SQL-DMO

Developing SQL-DMO Applications

SQL Distributed Management Objects (SQL-DMO) is a collection of objects
encapsulating Microsoft® SQL Server™ database and replication management.

SQL-DMO is a dual interface COM, in-process server implemented as a
dynamic-link library (DLL). When creating a SQL-DMO application, you can
use any OLE Automation controller or COM client development platform using
Cor C++.

SQL-DMO automates:

e Repetitive or commonly performed SQL Server administrative tasks.
e SQL Server object creation and administration.

e Creation and administration of SQL Server Agent jobs, alerts, and
operators.
e SQL Server replication installation and configuration.

SQL-DMO documentation covers the components of SQL-DMO, their use in
developing applications, and SQL-DMO application construction. It also
includes a detailed component reference.

See Also

Scripting Data Access Controls in Internet Explorer

JavaScript:hhobj_1.Click()

SQL-DMO

Getting Started with SQL-DMO

In this section, you will find SQL-DMO syntax conventions and information
about SQL-DMO system requirements and installation.

SQL-DMO

SQL-DMO Syntax Conventions

SQL-DMO typographical conventions are based on those used in Microsoft®
Visual Basic® reference materials.

Convention Used for

UPPERCASE Transact-SQL statements, macro names, and terms used
at the operating system level.

monospace Sample command lines and program code.

italic Information that the user or the application must
provide.

bold SQL-DMO objects; object events, methods or

properties; data types; and other syntax that must be
typed exactly as shown.

Note Automation allows SQL-DMO to expose object properties, methods,
events, and constants through intelligent and easy-to-use automation controllers,
simplifying the development task.

When using an automation controller, such as Visual Basic, assistance built into
the controller exposes SQL-DMO object properties, methods, and events as
defined, and prompts for required or optional parameters as part of the
development process. When using C or C++, every object property and method
appears as an object member function, and the distinction disappears.

The SQL-DMO documentation is directed at the user of an automation
controller. Properties are documented as properties, not member functions.
Prototypes for SQL-DMO object member functions are included in each topic
for the C or C++ developer.

SQL-DMO

System Requirements for SQL-DMO

SQL-DMO uses the Microsoft® SQL Server™ ODBC driver to connect to and
communicate with instances of SQL Server. Stored procedures supporting SQL-
DMO are installed on each instance of SQL Server.

SQL-DMO clients require one of these operating systems:

e Microsoft Windows NT® version 4.0 (Service Pack 5 or later).

e Microsoft Windows® 98 or Microsoft Windows® 95.
Or
e Microsoft Windows® 2000.

SQL-DMO clients require SQL Server ODBC Driver, version 3.80 or later,
which ships with SQL Server 2000. The client network library must be properly
configured.

SQL-DMO locates instances of SQL Server using the SQL Server instance
name. SQL-DMO does not use ODBC data source definitions for connection,
and you need not use the ODBC Administrator to create data source definitions
for servers administered by SQL-DMO applications.

Stored procedures that support SQL-DMO are created as part of an instance of
SQL Server 2000. The Transact-SQL script Sqldmo.sql is shipped with SQL
Server 2000 and can be used to reinstall the required stored procedures if
necessary.

See Also
Hardware and Software Requirements for Installing SQL Server 2000

Configuring Client Network Connections

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL-DMO

Installing SQL-DMO

All required SQL-DMO components are installed as part of an instance of
Microsoft® SQL Server™ server or client. SQL-DMO is implemented in a

single dynamic-link library (DLL). You may develop SQL-DMO applications on

either a client or a server. When using an OLE Automation controller as a

development platform, such as Microsoft Visual Basic®, no additional files are

required. Application development using C or C++ requires the SQL-DMO

header files.

SQL-DMO sample applications, providing additional reference material for
SQL-DMO application development, are included with SQL Server.

Directory File Description
C:\Program Sgldmo.dll DLL implementing SQL-DMO
Files\Microsoft SQL objects.
Server\80\Tools\Binn
C:\Program Sqldmo80.hlp/SQL-DMO help file used within
Files\Microsoft SQL the development environment to
Server\80\Tools\Binn provide context sensitive help
about SQL-DMO objects,
properties and methods.
C:\Program Sqldmo.rll |[Localized resource file. The
Files\Microsoft SQL resource directory varies based on
Server\80\Tools\Binn\ the national language of the
Resources\xxxx instance of SQL Server client or
server. For example, the directory
1033 is a decimal representation
of the language identifier
0X0409, indicating English, U.S.
C:\Program Sqldmo.h C/C++ header file containing
Files\Microsoft SQL SQL-DMO member function
Server\80\Tools\ prototypes, enumerated data
Devtools\Include types, and macros.
C:\Program Sqldmoid.h |C/C++ header file containing
Files\Microsoft SQL SQL-DMO interface and class

Server\80\Tools\ identifiers.

Devtools\Include

\Program Files\Microsoft [Sqldmo.sql |Transact-SQL script

SQL implementing stored procedures

Server\MSSQL\Install that support SQL-DMO.
Available on SQL Server server-
instance only.

C:\Program ALL Sample applications illustrating

Files\Microsoft SQL SQL-DMO use.

Server\80\Tools\

Devtools\Samples\Sqldmo

To register the SQL-DMO components on a client computer

e From C:\Program Files\Microsoft SQL Server
\80\Tools\Binn\Resources\<language> directory, execute:

\Program Files\Microsoft SQL Server \80\Tools\Binn\REGSVF

e From any directory, execute:

C:\Program Files\Microsoft SQL Server \80\Tools\Binn\REGS
C:\Program Files\Microsoft SQL Server \80\Tools\Binn\resourt

See Also
Overview of Installing SQL Server 2000

JavaScript:hhobj_1.Click()

SQL-DMO

SQL-DMO Objects and SQL Server Administration

SQL-DMO encapsulates Microsoft® SQL Server™ components, presenting the
attributes of the component piece to you as the properties of an object instance.
Alter the properties of the instance, or use object methods to automate SQL
Server administration.

An instance of SQL Server may be viewed as a collection of components. A
component is not simply a database object or a system database record, such as
that defining an operator. It can be a more abstract construct, such as the current
configuration of an instance of SQL Server. For example:

¢ An instance of SQL Server is installed by a user. The name of the user
whom installs SQL Server is captured in the registry of the computer on
which an instance of SQL Server resides.

e The SQL Server Northwind sample database is implemented in
physical files in a specific subdirectory of a disk drive. At any given
point in time, the usage of space within those physical files can be
measured.

e The Northwind..Categories table has four columns.

With SQL-DMO, you can use:

e The Registry object RegisteredOwner property as part of an
installation of an instance of SQL Server.

e The Database object PrimaryFilePath and DataSpaceUsage
properties as part of an automated data integrity check system.

e The Count property of the Columns collection of a Table object to set
the number of pages on a property sheet that presents column
definitions.

Essentially, SQL-DMO has three object types:

e An object is a stand-alone object that references a single SQL Server
component, such as the Table object.

e A collection is a container object that allows members to be added and
removed, such as the Tables collection.

e A list is a container object that is fixed in membership, such as the
SQLObjectList object list.

All SQL-DMO objects expose properties, such as Name or Count, identifying
instance data. Most expose methods, such as BindToColumn or MSXEnlist,
which act upon an instance and usually modify instance data in some fashion. A
few objects support events, such as PercentComplete, which provide object
state or other data back to the client application.

SQL-DMO

SQL-DMO Object

For SQL-DMO, an object references a single Microsoft® SQL Server™
component. The referenced component may be a new or existing database
object, a replication or SQL Server Agent component, or could encapsulate a
SQL Server management process such as database restore.

SQL-DMO

Object Properties

SQL-DMO object properties provide access to instance data. For those SQL-
DMO objects that reference specific Microsoft® SQL Server™ components,
instance data identifies the referenced component for the application. For
example:

e The value of the Name property in a Table object instance referencing
the Northwind..Employees table is Employees.

e The value of the Name property in a Table object instance referencing
the Northwind..Products table is Products.

Many properties are read-only, which expose informational data to the
application. For example:

e The Name property of a SystemDatatype object provides the name of a
SQL Server data type; it can be used to assist users in column definition
for table creation.

e The OccurrenceCount property of an Alert object reports the number
of times that an event has caused SQL Server Agent alert notification;
an application could take exceptional action if the value is greater than
25.

Some properties can be both read and written. Altering the value of a read/write
property causes alteration in the referenced component. For example:

e The Length property of a Column object exposes the number of
characters or bytes in a fixed length or variable length data type column.
A column defined as varchar(12) reports 12 in the Length property of
a referencing Column object. Setting the property to 15 causes the
execution of an ALTER TABLE statement that changes the data type
definition on SQL Server.

e The CreationScriptOptions property of a TransArticle object
specifies the attributes of table creation for the initial snapshot
supporting the referenced article. By default, creation of a declarative
referential integrity PRIMARY KEY constraint is not included as part
of the table creation script. Setting the CreationScriptOptions property
so that creation of a PRIMARY KEY constraint is included records the
desired change in object creation scripting. The change in behavior,
initiated in the SQL-DMO object, is reflected in the script created when
the snapshot is next generated.

ImporTANT Modifying property values can have unintended
consequences. For example, changing the Datatype or Length property
of a Column object referencing an existing column alters the table
containing the column and attempts to convert all data to the new data
type. The process can be time-consuming and can fail. Applications that
allow user property change should notify the user through a message or
busy pointer and should provide appropriate error handling.

Some properties can be read or written when they do not reference an existing
SQL Server component, but are read-only when they do. Typically, these
properties name or identify a SQL Server component. For example:

e The Name property of a LinkedServer object can be set when the
LinkedServer object has been created by an application and will be
added to the LinkedServers collection of a SQLServer object. After
LinkedServer has been added successfully to the LinkedServers
collection, the object references an existing linked server, and the Name
property is no longer modifiable.

e The FillFactor property of an Index or Key object provides an
argument for index creation. When the index exists, the FillFactor
property is not evaluated.

A few properties are write-only. Write-only properties are used to specify
arguments for component creation only.

SQL-DMO

Object Methods

Many SQL-DMO object methods act upon a Microsoft® SQL Server™
component, modifying an instance of SQL Server in some fashion. For example:

e The BindToColumn method of a Default object binds a SQL Server
default to the column identified in the method. Selecting the referencing
Column object displays the bound default by name in the Default

property.

e The ResetOccurrenceCount method of the Alert object resets the
occurrence count start date and time to the current date and time and
sets count of alert notifications attempted after that time to zero.

Some SQL-DMO object methods use a SQL Server component for source data,
providing usable output for other SQL Server management tasks. For example:

e The Script method of a MergeArticle object generates a Transact-SQL
script that can be used to define the referenced merge replication article
on any similarly configured instance of SQL Server.

e The ScriptDestinationObject method of a MergeArticle object
generates a Transact-SQL script that can be used to create the
referenced merge replication article's source table on any similarly
configured instance of SQL Server.

SQL-DMO methods also perform basic administration tasks. For example:

e The Start method of the JobServer object attempts to start the
SQLServerAgent service on the server referenced by the SQLServer
object from which the JobServer object was selected.

e The SQLBackup method of the Backup object is used to back up SQL
Server database data and log files.

SQL-DMO

Object Events

Some SQL-DMO objects support events. Automated OLE object events provide
a callback mechanism and SQL-DMO uses events to signal an application
conditionally. The SQL-DMO application can handle raised events to provide
intelligent interaction with the user during a long-running process and to handle
abnormal conditions. For example:

e The PercentComplete event of a Backup object informs the
application of backup progress. The application can use the callback to
update a progress control or check for a user action, such as a request
for cancellation.

e The ConnectionBroken event of a SQLServer object informs the
application that the network connection between the client and an
instance of Microsoft® SQL Server™ has been lost. The application
could notify the user and prompt for authorization information for a
reconnection attempt.

SQL-DMO

Creating SQL Server Components Using SQL-DMO
Objects

Using SQL-DMO to define new Microsoft® SQL Server™ components is
always a three-step process. The application:

1. Requests a new object from SQL-DMO.

2. Configures the object to reflect the desired attributes of the SQL
Server component.

3. Adds the appropriately configured object to the containing collection.

For most administrative tasks automated with SQL-DMO, the simple, three-step
process is quickly evident.

The Microsoft Visual Basic® example shows adding a computed row total
column:

Dim oColumn As New SQLDMO.Column

oColumn.Name = "SubTotalNoDiscount"

oColumn.Datatype = "money"

oColumn.ComputedText = "CONVERT(money, Quantity * UnitPrice’
oColumn.IsComputed = True

oSQLServer.Databases("Northwind").Tables("[Order Details]™).Colum

The complexity of a DBMS implementation may sometimes obscure this simple
process. For example, to define a SQL Server database using SQL-DMO:

e Request a new Database object from SQL-DMO.

e Configure the Database object by:

e Setting Database properties.

e Requesting a new DBFile object from SQL-DMO.

e Configuring the DBFile object.

¢ Adding the DBFile object to the DBFiles collection of the
FileGroup object named PRIMARY.

e Requesting a new LogFile object from SQL-DMO.

e Configuring the LogFile object.

e Adding the LogFile object to the LogFiles collection of the
Database object.

e Add the Database object to the Databases collection of a SQLServer
object.

The database is created by successively applying nested iterations of the three-
step process. This example is still simple, and does not include details such as
multiple filegroups with multiple database files or multiple log files.

For more information about the details of creating a specific SQL Server
component using a SQL-DMO object, see Objects.

SQL-DMO

SQL-DMO Objects and Existing SQL Server
Components

When a SQL-DMO object references an existing Microsoft® SQL Server™
component, you can use the object to configure or tune the instance of SQL
Server.

Applications do not generally alter the properties of SQL-DMO objects that
reference existing SQL Server components. For these objects, properties often
provide identifying data or data that is the source for application logic. SQL-
DMO object methods then become a much more important tool for database
administration. For example:

e The UpdateStatisticsWith method of a Column, Index, or Table
object forces an update of data distribution statistics, assisting SQL
Server query optimization.

e The CheckTables method of a Database object performs data file
integrity validation on the tables in a database.

e The AddNotification method of an Alert object configures a SQL
Server Agent alert with a new operator to notify on an event condition.

e The SQLRestore method of a Restore object restores log or data file
data after recovery from hardware failure.

Some SQL-DMO objects support the Remove method directly. Remove drops
or deletes the referenced SQL Server component and removes the object from its
containing collection.

SQL-DMO

Programming Extended SQL-DMO Objects

SQL-DMO in Microsoft® SQL Server™ 2000 features a number of new objects
compatible only with this release. Most of these new objects are named in the
form of ObjectNameZ2, and extend the functionality of similarly named objects
supported by SQL Server version 7.0. For example, the UserDefinedDataType2
object extends the functionality of the UserDefinedDataType object by
exposing the Collation property. Objects such as UserDefinedDataType2
inherit the methods and properties of their base objects. Therefore, an
application can always use the UserDefinedDataType2 object to call the
methods and properties of the UserDefinedDataType object.

It is unnecessary to modify existing SQL Server version 7.0 applications,
because they do not reference the new objects, methods, and properties exposed
in SQL Server 2000.

Using C++ with the Extended SQL-DMO Objects

C++ applications that use the new SQL-DMO objects do not need to take any
extra programmatic steps if the application will only be used with SQL Server
2000. However, C++ applications that use the new SQL-DMO objects and also
are used with SQL Server version 7.0 will encounter an error if trying to use a
new object. Therefore, the application must call the
IUnknown::QueryInterface method to use an ObjectNameZ2 object with the
related object from which it inherits, and to handle errors gracefully.

These examples demonstrate how to use ObjectNameZ2 objects using the
Collation property of the UserDefinedDataType2 object. The first example
demonstrates usage in an application that runs with SQL Server 2000 only. The
second example demonstrates usage in an application that might also run with
SQL Server version 7.0.

Examples

A. Referencing the extended SQL-DMO objects with SQL Server
2000

//Define variable.
LPSQLDMOUSERDEFINEDDATATYPE?2 oUDDT?2 = NULL;

//Do CoCreate Instance for UserDefinedDataType.
CoCreatelnstance(CLSID_SQLDMOUserDefinedDataType, NULL, C

oUDDT2->SetCollation(L."German_Phonebook_CI_AI_KI_WI");
//Now add the UserDefinedDataType object to the UserDefinedDataTy

B. Referencing the extended SQL-DMO objects with SQL Server
2000 or SQL Server version 7.0

//Define variables.

LPSQLDMOUSERDEFINEDDATATYPE oUDDT = NULL;
LPSQLDMOUSERDEFINEDDATATYPE?2 oUDDT?2 = NULL;
HRESULT hr;

//Do CoCreate Instance for UserDefinedDataType.
CoCreatelnstance(CLSID_SQLDMOUserDefinedDataType2, NULL,

//Querylnterface UserDefinedDataType2.
//Gracefully handle error situations arising from use with version 7.0.
hr=o0UDDT->QueryInterface(IID_ISQLDMOUserDefinedDatatype2,&
if (SUCCEEDED(hr))
oUDDT2->SetCollation(L"German_Phonebook_CI_AI_KI_WI");
else

//oUDDT? is not supported. Perform error handling routine.

//Now add the UserDefinedDataType object to the UserDefinedDataTy

Using Visual Basic with the Extended SQL-DMO Objects

Visual Basic applications that use the new SQL-DMO objects do not need to

take any extra programmatic steps if the application will only be used with SQL
Server 2000. No extra steps are required for Visual Basic applications that use
late binding. However, Visual Basic applications that use early binding must be
precise in setting an ObjectNameZ2 object variable. For example, in this code
sample, the StoredProcedures.Item method returns a StoredProcedure object,
not a StoredProcedure2 object:

Dim oSQLSvr2 as New SQLServer2
oSQLSvr2.Connect "Myserver","sa",""

MsgBox 0SQLSrv2.Databases("northwind").StoredProcedures(1).Namn

However, using this approach, the StoredProcedures.Item method calls the
IUnknown::QueryInterface method for the StoredProcedure2 object:

Dim oStoredProc2 as SQLDMO.StoredProcedure?
Set oStoredProc2 = 0SQLSrv2.Databases("northwind").StoredProcedu
oStoredProc2.IsDeleted

SQL-DMO

Using SQL-DMO Multistrings

SQL-DMO multistrings are used in numerous parameters in SQL-DMO
properties and methods. Using multistrings, a user can supply one or more
delimited strings to the parameter, and SQL-DMO parses the input into multiple
strings.

Database objects in instances of Microsoft® SQL Server™ version 6.5 and
earlier could not contain special characters such as spaces, commas, and
semicolons. Therefore, these characters could be used interchangeably as string
delimiter characters. For example, this multistring contains four separate strings:

S1 S2,53;S4

However, database objects in instances of SQL Server 2000 and SQL Server
version 7.0 can contain any valid Microsoft Windows NT® or Microsoft
Windows® 2000 characters, including spaces, commas, and semicolons. To
accommodate this change, SQL-DMO multistring format uses left and right
brackets ([]) as delimiters. The use of spaces, commas, and semicolons between
bracketed strings is optional. For example these two multistrings, which contain
four strings, are identical:

[S1][S2] [S3] [S4]
[S1][S2],[S3];[S4]

A right bracket is used as the escape character for a string that contains a right
bracket. For example, the string "My]object" should be specified as:

[My]]object]

No escape character is required for a left bracket because SQL-DMO parses
multistrings from left to right.

To maintain backward compatibility, the original multistring format is still
supported if the string does not contain any spaces, commas, semicolons, or
brackets. If an application uses the newer multistring format for one string, then
the same format must be used for all strings in the multistring parameter.

SQL-DMO multistrings are used by these properties and methods:

Properties

DatabaseFileGroups Property

RelocateFiles Property

DatabaseFiles Property

RpclList Property

Days Property

ShortMonths Property

Devices Property

StandbyFiles Property

IndexedColumns Property

SuperSocketList Property

Months Property

Tapes Property

Pipes Property

ViaRecognized Vendors Property

Methods

AddReplicatedColumns Method

Grant Method (StoredProcedure,

UserDefinedFunction)

AttachDB Method

Grant Method (Table, View)

Deny Method (Database)

RemoveReplicatedColumns Method

Deny Method (StoredProcedure)

Revoke Method (Database)

Deny Method (Table, View)

Revoke Method (StoredProcedure)

Deny Method
(UserDefinedFunction)

Revoke Method (Table, View)

GetRangeString Method

Revoke Method

(UserDefinedFunction)

Grant Method (Database)

ValidateSubscriptions Method

SQL-DMO

SQL-DMO Collections and SQL Server
Administration

Within SQL-DMO, collections represent a group of Microsoft® SQL Server™
components. The meaning of the collection, the components referenced from the
objects contained, is visible in the collection's name. For example, the
Operators collection contains Operator objects that reference SQL Server
Agent operators.

Because collections represent the sum total of components within a given scope,
altering the number of objects in the collection by adding a new object or
removing an existing one administers a server running SQL Server by creating or
dropping a referenced component.

SQL-DMO

SQL-DMO Collections

Microsoft® Visual Basic® defines a collection as any object containing other
objects in a list. For a specific Visual Basic application, a document collection
can contain a Microsoft Word document and two Microsoft Excel spreadsheets,
in no particular order. SQL-DMO applies a much stricter definition for a
collection. A SQL-DMO collection is a container object for SQL-DMO objects
of identical type.

For example, the Database object exposes a Tables collection. Each SQL-DMO
object referenced from a Tables collection is a Table object, and each Table
object exposes the attributes of a specific Microsoft SQL Server™ table.
Therefore, the Tables collection of the Database object exposes all defined
tables within the SQL Server database. Working with any given Tables
collection, you will not find a MergeArticle object or two, or the odd Operator
object.

Because SQL-DMO collections are COM objects, they expose properties and
methods. All SQL-DMO collections expose the Count property, which reports
the number of contained objects. Most collections expose the Add and Remove
methods. A collection exposing Add and Remove can be used to create or drop
SQL Server components.

Note To enable more efficient processing, SQL-DMO caches much of the
information about SQL Server components referenced by objects maintained in a
collection. When component data is cached, administrative activity of another
SQL Server session is not visible to the SQL-DMO session. The Refresh
method queries the organization server, filling the collection with the most up-to-
date component information.

SQL-DMO

Collection Properties

All SQL-DMO collections expose the Count and TypeOf properties.

The Count property returns the number of members in a collection and is often
used for application control-of-flow logic, for example, in a for...next loop.

For SQL-DMO collections, the TypeOf property reports the TypeOf property
value for the objects contained within the collection. For example, the TypeOf
property value for the Databases collection returns SQLDMOObj_Database,
which is the TypeOf property value of a Database object.

All SQL-DMO collection properties are read-only.

SQL-DMO

Collection Methods

All collections support some form of the Item method. As its name implies, the
Item method is used to dereference a collection member. For most collections,
SQL-DMO supports the ItemByName and ItemByOrd methods.

With the ItemByName method, you can refer to a specific member using its
name. This Microsoft® Visual Basic® example shows selecting a database by
name:

Dim oDatabase as SQLDMO.Database
Set oDatabase = 0SQLServer.Databases("Northwind")

With the ItemByOrd method, you can refer to a specific member by its ordinal
location within the collection. This Visual Basic example shows setting a combo
box to list the databases on a server:

Dim nDatabase as Integer

For nDatabase = 1 to oSQLServer.Databases.Count
Combo1l.AddItem oSQLServer.Databases(nDatabase).Name

Next nDatabase

Note For more information about specific collection support for ItemByName
and ItemByOrd, see Collections.

Most collections expose the Add and Remove methods. The Add method forms
part of the SQL-DMO three-step process for creating Microsoft SQL Server™
components. The Remove method drops or deletes a SQL Server component.

Some collections expose other methods. For example, the TransPublications
collection supports the Script method. When invoked on the collection, the
Script method generates a single Transact-SQL script that could be used to re-
create all transaction replication publications defined for a SQL Server database.

SQL-DMO

Creating SQL Server Components Using SQL-DMO
Collections

Using SQL-DMO to create a Microsoft® SQL Server™ component is always a
three-step process. The application:

1. Requests a new object from SQL-DMO.

2. Configures the object to reflect the desired attributes of the SQL
Server component.

3. Adds the appropriately configured object to the containing collection.

When an application modifies SQL-DMO collection membership by adding
objects, SQL-DMO attempts to convert the application action to an appropriate
SQL Server component creation Transact-SQL script.

Adding a SQL-DMO object to its containing collection can cause an immediate
update of the indicated server running SQL Server. In other instances, the same
application action can cause a delayed update of the indicated server.

For example, adding a Column object to the Columns collection of a new Table
object generates no Transact-SQL statement. Instead, the properties of Column
objects in the collection define the attributes of columns in a CREATE TABLE
statement submitted when the Table object is added to a Tables collection.

By default, SQL-DMO generates a Transact-SQL ALTER TABLE statement
when a new, configured Column object is added to the Columns collection
referencing the columns of an existing SQL Server table.

When the application uses the BeginAlter method of the Table object, adding a
Column object to the Columns collection does not generate an ALTER TABLE
statement. The referenced SQL Server table is modified by an ALTER TABLE
statement created and submitted when the application invokes the DoAlter
method of the Table object.

SQL-DMO performs some error checking for object consistency when a new

object is added to a containing collection. For example, SQL-DMO checks to
ensure that the Name and data type defining properties of a Column object are
set and valid when the Column object is added to the Columns collection of a
Table object.

Other errors can occur as the component-creating script is submitted to SQL
Server. For example, when defining a new column in an existing table, the
default error checking provided by SQL-DMO does not attempt to validate
column null acceptance. As SQL Server is the ultimate arbiter of null
acceptance, SQL-DMO relies on SQL Server for error determination in this case.

ImporTANT A SQL Server administrative action directed by collection
membership modification can be time-consuming and can fail. Applications that
allow collection membership change should notify the user through a message or
busy pointer, and should provide appropriate error handling.

SQL-DMO

Removing SQL Server Components Using SQL-DMO
Collections

An application can use the Remove method of a SQL-DMO collection to delete
a referenced Microsoft® SQL Server™ component permanently.

When Remove is invoked, SQL-DMO translates the application action into
appropriate Transact-SQL statements. For example, using the Remove method
of the Tables collection generates and submits a Transact-SQL DROP TABLE
statement. Using the Remove method of the DatabaseRoles collection executes
Transact-SQL, calling either the sp_droprole or sp_dropapprole system stored
procedures.

Any collection Remove method may be constrained by rules applying to the
referenced objects. For example, SQL Server does not delete a table if it is
referenced by a FOREIGN KEY constraint defined on another table. Using the
Remove method of the Tables collection to drop a table used as a foreign key
reference fails, returning an appropriate error to the application.

A collection Remove method requires qualification, identifying the targeted
object by name or ordinal position. For example:

oSQLServer.DatabaseRoles.Remove("Northwind_Users")

Or

oServer.Databases("Northwind").Users.Remove(5)

Collections referencing owned, SQL Server database objects allow additional
qualification by owner name. For example:

oServer.Databases("Northwind").Tables.Remove("Orders", "anne"

ImporTANT A SQL Server administrative action directed by collection
membership modification can be time-consuming and can fail. Applications that
allow collection membership change should notify the user through a message or
busy pointer, and should provide appropriate error handling.

SQL-DMO

Description of the SQLServer Object

The SQLServer object is the core of SQL-DMO. It is through the SQLServer
object that an application connects to and alters the properties of instances of
Microsoft® SQL Server™,

Many SQL-DMO objects are exposed as properties of other SQL-DMO objects.
Any SQL-DMO object that references an existing SQL Server component can be
selected by navigating from the SQLServer object. This implementation detail
creates a tree that structures SQL-DMO objects logically to guide and ease
development.

Regardless of the development tool used to create an application, all SQL-DMO
applications share basic logical elements. A SQL-DMO application will:

e Create a SQLServer object.

e Use the Connect method of the SQLServer object to establish a
session with an instance of SQL Server.

e Use the SQL-DMO object selection methods of the SQLServer object
to choose specific objects for modification.

These topics introduce the SQLServer object and describe the relationship of
objects in SQL-DMO.

SQL-DMO

Creating and Connecting a SQLServer Object

A SQL-DMO application creates a SQLServer object and uses the Connect
method when a session is required on a specific instance of Microsoft® SQL
Server™, Some applications may create only a single SQLServer object, using
it for all interaction with a server. Others may create multiple SQLServer
objects, connected to one or more servers, providing multiple server
administration functions.

SQL-DMO offers application developers flexibility in locating servers as
administration targets. Regardless of the method used to identify a server, the
application creates a new SQLServer object for each session.

For example, an installation routine may collect a SQL Server instance name, a
system administrator user identifier, and a password as part of its functioning, as
shown in the illustration.

A Microsoft Visual Basic® installation routine using the example dialog box and
the Connect method of a SQLServer object might look something like:

Private Sub cmd_Install_Click()
On Error GoTo ErrorHandler

Dim oSQLServer As New SQLDMO.SQLServer
Dim bConnected As Boolean

bConnected = False

oSQLServer.LoginTimeout = 30

If chk_Integrated.Value = 1 Then
oSQLServer.LoginSecure = True

oSQLServer.Connect txt_ SQLServer. Text
Else

oSQLServer.Connect txt_SQLServer.Text, txt_Login. Text, _
txt_Password.Text

End If

... do installation ...

oSQLServer.DisConnect
Exit Sub

ErrorHandler:
MsgBox (Err.Description)
If bConnected = True Then
oSQLServer.DisConnect
End If
End Sub

Another application automating backup by using organization standard backup
media and procedures may query the RegisteredServers collection of the
Application object, returning the list of user-registered servers in a combo box
or other control allowing selection. Based on user action, the application would
use the properties of the selected RegisteredServer object when using the
Connect method of a SQLServer object.

Likewise, an application could use the ListAvailableSQLServers method of the
Application object to locate all instances of SQL Server in an organization.

SQL-DMO

SQL-DMO Object Tree

SQL-DMO objects are exposed as properties of other SQL-DMO objects. The
relationship provides developers with a logical, tree-like structure for SQL-DMO
that simplifies programming with automation controllers. Many objects can be
referenced using the familiar dot notation used to reference properties or
methods.

For example, the Database object exposes a Tables collection. Each Table
object within the collection represents a single table of an instance of
Microsoft® SQL Server™. Obtaining a SQL-DMO Table object referencing a
specific table can be done with the following syntax:

Set oTable = oDatabase.Tables("Employees")

The SQLServer object forms the trunk of the SQL-DMO object tree. Three
main branches are visible in the tree:

¢ Objects implemented as properties of the Database object implement
SQL Server database construction and maintenance tasks.

¢ Objects implemented as properties of the JobServer object implement
SQL Server Agent job, operator, and alert administration.

¢ Objects implemented as properties of the Replication object implement
transactional, snapshot, and merge replication publication and
subscription construction and maintenance.

