
SQL	Server	Setup	Help

Overview	of	Installing	SQL	Server	2000
Microsoft®	SQL	Server™	2000	Setup	creates	a	new	installation	of	SQL	Server
2000	or	upgrades	an	earlier	version.	Before	installing	or	upgrading	to	SQL
Server	2000	it	is	recommended	that	you	review	the	following	topics.

Topic Description
Preparing	to	Install	SQL	Server
2000

Lists	steps	to	take	before	running	SQL
Server	2000	Setup

SQL	Server	2000:	Editions	and
Components

Presents	an	overview	of	the	editions	of
SQL	Server	2000,	installation	options,
and	components

Upgrading	an	Existing	Installation
of	SQL	Server

Outlines	options	for	upgrading	to	SQL
Server	2000	from	an	earlier	version

For	more	information,	see	related	topics	in	the	table	below.

To	install See
SQL	Server	2000	(typical
installation	of	the	relational
database	engine,	client	tools,	and
client	connectivity	components)

How	to	install	SQL	Server	2000	(Setup)

SQL	Server	2000	client	tools	only	
(includes	management	tools	and
client	connectivity	components,
no	server	required)

How	to	install	client	tools	only	(Setup)

SQL	Server	2000	connectivity
only	
(installs	only	the	client
connectivity	components,	no	other
options)

How	to	install	connectivity	only	(Setup)

A	named	instance	or	multiple
instances	of	SQL	Server	2000

How	to	install	a	named	instance	of	SQL
Server	2000	(Setup)

A	SQL	Server	2000	virtual	server
for	failover	clustering

Before	Installing	Failover	Clustering

Analysis	Services Installing	Analysis	Services
English	Query Installing	English	Query

SQL	Server	Setup	Help

Preparing	to	Install	SQL	Server	2000
Before	installing	Microsoft®	SQL	Server™	2000,	consider	the	following:

Be	sure	the	computer	meets	the	system	requirements	for	Microsoft	SQL
Server	2000.	For	more	information,	see	Hardware	and	Software
Requirements	for	Installing	SQL	Server	2000.

Back	up	your	current	installation	of	Microsoft	SQL	Server	if	installing
SQL	Server	2000	on	the	same	computer.	

If	installing	a	failover	cluster,	disable	NetBIOS	on	all	private	network
cards	before	running	SQL	Server	Setup.	For	more	information,	see
Before	Installing	Failover	Clustering.

Review	all	SQL	Server	installation	options	and	be	prepared	to	make	the
appropriate	selections	when	running	Setup.	For	more	information	about
editions	and	components,	see	SQL	Server	2000:	Editions	and
Components.

If	you	plan	to	install	SQL	Server	to	a	location	other	than	the	default	file
locations,	see	File	Paths	for	SQL	Server	2000.

If	using	an	operating	system	with	Regional	settings	other	than	English
(United	States),	or	if	customizing	character	set	or	sort	order	settings,
review	topics	on	collation	settings.	For	more	information,	see	Collation
Options	for	International	Support.

Before	Running	SQL	Server	2000	Setup

Before	running	Setup:

Create	one	or	more	domain	user	accounts	if	installing	SQL	Server	2000
on	a	computer	running	Microsoft	Windows	NT®	or	Microsoft

Windows®	2000,	and	you	want	SQL	Server	2000	to	communicate	with
other	clients	and	servers.	For	more	information,	see	Creating	Security
Accounts.

Log	on	to	the	operating	system	under	a	user	account	that	has	local
administrative	permissions,	or	assign	the	appropriate	permissions	to	the
domain	user	account.

Shut	down	all	services	dependent	on	SQL	Server.	This	includes	any
service	using	ODBC,	such	as	Microsoft	Internet	Information	Services
(IIS).

Shut	down	Microsoft	Windows	NT	Event	Viewer	and	registry	viewers
(Regedit.exe	or	Regedt32.exe).

SQL	Server	Setup	Help

Hardware	and	Software	Requirements	for	Installing
SQL	Server	2000
The	minimum	hardware	and	software	requirements	for	running	Microsoft®	SQL
Server™	2000	are	listed	in	the	following	tables.

Hardware	Requirements
This	table	shows	hardware	requirements	for	installing	Microsoft	SQL	Server
2000	or	SQL	Server	client	management	tools	and	libraries.

Hardware Minimum	requirements
Computer Intel®	or	compatible

Pentium	166	MHz	or	higher.

Memory	(RAM)1 Enterprise	Edition:	64	MB	minimum,	128	MB	or
more	recommended

Standard	Edition:	64	MB	minimum

Personal	Edition:	64	MB	minimum	on	Windows
2000,	32	MB	minimum	on	all	other	operating
systems

Developer	Edition:	64	MB	minimum

Desktop	Engine:	64	MB	minimum	on	Windows
2000,	32	MB	minimum	on	all	other	operating
systems

Hard	disk	space2 SQL	Server	database	components:	95	to	270	MB,
250	MB	typical

Analysis	Services:	50	MB	minimum,	130	MB
typical

English	Query:	80	MB

Desktop	Engine	only:	44	MB

Monitor VGA	or	higher	resolution

800x600	or	higher	resolution	required	for	the	SQL
Server	graphical	tools

Pointing	device Microsoft	Mouse	or	compatible
CD-ROM	drive Required1	Additional	memory	may	be	required,	depending	on	operating	system	requirements.
2	Actual	requirements	will	vary	based	on	your	system	configuration	and	the	applications	and	features	you
choose	to	install.

Note		Microsoft	SQL	Server	2000	does	not	have	a	hardware	compatibility	list
(HCL).	If	your	computer	meets	the	minimum	requirements	listed	in	the
preceding	table,	SQL	Server	2000	software	works	on	the	hardware	certified	for
use	with	the	Microsoft	Windows®	operating	system.	For	more	information
about	hardware	certified	for	use	with	the	Windows	operating	system,	see	the
Microsoft	Windows	Hardware	Compatibility	List	at	Microsoft	Web	site.

Operating	System	Requirements
This	table	shows	the	operating	systems	that	must	be	installed	to	use	the	various
editions	or	components	of	Microsoft	SQL	Server	2000.

SQL	Server	edition
or	component Operating	system	requirement
Enterprise	Edition Microsoft	Windows	NT	Server	4.0,	Microsoft

Windows	NT	Server	Enterprise	Edition	4.0,
Windows	2000	Server,	Windows	2000	Advanced
Server,	and	Windows	2000	Data	Center	Server.

Note	that	Microsoft	Windows	2000	Server	(any
version)	is	required	for	some	SQL	Server	2000
features.

Standard	Edition Microsoft	Windows	NT	Server	4.0,	Windows	2000
Server,	Microsoft	Windows	NT	Server	Enterprise
Edition,	Windows	2000	Advanced	Server,	and
Windows	2000	Data	Center	Server.

Personal	Edition Microsoft	Windows	Me,	Windows	98,	Windows
NT	Workstation	4.0,	Windows	2000	Professional,
Microsoft	Windows	NT	Server	4.0,	Windows	2000

http://www.microsoft.com/isapi/redir.dll?prd=Hardware Compatibility List&Pver=1.0&Olcid=0x0816&Ar=/hwtest/hcl

Server,	and	all	the	more	advanced	Windows
operating	systems.

Developer	Edition Microsoft	Windows	NT	Workstation	4.0,	Windows
2000	Professional,	and	all	other	Windows	NT	and
Windows	2000	operating	systems.

Client	Tools	Only Microsoft	Windows	NT	4.0,	Windows	2000	(all
versions),	Windows	Me,	and	Windows	98.

Connectivity	Only Microsoft	Windows	NT	4.0,	Windows	2000	(all
versions),	Windows	Me,	Windows	98,	and
Windows	95.

Note		Microsoft	Windows	NT®	Server	4.0,	Service	Pack	5	(SP5)	or	later	must
be	installed	as	a	minimum	requirement	for	all	SQL	Server	2000	editions.

SQL	Server	2000	is	not	supported	on	Windows	NT	4.0	Terminal	Server.

For	installations	of	SQL	Server	2000	Personal	Edition	on	Windows	98
computers	without	a	network	card,	Windows	98	Second	Edition	is	required.

Internet	Requirements
This	table	shows	Internet	requirements	related	to	using	Microsoft	SQL	Server
2000.

Component Requirement
Internet	software Microsoft	Internet	Explorer	5.0	is	required	for	all

installations	of	Microsoft	SQL	Server	2000,	as	it	is
required	for	Microsoft	Management	Console
(MMC)	and	HTML	Help.	A	minimal	install	is
sufficient,	and	Internet	Explorer	is	not	required	to
be	the	default	browser.

Exception	to	the	Internet	Explorer	5.0	requirement:
If	using	the	Connectivity	Only	option	and	not
connecting	to	a	server	that	requires	encryption,
Microsoft	Internet	Explorer	4.01	with	Service	Pack
2	is	sufficient.

Internet	Information
Services

If	writing	XML	applications,	see	System
Requirements	for	the	IIS	Virtual	Directory
Management	for	SQL	Server	Utility.

Network	Software	Requirements
Microsoft	Windows	NT,	Windows	2000,	Windows	Me,	Windows	98,	and
Windows	95	have	built-in	network	software.	Additional	network	software	is
required	only	if	you	are	using	Banyan	VINES	or	AppleTalk	ADSP.	Novel
NetWare	IPX/SPX	client	support	is	provided	by	the	NWLink	protocol	of
Windows	Networking.

Note		TCP/IP	must	be	enabled	at	the	operating	system	level	before	installing
SQL	Server	2000.	For	more	information,	see	Network	Libraries.

Supported	Clients
Microsoft	SQL	Server	2000	supports	the	following	clients:	Windows	NT
Workstation,	Windows	2000	Professional,	Windows	98,	Windows	95,	Apple
Macintosh®,	OS/2,	and	UNIX.	Macintosh,	OS/2,	and	UNIX	do	not	support	the
SQL	Server	graphical	tools	and	require	ODBC	client	software	from	a	third-party
vendor.

Considerations	for	Other	Microsoft	Products
The	following	Microsoft	products	require	Service	Release	or	Service	Packs	to
operate	correctly	with	SQL	Server	2000.

Access	2000
Microsoft	Access	2000	requires	the	installation	of	either	Microsoft	Office	2000
Service	Release	1	(SR1)	or	Access	2000	SR1	to	operate	correctly	with	SQL
Server	2000.	If	running	an	earlier	version	of	Access	2000,	you	cannot	test
automatic	data	processing	(ADP)	applications	against	SQL	Server	2000.	You
cannot	access	database	diagrams,	stored	procedures,	table	designs,	or	view
designs.

JavaScript:hhobj_1.Click()

Other	issues	to	be	addressed	in	a	future	Access	Service	Release:

When	you	run	Access	2000	with	SR1,	you	can	test	ADP	applications.
You	can	also	alter	database	diagrams,	stored	procedures,	table	designs,
or	view	designs,	but	you	cannot	save	any	changes.	A	future	Access
Service	Release	will	allow	limited	ability	to	save	changes.

The	Access	2000	Create	Database	Wizard	cannot	successfully	create	a
SQL	Server	2000	database.	You	can	work	around	this	by	first	creating
the	database	using	SQL	Server	Enterprise	Manager,	and	then	creating	an
ADP	for	the	database	using	the	Project	(Existing	Database)	option	on
the	New	dialog	box	in	Access	2000.

The	Access	2000	Upsizing	Wizard	does	not	support	upsizing	to	SQL
Server	2000.	You	can	work	around	this	by	using	Data	Transformation
Services	in	the	Enterprise	Manager	to	import	your	MDB	database	file
into	SQL	Server.	You	can	then	rename	your	MDB	tables	and	create
linked	tables	to	the	resulting	SQL	Server	database	with	the	same	names
as	your	original	MDB	table	names.

Visual	Studio	6.0

When	you	run	Microsoft	Visual	Studio®	6.0,	you	cannot	access	database
diagrams,	stored	procedures,	table	designs,	or	view	designs	in	SQL	Server	2000.
Visual	Studio	6.0	Service	Pack	4	allows	you	to	alter	database	diagrams,	stored
procedures,	table	designs,	or	view	designs,	but	you	cannot	save	them.	A	future
Visual	Studio	Service	Pack	will	allow	a	limited	ability	to	save	changes.

The	SQL	Server	2000	tools	cannot	access	database	diagrams	saved	using	the
design	tools	in	Visual	Studio	6.0	until	you	have	modified	the	dtproperties	table
in	the	database.	For	more	information,	see	Backward	Compatibility.

See	Also

Editions	of	SQL	Server	2000

SQL	Server	2000:	Editions	and	Components

JavaScript:hhobj_2.Click()

Operating	Systems	Supported	by	the	Editions	of	SQL	Server	2000

JavaScript:hhobj_3.Click()

SQL	Server	Setup	Help

SQL	Server	2000:	Editions	and	Components
SQL	Server	2000	editions	include	the	Enterprise	Edition,	the	Standard	Edition,
the	Personal	Edition,	the	Developer	Edition,	and	the	Evaluation	Edition.

Note		The	Microsoft	SQL	Server	2000	Personal	Edition	replaces	the	Microsoft
SQL	Server	version	7.0	Desktop	Edition.	To	install	client	tools	only,	you	can	use
the	Personal	Edition,	which	is	also	available	when	you	purchase	the	Standard
and	Enterprise	Editions	of	SQL	Server	2000.

When	you	select	SQL	Server	2000	Components	on	the	opening	screen,	three
options	appear	on	the	Install	Components	screen:

Install	Database	Server

Starts	SQL	Server	Setup,	with	screens	for	selecting	installation	options.

Install	Analysis	Services

Installs	Analysis	Services	on	computers	processing	OLAP	cubes.	For	more
information,	see	Installing	Analysis	Services.

Install	English	Query

Installs	English	Query	on	computers	running	English	Query	applications.	For
more	information,	see	Installing	English	Query.

Choosing	Components	and	Options	to	Install
You	may	have	a	database	server,	an	Internet	server,	or	require	a	database	on	a
client	computer.	If	running	database	client/server	applications	you	may	or	may
not	require	a	database	on	your	computer.	You	may	need	tools	to	administer	a
database	server,	or	you	may	want	to	run	applications	that	access	an	instance	of
SQL	Server.	Installation	choices	for	these	and	other	SQL	Server	configurations
are	described	in	the	following	paragraphs.

Installing	SQL	Server	on	a	Database	Server
If	installing	a	database	server,	install	either	SQL	Server	2000	Enterprise	Edition
or	SQL	Server	2000	Standard	Edition.	If	installing	a	personal	database	on	your

workstation,	install	SQL	Server	2000	Personal	Edition.	These	installations
typically	include	the	database	engine,	the	client	database	management	tools,	and
the	client	connectivity	components.

On	a	database	server,	you	can	install	a	default	instance	of	SQL	Server	2000
relational	database	engine.	You	can	also	install	one	or	more	named	instances	of
the	SQL	Server	2000	database	engine.	Other	than	specifying	an	instance	name,
the	setup	choices	are	similar	to	those	for	installing	a	default	instance.

When	installing	an	instance	of	SQL	Server	2000,	you	must	specify	whether	you
want	the	instance	to	use	failover	clustering.	For	more	information,	see	Before
Installing	Failover	Clustering.

Using	SQL	Server	with	Client/Server	Applications
For	a	computer	running	database	client/server	applications,	such	as	Microsoft
Visual	Basic®	applications	that	connect	directly	to	an	instance	of	SQL	Server,
you	have	several	options:

If	you	require	a	personal	database	on	your	client	computer,	install	the
Personal	Edition	of	SQL	Server.	This	setup	typically	installs	the	client
tools	and	client	connectivity	components	along	with	the	database
engine.	

If	you	do	not	require	a	database	on	your	computer,	but	need	to
administer	an	instance	of	SQL	Server	on	a	database	server,	or	plan	to
develop	SQL	Server	applications,	install	the	option	for	Client	Tools
Only.	This	option	includes	the	client	connectivity	components.	For
more	information,	see	How	to	install	client	tools	only	(Setup).

If	you	want	to	only	run	applications	that	access	instances	of	SQL	Server
on	database	servers,	install	the	connectivity	only	components.	For	more
information,	see	How	to	install	connectivity	only	(Setup).

Using	SQL	Server	with	an	Internet	Server

On	an	Internet	server,	such	as	a	server	running	Microsoft	Internet	Information
Services	(IIS),	you	typically	install	the	SQL	Server	2000	client	tools.	Client	tools

include	the	client	connectivity	components	used	by	an	application	connecting	to
an	instance	of	SQL	Server.	In	addition,	the	client	tools	include	the	utility	for
configuring	the	virtual	roots	needed	for	applications	to	access	SQL	Server
through	URLs.

After	installing	the	SQL	Server	client	tools,	you	configure	the	virtual	roots	that
support	accessing	an	instance	of	SQL	Server	through	a	URL.	For	more
information	about	configuring	the	virtual	roots,	see	Using	IIS	Virtual	Directory
Management	for	SQL	Server	Utility.

Note		Although	you	can	install	an	instance	of	SQL	Server	on	a	computer	running
IIS,	this	is	typically	done	only	for	small	Web	sites	that	have	a	single	server
computer.	Most	Web	sites	have	their	middle-tier	IIS	system	on	one	server	or
cluster	of	servers,	and	their	databases	on	a	separate	server	or	federation	of
servers.	For	more	information	about	federations,	see	Federated	SQL	Server	2000
Servers.

If	some	of	the	Web	pages	on	an	Internet	server	use	English	Query,	you	would
also	install	that	component.

Other	SQL	Server	Components
For	distributing	SQL	Server	2000	with	applications,	use	the	SQL	Server
2000	Desktop	Engine,	a	stand-alone	database	engine	that	independent
software	vendors	can	package	with	their	applications.	For	more
information,	see	Distributing	SQL	Server	with	Applications.

Note		The	Desktop	Engine	has	no	graphical	user	interface	and	is	not	related	to
the	SQL	Server	7.0	Desktop	Edition.

In	addition	to	the	major	components	and	editions	shown	on	the	Install	SQL
Server	2000	Components	screen,	other	editions	of	SQL	Server	2000	are
available:	SQL	Server	2000	Developer	Edition,	SQL	Server	2000	Windows	CE
Edition,	and	the	SQL	Server	2000	Enterprise	Evaluation	Edition.	For	more
information,	see	Features	Supported	by	the	Editions	of	SQL	Server	2000.

See	Also

Editions	of	SQL	Server	2000

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Operating	Systems	Supported	by	the	Editions	of	SQL	Server	2000

JavaScript:hhobj_5.Click()

SQL	Server	Setup	Help

Installing	English	Query
English	Query	is	a	development	tool	that	works	with	Microsoft®	SQL	Server™
2000.	Using	English	Query,	you	can	create	applications	that	allow	users	to	query
a	SQL	Server	database	or	an	Analysis	Services	database	in	English.	For
example,	users	can	ask,	"How	many	widgets	were	sold	in	Washington	last	year?"
instead	of	using	the	SQL	statements:

SELECT	sum(Orders.Quantity)	FROM	Orders,	Parts
WHERE	Orders.State='WA'
			AND	Datepart(Orders.Purchase_Date,'Year')='1999'
			AND	Parts.PartName='widget'
			AND	Orders.Part_ID=Parts.Part_ID	

When	you	install	English	Query,	English	Query	is	added	to	the	Microsoft	SQL
Server	program	group	on	the	Start	menu.	English	Query	contains	these
shortcuts:

English	Query	Books	Online

English	Query	Tutorials

Microsoft	English	Query

If	English	Query	is	not	installed	with	Microsoft	SQL	Server	2000,	the	Help
system	will	access	English	Query	Books	Online,	Eqdoc.chm,	instead	of	SQL
Server	Books	Online,	SQL80.col.	However,	both	documentation	files	contain
essentially	the	same	material	about	English	Query	and	both	provide	context-
sensitive	(F1)	Help	for	English	Query.	Regardless	of	the	installation	scenario,
English	Query	Books	Online	is	available	from	the	English	Query	program
group.

Installation	Requirements	for	English	Query	are:

Microsoft	Windows®	95,	Microsoft	Windows	98,	or	Microsoft
Windows	NT®	version	4.0	or	later

40	MB	of	free	disk	space

Microsoft	Internet	Explorer	5.0	or	later

To	install	English	Query

SQL	Server	Setup	Help

Installing	Analysis	Services
Microsoft®	SQL	Server™	2000	Analysis	Services	includes	a	powerful	server
for	the	construction	and	analysis	of	multidimensional	data.

To	install	Analysis	Services

SQL	Server	Setup	Help

Setting	up	Windows	Services	Accounts
On	the	Microsoft®	Windows	NT®	and	Microsoft	Windows®	2000	operating
systems,	Microsoft	SQL	Server™	and	SQL	Server	Agent	are	started	and	run	as
Windows	services.	These	services	appear	in	the	list	of	installed	services	in	the
Services	dialog	box,	available	using	Windows	Control	Panel.	The	table	shows
each	service	name	and	the	term	used	to	refer	to	the	default	and	named	instances
of	SQL	Server,	as	displayed	in	the	Services	dialog	box.

Service
Name

Term	for	default
instance

Term	for	named
instance

Microsoft
SQL	Server

SQL
Server

MSSQLSERVER MSSQ$InstanceName

Microsoft
SQL	Server
Agent

SQL
Server
Agent

SQLSERVERAGENTSQLAgent$InstanceName

For	Microsoft	SQL	Server™	and	SQL	Server	Agent	to	run	as	services	in
Windows,	they	must	be	assigned	a	Windows	user	account.	Typically,	both	SQL
Server	and	SQL	Server	Agent	are	assigned	the	same	user	account,	either	the
local	system	or	domain	user	account.	However,	you	can	customize	the	settings
for	each	service	during	the	installation	process.	For	more	information	about	how
to	customize	account	information	for	each	service,	see	Services	Accounts.

Note		Microsoft	Windows	98	does	not	support	Windows	services;	instead,	SQL
Server	simulates	the	SQL	Server	and	SQL	Server	Agent	services.	It	is	not
required	that	you	create	user	accounts	for	these	simulated	services.

Using	the	Local	System	Account
The	local	system	account	does	not	require	a	password,	does	not	have	network
access	rights	in	Windows	NT	4.0	and	Windows	2000,	and	restricts	your	SQL
Server	installation	from	interacting	with	other	servers.

Using	a	Domain	User	Account

A	domain	user	account	uses	Windows	Authentication,	that	is,	the	same	user
name	and	password	used	to	connect	to	the	operating	system	is	also	used	to
connect	to	SQL	Server.	A	domain	user	account	is	typically	used	because	many
server-to-server	activities	can	be	performed	only	with	a	domain	user	account,	for
example:

Remote	procedure	calls.

Replication.

Backing	up	to	network	drives.

Heterogeneous	joins	that	involve	remote	data	sources.

SQL	Server	Agent	mail	features	and	SQL	Mail.	This	restriction	applies
if	using	Microsoft	Exchange.	Most	other	mail	systems	also	require
clients	(the	SQL	Server	and	SQL	Server	Agent	services)	to	be	run	on
accounts	with	network	access.

Note		Several	servers	running	SQL	Server	can	share	the	same	user	account.
When	setting	up	replication,	it	is	recommended	that	a	Publisher	and	all	its
Subscribers	share	the	same	service	account	for	the	SQL	Server	service.

Requirements	for	Domain	User	Account
All	domain	user	accounts	must	have	permission	to:

Access	and	change	the	SQL	Server	directory	(\Program	Files\Microsoft
SQL	Server\Mssql).

Access	and	change	the	.mdf,	.ndf,	and	.ldf	database	files.

Log	on	as	a	service.

Read	and	write	registry	keys	at	and	under:

HKEY_LOCAL_MACHINE\Software\Microsoft\MSSQLServer.
-or-	for	any	named	instance:
HKEY_LOCAL_MACHINE\Software\Microsoft\Microsoft
SQL	Server.	

HKEY_LOCAL_MACHINE\System\CurrentControlset\Services\MSSQLServer.
-or-	for	any	named	instance:
HKEY_LOCAL_MACHINE\System\CurrentControlset\Services\MSSQL$Instancename.

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows
NT\CurrentVersion\Perflib.

In	addition,	a	domain	user	account	must	be	able	to	read	and	write	corresponding
registry	keys	for	these	services:	SQLAgent$InstanceName,	MSSearch,	and
MSDTC.

This	table	shows	additional	permissions	required	for	certain	functionality.

Service Permission Functionality
SQL	Server Network	write	privileges Write	to	a	mail	slot	using

xp_sendmail.
SQL	Server Act	as	part	of	operating

system	and	replace	a
process	level	token

Run	xp_cmdshell	for	a	user
other	than	a	SQL	Server
administrator.

SQL	Server
Agent

Member	of	the
Administrators	local	group

Create	CmdExec	and
ActiveScript	jobs	belonging
to	someone	other	than	a	SQL
Server	administrator.

Use	the	autorestart	feature.

Use	run-when-idle	jobs.

SQL	Server Member	of	local	Power
Users	or	local
Administrators	group

Add	and	delete	SQL	Server
objects	in	the	Windows	2000
Active	Directory.

Changing	User	Accounts
To	change	the	password	or	other	properties	of	any	SQL	Server–related	service
after	installing	SQL	Server,	use	SQL	Server	Enterprise	Manager.	If	your
Windows	password	expires	and	you	change	it,	be	sure	to	also	revise	the	SQL
Server	services	settings	in	Windows.	For	more	information,	see	Changing
Passwords	and	User	Accounts.

See	Also

Creating	Security	Accounts

Planning	Security

Services	Accounts

SQL	Server	Setup	Help

File	Paths	for	SQL	Server	2000
In	Microsoft®	SQL	Server™	2000,	the	default	location	for	the	installed	SQL
Server	files	has	changed.	For	the	default	instance	of	SQL	Server,	the	default
directory	for	both	program	and	data	files	is	\Program	Files\Microsoft	SQL
Server\Mssql.	You	can	specify	a	file	path	other	than	the	default	for	both	program
and	data	files.

Shared	Tools	are	installed	by	default	at	\Program	Files\Microsoft	SQL
Server\80\Tools.	This	folder	contains	files	shared	by	all	instances	of	SQL	Server
2000,	both	default	and	named.	Tools	include	SQL	Server	Books	Online,	Dev
Tools,	and	other	components.

Setup	also	installs	files	in	the	Microsoft	Windows®	system	directory.	The
system	file	location	cannot	be	changed.

SQL	Server	Program	File	Location
The	SQL	Server	program	files	are	located	in	\Program	Files\Microsoft	SQL
Server\Mssql\Binn.

The	program	file	location	is	the	root	directory	where	Setup	creates	the	folders
that	contain	program	files	and	files	that	typically	do	not	change	as	you	use	SQL
Server.	Although	these	files	are	not	read-only,	the	folders	do	not	contain	data,
log,	backup	files,	or	replication	data;	therefore,	the	space	requirements	for	these
files	should	not	increase	as	SQL	Server	is	used.

Note		Program	files	cannot	be	installed	on	a	removable	disk	drive.

SQL	Server	Data	File	Location
The	SQL	Server	data	files	are	located	in	\Program	Files\Microsoft	SQL
Server\Mssql\Data.

The	data	file	location	is	the	root	directory	where	Setup	creates	the	folders	that
contain	database	and	log	files,	as	well	as	directories	for	the	system	log,	backup,
and	replication	data.	Setup	creates	database	and	log	files	for	the	master,	model,
tempdb,	msdb,	pubs,	and	Northwind	databases.	The	SQL	Server	data	file	path
should	be	located	on	a	drive	that	has	space	available	for	these	files	to	grow.

Note		Data	files	cannot	be	installed	on	a	file	system	using	compression.

Specifying	File	Paths
In	SQL	Server	2000,	due	to	multiple	instance	options,	the	instance	name	is	used
in	addition	to	the	user-specified	location	for	program	and	data	files.	For	tools
and	other	shared	files,	however,	instance	names	are	not	required.

Default	Instance	File	Path	for	Program	and	Data	Files
For	the	default	instance	of	SQL	Server,	the	default	SQL	Server	directory	name
(Mssql)	is	used	as	the	default	instance	name,	along	with	the	directory	you
specify.

For	example,	if	you	specify	that	the	SQL	Server	default	instance	be	installed	at
D:\MySqlDir,	the	file	paths	are:

D:\MySqlDir\Mssql\Binn	(for	program	files)

D:\MySqlDir\Mssql\Data	(for	data	files)

Named	Instance	File	Path	for	Program	and	Data	Files

For	any	named	instances,	the	given	name	of	the	instance	is	used	with	the
directory	specified.

For	example,	if	you	specify	that	the	instance	named	MyInstanceA	be	installed
at	D:\MySqlDir,	the	paths	are:

D:\MySqlDir\MSSQL$MyInstanceA\Binn	(for	program	files)

D:\MySqlDir\MSSQL$MyInstanceA\Data	(for	data	files)

See	Also

File	Locations	for	Multiple	Instances	of	SQL	Server

Locating	Directories	and	Files

SQL	Server	Setup	Help

Upgrading	an	Existing	Installation	of	SQL	Server
You	can	upgrade	from	earlier	versions	to	Microsoft®	SQL	Server™	2000,	and
also	perform	upgrade	operations	once	SQL	Server	2000	is	installed.	Upgrades	to
SQL	Server	2000	from	SQL	Server	version	6.5	and	from	SQL	Server	version	7.0
are	different	operations.	SQL	Server	6.5	databases	(and	related	information)	are
converted	to	SQL	Server	2000	formats.	An	installation	of	SQL	Server	7.0	is
overwritten	by	SQL	Server	2000,	unless	a	named	instance	configuration	is
installed,	allowing	SQL	Server	7.0	to	remain	intact.

After	an	initial	installation	of	SQL	Server	2000,	other	upgrade	options	are
available.	If	using	more	than	one	instance	of	SQL	Server	2000,	you	can	upgrade
one	instance	by	adding	components,	and	have	different	component	sets	for
multiple	instances.

Upgrading	from	SQL	Server	7.0	to	SQL	Server	2000
You	can	overwrite	your	existing	installation	of	SQL	Server	7.0	by	installing	a
default	instance	of	SQL	Server	2000.	You	can	also	keep	your	installation	of	SQL
Server	7.0	intact	by	installing	a	named	instance	of	SQL	Server	2000.	Both
operations	are	performed	using	the	following	procedure.

To	upgrade	from	SQL	Server	7.0	to	SQL	Server	2000

SQL	Server	Setup	Help

Basic	Installation	Options
This	section	describes	basic	installation	options	for	SQL	Server	2000.	Upgrading
an	existing	installation,	or	creating	a	new	installation	on	either	a	local	or	remote
computer	is	considered	a	basic	installation	option.

For	more	information	about	cluster	maintenance,	performing	an	unattended
setup,	or	rebuilding	the	registry,	see	Advanced	Installation	Options.

SQL	Server	Setup	Help

Entering	Information	in	Basic	Setup	Screens
Microsoft®	SQL	Server™	2000	Setup	provides	basic	and	advanced	options.
There	are	two	options	for	a	local	installation:

Create	a	new	or	additional	installation

Upgrade,	remove,	or	add	components	to	an	existing	installation

If	you	choose	the	upgrade	option,	you	have	many	other	choices	available.	For
more	information,	see	Existing	Installation	Options.	In	addition,	you	can	select
advanced	options.	For	more	information	about	your	initial	setup	choices,	see
Installation	Selection.

For	a	basic,	local	installation,	select	the	option	for	creating	a	new	or	additional
installation.	After	entering	user	and	product	identification	(ID)	information	in
subsequent	screens,	choose	the	components	to	include	in	this	installation	of	SQL
Server	2000.	You	can	select	to	install	either	connectivity	only,	client	tools	only
(which	includes	connectivity	components),	or	the	complete	server	and	client
tools	option.	For	more	information,	see	Installation	Definition.

If	you	choose	to	install	the	SQL	Server	relational	database	with	both	server	and
client	tools,	select	either	a	named	instance	or	the	default	instance	of	SQL	Server
2000.	For	more	information,	see	Instance	Name.

After	selecting	the	default	instance,	or	choosing	to	create	a	named	instance,	the
standard	setup	type	selection	screen	is	presented.	For	more	information,	see
Setup	Type:	Typical,	Minimum,	or	Custom.

Other	options	may	be	presented	while	running	Setup,	depending	on	the	specifics
of	your	system	and	installation.

See	Also

Upgrading	an	Existing	Installation	of	SQL	Server

Multiple	Instances	of	SQL	Server

SQL	Server	Setup	Help

Computer	Name
The	Computer	Name	dialog	box	in	Setup	allows	you	to	install	Microsoft	SQL
Server	2000	on	your	local	computer,	on	a	remote	computer,	or	on	a	virtual
server.

All	options	for	installing	and	upgrading	are	available	on	the	local	computer.
Advanced	options,	including	registry	rebuild,	unattended	installation,	and
upgrading	to	a	cluster	are	not	available	on	a	remote	installation.	If	you	are
running	Setup	on	a	clustered	computer,	the	Virtual	Server	option	is	available.

Options
Local	Computer

By	default,	the	name	in	the	edit	box	is	the	local	machine	name,	that	is,	the
computer	on	which	Setup	is	running.	For	a	local	installation,	accept	the
default	and	click	Next.

Note		If	you	are	installing	tools	only,	Local	Computer	will	be	the	only	option
available	on	this	dialog	box.

Remote	Computer

Enter	a	computer	name	for	a	remote	installation,	or	click	Browse	to	locate
the	remote	computer.

Virtual	Server

Enter	the	name	of	a	new	or	existing	Virtual	SQL	Server	to	manage.

This	option	is	available	only	when	Microsoft	Cluster	Service	(MSCS)	is
detected	on	an	Windows	NT	or	Windows	2000	Enterprise	operating	system.

Browse

Click	the	Browse	button	to	locate	a	remote	computer.

This	button	is	available	only	when	the	Remote	Computer	option	is	selected.

See	Also

Installing	a	Remote	Configuration

Installing	a	Virtual	Server	Configuration

Before	Installing	Failover	Clustering

Creating	a	Failover	Cluster

SQL	Server	Setup	Help

Installation	Selection
The	Installation	Selection	screen	is	an	initial	screen	in	Microsoft®	SQL
Server™	Setup,	where	you	select	among	three	options	for	running	the
installation	program.

Options
Create	a	new	instance	of	SQL	Server,	or	install	Client	Tools

Creates	a	new	installation	of	SQL	Server	2000;	either	a	default	or	named
instance.	In	addition,	this	option	allows	you	to	install	only	client	tools	using
the	compact	disc	for	any	edition	of	SQL	Server	2000,	on	any	operating
system	other	than	Microsoft	Windows®	95.

Upgrade,	remove,	or	add	components	to	an	existing	instance	of	SQL	Server

Allows	you	to	upgrade,	remove,	or	add	components	to	an	existing	instance	of
SQL	Server.	Existing	instances	include	installations	of	earlier	versions	(SQL
Server	version	6.5	and	SQL	Server	version	7.0)	as	well	as	instances	of	SQL
Server	2000.	For	more	information,	see	Existing	Installation	Options.

Advanced	Options

Select	advanced	options	for	cluster	maintenance,	unattended	setup,	and
registry	rebuild.

See	Also

Multiple	Instances	of	SQL	Server

Upgrading	an	Existing	Installation	of	SQL	Server

Advanced	Installation	Options

SQL	Server	Setup	Help

Existing	Installation	Options
The	Existing	Installation	Options	Setup	screen	includes	choices	for	working
with	upgrades	from	previous	versions	of	Microsoft®	SQL	Server™,	as	well	as
upgrades	to	SQL	Server	2000	components.	Options	that	do	not	apply	to	your
specific	setup	do	not	appear	on	the	screen.

Options
Add	components	to	your	existing	installation

Allows	you	to	add	components	to	an	existing	installation	of	SQL	Server
2000.

Uninstall	your	existing	installation

Removes	an	installation	(default	or	named	instance)	of	SQL	Server	2000
from	your	computer.	The	instance	to	remove	is	specified	in	the	Instance
Name	screen.

Upgrade	your	existing	installation

This	option	is	available	for	use	with	existing	installations	of	SQL	Server	7.0
and	SQL	Server	2000.	Depending	on	the	version,	edition,	and	component
makeup	of	your	existing	installation,	selecting	this	option	starts	the	process
for	one	of	the	following	upgrades:

Upgrade	from	SQL	Server	7.0	to	SQL	Server	2000.	(If	you	cannot
upgrade	client	tools,	see	Upgrade	Issues	below.)

Add	components	to	an	existing	installation	of	SQL	Server	2000.	For
example,	you	may	have	purchased	a	SQL	Server	version	with	more
features,	or	need	to	install	certain	components.

Note		Upgrades	from	SQL	Server	6.5	to	SQL	Server	2000	are	run	using	the	SQL
Server	Upgrade	Wizard,	available	on	the	SQL	Server	Start	menu.

Upgrade	your	existing	installation	to	a	clustered	installation

This	option	is	a	step	in	the	process	of	upgrading	from	a	clustered	installation
of	SQL	Server	6.5	or	SQL	Server	7.0	to	a	clustered	installation	of	SQL
Server	2000.	First,	the	earlier	version	of	SQL	Server	is	upgraded	to	SQL
Server	2000.	Next,	the	existing	SQL	Server	2000	installation	can	be
upgraded	to	a	cluster.	For	more	information,	see	Upgrading	to	a	SQL	Server
2000	Failover	Cluster.

Upgrade	Issues
On	a	computer	running	SQL	Server	7.0	client	tools	only,	you	may
encounter	the	following	message	when	you	choose	to	upgrade	your
existing	installation:	"The	default	instance	detected	is	not	able	to	be
upgraded.	Please	select	New	Install	to	upgrade	your	tools."	This	issue
can	occur	if	you	have	installed	the	SQL	Server	7.0	client	tools	by
choosing	Custom	in	the	Setup	Type	dialog	box,	and	then	by	selecting
tools	in	the	components	dialog	box.	In	this	situation,	the	existing	client
tools	installation	of	SQL	Server	7.0	cannot	be	upgraded	due	to	registry
issues.	Instead,	you	must	re-install	SQL	Server,	by	selecting	Create	a
new	instance	of	SQL	Server,	or	install	Client	Tools.

You	can	upgrade	a	beta	version	of	SQL	Server	2000	to	the	final	version
of	the	product	by	using	the	option	to	upgrade	your	existing	installation.
If	you	are	performing	such	an	upgrade	on	a	computer	or	a	cluster
containing	multiple	instances,	you	must	first	close	all	instances	of	SQL
Server	before	upgrading.

See	Also

Upgrading	from	SQL	Server	7.0	to	SQL	Server	2000

Upgrading	an	Existing	Installation	of	SQL	Server

Select	Components

SQL	Server	Setup	Help

Installation	Definition
Use	the	Installation	Definition	screen	to	select	the	components	to	include	in
this	installation	of	SQL	Server	2000.	If	you	select	Client	Tools	Only	or
Connectivity	Only,	Setup	proceeds	and	no	additional	choices	are	required,	unless
you	select	components	when	installing	client	tools.	If	you	choose	to	install
Server	and	Client	Tools,	additional	setup	screens	will	appear.

Options
Client	Tools	Only

Installs	only	the	client	relational	database	management	tools.	Included	in	this
option	are	the	client	tools	for	administering	SQL	Server	and	the	client
connectivity	components.	In	addition,	this	option	allows	you	to	select	other
components	to	install.	For	more	information,	see	How	to	install	client	tools
only	(Setup).

Server	and	Client	Tools

Installs	both	server	and	client	tools	to	create	a	relational	database	server	with
administrative	capabilities.	Selecting	Server	and	Client	Tools	presents	the
full	range	of	additional	setup	options.

For	more	information	about	performing	a	typical	installation	of	a	default
instance	of	the	database	engine,	including	all	client	and	connectivity
components,	see	How	to	install	SQL	Server	2000	(Setup).

Note		This	option	is	not	available	if	you	are	installing	client	tools	using	a
compact	disc	for	an	edition	of	SQL	Server	that	is	not	supported	by	your
computer's	operating	system.

Connectivity	Only

Installs	only	the	relational	database	client	connectivity	components,
including	MDAC	2.6	(Microsoft	Data	Access	Components),	a	requirement
for	connecting	to	SQL	Server	2000	named	instances.	This	option	provides
connectivity	tools	only,	with	no	choice	of	client	tools	or	other	components.
For	more	information,	see	How	to	install	connectivity	only	(Setup).

See	Also

Management	Tools

Server	Components

Client	Connectivity

SQL	Server	Setup	Help

User	Information
The	User	Information	Setup	screen	prompts	you	to	supply	your	name	and
company	name.	These	fields	are	required.

When	installing	on	a	network,	be	sure	to	supply	the	name	of	a	user	responsible
for	using	or	administering	the	server.

See	Also

Setting	Up	Windows	Services	Accounts

SQL	Server	Setup	Help

Instance	Name
Use	this	screen	to	add	and	maintain	instances	of	Microsoft®	SQL	Server™
2000.

Options
Default

When	selected,	a	default	instance	of	SQL	Server	2000	is	installed.	Click
Next	to	proceed	with	the	install	process.

When	cleared,	you	can	install	or	maintain	a	named	instance	of	SQL
Server	2000.

Note		If	this	check	box	is	not	enabled,	Setup	has	detected	a	default	instance	of
SQL	Server	on	this	computer.	The	default	instance	could	be	an	installation	of
SQL	Server	6.5,	SQL	Server	version	7.0,	or	it	could	be	the	default	instance	of
SQL	Server	2000,	already	installed.	Only	one	installation	of	SQL	Server,	any
version,	can	be	the	default	instance	at	any	one	time.	For	more	information,	see
Multiple	Instances	of	SQL	Server.

Instance	Name

Enter	a	new	instance	name,	or	the	name	of	the	instance	to	maintain.	Review
and	follow	the	rules	for	instance	names.

IMPORTANT		It	is	recommended	that	instance	names	be	kept	to	less	than	10
characters.	Instance	names	can	appear	in	the	user	interface	of	various	SQL
Server	and	system	tools;	shorter	names	are	more	readable.

Instance	Naming	Rules

An	instance	name	is	not	case-sensitive.

An	instance	name	cannot	be	the	terms	Default	or	MSSQLServer.

Instance	names	must	follow	the	rules	for	SQL	Server	identifiers	and
cannot	be	reserved	keywords.

Instance	names	are	limited	to	16	characters.

The	first	character	in	the	instance	name	must	be	a	letter,	an	ampersand
(&),	an	underscore	(_),	or	a	number	sign	(#).	Acceptable	letters	are
those	defined	by	the	Unicode	Standard	2.0,	which	includes	Latin
characters	a-z	and	A-Z,	in	addition	to	letter	characters	from	other
languages.	

Subsequent	characters	can	be:

Letters	as	defined	in	the	Unicode	Standard	2.0.

Decimal	numbers	from	either	Basic	Latin	or	other	national
scripts.	

The	dollar	sign	($),	a	number	sign	(#),	or	an	underscore	(_).

Embedded	spaces	or	special	characters	are	not	allowed	in	instance
names.	Neither	is	the	backslash	(\),	a	comma	(,),	a	colon	(:),	or	the	at
sign	(@).

WARNING		Only	characters	that	are	valid	in	the	current	Microsoft	Windows®
code	page	can	be	used	in	instance	names	in	SQL	Server	2000.	If	a	Unicode
character	not	supported	under	the	current	code	page	is	used,	an	error	occurs.

See	Also

Working	with	Instances	and	Versions	of	SQL	Server

Working	with	Named	and	Multiple	Instances	of	SQL	Server	2000

Naming	Conventions	for	Instances	of	SQL	Server	2000

Reserved	Keywords

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Setup	Type:	Typical,	Minimum,	or	Custom
When	you	install	the	Microsoft®	SQL	Server™	2000	Enterprise	Edition,	SQL
Server	2000	Standard	Edition,	or	SQL	Server	2000	Personal	Edition,	SQL	Server
Setup	offers	three	installation	types	in	the	Setup	Type	dialog	box.	In	addition,
you	can	modify	the	installation	location	for	both	program	and	data	files	in	this
dialog	box.

Options
Typical

Installs	all	of	SQL	Server	using	the	default	installation	options.	This
installation	is	recommended	for	most	users.

Minimum

Installs	the	minimum	configuration	necessary	to	run	SQL	Server.	This
installation	is	recommended	for	users	who	have	computers	with	minimum
available	disk	space.

Custom

Installs	SQL	Server	and	allows	you	to	change	any	or	all	of	the	default
options.	Use	a	custom	installation	to	select	components	and	subcomponents,
or	to	change	settings	for	collations,	services	accounts,	authentication,	or
network	libraries.

Destination	Folders

The	default	installation	location	is	C:\Program	Files\Microsoft	SQL	Server\,
for	both	program	and	data	files.

Program	files

Click	Browse	to	select	another	installation	location	for	the	SQL	Server
program	files.

Data	files

Click	Browse	to	select	another	installation	location	for	the	SQL	Server	data

files.

CAUTION		It	is	recommended	that	program	files	not	be	installed	on	a	cluster	disk,
so	that	future	upgrades	to	a	cluster	are	possible.	If	you	select	a	folder	on	a	cluster
disk	as	a	destination	for	SQL	Server	program	files,	a	message	appears	requesting
another	installation	path	for	program	files.

When	upgrading	an	installation	of	SQL	Server	7.0	that	has	previously	had
program	files	installed	on	a	cluster	disk,	a	similar	message	appears:	"Setup
will	move	the	program	files	from	the	cluster	disk.	Provide	a	new	location	for
the	program	files.	The	drive	letter	you	select	must	exist	on	all	nodes	of	the
cluster	as	a	local	drive	so	that	you	can	later	upgrade	to	a	clustered
installation."

For	more	information,	see	Upgrading	to	a	SQL	Server	2000	Failover	Cluster.

Components	for	Each	Installation	Type
When	you	install	SQL	Server	on	Microsoft	Windows	NT®	or	Windows	2000,
these	options	are	offered	for	all	installation	types:

Windows	Services	accounts	(logon	accounts)	for	SQL	Server	and	SQL
Server	Agent.

Whether	to	start	SQL	Server	and	SQL	Server	Agent	automatically	each
time	the	computer	is	restarted.

Use	of	various	network	libraries,	or	protocols,	including	TCP/IP
Sockets,	Named	Pipes,	and	Multiprotocol.

This	table	lists	the	types	of	installations	and	components	that	each	installation
provides.

Component Typical Minimum Custom
Database	Server Yes Yes Optional
Upgrade	Tools1 Yes No Optional
Replication	Support Yes Yes Optional
Full-Text	Search Yes Yes Optional

Client	Management
Tools

All None Optional

Client	Connectivity Yes Yes Not	an	option
Books	Online Yes No Optional
Development	Tools Debugger	only None Choice	of	tools
Code	Samples None None Choice	of

samples
Collation	Settings Yes Yes Choice	of

settings
1	Upgrade	Tools	are	installed	by	default	only	for	the	default	instance	of	SQL	Server	2000,	not	for	any
named	instances.

See	Also

Net-Libraries	and	Network	Protocols

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Select	Components
On	the	Select	Components	screen,	you	can	choose	components	and
subcomponents	to	install,	or	to	reinstall	if	not	set	up	initially.	Options	for	a
typical	installation	are	selected	by	default.	Select	the	components	to	install	or
reinstall	and	clear	all	others.

