object 	

Syntax
object.MSXServerName

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetMSXServerName(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

The	property	only	has	meaning	when	the	JobServer	object	references	a
multiserver	administration,	target	server.	For	a	master	server,	or	for	any	server
not	participating	in	multiserver	administration,	the	MSXServerName	property
value	is	an	empty	string.

SQL-DMO

MultipleColumnUpdate	Property
The	MultipleColumnUpdate	property	specifies	whether	to	update	multiple
columns	using	a	single	UPDATE	statement.

Applies	To

MergeArticle2	Object 	

Syntax
object.MultipleColumnUpdate	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetMultipleColumnUpdate(LPBOOL	pRetVal);

HRESULT	SetMultipleColumnUpdate(BOOL	NewValue);

Remarks
When	set	to	TRUE	(the	default),	MultipleColumnUpdate	specifies	that
multiple	columns	are	updated	using	a	single	UPDATE	statement.	When
MultipleColumnUpdate	is	set	to	FALSE,	separate	update	statements	are
generated	for	each	column	changed.

Setting	MultipleColumnUpdate	to	TRUE	can	result	in	an	increase	in
performance.	An	application	should	set	MultipleColumnUpdate	to	FALSE	if	it
is	necessary	to	maintain	compatibility	SQL	Server	7.0	or	earlier.	An	application
should	also	set	MultipleColumnUpdate	to	FALSE	if	triggers	are	defined	for
one	or	more	columns.

MultipleColumnUpdate	cannot	be	modified	after	the	MergeArticle2	object	is
created.

Note		If	an	application	calls	MultipleColumnUpdate	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

N

SQL-DMO

Name	Property
The	Name	property	is	a	character	string	identifying	a	Microsoft®	SQL	Server™
2000	database,	SQL	Server	Agent,	or	replication	object.

Applies	To

Alert	Object MergeDynamicSnapshotJob	Object
Application	Object MergePublication	Object
BackupDevice	Object MergePullSubscription	Object
Category	Object MergeSubscription	Object
Check	Object MergeSubsetFilter	Object
Column	Object Operator	Object
ConfigValue	Object Property	Object
Database	Object RemoteServer	Object
DatabaseRole	Object RegisteredServer	Object
DBFile	Object RegisteredSubscriber	Object
DBObject	Object ReplicationDatabase	Object
Default	Object ReplicationStoredProcedure	Object
DistributionArticle	Object ReplicationTable	Object
DistributionDatabase	Object Rule	Object
DistributionPublication	Object ServerRole	Object
DistributionPublisher	Object ServerGroup	Object
DistributionSubscription	Object SQLServer	Object
DRIDefault	Object StoredProcedure	Object
FileGroup	Object SystemDatatype	Object
FullTextCatalog	Object Table	Object
Index	Object TargetServerGroup	Object
Job	Object TransArticle	Object
JobSchedule	Object TransPublication	Object
JobStep	Object TransPullSubscription	Object

Key	Object TransSubscription	Object
Language	Object Trigger	Object
Linked	Server	Object User	Object
LogFile	Object UserDefinedDatatype	Object
Login	Object UserDefinedFunction	Object
MergeArticle	Object View	Object

Syntax
object.Name	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetName(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

For	restrictions	on	modifiability	and	content	of	the	Name	property,	see	the
documentation	for	the	applicable	object.

SQL-DMO

NetName	Property
The	NetName	property	returns	the	network	visible	name	of	the	server	connected
to	an	instance	of	Microsoft®	SQL	Server™	2000.

Applies	To

RemoteServer	Object SQLServer	Object

Syntax
object.NetName

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetNetName(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

NetPacketSize	Property
The	NetPacketSize	property	specifies	the	size	of	a	network	packet	used	to
transmit	a	block	of	data	from	a	client	and	to	an	instance	of	Microsoft®	SQL
Server™	2000.

Applies	To

SQLServer	Object

Syntax
object.NetPacketSize	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	value	from	128	through	65535

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetNetPacketSize(LPLONG	pRetVal);

HRESULT	SetNetPacketSize(long	NewValue);

Remarks
SQL	Server	uses	a	default	network	packet	size	of	4096	bytes.	The	size	of	a
network	packet	may	be	limited	by	the	Net-Library	used	for	the	client	connection.

Setting	NetPacketSize	to	0	enables	the	default	size,	4096	bytes.

SQL-DMO

NetSendAddress	Property
The	NetSendAddress	property	specifies	a	network	visible	name	for	an	operator
workstation	or	server.

Applies	To

Operator	Object

Syntax
object.NetSendAddress	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	a	server	by	network	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetNetSendAddress(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetNetSendAddress(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
SQL	Server	Agent	can	dispatch	notification	to	operators	using	e-mail	or	network
pop-up	messages.

Indicate	an	operator	network	address	in	the	NetSendAddress	property	to
configure	an	operator	for	receipt	of	notification	by	network	pop-up	message.	Set
the	NetSendAddress	property	to	an	empty	string	to	stop	notification	by	network
pop-up	message.

SQL-DMO

NetSendLevel	Property
The	NetSendLevel	property	controls	Microsoft®	SQL	Server™	2000	Agent
operator	network	message	notification	on	job	completion.

Applies	To

Job	Object

Syntax
object.NetSendLevel	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	job	completion	status	as	described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetNetSendLevel(SQLDMO_COMPLETION_TYPE*	pRetVal);

HRESULT	SetNetSendLevel(SQLDMO_COMPLETION_TYPE	NewValue);

Settings

Constant Value Description
SQLDMOComp_All 6 Send	network	message	to	operator

regardless	of	success	or	failure.
SQLDMOComp_Always 3 Send	network	message	to	operator

regardless	of	success	or	failure.
SQLDMOComp_Failure 2 Send	network	message	to	operator

when	job	fails	to	complete
successfully.

SQLDMOComp_None 0 Ignore	any	completion	status.	Do	not
send	network	message	to	operator.

SQLDMOComp_Success 1 Send	network	message	to	operator	on
successful	completion.

SQLDMOComp_Unknown 4096 Invalid	value.

Remarks
SQL	Server	Agent	can	send	notification	of	job	completion	using	e-mail,	network
message,	or	pager.

To	enable	a	job	for	network	pop-up	message	notification

1.	 Set	the	OperatorToNetSend	property	to	the	name	of	an	existing	SQL
Server	Agent	operator.

2.	 Set	the	NetSendLevel	property	to	control	SQL	Server	Agent	network
message	notification	based	on	job	completion.

See	Also

OperatorToNetSend	Property

SQL-DMO

NextDeviceNumber	Property
The	NextDeviceNumber	property	is	maintained	for	compatibility	with	previous
versions	of	SQL-DMO.

Applies	To

SQLServer	Object

Syntax
object.NextDeviceNumber

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetNextDeviceNumber(LPLONG	pRetVal);

SQL-DMO

NextRunDate	Property
The	NextRunDate	property	returns	a	system-generated	execution	date	for	a	SQL
Server	Agent	job.

Applies	To
Job	Object

Syntax
object.NextRunDate

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetNextRunDate(LPLONG	pRetVal);

Remarks
The	value	returned	by	the	NextRunDate	property	is	determined	by	evaluating
all	schedules	assigned	to	the	job.	When	no	schedule	is	active	or	no	next
execution	date	can	be	calculated,	the	NextRunDate	property	returns	0.

Note		When	SQL-DMO	uses	a	scaled	long	integer	to	represent	a	date,	the	integer
is	built	as	a	sum	of	the	year	scaled	by	10000,	the	month	scaled	by	100,	and	the
day.	For	example,	the	date	April	19,	1997	is	represented	by	the	long	integer
value	19970419.

SQL-DMO

NextRunScheduleID	Property
The	NextRunScheduleID	property	returns	the	system-generated	identifier	for
the	schedule	determining	the	next	execution	date	of	a	Microsoft®	SQL	Server™
2000	Agent	job.

Applies	To

Job	Object

Syntax
object.NextRunScheduleID

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetNextRunScheduleID(LPLONG	pRetVal);

SQL-DMO

NextRunTime	Property
The	NextRunTime	property	returns	a	system-generated	execution	time	for	a
Microsoft®	SQL	Server™	2000	Agent	job.

Applies	To

Job	Object

Syntax
object.NextRunTime

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetNextRunTime(LPLONG	pRetVal);

Remarks
The	value	returned	by	the	NextRunTime	property	is	determined	by	evaluating
all	schedules	assigned	to	the	job.	0	is	a	valid	return	value.

When	no	schedule	is	active	or	no	next	execution	date	and	time	can	be	calculated,

the	NextRunDate	property	returns	0.

Note		When	SQL-DMO	uses	a	scaled	long	integer	to	represent	a	time,	the
integer	is	built	as	a	sum	of	the	hour	scaled	by	10000,	the	minute	scaled	by	100,
and	the	seconds.	The	time	value	uses	a	24-hour	clock.	For	example,	the	time
1:03:09	P.M.	is	represented	by	the	long	integer	value	130309.

SQL-DMO

NoRecompute	Property
The	NoRecompute	property	controls	statistics	generation	when	the	Index	object
is	used	to	create	a	Microsoft®	SQL	Server™	2000	index.

Applies	To

Index	Object

Syntax
object.NoRecompute	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write	before	index	creation.	Read-only	when	referencing	an	existing	index.

Prototype	(C/C++)
HRESULT	GetNoRecompute(LPBOOL	pRetVal);

HRESULT	SetNoRecompute(BOOL	NewValue);

Remarks
When	TRUE,	SQL	Server	does	not	perform	automatic	data-distribution	statistics
update	on	the	created	index.

When	FALSE	(default),	automatic	data-distribution	statistics	update	is
performed.

Use	the	UpdateIndexStatistics,	UpdateStatistics,	or	UpdateStatisticsWith
method	to	force	an	update	of	index	statistics	for	SQL	Server	indexes	not
configured	for	automatic	update.	Use	the	UpdateStatisticsWith	method	of	the
Table	object	to	enable	or	disable	automatic	update	of	data-distribution	statistics
for	an	existing	index.

See	Also

UpdateIndexStatistics	Method

UpdateStatisticsWith	Method	(Column,	Index)

UpdateStatistics	Method

UpdateStatisticsWith	Method	(Table)

SQL-DMO

NoRewind	Property
The	NoRewind	property	specifies	whether	Microsoft®	SQL	Server™	2000
keeps	a	tape	drive	open	and	positioned	after	a	backup	or	restore	operation.

Applies	To

Backup2	Object Restore2	Object

Syntax

object.NoRewind	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type

Boolean

Modifiable

Read/write

Prototype	(C/C++)

HRESULT	GetNoRewind(BOOL);

HRESULT	SetNoRewind(BOOL);

Remarks

When	NoRewind	is	set	to	TRUE,	SQL-DMO	issues	the	Transaction-SQL
BACKUP	or	RESTORE	command	with	the	NOREWIND	option.	This	allows
SQL	Server	2000	to	keep	a	tape	drive	open	and	positioned,	thereby	preventing

the	overhead	of	rewinding	and	scanning	a	tape.	This	is	useful	in	situations	where
a	tape	is	repeatedly	used.	NoRewind	is	set	to	FALSE	by	default.

Note		If	an	application	calls	NoRewind	on	an	instance	of	SQL	Server	version
7.0,	the	operation	is	ignored.

See	Also

BACKUP

RESTORE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL-DMO

NotForRepl	Property
The	NotForRepl	property	enables	or	disables	an	IDENTITY	constraint	for	data
inserted	by	a	replication	process.

Applies	To

Column	Object

Syntax
object.NotForRepl	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write	when	using	the	Column	object	to	create	or	alter	a	SQL	Server	table.
Read-only	when	the	Column	object	references	an	existing	column.

Prototype	(C/C++)
HRESULT	GetNotForRepl(LPBOOL	pRetVal);

HRESULT	SetNotForRepl(BOOL	NewValue);

Remarks
If	TRUE,	the	IDENTITY	constraint	is	not	enforced	when	data	is	added	to	the
table	by	a	known	replication	login.	The	replication	process	provides	identity
values.

If	FALSE,	the	IDENTITY	constraint	is	enforced	regardless	of	the	data	source.

SQL-DMO

NotificationMessage	Property
The	NotificationMessage	property	represents	user-supplied	text	appended	to
any	notification	sent	when	a	Microsoft®	SQL	Server™	2000	Agent	responds	to
an	alert.

Applies	To

Alert	Object

Syntax
object.NotificationMessage	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Character	string

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetNotificationMessage(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetNotificationMessage(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
When	a	Microsoft	SQL	Server	alert	is	raised,	SQL	Server	Agent	builds	a
message	and	sends	notifications	as	a	response.	The	notification	message	is	built
with	default	parts	and	user-controlled	parameters.	To	add	user-specified	text	to
an	alert,	set	the	NotificationMessage	property	of	an	Alert	object.

See	Also

IncludeEventDescription	Property

SQL-DMO

NotificationMethod	Property
The	NotificationMethod	property	specifies	the	method	used	when	notifying	a
fail-safe	operator	of	a	raised	alert.

Applies	To

AlertSystem	Object

Syntax
object.NotificationMethod	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	an	alert	notification	method	as	described	in
Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetNotificationMethod(SQLDMO_NOTIFY_TYPE	*pRetVal);

HRESULT	SetNotificationMethod(SQLDMO_NOTIFY_TYPE	NewValue);

Settings

Constant Value Description
SQLDMONotify_All 7 Notification	by	e-mail,	e-mail	sent	to

the	pager	address,	and	network	pop-up
message

SQLDMONotify_Email 1 Notification	by	e-mail	sent	to	the
operator	e-mail	address

SQLDMONotify_NetSend 4 Notification	by	network	pop-up
message	posted	to	the	operator
network	address

SQLDMONotify_None 0 No	notification	method	specified	for
the	referenced	operator

SQLDMONotify_Pager 2 Notification	by	e-mail	sent	to	the
operator	pager	address

Remarks
The	NotificationMethod	property	is	a	bit-packed	long	value.	To	specify	more
than	a	single	notification	method,	combine	enumerated	values	using	an	OR
logical	operator.

SQL-DMO

NP	Property
The	NP	property	specifies	the	pipe	name	when	using	named	pipe	protocol	on	an
instance	of	Microsoft®	SQL	Server™	2000.

Applies	To

Registry2	Object

Syntax
object.NP	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	the	pipe	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetNP(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetNP(SQLDMO_LPCSTR	NewValue);

Remarks
Named	pipe	support	is	required	on	Microsoft	Windows	NT®	4.0	instances	of
SQL	Server.	By	default,	SQL	Server	listens	on	the	standard	pipe,
\\.\pipe\sql\query,	for	Named	Pipes	Net-Library	connections.	After	SQL	Server	is
installed,	you	can	change	the	pipe	name.	You	can	also	drop	named	pipe	support
and	set	SQL	Server	to	listen	only	on	other	Net-Libraries.

To	set	the	NP	property,	you	must	be	a	member	of	the	sysadmin	fixed	server	role.

IMPORTANT		Setting	the	NP	property	changes	registry	settings,	and	should	be
used	with	caution.

Note		Server-side	named	pipes	are	not	supported	on	Microsoft	Windows®
95/98.

Note		If	an	application	calls	NP	on	an	instance	of	SQL	Server	version	7.0,	the
constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This	property	or
method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

NTEventLogging	Property
The	NTEventLogging	property	reports	Microsoft®	SQL	Server™	2000	use	of
the	Microsoft	Windows	application	log.

Applies	To

Registry	Object

Syntax
object.NTEventLogging

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetNTEventLogging(LPBOOL	pRetVal);

Remarks
If	TRUE,	SQL	Server	sends	all	events	to	the	Windows	application	log	and	the
SQL	Server	error	log.

If	FALSE,	SQL	Server	sends	events	only	to	the	SQL	Server	error	log.

SQL-DMO

NTLoginAccessType	Property
The	NTLoginAccessType	property	reports	whether	a	Microsoft®	Windows
NT®	4.0	login	has	explicit	permissions	to	connect	to	a	server.

Applies	To

Login	Object

Syntax
object.NTLoginAccessType

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long	integer

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetNTLoginAccessType	(SQLDMO_NTACCESS_TYPE
*pRetVal);

Settings
Interpret	the	NTLoginAccessType	property	return	value	using	these
SQLDMO_NTACCESS_TYPE	values.

Constant Value Description
SQLDMONTAccess_Deny 2 This	login	has	explicit	deny

permissions	to	access	this
server.

SQLDMONTAccess_Grant 1 This	login	has	explicit	grant
permissions	to	access	this
server.

SQLDMONTAccess_NonNTLogin 99 The	login	is	a	standard	SQL
Server	login;	the	property	does
not	apply.

SQLDMONTAccess_Unknown 0 The	login	has	not	been
explicitly	granted	or	denied
permissions	to	access	this
server.	The	login	may	still	have
access	through	a	group
membership,	but	this	is	not
recorded	as	a	login	property.

Remarks
Use	the	Add	or	Remove	methods	of	the	Logins	collection	to	manipulate	user
login	records.

SQL-DMO

NumberOfProcessors	Property
The	NumberOfProcessors	property	returns	the	number	of	central	processing
units	(CPUs)	available	to	Microsoft®	SQL	Server™	2000	on	the	server.

Applies	To

Registry	Object

Syntax
object.NumberOfProcessors

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetNumberOfProcessors(LPLONG	pRetVal);

SQL-DMO

NumericPrecision	Property
The	NumericPrecision	property	specifies	the	maximum	number	of	digits	in	a
fixed-precision,	numeric	data	type.

Applies	To

Column	Object UserDefinedDatatype	Object

Syntax
object.NumericPrecision	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	value	from	1	through	the	value	of	the	MaximumLength
property	(as	returned	by	the	SystemDatatype	object	referencing	the	base
data	type	of	the	column	or	user-defined	data	type)

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetNumericPrecision(LPLONG	pRetVal);

HRESULT	SetNumericPrecision(long	NewValue);

SQL-DMO

NumericScale	Property
The	NumericScale	property	specifies	the	number	of	digits	to	the	right	of	the
decimal	point	in	a	fixed-precision,	numeric	data	type.

Applies	To

Column	Object UserDefinedDatatype	Object

Syntax
object.NumericScale	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	value	from	0	through	the	value	of	the	NumericPrecision
property	of	the	Column	or	UserDefinedDatatype	object

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetNumericScale(LPLONG	pRetVal);

HRESULT	SetNumericScale(long	NewValue);

SQL-DMO

O

SQL-DMO

ObjectID	Property
The	ObjectID	property	returns	the	system-assigned	identifier	for	a	Microsoft®
SQL	Server™	2000	database	or	database	object.

Applies	To

Permission	Object 	

Syntax
object.ObjectID

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetObjectID(LPLONG	pRetVal);

Remarks
The	definitions	of	many	SQL	Server	database	components	are	implemented	as
records	in	SQL	Server	system	tables.	Within	a	system	table,	one	column	may	be
designated	as	an	identifier.	An	identifier	is	an	integer	value	that	is	unique	for	all

rows	in	the	table.	Identifiers	are	assigned	by	SQL	Server.

The	ObjectID	property	represents	a	SQL	Server	component	identifier	and,	by
using	the	ItemByID	method,	provides	an	alternate	method	for	selecting	a
specific	object	from	a	collection.

SQL-DMO

ObjectName	Property
The	ObjectName	property	returns	the	name	of	the	Microsoft®	SQL	Server™
2000	database	or	database	object	referenced	by	a	Permission	object.

Applies	To

Permission	Object 	

Syntax
object.ObjectName

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetObjectName(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	by	using	SysFreeString.

SQL-DMO

ObjectOwner	Property
The	ObjectOwner	property	returns	the	Microsoft®	SQL	Server™	2000
database	user	owning	the	database	or	database	object	referenced	by	a
Permission	object.

Applies	To

Permission	Object 	

Syntax
object.ObjectOwner

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetObjectOwner(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

ObjectType	Property
The	ObjectType	property	returns	an	enumerated	value	that	specifies	the	type	of
Microsoft®	SQL	Server™	2000	component	referenced	by	a	Permission	object.

Applies	To

Permission	Object 	

Syntax
object.ObjectType

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long,	enumerated

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetObjectType(SQLDMO_OBJECT_TYPE*	pRetVal);

Returns
Values	returned	by	the	ObjectType	property	are	enumerated	by	SQL-DMO
object	type	constants.	Access	permission	can	be	granted	on	SQL	Server
databases	and	some	database	objects.	The	value	returned	will	be	one	of	these

SQLDMO_OBJECT_TYPE	values.

Constant Value Description
SQLDMOObj_Database 135168 Permission	granted	on	a	SQL

Server	database.
SQLDMOObj_StoredProcedure 16 Permission	granted	on	a	SQL

Server	stored	procedure.
SQLDMOObj_SystemTable 2 Permission	granted	on	a	SQL

Server	system	table.
SQLDMOObj_UserTable 8 Permission	granted	on	a	SQL

Server	user-defined	table.
SQLDMOObj_View 4 Permission	granted	on	a	SQL

Server	view.

SQL-DMO

ObjectTypeName	Property
The	ObjectTypeName	property	returns	the	type	of	Microsoft®	SQL	Server™
2000	component	referenced	by	the	Permission	object	as	a	text	string.

Applies	To

Permission	Object 	

Syntax
object.ObjectTypeName

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetObjectTypeName(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

Access	permission	can	be	granted	on	SQL	Server	databases	and	some	database
objects.	The	value	returned	will	be	database,	stored	procedure,	system	table,	user
table,	or	view.

SQL-DMO

OccurrenceCount	Property
The	SQL	Server	Agent	alert	occurrence	count	represents	the	number	of	times	the
alert	has	fired	after	a	specific	date	and	time.

Applies	To

Alert	Object 	

Syntax
object.OccurrenceCount	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	the	number	of	times	a	SQL	Server	Agent	alert	has
been	raised	after	the	reset	date	for	the	alert

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetOccurrenceCount(LPLONG	pRetVal);

Remarks

The	CountResetDate	property	marks	date	and	time	for	the	beginning	of
counting	for	a	SQL	Server	Agent	alert	occurrence	count.	Use	the
ResetOccurrenceCount	method	to	set	the	alert	occurrence	count	to	zero.

See	Also

CountResetDate	Property

ResetOccurrenceCount	Method

SQL-DMO

ODBCPrefix	Property
The	ODBCPrefix	property	controls	error	and	status	message	text	formatting	for
a	SQL-DMO	application.

Applies	To

SQLServer	Object 	

Syntax
object.ODBCPrefix	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetODBCPrefix(LPBOOL	pRetVal);

HRESULT	SetODBCPrefix(BOOL	NewValue);

Remarks
When	TRUE,	descriptive	error	text	is	prefixed	by	indicators	of	error	source.

When	FALSE,	SQL-DMO	strips	error	source	indicators	and	returns	only	the
error	message	text.

SQL-DMO

ODBCVersionString	Property
The	ODBCVersionString	property	returns	the	major	and	minor	version
numbers	of	the	installed	ODBC	driver	manager.

Applies	To

Application	Object 	

Syntax
object.ODBCVersionString

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetODBCVersionString(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

The	ODBC	driver	manager	version	is	returned	as	a	string	in	the	form	xx.yy.zzzz
where	xx	is	a	zero-padded,	two-digit	major	version	number;	yy	is	a	zero-padded,
two-digit	minor	version	number;	and	zzzz	is	a	zero-padded,	four-digit	release
number.

SQL-DMO

Offline	Property
The	Offline	property	controls	Microsoft®	SQL	Server™	2000	database
availability.

Applies	To

DBOption	Object 	

Syntax
object.Offline	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetOffline(LPBOOL	pRetVal);

HRESULT	SetOffline(BOOL	NewValue);

Remarks
When	TRUE,	the	database	is	unavailable,	or	is	being	made	unavailable,	for	use
by	authorized	users.

When	FALSE,	the	database	is	online,	or	is	being	brought	online,	for	use	by
authorized	users.

SQL-DMO

OldestFirst	Property
The	OldestFirst	property	controls	ordering	for	the	SQL	Server	Agent	job
histories,	listed	using	the	EnumHistory	or	EnumJobHistory	method.

Applies	To

JobHistoryFilter	Object 	

Syntax
object.OldestFirst	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetOldestFirst(LPBOOL	pRetVal);

HRESULT	SetOldestFirst(BOOL	NewValue);

Remarks
The	result	set	returned	by	either	the	EnumHistory	or	EnumJobHistory	method
is	ordered	by	values	in	the	run-date	and	run-time	columns.	By	default,	history
records	are	ordered	so	that	records	for	jobs	run	most	recently	precede	those	run
at	an	earlier	date	and	time.

Set	the	OldestFirst	property	to	TRUE	to	alter	default	behavior,	and	order
records	so	that	the	oldest	record	appears	first	in	the	result	set.

SQL-DMO

OnFailAction	Property
The	OnFailAction	property	controls	the	behavior	of	a	SQL	Server	Agent	job
when	the	referenced	step	fails	execution.

Applies	To

JobStep	Object 	

Syntax
object.OnFailAction	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	job	logic	as	described	in	Settings

Data	Type
Long,	enumerated.

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetOnFailAction(SQLDMO_JOBSTEPACTION_TYPE*	pRetVal);

HRESULT	SetOnFailAction(SQLDMO_JOBSTEPACTION_TYPE	NewValue);

Settings

Constant Value Description
SQLDMOJobStepAction_GotoStep 4 Continue	execution	at

the	next	identified
step.

SQLDMOJobStepAction_GotoNextStep 3 Continue	execution	at
the	next	sequential
step.

SQLDMOJobStepAction_QuitWithFailure 2 Terminate	job
execution,	reporting
failure.

SQLDMOJobStepAction_QuitWithSuccess 1 Terminate	job
execution,	reporting
success.

SQLDMOJobStepAction_Unknown 0 Job	step	logic	is
unassigned	for	the
referenced	job	step.

Remarks
On	failure	of	a	job	step,	SQL	Server	Agent	can	terminate	the	job	(reporting
success	or	failure)	or,	if	the	job	has	more	than	a	single	step,	can	attempt	to
execute	the	next	step	or	another	step	in	the	job.

When	using	SQLDMOJobStepAction_GotoStep	to	direct	execution	to	a	specific
step,	set	the	OnFailStep	property	to	identify	the	job	step	executed	on	failure.

SQL-DMO

OnFailStep	Property
The	OnFailStep	property	identifies	the	SQL	Server	Agent	job	step	executed
after	failure	of	the	referenced	step.

Applies	To

JobStep	Object 	

Syntax
object.OnFailStep	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	job	step	by	ordinal	number

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetOnFailStep(LPLONG	pRetVal);

HRESULT	SetOnFailStep(long	NewValue);

Remarks
On	failure	of	a	job	step,	SQL	Server	Agent	can	terminate	the	job	(reporting
success	or	failure)	or,	if	the	job	has	more	than	a	single	step,	can	attempt	to
execute	the	next	step	or	another	step	in	the	job.

To	direct	job	failure	logic	to	a	specific	step

1.	 Set	OnFailStep	to	indicate	the	job	step	that	should	execute.

2.	 Set	the	OnFailAction	property	to	SQLDMOJobStepAction_GotoStep.

SQL-DMO

OnSuccessAction	Property
The	OnSuccessAction	property	controls	the	behavior	of	a	SQL	Server	Agent	job
when	the	referenced	step	succeeds.

Applies	To

JobStep	Object 	

Syntax
object.OnSuccessAction	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	job	logic	as	described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetOnSuccessAction(
SQLDMO_JOBSTEPACTION_TYPE*	pRetVal);

HRESULT	SetOnSuccessAction(
SQLDMO_JOBSTEPACTION_TYPE	NewValue);

Settings

Constant Value Description
SQLDMOJobStepAction_GotoStep 4 Continue	execution	at

the	next	identified	step.
SQLDMOJobStepAction_GotoNextStep 3 Continue	execution	at

the	next	sequential
step.

SQLDMOJobStepAction_QuitWithFailure 2 Terminate	job
execution,	reporting
failure.

SQLDMOJobStepAction_QuitWithSuccess 1 Terminate	job
execution,	reporting
success.

SQLDMOJobStepAction_Unknown 0 Job	step	logic	is
unassigned	for	the
referenced	job	step.

Remarks
On	success	of	a	job	step,	SQL	Server	Agent	can	terminate	the	job	(reporting
success	or	failure)	or,	if	the	job	has	more	than	a	single	step,	can	attempt	to
execute	the	next	step	or	another	step	in	the	job.

When	using	SQLDMOJobStepAction_GotoStep	to	direct	execution	to	a	specific
step,	set	the	OnSuccessStep	property	to	identify	the	job	step	executed	on
success.

SQL-DMO

OnSuccessStep	Property
The	OnSuccessStep	property	identifies	the	SQL	Server	Agent	job	step	executed
after	the	success	of	the	referenced	step.

Applies	To

JobStep	Object 	

Syntax
object.OnSuccessStep	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	job	step	by	ordinal	number

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetOnSuccessStep(LPLONG	pRetVal);

HRESULT	SetOnSuccessStep(long	NewValue);

Remarks
On	success	of	a	job	step,	SQL	Server	Agent	can	terminate	the	job	(reporting
success	or	failure)	or,	if	the	job	has	more	than	a	single	step,	can	attempt	to
execute	the	next	step	or	another	step	in	the	job.

To	direct	job	success	logic	to	a	specific	step

1.	 Set	OnSuccessStep	to	indicate	the	job	step	that	should	execute.

2.	 Set	the	OnSuccessAction	property	to
SQLDMOJobStepAction_GotoStep.

SQL-DMO

OperatorToEmail	Property
The	OperatorToEmail	property	specifies	the	SQL	Server	Agent	operator
receiving	e-mail	notification	of	job	completion.

Applies	To

Job	Object 	

Syntax
object.OperatorToEmail	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	a	SQL	Server	Agent	operator	by	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetOperatorToEmail(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetOperatorToEmail(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
SQL	Server	Agent	can	send	notification	of	job	completion	using	e-mail,	network
message,	or	pager.

The	operator	specified	by	the	OperatorToEmail	property	should	be	configured
with	an	e-mail	address	for	notification	routing.	SQL	Mail	must	be	configured
and	running	before	e-mail	notification	can	be	successfully	sent.

To	enable	a	job	for	e-mail	notification

1.	 Set	the	OperatorToEmail	property	to	the	name	of	an	existing	SQL
Server	Agent	operator.

2.	 Set	the	EmailLevel	property	to	control	SQL	Server	e-mail	notification
based	on	job	completion.

See	Also

EmailAddress	Property

EmailLevel	Property

SQL-DMO

OperatorToNetSend	Property
The	OperatorToNetSend	property	specifies	the	SQL	Server	Agent	operator
receiving	a	network	message	notification	of	job	completion.

Applies	To

Job	Object 	

Syntax
object.OperatorToNetSend	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	a	SQL	Server	Agent	operator	by	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetOperatorToNetSend(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetOperatorToNetSend(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
SQL	Server	Agent	can	send	notification	of	job	completion	using	e-mail,	network
message,	or	pager.

The	operator	specified	by	the	OperatorToNetSend	property	should	be
configured	with	a	network	address	for	message	routing.

To	enable	a	job	for	network	popup	message	notification

1.	 Set	the	OperatorToNetSend	property	to	the	name	of	an	existing	SQL
Server	Agent	operator.

2.	 Set	the	NetSendLevel	property	to	control	SQL	Server	network
message	notification	based	on	job	completion.

See	Also

NetSendAddress	Property

NetSendLevel	Property

SQL-DMO

OperatorToPage	Property
The	OperatorToPage	property	specifies	the	SQL	Server	Agent	operator
receiving	pager	notification	of	job	completion.

Applies	To

Job	Object 	

Syntax
object.OperatorToPage	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	a	SQL	Server	Agent	operator	by	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetOperatorToPage(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetOperatorToPage(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
SQL	Server	Agent	can	send	notification	of	job	completion	using	e-mail,	network
message,	or	pager.

The	operator	specified	by	the	OperatorToPage	property	should	be	configured
with	a	pager	address	for	notification	routing.

To	enable	a	job	for	pager	notification

1.	 Set	the	OperatorToPage	property	to	the	name	of	an	existing	SQL
Server	Agent	operator.

2.	 Set	the	PageLevel	property	to	control	SQL	Server	network	message
notification	based	on	job	completion.

See	Also

PagerAddress	Property

PageLevel	Property

SQL-DMO

Options	Property
The	Options	property	returns	a	bit-packed	long	integer	that	describes	the
attributes	of	a	remote	or	linked	server.

Applies	To
LinkedServer	Object

Syntax
object.Options

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long,	enumerated

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetOptions(SQLOLE_SRVOPTION_TYPE*	pRetVal);

Returns
Interpret	the	return	value	using	this	information.

Constant Value Description
SQLDMOSrvOpt_CollationCompatible 256 Referenced	server	uses

ordering	and	character
comparison	identical	to
that	used	by	the	local
server	(LinkedServer
object	only).

SQLDMOSrvOpt_DataAccess 128 Referenced	server	is
available	to	the	local
server	as	a	distributed
query	participant
(LinkedServer	object
only).

SQLDMOSrvOpt_DistPublisher 16 Referenced	server	is	a
distribution	Publisher	for
the	local	server
(RemoteServer	object
only).

SQLDMOSrvOpt_Distributor 8 Referenced	server	is	a
replication	Distributor
(RemoteServer	object
only).

SQLDMOSrvOpt_DynamicParameters 16384 Referenced	server
recognizes	the	ODBC-
specified	character	?	as	a
parameter	representation
in	a	query	statement
(LinkedServer	object
only).

SQLDMOSrvOpt_IndexAsAccessPath 2048 Provider-implemented
indexes	will	be	used	as	an
access	path	for	a
distributed	query	against
the	referenced	server
(LinkedServer	object
only).

SQLDMOSrvOpt_InProcess 1024 Launches	the	OLE	DB
provider	implementing	the

referenced	data	source	as
a	COM	in-process	server
(LinkedServer	object
only).

SQLDMOSrvOpt_LevelZeroOnly 4096 When	accessing	the
referenced	server,	a
distributed	query	will	use
only	OLE	DB	Level	0
support	(LinkedServer
object	only).

SQLDMOSrvOpt_NestedQueries 8192 Referenced	server
supports	the	SELECT
statement	in	the	FROM
clause	of	a	query
(LinkedServer	object
only).

SQLDMOSrvOpt_NonTransacted 512 Distributed	query	will
allow	an	update	to	the
referenced	server
regardless	of	the	presence
of	transaction	support
(LinkedServer	object
only).

SQLDMOSrvOpt_Publisher 2 Referenced	server
publishes	data	to	the	local
server	(RemoteServer
object	only).

SQLDMOSrvOpt_RPC 1 Allows	remote	procedure
calls	made	by	the	remote
or	linked	server.

SQLDMOSrvOpt_RPC_out 64 Referenced	server	accepts
remote	procedure	calls
from	the	local	server
(LinkedServer	object
only).

SQLDMOSrvOpt_Subscriber 4 Referenced	server

subscribes	to	replication
publications	on	the	local
server	(RemoteServer
object	only).

SQLDMOSrvOpt_Unknown 0 No	options	set.

Remarks
The	RemoteServer	object	exposes	the	attributes	of	an	instance	of	Microsoft®
SQL	Server™	2000	known	as	a	remote	server	to	another	server.	A
LinkedServer	object	exposes	the	properties	of	an	OLE	DB	data	source	(linked
server),	allowing	Transact-SQL	queries	against	defined	data	sources.

Use	the	SetOptions	method	to	set	attributes	for	a	remote	or	linked	server.

See	Also

SetOptions	Method

SQL-DMO

OriginatingServer	Property
The	OriginatingServer	property	identifies	an	instance	of	Microsoft®	SQL
Server™	2000	assigning	the	referenced	job.

Applies	To

Job	Object 	

Syntax
object.OriginatingServer

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetOriginatingServer(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

The	property	returns	(local)	for	jobs	created	on	the	referenced	instance	of	SQL
Server.	For	jobs	assigned	to	the	referenced	instance	of	SQL	Server	by	another
server	acting	as	an	MSX,	the	property	returns	the	MSX	server	name.

SQL-DMO

OSRunPriority	Property
The	OSRunPriority	property	controls	execution	thread	scheduling	for	job	steps
executing	operating	system	tasks.

Applies	To

JobStep	Object 	

Syntax
object.OSRunPriority	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	an	operating	system	task	execution	priority	level
as	described	in	Settings

	Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetOSRunPriority(
SQLDMO_RUNPRIORITY_TYPE*	pRetVal);

HRESULT	SetOSRunPriority(

SQLDMO_RUNPRIORITY_TYPE	NewValue);

Settings

Constant Value Description
SQLDMORunPri_AboveNormal 1 Slightly	elevated	priority.
SQLDMORunPri_BelowNormal -1 Reduced	priority.
SQLDMORunPri_Highest 2 Highest	priority	level	allowed	by

the	process	priority.
SQLDMORunPri_Idle -15 No	CPU	time	will	be	spent	on	this

thread	unless	all	other	threads	are
blocked.

SQLDMORunPri_Lowest -2 Least,	scheduled	priority	level
allowed	by	the	process	priority.

SQLDMORunPri_Min 1 SQLDMORunPri_AboveNormal.
SQLDMORunPri_Normal 0 Standard	priority	level.
SQLDMORunPri_TimeCritical 15 No	CPU	time	will	be	given	other

processes	while	the	job	step
executes.

SQLDMORunPri_Unknown 100 Value	is	invalid.

Remarks
Set	the	OSRunPriority	property	to	alter	execution	thread	scheduling	for	job
steps	executing	operating	system	commands.	The	property	specifies	a	thread
priority	relative	to	that	granted	to	an	instance	of	Microsoft®	SQL	Server™	2000.

CAUTION		Setting	operating	system	thread	priority	can	have	adverse	effects	on
other	processes	running	on	the	server.	Care	should	be	taken	when	specifying
priorities	above	normal	(SQLDMORunPri_Min).

SQL-DMO

OutcomeTypes	Property
The	OutcomeTypes	property	controls	job	history	filtering	by	completion	status
of	a	job.

Applies	To

JobHistoryFilter	Object 	

Syntax
object.OutcomeTypes	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	job	completion	status	as	described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetOutcomeTypes(
SQLDMO_JOBOUTCOME_TYPE*	pRetVal);

HRESULT	SetOutcomeTypes(
SQLDMO_JOBOUTCOME_TYPE	NewValue);

Settings

Constant Value Description
SQLDMOJobOutcome_Cancelled 3 Execution	canceled	by	user

action.
SQLDMOJobOutcome_Failed 0 Execution	failed.
SQLDMOJobOutcome_InProgress 4 Job	or	job	step	is	executing.
SQLDMOJobOutcome_Succeeded 1 Execution	succeeded.
SQLDMOJobOutcome_Unknown 5 Unable	to	determine	execution

state.

SQL-DMO

OutputFileName	Property
The	OutputFileName	property	identifies	an	operating	system	file	that	records
job	step	result	message	text.

Applies	To

JobStep	Object 	

Syntax
object.OutputFileName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	expression	that	identifies	an	operating	system	file	by	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetOutputFileName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetOutputFileName(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
SQL	Server	Agent	can	capture	result	message	text	for	job	steps	built	for	the
subsystems	CmdExec,	TSQL,	and	ActiveScripting.

Set	OutputFileName	to	start	recording	result	message	text	to	the	file	indicated
by	the	property.	Set	OutputFileName	to	an	empty	string	to	stop	recording.

SQL-DMO

Owner	Property	(Database,	UserDefinedFunction)
The	Owner	property	exposes	the	Microsoft®	SQL	Server™	2000	user-assigned
ownership	rights	to	the	referenced	SQL	Server	element.

Applies	To

Database	Object UserDefinedFunction	Object

Syntax
object.Owner

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetOwner(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	by	using	SysFreeString.

Remarks

SQL	Server	establishes	ownership	rules	for	databases.	Some	permissions	default
to	a	database	owner,	and	ownership	forms	one	portion	of	SQL	Server	access
control.

SQL	Server	database	ownership	can	be	changed	using	the	SetOwner	method	of
the	Database	object.

See	Also

SetOwner	Method

SQL-DMO

Owner	Property	(Database	Objects)
The	Owner	property	exposes	the	Microsoft®	SQL	Server™	2000	user-assigned
ownership	rights	to	the	referenced	SQL	Server	element.

Applies	To

DBObject	Object StoredProcedure	Object
Default	Object Table	Object
ReplicationStoredProcedure	Object Trigger	Object
ReplicationTable	Object UserDefinedDatatype	Object
Rule	Object View	Object

Syntax
object.Owner	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	a	database	user	by	name

Data	Type
String

Modifiable
Read-only	for	the	DBObject,	ReplicationStoredProcedure,	ReplicationTable,
and	UserDefinedDatatype	objects.	Read/write	for	all	other	objects.

Prototype	(C/C++)
HRESULT	GetOwner(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetOwner(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
SQL	Server	establishes	ownership	rules	for	database	objects.	Some	permissions
default	to	an	object	owner,	and	ownership	forms	one	portion	of	SQL	Server
access	control.

For	SQL	Server	database	objects,	an	owner	also	forms	part	of	the	identifier
naming	the	object.	For	example,	Northwind.andrewf.Employees	identifies	a
table	owned	by	the	database	user	andrewf.

Set	the	Owner	property	to	change	database	object	ownership.	The	value	must
reference	an	existing	SQL	Server	database	user.	Permission	to	change	ownership
defaults	to	members	of	the	db_owner	role,	but	users	who	are	members	of	both
the	db_ddladmin	and	db_securityadmin	roles	can	also	set	the	property.

SQL-DMO

Owner	Property	(Job,	JobFilter)
The	Owner	property	exposes	the	Microsoft®	SQL	Server™	2000	user-assigned
ownership	rights	to	the	referenced	SQL	Server	element.

Applies	To

Job	Object JobFilter	Object

Syntax
object.Owner	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	a	database	user	by	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetOwner(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetOwner(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
SQL	Server	establishes	ownership	rules	for	agent	jobs.	Some	permissions	default
to	a	job	owner,	and	ownership	forms	one	portion	of	SQL	Server	access	control.

Set	the	Owner	property	of	a	Job	object	to	change	ownership	for	the	referenced
job.	The	value	must	specify	an	existing	SQL	Server	database	user.	Permission	to
change	job	ownership	defaults	to	members	of	the	sysadmin	group.

Set	the	Owner	property	of	the	JobFilter	object	to	list	jobs	based	on	assigned
owner.	Set	the	Owner	property	of	the	JobFilter	to	an	empty	string	to
discontinue	listing	based	on	ownership.

SQL-DMO

P

SQL-DMO

PageLevel	Property
The	PageLevel	property	controls	Microsoft®	SQL	Server™	2000	Agent
operator	page	notification	on	job	completion.

Applies	To

Job	Object

Syntax
object.PageLevel	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	completion	status	as	described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetPageLevel(SQLDMO_COMPLETION_TYPE*	pRetVal);

HRESULT	SetPageLevel(SQLDMO_COMPLETION_TYPE	NewValue);

Settings

Constant Value Description
SQLDMOComp_All 6 Page	operator	regardless	of	success	or

failure.
SQLDMOComp_Always 3 Page	operator	regardless	of	success	or

failure.
SQLDMOComp_Failure 2 Page	operator	when	job	fails	to

complete	successfully.
SQLDMOComp_None 0 Ignore	any	completion	status.	Do	not

page	operator.
SQLDMOComp_Success 1 Page	operator	on	successful

completion.
SQLDMOComp_Unknown 4096 Invalid	value.

Remarks
SQL	Server	Agent	can	send	notification	of	job	completion	using	e-mail,	network
pop-up	message,	or	pager.

To	enable	a	job	for	pager	notification

1.	 Set	the	OperatorToPage	property	to	the	name	of	an	existing	SQL
Server	Agent	operator.

2.	 Set	the	PageLevel	property	to	control	Microsoft	SQL	Server	network
pop-up	message	notification	based	on	job	completion.

See	Also

OperatorToPage	Property

SQL-DMO

PagerAddress	Property
The	PagerAddress	property	specifies	an	e-mail	address	used	to	route
Microsoft®	SQL	Server™	Agent	operator	notification.

Applies	To

Operator	Object

Syntax
object.PagerAddress	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	an	e-mail	address

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetPagerAddress(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetPagerAddress(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
SQL	Server	Agent	can	dispatch	notification	to	operators	using	an	e-mail	client.
Third-party	software	and	hardware	can	convert	e-mail	into	an	electronic	page.

Indicate	the	operator	paging	address	in	the	PagerAddress	property	to	configure
an	operator	for	receipt	of	notification	by	pager.	Set	the	PagerAddress	property
to	an	empty	string	to	stop	notification	by	pager.	Use	the	PagerDays	property,
and	related	properties	setting	available	hours,	to	control	SQL	Server	Agent
notification	attempts	for	the	referenced	operator.

See	Also

PagerDays	Property

SundayPagerStartTime	Property

SaturdayPagerEndTime	Property

WeekdayPagerEndTime	Property

SaturdayPagerStartTime	Property

WeekdayPagerStartTime	Property

SundayPagerEndTime	Property

SQL-DMO

PagerCCTemplate	Property
The	PagerCCTemplate	property	specifies	text	used	to	build	the	Cc:	line	of	an	e-
mail	message	implementing	pager	notification	for	all	Microsoft®	SQL	Server™
2000	operators.

Applies	To

AlertSystem	Object

Syntax
object.PagerCCTemplate	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetPagerCCTemplate(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetPagerCCTemplate(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
In	the	template,	SQL	Server	Agent	replaces	the	character	string	<#A#>	with	the
pager	address	of	a	notified	operator.	Set	the	operator	pager	address	using	the
PagerAddress	property.

See	Also

PagerAddress	Property

SQL-DMO

PagerDays	Property
The	PagerDays	property	specifies	the	days	of	the	week	on	which	Microsoft®
SQL	Server™	2000	Agent	attempts	to	notify	the	referenced	operator	by	page.

Applies	To

Operator	Object

Syntax
object.PagerDays	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Bit-packed	long	integer	value	that	specifies	days	of	the	week	as	described	in
Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetPagerDays(SQLDMO_WEEKDAY_TYPE*	pRetVal);

HRESULT	SetPagerDays(SQLDMO_WEEKDAY_TYPE	NewValue);

Settings

Constant Value Description
SQLDMOWeek_EveryDay 127 Operator	will	be	paged	on	all	days.
SQLDMOWeek_Friday 32 Operator	will	be	paged	on	Friday.
SQLDMOWeek_Monday 2 Operator	will	be	paged	on	Monday.
SQLDMOWeek_Saturday 64 Operator	will	be	paged	on	Saturday.
SQLDMOWeek_Sunday 1 Operator	will	be	paged	on	Sunday.
SQLDMOWeek_Thursday 16 Operator	will	be	paged	on	Thursday.
SQLDMOWeek_Tuesday 4 Operator	will	be	paged	on	Tuesday.
SQLDMOWeek_Unknown 0 No	assignment	has	been	made	for	the

referenced	operator.
SQLDMOWeek_Wednesday 8 Operator	will	be	paged	on

Wednesday.
SQLDMOWeek_WeekDays 62 Operator	will	be	paged	on	Monday,

Tuesday,	Wednesday,	Thursday,	and
Friday.

SQLDMOWeek_WeekEnds 65 Operator	will	be	paged	on	Saturday
and	Sunday.

Remarks
Combine	individual	values	using	an	OR	logical	operator	to	assign	page
notification	to	more	than	a	single	day.

Configure	an	operator	for	pager	notification	using	the	PagerAddress	property.
Configure	operator	availability	for	pager	notification	using	the	page	start	and
stop	time	properties.

See	Also

PagerAddress	Property

SundayPagerStartTime	Property

SaturdayPagerEndTime	Property

WeekdayPagerEndTime	Property

SaturdayPagerStartTime	Property

WeekdayPagerStartTime	Property

SundayPagerEndTime	Property

SQL-DMO

PagerSendSubjectOnly	Property
The	PagerSendSubjectOnly	property	controls	message	text	sent	when
Microsoft®	SQL	Server™	2000	Agent	attempts	to	notify	an	operator	by	page.

Applies	To

AlertSystem	Object

Syntax
object.PagerSendSubjectOnly	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetPagerSendSubjectOnly(LPBOOL	pRetVal);

HRESULT	SetPagerSendSubjectOnly(BOOL	NewValue);

Remarks
If	TRUE,	only	the	subject	line	is	filled	in	on	e-mail	sent	by	SQL	Server	Agent
for	pager	notifications.

If	FALSE,	the	e-mail	subject	line	and	message	text	fields	are	used	to	construct
notification	messages	sent	by	SQL	Server	Agent.	The	default	is	FALSE.

E-mail	message	body	text	varies	in	complexity	depending	on	the	cause	(raised
alert	or	job	completion)	of	the	notification.

SQL-DMO

PagerSubjectTemplate	Property
The	PagerSubjectTemplate	property	specifies	text	used	to	build	the	subject	line
of	an	e-mail	message	implementing	pager	notification	for	all	Microsoft®	SQL
Server™	2000	operators.

Applies	To

AlertSystem	Object

Syntax
object.PagerSubjectTemplate	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetPagerSubjectTemplate(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetPagerSubjectTemplate(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
If	not	assigned,	SQL	Server	Agent	builds	an	e-mail	message,	using	the	alert
subject	text	to	fill	the	subject	line.

For	notifications	sent	due	to	a	raised	alert,	the	subject	line	is	built	as:	"SQL
Server	Alert	System:	'alert	name'	occurred	on	\\server",	where	alert	name	is	the
name	of	the	alert	and	server	is	the	network	SQL	Server	name	raising	the	alert.

For	notifications	sent	due	to	job	completion,	the	subject	line	is	built	as:	"SQL
Server	Job	System:	'job	name'	completed	on	\\server"	where	job	name	is	the
name	of	the	job	completing	and	server	is	the	network	SQL	Server	name	on
which	the	job	was	run.

In	the	template,	SQL	Server	Agent	replaces	the	character	string	<#S#>	with	the
error	message	text	of	an	alert.

SQL-DMO

PagerToTemplate	Property
The	PagerToTemplate	property	specifies	text	used	to	build	the	To:	address	line
of	an	e-mail	message	implementing	pager	notification	for	all	Microsoft®	SQL
Server™	2000	operators.

Applies	To

AlertSystem	Object

Syntax
object.PagerToTemplate	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetPagerToTemplate(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetPagerToTemplate(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
In	the	template,	SQL	Server	Agent	replaces	the	character	string	<#A#>	with	the
pager	address	of	a	notified	operator.	Set	the	operator	pager	address	using	the
PagerAddress	property.

SQL-DMO

Parent	Property
The	Parent	property	returns	the	SQL-DMO	object	owning	the	referenced	SQL-
DMO	object.

Applies	To
All	objects

Syntax
object.Parent

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Object

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetParent(LPSQLDMOSTDOBJECT*	ppParent);

Note		A	C/C++	application	obtains	a	reference	on	the	parent	object.	The
application	must	release	its	reference	using	the	IUnknown::Release	function.

SQL-DMO

Password	Property
The	Password	property	indicates	a	password	for	a	Microsoft®	SQL	Server™
2000	login	record.

Applies	To

Backup2	Object Restore2	Object
DatabaseRole	Object SQLServer	Object
RegisteredServer	Object 	

Syntax
object.Password	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	contains	the	password

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetPassword(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetPassword(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
Use	the	Password	property	of	the	DatabaseRole	object	to	set	the	password	for
an	application	role.	For	more	information	about	security	based	on	application
roles,	see	Establishing	Application	Security	and	Application	Roles.

For	the	RegisteredServer	object,	the	Password	property	provides	the	password
used	when	a	connection	is	made	using	the	default	login.

For	the	SQLServer	object,	the	Password	property	provides	the	password	used
for	a	connection	made	with	SQL	Server	Authentication.

For	the	Backup2	and	Restore2	objects,	the	Password	property	provides	the
password	used	for	a	backup	set.	Password	can	be	used	in	conjunction	with	the
MediaPassword	property,	which	provides	the	password	for	a	media	set.	For
more	information,	see	MediaPassword	Property.

Note		The	recommended	method	for	connecting	to	an	instance	of	SQL	Server
2000	is	to	use	Windows	Authentication	mode.

Note		If	an	application	calls	Password	on	an	instance	of	SQL	Server	version	7.0
or	earlier	with	the	Backup2	or	Restore2	objects,	the	settings	are	ignored.

JavaScript:hhobj_1.Click()

SQL-DMO

PendingInstructions	Property
The	PendingInstructions	property	returns	a	count	of	Microsoft®	SQL	Server™
2000	Agent	target	server	(TSX)	maintenance	tasks	awaiting	download	by	the
target	server.

Applies	To

TargetServer	Object

Syntax
object.PendingInstructions

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetPendingInstructions(LPLONG	pRetVal);

Remarks
An	instance	of	Microsoft	SQL	Server	acting	as	the	master	server	(MSX)	for
multiserver	administration	initiates	tasks	that	create,	modify,	and	delete	jobs	and

job	steps	for	target	servers.	Other	tasks	start	or	stop	executing	jobs,	coordinate
polling,	and	so	on.	A	TSX	polls	its	MSX,	retrieving	and	performing	the	tasks
posted.

Due	to	polling,	there	is	a	lag	between	MSX	task	assignment	and	its
implementation	by	the	target	server.	For	example,	an	MSX	could	delete	a	job
step	within	a	multiserver	job.	When	the	TSX	polls,	it	retrieves	the	task,	an
instruction	to	delete	the	job	step,	and	the	MSX	is	altered,	indicating	that	the
pending	instruction	has	been	retrieved.

SQL-DMO

PercentCompleteNotification	Property
The	PercentCompleteNotification	property	configures	a	Backup	or	Restore
object,	setting	the	interval	for	PercentComplete	event	handler	calls.

Applies	To

Backup	Object Restore	Object

Syntax
object.PercentCompleteNotification	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Positive,	long	integer	value	from	1	through	100

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetPercentCompleteNotification(LPLONG	pRetVal);

HRESULT	SetPercentCompleteNotification(long	NewValue);

Remarks
The	default	is	10,	and	PercentComplete	event	handlers	are	called	for	every	10
percent	of	the	task	completed.

SQL-DMO

PerfMonMode	Property
The	PerfMonMode	property	controls	Windows	Performance	Monitor	polling
behavior	when	the	monitor	is	started.

Applies	To

Registry	Object

Syntax
object.PerfMonMode	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	Windows	Performance	Monitor	polling	behavior
as	described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetPerfMonMode(SQLDMO_PERFMON_TYPE*	pRetVal);

HRESULT	SetPerfMonMode(SQLDMO_PERFMON_TYPE	NewValue);

Settings

Constant Value Description
SQLDMOPerfmon_Continuous 0 Configures	Windows

Performance	Monitor	statistics
polling	using	the	operating
system	default	time	slice.

SQLDMOPerfmon_None 1000 Invalid	value.
SQLDMOPerfmon_OnDemand 1 Windows	Performance	Monitor

polls	for	statistics	when	directed
to	do	so	by	the	user.

Remarks
The	PerfMonMode	property	determines	polling	behavior	as	Windows
Performance	Monitor	is	started.	Windows	Performance	Monitor	polling	behavior
can	be	changed	in	Windows	Performance	Monitor	when	the	application	has
successfully	started.

SQL-DMO

PerformanceCondition	Property
The	PerformanceCondition	property	specifies	a	Microsoft	Windows
Performance	Monitor	counter,	a	comparison	operator	and	value,	and	enables
raising	a	Microsoft®	SQL	Server™	2000	Agent	alert	based	on	system	activity.

Applies	To

Alert	Object

Syntax
object.PerformanceCondition	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	a	Windows	Performance	Monitor	object,	counter,	and
instance	as	described	in	Remarks

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetPerformanceCondition(SQLDMO_LPBSTR	pRetVal)

HRESULT	SetPerformanceCondition(SQLDMO_LPCSTR	NewValue)

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
When	setting	the	PerformanceCondition	property,	value	uses	the	syntax:

ObjectName|CounterName|Instance|ComparisonOp|CompValue

Part Description
ObjectName Name	of	a	monitored	Microsoft	SQL	Server

object
CounterName Name	of	a	counter	exposed	by	the	object
Instance Name	of	an	instance	of	the	counter
ComparisonOp One	of	the	relational	operators	=,	>,	or	<
CompValue Numeric	value	compared

For	example,	to	create	an	alert	raised	when	the	average	wait	time	for	an	extent
lock	rises	above	1	second	(1,000	milliseconds),	set	the	PerformanceCondition
property	using	the	string:

SQLServer:Locks|Average	Wait	Time	(ms)|Extent|>|1000

Many	SQL	Server	Performance	Monitor	counters	do	not	define	instance
parameters.	When	an	instance	parameter	is	not	applicable,	indicate	that	no
instance	is	selected	using	an	empty	Instance	part	in	the	value	string,	as	in:

SQLServer:Access	Methods|Page	Splits/sec||>|50

For	more	information	about	SQL	Server	objects	exposing	Performance	Monitor
counters,	see	Using	SQL	Server	Objects.

JavaScript:hhobj_1.Click()

SQL-DMO

Permissions	Property
The	Permissions	property	returns	the	database	permissions	for	the	current
connection.

Applies	To

Database	Object

Syntax
object.Permissions

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long,	enumerated

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetPermissions(SQLDMO_PRIVILEGE_TYPE*	pRetVal);

Returns
The	return	value	is	a	bit-packed	long	integer,	interpreted	using	this	information.

Constant Value Description

SQLDMOPriv_AllDatabasePrivs 130944 All	database	permissions.
SQLDMOPriv_AllObjectPrivs 63 All	applicable	object

permissions.
SQLDMOPriv_CreateDatabase 256 Can	create	and	own	databases.
SQLDMOPriv_CreateDefault 4096 Can	create	DEFAULT	objects.
SQLDMOPriv_CreateFunction 65366 Can	create	and	own

UserDefinedFunction	objects.
SQLDMOPriv_CreateProcedure 1024 Can	create	and	own

StoredProcedure	objects.
SQLDMOPriv_CreateRule 16384 Can	create	rules.
SQLDMOPriv_CreateTable 128 Can	create	and	own	base	tables.
SQLDMOPriv_CreateView 512 Can	create	and	own	view	tables.
SQLDMOPriv_Delete 8 Can	delete	rows	in	a	referenced

table.
SQLDMOPriv_DumpDatabase 2048 Can	back	up	a	database.
SQLDMOPriv_DumpTable 32768 Can	back	up	a	referenced	table.
SQLDMOPriv_DumpTransaction 8192 Can	back	up	a	database

transaction	log.
SQLDMOPriv_Execute 16 Can	execute	a	referenced	stored

procedure.
SQLDMOPriv_Insert 2 Can	add	rows	to	a	referenced

table.
SQLDMOPriv_References 32 Can	grant	DRI	on	a	referenced

table.
SQLDMOPriv_Select 1 Can	query	a	referenced	table.
SQLDMOPriv_Unknown 0 No	permissions	granted	or

unable	to	determine
permissions	on	the	referenced
database	or	database	object.

SQLDMOPriv_Update 4 Can	change	row	data	in	a
referenced	table.

Remarks

Configure	database	permissions	using	the	Grant,	Revoke,	and	Deny	methods.

See	Also

Deny	Method	(Database)

Revoke	Method	(Database)

Grant	Method	(Database)

SQL-DMO

PersistFlags	Property
The	PersistFlags	property	is	reserved	for	future	use.

Applies	To

RegisteredServer	Object

Syntax
object.PersistFlags	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Reserved

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetPersistFlags(LPLONG	pRetVal);

HRESULT	SetPersistFlags(long	NewValue);

SQL-DMO

PhysicalDatatype	Property
The	PhysicalDatatype	property	returns	the	name	of	the	base	data	type	for	the
referenced	column.

Applies	To

Column	Object

Syntax
object.PhysicalDatatype

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetPhysicalDatatype(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

For	a	Microsoft®	SQL	Server™	2000	column	created	using	a	base	data	type,	the
referencing	Column	object	Datatype	and	PhysicalDatatype	properties	have
identical	values.	For	a	SQL	Server	column	created	using	a	user-defined	data
type,	the	referencing	Column	object	Datatype	property	returns	the	name	of	the
user-defined	data	type.	The	PhysicalDatatype	property	reports	the	SQL	Server
base	data	type.

SQL-DMO

PhysicalLocation	Property
The	PhysicalLocation	property	specifies	an	operating	system	name	that
identifies	a	backup	device.

Applies	To

BackupDevice	Object

Syntax
object.PhysicalLocation	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	an	operating	system	file	or	tape	device

Data	Type
String

Modifiable
Read/write	before	device	creation.	Read-only	when	referencing	an	existing
backup	device.

Prototype	(C/C++)
HRESULT	GetPhysicalLocation(SQLDMO_LPBSTR	pRetVal)

HRESULT	SetPhysicalLocation(SQLDMO_LPCSTR	NewValue)

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	PhysicalLocation	property	is	a	string	with	a	maximum	of	260	characters.

Specify	an	operating	system	file	or	tape	using	a	UNC	string.	For	example,	the
string	\\Seattle1\Backups\Northwind.bak	specifies	a	server	name,	directory,	and
file	name	for	a	backup	device.	The	string	\\.\TAPE0	specifies	a	server	and	a	file
device,	most	likely	a	tape,	as	a	backup	device.

SQL-DMO

PhysicalMemory	Property
The	PhysicalMemory	property	returns	the	total	RAM	installed,	in	megabytes,
on	an	instance	of	Microsoft®	SQL	Server™	2000.

Applies	To

Registry	Object

Syntax
object.PhysicalMemory

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetPhysicalMemory(LPLONG	pRetVal);

Remarks
The	PhysicalMemory	value	does	not	include	swap	space	allocated	by	the
operating	system.

SQL-DMO

PhysicalName	Property
The	PhysicalName	property	specifies	the	path	and	file	name	of	the	operating
system	file	storing	Microsoft®	SQL	Server™	database	or	transaction	log	data.

Applies	To

DBFile	Object LogFile	Object

Syntax
object.PhysicalName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	an	operating	system	file

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetPhysicalName(SQLDMO_LPBSTR	pRetVal)

HRESULT	SetPhysicalName(SQLDMO_LPCSTR	NewValue)

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	reference	must	release	the
reference	using	SysFreeString.

Remarks
The	PhysicalName	property	is	a	string	with	a	maximum	of	260	characters.

Specify	an	operating	system	file	using	either	drive	and	directory-based	or	UNC
file	naming.	For	example,	the	strings	C:\Program	Files\Microsoft	SQL
Server\Data\Northwnd.mdf	and	\\Seattle1\Program	Files\Microsoft	SQL
Server\Data\Northwnd.mdf	are	each	valid	for	PhysicalName.

SQL-DMO

PID	Property
The	PID	property	retrieves	the	Microsoft®	SQL	Server™	2000	process
identification.

Applies	To

SQLServer2	Object

Syntax
object.PID

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetPID(LPLONG	plPID);

Remarks
An	application	uses	the	PID	property	to	determine	the	process	identification	of	a
specific	instance	of	SQL	Server.

Note		If	an	application	calls	PID	on	an	instance	of	SQL	Server	version	7.0,	zero

is	returned.

SQL-DMO

Pipes	Property
The	Pipes	property	specifies	one	or	more	named	pipes	used	as	a	database
backup	target	or	restore	source.

Applies	To

Backup	Object Restore	Object

Syntax
object.Pipes	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

SQL-DMO	multistring	that	specifies	one	or	more	named	pipes	by	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetPipes(SQLDMO_LPBSTR	pRetVal)

HRESULT	SetPipes(SQLDMO_LPCSTR	NewValue)

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	reference	must	release	the
reference	using	SysFreeString.

Remarks
The	backup	medium	for	a	backup	or	restore	operation	is	specified	using	either
the	Devices,	Files,	Pipes,	or	Tapes	properties.	Only	one	medium	type	can	be
specified	for	any	backup	or	restore	operation,	but	multiple	media	may	be
specified.

Set	the	Pipes	property	to	specify	one	or	more	named	pipes	as	the	backup
medium.	Specify	more	than	a	single	named	pipe	to	stripe	the	backup	operation
or	to	restore	from	a	striped	backup	set.	For	more	information,	see	Using	Multiple
Media	or	Devices.

For	more	information	about	setting	multistring	parameters,	see	Using	SQL-
DMO	Multistrings.

See	Also

Devices	Property

Tapes	Property

Files	Property

JavaScript:hhobj_1.Click()

SQL-DMO

PollingInterval	Property
The	PollingInterval	property	returns	the	number	of	seconds	a	target	server
(TSX)	will	wait	before	polling	its	master	server	(MSX)	server	for	newly	posted
instructions.

Applies	To

TargetServer	Object

Syntax
object.PollingInterval

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetPollingInterval(LPLONG	pRetVal);

Remarks
The	TSX	polling	interval	is	set	using	a	Transact-SQL	statement	or	Microsoft®
SQL	Server™	2000	Enterprise	Manager.

See	Also

Running	Jobs

JavaScript:hhobj_1.Click()

SQL-DMO

PopulateCompletionAge	Property
The	PopulateCompletionAge	property	returns	the	number	of	seconds	between
the	time	of	the	most	recent,	successful	Microsoft	Search	full-text	catalog
population	and	a	system-defined	date	and	time.

Applies	To

FullTextCatalog	Object

Syntax
object.PopulateCompletionAge

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetPopulateCompletionAge(LPLONG	pRetVal)

Remarks
For	the	PopulateCompletionAge	property,	a	value	of	zero	represents	the	base
date	and	time,	12:00:00	A.M.,	January	1,	1990.

SQL-DMO

PopulateCompletionDate	Property
The	PopulateCompletionDate	property	returns	the	most	recent	date	and	time	at
which	an	update	was	made	to	the	referenced	Microsoft	Search	full-text	catalog.

Applies	To

FullTextCatalog	Object

Syntax
object.PopulateCompletionDate

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetPopulateCompletionDate(SQLDMO_LPBSTR	pRetVal)

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	reference	must	release	the
reference	using	SysFreeString.

Remarks

The	date	and	time	are	returned	as	a	character	string,	formatted	using	the	locale
setting	for	the	client	running	the	SQL-DMO	application.

SQL-DMO

PopulateStatus	Property
The	PopulateStatus	property	returns	the	population	state	of	a	Microsoft	Search
full-text	catalog.

Applies	To

FullTextCatalog	Object

Syntax
object.PopulateStatus

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long,	enumerated

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetPopulateStatus(
SQLDMO_FULLTEXTSTATUS_TYPE*	pRetVal);

Returns
The	PopulateStatus	value	is	interpreted	with	the	following	information.

Constant Value Description
SQLDMOFullText_CrawlinProgress 1 Full-text	index	population	is	in

progress	for	the	referenced	full-
text	catalog.

SQLDMOFullText_DiskFullPause 8 Lack	of	available	disk	space
has	caused	an	interruption.

SQLDMOFullText_Idle 0 No	action	is	performed	against
the	referenced	full-text	catalog.

SQLDMOFullText_Incremental 6 Incremental	index	population	is
in	progress	for	the	referenced
full-text	catalog.

SQLDMOFullText_Notification 9 Full-text	catalog	is	processing
notifications.

SQLDMOFullText_Paused 2 Lack	of	available	resource,
such	as	disk	space,	has	caused
an	interruption.

SQLDMOFullText_Recovering 4 Interrupted	population	on	the
referenced	full-text	catalog	is
resuming.

SQLDMOFullText_Shutdown 5 The	referenced	full-text	catalog
is	being	deleted	or	not
otherwise	accessible.

SQLDMOFullText_Throttled 3 Search	service	has	paused	the
referenced	full-text	index
population.

SQLDMOFullText_UpdatingIndex 7 Referenced	full-text	catalog	is
being	assembled	by	the	Search
service.	Assemblage	is	the	final
step	in	full-text	catalog
population.

Note		The	SQLDMOFullText_Incremental	constant	is	only	supported	on	an
instance	of	Microsoft®	SQL	Server™	version	7.0.

SQL-DMO

PostSnapshotScript	Property
The	PostSnapshotScript	property	specifies	the	complete	path	and	file	name	of	a
Transact-SQL	script	that	runs	after	an	initial	snapshot	is	applied	to	a	Subscriber.

Applies	To

MergePublication2	Object TransPublication2	Object

Syntax
object.PostSnapshotScript	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	the	complete	path	and	file	name	of	the	Transact-SQL
script

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetPostSnapshotScript(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetPostSnapshotScript(SQLDMO_LPCSTR	NewValue);

Remarks
Running	Transact-SQL	scripts	after	an	initial	snapshot	is	applied	can	be	used	to:

Set	up	reporting	environments	that	depend	on	stored	procedures.

Create	custom	views.

Create	user-defined	functions.

Note		If	PostSnapshotScript	is	set,	the	script	automatically	runs	when	a
subscription	is	reinitialized.	Therefore,	the	script	must	be	written	so	that	its
statements	are	repeatable.

If	an	application	sets	PostSnapshotScript	after	the	initial	snapshot	has	been
created,	a	new	snapshot	must	be	generated.	Snapshots	are	applied	when	the
next	scheduled	snapshot	agent	runs.

You	can	also	run	Transact-SQL	scripts	during	a	replication	operation	using	the
ReplicateUserDefinedScript	method.

Note		If	an	application	calls	PostSnapshotScript	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

Executing	Scripts	Before	and	After	the	Snapshot	is	Applied

PreSnapshotScript	Property

ReplicateUserDefinedScript	Method

JavaScript:hhobj_1.Click()

SQL-DMO

PreCreationMethod	Property
The	PreCreationMethod	property	controls	Subscriber	replication	object
changes	when	article	synchronization	occurs.

Applies	To

MergeArticle	Object TransArticle	Object

Syntax
object.PreCreationMethod	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	row	modifying	action	at	the	Subscriber	as
described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetPreCreationMethod(
SQLDMO_PREARTICLE_TYPE*	pRetVal);

HRESULT	SetPreCreationMethod(

SQLDMO_PREARTICLE_TYPE	NewValue);

Settings

Constant Value Description
SQLDMOPreArt_DeleteRows 2 Perform	a	logged	delete	prior	to

synchronization.
SQLDMOPreArt_DropTable 1 Drop	and	recreate	table	to

synchronize.
SQLDMOPreArt_None 0 Do	nothing	prior	to

synchronization.
SQLDMOPreArt_TruncateTable 3 Perform	a	bulk-logged	delete

prior	to	synchronization.

Remarks
If	an	application	sets	PreCreationMethod	after	the	initial	snapshot	has	been
created,	a	new	snapshot	must	be	generated	and	reapplied	to	each	subscription.
Snapshots	are	applied	when	the	next	scheduled	snapshot	and	distribution	or
merge	agent	run.

SQL-DMO

PreSnapshotScript	Property
The	PreSnapshotScript	property	specifies	the	complete	path	and	file	name	of	a
Transact-SQL	script	that	runs	before	an	initial	snapshot	is	applied	to	a
Subscriber.

Applies	To

MergePublication2	Object TransPublication2	Object

Syntax
object.PreSnapshotScript	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	the	complete	path	and	file	name	of	the	Transact-SQL
script

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetPreSnapshotScript(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetPreSnapshotScript(SQLDMO_LPCSTR	NewValue);

Remarks
Running	Transact-SQL	scripts	before	an	initial	snapshot	is	applied	can	be	used
to:

Perform	pre-snapshot	cleanup.

Add	users	and	permissions	to	databases	to	be	replicated.

Create	user-defined	data	types.

Note		If	PreSnapshotScript	is	set,	the	script	automatically	runs	when	a
subscription	is	reinitialized.	Therefore,	the	script	must	be	written	so	that	its
statements	are	repeatable.

If	an	application	sets	PreSnapshotScript	after	the	initial	snapshot	has	been
created,	a	new	snapshot	must	be	generated.	Snapshots	are	applied	when	the
next	scheduled	snapshot	agent	runs.

You	can	also	run	Transact-SQL	scripts	during	a	replication	operation	using	the
ReplicateUserDefinedScript	method.

Note		If	an	application	calls	PreSnapshotScript	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

Executing	Scripts	Before	and	After	the	Snapshot	is	Applied

PostSnapshotScript	Property

ReplicateUserDefinedScript	Method

JavaScript:hhobj_1.Click()

SQL-DMO

PrimaryFile	Property
The	PrimaryFile	property	identifies	the	operating	system	file	that	maintains
database-specific	system	tables.

Applies	To

DBFile	Object

Syntax
object.PrimaryFile	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Remarks
A	Microsoft®	SQL	Server™	2000	database	can	have,	at	most,	one	primary	file.
When	creating	a	database	using	SQL-DMO,	the	first	DBFile	object	named
PRIMARY	added	to	the	DBFiles	collection	of	the	FileGroup	object	referencing
the	filegroup	becomes	the	primary	file.	Set	the	PrimaryFile	property	to	alter	the
default	behavior.

Data	Type
Boolean

Modifiable

Read/write	prior	to	database	creation.	Read-only	after	database	creation.

Prototype	(C/C++)
HRESULT	GetPrimaryFile(LPBOOL	pRetVal);

HRESULT	SetPrimaryFile(BOOL	NewValue);

Remarks
Running	Transact-SQL	scripts	before	an	initial	snapshot	is	applied	can	be	used
to:

Perform	pre-snapshot	cleanup.

Add	users	and	permissions	to	databases	to	be	replicated.

Create	user-defined	data	types.

Note		If	PreSnapshotScript	is	set,	the	script	automatically	runs	when	a
subscription	is	reinitialized.	Therefore,	the	script	must	be	written	so	that
its	statements	are	repeatable.

SQL-DMO

PrimaryFilePath	Property
The	PrimaryFilePath	property	returns	the	path	and	name	of	the	operating
system	(OS)	directory	that	contains	the	primary	file	for	the	referenced	database.

Applies	To

Database	Object

Syntax
object.PrimaryFilePath

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetPrimaryFilePath(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

Microsoft®	SQL	Server™	implements	database	data	storage	in	one	or	more	OS
files.	One	operating	system	file	is	designated	as	the	primary	file	containing
database-specific	system	tables.	The	primary	file	can	be	identified	using	the
PrimaryFile	property	of	the	DBFile	object.

SQL-DMO

Priority	Property
The	Priority	property	specifies	the	weighting	given	to	resolve	conflicts	when
more	than	one	change	occurs	in	replicated	data.

Applies	To

MergePublication	Object MergeSubscription	Object
MergePullSubscription	Object 	

Syntax
object.Priority	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Approximate	numeric	value

Data	Type
Float

Modifiable
Read-only	for	a	MergePublication	object.	Read/write	for	merge	replication
subscription	objects.

Prototype	(C/C++)
HRESULT	GetPriority(float*	pRetVal);

HRESULT	SetPriority(float	NewValue);

SQL-DMO

PrivilegeType	Property
The	PrivilegeType	property	returns	the	permissions	granted	to	an	authorized
user	or	role	on	a	specific	database	or	database	object.

Applies	To

Permission	Object

Syntax
object.PrivilegeType

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long,	enumerated

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetPrivilegeType(SQLDMO_PRIVILEGE_TYPE*	pRetVal);

Returns
The	PrivilegeType	property	is	interpreted	using	this	information.

Constant Value Description

SQLDMOPriv_AllDatabasePrivs 130944 All	database	permissions.
SQLDMOPriv_AllObjectPrivs 63 All	applicable	object

permissions.
SQLDMOPriv_CreateDatabase 256 Can	create	and	own	databases.
SQLDMOPriv_CreateDefault 4096 Can	create	DEFAULT	objects.
SQLDMOPriv_CreateFunction 65366 Can	create	and	own

UserDefinedFunction	objects.
SQLDMOPriv_CreateProcedure 1024 Can	create	and	own

StoredProcedure	objects.
SQLDMOPriv_CreateRule 16384 Can	create	rules.
SQLDMOPriv_CreateTable 128 Can	create	and	own	base	tables.
SQLDMOPriv_CreateView 512 Can	create	and	own	view

tables.
SQLDMOPriv_Delete 8 Can	delete	rows	in	a	referenced

table.
SQLDMOPriv_DumpDatabase 2048 Can	back	up	a	database.
SQLDMOPriv_DumpTable 32768 Can	back	up	a	referenced	table.
SQLDMOPriv_DumpTransaction 8192 Can	back	up	a	database

transaction	log.
SQLDMOPriv_Execute 16 Can	execute	a	referenced	stored

procedure.
SQLDMOPriv_Insert 2 Can	add	rows	to	a	referenced

table.
SQLDMOPriv_References 32 Can	grant	DRI	on	a	referenced

table.
SQLDMOPriv_Select 1 Can	query	a	referenced	table.
SQLDMOPriv_Unknown 0 No	permissions	granted	or

unable	to	determine
permissions	on	the	referenced
database	or	database	object.

SQLDMOPriv_Update 4 Can	change	row	data	in	a
referenced	table.

Remarks
A	Permission	object	uniquely	identifies	a	Microsoft®	SQL	Server™	2000
database	user	or	role	granted	a	specific	access	right	for	a	specific	database	or
database	object.	For	any	permission	object	retrieved	using	a	permissions	listing
method,	the	PrivilegeType	property	will	report	a	single,	unpacked	value.

For	example,	if	a	user	has	SELECT	and	INSERT	access	rights	on	a	table,	and	the
ListPermissions	method	of	a	Table	object	referencing	that	table	is	called,	then
two	Permission	objects	are	returned	in	the	list.	For	one	Permission	object,	the
PrivilegeType	property	returns	SQLDMOPriv_Select.	For	the	other,
PrivilegeType	returns	SQLDMOPriv_Insert.

SQL-DMO

PrivilegeTypeName	Property
The	PrivilegeTypeName	property	returns	a	text	string	that	identifies	an	access
right.

Applies	To

Permission	Object

Syntax
object.PrivilegeTypeName

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetPrivilegeTypeName(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

A	Permission	object	uniquely	identifies	a	Microsoft®	SQL	Server™	2000
database	user	or	role	granted	a	specific	access	right	for	a	specific	database	or
database	object.	For	any	given	permission	object	retrieved	using	a	permissions
listing	method,	the	PrivilegeType	property	reports	a	single,	unpacked	value.	The
PrivilegeTypeName	property	returns	the	friendly	name	for	the	PrivilegeType
property	value.

For	example,	when	PrivilegeType	returns	SQLDMOPriv_Execute,
PrivilegeTypeName	returns	Execute.

SQL-DMO

ProcessID	Property
The	ProcessID	property	returns	the	Microsoft®	SQL	Server™	2000	process
identifier	for	the	connection	used	by	the	SQLServer	object.

Applies	To

SQLServer	Object

Syntax
object.ProcessID

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetProcessID(LPLONG	plProcessID);

SQL-DMO

ProcessInputBuffer	Property
The	ProcessInputBuffer	property	returns	the	contents	of	the	memory	used	by	a
Microsoft®	SQL	Server™	process	for	input.

Applies	To
SQLServer	Object

Syntax
object.ProcessInputBuffer(ProcessID)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

ProcessID

Long	integer	that	identifies	a	SQL	Server	process	ID

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetProcessInputBuffer(
long	lProcessID,
SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

ProcessOutputBuffer	Property
The	ProcessOutputBuffer	property	returns	the	contents	of	the	memory	used	by
a	Microsoft®	SQL	Server™	process	for	output.

Applies	To

SQLServer	Object

Syntax
object.ProcessOutputBuffer(ProcessID)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

ProcessID

Long	integer	that	identifies	a	SQL	Server	process	ID

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetProcessOutputBuffer(
long	lProcessID,
SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
For	each	sixteen	bytes	of	data	in	the	process	output	buffer,
ProcessOutputBuffer	returns	a	formatted	string	consisting	of	an	address,
hexadecimal	representation	of	the	first	sixteen	bytes	of	data	found	at	that
address,	character	representation	of	those	sixteen	bytes,	and	carriage	return/line
feed	sequence.

SQL-DMO

ProductLevel	Property
The	ProductLevel	property	returns	the	Microsoft®	SQL	Server™	2000	product
level.

Applies	To

SQLServer2	Object

Syntax
object.ProductLevel

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetProductLevel(SQLDMO_LPBSTR	pRetVal);

Remarks
The	SQL	Server	product	level	is	returned	in	the	form	'B1,	'RTM',	and	so	on.

Note		If	an	application	calls	ProductLevel	on	an	instance	of	SQL	Server	version
7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This	property

or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

ProductName	Property
The	ProductName	property	is	a	Microsoft®	SQL	Server™	specific
representation	of	an	OLE	DB	provider	name.

Applies	To

LinkedServer	Object

Syntax
object.ProductName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	with	a	maximum	of	128	characters	that	specifies	an	OLE	DB	provider
product

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetProductName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetProductName(SQLDMO_LPCSTR	NewVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	ProductName	property	is	implemented	to	support	a	short-cut	method	for
creation	of	LinkedServer	object-referenced,	persisted	OLE	DB	data	source
definitions.	For	example,	an	instance	of	SQL	Server	can	be	linked	by	setting
only	two	properties	in	a	LinkedServer	object.	First,	set	the	ProductName	to
SQL	Server,	then	set	the	Name	property	to	the	name	of	an	instance	of	SQL
Server	to	be	linked.

SQL-DMO

ProviderName	Property
The	ProviderName	property	specifies	the	friendly,	or	as-registered,	name	of	an
OLE	DB	provider.

Applies	To

LinkedServer	Object

Syntax
object.ProviderName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	with	a	maximum	of	128	characters	that	identifies	an	OLE	DB	provider

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetProviderName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetProviderName(SQLDMO_LPCSTR	NewVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
An	OLE	DB	provider	registers	itself	with	the	operating	system,	providing,	as
part	of	registration,	a	display	name.	For	example,	the	display	name	for	the
Microsoft®	OLE	DB	Provider	for	Microsoft®	SQL	Server™	is	SQLOLEDB.

SQL-DMO

ProviderString	Property
The	ProviderString	property	specifies	OLE	DB	provider-specific	connection
data	required	to	implement	a	connection	to	the	referenced	OLE	DB	data	source.

Applies	To

LinkedServer	Object

Syntax
object.ProviderString	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	with	a	maximum	of	4,000	characters

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetProviderString(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetProviderString(SQLDMO_LPCSTR	NewVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	ProviderString	property	is	provided	as	the	value	of	the	OLE	DB
initialization	property	DBPROP_INIT_PROVIDERSTRING	when	a	connection
is	established	to	the	OLE	DB	data	source	identified	by	the	LinkedServer	object.
For	more	information	about	requirements	for,	and	structure	of,	an	appropriate
property	value,	see	the	OLE	DB	provider	documentation.

SQL-DMO

Publication	Property
The	Publication	property	specifies	the	source	for	articles	pulled	from	a
replication	Publisher.

Applies	To

MergePullSubscription	Object TransPullSubscription	Object

Syntax
object.Publication	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	a	replication	publication	by	name

Data	Type
String

Modifiable
Read/write	when	using	the	SQL-DMO	object	to	create	a	subscription.

Read-only	when	the	object	references	an	existing	subscription.

Prototype	(C/C++)
HRESULT	GetPublication(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetPublication(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

PublicationAttributes	Property
The	PublicationAttributes	property	specifies	available	functions	for	a
Microsoft®	SQL	Server™	2000	replication	publication.

Applies	To

DistributionPublication	Object TransPublication	Object
MergePublication	Object TransPullSubscription	Object

Syntax
object.PublicationAttributes	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	publication	behaviors	described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetPublicationAttributes(
SQLDMO_PUBATTRIB_TYPE*	pRetVal);

HRESULT	SetPublicationAttributes(
SQLDMO_PUBATTRIB_TYPE	NewValue);

Settings
Set	value	using	these	SQLDMO_PUBATTRIB_TYPE	values.

Constant Value Description
SQLDMOPubAttrib_AllowAnonymous 4 Allow	anonymous	Subscriber-

originated	subscriptions	against
the	referenced	publication.

SQLDMOPubAttrib_AllowPull 2 Allow	known	Subscriber-
originated	(pull)	subscriptions
against	the	referenced
publication.

SQLDMOPubAttrib_AllowPush 1 Allow	Publisher	to	force
subscription	to	the	publication.

SQLDMOPubAttrib_AllowSubscriptionCopy 100 Allow	copying	and	attaching	of
subscription	database	to	other
Subscribers.

SQLDMOPubAttrib_CompressSnapshot 128 Compress	snapshot	files.
SQLDMOPubAttrib_Default 1 SQLDMOPubAttrib_AllowPush
SQLDMOPubAttrib_ImmediateSync 16 Force	immediate

synchronization	of	the
referenced	publication.

SQLDMOPubAttrib_IndependentAgent 32 Run	agent	as	an	independent
agent.

SQLDMOPubAttrib_InternetEnabled 8 Enable	the	referenced
publication	for	distribution
across	the	Internet.

SQLDMOPubAttrib_SnapshotInDefaultFolder 64 Keep	snapshot	copy	in	default
folder.

SQLDMOPubAttrib_Unknown 256 Referenced	publication	has	a
bad	or	unknown	attribute
setting.

SQLDMOPubAttrib_Valid 511 Mask	for	valid	attribute	settings.

Remarks
The	PublicationAttributes	property	is	a	bit-packed	value	that	specifies	one	or
more	allowed	functions.	Combine	values	using	the	OR	logical	operator.

For	a	referenced,	Subscriber-initiated	subscription,	PublicationAttributes	is
SQLDMOPubAttrib_Min	until	synchronization	occurs	and	the	Subscriber	can
determine	the	attributes.

To	enable	anonymous	subscriptions,	the	SQLDMOPubAttrib_AllowPull,
SQLDMOPubAttrib_AllowAnonymous	and
SQLDMOPubAttrib_ImmediateSync	must	all	be	specified.

When	the	SQLDMOPubAttrib_InternetEnabled	attribute	is	specified,	the
AltSnapshotFolder	property	must	be	specified.	If	the	AltSnapshotFolder
property	is	set	to	NULL	or	an	empty	string,	the
SQLDMOPubAttrib_InternetEnabled	is	automatically	turned	off.

Note		If	an	application	sets	PublicationAttributes	with	the	MergePublication
or	TransPublication	object	with	a	setting	of
SQLDMOPubAttrib_CompressSnapshot,	SQLDMOPubAttrib_InternetEnabled,
or	SQLDMOPubAttrib_SnapshotInDefaultFolder	after	the	initial	snapshot	has
been	created,	a	new	snapshot	must	be	generated	and	reapplied	to	each
subscription.	Snapshots	are	applied	when	the	next	scheduled	snapshot	and
distribution	or	merge	agent	run.

See	Also

AltSnapshotFolder	Property

SQL-DMO

PublicationDB	Property
The	PublicationDB	property	specifies	a	Microsoft®	SQL	Server™	database
providing	data	for	a	third-party	data	source	or	to	a	Subscriber-initiated
subscription.

Applies	To

DistributionPublication	Object TransPullSubscription	Object
MergePullSubscription	Object 	

Syntax
object.PublicationDB	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	a	SQL	Server	database	by	name

Data	Type
String

Modifiable
Read/write	when	using	the	SQL-DMO	object	to	create	a	replication	component.

Read-only	when	the	object	references	an	existing	component.

Prototype	(C/C++)

HRESULT	GetPublicationDB(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetPublicationDB(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

PublicationType	Property
The	PublicationType	property	specifies	treatment	of	data	replicated	from	a
Microsoft®	SQL	Server™	or	heterogeneous	data	source.

Applies	To

DistributionPublication	Object TransPullSubscription2	Object

Syntax
object.PublicationType	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	type	of	replication	publication	as	described	in
Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetPublicationType(
SQLDMO_PUBLICATION_TYPE*	pRetVal);

HRESULT	SetPublicationType(

SQLDMO_PUBLICATION_TYPE	NewValue);

Settings

Constant Value Description
SQLDMOPublication_Merge 2 Referenced	publication

supports	merge	replication.
SQLDMOPublication_Snapshot 1 Referenced	publication

supports	snapshot	replication.
SQLDMOPublication_Transactional 0 Referenced	publication

supports	transactional
replication.

SQLDMOPublication_Unknown 1000 Error	condition.	No
replication	support	can	be
determined	for	the	referenced
publication.

Remarks
SQL	Server	supports	replicating	data	from	heterogeneous	data	sources	for
instances	of	SQL	Server.	Set	PublicationType	to	expose	the	composition	of
data.	For	example,	when	replicating	an	entire	heterogeneous	table	with	each
synchronization,	set	PublicationType	to	SQLDMOPublication_Snapshot.

SQL-DMO

PublishedInMerge	Property
The	PublishedInMerge	property	indicates	whether	the	referenced	table	is
published	in	a	merge	publication.

Applies	To

ReplicationTable2	Object

Syntax
object.PublishedInMerge

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetPublishedInMerge(pRetVal);

Remarks
If	a	table	is	published	in	a	merge	publication,	it	cannot	be	published	in	a
transactional	publication	that	allows	immediate	updating	or	queued	updating.

Note		PublishedInMerge	can	be	used	with	Microsoft®	SQL	Server™	2000	and

SQL	Server	7.0.

See	Also

PublishedInQueuedTransactions	Property

SQL-DMO

PublishedInQueuedTransactions	Property
The	PublishedInQueuedTransactions	property	indicates	whether	the
referenced	table	is	published	in	a	queued	transaction	publication.

Applies	To

ReplicationTable2	Object

Syntax
object.PublishedInQueuedTransactions

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetPublishedInQueuedTransactions(pRetVal);

Remarks
If	a	table	is	published	in	a	in	a	transactional	publication	that	allows	immediate
updating	or	queued	updating,	it	cannot	be	published	in	a	merge	publication.

Note		If	an	application	calls	PublishedInQueuedTransactions	on	an	instance	of

SQL	Server	version	7.0,	FALSE	is	returned.

See	Also

PublishedInMerge	Property

SQL-DMO

Publisher	Property
The	Publisher	property	specifies	an	instance	of	Microsoft®	SQL	Server™	2000
used	as	a	source	of	replicated	data	for	a	Subscriber-initiated	subscription.

Applies	To

MergePullSubscription	Object TransPullSubscription	Object

Syntax
object.Publisher	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	an	instance	of	SQL	Server	by	name

Data	Type
String

Modifiable
Read/write	when	using	the	SQL-DMO	object	to	create	a	subscription.

Read-only	when	the	object	references	an	existing	subscription.

Prototype	(C/C++)
HRESULT	GetPublisher(SQLDMO_LPBSTR	pRetVal)

HRESULT	SetPublisher(SQLDMO_LPCSTR	NewValue)

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

PublisherIdentityRangeSize	Property
The	PublisherIdentityRangeSize	property	specifies	the	identity	range	size	of	a
published	table	at	the	Publisher.

Applies	To

MergeArticle2	Object TransArticle2	Object

Syntax
object.PublisherIdentityRangeSize	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	the	maximum	number	of	new	rows	that	can	be
entered	into	the	table

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetPublisherIdentityRangeSize(LONG64	*pRetVal);

HRESULT	SetPublisherIdentityRangeSize(LONG64	NewValue);

Remarks
The	identity	range	size	specifies	the	maximum	number	of	new	rows	that	can	be
inserted	into	an	identity	column	in	a	table	at	a	Publisher	or	Subscriber	before
another	identity	range	must	be	allocated.	Use	the	IdentityRangeThreshold
property	to	control	when	an	identity	range	must	be	allocated.	The
PublisherIdentityRangeSize	property	can	be	set	larger	or	smaller	than	the
SubscriberIdentityRangeSize	property	depending	on	the	relative	frequency	in
which	new	rows	are	inserted	at	the	Publisher	in	relation	to	its	Subscribers.

Prior	to	setting	PublisherIdentityRangeSize,	set	AutoIdentityRange	to	TRUE.

Note		If	an	application	calls	PublisherIdentityRangeSize	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

AutoIdentityRange	Property

IdentityRangeThreshold	Property

SubscriberIdentityRangeSize	Property

SQL-DMO

Q

SQL-DMO

QueryTimeout	Property
The	QueryTimeout	property	specifies	the	number	of	seconds	elapsed	before	a
time-out	error	is	reported	on	an	attempted	statement	execution.

Applies	To

LinkedServer2	Object SQLServer	Object

Syntax
object.QueryTimeout	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	the	number	of	seconds

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetQueryTimeout(LPLONG	pRetVal);

HRESULT	SetQueryTimeout(LONG	NewValue);

Remarks
To	specify	that	a	query	cannot	time	out,	use	-1	(the	default)	or	0.

SQL-DMO

QueueType	Property
The	QueueType	property	specifies	the	type	of	queuing	to	use	if	a	publication
allows	queued	transactions.

Applies	To

TransPublication2	Object 	

Syntax
object.QueueType	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	SQLDMO_REPLQUEUE_TYPE	constant	as
described	in	Settings

Data	Type
Long

Modifiable
Read/write	when	using	the	TransPublication2	object	to	create	a	replication
component.	Read/write	when	the	object	references	an	existing	component	and
there	are	no	subscriptions	to	the	publication;	read-only	if	there	is	a	subscription
to	the	publication.

Prototype	(C/C++)

HRESULT	GetQueueType(SQLDMO_REPLQUEUE_TYPE	*pRetVal);

HRESULT	SetQueueType(SQLDMO_REPLQUEUE_TYPE	NewValue);

Settings
Set	the	QueueType	property	using	these	values.

Constant Value Description
SQLDMOReplQueue_MSMQ 1 Use	Microsoft®	Message

Queue	to	implement	queuing.
SQLDMOReplQueue_SQL 2 Use	Microsoft	SQL	Server™

2000	to	implement	queuing.

Remarks
The	AllowQueuedTransactions	property	must	be	set	to	TRUE	before	you	can
set	the	QueueType	property.	QueueType	is	set	to	SQLDMOReplQueue_SQL
by	default.

The	Subscriber	must	have	MSMQ	installed	and	configured	as	an	independent
client	before	the	QueueType	property	can	be	set	to
SQLDMOReplQueue_MSMQ.

Note		If	an	application	calls	QueueType	on	an	instance	of	SQL	Server	version
7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This	property
or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

AllowQueuedTransactions	Property

SQL-DMO

QuoteDelimiter	Property
The	QuoteDelimiter	property	controls	Microsoft®	SQL	Server™	2000
interpretation	of	identifier	strings	in	statements	submitted	for	execution.

Applies	To

DBOption	Object 	

Syntax
object.QuoteDelimiter	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetQuoteDelimiter(LPBOOL	pRetVal);

HRESULT	SetQuoteDelimiter(BOOL	NewValue);

Remarks
When	TRUE,	identifiers	can	be	delimited	by	double	quotation	marks	and
character	literal	values	must	be	delimited	by	single	quotation	marks.

When	FALSE,	identifiers	cannot	be	quoted	and	must	follow	all	Transact-SQL
rules	for	identifiers.	For	example,	character	literal	values	can	be	delimited	by
either	single	or	double	quotation	marks.

QuoteDelimiter	controls	identifier	interpretation	for	a	SQL	Server	database.
When	QuoteDelimiter	is	TRUE,	connection-specific	control	for	the	behavior	is
ignored.	When	QuoteDelimiter	is	FALSE,	interpretation	of	identifier	strings	is
determined	by	each	client	connection	and	can	be	reset	at	any	time	the	client	is
connected.

SQL-DMO

QuotedIdentifier	Property
The	QuotedIdentifier	property	controls	Microsoft®	SQL	Server™	2000
interpretation	of	identifier	strings	in	statements	submitted	for	execution.

Applies	To

SQLServer	Object UserDefinedFunction	Object

Syntax
object.QuotedIdentifier	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetQuotedIdentifier(LPBOOL	pRetVal);

HRESULT	SetQuotedIdentifier(BOOL	NewValue);

Remarks
When	TRUE,	identifiers	can	be	delimited	by	double	quotation	marks	(")	and
character	literal	values	must	be	delimited	by	single	quotation	marks	(').

When	FALSE,	identifiers	cannot	be	quoted	and	must	follow	all	Transact-SQL
rules	for	identifiers.	For	example,	character	literal	values	can	be	delimited	by
either	single	or	double	quotation	marks.

QuotedIdentifier	controls	identifier	interpretation	only	for	the	connection	used
by	the	SQLServer	object.	Specifically,	setting	QuotedIdentifier	does	not	affect
other	client	connections	to	any	instance	of	SQL	Server,	including	other
connections	established	by	the	SQL-DMO	application.

Interpretation	of	identifier	strings	behavior	can	be	set	for	a	SQL	Server	database.
When	the	database	setting	is	used,	and	when	the	database	behavior	allows
quoted	identifiers	to	be	used,	then	the	setting	for	the	connection	is	ignored.

See	Also

QuoteDelimiter	Property

SET	QUOTED_IDENTIFIER

JavaScript:hhobj_1.Click()

SQL-DMO

QuotedIdentifierStatus	Property
The	QuotedIdentifierStatus	property	returns	TRUE	when	the	database	object
referenced	has	been	created	with	a	dependency	on	quote	characters	for	identifier
determination.

Applies	To

StoredProcedure	Object UserDefinedFunction	Object
Table2	Object View	Object
Trigger	Object 	

Syntax
object.QuotedIdentifierStatus

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetQuotedIdentifierStatus(LPBOOL	pRetVal);

Remarks

For	more	information	about	identifier	interpretation	and	quoted	identifier
recognition,	see	SET	QUOTED_IDENTIFIER.

Note		If	an	application	calls	QuotedIdentifierStatus	on	an	instance	of	SQL
Server	version	7.0	with	the	Table2	object,	the	constant,
SQLDMO_E_SQL80ONLY,	and	the	message	"This	property	or	method	requires
Microsoft	SQL	Server	2000"	are	returned.

JavaScript:hhobj_1.Click()

SQL-DMO

R

SQL-DMO

ReadOnly	Property
The	ReadOnly	property	controls	the	ability	to	update	a	Microsoft®	SQL
Server™	2000	database	or	database	filegroup.

Applies	To

DBOption	Object FileGroup	Object

Syntax
object.ReadOnly	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetReadOnly(LPBOOL	pRetVal);

HRESULT	SetReadOnly(BOOL	NewValue);

Remarks
If	TRUE,	data	in	the	database	or	database	filegroup	cannot	be	changed.

If	FALSE,	updates	are	allowed	to	data	in	the	database	or	database	filegroup.

SQL-DMO

RecoveryModel	Property
The	RecoveryModel	property	specifies	the	recovery	model	for	a	database.

Applies	To

DBOption2	Object 	

Syntax
object.RecoveryModel	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Integer	that	indicates	which	recovery	model	to	use	as	specified	in	Settings

Settings

Constant Value Description
SQLDMORECOVERY_BulkLogged 1 Use	the	Bulk-Logged

Recovery	model.
SQLDMORECOVERY_Full 2 Use	the	Full	Recovery

model.
SQLDMORECOVERY_Simple 0 Default.	Use	the	Simple

Recovery	model.
SQLDMORECOVERY_Unknown 3 Recovery	model	is

unknown.

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetRecoveryModel(SQLDMO_RECOVERY_TYPE);

HRESULT	SetRecoveryModel(SQLDMO_RECOVERY_TYPE);

Remarks
Microsoft®	SQL	Server™	2000	provides	the	Simple,	Bulk-Logged,	and	Full
Recovery	models	to	simplify	recovery	planning,	simplify	backup	and	recovery
procedures,	and	to	clarify	tradeoffs	between	system	operational	requirements.
An	application	can	use	the	RecoveryModel	property	to	specify	which	recovery
model	to	use.

Note		If	an	application	calls	RecoveryModel	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

ALTER	DATABASE

Selecting	a	Recovery	Model

Switching	Recovery	Models

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

SQL-DMO

RecursiveTriggers	Property
The	RecursiveTriggers	property	controls	nested	call	behavior	for	Microsoft®
SQL	Server™	2000	triggers.

Applies	To

DBOption	Object

Syntax
object.RecursiveTriggers	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetRecursiveTriggers(LPBOOL	pRetVal);

HRESULT	SetRecursiveTriggers(BOOL	NewValue);

Remarks
When	TRUE,	a	trigger	may	fire	more	than	once	when	statement	execution
directs	more	than	a	single	trigger	execution.	For	example,	a	table	T1	with	trigger
Trig1	may	update	table	T2	with	Trig2	enabled,	which	itself	updates	table	T1.	If
the	update	of	T1	directed	by	Trig2	causes	modification	that	would	normally	fire
trigger	Trig1	and	RecursiveTriggers	is	TRUE,	then	trigger	Trig1	will	fire	a
second	time.

When	FALSE,	a	trigger	will	execute	only	once	regardless	of	the	actions	of	itself
or	other	triggers	enabled	on	other	tables.

SQL-DMO

ReferencedKey	Property
The	ReferencedKey	property	returns	the	name	of	the	PRIMARY	KEY	or
UNIQUE	key	constraint	implementing	the	primary	key	referenced	by	a	foreign
key.

Applies	To

Key	Object

Syntax
object.ReferencedKey

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetReferencedKey(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	ReferencedKey	property	returns	a	value	for	Key	objects	referencing
foreign	key	definitions	only.	When	the	Type	property	of	the	Key	object	is
SQLDMOKey_Foreign,	the	Key	object	references	a	foreign	key	definition.

SQL-DMO

ReferencedTable	Property
The	ReferencedTable	property	specifies	a	Microsoft®	SQL	Server™	2000	table
whose	PRIMARY	KEY	constraint	will	constrain	values	added	to	the	table	that
owns	the	foreign	key	referenced	by	the	Key	object.

Applies	To

Key	Object

Syntax
object.ReferencedTable	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	a	SQL	Server	table	by	name

Data	Type
String

Modifiable
Read/write	prior	to	foreign	key	definition.	Read-only	for	Key	objects
referencing	defined	foreign	keys.

Prototype	(C/C++)
HRESULT	GetReferencedTable(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetReferencedTable(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
Setting	the	ReferencedTable	property	is	required	when	defining	a	foreign	key
by	using	the	Key	object.	For	more	information,	see	Key	Object.

SQL-DMO

RegionalSetting	Property
The	RegionalSetting	property	exposes	the	Microsoft®	SQL	Server™	2000
ODBC	driver	statement	attribute	SQL_SOPT_SS_REGIONALIZE.

Applies	To

SQLServer	Object

Syntax
object.RegionalSetting	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetRegionalSetting(LPBOOL	pRetVal);

HRESULT	SetRegionalSetting(BOOL	NewValue);

Remarks
For	more	information	about	the	connection	behavior	specified	by
SQL_SOPT_SS_REGIONALIZE,	see	SQLSetStmtAttr.

If	TRUE,	the	connection	behaves	as	defined	for	value	SQL_RE_ON.

If	FALSE,	the	connection	behaves	as	defined	for	value	SQL_RE_OFF.

JavaScript:hhobj_1.Click()

SQL-DMO

RegisteredOrganization	Property
The	RegisteredOrganization	property	returns	the	company	name	supplied
during	the	installation	of	an	instance	of	Microsoft®	SQL	Server™	2000.

Applies	To

Registry	Object

Syntax
object.RegisteredOrganization

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetRegisteredOrganization(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

RegisteredOwner	Property
The	RegisteredOwner	property	returns	the	name	of	the	installer	supplied	during
the	installation	of	an	instance	of	Microsoft®	SQL	Server™	2000.

Applies	To

Registry	Object

Syntax
object.RegisteredOwner

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetRegisteredOwner(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

RelocateFiles	Property
The	RelocateFiles	property	specifies	database	logical	file	names	and	operating
system	physical	file	names	used	to	redirect	database	storage	when	a	Microsoft®
SQL	Server™	2000	database	is	restored	to	a	new	physical	location.

Applies	To

Restore	Object

Syntax
object.RelocateFiles	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

SQL-DMO	multistring	built	as	specified	in	Remarks

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetRelocateFiles(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetRelocateFiles(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
When	creating	a	string	directing	physical	file	relocation,	build	the	string	as	the
current	logical	name	of	the	database	file,	then	the	new	operating	system	file
name.	Repeat	pairings	of	logical	name	and	physical	name	until	all	files
implementing	the	database	are	specified.	For	example:

oRestore.RelocateFiles	=	"[Northwind1]"	+	","	+	"[D:\Data\North_1.mdf]"	_
				+	","	+	"[Northwind2]"	+	","	+	"[D:\Data\North_2.mdf]"

For	more	information	about	setting	multistring	parameters,	see	Using	SQL-
DMO	Multistrings.

SQL-DMO

RemoteName	Property
The	RemoteName	property	identifies	a	SQL	Server	Authentication	login	record
on	another	server	and	controls	mapping	for	that	login.

Applies	To

RemoteLogin	Object

Syntax
object.RemoteName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	a	Microsoft®	SQL	Server™	2000	login	by	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetRemoteName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetRemoteName(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
An	instance	of	SQL	Server	can	maintain	authentication	information	for
connections	originating	from	other	instances	of	SQL	Server.	Server-originated
connections	are	attempted	when,	for	example,	remote	procedure	calls	are	part	of
a	Transact-SQL	script.

When	a	server-originated	connection	is	attempted,	and	the	client	connection	to
the	server	originating	the	connection	request	uses	the	login	referenced	by	the
RemoteName	property,	that	login	is	mapped	to	the	SQL	Server	login
represented	by	the	LocalName	property	of	the	RemoteLogin	object.

SQL-DMO

RemotePassword	Property
The	RemotePassword	property	specifies	a	password	used	when	a	distributed
query,	or	another	Microsoft®	SQL	Server™	2000	process,	accesses	a	data	store
using	a	linked	server	OLE	DB	data	source	definition.

Applies	To

LinkedServerLogin	Object

Syntax
object.RemotePassword	=	value

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	matches	the	SQL	Server	data	type	sysname.

Data	Type
String

Modifiable
Write-only	prior	to	adding	the	LinkedServerLogin	object	to	its	containing
LinkedServerLogins	collection.

Prototype	(C/C++)
HRESULT	SetRemotePassword(SQLDMO_LPCSTR	NewValue);

Remarks
When	a	persisted	OLE	DB	data	source	definition,	called	a	linked	server,	is
created,	a	login	record	is	created	that	simply	passes	connection	authentication
data	to	the	linked	server	when	attempting	to	establish	a	connection	to	the	data
source.

Configure	a	linked	server	definition	to	use	a	specific	authentication	data	by
creating	additional	records	mapping	logins	on	the	linking	server.	For	more
information	about	using	SQL-DMO	to	configure	linked	server	security,	see
LinkedServerLogin	Object.

Creating	a	LinkedServerLogin	object,	and	modifying	a	RemotePassword
property	value,	requires	membership	in	either	sysadmin	or	securityadmin	roles.

SQL-DMO

RemoteUser	Property
The	RemoteUser	property	specifies	a	login	name	used	when	a	distributed	query,
or	another	Microsoft®	SQL	Server™	2000	process,	accesses	a	data	store	using	a
linked	server	OLE	DB	data	source	definition.

Applies	To

LinkedServerLogin	Object

Syntax
object.RemoteUser	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	matches	the	SQL	Server	data	type	sysname

Data	Type
String

Modifiable
Read/write	prior	to	adding	the	LinkedServerLogin	object	to	its	containing
LinkedServerLogins	collection.	Read-only	for	LinkedServerLogin	objects
referencing	existing	login	mappings.

Prototype	(C/C++)
HRESULT	GetRemoteUser(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetRemoteUser(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	by	using	SysFreeString.

Remarks
When	a	persisted	OLE	DB	data	source	definition,	called	a	linked	server,	is
created,	a	login	record	is	created	that	simply	passes	connection	authentication
data	to	the	linked	server	when	attempting	to	establish	a	connection	to	the	data
source.

Configure	a	linked	server	definition	to	use	a	specific	authentication	data	by
creating	additional	records	mapping	logins	on	the	linking	server.	For	more
information	about	using	SQL-DMO	to	configure	linked	server	security,	see	the
LinkedServerLogin	Object	section.

Creating	a	LinkedServerLogin	object,	and	modifying	a	RemoteUser	property
value,	requires	membership	in	either	sysadmin	or	securityadmin	roles.

SQL-DMO

ReplaceDatabase	Property
The	ReplaceDatabase	property	directs	a	restore	operation	when	a	new	image	of
the	restored	database	is	required.

Applies	To

Restore	Object

Syntax
object.ReplaceDatabase	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetReplaceDatabase(LPBOOL	pRetVal);

HRESULT	SetReplaceDatabase(BOOL	NewValue);

Remarks
If	TRUE,	a	new	image	of	the	database	is	created.	The	image	is	created	regardless
of	the	presence	of	an	existing	database	with	the	same	name.

If	FALSE	(default),	a	new	image	of	the	database	is	not	created	by	the	restore
operation.	The	database	targeted	by	the	restore	operation	must	exist	on	an
instance	of	Microsoft®	SQL	Server™	2000.

SQL-DMO

ReplicateAllColumns	Property
The	ReplicateAllColumns	property	returns	TRUE	when	transactional
replication	includes	data	values	for	all	columns	in	all	replicated	rows.

Applies	To

TransArticle	Object

Syntax
object.ReplicateAllColumns

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetReplicateAllColumns(LPBOOL	pRetVal);

Remarks
If	TRUE,	all	columns	of	the	source	table	are	replicated.

If	FALSE,	the	source	table	has	been	vertically	partitioned	and	only	user-
indicated	columns	are	replicated.	For	more	information	about	using	SQL-DMO

to	vertically	partition	a	transactional	article	publishing	a	table,	see
AddReplicatedColumns	Method.

SQL-DMO

ReplicationFilterProcName	Property
The	ReplicationFilterProcName	property	identifies	a	stored	procedure	used	to
partition	a	table-based	article.

Applies	To

TransArticle	Object

Syntax
object.ReplicationFilterProcName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	a	Microsoft®	SQL	Server™	2000	stored	procedure	by
name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetReplicationFilterProcName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetReplicationFilterProcName(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
User-specified	partitioning	is	only	active	when	the	referenced	article
configuration	indicates	that	the	default	partitioning	mechanisms	are	overridden.
For	more	information	about	using	SQL-DMO	objects	to	configure	article
partitioning,	see	ArticleType	Property.

Note		If	an	application	sets	ReplicationFilterProcName	after	the	initial
snapshot	has	been	created,	a	new	snapshot	must	be	generated	and	reapplied	to
each	subscription.	Snapshots	are	applied	when	the	next	scheduled	snapshot	and
distribution	agent	run.

SQL-DMO

ReplicationFilterProcOwner	Property
The	ReplicationFilterProcOwner	property	identifies	the	database	user	owning
a	stored	procedure	used	to	partition	a	table-based	article.

Applies	To

TransArticle	Object

Syntax
object.ReplicationFilterProcOwner	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	a	Microsoft®	SQL	Server™	2000	database	object	owner
by	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetReplicationFilterProcOwner(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetReplicationFilterProcOwner(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
If	an	application	sets	ReplicationFilterProcOwner	after	the	initial	snapshot	has
been	created,	a	new	snapshot	must	be	generated	and	reapplied	to	each
subscription.	Snapshots	are	applied	when	the	next	scheduled	snapshot	and
distribution	agent	run.

SQL-DMO

ReplicationFrequency	Property
The	ReplicationFrequency	property	sets	the	method	used	to	determine	article
publication.

Applies	To

TransPublication	Object

Syntax
object.ReplicationFrequency	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	article	publication	as	described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write	when	using	the	SQL-DMO	object	to	create	a	publication.

Read-only	when	the	object	references	an	existing	publication.

Prototype	(C/C++)
HRESULT	GetReplicationFrequency(
SQLDMO_REPFREQ_TYPE*	pRetVal);

HRESULT	SetReplicationFrequency(
SQLDMO_REPFREQ_TYPE	NewValue);

Settings

Constant Value Description
SQLDMORepFreq_Continuous 0 Log	monitoring	or	another	method

is	used	to	determine	replicated
article	content.

SQLDMORepFreq_Snapshot 1 Article	is	replicated	at	fixed	times
and	is	not	dependent	upon
transaction	log	monitoring	or	other
monitoring	processes.

SQLDMORepFreq_Unknown 1000 Invalid	value.

Remarks
Microsoft®	SQL	Server™	2000	supports	two	types	of	transactional	replication.
In	the	first	instance,	data	is	replicated	at	fixed	intervals	regardless	of	any	changes
made	to	that	data.	This	type	of	transactional	replication	is	more	often	identified
as	snapshot	replication,	as	the	data	is	simply	copied	as	it	exists	at	a	given
moment.	Transactional	replication	can	also	determine	replicated	values	based	on
changes	made	to	that	data.	By	default,	SQL	Server	replication	monitors	changes
to	the	transaction	log	of	a	database	to	determine	which	values	are	replicated.

Setting	the	ReplicationFrequency	property	controls	the	type	of	transactional
replication	defined	by	the	TransPublication	object	and	is	part	of	creating
transactional	and	snapshot	replication	publications.	For	more	information,	see
the	TransPublication	section.

SQL-DMO

ReplicationInstalled	Property
The	ReplicationInstalled	property	returns	TRUE	when	components	supporting
replication	are	installed	on	an	instance	of	Microsoft®	SQL	Server™	2000.

Applies	To

Registry	Object

Syntax
object.ReplicationInstalled

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetReplicationInstalled(LPBOOL	pRetVal);

SQL-DMO

ResolverInfo	Property
The	ResolverInfo	property	specifies	additional	data	or	parameters	used	by	a
custom	merge	replication	conflict	resolution	agent.

Applies	To

MergeArticle	Object

Syntax
object.ResolverInfo	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	matches	the	SQL	Server	data	type	sysname

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetResolverInfo(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetResolverInfo(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
Specify	a	nondefault	conflict	resolution	module	using	the	ArticleResolver
property.

A	valid	value	for	the	ResolverInfo	property	is	determined	by	a	custom	conflict
resolution	module.	For	example,	SQL	Server	ships	with	a	conflict	resolving
component	called	Microsoft	SQL	Server	Stored	Procedure	Resolver.	When	using
this	nondefault	conflict	resolution	component,	use	the	ResolverInfo	property	to
specify	a	user-created	stored	procedure	called	by	the	component	to	resolve
merge	article	conflicts.

SQL-DMO

ResourceUsage	Property
The	ResourceUsage	property	specifies	a	relative	operating	system	execution
priority	setting	for	the	Microsoft	Search	service.

Applies	To

FullTextService	Object

Syntax
object.ResourceUsage	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	from	1	through	5

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetResourceUsage(LPLONG	pRetVal);

HRESULT	SetResourceUsage(long	NewValue);

Remarks
Use	the	ResourceUsage	property	to	raise	or	lower	execution	priority	for	a
running	Microsoft	Search	service.	By	default,	ResourceUsage	is	3,	interpreted
as	normal	priority	for	the	service.	Set	ResourceUsage	to	2	or	1	to	lower	the
execution	priority	for	the	Microsoft	Search	service.	Set	ResourceUsage	to	4	or	5
to	raise	the	execution	priority.

Note		A	ResourceUsage	property	value	of	5	represents	dedicated	priority	for	the
Microsoft	Search	service.	Setting	the	ResourceUsage	property	to	a	value	higher
than	3	can	have	unintended	consequences	and	should	be	considered	only	after
evaluating	the	possible	effects	on	other	services	running	on	the	computer.

When	the	Microsoft	Search	service	is	not	running,	the	ResourceUsage	property
returns	0.

Note		ResourceUsage	can	be	used	with	Microsoft®	SQL	Server™	2000	and
SQL	Server	7.0.

SQL-DMO

Restart	Property
The	Restart	property	controls	Backup	and	Restore	object	behavior	when	the
backup	or	restore	operation	specified	by	the	object	was	started	and	interrupted.

Applies	To

Backup	Object Restore	Object

Syntax
object.Restart	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetRestart(LPBOOL	pRetVal);

HRESULT	SetRestart(BOOL	NewValue);

Remarks
If	TRUE,	Microsoft®	SQL	Server™	2000	attempts	to	continue	processing	on	a
partial	backup	or	restore	operation.

If	FALSE,	SQL	Server	restarts	an	interrupted	backup	or	restore	operation	at	the
beginning	of	the	backup	set.

Set	the	Restart	property	only	when	a	user	action	or	system	error	interrupts
backup	or	restore	processing.

IMPORTANT		When	using	the	Restart	property,	the	backup	or	restore	operation
specified	by	the	object	used	must	match	the	originally	specified	operation	in	all
particulars.	Do	not	set	any	other	properties	for	the	object	when	setting	the
Restart	property.

SQL-DMO

ResultSets	Property
The	ResultSets	property	returns	the	count	of	units	of	data	returned	from	query
execution.

Applies	To

QueryResults	Object

Syntax
object.ResultSets

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetResultSets(LPLONG	pRetVal);

Remarks
Commonly,	Microsoft®	SQL	Server™	2000	query	execution	returns	data	to	the
client.	Returned	data	may	be	an	indicator	of	rows	affected	by	the	query	or	can	be
row	data	extracted	from	one	or	more	SQL	Server	tables.	When	row	data	is

returned,	data	is	tabular	and	values	in	the	resulting	data	can	be	referenced	using
ordinal	column	and	row	values.

The	execution	output	of	some	SQL	Server	queries	cannot	be	represented	in	a
single	result	unit.	For	example,	each	statement	in	a	batch	of	Transact-SQL
statements	may	return	a	count	of	affected	rows	or	row	data.	Some	Transact-SQL
statements	return	multiple	units	of	data,	for	example,	a	SELECT	statement
containing	a	COMPUTE	or	COMPUTE	BY	clause.	Each	discreet	unit	of
returned	data	is	called	a	result	set.

Use	the	ResultSets	property	to	determine	the	number	of	units	of	returned	data.
Use	the	CurrentResultSet	property	to	navigate	between	units.

Note		There	is	no	guarantee	of	consistency	between	result	sets.	Each	result	set
may	have	zero	or	more	columns.	Within	each	set,	the	names,	data	types,	and
meanings	of	the	columns	may	vary.

SQL-DMO

RetainDays	Property
The	RetainDays	property	specifies	the	number	of	days	that	must	elapse	before	a
backup	set	can	be	overwritten.

Applies	To

Backup	Object

Syntax
object.RetainDays	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	number	of	days

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetRetainDays(LPLONG	pRetVal);

HRESULT	SetRetainDays(long	NewValue);

Remarks
For	Microsoft®	SQL	Server™	2000,	backup	set	retention	period	is	set	when
media	is	initialized.	When	using	SQL-DMO	to	automate	SQL	Server	backup,	the
RetainDays	property	is	only	evaluated	when	the	Initialize	property	is	TRUE.

See	Also

BACKUP

Initialize	Property

JavaScript:hhobj_1.Click()

SQL-DMO

RetentionPeriod	Property
The	RetentionPeriod	property	specifies	a	number	of	days	or	hours	for	limiting
any	subscription	to	the	publication.

Applies	To

MergePublication	Object TransPublication	Object

Syntax
object.RetentionPeriod	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer.	For	the	MergePublication	object,	RetentionPeriod	specifies	a
number	of	days.	For	the	TransPublication	object,	the	property	specifies	a
number	of	hours.

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetRetentionPeriod(LPDWORD	pRetVal);

HRESULT	SetRetentionPeriod(DWORD	NewValue);

Remarks
A	subscription	is	dropped	by	the	system	if	the	Subscriber	identified	has	not
accessed	the	referenced	publication	within	the	period	specified	by	the
RetentionPeriod	property.	The	maximum	value	of	the	RetentionPeriod
property	is	2147483647.

SQL-DMO

RetryAttempts	Property
The	RetryAttempts	property	specifies	a	number	of	times	SQL	Server	Agent
attempts	to	execute	the	referenced	job	step	before	reporting	step	failure.

Applies	To

JobStep	Object

Syntax
object.RetryAttempts	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetRetryAttempts(LPLONG	pRetVal);

HRESULT	SetRetryAttempts(long	NewValue);

Remarks
SQL	Server	Agent	job	steps	are	assigned	simple	logic	determining	job	execution
behavior	on	step	success	or	failure.

If	the	job	step	completes	successfully	on	any	attempt	numbered	less	than	or
equal	to	the	value	of	the	RetryAttempts	property,	job	execution	branches	to
follow	the	on-success	action	for	the	step.	If	execution	attempts	exceed	the	value
of	the	RetryAttempts	property,	job	execution	branches	to	follow	the	on-failure
action	for	the	step.

When	a	job	step	fails,	and	the	step	is	flagged	for	retry,	SQL	Server	Agent	can
pause	between	execution	attempts.	For	more	information,	see	RetryInterval
Property.

SQL-DMO

RetryInterval	Property
The	RetryInterval	property	specifies	a	number	of	minutes	that	will	elapse
before	SQL	Server	Agent	attempts	to	execute	a	previously	failing	job	step.

Applies	To

JobStep	Object

Syntax
object.RetryInterval	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	number	of	minutes

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetRetryInterval(LPLONG	pRetVal);

HRESULT	SetRetryInterval(long	NewValue);

Remarks
The	RetryInterval	property	is	evaluated	only	for	those	job	steps	flagged	for
retry.	Set	the	RetryAttempts	property	to	force	SQL	Server	Agent	to	attempt
more	than	a	single	execution	of	a	job	step.

When	the	RetryInterval	property	is	zero	(default),	SQL	Server	Agent	will
immediately	execute	a	job	step	an	additional	time	when	the	step	has	been
flagged	for	retry	and	fails	completion.

SQL-DMO

Role	Property
The	Role	property	identifies	the	initial	security	role	assigned	to	the	Microsoft®
SQL	Server™	2000	database	user.

Applies	To

User	Object

Syntax
object.Role	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	an	existing	fixed	or	user-defined	database	role	by	name

Data	Type
String

Modifiable
Read/write	when	using	the	User	object	to	create	a	database	user.

Prototype	(C/C++)
HRESULT	GetRole(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetRole(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
If	not	specified,	a	user	created	by	using	the	User	object	will	be	given
membership	in	the	fixed	database	security	role	public.

SQL-DMO

RootPath	Property
The	RootPath	property	specifies	an	operating	system	directory	used	as	the
primary	path	for	Microsoft	Search	full-text	catalog	storage.

Applies	To

FullTextCatalog	Object

Syntax
object.RootPath	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	an	existing	operating	system	path

Data	Type
String

Modifiable
Read/write	when	using	the	FullTextCatalog	object	to	create	a	Microsoft	Search
full-text	catalog.	Read-only	when	referencing	an	existing	Microsoft	Search	full-
text	catalog.

Prototype	(C/C++)
HRESULT	GetRootPath(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetRootPath(SQLDMO_LPCSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
If	the	RootPath	property	is	an	empty	string	when	creating	a	Microsoft	Search
full-text	catalog,	the	default	data	path,	set	for	the	Microsoft	Search	service,	is
used.	For	more	information,	see	DefaultPath	Property.

SQL-DMO

RowDelimiter	Property
The	RowDelimiter	property	specifies	a	character	or	character	sequence	that
marks	the	end	of	a	row	in	a	Microsoft®	SQL	Server™	2000	bulk	copy	data	file.

Applies	To

BulkCopy	Object

Syntax
object.RowDelimiter	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	one	or	more	characters	that	delimit	rows	in	the	data	file

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetRowDelimiter(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetRowDelimiter(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	RowDelimiter	property	has	meaning	only	when	the	BulkCopy	object
property	DataFileType	is	SQLDMODataFile_SpecialDelimtedChar.

SQL-DMO

Rows	Property
The	Rows	property	returns	the	number	of	rows	in	a	referenced	query	result	set	or
the	number	of	rows	existing	in	a	Microsoft®	SQL	Server™	2000	table.

Applies	To

QueryResults	Object Table	Object

Syntax
object.Rows

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetRows(LPLONG	pRetVal);

Remarks
For	the	QueryResults	object,	the	Rows	property	specifies	an	upper	limit	for	a
row	argument	used	when	extracting	a	value	from	a	result	set.

SQL-DMO

RpcEncrypt	Property
The	RpcEncrypt	property	specifies	whether	Microsoft®	Windows	NT®	4.0
RPC	encryption	is	enabled	(using	the	Multiprotocol	Net-Library)	on	an	instance
of	SQL	Server™	2000.

Applies	To

Registry2	Object

Syntax
object.RpcEncrypt	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetRpcEncrypt(LPBOOL	pRetVal);

HRESULT	SetRpcEncrypt(BOOL	NewValue);

Remarks
To	set	the	RpcEncrypt	property,	you	must	be	a	member	of	the	sysadmin	fixed
server	role.

Note		If	an	application	calls	RpcEncrypt	on	an	instance	of	SQL	Server	version
7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This	property
or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

RpcList	Property

RpcMaxCalls	Property

RpcMinCalls	Property

SQL-DMO

RpcList	Property
The	RpcList	property	returns	a	Microsoft®	Windows	NT®	4.0	RPC	protocol
list.

Applies	To

Registry2	Object

Syntax
object.RpcList	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

SQL-DMO	multistring	listing	RPC	protocols

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetRpcList(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetRpcList(SQLDMO_LPCSTR	NewValue);

Remarks
The	protocol	list	specifies	which	Net-Libraries	(for	example,	TCP/IP,	IPX/SPX,
or	named	pipes)	on	which	SQL	Server	can	listen.	RPC	protocol	increases
performance	by	eliminating	much	of	the	parameter	processing	and	statement
parsing	done	on	the	server.

For	more	information	about	setting	multistring	parameters,	see	Using	SQL-
DMO	Multistrings.

To	set	the	RpcList	property,	you	must	be	a	member	of	the	sysadmin	fixed	server
role.

IMPORTANT		Setting	the	RpcList	property	changes	registry	settings,	and	should
be	used	with	caution.

Note		If	an	application	calls	RpcList	on	an	instance	of	SQL	Server	version	7.0,
the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This	property	or
method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

RpcEncrypt	Property

RpcMaxCalls	Property

RpcMinCalls	Property

SQL-DMO

RpcMaxCalls	Property
The	RpcMaxCalls	property	specifies	the	maximum	number	of	Microsoft®
Windows	NT®	4.0	RPC	connections	that	can	be	active.

Applies	To

Registry2	Object

Syntax
object.RpcMaxCalls	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	the	maximum	number	of	calls

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetRpcMaxCalls(LPLONG	pRetVal);

HRESULT	SetRpcMaxCalls(long	NewValue);

Remarks
To	set	the	RpcMaxCalls	property,	you	must	be	a	member	of	the	sysadmin	fixed
server	role.

Note		If	an	application	calls	RpcMaxCalls	on	an	instance	of	SQL	Server	version
7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This	property
or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

RpcEncrypt	Property

RpcList	Property

RpcMinCalls	Property

SQL-DMO

RpcMinCalls	Property
The	RpcMinCalls	property	specifies	the	maximum	number	of	Microsoft®
Windows	NT®	4.0	RPC	connections	that	can	be	active.

Applies	To

Registry2	Object

Syntax
object.RpcMinCalls	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	the	maximum	number	of	calls

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetRpcMinCalls(LPLONG	pRetVal);

HRESULT	SetRpcMinCalls(long	NewValue);

Remarks
To	set	the	RpcMinCalls	property,	you	must	be	a	member	of	the	sysadmin	fixed
server	role.

Note		If	an	application	calls	RpcMinCalls	on	an	instance	of	SQL	Server	version
7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This	property
or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

RpcEncrypt	Property

RpcList	Property

RpcMaxCalls	Property

SQL-DMO

Rule	Property
The	Rule	property	identifies	a	data	integrity	constraint,	implemented	by	a
Microsoft®	SQL	Server™	2000	database	rule	and	bound	to	the	referenced
column	or	user-defined	data	type.

Applies	To

Column	Object UserDefinedDatatype	Object

Syntax
object.Rule	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	a	SQL	Server	rule	by	name

Data	Type
String

Modifiable
Read/write	for	the	Column	object.	Read-only	for	the	UserDefinedDatatype
object.

Prototype	(C/C++)
HRESULT	GetRule(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetRule(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
Setting	the	Rule	property	offers	an	alternate	method	for	binding	SQL	Server
rules	to	columns.

See	Also

BindToColumn	Method

BindToDatatype	Method

SQL-DMO

RuleOwner	Property
The	RuleOwner	property	returns	the	name	of	the	Microsoft®	SQL	Server™
2000	database	user	who	owns	the	rule	bound	to	the	referenced	column	or	user-
defined	data	type.

Applies	To

Column	Object UserDefinedDatatype	Object

Syntax
object.RuleOwner

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetRuleOwner(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
When	the	referenced	column	or	user-defined	data	type	has	no	rule	bound	to	it,
the	RuleOwner	property	returns	an	empty	string.

SQL-DMO

RunningValue	Property
The	RunningValue	property	returns	the	setting	used	by	Microsoft®	SQL
Server™	2000	for	the	referenced	configuration	option.

Applies	To

ConfigValue	Object

Syntax
object.RunningValue

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetRunningValue(LPLONG	pRetVal);

Remarks
Prior	to	changing	a	configurable	SQL	Server	operating	setting,	the
RunningValue	and	CurrentValue	properties	are	identical	for	the	ConfigValue
object	referencing	that	setting.	A	change	is	made	to	the	setting	by	using	the

CurrentValue	property,	and	the	values	will	vary	as	changes	are	applied.

For	more	information	about	using	the	ConfigValue	object	to	configure	an
instance	of	SQL	Server,	see	the	ConfigValue	Object.

SQL-DMO

S

SQL-DMO

SaLogin	Property
The	SaLogin	property	returns	TRUE	when	the	login	used	to	establish	a
connection	is	a	member	of	the	sysadmin	security	role.

Applies	To

RegisteredServer	Object SQLServer	Object

Syntax
object.SaLogin

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetSaLogin(LPBOOL	pRetVal);

SQL-DMO

SaturdayPagerEndTime	Property
The	SaturdayPagerEndTime	specifies	the	latest	time	of	day	at	which	the
referenced	operator	is	available	to	receive	alert	notification	by	pager.

Applies	To

Operator	Object

Syntax
object.SaturdayPagerEndTime	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Time	of	day	specified	using	a	Date	value

Data	Type
Date

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSaturdayPagerEndTime(LPLONG	pRetVal);

HRESULT	SetSaturdayPagerEndTime(long	NewValue);

Note		When	SQL-DMO	uses	a	scaled	long	integer	to	represent	a	time,	the

integer	is	built	as	a	sum	of	the	hour	scaled	by	10000,	the	minute	scaled	by	100,
and	the	seconds.	The	time	value	uses	a	24-hour	clock.	For	example,	the	time
1:03:09	P.M.	is	represented	by	the	long	integer	value	130309.

Remarks
Use	the	PagerDays	property	to	set	the	days	of	the	week	for	which	pager
notifications	will	be	sent	to	the	referenced	operator.	When	the	operator	is
available	for	pager	notification	on	Saturday,	use	the	SaturdayPagerStartTime
and	SaturdayPagerEndTime	properties	to	set	hours	of	availability.

When	the	end	page	time	is	less	than	the	start	page	time	for	an	operator,	the
interval	is	calculated	so	that	paging	occurs	through	12:00	A.M.

See	Also

PagerDays	Property

WeekdayPagerEndTime	Property

SundayPagerEndTime	Property

WeekdayPagerStartTime	Property

SundayPagerStartTime	Property

SQL-DMO

SaturdayPagerStartTime	Property
The	SaturdayPagerStartTime	specifies	the	earliest	time	of	day	at	which	the
referenced	operator	is	available	to	receive	alert	notification	by	pager.

Applies	To

Operator	Object

Syntax
object.SaturdayPagerStartTime	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Time	of	day	specified	using	a	Date	value

Data	Type
Date

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSaturdayPagerStartTime(LPLONG	pRetVal);

HRESULT	SetSaturdayPagerStartTime(long	NewValue);

Note		When	SQL-DMO	uses	a	scaled	long	integer	to	represent	a	time,	the

integer	is	built	as	a	sum	of	the	hour	scaled	by	10000,	the	minute	scaled	by	100,
and	the	seconds.	The	time	value	uses	a	24-hour	clock.	For	example,	the	time
1:03:09	P.M.	is	represented	by	the	long	integer	value	130309.

Remarks
Use	the	PagerDays	property	to	set	the	days	of	the	week	for	which	pager
notifications	will	be	sent	to	the	referenced	operator.	When	the	operator	is
available	for	pager	notification	on	Saturday,	use	the	SaturdayPagerStartTime
and	SaturdayPagerEndTime	properties	to	set	hours	of	availability.

When	the	end	page	time	is	less	than	the	start	page	time	for	an	operator,	the
interval	is	calculated	so	that	paging	occurs	through	12:00	A.M.

To	enable	an	operator	for	page	notification	for	Saturday	night	and	Sunday
morning

1.	 Set	PagerDays,	including	SQLDMOWeek_Saturday	and
SQLDMOWeek_Sunday.

2.	 Set	SaturdayPagerStartTime	to	the	time	of	day	at	which	notification
by	page	should	begin	on	Saturday.	For	example,	20:00:00	to	begin
paging	at	8:00	P.M.

3.	 Set	SundayPagerEndTime	to	the	time	of	day	at	which	notification	by
page	should	stop	on	Sunday.	For	example,	8:00:00	to	end	paging	at
8:00	A.M.

4.	 If	applicable,	set	SaturdayPagerEndTime	and
SundayPagerStartTime	to	values	controlling	end	of	paging	initiated
on	Friday	and	start	of	paging	for	Sunday	night	and	Monday	morning.

See	Also

PagerDays	Property

WeekdayPagerEndTime	Property

SundayPagerEndTime	Property

WeekdayPagerStartTime	Property

SundayPagerStartTime	Property

SQL-DMO

ScheduleID	Property
The	ScheduleID	property	returns	the	system-generated	identifier	of	a	system
table	record	maintaining	the	data	defining	the	scheduled	execution	for	a	job.

Applies	To

JobSchedule	Object

Syntax
object.ScheduleID

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetScheduleID(LPLONG	pRetVal);

SQL-DMO

Script2Type	Property
The	ScriptType	and	Script2Type	properties	configure	the	Transact-SQL	script
generated	and	used	to	copy	database	schema	in	a	transfer	of	schema	from	one
database	to	another.

Applies	To

Transfer	Object Transfer2	Object

Syntax
object.Script2Type	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	script	generation	options	as	described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetScript2Type(SQLDMO_SCRIPT2_TYPE*	pRetVal);

HRESULT	SetScript2Type(SQLDMO_SCRIPT2_TYPE	NewValue);

Settings

Constant Value Description
SQLDMOScript2_70Only 16777216Disable	features	available	in

instances	of	SQL	Server	2000	so
that	output	is	compatible	with	an
instance	of	SQL	Server	version
7.0.	Disabled	features	are:

Column-level	collation
User-defined	functions
Extended	properties
Instead	of	triggers	on	tables	and
views
Indexes	on	views
Indexes	on	computed	columns
Descending	indexes
Default	is	OFF

SQLDMOScript2_AgentAlertJob 2048 Generate	Transact-SQL	script
creating	Microsoft®	SQL
Server™	Agent	jobs	and	alerts.

SQLDMOScript2_AgentNotify 1024 When	scripting	an	alert,	generate
script	creating	notifications	for
the	alert.

SQLDMOScript2_AnsiFile 2 Generated	script	file	uses
multibyte	characters.	Code	page
1252	is	used	to	determine
character	meaning.

SQLDMOScript2_AnsiPadding 1 Generate	Transact-SQL	SET
ANSI_PADDING	ON	and	SET
ANSI_PADDDING	OFF
statements	before	and	after
CREATE	TABLE	statements	in
the	generated	script.	Applies	only
when	scripting	references	a	SQL
Server	table.

SQLDMOScript2_Default 0 No	scripting	options	specified.
SQLDMOScript2_EncryptPWD 128 Encrypt	passwords	with	script.

When	specified,
SQLDMOScript2_UnicodeFile
must	be	specified	as	well.

SQLDMOScript2_ExtendedOnly 67108864 Ignore	all
SQLDMO_SCRIPT_TYPE
settings.	Use	to	script	extended
property	settings	only.	Script
may	require	editing	prior	to
running	on	destination	database.

SQLDMOScript2_ExtendedProperty 4194304 Include	extended	property
scripting	as	part	of	object
scripting.

SQLDMOScript2_FullTextCat 2097152 Command	batch	includes
Transact-SQL	statements
creating	Microsoft	Search	full-
text	catalogs.

SQLDMOScript2_FullTextIndex 524288 Generated	script	includes
statements	defining	Microsoft
Search	full-text	indexing.
Applies	only	when	scripting
references	a	SQL	Server	table.
Include	security	identifiers	for
logons	scripted.

SQLDMOScript2_JobDisable 33554432Disable	the	job	at	the	end	of
script	creation.
SQLDMOScript2_PrimaryObject
must	also	be	specified.

SQLDMOScript2_LoginSID 8192 Include	security	identifiers	for
logins	scripted.

SQLDMOScript2_NoCollation 8388608 Do	not	script	the	collation	clause
if	source	is	an	instance	of	SQL
Server	version	7.0	or	later.	The
default	is	to	generate	collation.

SQLDMOScript2_NoFG 16 Generated	script	does	not	include

'ON	<filegroup>'	clause	directing
filegroup	use.	Applies	only	when
scripting	references	a	SQL
Server	table.

SQLDMOScript2_NoWhatIfIndexes 512 Do	not	script	hypothetical
indexes	used	to	implement	the
CREATE	STATISTICS
statement.	Applies	only	when
scripting	references	a	SQL
Server	table.

SQLDMOScript2_UnicodeFile 4 Generated	script	output	file	is	a
Unicode-character	text	file.

Remarks
Use	the	AddObject	and	AddObjectByName	methods	of	the	Transfer	object	to
build	a	list	of	SQL	Server	components	copied	from	one	database	to	another.
With	the	list	built,	configure	component	transfer	using	the	ScriptType	and
Script2Type	properties.

See	Also

AddObject	Method

ScriptType	Property

AddObjectByName	Method

SQL-DMO

ScriptType	Property
The	ScriptType	and	Script2Type	properties	configure	the	Transact-SQL	script
generated	and	used	to	copy	database	schema	in	a	transfer	of	schema	from	one
database	to	another.

Applies	To

Transfer	Object

Syntax
object.ScriptType	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	script	generation	options	as	described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetScriptType(SQLDMO_SCRIPT_TYPE*	pRetVal);

HRESULT	SetScriptType(SQLDMO_SCRIPT_TYPE	NewValue);

Settings

Constant Value Description
SQLDMOScript_Bindings 128 Generate	sp_bindefault	and	

statements.	Applies	only	when	scripting	references
a	Microsoft®	SQL	Server™	2000	table.

SQLDMOScript_ClusteredIndexes 8 Generate	Transact-SQL	defining	clustered	indexes.
Applies	only	when	scripting	references	a	SQL
Server	table.

SQLDMOScript_DatabasePermissions 32 Generate	Transact-SQL	database	privilege	defining
script.	Database	permissions	grant	or	deny
statement	execution	rights.

SQLDMOScript_DRI_All 532676608 All	values	defined	as	SQLDMOScript_DRI_...
combined	using	an	OR	logical	operator.

SQLDMOScript_DRI_AllConstraints 520093696 SQLDMOScript_DRI_Checks,
SQLDMOScript_DRI_Defaults,
SQLDMOScript_DRI_ForeignKeys,
SQLDMOScript_DRI_PrimaryKey,	and
SQLDMOScript_DRI_UniqueKeys	combined
using	an	OR	logical	operator.

SQLDMOScript_DRI_AllKeys 469762048 SQLDMOScript_DRI_ForeignKeys,
SQLDMOScript_DRI_PrimaryKey,
SQLDMOScript_DRI_UniqueKeys	combined
using	an	OR	logical	operator.

SQLDMOScript_DRI_Checks 16777216 Generated	script	creates	column-specified	CHECK
constraints.	Directs	scripting	when	declarative
referential	integrity	establishes	dependency
relationships.	Applies	only	when	scripting
references	a	SQL	Server	table.

SQLDMOScript_DRI_Clustered 8388608 Generated	script	creates	clustered	indexes.	Directs
scripting	when	declarative	referential	integrity
establishes	dependency	relationships.	Applies	only
when	scripting	references	a	SQL	Server	table.

SQLDMOScript_DRI_Defaults 33554432 Generated	script	includes	column-specified
defaults.	Directs	scripting	when	declarative
referential	integrity	establishes	dependency

relationships.	Applies	only	when	scripting
references	a	SQL	Server	table.

SQLDMOScript_DRI_ForeignKeys 134217728 Generated	script	creates	FOREIGN	KEY
constraints.	Directs	scripting	when	declarative
referential	integrity	establishes	dependency
relationships.	Applies	only	when	scripting
references	a	SQL	Server	table.

SQLDMOScript_DRI_NonClustered 4194304 Generated	script	creates	nonclustered	indexes.
Directs	scripting	when	declarative	referential
integrity	establishes	dependency	relationships.
Applies	only	when	scripting	references	a	SQL
Server	table.

SQLDMOScript_DRI_PrimaryKey 268435456 Generated	script	creates	PRIMARY	KEY
constraints.	Directs	scripting	when	declarative
referential	integrity	establishes	dependency
relationships.	Applies	only	when	scripting
references	a	SQL	Server	table.

SQLDMOScript_DRI_UniqueKeys 67108864 Generated	script	creates	candidate	keys	defined
using	a	unique	index.	Directs	scripting	when
declarative	referential	integrity	establishes
dependency	relationships.	Applies	only	when
scripting	references	a	SQL	Server	table.

SQLDMOScript_DRIWithNoCheck 536870912 When	using	SQLDMOScript_DRI_Checks,	or
SQLDMOScript_DRI_ForeignKeys,	generated
script	includes	the	WITH	NOCHECK	clause
optimizing	constraint	creation.	Applies	only	when
scripting	references	a	SQL	Server	table.

SQLDMOScript_Drops 1 Generate	Transact-SQL	to	remove	referenced
component.	Script	tests	for	existence	prior	attempt
to	remove	component.

SQLDMOScript_IncludeHeaders 131072 Generated	script	is	prefixed	with	a	header
containing	date	and	time	of	generation	and	other
descriptive	information.

SQLDMOScript_IncludeIfNotExists 4096 Transact-SQL	creating	a	component	is	prefixed	by
a	check	for	existence.	When	script	is	executed,
component	is	created	only	when	a	copy	of	the

named	component	does	not	exist.
SQLDMOScript_Indexes 73736 SQLDMOScript_ClusteredIndexes,

SQLDMOScript_NonClusteredIndexes,	and
SQLDMOScript_DRIIndexes	combined	using	an
OR	logical	operator.	Applies	to	both	table	and	view
objects.

SQLDMOScript_NoIdentity 1073741824Generated	Transact-SQL	statements	do	not	include
definition	of	identity	property,	seed,	and	increment.
Applies	only	when	scripting	references	a	SQL
Server	table.

SQLDMOScript_NonClusteredIndexes 8192 Generate	Transact-SQL	defining	nonclustered
indexes.	Applies	only	when	scripting	references	a
SQL	Server	table.

SQLDMOScript_ObjectPermissions 2 Include	Transact-SQL	privilege	defining	statements
when	scripting	database	objects.

SQLDMOScript_OwnerQualify 262144 Object	names	in	Transact-SQL	generated	to	remove
an	object	are	qualified	by	the	owner	of	the
referenced	object.	Transact-SQL	qualifies	the
object	name	using	the	current	object	owner.

SQLDMOScript_Permissions 34 SQLDMOScript_ObjectPermissions	and
SQLDMOScript_DatabasePermissions	combined
using	an	OR	logical	operator.

SQLDMOScript_PrimaryObject 4 Generate	Transact-SQL	creating	the	referenced
component.

SQLDMOScript_TimestampToBinary 524288 When	scripting	object	creation	for	a	table	or	user-
defined	data	type,	convert	specification	of
timestamp	data	type	to	binary(

SQLDMOScript_TransferDefault 422143 Default.	SQLDMOScript_PrimaryObject,
SQLDMOScript_Drops,SQLDMOScript_Bindings,
SQLDMOScript_ClusteredIndexes,
SQLDMOScript_NonClusteredIndexes,
SQLDMOScript_Triggers,
SQLDMOScript_ToFileOnly,
SQLDMOScript_Permissions,
SQLDMOScript_IncludeHeaders,
SQLDMOScript_Aliases,

SQLDMOScript_IncludeIfNotExists,	and
SQLDMOScript_OwnerQualify	combined	using	an
OR	logical	operator.

SQLDMOScript_Triggers 16 Generate	Transact-SQL	defining	triggers.	Applies
only	when	scripting	references	a	SQL	Server	table.

SQLDMOScript_UDDTsToBaseType 1024 Convert	specification	of	user-defined	data	types	to
the	appropriate	SQL	Server	base	data	type.	Applies
only	when	scripting	references	a	SQL	Server	table.

SQLDMOScript_UseQuotedIdentifiers -1 Use	quote	characters	to	delimit	identifier	parts
when	scripting	object	names.

Remarks
Use	the	AddObject	and	AddObjectByName	methods	of	the	Transfer	object	to
build	a	list	of	SQL	Server	components	copied	from	one	database	to	another.
With	the	list	built,	configure	component	transfer	using	the	ScriptType	and
Script2Type	properties.

See	Also

AddObject	Method

Script2Type	Property

AddObjectByName	Method

SQL-DMO

SecurityMode	Property	(DistributionDatabase,
IntegratedSecurity)
The	SecurityMode	property	directs	the	authentication	mode	used	by	an	instance
of	Microsoft®	SQL	Server™	2000	or	a	connection	to	a	SQL	Server	database
used	for	replication	distribution.

Applies	To

DistributionDatabase	Object IntegratedSecurity	Object

Syntax
object.SecurityMode	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	security	mode	as	described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write	for	the	IntegratedSecurity	object.	Write-only	for	the
DistributionDatabase	object.

Prototype	(C/C++)
HRESULT	GetSecurityMode(SQLDMO_SECURITY_TYPE*	pRetVal);

HRESULT	SetSecurityMode(SQLDMO_SECURITY_TYPE	NewValue);

Settings
Set	value	using	these	SQLDMO_SECURITY_TYPE	values.

Constant Value Description
SQLDMOSecurity_Integrated 1 Allow	Windows	Authentication

only.
SQLDMOSecurity_Mixed 2 Allow	Windows	Authentication	or

SQL	Server	Authentication.
SQLDMOSecurity_Normal 0 Allow	SQL	Server	Authentication

only.
SQLDMOSecurity_Unknown 9 Security	type	unknown.

Remarks
By	default,	an	instance	of	SQL	Server	performs	login	authentication	using	either
Windows	or	SQL	Server	authentication	at	the	direction	of	the	connection.

SQL-DMO

SecurityMode	Property	(ReplicationSecurity)
The	SecurityMode	property	specifies	an	authentication	mode	used	for	the
referenced	object's	initiated	connection	to	an	indicated	Distributor.

Applies	To

ReplicationSecurity	Object

Syntax
object.SecurityMode	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list.
value Long	integer	that	specifies	a	security	mode	as	described	in

Settings.

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSecurityMode(SQLDMO_SECURITY_TYPE*	pRetVal);

HRESULT	SetSecurityMode(SQLDMO_SECURITY_TYPE	NewValue);

Settings

Set	value	using	these	SQLDMO_SECURITY_TYPE	values.

Constant Value Description
SQLDMOSecurity_Integrated 1 Allow	Windows	Authentication

only.
SQLDMOSecurity_Mixed 2 Allow	Windows	Authentication	or

SQL	Server	Authentication.
SQLDMOSecurity_Normal 0 Allow	SQL	Server	Authentication

only.
SQLDMOSecurity_Unknown 9 Security	type	unknown.

SQL-DMO

SelectIntoBulkCopy	Property
The	SelectIntoBulkCopy	property	enables	bulk-logged	operation	on	a
Microsoft®	SQL	Server™	2000	database.

Applies	To

DBOption	Object

Syntax
object.SelectIntoBulkCopy	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSelectIntoBulkCopy(LPBOOL	pRetVal);

HRESULT	SetSelectIntoBulkCopy(BOOL	NewValue);

Remarks
If	TRUE,	bulk-logged	operations	are	allowed.

If	FALSE,	bulk-logged	operations	are	not	allowed.

IMPORTANT		Bulk-logged	operations	make	no	entry	in	a	database	transaction	log.
Therefore,	a	backup	of	the	transaction	log	does	not	protect	database	integrity.
After	performing	a	bulk-logged	operation,	a	database	backup	should	be
performed	to	capture	an	image	of	the	database.	For	more	information,	see
Selecting	a	Recovery	Model.

See	Also

RecoveryModel	Property

JavaScript:hhobj_1.Click()

SQL-DMO

Server	Property
The	Server	property	is	reserved	for	future	use.

Applies	To

JobStep	Object

SQL-DMO

ServerBCPDataFileType	Property
The	ServerBCPDataFileType	property	specifies	the	format	for	an	imported
data	file.

Applies	To

BulkCopy	Object

Syntax
object.ServerBCPDataFileType	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	bulk	copy	data	file	character	type	as	described	in
Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetServerBCPDataFileType(
SQLDMO_SERVERBCP_DATAFILE_TYPE	FAR*	pRetVal);

HRESULT	SetServerBCPDataFileType(

SQLDMO_SERVERBCP_DATAFILE_TYPE	NewValue);

Settings

Constant Value Description
SQLDMOBCPDataFile_Char 1 Read	a	data	file	as	character

data.	Interpret	the	data	file
using	the	character	set
specified.

SQLDMOBCPDataFile_Default 1 SQLDMOBCPDataFile_Char.
SQLDMOBCPDataFile_Native 2 Assume	bulk	copy	native	data

format	when	reading	the	data
file.

SQLDMOBCPDataFile_WideChar 4 Read	a	data	file	as	Unicode
character	data.

SQLDMOBCPDataFile_WideNative 8 Assume	bulk	copy	wide	native
data	format	when	reading	the
data	file.	Import	treats	all
character	data	types	as	wide
character	(Unicode).

Remarks
The	ServerBCPDataFileType	property	is	interpreted	only	when	importing	data
and	when	the	UseServerSideBCP	property	of	the	BulkCopy	object	is	TRUE.

When	ServerBCPDataFileType	is	SQLDMOBCPDataFile_Char,	specify	a
character	set	using	the	SetCodePage	method.

See	Also

SetCodePage	Method

UseServerSideBCP	Property

SQL-DMO

ServerBCPKeepIdentity	Property
The	ServerBCPKeepIdentity	property	controls	the	handling	of	existing	values
for	a	column	with	the	identity	property	when	importing	data	into	the	column.

Applies	To

BulkCopy	Object

Syntax
object.ServerBCPKeepIdentity	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetServerBCPKeepIdentity(LPBOOL	pRetVal);

HRESULT	SetServerBCPKeepIdentity(BOOL	NewValue);

Remarks
When	TRUE,	SQL-DMO	executes	a	SET	IDENTITY_INSERT	ON	statement
when	the	ImportData	method	of	a	Table	object	is	called.	Values	for	the	identity
column	existing	in	the	data	file	are	copied	to	the	referenced	table's	identity
column.

When	FALSE,	SQL-DMO	ignores	any	data	values	present	for	a	column	with	the
identity	property.	Microsoft®	SQL	Server™	2000	generates	data	values	for	the
column	using	the	column's	setting	for	identity	seed	and	increment.	The	default	is
FALSE.

The	ServerBCPKeepIdentity	property	is	interpreted	only	when	importing	data
and	when	the	UseServerSideBCP	property	of	the	BulkCopy	object	is	TRUE.

SQL-DMO

ServerBCPKeepNulls	Property
The	ServerBCPKeepNulls	property	controls	the	handling	of	missing	values	for
all	columns	accepting	NULL	and	possessing	a	default	value	constraint	when
importing	data.

Applies	To

BulkCopy	Object

Syntax
object.ServerBCPKeepNulls	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetServerBCPKeepNulls(LPBOOL	pRetVal);

HRESULT	SetServerBCPKeepNulls(BOOL	NewValue);

Remarks
When	TRUE,	NULL	is	inserted	when	missing	values	are	encountered	in	the	data
file.	The	default	constraint	does	not	supply	a	value	for	the	column.

When	FALSE,	the	default	constraint	provides	a	value	for	any	missing	values
encountered	in	the	data	file.	FALSE	is	the	default	value.

The	ServerBCPKeepNulls	property	is	interpreted	only	when	importing	data	and
when	the	UseServerSideBCP	property	of	the	BulkCopy	object	is	TRUE.

SQL-DMO

ServerID	Property
The	ServerID	property	returns	a	system-generated	number	that	uniquely
identifies	a	multiserver	administration	target	server.

Applies	To

TargetServer	Object

Syntax
object.ServerID

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetServerID(LPLONG	pRetVal);

SQL-DMO

ServerName	Property
The	ServerName	property	returns	the	network	name	of	an	instance	of
Microsoft®	SQL	Server™	2000	and	participating	in	multiserver	administration
as	a	target	server.

Applies	To

TargetServer	Object

Syntax
object.ServerName

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetServerName(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

ServiceName	Property
The	ServiceName	property	returns	the	computer	name	on	which	an	instance	of
Microsoft®	SQL	Server™	2000	is	running.

Applies	To

JobServer2	Object SQLServer2	Object

Syntax
object.ServiceName

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetServiceName(SQLDMO_LPBSTR	pRetVal);

Remarks
Use	the	ServiceName	property	in	conjunction	with	the	InstanceName	property
to	uniquely	identify	an	instance	of	a	server	running	on	a	computer.	The
InstanceName	and	ServiceName	properties	return	a	string.

Note		If	an	application	calls	ServiceName	on	an	instance	of	SQL	Server	version
7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This	property
or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

InstanceName	Property

SQL-DMO

Set	Property
The	Set	property	returns	TRUE	when	the	referenced	object	property	is
changeable.

Applies	To

Property	Object

Syntax
object.Set

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Remarks
When	TRUE,	the	property	referenced	is	read/write	or	write-only.	However,	an
application	attempt	to	change	the	property	value	is	not	guaranteed	to	succeed.
Constraints	for	the	referenced	object	property,	such	as	properties	that	can	only	be
set	prior	to	Microsoft®	SQL	Server™	component	creation,	can	cause	a	property
change	to	fail.

When	FALSE,	the	property	referenced	is	read-only.

SQL-DMO

SetHostName	Property
The	SetHostName	property	is	maintained	for	compatibility	with	earlier	versions
of	SQL-DMO.

Applies	To

IntegratedSecurity	Object

Syntax
object.SetHostName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSetHostName(LPBOOL	pRetVal);

HRESULT	SetSetHostName(BOOL	NewValue);

SQL-DMO

Severity	Property
The	Severity	property	identifies	a	Microsoft®	SQL	Server™	2000	error
message	severity	level	to	a	SQL	Server	Agent	alert.

Applies	To

Alert	Object

Syntax
object.Severity	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	SQL	Server	error	message	severity	level.	A
number	from	1	through	25	is	a	valid	severity	level

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSeverity(LPLONG	pRetVal)

HRESULT	SetSeverity(long	NewValue)

Remarks
A	SQL	Server	Agent	alert	is	raised	when	a	SQL	Server	process	raises	a	specific
error	or	an	error	of	a	specific	severity	level.	Setting	the	Severity	property	of	an
Alert	object	associates	an	alert	with	a	specific	SQL	Server	error	message
severity	level.

Setting	both	the	Severity	and	MessageID	properties	of	an	Alert	object	attempts
to	associate	an	alert	with	both	an	error	message	severity	level	and	an	error
message,	which	results	in	an	error.

See	Also

MessageID	Property

SQL-DMO

ShortMonth	Property
The	ShortMonth	property	returns	an	abbreviation	for	the	name	of	a	month	from
an	installed	Microsoft®	SQL	Server™	2000	language.

Applies	To

Language	Object

Syntax
object.ShortMonth(OrdinalMonth)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

OrdinalMonth

Long	integer	that	specifies	a	month	of	the	year

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetShortMonth(long	nMonth,	SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	ShortMonth	property	retrieves	an	abbreviated	month	name	by	ordinal	value
where	January	is	represented	as	month	1.	For	example,	a	Language	object
referencing	an	installed	SQL	Server	German	language	might	return	the	string
Okt	when	the	property	ShortMonth(10)	is	referenced.

SQL-DMO

ShortMonths	Property
The	ShortMonths	property	returns	a	SQL-DMO	multistring	containing	a	list	of
month	name	abbreviations	for	a	language.

Applies	To

Language	Object

Syntax
object.ShortMonths

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetShortMonths(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

The	list	is	ordered	from	month	1	(January)	through	month	12	(December).
Month	names	are	represented	as	a	three-character	abbreviation.

For	more	information	about	setting	multistring	parameters,	see	Using	SQL-
DMO	Multistrings.

SQL-DMO

ShowAdvancedOptions	Property
The	ShowAdvancedOptions	property	controls	ConfigValues	collection
membership.

Applies	To

Configuration	Object

Syntax
object.ShowAdvancedOptions	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetShowAdvancedOptions(LPBOOL	pRetVal);

HRESULT	SetShowAdvancedOptions(BOOL	NewValue);

Remarks
If	TRUE,	advanced	configuration	options	are	included	in	the	collection.

If	FALSE,	advanced	configuration	options	are	not	included.	FALSE	is	the
default	value.

IMPORTANT		Altering	the	value	of	ShowAdvancedOptions	refills	the
ConfigValues	collection.	Any	user	alteration	in	configuration	options	performed
before	the	ShowAdvancedOptions	value	change	are	applied	using	the	Transact-
SQL	RECONFIGURE	WITH	OVERRIDE	statement.

SQL-DMO

SingleUser	Property
The	SingleUser	property	exposes	one	method	of	constraining	user	access	to	a
Microsoft®	SQL	Server™	2000	database.

Applies	To

DBOption	Object

Syntax
object.SingleUser	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSingleUser(LPBOOL	pRetVal);

HRESULT	SetSingleUser(BOOL	NewValue);

Remarks
If	TRUE,	only	one	user	can	access	the	database	at	one	time.

If	FALSE,	multiple	users	can	access	the	database	at	one	time.

See	Also

DBOUseOnly	Property

ReadOnly	Property

SQL-DMO

Size	Property
The	Size	property	exposes	the	total	size,	in	megabytes,	of	the	Microsoft®	SQL
Server™	2000	component	referenced.

Applies	To

Database	Object LogFile	Object
DBFile	Object TransactionLog	Object
FileGroup	Object 	

Syntax
object.Size	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer

Data	Type
Long.

Modifiable
Read-only	for	the	Database,	FileGroup,	and	TransactionLog	objects.

The	Size	property	is	used	to	set	the	initial	size	of	operating	system	files
referenced	by	DBFile	and	LogFile	objects.	The	property	is	read/write	when
using	a	SQL-DMO	object	to	create	a	new	SQL	Server	database	or	log	file.	The
property	is	read-only	when	a	DBFile	or	LogFile	object	references	an	existing

component.

Prototype	(C/C++)
HRESULT	GetSize(LPLONG	pRetVal);

HRESULT	SetSize(long	NewValue);

SQL-DMO

SizeInKB	Property
The	SizeInKB	property	exposes	the	total	size,	in	kilobytes,	of	the	Microsoft®
SQL	Server™	2000	component	referenced.

Applies	To

Database2	Object LogFile	Object
DBFile	Object 	

Syntax
object.SizeInKB

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Float

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetSizeInKB(LPFLOAT	pRetVal);

SQL-DMO

SkipTapeHeader	Property
The	SkipTapeHeader	property	enables	or	disables	backup	operation	logic	that
verifies	that	correct	media	is	loaded.

Applies	To

Backup	Object

Syntax
object.SkipTapeHeader	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSkipTapeHeader(LPBOOL	pRetVal);

HRESULT	SetSkipTapeHeader(BOOL	NewValue);

Remarks
If	TRUE,	a	media	name	recorded	on	the	media	is	not	checked.	The	backup	set	is
appended	to	the	media.

If	FALSE,	a	recorded	media	name	is	checked.	When	using	SQL-DMO	to
perform	a	backup,	provide	the	media	name	using	the	MediaName	property.
FALSE	is	the	default	value.

Note		SQL-DMO	implements	backup	media	initialization	using	the	Initialize
property.	When	Initialize	is	TRUE,	SkipTapeHeader	enables	or	disables	logic
that	prevents	overwrite	of	unexpired	backup	sets	on	a	media.	For	more
information,	see	BACKUP.

JavaScript:hhobj_1.Click()

SQL-DMO

SkipTapeLabel	Property
The	SkipTapeLabel	property	enables	or	disables,	at	a	device	level,	backup
operation	logic	that	verifies	that	correct	media	is	loaded.

Applies	To

BackupDevice	Object

Syntax
object.SkipTapeLabel	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write	before	object	creation.	Read-only	when	referencing	an	existing
BackupDevice	object.

Prototype	(C/C++)
HRESULT	GetSkipTapeLabel(LPBOOL	pRetVal);

HRESULT	SetSkipTapeLabel(BOOL	NewValue);

SQL-DMO

SnapshotAgent	Property
The	SnapshotAgent	property	identifies	the	Microsoft®	SQL	Server™	2000
Agent	job	that	starts	the	replication	agent	responsible	for	snapshot	creation.

Applies	To
DistributionPublication	Object

Syntax
object.SnapshotAgent	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	a	SQL	Server	Agent	job	by	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSnapshotAgent(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetSnapshotAgent(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the

reference	using	SysFreeString.

SQL-DMO

SnapshotAvailable	Property
The	SnapshotAvailable	property	is	TRUE	when	an	initial	snapshot	of	article
data	is	available	to	Subscribers.

Applies	To

MergePublication	Object TransPublication	Object

Syntax
object.SnapshotAvailable	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSnapshotAvailable(LPBOOL	pRetVal);

HRESULT	SetSnapshotAvailable(BOOL	NewValue);

Remarks
When	used	with	the	TransPublication	object,	the	SnapshotAvailable	property
is	not	defined	and	always	returns	False	if	the	publication	is	not	set	for	immediate
synchronization.

SQL-DMO

SnapshotJobID	Property
The	SnapshotJobID	property	returns	a	system-generated	value	uniquely
identifying	the	Microsoft®	SQL	Server™	2000	Agent	job	that	implements	initial
snapshot-generation	of	third	party	published	article	data.

Applies	To

DistributionPublication2	Object TransPublication	Object
MergePublication	Object 	

Syntax
object.SnapshotJobID

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetSnapshotJobID(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	property	returns	an	empty	string	if	no	snapshot	job	is	associated	with	the
third-party	publication.	To	associate	a	snapshot	job	with	a	third-party
publication,	a	user	needs	to	create	a	Microsoft®	SQL	Server™	2000	Agent	job
that	implements	initial	snapshot-generation	of	third-party	published	article	data,
and	then	associate	the	snapshot	job	with	a	third-party	publication	by	setting
snapshot	job	name	using	the	SnapshotAgent	property	of	the
DistributionPublication2	object.

Note		If	an	application	calls	SnapshotJobID	on	an	instance	of	SQL	Server
version	7.0	with	the	DistributionPublication2	object,	the	constant,
SQLDMO_E_SQL80ONLY,	and	the	message	"This	property	or	method	requires
Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

SnapshotMethod	Property
The	SnapshotMethod	property	controls	creation	of	the	initial	snapshot	of
published	article	data.

Applies	To

MergePublication	Object TransPublication	Object

Syntax
object.SnapshotMethod	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	snapshot	creation	parameters	as	described	in
Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSnapshotMethod(SQLDMO_INITIALSYNC_TYPE*	pRetVal);

HRESULT	SetSnapshotMethod(SQLDMO_INITIALSYNC_TYPE	NewValue);

Settings
Set	value	using	these	SQLDMO_INITIALSYNC_TYPE	values.

Constant Value Description
SQLDMOInitSync_BCPChar 1 Use	Microsoft®	SQL	Server™

2000	bulk	copy	in	character
data	format	to	transfer	data	for
initial	synchronization.

SQLDMOInitSync_BCPNative 0 Use	SQL	Server	bulk	copy	in
native	data	format	to	transfer
data	for	initial	synchronization.

SQLDMOInitSync_Concurrent 3 Use	concurrent	snapshot
processing	(transactional
replication).

SQLDMOInitSync_ConcurrentChar 4 Concurrent	snapshot	generating
character	mode	BCP	files.
Required	when	the	AllowDTS
property	is	set	to	True.

SQLDMOInitSync_Default 0 SQLDMOInitSync_BCPNative.
SQLDMOInitSync_Max 4 Maximum	Initial

Synchronization	mode	value.
SQLDMOInitSync_Min 0 SQLDMOInitSync_BCPNative.
SQLDMOInitSync_Unknown 10 Bad	or	invalid	value.

Remarks
If	an	application	sets	SnapshotMethod	after	the	initial	snapshot	has	been
created,	a	new	snapshot	must	be	generated.	Snapshots	are	applied	when	the	next
scheduled	snapshot	agent	runs.

SQL-DMO

SnapshotObjectName	Property
The	SnapshotObjectName	identifies	the	Microsoft®	SQL	Server™	2000
database	object	providing	an	initial	snapshot	of	replicated	data	for	an	article.

Applies	To

MergeArticle	Object TransArticle	Object

Syntax
object.SnapshotObjectName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	a	SQL	Server	table	or	view	by	name

Data	Type
String

Modifiable
Read/write	for	a	TransArticle	object.	Read-only	for	a	MergeArticle	object.

Prototype	(C/C++)
HRESULT	GetSnapshotObjectName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetSnapshotObjectName(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
By	default,	the	database	object	providing	the	initial	snapshot	is	the	object
providing	replicated	data.	Override	the	initial	snapshot	source	object	to	control
the	data	populating	the	snapshot.

To	override	the	initial	snapshot

1.	 Set	the	ArticleType	property	to	indicate	manual	creation	of	the	initial
snapshot.	ArticleType	must	be	SQLDMORep_LogBasedManualBoth,
SQLDMORep_LogBasedManualSyncView,	or
SQLDMORep_ManualSyncView.

2.	 Set	the	SnapshotObjectName	and	SnapshotObjectOwner	properties
to	identify	the	snapshot	data	source	object.

3.	 To	generate	a	synchronizing	snapshot,	execute	the
ReInitializeAllSubscriptions	method	of	the	TransPublication	object
containing	the	referenced	transactional	replication	article.

Note		If	an	application	sets	SnapshotObjectName	with	the
TransArticle	object	after	the	initial	snapshot	has	been	created,	a	new
snapshot	must	be	generated.	Snapshots	are	applied	when	the	next
scheduled	snapshot	agent	runs.

SQL-DMO

SnapshotObjectOwner	Property
The	SnapshotObjectName	identifies	the	owner	of	the	Microsoft®	SQL
Server™	2000	database	object	providing	an	initial	snapshot	of	replicated	data	for
an	article.

Applies	To

MergeArticle	Object TransArticle	Object

Syntax
object.SnapshotObjectOwner	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	an	existing	SQL	Server	database	user	by	name

Data	Type
String

Modifiable
Read/write	for	a	TransArticle	object.	Read-only	for	a	MergeArticle	object.