SOLServers
SOLServer
—EBackupDevices
BackupDevice
—Configuration
Configy alues
I—Config\-’alt,le

FullTexts ervice
HrtegratedS ecurity

slobServer

H.anguages
anguage
HLinkedS erver

inkedS ervers

HLogins
ELogin

FRegistry
HRemateServers
moteS erver
emoteloging
ematelogin

——Feplication
FHDistributor
igtributionD atabazes
istributionD atabaze
igtributionPublishers
istributionPublisher
isfributionPublications
iztributionPublication
iztributiondrticles
istributiondticle
iztributionS ubscriptions
iztributionS ubscription
istributionS chedule
ublisherS ecurnty
enisteredSubscrbers
eqgisteredSubscrber
efaultDistibutions chedule
efaultterges chadule
eplicationS ecurity

—PuHiHsher
eEié\temdS ubscribers
eqgisteredS ubscriber

A eiligationD atabases
eplicationD atabaze
HdergePublications
HergePublication
engediticles
EM erEa&rticle

ergeSubsetFilers
erlg_il‘:)ynamics napzhot)obs

Herges ubseriptions
erEidS ubzcription
ergeS chedule
S hapshots cheduls
HdergePulls ubscriptions
IEMer ePullSubszcription
istributarS ecurity
ergeScheduls
ublizhersS ecurity
A eplicationStoredProcedures
eplicationS toredProcedune
HReplicationT ablas:
ep|icationT able
alurnns
alurit
RIDefault

FTranzPublications
TransPublication
napzhotScheduls
Tla[‘u_sAlticIes
Tla[ls.ﬂlticle
Tla[‘u_sSubscriptions

Tla[lsSubSCIiptions
TranzSubscription
istibutionSchedule
—TrallsPuIIS ubzcriptiong
TrapsPullS ubscription
istributionSchedule
istributorS ecurity
ublizherS ecunty

S ubgcriber
“ServerRoles

erverfaole

ergeSubzetFilter

ergelynamicSnapshot)ob

TranzS ubscription

HalertCategonies
abeqary

—Alerts
E;dlert
—ltertS petem

= oi%ategories
ategory
=l ob Filker
—lobHiztaryFilter
—Jobs
<ol
obSchedules
DESschedule
chedule
obSteps
obStep
H0 peratorCategonies
ategor
Hp ratorsg ¥
peratar
T argetServerGroups
T argetServerGraup
=T argetServers
T argetServer

u]

?i?:l)aases
atabase
—DatabazeRoles
atabazeFole
—DEBOption
Defaults
efault
—FileGroups
|—F'IeGroun
|—D Files
BFile

ullTextCatalog
13
ule

—StoredProcedures
toredProcedure
—SystemD atatypes
yztemD atatype
T ables
able
_C

—FullT extCatalogs
le:

—R

ecks
heck
FClusteredindex
L olurnng
alumn
L DRIDefaul
Hndexes
dex
ndexedColumng
Eg
=
eyColumng
ReferencedColumng
—Primarykey

—Triggers
LT nigger
nzactionlog

gFiles
ogFile

wmll

JserDefinedD atatypes
zerDefinedD atatype

L zerDefinedFunctions
LUseiDefinedFunction

—UEBIS
Ier

—iews
II—’\!iew
Triggers
rigger

SQL-DMO

Developing SQL-DMO Applications Using Visual
Basic

When using an OLE Automation controller, such as Microsoft® Visual Basic®,
as a SQL-DMO application development tool, you should indicate that the
application references the SQL-DMO object library. A specific OLE Automation
controller defines which object library reference methods it supports.

For example, using the Visual Basic Project menu item References, you can
indicate that SQL-DMO will be used by the project. When you indicate that a
specific object library is referenced, Visual Basic can use OLE Automation to
query the object library's type library for more information about objects
contained in the library. Visual Basic uses type library data to both enrich the
development experience and optimize the executable application.

When an OLE Automation controller can support an object library reference at
the application or project level, it is recommended that you use the feature.
Though the level of programming assistance varies from controller to controller,
all OLE Automation controllers can use the object library reference to optimize
the executable application. Making the controller aware of the SQL-DMO
library at the earliest opportunity allows it to provide you with the most efficient
SQL-DMO application.

For more information about support for add-in object libraries, see the OLE
Automation controller documentation.

SQL-DMO

Object Creation

An OLE Automation controller provides at least one mechanism for creating an
instance of an object. Creating a SQL-DMO object, specifically an instance of a
SQLServer object, is part of almost any SQL-DMO application.

OLE object creation can be a resource-intensive process. It is recommended that
you consider the costs of object creation for an application.

All OLE Automation controllers provide a function that creates an instance of a
specified object. The Microsoft® Visual Basic® or Microsoft ActiveX® script
function is CreateObject. CreateObject has a single argument that identifies
the OLE object by application identifier and object class name. The SQL-DMO
application identifier is SQLDMO, and the following example illustrates
creating an instance of a Database object:

Dim oDatabase
Set oDatabase = CreateObject ("SQLDMO.Database")

Using CreateObject does not require an application or project level reference to
the SQL-DMO object library. All information necessary for object creation is
contained in the function's single argument.

CreateQObject represents the least efficient method for object creation and use
and should be used only when no other alternative exists. When you use the
Visual Basic project reference method to indicate use of the SQL-DMO object
library, the Visual Basic keyword, New, can be used to create an instance of a
SQL-DMO object. For example:

Dim oDatabase as SQLDMO.Database
Set oDatabase = New SQLDMO.Database

Or
Dim oDatabase as New SQLDMO.Database

When the New keyword is used, the Visual Basic application is built so that
object creation is accomplished in the most optimal fashion. Further, the Visual

Basic compiler can ensure that object references, such as those required to get or
set property values, are resolved efficiently.

SQL-DMO

Properties Collection

OLE Automation controllers, such as Microsoft® Visual Basic®, commonly
expose properties using an object. Visual Basic, Visual Basic for Applications,
and Microsoft ActiveX® implement a Property object and a containing
Properties collection. When using the Property object and Properties
collection, the application can retrieve information about SQL-DMO object
properties.

Like any other OLE Automation objects, the Property object and Properties
collection expose properties and methods. For example, Name, Value, and Type
are all properties of a Property object. Count is a property of the Properties
collection, and the collection exposes the Item method.

For more information about the Property object and the Properties collection,
see the OLE Automation controller documentation.

For a detailed example of the Properties collection and its use, see the SQL-
DMO Visual Basic sample Explore.

SQL-DMO

SQL-DMO Constants

SQL-DMO constants, implemented as enumerated data types, are visible
through the type library. When constants are made visible in this fashion,
automation controllers providing syntax completion enrich the development
experience by providing available choices from an enumerated type.

Though the names of SQL-DMO constants can be quite long and can represent a
significant portion of automation script, consider using the constants when
possible. Descriptive constant names are one tactic used to make self-
documenting code a reality.

For example, these two statements accomplish exactly the same task.

oSchedule.Frequencylnterval = 42

oSchedule.FrequencylInterval = (SQLDMOWeek_Monday Or _
SQLDMOWeek_Wednesday Or SQLDMOWeek_Friday)

SQL-DMO

Handling SQL-DMO Events

Some SQL-DMO objects raise events. For example, the Backup object raises
events indicating a percent of the operation is complete, that a specified media is
full and requires operator action to provide an empty media, and that backup is
done. Microsoft® Visual Basic® implements the keyword, WithEvents, on
object variable dimensioning statements to enable application handling of SQL-
DMO events.

WithEvents imposes restrictions on object dimensioning. An object variable
allowing event handling must be declared within an object module, such as that
associated with a Visual Basic form. Further, WithEvents restricts the use of the
keyword, New, disallowing its use for shorthand object dimensioning and
creation. This Visual Basic statement will return an error:

Private WithEvents oBackup as New SQLDMO.Backup

Object dimensioning must be accomplished in a separate step, as in:

Private WithEvents oBackup as SQLDMO.Backup
Set oBackup = New SQLDMO.Backup

When a SQL-DMO application indicates that it will handle events raised by an
instance of a SQL-DMO object, the application must supply subroutines to
handle every event raised by the object. You must ensure that executable
creation does not inadvertently remove subroutines handling an event.

For example, an application may want to respond to only the PercentComplete
event of the Backup object, ignoring the Complete and NextMedia events. You
can implement the Complete and NextMedia handlers using a single, processor-
inexpensive statement as shown here:

Private Sub oBackup_Complete(ByVal Message As String)
Exit Sub
End Sub

Private Sub oBackup_NextMedia(ByVal Message As String)

Exit Sub
End Sub

You can then handle the PercentComplete event, updating a progress bar
control on a form as shown below:

Private Sub oBackup_PercentComplete(ByVal Message As String, By’
frmBackup.ProgressBar. Value = Percent
End Sub

The SQL-DMO Explore sample illustrates handling events in a Visual Basic
application. For more information, see Explore. For more information about
Visual Basic support for events, see the Visual Basic documentation.

Note As indicated earlier, Visual Basic allows application response to raised
events. To support SQL-DMO event handling, Visual Basic requires that the
project reference the SQL-DMO object library. Event handling is not supported
when a SQL-DMO object is created using the CreateObject function. Your
OLE Automation controller may impose similar restrictions.

SQL-DMO

Handling SQL-DMO Errors

Microsoft® SQL Server™ administration can be a complex task. Realistically,
an administrative application guides users, streamlining tasks and limiting the
range of possible errors. Nonetheless, errors can occur, and a SQL-DMO
application should supply error handling code to prevent abnormal termination.

Microsoft Visual Basic® or Microsoft ActiveX® scripts support error traps
(error handlers) created using the On Error statement. SQL-DMO supports the
Visual Basic Err object, allowing application error handlers to respond
intelligently to errors raised.

Note Error handling in your OLE Automation controller may differ from that
described earlier. For more information about error handling, see the OLE
Automation controller documentation.

SQL-DMO

Developing SQL-DMO Applications Using C or C++

A SQL-DMO application built using C or C++ follows the same general
guidelines as any application using a COM object library. The application will:

e Initialize class identifiers as part of application construction.
¢ Initialize COM on application start.
e Use the SQL-DMO object library during application execution.

e Free COM on application exit.

Initializing class identifiers is performed one time, at global scope, for an
application unit (.exe or .dll). Use the supported #include <Initguid.h> method
for identifier initialization, as in:

#include <initguid.h>
#include <sqldmoid.h>
// Other includes, such as sqldmo.h

When initializing class identifiers, read-only data, in this case, SQL-DMO
globally unique identifiers (GUIDs) is added to your application unit. Other
modules, including Sqldmoid.h, are not initialized. Those modules contain
declarations, resolved by the linker, for data external to the module.

Errors in SQL-DMO class identifier initialization are reported as linker errors. If
an unresolved external symbol error occurs on application unit linking, the class
identifiers have not been initialized. Include Initguid.h in a likely module in your
application unit. During linking, if you receive a multiply-defined symbol error
with a SQL-DMO symbol specified, then SQL-DMO class identifiers have been
initialized more than one time. Remove the initialization from all modules but
one.

COM initialization is performed through any of a number of mechanisms. For
some applications, the Colnitialize function is used. Other applications, for

example, applications using compound document support or other functions of
the OLE library, use Olelnitialize, which itself calls Colnitialize.

Remember that initializing COM can fail. If COM initialization fails, SQL-DMO
is unavailable. An application should be built to handle this abnormal condition
gracefully.

The functions CoUninitialize and OleUninitialize free COM. When using
Colnitialize to initialize COM, use CoUninitialize to free COM. Likewise, use
OleUninitialize to free OLE and COM when Olelnitialize is used by the
application. For example:

BOOL OnlnitInstance()

{
m_bCOMAvailable = SUCCEEDED(Olelnitialize(NULL));

// Other initialization....
return (TRUE);

}

// The remainder of the application uses SQL-DMO.

void OnExitInstance()
{
if (m_bCOMAuvailable)
OleUninitialize();

// Other dynamic resource freeing....

}

Application development frameworks may support other, easy to use methods.
For example, the MFC function AfxOlelnit handles both OLE and COM
initialization. Freeing COM and OLE is performed by framework code included
as your application is built, so there is no need to free COM explicitly when
using MFC AfxOlelnit.

SQL-DMO

Objects, References, and Reference Counting

Any COM application receives an object reference through which it controls an
instance of a SQL-DMO object. This is true regardless of the application
development tool.

COM defines reference counting as the mechanism for COM server-created
object lifetime management. When a COM client application receives an object
reference, the reference count on the object instance is implicitly incremented.
When the COM client is finished with the object reference, it decrements the
reference count using the Release function. When the reference count is zero,
the COM server may;, at its discretion, free resources used to implement the
object instance.

When using an OLE Automation controller, such as Microsoft® Visual Basic®,
the controller generally maintains references and reference counts as directed by
the scope of the variable referencing the object. For example, this Visual Basic
subroutine shows an application receiving a reference to a Databases collection,
and references to multiple SQL-DMO Database and OLE BSTR objects:

Private Sub ListDatabases(oSQLServer as SQLDMO.SQLServer)
Dim oDatabase as SQLDMO.Database
For Each oDatabase in o0SQLServer.Databases
IstDatabases.AddItem oDatabase.Name

Next oDatabase
End Sub

No reference is ever released explicitly by the developer. Instead, Database
object references are released as the object variable is reassigned in the For Each
loop. The reference maintained on the Databases collection and the last
reference obtained on a Database object in the collection are released as the
variables go out of scope with the End Sub statement. The OLE BSTR object
references are hidden, and handled, even more effectively.

The C/C++ application developer must be aware of and control reference counts
as necessary. When an object reference is received from the SQL-DMO library,
the application implicitly increases the reference count on an instance of the

SQL-DMO object, as shown here:

void CDIlgSelectDatabase::GetDatabases(LPSQLDMOSERVER pServ

{
LPSQLDMODATABASE pDatabase;

BSTR bstrDBName;
LONG nDatabase;
LONG nDatabases;
HRESULT hr;

if (FAILED(hr = pServer->GetDatabaseCount(&nDatabases)))
return;

for (nDatabase = 0; nDatabase < nDatabases && SUCCEEDED(hr)
nDatabase++)

{
pDatabase = NULL;

bstrDBName = NULL;

// Getting the next Database object from the collection
// increases the client initiated reference count by one.
hr = pServer->GetDatabaseByOrd(nDatabase, &pDatabase);

// Getting a string back from SQL-DMO is also getting a
// reference on an object. Be sure to release it.
if (SUCCEEDED(hr))

hr = pDatabase->GetName(&bstrDBName);

if (SUCCEEDED(hr))
m_listboxDatabases->AddString(bstrDBName);

if (bstrDBName != NULL)
SysFreeString(bstrDBName);

if (pDatabase != NULL)
pDatabase->Release();

}
}

For the C++ developer, SQL-DMO defines in Sqldmo.h the scope-aware,
template classes CTempOLERef and CTempBSTR that can simplify
development.

See Also

CTempBSTR
CTempOLERef

SQL-DMO

Object Creation

For applications built with C/C++, use COM functions to create an object
instance. Choose the method most suited to the application to create an instance
or instances. Use CoCreatelnstance when a single object instance is required.
For example:

HRESULT hr;

LPSQLDMOSERVER pSQLServer;

hr = CoCreatelnstance(CLSID_SQLDMOServer, NULL,
CLSCTX_INPROC_SERVER, IID_ISQLDMOServer, (void**) ¢

// Do something with the object, then release the reference.

pSQLServer->Release();

For applications requiring multiple instances of the same object, consider using a
class factory interface on the SQL-DMO object library to optimize object
creation. For example:

HRESULT CDIgColumns::MakeColumns(UINT nCols, LPSQLDMO(
{
LPSQLDMOCOLUMN* apColumns;
HRESULT hr = NOERROR;
LPCLASSFACTORY plIClassFactory;
UINT nCol,;

*ppColumns = NULL;
apColumns = new LPSQLDMOCOLUMNI[nCols];
if (apColumns == NULL)

return (E_OUTOFMEMORY);

memset(apColumns, 0, nCols * sizeof(LPSQLDMOCOLUMN));

hr = CoGetClassObject(CLSID_SQLDMOColumn, CLSCTX_INP}
NULL, IID_IClassFactory, (void**) &plClassFactory);

if (FAILED(hr))
{

// Handle error....
return (hr);

}

for (nCol = 0; nCol < nCols && !'FAILED(hr); nCol++)

{
hr = pIClassFactory->Createlnstance(NULL, IID_IUnknown,

(void**) &(apColumns[nCol]));
}

if (FAILED(hr))
{

// Handle error, and clean any bad items.

for (nCol = 0; nCol < nCols && apColumns[nCol] != NULL; nC«
(apColumns[nCol])->Release();

delete [] apColumns;
apColumns = NULL;

}

pIClassFactory->Release();

*ppColumns = apColumns;
return (hr);

}

Remember, creating an instance of an object increases the reference count on the
object. You must release this initial reference regardless of the use of the object.
For example, adding an array of created Column objects to the Columns
collection of a new Table object does nothing to the reference your application
maintains on each Column object. For example:

LPSQLDMOTABLE pTable;

const UINT NCOLS =5;
LPSQLDMOCOLUMN* apColumns;
UINT nCol,;

HRESULT hr = NOERROR;

if (SUCCEEDED(MakeColumns(NCOLS, &apColumns)))

{
hr = CoCreatelnstance(CLSID_SQLDMOTable, NULL,

CLSCTX_INPROC_SERVER, IID_ISQLDMOTable, (void**) &
// Defining columns using the array of Column objects not shown.

// Use the array of Column objects to define the new table.
for (nCol = 0; nCol < NCOLS && SUCCEEDED(hr); nCol++)
hr = pTable->AddColumn(apColumns[nCol]);

// Release references on each Column object.
for (nCol = 0; nCol < NCOLS; nCol++)
(apColumns[nCol])->Release();

delete [] apColumns;

// Release the reference on the Table object.
pTable->Release();

}

See Also

Object Class Identifiers and Type Definitions

SQL-DMO

Member Functions (Properties and Methods)

All SQL-DMO properties and methods are exposed as object member functions
for the C/C++ application developer.

SQL-DMO properties are implemented using either one or two member
functions depending on the modifiability of the property value. Read-only and
write-only properties are implemented in a single function, a get or set.
Read/write properties are exposed through both a get and a set function.

SQL-DMO property-exposing functions are consistently named. When a
property supports value retrieval, the name of the member function exposing the
property is formed from the word, Get, and the property name. When a property
supports value modification, the name of the member function is formed from
the word, Set, and the property name. For example, the functions implementing
the read/write property LoginTimeout on the SQLServer object are
GetLoginTimeout and SetLoginTimeout.

As with any COM function, SQL-DMO object member functions that expose
properties return an HRESULT. A property value is retrieved through an indirect
pointer. For example:

LPSQLDMOSERVER pServer;
long 1LoginTimeout;

HRESULT hr;

hr = pServer->GetLoginTimeout(&lLoginTimeout);
if (FAILED(hr))

{

// Handle get property error.

}

SQL-DMO methods are exposed in the same fashion. For example, the
EnumJobs method of the JobServer object lists those SQL Server Agent jobs
matching the criteria specified in the filter object as shown here:

LPSQLDMOJOBSERVER pJobServer = NULL;
LPSQLDMOQUERYRESULTS PQR = NULL;
LPSQLDMOJOBFILTER pJobFilter = NULL;
HRESULT hr;

// Create and connect object instance pSQLServer not shown.
hr = pSQLServer->GetJobServer(&pJobServer);

if (SUCCEEDED(hr))
hr = pJobServer->GetJobFilter(&pJobFilter);

// Filter for Microsoft Search, full-text indexing jobs.

if (SUCCEEDED(hr))
hr = pJobFilter->SetCategory(L"Full-Text");

// Get the job list...
if (SUCCEEDED(hr))
hr = pJobServer->EnumJobs(&pQR, pJobFilter);

if (SUCCEEDED(hr))
// ...display the results of job enumeration.

if (pQR !'=NULL)
pQR->Release();

if (pJobFilter != NULL)
pJobFilter->Release();

if (pJobServer != NULL)
pJobServer->Release();

Many SQL-DMO method-implementing member functions define logical
default values for the C++ using application developer. For more information

about a specific property or method member function, see Properties or
Methods.

SQL-DMO

SQL-DMO Strings

SQL-DMO uses the OLE BSTR object to return strings to the client application.
By definition, an OLE BSTR object is composed of Unicode characters.

Further, when an OLE BSTR object is returned, the reference count on the
string-implementing resource is implicitly incremented. String references are
released using the COM SysFreeString function. For example:

LPSQLDMODATABASE pDatabase;
BSTR bstrDBName = NULL;

HRESULT hr;

// Getting a string back from SQL-DMO is also getting a
// reference on an object. Be sure to release it.
hr = pDatabase->GetName(&bstrDBName);

if (SUCCEEDED(hr))
SysFreeString(bstrDBName);

When setting a SQL-DMO property, or providing a string as a method argument,
be sure to use Unicode character strings. A number of macros exist to aid in
coding constant values. For example:

LPSQLDMOCOLUMN pColumn;
WCHAR* szColumnName = L"EmployeelD"; // Use L. macro t
// Unicode character
// string. Could use
// OLESTR() macro as
// well.

HRESULT hr;

hr = CoCreatelnstance(CLSID_SQLDMOColumn, NULL,
CLSCTX_INPROC_SERVER, IID_ISQLDMOColumn, (void**)
if (SUCCEEDED(hr))
pColumn->SetName(szColumnName);

When developing an application for operating systems that do not provide native
Unicode support, such as Microsoft® Windows® 95, you need to convert strings
as required to ensure that the correct character set is used. The Windows API
functions MultiByteToWideChar and WideCharToMultiByte provide
conversion between ANSI or other multibyte character sets and Unicode. If
using MFC, objects of the CString class can be used to convert strings easily
from ANSI to Unicode and vice versa.

SQL-DMO

SQL-DMO Properties Collection

The Properties collection and the Property object are implemented for OLE
Automation controllers. The C/C++ SQL-DMO application has access to these
objects only through automation interfaces, such as those that query the type
library.

Through querying the SQL-DMO type library, traversing object definitions and
interpreting SQL-DMO member functions exposed as properties or methods are
available to the application developer. These topics are covered in other

references and are therefore considered outside the scope of this documentation.

For more information, see the Microsoft Platform SDK.

SQL-DMO

SQL-DMO Data Types

Type definitions included in Sqldmo.h, or in header files on which Sqldmo.h
depends, provide the application with types defined by the Microsoft® Platform
SDK. With the exception of OLE date data type handling, there is nothing
unique about SQL-DMO data types.

Dates

For the C/C++ developer, SQL-DMO does not directly support a data type
exposing a date and/or time value. Object properties returning an OLE date data
type to an application developed using an OLE Automation controller will,
instead, return a packed long integer to the C/C++ application.

For example, the LastOccurrenceDate property of the Alert object exposes a
date value to a Microsoft Visual Basic®/ActiveX® script application. The Alert
object member functions implementing LastOccurrenceDate are
GetLastOccurrenceDate and SetLastOccurrenceDate with the following
prototypes:

HRESULT GetLastOccurrenceDate(LPLONG pRetVal);
HRESULT SetLastOccurrenceDate(long New Value);

SQL-DMO does not specify a function argument type wide enough to capture
the precision expressed in an OLE date. Instead, the member functions extract
and set only the date portion of a date and time value.

For C/C++, SQL-DMO addresses the date/time data type width problem by
implementing a group of member functions. One member function pair extracts
the date portion of the property value and a second extracts the time portion. For
read/write properties, a second function pair implements setting the date value.

When SQL-DMO uses a scaled long integer to represent a date, the integer is
built as a sum of the year scaled by 10000, the month scaled by 100, and the day.
For example, the date April 19, 1997 is represented by the long integer value
19970419.

When SQL-DMO uses a scaled long integer to represent a time, the integer is

built as a sum of the hour scaled by 10000, the minute scaled by 100, and the
seconds. The time value uses a 24-hour clock. For example, the time 1:03:09
P.M. is represented by the long integer value 130309.

SQL-DMO

Handling SQL-DMO Events

The SQL-DMO Backup, BulkCopy, Replication, Restore, SQLServer, and
Transfer objects are connectable COM objects, supporting callback to the client
application.

For connectable objects, COM defines the responsibilities for servers and clients.
A connectable object exposes the IConnectionPointContainer interface,
through which the client obtains the IConnectionPoint interface. The client
implements functions to handle callbacks from the server, called a sink. Using
the IConnectionPoint interface, the client notifies the server of its ability to
handle callbacks, providing its sink implementation as an argument.

The client-implemented sink is a COM object. As with any COM application
development task, implementing a sink for any SQL-DMO connectable object is
fairly painless when using C++. The client application defines a class, inheriting
from a defined SQL-DMO sink interface definition, then implements members
to handle the callbacks of interest. The example below illustrates class definition
and partial inline implementation for a COM object that can be connected to a
SQLServer object instance:

class CSQLServerSink : public ISQLDMOServerSink

{
public:

CSQLServerSink();

~CSQLServerSink()
{;}

// TUnknown interface on all COM objects.
STDMETHOD(QuerylInterface) (THIS_ REFIID riid, LPVOID* pp

// AddRef has an inline implementation.
STDMETHOD_(ULONG, AddRef) (THIS)
{return (++m_uiRefCount);}

STDMETHOD_(ULONG, Release) (THIS);

// Sink properties and methods. Implement CommandSent,

// ConnectionBroken, QueryTimeout and RemoteL.oginFailed as no

// operation.

STDMETHOD(CommandSent) (THIS_ SQLDMO_LPCSTR strSQ
{return (NOERROR);}

STDMETHOD(ConnectionBroken) (THIS_ SQLDMO_LPCSTR st
LPBOOL pbRetry)
{return (NOERROR);}

STDMETHOD(QueryTimeout) (THIS_ SQLDMO_LPCSTR strMs;
LPBOOL pbContinue)
{return (NOERROR);}

STDMETHOD(RemoteLoginFailed) (THIS_ long IMsgSeverity,
long IMsgNumber, long MsgState, SQLDMO_LPCSTR strMsg)
{return (NOERROR);}

// Code implementing sink method ServerMessage is shown elsewhe
STDMETHOD(ServerMessage) (THIS_ long IMsgSeverity, long 1V
long MsgState, SQLDMO_LPCSTR strMsg);

private:
// Keeping track of ourselves.
UINT m_uiRefCount;

// Used to format status messages from handled ServerMessage ever
TCHAR m_acMessage[2048];

%

Implementing the QueryInterface and Release functions is done in standard
fashion as:

HRESULT STDMETHODCALLTYPE CSQLServerSink::QuerylInterf
THIS_ REFIID riid, LPVOID* ppvObj)

{
if ((riid == IID_IUnknown) || (riid == IID_IWSQLDMOServerSink

{
AddRef();

*ppvODbj = this;

return (NOERROR);
}

return (E_NOINTERFACE);
}

and:

ULONG STDMETHODCALLTYPE CSQLServerSink::Release(THIS
{

--m_uiRefCount;

if (m_uiRefCount == 0)
delete this;

return (m_uiRefCount);

}

Reference counting on COM objects implies a constructor such as the following:

CSQLServerSink::CSQLServerSink()
{

m_uiRefCount = 0;

}

And finally, the implementation of the function handling the ServerMessage
callback. The example shows using a message box to display the status messages
received by the application:

HRESULT STDMETHODCALLTYPE CSQLServerSink::ServerMess
(
THIS_ long IMsgSeverity,
long IMsgNumber,
long MsgState,
SQLDMO_LPCSTR szMsg

)
{
#ifdef UNICODE

swprintf(m_acMessage, L."%s", szMsg);
#else

sprintf(m_acMessage, "%S", szMsg);
#endif

MessageBox(NULL, m_acMessage, _T("SQLServer Status Messag;
MB_OK | MB_ICONINFORMATION);

return (NOERROR);
}

With the class defined and its members implemented, an object instance of the
class can be connected to a SQLServer object instance, as shown here:

BOOL CSQLServerHandler::InstallConnectionPoint(
LPSQLDMOSQLSERVER pSQLServer)
{
LPCONNECTIONPOINTCONTAINER piCPContainer = NULL;
HRESULT hr;
CSQLServerSink* pSQLServerSink;

// Create an instance of the SQLServer sink.

pSQLServerSink = new CSQLServerSink;

if (pSQLServerSink != NULL)

{

hr = pSQLServer->QuerylInterface(

IID_IConnectionPointContainer, (void**) &piCPContainer);

if (SUCCEEDED(hr))

}

{

// m_pCP is a CSQLServerHandler member variable (a pointer

// to an IConnectionPoint). The connection point will be

// used both to advise the SQLServer object of event

// handling and to terminate event handling later. For that

// reason, the variable is not local in scope to this

// function.

hr = piCPContainer->FindConnectionPoint(
IID_ISQLDMOServerSink, &m_pCP);

if (SUCCEEDED(hr))
m_pCP->Advise(pSQLServerSink, &m_dwCookie);

piCPContainer->Release();
}

// If anything fails, delete the instance of CSQLServerSink that
// was created. Otherwise, the self-destruct mechanism in

// CSQLServerSink::Release will handle object destruction.

if (FAILED(hr))

{

hrDisplayError(hr);

delete pSQLServerSink;

return (SUCCEEDED(hr));
}

When an application connects to a connectable object, it becomes responsible for
breaking that connection when no longer required. An example is shown here:

void CSQLServerHandler::ReleaseConnectionPoint()
{
if (m_dwCookie != _BAD_COOKIE)
m_pCP->Unadvise(m_dwCookie);

if (m_pCP != NULL)
{
m_pCP->Release();
m_pCP = NULL;
}

}

Note The details of COM connectable object implementation are beyond the
scope of this documentation. For more information about COM connectable
objects, IConnectionPointContainer, and IConnectionPoint, see a reliable
COM/OLE reference.

SQL-DMO

Handling SQL-DMO Errors

At the highest level, a SQL-DMO object member function succeeds or fails.
Every COM function returns an HRESULT value indicating success or failure.
The operating system reserves ranges of function return values for COM and
OLE errors and defines specific error conditions, such as success and success
with additional information.

All SQL-DMO interfaces support the IErrorInfo interface. With an instance of
any SQL-DMO object, QueryInterface for an ISupportErrorInfo interface
returns a valid interface pointer, and
ISupportErrorInfo::InterfaceSupportsErrorInfo returns NOERROR.
Therefore, the COM GetErrorInfo function returns an IErrorInterface
reference for any error raised by SQL-DMO (HRESULT is greater than
CO_E_LAST), and the SQL-DMO application can avoid querying for
ISupportErrorInfo.

The SQL-DMO errors enumerated data type SQLDMO_ERROR_TYPE is
defined as groups of related errors. The macro SQLDMO_ECAT_MASK,
defined in Sqldmo.h, can be used to determine the error category allowing error
handling based on type of error returned. For example,
SQLDMO_ERROR_TYPE defines
SQLDMO_ECAT_UNPRIVILEGEDLOGIN, a category indicating that the
currently connected user is not a member of a role with sufficient privilege to
perform a requested action. An application may decide to branch to
extraordinary error handling code when receiving errors of this category.

SQL-DMO

SQL-DMO Reference

SQL Distributed Management Objects (SQL-DMO) is a collection of objects
encapsulating Microsoft® SQL Server™ 2000 database and replication
management. SQL-DMO Reference contains detailed information about objects,
collections, properties, methods, events, constants, and sample programs.

SQL-DMO

Objects

A SQL-DMO object exposes the attributes of a Microsoft® SQL Server™ 2000
component.

Properties

Parent Property UserData Property
TypeOf Property

Remarks

All SQL-DMO objects expose properties. For a specific instance of an object,
the properties identify a specific SQL Server component. For example, the
SystemDatatype object with a Name value varchar has properties that define
the SQL Server data type varchar.