Note		You	cannot	remove	components	by	clearing	check	boxes	on	this	screen.
The	only	way	to	remove	installed	components	is	to	remove	SQL	Server	entirely.

Options
Components

Lists	the	main	components	of	SQL	Server

Sub-components

Lists	the	sub-components	available	for	the	selected	component

SQL	Server	components	and	respective	subcomponents	include:

Server	Components

SQL	Server

Upgrade	Tools

Replication	Support

Full-Text	Search

Debug	Symbols

Performance	Counters

Management	Tools

Enterprise	Manager

Profiler

Query	Analyzer

DTC	Client	Support

Conflict	Viewer

Client	Connectivity

Books	Online

Books	Online	on	Disk

Development	Tools

Headers	and	Libraries

MDAC	SDKs

Backup/Restore	API

Debugger	Interface

Code	Samples

Choice	of	many	code	samples

See	Also

How	to	add	components	to	an	instance	of	SQL	Server	2000	(Setup)

SQL	Server	Setup	Help

Server	Components
These	components	can	be	installed	from	the	Server	Components	category	in	the
Select	Components	dialog	box,	when	running	Setup.	Server	Components	are
included	when	the	option	for	Server	and	Client	Tools	is	selected	as	an	initial
installation	choice.

SQL	Server

Installs	the	SQL	Server	relational	database	engine	and	other	core	tools.	If	any
SQL	Server	program	files	are	installed,	the	SQL	Server	component	must	be
installed.

Note		When	installing	the	SQL	Server	component,	the	Setup	program	also
installs	the	bcp,	isql,	and	osql	utilities,	ODBC,	OLE	DB,	and	DB-Library.

Upgrade	Tools

Installs	the	SQL	Server	Upgrade	Wizard,	used	to	upgrade	SQL	Server	6.5
databases	to	the	current	version.

Replication	Support

Installs	the	scripts	and	binary	files	used	for	replication.

Full-Text	Search

Installs	the	Microsoft	full-text	search	engine	(Microsoft	Search	service),
which	extends	the	ability	to	search	on	character	columns	beyond	the	basic
equality	and	LIKE	operators.

Debug	Symbols

Installs	the	debug	symbols	for	installations.

Performance	Counters

Installs	performance	counters	for	use	with	installations.

See	Also

Installation	Definition

SQL	Server	Setup	Help

Management	Tools
These	components	can	be	installed	from	the	Management	Tools	category	in	the
Select	Components	dialog	box,	when	running	Setup.	Management	tools	are
included	when	the	option	for	Client	Tools	Only	is	selected	as	an	initial
installation	choice.

Enterprise	Manager

Used	to	perform	server	and	enterprise	administrative	tasks.

Profiler

Used	to	monitor,	record,	and	support	auditing	of	Microsoft	SQL	Server
database	activity.

Query	Analyzer

Used	to	enter	Transact-SQL	statements	and	procedures	interactively.	Also
provides	graphical	query	analysis	in	the	form	of	graphical	showplans.

DTC	Client	Support

Used	to	extend	database	transactions	across	multiple	servers.

Microsoft	Distributed	Transaction	Coordinator	(MS	DTC)	coordinates
transactions	across	a	network	of	systems	running	Microsoft	Windows	NT®,
Microsoft	Windows®	98,	and	Microsoft	Windows	95.

Conflict	Viewer

Used	to	view	and,	if	necessary,	change	the	way	synchronization	conflicts	are
resolved.

See	Also

Installation	Definition

How	to	install	client	tools	only	(Setup)

SQL	Server	Setup	Help

Client	Connectivity
The	client	connectivity	component	is	an	option	in	the	Select	Components	dialog
box	in	Setup.	The	client	connectivity	component	is	used	to	communicate
between	clients	and	servers,	and	includes	the	Microsoft	Data	Access
Components	(MDAC)	and	network	libraries	for	DB-Library,	ODBC,	and	OLE
DB.

This	component	has	no	subcomponents.	Client	Connectivity	is	installed	when
the	option	for	Connectivity	Only	is	selected	as	an	initial	installation	choice.

Note		To	connect	to	a	named	instance	of	SQL	Server	2000,	MDAC	2.6	must	be
installed	on	the	client	computer.

See	Also

Installation	Definition

Distributing	SQL	Server	with	Applications

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Books	Online
This	component	can	be	installed	from	the	Books	Online	category	in	the	Select
Components	dialog	box	in	Setup.	The	Books	Online	component	includes	both
the	full	SQL	Server	Books	Online	for	SQL	Server	2000	and	online	Help,
available	by	clicking	the	Help	button	or	pressing	the	F1	key	in	dialog	boxes	and
interface	elements.

Books	Online	on	Disk

Installs	the	complete	documentation	set	on	your	local	drive	in	the	default
shared	tools	locations:	\Program	Files\Microsoft	SQL
Server\80\Tools\Books.

Note		You	may	want	to	view	information	in	SQL	Server	Books	Online	for
Microsoft®	SQL	Server™	7.0.	For	more	information,	see	How	to	access	SQL
Server	Books	Online	for	SQL	Server	7.0.

SQL	Server	Setup	Help

Development	Tools
These	components	can	be	installed	from	the	Development	Tools	category	in	the
Select	Components	dialog	box	in	Setup.	To	install	development	tools,	choose	a
custom	installation	in	the	Setup	Type	screen.	The	Debugger	Interface	is	an
exception;	it	is	included	when	you	choose	to	install	a	typical	installation.

Headers	and	Libraries

Installs	the	include	(*.h)	files	and	library	(*.lib)	files	needed	by	a	C
developer	to	create	programs	that	use	OLE	DB,	ODBC,	DB-Library,	Open
Data	Services,	SQL-DMO,	Embedded	SQL	for	C,	and	MS	DTC.	These	files
are	installed	in	the	\Program	Files\Microsoft	SQL
Server\80\Tools\DevTools\Include	and	the	\...\DevTools\Lib	directories	by
default	(shared	tools	location).

MDAC	SDKs

Installs	MDAC	and	XML	Software	Development	Kits.

Backup/Restore	API

Installs	the	header	files,	sample	programs,	and	documentation	required	by
software	vendors	to	develop	custom	applications	to	back	up	and	restore
Microsoft	SQL	Server	databases.

Debugger	Interface

Installs	an	interface	for	stored	procedure	debugging.

SQL	Server	Setup	Help

Code	Samples
The	samples	component	is	available	from	the	Code	Samples	category	in	the
Select	Components	dialog	box	in	Setup.	This	component	installs	programming
sample	files	used	for	reference	when	you	write	programs	for	Microsoft®	SQL
Server™	2000.	These	files	are	installed	in	folders	in	the	\Program
Files\Microsoft	SQL	Server\80\Tools\DevTools\Samples	directory	by	default
(shared	tools	location).	You	can	install	any	or	all	of	these	samples.

Note		Sample	code	for	using	a	virtual	device	to	backup	or	restore	data	is
included	in	the	Backup/Restore	API,	a	sub-component	of	the	Development	Tools
component.	For	more	information,	see	Development	Tools.

Option Name
ADO Microsoft	ActiveX®	Data	Objects
DBLIB DB-Library
Desktop Desktop	Engine
DTS Data	Transformation	Services
ESQLC Embedded	SQL	for	C
Misc Miscellaneous	Samples
MSDTC Microsoft	Distributed	Transaction	Coordinator
ODBC Open	Database	Connectivity
ODS Open	Data	Services
OLE	Automation OLE	Automation
Replication Replication
Silver Sample	Database	Schemas
SQL-DMO SQL	Distributed	Management	Objects
SQL-NS SQL	Namespace
Utils Sample	Utilities
XML XML	Samples

SQL	Server	Setup	Help

Network	Libraries
On	the	Network	Libraries	screen,	you	can	select	network	libraries	to	install	for
Microsoft®	SQL	Server™	2000.	Network	libraries	are	used	to	pass	network
packets	between	clients	and	a	server	running	SQL	Server.	The	network	libraries,
implemented	as	dynamic-link	libraries	(DLLs),	perform	the	network	operations
required	to	communicate	using	specific	interprocess	communication	(IPC)
mechanisms.

A	server	can	listen	on,	or	monitor,	multiple	network	libraries	at	one	time.	During
installation,	SQL	Server	Setup	installs	all	of	the	Net-Libraries	onto	the	computer
and	allows	you	to	configure	some	or	all	of	the	Net-Libraries.	If	a	particular	Net-
Library	is	not	configured,	the	server	cannot	listen	on	that	Net-Library.	After
installation,	you	can	change	these	configurations	using	the	Server	Network
utility.

For	a	clustered	installation,	only	Named	Pipes	and	TCP/IP	are	available.	When
installing	a	clustered	instance,	the	unsupported	network	libraries	are	unavailable.
When	you	install	named	instances,	the	Multiprotocol,	AppleTalk,	and	Banyan
VINES	protocols	are	unavailable.

Options
Named	Pipes

Named	Pipes	support	is	required	on	Microsoft	Windows	NT®	and	Microsoft
Windows®	2000	installations	of	SQL	Server.	Server-side	Named	Pipes	is	not
supported	on	Microsoft	Windows	98.	By	default,	SQL	Server	listens	on	the
standard	pipe	for	Named	Pipes	Net-Library	connections.

Named	Pipes	name

Paths	for	the	default	and	named	instances	differ:

Default	instance:	\\.\pipe\sql\query

Named	instance:	\\.\pipe\MSSQL$instancename\sql\query

After	SQL	Server	is	installed,	you	can	change	the	pipe	name.

TCP/IP	Sockets

This	Net-Library	allows	SQL	Server	to	communicate	by	using	standard
Windows	Sockets	as	the	IPC	method	across	the	TCP/IP	protocol.	By	default,
all	installations	of	Microsoft	SQL	Server	2000	on	all	operating	systems	use
the	TCP/IP	Sockets	Net-Library.

Note	the	following	when	using	TCP/IP	Sockets:

SQL	Server	uses	UDP	port	1434	to	establish	connections	from	SQL
Server	2000	clients.	This	socket	number	is	also	reserved	for	SQL	Server
by	Internet	Assigned	Number	Authority	(IANA).

Do	not	use	dynamic	ports	and	do	not	set	a	proxy	server	address,	because
the	port	you	are	listening	on	can	change	at	each	service	startup.

Port	Number

If	you	set	SQL	Server	to	listen	on	TCP/IP,	type	the	TCP/IP	port	number	in
the	Port	number	box	only	if	you	want	SQL	Server	to	listen	on	a	port	address
different	from	the	default	address.	This	is	the	port	that	SQL	Server	listens	on
when	accepting	connections	from	TCP/IP	Sockets	clients.	The	default
number	for	a	default	instance	is	1433,	the	official	IANA	socket	number	for
SQL	Server.	The	port	for	a	named	instance	is	dynamically	assigned	when	the
instance	is	first	started,	unless	you	set	an	alternate	port	during	setup.

Remote	Winsock	proxy	address

If	you	set	SQL	Server	to	listen	on	a	proxy	server	using	Microsoft	Proxy
Server	over	TCP/IP	Sockets,	type	the	proxy	server	address	in	the	Remote
WinSock	proxy	address	box	when	you	set	up	the	TCP/IP	Sockets	Net-
Library.

Multiprotocol

The	Multiprotocol	Net-Library	uses	the	Windows	NT	remote	procedure	call
(RPC)	facility.	In	addition,	the	Multiprotocol	Net-Library:

Communicates	over	most	IPC	mechanisms	supported	by	Windows	NT.
Only	TCP/IP	Sockets,	NWLink	IPX/SPX,	and	Named	Pipes	are

considered	tested	and	supported.

Allows	the	use	of	Windows	Authentication	over	all	protocols	that	RPC
supports.

Supports	encryption	for	user	password	authentication	as	well	as	data.

Offers	performance	comparable	to	native	IPC	Net-Libraries	for	most
applications.

Enable	Multiprotocol	encryption

Use	Multiprotocol	encryption	only	for	compatibility	with	existing	systems.
The	Secure	Sockets	Layer	(SSL)	encryption	that	can	be	enabled	using	the
Server	Network	Utility	(after	running	Setup)	is	a	more	comprehensive
encryption	solution.	Multiprotocol	encryption	is	not	supported	on	Windows
98	servers.

Note		The	Multiprotocol	Net-Library	is	not	supported	with	named	instances.

NWLink	IPX/SPX

This	Net-Library	allows	SQL	Server	to	communicate	using	the	NWLink
IPX/SPX	protocol.

Novell	Bindery	Service	Name

If	you	set	up	SQL	Server	to	listen	on	NWLink	IPX/SPX,	the	Setup	program
prompts	you	for	the	Novell	Bindery	service	name	in	which	to	register	SQL
Server	on	the	Novell	network.	The	default	service	name	is	the	computer
name	of	the	server	computer.	The	Net-Library	allows	Novell	SPX	clients	to
connect	to	SQL	Server.

The	server	NWLink	IPX/SPX	Net-Library	is	not	available	on	Windows	98
and	Windows	95.

AppleTalk	ADSP

The	server	AppleTalk	(ADSP)	Net-Library	allows	Apple	Macintosh®	clients
to	connect	to	SQL	Server	using	native	AppleTalk	(as	opposed	to	TCP/IP

Sockets).

Note		The	AppleTalk	Net-Library	has	not	been	enhanced	for	SQL	Server	2000
and	runs	at	a	SQL	Server	7.0	level	of	functionality.	This	Net-Library	will	not	be
supported	in	a	future	release	of	SQL	Server	2000	and	is	not	supported	on	named
instances.

Apple	Talk	Service	Object

If	you	set	up	SQL	Server	to	listen	on	AppleTalk,	Setup	prompts	you	for	the
AppleTalk	service	object	name.	The	AppleTalk	service	object	name	is
assigned	by	your	system	administrator.	It	is	not	necessary	to	enter	an
AppleTalk	zone	because	the	local	zone	is	used	when	registering	the	service.

The	AppleTalk	Net-Library	is	not	supported	on	Windows	98	and	Windows
95.

Banyan	VINES

SQL	Server	supports	Banyan	VINES	Sequenced	Packet	Protocol	(SPP)	as
the	IPC	method	across	the	Banyan	VINES	IP	network	protocol.	Banyan
VINES	support	for	clients	and	servers	running	Windows	NT	is	available	for
SQL	Server	on	the	Intel®	platform	only;	it	is	not	available	on	Windows	98
and	Windows	95.

Note		The	Banyan	VINES	Net-Library	has	not	been	enhanced	and	runs	at	a	SQL
Server	7.0	level	of	functionality.	This	Net-Library	will	not	be	supported	in	a
future	release	of	SQL	Server	2000	and	is	not	supported	on	named	instances.

Street	Talk	Service	name

If	you	set	up	SQL	Server	to	listen	on	Banyan	VINES,	the	Setup	program
prompts	you	for	a	StreetTalk	service	name.	This	has	the	form
servicename@group@org,	where	servicename	is	the	StreetTalk	computer-
based	service	name	used	by	SQL	Server,	group	is	the	group,	and	org	is	the
organization.	The	computer-based	service	name	used	by	SQL	Server	must
first	be	created	by	using	the	MSERVICE	program	included	with	your
Banyan	VINES	software.	Also,	to	start	SQL	Server,	you	must	be	logged	in
with	administrative	permissions.

Enable	protocol	encryption	for	all	libraries

Select	this	check	box	to	enable	protocol	encryption	for	all	network	libraries.

To	use	protocol	encryption,	you	must	have	a	certificate	on	the	server.	For
information	about	obtaining	a	certificate,	see	the	Microsoft	Windows
documentation.	If	you	do	not	have	a	certificate,	you	can	enable	encryption
after	installing	SQL	Server	using	the	Server	Network	Utility.

Default	Net-Library	Settings
Note		TCP/IP	networking	must	be	enabled	before	running	SQL	setup.

All	Net-Libraries	are	installed	by	the	Setup	program.	The	table	shows	the	default
server	and	client	Net-Library	settings	by	operating	system.

Operating	system
Server	Net-Library
settings

Client	Net-Library
settings

Windows	98 TCP/IP	Sockets,	Shared
Memory

TCP/IP	Sockets

Windows	95 Not	applicable TCP/IP	Sockets
Windows	NT	4.0	(Server
and	Workstation)

TCP/IP	Sockets,	Shared
Memory,	Named	Pipes

TCP/IP	Sockets,
Named	Pipes

Windows	2000	(all
versions)

TCP/IP	Sockets,	Shared
Memory,	Named	Pipes

TCP/IP	Sockets,
Named	Pipes

See	Also

Configuring	Client	Net-Libraries

Net-Libraries	and	Network	Protocols

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

Services	Accounts
Use	the	Services	Accounts	screen	in	Setup	to	assign	a	logon	account	to	each	of
the	two	Microsoft®	SQL	Server™	services,	SQL	Server	and	SQL	Server	Agent.
Either	the	local	system	or	the	domain	user	account	is	used,	and	you	can	use	the
same	account	for	each	service.	The	default	setting	is	to	use	the	same	account	for
each	service,	and	to	automatically	start	each	service.	To	use	the	default	setting,
enter	your	domain	password	and	click	Next.

You	can	also	customize	settings	for	each	service.	You	can	enter	one	logon
account	for	both	services,	or	specify	an	account	for	each.	To	later	change	options
set	on	the	Services	Accounts	screen,	run	the	Services	application	in	Windows
Control	Panel.

IMPORTANT		To	create	or	maintain	a	Microsoft	SQL	Server™	2000	failover
cluster,	you	must	be	logged	on	to	the	computer	with	administrator	privileges,
that	is,	be	a	member	of	the	Administrators	local	group	of	the	computer	or
domain.	For	clustering	this	means	that	you	must	be	an	administrator	of	all	nodes
of	the	cluster.

When	running	SQL	Server	2000	on	Microsoft	Windows	NT	4.0,	in	addition
to	being	logged	on	as	an	administrator,	you	must	configure	both	SQL	Server
and	SQL	Server	Agent	to	run	as	administrator	accounts.

Options
Use	the	same	account	for	each	service.	Auto	start	SQL	Server	Service.

The	default	option:	One	account	is	used	for	both	SQL	Server	and	SQL	Server
Agent.	These	services	start	automatically	when	the	operating	system	starts.

Customize	the	settings	for	each	service.

Allows	you	to	use	different	settings	for	the	two	services.

Services

Select	a	service	for	which	you	want	to	customize	settings.

SQL	Server

Select	this	option	to	customize	settings	for	the	service,	Microsoft	SQL
Server.

SQL	Server	Agent

Select	this	option	to	customize	settings	for	the	service,	Microsoft	SQL	Server
Agent.

Service	Settings

Select	service	settings	as	required.

Use	the	Local	System	account

The	local	system	account	does	not	require	a	password,	does	not	have
network	access	rights	in	Windows	NT	4.0,	and	may	restrict	your	SQL	Server
installation	from	interacting	with	other	servers.

Note		In	Windows	2000,	the	local	system	account	does	allow	network	access.

Use	a	Domain	User	account

A	domain	user	account	uses	Windows	Authentication	to	set	up	and	connect
to	SQL	Server.	By	default,	account	information	appears	for	the	domain	user
account	currently	logged	on	to	the	computer.

Username

Accept	or	change	the	domain	username.

Password

Enter	the	domain	password.

Domain

Accept	or	change	the	domain	name.

Auto	Start	Service

Select	this	option	to	automatically	start	a	service	when	your	operating	system
starts.	This	option	is	available	only	when	customizing	the	settings	for	each
service.

The	SQL	Server	Agent	service	is	dependent	on	the	SQL	Server	service	in
that	you	can	autostart	the	SQL	Server	Agent	service	only	if	you	autostart	the

SQL	Server	service	as	well.

Note		When	you	click	Back	in	the	Services	Accounts	dialog	box,	the	window
you	return	to	reverts	to	the	default	options.	Options	specified	earlier	are	not
retained.

See	Also

Setting	Up	Windows	Services	Accounts

Changing	Passwords	and	User	Accounts

SQL	Server	Setup	Help

Authentication	Mode
Use	this	screen	to	choose	the	security	(authentication)	mode	you	want	to	use	for
this	installation	of	Microsoft®	SQL	Server™	2000.	If	you	select	Mixed	Mode,
you	are	prompted	to	enter	and	confirm	the	system	administrator	password.	After
successful	connection	to	SQL	Server,	the	security	mechanism	is	the	same	for
both	modes.

Options
Windows	Authentication	Mode

When	a	user	connects	through	a	Microsoft	Windows®	user	account,	SQL
Server	validates	the	account	name	and	password	using	information	in	the
Windows	operating	system.

Mixed	Mode	(Windows	Authentication	and	SQL	Server	Authentication)

Allows	users	to	connect	using	Windows	Authentication	or	SQL	Server
Authentication.	Users	who	connect	through	a	Microsoft	Windows	user
account	can	make	use	of	trusted	connections	(connections	validated	by
Windows)	in	either	Windows	Authentication	Mode	or	Mixed	Mode.	SQL
Server	Authentication	is	provided	for	backward	compatibility.

Add	password	for	the	sa	login

Enter	and	confirm	the	system	administrator	password.

Blank	Password	(not	recommended)

If	a	user	attempts	to	connect	to	an	instance	of	SQL	Server	providing	a	blank
login	name,	SQL	Server	uses	Windows	Authentication.	Additionally,	if	a
user	attempts	to	connect	to	an	instance	of	SQL	Server	configured	for
Windows	Authentication	Mode	using	a	specific	login,	the	login	is	ignored
and	Windows	Authentication	is	used.

See	Also

Adding	a	SQL	Server	Login

Assigning	an	sa	Password

Authentication	Modes

Creating	Security	Accounts

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Choose	Licensing	Mode
Use	this	dialog	box	to	set	the	licensing	mode	enabling	your	clients	to	access	this
instance	of	Microsoft®	SQL	Server™.	SQL	Server	2000	supports	two	client
access	licensing	modes,	one	for	each	device	and	another	for	each	processor.

A	device	in	this	context	can	be	a	workstation,	terminal,	or	any	other	device
running	a	SQL	Server	application	connected	to	an	instance	of	SQL	Server.

A	processor	refers	to	a	central	processing	unit	(CPU)	installed	on	a	computer
running	an	instance	of	SQL	Server	2000.	One	computer	may	have	multiple
processors	installed,	requiring	multiple	processor	licenses.

Once	a	licensing	mode	is	set,	you	cannot	change	modes.	You	can	add	device	or
processor	licenses	after	installing	SQL	Server,	using	the	SQL	Server	2000
Licensing	Setup	utility	in	Control	Panel.	(Do	not	confuse	this	licensing	utility
with	the	Windows	Licensing	utility,	also	found	in	Control	Panel.)

For	more	information	about	licensing	modes,	see	the	Microsoft	license
agreement	for	SQL	Server	2000.

Options
Licensing	Mode

If	accessing	this	dialog	box	from	Control	Panel,	the	mode	chosen	during	setup	is
selected	by	default,	along	with	the	number	of	devices	or	processors	you	have
previously	selected.

Per	Seat	for

The	Per	Seat	licensing	mode	requires	a	Client	Access	License	for	each
device	that	will	access	SQL	Server	2000	Server.	Per	Seat	is	often	more
economical	for	networks	in	which	clients	connect	to	more	than	one	server.

In	the	edit	box,	select	the	number	of	devices	to	license.

Processor	License	for

With	Processor	licensing,	a	license	is	needed	for	each	processor	installed	on
the	computer	running	SQL	Server.	The	Processor	License	allows	any	number

of	devices	to	access	the	server,	whether	through	an	Intranet	or	over	the
Internet.

Using	Processor	licensing,	SQL	Server	2000	can	take	advantage	of	each
installed	processor,	and	support	an	unlimited	number	of	client	devices.	A
customer	that	provides	access	to	SQL	Server	databases	over	the	Internet,	or
that	has	a	large	number	of	users,	will	generally	choose	the	Processor	License.

In	the	edit	box,	select	the	number	of	processors	to	license.

Continue

Click	the	Continue	button	to	complete	the	installation	process,	or	after
modifying	the	number	of	devices	or	processors	you	want	to	license.

SQL	Server	Setup	Help

Installing	a	Remote	Configuration
Microsoft®	SQL	Server™	2000	can	be	installed	on	a	remote	computer,	that	is,	a
computer	other	than	the	one	on	which	Setup	is	running.	Before	performing	a
remote	installation:

Ensure	that	the	local	and	remote	computers	are	running	Microsoft
Windows	NT®	or	Windows®	2000.

Ensure	that	the	local	and	remote	computers	have	an	Intel®-compatible
processor.	

Ensure	that	you	are	logged	on	to	the	local	computer	with	a	user	account
that	has	administrative	privileges	on	the	remote	computer.

A	remote	setup	is	much	like	a	normal	installation,	with	two	additional	dialog
boxes:

The	Remote	Setup	Information	dialog	box,	which	is	also	used	when
Setup	is	run	on	a	computer	that	is	part	of	a	cluster.	For	more
information,	see	Remote	Setup	Information.

The	Select	Computer	dialog	box,	which	allows	you	to	select	a	remote
computer	from	the	list	of	computers	within	the	connected	domains.	The
list	may	include	computers	not	available	for	this	installation,	because
permission	must	be	granted	before	installing	on	a	remote	computer.

A	computer	network	name	may	be	entered	instead	of	choosing	from	the
list.

See	Also

Computer	Name

SQL	Server	Setup	Help

Remote	Setup	Information
Remote	setup	information	is	required	to	define	security	in	two	different	setup
situations:

When	you	choose	to	install	Microsoft®	SQL	Server™	2000	on	a	remote
computer.

When	Setup	is	run	on	a	computer	that	is	part	of	a	cluster,	even	if	you	are
not	creating	or	maintaining	a	failover	cluster	installation	of	SQL	Server.

For	a	remote	installation,	SQL	Server	Setup	collects	the	information	you	enter	in
Setup	dialog	boxes,	recording	the	entries	into	the	Setup.iss	file.	At	the	same
time,	the	remote	setup	process	starts	a	remote	service,	copies	files	to	the	\admin$
share	directory,	and	runs	an	unattended	installation	on	the	remote	computer
using	the	options	specified	in	Setup.iss.

For	clustered	computers,	the	Remote	Setup	Information	box	is	displayed
because	any	installation	on	a	failover	cluster	system	needs	the	administrator
account	to	install	Microsoft	Distributed	Transaction	Coordinator	on	both	nodes,
or	to	verify	the	presence	of	MS	DTC.	Administrator	information	must	be	entered
that	is	valid	for	all	selected	nodes	in	the	failover	cluster	system.

Options
Username,	Password,	and	Domain

Specify	the	user	account	under	which	SQL	Server	Setup	starts	a	service	on
the	remote	computer.	This	user	account	must	be	an	administrator	on	the
remote	computer	and	have	read	access	to	the	Setup	source	files	directory.

Do	not	confuse	the	user	account	entered	on	this	screen	with:

The	user	account	logged	on	to	the	local	computer.

The	user	account	assigned	in	SQL	Server	Setup	to	the	SQL	Server	and
SQL	Server	Agent	services.

Each	of	these	user	accounts	is	specified	separately.	However,	you	can	use	the
same	user	information	in	each	case.	That	is,	you	can	use	the	same	name,
password,	and	Windows	domain	for	each	account.

Target	computer

The	name	of	the	remote	computer	entered	in	the	Computer	Name	dialog
box	is	shown	in	static	text.

Target	path

The	name	of	the	remote	computer	and,	in	Universal	Naming	Convention
format,	the	directory	on	the	remote	computer	where	SQL	Server	is	to	be
installed.	For	example:

\\target_computer\C$\Program	Files\Microsoft	SQL	Server

Setup	Source	Files

Location	of	the	setup	program	files	used	for	the	remote	installation.

To	perform	a	remote	installation

SQL	Server	Setup	Help

Advanced	Installation	Options
When	you	select	the	Advanced	option	in	the	Installation	Options	Setup	screen,
the	Advanced	Options	dialog	box	provides	three	choices.

Options
Record	Unattended	.ISS	file

Create	a	setup	initialization	file	for	unattended	installations.

Registry	Rebuild

Rebuild	registry	for	a	corrupted	installation.

Maintain	a	virtual	server	for	failover	clustering

Make	changes	to	existing	clusters,	such	as	revising	the	name,	or	adding	and
removing	cluster	nodes.

See	Also

Performing	an	Unattended	Installation

Rebuilding	the	Registry

Installing	a	Virtual	Server	Configuration

SQL	Server	Language	Support

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Installing	a	Virtual	Server	Configuration
The	topics	in	this	section	provide	information	about	the	Setup	screens	used	in
setting	up	and	maintaining	failover	clustering.

SQL	Server	Setup	Help

Failover	Clustering:	Defining	the	Virtual	Server
Use	the	Failover	Clustering	screen	to	define	the	virtual	server	for	a	new	cluster,
or	to	maintain	the	virtual	server	definition	for	an	existing	cluster.	You	can	add
and	remove	IP	addresses;	multiple	IP	addresses	are	allowed	for	each	virtual
server.

Options
Virtual	Server	Name

Displays	the	network	name	of	the	virtual	server.	This	is	the	name	users	will
see	when	they	connect	to	the	virtual	server.

When	upgrading	to	a	cluster,	this	name	is	entered	in	the	Virtual	Server
Name	dialog	box.

IP	address

Enter	the	IP	address	or	addresses	used	to	connect	to	the	virtual	server.

SubNet

Displays	the	Subnet,	which	is	supplied	by	MSCS.

Network

Displays	the	Network	name	you	assigned	each	subnet	during	setup	of	MSCS.

Add

Adds	the	specified	IP	address	and	SubNet	to	the	named	virtual	server.

Remove

Removes	the	specified	IP	address	and	SubNet	from	the	named	virtual	server.

See	Also

Before	Installing	Failover	Clustering

Creating	a	Failover	Cluster

Upgrading	to	a	SQL	Server	2000	Failover	Cluster

SQL	Server	Setup	Help

Cluster	Management	Screen
Use	the	Cluster	Management	screen	to	review	the	cluster	definition	provided
by	Microsoft®	SQL	Server™	2000,	and	make	changes	if	necessary.	After	you
have	specified	nodes	for	the	virtual	server,	Setup	installs	or	uninstalls	the	SQL
Server	binary	files	on	each	node.

CAUTION		If	you	modify	the	node	list	of	a	virtual	server	using	the	quorum
resource,	your	cluster	may	not	fail	over	properly.	For	more	information,	see
Modify	Node	List	Warning.

Options
Available	Nodes

A	list	of	computers	that	can	be	added	to	the	current	virtual	server	definition.
If	a	computer	you	want	is	not	available	at	this	time,	you	can	run	Setup	later
to	add	it	to	the	virtual	server	definition.

Configured	Nodes

List	of	computers	currently	configured	in	the	current	virtual	server
definition.	The	computer	at	the	top	of	the	list	is	the	preferred	node.

Unavailable	Nodes

Computers	that	are	currently	offline	or	not	available	to	be	added	to	a	cluster
definition.

Add

Adds	the	selected	available	node	to	the	list	of	configured	nodes.

Remove

Removes	the	selected	configured	node	from	the	list	of	configured	nodes.

See	Also

Failover	Clustering

Maintaining	a	Failover	Cluster

Cluster	Disk	Selection	Screen

Upgrading	to	a	SQL	Server	2000	Failover	Cluster

SQL	Server	Setup	Help

Cluster	Disk	Selection	Screen
Use	the	Cluster	Disk	Selection	screen	to	select	a	cluster	group	during	the
installation	of	a	new	virtual	server	or	during	an	upgrade	to	a	cluster.	A	cluster
group	is	composed	of	one	or	more	shared	cluster	disks	within	a	group,	and	can
contain	at	most	one	Microsoft®	SQL	Server™	virtual	server.	The	Cluster	Disk
Selection	screen	lists	only	those	groups	that	already	have	the	shared	cluster	disk
added	as	a	resource.	For	more	information	about	cluster	disks,	see	Creating	a
Failover	Cluster.

CAUTION		Do	not	select	the	quorum	disk	(the	last	group	in	the	list)	because	the
quorum	disk	must	be	treated	as	a	special	resource.	Clustering	may	fail	if	selected
as	a	cluster	group.	A	warning	message	appears	if	you	select	the	quorum	disk.	For
more	information,	see	Quorum	Disk	Selection	Warning.

When	using	a	small	cluster,	the	quorum	disk	may	be	the	only	choice	available.
Use	it	only	for	testing	purposes	or	to	explore	failover	clustering.

IMPORTANT		Never	use	the	quorum	group	for	production	purposes.

See	Also

Failover	Clustering

Maintaining	a	Failover	Cluster

Modify	Node	List	Warning

SQL	Server	Setup	Help

Quorum	Disk	Selection	Warning
The	following	warning	message	appears	if	you	select	the	quorum	disk	(the	last
group	in	the	list)	on	the	Cluster	Disk	Selection	screen.	This	warning	applies	to
both	Microsoft®	Windows	NT®	4.0	and	Microsoft	Windows®	2000:

It	is	strongly	recommended	that	you	not	use	the	quorum	group	with
SQL	Server.

The	quorum	disk	is	a	special	resource	in	the	Windows	operating	system.	If	you
select	the	quorum	disk,	you	may	later	want	to	restrict	ownership	of	Microsoft®
SQL	Server™	to	a	subset	of	the	cluster	nodes.	However,	the	quorum	group
owner	list	must	include	all	of	the	nodes	in	the	cluster.

For	example,	you	may	have	a	two-node	cluster	(Node1	and	Node2)	with	SQL
Server	set	to	use	the	quorum	disk	group.	If	you	then	modify	SQL	Server	to	have
only	Node1	in	the	virtual	server	definition,	the	quorum	disk	group	is	prevented
from	failing	over	to	Node2.	In	the	event	of	a	failure	of	Node1,	the	result	is	that
you	not	only	lose	the	virtual	SQL	Server,	but	the	entire	MSCS	cluster.

This	is	true	for	Windows	NT	4.0	only.	In	Windows	2000	the	node	list	is	ignored
and	the	quorum	disk	group	can	fail	over	to	any	node	in	the	cluster	configuration.
However,	another	issue	may	arise.	In	the	previous	example,	there	are	no	SQL
Server	program	files	available	on	Node2,	but	the	cluster	group	can	fail	over	to
Node2.	In	this	situation,	SQL	Server	is	unable	to	run	on	Node2	but	the	cluster
group	containing	the	quorum	disk	may	fail	over	anyway,	making	your	SQL
Server	unavailable.

For	more	information	about	the	quorum	disk,	see	the	Windows	NT
documentation.

See	Also

Cluster	Disk	Selection	Screen

Modify	Node	List	Warning

Creating	a	Failover	Cluster

Failover	Clustering	Dependencies

SQL	Server	Setup	Help

Modify	Node	List	Warning
In	the	Cluster	Management	screen,	use	caution	if	you	modify	the	node	list	of	a
Microsoft®	SQL	Server™	2000	virtual	server	using	the	quorum	resource.	If
such	a	node	list	is	modified,	the	following	warning	appears	when	Next	is
clicked:

Modifying	the	node	list	of	the	quorum	resource	may	prevent	your
cluster	from	failing	over	properly.	Are	you	sure	you	want	to	do	this?

The	quorum	resource	itself	is	unable	to	fail	over	to	any	servers	that	you	did	not
select	as	part	of	your	virtual	server	definition.	This	may	jeopardize	the
availability	of	your	failover	cluster.	For	more	information,	see	the	Microsoft
Windows	NT®	documentation.

Note		This	problem	does	not	occur	when	you	run	SQL	Server	2000	on	Microsoft
Windows®	2000.

See	Also

Quorum	Disk	Selection	Warning

Creating	a	Failover	Cluster

Failover	Clustering	Dependencies

SQL	Server	Setup	Help

Performing	an	Unattended	Installation
You	can	perform	an	unattended	installation	of	Microsoft®	SQL	Server™	2000,
in	which	setup	screen	entries	are	made	automatically	using	stored	information.
An	unattended	installation	can	be	convenient	if	you	want	to	perform	several
installations	of	SQL	Server	with	identical	configurations	on	different	computers.
An	unattended	installation	requires	a	setup	initialization	file,	which	can	be
created	in	several	different	ways.

By	default,	each	time	you	install	SQL	Server	using	the	Setup	screens,	the	options
you	select	are	recorded	into	the	setup	initialization	file,	Setup.iss.	Setup.iss	is
placed	in	the	system	root	directory	(%windir%),	and	is	available	to	provide
installation	settings	at	a	later	time.

Note		You	cannot	perform	an	unattended	installation	to	set	up	a	failover	cluster
of	Microsoft	SQL	Server	2000.

Creating	a	Setup	File	Using	the	Record	Unattended	Option
In	Setup,	when	you	select	the	Record	Unattended	.ISS	file	option	in	the
Advanced	Options	screen,	each	subsequent	choice	you	make	in	the	setup
screens	is	recorded	in	the	Setup.iss	file	stored	in	the	system	root	directory.	SQL
Server	files	are	not	installed	in	this	process.	The	Setup.iss	file	can	then	be	run	as
is,	or	revised	in	a	text	editor	if	necessary.

To	record	an	unattended	installation	file

SQL	Server	Setup	Help

Creating	a	Setup	File	Manually
You	create	a	customized	setup	initialization	file	interactively	when	you	select	the
Record	Unattended	option	in	Microsoft®	SQL	Server™	2000	Setup.	You	can
also	edit	files	manually,	to	further	refine	and	customize	setup	initialization	files.

Creating	or	Modifying	a	Setup	File	Using	a	Text	Editor
You	can	use	a	text	editor	to	modify	the	Setup.iss	file	generated	using	the	Record
Unattended	.ISS	file	option.	You	can	also	modify	one	of	the	sample	setup	files
(*.iss)	included	on	the	SQL	Server	2000	compact	disc	or	you	can	create	your
own	setup	file.

To	modify	one	of	the	sample	setup	initialization	files	found	on	the	SQL	Server
compact	disc,	open	the	file	in	a	text	editor	and	modify	as	required.	Keep	the	file
compatible	with	the	Microsoft	Windows®	initialization	file	format	and	save	it
with	the	.iss	file	name	extension.

Format	of	a	Sample	Setup	Initialization	File
A	setup	initialization	file	is	a	text	file	that	uses	the	standard	Windows	.ini	file
format.	Sections	of	the	sample	setup	initialization	file	for	a	typical	installation	of
Microsoft	SQL	Server	2000	are	described	in	the	tables	that	follow.	This	sample
file	(Sqlins.iss)	is	found	in	the	root	directory	of	the	SQL	Server	compact	disc.

Note		In	creating	a	setup	file	for	a	named	instance	of	SQL	Server	2000,	you	must
indicate	the	instance	name	you	want	to	install	and	the	path	required	to	navigate
through	the	setup	screens.	The	Instance	Name	dialog	box	[DlgInstanceName]
section	must	be	modified,	as	well	as	other	places	in	the	setup	file	where	the
instance	name	appears.

[InstallShield	Silent]
This	section	is	required	for	InstallShield.	Do	not	change	the	values.

Entry Value Description
Version v5.00.000 Version	of	the	InstallShield

Silent	response	file.
File Response	File Indicates	this	is	the

Response	File.

[File	Transfer]

Entry Value Description
OverwriteReadOnly NoToAll Do	not	overwrite	read-only

files.

[DlgOrder]
Lists	each	dialog	box	in	the	order	it	appears	in	an	attended	setup.	The	listing	in
this	section	must	correspond	to	the	other	sections	in	the	setup	initialization	file.

Entry Value Description
Dlg0 SdWelcome-0 Initial	dialog	box
Count 14 Number	of	dialog	boxes

listed	in	this	section
Dlg1 DlgMachine-0 Next	dialog	box
Dlg2 DlgInstallMode-0 Next	dialog	box
Dlg3 SdRegisterUser-0 Next	dialog	box
Dlg4 SdLicense-0 Next	dialog	box
Dlg5 CDKEYDialog-0 Next	dialog	box
Dlg	6 DlgClientServer-0 Next	dialog	box
Dlg7 DlgInstanceName-0 Next	dialog	box
Dlg8 SetupTypeSQL-0 Next	dialog	box
Dlg9 DlgServices-0 Next	dialog	box
Dlg10 DLGSqlSecurity-0 Next	dialog	box
Dlg11 DlgCollation-0 Next	dialog	box
Dlg12 DlgServerNetwork-0 Next	dialog	box
Dlg13 SdStartCopy-0 Next	dialog	box
Dlg14 SdFinish-0 Last	dialog	box

[SdWelcome-0]
Corresponds	to	the	Welcome	dialog	box.

Entry Value Description
Result 1 Next

[DlgMachine-0]
Corresponds	to	the	Computer	Name	dialog	box.

Entry Value Description
Type 1 Local	computer
Result 1 Next

[DlgInstallMode-0]
Corresponds	to	the	Installation	Selection	dialog	box.

Entry Value Description
Type 1 Create	a	new	instance
Result 1 Next

[SdRegisterUser-0]
Corresponds	to	the	User	Information	dialog	box.

Entry Value Description
szName <user	name> Name	of	user;	company

name	is	not	required.
Result 1 Next.

[SdLicense-0]
Corresponds	to	the	Software	License	Agreement	dialog	box.

Entry Value Description
Result 1 Yes

[CDKEYDialog-0]
Corresponds	to	the	CD-Key	dialog	box.

Entry Value Description
svCDKey <CD	key	value> Specified	for	each

installation
Result 1 Next

[DlgClientServer-0]
Corresponds	to	the	Installation	Definition	dialog	box.

Entry Value Description
Type 2 Server	and	client	tools
Result 1 Next

[DlgInstanceName-0]
Corresponds	to	the	Instance	Name	dialog	box.

Entry Value Description
InstanceName MSSQLSERVER Designation	of	the	default

instance	(always	the	same).

InstanceName <instance	name> Designation	of	a	named
instance.

Result 1 Next.

[SetupTypeSQL-0]
Corresponds	to	the	Setup	type	dialog	box.

Entry Value Description
szDir %PROGRAMFILES%\Microsoft

SQL	Server
Directory	where	SQL
Server	program	files	are
installed.

Result 301 Typical	(301)

(302	=	Minimum	and
303	=	Custom).

szDataDir %PROGRAMFILES%\Microsoft
SQL	Server

Directory	where	SQL
Server	data	files	are
installed	(same	as
program	files).

[DlgServices-0]

Corresponds	to	the	Services	Accounts	dialog	box.

Entry Value Description
Local-Domain 3855

<other	numeric	value>

Use	the	same	account	for
each	service.

To	customize	the	settings
for	each	service,	see	Setup
Initialization	File	Details.

AutoStart 15 Autostart	Service	is
enabled.

Result 1 Next.

[DlgSQLSecurity-0]

Corresponds	to	the	Authentication	dialog	box.	Choices	shown	here	include
options	not	in	the	sample	Sqlins.iss	file.

Entry Value Description
LoginMode -1 System	default	security	is

used.

The	Microsoft	Windows
NT®	default	is	Windows
Authentication	Mode.

The	Microsoft	Windows	98
default	is	Mixed	Mode,
with	no	sa	password.

LoginMode 1 Windows	Authentication
Mode.

LoginMode 2 Mixed	Mode.
szPwd <choice	of	password> Used	only	with	Mixed

Mode	security.
Result 1 Next.

[DlgCollation-0]

Corresponds	to	the	Collation	Settings	dialog	box.

Entry Value Description
collation_name '	' When	blank,	system	default

collation	is	used.
collation_name <collation	designator> Selected	by	user.	For	more

information,	see	Collation
Settings	in	Setup.

[SdServerNetwork-0]

Corresponds	to	the	Network	Libraries	dialog	box.

Entry Value Description
NetworkLibs 255

245

15

Named	pipes	and	TCP/IP

Value	245	=	TCP/IP	only

Value	15	=	Named	pipes
only

To	customize	network
library	settings,	see	Setup
Initialization	File	Details

TCPPort 1433 Port	address,	for	TCP/IP
TCPPrxy Default Default	proxy,	or	what	is

entered
NMPPipeName \\.\pipe\sql\query Pipe	name
Result 1 Next

[SdStartCopy-0]

Corresponds	to	the	Start	Copying	Files	dialog	box.

Entry Value Description
Result 1 Next

[SdFinish-0]

Corresponds	to	the	Setup	Complete	dialog	box.

Entry Value Description
Result 1 Next
bOpt1 0 Placeholder	for	stock	dialog

box
bOpt2 0 Placeholder	for	stock	dialog

box

See	Also

Performing	an	Unattended	Installation

Setup	Initialization	File	Details

SQL	Server	Setup	Help

Setup	Initialization	File	Details
When	creating	a	customized	setup	initialization	file,	the	Service	Accounts	and
Network	Libraries	dialog	boxes	have	additional	options	used	for	an	unattended
installation.

Services	Accounts	Dialog	Box
To	customize	settings	for	each	service,	you	can	calculate	values	for	the	Local-
Domain	and	AutoStart	entries.

Local-Domain
If	you	want	the	SQL	Server	and	SQL	Server	Agent	services	to	use	different
logon	accounts,	you	can	calculate	the	value	to	enter	for	Local-Domain.	The
Local-Domain	value	is	a	bitwise	logical	OR	combination	of	the	values	shown	in
the	following	table.	For	more	information,	see	|	(Bitwise	OR).

Service Account	to	use Hexadecimal	value
SQL	Server Local	System	account x0000000F
SQL	Server	Agent Local	System	account 0x00000F00
SQL	Server Domain	User	account 0x000000F0
SQL	Server	Agent Domain	User	account 0x0000F000

Additional	entries	must	be	added	to	your	setup	initialization	file	if	the	Domain
User	account	is	used	for	either	service.

When	SQL	Server	service	is	using	a	domain	account,	Setup	looks	for	values	for:

SQLDomain	=	<domain	name>	

SQLDomainAcct	=	<domain	user	account>

SQLDomainPwd	=	<domain	password:	an	encrypted	password
available	only	using	setup	screens>

JavaScript:hhobj_1.Click()

When	SQL	Server	Agent	service	is	using	a	domain	account,	Setup	looks	for
values	for:

AgtDomain	=	<domain	name>	

AgtDomainAcct	=	<domain	user	account>

AgtDomainPwd	=	<domain	password:	an	encrypted	password	available
only	using	setup	screens>

AutoStart

The	value	for	the	AutoStart	option	is	a	bitwise	logical	OR	combination	using
the	following	hexadecimal	values:

Autostart	SQL	Server	=	0x0000000F

Autostart	SQL	Server	Agent	=	0x000000F0

A	value	of	zero	(0)	for	either	service	indicates	no	AutoStart;	manual	startup	is
required.

Network	Libraries	Dialog	Box
To	customize	network	library	settings,	you	can	calculate	a	value	for	the
NetworkLibs	entry	in	the	Network	Libraries	dialog	box.	The	value	for
NetworkLibs	is	a	bitwise	logical	OR	combination	of	the	values	shown	in	the
following	table.	When	a	network	library	is	set,	additional	information	must	be
entered	in	the	setup	initialization	file,	as	shown	in	the	third	column.