Prototype	(C/C++)
HRESULT	GetSnapshotObjectOwner(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetSnapshotObjectOwner(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
For	more	information	about	SnapshotObjectOwner,	see	SnapshotObjectName
Property.

Note		If	an	application	sets	SnapshotOwnerName	with	the	TransArticle	object
after	the	initial	snapshot	has	been	created,	a	new	snapshot	must	be	generated.
Snapshots	are	applied	when	the	next	scheduled	snapshot	agent	runs.

SQL-DMO

SNMP	Property
The	SNMP	property	indicates	whether	Simple	Network	Management	Protocol
(SNMP)	is	installed	on	an	instance	of	Microsoft®	SQL	Server™	2000.

Applies	To

Registry2	Object

Syntax
object.SNMP

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetSNMP(LPBOOL	pRetVal);

Remarks
Using	SNMP,	you	can	monitor	Microsoft®	SQL	Server™	2000	across	different
platforms	(for	example,	Microsoft	Windows	NT®	4.0,	Microsoft	Windows®	98,
and	UNIX).	SNMP	applications	can	be	used	to	monitor	the	status	and

performance	of	instances	of	Microsoft	SQL	Server,	explore	defined	databases,
and	view	server	and	database	configuration	parameters.

Note		If	an	application	calls	SNMP	on	an	instance	of	SQL	Server	version	7.0,
the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This	property	or
method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

SNMPCurrentVersion	Property

SNMPExtensionAgents	Property

SNMPExtensionAgentsData	Property

SQL-DMO

SNMPCurrentVersion	Property
The	SNMPCurrentVersion	property	specifies	the	version	of	Simple	Network
Management	Protocol	(SNMP)	currently	installed	on	an	instance	of	Microsoft®
SQL	Server™	2000.

Applies	To

Registry2	Object

Syntax
object.SNMPCurrentVersion	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	the	current	version	of	SNMP

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSNMPCurrentVersion(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetSNMPCurrentVersion(THIS_	SQLDMO_LPCSTR	NewValue);

Remarks
To	set	the	SNMPCurrentVersion	property,	you	must	be	a	member	of	the
sysadmin	fixed	server	role.

Note		If	an	application	calls	SNMPCurrentVersion	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

SNMP	Property

SNMPExtensionAgents	Property

SNMPExtensionAgentsData	Property

SQL-DMO

SNMPExtensionAgents	Property
The	SNMPExtensionAgents	property	indicates	whether	Simple	Network
Management	Protocol	(SNMP)	extension	agents	are	installed	on	an	instance	of
Microsoft®	SQL	Server™	2000.

Applies	To

Registry2	Object

Syntax
object.SNMPExtensionAgents	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetSNMPExtensionAgents(LPBOOL	pRetVal);

Remarks
The	SQL	Server	SNMP	extension	agent	(Sqlsnmp.dll)	is	server	software	that
extends	the	functionality	of	the	SNMP	service.	The	SNMP	agent	processes

requests	for	data	and	data	objects	that	reside	on	the	local	server.

Note		If	an	application	calls	SNMPExtensionAgents	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

SNMP	Property

SNMPCurrentVersion	Property

SNMPExtensionAgentsData	Property

SQL-DMO

SNMPExtensionAgentsData	Property
The	SNMPExtensionAgentsData	property	retrieves	or	sets	the	value	of	the
SNMPExtensionAgents	property.

Applies	To

Registry2	Object

Syntax
object.SNMPExtensionAgentsData	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	contains	the	value

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSNMPExtensionAgentsData(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetSNMPExtensionAgentsData(SQLDMO_LPCSTR	NewValue);

Remarks
To	set	the	SNMPExtensionAgentsData	property,	you	must	be	a	member	of	the
sysadmin	fixed	server	role.

Note		If	an	application	calls	SNMPExtensionAgentsData	on	an	instance	of
SQL	Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the
message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

See	Also

SNMP	Property

SNMPCurrentVersion	Property

SNMPExtensionAgents	Property

SQL-DMO

SortOrder	Property
The	SortOrder	property	returns	a	string	describing	the	character	set	used	and
ordering	applied	for	an	instance	of	Microsoft®	SQL	Server™	2000.

Applies	To

Registry	Object

Syntax
object.SortOrder

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetSortOrder(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

Character	set	and	ordering	compatibility	between	instances	of	SQL	Server		can
positively	affect	operations	affecting	more	than	one	server.	For	example,
distributed	query	is	optimized	when	two	instances	are	character	set	and	order
compatible.	Character	set	and	order	are	established	at	installation.

SQL-DMO

SourceObjectName	Property
The	SourceObjectName	property	identifies	the	Microsoft®	SQL	Server™	2000
database	object	providing	article	data.

Applies	To

DistributionArticle	Object TransArticle	Object
MergeArticle	Object 	

Syntax
object.SourceObjectName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	a	SQL	Server	table,	view,	or	stored	procedure	by	name

Data	Type
String

Modifiable
Read/write	when	using	the	SQL-DMO	object	to	create	an	article.	Read-only	for
SQL-DMO	objects	referencing	existing	articles.

Prototype	(C/C++)
HRESULT	GetSourceObjectName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetSourceObjectName(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

SourceObjectOwner	Property
The	SourceObjectOwner	property	identifies	the	owner	of	the	Microsoft®	SQL
Server™	2000	database	object	providing	article	data.

Applies	To

DistributionArticle	Object TransArticle	Object
MergeArticle	Object 	

Syntax
object.SourceObjectName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	an	existing	SQL	Server	database	user	by	name

Data	Type
String

Modifiable
Read/write	when	using	the	SQL-DMO	object	to	create	an	article.	Read-only	for
SQL-DMO	objects	referencing	existing	articles.

Prototype	(C/C++)
HRESULT	GetSourceObjectOwner(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetSourceObjectOwner(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

SourceTranslateChar	Property
The	SourceTranslateChar	property	specifies	whether	to	perform	character	data
translation	on	the	source	server	during	a	transfer	operation.

Applies	To

Transfer2	Object

Syntax
object.SourceTranslateChar	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSourceTranslateChar(LPBOOL	pRetVal);

HRESULT	SetSourceTranslateChar(BOOL	NewValue);

Remarks
Performing	character	data	translation	during	a	transfer	operation	can
significantly	impact	server	performance	if	a	large	amount	of	data	must	be
translated.	The	SourceTranslateChar	property	is	set	to	TRUE	by	default.

Set	the	DestTranslateChar	property	to	TRUE	to	perform	character	translation
on	the	destination	server.

Set	SourceTranslateChar	to	TRUE	to	resume	character	translation	on	the
source	server.

See	Also

DestTranslateChar	Property

SQL-DMO

SpaceAllocatedOnFiles	Property
The	SpaceAllocatedOnFiles	property	returns	the	total	disk	resource	allocated
for	transaction	log	implementing	files.

Applies	To

TransactionLog	Object

Syntax
object.SpaceAllocatedOnFiles(Database)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Database

String	that	identifies	a	Microsoft®	SQL	Server™	database	by	name

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetSpaceAllocatedOnFiles(
SQLDMO_LPCSTR	strDatabase,
LPLONG	pRetVal);

Remarks
The	return	value	of	SpaceAllocatedOnFiles	represents	a	number	of	kilobytes.

SQL-DMO

SpaceAvailable	Property
The	SpaceAvailable	property	returns	the	amount	of	disk	resource	allocated	and
unused	in	operating	system	files	implementing	Microsoft®	SQL	Server™	2000
database	and	database	transaction	log	storage.

Applies	To

Database	Object TransactionLog	Object

Syntax
object.SpaceAvailable

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetSpaceAvailable(LPLONG	pRetVal);

Remarks
The	return	value	of	SpaceAvailable	represents	a	number	of	kilobytes.

SQL-DMO

SpaceAvailableInMB	Property
The	SpaceAvailableInMB	property	returns	the	amount	of	disk	resource
allocated	and	unused	in	operating	system	files	implementing	Microsoft®	SQL
Server™	2000	database	and	database	transaction	log	storage.

Applies	To

Database	Object TransactionLog	Object
DBFile	Object 	

Syntax
object.SpaceAvailableInMB

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Float,	for	Database	and	TransactionLog	objects.	The	figure	is	accurate	to	two
decimal	places.

Long,	for	DBFile	object.

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetSpaceAvailableInMB(LPLONG	pRetVal);

Or

HRESULT	GetSpaceAvailableInMB(LPFLOAT	pRetVal);

Remarks
The	return	value	of	SpaceAvailableInMB	represents	a	number	of	megabytes.

SQL-DMO

SpaceUsed	Property
The	SpaceUsed	property	returns	the	amount	of	disk	resource	used	to	store	data
implementing	the	referenced	Microsoft®	SQL	Server™	2000	index.

Applies	To

Index	Object

Syntax
object.SpaceUsed

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetSpaceUsed(LPLONG	pRetVal);

Remarks
The	return	value	of	SpaceUsed	represents	a	number	of	kilobytes.

SQL-DMO

SpxFlag	Property
The	SpxFlag	property	indicates	whether	an	NWLink	IPX/SPX	flag	is	set	on	an
instance	of	Microsoft®	SQL	Server™	2000.

Applies	To

Registry2	Object

Syntax
object.SpxFlag	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSpxFlag(LPBOOL	pRetVal);

HRESULT	SetSpxFlag(BOOL	NewValue);

Remarks
When	the	SpxFlag	property	is	set	to	TRUE,	SQL	Server	can	accept	client
connections	using	the	Novell	IPX/SPX	Net-Library.

To	set	the	SpxFlag	property,	you	must	be	a	member	of	the	sysadmin	fixed
server	role.

Note		If	an	application	calls	SpxFlag	on	an	instance	of	SQL	Server	version	7.0,
the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This	property	or
method	requires	Microsoft	SQL	Server	2000"	are	returned.

IMPORTANT		Setting	the	SpxFlag	property	changes	registry	settings,	and	should
be	used	with	caution.

See	Also

SpxPort	Property

SpxServiceName	Property

SQL-DMO

SpxPort	Property
The	SpxPort	property	specifies	the	NWLink	IPX/SPX	port	number	on	an
instance	of	Microsoft®	SQL	Server™	2000.

Applies	To

Registry2	Object

Syntax
object.SpxPort	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	the	port	number

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSpxPort(LPLONG	pRetVal);

HRESULT	SetSpxPort(long	NewValue);

Remarks
The	NWLink	IPX/SPX	port	number	is	the	number	of	the	SPX	socket	to	which
the	server	listens	for	connections.

To	set	the	SpxPort	property,	you	must	be	a	member	of	the	sysadmin	fixed
server	role.

IMPORTANT		Setting	the	SpxPort	property	changes	registry	settings,	and	should
be	used	with	caution.

Note		If	an	application	calls	SpxPort	on	an	instance	of	SQL	Server	version	7.0,
the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This	property	or
method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

SpxFlag	Property

SpxServiceName	Property

SQL-DMO

SpxServiceName	Property
The	SpxServiceName	property	specifies	the	name	of	the	NWLink	IPX/SPX
service	on	an	instance	of	Microsoft®	SQL	Server™	2000.

Applies	To

Registry2	Object

Syntax
object.SpxServiceName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	the	service	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSpxServiceName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetSpxServiceName(SQLDMO_LPCSTR	NewValue);

Remarks
To	set	the	SpxServiceName	property,	you	must	be	a	member	of	the	sysadmin
fixed	server	role.	Typically,	the	computer	name	of	the	server	(for	example,
ACCOUNTING1)	is	used	for	consistency.

Note		If	an	application	calls	SpxServiceName	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

IMPORTANT		Setting	the	SpxServiceName	property	changes	registry	settings,	and
should	be	used	with	caution.

See	Also

SpxFlag	Property

SpxPort	Property

SQL-DMO

SQLCurrentVersion	Property
The	SQLCurrentVersion	property	returns	the	current	instance	of	Microsoft®
SQL	Server™	2000.

Applies	To

Registry2	Object

Syntax
object.SQLCurrentVersion	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetSQLCurrentVersion(SQLDMO_LPBSTR	pRetVal);

Remarks
SQLCurrentVersion	retrieves	the	version	of	a	default	instance	of	SQL	Server
from	the	Registry	key	setting	in
SOFTWARE\\Microsoft\\MSSQLServer\\MSSQLServer\\CurrentVersion.	The

version	is	returned	in	the	form	8.00.078	where	8	is	the	major	version	number,	00
is	the	minor	version	number,	and	078	is	the	build	number.

Note		If	an	application	calls	SQLCurrentVersion	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

SQLDataRoot	Property
The	SQLDataRoot	property	identifies	the	default	operating-system	directory
implementing	storage	for	Microsoft®	SQL	Server™	2000	system	user-defined
databases.

Applies	To

Registry	Object

Syntax
object.SQLDataRoot	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	an	existing	operating	system	directory	by	path	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSQLDataRoot(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetSQLDataRoot(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

SQLMessageID	Property
The	SQLMessageID	property	identifies	a	Microsoft®	SQL	Server™	2000	error
message	by	message	number.

Applies	To

JobHistoryFilter	Object

Syntax
object.SQLMessageID	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	identifies	a	SQL	Server	error	message

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSQLMessageID(LPLONG	pRetVal);

HRESULT	SetSQLMessageID(long	NewValue);

Remarks
Set	SQLMessageID	to	filter	for	jobs	that,	as	part	of	processing,	generated	the
error	number	specified.	Set	SQLMessageID	to	-1	to	stop	filtering	by	error
message	raised.

SQL-DMO

SQLRootPath	Property
The	SQLRootPath	property	identifies	the	operating-system	directory	specified
as	the	root	directory	for	an	instance	of	Microsoft®	SQL	Server™	2000.

Applies	To

Registry	Object

Syntax
object.SQLRootPath	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSQLRootPath(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetSQLRootPath(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

SQLSeverity	Property
The	SQLSeverity	property	identifies	a	Microsoft®	SQL	Server™	2000	error
message	severity	level.

Applies	To

JobHistoryFilter	Object

Syntax
object.SQLSeverity	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	equal	to	-1	or	from	1	through	25

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSQLSeverity(LPLONG	pRetVal);

HRESULT	SetSQLSeverity(long	NewValue);

Remarks
Set	SQLSeverity	to	filter	for	jobs	that,	as	part	of	processing,	generated	an	error
with	the	specified	severity	level.	Set	SQLSeverity	to	-1	to	stop	filtering	by
raised	error	message	severity.

SQL-DMO

StandardLogin	Property
The	StandardLogin	property	identifies	a	Microsoft®	SQL	Server™	2000	login
record	used	by	the	referenced	replication	component	when	a	connection	to	an
instance	of	SQL	Server	is	required.

Applies	To

DistributionDatabase	Object ReplicationSecurity	Object

Syntax
object.StandardLogin	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	a	SQL	Server	login	record	by	name

Data	Type
String

Modifiable
Read/write	for	the	ReplicationSecurity	object.	Write-only	for	the
DistributionDatabase	object.

Prototype	(C/C++)
HRESULT	GetStandardLogin(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetStandardLogin(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	StandardLogin	property	is	evaluated	only	when	the	SQL-DMO	object
indicates	that	SQL	Server	Authentication	will	be	used	by	the	referenced
replication	component.	Use	the	SecurityMode	property	of	the	SQL-DMO	object
to	direct	authentication	mode	selection.

See	Also

SecurityMode	Property	(DistributionDatabase,	IntegratedSecurity)

SecurityMode	Property	(ReplicationSecurity)

SQL-DMO

StandardPassword	Property
The	StandardPassword	property	identifies	a	string	used	as	a	password	for	login
authentication	when	a	connection	to	an	instance	of	Microsoft®	SQL	Server™
2000	is	required.

Applies	To

DistributionDatabase	Object ReplicationSecurity	Object

Syntax
object.StandardPassword	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String

Data	Type
String

Modifiable
Read/write	for	the	ReplicationSecurity	object.	Write-only	for	the
DistributionDatabase	object.

Prototype	(C/C++)
HRESULT	GetStandardPassword(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetStandardPassword(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	StandardPassword	property	is	evaluated	only	when	the	SQL-DMO	object
indicates	that	SQL	Server	Authentication	will	be	used	by	the	referenced
replication	component.	Use	the	SecurityMode	property	of	the	SQL-DMO	object
to	direct	authentication	mode	selection.

See	Also

SecurityMode	Property	(DistributionDatabase,	IntegratedSecurity)

SecurityMode	Property	(ReplicationSecurity)

SQL-DMO

StandbyFiles	Property
The	StandbyFiles	property	specifies	the	name	of	an	undo	file	used	as	part	of	an
instance	of	Microsoft®	SQL	Server™	2000	imaging	strategy.

Applies	To

Restore	Object

Syntax
object.StandbyFiles	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

SQL-DMO	Multistring	that	identifies	an	operating	system	file	by	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetStandbyFiles(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetStandbyFiles(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
Database	log	restoration	with	undo	is	available	against	a	read-only	image	of	a
SQL	Server	database	and	offers	one	strategy	for	maintaining	a	standby	image	of
critical	instances.

For	more	information	about	setting	multistring	parameters,	see	Using	SQL-
DMO	Multistrings.

For	more	information	about	standby	installations,	see	Using	Standby	Servers.

JavaScript:hhobj_1.Click()

SQL-DMO

StartRunDate	Property
The	StartRunDate	property	filters	jobs	listed	in	the	JobServer	object
EnumJobHistory	method,	restricting	the	returned	QueryResults	object	result
set	to	only	those	jobs	whose	execution	date	matches	the	value	set.

Applies	To

JobHistoryFilter	Object

Syntax
object.StartRunDate	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Scaled,	long	integer	date	representation

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetStartRunDate(LPLONG	pRetVal);

HRESULT	SetStartRunDate(long	NewValue);

Remarks
Use	the	StartRunDate	and	StartRunTime	properties	to	restrict	result	set
membership	to	a	specific	execution	instance	of	the	job	identified	in	the	JobID	or
JobName	property.

Set	StartRunDate	to	zero	to	disable	filtering	by	execution	start	time.

Note		When	SQL-DMO	uses	a	scaled	long	integer	to	represent	a	date,	the	integer
is	built	as	a	sum	of	the	year	scaled	by	10000,	the	month	scaled	by	100,	and	the
day.	For	example,	the	date	April	19,	1997	is	represented	by	the	long	integer
value	19970419.

SQL-DMO

StartRunTime	Property
The	StartRunTime	property	filters	jobs	listed	in	the	JobServer	object
EnumJobHistory	method,	restricting	the	returned	QueryResults	object	result
set	to	only	those	jobs	whose	execution	time	matches	the	value	set.

Applies	To

JobHistoryFilter	Object

Syntax
object.StartRunTime	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Scaled,	long	integer	representation	of	a	time	of	day

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetStartRunTime(LPLONG	pRetVal);

HRESULT	SetStartRunTime(long	NewValue);

Remarks
Use	the	StartRunDate	and	StartRunTime	properties	to	restrict	result	set
membership	to	a	specific	execution	instance	of	the	job	identified	in	the	JobID	or
JobName	property.

Note		When	SQL-DMO	uses	a	scaled	long	integer	to	represent	a	time,	the
integer	is	built	as	a	sum	of	the	hour	scaled	by	10000,	the	minute	scaled	by	100,
and	the	seconds.	The	time	value	uses	a	24-hour	clock.	For	example,	the	time
1:03:09	P.M.	is	represented	by	the	long	integer	value	130309.

SQL-DMO

StartStepID	Property
The	StartStepID	property	identifies	the	first	step	executed	when	Microsoft®
SQL	Server™	2000	Agent	runs	the	referenced	job.

Applies	To

Job	Object

Syntax
object.StartStepID	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	identifies	an	existing	SQL	Server	Agent	job	step	by	user-
specified	identifier

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetStartStepID(LPLONG	pRetVal);

HRESULT	SetStartStepID(long	NewValue);

Remarks
SQL	Server	Agent	job	steps	are	identified	by	a	user-specified	integer	value.	If	no
value	is	specified	when	using	SQL-DMO	to	create	a	job,	job	steps	are	given	an
identifier	value	when	the	job	is	added	to	the	Jobs	collection	of	a	JobServer
object.

By	default,	the	StartStepID	value	is	the	value	of	the	StepID	property	in	the	first
ordinal	position	of	the	JobSteps	collection	of	the	Job	object.

SQL-DMO

Startup	Property
The	Startup	property	is	TRUE	when	the	referenced	stored	procedure	is
executed	automatically	when	the	Microsoft®	SQL	Server™	2000	service	starts.

Applies	To

StoredProcedure	Object

Syntax
object.Startup	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetStartup(LPBOOL	pRetVal);

HRESULT	SetStartup(BOOL	NewValue);

SQL-DMO

StartupAccount	Property
The	StartupAccount	property	returns	the	name	of	the	Microsoft®	Windows
NT®	4.0	security	account	used	by	SQL	Server	Agent	for	network	access
authentication.

Applies	To

JobServer	Object SQLServer2	Object

Syntax
object.StartupAccount

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetStartupAccount(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

Status	Property	(BackupDevice)
The	Status	property	returns	component	execution	or	integrity	state	information.

Applies	To

BackupDevice	Object

Syntax
object.Status

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetStatus(LPLONG	pRetVal);

Remarks
For	the	BackupDevice	object,	the	Status	property	is	maintained	for
compatibility	with	earlier	versions	of	SQL-DMO.

SQL-DMO

Status	Property	(Database)
The	Status	property	returns	component	execution	or	integrity	state	information.

Applies	To

Database	Object

Syntax

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

object.Status

Data	Type
Long,	enumerated

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetStatus(SQLDMO_DBSTATUS_TYPE*	pRetVal);

Returns
Interpret	the	Status	property	return	value	using	these	values.

Constant Value Description
SQLDMODBStat_All 34784 All	database	status	constants

combined	by	using	an	OR
logical	operator.

SQLDMODBStat_EmergencyMode 32768 Emergency	mode	has	been
initiated	on	the	referenced
database.

SQLDMODBStat_Inaccessible 992 SQLDMODBStat_Loading,
SQLDMODBStat_Offline,
SQLDMODBStat_Recovering,
and	SQLDMODBStat_Suspect
combined	using	an	OR	logical
operator.

SQLDMODBStat_Loading 32 Database	loading	is	underway
on	the	referenced	database.

SQLDMODBStat_Normal 0 Referenced	database	is
available	for	use.

SQLDMODBStat_Offline 512 Referenced	database	has	been
placed	offline	by	a	system	or
user	action.

SQLDMODBStat_Recovering 192 Database	recovery	is	underway
on	the	referenced	database.

SQLDMODBStat_Standby 1024 Referenced	database	defined	on
a	standby	server.

SQLDMODBStat_Suspect 256 Database	integrity	is	suspect	for
the	referenced	database.

SQL-DMO

Status	Property	(MergeArticle)
The	Status	property	returns	component	execution	or	integrity	state	information.

Applies	To

MergeArticle	Object

Syntax
object.Status	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	identifies	the	status	of	the	referenced	component	as
described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetStatus(SQLDMO_ARTSTATUS_TYPE*	pRetVal);

HRESULT	SetStatus(SQLDMO_ARTSTATUS_TYPE	NewValue);

Settings

Constant Value Description
SQLDMOArtStat_Active 2 Article	is	active.
SQLDMOArtStat_Conflicts 3 Conflicting	copies	of	article	data

exist.
SQLDMOArtStat_Errors 4 Agent	attempts	to	publish	the	article

or	resolve	conflicts	in	copies	of	the
article	have	resulted	in	errors.

SQLDMOArtStat_Inactive 0 Article	is	inactive.
SQLDMOArtStat_Unsynced 1 Initial	snapshot	of	article	has	not	been

made	or	has	not	been	retrieved	by	all
Subscribers.

SQL-DMO

Status	Property	(Services)
The	Status	property	returns	component	execution	or	integrity	state	information.

Applies	To

FullTextService	Object SQLServer	Object
JobServer	Object 	

Syntax
object.Status

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long,	enumerated

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetStatus(SQLDMO_SVCSTATUS_TYPE*	pStatus);

Returns
Interpret	the	Status	property	return	value	using	these	values.

Constant Value Description

SQLDMOSvc_Continuing 6 Service	execution	state	in	transition
from	paused	to	running.

SQLDMOSvc_Paused 2 Service	execution	is	paused.
SQLDMOSvc_Pausing 7 Service	execution	state	in	transition

from	running	to	paused.
SQLDMOSvc_Running 1 Service	is	running.
SQLDMOSvc_Starting 4 Service	execution	state	in	transition

from	stopped	to	running.
SQLDMOSvc_Stopped 3 Service	is	stopped.
SQLDMOSvc_Stopping 5 Service	execution	state	in	transition

from	running	to	stopped.
SQLDMOSvc_Unknown 0 Unable	to	determine	service	execution

state.

SQL-DMO

Status	Property	(Subscription	Objects)
The	Status	property	returns	component	execution	or	integrity	state	information.

Applies	To

DistributionSubscription	Object TransSubscription	Object
MergeSubscription	Object 	

Syntax
object.Status	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	identifies	the	status	of	the	referenced	component	as
described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetStatus(SQLDMO_SUBSTATUS_TYPE*	pRetVal);

HRESULT	SetStatus(SQLDMO_SUBSTATUS_TYPE	NewValue);

Settings

Constant Value Description
SQLDMOSubStat_Active 2 Subscription	is	active.	Agent	will

maintain	subscription.
SQLDMOSubStat_Default 1000 SQLDMOSubStat_Unknown.
SQLDMOSubStat_Inactive 0 Subscription	is	inactive.	Agent	will

not	maintain	subscription.
SQLDMOSubStat_Unknown 1000 Subscription	state	cannot	be

known.
SQLDMOSubStat_Unsynced 1 Subscription	has	not	been

synchronized.	Manual	or
automated	synchronization	must
occur	before	agent	can	maintain
subscription.

SQL-DMO

Status	Property	(TargetServer)
The	Status	property	returns	component	execution	or	integrity	state	information.

Applies	To

TargetServer	Object

Syntax
object.Status

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetStatus(LPLONG	pRetVal);

Returns
The	Status	property	is	returned	as	a	bit-packed	long.	One	or	more	of	the
following	values	can	be	returned.

Constant Value Description

SQLDMOTargetServerStatus_Blocked 4 An	instance	of
Microsoft®	SQL
Server™	2000	is
visible.	SQL	Server
Agent	is	blocked.

SQLDMOTargetServerStatus_Normal 1 An	instance	of	SQL
Server	is	visible.
SQL	Server	Agent
is	known	to	be
running.

SQLDMOTargetServerStatus_SuspectedOffline 2 An	Instance	of	SQL
Server	is	visible.
SQL	Server	Agent
execution	state
cannot	be
determined.

SQLDMOTargetServerStatus_Unknown 0 Network	error
prevents
determination	of
referenced	server
and	SQL	Server
Agent	state.

SQL-DMO

StatisticsIndex	Property
The	StatisticsIndex	property	directs	Index	object	property	evaluation	when
using	the	object	to	create	a	Microsoft®	SQL	Server™	2000	index.

Applies	To

Index	Object

Syntax
object.StatisticsIndex	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write	before	index	creation.	Read-only	when	referencing	an	existing	index.

Prototype	(C/C++)
HRESULT	GetStatisticsIndex(LPBOOL	pRetVal);

HRESULT	SetStatisticsIndex(BOOL	NewVal);

Remarks
SQL	Server	query	optimization	relies,	in	part,	on	data	distribution	statistics
maintained	on	indexes.	To	aid	query	optimization,	SQL	Server	can	generate	data
distribution	statistics	for	one	or	more	columns	in	a	table	without	imposing
overhead	associated	with	index	maintenance.	SQL-DMO	implements	data
distribution	statistics	creation	using	the	Index	object	and	StatisticsIndex
property.

SQL-DMO

StatusInfoRefetchInterval	Property
The	StatusInfoRefetchInterval	property	controls	the	periodic,	automatic	update
of	status	information	maintained	in	SQL-DMO	objects.

Applies	To

SQLServer	Object

Syntax
object.StatusInfoRefetchInterval(StatusInfo)	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

StatusInfo

Long	integer	that	specifies	a	status	information	type	as	described	in	Settings

value

Long	integer	that	specifies	a	number	of	seconds

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetStatusInfoRefetchInterval(

SQLDMO_STATUSINFO_TYPE	StatusInfoType,
LPLONG	pRefetchSeconds);

HRESULT	SetStatusInfoRefetchInterval(
SQLDMO_STATUSINFO_TYPE	StatusInfoType,
long	RefetchSeconds);

Settings

Constant Value Description
SQLDMOStatInfo_All 7 Used	when	setting

StatusInfoRefetchInterval
only.	Set	all	values	equal.

SQLDMOStatInfo_AutoVerifyConnection 4 Interval	for	testing	broken
connection.

SQLDMOStatInfo_DatabaseSpace 2 Interval	for	retrieving	space
available	in	databases
referenced	by	Database
objects	active	in	the
application.

SQLDMOStatInfo_DatabaseStatus 1 Interval	for	retrieving
database	status	information,
visible	in	the	Status
property,	of	active
Database	objects		in	the
application.

SQLDMOStatInfo_Unknown 0 Bad	or	invalid	value.

Remarks
When	an	application	connects	a	SQLServer	object	to	an	instance	of	Microsoft®
SQL	Server™	2000,	SQL-DMO	automates	the	retrieval	of	some	status
information	that	allows	application	action	based	on	changes	in	status	for	some
SQL	Server	components.

By	default,	periodic	update	of	status	information	is	performed	every	30	seconds.

Set	a	status	interval	value	to	0	to	stop	periodic	status	information	update.	The
following	example	illustrates	creating	a	SQLServer	object,	then	configuring
status	information	periodic	update	by	disabling	all	updating,	then	enabling	only	a
test	for	broken	connection.

'	Create	the	SQLServer	object.
Dim	oSQLServer	as	New	SQLDMO.SQLServer

'	Disable	all	periodic	updating.
oSQLServer.StatusInfoRefetchInterval(SQLDMOStatInfo_All)	=	0

'	Enable	broken	connection	detection,	setting	to	test	every	five	seconds.
oSQLServer.StatusInfoRefetchInterval(_	
		SQLDMOStatInfo_AutoVerifyConnection)	=	5

SQL-DMO

StepID	Property
The	StepID	property	is	a	user-defined,	long	integer	identifying	a	Microsoft®
SQL	Server™	2000	Agent	job	step.

Applies	To

JobStep	Object

Syntax
object.StepID	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetStepID(LPLONG	pRetVal);

HRESULT	SetStepID(long	NewValue);

Remarks
When	using	SQL-DMO	to	define	the	steps	of	a	job,	set	StepID	as	part	of	job
step	creation.	A	value	specified	for	StepID	is	used	to	define	the	first	step
executed	when	SQL	Server	Agent	runs	the	job,	and	is	used	in	properties
controlling	job	step	execution	flow.

See	Also

OnFailStep	Property

StartStepID	Property

OnSuccessStep	Property

SQL-DMO

StepSubsystem	Property
The	StepSubsystem	property	controls	job	enumeration	methods,	filtering	for
any	jobs	with	any	step	defined	to	use	the	subsystem	specified.

Applies	To

JobFilter	Object

Syntax
object.StepSubsystem	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	a	Microsoft®	SQL	Server™	2000	Agent	job	step
subsystem	by	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetStepSubsystem(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetStepSubsystem(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
Most	commonly,	a	job	step	will	use	either	the	ActiveScripting,	CmdExec,	or
TSQL	subsystem.	Other	job	step	subsystems	exist.	Job	step	subsystem	names
can	be	enumerated	using	the	EnumSubSystems	method.

See	Also

EnumSubSystems	Method

SQL-DMO

Subscriber	Property
The	Subscriber	property	specifies	the	subscribing	data	source	for	a	publisher-
initiated	(push)	subscription.

Applies	To

DistributionSubscription	Object TransSubscription	Object
MergeSubscription	Object 	

Syntax
object.Subscriber	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	a	subscribing	data	source	by	name

Data	Type
String

Modifiable
Read/write	when	using	the	SQL-DMO	object	to	create	a	new	push	subscription.
Read	only	when	the	object	references	an	existing	push	subscription.

Prototype	(C/C++)
HRESULT	GetSubscriber(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetSubscriber(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

SubscriberIdentityRangeSize	Property
The	SubscriberIdentityRangeSize	property	specifies	the	identity	range	size	of
a	table	at	the	Subscriber.

Applies	To

MergeArticle2	Object TransArticle2	Object

Syntax
object.SubscriberIdentityRangeSize	[=	value]

Parts
Object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Value

Long	integer	that	specifies	the	maximum	number	of	new	rows	that	can	be
entered	into	the	table

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSubscriberIdentityRangeSize(LONG64	*pRetVal);

HRESULT	(SetSubscriberIdentityRangeSize(LONG64	NewValue);

Remarks
The	identity	range	specifies	the	maximum	number	of	new	rows	that	can	be
inserted	into	an	identity	column	in	a	table	at	a	Publisher	or	Subscriber	before
another	identity	range	must	be	allocated.	Use	the	IdentityRangeThreshold
property	to	control	when	an	identity	range	must	be	allocated.

Prior	to	setting	the	SubscriberIdentityRangeSize	property,	set	the
AutoIdentityRange	property	to	TRUE.

Note		If	an	application	calls	SubscriberIdentityRangeSize	on	an	instance	of
SQL	Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the
message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

See	Also

AutoIdentityRange	Property

IdentityRangeThreshold	Property

PublisherIdentityRangeSize	Property

SQL-DMO

SubscriberLogin	Property
The	SubscriberLogin	property	identifies	a	Microsoft®	SQL	Server™	2000
login	record	used	by	the	referenced	replication	component	when	a	connection	to
an	instance	of	SQL	Server	is	required.

Applies	To

MergePullSubscription	Object TransPullSubscription	Object

Syntax
object.SubscriberLogin	=	value

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	a	login	on	the	Distributor

Data	Type
String

Modifiable
Write-only

Prototype	(C/C++)
HRESULT	SetSubscriberLogin(SQLDMO_LPCSTR	NewValue);

Remarks

The	SubscriberLogin	property	is	evaluated	only	when	the	SQL-DMO	object
indicates	that	SQL	Server	Authentication	is	used	by	the	referenced	replication
component.	Use	the	SubscriberSecurityMode	property	of	the	SQL-DMO
object	to	direct	authentication	mode	selection.

SQL-DMO

SubscriberPassword	Property
The	SubscriberPassword	property	specifies	a	string	used	as	a	password	for
login	authentication	when	a	connection	to	an	instance	of	Microsoft®	SQL
Server™	2000	is	required.

Applies	To

MergePullSubscription	Object TransPullSubscription	Object

Syntax
object.SubscriberPassword	=	value

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String

Data	Type
String

Modifiable
Write-only

Prototype	(C/C++)
HRESULT	SetSubscriberPassword(SQLDMO_LPCSTR	NewValue);

Remarks

The	SubscriberPassword	property	is	evaluated	only	when	the	SQL-DMO
object	indicates	that	SQL	Server	Authentication	will	be	used	by	the	referenced
replication	component.	Use	the	SubscriberSecurityMode	property	of	the	SQL-
DMO	object	to	direct	authentication	mode	selection.

SQL-DMO

SubscriberSecurityMode	Property
The	SubscriberSecurityMode	property	is	used	to	configure	the	authentication
mode	used	for	connections	originated	by	the	agent	implementing	a	Subscriber-
initiated	subscription.

Applies	To

MergePullSubscription	Object TransPullSubscription	Object

Syntax
object.SubscriberSecurityMode	=	value

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	or	constant	value	as	described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Write-only

Prototype	(C/C++)
HRESULT	SetSubscriberSecurityMode(
SQLDMO_SECURITY_TYPE	NewValue);

Settings
Set	value	using	these	SQLDMO_SECURITY_TYPE	values.

Constant Value Description
SQLDMOSecurity_Integrated 1 Allow	Windows	Authentication

only
SQLDMOSecurity_Mixed 2 Allow	Windows	Authentication	or

SQL	Server	Authentication
SQLDMOSecurity_Normal 0 Allow	SQL	Server	Authentication

only
SQLDMOSecurity_Unknown 9 Security	type	unknown

SQL-DMO

SubscriberType	Property	(MergePullSubscription,
MergeSubscription)
The	SubscriberType	property	defines	subscription	attributes.

Applies	To

MergePullSubscription	Object MergeSubscription	Object

Syntax
object.SubscriberType	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	or	constant	value	as	described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write	when	using	the	SQL-DMO	object	to	create	a	subscription.

Read-only	when	the	object	references	an	existing	subscription.

Prototype	(C/C++)
HRESULT	GetSubscriberType(
SQLDMO_MERGESUBSCRIBER_TYPE*	pRetVal);

HRESULT	SetSubscriberType(
SQLDMO_MERGESUBSCRIBER_TYPE	NewValue);

Settings
Set	the	value	argument	using	these	SQLDMO_TRANSUBSCRIBER_TYPE
values.

Constant Value Description
SQLDMOTranSubscriber_Default 0 SQLDMOTranSubscriber_ReadOnly.
SQLDMOTranSubscriber_Failover 3 Transactional	Immediate	Updating

Subscriber	with	capability	to	fail
over	to	queued	Subscriber.

SQLDMOTranSubscriber_Queued 2 Subscriber	update	to	a	publication
article	is	applied	as	a	queued
transaction.

SQLDMOTranSubscriber_ReadOnly 0 Default.	Subscriber	update	to	any
publication	article	affects	only	the
image	maintained	at	the	Subscriber.

SQLDMOTranSubscriber_Synchronous 1 Subscriber	update	to	a	publication
article	is	applied	in	a	distributed
transaction,	updating	the	Publisher-
maintained	image	for	article	data	or
failing	entirely.

SQLDMOTranSubscriber_Unknown 256 Bad	or	invalid	value.

SQL-DMO

SubscriberType	Property	(TransPullSubscription,
TransSubscription)
The	SubscriberType	property	defines	subscription	behavior	when	data
maintained	in	a	subscribed-to	article	is	altered	at	the	Subscriber.

Applies	To

TransPullSubscription	Object TransSubscription	Object

Syntax
object.SubscriberType	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	or	constant	value	as	described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write	when	using	the	SQL-DMO	object	to	create	a	subscription.

Read-only	when	the	object	references	an	existing	subscription.

Prototype	(C/C++)
HRESULT	GetSubscriberType(

SQLDMO_TRANSUBSCRIBER_TYPE*	pRetVal);

HRESULT	SetSubscriberType(
SQLDMO_TRANSUBSCRIBER_TYPE	NewValue);

Settings

Constant Value Description
SQLDMOTranSubscriber_Default 0 SQLDMOTranSubscriber_ReadOnly
SQLDMOTranSubscriber_ReadOnly 0 Subscriber	update	to	any	publication

article	affects	only	the	image
maintained	at	the	Subscriber.

SQLDMOTranSubscriber_Synchronous 1 Subscriber	update	to	a	publication
article	is	applied	in	a	distributed
transaction,	updating	the	Publisher-
maintained	image	for	article	data	or
failing	entirely.

SQL-DMO

SubscriptionDB	Property
The	SubscriptionDB	property	specifies	the	database	on	the	Subscriber	used	to
maintain	images	of	articles	retrieved	by	the	subscription.

Applies	To

DistributionSubscription	Object TransSubscription	Object
MergeSubscription	Object 	

Syntax
object.SubscriptionDB	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	an	existing	Microsoft®	SQL	Server™	2000	database	by
name

Data	Type
String

Modifiable
Read/write	when	using	the	SQL-DMO	object	to	create	a	subscription.

Read-only	when	the	object	references	an	existing	subscription.

Prototype	(C/C++)

HRESULT	GetSubscriptionDB(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetSubscriptionDB(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

SQL-DMO

SubscriptionID	Property
The	SubscriptionID	property	returns	the	subscription	ID,	which	is	a	unique
identifier,	as	a	string.

Applies	To

TransPullSubscription2	Object MergePullSubscription2	Object

Syntax

object.SubscriptionID

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type

String

Modifiable

Read-only

Prototype	(C/C++)

HRESULT	GetSubscriptionID(SQLDMO_LPBSTR	pRetVal);

Remarks

When	cleaning	up	anonymous	agent	meta	data	at	a	Distributor,	an	application
can	retrieve	the	subscription	ID	using	the	SubscriptionID	property.	The
application	can	then	use	the	value	in	the	bstrSubscriptionID	parameter	of	the
CleanUpAnonymousAgentInfo	method.

Note		If	an	application	calls	SubscriptionID	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

CleanUpAnonymousAgentInfo	Method

SQL-DMO

SubscriptionType	Property
The	SubscriptionType	specifies	direction	and	Publisher-visibility	for	a
replication	subscription.

Applies	To

DistributionSubscription	Object TransPullSubscription	Object
MergePullSubscription	Object TransSubscription	Object
MergeSubscription	Object 	

Syntax
object.SubscriptionType	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	type	of	subscription	as	described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read-only	for	the	MergeSubscription	and	TransSubscription	objects.
Read/write	for	all	other	SQL-DMO	subscription	objects	when	using	the	object	to
create	a	replication	subscription.

Prototype	(C/C++)

HRESULT	GetSubscriptionType(
SQLDMO_SUBSCRIPTION_TYPE*	pRetVal);

HRESULT	SetSubscriptionType(
SQLDMO_SUBSCRIPTION_TYPE	NewValue);

Settings

Constant Value Description
SQLDMOSubscription_All 3 SQLDMOSubscription_Pull	and

SQLDMOSubscription_Anonymous
combined	using	an	OR	logical
operator.

SQLDMOSubscription_Anonymous 2 Subscription	is	anonymous.	Valid
for	Subscriber-originated
subscriptions	only.

SQLDMOSubscription_Default 0 SQLDMOSubscription_Push.
SQLDMOSubscription_Pull 1 Subscription	is	Subscriber-

originated.
SQLDMOSubscription_Push 0 Subscription	is	Publisher	originated.

Remarks
The	SQL-DMO	object	used	to	define	a	subscription	determines	whether	the
subscription	is	Publisher-originated	(push)	or	Subscriber-initiated	(pull).	When
using	SQL-DMO	to	configure	replication,	use	SubscriptionType	when	creating
anonymous	pull	subscriptions.

SQL-DMO

SubsetFilterClause	Property
The	SubsetFilterClause	property	specifies	a	Transact-SQL	WHERE	clause	used
to	partition	data	horizontally	in	the	merge	replication	article.

Applies	To

MergeArticle	Object

Syntax
object.SubsetFilterClause	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	of	1,002	characters	or	less	that	specifies	a	Transact-SQL	WHERE
clause

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSubsetFilterClause(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetSubsetFilterClause(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
If	an	application	sets	SubsetFilterClause	after	the	initial	snapshot	has	been
created,	a	new	snapshot	must	be	generated	and	reapplied	to	each	subscription.
Snapshots	are	applied	when	the	next	scheduled	snapshot	and	merge	agent	run.

SQL-DMO

SubSystem	Property
The	SubSystem	property	specifies	the	Microsoft®	SQL	Server™	2000	Agent
execution	subsystem	used	to	interpret	job	step	task-defining	text.

Applies	To

JobStep	Object

Syntax
object.SubSystem	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	an	existing	SQL	Server	Agent	job	step	subsystem	by
name.	TSQL	is	the	default.

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSubSystem(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetSubSystem(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
Most	commonly,	a	job	step	will	use	either	the	ActiveScripting,	CmdExec,	or
TSQL	subsystem.	Other	job	step	subsystems	exist.	Job	step	subsystem	names
can	be	enumerated	using	the	EnumSubSystems	method.

When	using	SQL-DMO	to	create	or	modify	SQL	Server	Agent	jobs,	the	job	step
execution	subsystem	chosen	using	the	SubSystem	property	defines	applicability
and	interpretation	of	other	properties	of	the	JobStep	object.

For	example,	when	SubSystem	is	TSQL,	Transact-SQL	is	used	in	the	task-
defining	text	specified	using	the	Command	property,	and	the	DatabaseName
and	DatabaseUserName	properties	are	applicable.	When	SubSystem	is
CmdExec,	an	operating	system	command	is	specified	using	the	Command
property,	and	the	CmdExecSuccessCode	and	OSRunPriority	properties	are
applicable.

See	Also

EnumSubSystems	Method

SQL-DMO

SundayPagerEndTime	Property
The	SundayPagerEndTime	specifies	the	latest	time	of	day	at	which	the
referenced	operator	is	available	to	receive	alert	notification	by	pager.

Applies	To

Operator	Object

Syntax
object.SundayPagerEndTime	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Time	of	day	specified	using	a	Date	value

Data	Type
Date

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSundayPagerEndTime(LPLONG	pRetVal);

HRESULT	SetSundayPagerEndTime(long	NewValue);

Note		When	SQL-DMO	uses	a	scaled	long	integer	to	represent	a	time,	the

integer	is	built	as	a	sum	of	the	hour	scaled	by	10000,	the	minute	scaled	by	100,
and	the	seconds.	The	time	value	uses	a	24-hour	clock.	For	example,	the	time
1:03:09	P.M.	is	represented	by	the	long	integer	value	130309.

Remarks
Use	the	PagerDays	property	to	set	the	days	of	the	week	for	which	pager
notifications	will	be	sent	to	the	referenced	operator.	When	the	operator	is
available	for	pager	notification	on	Sunday,	use	the	SundayPagerStartTime	and
SundayPagerEndTime	properties	to	set	hours	of	availability.

When	the	end	page	time	is	less	than	the	start	page	time	for	an	operator,	the
interval	is	calculated	so	that	paging	occurs	through	12:00	A.M.

See	Also

PagerDays	Property

WeekdayPagerEndTime	Property

SaturdayPagerEndTime	Property

WeekdayPagerStartTime	Property

SaturdayPagerStartTime	Property

SQL-DMO

SundayPagerStartTime	Property
The	SundayPagerStartTime	specifies	the	earliest	time	of	day	at	which	the
referenced	operator	is	available	to	receive	alert	notification	by	pager.

Applies	To

Operator	Object

Syntax
object.SundayPagerStartTime	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Time	of	day	specified	using	a	Date	value

Data	Type
Date

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSundayPagerStartTime(LPLONG	pRetVal);

HRESULT	SetSundayPagerStartTime(long	NewValue);

Note		When	SQL-DMO	uses	a	scaled	long	integer	to	represent	a	time,	the

integer	is	built	as	a	sum	of	the	hour	scaled	by	10000,	the	minute	scaled	by	100,
and	the	seconds.	The	time	value	uses	a	24-hour	clock.	For	example,	the	time
1:03:09	P.M.	is	represented	by	the	long	integer	value	130309.

Remarks
Use	the	PagerDays	property	to	set	the	days	of	the	week	for	which	pager
notifications	will	be	sent	to	the	referenced	operator.	When	the	operator	is
available	for	pager	notification	on	Sunday,	use	the	SundayPagerStartTime	and
SundayPagerEndTime	properties	to	set	hours	of	availability.

When	the	end	page	time	is	less	than	the	start	page	time	for	an	operator,	the
interval	is	calculated	so	that	paging	occurs	through	12:00	A.M.

See	Also

PagerDays	Property

WeekdayPagerEndTime	Property

SaturdayPagerEndTime	Property

WeekdayPagerStartTime	Property

SaturdayPagerStartTime	Property

SQL-DMO

SuperSocketEncrypt	Property
The	SuperSocketEncrypt	property	specifies	whether	Super	Sockets	Net-
Library	encryption	is	enabled	on	an	instance	of	Microsoft®	SQL	Server™	2000.

Applies	To

Registry2	Object

Syntax
object.SuperSocketEncrypt	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSuperSocketEncrypt(LPBOOL	pRetVal);

HRESULT	SetSuperSocketEncrypt(BOOL	NewValue);

Remarks
Before	you	can	enable	SSL	encryption,	you	must	meet	these	conditions:

The	database	computer	must	be	running	an	instance	of	SQL	Server
2000	and	be	assigned	a	server	certificate	from	a	public	certificate
authority.

The	application	must	use	the	SQL	Server	2000	client	components	and
the	application	computer	must	be	assigned	a	root	CA	certificate	from
the	same	certificate	authority	that	issued	the	server	certificate	to	the
database	computer.	The	application	must	connect	to	an	instance	of	SQL
Server	2000.	

You	must	be	a	member	of	the	sysadmin	fixed	server	role.

IMPORTANT		Setting	the	SuperSocketEncrypt	property	changes	registry
settings,	and	should	be	used	with	caution.

Note		If	an	application	calls	SuperSocketEncrypt	on	an	instance	of
SQL	Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and
the	message	"This	property	or	method	requires	Microsoft	SQL	Server
2000"	are	returned.

See	Also

SuperSocketList	Property

SQL-DMO

SuperSocketList	Property
The	SuperSocketList	property	returns	a	super	socket	protocol	list.

Applies	To

Registry2	Object

Syntax
object.SuperSocketList	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

SQL-DMO	multistring	listing	super	socket	protocols

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSuperSocketList(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetSuperSocketList(SQLDMO_LPCSTR	NewValue);

Remarks

The	protocol	list	specifies	which	Net-Libraries	(for	example,	TCP/IP,	IPX/SPX,
or	named	pipes)	on	which	Microsoft®	SQL	Server™	2000	can	listen.	To	set	the
SuperSocketList	property,	you	must	be	a	member	of	the	sysadmin	fixed	server
role.

For	more	information	about	setting	multistring	parameters,	see	Using	SQL-
DMO	Multistrings.

Note		If	an	application	calls	SuperSocketList	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

SuperSocketEncrypt	Property

SQL-DMO

SuspendIndexing	Property
The	SuspendIndexing	property	controls	index	update	when	the	ImportData
method	of	the	Table	object	is	used	to	copy	data	to	Microsoft®	SQL	Server™
2000.

Applies	To

BulkCopy	Object

Syntax
object.SuspendIndexing	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSuspendIndexing(LPBOOL	pRetVal);

HRESULT	SetSuspendIndexing(BOOL	NewValue);

Remarks
If	TRUE,	indexes	are	dropped	before	the	bulk	copy	operation	is	started	and	re-
created	after	the	bulk	copy	operation	is	completed.

If	FALSE,	no	changes	are	made	to	indexing.

Note		Indexes	that	enforce	referential	or	data	integrity	constraints,	such	as	those
implemented	by	SQL	Server	PRIMARY	KEY	or	UNIQUE	key	constraints,	are
not	dropped	even	when	SuspendIndexing	is	TRUE.

SQL-DMO

SyncType	Property
The	SyncType	property	controls	subscription	agent	behavior	when	subscription
synchronization	is	required.

Applies	To

DistributionSubscription	Object MergeSubscription	Object
MergePullSubscription	Object TransSubscription	Object

Syntax
object.SyncType	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	subscription	agent	synchronization	behavior	as
described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSyncType(SQLDMO_SUBSYNC_TYPE	FAR*	pRetVal);

HRESULT	SetSyncType(SQLDMO_SUBSYNC_TYPE	NewValue);

Settings

Constant Value Description
SQLDMOSubSync_Auto 1 Subscription	agent	will	synchronize

the	subscription	automatically.
SQLDMOSubSync_Default 1 SQLDMOSubSync_Auto.
SQLDMOSubSync_Manual 0 Maintained	for	backward

compatibility.
SQLDMOSubSync_None 2 Subscription	agent	will	not	attempt

publication	synchronization.	User
interaction	necessary	to	ensure
synchronization.

Remarks
If	an	application	sets	SyncType	after	the	initial	snapshot	has	been	created,	this
subscription	will	be	reinitialized	and	must	by	resynchronized.	Reinitialization
occurs	when	the	next	scheduled	merge	agent	runs.

SQL-DMO

SystemObject	Property
The	SystemObject	property	returns	TRUE	for	Microsoft®	SQL	Server™
database	objects	whose	implementation	is	owned	by	Microsoft.

Applies	To

BackupDevice	Object StoredProcedure	Object
Database	Object Table	Object
DBObject	Object Trigger	Object
Login	Object User	Object
ReplicationStoredProcedure	Object View	Object

Syntax
object.SystemObject

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetSystemObject(LPBOOL	pRetVal);

Remarks
If	TRUE,	the	database	object	is	defined	by	Microsoft	as	part	of	an	instance	of
SQL	Server.

If	FALSE,	the	database	object	has	been	created	by	a	SQL	Server	user	and	object
ownership	rules	apply.	Specifically,	ownership	for	the	database	object	is
assigned	at	object	creation,	and	for	some	objects,	can	be	transferred	to	another
user.

SQL-DMO

T

SQL-DMO

TableFullTextChangeTrackingOn	Property
The	TableFullTextChangeTrackingOn	property	specifies	whether	to	enable	the
tracking	and	propagation	of	changes	to	a	table	for	a	full-text	image	index.

Applies	To

Table2	Object

Syntax
object.TableFullTextChangeTrackingOn	[=	value]

Parts
Object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetTableFullTextChangeTrackingOn(LPBOOL	pRetVal);

HRESULT	SetTableFullTextChangeTrackingOn(BOOL	NewValue);

Remarks
When	set	to	TRUE,	the	TableFullTextChangeTrackingOn	property	begins	an
incremental	tracking	of	changes	to	a	full-text	search	index	if	the	table	has	a
timestamp	column	to	support	the	full-text	tracking	process.	When	set	to	FALSE,
TableFullTextChangeTrackingOn	stops	tracking	changes	to	the	table.

Set	TableFullTextChangeTrackingOn	to	TRUE	to	enable	the	tracking	and
propagation	of	changes	to	a	table	for	a	full-text	image	index	referenced	by	the
Microsoft	Search	service.	TableFullTextChangeTrackingOn	must	be	set	to
TRUE	before	an	application	can	set	the	TableFullTextUpdateIndexOn	property
or	call	the	FullTextUpdateIndex	method	to	propagate	the	changes.

Changes	can	be	propagated	to	the	index:

On	a	scheduled	basis	using	a	Microsoft®	SQL	Server™	2000	Agent.

As	they	occur,	using	the	TableFullTextUpdateIndexOn	property.

On	demand,	using	the	FullTextUpdateIndex	method.

Note		Prior	to	setting	TableFullTextChangeTrackingOn,	you	must	add
the	catalog	to	the	FullTextCatalogsCollection,	and	set
IsFullTextEnabled	to	TRUE	for	the	database.

If	an	application	calls	TableFullTextChangeTrackingOn	on	an
instance	of	SQL	Server	version	7.0,	the	constant,
SQLDMO_E_SQL80ONLY,	and	the	message	"This	property	or
method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

FullTextPopulateStatus	Property

FullTextPopulation	Method

FullTextUpdateIndex	Method

TableFullTextUpdateIndexOn	Property

SQL-DMO

TableFullTextUpdateIndexOn	Property
The	TableFullTextUpdateIndexOn	property	specifies	whether	to	start	or	stop
propagating	tracked	changes	to	the	Microsoft	Search	service	automatically.

Applies	To

Table2	Object

Syntax
object.TableFulltextUpdateIndexOn	[=	value]

Parts
Object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetTableFullTextUpdateIndexOn(BOOL	NewValue);

HRESULT	SetTableFullTextUpdateIndexOn(BOOL	NewValue);

Remarks
Set	the	TableFullTextUpdateIndexOn	property	to	TRUE	to	track	index
changes	to	the	Microsoft	Search	service	as	an	automatic	background	operation.
A	list	of	all	changes	to	the	indexed	data	is	propagated	to	the	index	as	the	changes
occur.	If	TableFullTextUpdateIndexOn	is	set	to	FALSE,	an	application	must
call	the	FullTextUpdateIndex	method	to	propagate	the	changes.

Note		Using	TableFullTextUpdateIndexOn	can	have	a	significant	impact	on
server	performance,	and	should	be	used	in	an	environment	that	has	a	CPU	and
memory	configuration	that	allows	propagation	to	keep	pace	with	the	index
change	rate.

If	an	application	calls	TableFullTextUpdateIndexOn	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the
message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

See	Also

FullTextPopulateStatus	Property

FullTextPopulation	Method

FullTextUpdateIndex	Method

TableFullTextChangeTrackingOn	Property

SQL-DMO

TableLock	Property
The	TableLock	property	specifies	whether	to	set	table-level	locking	during	the
execution	of	a	bulk	copy	import	command.

Applies	To

BulkCopy2	Object

Syntax
object.TableLock	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetTableLock(LPBOOL	pRetVal);

HRESULT	SetTableLock(BOOL	NewValue);

Remarks
TableLock	is	set	to	FALSE	by	default.

Note		TableLock	can	be	used	with	Microsoft®	SQL	Server™	2000	and	SQL
Server	7.0.

SQL-DMO

TapeLoadWaitTime	Property
The	TapeLoadWaitTime	property	specifies	a	number	of	minutes	a	Microsoft®
SQL	Server™	2000	backup	or	restore	operation	will	wait	when	trying	to	write	to
or	read	from	an	indicated	tape	media.

Applies	To

Registry	Object

Syntax
object.TapeLoadWaitTime	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	number	of	minutes	as	described	in	Settings

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetTapeLoadWaitTime(LPLONG	pRetVal)

HRESULT	SetTapeLoadWaitTime(long	NewValue)

Settings

Value Description
-1 Default.	A	backup	or	restore	operation	will	not	time

out.
0 Backup	or	restore	operation	will	attempt	to	access	the

tape	device	exactly	one	time.
Any	positive	integer Number	of	minutes	during	which	the	backup	or

restore	operation	will	attempt	to	access	the	tape
device.

SQL-DMO

Tapes	Property
The	Tapes	property	specifies	one	or	more	tape	devices	used	as	a	database
backup	target	or	restore	source.

Applies	To

Backup	Object Restore	Object

Syntax
object.Tapes	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

SQL-DMO	multistring	that	names	one	or	more	tape	devices

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetTapes(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetTapes(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	applications	must	release	the
reference	using	SysFreeString.

Remarks
The	backup	medium	for	a	backup	or	restore	operation	is	specified	using	the
Devices,	Files,	Pipes,	or	Tapes	properties.	Only	one	medium	type	can	be
specified	for	any	backup	or	restore	operation,	but	multiple	media	may	be
specified.

Set	the	Tapes	property	to	specify	one	or	more	tape	devices	as	the	backup
medium.	Specify	more	than	a	single	tape	device	to	stripe	the	backup	operation	or
to	restore	from	a	striped	backup	set.	For	more	information,	see	Using	Multiple
Media	or	Devices.

For	more	information	about	setting	multistring	parameters,	see	Using	SQL-
DMO	Multistrings.

See	Also

Devices	Property

Pipes	Property

Files	Property

JavaScript:hhobj_1.Click()

SQL-DMO

TcpFlag	Property
The	TcpFlag	property	specifies	whether	the	TCP/IP	Sockets	Net-Libraries	hide
flag	is	set	on	a	computer	running	an	instance	of	Microsoft®	SQL	Server™	2000.

Applies	To

Registry2	Object

Syntax
object.TcpFlag	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetTcpFlag(LPBOOL	pRetVal);

HRESULT	SetTcpFlag(BOOL	NewValue);

Remarks
When	you	install	an	instance	of	SQL	Server,	SQL	Server	Setup	creates	an	entry
in	the	Microsoft	Windows	NT®	4.0	Registry	that	enables	clients	to	see	SQL
Server	in	a	server	enumeration	box	in	SQL	Query	Analyzer.

For	security	purposes,	you	can	set	TcpFlag	to	TRUE	to	hide	a	server	on	the
network.	Clients	can	still	connect	to	it,	but	they	cannot	see	the	hidden	server
when	viewing	servers.	You	can	reveal	the	server	by	setting	TcpFlag	to	FALSE.

To	set	the	TcpFlag	property,	you	must	be	a	member	of	the	sysadmin	fixed
server	role.

Note		If	an	application	calls	TcpFlag	on	an	instance	of	SQL	Server	version	7.0,
the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This	property	or
method	requires	Microsoft	SQL	Server	2000"	are	returned.

IMPORTANT		Setting	the	TcpFlag	property	changes	registry	settings,	and	should
be	used	with	caution.

See	Also

TcpPort	Property

SQL-DMO

TcpPort	Property
The	TcpPort	property	specifies	the	TCP/IP	Sockets	Net-Libraries	port	number
on	an	instance	of	Microsoft®	SQL	Server™	2000.

Applies	To

Registry2	Object

Syntax
object.TcpPort	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	contains	the	port	number

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetTcpPort(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetTcpPort(SQLDMO_LPCSTR	NewValue);

Remarks
To	set	the	TcpPort	property,	you	must	be	a	member	of	the	sysadmin	fixed
server	role.

IMPORTANT		Setting	the	TcpPort	property	changes	registry	settings,	and	should
be	used	with	caution.

Note		If	an	application	calls	TcpPort	on	an	instance	of	SQL	Server	version	7.0,
the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This	property	or
method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

TcpFlag	Property

SQL-DMO

Text	Property
The	Text	property	exposes	the	Transact-SQL	or	other	script	that	defines	the
referenced	Microsoft®	SQL	Server™	2000	database	object.

Applies	To

Check	Object StoredProcedure	Object
Default	Object Trigger	Object
DRIDefault	Object UserDefinedFunction	Object
Rule	Object View	Object

Syntax
object.Text	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	satisfies	the	constraints	on	definition	text	for	the	referenced	object

Data	Type
String

Modifiable
Read/write	when	using	a	SQL-DMO	object	to	create	a	SQL	Server	database
object.	Read-only	when	a	SQL-DMO	object	references	an	existing	database
object.

Prototype	(C/C++)
HRESULT	GetText(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetText(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
Constraints	apply	to	strings	used	to	set	the	Text	property.	For	example,	the	Text
property	of	a	Check	object	contains	an	expression	that	evaluates	to	TRUE	or
FALSE.	For	a	Trigger	object,	the	Text	property	contains	a	Transact-SQL
statement	that	creates	a	trigger	when	executed.	For	more	information,	see
documentation	for	the	applicable	SQL-DMO	object.

See	Also

Alter	Method

SQL-DMO

TextFileGroup	Property
The	TextFileGroup	property	specifies	the	Microsoft®	SQL	Server™	2000
filegroup	used	to	maintain	long,	variable-length	data	stored	in	the	referenced
Table	object.

Applies	To

Table	Object

Syntax
object.TextFileGroup	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	an	existing	filegroup	by	name

Data	Type
String

Modifiable
Read/write	when	using	the	Table	object	to	create	a	SQL	Server	table.	Read-only
when	the	Table	object	references	an	existing	table.

Prototype	(C/C++)
HRESULT	GetTextFileGroup(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetTextFileGroup(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
A	SQL	Server	filegroup	categorizes	the	operating	system	files	containing	data
from	a	single	database	to	simplify	database	administration	tasks	such	as	backup.
Within	a	database,	filegroup	use	is	directed	as	tables	and	indexes	are	created.

When	using	the	Table	object	to	create	a	SQL	Server	table,	direct	operating
system	file	use	by	setting	the	FileGroup	property	of	the	Table	object.	By
default,	the	filegroup	specified	is	used	to	store	all	data	for	the	SQL	Server	table.
Override	the	default	behavior	by	setting	the	TextFileGroup	property	to	direct
storage	of	long,	variable-length	data	in	the	table.

For	SQL	Server,	a	column	with	data	type	image,	ntext,	or	text	is	considered	to
be	long,	variable-length.	When	creating	a	table,	you	can	direct	long,	variable-
length	data	storage	only	in	the	presence	of	a	column	defined	using	a	qualifying
data	type.

Note		The	filegroup	used	to	store	table	row	data	is	also	specified	when	a
clustered	index	is	defined	on	the	table.	For	more	information,	see	CREATE
INDEX.

JavaScript:hhobj_1.Click()

SQL-DMO

ThirdParty	Property
The	ThirdParty	property	specifies	the	product	acting	as	a	replication	Publisher.

Applies	To

DistributionPublisher	Object

Syntax
object.ThirdParty	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetThirdParty(LPBOOL	pRetVal);

HRESULT	SetThirdParty(BOOL	NewValue);

Remarks

If	FALSE	(default),	the	referenced	Publisher	identifies	an	instance	of
Microsoft®	SQL	Server™	2000.

If	TRUE,	the	referenced	Publisher	does	not	identify	an	instance	of	SQL	Server.

SQL-DMO

ThirdPartyOptions	Property
The	ThirdPartyOptions	property	specifies	whether	to	suppress	the	display	of	a
heterogeneous	publication	in	the	Replication	folder	in	SQL	Server	Enterprise
Manager.

Applies	To

DistributionPublication2	Object

Syntax
object.ThirdPartyOptions	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	SQLDMO_THIRDPARTYOPTION_TYPE
constant	as	described	in	Settings

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetThirdPartyOptions(SQLDMO_THIRDPARTYOPTION_TYPE
*pRetVal);

HRESULT	SetThirdPartyOptions(SQLDMO_THIRDPARTYOPTION_TYPE
NewValue);

Settings
Set	the	ThirdPartyOptions	property	using	these	values.

Constant Value Description
SQLDMOThirdPartyOption_Default 0 Display	a

heterogeneous
publication	in	the
Replication	folder	in
SQL	Server
Enterprise	Manager
(default).

SQLDMOThirdPartyOption_SuppressDisplay 1 Suppress	display	of	a
heterogeneous
publication	in
Replication	folder	in
SQL	Server
Enterprise	Manager.

Remarks
ThirdPartyOptions	is	set	to	SQLDMOThirdPartyOption_Default	by	default.

Note		If	an	application	calls	ThirdPartyOptions	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

TimeZoneAdjustment	Property
The	TimeZoneAdjustment	property	returns	the	difference,	in	minutes,	between
the	local	time	midnight	for	an	instance	of	Microsoft®	SQL	Server™	2000	and
midnight	Greenwich	Mean	Time.

Applies	To

TargetServer	Object

Syntax
object.TimeZoneAdjustment

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetTimeZoneAdjustment(LPLONG	pRetVal);

Remarks
When	a	target	server	job	should	execute	based	on	the	local	time	setting	of	the
master	server,	use	the	TimeZoneAdjustment	property	to	specify	the	schedule

execution	time	correctly.

SQL-DMO

ToPointInTime	Property
The	ToPointInTime	property	sets	an	end-point	for	database	log	restoration.

Applies	To

Restore	Object

Syntax
object.ToPointInTime	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	a	date	and	time.	For	more	information	about	string
format,	see	Alphabetic	Date	Format.

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetToPointInTime(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetToPointInTime(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

JavaScript:hhobj_1.Click()

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	ToPointInTime	setting	is	evaluated	only	when	using	the	SQL-DMO
Restore	object	to	recover	a	database	transaction	log.	For	more	information,	see
Restoring	a	Database	to	a	Prior	State.

JavaScript:hhobj_2.Click()

SQL-DMO

TopologyX	Property
The	TopologyX	property	is	reserved	for	future	use.

Applies	To

RemoteServer	Object

SQL-DMO

TopologyY	Property
The	TopologyY	property	is	reserved	for	future	use.

Applies	To

RemoteServer	Object

SQL-DMO

TornPageDetection	Property
The	TornPageDetection	property	enables	Microsoft®	SQL	Server™	2000
logic-enhancing	data	security	in	the	event	of	certain	types	of	system	failure.

Applies	To

DBOption	Object

Syntax
object.TornPageDetection	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetTornPageDetection(LPBOOL	pRetVal);

HRESULT	SetTornPageDetection(BOOL	NewValue);

Remarks
If	TRUE,	SQL	Server	marks	units	of	a	database	page	prior	to	attempting	a	write
and	checks	page	marking	on	every	read.

If	FALSE,	database	pages	are	not	marked	or	evaluated.

For	more	information,	see	Setting	Database	Options.

JavaScript:hhobj_1.Click()

SQL-DMO

TranslateChar	Property
The	TranslateChar	property	exposes	the	Microsoft®	SQL	Server™	ODBC
driver	statement	attribute	SQL_COPT_SS_TRANSLATE.

Applies	To

SQLServer	Object

Syntax
object.TranslateChar	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetTranslateChar(LPBOOL	pRetVal);

HRESULT	SetTranslateChar(BOOL	NewValue);

Remarks
For	more	information	about	the	connection	behavior	specified	by
SQL_COPT_SS_TRANSLATE,	see	SQLSetConnectAttr.

If	TRUE,	the	connection	behaves	as	defined	for	value	SQL_XL_ON.

If	FALSE,	the	connection	behaves	as	defined	for	value	SQL_XL_OFF.

JavaScript:hhobj_1.Click()

SQL-DMO

TrueLogin	Property
The	TrueLogin	property	returns	the	login	record	name	used	by	the	current
connection.

Applies	To

SQLServer	Object

Syntax
object.TrueLogin

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetTrueLogin(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

When	a	connection	relies	on	Microsoft®	Windows	NT®	4.0	user	or	group	name
mapping	for	Microsoft	SQL	Server™	2000	login	determination,	the	TrueLogin
property	returns	the	SQL	Server	login	used	by	the	connection	regardless	of	the
login	specified	when	the	connection	was	established.

SQL-DMO

TrueName	Property
The	TrueName	property	returns	the	result	set	of	the	Microsoft®	SQL	Server™
2000	global	function	@@SERVERNAME.

Applies	To

SQLServer	Object

Syntax
object.TrueName

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetTrueName(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

The	@@SERVERNAME	function	returns	the	name	of	the	instance	of	SQL
Server.	By	default,	an	instance	of	SQL	Server	receives	the	network	name	of	the
server	running	an	instance	of	SQL	Server.

SQL-DMO

TruncateLog	Property	(Backup)
The	TruncateLog	property	controls	log	file	processing	for	Backup	and
BulkCopy	objects.

Applies	To

Backup	Object

Syntax
object.TruncateLog	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	database	log	file	operation	as	described	in
Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetTruncateLog(SQLDMO_BACKUP_LOG_TYPE*	pRetVal)

HRESULT	SetTruncateLog(SQLDMO_BACKUP_LOG_TYPE	NewValue)

Settings

Constant Value Description
SQLDMOBackup_Log_NoLog 2 Records	referencing	committed

transactions	are	removed.
Transaction	log	is	not	backed
up.

SQLDMOBackup_Log_NoOption 4 SQLDMOBackup_Log_
Truncate.

SQLDMOBackup_Log_NoTruncate 1 Transaction	log	is	backed	up.
Records	referencing	committed
transactions	are	not	removed,
providing	a	point-in-time	image
of	the	log.

SQLDMOBackup_Log_Truncate 0 Transaction	log	is	backed	up.
Records	referencing	committed
transactions	are	removed.

SQLDMOBackup_Log_Truncateonly 3 SQLDMOBackup_Log_NoLog.

Remarks
For	Microsoft®	SQL	Server™	2000,	transaction	log	backup	can	perform	two
distinct	database	administration	tasks:

Log	backup	can	be	part	of	a	backup	strategy	allowing	incremental
recovery	to	a	failure	point.

Log	backup	can	remove	log	records	referencing	committed	transactions,
freeing	space	in	a	log	of	fixed	size	or	allowing	an	autoresizing	log	to
shrink.

When	using	the	Backup	object	to	perform	administrative	maintenance	of	a
database	log,	set	the	TruncateLog	property	to	SQLDMOBackup_Log_Truncate
or	SQLDMOBackup_Log_TruncateNoLog.

SQL-DMO

TruncateLog	Property	(BulkCopy)
The	TruncateLog	property	controls	log	file	processing	for	Backup	and
BulkCopy	objects.

Applies	To

BulkCopy	Object

Syntax
object.TruncateLog	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Modifiable
Read/write

Data	Type
Boolean

Prototype	(C/C++)
HRESULT	GetTruncateLog(LPBOOL	pRetVal)

HRESULT	SetTruncateLog(BOOL	NewValue)

Remarks
If	TRUE,	the	log	file	is	truncated	on	successful	completion	of	the	ImportData
method.

If	FALSE,	the	log	file	is	not	truncated	regardless	of	the	completion	status	of	the
ImportData	method.

SQL-DMO

TruncateLogOnCheckpoint	Property
The	TruncateLogOnCheckpoint	property	configures	automatic	transaction	log
maintenance	activity.

Applies	To

DBOption	Object

Syntax
object.TruncateLogOnCheckpoint	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetTruncateLogOnCheckpoint(LPBOOL	pRetVal);

HRESULT	SetTruncateLogOnCheckpoint(BOOL	NewValue);

Remarks
Periodically,	and	on	certain	user-directed	actions,	Microsoft®	SQL	Server™
2000	forces	a	write	of	dirty	pages,	ensuring	data	integrity	at	a	point	in	time.	The
recovery	interval	option	configures	periodic	dirty	page	writes.	The	Transact-
SQL	statement	CHECKPOINT	and	other	user-directed	actions,	such	as	initiating
a	complete	database	backup,	forces	a	dirty	page	write.

If	TRUE,	SQL	Server	removes	log	entries	referencing	committed	transactions
when	activity	on	the	database	forces	a	dirty	page	write.

If	FALSE,	the	forced	dirty	page	writes	have	no	effect	on	the	database	transaction
log.

IMPORTANT		Setting	the	TruncateLogOnCheckpoint	property	to	TRUE	implies
that	backup-maintained	database	integrity	relies	on	backup	of	the	database	only.
When	TRUE,	you	cannot	backup	a	database	transaction	log	and	backup
strategies	based	on	differential	backup	of	the	log	are	not	available.	For	more
information,	see	Setting	Database	Options.

See	Also

BACKUP

CHECKPOINT

recovery	interval	Option

RecoveryModel	Property

Selecting	a	Recovery	Model

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

SQL-DMO

Trusted	Property
The	Trusted	property	controls	SQL	Server	Authentication	behavior	for	server-
initiated	connections.

Applies	To

RemoteLogin	Object

Syntax
object.Trusted	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetTrusted(LPBOOL	pRetVal);

HRESULT	SetTrusted(BOOL	NewValue);

Remarks
To	facilitate	connections	between	instances	of	Microsoft®	SQL	Server™	2000,
SQL	Server	uses	remote-server	naming.	When	an	action	of	a	client	at	the	named
remote	server	directs	a	connection	to	the	local	instance	of	SQL	Server,	the
remote	server	attempts	to	connect	using	the	login	authentication	data	of	the
client.	Login	record	mappings	at	the	local	instance	determine	the	treatment	of
that	authentication	data.

If	TRUE,	the	local	instance	evaluates	the	password	part	of	authentication	data.
For	the	connection	to	succeed,	the	password	used	by	the	login	on	the	remote
server	must	be	the	password	used	by	the	mapped	local	login	record.

If	FALSE,	the	local	instance	does	not	evaluate	any	password	provided	as	part	of
the	server-initiated	connection	attempt.

SQL-DMO

TrustedDistributorConnection	Property
The	TrustedDistributorConnection	property	directs	authentication	mode	use.

Applies	To

DistributionPublisher	Object

Syntax
object.TrustedDistributorConnection	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetTrustedDistributorConnection(LPBOOL	pRetVal);

HRESULT	SetTrustedDistributorConnection(BOOL	NewValue);

SQL-DMO

Type	Property	(Alert)
The	Type	property	exposes	configured	attributes	of	the	referenced	Microsoft®
SQL	Server™	2000	component.

Applies	To

Alert	Object

Syntax
object.Type

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long,	enumerated

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetType(SQLDMO_ALERT_TYPE*	pRetVal)

Returns
For	the	Alert	object,	interpret	the	Type	property	using	these	values.

Constant Value Description

SQLDMOAlert_NonSQLServerEvent 3 Alert	will	be
raised	by	an
event	not	defined
for	SQL	Server.

SQLDMOAlert_SQLServerEvent 1 Alert	will	be
raised	when	a
specified	SQL
Server	error
condition,	or	any
error	condition
of	a	specified
severity,	occurs.

SQLDMOAlert_SQLServerPerformanceCondition 2 Alert	will	be
raised	when	a
bound	is	reached
or	exceeded	for	a
SQL	Server
counter
evaluated	by
Windows
Performance
Monitor.

Remarks
The	Type	property	is	set	by	adjusting	the	event	source	for	the	alert.	For	more
information,	see	MessageID	Property,	PerformanceCondition	Property	and
Severity	Property.

SQL-DMO

Type	Property	(BackupDevice)
The	Type	property	exposes	configured	attributes	of	the	referenced	Microsoft®
SQL	Server™	2000	component.

Applies	To

BackupDevice	Object

Syntax
object.Type	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	device	type	as	described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write	when	using	the	BackupDevice	object	to	define	a	backup	device.
Read-only	when	the	BackupDevice	object	references	an	existing	backup	device.

Prototype	(C/C++)
HRESULT	GetType(SQLDMO_DEVICE_TYPE*	pRetVal)

HRESULT	SetType(SQLDMO_DEVICE_TYPE	NewValue)

Settings

Constant Value Description
SQLDMODevice_CDROM 7 Reserved	for	future	use.
SQLDMODevice_DiskDump 2 Device	is	a	disk	file.
SQLDMODevice_FloppyADump 3 Device	is	a	disk	file	created	on

removable	media	in	the	A
drive.

SQLDMODevice_FloppyBDump 4 Device	is	a	disk	file	created	on
removable	media	in	the	B
drive.

SQLDMODevice_PipeDump 6 Device	identifies	a	named
pipe.

SQLDMODevice_TapeDump 5 Device	is	a	tape.
SQLDMODevice_Unknown 100 Bad	or	invalid	device	type.

SQL-DMO

Type	Property	(Category)
The	Type	property	exposes	configured	attributes	of	the	referenced	Microsoft®
SQL	Server™	2000	component.

Applies	To

Category	Object

Syntax
object.Type	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	job	category	classification	as	described	in
Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetType(SQLDMO_CATEGORYTYPE_TYPE*	pRetVal)

HRESULT	SetType(SQLDMO_CATEGORYTYPE_TYPE	NewValue)

Settings

Constant Value Description
SQLDMOCategoryType_LocalJob 1 Category	is	used	to

classify	jobs	that	will
execute	on	an	instance	of
SQL	Server	on	which	the
job	is	stored.

SQLDMOCategoryType_MultiServerJob 2 Category	is	used	to
classify	jobs	that	will
execute	on	one	or	more
target	servers.

SQLDMOCategoryType_None 3 Job	is	not	classified	by	a
category.

SQLDMOCategoryType_Unknown 0 Category	is	bad	or
invalid,	or	the	Category
object	references	a
classification	used	for
alerts	or	operators.

Remarks
The	Type	property	is	valid	only	for	categories	used	to	classify	SQL	Server
Agent	jobs.

SQL-DMO

Type	Property	(DBObject)
The	Type	property	exposes	configured	attributes	of	the	referenced	Microsoft®
SQL	Server™	2000	component.

Applies	To

DBObject	Object

Syntax
object.Type

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long,	enumerated

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetType(SQLDMO_OBJECT_TYPE*	pRetVal)

Returns
For	the	DBObject	object,	interpret	the	Type	property	using	these
SQLDMO_OBJECT_TYPE	values.

Constant Value Description
SQLDMOObj_AllButSystemObjects 5119 List	or	query	result	set

membership	includes	all
but	SQL	Server	system
objects.

SQLDMOObj_AllDatabaseObjects 4607 References	Microsoft	SQL
Server	system	and	user
database	objects.

SQLDMOObj_AllDatabaseUserObjects 4605 References	only	user
database	objects.

SQLDMOObj_Default 64 References	a	default.
SQLDMOObj_Rule 128 References	a	rule.
SQLDMOObj_StoredProcedure 16 References	a	stored

procedure.
SQLDMOObj_SystemTable 2 References	a	system	table.
SQLDMOObj_Trigger 256 References	a	trigger.
SQLDMOObj_UserDefinedDatatype 4096 References	a	SQL	Server

user-defined	data	type.
SQLDMOObj_UserDefinedFunction 1 References	a	user-defined

function.
SQLDMOObj_UserTable 8 References	a	user-defined

table.
SQLDMOObj_View 4 References	a	view.

SQL-DMO

Type	Property	(Index)
The	Type	property	exposes	configured	attributes	of	the	referenced	Microsoft®
SQL	Server™	2000	component.

Applies	To

Index	Object

Syntax
object.Type	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	index	attributes	as	described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write	when	using	the	Index	object	to	define	a	SQL	Server	index.	Read-
only	when	the	Index	object	references	an	existing	SQL	Server	index.

Prototype	(C/C++)
HRESULT	GetType(SQLDMO_INDEX_TYPE*	pRetVal)

HRESULT	SetType(SQLDMO_INDEX_TYPE	NewValue)

Settings

Constant Value Description
SQLDMOIndex_Clustered 16 Index	is	clustered.	SQL

Server	supports	a	single
clustered	index	on	any	table.

SQLDMOIndex_Default 0 Nonclustered	index.
SQLDMOIndex_DRIIndex 6144 Index	is	used	to	maintain

declarative	referential
constraint.

SQLDMOIndex_DRIPrimaryKey 2048 Index	implements	a	SQL
Server	PRIMARY	KEY
constraint.	Value	is	returned
only.	For	more	information,
see	Key	Object.	

SQLDMOIndex_DRIUniqueKey 4096 Index	implements	a
UNIQUE	constraint	on	a
table	not	constrained	by
primary	key.	Index	is	a
candidate	key.

SQLDMOIndex_DropExist 32768 Optimizes	index	creation
when	an	existing	index	is
rebuilt.

SQLDMOIndex_Hypothetical 32 Redirects	index	creation,
mapping	Index	object
manipulation	to	CREATE
STATISTICS	and	DROP
STATISTICS	statements.

SQLDMOIndex_IgnoreDupKey 1 Controls	error	generation
when	an	INSERT	or
UPDATE	operation	could
cause	a	constraint	violation
and	the	index	implements	a
PRIMARY	KEY	or
UNIQUE	constraint.

SQLDMOIndex_NoRecompute 16777216 Index	created	with	statistics
computation	off.	For	more
information,	see
NoRecompute	Property.

SQLDMOIndex_PadIndex 256 Pad	index	nodes	using	fill
factor.

SQLDMOIndex_SortedData 512 Obsolete.
SQLDMOIndex_SortedDataReorg 8192 Obsolete.
SQLDMOIndex_Unique 2 Index	implements	a

UNIQUE	constraint.
SQLDMOIndex_Valid 41747 Or	of	values	used	for	index

creation.

SQL-DMO

Type	Property	(Job,	JobFilter)
The	Type	property	exposes	configured	attributes	of	the	referenced	Microsoft®
SQL	Server™	2000	component.

Applies	To

Job	Object JobFilter	Object

Syntax
object.Type	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	SQL	Server	Agent	job	attributes	as	described	in
Settings

Data	Type
Long,	enumerated

Modifiable
Read-only	for	the	Job	object.	Read/write	for	the	JobFilter	object.

Prototype	(C/C++)
HRESULT	GetType(SQLDMO_JOB_TYPE*	pRetVal)

HRESULT	SetType(SQLDMO_JOB_TYPE	NewValue)

Settings

Constant Value Description
SQLDMOJob_Local 1 Job	will	execute	on	an	instance	of	SQL

Server	on	which	the	job	is	stored.
SQLDMOJob_MultiServer 2 Job	will	execute	on	one	or	more	target

servers.
SQLDMOJob_Unknown 0 Job	is	bad	or	invalid.

Remarks
Set	the	Type	property	of	the	JobFilter	object	to	control	result	set	membership
when	using	the	EnumJobs	method	of	the	JobServer	object.

SQL-DMO

Type	Property	(JobServer)
The	Type	property	exposes	configured	attributes	of	the	referenced	Microsoft®
SQL	Server™	2000	component.

Applies	To

JobServer	Object

Syntax
object.Type

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long,	enumerated

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetType(SQLDMO_JOBSERVER_TYPE*	pRetVal)

Returns
For	the	JobServer	object,	interpret	the	Type	property	using	these	values.

Constant Value Description

SQLDMOJobServer_MSX 3 An	instance	of	SQL	Server
participates	in	multiserver
administration.	Current	instance
of	SQL	Server	masters
administration	for	other	servers.

SQLDMOJobServer_StandAlone 1 Current	instance	of	SQL	Server
does	not	participate	in
multiserver	administration.

SQLDMOJobServer_TSX 2 Current	instance	of	SQL	Server
participates	in	multiserver
administration.	Current	instance
of	SQL	Server	is	a	target	for
administration.

SQLDMOJobServer_Unknown 0 Bad	or	invalid	value.

Remarks
Create	master	servers	(MSXs)	using	SQL-DMO	by	adding	a	SQL	Server	Agent
MSX	operator	to	those	instances	of	SQL	Server	that	will	master	a	multiserver
administration	group.	Use	the	MSXEnlist	and	MSXDefect	methods	of	the
JobServer	object	referencing	a	target	server	to	manage	group	membership.

See	Also

MSXEnlist	Method

MSXDefect	Method

SQL-DMO

Type	Property	(Key)
The	Type	property	exposes	configured	attributes	of	the	referenced	Microsoft®
SQL	Server™	2000	component.

Applies	To

Key	Object

Syntax
object.Type	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	key	constraint	attributes	as	described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write	when	using	the	Key	object	to	define	a	PRIMARY	KEY	or	FOREIGN
KEY	constraint.	Read-only	when	the	Key	object	references	an	existing
constraint.

Prototype	(C/C++)
HRESULT	GetType(SQLDMO_KEY_TYPE*	pRetVal)

HRESULT	SetType(SQLDMO_KEY_TYPE	NewValue)

Settings

Constant Value Description
SQLDMOKey_Foreign 3 Key	references,	or	will	be	used	to

create,	a	SQL	Server	FOREIGN	KEY
constraint.

SQLDMOKey_Primary 1 Key	references,	or	will	be	used	to
create,	a	SQL	Server	PRIMARY	KEY
constraint.

SQLDMOKey_Unique 2 Key	references	a	SQL	Server	UNIQUE
constraint	on	a	column	not	allowing
NULL.

SQLDMOKey_Unknown 0 Bad	or	invalid	value.

SQL-DMO

Type	Property	(Login)
The	Type	property	exposes	configured	attributes	of	the	referenced	Microsoft®
SQL	Server™	2000	component.

Applies	To

Login	Object

Syntax
object.Type	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	SQL	Server	login	record	source	as	described	in
Settings

Data	Type
Long,	enumerated

Modifiable
Read/write	when	using	the	Login	object	to	define	a	new	SQL	Server	login.
Read-only	when	the	Login	object	references	an	existing	login.

Prototype	(C/C++)
HRESULT	GetType(SQLDMO_LOGIN_TYPE*	pRetVal)

HRESULT	SetType(SQLDMO_LOGIN_TYPE	NewValue)

Settings

Constant Value Description
SQLDMOLogin_NTGroup 1 Referenced	login	is	the	name	of	a

Microsoft	Windows	security	group.
SQLDMOLogin_NTUser 0 Referenced	login	is	the	name	of	a

Windows	user.
SQLDMOLogin_Standard 2 Referenced	login	is	used	for	SQL

Server	Authentication.	Login	name	and
password	may	be	required	when	a
client	connects	using	the	login.

Remarks
When	using	the	Login	object	to	create	a	SQL	Server	login	record,	setting	the
Type	property	directs	evaluation	of	other	properties.	For	example,	when	the
Type	property	specifies	that	the	Name	property	is	interpreted	as	a	Windows	NT
user	or	group,	Windows		Authentication	is	used	for	the	login	created	and	any
setting	for	the	Password	property	is	ignored	when	the	Login	object	is	added	to
its	containing	collection.	Similarly,	when	the	Type	property	specifies	a	SQL
Server	Authentication	login	record,	any	setting	for	the	DenyNTLogin	property
is	ignored.	For	more	information,	see	Login	Object.

SQL-DMO

Type	Property	(Property)
The	Type	property	exposes	configured	attributes	of	the	referenced	Microsoft®
SQL	Server™	2000	component.

Applies	To

Property	Object

Syntax
object.Type

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long,	enumerated

Modifiable
Read-only

Remarks
Interpret	the	Type	property	return	value	using	documentation	of	variant	types
found	in	the	Microsoft	Platform	SDK	or	the	documentation	accompanying	your
OLE	Automation	controller.

SQL-DMO

Type	Property	(RegisteredSubscriber)
The	Type	property	exposes	configured	attributes	of	the	referenced	Microsoft®
SQL	Server™	2000	component.

Applies	To

RegisteredSubscriber	Object

Syntax
object.Type	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	data	source	type	as	described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write	when	using	the	RegisteredSubscriber	object	to	define	a	replication
subscriber.	Read-only	when	the	RegisteredSubscriber	object	references	an
existing	subscriber	definition	record.

Prototype	(C/C++)
HRESULT	GetType(SQLDMO_SUBSCRIBER_TYPE*	pRetVal)

HRESULT	SetType(SQLDMO_SUBSCRIBER_TYPE	NewValue)

Settings
Set	value	using	these	SQLDMO_SUBSCRIBER_TYPE	values.

Constant Value Description
SQLDMOSubInfo_ExchangeServer 4 Type	property	of

RegisteredSubscriber
object	that	identifies	a
Microsoft	Exchange	Server
installation	persisted	as	a
SQL	Server	linked	server.

SQLDMOSubInfo_JetDatabase 2 Name	property	of
RegisteredSubscriber
object	identifies	a	Microsoft
Jet	version	3.5	database.

SQLDMOSubInfo_ODBCDatasource 1 Name	property	of
RegisteredSubscriber
object	identifies	an	ODBC
user	or	system	DSN.

SQLDMOSubInfo_OLEDBDatasource 3 Type	property	of
RegisteredSubscriber
object	that	identifies	an	OLE
DB	data	source
specification,	or	Microsoft
Jet	version	4.0	database
persisted	as	a	SQL	Server
linked	server.

SQLDMOSubInfo_SQLServer 0 Name	property	of
RegisteredSubscriber
object	identifies	an	instance
of	SQL	Server	by	SQL
Server	name.

SQL-DMO

Type	Property	(StoredProcedure)
The	Type	property	exposes	configured	attributes	of	the	referenced	Microsoft®
SQL	Server™	2000	component.

Applies	To

StoredProcedure	Object

Syntax
object.Type	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	controls	interpretation	of	SQL	Server	stored	procedure	text
as	described	in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetType(SQLDMO_PROCEDURE_TYPE*	pRetVal)

HRESULT	SetType(SQLDMO_PROCEDURE_TYPE	NewValue)

Settings

Constant Value Description
SQLDMOProc_Extended 2 StoredProcedure	object

references	an	extended	stored
procedure.

SQLDMOProc_Macro 3 Reserved	for	future	use.
SQLDMOProc_ReplicationFilter 4 Reserved	for	future	use.
SQLDMOProc_Standard 1 Default.	StoredProcedure	object

references	a	SQL	Server	stored
procedure.

SQLDMOProc_Unknown 0 Bad	or	invalid	value.

Remarks
When	using	the	StoredProcedure	object	to	create	a	SQL	Server	stored
procedure,	setting	the	Name,	Type,	and	Text	properties	define	the	stored
procedure.	By	default,	the	text	of	a	stored	procedure	is	interpreted	as	a	Transact-
SQL	script.	When	the	stored	procedure	is	an	entry	point	for	an	extended	stored
procedure,	the	text	of	the	procedure	specifies	an	executable-image	library	by
name.

SQL-DMO

Type	Property	(Trigger)
The	Type	property	exposes	configured	attributes	of	the	referenced	Microsoft®
SQL	Server™	2000	component.

Applies	To

Trigger	Object

Syntax
object.Type

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long,	enumerated

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetType(SQLDMO_TRIGGER_TYPE*	pRetVal)

Returns
For	a	Trigger	object,	interpret	the	Type	property	using	these	values.

Constant Value Description

SQLDMOTrig_All 7 Fired	by	any	data	modification
statement.

SQLDMOTrig_Delete 4 Fired	by	a	DELETE	statement.
SQLDMOTrig_Insert 1 Fired	by	an	INSERT	statement.
SQLDMOTrig_Unknown 0 Bad	or	invalid	value.
SQLDMOTrig_Update 2 Fired	by	an	UPDATE	statement.

Remarks
A	SQL	Server	trigger	can	fire	when	a	Transact-SQL	INSERT,	UPDATE,	or
DELETE	statement	modifies	data	in	the	table	on	which	the	trigger	is	defined.

The	Transact-SQL	script	defining	the	trigger	determines	the	Transact-SQL
statements	causing	firing.	For	more	information,	see	Text	Property.

SQL-DMO

Type	Property	(UserDefinedFunction)
The	Type	property	returns	the	user-defined	function	type.

Applies	To

UserDefinedFunction	Object

Syntax
object.Type

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetType(SQLDMO_UDF_TYPE	*pRetVal);

Returns
A	SQLDMO_UDF_TYPE	constant	that	contains	one	of	these	values.

Constant Value Description
SQLDMOUDF_Inline 3 Inline	function

SQLDMOUDF_Scalar 1 Scalar	function
SQLDMOUDF_Table 2 Table	function
SQLDMOUDF_Unknown 0 Unknown	function	type

Remarks
A	scalar	function	is	applied	to	all	the	rows	in	a	table,	thereby	producing	a	single
value	(for	example,	an	aggregate	function).	An	inline	function	performs	a	single
SELECT	statement.	A	table	function	performs	a	series	of	Transact-SQL
statements	and	returns	the	results	as	a	table.

Note		If	an	application	calls	Type	on	an	instance	of	SQL	Server	version	7.0,	the
constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This	property	or
method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

TypeName	Property
The	TypeName	property	returns	a	string	that	identifies	the	type	of	Microsoft®
SQL	Server™	2000	database	object	referenced	by	the	DBObject	object.

Applies	To

DBObject	Object

Syntax
object.TypeName

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetTypeName(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

The	DBObject	object	can	reference	SQL	Server	user-defined	data	types,	rules,
defaults,	tables,	triggers,	views,	and	stored	procedures.

SQL-DMO

TypeOf	Property
The	TypeOf	property	returns	an	enumerated	value	identifying	a	kind	of	SQL-
DMO	object.	For	example,	a	Backup	object	returns	SQLDMOObj_Backup
when	the	object.TypeOf	property	is	queried.

Applies	To
All	SQL-DMO	objects

Syntax
object.TypeOf

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long,	enumerated.	For	more	information	about	value	enumeration,	see	SQL-
DMO	Object	Type	Constants	(SQLDMO_OBJECT_TYPE).

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetTypeOf(LPLONG	pRetVal);

Remarks
For	SQL-DMO	collections,	the	TypeOf	property	returns	the	kind	of	object
contained	in	the	collection.

SQL-DMO

U

SQL-DMO

UniqueIndexForFullText	Property
The	UniqueIndexForFullText	property	specifies	the	index	used	by	Microsoft
Search	to	identify	rows	uniquely	in	a	full-text	indexed	table.

Applies	To

Table	Object

Syntax
object.UniqueIndexForFullText	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	identifies	an	existing	index	by	name

Data	Type
String

Modifiable
Read/write	when	using	the	Table	object	to	configure	full-text	indexing.	Read-
only	when	the	Table	object	references	a	full-text	indexed	table.

Prototype	(C/C++)
HRESULT	GetUniqueIndexForFullText(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetUniqueIndexForFullText(SQLDMO_LPCSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
When	using	SQL-DMO	to	configure	Microsoft	Search	full-text	indexing,	use	the
FullTextCatalog	object	to	create	and	maintain	Microsoft	Search	full-text
catalogs.	Use	the	Table	object	to	create	and	maintain	full-text	indexes	for	a
Microsoft®	SQL	Server™	2000	table.

The	FullTextCatalogName,	FullTextIndex,	and	UniqueIndexForFullText
properties	are	used	together	to	create	a	full-text	index.

Use	the	ListAvailableUniqueIndexesForFullText	method	to	enumerate
available	values	for	the	UniqueIndexForFullText	property.

See	Also

FullTextCatalogName	Property

ListAvailableUniqueIndexesForFullText	Method

FullTextIndex	Property

SQL-DMO

UniqueKeyCount	Property
The	UniqueKeyCount	property	returns	an	approximate	number	of	words
uniquely	addressable	in	a	Microsoft	Search	full-text	catalog.

Applies	To

FullTextCatalog	Object

Syntax
object.UniqueKeyCount

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetUniqueKeyCount(LPLONG	pRetVal);

SQL-DMO

UnloadTapeAfter	Property
The	UnloadTapeAfter	property	controls	tape	media	handling	on	completion	of	a
backup	or	restore	operation.

Applies	To

Backup	Object Restore	Object

Syntax
object.UnloadTapeAfter	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetUnloadTapeAfter(LPBOOL	pRetVal);

HRESULT	SetUnloadTapeAfter(BOOL	NewValue);

Remarks
If	TRUE,	the	tape	media	in	the	tape	device(s)	is	rewound	and	unloaded	when	the
operation	completes.

If	FALSE	(default),	no	attempt	is	made	to	rewind	and	unload	the	tape	media.

SQL-DMO

UpdateCommand	Property
The	UpdateCommand	property	specifies	record	update	when	altered	rows	in
the	source	are	published	to	article	Subscribers.

Applies	To

TransArticle	Object

Syntax
object.UpdateCommand	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	defines	a	Transact-SQL	script

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetUpdateCommand(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetUpdateCommand(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
The	format	and	contents	of	the	UpdateCommand	property	must	match	those
specified	for	the	@upd_cmd	argument	of	the	sp_addarticle	system	stored
procedure.	For	more	information,	see	sp_addarticle.

Note		If	an	application	sets	UpdateCommand	after	the	initial	snapshot	has	been
created,	a	new	snapshot	must	be	generated	and	reapplied	to	each	subscription.
Snapshots	are	applied	when	the	next	scheduled	snapshot	and	distribution	agent
run.

JavaScript:hhobj_1.Click()

SQL-DMO

Upgrade	Property
The	Upgrade	property	is	reserved	for	future	use.

Applies	To

Language	Object

Syntax
object.Upgrade

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetUpgrade(LPLONG	pRetVal);

SQL-DMO

Use6xCompatible	Property
The	Use6xCompatible	property	controls	interpretation	of	Microsoft®	SQL
Server™	2000	bulk	copy	native	format	data	files.

Applies	To

BulkCopy	Object

Syntax
object.Use6xCompatible	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetUse6xCompatible(LPBOOL	pRetVal);

HRESULT	SetUse6xCompatible(BOOL	NewValue);

Remarks
A	SQL	Server	bulk	copy	operation	either	creates	or	reads	from	a	data	file.	SQL
Server	bulk	copy	data	files	are	created	in	either	native	(proprietary)	or	character
format.	SQL	Server	bulk	copy	native	data	file	format	has	changed	for	SQL
Server	version	7.0	and	later.	The	user	must	direct	version-dependent	handling	of
source	files	when	processing	native	format	files	created	by	SQL	Server	7.0	or
earlier.

If	TRUE,	a	bulk	copy	operation	interprets	file	data	based	on	SQL	Server	7.0	or
earlier	format	for	native	data	files.

If	FALSE,	default,	a	bulk	copy	operation	interprets	file	data	based	on	the	SQL
Server	7.0	format.

SQL-DMO

UseBulkCopyOption	Property
The	UseBulkCopyOption	property	determines	whether	the	select
into/bulkcopy	option	is	turned	on	automatically	when	the	ImportData	method
of	the	Table	object	is	executed.

Applies	To

BulkCopy	Object

Syntax
object.UseBulkCopyOption	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetUseBulkCopyOption(LPBOOL	pRetVal);

HRESULT	SetUseBulkCopyOption(BOOL	NewValue);

Remarks
If	TRUE,	and	the	select	into/bulkcopy	database	option	is	off	in	the	target
database,	the	option	is	turned	on	before	an	ImportData	bulk	copy	is	started	and
is	turned	off	after	the	bulk	copy	is	complete.

If	FALSE,	no	adjustments	to	the	database	options	are	made.

IMPORTANT		The	select	into/bulkcopy	database	option	allows	bulk-logged
alteration	to	the	target	database.	A	target	database	should	be	backed	up	after	any
bulk-logged	actions	against	it.	For	more	information,	see	Selecting	a	Recovery
Model.

JavaScript:hhobj_1.Click()

SQL-DMO

UseCollation	Property
The	UseCollation	property	maintains	column-level	collation	settings	when
transferring	data	between	computers	running	an	instance	of	Microsoft®	SQL
Server™	2000.

Applies	To

Transfer2	Object

Syntax
object.UseCollation	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetUseCollation(LPBOOL	pRetVal);

HRESULT	SetUseCollation(BOOL	NewValue);

Remarks
By	default,	UseCollation	is	set	to	FALSE.

If	UseCollation	is	set	to	TRUE,	column-level	collation	settings	are	maintained
when	transferring	data	between	computers	running	an	instance	of	SQL	Server
2000	if	the	code	pages	are	the	same	on	both	servers.	When	transferring	data	to	a
computer	running	an	instance	of	SQL	Server	2000	using	a	different	code	page,
all	collation	settings	at	the	source	computer	are	automatically	translated	to	the
code	page	of	the	destination	server	if	the	code	pages	settings	are	different.

When	transferring	data	to	a	computer	running	an	instance	of	SQL	Server	7.0	or
earlier,	all	collation	settings	at	the	source	server	are	automatically	translated	to
the	code	page	of	the	destination	server	if	the	code	pages	settings	are	different.
The	source	database	column-level	collation	is	translated	accordingly.

If	UseCollation	is	set	to	FALSE,	direct	data	transfer	is	performed	if	the	code
pages	are	the	same	on	both	servers.	If	the	code	pages	are	different,	the	data	is
translated	from	source	code	page	to	destination	code	page.	If	both	computers	are
running	an	instance	of	SQL	Server	2000	and	the	source	and	destination
databases	are	using	different	code	pages,	data	might	be	translated	to	the	incorrect
code	page	setting	depending	on	whether	the	column	is	using	the	default	or	a	non-
default	collation.

Note		Setting	UseCollation	to	TRUE	can	result	in	a	increase	in	performance
overhead	if	the	data	contains	non-Unicode	data	types	such	as	text	or	varchar.
Performance	can	also	be	affected	by	the	number	of	tables,	columns,	and	rows	in
the	source	database.

Note		If	an	application	calls	UseCollation	on	an	instance	of	SQL	Server	version
7.0,	the	operation	is	ignored.

SQL-DMO

UseCurrentUserServerGroups	Property
The	UseCurrentUserServerGroups	property	configures	registry	entries	listing
instances	of	Microsoft®	SQL	Server™	2000.

Applies	To

Application	Object

Syntax
object.UseCurrentUserServerGroups	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetUseCurrentUserServerGroups(LPBOOL	pRetVal);

HRESULT	SetUseCurrentUserServerGroups(BOOL	NewValue);

Remarks
When	TRUE,	registry	entries	listing	instances	of	SQL	Server	are	keyed	by
username.	Each	user	using	the	client	computer	can	configure	lists	to	meet
individual	preferences.

When	FALSE	(default),	registry	entries	listing	instances	of	SQL	Server	are	not
keyed	by	username.	Any	authorized-user	change	in	the	list	of	instances	is	visible
to	all	authorized	users.

SQL-DMO

UseDestTransaction	Property
The	UseDestTransaction	property	includes	all	DROP,	CREATE	SCHEMA,	and
data	copying	statements	in	a	transaction	during	a	transfer	operation.

Applies	To

Transfer2	Object 	

Syntax

object.UseDestTransaction	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type

Boolean

Modifiable

Read/write

Prototype	(C/C++)

HRESULT	GetUseDestTransaction(LPBOOL	pRetVal);

HRESULT	SetUseDestTransaction(BOOL	NewValue);

Remarks

When	UseDestTransaction	is	set	to	TRUE,	the	entire	transfer	operation
(including	DROP	statements,	CREATE	SCHEMA	statements,	and	data	copying)
is	included	in	a	transaction.	If	any	of	these	operations	fail,	the	transaction	is

rolled	back.	Statistics	are	updated	after	the	transaction	is	committed.	The	default
is	FALSE.

When	UseDestTransaction	is	set	to	TRUE,	the	application	cannot	perform	these
operations	within	the	transaction:

Dump	the	transaction	log.

Change	bcp	settings.

Update	statistics.

Script	a	full-text	catalog.

Note		If	an	application	calls	UseDestTransaction	on	an	instance	of	SQL	Server
version	7.0,	the	operation	is	ignored.

See	Also

DropDestObjectsFirst	Property

CopySchema	Property

SQL-DMO

UseExistingConnection	Property
The	UseExistingConnection	property	directs	BulkCopy	object	connection
behavior.

Applies	To

BulkCopy	Object

Syntax
object.UseExistingConnection	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetUseExistingConnection(LPBOOL	pRetVal);

HRESULT	SetUseExistingConnection(BOOL	NewValue);

Remarks
When	TRUE,	the	BulkCopy	object	uses	an	application-initiated	connection.	The
connection	used	is	determined	by	the	Table	or	View	object	referenced	in	the
ImportData	or	ExportData	method	call.

When	FALSE	(default),	the	BulkCopy	object	specifies	an	operation
implemented	using	an	additional,	SQL-DMO-initiated	connection	to	the	source
or	target	instance	of	Microsoft®	SQL	Server™	2000.

Note		To	perform	bulk	copy	operations	using	the	BulkCopy	object,	the	SQL-
DMO	application	connection	to	an	instance	of	SQL	Server	must	be	enabled.	To
enable	a	connection	for	bulk	copy,	set	the	EnableBcp	property	of	the
SQLServer	object.	The	UseExistingConnection	property	of	the	BulkCopy
object	does	not	enable	a	connection	for	bulk	copy	operations.

SQL-DMO

UseFTP	Property
The	UseFTP	property	specifies	whether	snapshot	files	will	be	downloaded	using
FTP	protocol	by	pull	subscriptions.

Applies	To

MergePullSubscription2	Object TransPullSubscription2	Object

Syntax
object.UseFTP	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetUseFTP(LPBOOL	pRetVal);

HRESULT	SetUseFTP(BOOL	NewValue);

Remarks
When	creating	Internet-enabled	pull	subscriptions,	set	the	UseFTP	property	to
TRUE	to	download	snapshot	files	from	the	Distributor	using	FTP	protocol.
Replication	downloads	files	in	.cab	format,	and	then	decompresses	them
automatically.	Use	the	FTPAddress,	FTPLogin,	FTPPassword,	and	FTPPort
properties	of	the	Publication	object	to	assign	additional	FTP-related	settings.

The	AltSnapshotFolder	property	cannot	be	set	at	the	same	time	that	UseFTP	is
set	to	TRUE	because	AltSnapshotFolder	might	be	used	in	conjunction	with
transporting	snapshot	files	by	means	of	portable	media.

Note		If	an	application	calls	UseFTP	on	an	instance	of	SQL	Server	version	7.0,
the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This	property	or
method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

AltSnapshotFolder	Property

FTPAddress	Property

FTPLogin	Property

FTPPassword	Property

FTPPort	Property

SQL-DMO

UseInteractiveResolver	Property
The	UseInteractiveResolver	property	specifies	whether	to	use	an	interactive
resolver	during	the	synchronization	process.

Applies	To

MergePullSubscription2	Object MergeSubscription2	Object

Syntax
object.UseInteractiveResolver	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Boolean	that	specifies	whether	to	use	an	interactive	resolver

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetUseInteractiveResolver(LPBOOL	pRetVal);

HRESULT	SetUseInteractiveResolver(BOOL	NewValue);

Remarks
When	the	UseInteractiveResolver	property	is	set	to	TRUE,	an	interactive
resolver	is	used	to	resolve	conflicts	while	synchronizing	with	articles	that	also
have	the	AllowInteractiveResolver	property	set	to	TRUE.

Note		If	an	application	calls	UseInteractiveResolver	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

AllowInteractiveResolver	Property

Interactive	Resolver

JavaScript:hhobj_1.Click()

SQL-DMO

UserData	Property
The	UserData	property	associates	user-defined	data	with	a	SQL-DMO	object
instance.

Applies	To
All	SQL-DMO	objects

Syntax
object.UserData	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetUserData(LPVOID	*pRetVal);

HRESULT	SetUserData(LPVOID	lpvNewValue);

SQL-DMO

UserName	Property
The	UserName	property	returns	the	Microsoft®	SQL	Server™	2000	database
user,	determining	privilege	for	the	current	connection.

Applies	To

Database	Object

Syntax
object.UserName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	an	existing	SQL	Server	database	user	by	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetUserName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetUserName(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
Members	of	the	sysadmin	fixed	server	role	or	db_owner	fixed	database	role	can
set	the	UserName	property	to	impersonate	the	database	user	specified.	For	more
information,	see	SETUSER.

JavaScript:hhobj_1.Click()

SQL-DMO

UserProfile	Property
The	UserProfile	property	returns	a	high-level	role	description	for	the
Microsoft®	SQL	Server™	2000	login	or	database	user	used	by	the	current
connection.

Applies	To

Database	Object SQLServer	Object

Syntax
object.UserProfile

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long,	enumerated

Modifiable
Read-only

Prototype	(C/C++)
For	the	Database	object:

HRESULT	GetUserProfile(SQLDMO_DBUSERPROFILE_TYPE*	pRetVal)

For	the	SQLServer	object:

HRESULT	GetUserProfile(SQLDMO_SRVUSERPROFILE_TYPE*	pRetVal)

Returns
For	the	Database	object,	interpret	the	UserProfile	property	using	these
SQLDMO_DBUSERPROFILE_TYPE	values.

Constant Value Description
SQLDMODbUserProf_AllProfileBits 1023 User	has	all

specifiable
database
maintenance
permissions.

SQLDMODbUserProf_CreateDefault 32 User	has
permission	to
execute	the
CREATE
DEFAULT
statement.

SQLDMODbUserProf_CreateFunction 512 User	has
permission	to
execute	the
CREATE
FUNCTION
statement.

SQLDMODbUserProf_CreateProcedure 8 User	has
permission	to
execute	the
CREATE
PROCEDURE
statement.

SQLDMODbUserProf_CreateRule 128 User	has
permission	to
execute	the
CREATE	RULE
statement.

SQLDMODbUserProf_CreateTable 2 User	has
permission	to
execute	the

CREATE	TABLE
statement.

SQLDMODbUserProf_CreateView 4 User	has
permission	to
execute	the
CREATE	VIEW
statement.

SQLDMODbUserProf_DbNotAvailable -1073741824 Unable	to
determine	user
permissions	due	to
offline	or	other
error.

SQLDMODbUserProf_DboLogin 1 User	is	a	member
of	the	db_owner
role.

SQLDMODbUserProf_DumpDatabase 16 User	can	back	up
data	for	the
referenced
database.

SQLDMODbUserProf_DumpTransaction 64 User	can	back	up
the	transaction	log
of	the	referenced
database.

SQLDMODbUserProf_DumpTable 256 User	can	back	up
database	data
specifying	a	table
as	the	backup	unit.

SQLDMODbUserProf_InaccessibleDb -2147483648 Referenced
database	is	offline
or	is	otherwise
inaccessible.

SQLDMODbUserProf_InvalidLogin 1073741824 Current	connection
login	has	no	user
privilege	in	the
referenced
database.

SQLDMODbUserProf_None 0 User	has	no
database
modification	or
maintenance
permissions.

For	the	SQLServer	object,	interpret	the	UserProfile	property	using	these
values.

Constant Value Description
SQLDMOSrvUserProf_AllProfileBits 7 Login	has	all	specifiable

SQL	Server	maintenance
permissions.

SQLDMOSrvUserProf_CreateDatabase 2 Login	has	CREATE
DATABASE	permission.

SQLDMOSrvUserProf_CreateXP 4 Login	can	execute
sp_addextendedproc	and
sp_dropextendedproc
(loading	and	unloading
extended	stored
procedures).

SQLDMOSrvUserProf_None 0 Login	has	no	SQL	Server
maintenance	permission.

SQLDMOSrvUserProf_SaLogin 1 Login	is	a	member	of	the
sysadmin	role.

Remarks
SQL	Server	login	and	user	permission	is	enhanced	in	an	instance	of	SQL	Server
version	7.0.	Fixed	server	and	database	roles	allow	greater	granularity	in
specifying	maintenance	of	an	instance	of	SQL	Server.	For	more	information,	see
DatabaseRole	Object	and	ServerRole	Object.

SQL-DMO

UseServerSideBCP	Property
The	UseServerSideBCP	property	directs	BulkCopy	object	behavior	when
implementing	a	bulk	copy	import	operation.

Applies	To

BulkCopy	Object

Syntax
object.UseServerSideBCP	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

TRUE	or	FALSE

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetUseServerSideBCP(LPBOOL	pRetVal);

HRESULT	SetUseServerSideBCP(BOOL	NewValue);

Remarks
The	BulkCopy	object	can	implement	a	data	import	operation	using	either	the
bulk	copy	extensions	to	ODBC	or	the	Transact-SQL	BULK	INSERT	statement.

When	TRUE,	the	BulkCopy	object	specifies	a	row	import	operation
implemented	using	the	BULK	INSERT	statement.

When	FALSE	(default),	the	BulkCopy	object	specifies	a	row	import	or	export
operation	using	extensions	to	the	SQL	Server	ODBC	driver.

See	Also

BULK	INSERT

Performing	Bulk	Copy	Operations

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL-DMO

UseTrustedConnection	Property
The	UseTrustedConnection	property	selects	the	authentication	mode	for
registry-listed	instances	of	Microsoft®	SQL	Server™	2000.

Applies	To

RegisteredServer	Object

Syntax
object.UseTrustedConnection	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

0	or	1

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetUseTrustedConnection(LPLONG	pRetVal);

HRESULT	SetUseTrustedConnection(long	NewValue);

Remarks
Microsoft	client	applications	for	SQL	Server,	such	as	SQL	Server	Enterprise
Manager,	make	use	of	registry-maintained	lists	for	instances	of	SQL	Server,
allowing	user	selection	of	servers.	Any	application	has	access	to	the	registry	and
may	use	the	lists	as	part	of	application	logic.

Registry	data	includes	a	default	setting	for	use	of	SQL	Server	Authentication	or
Windows	Authentication	when	the	SQL	Server	client	application	connects	to	the
listed	instance.

When	0,	a	connection	initiated	by	a	Microsoft	client	application	for	SQL	Server
using	an	instance	of	SQL	Server	in	the	registry	listing	will	use	SQL	Server
Authentication.	Configure	authentication	using	the	Login	and	Password
properties.

When	1,	a	connection	initiated	by	a	Microsoft	client	application	for	SQL	Server
using	an	instance	of	SQL	Server	in	the	registry	listing	will	use	Windows®
Authentication.

See	Also

Login	Property

Password	Property

JavaScript:hhobj_1.Click()

SQL-DMO

V

SQL-DMO

ValidateSubscriberInfo	Property
The	ValidateSubscriberInfo	property	is	a	selectable	expression	containing	any
dynamic	filtering	functions,	which	might	have	the	wrong	value	if	the	Merge
Agent	is	started	with	the	wrong	parameter	set.

Applies	To

MergePublication2	Object

Syntax
object.ValidateSubscriberInfo	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	used	to	validate	Subscriber	information	in	a	dynamic	filter

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetValidateSubscriberInfo(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetValidateSubscriberInfo(SQLDMO_LPCSTR	NewValue);

Remarks
When	a	publication	uses	a	function	that	references	Subscriber	information	in	a
dynamic	filter,	SQL	Server	can	validate	Subscriber	information	based	on	that
function	before	each	merge.	This	ensures	that	information	is	partitioned
consistently	with	each	merge.	For	example,	when	a	publication	is	dynamically
filtered	using	the	SUSER_SNAME	function,	the	Merge	Agent	applies	the	initial
snapshot	to	each	Subscriber	based	on	the	Subscriber	information	retrieved	by
SUSER_SNAME.

When	the	Subscriber	reconnects	to	the	Publisher	for	synchronization,	the	Merge
Agent	validates	the	information	at	the	Subscriber	and	ensures	that	the	same
partitions	are	synchronized	as	were	originally	sent.	If	the	Merge	Agent	is	unable
to	validate	the	same	Subscriber	information,	the	merge	fails.	Because	the	value
of	the	function	used	in	the	dynamic	filter	has	changed	at	the	Subscriber,	the
subscription	at	the	Subscriber	must	be	reinitialized.

If	a	dynamic	filtering	publication	uses	functions	such	as	host_name(),	or
suser_sname	when	filtering	data,	then	Merge	Agent	cannot	run	if	the	Subscriber
has	different	parameters.	If	the	publication	is	created	using	the
@validate_subscriber_info	parameter	of	sp_addmergepublication,	a	validation
expression	(for	example,	host_name()	or	host_name()	+	'::'	+	suser_sname())	can
be	specified.

The	expression	is	evaluated	at	the	Publisher,	and	the	value	is	stored	at	the
Subscriber.	Each	time	the	Merge	Agent	runs,	it	validates	that	either	the
expression	still	evaluates	to	the	same	value	that	is	stored	at	the	Subscriber,	or
that	the	Subscription	has	been	marked	for	re-initialization.	A	new	value	can	be
stored	at	the	Subscriber	by	reinitializing	the	subscription.

Note		If	an	application	calls	ValidateSubscriberInfo	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

Value	Property
The	Value	property	returns	the	current	value	of	the	referenced	object	property.

Applies	To

Property	Object

Syntax
object.Value	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Applicable	value	when	the	Property	object	references	a	read/write	or	write-
only	value

Data	Type
Variant

Modifiable
Read/write

Remarks
Setting	a	property	value	by	using	the	Value	property	of	the	referencing	Property
object	is	not	recommended.	Instead,	set	the	value	of	a	changeable	property	by
name.	For	more	information	about	applicable	values	for	the	Value	property,	see
specific	property	documentation.

SQL-DMO

VendorName	Property
The	VendorName	property	identifies	the	product	manufacturer	and	source	of	a
publication	distributed	by	using	Microsoft®	SQL	Server™	2000	replication.

Applies	To

DistributionPublication	Object

Syntax
object.VendorName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Manufacturer-specified	string

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetVendorName(LPBSTR	pRetVal);

HRESULT	SetVendorName(SQLDMO_LPCSTR	NewValue);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	by	using	SysFreeString.

SQL-DMO

VerifyResolverSignature	Property
The	VerifyResolverSignature	property	specifies	whether	to	verify	a	digital
signature	before	using	a	resolver	in	merge	replication.

Applies	To

MergeArticle2	Object

Syntax
object.VerifyResolverSignature	[=value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	specifying	a	SQLDMO_VERIFYSIGNATURE_TYPE	constant
as	described	in	Settings

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT
GetVerifyResolverSignature(SQLDMO_VERIFYSIGNATURE_TYPE
pRetVal);

HRESULT
SetVerifyResolverSignature(SQLDMO_VERIFYSIGNATURE_TYPE
NewValue);

Settings
Set	the	VerifyResolverSignature	property	using	these	values.

Constant Value Description
SQLDMOVerifySignature_NoVerification 0 No	digital	signature

verification	for
resolver.

SQLDMOVerifySignature_TrustedAuthority 1 Verify	digital
signature	of	trusted
authority	for	resolver.

Remarks
Use	the	VerifyResolverSignature	property	to	verify	whether	a	custom	resolver
has	appropriate	security.	The	default	is
SQLDMOVerifySignature_NoVerification.

Note		If	an	application	calls	VerifyResolverSignature	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

Version	Property
The	Version	property	returns	a	system-specified	integer	identifying	the	version
of	Microsoft®	SQL	Server™	2000	used	to	create	the	referenced	database.

Applies	To

Database	Object

Syntax
object.Version

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetVersion(LPLONG	pRetVal);

SQL-DMO

VersionBuild	Property
The	VersionBuild	property	returns	the	revision	number	part	of	the	SQL-DMO
object	library	version	identifier.

Applies	To

Application	Object

Syntax
object.VersionBuild

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetVersionBuild(LPLONG	pRetVal);

SQL-DMO

VersionMajor	Property
The	VersionMajor	property	returns	the	portion	of	a	component	version
identifier	to	the	left	of	the	first	decimal	point	in	the	identifier.

Applies	To

Application	Object SQLServer	Object
RegisteredServer	Object 	

Syntax
object.VersionMajor

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetVersionMajor(LPLONG	pRetVal);

Remarks
For	SQLServer	or	RegisteredServer	objects,	the	VersionMajor	property
returns	a	value	exposing	the	major	version	number	of	the	Microsoft®	SQL

Server™	2000	product	installed.

For	the	Application	object,	the	VersionMajor	property	returns	a	value	exposing
the	major	version	number	of	the	SQL-DMO	object	library.

SQL-DMO

VersionMinor	Property
The	VersionMinor	property	returns	the	portion	of	a	component	version
identifier	to	the	right	of	the	first	decimal	point	in	the	identifier.

Applies	To

Application	Object SQLServer	Object
RegisteredServer	Object 	

Syntax
object.VersionMinor

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetVersionMinor(LPLONG	pRetVal);

Remarks
For	SQLServer	or	RegisteredServer	objects,	the	VersionMinor	property
returns	a	value	exposing	the	minor	version	number	of	the	Microsoft®	SQL

Server™	2000	product	installed.

For	the	Application	object,	the	VersionMinor	property	returns	a	value	exposing
the	minor	version	number	of	the	SQL-DMO	object	library.

SQL-DMO

VersionNumber	Property
The	VersionNumber	property	returns	a	system-maintained	change-tracking
indicator	for	the	referenced	job.

Applies	To

Job	Object

Syntax
object.VersionNumber

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetVersionNumber(LPLONG	pRetVal);

Remarks
Saving	any	change	to	the	referenced	job,	or	its	steps	and	schedules,	versions	the
job.	Job	versioning	can	be	part	of	simple	logic	verifying	correct	versions	for
multiserver	administration	targets.

SQL-DMO

VersionString	Property
The	VersionString	property	executes	the	Microsoft®	SQL	Server™	2000	scalar
function	@@VERSION	and	returns	its	results.

Applies	To

SQLServer	Object

Syntax
object.VersionString

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetVersionString(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	by	using	SysFreeString.

See	Also

@@VERSION

JavaScript:hhobj_1.Click()

SQL-DMO

ViaListenInfo	Property
The	ViaListenInfo	property	specifies	the	network	interface	card	(NIC)	and	port
number	when	using	Virtual	Interface	Architecture	(VIA)	protocol.

Applies	To

Registry2	Object 	

Syntax
object.ViaListenInfo	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

definition

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetViaListenInfo(LPBSTR);

HRESULT	SetViaListenInfo(BSTR);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	by	using	SysFreeString.

Remarks
The	ViaListenInfo	property	is	comma	delimited	string	in	the	form	of:

nica:b,nicc:d

where	a	and	c	are	nonnegative	integers	that	specify	the	NIC	number,	and	b	and	d
specify	the	port	on	which	the	associated	net	card	can	listen.	NIC	values	are	zero
or	greater,	and	port	numbers	are	in	the	range	zero	to	MAX_DWORD.

The	comma-delimited	string	is	not	a	SQL-DMO	multistring,	and	is	stored	as	a
REG_SZ	in	the	Registry.

VIA	is	only	compatible	with	the	Windows	NT®	4.0	and	Windows®	2000
operating	systems.	For	more	information	about	VIA,	see	Communication
Components.

Note		If	an	application	calls	ViaListenInfo	on	an	instance	of	SQL	Server	version
7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This	property
or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

ViaRecognizedVendors	Property

ViaVendor	Property

JavaScript:hhobj_1.Click()

SQL-DMO

ViaRecognizedVendors	Property
The	ViaListenInfo	property	returns	the	names	of	recognized	vendors	when
using	Virtual	Interface	Architecture	(VIA)	protocol.

Applies	To

Registry2	Object 	

Syntax
object.ViaRecognizedVendors

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
SQL-DMO	multistring

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetViaRecognizedVendors(LPBSTR);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	by	using	SysFreeString.

Remarks

The	recognized	vendors	for	VIA	protocol	with	SQL	Server	2000	are	Giaganet
and	ServerNetII.	An	application	can	use	the	value	returned	by
ViaRecognizedVendors	to	specify	the	preferred	vendor	using	the	ViaVendor
property.

VIA	is	only	compatible	with	the	Windows	NT®	4.0	and	Windows®	2000
operating	systems.	For	more	information	about	VIA,	see	Communication
Components.

For	more	information	about	multistrings,	see	Using	SQL-DMO	Multistrings.

Note		If	an	application	calls	ViaRecognizedVendors	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

ViaListenInfo	Property

ViaVendor	Property

JavaScript:hhobj_1.Click()

SQL-DMO

ViaVendor	Property
The	ViaListenInfo	property	specifies	the	vendor	name	when	using	Virtual
Interface	Architecture	(VIA)	protocol.

Applies	To

Registry2	Object 	

Syntax
object.ViaVendor	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

definition

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetViaVendor(LPBSTR);

HRESULT	SetViaVendor(BSTR);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	by	using	SysFreeString.

Remarks
An	application	can	use	the	value	returned	by	the	ViaRecognizedVendors
property	to	specify	the	preferred	vendor	using	the	ViaVendor	property.

VIA	is	only	compatible	with	the	Windows	NT®	4.0	and	Windows®	2000
operating	systems.	For	more	information	about	VIA,	see	Communication
Components.

Note		If	an	application	calls	ViaVendor	on	an	instance	of	SQL	Server	version
7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This	property
or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

ViaListenInfo	Property

ViaRecognizedVendors	Property

JavaScript:hhobj_1.Click()

SQL-DMO

VinesGroupName	Property
The	VinesGroupName	property	specifies	the	Banyan	Vines	Net-Library	group
name	on	a	computer	running	Microsoft®	SQL	Server™	2000.

Applies	To

Registry2	Object

Syntax
object.VinesGroupName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	the	group	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetVinesGroupName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetVinesGroupName(SQLDMO_LPCSTR	NewValue);

Remarks
A	group	name	is	typically	the	name	of	a	department	within	an	organization	(for
example,	ACCOUNTING).	To	set	the	VinesGroupName	property,	you	must	be
a	member	of	the	sysadmin	fixed	server	role.

IMPORTANT		Setting	the	VinesGroupName	property	changes	registry	settings,
and	should	be	used	with	caution.

Note		The	Banyan	Vines	server	Net-Library	cannot	be	installed	on	Windows®
95	and	Windows	98.

Note		If	an	application	calls	VinesGroupName	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

VinesItemName	Property

VinesOrgName	Property

SQL-DMO

VinesItemName	Property
The	VinesItemName	property	specifies	the	Banyan	Vines	Net-Library	item
name	on	a	computer	running	Microsoft®	SQL	Server™	2000.

Applies	To

Registry2	Object

Syntax
object.VinesItemName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	the	item	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetVinesItemName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetVinesItemName(SQLDMO_LPCSTR	NewValue);

Remarks
An	item	name	is	typically	the	name	of	a	server	within	a	group	(for	example,
ACCOUNTING01).	To	set	the	VinesItemName	property,	you	must	be	a
member	of	the	sysadmin	fixed	server	role.

IMPORTANT		Setting	the	VinesItemName	property	changes	registry	settings,	and
should	be	used	with	caution.

Note		The	Banyan	Vines	server	Net-Library	cannot	be	installed	on	Windows®
95	and	Windows	98.

Note		If	an	application	calls	VinesItemName	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

VinesGroupName	Property

VinesOrgName	Property

SQL-DMO

VinesOrgName	Property
The	VinesOrgName	property	specifies	the	Banyan	Vines	Net-Library
organization	name	on	a	computer	running	Microsoft®	SQL	Server™	2000.

Applies	To

Registry2	Object

Syntax
object.VinesOrgName	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	the	organization	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetVinesOrgName(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetVinesOrgName(SQLDMO_LPCSTR	NewValue);

Remarks
An	item	name	is	typically	the	name	of	a	company	or	a	division	within	a
company.	To	set	the	VinesOrgName	property,	you	must	be	a	member	of	the
sysadmin	fixed	server	role.

IMPORTANT		Setting	the	VinesOrgName	property	changes	registry	settings,	and
should	be	used	with	caution.

Note		The	Banyan	Vines	server	Net-Library	cannot	be	installed	on	Windows®
95	and	Windows	98.

Note		If	an	application	calls	VinesOrgName	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

VinesGroupName	Property

VinesItemName	Property

SQL-DMO

W

SQL-DMO

WeekdayPagerEndTime	Property
The	WeekdayPagerEndTime	property	specifies	the	latest	time	of	day	at	which
the	referenced	operator	is	available	to	receive	alert	notification	by	pager.

Applies	To

Operator	Object

Syntax
object.WeekdayPagerEndTime	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Time	of	day	specified	using	a	Date	value

Data	Type
Date

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetWeekdayPagerEndTime(LPLONG	pRetVal);

HRESULT	SetWeekdayPagerEndTime(long	NewValue);

Note		When	SQL-DMO	uses	a	scaled	long	integer	to	represent	a	time,	the

integer	is	built	as	a	sum	of	the	hour	scaled	by	10000,	the	minute	scaled	by	100,
and	the	seconds.	The	time	value	uses	a	24-hour	clock.	For	example,	the	time
1:03:09	P.M.	is	represented	by	the	long	integer	value	130309.

Remarks
Use	the	PagerDays	property	to	set	the	days	of	the	week	for	which	pager
notifications	will	be	sent	to	the	referenced	operator.	When	the	operator	is
available	for	pager	notification	on	Monday,	Tuesday,	Wednesday,	Thursday,	or
Friday,	use	the	WeekdayPagerStartTime	and	WeekdayPagerEndTime
properties	to	set	hours	of	availability	for	those	days.

When	the	end	page	time	is	less	than	the	start	page	time	for	an	operator,	the
interval	is	calculated	so	that	paging	occurs	through	12:00	A.M.	Configure
Saturday,	Sunday,	and	weekday	paging	intervals	with	this	in	mind.	For	an
operator	on	duty	from	6:00	P.M.	to	6:00	A.M.	on	Sunday,	Monday,	and	Tuesday,
set	SundayPagerStartTime	to	6:00	P.M.	and	SundayPagerEndTime	to	12:00
A.M.	Set	WeekdayPagerStartTime	to	6:00	P.M.	also,	but	set
WeekdayPagerEndTime	to	6:00	A.M.

See	Also

PagerDays	Property

SundayPagerEndTime	Property

SaturdayPagerEndTime	Property

SundayPagerStartTime	Property

SaturdayPagerStartTime	Property

SQL-DMO

WeekdayPagerStartTime	Property
The	WeekdayPagerStartTime	property	specifies	the	earliest	time	of	day	at
which	the	referenced	operator	is	available	to	receive	alert	notification	by	pager.

Applies	To

Operator	Object

Syntax
object.WeekdayPagerStartTime	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Time	of	day	specified	using	a	Date	value

Data	Type
Date

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetWeekdayPagerStartTime(LPLONG	pRetVal);

HRESULT	SetWeekdayPagerStartTime(long	NewValue);

Note		When	SQL-DMO	uses	a	scaled	long	integer	to	represent	a	time,	the

integer	is	built	as	a	sum	of	the	hour	scaled	by	10000,	the	minute	scaled	by	100,
and	the	seconds.	The	time	value	uses	a	24-hour	clock.	For	example,	the	time
1:03:09	P.M.	is	represented	by	the	long	integer	value	130309.

Remarks
Use	the	PagerDays	property	to	set	the	days	of	the	week	for	which	pager
notifications	will	be	sent	to	the	referenced	operator.	When	the	operator	is
available	for	pager	notification	on	Monday,	Tuesday,	Wednesday,	Thursday,	or
Friday,	use	the	WeekdayPagerStartTime	and	WeekdayPagerEndTime
properties	to	set	hours	of	availability	for	those	days.

When	the	end	page	time	is	less	than	the	start	page	time	for	an	operator,	the
interval	is	calculated	so	that	paging	occurs	through	12:00	A.M.

See	Also

PagerDays	Property

SundayPagerEndTime	Property

SaturdayPagerEndTime	Property

SundayPagerStartTime	Property

SaturdayPagerStartTime	Property

SQL-DMO

WorkingDirectory	Property
The	WorkingDirectory	property	specifies	the	directory	to	use	for	snapshot	files
that	are	downloaded	using	FTP	protocol.

Applies	To

MergePullSubscription2	Object TransPullSubscription2	Object

Syntax
object.WorkingDirectory	[=value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	the	directory	in	which	downloaded	snapshot	files	are
stored	and	decompressed

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetWorkingDirectory(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetWorkingDirectory(SQLDMO_LPCSTR	NewValue);

Remarks
Use	the	WorkingDirectory	property	to	specify	the	directory	to	which	a
replication	agent	downloads	snapshot	files	using	FTP	protocol.	Replication	uses
this	directory	to	decompress	snapshot	files,	which	are	downloaded	in	.cab
format.	If	no	directory	is	specified,	the	operating	system	uses	the	c:\Temp
directory	by	default.

Note		If	an	application	calls	WorkingDirectory	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

WSProxyAddress	Property
The	WSProxyAddress	property	specifies	the	WinSock	proxy	server	address	on
a	computer	running	Microsoft®	SQL	Server™	2000.

Applies	To

Registry2	Object

Syntax
object.WSProxyAddress	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

String	that	specifies	the	address

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetWSProxyAddress(SQLDMO_LPBSTR	pRetVal);

HRESULT	SetWSProxyAddress(SQLDMO_LPCSTR	NewValue);

Remarks
To	set	the	WSProxyAddress	property,	you	must	be	a	member	of	the	sysadmin
fixed	server	role.

IMPORTANT		Setting	the	WSProxyAddress	property	changes	registry	settings,
and	should	be	used	with	caution.

Note		If	an	application	calls	WSProxyAddress	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

WSProxyPort	Property

SQL-DMO

WSProxyPort	Property
The	WSProxyPort	property	specifies	the	WinSock	proxy	server	port	number	on
a	computer	running	Microsoft®	SQL	Server.

Applies	To

Registry2	Object

Syntax
object.WSProxyPort	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	the	port	number

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetWSProxyPort(LPLONG	pRetVal);

HRESULT	SetWSProxyPort(long	NewValue);

Remarks
To	set	the	WSProxyPort	property,	you	must	be	a	member	of	the	sysadmin	fixed
server	role.

IMPORTANT		Setting	the	WSProxyPort	property	changes	registry	settings,	and
should	be	used	with	caution.

Note		If	an	application	calls	WSProxyPort	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

WSProxyAddress	Property

SQL-DMO

Methods
SQL-DMO	object	methods:

Configure	a	Microsoft®	SQL	Server™	component,	modifying	a	SQL
Server	installation.

Generate	textual	documentation	of	a	SQL	Server	component	for	use	by
another	administrative	task.

Perform	basic	administration	tasks	such	as	database	backup	or	restore
operations.

SQL-DMO

A

SQL-DMO

Abort	Method
The	Abort	method	interrupts	a	running	SQL-DMO	process,	returning	control	to
the	application.

Applies	To

Backup	Object Restore	Object
BulkCopy	Object Transfer	Object

Syntax
object.Abort

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	Abort();

Remarks
The	Abort	method	exists	for	objects	that	expose	events	only.

SQL-DMO

ActivateSubscriptions	Method
The	ActivateSubscriptions	method	executes	the	system	stored	procedure
sp_refreshsubscriptions,	targeting	the	transactional	or	snapshot	replication
publication	referenced	by	the	SQL-DMO	object.

Applies	To

TransPublication	Object

Syntax
object.ActivateSubscriptions

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	ActivateSubscriptions();

See	Also

sp_refreshsubscriptions

JavaScript:hhobj_1.Click()

SQL-DMO

Add	Method
The	Add	method	appends	the	object	specified	to	an	appropriate	SQL-DMO
collection.

Applies	To

AlertCategories	Collection MergeDynamicSnapshotJobs
Collection

Alerts	Collection MergePublications	Collection
BackupDevices	Collection MergePullSubscriptions	Collection
Checks	Collection MergeSubscriptions	Collection
Columns	Collection MergeSubsetFilters	Collection
DatabaseRoles	Collection Names	Collection
Databases	Collection OperatorCategories	Collection
DBFiles	Collection Operators	Collection
Defaults	Collection RegisteredServers	Collection
DistributionArticles	Collection RegisteredSubscribers	Collection
DistributionDatabases	Collection RemoteLogins	Collection
DistributionPublications	Collection RemoteServers	Collection
DistributionPublishers	Collection Rules	Collection
DistributionSubscriptions	Collection ServerGroups	Collection
FileGroups	Collection StoredProcedures	Collection
FullTextCatalogs	Collection Tables	Collection
Indexes	Collection TargetServerGroups	Collection
JobCategories	Collection TransArticles	Collection
Jobs	Collection TransPublications	Collection
JobSchedules	Collection TransPullSubscriptions	Collection
JobSteps	Collection TransSubscriptions	Collection
Keys	Collection Triggers	Collection
LinkedServerLogins	Collection UserDefinedDatatypes	Collection
LinkedServers	Collection UserDefinedFunctions	Collection

JavaScript:hhobj_1.Click()

LogFiles	Collection Users	Collection
Logins	Collection Views	Collection
MergeArticles	Collection 	

Syntax
object.Add(ObjectToAdd)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

ObjectToAdd

Expression	that	evaluates	to	an	object	of	the	type	contained	in	the	collection

Prototype	(C/C++)
HRESULT	Add(LPSQLDMOobject	pObject);

Remarks
For	any	collection	exposing	the	Add	method,	the	method	implements
Microsoft®	SQL	Server™	component	creation.	Component	creation	can	occur
as	the	SQL-DMO	object	is	added	to	its	containing	collection,	or	at	some	other
application-directed	time.

For	more	information	about	component	creation	by	using	the	Add	method	of	the
SQL-DMO	collection,	see	documentation	for	SQL-DMO	objects	and
collections.

Note		If	an	application	calls	Add	with	the	MergeArticles	object	after	the	initial
snapshot	has	been	created,	a	new	snapshot	must	be	generated	and	reapplied	to
each	subscription.	Snapshots	are	applied	when	the	next	scheduled	snapshot	and
merge	agent	run.	If	an	application	calls	Add	with	the	TransPublication	object
after	the	initial	snapshot	has	been	created,	a	new	snapshot	must	be	generated.
Snapshots	are	applied	when	the	next	scheduled	snapshot	agent	runs.

SQL-DMO

AddAlternatePublisher	Method
The	AddAlternatePublisher	method	adds	a	server	to	a	list	of	alternate
Publishers.	Subscribers	to	a	publication	can	synchronize	with	listed	alternate
Publishers.

Applies	To

MergePublication2	Object

Syntax
object.AddAlternatePublisher(
szAlternatePublisher	,	
szAlternatePublicationDB	,	
szAlternatePublication	,	
[szAlternateDistributor]	,	
[szFriendlyName])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

szAlternatePublisher

String	that	specifies	the	name	of	the	alternate	Publisher

szAlternatePublicationDB

String	that	specifies	the	name	of	the	publication	database

szAlternatePublication

String	that	specifies	the	name	of	the	publication

szAlternateDistributor

String	that	specifies	the	name	of	the	Distributor	for	the	alternate	Publisher

szFriendlyName

String	that	specifies	a	description	for	the	alternate	Publisher

Prototype	(C/C++)
HRESULT	AddAlternatePublisher(
SQLDMO_LPCSTR	pszAlternatePublisher,	
SQLDMO_LPCSTR	pszAlternatePublicationDB,	
SQLDMO_LPCSTR	pszAlternatePublication,	
SQLDMO_LPCSTR	pszAlternateDistributor,	
SQLDMO_LPCSTR	pszFriendlyName);

Remarks
Use	the	AddAlternatePublisher	method	to	add	a	server	to	a	list	of	alternate
Publishers	to	which	Subscribers	can	synchronize.	The	list	is	stored	at	both	the
Publisher	and	Subscriber.	A	Subscriber	can	run	the	EnumAlternatePublishers
method	to	obtain	a	list	of	enabled	alternate	Publishers	and	potential	alternate
Publishers.	Subscribers	can	then	synchronize	with	any	listed	enabled	alternate
Publisher.

Use	the	RemoveAlternatePublisher	method	to	remove	a	server	from	the	list	of
alternate	Publishers.

Note		If	an	application	calls	AddAlternatePublisher	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

AllowSyncToAlternate	Property

EnumAlternatePublishers	Method

RemoveAlternatePublisher	Method

SQL-DMO

AddMember	Method
The	AddMember	method	assigns	Microsoft®	SQL	Server™	database	or	server
role	membership	to	the	specified	user,	database	role,	or	login.

Applies	To

DatabaseRole	Object ServerRole	Object

Syntax
object.AddMember(User)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

User

For	the	DatabaseRole	object,	a	string	that	specifies	an	existing	database	user
or	role	by	name.	For	the	ServerRole	object,	a	string	that	specifies	an	existing
SQL	Server	login	by	name.

Prototype	(C/C++)
HRESULT	AddMember(SQLDMO_LPCSTR	NewValue);

Remarks
Configuring	role	membership	by	using	the	AddMember	method	of	the
Database	and	ServerRole	objects	requires	appropriate	permissions.

For	the	Database	object,	the	database	user	mapped	to	the	SQL	Server	login	used
for	SQLServer	object	connection	must	be	a	member	of	the	fixed	database	role
db_owner.

For	the	ServerRole	object,	the	SQL	Server	login	used	for	SQLServer	object
connection	must	be	a	member	of	the	role	to	which	the	specified	login	will	be
added.

SQL-DMO

AddMemberServer	Method
The	AddMemberServer	method	assigns	target	server	(TSX)	group	membership
to	the	target	server	specified.

Applies	To

TargetServerGroup	Object

Syntax
object.AddMemberServer(str)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

str

String	that	identifies	a	target	server	by	name

Prototype	(C/C++)
HRESULT	AddMemberServer(SQLDMO_LPCSTR	NewValue);

Remarks
Use	the	AddMemberServer	and	RemoveMemberServer	methods	to	configure
multiserver	administration	TSX	groups.	A	target	server	can	be	a	member	of	no
group,	or	a	member	of	multiple	groups.

SQL-DMO

AddNotification	Method
The	AddNotification	method	associates	operators	with	alerts.	Operators
designated	receive	notification	messages	when	an	event	raising	the	alert	occurs.

Applies	To

Alert	Object Operator	Object

Syntax
object.AddNotification(str	,	NotificationType)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

str

String	that	specifies	a	Microsoft®	SQL	Server™	Agent	operator	or	alert	by
name

NotificationType

Long	integer	that	specifies	a	method	for	notification	message	delivery	as
described	in	Settings

Prototype	(C/C++)
HRESULT	AddNotification(
SQLDMO_LPCSTR	strAlertOrOperator,
SQLDMO_NOTIFY_TYPE	NotifyMethod);

Settings
The	NotificationType	argument	is	a	bit-packed,	long	integer	value.	Specify	more

than	a	single	notification	method	by	combining	values	using	the	OR	logical
operator.

Constant Value Description
SQLDMONotify_All 7 Notification	by	e-mail,	e-mail	sent	to

the	pager	address,	and	network	pop-up
message

SQLDMONotify_Email 1 Notification	by	e-mail	sent	to	the
operator	e-mail	address

SQLDMONotify_NetSend 4 Notification	by	network	pop-up
message	posted	to	the	operator
network	address

SQLDMONotify_None 0 No	notification	method	specified	for
the	referenced	operator

SQLDMONotify_Pager 2 Notification	by	e-mail	sent	to	the
operator	pager	address

Remarks
The	AddNotification	method	can	be	used	to	add	an	alert	to	the	list	of	alerts	that
generate	operator	notification,	or	an	operator	to	the	list	of	those	notified	when
the	alert	is	raised.

For	the	Alert	object,	the	str	argument	identifies	an	operator.	For	the	Operator
object,	str	identifies	an	alert.

SQL-DMO

AddObject	Method
The	AddObject	method	appends	the	database	object	referenced	to	the	list	of
those	objects	copied	when	the	Transfer	method	of	the	Database	object	is	used
to	copy	database	schema	or	data.

Applies	To

Transfer	Object

Syntax
object.AddObject(DBObject)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

DBObject

Expression	that	evaluates	to	a	DBObject	object

Prototype	(C/C++)
HRESULT	AddObject(LPSQLDMODBOBJECT	DBObject);

Remarks
SQL-DMO	implements	copying	of	database	schema	and	data	by	using	the
Transfer	object	and	methods	implemented	on	the	Database	object.	The
Transfer	object	is	used	to	define	which	database	objects	are	affected	by	the	copy
and	how	the	copy	is	performed.	Use	the	AddObject	and	AddObjectByName
methods	to	add	database	objects	to	those	affected	by	the	copy.

Note		The	ListObjects	method	of	the	Database	object	returns	a	list	of

DBObject	objects.	The	method	can	be	used	to	prepare	a	list	for	use	by	the
AddObject	method.

SQL-DMO

AddObjectByName	Method
The	AddObjectByName	method	appends	the	database	object	named	to	the	list
of	those	objects	copied	when	the	Transfer	method	of	the	Database	object	is
used	to	copy	database	schema	or	data.

Applies	To

Transfer	Object

Syntax
object.AddObjectByName(Object	,	ObjectType	,	[Owner])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Object

String	that	specifies	an	existing	Microsoft®	SQL	Server™	database	object
by	name.

ObjectType

Long	integer	that	specifies	the	object	type	named	as	described	in	Settings.

Owner

Optional.	String	that	specifies	an	existing	database	user	by	name.	When
specified,	restricts	the	method	to	add	only	an	object	owned	by	the	user.

Prototype	(C/C++)
HRESULT	AddObjectByName(
SQLDMO_LPCSTR	szObject,
SQLDMO_OBJECT_TYPE	ObjectType

SQLDMO_LPCSTR	szOwner	=	NULL);

Settings
Specify	the	value	of	the	ObjectType	argument	by	using	these
SQLDMO_OBJECT_TYPE	values.

Constant Value Description
SQLDMOObj_AllButSystemObjects 5119 List	or	query	result	set

membership	includes	all
but	SQL	Server	system
objects.

SQLDMOObj_AllDatabaseObjects 4607 Database	objects	added
include	Microsoft	SQL
Server	system	and	user
database	objects

SQLDMOObj_AllDatabaseUserObjects 4605 Database	objects	added
include	only	user	database
objects

SQLDMOObj_Default 64 Database	object	added	is	a
SQL	Server	default

SQLDMOObj_Rule 128 Database	object	added	is	a
SQL	Server	rule

SQLDMOObj_StoredProcedure 16 Database	object	added	is	a
stored	procedure

SQLDMOObj_Trigger 256 Database	object	added	is	a
trigger

SQLDMOObj_UserDefinedDatatype 4096 Database	object	added	is	a
SQL	Server	user-defined
data	type

SQLDMOObj_UserDefinedFunction 1 Database	object	added	is	a
user-defined	function

SQLDMOObj_UserTable 8 Database	object	added	is	a
user-defined	table

SQLDMOObj_View 4 Database	object	added	is	a
view

Remarks
SQL-DMO	implements	copying	of	database	schema	and	data	by	using	the
Transfer	object	and	methods	implemented	on	the	Database	object.	The
Transfer	object	is	used	to	define	what	database	objects	are	affected	by	the	copy
and	how	the	copy	is	performed.	Use	the	AddObject	and	AddObjectByName
methods	to	add	database	objects	to	those	affected	by	the	copy.

SQL-DMO

AddReplicatedColumns	Method
The	AddReplicatedColumns	method	vertically	partitions	a	transactional	or
snapshot	replication	article.

Applies	To

MergeArticle2	Object TransArticle	Object

Syntax
object.AddReplicatedColumns(str)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

str

SQL-DMO	multistring	naming	columns	in	the	table	referenced	by	the
transactional	replication	article

Prototype	(C/C++)
HRESULT	AddReplicatedColumns(SQLDMO_LPCSTR	NewValue);

Remarks
When	using	SQL-DMO	to	create	a	transactional	or	snapshot	replication	article,
all	columns	in	a	table	referenced	by	the	article	are	replicated	by	default.

An	initial	column	list,	set	by	using	the	AddReplicatedColumns	method,
establishes	an	initial	vertical	partition	of	the	replicated	table.	The	initial	partition
can	be	established	prior	to	article	creation	(before	the	TransArticle	object	is
added	to	its	containing	collection)	or	to	an	existing,	nonpartitioned	article.

When	the	TransArticle	object	references	an	existing	partitioned	article,	the
AddReplicatedColumns	method	is	nondestructive.	That	is,	columns	specified
in	the	str	argument	are	added	to	the	list	of	those	establishing	the	vertical
partition.

For	more	information	about	setting	multistring	parameters,	see	Using	SQL-
DMO	Multistrings.

For	more	information	about	altering	a	partition	definition	by	using	SQL-DMO,
see	RemoveReplicatedColumns	Method.

Note		If	an	application	sets	AddReplicatedColumns	after	the	initial	snapshot
has	been	created,	a	new	snapshot	must	be	generated	and	reapplied	to	each
subscription.	Snapshots	are	applied	when	the	next	scheduled	snapshot	and
distribution	or	merge	agent	run.

SQL-DMO

AddStartParameter	Method
The	AddStartParameter	method	appends	a	Microsoft®	SQL	Server™	service
startup	option	to	those	currently	used	by	the	service.

Applies	To

SQLServer	Object

Syntax
object.AddStartParameter(str)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

str

String	that	specifies	a	startup	option.	For	more	information	about	startup
options	and	their	effect,	see	Using	Startup	Options.

Prototype	(C/C++)
HRESULT	AddStartParameter(SQLDMO_LPCSTR	NewValue);

Remarks
The	list	of	SQL	Server	service	startup	options	in	use	for	an	instance	of	SQL
Server	is	visible	in	SQL-DMO	through	the	Parameters	collection	of	the
Configuration	object.	To	configure	startup	options	persistently,	use	the	Add	and
Remove	methods	of	the	Parameters	collection.

The	AddStartParameter	method	can	be	used	on	a	disconnected	SQLServer
object	referencing	an	instance	of	SQL	Server	not	yet	started.	The	Start	method

JavaScript:hhobj_1.Click()

of	the	SQLServer	object	will	then	start	the	SQL	Server	service	with	the	option
specified.

IMPORTANT		Specifying	startup	options	for	the	SQL	Server	service	is	supported
for	instances	of	SQL	Server	on	Microsoft®	Windows	NT®.	Any	setting	is
ignored	when	an	instance	of	SQL	Server	service	is	installed	on	Microsoft
Windows®	95/98.

SQL-DMO

AddStepToJob	Method
The	AddStepToJob	method	configures	the	referenced	Microsoft®	SQL
Server™	Agent	job	by	appending	the	job	step	defined	by	the	JobStep	object
specified.

Applies	To

Job	Object

Syntax
object.AddStepToJob(JobStep)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

JobStep

Expression	that	evaluates	to	a	JobStep	object

Prototype	(C/C++)
HRESULT	AddStepToJob(LPSQLDMOJOBSTEP	pJobStep);

Remarks
SQL	Server	Agent	automated	task	administration	is	configured	by	adding,
removing,	and	controlling	the	execution	logic	of	job	steps	within	jobs.

When	using	SQL-DMO,	use	the	AddStepToJob	method,	or	the	Add	method	of
the	JobSteps	collection,	to	specify	additional	steps	for	an	administrative	task
automated	in	a	SQL	Server	Agent	job.

SQL-DMO

Alter	Method
The	Alter	method	changes	the	definition	of	the	referenced	stored	procedure,
trigger,	user-defined	function,	or	view.

Applies	To

StoredProcedure	Object UserDefinedFunction	Object
Trigger	Object View	Object

Syntax
object.Alter(str)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

str

String	that	specifies	a	Transact-SQL	command	batch	for	referenced	object
creation

Prototype	(C/C++)
HRESULT	Alter(SQLDMO_LPCSTR	NewValue);

Remarks
Microsoft®	SQL	Server™	supports	modifications	to	the	definition	of	existing
objects	by	using	the	Transact-SQL	ALTER	FUNCTION,	ALTER
PROCEDURE,	ALTER	TRIGGER,	and	ALTER	VIEW	statements.	SQL-DMO
implements	execution	of	these	statements	through	the	Alter	method	of
StoredProcedure,	Trigger,	and	View	objects.

Modifying	a	SQL	Server	database	object	by	using	the	Alter	method	requires
appropriate	permissions.	The	SQL	Server	login	used	for	SQLServer	object
connection	must	be	mapped	to	a	database	user	identified	as	the	object	owner	or	a
member	of	a	role	with	greater	permissions.

See	Also

ALTER	FUNCTION

ALTER	PROCEDURE

ALTER	VIEW

ALTER	TRIGGER

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

SQL-DMO

AlterDataType	Method
The	AlterDataType	method	alters	the	data	type	of	the	referenced	column.

Applies	To

Column2	Object

Syntax

object.AlterDataType(Datatype	,	[Length]	,	[Precision]	,	[Scale])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

DataType

String	that	specifies	the	new	data	type

Length

Optional	long	integer	that	specifies	the	length	of	a	string	data	type

Precision

Optional	long	integer	that	specifies	the	precision	of	a	numeric	data	type

Scale

Optional	long	integer	that	specifies	the	scale	of	a	numeric	data	type.

Prototype	(C/C++)

HRESULT	AlterDataType(
SQLDMO_LPCSTR	DataType,	
long	Length,
long	Precision,
long	Scale);

Remarks

When	using	AlterDataType	to	convert	the	data	type	of	an	existing	column	to	a
new	data	type,	the	two	data	types	must	be	compatible.	For	example,	an	int	data
type	can	be	converted	to	a	decimal	data	type,	and	a	char	data	type	can	be
converted	to	an	nvarchar	data	type.	However	string	data	types	cannot	be
converted	to	numeric	data	types.

Note		If	an	application	calls	AlterDataType	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

DataType	Property

Using	Data	Types

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL-DMO

ApplyToTargetServer	Method
The	ApplyToTargetServer	method	adds	an	execution	target	to	the	list	of	targets
maintained	for	the	referenced	Microsoft®	SQL	Server™	Agent	job.

Applies	To

Job	Object

Syntax
object.ApplyToTargetServer(str)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

str

String	that	specifies,	by	name,	an	instance	of	Microsoft	SQL	Server

Prototype	(C/C++)
HRESULT	ApplyToTargetServer(SQLDMO_LPCSTR	NewValue);

Remarks
Before	a	SQL	Server	Agent	job	can	execute,	the	job	must	have	at	least	one	step
and	an	execution	target.

When	using	SQL-DMO	to	create,	schedule,	and	run	SQL	Server	Agent	jobs,	use
either	the	ApplyToTargetServer	or	ApplyToTargetServerGroup	method	to
add	an	execution	target.	When	a	job	will	run	on	the	server	running	SQL	Server
Agent,	use	the	ApplyToTargetServer	method	to	target	the	job,	that	specifies	the
server	using	the	string	(local).

SQL-DMO

ApplyToTargetServerGroup	Method
The	ApplyToTargetServerGroup	method	adds	one	or	more	execution	targets	to
the	list	of	targets	maintained	for	the	referenced	Microsoft®	SQL	Server™	Agent
job.

Applies	To

Job	Object

Syntax
object.ApplyToTargetServerGroup(str)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

str

String	that	specifies	a	single	target	server	(TSX)	group	by	name

Prototype	(C/C++)
HRESULT	ApplyToTargetServerGroup(
SQLDMO_LPCSTR	NewValue);

Remarks
Before	a	SQL	Server	Agent	job	can	execute,	the	job	must	have	at	least	one	step
and	an	execution	target.	When	a	SQL	Server	Agent	acts	as	a	master	server
(MSX)	for	multiserver	administration	servers,	known	execution	target	servers
can	be	grouped	for	easier	targeting	of	multiple	servers	at	one	time.

When	using	SQL-DMO	to	create,	schedule,	and	run	SQL	Server	Agent	jobs,	use

either	the	ApplyToTargetServer	or	ApplyToTargetServerGroup	method	to
add	an	execution	target.	Use	the	ApplyToTargetServer	method	when	an
instance	of	SQL	Server	will	be	specified	as	an	execution	target.	Use	the
ApplyToTargetServerGroup	method	when	targeting	grouped	target	servers.

For	more	information	about	configuring	TSX	groups	by	using	SQL-DMO,	see
TargetServerGroup	Object.

SQL-DMO

AttachDB	Method
The	AttachDB	method	makes	a	database	visible	to	an	instance	of	Microsoft®
SQL	Server™.

Applies	To

SQLServer	Object

Syntax
object.AttachDB(DBName	,	DataFiles)	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

DBName

String	that	specifies	an	existing	database	by	name

DataFiles

SQL-DMO	multistring	that	specifies	operating	system	files	by	name

Returns
String	indicating	success	or	failure

Prototype	(C/C++)
HRESULT	AttachDB(SQLDMO_LPCSTR	DBName,
SQLDMO_LPCSTR	DataFiles,
SQLDMO_LPBSTR	pResult);

Remarks

The	AttachDB	method	is	used	when	a	change	to	the	location	of	operating
system	(OS)	files	implementing	the	database	must	be	made	visible	to	an	instance
of	SQL	Server.

The	DataFiles	argument	can	specify	up	to	16	OS	files.	Each	file	should	be
specified	by	complete	name,	including	the	path.	At	least	one	file	in	the	list	of
those	specified	must	be	the	PRIMARY	data	file.	Operating	system	files
implementing	storage	for	the	transaction	log	can	be	specified.

For	more	information	about	setting	multistring	parameters,	see	Using	SQL-
DMO	Multistrings.

The	AttachDB	method	fails	if	more	than	16	OS	files	are	specified.	When	using
SQL-DMO	to	move	a	database	implemented	on	more	than	16	files,	use	the
CreateForAttach	property	of	a	Database	object.

Making	a	database	visible	to	an	instance	of	SQL	Server	by	using	the	AttachDB
method	requires	appropriate	permissions.	The	SQL	Server	login	used	for
SQLServer	object	connection	must	be	a	member	of	the	system-defined	role
sysadmin.

See	Also

CreateForAttach	Property

SQL-DMO

AttachDBWithSingleFile	Method
The	AttachDBWithSingleFile	method	makes	a	database	visible	to	an	instance
of	Microsoft®	SQL	Server™.

Applies	To

SQLServer	Object

Syntax
object.AttachDBWithSingleFile(DBName	,	DataFile)	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

DBName

String	that	specifies	an	existing	database	by	name

DataFile

String	that	specifies	the	database	PRIMARY	data	file	by	operating	system
(OS)	file	name

Returns
A	string	indicating	success	or	failure

Prototype	(C/C++)
HRESULT	AttachDBWithSingleFile(SQLDMO_LPCSTR	DBName,
SQLDMO_LPCSTR	DataFile,
SQLDMO_LPBSTR	pResult);

Remarks
The	AttachDBWithSingleFile	method	is	used	when	a	change	to	the	location	of
OS	files	implementing	the	database	must	be	made	visible	to	an	instance	of	SQL
Server.

The	DataFile	argument	specifies	a	single	operating	system	data	file
implementing	storage	for	a	SQL	Server	database.	The	SQL	Server	instance
creates	an	OS	file	for	transaction	log	record	maintenance	as	part	of	the
AttachDBWithSingleFile	method	processing.

IMPORTANT		The	AttachDBWithSingleFile	method	only	succeeds	when	storage
for	a	database	is	implemented	within	a	single	operating	system	file.	A	file	or
files	implementing	storage	for	database	transaction	log	records	are	not	made
visible	by	the	method.	For	more	information	about	making	multifile	databases
visible	to	an	instance	of	SQL	Server,	see	AttachDB	Method.

Making	a	database	visible	to	an	instance	of	SQL	Server	by	using	the
AttachDBWithSingleFile	method	requires	appropriate	permissions.	The	SQL
Server	login	used	for	SQLServer	object	connection	must	be	a	member	of	the
system-defined	role	sysadmin.

SQL-DMO

AttachDBWithSingleFile2	Method
The	AttachDBWithSingleFile2	method	makes	a	database	visible	to	an	instance
of	Microsoft®	SQL	Server™.

Applies	To

SQLServer2	Object

Syntax
object.AttachDBWithSingleFile2(
DBName	,	
DataFile)	as	Boolean

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

DBName

String	that	specifies	an	existing	database	by	name

DataFile

String	that	specifies	the	database	PRIMARY	data	file	by	operating	system
file	name

Prototype	(C/C++)
HRESULT	AttachDBWithSingleFile2(
SQLDMO_LPCSTR	DBName,	
SQLDMO_LPCSTR	DataFile,	
LPBOOL	pRetVal)	PURE;

Remarks
The	AttachDBWithSingleFile2	method	is	used	when	a	change	to	the	location	of
operating	system	(OS)	files	implementing	the	database	must	be	made	visible	to
the	SQL	Server	instance.

The	DataFile	argument	specifies	a	single	OS	data	file	that	implements	storage
for	a	SQL	Server	database.	The	SQL	Server	instance	creates	an	operating	system
file	for	transaction	log	record	maintenance	as	part	of	the
AttachDBWithSingleFile2	method	processing.

The	AttachDBWithSingleFile2	method	returns	TRUE	if	the	attach	database
operation	succeeds.	Applications	that	require	detailed	information	regarding	the
success	or	failure	of	the	attach	database	operation	can	call	the
AttachDBWithSingleFile	method,	which	returns	a	detailed	string	containing
this	information.

IMPORTANT		The	AttachDBWithSingleFile2	method	only	succeeds	when	storage
for	a	database	is	implemented	within	a	single	operating	system	file.	Files	that
implement	storage	for	database	transaction	log	records	are	not	made	visible	by
the	method.	For	more	information	about	making	multiple	databases	visible	to	an
instance	of	SQL	Server,	see	AttachDB	Method.

Making	a	database	visible	to	an	instance	of	SQL	Server	using	the
AttachDBWithSingleFile2	method	requires	appropriate	permissions.	The	SQL
Server	login	used	for	SQLServer	object	connection	must	be	a	member	of	the
system-defined	sysadmin	role.

Note		If	an	application	calls	AttachDBWithSingleFile2	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

AttachSubscriptionDatabase	Method
The	AttachSubscriptionDatabase	method	attaches	a	copied	subscription
database	to	a	Subscriber.

Applies	To

Replication2	Object

Syntax
object.AttachSubscriptionDatabase(
szDatabaseName	,	
szFilename	,	
SubscriberSecurityType	,	
szSubscriberLogin	,	
szSubscriberPassword)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

szDatabaseName

String	that	specifies	the	database	to	attach

szFilename

String	that	specifies	the	complete	path	and	file	name	from	which	to	attach
the	database

SubscriberSecurityType

Long	integer	that	specifies	the	type	of	security	used	at	the	Subscriber

szSubscriberLogin

String	that	specifies	the	Subscriber	login

szSubscriberPassword

String	that	specifies	the	Subscriber	password

Prototype	(C/C++)
HRESULT	AttachSubscriptionDatabase(
SQLDMO_LPCSTR	pszDatabaseName,
SQLDMO_LPCSTR	pszFileName,	
SQLDMO_SECURITY_TYPE	SubscriberSecurityType,	
SQLDMO_LPCSTR	pszSubscriberLogin,	
SQLDMO_LPCSTR	pszSubscriberPassword);

Settings
Set	SubscriberSecurityType	by	using	these	SQLDMO_SECURITY_TYPE
values.

Constant Value Description
SQLDMOSecurity_Integrated 1 Allow	Windows	NT

Authentication	only
SQLDMOSecurity_Mixed 2 Allow	Windows	NT

Authentication	or	SQL	Server
Authentication

SQLDMOSecurity_Normal 0 Allow	SQL	Server	Authentication
only

SQLDMOSecurity_Unknown 9 Security	type	unknown

Remarks
After	using	the	CopySubscriptionDatabase	method	to	copy	a	subscription
database	to	a	Subscriber,	you	must	use	AttachSubscriptionDatabase	to	attach
the	database	at	the	Subscriber.

Note		If	an	application	calls	AttachSubscriptionDatabase	on	an	instance	of

SQL	Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the
message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

See	Also

AttachSubscriptionDatabase	Method

SQL-DMO

B

SQL-DMO

BeginAlter	Method
The	BeginAlter	method	marks	the	start	of	a	unit	of	change	for	the	object
referenced.

Applies	To

Alert	Object MergePublication	Object
AlertSystem	Object MergePullSubscription	Object
Category	Object MergeSubscription	Object
DistributionArticle	Object MergeSubsetFilter	Object
DistributionDatabase	Object Operator	Object
DistributionPublication	Object RegisteredSubscriber	Object
DistributionPublisher	Object Schedule	Object
DistributionSubscription	Object Table	Object
Job	Object TargetServerGroup	Object
JobSchedule	Object TransArticle	Object
JobServer	Object TransPublication	Object
JobStep	Object TransPullSubscription	Object
MergeArticle	Object TransSubscription	Object
MergeDynamicSnapshotJob	Object 	

Syntax
object.BeginAlter()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)

HRESULT	BeginAlter();

Remarks
Outside	of	a	BeginAlter/DoAlter	block,	each	change	to	a	SQL-DMO	object
property	causes	a	discrete	update	to	the	referenced	Microsoft®	SQL	Server™
2000	component.	Group	multiple	changes	by	calling	the	BeginAlter	method.

All	changes	made	after	the	BeginAlter	method	are	submitted	to	SQL	Server	the
next	time	the	DoAlter	method	is	called	on	the	object.

SQL-DMO

BeginTransaction	Method
The	BeginTransaction	method	explicitly	marks	the	start	of	a	transaction	unit.

Applies	To

SQLServer	Object 	

Syntax
object.BeginTransaction	([TransactionName])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

TransactionName

Optional.	A	string	naming	the	transaction.

Prototype	(C/C++)
HRESULT	BeginTransaction(
SQLDMO_LPCSTR	szTransactionName	=	NULL);

Remarks
Use	the	BeginTransaction,	CommitTransaction,	and	RollbackTransaction
methods	to	implement	application-defined	transaction	units.

Note		SQL-DMO	implements	objects	that	can	be	used	to	automate	Microsoft®
SQL	Server™	2000	administration.	Most	administrative	functions	use	data
definition	language	(DDL)	statements	for	their	implementation.	Generally,
application-defined	transaction	units	are	not	respected	by	DDL.	Where	SQL
Server	does	not	implement	transaction	space	for	DDL,	SQL-DMO	does	not

extend	DDL	by	defining	a	transaction	space.

In	general,	use	the	BeginTransaction,	CommitTransaction,	and
RollbackTransaction	methods	only	when	submitting	Transact-SQL
command	batches	for	execution	by	using	methods	such	as
ExecuteImmediate.	It	is	suggested	that	you	do	not	leave	transaction	units
open,	but	either	commit	or	roll	back	the	unit	when	the	command	batch
execution	method	is	complete.

SQL-DMO

BindDefault	Method
The	BindDefault	method	implements	Microsoft®	SQL	Server™	2000	default
binding	and	unbinding	for	columns	and	user-defined	data	types.

Applies	To

Column	Object UserDefinedDatatype	Object

Syntax
object.BindDefault(DefaultOwner	,	DefaultName	,	Bind)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

DefaultOwner

String	identifying	the	database	user	owning	the	bound	default

DefaultName

String	identifying	the	bound	default	by	name

Bind

TRUE	or	FALSE	as	described	in	Settings

Prototype	(C/C++)
HRESULT	BindDefault(SQLDMO_LPCSTR	DefaultOwner,
SQLDMO_LPCSTR	DefaultName,	BOOL	Bind);

Settings
When	Bind	is	TRUE,	the	default	named	is	bound	to	the	column	or	user-defined

data	type	referenced.