Some objects expose methods that act on a component as directed by the
application. For example, the Script method of a StoredProcedure object
creates a Transact-SQL script that can re-create the referenced SQL Server stored
procedure.

Some objects support events. Events communicate from the SQL-DMO object to
the application. For example, the PercentComplete event of a Backup object
provides notification that the backup operation specified has reached an
application-defined point.

SQL-DMO

A

SQL-DMO

Alert Object

The Alert object represents a single SQL Server Agent alert. Alerts respond to
either specific Microsoft® SQL Server™ 2000 error messages or SQL Server
errors of a specified severity.

| JobServer |

L{ Alerts |
|‘| Alert |

Properties

Category Property JobID Property
CountResetDate Property JobName Property
CountResetTime Property LastOccurrenceDate Property
DatabaseName Property LastOccurrenceTime Property
DelayBetweenResponses Property |LastResponseDate Property
Enabled Property LastResponseTime Property
EventCategoryID Property MessagelD Property
EventDescriptionKeyword Property |Name Property

EventID Property NotificationMessage Property
EventSource Property OccurrenceCount Property
HasNotification Property PerformanceCondition Property
ID Property Severity Property
IncludeEventDescription Property |[Type Property (Alert)

Methods

AddNotification Method Remove Method (Objects)
BeginAlter Method RemoveNotification Method
CancelAlter Method ResetOccurrenceCount Method
DoAlter Method Script Method
EnumNotifications Method UpdateNotification Method

Refresh Method

Remarks
You can use the Alert object to create and manage SQL Server Agent alerts:

e Create an alert to respond to a specific SQL Server error.

e Change the properties of an existing alert to modify its behavior.

e Change the notified operators on an instance of the error condition.

The Name property of an Alert object uses the SQL Server data type sysname.
The string must be a unique value for each Alert object in the Alerts collection.

SQL Server does not allow the creation of more than one alert on any given error
condition or severity level. More than one alert can be defined on a specific
message identifier; however, each alert defined must be limited in scope by
associating the alert with a specific database.

SQL Server alerts are enabled by default. However, an alert created with the
minimum required values will fire no notifications. You must assign operators to
the alert by using the AddNoetification method of the Alert or Operator object.

To create an alert

1. Create an Alert object.

2. Set the Name property.

3. Set the response type for the alert by setting the value of the Severity
property or the MessagelD property.

4. Set optional properties as desired. For example, set the
DatabaseName property to limit the alert's action to a specific

database, or use the AddNotification method to add operators to the
alert.

5. Add the Alert object to the Alerts collection of a connected
JobServer object.

To alter an existing alert

1. Get an Alert object from the Alerts collection of a connected
JobServer object.

2. Use the BeginAlter method to mark the beginning of the changes.

3. Set the Alert object properties to reflect changes in alert behaviors.

4. Use the DoAlter method to submit the alert changes to SQL Server.

See Also

Defining Alerts

Operator Object

JavaScript:hhobj_1.Click()

SQL-DMO

AlertSystem Object

The AlertSystem object represents properties and behaviors of the SQL Server
Agent alert notification for all defined alerts.

| JobServer |

L{ AlertSpztemn |

Properties

FailSafeOperator Property PagerCCTemplate Property
ForwardAlways Property PagerSendSubjectOnly Property
ForwardingServer Property PagerSubjectTemplate Property
ForwardingSeverity Property PagerToTemplate Property
NotificationMethod Property

Methods
BeginAlter Method DoAlter Method
CancelAlter Method Refresh Method
Remarks

The AlertSystem object represents properties set for a single instance of SQL
Server Agent. There is a single AlertSystem object for a SQLServer object, and
new AlertSystem objects cannot be created.

With the AlertSystem object, you can:

¢ Register an operator for fail-safe response.

e Change the look of address lines on e-mail and pager notices sent as
part of alert notification.

To change the alert notification behaviors of a SQL Server Agent

1. Get the AlertSystem object from the JobServer object of a connected
SQLServer object.

2. Use the BeginAlter method to mark the start of changes to the object
properties.

3. Change property values to reflect changes in alert notification
behavior.

4. Use the DoAlter method to mark the end of changes and submit them
to the SQL Server Agent.

See Also

Defining Operators
Managing Events

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL-DMO

Application Object

The Application object represents properties of SQL-DMO objects and the user
application.

[y SOL-DMO abject |

Application |

| ServerGroups |

| SOLServers |
Properties
BlockingTimeout Property ODBCVersionString Property
FullName Property UseCurrentUserServerGroups

Property
GroupRegistrationServer Property |VersionBuild Property

GroupRegistrationVersion Property |VersionMajor Property
Name Property VersionMinor Property

Methods

ListAvailableSQLServers Method Quit Method

Remarks

The Name property of the Application object cannot be set. SQL-DMO uses the
version information structure of the user executable file or dynamic-link library
(DLL) to fill this value when the version information structure exists.

With the Application object, you can:

e Generate a list of available instances of Microsoft® SQL Server™
2000.

e Report version information for major components of SQL-DMO.

¢ Set a blocking time-out for all SQLServer objects created in the
application.

SQL-DMO

B

SQL-DMO

Backup Object

The Backup object defines a Microsoft® SQL Server™ 2000 database or log
backup operation.

Properties

Action Property (Backup) Initialize Property

BackupSetDescription Property MediaDescription Property

BackupSetName Property MediaName Property

BlockSize Property PercentCompleteNotification
Property

Database Property Pipes Property

DatabaseFileGroups Property Restart Property

DatabaseFiles Property RetainDays Property

Devices Property SkipTapeHeader Property

ExpirationDate Property Tapes Property

Files Property Truncatel.og Property (Backu

FormatMedia Property UnloadTapeAfter Property

Methods

Abort Method SQLBackup Method

GenerateSQL Method (Backup,

Restore)

Events

Complete Event PercentComplete Event

NextMedia Event

Remarks
With the Backup object, you can:

e Back up a SQL Server database or database transaction log.

e Generate a Transact-SQL BACKUP statement defining a backup.

e Monitor a backup operation, reporting status to the user.

For SQL Server, a database delimits the largest backup unit. Though many
different database backup images can be maintained on any single medium, a
backup cannot span more than a single database. By default, backup operations
performed with the Backup object back up a complete database.

SQL Server can write a backup to one of four media types: disk, tape, named
pipe, or a proprietary media called a backup device. SQL Server supports backup
striping. A striped backup is one directed to more than a single device. When
striped, a backup is written across the devices in equal chunks. Striping is
supported to a single media type only. That is, a backup can be written to two
tape devices. However, SQL Server cannot write one-half of a backup to a tape
device, and the other half to a disk.

At a minimum, you must supply values for a backup source and a backup target
when using the Backup object. The Database property specifies the backup
operation source. SQL-DMO implements supported media types in the Backup
object properties Files, Devices, Pipes, and Tapes. Use one media type property
to specify the backup operation target.

To perform a complete database backup

1. Create a new Backup object.

2. Set the Database property, naming the database backed up.

3. Set a media property to name the target device(s).

4. Call the SQLBackup method.

In many installations, complete database backup is not a viable option. The
Backup object offers access to a number of strategies that ensure data integrity
by capturing a subset of the database image.

To back up a database transaction log

1. Create a new Backup object.

2. Set the Database property, naming the database backed up.

3. Set the Action property to SQLDMOBackup_Log.

4. Set a media property to name the target device(s).

5. Call the SQLBackup method.

To perform a differential backup

1. Create a new Backup object.

2. Set the Database property, naming the database backed up.

3. Set the Action property to SQLDMOBackup_Incremental.

4. Set a media property to name the target device(s).

5. Call the SQLBackup method.

To back up specific filegroups

5.

. Create a new Backup object.

Set the Database property, naming the database backed up.

Set the DatabaseFileGroups property, naming the filegroup(s)
providing backup source data.

Set a media property to name the target device(s).

Call the SQLBackup method.

To back up specific files

1.

6.

Create a new Backup object.

Set the Database property, naming the database backed up.

Set the Action property to SQLDMOBackup_Files.

Set the DatabaseFiles property, naming the file(s) providing backup
source data.

Set a media property to name the target device(s).

Call the SQLBackup method.

Settings for any other Backup object properties are optional. Use the optional
settings when conditions require extraordinary processing. For example, the
MediaName and MediaDescription properties provide, primarily, data used to
ensure media availability for tape devices and are applicable when the backup
operation defined will initialize the media. For more information about property
applicability and use, see individual property documentation.

Note The Backup object is compatible with instances of SQL Server 2000 and
SQL Server version 7.0. However, the Backup2 object extends the functionality
of the Backup object for use with features that are new in SQL Server 2000.

See Also

Backup2 Object

SQL-DMO

Backup2 Object

The Backup?2 object defines a Microsoft® SQL Server™ 2000 database or log
backup operation and extends the functionality of the Backup object.

Properties

MediaPassword Property Password Property

NoRewind Property

Remarks

The Backup2 object extends the functionality of the Backup object for use with
features that are new in SQL Server 2000. It also inherits the properties and
methods of the Backup object. With the Backup?2 object, you can:

e Retrieve or specify a Microsoft SQL Server 2000 backup or media set
password.

The properties of the Backup2 object may not be compatible with instances of
SQL Server version 7.0 or earlier. For information about using the Backup2
object in an application that also runs with an instance of SQL Server 7.0, refer
to the Remarks section for specific properties. For more information, see

Programming Extended SQL-DMO Obijects.

See Also

Backup Object

SQL-DMO

BackupDevice Object

The BackupDevice object represents the properties of a Microsoft® SQL
Server™ 2000 backup device.

| SOLServer |

I" BackupDevices |

BackupDevice |
Properties
DeviceNumber Property Status Property (BackupDevice)
Name Property SystemObject Property
Physicall.ocation Property Type Property (BackupDevice)
SkipTapeLabel Property

Methods

ReadBackupHeader Method Remove Method (Objects)
(BackupDevice)

ReadMediaHeader Method Script Method (BackupDevice
(BackupDevice) Object)

Remarks

SQL Server backup devices specify the behavior of specific backup media,
usually tape. Backup devices are not required when issuing a BACKUP or
RESTORE statement and are not required by the Backup object.

With the BackupDevice object, you can:

¢ Define a new backup device for a server running SQL Server.

e Change the definition of an existing SQL Server backup device.

The Name property of the BackupDevice object must match the definition of
the sysname SQL Server data type.

To create a backup device

1. Create a BackupDevice object.

2. Set the Name property.

3. Set properties that define the behavior or use of the device, such as the
tape label skip parameter or the physical location.

4. Add the BackupDevice object to the BackupDevices collection of a
connected SQLServer object.

To change the definition of an existing backup device

1. Get the appropriate BackupDevice object from the BackupDevices
collection of a connected SQLServer object.

2. Set properties to reflect changes in behavior or use. Changes to
property values are applied to the referenced SQL Server backup
device as they are made.

SQL-DMO

BulkCopy Object

The BulkCopy object represents the parameters of a single bulk copy command
issued against a Microsoft® SQL Server™ 2000 database.

Properties

CodePage Property MaximumErrorsBeforeAbort
Property

ColumnDelimiter Property RowDelimiter Property

DataFilePath Property ServerBCPDataFileType Property

DataFileType Property ServerBCPKeepldentity Property

ErrorFilePath Property ServerBCPKeepNulls Property

ExportWideChar Property SuspendIndexing Property

FirstRow Property Truncatel.og Property (BulkCo

FormatFilePath Property Use6xCompatible Property

ImportRowsPerBatch Property UseBulkCopyOption Property

Includeldentity Values Property UseExistingConnection Property

LastRow Property UseServerSideBCP Property

LogFilePath Property

Methods

Abort Method SetCodePage Method

Events

BatchImported Event RowsCopied Event

Remarks

The BulkCopy object is used as a parameter to the ImportData method of the
Table object and the ExportData method of the Table and View objects.

With the BulkCopy object, you can:

e Specify format values for the data file used for bulk copy operations.

e Set bulk copy command parameters, such as error file name and
maximum number of errors to allow before terminating.

e Stop an in-process bulk copy.

e Respond to bulk copy events to report the number of rows processed or
the percent complete.

Note The BulkCopy object is compatible with instances of SQL Server 2000
and SQL Server version 7.0. However, the BulkCopy2 object extends the
functionality of the BulkCopy object for use with features that are new in SQL
Server 2000.

See Also

BulkCopy2 Object

ExportData Method

ImportData Method

SQL-DMO

BulkCopy2 Object

The BulkCopy2 object represents the parameters of a single bulk copy
command issued against a Microsoft® SQL Server™ 2000 database and extends
the functionality of the BulkCopy object.

Properties

TableL.ock Property

Remarks

The BulkCopy2 object extends the functionality of the BulkCopy object for use
with features that are new in SQL Server 2000. It also inherits the properties and
methods of the BulkCopy object.

The TableLock property of the BulkCopy2 object may not be compatible with
instances of SQL Server version 7.0 or earlier. For information about using the
BulkCopy2 object in an application that also runs with an instance of SQL
Server 7.0, refer to the Remarks section of the TableLock property. For more
information, see Programming Extended SQL-DMO Objects.

See Also

BulkCopy Object

SQL-DMO

C

SQL-DMO

Category Object

The Category object represents the attributes of a SQL Server Agent alert, job,
or operator category.

| AlertCategories |

| JobCategornies |

| OperatorCategonies |

I Categony |

Properties

ID Property Type Property (Categor
Name Property

Methods

BeginAlter Method Refresh Method
CancelAlter Method Remove Method (Objects)
DoAlter Method

Remarks

SQL Server Agent categories are optional attributes that group alerts, jobs, and
operators. With the Category object, you can:

e Create groupings for alerts, jobs, and operators.

e Use the Name property value to view specific jobs when applying a
JobFilter object.

The Name property of a Category object uses the Microsoft® SQL Server™
2000 data type sysname. For each type of SQL Server category, the category

name must be unique.

The Type property applies only to categories used for SQL Server Agent jobs.
When used with a job, the Type property value can be set. Setting it for SQL
Server alert or operator categories results in an error.

To create a SQL Server job category

1. Create a Category object.

2. Set the Name property.

3. Set the Type property, if desired.

4. Add the Category object to the JobCategories collection of a
connected JobServer object.

To create a SQL Server operator category

1. Create a Category object.

2. Set the Name property.

3. Add the Category object to the OperatorCategories collection of a
connected JobServer object.

See Also

JobFilter Object

SQL-DMO

Check Object

The Check object represents the attributes of a single Microsoft® SQL Server™
2000 integrity constraint.

[Table |

Checksz |

|-| Check |
Properties
Checked Property Name Property
ExcludeReplication Property Text Property
Methods
Remove Method (Objects) Script Method
Remarks

A SQL Server integrity constraint can be defined as part of a CREATE TABLE
statement or can be added to, or removed from, a table as part of an ALTER
TABLE statement.

With the Check object, you can:

¢ Define a new integrity constraint for a SQL Server table.

e Remove an existing constraint from a SQL Server table.

¢ Generate a Transact-SQL script to document an existing integrity
constraint.

The Name property represents a constraint name. It is character data and must be
unique within a SQL Server database.

To create a SQL Server integrity constraint

1.

5.

Create a Check object.

Set the Name property.

Set the Text property to define the constraint.

Adding the Check object to its containing collection generates the
appropriate CREATE statement. Specify only the integrity test
condition in the Text property.

Set the ExcludeReplication property.

Add the Check object to the Checks collection of a Table object.

To remove a SQL Server integrity constraint

1.

Get the appropriate Table object from the Tables collection of a
Database object.

Use the BeginAlter method of the Table object to mark the start of
alterations on the SQL Server table.

Get the desired Check object from the Checks collection of the Table
object.

Use the Remove method of the Check object to drop its integrity
constraint from the SQL Server table.

Use the DoAlter method of the Table object to submit the change to
the SQL Server.

See Also

ALTER TABLE
CREATE TABLE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL-DMO

Column Object

The Column object represents the properties of a single column in a Microsoft®
SQL Server™ 2000 table.

| Columng |

|—| Column |

|-| DRID efault |
Properties
AllowNulls Property InPrimaryKey Property
AnsiPaddingStatus Property IsComputed Property
ComputedText Property IsRowGuidCol Property
Datatype Property Length Property
Default Property (Column, Name Property
UserDefinedDatatype)
DefaultOwner Property NotForRepl Property
FullTextIndex Property NumericPrecision Property
ID Property NumericScale Property
Identity Property PhysicalDatatype Property
Identitylncrement Property Rule Property
IdentitySeed Property RuleOwner Property
Methods
BindDefault Method Remove Method (Objects)
BindRule Method UpdateStatisticsWith Method

Column, Index

ListKeys Method

Remarks

With the Column object, you can:

e Define columns of a new SQL Server table.

e Define a new column for an existing SQL Server table.

e Drop an existing column from a SQL Server table.

e List the references of a SQL Server column.

The Name property of a Column object uses the SQL Server data type sysname.
The Name property must be unique within the names of columns in the SQL
Server table.

Column object properties can be set prior to adding the Column object to the
Columns collection of a Table object.

To define columns for a new SQL Server table

1.

Create a Table object.

Set the Name property of the Table object.

Create a Column object.

Set the Name property of the Column object.

Set properties that define the column data type. For example, to
specify a column with a char(5) data type, set the Datatype property
to char and the Length property to 5.

Set other properties.

7. Add the Column object to the Columns collection of the Table object.

8. Repeat Steps from 3 through 7 until all columns are defined.

9. Add the Table object to the Tables collection of a Database object.

To add a new column to a SQL Server table

1. Create a Column object.

2. Set the Name property.

w

. Set properties that define the column data type. For example, to
specify a column with a char(5) data type, set the Datatype property
to char and the Length property to 5.

4. Set other properties.

5. Get the desired Table object from the Tables collection of a Database
object.

(@)}

. Use the BeginAlter method of the Table object to mark the beginning
of changes to the SQL Server table.

7. Add the Column object to the Columns collection of the Table object.

8. Use the DoAlter method of the Table object to submit the changed
table definition to the SQL Server.

To drop a column from a SQL Server table

1. Get the desired Table object from the Tables collection of a Database
object.

2. Use the BeginAlter method of the Table object to mark the beginning
of changes to the SQL Server table.

3. Get the desired Column object from the Columns collection of the
Table object.

4. Use the Remove method of the Column object to drop the column
from the SQL Server table.

5. Use the DoAlter method of the Table object to submit the changed
table definition to the SQL Server.

Note The Column object is compatible with instances of SQL Server 2000 and
SQL Server version 7.0. However, the Column2 object extends the functionality
of the Column object for use with new features in SQL Server 2000.

See Also

Column?2 Object

SQL-DMO

Column2 Object

The Column2 object represents the properties of a single column in a
Microsoft® SQL Server™ 2000 table and extends the functionality of the
Column object.

Properties

Collation Property FullTextImageColumnType Property

FullTextColumnl.anguagelD
Property

Methods

AlterDataType Method SetFull TextIndexWithOptions Method

Remarks

The Column2 object extends the functionality of the Column object for use
with new features in SQL Server 2000. It also inherits the properties and
methods of the Column object. With the Column2 object, you can:

e Retrieve information about column-level collation.

¢ Set and retrieve attributes of image columns used in a full-text index.

e Alter the data type of a column

The methods and properties of the Column2 object may not be compatible with
instances of SQL Server version 7.0 or earlier. For more information about using
the Column2 object in an application that also runs with an instance of SQL

Server 7.0, refer to the Remarks section for specific methods and properties. For

more information, see Programming Extended SQL-DMO Objects.

See Also

Column Object

SQL-DMO

Configuration Object

The Configuration object represents Microsoft® SQL Server™ 2000 engine-
configurable parameters and values.

| SOLServer |

L| Configuration |
Configh'alues |
Farameters |

Properties

ShowAdvancedOptions Property

Methods

ReconfigureCurrentValues Method |ReconfigureWithOverride Method

Remarks
With the Configuration object, you can:

e Get current SQL Server configuration options.

e Reset one or more SQL Server configuration options.

The ShowAdvancedOptions property of the Configuration object controls the
membership of the ConfigValues collection. Each ConfigValue object in the
collection represents a specific SQL Server configuration option. For more
information about advanced options, see Setting Configuration Options.

Some SQL Server configuration options do not take effect until the SQL Server
service has been stopped and restarted. You can force the server to immediately
accept changes in some options using the ReconfigureWithOverride method.

JavaScript:hhobj_1.Click()

To set a configuration option

1. Get the Configuration object from a connected SQLServer object.

2. Get the ConfigValue object of the desired configuration option from
the ConfigValues collection of the Configuration object.

3. Set the CurrentValue property of the ConfigValue object to reflect
the desired change.

4. Use either the ReconfigureCurrentValues or the
ReconfigureWithOverride method of the Configuration object to
apply the change to an instance of SQL Server.

5. If necessary, use the Shutdown and Start methods of the SQLServer
object to restart the server with the changed configuration options.

SQL-DMO

ConfigValue Object

The ConfigValue object represents the attributes of a single Microsoft® SQL
Server™ 2000 configuration option.

| Configuration |

Configialues |

Confighalue |

Properties
CurrentValue Property Maximum Value Property
Description Property Minimum Value Property
DynamicReconfigure Property Name Property
ID Property RunningValue Property
Remarks

Some SQL Server configuration options do not take effect until the SQL Server
service (MSSQLServer) has been stopped and restarted. You can force the server
to immediately accept changes in some options by using the
ReconfigureWithOverride method. The DynamicReconfigure property
indicates whether the ConfigValue object requires a restart.

The ConfigValue object contains four value properties. The MinimumValue
and MaximumValue properties represent bounds for the given configuration
option. The RunningValue property indicates the current setting of the option
on an instance of SQL Server. Prior to changing the configuration option setting,
the CurrentValue and the RunningValue properties return identical values.

Set the CurrentValue property to change the setting of the given SQL Server
configuration option. Undo your changes by resetting the CurrentValue
property to the value of the RunningValue property. After a change is applied,
the values of these two properties are again equal.

To set a configuration option

. Get the Configuration object from a connected SQLServer object.

. Get the ConfigValue object of the desired configuration option from
the ConfigValues collection of the Configuration object.

. Set the CurrentValue property of the ConfigValue object to reflect
the desired change.

. Use either the ReconfigureCurrentValues or the
ReconfigureWithOverride method of the Configuration object to
apply the change to the instance of SQL Server.

. If the ConfigValue object requires a restart to take effect (the value of
DynamicReconfigure is FALSE), use the Shutdown and Start
methods of the SQLServer object to restart the server with the
changed configuration options.

SQL-DMO

D

SQL-DMO

Database Object

The Database object represents the properties of a single Microsoft® SQL

Server™ 2000.

| [atabases |

I‘| [ratabaze |

-I [atabazeRoles
H DEDption

-| [refaults

-I FileGroups

-| Rules
-| StoredProcedures

-I SystemDatatypes

-| Tables

|
|
|
|
-I FullT extCatalogs |
|
|
|
|
|

-| TrangactionLog

‘I I zerDefinedD atatypes |

‘I I zerD efinedFunchions |
-| zers |
—I Wiews |

Properties

Compatibilityl.evel Property
(Database)

Isdb_securityadmin Property

CreateDate Property

IsFullTextEnabled Property

CreateForAttach Property

Name Property

DataSpaceUsage Property

Owner Property (Database,

UserDefinedFunction)

Dbol.ogin Property

Permissions Property

ID Property

PrimaryFilePath Property

IndexSpaceUsage Property

Size Property

Isdb_accessadmin Property

SpaceAvailable Property

Isdb_backupoperator Property

SpaceAvailableInMB Property

Isdb_datareader Property

Status Property (Database)

Isdb_datawriter Property

SystemObject Property

Isdb_ddladmin Property

UserName Property

Isdb_denydatareader Property

UserProfile Property

Isdb_denydatawriter Property

Version Property

Isdb_owner Property

Methods

CheckAllocations Method

FullTextIndexScript Method

CheckAllocationsDataOnly Method

GenerateSQL Method (Database)

CheckCatalog Method

GetDatatypeByName Method

Checkldentity Values Method

GetMemoryUsage Method

Checkpoint Method

GetObjectByName Method

CheckTables Method Grant Method (Database)
CheckTablesDataOnly Method IsUser Method
Deny Method (Database) IsValidKeyDatatype Method

DisableFullTextCatalogs Method

ListDatabasePermissions Method

EnableFullTextCatalogs Method

ListObjectPermissions Method

EnumCandidateKeys Method

ListObjects Method

EnumDependencies Method

RecalcSpaceUsage Method

EnumFileGroups Method

Remove Method (Objects)

EnumPFiles Method (Database)

RemoveFullTextCatalogs Method

Enuml.ocks Method

Revoke Method (Database)

Enuml.oginMappings Method

Script Method

EnumMatchingSPs Method

ScriptTransfer Method

(Database, SQIL . Server)

EnumNTGroups Method SetOwner Method
EnumUsers Method Shrink Method
Executelmmediate Method Transfer Method

ExecuteWithResults Method

UpdatelndexStatistics Method

ExecuteWithResultsAndMessages

Method

Remarks

Because it represents a SQL Server database, the Database object is a major
component of the SQL-DMO object tree. The Database object contains
collections that define the tables, stored procedures, data types, and users of a
database. Methods of the Database object allow you to perform essential
database maintenance functions, such as backup.

With the Database object, you can:

e Create a SQL Server database.

¢ Add database roles, rules, stored procedures, tables, user-defined data
types, users, and views to an existing SQL Server database.

e Remove or drop database objects (tables, views, and so on) from an
existing SQL Server database.

e Modify the disk resource used by the database for storage.

e Backup or restore an existing SQL Server database or its transaction
log.

e Control SQL Server database security by adding users and granting,
denying, or revoking access rights to the database.

e Check SQL Server database integrity.

e Check current usage in the database; specifically, check the status of
locks applied against database resources.

The Name property of a Database object is a character string. Name must be a
valid string for the SQL Server sysname data type.

To create a SQL Server database

1.

Create a Database object.

Set the Name property of the Database object.

Create a DBFile object.

Set the Name property of the DBFile object.

Set the PhysicalName property of the DBFile object.

Set DBFile object properties optional for new database files, such as
Size.

Add the DBFile object to the new Database object FileGroup object
named PRIMARY.

Add the Database object to the Databases collection of a connected
SQLServer object.

If you do not set the Size property of the DBFile object or specify a transaction
log file, SQL Server defaults are used. For more information, see CREATE
DATABASE.

You can specify a transaction log file during SQL Server database creation.
Specify the log file prior to adding the Database object to the Databases
collection.

To specify a log file

1.

Create a LogFile object.

JavaScript:hhobj_1.Click()

2. Set the Name property.
3. Set the PhysicalName property.
4. Set the LogFile Size property.

5. Add the LogFile object to the LogFiles collection of the
TransactionLog object of the new Database object.

Note The Database object is compatible with instances of SQL Server 2000 and
SQL Server version 7.0. However, the Database2 object extends the
functionality of the Database object for use with features that are new in SQL
Server 2000.

See Also

Database2 Object

SQL-DMO

Database2 Object

The Database2 object represents the properties of a single Microsoft® SQL
Server™ 2000 and extends the functionality of the Database object.

Properties

Collation Property IsDeleted Property
CurrentCompatibility Property SizeInKB Property
Methods

CheckAllocationsDataOnlyWithResult|CheckRuleSyntax Method
Method

CheckAllocationsWithResult Method |CheckTablesDataOnlyWithResult

Method
CheckCatalogWithResult Method CheckTablesWithResult Method
CheckDefaultSyntax Method IsObjectDeleted Method

Remarks

The Database2 object extends the functionality of the Database object for use
with features that are new in SQL Server 2000. It also inherits the properties and
methods of the Database object. With the Database2 object, you can:

e Set and retrieve column-level collation settings.

e Check SQL Server database integrity with results returned in tabular
format.

The methods and properties of the Database2 object may not be compatible with
instances of SQL Server version 7.0 or earlier. For more information about using
the Database2 object in an application that also runs with an instance of SQL

Server 7.0, refer to the Remarks section for specific methods and properties. For
more information, see Programming Extended SQL-DMO Objects.

See Also

Database Object

SQL-DMO

DatabaseRole Object

The DatabaseRole object represents the properties of a single Microsoft® SQL
Server™ database role.

| [ratabasze |

L([ratabazeRoles |

|—| [ratabazeRole |

Properties

AppRole Property Password Property
Name Property

Methods
AddMember Method ListDatabasePermissions Method
DropMember Method ListObjectPermissions Method

EnumDatabaseRoleMember Method |Remove Method (Objects)

EnumFixedDatabaseRolePermission |[Script Method
Method

IsFixedRole Method

Remarks

SQL Server database roles establish groups of users with similar security
attributes. Database permissions can be granted by role, simplifying database
security planning and administration. With the DatabaseRole object, you can:

e Create a SQL Server database role.

¢ Administer an existing SQL Server database role by adding or dropping
role members.

The Name property of a DatabaseRole object uses the SQL Server data type
sysname.

To create a SQL Server database role

1. Create a DatabaseRole object.

2. Set the Name property.

3. If creating a SQL Server application role, set the AppRole property to
TRUE. Set the Password property on the application role (optional).

4. Add the DatabaseRole object to the DatabaseRoles collection of a
connected Database object.

5. Add members to the DatabaseRole. Members can be drawn from the
Name property of User objects in the Users collection of the
Database object.

After creating the new SQL Server database role, you can use the Grant and
Deny methods of the Database, StoredProcedure, Table, and View objects to
set permissions for the new SQL Server database role.

To administer an existing SQL Server database role

1. Get the DatabaseRole object that references the SQL Server database
role from the DatabaseRoles collection of a connected SQLServer
Database object.

2. Use the AddMember or DropMember method to add or remove a
specified user. SQL-DMO applies the changes to the SQL Server
database role as you make them.

Note The DatabaseRole object is compatible with instances of SQL Server
2000 and SQL Server version 7.0. However, the DatabaseRole2 object extends
the functionality of the DatabaseRole object for use with features that are new

in SQL Server 2000.

See Also

Establishing Application Security and Application Roles
DatabaseRole2 Object

JavaScript:hhobj_1.Click()

SQL-DMO

DatabaseRole2 Object

The DatabaseRole2 object represents the properties of a single Microsoft® SQL
Server™ 2000 database role and extends the functionality of the DatabaseRole
object.

Properties

IsDeleted Property

Remarks

The DatabaseRole2 object extends the functionality of the DatabaseRole object
for use with features that are new in SQL Server 2000. It also inherits the
properties and methods of the DatabaseRole object.

The IsDeleted property of the DatabaseRole2 object may not be compatible
with instances of SQL Server version 7.0 or earlier. For more information about
using the DatabaseRole2 object in an application that also runs with an instance
of SQL Server 7.0, refer to the Remarks section of the IsDeleted property. For

more information, see Programming Extended SQL-DMO Objects.

See Also

DatabaseRole Object

SQL-DMO

DBFile Object

The DBFile object represents the properties of an operating system file used by
Microsoft® SQL Server™ 2000 for table and index data storage.

| FileGroup |

DEFiles |

|-| DEFile |
Properties
FileGrowth Property PhysicalName Property
FileGrowthInKB Property PrimaryFile Property
FileGrowthType Property Size Property
ID Property SpaceAvailableInMB Property
MaximumSize Property SizeInKB Property
Name Property

Methods

Remove Method (Objects) Shrink Method

Remarks

SQL Server can direct data storage for tables and indexes to specific operating
system files. A single operating system file can contain data from only a single
database. Within SQL Server, database data files are categorized by filegroup. A
SQL Server database contains one or more filegroups containing one or more
data files. This organization is reflected in the FileGroup and DBFile objects
and collections.