Network	Library	to	use
when	connecting	to	the
server

Hexadecimal	value
to	use	in	Bitwise
OR	operation

Additional	information
that	Setup	looks	for

Named	Pipes 0xF NMPPipeName	=	<named
pipe	name>

TCP/IP	Sockets 0xF0 TCPPort	=	<port	number>

TCPPrxy	=	<Remote

Winsock	proxy	address>

NW	Link 0xF000 NWLinkObj	=	<Novell
Bindary	service	name>

Apple	Talk 0xF0000 ApplObj	=	<Apple	Talk
service	object>

Banyan	VINES 0xF00000 BanyanObj	=	<StreetTalk
service	name>

See	Also

Services	Accounts

Network	Libraries

Performing	an	Unattended	Installation

SQL	Server	Setup	Help

Installing	SQL	Server	Using	SMS
You	can	use	Microsoft®	Systems	Management	Server	(SMS)	version	1.2	or	later
to	install	Microsoft	SQL	Server™	2000	automatically	on	multiple	server
computers	running	Microsoft	Windows	NT®	or	Microsoft	Windows®	2000	in
your	enterprise.

The	SQL	Server	compact	disc	contains	a	Package	Definition	Format	(PDF)	file
(Smssql.pdf)	that	automates	creating	a	SQL	Server	package	in	SMS.	The	SQL
Server	package	can	then	be	distributed	and	installed	on	SMS	computers.

Smssql.pdf	includes	instructions	for	running	the	batch	file	Smssqins.bat	with
Sqlins.iss	(the	setup	initialization	file)	for	a	typical	installation.	Both	of	these
files	are	included	on	the	SQL	Server	compact	disc.

To	create	a	custom	command	file,	edit	a	copy	of	Smssql.pdf.

See	Also

Performing	an	Unattended	Installation

Creating	a	Setup	File	Manually

SQL	Server	Setup	Help

Rebuilding	the	Registry
The	Registry	Rebuild	option	on	the	Advanced	Options	Setup	screen	allows
you	to	rebuild	the	registry	for	a	corrupted	Microsoft®	SQL	Server™	installation.
This	process	fixes	only	the	registry;	it	does	not	fix	data	errors	or	the	master
database.

IMPORTANT		To	rebuild	the	registry,	you	must	enter	setup	information	using	the
same	choices	that	you	entered	during	the	initial	installation.	If	you	do	not	know
or	are	not	sure	of	this	information,	do	not	use	this	registry	rebuild	process.	To
restore	the	registry,	you	must	uninstall	and	reinstall	SQL	Server.

To	rebuild	the	registry

SQL	Server	Setup	Help

Working	with	Named	and	Multiple	Instances	of	SQL
Server	2000
With	Microsoft®	SQL	Server™	2000,	you	have	the	option	of	installing	multiple
copies,	or	instances	of	SQL	Server	on	one	computer.	When	setting	up	a	new
installation	of	SQL	Server	2000	or	maintaining	an	existing	installation,	you	can
specify	it	as:

A	default	instance	of	SQL	Server.

This	instance	is	identified	by	the	network	name	of	the	computer	on	which	it
is	running.	Applications	using	client	software	from	earlier	versions	of	SQL
Server	can	connect	to	a	default	instance.	SQL	Server	version	6.5	or	SQL
Server	version	7.0	servers	can	operate	as	default	instances.	However,	a
computer	can	have	only	one	version	functioning	as	the	default	instance	at	a
time.

A	named	instance	of	SQL	Server.

This	instance	is	identified	by	the	network	name	of	the	computer	plus	an
instance	name,	in	the	format	<computername>\<instancename>.
Applications	must	use	SQL	Server	2000	client	components	to	connect
to	a	named	instance.	A	computer	can	run	any	number	of	named
instances	of	SQL	Server	concurrently.	A	named	instance	can	run	at	the
same	time	as	an	existing	installation	of	SQL	Server	version	6.5	or	SQL
Server	version	7.0.	The	instance	name	cannot	exceed	16	characters.

A	new	instance	name	must	begin	with	a	letter,	an	ampersand	(&),	or	an
underscore	(_),	and	can	contain	numbers,	letters,	or	other	characters.
SQL	Server	sysnames	and	reserved	names	should	not	be	used	as
instance	names.	For	example,	the	term	"default"	should	not	be	used	as
an	instance	name	because	it	is	a	reserved	name	used	by	Setup.

Single	and	multiple	instances	of	SQL	Server	2000	(default	or	named)	are
available	using	the	SQL	Server	2000	Personal	Edition,	the	SQL	Server	2000
Standard	Edition,	or	the	SQL	Server	2000	Enterprise	Edition.

Default	Instances
You	cannot	install	a	default	instance	of	SQL	Server	2000	on	a	computer	that	is
also	running	SQL	Server	7.0.	You	must	either	upgrade	the	SQL	Server	7.0
installation	to	a	default	instance	of	SQL	Server	2000,	or	keep	the	default	instance
of	SQL	Server	7.0	and	install	a	named	instance	of	SQL	Server	2000.

You	can	install	a	default	instance	of	SQL	Server	2000	on	a	computer	running
SQL	Server	6.5,	but	the	SQL	Server	6.5	installation	and	the	default	instance	of
SQL	Server	2000	cannot	be	running	at	the	same	time.	You	must	switch	between
the	two	using	the	SQL	Server	2000	vswitch	command	prompt	utility.

Multiple	Instances
Multiple	instances	occur	when	you	have	more	than	one	instance	of	SQL	Server
2000	installed	on	one	computer.	Each	instance	operates	independently	from	any
other	instance	on	the	same	computer,	and	applications	can	connect	to	any	of	the
instances.	The	number	of	instances	that	can	run	on	a	single	computer	depends	on
resources	available.	The	maximum	number	of	instances	supported	in	SQL	Server
2000	is	16.

When	you	install	SQL	Server	2000	on	a	computer	with	no	existing	installations
of	SQL	Server,	Setup	specifies	the	installation	of	a	default	instance.	However,
you	can	choose	to	install	SQL	Server	2000	as	a	named	instance	instead	by
clearing	the	Default	option	in	the	Instance	Name	dialog	box.

A	named	instance	of	SQL	Server	2000	can	be	installed	at	any	time:	before
installing	the	default	instance	of	SQL	Server	2000,	after	installing	the	default
instance	of	SQL	Server	2000,	or	instead	of	installing	the	default	instance	of	SQL
Server	2000.

Each	named	instance	is	made	up	of	a	distinct	set	of	services	and	can	have
completely	different	settings	for	collations	and	other	options.	The	directory
structure,	registry	structure,	and	service	names	all	reflect	the	specific	instance
name	you	specify.

See	Also

Multiple	Instances	of	SQL	Server

Naming	Conventions	for	Instances	of	SQL	Server	2000

Network	Protocols	for	Named	Instances

File	Locations	for	Multiple	Instances	of	SQL	Server

Working	with	Instances	and	Versions	of	SQL	Server

SQL	Server	Setup	Help

Naming	Conventions	for	Instances	of	SQL	Server
2000
Because	Microsoft®	SQL	Server™	2000	can	be	set	up	to	include	one	or	more
named	instances,	with	or	instead	of	a	default	instance,	new	naming	conventions
are	used	to	distinguish	between	instances.

In	earlier	versions,	a	SQL	Server	installation	is	identified	by	computer	name.	In
SQL	Server	2000,	only	the	default	instance	is	identified	solely	by	computer
name.	A	named	instance	is	identified	by	a	combination	of	computer	name	and
instance	name.	This	instance	name	is	also	reflected	in	the	names	of	the
associated	SQL	Server	services.

Note		There	can	be	only	one	default	instance	of	SQL	Server	for	each	computer.
It	can	be	an	intact	SQL	Server	version	6.5	or	SQL	Server	version	7.0	installation,
or	it	can	be	an	installation	of	SQL	Server	2000	set	up	as	the	default	instance.	In
either	case,	the	default	instance	uses	the	same	service	names,	registry	structure,
network	listening	points,	and	other	defaults	used	in	SQL	Server	7.0.

Service	Names	for	Default	and	Named	Instances
When	you	install	a	default	instance	of	SQL	Server,	the	service	names	remain
MSSQLServer	and	SQLServerAgent	(the	same	as	in	SQL	Server	7.0).

When	you	install	a	named	instance	of	SQL	Server,	the	service	names	are
changed	to:

MSSQL$InstanceName	for	the	MSSQLServer	service.

SQLAgent$InstanceName	for	the	SQLServerAgent	service.

The	Microsoft	Distributed	Transaction	Coordinator	and	Microsoft	Search
services	are	installed	only	once,	and	can	be	used	simultaneously	by	every
installed	instance	of	SQL	Server.

See	Also

Multiple	Instances	of	SQL	Server

SQL	Server	Setup	Help

Network	Protocols	for	Named	Instances
When	you	install	a	default	instance	of	Microsoft®	SQL	Server™	2000,	the
standard	network	addresses	are	enabled.	For	example,	named	pipes	uses
\\.\pipe\sql\query,	and	TCP/IP	sockets	connect	to	port	1433.

When	you	select	a	named	instance,	only	the	Named	Pipes,	TCP/IP,	and	NWLink
IPX/SPX	protocols	are	supported.	Named	Pipes	defaults	to	a	network	address	of
\\Computername\Pipe\MSSQL$instancename\Sql\Query.	The	port	addresses
used	by	TCP/IP	and	NWLink	IPX/SPX	are	chosen	dynamically	(by	default)	the
first	time	the	instance	is	started.

See	Also

Communicating	with	Multiple	Instances

Multiple	Instances	of	SQL	Server

Network	Libraries

SQL	Server	Setup	Help

File	Locations	for	Multiple	Instances	of	SQL	Server
Each	named	instance	of	Microsoft®	SQL	Server™	2000	has	a	specific	location
for	its	program	files	and	another	for	its	data	files	that	is	different	from	that	of	the
default	instance	of	SQL	Server.

Note		A	named	instance	is	not	necessarily	the	same	as	a	multiple	instance.	You
can	have	a	single	named	instance	or	you	can	have	multiple	named	instances.	For
more	information,	see	Multiple	Instances	of	SQL	Server.

For	each	named	instance	of	SQL	Server	that	you	install,	the	default	directories
are:

\Program	Files\Microsoft	SQL	Server\MSSQL$InstanceName\Binn	for
executable	files.

\Program	Files\Microsoft	SQL	Server\MSSQL$InstanceName\Data	for
data	files.

Shared	tools	for	all	instances,	both	default	and	named	instances,	are	located	in
the	\Program	Files\Microsoft	SQL	Server\80\Tools	directory.	You	can	specify
file	paths	other	than	the	default	locations	for	program	and	data	file	for	multiple
instances.

The	following	illustration	shows	the	simplest	case	of	multiple	instances	of
Microsoft	SQL	Server	2000:	the	default	instance	and	one	named	instance,
Instance1.	A	named	instance	has	its	own	full	set	of	data	files	and	executable
files.	Common	files	used	by	both	the	default	instance	and	any	named	instances
are	installed	in	the	folder	\Program	Files\Microsoft	SQL	Server\80.

Note		If	Microsoft	SQL	Server	version	7.0	is	used	as	the	default	installation
alongside	a	named	instance	of	SQL	Server	2000,	program	and	data	files	are
located	at	C:\Mssql7,	the	default	location	for	SQL	Server	7.0	files.

Finding	Install	Locations
If	you	are	uncertain	about	instance	paths,	query	the	registry	to	get	the	installation

path	of	a	particular	instance.	Run	the	following	at	the	command	prompt,
inserting	the	appropriate	instance	name:

C:\>	REG	QUERY	HKLM\Software\Microsoft\Microsoft	SQL	Server\InstanceName\MSSQLServer\Setup\SQLPath	

Note		The	REG	QUERY	tool	is	available	in	the	Microsoft	Windows®	2000
Resource	Kit.

See	Also

File	Paths	for	SQL	Server	2000

Multiple	Instances	of	SQL	Server

SQL	Server	Setup	Help

Removing	Multiple	Instances	of	SQL	Server	2000
When	you	remove	a	default	or	named	instance	of	Microsoft®	SQL	Server™
2000,	the	data	files	and	registry	keys	for	that	instance	are	deleted.	Tools	cannot
be	removed	until	all	instances	of	SQL	Server	2000	have	been	removed	from	a
computer,	because	the	tools	are	shared	among	all	installed	instances.

To	remove	a	single	instance	of	SQL	Server	2000,	or	to	remove	all	installed
instances,	see	How	to	remove	SQL	Server	2000	(Windows).

SQL	Server	Setup	Help

Working	with	Instances	and	Versions	of	SQL	Server
Multiple	instances	in	Microsoft®	SQL	Server™	2000	offer	enhanced	ways	to
work	with	earlier	versions	of	Microsoft	SQL	Server	already	installed	on	your
computer.	You	can	leave	previous	installations	intact,	and	also	install	and	run
SQL	Server	2000.	For	example,	you	can	run	SQL	Server	version	7.0	and	a
named	instance	of	SQL	Server	2000	at	the	same	time,	or	you	can	run	SQL
Server	version	6.5	in	a	version	switch	configuration	with	SQL	Server	2000.	If
you	need	to	have	three	different	versions	of	SQL	Server	installed	on	the	same
computer,	there	are	several	ways	to	accomplish	this.

In	addition,	users	of	all	editions	of	SQL	Server	can	have	more	than	one	instance
of	SQL	Server	2000	installed	and	running	at	once	(multiple	instances),	as	well	as
one	or	more	earlier	versions.

Considerations	for	using	SQL	Server	2000	in	combination	with	previous
installations	include:

Using	SQL	Server	6.5	with	the	default	instance	or	named	instances	of
SQL	Server	2000.

Running	SQL	Server	7.0	with	a	named	instance	of	SQL	Server	2000.

Working	with	three	versions	of	SQL	Server:	SQL	Server	6.5,	SQL
Server	7.0,	and	SQL	Server	2000.

Note		The	concept	of	the	default	instance	is	new	to	SQL	Server	2000,	due	to	the
introduction	of	multiple	instances.	If	installed	on	the	same	computer	as	SQL
Server	2000,	either	SQL	Server	version	6.5	or	SQL	Server	version	7.0	can
function	as	default	instances	of	SQL	Server.	(A	default	instance	is	identified	by
the	network	name	of	the	computer	on	which	it	is	running.)	For	more
information,	see	Working	with	Named	and	Multiple	Instances	of	SQL	Server
2000.

Using	SQL	Server	Books	Online	for	SQL	Server	7.0

When	you	keep	Microsoft	SQL	Server	version	7.0	on	your	computer	and	install
a	named	instance	of	SQL	Server	2000,	SQL	Server	Books	Online	for	SQL
Server	7.0	remains	in	its	original	location:	C:\Mssql7\Books.	In	this	side-by-side
configuration,	Books	Online	for	SQL	Server	7.0	remains	accessible	from	the
start	menu	in	the	SQL	Server	7.0	program	group.

Note		This	is	an	exception	to	what	occurs	for	the	other	shared	tools	(such	as	code
samples,	scripts,	and	templates),	when	a	named	instance	of	SQL	Server	2000	is
installed	along	with	SQL	Server	7.0.	All	other	shared	tools	from	the	7.0
installation	are	copied	to	storage	locations,	with	pointers	to	the	SQL	Server	2000
tools	replacing	previous	versions	of	the	tools.	Files	for	Books	Online	for	SQL
Server	7.0	are	not	redirected	in	this	way	--	they	remain	ready	for	use.

When	SQL	Server	7.0	is	upgraded	to	the	default	version	of	SQL	Server	2000,	the
7.0	Books	Online	files	are	also	upgraded.	That	is,	they	are	replaced	with	the	SQL
Server	2000	Books	Online.

Whether	you	have	SQL	Server	7.0	installed	or	not,	you	can	access	information	in
the	SQL	Server	7.0	documentation.		For	more	information,	see	How	to	access
SQL	Server	Books	Online	for	SQL	Server	7.0.

See	Also

Using	SQL	Server	6.5	with	SQL	Server	2000

Running	SQL	Server	7.0	Along	with	a	Named	Instance	of	SQL	Server	2000

Working	with	Three	Versions	of	SQL	Server

SQL	Server	Setup	Help

Using	SQL	Server	6.5	with	SQL	Server	2000
If	you	have	Microsoft®	SQL	Server™	version	6.5	installed,	you	can	keep	the
SQL	Server	version	6.5	installation	and	also	install	a	default	or	named	instance
of	SQL	Server	2000.	No	version	upgrading	is	involved;	however,	version
switching	can	be	used	to	move	between	SQL	Server	version	6.5	and	SQL	Server
2000.	In	addition,	SQL	Server	2000	tools	are	used	to	control	both	SQL	Server
2000	and	SQL	Server	version	6.5.

WARNING		After	SQL	Server	2000	is	installed,	the	SQL	Server	version	6.5	Trace
utility	and	other	earlier	tools	are	no	longer	available.

To	install	SQL	Server	2000	alongside	SQL	Server	6.5:

Keep	your	SQL	Server	6.5	configuration	intact.

Install	SQL	Server	2000,	selecting	either	a	default	or	named	instance	in
the	Instance	Name	dialog	box.

Switch	versions	from	SQL	Server	6.5	to	the	default	instance	of	SQL
Server	2000.

Note		Switching	from	SQL	Server	2000	back	to	SQL	Server	6.5	is	not
recommended.

The	illustration	shows	an	installation	of	SQL	Server	6.5	in	a	version	switch
configuration	with	SQL	Server	2000.

See	Also

Switching	Between	SQL	Server	6.5	and	SQL	Server	2000

Running	SQL	Server	7.0	Along	with	a	Named	Instance	of	SQL	Server	2000

Working	with	Three	Versions	of	SQL	Server

SQL	Server	Setup	Help

Running	SQL	Server	7.0	Along	with	a	Named
Instance	of	SQL	Server	2000
You	can	keep	an	installation	of	Microsoft®	SQL	Server™	version	7.0	intact	on
your	computer	and	also	install	a	named	instance	of	SQL	Server	2000	on	the
same	computer.	This	configuration	enables	you	to	run	both	the	original
installation	of	SQL	Server	7.0	and	the	named	instance	of	SQL	Server	2000	at	the
same	time,	without	using	the	vswitch	command	prompt	utility.

To	run	a	named	instance	of	SQL	Server	2000	with	an	existing	SQL	Server	7.0
installation	intact:

Keep	SQL	Server	version	7.0	in	its	original	condition	with	no	version
upgrade	to	SQL	Server	2000.	SQL	Server	7.0	functions	as	the	default
instance	of	SQL	Server,	identified	by	the	network	name	of	the
computer.

Install	a	named	instance	of	SQL	Server	2000,	identified	by	both	the
network	name	of	the	computer	plus	an	instance	name.

The	illustration	shows	this	configuration.

See	Also

How	to	install	a	named	instance	of	SQL	Server	2000	(Setup)

Working	with	Three	Versions	of	SQL	Server

SQL	Server	Setup	Help

Working	with	Three	Versions	of	SQL	Server
This	topic	describes	two	scenarios	for	working	with	SQL	Server	version	6.5,
SQL	Server	version	7.0,	and	SQL	Server	2000.	One	example	shows	three
versions	installed	at	one	time,	with	no	version	upgrades,	but	with	a	version
switch	between	SQL	Server	6.5	and	SQL	Server	7.0.	The	other	involves
upgrading	to	SQL	Server	2000	from	SQL	Server	7.0,	and	then	version	switching
between	SQL	Server	6.5	and	SQL	Server	2000.

In	any	of	these	situations,	multiple	named	instances	of	SQL	Server	2000	can	be
installed	as	well.	However,	only	two	different	versions	of	SQL	Server	can	run	at
one	time,	using	version	switching	in	one	of	two	ways:

Switch	between	SQL	Server	6.5	and	SQL	Server	7.0.

Switch	between	SQL	Server	6.5	and	SQL	Server	2000.

Using	Version	Switching

To	use	version	switching	with	SQL	Server	6.5	and	SQL	Server	7.0,	while	at	the
same	time	running	multiple	instances	of	SQL	Server	2000:

Keep	the	SQL	Server	6.5	configuration	intact.

Keep	the	SQL	Server	7.0	configuration	intact,	with	no	version	upgrade
to	SQL	Server	2000.

Install	one	or	more	named	instances	of	SQL	Server	2000.

The	illustration	shows	how	named	instances	of	SQL	Server	2000	and	the
existing	installation	of	SQL	Server	version	7.0	can	run	at	the	same	time.	SQL
Server	version	6.5	is	available	to	be	switched	in	as	the	default	instance	instead	of
SQL	Server	7.0.

To	use	version	switching	with	SQL	Server	6.5	and	SQL	Server	2000,	after
upgrading	from	SQL	Server	version	7.0:

Keep	the	SQL	Server	6.5	configuration	intact.

Have	SQL	Server	7.0	installed,	but	prepare	to	upgrade	SQL	Server	7.0
to	SQL	Server	2000.	

Run	Setup.	When	SQL	Server	7.0	is	detected,	upgrade	SQL	Server	7.0
to	the	default	instance	of	SQL	Server	2000.	(Select	the	option	to
Upgrade	in	the	Existing	Installation	Options	dialog	box,	and	leave	the
Default	check	box	selected	in	the	Instance	Name	dialog	box.)	At	this
point,	the	installation	of	SQL	Server	7.0	no	longer	exists;	it	is	replaced
by	the	default	instance	of	SQL	Server	2000.

The	illustration	shows	this	configuration,	along	with	three	SQL	Server	2000
named	instances.

See	Also

Upgrading	from	SQL	Server	7.0	to	SQL	Server	2000

Using	SQL	Server	6.5	with	SQL	Server	2000

Running	SQL	Server	7.0	Along	with	a	Named	Instance	of	SQL	Server	2000

SQL	Server	Setup	Help

Failover	Clustering
In	Microsoft®	SQL	Server™	2000	Enterprise	Edition,	SQL	Server	2000	failover
clustering	provides	high	availability	support.	For	example,	during	an	operating
system	failure	or	a	planned	upgrade,	you	can	configure	one	failover	cluster	to
fail	over	to	any	other	node	in	the	failover	cluster	configuration.	In	this	way,	you
minimize	system	downtime,	thus	providing	high	server	availability.

To	install,	configure,	and	maintain	a	failover	cluster,	use	SQL	Server	Setup.	For
information	about	upgrading	to	a	SQL	Server	2000	failover	cluster,	see
Upgrading	to	a	SQL	Server	2000	Failover	Cluster.

Use	failover	clustering	to:

Install	SQL	Server	on	multiple	nodes	in	a	failover	cluster.	You	are
limited	only	by	the	number	of	nodes	supported	by	the	operating	system.

Before	installing	failover	clustering,	you	must	install	Microsoft	Windows
NT®	4.0,	Enterprise	Edition,	Microsoft	Windows®	2000	Advanced	Server
or	Windows	2000	Datacenter	Server,	and	the	Microsoft	Cluster	Service
(MSCS).

There	are	specific	installation	steps	that	must	be	followed	to	use	failover
clustering.	For	more	information,	see	Installing	Failover	Clustering	and
Handling	a	Failover	Cluster	Installation.

Specify	multiple	IP	addresses	for	each	virtual	server.

SQL	Server	2000	allows	you	to	use	all	available	network	IP	subnets,	thereby
providing	alternate	ways	to	connect	if	one	subnet	fails	and	increasing
network	scalability.	For	example,	with	a	single	network	adaptor,	a	network
failure	can	disrupt	communications.	However,	with	multiple	network	cards
in	the	server,	each	network	can	be	on	a	different	IP	subnet.	If	one	subnet
fails,	at	least	one	connection	can	continue	to	function.	If	a	router	fails,	MSCS
continues	to	function,	and	all	IP	addresses	still	work.	However,	if	the
network	card	on	the	local	computer	fails,	communication	still	may	be
disrupted.	For	more	information,	see	Creating	a	Failover	Cluster.

Administer	a	failover	cluster	from	any	node	in	the	clustered	SQL	Server

configuration.	To	perform	setup	tasks,	you	must	be	working	from	the
node	in	control	of	the	cluster	disk	resource.	For	more	information,	see
Creating	a	Failover	Cluster.

Allow	one	virtual	server	to	fail	over	to	any	other	node	on	the	failover
cluster	configuration.	For	more	information,	see	Creating	a	Failover
Cluster.

Add	or	remove	nodes	from	the	failover	cluster	configuration	using	the
Setup	program.	For	more	information,	see	Maintaining	a	Failover
Cluster.

Reinstall	or	rebuild	a	virtual	server	on	any	node	in	the	failover	cluster
without	affecting	the	other	nodes.	For	more	information,	see
Maintaining	a	Failover	Cluster.

Perform	full-text	queries	by	using	Microsoft	Search	service	with
failover	clustering.	For	more	information,	see	Using	SQL	Server	Tools
with	Failover	Clustering.

Multiple	Instance	Support

Failover	clustering	also	supports	multiple	instances.	Multiple	instance	support
makes	it	easier	to	build,	install,	and	configure	virtual	servers	in	a	failover	cluster.
Applications	can	connect	to	each	instance	on	a	single	computer	in	much	the
same	way	as	they	connect	to	instances	of	SQL	Server	running	on	multiple
computers.	For	more	information	about	virtual	servers,	see	Creating	a	Failover
Cluster.

With	multiple	instance	support,	you	can	isolate	work	environments	(for	example,
testing	from	production)	or	volatile	application	environments	and	provide
different	system	administrators	for	each	instance	of	SQL	Server	on	the	same
computer.	For	more	information,	see	Multiple	Instances	of	SQL	Server.

See	Also

Failover	Clustering	Architecture

SQL	Server	Setup	Help

Failover	Clustering	Support
In	Microsoft®	SQL	Server™	2000	Enterprise	Edition,	the	number	of	nodes
supported	in	SQL	Server	2000	failover	clustering	depends	on	the	operating
system	you	are	running:

Microsoft	Windows	NT®	4.0,	Enterprise	Edition,	Microsoft	Windows®
2000	Advanced	Server,	and	Microsoft	Windows	2000	Datacenter	Server
support	two-node	failover	clustering.	

Windows	2000	Datacenter	Server	supports	up	to	four-node	failover
clustering,	including	an	active/active/active/active	failover	clustering
configuration.

The	following	tools,	features	and	components	are	supported	with	failover
clustering:

Microsoft	Search	service.	For	more	information,	see	Using	SQL	Server
Tools	with	Failover	Clustering.

Multiple	instances.	For	more	information,	see	Failover	Clustering.

SQL	Server	Enterprise	Manager.	For	more	information,	see	Using	SQL
Server	Tools	with	Failover	Clustering.

Service	Control	Manager.	For	more	information,	see	Using	SQL	Server
Tools	with	Failover	Clustering.

Replication.	For	more	information,	see	Creating	a	Failover	Cluster.	

SQL	Profiler.	For	more	information,	see	Using	SQL	Server	Tools	with
Failover	Clustering.

SQL	Query	Analyzer.	For	more	information,	see	Using	SQL	Server
Tools	with	Failover	Clustering.

SQL	Mail.	For	more	information,	see	Using	SQL	Server	Tools	with
Failover	Clustering.

The	following	component	is	not	supported	for	failover	clustering:

SQL	Server	2000	Analysis	Services

Note		Microsoft	Data	Access	Components	(MDAC)	2.6	is	not	supported	for
SQL	Server	version	6.5	or	SQL	Server	7.0,	when	either	version	is	in	a	failover
cluster	configuration.

Before	using	failover	clustering,	consider	the	following:

Failover	clustering	resources,	including	the	IP	addresses	and	network
name,	must	be	used	only	when	you	are	running	an	instance	of	SQL
Server	2000.	They	should	not	be	used	for	other	purposes,	such	as	file
sharing.	

In	a	failover	cluster	configuration,	SQL	Server	2000	supports	Windows
NT	4.0,	Enterprise	Edition	but	requires	that	the	service	accounts	for
SQL	Server	services	(SQL	Server	and	SQL	Server	Agent)	be	local
administrators	of	all	nodes	in	the	cluster.

IMPORTANT		SQL	Server	2000	supports	both	Named	Pipes	and	TCP/IP	Sockets
over	TCP/IP	within	a	failover	cluster.	However,	it	is	strongly	recommended	that
you	use	TCP/IP	Sockets	in	a	clustered	configuration.

SQL	Server	Setup	Help

Creating	a	Failover	Cluster
To	create	a	Microsoft®	SQL	Server™	2000	failover	cluster,	you	must	create	and
configure	the	virtual	servers	on	which	the	failover	cluster	runs.	You	create
virtual	servers	during	SQL	Server	Setup.	Virtual	servers	are	not	provided	by
Microsoft	Windows	NT®	4.0	or	Microsoft	Windows®	2000.

To	create	a	failover	cluster,	you	must	be	a	local	administrator	with	rights	to	log
on	as	a	service	and	to	act	as	part	of	the	operating	system	on	all	computers	in	the
failover	cluster.

Elements	of	a	Virtual	Server
A	virtual	server	contains:

A	combination	of	one	or	more	disks	in	a	Microsoft	Cluster	Service
(MSCS)	cluster	group.

Each	MSCS	cluster	group	can	contain	at	most	one	virtual	SQL	Server.

A	network	name	for	each	virtual	server.	This	network	name	is	the
virtual	server	name.

One	or	more	IP	addresses	that	are	used	to	connect	to	each	virtual	server.

One	instance	of	SQL	Server	2000,	including	a	SQL	Server	resource,	a
SQL	Server	Agent	resource,	and	a	full-text	resource.

If	an	administrator	uninstalls	the	instance	of	SQL	Server	2000	within	a
virtual	server,	the	virtual	server,	including	all	IP	addresses	and	the
network	name,	is	also	removed	from	the	MSCS	cluster	group.

A	failover	cluster	can	run	across	one	or	more	actual	Windows	2000	Advanced
Server	or	Windows	2000	Datacenter	Server	servers	or	Windows	NT	4.0,
Enterprise	Edition	servers	that	are	participating	nodes	of	the	cluster.	However,	a
SQL	Server	virtual	server	always	appears	on	the	network	as	a	single	Windows
2000	Advanced	Server,	Windows	2000	Datacenter	Server,	or	Microsoft

Windows	NT	4.0,	Enterprise	Edition	server.

Naming	a	Virtual	Server
SQL	Server	2000	depends	on	distinct	registry	keys	and	service	names	within	the
failover	cluster	so	that	operations	will	continue	correctly	after	a	failover.
Therefore,	the	name	you	provide	for	the	instance	of	SQL	Server	2000,	including
the	default	instance,	must	be	unique	across	all	nodes	in	the	failover	cluster,	as
well	as	across	all	virtual	servers	within	the	failover	cluster.	For	example,	if	all
instances	failed	over	to	a	single	server,	their	service	names	and	registry	keys
would	conflict.	If	INST1	is	a	named	instance	on	virtual	server	VIRTSRV1,	there
cannot	be	a	named	instance	INST1	on	any	node	in	the	failover	cluster,	either	as
part	of	a	failover	cluster	configuration	or	as	a	stand-alone	installation.

Additionally,	you	must	use	the	VIRTUAL_SERVER\Instance-name	string	to
connect	to	a	clustered	instance	of	SQL	Server	2000	running	on	a	virtual	server.
You	cannot	access	the	instance	of	SQL	Server	2000	by	using	the	computer	name
that	the	clustered	instance	happens	to	reside	on	at	any	given	time.	SQL	Server
2000	does	not	listen	on	the	IP	address	of	the	local	servers.	It	listens	only	on	the
clustered	IP	addresses	created	during	the	setup	of	a	virtual	server	for	SQL	Server
2000.

Usage	Considerations
Before	you	create	a	failover	cluster,	consider	the	following:

If	you	are	using	the	Windows	2000	Address	Windowing	Extensions
(AWE)	API	to	take	advantage	of	memory	greater	than	3	gigabytes
(GB),	make	certain	that	the	maximum	available	memory	you	configure
on	one	instance	of	SQL	Server	will	still	be	available	after	you	fail	over
to	another	node.	If	the	failover	node	has	less	physical	memory	than	the
original	node,	instances	of	SQL	Server	may	fail	to	start	or	may	start
with	less	memory	than	they	had	on	the	original	node.	You	must:

Give	each	server	in	the	cluster	the	same	amount	of	physical
RAM.

Ensure	that	the	summed	value	of	the	max	server	memory

settings	for	all	instances	is	less	than	the	lowest	amount	of
physical	RAM	available	on	any	of	the	virtual	servers	in	the
failover	cluster.

For	more	information	about	AWE,	see	Using	AWE	Memory	on
Windows	2000.

If	you	need	high-availability	servers	in	replication,	it	is	recommended
that	you	use	an	MSCS	cluster	file	share	as	your	snapshot	folder	when
configuring	a	Distributor	on	a	failover	cluster.	In	the	case	of	server
failure,	the	distribution	database	will	be	available	and	replication	will
continue	to	be	configured	at	the	Distributor.

Also,	when	creating	publications,	specify	the	MSCS	cluster	file	share
for	the	additional	storage	of	snapshot	files	or	as	the	location	from	which
Subscribers	apply	the	snapshot.	This	way,	the	snapshot	files	are
available	to	all	nodes	of	the	cluster	and	to	all	Subscribers	that	must
access	it.	For	more	information,	see	Publishers,	Distributors,	and
Subscribers	and	Alternate	Snapshot	Locations.

If	you	want	to	use	encryption	with	a	failover	cluster,	you	must	install
the	server	certificate	with	the	fully	qualified	DNS	name	of	the	virtual
server	on	all	nodes	in	the	failover	cluster.	For	example,	if	you	have	a
two-node	cluster,	with	nodes	named	test1.redmond.corp.microsoft.com
and	test2.redmond.corp.microsoft.com	and	a	virtual	SQL	Server
"Virtsql",	you	need	to	get	a	certificate	for
"virtsql.redmond.corp.microsoft.com"	and	install	the	certificate	on	both
nodes.	You	can	then	check	the	Force	protocol	encryption	check	box
on	the	Server	Network	Utility	to	configure	your	failover	cluster	for
encryption.

You	should	not	remove	the	BUILTIN/Administrators	account	from	SQL
Server.	The	IsAlive	thread	runs	under	the	context	of	the	cluster	service
account,	and	not	the	SQL	Server	service	account.	The	cluster	service
must	be	part	of	the	administrator	group	on	each	node	of	the	cluster.	If
you	remove	the	BUILTIN/Administrators	account,	the	IsAlive	thread
will	no	longer	be	able	to	create	a	trusted	connection,	and	you	will	lose
access	to	the	virtual	server.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Creating	a	Failover	Cluster

Here	are	the	basic	steps	for	creating	a	failover	cluster	using	the	Setup	program:

1.	 Identify	the	information	you	need	to	create	your	virtual	server	(for
example,	cluster	disk	resource,	IP	addresses,	and	network	name)	and
the	nodes	available	for	failover.

The	cluster	disks	to	use	for	failover	clustering	should	all	be	in	a	single
cluster	group	and	owned	by	the	node	from	which	the	Setup	program	is
run.	This	configuration	must	take	place	before	you	run	the	Setup
program.	You	configure	this	through	Cluster	Administrator	in
Windows	NT	4.0	or	Windows	2000.	You	need	one	MSCS	group	for
each	virtual	server	you	want	to	set	up.

2.	 Start	the	Setup	program	to	begin	your	installation.	After	all	necessary
information	has	been	entered,	the	Setup	program	installs	a	new
instance	of	SQL	Server	binaries	on	the	local	disk	of	each	computer	in
the	cluster	and	installs	the	system	databases	on	the	specified	cluster
disk.	The	binaries	are	installed	in	exactly	the	same	path	on	each	cluster
node,	so	you	must	ensure	that	each	node	has	a	local	drive	letter	in
common	with	all	the	other	nodes	in	the	cluster.

In	SQL	Server	2000,	during	a	failover	only	the	databases	fail	over.	In
SQL	Server	version	6.5	and	SQL	Server	version	7.0,	both	the	SQL
Server	databases	and	binaries	fail	over	during	a	failover.

If	any	resource	(including	SQL	Server)	fails	for	any	reason,	the
services	(SQL	Server,	SQL	Server	Agent,	Full-Text	Search,	and	all
services	in	the	failover	cluster	group)	fail	over	to	any	available	nodes
defined	in	the	virtual	server.

3.	 You	install	one	instance	of	SQL	Server	2000,	creating	a	new	virtual
server	and	all	resources.

How	to	create	a	new	failover	cluster

SQL	Server	Setup	Help

Failover	Clustering	Example
The	following	example	illustrates	how	you	configure	Microsoft®	SQL	Server™
2000	failover	clustering.

CLUSTERNODEA	and	CLUSTERNODEB	are	two	computers	in	a	failover
cluster.	Run	SQL	Server	Setup	on	CLUSTERNODEA	and	create	a	virtual	server
named	"SQLCLUSTA."	Then	install	a	default	instance	of	SQL	Server	2000,
which	can	run	on	both	CLUSTERNODEA	and	CLUSTERNODEB.	From	this
point	forward,	connect	to	the	server	by	specifying	"SQLCLUSTA"	as	the	server
name	in	the	connection	string.

Run	the	Setup	program	again	on	CLUSTERNODEB.	Create	a	new	virtual	server
named	"SQLCLUSTB"	(in	a	different	Microsoft	Cluster	Service	(MSCS)	cluster
group)	and	install	an	instance	named	"Inst1"	that	can	run	on	both
CLUSTERNODEA	and	CLUSTERNODEB.	From	this	point	forward,	connect	to
the	server	by	specifying	"SQLCLUSTB\Inst1"	as	the	connection	string.

The	two	virtual	servers	are	running	in	the	MSCS	cluster	consisting	of
CLUSTERNODEA	and	CLUSTERNODEB.	Other	than	that,	they	are
completely	separate	from	each	other.	Each	virtual	server	resides	in	a	different
MSCS	cluster	group,	and	each	has	a	different	set	of	IP	addresses,	a	distinct
network	name,	and	data	files	that	reside	on	a	separate	set	of	shared	cluster	disks.

When	a	failover	occurs	for	any	resource	in	an	MSCS	cluster	group,	all	resources
that	are	members	of	that	group	also	fail	over.	For	SQLCLUSTA,	any	failure
(from	the	disk	resources,	IP	address,	the	network	name,	or	the	installations	of
SQL	Server	2000	within	the	virtual	server)	causes	all	members	of	the	cluster
group	to	fail	over	when	the	failover	threshold	is	reached.

The	following	illustration	is	a	two-node	cluster	with	binaries	and	data.	Each
virtual	server	in	this	illustration	must	have	exclusive	ownership	of	the	disk	on
which	the	data	and	log	files	are	located.

See	Also

Failover	Clustering	Architecture

SQL	Server	Setup	Help

Upgrading	to	a	SQL	Server	2000	Failover	Cluster
When	you	are	upgrading	to	a	Microsoft®	SQL	Server™	2000	failover	cluster,
only	one	default	instance	is	allowed.	Use	the	Cluster	Wizard	in	SQL	Server
version	6.5	or	SQL	Server	7.0	to	uncluster	any	existing	SQL	Server	6.5	or	SQL
Server	7.0	clustered	instances	before	upgrading	to	SQL	Server	2000.	Then	run
SQL	Server	Setup	on	SQL	Server	2000.

SQL	Server	6.5	or	SQL	Server	7.0	failover	clusters	cannot	exist	on	the	same
computer	as	a	SQL	Server	2000	failover	cluster.	In	SQL	Server	6.5	or	SQL
Server	7.0,	in	an	active/active	configuration	or	in	an	active/passive	configuration
where	one	server	contains	an	unclustered	SQL	Server,	there	is	a	name	conflict.
Both	servers	are	default	instances.

IMPORTANT		You	cannot	run	the	Cluster	Wizard	in	SQL	Server	6.5	or	SQL	Server
7.0	after	SQL	Server	2000	has	been	installed.

For	SQL	Server	2000,	you	must	use	a	domain	account	for	the	services	(SQL
Server,	SQL	Server	Agent,	and	all	services	in	the	clustered	group).	That	account
must	be	an	administrator	on	all	computers	in	the	cluster,	if	those	computers	are
running	on	Microsoft	Windows	NT®	Server	4.0,	Enterprise	Edition.

Note		If	you	are	using	replication	on	a	SQL	Server	6.5	or	7.0	failover	cluster	and
upgrading	to	a	SQL	Server	2000	failover	cluster,	you	must	uncluster	the	previous
installation.	Delete	all	publications,	remove	replication,	and	then	reconfigure
replication	after	upgrading.	This	will	not	be	a	requirement	when	upgrading	from
SQL	Server	2000	in	future	releases.

To	upgrade	from	a	SQL	Server	6.5	active/passive	failover	cluster

SQL	Server	Setup	Help

Handling	a	Failover	Cluster	Installation
When	you	install	a	Microsoft®	SQL	Server™	2000	failover	cluster,	you	must:

Ensure	that	the	operating	system	is	installed	properly	and	designed	to
support	failover	clustering.	For	more	information	about	what	to	do
before	installing	a	failover	cluster,	see	Before	Installing	Failover
Clustering.	For	more	information	about	the	order	of	installation,	see
Installing	Failover	Clustering.

Consider	whether	the	SQL	Server	tools,	features,	and	components	you
want	to	use	are	supported	with	failover	clustering.	For	more
information,	see	Failover	Clustering	Support.

Consider	whether	failover	clustering	is	dependent	on	the	products	you
want	to	use.	For	more	information,	see	Failover	Clustering
Dependencies.

Consider	how	to	create	a	new	failover	cluster.	For	more	information
about	creating	a	new	failover	cluster	configuration,	see	Creating	a
Failover	Cluster.

Review	the	instructions	for	upgrading	from	a	SQL	Server	version	6.5	or
SQL	Server	version	7.0	cluster	to	a	SQL	Server	2000	failover	cluster.
For	more	information,	see	Upgrading	to	a	SQL	Server	2000	Failover
Cluster.

SQL	Server	Setup	Help

Before	Installing	Failover	Clustering
Before	you	install	a	Microsoft®	SQL	Server™	2000	failover	cluster,	you	must
select	the	operating	system	on	which	your	computer	will	run.	You	can	use
Microsoft	Windows	NT®	4.0,	Enterprise	Edition,	Microsoft	Windows®	2000
Advanced	Server,	or	Microsoft	Windows	2000	Datacenter	Server.	You	also	must
install	Microsoft	Cluster	Service	(MSCS).

Preinstallation	Checklist
Before	you	begin	the	installation	process,	verify	that:

There	is	no	IRQ	sharing	between	network	interface	cards	(NICs)	and
drive/array	(SCSI)	controllers.	Although	some	hardware	may	support
this	sharing,	it	is	not	recommended.

Your	hardware	is	listed	on	the	Windows	NT	Hardware	Compatibility
List.

For	a	complete	list	of	supported	hardware,	see	the	Hardware
Compatibility	List	at	the	Microsoft	Web	site.

The	hardware	system	must	appear	under	the	category	of	cluster.
Individual	cluster	components	added	together	do	not	constitute	an
approved	system.	Only	systems	purchased	as	a	cluster	solution	and
listed	in	the	cluster	group	are	approved.	When	checking	the	list,	specify
cluster	as	the	category.	All	other	categories	are	for	OEM	use.

MSCS	has	been	installed	completely	on	at	least	one	node	before	you
run	Windows	NT	4.0,	Enterprise	Edition	or	Windows	2000	Advanced
Server	or	Windows	2000	Datacenter	Server	simultaneously	on	all
nodes.

When	using	MSCS,	you	must	make	certain	that	one	node	is	in	control
of	the	shared	SCSI	bus	prior	to	the	other	node(s)	coming	online.	Failure
to	do	this	can	cause	application	failover	to	go	into	an	online	pending
state.	As	a	result,	the	cluster	either	fails	on	the	other	node	or	fails	totally.
However,	if	your	hardware	manufacturer	has	a	proprietary	installation

http://www.microsoft.com/isapi/redir.dll?Prd=Hardware Compatibility List

process,	follow	the	hardware	manufacturer	instructions.

WINS	is	installed	according	to	the	following	article	in	the	Product
Support	Services	Microsoft	Web	site:

Q258750	Recommended	Private	"Heartbeat"	Configuration	on	Cluster
Server

The	disk	drive	letters	for	the	cluster-capable	disks	are	the	same	on	both
servers.

You	have	disabled	NetBIOS	for	all	private	network	cards	before
beginning	SQL	Server	Setup.

You	have	cleared	the	system	logs	in	all	nodes	and	viewed	the	system
logs	again.	Ensure	that	the	logs	are	free	of	any	error	messages	before
continuing.

http://www.microsoft.com/isapi/redir.dll?Prd=productsupport

SQL	Server	Setup	Help

Installing	Failover	Clustering
If	you	are	installing	Microsoft®	SQL	Server™	2000	failover	clustering	on
Microsoft	Windows	NT®	4.0,	Enterprise	Edition,	you	need	to	install	programs
in	the	order	specified	below.	However,	this	is	not	necessary	if	you	are	installing
failover	clustering	on	Microsoft	Windows®	2000	Advanced	Server	or	Windows
2000	Datacenter	Server.

CAUTION		If	you	do	not	install	the	programs	in	the	following	order,	the	software
products	can	fail	on	installation	and	require	that	you	completely	reinitialize	the
disk	and	restart	installation.

Before	installing	SQL	Server	2000	in	a	failover	cluster	configuration,	you	must
upgrade	any	pre-release	versions	of	SQL	Server	2000.

To	install	failover	clustering	on	Windows	NT	4.0

1.	 Install	Windows	NT	4.0,	Enterprise	Edition.

Windows	NT	4.0,	Enterprise	Edition	includes	Windows	NT	4.0
Service	Pack	3.	Service	Pack	3	is	required	to	install	Microsoft	Cluster
Service	(MSCS).

Do	not	go	directly	to	Service	Pack	4	or	later	if	you	intend	to
install	the	Windows	NT	Option	Pack.	

Do	not	install	Microsoft	Internet	Information	Server	(IIS).

IMPORTANT		IIS	is	installed	by	default.	It	is	recommended	that	you
clear	this	option	during	the	Windows	NT	4.0	installation.

2.	 Install	MSCS.	

3.	 Install	Microsoft	Internet	Explorer	version	5.0	or	later.

4.	 Manually	create	a	Microsoft	Distributed	Transaction	Coordinator	(MS
DTC)	compatible	resource	group	where	MS	DTC	setup	can	create	its

resources.	This	should	contain	an	IP	address,	network	name,	and
cluster	disk	resource.	Any	group	with	these	three	things	is	compatible
with	MS	DTC.

SQL	Server	Setup	will	install	MS	DTC	in	a	later	step.	Install	Windows
NT	4.0	Option	Pack	only	if	you	require	components	of	the	Windows
NT	4.0	Option	pack	besides	MS	DTC.

5.	 Install	the	latest	Windows	NT	4.0	Service	Pack,	Service	Pack	5	at	the
latest.	Click	Create	an	uninstall	directory,	click	Year	2000	Setup,
and	then	select	the	Service	Pack	install	for	Intel	based	systems
check	box.

Do	not	select	Microsoft	Message	Queue	Server	(MSMQ	1.0)	or	IIS.
MSMQ	1.0	is	not	supported	on	SQL	Server	2000.	It	is	recommended
that	IIS	functionality	be	used	with	Windows	NT	Load	Balancing
Service	(WLBS).	For	more	information	about	WLBS,	search	on
"WLBS	Features	Overview"	on	the	NT	Server	Microsoft	Web	site.