When	Bind	is	FALSE,	any	default	is	unbound	from	the	referenced	column	or
user-defined	data	type.	The	DefaultOwner	and	DefaultName	properties	are
ignored.

Remarks
The	BindDefault	method	of	the	Column	or	UserDefinedDatatype	object,	and
the	BindToColumn	and	BindToDatatype	methods	of	the	Default	object,
associate	a	SQL	Server	default	with	a	user-defined	data	type	or	column.

The	BindDefault	method	does	not	cause	a	check	of	existing	values	when	a	new
default	is	indicated	for	a	column	or	user-defined	data	type.

SQL-DMO

BindRule	Method
The	BindRule	method	implements	Microsoft®	SQL	Server™	2000	rule	binding
and	unbinding	for	columns	and	user-defined	data	types.

Applies	To

Column	Object UserDefinedDatatype	Object

Syntax
object.BindRule(RuleOwner	,	RuleName	,	Bind)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

RuleOwner

String	identifying	the	database	user	owning	the	bound	rule

RuleName

String	identifying	the	bound	rule	by	name

Bind

TRUE	or	FALSE	as	described	in	Settings

Prototype	(C/C++)
HRESULT	BindRule(SQLDMO_LPCSTR	RuleOwner,
SQLDMO_LPCSTR	RuleName,	BOOL	Bind);

Settings
When	Bind	is	TRUE,	the	rule	named	is	bound	to	the	column	or	user-defined	data

type	referenced.

When	Bind	is	FALSE,	any	rule	is	unbound	from	the	referenced	column	or	user-
defined	data	type.	The	RuleOwner	and	RuleName	properties	are	ignored.

Remarks
The	BindRule	method	of	the	Column	or	UserDefinedDatatype	objects,	and	the
BindToColumn	and	BindToDatatype	methods	of	the	Rule	object,	associate	a
SQL	Server	rule	with	a	user-defined	data	type	or	column.

The	BindDefault	method	does	not	cause	a	check	of	existing	values	when	a	new
rule	is	indicated	for	a	column	or	user-defined	data	type.

SQL-DMO

BindToColumn	Method
The	BindToColumn	method	enables	a	Microsoft®	SQL	Server™	2000	default
or	rule	on	the	column	specified.

Applies	To

Default	Object Rule	Object

Syntax
object.BindToColumn(Table,	Column)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Table

String	specifying	an	existing	table	by	name

Column

String	specifying	an	existing	column	in	the	specified	table

Prototype	(C/C++)
HRESULT	BindToColumn(
SQLDMO_LPCSTR	TableName,
SQLDMO_LPCSTR	ColumnName);

SQL-DMO

BindToDatatype	Method
The	BindToDatatype	method	enables	a	Microsoft®	SQL	Server™	2000	default
or	rule	on	the	user-defined	data	type	specified.

Applies	To

Default	Object Rule	Object

Syntax
object.BindToDatatype(DatatypeName,	[FutureOnly])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

DatatypeName

String	specifying	an	existing	user-defined	data	type	by	name.

FutureOnly

When	TRUE,	binding	does	not	cause	a	check	of	columns	existing	and
defined	using	the	data	type.	When	FALSE	(default),	existing	values	are
checked	for	agreement	with	the	rule.

Prototype	(C/C++)
HRESULT	BindToDatatype(
SQLDMO_LPCSTR	DatatypeName,
BOOL	bFutureOnly	=	FALSE);

SQL-DMO

BrowseSnapshotFolder	Method	(MergePublication2)
The	BrowseSnapshotFolder	method	returns	the	complete	path	used	by	the
Snapshot	Agent	to	generate	the	most	recent	snapshot.

Applies	To

MergePublication2	Object 	

Syntax
object.BrowseSnapshotFolder()	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	BrowseSnapshotFolder(SQLDMO_LPBSTR	pszSnapshotFolder);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	by	using	SysFreeString.

Remarks
BrowseSnapshotFolder	is	useful	for	determining	the	directory	where	snapshot
files	are	generated.	If	the	AltSnapshotFolder	property	is	set,
BrowseSnapshotFolder	returns	the	folder	location.

Note		If	an	application	calls	BrowseSnapshotFolder	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server™	2000"	are	returned.

See	Also

AltSnapshotFolder	Property

FTPSubdirectory	Property

SQL-DMO

BrowseSnapshotFolder	Method	(TransPublication2)
The	BrowseSnapshotFolder	method	returns	the	complete	path	used	to	apply	the
most	recent	snapshot.

Applies	To

TransPublication2	Object 	

Syntax
object.BrowseSnapshotFolder(
[szSubscriberName]	,	
[szSubscriberDB])	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

SzSubscriberName

String	that	specifies	the	Subscriber	name

szSubscriberDB

String	that	specifies	the	name	of	the	subscription	database	at	the	Subscriber.

Prototype	(C/C++)
HRESULT	BrowseSnapshotFolder(
SQLDMO_LPBSTR	pszSnapshotFolder,	
SQLDMO_LPCSTR	szSubscriberName,	
SQLDMO_LPCSTR	szSubscriberDB);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the

reference	by	using	SysFreeString.

Remarks
BrowseSnapshotFolder	is	useful	for	determining	the	directory	where	snapshot
files	are	generated.	If	the	AltSnapshotFolder	property	is	set,
BrowseSnapshotFolder	returns	the	folder	location.

Optionally,	use	the	SzSubscriberName	and	szSubscriberDB	parameters	to	locate
snapshot	files	generated	for	a	particular	subscription.	If	SzSubscriberName	and
szSubscriberDB	are	not	specified,	BrowseSnapshotFolder	returns	the	location
of	the	last	snapshot	folder	used.

Note		If	an	application	calls	BrowseSnapshotFolder	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server™	2000"	are	returned.

See	Also

AltSnapshotFolder	Property

FTPSubdirectory	Property

SQL-DMO

C

SQL-DMO

CancelAlter	Method
The	CancelAlter	method	marks	the	end	of	a	unit	of	change	for	the	object
referenced	and	discards	any	changes	made	to	object	property	values.

Applies	To

Alert	Object MergePublication	Object
AlertSystem	Object MergePullSubscription	Object
Category	Object MergeSubscription	Object
DistributionArticle	Object MergeSubsetFilter	Object
DistributionDatabase	Object Operator	Object
DistributionPublication	Object RegisteredSubscriber	Object
DistributionPublisher	Object Schedule	Object
DistributionSubscription	Object Table	Object
Job	Object TargetServerGroup	Object
JobSchedule	Object TransArticle	Object
JobServer	Object TransPublication	Object
JobStep	Object TransPullSubscription	Object
MergeArticle	Object TransSubscription	Object
MergeDynamicSnapshotJob	Object 	

Syntax
object.CancelAlter()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)

HRESULT	CancelAlter();

Remarks
Outside	of	a	BeginAlter/DoAlter	block,	each	change	to	a	SQL-DMO	object
causes	a	discrete	update	to	the	referenced	Microsoft®	SQL	Server™	2000
component.	Group	multiple	changes	by	calling	the	BeginAlter	method.

All	changes	made	after	the	BeginAlter	method	call	are	submitted	to	SQL	Server
the	next	time	DoAlter	is	called.	Changes	are	discarded	if	the	CancelAlter
method	is	called.

Note		Calling	CancelAlter	restores	the	SQL-DMO	object	referenced	to	its	state
at	the	time	of	the	BeginAlter	call.	It	does	not	refresh	the	object	with	current
values	from	an	instance	of	SQL	Server.

SQL-DMO

ChangeAgentParameter	Method
The	ChangeAgentParameter	method	modifies	a	replication	agent	profile
parameter.

Applies	To

Distributor	Object

Syntax
object.ChangeAgentParameter(lProfileID	,	bstrParameterName	,
bstrParameterValue)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

lProfileID

Long	integer	that	identifies	a	replication	agent	profile

bstrParameter
Name

String	that	specifies	a	profile	parameter	by	name

bstrParameter
Value

String	that	provides	a	new	value	for	the	parameter

Prototype	(C/C++)
HRESULT	ChangeAgentParameter(long	lProfileID,
SQLDMO_LPCSTR	szParameterName,	SQLDMO_LPCSTR
szParameterValue);

SQL-DMO

ChangeAgentProfile	Method
The	ChangeAgentProfile	method	modifies	an	existing	replication	agent	profile.

Applies	To

Distributor	Object

Syntax
object.ChangeAgentProfile(lProfileID	,	bstrDescription)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

lProfileID

Long	integer	that	identifies	a	replication	agent	profile

bstrDescription

String	that	contains	descriptive	text

Prototype	(C/C++)
HRESULT	ChangeAgentProfile(long	lProfileID,
SQLDMO_LPCSTR	szDescription);

SQL-DMO

CheckAllocations	Method
The	CheckAllocations	method	scans	all	pages	of	the	referenced	Microsoft®
SQL	Server™	2000	database,	testing	pages	to	ensure	integrity.

Applies	To

Database	Object

Syntax
object.CheckAllocations([RepairType])	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

RepairType

Optional.	A	long	integer	that	specifies	database	repair	action	as	described	in
Settings.

Prototype	(C/C++)
HRESULT	CheckAllocations(SQLDMO_LPBSTR	pResult,
SQLDMO_DBCC_REPAIR_TYPE	lType	=	SQLDMORepair_None);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Settings

Constant Value Description
SQLDMORepair_Allow_DataLoss 3 Attempt	all	database	repair

regardless	of	the	possibility
of	data	loss.	For	example,
delete	corrupted	text	objects.

SQLDMORepair_Fast 1 Attempt	database	repair	tasks
that	do	not	incur	data	loss.

SQLDMORepair_None 0 Default.	Do	not	attempt
database	repair	on	database
inconsistencies	encountered.

SQLDMORepair_Rebuild 2 Attempt	database	repair	tasks
that	do	not	incur	data	loss.
Rebuild	indexes	on
successful	database	repair.

Returns
A	string	that	contains	error	detail	information

Remarks
The	database	referenced	by	the	SQL-DMO	object	must	be	in	single-user	mode
when	using	the	RepairType	argument	of	the	CheckAllocations	method	to
perform	database	repair.	To	set	single-user	mode	on	a	database	using	SQL-
DMO,	use	the	SingleUser	property	of	the	DBOption	object.

The	CheckAllocations	method	is	implemented	using	the	Transact-SQL	DBCC
CHECKALLOC	statement.	The	return	value	of	CheckAllocations	is	a	string
representation	of	the	error	messages	returned	by	DBCC	CHECKALLOC.

See	Also

DBCC	CHECKALLOC

SingleUser	Property

JavaScript:hhobj_1.Click()

SQL-DMO

CheckAllocationsDataOnly	Method
The	CheckAllocationsDataOnly	method	is	maintained	for	compatibility	with
previous	versions	of	SQL-DMO.

Applies	To

Database	Object

Syntax
object.CheckAllocationsDataOnly()	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	CheckAllocationsDataOnly(
SQLDMO_LPBSTR	pResult);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
With	an	instance	of	Microsoft®	SQL	Server™	version	7.0	or	later,	the	behavior
of	the	CheckAllocationsDataOnly	and	CheckAllocations	methods	is	identical.
For	more	information,	see	CheckAllocations	Method.

SQL-DMO

CheckAllocationsDataOnlyWithResult	Method
The	CheckAllocationsDataOnlyWithResult	method	scans	all	pages	of	the
referenced	Microsoft®	SQL	Server™	2000	database,	testing	pages	to	ensure
integrity.	However,	nonclustered	indexes	for	nonsystem	tables	are	not	checked.

Applies	To

Database2	Object

Syntax
object.CheckAllocationsDataOnlyWithResult()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	CheckAllocationsDataOnlyWithResult(
LPSQLDMOQUERYRESULTS	*	ppResults);

Returns
A	QueryResults	object	that	contains	detailed	status	and	error	information	in
tabular	format

Remarks
CheckAllocationsDataOnlyWithResult	is	implemented	using	the	Transact-
SQL	DBCC	CHECKALLOC	WITH	TABLERESULTS	with	the	NOINDEX
option	specified.

It	is	recommended	that	you	use	the	properties	and	methods	of	the	QueryResults

object	to	retrieve	information	from	the	result	set.

Note		If	an	application	calls	CheckAllocationsDataOnlyWithResult	on	an
instance	of	SQL	Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,
and	the	message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"
are	returned.

SQL-DMO

CheckAllocationsWithResult	Method
The	CheckAllocationsWithResult	method	scans	all	pages	of	the	referenced
Microsoft®	SQL	Server™	2000	database,	testing	pages	to	ensure	integrity.

Applies	To

Database2	Object

Syntax
object.CheckAllocationsWithResult([RepairType])	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

RepairType

A	long	integer	that	specifies	database	repair	action	as	described	in	Settings

Prototype	(C/C++)
HRESULT	CheckAllocationsWithResult(
LPSQLDMOQUERYRESULTS	*	ppResults,	
SQLDMO_DBCC_REPAIR_TYPE	lType);

Settings
Set	RepairType	using	these	values.

Constant Value Description
SQLDMORepair_Allow_DataLoss 3 Attempt	all	database	repair

regardless	of	the	possibility
of	data	loss.	For	example,

delete	corrupted	text	objects.
SQLDMORepair_Fast 1 Attempt	database	repair	tasks

that	do	not	incur	data	loss.
SQLDMORepair_None 0 Default.	Do	not	attempt

database	repair	on	database
inconsistencies	encountered.

SQLDMORepair_Rebuild 2 Attempt	database	repair	tasks
that	do	not	incur	data	loss.
Rebuild	indexes	on
successful	database	repair.

Returns
A	QueryResults	object	that	contains	detailed	status	and	error	information	in
tabular	format

Remarks
The	database	referenced	by	the	SQL-DMO	object	must	be	in	single-user	mode
when	using	the	RepairType	argument	of	the	CheckAllocationsWithResult
method	to	perform	database	repair.	To	set	single-user	mode	on	a	database	using
SQL-DMO,	use	the	SingleUser	property	of	the	DBOption	object.

If	no	repair	action	is	specified,	RepairType	defaults	to	SQLDMORepair_None.

CheckAllocationsWithResult	is	implemented	using	the	Transact-SQL	DBCC
CHECKALLOC	WITH	TABLERESULTS	statement,	and	differs	from	the
CheckAllocations	method	in	that	results	are	returned	in	tabular	format.

It	is	recommended	that	you	use	the	properties	and	methods	of	the	QueryResults
object	to	retrieve	information	from	the	result	set.

Note		If	an	application	calls	CheckAllocationsWithResult	on	an	instance	of
SQL	Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the
message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

SQL-DMO

CheckCatalog	Method
The	CheckCatalog	method	tests	the	integrity	of	the	catalog	of	the	referenced
database.

Applies	To

Database	Object

Syntax
object.CheckCatalog()	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	CheckCatalog(SQLDMO_LPBSTR	pResult);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Returns
A	string	that	contains	error	detail	information

Remarks
The	CheckCatalog	method	is	implemented	using	the	Transact-SQL	DBCC
CHECKCATALOG	statement.	The	return	value	of	the	CheckCatalog	method	is
a	string	representation	of	the	error	messages	returned	by	DBCC
CHECKCATALOG.

See	Also

DBCC	CHECKCATALOG

JavaScript:hhobj_1.Click()

SQL-DMO

CheckCatalogWithResult	Method
The	method	CheckCatalogWithResult	tests	the	integrity	of	the	catalog	of	the
referenced	database.

Applies	To

Database2	Object

Syntax
object.CheckCatalogWithResult()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	CheckCatalogWithResult(
LPSQLDMOQUERYRESULTS	*	ppResults);

Returns
A	QueryResults	object	that	contains	detailed	status	and	error	information	in
tabular	format

Remarks
CheckCatalogWithResult	is	implemented	using	the	Transact-SQL	DBCC
CHECKCATALOG	WITH	TABLERESULTS	statement,	and	differs	from	the
CheckCatalog	method	in	that	results	are	returned	in	tabular	format.

It	is	recommended	that	you	use	the	properties	and	methods	of	the	QueryResults
object	to	retrieve	information	from	the	result	set.

Note		If	an	application	calls	CheckCatalogWithResult	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

CheckDefaultSyntax	Method
The	CheckDefaultSyntax	method	allows	an	application	to	validate	the	syntax	of
a	Transact-SQL	database	default	prior	to	creating	it.

Applies	To

Database2	Object 	

Syntax

object.CheckDefaultSyntax(Default)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Default

definition

Prototype	(C/C++)

HRESULT	CheckDefaultSyntax(LPSQLDMODEFAULT	Default);

Remarks

Database	defaults	and	rules	cannot	be	modified	once	they	are	created.	They	must
first	be	dropped	and	then	recreated.	An	application	can	call	the
CheckDefaultSyntax	or	CheckRuleSyntax	method	to	validate	the	syntax	of	a
Transact-SQL	database	rule	prior	to	its	creation.

An	application	might	call	the	CheckDefaultSyntax	or	CheckRuleSyntax	in	a
scenario	in	which	a	rule	or	default	already	exists,	and	it	is	necessary	to	change
the	definition	(specified	by	the	Text	property).	The	application:

1.	 Creates	a	new	rule	or	default	object.

2.	 Sets	the	Name	property	of	the	new	object	to	the	name	of	the	existing
object.

3.	 Sets	the	Text	property	of	the	new	object	to	define	the	default	or	rule.

4.	 Calls	CheckDefaultSyntax	or	CheckRuleSyntax	to	verify	the	syntax	of
the	Text	property.

5.	 Drops	the	existing	object	and	recreates	it	using	the	new	object	if
CheckDefaultSyntax	or	CheckRuleSyntax	returns	TRUE.

6.	 CheckDefaultSyntax	returns	TRUE	if	the	Transact-SQL	syntax	is
valid.

Note		CheckDefaultSyntax	can	be	used	with	Microsoft®	SQL	Server™	2000
and	SQL	Server	7.0.

See	Also

CheckRuleSyntax	Method

SQL-DMO

CheckFilegroup	Method
The	CheckFilegroup	method	scans	and	tests	the	integrity	of	database	pages
maintained	in	operating	system	files	implementing	the	referenced	filegroup.

Applies	To

FileGroup	Object

Syntax
object.CheckFilegroup()	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	CheckFilegroup(SQLDMO_LPBSTR	pResult);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Returns
A	string	that	contains	error	detail	information

Remarks
The	CheckFilegroup	method	is	implemented	using	the	Transact-SQL	DBCC
CHECKFILEGROUP	statement.	The	return	value	of	CheckFilegroup	is	a	string
representation	of	the	error	messages	returned	by	DBCC	CHECKFILEGROUP.

See	Also

DBCC	CHECKFILEGROUP

JavaScript:hhobj_1.Click()

SQL-DMO

CheckFilegroupDataOnly	Method
The	CheckFilegroupDataOnly	method	scans	and	tests	the	integrity	of	database
pages	used	to	maintain	table	data	in	the	operating	system	files	implementing	the
referenced	filegroup.

Applies	To

FileGroup	Object

Syntax
object.CheckFilegroupDataOnly()	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	CheckFilegroupDataOnly(SQLDMO_LPBSTR	pResult);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Returns
A	string	that	contains	error	detail	information

Remarks
The	CheckFilegroupDataOnly	method	is	implemented	using	the	Transact-SQL
DBCC	CHECKFILEGROUP	statement	with	the	NOINDEX	option	specified.
The	return	value	of	the	CheckFilegroupDataOnly	method	is	a	string

representation	of	the	error	messages	returned	by	DBCC	CHECKFILEGROUP.

See	Also

DBCC	CHECKFILEGROUP

JavaScript:hhobj_1.Click()

SQL-DMO

CheckFileGroupDataOnlyWithResult	Method
The	CheckFileGroupDataOnlyWithResult	method	scans	and	tests	the	integrity
of	database	pages	used	to	maintain	table	data	in	the	operating	system	files
implementing	the	referenced	filegroup.

Applies	To

FileGroup2	Object

Syntax
object.CheckFileGroupDataOnlyWithResult()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	CheckFilegroupDataOnlyWithResult(
LPSQLDMOQUERYRESULTS	*	ppResults);

Returns
A	QueryResults	object	that	contains	detailed	status	and	error	information	in
tabular	format

Remarks
CheckFileGroupDataOnlyWithResult	is	implemented	using	the	Transact-SQL
DBCC	CHECKFILEGROUP	WITH	TABLERESULTS	statement	with	the
NOINDEX	option	specified,	and	differs	from	the	CheckFileGroupDataOnly
method	in	that	results	are	returned	in	tabular	format.

It	is	recommended	that	you	use	the	properties	and	methods	of	the	QueryResults
object	to	retrieve	information	from	the	result	set.

Note		If	an	application	calls	CheckFileGroupDataOnlyWithResult	on	an
instance	of	SQL	Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,
and	the	message	"This	property	or	method	requires	Microsoft	SQL	Server™
2000"	are	returned.

SQL-DMO

CheckFileGroupWithResult	Method
The	CheckFileGroupWithResult	method	scans	and	tests	the	integrity	of
database	pages	maintained	in	operating	system	files	that	implement	the
referenced	filegroup.

Applies	To

FileGroup2	Object

Syntax
object.CheckFileGroupWithResult()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	CheckFilegroupWithResult(
LPSQLDMOQUERYRESULTS	*	ppResults);

Returns
A	QueryResults	object	that	contains	detailed	status	and	error	information	in
tabular	format.

Remarks
CheckFileGroupWithResult	is	implemented	using	the	Transact-SQL	DBCC
CHECKFILEGROUP	WITH	TABLERESULTS	statement,	and	differs	from	the
CheckFileGroup	method	in	that	results	are	returned	in	tabular	format.

It	is	recommended	that	you	use	the	properties	and	methods	of	the	QueryResults

object	to	retrieve	information	from	the	result	set.

Note		If	an	application	calls	CheckFileGroupWithResult	on	an	instance	of
SQL	Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the
message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

SQL-DMO

CheckIdentityValue	Method
The	CheckIdentityValue	method	verifies	the	integrity	of	an	identity	column	in
the	referenced	table.

Applies	To

Table	Object

Syntax
object.CheckIdentityValue()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	CheckIdentityValue();

Remarks
The	CheckIdentityValue	method	is	implemented	using	the	Transact-SQL
DBCC	CHECKIDENT	statement	with	no	optional	arguments	specified.	The
default	behavior	of	the	statement	resets	an	identity	value	if	the	value	supplying
the	next	identity	number	is	found	to	be	less	than	the	maximum	value	of	data	in
the	column.	Restrictions	on	the	default	behavior	apply.	For	more	information,
see	DBCC	CHECKIDENT.

JavaScript:hhobj_1.Click()

SQL-DMO

CheckIdentityValues	Method
The	CheckIdentityValues	method	verifies	the	integrity	of	all	identity	columns
in	tables	of	the	referenced	database.

Applies	To

Database	Object

Syntax
object.CheckIdentityValues()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	CheckIdentityValues();

Remarks
The	CheckIdentityValues	method	is	implemented	using	the	Transact-SQL
DBCC	CHECKIDENT	statement	with	no	optional	arguments	specified.	The
default	behavior	of	the	statement	resets	an	identity	value	if	the	value	supplying
the	next	identity	number	is	found	to	be	less	than	the	maximum	value	of	data	in
the	column.	Restrictions	on	the	default	behavior	apply.	For	more	information,
see	DBCC	CHECKIDENT.

JavaScript:hhobj_1.Click()

SQL-DMO

CheckIndex	Method
The	CheckIndex	method	tests	the	integrity	of	database	pages	implementing
storage	for	the	referenced	index.

Applies	To

Index	Object

Syntax
object.CheckIndex()	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	CheckIndex(SQLDMO_LPBSTR	pResult);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Returns
A	string	that	contains	error	detail	information

Remarks
The	CheckIndex	method	is	implemented	using	the	Transact-SQL	DBCC
CHECKTABLE	statement,	that	specifies	the	test	of	the	index	by	indicating	the
index	identifier.	The	return	value	of	the	CheckIndex	method	is	a	string
representation	of	the	error	messages	returned	by	DBCC	CHECKTABLE.

See	Also

DBCC	CHECKTABLE

JavaScript:hhobj_1.Click()

SQL-DMO

CheckIndexWithResult	Method
The	CheckIndexWithResult	method	tests	the	integrity	of	database	pages	that
store	data	for	the	referenced	index.

Applies	To

Index2	Object

Syntax
object.CheckIndexWithResult()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	CheckIndexWithResult(
LPSQLDMOQUERYRESULTS	*	ppResults);

Returns
A	QueryResults	object	that	contains	detailed	status	and	error	information	in
tabular	format

Remarks
CheckIndexWithResult	is	implemented	using	the	Transact-SQL	DBCC
CHECKTABLE	WITH	TABLERESULTS	statement	that	specifies	the	test	of	the
index	by	indicating	the	index	identifier,	and	differs	from	the	CheckIndex
method	in	that	results	are	returned	in	tabular	format.

It	is	recommended	that	you	use	the	properties	and	methods	of	the	QueryResults

object	to	retrieve	information	from	the	result	set.

Note		If	an	application	calls	CheckIndexWithResult	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

Checkpoint	Method
The	Checkpoint	method	forces	a	write	of	dirty	database	pages.

Applies	To

Database	Object

Syntax
object.Checkpoint()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	Checkpoint();

Remarks
For	an	instance	of	Microsoft®	SQL	Server™2000,	database	checkpoints	are
performed	automatically	and	at	user	direction.	Checkpoints	verify	the
consistency	of	data	and	a	database	can	be	configured	for	log	truncation	on	a
checkpoint,	as	consistency	is	assumed	when	a	checkpoint	occurs.	For	more
information	about	SQL-DMO	and	checkpoints,	see	TruncateLogOnCheckpoint
Property	and	ConfigValue	Object.

For	more	information	about	SQL	Server	database	checkpoints,	see
CHECKPOINT	and	recovery	interval	Option.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL-DMO

CheckRuleSyntax	Method
The	CheckRuleSyntax	method	validates	the	syntax	of	a	Transact-SQL	database
rule	prior	to	creating	it.

Applies	To

Database2	Object 	

Syntax

object.CheckRuleSyntax(Rule)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Rule

definition

Prototype	(C/C++)

HRESULT	CheckRuleSyntax(LPSQLDMORULE	Rule);

Remarks

Database	defaults	and	rules	cannot	be	modified	once	they	are	created.	They	must
first	be	dropped	and	then	recreated.	An	application	can	call	the
CheckDefaultSyntax	or	CheckRuleSyntax	method	to	validate	the	syntax	of	a
Transact-SQL	database	rule	prior	to	its	creation.

An	application	might	call	the	CheckDefaultSyntax	or	CheckRuleSyntax	in	a
scenario	in	which	a	rule	or	default	already	exists,	and	it	is	necessary	to	change
the	definition	(specified	by	the	Text	property).	The	application:

1.	 Creates	a	new	rule	or	default	object.

2.	 Sets	the	Name	property	of	the	new	object	to	the	name	of	the	existing
object.

3.	 Sets	the	Text	property	of	the	new	object	to	define	the	default	or	rule.

4.	 Calls	CheckDefaultSyntax	or	CheckRuleSyntax	to	verify	the	syntax	of
the	Text	property.

5.	 Drops	the	existing	object	and	recreates	it	using	the	new	object	if
CheckDefaultSyntax	or	CheckRuleSyntax	returns	TRUE.

6.	 CheckDefaultSyntax	returns	TRUE	if	the	Transact-SQL	syntax	is
valid.

Note		CheckRuleSyntax	can	be	used	with	Microsoft®	SQL	Server™
2000	and	SQL	Server	7.0.

See	Also

CheckDefaultSyntax	Method

SQL-DMO

CheckTable	Method
The	CheckTable	method	tests	the	integrity	of	database	pages	implementing
storage	for	the	referenced	table	and	indexes	defined	on	it.

Applies	To

Table	Object

Syntax
object.CheckTable()	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	CheckTable(SQLDMO_LPBSTR	pResult);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Returns
A	string	that	contains	detailed	status	and	error	information.	For	errors	with
severity	11	or	greater,	the	string	is	returned	as	a	trappable	error	in	the	Err	object
in	Visual	Basic.

Remarks
The	CheckTable	method	is	implemented	using	the	Transact-SQL	DBCC
CHECKTABLE	statement.	The	return	value	of	the	CheckTable	method	is	a

string	representation	of	the	error	messages	returned	by	DBCC	CHECKTABLE.

See	Also

DBCC	CHECKTABLE

JavaScript:hhobj_1.Click()

SQL-DMO

CheckTableDataOnly	Method
The	CheckTableDataOnly	method	tests	the	integrity	of	database	pages
implementing	storage	for	the	referenced	table.

Applies	To

Table	Object

Syntax
object.CheckTableDataOnly()	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	CheckTableDataOnly(
SQLDMO_LPBSTR	pResult);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Returns
A	string	that	contains	error	detail	information

Remarks
The	CheckTableDataOnly	method	is	implemented	using	the	Transact-SQL
DBCC	CHECKTABLE	statement	with	the	NOINDEX	option	specified.	The
return	value	of	the	CheckTableDataOnly	method	is	a	string	representation	of

the	error	messages	returned	by	DBCC	CHECKTABLE.

See	Also

DBCC	CHECKTABLE

JavaScript:hhobj_1.Click()

SQL-DMO

CheckTableDataOnlyWithResult	Method
The	CheckTableDataOnlyWithResult	method	tests	the	integrity	of	database
pages	that	store	data	for	the	referenced	table.

Applies	To

Table2	Object

Syntax
object.CheckTableDataOnlyWithResult()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	CheckTableDataOnlyWithResult(
LPSQLDMOQUERYRESULTS	*	ppResults);

Returns
A	QueryResults	object	that	contains	detailed	status	and	error	information	in
tabular	format.

Remarks
CheckTableDataOnlyWithResult	is	implemented	using	the	Transact-SQL
DBCC	CHECKTABLE	WITH	TABLERESULTS	statement	with	the	NOINDEX
option	specified,	and	differs	from	the	CheckTableDataOnly	method	in	that
results	are	returned	in	tabular	format.

It	is	recommended	that	you	use	the	properties	and	methods	of	the	QueryResults

object	to	retrieve	information	from	the	result	set.

Note		If	an	application	calls	CheckTableDataOnlyWithResult	on	an	instance
of	SQL	Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the
message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

SQL-DMO

CheckTables	Method
The	CheckTables	method	tests	the	integrity	of	database	pages	implementing
storage	for	all	tables	and	indexes	defined	on	the	tables	of	the	referenced
database.

Applies	To

Database	Object

Syntax
object.CheckTables([RepairType])	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

RepairType

Optionally	specifies	a	database	repair	action

Prototype	(C/C++)
HRESULT	CheckTables(SQLDMO_LPBSTR	pResult
SQLDMO_DBCC_REPAIR_TYPE	lType	=	SQLDMORepair_None);

Returns
A	string	that	contains	detailed	status	and	error	information.	For	errors	with
severity	11	or	greater,	the	string	is	returned	as	a	trappable	error	in	the	Err	object
in	Visual	Basic.

Remarks

The	database	referenced	by	the	SQL-DMO	object	must	be	in	single-user	mode
when	using	the	RepairType	argument	of	the	CheckTables	method	to	perform
database	repair.	To	set	single-user	mode	on	a	database	using	SQL-DMO,	use	the
SingleUser	property	of	the	DBOption	object.

The	CheckTables	method	is	implemented	using	the	Transact-SQL	DBCC
CHECKDB	statement.	The	return	value	of	the	CheckTables	method	is	a	string
representation	of	the	error	messages	returned	by	DBCC	CHECKDB.

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

See	Also

DBCC	CHECKTABLE

JavaScript:hhobj_1.Click()

SQL-DMO

CheckTablesDataOnly	Method
The	CheckTablesDataOnly	method	tests	the	integrity	of	database	pages
implementing	storage	for	all	tables	in	the	referenced	database.

Applies	To

Database	Object

Syntax
object.CheckTablesDataOnly()	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	CheckTablesDataOnly(
SQLDMO_LPBSTR	pResult);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Returns
A	string	that	contains	error	detail	information

Remarks
The	CheckTablesDataOnly	method	is	implemented	using	the	Transact-SQL
DBCC	CHECKTABLE	statement	with	the	NOINDEX	option	specified.	The
return	value	of	the	CheckTablesDataOnly	method	is	a	string	representation	of

the	error	messages	returned	by	DBCC	CHECKTABLE.

See	Also

DBCC	CHECKTABLE

JavaScript:hhobj_1.Click()

SQL-DMO

CheckTablesDataOnlyWithResult	Method
The	CheckTablesDataOnlyWithResult	method	tests	the	integrity	of	database
pages	that	store	data	for	all	tables	in	the	referenced	database.

Applies	To

Database2	Object

Syntax
object.CheckTablesDataOnlyWithResult()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	CheckTablesDataOnlyWithResult(
LPSQLDMOQUERYRESULTS	*	ppResults);

Returns
A	QueryResults	object	that	contains	detailed	status	and	error	information	in
tabular	format.

Remarks
CheckTablesDataOnlyWithResult	is	implemented	using	the	Transact-SQL
DBCC	CHECKDB	WITH	TABLERESULTS	statement	with	the	NOINDEX
option	specified,	and	differs	from	the	CheckTablesDataOnly	method	in	that
results	are	returned	in	tabular	format.

It	is	recommended	that	you	use	the	properties	and	methods	of	the	QueryResults

object	to	retrieve	information	from	the	result	set.

Note		If	an	application	calls	CheckTablesDataOnlyWithResult	on	an	instance
of	SQL	Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the
message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

SQL-DMO

CheckTablesWithResult	Method
The	CheckTablesWithResult	method	executes	DBCC	CHECKDB	WITH
TABLERESULTS,	and	executes	CHECKTABLE	on	all	tables.

Applies	To

Database2	Object

Syntax
object.CheckTablesWithResult([RepairType])	as	QueryResults

Parts
Object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

RepairType

A	long	integer	that	specifies	database	repair	action	as	described	in	Settings

Prototype	(C/C++)
HRESULT	CheckTablesWithResult	(
LPSQLDMOQUERYRESULTS	*	ppResults,	
SQLDMO_DBCC_REPAIR_TYPE	lType);

Settings
Set	RepairType	using	these	values.

Constant Value Description
SQLDMORepair_Allow_DataLoss 3 Attempt	all	database	repair

regardless	of	the	possibility	of
data	loss.	For	example,	delete

corrupted	text	objects.
SQLDMORepair_Fast 1 Attempt	database	repair	tasks

that	do	not	incur	data	loss.
SQLDMORepair_None 0 Default.	Do	not	attempt

database	repair	on	database
inconsistencies	encountered.

SQLDMORepair_Rebuild 2 Attempt	database	repair	tasks
that	do	not	incur	data	loss.
Rebuild	indexes	on	successful
database	repair.

Returns
A	QueryResults	object	that	contains	detailed	status	and	error	information	in
tabular	format

Remarks
The	database	referenced	by	the	SQL-DMO	object	must	be	in	single-user	mode
when	using	the	RepairType	argument	of	the	CheckTablesWithResult	method	to
perform	database	repair.	To	set	single-user	mode	on	a	database	using	SQL-
DMO,	use	the	SingleUser	property	of	the	DBOption	object.

CheckTablesWithResult	is	implemented	using	the	Transact-SQL	DBCC
CHECKDB	WITH	TABLERESULTS	statement,	and	differs	from	the
CheckTables	method	in	that	results	are	returned	in	tabular	format.

It	is	recommended	that	you	use	the	properties	and	methods	of	the	QueryResults
object	to	retrieve	information	from	the	result	set.

If	no	repair	action	is	specified,	RepairType	defaults	to	SQLDMORepair_None.

Note		If	an	application	calls	CheckTablesWithResult	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

CheckTableWithResult	Method
The	CheckTableWithResult	method	tests	the	integrity	of	database	pages	that
store	data	for	the	referenced	table	and	the	indexes	defined	on	it.

Applies	To

Table2	Object

Syntax
object.CheckTableWithResult()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	CheckTableWithResult(LPSQLDMOQUERYRESULTS	*
ppResults);

Returns
A	QueryResults	object	that	contains	detailed	status	and	error	information	in
tabular	format

Remarks
CheckTableWithResult	is	implemented	using	the	Transact-SQL	DBCC
CHECKTABLE	WITH	TABLERESULTS	statement	with	the	NOINDEX	option
specified,	and	differs	from	the	CheckTable	method	in	that	results	are	returned	in
tabular	format.

It	is	recommended	that	you	use	the	properties	and	methods	of	the	QueryResults

object	to	retrieve	information	from	the	result	set.

Note		If	an	application	calls	CheckTableWithResult	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

CleanUp	Method
The	CleanUp	method	directs	the	Microsoft	Search	service	to	locate	and	remove
full-text	catalog	resources	in	the	file	system	that	do	not	have	corresponding
entries	in	the	system	table	sysfulltextcatalogs.

Applies	To

FullTextService	Object

Syntax
object.CleanUp()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	CleanUp();

SQL-DMO

CleanUpAnonymousAgentInfo	Method
The	CleanUpAnonymousAgentInfo	method	cleans	up	anonymous	agent	meta
data	at	a	Distributor	when	called	from	a	Publisher.

Applies	To

Publisher2	Object 	

Syntax

object.CleanUpAnonymousAgentInfo(bstrSubscriptionID	,	ReplicationType)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

bstrSubscriptionID

String	that	represents	a	subscription	ID

ReplicationType

SQLDMORepType_Transactional	or	SQLDMORepType_Merge

Prototype	(C/C++)

HRESULT	CleanUpAnonymousAgentInfo(
SQLDMO_LPCSTR	pszSubscriptionID,	
SQLDMO_REPLICATION_TYPE	ReplicationType);

Remarks

The	value	for	the	bstrSubscriptionID	parameter	can	be	obtained	by	retrieving	the
value	of	the	SubscriptionID	property.	The	value	for	the	ReplicationType
parameter	must	be	a	SQLDMO_REPLICATION_TYPE	of
SQLDMORepType_Transactional	for	a	transactional	publication	or
SQLDMORepType_Merge	for	a	merge	publication.

Note		If	an	application	calls	CleanUpAnonymousAgentInfo	on	an	instance	of
SQL	Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the
message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

See	Also

SubscriptionID	Property

SQL-DMO

CleanUpDistributionPublisherByName	Method
The	CleanUpDistributionPublisherByName	method	completely	removes
implementation	of	publications	from	the	distribution	database	used	by	the	named
Publisher.

Applies	To

Distributor	Object

Syntax
object.CleanUpDistributionPublisherByName(Name)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Name

String	that	specifies	a	Publisher	by	name

Prototype	(C/C++)
HRESULT	CleanUpDistributionPublisherByName(
SQLDMO_LPCSTR	szName);

Remarks
Use	the	CleanUpDistributionPublisherByName	method	to	remove	publication
implementation	when	the	Publisher	is	offline	or	otherwise	not	available.

SQL-DMO

Close	Method
The	Close	method	disconnects	the	SQLServer	object	and	removes	the	object
from	the	SQLServers	collection	of	the	Application	object.

Applies	To

SQLServer	Object

Syntax
object.Close()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	Close();

SQL-DMO

CommandShellImmediate	Method
The	CommandShellImmediate	method	executes	an	operating	system	command
on	an	instance	of	Microsoft®	SQL	Server™	2000.

Applies	To

SQLServer	Object

Syntax
object.CommandShellImmediate(Command)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Command

String	that	specifies	an	operating	system	command

Prototype	(C/C++)
HRESULT	CommandShellImmediate(
SQLDMO_LPCSTR	Command);

Remarks
SQL	Server	implements	secure	access	to	the	operating	system	through	a	number
of	security	mechanisms.	For	more	information	about	configuring	access	to	the
operating	system,	see	xp_cmdshell.

JavaScript:hhobj_1.Click()

SQL-DMO

CommandShellWithResults	Method
The	CommandShellWithResults	method	returns	a	QueryResults	object
enumerating	execution	output	from	an	operating	system	command	executed	on
an	instance	of	Microsoft®	SQL	Server™	2000.

Applies	To

SQLServer	Object

Syntax
object.CommandShellWithResults(Command)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Command

Operating	system	command	string

Prototype	(C/C++)
HRESULT	CommandShellWithResults(
SQLDMO_LPCSTR	Command,
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	this	value

Column	name Data	type Description
output varchar(512) First	512	characters	of	a	line	of	text

generated	by	operating	system

command	execution

Remarks
SQL	Server	implements	secure	access	to	the	operating	system	through	a	number
of	security	mechanisms.	For	more	information	about	configuring	access	to	the
operating	system,	see	xp_cmdshell.

JavaScript:hhobj_1.Click()

SQL-DMO

CommitTransaction	Method
The	CommitTransaction	method	commits	a	unit	of	work	opened	explicitly	by	a
corresponding	BeginTransaction	method	call.

Applies	To

SQLServer	Object

Syntax
object.CommitTransaction([TransactionName])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

TransactionName

Optional	string

Prototype	(C/C++)
HRESULT	CommitTransaction(
SQLDMO_LPCSTR	szTransactionName	=	NULL);

Remarks
Use	the	BeginTransaction,	CommitTransaction,	and	RollbackTransaction
methods	to	implement	application-defined	transaction	units.

Note		SQL-DMO	implements	objects	that	can	be	used	to	automate	Microsoft®
SQL	Server™	administration.	Most	administrative	functions	use	data	definition
language	(DDL)	statements	for	their	implementation.	Generally,	application-
defined	transaction	units	are	not	respected	by	DDL.	Where	SQL	Server	does	not

implement	transaction	space	for	DDL,	SQL-DMO	does	not	extend	DDL	by
defining	a	transaction	space.

In	general,	use	the	BeginTransaction,	CommitTransaction,	and
RollbackTransaction	methods	only	when	submitting	Transact-SQL
command	batches	for	execution	using	methods	such	as	ExecuteImmediate.
It	is	suggested	that	you	do	not	leave	transaction	units	open,	but	either	commit
or	roll	back	the	unit	when	the	command	batch	execution	method	is	complete.

SQL-DMO

Connect	Method
The	Connect	method	attempts	to	establish	a	connection	with	a	named	instance
of	Microsoft®	SQL	Server™	2000.

Applies	To

SQLServer	Object

Syntax
object.Connect([ServerName]	,	[Login]	,	[Password])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

ServerName

Optional.	A	string	that	specifies	a	named	instance	of	SQL	Server.

Login

Optional.	A	string	that	specifies	a	SQL	Server	login	by	name.

Password

Optional.	A	string	that	specifies	a	password	authenticating	the	SQL	Server
login.

Prototype	(C/C++)
HRESULT	Connect(SQLDMO_LPCSTR	Server	=	NULL,
SQLDMO_LPCSTR	Login	=	NULL,
SQLDMO_LPCSTR	Password	=	NULL);

Remarks
When	the	ServerName	argument	is	not	specified,	the	SQL-DMO	application
attempts	to	connect	to	an	instance	of	SQL	Server	using	the	network	name	of	the
computer	on	which	the	application	is	running.	If	that	computer	is	also	running	an
instance	of	SQL	Server,	a	connection	is	established	to	that	instance	of	SQL
Server.

Use	the	Login	and	Password	arguments	to	specify	values	used	for	SQL	Server
Authentication.	To	use	Windows	Authentication	for	the	connection,	set	the
LoginSecure	property	to	TRUE	prior	to	calling	the	Connect	method.	When
LoginSecure	is	TRUE,	any	values	provided	in	the	Login	and	Password
arguments	are	ignored.

See	Also

LoginSecure	Property

LoginTimeout	Property

SQL-DMO

Continue	Method
The	Continue	method	restarts	a	paused	Microsoft®	SQL	Server™	2000	service.

Applies	To

SQLServer	Object

Syntax
object.Continue()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	Continue();

See	Also

Pause	Method

SQL-DMO

CopySnapshot	Method	(MergePublication2)
The	CopySnapshot	method	copies	the	latest	snapshot	files	to	the	destination
folder.

Applies	To

MergePublication2	Object 	

Syntax
object.CopySnapshot(pszDestinationFolder)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

pszDestinationFolder

String	that	specifies	the	destination	folder

Prototype	(C/C++)
HRESULT	CopySnapshot(SQLDMO_LPCSTR	pszDestinationFolder);

Remarks
An	application	can	call	the	CopySnapshot	method	only	after	the
MergePublication2	object	is	created.

The	pszDestinationFolder	parameter	specifies	a	folder	relative	to	the	server
computer,	not	the	client	computer,	if	the	destination	folder	is	not	a	UNC	path.

Note		If	an	application	calls	CopySnapshot	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

CopySnapshot	Method	(TransPublication2)
The	CopySnapshot	method	copies	the	latest	snapshot	files	to	the	destination
folder.

Applies	To

TransPublication2	Object 	

Syntax
object.CopySnapshot(
szDestinationFolder	,
[szSubscriberName]	,	
[szSubscriberDB])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

pszDestinationFolder

String	that	specifies	the	destination	folder

szSubscriberName

Optional	string	that	identifies	the	Subscriber	by	name

szSubscriberDB

Optional	string	that	identifies	the	database	at	the	Subscriber

Prototype	(C/C++)
HRESULT	CopySnapshot(
SQLDMO_LPCSTR	pszDestinationFolder,
SQLDMO_LPCSTR	szSubscriberName,

SQLDMO_LPCSTR	szSubscriberDB);

Remarks
An	application	can	call	the	CopySnapshot	method	only	after	the
TransPublication2	object	is	created.

The	pszDestinationFolder	parameter	specifies	a	folder	relative	to	the	server
computer,	not	the	client	computer,	if	the	destination	folder	is	not	a	UNC	path.

Note		If	an	application	calls	CopySnapshot	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

CopySubscriptionDatabase	Method
The	CopySubscriptionDatabase	method	copies	a	subscription	database	that	has
pull	subscriptions,	but	no	push	subscriptions.	Only	single	file	databases	can	be
copied.

Applies	To

ReplicationDatabase2	Object

Syntax
object.CopySubscriptionDatabase(
szFileName	,	
[fOverWriteExistingFile])

Parts
Object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

szFileName

String	that	specifies	the	complete	path,	including	file	name,	to	which	a	copy
of	the	data	portion	(.mdf)	file	is	saved.

fOverWriteExistingFile

Optional	Boolean	that	specifies	whether	to	overwrite	an	existing	file	of	the
same	name	specified	in	the	szFileName	parameter.	The	default	is	FALSE.

Prototype	(C/C++)
HRESULT	CopySubscriptionDatabase(
SQLDMO_LPCSTR	pszFilename,
BOOL	fOverWriteExistingFile);

Remarks
You	can	use	CopySubscriptionDatabase	to	copy	a	subscription	database	to	a
file	as	an	alternative	to	applying	a	snapshot	at	the	Subscriber.	The	database	must
be	configured	to	support	only	pull	subscriptions.	Users	having	appropriate
permissions	can	make	copies	of	the	subscription	database	and	then	e-mail,	copy,
or	transport	the	subscription	file	(.msf)	to	another	Subscriber,	where	it	can	then
be	attached	as	a	subscription.

This	technique	is	useful	for	copying	highly	customized	databases	that	contain
user-defined	objects,	such	as	triggers,	stored	procedures,	and	views.

To	copy	a	subscription	database

1.	 Use	the	CopySubscriptionDatabase	method	to	copy	the	subscription
database	as	an	.msf	file.

2.	 Use	the	AttachSubscriptionDatabase	method	to	attach	the	.msf	file
to	the	Subscriber.

Note		If	an	application	calls	CopySubscriptionDatabase	on	an
instance	of	SQL	Server	version	7.0,	the	constant,
SQLDMO_E_SQL80ONLY,	and	the	message	"This	property	or
method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

AttachSubscriptionDatabase	Method

SQL-DMO

CreateAgentProfile	Method
The	CreateAgentProfile	method	creates	a	replication	agent	profile.

Applies	To

Distributor	Object

Syntax
object.CreateAgentProfile(bstrName	,	bstrDescription	,	ReplAgentType)
as	Long

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

bstrName

String	that	specifies	profile	name

bstrDescription

String	that	contains	descriptive	text

ReplAgentType

Long	integer	that	specifies	a	replication	agent	type	as	described	in	Settings

Prototype	(C/C++)
HRESULT	CreateAgentProfile(SQLDMO_LPCSTR	szName,
SQLDMO_LPCSTR	szDescription,
SQLDMO_REPLAGENT_TYPE	AgentType,	long	*plProfileID);

Settings

Set	the	ReplAgentType	argument	using	these	SQLDMO_REPLAGENT_TYPE
values.

Constant Value Description
SQLDMOReplAgent_Distribution 3 Replication	Distribution

Agent
SQLDMOReplAgent_LogReader 2 Replication	transaction	log

monitoring	agent
SQLDMOReplAgent_Merge 4 Replication	Merge	Agent
SQLDMOReplAgent_QueueReader 9 Replication	Queue	Reader

Agent
SQLDMOReplAgent_Snapshot 1 Replication	Snapshot	Agent

Returns
A	system-generated,	long	integer	that	identifies	the	agent	profile

Remarks
Use	the	CreateAgentProfile	method	to	add	a	replication	agent	profile	to	a
Distributor.	The	new	profile	is	a	copy	of	the	default	profile	in	use	for	the	agent.

Use	the	ChangeAgentParameter	method	to	modify	parameter	values	and
change	the	behaviors	configured	by	the	newly	created	profile.

SQL-DMO

D

SQL-DMO

DeleteAgentProfile	Method
The	DeleteAgentProfile	method	completely	removes	a	replication	agent	profile.

Applies	To

Distributor	Object 	

Syntax
object.DeleteAgentPorfile(lProfileID)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

lProfileID

Long	integer	that	specifies	a	replication	agent	profile	by	system-assigned
identifier

Prototype	(C/C++)
HRESULT	DeleteAgentProfile(long	lProfileID);

SQL-DMO

Deny	Method	(Database)
The	Deny	method	negates	a	granted	database	permission	or	a	list	of	granted
permissions	for	one	or	more	Microsoft®	SQL	Server™	2000	users	or	roles.

Applies	To

Database	Object 	

Syntax
object.Deny(Privilege	,	GranteeNames)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Privilege

Long	integer	that	specifies	one	or	more	database	privileges	as	described	in
Settings

GranteeNames

SQL-DMO	multistring	listing	users	or	roles

Prototype	(C/C++)
HRESULT	Deny(
SQLDMO_PRIVILEGE_TYPE	iPrivileges,
SQLDMO_LPCSTR	GranteeNames);

Settings
Set	Privilege	by	using	these	SQLDMO_PRIVILEGE_TYPE	values.

Constant Value Description
SQLDMOPriv_AllDatabasePrivs 130944 Deny	all	granted	database

permissions
SQLDMOPriv_CreateDatabase 256 Deny	permission	to	execute

the	CREATE	DATABASE
statement

SQLDMOPriv_CreateDefault 4096 Deny	permission	to	execute
the	CREATE	DEFAULT
statement

SQLDMOPriv_CreateFunction 65366 Can	create	and	own
UserDefinedFunction
objects

SQLDMOPriv_CreateProcedure 1024 Can	create	and	own
StoredProcedure	objects

SQLDMOPriv_CreateRule 16384 Deny	permission	to	execute
the	CREATE	RULE
statement

SQLDMOPriv_CreateTable 128 Deny	permission	to	execute
the	CREATE	TABLE
statement

SQLDMOPriv_CreateView 512 Deny	permission	to	execute
the	CREATE	VIEW
statement

SQLDMOPriv_DumpDatabase 2048 Deny	permission	to	back	up	a
database

SQLDMOPriv_DumpTable 32768 Maintained	for	compatibility
with	previous	versions	of
SQL-DMO

SQLDMOPriv_DumpTransaction 8192 Deny	permission	to	backup	a
database	transaction	log

Remarks
Denying	permissions	to	database	users	and	roles	by	using	the	Deny	method	of

the	Database	object	requires	appropriate	permission.	The	SQL	Server	login	used
for	SQLServer	object	connection	must	be	a	member	of	the	system-defined	role
sysadmin.

For	more	information	about	setting	multistring	parameters,	see	Using	SQL-
DMO	Multistrings.

SQL-DMO

Deny	Method	(StoredProcedure)
The	Deny	method	negates	a	granted	stored	procedure	permission	or	a	list	of
granted	permissions	for	one	or	more	Microsoft®	SQL	Server™	2000	users	or
roles.

Applies	To

StoredProcedure	Object 	

Syntax
object.Deny(Privilege	,	GranteeNames	,	[GrantGrant])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Privilege

Long	integer	that	specifies	one	or	more	stored	procedure	privileges	as
described	in	Settings.

GranteeNames

SQL-DMO	multistring	that	lists	users	or	roles.

GrantGrant

When	TRUE,	the	grantee(s)	specified	are	granted	the	ability	to	execute	the
DENY	statement	referencing	the	stored	procedure.	When	FALSE	(default),
the	ability	to	deny	permission	is	not	granted.

Prototype	(C/C++)
HRESULT	Deny(
SQLDMO_PRIVILEGE_TYPE	iPrivileges,

SQLDMO_LPCSTR	GranteeNames,
BOOL	GrantGrant	=	FALSE);

Settings
Set	Privilege	by	using	these	SQLDMO_PRIVILEGE_TYPE	values.

Constant Value Description
SQLDMOPriv_AllObjectPrivs 63 Deny	all	granted	permissions	on

the	referenced	stored	procedure
SQLDMOPriv_Execute 16 Deny	EXECUTE	permission	on

the	referenced	stored	procedure

Remarks
Denying	permission	to	database	users	and	roles	by	using	the	Deny	method	of	the
StoredProcedure	object	requires	appropriate	permission.	The	SQL	Server	login
used	for	SQLServer	object	connection	must	be	granted	the	ability	to	execute
DENY	referencing	the	stored	procedure,	the	owner	of	the	stored	procedure,	or	a
member	of	a	role	with	greater	permission.

For	more	information	about	setting	multistring	parameters,	see	Using	SQL-
DMO	Multistrings.

SQL-DMO

Deny	Method	(Table,	View)
The	Deny	method	negates	a	granted	table	permission	or	a	list	of	granted
permissions	for	one	or	more	Microsoft®	SQL	Server™	2000	users	or	roles.

Applies	To

Table	Object View	Object

Syntax
object.Deny(Privilege	,	GranteeNames	,	[ColumnNames]	,
[GrantGrant])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Privilege

Long	integer	that	specifies	one	or	more	table	privileges	as	described	in
Settings.

GranteeNames

SQL-DMO	multistring	that	lists	users	or	roles.

ColumnNames

SQL-DMO	multistring	that	lists	column	names	within	the	table	or	view.
When	used,	the	specified	permission	is	denied	on	only	the	columns	named.

GrantGrant

When	TRUE,	the	grantee(s)	specified	are	granted	the	ability	to	execute	the
DENY	statement	referencing	the	table	or	view.	When	FALSE	(default),	the
ability	to	deny	permission	is	not	granted.

Prototype	(C/C++)
HRESULT	Deny(
SQLDMO_PRIVILEGE_TYPE	iPrivileges,
SQLDMO_LPCSTR	GranteeNames,
SQLDMO_LPCSTR	ColumnNames	=	NULL,
BOOL	GrantGrant	=	FALSE);

Settings
Set	Privilege	by	using	these	SQLDMO_PRIVILEGE_TYPE	values.

Constant Value Description
SQLDMOPriv_AllObjectPrivs 63 Deny	all	granted	table

privileges
SQLDMOPriv_Delete 8 Deny	permission	to	execute

the	DELETE	statement
referencing	the	table	or	view

SQLDMOPriv_Insert 2 Deny	permission	to	execute
the	INSERT	statement
referencing	the	table	or	view

SQLDMOPriv_References 32 Deny	permission	to	reference
the	table	in	declarative
referential	integrity	constraints
established	on	other	tables

SQLDMOPriv_Select 1 Deny	permission	to	execute
the	SELECT	statement
referencing	the	table	or	view

SQLDMOPriv_Update 4 Deny	permission	to	execute
the	UPDATE	statement
referencing	the	table	or	view

Remarks
Denying	permissions	to	database	users	and	roles	by	using	the	Deny	method	of
the	Table	or	View	object	requires	appropriate	permission.	The	SQL	Server	login

used	for	SQLServer	object	connection	must	be	granted	the	ability	to	execute
DENY,	referencing	the	database	object,	the	owner	of	the	database	object,	or	a
member	of	a	role	with	greater	permission.

For	more	information	about	setting	multistring	parameters,	see	Using	SQL-
DMO	Multistrings.

SQL-DMO

Deny	Method	(UserDefinedFunction)
The	Deny	method	negates	a	granted	user-defined	function	permission	or	a	list	of
granted	permissions	for	one	or	more	Microsoft®	SQL	Server™	2000	users	or
roles.

Applies	To

UserDefinedFunction	Object 	

Syntax
object.Deny(
Privileges,	
DenyeeNames,	
[GrantGrant])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Privileges

Long	integer	that	specifies	one	or	more	user-defined	function	privileges	as
described	in	Settings.

DenyeeNames

SQL-DMO	multistring	that	lists	users	or	roles.

GrantGrant

When	TRUE,	the	grantee(s)	specified	are	granted	the	ability	to	execute	the
DENY	statement	referencing	the	user-defined	function.	When	FALSE
(default),	the	ability	to	deny	permission	is	not	granted.

Prototype	(C/C++)
HRESULT	Deny(
SQLDMO_PRIVILEGE_TYPE	iPrivileges,	
SQLDMO_LPCSTR	DenyeeNames,	
BOOL	GrantGrant);

Settings
Set	Privileges	by	using	these	SQLDMO_PRIVILEGE_TYPE	values.

Constant Value Description
SQLDMOPriv_AllObjectPrivs 63 Deny	all	granted	permissions	on

the	referenced	stored	procedure
SQLDMOPriv_Execute 16 Deny	EXECUTE	permission	on

the	referenced	stored	procedure

Remarks
Denying	permission	to	database	users	and	roles	by	using	the	Deny	method	of	the
UserDefinedFunction	object	requires	appropriate	permission.	The	SQL	Server
login	used	for	SQLServer	object	connection	must	be	granted	the	ability	to
execute	DENY	referencing	the	user-defined	function,	the	owner	of	the	user-
defined	function,	or	a	member	of	a	role	with	greater	permission.

For	more	information	about	setting	multistring	parameters,	see	Using	SQL-
DMO	Multistrings.

Note		If	an	application	calls	Deny	on	an	instance	of	SQL	Server	version	7.0,	the
constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This	property	or
method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

DetachDB	Method
The	DetachDB	method	makes	a	database	invisible	to	an	instance	of	Microsoft®
SQL	Server™	2000.

Applies	To

SQLServer	Object 	

Syntax
object.DetachDB(DBName	[,	bCheck])	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

DBName

String	that	specifies	an	existing,	attached	database	by	name.

bCheck

Optional.	When	TRUE	(default),	statistics	supporting	query	optimization	are
updated	prior	to	the	detach	operation.	When	FALSE,	statistics	are	not
updated	prior	to	the	detach	operation.

Prototype	(C/C++)
HRESULT	DetachDB(SQLDMO_LPCSTR	DBName,
SQLDMO_LPBSTR	pResult,
BOOL	bCheck	=	TRUE);

Returns
A	string	containing	status	or	error	message	detail.

Remarks
SQL	Server	implements	database	detach	and	attach	operations	to	allow
relocation	of	the	operating	system	files	implementing	storage	for	the	database
and	its	transaction	log.	When	the	database	is	detached,	the	files	can	be	moved
without	negatively	affecting	an	instance	of	SQL	Server.

IMPORTANT		Ensure	that	bCheck	is	TRUE	when	detaching	a	database	for	which
statistics	cannot	be	updated	in	the	future.	For	example,	databases	that	will	be
implemented	on	read-only	media	such	as	CD-ROM	should	always	have	query
optimization	statistics	updated	as	the	last	step	before	the	detach	operations.

For	more	information	about	attaching	a	detached	database	by	using	SQL-DMO,
see	AttachDB	Method	and	AttachDBWithSingleFile	Method.

Making	a	database	invisible	to	an	instance	of	SQL	Server	by	using	the
DetachDB	method	requires	appropriate	permission.	The	SQL	Server	login	used
for	SQLServer	object	connection	must	be	a	member	of	the	system-defined	role
sysadmin.

SQL-DMO

DetachedDBInfo	Method
The	DetachedDBInfo	method	returns	information	about	a	detached	database.

Applies	To

SQLServer2	Object 	

Syntax
object.DetachedDBInfo(MDFName)	as	QueryResults

Parts
Object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

MDFName

String	that	contains	the	name	of	the	primary	Microsoft®	SQL	Server™	2000
database	file

Prototype	(C/C++)
HRESULT	DetachedDBInfo(
SQLDMO_LPCSTR	MDFName,	
LPSQLDMOQUERYRESULTS	*ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
Property string Name	of	the	item	returned
Value sql_variant The	property	value

Remarks
The	result	set	returned	by	DetachedDBInfo	contains	three	rows:

Database	name,	returned	as	a	Unicode	string	of	sysname	data	type.

Database	version,	returned	as	an	integer.

Collation	ID,	returned	as	a	long	integer.

Use	the	ListDetachedDBFiles	method	to	list	detached	database	files.

Note		If	an	application	calls	DetachedDBInfo	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

ListDetachedDBFiles	Method

SQL-DMO

DisableAgentOffload	Method
The	DisableAgentOffload	method	prevents	a	replication	agent	from	offloading
to	a	remote	server.

Applies	To

DistributionPublisher2	Object 	

Syntax
object.DisableAgentOffload(bstrJobID)

Parts
Object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

BstrJobID

String	that	specifies	the	replication	agent	job	ID

Prototype	(C/C++)
HRESULT	DisableAgentOffload(SQLDMO_LPCSTR	pszJobID);

Remarks
After	using	the	EnableAgentOffload	method	to	offload	execution	of	a
replication	agent	to	a	Subscriber,	use	DisableAgentOffload	to	require	the	agent
to	run	at	the	Distributor.

Note		If	an	application	calls	DisableAgentOffload	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

EnableAgentOffload	Method

ReadAgentOffloadInfo	Method

SQL-DMO

DisableFullTextCatalogs	Method
The	DisableFullTextCatalogs	method	suspends	Microsoft	Search	full-text
catalog	maintenance	on	the	database	specified.

Applies	To

Database	Object 	

Syntax
object.DisableFullTextCatalogs()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	DisableFullTextCatalogs();

Remarks
The	DisableFullTextCatalogs	method	removes	existing	full-text	catalogs	in	an
enabled	database.	The	method	does	not	alter	full-text	index	definition	on	any
table	in	the	database.

Restart	full-text	indexing	on	a	disabled	database	by	using	the
EnableFullTextCatalogs	method,	then	scheduling,	or	forcing,	an	index
population.

SQL-DMO

DisableMergeSubscription	Method
The	DisableMergeSubscription	method	removes	the	record	of	a	Subscriber-
initiated	(pull)	subscription	from	the	merge	publication	Publisher	and
Distributor.

Applies	To

ReplicationDatabase	Object

Syntax
object.DisableMergeSubscription(Subscriber,	SubscriptionDatabase,
Publication)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Subscriber

String	that	specifies	an	existing	Subscriber	by	name

SubscriptionDatabase

String	that	specifies	the	subscribed	database	by	name

Publication

String	that	specifies	an	existing	merge	replication	publication	by	name

Prototype	(C/C++)
HRESULT	DisableMergeSubscription(
SQLDMO_LPCSTR	Subscriber,
SQLDMO_LPCSTR	SubscriptionDatabase,
SQLDMO_LPCSTR	Publication);

Remarks
Removing	a	pull	subscription	by	using	SQL-DMO	is	a	two-step	process.	The
application	must	remove	the	subscription	at	the	Subscriber,	then,	separately
remove	the	record	of	the	subscription	at	the	Publisher	and	Distributor.

To	remove	a	pull	subscription	to	a	merge	replication	publication

1.	 Establish	SQLServer	object	connection	to	the	Subscriber.

2.	 Extract	the	MergePullSubscription	object	referencing	the
subscription	from	the	Subscriber	MergePullSubscriptions	collection.

3.	 Use	the	Remove	method	of	the	MergePullSubscription	object.

4.	 Establish	a	SQLServer	object	connection	to	the	Publisher.

5.	 Use	the	DisableMergeSubscription	method	of	the
ReplicationDatabase	object	referencing	the	published	database.

SQL-DMO

DisableTransSubscription	Method
The	DisableTransSubscription	method	removes	the	record	of	a	Subscriber-
initiated	(pull)	subscription	from	the	transactional	or	snapshot	publication
Publisher	and	Distributor.

Applies	To

ReplicationDatabase	Object

Syntax
object.DisableTransSubscription(Subscriber,	SubscriptionDatabase,
Publication)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Subscriber

String	that	specifies	an	existing	Subscriber	by	name

SubscriptionDatabase

String	that	specifies	the	subscribed	database	by	name

Publication

String	that	specifies	an	existing	transactional	or	snapshot	replication
publication	by	name

Prototype	(C/C++)
HRESULT	DisableTransSubscription(
SQLDMO_LPCSTR	Subscriber,
SQLDMO_LPCSTR	SubscriptionDatabase,

SQLDMO_LPCSTR	Publication);

Remarks
Removing	a	pull	subscription	by	using	SQL-DMO	is	a	two-step	process.	The
application	must	remove	the	subscription	at	the	Subscriber,	then	separately
remove	the	record	of	the	subscription	at	the	Publisher	and	Distributor.

To	remove	a	pull	subscription	to	a	transactional	or	snapshot	replication
publication

1.	 Establish	a	SQLServer	object	connection	to	the	Subscriber.

2.	 Extract	the	TransPullSubscription	object	referencing	the	subscription
from	the	Subscriber	TransPullSubscriptions	collection.

3.	 Use	the	Remove	method	of	the	TransPullSubscription	object.

4.	 Establish	a	SQLServer	object	connection	to	the	Publisher.

5.	 Use	the	DisableTransSubscription	method	of	the
ReplicationDatabase	object	referencing	the	published	database.

SQL-DMO

DisConnect	Method
The	DisConnect	method	breaks	the	connection	used	by	the	SQLServer	object
referenced.

Applies	To

SQLServer	Object 	

Syntax
object.DisConnect()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	DisConnect();

SQL-DMO

DoAlter	Method
The	DoAlter	method	marks	the	end	of	a	unit	of	change	for	the	object	referenced
and	submits	changes	made	to	property	values.

Applies	To

Alert	Object MergePublication	Object
AlertSystem	Object MergePullSubscription	Object
Category	Object MergeSubscription	Object
DistributionArticle	Object MergeSubsetFilter	Object
DistributionDatabase	Object Operator	Object
DistributionPublication	Object RegisteredSubscriber	Object
DistributionPublisher	Object Schedule	Object
DistributionSubscription	Object Table	Object
Job	Object TargetServerGroup	Object
JobSchedule	Object TransArticle	Object
JobServer	Object TransPublication	Object
JobStep	Object TransPullSubscription	Object
MergeArticle	Object TransSubscription	Object
MergeDynamicSnapshotJob	Object 	

Syntax
object.DoAlter()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)

HRESULT	DoAlter();

Remarks
Outside	of	a	BeginAlter/DoAlter	block,	each	change	to	a	SQL-DMO	object
causes	a	discrete	update	to	the	referenced	Microsoft®	SQL	Server™	2000
component.	Group	multiple	SQL-DMO	changes	by	calling	the	BeginAlter
method.

All	SQL-DMO	property	changes	made	after	the	BeginAlter	method	are
submitted	to	SQL	Server	the	next	time	DoAlter	is	called	on	the	object.	Changes
are	discarded	if	the	CancelAlter	method	is	called.

SQL-DMO

DoAlterWithNoCheck	Method
The	DoAlterWithNoCheck	method	marks	the	end	of	a	unit	of	change	for	the
object	referenced	and	submits	changes	made	to	property	values.

Applies	To

Table	Object 	

Syntax
object.DoAlterWithNoCheck()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	DoAlterWithNoCheck();

Remarks
The	WITH	NOCHECK	clause	of	the	Transact-SQL	ALTER	TABLE	statement
disables	existing	value	check	when	adding	a	constraint	to	a	table	containing	data,
optimizing	constraint	implementation.	When	using	SQL-DMO	to	create
constraints	on	existing	tables,	use	DoAlterWithNoCheck	to	force	WITH
NOCHECK	behavior	and	optimize	constraint	implementation.

See	Also

ALTER	TABLE

JavaScript:hhobj_1.Click()

SQL-DMO

DropMember	Method
The	DropMember	method	removes	the	specified	Microsoft®	SQL	Server™
2000	user,	database	role,	or	login	from	the	role	referenced.

Applies	To

DatabaseRole	Object ServerRole	Object

Syntax
object.DropMember(User)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

User

For	the	DatabaseRole	object,	a	string	that	specifies	an	existing	database	user
or	role	by	name.	For	the	ServerRole	object,	a	string	that	specifies	an	existing
SQL	Server	login	by	name.

Prototype	(C/C++)
HRESULT	DropMember(SQLDMO_LPCSTR	NewValue);

Remarks
Configuring	role	membership	by	using	the	DropMember	method	of	the
Database	and	ServerRole	objects	requires	appropriate	permission.

For	the	Database	object,	the	database	user	mapped	to	the	SQL	Server	login	used
for	SQLServer	object	connection	must	be	a	member	of	the	fixed	database	role
db_owner.

For	the	ServerRole	object,	the	SQL	Server	login	used	for	SQLServer	object
connection	must	be	a	member	of	the	role	from	which	the	specified	login	will	be
dropped.

SQL-DMO

E

SQL-DMO

EnableAgentOffload	Method
The	EnableAgentOffload	method	enables	a	replication	agent	to	run	at	a	remote
Subscriber.

Applies	To

DistributionPublisher2	Object

Syntax
object.EnableAgentOffload(
bstrJobID	,	
[szServerNetworkName])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

bstrJobID

String	that	specifies	the	replication	agent	job	ID

szServerNetworkName

String	that	specifies	the	network	computer	name	of	the	Subscriber

Prototype	(C/C++)
HRESULT	EnableAgentOffload(
SQLDMO_LPCSTR	pszJobID,	
SQLDMO_LPCSTR	pszServerNetworkName);

Remarks
After	creating	a	push	subscription,	you	can	use	the	EnableAgentOffload

method	to	require	that	the	next	execution	of	a	replication	agent	is	performed	at	a
remote	Subscriber	in	a	push	subscription	environment.	This	technique	can
improve	performance	at	the	Distributor	during	periods	of	heavy	processing.
Using	EnableAgentOffload	at	the	Distributor	is	equivalent	to	setting	the
AgentOffloadServer	and	AgentOffload	properties	of	the	MergeSubscription
or	TransSubscription	objects	at	the	Publisher.

Set	the	bstrJobID	parameter	to	specify	the	agent	job	ID	to	run,	and	set	the
optional	szServerNetworkName	parameter	to	specify	the	Subscriber	network
computer	name	if	it	is	different	from	the	Subscriber	name.

Use	the	DisableAgentOffload	method	to	prevent	the	next	execution	of	the	agent
from	being	performed	at	the	remote	Subscriber.

An	application	should	run	the	EnableAgentOffload	method	at	the	Distributor.

Note		If	an	application	calls	EnableAgentOffload	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

DisableAgentOffload	Method

ReadAgentOffloadInfo	Method

SQL-DMO

EnableFullTextCatalogs	Method
The	EnableFullTextCatalogs	method	enables	Microsoft	Search	full-text
indexing	on	the	referenced	Microsoft®	SQL	Server™	2000	database.

Applies	To

Database	Object

Syntax
object.EnableFullTextCatalogs()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnableFullTextCatalogs();

Returns
None

Remarks
To	enable	full-text	search	on	a	SQL	Server	database	for	participation,	enable	the
database	using	the	EnableFullTextCatalogs	method,	then	configure	columns	for
full-text	indexing	and	search	using	the	FullTextCatalog	object	to	define	full-text
catalogs.

A	database	is	either	enabled	or	disabled	for	full-text	indexing	and	searching.
When	disabled,	full-text	index	population	is	not	performed	for	full-text	catalogs
defined	on	the	database	and	full-text	search	in	the	database	fails.	A	database	may

be	disabled,	then	reenabled	without	affecting	full-text	catalog	definition.

Enabling	a	database	for	full-text	indexing	and	search	using	the
EnableFullTextCatalogs	method	does	not	alter	full-text	catalog	contents.	When
enabling	a	database	previously	disabled,	use	the	Rebuild	method	of	the
FullTextCatalog	object	to	repopulate	existing	full-text	catalogs.

SQL-DMO

EnableMergeSubscription	Method
The	EnableMergeSubscription	method	enables	a	Subscriber-originated	(pull)
subscription	at	the	Publisher	and	Distributor.

Applies	To

ReplicationDatabase	Object

Syntax
object.EnableMergeSubscription(Subscriber,	SubscriptionDatabase,
Publication	,	[SubscriptionType]	,	[SyncType]	,	[SubscriberType]	,
[SubscriptionPriority])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Subscriber

String	that	identifies	the	Subscriber	by	name.

SubscriptionDatabase

String	that	identifies	a	Microsoft®	SQL	Server™	2000	database	that	exists
on	the	Subscriber	and	is	used	for	replicated	article	storage.

Publication

String	that	identifies	an	existing	merge	replication	publication	maintained	on
the	referenced	database.

SubscriptionType

Long	integer	that	specifies	a	subscription	direction.	Must	evaluate	to
SQLDMOSubscription_Pull.

SyncType

Long	integer	that	specifies	a	method	for	synchronization	as	described	in
Settings.

SubscriberType

Long	integer	that	specifies	merge	Subscriber	visibility	as	described	in
Settings.

SubscriptionPriority

Float	that	specifies	relative	priority	for	conflict	resolution	as	described	in
Settings.

Prototype	(C/C++)
HRESULT	EnableMergeSubscription(SQLDMO_LPCSTR	Subscriber,
SQLDMO_LPCSTR	SubscriptionDatabase,
SQLDMO_LPCSTR	Publication,
SQLDMO_SUBSCRIPTION_TYPE	SubscriptionType	=
SQLDMOSubscription_Pull
SQLDMO_SUBSYNC_TYPE	SyncType	=	SQLDMOSubSync_Auto,
SQLDMO_MERGESUBSCRIBER_TYPE	SubscriberType	=	
SQLDMOMergeSubscriber_Local,
float	SubscriptionPriority	=	0.0));

Settings
Set	the	SyncType	argument	using	these	values.

Constant Value Description
SQLDMOSubSync_Auto 1 Subscription	agent	will

automatically	synchronize	the
subscription.

SQLDMOSubSync_Default 1 SQLDMOSubSync_Auto.
SQLDMOSubSync_Max 2 SQLDMOSubSync_None.
SQLDMOSubSync_Min 1 SQLDMOSubSync_Auto.
SQLDMOSubSync_None 2 Subscription	agent	will	not

attempt	publication
synchronization.	User	interaction
necessary	to	ensure
synchronization.

Set	the	SubscriberType	argument	using	these	values.

Constant Value Description
SQLDMOMergeSubscriber_Anonymous 3 Anonymous	subscription
SQLDMOMergeSubscriber_Default 2 SQLDMOMergeSubscriber_Local
SQLDMOMergeSubscriber_Global 1 Global	subscription
SQLDMOMergeSubscriber_Local 2 Local	subscription

When	setting	the	SubscriptionPriority	argument,	use	the	value	specified	in
SubscriberType	to	determine	applicable	priorities.

SubscriberType SubscriptionPriority
SQLDMOMergeSubscriber_Anonymous
or	SQLDMOMergeSubscriber_Local

Must	be	0.0

SQLDMOMergeSubscriber_Global Value	from	0.0	through	100.0

Remarks
Creating	a	pull	subscription	using	SQL-DMO	is	a	two-step	process.	The
application	must	define	the	subscription	at	the	Subscriber,	then	separately	enable
the	subscription	at	the	Publisher	and	Distributor.

To	create	a	pull	subscription	to	a	merge	replication	publication

1.	 Establish	a	SQLServer	object	connection	to	the	Subscriber.

2.	 Create	and	populate	a	MergePullSubscription	object.

3.	 Add	the	MergePullSubscription	object	to	the
MergePullSubscriptions	collection	of	the	appropriate
ReplicationDatabase	object.

4.	 Establish	a	SQLServer	object	connection	to	the	Publisher.

5.	 Use	the	EnableMergeSubscription	method	of	the	appropriate
ReplicationDatabase	object	indicating	the	subscription	created	in
Step	3.

For	more	information	about	creating	pull	subscriptions	to	merge	replication
publications	using	SQL-DMO,	see	MergePullSubscription	Object.

SQL-DMO

EnableTransSubscription	Method
The	EnableTransSubscription	method	enables	a	Subscriber-originated	(pull)
subscription	at	the	Publisher	and	Distributor.

Applies	To

ReplicationDatabase	Object

Syntax
object.EnableTransSubscription(Subscriber	,	SubscriptionDatabase	,
Publication	,	[SubscriptionType]	,	[SyncType]	,	[SubscriberType])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Subscriber

String	that	identifies	the	Subscriber	by	name.

SubscriptionDatabase

String	that	identifies	a	Microsoft®	SQL	Server™	2000	database	that	exists
on	the	subscriber	and	is	used	for	replicated	article	storage.

Publication

String	that	identifies	an	existing	transactional	or	snapshot	replication
publication	maintained	on	the	referenced	database.

SubscriptionType

Long	integer	that	specifies	a	subscription	direction.	Must	evaluate	to
SQLDMOSubscription_Pull.

SyncType

Long	integer	that	specifies	a	method	for	synchronization	as	described	in
Settings.

	SubscriberType

Long	integer	that	specifies	transactional	replication	Subscriber	visibility	as
described	in	Settings.

Prototype	(C/C++)
HRESULT	EnableTransSubscription(
SQLDMO_LPCSTR	Subscriber,	
SQLDMO_LPCSTR	SubscriptionDatabase,
SQLDMO_LPCSTR	Publication,
SQLDMO_SUBSCRIPTION_TYPE	SubscriptionType	=
SQLDMOSubscription_Pull
SQLDMO_SUBSYNC_TYPE	SyncType,
SQLDMO_TRANSUBSCRIBER_TYPE	SubscriberType);

Settings
Set	the	SyncType	argument	using	these	SQLDMO_SUBSCRIPTION_TYPE
values.

Constant Value Description
SQLDMOSubSync_Auto 1 Subscription	agent	will	synchronize

the	subscription	automatically.
SQLDMOSubSync_Default 1 Default.	SQLDMOSubSync_Auto.
SQLDMOSubSync_None 2 Subscription	agent	will	not	attempt

publication	synchronization.	User
interaction	necessary	to	ensure
synchronization.

Set	the	SubscriberType	argument	using	these
SQLDMO_TRANSUBSCRIBER_TYPE	values.

Constant Value Description

SQLDMOTranSubscriber_Synchronous 1 Subscriber	update	to	a	publication
article	is	applied	in	a	distributed
transaction,	updating	the	Publisher-
maintained	image	for	article	data	or
failing.

SQLDMOTranSubscriber_Default 0 SQLDMOTranSubscriber_ReadOnly.
SQLDMOTranSubscriber_Failover 3 Transactional	Immediate	Updating

Subscriber	with	capability	to	fail
over	to	queued	Subscriber.

SQLDMOTranSubscriber_Queued 2 Subscriber	update	to	a	publication
article	is	applied	as	a	queued
transaction.

SQLDMOTranSubscriber_ReadOnly 0 Default.	Subscriber	update	to	any
publication	article	affects	only	the
image	maintained	at	the	Subscriber.

SQLDMOTranSubscriber_Unknown 256 Bad	or	invalid	value.

Remarks
Creating	a	pull	subscription	using	SQL-DMO	is	a	two-step	process.	The
application	must	define	the	subscription	at	the	Subscriber,	then	separately	enable
the	subscription	at	the	Publisher	and	Distributor.

To	create	a	pull	subscription	to	a	transactional	or	snapshot	replication
publication

1.	 Establish	SQLServer	object	connection	to	the	Subscriber.

2.	 Create	and	populate	a	TransPullSubscription	object.

3.	 Add	the	TransPullSubscription	object	to	the
TransPullSubscriptions	collection	of	the	appropriate
ReplicationDatabase	object.

4.	 Establish	SQLServer	object	connection	to	the	Publisher.

5.	 Use	the	EnableTransSubscription	method	of	the	appropriate
ReplicationDatabase	object	indicating	the	subscription	created	in
Step	3.

For	more	information	about	creating	pull	subscriptions	to	transactional	and
snapshot	replication	publications	using	SQL-DMO,	see	TransPullSubscription
Object.

SQL-DMO

EnumAccountInfo	Method
The	EnumAccountInfo	method	returns	a	QueryResults	object	that	enumerates
Microsoft®	Windows	NT®	4.0	or	Microsoft	Windows	2000	accounts	granted
access	permission	to	an	instance	of	Microsoft	SQL	Server™	2000.

Applies	To

SQLServer	Object

Syntax
object.EnumAccountInfo([Account]	,	[ListAll])	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Account

String	that	identifies	an	existing	Windows	user	or	group	by	name

ListAll

TRUE	or	FALSE

Prototype	(C/C++)
HRESULT	EnumAccountInfo(
LPSQLDMOQUERYRESULTS*	ppResults,
SQLDMO_LPCSTR	Account	=	NULL,
BOOL	ListAll	=	FALSE);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
account	name nvarchar(129) Windows	NT	4.0	or	Microsoft

Windows	2000	account	name
type varchar(18) String	that	identifies	account	type,

such	as	group
privilege varchar(18) String	that	specifies	privilege	level,

such	as	admin	or	username
mapped	login	name nvarchar(129) SQL	Server	login	name	used	when

mapping	the	account
permission	path nvarchar(129) String	that	specifies	Windows	NT

4.0	or	Microsoft	Windows	2000
group	granting	access

Remarks
When	using	the	Account	argument	to	restrict	results,	fully	qualify	the	Windows
NT	4.0	or	Microsoft	Windows	2000	account	name,	that	specifies	both	domain
and	user	or	group	name.	For	example:

oQR	=	oSQLServer.EnumAccountInfo("SEATTLE\anned")

When	specifying	a	Windows	NT	4.0	or	Microsoft	Windows	2000	group	using
the	Account	argument,	the	QueryResults	object	returned	contains	one	row	for
each	Windows	NT	4.0	or	Microsoft	Windows	2000	account	with	membership	in
the	group.

Use	the	ListAll	argument	when	that	enumerates	account	information	for
Windows	NT	users.	When	ListAll	is	TRUE,	the	EnumAccountInfo	method
returns	a	result	set	that	contains	all	SQL	Server	security-enabled	Windows	NT
4.0	or	Microsoft	Windows	2000	groups	in	which	the	specified	user	has
membership.

SQL-DMO

EnumAgentErrorRecords	Method
The	EnumAgentErrorRecords	method	returns	a	QueryResults	object	that
enumerates	a	specified	replication	agent	error.

Applies	To

DistributionDatabase2	Object DistributionPublisher	Object

Syntax
object.EnumAgentErrorRecords(ErrorID)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

ErrorID

Long	integer	that	identifies	an	error

Prototype	(C/C++)
HRESULT	EnumAgentErrorRecords(LONG	ErrorID
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
	 nvarchar(26) Date	and	time	at	which	error

occurred
error_code nvarchar(129) Error	code
error_text ntext Error	message

error_type_id integer Reserved
source_name nvarchar(101) Name	of	error	source
source_type_id integer Identifier	of	type	of	error	source

Remarks
Interpret	the	value	of	the	source_type_id	column	using	these	values.

source_type_id
value Error	source
0 Undefined	or	unable	to	determine.
1 Replication	command.	error_text	column	contains

command.
2 Replication	agent.
3 Operating	system	error.
4 ODBC.
5 Data	source,	such	as	Microsoft®	SQL	Server™	2000.
6 SQL	Server	Net-Library.
7 SQL-DMO.

SQL-DMO

EnumAgentParameters	Method
The	EnumAgentParameters	method	returns	a	QueryResults	object	that
enumerates	startup	options	settings	for	the	replication	agent	when	the	agent	is
started	using	the	specified	profile.

Applies	To

Distributor	Object

Syntax
object.EnumAgentParameters(ConfigurationID)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

ConfigurationID

Long	integer	that	identifies	a	replication	agent	profile	by	profile	identifier

Prototype	(C/C++)
HRESULT	EnumAgentParameters(
LPSQLDMOQUERYRESULTS*	ppResults,
long	lConfigurationID);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
parameter_name nvarchar(129) Parameter	name
profile_id integer Profile	identifier

value nvarchar(256) Value	in	use	for	the
parameter

SQL-DMO

EnumAgentProfiles	Method
The	EnumAgentProfiles	method	returns	a	QueryResults	object	that
enumerates	agent	session	logging	configurations	available	on	an	instance	of
Microsoft®	SQL	Server™	2000	monitoring	replication.

Applies	To

Distributor	Object

Syntax
object.EnumAgentProfiles([AgentType])	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

AgentType

Optional.	Restricts	result	set	membership	as	described	in	Settings.

Prototype	(C/C++)
HRESULT	EnumAgentProfiles(
LPSQLDMOQUERYRESULTS*	ppResults,
SQLDMO_REPLAGENT_TYPE	AgentType	=	SQLDMOReplAgent_All);

Settings
When	setting	AgentType,	specify	result	set	membership	using	these
SQLDMO_REPLAGENT_TYPE	values.

Constant Value Description
SQLDMOReplAgent_All 0 Default.	Result	set

enumerates	all	agent	profiles.
SQLDMOReplAgent_Distribution 3 Result	set	enumerates

Distribution	Agent	profiles.
SQLDMOReplAgent_LogReader 2 Result	set	enumerates	Log

Reader	Agent	profiles.
SQLDMOReplAgent_Merge 4 Result	set	enumerates	Merge

Agent	profiles.
SQLDMOReplAgent_QueueReader 9 Replication	Queue	Reader

Agent.
SQLDMOReplAgent_Snapshot 1 Result	set	enumerates

Snapshot	Agent	profiles.

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
agent_type integer Type	of	replication	agent	using	the

profile.	Interpret	using
SQLDMO_REPLAGENT_TYPE.

def_profile bit When	TRUE,	profile	is	used	by	default.
description nvarchar(3001) Descriptive	text.
profile_id integer System-generated	profile	identifier.
profile_name nvarchar(129) Profile	name.
type integer When	0,	the	profile	is	a	system	object.

When	1,	the	profile	is	a	user-defined
object.

SQL-DMO

EnumAlerts	Method
The	EnumAlerts	method	returns	a	QueryResults	object	that	enumerates	the
Microsoft®	SQL	Server™	2000	Agent	alerts	that	cause	automated	execution	of
the	referenced	job.

Applies	To

Job	Object

Syntax
object.EnumAlerts()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
enabled tinyint When	1,	the	alert	is	enabled.
id integer System-generated	alert	identifier.
name nvarchar(129) Alert	name.
type integer Identifies	the	alert	source	as	described	in

Remarks.

Prototype	(C/C++)
HRESULT	EnumAlerts(LPSQLDMOQUERYRESULTS*	ppResults);

Remarks
The	result	set	column	type	identifies	the	alert	source.	When	1,	the	alert	is	raised
in	response	to	a	SQL	Server	event.	When	2,	the	alert	is	raised	when	a	monitored
performance	condition	is	exceeded.

SQL-DMO

EnumAllSubscriptions	Method
The	EnumAllSubscriptions	method	enumerates	subscriptions	in	a	database	on	a
Subscriber.

Applies	To

Subscriber2	Object

Syntax
object.EnumAllSubscriptions(
SubscriptionType,	
szSubscriptionDB)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

SubscriptionType

Integer	that	specifies	what	type	of	subscriptions	to	enumerate.	Default	is
SQLDMOSubscription_Push.

szSubscriptionDB

String	that	specifies	the	name	of	the	subscription	database.	Default	is	NULL,
in	which	case	subscriptions	in	all	databases	are	returned.

Prototype	(C/C++)
HRESULT	EnumAllSubscriptions(
LPSQLDMOQUERYRESULTS	*ppResults,	
SQLDMO_SUBSCRIPTION_TYPE	SubscriptionType,
SQLDMO_LPCSTR	pszSubscriptionDB);

Settings
Set	SubscriptionType	using	these	values.

Constant Value Description
SQLDMOSubscription_All 3 Enumerate	push	and	pull

subscriptions.
SQLDMOSubscription_Pull 1 Enumerate	pull	subscriptions.
SQLDMOSubscription_Push 0 Default.	Enumerate	push

subscriptions.

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
last_updated Varchar(24) Date	publication	was	last	updated.
publication sysname Name	of	the	publication.
publisher sysname Name	of	the	publisher.
publisherdb sysname Name	of	the	publication	database.
replication_type nvarchar(15)Replication	method.
subscriber_db sysname Name	of	the	subscription	database.
subscription_type nvarchar(5) Subscription	type.
update_mode smallint Method	of	updating.	Interpret	value	using

SQLDMO_TRANSUBSCRIBER_TYPE.

Remarks
In	the	result	set,	date	and	time	data	returned	in	last_updated	is	formatted	as
YYYYMMDD	hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits
MM Represents	the	month	in	two	digits	(zero	padded)

DD Represents	the	day	of	the	month	in	two	digits	(zero
padded)

hh Represents	the	hour	using	two	digits,	a	twenty-four
hour	clock	(zero	padded)

mm Represents	the	minute	in	two	digits	(zero	padded)
ss Represents	the	second	in	two	digits	(zero	padded)
fff Represents	the	fractional	part	of	the	second	in	three

digits

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

Push	subscriptions	are	created	at	and	controlled	by	the	Publisher.	The
EnumAllSubscriptions	method	enumerates	details	of	all	push	subscriptions	that
have	been	synchronized.	Push	subscriptions	not	synchronized	are	not	included	in
the	result	set.

Note		If	an	application	calls	EnumAllSubscriptions	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

EnumAllSubsetFilters	Method
The	EnumAllSubsetFilters	method	returns	a	QueryResults	object	that
enumerates	the	join	filters	defined	within	a	merge	replication	publication.

Applies	To

MergePublication	Object

Syntax
object.EnumAllSubsetFilters()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumAllSubsetFilters(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
article	name nvarchar(129) Name	of	the	article	that	contains	the

joined	from	table.
base	table	name nvarchar(129) Name	of	the	table	joined	to	in	the

filter	clause.
base	table	owner nvarchar(129) Name	of	the	owner	of	the	table

joined	to	in	the	filter	clause.

filtername nvarchar(129) Name	of	the	filter.
join	article	name nvarchar(129) Name	of	the	article	on	which	the

filter	is	defined.
join	table	name nvarchar(129) Name	of	the	table	joined	from	in	the

filter	clause.
join	table	owner nvarchar(129) Name	of	the	owner	of	the	table

joined	from	in	the	filter	clause.
join_filterclause nvarchar(1001) Transact-SQL	WHERE	clause	that

defines	the	filter.
join_filterid integer System-generated	identifier.
join_unique_key integer When	1,	the	filter	depends	on	a

unique	or	key	value.	When	0,	the
filter	does	not	depend	on	a	unique
value.

SQL-DMO

EnumAlternatePublishers	Method
The	EnumAlternatePublisher	method	enumerates	all	servers	in	a	list	of
alternate	Publishers.

Applies	To

MergePublication2	Object MergePullSubscription2	Object

Syntax
object.EnumAlternatePublishers()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumAlternatePublishers(LPSQLDMOQUERYRESULTS
*ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
alternate_distributor sysname Name	of	the	Distributor
alternate_publication sysname Name	of	the	publication
alternate_publisher sysname Name	of	the	alternate

Publisher
alternate_publisher_db sysname Name	of	the	publication

database

enabled bit Whether	the	server	is	an
alternate	Publisher

friendly_name nvarchar(255) Description	of	the	alternate
Publisher

Remarks
Run	the	EnumAlternatePublishers	method	to	obtain	a	list	of	enabled	alternate
Publishers.	The	enabled	bit	is	set	to	1	if	a	server	is	an	enabled	alternate
Publisher,	and	is	set	to	zero	if	the	server	is	not	enabled	as	an	alternate	Publisher.
Subscribers	can	then	synchronize	with	any	listed	alternate	Publisher,	a	technique
that	provides	an	efficient	way	to	synchronize	a	mobile	Subscriber	not	connected
to	the	Publisher	with	which	it	ordinarily	synchronizes	data	changes.

The	AllowSyncToAlternate	property	must	be	set	to	TRUE	for	subscriptions	to
synchronize	with	an	alternate	Publisher.

Use	the	AddAlternatePublisher	method	to	add	a	server	to	the	list	of	alternate
Publishers.

Note		If	an	application	calls	EnumAlternatePublishers	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

AddAlternatePublisher	Method

AllowSyncToAlternate	Property

RemoveAlternatePublisher	Method

SQL-DMO

EnumAvailableMedia	Method
The	EnumAvailableMedia	method	returns	a	QueryResults	object	that
enumerates	media	visible	by	an	instance	of	Microsoft®	SQL	Server™	2000.

Applies	To

SQLServer	Object

Syntax
object.EnumAvailableMedia([MediaType])	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

MediaType

Long	integer	that	optionally	restricts	output	as	described	in	Settings

Prototype	(C/C++)
HRESULT	EnumAvailableMedia(
LPSQLDMOQUERYRESULTS*	ppResults,
SQLDMO_MEDIA_TYPE	MediaType	=	SQLDMOMedia_All);

Settings
Set	the	optional	MediaType	parameter	using	these	SQLDMO_MEDIA_TYPE
values.

Constant Value Description
SQLDMOMedia_All 15 Default.	List	all	media.
SQLDMOMedia_CDROM 8 List	visible	CD-ROM

devices.
SQLDMOMedia_FixedDisk 2 List	visible	fixed	disk	drive

devices.
SQLDMOMedia_Floppy 1 List	visible	floppy	disk	drive

devices.
SQLDMOMedia_SharedFixedDisk 16 List	visible	fixed	disk	drive

devices	shared	on	a	clustered
computer.

SQLDMOMedia_Tape 4 List	visible	tape	devices.

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
name nvarchar(256) Mapped	name	of	the	media.
low	free integer Interpreted	as	an	unsigned	value.	Low-order

double	word	of	available	media	resource.
high	free integer Interpreted	as	an	unsigned	value.	High	order

double	word	of	available	media	resource.
media	type tinyint Interpreted	using	the	SQL-DMO

enumerated	data	type
SQLDMO_MEDIA_TYPE.

Remarks
The	SQLDMOMedia_SharedFixedDisk	constant	is	only	valid	when	used	with
an	instance	of	SQL	Server	2000.

SQL-DMO

EnumCandidateKeys	Method
The	EnumCandidateKeys	method	returns	a	QueryResults	object	that
enumerates	the	user	tables	of	a	Microsoft®	SQL	Server™	2000	database	and	the
constraints	on	those	tables	that	could	define	primary	keys.

Applies	To

Database	Object

Syntax
object.EnumCandidateKeys()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumCandidateKeys(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
candidate_table nvarchar(262) SQL	Server	table	name
candidate_key nvarchar(129) Name	of	an	existing

UNIQUE	or	PRIMARY	KEY
constraint

SQL-DMO

EnumCollations	Method
The	EnumCollations	method	returns	all	valid	Microsoft®	SQL	Server™	2000
collation	names.

Applies	To

SQLServer2	Object

Syntax
object.EnumCollations()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumCollations(LPSQLDMOQUERYRESULTS	*ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
Name String Collation	name
Description String Collation	description

Remarks
EnumCollations	is	similar	to	the	ListCollations	method,	and	is	used	in

conjunction	with	column-level	collation.	After	using	EnumCollations	to
enumerate	the	collation	names,	an	application	can	set	the	Collation	property	to
use	a	specific	collation	with	a	Database2	or	UserDefinedFunction	object.

Note		If	an	application	calls	EnumCollations	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

Collation	Property

ListCollations	Method

SQL-DMO

EnumColumns	Method
The	EnumColumns	method	returns	a	QueryResults	object	that	enumerates	the
columns	of	tables	defined	on	a	linked	server.

Applies	To

LinkedServer	Object

Syntax
object.EnumColumns([TableName]	,	[SchemaName]	,	[CatalogName]
,	[ColumnName])	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

TableName

Optional.	String	that	names	a	table	defined	on	the	linked	server.	When
specified,	it	restricts	result	set	membership	to	the	columns	defined	in	the
specified	table.

SchemaName

Optional.	String	that	names	a	schema	on	which	the	linked	server	table	is
defined.	When	specified,	it	restricts	result	set	membership	to	the	columns	of
tables	defined	on	the	schema.

CatalogName

Optional.	String	that	names	a	catalog	on	which	the	linked	server	table	is
defined.	When	specified,	it	restricts	result	set	membership	to	the	columns	of
tables	defined	on	the	catalog.

ColumnName

Optional.	String	that	names	a	column	on	a	table	named	by	the	TableName
argument.	When	specified,	it	restricts	result	set	membership,	returning	a
single	row	that	enumerates	the	column	named.

Prototype	(C/C++)
HRESULT	EnumColumns(LPSQLDMOQUERYRESULTS	*ppResults,
SQLDMO_LPCSTR	TableName	=	NULL,
SQLDMO_LPCSTR	SchemaName	=	NULL,
SQLDMO_LPCSTR	CatalogName	=	NULL,
SQLDMO_LPCSTR	ColumnName	=	NULL);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
BUFFER_LENGTH integer When	the	data	type	is	a	fixed	or

variable-length	character	or	binary
type,	the	number	of	bytes	required
to	retrieve	any	value	from	the
column.

CHAR_OCTET_LENGTH integer Maximum	length,	in	bytes,	of	a
character	data	type.

COLUMN_DEF nvarchar(128)Default	value.
COLUMN_NAME nvarchar(128)Name	of	the	column.
COLUMN_SIZE integer When	the	data	type	is	a	fixed	or

variable-length	character	or	binary
type,	the	number	of	characters	or
bytes.	When	the	data	type	is	a
fixed-precision	numeric	type,	the
precision	of	the	data	type.

DATA_TYPE smallint Data	type	of	the	column.	Interpret
the	value	using
SQLDMO_QUERY_DATATYPE.

DECIMAL_DIGITS smallint When	the	data	type	is	a	fixed-
precision	numeric	type,	the	scale

of	the	data	type.
IS_NULLABLE char(10) YES	when	the	column	may

contain	NULL.	NO	when	the
column	cannot	contain	NULL.

NULLABLE smallint 1	when	the	column	accepts
NULL.	0	when	the	column	does
not	accept	NULL.

NUM_PREC_RADIX smallint Radix	of	a	numeric	data	type.
ORDINAL_POSITION smallint Ordinal	position	of	the	column	in

the	table.
REMARKS nvarchar(256)Descriptive	text.
SQL_DATA_TYPE smallint Data	type	of	the	column.	Interpret

the	value	using
SQLDMO_QUERY_DATATYPE.

SQL_DATETIME_SUB smallint Subtype	code	for	SQL-92	date,
time,	and	interval	data	types.

SS_DATA_TYPE tinyint Microsoft®	SQL	Server™	2000
data	type	interpreted	using	data
type	constants	defined	by	Open
Data	Services.

TABLE_CAT nvarchar(128)Name	of	the	SQL	Server	database
in	which	the	column	is	defined.

TABLE_NAME nvarchar(128)Name	of	the	table	in	which	the
column	is	defined.

TABLE_SCHEM nvarchar(128)Name	of	the	owner	of	the	table	in
which	the	column	is	defined.

TYPE_NAME nvarchar(128)Name	of	the	column	data	type.

SQL-DMO

EnumConflictTables	Method
The	EnumConflictTables	method	returns	a	QueryResults	object	that
enumerates	the	tables	used	for	merge	replication	article	conflict	resolution.

Applies	To

ReplicationDatabase	Object

Syntax
object.EnumConflictTables([Publication])	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Publication

Optional	string	that	identifies	a	merge	replication	publication	by	name	and
restricts	output	to	only	those	tables	used	by	articles	in	the	publication.

Prototype	(C/C++)
HRESULT	EnumConflictTables(LPSQLDMOQUERYRESULTS	*ppResults,
SQLDMO_LPCSTR	Publication	=	NULL);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
article nvarchar(129) Merge	replication	article	name.
centralized_conflicts integer When	1,	conflict	resolution	occurs

at	the	Publisher	of	the	publication.

When	0,	Subscribers	resolve
conflicts.

conflict_table nvarchar(129) Name	of	the	replication-
implemented	table	that	supports
conflict	resolution.

guidcolname nvarchar(129) Name	of	column	uniquely	that
identifies	rows	in	the	source	table.

source_object nvarchar(129) Name	of	the	table	that	provides
article	data.

source_owner nvarchar(129) Name	of	the	owner	of	the	table
that	provides	article	data.

SQL-DMO

EnumCustomResolvers	Method
The	EnumCustomResolvers	method	returns	a	QueryResults	object	that
enumerates	the	additional	system	or	heterogeneous	replication	conflict	resolution
components	available	in	an	instance	of	Microsoft®	SQL	Server™	2000	that	acts
as	a	replication	Distributor.

Applies	To

Replication	Object

Syntax
object.EnumCustomResolvers(Distributor)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Distributor

String	that	identifies	an	instance	of	SQL	Server	by	name.	The	instance	is
configured	to	distribute	replication	publications.

Prototype	(C/C++)
HRESULT	EnumCustomResolvers(
SQLDMO_LPCSTR	Distributor,
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	multiple	result	sets	defined	by	these
columns.

Column Data	type Description
Value nvarchar(256) Display	name	of	the	conflict	resolution

component
Data nchar(256) GUID	that	identifies	the	component

SQL-DMO

EnumDatabaseMappings	Method
The	EnumDatabaseMappings	method	returns	a	QueryResults	object	that
enumerates	the	databases	in	which	a	username	represents	the	referenced	login.

Applies	To

Login	Object

Syntax
object.EnumDatabaseMappings()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumDatabaseMappings(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
AliasName nvarchar(129) Reserved
DBName nvarchar(129) Name	of	a	database	that	contains	a	user	that

represents	the	login
LoginName nvarchar(129) Name	of	the	login	record	enumerated

(referenced	by	the	Login	object)
UserName nvarchar(129) Name	of	the	user	record	that	represents	the

login

SQL-DMO

EnumDatabaseRoleMember	Method
The	EnumDatabaseRoleMember	method	returns	a	QueryResults	object	that
enumerates	the	database	users	granted	role	membership.

Applies	To

DatabaseRole	Object

Syntax
object.EnumDatabaseRoleMember()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumDatabaseRoleMember(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	this	column.

Column Data	type Description
name nchar(129) Database	username

SQL-DMO

EnumDataSourceNames	Method
The	EnumDataSourceNames	method	returns	a	QueryResults	object	that
enumerates	data	sources	visible	to	an	instance	of	Microsoft®	SQL	Server™
2000	participating	in	replication	as	a	Publisher.

Applies	To

Replication	Object

Syntax
object.EnumDataSourceNames()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumDataSourceNames(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
Data	Source	Name nvarchar(129) Name	of	the	data	source.	Interpret	and

use	the	name	based	on	the	value	of	the
Type	column.

Description varchar(512) Descriptive	text.
Type integer Type	of	data	source.	1	equals	ODBC.	3

equals	OLE	DB.

Provider	Name varchar(512) When	Type	is	3,	contains	the	name	of
the	OLE	DB	provider.	Empty	when
Type	is	1.

SQL-DMO

EnumDependencies	Method
The	EnumDependencies	method	returns	a	QueryResults	object	that
enumerates	Microsoft®	SQL	Server™	2000	database	user	objects	and	user
object	dependency	relationships.

Applies	To

Database	Object Table	Object
DBObject	Object Trigger	Object
ReplicationStoredProcedure	Object View	Object
StoredProcedure	Object UserDefinedFunction	Object

Syntax
object.EnumDependencies([DependencyType])	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

DependencyType

Long	integer	that	directs	output	as	described	in	Settings

Prototype	(C/C++)
HRESULT	EnumDependencies(
LPSQLDMOQUERYRESULTS*	ppResults,
SQLDMO_DEPENDENCY_TYPE	DependencyType	=
SQLDMODep_Parents);

Settings

Specify	the	value	of	the	DependencyType	argument	using	these
SQLDMO_DEPENDENCY_TYPE	values.

Constant Value Description
SQLDMODep_Children 262144 Lists	all	components	that

depend	on	the	referenced
SQL	Server	component.

SQLDMODep_DRIOnly 2097152 Lists	components	that	depend
on	the	referenced	SQL	Server
component	in	a	DRI
relationship.

SQLDMODep_FirstLevelOnly 1048576 Lists	only	immediate	parents.
Combine	with
SQLDMODep_Children	to
list	only	immediate	children.

SQLDMODep_FullHierarchy 65536 Alters	the	default	result	set
describing	hierarchy
relationship	in	a	result	set
row.

SQLDMODep_OrderDescending 131072 Applies	descending	order	to
returned	list.

SQLDMODep_Parents 0 Lists	all	objects	on	which	the
referenced	SQL	Server
component	depends.

SQLDMODep_ReturnInputObject 524288 Includes	SQL	Server
component	referenced	by	the
SQL-DMO	object	in	the	list
returned.

SQLDMODep_Valid 4128768 All	dependency	constants
combined	using	an	OR
logical	operator.

Returns
A	QueryResults	object	that	contains	up	to	three	result	sets.	When	no	user-

defined	data	types,	defaults,	or	rules	are	contained	in	the	dependency	tree,	a
single	result	set	is	returned,	defined	by	these	columns.

Column Data	type Description
oObjName nvarchar(129) Database	object	name.
oOwner nvarchar(129) Database	object	owner	name.
oSequence smallint Indicator	of	distance	in	the	hierarchy

between	the	specified	object	and	the
object	listed.

oType integer Database	object	type,	enumerated	by
SQLDMO_OBJECT_TYPE.

RelName nvarchar(129) Displayed	when
SQLDMODep_FullHierarchy	is
specified.	Hierarchically-related	database
object	name.

RelOwner nvarchar(129) Displayed	when
SQLDMODep_FullHierarchy	is
specified.	Hierarchically-related	database
object	owner	name.

RelType integer Displayed	when
SQLDMODep_FullHierarchy	is
specified.	When	the	RelName	value	is
nonNULL,	RelType	is	the	hierarchically
related	database	object	type,	enumerated
by	SQLDMO_OBJECT_TYPE.	When
RelName	value	is	NULL,	the	value	0	is
returned	and	can	be	ignored.

When	the	dependency	tree	contains	defaults,	rules,	or	user-defined	data	types,
one	or	two	additional	result	sets	are	returned	by	the	EnumDependencies
method.	When	rules	or	defaults	are	contained,	a	result	set	is	returned,	defined	by
these	columns.

Column Data	type Description
oOwner nvarchar(129) Database	object	owner	name.

oRuleDefName nvarchar(129) Database	object	name.
oSequence smallint Indicator	of	distance	in	the	hierarchy

between	the	specified	object	and	the
object	listed.

oType integer Database	object	type,	enumerated	by
SQLDMO_OBJECT_TYPE.	Value	is
SQLDMOObj_Default	or
SQLDMOObj_Rule	for	all	rows.

When	user-defined	data	types	are	contained	in	the	dependency	tree,	a	result	set
that	enumerates	the	data	types	is	returned.	The	user-defined	data	type	result	set	is
defined	by	these	columns.

Column Data	type Description
oType integer Database	object	type,	enumerated	by

SQLDMO_OBJECT_TYPE.	Value	is
SQLDMOObj_UserDefinedDatatype	for
all	rows.

oUDDTName nvarchar(129) User-defined	data	type	name.
oOwner nvarchar(129) User-defined	data	type	owner	name.
oSequence smallint Indicator	of	distance	in	the	hierarchy

between	the	specified	object	and	the
object	listed.

SQL-DMO

EnumDirectories	Method
The	EnumDirectories	method	returns	a	QueryResults	object	that	contains	the
names	of	subdirectories	held	by	the	user-specified	directory.

Applies	To

SQLServer	Object

Syntax
object.EnumDirectories(Path)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Path

String	that	identifies	an	operating	system	directory	by	path	name

Prototype	(C/C++)
HRESULT	EnumDirectories(
SQLDMO_LPCSTR	PathName,
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	this	column.

Column Data	type Description
subdirectory nchar(256) Name	of	a	child	folder	of	the	folder

specified	by	the	Path	argument

SQL-DMO

EnumDistributionAgentSessionDetails	Method
The	EnumDistributionAgentSessionDetails	method	returns	a	QueryResults
object	that	enumerates	detail	information	for	a	specified	Distribution	Agent
session.

Applies	To

DistributionPublisher	Object

Syntax
object.EnumDistributionAgentSessionDetails(AgentName,
SessionID)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

AgentName

String	that	identifies	a	Distributor	Agent	session	by	name.

SessionID

String	that	identifies	a	session.	The	SessionID	value	is	specified	using	the
first	21	characters	of	the	time	column	value	in	the	QueryResults	result	set
returned	by	the	EnumDistributionAgentSessions	method.

Prototype	(C/C++)
HRESULT	EnumDistributionAgentSessionDetails(
SQLDMO_LPCSTR	AgentName,
SQLDMO_LPCSTR	SessionID,
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
integer Reserved.	Always	returns	0.

average_commands integer Average	number	of	commands	per
transaction	delivered	in	the	session.

comments nvarchar(256)Descriptive	text.
delivered_commands integer Cumulative	number	of	commands

delivered	in	the	session.
delivered_transactions integer Cumulative	number	of	transactions

delivered	in	the	session.
delivery_latency integer Latency,	in	milliseconds,	between

the	transaction	entering	the
distribution	database	and	being
applied	to	the	Subscriber.

delivery_rate float Average	number	of	commands
delivered	per	second.

duration integer Elapsed	time	of	the	logged	session
activity	in	seconds.

error_id integer When	nonzero,	Microsoft®	SQL
Server™	2000	error	message
number.

runstatus integer Executing	state.	Interpret	using
SQLDMO_TASKSTATUS_TYPE.

time nvarchar(26) Time	of	logging	for	session	detail.

Remarks
In	the	result	set,	date	and	time	data	returned	in	time	is	formatted	as	YYYYMMDD
hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits

MM Represents	the	month	in	two	digits	(zero	padded)
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded)
hh Represents	the	hour	using	two	digits,	a	twenty-four	hour

clock	(zero	padded)
mm Represents	the	minute	in	two	digits	(zero	padded)
ss Represents	the	second	in	two	digits	(zero	padded)
fff Represents	the	fractional	part	of	the	second	in	three	digits

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

SQL-DMO

EnumDistributionAgentSessionDetails2	Method
The	EnumDistributionAgentSessionDetails2	method	returns	a	QueryResults
object	that	enumerates	detail	information	for	a	specified	Distribution	Agent
session.

Applies	To

DistributionPublisher2	Object 	

Syntax
object.EnumDistributionAgentSessionDetails2(
AgentName,
SessionID,
lEstimatedNumRecords)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

AgentName

String	that	identifies	a	Distributor	Agent	session	by	name.

SessionID

String	that	identifies	a	session.	The	SessionID	value	is	specified	using	the
first	21	characters	of	the	time	column	value	in	the	QueryResults	result	set
returned	by	the	EnumDistributionAgentSessions2	method.

lEstimatedNumRecords

Long	integer	that	specifies	the	estimated	number	of	QueryResults	rows	to
return.

Prototype	(C/C++)
HRESULT	EnumDistributionAgentSessionDetails2(
SQLDMO_LPCSTR	AgentName,
SQLDMO_LPCSTR	SessionID,
long	lEstimatedNumRecords,
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
integer Reserved.	Always	returns	0.

average_commands integer Average	number	of	commands	per
transaction	delivered	in	the	session.

comments nvarchar(256)Descriptive	text.
delivered_commands integer Cumulative	number	of	commands

delivered	in	the	session.
delivered_transactions integer Cumulative	number	of	transactions

delivered	in	the	session.
delivery_latency integer Latency,	in	milliseconds,	between

the	transaction	entering	the
distribution	database	and	being
applied	to	the	Subscriber.

delivery_rate float Average	number	of	commands
delivered	per	second.

duration integer Elapsed	time	of	the	logged	session
activity	in	seconds.

error_id integer When	nonzero,	Microsoft®	SQL
Server™2000	error	message
number.

runstatus integer Executing	state.	Interpret	using
SQLDMO_TASKSTATUS_TYPE.

time nvarchar(26) Time	of	logging	for	session	detail.

Remarks
In	the	result	set,	date	and	time	data	returned	in	time	is	formatted	as	YYYYMMDD
hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits
MM Represents	the	month	in	two	digits	(zero	padded)
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded)
hh Represents	the	hour	using	two	digits,	a	twenty-four	hour

clock	(zero	padded)
mm Represents	the	minute	in	two	digits	(zero	padded)
ss Represents	the	second	in	two	digits	(zero	padded)
fff Represents	the	fractional	part	of	the	second	in	three	digits

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

The	EnumDistributionAgentSessionDetails2	method	differs	from	the
EnumDistributionAgentSessionDetails	method	by	including	the
lEstimatedNumRecords	parameter,	which	allows	an	application	to	pass	an
estimated	number	of	QueryResults	rows.	This	allows	the	application	to	avoid
the	performance	overhead	associated	with	repeatedly	allocating	and	freeing
memory.

SQL-DMO

EnumDistributionAgentSessions	Method
The	EnumDistributionAgentSessions	method	returns	a	QueryResults	object
that	enumerates	execution	status	information	for	a	specified	Distribution	Agent.

Applies	To

DistributionPublisher	Object

Syntax
object.EnumDistributionAgentSessions(AgentName,
SessionType,	SessionDuration)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

AgentName

String	that	identifies	a	Distribution	Agent	by	name.

SessionType

Long	integer	that	indicates	session	type	as	described	in	Settings.

SessionDuration

Long	integer	that	specifies	a	number	of	hours.	Restricts	result	set
membership	to	those	sessions	started	within	the	number	of	hours	specified.
Use	0	to	specify	no	restriction	on	agent	session	start	time.

Prototype	(C/C++)
HRESULT	EnumDistributionAgentSessions(
SQLDMO_LPCSTR	AgentName,
SQLDMO_SESSION_TYPE	SessionType,

long	SessionDuration,
LPSQLDMOQUERYRESULTS*	ppResults);

Settings
Set	SessionType	using	these	values.

Constant Value Description
SQLDMOSession_All 1 Output	contains	log	information	for	all

agent	sessions.
SQLDMOSession_Errors 2 Output	contains	log	information	only	for

those	execution	attempts	ending	in	error.

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
	 integer Reserved.	Returns	0	always.
action_count integer Number	of	session	history	records.
average_commands integer Average	number	of	commands	per

transaction	delivered	in	the
session.

comments nvarchar(256) Descriptive	text.
delivered_commands integer Cumulative	number	of	commands

delivered	in	the	session.
delivered_transactions integer Cumulative	number	of	transactions

delivered	in	the	session.
delivery_latency integer Latency,	in	milliseconds,	between

the	transaction	entering	the
distribution	database	and	applied
to	the	Subscriber.

delivery_rate float Average	number	of	commands
delivered	per	second.

duration integer Elapsed	time	of	the	session	in

seconds.
error_id integer When	nonzero,	Microsoft®	SQL

Server™	2000	error	message
number.

runstatus integer Executing	state.	Interpret	using
SQLDMO_TASKSTATUS_TYPE.

start_time nvarchar(26) Date	and	time	of	last	scheduled
execution.

time nvarchar(26) Date	and	time	of	message	logging.

Remarks
In	the	result	set,	date	and	time	data	returned	in	start_time	and	time	is	formatted
as	YYYYMMDD	hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four

hour	clock	(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three

digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

SQL-DMO

EnumDistributionAgentSessions2	Method
The	EnumDistributionAgentSessions2	method	returns	a	QueryResults	object
that	enumerates	execution	status	information	for	a	specified	Distribution	Agent.

Applies	To

DistributionPublisher2	Object 	

Syntax
object.EnumDistributionAgentSessions2(
AgentName,
SessionType,	
SessionDurationB,	
lEstimatedNumRecords)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

AgentName

String	that	identifies	a	Distribution	Agent	by	name.

SessionType

Long	integer	that	indicates	session	type	as	described	in	Settings.

SessionDuration

Long	integer	that	specifies	a	number	of	hours.	Restricts	result	set
membership	to	those	sessions	started	within	the	number	of	hours	specified.
Use	0	to	specify	no	restriction	on	agent	session	start	time.

lEstimatedNumRecords

Long	integer	that	specifies	the	estimated	number	of	QueryResults	rows	to
return.

Prototype	(C/C++)
HRESULT	EnumDistributionAgentSessions2(
SQLDMO_LPCSTR	AgentName,
SQLDMO_SESSION_TYPE	SessionType,
long	SessionDuration,
long	lEstimatedNumRecords,
LPSQLDMOQUERYRESULTS*	ppResults);

Settings
Set	SessionType	using	these	values.

Constant Value Description
SQLDMOSession_All 1 Output	contains	log	information	for	all

agent	sessions.
SQLDMOSession_Errors 2 Output	contains	log	information	only	for

those	execution	attempts	ending	in	error.

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
	 integer Reserved.	Returns	0	always.
action_count integer Number	of	session	history	records.
average_commands integer Average	number	of	commands	per

transaction	delivered	in	the
session.

comments nvarchar(256) Descriptive	text.
delivered_commands integer Cumulative	number	of	commands

delivered	in	the	session.

delivered_transactions integer Cumulative	number	of	transactions
delivered	in	the	session.

delivery_latency integer Latency,	in	milliseconds,	between
the	transaction	entering	the
distribution	database	and	applied
to	the	Subscriber.

delivery_rate float Average	number	of	commands
delivered	per	second.

duration integer Elapsed	time	of	the	session	in
seconds.

error_id integer When	nonzero,	Microsoft®	SQL
Server™	2000	error	message
number.

runstatus integer Executing	state.	Interpret	using
SQLDMO_TASKSTATUS_TYPE.

start_time nvarchar(26) Date	and	time	of	last	scheduled
execution.

time nvarchar(26) Date	and	time	of	message	logging.

Remarks
In	the	result	set,	date	and	time	data	returned	in	start_time	and	time	is	formatted
as	YYYYMMDD	hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four

hour	clock	(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three

digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

The	EnumDistributionAgentSessions2	method	differs	from	the
EnumDistributionAgentSessions	method	by	including	the
lEstimatedNumRecords	parameter,	which	allows	an	application	to	pass	an
estimated	number	of	QueryResults	rows.	This	allows	the	application	to	avoid
the	performance	overhead	associated	with	repeatedly	allocating	and	freeing
memory.

SQL-DMO

EnumDistributionAgentViews	Method
The	EnumDistributionAgentViews	method	returns	a	QueryResults	object	that
enumerates	historical	data	for	all	Distribution	Agents.

Applies	To

Distributor	Object

Syntax
object.EnumDistributionAgentViews()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumDistributionAgentViews(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
agent_id integer Agent	identifier.
average_commands integer Average	number	of	commands

delivered	to	the	Subscriber.
comments nvarchar(256)Descriptive	text.
dbname nvarchar(129)Name	of	the	database	used	for

distribution.

delivered_commands integer Cumulative	number	of	commands
delivered	to	the	Subscriber.

delivered_transactions integer Cumulative	number	of	transactions
delivered	to	the	Subscriber.

delivery_latency integer Latency,	in	milliseconds,	between	the
transaction	entering	the	distribution
database	and	being	applied	to	the
Subscriber.

delivery_rate integer Average	number	of	commands	per
transaction	delivered	per	second.

delivery_time integer Cumulative	time	spent	delivering
transactions	to	the	Subscriber	in
seconds.

duration integer Cumulative	run	time	in	seconds.
error_id integer When	nonzero,	the	Microsoft®	SQL

Server™	2000	error	message	number
of	the	most	recent	error.

job_id binary(22) Identifier	of	the	SQL	Server	Agent
job	that	starts	the	replication	agent.

local_job bit When	TRUE,	the	SQL	Server	2000
Agent	job	executes	at	the	Distributor.
When	FALSE,	the	SQL	Server	Agent
2000	job	executes	at	the	Subscriber.

local_timestamp binary(14) Timestamp.
name nvarchar(101)Name	of	the	Distribution	Agent.
profile_id integer Profile	identifier.	Links	this	agent	to

the	agent	profile	used	to	establish
runtime	parameters	such	as	timeout
and	batch	size	values.

publication nvarchar(129)Publication	name.
publisher nvarchar(129)Publisher	name.
publisher_db nvarchar(129)Name	of	database	published.
start_time nvarchar(25) Date	and	time	at	which	agent	started.
status integer Agent	status.	Interpret	using

SQLDMO_TASKSTATUS_TYPE.

subscriber nvarchar(129)Subscriber	name.
subscriber_db nvarchar(129)Name	of	database	that	stores

replicated	image.
subscription_type integer Type	of	subscription.	Interpret	using

SQLDMO_SUBSCRIPTION_TYPE.
time nvarchar(25) Date	and	time	latest	message	logged.

Remarks
The	EnumDistributionAgentViews2	method	extends	the	functionality	of	the
EnumDistributionAgentViews	method.

In	the	result	set,	date	and	time	data	returned	in	start_time	and	time	is	formatted
as	YYYYMMDD	hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four

hour	clock	(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three

digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

Use	the	EnumDistributionAgentViews	method	to	monitor	the	Distribution
Agent	views.

See	Also

EnumDistributionAgentViews2	Method

SQL-DMO

EnumDistributionAgentViews2	Method
The	EnumDistributionAgentViews2	method	returns	a	QueryResults	object
that	enumerates	historical	data	for	all	Distribution	Agents.

Applies	To

Distributor2	Object

Syntax
object.EnumDistributionAgentViews2([fExcludeAnonymous])	as
QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

fExcludeAnonymous

Boolean	that	specifies	whether	anonymous	Distribution	Agent	views	are
enumerated.	Default	=	FALSE.

Prototype	(C/C++)
HRESULT	EnumDistributionAgentViews2(
LPSQLDMOQUERYRESULTS	*ppResults,	
BOOL	fExcludeAnonymous);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
agent_id integer Agent	identifier.

average_commands integer Average	number	of	commands
delivered	to	the	Subscriber.

comments nvarchar(256)Descriptive	text.
dbname nvarchar(129)Name	of	the	database	used	for

distribution.
delivered_commands integer Cumulative	number	of	commands

delivered	to	the	Subscriber.
delivered_transactions integer Cumulative	number	of	transactions

delivered	to	the	Subscriber.
delivery_latency integer Latency,	in	milliseconds,	between	the

transaction	entering	the	distribution
database	and	applied	to	the
Subscriber.

delivery_rate integer Average	number	of	commands	per
transaction	delivered	per	second.

delivery_time integer Cumulative	time	spent	delivering
transactions	to	the	Subscriber	in
seconds.

duration integer Cumulative	run	time	in	seconds.
error_id integer When	nonzero,	the	Microsoft®	SQL

Server™	error	message	number	of
the	most	recent	error.

job_id binary(22) Identifier	of	the	SQL	Server	Agent
job	that	starts	the	replication	agent.

local_job bit When	TRUE,	the	SQL	Server	2000
Agent	job	executes	at	the	Distributor.
When	FALSE,	the	SQL	Server	Agent
2000	job	executes	at	the	Subscriber.

local_timestamp binary(14) Timestamp.
name nvarchar(101)Name	of	the	Distribution	Agent.
profile_id integer Profile	identifier.	Links	this	agent	to

the	Agent	Profile	used	to	establish
runtime	parameters	such	as	timeout
and	batch	size	values.

publication nvarchar(129)Publication	name.

publisher nvarchar(129)Publisher	name.
publisher_db nvarchar(129)Name	of	database	published.
start_time nvarchar(25) Date	and	time	at	which	agent	started.
status integer Agent	status.	Interpret	using

SQLDMO_TASKSTATUS_TYPE.
subscriber nvarchar(129)Subscriber	name.
subscriber_db nvarchar(129)Name	of	database	that	stores

replicated	image.
subscription_type integer Type	of	subscription.	Interpret	using

SQLDMO_SUBSCRIPTION_TYPE.
time nvarchar(25) Date	and	time	latest	message	logged.

Remarks
The	EnumDistributionAgentViews2	method	extends	the	functionality	of	the
EnumDistributionAgentViews	method	by	including	the	optional
fExcludeAnonymous	parameter.	When	fExcludeAnonymous	is	set	to	TRUE,
anonymous	Distribution	Agent	views	are	not	enumerated.

In	the	result	set,	date	and	time	data	returned	in	start_time	and	time	is	formatted
as	YYYYMMDD	hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four

hour	clock	(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three

digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

Note		If	an	application	calls	EnumDistributionAgentViews2	on	an	instance	of
SQL	Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the
message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

See	Also

EnumDistributionAgentViews	Method

SQL-DMO

EnumErrorLogs	Method
The	EnumErrorLogs	method	returns	a	QueryResults	object	that	enumerates
the	error	logs	used	by	an	instance	of	Microsoft®	SQL	Server™	2000.

Applies	To

SQLServer	Object

Syntax
object.EnumErrorLogs()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumErrorLogs(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
Archive	# integer Identifies	the	number	of	the	log.	The	active

log	has	number	0.
Date nvarchar(256) Date	and	time	of	last	modification	of	the	log.

The	date	and	time	are	formatted	using	the
format	specified	in	the	operating	system	for
file	modification	date	and	time.

SQL-DMO

EnumFileGroups	Method
The	EnumFileGroups	method	returns	a	QueryResults	object	that	enumerates
the	filegroups	of	a	Microsoft®	SQL	Server™	2000	database.

Applies	To

Database	Object

Syntax
object.EnumFileGroups()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumFileGroups(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
groupid smallint System-generated	filegroup

identifier
allocpolicy smallint Reserved	for	future	use
status integer Interpret	as	specified	in	Remarks
groupname nvarchar(129) Name	of	the	filegroup

Remarks
Interpret	the	value	of	the	status	column	using	these	values.

Value Description
0 User-defined	filegroup
8 Filegroup	defined	on	files	maintained	on	read-only

media
16 Primary	filegroup

SQL-DMO

EnumFiles	Method	(Database)
The	EnumFiles	method	returns	a	QueryResults	object	that	enumerates	the
operating	system	files	used	to	implement	Microsoft®	SQL	Server™	2000
database	storage.

Applies	To

Database	Object

Syntax
object.EnumFiles()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumFiles(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
fileid smallint System-generated	identifier	of	the	operating

system	file.
filename nchar(261) Operating	system	name	of	the	file.
groupid smallint System-generated	identifier	of	the	filegroup	that

contains	the	operating	system	file.	0	for	files
implementing	transaction	log	storage.

growth integer Growth	factor.	When	file	grows	by	a	fixed
percentage,	the	value	is	the	percentage	multiplied
by	100.	When	the	file	grows	by	a	fixed	size
increment,	the	increment	is	expressed	as	a	number
of	pages.

maxsize integer Maximum	size	if	set,	-1	if	no	maximum	specified.
name nchar(129) Logical	name	of	the	operating	system	file.
perf integer Reserved.
size integer Size	of	the	file	expressed	as	number	of	pages

contained.	For	an	instance	of	SQL	Server	version
7.0,	a	page	is	8,192	bytes.

status integer Bit-packed	flag	value	that	indicates	creation	or
other	attributes	as	described	in	Remarks.

Remarks
The	status	column	of	the	returned	result	set	is	a	bit-packed	value.	Interpret	the
status	column	using	these	values.

Value Description
1 Reserved
2 Operating	system	file	maintains	database	data
64 Operating	system	file	maintains	transaction	log	records
128 Operating	system	file	has	been	written	to	after	the	most

recent	backup
16384 Operating	system	file	implicitly	created	as	part	of	database

creation	or	alteration
32768 Operating	system	file	explicitly	created	as	part	of	database

creation	or	alteration
1048576 File	growth	value	is	interpreted	as	a	percentage

SQL-DMO

EnumFiles	Method	(FileGroup)
The	EnumFiles	method	returns	a	QueryResults	object	that	enumerates	the
operating	system	files	used	to	implement	Microsoft®	SQL	Server™	2000
database	storage.

Applies	To

FileGroup	Object

Syntax
object.EnumFiles()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumFiles(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	this	column.

Column Data	type Description
name nchar(129) Logical	name	of	the	operating	system

file

SQL-DMO

EnumFixedDatabaseRolePermission	Method
The	EnumFixedDatabaseRolePermission	method	returns	a	QueryResults
object	that	enumerates	the	statement	execution	privilege	of	a	system-defined
database	role.

Applies	To

DatabaseRole	Object

Syntax
object.EnumFixedDatabaseRolePermission()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumFixedDatabaseRolePermission(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	this	column.

Column Data	type Description
perm_col nvarchar(133) Descriptive	text.	Can	be	a	Transact-SQL

statement	on	which	execution	permission	is
granted,	or	a	description	of	applicable
privilege,	such	as	All	DDL	but	GRANT,
REVOKE,	DENY.

SQL-DMO

EnumFullTextLanguages	Method
The	EnumFullTextLanguages	method	returns	a	list	of	available	full-text
languages.

Applies	To

Registry2	Object

Syntax
object.EnumFullTextLanguages()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumFullTextLanguages(LPSQLDMOQUERYRESULTS
*ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
Language varchar(100) Language	name
LCID Integer Microsoft®	Windows	NT®	4.0	or

Microsoft	Windows	2000	locale	ID	for
the	language

Remarks
An	application	can	call	the	EnumFullTextLanguages	method	to	determine
which	Full-text	languages	are	available	on	a	server	prior	to	setting	the
LanguageID	parameter	in	a	call	to	the	SetFullTextIndexWithOptions	method
of	the	Column2	object.

Note		The	Full-text	Service	must	be	installed	on	an	instance	of	Microsoft®	SQL
Server™	2000.

Note		If	an	application	calls	EnumFullTextLanguages	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

FullTextColumnLanguageID	Property

FullTextImageColumnType	Property

SetFullTextIndexWithOptions	Method

SQL-DMO

EnumGeneratedSubsetFilters	Method
The	EnumGeneratedSubsetFilters	method	applies	the	filter	clause	specified	to
the	article	indicated,	performs	temporary	filter	generation,	then	returns	a
QueryResults	object	that	enumerates	default	filters	generated	by	the	test	case
specified.

Applies	To

MergePublication	Object

Syntax
object.EnumGeneratedSubsetFilters(Article,
SubsetFilterClause)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Article

String	that	identifies	an	article	in	the	publication	by	name.

SubsetFilterClause

String	of	1,002	characters	or	less	that	specifies	a	filter	clause	to	apply	to	the
article.	Use	an	empty	string	to	enable	test	generation	of	default	filter	clauses.

Prototype	(C/C++)
HRESULT	EnumGeneratedSubsetFilters(
LPSQLDMOQUERYRESULTS*	ppResults,
SQLDMO_LPCSTR	szArticle,
SQLDMO_LPCSTR	szSubsetFilterClause);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
article	name nvarchar(129) Name	of	the	article	that	contains	the

joined	from	table.
base	table	name nvarchar(129) Name	of	the	table	joined	to	in	the

filter	clause.
base	table	owner nvarchar(129) Name	of	the	owner	of	the	table

joined	to	in	the	filter	clause.
filtername nvarchar(129) Name	of	the	filter.
join	article	name nvarchar(129) Name	of	the	article	on	which	the

filter	is	defined.
join_filterclause nvarchar(1001) Transact-SQL	WHERE	clause

defining	the	filter.
join_filterid integer System-generated	identifier.
join	table	name nvarchar(129) Name	of	the	table	joined	from	in	the

filter	clause.
join	table	owner nvarchar(129) Name	of	the	owner	of	the	table

joined	from	in	the	filter	clause.
join_unique_key integer When	1,	the	filter	depends	on	a

unique	or	key	value.	When	0,	the
filter	does	not	depend	on	a	unique
value.

Remarks
The	EnumGeneratedSubsetFilters	method	explicitly	begins	a	transaction	prior
to	generating	any	filters,	then	explicitly	rolls	back	the	transaction	when	the	result
set	is	generated.	No	permanent	change	is	made	to	publication	or	article
definition	by	the	method.	For	more	information	about	adding	filters	to	articles
using	SQL-DMO,	see	MergeSubsetFilter	Object.

SQL-DMO

EnumHistory	Method
The	EnumHistory	method	returns	a	QueryResults	object	that	enumerates	the
execution	history	of	the	referenced	Microsoft®	SQL	Server™	2000	Agent	job.

Applies	To

Job	Object

Syntax
object.EnumHistory([JobHistoryFilter])	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

JobHistoryFilter

Optional.	A	JobHistoryFilter	object	that	restricts	result	set	membership.

Prototype	(C/C++)
HRESULT	EnumHistory(
LPSQLDMOQUERYRESULTS*	ppResults,
LPSQLDMOJOBHISTORYFILTER	pJobHistoryFilter	=	NULL);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
instance_id integer System-generated	identifier	for

execution	attempt.
job_id uniqueidentifier System-generated	job	identifier.

job_name nvarchar(129) Job	name.
message nvarchar(1025) When	applicable,	text	of	a	SQL

Server	message	raised	by	the	step.
operator_emailed nvarchar(129) When	applicable,	operator	receiving

e-mail	notification	of	job
completion.

operator_netsent nvarchar(129) When	applicable,	operator	receiving
network	pop-up	message
notification	of	job	completion.

operator_paged nvarchar(129) When	applicable,	operator	receiving
page	notification	of	job	completion.

retries_attempted integer Number	of	times	SQL	Server	Agent
attempted	execution	of	the	step.	0
when	the	step	executed	successfully
on	the	first	attempt	or	no	retry
attempts	specified	for	the	job	step.

run_date integer Date	on	which	execution	occurred
formatted	as	described	in	Remarks.

run_duration integer Execution	duration	expressed	in
seconds.

run_status integer Execution	outcome	interpreted	using
SQLDMO_JOBOUTCOME_TYPE.

run_time integer Time	at	which	execution	occurred
formatted	as	described	in	Remarks.

server nvarchar(31) Target	server	name.
sql_message_id integer When	applicable,	the	SQL	Server

message	number	of	the	message
raised	by	the	step.

sql_severity integer When	applicable,	the	severity	of	a
SQL	Server	message	raised	by	the
step.

step_id integer User-specified	step	identifier.	The
result	set	lists	each	job	step	and	its
outcome.

step_name nvarchar(129) Job	step	name.

Remarks
The	result	set	column	run_date	represents	the	execution	date	as	a	scaled	long
integer.	The	integer	is	built	as	a	sum	of	the	year	scaled	by	10000,	the	month
scaled	by	100,	and	the	day.	For	example,	the	date	April	19,	1997	is	represented
by	the	long	integer	value	19970419.

The	result	set	column	run_time	represents	execution	time	as	a	scaled	long
integer.	The	integer	is	built	as	a	sum	of	the	hour	scaled	by	10000,	the	minute
scaled	by	100,	and	the	seconds.	The	value	uses	a	24-hour	clock.	For	example,
the	time	1:03:09	P.M.	is	represented	by	the	long	integer	value	130309.

Membership	in	the	result	set	is	restricted	using	the	optionally	specified
JobHistoryFilter	object.	For	more	information,	see	JobHistoryFilter	Object.

SQL-DMO

EnumIdentityRangeInfo	Method
The	EnumIdentityRangeInfo	method	returns	a	QueryResults	object	that
enumerates	identity	range	information	about	articles	based	on	a	table.

Applies	To

ReplicationTable2	Object

Syntax
object.EnumIdentityRangeInfo()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumIdentityRangeInfo(LPSQLDMOQUERYRESULTS
*ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
auto_identity_support bit If	already	replicated,	whether	an

automatic	identity	range	is
assigned.

current_identity big_int Current	identity	value.
identity_increment integer Amount	by	which	the	identity	value

is	incremented.

max_identity big_int Maximum	boundary	of	the	identity
range.

next_starting_seed big_int If	automatic	identity	range	is
enabled,	indicates	the	starting	point
of	next	range.

publisher_range big_int Publisher	identity	range	size.
replicated bit Whether	the	table	is	already

replicated	as	an	article	in	another
publication.

subscriber_range big_int Subscriber	identity	range	size.
threshold integer Identity	range	threshold	percentage.

Remarks
A	table	may	contain	only	one	identity	column.	If	adding	the	table	to	a	new
publication,	it	may	be	neither	possible	nor	necessary	to	assign	an	identity	range
to	the	Publisher	or	Subscriber	automatically.	If	the	table	is	also	used	in	other
publications,	EnumIdentityRangeInfo	returns	information	about	whether	the
identity	range	was	assigned.

Note		If	an	application	calls	EnumIdentityRangeInfo	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

EnumInitialAccesses	Method
The	EnumInitialAccesses	method	returns	a	QueryResults	object	that
enumerates	Microsoft®	SQL	Server™	2000	logins.

Applies	To

ReplicationDatabase	Object

Syntax
object.EnumInitialAccesses()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumInitialAccesses(LPSQLDMOQUERYRESULTS	*ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
isntgroup integer When	1,	the	value	of	the	loginname

column	identifies	a	Microsoft	Windows
NT®	4.0	or	Microsoft	Window	2000
group	account

isntname integer When	1,	the	value	of	the	loginname
column	identifies	a	Windows	NT	4.0	or
Microsoft	Windows	2000	account

loginname nvarchar(129) Name	of	a	SQL	Server	login

Remarks
The	result	set	enumerates	those	login	records	with	access	in	every	database	at
the	Publisher.

SQL-DMO

EnumJobHistory	Method
The	EnumHistory	method	returns	a	QueryResults	object	that	enumerates	the
execution	history	of	all	Microsoft®	SQL	Server™	2000	Agent	jobs.

Applies	To

JobServer	Object

Syntax
object.EnumJobHistory([JobHistoryFilter])	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

JobHistoryFilter

Optional.	A	JobHistoryFilter	object	that	restricts	result	set	membership.

Prototype	(C/C++)
HRESULT	EnumJobHistory(
LPSQLDMOQUERYRESULTS*	ppResults,
LPSQLDMOJOBHISTORYFILTER	pJobHistoryFilter	=	NULL);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
instance_id integer System-generated	identifier	for

execution	attempt.
job_id uniqueidentifier System-generated	job	identifier.

job_name nvarchar(129) Job	name.
message nvarchar(1025) When	applicable,	text	of	a	SQL

Server	message	raised	by	the	step.
operator_emailed nvarchar(129) When	applicable,	operator	receiving

e-mail	notification	of	job	completion.
operator_netsent nvarchar(129) When	applicable,	operator	receiving

network	pop-up	message	notification
of	job	completion.

operator_paged nvarchar(129) When	applicable,	operator	receiving
page	notification	of	job	completion.

retries_attempted integer Number	of	times	SQL	Server	Agent
attempted	execution	of	the	step.	0
when	the	step	executed	successfully
on	the	first	attempt	or	no	retry
attempts	specified	for	the	job	step.

run_date integer Date	on	which	execution	occurred
formatted	as	described	in	Remarks.

run_duration integer Execution	duration	expressed	as	a
number	of	seconds.

run_status integer Execution	outcome	interpreted	using
SQLDMO_JOBOUTCOME_TYPE.

run_time integer Time	at	which	execution	occurred
formatted	as	described	in	Remarks.

server nvarchar(31) Target	server	name.
sql_message_id integer When	applicable,	the	SQL	Server

message	number	of	the	message
raised	by	the	step.

sql_severity integer When	applicable,	the	severity	of	a
SQL	Server	message	raised	by	the
step.

step_id integer User-specified	step	identifier.	The
result	set	lists	each	job	step	and	its
outcome.

step_name nvarchar(129) Job	step	name.

Remarks
The	result	set	column	run_date	represents	the	execution	date	as	a	scaled	long
integer.	The	integer	is	built	as	a	sum	of	the	year	scaled	by	10000,	the	month
scaled	by	100,	and	the	day.	For	example,	the	date	April	19,	1997	is	represented
by	the	long	integer	value	19970419.

The	result	set	column	run_time	represents	execution	time	as	a	scaled	long
integer.	The	integer	is	built	as	a	sum	of	the	hour	scaled	by	10000,	the	minute
scaled	by	100,	and	the	seconds.	The	value	uses	a	24-hour	clock.	For	example,
the	time	1:03:09	P.M.	is	represented	by	the	long	integer	value	130309.

Membership	in	the	result	set	is	restricted	using	the	optionally	specified
JobHistoryFilter	object.	For	more	information,	see	JobHistoryFilter	Object.

SQL-DMO

EnumJobInfo	Method
The	EnumJobInfo	method	returns	a	QueryResults	object	that	enumerates
execution	state	information	for	the	Microsoft®	SQL	Server™	2000	Agent	job
controlling	a	replication	agent	that	enables	a	Subscriber-originated	(pull)
subscription.

Applies	To

MergePullSubscription	Object TransPullSubscription	Object

Syntax
object.EnumJobInfo()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumJobInfo(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
date integer Date	on	which	logging	message	was

recorded.	Formatted	as	described	in
Remarks.

message nvarchar(1025) Descriptive	text.
runstatus integer Agent	status.	Interpret	using

SQLDMO_TASKSTATUS_TYPE.
time integer Time	at	which	logging	message	was

recorded.	Formatted	as	described	in
Remarks.

datetime nvarchar(26) Date	and	time	at	which	logging	message
was	recorded.	Formatted	as	described	in
Remarks.	Returned	only	for	instances	of
SQL	Server	2000.

Remarks
The	result	set	column	date	represents	the	message	log	date	as	a	scaled	long
integer.	The	integer	is	built	as	a	sum	of	the	year	scaled	by	10000,	the	month
scaled	by	100,	and	the	day.	For	example,	the	date	April	19,	1997	is	represented
by	the	long	integer	value	19970419.

The	result	set	column	time	represents	message	log	time	as	a	scaled	long	integer.
The	integer	is	built	as	a	sum	of	the	hour	scaled	by	10000,	the	minute	scaled	by
100,	and	the	seconds.	The	value	uses	a	24-hour	clock.	For	example,	the	time
1:03:09	P.M.	is	represented	by	the	long	integer	value	130309.

In	the	result	set,	date	and	time	data	returned	in	datetime	is	formatted	as
YYYYMMDD	hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits
MM Represents	the	month	in	two	digits	(zero	padded)
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded)
hh Represents	the	hour	using	two	digits,	a	twenty-four	hour

clock	(zero	padded)
mm Represents	the	minute	in	two	digits	(zero	padded)
ss Represents	the	second	in	two	digits	(zero	padded)
fff Represents	the	fractional	part	of	the	second	in	three	digits

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

SQL-DMO

EnumJobNotifications	Method
The	EnumJobNotifications	method	returns	a	QueryResults	object	that
enumerates	notifications	made	by	Microsoft®	SQL	Server™	2000	Agent	on
completion	of	job	execution.

Applies	To

Operator	Object

Syntax
object.EnumJobNotifications	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumJobNotifications(
LPSQLDMOQUERYRESULTS	*ppResults);

Returns
The	EnumJobNotifications	method	returns	a	QueryResults	object	that	contains
one	result	set	defined	by	these	columns.

Column	name Data	type Description
job_id uniqueidentifier System-generated	identifier	for	a

SQL	Server	Agent	job.
name nvarchar(129) Job	name.
notify_level_email integer Job	completion	status	causing

notification	by	e-mail.	Interpret	as

described	in	Remarks.
notify_level_netsend integer Job	completion	status	causing

notification	by	network	pop-up
message.	Interpret	as	described	in
Remarks.

notify_level_page integer Job	completion	status	causing
notification	by	pager.	Interpret	as
described	in	Remarks.

Remarks
Interpret	values	returned	in	value	returned	in	the	notify_level_email,
notify_level_netsend,	and	notify_level_page	columns	using	these	values.

Value Description
0 Operator	not	configured	for	notification	by	notification

method.
1 Operator	receives	notification	of	a	successful	job

execution.
2 Operator	receives	notification	of	an	unsuccessful

execution	attempt.
3 Operator	receives	notification	regardless	of	execution

outcome.

The	result	set	returned	enumerates	all	jobs	for	which	an	operator	will	receive
notification	on	execution	attempt	completion.	At	least	one	of	the	columns
notify_level_email,	notify_level_netsend,	or	notify_level_page	will	contain	a
non-zero	value	for	all	rows	in	the	result	set.

SQL-DMO

EnumJobs	Method
The	EnumJobs	method	returns	a	QueryResults	object	that	enumerates	all
Microsoft®	SQL	Server™	2000	Agent	jobs	defined	for	a	server.

Applies	To

JobServer	Object

Syntax
object.EnumJobs([JobFilter])	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

JobFilter

Optional.	A	JobFilter	object	that	restricts	result	set	membership.

Prototype	(C/C++)
HRESULT	EnumJobs(
LPSQLDMOQUERYRESULTS*	ppResults,
LPSQLDMOJOBFILTER	pJobFilter	=	NULL);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
category nvarchar(129) Job	category	name.
current_execution_status integer Execution	state	interpreted	using

SQLDMO_JOBEXECUTION_STATUS.

current_execution_step nvarchar(129) When	applicable,	the	currently	executing
step.	A	string	formatted	as	the	job	step
identifier,	a	space	character,	and	the
name	of	the	step.

current_retry_attempt integer When	applicable,	the	retry	attempt	for
the	job	step.

date_created smalldatetime Date	and	time	at	which	job	was	created.
date_modified smalldatetime Date	and	time	of	most	recent

modification	to	job,	job	steps,	or
schedules.

delete_level integer Execution	outcome	that	causes	an
automatic	delete	of	the	job.	Interpret
using
SQLDMO_COMPLETION_TYPE.

description nvarchar(513) Descriptive	text.
enabled tinyint When	1,	job	is	enabled.
has_schedule integer When	1,	the	job	has	at	least	one	schedule

enabled.
has_step integer When	1,	the	job	has	at	least	one	step

defined.
has_target integer When	1,	the	job	has	at	least	one

execution	target	specified.
job_id uniqueidentifier System-generated	job	identifier.
last_run_date integer Most	recent	date	on	which	execution

occurred	formatted	as	described	in
Remarks.

last_run_outcome integer Execution	outcome	of	most	recent
execution	attempt	interpreted	using
SQLDMO_JOBOUTCOME_TYPE.

last_run_time integer Time	at	which	most	recent	execution
occurred	formatted	as	described	in
Remarks.

name nvarchar(129) Job	name.
next_run_date integer When	applicable,	next	scheduled

execution	date	formatted	as	described	in

Remarks.
next_run_schedule_id integer Identifier	of	schedule	generating	next

execution	date	and	time.
next_run_time integer When	applicable,	next	scheduled

execution	time	formatted	as	described	in
Remarks.

notify_email_operator nvarchar(129) Name	of	operator	notified	by	e-mail.
notify_level_email integer Execution	outcome	causing	operator

notification	by	e-mail.	Interpret	using
SQLDMO_COMPLETION_TYPE.

notify_level_eventlog integer Execution	outcome	causing	Microsoft
Windows	NT®	4.0	or	Microsoft
Windows	2000	application	log	entry.
Interpret	using
SQLDMO_COMPLETION_TYPE.

notify_level_netsend integer Execution	outcome	causing	operator
notification	by	network	pop-up	message.
Interpret	using
SQLDMO_COMPLETION_TYPE.

notify_level_page integer Execution	outcome	causing	operator
notification	by	page.	Interpret	using
SQLDMO_COMPLETION_TYPE.

notify_netsend_operator nvarchar(129) Name	of	operator	notified	by	network
pop-up	message.

notify_page_operator nvarchar(129) Name	of	operator	notified	by	page.
originating_server nvarchar(31) Network	name	of	master	server	or	the

string	(local).
owner nvarchar(129) Microsoft	SQL	Server	database	user

identified	as	job	owner.
start_step_id integer User-defined	job	step	identifier	specified

as	first	step	executed.
type integer Indicator	of	execution	target	interpreted

using	SQLDMO_JOB_TYPE.
version_number integer System-generated	version	number.

Remarks
The	result	set	columns	last_run_date	and	next_run_date	represent	execution
dates	as	scaled	long	integers.	The	integers	are	built	as	a	sum	of	the	year	scaled
by	10000,	the	month	scaled	by	100,	and	the	day.	For	example,	the	date	April	19,
1997	is	represented	by	the	long	integer	value	19970419.

The	result	set	columns	last_run_time	and	next_run_time	represent	execution
times	as	scaled	long	integers.	The	integers	are	built	as	a	sum	of	the	hour	scaled
by	10000,	the	minute	scaled	by	100,	and	the	seconds.	The	value	uses	a	24-hour
clock.	For	example,	the	time	1:03:09	P.M.	is	represented	by	the	long	integer
value	130309.

Membership	in	the	result	set	is	restricted	using	the	optionally	specified
JobFilter	object.	For	more	information,	see	JobFilter	Object.

SQL-DMO

EnumLastStatisticsUpdates	Method
The	EnumLastStatisticsUpdates	method	returns	a	QueryResults	object	that
enumerates	the	query	optimizing	statistics	maintained	on	a	table.

Applies	To

Table	Object

Syntax
object.EnumLastStatisticsUpdates([IndexName])	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

IndexName

Optional.	String	that	names	an	existing	index	and	that	restricts	output	to	the
index	named.

Prototype	(C/C++)
HRESULT	EnumLastStatisticsUpdates(
LPSQLDMOQUERYRESULTS*	ppResults,
SQLDMO_LPCSTR	IndexName	=	NULL);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
last	update smalldatetime Date	and	time	of	most	recent	update.	When

NULL,	the	distribution	statistics	have	not

been	updated	after	object	creation.
name nvarchar(129) Index	name	or	statistics	definition	name.

Remarks
Data	distribution	statistics	are	maintained	for	indexes	defined	on	a	table	and	as
directed	by	the	user.	By	default,	the	EnumLastStatisticsUpdates	method
returns	a	result	set	that	contains	rows	referencing	both	indexes	and	system	and
user-defined	data	distribution	statistics.

SQL-DMO

EnumLocks	Method
The	EnumLocks	method	returns	a	QueryResults	object	that	enumerates	the
resource	locks	held	by	an	instance	of	Microsoft®	SQL	Server™	2000.

Applies	To

Database	Object SQLServer	Object

Syntax
object.EnumLocks([Who])	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Who

Optionally	restricts	output	by	process	identifier

Prototype	(C/C++)
HRESULT	EnumLocks(
LPSQLDMOQUERYRESULTS*	ppResults,
long	Who	=	-1);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
dbname nvarchar(129) Name	of	the	database	in	which	the	locked

resource	is	defined.
indexname nvarchar(129) If	applicable,	the	name	of	the	index	against

which	the	lock	is	applied.
locktype nvarchar(36) A	text	description	of	a	locking	mode.	For

more	information	about	interpreting	values,
see	the	description	of	the	system	table
syslockinfo	column	req_mode.

req_spid integer Process	ID	of	the	process	requesting	the
lock.

status tinyint An	integer	indicating	lock	application	status.
For	more	information	about	interpreting
values,	see	the	description	of	the	system
table	syslockinfo	column	req_status.

tablename nvarchar(129) If	applicable,	the	name	of	the	table	against
which	the	lock	is	applied.

Remarks
When	restricting	the	QueryResults	object	content	using	the	Who	argument,	use
the	process	ID	that	identifies	the	login	or	other	process	targeted.	The
EnumProcesses	method	can	help	identify	a	target	process.

See	Also

EnumProcesses	Method

syslockinfo

JavaScript:hhobj_1.Click()

SQL-DMO

EnumLoginMappings	Method
The	EnumLoginMappings	method	returns	a	QueryResults	object	that	contains
multiple	result	sets,	where	each	result	set	enumerates	a	Microsoft®	SQL
Server™	2000	login	and	the	database	user(s)	to	which	the	login	is	mapped.

Applies	To

Database	Object SQLServer	Object

Syntax
object.EnumLoginMappings()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumLoginMappings(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	multiple	result	sets	each	defined	by	these
columns.

Column Data	type Description
AliasName nvarchar(129) Reserved	for	future	use
DBName nvarchar(129) If	applicable,	a	database	that

contains	a	user	mapping	the	login
LoginName nvarchar(129) Name	of	a	SQL	Server	login

UserName nvarchar(129) If	applicable,	the	database	user	to
which	the	login	is	mapped

SQL-DMO

EnumLogReaderAgentSessionDetails	Method
The	EnumLogReaderAgentSessionDetails	method	returns	a	QueryResults
object	that	enumerates	detail	information	for	a	specified	Log	Reader	Agent
session.

Applies	To

DistributionPublisher	Object

Syntax
object.EnumLogReaderAgentSessionDetails(AgentName,
SessionID)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

AgentName

String	that	identifies	a	Log	Reader	Agent	session	by	name.

SessionID

String	that	identifies	a	session.	The	SessionID	value	is	specified	using	the
first	21	characters	of	the	time	column	value	in	the	QueryResults	result	set
returned	by	the	EnumLogReaderAgentSessions	method.

Prototype	(C/C++)
HRESULT	EnumLogReaderAgentSessionDetails(
SQLDMO_LPCSTR	AgentName,
SQLDMO_LPCSTR	SessionID,
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
runstatus integer Executing	state.	Interpret	using

SQLDMO_TASKSTATUS_TYPE.
time nvarchar(26) Date	and	time	of	message	logging.
comments nvarchar(256)Descriptive	text.
duration integer Elapsed	time	of	the	session.
delivery_rate float Average	number	of	commands

delivered	per	second.
delivery_latency integer Latency,	in	milliseconds,	between

the	transaction	entering	the
distribution	database	and	being
applied	to	the	Subscriber.

delivery_time integer Cumulative	time	measurement	for
delivery	in	seconds.

delivered_transactions integer Cumulative	number	of	transactions
delivered	in	the	session.

delivered_commands integer Cumulative	number	of	commands
delivered	in	the	session.

average_commands integer Average	number	of	commands	per
transaction	delivered	in	the	session.

error_id integer When	nonzero,	Microsoft®	SQL
Server™	2000	error	message
number.

Remarks
In	the	result	set,	date	and	time	data	returned	in	time	is	formatted	as	YYYYMMDD
hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.

MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four	hour

clock	(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three

digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

SQL-DMO

EnumLogReaderAgentSessionDetails2	Method
The	EnumLogReaderAgentSessionDetails2	method	returns	a	QueryResults
object	that	enumerates	detail	information	for	a	specified	Log	Reader	Agent
session.

Applies	To

DistributionPublisher2	Object 	

Syntax
object.EnumLogReaderAgentSessionDetails2(
AgentName,
SessionID,
lEstimatedNumRecords)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

AgentName

String	that	identifies	a	Log	Reader	Agent	session	by	name.

SessionID

String	that	identifies	a	session.	The	SessionID	value	is	specified	using	the
first	21	characters	of	the	time	column	value	in	the	QueryResults	result	set
returned	by	the	EnumLogReaderAgentSessions2	method.

lEstimatedNumRecords

Long	integer	that	specifies	the	estimated	number	of	QueryResults	rows	to
return.

Prototype	(C/C++)
HRESULT	EnumLogReaderAgentSessionDetails2(
SQLDMO_LPCSTR	AgentName,
SQLDMO_LPCSTR	SessionID,
long	lEstimatedNumRecords,
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
runstatus integer Executing	state.	Interpret	using

SQLDMO_TASKSTATUS_TYPE.
time nvarchar(26) Date	and	time	of	message	logging.
comments nvarchar(256)Descriptive	text.
duration integer Elapsed	time	of	the	session.
delivery_rate float Average	number	of	commands

delivered	per	second.
delivery_latency integer Latency,	in	milliseconds,	between

the	transaction	entering	the
distribution	database	and	being
applied	to	the	Subscriber.

delivery_time integer Cumulative	time	measurement	for
delivery	in	seconds.

delivered_transactions integer Cumulative	number	of	transactions
delivered	in	the	session.

delivered_commands integer Cumulative	number	of	commands
delivered	in	the	session.

average_commands integer Average	number	of	commands	per
transaction	delivered	in	the	session.

error_id integer When	nonzero,	Microsoft®	SQL
Server™	2000	error	message
number.

Remarks
In	the	result	set,	date	and	time	data	returned	in	time	is	formatted	as	YYYYMMDD
hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four	hour

clock	(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three

digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

The	EnumLogReaderAgentSessionDetails2	method	differs	from	the
EnumLogReaderAgentSessionDetails	method	by	including	the
lEstimatedNumRecords	parameter,	which	allows	an	application	to	pass	an
estimated	number	of	QueryResults	rows.	This	allows	the	application	to	avoid
the	performance	overhead	associated	with	repeatedly	allocating	and	freeing
memory.

SQL-DMO

EnumLogReaderAgentSessions	Method
The	EnumLogReaderAgentSessions	method	returns	a	QueryResults	object
that	enumerates	execution	status	data	for	the	Log	Reader	Agent	specified.

Applies	To

DistributionPublisher	Object

Syntax
object.EnumLogReaderAgentSessions(AgentName,
SessionType,	SessionDuration)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

AgentName

String	that	identifies	a	Log	Reader	Agent	by	name.

SessionType

Long	integer	that	indicates	session	type	as	described	in	Settings.

SessionDuration

Long	integer	that	specifies	a	number	of	hours.	Restricts	result	set
membership	to	those	sessions	launched	within	the	number	of	hours	specified.
Use	0	to	specify	no	restriction	on	agent	session	start	time.

Prototype	(C/C++)
HRESULT	EnumLogReaderAgentSessions(
SQLDMO_LPCSTR	AgentName,
SQLDMO_SESSION_TYPE	SessionType,

long	SessionDuration,
LPSQLDMOQUERYRESULTS*	ppResults);

Settings
Set	SessionType	using	these	values.

Constant Value Description
SQLDMOSession_All 1 Output	contains	log	information	for

all	sessions	for	agent
SQLDMOSession_Errors 2 Output	contains	log	information

only	for	those	execution	attempts
ending	in	error

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
runstatus integer Executing	state.	Interpret	using

SQLDMO_TASKSTATUS_TYPE.
start_time nvarchar(26) Date	and	time	of	last	scheduled

execution.
time nvarchar(26) Date	and	time	of	message	logging.
comments nvarchar(256)Descriptive	text.
duration integer Elapsed	time	of	the	session	in

seconds.
delivery_rate float Average	number	of	commands

delivered	per	second.
delivery_latency integer Latency,	in	milliseconds,	between

the	Publisher	committing	a
transaction	and	that	transaction
entering	the	distribution	database.

delivery_time integer Cumulative	time	measurement	for
delivery	in	seconds.

delivered_transactions integer Cumulative	number	of	transactions
delivered	in	the	session.

delivered_commands integer Cumulative	number	of	commands
delivered	in	the	session.

average_commands integer Average	number	of	commands	per
transaction	delivered	in	the	session.

action_count integer Number	of	session	history	records.
error_id integer When	nonzero,	Microsoft®	SQL

Server™	2000	error	message
number.

Remarks
In	the	result	set,	date	and	time	data	returned	in	start_time	and	time	is	formatted
as	YYYYMMDD	hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four	hour

clock	(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three

digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

SQL-DMO

EnumLogReaderAgentSessions2	Method
The	EnumLogReaderAgentSessions2	method	returns	a	QueryResults	object
that	enumerates	execution	status	data	for	the	Log	Reader	Agent	specified.

Applies	To

DistributionPublisher2	Object 	

Syntax
object.EnumLogReaderAgentSessions2(
AgentName,
SessionType,	
SessionDuration,	
lEstimatedNumRecords)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

AgentName

String	that	identifies	a	Log	Reader	Agent	by	name.

SessionType

Long	integer	that	indicates	session	type	as	described	in	Settings.

SessionDuration

Long	integer	that	specifies	a	number	of	hours.	Restricts	result	set
membership	to	those	sessions	launched	within	the	number	of	hours	specified.
Use	0	to	specify	no	restriction	on	agent	session	start	time.

lEstimatedNumRecords

Long	integer	that	specifies	the	estimated	number	of	QueryResults	rows	to
return.

Prototype	(C/C++)
HRESULT	EnumLogReaderAgentSessions2(
SQLDMO_LPCSTR	AgentName,
SQLDMO_SESSION_TYPE	SessionType,
long	SessionDuration,
long	lEstimatedNumRecords,
LPSQLDMOQUERYRESULTS*	ppResults);

Settings
Set	SessionType	using	these	values.

Constant Value Description
SQLDMOSession_All 1 Output	contains	log	information	for

all	sessions	for	agent
SQLDMOSession_Errors 2 Output	contains	log	information

only	for	those	execution	attempts
ending	in	error

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
runstatus integer Executing	state.	Interpret	using

SQLDMO_TASKSTATUS_TYPE.
start_time nvarchar(26) Date	and	time	of	last	scheduled

execution.
time nvarchar(26) Date	and	time	of	message	logging.
comments nvarchar(256)Descriptive	text.
duration integer Elapsed	time	of	the	session	in

seconds.

delivery_rate float Average	number	of	commands
delivered	per	second.

delivery_latency integer Latency,	in	milliseconds,	between
the	Publisher	committing	a
transaction	and	that	transaction
entering	the	distribution	database.

delivery_time integer Cumulative	time	measurement	for
delivery	in	seconds.

delivered_transactions integer Cumulative	number	of	transactions
delivered	in	the	session.

delivered_commands integer Cumulative	number	of	commands
delivered	in	the	session.

average_commands integer Average	number	of	commands	per
transaction	delivered	in	the	session.

action_count integer Number	of	session	history	records.
error_id integer When	nonzero,	Microsoft®	SQL

Server™	2000	error	message
number.

Remarks
In	the	result	set,	date	and	time	data	returned	in	start_time	and	time	is	formatted
as	YYYYMMDD	hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four	hour

clock	(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three

digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

The	EnumLogReadAgentSessions2	method	differs	from	the
EnumLogReaderAgentSessions	method	by	including	the
lEstimatedNumRecords	parameter,	which	allows	the	application	to	pass	an
estimated	number	of	QueryResults	rows.	This	allows	an	application	to	avoid	the
performance	overhead	associated	with	repeatedly	allocating	and	freeing	memory.

SQL-DMO

EnumLogReaderAgentView	Method
The	EnumLogReaderAgentView	method	returns	a	QueryResults	object	that
enumerates	execution	state	for	Log	Reader	Agents	used	by	the	referenced
distribution	publication.

Applies	To

DistributionPublication	Object

Syntax
object.EnumLogReaderAgentView()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumLogReaderAgentView(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
agent_id integer Agent	identifier.
average_commands integer Average	number	of	commands.
comments nvarchar(256) Descriptive	text.
dbname nvarchar(129) Distribution	database	name.
delivered_commands integer Cumulative	number	of	commands.

delivered_transactions integer Cumulative	number	of
transactions.

delivery_latency integer Latency,	in	milliseconds,	between
the	Publisher	committing	a
transaction	and	that	transaction
entering	the	distribution	database.

delivery_rate integer Average	number	of	commands	per
transaction	delivered	per	second.

delivery_time integer Cumulative	time	spent	delivering
transactions	in	seconds.

duration integer Elapsed	time	of	the	logged	session
activity	in	seconds.

error_id integer When	nonzero,	the	Microsoft®
SQL	Server™	2000	error	message
number	of	the	most	recent	error.

job_id binary(22) Identifier	of	the	SQL	Server	Agent
job	starting	the	replication	agent.

last_timestamp binary(14) Timestamp.
local_job bit When	TRUE,	the	SQL	Server

2000	Agent	job	executes	at	the
Distributor.	When	FALSE,	the
SQL	Server	Agent	2000	job
executes	at	the	Subscriber.

name nvarchar(101) Replication	agent	name.
profile_id integer Profile	identifier.
publisher nvarchar(129) Publisher	name.
publisher_db nvarchar(129) Name	of	published	database.
start_time nvarchar(25) Date	and	time	at	which	agent

session	started.
status integer Agent	status.	Interpret	using

SQLDMO_TASKSTATUS_TYPE.
time nvarchar(25) Date	and	time	of	last	message	log.

Remarks
In	the	result	set,	date	and	time	data	returned	in	start_time	and	time	is	formatted
as	YYYYMMDD	hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four	hour

clock	(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three

digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

SQL-DMO

EnumLogReaderAgentViews	Method
The	EnumLogReaderAgentViews	method	returns	a	QueryResults	object	that
enumerates	execution	state	for	all	Log	Reader	Agents.

Applies	To

Distributor	Object

Syntax
object.EnumLogReaderAgentViews()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumLogReaderAgentViews(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
agent_id integer Agent	identifier.
average_commands integer Average	number	of	commands.
comments nvarchar(256) Descriptive	text.
dbname nvarchar(129) Distribution	database	name.
delivered_commands integer Cumulative	number	of	commands.
delivered_transactions integer Cumulative	number	of

transactions.
delivery_latency integer Latency,	in	milliseconds,	between

the	Publisher	committing	a
transaction	and	that	transaction
entering	the	distribution	database.

delivery_rate integer Average	number	of	commands	per
transaction	delivered	per	second.

delivery_time integer Cumulative	time	spent	delivering
transactions	in	seconds.

duration integer Elapsed	time	of	the	logged	session
activity	in	seconds.

error_id integer When	nonzero,	the	Microsoft®
SQL	Server™	2000	error	message
number	of	the	most	recent	error.

job_id binary(22) Identifier	of	the	SQL	Server	Agent
job	starting	the	replication	agent.

last_timestamp binary(14) Timestamp.
local_job bit When	TRUE,	the	SQL	Server

2000	Agent	job	executes	at	the
Distributor.	When	FALSE,	the
SQL	Server	Agent	2000	job
executes	at	the	Subscriber.

name nvarchar(101) Replication	agent	name.
profile_id integer Profile	identifier.
publisher nvarchar(129) Publisher	name.
publisher_db nvarchar(129) Name	of	published	database.
start_time nvarchar(25) Date	and	time	at	which	agent

session	started.
status integer Agent	status.	Interpret	using

SQLDMO_TASKSTATUS_TYPE.
time nvarchar(25) Date	and	time	of	last	message	log.

Remarks

In	the	result	set,	date,	and	time	data	returned	in	start_time	and	time	is	formatted
as	YYYYMMDD	hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four

hour	clock	(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three

digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

SQL-DMO

EnumMatchingSPs	Method
The	EnumMatchingSPs	method	returns	a	QueryResults	object	that	enumerates
the	stored	procedures	that	contain	the	specified	search	text.

Applies	To

Database	Object

Syntax
object.EnumMatchingSPs(Text	,	[IncSys])	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Text

String	that	specifies	search	text

IncSys

TRUE	or	FALSE

Prototype	(C/C++)
HRESULT	EnumMatchingSPs(
LPCOLESTR	Text,
LPSQLDMOQUERYRESULTS	*	ppResults,
BOOL	IncSys	CPPDEFAULT	(=	FALSE));

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	this	column.

Column Data	type Description
name nchar(129) Name	of	the	stored	procedure

Remarks
When	IncSys	is	TRUE,	system	and	user-defined	stored	procedures	are
enumerated	in	the	QueryResults	object.