All SQL Server databases contain a filegroup named PRIMARY. This filegroup
contains the database primary data file. When using SQL-DMO to create a new

SQL Server database, add a DBFile object to the FileGroup object named
PRIMARY. After database creation, additional data files can be created and
added to either the PRIMARY filegroup or to filegroups added to the database.

With the DBFile object, you can:

¢ Create new operating system files for SQL Server database storage.

e Manage the properties of SQL Server database growth.

e Shrink the operating system files used by a database to reflect actual
space used.

The Name property of a DBFile object uses the SQL Server data type sysname.
The Name property value is used for the logical_file_name parameter in the
CREATE DATABASE and ALTER DATABASE statements when adding files.
The restrictions imposed on the logical_file_name parameter apply to the
DBFile Name property.

To create a data file for SQL Server database storage

1. Create a DBFile object.

2. Set the Name property.

3. Set the PhysicalName property to the path and file name of the
desired data file.

4. Set the Size property. The size property determines the size of the
created data file and is specified in megabytes.

5. Set optional properties, such as the Maximum (size) property.

6. Get a FileGroup object from the FileGroups collection of a connected
Database object.

7. Add the DBFile object to the DBFiles collection of the selected
FileGroup object.

See Also

ALTER DATABASE
CREATE DATABASE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL-DMO

DBObject Object

The DBObject object represents properties of a Microsoft® SQL Server™ 2000
database object, such as a table or stored procedure.

Properties

CreateDate Property SystemObject Property

ID Property Type Property (DBObject)
Name Property TypeName Property
Owner Property (Database Objects)

Methods

EnumDependencies Method Remove Method (Objects)
ListPermissions Method Script Method
ListUserPermissions Method

Remarks

The DBObject object is used as a parameter to the GetObjectByName method
of the Database object and the AddObject method of the Transfer object.

You can use the DBObject object to refer to SQL Server defaults, rules, stored
procedures, tables, triggers, user-defined data types, and views.

With the DBObject object, you can:

¢ Query a database by object name to determine if the specified object
exists.

e Add a list of SQL Server database objects to a script transferring objects
and data from one SQL Server database to another.

e Determine the dependencies on a named SQL Server database object.

e List the permissions granted on a named SQL Server database object.

The Name property of DBObject refers to the name of the selected Database
object. Database object names are defined with the SQL Server data type
sysname, and the value of the DBObject Name property matches the
specification of sysname.

SQL-DMO

DBOption Object

The DBOption object represents the settings for Microsoft® SQL Server™
database options for a specific SQL Server database.

| [atabaze |

L{ DEDption |

Properties

AssignmentDiag Property DefaultCursor Property
AutoClose Property Offline Property
AutoCreateStat Property QuoteDelimiter Property
AutoShrink Property ReadOnly Property
AutoUpdateStat Property RecursiveTriggers Property
ColumnsNullByDefault Property SelectIntoBulkCopy Property
CompareNull Property SingleUser Property
ContactNull Property TornPageDetection Property
CursorCloseOnCommit Property Truncatel.ogOnCheckpoint Property
DBOUseOnly Property

Methods
Refresh Method

Remarks

SQL Server database options control access to and behaviors for a specific SQL
Server database. You can use the DBOption object to set the values for SQL
Server database options.

To set a SQL Server database option

1. Get the DBOption object from a Database object of a connected
SQLServer object.

2. Set the desired property to reflect the change you want in behavior. For
example, set the value of the ReadOnly property to TRUE to enable
read-only access to the database.

Changes to DBOption properties are reflected in the SQL Server database as
they are made.

Note The DBOption object is compatible with instances of SQL Server 2000
and SQL Server version 7.0. However, the DBOption2 object extends the
functionality of the DBOption object for use with features that are new in SQL
Server 2000.

See Also

DBOption2 Object

SQL-DMO

DBOption2 Object

The DBOption2 object represents the settings for Microsoft® SQL Server™
2000 database options for a specific SQL Server database.

Properties

RecoveryModel Property

Remarks

The DBOption2 object extends the functionality of the DBOption object for use
with features that are new in SQL Server 2000. It also inherits the properties and
methods of the DBOption object. With the DBOption2 object, you can:

e Specify the recovery model for a database.

The methods and properties of the DBOption2 object may not be compatible
with instances of SQL Server version 7.0 or earlier. For information about using
the DBOption2 object in an application that also runs with an instance of SQL
Server 7.0, refer to the Remarks section for specific methods and properties. For

more information, see Programming Extended SQL-DMO Objects.

See Also

DBOption Object

SQL-DMO

Default Object

The Default object represents the attributes of a single Microsoft® SQL
Server™ 2000 default. SQL Server defaults provide data to columns and user-
defined data types when no other data is available on an INSERT statement
execution.

| Database |

L{ Drefaults |

|-| Crefault |

Properties

CreateDate Property Owner Property (Database Objects)

ID Property Text Property
Name Property

Methods

BindToColumn Method Remove Method (Objects)
BindToDatatype Method Script Method
ListBoundColumns Method UnbindFromColumn Method
ListBoundDatatypes Method UnbindFromDatatype Method
Remarks

SQL Server defaults allow a nonredundant method of default-value specification.
SQL Server columns can contain a DEFAULT constraint, but each column
receiving a specific default value must be constrained to receive it. Alternately, a
single default can be created and then bound to columns or user-defined data
types, allowing the developer to specify the default value one time.

With the Default object, you can:

e Create a SQL Server default.

¢ Bind or unbind an existing SQL Server default to a column or user-
defined data type.

e Remove a SQL Server default from a database.

The Name property of a Default object uses the SQL Server data type sysname.
The value of the Name property must be unique within a SQL Server database
when constrained by the value of the Owner property.

To create a SQL Server default

1. Create a Default object.

2. Set the Name property.

3. Set the Text property to establish the default value generated for an
INSERT statement. The value of the Text property must match the
constraints of the constant_expression parameter of the CREATE
DEFAULT statement. For more information about how to set the Text
property, see CREATE DEFAULT.

4. Add the Default object to the Defaults collection of a connected
Database object.

After the SQL Server default has been created, use the BindToColumn and
BindToDatatype methods of the Default object to bind the SQL Server default
to SQL Server columns and user-defined data types.

Note The Default object is compatible with SQL Server 2000 and SQL Server
7.0. However, the Default2 object extends the functionality of the Default object
for use with features that are new in SQL Server 2000.

See Also

JavaScript:hhobj_1.Click()

Default? Object

SQL-DMO

Default2 Object

The Default object represents the attributes of a single Microsoft® SQL
Server™ 2000 default. SQL Server defaults provide data to columns and user-
defined data types when no other data is available on an INSERT statement
execution. The Default2 object extends the functionality of the Default object.

Properties

IsDeleted Property

Remarks

The Default2 object extends the functionality of the Default object for use with
features that are new in SQL Server 2000. It also inherits the properties and
methods of the Default object.

The IsDeleted property of the Default2 object may not be compatible with SQL
Server 7.0 or earlier. For more information about using the Default2 object in an
application that also runs with SQL Server version 7.0, refer to the Remarks
section for the IsDeleted property. For more information, see Programming
Extended SQL-DMO Objects.

See Also

Default Object

SQL-DMO

DistributionArticle Object

The DistributionArticle object exposes the properties of a Distributor's image
of a replicated article.

|Distril:uutiu:unF'uI:uIiu:atiu:un |

Diigtributiondrticles |

|-| Distributionéticle |

Properties

Description Property SourceObjectName Property
ID Property SourceObjectOwner Property

Name Property

Methods

BeginAlter Method DoAlter Method
CancelAlter Method Remove Method (Objects)
Remarks

For snapshot and transactional replication, a replication Distributor maintains an
image of the published article. The Distributor replicates the article image to
Subscribers, enabling one type of replication load balancing.

There is no requirement that an instance of Microsoft® SQL Server™ 2000
create the Distributor-maintained data image. Snapshot and transactional
replication publications created on the Distributor enable one type of third-party,
or heterogeneous, replication.

With the DistributionArticle object, you can:

e Create an article in a heterogeneous replication publication.

e Remove an article from a heterogeneous replication publication.

For more information about using SQL-DMO in heterogeneous replication, see

Programming Snapshot or Transactional Replication from Heterogeneous Data
Sources.

Note The DistributionArticle object is compatible with instances of SQL
Server 2000 and SQL Server version 7.0. However, the DistributionArticle2
object extends the functionality of the DistributionArticle object for use with
features that are new in SQL Server 2000.

See Also

DistributionArticle2 Object

JavaScript:hhobj_1.Click()

SQL-DMO

DistributionArticle2 Object

The DistributionArticle2 object exposes the properties of a Distributor's image
of a replicated article and extends the functionality of the DistributionArticle
object.

Properties

ID Property (DistributionArticle2)

Remarks

The DistributionArticle2 object extends the functionality of the
DistributionArticle object for use with features that are new in SQL Server
2000. It also inherits the properties and methods of the DistributionArticle
object.

The ID Property of the DistributionArticle2 object may not be compatible with
instances of SQL Server version 7.0 or earlier. For more information about using
the DistributionArticle2 object in an application that also runs with an instance
of SQL Server 7.0, refer to the Remarks section of the ID Property of the
DistributionArticle2 object. For more information, see Programming
Replication from Heterogeneous Data Sources.

See Also

DistributionArticle Object

JavaScript:hhobj_1.Click()

SQL-DMO

DistributionDatabase Object

The DistributionDatabase object represents a database located at the
Distributor used to store replication information. A Distributor can have multiple
distribution databases.

| Dhigtributor |

L{ DigtributionD atabazes |

|‘| DigtributionD atabaze |

Properties

AgentsStatus Property LogFileSize Property

DataFile Property LogFolder Property

DataFileSize Property MaxDistributionRetention Property
DataFolder Property MinDistributionRetention Property
DistributionCleanupTaskName Name Property

Property

HistoryCleanupTaskName Property |SecurityMode Property
(DistributionDatabase,
IntegratedSecurity)

HistoryRetention Property Standardl.ogin Property

LogFile Property StandardPassword Property
Methods

BeginAlter Method Refresh Method

CancelAlter Method Remove Method (Objects)

DoAlter Method Script Method (Replication Objects)

Remarks

With the DistributionDatabase object, you can:

e (Create a new distribution database.

e Change the properties of an existing distribution database.

To add a distribution database to the Distributor

1. Create a new DistributionDatabase object.

2. Set the Name property to the name of the new distribution database.

3. Set the SecurityMode property as appropriate.

4. If the SecurityMode property is set to SQLDMOSecurity_Normal, set
the StandardLogin and StandardPassword properties as appropriate.

5. Add the DistributionDatabase object to the DistributionDatabases
collection of a connected Distributor object.

To alter an existing distribution database

1. Get a DistributionDatabase object from the DistributionDatabases
collection of a connected Distributor object.

2. Use the BeginAlter method to mark the beginning of the changes.

3. Set the DistributionDatabase properties to reflect the changes to the
distribution database.

4. Use the DoAlter method to submit the changes to Microsoft® SQL
Server™,

Note The DistributionDatabase object is compatible with instances of SQL

Server 2000 and SQL Server version 7.0. However, the DistributionDatabase2
object extends the functionality of the DistributionDatabase object for use with
features that are new in SQL Server 2000.

See Also

DistributionDatabase2 Object

SQL-DMO

DistributionDatabase2 Object

The DistributionDatabase2 object represents a database located at the
Distributor used to store replication information. A Distributor can have multiple
distribution databases. The DistributionDatabase2 object extends the
functionality of the DistributionDatabase object.

Methods

EnumAgentErrorRecords Method EnumQueueReaderAgentSessions
Method

EnumQueueReaderAgentSessionDetails

Method

Remarks

The DistributionDatabase2 object extends the functionality of the
DistributionDatabase object for use with features that are new in SQL Server
2000. It also inherits the properties and methods of the DistributionDatabase
object. With the DistributionDatabase2 object, you can:

¢ Retrieve detailed information about replication agent errors.

e Retrieve detailed information about the Queue Reader Agent.

The methods and properties of the DistributionDatabase2 object may not be
compatible with instances of SQL Server version 7.0 or earlier. For more
information about using the DistributionDatabase2 object in an application that
also runs with an instance of SQL Server 7.0, refer to the Remarks section for
specific methods and properties. For more information, see Programming
Extended SQL-DMO Objects.

See Also

DistributionDatabase Object

SQL-DMO

DistributionPublication Object

The DistributionPublication object exposes the properties of a Distributor's
image of a snapshot, transactional, or merge replication publication.

| DistributionPublisher |

DiigtributionPublications |

I—|Distril::uti:::nF'uI::Ii::ati:::n |

b Digtributiondrticles |

DiigtributionS ubzcriptions |

Properties

Description Property PublicationDB Property
ID Property PublicationType Property
LogReaderAgent Property SnapshotAgent Property
Name Property VendorName Property
PublicationAttributes Property

Methods

BeginAlter Method EnumSnapshotAgentView Method
CancelAlter Method EnumSubscriptionViews Method
DoAlter Method GetAgentsStatus Method

(DistributionPublication,
DistributionPublisher)
Enuml.ogReaderAgentView Method |[Remove Method (Objects)

Remarks

For snapshot and transactional replication, a replication Distributor maintains an
image of articles defining a publication. The Distributor replicates the articles to

Subscribers, enabling one type of replication load balancing.
Use DistributionPublication object methods to monitor merge replication.

There is no requirement that an instance of Microsoft® SQL Server™ 2000
create Distributor-maintained data images. Snapshot and transactional
replication publications created on the Distributor enable one type of third-party,
or heterogeneous, replication.

With the DistributionPublication object, you can:

e Create a heterogeneous replication publication.

e Configure replication agent use.

e Remove a heterogeneous replication publication.

e Monitor replication agents implementing publications.

For more information about using SQL-DMO in heterogeneous replication, see
Programming Replication from Heterogeneous Data Sources.

Note DistributionPublication object properties are read/write only when using
the object to create a distribution publication. When a DistributionPublication
object references a Distributor's image of an existing publication, all properties
are read-only.

The DistributionPublication object is compatible with instances of SQL
Server 2000 and SQL Server version 7.0. However, the
DistributionPublication2 object extends the functionality of the
DistributionPublication object for use with features that are new in SQL
Server 2000.

See Also

DistributionPublication? Object

JavaScript:hhobj_1.Click()

SQL-DMO

DistributionPublication2 Object

The DistributionPublication2 object exposes the properties of a Distributor's
image of a snapshot, transactional, or merge replication publication and extends
the functionality of the DistributionPublication object.

Properties
SnapshotJobID Property ThirdPartyOptions Property
Methods

EnumQueueReaderAgentView GetAgentsStatus2 Method
Method (DistributionPublication?2,

DistributionPublisher?)

EnumSubscriptionViews2 Method

Remarks

The DistributionPublication2 object extends the functionality of the
DistributionPublication object for use with features that are new in SQL Server
2000. It also inherits the properties and methods of the DistributionPublication
object.

The methods and properties of the DistributionPublication2 object may not be
compatible with instances of SQL Server version 7.0 or earlier. For more
information about using the DistributionPublication2 object in an application
that also runs with an instance of SQL Server 7.0, refer to the Remarks section
for specific methods and properties. For more information, see Programming
Extended SQL-DMO Objects.

See Also

DistributionPublication Object

SQL-DMO

DistributionPublisher Object

The DistributionPublisher object represents a Publisher using this Distributor
for replication.

| Dighributior |

|-| DrigtributionPublizhers |

DistributionPublisher |

DigtributionPublications |

Publizhiers ecurity |

RegizteredSubscribers |

Properties

DistributionDatabase Property Name Property

DistributionWorkingDirectory ThirdParty Property

Property

Enabled Property TrustedDistributorConnection

Property

Methods

BeginAlter Method EnumMergeAgentSessionDetails
Method

CancelAlter Method EnumMergeAgentSessions Method

DoAlter Method EnumSnapshotAgentSessionDetails
Method

EnumAgentErrorRecords Method EnumSnapshotAgentSessions
Method

EnumDistributionAgentSessionDetails/GetA gentsStatus Method

Method (DistributionPublication,
DistributionPublisher)

EnumDistributionAgentSessions Refresh Method

Method

Enuml.ogReaderAgentSessionDetails |Remove Method (Objects)
Method

Enuml.ogReaderAgentSessions Script Method (Replication Objects)
Method

Remarks
With the DistributionPublisher object, you can:
e Add a Publisher to the Distributor.

e Change the properties of an existing Publisher.

To add a Publisher to the Distributor

1. Create a new DistributionPublisher object.

2. Set the Name property to the server name of the Publisher.

3. Set the DistributionDatabase property.

4. Set the DistributionWorkingDirectory property.

Ul

. Add the DistributionPublisher object to the DistributionPublishers
collection of a connected Distributor object.

To alter an existing Publisher

1. Get a DistributionPublisher object from the DistributionPublishers
collection of a connected Distributor object.

2. Use the BeginAlter method to mark the beginning of the changes.

3. Set the DistributionPublisher properties to reflect the changes to the
Publisher.

4. Use the DoAlter method to submit the changes to Microsoft® SQL
Server™,

Note The DistributionPublisher object is compatible with instances of SQL
Server 2000 and SQL Server version 7.0. However, the DistributionPublisher?2
object extends the functionality of the DistributionPublisher object for use with
features that are new in SQL Server 2000.

See Also

DistributionPublisher? Object

SQL-DMO

DistributionPublisher2 Object

The DistributionPublisher?2 object represents a Publisher using the referenced
Distributor for replication and extends the functionality of the

DistributionPublisher object.

Methods

DisableAgentOffload Method

EnumMergeAgentSessionDetails2
Method

EnableAgentOffload Method

EnumMergeAgentSessions2 Method

EnumDistributionAgentSessionDetails2
Method

EnumSnapshotAgentSessionDetails2
Method

EnumDistributionAgentSessions2
Method

EnumSnapshotAgentSessions2
Method

Enuml.ogReaderAgentSessionDetails2
Method

GetAgentsStatus2 Method

(DistributionPublication?2,
DistributionPublisher?)

Enuml.ogReaderAgentSessions2
Method

ReadAgentOffloadInfo Method

DisableAgentOffload Method

EnumSnapshotAgentSessionDetails2
Method

EnableAgentOffload Method

EnumSnapshotAgentSessions2
Method

EnumDistributionAgentSessions2
Method

GetAgentsStatus2 Method

(DistributionPublication?2,
DistributionPublisher?)

Enuml.ogReaderAgentSessions2
Method

ReadAgentOffloadInfo Method

EnumMergeAgentSessions2 Method

Remarks

The DistributionPublisher2 object extends the functionality of the
DistributionPublisher object for use with features that are new in SQL Server
2000. It also inherits the properties and methods of the DistributionPublisher
object. With the DistributionPublisher2 object, you can:

e Manipulate the capability of a replication agent to run at a remote
Subscriber.

The methods and properties of the DistributionPublisher2 object may not be
compatible with instances of SQL Server version 7.0 or earlier. For more
information about using the DistributionPublisher2 object in an application
that also runs with an instance of SQL Server 7.0, refer to the Remarks section
for specific methods and properties. For more information, see Programming
Extended SQL-DMO Objects.

See Also

DistributionPublisher Object

SQL-DMO

DistributionSubscription Object

The DistributionSubscription object exposes the properties of subscription to a
publication maintained by a Distributor.

| DiigtributionS ubzcriptions |

\—‘ DrigtributionsS ubzcription |

H Drigtributions chedule |

Properties

DistributionAgent Property

SubscriptionDB Property

Name Property

SubscriptionType Property

Status Property (Subscription

SyncType Property

Objects)
Subscriber Property

Methods

BeginAlter Method DoAlter Method
CancelAlter Method Remove Method (Objects)
Remarks

For snapshot and transactional replication, a replication Distributor maintains an
image of articles defining a publication. The Distributor replicates the articles to
Subscribers, that enable one type of replication load balancing.

There is no requirement that an instance of Microsoft® SQL Server™ create
Distributor-maintained data images. Snapshot and transactional replication
publications created on the Distributor enable one type of third-party, or
heterogeneous, replication.

With the DistributionSubscription object, you can:

e Create a Distributor-originated (push) subscription to a heterogeneous
replication publication.

e Enable or disable a subscription to a publication maintained by the
Distributor.

e Remove a push subscription to a heterogeneous replication publication.

For more information about using SQL-DMO in heterogeneous replication, see
Programming Replication from Heterogeneous Data Sources.

Note DistributionSubscription object properties are read/write only when
using the object to create a subscription. When a DistributionSubscription
object references a Distributor's image of an existing subscription, all properties
are read-only.

The DistributionSubscription object is compatible with instances of SQL
Server 2000 and SQL Server version 7.0. However, the
DistributionSubscription2 object extends the functionality of the
DistributionSubscription object for use with features that are new in SQL
Server 2000.

See Also

DistributionSubscription2 Object

JavaScript:hhobj_1.Click()

SQL-DMO

DistributionSubscription2 Object

The DistributionSubscription2 object exposes the properties of a specific
subscription to a publication maintained by a Distributor and extends the
functionality of the DistributionPublisher object.

Methods

DistributionJobID Property

Remarks

The DistributionSubscription2 object extends the functionality of the
DistributionSubscription object, and inherits the properties and methods of the
DistributionSubscription object. You will need to take extra programmatic
steps when using the DistributionSubscription2 object in an application that
also runs with SQL Server version 7.0.

Note The DistributionSubscription2 object may not be compatible with SQL
Server 7.0 or earlier.

The DistributionSubscription2 object extends the functionality of the
DistributionSubscription object for use with features that are new in SQL
Server 2000. It also inherits the properties and methods of the
DistributionSubscription object.

The DistributionJobID method of the DistributionSubscription2 object may
not be compatible with instances of SQL Server version 7.0 or earlier. For more
information about using the DistributionSubscription2 object in an application
that also runs with an instance of SQL Server 7.0, refer to the Remarks section of
the DistributionJobID method. For more information, see Programming
Extended SQL-DMO Objects.

See Also

DistributionSubscription Object

SQL-DMO

Distributor Object

The Distributor object represents the replication Distributor for an instance of
Microsoft® SQL Server™ 2000.

| Feplication |

Crigtributor |

DiigtributionD atabazes |

DrigtributionPublizhers |

Properties

AgentCheckuplnterval Property DistributorInstalled Property

DistributionDatabase Property DistributorL.ocal Property

DistributionServer Property HasRemoteDistributionPublisher
Property

DistributorAvailable Property IsDistributionPublisher Property

Methods

ChangeAgentProfile Method EnumSnapshotAgentViews Method

CleanUpDistributionPublisherByName [EnumThirdPartyPublications Method
Method

CreateAgentProfile Method GetAgentsStatus Method (Distributor)
DeleteAgentProfile Method Install Method

EnumAgentProfiles Method Refresh Method

EnumA gentParameters Method RemoveDefunctAnonymousSubscription

EnumDistributionAgentViews Method Script Method (Replication Objects)
Enuml.ogReaderAgentViews Method [SetUpDistributorPassword Method

EnumMergeAgentViews Method Uninstall Method
UpdateDefaultAgentProfile Method |[UpdateAgentProfile Method

Remarks
With the Distributor object, you can:

¢ Install a local Distributor or configure remote distribution for a
Publisher.
e Uninstall a local Distributor or stop remote distribution.

To install a local Distributor and distribution database

1. Create a new DistributionDatabase object.

2. Set the Name property to the name of the new distribution database.

3. Add the DistributionDatabase object to the DistributionDatabases
collection of a connected Distributor object.

4. Set the DistributionServer property of a connected Distributor
object to the name of the local instance of SQL Server (available in the
TrueName property of a connected SQLServer object).

5. Use the Install method of the connected Distributor object.

To uninstall a local Distributor and distribution database

e Use the Uninstall method of a connected Distributor object.

Note The Distributor object is compatible with instances of SQL Server 2000
and SQL Server version 7.0. However, the Distributor2 object extends the

functionality of the Distributor object for use with features that are new in SQL
Server 2000.

See Also

Publishers, Distributors, and Subscribers

JavaScript:hhobj_1.Click()

Distributor2 Object

SQL-DMO

Distributor2 Object

The Distributor2 object represents the replication Distributor for an instance of
Microsoft® SQL Server™ 2000 and extends the functionality of the
DistributionPublisher object.

Methods

EnumDistributionAgentViews2 |EnumThirdPartyVendorNames Method
Method

EnumMergeAgentViews?2 GetAgentsStatus2 Method (Distributor?)
Method
EnumQueueReaderAgentViews |RemoveDefunctAnonymousSubscription
Method Method

EnumThirdPartyPublications2
Method

Remarks

The Distributor2 object extends the functionality of the Distributor object for
use with features that are new in SQL Server 2000. It also inherits the properties
and methods of the Distributor object. With the Distributor2 object, you can:

e Retrieve information about third-party publications.

e Retrieve the execution status of Queue Reader Agents.

The methods of the Distributor2 object may not be compatible with instances of
SQL Server version 7.0 or earlier. For more information about using the
Distributor?2 object in an application that also runs with an instance of SQL
Server 7.0, refer to the Remarks section for specific methods. For more
information, see Programming Extended SQL-DMO Objects.

See Also

Distributor Object

SQL-DMO

DRIDefault Object

The DRIDefault object represents the properties of a Microsoft® SQL Server™
2000 column DEFAULT constraint.

| Column |

L{ DRID efault |

Properties

Name Property Text Property

Methods

Remove Method (Objects) Script Method

Remarks

The SQL Server column DEFAULT constraint is used to generate data for the
column when none is supplied by the user on INSERT statement execution. With
the DRIDefault object, you can:

e Set the DEFAULT constraint for a SQL Server column.

e Remove the DEFAULT constraint from a SQL Server column.

The Name property of the DRIDefault object uses the SQL Server data type
sysname. Name is optional when using the object to create a DEFAULT
constraint for a SQL Server column. When Name is not specified, SQL-DMO
will generate an appropriate value.

When setting the Text property of a DRIDefault object, specify only the text for
the default. You do not need to build the constraint clause because SQL-DMO
does that. The Text property value must evaluate to a constant. For more

information about limitations on the Text property, see the description of the
DEFAULT constraint in CREATE TABLE.

Delimiters that specify constant strings must be present in the Text property
value when specifying string data as part of the property. For example, to specify
the string "unknown" as the default, use 'unknown'.

To set a DEFAULT constraint on a new SQL Server column

1.

Create a Table object.

Create a Column object.

Get the DRIDefault object from the new Column object.

Set the Text property of the DRIDefault object to the desired default
for the column.

Add the Column object to the Columns collection of the new Table
object.

Add the Table object to the Tables collection of a connected Database
object.

To set a DEFAULT constraint on an existing SQL Server column

1.

Get a Table object from the Tables collection of a connected
Database object.

Use the BeginAlter method of the Table object to mark the beginning
of changes to the SQL Server table.

Get the desired Column object from the Columns collection of the
selected Table object.

JavaScript:hhobj_1.Click()

4. Get the DRIDefault object from the new Column object.

5. Set the Text property of the DRIDefault object to the desired default
for the column.

6. Use the DoAlter method of the Table object to submit changes to the
SQL Server.

See Also

Column Object
Table Object

SQL-DMO

F

SQL-DMO

FileGroup Object

The FileGroup object exposes the attributes of a Microsoft® SQL Server™
2000 filegroup.

| FileGroups |

FileGroup |

DEFiles |

Properties

Default Property (FileGroup) ReadOnly Property
ID Property Size Property
Name Property

Methods
CheckFilegroup Method EnumObjects Method

CheckFilegroupDataOnly Method = |Remove Method (Objects)
EnumFiles Method (FileGroup)

Remarks

A SQL Server filegroup categorizes the operating system files containing data
from a single SQL Server database to simplify database administration tasks,
such as backup. A filegroup is a property of a SQL Server database and cannot
contain the operating system files of more than one database, though a single
database can contain more than one filegroup.

When a database is created, it is created on exactly one filegroup named
PRIMARY. After database creation, filegroups can be added to the database. A
filegroup name can be specified in a CREATE TABLE or CREATE INDEX
statement, directing data storage for a database.

With the FileGroup object, you can:

e Create a SQL Server filegroup.
e Remove an existing SQL Server filegroup.

e Manage the physical storage of a SQL Server database by adding or
removing DBFile objects to the DBFiles collection.

The Name property of a FileGroup object uses the SQL Server data type
sysname. The Name property must be unique within the list of filegroups of a
SQL Server database.

To create a SQL Server filegroup

1. Create a FileGroup object.
2. Set the Name property.

3. Add the FileGroup object to the FileGroups collection of a connected
Database object.

Note The FileGroup object is compatible with instances of SQL Server 2000
and SQL Server version 7.0. However, the FileGroup2 object extends the
functionality of the FileGroup object for use with features that are new in SQL
Server 2000.

See Also

CREATE INDEX
CREATE TABLE
FileGroup2 Object

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL-DMO

FileGroup2 Object

The FileGroup2 object exposes the attributes of a Microsoft® SQL Server™
2000 filegroup and extends the functionality of the FileGroup object.

Methods

CheckFileGroupDataOnlyWithResult|CheckFileGroupWithResult Method
Method

Remarks

The FileGroup2 object extends the functionality of the FileGroup object for use
with features that are new in SQL Server 2000. It also inherits the properties and
methods of the FileGroup object. With the FileGroup2 object, you can:

e Check file group integrity with results that are returned in tabular
format.

The methods and properties of the FileGroup2 object may not be compatible
with instances of SQL Server version 7.0 or earlier. For more information about
using the FileGroup2 object in an application that also runs with an instance of
SQL Server 7.0, see the Remarks section for specific methods and properties.
For more information, see Programming Extended SQI.-DMO Objects.

When used with SQL Server 2000, the Name property can be set on an existing
FileGroup object if it is not a primary file group.

See Also

FileGroup Object

SQL-DMO

FullTextCatalog Object

The FullTextCatalog object exposes the properties of a single Microsoft Search
persistent data store.

| [atabaze |

L{ FullT extCatalogs |

|‘| FullT extCatalog |

Properties

ErrorL.ogSize Property PopulateCompletionAge Property

FullTextCatalogID Property

PopulateCompletionDate Property

FullTextIndexSize Property

PopulateStatus Property

HasFullTextIndexedTables Property

RootPath Property

ItemCount Property UniqueKeyCount Property

Name Property

Methods

GenerateSQL Method Script Method
(FullTextCatalog)

Rebuild Method Start Method (FullTextCatalog)
Remove Method (Objects) Stop Method

Remarks

Microsoft Search enables full-text queries on data maintained by Microsoft®
SQL Server™ 2000. The service builds both the indexes providing full-text
query capability and participates in query resolution by providing result data
during a full-text query. Index data is maintained within a full-text catalog. A
FullTextCatalog exposes the properties of a Microsoft Search full-text catalog.

With the FullTextCatalog object, you can:

e Define a new Microsoft Search full-text catalog.

e Rebuild the Microsoft Search full-text catalog.