Prior	to	Step	5,	it	is	recommended	that	you	rename	the	hidden
directory	$NTServicePackUninstall$	to
$NTServicePackUninstall$.service	packnumber.	After	installing	the
service	pack,	add	a	new	directory.	This	way	you	have	uninstall
directories	available,	which	prevents	the	directories	from	being
accidentally	overwritten.

6.	 Install	SQL	Server	2000.

Note		Install	any	additional	server	products	before	installing	any	other
applications.

To	install	failover	clustering	on	Windows	2000

1.	 Install	Windows	2000	and	accept	the	default	application	choices.	

2.	 After	installing	Windows	2000	on	the	first	node	and	prior	to	installing
MSCS,	click	Start\Programs\Administrative	Tools\Configure	Your
Server.

http://www.microsoft.com/isapi/redir.dll?Prd=ntserver&Ar=root

3.	 Click	Advanced\Cluster	Service,	and	then	in	the	right	pane,	click
Learn	More.

4.	 From	Help,	review	Item	2	under	Windows	Clustering.

Windows	Clustering	is	used	during	the	installation	of	Windows	2000
and	with	SQL	Server	2000	failover	clustering.	Follow	these
instructions	to	install	MSCS.

IMPORTANT		It	is	necessary	to	read	the	section	on	Planning	for
Windows	Clustering\Requirements	for	server	clusters	and	to	follow	the
Checklist	for	server	clusters	called	Checklist:	Creating	a	server	cluster.
This	is	found	under	the	Server	Clusters	section\Checklist	for	server
clusters.

5.	 After	you	have	successfully	installed	MSCS,	you	need	to	configure
MS	DTC	to	run	on	a	cluster.

For	more	information	about	MS	DTC,	see	Failover	Clustering
Dependencies.

6.	 On	the	Start	menu,	point	to	Programs\Administrative	Tools\Cluster
Administrator,	and	click	View	Groups\Cluster	Group.	If	the	group
contains	an	MS	DTC	resource,	proceed	to	Step	9.	If	not,	complete	the
following	two	steps.

7.	 On	the	Start	menu,	point	to	Command	Prompt.	Enter	comclust.exe
from	the	command	prompt.

8.	 Repeat	Step	7	on	the	remaining	nodes	of	the	cluster,	one	node	at	a
time.

9.	 Install	SQL	Server	2000.

Note		Install	any	additional	server	products	before	installing	any	user
applications.

SQL	Server	Setup	Help

Failover	Clustering	Dependencies
There	are	several	products	that	interact	with	Microsoft®	SQL	Server™	2000
failover	clustering.	To	ensure	that	your	failover	cluster	functions	properly,	you
need	to	understand	the	underlying	dependencies	that	failover	clustering	has	on
other	products.

Microsoft	Distributed	Transaction	Coordinator	(MS	DTC)
SQL	Server	2000	requires	Microsoft	Distributed	Transaction	Coordinator	(MS
DTC)	in	the	cluster	for	distributed	queries	and	two-phase	commit	transactions,
as	well	as	for	some	replication	functionality.	After	you	install	Microsoft
Windows®	2000	and	configure	your	cluster,	you	must	run	the	Cluster	Wizard
(the	comclust.exe	program)	on	all	nodes	to	configure	MS	DTC	to	run	in
clustered	mode.

The	Cluster	Wizard	makes	the	following	changes	to	the	MS	DTC	configuration:

It	creates	an	MS	DTC	resource	in	a	resource	group	containing	a	shared
cluster	disk	resource	and	a	network	name	resource.

It	creates	an	MS	DTC	log	file	on	the	shared	cluster	disk	contained	in	the
MS	DTC	resource	group.	Placing	the	MS	DTC	log	file	on	the	shared
cluster	disk	makes	it	possible	for	the	MS	DTC	transaction	manager	to
access	the	MS	DTC	log	file	from	any	system	in	the	cluster.

It	copies	critical	MS	DTC	registry	entries	to	the	shared	cluster	registry.

Running	MS	DTC	in	Clustered	Mode

When	MS	DTC	is	running	in	clustered	mode,	only	one	node	in	the	cluster	runs
the	MS	DTC	transaction	manager	at	a	time.

Any	process	running	on	any	node	in	the	cluster	can	use	MS	DTC.	These
processes	simply	call	the	MS	DTC	Proxy	and	the	MS	DTC	Proxy	automatically
forwards	MS	DTC	calls	to	the	MS	DTC	transaction	manager	that	is	controlling

the	entire	cluster.

If	the	node	running	the	MS	DTC	transaction	manager	fails,	the	MS	DTC
transaction	manager	is	automatically	restarted	on	another	node	in	the	cluster.	The
newly	restarted	MS	DTC	transaction	manager	reads	the	MS	DTC	log	file	on	the
shared	cluster	disk	to	determine	the	outcome	of	pending	and	recently	completed
transactions.	Resource	managers	reconnect	to	the	MS	DTC	transaction	manager
and	perform	recovery	to	determine	the	outcome	of	in-doubt	transactions.
Applications	reconnect	to	MS	DTC	so	they	can	initiate	new	transactions.

For	example,	suppose	the	MS	DTC	transaction	manager	is	active	on	system	B.
The	application	program	and	resource	manager	on	system	A	call	the	MS	DTC
proxy.	The	MS	DTC	proxy	on	system	A	forwards	all	MS	DTC	calls	to	the	MS
DTC	transaction	manager	on	system	B.

If	system	B	fails,	the	MS	DTC	transaction	manager	on	system	A	will	take	over.
It	will	read	the	entire	MS	DTC	log	file	on	the	shared	cluster	disk,	perform
recovery,	and	then	serve	as	the	transaction	manager	for	the	entire	cluster.

Note		The	MS	DTC	transaction	manager,	MS	DTC	Proxy,	and	Component
Services	administrative	tools	are	installed	on	each	node	of	a	Windows	2000
cluster	using	MSCS	as	part	of	Windows	2000	Setup.

To	manually	install	MS	DTC	on	a	Windows	2000	system	running	MSCS

1.	 Install	Windows	2000	on	each	node	in	the	cluster.

2.	 Use	the	Windows	2000	Configure	Your	Server	facility	to	configure
your	cluster.

3.	 From	a	command	prompt,	run	comclust.exe	on	each	node	in	the
cluster.	Comclust.exe	can	be	found	in	the	system32	directory.

To	automatically	install	MS	DTC	on	a	Windows	2000	cluster	system

1.	 Install	Windows	2000	on	each	node	in	the	cluster	and	configure	your
cluster	using	automatic	installation	scripts.

2.	 From	a	command	prompt,	run	comclust.exe	on	each	node	in	the

cluster.	Comclust.exe	can	be	found	in	the	system32	directory.

To	upgrade	a	non-clustered	Windows	NT	4.0	SP4	system	to	a	Windows	2000
cluster

1.	 Upgrade	each	system	that	will	be	part	of	the	cluster	to	Windows	2000.

2.	 Use	the	Windows	2000	Configure	Your	Server	facility	to	configure
your	server.

3.	 From	a	command	prompt,	run	comclust.exe	on	each	node	in	the
cluster.	Comclust.exe	can	be	found	in	the	system32	directory.

To	upgrade	a	clustered	Windows	NT	4.0	SP4	system	to	a	Windows	2000
cluster

1.	 Install	Windows	2000	on	each	node	in	the	cluster.

MS	DTC	requires	that	all	nodes	in	the	cluster	be	upgraded	to	Windows
2000	at	the	same	time.

2.	 From	a	command	prompt,	run	comclust.exe	on	each	node	in	the
cluster.	Comclust.exe	can	be	found	in	the	system32	directory.

IMPORTANT		Microsoft	System	Management	Server	1.2	is	not	supported	with
SQL	Server	or	Microsoft	Cluster	Service	(MSCS).

To	recover	from	a	cluster	failure	and	rebuild	MS	DTC	on	a	Windows	2000
cluster

1.	 When	a	node	is	lost,	MS	DTC	will	continue	to	work	on	the	remaining
nodes	in	the	cluster.	It	does	not	matter	whether	the	node	that	is	lost	is
the	primary	or	secondary	node.

2.	 When	you	are	ready	to	restore	the	lost	node,	join	the	lost	node	back	to
the	cluster.	After	the	node	has	joined	the	cluster,	run	Comclust.exe,
which	can	be	found	in	the	system32	directory.	This	will	reconfigure
MS	DTC	on	the	node.

SQL	Server	Setup	Help

Maintaining	a	Failover	Cluster
After	you	have	installed	a	Microsoft®	SQL	Server™	2000	failover	cluster,	you
can	change	or	repair	your	existing	setup.	For	example,	you	can	add	additional
nodes	to	a	virtual	server	in	a	failover	cluster,	run	a	clustered	instance	as	a	stand-
alone	instance,	remove	a	node	from	a	clustered	instance,	or	recover	from	failover
cluster	failure.

Adding	a	Node	to	an	Existing	Virtual	Server
During	SQL	Server	Setup,	you	are	given	the	option	of	maintaining	an	existing
virtual	server.	If	you	choose	this	option,	you	can	add	other	nodes	to	your	failover
cluster	configuration	at	a	later	time.	You	can	add	up	to	three	additional	nodes	to
an	existing	virtual	server	configured	to	run	on	one	node.

To	add	a	node	to	an	existing	virtual	server

SQL	Server	Setup	Help

Using	SQL	Server	Tools	with	Failover	Clustering
You	can	use	Microsoft®	SQL	Server™	2000	failover	clustering	with	a	variety	of
SQL	Server	tools	and	features.	However,	review	the	following	usage
considerations.

Full-Text	Queries
To	use	the	Microsoft	Search	service	to	perform	full-text	queries	with	failover
clustering,	consider	the	following:

An	instance	of	SQL	Server	2000	must	run	on	the	same	system	account
on	all	failover	cluster	nodes	in	order	for	full-text	queries	to	work	on
failover	clusters.

You	must	change	the	start-up	account	for	SQL	Server	2000	in	the
failover	cluster	using	SQL	Server	Enterprise	Manager.	If	you	use
Control	Panel	or	the	Services	Application	in	Microsoft	Windows®
2000,	you	will	break	the	full-text	configuration	for	SQL	Server.

SQL	Server	Enterprise	Manager

To	use	SQL	Server	Enterprise	Manager	with	failover	clustering,	consider	the
following:

You	must	change	the	start-up	account	for	SQL	Server	2000	in	the
failover	cluster	by	using	SQL	Server	Enterprise	Manager.	If	you	use
Control	Panel	or	the	Services	Application	in	Microsoft	Windows	2000,
you	could	break	your	server	configuration.

When	creating	or	altering	databases,	you	will	only	be	able	to	view	the
cluster	disks	for	the	local	virtual	server.

If	you	are	browsing	a	table	through	SQL	Server	Enterprise	Manager	and
lose	the	connection	to	SQL	Server	during	a	failover,	you	will	see	the

error	message,	"Communication	Link	Failure".	You	must	press	ESC	and
undo	the	changes	to	exit	out	of	the	SQL	Server	Enterprise	Manager
window.	You	cannot	click	Run	Query,	save	any	changes,	or	edit	the
grid.

If	you	use	Enterprise	Manager	to	reset	the	properties	of	the	SQL	Server
service	account,	you	will	be	prompted	to	restart	SQL	Server.	When	SQL
Server	is	running	in	a	failover	cluster	configuration,	this	will	bring	the
full	text	and	SQL	Agent	resources	offline,	as	well	as	SQL	Server.
However,	when	SQL	Server	is	restarted,	it	will	not	bring	the	full	text	or
SQL	Agent	resources	back	online.	You	must	start	those	resources
manually	using	the	Windows	Cluster	Administrator	utility.

Service	Control	Manager

Use	the	Service	Control	Manager	to	start	or	stop	a	clustered	instance	of	SQL
Server.	You	cannot	pause	a	clustered	instance	of	SQL	Server.

To	start	a	clustered	instance	of	SQL	Server	using	Service	Control	Manager

SQL	Server	Setup	Help

Failover	Cluster	Troubleshooting
This	topic	provides	information	about:

Resolving	the	most	common	Microsoft®	SQL	Server™	2000	failover
clustering	usage	issues.	

Optimizing	failover	cluster	performance.

Using	failover	clustering	with	extended	stored	procedures	that	use
COM	objects.

Resolving	Common	Usage	Issues

The	following	list	describes	common	usage	issues	and	explains	how	to	resolve
them:

SQL	Server	2000	cannot	log	on	to	the	network	after	it	migrates	to
another	node.

SQL	Server	service	account	passwords	must	be	identical	on	all	nodes	or
else	the	node	cannot	restart	a	SQL	Server	service	that	has	migrated	from
a	failed	node.

If	you	change	the	SQL	Server	service	account	passwords	on	one	node,
you	must	change	the	passwords	on	all	other	nodes.	However,	if	you
change	the	account	using	SQL	Server	Enterprise	Manager,	this	task	will
be	done	automatically.

SQL	Server	cannot	access	the	cluster	disks.

A	node	cannot	recover	cluster	disks	that	have	migrated	from	a	failed
node	if	the	shared	cluster	disks	use	a	different	letter	drive.	The	disk
drive	letters	for	the	cluster	disks	must	be	the	same	on	both	servers.	If
they	are	not,	review	your	original	installation	of	the	operating	system
and	Microsoft	Cluster	Service	(MSCS).	For	more	information,	see	the
Microsoft	Windows	NT®	4.0,	Enterprise	Edition,	Windows®	2000

Advanced	Server,	or	Windows	2000	Datacenter	Server	documentation.

You	do	not	want	a	failure	of	a	service,	such	as	full-text	search	or	SQL
Server	Agent,	to	cause	a	failover.

To	prevent	the	failure	of	specific	services	from	causing	the	SQL	Server
group	to	fail	over,	configure	those	services	using	Cluster	Administrator
in	Windows	NT	4.0	or	Windows	2000.	For	example,	to	prevent	the
failure	of	the	Full-Text	Search	service	from	causing	a	failover	of	SQL
Server,	clear	the	Affect	the	Group	check	box	on	the	Advanced	tab	of
the	Full	Text	Properties	dialog	box.	However,	if	SQL	Server	causes	a
failover,	the	full-text	search	service	will	restart.

SQL	Server	will	not	start	automatically.

You	cannot	start	a	failover	cluster	automatically	using	SQL	Server.	You
must	use	Cluster	Administrator	in	MSCS	to	automatically	start	a
failover	cluster.

The	error	message	"No	compatible	resource	groups	found"	is	displayed
during	SQL	Server	Setup.

This	error	is	caused	by	the	Microsoft	Distributed	Transaction
Coordinator	(MS	DTC)	setup	on	Windows	NT	4.0,	Enterprise	Edition.
MS	DTC	requires	a	group	containing	a	network	name,	IP	address,	and
shared	cluster	disk	to	be	owned	by	the	local	node	when	the	Setup
program	is	run.	If	this	error	is	displayed,	open	Cluster	Administrator
and	make	certain	there	is	a	group	that	meets	these	requirements	owned
by	the	local	node.	The	easiest	way	to	do	this	is	to	move	a	disk	into	the
cluster	group	that	already	contains	a	network	name	and	IP	address.
After	you	have	this	group	on	the	local	node,	click	Retry.

The	error	message	"All	cluster	disks	available	to	this	virtual	server	are
owned	by	other	node(s)"	is	displayed	during	Setup.

This	message	is	displayed	when	you	select	the	drive	and	path	for
installing	data	files,	and	the	drive	you	selected	is	not	owned	by	the	local
node.	Move	the	disk	to	the	local	node	using	Cluster	Administrator.

The	error	message	"Unable	to	delete	SQL	Server	resources.	They	must
be	manually	removed.	Uninstallation	will	continue."	is	displayed	during

SQL	Server	Setup.

This	message	is	displayed	if	SQL	Server	Setup	cannot	delete	all	of	the
SQL	Server	resources.	You	must	go	into	Control	Panel	and	uninstall	the
instance	you	were	trying	to	remove	on	every	node.

You	cannot	enable	the	clustering	operating	system	error	log.

The	operating	system	cluster	error	log	is	used	by	MSCS	to	record
information	about	the	cluster.	Use	this	error	log	to	debug	cluster
configuration	issues.	To	enable	the	cluster	error	log,	set	the	system
environment	variable	CLUSTERLOG=<path	to	file>	(for	example,
CLUSTERLOG=c:\winnt\cluster\cluster.log).	This	error	log	is	on	by
default	in	Windows	2000.

If	the	Network	Name	is	offline	and	you	cannot	connect	using	TCP/IP,
you	must	use	Named	Pipes.

To	connect	using	Named	Pipes,	create	an	alias	using	the	Client	Network
Utility	to	connect	to	the	appropriate	computer.	For	example,	if	you	have
a	cluster	with	two	nodes	(Node	A	and	Node	B),	and	a	virtual	server
(Virtsql)	with	a	default	instance,	you	can	connect	to	the	server	that	has
the	Network	Name	resource	offline	by	doing	the	following:

1.	 Determine	on	which	node	the	group	containing	the	instance	of
SQL	Server	is	running	by	using	the	Cluster	Administrator.	For
this	example,	it	will	be	Node	A.

2.	 Start	the	SQL	Server	service	on	that	computer	using	net	start.
For	more	information	about	using	net	start,	see	Starting	SQL
Server	Manually.

3.	 Start	the	SQL	Server	Network	Utility	on	Node	A.	View	the
pipe	name	on	which	the	server	is	listening.	It	should	be
similar	to	\\.\$$\VIRTSQL\pipe\sql\query.

4.	 On	the	client	computer,	start	the	Client	Network	Utility.

JavaScript:hhobj_1.Click()

5.	 Create	an	alias	SQLTEST1	to	connect	via	Named	Pipes	to	this
pipe	name.	To	do	this,	put	Node	A	as	the	server	name	and	edit
the	pipe	to	be	\\.\pipe\$$\VIRTSQL\sql\query.	Connect	to	this
instance	using	the	alias	SQLTEST1	as	the	server	name.

For	more	information,	see	Client	Net-Libraries	and	Network	Protocols.

Optimizing	Failover	Clustering	Performance

To	optimize	performance	when	using	failover	clustering,	consider	the	following:

If	your	disk	controller	is	not	external	to	your	clustered	computer,	you
must	turn	off	write-caching	within	the	controller	to	prevent	data	loss
during	a	failover.	

Write-back	caching	cannot	be	used	on	host	controllers	in	a	cluster
without	hindering	performance.	However,	if	you	use	external
controllers,	you	continue	to	provide	performance	benefits.	External	disk
arrays	are	not	affected	by	failover	clustering	and	can	sync	the	cache
correctly,	even	across	a	SCSI	bus.

It	is	recommended	that	you	do	not	use	the	cluster	drive	for	file	shares.
Using	these	drives	impacts	recovery	times	and	can	cause	a	failover	of
the	cluster	group	due	to	resource	failures.

Using	Extended	Stored	Procedures	and	COM	Objects

When	you	use	extended	stored	procedures	with	a	failover	clustering
configuration,	all	extended	stored	procedures	need	to	be	installed	on	the	shared
cluster	disk.	This	is	to	ensure	that	when	a	node	fails	over,	the	extended	stored
procedures	can	still	be	used.

If	the	extended	stored	procedures	use	COM	components,	the	administrator	needs
to	register	the	COM	components	on	each	node	of	the	cluster.	The	information	for
loading	and	executing	COM	components	must	be	in	the	registry	of	the	active
node	in	order	for	the	components	to	be	created.	Otherwise,	the	information	will
remain	in	the	registry	of	the	computer	on	which	the	COM	components	were	first

JavaScript:hhobj_2.Click()

registered.	For	more	information,	see	Extended	Stored	Procedure	Architecture.

JavaScript:hhobj_3.Click()

SQL	Server	Setup	Help

How	to	create	a	new	failover	cluster	(Setup)
IMPORTANT		Before	you	create	a	Microsoft®	SQL	Server™	2000	failover	cluster,
you	must	configure	Microsoft	Cluster	Service	(MSCS)	and	use	Cluster
Administrator	in	Microsoft	Windows	NT®	4.0	or	Windows®	2000	to	create	at
least	one	cluster	disk	resource.	Note	the	location	of	the	cluster	drive	in	the
Cluster	Administrator	before	you	run	SQL	Server	Setup	because	you	need	this
information	to	create	a	new	failover	cluster.

To	create	a	new	failover	cluster

1.	 On	the	Welcome	screen	of	the	Microsoft	SQL	Server	Installation
Wizard,	click	Next.

2.	 On	the	Computer	Name	screen,	click	Virtual	Server	and	enter	a
virtual	server	name.	If	Setup	detects	that	you	are	running	MSCS,	it
will	default	to	Virtual	Server.	Click	Next.

3.	 On	the	User	Information	screen,	enter	the	user	name	and	company.
Click	Next.

4.	 On	the	Software	License	Agreement	screen,	click	Yes.

5.	 On	the	Failover	Clustering	screen,	enter	one	IP	address	for	each
network	configured	for	client	access.	That	is,	enter	one	IP	address	for
each	network	on	which	the	virtual	server	will	be	available	to	clients	on
a	public	(or	mixed)	network.	Select	the	network	for	which	you	want	to
enter	an	IP	address,	and	then	enter	the	IP	address.	Click	Add.

The	IP	address	and	the	subnet	are	displayed.	The	subnet	is	supplied	by
MSCS.	Continue	to	enter	IP	addresses	for	each	installed	network	until
you	have	populated	all	desired	networks	with	an	IP	address.	Click
Next.

6.	 On	the	Cluster	Disk	Selection	screen,	select	the	cluster	disk	group
where	the	data	files	will	be	placed	by	default.	Click	Next.

7.	 On	the	Cluster	Management	screen,	review	the	cluster	definition
provided	by	SQL	Server	2000.	By	default,	all	available	nodes	are
selected.	Remove	any	nodes	that	will	not	be	part	of	the	cluster
definition	for	the	virtual	server	you	are	creating.	Click	Next.

8.	 On	the	Remote	Information	screen,	enter	login	credentials	for	the
remote	cluster	node.	The	login	credentials	must	have	administrator
privileges	on	the	remote	node(s)	of	the	cluster.	Click	Next.

9.	 On	the	Instance	Name	screen,	choose	a	default	instance	or	specify	a
named	instance.	To	specify	a	named	instance,	clear	the	Default	check
box,	and	then	enter	the	name	for	the	named	instance.	Click	Next.

IMPORTANT		You	cannot	name	an	instance	DEFAULT	or
MSSQLSERVER.	For	more	information	about	naming	instances	of
SQL	Server	2000,	see	Working	with	Named	and	Multiple	Instances	of
SQL	Server	2000.	Names	must	follow	rules	for	SQL	Server	identifiers.
For	more	information	about	naming	conventions	for	identifiers,	see
Using	Identifiers.

10.	 On	the	Setup	Type	screen,	select	the	type	of	installation	to	install.	The
Setup	program	automatically	defaults	to	the	first	available	cluster	disk
resource	from	the	group	you	previously	selected.

However,	if	you	need	to	specify	a	different	clustered	drive	resource,
under	Data	Files,	click	Browse	and	then	specify	a	path	on	a	clustered
drive	resource.	You	will	be	required	to	select	a	clustered	drive	resource
that	is	owned	by	the	node	on	which	you	are	running	the	Setup
program.	The	drive	also	must	be	a	member	of	the	cluster	group	you
previously	selected.	Click	Next.

11.	 On	the	Services	Accounts	screen,	select	the	service	account(s)	that
you	want	to	run	in	the	failover	cluster.	Click	Next.

JavaScript:hhobj_1.Click()

12.	 In	the	Authentication	Mode	dialog	box,	choose	the	authentication
mode	to	use.	If	you	change	the	selection	from	Windows
Authentication	Mode	to	Mixed	Mode	(Windows	Authentication
and	SQL	Server	Authentication),	you	need	to	enter	and	confirm	a
password	for	the	sa	login.

13.	 On	the	Start	Copying	Files	screen,	click	Next.

14.	 On	the	Setup	Complete	screen,	click	Finish.

If	you	are	instructed	to	restart	the	computer,	do	so	now.	It	is	important
to	read	the	message	from	the	Setup	program	when	you	are	done	with
installation.	Failure	to	restart	any	of	the	specified	nodes	may	cause
failures	when	you	run	the	Setup	program	in	the	future	on	any	node	in
the	failover	cluster.

SQL	Server	Setup	Help

How	to	install	a	one-node	failover	cluster	(Setup)
1.	 On	the	Welcome	screen	of	the	Microsoft	SQL	Server	Installation

Wizard,	click	Next.

2.	 On	the	Computer	Name	screen,	click	Virtual	Server	and	enter	a
virtual	server	name.	If	SQL	Server	Setup	detects	that	you	are	running
Microsoft®	Cluster	Service	(MSCS),	it	will	default	to	Virtual	Server.
Click	Next.

3.	 On	the	User	Information	screen,	enter	the	user	name	and	company.
Click	Next.

4.	 On	the	Software	License	Agreement	screen,	click	Yes.

5.	 On	the	Failover	Clustering	screen,	enter	one	IP	address	per	installed
network	for	the	virtual	server.	Select	the	network	for	which	you	wish
to	enter	an	IP	address,	and	then	enter	the	IP	address.	Click	Add.

The	IP	address	and	the	subnet	are	displayed.	The	subnet	is	supplied	by
MSCS.	Continue	to	enter	IP	addresses	for	each	installed	network	until
you	have	populated	all	desired	networks	with	an	IP	address.	Click
Next.

6.	 On	the	Cluster	Disk	Selection	screen,	select	the	cluster	disk	group
where	the	data	files	will	be	placed	by	default.	Click	Next.

7.	 On	the	Cluster	Management	screen,	review	the	failover	cluster
definition	provided	by	Microsoft	SQL	Server™	2000.	By	default,	all
available	nodes	are	selected.	Remove	any	nodes	that	will	not	be	part	of
the	cluster	definition	for	the	virtual	server	you	are	creating.	Click
Next.

8.	 On	the	Remote	Information	screen,	enter	login	credentials	that	have
administrator	privileges	on	the	remote	node	of	the	cluster.	Click	Next.

9.	 On	the	Instance	Name	screen,	choose	a	default	instance	or	specify	a
named	instance.	To	specify	a	named	instance,	clear	the	Default	check
box,	and	then	enter	the	name.	Click	Next.

IMPORTANT		You	cannot	name	an	instance	DEFAULT	or
MSSQLSERVER.	The	name	must	follow	the	rules	for	SQL	Server
identifiers.	For	more	information	about	naming	conventions	for
identifiers,	see	Using	Identifiers.

10.	 On	the	Setup	Type	screen,	select	the	type	of	installation	to	install.
Setup	will	automatically	default	to	the	first	available	clustered	disk
resource	from	the	group	you	previously	selected.	However,	if	you	need
to	specify	a	different	clustered	drive	resource,	under	Data	Files,	click
the	Browse	button	and	then	specify	a	path	on	a	clustered	drive
resource.	You	will	be	required	to	select	a	clustered	drive	resource	that
is	owned	by	the	node	on	which	you	are	running	Setup.	The	drive	must
also	be	a	member	of	the	cluster	group	you	previously	selected.	Click
Next.

11.	 On	the	Services	Accounts	screen,	select	the	service	account(s)	that
you	want	to	run	in	the	failover	cluster.	Click	Next.

12.	 In	the	Authentication	Mode	dialog	box,	choose	the	authentication
mode	to	use.	If	you	change	the	selection	from	Windows
Authentication	Mode	to	Mixed	Mode	(Windows	Authentication
and	SQL	Server	Authentication),	you	must	enter	and	confirm	a
password	for	the	sa	login.

13.	 On	the	Start	Copying	Files	screen,	click	Next.

14.	 On	the	Setup	Complete	screen,	click	Finish.	If	you	are	instructed	to
restart	the	computer,	do	so	now.	It	is	important	to	read	the	message

JavaScript:hhobj_1.Click()

from	the	Setup	program	when	you	are	done	with	installation.	Failure	to
restart	any	of	the	specified	nodes	may	cause	failures	when	running	the
Setup	program	in	the	future	on	any	node	in	the	cluster.

SQL	Server	Setup	Help

How	to	add	nodes	to	an	existing	virtual	server	(Setup)
1.	 On	the	Welcome	screen	of	the	Microsoft	SQL	Server	Installation

Wizard,	click	Next.

2.	 On	the	Computer	Name	screen,	click	Virtual	Server	and	specify	the
virtual	server	to	which	you	want	to	add	a	node.	Click	Next.

3.	 On	the	Installation	Selection	screen,	click	Advanced	options.	Click
Next.

4.	 On	the	Advanced	Options	screen,	click	Maintain	a	virtual	server
for	failover	clustering.	Click	Next.

5.	 On	the	Failover	Clustering	screen,	click	Next.

You	do	not	need	to	enter	an	IP	address.

6.	 On	the	Cluster	Management	screen,	select	the	node	and	click	Add.

If	the	node	is	listed	as	unavailable,	you	must	modify	the	disk	resources
in	the	cluster	group	of	the	virtual	server	so	the	disk	is	available	for	the
node	you	want	to	add	to	the	Microsoft®	SQL	Server™	configuration.
Click	Next.

7.	 On	the	Remote	Information	screen,	enter	login	credentials	for	the
remote	cluster	node	that	has	administrator	privileges	on	the	remote
node	of	the	cluster.	Click	Next.

8.	 On	the	Setup	Complete	screen,	click	Finish.

SQL	Server	Setup	Help

How	to	remove	a	node	from	an	existing	failover
cluster	(Setup)

1.	 On	the	Welcome	screen	of	the	Microsoft	SQL	Server	Installation
Wizard,	click	Next.

2.	 On	the	Computer	Name	screen,	click	Virtual	Server	and	specify	the
name	of	the	server	from	which	to	remove	the	node.	Click	Next.

3.	 You	may	see	an	error	message	saying	that	one	(or	more)	of	the	nodes
of	the	Microsoft®	Windows	NT®	4.0	or	Microsoft	Windows®	2000
cluster	are	unavailable.	This	may	be	because	the	node(s)	you	are
attempting	to	remove	is	damaged.	The	node(s)	still	can	be	removed.
Click	OK.

4.	 On	the	Installation	Selection	screen,	click	Advanced	Options.	Click
Next.

5.	 On	the	Advanced	Options	screen,	click	Maintain	a	virtual	server
for	failover	clustering.	Click	Next.

6.	 On	the	Failover	Clustering	screen,	click	Next.

You	do	not	need	to	modify	any	IP	address(es).

7.	 On	the	Cluster	Management	screen,	select	the	node	and	click
Remove.	Click	Next.

8.	 On	the	Remote	Information	screen,	enter	login	credentials	for	the
remote	cluster	node	that	has	administrator	privileges	on	the	remote
node(s)	of	the	cluster.	Click	Next.

9.	 On	the	Setup	Complete	screen,	click	Finish.

If	you	are	instructed	to	restart	the	computer,	do	so	now.	It	is	important
to	read	the	message	from	SQL	Server	Setup	when	you	are	done	with
installation.	Failure	to	restart	any	of	the	specified	nodes	may	cause
failures	when	you	run	the	Setup	program	in	the	future	on	any	node	in
the	failover	cluster.

SQL	Server	Setup	Help

How	to	remove	a	failover	clustered	instance	(Setup)
1.	 On	the	Welcome	screen	of	the	Microsoft	SQL	Server	Installation

Wizard,	click	Next.

2.	 On	the	Computer	Name	screen,	click	Virtual	Server	and	specify	the
name	of	the	server	from	which	to	remove	a	clustered	instance.	Click
Next.

3.	 On	the	Installation	Selection	screen,	click	Upgrade,	remove,	or	add
components	to	an	existing	instance	of	SQL	Server.

4.	 On	the	Instance	Name	screen,	for	a	default	instance,	click	Default.
For	a	named	instance,	specify	the	name	of	the	instance	to	remove.
Click	Next.

5.	 On	the	Existing	Installation	screen,	click	Uninstall	your	existing
installation.	Click	Next.

6.	 On	the	Remote	Information	screen,	specify	the	password	that	is	a
valid	administrator	password	on	all	nodes	in	the	cluster.	Click	Next.

7.	 In	the	Setup	message	"Successfully	uninstalled	the	instance	.	.	.	",
click	OK.

8.	 On	the	Setup	Complete	screen,	click	Finish.

If	you	are	instructed	to	restart	the	computer,	do	so	now.	It	is	important
to	read	the	message	from	SQL	Server	Setup	when	you	are	done	with
installation.	Failure	to	restart	any	of	the	specified	nodes	may	cause
failures	when	you	run	the	Setup	program	in	the	future	on	any	node	in

the	failover	cluster.

SQL	Server	Setup	Help

How	to	recover	from	failover	cluster	failure	in
Scenario	1
In	this	scenario,	failure	is	caused	by	hardware	failure	in	Node	1	of	a	two-node
cluster.	This	hardware	failure	could	be	caused,	for	example,	by	the	failure	of	a
small	computer	system	interface	(SCSI)	card	or	the	operating	system.

1.	 After	Node	1	fails,	the	Microsoft®	SQL	Server™	2000	failover	cluster
fails	over	to	Node	2.

2.	 Run	SQL	Server	Setup	and	remove	Node	1.	For	more	information,	see
How	to	remove	a	failover	clustered	instance	.

3.	 Evict	Node	1	from	Microsoft	Cluster	Service	(MSCS).	To	evict	a	node
from	MSCS,	from	Node	2,	right-click	on	the	node	to	remove,	and	then
click	Evict	Node.

4.	 Install	new	hardware	to	replace	the	failed	hardware	in	Node	1.

5.	 Install	the	operating	system.	For	more	information	about	which
operating	system	to	install	and	specific	instructions	on	how	to	do	this,
see	Before	Installing	Failover	Clustering.

6.	 Install	MSCS	and	join	the	existing	cluster.	For	more	information,	see
Before	Installing	Failover	Clustering.

7.	 Run	the	Setup	program	on	Node	2	and	add	Node	1	back	to	the	failover
cluster.	For	more	information,	see	How	to	add	nodes	to	an	existing
virtual	server	(Setup).

SQL	Server	Setup	Help

How	to	recover	from	failover	cluster	failure	in
Scenario	2
In	Scenario	2,	failure	is	caused	by	Node	1	being	down	or	offline	but	not
irretrievably	broken.	This	could	be	caused,	for	example,	by	an	operating	system
failure.

1.	 After	Node	1	fails,	the	Microsoft®	SQL	Server™	2000	failover	cluster
fails	over	to	Node	2.

2.	 Run	SQL	Server	Setup	and	remove	Node	1.	For	more	information,	see
How	to	remove	a	failover	clustered	instance.

3.	 Resolve	the	problem	with	Node	1.

4.	 Ensure	that	the	Microsoft	Cluster	Service	(MSCS)	cluster	is	working
and	all	nodes	are	online.

5.	 Run	the	Setup	program	on	Node	2	and	add	Node	1	back	to	the	failover
cluster.	For	more	information,	see	How	to	add	nodes	to	an	existing
virtual	server	(Setup).

SQL	Server	Setup	Help

How	to	upgrade	from	a	SQL	Server	6.5	active/passive
failover	cluster	(Setup)
To	upgrade	from	a	SQL	Server	6.5	active/passive	failover	cluster

1.	 Uncluster	Microsoft®	SQL	Server™	version	6.5.

2.	 Install	a	default	instance	of	SQL	Server	2000.

You	must	install	the	binaries	to	a	local	drive	and	use	a	cluster	disk	for
the	data.	This	local	drive	is	a	path,	which	is	a	non-clustered	disk	valid
on	all	nodes	of	the	cluster.	On	all	nodes	of	the	cluster,	this	drive	must
have	at	least	300	megabytes	(MB)	of	available	space.

3.	 Run	the	SQL	Server	Upgrade	Wizard	to	migrate	your	data	into	SQL
Server	2000.

4.	 Uninstall	SQL	Server	6.5.

5.	 Run	SQL	Server	Setup	to	upgrade	your	default	instance	of	SQL	Server
2000	to	a	SQL	Server	2000	failover	cluster.

For	more	information,	see	How	to	upgrade	from	a	default	instance	to	a
default	clustered	instance	of	SQL	Server	2000	(SQL	Server	Setup).

See	Also

How	to	perform	a	SQL	Server	version	6.5	to	SQL	Server	2000	upgrade	using	a
direct	pipeline	(SQL	Server	Upgrade	Wizard)

How	to	perform	a	SQL	Server	version	6.5	to	SQL	Server	2000	upgrade	using	a
tape	drive	(SQL	Server	Upgrade	Wizard)

SQL	Server	Setup	Help

How	to	upgrade	from	a	SQL	Server	6.5	active/active
failover	cluster	(Setup)
Note		To	upgrade	from	a	Microsoft®	SQL	Server™	6.5	active/active	failover
cluster	(or	any	configuration	where	SQL	Server	exists	on	the	second	node),	you
must	first	convert	one	side	of	the	failover	cluster	to	a	named	instance	of	SQL
Server	2000.

To	upgrade	from	a	SQL	Server	6.5	active/active	failover	cluster

1.	 On	Node	1,	uncluster	SQL	Server	6.5.	On	Node	2,	uncluster	SQL
Server	6.5.

2.	 On	Node	1,	install	a	default	(non-clustered)	instance	of	SQL	Server
2000.

You	must	install	the	binaries	to	a	local	drive	and	use	a	cluster	disk	for
the	data.	This	local	drive	is	a	path,	which	is	a	non-clustered	disk	valid
on	all	nodes	of	the	cluster.	This	drive	on	all	nodes	of	the	cluster	must
have	at	least	300	megabytes	(MB)	of	available	space.

3.	 On	Node	1,	run	the	SQL	Server	2000	Upgrade	Wizard	to	migrate	your
data	into	SQL	Server	2000.

4.	 On	Node	1,	uninstall	the	instance	of	SQL	Server	6.5.

5.	 On	Node1,	install	a	named,	clustered	instance	of	SQL	Server	2000.

6.	 Run	the	Copy	Database	Wizard	(CDW.exe)	to	migrate	your	SQL
Server	data	(originally	from	SQL	Server	6.5)	to	a	named	instance	in	a
SQL	Server	2000	failover	cluster.	For	more	information	about	the
Copy	Database	Wizard,	see	Using	the	Copy	Database	Wizard	or	How
to	upgrade	databases	online	using	the	Copy	Database	Wizard
(Enterprise	Manager).

7.	 On	Node	1,	uninstall	the	default	instance	of	SQL	Server	2000.

8.	 On	Node	2,	install	a	default	instance	of	SQL	Server	2000.

9.	 Run	the	SQL	Server	2000	Upgrade	Wizard	to	migrate	your	data	into
SQL	Server	2000.

You	must	install	the	binaries	to	a	local	drive	and	use	a	cluster	disk	for
the	data.	This	local	drive	is	a	path,	which	is	a	non-clustered	disk	valid
on	all	nodes	of	the	cluster.	On	all	nodes	of	the	cluster,	this	drive	must
have	at	least	300	megabytes	(MB)	of	available	space.

10.	 On	Node	2,	uninstall	the	instance	of	SQL	Server	6.5.

11.	 On	Node	2,	upgrade	the	default	instance	of	SQL	Server	to	a	clustered
instance.

For	more	information,	see	How	to	upgrade	from	a	default	instance	to	a
default	clustered	instance	of	SQL	Server	2000	(SQL	Server	Setup).

SQL	Server	Setup	Help

How	to	upgrade	from	a	SQL	Server	7.0	active/active
failover	cluster	(Setup)
Note		To	upgrade	from	a	Microsoft®	SQL	Server™	version	7.0	active/active
failover	cluster	(or	any	configuration	where	SQL	Server	exists	on	the	second
node),	you	must	first	convert	one	side	of	the	failover	cluster	to	a	named	instance
of	SQL	Server	2000.

To	upgrade	from	a	SQL	Server	7.0	active/active	failover	cluster

1.	 On	Node	1,	uncluster	SQL	Server	version	7.0.	Reboot	Node	1.

2.	 On	Node	2,	uncluster	SQL	Server	7.0.	Reboot	Node	2.

3.	 On	Node	1,	install	a	clustered,	named	instance	of	SQL	Server	2000	as
a	virtual	server.	This	is	not	an	upgrade	process,	but	a	side-by-side
installation	of	SQL	Server	7.0	and	SQL	Server	2000.	Do	not	install	the
data	to	the	same	location/disk	as	Node	2.	If	you	do,	when	you	attempt
to	upgrade	Node	2	from	a	SQL	Server	7.0	to	a	SQL	Server	2000
installation,	Setup	will	fail.

4.	 On	Node	1,	run	the	Copy	Database	Wizard	(CDW.exe)	to	move	all
databases	and	related	information	from	the	SQL	Server	7.0	installation
into	the	clustered,	named	instance	of	SQL	Server	2000.	For	more
information	about	the	Copy	Database	Wizard,	see	Using	the	Copy
Database	Wizard	or	How	to	upgrade	databases	online	using	the	Copy
Database	Wizard	(Enterprise	Manager).

5.	 On	Node	1,	uninstall	SQL	Server	7.0.

6.	 On	Node	2,	upgrade	SQL	Server	7.0	to	SQL	Server	2000	as	the	default
instance.

You	must	install	the	binaries	to	a	local	drive	and	use	a	cluster	disk	for
the	data.	This	local	drive	is	a	path,	which	is	a	non-clustered	disk	valid
on	all	nodes	of	the	cluster.	This	drive	on	all	nodes	of	the	cluster	must
have	at	least	300	megabytes	(MB)	of	available	space.

7.	 On	Node	2,	upgrade	the	default	instance	of	SQL	Server	2000	to	a
clustered	instance.

For	more	information,	see	How	to	upgrade	from	a	default	instance	to	a
default	clustered	instance	of	SQL	Server	2000	(SQL	Server	Setup).

Note		Optionally,	you	could	create	two	named	instances	of	SQL	Server	2000	and
use	the	Copy	Database	Wizard	to	upgrade	both	SQL	Server	7.0	installations	to	a
clustered,	named	instance	of	SQL	Server	2000.	This	will	provide	better
consistency,	because	all	references	to	clustered	installations	of	SQL	Server	2000
will	be	in	the	form	VirtualServer\Instance,	rather	than	sometimes	being	just	the
servername,	and	sometimes	both	the	servername	and	instancename.

SQL	Server	Setup	Help

How	to	upgrade	from	a	SQL	Server	7.0	active/passive
failover	cluster	(Setup)
To	upgrade	from	a	SQL	Server	7.0	active/passive	failover	cluster

1.	 On	Node	1,	uncluster	Microsoft®	SQL	Server™	version	7.0.	Reboot
Node	1.

2.	 On	Node	1,	upgrade	SQL	Server	7.0	to	SQL	Server	2000	as	the	default
instance.

You	must	install	the	binaries	to	a	local	drive	and	use	a	cluster	disk	for
the	data.	This	local	drive	is	a	path,	which	is	a	non-clustered	disk	valid
on	all	nodes	of	the	cluster.	This	drive	on	all	nodes	of	the	cluster	must
have	at	least	300	megabytes	(MB)	of	available	space.

3.	 On	Node	1,	upgrade	the	default	instance	of	SQL	Server	2000	to	a
clustered	instance	of	SQL	Server	2000.

For	more	information,	see	How	to	upgrade	from	a	default	instance	to	a
default	clustered	instance	of	SQL	Server	2000	(SQL	Server	Setup).

SQL	Server	Setup	Help

How	to	upgrade	from	a	default	instance	to	a	default
clustered	instance	of	SQL	Server	2000	(Setup)
Note		This	upgrade	is	from	a	default	instance	(a	local	installation	where	the	data
is	on	a	local	disk)	to	a	clustered	instance	of	Microsoft®	SQL	Server™	2000.	Use
this	upgrade	step	if	you	want	to	have	a	default	virtual	server.

To	upgrade	from	a	default	instance	to	a	default	clustered	instance	of	SQL
Server	2000

1.	 On	the	Welcome	screen	of	the	SQL	Server	Installation	Wizard,	click
Next.

2.	 On	the	Computer	Name	screen,	click	Local	Computer.	The
computer	you	want	to	change	from	a	default	to	a	clustered	instance
should	be	displayed.	You	must	be	on	the	local	computer	to	upgrade
from	a	default	to	a	clustered	instance.	Click	Next.

3.	 On	the	Installation	Selection	screen,	click	Upgrade,	remove,	or	add
components	to	an	existing	instance	of	SQL	Server.	Click	Next.

4.	 On	the	Existing	Installation	screen,	click	Upgrade	your	existing
installation	to	a	clustered	installation.	Click	Next.

5.	 On	the	Virtual	Server	Name	screen,	enter	a	name	for	your	virtual
server.	Click	Next.

6.	 On	the	Failover	Clustering	screen,	enter	one	IP	address	for	each
network	configured	for	client	access.	That	is,	enter	one	IP	address	for
each	network	on	which	the	virtual	server	will	be	available	to	clients	on
a	public	(or	mixed)	network.	Select	the	network	for	which	you	want	to
enter	an	IP	address,	and	then	enter	the	IP	address.	Click	Add.

The	IP	address	and	the	subnet	are	displayed.	The	subnet	is	supplied	by
Microsoft	Cluster	Service	(MSCS).	Continue	to	enter	IP	addresses	for
each	installed	network	until	you	have	populated	all	desired	networks
with	an	IP	address.	Click	Next.

6.	 On	the	Cluster	Management	screen,	review	the	failover	cluster
definition	provided	by	SQL	Server	2000.	By	default,	all	available
nodes	are	selected.	Remove	any	nodes	that	will	not	be	part	of	the
failover	cluster	definition	for	the	virtual	server	you	are	creating.	Click
Next.

7.	 On	the	Remote	Information	screen,	enter	login	credentials	for	the
remote	cluster	node.	The	login	credentials	must	have	administrator
privileges	on	the	remote	node(s)	of	the	cluster.	Click	Next.

8.	 On	the	Services	Accounts	screen,	select	the	service	account(s)	for	the
SQL	Server	services	under	which	you	want	the	failover	cluster	to	run.
Click	Next.

9.	 On	the	Setup	Complete	screen,	click	Finish.	If	you	need	to	restart	the
remote	nodes	in	the	failover	cluster,	you	will	be	instructed	to	do	so	in
the	Setup	Complete	screen.

SQL	Server	Setup	Help

How	to	upgrade	from	a	local	default	instance	to	a
clustered,	named	instance	of	SQL	Server	2000	(Setup)
To	upgrade	from	a	local	default	instance	to	a	named	clustered	instance	of
SQL	Server	2000

1.	 Install	a	clustered,	named	instance	of	Microsoft®	SQL	Server™	2000.

2.	 Run	the	Copy	Database	Wizard	(CDW.exe)	to	move	all	databases	and
related	information	into	the	clustered,	named	instance	of	SQL	Server
2000.	For	more	information	about	the	Copy	Database	Wizard,	see
Using	the	Copy	Database	Wizard	or	How	to	upgrade	databases	online
using	the	Copy	Database	Wizard	(Enterprise	Manager).