When	IncSys	is	FALSE	(default),	only	user-defined	stored	procedures	are
enumerated	in	the	QueryResults	object.

SQL-DMO

EnumMergeAgentSessionDetails	Method
The	EnumMergeAgentSessionDetails	method	returns	a	QueryResults	object
that	enumerates	detail	information	for	a	specified	merge	replication	agent
session.

Applies	To

DistributionPublisher	Object

Syntax
object.EnumMergeAgentSessionDetails(AgentName,
SessionID)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

AgentName

String	that	identifies	a	merge	replication	agent	session	by	name.

SessionID

String	that	identifies	a	session.	The	SessionID	value	is	specified	using	the
first	23	characters	of	the	time	column	value	in	the	QueryResults	result	set
returned	by	the	EnumMergeAgentSessions	method.

Prototype	(C/C++)
HRESULT	EnumMergeAgentSessionDetails(
SQLDMO_LPCSTR	AgentName,
SQLDMO_LPCSTR	SessionID,
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
average_rows integer Average	number	of	rows	per

second.
comments nvarchar(256)Descriptive	text.
duration integer Elapsed	time	of	the	session	in

seconds.
error_id integer When	nonzero,	Microsoft®	SQL

Server™	2000	error	message
number.

publisher_conficts integer Number	of	conflicts	at	the
Publisher.

publisher_deletecount integer Number	of	deletes	at	the	Publisher.
publisher_insertcount integer Number	of	inserts	at	the	Publisher.
publisher_updatecount integer Number	of	updates	at	the

Publisher.
runstatus integer Executing	state.	Interpret	using

SQLDMO_TASKSTATUS_TYPE.
subscriber_conflicts integer Number	of	conflicts	at	the

Subscriber.
subscriber_deletecount integer Number	of	deletes	at	the

Subscriber.
subscriber_insertcount integer Number	of	inserts	at	the

Subscriber.
subscriber_updatecount integer Number	of	updates	at	the

Subscriber.
time nvarchar(26) Time	of	message	logging.

Remarks
In	the	result	set,	date	and	time	data	returned	in	time	is	formatted	as	YYYYMMDD

hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four	hour

clock	(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three

digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

SQL-DMO

EnumMergeAgentSessionDetails2	Method
The	EnumMergeAgentSessionDetails2	method	returns	a	QueryResults	object
that	enumerates	detail	information	for	a	specified	merge	replication	agent
session.

Applies	To

DistributionPublisher2	Object

Syntax
object.EnumMergeAgentSessionDetails2(
AgentName,
SessionID,
lEstimatedNumRecords)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

AgentName

String	that	identifies	a	merge	replication	agent	session	by	name.

SessionID

String	that	identifies	a	session.	The	SessionID	value	is	specified	using	the
first	23	characters	of	the	time	column	value	in	the	QueryResults	result	set
returned	by	the	EnumMergeAgentSessions2	method.

lEstimatedNumRecords

Long	integer	that	specifies	the	estimated	number	of	QueryResults	rows	to
return.

Prototype	(C/C++)
HRESULT	EnumMergeAgentSessionDetails2(
SQLDMO_LPCSTR	AgentName,
SQLDMO_LPCSTR	SessionID,
long	lEstimatedNumRecords,
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
average_rows integer Average	number	of	rows	per

second.
comments nvarchar(256)Descriptive	text.
duration integer Elapsed	time	of	the	session	in

seconds.
error_id integer When	nonzero,	Microsoft®	SQL

Server™	2000	error	message
number.

publisher_conficts integer Number	of	conflicts	at	the
Publisher.

publisher_deletecount integer Number	of	deletes	at	the	Publisher.
publisher_insertcount integer Number	of	inserts	at	the	Publisher.
publisher_updatecount integer Number	of	updates	at	the

Publisher.
runstatus integer Executing	state.	Interpret	using

SQLDMO_TASKSTATUS_TYPE.
subscriber_conflicts integer Number	of	conflicts	at	the

Subscriber.
subscriber_deletecount integer Number	of	deletes	at	the

Subscriber.
subscriber_insertcount integer Number	of	inserts	at	the

Subscriber.
subscriber_updatecount integer Number	of	updates	at	the

Subscriber.
time nvarchar(26) Time	of	message	logging.

Remarks
In	the	result	set,	date	and	time	data	returned	in	time	is	formatted	as	YYYYMMDD
hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four	hour

clock	(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three

digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

The	EnumMergeAgentSessionDetails2	method	differs	from	the
EnumMergeAgentSessionDetails	method	by	including	the
lEstimatedNumRecords	parameter,	which	allows	an	application	to	pass	an
estimated	number	of	QueryResults	rows.	This	allows	the	application	to	avoid
the	performance	overhead	associated	with	repeatedly	allocating	and	freeing
memory.

SQL-DMO

EnumMergeAgentSessions	Method
The	EnumMergeAgentSessions	method	returns	a	QueryResults	object	that
enumerates	execution	status	data	for	the	merge	replication	agent	specified.

Applies	To

DistributionPublisher	Object

Syntax
object.EnumMergeAgentSessions(AgentName,
SessionType,	SessionDuration)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

AgentName

String	that	identifies	a	merge	replication	agent	by	name.

SessionType

Long	integer	that	indicates	session	type	as	described	in	Settings.

SessionDuration

Long	integer	that	specifies	a	number	of	hours.	Restricts	result	set
membership	to	those	sessions	launched	within	the	number	of	hours	specified.
Use	0	to	specify	no	restriction	on	agent	session	start	time.

Prototype	(C/C++)
HRESULT	EnumMergeAgentSessions(
SQLDMO_LPCSTR	AgentName,
SQLDMO_SESSION_TYPE	SessionType,

long	SessionDuration,
LPSQLDMOQUERYRESULTS*	ppResults);

Settings
Set	SessionType	using	these	values.

Constant Value Description
SQLDMOSession_All 1 Output	contains	log	information	for

all	sessions	for	agent
SQLDMOSession_Errors 2 Output	contains	log	information	only

for	those	execution	attempts	ending	in
error

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
average_rows integer Average	number	of	rows	per

second.
action_count integer Number	of	session	history	records.
comments nvarchar(256)Descriptive	text.
duration integer Elapsed	time	of	the	session.
error_id integer When	nonzero,	Microsoft®	SQL

Server™	2000	error	message
number.

publisher_conflicts integer Number	of	conflicts	at	the
Publisher.

publisher_deletecount integer Number	of	deletes	at	the	Publisher.
publisher_insertcount integer Number	of	inserts	at	the	Publisher.
publisher_updatecount integer Number	of	updates	at	the

Publisher.
runstatus integer Executing	state.	Interpret	using

SQLDMO_TASKSTATUS_TYPE.

start_time nvarchar(26) Date	and	time	of	last	scheduled
execution.

subscriber_conflicts integer Number	of	conflicts	at	the
Subscriber.

subscriber_deletecount integer Number	of	deletes	at	the
Subscriber.

subscriber_insertcount integer Number	of	inserts	at	the
Subscriber.

subscriber_updatecount integer Number	of	updates	at	the
Subscriber.

time nvarchar(26) Date	and	time	of	message	logging.

Remarks
In	the	result	set,	date,	and	time	data	returned	in	start_time	and	time	is	formatted
as	YYYYMMDD	hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four

hour	clock	(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three

digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

SQL-DMO

EnumMergeAgentSessions2	Method
The	EnumMergeAgentSessions2	method	returns	a	QueryResults	object	that
enumerates	execution	status	data	for	the	merge	replication	agent	specified.

Applies	To

DistributionPublisher2	Object

Syntax
object.EnumMergeAgentSessions2(
AgentName,
SessionType,	
SessionDuration,	
lEstimatedNumRecords)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

AgentName

String	that	identifies	a	merge	replication	agent	by	name.

SessionType

Long	integer	that	indicates	session	type	as	described	in	Settings.

SessionDuration

Long	integer	that	specifies	a	number	of	hours.	Restricts	result	set
membership	to	those	sessions	launched	within	the	number	of	hours	specified.
Use	0	to	specify	no	restriction	on	agent	session	start	time.

lEstimatedNumRecords

Long	integer	that	specifies	the	estimated	number	of	QueryResults	rows	to
return.

Prototype	(C/C++)
HRESULT	EnumMergeAgentSessions2(
SQLDMO_LPCSTR	AgentName,
SQLDMO_SESSION_TYPE	SessionType,
long	SessionDuration,
long	lEstimatedNumRecords,
LPSQLDMOQUERYRESULTS*	ppResults);

Settings
Set	SessionType	using	these	values.

Constant Value Description
SQLDMOSession_All 1 Output	contains	log	information	for

all	sessions	for	agent
SQLDMOSession_Errors 2 Output	contains	log	information	only

for	those	execution	attempts	ending	in
error

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
average_rows integer Average	number	of	rows	per

second.
action_count integer Number	of	session	history	records.
comments nvarchar(256)Descriptive	text.
duration integer Elapsed	time	of	the	session.
error_id integer When	nonzero,	Microsoft®	SQL

Server™	2000	error	message
number.

publisher_conflicts integer Number	of	conflicts	at	the
Publisher.

publisher_deletecount integer Number	of	deletes	at	the	Publisher.
publisher_insertcount integer Number	of	inserts	at	the	Publisher.
publisher_updatecount integer Number	of	updates	at	the

Publisher.
runstatus integer Executing	state.	Interpret	using

SQLDMO_TASKSTATUS_TYPE.
start_time nvarchar(26) Date	and	time	of	last	scheduled

execution.
subscriber_conflicts integer Number	of	conflicts	at	the

Subscriber.
subscriber_deletecount integer Number	of	deletes	at	the

Subscriber.
subscriber_insertcount integer Number	of	inserts	at	the

Subscriber.
subscriber_updatecount integer Number	of	updates	at	the

Subscriber.
time nvarchar(26) Date	and	time	of	message	logging.

Remarks
In	the	result	set,	date,	and	time	data	returned	in	start_time	and	time	is	formatted
as	YYYYMMDD	hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four

hour	clock	(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).

fff Represents	the	fractional	part	of	the	second	in	three
digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

The	EnumMergeAgentSessions2	method	differs	from	the
EnumMergeAgentSessions	method	by	including	the	lEstimatedNumRecords
parameter,	which	allows	an	application	to	pass	an	estimated	number	of
QueryResults	rows.	This	allows	the	application	to	avoid	the	performance
overhead	associated	with	repeatedly	allocating	and	freeing	memory.

SQL-DMO

EnumMergeAgentViews	Method
The	EnumMergeAgentViews	method	returns	a	QueryResults	object	that
enumerates	execution	state	for	all	replication	merge	agents.

Applies	To

Distributor	Object

Syntax
object.EnumMergeAgentViews()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumMergeAgentViews(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
agent_id integer Agent	identifier.
comments nvarchar(256)Descriptive	text.
dbname nvarchar(129)Distribution	database	name.
delivery_rate integer Average	number	of	transactions

delivered	per	second.
duration integer Elapsed	time	of	the	logged	session

activity	in	seconds.
error_id integer When	nonzero,	the	Microsoft®	SQL

Server™	2000	error	message	number
of	the	most	recent	error.

job_id binary(22) Identifier	of	the	SQL	Server	Agent
job	starting	the	replication	agent.

local_job bit When	TRUE,	the	SQL	Server	Agent
job	executes	at	the	Distributor.	When
FALSE,	the	SQL	Server	Agent	job
executes	at	the	Subscriber.

local_timestamp binary(14) Timestamp.
name nvarchar(101)Merge	Agent	name.
profile_id integer Profile	identifier.	Links	this	agent	to

the	agent	profile	used	to	establish
runtime	parameters	such	as	timeout
and	batch	size	values.

publication nvarchar(129)Publication	name.
publisher nvarchar(129)Publisher	name.
publisher_conflicts integer Number	of	conflicts	at	the	Publisher.
publisher_db nvarchar(129)Name	of	published	database.
publisher_deletecount integer Number	of	deletes	at	the	Publisher.
publisher_insertcount integer Number	of	inserts	at	the	Publisher.
publisher_updatecount integer Number	of	updates	at	the	Publisher.
start_time nvarchar(25) Date	and	time	at	which	agent	session

started.
status integer Agent	status.	Interpret	using

SQLDMO_TASKSTATUS_TYPE.
subscriber nvarchar(129)Subscriber	name.
subscriber_conflicts integer Number	of	conflicts	at	the

Subscriber.
subscriber_db nvarchar(129)Name	of	database	implementing	the

subscription.
subscriber_deletecount integer Number	of	deletes	at	the	Subscriber.
subscriber_insertcount integer Number	of	inserts	at	the	Subscriber.

subscriber_updatecount integer Number	of	updates	at	the	Subscriber.
subscription_type integer Direction	of	subscription	(push	or

pull)	interpreted	using
SQLDMO_SUBSCRIPTION_TYPE.

time nvarchar(25) Date	and	time	of	last	session	log.

Remarks
The	EnumMergeAgentViews2	method	extends	the	functionality	of	the
EnumMergeAgentViews	method.

In	the	result	set,	date	and	time	data	returned	in	start_time	and	time	is	formatted
as	YYYYMMDD	hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four	hour

clock	(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three

digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

See	Also

EnumMergeAgentViews2	Method

SQL-DMO

EnumMergeAgentViews2	Method
The	EnumMergeAgentViews2	method	returns	a	QueryResults	object	that
enumerates	execution	state	for	all	replication	merge	agents.

Applies	To

Distributor2	Object

Syntax
object.EnumMergeAgentViews2([fExcludeAnonymous])	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

fExcludeAnonymous

Boolean	that	specifies	whether	anonymous	Merge	Agent	views	are
enumerated.	Default	is	FALSE.

Prototype	(C/C++)
HRESULT	EnumMergeAgentViews2(
LPSQLDMOQUERYRESULTS	*ppResults,	
BOOL	fExcludeAnonymous);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
agent_id integer Agent	identifier.
comments nvarchar(256)Descriptive	text.

dbname nvarchar(129)Distribution	database	name.
delivery_rate integer Average	number	of	transactions	per

second.
duration integer Elapsed	time	of	the	logged	session

activity.
error_id integer When	nonzero,	the	Microsoft®	SQL

Server™	2000	error	message	number
of	the	most	recent	error.

job_id binary(22) Identifier	of	the	SQL	Server	2000
Agent	job	starting	the	replication
agent.

local_job bit When	TRUE,	the	SQL	Server	2000
Agent	job	executes	at	the	Distributor.
When	FALSE,	the	SQL	Server	Agent
2000	job	executes	at	the	Subscriber.

local_timestamp binary(14) Timestamp.
name nvarchar(101)Merge	Agent	name.
profile_id integer Profile	identifier.	Links	this	agent	to

the	agent	profile	used	to	establish
runtime	parameters	such	as	timeout
and	batch	size	values.

publication nvarchar(129)Publication	name.
publisher nvarchar(129)Publisher	name.
publisher_conflicts integer Number	of	conflicts	at	the	Publisher.
publisher_db nvarchar(129)Name	of	published	database.
publisher_deletecount integer Number	of	deletes	at	the	Publisher.
publisher_insertcount integer Number	of	inserts	at	the	Publisher.
publisher_updatecount integer Number	of	updates	at	the	Publisher.
start_time nvarchar(25) Date	and	time	at	which	agent	session

started.
status integer Agent	status.	Interpret	using

SQLDMO_TASKSTATUS_TYPE.
subscriber nvarchar(129)Subscriber	name.
subscriber_conflicts integer Number	of	conflicts	at	the

Subscriber.

subscriber_db nvarchar(129)Name	of	database	implementing	the
subscription.

subscriber_deletecount integer Number	of	deletes	at	the	Subscriber.
subscriber_insertcount integer Number	of	inserts	at	the	Subscriber.
subscriber_updatecount integer Number	of	updates	at	the	Subscriber.
subscription_type integer Direction	of	subscription	(push	or

pull)	interpreted	using
SQLDMO_SUBSCRIPTION_TYPE.

time nvarchar(25) Date	and	time	of	last	session	log.

Remarks
The	EnumMergeAgentViews2	method	extends	the	functionality	of	the
EnumMergeAgentViews	method	by	including	the	optional	fExcludeAnonymous
parameter.	When	fExcludeAnonymous	is	set	to	TRUE,	anonymous	Merge	Agent
views	are	not	enumerated.

In	the	result	set,	date	and	time	data	returned	in	start_time	and	time	is	formatted
as	YYYYMMDD	hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero	padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four	hour

clock	(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three	digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

Note		If	an	application	calls	EnumMergeAgentViews2	on	an	instance	of	SQL

Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

EnumMergeAgentViews	Method

SQL-DMO

EnumMiscellaneousAgentViews	Method
The	EnumMiscellaneousAgentViews	method	returns	a	QueryResults	object
that	enumerates	historical	data	for	all	replication	agents	not	otherwise	classified.

Applies	To

Distributor	Object

Syntax
object.EnumMiscellaneousAgentViews()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumMiscellaneousAgentViews(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
agent_type nvarchar(129) Descriptive	text.
job_id binary(22) System-assigned,	unique	identifier

of	the	Microsoft®	SQL	Server™
2000	Agent	job	responsible	for
starting	the	agent.

local_timestamp binary(14) Timestamp.

message nvarchar(1025) Descriptive	text.
name nvarchar(129) Name	of	the	agent.
run_duration integer Cumulative	run	time.
start_time nvarchar(22) Date	and	time	of	most	recent

scheduled	execution.
status integer Agent	status.	Interpret	using

SQLDMO_TASKSTATUS_TYPE.

Remarks
Use	the	EnumMiscellaneousAgentViews	method	to	monitor	replication	agent
sessions.

In	the	result	set,	date,	and	time	data	returned	in	start_time	is	formatted	as
YYYYMMDD	hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four	hour

clock	(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three

digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

SQL-DMO

EnumNotifications	Method
The	EnumNotifications	method	returns	a	QueryResults	object	that	enumerates
notifications	for	a	Microsoft®	SQL	Server™	2000	Agent	operator	or	alert.

Applies	To

Alert	Object Operator	Object

Syntax
object.EnumNotifications(NotifyMethod	,	EnumNotifyType	,
[AlertOrOperator])	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

NotifyMethod

Long	integer	that	specifies	a	notification	method	and	directing	result	set
construction	as	described	in	Settings.

EnumNotifyType

Long	integer	that	directs	enumeration	as	described	in	Settings.

AlertOrOperator

Optional.	String	that	specifies	a	notification	target	or	source	by	name.	When
using	the	AlertOrOperator	argument,	the	EnumNotifyType	argument	must
specify	SQLDMOEnumNotify_Target.

Prototype	(C/C++)
HRESULT	EnumNotifications(
SQLDMO_NOTIFY_TYPE	NotifyMethod,

SQLDMO_ENUMNOTIFY_TYPE	EnumNotifyType,
LPSQLDMOQUERYRESULTS	*ppResults,
SQLDMO_LPCSTR	AlertOrOperator	=	NULL);

Settings
The	NotifyMethod	argument	is	a	bit-packed	long	integer.	Use	an	OR	logical
operator	to	specify	more	than	a	single	value.	Set	the	NotifyMethod	argument
using	these	values.

Constant Value Description
SQLDMONotify_All 7 Notification	by	e-mail,	e-mail	sent	to

the	pager	address,	and	network	pop-up
message

SQLDMONotify_Email 1 Notification	by	e-mail	sent	to	the
operator	e-mail	address

SQLDMONotify_NetSend 4 Notification	by	network	pop-up
message	posted	to	the	operator
network	address

SQLDMONotify_Pager 2 Notification	by	e-mail	sent	to	the
operator	pager	address

Set	the	EnumNotifyType	argument	using	these	values.

Constant Value Description
SQLDMOEnumNotify_Actual 2 Return	only	those	operators	or

alerts	configured	for	notification.
SQLDMOEnumNotify_All 1 Return	all	operators	or	alerts.	The

value	of	the	use_email,
use_netsend,	or	use_pager	column
indicates	that	the	operator	or	alert	is
configured	for	notification	by	the
indicated	method.

SQLDMOEnumNotify_Max 3 SQLDMOEnumNotify_Target.
SQLDMOEnumNotify_Min 1 SQLDMOEnumNotify_All.

SQLDMOEnumNotify_Target 3 Return	a	result	set	that	enumerates
notification	for	the	operator	or	alert
specified	in	the	AlertOrOperator
argument.

Returns
For	the	Alert	object,	the	EnumNotifications	method	returns	a	QueryResults
object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
has_email integer When	1,	the	operator	is	configured	with

an	e-mail	address.
has_netsend integer When	1,	the	operator	is	configured	with

an	address	for	network	pop-up	message
receipt.

has_pager integer When	1,	the	operator	is	configured	with
a	pager	address.

operator_id integer System-generated	operator	identifier.
operator_name nvarchar(129) Operator	name.
use_email integer Column	present	when	NotifyMethod

specifies	SQLDMONotify_Email.

When	1,	the	operator	is	configured	to
receive	notification	by	e-mail.

use_netsend integer Column	present	when	NotifyMethod
specifies	SQLDMONotify_NetSend.

When	1,	the	operator	is	configured	to
receive	notification	by	network	pop-up
message.

use_pager integer Column	present	when	NotifyMethod
specifies	SQLDMONotify_Pager.

When	1,	the	operator	is	configured	to

receive	notification	by	page.

For	the	Operator	object,	the	EnumNotifications	method	returns	a
QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
alert_id integer System-generated	alert	identifier.
alert_name nvarchar(129) Alert	name.
has_email integer When	nonzero,	the	number	of	operators

configured	to	receive	alert	notification
by	e-mail.

has_netsend integer When	nonzero,	the	number	of	operators
configured	to	receive	alert	notification
by	network	pop-up	message.

has_pager integer When	nonzero,	the	number	of	operators
configured	to	receive	alert	notification
by	pager.

use_email integer Column	present	when	NotifyMethod
specifies	SQLDMONotify_Email.

When	1,	the	alert	is	configured	to	raise
notification	by	e-mail.

use_netsend integer Column	present	when	NotifyMethod
specifies	SQLDMONotify_NetSend.

When	1,	the	alert	is	configured	to	raise
notification	by	network	pop-up
message.

use_pager integer Column	present	when	NotifyMethod
specifies	SQLDMONotify_Pager.

When	1,	the	alert	is	configured	to	raise
notification	by	page.

SQL-DMO

EnumNTDomainGroups	Method
The	EnumNTDomainGroups	method	returns	a	QueryResults	object	that
enumerates	the	Microsoft®	Windows	NT®	4.0	or	Microsoft	Windows	2000
group	accounts	defined	on	a	domain.

Applies	To

SQLServer	Object

Syntax
object.EnumNTDomainGroups([Domain])	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Domain

String	that	names	an	existing	Windows	NT	4.0	or	Microsoft	Windows	2000
domain	and	directs	output	to	include	groups	defined	on	that	domain

Prototype	(C/C++)
HRESULT	EnumNTDomainGroups(
LPSQLDMOQUERYRESULTS*	ppResults,
SQLDMO_LPCSTR	Domain	=	NULL);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
comment nchar(256) Text	that	describes	the	group

account
group nchar(256) Name	of	a	Windows	NT	group

account

Remarks
When	not	directed	to	a	user-specified	domain,	the	QueryResults	object	returned
lists	Windows	NT	groups	defined	locally	(defined	explicitly	on	an	instance	of
Microsoft	SQL	Server™	2000).

SQL-DMO

EnumNTGroups	Method
The	EnumNTGroups	method	returns	a	QueryResults	object	that	enumerates
the	Microsoft®	Windows	NT®	4.0	or	Microsoft	Windows	2000	group	accounts
with	permissions	in	the	referenced	database.

Applies	To

Database	Object

Syntax
object.EnumNTGroups([GroupName])	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

GroupName

Optionally	restricts	output	to	only	the	Windows	NT	4.0	or	Windows	2000
group	account	specified

Prototype	(C/C++)
HRESULT	EnumNTGroups(
LPSQLDMOQUERYRESULTS*	ppResults,
LPCOLESTR	GroupName	=	NULL);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
HasDbAccess integer When	1,	the	group	has	permission

to	access	the	database
NtGroupId smallint Group	identifier
NTGroupName nvarchar(129) Name	of	the	Windows	NT	4.0	or

Windows	2000	or	group	account
SID varbinary(91) Security	identifier

SQL-DMO

EnumObjects	Method
The	EnumObjects	method	returns	a	QueryResults	object	that	enumerates	the
system	and	user-defined	tables,	indexes,	and	statistics	mechanisms	stored	within
a	filegroup.

Applies	To

FileGroup	Object

Syntax
object.EnumObjects()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumObjects(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	this	column.

Column Data	type Description
name nchar(129) Name	of	the	stored	object

SQL-DMO

EnumOutputs	Method
The	EnumOutputs	method	returns	a	list	of	all	output	columns	from	a	user-
defined	function.

Applies	To

UserDefinedFunction	Object

Syntax
object.EnumOutputs()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumOutputs(LPSQLDMOQUERYRESULTS	*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
name nvarchar(129) Parameter	name
name nvarchar(129) Name	of	the	parameter	data	type
length smallint Length	modifier	for	the	parameter	data

type	when	applicable,	such	as	in	nchar(5)
colid smallint Ordinal	position	of	the	parameter

Remarks
When	a	user-defined	function	has	no	defined	parameters,	method	execution
succeeds	and	the	result	set	returned	is	empty.	The	Rows	property	of	the
QueryResults	object	returns	0.

Note		If	an	application	calls	EnumOutputs	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

EnumParameters	Method
The	EnumParameters	method	returns	a	QueryResults	object	that	enumerates
the	parameters	of	a	Microsoft®	SQL	Server™	2000	stored	procedure	or	user-
defined	function.

Applies	To

StoredProcedure	Object UserDefinedFunction	Object

Syntax
object.EnumParameters()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumParameters(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
colid smallint Ordinal	position	of	the	parameter
length smallint Length	modifier	for	the	parameter	data	type

when	applicable,	such	as	in	nchar(5)
name nvarchar(129) Parameter	name
name nvarchar(129) Name	of	the	parameter	data	type

output tinyint When	1,	the	parameter	is	input/output	or
output

Remarks
When	a	stored	procedure	or	user-defined	function	has	no	defined	parameters,
method	execution	succeeds	and	the	result	set	returned	is	empty.	The	Rows
property	of	the	QueryResults	object	returns	0.

SQL-DMO

EnumProcesses	Method
The	EnumProcesses	method	returns	a	QueryResults	object	that	enumerates	the
Microsoft®	SQL	Server™	2000	processes	running	on	a	referenced	instance	of
Microsoft	SQL	Server.

Applies	To

SQLServer	Object

Syntax
object.EnumProcesses([WhoByNameOrID])	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

WhoByNameOrID

String	or	small	integer	that	identifies	a	login	name	or	process	ID

Prototype	(C/C++)
HRESULT	EnumProcesses(
LPSQLDMOQUERYRESULTS*	ppResults,
SQLDMO_LPCSTR	szWho	=	NULL,
long	lWho	=	-1);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
blocked smallint When	nonnull,	process	ID	blocking	a

request	of	the	process	ID	listed	by	the
row.

cmd nchar(34) Abbreviated	indicator	of	current
command.	AWAITING	COMMAND
when	no	command	is	current.

cpu integer Cumulative	CPU	time	for	process.
dbname nvarchar(129) Database	currently	in	use	by	process.
hostname nchar(129) If	applicable,	network	name	of	the	client

workstation.
loginname nvarchar(129) Name	of	the	SQL	Server	login.
memusage integer Number	of	pages	in	the	procedure	cache

currently	allocated	to	this	process.	A
negative	number	indicates	that	the
process	is	freeing	memory	allocated	by
another	process.

program_name nchar(129) If	applicable,	name	of	the	client
application.

spid smallint SQL	Server	process	ID.
status nchar(31) Execution	state,	such	as	running	or

sleeping.
ecid smallint Execution	context	ID	used	to	uniquely

identify	the	subthreads	operating	on
behalf	of	a	single	process.	If	the	computer
is	running	an	instance	of	SQL	Server	7.0
or	earlier,	a	value	of	zero	is	returned.

Remarks
If	an	application	calls	EnumProcesses	on	an	instance	of	SQL	Server	version	7.0,
the	ecid	column	returns	zero.

SQL-DMO

EnumPublicationAccesses	Method
The	EnumPublicationAccesses	method	returns	a	QueryResults	object	that
enumerates	Microsoft®	SQL	Server™	2000	logins.

Applies	To

MergePublication	Object TransPublication	Object

Syntax
object.EnumPublicationAccesses([bReturnGranted])	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

bReturnGranted

TRUE	or	FALSE

Prototype	(C/C++)
HRESULT	EnumPublicationAccesses(
LPSQLDMOQUERYRESULTS*	ppResults,
BOOL	bReturnGranted	=	TRUE);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
isntgroup integer When	1,	the	value	of	the	loginname

column	identifies	a	Microsoft	Windows
NT®	4.0	or	Microsoft	Windows	2000

group	account.
isntname integer When	1,	the	value	of	the	loginname

column	identifies	a	Windows	NT	account.
loginname nvarchar(129) Name	of	a	SQL	Server	2000	login

Remarks
When	bReturnGranted	is	TRUE,	the	result	set	enumerates	those	login	records	in
the	publication	access	list.

When	bReturnGranted	is	FALSE	(default),	the	result	set	enumerates	login
records	not	in	the	publication	access	list.

See	Also

GrantPublicationAccess	Method

RevokePublicationAccess	Method

Publication	Access	Lists

JavaScript:hhobj_1.Click()

SQL-DMO

EnumPublicationArticles	Method
The	EnumPublicationArticles	method	returns	a	QueryResults	object	that
enumerates	the	publications	and	articles	that	replicate	the	referenced	table	or
stored	procedure.

Applies	To

ReplicationStoredProcedure	Object ReplicationTable	Object

Syntax
object.EnumPublicationArticles()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumPublicationArticles(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
article nvarchar(129) Article	name.
article_resolver nvarchar(256) User-specified	merge	replication

conflict	resolver.
article_type integer Article	type.	Interpret	return	value

using	SQLDMO_ARTICLE_TYPE.

column_tracking integer When	1,	change	tracking	occurs	by
the	column.

publication nvarchar(129) Name	of	publication	in	which	the
listed	article	appears.

reptype integer Publication	type.	Interpret	return
value	using
SQLDMO_PUBLICATION_TYPE.

SQL-DMO

EnumPublicationReferences	Method
The	EnumPublicationReferences	method	returns	a	QueryResults	object	that
enumerates	dependency	relationships	for	database	objects	published	as	articles.

Applies	To

MergePublication	Object

Syntax
object.EnumPublicationReferences()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumPublicationReferences(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	two	result	sets.	The	first	result	set
enumerates	objects	outside	the	publication	that	depend	on	data	published	by	the
article,	and	is	defined	by	these	columns.

Column Data	type Description
ArticleObject nvarchar(129) Name	of	article	publishing

referenced	data
ReferencingObject nvarchar(129) Name	of	database	object

referencing	publication	data

The	second	result	set	enumerates	database	objects	not	published	by	the
publication	and	on	which	an	article	in	the	publication	depends.

Column Data	type Description
ArticleObject nvarchar(129) Name	of	article	publishing

referencing	data
ReferencedObject nvarchar(129) Name	of	database	object

referenced	and	not	published

Remarks
The	result	sets	of	the	QueryResults	object	contain	rows	when	dependencies
exist	in	the	replication	database	and	those	dependencies	are	not	reflected	in	the
publication.

SQL-DMO

EnumPublications	Method
The	EnumPublications	method	returns	a	QueryResults	object	that	enumerates
the	publications	of	a	replication	publishing	data	source.

Applies	To

Publisher	Object

Syntax
object.EnumPublications(Database	,	ReplicationType	,	AgentLogin	,
bSecurityCheck)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Database

String	that	identifies	a	replication	database	by	name.	Use	%	to	specify	all
databases.

ReplicationType

Long	integer	that	specifies	a	replication	method	and	restricts	result	set
membership	as	specified	in	Settings.

AgentLogin

String	that	identifies	a	Microsoft®	SQL	Server™	2000	login	or	an	empty
string.

bSecurityCheck

TRUE	or	FALSE	as	described	in	Settings.

Prototype	(C/C++)
HRESULT	EnumPublications(LPSQLDMOQUERYRESULTS	*ppResults,
SQLDMO_REPLICATION_TYPE	ReplicationType	=
SQLDMORepType_TransactionalMerge
SQLDMO_LPCSTR	DatabaseName	=	NULL,
SQLDMO_LPCSTR	AgentLogin	=	NULL,	BOOL	bSecurityCheck	=	FALSE);

Settings
Set	ReplicationType	using	these	values.

Constant Value Description
SQLDMORepType_Merge 2 Result	set	enumerates

merge	replication
publications

SQLDMORepType_Transactional 1 Result	set	enumerates
transactional	and
snapshot	replication
publications

SQLDMORepType_TransactionalMerge 3 Result	set	enumerates	all
publications	regardless	of
replication	method

When	bSecurityCheck	is	TRUE,	the	method	enumerates	only	publications
accessible	to	the	login	used	for	SQLServer	object	connection.	The	AgentLogin
argument	is	evaluated.

When	bSecurityCheck	is	FALSE	(default),	all	publications	are	enumerated.

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
agent_access bit When	TRUE,	the	login	specified	in

the	AgentLogin	argument	is	a

member	of	the	publication	access
list.

allow_anonymous bit When	TRUE,	anonymous
subscriptions	are	allowed.

allow_pull bit When	TRUE,	Subscriber-originated
(pull)	subscriptions	are	allowed.

allow_sync_tran bit When	TRUE,	the	transactional
replication	publication	is	updatable
at	the	Subscriber.

description nvarchar(256)Descriptive	text.
distribution_db nvarchar(129)Name	of	the	distribution	database.
enabled_for_internet bit When	TRUE,	publication	allows

snapshot	download	using	FTP.
immediate_sync bit When	TRUE,	a	synchronization

exists	for	the	publication.
immediate_sync_ready bit When	TRUE,	a	synchronization

snapshot	exists	for	the	publication.
independent_agent bit TRUE	for	merge	replication

publications.
publication nvarchar(129)Publication	name.
publisher nvarchar(129)Name	of	the	data	source	publishing

the	data.
publisher_db nvarchar(129)Database	name.
repl_freq tinyint Frequency	used	to	replicate	data.

Interpret	value	using
SQLDMO_REPFREQ_TYPE.

replication_type tinyint Replication	method.	Interpret	value
using
SQLDMO_REPLICATION_TYPE.

thirdparty_flag bit When	TRUE,	the	publication
source	is	not	an	instance	of	SQL
Server	2000.

vendor_name nvarchar(129)Name	of	the	vendor	of	the	product
publishing	the	data.

See	Also

EnumPublications2	Method

SQL-DMO

EnumPublications2	Method
The	EnumPublications2	method	returns	a	QueryResults	object	that	enumerates
the	publications	of	a	replication	publishing	data	source.

Applies	To

Publisher2	Object

Syntax
object.EnumPublications2(ReplicationType	,	DatabaseName	,
PublicationName	,	AgentLogin	,	bSecurityCheck)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

ReplicationType

Long	integer	that	specifies	a	replication	method	and	restricts	result	set
membership	as	specified	in	Settings.

DatabaseName

String	that	identifies	a	replication	database	by	name.	Use	%	to	specify	all
databases.

PublicationName

String	that	identifies	a	publication	by	name.	Use	NULL	or	an	empty	string	to
specify	all	publications

AgentLogin

String	that	identifies	a	Microsoft®	SQL	Server™	2000	login	or	an	empty
string.

bSecurityCheck

TRUE	or	FALSE	as	described	in	Settings.

Prototype	(C/C++)
HRESULT	EnumPublications2(LPSQLDMOQUERYRESULTS	*ppResults,	
SQLDMO_REPLICATION_TYPE	ReplicationType	
CPPDEFAULT(=	SQLDMORepType_TransactionalMerge),	
SQLDMO_LPCSTR	DatabaseName	CPPDEFAULT(=	NULL),	
SQLDMO_LPCSTR	PublicationName	CPPDEFAULT(=	NULL),	
SQLDMO_LPCSTR	AgentLogin	CPPDEFAULT(=	NULL),	
BOOL	bSecurityCheck	CPPDEFAULT(=	FALSE));

Settings
Set	ReplicationType	using	these	values.

Constant Value Description
SQLDMORepType_Merge 2 Result	set	enumerates

merge	replication
publications

SQLDMORepType_Transactional 1 Result	set	enumerates
transactional	and
snapshot	replication
publications

SQLDMORepType_TransactionalMerge 3 Result	set	enumerates	all
publications	regardless	of
replication	method

When	bSecurityCheck	is	TRUE,	the	method	enumerates	only	publications
accessible	to	the	login	used	for	SQLServer	object	connection.	The	AgentLogin
argument	is	evaluated.

When	bSecurityCheck	is	FALSE	(default),	all	publications	are	enumerated.

Returns

A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
agent_access bit When	TRUE,	the	login	specified	in

the	AgentLogin	argument	is	a
member	of	the	publication	access
list.

allow_anonymous bit When	TRUE,	anonymous
subscriptions	are	allowed.

allow_pull bit When	TRUE,	Subscriber-originated
(pull)	subscriptions	are	allowed.

allow_sync_tran bit When	TRUE,	the	transactional
replication	publication	is
updateable	at	the	Subscriber.

description nvarchar(256)Descriptive	text.
distribution_db nvarchar(129)Name	of	the	distribution	database.
enabled_for_internet bit When	TRUE,	publication	allows

snapshot	download	using	FTP.
immediate_sync bit When	TRUE,	an	updated	snapshot

is	always	be	generated	when	the
snapshot	agent	runs	for	the
publication.	This	allows	new
subscribers	to	be	added	at	any	time
and	immediately	synchronize	with
their	publisher	to	receive	a	snapshot
rather	than	having	to	wait	for	the
latest	snapshot	to	be	delivered.

immediate_sync_ready bit When	TRUE,	a	snapshot	exists	for
the	publication.

independent_agent bit TRUE	for	merge	replication
publications.

publication nvarchar(129)Publication	name.
publisher nvarchar(129)Name	of	the	data	source	publishing

the	data.
publisher_db nvarchar(129)Database	name.

repl_freq tinyint Frequency	used	to	replicate	data.
Interpret	value	using
SQLDMO_REPFREQ_TYPE.

replication_type tinyint Replication	method.	Interpret	value
using
SQLDMO_REPLICATION_TYPE.

thirdparty_flag bit When	TRUE,	the	publication
source	is	not	an	instance	of	SQL
Server	2000.

vendor_name nvarchar(129)Name	of	the	vendor	of	the	product
publishing	the	data.

Remarks
The	EnumPublications2	method	differs	from	the	EnumPublications	method	in
that	it	includes	a	PublicationName	parameter.

Note		If	an	application	calls	EnumPublications2	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

EnumPublications	Method

SQL-DMO

EnumQueueReaderAgentSessionDetails	Method
The	EnumQueueReaderAgentSessionDetails	method	returns	a	QueryResults
object	that	enumerates	detailed	information	about	a	Queue	Reader	Agent	session
related	to	the	specified	publication.

Applies	To

DistributionDatabase2	Object

Syntax
object.EnumQueueReaderAgentSessionDetails(
lPublicationID,	
SessionID,	
lEstimatedNumRecords)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

lPublicationID

Long	integer	that	identifies	the	publication	by	ID.

SessionID

String	that	identifies	the	agent	session	by	ID.

lEstimatedNumRecords

Long	integer	that	specifies	the	estimated	number	of	QueryResults	rows	to
return.

Prototype	(C/C++)
HRESULT	EnumQueueReaderAgentSessionDetails	(

long	lPublicationID,	
SQLDMO_LPCSTR	SessionID,
long	lEstimatedNumRecords,
LPSQLDMOQUERYRESULTS	*ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
commands_processed integer Cumulative	number	of	commands

processed	in	the	session.
comments nvarchar(256) Descriptive	text.
error_id integer When	nonzero,	indicates

Microsoft®	SQL	Server™	2000
error	message	number.

runstatus integer Executing	state.	Interpret	using
SQLDMO_TASKSTATUS_TYPE.

subscriber sysname Name	of	the	Subscriber.
subscriberdb sysname Name	of	the	subscription	database.
time nvarchar(24) Date	and	time	of	message	logging.
transaction_id integer Transaction	identifier.
transaction_status integer Current	status	of	the	transaction.

Remarks
In	the	result	set,	date	and	time	data	returned	in	time	is	formatted	as	YYYYMMDD
hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four	hour

clock	(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three

digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

The	EnumQueueReaderAgentSessionDetails	method	includes	the
lEstimatedNumRecords	parameter,	which	allows	an	application	to	pass	an
estimated	number	of	QueryResults	rows.	This	allows	the	application	to	avoid
the	performance	overhead	associated	with	repeatedly	allocating	and	freeing
memory.

To	increase	the	accuracy	of	the	estimated	number	of	QueryResults	rows,	an
application	can	pass	the	value	of	the	action_count	column	returned	by	the
EnumQueueReaderAgentSessions	method	to	the	lEstimatedNumRecords
parameter.

Note		If	an	application	calls	EnumQueueReaderAgentSessionDetails	on	an
instance	of	SQL	Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,
and	the	message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"
are	returned.

SQL-DMO

EnumQueueReaderAgentSessions	Method
The	EnumQueueReaderAgentSessions	method	returns	a	QueryResults	object
that	enumerates	execution	status	data	about	Queue	Reader	Agent	sessions
operating	on	the	specified	publication.

Applies	To

DistributionDatabase2	Object

Syntax
object.EnumQueueReaderAgentSessions(
lPublicationID,	
SessionType,	
SessionDuration,	
lEstimatedNumRecords)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

lPublicationID

Long	integer	that	identifies	the	publication	by	ID.

SessionType

SQLDMO_SESSION_TYPE	constant	that	indicates	the	session	type	as
described	in	Settings.

SessionDuration

Long	integer	that	specifies	the	number	of	hours.	Restricts	result	set
membership	to	those	sessions	launched	within	the	specified	number	of	hours.
Use	0	to	specify	no	restriction	on	agent	session	start	time.

lEstimatedNumRecords

Long	integer	that	specifies	the	estimated	number	of	QueryResults	rows	to
return.

Prototype	(C/C++)
HRESULT	EnumQueueReaderAgentSessions(
long	lPublicationID,	
SQLDMO_SESSION_TYPE	SessionType,	
long	SessionDuration,	
long	lEstimatedNumRecords,
LPSQLDMOQUERYRESULTS	*ppResults);

Settings
Set	SessionType	using	these	values.

Constant Value Description
SQLDMOSession_All 1 Output	contains	log	information	for	all

sessions	for	agent.
SQLDMOSession_Errors 2 Output	contains	log	information	only

for	those	execution	attempts	ending	in
error.

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
action_count integer Total	number	of	session	details.
average_commands integer Average	number	of	commands.
commands_processed integer Cumulative	number	of	commands

processed	in	the	session.
comments nvarchar(255) Descriptive	text.
delivery_latency integer Latency,	in	milliseconds,	between

a	transaction	entering	the	queue
and	being	applied	to	the
Publisher.

delivery_rate integer Average	number	of	commands
delivered	per	second.

duration integer Elapsed	time	of	the	logged
session	activity	in	seconds.

error_id integer When	nonzero,	indicates	a
Microsoft®	SQL	Server™	2000
error	message	number.

publication_id integer Publication	identifier.
start_time nvarchar(24) Date	and	time	at	which	agent

session	started.
status integer Queue	Reader	Agent	status.
time nvarchar(24) Date	and	time	of	last	logged

message.
transactions_processed integer Cumulative	number	of

transactions	processed	in	the
session.

Remarks
In	the	result	set,	date	and	time	data	returned	in	start_time	and	time	are
formatted	as	YYYYMMDD	hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four	hour

clock	(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).

fff Represents	the	fractional	part	of	the	second	in	three
digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

The	EnumQueueReaderAgentSessions	method	includes	the
lEstimatedNumRecords	parameter,	which	allows	an	application	to	pass	an
estimated	number	of	QueryResults	rows.	This	allows	the	application	to	avoid
the	performance	overhead	associated	with	repeatedly	allocating	and	freeing
memory.

Note		If	an	application	calls	EnumQueueReaderAgentSessions	on	an	instance
of	SQL	Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the
message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

SQL-DMO

EnumQueueReaderAgentView	Method
The	EnumQueueReaderAgentView	method	returns	a	QueryResults	object	that
enumerates	execution	status	for	the	Queue	Reader	Agents	used	by	the	referenced
distribution	publication.

Applies	To

DistributionPublication2	Object

Syntax
object.EnumQueueReaderAgentView()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumQueueReaderAgentView(
LPSQLDMOQUERYRESULTS	*ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
agent_id integer Agent	identifier.
average_commands integer Average	number	of	commands.
commands_processed integer Cumulative	number	of	commands

processed	in	the	session.
comments nvarchar(255) Descriptive	text.

dbname sysname Name	of	the	distribution
database.

delivery_latency integer Latency,	in	milliseconds,	between
a	transaction	entering	the	queue
and	being	applied	to	the
Publisher.

delivery_rate integer Average	number	of	commands
delivered	per	second.

duration integer Elapsed	time	of	the	logged
session	activity	in	seconds.

error_id integer When	nonzero,	indicates	a
Microsoft®	SQL	Server™	2000
error	message	number.

job_id binary(16) Identifier	of	the	SQL	Server	2000
Agent	job	that	starts	the
replication	agent.

local_time_stamp binary(8) Timestamp.
name nvarchar(100) Name	of	the	agent.
profile_id integer Profile	identifier.
start_time nvarchar(24) Date	and	time	at	which	agent

session	started.
status integer Queue	Reader	Agent	status.
time nvarchar(24) Date	and	time	of	last	logged

message.
transactions_processed integer Cumulative	number	of

transactions	processed	in	the
session.

Remarks
In	the	result	set,	date	and	time	data	returned	in	start_time	and	time	are
formatted	as	YYYYMMDD	hh:mm:ss.fff.

Date	part Description

YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four	hour

clock		(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three

digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

Note		If	an	application	calls	EnumQueueReaderAgentView	on	an	instance	of
SQL	Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the
message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

SQL-DMO

EnumQueueReaderAgentViews	Method
The	EnumQueueReaderAgentViews	method	returns	a	QueryResults	object
that	enumerates	execution	status	for	all	Queue	Reader	Agents.

Applies	To

Distributor2	Object

Syntax
object.EnumQueueReaderAgentViews()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	list

Prototype	(C/C++)
HRESULT	EnumQueueReaderAgentViews(
LPSQLDMOQUERYRESULTS	*ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
agent_id integer Agent	identifier.
average_commands integer Average	number	of	commands.
commands_processed integer Cumulative	number	of

commands	processed	in	the
session.

comments nvarchar(255) Descriptive	text.

dbname sysname Name	of	the	distribution
database.

delivery_latency integer Latency,	in	milliseconds,
between	a	transaction	entering
the	queue	and	being	applied	to
the	Publisher.

delivery_rate integer Average	number	of	commands
delivered	per	second.

duration integer Elapsed	time	of	the	logged
session	activity	in	seconds.

error_id integer When	nonzero,	indicates	a
Microsoft®	SQL	Server™	2000
error	message	number.

job_id binary(16) Identifier	of	the	SQL	Server
2000	Agent	job	that	starts	the
replication	agent.

local_time_stamp binary(8) Timestamp.
name nvarchar(100) Name	of	the	agent.
profile_id integer Profile	identifier.
start_time nvarchar(24) Date	and	time	at	which	agent

session	started.
status integer Queue	Reader	Agent	status.
time nvarchar(24) Date	and	time	of	last	logged

message.
transactions_processed integer Cumulative	number	of

transactions	processed	in	the
session.

Remarks
In	the	result	set,	date	and	time	data	returned	in	start_time	and	time	are
formatted	as	YYYYMMDD	hh:mm:ss.fff.

Date	part Description

YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four	hour

clock	(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three

digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

Note		If	an	application	calls	EnumQueueReaderAgentViews	on	an	instance	of
SQL	Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the
message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

SQL-DMO

EnumReferencedKeys	Method
The	EnumReferencedKeys	method	returns	a	QueryResults	object	that
enumerates	the	PRIMARY	KEY	and	UNIQUE	constraints.

Applies	To

Table	Object

Syntax
object.EnumReferencedKeys([ReferencedTable]	,	[IncludeAll])
as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

ReferencedTable

Optional.	String	that	names	an	existing	Microsoft®	SQL	Server™	2000
table.	Restricts	result	set	membership	to	list	only	references	to	objects
defined	on	the	specified	table.

IncludeAll

TRUE	or	FALSE.

Prototype	(C/C++)
HRESULT	EnumReferencedKeys(
LPSQLDMOQUERYRESULTS*	ppResults,
SQLDMO_LPCSTR	ReferencedTableName	=	NULL,
BOOL	IncludeAllCandidates	=	NULL);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
candidate_key nvarchar(129) Name	of	a	PRIMARY	KEY	or	UNIQUE

constraint
candidate_table nvarchar(262) Name	of	a	table	on	which	a	PRIMARY

KEY	or	UNIQUE	constraint	is	defined
referenced bit When	1,	the	table	depends	on	the

PRIMARY	KEY	or	UNIQUE	constraint
listed	in	the	result	set

Remarks
When	IncludeAll	is	TRUE,	the	result	set	enumerates	all	PRIMARY	KEY	and
UNIQUE	constraints	defined	in	the	database.	The	value	of	the	result	set	column
referenced	determines	table	object	dependency	on	the	listed	PRIMARY	KEY	or
UNIQUE	constraint.

When	IncludeAll	is	FALSE	(default),	the	result	set	enumerates	only	those
PRIMARY	KEY	or	UNIQUE	constraints	on	which	the	table	depends.

SQL-DMO

EnumReferencedTables	Method
The	EnumReferencedTables	method	returns	a	QueryResults	object	that
enumerates	tables	on	which	a	PRIMARY	KEY	or	UNIQUE	constraint	is
defined.

Applies	To

Table	Object

Syntax
object.EnumReferencedTables([IncludeAll])	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

IncludeAll

TRUE	or	FALSE

Prototype	(C/C++)
HRESULT	EnumReferencedTables(
LPSQLDMOQUERYRESULTS*	ppResults,
BOOL	IncludeAllCandidates	=	NULL);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
candidate_key nvarchar(129) Not	applicable.	Contains	the	string	N/A.
candidate_table nvarchar(262) Name	of	the	table	on	which	the	a

PRIMARY	KEY	or	UNIQUE	constraint
is	defined.

referenced bit When	1,	the	table	referenced	by	the
Table	object	used	depends	on	the	result-
set	listed	table	in	a	FOREIGN	KEY
relationship.

Remarks
When	IncludeAll	is	TRUE,	the	result	set	enumerates	all	tables	on	which
PRIMARY	KEY	and	UNIQUE	constraints	are	defined.	The	value	of	the
referenced	column	in	the	result	set	determines	table	object	dependency	on	the
table	listed	in	the	result	set.

When	IncludeAll	is	FALSE	(default),	the	result	set	enumerates	only	those	tables
that	contains	PRIMARY	KEY	or	UNIQUE	constraints	and	on	which	the
referenced	table	depends.

SQL-DMO

EnumReferencingKeys	Method
The	EnumReferencingKeys	method	returns	a	QueryResults	object	that
enumerates	the	FOREIGN	KEY	constraints	depending	on	a	candidate	key
defined	on	the	referenced	table.

Applies	To

Table	Object

Syntax
object.EnumReferencingKeys([ReferencingTable]	,	[IncludeAll])
as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

ReferencingTable

Optional.	String	that	names	an	existing	Microsoft®	SQL	Server™	2000
table.	Restricts	result	set	membership	to	list	only	FOREIGN	KEY	constraints
defined	on	the	specified	table.

IncludeAll

TRUE	or	FALSE.

Prototype	(C/C++)
HRESULT	EnumReferencingKeys(
LPSQLDMOQUERYRESULTS*	ppResults,
SQLDMO_LPCSTR	ReferencingTableName	=	NULL,
BOOL	IncludeAllCandidates	=	NULL);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
candidate_key nvarchar(129) Name	of	the	FOREIGN	KEY	constraint

depending	on	a	candidate	key	in	the
referenced	table.

candidate_table nvarchar(262) Name	of	a	table	on	which	a	FOREIGN
KEY	constraint	is	defined.

referenced bit When	1,	the	FOREIGN	KEY	constraint
listed	in	the	result	set	depends	on	the
table	referenced	by	the	Table	object
used.

Remarks
When	IncludeAll	is	TRUE,	the	result	set	enumerates	all	user-defined	tables	in	the
database.	The	candidate_key	column	is	NULL	for	those	tables	on	which	a
FOREIGN	KEY	constraint	is	not	defined.	The	value	of	the	referenced	column
in	the	result	set	determines	FOREIGN	KEY	constraint	dependency.

When	IncludeAll	is	FALSE	(default),	the	result	set	enumerates	only	those
FOREIGN	KEY	constraints	depending	on	the	referenced	table.

SQL-DMO

EnumReferencingTables	Method
The	EnumReferencingTables	method	returns	a	QueryResults	object	that
enumerates	user-defined	tables	on	which	a	FOREIGN	KEY	constraint	is	defined.

Applies	To

Table	Object

Syntax
object.EnumReferencingTables([IncludeAll])	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

IncludeAll

TRUE	or	FALSE

Prototype	(C/C++)
HRESULT	EnumReferencingTables(
LPSQLDMOQUERYRESULTS*	ppResults,
BOOL	IncludeAllCandidates	=	NULL);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
candidate_key nvarchar(129) Not	applicable.	Contains	the	string	N/A.
candidate_table nvarchar(262) Name	of	a	table	on	which	a	PRIMARY

KEY	or	UNIQUE	constraint	is	defined.

referenced bit When	1,	the	table	referenced	by	the
Table	object	used	depends	on	the	listed
in	the	result	set.

Remarks
When	IncludeAll	is	TRUE,	the	result	set	enumerates	all	tables	on	which
FOREIGN	KEY	constraints	are	defined.	The	value	of	the	result	set	column
referenced	determines	FOREIGN	KEY	dependency	on	the	referenced	table.

When	IncludeAll	is	FALSE	(default),	the	result	set	enumerates	only	those	tables
that	contains	FOREIGN	KEY	constraints	that	depend	on	the	referenced	table.

SQL-DMO

EnumServerAttributes	Method
The	EnumServerAttributes	method	returns	a	QueryResults	object	that
enumerates	various	properties	of	an	instance	of	Microsoft®	SQL	Server™	2000.

Applies	To

SQLServer	Object

Syntax
object.EnumServerAttributes()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumServerAttributes(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
attribute_id integer System-defined	identifier	for	a

property
attribute_name varchar(122) System-defined	name	for	a	property
attribute_value varchar(512) Current	value	of	the	property

SQL-DMO

EnumServerRoleMember	Method
The	EnumServerRoleMember	method	returns	a	QueryResults	object	that
enumerates	the	members	of	a	Microsoft®	SQL	Server™	2000	fixed	server
security	role.

Applies	To

ServerRole	Object

Syntax
object.EnumServerRoleMember()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumServerRoleMember(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	this	column.

Column Data	type Description
mem_col nvarchar(133) Name	of	SQL	Server	security

account	having	role	membership

SQL-DMO

EnumServerRolePermission	Method
The	EnumServerRolePermission	method	returns	a	QueryResults	object	that
enumerates	the	statement	execution	permissions	of	a	Microsoft®	SQL	Server™
2000	fixed	server	role.

Applies	To

ServerRole	Object

Syntax
object.EnumServerRolePermission()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumServerRolePermission(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	this	column.

Column Data	type Description
perm_col nvarchar(133) Descriptive	text.	Can	be	a	Transact-SQL

statement	or	system	stored	procedure	on
which	execution	is	granted,	or	a	description
of	applicable	permission,	such	as	Extend
database.

SQL-DMO

EnumSnapshotAgentSessionDetails	Method
The	EnumSnapshotAgentSessionDetails	method	returns	a	QueryResults
object	that	enumerates	detail	information	for	a	specified	Snapshot	Agent	session.

Applies	To

DistributionPublisher	Object

Syntax
object.EnumSnapshotAgentSessionDetails(AgentName	,
SessionID)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

AgentName

String	that	identifies	a	Snapshot	Agent	by	name.

SessionID

String	that	identifies	a	session.	The	SessionID	value	is	specified	using	the
first	21	characters	of	the	time	column	value	in	the	QueryResults	result	set
returned	by	the	EnumSnapshotAgentSessions	method.

Prototype	(C/C++)
HRESULT	EnumSnapshotAgentSessionDetails(
SQLDMO_LPCSTR	AgentName,
SQLDMO_LPCSTR	SessionID,
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
comments nvarchar(256) Descriptive	text.
delivered_commands integer Cumulative	number	of	commands

delivered	in	the	session.
delivery_rate float Average	number	of	commands

delivered	per	second.
duration integer Elapsed	time	of	the	session	in

seconds.
error_id integer When	nonzero,	Microsoft®	SQL

Server™	2000	error	message
number.

name nvarchar(101) Agent	session	name.
runstatus integer Executing	state.	Interpret	using

SQLDMO_TASKSTATUS_TYPE.
time nvarchar(26) Date	and	time	of	message	logging.

Remarks
In	the	result	set,	date	and	time	data	returned	in	time	is	formatted	as	YYYYMMDD
hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four

hour	clock	(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).

fff Represents	the	fractional	part	of	the	second	in	three
digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

SQL-DMO

EnumSnapshotAgentSessionDetails2	Method
The	EnumSnapshotAgentSessionDetails2	method	returns	a	QueryResults
object	that	enumerates	detail	information	for	a	specified	Snapshot	Agent	session.

Applies	To

DistributionPublisher2	Object

Syntax
object.EnumSnapshotAgentSessionDetails2(
AgentName	,
SessionID,	
lEstimatedNumRecords)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

AgentName

String	that	identifies	a	Snapshot	Agent	by	name.

SessionID

String	that	identifies	a	session.	The	SessionID	value	is	specified	using	the
first	21	characters	of	the	time	column	value	in	the	QueryResults	result	set
returned	by	the	EnumSnapshotAgentSessions	method.

lEstimatedNumRecords

Long	integer	that	specifies	the	estimated	number	of	QueryResults	rows	to
return.

Prototype	(C/C++)

HRESULT	EnumSnapshotAgentSessionDetails2(
SQLDMO_LPCSTR	AgentName,
SQLDMO_LPCSTR	SessionID,
long	lEstimatedNumRecords,
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
comments nvarchar(256) Descriptive	text.
delivered_commands integer Cumulative	number	of	commands

delivered	in	the	session.
delivery_rate float Average	number	of	commands

delivered	per	second.
duration integer Elapsed	time	of	the	session	in

seconds.
error_id integer When	nonzero,	Microsoft®	SQL

Server™	2000	error	message
number.

name nvarchar(101) Agent	session	name.
runstatus integer Executing	state.	Interpret	using

SQLDMO_TASKSTATUS_TYPE.
time nvarchar(26) Date	and	time	of	message	logging.

Remarks
In	the	result	set,	date	and	time	data	returned	in	time	is	formatted	as	YYYYMMDD
hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four

hour	clock	(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three

digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

The	EnumSnapshotAgentSessionDetails2	method	differs	from	the
EnumSnapshotAgentSessionDetails	method	by	including	the
lEstimatedNumRecords	parameter,	which	allows	an	application	to	pass	an
estimated	number	of	QueryResults	rows.	This	allows	the	application	to	avoid
the	performance	overhead	associated	with	repeatedly	allocating	and	freeing
memory.

To	increase	the	accuracy	of	the	estimated	number	of	QueryResults	rows,	an
application	can	pass	the	value	of	the	action_count	column	returned	by	the
EnumSnapshotAgentSessions	or	EnumSnapshotAgentSessions2	method	to
the	lEstimatedNumRecords	parameter.

SQL-DMO

EnumSnapshotAgentSessions	Method
The	EnumSnapshotAgentSessions	method	returns	a	QueryResults	object	that
enumerates	session	information	for	Snapshot	Agents	used	by	a	Distributor.

Applies	To

DistributionPublisher	Object

Syntax
object.EnumSnapshotAgentSessions(AgentName	,
SessionType	,	SessionDuration)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

AgentName

String	that	identifies	a	Snapshot	Agent	by	name.

SessionType

Long	integer	that	indicates	session	type	using	SQLDMO_
SESSION_TYPE.

SessionDuration

Long	integer	that	specifies	a	number	of	hours.	Restricts	result	set
membership	to	those	sessions	launched	within	the	number	of	hours	specified.
Use	0	to	specify	no	restriction	on	agent	session	start	time.

Prototype	(C/C++)
HRESULT	EnumSnapshotAgentSessions(
SQLDMO_LPCSTR	AgentName,

SQLDMO_SESSION_TYPE	SessionType,
long	SessionDuration,
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
action_count integer Number	of	session	history	records.
comments nvarchar(256) Descriptive	text.
delivered_commands integer Cumulative	number	of	commands

delivered	in	the	session.
delivery_rate float Average	number	of	commands

delivered	per	second.
duration integer Elapsed	time	of	the	session	in

seconds.
error_id integer When	nonzero,	Microsoft®	SQL

Server™	2000	error	message
number.

runstatus integer Executing	state.	Interpret	using
SQLDMO_TASKSTATUS_TYPE.

start_time nvarchar(26) Date	and	time	of	last	scheduled
execution.

time nvarchar(26) Date	and	time	of	message	logging.

Remarks
In	the	result	set,	date	and	time	data	returned	in	start_time	and	time	is	formatted
as	YYYYMMDD	hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four	hour

clock	(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three

digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

SQL-DMO

EnumSnapshotAgentSessions2	Method
The	EnumSnapshotAgentSessions2	method	returns	a	QueryResults	object	that
enumerates	session	information	for	Snapshot	Agents	used	by	a	Distributor.

Applies	To

DistributionPublisher2	Object

Syntax
object.EnumSnapshotAgentSessions2(
AgentName	,
SessionType,	
SessionDuration,	
lEstimatedNumRecords)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

AgentName

String	that	identifies	a	Snapshot	Agent	by	name.

SessionType

Long	integer	that	indicates	session	type	using	SQLDMO_
SESSION_TYPE.

SessionDuration

Long	integer	that	specifies	a	number	of	hours.	Restricts	result	set
membership	to	those	sessions	launched	within	the	number	of	hours	specified.
Use	0	to	specify	no	restriction	on	agent	session	start	time.

lEstimatedNumRecords

Long	integer	that	specifies	the	estimated	number	of	QueryResults	rows	to
return.

Prototype	(C/C++)
HRESULT	EnumSnapshotAgentSessions2(
SQLDMO_LPCSTR	AgentName,
SQLDMO_SESSION_TYPE	SessionType,
long	SessionDuration,
long	lEstimatedNumRecords,
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
action_count integer Number	of	session	history	records.
comments nvarchar(256) Descriptive	text.
delivered_commands integer Cumulative	number	of	commands

delivered	in	the	session.
delivery_rate float Average	number	of	commands

delivered	per	second.
duration integer Elapsed	time	of	the	session	in

seconds.
error_id integer When	nonzero,	Microsoft®	SQL

Server™	2000	error	message
number.

runstatus integer Executing	state.	Interpret	using
SQLDMO_TASKSTATUS_TYPE.

start_time nvarchar(26) Date	and	time	of	last	scheduled
execution.

time nvarchar(26) Date	and	time	of	message	logging.

Remarks

In	the	result	set,	date	and	time	data	returned	in	start_time	and	time	is	formatted
as	YYYYMMDD	hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four	hour

clock	(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three

digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

The	EnumSnapshotAgentSessions2	method	differs	from	the
EnumSnapshotAgentSessions	method	by	including	the	lEstimatedNumRecords
parameter,	which	allows	an	application	to	pass	an	estimated	number	of
QueryResults	rows.	This	allows	the	application	to	avoid	the	performance
overhead	associated	with	repeatedly	allocating	and	freeing	memory.

SQL-DMO

EnumSnapshotAgentView	Method
The	EnumSnapshotAgentView	method	returns	a	QueryResults	object	that
enumerates	execution	status	information	for	an	agent	used	to	create	snapshots	of
replicated	data.

Applies	To

DistributionPublication	Object

Syntax
object.EnumSnapshotAgentView()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumSnapshotAgentView(
LPSQLDMOQUERYRESULTS*	ppResults);

SQL-DMO

EnumSnapshotAgentViews	Method
The	EnumSnapshotAgentViews	method	returns	a	QueryResults	object	that
enumerates	historical	data	for	all	Snapshot	Agents.

Applies	To

Distributor	Object

Syntax
object.EnumSnapshotAgentViews()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumSnapshotAgentViews(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
agent_id integer Agent	identifier.
comments nvarchar(256) Descriptive	text.
dbname nvarchar(129) Name	of	the	database	used	for

distribution.
delivered_commands integer Cumulative	number	of	commands.
delivered_transactions integer Cumulative	number	of

transactions.
delivery_rate float Average	number	of	commands

delivered	per	second.
duration integer Cumulative	run	time	in	seconds.
error_id integer When	nonzero,	the	Microsoft®

SQL	Server™	2000	error	message
number	of	the	most	recent	error.

job_id binary(22) Identifier	of	the	SQL	Server	2000
Agent	job	starting	the	replication
agent.

local_job bit Reserved.
local_timestamp binary(14) Timestamp.
name nvarchar(101) Name	of	the	Distribution	Agent.
profile_id integer Profile	identifier.
publication nvarchar(129) Publication	name.
publisher nvarchar(129) Publisher	name.
publisher_db nvarchar(129) Name	of	database	published.
start_time nvarchar(25) Date	and	time	at	which	agent

started.
status integer Agent	status.	Interpret	using

SQLDMO_TASKSTATUS_TYPE.
time nvarchar(25) Date	and	time	message	logged.

Remarks
In	the	result	set,	date	and	time	data	returned	in	start_time	and	time	is	formatted
as	YYYYMMDD	hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four	hour

clock	(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three

digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

SQL-DMO

EnumStatistics	Method
The	EnumStatistics	method	returns	a	QueryResults	object	that	enumerates
index	statistics	used	to	support	Microsoft®	SQL	Server™	2000	query
optimization.

Applies	To

Index	Object

Syntax
object.EnumStatistics()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumStatistics(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	three	result	sets.	The	first	result	set
describes	index	statistics	structure	and	age	and	is	defined	by	these	columns.

Column Data	type Description
Average	key
length

real Average	length	of	an	index	row

Density real Selectivity	of	the	index
Rows integer Number	of	rows	in	the	table

Rows	Sampled integer Number	of	rows	sampled	for	statistics
data

Steps integer Number	of	distribution	steps
Updated nvarchar(21) Date	and	time	of	most	recent	update

The	second	result	set	describes	index	density	and	is	defined	by	these	columns.

Column Data	type Description
All	density real Selectivity	of	the	column(s)	listed	in

Columns
Columns nvarchar(129) Column(s)	participating	in	index

The	third	result	set	enumerates	histogram	values	and	is	defined	by	these
columns.

Column Data	type Description
Steps nvarchar(6) Histogram	values	in	the	current

distribution	statistics

Remarks
Statistics	are	calculated	for	an	index	when	the	index	is	first	used	in	query
optimization	or	at	user	direction.	Statistics	are	updated	automatically	at
configurable	intervals.	When	statistics	have	not	been	calculated	on	an	index,	the
EnumStatistics	method	succeeds	but	returns	no	result	sets.

SQL-DMO

EnumSubscriptions	Method
The	EnumSubscriptions	method	returns	a	QueryResults	object	that
enumerates	the	subscriptions	to	a	replication	publication.

Applies	To

MergePublication	Object TransPublication	Object

Syntax
object.EnumSubscriptions()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumSubscriptions(LPSQLDMOQUERYRESULTS*	ppResults);

Returns
For	the	MergePublication	object,	a	QueryResults	object	that	contains	one
result	set	defined	by	these	columns.

Column Data	type Description
description nvarchar(256) Descriptive	text.
full_publication tinyint Reserved.
merge_jobid binary(22) Identifier	of	the	Microsoft®	SQL

Server™	2000	Agent	job	launching
the	replication	agent.

priority single Conflict	resolution	priority.

publication nvarchar(129) Publication	name.
publisher nvarchar(129) Name	of	the	publishing	data	source.
publisher_db nvarchar(129) Name	of	the	database	referenced	by

the	publication.
status integer Subscription	status.	Interpret	the

value	using
SQLDMO_SUBSTATUS_TYPE.

subscriber nvarchar(129) Name	of	the	subscribing	data	source.
subscriber_db nvarchar(129) Name	of	the	subscribed	database	at

the	Subscriber.
subscriber_type integer Subscriber	type.
subscription_name nvarchar(258) Subscription	name.
subscription_type integer Subscription	direction.	Interpret	the

value	using
SQLDMO_SUBSCRIPTION_TYPE.

sync_type tinyint Type	of	synchronization	used.
Interpret	the	value	using
SQLDMO_SUBSYNC_TYPE.

For	the	TransPublication	object,	a	QueryResults	object	that	contains	one	result
set	defined	by	these	columns.

Column Data	type Description
article nvarchar(129) When	publication	is	not	full,	article

subscribed	to.
destination
database

nvarchar(129) Name	of	the	subscribed	database	at
the	Subscriber.

distribution	job	id binary(22) Identifier	of	the	Microsoft®	SQL
Server™	2000	Agent	job	that	starts
the	replication	agent.

full	subscription bit When	TRUE,	subscription
subscribes	to	all	articles	defined	in
the	publication.

loopback_detection bit When	TRUE,	Distributor	sends

Subscriber-originated	transactions
back	to	originating	Subscriber.

publication nvarchar(129) Publication	name.
subscriber nvarchar(129) Name	of	the	subscribing	data

source.
subscription	status tinyint Subscription	status.	Interpret	the

value	using
SQLDMO_SUBSTATUS_TYPE.

subscription	type integer Subscription	direction.	Interpret	the
value	using	SQLDMO_
SUBSCRIPTION_TYPE.

subscription_name nvarchar(256) Subscription	name.
synchronization
type

tinyint Type	of	synchronization	used.
Interpret	the	value	using
SQLDMO_SUBSYNC_TYPE.

update	mode integer When	0,	the	subscription	is	read-
only.	When	1,	updates	to	article
images	maintained	at	the
Subscriber	are	propagated	to	the
Publisher.

SQL-DMO

EnumSubscriptionViews	Method
The	EnumSubscriptionViews	method	returns	a	QueryResults	object	that
enumerates	subscription	execution	status	information	maintained	at	a
Distributor.

Applies	To

DistributionPublication	Object

Syntax
object.EnumSubscriptionViews()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumSubscriptionViews(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
When	the	DistributionPublication	object	references	a	merge	replication
publication,	a	QueryResults	object	that	contains	one	result	set	defined	by	these
columns.

Column Data	type Description
action_time nvarchar(25) Date	and	time	of	execution	for	most

recent	subscription	action.
agent_id integer Agent	identifier.
agent_name nvarchar(101)Name	of	the	replication	agent.

delivery_rate integer Average	number	of	rows	delivered
per	second.

duration integer Elapsed	time	of	the	logged	session
activity	in	seconds.

error_id integer When	nonzero,	the	Microsoft®	SQL
Server™	2000	error	message	number
of	the	most	recent	error.

job_id binary(22) Identifier	of	the	SQL	Server	Agent
job	starting	the	replication	agent.

last_action nvarchar(256)Descriptive	text.
local_job bit When	TRUE,	the	SQL	Server	Agent

job	executes	at	the	Distributor.	When
FALSE,	the	SQL	Server	Agent	job
executes	at	the	Subscriber.

local_timestamp binary(14) Timestamp.
profile_id integer Profile	identifier.
publisher_conflicts integer Number	of	deletes	at	the	Publisher.
publisher_deletecount integer Number	of	deletes	at	the	Publisher.
publisher_insertcount integer Number	of	inserts	at	the	Publisher.
publisher_updatecount integer Number	of	updates	at	the	Publisher.
start_time nvarchar(25) Date	and	time	at	which	agent	session

started.
status integer Agent	status.	Interpret	using

SQLDMO_TASKSTATUS_TYPE.
subscriber nvarchar(129)Name	of	subscribing	data	source.
subscriber_updatecount integer Number	of	updates	at	the	Subscriber.
subscriber_conficts integer Number	of	conflicts	at	the

Subscriber.
subscriber_db nvarchar(129)Name	of	the	subscribed	database	at

the	Subscriber.
subscriber_deletecount integer Number	of	deletes	at	the	Subscriber.
subscriber_insertcount integer Number	of	inserts	at	the	Subscriber.
type integer Direction	of	subscription	(push	or

pull)	interpreted	using

SQLDMO_SUBSCRIPTION_TYPE.

When	the	DistributionPublication	object	references	a	transactional	or	snapshot
replication	publication,	a	QueryResults	object	that	contains	one	result	set
defined	by	these	columns.

Column Data	type Description
action_time nvarchar(25) Date	and	time	of	execution	for	most

recent	subscription	action.
agent_id integer Agent	identifier.
average_commands integer Average	number	of	commands	per

transaction.
delivered_commands integer Cumulative	number	of	commands.
delivered_transactions integer Cumulative	number	of	transactions.
delivery_latency integer Latency,	in	milliseconds,	between	the

transaction	entering	the	distribution
database	and	being	applied	to	the
Subscriber.

delivery_rate integer Average	number	of	commands
delivered	per	second.

delivery_time integer Cumulative	time	spent	delivering
transactions	in	seconds.

distribution_agent nvarchar(101)Name	of	the	replication	agent.
duration integer Elapsed	time	of	the	logged	session

activity.
error_id integer When	nonzero,	the	Microsoft®	SQL

Server™	error	message	number	of
the	most	recent	error.

job_id binary(22) Identifier	of	the	SQL	Server	Agent
job	starting	the	replication	agent.

last_action nvarchar(256)Descriptive	text.
last_timestamp binary(14) Timestamp.
local_job bit When	TRUE,	the	SQL	Server	Agent

job	executes	at	the	Distributor.	When

FALSE,	the	SQL	Server	Agent	job
executes	at	the	Subscriber.

profile_id integer Profile	identifier.
start_time nvarchar(25) Date	and	time	at	which	agent	session

started.
status integer Agent	status.	Interpret	using

SQLDMO_TASKSTATUS_TYPE.
subscriber nvarchar(129)Name	of	subscribing	data	source.
subscriber_db nvarchar(129)Name	of	the	subscribed	database	at

the	Subscriber.
type tinyint Subscription	direction.	Interpret	the

value	using
SQLDMO_SUBSCRIPTION_TYPE.

Remarks
The	EnumSubscriptionViews2	method	extends	the	functionality	of	the
EnumSubscriptionViews	method.

In	the	result	set,	date	and	time	data	returned	in	action_time	and	start_time	is
formatted	as	YYYYMMDD	hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four	hour

clock	(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three

digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

See	Also

EnumSubscriptionViews	Method

SQL-DMO

EnumSubscriptionViews2	Method
The	EnumSubscriptionViews	method	returns	a	QueryResults	object	that
enumerates	subscription	execution	status	information	maintained	at	a
Distributor.

Applies	To

DistributionPublication2	Object

Syntax
object.EnumSubscriptionViews2([fExcludeAnonymous])	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

fExcludeAnonymous

Boolean	that	specifies	whether	anonymous	subscriptions	views	are
enumerated.	Default	is	FALSE.

Prototype	(C/C++)
HRESULT	EnumSubscriptionViews2(
LPSQLDMOQUERYRESULTS	*ppResults,	
BOOL	fExcludeAnonymous)	PURE;

Returns
When	the	DistributionPublication	object	references	a	merge	replication
publication,	a	QueryResults	object	that	contains	one	result	set	defined	by	these
columns.

Column Data	type Description
action_time nvarchar(25) Date	and	time	of	execution	for	most

recent	subscription	action.
agent_id integer Agent	identifier.
agent_name nvarchar(101)Name	of	the	replication	agent.
delivery_rate integer Average	number	of	rows	delivered

per	second.
duration integer Elapsed	time	of	the	logged	session

activity	in	seconds.
error_id integer When	nonzero,	the	Microsoft®	SQL

Server™	2000	error	message	number
of	the	most	recent	error.

job_id binary(22) Identifier	of	the	SQL	Server	Agent
job	starting	the	replication	agent.

last_action nvarchar(256)Descriptive	text.
local_job bit When	TRUE,	the	SQL	Server	Agent

job	executes	at	the	Distributor.	When
FALSE,	the	SQL	Server	Agent	job
executes	at	the	Subscriber.

local_timestamp binary(14) Timestamp.
profile_id integer Profile	identifier.
publisher_conflicts integer Number	of	deletes	at	the	Publisher.
publisher_deletecount integer Number	of	deletes	at	the	Publisher.
publisher_insertcount integer Number	of	inserts	at	the	Publisher.
publisher_updatecount integer Number	of	updates	at	the	Publisher.
start_time nvarchar(25) Date	and	time	at	which	agent	session

started.
status integer Agent	status.	Interpret	using

SQLDMO_TASKSTATUS_TYPE.
subscriber nvarchar(129)Name	of	subscribing	data	source.
subscriber_updatecount integer Number	of	updates	at	the	Subscriber.
subscriber_conficts integer Number	of	conflicts	at	the

Subscriber.
subscriber_db nvarchar(129)Name	of	the	subscribed	database	at

the	Subscriber.
subscriber_deletecount integer Number	of	deletes	at	the	Subscriber.
subscriber_insertcount integer Number	of	inserts	at	the	Subscriber.
type integer Direction	of	subscription	(push	or

pull)	interpreted	using
SQLDMO_SUBSCRIPTION_TYPE.

When	the	DistributionPublication	object	references	a	transactional	or	snapshot
replication	publication,	a	QueryResults	object	that	contains	one	result	set
defined	by	these	columns.

Column Data	type Description
action_time nvarchar(25) Date	and	time	of	execution	for	most

recent	subscription	action.
agent_id integer Agent	identifier.
average_commands integer Average	number	of	commands	per

transaction.
delivered_commands integer Cumulative	number	of	commands.
delivered_transactions integer Cumulative	number	of	transactions.
delivery_latency integer Latency,	in	milliseconds,	between	the

transaction	entering	the	distribution
database	and	being	applied	to	the
Subscriber.

delivery_rate integer Average	number	of	commands
delivered	per	second.

delivery_time integer Cumulative	time	spent	delivering
transactions.

distribution_agent nvarchar(101)Name	of	the	replication	agent.
duration integer Elapsed	time	of	the	logged	session

activity.
error_id integer When	nonzero,	the	Microsoft®	SQL

Server™	2000	error	message	number
of	the	most	recent	error.

job_id binary(22) Identifier	of	the	SQL	Server	Agent

job	starting	the	replication	agent.
last_action nvarchar(256)Descriptive	text.
last_timestamp binary(14) Timestamp.
local_job bit When	TRUE,	the	SQL	Server	Agent

job	executes	at	the	Distributor.	When
FALSE,	the	SQL	Server	Agent	job
executes	at	the	Subscriber.

profile_id integer Profile	identifier.
start_time nvarchar(25) Date	and	time	at	which	agent	session

started.
status integer Agent	status.	Interpret	using

SQLDMO_TASKSTATUS_TYPE.
subscriber nvarchar(129)Name	of	subscribing	data	source.
subscriber_db nvarchar(129)Name	of	the	subscribed	database	at

the	Subscriber.
type tinyint Subscription	direction.	Interpret	the

value	using
SQLDMO_SUBSCRIPTION_TYPE.

Remarks
The	EnumSubscriptionViews2	method	extends	the	functionality	of	the
EnumSubscriptionViews	method	by	including	the	optional
fExcludeAnonymous	parameter.	When	fExcludeAnonymous	is	set	to	TRUE,
anonymous	Distribution	or	Merge	Agent	views	are	not	enumerated.

In	the	result	set,	date	and	time	data	returned	in	action_time	and	start_time	is
formatted	as	YYYYMMDD	hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four

hour	clock	(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three

digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

Note		If	an	application	calls	EnumSubscriptionViews2	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

EnumSubscriptionViews	Method

SQL-DMO

EnumSubSystems	Method
The	EnumSubSystems	method	returns	a	QueryResults	object	that	enumerates
installed	Microsoft®	SQL	Server™	2000	Agent	execution	subsystems.

Applies	To

JobServer	Object

Syntax
object.EnumSubSystems()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumSubSystems(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
agent_exe nvarchar(81) When	applicable,	executable	file

launched	by	agent.	Reserved.
description nvarchar(81) Descriptive	text.
event_entry_point nvarchar(31) Name	of	an	exported	function.

Reserved.
max_worker_threads integer Reserved.

start_entry_point nvarchar(31) Name	of	an	exported	function.
Reserved.

stop_entry_point nvarchar(31) Name	of	an	exported	function.
Reserved.

subsystem nvarchar(41) Name	of	the	subsystem.	The
subsystem	is	specified	by	name
when	creating	a	job	step.

subsystem_dll nvarchar(81) Dynamic	link	library	implementing
execution	subsystem.

SQL-DMO

EnumTables	Method
The	EnumTables	method	returns	a	QueryResults	object	that	enumerates	the
tables	of	a	linked	server.

Applies	To

LinkedServer	Object

Syntax
object.EnumTables([TableName]	,	[SchemaName]	,	[CatalogName]
,	[TableType])	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

TableName

Optional.	String	that	identifies	a	table	on	the	linked	server	by	name.	Maps	to
the	OLE	DB	schema	rowset	restriction	TABLE_NAME.	When	specified,
restricts	result	set	membership	to	the	table(s)	matching	the	criteria.

SchemaName

Optional.	String	that	identifies	a	schema	on	the	linked	server	by	name.	Maps
to	the	OLE	DB	schema	rowset	restriction	SCHEMA_NAME.	When
specified,	restricts	result	set	membership	to	tables	defined	on	the	schema.

CatalogName

Optional.	String	that	identifies	a	catalog	on	the	linked	server	by	name.	Maps
to	the	OLE	DB	schema	rowset	restriction	CATALOG_NAME.	When
specified,	restricts	result	set	membership	to	tables	defined	on	the	catalog.

TableType

Optional.	Maps	to	the	OLE	DB	schema	rowset	restriction	TABLE_TYPE.	A
long	integer	that	specifies	a	type	of	table	as	described	in	Settings.

Prototype	(C/C++)
HRESULT	EnumTables(LPSQLDMOQUERYRESULTS*	ppResults,
SQLDMO_LPCSTR	TableName	=	NULL,
SQLDMO_LPCSTR	SchemaName	=	NULL,
SQLDMO_LPCSTR	CatalogName	=	NULL,
SQLDMO_LINKEDTABLE_TYPE	TableType	=
SQLDMOLinkedTable_Default);

Settings

Constant Value Description
SQLDMOLinkedTable_GlobalTemporary 2 Restrict	result	set

membership	to	global
temporary	tables

SQLDMOLinkedTable_LocalTemporary 3 Restrict	result	set
membership	to	local
temporary	tables

SQLDMOLinkedTable_Alias 1 Restrict	result	set
membership	to	alias
tables

SQLDMOLinkedTable_Default 0 No	restriction
SQLDMOLinkedTable_SystemTable 4 Restrict	result	set

membership	to	system
tables

SQLDMOLinkedTable_SystemView 7 Restrict	result	set
membership	to	System
views

SQLDMOLinkedTable_Table 5 Restrict	result	set
membership	to	user
tables

SQLDMOLinkedTable_View 6 Restrict	result	set
membership	to	views

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
TABLE_CAT nvarchar(129) Catalog	name.	May	be	NULL.
TABLE_SCHEM nvarchar(129) Schema	name.	May	be	NULL.
TABLE_NAME nvarchar(129) Table	name.
TABLE_TYPE nvarchar(129) Type	of	table.
REMARKS nvarchar(256) Descriptive	text.	May	be

NULL.

Remarks
The	EnumTables	method	is	implemented	using	the	IDBSchemaRowset
interface	of	the	OLE	DB	provider	specified	by	the	linked	server.	The	method
returns	part	of	the	DBSCHEMA_TABLES	rowset.

Some	OLE	DB	providers	support	wildcard	matches	in	restrictions	specified	by
the	TableName,	SchemaName,	and	CatalogName	arguments	of	the	EnumTables
method.	Some	OLE	DB	providers	return	values	in	the	result	set	columns
TABLE_CAT,	TABLE_SCHEM,	and	REMARKS.	For	more	information
about	argument	specification	and	result	set	membership	interpretation,	see	the
OLE	DB	provider	documentation.

SQL-DMO

EnumTargetServers	Method
The	EnumTargetServers	method	returns	a	QueryResults	object	that
enumerates	the	execution	targets	of	the	referenced	Microsoft®	SQL	Server™
2000	Agent	job.

Applies	To

Job	Object

Syntax
object.EnumTargetServers()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumTargetServers(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
enlist_date smalldatetime When	applicable,	date	and	time	at

which	the	target	server	(TSX)
enlisted	in	the	multiserver
administration	group

last_outcome_message nvarchar(1025)SQL	Server	message	raised	in
response	to	last	execution

last_poll_date smalldatetime When	applicable,	most	recent	date
and	time	at	which	the	TSX	server
polled	the	master	server	(MSX)	for
new	instructions

last_run_date integer When	nonzero,	date	on	which
execution	occurred	formatted	as
described	in	Remarks

last_run_duration integer When	nonzero,	execution	duration
expressed	as	a	number	of	seconds

last_run_outcome tinyint Execution	outcome	interpreted
using
SQLDMO_JOBOUTCOME_TYPE

last_run_time integer When	nonzero,	time	at	which
execution	occurred	formatted	as
described	in	Remarks

server_id integer System-generated	identifier	of	a
target	server

server_name nvarchar(31) Network	name	of	the	server
running	Microsoft	SQL	Server

Remarks
The	result	set	column	last_run_date	represents	the	execution	date	as	a	scaled
long	integer.	The	integer	is	built	as	a	sum	of	the	year	scaled	by	10000,	the	month
scaled	by	100,	and	the	day.	For	example,	the	date	April	19,	1997	is	represented
by	the	long	integer	value	19970419.

The	result	set	column	last_run_time	represents	execution	time	as	a	scaled	long
integer.	The	integer	is	built	as	a	sum	of	the	hour	scaled	by	10000,	the	minute
scaled	by	100,	and	the	seconds.	The	value	uses	a	24-hour	clock.	For	example,
the	time	1:03:09	P.M.	is	represented	by	the	long	integer	value	130309.

SQL-DMO

EnumThirdPartyPublications	Method
The	EnumThirdPartyPublications	method	returns	a	QueryResults	object	that
enumerates	publications	originating	from	heterogenous	data	sources.

Applies	To

Distributor	Object

Syntax
object.EnumThirdPartyPublications([DistributionDBName])
as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

DistributionDBName

Optional.	String	that	identifies	an	existing	Microsoft®	SQL	Server™
replication	distribution	database	by	name.	When	specified,	restricts	result	set
membership	to	those	publications	implemented	in	the	named	database.

Prototype	(C/C++)
HRESULT	EnumThirdPartyPublications(
LPSQLDMOQUERYRESULTS	*ppResults,	
SQLDMO_LPCSTR	pszDistributionDBName);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description

agent_access bit Reserved.
allow_anonymous bit When	TRUE,	allow	anonymous,

pull	subscriptions.
allow_pull bit When	TRUE,	allow	Subscriber-

originated	(pull)	subscriptions.
allow_sync_tran bit When	TRUE,	allow	Subscriber	to

update	article	image	and	propagate
the	update	to	the	Publisher.

description nvarchar(256)Descriptive	text.
distribution_db nvarchar(129)Distribution	database	name.
enabled_for_internet bit When	TRUE,	publication	is

enabled	for	distribution	using	the
Internet.

immediate_sync bit When	TRUE,	force	immediate
synchronization	on	publication
subscription.

immediate_sync_ready bit When	TRUE,	a	synchronizing
image	of	the	publication	is	allowed.

independent_agent bit When	TRUE,	a	stand-alone	agent
enables	the	publication.

publication nvarchar(129)Publication	name.
publisher nvarchar(129)Data	source	name.
publisher_db nvarchar(129)Name	of	database	published.
repl_freq tinyint Frequency	used	to	replicate	data.

Interpret	value	using
SQLDMO_REPFREQ_TYPE.

replication_type tinyint Replication	method.	Interpret	the
value	using
SQLDMO_REPLICATION_TYPE.

thirdparty_flag bit When	TRUE,	the	publication
derives	from	a	heterogeneous
source.

vendor_name nvarchar(129)Data	source	vendor	name.

Remarks
The	EnumThirdPartyPublications2	method	extends	the	functionality	of	the
EnumThirdPartyPublications	method.

See	Also

EnumThirdPartyPublications2	Method

SQL-DMO

EnumThirdPartyPublications2	Method
The	EnumThirdPartyPublications2	method	returns	a	QueryResults	object
that	enumerates	publications	originating	from	heterogeneous	data	sources.

Applies	To

Distributor2	Object

Syntax
object.EnumThirdPartyPublications2(
[bstrDistributionDBName]	,	
[bstrVendorName])	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

bstrDistributionDBName

Optional.	String	that	identifies	an	existing	Microsoft®	SQL	Server™	2000
replication	distribution	database	by	name.	When	specified,	restricts	result	set
membership	to	those	publications	implemented	in	the	named	database.

bstrVendorName

Optional.	String	used	to	filter	the	result	set	by	vendor	name.

Prototype	(C/C++)
HRESULT	EnumThirdPartyPublications2(
LPSQLDMOQUERYRESULTS	*ppResults,	
SQLDMO_LPCSTR	pszDistributionDBName,	
SQLDMO_LPCSTR	pszVendorName);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
agent_access bit Reserved.
allow_anonymous bit When	TRUE,	allow	anonymous,

pull	subscriptions.
allow_pull bit When	TRUE,	allow	(pull)

subscriptions	that	originate	at	the
Subscriber.

allow_sync_tran bit When	TRUE,	allow	Subscriber	to
update	article	image	and	propagate
the	update	to	the	Publisher.

description nvarchar(256)Descriptive	text.
distribution_db nvarchar(129)Distribution	database	name.
enabled_for_internet bit When	TRUE,	publication	is

enabled	for	distribution	using	the
Internet.

immediate_sync bit When	TRUE,	force	immediate
synchronization	on	publication
subscription.

immediate_sync_ready bit When	TRUE,	a	synchronizing
image	of	the	publication	is	allowed.

independent_agent bit When	TRUE,	a	stand-alone	agent
enables	the	publication.

publication nvarchar(129)Publication	name.
publisher nvarchar(129)Data	source	name.
publisher_db nvarchar(129)Name	of	the	published	database
repl_freq tinyint Frequency	used	to	replicate	data.

Interpret	value	using
SQLDMO_REPFREQ_TYPE.

replication_type tinyint Replication	method.	Interpret	the
value	using
SQLDMO_REPLICATION_TYPE.

thirdparty_flag bit When	TRUE,	the	publication
derives	from	a	heterogeneous
source.

vendor_name nvarchar(100)Name	of	vendor	whose	application
created	the	publication.

Remarks
An	application	can	call	the	EnumThirdPartyVendorNames	method	to	retrieve
a	distinct	list	of	third-party	vendor	names.	By	specifying	a	specific	vendor	name
in	the	bstrVendorName	parameter,	the	application	could	then	call
EnumThirdPartyPublications2	method	to	enumerate	publications	created	by
that	vendor.

If	bstrVendorName	is	set	to	'others'	only	third-party	publications	where	the
vendor_name	column	contains	NULL	or	is	empty	are	returned.

Note		If	an	application	calls	EnumThirdPartyPublications2	on	an	instance	of
SQL	Server	version	7.0	and	the	bstrVendorName	parameter	is	not	NULL,	the
constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This	property	or
method	requires	Microsoft	SQL	Server	2000"	are	returned.
EnumThirdPartyPublications2	can	be	used	with	Microsoft®	SQL	Server™
2000	and	SQL	Server	7.0	if	the	bstrVendorName	parameter	is	NULL.

See	Also

EnumThirdPartyPublications	Method

SQL-DMO

EnumThirdPartyVendorNames	Method
The	EnumThirdPartyVendorNames	method	returns	a	QueryResults	object
that	enumerates	third-party	vendor	names.

Applies	To

Distributor2	Object

Syntax
object.EnumThirdPartyVendorNames()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	EnumThirdPartyVendorNames(LPSQLDMOQUERYRESULTS
*ppResults);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	this	column.

Column Data	type Description
vendor_name nvarchar(100) Name	of	vendor	whose	application

created	the	publication.

Remarks
An	application	can	call	EnumThirdPartyVendorNames	to	retrieve	a	distinct

list	of	third-party	vendor	names.	The	application	could	then	call	the
EnumThirdPartyPublications2	method	to	enumerate	publications	created	by	a
specific	vendor.

Note		If	an	application	calls	EnumThirdPartyVendorNames	on	an	instance	of
SQL	Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the
message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

SQL-DMO

EnumUsers	Method
The	EnumUsers	method	returns	a	QueryResults	object	that	enumerates	the
users	defined	in	a	Microsoft®	SQL	Server™	2000	database	and	their	role
participation.

Applies	To

Database	Object

Syntax
object.EnumUsers([UserName])	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

UserName

Optional.	String	that	specifies	a	database	user	or	role	by	name.	When
specified,	directs	content	and	membership	of	the	returned	result	set.

Prototype	(C/C++)
HRESULT	EnumUsers(
LPSQLDMOQUERYRESULTS*	ppResults,
LPCOLESTR	UserName	=	NULL);

Returns
When	UserName	is	not	specified,	or	specifies	a	database	user	by	name,	the
EnumUsers	method	returns	a	QueryResults	object	that	contains	one	result	set
defined	by	these	columns.

Column Data	type Description
DefDBName nvarchar(13) Database	used	by	default	when	a

connection	is	made	using	the	listed
login.

GroupName nvarchar(17) Database	role.	One	row	is	returned	for
each	role	of	which	the	user	is	a
member.

LoginName nvarchar(5) Login	name.
SID varbinary(91) System-generated	login	account.
UserID char(14) System-generated	database	user

identifier.
UserName nvarchar(11) Database	username.

When	UserName	specifies	a	database	role	by	name,	the	EnumUsers	method
returns	a	QueryResults	object	that	contains	one	result	set	defined	by	these
columns.

Column Data	type Description
Group_id smallint System-generated	role	identifier
Group_name nvarchar(26) Name	of	the	database	role
Userid smallint System-generated	database	user

identifier
Users_in_group nvarchar(26) Database	username

SQL-DMO

EnumVersionInfo	Method
The	EnumVersionInfo	method	returns	a	QueryResults	object	that	enumerates
the	members	of	the	VERSIONINFO	resource	that	identifies	an	instance	of
Microsoft®	SQL	Server™	2000.

Applies	To

SQLServer	Object

Syntax
object.EnumVersionInfo([Prefixes])	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prefixes

Comma-separated	string	that	names	VERSIONINFO	resource	members	and
optionally	directing	output	to	list	only	those	members	specified

Prototype	(C/C++)
HRESULT	EnumVersionInfo(
LPSQLDMOQUERYRESULTS*	ppResults,
SQLDMO_LPCSTR	szPrefixes	=	NULL);

Returns
A	QueryResults	object	that	contains	one	result	set	defined	by	these	columns.

Column Data	type Description
Character_Value nvarchar(121) Member	value	as	a	string.

Index smallint Offset	of	the	member	in	the	structure.
Internal_Value integer If	applicable,	member	value.	Contains

values	only	when	the	member	is
defined	as	a	numeric	value.

Name nvarchar(33) Display	name	of	the	structure	member.

SQL-DMO

ExecuteImmediate	Method	(Database,	SQLServer)
The	ExecuteImmediate	method	submits	a	Transact-SQL	command	batch	on	a
connection,	and	directs	execution	or	batch	interpretation	as	specified	by	the
application.

Applies	To

Database	Object SQLServer	Object

Syntax
object.ExecuteImmediate(Command	,	[ExecutionType]	
,	[Length])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Command

String	that	specifies	a	Transact-SQL	command	batch.

ExecutionType

Optional.	Long	integer	that	controls	statement	batch	execution	as	described
in	Settings.

Length

Optional.	Long	integer	that	indicates	the	statement	batch	length.

Prototype	(C/C++)
HRESULT	ExecuteImmediate(
SQLDMO_LPCSTR	Command,
SQLDMO_EXEC_TYPE	ExecType	=	SQLDMOExec_Default,

long	lLength	CPPDEFAULT(=	0));

Settings
Set	the	ExecutionType	argument	using	these	values.

Constant Value Description
SQLDMOExec_ContinueOnError 2 Batch	execution	continues	on

any	error	that	does	not	break
the	connection.

SQLDMOExec_Default 0 No	statement	execution
options	set.

SQLDMOExec_NoCommandTerm1 Ignore	the	command
terminator	in	the	script.
Execute	as	a	single	batch.

SQLDMOExec_NoExec 4 Execute	SET	NOEXEC	ON
prior	to	batch	execution.
Execute	SET	NOEXEC	OFF
after	batch	execution.

SQLDMOExec_ParseOnly 8 Execute	SET	PARSEONLY
ON	prior	to	batch	execution.
Execute	SET	PARSEONLY
OFF	after	batch	execution.

SQLDMOExec_QI_ON 16 Execute	SET
QUOTED_IDENTIFIER	ON
prior	to	batch	execution.
Execute	SET
QUOTED_IDENTIFIER	OFF
after	batch	execution.

SQL-DMO

ExecuteImmediate	Method	(LinkedServer,
RemoteServer)
The	ExecuteImmediate	method	connects	to	a	linked	server	or	remote	server
data	source,	executes	a	Transact-SQL	command	batch	on	the	connection,	and
disconnects.

Applies	To

LinkedServer	Object RemoteServer	Object

Syntax
object.ExecuteImmediate(Command	,	[Length])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Command

String	that	specifies	a	Transact-SQL	command	batch.

Length

Optional.	Long	integer	that	indicates	the	statement	batch	length.

Prototype	(C/C++)
HRESULT	ExecuteImmediate(
SQLDMO_LPCSTR	Command,
long	lLength	CPPDEFAULT(=	0));

Remarks

When	using	the	ExecuteImmediate	method	with	the	LinkedServer	object,
command	batch	syntax	is	provider-specified.	For	more	information,	see	the	OLE
DB	provider	documentation.

SQL-DMO

ExecuteWithResults	Method
The	ExecuteWithResults	method	executes	a	Transact-SQL	command	batch
returning	batch	result	sets	in	a	QueryResults	object.

Applies	To

Database	Object RemoteServer	Object
LinkedServer	Object SQLServer	Object

Syntax
object.ExecuteWithResults(Command	,	[Length])	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Command

String	that	specifies	a	Transact-SQL	or	provider-specific	command	batch.

Length

Optional.	Long	integer	that	indicates	the	statement	batch	length.

Prototype	(C/C++)
HRESULT	ExecuteWithResults(
SQLDMO_LPCSTR	Command,
LPSQLDMOQUERYRESULTS*	ppResults,
long	lLength);

Returns
A	QueryResults	object.

Remarks
When	using	the	ExecuteWithResults	method	with	the	LinkedServer	object,
command	batch	syntax	is	provider-specified.	For	more	information,	see	the	OLE
DB	provider	documentation.

SQL-DMO

ExecuteWithResultsAndMessages	Method
The	ExecuteWithResultsAndMessages	method	executes	a	Transact-SQL
command	batch	returning	batch	result	sets	in	a	QueryResults	object	and
capturing	messages	raised	as	part	of	command	batch	execution.

Applies	To

Database	Object RemoteServer	Object
LinkedServer	Object SQLServer	Object

Syntax
object.ExecuteWithResultsAndMessages(Command	,	Length	,	Messages)
as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Command

String	that	specifies	a	Transact-SQL	or	provider-specific	command	batch.

Length

Long	integer	that	indicates	the	statement	batch	length.

Messages

String	used	to	return	message	output.

Prototype	(C/C++)
HRESULT	ExecuteWithResultsAndMessages(
SQLDMO_LPCSTR	Command,

LPSQLDMOQUERYRESULTS*	ppResults,
SQLDMO_LPBSTR	Messages,
long	lLength);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Returns
A	QueryResults	object	that	contains	command	batch	results.	The	method	fills
the	string	specified	by	the	Messages	argument	with	message	returns,	if	any	are
generated	by	batch	execution.

Remarks
The	ExecuteWithResultsAndMessages2	method	extends	the	functionality	of
the	ExecuteWithResultsAndMessages	method.

Visual	Basic	applications	should	call	ExecuteWithResultsAndMessages2
instead	of	ExecuteWithResultsAndMessages.
ExecuteWithResultsAndMessages2	is	not	available	to	C++	applications,	which
should	call	ExecuteWithResultsAndMessages.

For	Microsoft®	SQL	Server™	2000	error	severity	indicates	the	degree	of	an
error	condition.	Some	errors	are	severe	enough	to	terminate	statement	execution
prematurely.	Any	error	with	a	severity	of	10	or	higher	is	returned	to	the	SQL-
DMO	application	through	normal	error	handling.

Minor	errors,	SQL	Server	errors	with	a	severity	of	less	than	10,	indicate	that
statement	execution	succeeded,	but	that	success	was	conditional.	These	are
called	Success-with-information	errors.	Some	Transact-SQL	statements,	such	as
the	PRINT	statement,	do	not	generate	result	sets,	using	messages	for	their	return
value.

The	ExecuteWithResultsAndMessages2	method	implements	command	batch
execution	for	a	SQL-DMO	application,	allowing	the	application	to	capture
success-with-information	errors	or	other	information	transmitted	as	messages.

Note		When	using	the	ExecuteWithResultsAndMessages	method	with	the
LinkedServer	object,	command	batch	syntax	is	provider-specified.	Some	OLE

DB	providers	may	support	message	returns	as	defined	for	SQL	Server.	For	more
information,	see	the	OLE	DB	provider	documentation.

See	Also

ExecuteWithResultsAndMessages2	Method

SQL-DMO

ExecuteWithResultsAndMessages2	Method
The	ExecuteWithResultsAndMessages2	method	executes	a	Transact-SQL
command	batch	returning	batch	result	sets	in	a	QueryResults	object	and
capturing	messages	raised	as	part	of	command	batch	execution.

Applies	To

Database2	Object RemoteServer2	Object
LinkedServer2	Object SQLServer2	Object

Syntax
object.	ExecuteWithResultsAndMessages2(Command	,	Messages	,	[Length]
)	
as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Command

String	that	specifies	a	Transact-SQL	or	provider-specific	command	batch.

Messages

String	used	to	return	message	output.

Length

Optional.	A	long	integer	that	indicates	the	statement	batch	length.

Prototype	(C/C++)
Not	applicable

Returns
A	QueryResults	object	that	contains	command	batch	results.	The	method	fills
the	string	specified	by	the	Messages	argument	with	message	returns,	if	any	are
generated	by	batch	execution.

Remarks
For	Microsoft®	SQL	Server™,	error	severity	indicates	the	degree	of	an	error
condition.	Some	errors	are	severe	enough	to	terminate	statement	execution
prematurely.	Any	error	with	a	severity	of	10	or	higher	is	returned	to	the	SQL-
DMO	application	through	normal	error	handling.

Minor	errors,	SQL	Server	errors	with	a	severity	of	less	than	10,	indicate	that
statement	execution	succeeded,	but	that	success	was	conditional.	These	are
called	Success-with-information	errors.	Some	Transact-SQL	statements,	such	as
the	PRINT	statement,	do	not	generate	result	sets,	but	use	messages	for	their
return	value.

The	ExecuteWithResultsAndMessages	method	implements	command	batch
execution	for	a	SQL-DMO	application,	allowing	the	application	to	capture
success-with-information	errors	or	other	information	transmitted	as	messages.

Note		Visual	Basic	applications	should	call	ExecuteWithResultsAndMessages2
instead	of	ExecuteWithResultsAndMessages	because	the	Length	parameter	is
not	optional	in	the	original	ExecuteWithResultsAndMessages	method.
ExecuteWithResultsAndMessages2	is	not	available	to	C++	applications,	which
should	call	ExecuteWithResultsAndMessages.

ExecuteWithResultsAndMessages2	can	be	used	with	SQL	Server	2000	and
SQL	Server	7.0.

See	Also

ExecuteWithResultsAndMessages	Method

SQL-DMO

ExportData	Method
The	ExportData	method	uses	the	indicated	BulkCopy	object	to	copy	data	from
a	Microsoft®	SQL	Server™	2000	database	to	the	data	file	specified	by	the
BulkCopy	object.

Applies	To

Table	Object View	Object

Syntax
object.ExportData(BulkCopy)	as	Long

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

BulkCopy

BulkCopy	object	that	controls	data	export

Prototype	(C/C++)
HRESULT	ExportData(
LPSQLDMOBULKCOPY	Bcp,
LPLONG	plRowsExported	=	NULL);

Returns
A	long	integer	that	indicates	the	number	of	rows	written	to	the	data	file.

SQL-DMO

F

SQL-DMO

FindName	Method
The	FindName	method	returns	the	ordinal	position	of	a	string	within	a	container
object.

Applies	To

NameList	Object Names	Collection

Syntax
object.FindName(Name)	as	Long

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Name

String	on	which	the	search	is	based

Prototype	(C/C++)
HRESULT	FindName(SQLDMO_LPCSTR	szName
LPLONG	pRetVal);

Returns
On	success,	a	long	integer	that	indicates	the	ordinal	position	of	the	name	string.
Zero,	if	the	name	cannot	be	located	in	the	container.

Remarks
On	failed	search,	the	method	raises	the	error	SQLDMO_E_NAMENOTFOUND.

SQL-DMO

FullTextIndexScript	Method
The	FullTextIndexScript	method	returns	a	Transact-SQL	command	batch
enabling	Microsoft	Search	full-text	indexing	on	a	database	or	table.

Applies	To

Database	Object Table	Object

Syntax
object.FullTextIndexScript()	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	FullTextIndexScript(SQLDMO_LPBSTR	szScript);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	by	using	SysFreeString.

Returns
A	string	that	specifies	a	Transact-SQL	command	batch.

Remarks
SQL-DMO	implements	scripting	methods	that	generate	Transact-SQL	command
batches	that	specify	component	creation	or	alteration.	In	addition	to	scripts
generated	by	the	FullTextIndexScript	method,	Microsoft	Search	full-text	index
configuration	scripting	uses	the	GenerateSQL	and	Script	methods	defined	on

the	FullTextCatalog	object.

SQL-DMO

FullTextPopulation	Method
The	FullTextPopulation	method	starts	or	stops	Microsoft	Search	full-text	table
population,	building	the	index	supporting	full-text	queries	on	data	maintained	by
Microsoft®	SQL	Server™	2000.

Applies	To

Table2	Object 	

Syntax
object.FullTextPopulation(Type)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Type

Long	integer	that	specifies	a	SQLDMO_FULLTEXT_POPULATE_
TYPE	constant	as	described	in	Settings.

Prototype	(C/C++)
HRESULT	FullTextPopulation(SQLDMO_FULLTEXT_POPULATE_TYPE
NewType);

Settings
Set	Type	using	these	values.

Constant Value Description
SQLDMOFullText_PopuFull 0 Perform	a	full	population	of	the	of

the	table	index	to	the	full-text

catalog.
SQLDMOFullText_PopuInc 1 Perform	an	incremental	population

of	the	table	index	to	the	full-text
catalog.

SQLDMOFullText_PopuStop 2 Stop	full	or	incremental
population	of	the	table	index	to	the
full-text	catalog.

Remarks
Setting	the	Type	parameter	to	SQLDMOFullText_PopuFull	results	in	a	complete
rebuild	of	the	index.	Setting	Type	to	SQLDMOFullText_PopuInc	causes
FullTextPopulation	to	rescan	the	rows	changed	since	the	last	full	rebuild.	The
table	must	have	a	timestamp	column	to	support	the	SQLDMOFullText_PopuInc
setting.

Use	the	FullTextPopulateStatus	property	to	determine	the	current	status	of	the
full-text	table	population	process.

Note		Prior	to	setting	FullTextTracking,	you	must	add	the	catalog	to	the
FullTextCatalogsCollection,	and	set	IsFullTextEnabled	to	TRUE	for	the
database.

Note		If	an	application	calls	FullTextPopulation	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

FullTextPopulateStatus	Property

FullTextUpdateIndex	Method

TableFullTextChangeTrackingOn	Property

TableFullTextUpdateIndexOn	Property

SQL-DMO

FullTextUpdateIndex	Method
The	FullTextUpdateIndex	method	propagates	the	current	set	of	tracked	changes
to	Microsoft	Search.

Applies	To

Table2	Object 	

Syntax
object.FullTextUpdateIndex()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	FullTextUpdateIndex();

Remarks
If	the	TableFullTextUpdateIndexOn	property	is	set	to	FALSE,	an	application
must	call	the	FullTextUpdateIndex	method	to	propagate	index	changes	to
Microsoft	Search.	The	TableFullTextChangeTrackingOn	property	also	must
be	set	to	TRUE.

FullTextUpdateIndex	flushes	the	current	set	of	tracked	changes.	If	the
TableFullTextUpdateIndexOn	property	is	set	to	TRUE,	changes	are	propagated
as	a	background	operation.

Note		If	an	application	calls	FullTextUpdateIndex	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

FullTextPopulateStatus	Property

FullTextPopulation	Method

TableFullTextUpdateIndexOn	Property

TableFullTextChangeTrackingOn	Property

SQL-DMO

G

SQL-DMO

GenerateCreationSQL	Method
The	GenerateCreationSQL	method	returns	a	string	that	contains	a	Transact-
SQL	command	batch	used	to	create	the	Microsoft®	SQL	Server™	2000	index
defined	by	the	properties	of	the	Index	object	used.

Applies	To

Index	Object

Syntax
object.GenerateCreationSQL(Table)	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Table

Expression	that	evaluates	to	a	SQL-DMO	Table	object

Prototype	(C/C++)
HRESULT	GenerateCreationSQL(
LPSQLDMOTABLE	TargetTable,
SQLDMO_LPBSTR	Messages);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Returns
A	Transact-SQL	command	batch	as	a	string.

Remarks
The	Index	object	exposes	the	GenerateSQL	and	GenerateCreationSQL
methods.	Both	methods	generate	a	command	batch	that	creates	an	index.
However,	the	Transact-SQL	command	batch	returned	by	the
GenerateCreationSQL	method	prefixes	an	index	creation	statement	with	a
statement	conditionally	dropping	the	index.

For	more	information	about	using	the	GenerateSQL	and
GenerateCreationSQL	methods,	see	GenerateSQL	Method	(Index).

SQL-DMO

GenerateCreationSQLOnView	Method
The	GenerateCreationSQLOnView	method	returns	a	string	that	contains	a
Transact-SQL	command	batch.	This	command	batch	can	be	used	to	create	the
Microsoft®	SQL	Server™	2000	index	defined	by	the	properties	of	the	Index
object	used	to	create	the	index.

Applies	To

Index2	Object

Syntax
object.GenerateCreationSQLOnView(TargetView)	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

TargetView

Expression	that	evaluates	to	a	View	object	in	SQL-DMO

Prototype	(C/C++)
HRESULT	GenerateCreationSQLOnView(
LPSQLDMOVIEW	TargetView,	
SQLDMO_LPBSTR	pSQLStatement);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

The	Index2	object	exposes	the	GenerateSQLOnView	and
GenerateCreationSQLOnView	methods.	Both	methods	generate	a	command
batch	when	creating	an	index.	However,	the	Transact-SQL	command	batch
returned	by	the	GenerateCreationSQLOnView	method	prefixes	an	index
creation	statement	with	a	statement	that	conditionally	removes	the	index.

See	Also

GenerateSQLOnView	Method

SQL-DMO

GenerateFilters	Method
The	GenerateFilters	method	creates	subset	filters	based	on	FOREIGN	KEY
constraints	defined	on	tables	published	as	articles	of	the	referenced	merge
replication	publication.

Applies	To

MergePublication	Object

Syntax
object.GenerateFilters()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	GenerateFilters();

SQL-DMO

GenerateSQL	Method	(Backup,	Restore)
The	GenerateSQL	method	returns	a	string	that	contains	a	Transact-SQL
command	batch	used	to	perform	the	Microsoft®	SQL	Server™	2000	database
backup	or	restore	operation	defined	by	the	SQL-DMO	object.

Applies	To

Backup	Object Restore	Object

Syntax
object.GenerateSQL()	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	GenerateSQL(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Returns
A	Transact-SQL	command	batch	as	a	string

SQL-DMO

GenerateSQL	Method	(Database)
The	GenerateSQL	method	returns	a	string	that	contains	a	Transact-SQL
command	batch	used	to	create	the	Microsoft®	SQL	Server™	2000	database
defined	by	the	properties	of	the	Database	object.

Applies	To

Database	Object

Syntax
object.GenerateSQL()	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	GenerateSQL(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Returns
A	Transact-SQL	command	batch	as	a	string

Remarks
The	GenerateSQL	method	generates	a	Transact-SQL	batch	that	creates	a
database.	The	method	fails	if	the	Database	object	used	references	an	existing
SQL	Server	database.	Use	the	Script	method	of	the	Database	object	to	create	a

Transact-SQL	command	batch	defining	an	existing	database.

SQL-DMO

GenerateSQL	Method	(FullTextCatalog)
The	GenerateSQL	method	returns	a	string	that	contains	a	Transact-SQL
command	batch	used	to	create	a	new	Microsoft	Search	full-text	catalog	or	to	re-
create	an	existing	Microsoft	Search	full-text	catalog.

Applies	To

FullTextCatalog	Object

Syntax
object.GenerateSQL()	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	GenerateSQL(SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Returns
A	Transact-SQL	command	batch	as	a	string

SQL-DMO

GenerateSQL	Method	(Index)
The	GenerateSQL	method	returns	a	string	that	contains	a	Transact-SQL
command	batch	used	to	create	the	Microsoft®	SQL	Server™	2000	index	defined
by	the	properties	of	the	Index	object	used.

Applies	To

Index	Object

Syntax
object.GenerateSQL(Table)	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Table

Expression	that	evaluates	to	a	SQL-DMO	Table	object

Prototype	(C/C++)
HRESULT	GenerateSQL(
LPSQLDMOTABLE	pTable,
SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Returns
A	Transact-SQL	command	batch	as	a	string

Remarks
Use	the	GenerateSQL	or	GenerateCreationSQL	method	to	create	a	command
batch	for	use	in	another	process.	For	example,	to	define	a	new	index,	capture	the
command	batch	using	the	GenerateSQL	or	GenerateCreationSQL	method,
then	use	the	command	batch	to	create	a	job	step	for	scheduled	index	creation.

For	the	Index	object,	the	GenerateSQL	and	GenerateCreationSQL	methods
perform	similar	functions.	The	script	returned	by	the	GenerateSQL	method
includes	a	Transact-SQL	statement	creating	an	index.	The
GenerateCreationSQL	method	prefixes	the	index	creation	statement	with
Transact-SQL	syntax	that	conditionally	removes	an	existing	index.

To	use	the	GenerateSQL	or	GenerateCreationSQL	method

1.	 Create	a	new	Index	object.

2.	 Set	the	Name	property.

3.	 Set	the	IndexedColumns	property;	reference	columns	in	the	target
table	by	name.

4.	 Set	additional	properties	that	define	the	index	such	as	FileGroup	and
Type.

5.	 Get	the	Table	object	that	references	the	target	table	from	the	Tables
collection.

6.	 Call	the	method	that	generates	the	Transact-SQL	command	batch,
capturing	the	returned	text.

IMPORTANT		The	GenerateSQL	and	GenerateCreationSQL	methods
generate	a	Transact-SQL	batch	used	to	create	an	index.	The	method
fails	if	the	Index	object	used	references	an	existing	SQL	Server	index.
Use	the	Script	method	of	the	Index	object	to	create	a	Transact-SQL
command	batch	that	defines	an	existing	index.

SQL-DMO

GenerateSQL	Method	(Table,	UserDefinedDatatype)
The	GenerateSQL	method	returns	a	string	that	contains	a	Transact-SQL
command	batch	used	to	create	the	Microsoft®	SQL	Server™	2000	database
object	defined	by	the	properties	of	the	SQL-DMO	object	used.

Applies	To

Table	Object UserDefinedDatatype	Object

Syntax
object.GenerateSQL(Database)	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Database

Expression	that	evaluates	to	a	SQL-DMO	Database	object

Prototype	(C/C++)
HRESULT	GenerateSQL(
LPSQLDMODATABASE	pDB,
SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Returns
A	Transact-SQL	command	batch	as	a	string

Remarks
The	GenerateSQL	method	generates	a	Transact-SQL	batch	that	creates	a
database	object.	The	method	fails	if	the	SQL-DMO	object	used	references	an
existing	SQL	Server	database	object.	Use	the	Script	method	of	the	Table	or
UserDefinedDatatype	objects	to	create	a	Transact-SQL	command	batch
defining	an	existing	table	or	user-defined	data	type.

SQL-DMO

GenerateSQLOnView	Method
The	GenerateSQLOnView	method	returns	a	string	that	contains	a	Transact-
SQL	command	batch.	This	command	batch	can	be	used	to	create	the	Microsoft®
SQL	Server™	index	defined	by	the	properties	of	the	Index	object	used	to	create
the	index.

Applies	To

Index2	Object

Syntax
object.GenerateSQLOnView(pView)	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

PView

Expression	that	evaluates	to	an	Index	object	in	SQL-DMO

Prototype	(C/C++)
HRESULT	GenerateSQLOnView(
LPSQLDMOVIEW	pView,	
SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks

Use	the	GenerateSQLOnView	or	GenerateCreationSQLOnView	method	to
create	a	command	batch	for	use	in	another	process.	For	example,	to	define	a	new
index,	capture	the	command	batch	using	the	GenerateSQLOnView	or
GenerateCreationSQLOnView	method,	then	use	the	command	batch	to	create
a	job	step	for	scheduled	index	creation.

For	the	Index2	object,	the	GenerateSQLOnView	and
GenerateCreationSQLOnView	methods	perform	similar	functions.	The	script
returned	by	the	GenerateSQLOnView	method	includes	a	Transact-SQL
statement	that	creates	an	index.	The	GenerateCreationSQLOnView	method
prefixes	the	index	creation	statement	with	Transact-SQL	syntax	that
conditionally	removes	an	existing	index.

To	use	the	GenerateSQLOnView	or	GenerateCreationSQLOnView	method

1.	 Create	a	new	Index2	object.

2.	 Set	the	Name	property.

3.	 Set	the	IndexedColumns	property;	reference	columns	in	the	target
table	by	name.

4.	 Set	additional	properties	that	define	the	index,	such	as	FileGroup	and
Type.

5.	 Get	the	Table	object	that	references	the	target	table	from	the	Tables
collection.

6.	 Call	the	method	that	will	generate	the	Transact-SQL	command	batch
and	capture	the	returned	text.

See	Also

GenerateCreationSQLOnView	Method

SQL-DMO

GetAgentsStatus	Method	(DistributionPublication,
DistributionPublisher)
The	GetAgentsStatus	method	returns	a	high	level	report	of	execution	state	for
replication	agents	implementing	the	publications	of	a	Publisher.

Applies	To

DistributionPublication	Object DistributionPublisher	Object

Syntax
object.GetAgentsStatus(ReturnedStatus	,	TimeStamp)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

ReturnedStatus

Enumerated	long	value	returned

TimeStamp

String	value	returned

Prototype	(C/C++)
HRESULT	GetAgentsStatus(
SQLDMO_TASKSTATUS_TYPE*	pRetValStatus,
SQLDMO_LPBSTR	pRetValTimeStamp	=	NULL);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Returns
Interpret	the	value	returned	in	the	ReturnedStatus	argument	using	these
SQLDMO_TASKSTATUS_TYPE	values.

Constant Value Description
SQLDMOTask_Failed 6 At	least	one	agent-implementing	job

has	failed	to	execute	successfully
SQLDMOTask_Idle 4 All	agent-implementing	jobs	are

scheduled	and	idle
SQLDMOTask_Pending 0 All	agent-implementing	jobs	are

waiting	to	start
SQLDMOTask_Retry 5 At	least	one	agent-implementing	job	is

attempting	to	execute	after	a	previous
failure

SQLDMOTask_Running 3 At	least	one	agent-implementing	job	is
executing

SQLDMOTask_Starting 1 One	or	more	agent-implementing	jobs
are	starting

SQLDMOTask_Succeeded 2 All	agent-implementing	jobs	have
successfully	executed

The	TimeStamp	argument	returns	a	timestamp	(binary)	value	as	a	hexadecimal
character	string.

Remarks
When	using	Microsoft®	Visual	Basic®	as	a	SQL-DMO	application	development
environment,	use	the	subroutine	call	statement	syntax	to	execute	the
GetAgentsStatus	method	successfully.

The	GetAgentsStatus2	method	extends	the	functionality	of	the
GetAgentsStatus	method.

See	Also

GetAgentsStatus2	Method	(DistributionPublication2,	DistributionPublisher2)

SQL-DMO

GetAgentsStatus	Method	(Distributor)
The	GetAgentsStatus2	method	returns	a	high	level	report	of	execution	state	for
replication	agents	implementing	a	Distributor.

Applies	To

Distributor	Object

Syntax
object.GetAgentsStatus(AgentType	,	ReturnedStatus	,	TimeStamp)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

AgentType

Long	integer	that	specifies	a	type	of	replication	agent	as	described	in	Settings

ReturnedStatus

Enumerated	long	value	returned

TimeStamp

String	value	returned

Prototype	(C/C++)
HRESULT	GetAgentsStatus(
SQLDMO_REPLAGENT_TYPE	AgentType,
SQLDMO_TASKSTATUS_TYPE*	pRetValStatus,
SQLDMO_LPBSTR	pRetValTimeStamp	=	NULL);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++

application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Settings
Set	the	AgentType	argument	using	these	SQLDMO_REPLAGENT_TYPE
values.

Constant Value Description
SQLDMOReplAgent_All 0 All	replication	agent	types
SQLDMOReplAgent_Distribution 3 Distribution	Agent
SQLDMOReplAgent_LogReader 2 Replication	transaction	log

monitoring	agent
SQLDMOReplAgent_Merge 4 Merge	Agent
SQLDMOReplAgent_Miscellaneous 5 Agents	not	otherwise

classified
SQLDMOReplAgent_Publishers -1 Agents	supporting	publishers
SQLDMOReplAgent_QueueReader 9 Replication	Queue	Reader

Agent
SQLDMOReplAgent_Snapshot 1 Snapshot	Agent

Returns
Interpret	the	value	returned	in	the	ReturnedStatus	argument	using	these
SQLDMO_TASKSTATUS_TYPE	values.

Constant Value Description
SQLDMOTask_Failed 6 At	least	one	agent-implementing	job

has	failed	to	execute	successfully
SQLDMOTask_Idle 4 All	agent-implementing	jobs	are

scheduled	and	idle
SQLDMOTask_Pending 0 All	agent-implementing	jobs	are

waiting	to	start
SQLDMOTask_Retry 5 At	least	one	agent-implementing	job	is

attempting	to	execute	after	a	previous

failure
SQLDMOTask_Running 3 At	least	one	agent-implementing	job	is

executing
SQLDMOTask_Starting 1 One	or	more	agent-implementing	jobs

are	starting
SQLDMOTask_Succeeded 2 All	agent-implementing	jobs	have

executed	successfully

The	TimeStamp	argument	returns	a	timestamp	(binary)	value	as	a	hexadecimal
character	string.

Remarks
When	using	Microsoft®	Visual	Basic®	as	a	SQL-DMO	application	development
environment,	use	the	subroutine	call	statement	syntax	to	execute	the
GetAgentsStatus	method	successfully.

The	GetAgentsStatus2	method	extends	the	functionality	of	the
GetAgentsStatus	method.

See	Also

GetAgentsStatus2	Method	(Distributor2)

SQL-DMO

GetAgentsStatus2	Method	(DistributionPublication2,
DistributionPublisher2)
The	GetAgentsStatus2	method	returns	a	high	level	report	of	execution	state	for
replication	agents	implementing	the	publications	of	a	Publisher.

Applies	To

DistributionPublication2	Object DistributionPublisher2	Object

Syntax
object.GetAgentsStatus2(
fExcludeAnonymous	,	
pRetValStatus	,	
pRetValTimeStamp)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

fExcludeAnonymous

Boolean	that	specifies	whether	status	from	anonymous	subscriptions	is
excluded.

pRetVal

Enumerated	long	value	returned.

pRetValTimeStamp

String	value	returned.

Prototype	(C/C++)

HRESULT	GetAgentsStatus2(
BOOL	fExcludeAnonymous,	
SQLDMO_TASKSTATUS_TYPE	*pRetVal,	
SQLDMO_LPBSTR	pRetValTimeStamp);

Returns
Interpret	the	value	returned	in	the	ReturnedStatus	argument	using	these
SQLDMO_TASKSTATUS_TYPE	values.

Constant Value Description
SQLDMOTask_Failed 6 At	least	one	agent-implementing	job

has	failed	to	execute	successfully
SQLDMOTask_Idle 4 All	agent-implementing	jobs	are

scheduled	and	idle
SQLDMOTask_Pending 0 All	agent-implementing	jobs	are

waiting	to	start
SQLDMOTask_Retry 5 At	least	one	agent-implementing	job	is

attempting	to	execute	after	a	previous
failure

SQLDMOTask_Running 3 At	least	one	agent-implementing	job	is
executing

SQLDMOTask_Starting 1 One	or	more	agent-implementing	jobs
are	starting

SQLDMOTask_Succeeded 2 All	agent-implementing	jobs	have
successfully	executed

The	TimeStamp	argument	returns	a	timestamp	(binary)	value	as	a	hexadecimal
character	string.

Remarks
The	GetAgentsStatus2	method	extends	the	functionality	of	the
GetAgentsStatus	method	by	including	the	fExcludeAnonymous	parameter.
When	fExcludeAnonymous	is	set	to	TRUE,	anonymous	subscriptions	are	not
enumerated.

When	using	Microsoft®	Visual	Basic®	as	a	SQL-DMO	application	development
environment,	use	the	subroutine	call	statement	syntax	to	execute	the
GetAgentsStatus	method	successfully.

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Note		If	an	application	calls	GetAgentsStatus2	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

GetAgentsStatus	Method	(DistributionPublication,	DistributionPublisher)

SQL-DMO

GetAgentsStatus2	Method	(Distributor2)
The	GetAgentsStatus2	method	returns	a	high	level	report	of	execution	state	for
replication	agents	at	a	Distributor.

Applies	To

Distributor2	Object

Syntax
object.GetAgentsStatus2(ReplAgentType	,	fExcludeAnonymous	,	pRetValStatus
,	pRetValTimeStamp)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

ReplAgentType

Long	integer	that	specifies	a	type	of	replication	agent	as	described	in
Settings.

fExcludeAnonymous

Boolean	that	specifies	whether	anonymous	replication	agents	are
enumerated.	Default	is	FALSE.

pRetValStatus

Enumerated	long	value	returned.

pRetValTimeStamp

String	value	returned.

Prototype	(C/C++)

HRESULT	GetAgentsStatus2(
SQLDMO_REPLAGENT_TYPE	AgentType,	
BOOL	fExcludeAnonymous,	
SQLDMO_TASKSTATUS_TYPE	*pRetValStatus,	
SQLDMO_LPBSTR	pRetValTimeStamp);

Settings
Set	the	AgentType	argument	using	these	SQLDMO_REPLAGENT_TYPE
values.

Constant Value Description
SQLDMOReplAgent_All 0 All	replication	agent	types
SQLDMOReplAgent_Distribution 3 Distribution	Agent
SQLDMOReplAgent_LogReader 2 Replication	transaction	Log

Reader	Agent
SQLDMOReplAgent_Merge 4 Merge	Agent
SQLDMOReplAgent_Miscellaneous 5 Agents	not	otherwise

classified
SQLDMOReplAgent_Publishers -1 Agents	supporting	publishers
SQLDMOReplAgent_QueueReader 9 Replication	Queue	Reader

Agent
SQLDMOReplAgent_Snapshot 1 Snapshot	Agent

Returns
Interpret	the	value	returned	in	the	ReturnedStatus	argument	using	these
SQLDMO_TASKSTATUS_TYPE	values.

Constant Value Description
SQLDMOTask_Failed 6 At	least	one	agent-implementing	job

has	failed	to	execute	successfully
SQLDMOTask_Idle 4 All	agent-implementing	jobs	are

scheduled	and	idle
SQLDMOTask_Pending 0 All	agent-implementing	jobs	are

waiting	to	start
SQLDMOTask_Retry 5 At	least	one	agent-implementing	job

is	attempting	to	execute	after	a
previous	failure

SQLDMOTask_Running 3 At	least	one	agent-implementing	job
is	executing

SQLDMOTask_Starting 1 One	or	more	agent-implementing
jobs	are	starting

SQLDMOTask_Succeeded 2 All	agent-implementing	jobs	have
executed	successfully

The	TimeStamp	argument	returns	a	timestamp	(binary)	value	as	a	hexadecimal
character	string.

Remarks
The	GetAgentsStatus2	method	extends	the	functionality	of	the
GetAgentsStatus	method	by	including	the	optional	fExcludeAnonymous
parameter.	When	fExcludeAnonymous	is	set	to	TRUE,	anonymous	replication
agents	are	not	enumerated.

When	using	Microsoft®	Visual	Basic®	as	a	SQL-DMO	application	development
environment,	use	the	subroutine	call	statement	syntax	to	execute	the
GetAgentsStatus	method	successfully.

Note		If	an	application	calls	GetAgentsStatus2	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

GetAgentsStatus	Method	(Distributor)

SQL-DMO

GetColumnBigInt	Method
The	GetColumnBigInt	method	retrieves	the	contents	of	a	bigint	column	as	a
string.

Applies	To

QueryResults2	Object

Syntax
object.GetColumnBigInt(Row	,	Column)	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Row

Long	integer	that	identifies	a	row	by	ordinal	position

Column

Long	integer	that	identifies	a	column	by	ordinal	position

Prototype	(C/C++)
HRESULT	GetColumnBigInt(
long	lRow,	
long	lColumn,	
PLONGLONG	pRetVal);

Remarks
The	Row	and	Column	Parameters	are	1-based	in	Microsoft®	Visual	Basic®
applications,	and	zero-based	in	C++	applications.

Note		For	the	C++/C	interface,	the	return	data	type	is	LONGLONG,	which	maps
to	the	SQL	Server	bigint	data	type.	For	the	OLE	automation	interface,	the	return
data	type	is	BSTR	because	the	automation	interface	does	not	support	the	64	bit
bigint	data	type.

Note		If	an	application	calls	GetColumnBigInt	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

GetColumnBinary	Method
The	GetColumnBinary	method	returns	a	void	pointer	to	the	memory	that
implements	storage	of	a	binary	data	type.

Applies	To

QueryResults	Object

Syntax
object.GetColumnBinary(Row	,	Column)	as	Integer

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Row

Long	integer	that	identifies	a	row	by	ordinal	position

Column

Long	integer	that	identifies	a	column	by	ordinal	position

Prototype	(C/C++)
HRESULT	GetColumnBinary(
long	lRow,
long	lCol,
LPVOID*	ppData);

Returns
A	long	integer	representation	of	a	void	pointer

Remarks
The	GetColumnBinary	method	has	usefulness	for	the	developer	using	an
automation	controller	when	the	automation	controller,	used	to	develop	a	SQL-
DMO	application,	supports	a	memory	address	as	a	data	type.

The	Row	and	Column	Parameters	are	1-based	in	Microsoft®	Visual	Basic®
applications,	and	are	zero-based	in	C++	applications.

SQL-DMO

GetColumnBinaryLength	Method
The	GetColumnBinaryLength	method	returns	the	length	of	a	binary	or	long
variable-length	data	type	member	of	the	QueryResults	object.

Applies	To

QueryResults	Object

Syntax
object.GetColumnBinaryLength(Row	,	Column)	as	Long

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Row

Long	integer	that	identifies	a	row	by	ordinal	position

Column

Long	integer	that	identifies	a	column	by	ordinal	position

Prototype	(C/C++)
HRESULT	GetColumnBinaryLength(
long	lRow,
long	lCol,
LPLONG	pRetVal);

Returns
A	long	integer	that	represents	a	number	of	bytes.

Remarks
The	Row	and	Column	Parameters	are	1-based	in	Microsoft®	Visual	Basic®
applications,	and	are	zero-based	in	C++	applications.

SQL-DMO

GetColumnBool	Method
The	GetColumnBool	method	returns	a	QueryResults	object	result	set	member
converted	to	a	Boolean	value.

Applies	To
QueryResults	Object

Syntax
object.GetColumnBool(Row	,	Column)	as	Boolean

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Row

Long	integer	that	identifies	a	row	by	ordinal	position

Column

Long	integer	that	identifies	a	column	by	ordinal	position

Prototype	(C/C++)
HRESULT	GetColumnBool(
long	lRow,
long	lCol,
LPBOOL	pRetVal);

Returns
A	Boolean	representation	of	the	value	of	a	QueryResults	object	result	set
member.

Remarks
The	Row	and	Column	Parameters	are	1-based	in	Microsoft®	Visual	Basic®
applications,	and	are	zero-based	in	C++	applications.

SQL-DMO

GetColumnDate	Method
The	GetColumnDate	method	returns	a	QueryResults	object	result	set	member
converted	to	a	Date	value.

Applies	To

QueryResults	Object

Syntax
object.GetColumnDate(Row	,	Column)	as	Date

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Row

Long	integer	that	identifies	a	row	by	ordinal	position

Column

Long	integer	that	identifies	a	column	by	ordinal	position

Prototype	(C/C++)
HRESULT	GetColumnDate(
long	lRow,
long	lCol,
LPSYSTEMTIME	pSystemTime);

Returns
Date	representation	of	the	value	of	a	QueryResults	object	result	set	member.

Remarks
The	Row	and	Column	Parameters	are	1-based	in	Visual	Basic	applications,	and
are	zero-based	in	C++	applications.

SQL-DMO

GetColumnDouble	Method
The	GetColumnDouble	method	returns	a	QueryResults	object	result	set
member	converted	to	a	Double	value.

Applies	To

QueryResults	Object

Syntax
object.GetColumnDouble(Row	,	Column)	as	Double

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Row

Long	integer	that	identifies	a	row	by	ordinal	position

Column

Long	integer	that	identifies	a	column	by	ordinal	position

Prototype	(C/C++)
HRESULT	GetColumnDouble(
long	lRow,
long	lCol,
LPDOUBLE	pRetVal);

Returns
A	Double	representation	of	the	value	of	a	QueryResults	object	result	set
member.

Remarks
The	Row	and	Column	Parameters	are	1-based	in	Microsoft®	Visual	Basic®
applications,	and	are	zero-based	in	C++	applications.

SQL-DMO

GetColumnFloat	Method
The	GetColumnFloat	method	returns	a	QueryResults	object	result	set	member
converted	to	a	Single	value.

Applies	To
QueryResults	Object

Syntax
object.GetColumnFloat(Row	,	Column)	as	Single

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Row

Long	integer	that	identifies	a	row	by	ordinal	position

Column

Long	integer	that	identifies	a	column	by	ordinal	position

Prototype	(C/C++)
HRESULT	GetColumnFloat(
long	lRow,
long	lCol,
LPFLOAT	pRetVal);

Returns
A	Single	representation	of	the	value	of	a	QueryResults	result	set	member.

Remarks
The	Row	and	Column	Parameters	are	1-based	in	Microsoft®	Visual	Basic®
applications,	and	are	zero-based	in	C++	applications.

SQL-DMO

GetColumnGUID	Method
The	GetColumnGUID	method	returns	a	void	pointer	to	the	memory	that
implements	storage	of	a	binary	data	type.

Applies	To

QueryResults	Object

Syntax

object.GetColumnGUID(Row	,	Column)	as	Integer

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Row

Long	integer	that	identifies	a	row	by	ordinal	position

Column

Long	integer	that	identifies	a	column	by	ordinal	position

Prototype	(C/C++)
HRESULT	GetColumnGUID(
long	lRow,
long	lCol,
LPVOID*	ppData);

Returns
A	long	integer	representation	of	a	void	pointer

Remarks
The	GetColumnGUID	method	has	usefulness	for	the	developer	using	an
automation	controller	when	the	automation	controller	used	to	develop	a	SQL-
DMO	application	supports	a	memory	address	as	a	data	type.

The	Row	and	Column	Parameters	are	1-based	in	Microsoft®	Visual	Basic®
applications,	and	are	zero-based	in	C++	applications.

SQL-DMO

GetColumnLong	Method
The	GetColumnLong	method	returns	a	QueryResults	object	result	set	member
converted	to	a	Long	value.

Applies	To

QueryResults	Object

Syntax
object.GetColumnLong(Row	,	Column)	as	Long

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Row

Long	integer	that	identifies	a	row	by	ordinal	position

Column

Long	integer	that	identifies	a	column	by	ordinal	position

Prototype	(C/C++)
HRESULT	GetColumnLong(
long	lRow,
long	lCol,
LPLONG	pRetVal);

Returns
A	Long	representation	of	the	value	of	a	QueryResults	object	result	set	member.

Remarks
The	Row	and	Column	Parameters	are	1-based	in	Microsoft®	Visual	Basic®
applications,	and	are	zero-based	in	C++	applications.

SQL-DMO

GetColumnSQLVARIANT	Method
The	GetColumnSQLVARIANT	method	retrieves	a	sql_variant	column	as	an
array	of	bytes.

Applies	To

QueryResults2	Object

Syntax
object.GetColumnSQLVARIANT(
Row	,	
Column)	as	Byte

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Row

Long	integer	that	identifies	a	row	by	ordinal	position

Column

Long	integer	that	identifies	a	column	by	ordinal	position

Prototype	(C/C++)
HRESULT	GetColumnSQLVARIANT(
long	lRow,	
long	lColumn,	
LPVOID	*pvData);

Returns

A	sql_variant	representation	of	the	value	of	a	QueryResults2	object	result	set
member

Remarks
GetColumnSQLVARIANT	returns	the	contents	of	a	sql_variant	column	in	a
typeless	form.	An	application	written	in	C++	can	then	cast	the	contents	of	the
array	into	the	required	data	type.

Prior	to	calling	GetColumnSQLVARIANT,	call
GetColumnSQLVARIANTDataType	to	retrieve	the	underlying	data	type	of	the
specified	sql_variant	column,	and	then	call	the
GetColumnSQLVARIANTLength	method	to	determine	the	number	of	bytes	in
the	column.

Examples

//Retrieve	the	underlying	data	type	and	number	of	bytes	in	the	column.
//Then	return	the	contents	of	the	column.
SQLDMO_BSTR	str;
Long																				lLen;
Void	*																		pRetVal;
pQueryRes2out->GetColumnSQLVARIANTDataType(0,	0,	_T("T1"),		&str);
pQueryRes2out->GetColumnSQLVARIANTLength(0,	0,	_T("T1"),		&lLen);
pQueryRes2out->GetColumnSQLVARIANT(0,	0,		&pRetVal);
_tprintf(TEXT("%s\n"),	(TCHAR	*)pRetVal);
CoTaskMemFree(pRetVal);

Note		If	an	application	calls	GetColumnSQLVARIANT	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

GetColumnSQLVARIANTDataType	Method

GetColumnSQLVARIANTLength	Method

SQL-DMO

GetColumnSQLVARIANTDataType	Method
The	GetColumnSQLVARIANTDataType	method	retrieves	the	underlying	data
type	of	the	specified	sql_variant	column.

Applies	To

QueryResults2	Object

Syntax
object.GetColumnSQLVARIANTDataType(
Row	,	
Column	,	
ObjName)	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Row

Long	integer	that	identifies	a	row	by	ordinal	position

Column

Long	integer	that	identifies	a	column	by	ordinal	position

ObjName

String	that	specifies	a	table	or	view	name

Prototype	(C/C++)
HRESULT	GetColumnSQLVARIANTDataType(
long	lRow,	
long	lColumn,	

SQLDMO_LPCSTR	ObjName,	
SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
An	application	written	in	C++	can	use	the	information	returned	by	the
GetColumnSQLVARIANTDataType	and	GetColumnSQLVARIANTLength
methods	to	allocate	an	appropriate	amount	of	buffer	space	in	which	to
manipulate	the	data	retrieved	from	a	sql_variant	column.

The	application	can	then	call	GetColumnSQLVARIANT	to	return	the	contents
of	a	sql_variant	column	as	an	array.	The	application	can	then	cast	the	contents
of	the	array	into	the	required	data	type.

Note		If	an	application	calls	GetColumnSQLVARIANTDataType	on	an
instance	of	SQL	Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,
and	the	message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"
are	returned.

See	Also

GetColumnSQLVARIANT	Method

GetColumnSQLVARIANTLength	Method

SQL-DMO

GetColumnSQLVARIANTLength	Method
The	GetColumnSQLVARIANTLength	method	retrieves	the	number	of	bytes
required	to	hold	the	data	portion	of	the	specified	sql_variant	column.

Applies	To

QueryResults2	Object

Syntax
object.GetColumnSQLVARIANTLength(
Row	,	
Column	,	
ObjName)	as	Long

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Row

Long	integer	that	identifies	a	row	by	ordinal	position

Column

Long	integer	that	identifies	a	column	by	ordinal	position

ObjName

String	that	specifies	a	table	or	view	name

Prototype	(C/C++)
HRESULT	GetColumnSQLVARIANTLength(
long	lRow,	
long	lColumn,	

SQLDMO_LPCSTR	ObjName,	
LPLONG	pRetLen);

Note		If	an	application	calls	GetColumnSQLVARIANTLength	on	an	instance
of	SQL	Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the
message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

See	Also

GetColumnSQLVARIANT	Method

GetColumnSQLVARIANTDataType	Method

SQL-DMO

GetColumnSQLVARIANTToString	Method
The	GetColumnSQLVARIANTToString	method	converts	a	sql_variant
column	to	a	string	and	returns	its	value.

Applies	To

QueryResults2	Object

Syntax
object.GetColumnSQLVARIANTToString(
Row	,	
Column	,	
ObjName)	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Row

Long	integer	that	identifies	a	row	by	ordinal	position

Column

Long	integer	that	identifies	a	column	by	ordinal	position

ObjName

String	that	specifies	a	table	or	view	name

Prototype	(C/C++)
HRESULT	GetColumnSQLVARIANTToString(
long	lRow,	
long	lColumn,	

SQLDMO_LPCSTR	ObjName,	
SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
GetColumnSQLVARIANTToString	can	be	useful	in	applications	designed	to
display	the	contents	of	sql_variant	columns,	such	as	a	Web	site.

Columns	with	underlying	numeric,	decimal,	or	datetime	data	types	cannot	be
converted	to	strings	using	the	GetColumnSQLVARIANTToString	method.

Note		If	an	application	calls	GetColumnSQLVARIANTToString	on	an
instance	of	SQL	Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,
and	the	message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"
are	returned.

SQL-DMO

GetColumnString	Method
The	GetColumnString	method	returns	a	QueryResults	object	result	set
member	converted	to	a	String	value.

Applies	To

QueryResults	Object

Syntax
object.GetColumnString(Row	,	Column)	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Row

Long	integer	that	identifies	a	row	by	ordinal	position

Column

Long	integer	that	identifies	a	column	by	ordinal	position

Prototype	(C/C++)
HRESULT	GetColumnString(
long	lRow,
long	lCol,
SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Returns
A	String	representation	of	the	value	of	a	QueryResults	result	set	member

Remarks
When	converting	a	value	of	any	data	type	to	string,	conversion	rules	are	those
applied	for	the	locale	of	the	client	workstation.

The	Row	and	Column	Parameters	are	1-based	in	Visual	Basic	applications,	and
are	zero-based	in	C++	applications.

SQL-DMO

GetDatatypeByName	Method
The	GetDatatypeByName	method	returns	an	object	that	references	the	named
system	or	user-defined	data	type.

Applies	To

Database	Object

Syntax
object.GetDatatypeByName(Datatype)	as	Variant

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Datatype

String	that	specifies	a	system	or	user-defined	data	type	by	name

Prototype	(C/C++)
HRESULT	GetDatatypeByName(
SQLDMO_LPCSTR	szName,
LPSQLDMOSTDOBJECT*	ppDBObject);

Returns
A	variant	that	references	an	object

Remarks
Use	the	TypeOf	property	to	determine	the	nature	of	the	data	type	returned.
Interpret	the	TypeOf	property	using	SQLDMO_OBJECT_TYPE.

SQL-DMO

GetIndexedColumnDESC	Method
The	GetIndexedColumnDESC	method	specifies	whether	the	sort	order	of	a
column	in	an	index	is	descending.

Applies	To

Index2	Object

Syntax
object.GetIndexedColumnDESC(ColumnName)	as	Boolean

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

ColumnName

String	that	specifies	the	column	name

Prototype	(C/C++)
HRESULT	GetIndexedColumnDESC(
SQLDMO_LPCSTR	ColumnName,	
LPBOOL	pRetVal);

Remarks
By	default,	columns	in	an	index	are	sorted	in	ascending	order.
GetIndexedColumnDESC	returns	TRUE	if	the	sort	order	of	the	specified
column	is	descending.

Use	the	SetIndexedColumnDESC	method	to	specify	that	a	column	in	an	index
must	be	sorted	in	descending	order.

Note		If	an	application	calls	SetIndexedColumnDESC	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

SetIndexedColumnDESC	Method

SQL-DMO

GetJobByID	Method
The	GetJobByID	method	returns	a	SQL-DMO	Job	object	referencing	the	SQL
Server	Agent	job	identified	by	the	specified	job	identifier.

Applies	To

JobServer	Object

Syntax
object.GetJobByID(Name	,	[Flag])	as	Job

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Name

String	representation	of	a	SQL	Server	Agent	job	identifier.

Flag

When	TRUE,	the	GetJobByID	method	queries	an	instance	of	Microsoft®
SQL	Server™	2000	for	the	most	recent	copy	of	the	job.	When	FALSE
(default)	and	the	application	has	cached	the	define	jobs	in	a	collection,	only
the	cached	collection	is	searched.

Prototype	(C/C++)
HRESULT	GetJobByID(
SQLDMO_LPCSTR	szName,
LPSQLDMOJOB*	ppJob,
BOOL	bFlag	=	FALSE);

Returns
A	Job	object

Remarks
SQL	Server	Agent	jobs	are	uniquely	identified	by	a	system-generated	identifier.
The	identifier	is	a	32-character	string	representing	a	hexadecimal	number	and	is
visible	in	the	JobID	property	of	a	SQL-DMO	Job	object.

SQL-DMO

GetMemoryUsage	Method
The	GetMemoryUsage	method	is	retained	for	compatibility	with	previous
versions	of	SQL-DMO.

Applies	To

Database	Object

Syntax
object.GetMemoryUsage()	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	GetMemoryUsage(
SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Returns
A	string

SQL-DMO

GetObjectByName	Method
The	GetObjectByName	method	returns	a	DBObject	object	that	references	the
specified	Microsoft®	SQL	Server™	2000	database	object.

Applies	To

Database	Object

Syntax
object.GetObjectByName(Name	,	[ObjectType]	,	[Owner])	as	DBObject

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Name

Specifies	a	SQL	Server	database	object	by	name.

ObjectType

Optional.	Long	integer	that	specifies	object	type.	When	specified,	it	directs
method	searching,	optimizing	the	search.	Set	ObjectType	using
SQLDMO_OBJECT_TYPE.

Owner

Optional.	String	that	identifies	an	existing	database	user	by	name.	When
specified,	it	constrains	searching	to	objects	owned	by	the	user.

Prototype	(C/C++)
HRESULT	GetObjectByName(
SQLDMO_LPCSTR	szName,
LPSQLDMODBOBJECT*	ppDBObject,

SQLDMO_OBJECT_TYPE	lType	=	SQLDMOObj_AllDatabaseObjects,
SQLDMO_LPCSTR	szOwner	CPPDEFAULT(=	NULL));

Returns
A	DBObject	object

SQL-DMO

GetRangeString	Method
The	GetRangeString	method	returns	a	single	string	that	contains	a	block	of
rows	and	columns	from	the	current	result	set	of	the	QueryResults	object.

Applies	To

QueryResults	Object

Syntax
object.GetRangeString([Top]	,	[Left]	,	[Bottom]	,	[Right]	,
[RowDelimiter]	,	[ColDelimiter]	,	[ColWidths])	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Top

Optional.	Long	integer	that	specifies	a	starting	row	in	the	result	set.	When	no
value	is	specified,	the	first	row	in	the	returned	string	is	formed	from	the
names	of	columns	in	the	result	set.

Left

Optional.	Long	integer	that	specifies	a	starting	column	in	the	result	set.
When	no	value	is	specified,	the	first	column	marks	the	left	of	the	extracted
range.

Bottom

Optional.	Long	integer	that	specifies	an	ending	row	in	the	result	set.	When
no	value	is	specified,	the	last	row	marks	the	bottom	of	the	extracted	range.

Right

Optional.	Long	integer	that	specifies	an	ending	column	in	the	result	set.
When	no	value	is	specified,	the	last	column	marks	the	right	of	the	extracted
range.

RowDelimiter

Optional.	String	used	to	delimit	rows.	When	no	value	is	specified,	rows	are
delimited	using	a	carriage	return/line	feed	sequence.

ColDelimiter

Optional.	String	used	to	delimit	columns.	When	no	value	is	specified,
columns	are	delimited	using	a	tab	character	regardless	of	the	setting	of	the
ColWidths	argument.

ColWidths

Optional.	SQL-DMO	multistring	of	integer	values	that	specifies	fixed	widths
for	value	representation	in	the	string.	If	no	value	is	specified	in	the
ColDelimiter	argument,	data	is	represented	in	the	string	at	fixed	width	and
with	the	default	tab	delimiter.

Prototype	(C/C++)
HRESULT	GetRangeString(
SQLDMO_LPBSTR	pRetVal,
long	Top	=	0,
long	Left	=	0,
long	Bottom	=	-1,
long	Right	=	-1,
SQLDMO_LPCSTR	RowDelim	=	NULL,
SQLDMO_LPCSTR	ColDelim	=	NULL,
SQLDMO_LPCSTR	ColWidths	=	NULL);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Returns
A	string

Remarks
When	no	optional	arguments	are	specified,	the	GetRangeString	method	returns
a	string	representation	of	the	entire	result	set.	The	first	line	of	text	returned
contains	result	set	column	names.	The	second	line	contains	hyphen	character
strings	underlining	the	column	names.

For	more	information	about	setting	multistring	parameters,	see	Using	SQL-
DMO	Multistrings.

SQL-DMO

GetUserName	Method
The	GetUserName	method	returns	the	database	user	used	by	the	referenced
login,	when	a	connection	using	that	login	accesses	the	specified	database.

Applies	To

Login	Object

Syntax
object.GetUserName(Database)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Database

String	that	identifies	an	existing	Microsoft®	SQL	Server™	2000	database	by
name

Prototype	(C/C++)
HRESULT	GetUserName(SQLDMO_LPCSTR	DatabaseName,
SQLDMO_LPBSTR	pRetVal);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Returns
A	string	that	identifies	a	database	user

Remarks
The	GetUserName	method	returns	an	empty	string	when	the	login	specified
does	not	have	access	to	the	database.

SQL-DMO

Grant	Method	(Database)
The	Grant	method	assigns	a	database	permission	or	a	list	of	permissions	to	one
or	more	Microsoft®	SQL	Server™	2000	users	or	roles.

Applies	To

Database	Object

Syntax
object.Grant(Privilege	,	GranteeNames)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Privilege

Long	integer	that	specifies	one	or	more	database	permissions	as	described	in
Settings

GranteeNames

SQL-DMO	multistring	listing	users	or	roles

Prototype	(C/C++)
HRESULT	Grant(
SQLDMO_PRIVILEGE_TYPE	iPrivileges,
SQLDMO_LPCSTR	GranteeNames);

Settings
Set	Privilege	using	these	SQLDMO_PRIVILEGE_TYPE	values.

Constant Value Description
SQLDMOPriv_AllDatabasePrivs 130944 Grant	all	database	permissions

to	the	users	or	roles	listed
SQLDMOPriv_CreateDatabase 256 Grant	the	execute	permission

for	the	CREATE	DATABASE
statement

SQLDMOPriv_CreateDefault 4096 Grant	the	execute	permission
for	the	CREATE	DEFAULT
statement

SQLDMOPriv_CreateFunction 65366 Can	create	and	own
UserDefinedFunction	objects

SQLDMOPriv_CreateProcedure 1024 Can	create	and	own
StoredProcedure	objects

SQLDMOPriv_CreateRule 16384 Grant	the	execute	permission
for	the	CREATE	RULE
statement

SQLDMOPriv_CreateTable 128 Grant	the	execute	permission
for	the	CREATE	TABLE
statement

SQLDMOPriv_CreateView 512 Grant	the	execute	permission
for	the	CREATE	VIEW
statement

SQLDMOPriv_DumpDatabase 2048 Grant	permission	to	back	up
database

SQLDMOPriv_DumpTable 32768 Maintained	for	compatibility
with	previous	versions	of
SQL-DMO

SQLDMOPriv_DumpTransaction 8192 Grant	permission	to	back	up
the	database	transaction	log

Remarks
Granting	permissions	to	database	users	and	roles	using	the	Grant	method	of	the
Database	object	requires	appropriate	permissions.	The	Microsoft®	SQL

Server™	2000	login	used	for	SQLServer	object	connection	must	be	a	member
of	the	system-defined	role	sysadmin.

For	more	information	about	setting	multistring	parameters,	see	Using	SQL-
DMO	Multistrings.

SQL-DMO

Grant	Method	(StoredProcedure,
UserDefinedFunction)
The	Grant	method	assigns	a	stored	procedure	permission	or	a	list	of	permissions
to	one	or	more	Microsoft®	SQL	Server™	2000	users	or	roles.

Applies	To

StoredProcedure	Object UserDefinedFunction	Object

Syntax
object.Grant(Privilege	,	GranteeNames	,	[GrantGrant]	,	[AsRole])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Privilege

Long	integer	that	specifies	one	or	more	stored	procedure	permissions	as
described	in	Settings.

GranteeNames

SQL-DMO	multistring	listing	users	or	roles.

GrantGrant

When	TRUE,	the	grantee(s)	specified	are	granted	the	ability	to	execute	the
GRANT	statement	referencing	the	stored	procedure.	When	FALSE	(default),
the	ability	to	extend	permission	is	not	granted.

AsRole

String	that	identifies	a	role	to	which	the	connected	user	belongs	as	described
in	Remarks.

Prototype	(C/C++)
HRESULT	Grant(
SQLDMO_PRIVILEGE_TYPE	iPrivileges,
SQLDMO_LPCSTR	GranteeNames,
BOOL	GrantGrant	=	FALSE,
SQLDMO_LPCSTR	AsRole	=	NULL);

Settings
Set	Privilege	using	these	SQLDMO_PRIVILEGE_TYPE	values.

Constant Value Description
SQLDMOPriv_AllObjectPrivs 63 Grant	all	applicable	object

permissions
SQLDMOPriv_Execute 16 Grant	the	execute	permission	on

the	referenced	stored	procedure

Remarks
When	a	user	is	a	member	of	more	than	a	single	role,	the	user	can	have
permission	to	grant	access	to	a	stored	procedure	under	one	role	and	not	under
another.	In	this	case,	SQL	Server	security	mechanisms	prevent	execution	of	the
Grant	method	on	the	StoredProcedure	object	that	references	that	stored
procedure.	Use	the	AsRole	argument	to	specify	the	role	under	which	permission
to	execute	the	grant	exists.

Note		Granting	permissions	to	database	users	and	roles	using	the	Grant	method
of	the	StoredProcedure	object	requires	appropriate	permissions.	The	SQL
Server	login	used	for	SQLServer	object	connection	must	be	granted	the	ability
to	execute	GRANT	that	references	the	stored	procedure,	the	owner	of	the	stored
procedure,	or	a	member	of	a	role	with	greater	permissions.

For	more	information	about	setting	multistring	parameters,	see	Using	SQL-
DMO	Multistrings.

SQL-DMO

Grant	Method	(Table,	View)
The	Grant	method	assigns	a	table	permission	or	a	list	of	permissions	to	one	or
more	Microsoft®	SQL	Server™	2000	users	or	roles.

Applies	To

Table	Object View	Object

Syntax
object.Grant(Privilege	,	GranteeNames	,	[ColumnNames]	,
[GrantGrant]	,	[AsRole])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Privilege

Long	integer	that	specifies	one	or	more	table	permissions	as	described	in
Settings.

GranteeNames

SQL-DMO	multistring	listing	users	or	roles.

ColumnNames

SQL-DMO	multistring	listing	column	names	within	the	table	or	view.	When
used,	the	specified	privilege	is	extended	only	to	the	columns	named.

GrantGrant

When	TRUE,	the	grantee(s)	specified	are	granted	the	ability	to	execute	the
GRANT	statement	referencing	the	table	or	view.	When	FALSE	(default),	the
ability	to	extend	permission	is	not	granted.

AsRole

String	that	identifies	a	role	to	which	the	connected	user	belongs	as	described
in	Remarks.

Prototype	(C/C++)
HRESULT	Grant(
SQLDMO_PRIVILEGE_TYPE	iPrivileges,
SQLDMO_LPCSTR	GranteeNames,
SQLDMO_LPCSTR	ColumnNames	=	NULL,
BOOL	GrantGrant	=	FALSE,
SQLDMO_LPCSTR	AsRole	=	NULL);

Settings
Set	Privilege	using	these	SQLDMO_PRIVILEGE_TYPE	values.

Constant Value Description
SQLDMOPriv_AllObjectPrivs 63 Grant	all	permissions	on	the	table
SQLDMOPriv_Delete 8 Grant	permission	to	execute	the

DELETE	statement	referencing
the	table

SQLDMOPriv_Insert 2 Grant	permission	to	execute	the
INSERT	statement	referencing
the	table

SQLDMOPriv_References 32 Grant	permission	to	reference	the
table	in	statements	implementing
declarative	referential	integrity

SQLDMOPriv_Select 1 Grant	permission	to	execute	the
SELECT	statement	referencing
the	table

SQLDMOPriv_Update 4 Grant	permission	to	execute	the
UPDATE	statement	referencing
the	table

Remarks
When	a	user	is	a	member	of	more	than	a	single	role,	the	user	can	have
permission	to	grant	access	to	a	table	or	view	under	one	role	and	not	under
another.	In	this	case,	SQL	Server	security	mechanisms	prevent	execution	of	the
Grant	method	on	the	Table	or	View	object	referencing	the	database	object.	Use
the	AsRole	argument	to	specify	the	role	under	which	permission	to	execute	the
grant	exists.

For	more	information	about	setting	multistring	parameters,	see	Using	SQL-
DMO	Multistrings.

Note		Granting	permissions	to	database	users	and	roles	using	the	Grant	method
of	the	Table	or	View	object	requires	appropriate	privilege.	The	SQL	Server	login
used	for	SQLServer	object	connection	must	be	granted	the	ability	to	execute
GRANT	referencing	the	database	object,	the	owner	of	the	database	object,	or	a
member	of	a	role	with	greater	privilege.

SQL-DMO

GrantPublicationAccess	Method
The	GrantPublicationAccess	method	the	specified	login	to	the	publication
access	list.

Applies	To

MergePublication	Object TransPublication	Object

Syntax
object.GrantPublicationAccess(szLoginName)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

szLoginName

String	that	identifies	an	existing	Microsoft®	SQL	Server™	2000	login	by
name

Prototype	(C/C++)
HRESULT	GrantPublicationAccess(SQLDMO_LPCSTR	szLoginName);

Remarks
Granting	privilege	to	a	login	using	the	GrantPublicationAccess	method	of	the
MergePublication	or	TransPublication	object	requires	appropriate	privilege.
The	SQL	Server	login	used	for	SQLServer	object	connection	must	be	a	member
of	the	system-defined	role	db_owner	in	the	published	database,	or	a	role	with
greater	privilege.

SQL-DMO

I

SQL-DMO

ImportData	Method
The	ImportData	method	implements	the	bulk	insert	of	data	specified	by	the
controlling	BulkCopy	object	provided	as	an	argument.

Applies	To

Table	Object

Syntax
object.ImportData(BulkCopy)	as	Long

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

BulkCopy

Expression	that	evaluates	to	a	BulkCopy	object

Prototype	(C/C++)
HRESULT	ImportData(
LPSQLDMOBULKCOPY	Bcp,
LPLONG	plRowsImported	=	NULL);

Returns
The	number	of	rows	written	to	the	Microsoft®	SQL	Server™	2000	table.

Remarks
Set	BulkCopy	object	properties	to	specify	data	insert	parameters,	such	as	the
source	file	and	format	of	the	source	file,	then	use	the	ImportData	method	to

execute	the	insert.

For	more	information	about	controlling	a	bulk-insert	operation,	see	BulkCopy
Object.

SQL-DMO

Insert	Method
The	Insert	method	adds	a	string	to	a	Names	collection	at	the	position	indicated.

Applies	To

Names	Collection

Syntax
object.Insert(NewItem	,	InsertBeforeItem)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

NewItem

String	that	names	the	new	item

InsertBeforeItem

String	that	names	an	existing	item	or	a	long	that	specifies	an	ordinal	position

Prototype	(C/C++)
HRESULT	InsertByOrd(
SQLDMO_LPCSTR	szName,	long	lOrdinal);

HRESULT	InsertByName(
SQLDMO_LPCSTR	szName,	SQLDMO_LPCSTR	szBeforeName);

SQL-DMO

InsertColumn	Method
The	InsertColumn	method	adds	a	column	to	the	Columns	collection	of	a	Table
object	at	the	position	indicated.

Applies	To

Table	Object

Syntax
object.InsertColumn(Column	,	InsertBeforeColumn)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Column

Expression	that	evaluates	to	a	Column	object

InsertBeforeColumn

String	that	names	an	existing	Column	object	in	the	Columns	collection	of	a
Table	object

Prototype	(C/C++)
HRESULT	InsertColumn(
LPSQLDMOCOLUMN	pNewColumn,
SQLDMO_LPCSTR	szBeforeColumn);

Remarks
Use	the	InsertColumn	method	when	the	ordinal	position	of	a	column	must	be
maintained.

Note		Columns	in	existing	Microsoft®	SQL	Server™	2000	tables	have	fixed
ordinal	location.	You	cannot	use	the	InsertColumn	method	when	the	Table
object	references	an	existing	SQL	Server	table.	Use	InsertColumn	only	when
the	Table	object	is	used	to	create	a	SQL	Server	table.

SQL-DMO

Install	Method
The	Install	method	sets	up	distribution	on	an	instance	of	Microsoft®	SQL
Server™	2000.

Applies	To

Distributor	Object

Syntax
object.Install()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	Install();

Remarks
If	the	Install	method	is	successful,	the	instance	can	act	as	a	replication
Distributor	for	itself	or	other	instances	in	an	enterprise.

SQL-DMO

Invoke	Method
The	Invoke	method	executes	the	Microsoft®	SQL	Server™	2000	Agent	job
referenced.

Applies	To

Job	Object

Syntax
object.Invoke()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	Invoke();

Remarks
Use	the	Invoke	method	to	start	a	job.	Use	the	Start	method	of	the	Job	object
when	on-demand	job	execution	requires	a	starting	step	restriction.

SQL-DMO

IsDetachedPrimaryFile	Method
The	IsDetachedPrimaryFile	method	specifies	whether	a	file	is	a	detached
primary	database	file.

Applies	To

SQLServer2	Object

Syntax
object.IsDetachedPrimaryFile(MDFName)	as	Boolean

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

MDFName

String	that	contains	the	name	of	the	primary	Microsoft®	SQL	Server™	2000
database	or	log	file.

Prototype	(C/C++)
HRESULT	IsDetachedPrimaryFile(
SQLDMO_LPCSTR	MDFName,	
LPBOOL	pRetVal);

Remarks
Prior	to	calling	IsDetachedPrimaryFile,	an	application	should	call	the
ListDetachedDBFiles	property	to	retrieve	a	complete	list	of	detached	database
files	or	ListDetachedLogFiles	property	to	retrieve	a	complete	list	of	detached
log	files.	The	application	can	then	call	IsDetachedPrimaryFile	to	determine
which	of	the	files	is	the	primary	file.

Note		If	an	application	calls	IsDetachedPrimaryFile	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

ListDetachedDBFiles	Method

ListDetachedLogFiles	Method

SQL-DMO

IsFixedRole	Method
The	IsFixedRole	method	returns	TRUE	when	the	database	role	referenced	is
system-defined.

Applies	To

DatabaseRole	Object

Syntax
object.IsFixedRole()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	IsFixedRole(LPBOOL	pRetVal);

Returns
TRUE	or	FALSE

SQL-DMO

IsLogin	Method
The	IsLogin	method	returns	TRUE	when	the	string	specified	is	a	valid	name
string	for	a	Microsoft®	SQL	Server™	2000	login	record.

Applies	To
SQLServer	Object

Syntax
object.IsLogin(LoginName)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

LoginName

String	tested

Prototype	(C/C++)
HRESULT	IsLogin(SQLDMO_LPCSTR	szLoginName,
LPBOOL	pRetVal);

Returns
TRUE	if	the	LoginName	argument	is	a	string	of	valid	login	record	name
characters	in	a	valid	sequence.	FALSE,	otherwise.

Remarks
The	IsLogin	method	determines	legality	for	names	when	adding	logins	to	an
instance	of	SQL	Server.

SQL-DMO

IsMember	Method
The	IsMember	method	returns	TRUE	when	the	user	or	login	referenced	is	a
member	of	the	role	identified	in	the	Role	argument.

Applies	To

Login	Object User	Object

Syntax
object.IsMember(Role)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Role

String	that	identifies	a	Microsoft®	SQL	Server™	2000	or	database	role	by
name

Prototype	(C/C++)
HRESULT	IsMember(SQLDMO_LPCSTR	szRole,
LPBOOL	pRetVal);

Remarks
For	the	Login	object,	the	Role	argument	specifies	a	server	role.	For	the	User
object,	a	system	or	user-defined	database	role	is	identified	by	the	argument.

SQL-DMO

IsNTGroupMember	Method
The	IsNTGroupMember	method	exposes	an	instance	of	Microsoft®	SQL
Server™	2000	access	rights	for	Windows	NT®	4.0	or	Microsoft	Windows	2000
user	accounts.

Applies	To

SQLServer	Object

Syntax
object.IsNTGroupMember(NTGroup	,	NTUser)	as	Boolean

Parts
object

An	expression	that	evaluates	to	an	object	in	the	Applies	To	list.

NTGroup

A	string	that	names	a	Windows	NT	4.0	or	Windows	2000	group	account
granted	login	access	to	an	instance	of	SQL	Server.