¢ Control index population.

e Remove a Microsoft Search full-text catalog.

The Name property of a FullTextCatalog object uses the SQL Server data type
sysname. The value of the Name property must be unique within a SQL Server
database.

By default, a user must have database owner permissions to create, remove, or
modify Microsoft Search full-text catalogs.

Note The FullTextCatalog object is compatible with instances of SQL Server
2000 and SQL Server version 7.0. However, the FullTextCatalog2 object
extends the functionality of the FullTextCatalog object for use with features that
are new in SQL Server 2000.

See Also

FullTextCatalog2 Object

SQL-DMO

FullTextCatalog2 Object

The FullTextCatalog2 object exposes the properties of a single Microsoft
Search persistent data store and extends the functionality of the FullTextCatalog
object.

Methods

Refresh Method

Remarks

The FullTextCatalog2 object extends the functionality of the FullTextCatalog
object for use with features that are new in SQL Server 2000. It also inherits the
properties and methods of the FullTextCatalog object.

The Refresh method of the FullTextCatalog2 object may not be compatible
with instances of SQL Server version 7.0 or earlier. For more information about
using the FullTextCatalog2 object in an application that also runs with an
instance of SQL Server 7.0, refer to the Remarks section of the Refresh method.
For more information, see Programming Extended SQI.-DMO Objects.

See Also

FullTextCatalog Object

SQL-DMO

FullTextService Object

The FullTextService object exposes attributes of the Microsoft Search full-text
indexing service.

| SOLServer |

FullT extService |

Properties

ConnectTimeout Property ResourceUsage Property
DefaultPath Property Status Property (Services)

IsFullTextInstalled Property

Methods

CleanUp Method Stop Method
Start Method (FullTextService,

JobServer)

Remarks

The Microsoft Search full-text indexing service enables full-text queries on data
maintained by Microsoft® SQL Server™ 2000. Microsoft Search both builds the
indexes providing full-text query capability and participates in query resolution
by providing result data during a full-text query.

With the FullTextService object, you can:

e Start or stop Microsoft Search.

e Configure the Microsoft Search service.

e Perform full-text catalog maintenance as required.

Microsoft Search is a service only available on Microsoft Windows NT® 4.0 or
Microsoft Windows® 2000 Servers. To configure Microsoft Search using the
FullTextService object, the connection must have Windows NT 4.0 or Windows
2000 administrator account privileges.

The ConnectTimeout, IsFullTextInstalled, and ResourceUsage properties of
the FullTextService object are only compatible with SQL Server version 7.0 or
later. However, the SQLServer2 object supports the IsFullTextInstalled
property in SQL Server 2000.

SQL-DMO

SQL-DMO

Index Object

The Index object exposes the attributes of a single Microsoft® SQL Server™

2000 index.
[Table |

L(|ndexes |

|-| |ridex |

Properties

FileGroup Property

Name Property

FillFactor Property

NoRecompute Property

ID Property

SpaceUsed Property

IndexedColumns Property

StatisticsIndex Property

IsFullTextKey Property

Type Property (Index)

Methods

CheckIndex Method

RecalcSpaceUsage Method

EnumStatistics Method

Remove Method (Objects)

GenerateCreationSQL Method

Script Method

GenerateSQL Method (Index)

UpdateStatistics Method

ListIndexedColumns Method

UpdateStatisticsWith Method
(Column, Index)

Rebuild Method

Remarks

A SQL Server index optimizes access to data in SQL Server tables. Indexes are
also used to enforce some constraints, such as UNIQUE and PRIMARY KEY
constraints.

With the Index object, you can:

Create a SQL Server index.

Create SQL Server data distribution statistics.

Remove a SQL Server index.

Remove SQL Server data distribution statistics.

Rebuild a SQL Server index.

Update data distribution statistics.

The Name property of an Index object uses the SQL Server data type sysname.
Within a SQL Server database, all index names must be unique.

To create a SQL Server index

1. Create an Index object.

Set the Name property.

Set the IndexedColumns property to the column or columns
participating in the index.

Set the Type property of the Index object to control the attributes of
the index created (optional). If not set, a nonclustered index allowing
duplicate values is created. For more information about SQL Server
index types and limitations on indexes applied to tables, see CREATE
INDEX.

Set optional properties, such as FileGroup.

JavaScript:hhobj_1.Click()

6. Get the Table object that references the SQL Server table you want
from the Tables collection of a connected Database object.

7. Use the BeginAlter method of the Table object to mark the start of
changes to the SQL Server table.

8. Add the Index object to the Indexes collection of the selected Table
object.

9. Use the DoAlter method of the Table object to mark the end of
changes and create the index on the SQL Server.

To remove an existing SQL Server index

1. Get the Table object that references the SQL Server table you want
from the Tables collection of a connected Database object.

2. Use the BeginAlter method of the Table object to mark the start of
changes to the SQL Server table.

3. Get the Index object representing the SQL Server index to remove
from the Indexes collection of the selected Table object.

4. Use the Remove method of the Index object to remove the Index
object from the Indexes collection of the Table object.

5. Use the DoAlter method of the Table object to mark the end of
changes and remove the SQL Server index from the SQL Server table.

Note The Index object is compatible with instances of SQL Server 2000 and
SQL Server version 7.0. However, the Index2 object extends the functionality of
the Index object for use with features that are new in SQL Server 2000.

See Also

Index2 Object

SQL-DMO

Index2 Object

The Index2 object exposes the attributes of a single Microsoft® SQL Server™
2000 index and extends the functionality of the Index object.

Properties
IndexOnTable Property IsOnComputed Property
Methods

CheckIndexWithResult Method GetIndexedColumnDESC Method

GenerateCreationSQLOnView SetIndexedColumnDESC Method
Method

GenerateSQLOnView Method

Remarks

The Index2 object extends the functionality of the Index object for use with
features that are new in SQL Server 2000. It also inherits the properties and
methods of the Index object. With the Index2 object, you can:

e Retrieve information about indexes created on views or computed
columns.

e Specify a column to sort in descending order as part of an index.

The methods and properties of the Index2 object may not be compatible with
instances of SQL Server version 7.0 or earlier. For more information about using
the Index2 object in an application that also runs with an instance of SQL Server
7.0, refer to the Remarks section for specific methods and properties. For more
information, see Programming Extended SQL-DMO Objects.

See Also

Index Object

SQL-DMO

IntegratedSecurity Object

The IntegratedSecurity object exposes configurable parameters that affect all
logins to Microsoft® SQL Server™ 2000 regardless of the login authentication

type.

| SOLServer |

L{ |ntearatedS ecurity |

Properties

AuditLevel Property ImpersonateClient Property

DefaultDomain Property SecurityMode Property
(DistributionDatabase,
IntegratedSecurity)

Defaultl.ogin Property SetHostName Property

Methods

Refresh Method

Remarks

SQL Server implements two ways to control access to SQL Server data:
Windows Authentication, implementing trusted connections, and SQL Server
Authentication.

With SQL Server, login record naming is expanded. Properties of the
IntegratedSecurity object that provide default domain naming are maintained
for compatibility with previous versions of SQL Server and SQL-DMO.

For more information about SQL Server 7.0 security and access control, see
Managing Security.

JavaScript:hhobj_1.Click()

SQL-DMO

J

SQL-DMO

Job Object

The Job object exposes the attributes of a single SQL Server Agent job.

| JobServer |

L‘JDbS |
|‘|J|:|I:- |

JobSchedules |
JobSteps |

Properties

Category Propert

LastRunOutcome Property

CurrentRunRetryAttempt Property

LastRunTime Property

CurrentRunStatus Property

Name Property

CurrentRunStep Property

NetSendLevel Property

DateCreated Property

NextRunDate Property

Datel.astModified Property

NextRunScheduleID Property

DeleteL.evel Property

NextRunTime Property

Description Property

OperatorToEmail Property

Emaill.evel Property

OperatorToNetSend Property

Enabled Property

OperatorToPage Property

Eventlogl.evel Property

OriginatingServer Property

HasSchedule Property

Owner Property (Job, JobFilter)

HasServer Property

PageL.evel Property

HasStep Property

StartStepID Property

JobID Property

Type Property (Job, JobFilter)

LastRunDate Property

VersionNumber Property

Methods

AddStepToJob Method

PurgeHistory Method

ApplyToTargetServer Method Refresh Method

ApplyToTargetServerGroup Method Remove Method (Objects)

BeginAlter Method RemoveAllJobSchedules Method

CancelAlter Method RemoveAllJobSteps Method

DoAlter Method RemoveFromTargetServer Method

EnumAlerts Method RemoveFromTargetServerGroup
Method

EnumHistory Method Script Method

EnumTargetServers Method Start Method (Job)

Invoke Method Stop Method

Remarks

A SQL Server Agent job is a scheduled series of executable steps. Jobs are
typically used to automate administrative tasks performed against a Microsoft®
SQL Server™ 2000 database. With SQL Server version 7.0, jobs can contain
multiple steps with branch logic based on the success or failure of any individual
step. A SQL Server 7.0 job can contain one or more schedules setting run times
for the task defined by the steps of the job.

With the Job object, you can:
e Create a SQL Server Agent job, setting the steps to perform and the
scheduled run times.
e Execute an existing job or interrupt job execution.

¢ Enable and disable scheduled job execution.

e Edit existing jobs by adding or removing job steps or changing times of
execution.

e Set the distribution properties of a job for servers participating in

multiserver administration.

The Name property of a Job object uses the SQL Server data type sysname. The
string must be unique for all jobs defined on a server running SQL Server.

Using SQL-DMO and the Job object, you must create a SQL Server Agent job
before you can add job steps to it. A job must have at least one job step and a
target server to be executable by SQL Server Agent.

After a SQL Server Agent job has at least one step and an execution target, you
can use the Start method of the Job object to execute the job. To schedule the
job for execution by SQL Server Agent, use the JobSchedule object.

To create a SQL Server Agent job

1. Create a Job object.

2. Set the Name property.

3. Add the Job object to the Jobs collection of a connected JobServer
object to create the SQL Server Agent job.

To complete the definition of a SQL Server Agent job

1. Use the JobStep object to define a job step.

2. Add the JobStep object to the JobSteps collection of the Job object.

3. Set the StartStepID property of the Job object to the value of the
StepID property of the JobStep added.

4. Use the ApplyToTargetServer or ApplyToTargetServerGroup
method of the Job object to set the execution target for the SQL Server
Agent job. Use the string (local) to indicate the server on which the job
is located.

SQL-DMO

JobFilter Object

The JobServer object has a JobFilter object. The JobFilter object does not
represent a Microsoft® SQL Server™ 2000 component. It is used to constrain
the output of the EnumJobs method of the JobServer object.

| JobServer |

L{ JobFilter |

Properties

Category Property Enabled Property
CurrentExecutionStatus Property Owner Property (Job, JobFilter)
DateFindOperand Property StepSubsystem Property
DateJobCreated Property Type Property (Job, JobFilter)
DateJobL.astModified Property

See Also

EnumJobs Method

SQL-DMO

JobHistoryFilter Object

The JobServer object exposes a JobHistoryFilter object. The
JobHistoryFilter object does not represent a Microsoft® SQL Server™ 2000
component. It is used to control JobServer object methods. When used as a
parameter to the EnumJobHistory method, a JobHistoryFilter object
constrains the output of the method. When used with the PurgeJobHistory
method, the JobHistoryFilter object restricts the scope of the method.

| JobServer |

L{ JobHistomFilter |

Properties

EndRunDate Property OldestFirst Property
EndRunTime Property OutcomeTypes Property
JobID Property SQLMessagelD Property
JobName Property SQLSeverity Property
MinimumRetries Property StartRunDate Property
MinimumRunDuration Property StartRunTime Property
See Also

EnumJobHistory Method
PurgeJobHistory Method

SQL-DMO

JobSchedule Object

The JobSchedule object exposes the attributes of a single SQL Server Agent
executable job schedule.

[Job |

L‘ JobSchedules |

|-| JobSchedule |

|-| Schedule |

Properties
DateCreated Property Name Property
Enabled Property ScheduleID Property
Methods
BeginAlter Method Refresh Method
CancelAlter Method Remove Method (Objects)
DoAlter Method
Remarks

SQL Server Agent jobs can be scheduled for execution by using SQL Server
Agent. Scheduling jobs automates job execution when SQL Server Agent is
enabled but jobs are not required to be scheduled. They can be executed on
demand by a sufficiently privileged user. Jobs can have more than one active
schedule and SQL Server Agent evaluates all schedules to determine when to run
the job.

With the JobSchedule object, you can:

e Create a schedule for a SQL Server Agent job.

e Remove a schedule from an existing SQL Server Agent job.

e Manage job schedules either by enabling a schedule or adjusting run

times or frequencies.

The Name property of a JobSchedule object can contain up to 100 characters.
The value of the Name property must be unique within a job.

To schedule a SQL Server Agent job for execution by SQL Server Agent

1.

Create a JobSchedule object.

Set the Name property.

Get the Schedule object from the specified JobSchedule object.

Set the properties of the Schedule object.

Add the JobSchedule object to the JobSchedules collection of a Job
object that references an existing SQL Server Agent job.

SQL-DMO

JobServer Object

The JobServer object exposes attributes associated with SQL Server Agent.
SQL Server Agent is responsible for executing scheduled jobs and notifying
operators of Microsoft® SQL Server™ 2000 error conditions or other SQL
Server execution or job states.

| JobServer |

-| AlertCateqories |

-| Blerts |
-| AlertSpstemn |

-| JobCategories |

H.JobFilter |

-I JobHistomFilter |

-|.J|:|I:|s

-I OperatorCategonies

-| T argetServerGroups

|
|
-| Operators |
|
|

-| TargetServers
Properties
AutoStart Property Status Property (Services)
MSXServerName Property Type Property (JobServer)
StartupAccount Property
Methods
BeginAlter Method ReAssignJobsByl.ogin Method
CancelAlter Method Refresh Method
DoAlter Method RemoveJobByID Method
EnumJobHistory Method RemoveJobsByl.ogin Method
EnumJobs Method RemoveJobsByServer Method

EnumSubSystems Method Start Method (FullTextService,
JobServer)

GetJobByID Method StartMonitor Method

MSXDefect Method Stop Method

MSXEnlist Method StopMonitor Method

PurgeJobHistory Method

Remarks
With the JobServer object, you can:

e Start or stop SQL Server Agent on a server running SQL Server.

e Manage alerts, jobs, and operators.

e Enlist the server in a multiserver administration group.

Note The JobServer object is compatible with instances of SQL Server 2000
and SQL Server version 7.0. However, the JobServer2 object extends the
functionality of the JobServer object for use with features that are new in SQL
Server 2000.

See Also

JobServer2 Object

SQL-DMO

JobServer2 Object

The JobServer2 object exposes attributes associated with SQL Server Agent.
SQL Server Agent is responsible for executing scheduled jobs and notifying
operators of error conditions in Microsoft® SQL Server™ 2000 or other SQL
Server execution or job states. The JobServer2 object extends the functionality
of the JobServer object.

Properties

ServiceName Property

Remarks

The JobServer2 object extends the functionality of the JobServer object for use
with features that are new in SQL Server 2000. It also inherits the properties and
methods of the JobServer object.

The ServiceName property of the JobServer2 object may not be compatible
with SQL Server 7.0 or earlier. For information about using the JobServer2
object in an application that also runs with SQL Server version 7.0, refer to the
Remarks section of the ServiceName property. For more information, see

Programming Extended SQL-DMO Obijects.

See Also

JobServer Object

SQL-DMO

JobStep Object

The JobStep object exposes the attributes of a single SQL Server Agent
executable job step.

|.J|:|I:| |

I‘iJabSteps |
JobStep |

Properties

AdditionalParameters Property OnFailAction Property
CmdExecSuccessCode Property OnFailStep Property
Command Property OnSuccessAction Property
DatabaseName Property OnSuccessStep Property
DatabaseUserName Property OSRunPriority Property
Flags Property OutputFileName Property
LastRunDate Property RetryAttempts Property
LastRunDuration Property RetryInterval Property
LastRunOutcome Property Server Property
LastRunRetries Property StepID Property
LastRunTime Property SubSystem Property
Name Property

Methods

BeginAlter Method Refresh Method
CancelAlter Method Remove Method (Objects)
DoAlter Method

Remarks

SQL Server Agent jobs contain one or more execution units called steps. Each
job step contains a textual command, type of execution that specifies command
interpretation, and logic that determines the behavior of the job if the step
succeeds or fails. For example, a job step may contain:

e The command text:

DBCC CHECKDB ('Northwind") WITH NO_INFOMSGS

e A job step execution type of Transact-SQL.

¢ An indication that the job should stop if the step fails.

With the JobStep object, you can:
e Create a SQL Server Agent job step.

e Remove a job step from a SQL Server Agent job.

e Manage existing job steps by changing, for example, the command text
or the actions taken on success or failure of the step.

¢ Obtain details about the last attempted execution of the step.

The Name property of a JobStep object can contain up to 100 characters. The
value of the Name property must be unique within a job.

After creation, the job step is appended to the list of steps in the SQL Server
Agent job.

When creating job steps by using the JobStep object, the default logic for
success or failure is that the job stops. SQL-DMO checks new steps to ensure
that exit conditions are set correctly. When adding a series of steps to a job by
using SQL-DMO, use the BeginAlter and DoAlter methods of the Job object to
wrap the process so that step logic is checked for all steps added to the job.

To create a SQL Server Agent job step
1. Create a JobStep object.

2.

3.

4.

Set the Name property.

Set the StepID property.

Set the Command property. The default execution type for a job step
defined by a new JobStep object is Transact-SQL. If the command is
an operating system executable or batch file, set the SubSystem
property to CmdExec.

Add the JobStep object to the JobSteps collection of a Job object that
references an existing SQL Server Agent job.

To remove a SQL Server Agent job step

1.

Get the desired Job object from the Jobs collection of a connected
JobServer object.

Use the BeginAlter method of the Job object to mark the beginning of
changes to the SQL Server Agent job.

Get the desired JobStep object from the JobSteps collection of the
Job object.

Use the Remove method of the JobStep object to remove the step
from the list of steps in the SQL Server Agent job.

As appropriate, get JobStep objects that indicate the removed step in
their logic. Adjust the OnFailStep and OnSuccessStep properties of
those JobStep objects to correct their logic.

Use the DoAlter method of the Job object to mark the end of changes,

and then submit the changes to the server.

SQL-DMO

K

SQL-DMO

Key Object

The Key object exposes the attributes of Microsoft® SQL Server™ 2000 table
keys.

[Table |

L(K.eys |

Key |
b K.eyColumnz |
ReferencedCalurnng |

Properties
Checked Property Name Property
Clustered Property ReferencedKey Property
ExcludeReplication Property ReferencedTable Property
FileGroup Property Type Property (Ke
FillFactor Property

Methods

RebuildIndex Method Script Method
Remove Method (Objects)

Remarks

SQL Server tables can contain key constraints. The constraints apply declarative
referential integrity to the data contained in the table. Keys can be primary or
foreign. A single primary key can be defined on a table, though many foreign
keys can be defined, constraining data for a column or columns to values
existing as primary key values in other tables.

With the Key object, you can:

e Define a PRIMARY KEY constraint for a SQL Server table.

e Remove a PRIMARY KEY constraint from a SQL Server table.

e Define a FOREIGN KEY constraint for a SQL Server table.

e Remove a FOREIGN KEY constraint from a SQL Server table.

e Rebuild the index used to maintain a PRIMARY KEY constraint on a
table.

The Name property of a Key object uses the SQL Server data type sysname.
The value of the Name property must be unique within a SQL Server database.
The Name property is not required when using a Key object to define a new
SQL Server PRIMARY or FOREIGN KEY constraint. When not specified,
SQL-DMO generates a Name property.

To define a PRIMARY KEY constraint on a SQL Server table

1. Create a Key object.

2. Set the Type property to SQLDMOKey_Primary.

3. Set the Clustered property to TRUE to create a SQL Server clustered
index if clustering is a desired attribute of the PRIMARY KEY
constraint.

4. Get the KeyColumns Names collection from the Key object.

5. Add the PRIMARY KEY column names to the Names collection. The
order in which column names are added determines the order of
column participation in the index maintaining the PRIMARY KEY
constraint.

6. Add the Key object to the Keys collection of a Table object that
exposes the attributes of the SQL Server table.

To define a FOREIGN KEY constraint on a SQL Server table

1. Create a Key object.

2. Set the Type property to SQLDMOKey_Foreign.

3. Get the KeyColumns Names collection from the Key object.

4. Add the FOREIGN KEY column names to the Names collection. The
Names collection contains the names of the column or columns that
make up the FOREIGN KEY constraint.

5. Set the ReferencedTable property to the name of the SQL Server table
containing the PRIMARY KEY constraint to be referenced by the
FOREIGN KEY constraint.

6. Get the ReferencedColumns Names collection from the Key object.

7. Add the name of the columns participating in the PRIMARY KEY
constraint of the specified table to the ReferencedColumns Names
collection.

8. Add the Key object to the Keys collection of a Table object that
exposes the attributes of the SQL Server table to receive the
FOREIGN KEY constraint.

SQL-DMO

L

SQL-DMO

Language Object

The Language object exposes the properties of an installed Microsoft® SQL
Server™ 2000 language record.

| SOLServer |

I‘i Languages |

Language |
Properties
Alias Property Month Property
Day Property Months Property
Days Property Name Property
FirstDayOfWeek Property ShortMonth Property
ID Property ShortMonths Property
LangDateFormat Property Upgrade Property
Remarks

SQL Server language record identifiers categorize system messages so that error
and status information can be presented as localized text. A language record
specifies the format for dates displayed in system messages.

With the Language object, you can query language records to determine the
format of dates and strings that specify day and month names.

SQL-DMO

LinkedServer Object

The LinkedServer object exposes the properties of an OLE DB data source and
allows directed Transact-SQL queries against defined data sources.

| LinkedServers |

L(LinkedServer |

LinkedServerLoging |

Properties

Catalog Property Options Property
DataSource Property ProductName Property
DropL.ogins Property ProviderName Property

Location Property (LinkedServer) ProviderString Property
Name Property

Methods

EnumColumns Method ExecuteWithResultsAndMessages
Method

EnumTables Method Remove Method (Objects)

ExecutelImmediate Method SetOptions Method

(LinkedServer, RemoteServer)

ExecuteWithResults Method

Remarks

Microsoft® SQL Server™ 2000 supports Transact-SQL queries against data
stored in one or more SQL Server and heterogeneous databases. SQL Server
distributed queries use OLE DB to access a nonlocal data store.

OLE DB defines a provider as an OLE DB component that can deliver data from

a store. Typically, OLE DB providers can discriminate among applicable,
available data stores. OLE DB defines a data source as that information
necessary for the successful delivery of data from the store (such as a user
identifier and password).

SQL Server implements persistent storage of an OLE DB provider name and
data source definition called a linked server.

With the LinkedServer object, you can:

¢ Create an OLE DB data source definition, usable as a data provider for
a distributed query.

e List the tables of a data source or the columns contained in a data source
table.

e Execute a Transact-SQL statement against a SQL Server OLE DB data
source.

e Remove existing data source defining records.

The Name property of a LinkedServer object uses the SQL Server data type
sysname. The value of the Name property must be unique within an instance of
SQL Server.

To create a linked server

1. Create a LinkedServer object.

2. Set the Name property.

3. Set the ProviderName property to indicate the OLE DB provider. For
more information about providers available for SQL Server, see OLE
DB Providers Tested with SQL Server.

4. Set any additional property values required by the provider. For more

JavaScript:hhobj_1.Click()

information about provider-required values, see the OLE DB provider
documentation.

5. Add the LinkedServer object to the LinkedServers collection of a
connected SQLServer object.

Note When a linked server is created, SQL Server creates a default
linked server login record. When using SQL-DMO to create a linked
server, adding the LinkedServer object to its containing collection
creates the linked server and the default linked server login. The
object's LinkedServerLogins collection contains one member. For
more information about the default linked server login created, see

sp_addlinkedsrvlogin.

The LinkedServer object is compatible with instances of SQL
Server 2000 and SQL Server version 7.0. However, the
LinkedServer2 object extends the functionality of the
LinkedServer object for use with features that are new in SQL
Server 2000.

See Also

LinkedServer2 Object

JavaScript:hhobj_2.Click()

SQL-DMO

LinkedServer2 Object

The LinkedServer2 object exposes the properties of an OLE DB data source,
allows directed Transact-SQL queries against defined data sources, and extends
the functionality of the LinkedServer object.

Properties

CollationName Property QueryTimeout Property

ConnectTimeout Property

Methods

ExecuteWithResultsAndMessages2 |Refresh Method
Method

Remarks

The LinkedServer2 object extends the functionality of the LinkedServer object
for use with new features in Microsoft® SQL Server™ 2000. It also inherits the
properties and methods of the LinkedServer object.

The methods and properties of the LinkedServer2 object may not be compatible
with instances of SQL Server version 7.0 or earlier. For more information about
using the LinkedServer2 object in an application that also runs with an instance
of SQL Server 7.0, refer to the Remarks section for specific methods and
properties. For more information, see Programming Extended SQL-DMO

Objects.

See Also

LinkedServer Object

SQL-DMO

LinkedServerLogin Object

The LinkedServerLogin object exposes the properties of an authentication
record mapping used when an instance of Microsoft® SQL Server™ 2000
attempts to connect to a linked server.

| LinkedServer |

L{ LinkedServerLoging |

|-| LinkedServerLogin |

Properties

Locall.ogin Property RemotePassword Property
Impersonate Property RemoteUser Property

Methods

Remove Method (Objects)

Remarks

SQL Server supports Transact-SQL queries against data stored in one or more
SQL Server and heterogeneous databases. SQL Server distributed queries use
OLE DB to access a nonlocal data store.

OLE DB defines a provider as an OLE DB component that can deliver data from
a store. Typically, OLE DB providers can discriminate among applicable,
available data stores. OLE DB defines a data source as that information
necessary for the successful delivery of data from the store (such as a user
identifier and password).

SQL Server implements persistent storage of an OLE DB provider name and
data source definition called a linked server. A record maintaining authentication
data for a linked server is called a linked server login.

With the LinkedServerLogin object, you can:

e Map SQL Server authentication data to authentication data required by a
linked server.

e Configure existing authentication mappings.

e Remove an existing authentication mapping, disabling linked server
accessibility for the SQL Server login record mapped.

To create a linked server login

1. Create a LinkedServerLogin object.

2. Set the LocalLogin property.

3. If authentication impersonation is supported and desired, set the
Impersonate property. Otherwise, set the RemoteUser and
RemotePassword properties to authentication data values valid for the
linked server.

4. Add the LinkedServerLogin object to the LinkedServerLogins
collection of a LinkedServer object referencing the appropriate linked
server.

Note When a linked server is created, SQL Server creates a default
linked server login specifying a NULL local login name and
authentication impersonation. This special purpose login mapping
record provides authentication data mapping for those logins not
mapped explicitly.

SQL-DMO

LogFile Object

The LogFile object exposes the attributes of an operating system file used to
maintain transaction log records for a Microsoft® SQL Server™ 2000 database.

| TranzactionLog |

LogFiles |
LogFile |

Properties
FileGrowth Property Name Property
FileGrowthInKB Property PhysicalName Property
FileGrowthType Property Size Property
ID Property SizeInKB Property
MaximumSize Property

Methods

Shrink Method

Remarks

SQL Server logs transactions applied to a database. Transaction logs assist in
recovering database integrity in the event of system failure. Transaction log
records for a single database are maintained on one or more operating system
files called log files.

With the LogFile object, you can:

¢ Create a database log file and add it to the list of operating system files
available to a SQL Server database.

e Determine the usage of a database log file.

e Shrink the operating system file to reflect actual transaction log use.

The Name property of a LogFile object can contain up to 128 characters. The
value of the Name property must be unique for all files, both log and data, used
by a database.

To create an operating system file for transaction log records

1.

Create a LogFile object.

Set the Name property.

Set the PhysicalName property to the full operating system path and
file name for the operating system file.

Set the Size property to the initial size for the operating system file in
megabytes (MB). If you do not specify a file size, a 2-MB file is
created.

Add the LogFile object to the LogFiles collection of a connected
Database object.

SQL-DMO

Login Object

The Login object exposes the attributes of a single SQL Server Authentication
record.

| SOLServer |

Loging |

Login |

Properties

Database Property Name Property
DenyNTLogin Property NTLoginAccessType Property
Language Property SystemObject Property

LanguageAlias Property Tvpe Property (Login

Methods

EnumDatabaseMappings Method

Remove Method (Objects)

GetUserName Method Script Method
IsMember Method SetPassword Method

ListMembers Method (Login, User)

Remarks

Microsoft® SQL Server™ 2000 uses two ways to validate connections to SQL
Server databases: Windows Authentication and SQL Server Authentication. SQL
Server Authentication uses login records to validate the connection. A Login
object exposes a SQL Server login record.

With a Login object, you can:

e Create a SQL Server login record for a SQL Server Authentication
connection.

o Set the attributes of a SQL Server login record, such as the password or
the default database for the login.

e Determine the role membership of a SQL Server login.

e Remove a login record from SQL Server, disabling its use.

Note To view, create, or remove SQL Server logins by using the Login
object, the connected user must be a member of the SQL Server
securityadmin fixed server role.

The Name property of a Login object uses the SQL Server data type sysname.
The value of the Name property must be unique for an instance of SQL Server.

A SQL Server login is created with no password and no rights to any database on
the server. After successful creation of a SQL Server login, you can use the
SetPassword method of the Login object to assign a password to the login. Use
the Database User object and Users collection to grant login access to server
resources.

To add a login to a server running SQL Server

1. Create a Login object.

2. Set the Name property.

3. Set the Type property. By default, a login is created for use by SQL
Server Authentication. Alternately specify the login type to map a
Microsoft Windows NT® 4.0 or Microsoft Windows 2000® user or

group.

4. Add the Login object to the Logins collection of a connected
SQLServer object to create the SQL Server login.

Note The Login object is compatible with instances of SQL Server

2000 and SQL Server version 7.0. However, the Login2 object extends
the functionality of the Login object for use with features that are new
in SQL Server 2000.

See Also

Login2 Object

Managing Security

JavaScript:hhobj_1.Click()

SQL-DMO

Login2 Object

The Login2 object exposes the attributes of a single SQL Server Authentication
record and extends the functionality of the Login object.

Properties

IsDeleted Property

Remarks

The Login2 object extends the functionality of the Login object for use with
features that are new in Microsoft® SQL Server™ 2000. It also inherits the
properties and methods of the Login object.

The IsDeleted property of the Login2 object may not be compatible with
instances of SQL Server version 7.0 or earlier. For more information about using
the Login2 object in an application that also runs with an instance of SQL Server
7.0, refer to the Remarks section of the IsDeleted property. For more
information, see Programming Extended SQL-DMO Objects.