3.	 Optionally,	you	can	uninstall	the	default	instance	of	SQL	Server	2000.

SQL	Server	Setup	Help

Collation	Options	for	International	Support
In	Microsoft®	SQL	Server™	2000,	it	is	not	required	to	separately	specify	code
page	and	sort	order	for	character	data,	and	the	collation	used	for	Unicode	data.
Instead,	specify	the	collation	name	and	sorting	rules	to	use.	The	term,	collation,
refers	to	a	set	of	rules	that	determine	how	data	is	sorted	and	compared.	Character
data	is	sorted	using	rules	that	define	the	correct	character	sequence,	with	options
for	specifying	case-sensitivity,	accent	marks,	kana	character	types,	and	character
width.	Microsoft	SQL	Server	2000	collations	include	these	groupings:

Windows	collations

Windows	collations	define	rules	for	storing	character	data	based	on	the
rules	defined	for	an	associated	Windows	locale.	The	base	Windows
collation	rules	specify	which	alphabet	or	language	is	used	when
dictionary	sorting	is	applied,	as	well	as	the	code	page	used	to	store	non-
Unicode	character	data.	For	more	information,	see	Collations.

SQL	collations

SQL	collations	are	provided	for	compatibility	with	sort	orders	in	earlier
versions	of	Microsoft	SQL	Server.	For	more	information,	see	Using
SQL	Collations.

Changing	Collations	After	Setup

When	you	set	up	SQL	Server	2000,	it	is	important	to	use	the	correct	collation
settings.	You	can	change	collation	settings	after	running	Setup,	but	you	must
rebuild	the	databases	and	reload	the	data.	It	is	recommended	that	you	develop	a
standard	within	your	organization	for	these	options.	Many	server-to-server
activities	can	fail	if	the	collation	settings	are	not	consistent	across	servers.

See	Also

Collation	Settings	in	Setup

How	to	rebuild	the	master	database	(Rebuild	Master	utility)

Selecting	a	SQL	Collation

Windows	Collation	Designators

SQL	Server	Setup	Help

Collation	Settings	in	Setup
Use	the	Collation	Settings	screen	to	modify	default	collation	settings.	Use	the
Windows	Locale	option	to	match	collation	settings	in	instances	of	Microsoft®
SQL	Server™	2000.	Use	SQL	Collations	to	match	settings	that	are	compatible
with	the	sort	orders	in	earlier	versions	of	SQL	Server.

Windows	Locale
Change	the	default	settings	for	Windows	Locale	(Windows	collation)	only	if
your	installation	of	SQL	Server	must	match	the	collation	settings	used	by
another	instance	of	SQL	Server	2000,	or	must	match	the	Windows	locale	of
another	computer.

Collation	Designator
Select	the	name	of	a	specific	Windows	collation	from	the	list,	for	example:

Use	Latin1_General	for	the	U.S.	English	character	set	(code	page
1252).

Use	Modern_Spanish	for	all	variations	of	Spanish,	which	also	use	the
same	character	set	as	U.S.	English	(code	page	1252).

Use	Arabic	for	all	variations	of	Arabic,	which	use	the	Arabic	character
set	(code	page	1256).

Use	Japanese_Unicode	for	the	Unicode	version	of	Japanese	(code	page
932),	which	has	a	different	sort	order	from	Japanese,	but	the	same	code
page	(932).

For	more	information,	see	Windows	Collation	Designators.

Sort	Order

Select	Sort	Order	options	to	use	with	the	Collation	Designator	selected.	Binary	is
the	fastest	sorting	order,	and	is	case-sensitive.	If	Binary	is	selected,	the	Case-
sensitive,	Accent-sensitive,	Kana-sensitive,	and	Width-sensitive	options	are
not	available.	For	more	information,	see	Windows	Collation	Sorting	Styles.

SQL	Collations
The	SQL	Collations	option	is	used	for	compatibility	with	earlier	versions	of
Microsoft	SQL	Server.	Select	this	option	to	match	settings	compatible	with	SQL
Server	version	7.0,	SQL	Server	version	6.5,	or	earlier.	For	more	information,	see
SQL	Collations.

SQL	Server	Setup	Help

Windows	Collation	Sorting	Styles
On	the	Collation	Settings	screen	you	can	choose	Binary	sort	order,	or	you	can
define	the	sorting	styles	to	use	with	the	Collation	Designator	(Windows	collation
name)	selected.

Note		For	Windows	collations,	the	nchar,	nvarchar,	and	ntext	data	types	have
the	same	sorting	behavior	as	char,	varchar,	and	text	data	types.	For	more
information,	see	SQL	Server	Collation	Fundamentals.

Sort	order Description
Binary Sorts	and	compares	data	in	Microsoft®	SQL	Server™

tables	based	on	the	bit	patterns	defined	for	each
character.	Binary	sort	order	is	case-sensitive,	that	is
lowercase	precedes	uppercase,	and	accent-sensitive.	This
is	the	fastest	sorting	order.

If	this	option	is	not	selected,	SQL	Server	follows	sorting
and	comparison	rules	as	defined	in	dictionaries	for	the
associated	language	or	alphabet.

Case-sensitive Specifies	that	SQL	Server	distinguish	between	uppercase
and	lowercase	letters.

If	not	selected,	SQL	Server	considers	the	uppercase	and
lowercase	versions	of	letters	to	be	equal.	SQL	Server
does	not	define	whether	lowercase	letters	sort	lower	or
higher	in	relation	to	uppercase	letters	when	Case-
sensitive	is	not	selected.

Accent-sensitive Specifies	that	SQL	Server	distinguish	between	accented
and	unaccented	characters.	For	example,	'a'	is	not	equal
to	'á'.

If	not	selected,	SQL	Server	considers	the	accented	and
unaccented	versions	of	letters	to	be	equal.

Kana-sensitive Specifies	that	SQL	Server	distinguish	between	the	two
types	of	Japanese	kana	characters:	Hiragana	and

Katakana.

If	not	selected,	SQL	Server	considers	Hiragana	and
Katakana	characters	to	be	equal.

Width-sensitive Specifies	that	SQL	Server	distinguish	between	a	single-
byte	character	(half-width)	and	the	same	character	when
represented	as	a	double-byte	character	(full-width).

If	not	selected,	SQL	Server	considers	the	single-byte	and
double-byte	representation	of	the	same	character	to	be
equal.

See	Also

Collation	Settings	in	Setup

Windows	Collation	Designators

SQL	Server	Setup	Help

Windows	Collation	Designators
Use	this	table	to	synchronize	collation	settings	with	another	Windows	locale.

In	Control	Panel,	find	the	Windows	locale	name	in	the	Regional	Settings
application	(Microsoft®	Windows	NT®	4.0,	Microsoft	Windows®	98,	and
Microsoft	Windows	95)	or	the	Regional	Options	application	(Microsoft
Windows	2000),	and	then	use	this	table	to	find	the	corresponding	Collation
Designator	and	code	page.

Windows	locale
LCID	
(locale	ID) Collation	designator

Code
page

Afrikaans 0xx436 Latin1_General 1252
Albanian 0x41C Albanian 1250
Arabic	(Saudi	Arabia) 0x401 Arabic 1256
Arabic	(Iraq) 0x801 Arabic 1256
Arabic	(Egypt) 0xC01 Arabic 1256
Arabic	(Libya) 0x1001 Arabic 1256
Arabic	(Algeria) 0x1401 Arabic 1256
Arabic	(Morocco) 0x1801 Arabic 1256
Arabic	(Tunisia) 0x1C01 Arabic 1256
Arabic	(Oman) 0x2001 Arabic 1256
Arabic	(Yemen) 0x2401 Arabic 1256
Arabic	(Syria) 0x2801 Arabic 1256
Arabic	(Jordan) 0x2C01 Arabic 1256
Arabic	(Lebanon) 0x3001 Arabic 1256
Arabic	(Kuwait) 0x3401 Arabic 1256
Arabic	(United	Arab
Emirates)

0x3801 Arabic 1256

Arabic	(Bahrain) 0x3C01 Arabic 1256
Arabic	(Qatar) 0x4001 Arabic 1256
Basque 0x42D Latin1_General 1252
Byelorussian 0x423 Cyrillic_General 1251
Bulgarian 0x402 Cyrillic_General 1251

Catalan 0x403 Latin1_General 1252
Chinese	(Taiwan) 0x30404 Chinese_Taiwan_Bopomofo 950
Chinese	(Taiwan) 0x404 Chinese_Taiwan_Stroke 950
Chinese	(People's
Republic	of	China)

0x804 Chinese_PRC 936

Chinese	(People's
Republic	of	China)

0x20804 Chinese_PRC_Stroke 936

Chinese	(Singapore) 0x1004 Chinese_PRC 936
Croatia 0x41a Croatian 1250
Czech 0x405 Czech 1250
Danish 0x406 Danish_Norwegian 1252
Dutch	(Standard) 0x413 Latin1_General 1252
Dutch	(Belgium) 0x813 Latin1_General 1252
English	(United	States) 0x409 Latin1_General 1252
English	(Britain) 0x809 Latin1_General 1252
English	(Canada) 0x1009 Latin1_General 1252
English	(New	Zealand) 0x1409 Latin1_General 1252
English	(Australia) 0xC09 Latin1_General 1252
English	(Ireland) 0x1809 Latin1_General 1252
English	(South	Africa) 0x1C09 Latin1_General 1252
English	(Carribean) 0x2409 Latin1_General 1252
English	(Jamaican) 0x2009 Latin1_General 1252
Estonian 0x425 Estonian 1257
Faeroese 0x0438 Latin1_General 1252
Farsi 0x429 Arabic 1256
Finnish 0x40B Finnish_Swedish 1252
French	(Standard) 0x40C French 1252
French	(Belgium) 0x80C French 1252
French	(Switzerland) 0x100C French 1252
French	(Canada) 0xC0C French 1252
French	(Luxembourg) 0x140C French 1252

Georgian	(Modern 0x10437 Georgian_Modern_Sort 1252

Sort)
German	(PhoneBook
Sort)

0x10407 German_PhoneBook 1252

German	(Standard) 0x407 Latin1_General 1252
German	(Switzerland) 0x807 Latin1_General 1252
German	(Austria) 0xC07 Latin1_General 1252
German	(Luxembourg) 0x1007 Latin1_General 1252
German
(Liechtenstein)

0x1407 Latin1_General 1252

Greek 0x408 Greek 1253
Hebrew 0x40D Hebrew 1255
Hindi 0x439 Hindi Unicode

only
Hungarian 0x40E Hungarian 1250
Hungarian 0x104E Hungarian_Technical 1250
Icelandic 0x40F Icelandic 1252
Indonesian 0x421 Latin1_General 1252
Italian 0x410 Latin1_General 1252
Italian	(Switzerland) 0x810 Latin1_General 1252
Japanese 0x411 Japanese 932
Japanese	(Unicode) 0x10411 Japanese_Unicode 932
Korean	(Extended
Wansung)

0x412 Korean_Wansung 949

Korean 0x412 Korean_Wansung_Unicode 949
Latvian 0x426 Latvian 1257
Lithuanian 0x427 Lithuanian 1257
Lithuanian 0x827 Lithuanian_Classic 1257
Macedonian 0x41C Cyrillic_General 1251
Norwegian	(Bokmål) 0x414 Danish_Norwegian 1252
Norwegian	(Nynorsk) 0x814 Danish_Norwegian 1252
Polish 0x415 Polish 1250
Portuguese	(Standard) 0x816 Latin1_General 1252

Portuguese	(Brazil) 0x416 Latin1_General 1252

Romanian 0x418 Romanian 1250
Russian 0x419 Cyrillic_General 1251
Serbian	(Latin) 0x81A Cyrillic_General 1251
Serbian	(Cyrillic) 0xC1A Cyrillic_General 1251
Slovak 0x41B Slovak 1250
Slovenian 0x424 Slovenian 1250
Spanish	(Mexico) 0x80A Traditional_Spanish 1252
Spanish	(Traditional
Sort)

0x40A Traditional_Spanish 1252

Spanish	(Modern	Sort) 0xC0A Modern_Spanish 1252
Spanish	(Guatemala) 0x100A Modern_Spanish 1252
Spanish	(Costa	Rica) 0x140A Modern_Spanish 1252
Spanish	(Panama) 0x180A Modern_Spanish 1252
Spanish	(Dominican
Republic)

0x1C0A Modern_Spanish 1252

Spanish	(Venezuela) 0x200A Modern_Spanish 1252
Spanish	(Colombia) 0x240A Modern_Spanish 1252
Spanish	(Peru) 0x280A Modern_Spanish 1252
Spanish	(Argentina) 0x2C0A Modern_Spanish 1252
Spanish	(Ecuador) 0x300A Modern_Spanish 1252
Spanish	(Chile) 0x340A Modern_Spanish 1252
Spanish	(Uruguay) 0x380A Modern_Spanish 1252
Spanish	(Paraguay) 0x3C0A Modern_Spanish 1252
Spanish	(Bolivia) 0x400A Modern_Spanish 1252
Swedish 0x41D Finnish_Swedish 1252
Thai 0x41E Thai 874
Turkish 0x41F Turkish 1254
Ukrainian 0x422 Ukrainian 1251
Urdu 0x420 Arabic 1256
Vietnamese 0x42A Vietnamese 1258

See	Also

Collation	Settings	in	Setup

Collations

Windows	Collation	Sorting	Styles

Windows	Collation	Name

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Using	SQL	Collations
SQL	collation	settings	correspond	to	the	type	of	installation.	In	general,	choose	a
SQL	collation	that	supports	the	Windows	locale	most	commonly	used	at	your
site.	For	more	information	about	identifying	your	site	Windows	Locale,	see
Regional	Settings	in	Windows	Control	Panel.	In	many	cases,	a	computer	will	run
the	Windows	locale	that	matches	the	language	requirements	of	the	user,	so	Setup
automatically	detects	the	Windows	locale	and	chooses	the	appropriate	SQL
collation.

SQL	collations	control:

The	code	page	used	for	storing	non-Unicode	data	in	Microsoft®	SQL
Server™.

The	rules	governing	how	SQL	Server	sorts	and	compares	characters
stored	in	both	Unicode	and	non-Unicode	data	types.

Choose	a	SQL	collation	if:

You	use	the	replication	feature	with	existing	instances	of	SQL	Server
version	6.5	or	SQL	Server	version	7.0

Your	application	code	depends	on	the	behaviors	of	the	previous	SQL
Server	collations.

An	upgrade	of	SQL	Server	7.0	to	SQL	Server	2000	keeps	the	previous	SQL
collation	settings;	no	collation	choice	is	required.

Use	this	table	to	determine	if	you	need	to	make	a	collation	choice,	and	if	so,
which	collation	you	should	choose.

Installation	you	want Collation	to	choose
To	install	on	a	new	system	with	no
compatibility	requirements	for
synchronizing	with	any	type	of
existing	system

Use	the	locale	identified	by	Setup,
and	then	choose	the	desired	binary,
case,	or	other	options.

For	this	release	of	SQL	Server,	when
Setup	detects	that	the	computer	is
running	the	U.S.	English	locale,	Setup
automatically	selects	the	SQL
collation:	Dictionary	order,	case-
insensitive,	for	use	with	1252
character	set.

To	select	the	equivalent	Windows
collation,	select	Collation
designator,	choose	the
Latin1_General	collation	designator,
do	not	select	case-sensitive,	and
select	accent-sensitive.

To	upgrade	an	installation	of	SQL
Server	6.5	or	SQL	Server	7.0	to	a
default	instance	of	SQL	Server
2000,	or	to	install	a	default	instance
of	SQL	Server	2000	that	will	version
switch	with	an	installation	of	SQL
Server	6.5

Use	the	SQL	collation	chosen	by
Setup.

To	synchronize	(for	example,	to
replicate)	with	an	existing	instance
of	SQL	Server	2000

Select
SERVERPROPERTY(N'Collation')
on	the	existing	instance,	and	specify
that	collation.	If	the	collation	name	of
the	existing	instance	starts	with	SQL,
select	the	same	SQL	collation	in
Setup.	If	the	collation	name	of	the
existing	instance	does	not	start	with
SQL,	the	collation	name	refers	to	a
Windows	collation	name	and	consists
of	the	collation	designator	name
followed	by	a	description	of	what
binary,	case,	accent,	kana	and	width
sensitivity	options	are	specified.
Select	the	same	Windows	collation
designator	and	sorting	options	in

Setup.

To	synchronize	with	an	existing
installation	of	SQL	Server	6.5	or
SQL	Server	7.0

Execute	sp_helpsort	on	the	existing
system,	and	then	use	the	sort	ID	to
select	a	SQL	collation	to	make	your
instance	of	SQL	Server	2000
compatible	with	an	existing
installation.

For	more	information,	see	Selecting	a
SQL	Collation.

To	synchronize	with	a	Windows
locale	of	another	computer

In	Control	Panel,	find	the	locale	name
from	the	Regional	Settings
application	(Microsoft	Windows	NT®
4.0,	Microsoft	Windows®	98,	and
Microsoft	Windows	95),	or	from	the
Regional	Options	application
(Microsoft	Windows	2000),	and	then
use	the	table	provided	in	the	topic
Windows	Collation	Designators.	Set
the	sorting	options,	as	explained	in
the	topic	Windows	Collation	Sorting
Styles.

Note		When	you	perform	an	action	that	depends	on	collations,	the	SQL	Server
collation	used	by	the	referenced	object	must	use	a	code	page	supported	by	the
operating	system	running	on	the	computer.	For	more	information,	see	Specifying
Collations.

See	Also

Examples	of	SQL	Collations

Selecting	Collations

sp_helpsort

JavaScript:hhobj_1.Click()

Setting	Client	Code	Pages

SQL	Server	Collation	Fundamentals

SERVERPROPERTY

JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

Examples	of	SQL	Collations
These	are	examples	of	SQL	collations	listed	on	the	Collation	Settings	screen	in
Microsoft®	SQL	Server™	2000	Setup:

Binary	order,	for	use	with	the	437	(U.S.	English)	character	set.

This	collation	uses	binary	sort	order	(simple	sorting	based	on	coded	value)
with	the	U.S.	English	character	set	(code	page	437	-	MS-DOS	Latin	US).

In	Transact-SQL,	the	string	SQL_Latin1_General_Cp437_BIN	is	used	to
designate	this	setting.

Dictionary	order,	case-insensitive,	accent-insensitive,	for	use	with	1252
character	set.

This	collation	uses	the	dictionary	sorting	rules	for	the	U.S.	English	character
set	(code	page	1252	-	Windows	Latin	1	ANSI,	sort	order	ID	54).	Uppercase
or	lowercase	characters	and	accent	marks	are	not	considered	when	sorting.

In	Transact-SQL,	the	string	SQL_Latin1_General_CP1_CI_AI	is	used	to
designate	this	setting.

Romanian	dictionary	order,	case-sensitive,	for	use	with	the	1250	(Central
European)	character	set.

This	collation	uses	the	dictionary	order	sorting	rules	for	the	Romanian
language,	and	uses	the	Central	European	character	set	(code	page	1250,	sort
order	ID	89).

In	Transact-SQL,	the	string	SQL_Romanian_Cp1250_CS_AS	is	used	to
designate	this	setting.

See	Also

Collation	Settings	in	Setup

Selecting	a	SQL	Collation

Using	SQL	Collations

SQL	Collation	Name

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Selecting	a	SQL	Collation
When	selecting	a	SQL	collation	in	the	Collations	Settings	screen,	use	the
following	table	to	make	the	installation	of	Microsoft®	SQL	Server™	2000
compatible	with	an	installation	of	an	earlier	version	of	SQL	Server.

Note		Each	SQL	Collation	name	has	an	equivalent	string	in	T-SQL	code.	For	a
list	of	sort	order	identifiers	and	the	T-SQL	version,	see	SQL	Collation	Name.

In	the	table,	the	left	column	lists	the	sort	order	ID	of	an	instance	of	SQL	Server
7.0	or	SQL	Server	6.5.	The	right	column	lists	the	SQL	Server	2000	collation
recommended	for	compatibility.

Sort	order
ID SQL	collation	name
30 Binary	order,	for	use	with	the	437	(U.S.	English)	character	set.
31 Dictionary	order,	case-sensitive,	for	use	with	the	437	(U.S.

English)	character	set.
32 Dictionary	order,	case-insensitive,	for	use	with	the	437	(U.S.

English)	character	set.
33 Dictionary	order,	case-insensitive,	uppercase	preference,	for

use	with	the	437	(U.S.	English)	character	set.
34 Dictionary	order,	case-insensitive,	accent-insensitive,	for	use

with	the	437	(U.S.	English)	character	set.
40 Binary	order,	for	use	with	the	850	(Multilingual)	character	set.
41 Dictionary	order,	case-sensitive,	for	use	with	the	850

(Multilingual)	character	set.
42 Dictionary	order,	case-insensitive,	for	use	with	the	850

(Multilingual)	character	set.
43 Dictionary	order,	case-insensitive,	uppercase	preference,	for

use	with	the	850	(Multilingual)	character	set.
44 Dictionary	order,	case-insensitive,	accent-insensitive,	for	use

with	the	850	(Multilingual)	character	set.
49 Strict	compatibility	with	version	1.x	case-insensitive

databases,	for	use	with	the	850	(Multilingual)	character	set.

JavaScript:hhobj_1.Click()

50 Binary	order	for	use	with	1252	character	set.
51 Dictionary	order,	case-sensitive,	for	use	with	1252	character

set.
52 Dictionary	order,	case-insensitive,	for	use	with	1252	character

set.
53 Dictionary	order,	case-insensitive,	uppercase	preference,	for

use	with	1252	character	set.
54 Dictionary	order,	case-insensitive,	accent-insensitive,	for	use

with	1252	character	set.
55 Alternate	dictionary	order,	case-sensitive,	for	use	with	the	850

(Multilingual)	character	set.
56 Alternate	dictionary	order,	case-insensitive,	uppercase

preference,	for	use	with	the	850	(Multilingual)	character	set.
57 Alternate	dictionary	order,	case-insensitive,	accent-insensitive,

for	use	with	the	850	(Multilingual)	character	set.
58 Scandinavian	dictionary	order,	case-insensitive,	uppercase

preference,	for	use	with	the	850	(Multilingual)	character	set.
59 Scandinavian	dictionary	order,	case-sensitive,	for	use	with	the

850	(Multilingual)	character	set.
60 Scandinavian	dictionary	order,	case-insensitive,	for	use	with

the	850	(Multilingual)	character	set.
61 Alternate	dictionary	order,	case-insensitive,	for	use	with	the

850	(Multilingual)	character	set.
71 Latin-1	case-sensitive,	for	use	with	1252	character	set.
72 Latin-1	case-insensitive,	for	use	with	1252	character	set.
73 Danish/Norwegian	case-sensitive	sort	order	for	code	page

1252.
74 Finnish/Swedish	case-sensitive	sort	order	for	code	page	1252.
75 Icelandic	case-sensitive	sort	order	for	code	page	1252.
80 Binary	order,	for	use	with	the	1250	(Central	European)

character	set.
81 Dictionary	order,	case-sensitive,	for	use	with	the	1250

(Central	European)	character	set.

82 Dictionary	order,	case-insensitive,	for	use	with	the	1250

(Central	European)	character	set.
83 Czech	dictionary	order,	case-sensitive,	for	use	with	the	1250

(Central	European)	character	set.
84 Czech	dictionary	order,	case-insensitive,	for	use	with	the	1250

(Central	European)	character	set.
85 Hungarian	dictionary	order,	case-sensitive,	for	use	with	the

1250	(Central	European)	character	set.
86 Hungarian	dictionary	order,	case-insensitive,	for	use	with	the

1250	(Central	European)	character	set.
87 Polish	dictionary	order,	case-sensitive,	for	use	with	the	1250

(Central	European)	character	set.
88 Polish	dictionary	order,	case-insensitive,	for	use	with	the	1250

(Central	European)	character	set.
89 Romanian	dictionary	order,	case-sensitive,	for	use	with	the

1250	(Central	European)	character	set.
90 Romanian	dictionary	order,	case-insensitive,	for	use	with	the

1250	(Central	European)	character	set.
91 Croatian	dictionary	order,	case-sensitive,	for	use	with	the	1250

(Central	European)	character	set.
92 Croatian	dictionary	order,	case-insensitive,	for	use	with	the

1250	(Central	European)	character	set.
93 Slovak	dictionary	order,	case-sensitive,	for	use	with	the	1250

(Central	European)	character	set.
94 Slovak	dictionary	order,	case-insensitive,	for	use	with	the

1250	(Central	European)	character	set.
95 Slovenian	dictionary	order,	case-sensitive,	for	use	with	the

1250	(Central	European)	character	set.
96 Slovenian	dictionary	order,	case-insensitive,	for	use	with	the

1250	(Central	European)	character	set.
97 Windows	Polish	case-sensitive	sort	order	for	code	page	1250.
98 Windows	Polish	case-insensitive	sort	order	for	code	page

1250.
104 Binary	order,	for	use	with	the	1251	(Cyrillic)	character	set.
105 Dictionary	order,	case-sensitive,	for	use	with	the	1251

(Cyrillic)	character	set.

106 Dictionary	order,	case-insensitive,	for	use	with	the	1251
(Cyrillic)	character	set.

107 Ukrainian	dictionary	order,	case-sensitive,	for	use	with	the
1251	(Cyrillic)	character	set.

108 Ukrainian	dictionary	order,	case-insensitive,	for	use	with	the
1251	(Cyrillic)	character	set.

112 Binary	order,	for	use	with	the	1253	(Greek)	character	set.
113 Dictionary	order,	case-sensitive,	for	use	with	the	1253	(Greek)

character	set.
114 Dictionary	order,	case-insensitive,	for	use	with	the	1253

(Greek)	character	set.
120 Mixed	dictionary	order,	for	use	with	the	1253	(Greek)

character	set.
121 Dictionary	order,	case-sensitive,	accent-sensitive,	for	use	with

the	1253	(Greek)	character	set.
124 Dictionary	order,	case-insensitive,	accent-insensitive,	for	use

with	the	1253	(Greek)	character	set.
128 Binary	order,	for	use	with	the	1254	(Turkish)	character	set.
129 Dictionary	order,	case-sensitive,	for	use	with	the	1254

(Turkish)	character	set.
130 Dictionary	order,	case-insensitive,	for	use	with	the	1254

(Turkish)	character	set.
136 Binary	order,	for	use	with	the	1255	(Hebrew)	character	set.
137 Dictionary	order,	case-sensitive,	for	use	with	the	1255

(Hebrew)	character	set.
138 Dictionary	order,	case-insensitive,	for	use	with	the	1255

(Hebrew)	character	set.
144 Binary	order,	for	use	with	the	1256	(Arabic)	character	set.
145 Dictionary	order,	case-sensitive,	for	use	with	the	1256

(Arabic)	character	set.
146 Dictionary	order,	case-insensitive,	for	use	with	the	1256

(Arabic)	character	set.
152 Binary	order,	for	use	with	the	1257	(Baltic)	character	set.
153 Dictionary	order,	case-sensitive,	for	use	with	the	1257	(Baltic)

character	set.

154 Dictionary	order,	case-insensitive,	for	use	with	the	1257
(Baltic)	character	set.

155 Estonian	dictionary	order,	case-sensitive,	for	use	with	the
1257	(Baltic)	character	set.

156 Estonian	dictionary	order,	case-insensitive,	for	use	with	the
1257	(Baltic)	character	set.

157 Latvian	dictionary	order,	case-sensitive,	for	use	with	the	1257
(Baltic)	character	set.

158 Latvian	dictionary	order,	case-insensitive,	for	use	with	the
1257	(Baltic)	character	set.

159 Lithuanian	dictionary	order,	case-sensitive,	for	use	with	the
1257	(Baltic)	character	set.

160 Lithuanian	dictionary	order,	case-insensitive,	for	use	with	the
1257	(Baltic)	character	set.

183 Danish/Norwegian	dictionary	order,	case-insensitive,
uppercase	preference,	for	use	with	1252	character	set.

184 Swedish/Finnish	(Standard)	dictionary	order,	case-insensitive,
uppercase	preference,	for	use	with	1252	character	set.

185 Swedish/Finnish	(Phone)	dictionary	order,	case-insensitive,
uppercase	preference,	for	use	with	1252	character	set.

186 Icelandic	dictionary	order,	case-insensitive,	uppercase
preference,	for	use	with	1252	character	set.

192 Binary	order,	for	use	with	the	932	(Japanese)	character	set.
193 Dictionary	order,	case-insensitive,	for	use	with	the	932

(Japanese)	character	set
194 Binary	order,	for	use	with	the	949	(Korean)	character	set.
195 Dictionary	order,	case-insensitive,	for	use	with	the	949

(Korean)	character	set.
196 Binary	order,	for	use	with	the	950	(Traditional	Chinese)

character	set.
197 Dictionary	order,	case-insensitive,	for	use	with	the	950

(Traditional	Chinese)	character	set.
198 Binary	order,	for	use	with	the	936	(Simplified	Chinese)

character	set.

199 Dictionary	order,	case-insensitive,	for	use	with	the	936
(Simplified	Chinese)	character	set.

200 Dictionary	order,	case-sensitive,	for	use	with	the	932
(Japanese)	character	set.

201 Dictionary	order,	case-sensitive,	for	use	with	the	949	(Korean)
character	set.

202 Dictionary	order,	case-sensitive,	for	use	with	the	950
(Traditional	Chinese)	character	set.

203 Dictionary	order,	case-sensitive,	for	use	with	the	936
(Simplified	Chinese)	character	set.

204 Binary	order,	for	use	with	the	874	(Thai)	character	set.
205 Dictionary	order,	case-insensitive,	for	use	with	the	874	(Thai)

character	set.
206 Dictionary	order,	case-sensitive,	for	use	with	the	874	(Thai)

character	set.

See	Also

Examples	of	SQL	Collations

Collation	Settings	in	Setup

Specifying	Collations

SQL	Collations

SQL	Server	Setup	Help

Setting	Client	Code	Pages
The	code	pages	a	client	uses	are	determined	by	your	operating	system	settings.

To	set	client	code	pages	in	the	Windows	NT,	Windows	2000,	or	Windows	98
operating	systems

SQL	Server	Setup	Help

Upgrading	Character	Set,	Sort	Order,	and	Collation
Microsoft®	SQL	Server™	2000	supports	several	different	ways	to	specify
collations.	You	no	longer	have	to	separately	specify	the	code	page	used	for
character	data,	the	sort	order	used	for	character	data,	and	the	collation	used	for
Unicode	data.	When	you	upgrade,	SQL	collations	can	be	specified	for
compatibility	with	existing	instances	of	SQL	Server.

Because	the	default	collation	for	an	instance	of	Microsoft	SQL	Server	is	defined
during	setup,	it	is	important	to	become	familiar	with	collation	settings	in	SQL
Server	2000	when:

Your	application	code	depends	in	some	way	on	the	behavior	of	previous
SQL	Server	collations.

You	are	going	to	use	the	replication	feature	with	existing	installations	of
SQL	Server	6.5	or	SQL	Server	7.0.	

You	must	store	character	data	that	reflects	multiple	languages.

See	Also

Collation	Options	for	International	Support

Collations

Selecting	Collations

Specifying	the	Default	Collation	for	an	Instance	of	SQL	Server

SQL	Server	Setup	Help

Changing	Collation	Settings	After	Installing
Collation	settings,	which	include	character	set,	sort	order,	and	other	locale-
specific	settings,	are	fundamental	to	the	structure	of	all	Microsoft®	SQL
Server™	2000	databases.	To	change	one	or	more	of	these	settings,	you	must
rebuild	the	master	and	user	databases.

See	Also

Collation	Settings	in	Setup

Collations

How	to	rebuild	the	master	database	(Rebuild	Master	utility)

SQL	Server	Setup	Help

After	Installing	or	Upgrading	to	SQL	Server	2000
For	a	standard	installation,	components	include:

The	SQL	Server	relational	database	engine.

System	databases	used	to	store	system	level	information	such	as	login
and	configuration	settings	and	for	use	as	database	templates.

The	pubs	and	Northwind	sample	databases,	provided	as	learning	tools.

Stored	procedures,	a	recompiled	collection	of	Transact-SQL	statements.

Interactive	management	tools	used	for	administering	SQL	Server.

SQL	Server	Books	Online,	the	complete	documentation	for	SQL	Server
2000.

See	Also

Books	Online

Management	Tools

Select	Components

SQL	Stored	Procedures

Using	the	Start	Menu

System	and	Sample	Databases

System	Databases	and	Data

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Using	the	Start	Menu
Microsoft®	SQL	Server™	2000	Setup	creates	the	Microsoft	SQL	Server
program	group	on	the	Start	menu	in	the	Programs	group.	From	the	Microsoft
SQL	Server	program	group,	you	can	start:

Books	Online.

Client	Network	Utility.

Configure	SQL	XML	Support	in	IIS.

Enterprise	Manager.

Import	and	Export	Data.

Profiler.

Query	Analyzer.

Server	Network	Utility.

Service	Manager.

Microsoft	SQL	Server-Switch	Program	Group

If	you	install	an	instance	of	Microsoft	SQL	Server	2000	(default	or	named)	on
the	same	computer	with	an	installation	of	Microsoft	SQL	Server	version	6.5,
Setup	removes	the	Microsoft	SQL	Server	6.5	program	group	and	adds	the
Microsoft	SQL	Server-Switch	program	group.	SQL	Server	6.5	and	SQL	Server
2000	cannot	run	at	the	same	time,	but	using	the	Server-Switch	program	group,

you	can	switch	between	the	two	versions.

On	the	Start	menu,	only	the	program	group	of	the	active	version	of	SQL	Server
is	accessible	at	any	given	time.	The	nonactive	version	is	shown	in	the	Server-
Switch	program	group	so	you	can	quickly	switch	from	one	version	to	another.

The	Microsoft	SQL	Server-Switch	program	group	contains	these	options:

Microsoft	SQL	Server	6.5	or	Microsoft	SQL	Server	2000	(the	nonactive
version)

SQL	Server	Upgrade	Wizard

Uninstall	SQL	Server	6.5

See	Also

Switching	Between	SQL	Server	6.5	and	SQL	Server	2000

SQL	Server	Setup	Help

System	and	Sample	Databases
When	Microsoft®	SQL	Server™	2000	is	installed,	Setup	creates	the	database
and	log	files	shown	in	this	table.

Database Database	file Log	file
master Master.mdf Mastlog.ldf
model Model.mdf Modellog.ldf
msdb Msdbdata.mdf Msdblog.ldf
tempdb Tempdb.mdf Templog.ldf
pubs Pubs.mdf Pubs_log.ldf
Northwind Northwnd.mdf Northwnd.ldf

The	system	databases	are	master,	model,	msdb,	and	tempdb.	The	sample
databases,	pubs	and	Northwind,	are	provided	as	learning	tools.	(Names	of	these
databases	are	case-sensitive.)	Many	of	the	examples	in	SQL	Server	Books
Online	are	based	on	the	sample	databases.

Note		The	default	location	of	the	database	and	log	files	is	Program
Files\Microsoft	SQL	Server\Mssql\Data.	This	location	may	vary	if	the	default
location	was	changed	when	SQL	Server	was	installed.

See	Also

Northwind	Sample	Database

pubs	Sample	Database

System	Databases	and	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

SQL	Server	Setup	Help

Locating	Directories	and	Files
The	following	tables	and	illustration	show	the	default	locations	of	directories
and	files	for	Microsoft®	SQL	Server™	2000	(primarily	for	the	default	instance).
Depending	on	the	options	you	install,	all	of	the	files	listed	in	the	tables	may	not
appear	on	your	computer,	and	others	not	listed	may	be	included.

Paths	listed	here	are	default	paths,	and	may	vary	if	locations	were	changed
during	installation.	Both	program	and	data	file	locations	can	be	changed,	but	the
location	of	shared	tools	cannot	be	changed.

IMPORTANT		Do	not	delete	any	of	the	following	directories	or	their	contents:
Binn,	Data,	Ftdata,	HTML,	or	1033.	You	may	delete	other	directories,	if
necessary;	however,	you	may	not	be	able	to	retrieve	any	lost	functionality	or	data
without	uninstalling	and	reinstalling	SQL	Server	2000.

Do	not	delete	or	modify	any	of	the	.htm	files	in	the	HTML	directory.	They
are	required	for	SQL	Server	Enterprise	Manager	and	other	tools	to	function
properly.

Shared	Files	for	All	Instances	of	SQL	Server	2000
This	table	shows	the	locations	for	the	shared	files	for	both	default	and	named
instances	of	SQL	Server	2000.

Location Description
\Program	Files\Microsoft	SQL
Server\80\Com

Dynamic-link	libraries	(DLLs)	for
Component	Object	Model	(COM)
objects.

\Program	Files\Microsoft	SQL
Server\80\Com\Binn\Resources\1033

Resource	files	(RLLs)	used	by	the
DLLs	in	this	COM	directory.	(Note:
1033	is	for	U.S.	English;	localized
versions	use	different	directory
numbers.)

\Program	Files\Microsoft	SQL
Server\80\Tools\Binn

Microsoft	Windows	NT®	client
executable	files.

\Program	Files\Microsoft	SQL Resource	files	used	by	the	DLLs	in

Server\80\Tools\Binn\Resources\1033 the	Tools\Binn	directory.
\Program	Files\Microsoft	SQL
Server\80\Tools\Books

SQL	Server	Books	Online	files,
including	online	Help	files.

Program	Files\Microsoft	SQL
Server\80\Tools\DevTools\

Header	files,	library	files,	and
sample	programs	for	use	by
developers.

Program	Files\Microsoft	SQL
Server\80\Tools\Html

Microsoft	Management	Console
(MMC)	and	SQL	Server	HTML
files.

Program	Files\Microsoft	SQL
Server\80\Tools\Templates

Boilerplate	files	with	SQL	scripts	to
help	you	create	objects	in	the
database.

Program	and	Data	Files	for	the	Default	Instance	of	SQL	Server
2000
This	table	shows	the	locations	of	the	program	and	data	files	for	the	default
instance	of	SQL	Server	2000.	These	are	the	default	file	locations,	which	can	be
changed	during	installation.

Location Description
\Program	Files\Microsoft	SQL
Server\Mssql\Backup

Default	location	for	backup	files.

\Program	Files\Microsoft	SQL
Server\Mssql\Binn

Microsoft	Windows	NT	server
executable	files	and	DLL	files	for
extended	stored	procedures.

\Program	Files\Microsoft	SQL
Server\Mssql\Binn\Resources\1033

Resource	files	used	by	the	DLLs	in	this
Binn	directory.

Program	Files\Microsoft	SQL
Server\Mssql\Data

System	and	sample	database	files.

Program	Files\Microsoft	SQL
Server\Mssql\Ftdata

Full-text	catalog	files.

Program	Files\Microsoft	SQL
Server\Mssql\Install

Scripts	run	during	Setup	and	resulting
output	files.

Program	Files\Microsoft	SQL
Server\Mssql\Jobs

Storage	location	for	temporary	job
output	files.

Program	Files\Microsoft	SQL
Server\Mssql\Log

Error	log	files.

Program	Files\Microsoft	SQL
Server\Mssql\Repldata

Working	directory	for	replication	tasks.

Program	Files\Microsoft	SQL
Server\Mssql\Upgrade

Files	used	for	version	upgrade	from
SQL	Server	version	6.5	to	SQL	Server
2000.

File	Locations	for	the	Default	Instance	of	SQL	Server	2000
This	illustration	shows	the	file	locations	for	the	default	instance	of	Microsoft®
SQL	Server™	2000.	

See	Also

File	Paths	for	SQL	Server	2000

SQL	Server	Setup	Help

Changing	Passwords	and	User	Accounts
Microsoft®	SQL	Server™	2000	services	accounts	and	passwords	are	linked	to
Microsoft	Windows®	user	accounts	and	passwords.	Changes	in	one	location
may	require	changes	in	the	other.

Changing	SQL	Server	Services	Accounts	After	Install
After	you	have	installed	SQL	Server	2000,	use	SQL	Server	Enterprise	Manager
to	change	the	assigned	password	or	other	properties	of	any	SQL	Server–related
service.	Each	service	must	be	changed	individually.	The	new	user	account	takes
effect	when	the	service	is	restarted.	You	should	not	change	the	passwords	for	any
of	the	SQL	Server	service	accounts	when	a	failover	cluster	node	is	down	or
offline.	If	you	have	to	do	this,	you	will	need	to	reset	the	password	again	using
Enterprise	Manager	when	all	nodes	are	back	online.

If	you	are	running	Microsoft	Windows	NT®,	and	you	select	to	change	the
current	service	account	for	SQL	Server	to	a	non-administrator	account	(and	the
current	service	account	for	SQL	Server	is	not	an	administrator	account),	the
Valid	Administrator	Login	dialog	box	is	displayed.	SQL	Server	must	have
administrator	privileges	to	change	security	entries,	so	you	must	enter	the	user
name,	password,	and	domain	to	impersonate	the	non-administrator	service
account	you	have	selected.

Once	you	have	specified	this	information,	all	objects	are	granted	full	control
permission.	The	location	of	the	objects	is	determined	by	the	following:

Permissions	are	set	for	all	files	in	the	binary	and	data	installation
locations	for	the	specific	instances.

Registry	permissions	depend	on	whether	the	instance	is	default	or
named:

For	a	default	instance,	permissions	are	applied	only	to	the	entries	listed
below	the	HKLM\Software\Microsoft\MSSQLServer	entry:

SQLServerAgent

Replication

Providers

Setup

Tracking

MSSQLServer

For	a	named	instance,	permissions	are	applied	to	the	entire
HKLM\Software\Microsoft\MicrosoftSQLServer\80	entry.

The	following	rights	are	granted	to	the	accounts:

SeServiceLogonRight,	which	allows	the	account	to	run	as	a	service.

SeLockMemoryPrivilege,	which	allows	the	account	to	use	the	AWE
memory	feature	of	SQL	Server.

SeTcbPrivilege,	which	allows	the	account	to	impersonate	other
accounts.

If	you	are	running	SQL	Server	in	a	failover	cluster	configuration,	permissions
are	also	set	for	all	files	in	the	binary	and	data	installation	locations	for	all	nodes
in	the	cluster.	Permission	is	also	granted	for	the	service	account	on	the	Cluster
Object.

Note		If	you	are	running	Microsoft	Windows	2000	and	want	to	use	the	Windows
2000	Encrypted	File	System	to	encrypt	any	SQL	Server	files,	you	must
unencrypt	the	files	before	you	can	change	the	SQL	Server	service	accounts.	If
you	do	not	unencrypt	the	files	and	then	reset	the	SQL	Server	service	accounts,
you	cannot	unencrypt	the	files.

You	can	change	the	SQLServerAgent	service	account	to	a	non	Microsoft
Windows	NT®	4.0	administrator	account.	However,	the	Windows	NT	4.0

account	must	be	a	member	of	the	sysadmin	fixed	server	role	to	run	SQL	Server
Agent.

To	change	the	MSSQLServer	services	login	(Enterprise	Manager)

SQL	Server	Setup	Help

Renaming	a	Server
When	you	change	the	name	of	the	computer	that	is	running	Microsoft®	SQL
Server™	2000,	the	new	name	is	recognized	during	SQL	Server	startup.	You	do
not	have	to	run	Setup	again	to	reset	the	computer	name.

You	can	connect	to	SQL	Server	using	the	new	computer	name	after	you	have
restarted	the	server.	However,	to	correct	the	sysservers	system	table,	you	should
manually	run	these	procedures:

sp_dropserver	<old_name>
go
sp_addserver	<new_name>
go

Issues	with	Remote	Logins	and	Replication
If	the	computer	has	any	remote	logins,	for	example,	if	it	is	a	replication
Publisher	or	Distributor,	sp_dropserver	may	generate	an	error	similar	to	this:

Server:	Msg	15190,	Level	16,	State	1,	Procedure	sp_dropserver,	Line	44
There	are	still	remote	logins	for	the	server	'SERVER1'.

To	resolve	the	error,	you	may	need	to	drop	remote	logins	for	this	server.	If
replication	is	installed,	disable	replication	on	the	server	before	running	the
sp_dropserver	stored	procedure.

To	disable	replication	using	the	SQL	Server	Enterprise	Manager

1.	 Expand	a	server	group,	and	then	expand	the	Distributor	(the	server	that
contains	the	distribution	database).

2.	 Right-click	the	Replication	folder,	and	then	click	Disable	Publishing.

3.	 Complete	the	steps	in	the	Disable	Publishing	and	Distribution	Wizard.

SQL	Server	Setup	Help

Deploying	SQL	Server	After	Initial	Installation
Microsoft®	SQL	Server™	2000	includes	a	new	method	for	distributing	a	disk
image	of	an	installation.	When	an	installation	is	first	created,	it	is	marked	as	a
new	installation.	When	the	server	is	restarted	after	installation,	SQL	Server	2000
verifies	that	the	server	name	has	not	changed.	If	the	server	name	has	changed,	an
automatic	correction	is	made.

This	functionality	allows	Independent	Service	Vendors	to	install	SQL	Server
2000,	stop	the	server,	clone	the	disk	image,	and	then	distribute	it	as	required.	On
the	first	startup	of	the	distributed	server,	the	name	correction	is	made.

This	process	can	be	done	only	one	time.	If	the	server	is	restarted	and	then
stopped,	a	new	SQL	Server	installation	must	be	created	to	be	distributed	as	an
image	during	deployment.

SQL	Server	Setup	Help

Installing	Full-Text	Search	and	Indexing	Tools
The	full-text	search	engine	(Microsoft	Search	service)	is	installed	by	default
with	a	typical	installation	of	Microsoft®	SQL	Server™	2000,	Standard	and
Enterprise	editions.

IMPORTANT		If	upgrading	from	SQL	Server	7.0	to	SQL	Server	2000	and	full-text
search	is	not	installed	in	SQL	Server	7.0,	install	full-text	search	as	an	additional
component	after	the	upgrade	is	completed.

Microsoft	Indexing	Service	Version	2.0
In	addition	to	using	full-text	search	on	character	columns	in	SQL	Server	data,
you	can	use	Microsoft	Indexing	Service	along	with	Microsoft	Search	service	to
make	textual	queries	against	data	residing	in	the	file	system.	This	indexing
service	is	included	in	Microsoft	Windows®	2000.	Microsoft	Windows	NT®
users	can	install	the	indexing	service	from	the	Microsoft	Windows	NT	4.0
Option	Pack.

To	install	Microsoft	Indexing	Service	2.0	(Windows	NT	only)

1.	 Install	Windows	NT	4.0	Option	Pack.

2.	 Select	Index	Server	2.0.	An	error	appears	stating	that	Index	Server	2.0
did	not	install	properly.

3.	 Install	Windows	NT	4.0	Service	Pack	4.

4.	 Reinstall	Windows	NT	4.0	Option	Pack.	You	are	not	required	to
change	any	settings.

5.	 Optional	step:	Repeat	the	reinstallation	of	Windows	NT	4.0	Service
Pack	4.

Repeating	this	procedure	ensures	proper	installation.

See	Also

Full-text	Querying	of	File	Data

How	to	add	components	to	an	instance	of	SQL	Server	2000	(Setup)

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Configuring	SQL	Server	2000	After	Upgrading
After	the	server	is	upgraded	to	Microsoft®	SQL	Server™	2000,	you	may	want
to	perform	several	configuration	tasks,	for	example:

Set	server	configuration	parameters.

Set	security	parameters.

Register	the	server	and	add	it	to	a	server	group.

Use	SQL	Server	Enterprise	Manager	or	Transact-SQL	to	perform	these	tasks.

See	Also

Administering	SQL	Server	Overview

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Switching	Between	SQL	Server	6.5	and	SQL	Server
2000
Microsoft®	SQL	Server™	2000	can	be	installed	on	the	same	computer	with
Microsoft	SQL	Server	version	6.5,	but	only	one	version	can	be	active	at	one
time.	