NTUser

A	string	that	names	a	Windows	NT	4.0	or	Windows	2000	user	account.

Prototype	(C/C++)
HRESULT	IsNTGroupMember(SQLDMO_LPCSTR	NTGroup,
SQLDMO_LPCSTR	NTUser,	LPBOOL	pRetVal);

Returns
TRUE	when	the	user	identified	is	a	member	of	the	NT	group.	FALSE	otherwise.

Remarks
Use	the	IsNTGroupMember	method	to	discover	access	rights	for	a	Windows
NT	4.0	or	Windows	2000	user	when	login	access	is	granted	to	Windows	NT	4.0
or	Windows	2000	group	accounts.

When	a	Windows	NT	4.0	or	Windows	2000	security	account	is	granted	or	denied
access	to	an	instance	of	SQL	Server,	an	entry	exists	in	syslogins.	The	SQL-DMO
Logins	collection	will	expose	a	member	referencing	the	security	account.	When
a	syslogins	record,	or	Login	object,	references	a	Windows	NT	4.0	or	Windows
2000	group	account,	individual	records	and	objects	are	not	created	referencing
group	members.

SQL-DMO

IsObjectDeleted	Method
The	IsObjectDeleted	method	indicates	whether	the	referenced	object	has	been
deleted	from	the	database.

Applies	To

Database2	Object

Syntax
object.IsObjectDeleted(
ObjectType	,	
ObjectName	,	
[ObjectOwner])	as	Boolean

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

ObjectType

Long	integer	that	indicates	the	object	type	as	specified	in	settings

ObjectName

String	that	specifies	the	object	name

ObjectOwner

Optional	string	that	specifies	the	object	owner

Prototype	(C/C++)
HRESULT	IsObjectDeleted)(
SQLDMO_OBJECT_TYPE	ObjectType,	
SQLDMO_LPCSTR	ObjName,	

LPBOOL	pRetVal,	
SQLDMO_LPCSTR	ObjOwner);

Settings
Specify	the	value	of	the	ObjectType	argument	using	these
SQLDMO_OBJECT_TYPE	values.

Constant Value Description
SQLDMOObj_Check 49152 Object	references	an

integrity	constraint.
SQLDMOObj_Column 24576 Object	references	a	column

in	a	table.
SQLDMOObj_Database 135168 Object	references	a

database.
SQLDMOObj_DatabaseRole 225280 Object	references	a

database	role.
SQLDMOObj_Default 64 Object	references	a	default.
SQLDMOObj_Rule 128 Object	references	a	rule.
SQLDMOObj_StoredProcedure 16 Object	references	a	stored

procedure.
SQLDMOObj_SystemDatatype 4096 Object	references	a	SQL

Server	base	data	type.
SQLDMOObj_SystemTable 2 Object	references	a	system

table.
SQLDMOObj_Trigger 256 Object	references	a	trigger.
SQLDMOObj_User 8192 Object	references	a	SQL

Server	database	user.
SQLDMOObj_UserDefinedDatatype 4096 Object	references	a	SQL

Server	user-defined	data
type.

SQLDMOObj_UserDefinedFunction 1 Object	references	a	user-
defined	function.

SQLDMOObj_UserTable 8 Object	references	a	SQL
Server	user-defined	table.

SQLDMOObj_View 4 Object	references	a	view.

Remarks
If	a	client	session	creates	an	object	using	SQL-DMO,	and	another	client	session
subsequently	deletes	the	object	using	another	tool	(for	example,	SQL	Query
Analyzer),	the	SQL-DMO	application	is	unaware	of	the	deletion.	A	SQL-DMO
application	can	use	the	IsObjectDeleted	method	to	determine	if	the	object	still
exists	by	specifying	the	object	type	and	object	name.	If	the	objectOwner
parameter	is	not	used,	the	application	assumes	that	the	object	owner	is	the	user
currently	logged	in.

Note		IsObjectDeleted	can	be	used	with	Microsoft®	SQL	Server™	2000	and
SQL	Server	7.0.

See	Also

IsDeleted	Property

SQL-DMO

IsOS	Method
The	IsOS	method	returns	TRUE	when	an	instance	of	Microsoft®	SQL	Server™
2000	referenced	is	running	on	a	computer	using	the	specified	operating	system.

Applies	To

SQLServer	Object

Syntax
object.IsOS(Type)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Type

Long	integer	that	specifies	an	operating	system	as	described	in	Settings

Prototype	(C/C++)
HRESULT	IsOS(SQLDMO_OS_TYPE	lType,
LPBOOL	pRetVal);

Settings

Constant Value Description
SQLDMO_WIN95 1 Microsoft	Windows®	95	or

Microsoft	Windows®	98
SQLDMO_WINNT 2 Microsoft	Windows	NT®	4.0

or	Microsoft	Windows	2000®

Returns
TRUE	or	FALSE	as	described	in	Settings

SQL-DMO

IsPackage	Method
The	IsPackage	method	returns	a	long	integer	value	identifying	an	instance	of
Microsoft®	SQL	Server™	2000

Applies	To

SQLServer	Object

Syntax
object.IsPackage()	as	Long

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	IsPackage(SQLDMO_PACKAGE_TYPE*	pRetVal);

Returns
Interpret	the	return	value	of	IsPackage	by	using	these
SQLDMO_PACKAGE_TYPE	values.

Constant Value Description
SQLDMO_Unknown 0 Bad	or	invalid	value
SQLDMO_OFFICE 1 Desktop
SQLDMO_MSDE 4 Microsoft	Data	Engine
SQLDMO_STANDARD 2 Standard
SQLDMO_ENTERPRISE 3 Enterprise

SQL-DMO

IsUser	Method
The	IsUser	method	returns	TRUE	when	the	specified	Microsoft®	SQL	Server™
2000	user	is	defined	in	the	referenced	database.

Applies	To

Database	Object

Syntax
object.IsUser(UserName)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

UserName

String	that	identifies	a	database	user	by	name

Prototype	(C/C++)
HRESULT	IsUser(SQLDMO_LPCSTR	szUserName,
LPBOOL	pRetVal);

Returns
TRUE	or	FALSE

SQL-DMO

IsValidKeyDatatype	Method
The	IsValidKeyDatatype	method	returns	TRUE	when	the	data	type	specified
can	participate	in	a	PRIMARY	KEY	or	FOREIGN	KEY	constraint.

Applies	To

Database	Object

Syntax
object.IsValidKeyDatatype(Type	,	[ReferencingType])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Type

String	that	identifies	a	single	base	or	user-defined	data	type	by	name.

ReferencingType

Optional.	A	string	that	identifies	a	second	base	or	user-defined	data	type	by
name.

Prototype	(C/C++)
HRESULT	IsValidKeyDatatype(
SQLDMO_LPCSTR	szKeyColType,
LPBOOL	pRetVal,
SQLDMO_LPCSTR	szReferencingColType	=	NULL);

Returns
TRUE	or	FALSE	as	described	in	Remarks.

Remarks
When	only	the	Type	argument	is	used,	the	IsValidKeyDatatype	method	returns
TRUE	when	a	column	defined	using	the	data	type	can	participate	in	a
PRIMARY	KEY	constraint.

When	a	second	data	type	is	specified	in	the	ReferencingType	argument,	the
IsValidKeyDatatype	method	returns	TRUE	when	the	types	are	compatible.	A
TRUE	return	value	indicates	that	a	column	defined	using	one	data	type	could
reference	a	column	defined	using	the	other	data	type	in	a	FOREIGN	KEY
constraint.

SQL-DMO

Item	Method
The	Item	method	extracts	a	member	from	a	SQL-DMO	container	object	such	as
the	Databases	collection	or	the	NameList	object.

Applies	To
All	collection	and	list	objects

Syntax
object.Item(Name	|	Position)	as	Object

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Name	|	Position

Either	a	string	that	identifies	an	object	by	Microsoft®	SQL	Server™	2000
component	name	or	a	long	integer	that	specifies	an	ordinal	location	in	the
container

Returns
A	reference	to	the	object	extracted.

Remarks
In	general,	SQL-DMO	supports	container	member	dereferencing,	using	either	a
string	naming	an	item,	or	an	ordinal	position	for	an	item.	Some	SQL-DMO
containers	support	additional	restrictions	to	identify	items	where	component
name	does	not	offer	unique	identification.	Other	containers	do	not	support
component	name	as	an	argument	for	the	Item	method	at	all.

For	more	information	about	support	for	Item,	see	documentation	for	a	specific

container	object.

SQL-DMO

ItemByID	Method
The	ItemByID	method	extracts	a	member	from	a	SQL-DMO	container	object
such	as	the	Databases	collection,	using	a	system-defined	component	identifier
to	uniquely	identify	the	container	member.

Applies	To

AlertCategories	Collection MergeSubsetFilters	Collection
Alerts	Collection OperatorCategories	Collection
Columns	Collection Operators	Collection
ConfigValues	Collection RemoteServers	Collection
Databases	Collection ReplicationDatabases	Collection
DBFiles	Collection Rules	Collection
Defaults	Collection SQLServers	Collection
DistributionArticles	Collection StoredProcedures	Collection
FileGroups	Collection Tables	Collection
Indexes	Collection TargetServerGroups	Collection
JobCategories	Collection TargetServers	Collection
Jobs	Collection TransArticles	Collection
JobSchedules	Collection TransPublications	Collection
JobSteps	Collection Triggers	Collection
Languages	Collection UserDefinedDatatypes	Collection
Log	Files	Collection UserDefinedFunctions	Collection
MergeArticles	Collection Users	Collection
MergeDynamicSnapshotJobs
Collection

Views	Collection

MergePublications	Collection 	

Syntax
object.ItemByID(ID)	as	Object

JavaScript:hhobj_1.Click()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

ID

Long	integer	that	specifies	a	system-generated	component	identifier

Returns
A	reference	to	the	object	extracted

Remarks
The	ItemByID	method	is	implemented	for	SQL-DMO	collections	containing
objects	exposing	the	ID	property.

SQL-DMO

K

SQL-DMO

KillDatabase	Method
The	KillDatabase	method	drops	a	database	from	the	referenced	Microsoft®
SQL	Server™	2000	installation,	regardless	of	the	status	or	availability	of	the
database.

Applies	To

SQLServer	Object 	

Syntax
object.KillDatabase(Database)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Database

String	specifying	an	existing	database	by	name

Prototype	(C/C++)
HRESULT	KillDatabase(
SQLDMO_LPCSTR	szDatabase);

Remarks
The	Remove	method	of	the	Database	object	and	Databases	collection	drops	a
referenced	database.	A	database	drop	can	fail	if	the	database	is	offline.	When	the
Remove	method	of	the	Database	object	or	Databases	collection	fails,	use	the
KillDatabase	method	to	force	a	drop	of	the	database.

SQL-DMO

KillProcess	Method
The	KillProcess	method	terminates	the	identified	Microsoft®	SQL	Server™
2000	process.

Applies	To

SQLServer	Object 	

Syntax
object.KillProcess(pid)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

pid

Long	integer	identifying	a	SQL	Server	process.

Prototype	(C/C++)
HRESULT	KillProcess(long	lpid);

SQL-DMO

L

SQL-DMO

ListAvailableSQLServers	Method
The	ListAvailableSQLServers	method	returns	a	NameList	object	that
enumerates	network-visible	instances	of	Microsoft®	SQL	Server™	2000.

Applies	To

Application	Object

Syntax
object.ListAvailableSQLServers()	as	NameList

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	ListAvailableSQLServers(
LPSQLDMONAMELIST*	ppServerNames);

Returns
A	NameList	object	that	enumerates	instances	of	SQL	Server.

Remarks
Nondefault	instances	of	SQL	Server	are	displayed	in	the	form	of
SERVERNAME/INSTANCENAME.

The	ListAvailableSQLServers	method	is	supported	only	for	servers	and
workstations	running	Microsoft	Windows	NT®	4.0	and	Microsoft	Windows
2000.

Note		ListAvailableSQLServers	maps	to	the	ODBC	SQLBrowseConnect
function,	which	does	not	support	connection	pooling.	Therefore,	an	application
that	enables	connection	pooling	might	encounter	the	error	"Microsoft	SQL-
DMO	(0x800A000E)	[SQL-DMO]Not	enough	storage	is	available	to	complete
this	operation."	when	calling	ListAvailableSQLServers.

SQL-DMO

ListAvailableUniqueIndexesForFullText	Method
The	ListAvailableUniqueIndexesForFullText	method	returns	a	NameList
object	that	enumerates	those	indexes	defined	on	a	table	capable	of	supporting
Microsoft	Search	full-text	indexing.

Applies	To

Table	Object

Syntax
object.ListAvailableUniqueIndexesForFullText()	as	NameList

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	ListAvailableUniqueIndexesForFullText(
LPSQLDMONAMELIST*	ppUniqueIndexNames);

Returns
A	NameList	object	that	enumerates	Microsoft®	SQL	Server™	2000	indexes.

Remarks
To	support	a	full-text	index	on	a	column,	Microsoft	Search	requires	a	unique
constraint	defined	on	the	table	that	contains	the	column.	The	constraint	must	be
either	UNIQUE	or	PRIMARY	KEY,	but	must	be	defined	on	a	single	column.

The	ListAvailableUniqueIndexesForFullText	method	identifies	indexes
supporting	constraints	that	can	provide	a	unique	value	for	Microsoft	Search

indexing.

SQL-DMO

ListBoundColumns	Method
The	ListBoundColumns	method	returns	a	SQLObjectList	object	that
enumerates	the	columns	to	which	a	rule,	or	default,	is	bound	or	the	columns
defined	on	the	user-defined	data	type.

Applies	To

Default	Object UserDefinedDatatype	Object
Rule	Object 	

Syntax
object.ListBoundColumns()	as	SQLObjectList

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	ListBoundColumns(
LPSQLDMOCOLUMNLIST*	ppList);

Returns
A	SQLObjectList	object	that	contains	0	or	more	Column	objects.

Remarks
A	SQL	Server	default	rule,	or	user-defined	data	type,	cannot	be	dropped	when
bound	to	or	used	by	any	other	SQL	Server	object.

For	the	Default	or	Rule	object	you	can	use	the	ListBoundColumns	method	to

enumerate	columns	bound,	then	use	the	Name	property	of	Column	objects
returned	and	the	UnbindFromColumn	method	of	the	object	to	remove	bindings.

A	SQL	Server	default	or	rule	can	be	bound	to	a	user-defined	data	type.	Use	the
ListBoundDatatypes	and	UnbindFromDatatype	methods	to	remove	bindings
on	a	user-defined	data	type.

Use	the	Datatype	property,	and	optionally	the	Length	property,	of	the	Column
object	to	redefine	a	column	on	a	new	data	type.

See	Also

Column	Object

SQL-DMO

ListBoundDatatypes	Method
The	ListBoundDatatypes	method	returns	a	SQLObjectList	object	that
enumerates	the	user-defined	data	types	to	which	a	rule,	or	default,	is	bound.

Applies	To

Default	Object Rule	Object

Syntax
object.ListBoundDatatypes()	as	SQLObjectList

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	ListBoundDatatypes(
LPSQLDMOUSERDEFINEDDATATYPELIST*	ppList);

Returns
A	SQLObjectList	object	that	contains	0	or	more	UserDefinedDatatype	objects.

Remarks
A	SQL	Server	default	or	rule	cannot	be	dropped	when	bound	to	a	SQL	Server
object.

For	the	Default	or	Rule	object,	you	can	use	the	ListBoundDatatypes	method	to
enumerate	user-defined	data	type	bound,	then	use	the	Name	property	of
UserDefinedDatatype	objects	returned	and	the	UnbindFromDatatype	method
of	the	object	to	remove	bindings.

A	SQL	Server	default	or	rule	can	be	bound	to	a	column.	Use	the
ListBoundColumns	and	UnbindFromColumn	method	to	remove	bindings	on	a
column.

See	Also

UserDefinedDatatype	Object

SQL-DMO

ListCollations	Method
The	ListCollations	method	returns	all	valid	Microsoft®	SQL	Server™	2000
collation	names.

Applies	To

SQLServer2	Object

Syntax
object.ListCollations()	as	NameList

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	ListCollations(LPSQLDMONAMELIST	*ppNames);

Remarks
ListCollations	is	used	in	conjunction	with	column-level	collation	and	is	similar
to	the	EnumCollations	method.	After	using	ListCollations	to	retrieve	a	list	of
collation	names,	an	application	can	set	the	Collation	property	to	use	a	specific
collation	with	a	Database2	or	UserDefinedFunction	object.

Note		If	an	application	calls	ListCollations	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

Collation	Property

EnumCollations	Method

SQL-DMO

ListColumns	Method
The	ListColumns	method	returns	a	SQLObjectList	object	that	enumerates	the
columns	of	a	Microsoft®	SQL	Server™	2000	view.

Applies	To

View	Object

Syntax
object.ListColumns()	as	SQLObjectList

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	ListColumns(
LPSQLDMOCOLUMNLIST*	ppList);

Returns
A	SQLObjectList	object	that	contains	1	or	more	Column	objects.

SQL-DMO

ListCompatibilityLevels	Method
The	ListCompatibilityLevels	method	lists	all	available	database	compatibility
levels.

Applies	To

SQLServer2	Object

Syntax
object.ListCompatibilityLevels()	as	NameList

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	ListCompatibilityLevels(LPSQLDMONAMELIST	*ppNames);

Remarks
ListCompatibilityLevels	returns	a	list	of	all	available	version	compatibility
levels	in	Microsoft®	SQL	Server™	2000.	An	application	can	use	one	of	the
returned	values	to	set	the	compatibility	of	a	database	using	the
CurrentCompatibility	property.

Note		ListCompatibilityLevels	can	be	used	with	Microsoft®	SQL	Server™
2000	and	SQL	Server	7.0.

SQL-DMO

ListDatabasePermissions	Method
The	ListDatabasePermissions	method	returns	a	SQLObjectList	object	that
enumerates	database	maintenance	privilege	for	one	or	more	Microsoft®	SQL
Server™	security	accounts.

Applies	To

Database	Object User	Object
DatabaseRole	Object 	

Syntax
object.ListDatabasePermissions([Privilege])	as	SQLObjectList

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Privilege

Optional.	Constrains	the	list	to	members	that	enumerates	database
maintenance	statement	permissions	as	described	in	Settings.

Prototype	(C/C++)
HRESULT	ListDatabasePermissions(
LPSQLDMOPERMISSIONLIST*	ppList,
SQLDMO_PRIVILEGE_TYPE	lPrivilegeTypes	=
SQLDMOPriv_AllDatabasePrivs);

Settings
When	setting	the	Privilege	argument	to	override	default	behavior,	indicate	more
than	a	single	statement	execution	permission	by	combining	values	using	an	OR

logical	operator.	Set	Privilege	by	using	these	SQLDMO_PRIVILEGE_TYPE
values.

Constant Value Description
SQLDMOPriv_AllDatabasePrivs 130944 Default.	List	object

enumerates	all	database
maintenance	statement
execution	permissions.

SQLDMOPriv_CreateDatabase 256 List	object	enumerates
accounts	granted	permission
to	execute	the	CREATE
DATABASE	statement.

SQLDMOPriv_CreateDefault 4096 List	object	enumerates
accounts	granted	permission
to	execute	the	CREATE
DEFAULT	statement.

SQLDMOPriv_CreateFunction 65366 List	object	enumerates
accounts	granted	permission
to	execute	the	CREATE
FUNCTION	statement.

SQLDMOPriv_CreateProcedure 1024 List	object	enumerates
accounts	granted	permission
to	execute	the	CREATE
PROCEDURE	statement.

SQLDMOPriv_CreateRule 16384 List	object	enumerates
accounts	granted	permission
to	execute	the	CREATE
RULE	statement.

SQLDMOPriv_CreateTable 128 List	object	enumerates
accounts	granted	permission
to	execute	the	CREATE
TABLE	statement.

SQLDMOPriv_CreateView 512 List	object	enumerates
accounts	granted	permission
to	execute	the	CREATE
VIEW	statement.

SQLDMOPriv_DumpDatabase 2048 List	object	enumerates
accounts	with	privilege
required	to	backup	a
database.

SQLDMOPriv_DumpTransaction 8192 List	object	enumerates
accounts	with	privilege
required	to	backup	a	database
transaction	log.

Returns
A	SQLObjectList	object	that	contains	0	or	more	Permission	objects.

Remarks
The	ListDatabasePermissions	method	enumerates	statement	execution
permission	explicitly	granted,	and	is	maintained	for	compatibility	with	previous
versions	of	SQL	Server.

SQL	Server	server	and	database	roles	assign	privilege	by	implicitly	granting
statement	execution	permissions.	Implicit	grants	are	not	enumerated	by	the
ListDatabasePermissions	method.

For	example,	a	user	may	be	a	member	of	the	db_backupoperator	role.	The	user
has	permission	to	execute	a	Transact-SQL	BACKUP	statement	targeting	either
the	database	or	its	transaction	log.	The	user	will	not	be	enumerated	by	the
ListDatabasePermissions	method	as	the	grant	is	implicit	in	the	role.

SQL-DMO

ListDetachedDBFiles	Method
The	ListDetachedDBFiles	method	lists	all	database	files	referenced	by	a
primary	database	file.

Applies	To

SQLServer2	Object

Syntax
object.ListDetachedDBFiles(MDFName)	as	NameList

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

MDFName

String	that	contains	the	name	of	a	detached	Microsoft®	SQL	Server™	2000
database	file

Prototype	(C/C++)
HRESULT	ListDetachedDBFiles(
SQLDMO_LPCSTR	MDFName,	
LPSQLDMONAMELIST	*ppFileNames);

Remarks
An	application	calls	ListDetachedDBFiles	to	retrieve	a	complete	list	of
detached	database	files.	The	application	can	then	call	IsDetachedPrimaryFile
to	determine	which	of	the	files	is	the	primary	file.

Note		If	an	application	calls	ListDetachedDBFiles	on	an	instance	of	SQL	Server

version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

IsDetachedPrimaryFile	Method

ListDetachedLogFiles	Method

SQL-DMO

ListDetachedLogFiles	Method
The	ListDetachedLogFiles	method	lists	all	log	files	referenced	by	primary	log
file.

Applies	To

SQLServer2	Object

Syntax
object.ListDetachedLogFiles(MDFName)	as	NameList

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

MDFName

String	that	contains	the	name	of	a	detached	Microsoft®	SQL	Server™	2000
log	file

Prototype	(C/C++)
HRESULT	ListDetachedLogFiles(
SQLDMO_LPCSTR	MDFName,	
LPSQLDMONAMELIST	*ppFileNames);

Remarks
An	application	calls	ListDetachedLogFiles	to	retrieve	a	complete	list	of
detached	database	files.	The	application	can	then	call	IsDetachedPrimaryFile
to	determine	which	of	the	files	is	the	primary	file.

Note		If	an	application	calls	ListDetachedLogFiles	on	an	instance	of	SQL

Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

IsDetachedPrimaryFile	Method

ListDetachedDBFiles	Method

SQL-DMO

ListIndexedColumns	Method
The	ListIndexedColumns	method	returns	a	SQLObjectList	object	that
enumerates	the	columns	participating	in	a	Microsoft®	SQL	Server™	2000
index.

Applies	To

Index	Object

Syntax
object.ListIndexedColumns()	as	SQLObjectList

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	ListIndexedColumns(
LPSQLDMOCOLUMNLIST*	ppList);

Returns
A	SQLObjectList	object	that	contains	1	or	more	Column	objects.

Remarks
Use	ListIndexedColumns	to	retrieve	a	list	of	columns	participating	in	an	index.

SQL-DMO

ListInstalledInstances	Method
The	ListInstalledInstances	method	returns	a	NameList	object	that	enumerates
all	installed	instances	of	Microsoft®	SQL	Server™	2000	on	the	local	or
specified	computer.

Applies	To

SQLServer2	Object

Syntax
object.ListInstalledInstances([ServerName])	as	NameList

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

ServerName

Optional	string	that	specifies	a	remote	server	name

Prototype	(C/C++)
HRESULT	ListInstalledInstances(
LPSQLDMONAMELIST	*ppServerNames,	
SQLDMO_LPCSTR	ServerName);

Returns
A	NameList	object	that	enumerates	instances	of	SQL	Server.

Remarks
By	default,	ListInstalledInstances	returns	a	list	of	SQL	Server	instances	on	the

local	computer.	When	called	with	the	optional	ServerName	parameter,
ListInstalledInstances	returns	a	list	of	SQL	Server	instances	on	a	specified
computer.	ListInstalledInstances	does	not	require	a	connection.

Note		If	an	application	calls	ListInstalledInstances	on	an	instance	of	SQL
Server	version	7.0,	an	empty	NameList	object	is	returned.

SQL-DMO

ListKeys	Method
The	ListKeys	method	returns	a	SQLObjectList	object	that	enumerates	the
PRIMARY	KEY	and	FOREIGN	KEY	constraints	in	which	a	column
participates.

Applies	To

Column	Object

Syntax
object.ListKeys()	as	SQLObjectList

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	ListKeys(
LPSQLDMOKEYLIST*	ppList);

Returns
A	SQLObjectList	object	that	contains	0	or	more	Key	objects.

SQL-DMO

ListMembers	Method	(Login,	User)
The	ListMembers	method	returns	a	NameList	object	that	enumerates	the
Microsoft®	SQL	Server™	2000	database	roles	in	which	a	database	user	has
membership,	or	the	server	roles	in	which	a	login	has	membership.

Applies	To

Login	Object User	Object

Syntax
object.ListMembers()	as	NameList

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	ListMembers(
LPSQLDMONAMELIST*	ppList);

Returns
A	NameList	object	that	enumerates	system	and	user-defined	security	roles.

SQL-DMO

ListMembers	Method	(SQLServer)
The	ListMembers	method	returns	a	NameList	object	that	enumerates	the
Microsoft®	SQL	Server™	2000	server	or	database	roles	in	which	the
SQLServer	object	login	has	membership.

Applies	To

SQLServer	Object

Syntax
object.ListMembers(Type)	as	NameList

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Type

Long	integer	that	identifies	a	SQL	Server	role	type	constricting	NameList
membership	as	described	in	Settings

Prototype	(C/C++)
HRESULT	ListMembers(
SQLDMO_ROLE_TYPE	Type,
LPSQLDMONAMELIST*	ppList);

Settings
Use	the	values	enumerated	below	when	setting	the	Type	argument.

Constant Value Description
SQLDMORole_All 3 List	server	and	database	roles	in	which

the	connected	login	is	a	member
SQLDMORole_Database 2 List	database	roles	in	which	the

connected	login	is	a	member
SQLDMORole_Server 1 List	server	roles	in	which	the

connected	login	is	a	member

Returns
A	NameList	object	that	enumerates	system	and	user-defined	security	roles.

SQL-DMO

ListMemberServers	Method
The	ListMemberServers	method	returns	a	NameList	object	that	enumerates	the
member	target	servers	(TSXs)	of	the	multiserver	administration,	TSX	server
group	referenced.

Applies	To

TargetServerGroup	Object

Syntax
object.ListMemberServers()	as	NameList

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	ListMemberServers(
LPSQLDMONAMELIST*	ppServerNames);

Returns
A	NameList	object	that	enumerates	TSX	servers	by	enlisted	name.

Remarks
When	a	SQL	Server	Agent	acts	as	a	master	server	(MSX)	for	multiserver
administration	servers,	known	execution	target	servers	(TSXs)	can	be	grouped
for	easier	targeting	of	multiple	servers.

TSX	server	groups	are	defined	only	for	a	SQL	Server	Agent	acting	as	a
multiserver	administration	master.	The	ListMemberServers	method	only

returns	members	when	the	JobServer	object	that	contains	the
TargetServerGroup	object	references	a	multiserver	administration	master.

SQL-DMO

ListObjectPermissions	Method
The	ListObjectPermissions	method	returns	a	SQLObjectList	object	that
enumerates	object	access	privilege	for	one	or	more	Microsoft®	SQL	Server™
2000	security	accounts.

Applies	To

Database	Object User	Object
DatabaseRole	Object 	

Syntax
object.ListObjectPermissions([Privilege])	as	SQLObjectList

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Privilege

Optional.	Constrains	the	list	to	members	that	enumerates	object	access
permissions	as	described	in	Settings.

Prototype	(C/C++)
HRESULT	ListObjectPermissions(
LPSQLDMOPERMISSIONLIST*	ppList,
SQLDMO_PRIVILEGE_TYPE	lPrivilegeTypes	=
SQLDMOPriv_AllObjectPrivs);

Settings
When	setting	the	Privilege	argument	to	override	default	behavior,	indicate	more
than	a	single	permission	by	combining	values	using	an	OR	logical	operator.	Set

Privilege	by	using	these	SQLDMO_PRIVILEGE_TYPE	values.

Constant Value Description
SQLDMOPriv_AllObjectPrivs 63 Default.	All	applicable	object

privilege.
SQLDMOPriv_Delete 8 List	object	enumerates	accounts

and	those	tables	or	views	against
which	permission	is	granted	to
execute	a	DELETE	statement.

SQLDMOPriv_Execute 16 List	object	enumerates	accounts
and	those	stored	procedures	for
which	permission	is	granted	to
execute	an	EXECUTE	statement.

SQLDMOPriv_Insert 2 List	object	enumerates	accounts
and	those	tables	or	views	against
which	permission	is	granted	to
execute	an	INSERT	statement.

SQLDMOPriv_References 32 List	object	enumerates	accounts,
and	those	tables	that	the	account
can	reference,	in	declarative
referential	integrity	constraints.

SQLDMOPriv_Select 1 List	object	enumerates	accounts
and	those	tables	or	views	against
which	permission	is	granted	to
execute	a	SELECT	statement.

SQLDMOPriv_Update 4 List	object	enumerates	accounts
and	those	tables	or	views	against
which	permission	is	granted	to
execute	an	UPDATE	statement.

Returns
A	SQLObjectList	object	that	contains	0	or	more	Permission	objects

Remarks

The	ListObjectPermissions	method	enumerates	object	access	permissions
granted	explicitly.

SQL	Server	server	and	database	roles	assign	privilege	by	granting	statement
execution	permissions	implicitly.	Implicit	grants	are	not	enumerated	by	the
ListObjectPermissions	method.

SQL-DMO

ListObjectNames	Method
The	ListObjectNames	method	returns	a	NameList	object	that	enumerates	a
specified	type	of	database	object	involved	in	the	schema	and/or	data	copy
operation	defined	by	the	Transfer	object	used.

Applies	To

Transfer	Object

Syntax
object.ListObjectNames(ObjectType)	as	NameList

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

ObjectType

Long	integer	that	constrains	list	membership	by	database	object	type	as
described	in	Settings

Prototype	(C/C++)
HRESULT	ListObjectNames(
SQLDMO_OBJECT_TYPE	ObjectType,
LPSQLDMONAMELIST*	ppList);

Settings
Use	the	SQLDMO_OBJECT_TYPE	values	defined	below	when	setting	the
ObjectType	argument.	Specify	only	a	single	database	object	type.

Constant Value Description

SQLDMOObj_AllButSystemObjects 5119 Returned	SQLObjectList
object	enumerates	all	but
Microsoft®	SQL	Server™
2000	system	objects.

SQLDMOObj_AllDatabaseObjects 4607 Returned	SQLObjectList
object	enumerates	SQL
Server	system	and	user
database	objects.

SQLDMOObj_AllDatabaseUserObjects 4605 Returned	SQLObjectList
object	enumerates	only
user	database	objects.

SQLDMOObj_Default 64 Returned	SQLObjectList
object	enumerates	SQL
Server	defaults.

SQLDMOObj_Rule 128 Returned	SQLObjectList
object	enumerates	SQL
Server	rules.

SQLDMOObj_StoredProcedure 16 Returned	SQLObjectList
object	enumerates	SQL
Server	stored	procedures.

SQLDMOObj_SystemTable 2 Returned	SQLObjectList
object	enumerates	SQL
Server	system	tables.

SQLDMOObj_Trigger 256 Returned	SQLObjectList
object	enumerates	SQL
Server	triggers.

SQLDMOObj_UserDefinedDatatype 4096 Returned	SQLObjectList
object	enumerates	SQL
Server	user-defined	data
type.

SQLDMOObj_UserDefinedFunction 1 Returned	SQLObjectList
object	enumerates	user-
defined	function.

SQLDMOObj_UserTable 8 Returned	SQLObjectList
object	enumerates	SQL

Server	user-defined	tables.
SQLDMOObj_View 4 Returned	SQLObjectList

object	enumerates	SQL
Server	views.

Returns
A	NameList	object	that	enumerates	database	objects	by	name.

SQL-DMO

ListObjects	Method
The	ListObjects	method	returns	a	SQLObjectList	object	that	enumerates	the
system	and	user-defined	objects	defining	the	database	referenced.

Applies	To

Database	Object

Syntax
object.ListObjects([ObjectType]	,	[SortBy])	as	SQLObjectList

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

ObjectType

Optional.	A	long	integer	that	constrains	list	membership	to	objects	of	the
type(s)	specified	as	described	in	Settings.

SortBy

Optional.	A	long	integer	that	specifies	list	membership	ordering	as	described
in	Settings.

Prototype	(C/C++)
HRESULT	ListObjects(
LPSQLDMODBOBJECTLIST*	ppList,
SQLDMO_OBJECT_TYPE	lObjectTypes	=	SQLDMOObj_AllDatabaseObjects,
SQLDMO_OBJSORT_TYPE	SortBy	=	SQLDMOObjSort_Name);

Settings

The	ObjectType	argument	is	a	bit-packed	long	integer.	Specify	more	than	a
single	database	object	type	by	using	an	OR	logical	operator	to	combine	the
following	SQLDMO_OBJECT_TYPE	values.

Constant Value Description
SQLDMOObj_AllButSystemObjects 5119 Returned	SQLObjectList

object	enumerates	all	but
Microsoft®	SQL	Server™
2000	system	objects.

SQLDMOObj_AllDatabaseObjects 4607 Returned	SQLObjectList
object	enumerates	SQL
Server	system	and	user
database	objects.

SQLDMOObj_AllDatabaseUserObjects 4605 Returned	SQLObjectList
object	enumerates	only
user	database	objects.

SQLDMOObj_Default 64 Returned	SQLObjectList
object	enumerates	SQL
Server	defaults.

SQLDMOObj_Rule 128 Returned	SQLObjectList
object	enumerates	SQL
Server	rules.

SQLDMOObj_StoredProcedure 16 Returned	SQLObjectList
object	enumerates	SQL
Server	stored	procedures.

SQLDMOObj_SystemTable 2 Returned	SQLObjectList
object	enumerates	SQL
Server	system	tables.

SQLDMOObj_Trigger 256 Returned	SQLObjectList
object	enumerates	SQL
Server	triggers.

SQLDMOObj_UserDefinedDatatype 4096 Returned	SQLObjectList
object	enumerates	SQL
Server	user-defined	data
type.

SQLDMOObj_UserDefinedFunction 1 Returned	SQLObjectList
object	enumerates	user-
defined	function.

SQLDMOObj_UserTable 8 Returned	SQLObjectList
object	enumerates	SQL
Server	user-defined	tables.

SQLDMOObj_View 4 Returned	SQLObjectList
object	enumerates	SQL
Server	views.

When	setting	SortBy,	specify	SQLObjectList	member	order	by	using	these
values.

Constant Value Description
SQLDMOObjSort_Date 3 Objects	in	the	list	are	ordered	by

creation	date.
SQLDMOObjSort_Name 0 Default.	Objects	in	the	list	are

ordered	by	name.
SQLDMOObjSort_Owner 2 Objects	in	the	list	are	ordered	by

owner	name.
SQLDMOObjSort_Type 1 Objects	in	the	list	are	ordered	by

type.

Returns
A	SQLObjectList	object	that	contains	0	or	more	DBObject	objects.

SQL-DMO

ListOwnedObjects	Method
The	ListOwnedObjects	method	returns	a	SQLObjectList	object	that
enumerates	the	user-defined	objects	owned	by	the	user	referenced	by	the	User
object.

Applies	To

User	Object

Syntax
object.ListOwnedObjects([ObjectType]	,	[SortBy])	as	SQLObjectList

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

ObjectType

Optional.	A	long	integer	that	constrains	list	membership	to	objects	of	the
type(s)	specified	as	described	in	Settings.

SortBy

Optional.	A	long	integer	that	specifies	list	membership	ordering	as	described
in	Settings.

Prototype	(C/C++)
HRESULT	ListOwnedObjects(
LPSQLDMODBOBJECTLIST*	ppList,
SQLDMO_OBJECT_TYPE	lObjectTypes	=	SQLDMOObj_AllDatabaseObjects,
SQLDMO_OBJSORT_TYPE	SortBy	=	SQLDMOObjSort_Name);

Settings
The	ObjectType	argument	is	a	bit-packed	long	integer.	Specify	more	than	a
single	database	object	type	by	using	an	OR	logical	operator	to	combine	the
following	SQLDMO_OBJECT_TYPE	values.

Constant Value Description
SQLDMOObj_AllButSystemObjects 5119 Returned	SQLObjectList

object	enumerates	all	but
Microsoft®	SQL	Server™
system	objects.

SQLDMOObj_AllDatabaseObjects 4607 Returned	SQLObjectList
object	enumerates	SQL
Server	system	and	user
database	objects.

SQLDMOObj_AllDatabaseUserObjects 4605 Returned	SQLObjectList
object	enumerates	only
user	database	objects.

SQLDMOObj_Default 64 Returned	SQLObjectList
object	enumerates	SQL
Server	defaults.

SQLDMOObj_Rule 128 Returned	SQLObjectList
object	enumerates	SQL
Server	rules.

SQLDMOObj_StoredProcedure 16 Returned	SQLObjectList
object	enumerates	SQL
Server	stored	procedures.

SQLDMOObj_SystemTable 2 Returned	SQLObjectList
object	enumerates	SQL
Server	system	tables.

SQLDMOObj_Trigger 256 Returned	SQLObjectList
object	enumerates	SQL
Server	triggers.

SQLDMOObj_UserDefinedDatatype 4096 Returned	SQLObjectList
object	enumerates	SQL
Server	user-defined	data

type.
SQLDMOObj_UserDefinedFunction 1 Returned	SQLObjectList

object	enumerates	user-
defined	function.

SQLDMOObj_UserTable 8 Returned	SQLObjectList
object	enumerates	SQL
Server	user-defined	tables.

SQLDMOObj_View 4 Returned	SQLObjectList
object	enumerates	SQL
Server	views.

When	setting	SortBy,	specify	SQLObjectList	member	order	by	using	these
values.

Constant Value Description
SQLDMOObjSort_Date 3 Objects	in	the	list	are	ordered	by

creation	date.
SQLDMOObjSort_Name 0 Default.	Objects	in	the	list	are

ordered	by	name.
SQLDMOObjSort_Owner 2 Objects	in	the	list	are	ordered	by

owner	name.
SQLDMOObjSort_Type 1 Objects	in	the	list	are	ordered	by

type.

Returns
A	SQLObjectList	object	that	contains	0	or	more	DBObject	objects.

SQL-DMO

ListPermissions	Method
The	ListPermissions	method	returns	a	SQLObjectList	object	that	enumerates
object	access	privilege	for	Microsoft®	SQL	Server™	2000	database	roles	and
users.

Applies	To

DBObject	Object UserDefinedFunction	Object
StoredProcedure	Object View	Object
Table	Object 	

Syntax
object.ListPermissions([Privilege])	as	SQLObjectList

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Privilege

Optional.	Constrains	the	list	to	members	that	enumerates	object	access
permissions	as	described	in	Settings.

Prototype	(C/C++)
HRESULT	ListPermissions(
LPSQLDMOPERMISSIONLIST*	ppList,
SQLDMO_PRIVILEGE_TYPE	lPrivilegeTypes);

Settings
When	setting	the	Privilege	argument	to	override	default	behavior,	indicate	more
than	a	single	permission	by	combining	values	using	an	OR	logical	operator.	Set

Privilege	by	using	these	SQLDMO_PRIVILEGE_TYPE	values.

Constant Value Description
SQLDMOPriv_AllObjectPrivs 63 Default	for	DBObject,	Table,	and

View	objects.	All	applicable	object
privilege.

SQLDMOPriv_Delete 8 List	object	enumerates	accounts
granted	permission	to	execute	a
DELETE	statement	against	the
referenced	table	or	view.

SQLDMOPriv_Execute 16 Default	for	the	StoredProcedure
object.	List	object	enumerates
accounts	granted	EXECUTE
permission	on	the	referenced	stored
procedure.

SQLDMOPriv_Insert 2 List	object	enumerates	accounts
granted	permission	to	execute	an
INSERT	statement	against	the
referenced	table	or	view.

SQLDMOPriv_References 32 List	object	enumerates	accounts	that
can	use	the	referenced	table	in
declarative	referential	integrity
constraints.

SQLDMOPriv_Select 1 List	object	enumerates	accounts
granted	permission	to	execute	a
SELECT	statement	against	the
referenced	table	or	view.

SQLDMOPriv_Update 4 List	object	enumerates	accounts
granted	permission	to	execute	an
UPDATE	statement	against	the
referenced	table	or	view.

Returns
A	SQLObjectList	object	that	contains	0	or	more	Permission	objects.

Remarks
The	ListPermissions	method	enumerates	object	access	permissions	granted
explicitly.	When	using	ListPermissions	with	the	Table	object	the	default	value
of	the	Privilege	parameter	is	SQLDMOPriv_Execute.	For	all	other	objects,	the
default	value	of	the	Privilege	parameter	is	SQLDMOPriv_AllObjectPrivs.

SQL	Server	server	and	database	roles	assign	privilege	by	granting	statement
execution	permissions	implicitly.	Implicit	grants	are	not	enumerated	by	the
ListPermissions	method.

SQL-DMO

ListPrivilegeColumns	Method
The	ListPrivilegeColumns	method	returns	a	SQLObjectList	object	that
enumerates	the	columns	of	a	table	or	view	exposing	update	or	query	permission
for	a	Microsoft®	SQL	Server™	2000	database	user	or	role.

Applies	To

Permission	Object

Syntax
object.ListPrivilegeColumns()	as	SQLObjectList

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	ListPrivilegeColumns(
LPSQLDMOCOLUMNLIST*	ppList);

Returns
A	SQLObjectList	object	that	contains	0	or	more	Column	objects.

Remarks
Use	the	ListPrivilegeColumns	method	when	the	Permission	object	enumerates
a	grant	for	SELECT	or	UPDATE	statement	execution	privilege	on	a	table	or
view.

The	method	returns	an	empty	SQLObjectList	object	when	the	referenced
permission	is	granted	on	all	columns	in	the	table	or	view,	or	the	Permission

object	enumerates	any	other	type	of	privilege,	such	as	execution	permission	for	a
stored	procedure.

SQL-DMO

ListReplicatedColumns	Method
The	ListReplicatedColumns	method	returns	a	SQLObjectList	object	that
enumerates	the	columns	of	a	table	in	a	vertically-partitioned	transactional	or
snapshot	replication	article.

Applies	To

MergeArticle2	Object TransArticle	Object

Syntax
object.ListReplicatedColumns()	as	SQLObjectList

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	ListReplicatedColumns(
LPSQLDMOCOLUMNLIST*	ppList);

Returns
A	SQLObjectList	object	that	contains	0	or	more	Column	objects.

SQL-DMO

ListStartupProcedures	Method
The	ListStartupProcedures	method	returns	a	SQLObjectList	object	that
enumerates	the	stored	procedures	configured	for	automatic	execution	when	the
an	instance	of	Microsoft®	SQL	Server™	2000	starts.

Applies	To

SQLServer	Object

Syntax
object.ListStartupProcedures()	as	SQLObjectList

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	ListStartupProcedures(
LPSQLDMOSTOREDPROCEDURELIST*	ppList);

Returns
A	SQLObjectList	object	that	contains	0	or	more	StoredProcedure	objects.

SQL-DMO

ListUserColumnPermissions	Method
The	ListUserColumnPermissions	method	returns	a	SQLObjectList	object	that
enumerates	column-level	access	permissions	for	a	specified	Microsoft®	SQL
Server™	2000	database	role	or	user.

Applies	To

Table2	Object View2	Object

Syntax
object.ListUserColumnPermissions(UserName)	as	SQLObjectList

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

UserName

String	that	specifies	an	existing	user-defined	database	role	in	SQL	Server,	or
user	by	name

Prototype	(C/C++)
HRESULT	ListUserColumnPermissions(
SQLDMO_LPCSTR	UserName,	
LPSQLDMOPERMISSIONLIST	*	ppList);

Returns
A	SQLObjectList	object	that	contains	Permission	objects.

Remarks

The	ListUserColumnPermissions	method	enumerates	object-access
permissions	granted	explicitly.

SQL	Server	and	database	roles	assign	permissions	by	granting	statement
execution	permissions	implicitly.	Implicit	grants	are	not	enumerated	by	the
ListUserPermissions	method.

Note		If	an	application	calls	ListUserColumnPermissions	on	an	instance	of
SQL	Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the
message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

SQL-DMO

ListUserPermissions	Method
The	ListUserPermissions	method	returns	a	SQLObjectList	object	that
enumerates	object	access	privilege	for	a	specified	Microsoft®	SQL	Server™
2000	database	role	or	user.

Applies	To

DBObject	Object UserDefinedFunction	Object
StoredProcedure	Object View	Object
Table	Object 	

Syntax
object.ListUserPermissions(UserName)	as	SQLObjectList

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

UserName

String	that	specifies	an	existing	SQL	Server	user-defined	database	role	or
user	by	name

Prototype	(C/C++)
HRESULT	ListUserPermissions(
SQLDMO_LPCSTR	UserName,
LPSQLDMOPERMISSIONLIST*	ppList);

Returns
A	SQLObjectList	object	that	contains	0	or	more	Permission	objects.

Remarks
The	ListUserPermissions	method	enumerates	object	access	permissions	granted
explicitly.

SQL	Server	server	and	database	roles	assign	privilege	by	granting	statement
execution	permissions	implicitly.	Implicit	grants	are	not	enumerated	by	the
ListUserPermissions	method.

SQL-DMO

M

SQL-DMO

MSXDefect	Method
The	MSXDefect	method	ends	SQL	Server	Agent	participation	in	a	multiserver
administration	group.

Applies	To

JobServer	Object 	

Syntax
object.MSXDefect()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	MSXDefect();

Remarks
For	Microsoft®	SQL	Server™	2000,multiserver	administration	participation	is
configured	by	performing	two	tasks.	An	instance	of	SQL	Server	declares	itself	a
multiserver	administration	master	server	(MSX)	by	creating	an	administering
operator.	One	or	more	instances	of	SQL	Server	then	enlist	with	the	MSX,
becoming	administration	target	servers	(TSX).

To	break	a	master-target	relationship	in	a	multiserver	administration	group

1.	 Get	the	JobServer	object	referencing	the	SQL	Server	Agent	of	the
TSX.

2.	 Use	the	MSXDefect	method	to	break	the	relationship.

SQL-DMO

MSXEnlist	Method
The	MSXEnlist	method	initiates	SQL	Server	Agent	participation	as	a	target	for
multiserver	administration.

Applies	To

JobServer	Object 	

Syntax
object.MSXEnlist(MasterServer	,	Location)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

MasterServer

String	naming	a	registered	instance	of	Microsoft®	SQL	Server™	2000.The
instance	must	be	configured	as	a	multiserver	administration	master	server.

Location

String	documenting	the	enlisting	server's	location.	Used	for	user	assistance
only.

Prototype	(C/C++)
HRESULT	MSXEnlist(
SQLDMO_LPCSTR	szServer,
SQLDMO_LPCSTR	szLocation);

Remarks
For	SQL	Server,	multiserver	administration	participation	is	configured	by

performing	two	tasks.	An	instance	of	SQL	Server	declares	itself	a	multiserver
administration	master	server	(MSX)	by	creating	an	administering	operator.	One
or	more	instances	of	SQL	Server	then	enlist	with	the	configured	MSX,	becoming
administration	target	servers	(TSX).

SQL	Server	multiserver	administration	is	implemented	using	a	hub	and	spoke
topology.	An	MSX	cannot	enlist	as	a	target	of	any	other	MSX	in	an	organization.

An	instance	of	SQL	Server	participating	as	a	TSX	cannot	become	the	target	of
any	other	MSX	by	using	the	MSXEnlist	method.	Use	the	MSXDefect	method
to	break	an	existing	master-target	relationship	prior	to	enlisting	the	target	server
in	a	new	multiserver	administration	group.

IMPORTANT		Only	instances	of	SQL	Server	version	7.0	running	on	Microsoft
Windows	NT®	4.0	or	Microsoft	Windows	2000®	can	enlist	as	target	servers.

SQL-DMO

P

SQL-DMO

Pause	Method
The	Pause	method	temporarily	suspends	Microsoft®	SQL	Server™	2000
service	execution.

Applies	To

SQLServer	Object

Syntax
object.Pause()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	Pause();

Remarks
The	SQL	Server	service	is	implemented	as	a	pausable	Microsoft	Windows	NT®
4.0	or	Microsoft	Windows	2000®	service.	When	the	Pause	method	is	used	to
suspend	service	execution,	use	the	Continue	method	to	restart	execution.

SQL-DMO

PingSQLServerVersion	Method
The	PingSQLServerVersion	method	returns	a	long	integer	that	describes	an
instance	of	Microsoft®	SQL	Server™	2000.

Applies	To

SQLServer	Object

Syntax
object.PingSQLServerVersion([ServerName]	,	[Login]	,	[Password])
as	SQLDMO_SQL_VER

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

ServerName

Optional.	A	string	that	identifies	an	instance	of	SQL	Server	by	installed
name.

Login

Optional.	A	string	that	identifies	an	existing	SQL	Server	login	by	name.

Password

Optional.	A	string	that	supplies	a	password	and	is	used	for	authentication	of
the	Login	argument	in	method	execution.

Prototype	(C/C++)
HRESULT	PingSQLServerVersion(SQLDMO_SQL_VER	*pRetVal,
SQLDMO_LPCSTR	szServerName,	SQLDMO_LPCSTR	szLogin,
SQLDMO_LPCSTR	szPassword);

Returns
Evaluate	the	return	value	of	the	PingSQLServerVersion	method	by	using	these
SQLDMO_SQL_VER	values.

Constant Value Description
SQLDMOSQLVer_60 2 SQL	Server	version	6.0
SQLDMOSQLVer_65 4 SQL	Server	version	6.5
SQLDMOSQLVer_70 8 SQL	Server	version	7.0
SQLDMOSQLVer_80 16 SQL	Server	2000
SQLDMOSQLVer_Pre_60 1 SQL	Server	version	6.0	or

earlier
SQLDMOSQLVer_Unknown0 Bad	or	invalid	value

Remarks
The	SQL-DMO	object	library	released	with	SQL	Server	2000	cannot	connect	to
or	be	used	to	administer	an	instance	of	SQL	Server	with	a	version	earlier	than
7.0.	To	administer	instances	of	SQL	Server	7.0	and	earlier,	an	application	can
reference	the	SQL-DMO	object	library	released	with	SQL	Server	2000,	and	the
library	released	with	an	earlier	version.

The	PingSQLServerVersion	method:

Connects	to	an	instance	of	SQL	Server.

Queries	the	instance	for	version	information.

Disconnects	from	the	instance	indicated.

The	method	cannot	be	used	on	a	connected	SQLServer	object.

When	the	ServerName	argument	is	not	specified,	the	PingSQLServerVersion
method	attempts	to	connect	to	an	instance	of	SQL	Server	using	the	network
name	of	the	computer	on	which	the	application	is	running.

When	used,	the	Login	and	Password	arguments	indicate	use	of	SQL	Server
Authentication	for	connection	validation.	When	no	value	is	supplied	in	the	Login
argument,	Windows	Authentication	is	used	for	connection	validation	and	any
value	aupplied	in	the	Password	argument	is	ignored.

SQL-DMO

PurgeHistory	Method
The	PurgeHistory	method	removes	system	records	maintaining	execution
history	for	the	referenced	Microsoft®	SQL	Server™	2000	Agent	job.

Applies	To

Job	Object

Syntax
object.PurgeHistory()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	PurgeHistory();

SQL-DMO

PurgeJobHistory	Method
The	PurgeJobHistory	method	removes	system	records	maintaining	execution
history	for	all	Microsoft®	SQL	Server™	2000.Agent	jobs,	or	those	matching	the
filter	criteria	specified.

Applies	To

JobServer	Object

Syntax
object.PurgeJobHistory([Filter])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Filter

Optional.	A	JobHistoryFilter	object	that	constrains	record	removal	to	those
records	identified	by	the	criteria	set	in	the	object.

Prototype	(C/C++)
HRESULT	PurgeJobHistory(
LPSQLDMOJOBHISTORYFILTER	pFilter	=	NULL);

Remarks
For	more	information	about	using	the	JobHistoryFilter	object	properties	to
identify	job	history	records,	see	JobHistoryFilter	Object.

SQL-DMO

Q

SQL-DMO

Quit	Method
The	Quit	method	disconnects	all	SQLServer	objects	referenced	by	an
application	and	forces	a	release	of	all	application-maintained	references	on	SQL-
DMO	objects.

Applies	To

Application	Object 	

Syntax
object.Quit()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	Quit();

SQL-DMO

	R

SQL-DMO

ReadAgentOffloadInfo	Method
The	ReadAgentOffloadInfo	method	retrieves	information	about	the	offloading
status	of	an	agent	from	the	Distributor.

Applies	To

DistributionPublisher2	Object

Syntax
object.ReadAgentOffloadInfo(
bstrJobID	,	
pbAgentOffload	,	
pszServerNetworkName	,	
pbIndependentAgent)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

bstrJobID

String	that	specifies	a	replication	agent	job	ID

pbAgentOffload

Boolean	that	returns	TRUE	or	FALSE,	depending	on	whether	the	agent	runs
at	the	Distributor	or	Subscriber

pszServerNetworkName

String	that	returns	the	network	computer	name	of	the	Subscriber

pbIndependentAgent

Boolean	that	returns	TRUE	or	FALSE,	depending	on	whether	the	agent	is

independent	or	shared

Prototype	(C/C++)
HRESULT	ReadAgentOffloadInfo(
SQLDMO_LPCSTR	pszJobID,	
LPBOOL	pbAgentOffload,	
SQLDMO_LPBSTR	pszServerNetworkName,	
LPBOOL	pbIndependentAgent);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	by	using	SysFreeString.

Remarks
Use	the	ReadAgentOffloadInfo	method	with	the	bstrJobID	parameter	that
specifies	a	replication	agent	job	ID	to	retrieve	information	about	the	offloading
status	of	an	agent.	If	pbAgentOffload	returns	TRUE,	the	agent	runs	at	the
Subscriber.	If	pbAgentOffload	returns	FALSE,	the	agent	runs	at	the	Distributor.
If	pbIndependentAgent	returns	TRUE,	the	agent	functions	as	an	independent
agent.	If	pbIndependentAgent	returns	FALSE,	the	agent	functions	as	a	shared
agent.

Use	the	EnableAgentOffload	or	DisableAgentOffload	methods	to	change	the
offloading	status	of	an	agent.

Note		If	an	application	calls	ReadAgentOffloadInfo	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

DisableAgentOffload	Method

EnableAgentOffload	Method

SQL-DMO

ReadBackupHeader	Method	(BackupDevice)
The	ReadBackupHeader	method	returns	a	QueryResults	object	that
enumerates	the	contents	of	the	media	maintained	by	a	backup	device.

Applies	To

BackupDevice	Object

Syntax
object.ReadBackupHeader()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	ReadBackupHeader(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	containing	one	result	set	defined	by	these	columns.

Column Data	type Description
BackupName nvarchar(130) Backup	set	name.
BackupDescription nvarchar(256) Backup	set	description.
BackupType tinyint Backup	type:

1	=	Database
2	=	Transaction	Log
4	=	File

5	=	Differential	Database

ExpirationDate smalldatetime Expiration	date	for	the	backup	set.
Compressed tinyint 0	=	FALSE.	Microsoft®	SQL

Server™	2000	does	not	support
software	compression.

Position smallint Position	of	the	backup	set	in	the
volume.

DeviceType tinyint Number	corresponding	to	the
device	used	for	the	backup
operation:

2	=	Temporary	disk	device.
102	=	Permanent	disk	device.

5	=	Temporary	tape	device.
105	=	Permanent	tape	device.

6	=	Temporary	named	pipe	device.
106	=	Permanent	named	pipe
device.

7	=	Temporary	virtual	device.
107	=	Permanent	virtual	device.

Device	names	for	permanent
devices	can	be	found	in
sysdevices.

UserName nvarchar(130) Name	of	user	that	performed	the
backup	operation.

ServerName nvarchar(130) Name	of	the	server	that	wrote	the
backup	set.

DatabaseName nvarchar(130) Name	of	the	database	that	was
backed	up.

DatabaseVersion integer Version	of	the	database	from
which	the	backup	was	created.

DatabaseCreationDate smalldatetime Date	and	time	the	database	was
created.

BackupSize numeric(20,0) Size	of	the	backup,	in	bytes.
FirstLsn numeric(25,0) Log	sequence	number	of	the	first

transaction	in	the	backup	set.
NULL	for	file	backups.

LastLsn numeric(25,0) Log	sequence	number	of	the	last
transaction	in	the	backup	set.
NULL	for	file	backups.

CheckpointLsn numeric(25,0) Log	sequence	number	of	the	most
recent	checkpoint	at	the	time	the
backup	was	created.

DatabaseBackupLsn numeric(25,0) Log	sequence	number	of	the	most
recent	full	database	backup.

BackupStartDate smalldatetime Date	and	time	that	the	backup
operation	began.

BackupFinishDate smalldatetime Date	and	time	that	the	backup
operation	finished.

SortOrder smallint Server	sort	order.	This	column	is
valid	for	database	backups	only.

CodePage smallint Server	code	page	or	character	set
used	by	the	server.

CompatibilityLevel tinyint Compatibility	level	setting	of	the
database	from	which	the	backup
was	created.

SoftwareVendorId integer Software	vendor	identification
number.	For	SQL	Server,	this
number	is	4608	(or	hexadecimal
0x1200).

SoftwareVersionMajor integer Major	version	number	of	the
server	that	created	the	backup	set.

SoftwareVersionMinor integer Minor	version	number	of	the
server	that	created	the	backup	set.

SoftwareVersionBuild integer Build	number	of	the	server	that
created	the	backup	set.

MachineName nvarchar(130) Name	of	the	computer	that
performed	the	backup	operation.

Remarks
SQL	Server	can	share	backup	media	with	other	operating	system	utilities	that
perform	backup	of	other	data,	and	the	media	in	a	device	may	contain	headers
created	by	other	utilities.

When	the	media	of	a	backup	device	is	unused,	such	as	when	a	disk	device	is
empty,	the	ReadBackupHeader	method	succeeds,	returning	an	empty
QueryResults	object.

SQL-DMO

ReadBackupHeader	Method	(Restore)
The	ReadBackupHeader	method	returns	a	QueryResults	object	enumerating
the	contents	of	the	media	maintained	by	a	backup	device	or	operating	system
file.

Applies	To

Restore	Object

Syntax
object.ReadBackupHeader(Server)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Server

SQLServer	object	connected	to	an	instance	of	Microsoft®	SQL	Server™
2000	on	which	the	device	or	file	is	visible

Prototype	(C/C++)
HRESULT	ReadBackupHeader(
LPSQLDMOSERVER	ServerObject,
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	containing	one	result	set.	For	a	description	of	the	result
set	contents,	see	ReadBackupHeader	Method	(BackupDevice).

Remarks

When	using	the	ReadBackupHeader	method,	one	of	the	Restore	object	device
properties	must	indicate	the	device	or	file	maintaining	the	backup	media.

To	use	the	ReadBackupHeader	method

1.	 Create	a	SQLServer	object.

2.	 Connect	the	SQLServer	object	to	an	instance	of	SQL	Server	on	which
the	source	backup	device	is	visible.

3.	 Create	a	Restore	object.

4.	 Set	either	the	Devices,	Files,	Pipes,	or	Tapes	property	to	indicate	a
device	visible	on	an	instance	of	SQL	Server	indicated	in	Step	2	and
maintaining	the	backup	media.	Specify	only	a	single	device	or	file.

5.	 If	desired,	set	the	FileNumber	property	to	indicate	a	specific	backup
set	by	ordinal	location	on	the	media.	By	default,	the	header	of	the	first
backup	set	on	the	media	is	enumerated.

6.	 Call	the	ReadBackupHeader	method	of	the	Restore	object	using	the
SQLServer	object	created	in	Step	1	as	an	argument.

SQL	Server	can	share	backup	media	with	other	operating	system	utilities	that
perform	backup	of	other	data,	and	the	media	in	a	device	may	contain	headers
created	by	other	utilities.

When	the	media	of	a	backup	device	is	unused,	such	as	when	a	disk	device	is
empty,	the	ReadBackupHeader	method	succeeds,	returning	an	empty
QueryResults	object.

SQL-DMO

ReadBackupHeader	Method	(SQLServer)
The	ReadBackupHeader	method	returns	a	QueryResults	object	enumerating
the	contents	of	the	media	maintained	by	a	backup	device	or	operating	system
file.

Applies	To

SQLServer	Object

Syntax
object.ReadBackupHeader(Restore)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Restore

Restore	object	with	properties	set	to	specify	a	backup	device	or	file	and,
optionally,	a	backup	set

Prototype	(C/C++)
HRESULT	ReadBackupHeader(
LPSQLDMORESTORE	Restore,
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	containing	one	result	set.	For	a	description	of	the	result
set	contents,	see	ReadBackupHeader	Method	(BackupDevice).

Remarks

When	using	the	ReadBackupHeader	method,	one	of	the	Restore	object	device
properties	must	indicate	the	device	or	file	maintaining	the	backup	media.

To	use	the	ReadBackupHeader	method

1.	 Create	a	SQLServer	object.

2.	 Connect	the	SQLServer	object	to	an	instance	of	Microsoft®	SQL
Server™	2000	on	which	the	source	backup	device	is	visible.

3.	 Create	a	Restore	object.

4.	 Set	either	the	Devices,	Files,	Pipes,	or	Tapes	property	to	indicate	a
device	visible	on	an	instance	of	SQL	Server	indicated	in	Step	2	and
maintaining	the	backup	media.	Specify	only	a	single	device	or	file.

5.	 If	desired,	set	the	FileNumber	property	to	indicate	a	specific	backup
set	by	ordinal	location	on	the	media.	By	default,	the	header	of	the	first
backup	set	on	the	media	is	enumerated.

6.	 Call	the	ReadBackupHeader	method	of	the	SQLServer	object	using
the	Restore	object	created	in	Step	3	as	an	argument.

SQL	Server	can	share	backup	media	with	other	operating	system	utilities	that
perform	backup	of	other	data,	and	the	media	in	a	device	may	contain	headers
created	by	other	utilities.

When	the	media	of	a	backup	device	is	unused,	such	as	when	a	disk	device	is
empty,	the	ReadBackupHeader	method	succeeds,	returning	an	empty
QueryResults	object.

SQL-DMO

ReadErrorLog	Method
The	ReadErrorLog	method	returns	a	QueryResults	object	enumerating	the
contents	of	a	Microsoft®	SQL	Server™	2000	error	log.

Applies	To

SQLServer	Object

Syntax
object.ReadErrorLog([LogNumber])	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

LogNumber

Optional.	A	long	integer	that	indicates	an	error	log	number.	When	not
specified,	the	current	error	log	is	enumerated.

Prototype	(C/C++)
HRESULT	ReadErrorLog(
LPSQLDMOQUERYRESULTS*	ppResults,
long	lLogNumber	=	0);

Returns
A	QueryResults	object	containing	one	result	set	defined	by	the	following:

Column Data	type Description
Varies,	as
described	in

nvarchar(256)Log	entry	descriptive	text.

Remarks
ContinuationRow tinyint When	0,	the	descriptive	text	returned	in

the	first	column	is	complete.	When	1,
the	descriptive	text	should	be
interpreted	as	a	continuation	of	the
previous	row's	contents.

Remarks
In	the	returned	QueryResults	object,	the	ColumnName	property	of	the	first
column	reports	the	operating	system	file	name	of	the	file	used	to	maintain	the
log.

SQL-DMO

ReadFileList	Method
The	ReadFileList	method	returns	a	QueryResults	object	enumerating	the
Microsoft®	SQL	Server™	2000	database	files	maintained	on	a	backup	media.

Applies	To

Restore	Object

Syntax
object.ReadFileList(Server)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Server

SQLServer	object	connected	to	an	instance	of	SQL	Server	on	which	the
backup	device	or	operating	system	file	is	visible

Prototype	(C/C++)
HRESULT	ReadFileList(
LPSQLDMOSERVER	ServerObject,
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	containing	one	result	set	defined	by	these	columns.

Column Data	type Description
LogicalName nvarchar(130) Logical	name	for	the	database	file.
PhysicalName nvarchar(261) Name	of	the	operating	system	file

implementing	the	database	logical	file.
Type nvarchar(25) When	D,	the	operating	system	file

maintains	data.	When	L,	the	operating
system	file	maintains	log	records.

FileGroupName nvarchar(130) Name	of	the	filegroup	to	which	the
database	file	belongs.	NULL	for	files
maintaining	log	records.

Size numeric(20,	0) Size,	in	bytes,	of	the	operating	system
file	at	the	time	that	the	backup	image
was	created.

MaxSize numeric(20,	0) Maximum	size,	in	bytes,	that	the
operating	system	file	can	attain.

Remarks
When	using	the	ReadFileList	method,	one	of	the	Restore	object	device
properties	must	indicate	the	device	maintaining	the	backup	media.

To	use	the	ReadFileList	method

1.	 Create	a	SQLServer	object.

2.	 Connect	the	SQLServer	object	to	an	instance	of	SQL	Server	on	which
the	source	backup	device	is	visible.

3.	 Create	a	Restore	object.

4.	 Set	either	the	Devices,	Files,	Pipes,	or	Tapes	property	to	indicate	a
device	visible	on	an	instance	of	SQL	Server	indicated	in	Step	2	and
maintaining	the	backup	media.	Specify	only	a	single	device	or	file.

5.	 If	desired,	set	the	FileNumber	property	to	indicate	a	specific	backup
set	by	ordinal	location	on	the	media.	By	default,	the	database	files	of
the	first	backup	set	are	enumerated.

6.	 Call	the	ReadFileList	method	of	the	Restore	object	using	the
SQLServer	object	created	in	Step	1	as	an	argument.

When	the	media	of	a	backup	device	is	unused,	such	as	when	a	disk	device	is
empty,	the	ReadFileList	method	succeeds,	returning	an	empty	QueryResults
object.

SQL-DMO

ReadLastValidationDateTimes	Method
The	ReadLastValidationDateTimes	method	returns	the	date	and	time	of	the	last
attempted	and	successful	validation	of	a	subscription.

Applies	To

MergePublication2	Object

Syntax
object.ReadLastValidationDateTimes(
szSubscriberName	,	
szSubscriberDB	,	
pszSuccessfulDateTime	,	
[pszAttemptedDateTime])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

szSubscriberName

String	that	specifies	the	Subscriber	name

szSubscriberDB

String	that	specifies	the	subscription	database	name

pszSuccessfulDateTime

String	that	returns	the	date	and	time	of	the	last	successful	validation	of	the
subscription

pszAttemptedDateTime

Optional	string	that	returns	the	date	and	time	of	the	last	attempted	validation

of	the	subscription

Prototype	(C/C++)
HRESULT	ReadLastValidationDateTimes(
SQLDMO_LPCSTR	pszSuscriberName,	
SQLDMO_LPCSTR	pszSubscriberDB,	
SQLDMO_LPBSTR	pszSuccessfulDateTime,	
SQLDMO_LPBSTR	pszAttemptedDateTime	CPPDEFAULT(=	NULL))	PURE;

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Remarks
ReadLastValidationDateTimes	should	be	called	at	the	Publisher.

Note		If	an	application	calls	ReadLastValidationDateTimes	on	an	instance	of
SQL	Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the
message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

See	Also

ReSynchronizeSubscription	Method

SQL-DMO

ReadMediaHeader	Method	(BackupDevice)
The	ReadMediaHeader	method	returns	a	QueryResults	object	that	enumerates
the	values	of	a	backup	media	header	record.

Applies	To

BackupDevice	Object

Syntax
object.ReadMediaHeader()	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	ReadMediaHeader(
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	containing	zero	or	one	result	set	defined	by	these
columns.

Column Data	type Description
MediaName nvarchar(130) Name	of	the	media.
MediaSetId nvarchar(39) System-generated	unique

identifier	for	the	media	set.
NULL	when	the	media	contains
only	a	single	media	set.

FamilyCount integer Number	of	families	within	the

media	set.
FamilySequenceNumber integer Ordinal	position	of	the	family

within	the	entire	media	set.
MediaFamilyId nvarchar(39) System-generated	unique

identifier	for	the	media	family.
MediaSequenceNumber integer Ordinal	position	of	the	media

within	its	family.
MediaLabelPresent tinyint When	1,	the	MediaDescription

column	reports	the	contents	of
the	Microsoft	Tape	Format
label.

When	0,	no	label	is	present	for
the	media.	The
MediaDescription	column
reports	informative	text.

MediaDescription nvarchar(256) Descriptive	text.	Interpret	by
using	the	value	returned	in	the
MediaLabelPresent	column.

SoftwareName nvarchar(65) Name	of	the	product	creating
the	media	header.

SoftwareVendorId integer Unique	identifier	of	the
manufacturer	of	the	product
creating	the	media	header.

MediaDate smalldatetime Creation	date	and	time	of	the
media	header.

Remarks
A	database	backup	performed	by	Microsoft®	SQL	Server™	2000	can	target
multiple	devices	of	a	single	type	and	can	span	multiple	media	maintained	by	the
device.	To	organize	media	used	in	backup,	SQL	Server	defines	the	media	set	and
media	family.	A	media	label,	or	header	record,	maintains	data	about	a	media's
location	within	a	media	set	and	media	family.

When	the	media	of	a	backup	device	is	unused	or	unlabeled,	such	as	when	a	disk
device	is	empty,	the	ReadMediaHeader	method	succeeds,	returning	an	empty
QueryResults	object.

See	Also

Using	Media	Sets	and	Families

JavaScript:hhobj_1.Click()

SQL-DMO

ReadMediaHeader	Method	(Restore)
The	ReadMediaHeader	method	returns	a	QueryResults	object	enumerating	the
values	of	a	backup	media	header	record.

Applies	To

Restore	Object

Syntax
object.ReadMediaHeader(Server)	as	QueryResults

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Server

SQLServer	object	connected	to	an	instance	of	Microsoft®	SQL	Server™
2000	on	which	the	backup	device	or	operating	system	file	is	visible

Prototype	(C/C++)
HRESULT	ReadMediaHeader(
LPSQLDMOSERVER	ServerObject,
LPSQLDMOQUERYRESULTS*	ppResults);

Returns
A	QueryResults	object	containing	one	result	set.	For	a	description	of	the	result
set	contents,	see	ReadBackupHeader	Method	(BackupDevice).

Remarks

A	database	backup	performed	by	SQL	Server	can	target	multiple	devices	of	a
single	type	and	can	span	multiple	media	maintained	by	the	device.	To	organize
media	used	in	backup,	SQL	Server	defines	the	media	set	and	media	family.	A
media	label,	or	header	record,	maintains	data	about	a	media's	location	within	a
media	set	and	media	family.

To	use	the	ReadMediaHeader	method

1.	 Create	a	SQLServer	object.

2.	 Connect	the	SQLServer	object	to	an	instance	of	SQL	Server	on	which
the	source	backup	device	is	visible.

3.	 Create	a	Restore	object.

4.	 Set	either	the	Devices,	Files,	Pipes,	or	Tapes	property	to	indicate	a
device	or	operating	system	file	visible	on	an	instance	of	SQL	Server
created	in	Step	1	and	maintaining	the	backup	media.

5.	 Call	the	ReadMediaHeader	method	of	the	Restore	object	using	the
SQLServer	object	created	in	Step	1	as	an	argument.

When	the	media	of	a	backup	device	is	unused	or	unlabeled,	such	as	when	a	disk
device	is	empty,	the	ReadMediaHeader	method	succeeds,	returning	an	empty
QueryResults	object.

See	Also

Using	Media	Sets	and	Families

JavaScript:hhobj_1.Click()

SQL-DMO

ReadReplicationFailOverMode	Method
The	ReadReplicationFailOverMode	method	retrieves	the	failover	mode	for	a
subscription	that	uses	immediate	updating	with	queued	updating	as	the	failover
option.

Applies	To

ReplicationDatabase2	Object

Syntax
object.ReadReplicationFailOverMode(
szPublisher	,	
szPublicationDB	,	
szPublication)	as	SQLDMO_REPLFAILOVER_TYPE

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

szPublisher

String	that	specifies	the	name	of	the	Publisher

szPublicationDB

String	that	specifies	the	name	of	the	publication	database

szPublication

String	that	specifies	the	name	of	the	publication

Settings
ReadReplicationFailOverMode	returns	these	values.

Constant Value Description
SQLDMOReplFailOver_Immediate 0 Use	the	immediate	updating

option	to	propagate	changes
made	at	Subscribers	to	the
Publisher.

SQLDMOReplFailOver_Queued 1 Use	the	queued	updating
option	to	propagate	changes
made	at	Subscribers	to	the
Publisher.

Prototype	(C/C++)
HRESULT	ReadReplicationFailOverMode(
SQLDMO_LPCSTR	pszPublisher,	
SQLDMO_LPCSTR	pszPublicationDB,	
SQLDMO_LPCSTR	pszPublication,	
SQLDMO_REPLFAILOVER_TYPE	*pFailOverMode);

Remarks
The	ReadReplicationFailOverMode	method	should	be	called	on	a
ReplicationDatabase2	object	that	represents	a	subscription	database.	The
szPublisher,	szPublicationDB,	and	szPublication	parameters	identify	a
subscription	in	the	subscription	database.

An	application	must	use	the	WriteReplicationFailOverMode	method	to	set	the
failover	mode	for	a	subscription	that	uses	immediate	updating	with	queued
updating	as	the	failover	option.

Note		If	an	application	calls	ReadReplicationFailOverMode	on	an	instance	of
SQL	Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the
message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

See	Also

WriteReplicationFailOverMode	Method

SQL-DMO

ReAssignJobsByLogin	Method
The	ReAssignJobsByLogin	method	changes	ownership	for	any
SQLServerAgent	jobs	currently	owned	by	a	Microsoft®	SQL	Server™	2000
login.

Applies	To

JobServer	Object

Syntax
object.ReAssignJobsByLogin(OldLogin	,	NewLogin)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

OldLogin

String	that	specifies	a	login	currently	owning	jobs.

NewLogin

String	that	specifies	a	login	with	job	creation	rights.	The	login	specified	will
receive	ownership.

Prototype	(C/C++)
HRESULT	ReAssignJobsByLogin(
SQLDMO_LPCSTR	szOldLogin,
SQLDMO_LPCSTR	szNewLogin);

Remarks
By	default,	any	SQL	Server	login	has	membership,	through	the	user	guest,	in	the

public	role	of	the	system	database	maintaining	SQLServerAgent	jobs	(msdb).
When	a	SQL	Server	user	is	created	in	msdb,	jobs	created	by	the	user	mapping
the	login	are	owned	by	the	login,	not	the	user.

Reassigning	SQLServerAgent	job	ownership	by	using	the
ReAssignJobsByLogin	method	requires	appropriate	permission.	The	SQL
Server	login	used	for	SQLServer	object	connection	must	be	a	member	of	the
fixed	role	sysadmin.

SQL-DMO

Rebuild	Method
The	Rebuild	method	re-creates	the	Microsoft	Search	full-text	catalog	or
Microsoft®	SQL	Server™	index	referenced	by	the	object.

Applies	To

FullTextCatalog	Object Index	Object

Syntax
object.Rebuild()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	Rebuild();

Remarks
For	the	FullTextCatalog	object,	the	Rebuild	method	removes,	then	re-creates
the	structures	maintaining	the	full-text	catalog	referenced.	The	re-created	catalog
is	not	populated,	but	is	ready	for	population.	After	calling	the	Rebuild	method,
use	the	Start	method	of	the	FullTextCatalog	object	to	repopulate	the	full-text
catalog.

When	using	the	Rebuild	method	of	an	Index	object	referencing	a	clustered
index,	you	can	set	the	FillFactor	property	prior	to	calling	the	method	to	alter
index	density.	For	more	information	about	index	fill	factor,	see	CREATE
INDEX.

JavaScript:hhobj_1.Click()

See	Also

FillFactor	Property

Start	Method	(FullTextCatalog)

SQL-DMO

RebuildIndex	Method
The	RebuildIndex	method	re-creates	an	index	implementing	a	Microsoft®	SQL
Server™	2000	PRIMARY	KEY	or	UNIQUE	key	constraint.

Applies	To

Key	Object

Syntax
object.RebuildIndex()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	RebuildIndex();

Remarks
Use	the	RebuildIndex	method	when	the	Type	property	of	the	Key	object	returns
SQLDMOKey_Primary	or	SQLDMOKey_Unique,	and	the	object	references	an
existing	table	key.

Set	the	FillFactor	property	of	the	Key	object	prior	to	calling	the	method	to	alter
key-maintaining	index	density.	For	more	information	about	index	fill	factor,	see
CREATE	INDEX.

See	Also

FillFactor	Property

JavaScript:hhobj_1.Click()

SQL-DMO

RebuildIndexes	Method
The	RebuildIndexes	method	re-creates	all	indexes	defined	on	a	Microsoft®
SQL	Server™	table.

Applies	To

Table	Object

Syntax
object.RebuildIndexes([IndexType]	,	[FillFactor])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

IndexType

Maintained	for	compatibility	with	earlier	versions	of	SQL-DMO.

FillFactor

Long	integer	designating	an	index	fill	factor	as	described	in	Settings.

Prototype	(C/C++)
HRESULT	RebuildIndexes(
SQLDMO_INDEX_TYPE	SortedDataType	=	SQLDMOIndex_Default,
long	lFillFactor	=	SQLDMO_USEEXISTINGFILLFACTOR);

Settings
Set	the	FillFactor	argument	to	control	index	storage	density	used	when	a
clustered	index	defined	on	the	table	is	rebuilt.	Explicitly	set	FillFactor	using	an
integer	from	1	through	100.	By	default,	any	clustered	index	is	rebuilt	using	the

value	set	when	the	index	was	last	built.

SQL-DMO

RecalcSpaceUsage	Method
The	RecalcSpaceUsage	method	forces	the	update	of	data	reporting	the	disk
resource	usage	of	the	referenced	Microsoft®	SQL	Server™	2000	database	or
database	object.

Applies	To

Database	Object Table	Object
Index	Object 	

Syntax
object.RecalcSpaceUsage()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	RecalcSpaceUsage();

Remarks
Data	reporting	table	and	index	size	is	maintained	in	values	enumerating	the
number	of	pages	allocated	to	store	an	index	or	table,	the	number	of	pages
actually	storing	data,	and	the	number	of	pages	reserved	for	future	storage.

Use	the	RecalcSpaceUsage	method	of	the	Database	object	to	update	usage	data
for	all	tables	and	indexes	defined	within	a	database.	Use	the	RecalcSpaceUsage
method	of	the	Table	or	Index	object	to	update	data	for	the	table	or	index
referenced.

Note		For	a	large	index,	table	or	database,	the	RecalcSpaceUsage	method	can

take	some	time	to	complete.	It	is	suggested	that	you	inform	the	user	by	using	a
warning	message	or	busy	pointer.

SQL-DMO

ReCompileReferences	Method
The	ReCompileReferences	method	causes	recompilation,	prior	to	the	next
execution,	of	any	stored	procedure	or	trigger	depending	on	the	referenced	table.

Applies	To

Table	Object

Syntax
object.ReCompileReferences()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	ReCompileReferences();

Remarks
Microsoft®	SQL	Server™	2000	stored	procedures	and	triggers	are	compiled	to
enhance	execution	time.	Creation	of	indexes	and	changes	in	data	distribution
statistics	can	cause	obsolescence	in	a	data	access	plan	in	a	stored	procedure	or
trigger.	The	ReCompileReferences	method	forces	recompilation	of	all	stored
procedures	or	triggers	accessing	the	referenced	table,	and	defined	in	the	database
of	the	referenced	table.

Note		SQL	Server	version	7.0	recompiles	stored	procedures	and	triggers	when
the	optimizer	determines	that	recompilation	is	advantageous.	Using	the
ReCompileReferences	method	is	not	required	in	most	instances.

SQL-DMO

ReconfigureCurrentValues	Method
The	ReconfigureCurrentValues	method	applies	changes	to	configuration
options	made	by	changing	the	properties	of	the	ConfigValue	objects	contained
in	the	Configuration	object's	ConfigValues	collection.

Applies	To

Configuration	Object

Syntax
object.ReconfigureCurrentValues()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	ReconfigureCurrentValues();

Remarks
When	using	the	ReconfigureCurrentValues	method,	Microsoft®	SQL	Server™
2000	tests	configuration	option	settings	as	they	are	applied.	Some	configuration
options,	for	example	allow	updates,	have	only	a	single	setting	that	passes	a
validity	check,	and	the	ReconfigureCurrentValues	method	fails	when
attempting	to	apply	a	change	to	the	option.	Use	the	ReconfigureWithOverride
method	to	disable	validity	checking	for	options.

IMPORTANT		Some	configuration	option	changes	applied	by	setting	ConfigValue
object	properties	and	using	the	ReconfigureCurrentValues	method	take	effect
immediately.	Other	changes	require	that	the	SQL	Server	service	be	stopped	and

restarted.	When	a	change	requires	service	restart,	you	must	first	apply	the	change
by	using	ReconfigureCurrentValues,	then	stop	and	start	the	SQL	Server
service.

Setting	configuration	options	by	using	the	ConfigValue	object	and
ReconfigureCurrentValues	method	requires	appropriate	permission.	The	SQL
Server	login	used	for	SQLServer	object	connection	must	be	a	member	of	the
fixed	server	role	sysadmin.

See	Also

ConfigValue	Object

SQL-DMO

ReconfigureWithOverride	Method
The	ReconfigureWithOverride	method	applies	changes	to	configuration
options	made	by	changing	the	properties	of	the	ConfigValue	objects	contained
in	the	Configuration	object's	ConfigValues	collection.

Applies	To

Configuration	Object

Syntax
object.ReconfigureWithOverride()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	ReconfigureWithOverride();

Remarks
Use	the	ReconfigureWithOverride	method	to	disable	option	value	validity
checking	when	using	the	ConfigValue	object	to	set	Microsoft®	SQL	Server™
2000	configuration	options.

IMPORTANT		Some	configuration	option	changes	applied	by	setting	ConfigValue
object	properties	and	using	the	ReconfigureWithOverride	method	take	effect
immediately.	Other	changes	require	that	the	SQL	Server	service	be	stopped	and
restarted.	When	a	change	requires	service	restart,	you	must	first	apply	the	change
by	using	ReconfigureWithOverride,	then	stop	and	start	the	SQL	Server	service.

Setting	configuration	options	by	using	the	ConfigValue	object	and

ReconfigureWithOverride	method	requires	appropriate	permission.	The	SQL
Server	login	used	for	SQLServer	object	connection	must	be	a	member	of	the
fixed	server	role	sysadmin.

See	Also

ConfigValue	Object

SQL-DMO

ReConnect	Method
The	ReConnect	method	reestablishes	a	connection	to	an	instance	of	Microsoft®
SQL	Server™	2000.

Applies	To

SQLServer	Object

Syntax
object.ReConnect()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	ReConnect();

SQL-DMO

Refresh	Method
The	Refresh	method	updates	a	SQL-DMO	object	or	collection	with	current
values	from	the	referenced	instance	of	Microsoft®	SQL	Server™	2000.

Applies	To

Alert	Object Logins	Collection
AlertCategories	Collection MergeSubsetFilters	Collection
Alerts	Collection MergeArticles	Collection
AlertSystem	Object MergeDynamicSnapshotJobs

Collection
BackupDevices	Collection MergePublications	Collection
Category	Object MergePullSubscriptions	Collection
Checks	Collection MergeSubscriptions	Collection
Columns	Collection NameList	Object
ConfigValues	Collection Names	Collection
DatabaseRoles	Collection Operator	Object
Databases	Collection Operators	Collection
DBFiles	Collection OperatorCategories	Collection
DBOption	Object QueryResults	Object
Defaults	Collection RegisteredSubscribers	Collection
DistributionArticles	Collection RegisteredServers	Collection
DistributionDatabase	Object RegisteredSubscriber	Object
DistributionDatabases	Collection RemoteServers	Collection
DistributionPublications	Collection RemoteLogins	Collection
DistributionPublisher	Object ReplicationDatabases	Collection
DistributionPublishers	Collection ReplicationStoredProcedures

Collection
DistributionSubscriptions	Collection ReplicationTables	Collection
Distributor	Object Rules	Collection
FileGroups	Collection Schedule	Object

JavaScript:hhobj_1.Click()

FullTextCatalogs	Collection ServerGroups	Collection
Indexes	Collection ServerRoles	Collection
IntegratedSecurity	Object SQLObjectList	Object
Job	Object StoredProcedures	Collection
JobCategories	Collection Table	Object
Jobs	Collection Tables	Collection
JobSchedule	Object TargetServer	Object
JobSchedules	Collection TargetServerGroup	Object
JobServer	Object TargetServerGroups	Collection
JobStep	Object TargetServers	Collection
JobSteps	Collection TransArticles	Collection
Keys	Collection TransPublications	Collection
Languages	Collection TransPullSubscriptions	Collection
LinkedServer2	Object TransSubscriptions	Collection
LinkedServerLogins	Collection Triggers	Collection
LinkedServers	Collection UserDefinedDatatypes	Collection
LogFiles	Collection Users	Collection
	 Views	Collection

Syntax
object.Refresh([Release])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Release

TRUE	or	FALSE	as	described	in	Settings

Prototype	(C/C++)
HRESULT	Refresh(BOOL	bReleaseMemberObjects	=	FALSE);

Settings
When	Release	is	TRUE,	all	references	maintained	on	a	collection	member,	and
any	collections	or	objects	within	the	member's	tree,	are	released	by	force	by
SQL-DMO.	SQL-DMO	objects	used	by	the	application	are	invalid.	SQL-DMO
retrieves	member	object	property	values	and	refreshes	the	member	object
collection	on	the	next	application	access	to	the	object.

When	Release	is	FALSE	(default),	application-maintained	references	are
released	only	when	the	reference	is	on	an	object	exposing	a	deleted	or	removed
SQL	Server	component.	Accessing	a	member	object	does	not	refresh	member
property	values	or	contained	collections.

Remarks
Use	caution	when	using	the	Refresh	method.	In	general,	it	is	best	to	override	the
default	value	for	the	Release	argument,	as	forcing	reference	release	ensures	that
all	objects	within	a	hierarchy	represent	the	current	state	of	an	instance	of	SQL
Server	.

Limit	the	scope	of	the	Refresh	method	to	optimize	its	execution.	For	example,
use	the	Refresh	method	of	a	Table	object	to	update	the	application	image	of
properties	of	a	specific	SQL	Server	table	when	applicable,	rather	than	using	the
Refresh	method	of	Tables	collection	indiscriminately.

SQL-DMO

RefreshChildren	Method
The	RefreshChildren	method	forces	an	update	of	dependent	collection
membership	for	a	SQL-DMO	object.

Applies	To

MergePublication	Object TransPublication	Object
ReplicationDatabase	Object 	

Syntax
object.RefreshChildren()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	RefreshChildren();

Remarks
The	RefreshChildren	method	encapsulates	multiple	calls	to	the	Refresh	method
for	collections	of	the	SQL-DMO	object.	The	method	uses	the	default	(FALSE)
setting	for	the	Release	argument	of	the	Refresh	method.	For	more	information,
see	Refresh	Method.

SQL-DMO

ReInitialize	Method
The	ReInitialize	method	marks	a	subscription	for	reinitialization.

Applies	To

MergePullSubscription	Object TransPullSubscription	Object
MergeSubscription	Object TransSubscription	Object

Syntax
object.ReInitialize()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	ReInitialize();

Remarks
Use	the	ReInitialize	method	only	when	the	SQL-DMO	object	references	a
transactional	or	merge	replication	subscription.

After	using	ReInitialize,	it	may	be	necessary	to	update	the	initial	snapshot	of	the
publication.	For	subscriptions	to	transactional	replication	publications
configured	for	automatic	synchronization	(the	PublicationAttributes	property
of	the	referencing	TransPublication	object	returns
SQLDMOPubAttrib_ImmediateSync),	the	initial	snapshot	of	the	publication
must	be	updated.	For	all	other	publication	types,	it	is	strongly	suggested	that	the
application	force	an	update	of	the	initial	snapshot.

Reinitializing	a	subscription	by	using	the	ReInitialize	method	requires

appropriate	privilege.	The	Microsoft®	SQL	Server™	2000	login	used	for
SQLServer	object	connection	must	be	a	member	of	the	fixed	server	role
sysadmin	or	fixed	database	role	db_owner	in	the	database	referenced	by	the
subscribed-to	publication.

See	Also

ReInitialize2	Method

Reinitializing	Subscriptions

Synchronizing	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL-DMO

ReInitialize2	Method
The	ReInitialize2	method	marks	a	subscription	for	reinitialization.

Applies	To

MergePublication2	Object MergeSubscription2	Object
MergePullSubscription2	Object 	

Syntax
object.ReInitialize2([bUploadFirst])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

bUploadFirst

Optional	Boolean	that	specifies	whether	to	upload	all	changes	from	the
Subscriber	prior	to	applying	the	updated	snapshot	files	when	reinitializing	a
subscription.

Prototype	(C/C++)
HRESULT	ReInitialize2(BOOL	bUploadFirst);

Remarks
Call	ReInitialize2	with	bUploadFirst	set	to	TRUE	to	reinitialize	a	merge
subscription,	thereby	preserving	any	changes	made	at	the	Subscriber	since	the
last	synchronization.	This	optional	syntax	directs	the	Merge	Agent	to	upload	all
changes	from	the	Subscriber	before	applying	the	updated	snapshot	files	when
processing	the	reinitialize	request.

By	default,	the	bUploadFirst	parameter	is	set	to	FALSE.

Reinitializing	a	subscription	by	using	the	ReInitialize2	method	requires
appropriate	permissions.	The	login	used	for	the	SQLServer	object	connection
must	be	a	member	of	the	fixed	server	role	sysadmin	or	fixed	database	role
db_owner	in	the	database	referenced	by	the	subscribed-to	publication.

Note		If	an	application	calls	ReInitialize2	on	an	instance	of	SQL	Server	version
7.0	and	bUploadFirst	is	set	to	TRUE,	the	constant,	SQLDMO_E_SQL80ONLY,
and	the	message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"
are	returned.	ReInitialize2	can	be	used	with	Microsoft®	SQL	Server™	2000
and	SQL	Server	7.0	if	bUploadFirst	is	set	to	FALSE	.

See	Also

ReInitialize	Method

SQL-DMO

ReInitializeAllSubscriptions	Method
The	ReInitializeAllSubscriptions	method	marks	all	subscriptions	for
reinitialization.

Applies	To

MergePublication	Object TransPublication	Object

Syntax
object.ReInitializeAllSubscriptions()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	ReInitializeAllSubscriptions();

Remarks
Use	the	ReInitializeAllSubscriptions	method	only	when	the	SQL-DMO	object
references	a	transactional	or	merge	replication	publication.

After	using	ReInitializeAllSubscriptions,	it	may	be	necessary	to	update	the
initial	snapshot	of	the	publication.	When	the	transactional	replication	publication
is	configured	for	automatic	synchronization	(the	PublicationAttributes	property
returns	SQLDMOPubAttrib_ImmediateSync),	the	initial	snapshot	of	the
publication	must	be	updated.	For	all	other	publication	types,	it	is	strongly
suggested	that	the	application	force	an	update	of	the	initial	snapshot.

Reinitializing	subscriptions	to	a	publication	by	using	the
ReInitializeAllSubscriptions	method	requires	appropriate	privilege.	The

Microsoft®	SQL	Server™	2000	login	used	for	SQLServer	object	connection
must	be	a	member	of	the	fixed	server	role	sysadmin	or	fixed	database	role
db_owner	in	the	database	referenced	by	the	publication.

SQL-DMO

ReInitializeAllSubscriptions2	Method
The	ReInitializeAllSubscriptions2	method	marks	all	subscriptions	for
reinitialization.

Applies	To

MergePublication2	Object

Syntax
object.ReInitializeAllSubscriptions2([bUploadFirst])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

bUploadFirst

Optional	Boolean	that	specifies	whether	to	upload	all	changes	from	the
Subscriber	prior	to	applying	the	updated	snapshot	files	when	reinitializing	all
subscriptions	to	a	publication.

Prototype	(C/C++)
HRESULT	ReInitializeAllSubscriptions2(BOOL	bUploadFirst);

Remarks
Call	ReInitializeAllSubscriptions2	with	bUploadFirst	set	to	TRUE	to
reinitialize	all	merge	subscriptions	to	a	publication,	thereby	preserving	any
changes	made	at	the	Subscriber	since	the	last	synchronization.	This	optional
syntax	directs	the	Merge	Agent	to	upload	all	changes	from	the	Subscriber	before
applying	the	updated	snapshot	files	when	processing	the	reinitialize	request.
bUploadFirst	is	set	to	FALSE	by	default.

Reinitializing	subscriptions	to	a	publication	by	using	the
ReInitializeAllSubscriptions2	method	requires	appropriate	permissions.	The
login	used	for	the	SQLServer	object	connection	must	be	a	member	of	the
sysadmin	fixed	server	role	or	the	db_owner	fixed	database	role	in	the	database
referenced	by	the	publication.

Note		If	an	application	calls	ReInitializeAllSubscriptions2	on	an	instance	of
SQL	Server	version	7.0	and	bUploadFirst	is	set	to	TRUE,	the	constant,
SQLDMO_E_SQL80ONLY,	and	the	message	"This	property	or	method	requires
Microsoft	SQL	Server	2000"	are	returned.	ReInitializeAllSubscriptions2	can	be
used	with	Microsoft®	SQL	Server™	2000	and	SQL	Server	7.0	if	bUploadFirst
is	set	to	FALSE.

SQL-DMO

Remove	Method	(Objects)
The	Remove	method	drops	the	referenced	database,	agent,	or	replication	object
from	an	instance	of	Microsoft®	SQL	Server™	2000	connected	to,	and	removes
the	SQL-DMO	object	from	its	containing	collection.

Applies	To

Alert	Object Login	Object
BackupDevice	Object MergeArticle	Object
Category	Object MergeDynamicSnapshotJob	Object
Check	Object MergePublication	Object
Column	Object MergePullSubscription	Object
Database	Object MergeSubscription	Object
DatabaseRole	Object MergeSubsetFilter	Object
DBFile	Object RegisteredServer	Object
DBObject	Object RegisteredSubscriber	Object
Default	Object RemoteLogin	Object
DistributionArticle	Object RemoteServer	Object
DistributionDatabase	Object Rule	Object
DistributionPublication	Object ServerGroup	Object
DistributionPublisher	Object StoredProcedure	Object
DistributionSubscription	Object Table	Object
DRIDefault	Object TargetServerGroup	Object
FileGroup	Object TransArticle	Object
FullTextCatalog	Object TransPublication	Object
Index	Object TransPullSubscription	Object
Job	Object TransSubscription	Object
JobSchedule	Object Trigger	Object
JobStep	Object User	Object
Key	Object UserDefinedDatatype	Object
LinkedServer	Object UserDefinedFunction	Object

LinkedServerLogin	Object View	Object

Syntax
object.Remove()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	Remove();

Remarks
For	more	information	about	using	the	Remove	method	of	a	SQL-DMO	object,
including	information	on	privilege	required,	see	documentation	for	the	object	or
its	containing	collection.

Note		If	an	application	calls	Remove	with	the	TransPublication	object	after	the
initial	snapshot	has	been	created,	a	new	snapshot	must	be	generated.	Snapshots
are	applied	when	the	next	scheduled	snapshot	agent	runs.

SQL-DMO

Remove	Method	(Collections)
The	Remove	method	drops	the	referenced	database,	agent,	or	replication	object
from	an	instance	of	Microsoft®	SQL	Server™	2000	connected	to,	and	removes
the	SQL-DMO	object	from	its	containing	collection.

Applies	To

AlertCategories	Collection MergeArticles	Collection
Alerts	Collection MergePublications	Collection
BackupDevices	Collection MergeSubscriptions	Collection
Checks	Collection MergePullSubscriptions	Collection
Columns	Collection MergeSubsetFilters	Collection
DatabaseRoles	Collection Names	Collection
Databases	Collection OperatorCategories	Collection
DBFiles	Collection RegisteredServers	Collection
Defaults	Collection RegisteredSubscribers	Collection
DistributionArticles	Collection RemoteLogins	Collection
DistributionDatabases	Collection RemoteServers	Collection
DistributionPublications	Collection Rules	Collection
DistributionPublishers	Collection ServerGroups	Collection
DistributionSubscriptions	Collection StoredProcedures	Collection
FileGroups	Collection Tables	Collection
FullTextCatalogs	Collection TargetServerGroups	Collection
Indexes	Collection TargetServers	Collection
JobCategories	Collection TransArticles	Collection
Jobs	Collection TransPublications	Collection
JobSchedules	Collection TransPullSubscriptions	Collection
JobSteps	Collection TransSubscriptions	Collection
Keys	Collection Triggers	Collection
LinkedServerLogins	Collection UserDefinedDatatypes	Collection
LinkedServers	Collection UserDefinedFunctions	Collection

JavaScript:hhobj_1.Click()

LogFiles2	Collection Users	Collection
Logins	Collection Views	Collection

Syntax
object.Remove(index)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

index

Long	integer	that	indicates	the	ordinal	location	of	the	object	within	the
collection	or	string	indicating	the	name	of	the	object.

Prototype	(C/C++)
HRESULT	RemoveByOrd(long	lOrdinal);

HRESULT	RemoveByName(SQLDMO_LPCSTR	szName);

Remarks
For	more	information	about	using	the	Remove	method	of	a	SQL-DMO
collection,	including	information	on	privilege	required,	see	documentation	for
the	collection.

Note		Some	collections	support	the	Remove	method	using	only	the	ordinal
location	of	the	object	within	the	collection.	For	more	information,	see
documentation	for	the	collection.

If	an	application	calls	Remove	with	the	MergeArticles	collection	after	the	initial
snapshot	is	created,	a	new	snapshot	must	be	generated.

SQL-DMO

Remove	Method	(Operator)
The	Remove	method	drops	the	referenced	SQLServerAgent	operator,	optionally
reassigning	notifications	to	a	named	operator.

Applies	To

Operator	Object

Syntax
object.Remove([NewName])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

NewName

Optional.	A	string	that	identifies	an	existing	operator	by	name.

Prototype	(C/C++)
HRESULT	Remove(SQLDMO_LPCSTR	NewName	=	NULL);

Remarks
The	Remove	method	removes	the	SQL-DMO	object	referencing	the	dropped
operator	from	its	containing	collection.

SQL-DMO

Remove	Method	(Operators)
The	Remove	method	drops	the	indicated	SQLServerAgent	operator,	optionally
reassigning	notifications	to	a	named	operator.

Applies	To

Operators	Collection

object.Remove(index	,	[NewName])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

index

Long	integer	that	indicates	the	ordinal	location	of	the	object	within	the
collection	or	string	indicating	the	name	of	the	object.

NewName

Optional.	A	string	that	identifies	an	existing	operator	by	name.

Prototype	(C/C++)
HRESULT	RemoveByOrd(long	lOrdinal,
SQLDMO_LPCSTR	NewName	=	NULL);

HRESULT	RemoveByName(SQLDMO_LPCSTR	szName,
SQLDMO_LPCSTR	NewName	=	NULL);

Remarks
The	Remove	method	removes	the	SQL-DMO	object	referencing	the	dropped
operator	from	the	Operators	collection.

SQL-DMO

RemoveAllJobSchedules	Method
The	RemoveAllJobSchedules	method	removes	all	system	records	maintaining
execution	schedules	for	the	referenced	SQLServerAgent	job.

Applies	To

Job	Object

Syntax
object.RemoveAllJobSchedules()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	RemoveAllJobSchedules();

Remarks
On	successful	execution,	SQL-DMO	empties	the	JobSchedules	collection	of	the
Job	object	used.	To	reschedule	the	referenced	job,	create	JobSchedule	objects
and	add	them	to	the	JobSchedules	collection	of	the	Job	object.	For	more
information,	see	JobSchedule	Object.

SQL-DMO

RemoveAllJobSteps	Method
The	RemoveAllJobSteps	method	removes	all	system	records	maintaining	steps
executed	by	the	referenced	SQLServerAgent	job.

Applies	To

Job	Object

Syntax
object.RemoveAllJobSteps()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	RemoveAllJobSteps();

Remarks
A	SQLServerAgent	job	is	enabled	once	it	has	at	least	one	step	and	an	execution
target.	Successful	execution	of	the	RemoveAllJobSteps	method	disables	the
referenced	SQLServerAgent	job,	and	SQL-DMO	empties	the	JobSteps
collection	of	the	Job	object	used.	To	reenable	the	referenced	job	using	SQL-
DMO,	create	JobStep	objects	and	add	them	to	the	JobSteps	collection	of	the
Job	object.	For	more	information,	see	JobStep	Object.

SQL-DMO

RemoveAllObjects	Method
The	RemoveAllObjects	method	removes	all	objects	from	the	list	of	objects	to
be	copied	during	a	transfer	operation.

Applies	To

Transfer2	Object

Syntax
object.RemoveAllObjects()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	RemoveAllObjects();

Remarks
An	application	calls	RemoveAllObjects	to	clear	the	list	of	objects	to	be
transferred.	The	application	can	then	specify	a	different	list	of	objects	using	the
AddObject	or	AddObjectByName	property.

Note		RemoveAllObjects	can	be	used	with	Microsoft®	SQL	Server™	2000	and
SQL	Server	7.0.

SQL-DMO

RemoveAlternatePublisher	Method
The	RemoveAlternatePublisher	method	disables	an	alternate	Publisher	in	the
alternate	Publishers	list.

Applies	To

MergePublication2	Object

Syntax
object.RemoveAlternatePublisher(
szAlternatePublisher	,	
szAlternatePublicationDB	,	
szAlternatePublication)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

szAlternatePublisher

String	that	specifies	the	name	of	the	alternate	Publisher

szAlternatePublicationDB

String	that	specifies	the	name	of	the	publication	database

szAlternatePublication

String	that	specifies	the	name	of	the	publication

Prototype	(C/C++)
HRESULT	RemoveAlternatePublisher(
SQLDMO_LPCSTR	pszAlternatePublisher,	
SQLDMO_LPCSTR	pszAlternatePublicationDB,	

SQLDMO_LPCSTR	pszAlternatePublication);

Remarks
Use	the	RemoveAlternatePublisher	method	to	disable	a	server	in	the	list	of
alternate	Publishers	to	which	pull	subscriptions	can	synchronize.	Subscribers	run
the	EnumAlternatePublishers	method	to	obtain	a	list	of	enabled	alternate
Publishers	to	which	they	can	synchronize	data	changes.

Use	the	AddAlternatePublisher	method	to	enable	a	server	in	the	list	of
alternate	Publishers	to	which	subscriptions	can	synchronize.

Note		If	an	application	calls	RemoveAlternatePublisher	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

AddAlternatePublisher	Method

AllowSyncToAlternate	Property

EnumAlternatePublishers	Method

SQL-DMO

RemoveDefunctAnonymousSubscription	Method
The	RemoveDefunctAnonymousSubscription	method	removes	a	defunct
anonymous	subscription	agent	entry	from	the	Distributor.

Applies	To

Distributor2	Object

Syntax
object.RemoveDefunctAnonymousSubscription(
bstrDistributionDBName	,	
lAgentID	,	
ReplType)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

bstrDistributionDBName

String	that	specifies	the	distribution	database	name

lAgentID

Long	integer	that	identifies	the	agent	for	anonymous	subscription

ReplType

Long	integer	that	specifies	a	replication	method

Prototype	(C/C++)
HRESULT	RemoveDefunctAnonymousSubscription(
SQLDMO_LPCSTR	pszDistributionDBName,	
long	lAgentID,	

SQLDMO_REPLICATION_TYPE	ReplType);

Settings
Set	ReplType	by	using	these	SQLDMO_REPLICATION_TYPE	values.

Constant Value Description
SQLDMORepType_Merge 2 Merge	replication
SQLDMORepType_Transactional 1 Transactional	or	snapshot

replication

Remarks
An	anonymous	subscription	becomes	defunct	when	dropped	by	the	Subscriber.
If	the	Subscriber	is	not	connected	to	the	Distributor	when	the	subscription	is
dropped,	agent	meta	data	still	remains	at	the	Distributor.	An	application	can	call
RemoveDefunctAnonymousSubscription	to	clean	up	the	meta	data.

Note		If	an	application	calls	RemoveDefunctAnonymousSubscription	on	an
instance	of	SQL	Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,
and	the	message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"
are	returned.

SQL-DMO

RemoveFromTargetServer	Method
The	RemoveFromTargetServer	method	drops	a	single	execution	target	for	a
SQL	Server	Agent	job.

Applies	To

Job	Object

Syntax
object.RemoveFromTargetServer(Val)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Val

String	that	specifies	an	instance	of	Microsoft®	SQL	Server™	by	name.

Prototype	(C/C++)
HRESULT	RemoveFromTargetServer(
SQLDMO_LPCSTR	NewVal);

Remarks
Before	a	SQL	Server	Agent	job	can	execute,	the	job	must	have	at	least	one	step
and	an	execution	target.

When	using	SQL-DMO	to	create,	schedule,	and	run	SQLServerAgent	jobs,	use
either	the	ApplyToTargetServer	or	ApplyToTargetServerGroup	method	to
add	an	execution	target.	When	a	single	execution	target	has	been	added	by	using
the	ApplyToTargetServer	method,	use	the	RemoveFromTargetServer	method

to	remove	the	execution	target.

When	a	job	is	targeted	to	run	on	the	server	running	SQLServerAgent,	specify	the
server	name	using	the	string	(local)	when	removing	the	execution	target.

Note		When	an	execution	target	is	removed	for	a	multiserver	administration	job,
the	master	server	(MSX)	posts	an	instruction	to	the	target	server	(TSX)
indicating	that	the	TSX	should	drop	its	local	copy	of	the	job.	The	job	is	removed
from	the	TSX	but	remains	defined	at	the	MSX.	To	completely	remove	a	job	from
all	servers	participating	in	multiserver	administration,	use	a	job	removing
method	such	as	the	Remove	method	of	the	Job	object	or	the	RemoveJobByID
method	of	the	JobServer	object.

SQL-DMO

RemoveFromTargetServerGroup	Method
The	RemoveFromTargetServerGroup	method	drops	one	or	more	execution
targets	for	a	SQL	Server	Agent	job.

Applies	To

Job	Object

Syntax
object.RemoveFromTargetServerGroup(Val)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Val

String	that	specifies	a	single	TSX	group	by	name.

Prototype	(C/C++)
HRESULT	RemoveFromTargetServerGroup(
SQLDMO_LPCSTR	NewVal);

Remarks
Before	a	SQL	Server	Agent	job	can	execute,	the	job	must	have	at	least	one	step
and	an	execution	target.	When	SQL	Server	Agent	acts	as	a	master	server	(MSX)
for	multiserver	administration	servers,	known	execution	targets	servers(TSX)
can	be	grouped	for	easier	targeting	of	multiple	servers	at	one	time.

When	using	SQL-DMO	to	create,	schedule,	and	run	SQL	Server	Agent	jobs,	use
either	the	ApplyToTargetServer	or	ApplyToTargetServerGroup	method	to

add	an	execution	target.	When	one	or	more	TSXs	have	been	targeted	by	using
the	ApplyToTargetServerGroup	method,	use	the
RemoveFromTargetServerGroup	method	to	remove	the	group	execution
target.

For	more	information	about	configuring	TSX	groups	by	using	SQL-DMO,	see
TargetServerGroup	Object.

Note		When	a	group	execution	target	is	removed	for	a	multiserver	administration
job,	the	MSX	posts	job-delete	instructions	to	all	TSXs	named	in	the	group.	The
job	is	removed	from	grouped	TSXs,	but	remains	defined	at	the	MSX.	To
completely	remove	a	job	from	all	servers	participating	in	multiserver
administration,	use	a	job	removing	method	such	as	the	Remove	method	of	the
Job	object	or	the	RemoveJobByID	method	of	the	JobServer	object.

SQL-DMO

RemoveFullTextCatalogs	Method
The	RemoveFullTextCatalogs	method	drops	all	Microsoft	Search	full-text
catalogs	supporting	full-text	query	on	a	Microsoft®	SQL	Server™	2000
database.

Applies	To

Database	Object

Syntax
object.RemoveFullTextCatalogs()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	RemoveFullTextCatalogs();

Remarks
The	RemoveFullTextCatalogs	method:

Locates	all	full-text	catalogs	defined	for	a	database.

Stops	population	of	all	full-text	catalogs.

Disables	full-text	indexing	on	any	tables	whose	indexes	are	maintained
in	the	full-text-catalogs.

Drops	all	full-text	catalogs.

The	method	does	not	disable	full-text	indexing	on	the	referenced	database	but
removes	all	data	used	to	configure	full-text	indexing	and	all	full-text	catalogs
supporting	the	indexes.

Note		After	using	the	RemoveFullTextCatalogs	method,	a	database	must	be
configured	anew	to	restore	full-text	indexing	on	the	database.	Use	the	Rebuild
method	of	the	FullTextCatalog	object	to	re-create	full-text	catalogs	as	currently
configured.

See	Also

Rebuild	Method

SQL-DMO

RemoveJobByID	Method
The	RemoveJobByID	method	drops	the	SQLServerAgent	job	identified	and
removes	the	referencing	Job	object	from	the	Jobs	collection.

Applies	To

JobServer	Object

Syntax
object.RemoveJobByID(JobID)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

JobID

String	representation	of	the	system-generated,	globally	unique	identifier	for	a
job.

Prototype	(C/C++)
HRESULT	RemoveJobByID(
SQLDMO_LPCSTR	NewVal);

Remarks
For	SQLServerAgent,	a	job	identifier	is	a	32-byte	string	representing	a
hexadecimal	number.

The	RemoveJobByID	method	completely	removes	a	job.	When	a	multiserver
administration	job	is	targeted	on	the	master	server	(MSX),	the	MSX	posts	job-
delete	instructions	to	each	execution	target	server	(TSX).	The	indicated	job	is

deleted	at	the	MSX	immediately.	Each	TSX	deletes	its	local	copy	of	the	job
when	it	next	successfully	polls	the	MSX	and	retrieves	the	delete	instruction.

Note		Removing	a	SQL	Server	Agent	job	by	using	the	RemoveJobByID	method
requires	appropriate	permission.	The	Microsoft®	SQL	Server™	2000	login	used
for	SQLServer	object	connection	must	be	the	owner	of	the	job	indicated	by	the
JobID	argument	or	a	member	of	a	role	with	greater	privilege.

SQL-DMO

RemoveJobsByLogin	Method
The	RemoveJobsByLogin	method	drops	all	SQLServerAgent	jobs	owned	by
the	login	identified	and	removes	the	referencing	Job	objects	from	the	Jobs
collection.

Applies	To

JobServer	Object

Syntax
object.RemoveJobsByLogin(Login)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Login

String	that	identifies	a	Microsoft®	SQL	Server™	2000	login	by	name.

Prototype	(C/C++)
HRESULT	RemoveJobsByLogin(
SQLDMO_LPCSTR	szLogin);

Remarks
By	default,	any	SQL	Server	login	has	membership,	through	the	user	guest,	in	the
public	role	of	the	system	database	maintaining	SQLServerAgent	jobs	(msdb).
When	a	SQL	Server	user	is	created	in	msdb,	jobs	created	by	the	user	mapping
the	login	are	owned	by	the	login,	not	the	user.

Note		Removing	SQLServerAgent	jobs	by	using	the	RemoveJobsByLogin

method	requires	appropriate	privilege.	The	SQL	Server	login	used	for
SQLServer	object	connection	must	be	the	login	indicated	in	the	Login	argument
and	having	a	job	ownership	privilege	or	a	member	of	a	role	with	greater
permission.

SQL-DMO

RemoveJobsByServer	Method
The	RemoveJobsByServer	method	is	reserved	for	future	use.

Applies	To

JobServer	Object

Syntax
object.RemoveJobsByServer(Server)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Server

Reserved

Prototype	(C/C++)
HRESULT	RemoveJobsByServer(
SQLDMO_LPCSTR	szServer);

SQL-DMO

RemoveMemberServer	Method
The	RemoveMemberServer	method	drops	the	indicated	multiserver
administration	target	server	(TSX)	from	the	group	referenced.

Applies	To

TargetServerGroup	Object

Syntax
object.RemoveMemberServer(Server)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Server

String	that	identifies	a	member	of	the	TSX	group	by	name

Prototype	(C/C++)
HRESULT	RemoveMemberServer(
SQLDMO_LPCSTR	Value);

Remarks
Use	the	AddMemberServer	and	RemoveMemberServer	methods	to	configure
multiserver	administration	target	server	groups	on	a	master	server	(MSX).	TSXs
can	be	members	of	no	group,	or	members	of	any	number	of	groups.

SQL-DMO

RemoveNotification	Method
The	RemoveNotification	method	drops	all	SQLServerAgent	alert	notification
assignments	for	an	operator.

Applies	To

Alert	Object Operator	Object

Syntax
object.RemoveNotification(AlertOrOperatorName)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

AlertOrOperatorName

String	that	identifies	an	existing	alert	or	operator	as	described	in	Settings

Prototype	(C/C++)
HRESULT	RemoveNotification(
SQLDMO_LPCSTR	Value);

Settings
When	setting	the	AlertOrOperator	argument	of	the	RemoveNotification	method
of	the	Alert	object,	the	string	identifies	an	existing	operator	by	name.	When
setting	the	argument	for	the	Operator	object	method,	the	string	identifies	an
existing	Alert	by	name.

Remarks

The	AddNotification	method	associates	operators	with	alerts.	Operators
designated	receive	notification	messages	when	an	event	raising	an	alert	occurs.
When	an	alert	is	raised,	notification	can	be	sent	using	e-mail,	network	pop-up
message,	or	pager.	The	AddNotification	method	allows	the	specification	of	one
or	more	notification	mechanisms	when	operators	are	assigned	notification	for	an
alert.

The	RemoveNotification	method	removes	all	operator	notification	mechanisms
for	an	alert.	Use	the	UpdateNotification	method	to	alter	notification	mechanism
without	dropping	the	association	between	an	alert	and	operator.

See	Also

AddNotification	Method

UpdateNotification	Method

SQL-DMO

RemoveReplicatedColumns	Method
The	RemoveReplicatedColumns	method	configures	a	previously	created,
vertical	partition	for	a	transactional	or	snapshot	replication	article.

Applies	To

MergeArticle2	Object TransArticle	Object

Syntax
object.RemoveReplicatedColumns(Columns)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Columns

SQL-DMO	multistring	that	identifies	one	or	more	columns	in	the	vertical
partition

Prototype	(C/C++)
HRESULT	RemoveReplicatedColumns(
SQLDMO_LPCSTR	Columns);

Remarks
When	using	SQL-DMO	to	create	a	transactional	or	snapshot	replication	article,
all	columns	in	a	table	referenced	by	the	article	are	replicated	by	default.

An	initial	column	list,	set	by	using	the	AddReplicatedColumns	method,
establishes	an	initial	vertical	partition	of	the	replicated	table.	The	initial	partition
can	be	established	prior	to	article	creation	(before	the	TransArticle	object	is

added	to	its	containing	collection)	or	to	an	existing,	nonpartitioned	article.

When	the	TransArticle	object	references	an	article	with	an	existing	partition,
the	RemoveReplicatedColumns	method	restructures	the	partition.	To	restore
default	article	behavior,	use	the	RemoveReplicatedColumns	method	that	lists
all	columns	in	the	current	partition.	Use	the	ListReplicatedColumns	method	to
determine	names	of	all	columns	participating	in	an	existing	partition.

For	more	information	about	setting	multistring	parameters,	see	Using	SQL-
DMO	Multistrings.

Note		If	an	application	sets	RemoveReplicatedColumns	after	the	initial
snapshot	has	been	created,	a	new	snapshot	must	be	generated	and	reapplied	to
each	subscription.	Snapshots	are	applied	when	the	next	scheduled	snapshot	and
distribution	or	merge	agent	run.

See	Also

AddReplicatedColumns	Method

ListReplicatedColumns	Method

SQL-DMO

Replace	Method
The	Replace	method	substitutes	a	new	string	for	an	existing	one	in	a	Names
collection.

Applies	To

Names	Collection

Syntax
object.Replace(NewName	,	ExistingName)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

NewName

String	added	to	the	Names	collection.

ExistingName

String	that	identifies	an	existing	item,	or	a	long	integer	that	identifies	an
ordinal	position	in	the	Names	collection.

Prototype	(C/C++)
HRESULT	ReplaceByOrd(
SQLDMO_LPCSTR	szName,	long	lOrdinal);

HRESULT	ReplaceByName(
SQLDMO_LPCSTR	szName,	SQLDMO_LPCSTR	szReplaceName);

SQL-DMO

ReplicateUserDefinedScript	Method
The	ReplicateUserDefinedScript	method	replicates	the	execution	of	a	user-
defined	script	to	the	subscribers	of	the	specified	publication.

Applies	To

MergePublication2	Object TransPublication2	Object

Syntax
object.ReplicateUserDefinedScript(szScriptFilePath)

Parts
Definition

object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

szScriptFilePath

As	String

Prototype	(C/C++)
HRESULT	ReplicateUserDefinedScript(SQLDMO_LPCSTR	szScriptFilePath);

Remarks
An	application	can	run	Transact-SQL	scripts	during	a	replication	operation	using
the	ReplicateUserDefinedScript	method.	Transact-SQL	scripts	that	run	during	a
replication	operation	might	be	used	to:

Create	new	stored	procedures.

Assign	permissions.

Create	new	logins.

The	Log	Reader	Agent	must	to	be	running	for	the	script	to	be	replicated	properly
if	transactional	replication	is	used.	Snapshot	replication	does	not	support	the
ReplicateUserDefinedScript	method	because	the	Log	Reader	Agent	does	not
run	in	snapshot	replication.

In	both	transactional	and	merge	replication,	the	user-defined	script	is	copied	to
the	Distributor	when	ReplicateUserDefinedScript	is	first	invoked.	The
Distribution	or	Merge	Agent	then	applies	the	copy	at	the	Distributor	to	the
Subscriber.	Therefore	any	modifications	made	to	the	specified	script	after	the
ReplicateUserDefinedScript	method	is	invoked	will	have	no	bearing	on	the
outcome	of	the	subsequent	script	replication.

You	can	also	run	Transact-SQL	scripts	when	the	initial	snapshot	is	created	using
the	PostSnapshotScript	and	PreSnapshotScript	properties.

Note		If	an	application	calls	ReplicateUserDefinedScript	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

PostSnapshotScript	Property

PreSnapshotScript	Property

SQL-DMO

ReplicationAddColumn	Method
The	ReplicationAddColumn	method	adds	a	column	to	a	table	published	in	one
or	more	publications.

Applies	To

ReplicationTable2	Object

Syntax
object.ReplicationAddColumn(
ColumnName	,	
TypeText	,	
PublicationName	,
[SchemaChangeScript])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

ColumnName

Name	of	the	column	to	be	added.	The	column	is	added	to	the	table	if	the
method	succeeds,	regardless	of	what	is	specified	in	PublicationName.

TypeText

String	containing	the	syntax	that	follows	the	column_name	parameter	in	the
ALTER	TABLE	statement	in	Transact-SQL.

PublicationName

String	naming	publications	to	which	the	column	is	to	be	added.

SchemaChangeScript

Optional	string	that	specifies	a	schema	change	script	to	propagate	to	the
subscriber.	Valid	for	transactional	replication	only.	Default	is	NULL.

Prototype	(C/C++)
HRESULT	ReplicationAddColumn(
SQLDMO_LPCSTR	pszColumnName,
SQLDMO_LPCSTR	pszTypeText,
SQLDMO_LPCSTR	pszPublicationName
SQLDMO_LPCSTR	pszSchemaChangeScript);

Remarks
ReplicationAddColumn	adds	the	column	specified	by	the	ColumnName
parameter	to	the	table	represented	by	the	ReplicationTable	object,	and	to
publications	specified	by	the	PublicationName	parameter.	If	PublicationName	is
set	to	'all',	the	column	is	added	to	all	publications.	If	PublicationName	is	set	to
'none',	the	column	is	not	added	to	any	publication.	Otherwise,	set
PublicationName	as	a	string	that	names	publications	in	the	format	'[pub1],
[pub2],[pub2]'.

Note		If	an	application	calls	ReplicationAddColumn	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

ReplicationDropColumn	Method

Schema	Changes	on	Publication	Databases

JavaScript:hhobj_1.Click()

SQL-DMO

ReplicationDropColumn	Method
The	ReplicationDropColumn	method	removes	a	column	from	a	table	published
in	one	or	more	publications.

Applies	To

ReplicationTable2	Object

Syntax
object.ReplicationDropColumn(
ColumnName	,
[SchemaChangeScript])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

ColumnName

Name	of	the	column	to	remove

SchemaChangeScript

Optional	string	that	specifies	a	schema	change	script	to	propagate	to	the
subscriber.	Valid	for	transactional	replication	only.	Default	is	NULL.

Prototype	(C/C++)
HRESULT	ReplicationDropColumn(
SQLDMO_LPCSTR	pszColumnName
SQLDMO_LPCSTR	pszSchemaChangeScript);

Remarks

You	can	run	the	ReplicationAddColumn	method	to	add	a	column	to	a	published
table.

Note		If	an	application	calls	ReplicationDropColumn	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

ReplicationAddColumn	Method

Schema	Changes	on	Publication	Databases

JavaScript:hhobj_1.Click()

SQL-DMO

ResetOccurrenceCount	Method
The	ResetOccurrenceCount	method	reinitializes	history	data	for	a
SQLServerAgent	alert.

Applies	To

Alert	Object

Syntax
object.ResetOccurrenceCount()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	ResetOccurrenceCount();

Remarks
The	ResetOccurrenceCount	method:

Sets	to	zero	the	counter	representing	the	number	of	times	an	alert	has
been	raised.

Sets	the	date	and	time	marking	the	start	of	counting	to	the	current	date
and	time.

Alert	history	values	are	visible	in	SQL-DMO	through	the	CountResetDate,
LastOccurrenceDate,	and	OccurrenceCount	properties	of	the	Alert	object.

See	Also

CountResetDate	Property

OccurrenceCount	Property

LastOccurrenceDate	Property

SQL-DMO

ReSynchronizeSubscription	Method
The	ReSynchronizeSubscription	method	resynchronizes	a	subscription	with	all
changes	made	at	the	Publisher	and	other	Subscribers	since	a	specified	time.

Applies	To

MergePublication2	Object

Syntax
object.ReSynchronizeSubscription(
szSubscriberName	,	
szSubscriberDB	,	
ResyncType	,	
[szDateTime])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

szSubscriberName

String	that	specifies	the	Subscriber	name

szSubscriberDB

String	that	specifies	the	subscription	database	name

ResyncType

Long	integer	that	specifies	which	changes	are	applied	when	the	subscription
is	resynchronized

szDateTime

String	that	specifies	the	date	and	time

Prototype	(C/C++)
HRESULT	ReSynchronizeSubscription(
SQLDMO_LPCSTR	pszSuscriberName,	
SQLDMO_LPCSTR	pszSubscriberDB,	
SQLDMO_RESYNC_TYPE	ResyncType,	
SQLDMO_LPCSTR	pszDateTime);

Settings
Set	the	ResyncType	parameter	by	using	these	SQLDMO_RESYNC_TYPE
values.

Constant Value Description
SQLDMOResync_SinceAGivenDateTime 2 Resynchronize

subscription	with
all	changes	since
a	given	date	and
time.

SQLDMOResync_SinceLastSnapshotApplied 0 Resynchronize
subscription	with
all	changes	since
last	snapshot	was
applied.

SQLDMOResync_SinceLastSuccessfulValidation 1 Resynchronize
subscription	with
all	changes	since
last	successful
validation	was
performed.

Remarks
By	default,	szDateTime	is	an	optional	parameter	set	to	NULL.	However,	if
ResyncType	is	set	to	SQLDMOResync_SinceAGivenDateTime,	szDateTime	is
required	and	cannot	be	set	to	NULL.	The	date	and	time	data	must	be	formatted

as	YYYYMMDD	hh:mm:ss.fff.

Date	part Description
YYYY Represents	the	year	in	four	digits.
MM Represents	the	month	in	two	digits	(zero	padded).
DD Represents	the	day	of	the	month	in	two	digits	(zero

padded).
hh Represents	the	hour	using	two	digits,	a	twenty-four	hour

clock	(zero	padded).
mm Represents	the	minute	in	two	digits	(zero	padded).
ss Represents	the	second	in	two	digits	(zero	padded).
fff Represents	the	fractional	part	of	the	second	in	three

digits.

For	example,	the	value	19990911	18:12:00.000	is	interpreted	as	6:12	P.M.,
September	11,	1999.

An	application	can	call	the	ReadLastValidationDateTimes	method	to
determine	the	date	and	time	of	the	last	successful	validation	of	the	subscription.

ReSynchronizeSubscription	should	be	called	at	the	Publisher.

Note		If	an	application	calls	ReSynchronizeSubscription	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

ReadLastValidationDateTimes	Method

SQL-DMO

Revoke	Method	(Database)
The	Revoke	method	undoes	a	grant	or	deny	of	database	permissions	for	one	or
more	Microsoft®	SQL	Server™	2000	users	or	roles.

Applies	To

Database	Object

Syntax
object.Revoke(Privilege	,	GranteeNames)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Privilege

Long	integer	that	specifies	one	or	more	database	permissions	as	described	in
Settings

GranteeNames

SQL-DMO	multi-string	that	lists	users	or	roles

Prototype	(C/C++)
HRESULT	Revoke(
SQLDMO_PRIVILEGE_TYPE	iPrivileges,
SQLDMO_LPCSTR	GranteeNames);

Settings
Set	Privilege	by	using	these	SQLDMO_PRIVILEGE_TYPE	values.	To	specify
more	than	a	single	permission,	combine	values	by	using	an	OR	logical	operator.

Constant Value Description
SQLDMOPriv_AllDatabasePrivs 130944 Revoke	all	granted	or	denied

database	permissions.
SQLDMOPriv_CreateDatabase 256 Revoke	granted	or	denied

permission	to	execute	a
CREATE	DATABASE
statement.

SQLDMOPriv_CreateDefault 4096 Revoke	granted	or	denied
permission	to	execute	a
CREATE	DEFAULT	statement.

SQLDMOPriv_CreateFunction 65366 Revoke	granted	or	denied
permission	to	execute	a
CREATE	FUNCTION
statement.

SQLDMOPriv_CreateProcedure 1024 Revoke	granted	or	denied
permission	to	execute	a
CREATE	PROCEDURE
statement.

SQLDMOPriv_CreateRule 16384 Revoke	granted	or	denied
permission	to	execute	a
CREATE	RULE	statement.

SQLDMOPriv_CreateTable 128 Revoke	granted	or	denied
permission	to	execute	a
CREATE	TABLE	statement.

SQLDMOPriv_CreateView 512 Revoke	granted	or	denied
permission	to	execute	a
CREATE	VIEW	statement.

SQLDMOPriv_DumpDatabase 2048 Revoke	granted	or	denied
permission	to	back	up	the
database.

SQLDMOPriv_DumpTable 32768 Maintained	for	compatibility
with	previous	versions	of	SQL-
DMO.

SQLDMOPriv_DumpTransaction 8192 Revoke	granted	or	denied
permission	to	back	up	the
database	transaction	log.

Remarks
Revoking	granted	or	denied	permissions	to	database	users	and	roles	by	using	the
Revoke	method	of	the	Database	object	requires	appropriate	permission.	The
Microsoft®	SQL	Server™	2000	login	used	for	SQLServer	object	connection
must	be	a	member	of	the	system-defined	role	sysadmin.

For	more	information	about	setting	multistring	parameters,	see	Using	SQL-
DMO	Multistrings.

SQL-DMO

Revoke	Method	(StoredProcedure)
The	Revoke	method	undoes	a	grant	or	deny	of	a	stored	procedure	permission	for
one	or	more	Microsoft®	SQL	Server™	2000	users	or	roles.

Applies	To

StoredProcedure	Object

Syntax
object.Revoke(Privilege	,	GranteeNames	,	[GrantGrant]	,
[RevokeGrantOption]	,	[AsRole])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Privilege

Long	integer	that	specifies	one	or	more	stored	procedure	permissions	as
described	in	Settings.

GranteeNames

SQL-DMO	multistring	that	lists	users	or	roles.

GrantGrant

When	TRUE,	the	grantee(s)	specified	are	granted	the	ability	to	execute	the
REVOKE	statement	referencing	the	stored	procedure.	When	FALSE
(default),	the	ability	to	limit	permission	is	not	granted.

RevokeGrantOption

When	TRUE,	the	ability	to	extend	permission	is	revoked.	When	FALSE
(default),	no	change	is	made	to	the	ability	to	extend	permission.

AsRole

String	that	identifies	a	role	to	which	the	connected	user	belongs	as	described
in	Remarks.

Prototype	(C/C++)
HRESULT	Revoke(
SQLDMO_PRIVILEGE_TYPE	iPrivileges,
SQLDMO_LPCSTR	GranteeNames,
BOOL	GrantGrant	=	FALSE,
BOOL	RevokeGrantOption	=	FALSE,
SQLDMO_LPCSTR	AsRole	=	NULL);

Settings
Set	Privilege	by	using	these	SQLDMO_PRIVILEGE_TYPE	values.	To	specify
more	than	a	single	permission,	combine	values	by	using	an	OR	logical	operator.

Constant Value Description
SQLDMOPriv_AllObjectPrivs 63 Revoke	all	granted	or	denied

permissions	on	the	referenced	stored
procedure.

SQLDMOPriv_Execute 16 Revoke	granted	or	denied	execute
permission	on	the	referenced	stored
procedure.

Remarks
When	a	user	is	a	member	of	more	than	a	single	role,	the	user	can	have
permission	to	grant	access	to	a	stored	procedure	under	one	role	and	not	under
another.	In	this	case,	SQL	Server	security	mechanisms	prevent	execution	of	the
Revoke	method	on	the	StoredProcedure	object	referencing	that	stored
procedure.	Use	the	AsRole	argument	to	specify	the	role	under	which	permission
to	execute	the	grant	exists.

Granting	permissions	to	database	users	and	roles	by	using	the	Revoke	method	of

the	StoredProcedure	object	requires	appropriate	permission.	The	SQL	Server
login	used	for	SQLServer	object	connection	must	be	granted	the	ability	to
execute	GRANT	referencing	the	stored	procedure,	the	owner	of	the	stored
procedure,	or	a	member	of	a	role	with	greater	privilege.

For	more	information	about	setting	multistring	parameters,	see	Using	SQL-
DMO	Multistrings.

SQL-DMO

Revoke	Method	(Table,	View)
The	Revoke	method	undoes	a	grant	or	deny	of	a	table	permission	or	a	list	of
permissions	for	one	or	more	Microsoft®	SQL	Server™	2000	users	or	roles.

Applies	To

Table	Object View	Object

Syntax
object.Revoke(Privilege	,	GranteeNames	,	[ColumnNames]	,
[GrantGrant]	,	[RevokeGrantOption]	,	[AsRole])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Privilege

Long	integer	that	specifies	one	or	more	table	privileges	as	described	in
Settings.

GranteeNames

SQL-DMO	multistring	that	lists	users	or	roles.

ColumnNames

SQL-DMO	multistring	that	lists	columns	within	the	base	or	view	table
referenced.	When	specified,	the	privileges	specified	are	revoked	for	only	the
columns	named.

GrantGrant

When	TRUE,	the	grantee(s)	specified	are	granted	the	ability	to	execute	the
REVOKE	statement	referencing	the	base	or	view	table.	When	FALSE

(default),	the	ability	to	limit	permission	is	not	granted.

RevokeGrantOption

When	TRUE,	the	ability	to	extend	permission	is	revoked.	When	FALSE
(default),	no	change	is	made	to	the	ability	to	extend	permission.

AsRole

String	that	identifies	a	role	to	which	the	connected	user	belongs	as	described
in	Remarks.

Prototype	(C/C++)
HRESULT	Revoke(
SQLDMO_PRIVILEGE_TYPE	iPrivileges,
SQLDMO_LPCSTR	GranteeNames,
SQLDMO_LPCSTR	ColumnNames	=	NULL,
BOOL	GrantGrant	=	FALSE,
BOOL	RevokeGrantOption	=	FALSE,
SQLDMO_LPCSTR	AsRole	=	NULL);

Settings
Set	the	Privilege	argument	by	using	these	values.	To	specify	more	than	a	single
permission,	combine	values	by	using	an	OR	logical	operator.

Constant Value Description
SQLDMOPriv_AllObjectPrivs 63 Revoke	all	granted	or	denied	table

permissions
SQLDMOPriv_Delete 8 Revoke	granted	or	denied

permission	to	execute	the	DELETE
statement	referencing	the	table

SQLDMOPriv_Insert 2 Revoke	granted	or	denied
permission	to	execute	the	INSERT
statement	referencing	the	table

SQLDMOPriv_References 32 Revoke	granted	or	denied
permission	to	reference	the	table	in
statements	implementing

declarative	referential	integrity
SQLDMOPriv_Select 1 Revoke	granted	or	denied

permission	to	execute	the	SELECT
statement	referencing	the	table

SQLDMOPriv_Update 4 Revoke	granted	or	denied
permission	to	execute	the	UPDATE
statement	referencing	the	table

Remarks
When	a	user	is	a	member	of	more	than	a	single	role,	the	user	can	have
permission	to	grant	access	to	a	table	or	view	under	one	role	and	not	under
another.	In	this	case,	SQL	Server	security	mechanisms	prevent	execution	of	the
Revoke	method	on	the	Table	or	View	object	referencing	the	database	object.
Use	the	AsRole	argument	to	specify	the	role	under	which	permission	to	execute
the	grant	exists.

Undoing	a	grant	or	deny	of	a	permission	to	database	users	and	roles	by	using	the
Revoke	method	of	the	Table	or	View	object	requires	appropriate	privilege.	The
SQL	Server	login	used	for	SQLServer	object	connection	must	be	granted	the
ability	to	execute	GRANT	referencing	the	database	object,	the	owner	of	the
database	object,	or	a	member	of	a	role	with	greater	privilege.

For	more	information	about	setting	multistring	parameters,	see	Using	SQL-
DMO	Multistrings.

SQL-DMO

Revoke	Method	(UserDefinedFunction)
The	Revoke	method	undoes	a	grant	or	deny	of	a	user-defined	function
permission	for	one	or	more	Microsoft®	SQL	Server™	2000	users	or	roles.

Applies	To

UserDefinedFunction	Object

Syntax
object.Revoke(
Privileges,	
RevokeeNames	,	
[GrantGrant]	,	
[RevokeGrantOption]	,	
[AsRole])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Privileges

Long	integer	that	specifies	one	or	more	user-defined	function	permissions	as
described	in	Settings.

RevokeeNames

SQL-DMO	multistring	that	lists	users	or	roles.

GrantGrant

When	TRUE,	the	grantee(s)	specified	are	granted	the	ability	to	execute	the
REVOKE	statement	referencing	the	user-defined	function.	When	FALSE
(default),	the	ability	to	limit	permission	is	not	granted.

RevokeGrantOption

When	TRUE,	the	ability	to	extend	permission	is	revoked.	When	FALSE
(default),	no	change	is	made	to	the	ability	to	extend	permission.

AsRole

String	that	identifies	a	role	to	which	the	connected	user	belongs	as	described
in	Remarks.

Prototype	(C/C++)
HRESULT	Revoke(
SQLDMO_PRIVILEGE_TYPE	iPrivileges,	
SQLDMO_LPCSTR	RevokeeNames,	
BOOL	GrantGrant,	
BOOL	RevokeGrantOption,	
SQLDMO_LPCSTR	AsRole);

Settings
Set	Privileges	by	using	these	SQLDMO_PRIVILEGE_TYPE	values.	To	specify
more	than	a	single	permission,	combine	values	by	using	an	OR	logical	operator.

Constant Value Description
SQLDMOPriv_AllObjectPrivs 63 Revoke	all	granted	or	denied

permissions	on	the	referenced	stored
procedure.

SQLDMOPriv_Execute 16 Revoke	granted	or	denied	execute
permission	on	the	referenced	stored
procedure.

Remarks
When	a	user	is	a	member	of	more	than	a	single	role,	the	user	can	have
permission	to	grant	access	to	a	user-defined	function	under	one	role	and	not
under	another.	In	this	case,	SQL	Server	security	mechanisms	prevent	execution
of	the	Revoke	method	on	the	UserDefinedFunction	object	referencing	that

user-defined	function.	Use	the	AsRole	argument	to	specify	the	role	under	which
permission	to	execute	the	grant	exists.

Granting	permissions	to	database	users	and	roles	by	using	the	Revoke	method	of
the	UserDefinedFunction	object	requires	appropriate	privilege.	The	SQL	Server
login	used	for	SQLServer	object	connection	must	be	granted	the	ability	to
execute	GRANT	referencing	the	user-defined	function	,	the	owner	of	the	user-
defined	function,	or	a	member	of	a	role	with	greater	privilege.

For	more	information	about	setting	multistring	parameters,	see	Using	SQL-
DMO	Multistrings.

Note		If	an	application	call	the	Revoke	method	of	the	UserDefinedFunction
object	on	an	instance	of	SQL	Server	version	7.0,	NULL	is	returned.

SQL-DMO

RevokePublicationAccess	Method
The	RevokePublicationAccess	method	removes	the	specified	login	from	the
publication	access	list.

Applies	To

MergePublication	Object TransPublication	Object

Syntax
object.RevokePublicationAccess(szLoginName)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

szLoginName

String	that	names	a	Microsoft®	SQL	Server™	2000	login	existing	on	the
Publisher.

Prototype	(C/C++)
HRESULT	RevokePublicationAccess(SQLDMO_LPCSTR	szLoginName);

Remarks
Revoking	permission	from	a	login	by	using	the	RevokePublicationAccess
method	of	the	MergePublication	or	TransPublication	object	requires
appropriate	permission.	The	SQL	Server	login	used	for	SQLServer	object
connection	must	be	a	member	of	the	system-defined	role	db_owner	in	the
database	published,	or	a	member	of	a	role	with	greater	privilege.

SQL-DMO

RollbackTransaction	Method
The	RollbackTransaction	method	ends	a	unit	of	work	explicitly	opened	by	a
corresponding	BeginTransaction	method	call,	discarding	any	change(s)	applied
within	the	work	unit.

Applies	To

SQLServer	Object

Syntax
object.RollbackTransaction([SavePoint])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

SavePoint

Optional.	A	string	that	identifies	a	save	point	in	the	transaction.

Prototype	(C/C++)
HRESULT	RollbackTransaction(
SQLDMO_LPCSTR	TransactionOrSavepointName	=	NULL);

Remarks
Use	the	BeginTransaction,	CommitTransaction,	and	RollbackTransaction
methods	to	implement	application-defined	transaction	units.

When	unqualified	by	the	optional	argument,	the	RollbackTransaction	method
undoes	an	entire	transaction.	Use	the	SaveTransaction	method	to	set	transaction
midpoints,	then	specify	the	most	recent	midpoint	in	the	SavePoint	argument	to

undo	only	those	changes	applied	after	the	point	in	the	transaction.	For	more
information,	see	SaveTransaction	Method.

Note		SQL-DMO	implements	objects	that	can	be	used	to	automate	Microsoft®
SQL	Server™	administration.	Most	administrative	functions	use	data	definition
language	(DDL)	statements	for	their	implementation.	Generally,	application-
defined	transaction	units	are	not	respected	by	DDL.	Where	SQL	Server	does	not
implement	transaction	space	for	DDL,	SQL-DMO	does	not	extend	DDL	by
defining	a	transaction	space.

In	general,	use	the	BeginTransaction,	CommitTransaction,	and
RollbackTransaction	methods	only	when	submitting	Transact-SQL	command
batches	for	execution	by	using	methods	such	as	ExecuteImmediate.	It	is
suggested	that	you	do	not	leave	transaction	units	open	but	either	commit	or	roll
back	the	unit	when	the	command	batch	execution	method	is	complete.

SQL-DMO

S

SQL-DMO

SaveTransaction	Method
The	SaveTransaction	method	marks	a	point	within	a	transaction,	that	controls
conditional	application	of	the	RollbackTransaction	method.

Applies	To

SQLServer	Object

Syntax
object.SaveTransaction(Savepoint)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Savepoint

String	naming	the	transaction	midpoint.	The	string	must	be	valid	for	use	as	a
Microsoft®	SQL	Server™	2000	identifier.

Prototype	(C/C++)
HRESULT	SaveTransaction(SQLDMO_LPCSTR	SavepointName);

Remarks
Any	open	SQL	Server	transaction	can	be	committed	in	its	entirety,	rolled	back	in
its	entirety,	or	rolled	back	to	a	midpoint	in	the	transaction	identified	by	the	user.
Only	work	within	the	transaction	unit	done	after	the	marking	of	a	midpoint	is
rolled	back	to	the	midpoint	when	a	rollback	operation	is	performed	naming	the
midpoint.	After	rollback	to	a	midpoint,	the	transaction	is	considered	open	and
must	be	closed	by	either	committing	work	or	rolling	back	the	entire	transaction.

Each	midpoint	within	a	transaction	can	be	named	uniquely	and	then	uniquely
referenced	in	a	rollback	operation.	When	a	midpoint	is	not	named	uniquely,	a
rollback	indicating	the	point	affects	that	work	done	within	the	transaction	and
occurring	after	the	most	recent	use	of	the	name.

Note		SQL-DMO	implements	objects	that	can	be	used	to	automate	Microsoft®
SQL	Server™	administration.	Most	administrative	functions	use	data	definition
language	(DDL)	statements	for	their	implementation.	Generally,	application-
defined	transaction	units	are	not	respected	by	DDL.	Where	SQL	Server	does	not
implement	transaction	space	for	DDL,	SQL-DMO	does	not	extend	DDL	by
defining	a	transaction	space.

In	general,	use	the	BeginTransaction,	CommitTransaction,	and
RollbackTransaction	methods	only	when	submitting	Transact-SQL
command	batches	for	execution	using	methods	such	as	ExecuteImmediate.
It	is	suggested	that	you	do	not	leave	transaction	units	open,	but	either	commit
or	roll	back	the	unit	when	the	command	batch	execution	method	is	complete.

SQL-DMO

Script	Method
The	Script	method	generates	a	Transact-SQL	command	batch	that	can	be	used
to	re-create	the	Microsoft®	SQL	Server™	2000	component	referenced	by	the
SQL-DMO	object.

Applies	To

Alert	Object Key	Object
Alerts	Collection Login	Object
Check	Object Operator	Object
Database	Object Operators	Collection
DatabaseRole	Object Rule	Object
DBObject	Object StoredProcedure	Object
Default	Object Trigger	Object
DRIDefault	Object User	Object
FullTextCatalog	Object UserDefinedDatatype	Object
Index	Object UserDefinedFunction	Object
Job	Object View	Object
Jobs	Collection 	

Syntax
object.Script([ScriptType]	[,	ScriptFilePath]	[,	Script2Type])	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

ScriptType

Optional.	A	long	integer	that	overrides	default	scripting	behavior	as
described	in	Settings.

ScriptFilePath

Optional.	A	string	that	specifies	an	operating	system	file	as	an	additional
target	for	the	generated	Transact-SQL	script.

Script2Type

Optional.	A	long	integer	that	overrides	default	scripting	behavior	as
described	in	Settings.

Prototype	(C/C++)
HRESULT	Script(
SQLDMO_SCRIPT_TYPE	ScriptType	=	SQLDMOScript_Default,
SQLDMO_LPCSTR	ScriptFilePath	=	NULL,
SQLDMO_LPBSTR	ScriptText	=	NULL,
SQLDMO_SCRIPT2_TYPE	Script2Type	=	SQLDMOScript2_Default);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Settings
When	setting	the	ScriptType	argument	specifying	multiple	behaviors,	combine
values	using	an	OR	logical	operator.	Use	these	values	to	set	ScriptType.

Constant Value Description
SQLDMOScript_DatabasePermissions 32 Generate	Transact-SQL	database

privilege	defining	script.	Database
permissions	grant	or	deny		statement
execution	rights.

SQLDMOScript_Default 4 SQLDMOScript_PrimaryObject.
SQLDMOScript_Drops 1 Generate	Transact-SQL	to	remove

referenced	component.	Script	tests	for
existence	prior	attempt	to	remove
component.

SQLDMOScript_IncludeHeaders 131072Generated	script	is	prefixed	with	a
header	containing	date	and	time	of

generation	and	other	descriptive
information.

SQLDMOScript_IncludeIfNotExists 4096 Transact-SQL	creating	a	component	is
prefixed	by	a	check	for	existence.
When	script	is	executed,	component	is
created	only	when	a	copy	of	the	named
component	does	not	exist.

SQLDMOScript_Indexes 73736 SQLDMOScript_ClusteredIndexes,
SQLDMOScript_NonClusteredIndexes,
and	SQLDMOScript_DRIIndexes
combined	using	an	OR	logical	operator.
Applies	to	both	table	and	view	objects.

SQLDMOScript_NoCommandTerm 32768 Individual	Transact-SQL	statements	in
the	script	are	not	delimited	using	the
connection-specific	command
terminator.	By	default,	individual
Transact-SQL	statements	are	delimited.

SQLDMOScript_ObjectPermissions 2 Include	Transact-SQL	privilege
defining	statements	when	scripting
database	objects.

SQLDMOScript_OwnerQualify 262144Object	names	in	Transact-SQL
generated	to	remove	an	object	are
qualified	by	the	owner	of	the	referenced
object.	Transact-SQL	generated	to
create	the	referenced	object	qualify	the
object	name	using	the	current	object
owner.

SQLDMOScript_Permissions 34 SQLDMOScript_ObjectPermissions
and
SQLDMOScript_DatabasePermissions
combined	using	an	OR	logical	operator.

SQLDMOScript_PrimaryObject 4 Generate	Transact-SQL	creating	the
referenced	component.

SQLDMOScript_TimestampToBinary 524288When	scripting	object	creation	for	a
table	or	user-defined	data	type,	convert
specification	of	timestamp	data	type	to

binary(8).
SQLDMOScript_ToFileOnly 64 Most	SQL-DMO	object	scripting

methods	specify	both	a	return	value	and
an	optional	output	file.	When	used,	and
an	output	file	is	specified,	the	method
does	not	return	the	script	to	the	caller,
but	only	writes	the	script	to	the	output
file.

SQLDMOScript_UseQuotedIdentifiers -1 Use	quote	characters	to	delimit
identifier	parts	when	scripting	object
names.

When	setting	the	Script2Type	argument	specifying	multiple	behaviors,	combine
values	using	an	OR	logical	operator.	Use	these	values	to	set	Script2Type.

Constant Value Description
SQLDMOScript2_AgentAlertJob 2048 Generate	Transact-SQL	script

creating	SQLServerAgent
service	jobs	and	alerts.

SQLDMOScript2_AgentNotify 1024 When	scripting	an	alert,
generate	script	creating
notifications	for	the	alert.

SQLDMOScript2_AnsiFile 2 Generated	script	file	uses
multibyte	characters.	Code
page	1252	is	used	to	determine
character	meaning.

SQLDMOScript2_Default 0 No	scripting	options	specified.
SQLDMOScript2_EncryptPWD 128 Encrypt	passwords	with	script.

When	specified,
SQLDMOScript2_UnicodeFile
must	be	specified	as	well.

SQLDMOScript2_ExtendedProperty 4194304 Include	extended	property
scripting	as	part	of	object
scripting.

SQLDMOScript2_FullTextCat 2097152Command	batch	includes

Transact-SQL	statements
creating	Microsoft	Search	full-
text	catalogs.

SQLDMOScript2_LoginSID 8192 Include	security	identifiers	for
logins	scripted.

SQLDMOScript2_MarkTriggers 32 Generated	script	creates
replication	implementing
triggers	as	system	objects.
Applies	only	when	scripting
replication	articles.

SQLDMOScript2_NoCollation 8388608Do	not	script	the	collation
clause	if	source	is	later	tha
SQL	Server	version	7.0.	The
default	is	to	generate	collation.

SQLDMOScript2_UnicodeFile 4 Generated	script	output	file	is
a	Unicode-character	text	file.

Returns
A	Transact-SQL	command	batch	as	a	string.

Remarks
The	Script	method	generates	a	Transact-SQL	command	batch	that	defines	an
existing	SQL	Server	component.	Some	SQL-DMO	objects,	such	as	the	Index
object,	support	command	batch	generation	for	SQL-DMO	objects	that	defines
new	components	through	the	GenerateSQL	method.

Use	the	GenerateSQL	method	when	capturing	object	definition.	Use	the	Script
method	when	capturing	an	image	of	an	exiting	component.	When	using	the
Script	method	as	part	of	an	application	process	re-creating	a	component,	specify
SQLDMOScript_Drops	in	the	ScriptType	argument	to	include	a	drop	of	the
existing	component	in	the	command	batch.

Note		SQL-DMO	object	scripting	methods	are	fully	compatible	with	an	instance
of	SQL	Server	version	7.0.	However,	database	compatibility	level	affects
Transact-SQL	command	batch	contents.

When	scripting	a	database	with	a	compatibility	level	of	less	than	7.0,	or
when	scripting	any	of	its	objects,	the	resulting	Transact-SQL	command	batch
includes	only	keywords	reserved	by	that	level.

Transact-SQL	command	syntax	is	always	compliant	with	an	instance	of	SQL
Server	7.0.	Where	provided,	you	can	use	optional	scripting	arguments,	such
as	SQLDMOScript2_NoFG	to	remove	some	syntax	of	an	instance	of	SQL
Server	7.0.

SQL-DMO

Script	Method	(BackupDevice	Object)
The	Script	method	generates	a	Transact-SQL	command	batch	that	can	be	used
to	re-create	the	Microsoft®	SQL	Server™	2000	component	referenced	by	the
SQL-DMO	object.

Applies	To

BackupDevice	Object

Syntax
object.Script([ScriptType]	,	[ScriptFilePath]	,	[NewPhysicalLocation]
,	[Script2Type])	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

ScriptType

Optional.	A	long	integer	that	overrides	default	scripting	behavior	as
described	in	Settings.

ScriptFilePath

Optional.	A	string	that	specifies	an	operating	system	file	as	an	additional
target	for	the	generated	Transact-SQL	script.

NewPhysicalLocation

Optional.	A	string	that	identifies	a	device	by	operating	system	name	and	used
in	place	of	that	locating	the	scripted	device.

Script2Type

Optional.	A	long	integer	that	overrides	default	scripting	behavior	as

described	in	Settings.

Prototype	(C/C++)
HRESULT	Script(
SQLDMO_SCRIPT_TYPE	ScriptType	=	SQLDMOScript_Default,
SQLDMO_LPCSTR	ScriptFilePath	=	NULL,
SQLDMO_LPCSTR	NewPhysicalLocation	=	NULL,
SQLDMO_LPBSTR	ScriptText	=	NULL,
SQLDMO_SCRIPT2_TYPE	Script2Type	=	SQLDMOScript2_Default);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Settings
When	setting	the	ScriptType	argument	specifying	multiple	behaviors,	combine
values	using	an	OR	logical	operator.	Use	these	values	to	set	ScriptType.

Constant Value Description
SQLDMOScript_AppendToFile 256 Object	Script	method	only.

Append	to	indicated	output	file.
By	default,	Script	method
overwrites	existing	file.

SQLDMOScript_Default 4 SQLDMOScript_PrimaryObject.
SQLDMOScript_Drops 1 Generate	Transact-SQL	to	remove

referenced	component.	Script	tests
for	existence	prior	attempt	to
remove	component.

SQLDMOScript_PrimaryObject 4 Generate	Transact-SQL	creating
the	referenced	component.

SQLDMOScript_ToFileOnly 64 Most	SQL-DMO	object	scripting
methods	specify	both	a	return
value	and	an	optional	output	file.
When	used,	and	an	output	file	is
specified,	the	method	does	not

return	the	script	to	the	caller,	but
only	writes	the	script	to	the	output
file.

When	setting	the	Script2Type	argument	specifying	multiple	behaviors,	combine
values	using	an	OR	logical	operator.	Use	these	values	to	set	Script2Type.

Constant Value Description
SQLDMOScript2_AnsiFile 2 Create	output	file	as	a	multibyte

character	text	file.	Code	page	1252
is	used	to	determine	character
meaning.

SQLDMOScript2_Default 0 Default.	No	scripting	options
specified.

SQLDMOScript2_UnicodeFile 4 Create	output	file	as	a	Unicode
character	text	file.

Returns
A	Transact-SQL	command	batch	as	a	string.

Remarks
The	NewPhysicalLocation	property	is	a	string	with	a	maximum	of	260
characters.	Specify	an	operating	system	file	using	a	UNC	string	or	drive	letter,
path,	and	name.	Specify	a	tape	device	using	a	UNC	string.	For	example,	the
string	\\Seattle1\Backups\Northwind.bak	specifies	a	server	name,	directory,	and
file	name	for	a	backup	device.	The	string	\\.\TAPE0	specifies	a	server	and	a	file
device,	most	likely	a	tape,	as	a	backup	device.

Note		SQL-DMO	object	scripting	methods	are	fully	compatible	with	an	instance
of	SQL	Server	version	7.0.	However,	database	compatibility	level	affects
Transact-SQL	command	batch	contents.

When	scripting	a	database	with	a	compatibility	level	of	less	than	7.0,	or
when	scripting	any	of	its	objects,	the	resulting	Transact-SQL	command	batch

includes	only	keywords	reserved	by	that	level.

Transact-SQL	command	syntax	is	always	compliant	with	an	instance	of	SQL
Server	7.0.	Where	provided,	you	can	use	optional	scripting	arguments,	such
as	SQLDMOScript2_NoFG	to	remove	some	syntax	of	an	instance	of	SQL
Server	7.0.

SQL-DMO

Script	Method	(Replication	Objects)
The	Script	method	generates	a	Transact-SQL	command	batch	that	can	be	used
to	re-create	the	Microsoft®	SQL	Server™	2000	component	referenced	by	the
SQL-DMO	object.

Applies	To

DistributionDatabase	Object RegisteredSubscribers	Collection
DistributionDatabases	Collection Replication	Object
DistributionPublisher	Object ReplicationDatabase	Object
DistributionPublishers	Collection ReplicationDatabases	Collection
Distributor	Object Subscriber	Object
MergePublication	Object TransArticle	Object
MergePublications	Collection TransPublication	Object
MergePullSubscription	Object TransPublications	Collection
MergePullSubscriptions	Collection TransPullSubscription	Object
MergeSubscription	Object TransPullSubscriptions	Collection
MergeSubscriptions	Collection TransSubscription	Object
Publisher	Object TransSubscriptions	Collection
RegisteredSubscriber	Object 	

Syntax
object.Script([ScriptType]	,	[ScriptFilePath])	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

ScriptType

Optional.	A	long	integer	that	overrides	default	scripting	behavior	as

described	in	Settings.

ScriptFilePath

Optional.	A	string	that	specifies	an	operating	system	file	as	an	additional
target	for	the	generated	Transact-SQL	statements	script.

Prototype	(C/C++)
HRESULT	Script(
SQLDMO_REPSCRIPT_TYPE	ScriptType	=	SQLDMORepScript_Default,
SQLDMO_LPCSTR	ScriptFilePath	=	NULL,
SQLDMO_LPBSTR	ScriptText	=	NULL);

(Distributor	Object)
HRESULT	Script(
SQLDMO_REPSCRIPT_TYPE	ScriptType	=
SQLDMORepScript_InstallDistributor,
SQLDMO_LPCSTR	ScriptFilePath	=	NULL,
SQLDMO_LPBSTR	ScriptText	=	NULL);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Settings
When	setting	the	ScriptType	argument	specifying	multiple	behaviors,	combine
values	using	an	OR	logical	operator.	Use	these	SQLDMO_REPSCRIPT_TYPE
values	to	set	ScriptType.

Constant Value Description
SQLDMORepScript_AnsiFile 16777216 Output	to	a	file	is	written	as	ANSI

character	text.
SQLDMORepScript_AppendToFile 8192 Output	is	appended	to	a	designated

operating	system	file.	If	not	set,	output
overwrites	any	data	in	an	existing,
designated	file.

SQLDMORepScript_Creation 16384 Script	includes	database	object
creation.

SQLDMORepScript_Default 256 SQLDMORepScript_InstallDistributor.
SQLDMORepScript_Deletion 32768 Script	includes	deletion	of	existing

database	objects.
SQLDMORepScript_DisableReplicationDB 134217728Script	disables	a	replication	database.
SQLDMORepScript_EnableReplicationDB 67108864 Script	enables	a	replication	database.
SQLDMORepScript_InstallDistributor 256 Default.	The	script	installs	the

replication	Distributor.
SQLDMORepScript_InstallPublisher 1024 Script	installs	a	Publisher.
SQLDMORepScript_InstallReplication 1048576 Script	installs	replication.
SQLDMORepScript_NoCommandTerm 268435456No	command	terminator	is	added	to

script	commands.
SQLDMORepScript_NoSubscription 128 Script	creation	of	publication,

excluding	push	subscriptions.

SQLDMORepScript_PublicationCreation 65536 Script	includes	publication	creation
text.

SQLDMORepScript_PublicationDeletion 131072 Script	includes	text	that	removes
publications.

SQLDMORepScript_PullSubscriptionCreation 262144 Script	pull	subscription	creation.
SQLDMORepScript_PullSubscriptionDeletion 524288 Script	pull	subscription	deletion.
SQLDMORepScript_ReplicationJobs 4194304 Script	creation	of	replication-related

jobs	to	preserve	job	schedule	and	steps.
The	corresponding	job	script	must	be
run	before	the	replication	script.
This	constant	can	only	be	used	with
Microsoft®	SQL	Server™	2000.	Only
a	member	of	the	sysadmin
role	or	the	owner	of	a	job	have	access
to	a	job	creation	script.

SQLDMORepScript_SubscriptionCreation 262144 Obsolete.
SQLDMORepScript_SubscriptionDeletion 524288 Obsolete.
SQLDMORepScript_ToFileOnly 4096 Output	generated	by	an	executed	script

is	directed	to	an	operating	system	file

only.	If	not	set,	output	is	available	as
status	or	error	messages.

SQLDMORepScript_UnicodeFile 33554432 Output	to	a	file	is	written	as	Unicode
character	text.

SQLDMORepScript_UninstallDistributor 512 Script	removes	the	replication
Distributor.

SQLDMORepScript_UninstallPublisher 2048 Script	removes	a	Publisher.
SQLDMORepScript_UninstallReplication 2097152 Script	removes	replication.

Returns
A	Transact-SQL	command	batch	as	a	string.

Remarks
The	Script	method	of	replication	objects	captures	an	image	of	a	SQL	Server
replication	installation.	For	example,	using	the	Script	method	of	the
TransArticle	object	generates	a	command	batch	that	can	be	used	to	create	the
transactional	or	snapshot	replication	article	referenced,	not	the	object	replicated
by	the	article.

To	script	the	creation	of	a	single	pull	subscription,	call	the	Script	method	using
SQLDMORepScript_PullSubscriptionCreation	on	a	TransPullSubscription	or
MergePullSubscription	object.	To	script	the	removal	of	a	single	pull
subscription,	call	the	Script	method	using
SQLDMORepScript_PullSubscriptionDeletion	on	a	TransPullSubscription	or
MergePullSubscription	object.

To	script	the	creation	of	pull	subscriptions	in	the	TransPullSubscriptions	or
MergePullSubscriptions	collection,	call	the	Script	method	using
SQLDMORepScript_PullSubscriptionCreation.	To	script	the	removal	of	pull
subscriptions	from	the	TransPullSubscriptions	or	MergePullSubscriptions
collection,	call	the	Script	method	using
SQLDMORepScript_PullSubscriptionDeletion.

To	script	the	creation	of	or	dropping	pull	subscriptions	in	a	database,	call	the
Script	method	using	SQLDMORepScript_PullSubscriptionCreation	on	a

ReplicationDatabase	object.	To	script	the	removal	of	pull	subscriptions	from	a
database,	call	the	Script	method	using
SQLDMORepScript_PullSubscriptionDeletion	on	a	ReplicationDatabase
object.

To	script	the	creation	of	pull	subscriptions	on	a	server,	call	the	Script	method
using	SQLDMORepScript_PullSubscriptionCreation	on	a
ReplicationDatabases	collection	or	Subscriber	object.	To	script	the	removal	of
pull	subscriptions	from	a	server,	call	the	Script	method	using
SQLDMORepScript_PullSubscriptionDeletion	on	a	ReplicationDatabases
collection	or	Subscriber	object.

For	SQL-DMO	objects	publish	database	objects,	SQL-DMO	implements	the
ScriptDestinationObject	method	to	generate	command	batches	that	re-create
the	objects	published.	For	more	information,	see	ScriptDestinationObject
Method.

Note		SQL-DMO	object	scripting	methods	are	fully	compatible	with	an	instance
of	SQL	Server	version	7.0.	However,	database	compatibility	level	affects
Transact-SQL	command	batch	contents.

When	scripting	a	database	with	a	compatibility	level	of	less	than	7.0,	or
when	scripting	any	of	its	objects,	the	resulting	Transact-SQL	command	batch
includes	only	keywords	reserved	by	that	level.

Transact-SQL	command	syntax	is	always	compliant	with	an	instance	of	SQL
Server	7.0.	Where	provided,	you	can	use	optional	scripting	arguments,	such
as	SQLDMOScript2_NoFG	to	remove	some	syntax	of	an	instance	of	SQL
Server	7.0.

See	Also

Scripting	Replication

JavaScript:hhobj_1.Click()

SQL-DMO

Script	Method	(Table	Object)
The	Script	method	generates	a	Transact-SQL	command	batch	that	can	be	used
to	re-create	the	Microsoft®	SQL	Server™	component	referenced	by	the	SQL-
DMO	object.

Applies	To

Table	Object

Syntax
object.Script([ScriptType]	[,	ScriptFilePath]	[,	NewName]	[,	Script2Type])	
as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

ScriptType

Optional.	A	long	integer	that	overrides	default	scripting	behavior	as
described	in	Settings.

ScriptFilePath

Optional.	A	string	that	specifies	an	operating	system	file	as	an	additional
target	for	the	generated	Transact-SQL	script.

NewName

Optional.	A	string	that	specifies	a	new	name	for	the	referenced	table.

Script2Type

Optional.	A	long	integer	that	overrides	default	scripting	behavior	as
described	in	Settings.

Prototype	(C/C++)
HRESULT	Script(
SQLDMO_SCRIPT_TYPE	ScriptType	=	SQLDMOScript_Default,
SQLDMO_LPCSTR	ScriptFilePath	=	NULL,
SQLDMO_LPCSTR	NewName	=	NULL,
SQLDMO_LPBSTR	ScriptText	=	NULL,
SQLDMO_SCRIPT2_TYPE	Script2Type	=	SQLDMOScript2_Default);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Settings
When	setting	the	ScriptType	argument	specifying	multiple	behaviors,	combine
values	using	an	OR	logical	operator.	Use	these	values	to	set	ScriptType.

Constant Value Description
SQLDMOScript_AppendToFile 256 Object	Script	method	only.	Append	to

indicated	output	file.	By	default,	
method	overwrites	existing	file.

SQLDMOScript_Bindings 128 Generate	sp_bindefault	and
sp_bindrule	statements.	Applies	only
when	scripting	references	a	SQL	Server
table.

SQLDMOScript_ClusteredIndexes 8 Generate	Transact-SQL	defining
clustered	indexes.	Applies	only	when
scripting	references	a	SQL	Server	table.

SQLDMOScript_Default 4 SQLDMOScript_PrimaryObject.
SQLDMOScript_DRI_All 532676608 All	values	defined	as

SQLDMOScript_DRI_...	combined
using	an	OR	logical	operator.

SQLDMOScript_DRI_AllConstraints 520093696 SQLDMOScript_DRI_Checks,
SQLDMOScript_DRI_Defaults,
SQLDMOScript_DRI_ForeignKeys,
SQLDMOScript_DRI_PrimaryKey,

and	SQLDMOScript_DRI_UniqueKeys
combined	using	an	OR	logical	operator.

SQLDMOScript_DRI_AllKeys 469762048 SQLDMOScript_DRI_ForeignKeys,
SQLDMOScript_DRI_PrimaryKey,
SQLDMOScript_DRI_UniqueKeys
combined	using	an	OR	logical	operator.

SQLDMOScript_DRI_Checks 16777216 Generated	script	creates	column-
specified	CHECK	constraints.	Directs
scripting	when	declarative	referential
integrity	establishes	dependency
relationships.	Applies	only	when
scripting	references	a	SQL	Server	table.

SQLDMOScript_DRI_Clustered 8388608 Generated	script	creates	clustered
indexes.	Directs	scripting	when
declarative	referential	integrity
establishes	dependency	relationships.
Applies	only	when	scripting	references
a	SQL	Server	table.

SQLDMOScript_DRI_Defaults 33554432 Generated	script	includes	column-
specified	defaults.	Directs	scripting
when	declarative	referential	integrity
establishes	dependency	relationships.
Applies	only	when	scripting	references
a	SQL	Server	table.

SQLDMOScript_DRI_ForeignKeys 134217728 Generated	script	creates	FOREIGN
KEY	constraints.	Directs	scripting
when	declarative	referential	integrity
establishes	dependency	relationships.
Applies	only	when	scripting	references
a	SQL	Server	table.

SQLDMOScript_DRI_NonClustered 4194304 Generated	script	creates	nonclustered
indexes.	Directs	scripting	when
declarative	referential	integrity
establishes	dependency	relationships.
Applies	only	when	scripting	references
a	SQL	Server	table.

SQLDMOScript_DRI_PrimaryKey 268435456 Generated	script	creates	PRIMARY
KEY	constraints.	Directs	scripting
when	declarative	referential	integrity
establishes	dependency	relationships.
Applies	only	when	scripting	references
a	SQL	Server	table.

SQLDMOScript_DRI_UniqueKeys 67108864 Generated	script	creates	candidate	keys
defined	using	a	unique	index.	Directs
scripting	when	declarative	referential
integrity	establishes	dependency
relationships.	Applies	only	when
scripting	references	a	SQL	Server	table.