See Also

Login Object

SQL-DMO

M

SQL-DMO

MergeArticle Object

The MergeArticle object represents a table published as part of a merge

publication.

| b ergedrticles |

hd ergedirticle |

| tergeSubsetFilkers |

Properties

ArticleResolver Property

PreCreationMethod Property

ArticleType Property

ResolverInfo Property

ColumnTracking Property

SnapshotObjectName Property

ConflictTable Property

SnapshotObjectOwner Property

CreationScriptOptions Property

SourceObjectName Property

CreationScriptPath Property

SourceObjectOwner Property

Description Property

Status Property (MergeArticle)

ID Property

SubsetFilterClause Property

Name Property

Methods

BeginAlter Method

Remove Method (Objects)

CancelAlter Method Script Method (Replication Objects)
DoAlter Method ScriptDestinationObject Method
Remarks

With the MergeArticle object, you can:

e Add an article to a merge publication.

e Change the properties of an existing merge article.

To add an article (table) to a merge publication

1.

Create a new MergeArticle object.

Set the Name property.

Set the SourceObjectName property to the name of a table.

Set the SourceObjectOwner property to the owner of the table.

Add the MergeArticle object to the MergeArticles collection of a
connected MergePublication object.

To alter an existing article (table) of an existing merge publication

1.

Get a MergeArticle object from the MergeArticles collection of a
connected MergePublication object.

Use the BeginAlter method to mark the beginning of the changes.

Set the MergeArticle properties to reflect the changes to the article.

Use the DoAlter method to submit the changes to Microsoft® SQL
Server™,

Note The MergeArticle object is compatible with instances of SQL
Server 2000 and SQL Server version 7.0. However, the
MergeArticle2 object extends the functionality of the MergeArticle
object for use with features that are new in SQL Server 2000.

See Also

MergeArticle?2 Object

SQL-DMO

MergeArticle2 Object

The MergeArticle2 object represents a table published as part of a merge
publication and extends the functionality of the MergeArticle object.

Properties

AllowlInteractiveResolver Property |[IdentityRangeThreshold Property

AutoldentityRange Property MultipleColumnUpdate Property
CheckPermissions Property PublisherldentityRangeSize Property

DestinationObjectName Property [SubscriberldentityRangeSize Property
DestinationOwnerName Property [VerifyResolverSignature Property

Methods

AddReplicatedColumns Method RemoveReplicatedColumns Method

ListReplicatedColumns Method ScriptDestinationObject2 Method
(MergeArticle2)

Remarks

The MergeArticle2 object extends the functionality of the MergeArticle object
for use with features that are new in Microsoft® SQL Server™ 2000. It also
inherits the properties and methods of the MergeArticle object. With the
MergeArticle2 object, you can:

e Add, remove, or retrieve information about vertical partitions in a
replication article.

e Configure and retrieve information about identity ranges.

The methods and properties of the MergeArticle2 object may not be compatible

with instances of SQL Server version 7.0 or earlier. For information about using
the MergeArticle2 object in an application that also runs with an instance of
SQL Server 7.0, refer to the Remarks section for specific methods and

properties. For more information, see Programming Extended SQL-DMO
Objects.

See Also

MergeArticle Object

SQL-DMO

MergeDynamicSnapshotJob Object

The MergeDynamicSnapshotJob object represents a dynamic snapshot job that
is part of a merge publication.

| tergeliynamicSnapzhotlobs |

tergeliynamicSnapzhotlob |

|—| SnapzhotScheduls |

Methods

BeginAlter Method CancelAlter Method
DoAlter Method Remove Method (Objects)
Properties

DynamicFilterHostName Property |DynamicSnapshotl.ocation Property
DynamicFilterl.ogin Property Name Property
DynamicSnapshotJobld Property

Remarks
With the MergeDynamicSnapshotJob object, you can:

¢ Add a dynamic snapshot job to a merge publication.

e Set the properties of a dynamic snapshot job prior to its creation.

e Remove a dynamic snapshot job from a merge publication.

To add a dynamic snapshot job to a merge publication

1. Create a new MergeDynamicSnapshotJob object.

2. Optionally set the Name property, specifying a name that is unique
among all job names at the Distributor.

3. Set the DynamicFilterHostName property to the name of a
Subscriber.

4. Set the DynamicFilterLogin property to the login ID of a Subscriber.

5. Set the DynamicSnapshotLocation property to the path where the
dynamic snapshot files are generated.

6. Add the MergeDynamicSnapshotJob object to the
MergeDynamicSnapshotJobs collection of a connected
MergePublication object.

Note If the Name property is not set, a default name is generated in the form of
dyn_ + (job name of the regular snapshot job of the publication) + string GUID.

To remove a dynamic snapshot job from a merge publication

1. Get a MergeDynamicSnapshotJob object from the
MergeDynamicSnapshotJobs collection of a connected
MergePublication object.

2. Use the Remove method to remove the dynamic snapshot job.

Note The MergeDynamicSnapshotJob object is only compatible
with instances of SQL Server 2000.

See Also

Dynamic Snapshots

JavaScript:hhobj_1.Click()

SQL-DMO

MergePublication Object

The MergePublication object represents a merge publication. A publication
contains one or more articles (tables) that contain the replicated data.

| b ergePublications |

b ergePublication |

W ergedrticles |

tergeliynamicSnapzhotlobs |

ergeSubcriptions |

SnapzhotScheduls |

Properties

CentralizedConflicts Property Priority Property
DynamicFilters Property PublicationAttributes Property
Description Property RetentionPeriod Property
Enabled Property SnapshotAvailable Property
HasSubscription Property SnapshotJobID Property

ID Property SnapshotMethod Property
Name Property

Methods

BeginAlter Method GenerateFilters Method

CancelAlter Method GrantPublicationAccess Method
DoAlter Method RefreshChildren Method
EnumAllSubsetFilters Method Relnitialize AllSubscriptions Method

EnumGeneratedSubsetFilters MethodRemove Method (Objects)
EnumPublicationAccesses Method |RevokePublicationAccess Method
EnumPublicationReferences Method |Script Method (Replication Objects)

EnumSubscriptions Method

Remarks
With the MergePublication object, you can:

e Create a new merge publication.

e Change the properties of an existing merge publication.

To create a merge publication

1. Create a new MergePublication object.
2. Set the Name property.

3. Set the PublicationAttributes property as appropriate.

e To enable push subscriptions, use
SQLDMOPubAttrib_AllowPush.

e To enable pull subscriptions, use
SQLDMOPubAttrib_AllowPull.

¢ To enable anonymous subscriptions, use
SQLDMOPubAttrib_AllowPull and
SQLDMOPubAttrib_AllowAnonymous.

¢ To enable Internet subscriptions, use
SQLDMOPubAttrib_InternetEnabled.

4. Add the MergePublication object to the MergePublications
collection of a connected ReplicationDatabase object.

To alter a merge publication

1. Get a MergePublication object from the MergePublications

collection of a connected ReplicationDatabase object.

2. Use the BeginAlter method to mark the beginning of the changes.

3. Set the MergePublication properties to reflect the changes to the
merge publication.

4. Use the DoAlter method to submit the changes to Microsoft® SQL
Server™,

Note The MergePublication object is compatible with instances of
SQL Server 2000 and SQL Server version 7.0. However, the
MergePublication2 object extends the functionality of the
MergePublication object for use with features that are new in SQL
Server 2000.

See Also

MergePublication2 Object

SQL-DMO

MergePublication2 Object

The MergePublication2 object represents a merge publication. A publication
contains one or more articles (tables) that contain the replicated data. The
MergePublication2 object extends the functionality of the MergePublication

object.

Properties

AllowSyncToAlternate Property = |[FTPSubdirectory Property

AltSnapshotFolder Property InActiveDirectory Property

Compatibilityl.evel Property KeepPartitionChanges Property

(MergePublication2,

TransPublication?)

ConflictRetention Property MaxConcurrentMerge Property

FTPAddress Property MaxConcurrentDynamicSnapshots
Property

FTPLogin Property PostSnapshotScript Property

FTPPassword Property PreSnapshotScript Property

ETPPort Property ValidateSubscriberInfo Property

Methods

AddAlternatePublisher Method RemoveAlternatePublisher Method
BrowseSnapshotFolder Method ReplicateUserDefinedScript Method
(MergePublication2)

CopySnapshot Method ReSynchronizeSubscription Method
(MergePublication2)
EnumAlternatePublishers Method [ValidatePublication Method

(MergePublication2)

ReadlLastValidationDateTimes ValidateSubscription Method
Method

Relnitialize AllSubscriptions2

Method

Remarks

The MergePublication2 object extends the functionality of the
MergePublication object for use with features that are new in Microsoft® SQL
Server™ 2000. It also inherits the properties and methods of the
MergePublication object. With the MergePublication2 object, you can:

e Configure and manage alternate Publishers.

¢ Perform data validation operations on a Publisher and its Subscribers.

The methods and properties of the MergePublication2 object may not be
compatible with instances of SQL Server version 7.0 or earlier. For information
about using the MergePublication2 object in an application that also runs with
an instance of SQL Server 7.0, refer to the Remarks section for specific methods
and properties. For more information, see Programming Extended SQL-DMO
Objects.

See Also

MergePublication Object

SQL-DMO

MergePullSubscription Object

The MergePullSubscription object represents a Subscriber-initiated pull or
anonymous subscription to a merge publication.

| tergePullSubscriptions |

tergePullS ubzcription |

DrigtributorS ecurity |

tergeScheduls |

Publizhers ecurity |

Properties
Description Property Publication Property
Distributor Property PublicationDB Property
EnabledForSyncMgr Property Publisher Property
FTPAddress Property SubscriberlL.ogin Property
FTPLogin Property SubscriberPassword Property
FTPPassword Property SubscriberSecurityMode Property
ETPPort Property SubscriberType Property
(MergePullSubscription,
MergeSubscription)
MergeJobID Property SubscriptionType Property
Name Property SyncType Property
Priority Property

Methods

BeginAlter Method Relnitialize Method

CancelAlter Method Remove Method (Objects)

DoAlter Method Script Method (Replication Objects)
EnumJoblnfo Method

Remarks
With the MergePullSubscription object, you can:

e Add a pull subscription to a merge publication from the Subscriber.

e Change the properties of an existing merge pull subscription.

¢ Add an anonymous subscription to a merge publication from the
Subscriber.

e Change the properties of an existing merge anonymous subscription.

To create a merge pull subscription at the Subscriber

1. Create a new MergePullSubscription object.

2. Set the Publisher property to the name of an existing Publisher.

3. Set the Distributor property to the name of the Distributor.

4. Set the PublicationDB property to the name of the database (at the
Publisher) where the publication is located.

5. Set the Publication property to the name of the publication to which to
subscribe.

6. Set the SubscriberType property to
SQLDMOMergeSubscriber_Global or
SQLDMOMergeSubscriber_Local.

7. Set the SecurityMode property of the DistributorSecurity object
property as appropriate.

8. If the SecurityMode property of the DistributorSecurity object
property is set to SQLDMOReplSecurity_Normal, set the
StandardLogin and StandardPassword properties of the
DistributorSecurity object property.

9. Set the SecurityMode property of the PublisherSecurity object
property as appropriate.

10. If the SecurityMode property of the PublisherSecurity object
property is set to SQLDMOReplSecurity_Normal, set the
StandardLogin and StandardPassword properties of the
PublisherSecurity object property.

11. Note that the Name property defaults to
publisher:publication_database:publication.

12. Add the MergePullSubscription object to the
MergePullSubscriptions collection of a connected
ReplicationDatabase object at the Subscriber.

13. Get a ReplicationDatabase object that contains the publication from
the ReplicationDatabases collection of the Replication object
connected to the Publisher.

14. Use the EnableMergeSubscription method of the
ReplicationDatabase object that is connected to the Publisher.

To alter an existing merge pull subscription at the Subscriber

1. Get a MergePullSubscription object from the
MergePullSubscriptions collection of a connected

2.

3.

4.

ReplicationDatabase object at the Subscriber.

Use the BeginAlter method to mark the beginning of the changes.

Set the MergePullSubscription object properties to reflect the
changes to the merge pull subscription.

Use the DoAlter method to submit the changes to Microsoft® SQL
Server™.

To create a merge anonymous subscription at the Subscriber

1.

Create a new MergePullSubscription object.

Set the Publisher property to the name of an existing Publisher.

Set the PublicationDB property to the name of the database (at the
Publisher) where the publication is located.

Set the Publication property to the name of the publication to which to
subscribe.

Set the SubscriberType property to
SQLDMOMergeSubscriber_Anonymous.

Set the SecurityMode property of the DistributorSecurity object
property as appropriate.

If the SecurityMode property of the DistributorSecurity object
property is set to SQLDMOReplSecurity_Normal, set the
StandardLogin and StandardPassword properties of the
DistributorSecurity object property.

8. Set the SecurityMode property of the PublisherSecurity object
property as appropriate.

9. If the SecurityMode property of the PublisherSecurity object
property is set to SQLDMOReplSecurity_Normal, set the
StandardLogin and StandardPassword properties of the
PublisherSecurity object property.

10. Note that the Name property defaults to
publisher:publication_database:publication.

11. Add the MergePullSubscription object to the
MergePullSubscriptions collection of a connected
ReplicationDatabase object at the Subscriber.

To alter an existing merge anonymous subscription at the Subscriber

1. Get a MergePullSubscription object from the
MergePullSubscriptions collection of a connected
ReplicationDatabase object at the Subscriber.

2. Use the BeginAlter method to mark the beginning of the changes.

3. Set the MergePullSubscription object properties to reflect the
changes to the merge pull subscription.

4. Use the DoAlter method to submit the changes to SQL Server.

The MergePublication2 object now supports the FTP-related properties, still
supported by the MergePullSubscription object. Previously, if it was necessary
to modify these properties, changes had to be made at each Subscriber. Now
changes can be made at the Publisher.

Note The MergePullSubscription object is compatible with instances of SQL
Server 2000 and SQL Server version 7.0. However, the
MergePullSubscription2 object extends the functionality of the
MergePullSubscription object for use with features that are new in SQL Server
2000.

See Also

MergePullSubscription2 Object

SQL-DMO

MergePullSubscription2 Object

The MergePullSubscription2 object represents a Subscriber-initiated pull or
anonymous subscription to a merge publication and extends the functionality of
the MergePullSubscription object.

Properties

AgentOffload Property LastMergedTime Property
AgentOffloadServer Property SubscriptionID Property
AltSnapshotFolder Property UseFTP Property
DynamicSnapshotl.ocation UselnteractiveResolver Property
Property

LastMergedStatus Property WorkingDirectory Property
LastMergedSummary Property

Methods

EnumAlternatePublishers Method [Relnitialize2 Method

Remarks

The MergePullSubscription2 object extends the functionality of the
MergePullSubscription object for use with features that are new in Microsoft®
SQL Server™ 2000. It also inherits the properties and methods of the
MergePullSubscription object. With the MergePullSubscription2 object, you
can:

e Set and retrieve information about Distribution Agents offloaded to
remote Servers.

e Use an interactive resolver.

The methods and properties of the MergePullSubscription2 object may not be
compatible with instances of SQL Server version 7.0 or earlier. For information
about using the MergePullSubscription2 object in an application that also runs
with an instance of SQL Server 7.0, refer to the Remarks section for specific
methods and properties. For more information, see Programming Extended
SQL-DMO Obijects.

See Also

MergePullSubscription Object

SQL-DMO

MergeSubscription Object

The MergeSubscription object represents a push subscription (made from the
Publisher) to a merge publication.

| i ergeSubscriptions |

\—‘ b ergeSubzcription |

H b ergeScheduls |

Properties

Description Property Subscriber Property

EnabledForSyncMgr Property SubscriberType Property
(MergePullSubscription,
MergeSubscription)

MergeJobID Property SubscriptionDB Property

Name Property SubscriptionType Property

Priority Property SyncType Property

Status Property (Subscription

Objects)

Methods

BeginAlter Method Relnitialize Method

CancelAlter Method Remove Method (Objects)

DoAlter Method Script Method (Replication Objects)

Remarks

With the MergeSubscription object, you can:

¢ Add a push subscription to a merge publication.

e Change the properties of an existing push merge subscription.

To create a merge push subscription at the Publisher

1. Create a new MergeSubscription object.

2. Set the Subscriber property to the name of an existing Subscriber.

3. Set the SubscriptionDB property to the name of the database (at the
Subscriber) where the subscription data will be stored.

4. Note that the Name property defaults to
subscriber:subscription_database.

5. Add the MergeSubscription object to the MergeSubscriptions
collection of a connected MergePublication object.

To alter an existing merge push subscription

1. Get a MergeSubscription object from the MergeSubscriptions
collection of a connected MergePublication object.

2. Use the BeginAlter method to mark the beginning of the changes.

3. Set the MergeSubscription object properties to reflect the changes to
the merge push subscription.

4. Use the DoAlter method to submit the changes to Microsoft® SQL
Server™,

Note The MergeSubscription object is compatible with instances of SQL
Server 2000 and SQL Server version 7.0. However, the MergeSubscription2
object extends the functionality of the MergeSubscription object for use with

features that are new in SQL Server 2000.

See Also

MergeSubscription? Object

SQL-DMO

MergeSubscription2 Object

The MergeSubscription2 object represents a push subscription (made from the
Publisher) to a merge publication and extends the functionality of the
MergeSubscription object.

Properties

AgentOffload Property UselnteractiveResolver Property
AgentOffloadServer Property

Methods
Relnitialize2 Method

Remarks

The MergeSubscription2 object extends the functionality of the
MergeSubscription object for use with features that are new in Microsoft®
SQL Server™ 2000. It also inherits the properties and methods of the
MergeSubscription object. With the MergeSubscription2 object, you can:

e Set and retrieve information about Distribution Agents offloaded to
remote Servers.

e Use an interactive resolver.

The methods and properties of the MergeSubscription2 object may not be
compatible with instances of SQL Server version 7.0 or earlier. For information
about using the MergeSubscription2 object in an application that also runs with
an instance of SQL Server 7.0, refer to the Remarks section for specific methods

and properties. For more information, see Programming Extended SQL-DMO
Objects.

See Also

MergeSubscription Object

SQL-DMO

MergeSubsetFilter Object

The MergeSubsetFilter object represents a filter (or partition) of the data in one
article based on filtered data in another article. Both articles must be part of the
same merge publication.

| hd ergedirticle |

tergeSubsetFilkers |

bl ergeSubzetFilker |

Methods

BeginAlter Method DoAlter Method
CancelAlter Method Remove Method (Objects)
Properties

ID Property JoinUniqueKey Property
JoinArticleName Property Name Property
JoinFilterClause Property

Remarks

A MergeSubsetFilter object is commonly used when two tables have a primary
key to foreign key relationship. If the MergeArticle object representing the
primary key table has a SubsetFilterClause object defined, add a
MergeSubsetFilter object (that references the primary key article) to the
MergeArticle object representing the foreign key table.

With the MergeSubsetFilter object, you can:

¢ Add a merge filter.

e Change the properties of an existing merge filter.

To add a merge filter to a merge article

1. Create a new MergeSubsetFilter object.

2. Set the Name property.

3. Set the JoinArticleName property.

4. Set the JoinFilterClause property.

5. Add the MergeSubsetFilter object to the MergeSubsetFilters
collection of a connected MergeArticle object.

To alter an existing merge filter of a merge article

1. Get a MergeSubsetFilter object from the MergeSubsetFilters
collection of a connected MergeArticle object.

2. Use the BeginAlter method to mark the beginning of the changes.

3. Set the MergeSubsetFilter properties to reflect the changes to the
merge filter.

4. Use the DoAlter method to submit the changes to Microsoft® SQL
Server™,

SQL-DMO

N

SQL-DMO

NameList Object

The NameList object is a string container object returned by methods that
enumerate Microsoft® SQL Server™ components by name.

Application

Properties

Count Property

Methods

FindName Method Refresh Method
Item Method

Remarks

SQL-DMO implements object enumerating methods that return the names of
servers running SQL Server or SQL Server database objects, such as users or
indexes. Commonly, the name of the SQL Server component is used by an
application in logic that directs the selection of a component. That component
may then be referenced by name in another method.

For example, the ListAvailableSQLServers method of the Application object
returns a NameList object that enumerates SQL Server server names. An
application can use the Item method of the NameList object to populate a
control, such as a combo box, allowing user selection of a SQL Server
installation by name. The name selected could then be used in the Connect
method of the SQLServer object.

See Also

ListAvailableSQLServers Method

ListMemberServers Method

ListAvailableUniquelndexesForFullText Method

ListObjectNames Method
ListMembers Method (Login, User)

SQL-DMO

O

SQL-DMO

Operator Object

The Operator object represents a single Microsoft® SQL Server™ operator.
SQL Server operators receive alert and job status notification in response to
events generated by the server.

| JobServer |

L{ Operators |

|-| Operatar |
Properties
Category Property Name Property
EmailAddress Property NetSendAddress Property
Enabled Property PagerAddress Property
ID Property PagerDays Property
LastEmailDate Property SaturdayPagerEndTime Property
LastEmailTime Property SaturdayPagerStartTime Property
LastNetSendDate Property SundayPagerEndTime Property
LastNetSendTime Property SundayPagerStartTime Property
LastPageDate Property WeekdayPagerEndTime Property
LastPageTime Property WeekdayPagerStartTime Property
Methods
AddNotification Method Refresh Method
BeginAlter Method Remove Method (Operator)
CancelAlter Method RemoveNotification Method
DoAlter Method Script Method
EnumJobNotifications Method UpdateNotification Method
EnumNotifications Method

Remarks

Use the Operator object to manage the SQL Server operators defined for an
instance of SQL Server. With the Operator object, you can:

e Define new operators on an instance of SQL Server.

e Assign alert notifications to the operator.

e Change the scheduled response times for an existing operator.

The Name property of an Operator object is required when creating an operator
on SQL Server. The Name property uses the SQL Server data type
varchar(100).

A SQL Server operator created with the minimum required values has no
schedule information and is assigned no notifications.

To create a SQL Server operator

1. Create an Operator object.

2. Set the Name property.

3. Add the Operator object to the Operators collection of a connected
JobServer object.

To modify an existing SQL Server operator

1. Get an Operator object from the Operators collection of a connected
JobServer object.

2. Use the BeginAlter method to mark the start of changes to existing
property values.

3. Change property values to reflect changes in behavior.

4. Use the DoAlter method to mark the end of changes and make
changes in the SQL Server operator.

See Also

Defining Operators

JavaScript:hhobj_1.Click()

SQL-DMO

P

SQL-DMO

Permission Object

The Permission object exposes Microsoft® SQL Server™ object-access rights.

Properties

Granted Property ObjectType Property
Grantee Property ObjectTypeName Property
ObjectID Property PrivilegeType Property
ObjectName Property PrivilegeTypeName Property
ObjectOwner Property

Methods
ListPrivilegeColumns Method

Remarks

The Permission object is contained within SQL-DMO list objects and is used
solely for reporting object-access rights. For example, the Table object has
Permissions and UserPermissions lists reporting the access rights to a specific
SQL Server table. Membership in these object lists is affected by granting,
revoking, or denying object-specific access rights to SQL Server users and
database roles. You can use the containing object's Grant, Revoke, and Deny
methods to control SQL Server access rights and affect list membership.

All properties of the Permission object are read-only.

Note The Permission object is compatible with instances of SQL Server 2000
and SQL Server version 7.0. However, the Permission2 object extends the
functionality of the Permission object for use with features that are new in SQL
Server 2000.

See Also

Database Object

Permission2 Object
StoredProcedure Object

Table Object

View Object

ListPermissions Method

ListUserPermissions Method

SQL-DMO

Permission2 Object

The Permission2 object exposes Microsoft® SQL Server™ object-access rights
and extends the functionality of the Permission object.

Properties

GrantedGranted Property

Remarks

The Permission2 object extends the functionality of the Permission object for
use with features that are new in SQL Server 2000. It also inherits the properties
and methods of the Permission object.

The GrantedGranted property of the Permission2 object may not be
compatible with instances of SQL Server version 7.0 or earlier. For information
about using the Permission2 object in an application that also runs with an
instance of SQL Server 7.0, refer to the Remarks section of the
GrantedGranted property. For more information, see Programming Extended
SQL-DMO Obijects.

See Also

Permission Object

SQL-DMO

Property Object

The Property object exposes the attributes of a SQL-DMO object property.

Property

Properties

Get Property Type Property (Propert
Name Property Value Property

Set Property

Remarks

Object properties implement instance data for OLE objects. SQL-DMO is
implemented as a dual-interface object library. Its objects are exposed as OLE
Automated objects and as COM objects, enabling you to use either an
automation controller or a C/C++ compiler as an application development
platform.

OLE Automation controllers, such as Microsoft® Visual Basic®, typically
enrich the development experience by providing syntax completion and other
development aids. Because it exposes the attributes of object properties, the
Property object is a central component of automated developer assistance.

Note The Property object is implemented for OLE Automation controllers. The
C/C++ SQL-DMO application has no direct access to the Property object.

SQL-DMO

Publisher Object

The Publisher object represents the replication properties of a Microsoft® SQL
Server™ Publisher.

| Replication |

Publisher |

| RegizteredSubscribers |

Note The Publisher object is compatible with instances of SQL Server 2000
and SQL Server version 7.0. However, the Publisher2 object extends the

functionality of the Publisher object for use with features that are new in SQL
Server 2000.

Methods

Script Method (Replication Objects) [Uninstall Method

See Also

Publisher? Object

SQL-DMO

Publisher2 Object

The Publisher2 object represents the replication properties of a Microsoft® SQL
Server™ Publisher and extends the functionality of the Publisher object.

Methods

CleanUpAnonymousAgentInfo EnumPublications?2 Method
Method

Remarks

The Publisher2 object extends the functionality of the Publisher object for use
with features that are new in SQL Server 2000. It also inherits the properties and
methods of the Publisher object.

The methods and properties of the Publisher2 object may not be compatible
with instances of SQL Server version 7.0 or earlier. For information about using
the Publisher2 object in an application that also runs with an instance of SQL
Server 7.0, refer to the Remarks section for specific methods and properties. For

more information, see Programming Extended SQL-DMO Objects.

See Also

Publisher Object

SQL-DMO

Q

SQL-DMO

QueryResults Object

The QueryResults object presents tabular data to the SQL-DMO application.
SQL-DMO enumeration methods, such as the EnumILocks method of the
Database object, return a QueryResults object to report their data. SQL-DMO
statement execution methods, such as the ExecuteWithResults method of
Database and SQLServer objects, also return a QueryResults object.

[luenResults
Application

Properties

ColumnMaxI.ength Property

CurrentResultSet Property

ColumnName Property

ResultSets Property

Columns Property

Rows Property

ColumnType Property

Methods
GetColumnBinary Method GetColumnFloat Method
GetColumnBinaryl.ength Method GetColumnGUID Method

GetColumnBool Method GetColumnl.ong Method
GetColumnDate Method GetColumnString Method

GetColumnDouble Method

GetRangeString Method

Remarks

The QueryResults object is a reporting tool. All properties of the QueryResults

object are read-only. With the QueryResults object, you can:

e Navigate data returned from a server running Microsoft® SQL Server™

as the result of statement execution.

e Retrieve specific data values in a data type usable by your application.

¢ Get the data result of a statement execution as a delimited string of
values.

Note The QueryResults object is compatible with instances of SQL
Server 2000 and SQL Server version 7.0. However, the QueryResults2
object extends the functionality of the QueryResults object for use with
features that are new in SQL Server 2000.

See Also

QueryResults2 Object

SQL-DMO

QueryResults2 Object

The QueryResults2 object presents tabular data to the SQL-DMO application
and extends the functionality of the QueryResults object.

Methods

GetColumnBigInt Method GetColumnSQLVARIANTLength
Method

GetColumnSQLVARIANT Method |GetColumnSQLVARIANTToString
Method

GetColumnSQLVARIANTDataType

Method

Remarks

The QueryResults2 object extends the functionality of the QueryResults object
for use with features that are new in Microsoft® SQL Server™ 2000. It also
inherits the properties and methods of the QueryResults object. With the
QueryResults2 object, you can:

e Retrieve specific sql_variant data values in a data type usable by your
application.

The methods of the QueryResults2 object may not be compatible with instances
of SQL Server version 7.0 or earlier. For information about using the
QueryResults2 object in an application that also runs with an instance of SQL
Server 7.0, refer to the Remarks section for specific methods. For more
information, see Programming Extended SQL-DMO Objects.

See Also

QueryResults Object

SQL-DMO

R

SQL-DMO

RegisteredServer Object

The RegisteredServer object exposes the attributes of a single, registry-listed
instance of Microsoft® SQL Server™,

| ServerEoup |

RegizteredServers |

|‘| ReqgisteredServer |

Properties

Login Property Sal.ogin Property

Name Property UseTrustedConnection Property
Password Property VersionMajor Property
PersistFlags Property VersionMinor Property
Methods

Remove Method (Objects)

Remarks

SQL-DMO applications can maintain lists of some or all instances of SQL
Server in an organization in the registry of a Microsoft Windows NT® 4.0,
Microsoft Windows 2000®, or Microsoft Windows® 98 system. The lists
establish categories for instances of SQL Server.

For example, to group and view servers by division in a SQL-DMO application,
SQL-DMO would represent each division as a ServerGroup object. The
division's ServerGroup name is maintained by SQL-DMO as a Windows NT or
Windows 95 registry key. Within this registry entry, separate keys list each
instance of SQL Server in the division. The list of these keys forms the members
of the SQL-DMO RegisteredServers collection, while each key's data is
exposed by a RegisteredServer object.

With the RegisteredServer object, you can:

e Create a Windows NT or Windows 95 registry entry that lists an
organization server.

e Remove a Windows NT or Windows 95 registry entry that lists an
instance of SQL Server.

e Manage a Windows NT or Windows 95 registry entry that lists an
instance of SQL Server by setting connection-validation attributes.

The Name property of the RegisteredServer object refers to the instance of
SQL Server registered. SQL-DMO does not attempt to validate the Name
property value when registering an instance of SQL Server. The
RegisteredServer object Name property is validated when the object is used in
an attempt to connect to an instance of SQL Server.

After an instance of SQL Server is registered, SQL-DMO uses the properties of
the registered server when connecting and when attempting to reconnect after a
connection failure. For example, SQL-DMO ignores the szLogin and szPassword
parameters of the Connect method of the SQLServer object when that object
references an instance of SQL Server registered to use Windows NT
Authentication Mode.

To create a registry entry listing an instance of SQL Server

1. Create a RegisteredServer object.

2. Set the properties determining connection validation appropriately. For
example, set the UseTrustedConnection property to TRUE to enable
Windows NT Authentication Mode.

3. Add the RegisteredServer object to the RegisteredServers collection
of the ServerGroup object of an Application object.

SQL-DMO

RegisteredSubscriber Object

The RegisteredSubscriber object represents what information a Publisher has
about a Subscriber.

| RegizteredSubscribers |

|—| RegizteredSubzcriber |

DrefaultDistributionS chedule |

[refaultkd erges chedule |

FeplicationS ecurity |

Properties
Description Property Type Property

(RegisteredSubscriber)

Name Property

Methods

BeginAlter Method Refresh Method

CancelAlter Method Remove Method (Objects)

DoAlter Method Script Method (Replication Objects)
Remarks

With the RegisteredSubscriber object, you can:

e Add a Subscriber at the Distributor or Publisher.

e Change the properties of an existing Subscriber at the Distributor or
Publisher.

To add a Subscriber at the Publisher

1. Create a new RegisteredSubscriber object.
2. Set the Name property to the server name of the Subscriber.
3. Add the RegisteredSubscriber object to the RegisteredSubscribers

collection of a connected Publisher object.