Note		Switching	between	versions	is	not	the	same	as	running	multiple	instances.
For	more	information,	see	Working	with	Instances	and	Versions	of	SQL	Server.

After	the	SQL	Server	Upgrade	Wizard	finishes	the	conversion	from	SQL	Server
version	6.5,	SQL	Server	2000	is	the	active	version	of	SQL	Server.	If	enough	disk
space	exists	on	your	computer,	you	can	keep	the	SQL	Server	6.5	installation
intact.

To	switch	from	one	version	to	the	other,	use	the	Microsoft	SQL	Server-Switch
application	on	the	Start	menu,	or	run	Vswitch.exe.

IMPORTANT		Be	sure	the	SQL	Server	Upgrade	Wizard	is	finished	with	its	upgrade
tasks,	before	you	attempt	to	switch	between	the	active	and	nonactive	versions	of
SQL	Server.

To	switch	from	SQL	Server	6.5	to	SQL	Server	2000

SQL	Server	Setup	Help

Removing	SQL	Server	7.0	or	SQL	Server	6.5	After
Upgrading
After	you	upgrade	your	Microsoft®	SQL	Server™	version	7.0	installation	to
Microsoft	SQL	Server	2000,	or	after	you	upgrade	your	databases	from	SQL
Server	version	6.5	to	SQL	Server	2000,	you	can	keep	the	earlier	versions	on
your	computer.

A	number	of	configurations	are	available	for	keeping	earlier	versions	of	SQL
Server	alongside	SQL	Server	2000.	For	more	information,	see	Working	with
Instances	and	Versions	of	SQL	Server.

When	you	are	ready	to	remove	an	earlier	version,	you	can	use	the	Add/Remove
Programs	option	in	Control	Panel,	or	you	can	run	uninstall	from	the	Start	menu.

To	remove	SQL	Server	7.0

On	the	Start	menu,	in	the	SQL	Server	7.0	group,	click	Uninstall	SQL
Server	7.0.

To	remove	SQL	Server	6.5

On	the	Start	menu,	in	the	SQL	Server	6.5	group,	click	Remove	SQL
Server	6.5.

SQL	Server	Setup	Help

Removing	SQL	Server	2000
You	can	remove	instances	of	Microsoft®	SQL	Server™	2000	by:

Running	SQL	Server	2000	Setup	and	selecting	the	Uninstall	option.

Running	the	Add/Remove	Programs	application	in	Control	Panel.

Each	named	instance	of	SQL	Server	2000	must	be	removed	separately.	You
cannot	remove	individual	components	of	SQL	Server	2000.	To	remove
components,	you	must	remove	the	entire	instance.

IMPORTANT		Before	removing	SQL	Server	2000,	quit	all	applications,	including
the	Windows	NT	Event	Viewer,	the	Registry	editor,	all	SQL	Server	applications,
and	all	applications	dependent	on	SQL	Server.

To	remove	SQL	Server	using	Control	Panel

SQL	Server	Setup	Help

Upgrading	to	SQL	Server	2000:	Overview
Upgrading	from	Microsoft®	SQL	Server™	version	7.0	to	Microsoft	SQL	Server
2000	is	one	of	the	basic	choices	offered	by	the	SQL	Server	Setup	program	on	the
initial	Installation	Selection	screen.	When	you	select	the	option	to	Upgrade,
remove,	or	add	components	to	an	existing	installation	of	SQL	Server,	Setup
detects	your	current	installation	and	initiates	the	correct	sequence	of	setup
screens	for	the	upgrade	selected.	Upgrade	variations	include:

A	complete	installation	upgrade	from	SQL	Server	7.0	to	SQL	Server
2000	(installing	over	SQL	Server	7.0).

Adding	components	to	an	installation	of	SQL	Server	2000.

An	upgrade	to	the	feature	set	of	an	existing	installation	of	SQL	Server
2000	(edition	and	component	upgrade).

An	upgrade	to	SQL	Server	2000	from	SQL	Server	version	6.5	using	the
SQL	Server	Upgrade	Wizard.

An	online	database	upgrade	of	SQL	Server	7.0	databases	to	SQL	Server
2000	database	format	using	the	Copy	Database	Wizard.

During	the	upgrade	from	SQL	Server	7.0,	external	packages,	such	as	Microsoft
Management	Console	and	the	Microsoft	Distributed	Transaction	Coordinator,
must	be	installed	for	each	upgrade,	and	the	registry	updated.	The	master
database	and	other	system	databases	are	upgraded	in	various	ways	involving	a
series	of	scripts	run	on	the	server	with	specific	options.	If	the	upgrade	process
fails	built-in	recovery	mechanisms	restart	and	resume	the	upgrade.

See	Also

Upgrading	from	SQL	Server	7.0	to	SQL	Server	2000

Upgrading	an	Existing	Installation	of	SQL	Server

Upgrading	Databases	from	SQL	Server	7.0	(Copy	Database	Wizard)

Upgrading	to	a	SQL	Server	2000	Failover	Cluster

SQL	Server	Setup	Help

Hardware	and	Software	Requirements	for	Upgrading
In	addition	to	the	hardware	and	software	requirements	for	an	installation	of
Microsoft®	SQL	Server™,	the	computer	must	meet	these	requirements	for	an
upgrade.

Hardware/softwareUpgrade	requirements
Operating	system Microsoft	Windows	NT®	Server	Enterprise	Edition

version	4.0	with	Service	Pack	5	(SP5)	or	later.

Windows	NT	Server	version	4.0	with	SP5	or	later.

Windows	NT	Workstation	4.0	with	SP5	or	later.

Internet	Explorer	5.0	or	later.

Windows	2000.

SQL	Server	6.5 When	upgrading	SQL	Server	version	6.5	to	an
instance	of	SQL	Server	2000	on	the	same	computer,
you	must	have	applied	SQL	Server	6.5	Service	Pack	5
(SP5)	or	later.	When	upgrading	SQL	Server	6.5	to	an
instance	of	SQL	Server	2000	on	a	different	computer,
you	must	have	applied	SQL	Server	6.5	Service	Pack	3
(SP3)	or	later.

SQL	Server	7.0 SQL	Server	7.0	(at	any	Service	Pack	level).
Network	protocols Named	Pipes.

SQL	Server	6.5,	SQL	Server	7.0,	and	SQL	Server
2000	all	must	be	set	to	listen	to	the	default	pipe,
\\.\pipe\sql\query.	Named	Pipes	is	required	even	for	a
tape	backup	upgrade.

Hard-disk	space No	additional	hard-disk	space	is	required	when
upgrading	from	SQL	Server	7.0	to	SQL	Server	2000.

When	upgrading	from	SQL	Server	6.5	to	SQL	Server
2000,	however,	you	need	approximately	1.5	times	the
size	of	the	SQL	Server	6.5	databases.

See	Also

Hardware	and	Software	Requirements	for	Installing	SQL	Server	2000

SQL	Server	Setup	Help

Upgrading	from	SQL	Server	7.0	to	SQL	Server	2000
You	can	overwrite	an	installation	of	Microsoft®	SQL	Server™	version	7.0	with
a	version	upgrade	to	Microsoft	SQL	Server	2000.	If	SQL	Server	7.0	is	detected
as	an	existing	installation	when	you	run	Setup,	you	can	choose	the	option	to
upgrade.	In	this	process,	all	the	SQL	Server	7.0	program	files	are	upgraded,	and
all	data	stored	in	SQL	Server	7.0	databases	is	preserved.	In	addition,	SQL	Server
Books	Online	for	SQL	Server	7.0	remains	on	your	computer.

Note		SQL	Server	7.0	profiler	traces	and	registered	servers	are	not	upgraded
when	SQL	Server	7.0	tools	are	upgraded	to	SQL	Server	2000.	Similarly,
information	models	that	were	installed	with	Microsoft	Repository	2.0	are	not
upgraded	automatically.	SQL	Server	2000	supports	newer	versions	of
information	models	for	both	Data	Transformation	Services	(DTS)	and	the	Open
Information	Model	(OIM).	For	more	information	about	upgrading	the	DTS
information	model,	see	DTS	Information	Model.	For	more	information	about
upgrading	the	OIM,	see	Upgrading	an	Information	Model.

You	can	also	upgrade	from	one	edition	of	SQL	Server	to	another	edition	during
the	version	upgrade	to	SQL	Server	2000.	For	more	information,	see	SQL	Server
2000:	Editions	and	Components.

CAUTION		After	you	perform	this	version	upgrade,	the	SQL	Server	7.0
installation	no	longer	exists	on	your	computer.	The	only	way	to	restore	an
installation	of	SQL	Server	7.0	is	to	first	uninstall	SQL	Server	2000,	perform	a
complete	reinstall	of	SQL	Server	7.0	files,	and	then	restore	your	backed-up	SQL
Server	7.0	databases.

To	upgrade	an	installation	of	SQL	Server	7.0	to	SQL	Server	2000

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

Replication	and	Upgrading
When	upgrading	to	Microsoft®	SQL	Server™	2000,	you	can	upgrade	servers	in
your	organization	one	at	a	time;	however,	when	servers	are	used	for	replication,
you	must	upgrade	the	Distributor	first,	the	Publisher	second,	and	then
Subscribers.	Upgrading	servers	one	at	a	time	following	this	sequence	is
recommended	when	a	large	number	of	Publishers	and	Subscribers	exist	because
you	can	continue	to	replicate	data	even	though	servers	are	running	different
versions	of	SQL	Server.	You	can	create	new	publications	and	subscriptions	with
servers	running	instances	of	SQL	Server	2000,	and	still	maintain	subscriptions
created	in	SQL	Server	6.5	or	SQL	Server	7.0.

When	using	transactional	replication,	you	can	upgrade	Subscribers	before	the
Publisher.	If	you	are	using	immediate	updating	with	snapshot	replication	or
transactional	replication,	there	are	additional	upgrade	recommendations	in	this
topic	under	Upgrading	and	Immediate	Updating.

You	can	upgrade	replication	servers	running	SQL	Server	6.5	or	SQL	Server	7.0
to	SQL	Server	2000.	If	the	server	is	running	SQL	Server	6.5,	you	do	not	need	to
upgrade	it	to	SQL	Server	7.0	before	upgrading	to	SQL	Server	2000.

IMPORTANT		When	upgrading	servers	configured	for	replication	to	SQL	Server
2000,	the	database	compatibility	level	must	be	set	to	70	(version	7.0
compatibility)	or	later.	If	you	have	servers	running	in	65	(version	6.5)	or	an
earlier	compatibility	level,	temporarily	change	them	to	70	or	later	during	the
upgrade	process.

When	the	Publisher	or	Subscriber	is	running	in	65	or	an	earlier	compatibility
level	during	upgrade	to	SQL	Server	2000,	error	15048	will	be	raised	stating
that	the	operation	is	supported	only	on	SQL	Server	version	7.0	or	SQL
Server	2000.

For	more	information	about	setting	the	backward	compatibility	level,	see	SQL
Server	2000	and	SQL	Server	version	6.5.

If	you	are	upgrading	replication	on	a	failover	cluster,	you	must	uncluster	the
previous	installation	before	upgrading.	Unclustering	the	previous	installation
means	that	you	must	delete	all	publications,	remove	replication,	and	reconfigure
it	after	upgrading	to	SQL	Server	2000.	This	will	not	be	a	requirement	when

upgrading	SQL	Server	2000	to	future	releases.

Upgrading	and	Immediate	Updating
If	you	are	using	immediate	updating	with	snapshot	replication	or	transactional
replication,	changes	to	that	feature	in	SQL	Server	2000	will	affect	how	you
upgrade.	Rows	in	immediate	updating	articles	now	use	a	uniqueidentifier
column	to	identify	versions,	whereas	in	SQL	Server	7.0,	a	timestamp	column
was	used.	In	addition,	the	triggers	generated	for	immediate	updating	have	been
changed,	and	the	trigger	generation	code	has	been	modified	to	accommodate
queued	updating.	Because	of	these	changes,	additional	upgrade	steps	are
necessary.

If	using	immediate	updating:

Upgrade	both	the	Publisher	and	Subscriber	before	replicating	data.	

Drop	the	publication	and	all	subscriptions	to	the	publication.

Use	an	ALTER	TABLE	DROP	COLUMN	Transact-SQL	statement	to
drop	the	timestamp	column	from	the	tables	on	the	Publisher	and	from
the	tables	on	the	Subscriber	that	allow	Subscriber	updates.	

Re-create	the	publication	and	subscriptions.	The	system	adds	a
uniqueidentifier	column	to	the	published	table.	That	column	is	used	for
row	versioning	(to	detect	conflicts	when	receiving	updates	from	the
Subscriber).

Although	it	is	recommended	you	upgrade	both	the	Publisher	and	the	Subscriber
and	then	drop	and	re-create	the	existing	publications,	the	Publisher	and
Subscribers	can	be	upgraded	in	any	order.	If	you	need	to	reinitialize	a	Subscriber
or	add	a	new	Subscriber,	you	need	to	drop	and	re-create	the	publication.

Upgrading	and	File	Transfer	Protocol
If	using	File	Transfer	Protocol	(FTP),	you	should	follow	the	recommended
upgrade	path,	which	ensures	that	Subscribers	are	able	to	obtain	the	necessary

FTP	information	from	the	Distributor.

SQL	Server	2000	stores	FTP	parameters	as	Publication	Properties;	you	no	longer
need	to	administer	them	at	the	Subscriber	for	each	subscription.	When	upgrading
to	SQL	Server	2000,	the	FTP	option	in	the	Publication	Properties	is	turned	off,
and	you	need	to	open	the	properties	for	each	publication	that	uses	FTP,	and	then
reset	the	FTP	parameters.

SQL	Server	7.0	Subscribers	will	continue	to	locate	FTP	files	using	the	FTP
parameters	stored	in	the	Subscription	Properties	when	using	a	Distributor
running	an	instance	of	SQL	Server	2000.	However,	Subscribers	running	an
instance	of	SQL	Server	2000	will	not	be	able	to	obtain	FTP	information	from
Distributors	running	earlier	versions	of	SQL	Server.

Existing	subscriptions	using	merge	replication	or	transactional	replication	will	be
unaffected	by	this	change	unless	you	need	to	reinitialize	or	connect	to	the	FTP
site.	The	FTP	parameters	need	to	be	specified	before	snapshot	replication	occurs,
or	replication	agents	will	not	be	able	to	locate	the	snapshot	files.

For	more	information	about	changing	the	FTP	parameters,	see	Using	TCP/IP	and
FTP	and	How	to	specify	FTP	information	(Enterprise	Manager).

Troubleshooting	and	Replication	Upgrades
If	errors	occur	while	upgrading	replication	servers,	they	might	be	related	to	the
database	being	offline	or	unavailable	or	a	script	may	have	failed.	For	more
information	about	troubleshooting	errors	that	occur	when	upgrading	replication,
see	Help	with	Replication.

It	is	recommended	that	you	stop	all	data	modifications	at	the	replication	server
while	it	is	being	upgraded.	When	upgrading	from	SQL	Server	6.5,	you	must	run
the	Log	Reader	Agent	and	Distribution	Agent	before	upgrading	to	make	sure
there	are	no	replicated	commands	pending	delivery	to	Subscribers.

Because	you	can	upgrade	servers	running	instances	of	Microsoft®	SQL
Server™	2000	one	at	a	time,	you	may	have	circumstances	where	servers	in	your
replication	topology	are	running	different	versions	of	SQL	Server.	You	can
replicate	between	different	versions	of	SQL	Server,	but	you	are	often	limited	to
the	functionality	of	the	earliest	version	used.

IMPORTANT		When	upgrading	from	SQL	Server	6.5	or	7.0	to	SQL	Server	2000,

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

SQL	Server	Setup	runs	several	*.sql	replication	scripts.	Although	the	upgrade
process	can	take	several	minutes	and	does	not	display	progress	notifications,	you
can	view	error	messages	in	the	*.out	and	*.err	files	located	in	the	SQL	Server
Install	directory.

See	Also

Publishing	Data	Over	the	Internet	Using	TCP/IP	and	FTP

Replication	Between	Different	Versions	of	SQL	Server

Replication	Data	Considerations

Updatable	Subscriptions

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

SQL	Server	Setup	Help

Upgrading	Databases	from	SQL	Server	7.0	(Copy
Database	Wizard)
As	an	enhancement	to	the	regular	upgrade	procedure,	you	can	perform	an	online
upgrade	of	databases	and	associated	meta	data.	Using	the	Copy	Database
Wizard,	you	can	move	or	copy	a	database	from	Microsoft®	SQL	Server™	7.0	to
an	instance	of	Microsoft	SQL	Server	2000,	without	having	to	shut	down	any
servers	in	the	process.

Advantages	of	an	online	database	upgrade	include:

No	downtime	for	servers	during	the	upgrade.

Custom	selection	of	databases	to	upgrade,	leaving	other	databases	still
available	to	the	original	(SQL	Server	7.0)	server.

Inclusion	of	related	meta	data	in	the	upgrade	procedure.	For	example,
logon	information,	jobs,	and	user-specific	objects	associated	with	user
databases	can	be	included.	

The	process	can	be	run	at	a	convenient	time.

The	Database	Copy	Wizard	is	based	on	detach	and	attach	functionality	that
allows	user	databases	to	be	moved	or	copied	from	a	source	to	a	destination
server.	A	Data	Transformation	Services	(DTS)	package	performs	the	actual
move	or	copy	operation	You	can	schedule	the	package	to	run	at	a	specified	time
or	rerun	the	package	if	required.

Options	for	SQL	Server	7.0	Database	Upgrades
Database	administrators	can	move	or	copy	one	or	more	databases	from	an
instance	of	SQL	Server	7.0	to	the	default	instance	of	SQL	Server	2000	on	your
local	computer,	or	to	either	a	default	or	a	named	instance	on	a	remote	computer.
This	upgrade	feature	does	not	support	SQL	Server	6.5	databases.

Local	computer
SQL	Server	7.0	databases	can	be	upgraded	to	a	named	instance	of	SQL
Server	2000	on	the	local	computer.

Remote	computer
SQL	Server	7.0	databases	can	be	upgraded	to	a	default	instance	of	SQL
Server	2000	on	a	remote	computer.

SQL	Server	7.0	databases	can	be	upgraded	to	a	named	instance	of	SQL
Server	2000	on	a	remote	computer.

Note		You	can	have	only	one	active	default	instance	of	SQL	Server	on	a
computer	at	one	time;	either	a	default	instance	of	SQL	Server	7.0	or	a	default
instance	of	SQL	Server	2000.	SQL	Server	6.5	can	also	be	a	default	instance.	For
more	information,	see	Working	with	Instances	and	Versions	of	SQL	Server.

Exceptions
The	Copy	Database	Wizard	cannot	be	used	in	these	situations:

A	database	with	the	identical	name	on	both	source	and	destination
servers	cannot	be	moved	or	copied.	On	the	database	selection	screen,	it
will	be	noted	as	"Already	exists."

For	databases	involved	in	replication,	a	regular	server	upgrade	is
required.

Copy	Database	Wizard	Safeguards

At	the	start	of	a	database	move	or	copy	operation,	one	administrator	must	have
exclusive	use	of	all	files	to	prevent	any	changes	to	the	file	set	during	the	process.
Two	connections	are	required	to	copy	database	files:	sysadmin	privileges	on
both	installations	of	SQL	Server	and	administrator	privileges	on	the
server/network.

To	prevent	any	chance	of	data	corruption,	the	SQL	Server	7.0	databases	must	be

in	read-only	condition	and	cannot	be	renamed	during	this	operation.	Any	name
conflicts	between	source	and	destination	servers	must	be	resolved	manually	prior
to	upgrading	databases.	Nothing	on	the	destination	server	is	overwritten.

If	you	move	or	copy	multiple	databases	in	one	operation,	each	database	is
actually	moved	one	at	a	time;	that	is,	one	database	at	a	time	is	detached,	files	are
copied	and	then	reattached.	To	avoid	any	problems,	the	DTS	package	writes	a
message	to	the	error	log	indicating	that	the	database	is	about	to	be	detached	from
its	source	server.	At	the	same	time,	a	script	is	prepared	to	attach	the	database	to
its	destination.	After	the	database	is	successfully	attached	to	the	destination,
another	entry	is	written	to	the	log	indicating	successful	completion.

When	upgrading	to	a	destination	that	is	a	clustered	server,	the	Copy	Database
Wizard	will	ensure	you	select	only	shared	drives	on	a	clustered	destination
server.	The	source	server	may	also	be	clustered.

Note		Unrelated	to	this	upgrade	process,	you	can	also	use	the	Copy	Database
Wizard	to	move	or	copy	user	databases	from	one	instance	of	SQL	Server	2000	to
another	instance	of	SQL	Server	2000.	For	more	information,	see	Using	the	Copy
Database	Wizard.

To	upgrade	databases	online	using	the	Copy	Database	Wizard

SQL	Server	Setup	Help

Upgrading	Databases	from	SQL	Server	6.5	(Upgrade
Wizard)
You	can	convert	data	from	Microsoft®	SQL	Server™	version	6.5	to	the	formats
for	SQL	Server	2000	using	the	SQL	Server	Upgrade	Wizard.	The	wizard
upgrades	any	or	all	of	your	databases,	transferring	all	catalog	data,	objects,	and
user	data.	It	also	transfers	replication	settings,	SQL	Executive	settings,	and	most
of	the	SQL	Server	6.5	configuration	options.	Be	sure	to	review	all	aspects	of	this
upgrade,	as	noted	in	Preparing	to	Upgrade	from	SQL	Server	6.5.

Note		To	run	the	SQL	Server	Upgrade	Wizard,	you	must	have	a	default	instance
of	Microsoft	SQL	Server	2000	installed	on	your	computer.

The	SQL	Server	Upgrade	Wizard	does	not	support	consolidation	of	databases
from	multiple	SQL	Server	6.5	installations.	If	you	must	upgrade	SQL	Server	6.5
databases	from	multiple	servers,	consolidate	all	of	the	SQL	Server	6.5	databases
onto	one	server,	and	then	run	the	wizard	to	upgrade	the	consolidated	server.

The	SQL	Server	Upgrade	Wizard	does	not	remove	SQL	Server	6.5	from	your
computer.	If	you	are	using	a	tape	backup	to	perform	the	upgrade,	you	have	the
option	of	removing	the	SQL	Server	6.5	devices	to	save	disk	space.

When	the	upgrade	process	is	complete,	two	separate	installations	of	SQL	Server
exist,	including	two	separate	sets	of	the	same	data.	The	SQL	Server	6.5	and	the
SQL	Server	2000	installations	become	independent	of	each	other.

If	you	are	performing	the	upgrade	on	a	single	computer,	additional	disk	space	is
required.	For	more	information,	see	Estimating	the	Disk	Space	Required	for
Upgrading.	You	can	also	upgrade	from	one	computer	to	another.	For	more
information,	see	Upgrading	Using	One	or	Two	Computers	(Logon	Screen).

Note		You	can	leave	the	installation	of	SQL	Server	6.5	on	a	computer
indefinitely.	In	addition	to	installations	of	SQL	Server	6.5	and	a	default	instance
of	SQL	Server	2000	on	the	same	computer,	you	also	can	install	multiple	named
instances	of	the	SQL	Server	2000	on	the	same	computer.	For	more	information,
see	Working	with	Instances	and	Versions	of	SQL	Server.

To	perform	a	version	upgrade	using	a	direct	pipeline

SQL	Server	Setup	Help

Preparing	to	Upgrade	from	SQL	Server	6.5
Follow	this	checklist	before	using	the	SQL	Server	Upgrade	Wizard	to	move
from	Microsoft®	SQL	Server™	version	6.5	to	Microsoft	SQL	Server	2000:

Back	up	the	SQL	Server	6.5	database	files	(all	.dat	files,	including
master)	so	you	can	completely	restore	them	if	necessary.

Run	the	appropriate	Database	Console	Commands	(DBCC)	on	the	SQL
Server	6.5	databases	to	ensure	they	are	in	a	consistent	state.

Estimate	the	disk	space	required.	In	addition	to	the	hard	disk	space	used
by	Microsoft	SQL	Server	2000,	you	need	approximately	1.5	times	the
size	of	the	SQL	Server	6.5	databases.

Set	tempdb	to	at	least	10	MB	in	the	SQL	Server	6.5	installation,	25	MB
is	recommended.

Ensure	the	master	database	has	at	least	3	MB	of	free	space.

Ensure	that	all	database	users	have	logon	information	in	the	master
database.

This	is	important	for	restoring	a	database	because	system	logon
information	resides	in	the	master	database.

Ensure	the	@@SERVERNAME	is	defined	on	SQL	Server	2000.	If
@@SERVERNAME	is	NULL,	you	can	use	the	sp_addserver	system
stored	procedure.	For	example,	if	your	computer	is	named	production,
the	command	would	be	sp_addserver	'production1',local.	Changes	do
not	take	affect	until	the	MSSQLServer	service	is	restarted.

Note		Because	SQL	Server	6.5	does	not	recognize	the	hyphen	(-)	in	a
computer	name,	replace	a	hyphen	with	an	underscore	(_).

Disable	any	startup	stored	procedures.

The	SQL	Server	Upgrade	Wizard	starts	and	stops	the	SQL	Server	6.5
server	during	the	upgrade	process.	Stored	procedures	processed	at
startup	may	cause	the	upgrade	process	to	stop	responding.

Ensure	that	you	upgrade	all	databases	with	cross-database	dependencies
at	the	same	time.

For	example,	you	want	to	upgrade	three	databases,	database1,
database2,	and	database4,	and	there	is	logon	information	in	SQL
Server	6.5	master..sysdatabases	for	USER1	that	defaults	to	database3
(not	one	of	the	databases	you	are	upgrading).	The	SQL	Server	Upgrade
Wizard	does	not	create	the	logon	information	because	the	database	is
not	upgraded,	and	therefore	does	not	exist	in	SQL	Server	2000.	If
USER1	is	listed	as	the	owner	for	objects	in	any	of	the	databases
upgraded,	those	objects	cannot	be	created	because	the	logon
information	for	USER1	does	not	exist.

If	performing	a	two-computer	upgrade,	assign	a	domain	user	name	and
password	to	the	MSSQLServer	service	for	SQL	Server	6.5	and	SQL
Server	2000	instead	of	using	the	local	system	account	or	a	local	user
account.	The	domain	user	account	should	belong	to	the	Administrators
group	of	both	the	computers	involved	in	the	upgrade.	(The	local	system
account	is	sufficient	for	a	one-computer	upgrade.)

Stop	replication	and	ensure	that	the	log	is	empty.

Quit	all	applications,	including	all	services	dependent	on	SQL	Server.

If	you	copied	the	SQL	Server	6.5	databases	to	a	new	computer	to	perform	the
upgrade,	you	may	need	to	update	the	new	SQL	Server	6.5	master	database	as
follows:

Change	references	from	the	earlier	server	name	to	the	current	server
name	in	the	SQL	Server	6.5	master	database.

Update	the	device	file	locations	in	the	SQL	Server	6.5	master	database.

Ensure	all	users	have	corresponding	logon	information.

To	change	the	size	of	tempdb	in	SQL	Server	6.5

SQL	Server	Setup	Help

Estimating	the	Disk	Space	Required	for	Upgrading
Before	you	perform	an	upgrade	of	Microsoft®	SQL	Server™	version	6.5	to	SQL
Server	2000,	ensure	that	there	is	available	disk	space.	This	is	important	if	you
intend	to	perform	either	a	one-computer	or	a	two-computer	upgrade.

The	SQL	Server	Upgrade	Wizard	estimates	the	disk	space	necessary	to	upgrade
the	SQL	Server	6.5	server	to	SQL	Server	2000.	The	wizard	examines	the	current
SQL	Server	6.5	installation	and	estimates	the	amount	of	disk	space	the	SQL
Server	6.5	data	will	occupy	in	SQL	Server	2000.

You	can	estimate:

The	size	of	SQL	Server	2000	databases.

The	size	of	SQL	Server	2000	logs.

The	amount	of	disk	space	required	for	tempdb.

Note		The	SQL	Server	Upgrade	Wizard	estimates	the	disk	space	required;	it
cannot	give	an	exact	requirement.

To	estimate	the	disk	space	required	for	an	upgrade

SQL	Server	Setup	Help

Data	and	Object	Transfer
The	Data	and	Object	Transfer	screen	allows	you	to	choose	upgrade	options.

Export	from	6.5	Server	/	Import
The	objects	and	data	check	boxes	indicate	that	the	SQL	Server	Upgrade	Wizard
exports	catalog	data,	objects,	and	user	data	from	selected	Microsoft®	SQL
Server™	version	6.5	databases	and	imports	them	into	newly	created	SQL	Server
2000	databases.

Data	Transfer	Method
You	can	perform	an	upgrade	using	either	of	the	following	data	transfer	methods:

Named	pipe	(simultaneous	import/export)

A	direct	pipeline	enables	the	SQL	Server	Upgrade	Wizard	to	transfer
data	in	memory	from	Microsoft	SQL	Server	version	6.5.	This	data
transfer	method	is	the	most	reliable	and	provides	the	best	performance.
However,	when	performing	a	one-computer	upgrade,	you	cannot	reuse
the	disk	space	occupied	by	the	SQL	Server	6.5	devices	until	the	version
upgrade	process	is	complete,	so	use	this	option	only	if	you	have	disk
space	available.

Tape	(requires	a	Microsoft	Windows	NT®	tape	driver	to	be	installed)

The	SQL	Server	Upgrade	Wizard	backs	up	to	tape	all	of	the	SQL	Server
6.5	databases	you	have	selected	to	upgrade.	The	SQL	Server	Upgrade
Wizard	then	optionally	deletes	all	of	the	SQL	Server	6.5	devices,
freeing	disk	space	before	new	data	files	are	created.

IMPORTANT		The	SQL	Server	Upgrade	Wizard	deletes	all	of	the	SQL
Server	6.5	devices,	not	only	those	upgraded.	You	should	upgrade	all
databases	if	you	choose	to	delete	the	SQL	Server	6.5	devices.

The	tape	backup	option	should	be	used	only	when	you	want	to	upgrade
on	a	single	computer	but	there	is	not	enough	space	on	the	hard	disk	to
install	SQL	Server	2000	alongside	SQL	Server	6.5	and	perform	the

version	upgrade.

Note		The	SQL	Server	Upgrade	Wizard	uses	a	named	pipe,	even	when
performing	a	tape	backup	upgrade.	SQL	Server	6.5	and	SQL	Server
2000	must	be	set	to	listen	to	the	default	named	pipe,	\\.\pipe\sql\query.

Verification

The	transfer	of	objects	and	data	by	the	SQL	Server	Upgrade	Wizard	is	a	very
reliable	process.	If	any	objects	could	not	be	imported	due	to	errors	in	those
objects	or	compatibility	problems	with	Microsoft	SQL	Server,	they	are	noted	in
the	output	logs	of	the	SQL	Server	Upgrade	Wizard.

The	SQL	Server	Upgrade	Wizard	also	offers	the	following	optional	verification
measures:

Validate	successful	object	data	transfer

The	SQL	Server	Upgrade	Wizard	examines	the	SQL	Server	6.5
databases	before	the	upgrade	process	and	SQL	Server	2000	databases
after	the	upgrade.	For	each,	the	wizard	prepares	a	list	of	all	objects,
including	schema	and	stored	procedures,	and	the	number	of	rows	in
each	table.	The	wizard	then	compares	the	two	lists	and	reports	any
discrepancies.

Exhaustive	data	integrity	verification

The	SQL	Server	Upgrade	Wizard	performs	a	checksum	for	each	column
of	each	table	before	and	after	the	upgrade	to	verify	that	data	values	have
not	changed.

Note		The	SQL	Server	Upgrade	Wizard	does	not	report	as	errors	any
intentional	differences	in	objects.	If	some	objects,	typically	stored
procedures,	could	not	import	due	to	errors	in	the	objects	or
compatibility	problems	with	SQL	Server	2000,	they	are	reported	twice:
once	in	the	SQL	scripts	that	show	the	source	code	of	the	objects	and	the
error	messages	received	from	SQL	Server	2000	when	trying	to	create
them,	and	then	again	in	the	output	of	the	verification	processes.

SQL	Server	Setup	Help

Order	of	Upgrade	Using	a	Direct	Pipeline	or	Tape
Drive
The	SQL	Server	Upgrade	Wizard	performs	a	version	upgrade	using	the	options
specified.	The	Microsoft®	SQL	Server™	version	6.5	server	and	data	used	by
SQL	Server	6.5	databases	are	left	intact	throughout	the	version	upgrade	process.
At	this	time,	the	SQL	Server	6.5	catalog	data,	objects,	and	databases	are
converted	so	that	they	are	compatible	with	SQL	Server	2000.	After	the	version
upgrade	is	complete,	SQL	Server	2000	becomes	your	production	system.

The	order	of	upgrade	is	basically	the	same	for	both	a	direct	pipeline	and	a	tape
drive	upgrade.	The	one	difference	is	in	how	data	is	exported	and	imported.	When
using	a	tape	drive,	data	is	exported	to	the	tape	drive	after	shutting	down	SQL
Server	6.5	and	before	starting	SQL	Server	2000.	This	data	is	then	imported	from
the	tape	drive	later	to	SQL	Server	2000.	When	using	a	direct	pipeline,	the	export
and	import	steps	are	combined	in	one	step,	simultaneously.

The	following	list	shows	the	order	in	which	the	SQL	Server	Upgrade	Wizard
performs	the	upgrade	from	SQL	Server	6.5	to	SQL	Server	2000.	The	differences
between	the	direct	pipeline	and	tape	drive	methods	are	noted.

Starts	SQL	Server	6.5

Updates	ODBC	and	SQL-DMO	components	on	SQL	Server	6.5

Examines	SQL	Server	6.5	databases

Exports	replication	settings

Exports	server	configuration	settings	from	the	master	database

Exports	logon	information

Exports	database	owners

Exports	SQL	Executive	objects	and	settings	from	the	msdb	database

Exports	database	objects	for	all	databases	chosen

Shuts	down	SQL	Server	6.5

Tape	Drive	only:	Exports	data	to	tape	

Tape	Drive	only:	Backs	up	and	then	deletes	SQL	Server	6.5
devices

Starts	SQL	Server	2000

Creates	databases

Modifies	SQL	Executive	objects	and	settings	to	SQL	Server	2000
formats

Imports	logon	information

Imports	database	objects

Tape	Drive	only:	Imports	data	from	tape	into	SQL	Server	2000	

Direct	Pipeline	only:	Simultaneously	exports	data	from	SQL
Server	6.5	and	imports	it	into	SQL	Server	2000

Imports	modified	SQL	Executive	objects	and	settings	into	SQL	Server
2000	

Imports	replication	settings

Examines	SQL	Server	2000	databases

Verifies	that	the	upgrade	is	successful

Sets	database	options	in	SQL	Server	2000

Marks	server	and	databases	as	moved

Drops	temporary	tempdb	files

SQL	Server	Setup	Help

Upgrading	Using	One	or	Two	Computers	(Logon
Screen)
The	upgrade	process	can	take	place	on	a	single	computer	or	from	one	computer
to	another,	depending	on	where	Microsoft®	SQL	Server™	version	6.5	and	SQL
Server	2000	are	installed.	The	SQL	Server	Upgrade	Wizard	identifies	the	two
servers	as	the	export	server	and	import	server.

For	a	one-computer	upgrade,	leave	the	import	and	export	servers	at	their
default	values.

For	a	two-computer	upgrade,	select	the	name	of	the	computer	with	your
SQL	Server	6.5	server	as	the	export	server.	To	upgrade	SQL	Server
from	one	computer	to	another,	the	two	computers	must	be	in	the	same
network	domain.

IMPORTANT		The	one-computer	upgrade	is	the	only	method	supported	when
upgrading	a	server	used	in	replication.	A	two-computer	upgrade	is	not	supported
for	replication	servers.

Export	server	(6.5)
Export	server	(6.5)	is	the	name	of	the	SQL	Server	6.5	server.	This	defaults	to	the
name	of	the	computer	on	which	the	SQL	Server	Upgrade	Wizard	is	run,	but	may
be	changed	if	your	SQL	Server	6.5	server	is	on	another	computer.

Server	name

Server	name	is	the	name	of	your	SQL	Server	version	6.5	server.	This
defaults	to	the	name	of	the	computer	on	which	the	SQL	Server	Upgrade
Wizard	is	run,	but	may	be	changed	if	your	SQL	Server	6.5	server	is	on
another	computer.

Administrator	password	('sa')

Enter	the	system	administrator	(sa)	password	for	the	SQL	Server	6.5
server.

Optional	startup	arguments

Enter	any	trace	flags	or	other	startup	parameters	to	be	used	when	the
SQL	Server	Upgrade	Wizard	starts	the	SQL	Server	6.5	server.

Import	server

The	import	server	is	the	name	of	the	SQL	Server	2000	server.	This	is	always	the
name	of	the	computer	on	which	the	SQL	Server	Upgrade	Wizard	is	run.

Server	name

Server	name	is	the	name	of	your	SQL	Server	2000	server	computer.
This	is	always	the	name	of	the	computer	on	which	the	SQL	Server
Upgrade	Wizard	is	run.

Administrator	password	('sa')

Enter	the	system	administrator	(sa)	password	for	the	SQL	Server	2000
server.	Unless	you	have	changed	it	since	installing	SQL	Server	2000,
the	default	sa	password	is	blank.

Optional	startup	arguments

Enter	any	trace	flags	or	other	startup	parameters	to	be	used	when	the
SQL	Server	Upgrade	Wizard	starts	the	SQL	Server	2000	server.

SQL	Server	Setup	Help

Selecting	a	Scripting	Code	Page
The	SQL	Server	Upgrade	Wizard	requires	the	selection	of	a	scripting	code	page,
which	is	used	to	create	the	upgrade	scripts.	When	the	Code	Page	Selection
screen	appears	in	the	Upgrade	Wizard,	most	users	can	accept	the	default	code
page,	which	is	the	code	page	recorded	in	the	master	database.

In	some	cases,	the	actual	code	page	used	for	a	Microsoft®	SQL	Server™	6.5
installation	differs	from	the	code	page	recorded	in	the	master	database.	If	you
know	that	the	actual	code	page	is	different	from	the	recorded	code	page,	select
the	actual	code	page	in	the	list	on	the	Code	Page	Selection	screen.

CAUTION		If	you	choose	a	scripting	code	page	other	than	the	default,	do	not
upgrade	replication	settings.	If	the	server	is	involved	in	replication,	reconfigure
the	replication	settings	after	the	upgrade	is	complete.

The	enhancements	to	collation	settings	in	SQL	Server	2000	do	not	apply	directly
to	this	selection	of	a	code	page	for	the	SQL	Server	6.5	upgrade.	For	more
information	about	collation	enhancements,	see	Collations.

SQL	Server	Setup	Help

Selecting	Databases	to	Upgrade
When	running	the	SQL	Server	Upgrade	Wizard,	you	can	choose	to	upgrade
some	or	all	Microsoft®	SQL	Server™	version	6.5	databases.	The	master,	msdb,
and	publication	system	databases,	as	well	as	the	pubs	and	Northwind	sample
databases,	are	not	explicitly	available	for	selection.	However,	the	master,	msdb,
and	publication	databases	can	be	selected	for	upgrading	(the	default)	in	the
Server	Configuration	dialog	box	of	the	SQL	Server	Upgrade	Wizard.

Note		If	you	run	the	SQL	Server	Upgrade	Wizard	again	after	databases	have
been	upgraded,	previously	updated	databases	will	default	to	the	excluded	list.	If
you	want	to	upgrade	a	database	again,	drop	the	database	in	SQL	Server	2000	and
move	it	to	the	included	list	in	the	wizard.

SQL	Server	Setup	Help

Database	Configuration
Before	any	data	is	transferred,	the	SQL	Server	Upgrade	Wizard	creates,	if
necessary,	database	and	log	files	large	enough	to	contain	the	upgraded	database
data.	On	the	Database	Creation	screen	there	are	several	options	for	creating	the
Microsoft®	SQL	Server™	2000	database	and	log	files.

Using	the	Default	Database	Configuration
The	SQL	Server	Upgrade	Wizard	estimates	how	much	disk	space	is	necessary	to
hold	transferred	objects	and	data	for	each	selected	database	and	creates	database
files	of	the	estimated	sizes.	The	wizard	makes	no	allowance	for	free	space
beyond	the	loaded	data.	By	default,	the	data	file	for	a	database	is	placed	in	the
same	location	as	the	first	device	used	by	that	database	in	SQL	Server	6.5.

The	SQL	Server	Upgrade	Wizard	also	creates	a	log	file	for	each	database	using
the	SQL	Server	6.5	log	size.	By	default,	the	log	file	is	placed	in	the	same
location	as	the	first	device	used	for	log	space	in	SQL	Server	6.5.

You	can	view	and	edit	the	default	database	configuration	in	the	SQL	Server
Upgrade	Wizard.	For	each	database	and	log	file	you	can	modify:

The	name	and	file	path.

The	initial	size	of	the	file.

The	autogrow	increment.

If	using	multiple	devices	in	a	SQL	Server	version	6.5	database,	then	multiple
database	files	are	created	in	the	same	location.	However,	the	first	database	file	is
sized	to	accommodate	the	bulk	of	the	data,	and	the	other	files	are	minimally
sized.	If	you	want	to	remove	these	files,	you	must	do	so	before	they	are	created.
All	files	are	set	to	grow	automatically	if	extra	space	is	required.

Using	a	Custom	Database	Configuration
You	can	specify	a	custom	configuration	in	two	ways:

Using	databases	and	logs	that	you	created	in	SQL	Server	2000.

The	SQL	Server	Upgrade	Wizard	does	not	create	any	user	databases.
You	must	create	the	necessary	databases	and	logs	in	SQL	Server	2000
before	you	start	the	SQL	Server	Upgrade	Wizard.	Use	this	option	only	if
necessary.

Using	an	SQL	script	file	that	you	provide.

The	SQL	Server	Upgrade	Wizard	uses	an	SQL	script	file	that	you
provide	to	create	the	necessary	user	databases	and	logs.	Use	this	option
only	if	you	are	familiar	with	the	new	CREATE	DATABASE	statement
in	SQL	Server	2000.

If	you	create	the	user	databases	or	an	SQL	script	file,	the	SQL	Server	2000
databases	must	have	the	same	names	as	in	SQL	Server	6.5.	Also,	remember	that
data	may	take	up	more	disk	space	in	SQL	Server	2000	than	in	SQL	Server	6.5.
The	SQL	Server	Upgrade	Wizard	estimates	this	growth.	You	can	view	the
proposed	layout	of	the	SQL	Server	2000	data	files	to	see	the	estimated	initial
size	of	the	SQL	Server	2000	database,	and	edit	the	default	configuration,	if
necessary.	For	more	information,	see	Proposed	Database	Layout.

It	is	recommended	that	you	leave	the	autogrow	feature	on	for	each	database.	You
may	also	want	to	set	a	backward	compatibility	level	for	each	database.

To	edit	the	default	database	configuration

SQL	Server	Setup	Help

Proposed	Database	Layout
The	Proposed	Database	Layout	dialog	box	lists	the	databases,	file	groups,	and
data	files	that	the	Microsoft®	SQL	Server™	Upgrade	Wizard	will	create.	You
can	create	or	remove	file	groups	and	data	files	from	the	File	menu.	Double-click
a	data	file	to	edit	the	file	name,	initial	size,	or	file	growth	details.

Object	Details

Click	on	a	file	group	or	data	file	in	the	proposed	database	layout	to	view
details.	Click	a	database	in	the	proposed	database	layout	to	view	summary
information.

Drive	Summary

The	drive	summary	lists	all	local	fixed-disk	drives.	For	each	drive,	the
existing	SQL	Server	version	6.5	data	file	size,	proposed	SQL	Server	2000
data	file	size,	and	free	space	are	listed.	On	the	Options	menu,	select
Freespace	includes	6.5	files	to	view	the	free	space	that	would	exist	if	the
SQL	Server	6.5	data	files	were	deleted.	This	option	shows	the	disk	space
available	if	the	upgrade	is	performed	using	tape	and	the	SQL	Server	6.5
devices	are	deleted.

See	Also

Database	Configuration

SQL	Server	Setup	Help

Tape	Upgrade	Transfer	Options
When	you	perform	a	tape	backup,	you	must	select	a	tape	drive	and	choose	how
the	SQL	Server	Upgrade	Wizard	handles	backing	up	and	deleting	objects	in	the
Microsoft®	SQL	Server™	version	6.5	databases.

Device	for	Data	Transfer
The	SQL	Server	Upgrade	Wizard	transfers	all	of	the	data	you	are	upgrading	to
this	tape	drive	before	the	SQL	Server	2000	databases	are	created.

Backing	Up	the	SQL	Server	6.5	Devices
You	may	also	choose	to	back	up	the	SQL	Server	6.5	devices.	This	is	separate
from	the	transfer	to	tape	that	the	SQL	Server	Upgrade	Wizard	uses	to	complete
the	upgrade.	There	are	two	options	for	backing	up	the	devices:

Prompt	me	to	backup	my	devices	manually

Before	data	is	exported,	the	SQL	Server	Upgrade	Wizard	pauses	and
prompts	you	to	perform	a	backup.	The	SQL	Server	Upgrade	Wizard
does	not	perform	a	backup	for	you.	You	must	use	a	backup	utility	such
as	Microsoft	Windows	NT®	Backup.

Automatically	copy	device	files	to	the	following	location

Before	data	is	exported,	the	SQL	Server	Upgrade	Wizard	copies	the
device	files	to	a	shared	network	directory.

WARNING		If	you	back	up	the	devices	to	tape,	remove	the	tape	backup	and	insert
a	blank	tape	before	continuing.	Before	the	SQL	Server	Upgrade	Wizard	begins
transferring	data	to	the	tape	drive,	it	formats	the	tape	in	the	drive.	If	you	do	not
remove	your	tape	backup,	the	SQL	Server	Upgrade	Wizard	overwrites	it.

Deleting	the	SQL	Server	6.5	Devices
If	you	decide	to	delete	your	SQL	Server	6.5	devices	before	creating	the	SQL
Server	2000	databases,	you	can	choose	whether	to	be	prompted	before	the

devices	are	deleted.	All	of	the	SQL	Server	6.5	device	files	will	be	deleted	if	you
choose	to	delete	devices,	even	if	you	are	upgrading	only	one	database.	This	will
render	the	SQL	Server	6.5	server	unusable	until	the	files	are	restored.

Note		If	you	choose	not	to	delete	the	devices,	you	must	have	enough	disk	space
for	both	the	SQL	Server	6.5	and	SQL	Server	2000	databases.	If	sufficient	space
is	available,	you	should	use	a	Named	Pipe	upgrade	instead	of	a	Tape	upgrade.

See	Also

How	to	perform	a	SQL	Server	version	6.5	to	SQL	Server	2000	upgrade	using	a
tape	drive	(SQL	Server	Upgrade	Wizard)

SQL	Server	Setup	Help

System	Configuration
On	the	System	Configuration	screen,	you	can	set	options	for	system	objects	to
transfer,	ANSI	Nulls,	and	quoted	identifiers.