SQLDMOScript_DRIIndexes 65536 When	SQLDMOScript_NoDRI	is
specified,	script	PRIMARY	KEY
constraints	using	a	unique	index	to
implement	the	declarative	referential
integrity.	Applies	only	when	scripting
references	a	SQL	Server	table.

SQLDMOScript_DRIWithNoCheck 536870912 When	using
SQLDMOScript_DRI_Checks,	or
SQLDMOScript_DRI_ForeignKeys,
generated	script	includes	the	WITH
NOCHECK	clause	optimizing
constraint	creation.	Applies	only	when
scripting	references	a	SQL	Server	table.

SQLDMOScript_Drops 1 Generate	Transact-SQL	to	remove
referenced	component.	Script	tests	for
existence	prior	attempt	to	remove
component.

SQLDMOScript_IncludeHeaders 131072 Generated	script	is	prefixed	with	a
header	containing	date	and	time	of
generation	and	other	descriptive
information.

SQLDMOScript_IncludeIfNotExists 4096 Transact-SQL	creating	a	component	is
prefixed	by	a	check	for	existence.
When	script	is	executed,	component	is

created	only	when	a	copy	of	the	named
component	does	not	exist.

SQLDMOScript_Indexes 73736 SQLDMOScript_ClusteredIndexes,
SQLDMOScript_NonClusteredIndexes,
and	SQLDMOScript_DRIIndexes
combined	using	an	OR	logical	operator.
Applies	to	both	table	and	view	objects.

SQLDMOScript_NoCommandTerm 32768 Individual	Transact-SQL	statements	in
the	script	are	not	delimited	using	the
connection-specific	command
terminator.	By	default,	individual
Transact-SQL	statements	are	delimited.

SQLDMOScript_NoDRI 512 Generated	Transact-SQL	statements	do
not	include	any	clauses	defining
declarative	referential	integrity
constraints.	Applies	only	when
scripting	references	a	SQL	Server	table.
Only	use	when	script	will	execute	on	an
instance	of	SQL	SERVER	version
4.21a.

SQLDMOScript_NoIdentity 1073741824Generated	Transact-SQL	statements	do
not	include	definition	of	identity
property,	seed,	and	increment.	Applies
only	when	scripting	references	a	SQL
Server	table.

SQLDMOScript_NonClusteredIndexes 8192 Generate	Transact-SQL	defining
nonclustered	indexes.	Applies	only
when	scripting	references	a	SQL	Server
table.

SQLDMOScript_ObjectPermissions 2 Include	Transact-SQL	privilege
defining	statements	when	scripting
database	objects.

SQLDMOScript_OwnerQualify 262144 Object	names	in	Transact-SQL
generated	to	remove	an	object	are
qualified	by	the	owner	of	the	referenced
object.	Transact-SQL	generated	to

create	the	referenced	object	qualify	the
object	name	using	the	current	object
owner.

SQLDMOScript_PrimaryObject 4 Generate	Transact-SQL	creating	the
referenced	component.

SQLDMOScript_TimestampToBinary 524288 When	scripting	object	creation	for	a
table	or	user-defined	data	type,	convert
specification	of	timestamp	data	type	to
binary(8).

SQLDMOScript_ToFileOnly 64 Most	SQL-DMO	object	scripting
methods	specify	both	a	return	value	and
an	optional	output	file.	When	used,	and
an	output	file	is	specified,	the	method
does	not	return	the	script	to	the	caller,
but	only	writes	the	script	to	the	output
file.

SQLDMOScript_Triggers 16 Generate	Transact-SQL	defining
triggers.	Applies	only	when	scripting
references	a	SQL	Server	table.

SQLDMOScript_UDDTsToBaseType 1024 Convert	specification	of	user-defined
data	types	to	the	appropriate	SQL
Server	base	data	type.	Applies	only
when	scripting	references	a	SQL	Server
table.

SQLDMOScript_UseQuotedIdentifiers -1 Use	quote	characters	to	delimit
identifier	parts	when	scripting	object
names.

When	setting	the	Script2Type	argument	specifying	multiple	behaviors,	combine
values	using	an	OR	logical	operator.	Use	these	values	to	set	Script2Type.

Constant Value Description
SQLDMOScript2_AnsiFile 2 Create	output	file	as	a

multibyte	character	text
file.	Code	page	1252	is

used	to	determine
character	meaning.

SQLDMOScript2_AnsiPadding 1 Command	batch	includes
Transact-SQL	statements
SET	ANSI_PADDING
ON	and	SET
ANSI_PADDDING	OFF
statements	before	and	after
CREATE	TABLE
statements	in	the
generated	script.

SQLDMOScript2_Default 0 Default.	No	scripting
options	specified.

SQLDMOScript2_ExtendedProperty 4194304 Include	extended	property
scripting	as	part	of	object
scripting.

SQLDMOScript2_FullTextIndex 524288 Command	batch	includes
statements	defining
Microsoft	Search	full-text
indexing.

SQLDMOScript2_NoCollation 8388608 Do	not	script	the	collation
clause	if	source	is	an
instance	of	SQL	Server
later	than	version	7.0.	The
default	is	to	generate
collation.

SQLDMOScript2_NoFG 16 Command	batch	does	not
include	'ON	<filegroup>'
clause	that	directs
filegroup	use.

SQLDMOScript2_NoWhatIfIndexes 512 Command	batch	does	not
include	CREATE
STATISTICS	statements.

SQLDMOScript2_UnicodeFile 4 Create	output	file	as	a
Unicode	character	text
file.

Returns
A	Transact-SQL	command	batch	as	a	string.

Remarks
The	Script	method	generates	a	Transact-SQL	command	batch	that	defines	an
existing	SQL	Server	table.	The	Table	object	supports	command	batch	generation
when	using	the	object	to	define	a	new	table.	Use	the	GenerateSQL	method
when	capturing	new	table	definition.	Use	the	Script	method	when	capturing	an
image	of	an	exiting	table.	When	using	the	Script	method	as	part	of	an
application	process	re-creating	a	table,	specify	SQLDMOScript_Drops	in	the
ScriptType	argument	to	include	a	drop	of	the	existing	table	in	the	command
batch.

Note		SQL-DMO	object	scripting	methods	are	fully	compatible	with	an	instance
of	SQL	Server	version	7.0.	However,	database	compatibility	level	affects
Transact-SQL	command	batch	contents.

When	scripting	a	database	with	a	compatibility	level	of	less	than	7.0,	or
when	scripting	any	of	its	objects,	the	resulting	Transact-SQL	command	batch
includes	only	keywords	reserved	by	that	level.

Transact-SQL	command	syntax	is	always	compliant	with	an	instance	of	SQL
Server	7.0.	Where	provided,	you	can	use	optional	scripting	arguments,	such
as	SQLDMOScript2_NoFG	to	remove	some	syntax	of	an	instance	of	SQL
Server	version	7.0.

SQL-DMO

ScriptDestinationObject	Method
The	ScriptDestinationObject	method	generates	a	Transact-SQL	command
batch	that	can	be	used	to	create	the	replicated	image	of	the	database	object
published	by	the	referenced	replication	article.

Applies	To

MergeArticle	Object TransArticle	Object

Syntax
object.ScriptDestinationObject([ScriptType]	,	[ScriptFile]	,	[Script2Type])
as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

ScriptType

Optional.	A	long	integer	that	overrides	default	scripting	behavior	as
described	in	Settings.

ScriptFile

Optional.	A	string	that	specifies	an	operating	system	file	as	an	additional
target	for	the	generated	Transact-SQL	script.

Script2Type

Optional.	A	long	integer	that	overrides	default	scripting	behavior	as
described	in	Settings.

Prototype	(C/C++)
HRESULT	ScriptDestinationObject(

SQLDMO_SCRIPT_TYPE	ScriptType	=	SQLDMOScript_Default,
SQLDMO_LPCSTR	ScriptFilePath	=	NULL,
SQLDMO_LPBSTR	ScriptText	=	NULL,
SQLDMO_SCRIPT2_TYPE	Script2Type	=	SQLDMOScript2_Default);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Settings
When	setting	the	ScriptType	argument	specifying	multiple	behaviors,	combine
values	using	an	OR	logical	operator.	Use	these	values	to	set	ScriptType.

Constant Value Description
SQLDMOScript_AppendToFile 256 Object	Script	method	only.	Append	to

indicated	output	file.	By	default,	
method	overwrites	existing	file.

SQLDMOScript_Bindings 128 Generate	sp_bindefault	and
sp_bindrule	statements.	Applies	only
when	scripting	references	a	SQL	Server
table.

SQLDMOScript_ClusteredIndexes 8 Generate	Transact-SQL	defining
clustered	indexes.	Applies	only	when
scripting	references	a	SQL	Server	table.

SQLDMOScript_Default 4 SQLDMOScript_PrimaryObject.
SQLDMOScript_DRI_All 532676608 All	values	defined	as

SQLDMOScript_DRI_...	combined
using	an	OR	logical	operator.

SQLDMOScript_DRI_AllConstraints 520093696 SQLDMOScript_DRI_Checks,
SQLDMOScript_DRI_Defaults,
SQLDMOScript_DRI_ForeignKeys,
SQLDMOScript_DRI_PrimaryKey,
and	SQLDMOScript_DRI_UniqueKeys
combined	using	an	OR	logical	operator.

SQLDMOScript_DRI_AllKeys 469762048 SQLDMOScript_DRI_ForeignKeys,
SQLDMOScript_DRI_PrimaryKey,

SQLDMOScript_DRI_UniqueKeys
combined	using	an	OR	logical	operator.

SQLDMOScript_DRI_Checks 16777216 Generated	script	creates	column-
specified	CHECK	constraints.	Directs
scripting	when	declarative	referential
integrity	establishes	dependency
relationships.	Applies	only	when
scripting	references	a	SQL	Server	table.

SQLDMOScript_DRI_Clustered 8388608 Generated	script	creates	clustered
indexes.	Directs	scripting	when
declarative	referential	integrity
establishes	dependency	relationships.
Applies	only	when	scripting	references
a	SQL	Server	table.

SQLDMOScript_DRI_Defaults 33554432 Generated	script	includes	column-
specified	defaults.	Directs	scripting
when	declarative	referential	integrity
establishes	dependency	relationships.
Applies	only	when	scripting	references
a	SQL	Server	table.

SQLDMOScript_DRI_ForeignKeys 134217728 Generated	script	creates	FOREIGN
KEY	constraints.	Directs	scripting
when	declarative	referential	integrity
establishes	dependency	relationships.
Applies	only	when	scripting	references
a	SQL	Server	table.

SQLDMOScript_DRI_NonClustered 4194304 Generated	script	creates	nonclustered
indexes.	Directs	scripting	when
declarative	referential	integrity
establishes	dependency	relationships.
Applies	only	when	scripting	references
a	SQL	Server	table.

SQLDMOScript_DRI_PrimaryKey 268435456 Generated	script	creates	PRIMARY
KEY	constraints.	Directs	scripting
when	declarative	referential	integrity
establishes	dependency	relationships.

Applies	only	when	scripting	references
a	SQL	Server	table.

SQLDMOScript_DRI_UniqueKeys 67108864 Generated	script	creates	candidate	keys
defined	using	a	unique	index.	Directs
scripting	when	declarative	referential
integrity	establishes	dependency
relationships.	Applies	only	when
scripting	references	a	SQL	Server	table.

SQLDMOScript_DRIIndexes 65536 When	SQLDMOScript_NoDRI	is
specified,	script	PRIMARY	KEY
constraints	using	a	unique	index	to
implement	the	declarative	referential
integrity.	Applies	only	when	scripting
references	a	SQL	Server	table.

SQLDMOScript_DRIWithNoCheck 536870912 When	using
SQLDMOScript_DRI_Checks,	or
SQLDMOScript_DRI_ForeignKeys,
generated	script	includes	the	WITH
NOCHECK	clause	optimizing
constraint	creation.	Applies	only	when
scripting	references	a	SQL	Server	table.

SQLDMOScript_Drops 1 Generate	Transact-SQL	to	remove
referenced	component.	Script	tests	for
existence	prior	attempt	to	remove
component.

SQLDMOScript_IncludeHeaders 131072 Generated	script	is	prefixed	with	a
header	containing	date	and	time	of
generation	and	other	descriptive
information.

SQLDMOScript_IncludeIfNotExists 4096 Transact-SQL	creating	a	component	is
prefixed	by	a	check	for	existence.
When	script	is	executed,	component	is
created	only	when	a	copy	of	the	named
component	does	not	exist.

SQLDMOScript_Indexes 73736 SQLDMOScript_ClusteredIndexes,
SQLDMOScript_NonClusteredIndexes,

and	SQLDMOScript_DRIIndexes
combined	using	an	OR	logical	operator.

SQLDMOScript_Indexes 73736 Now	applies	to	both	table	and	view
objects.

SQLDMOScript_NoCommandTerm 32768 Individual	Transact-SQL	statements	in
the	script	are	not	delimited	using	the
connection-specific	command
terminator.	By	default,	individual
Transact-SQL	statements	are	delimited.

SQLDMOScript_NoDRI 512 Generated	Transact-SQL	statements	do
not	include	any	clauses	defining
declarative	referential	integrity
constraints.	Applies	only	when
scripting	references	a	SQL	Server	table.
Only	use	when	script	will	execute	on	a
version	4.21a	SQL	Server	installation.

SQLDMOScript_NoIdentity 1073741824Generated	Transact-SQL	statements	do
not	include	definition	of	identity
property,	seed,	and	increment.	Applies
only	when	scripting	references	a	SQL
Server	table.

SQLDMOScript_NonClusteredIndexes 8192 Generate	Transact-SQL	defining
nonclustered	indexes.	Applies	only
when	scripting	references	a	SQL	Server
table.

SQLDMOScript_ObjectPermissions 2 Include	Transact-SQL	privilege
defining	statements	when	scripting
database	objects.

SQLDMOScript_OwnerQualify 262144 Object	names	in	Transact-SQL
generated	to	remove	an	object	are
qualified	by	the	owner	of	the	referenced
object.	Transact-SQL	generated	to
create	the	referenced	object	qualify	the
object	name	using	the	current	object
owner.

SQLDMOScript_PrimaryObject 4 Generate	Transact-SQL	creating	the

referenced	component.
SQLDMOScript_TimestampToBinary 524288 When	scripting	object	creation	for	a

table	or	user-defined	data	type,	convert
specification	of	timestamp	data	type	to
binary(8).

SQLDMOScript_ToFileOnly 64 Most	SQL-DMO	object	scripting
methods	specify	both	a	return	value	and
an	optional	output	file.	When	used,	and
an	output	file	is	specified,	the	method
does	not	return	the	script	to	the	caller,
but	only	writes	the	script	to	the	output
file.

SQLDMOScript_Triggers 16 Generate	Transact-SQL	defining
triggers.	Applies	only	when	scripting
references	a	SQL	Server	table.

SQLDMOScript_UDDTsToBaseType 1024 Convert	specification	of	user-defined
data	types	to	the	appropriate	SQL
Server	base	data	type.	Applies	only
when	scripting	references	a	SQL	Server
table.

SQLDMOScript_UseQuotedIdentifiers -1 Use	quote	characters	to	delimit
identifier	parts	when	scripting	object
names.

When	setting	the	Script2Type	argument	specifying	multiple	behaviors,	combine
values	using	an	OR	logical	operator.	Use	these	values	to	set	Script2Type.

Constant Value Description
SQLDMOScript2_AnsiFile 2 Create	output	file	as	a

multibyte	character	text	file.
Code	page	1252	is	used	to
determine	character	meaning.

SQLDMOScript2_AnsiPadding 1 Command	batch	includes
Transact-SQL	statements	SET
ANSI_PADDING	ON	and

SET	ANSI_PADDDING	OFF
statements	before	and	after
CREATE	TABLE	statements
in	the	generated	script.	Use
when	the	article	publishes	a
table.

SQLDMOScript2_Default 0 Default.	No	scripting	options
specified.

SQLDMOScript2_FullTextIndex 524288 Command	batch	includes
statements	defining	Microsoft
Search	full-text	indexing.	Use
when	the	article	publishes	a
table.

SQLDMOScript2_NoFG 16 Command	batch	does	not
include	'ON	<filegroup>'
clause	that	directs	filegroup
use.	Use	when	the	article
publishes	a	table.

SQLDMOScript2_NoWhatIf
Indexes

512 Command	batch	does	not
include	CREATE
STATISTICS	statements.	Use
when	the	article	publishes	a
table.

SQLDMOScript2_UnicodeFile 4 Create	output	file	as	a
Unicode	character	text	file.

Returns
A	Transact-SQL	command	batch	as	a	string.

Remarks
For	SQL-DMO	objects	that	publish	database	objects,	SQL-DMO	implements	the
ScriptDestinationObject	method	to	generate	command	batches	that	re-create
the	objects	published.

Note		SQL-DMO	object	scripting	methods	are	fully	compatible	with	an	instance
of	SQL	Server	version	7.0.	However,	database	compatibility	level	affects
Transact-SQL	command	batch	contents.

When	scripting	a	database	with	a	compatibility	level	of	less	than	7.0,	or
when	scripting	any	of	its	objects,	the	resulting	Transact-SQL	command	batch
includes	only	keywords	reserved	by	that	level.

Transact-SQL	command	syntax	is	always	compliant	with	an	instance	of	SQL
Server	version	7.0.	Where	provided,	you	can	use	optional	scripting
arguments,	such	as	SQLDMOScript2_NoFG	to	remove	some	syntax	of	an
instance	of	SQL	Server	7.0.

SQL-DMO

ScriptDestinationObject2	Method	(MergeArticle2)
The	ScriptDestinationObject2	method	generates	a	Transact-SQL	command
batch	that	can	be	used	to	create	the	replicated	image	of	the	database	object
published	by	the	referenced	replication	article.

Applies	To

MergeArticle2	Object

Syntax
object.ScriptDestinationObject2(
[ScriptType]	,	
[ScriptFilePath]	,	
[Script2Type]	,	
[bstrDestinationObject])	as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

ScriptType

Optional.	A	long	integer	that	overrides	default	scripting	behavior	as
described	in	Settings.

ScriptFilePath

Optional.	A	string	that	specifies	an	operating	system	file	as	an	additional
target	for	the	generated	Transact-SQL	script.

Script2Type

Optional.	A	long	integer	that	overrides	default	scripting	behavior	as
described	in	Settings.

bstrDestinationObject

Object	name	at	the	Subscriber	destination	if	different	from	the	source	name.

Prototype	(C/C++)
HRESULT	ScriptDestinationObject2(
SQLDMO_SCRIPT_TYPE,
SQLDMO_LPCSTR	ScriptFilePath,
SQLDMO_LPBSTR	ScriptText,
SQLDMO_SCRIPT2_TYPE	Script2Type,
SQLDMO_LPCSTR	pszDestinationObject;

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Settings
When	setting	the	ScriptType	argument	specifying	multiple	behaviors,	combine
values	using	an	OR	logical	operator.	Use	these	values	to	set	ScriptType.

Constant Value Description
SQLDMOScript_Aliases 16384 Obsolete.
SQLDMOScript_AppendToFile 256 Object	Script	method	only.	Append	to

indicated	output	file.	By	default,	
method	overwrites	existing	file.

SQLDMOScript_Bindings 128 Generate	sp_bindefault	and
sp_bindrule	statements.	Applies	only
when	scripting	references	a	SQL	Server
table.

SQLDMOScript_ClusteredIndexes 8 Generate	Transact-SQL	defining
clustered	indexes.	Applies	only	when
scripting	references	a	SQL	Server	table.

SQLDMOScript_DatabasePermissions 32 Generate	Transact-SQL	database
privilege	defining	script.	Database
permissions	grant	or	deny	statement
execution	rights.

SQLDMOScript_Default 4 SQLDMOScript_PrimaryObject.
SQLDMOScript_DRI_All 532676608 All	values	defined	as

SQLDMOScript_DRI_...	combined
using	an	OR	logical	operator.

SQLDMOScript_DRI_AllConstraints 520093696 SQLDMOScript_DRI_Checks,
SQLDMOScript_DRI_Defaults,
SQLDMOScript_DRI_ForeignKeys,
SQLDMOScript_DRI_PrimaryKey,
and	SQLDMOScript_DRI_UniqueKeys
combined	using	an	OR	logical	operator.

SQLDMOScript_DRI_AllKeys 469762048 SQLDMOScript_DRI_ForeignKeys,
SQLDMOScript_DRI_PrimaryKey,
SQLDMOScript_DRI_UniqueKeys
combined	using	an	OR	logical	operator.

SQLDMOScript_DRI_Checks 16777216 Generated	script	creates	column-
specified	CHECK	constraints.	Directs
scripting	when	declarative	referential
integrity	establishes	dependency
relationships.	Applies	only	when
scripting	references	a	SQL	Server	table.

SQLDMOScript_DRI_Clustered 8388608 Generated	script	creates	clustered
indexes.	Directs	scripting	when
declarative	referential	integrity
establishes	dependency	relationships.
Applies	only	when	scripting	references
a	SQL	Server	table.

SQLDMOScript_DRI_Defaults 33554432 Generated	script	includes	column-
specified	defaults.	Directs	scripting
when	declarative	referential	integrity
establishes	dependency	relationships.
Applies	only	when	scripting	references
a	SQL	Server	table.

SQLDMOScript_DRI_ForeignKeys 134217728 Generated	script	creates	FOREIGN
KEY	constraints.	Directs	scripting
when	declarative	referential	integrity
establishes	dependency	relationships.

Applies	only	when	scripting	references
a	SQL	Server	table.

SQLDMOScript_DRI_NonClustered 4194304 Generated	script	creates	nonclustered
indexes.	Directs	scripting	when
declarative	referential	integrity
establishes	dependency	relationships.
Applies	only	when	scripting	references
a	SQL	Server	table.

SQLDMOScript_DRI_PrimaryKey 268435456 Generated	script	creates	PRIMARY
KEY	constraints.	Directs	scripting
when	declarative	referential	integrity
establishes	dependency	relationships.
Applies	only	when	scripting	references
a	SQL	Server	table.

SQLDMOScript_DRI_UniqueKeys 67108864 Generated	script	creates	candidate	keys
defined	using	a	unique	index.	Directs
scripting	when	declarative	referential
integrity	establishes	dependency
relationships.	Applies	only	when
scripting	references	a	SQL	Server	table.

SQLDMOScript_DRIIndexes 65536 When	SQLDMOScript_NoDRI	is
specified,	script	PRIMARY	KEY
constraints	using	a	unique	index	to
implement	the	declarative	referential
integrity.	Applies	only	when	scripting
references	a	SQL	Server	table.

SQLDMOScript_DRIWithNoCheck 536870912 When	using
SQLDMOScript_DRI_Checks,	or
SQLDMOScript_DRI_ForeignKeys,
generated	script	includes	the	WITH
NOCHECK	clause	optimizing
constraint	creation.	Applies	only	when
scripting	references	a	SQL	Server	table.

SQLDMOScript_Drops 1 Generate	Transact-SQL	to	remove
referenced	component.	Script	tests	for
existence	prior	attempt	to	remove

component.
SQLDMOScript_IncludeHeaders 131072 Generated	script	is	prefixed	with	a

header	containing	date	and	time	of
generation	and	other	descriptive
information.

SQLDMOScript_IncludeIfNotExists 4096 Transact-SQL	creating	a	component	is
prefixed	by	a	check	for	existence.
When	script	is	executed,	component	is
created	only	when	a	copy	of	the	named
component	does	not	exist.

SQLDMOScript_Indexes 73736 SQLDMOScript_ClusteredIndexes,
SQLDMOScript_NonClusteredIndexes,
and	SQLDMOScript_DRIIndexes
combined	using	an	OR	logical	operator.

SQLDMOScript_Indexes 73736 Now	applies	to	both	table	and	view
objects.

SQLDMOScript_NoCommandTerm 32768 Individual	Transact-SQL	statements	in
the	script	are	not	delimited	using	the
connection-specific	command
terminator.	By	default,	individual
Transact-SQL	statements	are	delimited.

SQLDMOScript_NoDRI 512 Generated	Transact-SQL	statements	do
not	include	any	clauses	defining
declarative	referential	integrity
constraints.	Applies	only	when
scripting	references	a	SQL	Server	table.
Only	use	when	script	will	execute	on	a
version	4.21a	SQL	Server	installation.

SQLDMOScript_NoIdentity 1073741824Generated	Transact-SQL	statements	do
not	include	definition	of	identity
property,	seed,	and	increment.	Applies
only	when	scripting	references	a	SQL
Server	table.

SQLDMOScript_NonClusteredIndexes 8192 Generate	Transact-SQL	defining
nonclustered	indexes.	Applies	only
when	scripting	references	a	SQL	Server

table.
SQLDMOScript_ObjectPermissions 2 Include	Transact-SQL	privilege

defining	statements	when	scripting
database	objects.

SQLDMOScript_OwnerQualify 262144 Object	names	in	Transact-SQL
generated	to	remove	an	object	are
qualified	by	the	owner	of	the	referenced
object.	Transact-SQL	generated	to
create	the	referenced	object	qualify	the
object	name	using	the	current	object
owner.

SQLDMOScript_Permissions 34 SQLDMOScript_ObjectPermissions
and
SQLDMOScript_DatabasePermissions
combined	using	an	OR	logical	operator.

SQLDMOScript_PrimaryObject 4 Generate	Transact-SQL	creating	the
referenced	component.

SQLDMOScript_SortedData 1048576 Obsolete.
SQLDMOScript_SortedDataReorg 2097152 Obsolete.
SQLDMOScript_TimestampToBinary 524288 When	scripting	object	creation	for	a

table	or	user-defined	data	type,	convert
specification	of	timestamp	data	type	to
binary(8).

SQLDMOScript_ToFileOnly 64 Most	SQL-DMO	object	scripting
methods	specify	both	a	return	value	and
an	optional	output	file.	When	used,	and
an	output	file	is	specified,	the	method
does	not	return	the	script	to	the	caller,
but	only	writes	the	script	to	the	output
file.

SQLDMOScript_TransferDefault 422143 Default.
SQLDMOScript_PrimaryObject,
SQLDMOScript_Drops,
SQLDMOScript_Bindings,
SQLDMOScript_ClusteredIndexes,
SQLDMOScript_NonClusteredIndexes,

SQLDMOScript_Triggers,
SQLDMOScript_ToFileOnly,
SQLDMOScript_Permissions,
SQLDMOScript_IncludeHeaders,
SQLDMOScript_Aliases,
SQLDMOScript_IncludeIfNotExists,
and	SQLDMOScript_OwnerQualify
combined	using	an	OR	logical	operator.

SQLDMOScript_Triggers 16 Generate	Transact-SQL	defining
triggers.	Applies	only	when	scripting
references	a	SQL	Server	table.

SQLDMOScript_UDDTsToBaseType 1024 Convert	specification	of	user-defined
data	types	to	the	appropriate	SQL
Server	base	data	type.	Applies	only
when	scripting	references	a	SQL	Server
table.

SQLDMOScript_UseQuotedIdentifiers -1 Use	quote	characters	to	delimit
identifier	parts	when	scripting	object
names.

When	setting	the	Script2Type	argument	specifying	multiple	behaviors,	combine
values	using	an	OR	logical	operator.	Use	these	values	to	set	Script2Type.

Constant Value Description
SQLDMOScript2_AnsiFile 2 Create	output	file	as	a

multibyte	character	text
file.	Code	page	1252	is
used	to	determine
character	meaning.

SQLDMOScript2_AnsiPadding 1 Command	batch	includes
the	SET
ANSI_PADDING	ON	and
SET	ANSI_PADDDING
OFF	Transact-SQL
statements	before	and

after	CREATE	TABLE
statements	in	the
generated	script.	Use
when	the	article	publishes
a	table.

SQLDMOScript2_Default 0 Default.	No	scripting
options	specified.

SQLDMOScript2_ExtendedProperty 4194304 Include	extended	property
scripting	as	part	of	object
scripting.

SQLDMOScript2_FullTextIndex 524288 Command	batch	includes
statements	that	define
Microsoft	Search	full-text
indexing.	Use	when	the
article	publishes	a	table.

SQLDMOScript2_NoCollation 8388608 Do	not	script	the	collation
clause	if	source	is	later	tha
SQL	Server	version	7.0.
The	default	is	to	generate
collation.

SQLDMOScript2_NoFG 16 Command	batch	does	not
include	'ON	<filegroup>'
clause	that	directs
filegroup	use.	Use	when
the	article	publishes	a
table.

SQLDMOScript2_NoWhatIfIndexes 512 Command	batch	does	not
include	CREATE
STATISTICS	statements.
Use	when	the	article
publishes	a	table.

SQLDMOScript2_UnicodeFile 4 Create	output	file	as	a
Unicode	character	text
file.

Returns
A	Transact-SQL	command	batch	as	a	string.

Remarks
For	SQL-DMO	objects	that	publish	database	objects,	SQL-DMO	implements	the
ScriptDestinationObject2	method	to	generate	command	batches	that	re-create
the	published	objects.

Note		If	an	application	calls	ScriptDestinationObject2	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

SQL-DMO

ScriptTransfer	Method
The	ScriptTransfer	method	generates	a	Transact-SQL	command	batch	that
creates	database	objects	contained	in	the	Transfer	object	indicated.

Applies	To

Database	Object

Syntax
object.ScriptTransfer(Transfer	,	[ScriptFileMode]	,	[ScriptFile])
as	String

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Transfer

Transfer	object	that	defines	the	database	object	and	data	copy.

ScriptFileMode

Optional.	A	long	integer	that	overrides	default	scripting	behavior	as
described	in	Settings.

ScriptFile

Optional.	A	string	that	specifies	an	operating	system	path	or	file	as	an
additional	target	for	the	generated	Transact-SQL	script(s)	as	described	in
Settings.

Prototype	(C/C++)
HRESULT	ScriptTransfer(
LPSQLDMOTRANSFER	TransferSpec,

SQLDMO_XFRSCRIPTMODE_TYPE	ScriptFileMode	=
SQLDMOXfrFile_Default,
SQLDMO_LPCSTR	ScriptFilePath	=	NULL,
SQLDMO_LPBSTR	ScriptText	=	NULL);

Note		SQL-DMO	strings	are	always	returned	as	OLE	BSTR	objects.	A	C/C++
application	obtains	a	reference	to	the	string.	The	application	must	release	the
reference	using	SysFreeString.

Settings
Setting	the	ScriptFileMode	argument	affects	interpretation	of	the	ScriptFile
argument.	When	setting	ScriptFileMode,	use	these	values,	setting	ScriptFile	as
described.

Constant Value Description
SQLDMOXfrFile_Default 1 SQLDMOXfrFile_SummaryFiles.
SQLDMOXfrFile_SingleFile 2 Command	batch	is	written	to	one

file.	Specify	the	file	name	using
the	ScriptFile	argument.	If	a	path
is	not	included	in	the	file	name,
the	file	is	created	in	the	directory
indicated	by	the	client	computer
environment	variable	TEMP.

SQLDMOXfrFile_SingleFilePerObject 4 Command	batch	is	written	to
multiple	files,	one	file	for	each
SQL	Server	component
transferred.	Specify	a	path	using
the	ScriptFile	argument.	If	a	path
is	not	specified,	the	files	are
created	in	the	directory	indicated
by	the	client	computer
environment	variable	TEMP.

SQLDMOXfrFile_SingleSummaryFile 8 Command	batch	is	written	to	one
file.	Command	batch	contents	are
organized	by	object	type.	Specify
the	file	name	using	the	ScriptFile

argument.	If	a	path	is	not	included
in	the	file	name,	the	file	is	created
in	the	directory	indicated	by	the
client	computer	environment
variable	TEMP.

SQLDMOXfrFile_SummaryFiles 1 Command	batch	is	written	to
multiple	files,	one	file	for	each
kind	of	object	transferred.	For
example,	generate	a	file	for	user-
defined	data	types	and	a	separate
file	for	tables.	Specify	a	path
using	the	ScriptFile	argument.	If	a
path	is	not	specified,	the	files	are
created	in	the	directory	indicated
by	the	client	computer
environment	variable	TEMP.

Returns
A	Transact-SQL	command	batch	as	a	string.

Remarks
Use	the	ScriptTransfer	method	to	capture	the	database	object	creation
statements	(schema	transfer)	specified	by	a	Transfer	object.	The	command
batch	file(s)	created	can	be	used	in	another	process,	such	as	a	scheduled	transfer
of	database	schema.

To	use	the	ScriptTransfer	method

1.	 Create	a	Transfer	object.

2.	 Populate	the	object	using	the	AddObject	or	AddObjectByName
method.

3.	 If	desired,	set	the	ScriptType	and	Script2Type	properties	to	control

content	of	the	command	batch	file(s)	generated.

4.	 Call	the	ScriptTransfer	method	indicating	the	Transfer	object	created
in	Step	1,	optionally	indicating	an	output	location	or	a	single	output
file.

Note		SQL-DMO	object	scripting	methods	are	fully	compatible	with
an	instance	of	SQL	Server	version	7.0.	However,	database
compatibility	level	affects	Transact-SQL	command	batch	contents.

When	scripting	a	database	with	a	compatibility	level	of	less
than	7.0,	or	when	scripting	any	of	its	objects,	the	resulting
Transact-SQL	command	batch	includes	only	keywords
reserved	by	that	level.

Transact-SQL	command	syntax	is	always	compliant	with	an
instance	of	SQL	Server	7.0.	Where	provided,	you	can	use
optional	scripting	arguments,	such	as	SQLDMOScript2_NoFG
to	remove	some	syntax	of	an	instance	of	SQL	Server	7.0.

SQL-DMO

ServerLoginMode	Method
The	ServerLoginMode	method	returns	the	default	login	mode	for	the	specified
server.

Applies	To

SQLServer2	Object

Syntax
object.ServerLoginMode(ServerName)	as	SQLDMO_SECURITY_TYPE

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

ServerName

String	that	specifies	the	server	name

Prototype	(C/C++)
HRESULT	ServerLoginMode(
SQLDMO_LPCSTR	ServerName,	
SQLDMO_SECURITY_TYPE	*pRetVal);

Returns
ServerLoginMode	returns	one	of	these	SQLDMO_SECURITY_TYPE	values.

Constant Value Description
SQLDMOSecurity_Integrated 1 Allow	Windows	Authentication

only
SQLDMOSecurity_Mixed 2 Allow	Windows	Authentication

or	SQL	Server	Authentication
SQLDMOSecurity_Normal 0 Allow	SQL	Server	Authentication

only
SQLDMOSecurity_Unknown 9 Security	type	unknown

Remarks
The	ServerLoginMode	method	allows	an	application	to	determine	the	login
mode	of	a	server	without	logging	in.	Login	information	is	stored	in	the	registry,
and	is	accessible	remotely	if	Windows	NT	Registry	Key	Permissions	is	set	to
Enumerate	Subkeys.

By	calling	ServerLoginMode,	and	application	may	be	able	to	reduce	the
amount	of	time	necessary	to	determine	the	login	mode	of	a	server.	This	can	be
useful	in	a	situation	where	the	application	must	overcome	time-out	issues.

Note		ServerLoginMode	can	be	used	with	Microsoft®	SQL	Server™	2000	and
SQL	Server	7.0.

SQL-DMO

SetCodePage	Method
The	SetCodePage	method	alters	the	character	set	used	to	interpret	data	during	a
bulk	copy	operation.

Applies	To

BulkCopy	Object

Syntax
object.SetCodePage(INew	,	[UserCodePage])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

INew

Long	integer	or	constant	that	specifies	the	new	code	page	or	code	page
setting	method	as	described	in	Settings.

UserCodePage

Long	integer	that	specifies	a	code	page	by	number	as	described	in	Settings.

Prototype	(C/C++)
HRESULT	SetCodePage(SQLDMO_BCP_CODEPAGE_TYPE	NewValue,
long	UserCodePage	=	SQLDMOBCP_OEM);

Settings
Set	the	INew	argument	using	these	values.	If	setting	INew	to
SQLDMOBCP_User,	set	UserCodePage	using	these	values.

Constant Value Description
SQLDMOBCP_RAW -1 Use	the	installed	server	code	page.
SQLDMOBCP_ACP 0 Use	the	Microsoft®	Windows®	default,

code	page	1252	(ISO	8859-1).
SQLDMOBCP_OEM 1 Use	the	code	page	installed	on	the	client.

Default	value	for	method.	For	default
behavior	for	bulk	copy	operations
performed	using	SQL-DMO,	see	Remarks.

SQLDMOBCP_User 2 Use	the	caller-specified	code	page.	Indicate
the	code	page	by	number	using	the
UserCodePage	argument.

Remarks
A	character	set	(code	page)	is	used	to	interpret	multibyte	character	data,
determining	character	value,	and	therefore	sort	order.	Code	page	settings	apply
only	to	multibyte	character	data,	not	to	Unicode	character	data.	A	code	page	is
chosen	for	an	instance	of	SQL	Server	during	setup.

By	default,	a	bulk	copy	operation	interprets	character	data	assuming	the	code
page	used	by	an	instance	of	SQL	Server	that	is	either	the	source	or	the
destination	for	the	copied	data.	This	default	behavior	can	be	changed	using	the
SetCodePage	method.

SQL-DMO

SetFullTextIndexWithOptions	Method
The	SetFullTextIndexWithOptions	method	creates	or	removes	a	full-text	index
on	the	current	column.

Applies	To

Column2	Object

Syntax
object.SetFullTextIndexWithOptions(
Index	,	
[LanguageID]	,
[ColumnType])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Index

TRUE	or	FALSE.

LanguageID

Optional	long	integer	that	specifies	the	language	identifier	for	the	image
column.	Default:	-1.

ColumnType

Optional	string	that	specifies	the	data	type	of	the	column.	Default	is	NULL.

Prototype	(C/C++)
HRESULT	SetFullTextIndexWithOptions(
BOOL	Index,	

long	LanguageID,
SQLDMO_LPCSTR	ColumnType);

Remarks
In	addition	to	referencing	string	data	types	in	full-text	indexes,	Microsoft®	SQL
Server™	2000	supports	the	creation	of	full-text	indexes	on	image	columns.

Set	the	Index	parameter	to	TRUE	to	create	a	full-text	index	on	the	current
column.	Set	the	Index	parameter	to	FALSE	to	remove	an	index	on	the	column.

Prior	to	setting	the	LanguageID	parameter,	an	application	can	call	the
EnumFullTextLanguages	method	of	the	Registry2	object	to	retrieve	a	list	of
available	languages.	If	the	LanguageID	parameter	is	omitted,	the	default
language	is	used.	If	Index	is	set	to	FALSE,	LanguageID	is	ignored.

The	ColumnType	parameter	is	required	when	creating	a	full-text	index	on	an
image	column.	Prior	to	setting	SetFullTextIndexWithOptions,	use	the
FullTextImageColumnType	property	to	determine	the	underlying	data	type	of
the	image	column.

Note		If	an	application	calls	SetFullTextIndexWithOptions	on	an	instance	of
SQL	Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the
message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

See	Also

EnumFullTextLanguages	Method

FullTextColumnLanguageID	Property

FullTextImageColumnType	Property

SQL-DMO

SetIndexedColumnDESC	Method
The	SetIndexedColumnDESC	method	specifies	a	column	to	sort	in	descending
order	as	part	of	an	index.

Applies	To

Index2	Object

Syntax
object.SetIndexedColumnDESC(
ColumnName	,	
Descending)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

ColumnName

String	that	specifies	the	column	name

Descending

Boolean	that	specifies	whether	to	sort	a	column	in	descending	order

Prototype	(C/C++)
HRESULT	SetIndexedColumnDESC(
SQLDMO_LPCSTR	ColumnName,	
BOOL	NewValue);

Remarks
By	default,	columns	in	an	index	are	sorted	in	ascending	order.	Use	the

ColumnName	parameter	to	specify	a	column	on	which	to	perform	a	descending
sort.	Set	the	Descending	parameter	to	TRUE	to	specify	that	the	column	must	be
sorted	in	descending	order.	You	must	call	SetIndexedColumnDESC	once	for
each	column	to	be	sorted	in	descending	order	as	part	of	the	index.

Prior	to	using	SetIndexedColumnDESC,	use	the	IndexedColumns	property	to
define	the	list	of	columns	participating	in	the	index.	SetIndexedColumnDESC
can	only	be	specified	before	an	index	is	created	and	cannot	be	used	on	an
existing	index.

Note		If	an	application	calls	SetIndexedColumnDESC	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

GetIndexedColumnDESC	Method

SQL-DMO

SetOptions	Method
The	SetOptions	method	modifies	configurable	parameters	for	a	Microsoft®
SQL	Server™	remote	or	linked	server.

Applies	To

LinkedServer	Object RemoteServer	Object

Syntax
object.SetOptions(Option	,	Setting)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Option

Long	integer	that	identifies	one	or	more	options	as	described	in	Settings.

Setting

When	TRUE,	the	options	identified	in	Option	are	enabled.	When	FALSE,	the
options	identified	in	Option	are	disabled.

Prototype	(C/C++)
HRESULT	SetOptions(
SQLDMO_SRVOPTION_TYPE	Options,
BOOL	NewValue);

Settings
When	setting	the	Option	argument	specifying	multiple	behaviors,	combine
values	using	an	OR	logical	operator.	Set	the	Option	argument	using	these

SQLDMO_SRVOPTION_TYPE	values.

Constant Value Description
SQLDMOSrvOpt_CollationCompatible 256 Referenced	server	uses

ordering	and	character
comparison	identical	to
that	used	by	the	local
server	(LinkedServer
object	only)

SQLDMOSrvOpt_DataAccess 128 Referenced	server	is
available	to	the	local
server	as	a	distributed
query	participant
(LinkedServer	object
only)

SQLDMOSrvOpt_DistPublisher 16 Referenced	server	is	a
publication	Distributor	for
the	local	server
(RemoteServer	object
only)

SQLDMOSrvOpt_Distributor 8 Referenced	server	is	a
replication	Distributor
(RemoteServer	object
only)

SQLDMOSrvOpt_DynamicParameters 131072 Referenced	server
recognizes	the	ODBC-
specified	?	character	as	a
parameter	representation
in	a	query	statement
(LinkedServer	object
only)

SQLDMOSrvOpt_IndexAsAccessPath 16384 Provider-implemented
indexes	will	be	used	as	an
access	path	for	distributed
queries	against	the
referenced	server

(LinkedServer	object
only)

SQLDMOSrvOpt_InProcess 8192 Launches	the	OLE	DB
provider	implementing
the	referenced	data	source
as	a	COM	in-process
server	(LinkedServer
object	only)

SQLDMOSrvOpt_LevelZeroOnly 32768 When	accessing	the
referenced	server,
distributed	queries	use
only	OLE	DB	Level	0
support	(LinkedServer
object	only)

SQLDMOSrvOpt_NestedQueries 65536 Referenced	server
supports	the	SELECT
statement	in	the	FROM
clause	of	a	query
(LinkedServer	object
only)

SQLDMOSrvOpt_NonTransacted 4096 Distributed	query	allows
update	to	the	referenced
server	regardless	of	the
presence	of	transaction
support	(LinkedServer
object	only)

SQLDMOSrvOpt_Publisher 2 Referenced	server
publishes	data	to	the	local
server	(RemoteServer
object	only)

SQLDMOSrvOpt_RPC 1 Allows	remote	procedure
calls	made	by	the	remote
or	linked	server

SQLDMOSrvOpt_RPC_out 64 Referenced	server	accepts
remote	procedure	calls
from	the	local	server

(LinkedServer	object
only)

SQLDMOSrvOpt_Subscriber 4 Referenced	server
subscribes	to	replication
publications	on	the	local
server	(RemoteServer
object	only)

SQLDMOSrvOpt_Unknown 0 No	options	set
SQLDMOSrvOpt_UseRemoteCollation 1024 Collation	of	remote

columns	is	used	for	SQL
Server	data	sources,	and
the	collation	specified	in
CollationName	is	used
for	non-SQL	Server	data
sources	(LinkedServer2
object	only)

Remarks
Setting	options	in	error	can	cause	unintended	results.	For	example,	when	SQL
Server	links	to	an	OLE	DB	data	source,	the	user	can	indicate	that	the	data	source
linked-to	uses	character	set	and	collation	sequence	identical	to	that	used	by	the
linking	instance	of	SQL	Server.	The	user	can	accomplish	this	task	using	the
SetOptions	method	of	the	LinkedServer	object,	setting	Option	to
SQLDMOSrvOpt_CollationCompatible	and	setting	Setting	to	TRUE.
Distributed	query	uses	character	set	and	collation	sequence	compatibility	to
optimize	query	resolution.	If	the	value	is	set	in	error,	distributed	query	can	return
erroneous	results.

SQL-DMO

SetOwner	Method
The	SetOwner	method	reassigns	ownership	for	a	Microsoft®	SQL	Server™
database.

Applies	To

Database	Object

Syntax
object.SetOwner(LoginName	,	[TransferAliases]	,	[OverrideIfAlreadyUser])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

LoginName

String	that	specifies	an	existing	SQL	Server	login	by	name.

TransferAliases

Optional.	TRUE	or	FALSE	as	described	in	Settings.

OverrideIfAlreadyUser

Optional.	TRUE	or	FALSE	as	described	in	Settings.

Prototype	(C/C++)
HRESULT	SetOwner(
SQLDMO_LPCSTR	NewValue,
BOOL	bTransferAliases	=	FALSE,
BOOL	bOverrideIfAlreadyUser	=	FALSE);

Settings
The	TransferAliases	argument	is	maintained	for	compatibility	with	earlier
versions	of	SQL	Server	security	relying	on	aliases	to	assign	permissions.	For
database	ownership	permissions	based	on	membership	in	the	db_owner	role,	the
argument	can	be	ignored	safely.	Set	TransferAliases	using:

TRUE.	Logins	aliased	to	the	login	of	the	current	database	owner	are
realiased	to	reference	the	new	owner.

FALSE	(default).	No	change	is	made	in	alias	logins.

Set	OverrideIfAlreadyUser	using:

TRUE.	A	user	existing	in	the	database	and	mapped	to	the	login	that	will
assume	ownership	is	dropped	prior	to	the	change	in	ownership.

FALSE	(default).	No	change	in	user	definition	is	made.	If	the	login	that
will	assume	ownership	is	mapped	to	an	existing	user,	the	method	fails.

Remarks

Reassigning	ownership	of	a	SQL	Server	database	using	the	SetOwner	method
requires	appropriate	permissions.	The	SQL	Server	login	used	for	SQLServer
object	connection	must	be	the	current	database	owner	or	a	member	of	the	fixed
role	sysadmin.

SQL-DMO

SetPassword	Method
The	SetPassword	method	changes	the	password	for	the	referenced	login.

Applies	To

Login	Object

Syntax
object.SetPassword(OldValue	,	NewValue)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

OldValue

String	that	specifies	the	current	password	string

NewValue

String	that	specifies	a	new	password	for	the	login	record

Prototype	(C/C++)
HRESULT	SetPassword(
SQLDMO_LPCSTR	OldValue,
SQLDMO_LPCSTR	NewValue);

Remarks
Use	the	SetPassword	method	to	alter	a	password	for	a	login	record	used	by	SQL
Server	Authentication	only.

The	current	password	need	not	be	known	when	setting	a	new	password	using	the

SetPassword	method.	Use	an	empty	string	to	specify	no	password	for	either	the
existing	password	or	a	new	password	for	the	login.

Changing	Microsoft®	SQL	Server™	2000	login	passwords	using	the
SetPassword	method	requires	appropriate	permissions.	The	SQL	Server	login
used	for	SQLServer	object	connection	must	be	a	member	of	the	fixed	role
sysadmin.

SQL-DMO

SetTopologyXY	Method
The	SetTopologyXY	method	is	reserved	for	future	use.

Applies	To

RemoteServer	Object

Syntax
object.SetTopologyXY(X	,	Y)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

X

Reserved

Y

Reserved

Prototype	(C/C++)
HRESULT	SetTopologyXY(
long	X,
long	Y);

SQL-DMO

SetUpDistributorPassword	Method
The	SetUpDistributorPassword	method	changes	the	password	for	the
distributor_admin	login.

Applies	To

Distributor	Object

Syntax
object.SetUpDistributorPassword(bstrName)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

bstrName

String	that	specifies	a	Microsoft®	SQL	Server™	2000	password

Prototype	(C/C++)
HRESULT	SetUpDistributorPassword(SQLDMO_LPCSTR	pszPassword);

Remarks
The	distributor_admin	login	is	used	by	a	publisher,	including	a	local	publisher,
when	connecting	to	a	distributor.	For	more	information	about	the
distributor_admin	login,	see	Connecting	to	the	Distributor.

Changing	a	Distributor	password	using	the	SetUpDistributorPassword	method
requires	appropriate	permissions.	The	SQL	Server	login	used	for	SQLServer
object	connection	must	be	a	member	of	the	fixed	role	sysadmin	on	the
Publisher.

JavaScript:hhobj_1.Click()

SQL-DMO

Shrink	Method
The	Shrink	method	attempts	to	reduce	the	size	of	a	referenced	operating	system
file,	or	attempts	to	reduce	the	size	of	all	operating	system	files	maintaining	the
referenced	Microsoft®	SQL	Server™	2000	database.

Applies	To

Database	Object LogFile	Object
DBFile	Object 	

Syntax
object.Shrink(NewSize	,	Truncate)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

NewSize

Long	integer	that	specifies	a	new	target	size	as	described	in	Settings

Truncate

Long	integer	that	directs	method	behavior	as	described	in	Settings

Prototype	(C/C++)
HRESULT	Shrink(
long	NewSize,	SQLDMO_SHRINK_TYPE	Truncate);

Settings
For	the	Database	object,	the	NewSize	argument	is	set	using	any	negative	number
or	a	number	from	1	through	100.	When	negative,	the	Shrink	method	to	attempts

to	shrink	files	maintaining	the	database	to	their	smallest	possible	sizes.	A
positive	value	represents	a	percentage	of	the	target	reserved	as	unused	space.	For
example,	specify	5	to	shrink	a	database	leaving	five	percent	free	space	for	future
growth.

For	the	DBFile	and	LogFile	objects,	the	NewSize	argument	is	set	using	any
negative	number,	zero,	or	any	positive	integer.	When	negative,	the	Shrink
method	attempts	to	shrink	the	referenced	file	to	its	smallest	possible	size.	Zero	or
a	positive	value	represents	a	target	file	size	as	a	number	of	megabytes.

Set	the	Truncate	argument	using	these	values.

Constant Value Description
SQLDMOShrink_Default 0 Data	in	pages	located	at	the	end	of

the	file(s)	is	moved	to	pages	earlier
in	the	file(s).	File(s)	are	truncated
to	reflect	allocated	space.

SQLDMOShrink_EmptyFile 3 Migrate	all	data	from	the
referenced	file	to	other	files	in	the
same	filegroup.	(DBFile	and
LogFile	object	only)

SQLDMOShrink_NoTruncate 1 Data	in	pages	located	at	the	end	of
the	file(s)	is	moved	to	pages	earlier
in	the	file(s).

SQLDMOShrink_TruncateOnly 2 Data	distribution	is	not	affected.
File(s)	are	truncated	to	reflect
allocated	space,	recovering	free
space	at	the	end	of	any	file.

SQL-DMO

Shutdown	Method
The	Shutdown	method	stops	a	running	Microsoft®	SQL	Server™	2000	service.

Applies	To

SQLServer	Object

Syntax
object.Shutdown([Wait])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Wait

Optional.	TRUE	or	FALSE	as	described	in	Remarks.

Prototype	(C/C++)
HRESULT	Shutdown(BOOL	bWait	=	TRUE);

Remarks
When	Wait	is	TRUE	(default),	SQL	Server	performs	an	orderly	shutdown:
disabling	logins,	waiting	for	transaction	or	stored	procedure	completion,	and
checkpointing	open	databases.

When	Wait	is	FALSE,	the	SQL	Server	service	performs	an	immediate	shutdown.

SQL-DMO

SQLBackup	Method
The	SQLBackup	method	performs	the	database	backup	operation	specified	by
the	properties	of	the	Backup	object	used.

Applies	To

Backup	Object

Syntax
object.SQLBackup(SQLServer)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

SQLServer

SQLServer	object	connected	to	an	instance	of	Microsoft®	SQL	Server™
2000	that	is	the	source	of	the	backup	operation

Prototype	(C/C++)
HRESULT	SQLBackup(LPSQLDMOSERVER	ServerObject);

Remarks
To	perform	a	database	backup	operation	using	SQL-DMO,	the	application
specifies	the	operation	process	by	setting	Backup	object	properties,	then	calls
the	SQLBackup	method.	For	more	information	about	Backup	object	properties
and	their	effects	on	the	backup	operation	process,	see	Backup	Object.

SQL-DMO

SQLRestore	Method
The	SQLRestore	method	performs	the	database	restore	operation	specified	by
the	properties	of	the	Restore	object	used.

Applies	To

Restore	Object

Syntax
object.SQLRestore(SQLServer)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

SQLServer

SQLServer	object	connected	to	an	instance	of	Microsoft®	SQL	Server™
2000	that	is	the	target	of	the	restore	operation

Prototype	(C/C++)
HRESULT	SQLRestore(LPSQLDMOSERVER	ServerObject);

Remarks
To	perform	a	database	restore	operation	using	SQL-DMO,	the	application
specifies	the	operation	process	by	setting	Restore	object	properties,	then	calls
the	SQLRestore	method.	For	more	information	about	Restore	object	properties
and	their	effects	on	the	restore	operation	process,	see	Restore	Object.

SQL-DMO

SQLVerify	Method
The	SQLVerify	method	checks	the	backup	media	specified,	ensuring	that	a
backup	set	is	readable	and	complete.

Applies	To

Restore	Object

Syntax
object.SQLVerify(SQLServer)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

SQLServer

SQLServer	object	connected	to	an	instance	of	Microsoft®	SQL	Server™
2000	on	which	the	backup	media	is	visible

Prototype	(C/C++)
HRESULT	SQLVerify(LPSQLDMOSERVER	ServerObject);

Remarks
The	SQLVerify	method	does	not	perform	a	restore	of	any	SQL	Server	database
or	transaction	log.

To	validate	the	integrity	of	a	SQL	Server	backup

1.	 Create	a	SQLServer	object.

2.	 Connect	the	SQLServer	object	to	an	instance	of	SQL	Server	on	which
the	source	backup	device	is	visible.

3.	 Create	a	Restore	object.

4.	 Set	either	the	Devices,	Files,	Pipes,	or	Tapes	property	to	indicate	a
device	visible	on	an	instance	of	SQL	Server	indicated	in	Step	2	and
maintaining	the	backup	media.	Specify	all	devices	or	files	maintaining
the	backup	set.

5.	 Call	the	SQLVerify	method	of	the	Restore	object	using	the
SQLServer	object	created	in	Step	1	as	an	argument.

SQL-DMO

Start	Method	(FullTextCatalog)
The	Start	method	launches	Microsoft	Search	full-text	catalog	population,
building	the	index	supporting	full-text	queries	on	data	maintained	by	Microsoft®
SQL	Server™	2000.

Applies	To

FullTextCatalog	Object

Syntax
object.Start(StartType)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

StartType

Long	integer	that	controls	full-text	catalog	population	as	described	in
Settings.

Prototype	(C/C++)
HRESULT	Start(SQLDMO_FULLTEXT_START_TYPE	StartType);

Settings
Set	the	StartType	argument	using	these	values.

Constant Value Description
SQLDMOFullText_Full 0 Perform	a	complete	population
SQLDMOFullText_Inc 1 Perform	an	incremental

population

SQL-DMO

Start	Method	(FullTextService,	JobServer)
The	Start	method	starts	a	stopped	Microsoft®	SQLServerAgent	service	or
Microsoft	Search	service.

Applies	To

FullTextService	Object JobServer	Object

Syntax
object.Start()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	Start();

SQL-DMO

Start	Method	(Job)
The	Start	method	executes	a	Microsoft®	SQLServerAgent	service	job.

Applies	To

Job	Object

Syntax
object.Start([Val])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Val

Optional.	A	string	that	specifies	a	starting	job	step	by	name.

Prototype	(C/C++)
HRESULT	Start(SQLDMO_LPCSTR	NewVal	=	NULL);

Remarks
Use	the	Start	method	of	the	Job	object	to	execute	the	referenced	job	on-
demand.

SQL-DMO

Start	Method	(SQLServer)
The	Start	method	starts	the	Microsoft®	SQL	Server™	2000	service,	optionally
connecting	the	SQLServer	object	on	successful	start.

Applies	To

SQLServer	Object

Syntax
object.Start(StartMode	,	[Server]	,	[Login]	,	[Password])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

StartMode

When	TRUE,	an	attempt	is	made	to	connect	on	successful	start.	When
FALSE,	no	attempt	is	made	to	connect	after	successful	start.

Server

Optional.	A	string	that	specifies	an	instance	of	SQL	Server	started	by	name.

Login

Optional.	A	string	that	specifies	a	SQL	Server	login	used	when	an	attempt	is
made	to	connect	after	successful	start	(StartMode	is	TRUE).

Password

Optional.	A	string	that	specifies	a	SQL	Server	password	used	for	login
validation	when	an	attempt	is	made	to	connect	after	successful	start.
StartMode	is	TRUE.

Prototype	(C/C++)
HRESULT	Start(
BOOL	fConnect,
SQLDMO_LPCSTR	Server	=	NULL,
SQLDMO_LPCSTR	Login	=	NULL,
SQLDMO_LPCSTR	Password	=	NULL);

Remarks
The	Start	method	can	only	be	used	on	a	SQLServer	object	not	connected	to	an
instance	of	SQL	Server.

Specify	the	SQL	Server	service	to	start	using	the	Name	property	of	the
SQLServer	object,	or	the	optional	Server	argument	of	the	Start	method.	Using
the	Server	argument	overrides	any	previous	specification	made	using	the	Name
property.

SQL-DMO

StartMonitor	Method
The	StartMonitor	method	begins	monitoring	of	the	local	Microsoft®
SQLServerAgent	service	by	an	instance	of	Microsoft®	SQL	Server™	2000.

Applies	To

JobServer	Object

Syntax
object.StartMonitor(NetSendAddress	,	RetryAttempts)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

NetSendAddress

String	that	specifies	a	network	user	by	workstation	address	as	described	in
Remarks.

RetryAttempts

Positive	long	integer	that	specifies	a	number	of	attempts	made	to	restart
SQLServerAgent	service.	When	0,	no	attempt	is	made	to	restart	a	stopped
SQLServerAgent	service	job.

Prototype	(C/C++)
HRESULT	StartMonitor(
SQLDMO_LPCSTR	szNetSendAddress,
long	lRestartAttempts);

Remarks

With	an	instance	of	SQL	Server	version	7.0,	an	instance	of	SQL	Server	can
monitor	the	locally	installed	SQLServerAgent	service.

When	monitoring	of	SQLServerAgent	service	is	enabled	and	abnormal
termination	is	detected,	the	SQLServerAgent	service:

Sends	notification	of	SQLServerAgent	service	failure	to	the	network
user	identified	in	the	NetSendAddress	argument,	by	network	pop-up
message.

Attempts	to	restart	the	SQLServerAgent	service	as	directed.

SQL-DMO

Stop	Method
The	Stop	method	halts	execution	for	a	Microsoft®	SQL	Server™	2000	service
or	SQLServerAgent	service	job,	or	stops	Microsoft	Search	full-text	catalog
population.

Applies	To

FullTextCatalog	Object JobServer	Object
FullTextService	Object SQLServer	Object
Job	Object 	

Syntax
object.Stop()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	Stop();

Remarks
The	Stop	method	halts	execution	or	population	for	the	referenced	component
immediately.	For	the	SQLServer	object,	the	process	is	not	orderly.	For	more
information	about	performing	an	orderly	stop	of	a	SQL	Server	service,	see
Shutdown	Method.

SQL-DMO

StopMonitor	Method
The	StopMonitor	method	ends	monitoring	of	the	local	SQLServerAgent	service
by	an	instance	of	Microsoft®	SQL	Server™.2000.

Applies	To

JobServer	Object

Syntax
object.StopMonitor()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	StopMonitor();

Remarks
For	more	information	about	SQLServerAgent	service	monitoring,	see
StartMonitor	Method.

SQL-DMO

T

SQL-DMO

Transfer	Method
The	Transfer	method	copies	database	schema	and/or	data	from	one	Microsoft®
SQL	Server™	2000	database	to	another.

Applies	To

Database	Object 	

Syntax
object.Transfer(Transfer)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Transfer

Expression	that	evaluates	to	a	Transfer	object

Prototype	(C/C++)
HRESULT	Transfer(
LPSQLDMOTRANSFER	TransferSpec);

Remarks
Use	the	Transfer	object	provided	in	the	argument	to	direct	database	object
processing	in	a	copy	operation.	For	more	information	about	constructing	and
using	a	database	copy	definition,	see	Transfer	Object.

SQL-DMO

Truncate	Method
The	Truncate	method	archive-marks	transaction	log	records.

Applies	To

TransactionLog	Object 	

Syntax
object.Truncate()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	Truncate();

Remarks
In	general,	transaction	log	records	are	archived	by	making	a	backup	of	records	of
committed	transactions.	Space	used	for	archived	transaction	log	records	is
reclaimed	by	reuse	or	by	shrinking	the	operating	system	file(s)	maintaining	the
transaction	log.

IMPORTANT		The	Truncate	method	allows	reuse	of	the	space	allocated	to	the
operating	system	file(s)	maintaining	a	transaction	log.	Log	truncation	is	part	of
normal	transaction	log	backup.	If	log	backup	is	part	of	a	database	backup
strategy,	the	Truncate	method	should	never	be	called.

SQL-DMO

TruncateData	Method
The	TruncateData	method	deletes	all	rows	from	the	referenced	table	as	a	bulk-
logged	operation.

Applies	To

Table	Object 	

Syntax
object.TruncateData()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	TruncateData();

Remarks
Bulk-logged	operations	make	no	entry	in	a	database	transaction	log.	After	a
bulk-logged	operation,	a	backup	of	the	transaction	log	does	not	protect	database
integrity.	After	performing	a	bulk-logged	operation,	a	database	backup	should	be
performed	to	capture	an	image	of	the	database.	For	more	information,	see
Selecting	a	Recovery	Model.

JavaScript:hhobj_1.Click()

SQL-DMO

U

SQL-DMO

UnbindFromColumn	Method
The	UnbindFromColumn	method	breaks	the	binding	between	a	Microsoft®
SQL	Server™	2000	default	or	rule	and	the	column	of	a	table.

Applies	To

Default	Object Rule	Object

Syntax
object.UnbindFromColumn(Table	,	Column)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Table

String	that	identifies	an	existing	SQL	Server	table	by	name

Column

String	that	identifies	a	column	by	name

Prototype	(C/C++)
HRESULT	UnbindFromColumn(
SQLDMO_LPCSTR	Table,
SQLDMO_LPCSTR	Column);

SQL-DMO

UnbindFromDatatype	Method
The	UnbindFromDatatype	method	breaks	the	binding	between	a	Microsoft®
SQL	Server™	2000	default	or	rule	and	a	user-defined	data	type.

Applies	To

Default	Object Rule	Object

Syntax
object.UnbindFromDatatype(Datatype	,	[FutureOnly])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Datatype

String	that	identifies	an	existing	user-defined	data	type	by	name

FutureOnly

When	TRUE,	columns	defined	using	the	data	type	maintain	the	rule	or
default	though	the	default	no	longer	exhibits	the	behavior

Prototype	(C/C++)
HRESULT	UnbindFromDatatype(
SQLDMO_LPCSTR	Datatype,
BOOL	bFutureOnly	=	FALSE);

SQL-DMO

Uninstall	Method
The	Uninstall	method	removes	Microsoft®	SQL	Server™	2000	components
implementing	replication.

Applies	To

Distributor	Object Replication	Object
Publisher	Object 	

Syntax
object.Uninstall()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	Uninstall();

HRESULT	Uninstall(BOOL	bIgnoreDistributor	=	FALSE);

Remarks
Use	the	Uninstall	method	of	the	Publisher	object	to	remove	only	those
components	implementing	publication.	Use	the	Uninstall	method	of	the
Distributor	or	Replication	object	to	remove	all	replication-implementing
components.

For	the	Replication	object,	SQL-DMO	implements	the	Boolean	argument
bIgnoreDistributor.	bIgnoreDistributor	is	evaluated	only	when	the	Replication
object	references	a	Publisher	using	a	remote	Distributor.	When	TRUE,	the
Uninstall	method	removes	all	components	implementing	publication	and

subscription	on	the	Publisher	and	attempts	to	connect	to	the	Distributor	and
remove	publication-implementating	components.

When	FALSE	(default),	only	the	Publsher	is	affected	by	method	execution.	Use
the	CleanUpDistributionPublisherByName	method	referencing	the	remote
distributor	to	remove	publication-implementing	components.

SQL-DMO

UnloadODSDLL	Method
The	UnloadODSDLL	method	frees	a	dynamic-link	library	(DLL)	loaded	into
Microsoft®	SQL	Server™	2000	memory.

Applies	To

SQLServer	Object 	

Syntax
object.UnloadODSDLL(DLLName)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

DLLName

String	that	identifies	a	DLL	loaded	by	Open	Data	Services	by	name

Prototype	(C/C++)
HRESULT	UnloadODSDLL(
SQLDMO_LPCSTR	szDLLName);

Remarks
SQL	Server	implements	a	call	to	a	function	exported	from	a	DLL	as	an	extended
stored	procedure.	When	a	SQL	Server	process	calls	the	extended	stored
procedure,	SQL	Server	Open	Data	Services	loads	the	DLL	and	locates	the
function	entry	point.	By	default,	the	DLL	remains	loaded	until	the	SQL	Server
service	shuts	down.

Use	the	UnloadODSDLL	method	to	free	a	DLL	implementing	a	SQL	Server

extended	stored	procedure	when	required.	For	example,	when	a	Microsoft
Windows®	operating	system	loads	a	DLL,	the	operating	system	file
implementing	the	library	is	opened	as	shareable,	read-only.	An	attempt	to	update
the	file	fails.	Freeing	the	library	allows	installation	of	a	new	version	of	the
library.

SQL-DMO

UpdateAgentProfile	Method
The	UpdateAgentProfile	method	alters	a	profile	setting	for	the	agent	specified.

Applies	To

Distributor	Object 	

Syntax
object.UpdateAgentProfile(
DistributionDB	,	AgentType	,	AgentID	,	ConfigurationID)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

DistributionDB

String

AgentType

Long	integer	that	specifies	a	replication	agent	type	as	described	in	Settings

AgentID

Long	integer

ConfigurationID

Long	integer

Prototype	(C/C++)
HRESULT	UpdateAgentProfile(
SQLDMO_LPCSTR	DistributionDBName,
SQLDMO_REPLAGENT_TYPE	AgentType,

long	lAgentID,
long	lConfigurationID);

Settings
Set	the	AgentType	argument	by	using	these	SQLDMO_REPLAGENT_TYPE
values.

Constant Value Description
SQLDMOReplAgent_Distribution 3 Replication	Distribution

Agent
SQLDMOReplAgent_LogReader 2 Replication	transaction	log

monitoring	agent
SQLDMOReplAgent_Merge 4 Replication	Merge	Agent
SQLDMOReplAgent_QueueReader 9 Replication	Queue	Reader

Agent
SQLDMOReplAgent_Snapshot 1 Replication	Snapshot	Agent

Remarks
Changing	a	replication	agent	profile	setting	by	using	the	UpdateAgentProfile
method	requires	appropriate	permission.	The	SQL	Server	login	used	for
SQLServer	object	connection	must	be	a	member	of	the	fixed	role	sysadmin.

SQL-DMO

UpdateDefaultAgentProfile	Method
The	UpdateDefaultAgentProfile	method	updates	the	default	replication	agent
profile.

Applies	To

Distributor	Object 	

Syntax
object.UpdateDefaultAgentProfile(ProfileID)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

ProfileID

Long	integer

Prototype	(C/C++)
HRESULT	UpdateDefaultAgentProfile(
long	lProfileID);

SQL-DMO

UpdateIndexStatistics	Method
The	UpdateIndexStatistics	method	forces	data	distribution	statistics	update	for
all	indexes	on	user-defined	tables	in	the	referenced	Microsoft®	SQL	Server™
2000	database.

Applies	To

Database	Object 	

Syntax
object.UpdateIndexStatistics()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	UpdateIndexStatistics();

Remarks
Index-based,	data	distribution	statistics	support	SQL	Server	query	optimization.
Data	distribution	statistics	are	calculated	for	an	index	when	the	index	is	first
used	in	query	optimization	or	at	user	direction.	Statistics	are	updated
automatically	at	configurable	intervals	and	at	user	direction.

SQL-DMO

UpdateNotification	Method
The	UpdateNotification	method	configures	SQL	Server	Agent	operator
notification	for	alerts	raised.

Applies	To

Alert	Object Operator	Object

Syntax
object.UpdateNotification(AlertOrOperator	,	NotificationType)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

AlertOrOperator

String	that	specifies	a	SQL	Server	Agent	alert	or	operator	by	name	as
described	in	Settings

NotificationType

Long	integer	that	specifies	a	notification	method	as	described	in	Settings

Prototype	(C/C++)
HRESULT	UpdateNotification(
SQLDMO_LPCSTR	AlertOrOperatorName,
SQLDMO_NOTIFY_TYPE	NotifyMethod);

Settings
When	setting	the	AlertOrOperator	argument	of	the	UpdateNotification	method
of	the	Alert	object,	the	string	identifies	an	existing	operator	by	name.	When

setting	the	argument	for	the	Operator	object	method,	the	string	identifies	an
existing	alert	by	name.

Set	NotificationType	by	using	these	values.

Constant Value Description
SQLDMONotify_All 7 Notification	by	e-mail,	e-mail	sent	to

the	pager	address,	and	network	pop-up
message

SQLDMONotify_Email 1 Notification	by	e-mail	sent	to	the
operator	e-mail	address

SQLDMONotify_NetSend 4 Notification	by	network	pop-up
message	posted	to	the	operator
network	address

SQLDMONotify_None 0 No	notification	method	specified	for
the	referenced	operator

SQLDMONotify_Pager 2 Notification	by	e-mail	sent	to	the
operator	pager	address

Remarks
The	AddNotification	method	associates	operators	with	alerts.	Operators
designated	receive	notification	messages	when	an	event	raising	an	alert	occurs.
When	an	alert	is	raised,	notification	can	be	sent	using	e-mail,	network	pop-up
message,	or	pager.	The	AddNotification	method	allows	specification	of	one	or
more	notification	mechanisms	when	operators	are	assigned	notification	for	an
alert.

The	RemoveNotification	method	removes	all	operator	notification	mechanisms
for	an	alert.	Use	the	UpdateNotification	method	to	alter	the	notification
mechanism	without	dropping	the	association	between	an	alert	and	operator.

See	Also

AddNotification	Method

RemoveNotification	Method

SQL-DMO

UpdateStatistics	Method
The	UpdateStatistics	method	forces	data	distribution	statistics	update	for	a
referenced	Microsoft®	SQL	Server™	2000	index	or	all	indexes	defined	on	a
SQL	Server	table.

Applies	To

Index	Object Table	Object

Syntax
object.UpdateStatistics()

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	UpdateStatistics();

Remarks
Index-based,	data	distribution	statistics	support	SQL	Server	query	optimization.
Data	distribution	statistics	are	calculated	for	an	index	when	the	index	is	first
used	in	query	optimization	or	at	user	direction.	Statistics	are	updated
automatically	at	configurable	intervals	and	at	user	direction.

SQL-DMO

UpdateStatisticsWith	Method	(Column,	Index)
The	UpdateStatisticsWith	method	forces	data	distribution	statistics	update	for	a
referenced	Microsoft®	SQL	Server™	2000	index,	or	for	a	hypothetical	index
used	to	support	data	distribution	statistics	for	a	column.

Applies	To

Column	Object Index	Object

Syntax
object.UpdateStatisticsWith(ScanType	[,	ScanNumber]	[,	ReCompute])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

ScanType

Long	integer	that	specifies	a	data	sampling	method	as	described	in	Settings.

ScanNumber

Optional.	A	long	integer	that	indicates	a	sample	size	as	described	in	Settings.

ReCompute

Optional.	When	TRUE	(default),	no	change	is	made	to	automatic	update	of
data	distribution	statistics.	When	FALSE,	automatic	update	of	data
distribution	statistics	is	disabled.

Prototype	(C/C++)
HRESULT	UpdateStatisticsWith(
SQLDMO_STAT_SCAN_TYPE	ScanType,
long	ScanNumber	CPPDEFAULT(=	0),

BOOL	ReCompute	CPPDEFAULT(=	TRUE);

Settings
Set	ScanType	by	using	these	values.	When	a	ScanType	setting	indicates	a	sample
size,	set	ScanNumber	as	described.

Constant Value Description
SQLDMOStatistic_FullScan 3 Perform	a	full	scan	of	the	index	or

column	to	determine	statistics
values.

SQLDMOStatistic_Percent 1 Perform	a	sampled	scan	using	a
percentage	value.	When	specified,
use	the	ScanNumber	value	to
indicate	percentage.	Specify
percentage	using	a	whole	number,
for	example,	55	specifies	55
percent.

SQLDMOStatistic_Rows 2 Perform	a	sampled	scan	using	a
number	of	rows.	When	specified,
use	the	ScanNumber	argument	to
indicate	number	of	rows.

SQLDMOStatistic_Sample 0 Perform	a	percentage	sampled
scan	using	a	system	defined
percentage.

Remarks
Index-based,	data	distribution	statistics	support	SQL	Server	query	optimization.
Data	distribution	statistics	are	calculated	for	an	index	when	the	index	is	first
used	in	query	optimization	or	at	user	direction.	Statistics	are	updated
automatically	at	configurable	intervals	and	at	user	direction.	The
UpdateStatisticsWith	method	directs	statistic	update,	optionally	restricting
statistics	sampling	to	optimize	the	process.

SQL-DMO

UpdateStatisticsWith	Method	(Table)
The	UpdateStatisticsWith	method	forces	data	distribution	statistics	update	for	a
indexes	defined	on	the	referenced	Microsoft®	SQL	Server™	2000	table.

Applies	To

Table	Object 	

Syntax
object.UpdateStatisticsWith(AffectType	,	ScanType	,	[ScanNumber]
,	[ReCompute])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

AffectType

Long	integer	that	specifies	statistics	source	as	described	in	Settings.

ScanType

Long	integer	that	specifies	a	data	sampling	method	as	described	in	Settings.

ScanNumber

Optional.	A	long	integer	that	indicates	a	sample	size	as	described	in	Settings.

ReCompute

Optional.	When	TRUE	(default),	no	change	is	made	to	automatic	update	of
data	distribution	statistics.	When	FALSE,	automatic	update	of	data
distribution	statistics	is	disabled.

Prototype	(C/C++)

HRESULT	UpdateStatisticsWith(
SQLDMO_STAT_AFFECT_TYPE	AffectType,
SQLDMO_STAT_SCAN_TYPE	ScanType,
long	ScanNumber	CPPDEFAULT(=	0),
BOOL	ReCompute	CPPDEFAULT(=	TRUE);

Settings
Set	AffectType	by	using	these	values.

Constant Value Description
SQLDMOStatistic_AffectAll 2 Update	all	statistics	regardless

of	the	source.
SQLDMOStatistic_AffectColumn1 Update	statistics	derived	from

column	data	only.
SQLDMOStatistic_AffectIndex 0 Default.	Update	statistics

derived	from	indexes	only.

Set	ScanType	by	using	these	values.	When	a	ScanType	setting	indicates	a	sample
size,	set	ScanNumber	as	described.

Constant Value Description
SQLDMOStatistic_FullScan 3 Perform	a	full	scan	of	the	index(es)

or	column(s)	to	determine	statistics
values.

SQLDMOStatistic_Percent 1 Perform	a	sampled	scan	using	a
percentage	value.	When	specified,
use	the	ScanNumber	value	to
indicate	percentage.	Specify
percentage	using	a	whole	number,
for	example,	55	specifies	55
percent.

SQLDMOStatistic_Rows 2 Perform	a	sampled	scan	using	a
number	of	rows.	When	specified,
use	the	ScanNumber	argument	to
indicate	number	of	rows.

SQLDMOStatistic_Sample 0 Perform	a	percentage	sampled	scan
using	a	system	defined	percentage.

Remarks
Index-based,	data	distribution	statistics	support	SQL	Server	query	optimization.
Data	distribution	statistics	are	calculated	for	an	index	when	the	index	is	first
used	in	query	optimization	or	at	user	direction.	Statistics	are	updated
automatically	at	configurable	intervals	and	at	user	direction.	The
UpdateStatisticsWith	method	directs	statistic	update,	optionally	restricting
statistics	sampling	to	optimize	the	process.

SQL-DMO

V

SQL-DMO

ValidateDataSource	Method
The	ValidateDataSource	method	attempts	a	connection	to	the	indicated	data
source	using	the	login	name	and	password	specified.

Applies	To

Replication	Object 	

Syntax
object.ValidateDataSource(DataSource	,	Login	,	Password	,
[SubscriberType])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

DataSource

Identifies	an	ODBC	data	source	by	name.

Login

Specifies	a	Microsoft®	SQL	Server™	2000	login	by	name.

Password

Password	for	the	specified	SQL	Server	login.

SubscriberType

Optional.	A	long	integer	that	identifies	the	Subscriber	data	source
implementation	as	described	in	Settings.

Prototype	(C/C++)
HRESULT	ValidateODBCDataSource(

SQLDMO_LPCSTR	DataSourceName,
SQLDMO_LPCSTR	Login,
SQLDMO_LPCSTR	Password,
SQLDMO_SUBSCRIBER_TYPE	SubscriberType	=
SQLDMOSubInfo_ODBCDatasource);

Settings
Set	SubscriberType	using	these	SQLDMO_SUBSCRIBER_TYPE	values.

Constant Value Description
SQLDMOSubInfo_ExchangeServer 4 Type	property	of

RegisteredSubscriber
object	that	identifies	a
Microsoft	Exchange	Server
installation	persisted	as	a
SQL	Server	linked	server

SQLDMOSubInfo_JetDatabase 2 Name	property	of
RegisteredSubscriber
object	identifies	a	Microsoft
Jet	version	3.5	database

SQLDMOSubInfo_ODBCDatasource 1 Name	property	of
RegisteredSubscriber
object	identifies	an	ODBC
user	or	system	DSN

SQLDMOSubInfo_OLEDBDatasource 3 Type	property	of
RegisteredSubscriber
object	that	identifies	an
OLE	DB	data	source
specification,	or	Microsoft
Jet	version	4.0	database
persisted	as	a	SQL	Server
linked	server

SQLDMOSubInfo_SQLServer 0 Name	property	of
RegisteredSubscriber
object	identifies	an	instance
of	SQL	Server	by	SQL

Server	name

Remarks
If	the	ValidateDataSource	method	succeeds,	the	data	source	specified	can	be
targeted	in	a	subscription.	The	error	SQLDMO_E_INVALIDDSN	is	raised	when
a	connection	is	not	made	to	the	data	source	or	the	data	source	specified	cannot
otherwise	receive	a	subscription.

SQL-DMO

ValidatePublication	Method	(MergePublication2)
The	ValidatePublication	method	invokes	inline	publication	validation	for	all
Subscribers.

Applies	To

MergePublication2	Object 	

Syntax
object.ValidatePublication([ValidationOption])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

ValidationOption

Long	integer	that	specifies	the	type	of	validation	performed	as	described	in
Settings

Prototype	(C/C++)
HRESULT	ValidatePublication(SQLDMO_VALIDATIONOPTION_TYPE
ValidationOption);

Settings
Set	the	ValidationOption	parameter	using	these
SQLDMO_VALIDATIONOPTION_TYPE	values.

Constant Value Description
SQLDMOValidationOption_70Checksum 0 Perform	a	Transact-

SQL	CHECKSUM

operation	compatible
with	an	instance	of
Microsoft®	SQL
Server™	2000	version
7.0.

SQLDMOValidationOption_RowCountOnly 1 Default.	Perform	a
Transact-SQL
@@ROWCOUNT
operation.

SQLDMOValidationOption_80Checksum 2 Perform	a	Transact-
SQL	CHECKSUM
operation	compatible
with	an	instance	of
Microsoft	SQL	Server.
Only	supported	by
SQL	Server	2000
Subscribers.

Remarks
The	result	of	the	validation	operation	is	written	to	the	agent	history,	which	can	be
viewed	using	Replication	Monitor.

Note		If	an	application	calls	ValidatePublication	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

ValidateSubscription	Method

SQL-DMO

ValidatePublication	Method	(TransPublication2)
The	ValidatePublication	method	invokes	inline	publication	validation	for	all
Subscribers.

Applies	To

TransPublication2	Object 	

Syntax
object.ValidatePublication([ValidationOption]	,	[ValidationMethod]	,	
[fShutDownAgent])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

ValidationOption

Long	integer	that	specifies	the	type	of	validation	performed	as	described	in
Settings

ValidationMethod

Long	integer	that	specifies	the	method	of	validation	performed	as	described
in	Settings

fShutDownAgent

Boolean	that	specifies	whether	the	distribution	agent	immediately	shuts
down	after	successful	completion	of	the	validation	process

Prototype	(C/C++)
HRESULT	ValidatePublication(
SQLDMO_VALIDATIONOPTION_TYPE	ValidationOption,

SQLDMO_VALIDATIONMETHOD_TYPE	ValidationMethod,
BOOL	fShutDownAgent);

Settings
Set	the	ValidationOption	parameter	using	these
SQLDMO_VALIDATIONOPTION_TYPE	values.

Constant Value Description
SQLDMOValidationOption_70Checksum 0 Perform	a	Transact-

SQL	CHECKSUM
operation	compatible
with	an	instance	of
Microsoft®	SQL
Server™	version	7.0.

SQLDMOValidationOption_RowCountOnly 1 Default.	Perform	a
Transact-SQL
@@ROWCOUNT
operation.

SQLDMOValidationOption_80Checksum 2 Perform	a	Transact-
SQL	CHECKSUM
operation	compatible
with	an	instance	of
Microsoft	SQL
Server™	2000.	Only
supported	by	SQL
Server	2000
Subscribers.

Set	the	ValidationMethod	parameter	using	these
SQLDMO_VALIDATIONMETHOD_TYPE	values.

Constant Value Description
SQLDMOValidationMethod_ConditionalFast 2 Default.	Performs	conditional

validation	first	using
SQLDMOValidationMethod_FastCount

but	reverts	to	using
SQLDMOValidationMethod_FullCount
if
SQLDMOValidationMethod_FastCount
indicates	differences.

SQLDMOValidationMethod_FastCount 1 Performs	high	speed	validation,	using
the	rowcnt	column	of	sysindexes

SQLDMOValidationMethod_FullCount 0 Validates	by	returning	the	number	of
rows,	including	NULL	values,	and
duplicates	using	Transact-SQL
COUNT(*).

Remarks
The	result	of	the	validation	operation	is	written	to	the	agent	history,	which	can	be
viewed	using	Replication	Monitor.

By	default,	the	fShutDownAgent	parameter	is	set	to	FALSE.

Note		If	an	application	calls	ValidatePublication	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This
property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

ValidateSubscriptions	Method

SQL-DMO

ValidateSubscription	Method
The	ValidateSubscription	method	invokes	inline	validation	for	the	specified
subscription.

Applies	To

MergePublication2	Object 	

Syntax
object.ValidateSubscription(
szSubscriberName	,	
szSubscriberDB	,	
[ValidationOption])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

szSubscriberName

String	that	specifies	the	Subscriber	name

szSubscriberDB

String	that	specifies	the	subscription	database	name

ValidationOption

Long	integer	that	specifies	the	type	of	validation	performed	as	described	in
Settings

Prototype	(C/C++)
HRESULT	ValidateSubscription(
SQLDMO_LPCSTR	pszSuscriberName,

SQLDMO_LPCSTR	pszSubscriberDB,	
SQLDMO_VALIDATIONOPTION_TYPE	ValidationOption);

Settings
Set	the	ValidationOption	parameter	using	these
SQLDMO_VALIDATIONOPTION_TYPE	values.

Constant Value Description
SQLDMOValidationOption_70Checksum 0 Perform	a	Transact-

SQL	CHECKSUM
operation	compatible
with	an	instance	of
Microsoft®	SQL
Server™	version	7.0.

SQLDMOValidationOption_RowCountOnly 1 Default.	Perform	a
Transact-SQL
@@ROWCOUNT
operation.

SQLDMOValidationOption_80Checksum 2 Perform	a	Transact-
SQL	CHECKSUM
operation	compatible
with	an	instance	of
Microsoft	SQL
Server™	2000.Only
supported	by	SQL
Server	2000
Subscribers.

Remarks
The	result	of	the	validation	operation	is	written	to	the	agent	history,	which	can	be
viewed	using	Replication	Monitor.

Note		If	an	application	calls	ValidateSubscription	on	an	instance	of	SQL	Server
version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message	"This

property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

ValidatePublication	Method	(MergePublication2)

SQL-DMO

ValidateSubscriptions	Method
The	ValidateSubscriptions	method	invokes	inline	validation	for	one	or	more
specified	subscriptions.

Applies	To

TransPublication2	Object 	

Syntax
object.ValidateSubscriptions(szSubscriberNames	,	szSubscriberDBs	,	
[ValidationOption]	,	[ValidationMethod]	,	[fShutDownAgent])

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

szSubscriberNames

SQL-DMO	multistring	that	specifies	one	or	more	Subscriber	names

szSubscriberDBs

SQL-DMO	multistring	that	specifies	one	or	more	subscription	database
names

ValidationOption

Long	integer	that	specifies	the	type	of	validation	performed	as	described	in
Settings

ValidationMethod

Long	integer	that	specifies	the	method	of	validation	performed	as	described
in	Settings

fShutDownAgent

Boolean	that	specifies	whether	the	distribution	agent	immediately	shuts
down	after	successful	completion	of	the	validation	process

Prototype	(C/C++)
HRESULT	ValidateSubscriptions(
SQLDMO_LPCSTR	szSuscriberNames,
SQLDMO_LPCSTR	szSubscriberDBs,
SQLDMO_VALIDATIONOPTION_TYPE	ValidationOption,
SQLDMO_VALIDATIONMETHOD_TYPE	ValidationMethod,
BOOL	fShutDownAgent);

Settings
Set	the	ValidationOption	parameter	using	these
SQLDMO_VALIDATIONOPTION_TYPE	values.

Constant Value Description
SQLDMOValidationOption_70Checksum 0 Perform	a	SQL	Server

7.0	compatible
Transact-SQL
CHECKSUM
operation.

SQLDMOValidationOption_RowCountOnly 1 (Default).	Perform	a
Transact-SQL
@@ROWCOUNT
operation.

SQLDMOValidationOption_75Checksum 2 Perform	a	SQL	Server
2000	compatible
Transact-SQL
CHECKSUM
operation.

Set	the	ValidationMethod	parameter	using	these
SQLDMO_VALIDATIONMETHOD_TYPE	values.

Constant Value Description
SQLDMOValidationMethod_ConditionalFast 2 Default.	Performs	conditional

validation	first	using
SQLDMOValidationMethod_FastCount
but	reverts	to	using
SQLDMOValidationMethod_FullCount
if
SQLDMOValidationMethod_FastCount
indicates	differences.

SQLDMOValidationMethod_FastCount 1 Performs	high	speed	validation,	using
the	rowcnt	column	of	sysindexes

SQLDMOValidationMethod_FullCount 0 Validates	by	returning	the	number	of
rows,	including	NULL	values,	and
duplicates	using	Transact-SQL
COUNT(*).

Remarks
szSuscriberNames	and	szSubscriberDBs	are	SQL-DMO	multistring	parameters.
The	number	of	names	in	the	szSuscriberNames	and	szSubscriberDBs	parameters
must	be	identical.	For	more	information	about	setting	multistring	parameters,	see
Using	SQL-DMO	Multistrings.

The	result	of	the	validation	operation	is	written	to	the	agent	history,	which	can	be
viewed	using	Replication	Monitor.

By	default,	the	fShutDownAgent	parameter	is	set	to	FALSE.

Note		If	an	application	calls	ValidateSubscriptions	on	an	instance	of	SQL
Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the	message
"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are	returned.

See	Also

ValidatePublication	Method	(TransPublication2)

SQL-DMO

VerifyConnection	Method
The	VerifyConnection	method	tests	the	connection	used	by	the	SQLServer
object.

Applies	To

SQLServer	Object 	

Syntax
object.VerifyConnection([ReconnectIfDead])	as	Boolean

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

ReconnectIfDead

Long	integer	that	controls	method	behavior	as	described	in	Settings

Prototype	(C/C++)
HRESULT	VerifyConnection(
LPBOOL	pRetVal,
SQLDMO_VERIFYCONN_TYPE	VerifyType	=
SQLDMOConn_ReconnectIfDead);

Settings

Constant Value Description
SQLDMOConn_CurrentState 2 Return	TRUE	if	connected.
SQLDMOConn_LastState 1 Return	TRUE	if	connected	on

last	call	and	still	connected,	or

not	connected	on	last	call	and
still	not	connected.

SQLDMOConn_ReconnectIfDead 6 Default.	Attempt	to	reconnect
the	SQLServer	object	if	the
object	has	been	connected	and
has	lost	its	connection.	Return
TRUE	if	connection	exists.

Returns
TRUE	or	FALSE	as	described	in	Settings.

SQL-DMO

W

SQL-DMO

WriteReplicationFailOverMode	Method
The	WriteReplicationFailOverMode	method	sets	the	failover	mode	for	a
subscription	that	uses	immediate	updating	with	queued	updating	as	a	failover
option.

Applies	To

ReplicationDatabase2	Object 	

Syntax
object.WriteReplicationFailOverMode(
szPublisher	,	
szPublicationDB	,	
szPublication	,	
FailOverMode)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

szPublisher

String	that	specifies	the	name	of	the	Publisher

szPublicationDB

String	that	specifies	the	name	of	the	publication	database

szPublication

String	that	specifies	the	name	of	the	publication

FailOverMode

Long	integer	specifying	a	SQLDMO_REPLFAILOVER_TYPE	constant	as

described	in	Settings.

Prototype	(C/C++)
HRESULT	WriteReplicationFailOverMode(
SQLDMO_LPCSTR	pszPublisher,	
SQLDMO_LPCSTR	pszPublicationDB,	
SQLDMO_LPCSTR	pszPublication,	
SQLDMO_REPLFAILOVER_TYPE	FailOverMode);

Settings
Set	the	FailOverMode	parameter	using	these	values.

Constant Value Description
SQLDMOReplFailOver_Immediate 0 Use	the	immediate	updating

option	to	propagate	changes
made	at	Subscribers	to	the
Publisher.

SQLDMOReplFailOver_Queued 1 Use	the	queued	updating
option	to	propagate	changes
made	at	Subscribers	to	the
Publisher.

Remarks
Microsoft	SQL	Server	replication	supports	toggling	between	immediate	updating
and	queued	updating	options.	This	configuration	is	also	known	as	immediate
updating	with	queued	updating	as	a	failover	option.	You	can	invoke	failover,	or
queued	updating,	when	an	immediate	update	on	the	Subscriber	fails	because	the
Publisher	is	not	available.	At	some	later	point,	when	the	Publisher	becomes
available,	you	can	invoke	failback,	or	immediate	updating.	Set	the
FailOverMode	parameter	to	SQLDMOReplFailOver_Queued	to	enable	queued
updating.

Prior	to	using	WriteReplicationFailOverMode,	ensure	that	the	subscription
was	created	using	a	SQLDMO_TRANSUBSCRIBER_TYPE	value	of

SQLDMOTranSubscriber_Failover.

Note		If	an	application	calls	WriteReplicationFailOverMode	on	an	instance	of
SQL	Server	version	7.0,	the	constant,	SQLDMO_E_SQL80ONLY,	and	the
message	"This	property	or	method	requires	Microsoft	SQL	Server	2000"	are
returned.

See	Also

ReadReplicationFailOverMode	Method

SQL-DMO

Events
Some	SQL-DMO	objects	support	events.	OLE	object	events	provide	a	callback
mechanism,	and	SQL-DMO	uses	events	to	signal	an	application	conditionally.

SQL-DMO	applications	can	handle	raised	events	to	provide	intelligent
interaction	with	the	user	during	long-running	processes	and	to	handle	abnormal
conditions.

SQL-DMO

BatchImported	Event
The	BatchImported	event	occurs	when	a	bulk	copy	transaction	is	committed.

Applies	To

BulkCopy	Object

Syntax
Private	Sub	object_BatchImported(Message	as	String)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Message

String	that	contains	descriptive	message	text

Prototype	(C/C++)
HRESULT	BatchImported(SQLDMO_LPCSTR	Message);

Remarks
The	BatchImported	event	is	raised	only	when	the	BulkCopy	object	is	used	as	a
parameter	of	the	ImportData	method	of	the	Table	object.

The	Microsoft®	SQL	Server™	bulk	copy	process	can	copy	large	amounts	of
data	from	an	external	data	file	to	a	SQL	Server	table.	By	default,	all	rows	in	the
external	data	file	are	inserted	in	a	single	transaction	when	a	data	import
operation	is	performed	by	using	the	BulkCopy	object.

SQL	Server	does	not	guarantee	data	integrity	until	and	unless	a	bulk	copy
transaction	is	committed.

Use	the	ImportRowsPerBatch	property	of	the	BulkCopy	object	to	adjust	the
size	of	the	bulk	copy	transaction.

See	Also

ImportRowsPerBatch	Property

SQL-DMO

CommandSent	Event
The	CommandSent	event	occurs	when	SQL-DMO	submits	a	Transact-SQL
command	batch	to	the	connected	instance	of	Microsoft®	SQL	Server™.

Applies	To

SQLServer	Object

Syntax
Private	Sub	object_CommandSent(SQLCommand	as	String)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

SQLCommand

String	that	contains	the	Transact-SQL	command	batch	submitted

Prototype	(C/C++)
HRESULT	CommandSent(SQLDMO_LPCSTR	szSQL);

Remarks
The	CommandSent	event	occurs	only	after	the	SQLServer	object	has
connected	successfully	to	an	instance	of	SQL	Server.	SQL-DMO	raises	the	event
for	every	command	batch	sent,	including	Transact-SQL	submitted	for	SQL-
DMO	processes	such	as	collection	enumeration	and	object	property	value
determination.

SQL-DMO

ConnectionBroken	Event
The	ConnectionBroken	event	occurs	when	a	connected	SQLServer	object
loses	its	connection	to	an	instance	of	Microsoft®	SQL	Server™.

Applies	To

SQLServer	Object

Syntax
Private	Function	object_ConnectionBroken(Message	as	String)	as	Boolean

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Message

String	that	contains	descriptive	message	text

Prototype	(C/C++)
HRESULT	ConnectionBroken(SQLDMO_LPCSTR	Message,
LPBOOL	Retry);

Remarks
SQL-DMO	raises	the	ConnectionBroken	event	only	when	the	AutoReConnect
property	of	the	SQLServer	object	is	False.	When	AutoReConnect	is	True,
SQL-DMO	will	not	raise	the	event,	even	when	automatic	reconnection	fails.

When	a	ConnectionBroken	event	handler	returns	True,	SQL-DMO	attempts	to
reconnect	to	an	instance	of	SQL	Server	indicated	when	the	Connect	method	of
the	SQLServer	object	connected	successfully.	When	a	ConnectionBroken
event	handler	does	not	return	a	value,	or	returns	False,	SQL-DMO	does	not

attempt	to	reconnect	the	SQLServer	object	upon	return	from	the	event	handler.

See	Also

AutoReConnect	Property

SQL-DMO

Complete	Event
The	Complete	event	occurs	when	a	backup	or	restore	operation	completes.

Applies	To

Backup	Object Restore	Object

Syntax
Private	Sub	object_Complete(Message	as	String)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Message

String	that	contains	descriptive	message	text

Prototype	(C/C++)
HRESULT	Complete(SQLDMO_LPCSTR	Message);

Remarks
With	SQL-DMO,	use	the	SQLBackup,	SQLRestore,	and	SQLVerify	methods
to	start	a	backup	or	restore	operation.

SQL-DMO

NextMedia	Event
The	NextMedia	event	occurs	when	a	backup	or	restore	operation	exhausts	the
media	in	a	device	indicated	as	a	target	or	source	for	the	operation.

Applies	To

Backup	Object Restore	Object

Syntax
Private	Sub	object_NextMedia(Message	as	String)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Message

String	that	contains	descriptive	message	text

Prototype	(C/C++)
HRESULT	NextMedia(SQLDMO_LPCSTR	Message);

Remarks
With	SQL-DMO,	use	the	SQLBackup,	SQLRestore,	and	SQLVerify	methods
to	start	a	backup	or	restore	operation.

SQL-DMO

PercentComplete	Event
The	PercentComplete	event	occurs	when	a	backup,	restore,	or	replication
operation	reaches	a	completion	unit.

Applies	To

Backup	Object Restore	Object
Replication	Object 	

Syntax
Private	Sub	object_PercentComplete(Message	as	String	,	Percent	as	Long)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Message

String	that	contains	descriptive	message	text

Percent

Long	integer	representation	of	a	percentage	value.	The	value	is	the	percent	of
processing	complete	scaled	by	100.	For	example,	a	process	seven	percent
complete	reports	the	value	7.

Prototype	(C/C++)
HRESULT	PercentComplete(SQLDMO_LPCSTR	Message,	long	Percent);

Remarks
With	SQL-DMO,	use	the	SQLBackup,	SQLRestore,	and	SQLVerify	methods
to	start	a	backup	or	restore	operation.

By	default,	SQL-DMO	raises	the	PercentComplete	event	as	each	tenth	of	a
backup	or	restore	operation	completes	(when	the	percent	of	the	operation
completed	is	10,	20,	30,	and	so	on).	Use	the	PercentCompleteNotification
property	of	the	Backup	and	Restore	objects	to	change	default	behavior.

For	the	Replication	object,	the	PercentComplete	event	is	reserved	for	future
use.

SQL-DMO

PercentCompleteAtStep	Event
The	PercentCompleteAtStep	event	occurs	when	a	database	schema	and/or	data
copy	operation	reaches	a	system-defined	midpoint	in	processing.

Applies	To

Transfer	Object

Syntax
Private	Sub	object_PercentCompleteAtStep(Message	as	String	,	
Percent	as	Long)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Message

String	that	contains	descriptive	message	text

Percent

Long	integer	representation	of	a	percentage	value.	The	value	is	the	percent	of
processing	complete	scaled	by	100.	For	example,	a	process	seven	percent
complete	reports	the	value	7.

Prototype	(C/C++)
HRESULT	PercentCompleteAtStep(SQLDMO_LPCSTR	szMessage,
long	Percent);

Remarks
When	using	the	Transfer	and	ScriptTransfer	methods	of	the	Database	object,
SQL-DMO	breaks	up	processing	into	system-defined	units.	As	each	unit

completes,	SQL-DMO	determines	the	percentage	of	the	operation	completed,
and	raises	the	PercentCompleteAtStep	event.

SQL-DMO

QueryTimeout	Event
The	QueryTimeout	event	occurs	when	Microsoft®	SQL	Server™	cannot
complete	execution	of	a	Transact-SQL	command	batch	within	a	user-defined
period	of	time.

Applies	To

SQLServer	Object

Syntax
Private	Function	object_QueryTimeout(Message	as	String)	as	Boolean

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Message

String	that	contains	descriptive	message	text

Prototype	(C/C++)
HRESULT	QueryTimeout(SQLDMO_LPCSTR	Message,	LPBOOL	Continue);

Remarks
The	QueryTimeout	event	is	reserved	for	future	use.

See	Also

QueryTimeout	Property

SQL-DMO

RemoteLoginFailed	Event
The	RemoteLoginFailed	event	occurs	when	an	instance	of	Microsoft®	SQL
Server™	attempts	to	connect	to	a	remote	server	fails.

Applies	To

SQLServer	Object

Syntax
Private	Sub	object_RemoteLoginFailed(Severity	as	Long	,	
MessageNumber	as	Long	,	MessageState	as	Long	,	Message	as	String)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Severity

Long	integer	that	identifies	the	severity	level	of	a	SQL	Server	error	message

MessageNumber

Long	integer	that	identifies	a	SQL	Server	error	message	by	number

MessageState

Long	integer	that	identifies	a	state	value	for	a	SQL	Server	error	message

Message

String	that	contains	SQL	Server	message	text

Prototype	(C/C++)
HRESULT	RemoteLoginFailed(long	Severity,	long	MessageNumber,
long	MessageState,	SQLDMO_LPCSTR	Message);

Remarks
To	facilitate	connections	between	instances	of	SQL	Server	in	an	organization,
SQL	Server	uses	remote-server	naming.

An	instance	of	SQL	Server	can	maintain	authentication	information	for
connections	originating	from	other	instances	of	SQL	Server.	Each	instance	of
SQL	Server	in	an	organization	can	control	access	by	listing	the	instances	of	SQL
Server	from	which	it	accepts	connections.

A	SQL	Server	instance-initiated	connection	can	fail	when	authentication	for	the
connection	fails	or	when	the	remote	server	denies	access	to	all	other	instances	of
SQL	Server.

SQL-DMO

RowsCopied	Event
The	RowsCopied	event	occurs	when	a	bulk	copy	operation	completes
processing	for	a	system-defined	number	of	rows.

Applies	To

BulkCopy	Object

Syntax
Private	Sub	object_RowsCopied(Message	as	String	,	Rows	as	Long)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Message

String	that	contains	descriptive	message	text

Rows

Long	integer	that	specifies	a	number	of	rows	copied.

Prototype	(C/C++)
HRESULT	RowsCopied(SQLDMO_LPCSTR	Message,	long	Rows);

Remarks
SQL-DMO	raises	the	RowsCopied	event	only	when	the	UseServerSideBCP
property	of	the	BulkCopy	object	is	False.

The	Microsoft®	SQL	Server™	bulk	copy	process	can	copy	large	amounts	of
data	between	an	external	data	file	and	a	SQL	Server	table	or	view.

By	default,	a	bulk	copy	operation	occurs	entirely	within	one	transaction.	When	a

single	transaction	exists	for	a	bulk	copy	operation,	SQL	Server	provides
operation	status	through	messages	reporting	the	number	of	rows	copied.

SQL-DMO

ScriptTransferPercentComplete	Event
The	ScriptTransferPercentComplete	event	occurs	after	SQL-DMO	completes
Transact-SQL	command	batch	generation	for	a	Microsoft®	SQL	Server™
component	referenced	by	the	Transfer	object.

Applies	To

Transfer	Object

Syntax
Private	Sub	object_ScriptTransferPercentComplete(Message	as	String	,	
Percent	as	Long)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Message

String	that	contains	descriptive	message	text

Percent

Long	integer	representation	of	a	percentage	value.	The	value	is	the	percent	of
processing	complete	scaled	by	100.	For	example,	a	process	seven	percent
complete	reports	the	value	7.

Prototype	(C/C++)
HRESULT	ScriptTransferPercentComplete(SQLDMO_LPCSTR	szMessage,
long	Percent);

Remarks
When	using	the	ScriptTransfer	method	of	the	Database	object,	SQL-DMO

calculates	percentage	completion	as	each	component	is	scripted.	The
ScriptTransferPercentComplete	event	is	raised	once	for	every	component
referenced	by	the	Transfer	object.

SQL-DMO

ServerMessage	Event
The	ServerMessage	event	occurs	when	a	Microsoft®	SQL	Server™	success-
with-information	message	is	returned	to	the	SQL-DMO	application.

Applies	To

SQLServer	Object

Syntax
Private	Sub	object_ServerMessage(Severity	as	Long	,	
MessageNumber	as	Long	,	MessageState	as	Long	,	Message	as	String)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Severity

Long	integer	that	identifies	the	severity	level	of	a	SQL	Server	error	message

MessageNumber

Long	integer	that	identifies	a	SQL	Server	error	message	by	number

MessageState

Long	integer	that	identifies	a	state	value	for	a	SQL	Server	error	message

Message

String	that	contains	SQL	Server	error	message	text

Prototype	(C/C++)
HRESULT	ServerMessage(long	Severity,	long	MessageNumber,
long	MessageState,	SQLDMO_LPCSTR	Message);

Remarks
For	SQL	Server,	error	severity	indicates	the	degree	of	an	error	condition.	Some
errors	are	severe	enough	to	terminate	statement	execution	prematurely.	Any	error
with	a	severity	of	10	or	higher	is	returned	to	the	SQL-DMO	application	through
normal	error	handling.

More	benign	errors	indicate	that	statement	execution	succeeded,	but	that	success
was	conditional.	Success-with-information	errors,	called	messages,	are	SQL
Server	errors	with	a	severity	of	less	than	10.	Some	Transact-SQL	statements,
such	as	the	PRINT	statement,	do	not	generate	result	sets,	using	messages	for
their	return	value.

Implement	a	ServerMessage	event	handler	to	capture	SQL	Server	messages
raised	by	SQL-DMO	application	processing.

SQL-DMO

StatusMessage	Event
The	StatusMessage	occurs	when	a	SQL-DMO	object	reaches	a	system-defined
midpoint	in	processing.

Applies	To

Replication	Object Transfer	Object

Syntax
Private	Sub	object_StatusMessage(Message	as	String)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Message

String	that	contains	descriptive	message	text

Prototype	(C/C++)
HRESULT	StatusMessage(SQLDMO_LPCSTR	szMessage);

Remarks
For	the	Transfer	object,	SQL-DMO	raises	the	StatusMessage	event	during
processing	of	the	Transfer	method	of	the	Database	object.

For	the	Replication	object,	the	StatusMessage	event	is	reserved	for	future	use.

SQL-DMO

TransferPercentComplete	Event
The	TransferPercentComplete	event	occurs	after	SQL-DMO	completes
schema	or	data	copy	for	a	Microsoft®	SQL	Server™	component	referenced	by
the	Transfer	object.

Applies	To

Transfer	Object

Syntax
Private	Sub	object_TransferPercentComplete(Message	as	String	,	
Percent	as	Long)

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Message

String	that	contains	descriptive	message	text

Percent

Long	integer	representation	of	a	percentage	value.	The	value	is	the	percent	of
processing	complete	scaled	by	100.	For	example,	a	process	seven	percent
complete	reports	the	value	7.

Prototype	(C/C++)
HRESULT	TransferPercentComplete(SQLDMO_LPCSTR	szMessage,
long	Percent);

Remarks
When	using	the	Transfer	method	of	the	Database	object,	SQL-DMO	calculates

percentage	completion	after	a	component	is	copied.	Component	copy	can	be
implemented	by	simple,	non-time-intensive	tasks	such	as	creation	of	schema,	or
can	require	time-intensive	tasks	such	as	the	copy	of	a	large	amount	of	data.

The	TransferPercentComplete	event	is	raised	once	for	every	component
referenced	by	the	Transfer	object.	SQL-DMO	attempts	to	weight	the	value
provided	in	the	Percent	argument	of	the	event	handler	to	reflect	the	time	needed
to	re-create	a	component	on	the	target	database.

SQL-DMO

Constants
SQL-DMO	constants	enumerate	values.	Generally,	when	a	set	of	specific	values
can	satisfy	a	property	or	method	argument,	an	enumerated	type	defines	constant
values	valid	for	the	property	or	method	argument.

A	development	environment	may	support	syntax	completion	or	other
programming	aids	that	make	SQL-DMO	constants	visible	in	the	environment.

SQL-DMO

A

SQL-DMO

Alert	Constants	(SQLDMO_ALERT_TYPE)
Alert	constants	specify	alert	generation	events	at	a	high	level.

Constant Value Description
SQLDMOAlert_NonSQLServerEvent 3 Alert	will	be

raised	by	an
event	not	defined
for	Microsoft®
SQL	Server™

SQLDMOAlert_SQLServerEvent 1 Alert	will	be
raised	when	a
specified	SQL
Server	error
condition,	or	any
error	condition
of	a	specified
severity,	occurs

SQLDMOAlert_SQLServerPerformanceCondition 2 Alert	will	be
raised	when	a
bound	is	reached
or	exceeded	for	a
SQL	Server
counter
evaluated	by
Windows	NT
Performance
Monitor

SQL-DMO

Audit	Constants	(SQLDMO_AUDIT_TYPE)
Audit	constants	specify	login	authentication	success	or	failure,	and	are	used	to
set	the	AuditLevel	property	of	the	IntegratedSecurity	object.

Constant Value Description
SQLDMOAudit_All 3 SQLDMOAudit_Success	and

SQLDMOAudit_Failure	combined	by
using	an	OR	logical	operator

SQLDMOAudit_Failure 2 Authentication	failed
SQLDMOAudit_None 0 Not	evaluated
SQLDMOAudit_Success 1 Authentication	succeeded

See	Also

AuditLevel	Property

SQL-DMO

B

SQL-DMO

Backup	Process	Control	Constants
(SQLDMO_BACKUP_TYPE)
Backup	process	control	constants	define,	at	the	highest	level,	the	type	of	backup
performed	using	the	Backup	object.	Greater	control	over	the	backup	operation	is
provided	by	specification	of	files	and	maintenance	of	the	transaction	log
performed.

Constant Value Description
SQLDMOBackup_Database 0 Back	up	the	database
SQLDMOBackup_Files 2 Back	up	only	specified	files
SQLDMOBackup_Differential 1 Back	up	rows	changed	after	the

most	recent	full	database	or
differential	backup

SQLDMOBackup_Log 3 Back	up	only	the	database
transaction	log

SQL-DMO

Bulk	Copy	Code	Page	Constants
(SQLDMO_BCP_CODEPAGE_TYPE)
Bulk	copy	code	page	constants	specify	the	character	set	used	to	interpret	data	in
a	bulk	copy	user	data	file.	By	default,	a	bulk	copy	data	file	is	interpreted	using
the	code	page	used	by	the	client	computer	directing	data	import	or	export.

Constant Value Description
SQLDMOBCP_RAW -1 Use	the	installed,	server	code	page.
SQLDMOBCP_ACP 0 Use	the	Microsoft®	Windows®	default,

code	page	1252	(ISO	8859-1).
SQLDMOBCP_OEM 1 Default	behavior.	Use	the	code	page

installed	on	the	client.
SQLDMOBCP_User 2 Use	the	caller-specified	code	page.

SQL-DMO

Bulk	Copy	Data	Constants
(SQLDMO_DATAFILE_TYPE)
Bulk	copy	data	constants	specify	the	content	of	the	data	file	used	as	a	source	for
or	target	of	a	Microsoft®	SQL	Server™	bulk	copy	operation.

Constant Value Description
SQLDMODataFile_CommaDelimitedChar 1 Columns	are	delimited	using	a	comma

character.	Each	data	row	is	delimited	by	a
carriage	return/linefeed	character	pair.

SQLDMODataFile_Default 1 SQLDMODataFile_CommaDelimitedChar.
SQLDMODataFile_NativeFormat 4 SQL	Server	bulk	copy	native	format.
SQLDMODataFile_SpecialDelimitedChar 3 User-defined	by	the	ColumnDelimiter

RowDelimiter	properties	of	the	
object.

SQLDMODataFile_TabDelimitedChar 2 Columns	are	delimited	using	a	tab
character.	Each	data	row	is	delimited	by	a
carriage	return/linefeed	character	pair.

SQLDMODataFile_UseFormatFile 5 Bulk	copy	uses	the	file	identified	in	the
FormatFilePath	property	of	the
BulkCopy	object.

SQL-DMO

Bulk	Copy	Server	Data	File	Constants
(SQLDMO_SERVERBCP_DATAFILE_TYPE)
Bulk	copy	server	data	file	constants	specify	data	file	format	when	importing	data
by	using	the	BulkCopy	object	and	the	UseServerSideBCP	property	is	True.

Constant Value Description
SQLDMOBCPDataFile_Char 1 Read	a	data	file	as	character

data.	Interpret	the	data	file
using	the	character	set
specified.

SQLDMOBCPDataFile_Default 1 SQLDMOBCPDataFile_Char.
SQLDMOBCPDataFile_Native 2 Assume	bulk	copy	native	data

format	when	reading	the	data
file.

SQLDMOBCPDataFile_WideChar 4 Read	a	data	file	as	Unicode
character	data.

SQLDMOBCPDataFile_WideNative 8 Assume	bulk	copy	wide	native
data	format	when	reading	the
data	file.	Import	treats	all
character	data	types	as	wide
character	(Unicode).

SQL-DMO

C

SQL-DMO

Compatibility	Level	Constants
(SQLDMO_COMP_LEVEL_TYPE)
Compatibility	level	constants	control	version	specific	behavior	for	an	instance	of
Microsoft®	SQL	Server™	version	7.0.

Constant Value Description
SQLDMOCompLevel_60 60 Force	SQL	Server	6.0

behavior.
SQLDMOCompLevel_65 65 Force	SQL	Server	6.5

behavior.
SQLDMOCompLevel_70 70 Force	SQL	Server	7.0

behavior.
SQLDMOCompLevel_80 80 Default.	Instance	behaves	as

documented	for	SQL	Server
2000.

SQLDMOCompLevel_Unknown 0 Bad	or	invalid	value.

See	Also

Backward	Compatibility

CompatibilityLevel	Property	(Database)

JavaScript:hhobj_1.Click()

SQL-DMO

Configuration	Value	Constants
(SQLDMO_CONFIGVALUE_TYPE)
Configuration	value	constants	are	returned	by	the	ID	property	of	the
ConfigValue	object,	providing	unique	identification	of	a	Microsoft®	SQL
Server™	configurable	option,	such	as	the	resource	time-out	period.

For	more	information	about	setting	options,	see	Setting	Configuration	Options.

In	the	table,	the	constant	description	is	matched	to	content	describing	the	option
specified	by	the	constant.	For	a	description	of	the	option	and	its	maximum,
minimum,	and	default	running	values,	see	the	referenced	content	in	SQL	Server
documentation.

Constant Value Reference
SQLDMOConfig_AllowUpdates 102 allow	updates

Option
SQLDMOConfig_CostThresholdForParallelism 1538 cost	threshold	for

parallelism	Option
SQLDMOConfig_CursorThreshold 1531 cursor	threshold

Option
SQLDMOConfig_DefaultLanguage 124 default	language

Option
SQLDMOConfig_DefaultSortorderId 1123 Obsolete
SQLDMOConfig_FillFactor 109 fill	factor	Option
SQLDMOConfig_IndexCreateMem 1505 index	create

memory	Option
SQLDMOConfig_LanguageInCache 125 Obsolete
SQLDMOConfig_LanguageNeutral 1126 default	full-text

language	Option
SQLDMOConfig_LightweightPooling 1546 lightweight

pooling	Option
SQLDMOConfig_Locks 106 locks	Option
SQLDMOConfig_MaxAsyncIO 502 Obsolete

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()

SQLDMOConfig_MaxDegreeOfParallelism 1539 max	degree	of
parallelism	Option

SQLDMOConfig_MaxMemory 1544 Server	Memory
Options

SQLDMOConfig_MaxTextReplSize 1536 max	text	repl	size
Option

SQLDMOConfig_MaxWorkerThreads 503 max	worker
threads	Option

SQLDMOConfig_MediaRetention 1537 media	retention
Option

SQLDMOConfig_MinMemoryPerQuery 1540 min	memory	per
query	Option

SQLDMOConfig_MinMemory 1543 Server	Memory
Options

SQLDMOConfig_NestedTriggers 115 nested	triggers
Option

SQLDMOConfig_NetworkPacketSize 505 network	packet
size	Option

SQLDMOConfig_OpenObjects 107 open	objects
Option

SQLDMOConfig_PriorityBoost 1517 priority	boost
Option

SQLDMOConfig_ProcessorAffinityMask 1535 affinity	mask
Option

SQLDMOConfig_QueryMaxTime 1545 query	governor
cost	limit	Option

SQLDMOConfig_QueryWait 1541 query	wait	Option
SQLDMOConfig_RecoveryInterval 101 recovery	interval

Option
SQLDMOConfig_RemoteAccess 117 remote	access

Option
SQLDMOConfig_RemoteConnTimeout 543 Obsolete
SQLDMOConfig_RemoteLoginTimeout 1519 remote	login

timeout	Option

JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()
JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()
JavaScript:hhobj_19.Click()
JavaScript:hhobj_20.Click()
JavaScript:hhobj_21.Click()
JavaScript:hhobj_22.Click()
JavaScript:hhobj_23.Click()
JavaScript:hhobj_24.Click()
JavaScript:hhobj_25.Click()
JavaScript:hhobj_26.Click()
JavaScript:hhobj_27.Click()

SQLDMOConfig_RemoteProcTrans 542 remote	proc	trans
Option

SQLDMOConfig_RemoteQueryTimeout 1520 remote	query
timeout	Option

SQLDMOConfig_ResourceTimeout 1533 Obsolete
SQLDMOConfig_SetWorkingSetSize 1532 set	working	set

size	Option
SQLDMOConfig_ShowAdvancedOption 518 show	advanced

options	Option
SQLDMOConfig_SpinCounter 1514 Obsolete
SQLDMOConfig_TimeSlice 1110 Obsolete
SQLDMOConfig_TwoDigitYearCutoff 1127 two	digit	year

cutoff	Option
SQLDMOConfig_UnicodeComparisonStyle 1125 Obsolete

SQLDMOConfig_UnicodeLocalID 1124 Obsolete
SQLDMOConfig_UserConnections 103 user	connections

Option
SQLDMOConfig_UserOptions 1534 user	options

Option
SQLDMOConfig_VLMSize 1542 Obsolete

See	Also

ConfigValue	Object

JavaScript:hhobj_28.Click()
JavaScript:hhobj_29.Click()
JavaScript:hhobj_30.Click()
JavaScript:hhobj_31.Click()
JavaScript:hhobj_32.Click()
JavaScript:hhobj_33.Click()
JavaScript:hhobj_34.Click()

SQL-DMO

D

SQL-DMO

Database	Compression	Constants
(SQLDMO_SHRINK_TYPE)
Database	compression	constants	control	the	behavior	of	the	Shrink	method,
optimizing	method	execution.

Constant Value Description
SQLDMOShrink_Default 0 Data	in	pages	located	at	the	end	of

the	file(s)	is	moved	to	pages
earlier	in	the	file(s).	File(s)	are
truncated	to	reflect	allocated
space.

SQLDMOShrink_EmptyFile 3 Migrate	all	data	from	the
referenced	file	to	other	files	in	the
same	filegroup.

SQLDMOShrink_NoTruncate 1 Data	in	pages	located	at	the	end	of
the	file(s)	is	moved	to	pages
earlier	in	the	file(s).

SQLDMOShrink_TruncateOnly 2 Data	distribution	is	not	affected.
File(s)	are	truncated	to	reflect
allocated	space,	recovering	free
space	at	the	end	of	any	file.

See	Also

Shrink	Method

SQL-DMO

Database	Repair	Constants
(SQLDMO_DBCC_REPAIR_TYPE)
Database	repair	constants	control	behavior	of	the	CheckTables	and
CheckAllocations	methods	of	the	Database	object.

Constant Value Description
SQLDMORepair_Allow_DataLoss 3 Attempt	all	database	repair

regardless	of	the	possibility	of
data	loss.	For	example,	delete
corrupted	text	objects.

SQLDMORepair_Fast 1 Attempt	database	repair	tasks
that	do	not	incur	data	loss.

SQLDMORepair_None 0 Do	not	attempt	database	repair
on	database	inconsistencies
encountered.

SQLDMORepair_Rebuild 2 Attempt	database	repair	tasks
that	do	not	incur	data	loss.
Rebuild	indexes	on	successful
database	repair.

See	Also

CheckAllocations	Method

CheckTables	Method

SQL-DMO

Database	Statistics	Affected	Constants
(SQLDMO_STAT_AFFECT_TYPE)
Database	statistics	affected	constants	control	behavior	of	the
UpdateStatisticsWith	method	of	the	Table	object.	Use	the
UpdateStatisticsWith	method	to	force	a	refresh	of	query	optimization
supporting	statistics	maintained	by	Microsoft®	SQL	Server™.

Constant Value Description
SQLDMOStatistic_AffectAll 2 Update	all	statistics	regardless

of	the	source.
SQLDMOStatistic_AffectColumn1 Update	statistics	derived	from

column	data	only.
SQLDMOStatistic_AffectIndex 0 Default.	Update	statistics

derived	from	indexes	only.

See	Also

UpdateStatisticsWith	Method	(Table)

SQL-DMO

Database	Statistics	Scanning	Constants
(SQLDMO_STAT_SCAN_TYPE)
Database	statistics	scanning	constants	control	behavior	of	the
UpdateStatisticsWith	method	of	the	Table	object.	Use	the
UpdateStatisticsWith	method	to	force	a	refresh	of	query	optimization
supporting	statistics	maintained	by	Microsoft®	SQL	Server™.

Constant Value Description
SQLDMOStatistic_FullScan 3 Perform	a	full	scan	of	the	index(es)	or

column(s)	to	determine	statistics
values.

SQLDMOStatistic_Percent 1 Perform	a	sampled	scan	using	a
percentage	value.	When	specified,	use
the	ScanNumber	value	to	indicate
percentage.	Specify	percentage	using
a	whole	number,	for	example,	55
specifies	55	percent.

SQLDMOStatistic_Rows 2 Perform	a	sampled	scan	using	a
number	of	rows.	When	specified,	use
the	ScanNumber	argument	to	indicate
number	of	rows.

SQLDMOStatistic_Sample 0 Perform	a	percentage	sampled	scan
using	a	system	defined	percentage.

See	Also

UpdateStatisticsWith	Method	(Column,	Index)

UpdateStatisticsWith	Method	(Table)

SQL-DMO

Database	Status	Constants
(SQLDMO_DBSTATUS_TYPE)
Use	database	status	constants	to	interpret	the	return	value	of	the	Status	property
of	the	Database	object.

Constant Value Description
SQLDMODBStat_All 34784 All	database	status	constants

combined	by	using	an	OR
logical	operator

SQLDMODBStat_EmergencyMode 32768 Emergency	mode	has	been
initiated	on	the	referenced
database

SQLDMODBStat_Inaccessible 992 SQLDMODBStat_Loading,
SQLDMODBStat_Offline,
SQLDMODBStat_Recovering,
and	SQLDMODBStat_Suspect
combined	by	using	an	OR
logical	operator

SQLDMODBStat_Loading 32 Database	loading	is	underway
on	the	referenced	database

SQLDMODBStat_Normal 0 Referenced	database	is
available	for	use

SQLDMODBStat_Offline 512 Referenced	database	has	been
placed	offline	by	a	system	or
user	action

SQLDMODBStat_Recovering 192 Database	recovery	is	underway
on	the	referenced	database

SQLDMODBStat_Standby 1024 Referenced	database	defined	on
a	standby	server

SQLDMODBStat_Suspect 256 Database	integrity	is	suspect	for
the	referenced	database

SQL-DMO

Database	User	Profile	Constants
(SQLDMO_DBUSERPROFILE_TYPE)
Database	user	profile	constants	roughly	specify	privilege	for	a	Microsoft®	SQL
Server™	login	or	database	user	used	by	a	client	connection.

Constant Value Description
SQLDMODbUserProf_AllProfileBits 1023 User	has	all

specifiable
database
maintenance
privileges

SQLDMODbUserProf_CreateDefault 32 User	has
permission	to
execute	the
CREATE
DEFAULT
statement

SQLDMODbUserProf_CreateFunction 512 User	has
permission	to
execute	the
CREATE
FUNCTION
statement

SQLDMODbUserProf_CreateProcedure 8 User	has
permission	to
execute	the
CREATE
PROCEDURE
statement

SQLDMODbUserProf_CreateRule 128 User	has
permission	to
execute	the
CREATE	RULE

statement
SQLDMODbUserProf_CreateTable 2 User	has

permission	to
execute	the
CREATE	TABLE
statement

SQLDMODbUserProf_CreateView 4 User	has
permission	to
execute	the
CREATE	VIEW
statement

SQLDMODbUserProf_DbNotAvailable -1073741824Unable	to
determine	user
privilege	due	to
offline	or	other
error

SQLDMODbUserProf_DboLogin 1 User	is	a	member
of	the	db_owner
role

SQLDMODbUserProf_DumpDatabase 16 User	can	back	up
data	for	the
referenced	database

SQLDMODbUserProf_DumpTransaction 64 User	can	back	up
the	transaction	log
of	the	referenced
database

SQLDMODbUserProf_DumpTable 256 User	can	back	up
database	data
specifying	a	table
as	the	backup	unit

SQLDMODbUserProf_InaccessibleDb -2147483648Referenced
database	is	offline
or	is	otherwise
inaccessible

SQLDMODbUserProf_InvalidLogin 1073741824 Current	connection
login	has	no	user

privilege	in	the
referenced	database

SQLDMODbUserProf_None 0 User	has	no
database
modification	or
maintenance
privileges

See	Also

Server	User	Profile	Constants	(SQLDMO_SRVUSERPROFILE_TYPE)

UserProfile	Property

SQL-DMO

Data	Copy	Constants
(SQLDMO_COPYDATA_TYPE)
Data	copy	constants	specify	inclusion	and	behavior	for	table	data	when	the
Transfer	object	is	used	to	copy	schema	or	data	from	one	instance	of	Microsoft®
SQL	Server™	to	another.

Constant Value Description
SQLDMOCopyData_Append 2 Copy	data.	Data	copied	will	be

appended	to	existing	tables.
SQLDMOCopyData_False 0 Do	not	copy	data.	Copy	schema

only.
SQLDMOCopyData_Replace 1 Copy	data.	Existing	data	will	be

replaced	by	data	copied.

SQL-DMO

Day	of	Week	Constants
(SQLDMO_WEEKDAY_TYPE)
Day	of	week	constants	enumerate	the	days	of	the	week.

Constant Value Description
SQLDMOWeek_EveryDay 127 All	days
SQLDMOWeek_Sunday 1 Sunday
SQLDMOWeek_Monday 2 Monday
SQLDMOWeek_Tuesday 4 Tuesday
SQLDMOWeek_Wednesday 8 Wednesday
SQLDMOWeek_Thursday 16 Thursday
SQLDMOWeek_Friday 32 Friday
SQLDMOWeek_Saturday 64 Saturday
SQLDMOWeek_WeekDays 62 Monday,	Tuesday,	Wednesday,

Thursday,	and	Friday
SQLDMOWeek_WeekEnds 65 Saturday	and	Sunday
SQLDMOWeek_Unknown 0 None	specified

SQL-DMO

Dependency	Constants
(SQLDMO_DEPENDENCY_TYPE)
Dependency	constants	control	the	behavior	of	the	EnumDependencies	method
exposed	by	several	SQL-DMO	objects.

Constant Value Description
SQLDMODep_Children 262144 List	all	Microsoft®	SQL

Server™	components	that
depend	on	the	referenced	SQL
Server	component.

SQLDMODep_DRIOnly 2097152 List	only	SQL	Server
components	that	depend	on
the	referenced	SQL	Server
component	in	a	DRI
relationship.

SQLDMODep_FirstLevelOnly 1048576 List	only	immediate	parents.
Combine	with
SQLDMODep_Children	to
list	only	immediate	children.

SQLDMODep_FullHierarchy 65536 List	full	parent	hierarchy.
Combine	with
SQLDMODep_Children	to
list	full	child	hierarchy.

SQLDMODep_IncludeSystem 4194304 Include	system	objects.
SQLDMODep_OrderDescending 131072 Apply	descending	order	to

returned	list.
SQLDMODep_Parents 0 List	all	objects	on	which	the

referenced	SQL	Server
component	depends.

SQLDMODep_ReturnInputObject 524288 Include	SQL	Server
component	referenced	by	the
SQL-DMO	object	in	the	list

returned.
SQLDMODep_Valid 8323072 All	dependency	constants

combined	by	using	an	OR
logical	operator.

See	Also

EnumDependencies	Method

SQL-DMO

Device	Type	Constants	(SQLDMO_DEVICE_TYPE)
Device	type	constants	define	media	that	are	valid	as	targets	for	designation	as
backup	devices.

Constant Value Description
SQLDMODevice_CDROM 7 Reserved	for	future	use
SQLDMODevice_DiskDump 2 Device	is	a	disk	file
SQLDMODevice_FloppyADump 3 Device	is	a	disk	file	created	on

removable	media	in	drive	A
SQLDMODevice_FloppyBDump 4 Device	is	a	disk	file	created	on

removable	media	in	drive	B
SQLDMODevice_PipeDump 6 Device	identifies	a	named	pipe
SQLDMODevice_TapeDump 5 Device	is	a	tape
SQLDMODevice_Unknown 100 Bad	or	invalid	device	type

SQL-DMO

E

SQL-DMO

Error	Constants	(SQLDMO_ERROR_TYPE)
SQL-DMO	errors	are	categorized,	roughly	grouping	errors	returned	by	source	or
process.	SQL-DMO	defines	the	macro	SQLDMO_ECAT_MASK,	which	can	be
used	to	determine	the	error	category.	For	more	information	about	using
SQLDMO_ECAT_MASK,	see	Handling	SQL-DMO	Errors	and	Helpful	Macros.

The	following	table	documents	SQL-DMO	error	categories.

Constant Value Description
SQLDMO_ECAT_INVALIDCONTEXT 0x5000Method	call,

property	get,
or	property	set
is	not	valid	in
context.

SQLDMO_ECAT_INVALIDOBJECT 0x5100 SQL-DMO
object	is	not
valid.

SQLDMO_ECAT_INVALIDOBJECTDEFINITION0x5200Microsoft®
SQL	Server™
component
creation	failed
due	to	error	in
definition	of
component.

SQLDMO_ECAT_INVALIDPARAMETER 0x5300 Invalid
argument
value	on
method	call	or
property	set.

SQLDMO_ECAT_INVALIDPLATFORM 0x5400 Invalid
version	of
SQL	Server	or
an	invalid
version	of

SQL-DMO.
SQLDMO_ECAT_ITEMNOTFOUND 0x5500 Collection

item
dereferencing
errors	(item
not	locatable
by	name	or
ordinal
position	out	of
range).

SQLDMO_ECAT_UNPRIVILEGEDLOGIN 0x5600 Login	used	for
SQLServer
object
connection
does	not	have
sufficient
privilege	to
perform	the
requested
operation.

SQLDMO_ECAT_EXECUTION 0x5700 Errors
indicating	a
query
execution
error	or	an
inaccessible
database.

SQLDMO_ECAT_CONNECTION 0x5800 SQLServer
object	failed
an	automatic
reconnect
attempt.	A
connection
cannot	be
restored.

SQLDMO_ECAT_RESOURCE 0x5900 Insufficient

resources
either	locally
or	on	the
server.

Errors	masked	by	SQLDMO_ECAT_INVALIDCONTEXT	include	the
following.

Constant Value Description
SQLDMO_E_ALREADYCONN 0x5000 Attempt	to	use	the

Connect	method	of	a
connected	SQLServer
object.

SQLDMO_E_ALREADYCOLL 0x5001 Attempt	to	add	an	object
redundantly	to	its
containing	collection.

SQLDMO_E_NOTCONN 0x5002 SQLServer	object	is	not
connected.

SQLDMO_E_CANTDROPSERVER 0x5003 Reserved.
SQLDMO_E_NOCOMPLEXALTER 0x5004 Attempt	to	modify	a

property	not	changeable
on	an	existing	SQL	Server
component.

SQLDMO_E_PROPNEEDSCREATE 0x5005 Property	or	method	not
available	until	the	object
(or	its	parent,	if
appropriate)	references	an
existing	SQL	Server
component.

SQLDMO_E_COLTYPEFIXED 0x5006 Data	type	is	fixed	length;
no	length	can	be	specified.

SQLDMO_E_COLTYPENONNULL 0x5007 Data	type	does	not	allow
NULL	value.

SQLDMO_E_CANTCHANGEUDDT 0x5008 Attempt	to	set	the
AllowNulls,	BaseType
Length,

NumericPrecision
NumericScale	property	of
a	UserDefinedDatatype
object	referencing	an
existing	user-defined	data
type.

SQLDMO_E_BASETYPEFIXED 0x5009 Base	data	type	is	fixed
length;	no	length	can	be
specified.

SQLDMO_E_BASETYPENONNULL 0x500ABase	data	type	does	not
allow	NULL	values.

SQLDMO_E_ENUMORDINAL 0x500B Reserved.
SQLDMO_E_CANTRENAMEUSER 0x500C Attempt	to	set	the	

or	Login	property	of	a
User	object	referencing	an
existing	user.

SQLDMO_E_CANTRENAMEGROUP 0x500DReserved.
SQLDMO_E_CANTRENAMELOGIN 0x500E Attempt	to	set	the	

property	of	a	Login
referencing	an	existing
login.

SQLDMO_E_CANTRENAMEDEVICE 0x500F Attempt	to	set	the	
PhysicalLocation
SkipTapeLabel
property	of	a
BackupDevice	object
referencing	an	existing
device.

SQLDMO_E_NOTDUMPPROP 0x5010 Reserved.
SQLDMO_E_NOSERVERASSOC 0x5011 Reserved.
SQLDMO_E_NOTCOLLTYPE 0x5012 Object	type	does	not

match	the	collection	type
on	Add	method	call.

SQLDMO_E_CANTMODIFYDRIINDEX 0x5013 Referenced	index	supports
a	declarative	referential
integrity	constraint.

Remove	method	of	the
Index	object	or	
collection	fails,	use	
object	or	Keys	collection
to	drop	the	index.

SQLDMO_E_CANTCHANGEPROCTYPE 0x5014 Attempt	to	set	the	
property	of	a
StoredProcedure
referencing	an	existing
stored	procedure.

SQLDMO_E_CANTMODIFYINDEX 0x5015 Attempt	to	set	the
FileGroup,
IndexedColumns
NoRecompute,
StatisticsIndex
property,	or	attempt	to	use
GenerateCreationSQL
GenerateSQL	methods,
of	an	Index	object
referencing	an	existing
index.

SQLDMO_E_INVALIDPRIVOBJ 0x5016 Reserved.
SQLDMO_E_CANTCHANGETRIGTYPE 0x5017 Reserved.
SQLDMO_E_NOVIEWCOLALTER 0x5018 Column	object	retrieved

by	using	the	ListColumns
method	of	the	View
cannot	be	used	to	modify
the	column	referenced.

SQLDMO_E_CANTRENAMELANGUAGE 0x5019 Reserved.
SQLDMO_E_CANTRENAMERSERVER 0x501AAttempt	to	set	the	

property	of	a
RemoteServer	object
referencing	an	existing
remote	server.

SQLDMO_E_CANTRENAMERLOGIN 0x501B Attempt	to	set	the
LocalName	or

RemoteName	property	of
a	RemoteLogin
referencing	an	existing
remote	login.

SQLDMO_E_MUSTBEDBDEV 0x501C Reserved.
SQLDMO_E_NOINACTIVEMIRROR 0x501DReserved.
SQLDMO_E_NOACTIVEMIRROR 0x501E Reserved.
SQLDMO_E_NOMIRROR 0x501F Reserved.
SQLDMO_E_SERVERDISCONNECTED 0x5020 SQLServer	object

DisConnect	method	has
been	called.	Use	
or	ReConnect	to
reestablish	connection.

SQLDMO_E_CANTRENAMESERVER 0x5021 Attempt	to	set	the	
LoginSecure,
LoginTimeout,	
NetPacketSize,	or
Password	property	of	a
connected	SQLServer
object.

SQLDMO_E_CANTMODIFYTEXT 0x5022 Attempt	to	set	the	
property	of	a	Default
Rule	object	that	references
an	existing	component.
Attempt	to	set	the	
property	of	a
StoredProcedure
that	references	an	existing
extended	stored	procedure.

SQLDMO_E_CANTMODIFYSYSTABLE 0x5023 Attempt	to	set	the	
property,	or	attempt	to	use
BeginAlter,	DoAlter
ImportData,	Remove
TruncateData	method,	of
a	Table	object	that
references	a	SQL	Server

system	table.
SQLDMO_E_LOGINALREADYALIASED 0x5024 Error	in	alias	reassignment

performed	by	the
SetOwner	method.

SQLDMO_E_LOGINALREADYUSER 0x5025 Error	in	user	existence
check	performed	by	the
SetOwner	method.

SQLDMO_E_CACHENORESULTS 0x5026 Attempt	to	get	or	set	a
property	or	call	a	method
on	an	empty
QueryResults	object.

SQLDMO_E_ALREADYCREATED 0x5027 Attempt	to	set	a	property
or	use	the	GenerateSQL
method	of	an	object	that
references	an	existing
component.

SQLDMO_E_NOTDISCONN 0x5028 Attempt	to	call	the
ReConnect	method	of	a
connected	SQLServer
object.

SQLDMO_E_CANTMODIFYARTTABLE 0x5029 Attempt	to	set	the
SourceObjectName
SourceObjectOwner
property	of	an	object	that
references	an	existing
merge,	transactional,
snapshot,	or	distribution
article.

SQLDMO_E_PROPERTYCANNOTBEMODIFIED 0x502AAttempt	to	set	a	property
not	changeable	when	the
object	references	an
existing	replication
component.

SQLDMO_E_BASETYPENOTNUMERIC 0x502B Attempt	to	set	the
NumericPrecision
NumericScale	property	of

a	Column	or
UserDefinedDatatype
object	that	does	not
reference	a	fixed	numeric
precision	and	scale	data
type.

SQLDMO_E_TOFILEBUTNOFILENAME 0x502C Object	scripting	arguments
specify	a	single	file	as
output,	and	no	file	name	is
provided.

SQLDMO_E_CANTMODIFYKEY 0x502E Attempt	to	set	the
Clustered,
ExcludeReplication
FileGroup,	Type
ReferencedTable
of	a	Key	object	that
references	an	existing
primary	or	foreign	key.

SQLDMO_E_LISTCANTREFRESH 0x502F Attempt	to	use	the
Refresh	method	of	a	list
object	cannot	complete.
Re-call	method	returning
the	list	object.

SQLDMO_E_NOCOLTABLE 0x5030 This	column	object	is	not
associated	with	a	table.

SQLDMO_E_MUSTBEINALTER 0x5031 Reserved.
SQLDMO_E_CANTUNDEDICATELOGDEVICE 0x5032 Reserved.
SQLDMO_E_CANTRENAMESERVERGROUP 0x5033 Attempt	to	set	the	

property	of	a
ServerGroup	object	that
references	an	existing
server	group.

SQLDMO_E_CANTRENAMEREGISTEREDSERVER0x5034 Attempt	to	set	the	
property	of	a
RegisteredServer
that	references	an	existing

registered	server.
SQLDMO_E_INDEXREBUILDKEYTYPE 0x5035 RebuildIndex	method

called	on	a	Key
references	a	FOREIGN
KEY	constraint.

SQLDMO_E_REBUILDINDEXOPTIONS 0x5036 Invalid	IndexType
argument	specified	on
RebuildIndexes
call.

SQLDMO_E_IMPERSONATEXPONLY 0x5037 Reserved.
SQLDMO_E_CANTRENAMEPUBLICATION 0x5038 Attempt	to	set	the	

property	of	an	object	that
references	an	existing
distribution,	merge	or
transactional	replication
publication.

SQLDMO_E_CANTMODIFYSPARTTYPE 0x5039 Attempt	to	change	the
ArticleType	property	of	a
TransArticle	object	that
references	stored
procedure	execution.

SQLDMO_E_INVALIDDISTDB 0x503ADistributionDatabase
property	of	a
DistributionPublisher
object	does	not	reference
an	existing	database.

SQLDMO_E_CANTMODIFYTABLE 0x503B Attempt	to	set	the
FileGroup	or
TextFileGroup
or	attempt	to	use	the
GenerateSQL	method,	of
a	Table	object	that
references	an	existing
table.

SQLDMO_E_CANTDROPFILEGROUP 0x503C Attempt	to	use	the
Remove	method	of	the

FileGroup	object	or
FileGroups	collection	that
indicates	a	file	group	that
maintains	indexes.

SQLDMO_E_DEFAULTFILEGROUP 0x503DAttempt	to	set	the	
or	ReadOnly	property,	or
attempt	to	use	the	
method	of	the	FileGroup
object	or	FileGroups
collection	that	indicates
the	primary	file	group.

SQLDMO_E_NOTDEFAULTFILEGROUP 0x503E Reserved.
SQLDMO_E_CANTRESETLOGINTYPE 0x503F Attempt	to	set	the	

property	of	a	Login
that	references	an	existing
login.

SQLDMO_E_CANTRESETPASSWORD 0x5040 Attempt	to	set	the
AppRole	or	Password
property	of	a
DatabaseRole	object	that
references	an	existing
application	role.

SQLDMO_E_PRESQL70 0x5041 Method	or	property	no
longer	implemented.

SQLDMO_E_PROPBEFORECREATE 0x5042 Attempt	to	get	the
Password	property	of	a
DatabaseRole	object	or
set	the	Role	property	of	a
User	object	that	references
an	existing	component.

SQLDMO_E_CANTRENAMEROLE 0x5043 Attempt	to	set	the	
property	of	a
DatabaseRole	object	that
references	an	existing
database	role.

SQLDMO_E_CANTDROPFIXEDROLE 0x5044 Attempt	to	use	the

Remove	method	of	the
DatabaseRole	object	or
DatabaseRoles
that	indicate	a	system-
defined	database	role.

SQLDMO_E_CANTADDTOAPPROLE 0x5045 Attempt	to	use	the
AddMember	method	of	a
DatabaseRole	object	that
references	an	application
role.

SQLDMO_E_CANTGETROLE 0x5046 Attempt	to	get	the	
property	of	a	User
that	references	an	existing
user.	The	Role	property	is
read-write	using	the	
object	to	create	a	user.

SQLDMO_E_USERDBROLE 0x5047 Attempt	to	use	the
ListDatabasePermissions
or	ListObjectPermissions
method	of	a
DatabaseRole	object	that
references	a	system-
defined	database	role.

SQLDMO_E_FIXEDDBROLE 0x5048 Attempt	to	use	the
EnumFixedDatabaseRole
Permission	method	of	a
DatabaseRole	object	that
references	a	user-defined
database	role.

SQLDMO_E_CANTMODIFYFILTER 0x5049 Reserved.
SQLDMO_E_INVALIDACTION 0x504AReturned	by	the

SQLBackup,
SQLRestore,	or
SQLVerify	method	when
the	Action	property	of	the
object	specifies	an	invalid

operation.
SQLDMO_E_DBOPTION 0x504B Attempt	to	use	set	the

RecursiveTriggers
property	of	a	DBOption
object	that	references	the
system	database	

SQLDMO_E_USEALTER 0x504C Attempt	to	set	the	
property	of	a
StoredProcedure
Trigger,	or	View
that	references	an	existing
component.	Use	the	
method	to	change
component	definition.

SQLDMO_E_CREATEDBPERM 0x504DAttempt	to	use	a	
object	that	does	not
reference	the	system
database	master	
deny,	or	revoke	permission
to	execute	the	CREATE
DATABASE	statement.

SQLDMO_E_CANTCHECKFK 0x504E Attempt	to	set	the
Checked	property	of	a
Key	object	that	references
a	primary	key.

SQLDMO_E_NOTINMB 0x504F Attempt	to	get	the
FileGrowthInKB
property	of	a	DBFile
LogFile	object	that
references	an	operating
system	file	expanded	by
percentage	of	current	size
calculation.

SQLDMO_E_CANTRENAMELSERVER 0x5050 Attempt	to	set	the
Catalog,	DataSource
Location,	Name

ProductName,
ProviderName
ProviderString
of	a	LinkedServer
that	references	an	existing
linked	server.

SQLDMO_E_CANTRENAMELLOGIN 0x5051 Attempt	to	set	the
LocalLogin	property	of	a
LinkedServerLogin
object	referencing	an
existing	linked	server
login.

SQLDMO_E_CANTRENAMEFULLTEXT 0x5052 Attempt	to	set	the
FullTextCatalogName
UniqueIndexForFullText
property	of	a	Table
that	references	a	full-text
indexed	table.

SQLDMO_E_NOFULLTEXT 0x5053 Attempt	to	set	the
FullTextIndexActive
property	of	a	Table
that	references	a	table	not
full-text	indexed,	or
attempt	to	set	the
FullTextIndex	property	of
a	Column	object	that
references	a	column	in	a
table	not	full-text	indexed.

SQLDMO_E_ACTIVATEFULLTEXT 0x5054 Attempt	to	set	the
FullTextIndex	property	of
a	Column	object	that
references	a	column	in	a
table	with	full-text
indexing	active.	Use	the
FullTextIndexActive
property	of	the	Table
object	to	deactivate	full-

text	indexing.
SQLDMO_E_NOTFULLTEXTENABLED 0x5055 Database	referenced	by

full-text	indexing
component	is	not	enabled
for	full-text	indexing.

SQLDMO_E_CANTDROPLOGFILE 0x5056 Reserved.
SQLDMO_E_CANTDROPLSLOGIN 0x5057 Attempt	to	use	the

Remove	method	of	the
LinkedServerLogin
object	or
LinkedServerLogins
collection	that	indicates	a
system-defined	linked
server	login.

SQLDMO_E_SCRIPTPWD 0x5058 Attempt	to	use	the	
method	of	a	Login
to	script	a	password	to	a
non-Unicode	file.

SQLDMO_E_DISTRIBUTORNOTINSTALLED 0x5059 Reserved.
SQLDMO_E_CANTRENAMESTAT 0x505AAttempt	to	set	the	

property	of	an	Index
object	that	references	an
existing	data	distribution
statistics	index.

SQLDMO_E_CANTDROPAUTOINDEX 0x505B Attempt	to	use	the
Remove	method	of	the
Index	object	or	
collection	that	indicates	a
data	distribution	statistics
index.

SQLDMO_E_FROMGUEST 0x505C Reserved.
SQLDMO_E_INVALIDPROPDISTNOTLOCAL 0x5060 Reserved.
SQLDMO_E_CANTMODIFYNONTABLEARTTYPE 0x5064 You	can	change	the	type	of

an	existing	article	only	if	it
is	a	table	article.

SQLDMO_E_CANTMODIFYARTTYPE 0x5065 You	cannot	change	the

type	of	an	existing	merge
article.

SQLDMO_E_REGERROR 0x5066 Registry	error	occurred.
Registry	key	may	not
exist.

SQLDMO_E_NOCOLUMNALTER 0x5067 Attempt	to	modify	existing
column	not	supported
because	data	type	cannot
be	altered	after	creation.

SQLDMO_E_INVALIDRESTORE 0x5068 BackupSetName
is	not	supported	by	the
Restore	object.

SQLDMO_E_NONTRANSFERENCRYPTED 0x5069 You	cannot	transfer	an
encrypted	stored	procedure
using	an	instance	of	SQL
Server	2000.

SQLDMO_E_UDFSCRIPTERR 0x506AUser-defined	function	text
cannot	be	retrieved.

Errors	masked	by	SQLDMO_ECAT_INVALIDOBJECT	include	the	following.

Constant Value Description
SQLDMO_E_OBJECTDROPPED 0x5100 Object	invalid	due	to

Remove	method	call.
SQLDMO_E_NOTSQLDMOOBJECT 0x5101 OLE	object	passed	to	a

SQL-DMO	method	is
not	a	SQL-DMO	object.

SQLDMO_E_OBJECTDETACHED 0x5102 Object	invalid	due	to
Refresh	method	call	or
other	method	forcing
reference	release.

SQLDMO_E_SERVERCLOSED 0x5103 Object	invalid	due	to
Close	method	call	or
other	method	of	the
SQLServer	object

forcing	application
reference	release.

SQLDMO_E_CANTRENAMEUDF 0x5105 You	cannot	rename	an
existing	user-defined
function.

SQLDMO_E_PRESQL80 0x5106 OLE	object	passed	to	a
SQL-DMO	method	is	a
pre-SQL	Server	2000
object.

Errors	masked	by	SQLDMO_ECAT_INVALIDOBJECTDEFINITION	include
the	following.

Constant Value Description
SQLDMO_E_NOCOLUMNSADDED 0x5200 Attempt	to	add	a	

empty	Columns	
Tables	collection	of	a	
DoAlter	method	of	the	
called	and	Columns
empty.

SQLDMO_E_COLUMNINCOMPLETE 0x5201 Attempt	to	add	an	incompletely	defined
Column	object	to	its	containing
collection.	Occurs	when	the
IsComputed
object	is	False.

SQLDMO_E_TABLEINCOMPLETE 0x5202 Attempt	to	add	a	
empty	Name
collection.

SQLDMO_E_UDDTINCOMPLETE 0x5203 Attempt	to	add	an	incompletely	defined
UserDefinedDatatype
containing	collection.

SQLDMO_E_RULEINCOMPLETE 0x5204 Attempt	to	add	an	incompletely	defined
Rule	object	to	its	containing	collection.

SQLDMO_E_DEFAULTINCOMPLETE 0x5205 Attempt	to	add	an	incompletely	defined
Default	object	to	its	containing

collection.
SQLDMO_E_VIEWINCOMPLETE 0x5206 Attempt	to	add	an	incompletely	defined

View	object	to	its	containing	collection.
SQLDMO_E_USERINCOMPLETE 0x5207 Attempt	to	add	an	incompletely	defined

User	object	to	its	containing	collection.
SQLDMO_E_GROUPINCOMPLETE 0x5208 Reserved.
SQLDMO_E_PROCINCOMPLETE 0x5209 Attempt	to	add	an	incompletely	defined

StoredProcedure
containing	collection.

SQLDMO_E_USERALREADYEXISTS 0x520AAttempt	to	add	a	
collection	that	exposes	a	user	of	the
same	name.

SQLDMO_E_GROUPALREADYEXISTS 0x520B Reserved.
SQLDMO_E_COLUMNALREADYEXISTS 0x520C Attempt	to	add	a	

Columns	collection	that	exposes	a
column	of	the	same	name.

SQLDMO_E_OBJECTALREADYEXISTS 0x520DReserved.
SQLDMO_E_INDEXALREADYEXISTS 0x520E Reserved.
SQLDMO_E_DBALREADYEXISTS 0x520F Reserved.
SQLDMO_E_LOGINALREADYEXISTS 0x5210 Attempt	to	add	a	

Logins	collection	that	exposes	a	login
of	the	same	name.

SQLDMO_E_DEVICEALREADYEXISTS 0x5211 Reserved.
SQLDMO_E_SKIPONLYTAPE 0x5212 Attempt	to	set	the	

property	when	using	the	
object	to	define	a	disk	or	named	pipe
backup	device.

SQLDMO_E_DEVICEINCOMPLETE 0x5213 Attempt	to	add	an	incompletely	defined
BackupDevice
collection.

SQLDMO_E_PROCALREADYEXISTS 0x5214 Reserved.
SQLDMO_E_UDDTALREADYEXISTS 0x5215 Reserved.
SQLDMO_E_TABLEALREADYEXISTS 0x5216 Reserved.
SQLDMO_E_RULEALREADYEXISTS 0x5217 Reserved.
SQLDMO_E_DEFAULTALREADYEXISTS 0x5218 Reserved.

SQLDMO_E_VIEWALREADYEXISTS 0x5219 Reserved.
SQLDMO_E_INDEXINCOMPLETE 0x521AAttempt	to	add	an	incompletely	defined

Index	object	to	its	containing
collection.

SQLDMO_E_TRIGINCOMPLETE 0x521B Attempt	to	add	an	incompletely	defined
Trigger	object	to	its	containing
collection.

SQLDMO_E_TRIGALREADYEXISTS 0x521C Reserved.
SQLDMO_E_LANGUAGEINCOMPLETE 0x521DReserved.
SQLDMO_E_LANGUAGEALREADYEXISTS 0x521E Reserved.
SQLDMO_E_LOGININCOMPLETE 0x521F Attempt	to	create	a	login	based	on

incomplete	data.	Logins	are	created	by
the	Add	method	of	the	
collection,	and	by	methods	that
implement	replication.

SQLDMO_E_RSERVERINCOMPLETE 0x5220 Attempt	to	add	an	incompletely	defined
RemoteServer
collection.

SQLDMO_E_RSERVERALREADYEXISTS 0x5221 Reserved.
SQLDMO_E_NULLRLOGINALREADYEXISTS 0x5222 Attempt	to	add	a	

that	defines	an	unnamed	remote	login
to	a	RemoteLogins
exposes	an	unnamed	remote	login.

SQLDMO_E_RLOGINALREADYEXISTS 0x5223 Attempt	to	add	a	
to	a	RemoteLogins
exposes	a	remote	login	of	the	same
name.

SQLDMO_E_REMOTENEEDSLOCAL 0x5224 Attempt	to	add	an	incompletely	defined
RemoteLogin
collection.

SQLDMO_E_BACKUPNEEDSDEVICE 0x5225 Attempt	to	use	the	
method	of	an	incompletely	defined
Backup	object.	Set	the	
Tapes,	or	Pipes
device.

SQLDMO_E_NEEDMANUALFILTERNAME 0x5226 Attempt	to	add	an	incompletely	defined
TransArticle
collection.

SQLDMO_E_TASKINCOMPLETE 0x5227 Reserved.
SQLDMO_E_ARTINCOMPLETE 0x5228 Attempt	to	add	an	incompletely	defined

DistributionArticle
TransArticle
collection.

SQLDMO_E_PUBINCOMPLETE 0x5229 Attempt	to	add	an	incompletely	defined
DistributionPublication
MergePublication
TransPublication
containing	collection.

SQLDMO_E_SUBINCOMPLETE 0x522AAttempt	to	add	an	incompletely	defined
DistributionSubscription
TransSubscription	
containing	collection.	Attempt	to	add
an	incompletely	defined
RegisteredSubscriber
register	a	new	Subscriber.

SQLDMO_E_ALERTINCOMPLETE 0x522B Attempt	to	add	an	incompletely	defined
Alert	object	to	its	containing	collection.

SQLDMO_E_OPERATORINCOMPLETE 0x522C Attempt	to	add	an	incompletely	defined
Operator	object	to	its	containing
collection.

SQLDMO_E_NAMEMUSTMATCH 0x522DName	of	the	SQL	Server	object,	as
specified	in	the	
StoredProcedure
object,	does	not	match	the	value	of	the
Name	property	of	the	SQL-DMO
object.	Occurs	when	adding	an	object
to	its	containing	collection	and	when
the	Alter	method	is	called.

SQLDMO_E_TRIGREQTABLENAME 0x522E Table	name	cannot	be	found	in	the	
property	of	a	
when	adding	a	

containing	collection	and	when	the
Alter	method	is	called.

SQLDMO_E_MUSTBESYNCTASK 0x522F Reserved.
SQLDMO_E_NOEVENTCOMPLETION 0x5230 Reserved.
SQLDMO_E_FKEYINCOMPLETE 0x5231 Attempt	to	add	an	incompletely	defined

Key	object	to	its	containing	collection.
Occurs	when	the	
SQLDMOKey_Foreign.

SQLDMO_E_KEYINCOMPLETE 0x5232 KeyColumns
property	is	not	set	when	using	the	
object	to	create	a	primary	or	foreign
key.

SQLDMO_E_KEYALREADYEXISTS 0x5233 Attempt	to	add	a	
collection	that	exposes	a	key	of	the
same	name.

SQLDMO_E_CHECKINCOMPLETE 0x5234 Attempt	to	add	an	incompletely	defined
Check	object	to	its	containing
collection.

SQLDMO_E_DRIDEFAULTINCOMPLETE 0x5235 Reserved.
SQLDMO_E_CHECKALREADYEXISTS 0x5236 Attempt	to	add	a	

Checks	collection	that	exposes	an
integrity	constraint	of	the	same	name.

SQLDMO_E_ONLYONEPRIMARYKEY 0x5237 Attempt	to	add	a	
primary	key	to	a	
exposing	a	primary	key.

SQLDMO_E_NEEDMANUALVIEWNAME 0x5238 TransArticle
property	includes	SQLDMORep_
ManualSyncView	and	no	view
specified.	Occurs	when	adding	the
TransArticle
collection.

SQLDMO_E_SERVERGROUPINCOMPLETE 0x5239 Attempt	to	add	an	incompletely	defined
ServerGroup
collection.

SQLDMO_E_REGISTEREDSERVERINCOMPLETE 0x523AAttempt	to	add	an	incompletely	defined
RegisteredServer

containing	collection.
SQLDMO_E_SERVERGROUPALREADYEXISTS 0x523B Attempt	to	add	a	

to	a	ServerGroups
exposes	a	server	group	with	the	same
name.

SQLDMO_E_REGISTEREDSERVERALREADYEXISTS 0x523C Attempt	to	add	a	
object	to	a	RegisteredServers
collection	that	exposes	a	server	with	the
same	name.

SQLDMO_E_NEEDLOADTABLENAME 0x523DReserved.
SQLDMO_E_DISTDBALREADYEXISTS 0x523E Attempt	to	add	a

DistributionDatabase
DistributionDatabases
exposes	a	database	with	the	same	name.

SQLDMO_E_DISTPUBALREADYEXISTS 0x523F Attempt	to	add	a
DistributionPublisher
DistributionPublishers
exposes	a	publisher	with	the	same
name.

SQLDMO_E_JOBSTEPINCOMPLETE 0x5240 Attempt	to	add	an	incompletely	defined
JobStep	object	to	its	containing
collection.

SQLDMO_E_TARGETSERVERINCOMPLETE 0x5241 Attempt	to	add	an	incompletely	defined
TargetServer
collection.

SQLDMO_E_TARGETSERVERGROUPINCOMPLETE 0x5242 Attempt	to	add	an	incompletely	defined
TargetServerGroup
containing	collection.

SQLDMO_E_JOBINCOMPLETE 0x5243 Attempt	to	add	an	incompletely	defined
JobSchedule
collection.

SQLDMO_E_MUSTBESYNCJOB 0x5244 Reserved.
SQLDMO_E_JOBCATEGORYINCOMPLETE 0x5245 Attempt	to	add	an	incompletely	defined

Category	object	to	its	containing
collection.

SQLDMO_E_REGPUBINCOMPLETE 0x5246 Reserved.

SQLDMO_E_REGSUBINCOMPLETE 0x5247 Attempt	to	add	an	incompletely	defined
RegisteredSubscriber
containing	collection.

SQLDMO_E_DISTPUBINCOMPLETE 0x5248 Attempt	to	add	an	incompletely	defined
DistributionPublisher
containing	collection.

SQLDMO_E_DISTDBINCOMPLETE 0x5249 Attempt	to	add	an	incompletely	defined
DistributionDatabase
containing	collection.

SQLDMO_E_FILEGROUPINCOMPLETE 0x524AAttempt	to	add	an	incompletely	defined
FileGroup	object	to	its	containing
collection.

SQLDMO_E_DBFILEINCOMPLETE 0x524B Attempt	to	add	an	incompletely	defined
DBFile	object	to	its	containing
collection.	File(s)	not	specified	when
using	the	AttachDB
AttachDBWithSingleFile
the	SQLServer

SQLDMO_E_LOGFILEINCOMPLETE 0x524C Attempt	to	add	an	incompletely	defined
LogFile	object	to	its	containing
collection.

SQLDMO_E_FILEGROUPALREADYEXISTS 0x524DAttempt	to	add	a	
FileGroups	collection	that	exposes	a
filegroup	with	the	same	name.

SQLDMO_E_DATABASEINCOMPLETE 0x5250 Attempt	to	add	an	incompletely	defined
Database	object	to	its	containing
collection.

SQLDMO_E_DATABASEROLEALREADYEXISTS 0x5251 Attempt	to	add	a	
to	a	DatabaseRoles
exposes	a	role	with	the	same	name.

SQLDMO_E_DATABASEROLEINCOMPLETE 0x5252 Attempt	to	add	an	incompletely	defined
DatabaseRole
collection.	Role	not	specified	when
using	the	IsMember
User	object.

SQLDMO_E_SERVERROLEINCOMPLETE 0x5253 Role	not	specified	when	using	the

IsMember	method	of	the	
SQLDMO_E_DSNINFOINCOMPLETE 0x5254 ValidateDataSource
SQLDMO_E_FILTERINCOMPLETE 0x5255 Attempt	to	add	an	incompletely	defined

MergeSubsetFilter
containing	collection.

SQLDMO_E_OWNERMUSTMATCH 0x5256 Owner	of	the	SQL	Server	object,	as
specified	in	the	
StoredProcedure
does	not	match	the	value	of	the	
property	of	the	SQL-DMO	object.
Occurs	when	adding	an	object	to	its
containing	collection	and	when	the
Alter	method	is	called.

SQLDMO_E_BACKUPNEEDSFILE 0x5257 Attempt	to	use	the	
method	of	an	incompletely	defined
Backup	object	or	the	
SQLVerify	method	of	an	incompletely
defined	Restore
Action	property	is
SQLDMOBackup_Files	or
SQLDMORestore_Files	and	the	
or	FileGroups

SQLDMO_E_BACKUPNEEDSMEDIA 0x5258 Reserved.
SQLDMO_E_COLUMNCOMPUTEDINCOMPLETE 0x5259 Attempt	to	add	an	incompletely	defined

Column	object	to	its	containing
collection.	Occurs	when	the
IsComputed
object	is	True.

SQLDMO_E_REMAPFILEINCOMPLETE 0x525AReserved.
SQLDMO_E_SMALLMAXSIZE 0x525B Attempt	to	add	an	incorrectly	defined

DBFile	or	LogFile
containing	collection.	Occurs	when	the
Size	property	specifies	a	value	greater
than	that	specified	by	the
MaximumSize

SQLDMO_E_FILEALREADYEXISTS 0x525C Attempt	to	add	a	

object	to	a	DBFiles
collection	that	exposes	a	file	with	the
same	logical	name.

SQLDMO_E_BADFILEGROUPNAME 0x525DAttempt	to	add	an	incorrectly	defined
FileGroup	object	to	its	containing
collection.	Occurs	when	the	
property	of	the	
PRIMARY.

SQLDMO_E_LINKEDSERVERINCOMPLETE 0x525E Attempt	to	add	an	incompletely	defined
LinkedServer
collection.

SQLDMO_E_LINKEDPROVIDERINCOMPLETE 0x525F Attempt	to	add	an	incorrectly	defined
LinkedServer
collection.	Occurs	when	the
ProductName
value,	and	the	
is	empty.

SQLDMO_E_FULLTEXTINCOMPLETE 0x5260 Attempt	to	add	full-text	indexing	to	a
table	using	an	incorrectly	defined	
object.

SQLDMO_E_CATALOGALREADYEXISTS 0x5261 Attempt	to	add	a	
object	to	a	FullTextCatalogs
that	exposes	a	full-text	catalog	with	the
same	name.

SQLDMO_E_CATALOGINCOMPLETE 0x5262 Attempt	to	add	an	incompletely	defined
FullTextCatalog
containing	collection.

SQLDMO_E_BACKUPINIT 0x5263 Attempt	to	use	the	
method	of	an	incorrectly	defined
Backup	object.	Occurs	when	the
FormatMedia
are	both	True.

SQLDMO_E_LINKEDSERVERLOGININCOMPLETE 0x5264 Attempt	to	add	an	incompletely	defined
LinkedServerLogin
containing	collection.

SQLDMO_E_NOSERVERBCP6 0x5265 Attempt	to	set	

when	UseServerSideBCP
Attempt	to	set	
True	when	Use6xCompatible

SQLDMO_E_JOBSTEPNAMEINCOMPLETE 0x5266 Attempt	to	add	an	incompletely	defined
JobStep	object	to	its	containing
collection.

SQLDMO_E_UDFINCOMPLETE 0x5268 User-defined	function	property	settings
are	incomplete	or	incorrect.

SQLDMO_E_FULLTEXTCOLUMNINCOMPLETE 0x5269 Full-text	column	property	settings	are
incomplete	or	incorrect.

SQLDMO_E_CANTADDREGSUBTOSQLDISTPUBSHR0x5270 Attempted	to	add
RegisteredSubscriber
Server	DistributionPublisher
instead	of	to	a	

SQLDMO_E_SNAPSHOTPUBCANNOTPUBWIN 0x5271 ConflictPolicy
to
SQLDMOConflictPolicy_PublisherWin
for	a	queued	snapshot	publication.

SQLDMO_E_DYNAMICSNAPSHOTJOBINCOMPLETE 0x5272 Attempted	to	create
MergeDynamicSnapshotJob
setting	DynamicSnapshotLocation
property.

Errors	masked	by	SQLDMO_ECAT_INVALIDPARAMETER	include	the
following.

Constant Value Description
SQLDMO_E_BADCOLLEN 0x5300 Attempt	to	add	an	incorrectly	defined

Column	or	UserDefinedDatatype
to	its	containing	collection.	Occurs	when
the	Length	property	specifies	an	out	of
range	value.

SQLDMO_E_INVALIDPERFMONSET 0x5301 Attempt	to	set	the	
of	the	Registry

SQLDMO_E_BADDEVICETYPE 0x5302 Attempt	to	set	the	

BackupDevice
SQLDMO_E_SIZEGREATERTHAN0 0x5303 Attempt	to	set	the	

DBFile	or	LogFile
than	zero.

SQLDMO_E_RESULTSETOUTOFRANGE 0x5304 Attempt	to	set	the	
property	of	a	
out	of	range	value.

SQLDMO_E_OUTPUTPARAMREQUIRED 0x5305 Attempt	to	get	a	property	or	call	a	method
without	providing	an	argument	required	for
property	or	method	return	value.

SQLDMO_E_PROPTEXTNONNULL 0x5306 Attempt	to	set	a	property	that	incorrectly
specifies	an	empty	string.

SQLDMO_E_BADPROCTYPE 0x5307 Attempt	to	set	the	
StoredProcedure
value.

SQLDMO_E_BADFILLFACTOR 0x5308 Attempt	to	set	the	
an	Index	or	Key
value.	FillFactor
when	RebuildIndexes

SQLDMO_E_INVALIDINDEXTYPE 0x5309 Attempt	to	set	the	
Index	object	to	an	invalid	value.

SQLDMO_E_INVALIDPRIVTYPE 0x530ADeny,	Grant
that	specifies	a	
invalid	for	the	SQL	Server	object	type
referenced.

SQLDMO_E_BADTRIGTYPE 0x530B Reserved.
SQLDMO_E_INVALIDDAYOFWEEK 0x530C Attempt	to	get	the	

Language	object	that	specifies	an	out	of
range	value.

SQLDMO_E_INVALIDMONTH 0x530DAttempt	to	get	the	
Language	object	that	specifies	an	out	of
range	value.

SQLDMO_E_BADDAYCOUNT 0x530E Reserved.
SQLDMO_E_BADMONTHCOUNT 0x530F Reserved.
SQLDMO_E_BADCONFIGVALUE 0x5310 Attempt	to	set	the	

of	a	ConfigValue
value.

SQLDMO_E_INVALIDPARAMINDEX 0x5311 Attempt	to	get	a	SQL-DMO	object	or	a
string	from	a	container	object	specifying	an
out	of	range	value.

SQLDMO_E_INVALIDPARAMRANGE 0x5312 Attempt	to	set	a	SQL-DMO	property	to	an
out	of	range	value.