To add a Subscriber at the Distributor

1. Create a new RegisteredSubscriber object.
2. Set the Name property to the server name of the Subscriber.
3. Add the RegisteredSubscriber object to the RegisteredSubscribers

collection of a connected DistributionPublishers object.

To alter an existing Subscriber at the Publisher

1. Get a RegisteredSubscriber object from the RegisteredSubscribers
collection of a connected Publisher object.

2. Use the BeginAlter method to mark the beginning of the changes.

3. Set the RegisteredSubscriber object properties to reflect the changes
to the Subscriber.

4. Use the DoAlter method to submit the changes to Microsoft® SQL
Server™,

To alter an existing Subscriber at the Distributor

1. Get a RegisteredSubscriber object from the RegisteredSubscribers
collection of a connected DistributionPublishers object.

. Use the BeginAlter method to mark the beginning of the changes.

. Set the RegisteredSubscriber object properties to reflect the changes
to the Subscriber.

. Use the DoAlter method to submit the changes to SQL Server.

SQL-DMO

Registry Object

The Registry object exposes the Microsoft® Windows NT® 4.0, Microsoft®
Windows 2000®, or Microsoft Windows® 98 registry settings that maintain an
instance of Microsoft SQL Server™ and run-time parameters.

[5OLServer |

L{ Registry |
Properties

AutostartDTC Property NumberOfProcessors Property
AutostartlLicensing Property PerfMonMode Property
AutostartMail Property PhysicalMemory Property
AutostartServer Property RegisteredOrganization Property
CaseSensitive Property RegisteredOwner Property
CharacterSet Property ReplicationInstalled Property
ErrorL.ogPath Property SortOrder Property
MailAccountName Property SQLDataRoot Property
MailPassword Property SQLRootPath Property
MasterDBPath Property Tapel.oadWaitTime Property
NTEventl.ogging Property

Remarks
With the Registry object, you can:

e Retrieve SQL Server parameters set during installation, such as the
registered owner, character set, and sort order.

e Set system start behavior for an instance of SQL Server.

e Configure SQL Server mail account information.

e Configure SQL Server default data- and error-log paths, or set the path
for the SQL Server master database.

Changes to property values of the Registry object are applied to the referenced
instance of SQL Server as they are made.

To set a SQL Server run-time parameter

1. Get the Registry object from a connected SQLServer object.

2. Set the parameter. For example, to cause the SQL Server service
(MSSQLServer) to start automatically when the system is started, set
the AutostartServer property to TRUE.

Note The Registry object is compatible with instances of SQL Server
2000 and SQL Server version 7.0. However, the Registry2 object
extends the functionality of the Registry object for use with features
that are new in SQL Server 2000.

See Also

Registry2 Object

SQL-DMO

Registry2 Object

The Registry2 object exposes the Microsoft® Windows NT® 4.0, Microsoft®
Windows 2000® or Microsoft Windows® 95 registry settings that maintain an
instance of Microsoft SQL Server™ and run-time parameters. The Registry2
object extends the functionality of the Registry object.

Properties

SpxServiceName Property
SQLCurrentVersion Property
SuperSocketEncrypt Property
SuperSocketList Property
TcpFlag Property

TcpPort Property
VialListenInfo Property

ViaRecognized Vendors Property
ViaVendor Property

Adsp Property
AgentlL.ogFile Property
BackupDirectory Property
NP Property

RpcEncrypt Property
RpclList Property
RpcMaxCalls Property
RpcMinCalls Property
SNMP Property

SNMPCurrentVersion Property

VinesGroupName Property

SNMPEXxtensionAgents Property

VinesltemName Property

SNMPExtensionAgentsData
Property

VinesOrgName Property

SpxFlag Property

WSProxyAddress Property

SpxPort Property

WSProxyPort Property

Methods
EnumFullTextl.anguages Method

Remarks

The Registry2 object extends the functionality of the Registry object for use
with features that are new in SQL Server 2000. It also inherits the properties and

methods of the Registry object. With the Registry2 object, you can:

e Specify non-default locations for backup and agent log files when
running multiple instances of SQL Server.

e Manage Net-Library settings for multiple instances of SQL Server.

The methods and properties of the Registry2 object may not be compatible with
instances of SQL Server version 7.0 or earlier. For more information about using
the Registry2 object in an application that also runs with an instance of SQL

Server 7.0, refer to the Remarks section for specific methods and properties. For

more information, see Programming Extended SQL-DMO Objects.

See Also

Registry Object

SQL-DMO

RemoteLogin Object

The RemoteLogin object exposes the properties of a single login mapping
record for connections to an instance of Microsoft® SQL Server™ originating
from another, known instance of SQL Server.

| RemoteServers |

I‘i Remotelogins |

I‘| Remotelogin |

Properties

LocalName Property Trusted Property

RemoteName Property

Methods
Remove Method (Objects)

Remarks

An instance of SQL Server can maintain authentication information for
connections originating from other instances of SQL Server. Server-originated
connections are attempted when, for example, remote procedure calls are part of
a Transact-SQL script.

Each instance of SQL Server in an organization can control access by listing the
servers from which it accepts connections. For each of these remote servers,
login-account mappings specify the local login used by a remote server
connection when that remote server connects as part of a process run by the
remote login.

With the RemoteLogin object, you can:

e Map a login record on one instance of SQL Server to an existing login
record on another instance of SQL Server.

e Configure the local login attributes for a login defined on a remote
instance of SQL Server.

e Remove a remote login record from the list of logins mapped for the
remote instance of SQL Server.

SQL-DMO

RemoteServer Object

The RemoteServer object exposes the attributes of an instance of Microsoft®
SQL Server™, known as a remote server, to another server.

| RemoteServers |

I‘i Femotes erver |

|-| Remotelogins |

Methods

Executelmmediate Method Remove Method (Objects)
(LinkedServer, RemoteServer)

ExecuteWithResults Method SetOptions Method

ExecuteWithResultsAndMessages |SetTopologyXY Method
Method

Properties

ID Property Options Property
Name Property TopologyX Property
NetName Property TopologyY Property
Remarks

To facilitate connections between instances of SQL Server in an organization,
SQL Server uses remote-server naming.

A instance of SQL Server can maintain authentication information for
connections originating from other instances of SQL Server. Each instance of
SQL Server in an organization can control access by listing the instances of SQL
Server from which it accepts connections.

When a remote server is named on an instance of SQL Server, the server

maintaining the name list can, in turn, originate a connection to a named remote
server.

With the RemoteServer object, you can:

e Name a new SQL Server remote server.

¢ Adjust the Mixed Mode attributes of a named remote server.

e Execute Transact-SQL scripts on a named remote server.

e Remove a remote server definition.

Note The RemoteServer object is compatible with instances of SQL
Server 2000 and SQL Server version 7.0. However, the RemoteServer2
object extends the functionality of the RemoteServer object for use
with features that are new in SQL Server 2000.

See Also

RemoteServer2 Object

SQL-DMO

RemoteServer2 Object

The RemoteServer2 object exposes the attributes of an instance of Microsoft®
SQL Server™, known as a remote server, to another server and extends the
functionality of the RemoteServer object.

Methods

ExecuteWithResultsAndMessages2 Method

Remarks

The RemoteServer2 object extends the functionality of the RemoteServer
object for use with features that are new in SQL Server 2000. It also inherits the
properties and methods of the RemoteServer object.

The ExecuteWithResultsAndMessages method of the RemoteServer2 object
may not be compatible with instances of SQL Server version 7.0 or earlier. For
more information about using the RemoteServer2 object in an application that
also runs with an instance of SQL Server 7.0, refer to the Remarks section of the
ExecuteWithResultsAndMessages method. For more information, see

Programming Extended SQL-DMO Obijects.

See Also

RemoteServer Object

SQL-DMO

Replication Object

The Replication object represents the entire replication system for an instance of
Microsoft® SQL Server™, and it is the root of all replication objects.

| SOLServer |

Feplication |

—I Drigtributor |

H Publisher |

—I ReplicationD atabazes |

—| Subzcriber |

Methods

EnumCustomResolvers Method Uninstall Method
EnumDataSourceNames Method ValidateDataSource Method

Script Method (Replication Objects)

Events
PercentComplete Event StatusMessage Event
Remarks

With the Replication object, you can uninstall the replication system.
To uninstall the replication system

e Use the Uninstall method of a connected Replication object.

Note The Replication object is compatible with instances of SQL
Server 2000 and SQL Server version 7.0. However, the Replication2
object extends the functionality of the Replication object for use with
features that are new in SQL Server 2000.

See Also

Replication2 Object

SQL-DMO

Replication2 Object

The Replication2 object represents the entire replication system for an instance
of Microsoft® SQL Server™, and it is the root of all replication objects. The
Replication2 object extends the functionality of the Replication object.

Methods

AttachSubscriptionDatabase Method

Remarks

The Replication2 object extends the functionality of the Replication object for
use with features that are new in SQL Server 2000. It also inherits the properties
and methods of the Replication object. With the Replication2 object, you can:

e Attach a subscription database to a Subscriber.

The AttachSubscriptionDatabase method of the Replication2 object may not
be compatible with instances of SQL Server version 7.0 or earlier. For more
information about using the Replication2 object in an application that also runs
with an instance of SQL Server 7.0, refer to the Remarks section of the
AttachSubscriptionDatabase method. For more information, see Programming
Extended SQL-DMO Objects.

See Also

Replication Object

SQL-DMO

ReplicationDatabase Object

The ReplicationDatabase object represents a user database that can participate

in replication.

| Feplication |

ReplicationD atabazes |

ReplicationD atabaze |

-I b ergePublications

-I tergePullSubscriptions

‘I ReplicationStoredProcedures

‘I ReplicationTables

-I TranzPublications

-I TranzPullSubzcriptions

Properties

AllowMergePublication Property

EnableTransPublishing Property

DBOwner Property

Name Property

EnableMergePublishing Property

Methods

DisableMergeSubscription Method

EnumConflictTables Method

DisableTransSubscription Method

Enumlnitial Accesses Method

EnableMergeSubscription Method

RefreshChildren Method

EnableTransSubscription Method

Script Method (Replication Objects)

Remarks

With the ReplicationDatabase object, you can:

¢ Enable and disable transactional publishing.

e Enable and disable merge publishing.

To enable transactional publishing for a database

e Set the EnableTransPublishing property of a connected
ReplicationDatabase object to TRUE.

To disable transactional publishing for a database

e Set the EnableTransPublishing property of a connected
ReplicationDatabase object to FALSE.

To enable merge publishing for a database

¢ Set the EnableMergePublishing property of a connected
ReplicationDatabase object to TRUE.

To disable merge publishing for a database

e Set the EnableMergePublishing property of a connected
ReplicationDatabase object to FALSE.

Note The ReplicationDatabase object is compatible with instances of
Microsoft® SQL Server™ 2000 and SQL Server version 7.0. However, the
ReplicationDatabase2 object extends the functionality of the
ReplicationDatabase object for use with features that are new in SQL Server
2000.

See Also

ReplicationDatabase2 Object

SQL-DMO

ReplicationDatabase2 Object

The ReplicationDatabase2 object represents a user database that can participate
in replication and extend the functionality of the ReplicationDatabase object.

Properties

DBReadOnly Property

Methods

CopySubscriptionDatabase Method [WriteReplicationFailOverMode
Method

ReadReplicationFailOverMode
Method

Remarks

The ReplicationDatabase2 object extends the functionality of the
ReplicationDatabase object for use with features that are new in Microsoft®
SQL Server™ 2000. It also inherits the properties and methods of the
ReplicationDatabase object. With the ReplicationDatabase2 object, you can:

e Set and retrieve the attributes of a subscription that uses immediate
updating with queued updating as a failover option.

The methods and properties of the ReplicationDatabase2 object may not be
compatible with instances of SQL Server version 7.0 or earlier. For more
information about using the ReplicationDatabase2 object in an application that
also runs with an instance of SQL Server 7.0, refer to the Remarks section for
specific methods and properties. For more information, see Programming
Extended SQL-DMO Objects.

See Also

ReplicationDatabase Object

SQL-DMO

ReplicationSecurity Object

The ReplicationSecurity object represents authentication information used
when connecting to a Distributor or Publisher. It is commonly used with pull and
anonymous subscriptions.

| DistributionPublisher |

| td ergePullS ubzcription |

| RegizteredSubzcriber |

| TranzPullSubzcription |

| I FeplicationS ecurity |

Properties

SecurityMode Property StandardPassword Property

(ReplicationSecurity)
Standardl.ogin Property

Remarks
With the ReplicationSecurity object, you can:
e Enable Windows NT Authentication.

e Enable SQL Server Authentication.

To enable Windows NT Authentication

e Set the SecurityMode property to SQLDMOReplSecurity_Integrated.

To enable SQL Server NT Authentication

1. Set the SecurityMode property to SQLDMOReplSecurity_Normal.

2. Set the StandardLogin property to a Microsoft® SQL Server™ login.

3. Set the StandardPassword property to the password for the SQL
Server login.

SQL-DMO

ReplicationStoredProcedure Object

The ReplicationStoredProcedure object represents a user stored procedure in a
database that can participate in replication.

| FeplicationD atabaze |

ReplicationStoredProcedures |

FeplicationStoredProcedure |

Properties
Name Property SystemObject Property

Owner Property (Database Objects)

Methods

EnumDependencies Method EnumPublicationArticles Method

See Also

ReplicationStoredProcedure2 Object

SQL-DMO

ReplicationStoredProcedure2 Object

The ReplicationStoredProcedure2 object represents the replication properties
of a Microsoft® SQL Server™ stored procedure and extends the functionality of
the ReplicationStoredProcedure object.

Properties

Encrypted Property

Remarks

The ReplicationStoredProcedure2 object extends the functionality of the
ReplicationStoredProcedure2 object for use with features that are new in SQL
Server 2000. It also inherits the properties and methods of the
ReplicationStoredProcedure object.

The methods and properties of the ReplicationStoredProcedure2 object may
not be compatible with instances of SQL Server version 7.0 or earlier. For
information about using the ReplicationStoredProcedure2 object in an
application that also runs with an instance of SQL Server 7.0, refer to the
Remarks section of the Encrypted property. For more information, see

Programming Extended SQL-DMO Obijects.

See Also

ReplicationStoredProcedure Object

SQL-DMO

ReplicationTable Object

The ReplicationTable object represents a user table in a database that can
participate in replication.

| FeplicationT ablez |

FeplicationT able |

Columns |

Properties

HasGuidColumn Property Name Property
HasPrimaryKey Property Owner Property (Database Objects)

HasTimeStampColumn Property

Methods

EnumPublicationArticles Method

Remarks

The ReplicationTable object is compatible with instances of Microsoft® SQL
Server™ 2000 and SQL Server version 7.0. However, the ReplicationTable2
object extends the functionality of the ReplicationTable object for use with
features that are new in SQL Server 2000.

See Also

ReplicationTable2 Object

SQL-DMO

ReplicationTable2 Object

The ReplicationTable2 object represents a user table in a database that can
participate in replication and extends the functionality of the ReplicationTable
object.

Properties

HasBigIntColumn Property HasSQLVariantColumn Property
HasBigIntldentityColumn Property |ID Property

HasldentityColumn Property PublishedInMerge Property
HasldentityNotForReplColumn PublishedInQueuedTransactions
Property Property

HasRow VersionColumn Property

Methods

EnumldentityRangelnfo Method |ReplicationDropColumn Method
ReplicationAddColumn Method

Remarks

The ReplicationTable2 object extends the functionality of the ReplicationTable
object for use with features that are new in Microsoft® SQL Server™ 2000. It
also inherits the properties and methods of the DistributionPublisher object.

The methods and properties of the ReplicationTable object may not be
compatible with instances of SQL Server version 7.0 or earlier. For more
information about using the ReplicationTable2 object in an application that also
runs with an instance of SQL Server 7.0, refer to the Remarks section for
specific methods and properties. For more information, see Programming
Extended SQL-DMO Objects.

See Also

ReplicationTable Object

SQL-DMO

Restore Object

The Restore object defines the behavior of a RESTORE statement for a
Microsoft® SQL Server™ database or log.

Application

Properties

Action Property (Restore)

PercentCompleteNotification
Property

Database Property

Pipes Property

DatabaseFileGroups Property

RelocateFiles Property

DatabaseFiles Property

ReplaceDatabase Property

Devices Property

Restart Property

FileNumber Property

StandbyFiles Property

Files Property

Tapes Property

LastRestore Property

ToPointInTime Property

LoadHistory Property

UnloadTapeAfter Property

MediaName Property

Methods

Abort Method

ReadMediaHeader Method (Restore)

GenerateSQL Method (Backup,
Restore)

SQLRestore Method

ReadBackupHeader Method
(Restore)

SQLVerify Method

ReadFilel.ist Method

Events

Complete Event PercentComplete Event
NextMedia Event

Remarks
With the Restore object you can:

e Restore all or part of a database.

Restore backup images of transaction log records.

Verify the integrity of backup media.

Report the contents of backup media.

Monitor a restore operation, reporting status to the user.

SQL Server can write a backup to one of four media types: disk, tape, named
pipe, or a backup device. SQL Server supports backup striping. A striped backup
is one directed to more than a single device. Striping is supported to a single
media type only. That is, a backup can be written to two tape devices. A backup
cannot be written half to a tape device and the other half to a disk.

At a minimum, supply values for a restore source when using the Restore object.
SQL-DMO implements supported media types in the Restore object properties
Files, Devices, Pipes, and Tapes. Use one media type property to specify the
restore operation source.

Setting other properties in the Restore object may be required by the restore
operation desired. For example, before using the SQLRestore method, the
Database property of the Restore object must be set.

To perform a complete database restore

5.

. Create a Restore object.

Set a media property, naming the source device(s).

Set the Database property to indicate the target database.

If necessary, set the ReplaceDatabase property to force database
creation.

Call the SQLRestore method.

To restore a single unit of a database log

1.

2.

3.

4.

5.

Create a Restore object.

Set the Action property to SQLDMORestore_Log.

Set a media property, naming the source device(s).

Set the Database property to indicate the target database.

Call the SQLRestore method.

To restore a database log chain

1.

2.

3.

4.

Create a Restore object.

Set the Action property to SQLDMORestore_Log.

Set the Database property to indicate the target database.

Set the LastRestore property to FALSE.

9.

Set a media property, naming the source device(s).

Call the SQLRestore method.

Repeat Steps 5 and 6 for all but the last unit in the database log chain.

Set the LastRestore property to TRUE.

Call the SQLRestore method to restore the last unit.

To verify the integrity of backup media

1.

2.

3.

Create a Restore object.

Set a media property, naming the source device(s).

Call the SQLVerify method.

Note The Restore object is compatible with instances of SQL Server
2000 and SQL Server version 7.0. However, the Restore2 object
extends the functionality of the Restore object for use with features
that are new in SQL Server 2000.

See Also

Restore2 Object

SQL-DMO

Restore2 Object

The Restore2 object defines the behavior of a RESTORE statement for a
Microsoft® SQL Server™ database or log and extends the functionality of the
Restore object.

Properties

KeepReplication Property NoRewind Property
MediaPassword Property Password Property
Remarks

The Restore2 object extends the functionality of the Restore object for use with
features that are new in SQL Server 2000. It also inherits the properties and
methods of the Restore object. With the Restore2 object, you can:

e Retrieve or specify a Microsoft® SQL Server™ 2000 backup or media
set password.

e Maintain replication configuration settings during a restore operation.

The properties of the Restore2 object may not be compatible with instances of
SQL Server version 7.0 or earlier. For more information about using the
Restore2 object in an application that also runs with an instance of SQL Server
7.0, refer to the Remarks section for specific properties. For more information,
see Programming Extended SQL-DMO Objects.

See Also

Restore Object

SQL-DMO

Rule Object

The Rule object exposes the attributes of a single Microsoft® SQL Server™
data-integrity rule.

| [atabaze |

L‘ Rules |
|-| Rule |

Properties

CreateDate Property Owner Property (Database Objects)

ID Property Text Property
Name Property

Methods

BindToColumn Method Remove Method (Objects)
BindToDatatype Method Script Method
ListBoundColumns Method UnbindFromColumn Method
ListBoundDatatypes Method UnbindFromDatatype Method
Remarks

SQL Server offers several mechanisms for ensuring data integrity. A SQL Server
rule is a Transact-SQL condition_expression syntax element that defines a data-
integrity constraint. A rule can be bound to a column or user-defined data type.
condition_expression is executed to validate data for a single column when a
value is inserted into the column bound by the rule. For more information, see
CREATE RULE.

With the Rule object, you can:

e Create a SQL Server rule that defines an integrity constraint.

JavaScript:hhobj_1.Click()

e Bind an existing SQL Server rule to a column or user-defined data type.

e Remove the constraint from a column or user-defined data type by
unbinding a SQL Server rule.

e Remove a SQL Server rule definition from a SQL Server database.

e Generate a Transact-SQL script to create the rule represented by the
object.

The Name property of a Rule object uses the SQL Server data type sysname.
The value of the Name property must be unique for a database.

After you have created the rule, use the BindToColumn and BindToDatatype
methods of the Rule object to apply the constraint to SQL Server columns and
user-defined data types.

To create a SQL Server rule

1. Create a Rule object.

2. Set the Name property.

3. Set the Text property with the Transact-SQL script that validates data
integrity for the columns bound by the rule.

4. Add the Rule object to the Rules collection of a connected Database
object.

To remove a rule from a SQL Server database

1. Get the referring Rule object from the Rules collection of a connected
Database object.

2. Use the ListBoundColumns and ListBoundDatatypes methods to
determine affected SQL Server columns and user-defined data types.

3. Use the UnbindFromColumn and UnbindFromDatatype methods to
remove the constraint from columns and user-defined data types bound
by the rule.

4. Use the Remove method of the Rule object to remove it from the SQL
Server database.

Note The Rule object is compatible with instances of SQL Server
2000 and SQL Server version 7.0. However, the Rule2 object extends

the functionality of the Rule object for use with features that are new
in SQL Server 2000.

See Also

Rule? Object

SQL-DMO

Rule2 Object

The Rule2 object exposes the attributes of a single Microsoft® SQL Server™
data-integrity rule and extends the functionality of the Rule object.

Properties

IsDeleted Property

Remarks

The Rule2 object extends the functionality of the Rule object for use with
features that are new in SQL Server 2000. It also inherits the properties and
methods of the Rule object.

The IsDeleted property of the Rule2 object may not be compatible with
instances of SQL Server version 7.0 or earlier. For more information about using
the Rule2 object in an application that also runs with an instance of SQL Server
7.0, refer to the Remarks section of the IsDeleted property. For more
information, see Programming Extended SQL-DMO Objects.

See Also

Rule Object

SQL-DMO

S

SQL-DMO

Schedule Object

The Schedule object exposes the attributes of a timetable for automated
Microsoft® SQL Server™ tasks, such as jobs and replication publication.

| DiigtributionS ubzcription |
[JobScheduls |
| b ergePublication |

| td ergePullSubzcription |

| b ergeSubscription |

| RegizteredSubzcriber |

| TranzPublication |

| TranzPullSubzcription |

| TranzSubzcription |

| I Schedule |

Properties

ActiveEndDate Property FrequencyRecurrenceFactor Property
ActiveEndTimeOfDay Property FrequencyRelativelnterval Property
ActiveStartDate Property FrequencySubDay Property
ActiveStartTimeOfDay Property FrequencySubDaylnterval Property
Frequencylnterval Property FrequencyType Property

Methods

BeginAlter Method DoAlter Method

CancelAlter Method Refresh Method

Remarks

SQL Server Agent automates administration and replication tasks. Any task
automated by the SQL Server Agent can be scheduled for one-time or repeated
execution. The timetable for repeated execution can be elaborate, specifying that

the task execute monthly on a given day of a given week, weekly on one or more
days, or every minute of every day.

With the Schedule object, you can:

e Set or adjust the execution timetable for a SQL Server Agent job

schedule.

e Set or adjust the execution timetable for SQL Server replication article

publication and pull subscriptions.

To schedule one-time execution of a SQL Server executable task

1.

Get the Schedule object required from the appropriate object
referencing the task. For example, to adjust a SQL Server Agent job
schedule, get the Schedule object from the JobSchedule object that
references the SQL Server Agent job schedule.

Use the BeginAlter method of the Schedule object to mark the start of
changes to the timetable.

Set the ActiveStartDate property to the date you want the task to
execute. The date properties of a Schedule object pack a date string
into a long integer value as the year, scaled by 10,000, plus the month,
scaled by 100, plus the day. For example, December 1, 1997 is
represented by the integer 19971201.

Set the ActiveStartTimeOfDay property to the time you want the task
to execute.

Set the ActiveEndDate and ActiveEndTimeOfDay properties to a
day and time later than the day and time you want the task to execute.

Set the FrequencyType property to SQLDMOFreq_OneTime.

7. Use the DoAlter method to mark the end of changes to the Schedule

object and submit those changes to SQL Server.

To schedule a SQL Server executable task for weekly execution on specified

days

. Get the Schedule object required from the appropriate object

referencing the task.

. Use the BeginAlter method of the Schedule object to mark the start of

changes to the timetable.

. Set the ActiveStartDate and ActiveEndDate properties to the dates

you want the timetable to become effective and no longer effective.

. Set the ActiveStartTimeOfDay property to the time you want SQL

Server Agent to execute the task.

. Set the ActiveEndTimeOfDay property to a time greater than the start

time for the task.

. Set the FrequencyType property to SQLDMOFreq_Weekly.

. Set the FrequencyInterval property to the days the task should run.

The value can be specified as a single-day constant or a binary OR of
day constants. For example, to set the property for weekly execution of
the task on Sunday, use the constant SQLDMOWeek_Sunday. To
specify Monday, Wednesday, and Friday, use a binary OR of the
constants SQLDMOWeek_Monday, SQLDMOWeek_Wednesday, and
SQLDMOWeek_Friday.

. Use the DoAlter method to mark the end of changes to the Schedule

object and submit the changes to SQL Server.

SQL-DMO

ServerGroup Object

The ServerGroup object exposes the attributes of a Microsoft® Windows NT®
4.0, Microsoft® Windows 2000®, or Microsoft Windows® 98 user registry key
that organizes registered instances of Microsoft SQL Server™,

| ServerGroups |

ServerEoup |

RegizteredServers |

ServerGroups |

Properties

Name Property

Methods
Remove Method (Objects)

Remarks

SQL-DMO applications can maintain lists of some or all instances of SQL
Server in an organization in the registry of a Windows NT or Windows 95
system. The user can establish categories for the listed instances of SQL Server.

For example, to group and view instances of SQL Server by division in a SQL-
DMO application, SQL-DMO represents each division as a ServerGroup
object. The ServerGroup name of the division is maintained by SQL-DMO as a
Windows NT or Windows 95 registry key. Within this registry entry, separate
keys list each instance of SQL Server in the division.

A ServerGroup object has a ServerGroups collection, allowing multiple levels
of categories for an organization.

With the ServerGroup object you can:

e Create a category for instances of SQL Server within your organization.

e Add or remove instances of SQL Server in a category.

e Remove a category for instances of SQL Server.

The value of the Name property of a ServerGroup object must be a valid
Windows NT or Windows 95 registry-key character string. It must be unique for
a Windows NT or Windows 95 user.

SQL-DMO

ServerRole Object

The ServerRole object exposes the attributes of a single Microsoft® SQL
Server™ security role not constrained to operation within a single database.

| SOLServer |

ServerBoles |

|-| ServerFole |

Properties

Description Property Name Property
FullName Property

Methods

AddMember Method EnumServerRoleMember Method
DropMember Method EnumServerRolePermission Method
Remarks

SQL Server security roles establish rights to SQL Server resources for more than
a single user and can be established within the constraint of a single database.
Security roles can also grant permissions to an authenticated user for an instance
of SQL Server. For example, the server role securityadmin has permissions that
allow members to add, change, and remove SQL Server logins.

With the ServerRole object, you can:

e Assign membership in a server role to a SQL Server login.

¢ Remove a member login from a SQL Server security role.

SQL Server establishes server roles. New server roles cannot be defined by the

user. For more information about a list of valid ServerRole Name strings, see
sp_addsrvrolemember.

JavaScript:hhobj_1.Click()

SQL-DMO

SQLObjectList Object

The SQLObjectList object is a fixed-membership container for objects
enumerated by an object listing method.

SOLObjectList

Properties

Count Property

Methods

Item Method Refresh Method

Remarks

SQL-DMO implements a number of container objects expressing, through their
relationships, a logical structure for creating, viewing, and managing Microsoft®
SQL Server™ components. The SQL-DMO collection is one such container. The
SQLObjectList object is another.

Collections, exposing the Add and Remove methods, implement SQL Server
component management by mapping collection membership changes to
component creation or deletion. The SQLObjectList object does not expose
membership-modifying methods. Instead, applications create object lists to
extract a subset of SQL Server components for viewing or management.

Unlike a collection, SQLObjectList does not guarantee that all objects
contained have the same type. Some implemented lists, such as the list returned
by the ListObjects method of the Database object, return a user-specified
selection of objects. Use the TypeOf property of an object to check SQL-DMO
object type when using lists of multiple kinds of objects.

In general, use the SQLObjectList object to get SQL-DMO objects that
reference SQL Server components when an object-listing method is an
appropriate mechanism. When the SQLObjectList is not an appropriate
container, such as when application logic is built to remove a SQL Server
component, use the component referencing collection instead. The Microsoft
Visual Basic® example below illustrates removing the column binding for all
rules in a database:

Dim oRule As SQLDMO.Rule

Dim oColumn As SQLDMO.Column

Dim oColList As SQLDMO.SQLObjectList
Dim oTable As SQLDMO.Table

For Each oRule In oCurDB.Rules
Set oColList = oRule.ListBoundColumns
For Each oColumn In oRule.ListBoundColumns
Set oTable = oColumn.Parent
oRule.UnbindFromColumn oTable.Name, oColumn.Name
Next oColumn
Next oRule

Note For C/C++, Sgldmo.h defines a number of list object types. When an
object listing method returns a SQLObjectList object whose members are
identical, such as the ListPermissions method, the member function defines its
return argument using the list object type.