System	Objects	to	Transfer
When	the	SQL	Server	Upgrade	Wizard	upgrades	the	master	database,	it	can
upgrade	several	configuration	options:

Server	configuration

Logon	information	and	remote	logon	registrations	and	server
configuration	options	relevant	to	Microsoft®	SQL	Server™	2000	are
transferred	as	part	of	the	version	upgrade	process.	The	SQL	Server	6.5
configuration	options	not	used	in	SQL	Server	2000	are	not	transferred.

Replication	settings

All	articles,	subscriptions,	and	publications	of	each	selected	database,
including	the	distribution	database,	if	any,	are	transferred	and	upgraded.

SQL	Executive	settings

All	tasks	scheduled	by	SQL	Executive	are	transferred	and	upgraded	so
that	the	SQL	Server	2000	can	schedule	and	run	the	tasks	in	SQL	Server
Agent.

Note		Upgrading	replication	or	SQL	Executive	settings	causes	existing
modifications	made	to	the	SQL	Server	2000	replication	or	SQL	Server	Agent
settings	to	be	overwritten.

ANSI	Nulls
The	ANSI_NULLS	option	controls	both	database	default	nullability	and
comparisons	against	null	values.	When	upgrading	Microsoft	SQL	Server	version
6.5	to	the	SQL	Server	2000,	set	the	ANSI_NULLS	option	to	ON	or	OFF.

When	the	SQL	Server	Upgrade	Wizard	creates	the	SQL	Server	2000	database
tables,	the	database	default	nullability	determined	by	the	ANSI_NULLS	option

is	not	an	issue.	All	columns	are	explicitly	qualified	as	NULL	or	NOT	NULL
based	on	their	status	in	SQL	Server	6.5.

The	ANSI_NULLS	option	is	important	with	regard	to	comparisons	against	null
values,	when	the	SQL	Server	Upgrade	Wizard	creates	the	SQL	Server	2000
database	objects.	With	ANSI_NULLS	set	to	ON,	the	comparison	operators
EQUAL	(=)	and	NOT	EQUAL	(<>)	always	return	NULL	when	one	of	its
arguments	is	NULL.	With	ANSI_NULLS	set	to	OFF,	these	operators	return
TRUE	or	FALSE,	depending	on	whether	both	arguments	are	NULL.

In	SQL	Server	6.5,	the	ANSI_NULLS	option	in	objects,	such	as	stored
procedures	and	triggers,	is	resolved	during	query	execution	time.	In	SQL	Server
2000,	the	ANSI_NULLS	option	is	resolved	when	the	object	is	created.	You	must
choose	the	ANSI_NULLS	option	setting	you	want	for	all	objects	in	the
databases	you	are	upgrading.	The	SQL	Server	Upgrade	Wizard	then	creates	all
database	objects	using	this	ANSI_NULLS	setting.

Quoted	Identifiers
Note		Quoted	identifiers	are	used	by	default	in	SQL	Server	2000,	that	is,	they	are
set	to	ON.	This	is	different	from	SQL	Server	7.0	where	they	were	set	to	OFF	by
default.

The	QUOTED_IDENTIFIER	setting	determines	what	meaning	Microsoft	SQL
Server	gives	to	double	quotation	marks	(").	When	QUOTED_IDENTIFIER	is
set	to	OFF,	double	quotation	marks	delimit	a	character	string,	just	as	single
quotation	marks	do.	When	QUOTED_IDENTIFIER	is	set	to	ON,	double
quotation	marks	delimit	an	identifier,	such	as	a	column	name.	An	identifier	must
be	enclosed	in	double	quotation	marks;	for	example,	if	its	name	contains
characters	that	are	otherwise	not	allowed	in	an	identifier,	including	spaces	and
punctuation,	or	if	the	name	conflicts	with	a	reserved	word	in	Transact-SQL.
Regardless	of	the	QUOTED_IDENTIFIER	setting,	an	identifier	can	also	be
delimited	by	square	brackets.

The	meaning	of	the	following	statement,	for	example,	depends	on	whether
QUOTED_IDENTIFIER	is	set	to	ON	or	OFF:

SELECT	"x"	FROM	T

If	QUOTED_IDENTIFIER	is	set	to	ON,	"x"	is	interpreted	to	mean	the	column

named	x.	If	it	is	set	to	OFF,	"x"	is	the	constant	string	x	and	is	equivalent	to	the
letter	x.

If	the	previous	SELECT	statement	example	were	part	of	a	stored	procedure
created	when	QUOTED_IDENTIFIER	was	set	to	ON,	then	"x"	would	always
mean	the	column	named	x.	Even	if	the	QUOTED_IDENTIFIER	setting	was
later	switched,	and	set	to	OFF,	the	stored	procedure	would	respond	as	if	it	were
set	to	ON	and	treat	"x"	as	the	column	named	x.

When	the	SQL	Server	Upgrade	Wizard	re-creates	database	objects	in	SQL
Server	2000,	the	QUOTED_IDENTIFIER	setting	determines	how	all	of	these
objects	behave.	If	all	database	objects	were	created	in	SQL	Server	6.5	with	the
same	QUOTED_IDENTIFIER	setting,	click	that	setting,	either	On	or	Off.	If
objects	were	created	in	SQL	Server	version	6.5	with	a	mix	of	the	two	settings,	or
if	you	are	unsure	of	the	settings	used,	click	Mixed.

With	the	Mixed	option,	the	SQL	Server	Upgrade	Wizard	first	converts	all
objects	containing	double	quotation	marks	with	QUOTED_IDENTIFIER	set
ON.	The	SQL	Server	Upgrade	Wizard	then	converts	any	objects	that	failed	to	be
created	with	QUOTED_IDENTIFIER	set	OFF.

See	Also

How	to	perform	a	SQL	Server	version	6.5	to	SQL	Server	2000	upgrade	using	a
direct	pipeline	(SQL	Server	Upgrade	Wizard)

How	to	perform	a	SQL	Server	version	6.5	to	SQL	Server	2000	upgrade	using	a
tape	drive	(SQL	Server	Upgrade	Wizard)

SQL	Server	Setup	Help

	Completing	the	SQL	Server	Upgrade	Wizard
Use	this	screen	to	view	the	summary	of	choices	you	have	made.

Click	View	warnings	and	choices	in	notepad	to	open	a	text	version	of	the
upgrade	script.	If	all	options	are	correct,	click	Finish.

SQL	Server	Setup	Help

Upgrade	Script	Interpreter
After	you	click	Finish,	this	screen	displays	the	progress	of	the	upgrade.

Progress	indicator

Displays	information	about	the	current	task	and	its	progress	toward
completion.	The	information	presented	varies	according	to	the	type	of	task.

Task

The	SQL	Server	Upgrade	Wizard	adds	each	upgrade	task	to	the	list	as	it	is
started.

Status

The	SQL	Server	Upgrade	Wizard	displays	the	status	(Running,	Done,	or
Error)	for	each	task.

Started

The	SQL	Server	Upgrade	Wizard	displays	the	time	and	date	on	which	the
task	began.

End

The	SQL	Server	Upgrade	Wizard	displays	the	time	and	date	on	which	a
completed	or	terminated	task	is	finished.

Pause	Task

Temporarily	suspends	the	version	upgrade	process	until	you	click	Resume.

Cancel	Task

Cancels	the	currently	running	task	and	proceeds	to	the	next	task.	Do	not
cancel	a	task	unless	you	are	certain	the	current	task	does	not	need	to	be
completed	before	subsequent	tasks	are	run.

Retry	Task

Retries	the	current	upgrade	task.	If	a	task	ended	in	an	error	and	you	corrected
the	problem,	the	SQL	Server	Upgrade	Wizard	retries	the	current	task.

Pause	Between	Steps

Allows	you	to	participate	interactively	in	the	version	upgrade	process	and
track	the	progress	of	the	SQL	Server	Upgrade	Wizard.	The	SQL	Server
Upgrade	Wizard	asks	for	confirmation	between	each	step	of	the	version
upgrade	process.

SQL	Server	Setup	Help

Backward	Compatibility
Backward	compatibility	issues	are	divided	in	these	sections:

For	issues	related	to	upgrades	from	Microsoft®	SQL	Server™	version
7.0	to	SQL	Server	2000,	see:

SQL	Server	2000	and	SQL	Server	version	7.0

For	issues	related	to	upgrades	between	SQL	Server	6.5	and	Microsoft
SQL	Server	2000,	see:

SQL	Server	2000	and	SQL	Server	version	6.5

If	upgrading	from	SQL	Server	6.5	to	SQL	Server	2000,	review	both
sections.

SQL	Server	Setup	Help

SQL	Server	2000	and	SQL	Server	version	7.0
Microsoft®	SQL	Server™	2000	is	compatible	with	SQL	Server	7.0	in	most
ways.	The	section	describes	backward	compatibility	issues	when	upgrading	from
SQL	Server	7.0	to	SQL	Server	2000:

Client	Network	Utility	and	Named	Instances

Multiserver	Jobs	and	Named	Instances

Upgrading	SQL	Server	6.5	Client	Software

Authentication	Modes

ROWCOUNT	Setting	for	Operations	Against	Remote	Tables

Server	Configuration	Options

Recovery	Models	and	Database	Options

Reserved	Keywords

SQL	Profiler	Extended	Stored	Procedures

Default	Connection	Option	Settings	in	SQL	Query	Analyzer

bcp	Utility

Database	Diagrams	from	Earlier	Versions	of	Visual	Database	Design
Tools

Data	Transformation	Services

Specifying	Trusted	Connections

Extended	Objects	in	SQL-DMO

SQL-SCM

English	Query	and	SQL	Server	7.0	OLAP	Services

Client	Network	Utility	and	Named	Instances

When	using	the	SQL	Server	client	connectivity	components	from	SQL	Server
7.0	or	earlier,	you	must	set	up	an	alias	using	the	Client	Network	Utility	before
you	connect	to	a	named	instance	of	SQL	Server	2000.	For	example,	on	a	SQL
Server	7.0	client,	to	connect	to	a	named	instance	of	SQL	Server	2000,	you	must
add	an	alias	that	points	to
\\computername\pipe\MSSQL$instancename\sql\query.	If	you	use	an	alias	name
of	computername\instancename,	clients	can	connect	by	specifying	this	name	in
the	same	way	as	SQL	Server	2000	clients	do.	For	the	TCP/IP	Sockets	and
NWLink	IPX/SPX	Net-Libraries,	you	must	use	the	Client	Network	Utility	to
define	an	alias	on	the	client	that	specifies	the	port	address	on	which	the	named
instance	is	listening.

Multiserver	Jobs	and	Named	Instances
When	using	Master	Servers	and	Target	Servers,	SQL	Server	7.0	cannot
interoperate	with	named	instances	of	SQL	Server	2000.	To	use	an	instance	of
SQL	Server	7.0	with	an	instance	of	SQL	Server	2000	for	MSX/TSX	operations,
you	must	use	a	default	instance,	not	a	named	instance,	of	SQL	Server	2000.

Upgrading	SQL	Server	6.5	Client	Software
When	running	an	instance	of	SQL	Server	version	6.5	on	a	server,	this	issue

applies:

If	you	are	upgrading	from	SQL	Server	6.5	client	software	to	SQL	Server	2000
client	software	(and	you	have	an	application	that	uses	the	default	Net-Library),
you	must	use	the	Client	Network	Utility	to	make	either	Named	Pipes	or
Multiprotocol	the	default	Net-Library	to	make	Windows	Authentication
connections.

Authentication	Modes
SQL	Server	2000	can	operate	in	one	of	two	security	(authentication)	modes:

Windows	Authentication	Mode	(Windows	Authentication)

Mixed	Mode	(Windows	Authentication	and	SQL	Server	Authentication)

Mixed	Mode	allows	users	to	connect	using	Windows	Authentication	or	SQL
Server	Authentication.	Users	who	connect	through	a	Microsoft	Windows	NT®
4.0	or	Windows	2000	user	account	can	make	use	of	trusted	connections
(connections	validated	by	Windows	NT	4.0	or	Windows	2000)	in	either
Windows	Authentication	Mode	or	Mixed	Mode.

SQL	Server	Authentication	is	provided	for	backward	compatibility.	An	example
of	SQL	Server	Authentication	would	be	if	you	create	a	single	Microsoft
Windows®	2000	group,	add	all	necessary	users	to	that	group,	and	then	grant	the
Windows	2000	group	login	rights	to	SQL	Server	and	access	to	any	necessary
databases.

ROWCOUNT	Setting	for	Operations	Against	Remote	Tables
ROWCOUNT	is	not	supported	for	INSERT	statements	against	remote	tables	in
SQL	Server	2000	when	the	database	compatibility	level	is	set	to	80.	For	these
INSERT	operations,	the	SET	ROWCOUNT	option	is	ignored.

The	ROWCOUNT	setting	for	INSERT	statements	against	remote	tables	was
supported	in	SQL	Server	7.0.

Server	Configuration	Options

These	server	configuration	options	are	not	supported	in	SQL	Server	2000.

default	sortorder	id resource	timeout
extended	memory	size spin	counter
language	in	cache time	slice
language	neutral	full-text unicode	comparison	style
max	async	IO unicode	locale	id

For	more	information	about	configuration	options,	see	Setting	Configuration
Options	and	sp_configure.

Recovery	Models	and	Database	Options
Microsoft®	SQL	Server™	2000	provides	the	following	recovery	models	to
simplify	recovery	planning,	simplify	backup	and	recovery	procedures,	and	to
clarify	tradeoffs	between	system	operational	requirements:

Simple	Recovery

Full	Recovery

Bulk-Logged	Recovery

Each	model	addresses	different	needs	for	performance,	disk	and	tape	space,	and
protection	against	data	loss.

In	SQL	Server	7.0	and	earlier,	similar	functionality	was	provided	through	the
combined	settings	of	the	trunc.	log	on	chkpt	and	select	into/bulkcopy	database
options,	which	could	be	set	using	the	sp_dboption	stored	procedure.

This	table	maps	the	settings	of	trunc.	log	on	chkpt	and	select	into/bulkcopy	to
the	new	recovery	models.

If	trunc.	log	on	chkpt	is:
And	select
into/bulkcopy	is: The	recovery	model	is:

FALSE FALSE FULL

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

FALSE TRUE BULK-LOGGED
TRUE TRUE SIMPLE
TRUE FALSE SIMPLE

Note		If	you	upgrade	a	database	in	which	the	trunc.	log	on	chkpt	and	select
into/bulkcopy	options	are	set	to	TRUE,	select	into/bulkcopy	is	set	to	FALSE,
forcing	the	database	into	the	simple	recovery	model.

The	trunc.	log	on	chkpt	and	select	into/bulkcopy	database	options	are
supported	in	SQL	Server	2000	for	backward	compatibility	purposes,	but	may	not
be	supported	in	future	releases.

In	SQL	Server	2000,	the	ALTER	DATABASE	Transact-SQL	statement	provides
a	SET	clause	for	specifying	database	options,	including	recovery	models.	For
more	information	about	database	options,	see	Setting	Database	Options	and
ALTER	DATABASE.

Reserved	Keywords
These	words	are	no	longer	reserved	keywords	in	SQL	Server	2000:	AVG,
COMMITTED,	CONFIRM,	CONTROLROW,	COUNT,	ERROREXIT,
FLOPPY,	ISOLATION,	LEVEL,	MAX,	MIN,	MIRROREXIT,	ONCE,	ONLY,
PERM,	PERMANENT,	PIPE,	PREPARE,	PRIVILEGES,	REPEATABLE,
SERIALIZABLE,	SUM,	TAPE,	TEMP,	TEMPORARY,	UNCOMMITTED,
WORK.

These	words	are	reserved	keywords	in	SQL	Server	2000:	COLLATE,
FUNCTION,	OPENXML.

SQL	Profiler	Extended	Stored	Procedures
SQL	Profiler	extended	stored	procedures,	such	as	xp_trace_addnewqueue	and
xp_trace_generate_event,	are	not	supported	in	SQL	Server	2000.	They	have
been	replaced	by	a	set	of	new	stored	procedures	and	system	user-defined
functions.	For	more	information,	see	Creating	and	Managing	Traces	and
Templates.

Default	Connection	Option	Settings	in	SQL	Query	Analyzer

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

In	SQL	Server	version	7.0	and	earlier,	the	default	setting	for	SET
QUOTED_IDENTIFIER	in	SQL	Query	Analyzer	was	OFF.	In	SQL	Server	2000,
the	default	setting	in	SQL	Query	Analyzer	is	ON,	which	is	also	the	default
setting	for	ODBC	and	OLE	DB.	Moreover,	several	new	features	in	SQL	Server
2000,	such	as	indexed	views	and	indexes	on	computed	columns,	require	this
option	to	be	ON.

Note		If	you	use	double	quotation	marks	for	strings	when
QUOTED_IDENTIFIER	is	ON,	you	will	receive	a	syntax	error.

bcp	Utility
To	read	character	files	created	by	earlier	versions	of	DB-Library	bcp	in	SQL
Server	2000,	use	the	-V	switch.	For	more	information,	see	bcp	Utility.

Database	Diagrams	from	Earlier	Versions	of	Visual	Database
Design	Tools
For	users	who	have	database	diagrams	created	with	earlier	versions	of	the	visual
database	design	tools:

If	the	first	visual	database	tool	that	was	used	against	a	SQL	Server	2000
database	is	a	version	earlier	than	the	tools	in	SQL	Server	2000,	SQL
Server	Enterprise	Manager	will	not	be	able	to	open	or	create	a	database
diagram	in	that	database.	Any	attempt	to	do	so	results	in	the	error:
ODBC	error:	[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]Could	not	find	stored	procedure	'dbo.dt_getobjwithprop_u'.

There	are	several	visual	database	tools	that	can	put	a	database	into	this
state.	These	include	the	Query	Designer,	the	View	Designer,	the
Database	Designer,	and	the	Table	Designer	in	SQL	Server	7.0	and
earlier,	as	well	as	many	tools	that	enumerate	the	objects	in	a	database.
These	tools	are	also	in	Microsoft	Access	2000	and	Microsoft	Visual
Studio®	6.

Running	the	following	script	on	the	database	allows	SQL	Server
Enterprise	Manager	to	work	with	the	database	diagrams	in	that
database:

alter	table	dbo.dtproperties	add	uvalue	nvarchar(255)	null

JavaScript:hhobj_6.Click()

go
if	exists(select	*	from	dbo.dtproperties)	exec('update	dbo.dtproperties	set	uvalue	=	convert(nvarchar(255),	value)')
go

After	this	script	has	been	run,	both	the	SQL	Server	Enterprise	Manager
in	SQL	Server	2000	and	the	earlier	versions	of	the	visual	database	tools
can	jointly	access	the	database	diagrams	in	the	database.	There	are
additional	issues	to	consider	when	using	the	earlier	versions	of	the
database	tools	against	a	SQL	Server	2000	database.	For	more
information,	see	Hardware	and	Software	Requirements	for	Installing
SQL	Server	2000.

Data	Transformation	Services

These	are	the	backward	compatibility	issues	for	Data	Transformation	Services
(DTS).

Extended	DTS	Objects
Some	objects	in	Data	Transformation	Services	(DTS)	are	extended	in	SQL
Server	2000.	For	more	information	about	using	new	Data	Transformation
Services	objects,	methods,	and	properties	with	SQL	Server	7.0	and	earlier,	see
Extended	DTS	Objects.

Copy	SQL	Server	Objects	Task
There	are	restrictions	on	using	the	Copy	SQL	Server	Objects	task	(Transfer	SQL
Server	Objects	task	in	SQL	Server	version	7.0)	when	copying	database	objects
between	an	instance	of	SQL	Server	2000	and	SQL	Server	7.0.	For	more
information,	see	Copy	SQL	Server	Objects	Task.

Running	DTS	Packages	on	SQL	Server	7.0	or	Earlier
DTS	packages	created	on	an	instance	of	SQL	Server	2000	cannot	be	loaded	or
run	on	an	instance	of	SQL	Server	version	7.0	or	earlier.	If	you	attempt	to	do	this,
you	may	receive	one	of	the	following	messages:

"Invalid	class	string."

JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

"Parameter	is	incorrect."

Both	messages	indicate	that	the	current	server	does	not	contain	all	the
components	necessary	to	load	the	package	and	cannot	support	objects	defined	in
the	DTS	package,	such	as	tasks	and	transformations.

However,	if	you	receive	one	of	these	messages,	you	can	still	open	and	run	the
package	on	an	instance	of	SQL	Server	2000.

Using	DTS	with	Different	Collations,	Different	Code	Pages,	and
Non-Unicode	Data
When	using	the	Copy	SQL	Server	Objects	task	and	Copy	Column
transformation	to	copy	non-Unicode	data	between	an	instance	of	SQL	Server
2000	and	SQL	Server	7.0,	issues	arise	when	using	different	code	pages	and
collations.	For	more	information,	see	Data	Conversion	and	Transformation
Considerations.

Specifying	Trusted	Connections
In	SQL	Server	7.0,	you	did	not	have	to	code	"trusted_connection=yes"	in	your
connection	strings	for	ADO,	OLE	DB,	or	ODBC	to	obtain	a	trusted	connection.
If	you	did	not	specify	a	UID	and	PASSWORD,	SQL	Server	would	default	to
trying	a	trusted	connection.	In	SQL	Server	2000,	you	must	code
"trusted_connection=yes"	to	obtain	trusted	connection.

Extended	Objects	in	SQL-DMO
Some	objects	in	SQL-DMO	are	extended	in	SQL	Server	2000.	For	more
information	about	using	extended	SQL-DMO	objects,	methods,	and	properties
with	SQL	Server	7.0	or	earlier,	see	Programming	Extended	SQL-DMO	Objects.

SQL-SCM
The	SQL-SCM	(Service	Control	Manager)	API	has	been	removed	and	is	no
longer	supported.

JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()

English	Query	and	OLAP	Services	for	SQL	Server	7.0
For	users	of	OLAP	Services	for	SQL	Server	7.0	who	want	to	install	or	uninstall
English	Query,	these	issues	apply:

OLAP	Services	for	SQL	Server	7.0	must	not	be	running	during
installation.	Shut	down	the	OLAP	Services	service	before	installing
English	Query.	(See	the	Services	application	in	Control	Panel.)

If	you	have	installed	OLAP	Services	for	SQL	Server	7.0	and	you
uninstall	English	Query,	you	must	reinstall	OLAP	Services.	Conversely,
if	you	have	installed	English	Query	and	you	uninstall	OLAP	Services,
you	must	reinstall	English	Query	to	maintain	OLAP	connectivity.

These	issues	do	not	occur	with	SQL	Server	2000	Analysis	Services	(formerly
OLAP	Services).

SQL	Server	Setup	Help

SQL	Server	2000	and	SQL	Server	version	6.5
Microsoft®	SQL	Server™	2000	is	compatible	with	SQL	Server	version	6.5	in
many	respects.	Most	product	functionality	of	SQL	Server	version	6.5	remains	in
SQL	Server	2000.	Most	applications	for	SQL	Server	6.5	work	unchanged	after
the	database	server	is	upgraded	to	SQL	Server	2000	by	the	SQL	Server	Upgrade
Wizard.

The	SQL	Server	2000	upgrade	process:

Adds	functionality,	either	new	to	SQL	Server	2000	or	changed	from
earlier	versions,	which	makes	tasks	easier	to	accomplish.

Minimizes	the	time	and	effort	needed	to	upgrade.

In	some	cases,	compatibility	issues	can	arise:

Configuration	Options

Some	server	configuration	options	have	changed.

SQL-DMO,	Tasks,	and	Replication

Task,	replication,	and	device	objects	have	changed.	SQL	Server	2000
uses	jobs	instead	of	tasks,	and	provides	new	system	tables	and	system
stored	procedures.

Replication	and	Triggers

Replication	types	that	allow	data	modifications	at	the	Subscriber	use	triggers	to
track	changes	to	published	tables.	If	there	are	triggers	on	your	application	that
modify	published	tables,	the	sp_configure	server	option	nested	triggers	should
be	enabled.	This	option	affects	tables	used	in	merge	replication	or	tables	used	in
snapshot	replication	or	transactional	replication	with	the	immediate	updating	or
queued	updating	option.	Before	adding	these	types	of	replication	to	an	existing
database	that	uses	triggers,	be	sure	your	application	works	correctly	with	the
nested	triggers	option	enabled.	The	nested	triggers	option	is	enabled	by
default;	however,	if	this	option	was	disabled	previously,	you	will	need	to	enable
it	again.

Segments	and	Devices

SQL	Server	7.0	and	SQL	Server	2000	use	files	and	filegroups	instead	of
segments	and	devices	for	storing	indexes	or	tables.	Unless	your
application	depends	upon	the	physical	layout	of	segments	within
devices,	this	does	not	create	compatibility	problems	for	your
application.

System	Tables

If	your	applications	depend	upon	accessing	system	tables	directly,	the
applications	may	need	to	be	revised.	It	is	recommended	that	you	use
system	stored	procedures	or	information	schema	views.

Here	are	the	SQL	Server	6.x	system	tables	that	are	not	included	with
SQL	Server	2000.

master.dbo.spt_datatype_info sysprocedures
sysbackupdetail sysrestoredetail
sysbackuphistory sysrestorehistory
syshistory syssegments
syskeys systasks
syslocks sysusages

Backup	and	Restore

SQL	Server	2000	uses	BACKUP	and	RESTORE	statements	in	place	of
DUMP	and	LOAD.	DUMP	and	LOAD	are	supported	for	backward
compatibility,	but	with	some	limitations.

System	Stored	Procedures

Some	system	stored	procedures	are	no	longer	supported.

For	more	information,	see	the	discussion	of	specific	backward	compatibility
issues.

Setting	a	Backward	Compatibility	Level

When	running	at	its	default	settings,	Microsoft	SQL	Server	2000	implements
SQL-92	behaviors	for	some	Transact-SQL	statements	whose	behaviors	differed
from	the	standard	in	earlier	versions	of	SQL	Server.	SQL	Server	2000	also
enforces	reserved	keywords	that	were	not	keywords	in	earlier	versions	of	SQL
Server.	If	upgrading	existing	systems	with	existing	applications,	you	can	use	the
database	compatibility	level	settings	to	retain	the	earlier	behaviors	if	your
existing	applications	depend	on	those	behaviors.	This	gives	you	time	to	upgrade
applications	in	an	orderly	fashion.	Most	applications,	however,	are	not	affected
by	the	changes	in	behavior	and	work	at	the	SQL	Server	2000	compatibility	level.

The	compatibility	level	is	specified	for	each	database	using	the	sp_dbcmptlevel
system	stored	procedure.	The	database	compatibility	level	can	be	set	to	60
(version	6.0	compatibility),	65	(version	6.5	compatibility),	70	(version	7.0
compatibility),	and	the	default	80	(SQL	Server	2000	compatibility).	The	effects
of	the	compatibility	level	settings	are	generally	limited	to	the	behaviors	of	a
small	number	of	Transact-SQL	statements	that	also	existed	in	earlier	versions	of
SQL	Server.	Even	when	the	database	compatibility	level	is	set	to	60	or	65,
applications	gain	almost	all	of	the	benefits	of	the	new	performance
enhancements	of	SQL	Server	2000.	Applications	still	benefit	from	features	such
as	the	improved	query	processor.	For	more	information,	see	the	discussion	of
specific	behaviors	controlled	by	the	different	settings	in	sp_dbcmptlevel.

For	installations	of	all	instances	of	SQL	Server	2000,	the	default	level	for	all
databases	is	80.	For	upgrades	from	SQL	Server	7.0	to	SQL	Server	2000,	the
default	level	for	all	databases	is	80.	For	upgrades	from	SQL	Server	6.5	and	SQL
Server	6.0	to	SQL	Server	2000,	the	existing	default	compatibility	level	is
retained.

IMPORTANT		The	compatibility	level	for	the	master	database	is	80	and	cannot	be
changed.	If	you	have	added	any	user-defined	objects	to	master,	you	must	ensure
they	work	correctly	at	the	80	compatibility	level.

The	model	database	is	set	automatically	to	the	SQL	Server	2000	compatibility
level	during	an	upgrade.	All	new	user-defined	databases	are	created	with	the
same	compatibility	level	setting	as	model.	If	you	do	not	want	to	use	any	SQL
Server	2000	behavior	in	new	databases	created	after	an	upgrade,	use
sp_dbcmptlevel	to	change	the	compatibility	level	setting	in	model.

Certain	behaviors	are	not	enabled	at	lower	compatibility	levels.	For	example,	the
keywords	LEFT,	OUTER,	and	JOIN	are	not	keywords	at	compatibility	level	60.

JavaScript:hhobj_1.Click()

This	means	the	database	compatibility	level	must	be	set	to	65	or	higher	before
the	LEFT	OUTER	JOIN	clause	becomes	valid.	Before	any	applications	can	take
advantage	of	features	only	available	at	a	higher	compatibility	level,	all
applications	using	the	database	must	be	upgraded	to	work	correctly	at	the	higher
compatibility	level.

Likewise,	setting	the	compatibility	level	of	a	database	to	65	makes	the	database
version-6.5	compatible,	but	does	not	necessarily	provide	version	6.5	behaviors.
For	example,	when	SET	ANSI_PADDING	is	ON	and	you	attempt	to	insert	the
strings	'abc'	and	'abc	'	into	a	primary	key	column,	SQL	Server	2000	considers	the
strings	to	be	duplicates	and	does	not	violate	the	primary	key	constraint.	In	SQL
Server	6.5,	the	two	strings	are	considered	to	be	unique	and	both	insertions
succeed.	Setting	the	compatibility	level	to	65	does	not	force	SQL	Server	2000	to
treat	the	strings	as	unique	values.

Note		While	running	at	compatibility	level	60	or	65	preserves	legacy	behaviors
on	SQL	Server	2000,	support	for	these	behaviors	may	be	dropped	in	future
versions	of	SQL	Server.	It	is	recommended	that	you	plan	to	upgrade	your
applications	to	work	correctly	with	the	compatibility	level	set	to	80	as	soon	as	is
practicable.

See	Also

Reserved	Keywords

System	Stored	Procedures

System	Tables

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

SQL	Server	Setup	Help

SQL	Server	Backward	Compatibility	Details
Microsoft®	SQL	Server™	2000	adds	many	new	features.	Most	of	the	changes
are	internal	and	will	not	affect	your	database	scripts	or	applications.	All
Transact-SQL	statements	are	compatible.	However,	administration	tools	or
scripts	should	be	updated	to	work	with	SQL	Server	2000.

The	backward	compatibility	topics	in	this	section	contain	a	detailed	list	of
features	and	behaviors	supported	in	SQL	Server	version	6.5	that	have	changed
and	could	possibly	affect	your	administration	tools	or	scripts.	These	changes	are
not	controlled	by	the	backward	compatibility	level.

To	indicate	their	potential	effect	on	administration	tools	or	scripts,	feature
changes	have	been	grouped	into	four	levels.

Level Consists	of
1 Administrative	statements,	stored	procedures,	or	SQL	Server	items

that	have	been	removed	from,	or	are	no	longer	supported	in,	SQL
Server	2000.	Administrative	tools	or	scripts	using	these	items	must
be	fixed	prior	to	using	SQL	Server	2000.	For	more	information
about	these	features,	see	Level	1:	Handling	Discontinued
Functionality.

2 Important	changes	that	produce	different	behavior	from	earlier
versions	of	SQL	Server.	For	example,	items	in	this	category	are
those	that	have	changed	behavior	in	data	type	conversion	or	usage
of	selected	functions,	changed	behavior	of	clauses	in	selected
Transact-SQL	statements	and	stored	procedures,	changed	column
names	in	selected	system	tables,	and	changed	behavior	due	to	the
database	compatibility	setting.	For	more	information	about	these
features,	see	Level	2:	Handling	Major	Changes	to	Behavior.

3 Items	supported	for	backward	compatibility	only.	Any	item
included	in	this	category	is	fully	supported,	but	may	be	removed	or
unsupported	in	a	future	release.	SQL	Server	2000	provides	features
that	accomplish	these	tasks	more	efficiently	and	have	ongoing
support.	For	more	information	about	these	features,	see	Level	3:

Updating	to	Improve	Earlier	Functionality.
4 Minor	changes	that	produce	different	behavior	from	earlier

versions	of	SQL	Server.	For	example,	items	in	this	category	are
either	ignored	or	have	one	or	more	ignored	parameters,	changed
byte	lengths,	added	parameters	or	columns,	or	changed	data	type
columns.	For	more	information	about	these	features,	see	Level	4:
Handling	Minor	Changes	to	Behavior.

Note		You	might	find	it	helpful	to	review	SQL	Server	2000	and	SQL	Server
version	7.0	as	well.

SQL	Server	Setup	Help

SetHostName	property	not	used	in	SQL	Server	2000
When	using	SQL	Server	6.5	integrated	security,	SQL	Server	6.5	did	not	report
the	Windows	NT	account	used	by	a	connection	unless	the	system	administrator
activated	the	SET	HOSTNAME	TO	USERNAME	option	in	SQL	Enterprise
Manager.

The	setting	could	also	be	activated	through	the	SQL-DMO	SetHostName
property.	With	this	setting	in	effect,	these	functions	and	columns	returned	the
user's	Windows	NT	account	name	instead	of	the	network	name	of	the	client
computer:

Transact-SQL	HOST_NAME()	function

hostname	column	in	the	result	set	returned	by	sp_who

hostname	column	in	sysprocesses

In	SQL	Server	2000,	the	loginame	column	in	the	sp_who	result	set	contains	the
Windows	NT	account	name	for	connections	made	using	Windows	NT
Authentication.	Applications	needing	the	Windows	NT	account	associated	with	a
connection	using	Windows	NT	Authentication	should	reference	this	column.

SQL	Server	2000	Enterprise	Manager	no	longer	presents	the	SET	HOSTNAME
TO	USERNAME	option.	SQL	Server	2000	ignores	the	setting	of	the	SQL-DMO
SetHostName	property.

SQL	Server	Setup	Help

Level	1:	Handling	Discontinued	Functionality
Backward	Compatibility	Level	1	consists	of	administrative	statements,	stored
procedures,	or	Microsoft®	SQL	Server™	items	that	were	supported	in	SQL
Server	6.5	but	have	been	removed	from,	or	are	no	longer	supported	in,	SQL
Server	2000.	Administrative	tools	or	scripts	using	these	items	must	be	fixed
prior	to	using	SQL	Server	2000.

This	subheading Relates	to
Backup	and	Restore BACKUP

RESTORE
DUMP	
LOAD
sysbackuphistory
sysbackupdetail
sysrestorehistory
sysrestoredetail
backupfile
backupmediafamily
backupmediaset
backupset
restorefile
restorefilegroup
restorehistory

Configuration	Options sp_configure	(backup	buffer	size,	backup
threads,	database	size,	free	buffers,	hash
buckets,	LE	threshold	maximum,	LE
threshold	minimum,	LE	threshold
percent,	logwrite	sleep,	max	lazywrite	IO,
memory,	open	databases,	procedure
cache,	RA	cache	hit	limit,	RA	cache	miss
limit,	RA	delay,	RA	pre-fetches,	RA	slots
per	thread,	RA	worker	threads,	recovery
flags,	remote	conn	timeout,	SMP

concurrency,	sort	pages,	min	memory	per
query,	index	create	memory,	tempdb	in
ram,	and	user	connections	options)
trace	flag	204

Custom	Sort	Orders Character	sets,	sort	orders,	and	Unicode
collations

Databases ALTER	DATABASE
Database	Options sp_dboption	(subscribe	and	no	chkpt.	on

recovery	options)
sp_addsubscription
RESTORE

Data	Access	Objects	(DAO) odbccmpt	utility
DBCC DBCC	DBREINDEX

DBCC	MEMUSAGE
DBCC	SHRINKDB

DB-Library Two-Phase	Commit
DB-Library	for	Visual	Basic

DECnet	Network	Library DECnet	Sockets	Net-Library
Disk	Commands DISK	REINIT

DISK	REFIT
ALTER	DATABASE

Disk	Mirroring DISK	MIRROR
DISK	REMIRROR
DISK	UNMIRROR

Indexes CREATE	INDEX
Open	Data	Services Windows	NT	Component	Services

SRV_CONFIG
SRV_PROC
SRV_SERVER
srv.h
Opends60.lib

Program	Group	Tools	and
Utilities

Client	Network	Utility
ISQL_w
MS	Query
SQL	Client	Configuration

SQL	Enterprise	Manager
SQL	Help
SQL	Security	Manager
SQL	Trace
SQL	Performance	Monitor
SQL	Service	Manager
SQL	Setup
SQL	Query	Analyzer
SQL	Server	Enterprise	Manager
SQL	Server	Profiler
SQL	Server	Service	Manager

Replication Restricted	publications
DBOption	object	
ReplicationDatabase	object
EnablePublishing	property
repl_publisher	login

Security DENY
Delimited	Identifiers

Segments CREATE	INDEX
CREATE	TABLE
sp_addsegment
sp_dropsegment
sp_extendsegment
sp_helpsegment
CREATE	DATABASE
ALTER	DATABASE

Services SQL	Executive
SET
DISABLE_DEF_CNST_CHK

SET	DISABLE_DEF_CNST_CHK

SET	SHOWPLAN SET	SHOWPLAN
SET	SHOWPLAN_ALL
SET	SHOWPLAN_TEXT

SQL	Alerter SQLALRTR.exe
SQL-DMO sqlole.dll
System	Stored	Procedures
(General	Extended

xp_snmp_getstate
xp_snmp_raisetrap

Procedures)
System	Stored	Procedures
(Replication)

sp_replica
sp_replsync
sp_helppublicationsync
sp_subscribe
sp_unsubscribe
@@ERROR
sp_changepublication
sp_addpublisher
sp_adddistpublisher
sp_droppublisher
sp_dropdistpublisher
sp_distcounters
sp_helpreplicationdb
sp_helpreplicationdboption
sp_replstatus

System	Stored	Procedures
(System)

ALTER	TABLE
CREATE	TABLE
sp_help
sp_helpconstraint
sp_commonkey
sp_dropkey
sp_foreignkey
sp_helpjoins
sp_helpkey
sp_primarykey
sp_placeobject
sp_dbinstall
sp_attach_db
sp_makestartup
sp_unmakestartup
sp_procoption
sp_helplogins
sp_helprotect
sp_tableoption
sp_serveroption	(fallback	option)
sp_setlangalias

sp_droplanguage
sp_fallback_activate_svr_db
sp_fallback_deactivate_svr_db
sp_fallback_enroll_svr_db
sp_fallback_help
sp_fallback_permanent_svr
sp_fallback_upd_dev_drive
sp_fallback_withdraw_svr_db
sp_devoption
sp_diskdefault
sp_helplog
sp_helpstartup
sp_help_revdatabase
sp_sqlexec
sp_addlanguage

System	Stored	Procedures
(Tasks)

sp_addalert
sp_addnotification
sp_addoperator
sp_dropalert
sp_dropnotification
sp_dropoperator
sp_helpalert
sp_helphistory
sp_helpnotification
sp_helpoperator
sp_purgehistory
sp_runtask
sp_stoptask
sp_updatealert
sp_updatenotification
sp_updateoperator
sp_add_alert
sp_add_notification
sp_add_operator
sp_delete_alert	
sp_delete_notification

sp_delete_operator
sp_help_alert
sp_help_jobhistory
sp_help_notification
sp_help_operator
sp_purge_jobhistory
sp_start_job
sp_stop_job
sp_update_alert
sp_update_notification
sp_update_operator

System	Tables Information	Schema	Views
System	Stored	Procedures	(Catalog
Procedures)
sysdevices	(mirrorname	and	stripeset
columns)
syshistory
sysjobhistory
sysindexes	(distribution,	segment,
rowpage,	keys1,	and	keys2	columns)
syskeys
syslocks
syslockinfo
syslogs
sysprocesses	(gid	and	suid	columns)
sysprocedures
syscomments
syssegments
CREATE	DATABASE
ALTER	DATABASE
CREATE	TABLE
ALTER	TABLE
CREATE	INDEX
systasks
sysjobs
sysjobsteps
sysjobservers

sysusages
master.dbo.spt_datatype_info

Transactions Data	type	conversions
Utilities probe	login

SQL	Server	Setup	Help

Level	2:	Handling	Major	Changes	to	Behavior
Backward	Compatibility	Level	2	consists	of	important	changes	in	Microsoft®
SQL	Server™	2000	that	produce	different	behavior	from	earlier	versions	of	SQL
Server.	For	example,	items	in	this	category	are	those	that	have	changed	behavior
in	data	type	conversion	or	usage	of	selected	functions,	changed	behavior	of
clauses	in	selected	Transact-SQL	statements	and	stored	procedures,	changed
column	names	in	selected	system	tables,	and	changed	behavior	due	to	the
database	compatibility	setting.	This	topic	covers	backward	compatibility	details
for	these	items.

This	subheading Relates	to
Backup	and	Restore BACKUP

CREATE	DATABASE
ALTER	DATABASE
RESTORE
sp_dboption

Bulk	Copy bcp	Utility
Configuration	Options Setting	Configuration	Options	

sp_configure	(open	objects	and	user
connections	options)

Database	Pages	and	Extents Pages	and	Extents
Data	Types CAST	and	CONVERT

Data	Types
DB-Library dbcursorfetchex
Empty	Strings sp_dbcmptlevel	

CHARINDEX
DATALENGTH
LEFT
LTRIM
PATINDEX
REPLICATE
RIGHT
RTRIM

SPACE
SUBSTRING
UPDATETEXT

Indexes CREATE	INDEX
INSERT sp_dbcmptlevel	

INSERT
Keyset	Cursors Keyset	cursors
LTRIM	and	RTRIM
Trimming	Functions

LTRIM
RTRIM

ODBC SQLGetDiagRec
SQLMoreResults

RIGHT Using	Identifiers
Reserved	Keywords

Security GRANT
REVOKE
DENY
sp_addlinkedsrvlogin

SELECT SELECT
SET	SHOWPLAN SET	SHOWPLAN_ALL

SET	SHOWPLAN_TEXT
System	Tables Information	Schema	Views

System	Stored	Procedures	(Catalog
Procedures)
sysdatabases	(logptr	and	dumptrdate
columns)
sysmessages	(langid	column)
syslogins	(language	column)
computed	columns

Table	Hints DELETE
FROM
INSERT
SELECT
UPDATE

Transactions SET	TRANSACTION	ISOLATION	LEVEL
SET	CURSOR_CLOSE_ON_COMMIT

ROLLBACK
DECLARE	CURSOR

Triggers	and	System	Stored
Procedures

sp_dbcmptlevel
sp_create_removable
CREATE	TRIGGER
SET	QUOTED_IDENTIFIER
SET	ANSI_NULLS
SET	ANSI_DEFAULTS

UPDATE @@ERROR
UPDATE
INSERT

UPDATETEXT UPDATETEXT
WRITETEXT

Views DELETE	
INSERT
UPDATE

SQL	Server	Setup	Help

Level	3:	Updating	to	Improve	Earlier	Functionality
Backward	Compatibility	Level	3	consists	of	items	that	were	supported	in	SQL
Server	version	6.5	but	are	supported	in	SQL	Server	2000	(and	SQL	Server	7.0)
for	backward	compatibility	only.	Any	item	included	in	this	category	is	fully
supported,	but	may	be	removed	or	unsupported	in	a	future	release.	It	is
recommended	that,	as	time	allows,	the	backward	compatible	item	be	replaced
with	the	recommended	item.	SQL	Server	2000	provides	features	that	accomplish
these	tasks	more	efficiently	and	have	ongoing	support.

This	topic	covers	backward	compatibility	details	for	these	items.

This	subheading Relates	to
Backup	and	Restore BACKUP	

RESTORE	
CREATE	DATABASE

Database	Options sp_dboption	(publish	option)
sp_replicationdboption

DBCC DBCC	NEWALLOC
DBCC	CHECKALLOC
DBCC	ROWLOCK
Architecture	Enhancements
DBCC	TEXTALL
DBCC	CHECKDB
DBCC	TEXTALLOC
DBCC	CHECKTABLE
DBCC	DBREPAIR
DROP	DATABASE

Devices Overview	of	SQL	Server	Architecture
DISK	INIT
CREATE	DATABASE
ALTER	DATABASE
DISK	REINIT
sp_logdevice
sp_dropdevice

Open	Data	Services srv_config
srv_config_alloc
srv_getconfig
srv_init
srv_run
srv_tdsversion
srv_getuserdata
srv_setuserdata
srv_errhandle
srv_iodead
srv_log
srv_sendstatus
srv_sfield
srv_event
srv_eventdata
srv_getserver
srv_got_attention
srv_handle
srv_pre_handle
srv_post_handle
srv_setevent
srv_terminatethread
srv_attention
srv_connect
srv_disconnect
srv_language
srv_rpc
srv_exit
srv_start
srv_sleep
srv_restart
srv_stop
srv_langcpy
srv_langlen
srv_langptr
srv_paramdata
srv_paramlen

srv_parammaxlen
srv_paramname
srv_paramnnumber
srv_paramset
srv_paramstatus
srv_paramtype
srv_returnval
srv_rpcdb
srv_rpcnumber
srv_rpcoptions
srv_clearstatistics
srv_sendstatistics
srv_alloc
srv_bmove
srv_bzero
srv_free
srv.h
srv_describe
srv_setcollen
srv_setcoldata
srv_paramsetoutput
srv_paraminfo

Query	Performance SUSER_ID
SUSER_SID
SUSER_NAME
SUSER_SNAME
syslogins
sysdatabases
sysremotelogins
sysusers
sysalternates

Security GRANT
Authentication
SETUSER

SELECT FASTFIRSTROW
SELECT
INDEX	=	(index	hint)

SET	SHOWPLAN SET	SHOWPLAN_TEXT
SET	SHOWPLAN_ALL
SQLGetDiagRec

System	Stored	Procedures
(Extended)

xp_grantlogin
xp_revokelogin
sp_grantlogin
sp_revokelogin

System	Stored	Procedures	(System) sp_add_job
sp_add_jobschedule
sp_add_jobstep	
sp_addtask
sp_delete_job
sp_delete_jobschedule
sp_delete_jobstep
sp_droptask
sp_help_jobhistory
sp_help_jobschedule
sp_help_jobstep
sp_helptask
sp_purge_jobhistory
sp_reassigntask
sp_start_job
sp_stop_job
sp_update_job
sp_update_jobschedule
sp_update_jobstep
sp_updatetask

SQL	Server	Setup	Help

Level	4:	Handling	Minor	Changes	to	Behavior
Backward	Compatibility	Level	4	consists	of	minor	changes	in	Microsoft®	SQL
Server™	2000	that	produce	different	behavior	from	earlier	versions	of	SQL
Server.	For	example,	items	in	this	level	are	either	ignored	or	have	one	or	more
ignored	parameters,	changes	to	byte	lengths,	added	parameters	or	columns,	or
changed	data	type	columns.

This	topic	covers	backward	compatibility	details	for	these	items.