SQLDMO_E_INVALIDDBOBJTYPE 0x5313 ObjectType	argument	invalid	when
GetObjectByName
method	of	Database

SQLDMO_E_ROWCOLOUTOFRANGE 0x5314 Row	or	column	coordinate	out	of	range	for
QueryResults

SQLDMO_E_NONUNIQUENAME 0x5315 GetObjectByName
Database	object	would	return	more	than	a
single	object.	Qualify	SQL	Server	object
selection	by	using	the	
Owner	argument.

SQLDMO_E_NOTIMESTAMPUDDT 0x5316 Attempt	to	set	the	
UserDefinedDatatype
value	timestamp

SQLDMO_E_INVALIDNAME 0x5317 Name	property	of	SQL-DMO	object	is	not
a	valid	SQL	Server	identifier.	Occurs	when
setting	the	Name
objects	that	reference	database	objects.

SQLDMO_E_INVALIDCOMPLETION 0x5318 Invalid	value	used	to	set	
completion	status	property	(e.g.
NetSendLevel

SQLDMO_E_NAMETOOLONG 0x5319 Name	property	of	SQL-DMO	object	is	too
long	for	a	valid	SQL	Server	identifier.
Occurs	when	setting	the	
SQL-DMO	objects	that	reference	database
objects.

SQLDMO_E_INVALIDFREQTYPE 0x531AReserved.
SQLDMO_E_INVALIDFREQSUBDAY 0x531B Reserved.
SQLDMO_E_INVALIDFREQRELINTERVAL 0x531C Reserved.

SQLDMO_E_BADWEEKLYINTERVAL 0x531DReserved.
SQLDMO_E_BADMONTHLYINTERVAL 0x531E Reserved.
SQLDMO_E_BADMONTHLYRELINTERVAL 0x531F Reserved.
SQLDMO_E_INVALIDSRVOPTION 0x5320 Option	argument	invalid	when	

method	of	LinkedServer
RemoteServer	

SQLDMO_E_INVALIDRUNPRIORITY 0x5321 Reserved.
SQLDMO_E_DBNAMEREQUIRED 0x5322 Required	object	property	or	method

argument	that	specifies	source	or	target
database	is	empty.	Occurs	when	adding	a
SQL-DMO	object,	such	as	a
MergeSubscription
collection	or	when	using	a	method	such	as
SQLBackup

SQLDMO_E_PUBNAMEREQUIRED 0x5323 Required	object	property	or	method
argument	that	specifies	source	publication
is	empty.	Occurs	when	adding	a	SQL-
DMO	object,	such	as	a
MergePullSubscription
collection	or	when	using	a	method	such	as
EnableTransSubscription

SQLDMO_E_PROPINDEXOUTOFRANGE 0x5324 Attempt	to	get	a	SQL-DMO	
object	from	a	
specifies	an	out	of	range	value.

SQLDMO_E_INVALIDNOTIFYTYPE 0x5325 Attempt	to	set	the
IncludeEventDescription
Alert	object	to	an	invalid	value.
NotificationType
AddNotification
UpdateNotification
object	called.

SQLDMO_E_INVALIDENUMNOTIFYTYPE 0x5326 EnumNotifyType
EnumNotifications
called.

SQLDMO_E_INVALIDWEEKDAY 0x5327 Attempt	to	set	the	
an	Operator	object	to	an	invalid	value.

SQLDMO_E_INVALIDOBJECTTYPE 0x5328 OLE	object	that	supplies		a	method
argument	value	is	invalid.	For	example,
object	supplied	in	the	
of	the	ImportData
object	is	not	a	SQL-DMO	
object.

SQLDMO_E_OBJECTREQUIRED 0x5329 SQL-DMO	method	requiring	an	object
called	with	an	empty	object	variable.

SQLDMO_E_INVALIDEVENTTYPE 0x532AReserved.
SQLDMO_E_INVALIDCOMPLETIONTYPE 0x532B Reserved.
SQLDMO_E_INVALIDKEYTYPE 0x532C Attempt	to	set	the	

object	to	an	invalid	value.
SQLDMO_E_TABLEMUSTBECREATED 0x532DTable	object	in	

GenerateCreationSQL
reference	an	existing	table.

SQLDMO_E_INVALIDPREARTICLE 0x532E Attempt	to	set	the	
property	of	a	
TransArticle

SQLDMO_E_INVALIDSECURITYMODE 0x532F Attempt	to	set	the	
of	an	IntegratedSecurity
invalid	value.

SQLDMO_E_INVALIDPREC 0x5330 Attempt	to	set	the	
property	of	a	
UserDefinedDatatype
range	value.

SQLDMO_E_INVALIDDEPENDENCYTYPE 0x5331 DependencyType
EnumDependencies

SQLDMO_E_INVALIDVERIFYCONNTYPE 0x5332 ReconnectIfDead
VerifyConnection

SQLDMO_E_INVALIDSTATUSINFOTYPE 0x5333 Attempt	to	get	or	set	the
StatusInfoRefetchInterval
SQLServer	object	that	specifies	an	out	of
range	value.

SQLDMO_E_INVALIDFORWARDINGSEVERITY 0x5334 Attempt	to	set	the	
property	of	an	
specifies	an	invalid	value.

SQLDMO_E_INVALIDFORWARDINGSERVER 0x5335 Attempt	to	set	the	
property	of	an	
specifies	the	name	of	the	local	instance	of
SQL	Server.

SQLDMO_E_INVALIDRESTARTINTERVAL 0x5336 Reserved.
SQLDMO_E_INVALIDHISTORYROWSMAX 0x5337 Reserved.
SQLDMO_E_NAMETOOSHORT 0x5338 Reserved.
SQLDMO_E_UNEXPECTED 0x5339 Severe	error.	Error	not	trapped	by	normal

SQL-DMO	error	handling.
SQLDMO_E_INVALIDHISTORYROWSPERTASKMAX0x533AReserved.
SQLDMO_E_INVALIDOBJSORTTYPE 0x533B SortBy	argument	invalid	when	

method	called.
SQLDMO_E_INVALIDEXECTYPE 0x533C ExecutionType

ExecuteImmediate
SQLDMO_E_INVALIDSUBSETFILTER 0x533DReserved.
SQLDMO_E_INCOMPATIBLEPROPS 0x533E BulkCopy	object	properties	that	specify

data	file	format	set	incorrectly.	For
example,	the	
SQLDMODataFile_UseFormatFile,	and
the	FormatFilePath

SQLDMO_E_FILEPATHREQUIRED 0x533F SQL-DMO	object	property	that	specifies	a
file	name	required	and	not	filled.	For
example,	the	
BulkCopy	object	is	empty	when	the	object
is	used	in	an	
method	call.

SQLDMO_E_INVALIDPROPALTER 0x5340 SQL-DMO	object	property	cannot	be
changed	when	owning	object	is	in	a
BeginAlter...

SQLDMO_E_INVALIDALTERDISTINSTALLED 0x5341 Attempt	to	set	the	
property	of	a	
references	an	installed	Distributor.

SQLDMO_E_SERVERNAMEREQUIRED 0x5342 Required	property	that	specifies	a
replication	source	or	target	server	is	empty.

SQLDMO_E_DISTSERVERNAMEREQUIRED 0x5343 Install	or	Uninstall

Distributor	object	called	and
DistributionServer

SQLDMO_E_WORKINGDIRREQUIRED 0x5344 Attempt	to	add	an	incorrectly	defined
DistributionPublisher
containing	collection.	Occurs	when	the
DistributorLocal
containing	Distributor
the	DistributionWorkingDirectory
property	of	the	
object	is	empty.

SQLDMO_E_DISTDBREQUIRED 0x5345 Install	method	of	a	
called,	and	the	
collection	is	empty.

SQLDMO_E_INVALIDHISTORYROWSPERJOBMAX 0x5348 Reserved.
SQLDMO_E_INVALIDPUBATTRIB 0x5349 Attempt	to	set	the	

property	of	a	SQL-DMO	replication
publication	object	that	specifies	an	invalid
value	for	the	publication	object	type.

SQLDMO_E_INVALIDREPLICATIONTYPE 0x534AReplicationType
EnumPublications

SQLDMO_E_INVALIDSCHEMAOPTION 0x534B Attempt	to	set	the	
property	of	a	
incorrectly.	Occurs	when	
property	is	SQLDMORep_ProcExecution
or
SQLDMORep_SerializableProcExecution,
and	CreationScriptOptions
SQLDMOCreationScript_PrimaryObject	or
SQLDMOCreationScript_DisableScripting.

SQLDMO_E_INVALIDFORREMDISTRIBUTOR 0x534C Reserved.
SQLDMO_E_INVALIDARTICLETYPE 0x534DAttempt	to	use	the

AddReplicatedColumns
RemoveReplicatedColumns
TransArticle
transactional	article	that	replicates	stored
procedure	execution.	Attempt	to	set	the

ArticleType	property	of	a	
SQLDMORep_ProcExecution	or
SQLDMORep_SerializableProcExecution.

SQLDMO_E_SIZEGREATERTHANNEG 0x534E Attempt	to	set	the	
a	DBFile	or	LogFile
Prior	to	referenced	file	creation,	the
property	accepts	-1	to	specify	default	value.
When	object	references	an	existing	file,	-1
is	not	allowed.

SQLDMO_E_INVALIDLOGINTYPE 0x534F Attempt	to	set	the	
Login	object	to	an	invalid	value.

SQLDMO_E_CANTMODIFYAFTERCREATE 0x5350 Property	cannot	be	set	for	SQL-DMO
object	that	references	an	existing	SQL
Server	component.

SQLDMO_E_INVALIDDSN 0x5351 ValidateDataSource
SQLDMO_E_INVALIDNAME70 0x5352 Reserved.
SQLDMO_E_MUSTEVEN 0x5353 Attempt	to	set	the	

of	a	Restore	object	incorrectly.
SQLDMO_E_MISSINGALTER 0x5354 Transact-SQL	batch	supplied	in	the	

argument	of	the	
StoredProcedure
does	not	begin	with	the	keyword	ALTER.

SQLDMO_E_NOTGUID 0x5355 GetColumnGUID
indicates	data	not	selected	from	a
uniqueidentifier

SQLDMO_E_DESTSERVERREQUIRED 0x5356 DestServer	property	is	required	when
using	the	Transfer
method	of	the	

SQLDMO_E_CANTSHRINK 0x5357 Attempt	to	set	the	
DBFile	or	LogFile
When	the	SQL-DMO	object	references	an
existing	file,	set	
grow	the	file.	Use	the	
reduce	operating	system	file	size.

SQLDMO_E_CANTDEFAULTOFF 0x5358 Attempt	to	set	the	
FileGroup	object	incorrectly.	

be	set	True	only.
SQLDMO_E_INVALIDNTNAME 0x5359 SQL-DMO	property	that	specifies	an

operating	system	file	is	empty	or	contains
invalid	characters.

SQLDMO_E_INVALIDOUTCOMETYPE 0x535AAttempt	to	set	the	
of	a	JobHistoryFilter

SQLDMO_E_NEEDSCOLUMNNAME 0x535B Reserved.
SQLDMO_E_INVALIDHYPOINDEXTYPE 0x535C Attempt	to	set	the	

Index	object	to	an	invalid	value
(SQLDMOIndex_Hypothetical).

SQLDMO_E_INVALIDPING 0x535DPingSQLServerVersion
SQLDMO_E_USEFTPORALTFOLDER 0x535E AltSnapshotFolder

properties	cannot	be	specified	at	the	same
time.

SQLDMO_E_INTERNETENABLEDORALTFOLDER 0x535F AltSnapshotFolder
InternetEnabled	publication	attribute
cannot	be	specified	at	the	same	time.

SQLDMO_E_NOTSQLVARIANT 0x5361 Referenced	column	in	call	to
GetColumnSQLVariant
SQLVariant.

SQLDMO_E_CANTCONVERTVARIANT 0x5362 Referenced	column	in	call	to
GetColumnSQLVariantToString
be	converted.

SQLDMO_E_USEFTPORDYNAMICSNAPSHOT 0x5363 DynamicSnapshotLocation
properties	cannot	be	set	at	the	same	time.

SQLDMO_E_ALTSNAPSHOTFOLDERORDYNSNAP 0x5364 DynamicSnapshotLocation
AltSnapshotFolder
set	at	the	same	time.

Errors	masked	by	SQLDMO_ECAT_INVALIDPLATFORM	include	the
following.

Constant Value Description
SQLDMO_E_BACKUPSQL60ONLY 0x5400 Reserved.

SQLDMO_E_MSSQLONLY 0x5401 Reserved.
SQLDMO_E_WIN95REQUIRESCONN 0x5402 Returned	by	SQL-DMO

methods	that	start,	stop,	or
pause	a	service.	When	a
SQL-DMO	client	runs	on
Microsoft	Windows®	95,
service	control	methods
operate	successfully
against	services	running
on	the	local	computer	or	a
computer	running
Microsoft	Windows	NT®,
only.

SQLDMO_E_NOTONWIN95 0x5403 Returned	by	SQL-DMO
methods,	such	as
EnumNTDomainGroups
that	cannot	successfully
execute	on	Windows	95.

SQLDMO_E_SQL60ONLY 0x5404 Reserved.
SQLDMO_E_REPLSQL60ONLY 0x5405 Reserved.
SQLDMO_E_STARTUPPROCSQL60ONLY 0x5406 Reserved.
SQLDMO_E_NEEDSQLDMOPROCS 0x5407 SQL-DMO	supporting

system	stored	procedures
are	not	installed.

SQLDMO_E_ALTERSQL60ONLY 0x5408 Reserved.
SQLDMO_E_SORTEDDATAREORGSQL60ONLY0x5409 Reserved.
SQLDMO_E_MSSQLNTONLY 0x540AReserved.
SQLDMO_E_WIN95REQUIRESSQL60 0x540B Reserved.
SQLDMO_E_BACKUPSQL65ONLY 0x540C Reserved.
SQLDMO_E_SQL65ONLY 0x540DReserved.
SQLDMO_E_ALERTSQL65ONLY 0x540E Reserved.
SQLDMO_E_REMOTESQL65ONLY 0x540F Reserved.
SQLDMO_E_PIPEDEVSQL60ONLY 0x5410 Reserved.
SQLDMO_E_FKEYSQL65ONLY 0x5411 Reserved.
SQLDMO_E_XPIMPERSONATESQL65ONLY 0x5412 Reserved.

SQLDMO_E_SQL70ONLY 0x5413 Reserved.
SQLDMO_E_FKEYSQL70ONLY 0x5414 Reserved.
SQLDMO_E_BACKUPSQL70ONLY 0x5415 Reserved.
SQLDMO_E_NEEDSQLDMOUPGRADE 0x5416 Returned	on	an	attempt	to

connect	a	SQL-DMO
SQLServer	object	to	an
instance	of	SQL	Server
released	prior	to	version
7.0.

SQLDMO_E_NEEDSERVERBUILDUPGRADE 0x5417 Reserved.
SQLDMO_E_SQL80ONLY 0x5419 Requires	SQL	Server	2000

or	later.

Errors	masked	by	SQLDMO_ECAT_ITEMNOTFOUND	include	the	following.
Errors	in	this	category	indicate	that	an	attempt	to	dereference,	by	name,	an
object	from	its	containing	collection	failed.	Using	the	Refresh	method	of	the
collection	can	correct	the	error	condition.

Constant Value Description
SQLDMO_E_RULENOTFOUND 0x5500 Rule	object	not

locatable	in	the	Rules
collection.

SQLDMO_E_DEFAULTNOTFOUND 0x5501 Default	object	not
locatable	in	the
Defaults	collection.

SQLDMO_E_TYPENOTFOUND 0x5502 UserDefinedDatatype
object	not	locatable	in
the
UserDefinedDatatypes
collection.
SystemDatatype	object
not	locatable	in	the
SystemDatatypes
collection.

SQLDMO_E_LOGINNOTFOUND 0x5503 Login	object	not

locatable	in	the	Logins
collection.

SQLDMO_E_GROUPNOTFOUND 0x5504 Reserved.
SQLDMO_E_LANGNOTFOUND 0x5505 Language	object	not

locatable	in	the
Languages	collection.

SQLDMO_E_DBNOTFOUND 0x5506 Database	object	not
locatable	in	the
Databases	collection.

SQLDMO_E_DEVICENOTFOUND 0x5507 BackupDevice	object
not	locatable	in	the
BackupDevices
collection.

SQLDMO_E_COLUMNNOTFOUND 0x5508 Column	object	not
locatable	in	the
Columns	collection	of
a	Table	object	or	the
SQLObjectList	object
returned	by	the
ListColumns	method
of	the	View	object.

SQLDMO_E_ORDOUTOFRANGE 0x5509 Ordinal	value	used	to
dereference	an	item	in	a
collection	or	object	list
is	out	of	range.

SQLDMO_E_NAMENOTFOUND 0x550AObject	not	locatable	by
name.

SQLDMO_E_USERNOTFOUND 0x550B User	object	not
locatable	in	the	Users
collection.

SQLDMO_E_NAMENOTINCACHE 0x550C Returned	when	an
attempt	to	call	the
DoAlter	method	fails
because	the	object	no
longer	exists	in	its
containing	collection.

SQLDMO_E_PROPNAMENOTFOUND 0x550DProperty	object	not
locatable	in	the
Properties	collection.

SQLDMO_E_IDNOTFOUND 0x550E Returned	when	the
ItemByID	method	fails
to	locate	an	object.

SQLDMO_E_DATABASEROLENOTFOUND0x550F DatabaseRole	object
not	locatable	in	the
DatabaseRoles
collection.

SQLDMO_E_NAMENOTFOUNDQI 0x5510 Returned	when	an
object	is	not	locatable
by	name	and	quoting
identifier	parts	is
applicable.

SQLDMO_E_SERVERNOTFOUND 0x5512 Server	not	locatable	by
name.

Errors	masked	by	SQLDMO_ECAT_UNPRIVILEGEDLOGIN	include	the
following.

Constant Value Description
SQLDMO_E_MUSTBESAORDBO 0x5600 Login	used	for

SQLServer	object
connection	must	be
a	member	of	the
sysadmin	or
db_owner	role	to
enable	successful
execution	of
property	get	or	set
or	method	call.

SQLDMO_E_MUSTBESAORLOGIN 0x5601 Login	used	for
SQLServer	object
connection	must	be

a	member	of	the
sysadmin	role	or
the	login
referenced	by	the
Login	object,	to
successfully	set	a
Login	object
property.

SQLDMO_E_MUSTBESA 0x5602 Login	used	for
SQLServer	object
connection	must	be
a	member	of	the
sysadmin	role	to
enable	successful
execution	of
property	get	or	set
or	method	call.

SQLDMO_E_MUSTBESAORSECORLOGIN 0x5603 Login	used	for
SQLServer	object
connection	must	be
a	member	of	the
sysadmin	or
securityadmin	role,
or	the	login
referenced	by	the
Login	object,	to
enable	successful
execution	of
property	get	or	set
or	method	call.

Errors	masked	by	SQLDMO_ECAT_EXECUTION	include	the	following.

Constant Value Description
SQLDMO_E_SYSPROCERROR 0x5700 Reserved.
SQLDMO_E_CACHEEXECERROR 0x5701 QueryResults

object	row	fetch
failed.

SQLDMO_E_INACCESSIBLEDB 0x5702 Database
referenced	by
object	or	method
is	not	accessible
(offline,	loading,
and	so	on).

SQLDMO_E_BATCHCOMPLETEWITHERRORS 0x5703 Command	batch
execution
completed,	errors
raised.

SQLDMO_E_BCPCOLFMTFAILED 0x5704 Bulk	copy
column
formatting	failed.
Returned	by	the
ExportData	or
ImportData
method	when
data	file	format
interpretation
fails.

SQLDMO_E_SUSPENDINDEX 0x5705 Attempt	to
suspend	indexing
prior	to	bulk	copy
operation	failed.
Returned	by	the
ImportData
method.

SQLDMO_E_RESUMEINDEX 0x5706 Attempt	to
resume	indexing
suspended	prior
to	bulk	copy
operation	failed.
Returned	by	the
ImportData

method.
SQLDMO_E_BCPEXECFAILED 0x5707 Bulk	copy

operation	failed.
Returned	by	the
ExportData	or
ImportData
method.

SQLDMO_E_BCPINITFAILED 0x5708 Bulk	copy
operation
initialization
failed.	Returned
by	the
ExportData	or
ImportData
method.

SQLDMO_E_BCPCONTROLFAILED 0x5709 Bulk	copy
operation
parameter	setting
failed.	Returned
by	the
ExportData	or
ImportData
method.

SQLDMO_E_USERABORTED 0x570AReturned	by	the
SQLBackup,
SQLRestore,
SQLVerify,
ImportData,
ExportData,	or
Transfer	method
when	the	Abort
method	is	called
to	terminate
object	processing.

SQLDMO_E_QIERROR 0x570B Attempt	to	set	the
QuotedIdentifier

property	of	the
SQLServer
object	failed.

SQLDMO_E_REGIONALERROR 0x570C Attempt	to	set	the
RegionalSetting
property	of	the
SQLServer
object	failed.

SQLDMO_E_SINGLEUSERDB 0x570DDatabase
referenced	by
object	or	method
is	in	single-user
mode.

SQLDMO_E_CANNOTCREATEARTICLEVIEW 0x570E Attempt	to
creates	the
synchronization
object	for	an
article	to	be
filtered	vertically
or	horizontally
failed.

SQLDMO_E_CANNOTCREATEARTICLEFILTER 0x570F Attempt	to	filter
data	to	be
published	failed.

Errors	masked	by	SQLDMO_ECAT_CONNECTION	include	the	following.

Constant Value Description
SQLDMO_E_CANTRECONNDEADCONN 0x5800 Attempt	to

reestablish
automatically	a
SQLServer	object
connection	failed.

Errors	masked	by	SQLDMO_ECAT_RESOURCE	include	the	following.

Constant Value Description
SQLDMO_E_OUTOFMEMORY 0x5900 Insufficient	memory

on	the	client.
SQLDMO_E_NOMOREDEVNOS 0x5901 Reserved.
SQLDMO_E_SERVERLOCKTIMEDOUT 0x5902 Attempt	to	obtain	a

lock	on	a	server
resource	failed.

SQLDMO_E_APPLOCKTIMEDOUT 0x5903 Attempt	to	obtain	a
lock	on	a	local
resource	failed.

SQL-DMO

Event	Type	Constants	(SQLDMO_EVENT_TYPE)
Event	type	constants	are	reserved	for	future	use.

Constant Value Description
SQLDMOEvent_All 31 Reserved
SQLDMOEvent_AuditFailure 16 Reserved
SQLDMOEvent_AuditSuccess 8 Reserved
SQLDMOEvent_Error 4 Reserved
SQLDMOEvent_Info 1 Reserved
SQLDMOEvent_Unknown 0 Reserved
SQLDMOEvent_Warning 2 Reserved

SQL-DMO

F

SQL-DMO

File	Growth	Constants
(SQLDMO_GROWTH_TYPE)
File	growth	constants	control	evaluation	of	a	file	growth	increment	for	operating
system	files	that	maintain	Microsoft®	SQL	Server™	database	and	transaction
log	data.

Constant Value Description
SQLDMOGrowth_Invalid 99 Reserved	for	future	use.
SQLDMOGrowth_MB 0 Default	for	SQL	Server	database	files.

The	growth	increment	is	interpreted	as
a	size,	in	megabytes.

SQLDMOGrowth_Percent 1 Default	for	the	primary	data	file	and
SQL	Server	log	files.	The	growth
increment	is	interpreted	as	a
percentage	of	the	space	currently
allocated.

See	Also

FileGrowth	Property

FileGrowthType	Property

SQL-DMO

Find	Operand	Constants
(SQLDMO_FIND_OPERAND)
Find	operand	constants	are	used	by	SQL-DMO	objects	that	apply	filter	criteria.
Use	find	operand	constants	to	specify	comparison	for	operations	that	enumerate
Microsoft®	SQL	Server™	components.

Properties	using	find	operand	constants	to	specify	a	comparison	behavior	are
always	associated	with	at	least	one	other	property	through	which	a	value	is
specified.	For	example,	the	DateFindOperand	of	the	JobFilter	object	modifies
interpretation	of	a	date	value	specified	by	the	DateJobCreated	property.

Constant Value Description
SQLDMOFindOperand_EqualTo 1 Default.	Return	values	equal

to	the	user-defined,
qualifying	value.

SQLDMOFindOperand_GreaterThan 2 Return	values	greater	than
the	user-defined,	qualifying
value.

SQLDMOFindOperand_LessThan 3 Return	values	less	than	the
user-defined,	qualifying
value.

SQLDMOFindOperand_Unknown 0 Do	not	apply	filtering	on
comparison	against	the
associated	property.

SQL-DMO

Full-Text	Service	Population	Status	Constants
(SQLDMO_FULLTEXT_POPULATE_STATUS)
Full-text	service	population	status	constants	are	used	to	return	the	population
state	of	a	Microsoft®	Search	full-text	table.

Constant Value Description
SQLDMOFullText_Popu_Full 1 Full	population	of	the	table	index

is	in	progress	for	the	full-text
catalog.

SQLDMOFullText_Popu_Inc 2 Incremental	population	of	the	table
index	is	in	progress	for	the	full-
text	catalog.

SQLDMOFullText_Popu_No 0 No	propagation	of	the	table	index
is	in	progress	for	the	full-text
catalog.

See	Also

FullTextPopulateStatus	Property

SQL-DMO

Full-Text	Service	Population	Type	Constants
(SQLDMO_FULLTEXT_POPULATE_TYPE)
Full-text	service	population	type	constants	are	used	when	starting	or	stopping
Microsoft®	Search	full-text	table	population,	and	when	building	the	index	that
supports	full-text	queries	on	data	maintained	by	Microsoft	SQL	Server™.

Constant Value Description
SQLDMOFullText_PopuFull 0 Perform	a	full	population	of	the	of

the	table	index	to	the	full-text
catalog.

SQLDMOFullText_PopuInc 1 Perform	an	incremental	population
of	the	table	index	to	the	full-text
catalog.

SQLDMOFullText_PopuStop 2 Stop	full	or	incremental
population	of	the	table	index	to	the
full-text	catalog.

See	Also

FullTextPopulation	Method

SQL-DMO

Full-text	Service	Start	Constants
(SQLDMO_FULLTEXT_START_TYPE)
Full-text	service	start	constants	control	Microsoft®	Search	service	behavior
when	forcing	population	of	a	full-text	index	catalog	using	the	Start	method	of
the	FullTextCatalog	object.

Constant Value Description
SQLDMOFullText_Full 0 Perform	a	complete	population
SQLDMOFullText_Inc 1 Perform	an	incremental

population

SQL-DMO

Full-text	Service	Status	Constants
(SQLDMO_FULLTEXTSTATUS_TYPE)
Full-text	service	status	constants	report	the	population	state	on	a	Microsoft®
Search	full-text	catalog.	A	Search	full-text	catalog	is	an	index	supporting	full-
text	query	on	data	maintained	in	a	Microsoft	SQL	Server™	version	7.0	database.

The	SQLDMOFullText_Incremental	constant	is	only	supported	for	an	instance
of	SQL	Server	7.0.

Constant Value Description
SQLDMOFullText_CrawlinProgress 1 Full-text	index	population	is	in

progress	for	the	referenced	full-
text	catalog.

SQLDMOFullText_DiskFullPause 8 Lack	of	available	disk	space
has	caused	an	interruption.

SQLDMOFullText_Idle 0 No	action	is	performed	against
the	referenced	full-text	catalog.

SQLDMOFullText_Incremental 6 Incremental	index	population	is
in	progress	for	the	referenced
full-text	catalog.

SQLDMOFullText_Notification 9 Full-text	catalog	is	processing
notifications.

SQLDMOFullText_Paused 2 Lack	of	available	resource,
such	as	disk	space,	has	caused
an	interruption.

SQLDMOFullText_Recovering 4 Interrupted	population	on	the
referenced	full-text	catalog	is
resuming.

SQLDMOFullText_Shutdown 5 The	referenced	full-text	catalog
is	being	deleted	or	not
otherwise	accessible.

SQLDMOFullText_Throttled 3 Search	service	has	paused	the
referenced	full-text	index

population.
SQLDMOFullText_UpdatingIndex 7 Referenced	full-text	catalog	is

being	assembled	by	the	Search
service.	Assemblage	is	the	final
step	in	full-text	catalog
population.

See	Also

PopulateStatus	Property

SQL-DMO

G

SQL-DMO

Grant	Type	Constants
(SQLDMO_GRANTED_TYPE)
Grant	type	constants	are	reserved	for	future	use.

Constant Value Description
SQLDMOGranted_Deny 206 Reserved
SQLDMOGranted_Grant 205 Reserved
SQLDMOGranted_GrantGrant 204 Reserved

SQL-DMO

I

SQL-DMO

Index	Constants	(SQLDMO_INDEX_TYPE)
Index	constants	describe	attributes	of	a	Microsoft®	SQL	Server™	index.	Use
index	constants	when	defining	an	index	or	interpreting	the	attributes	of	an
existing	index.

Constant Value Description
SQLDMOIndex_Clustered 16 Index	is	clustered.	SQL

Server	supports	a	single
clustered	index	on	any	table.

SQLDMOIndex_Default 0 Nonclustered	index.
SQLDMOIndex_DRIIndex 6144 Index	is	used	to	maintain

declarative	referential
constraint.

SQLDMOIndex_DRIPrimaryKey 2048 Index	implements	a	SQL
Server	PRIMARY	KEY
constraint.	Value	is	returned
only.	For	more	information,
see	Key	Object.

SQLDMOIndex_DRIUniqueKey 4096 Index	implements	a
UNIQUE	constraint	on	a
table	not	constrained	by
primary	key.	Index	is	a
candidate	key.

SQLDMOIndex_DropExist 32768 Optimizes	index	creation
when	an	existing	index	is
rebuilt.

SQLDMOIndex_Hypothetical 32 Redirects	index	creation,
mapping	Index	object
manipulation	to	CREATE
STATISTICS	and	DROP
STATISTICS	statements.

SQLDMOIndex_IgnoreDupKey 1 Controls	error	generation
when	an	INSERT	or

UPDATE	operation	could
cause	a	constraint	violation
when	the	index	implements	a
PRIMARY	KEY	or
UNIQUE	constraint.

SQLDMOIndex_NoRecompute 16777216 Index	created	with	statistics
computation	off.	For	more
information,	see
NoRecompute	Property.

SQLDMOIndex_PadIndex 256 Pad	index	nodes	using	fill
factor.

SQLDMOIndex_SortedData 512 Obsolete.
SQLDMOIndex_SortedDataReorg 8192 Obsolete.
SQLDMOIndex_Unique 2 Index	implements	a

UNIQUE	constraint.
SQLDMOIndex_Valid 41747 Or	of	values	used	for	index

creation.

SQL-DMO

J

SQL-DMO

Job	Category	Constants
(SQLDMO_CATEGORYTYPE_TYPE)
Job	category	constants	classify	categories	used	to	organize	Microsoft®	SQL
Server™	Agent	jobs.

Job	categories	are	visible	in	SQL	Server	Enterprise	Manager,	and	the	user	can
sort	jobs	listed	by	category.	When	an	instance	of	Microsoft	SQL	Server	is
designated	as	a	multiserver	administration	master	server,	SQL	Server	Enterprise
Manager	lists	jobs	using	two	folders.	One	folder	lists	jobs	with	categories	whose
type	indicates	a	local	target.	The	second	folder	lists	jobs	with	categories	whose
type	indicates	that	jobs	of	that	category	target	one	or	more	remote	servers.

Constant Value Description
SQLDMOCategoryType_LocalJob 1 Category	is	used	to

classify	jobs	that	will
execute	on	an	instance	of
SQL	Server	on	which	the
job	is	stored.

SQLDMOCategoryType_MultiServerJob 2 Category	is	used	to
classify	jobs	that	will
execute	on	one	or	more
target	servers.

SQLDMOCategoryType_None 3 Job	is	not	classified	using
a	category.

SQLDMOCategoryType_Unknown 0 Job	category	is	bad	or
invalid,	or	the	category
object	references	a
classification	used	for
alerts	or	operators.

See	Also

Category	Object

SQL-DMO

Job	Completion	Constants
(SQLDMO_COMPLETION_TYPE)
Completion	constants	specify	success	or	failure	status	for	Microsoft®	SQL
Server™	Agent	execution	attempts.	For	example,	use	job	completion	status
constants	to	control	operator	notification	on	execution	completion.

Constant Value Description
SQLDMOComp_All 6 Any	completion	status
SQLDMOComp_Always 3 Succeeded	or	failed	to

complete
SQLDMOComp_Failure 2 Failed	to	complete
SQLDMOComp_None 0 No	value	set
SQLDMOComp_Success 1 Succeeded
SQLDMOComp_Unknown 4096 Invalid	value

See	Also

DeleteLevel	Property

EmailLevel	Property

NetSendLevel	Property

PageLevel	Property

SQL-DMO

Job	Execution	Status	Constants
(SQLDMO_JOBEXECUTION_STATUS)
Job	execution	status	constants	define	the	running	state	for	a	Microsoft®	SQL
Server™	Agent	job.

Constant Value Description
SQLDMOJobExecution_BetweenRetries 3 Job	is

waiting	on	a
job	step
retry
attempt.

SQLDMOJobExecution_Executing 1 Job	is
executing.

SQLDMOJobExecution_Idle 4 Job	is	idle,
awaiting
next
scheduled
execution.

SQLDMOJobExecution_PerformingCompletionActions 7 All
executable
job	steps
have
completed.
Job	history
logging	is
being
performed.

SQLDMOJobExecution_Suspended 5 Job	is
suspended.

SQLDMOJobExecution_Unknown 0 State	cannot
be
determined.

SQLDMOJobExecution_WaitingForStepToFinish 6 Job	is
waiting	on
the	outcome
of	a	step.

SQLDMOJobExecution_WaitingForWorkerThread 2 Job	is
blocked,
unable	to
obtain	a
thread
resource.

SQL-DMO

Job	Outcome	Constants
(SQLDMO_JOBOUTCOME_TYPE)
Job	outcome	constants	specify	an	execution	completion	status	for	Microsoft®
SQL	Server™	Agent	jobs.

Constant Value Description
SQLDMOJobOutcome_Cancelled 3 Execution	canceled	by	user

action.
SQLDMOJobOutcome_Failed 0 Execution	failed.
SQLDMOJobOutcome_InProgress 4 Job	or	job	step	is	executing.
SQLDMOJobOutcome_Succeeded 1 Execution	succeeded.
SQLDMOJobOutcome_Unknown 5 Unable	to	determine	execution

state.

See	Also

OutcomeTypes	Property

SQL-DMO

Job	Step	OS	Priority	Constants
(SQLDMO_RUNPRIORITY_TYPE)
Operating	system	execution	priority	constants	specify	a	relative	base	priority
assigned	to	the	execution	thread	of	job	steps	specifying	operating	system
commands.

The	constants	specify	a	thread	priority	relative	to	an	instance	of	Microsoft®	SQL
Server™.

Constant Value Description
SQLDMORunPri_AboveNormal 1 Slightly	elevated	priority.
SQLDMORunPri_BelowNormal -1 Reduced	priority.
SQLDMORunPri_Highest 2 Highest	priority	level	allowed	by

the	process	priority.
SQLDMORunPri_Idle -15 No	CPU	time	will	be	spent	on	this

thread	unless	all	other	threads	are
blocked.

SQLDMORunPri_Lowest -2 Least,	scheduled	priority	allowed
by	the	process	priority.

SQLDMORunPri_Min 1 SQLDMORunPri_AboveNormal.
SQLDMORunPri_Normal 0 Standard	priority	level	for	the

given	process	priority.
SQLDMORunPri_TimeCritical 15 No	CPU	time	will	be	given	other

processes	while	the	job	step
executes.

SQLDMORunPri_Unknown 100 Value	is	invalid.

SQL-DMO

Job	Scope	Constants	(SQLDMO_JOB_TYPE)
Job	scope	constants	specify	execution	target	attributes	for	Microsoft®	SQL
Server™	Agent	jobs.

Constant Value Description
SQLDMOJob_Local 1 Job	will	execute	on	an	instance	of	SQL

Server	on	which	the	job	is	stored.
SQLDMOJob_MultiServer 2 Job	will	execute	on	one	or	more	target

servers.
SQLDMOJob_Unknown 0 Job	is	bad	or	invalid.

SQL-DMO

Job	Step	Action	Constants
(SQLDMO_JOBSTEPACTION_TYPE)
Job	step	action	constants	specify	simple	logic	for	Microsoft®	SQL	Server™
Agent	jobs.	With	SQL-DMO,	use	job	step	action	constants	and	the
OnSuccessAction	and	OnFailAction	properties	of	the	JobStep	object	to
implement	job	step-based	logic	for	a	multistep	job.

Constant Value Description
SQLDMOJobStepAction_GotoNextStep 3 Default	for	OnSuccessAction

property.	On	successful	execution,
continue	execution	at	next	defined
step.

SQLDMOJobStepAction_GotoStep 4 Job	step	execution	continues	at
specified	step.	When
OnSuccessAction	is
SQLDMOJobStepAction_GotoStep,
use	the	OnSuccessStep	property	to
specify	the	next-executed	step.
When	OnFailAction	is
SQLDMOJobStepAction_GotoStep,
use	the	OnFailStep	property	to
specify	the	next-executed	step.

SQLDMOJobStepAction_QuitWithFailure 2 Default	for	OnFailAction	property.
On	failed	execution,	terminate	job
step	processing	and	raise	an	error.

SQLDMOJobStepAction_QuitWithSuccess 1 On	successful	execution	of	the	step,
terminate	job	step	processing	and
report	success.

SQLDMOJobStepAction_Unknown 0 Bad	or	invalid	value.

See	Also

OnFailAction	Property

OnSuccessAction	Property

SQL-DMO

K

SQL-DMO

Key	Type	Constants	(SQLDMO_KEY_TYPE)
Key	type	constants	specify	the	attributes	of	a	Microsoft®	SQL	Server™
constraint	that	implements	a	primary	or	foreign	key	on	table	data.

Constant Value Description
SQLDMOKey_Foreign 3 Key	references,	or	will	be	used	to

create,	a	SQL	Server	FOREIGN	KEY
constraint.

SQLDMOKey_Primary 1 Key	references,	or	will	be	used	to
create,	a	SQL	Server	PRIMARY	KEY
constraint.

SQLDMOKey_Unique 2 Key	references	a	SQL	Server	UNIQUE
constraint	on	a	column	not	allowing
NULL.

SQLDMOKey_Unknown 0 Bad	or	invalid	value.

See	Also

Type	Property	(Key)

SQL-DMO

L

SQL-DMO

Linked	Table	Type	Constants
(SQLDMO_LINKEDTABLE_TYPE)
Linked	table	type	constants	classify	OLE	DB	provider	tables	and	are	used	to
restrict	result	set	membership	when	using	the	EnumTables	method	of	the
LinkedServer	object.

Linked	table	type	constants	implement	table	types	as	specified	by	OLE	DB.	For
more	information	about	interpreting	OLE	DB	table	types	for	a	specific	linked
server,	see	the	OLE	DB	provider	documentation.

Constant Value Description
SQLDMOLinkedTable_Alias 1 Restrict	result	set

membership	to	alias
tables

SQLDMOLinkedTable_Default 0 No	restriction
SQLDMOLinkedTable_GlobalTemporary 2 Restrict	result	set

membership	to	global
temporary	tables

SQLDMOLinkedTable_LocalTemporary 3 Restrict	result	set
membership	to	local
temporary	tables

SQLDMOLinkedTable_SystemTable 4 Restrict	result	set
membership	to	system
tables

SQLDMOLinkedTable_SystemView 7 Restrict	result	set
membership	to	System
views

SQLDMOLinkedTable_Table 5 Restrict	result	set
membership	to	user
tables

SQLDMOLinkedTable_View 6 Restrict	result	set
membership	to	views

See	Also

EnumTables	Method

SQL-DMO

List	Sorting	Constants
(SQLDMO_OBJSORT_TYPE)
List	sorting	constants	are	used	to	specify	returned	SQLObjectList	object
member	ordering	when	using	the	ListObjects	and	ListOwnedObjects	methods.

Constant Value Description
SQLDMOObjSort_Date 3 List	objects	are	ordered	by	creation

date.
SQLDMOObjSort_Name 0 List	objects	are	ordered	by	name.
SQLDMOObjSort_Owner 2 List	objects	are	ordered	by	owner

name.
SQLDMOObjSort_Type 1 List	objects	are	ordered	by	type.

See	Also

ListObjects	Method

ListOwnedObjects	Method

SQL-DMO

Login	Type	Constants	(SQLDMO_LOGIN_TYPE)
Login	type	constants	identify	the	source	of	the	name	of	a	Microsoft®	SQL
Server™	login	record.

Constant Value Description
SQLDMOLogin_NTGroup 1 Referenced	login	is	the	name	of	a

Microsoft	Windows	NT®	security
group.

SQLDMOLogin_NTUser 0 Referenced	login	is	the	name	of	a
Windows	NT	user.

SQLDMOLogin_Standard 2 Referenced	login	is	used	for	SQL
Server	Authentication.	Login	name	and
password	may	be	required	when	a
client	connects	using	the	login.

See	Also

Type	Property	(Login)

SQL-DMO

M

SQL-DMO

Media	Type	Constants	(SQLDMO_MEDIA_TYPE)
Media	type	constants	are	used	to	direct	the	behavior	of	the
EnumAvailableMedia	method	of	the	SQLServer	object.

Constant Value Description
SQLDMOMedia_All 15 List	all	media
SQLDMOMedia_CDROM 8 List	visible	CD-ROM	devices
SQLDMOMedia_FixedDisk 2 List	visible	fixed	disk	drive

devices
SQLDMOMedia_Floppy 1 List	visible	floppy	disk	drive

devices
SQLDMOMedia_SharedFixedDisk 16 List	visible	fixed	disk	drive

devices	shared	on	a	clustered
computer

SQLDMOMedia_Tape 4 List	visible	tape	devices

See	Also

EnumAvailableMedia	Method

SQL-DMO

Miscellaneous	Constants
(SQLDMO_CONSTANTS_TYPE)
Miscellaneous	constants	are	provided	to	aid	various	tasks	implemented	in	a
SQL-DMO	application.

Constant Value Description
SQLDMO_NOENDDATE 99991231 Largest	value

accepted	by	a
Schedule	object
property	representing
a	date.	For	example,
use	to	set
ActiveEndDate	for	a
schedule	that	does
not	expire	on	an
exact	date.

SQLDMO_NOENDTIME 235959 Largest	value
accepted	by	a
Schedule	object
property	representing
a	time.

SQLDMO_USEEXISTINGFILLFACTOR 0 Use	an	existing	fill
factor	for	clustered
indexes	rebuilt	by	the
SQL-DMO
application.	Used	in
methods,	such	as
RebuildIndexes.

SQL-DMO

Month	and	Day	(Relative	Scheduling)	Constants
(SQLDMO_MONTHDAY_TYPE)
Month	and	day	constants	specify	part	of	the	most	significant	portion	of	a
schedule	defining	an	event	that	occurs	on	a	day	relative	to	the	start	of	a	month.

Use	SQLDMO_MONTHDAY_TYPE	constants	to	specify	a	value	for	the
FrequencyInterval	property	of	a	Schedule	object	when	the	FrequencyType
property	of	the	object	is	SQLDMOFreq_MonthlyRelative.

Constant Value Description
SQLDMOMonth_Day 8 Scheduled	activity	occurs	on	an

occurrence	of	a	day,	such	as	the
first	day	of	the	month.

SQLDMOMonth_Friday 6 Scheduled	activity	occurs	on	a
Friday.

SQLDMOMonth_MaxValid 10 SQLDMOMonth_WeekEndDay.
SQLDMOMonth_MinValid 1 SQLDMOMonth_Sunday.
SQLDMOMonth_Monday 2 Scheduled	activity	occurs	on	a

Monday.
SQLDMOMonth_Saturday 7 Scheduled	activity	occurs	on	a

Saturday.
SQLDMOMonth_Sunday 1 Scheduled	activity	occurs	on	a

Sunday.
SQLDMOMonth_Thursday 5 Scheduled	activity	occurs	on	a

Thursday.
SQLDMOMonth_Tuesday 3 Scheduled	activity	occurs	on	a

Tuesday.
SQLDMOMonth_Unknown 0 Bad	or	invalid	value.
SQLDMOMonth_Wednesday 4 Scheduled	activity	occurs	on	a

Wednesday.
SQLDMOMonth_WeekDay 9 Scheduled	activity	occurs	on	a

week	day,	from	Monday	through

Friday.
SQLDMOMonth_WeekEndDay 10 Scheduled	activity	occurs	on	a

weekend	day,	Saturday	or	Sunday.

SQL-DMO

N

SQL-DMO

Notification	Enumeration	Constants
(SQLDMO_ENUMNOTIFY_TYPE)
Notification	enumeration	constants	control	the	behavior	of	the
EnumNotifications	method	of	the	Alert	and	Operator	objects.

Constant Value Description
SQLDMOEnumNotify_Actual 2 Enumerate	only	those	operators	or

alerts	configured	for	notification
SQLDMOEnumNotify_All 1 Enumerate	all	operators	or	alerts
SQLDMOEnumNotify_Max 3 SQLDMOEnumNotify_Target
SQLDMOEnumNotify_Min 1 SQLDMOEnumNotify_All
SQLDMOEnumNotify_Target 3 Enumerate	notifications	for	the

operator	or	alert	specified

See	Also

EnumNotifications	Method

SQL-DMO

Notification	Method	Constants
(SQLDMO_NOTIFY_TYPE)
Notification	method	constants	define	a	Microsoft®	SQL	Server™	Agent
notification	feature.	Use	notification	method	constants	to	control	SQL	Server
Agent	behaviors	when	notifying	an	operator	of	an	alert	condition.

Constant Value Description
SQLDMONotify_All 7 Notification	by	e-mail,	e-mail	sent	to

the	pager	address,	and	network	pop-up
message

SQLDMONotify_Email 1 Notification	by	e-mail	sent	to	the
operator	e-mail	address

SQLDMONotify_NetSend 4 Notification	by	network	pop-up
message	posted	to	the	operator
network	address

SQLDMONotify_None 0 No	notification	method	specified	for
the	referenced	operator

SQLDMONotify_Pager 2 Notification	by	e-mail	sent	to	the
operator	pager	address

See	Also

AddNotification	Method

EnumNotifications	Method

IncludeEventDescription	Property

NotificationMethod	Property

UpdateNotification	Method

SQL-DMO

O

SQL-DMO

Object	Scripting	Constants
(SQLDMO_SCRIPT_TYPE)
Object	scripting	constants	are	used	by	objects	and	methods	that	generate	a
Transact-SQL	script	as	part	of	an	administrative	task	automated	using	SQL-
DMO.	For	example,	object	scripting	constants	are	used	to	control	the	behavior	of
the:

Script	method	of	objects	that	reference	Microsoft®	SQL	Server™
database	objects,	agent,	and	replication	components.

Transfer	object	when	using	the	transfer	object	to	copy	database	objects
and	agent	components.

ScriptDestinationObject	method	of	article	objects	that	define
replicated	data.

Object	scripting	constants	are	used	in	the	context	established	by	the	object	or
method.	For	more	information	about	object	scripting	constant	context,	see	the
reference	for	the	object	or	method.

Constant Value Description
SQLDMOScript_Aliases 16384 Obsolete.
SQLDMOScript_AppendToFile 256 Object	Script	method	only.	Append	to	indicated

output	file.	By	default,	Script
existing	file.

SQLDMOScript_Bindings 128 Generate	sp_bindefault	and	
statements.	Applies	only	when	scripting	references
a	SQL	Server	table.

SQLDMOScript_ClusteredIndexes 8 Generate	Transact-SQL	defining	clustered	indexes.
Applies	only	when	scripting	references	a	SQL
Server	table	or	view.

SQLDMOScript_DatabasePermissions 32 Generate	Transact-SQL	database	privilege	defining

script.	Database	permissions	grant	or	deny	
statement	execution	rights.

SQLDMOScript_Default 4 SQLDMOScript_PrimaryObj
SQLDMOScript_DRI_All 532676608 All	values	defined	as	SQLDMOScript_DRI_...

combined	using	an	OR	logical	operator.
SQLDMOScript_DRI_AllConstraints 520093696 SQLDMOScript_DRI_Checks,

SQLDMOScript_DRI_Defaults,
SQLDMOScript_DRI_ForeignKeys,
SQLDMOScript_DRI_PrimaryKey,	and
SQLDMOScript_DRI_UniqueKeys	combined
using	an	OR	logical	operator.

SQLDMOScript_DRI_AllKeys 469762048 SQLDMOScript_DRI_ForeignKeys,
SQLDMOScript_DRI_PrimaryKey,
SQLDMOScript_DRI_UniqueKeys	combined
using	an	OR	logical	operator.

SQLDMOScript_DRI_Checks 16777216 Generated	script	creates	column-specified	CHECK
constraints.	Directs	scripting	when	declarative
referential	integrity	establishes	dependency
relationships.	Applies	only	when	scripting
references	a	SQL	Server	table.

SQLDMOScript_DRI_Clustered 8388608 Generated	script	creates	clustered	indexes.	Directs
scripting	when	declarative	referential	integrity
establishes	dependency	relationships.	Applies	only
when	scripting	references	a	SQL	Server	table.

SQLDMOScript_DRI_Defaults 33554432 Generated	script	includes	column-specified
defaults.	Directs	scripting	when	declarative
referential	integrity	establishes	dependency
relationships.	Applies	only	when	scripting
references	a	SQL	Server	table.

SQLDMOScript_DRI_ForeignKeys 134217728 Generated	script	creates	FOREIGN	KEY
constraints.	Directs	scripting	when	declarative
referential	integrity	establishes	dependency
relationships.	Applies	only	when	scripting
references	a	SQL	Server	table.

SQLDMOScript_DRI_NonClustered 4194304 Generated	script	creates	nonclustered	indexes.
Directs	scripting	when	declarative	referential

integrity	establishes	dependency	relationships.
Applies	only	when	scripting	references	a	SQL
Server	table.

SQLDMOScript_DRI_PrimaryKey 268435456 Generated	script	creates	PRIMARY	KEY
constraints.	Directs	scripting	when	declarative
referential	integrity	establishes	dependency
relationships.	Applies	only	when	scripting
references	a	SQL	Server	table.

SQLDMOScript_DRI_UniqueKeys 67108864 Generated	script	creates	candidate	keys	defined
using	a	unique	index.	Directs	scripting	when
declarative	referential	integrity	establishes
dependency	relationships.	Applies	only	when
scripting	references	a	SQL	Server	table.

SQLDMOScript_DRIIndexes 65536 When	SQLDMOScript_NoDRI	is	specified,	script
PRIMARY	KEY	constraints	using	a	unique	index
to	implement	the	declarative	referential	integrity.
Applies	only	when	scripting	references	a	SQL
Server	table.

SQLDMOScript_DRIWithNoCheck 536870912 When	using	SQLDMOScript_DRI_Checks,	or
SQLDMOScript_DRI_ForeignKeys,	generated
script	includes	the	WITH	NOCHECK	clause
optimizing	constraint	creation.	Applies	only	when
scripting	references	a	SQL	Server	table.

SQLDMOScript_Drops 1 Generate	Transact-SQL	to	remove	the	referenced
component.	Script	tests	for	existence	prior	attempt
to	remove	component.

SQLDMOScript_IncludeHeaders 131072 Generated	script	is	prefixed	with	a	header
containing	date	and	time	of	generation	and	other
descriptive	information.

SQLDMOScript_IncludeIfNotExists 4096 Transact-SQL	creating	a	component	is	prefixed	by
a	check	for	existence.	When	script	is	executed,
component	is	created	only	when	a	copy	of	the
named	component	does	not	exist.

SQLDMOScript_Indexes 73736 SQLDMOScript_ClusteredIndexes,
SQLDMOScript_NonClusteredIndexes,	and
SQLDMOScript_DRIIndexes	combined	using	an

OR	logical	operator.	Applies	to	both	table	and	view
objects.

SQLDMOScript_NoCommandTerm 32768 Individual	Transact-SQL	statements	in	the	script
are	not	delimited	using	the	connection-specific
command	terminator.	By	default,	individual
Transact-SQL	statements	are	delimited.

SQLDMOScript_NoDRI 512 Generated	Transact-SQL	statements	do	not	include
any	clauses	defining	declarative	referential	integrity
constraints.	Applies	only	when	scripting	references
a	SQL	Server	table.	Only	use	when	script	will
execute	on	an	instance	of	SQL	Server	version	4.21.

SQLDMOScript_NoIdentity 1073741824Generated	Transact-SQL	statements	do	not	include
definition	of	identity	property,	seed,	and	increment.
Applies	only	when	scripting	references	a	SQL
Server	table.

SQLDMOScript_NonClusteredIndexes 8192 Generate	Transact-SQL	defining	nonclustered
indexes.	Applies	only	when	scripting	references	a
SQL	Server	table	or	view.

SQLDMOScript_None 0 Obsolete.
SQLDMOScript_ObjectPermissions 2 Include	Transact-SQL	privilege	defining	statements

when	scripting	database	objects.
SQLDMOScript_OwnerQualify 262144 Object	names	in	Transact-SQL	generated	to	remove

an	object	are	qualified	by	the	owner	of	the
referenced	object.	Transact-SQL	generated	to	create
the	referenced	object	qualify	the	object	name	using
the	current	object	owner.

SQLDMOScript_Permissions 34 SQLDMOScript_ObjectPermissions	and
SQLDMOScript_DatabasePermissions	combined
using	an	OR	logical	operator.

SQLDMOScript_PrimaryObject 4 Generate	Transact-SQL	creating	the	referenced
component.

SQLDMOScript_SortedData 1048576 Obsolete.
SQLDMOScript_SortedDataReorg 2097152 Obsolete.
SQLDMOScript_TimestampToBinary 524288 When	scripting	object	creation	for	a	table	or	user-

defined	data	type,	convert	specification	of
timestamp	data	type	to	binary(

SQLDMOScript_ToFileOnly 64 Most	SQL-DMO	object	scripting	methods	specify
both	a	return	value	and	an	optional	output	file.
When	used,	and	an	output	file	is	specified,	the
method	does	not	return	the	script	to	the	caller,	but
only	writes	the	script	to	the	output	file.

SQLDMOScript_TransferDefault 422143 Default.	SQLDMOScript_PrimaryObject,
SQLDMOScript_Drops,SQLDMOScript_Bindings,
SQLDMOScript_ClusteredIndexes,
SQLDMOScript_NonClusteredIndexes,
SQLDMOScript_Triggers,
SQLDMOScript_ToFileOnly,
SQLDMOScript_Permissions,
SQLDMOScript_IncludeHeaders,
SQLDMOScript_Aliases,
SQLDMOScript_IncludeIfNotExists,	and
SQLDMOScript_OwnerQualify	combined	using	an
OR	logical	operator.

SQLDMOScript_Triggers 16 Generate	Transact-SQL	defining	triggers.	Applies
only	when	scripting	references	a	SQL	Server	table
or	view.

SQLDMOScript_UDDTsToBaseType 1024 Convert	specification	of	user-defined	data	types	to
the	appropriate	SQL	Server	base	data	type.	Applies
only	when	scripting	references	a	SQL	Server	table.

SQLDMOScript_UseQuotedIdentifiers -1 Use	quote	characters	to	delimit	identifier	parts
when	scripting	object	names.

See	Also

Object	Scripting	Constants	(SQLDMO_SCRIPT2_TYPE)

Script	Method

Script	Method	(BackupDevice	Object)

Script	Method	(Table	Object)

ScriptType	Property

ScriptDestinationObject	Method

SQL-DMO

Object	Scripting	Constants
(SQLDMO_SCRIPT2_TYPE)
Object	scripting	constants	are	used	by	objects	and	methods	that	generate	a
Transact-SQL	script	as	part	of	an	administrative	task	automated	using	SQL-
DMO.	For	example,	object	scripting	constants	are	used	to	control	the	behavior	of
the:

Script	method	of	objects	that	reference	Microsoft®	SQL	Server™
database	objects,	agent,	and	replication	components.

Transfer	object	when	using	the	object	to	copy	database	objects	and
agent	components.

ScriptDestinationObject	method	of	article	objects	that	define
replicated	data.

Object	scripting	constants	are	used	in	the	context	established	by	the	object	or
method.	For	more	information	about	object	scripting	constant	context,	see	the
reference	for	the	object	or	method.

Constant Value Description
SQLDMOScript2_70Only 16777216Disable	features	available	in

instances	of	SQL	Server	so	that
output	is	compatible	with	an
instance	of	SQL	Server	version
7.0.	Disabled	features	are:

Column-level	collation
User-defined	functions
Extended	properties
Instead	of	triggers	on	tables	and
views
Indexes	on	views

Indexes	on	computed	columns
Descending	indexes
Default	is	OFF

SQLDMOScript2_AgentAlertJob 2048 Generate	Transact-SQL	script
creating	SQL	Server	Agent	jobs
and	alerts.

SQLDMOScript2_AgentNotify 1024 When	scripting	an	alert,	generate
script	creating	notifications	for
the	alert.

SQLDMOScript2_AnsiFile 2 Generated	script	file	uses
multibyte	characters.	Code	page
1252	is	used	to	determine
character	meaning.

SQLDMOScript2_AnsiPadding 1 Generate	Transact-SQL	SET
ANSI_PADDING	ON	and	SET
ANSI_PADDDING	OFF
statements	before	and	after
CREATE	TABLE	statements	in
the	generated	script.	Applies	only
when	scripting	references	a	SQL
Server	table.

SQLDMOScript2_Default 0 No	scripting	options	specified.
SQLDMOScript2_EncryptPWD 128 Encrypt	passwords	with	script.

When	specified,
SQLDMOScript2_UnicodeFile
must	also	be	specified.

SQLDMOScript2_ExtendedOnly 67108864 Ignore	all
SQLDMO_SCRIPT_TYPE
settings.	Use	to	script	extended
property	settings	only.	Script
may	require	editing	prior	to
running	on	destination	database.

SQLDMOScript2_ExtendedProperty 4194304 Include	extended	property
scripting	as	part	of	object
scripting.

SQLDMOScript2_FullTextCat 2097152 Command	batch	includes
Transact-SQL	statements
creating	Microsoft	Search	full-
text	catalogs.

SQLDMOScript2_FullTextIndex 524288 Generated	script	includes
statements	defining	Microsoft
Search	full-text	indexing.
Applies	only	when	scripting
references	a	SQL	Server	table.
Include	security	identifiers	for
logons	scripted.

SQLDMOScript2_JobDisable 33554432Disable	the	job	at	the	end	of
script	creation.
SQLDMOScript2_PrimaryObject
must	also	be	specified.

SQLDMOScript2_LoginSID 8192 Include	security	identifiers	for
logins	scripted.

SQLDMOScript2_MarkTriggers 32 Generated	script	creates
replication	implementing	triggers
as	system	objects.	Reserved	for
scripting	replication	articles.

SQLDMOScript2_NoCollation 8388608 Do	not	script	the	collation	clause
if	source	is	an	instance	of	SQL
Server	version	7.0	or	later.	The
default	is	to	generate	collation.

SQLDMOScript2_NoFG 16 Generated	script	does	not	include
'ON	<filegroup>'	clause	directing
filegroup	use.	Applies	only	when
scripting	references	a	SQL
Server	table.

SQLDMOScript2_NonStop 8 If	error	occurs	during	script	file
generation,	log	error	and
continue.	Applies	when	using
object	and	collection	Script
method	only.	Reserved	for	SQL
Server	utilities.

SQLDMOScript2_NoWhatIfIndexes 512 Do	not	script	hypothetical
indexes	used	to	implement	the
CREATE	STATISTICS
statement.	Applies	only	when
scripting	references	a	SQL
Server	table.

SQLDMOScript2_OnlyUserTriggers 64 Generated	script	includes
Transact-SQL	creating	user-
defined	triggers	only.	Reserved
for	scripting	replication	articles.

SQLDMOScript2_SeparateXPs 256 Script	generation	creates	a
second	script	file	defining	drop
and	create	of	extended	stored
procedures.	Applies	only	when
scripting	stored	procedures.
Reserved	for	SQL	Server
utilities.

SQLDMOScript2_UnicodeFile 4 Generated	script	output	file	is	a
Unicode-character	text	file.

See	Also

Object	Scripting	Constants	(SQLDMO_SCRIPT_TYPE)

Script	Method

Script	Method	(BackupDevice	Object)

Script	Method	(Table	Object)

Script2Type	Property

ScriptDestinationObject	Method

SQL-DMO

Operating	System	Type	Constants
(SQLDMO_OS_TYPE)
Operating	system	type	constants	identify	the	operating	systems	on	which
Microsoft®	SQL	Server™	can	run.

Constant Value Description
SQLDMO_WIN95 1 Microsoft	Windows®	95	or

Microsoft	Windows®	98
SQLDMO_WINNT 2 Microsoft	Windows	NT®

See	Also

IsOS	Method

SQL-DMO

P

SQL-DMO

Performance	Monitor	Constants
(SQLDMO_PERFMON_TYPE)
Performance	monitor	constants	describe	Microsoft®	Windows	NT®
Performance	Monitor	polling	behavior.	The	Windows	NT	Performance	Monitor
can	poll	continuously	or	when	directed	by	the	user.

The	polling	behavior	of	the	Windows	NT	Performance	Monitor	can	be	changed
after	the	application	has	started	successfully.

Constant Value Description
SQLDMOPerfmon_Continuous 0 Configures	Windows	NT

Performance	Monitor	statistics
polling	using	the	operating
system	default	time	slice

SQLDMOPerfmon_MaxSet 1 SQLDMOPerfmon_OnDemand
SQLDMOPerfmon_MinSet 0 SQLDMOPermon_Continuous
SQLDMOPerfmon_None 1000 Invalid	value
SQLDMOPerfmon_OnDemand 1 Windows	NT	Performance

Monitor	polls	for	statistics	when
directed	to	do	so	by	the	user

See	Also

PerfMonMode	Property

SQL-DMO

Privilege	Constants	(SQLDMO_PRIVILEGE_TYPE)
Privilege	constants	define	access	rights	and	permissions	within	databases	and	for
database	objects.

Constant Value Description
SQLDMOPriv_AllDatabasePrivs 130944 All	database	permissions
SQLDMOPriv_AllObjectPrivs 63 All	applicable	object

permissions
SQLDMOPriv_CreateDatabase 256 Can	create	and	own	databases
SQLDMOPriv_CreateDefault 4096 Can	create	DEFAULT	objects
SQLDMOPriv_CreateFunction 65366 Can	create	and	own

UserDefinedFunction	objects
SQLDMOPriv_CreateProcedure 1024 Can	create	and	own

StoredProcedure	objects
SQLDMOPriv_CreateRule 16384 Can	create	rules
SQLDMOPriv_CreateTable 128 Can	create	and	own	base	tables
SQLDMOPriv_CreateView 512 Can	create	and	own	view

tables
SQLDMOPriv_Delete 8 Can	delete	rows	in	a	referenced

table
SQLDMOPriv_DumpDatabase 2048 Can	back	up	a	database
SQLDMOPriv_DumpTable 32768 Can	back	up	a	referenced	table
SQLDMOPriv_DumpTransaction 8192 Can	back	up	a	database

transaction	log
SQLDMOPriv_Execute 16 Can	execute	a	referenced

stored	procedure
SQLDMOPriv_Insert 2 Can	add	rows	to	a	referenced

table
SQLDMOPriv_References 32 Can	grant	DRI	on	a	referenced

table
SQLDMOPriv_Select 1 Can	query	a	referenced	table

SQLDMOPriv_Unknown 0 No	privilege	assigned	or
unable	to	determine	privilege
on	the	referenced	database	or
database	object

SQLDMOPriv_Update 4 Can	change	row	data	in	a
referenced	table

See	Also

Deny	Method	(Database)

Deny	Method	(StoredProcedure)

Deny	Method	(Table,	View)

Deny	Method	(UserDefinedFunction)

Grant	Method	(Database)

Grant	Method	(StoredProcedure,	UserDefinedFunction)

Grant	Method	(Table,	View)

ListDatabasePermissions	Method

ListPermissions	Method

ListObjectPermissions	Method

Permissions	Property

PrivilegeType	Property

Revoke	Method	(Database)

Revoke	Method	(StoredProcedure)

Revoke	Method	(Table,	View)

Revoke	Method	(UserDefinedFunction)

SQL-DMO

Procedure	Constants
(SQLDMO_PROCEDURE_TYPE)
Procedure	constants	control	interpretation	of	the	text	of	a	stored	procedure
record.

Constant Value Description
SQLDMOProc_Extended 2 StoredProcedure	object

references	an	extended	stored
procedure

SQLDMOProc_Macro 3 Reserved	for	future	use
SQLDMOProc_ReplicationFilter 4 Reserved	for	future	use
SQLDMOProc_Standard 1 StoredProcedure	object

references	a	Microsoft®	SQL
Server™	stored	procedure

SQLDMOProc_Unknown 0 Bad	or	invalid	value

SQL-DMO

R

SQL-DMO

Recovery	Model	Constants
(SQLDMO_RECOVERY_TYPE)
Recovery	Model	constants	are	used	to	specify	the	recovery	model	for	a	database.

Constant Value Description
SQLDMORECOVERY_BulkLogged 1 Use	the	Bulk-Logged

Recovery	model.
SQLDMORECOVERY_Full 2 Use	the	Full	Recovery

model.
SQLDMORECOVERY_Simple 0 Default.	Use	the	Simple

Recovery	model.
SQLDMORECOVERY_Unknown 3 Recovery	model	is

unknown.

See	Also

RecoveryModel	Property

SQL-DMO

Replication	Agent	Constants
(SQLDMO_REPLAGENT_TYPE)
Replication	agent	constants	enumerate	the	Microsoft®	SQL	Server™	Agent	job
step	subsystems	implementing	programmable	agents	for	Microsoft	SQL	Server
replication.

Constant Value Description
SQLDMOReplAgent_All 0 All	replication	agent	types
SQLDMOReplAgent_Default 0 SQLDMOReplAgent_All
SQLDMOReplAgent_Distribution 3 Replication	Distribution

Agent
SQLDMOReplAgent_LogReader 2 Replication	transaction	Log

Reader	Agent
SQLDMOReplAgent_Merge 4 Replication	Merge	Agent
SQLDMOReplAgent_Miscellaneous 5 Agents	not	otherwise

classified
SQLDMOReplAgent_Publishers -1 Agents	supporting

publishers
SQLDMOReplAgent_QueueReader 9 Replication	Queue	Reader

Agent
SQLDMOReplAgent_Snapshot 1 Replication	Snapshot	Agent

See	Also

CreateAgentProfile	Method

EnumAgentProfiles	Method

GetAgentsStatus	Method	(Distributor)

UpdateAgentProfile	Method

SQL-DMO

Replication	Article	Command	Option	Constants
(SQLDMO_COMMANDOPTION_TYPE)
Replication	article	command	option	constants	specify	Transact-SQL	statement
generation	and	parameter	binding	for	tables	and	stored	procedures	replicated	as	a
transactional	replication	article.

Constant Value Description
SQLDMOCommandOption_BinaryParameters 16 Default.	Send

the	stored
procedure
parameters	in
binary	format
when
replicating
commands	as
stored
procedures	for
an	article	in	a
transactional
publication.

SQLDMOCommandOption_IncludeInsertColumnNames 8 Include
column	names
in	destination
table	INSERT
statements.

SQLDMOCommandOption_DTSHorizontalPartition 64 Enable	DTS
transformation
servers	to
manage	rows
in	horizontal
partitions.

See	Also

CommandOptions	Property

SQL-DMO

Replication	Article	Constants
(SQLDMO_ARTICLE_TYPE)
Replication	article	constants	describe	the	source	of	data	for,	and	the	behavior	of,
a	Publisher	on,	transactional,	or	merge	articles.

Constant Value Description
SQLDMORep_FuncSchemaOnly 128 Article	uses	user-defined	function

execution	and	schema	to	determine	source
data.

SQLDMORep_IndexedView 256 Underlying	object	of	the	article	is	an
indexed	view.

SQLDMORep_IndexedViewLogBased 257 Article	monitors	an	indexed	view	and	the
transaction	log	to	determine	source	data.
TransArticle	object	only.

SQLDMORep_IndexedViewLogBasedManualBoth 263 Article	monitors	an	indexed	view	and	the
transaction	log	to	determine	source	data.
The	default	filter	procedure	is	overridden.
TransArticle	object	only.

SQLDMORep_IndexedViewLogBasedManualFilterProc 259 Article	monitors	an	indexed	view	and	the
transaction	log	to	determine	source	data.
The	default	filter	procedure	is	overridden.
TransArticle	object	only.

SQLDMORep_IndexedViewLogBasedManualSyncView 261 Article	monitors	an	indexed	view	and	the
transaction	log	to	determine	source	data.
The	default	view	is	overridden.
TransArticle	object	only.

SQLDMORep_IndexedViewSchemaOnly 320 Article	monitors	an	indexed	view	and
schema	to	determine	source	data.

SQLDMORep_LogBased 1 Article	monitors	the	transaction	log	to
determine	source	data.

SQLDMORep_LogBasedManualBoth 7 Article	monitors	the	transaction	log	to
determine	source	data.	The	default	view

and	filter	procedure	is	overridden.
SQLDMORep_LogBasedManualFilterProc 3 Article	monitors	the	transaction	log	to

determine	source	data.	The	default	filter
procedure	is	overridden.

SQLDMORep_LogBasedManualSyncView 5 Article	monitors	the	transaction	log	to
determine	source	data.	The	default	view	is
overridden.

SQLDMORep_LogBasedVerticalPartition 6 Article	monitors	the	transaction	log	to
determine	source	data.	The	source	data	is
partitioned	by	column.

SQLDMORep_ManualFilterProc 2 Default	filter	procedure	is	overridden.
SQLDMORep_ManualSyncView 4 Default	view	is	overridden.
SQLDMORep_Max 320 SQLDMORep_SerializableProcExecution.
SQLDMORep_Min 0 Not	set	or	an	error	condition.
SQLDMORep_ProcExecution 8 Article	uses	stored	procedure	execution	to

determine	source	data.
SQLDMORep_ProcSchemaOnly 32 Article	uses	stored	procedure	execution

and	schema	to	determine	source	data.
SQLDMORep_SerializableProcExecution 24 Article	uses	stored	procedure	execution	to

determine	source	data.	The	stored
procedure	is	executed	within	a	serializable
transaction.

SQLDMORep_TableBased 10 Article	monitors	a	table	to	determine
replicated	data.

SQLDMORep_ViewSchemaOnly 64 Article	monitors	a	view	and	schema	to
determine	source	data.

See	Also

ArticleType	Property

EnumPublicationArticles	Method

SQL-DMO

Replication	Article	Pre-Creation	Constants
(SQLDMO_PREARTICLE_TYPE)
Replication	article	precreation	constants	specify	actions	performed	at	a
Subscriber	prior	to	article	synchronization.

Constant Value Description
SQLDMOPreArt_DeleteRows 2 Perform	a	logged	delete	prior	to

synchronization
SQLDMOPreArt_DropTable 1 Drop	and	recreate	table	to

synchronize
SQLDMOPreArt_Max 3 SQLDMOPreArt_TruncateTable
SQLDMOPreArt_Min 0 SQLDMOPreArt_None
SQLDMOPreArt_None 0 Do	nothing	prior	to

synchronization
SQLDMOPreArt_TruncateTable 3 Perform	a	bulk-logged	delete

prior	to	synchronization

SQL-DMO

Replication	Article	Status	Constants
(SQLDMO_ARTSTATUS_TYPE)
Replication	article	status	constants	specify	process	state	for	articles	defined	as
part	of	a	merge	replication	publication.

SQLDMOArtStat_Active 2 Article	is	active.
SQLDMOArtStat_Conflicts 3 Conflicting	copies	of	article	data

exist.
SQLDMOArtStat_Errors 4 Agent	attempts	to	publish	the	article

or	resolve	conflicts	in	copies	of	the
article	have	resulted	in	errors.

SQLDMOArtStat_Inactive 0 Article	is	inactive.
SQLDMOArtStat_Max 6 SQLDMOArtStat_Errors,
SQLDMOArtStat_Min 0 SQLDMOArtStat_Inactive
SQLDMOArtStat_Unsynced 1 Initial	snapshot	of	article	has	not

been	made	or	has	not	been	retrieved
by	all	Subscribers.

SQLDMOArtStat_NewInactive 5 Newly	created	article	is	inactive.
SQLDMOArtStat_NewActive 6 Newly	created	article	is	active.

SQL-DMO

Replication	Compatibility	Level	Constants
(SQLDMO_REPLCOMPLEVEL_TYPE)
Replication	Compatibility	Level	constants	are	used	to	indicate	which	feature	set
is	currently	supported	by	a	publication.

Constant Value Description
SQLDMOReplCompatibilityLevel_70 10 Microsoft®	SQL

Server™	version	7.0
SQLDMOReplCompatibilityLevel_70SP1 20 SQL	Server	7.0	Service

Pack	1
SQLDMOReplCompatibilityLevel_70SP2 30 SQL	Server	7.0	Service

Pack	2
SQLDMOReplCompatibilityLevel_80 40 SQL	Server	2000

See	Also

CompatibilityLevel	Property	(MergePublication2,	TransPublication2)

SQL-DMO

Replication	Conflict	Policy	Constants
(SQLDMO_CONFLICTPOLICY_TYPE)
Replication	conflict	policy	constants	specify	whether	the	Publisher	or	Subscriber
wins	a	conflict	that	occurs	during	a	queued-transaction	operation.

Constant Value Description
SQLDMOConflictPolicy_PublisherWin 1 Publisher	wins	the

conflict
SQLDMOConflictPolicy_ReinitSubscription 3 Reinitialize	the

subscription
SQLDMOConflictPolicy_SubscriberWin 2 Subscriber	wins	the

conflict

See	Also

ConflictPolicy	Property

SQL-DMO

Replication	Conflict	Resolution	Constants
(SQLDMO_RESOLVECONFLICT_TYPE)
Replication	conflict	resolution	constants	are	reserved	for	future	use.

Constant Value Description
SQLDMOResolveConflict_Default 1 SQLDMOResolveConflict_Resubmit
SQLDMOResolveConflict_Discard 2 Reserved
SQLDMOResolveConflict_Resubmit 1 Reserved
SQLDMOResolveConflict_Unknown 100 Reserved

SQL-DMO

Replication	Constants
(SQLDMO_REPLCONSTANTS_TYPE)
Replication	constants	represent	miscellaneous	values	used	in	a	SQL-DMO
application	managing	replication.

Constant Value Description
SQLDMO_DEFAULTRETENTION 14 Default	retention	period	for

merge,	snapshot,	or
transactional	replication
publications	in	days

SQL-DMO

Replication	DTS	Package	Constants
(SQLDMO_REPLDTSLOC_TYPE)
Replication	Data	Transformation	Services	(DTS)	package	constants	specify	the
location	of	a	DTS	package	executed	during	the	replication	process.

Constant Value Description
SQLDMOReplDTSPackageLocation_Distributor 0 DTS	package

located	on	the
Distributor

SQLDMOReplDTSPackageLocation_Subscriber 1 DTS	package
located	on	the
Subscriber

See	Also

DTSPackageLocation	Property

SQL-DMO

Replication	Failover	Mode	Constants
(SQLDMO_REPLFAILOVER_TYPE)
Replication	failover	mode	constants	set	the	failover	mode	for	mixed	mode
updating	of	subscriptions.

Constant Value Description
SQLDMOReplFailOver_Immediate 0 Use	Immediate	Updating

Subscribers	to	propagate
changes	made	at	the
Subscribers	to	the	Publisher.

SQLDMOReplFailOver_Queued 1 Use	Queued	Updating
Subscribers	to	propagate
changes	made	at	the
Subscribers	to	the	Publisher.

See	Also

ReadReplicationFailOverMode	Method

WriteReplicationFailOverMode	Method

SQL-DMO

Replication	Frequency	Constants
(SQLDMO_REPFREQ_TYPE)
Replication	frequency	constants	specify	a	replication	interval	at	the	highest
level,	thereby	determining	the	type	of	a	transactional	publication.

Constant Value Description
SQLDMORepFreq_Continuous 0 Log	monitoring	or	another	method

is	used	to	determine	replicated
article	content.

SQLDMORepFreq_Max 1 SQLDMORepFreq_Snapshot.
SQLDMORepFreq_Min 0 SQLDMORepFreq_Continuous.
SQLDMORepFreq_Snapshot 1 Article	is	replicated	at	fixed	times

and	is	not	dependent	upon
transaction	log	monitoring	or	other
monitoring	processes.

SQLDMORepFreq_Unknown 1000 Invalid	value.

See	Also

ReplicationFrequency	Property

SQL-DMO

Replication	Initial	Synchronization	Constants
(SQLDMO_INITIALSYNC_TYPE)
Replication	initial	synchronization	constants	specify	data	file	format	used	for	an
initial	snapshot	of	data	made	to	synchronize	Publisher	and	Subscriber	images	of
data	replicated.

Constant Value Description
SQLDMOInitSync_BCPChar 1 Use	Microsoft®	SQL	Server™

bulk	copy	in	character	data
format	to	transfer	data	for	initial
synchronization.

SQLDMOInitSync_BCPNative 0 Use	SQL	Server	bulk	copy	in
native	data	format	to	transfer
data	for	initial	synchronization.

SQLDMOInitSync_Concurrent 3 Use	concurrent	snapshot
processing	(transactional
replication).

SQLDMOInitSync_ConcurrentChar 4 Concurrent	snapshot	generating
character	mode	BCP	files.
Required	when	the	AllowDTS
property	is	set	to	True.

SQLDMOInitSync_Default 0 SQLDMOInitSync_BCPNative.
SQLDMOInitSync_Max 4 Maximum	Initial

Synchronization	mode	value.
SQLDMOInitSync_Min 0 SQLDMOInitSync_BCPNative.
SQLDMOInitSync_Unknown 10 Bad	or	invalid	value.

See	Also

SnapshotMethod	Property

SQL-DMO

Replication	Merge	Subscriber	Constants
(SQLDMO_MERGESUBSCRIBER_TYPE)
Replication	merge	subscriber	constants	specify	attributes	of	a	subscription	to	a
merge	replication	publication.

Constant Value Description
SQLDMOMergeSubscriber_Anonymous 3 Anonymous	subscription
SQLDMOMergeSubscriber_Default 2 SQLDMOMergeSubscriber_Local
SQLDMOMergeSubscriber_Global 1 Global	subscription
SQLDMOMergeSubscriber_Local 2 Local	subscription
SQLDMOMergeSubscriber_Max 4 SQLDMOMergeSubscriber_Republishing
SQLDMOMergeSubscriber_Min 1 SQLDMOMergeSubscriber_Global
SQLDMOMergeSubscriber_Republishing 4 Republishing	subscription
SQLDMOMergeSubscriber_Unknown 256 Bad	or	invalid	value

SQL-DMO

Replication	Method	Constants
(SQLDMO_REPLICATION_TYPE)
Replication	method	constants	specify	replication	by	type.

Constant Value Description
SQLDMORepType_Default 1 SQLDMORepType_Transactional
SQLDMORepType_Merge 2 Merge	replication
SQLDMORepType_Transactional 1 Transactional	or	snapshot

replication
SQLDMORepType_TransactionalMerge 3 SQLDMORepType_Merge	and

SQLDMORepType_Transactional
combined	using	an	OR	logical
operator	(EnumPublications
method	only)

SQLDMORepType_Unknown 256 Bad	or	invalid	value

See	Also

EnumPublications	Method

RemoveDefunctAnonymousSubscription	Method

SQL-DMO

Replication	Object	Creation	Script	Constants
(SQLDMO_CREATIONSCRIPT_TYPE)
Replication	object	creation	script	constants	define	behavior	on	initial
synchronization	script	generation.	As	articles	are	published,	the	schema	of
replicated	tables	is	captured	for	Subscribers.	When	a	subscription	receives	the
article,	the	table	or	object	implementing	the	article	is	created	as	specified	by
creation	script	constants.

Constant Value Description
SQLDMOCreationScript_ClusteredIndexes 16 Include	clustered

index	creation	on
tables	in	the	script

SQLDMOCreationScript_Collation 4096 Replicate	column-
level	collation

SQLDMOCreationScript_CustomProcs 2 Generates	custom
stored	procedures
for	the	article	if
defined
(transactional
replication	only)

SQLDMOCreationScript_DisableScripting 0 Do	not	script
SQLDMOCreationScript_DRI_Checks 1024 Include	creation	of

check	constraints
during	creation	of
tables	in	the	script

SQLDMOCreationScript_DRI_Defaults 2048 Include	creation	of
column	defaults
during	creation	of
tables	in	the	script

SQLDMOCreationScript_DRI_ForeignKeys 512 Include	creation	of
foreign	keys	during
creation	of	tables	in

the	script
SQLDMOCreationScript_DRI_PrimaryKey 128 Include	definition

of	primary	keys	on
tables	in	the	script

SQLDMOCreationScript_DRI_UniqueKeys 16384 Include	creation	of
unique	key	during
creation	of	tables	in
the	script

SQLDMOCreationScript_ExtendedProperties 8192 Replicate	extended
properties

SQLDMOCreationScript_NonClusteredIndexes 64 Include
nonclustered	index
creation	on	tables	in
the	script

SQLDMOCreationScript_PKUKAsConstraints 32768 Include	creation	of
primary	key	and
unique	key	during
creation	of	tables	as
constraints	instead
of	as	indexes	in	the
script

SQLDMOCreationScript_PrimaryObject 1 Include	object
creation	in	the
script

SQLDMOCreationScript_UDDTsToBaseTypes 32 Convert	all	user-
defined	data	types
to	their	Microsoft®
SQL		Server™	base
types	when
defining	columns	in
table	creation	in	the
script

SQLDMOCreationScript_UserTriggers 256 Include	creation	of
trigger	during
creation	of	tables	in
the	script

See	Also

CreationScriptOptions	Property

SQL-DMO

Replication	Permissions	Checking	Constants
(SQLDMO_CHECKPERMISSIONS_TYPE)
Replication	permissions	checking	constants	are	used	to	determine	which
permissions	are	checked	at	Publisher	before	Subscriber-side	database	changes
can	be	uploaded.	SQLDMO_CHECKPERMISSIONS_TYPE	is	a	bitmask;
therefore	multiple	options	can	be	specified	at	the	same	time.

Constant Value Description
SQLDMOCheckPermissions_DeleteCheck 4 Check	permissions	at

the	Publisher	before	a
Subscriber-side
DELETE	can	be
uploaded.

SQLDMOCheckPermissions_InsertCheck 1 Check	permissions	at
the	Publisher	before	a
Subscriber-side
INSERT	can	be
uploaded.

SQLDMOCheckPermissions_NoCheck 0 Do	not	check
permissions.

SQLDMOCheckPermissions_UpdateCheck 2 Check	permissions	at
the	Publisher	before	a
Subscriber-side
UPDATE	can	be
uploaded.

See	Also

CheckPermissions	Property

SQL-DMO

Replication	Publication	Attribute	Constants
(SQLDMO_PUBATTRIB_TYPE)
Replication	publication	attribute	constants	specify	available	replication	function
for	a	referenced	publication.

Constant Value Description
SQLDMOPubAttrib_AllowAnonymous 4 Allow	anonymous	Subscriber-

originated	subscriptions	against
the	referenced	publication.

SQLDMOPubAttrib_AllowPull 2 Allow	known	Subscriber-
originated	(pull)	subscriptions
against	the	referenced
publication.

SQLDMOPubAttrib_AllowPush 1 Allow	Publisher	to	force
subscription	to	the	publication.

SQLDMOPubAttrib_AllowSubscriptionCopy 100 Allow	copying	and	attaching	of
subscription	database	to	other
Subscribers.

SQLDMOPubAttrib_CompressSnapshot 128 Compress	snapshot	files.
SQLDMOPubAttrib_Default 1 SQLDMOPubAttrib_AllowPush.
SQLDMOPubAttrib_ImmediateSync 16 Force	immediate	synchronization

of	the	referenced	publication.
SQLDMOPubAttrib_IndependentAgent 32 Run	agent	as	an	independent

agent.
SQLDMOPubAttrib_InternetEnabled 8 Enable	the	referenced

publication	for	distribution
across	the	Internet.

SQLDMOPubAttrib_Min 0 Referenced	publication	is
disabled.

SQLDMOPubAttrib_SnapshotInDefaultFolder 64 Keep	snapshot	copy	in	default
folder.

SQLDMOPubAttrib_Unknown 256 Referenced	publication	has	a	bad

or	unknown	attribute	setting.
SQLDMOPubAttrib_Valid 511 Mask	for	valid	attribute	settings.

See	Also

PublicationAttributes	Property

SQL-DMO

Replication	Publication	Constants
(SQLDMO_PUBLICATION_TYPE)
Replication	publication	constants	identify	the	kind	of	data	replication	supported
by	a	referenced	publication.

Constant Value Description
SQLDMOPublication_Max 1 SQLDMOPublication_Transactional.
SQLDMOPublication_Merge 2 Referenced	publication	supports

merge	replication.
SQLDMOPublication_Min 0 SQLDMOPublication_Transactional.
SQLDMOPublication_Snapshot 1 Referenced	publication	supports

snapshot	replication.
SQLDMOPublication_Transactional 0 Referenced	publication	supports

transactional	replication.
SQLDMOPublication_Unknown 1000 Error	condition.	No	replication

support	can	be	determined	for	the
referenced	publication.

SQL-DMO

Replication	Publication	Status	Constants
(SQLDMO_PUBSTATUS_TYPE)
Replication	publication	status	constants	are	reserved	for	future	use.

Constant Value Description
SQLDMOPubStat_Active 1 Reserved
SQLDMOPubStat_Default 1000 Reserved
SQLDMOPubStat_Inactive 0 Reserved
SQLDMOPubStat_Max 0 Reserved
SQLDMOPubStat_Min 1 Reserved
SQLDMOPubStat_Unknown 1000 Reserved

SQL-DMO

Replication	Queue	Type	Constants
(SQLDMO_REPLQUEUE_TYPE)
Replication	queue	type	constants	are	used	to	specify	the	type	of	queuing	to	use	if
a	publication	accepts	queued	transactions.

Constant Value Description
SQLDMOReplQueue_MSMQ 1 Use	Microsoft®	Message

Queue	to	implement	queuing.
SQLDMOReplQueue_SQL 2 Use	Microsoft	SQL	Server™

to	implement	queuing.

See	Also

QueueType	Property

SQL-DMO

Replication	Resynchronization	Constants
(SQLDMO_RESYNC_TYPE)
Replication	Resynchronization	Constants	specify	which	changes	are	applied
when	a	merge	subscription	is	resynchronized.

Constant Value Description
SQLDMOResync_SinceAGivenDateTime 2 Resynchronize

subscription	with
all	changes	since	a
given	date	and
time

SQLDMOResync_SinceLastSnapshotApplied 0 Resynchronize
subscription	with
all	changes	since
last	snapshot	was
applied

SQLDMOResync_SinceLastSuccessfulValidation 1 Resynchronize
subscription	with
all	changes	since
last	successful
validation

See	Also

ReSynchronizeSubscription	Method

SQL-DMO

Replication	Script	Constants
(SQLDMO_REPSCRIPT_TYPE)
Replication	script	constants	control	Transact-SQL	command	batch	contents	for
the	Script	method	of	a	SQL-DMO	object	representing	a	replication	component.

Constant Value Description
SQLDMORepScript_AnsiFile 16777216 Output	to	a	file	is	written	as	ANSI

character	text.
SQLDMORepScript_AppendToFile 8192 Output	is	appended	to	a	designated

operating	system	file.	If	not	set,	output
overwrites	any	data	in	an	existing,
designated	file.

SQLDMORepScript_Creation 16384 Script	includes	database	object
creation.

SQLDMORepScript_Default 256 SQLDMORepScript_InstallDistributor.
SQLDMORepScript_Deletion 32768 Script	includes	deletion	of	existing

database	objects.
SQLDMORepScript_DisableReplicationDB 134217728Script	disables	a	replication	database.
SQLDMORepScript_EnableReplicationDB 67108864 Script	enables	a	replication	database.
SQLDMORepScript_InstallDistributor 256 Default.	The	script	installs	the

replication	Distributor.
SQLDMORepScript_InstallPublisher 1024 Script	installs	a	Publisher.
SQLDMORepScript_InstallReplication 1048576 Script	installs	replication.
SQLDMORepScript_NoCommandTerm 268435456No	command	terminator	is	added	to

script	commands.
SQLDMORepScript_NoSubscription 128 Script	creation	of	publication,

excluding	push	subscriptions.
SQLDMORepScript_PublicationCreation 65536 Script	includes	publication	creation

text.
SQLDMORepScript_PublicationDeletion 131072 Script	includes	text	that	removes

publications.

SQLDMORepScript_PullSubscriptionCreation 262144 Script	pull	subscription	creation.
SQLDMORepScript_PullSubscriptionDeletion 524288 Script	pull	subscription	deletion.
SQLDMORepScript_ReplicationJobs 4194304 Script	creation	of	replication-related

jobs	to	preserve	job	schedule	and	steps.
The	corresponding	job	script	must	be
run	before	the	replication	script.
This	constant	can	only	be	used	with
Microsoft®	SQL	Server™	2000.	Only
a	member	of	the	sysadmin
role	or	the	owner	of	a	job	have	access
to	a	job	creation	script.

SQLDMORepScript_SubscriptionCreation 262144 Obsolete.
SQLDMORepScript_SubscriptionDeletion 524288 Obsolete.
SQLDMORepScript_ToFileOnly 4096 Output	generated	by	an	executed	script

is	directed	to	an	operating	system	file
only.	If	not	set,	output	is	available	as
status	or	error	messages.

SQLDMORepScript_UnicodeFile 33554432 Output	to	a	file	is	written	as	Unicode
character	text.

SQLDMORepScript_UninstallDistributor 512 Script	removes	the	replication
Distributor.

SQLDMORepScript_UninstallPublisher 2048 Script	removes	a	Publisher.
SQLDMORepScript_UninstallReplication 2097152 Script	removes	replication.

See	Also

Script	Method	(Replication	Objects)

SQL-DMO

Replication	Security	Constants
(SQLDMO_REPLSECURITY_TYPE)
Replication	security	constants	are	reserved	for	future	use.

Constant Value Description
SQLDMOReplSecurity_Max 2 SQLDMOReplSecurity_PredefinedServer
SQLDMOReplSecurity_Min 0 SQLDMOReplSecurity_Normal
SQLDMOReplSecurity_Normal 0 Reserved
SQLDMOReplSecurity_Integrated 1 Reserved
SQLDMOReplSecurity_PredefinedServer 2 Reserved

SQL-DMO

Replication	Signature	Verification	Constants
(SQLDMO_VERIFYSIGNATURE_TYPE)
Replication	signature	verification	constants	are	used	to	specify	whether	to	verify
a	digital	signature	before	using	a	resolver	in	merge	replication.

Constant Value Description
SQLDMOVerifySignature_NoVerification 0 No	digital	signature

verification	for
resolver

SQLDMOVerifySignature_TrustedAuthority 1 Verify	digital
signature	of	trusted
authority	for	resolver

See	Also

VerifyResolverSignature	Property

SQL-DMO

Replication	Subscriber	Constants
(SQLDMO_SUBSCRIBER_TYPE)
Replication	Subscriber	constants	specify	at	a	high	level	the	data	source	target	for
data	distributed	by	an	instance	of	Microsoft®	SQL	Server™.

Constant Value Description
SQLDMOSubInfo_ExchangeServer 4 Type	property	of

RegisteredSubscriber
object	that	identifies	a
Microsoft	Exchange	Server
installation	persisted	as	a
SQL	Server	linked	server.

SQLDMOSubInfo_JetDatabase 2 Name	property	of
RegisteredSubscriber
object	identifies	a	Microsoft
Jet	version	3.5	database.

SQLDMOSubInfo_ODBCDatasource 1 Name	property	of
RegisteredSubscriber
object	identifies	an	ODBC
user	or	system	DSN.

SQLDMOSubInfo_OLEDBDatasource 3 Type	property	of
RegisteredSubscriber
object	that	identifies	an	OLE
DB	data	source
specification,	or	Microsoft
Jet	version	4.0	database
persisted	as	a	SQL	Server
linked	server.

SQLDMOSubInfo_SQLServer 0 Name	property	of
RegisteredSubscriber
object	identifies	an	instance
of	SQL	Server	by	name.

See	Also

Type	Property	(RegisteredSubscriber)

ValidateDataSource	Method

SQL-DMO

Replication	Subscription	Constants
(SQLDMO_SUBSCRIPTION_TYPE)
Replication	subscription	constants	specify	direction	and	Publisher-visibility	of	a
replication	subscription.

Constant Value Description
SQLDMOSubscription_All 3 SQLDMOSubscription_Pull	and

SQLDMOSubscription_Anonymous
combined	using	an	OR	logical
operator.

SQLDMOSubscription_Anonymous 2 Subscription	is	anonymous.	Valid	for
Subscriber-originated	subscriptions
only.

SQLDMOSubscription_Default 0 SQLDMOSubscription_Push.
SQLDMOSubscription_Max 3 SQLDMOSubscription_Anonymous.
SQLDMOSubscription_Min 0 SQLDMOSubscription_Push.
SQLDMOSubscription_Pull 1 Subscription	is	Subscriber-

originated.
SQLDMOSubscription_Push 0 Subscription	is	Publisher-originated.
SQLDMOSubscription_Unknown 256 Bad	or	invalid	value.

See	Also

EnableMergeSubscription	Method

EnableTransSubscription	Method

EnumAllSubscriptions	Method

EnumDistributionAgentViews	Method

SubscriptionType	Property

SQL-DMO

Replication	Subscription	Status	Constants
(SQLDMO_SUBSTATUS_TYPE)
Replication	subscription	status	constants	specify	subscription	activity,
controlling	action	by	a	replication	agent	maintaining	the	subscription.

Constant Value Description
SQLDMOSubStat_Active 2 Subscription	is	active.	Agent	will

maintain	subscription.
SQLDMOSubStat_Default 1000 SQLDMOSubStat_Unknown.
SQLDMOSubStat_Inactive 0 Subscription	is	inactive.	Agent	will

not	maintain	subscription.
SQLDMOSubStat_Max 2 SQLDMOSubStat_Active.
SQLDMOSubStat_Min 0 SQLDMOSubStat_Inactive.
SQLDMOSubStat_Unknown 1000 Subscription	state	cannot	be	known.
SQLDMOSubStat_Unsynced 1 Subscription	is	not	synchronized.

Manual	or	automated
synchronization	must	occur	before
agent	can	maintain	subscription.

SQL-DMO

Replication	Subscription	Synchronization	Constants
(SQLDMO_SUBSYNC_TYPE)
Replication	subscription	synchronization	constants	specify	subscription	agent
behavior	when	subscription	synchronization	is	required.

Constant Value Description
SQLDMOSubSync_Auto 1 Subscription	agent	will	synchronize

the	subscription	automatically.
SQLDMOSubSync_Default 1 Default.	SQLDMOSubSync_Auto.
SQLDMOSubSync_Manual 0 Maintained	for	backward

compatibility.
SQLDMOSubSync_Max 2 SQLDMOSubSync_None.
SQLDMOSubSync_Min 1 Default.	SQLDMOSubSync_Auto.
SQLDMOSubSync_None 2 Subscription	agent	will	not	attempt

publication	synchronization.	User
interaction	necessary	to	ensure
synchronization.

SQLDMOSubSync_Unknown 1000 Bad	or	invalid	value.

SQL-DMO

Replication	Task	Status	Constants
(SQLDMO_TASKSTATUS_TYPE)
Replication	task	status	constants	represent	the	execution	state	of	a	Microsoft®
SQL	Server™	Agent	job	performing	a	replication	task.

Constant Value Description
SQLDMOTask_Failed 6 At	least	one	job	failed	to	execute.
SQLDMOTask_Idle 4 All	jobs	are	scheduled	and	idle.
SQLDMOTask_Pending 0 All	jobs	are	waiting	to	start.
SQLDMOTask_Retry 5 At	least	one	job	is	attempting	to

execute	after	a	previous	failure.
SQLDMOTask_Running 3 At	least	one	job	is	executing.
SQLDMOTask_Starting 1 One	or	more	jobs	are	starting.
SQLDMOTask_Succeeded 2 All	jobs	executed	successfully.

SQL-DMO

Replication	Third-Party	Publication	Display	Option
Constants
(SQLDMO_THIRDPARTYOPTION_TYPE)
Replication	third-party	publication	display	option	constants	are	used	to	specify
whether	to	suppress	the	display	of	a	publication	in	the	Replication	folder	in
Microsoft®	SQL	Server™	Enterprise	Manager.

Constant Value Description
SQLDMOThirdPartyOption_Default 0 Display	a

heterogeneous
publication	in	the
Replication	folder	in
SQL	Server
Enterprise	Manager
(default).

SQLDMOThirdPartyOption_SuppressDisplay 1 Suppress	display	of	a
heterogeneous
publication	in
Replication	folder	in
SQL	Server
Enterprise	Manager.

See	Also

ThirdPartyOptions	Property

SQL-DMO

Replication	Transactional	Subscriber	Constants
(SQLDMO_TRANSUBSCRIBER_TYPE)
Replication	transaction	Subscriber	constants	specify	subscription	behavior	when
a	Subscriber	initiates	a	change	to	data	in	an	article	image.

Constant Value Description
SQLDMOTranSubscriber_Default 0 SQLDMOTranSubscriber_ReadOnly.
SQLDMOTranSubscriber_Failover 3 Transactional	Immediate	Updating

Subscriber	with	capability	to	fail	over	to
queued	Subscriber.

SQLDMOTranSubscriber_Max 3 SQLDMOTranSubscriber_Synchronous.
SQLDMOTranSubscriber_Min 0 SQLDMOTranSubscriber_ReadOnly.
SQLDMOTranSubscriber_Queued 2 Subscriber	update	to	a	publication

article	is	applied	as	a	queued
transaction.

SQLDMOTranSubscriber_ReadOnly 0 Default.	Subscriber	update	to	any
publication	article	affects	only	the	image
maintained	at	the	Subscriber.

SQLDMOTranSubscriber_Synchronous 1 Subscriber	update	to	a	publication
article	is	applied	in	a	distributed
transaction,	updating	the	Publisher-
maintained	image	for	article	data	or
failing	entirely.

SQLDMOTranSubscriber_Unknown 256 Bad	or	invalid	value.

See	Also

EnableTransSubscription	Method

SubscriberType	Property	(TransPullSubscription,	TransSubscription)

SQL-DMO

Replication	Validation	Method	Constants
(SQLDMO_VALIDATIONMETHOD_TYPE)
Replication	Validation	Method	Constants	are	used	to	specify	the	method	of
validation	performed	on	transactional	publications	and	subscriptions.

Constant Value Description
SQLDMOValidationMethod_ConditionalFast 2 Default.	Performs	conditional

validation	first	using
SQLDMOValidationMethod_FastCount
but	reverts	to	using
SQLDMOValidationMethod_FullCount
if
SQLDMOValidationMethod_FastCount
indicates	differences.

SQLDMOValidationMethod_FastCount 1 Performs	high	speed	validation,	using
the	rowcnt	column	of	sysindexes

SQLDMOValidationMethod_FullCount 0 Validates	by	returning	the	number	of
rows,	including	NULL	values,	and
duplicates	using	Transact-SQL
COUNT(*).

See	Also

ValidatePublication	Method	(TransPublication2)

ValidateSubscriptions	Method

SQL-DMO

Replication	Validation	Option	Constants
(SQLDMO_VALIDATIONOPTION_TYPE)
Replication	Validation	Option	Constants	specify	the	type	of	validation
performed	on	transactional	and	merge	publications	and	subscriptions.

Constant Value Description
SQLDMOValidationOption_70Checksum 0 Perform	a	Transact-

SQL	CHECKSUM
operation	compatible
with	an	instance	of
Microsoft®	SQL
Server™	version	7.0.

SQLDMOValidationOption_RowCountOnly 1 Default.	Perform	a
Transact-SQL
@@ROWCOUNT
operation.

SQLDMOValidationOption_80Checksum 2 Perform	a	Transact-
SQL	CHECKSUM
operation	compatible
with	an	instance	of
Microsoft®	SQL
Server™.	Only
supported	by	SQL
Server	2000
Subscribers.

See	Also

ValidatePublication	Method	(MergePublication2)

ValidatePublication	Method	(TransPublication2)

ValidateSubscription	Method

ValidateSubscriptions	Method

SQL-DMO

Restore	Process	Control	Constants
(SQLDMO_RESTORE_TYPE)
Restore	process	control	constants	set	the	Action	property	of	a	Restore	object
and	define,	at	the	highest	level,	the	target	of	the	operation	performed	by	the
SQLRestore	or	SQLVerify	method.

Constant Value Description
SQLDMORestore_Database 0 Restore	the	database
SQLDMORestore_Files 1 Restore	only	files	indicated
SQLDMORestore_Log 2 Restore	records	to	the	database

transaction	log

SQL-DMO

Role	Constants	(SQLDMO_DBUSERROLE_TYPE)
Role	constants	are	reserved	for	internal	use.

Database	Roles

Constant Value Description
SQLDMORole_db_accessadmin 128 Database	access

administrator
SQLDMORole_db_backupoperator 4096 Database	backup

operator
SQLDMORole_db_datareader 256 Database	data

reader
SQLDMORole_db_datawriter 32768 Database	data

writer
SQLDMORole_db_ddladmin 512 Database	DDL

administrator
SQLDMORole_db_denydatareader 1024 Database	deny	data

reader
SQLDMORole_db_denydatawriter 2048 Database	deny	data

writer
SQLDMORole_db_owner 8192 Database	owner
SQLDMORole_db_None 0 None
SQLDMORole_db_securityadmin 16384 Database	security

administrator

Server	Roles

Constant Value Description
SQLDMORole_dbcreator 1 Database	creators
SQLDMORole_diskadmin 2 Disk	administrators
SQLDMORole_processadmin 4 Process

administrators

SQLDMORole_securityadmin 8 Security
administrators

SQLDMORole_serveradmin 16 Server
administrators

SQLDMORole_setupadmin 32 Setup
administrators

SQLDMORole_sysadmin 64 System
administrators

SQLDMORole_bulkadmin 65536 Bulk	insert
administrators

SQL-DMO

Role	Type	Constants	(SQLDMO_ROLE_TYPE)
Role	type	constants	control	the	output	of	the	ListMembers	method	of	the
SQLServer	object.

Constant Value Description
SQLDMORole_All 3 List	members	of	server	and	database

roles
SQLDMORole_Database 2 List	members	of	database	roles	only
SQLDMORole_Server 1 List	members	of	server	roles	only

See	Also

ListMembers	Method	(SQLServer)

SQL-DMO

S

SQL-DMO

Scheduling	Frequency	Constants
(SQLDMO_FREQUENCY_TYPE)
Scheduling	frequency	constants	specify	Microsoft®	SQL	Server	Agent	service
evaluation	of	a	scheduled	job	or	replication	task.

Constant Value Description
SQLDMOFreq_Autostart 64 Scheduled	activity	is	started

when	SQL	Server	Agent	service
starts.

SQLDMOFreq_Daily 4 Schedule	is	evaluated	daily.
SQLDMOFreq_Monthly 16 Schedule	is	evaluated	monthly.
SQLDMOFreq_MonthlyRelative 32 Schedule	is	evaluated	relative	to

a	part	of	a	month,	such	as	the
second	week.

SQLDMOFreq_OneTime 1 Scheduled	activity	will	occur
once	at	a	scheduled	time	or
event.

SQLDMOFreq_OnIdle 128 SQL	Server	Agent	service	will
schedule	the	activity	for	any
time	during	which	the	processor
is	idle.

SQLDMOFreq_Unknown 0 No	schedule	frequency,	or
frequency	not	applicable.

SQLDMOFreq_Valid 255 Mask	to	test	schedule	frequency
validity.

SQLDMOFreq_Weekly 8 Schedule	is	evaluated	weekly.

See	Also

FrequencyType	Property

SQL-DMO

Scheduling	Relative	Frequency	Constants
(SQLDMO_FREQRELATIVE_TYPE)
Scheduling	relative	frequency	constants	specify	a	schedule	subunit	as	an	offset
relative	to	another,	greater	scheduling	unit.	For	example,	a	Microsoft®	SQL
Server	Agent	service	job	could	be	scheduled	to	occur	on	the	first	and	third
Sunday	of	every	month.

Constant Value Description
SQLDMOFreqRel_First 1 Schedules	an	event	to	occur	on	the

first	subunit
SQLDMOFreqRel_Fourth 8 Schedules	an	event	to	occur	on	the

fourth	subunit
SQLDMOFreqRel_Last 16 Schedules	an	event	to	occur	on	the

last	subunit
SQLDMOFreqRel_Second 2 Schedules	an	event	to	occur	on	the

second	subunit
SQLDMOFreqRel_Third 4 Schedules	an	event	to	occur	on	the

third	subunit
SQLDMOFreqRel_Unknown 0 Do	not	schedule	relatively,	or

relative	scheduling	not	applicable
SQLDMOFreqRel_Valid 31 Mask	of	all	valid	relative

scheduling	unit	constants

SQL-DMO

Scheduling	Subfrequency	Constants
(SQLDMO_FREQSUB_TYPE)
Scheduling	subfrequency	constants	specify	a	smaller	scheduling	unit	for	specific
schedule	frequencies.	For	example,	an	administrative	or	replication	task	may	be
scheduled	to	occur	on	the	days	of	the	business	week.	Using	subfrequency
constants,	the	task	may	be	scheduled	for	execution	every	eight	hours	on	each
scheduled	day.

Constant Value Description
SQLDMOFreqSub_Hour 8 Schedule	reflects	an	activity

scheduled	using	an	hour	as	the
unit.

SQLDMOFreqSub_Minute 4 Schedule	reflects	an	activity
scheduled	using	a	minute	as	the
unit.

SQLDMOFreqSub_Once 1 Schedule	reflects	an	activity	that
occurs	once	on	a	scheduled	unit.

SQLDMOFreqSub_Unknown 0 Subunits	are	invalid	for	the
scheduled	activity.

SQLDMOFreqSub_Valid 13 Mask	to	test	schedule
subfrequency	validity.

See	Also

FrequencySubDay	Property

SQL-DMO

Security	Constants	(SQLDMO_SECURITY_TYPE)
Security	constants	define	Microsoft®	SQL	Server™	authentication	modes.

Constant Value Description
SQLDMOSecurity_Integrated 1 Allow	Windows	NT	Authentication

only
SQLDMOSecurity_Max 2 SQLDMOSecurity_Mixed
SQLDMOSecurity_Min 0 SQLDMOSecurity_Normal
SQLDMOSecurity_Mixed 2 Allow	Windows	NT	Authentication

or	SQL	Server	Authentication
SQLDMOSecurity_Normal 0 Allow	SQL	Server	Authentication

only
SQLDMOSecurity_Unknown 9 Security	type	unknown

See	Also

AttachSubscriptionDatabase	Method

SecurityMode	Property	(DistributionDatabase,	IntegratedSecurity)

SecurityMode	Property	(ReplicationSecurity)

ServerLoginMode	Method

SubscriberSecurityMode	Property

SQL-DMO

Session	Constants	(SQLDMO_SESSION_TYPE)
Session	constants	control	the	output	of	methods	listing	replication	agent
execution	log	data.

Constant Value Description
SQLDMOSession_All 1 Output	contains	log	information	for

all	sessions	for	agent.
SQLDMOSession_Errors 2 Output	contains	log	information

only	for	those	execution	attempts
ending	in	error.

SQLDMOSession_Unknown 256 Bad	or	invalid	value.

See	Also

EnumDistributionAgentSessions	Method

EnumLogReaderAgentSessions	Method

EnumMergeAgentSessions	Method

EnumSnapshotAgentSessions	Method

SQL-DMO

Server	Option	Constants
(SQLDMO_SRVOPTION_TYPE)
Server	option	constants	describe	the	behavior	of	a	remote	or	linked	server.

A	RemoteServer	object	exposes	the	attributes	of	a	Microsoft®	SQL	Server™
installation	known	as	a	remote	server	to	another	server.	A	LinkedServer	object
exposes	the	properties	of	an	OLE	DB	data	source,	or	linked	server,	allowing
Transact-SQL	queries	against	defined	data	sources.

Constant Value Description
SQLDMOSrvOpt_CollationCompatible 256 Referenced	server	uses

ordering	and	character
comparison	identical	to
that	used	by	the	local
server	(LinkedServer
object	only).

SQLDMOSrvOpt_DataAccess 128 Referenced	server	is
available	to	the	local
server	as	a	distributed
query	participant
(LinkedServer	object
only).

SQLDMOSrvOpt_DistPublisher 16 Referenced	server	is	a
publication	Distributor	for
the	local	server
(RemoteServer	object
only).

SQLDMOSrvOpt_Distributor 8 Referenced	server	is	a
replication	Distributor
(RemoteServer	object
only).

SQLDMOSrvOpt_DynamicParameters 131072 Referenced	server
recognizes	the	ODBC-

specified	?	character	as	a
parameter	representation
in	a	query	statement
(LinkedServer	object
only).

SQLDMOSrvOpt_IndexAsAccessPath 16384 Provider-implemented
indexes	will	be	used	as	an
access	path	for	distributed
queries	against	the
referenced	server
(LinkedServer	object
only).

SQLDMOSrvOpt_InProcess 8192 Launches	the	OLE	DB
provider	implementing	the
referenced	data	source	as	a
COM	in-process	server
(LinkedServer	object
only).

SQLDMOSrvOpt_LevelZeroOnly 32768 When	accessing	the
referenced	server,
distributed	queries	use
only	OLE	DB	Level	0
support	(LinkedServer
object	only).

SQLDMOSrvOpt_NestedQueries 65536 Referenced	server
supports	the	SELECT
statement	in	the	FROM
clause	of	a	query
(LinkedServer	object
only).

SQLDMOSrvOpt_NonTransacted 4096 Distributed	query	allows
update	to	the	referenced
server	regardless	of	the
presence	of	transaction
support	(LinkedServer
object	only).

SQLDMOSrvOpt_Publisher 2 Referenced	server
publishes	data	to	the	local
server	(RemoteServer
object	only).

SQLDMOSrvOpt_RPC 1 Allows	remote	procedure
calls	made	by	the	remote
or	linked	server.

SQLDMOSrvOpt_RPC_out 64 Referenced	server	accepts
remote	procedure	calls
from	the	local	server
(LinkedServer	object
only).

SQLDMOSrvOpt_Subscriber 4 Referenced	server
subscribes	to	replication
publications	on	the	local
server	(RemoteServer
object	only).

SQLDMOSrvOpt_Unknown 0 No	options	set.
SQLDMOSrvOpt_UseRemoteCollation 1024 Collation	of	remote

columns	is	used	for	SQL
Server	data	sources,	and
the	collation	specified	in
CollationName	is	used
for	non-SQL	Server	data
sources	(LinkedServer2
object	only)

See	Also

SetOptions	Method

SQL-DMO

Server	User	Profile	Constants
(SQLDMO_SRVUSERPROFILE_TYPE)
Server	user	profile	constants	roughly	specify	privilege	for	a	Microsoft®	SQL
Server™	login	or	database	user	used	by	a	client	connection.

Constant Value Description
SQLDMOSrvUserProf_AllProfileBits 7 Login	has	all	specifiable

SQL		Server	maintenance
permissions.

SQLDMOSrvUserProf_CreateDatabase 2 Login	has	permission	to
execute	the	CREATE
DATABASE	statement.

SQLDMOSrvUserProf_CreateXP 4 Login	can	execute
sp_addextendedproc	and
sp_dropextendedproc
(loading	and	unloading
extended	stored
procedures).

SQLDMOSrvUserProf_None 0 Login	has	no	SQL	Server
maintenance	permission.

SQLDMOSrvUserProf_SaLogin 1 Login	is	a	member	of	the
sysadmin	role.

See	Also

Database	User	Profile	Constants	(SQLDMO_DBUSERPROFILE_TYPE)

UserProfile	Property

SQL-DMO

SQL	Server	Agent	Type	Constants
(SQLDMO_JOBSERVER_TYPE)
Microsoft®	SQL	Server	Agent	service	type	constants	expose	an	instance	of
Microsoft	SQL	Server™	participation	in	multiserver	administration.

Constant Value Description
SQLDMOJobServer_MSX 3 Participates	in	multiserver

administration.	An	instance	of
SQL	Server	masters
administration	for	other	servers.

SQLDMOJobServer_StandAlone 1 Does	not	participate	in
multiserver	administration.

SQLDMOJobServer_TSX 2 Participates	in	multiserver
administration.	An	instance	of
SQL	Server	is	a	target	for
administration.

SQLDMOJobServer_Unknown 0 Bad	or	invalid	value.

SQL-DMO

SQL	Server	Connection	Constants
(SQLDMO_VERIFYCONN_TYPE)
Microsoft®	SQL	Server™	connection	constants	direct	the	action	of	the
VerifyConnection	method	of	the	SQLServer	object.

Constant Value Description
SQLDMOConn_CurrentState 2 Returns	TRUE	if	connected.
SQLDMOConn_LastState 1 Returns	TRUE	if	connected	on

last	call	and	still	connected,	or
not	connected	on	last	call	and
still	not	connected.

SQLDMOConn_ReconnectIfDead 6 Default.	Attempts	to	reconnect
the	SQLServer	object	if	the
object	has	been	connected	and
has	lost	its	connection.	Returns
TRUE	if	connection	exists.

SQLDMOConn_Valid 7 All	SQL	Server	connection
constants	combined	by	using	an
OR	logical	operator.

See	Also

VerifyConnection	Method

SQL-DMO

SQL	Server	Data	Type	Constants
(SQLDMO_QUERY_DATATYPE)
Microsoft®	SQL	Server™	data	type	constants	are	returned	by	the	ColumnType
property	of	the	QueryResults	object.	The	constants	report	the	SQL	Server	data
type	of	the	column	data	and	direct	data	extraction	from	the	result	set.

Constant Value Description
SQLDMO_DtypeBigint -5 bigint	data	type.
SQLDMO_DTypeBinary -2 Fixed	length	binary	data.
SQLDMO_DTypeBit -7 Unsigned	integer	data.	The	width

of	the	integer	is	one	byte.
SQLDMO_DTypeChar 1 Fixed	length	character.
SQLDMO_DTypeDateTime -2 ODBC

SQL_TIMESTAMP_STRUCT.
SQLDMO_DTypeDateTime4 93 ODBC

SQL_TIMESTAMP_STRUCT.
SQLDMO_DTypeFloat4 7 Approximate	numeric	data.	The

width	of	the	numeric	value	is	four
bytes.

SQLDMO_DTypeFloat8 8 Approximate	numeric	data.	The
width	of	the	numeric	value	is	eight
bytes.

SQLDMO_DTypeGUID -11 Globally	unique	identifier	(GUID).
The	data	is	a	data	structure	16
bytes	in	length.

SQLDMO_DTypeImage -4 Long,	variable	length	binary	data.
SQLDMO_DTypeInt1 -6 Unsigned	integer	data.	The	width

of	the	integer	is	one	byte.
SQLDMO_DTypeInt2 5 Signed	integer	data.	The	width	of

the	integer	is	two	bytes.
SQLDMO_DTypeInt4 4 Signed	integer	data.	The	width	of

the	integer	is	four	bytes.

SQLDMO_DTypeMoney 3 Scaled	integer	data	represented	as
a	string	value.

SQLDMO_DTypeMoney4 3 Scaled	integer	data	represented	as
a	string	value.

SQLDMO_DTypeNText -10 Long,	variable	length,	Unicode
character	data.

SQLDMO_DtypeSQLVariant -150 sql_variant	data	type.
SQLDMO_DTypeText -1 Long,	variable	length	character

data.
SQLDMO_DTypeUChar -8 Fixed	length,	Unicode	character

data.
SQLDMO_DTypeUnknown 0 Bad	or	not	supported	data	type

value.
SQLDMO_DTypeUVarchar -9 Variable	length,	Unicode	character

data.
SQLDMO_DTypeVarBinary -3 Variable	length	binary	data.
SQLDMO_DTypeVarchar 12 Variable	length	character	data.

See	Also

ColumnType	Property

SQL-DMO

SQL	Server	Installed	Product	Constants
(SQLDMO_PACKAGE_TYPE)
Microsoft®	SQL	Server™	installed	product	constants	specify	Microsoft	SQL
Server	product	packaging	options,	exposing	the	SQL	Server	product	installed	on
a	server	running	an	instance	of	SQL	Server.

Constant Value Description
SQLDMO_Unknown 0 Bad	or	invalid	value
SQLDMO_OFFICE 1 Desktop
SQLDMO_ENTERPRISE 3 Enterprise
SQLDMO_MSDE 4 Microsoft	Data	Engine
SQLDMO_STANDARD 2 Standard

See	Also

IsPackage	Method

SQL-DMO

SQL	Server	Version	Constants
(SQLDMO_SQL_VER)
Microsoft®	SQL	Server™	version	constants	identify	the	version	of	an	instance
of	SQL	Server,	directing	behavior	of	the	PingSQLServerVersion	method	of	the
SQLServer	object.

Constant Value Description
SQLDMOSQLVer_60 2 Version	6.0
SQLDMOSQLVer_65 4 Version	6.5
SQLDMOSQLVer_70 8 Version	7.0
SQLDMOSQLVer_80 16 SQL	Server	2000
SQLDMOSQLVer_Pre_60 1 Version	6.0	or	earlier
SQLDMOSQLVer_Unknown 0 Bad	or	invalid	value

See	Also

PingSQLServerVersion	Method

SQL-DMO

SQL-DMO	Object	Type	Constants
(SQLDMO_OBJECT_TYPE)
SQL-DMO	object	type	constants	enumerate	the	kind	of	Microsoft®	SQL
Server™	element	referenced	by	a	specific	SQL-DMO	object.	For	example,	the
TypeOf	property	returns	an	object	type	constant.

Object	type	constants	are	used	optionally	by	listing	methods	to	constrain	list	or
query	result	set	membership.

Constant Value Description
SQLDMOObj_Alert 2109440 Object	references	a

SQL	Server	Agent
service	alert.

SQLDMOObj_AlertSystem 2101248 Object	is	an
AlertSystem	object
giving	access	to	SQL
Server	Agent	service
parameters.

SQLDMOObj_AllButSystemObjects 5119 List	or	query	result
set	membership
includes	all	but	SQL
Server	system
objects.

SQLDMOObj_AllDatabaseObjects 4607 List	or	query	result
set	membership
includes	Microsoft
SQL	Server	system
and	user	database
objects.

SQLDMOObj_AllDatabaseUserObjects 4605 List	or	query	result
set	membership
includes	only	user
database	objects.

SQLDMOObj_Application 0 Object	is	the	SQL-
DMO	Application
object.

SQLDMOObj_AutoProperty 188416 Object	is	a	Property
object	exposed	for
OLE	Automation
controllers.

SQLDMOObj_Backup 184320 Object	is	a	Backup
object	defining	a
possible	database	or
log	backup	operation.

SQLDMOObj_BackupDevice 139264 Object	references	a
SQL	Server	backup
device.

SQLDMOObj_BulkCopy 204800 Object	is	a	BulkCopy
object	defining	a
possible	table	export
or	import	operation.

SQLDMOObj_Category 2134016 Object	references	a
SQL	Server	Agent
service	alert,	operator,
or	job	category.

SQLDMOObj_Check 49152 Object	references	an
integrity	constraint.

SQLDMOObj_Column 24576 Object	references	a
column	in	a	table.

SQLDMOObj_Configuration 159744 Object	references	a
configuration
parameter.

SQLDMOObj_ConfigValue 163840 Object	references	a
configuration
parameter	value.

SQLDMOObj_Database 135168 Object	references	a
database.

SQLDMOObj_DatabaseRole 225280 Object	references	a
database	role.

SQLDMOObj_DBFile 212992 Object	references	an
operating	system	file
implementing
database	storage.

SQLDMOObj_DBObject 28672 Object	is	a	DBObject
object	visible	in	lists
and	used	in	database
transfer	operations.

SQLDMOObj_DBOption 32768 Object	references	a
database	option.

SQLDMOObj_Default 64 Object	references	a
default.

SQLDMOObj_DistributionArticle 1134592 Object	references	a
heterogeneous
replication	task.

SQLDMOObj_DistributionDatabase 1118208 Object	references	a
database	used	for
replication
distribution.

SQLDMOObj_DistributionPublication 1130496 Object	references	a
publication
maintained	at	the
Distributor.

SQLDMOObj_DistributionPublisher 1105920 Object	references	an
instance	of	SQL
Server	acting	as	a
Distributor	for
published	data.

SQLDMOObj_DistributionSubscription 1138688 Object	references	a
push	subscription
initiated	by	a
Distributor.

SQLDMOObj_Distributor 1097728 Object	references	an
instance	of	SQL

Server	acting	as	a
replication
Distributor.

SQLDMOObj_DRIDefault 53248 Object	references	a
SQL	Server	column-
specific	default	value.

SQLDMOObj_FileGroup 208896 Object	references	a
SQL	Server	database
filegroup.

SQLDMOObj_FullTextCatalog 266240 Object	references	a
Microsoft	Search	full-
text	catalog.

SQLDMOObj_FullTextService 270336 Object	references	the
Search	service.

SQLDMOObj_Index 16384 Object	references	an
index.

SQLDMOObj_IntegratedSecurity 45056 Object	is	an
IntegratedSecurity
object	defining	name
mapping	applied	by
SQL	Server	when
using	Windows	NT
Authentication.

SQLDMOObj_Job 2117632 Object	references	a
SQL	Server	Agent
service	job.

SQLDMOObj_JobFilter 2166784 Object	is	a	JobFilter
object	controlling	job
enumerating	methods
of	the	JobServer
object.

SQLDMOObj_JobHistoryFilter 2170880 Object	is	a
JobHistoryFilter
object	controlling	job
history	enumerating
methods	of	the

JobServer	object.

SQLDMOObj_JobSchedule 2174976 Object	references	a
SQL	Server	Agent
service	schedule.

SQLDMOObj_JobServer 2105344 Object	references	a
SQL	Server	Agent
service.

SQLDMOObj_JobStep 2121728 Object	references	a
SQL	Server	Agent
service	job	step.

SQLDMOObj_Key 20480 Object	references	a
primary	or	foreign
key.

SQLDMOObj_LinkedServer 233472 Object	references	a
SQL	Server	2000
linked	server.

SQLDMOObj_LinkedServerLogin 262144 Object	references	a
SQL	Server	linked
server	login.

SQLDMOObj_LogFile 217088 Object	references	an
operating	system	file
implementing	a	SQL
Server	database	log.

SQLDMOObj_Login 143360 Object	references	a
SQL	Server	login.

SQLDMOObj_Language 147456 Object	references	a
SQL	Server	language
record.

SQLDMOObj_MergeArticle 1073152 Object	references	a
merge	replication
task.

SQLDMOObj_MergePublication 1069056 Object	references
merge	replication
tasks	grouped	as	a

publication.
SQLDMOObj_MergePullSubscription 1081344 Object	references	a

subscription	to	a
merge	replication
publication.	The
Subscriber	controls
replication
synchronization
attempts.

SQLDMOObj_MergeSubscription 1077248 Object	references	a
subscription	to	a
merge	replication
publication.	The
Publisher	controls
replication
synchronization
attempts.

SQLDMOObj_MergeSubsetFilter 1142784 Object	references	a
merge	replication
partitioning	filter.

SQLDMOObj_Operator 2113536 Object	references	a
SQL	Server	Agent
service	operator.

SQLDMOObj_Permission 40960 Object	is	a
Permission	object
exposing	SQL	Server
object-level	security.

SQLDMOObj_ProcedureParameter 36864 Object	references	a
parameter	of	a	stored
procedure.

SQLDMOObj_Publisher 1089536 Object	references	a
SQL	Server	Agent
service	alert.

SQLDMOObj_QueryResults 167936 Object	is	a
QueryResults	object.

SQLDMOObj_RegisteredServer 200704 Object	references	a
registry	entry	listing
an	instance	of	SQL
Server.

SQLDMOObj_RegisteredSubscriber 1110016 Object	references	a
replication
Subscriber.

SQLDMOObj_Registry 176128 Object	is	a	Registry
object	exposing
registry-maintained
data	about	an	instance
of	SQL	Server.

SQLDMOObj_RemoteLogin 155648 Object	references	a
mapping	for	access
by	another	SQL
Server	instance.

SQLDMOObj_RemoteServer 151552 Object	references	an
instance	of	SQL
Server	allowed	access
for	remote	procedure
execution.

SQLDMOObj_Replication 1085440 Object	is	the
Replication	object.

SQLDMOObj_ReplicationDatabase 1114112 Object	references	a
SQL	Server	database
replicated	in	merge	or
transactional
publications.

SQLDMOObj_ReplicationSecurity 1101824 Object	is	a
ReplicationSecurity
object	specifying
login	authentication
for	replication
Publishers	and
Subscribers.

SQLDMOObj_ReplicationStoredProcedure 1126400 Object	references	a
stored	procedure
replicated	in	a
transactional	or	merge
article.

SQLDMOObj_ReplicationTable 1122304 Object	references	a
table	replicated	in	a
transactional	or	merge
article.

SQLDMOObj_Restore 229376 Object	is	a	Restore
object	used	to	specify
a	database	or
transaction	log
operation.

SQLDMOObj_Rule 128 Object	references	a
rule.

SQLDMOObj_Schedule 2162688 Object	is	a	Schedule
object	used	to	specify
run	times	for
administrative	and
replication	tasks.

SQLDMOObj_ServerGroup 192512 Object	references	a
registry-based
grouping	for	servers.

SQLDMOObj_ServerRole 221184 Object	references	a
fixed	server	role.

SQLDMOObj_SQLServer 131072 Object	is	a
SQLServer	object.

SQLDMOObj_StoredProcedure 16 Object	references	a
stored	procedure.

SQLDMOObj_Subscriber 1093632 Object	references	a
Subscriber	for
replicated	data.

SQLDMOObj_SystemDatatype 4096 Object	references	a
SQL	Server	base	data
type.

SQLDMOObj_SystemTable 2 Object	references	a
system	table.

SQLDMOObj_TargetServer 2125824 Object	references	a
SQL	Server	Agent
service	target	server.

SQLDMOObj_TargetServerGroup 2129920 Object	references	a
SQL	Server	Agent
service	target	server
group.

SQLDMOObj_TransactionLog 172032 Object	is	a
TransactionLog
object	exposing	the
properties	of	SQL
Server	database
transaction	logging.

SQLDMOObj_TransArticle 1056768 Object	references	a
transactional
replication	task.

SQLDMOObj_Transfer 180224 Object	is	a	Transfer
object	used	to	move
data	and	objects	from
one	SQL	Server
database	to	another.

SQLDMOObj_TransPublication 1069056 Object	references	a
publication	grouping
transactional
replication	tasks.

SQLDMOObj_TransPullSubscription 1064960 Object	references	a
subscription	to	a
transactional
replication
publication.	The
Subscriber	controls
synchronization
attempts.

SQLDMOObj_TransSubscription 1060864 Object	references	a
subscription	to	a
transactional
replication
publication.	The
Publisher	controls
synchronization
attempts.

SQLDMOObj_Trigger 256 Object	references	a
trigger.

SQLDMOObj_Unknown 16384 Object	type	is
unknown.	Indicates
an	error	condition.

SQLDMOObj_User 8192 Object	references	a
SQL	Server	database
user.

SQLDMOObj_UserDefinedDatatype 4096 Object	references	a
SQL	Server	user-
defined	data	type.

SQLDMOObj_UserDefinedFunction 1 Object	references	a
user-defined	function.

SQLDMOObj_UserTable 8 Object	references	a
SQL	Server	user-
defined	table.

SQLDMOObj_View 4 Object	references	a
view.

See	Also

AddObjectByName	Method

EnumDependencies	Method

GetDatatypeByName	Method

GetObjectByName	Method

GetSQLDMOObject	Method	(SQL-NS)

JavaScript:hhobj_1.Click()

IsObjectDeleted	Method

ListObjectNames	Method

ListObjects	Method

ListOwnedObjects	Method

ObjectType	Property

Type	Property	(DBObject)

TypeOf	Property

SQL-DMO

Statement	Execution	Constants
(SQLDMO_EXEC_TYPE)
Statement	execution	constants	are	used	to	direct	the	behavior	of	the
ExecuteImmediate	method,	altering	execution	behavior	or	interpretation	of	the
statement	submitted	for	execution.

Constant Value Description
SQLDMOExec_ContinueOnError 2 Batch	execution	continues	on

any	error	that	does	not	break
the	connection.

SQLDMOExec_Default 0 No	statement	execution
options	set.

SQLDMOExec_NoCommandTerm1 Ignore	the	command
terminator	in	the	script.
Execute	as	a	single	batch.

SQLDMOExec_NoExec 4 Execute	SET	NOEXEC	ON
prior	to	batch	execution.
Execute	SET	NOEXEC	OFF
after	batch	execution.

SQLDMOExec_ParseOnly 8 Execute	SET	PARSEONLY
ON	prior	to	batch	execution.
Execute	SET	PARSEONLY
OFF	after	batch	execution.

SQLDMOExec_QI_ON 16 Execute	SET
QUOTED_IDENTIFIER	ON
prior	to	batch	execution.
Execute	SET
QUOTED_IDENTIFIER	OFF
after	batch	execution.

See	Also

ExecuteImmediate	Method	(Database,	SQLServer)

SET	PARSEONLY

SET	NOEXEC

SET	QUOTED_IDENTIFIER

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

SQL-DMO

Status	Information	Constants
(SQLDMO_STATUSINFO_TYPE)
Status	information	constants	direct	SQL-DMO	interpretation	of	the
StatusInfoRefetchInterval	property	of	the	SQLServer	object.

When	an	application	connects	a	SQLServer	object	to	a	instance	of	Microsoft®
SQL	Server™,	SQL-DMO	automates	retrieval	of	some	status	information
allowing	application	action	based	on	changes	in	status	for	some	SQL	Server
components.	For	more	information	about	controlling	automated	status
information	retrieval,	see	StatusInfoRefetchInterval	Property.

Constant Value Description
SQLDMOStatInfo_All 7 Used	when	setting

StatusInfoRefetchInterval
only.	Set	all	values	equal.

SQLDMOStatInfo_AutoVerifyConnection 4 Interval	for	testing	broken
connection.

SQLDMOStatInfo_DatabaseSpace 2 Interval	for	retrieving	space
available	in	databases
referenced	by	Database
objects	active	in	the
application.

SQLDMOStatInfo_DatabaseStatus 1 Interval	for	retrieving
database	status	information
visible	in	the	Status
property	of	Database
objects	active	in	the
application.

SQLDMOStatInfo_Unknown 0 Bad	or	invalid	value.

SQL-DMO

T

SQL-DMO

Table	Attribute	Constants
(SQLDMO_TABLEATT_TYPE)
Table	attribute	constants	describe,	roughly,	a	Microsoft®	SQL	Server™	table.
For	example,	the	Attributes	property	of	a	Table	object	referencing	a	table	on
which	a	primary	key	is	defined	returns	SQLDMOTabAtt_PrimaryKey.
Information	about	the	primary	key,	its	member	columns,	and	construction,	can
be	determined	by	using	the	Keys	collection	of	the	Table	object.

Constant Value Description
SQLDMOTabAtt_Check 128 Referenced	table	has	at	least

one	integrity	constraint.
SQLDMOTabAtt_Default 2048 Referenced	table	has	at	least

one	DRI	default	defined.
SQLDMOTabAtt_ForeignKey 4 Referenced	table	has	at	least

one	foreign	key.
SQLDMOTabAtt_HasConstraint 7300 Referenced	table	has	at	least

one	DRI	constraint.
SQLDMOTabAtt_Identity 1 Referenced	table	has	a	column

exposing	the	identity	property.
SQLDMOTabAtt_PrimaryKey 512 Referenced	table	has	a	primary

key.
SQLDMOTabAtt_Published 32 Referenced	table	is	published

for	replication.
SQLDMOTabAtt_Referenced 8 Referenced	table	is	referenced

by	at	least	one	other	table's
foreign	key.

SQLDMOTabAtt_ReplCheck 4096 Referenced	table	has	at	least
one	integrity	constraint	not
fired	when	replicated	data	is
inserted.

SQLDMOTabAtt_Replica 256 At	least	one	Subscriber	has	an
active	subscription.

SQLDMOTabAtt_Replicated 64 Referenced	table	is	actively
subscribed	to	a	Publisher.

SQLDMOTabAtt_SystemObject 2 Referenced	table	is	a	SQL
Server	system	object.

SQLDMOTabAtt_Unique 1024 Referenced	table	has	at	least
one	UNIQUE	constraint.

SQL-DMO

Target	Server	Status	Constants
(SQLDMO_TARGETSERVERSTATUS_TYPE)
Target	server	status	constants	interpret	the	return	value	of	the	Status	property	of
the	TargetServer	object.

Constant Value Description
SQLDMOTargetServerStatus_Blocked 4 Server	running	an

instance	of
Microsoft®	SQL
Server™	is	visible.
SQL	Server	Agent
service	is	blocked.

SQLDMOTargetServerStatus_Normal 1 Server	running	an
instance	of	SQL
Server	is	visible.
SQL	Server	Agent
service	is	known	to
be	running.

SQLDMOTargetServerStatus_SuspectedOffline 2 Server	running	an
instance	of	SQL
Server	is	visible.
SQL	Server	Agent
service	execution
state	cannot	be
determined.

SQLDMOTargetServerStatus_Unknown 0 Network	error
prevents
determination	of
referenced	server
and	SQL	Server
Agent	service.

SQL-DMO

Transaction	Log	Backup	Constants
(SQLDMO_BACKUP_LOG_TYPE)
Transaction	log	backup	constants	configure	execution	when	using	the	SQL-
DMO	Backup	object	to	back	up	only	the	transaction	log	of	a	selected	database.

Constant Value Description
SQLDMOBackup_Log_NoLog 2 Records	referencing	committed

transactions	are	removed.
Transaction	log	is	not	backed
up.

SQLDMOBackup_Log_NoOption 4 SQLDMOBackup_Log_
Truncate.

SQLDMOBackup_Log_NoTruncate 1 Transaction	log	is	backed	up.
Records	referencing	committed
transactions	are	not	removed,
providing	a	point-in-time	image
of	the	log.

SQLDMOBackup_Log_Truncate 0 Transaction	log	is	backed	up.
Records	referencing	committed
transactions	are	removed.

SQLDMOBackup_Log_Truncateonly 3 SQLDMOBackup_Log_NoLog.

See	Also

TruncateLog	Property	(Backup)

SQL-DMO

Transfer	Script	Mode	Constants
(SQLDMO_XFRSCRIPTMODE_TYPE)
Transfer	script	mode	constants	direct	behavior	of	the	ScriptTransfer	method	of
the	Database	object.

Constant Value Description
SQLDMOXfrFile_Default 1 SQLDMOXfrFile_

SummaryFiles.
SQLDMOXfrFile_SingleFile 2 Generate	one	file.
SQLDMOXfrFile_SingleFilePerObject 4 Generate	one	file	for	each

Microsoft®	SQL	Server™
component	transferred.

SQLDMOXfFILE_SingleSummaryFile 8 Generate	one	file.	File
contents	organized	by
object	type.

SQLDMOXfrFile_SummaryFiles 1 Generate	one	file	for	each
kind	of	object	transferred.
For	example,	generate	a
file	for	user-defined	data
types	and	a	separate	file
for	tables.

See	Also

ScriptTransfer	Method

SQL-DMO

Trigger	Constants	(SQLDMO_TRIGGER_TYPE)
Trigger	constants	enumerate	the	kind	of	Transact-SQL	data	modification
statement	that	will	cause	a	trigger	to	fire.

Microsoft®	SQL	Server™	cursors	may	fire	when	an	INSERT,	UPDATE,	or
DELETE	statement	modifies	data	in	a	table	on	which	an	enabled	trigger	is
defined.	Separate	triggers	may	be	created	to	implement	behavior	for	any	one	or	a
combination	of	Transact-SQL	DML	statements.

Constant Value Description
SQLDMOTrig_All 7 Trigger	is	fired	by	any	data

modification	statement.
SQLDMOTrig_Delete 4 Trigger	is	fired	by	a	DELETE

statement.
SQLDMOTrig_Insert 1 Trigger	is	fired	by	an	INSERT

statement.
SQLDMOTrig_Unknown 0 Bad	or	invalid	value.
SQLDMOTrig_Update 2 Trigger	is	fired	by	an	UPDATE

statement.

See	Also

Type	Property	(Trigger)

SQL-DMO

U

SQL-DMO

User-Defined	Function	Constants
(SQLDMO_UDF_TYPE)
User-defined	function	constants	are	used	to	return	user-defined	function	types.

Constant Value Description
SQLDMOUDF_Inline 3 Inline	function
SQLDMOUDF_Scalar 1 Scalar	function
SQLDMOUDF_Table 2 Table	function
SQLDMOUDF_Unknown 0 Unknown	function	type

See	Also

Type	Property	(UserDefinedFunction)

SQL-DMO

W

SQL-DMO

Windows	NT	Access	Constants
(SQLDMO_NTACCESS_TYPE)
Windows	NT	access	constants	are	used	to	return	the	login	access	types	of
Microsoft®	Windows	NT®	users.

Constant Value Description
SQLDMONTAccess_Deny 2 This	login	has	explicit	deny

permissions	to	access	this
server.

SQLDMONTAccess_Grant 1 This	login	has	explicit	grant
permissions	to	access	this
server.

SQLDMONTAccess_NonNTLogin 99 The	login	is	a	standard
Microsoft®	SQL	Server™
login;	the	property	does	not
apply.

SQLDMONTAccess_Unknown 0 The	login	has	not	been
explicitly	granted	or	denied
permissions	to	access	this
server.	The	login	may	still
have	access	through	a	group
membership,	but	this	is	not
recorded	as	a	login	property.

See	Also

NTLoginAccessType	Property

SQL-DMO

Windows	NT	Authentication	Constants
(SQLDMO_INTSECLOGIN_TYPE)
Microsoft®	Windows	NT®	Authentication	constants	are	reserved	for	future	use.

Constant Value Description
SQLDMOIntSecLogin_Admin 1 Reserved
SQLDMOIntSecLogin_Replication 3 Reserved
SQLDMOIntSecLogin_Max 3 Reserved
SQLDMOIntSecLogin_Min 1 Reserved
SQLDMOIntSecLogin_Unknown 0 Reserved
SQLDMOIntSecLogin_User 2 Reserved

SQL-DMO

Windows	NT	Service	Constants
(SQLDMO_SVCSTATUS_TYPE)
Microsoft®	Windows	NT®	service	constants	specify	the	execution	state	for
services	implementing	Microsoft	SQL	Server™	components,	such	as	the
Microsoft	Search	service.

Constant Value Description
SQLDMOSvc_Continuing 6 Service	execution	state	in	transition

from	paused	to	running.
SQLDMOSvc_Paused 2 Service	execution	is	paused.
SQLDMOSvc_Pausing 7 Service	execution	state	in	transition

from	running	to	paused.
SQLDMOSvc_Running 1 Service	is	running.
SQLDMOSvc_Starting 4 Service	execution	state	in	transition

from	stopped	to	running.
SQLDMOSvc_Stopped 3 Service	is	stopped.
SQLDMOSvc_Stopping 5 Service	execution	state	in	transition

from	running	to	stopped.
SQLDMOSvc_Unknown 0 Unable	to	determine	service

execution	state.

SQL-DMO

C/C++	Specifics
This	section	presents	information	required	by	the	C	or	C++	developer	who
creates	a	SQL-DMO	application.

When	Sqldmo.h	and	Sqldmoid.h	are	included	in	a	C/C++	source	file,	SQL-DMO
makes	visible:

Class	and	interface	IDs	for	SQL-DMO	objects.

Pointer	types	used	to	maintain	references	on	SQL-DMO	objects.

Two	scope-aware	template	classes	that	can	simplify	OLE	object
reference	maintenance.

C/C++	shortcuts	for	collection	and	list	handling.

Macros	aiding	property	setting.

SQL-DMO

Object	Class	Identifiers	and	Type	Definitions
SQL-DMO	class	and	interface	IDs	and	pointer	types	used	to	maintain	references
on	SQL-DMO	objects	are	documented	in	the	tables	that	follow.

Interface	IDs	and	pointer	types	are	documented	for	all	SQL-DMO	objects.	When
the	application	can	manufacture	an	instance	of	a	SQL-DMO	object,	a	class	ID	is
documented	for	the	object.

SQL-DMO

A

SQL-DMO	object Type Value
Alert	(object) Pointer

Class	ID
Interface	ID

LPSQLDMOALERT
CLSID_SQLDMOAlert
IID_ISQLDMOAlert

AlertCategories
(collection)

Pointer
Interface	ID

LPSQLDMOALERTCATEGORIES
IID_ISQLDMOAlertCategories

Alerts	(collection) Pointer
Interface	ID

LPSQLDMOALERTS
IID_ISQLDMOAlerts

AlertSystem	(object) Pointer
Interface	ID

LPSQLDMOALERTSYSTEM
IID_ISQLDMOAlertSystem

Application	(object) Pointer
Class	ID
Interface	ID

LPSQLDMOAPPLICATION
CLSID_SQLDMOApplication
IID_ISQLDMOApplication

SQL-DMO

B

SQL-DMO	object Type Value
Backup	(object) Pointer

Class	ID
Interface	ID
Sink	pointer
Sink	interface
ID

LPSQLDMOBACKUP
CLSID_SQLDMOBackup
IID_ISQLDMOBackup
LPSQLDMOBACKUPSINK
IID_ISQLDMOBackupSink

BackupDevice	(object) Pointer
Class	ID
Interface	ID

LPSQLDMOBACKUPDEVICE
CLSID_SQLDMOBackupDevice
IID_ISQLDMOBackupDevice

BackupDevices
(collection)

Pointer
Interface	ID

LPSQLDMOBACKUPDEVICES
IID_ISQLDMOBackupDevices

BulkCopy	(object) Pointer
Class	ID
Interface	ID
Sink	pointer
Sink	interface
ID

LPSQLDMOBULKCOPY
CLSID_SQLDMOBulkCopy
IID_ISQLDMOBulkCopy
LPSQLDMOBULKCOPYSINK
IID_ISQLDMOBulkCopySink

SQL-DMO

C

SQL-DMO	object Type Value
Category	(object) Pointer

Class	ID
Interface	ID

LPSQLDMOCATEGORY
CLSID_SQLDMOCategory
IID_ISQLDMOCategory

Check	(object) Pointer
Class	ID
Interface	ID

LPSQLDMOCHECK
CLSID_SQLDMOCheck
IID_ISQLDMOCheck

Checks	(collection) Pointer
Interface	ID

LPSQLDMOCHECKS
IID_ISQLDMOChecks

Column	(object) Pointer
Class	ID
Interface	ID

LPSQLDMOCOLUMN
CLSID_SQLDMOColumn
IID_ISQLDMOColumn

Columns	(collection) Pointer
Interface	ID

LPSQLDMOCOLUMNS
IID_ISQLDMOColumns

Configuration	(object) Pointer
Interface	ID

LPSQLDMOCONFIGURATION
IID_ISQLDMOConfiguration

ConfigValue	(object) Pointer
Interface	ID

LPSQLDMOCONFIGVALUE
IID_ISQLDMOConfigValue

ConfigValues
(collection)

Pointer
Interface	ID

LPSQLDMOCONFIGVALUES
IID_ISQLDMOConfigValues

SQL-DMO

D

SQL-DMO	object Type Value
Database	(object) Pointer

Class	ID
Interface
ID

LPSQLDMODATABASE
CLSID_SQLDMODatabase
IID_ISQLDMODatabase

DatabaseRole	(object) Pointer
Class	ID
Interface
ID

LPSQLDMODATABASEROLE
CLSID_SQLDMODatabaseRole
IID_ISQLDMODatabaseRole

DatabaseRoles
(collection)

Pointer
Interface
ID

LPSQLDMODATABASEROLES
IID_ISQLDMODatabaseRoles

Databases	(collection) Pointer
Interface
ID

LPSQLDMODATABASES
IID_ISQLDMODatabases

DBFile	(object) Pointer
Class	ID
Interface
ID

LPSQLDMODBFILE
CLSID_SQLDMODBFile
IID_ISQLDMODBFile

DBFiles	(collection) Pointer
Interface
ID

LPSQLDMODBFILES
IID_ISQLDMODBFiles

DBObject	(object) Pointer
Interface
ID

LPSQLDMODBOBJECT
IID_ISQLDMODBObject

DBObjects	(collection) Pointer
Interface
ID

LPSQLDMODBOBJECTS
IID_ISQLDMODBObjects

DBOption	(object) Pointer
Interface
ID

LPSQLDMODBOPTION
IID_ISQLDMODBOption

Default	(object) Pointer
Class	ID
Interface
ID

LPSQLDMODEFAULT
CLSID_SQLDMODefault
IID_ISQLDMODefault

Defaults	(collection) Pointer
Interface
ID

LPSQLDMODEFAULTS
IID_ISQLDMODefaults

DistributionArticle
(object)

Pointer
Interface
ID

LPSQLDMODISTRIBUTIONARTICLE
IID_ISQLDMODistributionArticle

DistributionArticles
(collection)

Pointer
Class	ID
Interface
ID

LPSQLDMODISTRIBUTIONARTICLES
CLSID_SQLDMODistributionArticle
IID_ISQLDMODistributionArticles

DistributionDatabase
(object)

Pointer
Class	ID
Interface
ID

LPSQLDMODISTRIBUTIONDATABASE
CLSID_SQLDMODistributionDatabase
IID_ISQLDMODistributionDatabase

DistributionDatabases
(collection)

Pointer
Interface
ID

LPSQLDMODISTRIBUTIONDATABASES
IID_ISQLDMODistributionDatabases

DistributionPublication
(object)

Pointer
Class	ID
Interface
ID

LPSQLDMODISTRIBUTIONPUBLICATION
CLSID_SQLDMODistributionPublication
IID_ISQLDMODistributionPublication

DistributionPublications
(collection)

Pointer
Interface
ID

LPSQLDMODISTRIBUTIONPUBLICATIONS
IID_ISQLDMODistributionPublications

DistributionPublisher
(object)

Pointer
Class	ID
Interface
ID

LPSQLDMODISTRIBUTIONPUBLISHER
CLSID_SQLDMODistributionPublisher
IID_ISQLDMODistributionPublisher

DistributionPublishers
(collection)

Pointer
Interface
ID

LPSQLDMODISTRIBUTIONPUBLISHERS
IID_ISQLDMODistributionPublishers

DistributionSubscription Pointer LPSQLDMODISTRIBUTIONSUBSCRIPTION

(object) Class	ID
Interface
ID

CLSID_SQLDMODistributionSubscription
IID_ISQLDMODistributionSubscription

DistributionSubscriptions
(collection)

Pointer
Interface
ID

LPSQLDMODISTRIBUTIONSUBSCRIPTIONS
IID_ISQLDMODistributionSubscriptions

Distributor	(object) Pointer
Interface
ID

LPSQLDMODISTRIBUTOR
IID_ISQLDMODistributor

DRIDefault	(object) Pointer
Interface
ID

LPSQLDMODRIDEFAULT
IID_ISQLDMODRIDefault

SQL-DMO

F

SQL-DMO	object Type Value
FileGroup	(object) Pointer

Class	ID
Interface	ID

LPSQLDMOFILEGROUP
CLSID_SQLDMOFileGroup
IID_ISQLDMOFileGroup

FileGroups
(collection)

Pointer
Interface	ID

LPSQLDMOFILEGROUPS
IID_ISQLDMOFileGroups

FullTextCatalog
(object)

Pointer
Class	ID
Interface	ID

LPSQLDMOFULLTEXTCATALOG
CLSID_SQLDMOFullTextCatalog
IID_ISQLDMOFullTextCatalog

FullTextCatalogs
(collection)

Pointer
Interface	ID

LPSQLDMOFULLTEXTCATALOGS
IID_ISQLDMOFullTextCatalogs

FullTextService
(object)

Pointer
Interface	ID

LPSQLDMOFULLTEXTSERVICE
IID_ISQLDMOFullTextService

SQL-DMO

I

SQL-DMO	object Type Value
Index	(object) Pointer

Class	ID
Interface
ID

LPSQLDMOINDEX
CLSID_SQLDMOIndex
IID_ISQLDMOIndex

Indexes	(collection) Pointer
Interface
ID

LPSQLDMOINDEXES
IID_ISQLDMOIndexes

IntegratedSecurity
(object)

Pointer
Interface
ID

LPSQLDMOINTEGRATEDSECURITY
IID_ISQLDMOIntegratedSecurity

SQL-DMO

J

SQL-DMO	object Type Value
Job	(object) Pointer

Class	ID
Interface	ID

LPSQLDMOJOB
CLSID_SQLDMOJob
IID_ISQLDMOJob

JobCategories
(collection)

Pointer
Interface	ID

LPSQLDMOJOBCATEGORIES
IID_ISQLDMOJobCategories

JobFilter	(object) Pointer
Interface	ID

LPSQLDMOJOBFILTER
IID_ISQLDMOJobFilter

JobHistoryFilter
(object)

Pointer
Interface	ID

LPSQLDMOJOBHISTORYFILTER
IID_ISQLDMOJobHistoryFilter

Jobs	(collection) Pointer
Interface	ID

LPSQLDMOJOBS
IID_ISQLDMOJobs

JobSchedule	(object) Pointer
Class	ID
Interface	ID

LPSQLDMOJOBSCHEDULE
CLSID_SQLDMOJobSchedule
IID_ISQLDMOJobSchedule

JobSchedules
(collection)

Pointer
Interface	ID

LPSQLDMOJOBSCHEDULES
IID_ISQLDMOJobSchedules

JobServer	(object) Pointer
Interface	ID

LPSQLDMOJOBSERVER
IID_ISQLDMOJobServer

JobStep	(object) Pointer
Class	ID
Interface	ID

LPSQLDMOJOBSTEP
CLSID_SQLDMOJobStep
IID_ISQLDMOJobStep

JobSteps	(collection) Pointer
Interface	ID

LPSQLDMOJOBSTEPS
IID_ISQLDMOJobSteps

SQL-DMO

K

SQL-DMO	object Type Value
Key	(object) Pointer

Class	ID
Interface	ID

LPSQLDMOKEY
CLSID_SQLDMOKey
IID_ISQLDMOKey

Keys	(collection) Pointer
Interface	ID

LPSQLDMOKEYS
IID_ISQLDMOKeys

SQL-DMO

L

SQL-DMO	object Type Value
Language	(object) Pointer

Class	ID
Interface
ID

ISQLDMOLanguage
CLSID_SQLDMOLanguage
IID_ISQLDMOLanguage

Languages	(collection) Pointer
Interface
ID

LPSQLDMOLANGUAGES
IID_ISQLDMOLanguages

LinkedServer	(object) Pointer
Class	ID
Interface
ID

LPSQLDMOLINKEDSERVER
CLSID_SQLDMOLinkedServer
IID_ISQLDMOLinkedServer

LinkedServerLogin
(object)

Pointer
Class	ID
Interface
ID

LPSQLDMOLINKEDSERVERLOGIN
CLSID_SQLDMOLinkedServerLogin
IID_ISQLDMOLinkedServerLogin

LinkedServerLogins
(collection)

Pointer
Interface
ID

LPSQLDMOLINKEDSERVERLOGINS
IID_ISQLDMOLinkedServerLogins

LinkedServers
(collection)

Pointer
Interface
ID

LPSQLDMOLINKEDSERVERS
IID_ISQLDMOLinkedServers

LogFile	(object) Pointer
Class	ID
Interface
ID

LPSQLDMOLOGFILE
CLSID_SQLDMOLogFile
IID_ISQLDMOLogFile

LogFiles	(collection) Pointer
Interface
ID

LPSQLDMOLOGFILES
IID_ISQLDMOLogFiles

Login	(object) Pointer
Class	ID

LPSQLDMOLOGIN
CLSID_SQLDMOLogin

Interface
ID

IID_ISQLDMOLogin

Logins	(collection) Pointer
Interface
ID

LPSQLDMOLOGINS
IID_ISQLDMOLogins

SQL-DMO

M

SQL-DMO	object Type Value
MergeArticle	(object) Pointer

Class	ID
Interface
ID

LPSQLDMOMERGEARTICLE
CLSID_SQLDMOMergeArticle
IID_ISQLDMOMergeArticle

MergeArticles	(collection) Pointer
Interface
ID

LPSQLDMOMERGEARTICLES
IID_ISQLDMOMergeArticles

MergeDynamicSnapshotJob
(object)

Pointer
Class	ID
Interface
ID

LPSQLDMOMERGEDYNAMICSNAPSHOTJOB
CLSID_SQLDMOMergeDynamicSnapshotJob	
IID_ISQLDMOMergeDynamicSnapshotJob

MergeDynamicSnapshotJobs
(collection)

Pointer
Interface
ID

LPSQLDMOMERGEDYNAMICSNAPSHOTJOBS
IID_ISQLDMOMergeDynamicSnapshotJobS

MergePublication	(object) Pointer
Class	ID
Interface
ID

LPSQLDMOMERGEPUBLICATION
CLSID_SQLDMOMergePublication
IID_ISQLDMOMergePublication

MergePublications
(collection)

Pointer
Interface
ID

LPSQLDMOMERGEPUBLICATIONS
IID_ISQLDMOMergePublications

MergePullSubscription
(object)

Pointer
Class	ID
Interface
ID

LPSQLDMOMERGEPULLSUBSCRIPTION
CLSID_SQLDMOMergePullSubscription
IID_ISQLDMOMergePullSubscription

MergePullSubscriptions
(collection)

Pointer
Interface
ID

LPSQLDMOMERGEPULLSUBSCRIPTIONS
IID_ISQLDMOMergePullSubscriptions

MergeSubscription	(object) Pointer
Class	ID

LPSQLDMOMERGESUBSCRIPTION
CLSID_SQLDMOMergeSubscription

Interface
ID

IID_ISQLDMOMergeSubscription

MergeSubscriptions
(collection)

Pointer
Interface
ID

LPSQLDMOMERGESUBSCRIPTIONS
IID_ISQLDMOMergeSubscriptions

MergeSubsetFilter	(object) Pointer
Class	ID
Interface
ID

LPSQLDMOMERGESUBSETFILTER
CLSID_SQLDMOMergeSubsetFilter
IID_ISQLDMOMergeSubsetFilter

MergeSubsetFilters
(collection)

Pointer
Interface
ID

LPSQLDMOMERGESUBSETFILTERS
IID_ISQLDMOMergeSubsetFilters

SQL-DMO

N

SQL-DMO	object Type Value
NameList	(object) Pointer

Interface	ID
LPSQLDMONAMELIST
IID_ISQLDMONameList

Names	(collection) Pointer
Interface	ID

LPSQLDMONAMES
IID_ISQLDMONames

SQL-DMO

O

SQL-DMO	object Type Value
Operator	(object) Pointer

Class	ID
Interface
ID

LPSQLDMOOPERATOR
CLSID_SQLDMOOperator
IID_ISQLDMOOperator

OperatorCategories
(collection)

Pointer
Interface
ID
Pointer

LPSQLDMOOPERATORCATEGORIES
IID_ISQLDMOOperatorCategories
LPSQLDMOOPERATORS

Operators
(collection)

Interface
ID

IID_ISQLDMOOperators

SQL-DMO

P

SQL-DMO	object Type Value
Permission	(object) Pointer

Interface	ID
LPSQLDMOPERMISSION
IID_ISQLDMOPermission

Publisher	(object) Pointer
Interface	ID

LPSQLDMOPUBLISHER
IID_ISQLDMOPublisher

SQL-DMO

Q

SQL-DMO	object Type Value
QueryResults	(object) Pointer

Interface	ID
LPSQLDMOQUERYRESULTS
IID_ISQLDMOQueryResults

SQL-DMO

R

SQL-DMO	object Type Value
RegisteredServer	(object) Pointer

Class	ID
Interface
ID

LPSQLDMOREGISTEREDSERVER
CLSID_SQLDMORegisteredServer
IID_ISQLDMORegisteredServer

RegisteredServers
(collection)

Pointer
Interface
ID

LPSQLDMOREGISTEREDSERVERS
IID_ISQLDMORegisteredServers

RegisteredSubscriber
(object)

Pointer
Class	ID
Interface
ID

LPSQLDMOREGISTEREDSUBSCRIBER
CLSID_SQLDMORegisteredSubscriber
IID_ISQLDMORegisteredSubscriber

RegisteredSubscribers
(collection)

Pointer
Interface
ID

LPSQLDMOREGISTEREDSUBSCRIBERS
IID_ISQLDMORegisteredSubscribers

Registry	(object) Pointer
Interface
ID

LPSQLDMOREGISTRY
IID_ISQLDMORegistry

RemoteLogin	(object) Pointer
Class	ID
Interface
ID

LPSQLDMOREMOTELOGIN
CLSID_SQLDMORemoteLogin
IID_ISQLDMORemoteLogin

RemoteLogins	(collection) Pointer
Interface
ID

LPSQLDMOREMOTELOGINS
IID_ISQLDMORemoteLogins

RemoteServer	(object) Pointer
Class	ID
Interface
ID

LPSQLDMOREMOTESERVER
CLSID_SQLDMORemoteServer
IID_ISQLDMORemoteServer

RemoteServers	(collection) Pointer
Interface

LPSQLDMOREMOTESERVERS
IID_ISQLDMORemoteServers

ID
Replication	(object) Pointer

Class	ID
Interface
ID
Sink
pointer
Sink
interface
ID

LPSQLDMOREPLICATION
CLSID_SQLDMOReplication
IID_ISQLDMOReplication
LPSQLDMOREPLICATIONSINK
IID_ISQLDMOReplicationSink

ReplicationDatabase	(object) Pointer
Interface
ID

LPSQLDMOREPLICATIONDATABASE
IID_ISQLDMOReplicationDatabase

ReplicationDatabases
(collection)

Pointer
Interface
ID

LPSQLDMOREPLICATIONDATABASES
IID_ISQLDMOReplicationDatabases

ReplicationSecurity	(object) Pointer
Class	ID
Interface
ID

LPSQLDMOREPLICATIONSECURITY
CLSID_SQLDMOReplicationSecurity
IID_ISQLDMOReplicationSecurity

ReplicationStoredProcedure
(object)

Pointer
Interface
ID

LPSQLDMOREPLICATIONSTOREDPROCEDURE
IID_ISQLDMOReplicationStoredProcedure

ReplicationStoredProcedures
(collection)

Pointer
Interface
ID

LPSQLDMOREPLICATIONSTOREDPROCEDURES
IID_ISQLDMOReplicationStoredProcedures

ReplicationTable	(object) Pointer
Interface
ID

LPSQLDMOREPLICATIONTABLE
IID_ISQLDMOReplicationTable

ReplicationTables	(collection) Pointer
Interface
ID

LPSQLDMOREPLICATIONTABLES
IID_ISQLDMOReplicationTables

Restore	(object) Pointer
Class	ID
Interface
ID

LPSQLDMORESTORE
CLSID_SQLDMORestore
IID_ISQLDMORestore
LPSQLDMORESTORESINK

Sink
pointer
Sink
interface
ID

IID_ISQLDMORestoreSink

Rule	(object) Pointer
Class	ID
Interface
ID

LPSQLDMORULE
CLSID_SQLDMORule
IID_ISQLDMORule

Rules	(collection) Pointer
Interface
ID

LPSQLDMORULES
IID_ISQLDMORules

SQL-DMO

S

SQL-DMO	object Type Value
Schedule	(object) Pointer

Interface	ID
LPSQLDMOSCHEDULE
IID_ISQLDMOSchedule

ServerGroup	(object) Pointer
Class	ID
Interface	ID

LPSQLDMOSERVERGROUP
CLSID_SQLDMOServerGroup
IID_ISQLDMOServerGroup

ServerGroups
(collection)

Pointer
Interface	ID

LPSQLDMOSERVERGROUPS
IID_ISQLDMOServerGroups

ServerRole	(object) Pointer
Class	ID
Interface	ID

LPSQLDMOSERVERROLE
CLSID_SQLDMOServerRole
IID_ISQLDMOServerRole

ServerRoles
(collection)

Pointer
Interface	ID

LPSQLDMOSERVERROLES
IID_ISQLDMOServerRoles

SQLObjectList
(object)

Pointer
Interface	ID

LPSQLDMOOBJECTLIST
IID_ISQLDMOObjectList

SQLServer	(object) Pointer
Class	ID
Interface	ID
Sink	pointer
Sink
interface	ID

LPSQLDMOSERVER
CLSID_SQLDMOServer
IID_ISQLDMOServer
LPSQLDMOSERVERSINK
IID_ISQLDMOServerSink

SQLServers
(collection)

Pointer
Interface	ID
Pointer
Class	ID

LPSQLDMOSERVERS
IID_ISQLDMOServers
LPSQLDMOSTOREDPROCEDURE
CLSID_SQLDMOStoredProcedure

StoredProcedure
(object)

Interface	ID IID_ISQLDMOStoredProcedure

StoredProcedures
(collection)

Pointer
Interface	ID

LPSQLDMOSTOREDPROCEDURES
IID_ISQLDMOStoredProcedures

Subscriber	(object) Pointer LPSQLDMOSUBSCRIBER

Interface	ID IID_ISQLDMOSubscriber
SystemDatatype
(object)

Pointer
Interface	ID

LPSQLDMOSYSTEMDATATYPE
IID_ISQLDMOSystemDatatype

SystemDatatypes
(collection)

Pointer
Interface	ID

LPSQLDMOSYSTEMDATATYPES
IID_ISQLDMOSystemDatatypes

SQL-DMO

T

SQL-DMO	object Type Value
Table	(object) Pointer

Class	ID
Interface
ID

LPSQLDMOTABLE
CLSID_SQLDMOTable
IID_ISQLDMOTable

Tables	(collection) Pointer
Interface
ID

LPSQLDMOTABLES
IID_ISQLDMOTables

TargetServer	(object) Pointer
Class	ID
Interface
ID

LPSQLDMOTARGETSERVER
CLSID_SQLDMOTargetServer
IID_ISQLDMOTargetServer

TargetServerGroup
(object)

Pointer
Class	ID
Interface
ID

LPSQLDMOTARGETSERVERGROUP
CLSID_SQLDMOTargetServerGroup
IID_ISQLDMOTargetServerGroup

TargetServerGroups
(collection)

Pointer
Interface
ID

LPSQLDMOTARGETSERVERGROUPS
IID_ISQLDMOTargetServerGroups

TargetServers
(collection)

Pointer
Interface
ID

LPSQLDMOTARGETSERVERS
IID_ISQLDMOTargetServers

TransactionLog
(object)

Pointer
Interface
ID

LPSQLDMOTRANSACTIONLOG
IID_ISQLDMOTransactionLog

TransArticle	(object) Pointer
Class	ID
Interface
ID

LPSQLDMOTRANSARTICLE
CLSID_SQLDMOTransArticle
IID_ISQLDMOTransArticle

TransArticles
(collection)

Pointer
Interface

LPSQLDMOTRANSARTICLES
IID_ISQLDMOTransArticles

ID
Transfer	(object) Pointer

Class	ID
Interface
ID
Sink
pointer
Sink
interface
ID

LPSQLDMOTRANSFER
CLSID_SQLDMOTransfer
IID_ISQLDMOTransfer
LPSQLDMOTRANSFERSINK
IID_ISQLDMOTransferSink

TransPublication
(object)

Pointer
Class	ID
Interface
ID

LPSQLDMOTRANSPUBLICATION
CLSID_SQLDMOTransPublication
IID_ISQLDMOTransPublication

TransPublications
(collection)

Pointer
Interface
ID

LPSQLDMOTRANSPUBLICATIONS
IID_ISQLDMOTransPublications

TransPullSubscription
(object)

Pointer
Class	ID
Interface
ID

LPSQLDMOTRANSPULLSUBSCRIPTION
CLSID_SQLDMOTransPullSubscription
IID_ISQLDMOTransPullSubscription

TransPullSubscriptions
(collection)

Pointer
Interface
ID

LPSQLDMOTRANSPULLSUBSCRIPTIONS
IID_ISQLDMOTransPullSubscriptions

TransSubscription
(object)

Pointer
Class	ID
Interface
ID

LPSQLDMOTRANSSUBSCRIPTION
CLSID_SQLDMOTransSubscription
IID_ISQLDMOTransSubscription

TransSubscriptions
(collection)

Pointer
Interface
ID

LPSQLDMOTRANSSUBSCRIPTIONS
IID_ISQLDMOTransSubscriptions

Trigger	(object) Pointer
Class	ID
Interface
ID

LPSQLDMOTRIGGER
CLSID_SQLDMOTrigger
IID_ISQLDMOTrigger

Triggers	(collection) Pointer LPSQLDMOTRIGGERS

Interface
ID

IID_ISQLDMOTriggers

SQL-DMO

U

SQL-DMO	object Type Value
User	(object) Pointer

Class	ID
Interface
ID

LPSQLDMOUSER
CLSID_SQLDMOUser
IID_ISQLDMOUser

UserDefinedDatatype
(object)

Pointer
Class	ID
Interface
ID

LPSQLDMOUSERDEFINEDDATATYPE
CLSID_SQLDMOUserDefinedDatatype
IID_ISQLDMOUserDefinedDatatype

UserDefinedDatatypes
(collection)

Pointer
Interface
ID

LPSQLDMOUSERDEFINEDDATATYPES
IID_ISQLDMOUserDefinedDatatypes

UserDefinedFunction
(object)

Pointer
Class	ID
Interface
ID

LPSQLDMOUSERDEFINEDFUNCTION
CLSID_SQLDMOUserDefinedFunction
IID_ISQLDMOUserDefinedFunction

UserDefinedFunctions
(collection)

Pointer
Interface
ID

LPSQLDMOUSERDEFINEDFUNCTIONS
IID_ISQLDMOUserDefinedFunctions

Users	(collection) Pointer
Interface
ID

LPSQLDMOUSERS
IID_ISQLDMOUsers

SQL-DMO

V

SQL-DMO	object Type Value
View	(object) Pointer

Class	ID
Interface	ID

LPSQLDMOVIEW
CLSID_SQLDMOView
IID_ISQLDMOView

Views	(collection) Pointer
Interface	ID

LPSQLDMOVIEWS
IID_ISQLDMOViews

SQL-DMO

Scope-aware	Template	Classes
As	an	aid	to	the	C++	developer,	two	scope-aware	template	classes	are	defined	in
Sqldmo.h.	The	classes	wrap	OLE	objects,	implementing	application-held
reference	release	when	an	instance	of	the	class	is	reused	in	an	assignment	or
when	the	instance	goes	out	of	scope.