See Also

Defined List Types

ListObjects Method

ListBoundColumns Method
ListOwnedObjects Method

ListBoundDatatypes Method

ListPermissions Method
ListColumns Method
ListPrivilegeColumns Method

ListDatabasePermissions Method

ListReplicatedColumns Method
ListIndexedColumns Method

ListStartupProcedures Method

ListKeys Method

ListUserPermissions Method

ListObjectPermissions Method

SQL-DMO

SQLServer Object

The SQLServer object exposes the attributes of an instance of Microsoft® SQL

Server™,

| Application |
SOLServers |

SOLServer |

-I BackupDevices

_| Configuration

-I [atabases

-I FullT extService

-I |ntearatedS ecurity

-I JobServer

-| LinkedServers
-| Loging
-| Fegizty

-| RemoteServers

-| Replication

|
|
|
|
|
|
-I Languages |
|
|
|
|
|
|

-I ServerBoles

Properties

AnsiNulls Property

NetName Property

ApplicationName Property

NetPacketSize Property

AutoReConnect Property

NextDeviceNumber Property

BlockingTimeout Property

ODBCPrefix Property

CodePage Propert

Password Property

CommandTerminator Property

ProcessID Property

ConnectionID Property

ProcessInputBuffer Property

EnableBcp Property

ProcessOutputBuffer Property

HostName Property

QueryTimeout Property

Isdbcreator Property

QuotedIdentifier Property

Isdiskadmin Property

RegionalSetting Property

Isprocessadmin Property

Sal.ogin Property

Issecurityadmin Property

Status Property (Services

Isserveradmin Property

StatusInfoRefetchInterval Property

Issetupadmin Property

TranslateChar Property

Issysadmin Property

Truel.ogin Property

Language Property

TrueName Property

Login Property

UserProfile Property

LoginSecure Property

VersionMajor Property

LoginTimeout Property

VersionMinor Property

MaxNumericPrecision Property

VersionString Property

Name Property

Methods

AddStartParameter Method

ExecuteWithResults Method

AttachDB Method

ExecuteWithResultsAndMessages

Method

AttachDBWithSingleFile Method

IsLogin Method

BeginTransaction Method

IsNTGroupMember Method

Close Method

I[sOS Method

CommandShelllmmediate Method

IsPackage Method

CommandShellWithResults Method

KillDatabase Method

CommitTransaction Method

KillProcess Method

Connect Method

ListMembers Method (SQLServer)

Continue Method

ListStartupProcedures Method

DetachDB Method

Pause Method

DisConnect Method

PingSQLServerVersion Method

EnumA ccountlnfo Method

ReadBackupHeader Method
(SQLServer)

EnumAvailableMedia Method

ReadErrorl.og Method

EnumDirectories Method

ReConnect Method

EnumErrorl.ogs Method RollbackTransaction Method
Enuml.ocks Method SaveTransaction Method
Enuml.oginMappings Method Shutdown Method
EnumNTDomainGroups Method Start Method (SQL Server)
EnumProcesses Method Stop Method
EnumServerAttributes Method UnloadODSDLL Method
Enum VersionInfo Method VerifyConnection Method
Executelmmediate Method

(Database, SQLServer)

Events

CommandSent Event Remotel.oginFailed Event
ConnectionBroken Event ServerMessage Event
QueryTimeout Event

Remarks

The SQLServer object contains the objects and collections that implement SQL
Server administrative tasks for SQL-DMO. The object allows SQL-DMO
applications to connect to an instance of SQL Server by name, establishing the
context for administrative tasks.

With the SQLServer object, you can:

e Connect to an instance of SQL Server.

¢ Query an instance of SQL Server to determine its installed configuration
and run-time parameters.

e Add and remove SQL Server objects, such as backup devices,
databases, and logins.

e Execute Transact-SQL or operating system commands on the server.

e Disable processes on an instance of SQL Server.

e Trap SQL Server events and SQLServer object events, providing status
information to SQL-DMO application users or debugging information
to SQL-DMO application developers.

Note The SQLServer object is compatible with instances of SQL Server 2000
and SQL Server version 7.0. However, the SQLServer2 object extends the
functionality of the SQLServer object for use with features that are new in SQL
Server 2000.

See Also

SQLServer2 Object

SQL-DMO

SQLServer2 Object

The SQLServer2 object exposes the attributes of an instance of Microsoft®
SQL Server™ and extends the functionality of the SQLServer object.

Properties

AutoStart Property IsFullTextInstalled Property
Collation Property PID Property

InstanceName Property Productl.evel Property
Isbulkadmin Property ServiceName Property
IsClustered Property StartupAccount Property
Methods

AttachDBWithSingleFile2 Method |ListCompatibilityl.evels Method
DetachedDBInfo Method ListDetachedDBFiles Method
EnumCollations Method ListDetachedl.ogFiles Method

ExecuteWithResultsAndMessages2 |ListInstalledInstances Method
Method

IsDetachedPrimaryFile Method ServerL.oginMode Method
ListCollations Method

Remarks

The SQLServer2 object extends the functionality of the SQLServer object for
use with features that are new in SQL Server 2000. It also inherits the properties
and methods of the SQLServer object. With the SQLServer2 object, you can:

e Retrieve column-level collation settings.

e Retrieve information about detached database and log files.

e Retrieve information related to installed instances.

The methods and properties of the SQLServer2 object may not be compatible
with instances of SQL Server version 7.0 or earlier. For more information about
using the SQLServer2 object in an application that also runs with an instance of
SQL Server 7.0, refer to the Remarks section for specific methods and
properties. For more information, see Programming Extended SQL-DMO
Objects.

See Also

SQLServer Object

SQL-DMO

StoredProcedure Object

The StoredProcedure object exposes the attributes of a single Microsoft® SQL
Server™ user-defined or system stored procedure.

| [ratabaze |

L(StoredProcedures |

|-| StoredProcedurs |

Properties

AnsiNullsStatus Property QuotedlIdentifierStatus Property
CreateDate Property Startup Property

ID Property SystemObject Property

Name Property Text Property

Owner Property (Database Objects) |Type Property (StoredProcedure)

Methods

Alter Method ListPermissions Method

Deny Method (StoredProcedure) ListUserPermissions Method
EnumDependencies Method Remove Method (Objects)
EnumParameters Method Revoke Method (StoredProcedure)
Grant Method (StoredProcedure, Script Method
UserDefinedFunction)

Remarks

SQL Server has facilities for creation and persistent storage of compiled
Transact-SQL scripts. These stored procedures can be executed by users with
sufficient permissions. With the StoredProcedure object, you can:

e Create a SQL Server stored procedure.

e Change the Transact-SQL script of an existing SQL Server stored
procedure.

e Enable a SQL Server stored procedure for execution on SQL Server
startup.

e Control access rights to an existing SQL Server stored procedure.

¢ Delete an existing SQL Server stored procedure.

e Generate a Transact-SQL script to re-create a SQL Server stored
procedure.

The Name property of a StoredProcedure object uses the SQL Server data type
sysname. The value of the Name property must be unique (named by owner)
within a SQL Server database.

To create a SQL Server stored procedure

1. Create a StoredProcedure object.

2. Set the Name property.

3. Set the Text property to contain the Transact-SQL script you want.
SQL Server stored procedures can contain input and output parameters
and can return the results of one or more SELECT statements or a
single long integer. For more information about valid Transact-SQL
scripts for the Text property, see CREATE PROCEDURE.

4. Set optional property values. For example, set the Startup property to
TRUE to enable the stored procedure for execution when the SQL
Server starts.

JavaScript:hhobj_1.Click()

5. Add the StoredProcedure object to the StoredProcedures collection
of a connected Database object.

Note The StoredProcedure object is compatible with instances of
SQL Server 2000 and SQL Server version 7.0. However, the
StoredProcedure2 object extends the functionality of the
StoredProcedure object for use with features that are new in SQL
Server 2000.

See Also

StoredProcedure2 Object

SQL-DMO

StoredProcedure2 Object

The StoredProcedure2 object exposes the attributes of a Microsoft® SQL
Server™ user-defined or system stored procedure and extends the functionality
of the StoredProcedure object.

Properties

AnsiNullsStatus Property IsDeleted Property
Encrypted Property

Remarks

The StoredProcedure?2 object extends the functionality of the StoredProcedure
object for use with features that are new in SQL Server 2000. It also inherits the
properties and methods of the StoredProcedure object.

The methods and properties of the StoredProcedure2 object may not be
compatible with instances of SQL Server version 7.0 or earlier. For more
information about using the StoredProcedure2 object in an application that also
runs with an instance of SQL Server 7.0, refer to the Remarks section for
specific methods and properties. For more information, see Programming
Extended SQL-DMO Objects.

See Also

StoredProcedure Object

SQL-DMO

Subscriber Object

The Subscriber object represents the replication properties of a Microsoft®
SQL Server™ Subscriber.

| Replication |

Subscriber |

Methods

Script Method (Replication Objects)

The Subscriber object is compatible with instances of SQL Server 2000 and
SQL Server version 7.0. However, the Subscriber2 object extends the
functionality of the Subscriber object for use with features that are new in SQL
Server 2000.

See Also

Subscriber? Object

SQL-DMO

Subscriber2 Object

The Subscriber2 object represents the replication properties of a Microsoft®
SQL Server™ Subscriber and extends the functionality of the Subscriber object.

Methods

EnumAIlISubscriptions Method

Remarks

The Subscriber2 object extends the functionality of the Subscriber object for
use with features that are new in SQL Server 2000. It also inherits the properties
and methods of the Subscriber object.

The EnumAllSubscriptions method of the Subscriber2 object may not be
compatible with instances of SQL Server version 7.0 or earlier. For more
information about using the Subscriber2 object in an application that also runs
with an instance of SQL Server 7.0, refer to the Remarks section of the
EnumAllSubscriptions method. For more information, see Programming
Extended SQL-DMO Objects.

See Also

Subscriber Object

SQL-DMO

SystemDatatype Object

The SystemDatatype object exposes the attributes of a Microsoft® SQL
Server™ base data type.

| [ratabasze |

L{ SystemDatatypes |

SystemD atatype |

Properties

Allowldentity Property IsVariableLength Property
AllowLength Property MaximumChar Property
AllowNulls Property Maximuml.ength Property
IsNumeric Property Name Property
Remarks

SQL Server defines base data types, such as varchar or smallint. The types
constrain data in SQL Server columns to certain fundamental properties, such as
numeric precision or value representation. SQL Server base data types have an
established precedence for mixed-data type arithmetic performed on an instance
of SQL Server.

A SystemDatatype object exists for each base data type defined by SQL Server.
The Name property of a SystemDatatype cannot be set by the user.

Note The SystemDatatype object is compatible with instances of SQL Server
2000 and SQL Server version 7.0. However, the SystemDatatype2 object
extends the functionality of the SystemDatatype object for use with features
that are new in SQL Server 2000.

See Also

Data Types

JavaScript:hhobj_1.Click()

SystemDataType2 Object

SQL-DMO

SystemDataType2 Object

The SystemDatatype2 object exposes the attributes of a Microsoft® SQL
Server™ base data type and extends the functionality of the SystemDatatype
object.

Properties

Collation Property

Remarks

The SystemDatatype2 object extends the functionality of the SystemDatatype
object for use with features that are new in SQL Server 2000. It also inherits the
properties and methods of the SystemDatatype object. With the
SystemDatatype2 object, you can:

e Set and retrieve column-level collation settings.
The Collation property of the SystemDatatype2 object may not be compatible
with instances of SQL Server version 7.0 or earlier. For more information about
using the SystemDatatype2 object in an application that also runs with an

instance of SQL Server 7.0, refer to the Remarks section of the Collation
property. For more information, see Programming Extended SQL-DMO Objects.

See Also

SystemDatatype Object

SQL-DMO

T

SQL-DMO

Table Object

The Table object exposes the attributes of a single Microsoft® SQL Server™

table.

| [ratabasze |

|-| Tables |
|-| Table |

—I Checks

—| Cluzteredindes

—| Colurnhs

—I Indexes
—I K.eys
—| Primank.ey

—I Triggers

Properties

Attributes Property

HasIndex Property

CreateDate Property

ID Property

DataSpaceUsed Property

InAlter Property

FakeSystemTable Property

IndexSpaceUsed Property

FileGroup Property

Name Property

FullTextCatalogName Property

Owner Property (Database Objects)

FullTextIndex Property

Rows Property

FullTextIndexActive Property

SystemObject Property

FullTextKeyColumn Property

TextFileGroup Property

HasClusteredIndex Property

UniquelndexForFullText Property

Methods

BeginAlter Method

GenerateSQL Method (Table,

UserDefinedDatatype)

CancelAlter Method ImportData Method
CheckldentityValue Method InsertColumn Method
CheckTable Method ListAvailableUniquelndexesForFull Text

Method

CheckTableDataOnly Method

ListPermissions Method

Deny Method (Table, View)

ListUserPermissions Method

DoAlter Method

RebuildIndexes Method

DoAlterWithNoCheck Method

RecalcSpaceUsage Method

EnumDependencies Method

ReCompileReferences Method

Enuml astStatisticsUpdates
Method

Refresh Method

EnumReferencedKeys Method

Remove Method (Objects)

EnumReferencedTables Method

Revoke Method (Table, View)

EnumReferencingKeys Method

Script Method (Table Object)

EnumReferencingTables Method

TruncateData Method

ExportData Method

UpdateStatistics Method

FullTextIndexScript Method

UpdateStatisticsWith Method (Table)

Grant Method (Table, View)

Remarks

SQL Server Table objects contain columns that define a table, and row data that

populate it. Table columns can maintain declarative referential integrity

constraints, such as PRIMARY KEY and FOREIGN KEY. Indexes defined on
table columns can enforce a UNIQUE constraint or can provide optimized row

access. Tables participate in SQL Server user-based security.

With the Table object, you can:

e Create a SQL Server table.

e Change an existing SQL Server table by adding or dropping columns.

e Export data from, or import data to, an existing SQL Server table.

o Establish optimal data-access paths by adding, dropping, and rebuilding
table indexes.

e Enforce business rules by adding or modifying table triggers executed
when data is added or updated within the table.

e Generate a Transact-SQL script to recreate an existing SQL Server
table.

e Remove a table from a SQL Server database.

The Name property of a Table object uses the SQL Server data type sysname.
When a server running SQL Server uses quoted identifiers, the Name property
string can contain spaces. The value of the Name property is unique for tables
with a specific owner within a specific database.

Note The Table object is compatible with instances of SQL Server 2000 and
SQL Server version 7.0. However, the Table2 object extends the functionality of
the Table object for use with features that are new in SQL Server 2000.

See Also

Table2 Object

SQL-DMO

Table2 Object

The Table2 object exposes the attributes of a single Microsoft® SQL Server™
table and extends the functionality of the Table object.

Properties

AnsiNullsStatus Property QuotedldentifierStatus Property

FullTextPopulateStatus Property TableFullTextChangeTrackingOn
Property

IsDeleted Property TableFullTextUpdateIndexOn Property

Methods

CheckTableDataOnlyWithResult [FullTextUpdateIndex Method
Method

CheckTableWithResult Method ListUserColumnPermissions Method
FullTextPopulation Method

Remarks

The Table2 object extends the functionality of the Table object for use with
features that are new in SQL Server 2000. It also inherits the properties and
methods of the Table object. With the Table2 object, you can:

e Manage full-text table population.

e Check SQL Server table integrity with results returned in tabular
format.

The methods and properties of the Table2 object may not be compatible with
instances of SQL Server version 7.0 or earlier. For information about using the
Table2 object in an application that also runs with an instance of SQL Server

7.0, refer to the Remarks section for specific methods and properties. For more
information, see Programming Extended SQL-DMO Objects.

See Also

Table Object

SQL-DMO

TargetServer Object

The TargetServer object represents an instance of Microsoft® SQL Server™ on
which a SQL Server Agent job will execute.

| JobServer |

L{ TargetServers |

|‘| TargetServer |
Properties
EnlistDate Property Pollinglnterval Property
LastPollDate Property ServerlD Property
LocalTime Property ServerName Property
Location Property (TargetServer Status Property (TargetServer
PendinglInstructions Property TimeZoneAdjustment Property
Methods
Refresh Method
Remarks

A SQL Server Agent job has an execution target. For an instance of SQL Server
version 7.0, the SQL Server Agent of one server can direct job execution on
other servers running SQL Server within an organization. Servers can enlist in
the domain specified by a master SQL Server Agent. When a server enlists in a
domain, it becomes a target server for job execution managed by the master SQL
Server Agent.

Any instance on which SQL Server Agent is executing provides the local
instance as a valid target for job execution.

Target servers are defined only on a master SQL Server Agent, and the SQL-
DMO TargetServers collection and each TargetServer object are populated
only when SQL-DMO applications connect to an instance of SQL Server

identified as the master in a multiserver administration group.
With the TargetServer object, you can:

e Report the properties of a server that is an existing target in a
multiserver administration group.

e Set the location string for a server that is an existing target in a
multiserver administration group.

SQL-DMO

TargetServerGroup Object

The TargetServerGroup object exposes the attributes of a multiserver
administration target identification shortcut.

| JobServer |

L{ T argetServerGroups |

TargetServerGroup |

Properties

GrouplD Property

Name Property

Methods

AddMemberServer Method ListMemberServers Method
BeginAlter Method Refresh Method

CancelAlter Method Remove Method (Objects)
DoAlter Method RemoveMemberServer Method
Remarks

With Microsoft® SQL Server™ version 7.0, SQL Server Agent provides

multiserver administration. The SQL Server Agent of an instance of SQL Server
can direct job execution to another target server. Servers can enlist in the domain
specified by a master SQL Server Agent. When a server enlists in a domain, it
becomes a target server for job execution managed by the master SQL Server

Agent.

The master SQL Server Agent allows group definition for its target servers.
When target servers are grouped, jobs created on the master server can identify
the group as an execution target. The job is executed on each target server in the

group.

Target server groups are defined only on a master SQL Server Agent, and the
TargetServerGroups collection and each TargetServerGroup object are
populated only when SQL-DMO applications connect to an instance of SQL
Server identified as the master in a multiserver administration group.

With the TargetServerGroup object, you can:

e (Create a SQL Server Agent target server group on a master SQL Server
Agent server.

e Add or remove target servers from a SQL Server Agent target server
group.
e Remove a target server group from a master SQL Server Agent server.

The Name property of the TargetServerGroup object can contain a maximum
of 100 characters.

SQL-DMO

TransactionLog Object

The TransactionLog object exposes the attributes of the transaction log of a
Microsoft® SQL Server™ database.

| [atabaze |

I" TranzactionLog |

I‘i LogFiles |

Properties

CreateDate Property SpaceAllocatedOnFiles Property
LastBackup Property SpaceAvailable Property

Size Property SpaceAvailableInMB Property
Methods

Truncate Method

Remarks

A SQL Server transaction log maintains a record of modifications to the
operating system files containing the data of a SQL Server database. The
transaction log provides data-recovery assistance in the event of system failure,
and a SQL Server database has at least one operating system file that stores
transaction log records. A transaction log can be written to more than one
operating system file. Each SQL Server database maintains its own transaction
log, and the operating system file or files that store log records cannot be shared
with another database.

With the TransactionLog object, you can:

¢ Define the properties of a database transaction log when creating a SQL
Server database.

Add operating system files to those used by an existing SQL Server
database transaction log.

Back up or restore the transaction log of a SQL Server database.

Truncate a transaction log after database backup, removing all log
records for a SQL Server database and reinitializing the transaction log.

Generate a Transact-SQL script to use in other tools to back up a SQL
Server database transaction log.

SQL-DMO

TransArticle Object

The TransArticle object represents a table or a stored procedure published using

a transactional or a snapshot publication.

| Trangéticles |

L{ Tranzdrticle |

|‘| TranzSubzcriptions |

Properties

ArticleType Property

Name Property

CreationScriptOptions Property

PreCreationMethod Property

CreationScriptPath Property

ReplicateAllColumns Property

CommandOptions Property

ReplicationFilterProcName Property

DeleteCommand Property

ReplicationFilterProcOwner Property

Description Property

SnapshotObjectName Property

DestinationObjectName Property

SnapshotObjectOwner Property

DestinationOwnerName Property

SourceObjectName Property

FilterClause Property

SourceObjectOwner Property

ID Property

UpdateCommand Property

InsertCommand Property

Methods

AddReplicatedColumns Method

Remove Method (Objects)

BeginAlter Method

RemoveReplicatedColumns Method

CancelAlter Method Script Method (Replication Objects)
DoAlter Method ScriptDestinationObject Method

ListReplicatedColumns Method

Remarks
With the TransArticle object, you can:

e Add a table or stored procedure article to a transactional publication.

e Change the properties of an existing table or stored procedure article of
a transactional publication.

e Add a table or stored procedure article to a snapshot publication.

e Change the properties of an existing table or stored procedure article of
a snapshot publication.

To add a table article to a transactional publication

1. Create a new TransArticle object.

2. Set the Name property to the name of the new article.

3. Set the SourceObjectName property to the name of a table.

4. Set the SourceObjectOwner property to the owner of the table.

Ul

. Add the TransArticle object to the TransArticles collection of a
connected TransPublication object containing a transactional
publication.

To add a stored procedure article to a transactional publication

1. Create a new TransArticle object.

2. Set the Name property to the name of the new article.

3. Set the SourceObjectName property to the name of a stored
procedure.

4. Set the SourceObjectOwner property to the owner of the stored
procedure.

5. Set the ArticleType property to SQLDMORep_ProcExecution or
SQLDMORep_SerializableProcExecution.

6. Add the TransArticle object to the TransArticles collection of a
connected TransPublication object containing a transactional
publication.

To alter an existing table article of an existing transactional publication

1. Get a TransArticle object containing a table article from the
TransArticles collection of a connected TransPublication object.

2. Use the BeginAlter method to mark the beginning of the changes.

3. Set the TransArticle object properties to reflect the changes to the
table article.

4. Use the DoAlter method to submit the changes to Microsoft® SQL
Server™,

To alter an existing stored procedure article of an existing transactional
publication

1. Get a TransArticle object containing a stored procedure article from
the TransArticles collection of a connected TransPublication object.

2. Use the BeginAlter method to mark the beginning of the changes.

3. Set the TransArticle object properties to reflect the changes to the
stored procedure article.

4. Use the DoAlter method to submit the changes to SQL Server.

To add a table article to a snapshot publication

1. Create a new TransArticle object.

2. Set the Name property to the name of the new article.

3. Set the SourceObjectName property to the name of a table.

4. Set the SourceObjectOwner property to the owner of the table.

Ul

. Add the TransArticle object to the TransArticles collection of a
connected TransPublication object containing a snapshot publication.

To add a stored procedure article to a snapshot publication

1. Create a new TransArticle object.

2. Set the Name property to the name of the new article.

3. Set the SourceObjectName property to the name of a stored
procedure.

4. Set the SourceObjectOwner property to the owner of the stored
procedure.

5. Set the ArticleType property to SQLDMORep_ProcExecution or
SQLDMORep_SerializableProcExecution.

6.

Add the TransArticle object to the TransArticles collection of a
connected TransPublication object containing a snapshot publication.

To alter an existing table article of an existing snapshot publication

1.

4.

Get a TransArticle object containing a table article from the
TransArticles collection of a connected TransPublication object
containing a snapshot publication.

Use the BeginAlter method to mark the beginning of the changes.

Set the TransArticle object properties to reflect the changes to the
table article.

Use the DoAlter method to submit the changes to SQL Server.

To alter an existing stored procedure article of an existing snapshot
publication

1.

4.

Get a TransArticle object containing a stored procedure article from
the TransArticles collection of a connected TransPublication object
containing a snapshot publication.

Use the BeginAlter method to mark the beginning of the changes.

Set the TransArticle object properties to reflect the changes to the
stored procedure article.

Use the DoAlter method to submit the changes to SQL Server.

Note The TransArticle object is compatible with instances of SQL Server 2000
and SQL Server version 7.0. However, the TransArticle2 object extends the

functionality of the TransArticle object for use with features that are new in
SQL Server 2000.

See Also

TransArticle2 Object

SQL-DMO

TransArticle2 Object

The TransArticle2 object represents a table or a stored procedure published
using a transactional or a snapshot publication and extends the functionality of
the TransArticle object.

Properties
AutoldentityRange Property PublisherldentityRangeSize Property

IdentityRangeThreshold Property |SubscriberldentityRangeSize Property

Remarks

The TransArticle2 object extends the functionality of the TransArticle object
for use with features that are new in SQL Server 2000. It also inherits the
properties and methods of the TransArticle object. With the TransArticle2
object, you can:

¢ Configure and retrieve information about identity ranges.

The methods and properties of the TransArticle2 object may not be compatible
with instances of SQL Server version 7.0 or earlier. For information about using
the TransArticle2 object in an application that also runs with an instance of
SQL Server 7.0, refer to the Remarks section for specific methods and
properties. For more information, see Programming Extended SQL-DMO
Objects.

See Also

TransArticle Object

SQL-DMO

Transfer Object

The Transfer object is used as a parameter for methods of the Database object.

The Transfer object defines schema and data elements moved from one
Microsoft® SQL Server™ database to another.

Application

Properties

CopyAllDefaults Property

Destl.ogin Property

CopyAllObjects Property

DestPassword Property

CopyAllRules Property

DestServer Property

CopyAllStoredProcedures Property

DestUseTrustedConnection Property

CopyAllTables Property

DropDestObjectsFirst Property

CopyAllTriggers Property

IncludeDependencies Property

CopyAllUserDefinedDatatypes
Property

Includel.ogins Property

CopyAllViews Property

IncludeUsers Property

CopyData Property

Script2Type Propert

CopySchema Property

ScriptType Property

DestDatabase Property

Methods

Abort Method

AddObjectByName Method

AddObject Method

ListObjectNames Method

Events

PercentCompleteAtStep Event

StatusMessage Event

ScriptTransferPercentComplete TransferPercentComplete Event
Event

Remarks

SQL Server provides a database object-scripting and data export and import
mechanism to move schema and data from one database to another. SQL-DMO
provides access to the database-transfer utility through the Transfer object and
the ScriptTransfer and Transfer methods of the Database object.

With the Transfer object, you can:

e Identify schema or data to move from one SQL Server database to
another.

¢ Identify the destination for schema and data transferred.

e Monitor the progress of the ScriptTransfer and Transfer methods of
the Database object.
¢ Stop an in-progress database-to-database transfer operation.

Note The Transfer object is compatible with instances of SQL Server
2000 and SQL Server version 7.0. However, the Transfer2 object
extends the functionality of the Transfer object for use with features
that are new in SQL Server 2000.

See Also

Transfer? Object

SQL-DMO

Transfer2 Object

The Transfer2 object is used as a parameter for methods of the Transfer2
object. The Transfer2 object defines schema and data elements moved from one
Microsoft® SQL Server™ database to another. The Transfer2 object extends
the functionality of the Transfer object.

Properties

CopyAllFunctions Property SourceTranslateChar Property
DestTranslateChar Property UseCollation Property
IncludeDB Property UseDestTransaction Property

Script2Type Property

Methods
RemoveAllObjects Method

Remarks

The Transfer2 object extends the functionality of the Transfer object for use
with features that are new in SQL Server 2000. It also inherits the properties and
methods of the Transfer object. With the Transfer2 object, you can:

e Create the source database during a transfer operation.
e Transfer user-defined functions and column-level collation settings.
e Specify whether character data translation is performed on a source or

target server.

The methods and properties of the Transfer2 object may not be compatible with
instances of SQL Server version 7.0 or earlier. For information about using the
Transfer2 object in an application that also runs with an instance of SQL Server

7.0, refer to the Remarks section for specific methods and properties. For more
information, see Programming Extended SQL-DMO Objects.

See Also

Programming Extended SQL-DMO Objects

Transfer Object

SQL-DMO

TransPublication Object

The TransPublication object represents a transactional or snapshot publication.
A publication contains one or more articles (tables or stored procedures) that
contain replicated data.

| TrangPublications |

L{ TranzPublication |

SnapzhotScheduls |

Trangéticles |

TranzSubzcriptions |

Properties

AllowSynchronousTransactions PublicationAttributes Property
Property

AutogenerateSyncProcedures ReplicationFrequency Property
Property

Description Property RetentionPeriod Property
Enabled Property SnapshotAvailable Property
HasSubscription Property SnapshotJobID Property

ID Property SnapshotMethod Property
Name Property

Methods

ActivateSubscriptions Method GrantPublicationAccess Method
BeginAlter Method RefreshChildren Method
CancelAlter Method Relnitialize AllSubscriptions Method
DoAlter Method Remove Method (Objects)
EnumPublicationAccesses Method |RevokePublicationAccess Method
EnumSubscriptions Method Script Method (Replication Objects)

Remarks
With the TransPublication object, you can:

e Create a transactional publication.

Change the properties of an existing transactional publication.

Enable a transactional publication after all articles are added.

Create a snapshot publication.

Change the properties of an existing snapshot publication.

e Enable a snapshot publication after all articles are added.

To create a transactional publication

1. Create a new TransPublication object.

2. Set the Name property.

3. Note that the ReplicationFrequency property defaults to
SQLDMORepFreq_Continuous, which specifies a transactional
publication.

4. Set the PublicationAttributes property as appropriate.

¢ To enable push subscriptions, use
SQLDMOPubAttrib_AllowPush.

e To enable pull subscriptions, use
SQLDMOPubAttrib_AllowPull.

e To enable anonymous subscriptions, use
SQLDMOPubAttrib_AllowPull,
SQLDMOPubAttrib_AllowAnonymous, and
SQLDMOPubAttrib_ImmediateSync.

e To enable Internet subscriptions, use
SQLDMOPubAttrib_InternetEnabled.

5. Add the TransPublication object to the TransPublications collection
of a connected ReplicationDatabase object.

To alter a transactional publication

1. Get a TransPublication object from the TransPublications collection
of a connected ReplicationDatabase object.

2. Use the BeginAlter method to mark the beginning of the changes.

3. Set the TransPublication object properties to reflect the changes to
the transactional publication.

4. Use the DoAlter method to submit the changes to Microsoft® SQL
Server™,

To enable a transactional publication after all articles have been added

1. Get a TransPublication object from the TransPublications collection
of a connected ReplicationDatabase object.

2. Set the Enabled property to TRUE.

To create a snapshot publication

1. Create a new TransPublication object.

2. Set the Name property.

3. Set the ReplicationFrequency property to
SQLDMORepFreq_Snapshot.

4. Set the PublicationAttributes property as appropriate.

¢ To enable push subscriptions, use
SQLDMOPubAttrib_AllowPush.

e To enable pull subscriptions, use
SQLDMOPubAttrib_AllowPull.

¢ To enable anonymous subscriptions, use
SQLDMOPubAttrib_AllowPull,
SQLDMOPubAttrib_AllowAnonymous, and
SQLDMOPubAttrib_ImmediateSync.

¢ To enable Internet subscriptions, use
SQLDMOPubAttrib_InternetEnabled.

5. Add the TransPublication object to the TransPublications collection
of a connected ReplicationDatabase object.

To alter a snapshot publication
1. Get a TransPublication object from the TransPublications collection
of a connected ReplicationDatabase object.

2. Use the BeginAlter method to mark the beginning of the changes.

3. Set the TransPublication object properties to reflect the changes to
the snapshot publication.

4. Use the DoAlter method to submit the changes to SQL Server.

To enable a snapshot publication after all articles have been added

1. Get a TransPublication object from the TransPublications collection
of a connected ReplicationDatabase object.

2. Set the Enabled property to TRUE.

Note The TransPublication object is compatible with instances of SQL Server
2000 and SQL Server version 7.0. However, the TransPublication2 object
extends the functionality of the TransPublication object for use with features
that are new in SQL Server 2000.

See Also

TransPublication2 Object

SQL-DMO

TransPublication2 Object

The TransPublication2 object represents a transactional or snapshot
publication. A publication contains one or more articles (tables or stored
procedures) that contain replicated data. The TransPublication2 object extends

the functionality of the TransPublication object.

Properties

AllowDTS Property

FTPLogin Property

AllowQueuedTransactions Property

FTPPassword Property

AltSnapshotFolder Property

EFTPPort Property

CentralizedConflicts Property

FTPSubdirectory Property

Compatibilityl.evel Property
(MergePublication2,
TransPublication?)

InActiveDirectory Property

ConflictPolicy Property

PostSnapshotScript Property

ConflictRetention Property

PreSnapshotScript Property

FTPAddress Property

QueueType Property

Methods

BrowseSnapshotF