SQL-DMO

CTempBSTR
The	CTempBSTR	template	class	wraps	an	OLE	BSTR	object.	When	used	to
maintain	references	on	BSTR	objects	returned	by	SQL-DMO,	the	class	ensures
that	references	are	released	when:

An	instance	of	the	class	is	destroyed.

An	instance	of	the	class	is	maintaining	an	existing	reference	and	is
assigned	a	new	reference.

Member	Functions

CTempBSTR::b

SQLDMO_BSTR	b();

Returns	an	SQLDMO_BSTR	from	the	instance	without	incrementing	the
reference	count	maintained	on	the	BSTR.	Returns	NULL	if	the	instance	is	not
maintaining	a	reference.

CTempBSTR::CTempBSTR
CTempBSTR();

CTempBSTR(SQLDMO_BSTR	bstrIn);

Creates	an	instance	of	the	class.

CTempBSTR::Free
void	Free();

Safely	releases	a	BSTR	reference	maintained	by	the	instance.	The	function	is
provided	for	class	completeness.	Class	destruction	and	assignment	operator
implementations	ensure	reference	release,	and	the	use	of	Free	is	not	required	by
an	application.

Operators

CTempBSTR::operator	SQLDMO_LPCSTR
operator	SQLDMO_LPCSTR	();

Returns	an	SQLDMO_LPCSTR	pointing	to	the	character	string	maintained	by
the	BSTR	object	wrapped.	Returns	NULL	if	the	instance	is	not	maintaining	a
reference	on	a	BSTR	object.

CTempBSTR::operator	void*
operator	void*	();

Returns	a	void	pointer	to	the	memory	maintaining	a	BSTR	object	reference.

CTempBSTR::operator	=
SQLDMO_BSTR	operator	=	(SQLDMO_BSTR	bstrIn);

If	a	BSTR	reference	is	maintained	by	the	instance,	the	reference	is	released.	The
instance	maintains	the	reference	on	the	BSTR	object	assigned	to	the	instance.
Returns	the	reference	assigned.

CTempBSTR::operator	&
SQLDMO_BSTR*	operator	&	();

Returns	a	pointer	to	the	memory	maintaining	a	BSTR	object	reference	as	a
pointer	to	a	SQLDMO_BSTR.

CTempBSTR::operator	!
BOOL	operator	!	();

Returns	FALSE	when	an	instance	maintains	a	reference	on	a	BSTR	object.
Returns	TRUE	otherwise.

SQL-DMO

CTempOLERef
The	CTempOLERef	template	class	wraps	any	OLE	object.	When	used	to
maintain	references	on	OLE	objects	returned	by	SQL-DMO,	the	class	ensures
that	references	are	released	when:

An	instance	of	the	class	is	destroyed.

An	instance	of	the	class	is	maintaining	an	existing	reference	and	is
assigned	a	new	reference.

Member	Functions

CTempOLERef::CTempOLERef

CTempOLERef();

CTempOLERef(OLEPTR	pIn);

Creates	an	instance	of	the	class.

CTempOLERef::p
OLEPTR	p();

Returns	an	OLEPTR	(pointer	to	an	OLE	object)	from	the	instance	without
incrementing	the	reference	count	maintained	on	the	OLE	object.	Returns	NULL
if	the	instance	is	not	maintaining	a	reference.

CTempOLERef::Release
void	Release();

Safely	releases	a	reference	maintained	by	the	instance	on	an	OLE	object.	The
function	is	provided	for	class	completeness.	Class	destruction	and	assignment
operator	implementations	ensure	reference	release,	and	the	use	of	Release	is	not
required	by	an	application.

Operators

CTempOLERef::operator	OLEPTR
operator	OLEPTR	();

Returns	the	reference	maintained	by	the	instance	as	an	OLEPTR.	Returns	NULL
if	the	instance	is	not	maintaining	a	reference.

CTempOLERef::operator	LPUNKNOWN
operator	LPUNKNOWN	();

Returns	the	reference	maintained	by	the	instance	as	an	LPUNKNOWN.	Returns
NULL	if	the	instance	is	not	maintaining	a	reference.

CTempOLERef::operator	void*
operator	void*	();

Returns	a	void	pointer	to	the	memory	maintaining	an	OLE	object	reference.

CTempOLERef::operator	BOOL
operator	BOOL	();

Returns	TRUE	when	an	instance	maintains	a	reference	on	a	BSTR	object.
Returns	FALSE	otherwise.

CTempOLERef::operator	=
OLEPTR	operator	=	(OLEPTR	pIn);

If	an	OLE	object	reference	is	maintained	by	the	instance,	the	reference	is
released.	The	instance	maintains	the	reference	on	the	OLE	object	assigned	to	the
instance.	Returns	the	reference	assigned.

CTempOLERef::operator	&
OLEPTR*	operator	&	();

Returns	a	pointer	to	the	memory	maintaining	an	OLE	object	reference	as	a
pointer	to	an	OLEPTR.

CTempOLERef::operator	!
BOOL	operator	!	();

Returns	FALSE	when	an	instance	maintains	a	reference	on	a	BSTR	object.
Returns	TRUE	otherwise.

CTempOLERef::operator	->
OLEPTR	operator	->	();

Returns	the	reference	maintained	by	the	instance	as	an	OLEPTR.	Returns	NULL
if	the	instance	is	not	maintaining	a	reference.

Implements	member	function	derefencing	for	the	OLE	object	reference	wrapped.

SQL-DMO

C/C++	Shortcuts
As	an	aid	to	the	C++	developer,	shortcuts	are	implemented	to	assist	collection
member	handling	and	object	list	handling.

SQL-DMO

Collection	Handling
SQL-DMO	implements	collection	handling	member	functions	within	the	parent
object	of	any	collection.	For	example,	without	the	shortcut	member	functions,
the	application	that	requires	an	item	from	a	SQL-DMO	collection	would:

Get	the	parent	object	of	the	collection.

Get	a	reference	on	the	collection.

Use	the	ItemByName	or	ItemByOrd	member	function	of	the
collection	to	dereference	a	specific	collection	item.

Using	a	shortcut	member	function,	the	application	can:

Get	the	parent	object	of	the	collection.

Use	the	ByName	or	ByOrd	shortcut	member	function	of	the	parent
object	to	dereference	a	specific	collection	item.

Shortcut	member	function	naming	is	consistent,	following	the	rules	illustrated	in
this	table.

Collection	implementation Parent	implementation
GetItemByName GetObjectByName
GetItemByOrd GetObjectByOrd
RemoveByName RemoveObjectByName
RemoveByOrd RemoveObjectByOrd
Add AddObject
GetCount GetObjectCount

Replace	Object	in	the	rule	description	with	the	name	of	the	object	contained	in
the	collection,	as	in	GetDatabaseByName.

Shortcut	member	function	syntax	follows	that	defined	in	the	SQL-DMO
reference	for	the	item	member	functions	used	by	the	collection.	For	example,	the
GetItemByName	member	function	of	the	Database	object	has	the	syntax:

HRESULT	GetItemByName(SQLDMO_LPCSTR	szName,
LPSQLDMODATABASE	*ppObj,
SQLDMO_LPCSTR	szOwner	=	NULL);

The	GetDatabaseByName	member	function	of	the	SQLServer	object	has	the
syntax:

HRESULT	GetDatabaseByName(SQLDMO_LPCSTR	szName,
LPSQLDMODATABASE	*ppDatabase,
SQLDMO_LPCSTR	szOwner	=	NULL);

SQL-DMO	collection	support	for	any	specific	member	function	is	discussed	in
detail	in	documentation	for	a	collection	object.	Use	collection	documentation	to
determine	presence	of	specific	collection	member	functions	and	shortcut
member	functions	implemented	on	the	parent	object.

SQL-DMO

Defined	List	Types
Where	appropriate,	SQL-DMO	member	functions	that	return	a	reference	on	a
SQLObjectList	object	are	implemented	to	return	a	reference	on	a	typed	list	of
objects.	For	example,	the	ListIndexedColumns	member	function,	that	returns
an	SQLObjectList	object	enumerating	the	columns	on	which	a	Microsoft®	SQL
Server™	index	is	defined,	uses	the	syntax:

HRESULT	ListIndexedColumns(LPSQLDMOCOLUMNLIST*	ppList);

That	the	list	object	returned	contains	only	SQL-DMO	Column	objects	is	visible
from	the	function	prototype,	and	for	the	C/C++	application	developer,	the	typed
list	forces	a	specific	type	recognition	and	aids	in	program	readability.

SQL-DMO	defines	the	following	object	list	types.

Type
SQLObjectList	object
contains

LPSQLDMODBOBJECTLIST DBObject	objects
LPSQLDMOPERMISSIONLIST Permission	objects
LPSQLDMOCONFIGVALUELIST ConfigValue	objects
LPSQLDMOBACKUPDEVICELIST BackupDevice	objects
LPSQLDMOCOLUMNLIST Column	objects
LPSQLDMOUSERDEFINEDDATATYPELISTUserDefinedDatatype

objects
LPSQLDMOSTOREDPROCEDURELIST StoredProcedure	objects
LPSQLDMOLOGINLIST Login	objects
LPSQLDMOUSERLIST User	objects
LPSQLDMODATABASELIST Database	objects
LPSQLDMOKEYLIST Key	objects

SQL-DMO

Helpful	Macros
These	macros,	assisting	the	C/C++	developer,	are	defined	within	Sqldmo.h.

SQLDMOCategory_UseDefault
For	the	Category	property	of	the	Alert,	Job,	and	Operator	object,	SQL-DMO
defines	the	macro	SQLDMOCategory_UseDefault	as	TEXT("[DEFAULT]").
Use	the	macro	when	setting	the	property,	as	in:

pAlert->SetCategory(SQLDMOCategory_UseDefault);

SQLDMOTargetServer_Local
For	the	ApplyToTargetServer	and	RemoveFromTargetServer	methods	of	the
Job	object,	SQL-DMO	defines	the	macro	SQLDMOTargetServer_Local	as
TEXT("(local)").	Use	the	macro	when	altering	job	execution	target,	as	in:

pJob->ApplyToTargetServer(SQLDMOTargetServer_Local);

SQLDMOAlert_NoJob
For	the	JobID	property	of	the	Alert	object,	SQL-DMO	defines	the	macro
SQLDMOAlert_NoJob	as	TEXT("00000000000000000000000000000000").
Use	the	macro	to	test	or	change	the	value	of	the	property.

SQLDMO_ECAT_MASK
SQL-DMO	errors	enumerated	by	the	SQLDMO_ERROR_TYPE	data	type	are
defined	as	groups	of	related	errors.

SQL-DMO	defines	the	macro	SQLDMO_ECAT_MASK	as	0x5F00.	Use	the
macro	to	mask	an	error	returned	by	SQL-DMO,	as	in:

//	Handle	insufficient	privilege	error.
if	(SQLDMO_ECAT_UNPRIVILEGEDLOGIN	==	(hr	&	SQLDMO_ECAT_MASK))
{

//	Execeptional	processing	for	attempt	to	perform	modification.
}

SQL-DMO

SQL-DMO	Samples
The	following	samples	illustrate	Microsoft®	SQL	Server™	2000	SQL-DMO
application	development	in	Microsoft	Visual	C++®	and	Microsoft	Visual
Basic®.

Sample Description
Soc C	language	sample.	Creates	an	instance	of	a

SQLServer	object	and	calls	the	Connect	member
function.

BackRestEvents	(C++) C++	language	sample.	Illustrates	using	SQL	Server
to	backup	and	restore	a	database,	and	uses	events	to
report	the	current	status.

Dmoping C++	language	sample.	Uses	the
PingSQLServerVersion	method	to	query	an
instance	of	SQL	Server.	Illustrates	using	SQL-
DMO	in	an	environment	containing	multiple
instances	of	SQL	Server.

Smartptr C++	language	sample.	Illustrates	SQL-DMO
development	using	COM	object	support	built	into
Visual	C++	5.0

Socpp C++	language	sample.	Creates	an	instance	of	a
SQLServer	object	and	calls	the	Connect	member
function.

AxSQLDMOCtl Visual	Basic	sample.	Demonstrates	how	to	create	a
User	Control	that	uses	SQLDMO

BackRestEvents
(Visual	Basic)

Visual	Basic	sample.	Illustrates	using	SQL	Server
to	backup	and	restore	a	database,	and	uses	events	to
report	the	current	status.

BackupDevice Visual	Basic	sample.	Demonstrates	how	to	use	the
BackupDevice	Object	to	add	and	remove	a	backup
device

CreateDatabase Visual	Basic	sample.	Demonstrates	how	to	create	a
database.

CreateTable Visual	Basic	sample.	Demonstrates	how	to	create
and	alter	tables.

DMOExplorer Visual	Basic	sample.	Walks	the	DMO	object	model
and	displays	the	values	in	it.

Enums Visual	Basic	sample.	Demonstrates	how	to	use	the
SQLServer	enumeration	methods.

Explore Visual	Basic	sample.	Illustrates	using	SQL-DMO	to
browse	SQL	Server	configuration	in	an	enterprise.

Idxtest Visual	Basic	sample.	Illustrates	using	SQL-DMO	to
build	and	test	the	benefit	of	SQL	Server	indexes.

Login Visual	Basic	sample.	Demonstrates	how	to	locate
the	available	SQL	servers	and	log	in	to	them.

Registry Visual	Basic	sample.	Demonstrates	how	to	use	the
SQL	DMO	object	model	to	find	Registry
information	for	an	instance	of	SQL	Server.

Service Visual	Basic	sample.	Demonstrates	how	to	use	the
SQLServer	object	to	check	the	status	of	the
service,	and	to	start	and	stop	it.

SQLScripts Visual	Basic	sample.	Demonstrates	how	to	generate
SQL	scripts	to	recreate	various	SQL	Server	objects.

VerifyBackup Visual	Basic	sample.	Demonstrates	how	to	find
backup	devices	and	verify	the	backup	set.

To	install	the	samples	during	SQL	Server	installation
1.	 On	the	Setup	Type	page,	select	Custom.

2.	 On	the	Select	Components	page,	under	Components,	select	Code
Samples.

Samples	are	installed	as	a	self-extracting	file.	To	extract	the	samples,	double-
click	Unzip_sqldmo.exe,	located	at
C:\Program	Files\Microsoft	SQL	Server\80\Tools\Devtools\Samples\Sqldmo

All	samples	include	a	project	file	applicable	to	the	language	used.

The	SQL-DMO	C	and	C++	samples	have	been	built	for	the	Microsoft®

Windows®	95,	Windows®	98,	Windows	NT®	4.0,	and	Windows	2000	operating
systems.

For	C	and	C++	sample	compilation,	the	Microsoft	SQL	Server™	development
files	must	be	installed	to	obtain	the	SQL-DMO	header	files.	After	installation,
set	your	compiler	include	directory	path	to	contain	C:\Program	Files\Microsoft
SQL	Server\80\Tools\DevTools\Include	so	that	the	compiler	can	access	the
Sqldmo.h	and	Sqldmoid.h	files.

Prerequisites
C	and	C++	samples	require	Microsoft	Visual	C++	version	6.0.	Visual	Basic
samples	require	Microsoft	Visual	Basic	version	6.0.

See	Also

Samples

JavaScript:hhobj_1.Click()

SQL-DMO

AxSQLDMOCtl
This	sample	illustrates	using	SQL	Distributed	Management	Objects	(SQL-DMO)
objects	supplied	with	Microsoft®	SQL	Server™	2000.	This	Microsoft®	Visual
Basic®	sample	demonstrates	how	to	create	a	User	Control	that	uses	SQLDMO.

Default	Location
C:\Program	Files\
Microsoft	SQL	Server\80\Tools\Devtools\Samples\Sqldmo\Vb\AxSQLDMOCtl

Running	the	Sample
1.	 Open	the	SQLDMOActiveX.vbg	project.

2.	 Run	the	application.

See	Also

SQL-DMO	Samples

SQL-DMO

BackRestEvents	(Visual	Basic)
The	Visual	Basic	BackRestEvents	sample	demonstrates	how	to	backup	and
restore	a	SQL	Server	database	using	the	SQL-DMO	Backup	and	Restore
objects.	The	sample	also	illustrates	handling	Backup	and	Restore	object	events.

Default	Location
C:\Program	Files
\Microsoft	SQL	Server\80\Tools\Devtools\Samples\Sqldmo\Vb\BackRestEvents

Running	the	Sample
1.	 Open	the	BackRestEvents.vbp	project.

2.	 Run	the	application.

Remarks
The	BackRestEvents	sample	contains	a	single	form,	which	solicits	login
information	from	the	user.

Upon	successful	connection	to	an	instance	of	Microsoft®	SQL	Server™,	the
user	selects	a	database	to	backup	or	restore,	a	file	name,	and	a	location,	using	the
Database	To	Backup/Restore	list,	and	the	Backup/Restore	File	Name	box.
The	user	specifies	which	operation	to	perform	by	clicking	Backup	or	Restore.

Backup	or	Restore	object	event	values	are	displayed	in	the	Status	box	at	the
bottom	of	the	form.

Note		Although	the	sample	allows	the	user	to	use	either	Windows	Authentication
or	SQL	Server	Authentication,	the	recommended	method	for	connecting	to	an
instance	of	SQL	Server	2000	is	to	use	Windows	Authentication	mode.

See	Also

SQL-DMO	Samples

SQL-DMO

BackRestEvents	(C++)
The	C++	BackRestEvents	sample	demonstrates	how	to	backup	and	restore	a
SQL	Server	database	using	the	SQL-DMO	Backup	and	Restore	objects.	The
sample	also	illustrates	handling	Backup	and	Restore	object	events.

Default	Location
C:\Program	Files
\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Sqldmo\Cpp\BackRestEvents

Running	the	Sample
1.	 Open	the	BackRestEvents.dsw	workspace.

2.	 Run	the	application.

Remarks
The	BackRestEvents	sample	contains	a	single	form,	which	solicits	login
information	from	the	user.

Upon	successful	connection	to	an	instance	of	Microsoft®	SQL	Server™,	the
user	selects	a	database	to	backup	or	restore,	a	file	name,	and	a	location,	using	the
Database	To	Backup/Restore	list,	and	the	Backup/Restore	File	Name	box.
The	user	specifies	which	operation	to	perform	by	clicking	Backup	or	Restore.

Backup	or	Restore	object	event	values	are	displayed	in	the	Status	box	at	the
bottom	of	the	form.

Note		Although	the	sample	allows	the	user	to	use	either	Windows	Authentication
or	SQL	Server	Authentication,	the	recommended	method	for	connecting	to	an
instance	of	SQL	Server	2000	is	to	use	Windows	Authentication	mode.

See	Also

SQL-DMO	Samples

SQL-DMO

BackupDevice
This	sample	illustrates	using	SQL	Distributed	Management	Objects	(SQL-DMO)
objects	supplied	with	Microsoft®	SQL	Server™	2000.	This	Microsoft®	Visual
Basic®	sample	demonstrates	how	to	use	the	BackupDevice	Object	to	add	and
remove	a	backup	device.

This	is	not	intended	to	be	a	complete	production	application.	It	does	not	test	to
ensure	that	non-file	based	device	types	are	valid	on	your	system.

Default	Location
C:\Program	Files\
Microsoft	SQL	Server\80\Tools\Devtools\Samples\Sqldmo\Vb\BackupDevice

Running	the	Sample
1.	 Open	the	AddRemoveBackupDevice.vbp	project.

2.	 Run	the	application.

See	Also

SQL-DMO	Samples

SQL-DMO

CreateDatabase
This	sample	illustrates	using	SQL	Distributed	Management	Objects	(SQL-DMO)
objects	supplied	with	Microsoft®	SQL	Server™	2000.	This	Microsoft®	Visual
Basic®	sample	demonstrates	how	to	create	a	database.

Default	Location
C:\Program	Files\
Microsoft	SQL	Server\80\Tools\Devtools\Samples\Sqldmo\Vb\CreateDatabase

Running	the	Sample
1.	 Open	the	CreateDatabase.vbp	project.

2.	 Run	the	application.

See	Also

SQL-DMO	Samples

SQL-DMO

CreateTable
This	sample	illustrates	using	SQL	Distributed	Management	Objects	(SQL-DMO)
objects	supplied	with	Microsoft®	SQL	Server™	2000.	This	Microsoft®	Visual
Basic®	sample	demonstrates	how	to	create	and	alter	tables.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Sqldmo\Vb\CreateTable

Running	the	Sample
1.	 Open	the	CreateTable.vbp	project.

2.	 Run	the	application.

See	Also

SQL-DMO	Samples

SQL-DMO

DMOExplorer
This	sample	illustrates	using	SQL	Distributed	Management	Objects	(SQL-DMO)
objects	supplied	with	Microsoft®	SQL	Server™	2000.	This	Microsoft®	Visual
Basic®	sample	traverses	the	DMO	object	model,	displaying	its	values.	It	does
this	by	using	the	Typelib	Information	COM	Object	to	read	the	type	library
exposed	by	SQL	DMO.	This	technique	can	be	used	to	show	the	object	model	of
a	COM	object,	but	it	is	not	recommended	in	a	production	environment.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Sqldmo\Vb\DMOExplorer

Running	the	Sample
1.	 Open	the	DMOExplorer.vbp	project.

2.	 Run	the	application.

See	Also

SQL-DMO	Samples

SQL-DMO

Dmoping
The	Dmoping	sample	illustrates	version-independent	SQL-DMO	application
development.	The	sample	demonstrates	using	the	SQL-DMO	version	7.0
PingSQLServerVersion	function	to	determine	the	version	of	an	instance	of
Microsoft®	SQL	Server™.	Based	on	the	instance,	Dmoping	creates	an	instance
of	a	version-specific	SQLServer	object,	then	uses	that	object	in	additional
processing.

Default	Location
C:\Program	Files\
Microsoft	SQL	Server\80\Tools\Devtools\Samples\sqldmo\cpp\dmoping

Running	the	Sample
1.	 Open	the	Dmoping.dsw	project.

2.	 Run	the	application.

Remarks
Applications	developed	using	SQL-DMO	version	7.0	or	later	cannot	connect	to
or	administer	instances	of	SQL	Server	released	prior	to	7.0.	Applications	that
must	administer	instances	of	SQL	Server	version	7.0	or	earlier	can
simultaneously	reference	the	SQL-DMO	version	7.0	object	library	and	a	version
of	the	library	released	prior	to	version	7.0.

The	sample	shows:

Creating	an	instance	of	a	SQLServer	object.

Calling	the	PingSQLServerVersion	function	to	determine	the	version
of	an	instance	of	SQL	Server.

Creating	and	connecting	a	version-specific	instance	of	a	SQL-DMO

SQLServer	object	based	on	the	PingSQLServerVersion	return	value.

The	Dmoping	sample	is	a	console	application.

Dmoping	requires	Microsoft	Visual	C++®	version	6.0	or	later.	Project	files	for
Visual	C++	(.dsp	and	.dsw	extensions)	are	included.	In	the	project	files,	build
configurations	are	defined	for	computers	using	Intel®	or	compatible	processors.
All	configurations	create	a	Unicode	application.

Dmoping	illustrates	using	SQL-DMO	in	an	environment	containing	multiple
versions	of	SQL	Server.	In	addition	to	an	installation	of	SQL-DMO	version	7.0
or	later,	Dmoping	requires	installation	of	SQL-DMO	version	6.5	or	earlier.

Functions	and	Methods	Illustrated

Application::GetDBLibraryVersionString pApplication::GetVersionMinor
Application::GetODBCVersionString Release
Application::GetVersionBuild SQLServer::Connect
Application::GetVersionMajor SQLServer::DisConnect
CoCreateInstance SQLServer::GetApplication
ErrorInfo::GetDescription SQLServer::PingSQLServerVersion
ErrorInfo::GetSource SQLServer::SetLoginSecure
GetErrorInfo SysFreeString

See	Also

SQL-DMO	Samples

SQL-DMO

Enums
This	sample	illustrates	using	SQL	Distributed	Management	Objects	(SQL-DMO)
objects	supplied	with	Microsoft®	SQL	Server™	2000.	This	Microsoft®	Visual
Basic®	sample	demonstrates	how	to	use	the	SQLServer	enumeration	methods.

It	also	shows	a	way	to	use	recordset	objects	to	show	the	values	in	a	returned
QueryResult.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Sqldmo\Vb\Enums

Running	the	Sample
1.	 Open	the	SQLDMOEnums.vbp	project.

2.	 Run	the	application.

See	Also

SQL-DMO	Samples

SQL-DMO

Explore
The	Explore	sample	guides	a	user	through	the	SQL-DMO	object	tree,	displaying
the	contents	of	collections	and	the	properties	of	objects.	The	sample	illustrates
using	the	Properties	collection	and	handling	SQLServer2	object	events.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\sqldmo\vb\explore

Running	the	Sample
1.	 Open	the	Explore.vbp	project.

2.	 Run	the	application.

Remarks
The	Explore	sample	contains	a	single	form,	shown	in	the	illustration.	The	form
solicits	login	information	from	the	user.

Upon	successful	connection	to	an	indicated	instance	of	Microsoft®	SQL
Server™,	SQLServer2	object	properties	and	their	values	are	displayed	in	the
box	at	the	bottom	of	the	form.	The	first	combo	box	is	enabled,	containing	SQL-
DMO	objects	and	collections	dependent	upon	the	SQLServer2	object.	User
selection	in	the	combo	boxes	and	lists	navigates	the	user	through	the
configuration	of	the	indicated	server.

The	Explore	sample	makes	heavy	use	of	the	automated	properties	collection
available	to	automation	controllers	in	iterating	property	names	and	their	values.
The	Explore	sample	is	only	compatible	with	instances	of	SQL	Server	2000
because	it	iterates	many	properties	that	are	only	compatible	with	instances	SQL
Server	2000.	An	application	that	also	must	be	compatible	with	earlier	versions	of
SQL	Server	can	use	the	VersionMajor	property	to	determine	the	version	of	the

server	to	which	it	connects	prior	to	referencing	a	specific	property	or	method.
For	information	about	compatibility	of	a	specific	SQL-DMO	object,	property,	or
method,	refer	to	the	specific	topic	in	SQL-DMO	Reference.

Note		Although	the	sample	allows	the	user	to	use	either	Windows	Authentication
or	SQL	Server	Authentication,	the	recommended	method	for	connecting	to	an
instance	of	SQL	Server	2000	is	to	use	Windows	Authentication	mode.

See	Also

SQL-DMO	Samples

SQL-DMO

Idxtest
The	Idxtest	application	illustrates	using	SQL-DMO	to	test	optimization
strategies	for	stored	procedures	and	views.	The	sample	uses	dependency
enumeration	to	determine	objects	dependent	upon	a	Microsoft®	SQL	Server™
table.	The	user	can	then	create	test	indexes	and	execute	selected	stored
procedures	or	views	and	view	execution	time	with	or	without	the	test	index.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\sqldmo\vb\idxtest

Running	the	Sample
1.	 Open	the	Idxtest.vbp	project.

2.	 Run	the	application.

Remarks
The	Idxtest	sample	contains	two	forms.	The	main	form,	shown	in	the	illustration,
solicits	login	information	from	the	user	and	connects	to	the	indicated	server.

Upon	successful	connection,	the	user	can	browse	databases	and	tables	to
generate	a	list	of	dependent	stored	procedures	and	views.

With	one	or	more	views	or	stored	procedures	selected	in	the	list,	the	test
command	and	results	grid	is	enabled.	Click	Test	stored	proc(s)	to	execute	a
selected	stored	procedure,	or	a	SELECT	*	FROM	query	on	the	view,	capturing
execution	time	in	the	results	grid.

The	columns	of	the	selected	table	are	displayed	in	the	index	creation	lists.	To
create	an	index	for	testing,	use	Add>>	to	move	columns	to	the	Columns	in
index	list,	then	click	Create	index	for	test	to	create	the	index	and	populate	it.

Objects,	Methods,	and	Properties	Illustrated

Column.Name QueryResults.GetColumnBool
Columns.Item QueryResults.GetColumnLong
Database.ExecuteWithResults QueryResults.GetColumnString
Database.ExecuteWithResultsAndMessagesQueryResults.Rows
Database.Name StoredProcedure.EnumParamters
Databases.Item SQLServer.ApplicationName
Index.IndexedColumns SQLServer.Connect
Index.Name SQLServer.DisConnect
Index.Remove SQLServer.LoginSecure
Index.Type Table.EnumDependencies
Indexes.Add Table.Name
New	SQLDMO.Index Tables.Item

See	Also

SQL-DMO	Samples

SQL-DMO

Login
This	sample	illustrates	using	SQL	Distributed	Management	Objects	(SQL-DMO)
objects	supplied	with	Microsoft®	SQL	Server™	2000.	This	Microsoft®	Visual
Basic®	sample	demonstrates	how	to	locate	the	available	SQL	servers	and	log	in
to	them.	It	also	demonstrates	how	to	use	SQLDMO	events	to	determine	if	the
login	was	successful	or	not.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Sqldmo\Vb\Login

Running	the	Sample
1.	 Open	the	SQLServersLogin.vbp	project.

2.	 Run	the	application.

See	Also

SQL-DMO	Samples

SQL-DMO

Registry
This	sample	illustrates	using	SQL	Distributed	Management	Objects	(SQL-DMO)
objects	supplied	with	Microsoft®	SQL	Server™	2000.	This	Microsoft®	Visual
Basic®	sample	demonstrates	how	to	use	the	SQL	DMO	object	model	to	find
Registry	information	for	an	instance	of	SQL	Server.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Sqldmo\Vb\Registry

Running	the	Sample
1.	 Open	the	SQLDMORegistry.vbp	project.

2.	 Run	the	application.

See	Also

SQL-DMO	Samples

SQL-DMO

Service
This	sample	illustrates	using	SQL	Distributed	Management	Objects	(SQL-DMO)
objects	supplied	with	Microsoft®	SQL	Server™	2000.	This	Microsoft®	Visual
Basic®	sample	demonstrates	how	to	use	the	SQLServer	object	to	check	the
status	of	the	service,	and	to	start	and	stop	it.

This	sample	does	not	have	all	error	trapping	necessary	to	use	in	a	production
environment	where	servers	may	or	may	not	be	running,	paused,	or	stopped.	It
also	uses	server	groups	to	locate	the	available	servers,	therefore	it	assumes	that
the	machines	hosting	those	servers	are	running.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Sqldmo\Vb\Service

Running	the	Sample
1.	 Open	the	SQLServerServices.vbp	project.

2.	 Run	the	application.

See	Also

SQL-DMO	Samples

SQL-DMO

Smartptr
The	Smartptr	sample	illustrates	using	specific	Microsoft®	Visual	C++®	COM
development	features	to	reduce	program	source	size	and	speed	development.

Default	Location
C:\Program	Files\
Microsoft	SQL	Server\80\Tools\Devtools\Samples\sqldmo\cpp\Smartptr

Running	the	Sample
1.	 Open	the	Smartptr.dsw	workspace.

2.	 Run	the	application.

Remarks
The	sample	shows:

Using	the	#import	directive	to	create	smart	pointers	from	the	localized
SQL-DMO	type	library.

Creating	an	instance	of	a	SQLServer	object.

Using	smart	pointers	to	manipulate	SQLServer	and	QueryResults
object	properties	and	methods,	including:

Setting	SQLServer	object	properties	such	as	LoginTimeout
and	NetPacketSize.

Calling	the	SQLServer	object	methods	Connect	and	Close.

Calling	the	ExecuteWithResults	method	to	execute	a

Transact-SQL	command	batch	and	capture	results.

Setting	and	getting	QueryResults	object	properties	such	as
CurrentResultSet	and	Columns.

Displaying	result	set	members	by	using	the	QueryResults
object	GetColumnString	method.

Error	handling	in	a	C++	application	using	smart	pointers.

The	Smartptr	sample	is	a	console	application.

Smartptr	requires	Visual	C++	5.0	or	later.	Project	files	for	Visual	C++	(.dsp	and
.dsw	extensions)	are	included.	In	the	project	files,	build	configurations	are
defined	for	computers	using	Intel	or	compatible	processors.	All	configurations
create	a	multibyte	character	application.

Objects,	Methods,	and	Properties	Illustrated

CoCreateInstance QueryResults.ResultSets
Err QueryResults.Rows
Err.Description Release
Err.Error spSQLServer.Close
Err.ErrorMessage SQLServer
Err.Source SQLServer.ApplicationName
QueryResults SQLServer.Connect
QueryResults.ColumnName SQLServer.ExecuteWithResults
QueryResults.Columns SQLServer.HostName
QueryResults.CurrentResultSet SQLServer.LoginTimeout
QueryResults.GetColumnString SQLServer.NetPacketSize

See	Also

SQL-DMO	Samples

SQL-DMO

Soc
The	Soc	sample	illustrates	using	C	as	a	development	language	for	SQL-DMO
applications.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\sqldmo\c\soc

Running	the	Sample
1.	 Open	the	Soc.dsw	workspace.

2.	 Run	the	application.

Remarks
The	sample	shows:

How	to	create	an	instance	of	a	SQL-DMO	object.

How	to	access	a	SQL-DMO	object's	member	functions	when	using	C.

The	Soc	sample	is	a	console	application.

Build	Configurations
Soc.mak	contains	nmake	configurations	for	Intel®.

Build	target CFG	parameter Output	directory
Intel	x86	debug "soc	-	Win32	Debug" Debug
Intel	x86	release "soc	-	Win32	Release" Release

Functions	and	Methods	Illustrated

CoCreateInstance SQLServer::Connect
Release SQLServer::SetLoginTimeout

See	Also

SQL-DMO	Samples

SQL-DMO

Socpp
The	Socpp	sample	illustrates	using	C++	as	a	development	language	for	SQL-
DMO	applications.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\sqldmo\cpp\socpp

Running	the	Sample
1.	 Open	the	Socpp.dsw	workspace.

2.	 Run	the	application.

Remarks
The	sample	shows:

How	to	create	an	instance	of	a	SQL-DMO	object.

How	to	access	a	SQL-DMO	object's	member	functions	when	using
C++.

Error	handling	in	a	C++	application.

The	Socpp	sample	is	a	console	application.

Build	Configurations
Socpp.mak	contains	nmake	configurations	for	Intel®.

Build	target CFG	parameter Output	directory
Intel	x86	debug "socpp	-	Win32	Debug" Debug

Intel	x86	release "socpp	-	Win32	Release" Release

Functions	Illustrated

Application::GetName SQLServer::Connect
CoCreateInstance SQLServer::GetApplication
ErrorInfo::GetDescription SQLServer::GetVersionMajor
ErrorInfo::GetSource SQLServer::GetVersionString
GetErrorInfo SQLServer::SetLoginTimeout
Release SysFreeString

See	Also

SQL-DMO	Samples

SQL-DMO

SQLScripts
This	sample	illustrates	using	SQL	Distributed	Management	Objects	(SQL-DMO)
objects	supplied	with	Microsoft®	SQL	Server™	2000.	This	Microsoft®	Visual
Basic®	sample	demonstrates	how	to	generate	SQL	scripts	to	recreate	various
SQL	Server	objects.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Sqldmo\Vb\SQLScripts

Running	the	Sample
1.	 Open	the	SQLScript.vbp	project.

2.	 Run	the	application.

See	Also

SQL-DMO	Samples

SQL-DMO

VerifyBackup
This	sample	illustrates	using	SQL	Distributed	Management	Objects	(SQL-DMO)
objects	supplied	with	Microsoft®	SQL	Server™	2000.	This	Microsoft®	Visual
Basic®	sample	demonstrates	how	to	find	backup	devices	and	verify	the	backup
set.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Sqldmo\Vb\VerifyBackup

Running	the	Sample
1.	 Open	the	VerfyBackup.vbp.

2.	 Run	the	application.

See	Also

SQL-DMO	Samples

SQL-DMO

SQL-DMO	Examples
This	section	contains	examples	illustrating	Microsoft®	SQL	Server™
administration	using	SQL-DMO	objects.	All	examples	are	implemented	using
Microsoft	Visual	Basic®.

The	examples	contained	here	are	brief,	many	accomplishing	a	part	of	a	larger
task.	Their	purpose	is	to	provide,	by	illustration,	additional	documentation	for
SQL-DMO.

SQL-DMO

SQL-DMO	Examples:	Alerts	and	Notification
These	examples	illustrate	creating	SQL	Server	Agent	alerts	and	assigning
responses	made	when	an	alert	is	raised.

SQL-DMO

Creating	Alerts
These	examples	illustrate	creating	SQL	Server	Agent	alerts.

A	SQL	Server	Agent	alert	has,	at	least,	a	name	and	a	definition	of	an	event	that
raises	the	alert.	When	using	SQL-DMO	to	create	SQL	Server	Agent	alerts:

Create	an	Alert	object.

Set	the	Name	property.

Set	either	the	MessageID,	PerformanceCondition,	or	Severity
property	to	indicate	the	event	that	will	raise	the	alert.

Add	the	Alert	object	to	an	Alerts	collection.

Setting	more	than	a	single	event	property	causes	an	error.

Examples

A.	Creating	an	Alert	Based	on	a	SQL	Server	Error
This	example	illustrates	creating	a	SQL	Server	Agent	alert	raised	when	a
Microsoft®	SQL	Server™	error	condition	occurs.	The	alert	created	is
constrained	to	be	raised	only	if	the	error	condition	occurs	in	the	Northwind
database.

'	Create	an	Alert	object	and	set	its	Name	property.
Dim	oAlert	As	New	SQLDMO.Alert
oAlert.Name	=	"Max	filesize	exceeded"

'	Error	5176:	The	file	'%.*ls'	has	been	expanded	beyond	its
'		maximum	size	to	prevent	recovery	from	failing.	Contact	the
'		system	administrator	for	further	assistance.

oAlert.MessageID	=	5176
oAlert.DatabaseName	=	"Northwind"

'	Create	the	alert	by	adding	the	Alert	object	to	its	containing
'	collection.	Note:	Create	and	connect	of	SQLServer	object	used
'	not	illustrated	in	this	example.
oSQLServer.JobServer.Alerts.Add	oAlert

B.	Creating	an	Alert	Based	on	a	Performance	Condition
This	example	illustrates	creating	a	SQL	Server	Agent	alert	raised	when	a
monitored	performance	counter	value	is	exceeded.

'	Create	an	Alert	object	and	set	its	Name	property.
Dim	oAlert	As	New	SQLDMO.Alert
oAlert.Name	=	"Batch	Requests	High"

'	Performance	monitor	counter...
'	Object:	SQLServer:SQL	Statistics
'	Counter:	Batch	Requests/sec
'	Instance:	none
oAlert.PerformanceCondition	=	_
				"SQLServer:SQL	Statistics|Batch	Requests/sec||>|750"

'	Create	the	alert	by	adding	the	Alert	object	to	its	containing
'	collection.	Note:	Create	and	connect	of	SQLServer	object	used
'	not	illustrated	in	this	example.
oSQLServer.JobServer.Alerts.Add	oAlert

See	Also

Alert	Object

PerformanceCondition	Property

MessageID	Property

Severity	Property

SQL-DMO

Handling	Raised	Alerts	(Notification)
These	examples	illustrate	configuring	SQL	Server	Agent	alerts	so	that	operators
can	be	notified	or	administrative	action	can	be	taken.

In	response	to	raised	alerts,	SQL	Server	Agent	can	notify	operators	or	run	jobs	or
both.

Examples

A.	Notifying	an	Operator	when	an	Alert	is	Raised
This	example	illustrates	creating	a	SQL	Server	Agent	operator	notification	as	a
response	to	a	raised	alert.

'	Get	the	Alert	object	referencing	the	targeted	alert.	Note:	Create	and
'	connect	of	SQLServer	object	used	not	illustrated	in	this	example.
Dim	oAlert	As	SQLDMO.Alert
Set	oAlert	=	oSQLServer.JobServer.Alerts("Batch	Requests	High")

'	Configure	the	alert	response,	adding	operator	notification	by	email
'	and	network	popup	message.
oAlert.AddNotification	"anned",	_
				SQLDMONotify_Email	Or	SQLDMONotify_NetSend

B.	Running	a	Job	when	an	Alert	is	Raised
This	example	illustrates	altering	a	SQL	Server	Agent	alert,	configuring	it	for	job
execution	as	a	response.

Dim	oAlert	As	SQLDMO.Alert
Dim	oJob	As	SQLDMO.Job

'	Get	the	Alert	object	referencing	the	targeted	alert,	and	the	Job
'	object	referencing	the	job	run	in	response.	Use	the	Job	object	to

'	determine	the	job	identifier,	uniquely	identifying	a	SQL	Server
'	Agent	job.	Note:	Create	and	connect	of	SQLServer	object	used	not
'	illustrated	in	this	example.
Set	oAlert	=	oSQLServer.JobServer.Alerts("Max	filesize	exceeded")
Set	oJob	=	oSQLServer.JobServer.Jobs("Backup_Northwind_Filegroups")

'	Modify	the	alert	by	setting	the	JobID	property	of	the	Alert	object
'	and	committing	the	change.
oAlert.BeginAlter
oAlert.JobID	=	oJob.JobID
oAlert.DoAlter

See	Also

AddNotification	Method

Alert	Object

JobID	Property

SQL-DMO

SQL-DMO	Examples:	Backup	and	Restore
Backup	and	restore	examples	illustrate	performing	common	Microsoft®	SQL
Server™	database	and	log	backup	and	restore	operations	by	using	SQL-DMO.

For	SQL	Server,	backup	operations	can	create	a	stable	image	of	an	entire
database	or	some	discrete	part	of	the	database.	A	backup	can	contain	all	data	in	a
database	or	only	that	data	modified	since	the	last	backup.	Selection	of	a	backup
methodology	is	based	on	application	implementation	details,	such	as	size	of	a
database	or	transaction	rate,	and	will	vary	from	one	instance	of	SQL	Server	to
another.	For	more	information	about	selection	of	a	backup	strategy,	see	Backing
Up	and	Restoring	Databases.

Backup	and	restore	operations	performed	by	using	the	Backup	and	Restore
objects	can	be	long-running	and	can	require	user	intervention	to	complete,	such
as	changing	the	tape	in	a	tape	device.	SQL-DMO	implements	events	on	the
Backup	and	Restore	objects	allowing	user	notification	of	backup	progress	and
signaling	on	exhaustion	of	media.	For	more	information	about	using	SQL-DMO
Backup	and	Restore	object	events,	see	Handling	SQL-DMO	Events.

JavaScript:hhobj_1.Click()

SQL-DMO

Backing	Up	a	Database
Database	backup	examples	illustrate	backup	operations	against	an	entire
database.

When	using	SQL-DMO	to	perform	a	backup	operation	against	an	entire
database,	the	Backup	object	used	provides,	at	least,	a	source	database	and	a
target	device.	A	backup	against	an	entire	database	can	back	up	all	data
(complete)	or	only	that	data	changed	after	the	last	backup	(differential).

Use	database	backup	when	backup	of	the	database	transaction	log	is	not	part	of	a
database	maintenance	plan.	Small	databases	and	databases	that	change
infrequently	are	good	targets	for	database	backup.	When	these	conditions	exist,
regular	complete	backup,	or	an	initial	complete	backup	and	subsequent,
intermittent	differential	backups,	can	safely	protect	data	in	most	cases.

Examples

A.	Performing	a	Complete	Database	Backup
This	example	illustrates	using	SQL-DMO	to	perform	a	complete	database
backup.

'	Create	a	Backup	object	and	set	action	and	source	database	properties.
Dim	oBackup	As	New	SQLDMO.Backup
oBackup.Action	=	SQLDMOBackup_Database
oBackup.Database	=	"Northwind"

'	Example	illustrates	a	striped	backup	using	two	target	devices.	Note:
'	Device	creation	is	not	illustrated	in	this	example.
oBackup.Devices	=	"[NorthDev1],[NorthDev2]"

'	Optional.	Backup	set	name	and	description	properties	provide
'	descriptive	text	when	backup	header	is	displayed	for	the	device(s).
oBackup.BackupSetName	=	"Northwind_Full"

oBackup.BackupSetDescription	=	"Full	backup	of	Northwind	sample."

'	Call	SQLBackup	method	to	perform	the	backup.	In	a	production
'	environment,	consider	wrapping	the	method	call	with	a	wait	pointer
'	or	use	Backup	object	events	to	provide	feedback	to	the	user.
'
'	Note:	Create	and	connect	of	SQLServer	object	used	is	not
'	illustrated	in	this	example.
oBackup.SQLBackup	oSQLServer

B.	Performing	a	Differential	Backup	on	a	Database
This	example	illustrates	using	SQL-DMO	to	perform	a	differential	database
backup.

'	Create	a	Backup	object	and	set	action	and	source	database	properties.
Dim	oBackup	As	New	SQLDMO.Backup
oBackup.Action	=	SQLDMOBackup_Differential
oBackup.Database	=	"Northwind"

'	Example	illustrates	backup	implemented	to	a	single	operating	system
'	file.	A	file	naming	convention	could	be	easily	applied	allowing
'	rapid	identification	of	a	specific	differential	backup.
oBackup.Files	=	"c:\program	files\microsoft	sql	server\mssql\backup\NorthDiff.bak"

'	Optional.	When	backup	is	directed	to	one	or	more	files,	set	media
'	name,	backup	set	name	and	description	to	provide	in-file	documentation
'	of	the	file	and	backup	set	contained.
oBackup.MediaName	=	"NorthDiff.bak	"	&	Date	&	"	"	&	Time
oBackup.BackupSetName	=	"NorthDiff"
oBackup.BackupSetDescription	=	_
				"Differential	backup	of	Northwind	sample."

'	Call	SQLBackup	method	to	perform	the	backup.	In	a	production

'	environment,	consider	wrapping	the	method	call	with	a	wait	pointer
'	or	use	Backup	object	events	to	provide	feedback	to	the	user.
'
'	Note:	Create	and	connect	of	SQLServer	object	used	is	not
'	illustrated	in	this	example.
oBackup.SQLBackup	oSQLServer

See	Also

Backup	Object

SQLServer	Object

SQL-DMO

Backing	up	Selected	Portions	of	a	Database
Backing	up	selected	portions	of	a	database	examples	illustrate	backup	operations
against	a	discrete	subset	of	database	data.

When	using	SQL-DMO	to	perform	a	backup	operation	against	a	portion	of	a
database,	the	Backup	object	used	provides,	at	least,	a	source	database,	the
source	portion,	and	a	target	device.	A	backup	against	a	subset	of	database	data
can	back	up	all	data	in	an	operating	system	file	implementing	database	storage,
all	data	in	all	files	within	a	filegroup,	or	committed	transaction	log	records.

Generally,	backup	of	a	portion	of	a	database	is	chosen	when	backup	of	an	entire
database	is	not	a	viable	option	due	to	database	size	or	high-frequency	of
transactions.	However,	backup	of	a	file	or	filegroup	can	be	an	effective	strategy
even	for	relatively	small	databases	when	server	configuration	lends	itself	to	a
file-based	backup	operation.

Examples

A.	Backing	Up	a	Database	File
This	example	illustrates	using	SQL-DMO	to	perform	a	backup	of	a	single
operating	system	file	implementing	database	storage.

'	Create	a	Backup	object	and	set	action	and	source	database	properties.
Dim	oBackup	As	New	SQLDMO.Backup
oBackup.Action	=	SQLDMOBackup_Files
oBackup.Database	=	"Northwind"

oBackup.DatabaseFiles	=	"Northwind_txt1"

'	Example	illustrates	backup	implemented	to	a	single	operating	system
'	file.	A	file	naming	convention	could	be	easily	applied	allowing
'	rapid	identification	of	a	specific	backup.
oBackup.Files	=	"c:\program	files\microsoft	sql	server\mssql\backup\NorthText.bak"

'	Optional.	When	backup	is	directed	to	one	or	more	files,	set	media
'	name,	backup	set	name	and	description	to	provide	in-file	documentation
'	of	the	file	and	backup	set	contained.
oBackup.MediaName	=	"NorthText.bak	"	&	Date	&	"	"	&	Time
oBackup.BackupSetName	=	"NorthDBFileText"
oBackup.BackupSetDescription	=	_
				"Backup	of	a	database	file	by	logical	name."

'	Call	SQLBackup	method	to	perform	the	backup.	In	a	production
'	environment,	consider	wrapping	the	method	call	with	a	wait	pointer
'	or	use	Backup	object	events	to	provide	feedback	to	the	user.
'
'	Note:	Create	and	connect	of	SQLServer	object	used	is	not
'	illustrated	in	this	example.
oBackup.SQLBackup	oSQLServer

B.	Backing	Up	a	Database	Filegroup
This	example	illustrates	using	SQL-DMO	to	perform	a	backup	of	operating
system	file	implementing	the	PRIMARY	filegroup	of	a	database.

'	Create	a	Backup	object	and	set	action	and	source	database	properties.
Dim	oBackup	As	New	SQLDMO.Backup
oBackup.Action	=	SQLDMOBackup_Files
oBackup.Database	=	"Northwind"

oBackup.DatabaseFileGroups	=	"PRIMARY"

'	Example	illustrates	backup	implemented	to	a	single	operating	system
'	file.	A	file	naming	convention	could	be	easily	applied	allowing
'	rapid	identification	of	a	specific	backup.
oBackup.Files	=	"c:\program	files\microsoft	sql	server\mssql\backup\NorthFGPrim.bak"

'	Optional.	When	backup	is	directed	to	one	or	more	files,	set	media
'	name,	backup	set	name	and	description	to	provide	in-file	documentation
'	of	the	file	and	backup	set	contained.
oBackup.MediaName	=	"NorthFGPrim.bak	"	&	Date	&	"	"	&	Time
oBackup.BackupSetName	=	"NorthFGPrim"
oBackup.BackupSetDescription	=	_
				"Backup	of	PRIMARY	filegroup	of	Northwind	sample."

'	Call	SQLBackup	method	to	perform	the	backup.	In	a	production
'	environment,	consider	wrapping	the	method	call	with	a	wait	pointer
'	or	use	Backup	object	events	to	provide	feedback	to	the	user.
'
'	Note:	Create	and	connect	of	SQLServer	object	used	is	not
'	illustrated	in	this	example.
oBackup.SQLBackup	oSQLServer

C.	Backing	Up	a	Database	Transaction	Log
This	example	illustrates	using	SQL-DMO	to	perform	a	backup	of	a	database
transaction	log.

'	Create	a	Backup	object	and	set	action	and	source	database	properties.
Dim	oBackup	As	New	SQLDMO.Backup
oBackup.Action	=	SQLDMOBackup_Log
oBackup.Database	=	"Northwind"

'	Example	illustrates	a	striped	backup	using	two	target	devices.	Note:
'	Device	creation	is	not	illustrated	in	this	example.
oBackup.Devices	=	"[NorthDev1],[NorthDev2]"

'	Optional.	Backup	set	name	and	description	properties	provide
'	descriptive	text	when	backup	header	is	displayed	for	the	device(s).
oBackup.BackupSetName	=	"Northwind_Log_"	&	Date	&	"_"	&	Time
oBackup.BackupSetDescription	=	_

				"Backup	of	Northwind	sample	database	transaction	log."

'	Call	SQLBackup	method	to	perform	the	backup.	In	a	production
'	environment,	consider	wrapping	the	method	call	with	a	wait	pointer
'	or	use	Backup	object	events	to	provide	feedback	to	the	user.
'
'	Note:	Create	and	connect	of	SQLServer	object	used	is	not
'	illustrated	in	this	example.
oBackup.SQLBackup	oSQLServer

See	Also

Backup	Object

SQLServer	Object

SQL-DMO

Scripting	a	Database	Backup	For	Scheduled
Execution
Some	SQL-DMO	objects	supporting	Transact-SQL	command	batch	generation
from	objects	representing	Microsoft®	SQL	Server™	administrative	tasks.	The
command	batch	generated	can	be	used	to	create	a	SQL	Server	Agent	job	which
can	be	scheduled	for	execution.

This	example	illustrates	backup	operation	definition	and	creation	of	a	Transact-
SQL	command	batch	representing	the	operation.	For	more	information	about
creating	and	scheduling	SQL	Server	Agent	jobs	by	using	SQL-DMO,	see	SQL-
DMO	Examples:	Jobs	and	Schedules.

'	Dimension	a	string	object	used	to	capture	the	Transact-SQL	command
'	batch	implementing	the	backup.
Dim	strBackup	as	String

'	Create	a	Backup	object	and	set	action	and	source	database	properties.
Dim	oBackup	As	New	SQLDMO.Backup
oBackup.Action	=	SQLDMOBackup_Files
oBackup.Database	=	"Northwind"

'	Example	illustrates	backup	of	multiple	file	groups.
oBackup.DatabaseFileGroups	=	"[PRIMARY],[NorthwindTextImg]"

'	Example	illustrates	a	striped	backup	using	two	target	devices.	Note:
'	Device	creation	is	not	illustrated	in	this	example.
oBackup.Devices	=	"[NorthDev1],[NorthDev2]"

'	Optional.	Backup	set	name	and	description	properties	provide
'	descriptive	text	when	backup	header	is	displayed	for	the	device(s).
oBackup.BackupSetName	=	"Northwind_FileGroups_"	&	Date	&	"_"	&	Time
oBackup.BackupSetDescription	=	_

				"Backup	of	PRIMARY	and	NorthwindTextImg	filegroups."

'	Call	GenerateSQL	method	to	generate	the	Transact-SQL	command	batch.
'	The	command	batch	returned	can	provide	a	value	for	the	Command
'	property	of	a	JobStep	object.
'
'	Note:	A	connected	SQLServer	object	is	not	necessary	for	routine
'	execution.
strBackup	=	oBackup.GenerateSQL

SQL-DMO

Database	Restore
Database	backup	examples	illustrate	restore	operations	performed	by	using
SQL-DMO.

Examples

A.	Restoring	a	Database
This	example	illustrates	a	full	database	restore.

Full	database	restore	is	the	first	step	in	restoring	a	Microsoft®	SQL	Server™
database	lost	due	to	hardware	failure	or	other	extreme	condition.

Database	restore	is	constrained	by	the	type	of	backup	performed.	This	example
illustrates	a	restore	of	a	database	backed	up	by	using	full	database	backup	and	no
transaction	log	backup.	When	a	transaction	log	backup	maintenance	strategy	is
used	to	create	a	chain	of	backup	sets	capturing	point	in	time	images,	the	initial
full	restore	must	indicate	that	the	backup	is	the	first	in	the	series.	For	more
information,	see	the	Restoring	a	Database	and	Transaction	Log	Chain	example
later.

'	Create	a	Restore	object	and	set	action	and	target	database	properties.
Dim	oRestore	As	New	SQLDMO.Restore
oRestore.Action	=	SQLDMORestore_Database
oRestore.Database	=	"Northwind"

'	Example	illustrates	restore	from	a	striped	backup.	Two	source	devices
'	are	specified.	The	full	database	backup	is	indicated	as	the	first
'	backup	set	by	using	the	FileNumber	property.	Note:	Device	creation	is
'	not	illustrated	in	this	example.
oRestore.Devices	=	"[NorthDev1],[NorthDev2]"
oRestore.FileNumber	=	1

'	Optional.	ReplaceDatabase	property	ensures	that	any	existing	copy
'	of	the	database	is	overwritten.
oRestore.ReplaceDatabase	=	True

'	Call	SQLRestore	method	to	perform	the	restore.	In	a	production
'	environment,	consider	wrapping	the	method	call	with	a	wait	pointer
'	or	use	Restore	object	events	to	provide	feedback	to	the	user.
'
'	Note:	Create	and	connect	of	SQLServer	object	used	is	not
'	illustrated	in	this	example.
oRestore.SQLRestore	oSQLServer

B.	Restoring	a	Database	and	Transaction	Log	Chain
This	example	illustrates	performing	a	database	restore,	then	applying	a	log
backup	chain	to	roll	the	database	forward	to	its	state	at	the	last	log	backup.

When	a	transaction	log	backup	maintenance	strategy	is	used	to	create	a	chain	of
backup	sets	capturing	point	in	time	images,	an	initial	full	restore	of	the	database
must	indicate	that	the	backup	is	the	first	in	the	series.	Each	successive	restore	of
a	member	of	the	log	backup	set	chain	is,	until	the	final	member,	marked	to
indicate	that	it	is	not	the	last.	The	final	restore	is	indicated	as	the	last	in	the
series.

Performing	a	restore	of	a	database	and	transaction	log	backup	set	chain	can	be
performed	using	a	one	or	more	Restore	objects.	This	example	illustrates	using	a
single	Restore	object,	reconfiguring	the	object	as	required,	and	calling	the
SQLRestore	method	multiple	times.

'	Create	a	Restore	object	and	set	action	and	target	database	properties
'	for	initial	restore	of	the	database.
Dim	oRestore	As	New	SQLDMO.Restore
oRestore.Action	=	SQLDMORestore_Database
oRestore.Database	=	"Northwind"

'	Example	illustrates	restore	from	a	striped	backup.	Two	source	devices

'	are	specified.	The	full	database	backup	is	indicated	as	the	first
'	backup	set	by	using	the	FileNumber	property.	Note:	Device	creation	is
'	not	illustrated	in	this	example.
oRestore.Devices	=	"[NorthDev1],[NorthDev2]"
oRestore.FileNumber	=	1

'	Optional.	ReplaceDatabase	property	ensures	that	any	existing	copy
'	of	the	database	is	overwritten.
oRestore.ReplaceDatabase	=	True

'	When	restoring	a	database	and	log	backup	set	chain,	the	LastRestore
'	property	is	False	for	all	but	the	last	log	chain	restored.
oRestore.LastRestore	=	False

'	Call	SQLRestore	method	to	perform	the	restore	of	the	database.	In	a
'	production	environment,	consider	wrapping	this	entire	series	of
'	method	calls	with	a	wait	pointer	or	use	Restore	object	events	to
'	provide	feedback	to	the	user.
'
'	Note:	Create	and	connect	of	SQLServer	object	used	is	not
'	illustrated	in	this	example.
oRestore.SQLRestore	oSQLServer

'	Reconfigure	Restore	object	for	log	chain	restoration	by	resetting	the
'	Action	property.
oRestore.Action	=	SQLDMORestore_Log

'	Example	would	restore	the	second	backup	set	from	the	devices	specified
'	above.
oRestore.FileNumber	=	2

'	Setting	LastRestore	here	is	redundant,	but	emphasizes	that	this	is	the
'	first	in	a	chain	of	log	backup	sets.

oRestore.LastRestore	=	False

'	Call	SQLRestore	method	to	perform	the	restore	of	the	first	chain
'	member.
oRestore.SQLRestore	oSQLServer

'	Indicate	the	next	member	of	the	chain.	In	the	example,	it's	the	third
'	backup	set	in	the	devices	specified	above.
oRestore.FileNumber	=	3

'	Set	LastRestore	to	indicate	that	the	member	is	the	last	in	the	chain.
oRestore.LastRestore	=	True

'	Call	SQLRestore	method	to	perform	the	restore	of	the	last	chain
'	member.
oRestore.SQLRestore	oSQLServer

See	Also

Restore	Object

SQLServer	Object

SQL-DMO

SQL-DMO	Examples:	Databases
The	database	examples	illustrate	Microsoft®	SQL	Server™	database	creation,
and	data	and	log	file	maintenance	tasks	automated	by	using	SQL-DMO.

SQL-DMO

Altering	a	Database	by	Adding	a	Database	File
These	examples	illustrate	altering	a	database	by	adding	data	or	log	maintaining
files.

You	can	create	a	Microsoft®	SQL	Server™	database	on	one	or	more	data-
maintaining	operating	system	files.	A	database	log	is,	similarly,	created	on	one	or
more	operating	system	files.	As	a	database	grows,	you	can	add	operating	system
files	to	those	existing	to	direct	the	growth	of	the	database.

When	creating	a	database	for	SQL	Server,	database	data	files	are	created	only	in
the	PRIMARY	filegroup.	To	use	filegroups	as	part	of	database	maintenance	tasks
such	as	backup	and	restore,	alter	a	database	to	add	a	filegroup,	then	add	existing
or	new	database	files	to	the	filegroup.

Examples

A.	Adding	a	Database	Data	File
This	example	illustrates	adding	a	database	file	to	the	PRIMARY	filegroup	of	an
existing	database.

Dim	oDatabase	As	SQLDMO.Database
Dim	oDBFile	As	New	SQLDMO.DBFile

'	Get	the	Northwind	database.	Note:	Create	and	connect	of	SQLServer
'	object	used	is	not	illustrated	in	this	example.
Set	oDatabase	=	oSQLServer.Databases("Northwind")

'	Define	the	new	data	file.
oDBFile.Name	=	"NorthData2"
oDBFile.PhysicalName	=	"c:\program	files\microsoft	sql	server\mssql\data\northwn2.mdf"

'	Specify	an	initial	size	and	file	growth	in	chunks	of	fixed	size.

oDBFile.Size	=	4
oDBFile.FileGrowthType	=	SQLDMOGrowth_MB
oDBFile.FileGrowth	=	1

oDatabase.FileGroups("PRIMARY").DBFiles.Add	oDBFile

B.	Adding	a	Database	Log	File
This	example	illustrates	adding	a	database	transaction	log-maintaining	operating
system	file	to	an	existing	database.

Dim	oDatabase	As	SQLDMO.Database
Dim	oLogFile	As	New	SQLDMO.LogFile

'	Get	the	Northwind	database.	Note:	Create	and	connect	of	SQLServer
'	object	used	is	not	illustrated	in	this	example.
Set	oDatabase	=	oSQLServer.Databases("Northwind")

'	Define	the	database	transaction	log,	setting	an	initial	size.
oLogFile.Name	=	"NorthLog2"
oLogFile.PhysicalName	=	"c:\program	files\microsoft	sql	server\mssql\data\northwn2.ldf"
oLogFile.Size	=	8
oDatabase.TransactionLog.LogFiles.Add	oLogFile

C.	Adding	a	Filegroup
This	example	illustrates	adding	a	filegroup,	then	using	the	filegroup	when
creating	a	new	operating	system	file	used	for	database	data.

Dim	oDatabase	As	SQLDMO.Database

Dim	oFileGroup	as	New	SQLDMO.FileGroup
Dim	oDBFile	As	New	SQLDMO.DBFile

'	Get	the	Northwind	database.	Note:	Create	and	connect	of	SQLServer
'	object	used	is	not	illustrated	in	this	example.

Set	oDatabase	=	oSQLServer.Databases("Northwind")

'	Define	the	new	filegroup.
oFileGroup.Name	=	"fgNorthwindIdx"
oDatabase.FileGroups.Add	oFileGroup

'	Define	the	new	data	file.
oDBFile.Name	=	"NorthIdx1"
oDBFile.PhysicalName	=	"c:\program	files\microsoft	sql	server\mssql\data\northix1.mdf"
oDBFile.Size	=	2
oDBFile.FileGrowthType	=	SQLDMOGrowth_MB
oDBFile.FileGrowth	=	1

'	Alter	the	database,	creating	the	new	file	group	and	data	file.
oDatabase.FileGroups("fgNorthwindIdx").DBFiles.Add	oDBFile

See	Also

Database	Object

DBFile	Object

FileGroup	Object

LogFile	Object

TransactionLog	Object

SQL-DMO

Creating	a	Database
This	example	illustrates	creating	a	Microsoft®	SQL	Server™	database	by	using
SQL-DMO	objects.

When	using	SQL	Server	Enterprise	Manager	for	database	creation,	database	data
files	are	created	so	that	file	growth	occurs	in	fixed	size	chunks.	By	default,	a
database	file	created	using	SQL-DMO	exhibits	percentage	growth	behavior.	The
sample	reflects	the	default	database	data	file	growth	settings	for	SQL	Server
Enterprise	Manager.

The	sample	does	not	specify	an	initial	size	for	either	database	data	or	log	data
files.	The	default	value	determined	by	SQL	Server	is	used.

Dim	oDatabase	As	New	SQLDMO.Database
Dim	oDBFileData	As	New	SQLDMO.DBFile
Dim	oLogFile	As	New	SQLDMO.LogFile

oDatabase.Name	=	"Northwind"

'	Define	the	PRIMARY	data	file.
oDBFileData.Name	=	"NorthData1"
oDBFileData.PhysicalName	=	"c:\program	files\microsoft	sql	server\mssql\data\northwnd.mdf"
oDBFileData.PrimaryFile	=	True

'	Specify	file	growth	in	chunks	of	fixed	size	for	all	data	files.
oDBFileData.FileGrowthType	=	SQLDMOGrowth_MB
oDBFileData.FileGrowth	=	1

oDatabase.FileGroups("PRIMARY").DBFiles.Add	oDBFileData

'	Define	the	database	transaction	log.
oLogFile.Name	=	"NorthLog1"
oLogFile.PhysicalName	=	"c:\program	files\microsoft	sql	server\mssql\data\northwnd.ldf"

oDatabase.TransactionLog.LogFiles.Add	oLogFile

'	Create	the	database	as	defined.	Note:	Create	and	connect	of	SQLServer
'	object	used	is	not	illustrated	in	this	example.
oSQLServer.Databases.Add	oDatabase

See	Also

Database	Object

DBFile	Object

FileGroup	Object

LogFile	Object

SQL-DMO

SQL-DMO	Examples:	Full-text	Indexing
These	examples	illustrate	Microsoft	Search	full-text	index	configuration	and
catalog	population.

Examples

A.	Creating	a	Microsoft	Search	Full-Text	Catalog
The	example	illustrates	enabling	a	Microsoft®	SQL	Server™	database	for
participation	in	Microsoft	Search-supported	full-text	indexing	and	query.
Enabling	a	database	is	a	two-step	process.	The	application	flags	the	database
indicating	intended	participation,	then	creates	at	least	one	full-text	catalog.

'	Enable	the	database	for	full-text	indexing	prior	to	adding	the
'	FullTextCatalog	object	to	the	containing	collection.	Note:	Create
'	and	connect	of	SQLServer	object	used	is	not	illustrated	in	this
'	example.
oSQLServer.Databases("Northwind").EnableFullTextCatalogs

'	Create	a	Microsoft	Search	full-text	catalog.
Dim	oFullTextCatalog	As	New	SQLDMO.FullTextCatalog
oFullTextCatalog.Name	=	"ftcatNorthwind"

'	Add	the	FullTextCatalog	object	to	the	collection,	creating	the
'	full-text	catalog	on	the	server.
oSQLServer.Databases("Northwind").FullTextCatalogs.Add	oFullTextCatalog

B.	Indexing	a	Table	for	Full-Text	Queries
This	example	illustrates	creating	a	full-text	index	on	a	column	in	a	SQL	Server
table.

Dim	oTable	As	SQLDMO.Table

'	Get	the	Table	object	referencing	the	Northwind..Employees	table.
'	Note:	Create	and	connect	of	SQLServer	object	used	is	not	illustrated
'	in	this	example.
Set	oTable	=	oSQLServer.Databases("Northwind").Tables("Employees")

'	Indicate	that	Employees	will	be	full-text	indexed	and	use	the
'	Microsoft	Search	full-text	catalog	created	in	an	earlier	example.
oTable.FullTextCatalogName	=	"ftcatNorthwind"
oTable.UniqueIndexForFullText	=	"PK_Employees"
oTable.FullTextIndex	=	True

'	Index	the	Notes	column.
oTable.Columns("Notes").FullTextIndex	=	True

'	Activate	the	full-text	index	on	the	table.
oTable.FullTextIndexActive	=	True

C.	Populating	a	Full-Text	Catalog
This	example	illustrates	launching	a	full	population	on	an	existing	Microsoft
Search	full-text	catalog.

'	Perform	a	full	population	on	the	Microsoft	Search	full-text
'	index	catalog	created	in	an	earlier	example.	Note:	Create	and	connect
'	of	SQLServer	object	used	is	not	illustrated	in	this	example.
Set	oFullTextCatalog	=	_
				oSQLServer.Databases("Northwind").FullTextCatalogs("ftcatNorthwind")

				oFullTextCatalog.Start	(SQLDMOFullText_Full)

Note		Microsoft	Search	full-text	catalog	population	can	be	a	lengthy	task.
Applications	that	allow	full-text	catalog	population	should	display	a	busy	pointer
or	other	appropriate	interface	device	when	using	SQL-DMO	to	direct	full-text
catalog	population.

D.	Scheduling	Population	of	a	Full-Text	Catalog
When	using	SQL-DMO,	the	you	can	implement	scheduled	population	of	a
Microsoft	Search	full-text	catalog	by	creating	a	SQL	Server	Agent	job.	The
step(s)	of	the	job	execute	a	Transact-SQL	command	batch	directing	catalog
population.

This	example	illustrates	creating	a	job	that	schedules	an	incremental	full-text
catalog	population	for	weekly	execution	at	1:00	A.M.	of	every	Sunday.

Dim	oJob	As	New	SQLDMO.Job
Dim	oJobSchedule	As	New	SQLDMO.JobSchedule

Dim	oJobStep	As	SQLDMO.JobStep
Dim	oFullTextCatalog	As	SQLDMO.FullTextCatalog

Dim	iStepID	As	Long
Dim	strDatabase	As	String
Dim	strExecP1,	strExecP2	As	String

Dim	StartYear	As	String
Dim	StartMonth	As	String
Dim	StartDay	As	String

strDatabase	=	"Northwind"

'	Transact-SQL	command	batch	implementing	incremental	population
'	for	a	Microsoft	Search	full-text	catalog.
strExecP1	=	"EXEC	sp_fulltext_catalog	'"
strExecP2	=	"',	'start_incremental'"

'	Create	the	SQL	Server	Agent	job.	Job	name	format	and	category
'	designation	allow	job	to	appear	as	a	schedule	property	of	the
'	catalog	when	the	catalog	is	viewed	in	SQL	Server	Enterprise	Manager.
'	Note:	Create	and	connect	of	SQLServer	object	used	not	illustrated	in

'	this	example.
oJob.Name	=	"Start_Incremental	on	Northwind.ftcatNorthwind.["	&	_
				oSQLServer.Databases("Northwind").ID	&	_
				"."	&	_
				oSQLServer.Databases("Northwind").FullTextCatalogs(1).FullText
				CatalogID	&	_"]"
oJob.Category	=	"Full-Text"
oSQLServer.JobServer.Jobs.Add	oJob
				
'	Alter	the	job,	adding	a	step	populating	each	full-text	catalog
'	defined.
oJob.BeginAlter
iStepID	=	1
For	Each	oFullTextCatalog	In	_
				oSQLServer.Databases("Northwind").FullTextCatalogs

				Set	oJobStep	=	New	SQLDMO.JobStep
				oJobStep.Name	=	"Northwind_FullText_Incremental_"	&	iStepID
				oJobStep.DatabaseName	=	strDatabase
				oJobStep.SubSystem	=	"TSQL"
				oJobStep.Command	=	strExecP1	&	oFullTextCatalog.Name	&	strExecP2
				oJobStep.OnFailAction	=	SQLDMOJobStepAction_QuitWithFailure
				oJobStep.OnSuccessAction	=	SQLDMOJobStepAction_GotoNextStep
				oJobStep.StepID	=	iStepID

				oJob.JobSteps.Add	oJobStep
				iStepID	=	iStepID	+	1
Next	oFullTextCatalog

oJob.JobSteps(oJob.JobSteps.Count).OnSuccessAction	=	_
				SQLDMOJobStepAction_QuitWithSuccess
oJob.StartStepID	=	1
oJob.DoAlter

'	Alter	the	job,	adding	a	schedule	for	full-text	catalog	population.
oJobSchedule.Name	=	"Northwind_FullText_Incremental"

'	Schedule	start	date	is	today's	date.	Build	the	string	representing
'	the	date	for	SQL-DMO.
StartYear	=	DatePart("yyyy",	Date)
StartMonth	=	DatePart("m",	Date)
StartDay	=	DatePart("d",	Date)

If	Len(StartMonth)	<	2	Then	StartMonth	=	"0"	&	StartMonth
If	Len(StartDay)	<	2	Then	StartDay	=	"0"	&	StartDay

oJobSchedule.Schedule.ActiveStartDate	=	StartYear	&	StartMonth	&	_
				StartDay

'	Schedule	execution	for	once,	each	Sunday	at	1:00	AM.
oJobSchedule.Schedule.ActiveStartTimeOfDay	=	"10000"
oJobSchedule.Schedule.FrequencyInterval	=	SQLDMOWeek_Sunday

oJobSchedule.Schedule.FrequencyType	=	SQLDMOFreq_Weekly
oJobSchedule.Schedule.FrequencyRecurrenceFactor	=	1

'	Schedule	never	expires.
oJobSchedule.Schedule.ActiveEndDate	=	SQLDMO_NOENDDATE
oJobSchedule.Schedule.ActiveEndTimeOfDay	=	SQLDMO_NOENDTIME

oJob.BeginAlter
oJob.JobSchedules.Add	oJobSchedule
oJob.DoAlter

'	Target	the	local	server	to	enable	the	job.
oJob.ApplyToTargetServer	("(Local)")

	

SQL-DMO

SQL-DMO	Examples:	Indexes
This	example	illustrates	using	SQL-DMO	to	create	a	unique,	nonclustered	index
on	a	Microsoft®	SQL	Server™	table.

The	IndexedColumns	property,	a	write-only	property,	is	used	to	specify
columns	participating	in	a	SQL	Server	index	when	the	index	is	created.	The
IndexedColumns	property	value	uses	the	SQL-DMO	multistring	data	type.
Column	name	identifiers	in	the	string	are	quoted	by	using	the	bracket	characters
([]).	If	more	than	one	column	is	specified,	separate	column	identifiers	using	a
comma,	as	in:	[OrderID],[ProductID].

'	Get	the	Products	table.	Note:	Create	and	connect	of	SQLServer
'	object	used	is	not	illustrated	in	this	example.
Dim	tableProducts	As	SQLDMO.Table

Set	tableProducts	=	_	
oSQLServer.Databases("Northwind").Tables("Products")

'	Create	a	new	Index	object,	then	populate	the	object	defining	a	unique,
'	nonclustered	index	on	the	indicated	filegroup.
Dim	idxProductName	As	New	SQLDMO.Index
idxProductName.Name	=	"idx_Products_ProductName"
idxProductName.FileGroup	=	"fgNorthwindIdx"
idxProductName.Type	=	SQLDMOIndex_Unique
idxProductName.IndexedColumns	=	"[ProductName]"

'	Create	the	index	by	adding	the	populated	Index	object	to	its
'	containing	collection.
tableProducts.Indexes.Add	idxProductName

See	Also

Index	Object

IndexedColumns	Property

SQL-DMO

SQL-DMO	Examples:	Jobs	and	Schedules
Jobs	and	schedules	examples	illustrate	creating	and	scheduling	SQL	Server
Agent	jobs.

A	SQL	Server	Agent	job	is	named	and	contains	at	least	one	job	step.	A	job	step
stores	a	command	or	language	string	defining	an	administrative	task.

A	job	can	be	run	by	SQL	Server	Agent	when	it	contains	at	least	one	step	and	an
execution	target.	A	job	can	be	scheduled,	and	when	scheduled,	SQL	Server
Agent	will	run	the	job	as	directed	by	the	schedules	assigned	to	the	job.

SQL-DMO

Creating	SQL	Server	Agent	Jobs
These	examples	illustrate	creating	SQL	Server	Agent	jobs.

Use	SQL-DMO	to	create	a	SQL	Server	Agent	job	by:

Creating	and	populating	a	Job	object.

Adding	the	Job	object	to	the	Jobs	collection	of	a	JobServer	object.

Creating	and	populating	one	or	more	JobStep	objects.

Altering	the	Job	object,	by	adding	the	JobStep	object(s)	created	to	the
JobSteps	collection.

With	the	job	created,	indicate	an	execution	target.	For	more	information	about
examples,	see	Targeting	SQL	Server	Agent	Jobs.

Note		SQL	Server	Agent	implements	executable	subsystems	for	job	steps.	The
text	defining	the	administrative	task	is	interpreted	by	the	selected	executable
subsystem.	In	the	examples	that	follow,	all	job	steps	in	the	job	created	by	the
example	use	a	single	executable	subsystem.	This	implementation	is	imposed	for
clarity	only.

Examples

A.	Creating	a	Job	Containing	a	Transact-SQL	Command	Batch
This	example	illustrates	creating	a	multistep	job.	Each	job	step	is	defined	by
using	a	Transact-SQL	command	batch.

This	example:

Creates	a	Job	object	and	adds	the	object	to	a	Jobs	collection	to	create	a
SQL	Server	Agent	job.

Gets	the	Tables	collection	of	a	Database	object.

For	each	Table	object	in	the	collection:

Creates	a	JobStep	object.

Uses	the	Name	property	of	the	Table	object	to	build	a
Transact-SQL	command	batch	to	set	the	Command	property
of	the	JobStep	object.

Builds	default	job	control-of-flow	logic.

Adds	the	JobStep	object	to	the	JobSteps	collection	of	the	Job
object.

Assigns	a	starting	step	for	the	job	and	adjusts	logic	for	the	final	step.

Commits	job	modifications.

'	Table	object	used	in	iteration	over	Tables	collection.
Dim	oTable	As	SQLDMO.Table

Dim	oJob	As	New	SQLDMO.Job
Dim	oJobStep	As	SQLDMO.JobStep
Dim	idStep	As	Integer

'	Create	the	SQL	Server	Agent	job.	Job	will	perform	an	update
'	of	all	optimizer-supporting	data	distribution	statistics.
oJob.Name	=	"Northwind_Statistics_Update"
oSQLServer.JobServer.Jobs.Add	oJob

'	Alter	the	job,	adding	job	steps	and	setting	starting	step.
oJob.BeginAlter

'	Each	JobStep	contains	the	Transact-SQL	command	batch
'	updating	statistics	for	a	table.
idStep	=	0
For	Each	oTable	In	oSQLServer.Databases("Northwind").Tables
				'	Only	applies	to	user	defined	tables....
				If	oTable.Attributes	<>	SQLDMOTabAtt_SystemObject	Then
								Set	oJobStep	=	New	SQLDMO.JobStep

								idStep	=	idStep	+	1

								oJobStep.Name	=	"Northwind_Statistics_Update_Step_"	&	idStep
								oJobStep.StepID	=	idStep

								oJobStep.DatabaseName	=	"Northwind"
								oJobStep.SubSystem	=	"TSQL"

								'	TSQL	uses	the	[]	syntax	to	quote	table	identifers.
								oJobStep.Command	=	"UPDATE	STATISTICS	["	&	oTable.Name	&	_
												"]	WITH	FULLSCAN,	NORECOMPUTE"

								'	Default	logic.	Amended	below.
								oJobStep.OnFailAction	=	SQLDMOJobStepAction_QuitWithFailure
								oJobStep.OnSuccessAction	=	SQLDMOJobStepAction_GotoNextStep

								oJob.JobSteps.Add	oJobStep
				End	If
Next	oTable

'	Reset	the	logic	flow	for	the	last	job	step	to	indicate	success.
oJob.JobSteps.ItemByID(idStep).OnSuccessAction	=	_
				SQLDMOJobStepAction_QuitWithSuccess

'	Set	the	starting	step	for	the	job.

oJob.StartStepID	=	1

'	Alter	the	job.
oJob.DoAlter

B.	Creating	a	Job	Containing	an	Operating	System	Command

This	example	illustrates	creating	a	single-step	job.	The	job	step	is	defined	by
using	an	operating	system	command.

This	example:

Creates	a	Job	object	and	adds	the	object	to	a	Jobs	collection	to	create	a
SQL	Server	Agent	job.

Creates	a	JobStep	object.

Assigns	the	Command	and	SubSystem	properties	to	indicate	an
operating	system	command.

Adds	the	JobStep	object	to	the	JobSteps	collection	of	the	Job	object.

Assigns	a	starting	step	for	the	job	and	job	logic.

Commits	job	modifications.

Dim	oJob	As	New	SQLDMO.Job
Dim	oJobStep	As	New	SQLDMO.JobStep

Dim	strQuote	As	String

strQuote	=	Chr$(34)

'	Create	the	SQL	Server	Agent	job.	Job	will	send	a	network

'	popup	message.
oJob.Name	=	"NetSend"
oSQLServer.JobServer.Jobs.Add	oJob

'	Alter	the	job,	adding	job	steps	and	setting	starting	step.
oJob.BeginAlter

'	The	job	is	implemented	using	a	single	step.
oJobStep.Name	=	"NetSend_1"
oJobStep.StepID	=	1

'	Set	the	job	step	exucatable	subsystem.	For	operating
'	system	command	job	steps,	the	subsystem	is	"CmdExec"
oJobStep.SubSystem	=	"CmdExec"

'	Job	step	script	is:
'
'	Net	Send	SEATTLE1	"Now	is	the	time	for	all	good	men	"	&	_
'				"to	come	to	the	aid	of	the	party."
oJobStep.Command	=	_
				"Net	Send	SEATTLE1	"	&	strQuote	&	_
				"Now	is	the	time	for	all	good	men	to	come	to	the	"	&	_
				"aid	of	the	party."	&	strQuote

'	Logic	for	a	single-step	job.
oJobStep.OnFailAction	=	SQLDMOJobStepAction_QuitWithFailure
oJobStep.OnSuccessAction	=	SQLDMOJobStepAction_QuitWithSuccess

oJob.JobSteps.Add	oJobStep

'	Set	the	starting	step	for	the	job.
oJob.StartStepID	=	1

'	Alter	the	job.
oJob.DoAlter

C.	Creating	a	Job	Containing	an	Active	Script	Command

This	example	illustrates	creating	a	single-step	job.	The	job	step	is	defined	by
using	a	Microsoft	ActiveX®	script	language.

This	example:

Creates	a	Job	object	and	adds	the	object	to	a	Jobs	collection	to	create	a
SQL	Server	Agent	job.

Creates	a	JobStep	object.

Assigns	the	Command,	SubSystem,	and	DatabaseName	properties	to
indicate	an	ActiveX	language	script.

Adds	the	JobStep	object	to	the	JobSteps	collection	of	the	Job	object.

Assigns	a	starting	step	for	the	job	and	job	logic.

Commits	job	modifications.

Dim	oJob	As	New	SQLDMO.Job
Dim	oJobStep	As	New	SQLDMO.JobStep

Dim	strNewLine	As	String
Dim	strQuote	As	String

strNewLine	=	Chr$(13)	&	Chr$(10)
strQuote	=	Chr$(34)

'	Create	the	SQL	Server	Agent	job.	Job	will	perform	an	update

'	of	all	optimizer-supporting	data	distribution	statistics.
oJob.Name	=	"Northwind_Statistics_Update_ActiveScript"
oSQLServer.JobServer.Jobs.Add	oJob

'	Alter	the	job,	adding	job	steps	and	setting	starting	step.
oJob.BeginAlter

'	Define	the	job's	single	step.
oJobStep.Name	=	"Northwind_Statistics_Update_ActiveScript_1"
oJobStep.StepID	=	1

'	Set	the	job	step	executable	subsystem.	For	ActiveX	Script
'	job	steps,	the	DatabaseName	property	records	the	script
'	interpreter	selected.
oJobStep.SubSystem	=	"ActiveScripting"
oJobStep.DatabaseName	=	"VBScript"

'	Job	step	script	is:
'
'	Set	oSQLServer	=	CreateObject("SQLDMO.SQLServer")
'
'	oSQLServer.LoginSecure	=	True
'	oSQLServer.Connect
'
'	oSQLServer.Databases("Northwind").UpdateIndexStatistics
'
'	oSQLServer.DisConnect
'	Set	oSQLServer	=	Nothing

oJobStep.Command	=	_
				"Set	oSQLServer	=	CreateObject("	&	_
				strQuote	&	"SQLDMO.SQLServer"	&	strQuote	&	")"

oJobStep.Command	=	oJobStep.Command	&	strNewLine	&	strNewLine

oJobStep.Command	=	oJobStep.Command	&	_
				"oSQLServer.LoginSecure	=	True"

oJobStep.Command	=	oJobStep.Command	&	strNewLine

oJobStep.Command	=	oJobStep.Command	&	_
				"oSQLServer.Connect"

oJobStep.Command	=	oJobStep.Command	&	strNewLine	&	strNewLine

oJobStep.Command	=	oJobStep.Command	&	_
				"oSQLServer.Databases("	&	strQuote	&	"Northwind"	&	_
				strQuote	&	").UpdateIndexStatistics"

oJobStep.Command	=	oJobStep.Command	&	strNewLine	&	strNewLine

oJobStep.Command	=	oJobStep.Command	&	_
				"oSQLServer.DisConnect"

oJobStep.Command	=	oJobStep.Command	&	strNewLine

oJobStep.Command	=	oJobStep.Command	&	_
				"Set	oSQLServer	=	Nothing"

oJobStep.Command	=	oJobStep.Command	&	strNewLine

'	Logic	for	a	single-step	job.
oJobStep.OnFailAction	=	SQLDMOJobStepAction_QuitWithFailure
oJobStep.OnSuccessAction	=	SQLDMOJobStepAction_QuitWithSuccess

oJob.JobSteps.Add	oJobStep

'	Set	the	starting	step	for	the	job.
oJob.StartStepID	=	1

'	Alter	the	job.
oJob.DoAlter

See	Also

Command	Property

Job	Object

JobStep	Object

SubSystem	Property

SQL-DMO

Controlling	Job	Step	Logic
This	example	illustrates	controlling	SQL	Server	Agent	job	flow-of-control	logic
implemented	in	job	step	definitions.

SQL	Server	Agent	jobs	implement	simple	flow-of-control	logic	allowing	jobs	to
branch	based	on	success	or	failure	of	any	one	step.	This	example	illustrates
application	of	job	logic	by	creating	a	job	in	four	steps	where:

Steps	1	and	2	check	the	integrity	of	database	filegroups.

Step	3	backs	up	the	filegroups.

Step	4	attempts	repair	of	the	database	on	failure	of	an	integrity	check.

Job	execution	begins	with	Step	1.	Flow-of-control	logic	in	the	job	directs
execution	in	the	following	manner.

Step On	success... On	failure...
1 Continue	to	next	step	(2) Branch	to	Step	4
2 Continue	to	next	step	(3) Branch	to	Step	4
3 Quit	reporting	success Quit	reporting	failure
4 Branch	to	Step	3 Quit	reporting	failure

'	DBCC	CHECKFILEGROUP	('PRIMARY')	WITH	NO_INFOMSGS
'	DBCC	CHECKFILEGROUP	('NorthwindTextImg')	WITH	NO_INFOMSGS
'	BACKUP	DATABASE	[Northwind]
'		FILEGROUP	=	N'PRIMARY',		FILEGROUP	=	N'NorthwindTextImg'
'	TO	[NorthDev1],	[NorthDev2]
'	WITH		NOINIT	,		NOUNLOAD	,
'		NAME	=	N'Northwind_FileGroups_9/21/98_2:30:26	PM',
'		NOSKIP	,		STATS	=	10,
'		Description	=	N'Backup	of	PRIMARY	and	NorthwindTextImg	filegroups.',

'		NOFORMAT
'	DBCC	CHECKDB	('Northwind',	REPAIR_FAST)	WITH	NO_INFOMSGS

Dim	oJob	As	New	SQLDMO.Job
Dim	oJobStep	As	SQLDMO.JobStep

'	Create	the	SQL	Server	Agent	job.
oJob.Name	=	"Backup_Northwind_Filegroups"
oSQLServer.JobServer.Jobs.Add	oJob

'	Alter	the	job,	adding	job	steps	and	setting	starting	step.
oJob.BeginAlter

'	First	step.	DBCC	CHECKFILEGROUP	('PRIMARY')	in	database	Northwind.
Set	oJobStep	=	New	SQLDMO.JobStep
oJobStep.Name	=	"CHECKFILEGROUP_PRIMARY"
oJobStep.StepID	=	1

oJobStep.SubSystem	=	"TSQL"
oJobStep.DatabaseName	=	"Northwind"
oJobStep.Command	=	_
				"DBCC	CHECKFILEGROUP	('PRIMARY')	WITH	NO_INFOMSGS"

'	Set	job	logic.	On	success	of	Step	1,	continue	at	next	step.
oJobStep.OnSuccessAction	=	SQLDMOJobStepAction_GotoNextStep

'	On	failure	of	Step	1,	branch	to	Step	4	which	will	attempt
'	database	repair.	Note:	the	step	number	must	be	assigned	prior
'	to	setting	the	action	property.
oJobStep.OnFailStep	=	4
oJobStep.OnFailAction	=	SQLDMOJobStepAction_GotoStep

oJob.JobSteps.Add	oJobStep

'	Second	step.	DBCC	CHECKFILEGROUP	('NorthwindTextImg')	in	database
'	Northwind.
Set	oJobStep	=	New	SQLDMO.JobStep
oJobStep.Name	=	"CHECKFILEGROUP_NorthwindTextImg"
oJobStep.StepID	=	2

oJobStep.SubSystem	=	"TSQL"
oJobStep.DatabaseName	=	"Northwind"
oJobStep.Command	=	_
				"DBCC	CHECKFILEGROUP	('NorthwindTextImg')	WITH	NO_INFOMSGS"

'	Set	job	logic.	On	success	of	Step	2,	continue	at	next	step,	backing
'	up	the	database.
oJobStep.OnSuccessAction	=	SQLDMOJobStepAction_GotoNextStep

'	On	failure	of	Step	2,	branch	to	Step	4	which	will	attempt
'	database	repair.	Note:	the	step	number	must	be	assigned	prior
'	to	setting	the	action	property.
oJobStep.OnFailStep	=	4
oJobStep.OnFailAction	=	SQLDMOJobStepAction_GotoStep

oJob.JobSteps.Add	oJobStep

'	Third	step.	On	success	of	both	Step	1	and	2,	or	on	successful
'	database	repair	implemented	in	Step	4,	backup	the	filegroups
'	PRIMARY	and	NorthwindTextImg	from	the	database	Northwind.
Set	oJobStep	=	New	SQLDMO.JobStep
oJobStep.Name	=	"Backup	Northwind	filegroups"
oJobStep.StepID	=	3

oJobStep.SubSystem	=	"TSQL"
oJobStep.Command	=	_

				"BACKUP	DATABASE	[Northwind]		"	&	_
				"	FILEGROUP	=	N'PRIMARY',	FILEGROUP	=	N'NorthwindTextImg'		"	&	_
				"TO	[NorthDev1],	[NorthDev2]"	&	_
				"WITH		NOINIT	,		NOUNLOAD	,	"	&	_
				"	NAME	=	N'Northwind_FileGroups_9/21/98_2:30:26	PM',	"	&	_
				"	NOSKIP	,		STATS	=	10,"	&	_
				"	Description	=	"	&	_
								"N'Backup	of	PRIMARY	and	NorthwindTextImg	filegroups.',	"	&	_
				"	NOFORMAT"

'	Set	job	logic.	On	success	or	failure,	quit	reporting	execution
'	completion	status.
oJobStep.OnSuccessAction	=	SQLDMOJobStepAction_QuitWithSuccess
oJobStep.OnFailAction	=	SQLDMOJobStepAction_QuitWithFailure

oJob.JobSteps.Add	oJobStep

'	Fourth	step.	DBCC	CHECKDB	('Northwind',	REPAIR_FAST).	Executed	only
'	on	failure	of	either	steps	1	or	2.
Set	oJobStep	=	New	SQLDMO.JobStep
oJobStep.Name	=	"CHECKDB_Northwind_With_Repair"
oJobStep.StepID	=	4

oJobStep.SubSystem	=	"TSQL"
oJobStep.Command	=	_
				"DBCC	CHECKDB	('Northwind',	REPAIR_FAST)	WITH	NO_INFOMSGS"

'	Set	job	logic.	On	success,	branch	to	Step	3,	backing	up	the	database.
'	Note:	the	step	number	must	be	assigned	prior	to	setting	the	action
'	property.
oJobStep.OnSuccessStep	=	3
oJobStep.OnSuccessAction	=	SQLDMOJobStepAction_GotoStep

'	On	failure,	quit	job	reporting	failure.	
oJobStep.OnFailAction	=	SQLDMOJobStepAction_QuitWithFailure

oJob.JobSteps.Add	oJobStep

'	Set	the	starting	step	for	the	job.
oJob.StartStepID	=	1

'	Alter	the	job.
oJob.DoAlter

See	Also

Job	Object

JobStep	Object

OnFailAction	Property

OnFailStep	Property

OnSuccessAction	Property

OnSuccessStep	Property

SQL-DMO

Targeting	SQL	Server	Agent	Jobs
These	examples	illustrate	assigning	SQL	Server	Agent	job	execution	targets.	A
job	can	be	run	by	SQL	Server	Agent	when	it	contains	at	least	one	step	and	an
execution	target.

In	these	examples,	the	EnumTargetServers	and	RemoveFromTargetServer
methods	are	used	to	remove	existing	execution	target	assignment(s).	When	using
the	ApplyToTargetServer	or	ApplyToTargetServerGroup	methods,	SQL-
DMO	returns	an	error	if	an	attempt	is	made	to	indicate	an	execution	target
redundantly.	A	SQL	Server	Agent	job	may	be	targeted	to	execute	on	either	the
local	instance	of	Microsoft®	SQL	Server™	(the	instance	on	which	SQL	Server
Agent	executes)	or	one	or	more	target	servers	(TSXs)	in	a	multiserver
administration	group.	A	job	cannot	have	both	the	local	instance	and	any	other
server	as	execution	targets.	By	removing	existing	assignments,	the	examples
ensure	success	of	the	execution	target	assignment	made	later	in	the	example.

Examples

A.	Targeting	a	Local	Server
This	example	illustrates	assigning	an	execution	target	for	a	SQL	Server	Agent
job.	The	execution	target	is	the	local	instance	of	SQL	Server.

Dim	oJob	As	SQLDMO.Job

'	A	QueryResults	object	will	be	used	to	test	for	current	target
'	server	assignment.
Dim	oQueryResults	As	SQLDMO.QueryResults
Dim	iRow	As	Integer

'	Get	the	job	to	target.	Note:	Create	and	connect	of	SQLServer	object
'	is	not	illustrated	in	this	example.
Set	oJob	=	oSQLServer.JobServer.Jobs	("Backup_Northwind_Filegroups")

'	Enumerate	existing	target	servers	for	the	job.
Set	oQueryResults	=	oJob.EnumTargetServers
For	iRow	=	1	To	oQueryResults.Rows

				'	The	target	server	name	is	the	second	column	in	the	result	set.
				oJob.RemoveFromTargetServer	_
								oQueryResults.GetColumnString(iRow,	2)

Next	iRow

'	Target	the	local	server,	the	server	to	which	the	SQLServer	object	is
'	connected	and	from	which	the	job	has	been	retrieved.
oJob.ApplyToTargetServer	"(Local)"

B.	Targeting	TSX	Servers
This	example	illustrates	assigning	execution	targets	for	a	SQL	Server	Agent	job.
The	execution	targets	are	several	TSXs	in	a	multiserver	administration	group.

Dim	oJob	As	SQLDMO.Job

'	A	QueryResults	object	will	be	used	to	test	for	current	target
'	server	assignment.
Dim	oQueryResults	As	SQLDMO.QueryResults
Dim	iRow	As	Integer

'	Get	the	job	to	target.	Note:	Create	and	connect	of	SQLServer	object
'	is	not	illustrated	in	this	example.
Set	oJob	=	oSQLServer.JobServer.Jobs	("Backup_Northwind_Filegroups")

'	Enumerate	existing	target	servers	for	the	job.
Set	oQueryResults	=	oJob.EnumTargetServers
For	iRow	=	1	To	oQueryResults.Rows

				'	The	target	server	name	is	the	second	column	in	the	result	set.
				oJob.RemoveFromTargetServer	_
								oQueryResults.GetColumnString(iRow,	2)

Next	iRow

'	Target	a	server	group	and	a	single	server.	Note:	creation	of	target
'	servers	and	target	server	groups	is	not	illustrated	in	this	example.
oJob.ApplyToTargetServerGroup	"London"
oJob.ApplyToTargetServer	"SEATTLE2"

See	Also

ApplyToTargetServer	Method

ApplyToTargetServerGroup	Method

EnumTargetServers	Method

Job	Object

RemoveFromTargetServer	Method

SQL-DMO

Scheduling	SQL	Server	Agent	Jobs
These	examples	illustrate	scheduling	execution	for	SQL	Server	Agent	jobs	by
creating	and	populating	SQL-DMO	JobSchedule	objects.

A	job	can	be	run	by	SQL	Server	Agent	when	it	contains	at	least	one	step	and	an
execution	target.	Use	the	Start	method	of	the	Job	object	to	direct	unscheduled
execution	of	an	executable	job.	Create	schedules	for	jobs	when	automated
execution	of	the	job	is	desired.

Examples

A.	Scheduling	a	Job	for	Single	Execution
This	example	illustrates	creating	a	job	schedule	defining	a	single	execution	time
for	a	SQL	Server	Agent	job.

Dim	oJobSchedule	As	New	SQLDMO.JobSchedule
Dim	oJob	As	SQLDMO.Job

'	Get	the	job	to	target.	Note:	Create	and	connect	of	SQLServer	object
'	is	not	illustrated	in	this	example.
Set	oJob	=	oSQLServer.JobServer.Jobs("Backup_Northwind_Filegroups")

'	Set	the	schedule	name.
oJobSchedule.Name	=	"Single_Execution"

'	Indicate	a	single	scheduled	execution	by	using	the
'	FrequencyType	property.
oJobSchedule.Schedule.FrequencyType	=	SQLDMOFreq_OneTime

'	Use	the	ActiveStartDate	and	ActiveStartTimeOfDay	properties
'	to	indicate	the	scheduled	execution	time	for	a	JobSchedule

'	object	implementing	a	single	run.
oJobSchedule.Schedule.ActiveStartDate	=	"19980922"
oJobSchedule.Schedule.ActiveStartTimeOfDay	=	"130000"

'	Optional,	but	cleaner.	Indicated	that	schedule	never	expires.
oJobSchedule.Schedule.ActiveEndDate	=	SQLDMO_NOENDDATE
oJobSchedule.Schedule.ActiveEndTimeOfDay	=	SQLDMO_NOENDTIME

'	Alter	the	job,	adding	the	new	schedule.
oJob.BeginAlter
oJob.JobSchedules.Add	oJobSchedule
oJob.DoAlter

B.	Scheduling	a	Job	for	Execution	Once	Per	Day
This	example	illustrates	creating	a	job	schedule	defining	daily	execution	for	a
SQL	Server	Agent	job.

Dim	oJobSchedule	As	New	SQLDMO.JobSchedule
Dim	oJob	As	SQLDMO.Job
Dim	StartYear,	StartMonth,	StartDay	As	String

'	Get	the	job	to	target.	Note:	Create	and	connect	of	SQLServer	object
'	is	not	illustrated	in	this	example.
Set	oJob	=	oSQLServer.JobServer.Jobs("Backup_Northwind_Filegroups")

'	Set	the	schedule	name.
oJobSchedule.Name	=	"OncePerDay_Execution"

'	Indicate	execution	scheduled	for	every	day	by	using	the
'	FrequencyType	and	FrequencyInterval	properties.
oJobSchedule.Schedule.FrequencyType	=	SQLDMOFreq_Daily
oJobSchedule.Schedule.FrequencyInterval	=	1

'	Set	the	ActiveStartDate	to	indicating	the	date	on	which	the
'	schedule	becomes	active.	Start	date	is	today's	date.
StartYear	=	DatePart("yyyy",	Date)
StartMonth	=	DatePart("m",	Date)
StartDay	=	DatePart("d",	Date)

If	Len(StartMonth)	<	2	Then	StartMonth	=	"0"	&	StartMonth
If	Len(StartDay)	<	2	Then	StartDay	=	"0"	&	StartDay

oJobSchedule.Schedule.ActiveStartDate	=	_
				StartYear	&	StartMonth	&	StartDay

'	Set	the	ActiveStartTimeOfDay	property	to	indicate	the	scheduled
'	execution	time	on	each	day	(2:32	AM).
oJobSchedule.Schedule.ActiveStartTimeOfDay	=	"23200"

'	Indicated	that	the	schedule	never	expires.
oJobSchedule.Schedule.ActiveEndDate	=	SQLDMO_NOENDDATE
oJobSchedule.Schedule.ActiveEndTimeOfDay	=	SQLDMO_NOENDTIME

'	Alter	the	job,	adding	the	new	schedule.
oJob.BeginAlter
oJob.JobSchedules.Add	oJobSchedule
oJob.DoAlter

C.	Scheduling	a	Job	for	Execution	Multiple	Times	Per	Day
This	example	illustrates	creating	a	job	schedule	that	defines	hourly	execution	for
a	SQL	Server	Agent	job.

Dim	oJobSchedule	As	New	SQLDMO.JobSchedule
Dim	oJob	As	SQLDMO.Job
Dim	StartYear,	StartMonth,	StartDay	As	String

'	Get	the	job	to	target.	Note:	Create	and	connect	of	SQLServer	object
'	is	not	illustrated	in	this	example.
Set	oJob	=	oSQLServer.JobServer.Jobs("NetSend")

'	Set	the	schedule	name.
oJobSchedule.Name	=	"Hourly_Execution"

'	Indicate	execution	scheduled	for	every	day	by	using	the
'	FrequencyType	and	FrequencyInterval	properties.
oJobSchedule.Schedule.FrequencyType	=	SQLDMOFreq_Daily
oJobSchedule.Schedule.FrequencyInterval	=	1

'	Indicate	hourly	execution	by	using	the	FrequencySubDay
'	and	FrequencySubDayInterval	properties.
oJobSchedule.Schedule.FrequencySubDay	=	SQLDMOFreqSub_Hour
oJobSchedule.Schedule.FrequencySubDayInterval	=	1

'	Set	the	ActiveStartDate	to	indicating	the	date	on	which	the
'	schedule	becomes	active.	Start	date	is	today's	date.
StartYear	=	DatePart("yyyy",	Date)
StartMonth	=	DatePart("m",	Date)
StartDay	=	DatePart("d",	Date)

If	Len(StartMonth)	<	2	Then	StartMonth	=	"0"	&	StartMonth
If	Len(StartDay)	<	2	Then	StartDay	=	"0"	&	StartDay

oJobSchedule.Schedule.ActiveStartDate	=	_
				StartYear	&	StartMonth	&	StartDay

'	Set	the	ActiveStartTimeOfDay	property	to	indicate	the	time	at
'	which	the	schedule	becomes	active	(12:00	AM).
oJobSchedule.Schedule.ActiveStartTimeOfDay	=	"00000"

'	Indicated	that	the	schedule	never	expires.
oJobSchedule.Schedule.ActiveEndDate	=	SQLDMO_NOENDDATE
oJobSchedule.Schedule.ActiveEndTimeOfDay	=	SQLDMO_NOENDTIME

'	Alter	the	job,	adding	the	new	schedule.
oJob.BeginAlter
oJob.JobSchedules.Add	oJobSchedule
oJob.DoAlter

D.	Scheduling	a	Job	for	Execution	Once	Per	Relative	Interval
This	example	illustrates	creating	a	job	schedule	defining	once	a	month	execution
for	a	SQL	Server	Agent	job.	The	job	schedule	directs	execution	to	a	day	relative
to	the	start	day	of	the	month.

Dim	oJobSchedule	As	New	SQLDMO.JobSchedule
Dim	oJob	As	SQLDMO.Job
Dim	StartYear,	StartMonth,	StartDay	As	String

'	Get	the	job	to	target.	Note:	Create	and	connect	of	SQLServer	object
'	is	not	illustrated	in	this	example.
Set	oJob	=	oSQLServer.JobServer.Jobs("Backup_Northwind_Filegroups")

'	Set	the	schedule	name.
oJobSchedule.Name	=	"Second_Friday"

'	For	monthly,	relative	day	scheduling,	the	FrequencyType,
'	FrequencyInterval,	FrequencyRecurrenceInterval,	and
'	FrequencyRelativeInterval	properties	together	define	the
'	schedule.
'
'	FrequencyType	and	FrequencyRecurrence	factor	indicate	relative
'	and	every	month	execution.
oJobSchedule.Schedule.FrequencyType	=	SQLDMOFreq_MonthlyRelative

oJobSchedule.Schedule.FrequencyRecurrenceFactor	=	1

'	FrequencyInterval	indicates	the	day	where	0	=	Sunday,	7	=
'	Saturday,	and	other	values	indicate	"weekday"	or	"weekend
'	day".
oJobSchedule.Schedule.FrequencyInterval	=	6

'	FrequencyRelativeInterval	indicates	the	day	relative	to
'	the	start	of	the	month.
oJobSchedule.Schedule.FrequencyRelativeInterval	=	_
				SQLDMOFreqRel_Second

'	Set	the	ActiveStartDate	property	to	indicating	the	date	on	which	the
'	schedule	becomes	active.	Start	date	is	today's	date.
StartYear	=	DatePart("yyyy",	Date)
StartMonth	=	DatePart("m",	Date)
StartDay	=	DatePart("d",	Date)

If	Len(StartMonth)	<	2	Then	StartMonth	=	"0"	&	StartMonth
If	Len(StartDay)	<	2	Then	StartDay	=	"0"	&	StartDay

oJobSchedule.Schedule.ActiveStartDate	=	_
				StartYear	&	StartMonth	&	StartDay

'	Set	the	ActiveStartTimeOfDay	property	to	indicate	the	scheduled
'	job	execution	time	(9:53:22	PM).
oJobSchedule.Schedule.ActiveStartTimeOfDay	=	"215322"

'	Indicated	that	the	schedule	never	expires.
oJobSchedule.Schedule.ActiveEndDate	=	SQLDMO_NOENDDATE
oJobSchedule.Schedule.ActiveEndTimeOfDay	=	SQLDMO_NOENDTIME

'	Alter	the	job,	adding	the	new	schedule.

oJob.BeginAlter
oJob.JobSchedules.Add	oJobSchedule
oJob.DoAlter

See	Also

Job	Object

JobSchedule	Object

Schedule	Object

SQL-DMO

SQL-DMO	Examples:	Tables
The	table	examples	illustrate	Microsoft®	SQL	Server™	table	creation	and
maintenance	automated	by	using	SQL-DMO.

SQL-DMO

Altering	a	Table	by	Adding	a	Column
These	examples	illustrate	adding	columns	to	an	existing	Microsoft®	SQL
Server™	table.

Examples

A.	Adding	a	Column	Defined	on	a	Base	Data	Type
The	example	illustrates	creating	a	column	that	does	not	allow	NULL.	The
provided	default	value	is	used	to	populate	existing	rows	in	the	table.

Dim	tableProducts	As	SQLDMO.Table

'	Create	a	Column	object,	then	populate	it	to	define	a	column
'	called	ShelfLife.
Dim	colShelfLife	As	New	SQLDMO.Column
colShelfLife.Name	=	"ShelfLife"
colShelfLife.Datatype	=	"smallint"
colShelfLife.AllowNulls	=	False
colShelfLife.DRIDefault.Text	=	"31"

'	Get	the	Products	table.	Note:	Create	and	connect	of	SQLServer
'	object	used	is	not	illustrated	in	this	example.
Set	tableProducts	=	_	
oSQLServer.Databases("Northwind").Tables("Products")

'	Mark	start	of	change	unit.
tableProducts.BeginAlter

'	Add	the	populated	Column	object	to	its	containing	collection.
tableProducts.Columns.Add	colShelfLife

'	Create	the	column	by	committing	the	unit	of	change.
tableProducts.DoAlter

B.	Adding	a	Computed	Column
This	example	illustrates	altering	a	table,	adding	a	column	that	perform	simple
multiplication	of	the	values	in	two	other	columns.

Dim	tableProducts	As	SQLDMO.Table

'	Create	a	Column	object	and	populate	it	to	define	a	new	column
'	called	StockValue.
Dim	colStockValue	As	New	SQLDMO.Column
colStockValue.Name	=	"StockValue"
colStockValue.IsComputed	=	True
colStockValue.Datatype	=	"money"
colStockValue.ComputedText	=	"UnitsInStock	*	UnitPrice"

'	Get	the	Products	table.	Note:	Create	and	connect	of	SQLServer
'	object	used	is	not	illustrated	in	this	example.
Set	tableProducts	=	_	
oSQLServer.Databases("Northwind").Tables("Products")

'	Mark	start	of	change	unit.
tableProducts.BeginAlter

'	Add	the	populated	Column	object	to	its	containing	collection.
tableProducts.Columns.Add	colStockValue

'	Create	the	column	by	committing	the	unit	of	change.
tableProducts.DoAlter

See	Also

Column	Object

SQL-DMO

Altering	a	Table	by	Adding	a	FOREIGN	KEY
Constraint
This	example	illustrates	foreign	key	definition	using	the	SQL-DMO	Key	object.
In	the	example,	adding	the	Key	object	to	the	Keys	collection	creates	a
FOREIGN	KEY	constraint	on	the	referenced	table.

'	Create	a	FOREIGN	KEY	constraint	on	the
'	Northwind..Products.CategoryID	column	referencing
'	Northwind..Categories.CategoryID.

Dim	tableProducts	As	SQLDMO.Table

Dim	keyFKProducts	As	New	SQLDMO.Key
Dim	namesFKProducts	As	SQLDMO.Names

'	Get	the	Products	table.	Note:	Create	and	connect	of	SQLServer
'	object	used	is	not	illustrated	in	this	example.
Set	tableProducts	=	_	
oSQLServer.Databases("Northwind").Tables("Products")

'	Indicate	the	constrained	column	in	the	KeyColumns	collection.
keyFKProducts.Type	=	SQLDMOKey_Foreign
keyFKProducts.KeyColumns.Add	"CategoryID"

'	Use	the	ReferencedTable	property	and	ReferencedColumns
'	collection	to	specify	constraining	values.
keyFKProducts.ReferencedTable	=	"Categories"
keyFKProducts.ReferencedColumns.Add	"CategoryID"

'	Mark	start	of	change	unit.
tableProducts.BeginAlter

'	Add	the	populated	Key	object	to	the	Keys	collection	of	the
'	Table	object.
tableProducts.Keys.Add	keyFKProducts

'	Create	the	FOREIGN	KEY	constraint	by	committing	the	unit	of	change.
tableProducts.DoAlter

See	Also

Key	Object

Table	Object

SQL-DMO

Altering	a	Table	by	Adding	a	PRIMARY	KEY
Constraint
This	example	illustrates	primary	key	definition	using	the	SQL-DMO	Key	object.
In	the	example,	adding	the	Key	object	to	the	Keys	collection	creates	a	clustered,
PRIMARY	KEY	constraint	on	the	referenced	table.

Dim	tableCategories	As	SQLDMO.Table

Dim	keyPKCategories	As	New	SQLDMO.Key
Dim	namesPKCategories	As	SQLDMO.Names

'	Get	the	Categories	table.	Note:	Create	and	connect	of	SQLServer
'	object	used	is	not	illustrated	in	this	example.
Set	tableCategories	=	_	
oSQLServer.Databases("Northwind").Tables("Categories")

'	Create	the	primary,	clustered	key	on	CategoryID.
keyPKCategories.Clustered	=	True
keyPKCategories.Type	=	SQLDMOKey_Primary

'	Use	the	Names	collection	to	define	the	constraint	on	the
'	CategoryID	column.
Set	namesPKCategories	=	keyPKCategories.KeyColumns
namesPKCategories.Add	"CategoryID"

'	Mark	start	of	change	unit.
tableCategories.BeginAlter

'	Add	the	populated	Key	object	to	the	Keys	collection	of	the
'	Table	object.
tableCategories.Keys.Add	keyPKCategories

'	Create	the	PRIMARY	KEY	constraint	by	committing	the	unit	of	change.
tableCategories.DoAlter

See	Also

Key	Object

Table	Object

SQL-DMO

Creating	a	Table
This	example	illustrates	table	creation.	Storage	for	large	text	and	BLOB	data	in
the	table	is	assigned	from	a	non-default	filegroup.

Dim	oDatabase	As	SQLDMO.Database

Dim	tableCategories	As	New	SQLDMO.Table
Dim	colCategoryID	As	New	SQLDMO.Column
Dim	colCategoryName	As	New	SQLDMO.Column
Dim	colDescription	As	New	SQLDMO.Column
Dim	colPicture	As	New	SQLDMO.Column

'	Get	the	Northwind	database.	Note:	Create	and	connect	of	SQLServer
'	object	used	is	not	illustrated	in	this	example.
Set	oDatabase	=	oSQLServer.Databases("Northwind")

'	Populate	the	Column	objects	to	define	the	table	columns.
colCategoryID.Name	=	"CategoryID"
colCategoryID.Datatype	=	"int"
colCategoryID.Identity	=	True
colCategoryID.IdentityIncrement	=	1
colCategoryID.IdentitySeed	=	1
colCategoryID.AllowNulls	=	False

colCategoryName.Name	=	"CategoryName"
colCategoryName.Datatype	=	"varchar"
colCategoryName.Length	=	15
colCategoryName.AllowNulls	=	False

colDescription.Name	=	"Description"
colDescription.Datatype	=	"text"

colDescription.AllowNulls	=	True

colPicture.Name	=	"Picture"
colPicture.Datatype	=	"image"
colPicture.AllowNulls	=	True

'	Name	the	table,	then	set	desired	properties	to	control	eventual	table
'	construction.
tableCategories.Name	=	"Categories"
tableCategories.FileGroup	=	"PRIMARY"
tableCategories.TextFileGroup	=	"fgNorthwindTxtImg"

'	Add	populated	Column	objects	to	the	Columns	collection	of	the
'	Table	object.
tableCategories.Columns.Add	colCategoryID
tableCategories.Columns.Add	colCategoryName
tableCategories.Columns.Add	colDescription
tableCategories.Columns.Add	colPicture

'	Create	the	table	by	adding	the	Table	object	to	its	containing
'	collection.
oDatabase.Tables.Add	tableCategories

See	Also

Altering	a	Table	by	Adding	a	PRIMARY	KEY	Constraint

Column	Object

Table	Object

SQL-DMO

FrequencyRelativeInterval	Property
The	FrequencyRelativeInterval	property	specifies	a	day	relative	to	the	start	of
a	month.

Applies	To

Schedule	Object

Syntax
object.FrequencyRelativeInterval	[=	value]

Part
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list

value

Long	integer	that	specifies	a	day	relative	to	the	start	of	a	month	as	described
in	Settings

Data	Type
Long,	enumerated

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFrequencyRelativeInterval
(SQLDMO_FREQRELATIVE_TYPE*	pRetVal);

HRESULT	SetFrequencyRelativeInterval

(SQLDMO_FREQRELATIVE_TYPE	NewValue);

Settings
The	FrequencyRelativeInterval	property	value	is	a	bit-packed	long	integer.
Specify	more	than	a	single	value	by	combining	values	using	an	OR	logical
operator.

Constant Value Description
SQLDMOFreqRel_First 1 Event	scheduled	to	occur	on	the	first

subunit
SQLDMOFreqRel_Fourth 8 Event	scheduled	to	occur	on	the	fourth

subunit
SQLDMOFreqRel_Last 16 Event	scheduled	to	occur	on	the	last

subunit
SQLDMOFreqRel_Second 2 Event	scheduled	to	occur	on	the	second

subunit
SQLDMOFreqRel_Third 4 Event	scheduled	to	occur	on	the	third

subunit

Remarks
The	FrequencyRelativeInterval	property	is	evaluated	only	when	the
FrequencyType	property	is	SQLDMOFreq_MonthlyRelative.

Set	the	FrequencyInterval	property	to	indicate	the	day	of	week	or	a	generic
indication	for	a	day.	Then	set	FrequencyRelativeInterval	to	specify	the	relative
period	from	the	start	of	the	month.

For	example,	to	schedule	an	activity	for	the	first	and	third	Thursday	of	a	month,
set	FrequencyInterval	to	SQLDMOMonth_Thursday	and	set
FrequencyRelativeInterval	to	SQLDMOFreqRel_First	Or
SQLDMOFreqRel_Third.	To	schedule	an	activity	for	the	last	weekday	of	a
month,	set	FrequencyInterval	to	SQLDMOMonth_WeekDay	and	set
FrequencyRelativeInterval	to	SQLDMOFreqRel_Last.

	Developing SQL-DMO Applications
	Getting Started with SQL-DMO
	SQL-DMO Syntax Conventions
	System Requirements for SQL-DMO
	Installing SQL-DMO

	SQL-DMO Objects and SQL Server Administration
	SQL-DMO Object
	Object Properties
	Object Methods
	Object Events

	Creating SQL Server Components Using SQL-DMO Objects
	SQL-DMO Objects and Existing SQL Server Components
	Programming Extended SQL-DMO Objects
	Using SQL-DMO Multistrings

	SQL-DMO Collections and SQL Server Administration
	SQL-DMO Collections
	Collection Properties
	Collection Methods

	Creating SQL Server Components Using SQL-DMO Collections
	Removing SQL Server Components Using SQL-DMO Collections

	Description of the SQLServer Object
	Creating and Connecting a SQLServer Object
	SQL-DMO Object Tree

	Developing SQL-DMO Applications Using Visual Basic
	Object Creation
	Properties Collection
	SQL-DMO Constants
	Handling SQL-DMO Events
	Handling SQL-DMO Errors

	Developing SQL-DMO Applications Using C or C++
	Objects, References, and Reference Counting
	Object Creation
	Member Functions (Properties and Methods)
	SQL-DMO Strings
	SQL-DMO Properties Collection
	SQL-DMO Data Types
	Handling SQL-DMO Events
	Handling SQL-DMO Errors

	SQL-DMO Reference
	Objects
	A
	Alert Object
	AlertSystem Object
	Application Object

	B
	Backup Object
	Backup2 Object
	BackupDevice Object
	BulkCopy Object
	BulkCopy2 Object

	C
	Category Object
	Check Object
	Column Object
	Column2 Object
	Configuration Object
	ConfigValue Object

	D
	Database Object
	Database2 Object
	DatabaseRole Object
	DatabaseRole2 Object
	DBFile Object
	DBObject Object
	DBOption Object
	DBOption2 Object
	Default Object
	Default2 Object
	DistributionArticle Object
	DistributionArticle2 Object
	DistributionDatabase Object
	DistributionDatabase2 Object
	DistributionPublication Object
	DistributionPublication2 Object
	DistributionPublisher Object
	DistributionPublisher2 Object
	DistributionSubscription Object
	DistributionSubscription2 Object
	Distributor Object
	Distributor2 Object
	DRIDefault Object

	F
	FileGroup Object
	FileGroup2 Object
	FullTextCatalog Object
	FullTextCatalog2 Object
	FullTextService Object

	I
	Index Object
	Index2 Object
	IntegratedSecurity Object

	J
	Job Object
	JobFilter Object
	JobHistoryFilter Object
	JobSchedule Object
	JobServer Object
	JobServer2 Object
	JobStep Object

	K
	Key Object

	L
	Language Object
	LinkedServer Object
	LinkedServer2 Object
	LinkedServerLogin Object
	LogFile Object
	Login Object
	Login2 Object

	M
	MergeArticle Object
	MergeArticle2 Object
	MergeDynamicSnapshotJob Object
	MergePublication Object
	MergePublication2 Object
	MergePullSubscription Object
	MergePullSubscription2 Object
	MergeSubscription Object
	MergeSubscription2 Object
	MergeSubsetFilter Object

	N
	NameList Object

	O
	Operator Object

	P
	Permission Object
	Permission2 Object
	Property Object
	Publisher Object
	Publisher2 Object

	Q
	QueryResults Object
	QueryResults2 Object

	R
	RegisteredServer Object
	RegisteredSubscriber Object
	Registry Object
	Registry2 Object
	RemoteLogin Object
	RemoteServer Object
	RemoteServer2 Object
	Replication Object
	Replication2 Object
	ReplicationDatabase Object
	ReplicationDatabase2 Object
	ReplicationSecurity Object
	ReplicationStoredProcedure Object
	ReplicationStoredProcedure2 Object
	ReplicationTable Object
	ReplicationTable2 Object
	Restore Object
	Restore2 Object
	Rule Object
	Rule2 Object

	S
	Schedule Object
	ServerGroup Object
	ServerRole Object
	SQLObjectList Object
	SQLServer Object
	SQLServer2 Object
	StoredProcedure Object
	StoredProcedure2 Object
	Subscriber Object
	Subscriber2 Object
	SystemDatatype Object
	SystemDataType2 Object

	T
	Table Object
	Table2 Object
	TargetServer Object
	TargetServerGroup Object
	TransactionLog Object
	TransArticle Object
	TransArticle2 Object
	Transfer Object
	Transfer2 Object
	TransPublication Object
	TransPublication2 Object
	TransPullSubscription Object
	TransPullSubscription2 Object
	TransSubscription Object
	TransSubscription2 Object
	Trigger Object
	Trigger2 Object

	U
	User Object
	User2 Object
	UserDefinedDatatype Object
	UserDefinedDataType2 Object
	UserDefinedFunction Object

	V
	View Object
	View2 Object

	Collections
	A
	AlertCategories Collection
	Alerts Collection

	B
	BackupDevices Collection

	C
	Checks Collection
	Columns Collection
	ConfigValues Collection

	D
	DatabaseRoles Collection
	Databases Collection
	DBFiles Collection
	Defaults Collection
	DistributionArticles Collection
	DistributionDatabases Collection
	DistributionPublications Collection
	DistributionPublishers Collection
	DistributionSubscriptions Collection

	F
	FileGroups Collection
	FullTextCatalogs Collection

	I
	Indexes Collection

	J
	JobCategories Collection
	Jobs Collection
	JobSchedules Collection
	JobSteps Collection

	K
	Keys Collection

	L
	Languages Collection
	LinkedServerLogins Collection
	LinkedServers Collection
	LogFiles Collection
	LogFiles2 Collection
	Logins Collection

	M
	MergeArticles Collection
	MergeDynamicSnapshotJobs Collection
	MergePublications Collection
	MergePullSubscriptions Collection
	MergeSubscriptions Collection
	MergeSubsetFilters Collection

	N
	Names Collection

	O
	OperatorCategories Collection
	Operators Collection

	P
	Properties Collection

	R
	RegisteredServers Collection
	RegisteredSubscribers Collection
	RemoteLogins Collection
	RemoteServers Collection
	ReplicationDatabases Collection
	ReplicationStoredProcedures Collection
	ReplicationTables Collection
	Rules Collection

	S
	ServerGroups Collection
	ServerRoles Collection
	SQLServers Collection
	StoredProcedures Collection
	SystemDatatypes Collection

	T
	Tables Collection
	TargetServerGroups Collection
	TargetServers Collection
	TransArticles Collection
	TransPublications Collection
	TransPullSubscriptions Collection
	TransSubscriptions Collection
	Triggers Collection

	U
	UserDefinedDatatypes Collection
	UserDefinedFunctions Collection
	Users Collection

	V
	Views Collection

	Properties
	A
	Action Property (Backup)
	Action Property (Restore)
	ActiveEndDate Property
	ActiveEndTimeOfDay Property
	ActiveStartDate Property
	ActiveStartTimeOfDay Property
	AdditionalParameters Property
	Adsp Property
	AfterTrigger Property
	AgentCheckupInterval Property
	AgentLogFile Property
	AgentOffload Property
	AgentOffloadServer Property
	AgentsStatus Property
	Alias Property
	AllowDTS Property
	AllowIdentity Property
	AllowInteractiveResolver Property
	AllowLength Property
	AllowMergePublication Property
	AllowNulls Property
	AllowQueuedTransactions Property
	AllowSynchronousTransactions Property
	AllowSyncToAlternate Property
	AltSnapshotFolder Property
	AnsiNulls Property
	AnsiNullsStatus Property
	AnsiPaddingStatus Property
	ApplicationName Property
	AppRole Property
	ArticleResolver Property
	ArticleType Property
	AssignmentDiag Property
	Attributes Property
	AuditLevel Property
	AutoClose Property
	AutoCreateStat Property
	AutogenerateSyncProcedures Property
	AutoIdentityRange Property
	AutoReConnect Property
	AutoShrink Property
	AutoStart Property
	AutostartDTC Property
	AutostartLicensing Property
	AutostartMail Property
	AutostartServer Property
	AutoUpdateStat Property

	B
	BackupDirectory Property
	BackupSetDescription Property
	BackupSetName Property
	BaseType Property
	BlockingTimeout Property
	BlockSize Property

	C
	CaseSensitive Property
	Catalog Property
	Category Property
	CentralizedConflicts Property
	CharacterSet Property
	Checked Property
	CheckPermissions Property
	Clustered Property
	CmdExecSuccessCode Property
	CodePage Property
	Collation Property
	CollationName Property
	ColumnDelimiter Property
	ColumnMaxLength Property
	ColumnName Property
	Columns Property
	ColumnsNullByDefault Property
	ColumnTracking Property
	ColumnType Property
	Command Property
	CommandOptions Property
	CommandTerminator Property
	CompareNull Property
	CompatibilityLevel Property (Database)
	CompatibilityLevel Property (MergePublication2, TransPublication2)
	ComputedText Property
	ConflictPolicy Property
	ConflictRetention Property
	ConflictTable Property
	ConnectionID Property
	ConnectTimeout Property
	ContactNull Property
	CopyAllDefaults Property
	CopyAllFunctions Property
	CopyAllObjects Property
	CopyAllRules Property
	CopyAllStoredProcedures Property
	CopyAllTables Property
	CopyAllTriggers Property
	CopyAllUserDefinedDatatypes Property
	CopyAllViews Property
	CopyData Property
	CopySchema Property
	Count Property
	CountResetDate Property
	CountResetTime Property
	CreateDate Property
	CreateForAttach Property
	CreationScriptOptions Property
	CreationScriptPath Property
	CurrentCompatibility Property
	CurrentExecutionStatus Property
	CurrentResultSet Property
	CurrentRunRetryAttempt Property
	CurrentRunStatus Property
	CurrentRunStep Property
	CurrentValue Property
	CursorCloseOnCommit Property

	D
	Database Property
	DatabaseFileGroups Property
	DatabaseFiles Property
	DatabaseName Property
	DatabaseUserName Property
	DataFile Property
	DataFilePath Property
	DataFileSize Property
	DataFileType Property
	DataFolder Property
	DataSource Property
	DataSpaceUsage Property
	DataSpaceUsed Property
	Datatype Property
	DateCreated Property
	DateFindOperand Property
	DateJobCreated Property
	DateJobLastModified Property
	DateLastModified Property
	Day Property
	Days Property
	DboLogin Property
	DBOUseOnly Property
	DBOwner Property
	DBReadOnly Property
	Default Property (Column, UserDefinedDatatype)
	Default Property (FileGroup)
	DefaultCursor Property
	DefaultDomain Property
	DefaultLogin Property
	DefaultOwner Property
	DefaultPath Property
	DelayBetweenResponses Property
	DeleteCommand Property
	DeleteLevel Property
	DenyNTLogin Property
	Description Property
	DestDatabase Property
	DestinationObjectName Property
	DestinationOwnerName Property
	DestLogin Property
	DestPassword Property
	DestServer Property
	DestTranslateChar Property
	DestUseTrustedConnection Property
	DeviceNumber Property
	Devices Property
	DistributionAgent Property
	DistributionCleanupTaskName Property
	DistributionDatabase Property
	DistributionJobID Property
	DistributionServer Property
	DistributionWorkingDirectory Property
	Distributor Property
	DistributorAvailable Property
	DistributorInstalled Property
	DistributorLocal Property
	DropDestObjectsFirst Property
	DropLogins Property
	DTSPackageLocation Property
	DTSPackageName Property
	DTSPackagePassword Property
	DynamicFilterHostName Property
	DynamicFilterLogin Property
	DynamicFilters Property
	DynamicReconfigure Property
	DynamicSnapshotJobId Property
	DynamicSnapshotLocation Property

	E
	EmailAddress Property
	EmailLevel Property
	EnableBcp Property
	Enabled Property
	EnabledForSyncMgr Property
	EnableMergePublishing Property
	EnableTransPublishing Property
	Encrypted Property
	EndRunDate Property
	EndRunTime Property
	EnlistDate Property
	ErrorFilePath Property
	ErrorLogPath Property
	ErrorLogSize Property
	EventCategoryID Property
	EventDescriptionKeyword Property
	EventID Property
	EventlogLevel Property
	EventSource Property
	ExcludeReplication Property
	ExpirationDate Property
	ExportWideChar Property

	F
	FailSafeOperator Property
	FakeSystemTable Property
	FileGroup Property
	FileGrowth Property
	FileGrowthInKB Property
	FileGrowthType Property
	FileNumber Property
	Files Property
	FillFactor Property
	FilterClause Property
	FirstDayOfWeek Property
	FirstRow Property
	Flags Property
	FormatFilePath Property
	FormatMedia Property
	ForwardAlways Property
	ForwardingServer Property
	ForwardingSeverity Property
	FrequencyInterval Property
	FrequencyRecurrenceFactor Property
	FrequencySubDay Property
	FrequencySubDayInterval Property
	FrequencyType Property
	FTPAddress Property
	FTPLogin Property
	FTPPassword Property
	FTPPort Property
	FTPSubdirectory Property
	FullName Property
	FullSubscription Property
	FullTextCatalogID Property
	FullTextCatalogName Property
	FullTextColumnLanguageID Property
	FullTextImageColumnType Property
	FullTextIndex Property
	FullTextIndexActive Property
	FullTextIndexSize Property
	FullTextKeyColumn Property
	FullTextPopulateStatus Property

	G
	Get Property
	Granted Property
	GrantedGranted Property
	Grantee Property
	GroupID Property
	GroupRegistrationServer Property
	GroupRegistrationVersion Property

	H
	HasBigIntColumn Property
	HasBigIntIdentityColumn Property
	HasClusteredIndex Property
	HasDBAccess Property
	HasFullTextIndexedTables Property
	HasGuidColumn Property
	HasIdentityColumn Property
	HasIdentityNotForReplColumn Property
	HasIndex Property
	HasNotification Property
	HasPrimaryKey Property
	HasRemoteDistributionPublisher Property
	HasRowVersionColumn Property
	HasSchedule Property
	HasServer Property
	HasSQLVariantColumn Property
	HasStep Property
	HasSubscription Property
	HasTimeStampColumn Property
	HistoryCleanupTaskName Property
	HistoryRetention Property
	HostName Property

	I
	ID Property
	ID Property (DistributionArticle2)
	Identity Property
	IdentityIncrement Property
	IdentityRangeThreshold Property
	IdentitySeed Property
	Impersonate Property
	ImpersonateClient Property
	ImportRowsPerBatch Property
	InActiveDirectory Property
	InAlter Property
	IncludeDB Property
	IncludeDependencies Property
	IncludeEventDescription Property
	IncludeIdentityValues Property
	IncludeLogins Property
	IncludeUsers Property
	IndexedColumns Property
	IndexOnTable Property
	IndexSpaceUsage Property
	IndexSpaceUsed Property
	Initialize Property
	InPrimaryKey Property
	InsertCommand Property
	InstanceName Property
	InsteadOfTrigger Property
	Isbulkadmin Property
	IsClustered Property
	IsComputed Property
	Isdb_accessadmin Property
	Isdb_backupoperator Property
	Isdb_datareader Property
	Isdb_datawriter Property
	Isdb_ddladmin Property
	Isdb_denydatareader Property
	Isdb_denydatawriter Property
	Isdb_owner Property
	Isdb_securityadmin Property
	Isdbcreator Property
	IsDeleted Property
	IsDeterministic Property
	Isdiskadmin Property
	IsDistributionPublisher Property
	IsFullTextEnabled Property
	IsFullTextInstalled Property
	IsFullTextKey Property
	IsNumeric Property
	IsOnComputed Property
	Isprocessadmin Property
	IsRowGuidCol Property
	IsSchemaBound Property
	Issecurityadmin Property
	Isserveradmin Property
	Issetupadmin Property
	Issysadmin Property
	IsVariableLength Property
	ItemCount Property

	J
	JobID Property
	JobName Property
	JoinArticleName Property
	JoinFilterClause Property
	JoinUniqueKey Property

	K
	KeepPartitionChanges Property
	KeepReplication Property

	L
	LangDateFormat Property
	Language Property
	LanguageAlias Property
	LastBackup Property
	LastDistributionDate Property
	LastDistributionStatus Property
	LastDistributionSummary Property
	LastDistributionSummaryTime Property
	LastEmailDate Property
	LastEmailTime Property
	LastMergedStatus Property
	LastMergedSummary Property
	LastMergedTime Property
	LastNetSendDate Property
	LastNetSendTime Property
	LastOccurrenceDate Property
	LastOccurrenceTime Property
	LastPageDate Property
	LastPageTime Property
	LastPollDate Property
	LastResponseDate Property
	LastResponseTime Property
	LastRestore Property
	LastRow Property
	LastRunDate Property
	LastRunDuration Property
	LastRunOutcome Property
	LastRunRetries Property
	LastRunTime Property
	Length Property
	LoadHistory Property
	LocalLogin Property
	LocalName Property
	LocalTime Property
	Location Property (LinkedServer)
	Location Property (TargetServer)
	LogFile Property
	LogFilePath Property
	LogFileSize Property
	LogFolder Property
	Login Property
	LoginSecure Property
	LoginTimeout Property
	LogReaderAgent Property

	M
	MailAccountName Property
	MailPassword Property
	MasterDBPath Property
	MaxConcurrentMerge Property
	MaxConcurrentDynamicSnapshots Property
	MaxDistributionRetention Property
	MaximumChar Property
	MaximumErrorsBeforeAbort Property
	MaximumLength Property
	MaximumSize Property
	MaximumValue Property
	MaxNumericPrecision Property
	MaxSize Property
	MediaDescription Property
	MediaName Property
	MediaPassword Property
	MergeJobID Property
	MessageID Property
	MinDistributionRetention Property
	MinimumRetries Property
	MinimumRunDuration Property
	MinimumValue Property
	Month Property
	Months Property
	MSXServerName Property
	MultipleColumnUpdate Property

	N
	Name Property
	NetName Property
	NetPacketSize Property
	NetSendAddress Property
	NetSendLevel Property
	NextDeviceNumber Property
	NextRunDate Property
	NextRunScheduleID Property
	NextRunTime Property
	NoRecompute Property
	NoRewind Property
	NotForRepl Property
	NotificationMessage Property
	NotificationMethod Property
	NP Property
	NTEventLogging Property
	NTLoginAccessType Property
	NumberOfProcessors Property
	NumericPrecision Property
	NumericScale Property

	O
	ObjectID Property
	ObjectName Property
	ObjectOwner Property
	ObjectType Property
	ObjectTypeName Property
	OccurrenceCount Property
	ODBCPrefix Property
	ODBCVersionString Property
	Offline Property
	OldestFirst Property
	OnFailAction Property
	OnFailStep Property
	OnSuccessAction Property
	OnSuccessStep Property
	OperatorToEmail Property
	OperatorToNetSend Property
	OperatorToPage Property
	Options Property
	OriginatingServer Property
	OSRunPriority Property
	OutcomeTypes Property
	OutputFileName Property
	Owner Property (Database, UserDefinedFunction)
	Owner Property (Database Objects)
	Owner Property (Job, JobFilter)

	P
	PageLevel Property
	PagerAddress Property
	PagerCCTemplate Property
	PagerDays Property
	PagerSendSubjectOnly Property
	PagerSubjectTemplate Property
	PagerToTemplate Property
	Parent Property
	Password Property
	PendingInstructions Property
	PercentCompleteNotification Property
	PerfMonMode Property
	PerformanceCondition Property
	Permissions Property
	PersistFlags Property
	PhysicalDatatype Property
	PhysicalLocation Property
	PhysicalMemory Property
	PhysicalName Property
	PID Property
	Pipes Property
	PollingInterval Property
	PopulateCompletionAge Property
	PopulateCompletionDate Property
	PopulateStatus Property
	PostSnapshotScript Property
	PreCreationMethod Property
	PreSnapshotScript Property
	PrimaryFile Property
	PrimaryFilePath Property
	Priority Property
	PrivilegeType Property
	PrivilegeTypeName Property
	ProcessID Property
	ProcessInputBuffer Property
	ProcessOutputBuffer Property
	ProductLevel Property
	ProductName Property
	ProviderName Property
	ProviderString Property
	Publication Property
	PublicationAttributes Property
	PublicationDB Property
	PublicationType Property
	PublishedInMerge Property
	PublishedInQueuedTransactions Property
	Publisher Property
	PublisherIdentityRangeSize Property

	Q
	QueryTimeout Property
	QueueType Property
	QuoteDelimiter Property
	QuotedIdentifier Property
	QuotedIdentifierStatus Property

	R
	ReadOnly Property
	RecoveryModel Property
	RecursiveTriggers Property
	ReferencedKey Property
	ReferencedTable Property
	RegionalSetting Property
	RegisteredOrganization Property
	RegisteredOwner Property
	RelocateFiles Property
	RemoteName Property
	RemotePassword Property
	RemoteUser Property
	ReplaceDatabase Property
	ReplicateAllColumns Property
	ReplicationFilterProcName Property
	ReplicationFilterProcOwner Property
	ReplicationFrequency Property
	ReplicationInstalled Property
	ResolverInfo Property
	ResourceUsage Property
	Restart Property
	ResultSets Property
	RetainDays Property
	RetentionPeriod Property
	RetryAttempts Property
	RetryInterval Property
	Role Property
	RootPath Property
	RowDelimiter Property
	Rows Property
	RpcEncrypt Property
	RpcList Property
	RpcMaxCalls Property
	RpcMinCalls Property
	Rule Property
	RuleOwner Property
	RunningValue Property

	S
	SaLogin Property
	SaturdayPagerEndTime Property
	SaturdayPagerStartTime Property
	ScheduleID Property
	Script2Type Property
	ScriptType Property
	SecurityMode Property (DistributionDatabase, IntegratedSecurity)
	SecurityMode Property (ReplicationSecurity)
	SelectIntoBulkCopy Property
	Server Property
	ServerBCPDataFileType Property
	ServerBCPKeepIdentity Property
	ServerBCPKeepNulls Property
	ServerID Property
	ServerName Property
	ServiceName Property
	Set Property
	SetHostName Property
	Severity Property
	ShortMonth Property
	ShortMonths Property
	ShowAdvancedOptions Property
	SingleUser Property
	Size Property
	SizeInKB Property
	SkipTapeHeader Property
	SkipTapeLabel Property
	SnapshotAgent Property
	SnapshotAvailable Property
	SnapshotJobID Property
	SnapshotMethod Property
	SnapshotObjectName Property
	SnapshotObjectOwner Property
	SNMP Property
	SNMPCurrentVersion Property
	SNMPExtensionAgents Property
	SNMPExtensionAgentsData Property
	SortOrder Property
	SourceObjectName Property
	SourceObjectOwner Property
	SourceTranslateChar Property
	SpaceAllocatedOnFiles Property
	SpaceAvailable Property
	SpaceAvailableInMB Property
	SpaceUsed Property
	SpxFlag Property
	SpxPort Property
	SpxServiceName Property
	SQLCurrentVersion Property
	SQLDataRoot Property
	SQLMessageID Property
	SQLRootPath Property
	SQLSeverity Property
	StandardLogin Property
	StandardPassword Property
	StandbyFiles Property
	StartRunDate Property
	StartRunTime Property
	StartStepID Property
	Startup Property
	StartupAccount Property
	Status Property (BackupDevice)
	Status Property (Database)
	Status Property (MergeArticle)
	Status Property (Services)
	Status Property (Subscription Objects)
	Status Property (TargetServer)
	StatisticsIndex Property
	StatusInfoRefetchInterval Property
	StepID Property
	StepSubsystem Property
	Subscriber Property
	SubscriberIdentityRangeSize Property
	SubscriberLogin Property
	SubscriberPassword Property
	SubscriberSecurityMode Property
	SubscriberType Property (MergePullSubscription, MergeSubscription)
	SubscriberType Property (TransPullSubscription, TransSubscription)
	SubscriptionDB Property
	SubscriptionID Property
	SubscriptionType Property
	SubsetFilterClause Property
	SubSystem Property
	SundayPagerEndTime Property
	SundayPagerStartTime Property
	SuperSocketEncrypt Property
	SuperSocketList Property
	SuspendIndexing Property
	SyncType Property
	SystemObject Property

	T
	TableFullTextChangeTrackingOn Property
	TableFullTextUpdateIndexOn Property
	TableLock Property
	TapeLoadWaitTime Property
	Tapes Property
	TcpFlag Property
	TcpPort Property
	Text Property
	TextFileGroup Property
	ThirdParty Property
	ThirdPartyOptions Property
	TimeZoneAdjustment Property
	ToPointInTime Property
	TopologyX Property
	TopologyY Property
	TornPageDetection Property
	TranslateChar Property
	TrueLogin Property
	TrueName Property
	TruncateLog Property (Backup)
	TruncateLog Property (BulkCopy)
	TruncateLogOnCheckpoint Property
	Trusted Property
	TrustedDistributorConnection Property
	Type Property (Alert)
	Type Property (BackupDevice)
	Type Property (Category)
	Type Property (DBObject)
	Type Property (Index)
	Type Property (Job, JobFilter)
	Type Property (JobServer)
	Type Property (Key)
	Type Property (Login)
	Type Property (Property)
	Type Property (RegisteredSubscriber)
	Type Property (StoredProcedure)
	Type Property (Trigger)
	Type Property (UserDefinedFunction)
	TypeName Property
	TypeOf Property

	U
	UniqueIndexForFullText Property
	UniqueKeyCount Property
	UnloadTapeAfter Property
	UpdateCommand Property
	Upgrade Property
	Use6xCompatible Property
	UseBulkCopyOption Property
	UseCollation Property
	UseCurrentUserServerGroups Property
	UseDestTransaction Property
	UseExistingConnection Property
	UseFTP Property
	UseInteractiveResolver Property
	UserData Property
	UserName Property
	UserProfile Property
	UseServerSideBCP Property
	UseTrustedConnection Property

	V
	ValidateSubscriberInfo Property
	Value Property
	VendorName Property
	VerifyResolverSignature Property
	Version Property
	VersionBuild Property
	VersionMajor Property
	VersionMinor Property
	VersionNumber Property
	VersionString Property
	ViaListenInfo Property
	ViaRecognizedVendors Property
	ViaVendor Property
	VinesGroupName Property
	VinesItemName Property
	VinesOrgName Property

	W
	WeekdayPagerEndTime Property
	WeekdayPagerStartTime Property
	WorkingDirectory Property
	WSProxyAddress Property
	WSProxyPort Property

	Methods
	A
	Abort Method
	ActivateSubscriptions Method
	Add Method
	AddAlternatePublisher Method
	AddMember Method
	AddMemberServer Method
	AddNotification Method
	AddObject Method
	AddObjectByName Method
	AddReplicatedColumns Method
	AddStartParameter Method
	AddStepToJob Method
	Alter Method
	AlterDataType Method
	ApplyToTargetServer Method
	ApplyToTargetServerGroup Method
	AttachDB Method
	AttachDBWithSingleFile Method
	AttachDBWithSingleFile2 Method
	AttachSubscriptionDatabase Method

	B
	BeginAlter Method
	BeginTransaction Method
	BindDefault Method
	BindRule Method
	BindToColumn Method
	BindToDatatype Method
	BrowseSnapshotFolder Method (MergePublication2)
	BrowseSnapshotFolder Method (TransPublication2)

	C
	CancelAlter Method
	ChangeAgentParameter Method
	ChangeAgentProfile Method
	CheckAllocations Method
	CheckAllocationsDataOnly Method
	CheckAllocationsDataOnlyWithResult Method
	CheckAllocationsWithResult Method
	CheckCatalog Method
	CheckCatalogWithResult Method
	CheckDefaultSyntax Method
	CheckFilegroup Method
	CheckFilegroupDataOnly Method
	CheckFileGroupDataOnlyWithResult Method
	CheckFileGroupWithResult Method
	CheckIdentityValue Method
	CheckIdentityValues Method
	CheckIndex Method
	CheckIndexWithResult Method
	Checkpoint Method
	CheckRuleSyntax Method
	CheckTable Method
	CheckTableDataOnly Method
	CheckTableDataOnlyWithResult Method
	CheckTables Method
	CheckTablesDataOnly Method
	CheckTablesDataOnlyWithResult Method
	CheckTablesWithResult Method
	CheckTableWithResult Method
	CleanUp Method
	CleanUpAnonymousAgentInfo Method
	CleanUpDistributionPublisherByName Method
	Close Method
	CommandShellImmediate Method
	CommandShellWithResults Method
	CommitTransaction Method
	Connect Method
	Continue Method
	CopySnapshot Method (MergePublication2)
	CopySnapshot Method (TransPublication2)
	CopySubscriptionDatabase Method
	CreateAgentProfile Method

	D
	DeleteAgentProfile Method
	Deny Method (Database)
	Deny Method (StoredProcedure)
	Deny Method (Table, View)
	Deny Method (UserDefinedFunction)
	DetachDB Method
	DetachedDBInfo Method
	DisableAgentOffload Method
	DisableFullTextCatalogs Method
	DisableMergeSubscription Method
	DisableTransSubscription Method
	DisConnect Method
	DoAlter Method
	DoAlterWithNoCheck Method
	DropMember Method

	E
	EnableAgentOffload Method
	EnableFullTextCatalogs Method
	EnableMergeSubscription Method
	EnableTransSubscription Method
	EnumAccountInfo Method
	EnumAgentErrorRecords Method
	EnumAgentParameters Method
	EnumAgentProfiles Method
	EnumAlerts Method
	EnumAllSubscriptions Method
	EnumAllSubsetFilters Method
	EnumAlternatePublishers Method
	EnumAvailableMedia Method
	EnumCandidateKeys Method
	EnumCollations Method
	EnumColumns Method
	EnumConflictTables Method
	EnumCustomResolvers Method
	EnumDatabaseMappings Method
	EnumDatabaseRoleMember Method
	EnumDataSourceNames Method
	EnumDependencies Method
	EnumDirectories Method
	EnumDistributionAgentSessionDetails Method
	EnumDistributionAgentSessionDetails2 Method
	EnumDistributionAgentSessions Method
	EnumDistributionAgentSessions2 Method
	EnumDistributionAgentViews Method
	EnumDistributionAgentViews2 Method
	EnumErrorLogs Method
	EnumFileGroups Method
	EnumFiles Method (Database)
	EnumFiles Method (FileGroup)
	EnumFixedDatabaseRolePermission Method
	EnumFullTextLanguages Method
	EnumGeneratedSubsetFilters Method
	EnumHistory Method
	EnumIdentityRangeInfo Method
	EnumInitialAccesses Method
	EnumJobHistory Method
	EnumJobInfo Method
	EnumJobNotifications Method
	EnumJobs Method
	EnumLastStatisticsUpdates Method
	EnumLocks Method
	EnumLoginMappings Method
	EnumLogReaderAgentSessionDetails Method
	EnumLogReaderAgentSessionDetails2 Method
	EnumLogReaderAgentSessions Method
	EnumLogReaderAgentSessions2 Method
	EnumLogReaderAgentView Method
	EnumLogReaderAgentViews Method
	EnumMatchingSPs Method
	EnumMergeAgentSessionDetails Method
	EnumMergeAgentSessionDetails2 Method
	EnumMergeAgentSessions Method
	EnumMergeAgentSessions2 Method
	EnumMergeAgentViews Method
	EnumMergeAgentViews2 Method
	EnumMiscellaneousAgentViews Method
	EnumNotifications Method
	EnumNTDomainGroups Method
	EnumNTGroups Method
	EnumObjects Method
	EnumOutputs Method
	EnumParameters Method
	EnumProcesses Method
	EnumPublicationAccesses Method
	EnumPublicationArticles Method
	EnumPublicationReferences Method
	EnumPublications Method
	EnumPublications2 Method
	EnumQueueReaderAgentSessionDetails Method
	EnumQueueReaderAgentSessions Method
	EnumQueueReaderAgentView Method
	EnumQueueReaderAgentViews Method
	EnumReferencedKeys Method
	EnumReferencedTables Method
	EnumReferencingKeys Method
	EnumReferencingTables Method
	EnumServerAttributes Method
	EnumServerRoleMember Method
	EnumServerRolePermission Method
	EnumSnapshotAgentSessionDetails Method
	EnumSnapshotAgentSessionDetails2 Method
	EnumSnapshotAgentSessions Method
	EnumSnapshotAgentSessions2 Method
	EnumSnapshotAgentView Method
	EnumSnapshotAgentViews Method
	EnumStatistics Method
	EnumSubscriptions Method
	EnumSubscriptionViews Method
	EnumSubscriptionViews2 Method
	EnumSubSystems Method
	EnumTables Method
	EnumTargetServers Method
	EnumThirdPartyPublications Method
	EnumThirdPartyPublications2 Method
	EnumThirdPartyVendorNames Method
	EnumUsers Method
	EnumVersionInfo Method
	ExecuteImmediate Method (Database, SQLServer)
	ExecuteImmediate Method (LinkedServer, RemoteServer)
	ExecuteWithResults Method
	ExecuteWithResultsAndMessages Method
	ExecuteWithResultsAndMessages2 Method
	ExportData Method

	F
	FindName Method
	FullTextIndexScript Method
	FullTextPopulation Method
	FullTextUpdateIndex Method

	G
	GenerateCreationSQL Method
	GenerateCreationSQLOnView Method
	GenerateFilters Method
	GenerateSQL Method (Backup, Restore)
	GenerateSQL Method (Database)
	GenerateSQL Method (FullTextCatalog)
	GenerateSQL Method (Index)
	GenerateSQL Method (Table, UserDefinedDatatype)
	GenerateSQLOnView Method
	GetAgentsStatus Method (DistributionPublication, DistributionPublisher)
	GetAgentsStatus Method (Distributor)
	GetAgentsStatus2 Method (DistributionPublication2, DistributionPublisher2)
	GetAgentsStatus2 Method (Distributor2)
	GetColumnBigInt Method
	GetColumnBinary Method
	GetColumnBinaryLength Method
	GetColumnBool Method
	GetColumnDate Method
	GetColumnDouble Method
	GetColumnFloat Method
	GetColumnGUID Method
	GetColumnLong Method
	GetColumnSQLVARIANT Method
	GetColumnSQLVARIANTDataType Method
	GetColumnSQLVARIANTLength Method
	GetColumnSQLVARIANTToString Method
	GetColumnString Method
	GetDatatypeByName Method
	GetIndexedColumnDESC Method
	GetJobByID Method
	GetMemoryUsage Method
	GetObjectByName Method
	GetRangeString Method
	GetUserName Method
	Grant Method (Database)
	Grant Method (StoredProcedure, UserDefinedFunction)
	Grant Method (Table, View)
	GrantPublicationAccess Method

	I
	ImportData Method
	Insert Method
	InsertColumn Method
	Install Method
	Invoke Method
	IsDetachedPrimaryFile Method
	IsFixedRole Method
	IsLogin Method
	IsMember Method
	IsNTGroupMember Method
	IsObjectDeleted Method
	IsOS Method
	IsPackage Method
	IsUser Method
	IsValidKeyDatatype Method
	Item Method
	ItemByID Method

	K
	KillDatabase Method
	KillProcess Method

	L
	ListAvailableSQLServers Method
	ListAvailableUniqueIndexesForFullText Method
	ListBoundColumns Method
	ListBoundDatatypes Method
	ListCollations Method
	ListColumns Method
	ListCompatibilityLevels Method
	ListDatabasePermissions Method
	ListDetachedDBFiles Method
	ListDetachedLogFiles Method
	ListIndexedColumns Method
	ListInstalledInstances Method
	ListKeys Method
	ListMembers Method (Login, User)
	ListMembers Method (SQLServer)
	ListMemberServers Method
	ListObjectPermissions Method
	ListObjectNames Method
	ListObjects Method
	ListOwnedObjects Method
	ListPermissions Method
	ListPrivilegeColumns Method
	ListReplicatedColumns Method
	ListStartupProcedures Method
	ListUserColumnPermissions Method
	ListUserPermissions Method

	M
	MSXDefect Method
	MSXEnlist Method

	P
	Pause Method
	PingSQLServerVersion Method
	PurgeHistory Method
	PurgeJobHistory Method

	Q
	Quit Method

	R
	ReadAgentOffloadInfo Method
	ReadBackupHeader Method (BackupDevice)
	ReadBackupHeader Method (Restore)
	ReadBackupHeader Method (SQLServer)
	ReadErrorLog Method
	ReadFileList Method
	ReadLastValidationDateTimes Method
	ReadMediaHeader Method (BackupDevice)
	ReadMediaHeader Method (Restore)
	ReadReplicationFailOverMode Method
	ReAssignJobsByLogin Method
	Rebuild Method
	RebuildIndex Method
	RebuildIndexes Method
	RecalcSpaceUsage Method
	ReCompileReferences Method
	ReconfigureCurrentValues Method
	ReconfigureWithOverride Method
	ReConnect Method
	Refresh Method
	RefreshChildren Method
	ReInitialize Method
	ReInitialize2 Method
	ReInitializeAllSubscriptions Method
	ReInitializeAllSubscriptions2 Method
	Remove Method (Objects)
	Remove Method (Collections)
	Remove Method (Operator)
	Remove Method (Operators)
	RemoveAllJobSchedules Method
	RemoveAllJobSteps Method
	RemoveAllObjects Method
	RemoveAlternatePublisher Method
	RemoveDefunctAnonymousSubscription Method
	RemoveFromTargetServer Method
	RemoveFromTargetServerGroup Method
	RemoveFullTextCatalogs Method
	RemoveJobByID Method
	RemoveJobsByLogin Method
	RemoveJobsByServer Method
	RemoveMemberServer Method
	RemoveNotification Method
	RemoveReplicatedColumns Method
	Replace Method
	ReplicateUserDefinedScript Method
	ReplicationAddColumn Method
	ReplicationDropColumn Method
	ResetOccurrenceCount Method
	ReSynchronizeSubscription Method
	Revoke Method (Database)
	Revoke Method (StoredProcedure)
	Revoke Method (Table, View)
	Revoke Method (UserDefinedFunction)
	RevokePublicationAccess Method
	RollbackTransaction Method

	S
	SaveTransaction Method
	Script Method
	Script Method (BackupDevice Object)
	Script Method (Replication Objects)
	Script Method (Table Object)
	ScriptDestinationObject Method
	ScriptDestinationObject2 Method (MergeArticle2)
	ScriptTransfer Method
	ServerLoginMode Method
	SetCodePage Method
	SetFullTextIndexWithOptions Method
	SetIndexedColumnDESC Method
	SetOptions Method
	SetOwner Method
	SetPassword Method
	SetTopologyXY Method
	SetUpDistributorPassword Method
	Shrink Method
	Shutdown Method
	SQLBackup Method
	SQLRestore Method
	SQLVerify Method
	Start Method (FullTextCatalog)
	Start Method (FullTextService, JobServer)
	Start Method (Job)
	Start Method (SQLServer)
	StartMonitor Method
	Stop Method
	StopMonitor Method

	T
	Transfer Method
	Truncate Method
	TruncateData Method

	U
	UnbindFromColumn Method
	UnbindFromDatatype Method
	Uninstall Method
	UnloadODSDLL Method
	UpdateAgentProfile Method
	UpdateDefaultAgentProfile Method
	UpdateIndexStatistics Method
	UpdateNotification Method
	UpdateStatistics Method
	UpdateStatisticsWith Method (Column, Index)
	UpdateStatisticsWith Method (Table)

	V
	ValidateDataSource Method
	ValidatePublication Method (MergePublication2)
	ValidatePublication Method (TransPublication2)
	ValidateSubscription Method
	ValidateSubscriptions Method
	VerifyConnection Method

	W
	WriteReplicationFailOverMode Method

	Events
	BatchImported Event
	CommandSent Event
	ConnectionBroken Event
	Complete Event
	NextMedia Event
	PercentComplete Event
	PercentCompleteAtStep Event
	QueryTimeout Event
	RemoteLoginFailed Event
	RowsCopied Event
	ScriptTransferPercentComplete Event
	ServerMessage Event
	StatusMessage Event
	TransferPercentComplete Event

	Constants
	A
	Alert Constants (SQLDMO_ALERT_TYPE)
	Audit Constants (SQLDMO_AUDIT_TYPE)

	B
	Backup Process Control Constants (SQLDMO_BACKUP_TYPE)
	Bulk Copy Code Page Constants (SQLDMO_BCP_CODEPAGE_TYPE)
	Bulk Copy Data Constants (SQLDMO_DATAFILE_TYPE)
	Bulk Copy Server Data File Constants (SQLDMO_SERVERBCP_DATAFILE_TYPE)

	C
	Compatibility Level Constants (SQLDMO_COMP_LEVEL_TYPE)
	Configuration Value Constants (SQLDMO_CONFIGVALUE_TYPE)

	D
	Database Compression Constants (SQLDMO_SHRINK_TYPE)
	Database Repair Constants (SQLDMO_DBCC_REPAIR_TYPE)
	Database Statistics Affected Constants (SQLDMO_STAT_AFFECT_TYPE)
	Database Statistics Scanning Constants (SQLDMO_STAT_SCAN_TYPE)
	Database Status Constants (SQLDMO_DBSTATUS_TYPE)
	Database User Profile Constants (SQLDMO_DBUSERPROFILE_TYPE)
	Data Copy Constants (SQLDMO_COPYDATA_TYPE)
	Day of Week Constants (SQLDMO_WEEKDAY_TYPE)
	Dependency Constants (SQLDMO_DEPENDENCY_TYPE)
	Device Type Constants (SQLDMO_DEVICE_TYPE)

	E
	Error Constants (SQLDMO_ERROR_TYPE)
	Event Type Constants (SQLDMO_EVENT_TYPE)

	F
	File Growth Constants (SQLDMO_GROWTH_TYPE)
	Find Operand Constants (SQLDMO_FIND_OPERAND)
	Full-Text Service Population Status Constants (SQLDMO_FULLTEXT_POPULATE_STATUS)
	Full-Text Service Population Type Constants (SQLDMO_FULLTEXT_POPULATE_TYPE)
	Full-text Service Start Constants (SQLDMO_FULLTEXT_START_TYPE)
	Full-text Service Status Constants (SQLDMO_FULLTEXTSTATUS_TYPE)

	G
	Grant Type Constants (SQLDMO_GRANTED_TYPE)

	I
	Index Constants (SQLDMO_INDEX_TYPE)

	J
	Job Category Constants (SQLDMO_CATEGORYTYPE_TYPE)
	Job Completion Constants (SQLDMO_COMPLETION_TYPE)
	Job Execution Status Constants (SQLDMO_JOBEXECUTION_STATUS)
	Job Outcome Constants (SQLDMO_JOBOUTCOME_TYPE)
	Job Step OS Priority Constants (SQLDMO_RUNPRIORITY_TYPE)
	Job Scope Constants (SQLDMO_JOB_TYPE)
	Job Step Action Constants (SQLDMO_JOBSTEPACTION_TYPE)

	K
	Key Type Constants (SQLDMO_KEY_TYPE)

	L
	Linked Table Type Constants (SQLDMO_LINKEDTABLE_TYPE)
	List Sorting Constants (SQLDMO_OBJSORT_TYPE)
	Login Type Constants (SQLDMO_LOGIN_TYPE)

	M
	Media Type Constants (SQLDMO_MEDIA_TYPE)
	Miscellaneous Constants (SQLDMO_CONSTANTS_TYPE)
	Month and Day (Relative Scheduling) Constants (SQLDMO_MONTHDAY_TYPE)

	N
	Notification Enumeration Constants (SQLDMO_ENUMNOTIFY_TYPE)
	Notification Method Constants (SQLDMO_NOTIFY_TYPE)

	O
	Object Scripting Constants (SQLDMO_SCRIPT_TYPE)
	Object Scripting Constants (SQLDMO_SCRIPT2_TYPE)
	Operating System Type Constants (SQLDMO_OS_TYPE)

	P
	Performance Monitor Constants (SQLDMO_PERFMON_TYPE)
	Privilege Constants (SQLDMO_PRIVILEGE_TYPE)
	Procedure Constants (SQLDMO_PROCEDURE_TYPE)

	R
	Recovery Model Constants (SQLDMO_RECOVERY_TYPE)
	Replication Agent Constants (SQLDMO_REPLAGENT_TYPE)
	Replication Article Command Option Constants (SQLDMO_COMMANDOPTION_TYPE)
	Replication Article Constants (SQLDMO_ARTICLE_TYPE)
	Replication Article Pre-Creation Constants (SQLDMO_PREARTICLE_TYPE)
	Replication Article Status Constants (SQLDMO_ARTSTATUS_TYPE)
	Replication Compatibility Level Constants (SQLDMO_REPLCOMPLEVEL_TYPE)
	Replication Conflict Policy Constants (SQLDMO_CONFLICTPOLICY_TYPE)
	Replication Conflict Resolution Constants (SQLDMO_RESOLVECONFLICT_TYPE)
	Replication Constants (SQLDMO_REPLCONSTANTS_TYPE)
	Replication DTS Package Constants (SQLDMO_REPLDTSLOC_TYPE)
	Replication Failover Mode Constants (SQLDMO_REPLFAILOVER_TYPE)
	Replication Frequency Constants (SQLDMO_REPFREQ_TYPE)
	Replication Initial Synchronization Constants (SQLDMO_INITIALSYNC_TYPE)
	Replication Merge Subscriber Constants (SQLDMO_MERGESUBSCRIBER_TYPE)
	Replication Method Constants (SQLDMO_REPLICATION_TYPE)
	Replication Object Creation Script Constants (SQLDMO_CREATIONSCRIPT_TYPE)
	Replication Permissions Checking Constants (SQLDMO_CHECKPERMISSIONS_TYPE)
	Replication Publication Attribute Constants (SQLDMO_PUBATTRIB_TYPE)
	Replication Publication Constants (SQLDMO_PUBLICATION_TYPE)
	Replication Publication Status Constants (SQLDMO_PUBSTATUS_TYPE)
	Replication Queue Type Constants (SQLDMO_REPLQUEUE_TYPE)
	Replication Resynchronization Constants (SQLDMO_RESYNC_TYPE)
	Replication Script Constants (SQLDMO_REPSCRIPT_TYPE)
	Replication Security Constants (SQLDMO_REPLSECURITY_TYPE)
	Replication Signature Verification Constants (SQLDMO_VERIFYSIGNATURE_TYPE)
	Replication Subscriber Constants (SQLDMO_SUBSCRIBER_TYPE)
	Replication Subscription Constants (SQLDMO_SUBSCRIPTION_TYPE)
	Replication Subscription Status Constants (SQLDMO_SUBSTATUS_TYPE)
	Replication Subscription Synchronization Constants (SQLDMO_SUBSYNC_TYPE)
	Replication Task Status Constants (SQLDMO_TASKSTATUS_TYPE)
	Replication Third-Party Publication Display Option Constants (SQLDMO_THIRDPARTYOPTION_TYPE)
	Replication Transactional Subscriber Constants (SQLDMO_TRANSUBSCRIBER_TYPE)
	Replication Validation Method Constants (SQLDMO_VALIDATIONMETHOD_TYPE)
	Replication Validation Option Constants (SQLDMO_VALIDATIONOPTION_TYPE)
	Restore Process Control Constants (SQLDMO_RESTORE_TYPE)
	Role Constants (SQLDMO_DBUSERROLE_TYPE)
	Role Type Constants (SQLDMO_ROLE_TYPE)

	S
	Scheduling Frequency Constants (SQLDMO_FREQUENCY_TYPE)
	Scheduling Relative Frequency Constants (SQLDMO_FREQRELATIVE_TYPE)
	Scheduling Subfrequency Constants (SQLDMO_FREQSUB_TYPE)
	Security Constants (SQLDMO_SECURITY_TYPE)
	Session Constants (SQLDMO_SESSION_TYPE)
	Server Option Constants (SQLDMO_SRVOPTION_TYPE)
	Server User Profile Constants (SQLDMO_SRVUSERPROFILE_TYPE)
	SQL Server Agent Type Constants (SQLDMO_JOBSERVER_TYPE)
	SQL Server Connection Constants (SQLDMO_VERIFYCONN_TYPE)
	SQL Server Data Type Constants (SQLDMO_QUERY_DATATYPE)
	SQL Server Installed Product Constants (SQLDMO_PACKAGE_TYPE)
	SQL Server Version Constants (SQLDMO_SQL_VER)
	SQL-DMO Object Type Constants (SQLDMO_OBJECT_TYPE)
	Statement Execution Constants (SQLDMO_EXEC_TYPE)
	Status Information Constants (SQLDMO_STATUSINFO_TYPE)

	T
	Table Attribute Constants (SQLDMO_TABLEATT_TYPE)
	Target Server Status Constants (SQLDMO_TARGETSERVERSTATUS_TYPE)
	Transaction Log Backup Constants (SQLDMO_BACKUP_LOG_TYPE)
	Transfer Script Mode Constants (SQLDMO_XFRSCRIPTMODE_TYPE)
	Trigger Constants (SQLDMO_TRIGGER_TYPE)

	U
	User-Defined Function Constants (SQLDMO_UDF_TYPE)

	W
	Windows NT Access Constants (SQLDMO_NTACCESS_TYPE)
	Windows NT Authentication Constants (SQLDMO_INTSECLOGIN_TYPE)
	Windows NT Service Constants (SQLDMO_SVCSTATUS_TYPE)

	C/C++ Specifics
	Object Class Identifiers and Type Definitions
	A
	B
	C
	D
	F
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

	Scope-aware Template Classes
	CTempBSTR
	CTempOLERef

	C/C++ Shortcuts
	Collection Handling
	Defined List Types
	Helpful Macros

	SQL-DMO Samples
	AxSQLDMOCtl
	BackRestEvents (Visual Basic)
	BackRestEvents (C++)
	BackupDevice
	CreateDatabase
	CreateTable
	DMOExplorer
	Dmoping
	Enums
	Explore
	Idxtest
	Login
	Registry
	Service
	Smartptr
	Soc
	Socpp
	SQLScripts
	VerifyBackup

	SQL-DMO Examples
	SQL-DMO Examples: Alerts and Notification
	Creating Alerts
	Handling Raised Alerts (Notification)

	SQL-DMO Examples: Backup and Restore
	Backing Up a Database
	Backing up Selected Portions of a Database
	Scripting a Database Backup For Scheduled Execution
	Database Restore

	SQL-DMO Examples: Databases
	Altering a Database by Adding a Database File
	Creating a Database

	SQL-DMO Examples: Full-text Indexing
	SQL-DMO Examples: Indexes
	SQL-DMO Examples: Jobs and Schedules
	Creating SQL Server Agent Jobs
	Controlling Job Step Logic
	Targeting SQL Server Agent Jobs
	Scheduling SQL Server Agent Jobs

	SQL-DMO Examples: Tables
	Altering a Table by Adding a Column
	Altering a Table by Adding a FOREIGN KEY Constraint
	Altering a Table by Adding a PRIMARY KEY Constraint
	Creating a Table