This	subheading Relates	to	these	items
Aliases Roles

Managing	Permissions
Backup	and	Restore RESTORE	HEADERONLY

LOAD	HEADERONLY
Configuration sp_configure	(media	retention	option)

Setting	Configuration	Options
CREATE	PROCEDURE CREATE	TABLE

SELECT	INTO
Data	Types decimal	and	numeric

Using	Mathematical	Functions
+	(Add)
-	(Subtract)
*	(Multiply)
/	(Divide)
ATN2
AVG
CAST	and	CONVERT
EXP
POWER
RADIANS
ROUND
SUM

DATEPART	and	SET SET	DATEFIRST

DATEFIRST DATEPART
DBCC DBCC
DBCS	String	Comparisons Unicode	space	characters
DELETE	and	SELECT FROM
Devices ALTER	DATABASE
Functions @@DBTS
Global	Variables Functions
ODBC SQL_COPT_SS_PERF_QUERY_INTERVAL

SQLMoreResults
SQL_NO_DATA

Rebuilding	the	master
Database

Rebuild	Master	Utility

Rebuilding	the	Registry
(Level	4)

setup/t	RegistryRebuild	=	On

Replication Replication	Between	Different	Versions	of
SQL	Server
Subscribing	to	One	or	More	Articles	of	a
Publication

Security SYSTEM_USER
SELECT SELECT

FROM
Triggers	and	System	Stored
Procedures	(System)

CREATE	TRIGGER
sp_dboption	(recursive	triggers	option)	
sp_tableoption
xp_readmail
xp_sendamil

UPDATE UPDATE
Utilities SQL	Query	Analyzer

isql	utility

SQL	Server	Setup	Help

How	to	Install	SQL	Server	2000
This	set	of	How	To	topics	includes	common	procedures	used	in	installing
Microsoft®	SQL	Server™	2000.

SQL	Server	Setup	Help

How	to	install	SQL	Server	2000	(Setup)
To	install	SQL	Server	2000

1.	 Insert	the	Microsoft®	SQL	Server™	2000	compact	disc	in	your	CD-
ROM	drive.	If	the	compact	disc	does	not	autorun,	double-click
Autorun.exe	in	the	root	directory	of	the	compact	disc.

2.	 Select	SQL	Server	2000	Components.

If	you	are	running	Microsoft	Windows®	95,	click	SQL	Server	2000
Prerequisites,	and	then	click	Install	Common	Controls	Library
Update.

3.	 Select	Install	Database	Server	and	setup	prepares	the	SQL	Server
Installation	Wizard.	At	the	Welcome	screen,	click	Next.

4.	 In	the	Computer	Name	dialog	box,	Local	Computer	is	the	default
option	and	the	local	computer	name	appears	in	the	edit	box.	Click
Next.

For	a	remote	installation,	click	Remote	Computer.	You	can	then	type
a	computer	name	or	click	Browse	to	locate	a	remote	computer.

If	a	cluster	is	detected,	Virtual	server	is	the	default	option.

5.	 In	the	Installation	Selection	dialog	box,	click	Create	a	new	instance
of	SQL	Server,	or	install	Client	Tools,	and	then	click	Next.

6.	 Follow	directions	on	the	User	Information,	Software	License
Agreement	and	related	screens.

7.	 In	the	Installation	Definition	dialog	box,	click	Server	and	Client
Tools,	and	then	click	Next.

8.	 In	the	Instance	Name	dialog	box,	if	the	Default	check	box	is

available,	you	can	install	either	the	default	or	a	named	instance.	If	the
Default	check	box	is	not	available,	a	default	instance	has	already	been
installed,	and	you	can	install	only	a	named	instance.

To	install	the	default	instance,	select	the	Default	check	box,
and	click	Next.

To	install	a	named	instance,	clear	the	Default	check	box,	and
type	a	new	named	instance	in	the	Instance	Name	edit	box.
Click	Next.

9.	 In	the	Setup	Type	dialog	box,	click	Typical	or	Minimum,	and	then
click	Next.

If	you	want	to	select	components	and	subcomponents,	change
character	set,	network	libraries	or	other	settings,	click	Custom,	and
then	click	Next.

10.	 In	the	Service	Accounts	dialog	box,	accept	the	default	settings,	enter
your	domain	password,	and	then	click	Next.

For	information	about	services	account	options,	see	Services
Accounts.

11.	 In	the	Authentication	Mode	dialog	box,	accept	the	default	setting,
and	click	Next.

To	use	Mixed	Mode,	see	Authentication	Modes.

12.	 When	you	are	finished	specifying	options,	click	Next	in	the	Start
Copying	Files	dialog	box.

13.	 In	the	Choose	Licensing	Mode	dialog	box,	make	selections	according
to	your	license	agreement,	and	click	Continue	to	begin	the
installation.

Click	Help	for	information	about	licensing	or	see	your	system
administrator.

14.	 In	the	Setup	Complete	dialog	box,	click	Yes,	I	want	to	restart	my

computer	now,	and	then	click	Finish.

See	Also

How	to	add	components	to	an	instance	of	SQL	Server	2000	(Setup)

How	to	create	a	case-sensitive	instance	of	SQL	Server	(Setup)

How	to	install	a	named	instance	of	SQL	Server	(Setup)

SQL	Server	Setup	Help

How	to	install	client	tools	only	(Setup)
You	can	install	client	tools	only	using	any	SQL	Server	compact	disc,	on	any
supported	operating	system.	For	more	information,	see	How	to	install	tools	only
from	any	compact	disc.

To	install	client	tools	only	for	SQL	Server	2000

1.	 Insert	the	Microsoft®	SQL	Server™	2000	compact	disc	in	your	CD-
ROM	drive.	If	the	compact	disc	does	not	autorun,	double-click
Autorun.exe	in	the	root	directory	of	the	compact	disc.

2.	 Select	SQL	Server	2000	Components,	select	Install	Database
Server,	and	then	click	Next	at	the	Welcome	screen	of	the	SQL	Server
Installation	Wizard.

3.	 In	Computer	Name	dialog	box,	Local	Computer	is	the	default
option,	and	the	local	computer	name	appears	in	the	edit	box.	Click
Next.

4.	 In	the	Installation	Selection	dialog	box,	click	Create	a	new	instance
of	SQL	Server,	or	install	Client	Tools,	and	then	click	Next.

5.	 Follow	the	directions	on	the	User	Information,	Software	License
Agreement,	and	related	screens.

6.	 In	the	Installation	Definition	dialog	box,	click	Client	tools	only,	and
then	click	Next.

7.	 In	the	Select	Components	dialog	box,	accept	the	defaults	or	select	the
components	you	want,	and	then	click	Next.

You	can	select	an	item	in	the	Components	list,	such	as	Management
Tools,	and	then	select	items	from	the	related	Sub-Components	list,

such	as	Enterprise	Manager.	Click	to	select	items	you	want	to	install;
clear	the	check	box	of	the	items	you	do	not	want	to	install.

For	information	about	each	component,	select	the	item,	and	view	the
Description	box.

8.	 In	the	Start	Copying	Files	dialog	box,	click	Next	to	complete	the
installation	of	the	client	tools.

SQL	Server	Setup	Help

How	to	install	tools	only	from	any	compact	disc
(Setup)
Note		In	this	procedure,	you	can	use	the	installation	disc	for	any	edition	of	SQL
Server	2000	on	a	computer	with	any	of	the	operating	systems	supported	by	SQL
Server	2000.

To	install	tools	only	from	any	compact	disc

1.	 Insert	a	Microsoft®	SQL	Server™	2000	compact	disc	in	your	CD-
ROM	drive.	This	can	be	the	installation	disc	for	any	edition	of	SQL
Server	2000,	without	regard	to	operating	system	support.	If	the
compact	disc	does	not	autorun,	double-click	Autorun.exe	in	the	root
directory	of	the	compact	disc.

2.	 Select	SQL	Server	2000	Components,	select	Install	Database
Server,	and	then	click	Next	at	the	Welcome	screen	of	the	SQL	Server
Installation	Wizard.

3.	 In	Computer	Name	dialog	box,	Local	Computer	is	the	default
option,	and	the	local	computer	name	appears	in	the	edit	box.	Click
Next.

4.	 Follow	the	directions	on	the	User	Information,	Software	License
Agreement,	and	related	screens.

5.	 In	the	Select	Components	dialog	box,	accept	the	defaults	or	select	the
components	you	want,	and	then	click	Next.

You	can	select	an	item	in	the	Components	list,	such	as	Management
Tools,	and	then	select	items	from	the	related	Sub-Components	list,
such	as	Enterprise	Manager.	Click	to	select	items	you	want	to	install;
clear	the	check	box	of	the	items	you	do	not	want	to	install.

For	information	about	each	component,	select	the	item,	and	view	the

Description	box.

6.	 In	the	Start	Copying	Files	dialog	box,	click	Next	to	complete	the
installation	of	the	client	tools.

SQL	Server	Setup	Help

How	to	install	connectivity	only	(Setup)
The	connectivity-only	option	installs	Network	Libraries	and	MDAC
(Microsoft®	Data	Access	Components).

To	install	connectivity	only	for	SQL	Server	2000

1.	 Insert	the	Microsoft	SQL	Server™	2000	compact	disc	in	your	CD-
ROM	drive.	If	the	compact	disc	does	not	autorun,	double-click
Autorun.exe	in	the	root	directory	of	the	compact	disc.

2.	 Select	SQL	Server	2000	Components.

If	you	are	running	Microsoft	Windows®	95,	click	Install	Common
Controls	Library	Update.

3.	 Select	Install	Database	Server	and	setup	prepares	the	SQL	Server
Installation	Wizard.	At	the	Welcome	screen,	click	Next.

4.	 In	the	Computer	Name	dialog	box,	Local	Computer	is	the	default
option,	and	the	local	computer	name	appears	in	the	edit	box.	Click
Next.

5.	 In	the	Installation	Selection	dialog	box,	click	Create	a	new	instance
of	SQL	Server,	or	install	Client	Tools,	and	then	click	Next.

6.	 Follow	the	directions	on	the	User	Information,	Software	License
Agreement	and	related	screens.

7.	 In	the	Installation	Definition	dialog	box,	click	Connectivity	Only,
and	then	click	Next.

8.	 In	the	Start	Copying	Files	dialog	box,	click	Next	to	complete	the
installation.

SQL	Server	Setup	Help

How	to	install	a	named	instance	of	SQL	Server	2000
(Setup)
You	can	install	a	named	instance	of	Microsoft®	SQL	Server™	2000	the	first
time	you	run	SQL	Server	Setup	or	later	after	the	default	instance	is	installed.	For
each	additional	named	instance	you	want	to	install,	follow	this	procedure.

Note		If	you	have	a	SQL	Server	7.0	installation	on	your	computer,	the
installation	remains	intact	during	the	installation	of	a	named	instance	of	SQL
Server	2000.	A	default	instance	of	SQL	Server	2000	will	overwrite	a	SQL	Server
7.0	installation	(as	the	previous	default	installation),	but	a	named	instance	does
not	overwrite	SQL	Server	7.0.

To	install	a	named	instance	of	SQL	Server	2000

1.	 Insert	the	SQL	Server	2000	compact	disc	in	your	CD-ROM	drive.	If
the	compact	disc	does	not	autorun,	double-click	Autorun.exe	in	the
root	directory	of	the	compact	disc.

2.	 Select	SQL	Server	2000	Components.

If	you	are	running	Microsoft	Windows®	95,	Install	Common
Controls	Library	Update.

3.	 Select	Install	Database	Server	and	setup	prepares	the	SQL	Server
Installation	Wizard.	At	the	Welcome	screen,	click	Next.	In	the
Computer	Name	dialog	box,	Local	Computer	is	the	default	option,
and	the	local	computer	name	appears	in	the	edit	box.	Click	Next.

4.	 In	the	Installation	Selection	dialog	box,	click	Create	a	new	instance
of	SQL	Server,	or	install	Client	Tools,	and	then	click	Next.

If	this	is	the	first	SQL	Server	2000	installation	on	your
computer,	follow	the	directions	on	the	User	Information,
Software	License	Agreement,	and	related	screens.

If	an	installation	of	SQL	Server	2000	exists	on	your	computer,
these	screens	are	omitted.

5.	 In	the	Installation	Definition	dialog	box,	click	Server	and	Client
Tools,	and	then	click	Next.

6.	 In	the	Instance	Name	dialog	box,	clear	the	Default	check	box,	and
type	a	name	for	the	new	named	instance,	and	then	click	Next.

Note		If	you	have	an	existing	default	installation	(either	SQL	Server
7.0	or	2000),	the	Default	check	box	is	not	available.

If	you	have	typed	an	instance	name,	and	later	return	to	the
Instance	Name	dialog	box	to	change	the	name	before
completing	setup,	you	can	do	so.	However,	a	workaround	is
necessary	to	edit	the	instance	name	box,	which	will	be
unavailable	after	clicking	Back	to	get	to	this	dialog	box.	Select
the	Default	checkbox,	then	immediately	clear	it,	and	you	will
be	able	to	edit	the	instance	name.

For	more	information	about	instance	names,	click	Help.

7.	 In	the	Setup	Type	dialog	box,	select	Typical,	Minimum,	or	Custom,
and	then	click	Next.

If	you	want	to	select	subcomponents	or	change	character	set,	network
libraries,	or	other	settings,	click	Custom.

8.	 In	the	Service	Accounts	dialog	box,	accept	the	default	settings,	enter
your	domain	password,	and	then	click	Next.

For	information	about	services	account	options,	see	Services
Accounts.

9.	 In	the	Authentication	Mode	dialog	box,	accept	the	default	setting,
and	click	Next.

To	use	Mixed	Mode	authentication,	see	Authentication	Modes.

10.	 When	you	are	finished	specifying	options,	click	Next	in	the	Start
Copying	Files	dialog	box.

11.	 In	the	Choose	Licensing	Mode	dialog	box,	make	selections	according
to	your	license	agreement,	and	click	Continue	to	begin	the
installation.

Click	Help	for	information	about	licensing,	or	see	your	system
administrator.

12.	 In	the	Setup	Complete	dialog	box,	click	Yes,	I	want	to	restart	my
computer	now,	and	then	click	Finish.

See	Also

Working	with	Named	and	Multiple	Instances	of	SQL	Server	2000

Running	SQL	Server	7.0	Along	with	a	Named	Instance	of	SQL	Server	2000

SQL	Server	Setup	Help

How	to	upgrade	a	SQL	Server	7.0	installation	to	SQL
Server	2000	(Setup)
CAUTION		This	version	upgrade	procedure	overwrites	your	Microsoft®	SQL
Server™	7.0	installation;	the	installation	no	longer	exists	on	your	computer.	In
addition,	previous	registry	settings	are	removed.	For	example,	after	upgrading
you	will	need	to	re-register	your	servers.

To	restore	the	SQL	Server	7.0	installation,	you	must	first	uninstall	SQL
Server	2000,	perform	a	complete	reinstall	of	the	SQL	Server	7.0	files,	and
then	restore	your	backed-up	SQL	Server	7.0	databases.

To	upgrade	SQL	Server	7.0	to	SQL	Server	2000

1.	 Insert	the	Microsoft	SQL	Server	2000	compact	disc	for	the	edition	to
which	you	want	to	upgrade	into	your	CD-ROM	drive.	If	the	compact
disc	does	not	autorun,	double-click	Autorun.exe	in	the	root	directory
of	the	compact	disc.

Note		If	you	have	purchased	an	edition	of	SQL	Server	with	more
features	than	your	current	SQL	Server	7.0	installation,	the	upgrade
process	will	perform	both	the	version	and	edition	upgrade	at	the	same
time.

2.	 Select	SQL	Server	2000	Components,	select	Install	Database
Server,	and	then	setup	prepares	the	SQL	Server	Installation	Wizard.
At	the	Welcome	screen,	click	Next.

3.	 In	Computer	Name	dialog	box,	Local	Computer	is	the	default	option
and	the	local	computer	name	appears	in	the	edit	box.	Click	Next.

4.	 In	the	Installation	Selection	dialog	box,	click	Upgrade,	remove,	or
add	components	to	an	existing	instance	of	SQL	Server,	and	then
click	Next.

5.	 In	the	Instance	Name	dialog	box,	Default	will	be	selected.	Click

Next.

Note		When	upgrading,	SQL	Server	7.0	automatically	becomes	the
default	instance	of	SQL	Server	2000.

6.	 In	the	Existing	Installation	dialog	box,	click	Upgrade	your	existing
installation,	and	then	click	Next.

7.	 In	the	Upgrade	dialog	box,	you	are	prompted	as	to	whether	you	want
to	proceed	with	the	requested	upgrade.	Click	Yes,	upgrade	my	<text
specific	to	the	upgrade>	to	start	the	upgrade	process,	and	then	click
Next.	The	upgrade	runs	until	finished.

8.	 In	the	Connect	to	Server	dialog	box,	select	an	authentication	mode,
and	then	click	Next.

If	you	are	not	sure	which	mode	to	use,	accept	the	default:	The
Windows	account	information	I	use	to	log	on	to	my	computer	with
(Windows).

9.	 In	Start	Copying	Files	dialog	box,	click	Next.	

10.	 In	the	Setup	Complete	dialog	box,	click	Yes,	I	want	to	restart	my
computer	now,	and	then	click	Finish.

See	Also

Authentication	Modes

How	to	perform	an	edition	upgrade	within	SQL	Server	2000	(Setup)

SQL	Server	Setup	Help

How	to	upgrade	databases	online	using	the	Copy
Database	Wizard	(Enterprise	Manager)
To	upgrade	a	SQL	Server	7.0	database	to	a	SQL	Server	2000	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Right-click	the	server,	point	to	All	Tasks,	and	then	click	Copy
Database	Wizard.

3.	 Complete	the	steps	in	the	wizard.

IMPORTANT		After	upgrading	databases	from	SQL	Server	7.0,	run	sp_updatestats
(update	statistics)	against	the	database	on	the	destination	server	to	ensure
optimal	performance	of	the	copied	database.

See	Also

Copy	Database	Wizard	Help

Database	Upgrade	from	SQL	Server	7.0	(Copy	Database	Wizard)

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

How	to	perform	an	edition	upgrade	within	SQL
Server	2000	(Setup)
To	upgrade	a	SQL	Server	2000	installation	to	a	different	edition	of	SQL
Server	2000

1.	 Insert	the	Microsoft®	SQL	Server	2000™	compact	disc	for	the	edition
you	want	to	install	into	your	CD-ROM	drive.	If	the	compact	disc	does
not	autorun,	double-click	Autorun.exe	in	the	root	directory	of	the
compact	disc.

2.	 Select	SQL	Server	2000	Components,	select	Install	Database
Server,	and	then	setup	prepares	the	SQL	Server	Installation	Wizard.
At	the	Welcome	screen,	click	Next.

3.	 In	Computer	Name	dialog	box,	select	Local	Computer	or	Remote
computer.

4.	 In	the	Installation	Selection	dialog	box,	click	Upgrade,	Remove,	or
Add	Components	to	an	existing	instance	of	SQL	Server,	and	then
click	Next.

5.	 In	the	Instance	Name	dialog	box,	click	Next.

6.	 In	the	Existing	Installation	dialog	box,	click	Upgrade	your	existing
installation,	and	then	click	Next.

7.	 If	Setup	detects	that	you	are	doing	an	edition	upgrade,	the	Upgrade
dialog	box	appears.	Click	Yes,	Upgrade	my	<text	specific	to	the
upgrade>	to	upgrade	the	feature	set	of	your	current	installation,	and
click	Next.

8.	 After	the	upgrade	is	completed,	you	are	prompted	as	to	whether	you
want	to	install	additional	components.	If	you	click	Yes,	the	Select
Components	dialog	box	appears.	Accept	the	defaults	or	select	the
additional	components	you	want	to	install,	and	then	click	Next.

You	can	select	an	item	in	the	Components	list,	and	then	select	items
from	the	related	Sub-Components	list.	Click	to	select	items	you	want
to	install;	clear	the	check	box	of	the	items	you	do	not	want	to	install.

9.	 When	you	are	finished	specifying	options,	in	the	Start	Copying	Files
dialog	box,	click	Next.

10.	 In	the	Setup	Complete	dialog	box,	click	Yes,	I	want	to	restart	my
computer	now,	and	then	click	Finish	to	complete	the	edition	upgrade.

See	Also

Upgrading	an	Existing	Installation	of	SQL	Server

SQL	Server	Setup	Help

How	to	uninstall	an	existing	installation	of	SQL
Server	(Setup)
To	uninstall	an	existing	installation	of	SQL	Server	7.0	or	SQL	Server	2000
(default	or	named	instance)

1.	 Insert	the	Microsoft®	SQL	Server™	2000	compact	disc	in	your	CD-
ROM	drive.	If	the	compact	disc	does	not	autorun,	double-click
Autorun.exe	in	the	root	directory	of	the	compact	disc.

2.	 Select	SQL	Server	2000	Components,	select	Install	Database
Server,	and	then	setup	prepares	the	SQL	Server	Installation	Wizard.
At	the	Welcome	screen,	click	Next.

3.	 In	Computer	Name	dialog	box,	select	Local	Computer	or	Remote
computer.

4.	 In	the	Installation	Selection	dialog	box,	click	Upgrade,	Remove,	or
Add	Components	to	an	existing	instance	of	SQL	Server,	and	then
click	Next.

5.	 In	the	Instance	Name	dialog	box,	Default	is	selected	if	you	have	the
Default	instance	installed.	If	you	want	to	uninstall	a	named	instance,
select	it	from	the	Instance	Name	list	box,	and	then	click	Next.

6.	 In	the	Existing	Installation	dialog	box,	click	Uninstall	your	existing
installation,	and	then	click	Next.

7.	 Setup	removes	the	selected	installation.	In	the	Uninstalling	dialog
box,	click	Next,	and	then	in	the	Setup	Complete	dialog	box,	click
Finish.

SQL	Server	Setup	Help

How	to	test	an	installation	of	SQL	Server	2000
(Command	Prompt)
To	test	the	installation

1.	 Start	Microsoft®	SQL	Server™	2000	by	entering	from	a	command
prompt:

For	the	default	instance,	use:

net	start	mssqlserver

For	a	named	instance,	include	the	instance	name,	for	example:

net	start	MSSQL$Instance1

2.	 Connect	to	SQL	Server	by	entering:

For	the	default	instance,	use:

osql	/Usa	/P	<administrator	password>

For	a	named	instance,	include	both	the	server	and	instance	name,	for
example:

osql	/Usa	/P	/S	Machine1\Instance1

When	osql	connects,	this	osql	prompt	appears:

1>

If	osql	cannot	connect,	an	ODBC	error	is	returned.

3.	 Enter	a	simple	query,	such	as:
SELECT	@@SERVERNAME
GO

The	osql	utility	returns	the	server	name:

1>	SELECT	@@SERVERNAME
2>	GO

WOLFHOUND

(1	row	affected)
1>

4.	 Verify	that	you	have	checked	a	SQL	Server	2000	server	by	entering:
SELECT	@@VERSION
GO

The	osql	utility	returns	the	version	information.

5.	 Quit	the	osql	utility	by	entering:
Exit

SQL	Server	Setup	Help

How	to	change	SQL	Server	services	login	account
information	(Windows	NT)
To	change	SQL	Server	services	login	account	information	(Windows	NT)

1.	 On	the	Start	menu,	point	to	Settings,	and	then	click	Control	Panel.

2.	 Double-click	Services.

3.	 In	the	Services	dialog	box,	double-click	MSSQLSERVER	in	the
Service	list.

Note		For	named	instances,	the	instance	name	is	included.	For
example,	to	modify	the	user	account	for	Instance1,	you	double-click
MSSQL$Instance1.

4.	 In	the	Service	dialog	box,	under	Log	on	as,	select	This	account,	and
then	enter	the	changed	account	information.

5.	 Repeat	Steps	3	and	4	above	for	SQL	Server	Agent.	In	the	Services
dialog	box,	double-click	SQLSERVERAGENT	(or
SQLAgent$Instance1	for	a	named	instance),	and	then	enter	the
changed	account	information	in	the	Service	dialog	box.

6.	 Start	SQL	Server	Enterprise	Manager,	and	change	the	user	account
information	there,	as	well,	for	both	SQL	Server	and	SQL	Server	Agent
For	more	information	see	How	to	change	SQL	Server	services	login
account	information	(Enterprise	Manager).

SQL	Server	Setup	Help

How	to	change	SQL	Server	services	login	account
information	(Windows)
To	change	SQL	Server	services	login	account	information	(Windows	2000)

1.	 On	the	Start	menu,	point	to	Programs/Administrative	Tools,	and
then	click	Services.

2.	 Right-click	MSSQLServer,	and	then	click	Properties.

3.	 On	the	Log	On	tab,	enter	and	confirm	the	new	password,	and	then
restart	services	using	the	SQL	Server	Service	Manager.

4.	 Repeat	the	password	reset	for	SQLServerAgent	and	other	services.

5.	 Start	SQL	Server	Enterprise	Manager,	and	change	user	account
information	there,	as	well,	for	both	SQL	Server	and	SQL	Server	Agent
For	more	information,	see	How	to	change	SQL	Server	services	login
account	information	(Enterprise	Manager).

SQL	Server	Setup	Help

How	to	change	SQL	Server	services	login	account
information	(Enterprise	Manager)
Note		If	you	are	running	Microsoft®	Windows®	2000	and	want	to	use	the
Windows	2000	Encrypted	File	System	to	encrypt	any	Microsoft	SQL	Server™
files,	you	must	unencrypt	the	files	before	you	can	change	the	SQL	Server	service
accounts.	If	you	do	not	unencrypt	the	files	and	then	reset	the	SQL	Server	service
accounts,	you	cannot	unencrypt	the	files.

To	change	the	MSSQLServer	service	login	(Enterprise	Manager)

1.	 Expand	a	server	group.

2.	 Right-click	a	server,	and	then	click	Properties.

3.	 In	the	SQL	Server	Properties	dialog	box,	click	the	Security	tab.

4.	 In	the	Startup	service	account	box,	the	option	for	This	Account	is
selected,	indicating	that	the	SQL	Server	service	account	is	a	Windows
domain	account.	Enter	changes	as	necessary	for	the	account	and
password.

To	change	the	SQLServerAgent	service	login	(Enterprise	Manager)

Note		You	can	change	the	SQLServerAgent	service	account	to	a	non	Microsoft
Windows	NT®	4.0	administrator	account.	However,	the	Windows	NT	4.0
account	must	be	a	member	of	the	sysadmin	fixed	server	role	to	run	SQL	Server
Agent.

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management.

3.	 Right-click	SQL	Server	Agent,	and	then	click	Properties.

4.	 In	the	SQL	Server	Agent	Properties	dialog	box,	click	the	General
tab.

5.	 In	the	Service	startup	account	box,	enter	the	appropriate	account	and
password.

See	Also

Creating	SQL	Server	Services	User	Accounts

Changing	Passwords	and	User	Accounts

SQL	Server	Setup	Help

How	to	rebuild	the	registry	(Setup)
To	rebuild	the	registry

1.	 Insert	the	Microsoft®	SQL	Server™	2000	compact	disc	in	your	CD-
ROM	drive.	If	the	compact	disc	does	not	autorun,	double-click
Autorun.exe	in	the	root	directory	of	the	compact	disc.

2.	 Select	SQL	Server	2000	Components,	select	Install	Database
Server,		and	then	click	Next	at	the	Welcome	screen	of	the	SQL	Server
Installation	Wizard.

3.	 In	the	Computer	Name	dialog	box,	click	Next.

4.	 In	the	Installation	Selection	dialog	box,	click	Advanced	options,	and
then	in	the	Advanced	Options	dialog	box,	click	Registry	Rebuild.
Click	Next.

5.	 A	message	appears	informing	you	that	Setup	rebuilds	the	registry
based	on	information	you	supply	in	the	subsequent	screens.

CAUTION		The	setup	options	you	enter	must	be	the	same	choices	that
you	entered	during	the	initial	installation.	If	you	do	not	know	or	are
not	sure	of	this	information,	do	not	use	this	registry	rebuild	process.
Instead,	you	must	uninstall	and	reinstall	SQL	Server	to	restore	the
registry.

6.	 To	prepare	for	the	registry	rebuild,	enter	the	same	information	and
options	that	you	entered	during	the	initial	installation	of	SQL	Server	in
the	setup	screens	as	they	appear.	When	you	have	finished,	the	registry
rebuild	will	occur.

Note		Rebuilding	the	registry	includes	re-copying	external	components
such	as	MDAC	and	MS	DTC.

SQL	Server	Setup	Help

How	to	rebuild	the	master	database	(Rebuild	Master
utility)
To	rebuild	the	master	database

1.	 Shutdown	Microsoft®	SQL	Server™	2000,	and	then	run
Rebuildm.exe.	This	is	located	in	the	Program	Files\Microsoft	SQL
Server\80\Tools\Binn	directory.

2.	 In	the	Rebuild	Master	dialog	box,	click	Browse.

3.	 In	the	Browse	for	Folder	dialog	box,	select	the	\Data	folder	on	the
SQL	Server	2000	compact	disc	or	in	the	shared	network	directory	from
which	SQL	Server	2000	was	installed,	and	then	click	OK.

4.	 Click	Settings.	In	the	Collation	Settings	dialog	box,	verify	or	change
settings	used	for	the	master	database	and	all	other	databases.

Initially,	the	default	collation	settings	are	shown,	but	these	may	not
match	the	collation	selected	during	setup.	You	can	select	the	same
settings	used	during	setup	or	select	new	collation	settings.	When	done,
click	OK.

5.	 In	the	Rebuild	Master	dialog	box,	click	Rebuild	to	start	the	process.

The	Rebuild	Master	utility	reinstalls	the	master	database.

Note		To	continue,	you	may	need	to	stop	a	server	that	is	running.

See	Also

Collation	Settings	in	Setup

SQL	Server	Setup	Help

How	to	perform	a	remote	installation	of	SQL	Server
2000	(Setup)
To	perform	a	remote	installation

1.	 Insert	the	Microsoft®	SQL	Server™	2000	compact	disc	in	your	CD-
ROM	drive.	If	the	compact	disc	does	not	autorun,	double-click
Autorun.exe	in	the	root	directory	of	the	compact	disc.

2.	 Select	SQL	Server	2000	Components,	select	Install	Database
Server,	and	then	click	Next	at	the	Welcome	screen	of	the	SQL	Server
Installation	Wizard.

3.	 In	Computer	Name	dialog	box,	click	Remote	Computer.	You	can
then	type	a	computer	name	or	click	Browse	to	locate	a	remote
computer.

4.	 In	the	Installation	Selection	dialog	box,	click	Create	a	new	instance
of	SQL	Server,	or	install	Client	Tools.

5.	 Follow	the	directions	on	the	User	Information,	Software	License
Agreement,	and	related	screens.

6.	 In	the	Remote	Setup	Information	dialog	box,	enter	password	and
other	information.	For	more	information,	see	Remote	Setup
Information.	After	you	finish	defining	options,	click	Next.

7.	 In	the	Installation	Definition,	Instance	Name,	Setup	Type,	and
subsequent	setup	screens,	select	the	options	you	want	for	the	remote
installation.

SQL	Server	Setup	creates	the	Setup.iss	file	in	your	local	system	folder
with	the	options	you	have	specified.

8.	 After	Setup	creates	Setup.iss,	the	Setup	Complete	dialog	box	appears.
Click	Finish	to	start	the	remote	installation	process.

9.	 When	the	process	is	finished,	click	OK	in	the	message	box	that
appears.	Reboot	the	remote	computer	before	running	the	remote
instance.

SQL	Server	Setup	Help

How	to	record	an	unattended	installation	file	(Setup)
The	Record	Unattended	Setup	option	allows	you	to	simulate	an	installation	and
create	an	.iss	file	that	can	be	used	later	for	an	unattended	installation	of
Microsoft®	SQL	Server™	2000.	SQL	Server	files	are	not	installed	in	this
process.

To	create	a	file	for	an	unattended	installation

1.	 Insert	the	Microsoft	SQL	Server	2000	compact	disc	in	your	CD-ROM
drive.	If	the	compact	disc	does	not	autorun,	double-click	Autorun.exe
in	the	root	directory	of	the	compact	disc.

2.	 Select	SQL	Server	2000	Components,	select	Install	Database
Server,	and	then	click	Next	at	the	Welcome	screen	of	the	SQL	Server
Installation	Wizard.

3.	 In	the	Computer	Name	dialog	box,	select	the	option	you	want,	and
click	Next.

4.	 In	the	Installation	Selection	dialog	box,	click	Advanced	options,	and
then	in	the	Advanced	Options	dialog	box,	click	Record	Unattended
.ISS	file.	Click	Next.

5.	 In	subsequent	Setup	screens,	select	the	options	you	want	for	the
unattended	installation.	After	you	finish	selecting	the	options,	in	the
Setup	Information	screen,	click	Next.

6.	 In	the	Setup	Complete	screen,	click	Finish.

This	message	appears:	"Setup	has	collected	the	information	needed	to
create	an	unattended	installation	file	(.iss)	for	use	with	later	unattended
installations	of	SQL	Server."

SQL	Server	Setup	then	creates	the	Setup.iss	file	in	the	%windir%

location	with	the	options	you	have	specified.

To	run	the	file,	see	How	to	run	an	unattended	installation	of	SQL
Server	2000	(Command	Prompt).

See	Also

Performing	an	Unattended	Installation

SQL	Server	Setup	Help

How	to	run	an	unattended	installation	of	SQL	Server
2000	(Command	Prompt)
You	can	run	an	unattended	installation	by	using	sample	batch	files	and	setup
initialization	files	included	on	the	Microsoft®	SQL	Server™	2000	compact	disc.
Or,	you	can	run	the	Setup	program	directly	from	the	command	prompt	in	the
appropriate	directory	for	the	edition	of	SQL	Server	you	want	to	install,	using
arguments	as	needed.

To	run	an	unattended	installation	using	ready-made	batch	files

1.	 Locate	the	.bat	and	.iss	files	in	the	root	directory	of	your	SQL	Server
2000	compact	disc.

2.	 View	the	.bat	and	associated	.iss	files,	and	modify	if	necessary.	For
more	information,	see	Creating	a	Specialized	Setup	File.

3.	 Run	the	appropriate	batch	and	setup	files	from	the	command	prompt:

For	a	standard	unattended	installation,	run	Sqlins.bat.

For	a	client-only	unattended	installation,	run	Sqlcli.bat.

For	a	custom	unattended	installation,	run	Sqlcst.bat.

To	run	an	unattended	installation	directly	from	the	command	prompt

1.	 Run	Setupsql.exe	from	the	Setup	directory	in	the	appropriate
architecture	directory.

2.	 Use	arguments	as	needed:

-f1	<initialization	file	path>
Selects	an	unattended	setup	initialization	file.

start	/wait	command	(with	the	-SMS	option)
Returns	control	to	the	command	prompt	only	after	SQL	Server	Setup
completes.

-s	flag
Causes	the	Setup	program	to	run	in	silent	mode	with	no	user	interface.

For	examples	of	command	prompt	options	and	arguments,	see	the	sample
.bat	files	on	your	SQL	Server	2000	compact	disc.

See	Also

Performing	an	Unattended	Installation

How	to	record	an	unattended	installation	file	(Setup)

SQL	Server	Setup	Help

How	to	add	components	to	an	instance	of	SQL	Server
2000	(Setup)
Note		You	cannot	remove	components	by	clearing	checkboxes	in	the	Select
Components	dialog	box.	If	you	need	to	remove	components	from	an	instance	of
SQL	Server,	you	must	uninstall	the	instance.

To	add	components	to	an	instance	(default	or	named)	of	SQL	Server	2000

1.	 Run	SQL	Server	Setup,	select	SQL	Server	2000	Components,	select
Install	Database	Server,	and	then	click	Next	at	the	Welcome	screen
of	the	SQL	Server	Installation	Wizard.

2.	 In	Computer	Name	dialog	box,	Local	Computer	is	the	default	option
and	the	local	computer	name	appears	in	the	edit	box.	Click	Next.

3.	 In	the	Installation	Selection	dialog	box,	click	Upgrade,	Remove,	or
Add	Components	to	an	existing	instance	of	SQL	Server,	and	then
click	Next.

4.	 In	the	Instance	Name	dialog	box,	Default	is	selected	if	you	have	the
Default	instance	installed.	If	you	want	to	add	components	to	a	named
instance,	select	it	from	the	Instance	Name	list,	and	then	click	Next.

5.	 In	the	Existing	Installation	dialog	box,	click	Add	Components	to
your	existing	installation,	and	then	click	Next.

6.	 In	the	Select	Components	dialog	box,	select	a	component	from	the
Components	list,	and	then	select	items	from	the	related	Sub-
Components	list.	Click	to	select	items	you	want	to	add,	and	then	click
Next.

For	information	about	each	component,	select	the	item,	and	view	the
Description	box.

7.	 When	you	are	finished	specifying	options,	click	Next	in	the	Start
Copying	Files	dialog	box	to	add	components	to	the	selected	instance
of	SQL	Server.

See	Also

How	to	uninstall	an	existing	installation	of	SQL	Server	(Setup)

SQL	Server	Setup	Help

How	to	access	SQL	Server	Books	Online	for	SQL
Server	7.0
If	you	have	Microsoft®	SQL	Server™	7.0	running	as	the	default	instance	(and
SQL	Server	2000	as	a	named	instance),	SQL	Server	Books	Online	for	SQL
Server	7.0	remains	intact	on	your	computer.	You	can	access	SQL	Server	Books
Online	from	the	Start	menu	or	create	a	shortcut	to	it	on	your	desktop.

To	access	SQL	Server	Books	Online	for	SQL	Server	7.0	from	the	Start	menu

On	the	Start	menu,	point	to	Programs	and	Microsoft	SQL	Server	7.0,
and	then	click	Books	Online.

To	create	a	shortcut	to	SQL	Server	Books	Online	for	SQL	Server	7.0

1.	 Locate	Sqlbol.chm	on	your	computer.	(The	default	location	is
C:\Mssql7\Books.)

2.	 Right-click	Sqlbol.chm,	and	then	click	Create	Shortcut.

3.	 Copy	the	shortcut	to	your	desktop,	where	you	can	use	it	to	access	SQL
Server	Books	Online.

To	install	SQL	Server	Books	Online	for	SQL	Server	7.0	for	the	first	time,	or	to
reinstall	it,	you	must	install	it	from	the	SQL	Server	7.0	compact	disc	or	the	SQL
Server	Web	site.

To	reinstall	SQL	Server	Books	Online	for	SQL	Server	7.0	from	the	SQL
Server	7.0	compact	disc

1.	 Insert	the	Microsoft	SQL	Server	7.0	compact	disc	in	your	CD-ROM
drive.

2.	 Locate	the	file	Sqlbol.chm	on	the	compact	disc,	and	copy	it	to	a
location	on	your	computer.

3.	 Create	a	shortcut	on	your	desktop	to	SQL	Server	Books	Online	for
SQL	Server	7.0.

To	download	SQL	Server	Books	Online	for	SQL	Server	7.0	from	the	SQL
Server	Web	site

1.	 Go	to	the	Microsoft	SQL	Server	Web	site,	at	Microsoft	Web	site.

2.	 On	the	SQL	Server	Welcome	page,	click	Support.

3.	 On	the	Support	page,	click	Documentation	and	follow	instructions	to
access	SQL	Server	7.0	Books	Online.

http://www.microsoft.com/isapi/redir.dll?Prd=SQL&ar=home

SQL	Server	Setup	Help

How	to	install	English	Query	(Setup)
To	install	English	Query

1.	 Insert	the	Microsoft®	SQL	Server™	2000	compact	disc	in	your	CD-
ROM	drive.	If	the	compact	disc	does	not	autorun,	double-click
Autorun.exe	in	the	root	directory	of	the	compact	disc.

2.	 Select	SQL	Server	2000	Components.

3.	 On	the	Install	Components	screen,	select	Install	English	Query.

No	further	selections	are	necessary.	SQL	Server	Setup	installs	English
Query	on	your	computer.

SQL	Server	Setup	Help

How	to	install	Analysis	Services	(Setup)
The	following	procedure	is	a	shortened	version	of	the	steps	to	install	Analysis
Services.	For	a	more	complete	installation	procedure	and	for	related	information,
see	Running	Setup.

To	install	Analysis	Services

1.	 Insert	the	Microsoft®	SQL	Server™	2000	compact	disc	in	your	CD-
ROM	drive.	If	the	compact	disc	does	not	autorun,	double-click
Autorun.exe	in	the	root	directory	of	the	compact	disc.

2.	 Select	SQL	Server	2000	Components.

3.	 On	the	Install	Components	screen,	select	Install	Analysis	Services.

4.	 At	the	Welcome	screen	for	Microsoft	SQL	Server	2000	Analysis
Services,	click	Next.

5.	 Follow	the	directions	on	the	User	Information,	Software	License
Agreement,	and	related	screens.

6.	 In	the	Select	Components	dialog	box,	select	or	clear	components	as
needed,	and	then	click	Next.

If	you	want	to	change	the	default	location	of	the	Analysis	Services
program	files,	click	Browse	at	Destination	Folder	and	select	a	folder
location.

7.	 In	the	Data	Folder	Location	dialog	box,	accept	or	change	the	default
location	for	data	files,	and	then	click	Next.

8.	 In	the	Select	Program	Folder	dialog	box,	accept	or	change	the	default
settings,	and	then	click	Next.

SQL	Server	Setup	installs	Analysis	Services	on	your	computer.

SQL	Server	Setup	Help

How	to	create	a	case-sensitive	instance	of	SQL	Server
2000	(Setup)
To	create	a	case-sensitive	instance	of	SQL	Server	2000

1.	 Run	SQL	Server	Setup	to	install	SQL	Server	2000	Components,
select	Install	Database	Server,	and	then	click	Next	at	the	Welcome
screen	of	the	SQL	Server	Installation	Wizard.

2.	 In	Computer	Name	dialog	box,	Local	Computer	is	the	default	option
and	the	local	computer	name	appears	in	the	edit	box.	Click	Next.

3.	 In	the	Installation	Selection	dialog	box,	click	click	Create	a	new
instance	of	SQL	Server,	or	install	Client	Tools,	and	then	click	Next.

4.	 Follow	the	directions	on	the	User	Information	and	related	screens.

5.	 In	the	Installation	Definition	dialog	box,	click	Server	and	Client
Tools,	and	then	click	Next.

6.	 In	the	Instance	Name	dialog	box:

To	create	a	case-sensitive	default	instance,	accept	the	Default
check	box	and	click	Next.

To	create	a	case-sensitive	named	instance,	clear	the	Default
check	box	and	type	an	instance	name.

7.	 In	the	Setup	Type	dialog	box,	click	Custom,	and	click	Next.

8.	 In	the	Select	Components,	Services	Accounts,	and	Authentication
Mode	dialog	boxes,	change	or	accept	the	default	settings,	and	then
click	Next.

9.	 In	the	Collation	Settings	dialog	box,	you	have	two	options:

To	make	a	Windows	Locale	collation	case-sensitive,	select
Collation	designator	and	then	select	the	correct	collation
designator	from	the	list.	Clear	the	Binary	check	box,	and	then
select	the	Case-sensitive	check	box.

To	make	a	SQL	collation	case-sensitive,	select	SQL
Collations,	and	then	select	the	correct	collation	name.

For	more	information	about	collation	options,	click	Help.	When	you
finish	setting	the	options,	click	Next.

10.	 In	subsequent	dialog	boxes,	change	or	accept	the	default	settings,	and
then	click	Next.	

11.	 When	you	are	finished	specifying	options,	click	Next	in	the	Start
Copying	Files	dialog	box.

12.	 In	the	Choose	Licensing	Mode	dialog	box,	make	selections	according
to	your	license	agreement,	and	click	Continue	to	begin	the
installation.

3.	 Click	Help	for	information	about	licensing,	or	see	your	system
administrator.

See	Also

Collation	Settings	in	Setup

SQL	Server	Setup	Help

How	to	set	client	code	pages
To	set	client	code	pages	under	the	Windows	NT,	Windows	98,	or	Windows
2000	operating	systems

Use	the	Regional	Settings	application	in	Control	Panel	as	described	in
the	Microsoft®	Windows	NT®,	Microsoft	Windows®	98,	or	Microsoft
Windows	2000	documentation.

SQL	Server	Setup	Help

How	to	switch	from	SQL	Server	6.5	to	SQL	Server
2000	(Command	Prompt)
To	switch	from	SQL	Server	6.5	to	SQL	Server	2000

Run	Vswitch.exe.

-SwitchTo	<65|80>
Determines	which	version	of	Microsoft®	SQL	Server™	2000	to	activate.

-Silent	<0|1>
Determines	if	any	user	interface	or	messages	are	displayed.	If	1	is
specified,	a	user	interface	or	messages	are	not	displayed.	The	default	is	0.

Examples

c:\...\vswitch	-SwitchTo	80	-Silent	1
	

SQL	Server	Setup	Help

How	to	switch	from	SQL	Server	6.5	to	SQL	Server
2000	(Windows)
To	switch	from	SQL	Server	6.5	to	SQL	Server	2000

On	the	Start	menu,	point	to	Programs/Microsoft	SQL	Server-Switch,
and	then	click	Microsoft	SQL	Server	2000.

SQL	Server	Setup	switches	from	Microsoft®	SQL	Server™	2000
version	6.5	to	SQL	Server	2000.

SQL	Server	Setup	Help

How	to	remove	SQL	Server	2000	(Windows)
You	can	remove	instances	of	Microsoft®	SQL	Server™	2000	using	Control
Panel.	Each	named	instance	must	be	removed	separately.	When	upgrading	or
maintaining	instances,	you	can	remove	SQL	Server	using	the	Uninstall	option	in
Setup.	For	more	information,	see	How	to	uninstall	an	existing	installation
(Setup).

You	cannot	remove	a	selected	component	of	SQL	Server	2000	after	it	is
installed.	To	remove	components,	you	must	remove	the	entire	instance.

To	remove	a	named	instance	of	SQL	Server	2000

1.	 In	Control	Panel,	click	Add/Remove	programs.

2.	 Select	a	name	of	an	instance	of	SQL	Server	2000,	and	click	Remove.

To	remove	all	instances	of	SQL	Server	2000

1.	 In	Control	Panel,	click	Add/Remove	programs.

2.	 Repeat	the	removal	process	for	each	instance	of	SQL	Server	2000	that
is	installed.

SQL	Server	2000	is	uninstalled,	but	some	files	may	remain.	Manually	delete
directories	if	any	files	related	to	SQL	Server	2000	still	exist.

See	Also

Directories	and	File	Locations

SQL	Server	Setup	Help

How	To	Upgrade	from	SQL	Server	6.5
The	How	To	topics	in	this	section	are	specific	to	the	process	of	converting	data
from	Microsoft®	SQL	Server™	6.5	to	Microsoft	SQL	Server	2000	using	the
SQL	Server	Upgrade	Wizard.

Note		To	run	the	SQL	Server	Upgrade	Wizard,	you	must	have	an	instance	of
Microsoft	SQL	Server	2000	already	installed	on	your	computer.

Considerations	when	upgrading	from	SQL	Server	6.5:
During	the	upgrade	process,	the	SQL	Server	6.5	server	is	stopped	and
started	while	objects	are	scripted	and	data	is	extracted.	When	the	data
transfer	starts,	only	SQL	Server	2000	is	running,	and	it	is	not	possible	to
access	SQL	Server	6.5.

If	you	are	upgrading	your	existing	SQL	Server	6.5	server	to	a	different
computer	that	is	running	SQL	Server	2000,	both	computers	should	be
configured	to	use	a	domain	user	name	and	password	for	the
MSSQLServer	service.

During	this	upgrade,	user-defined	messages	created	in	SQL	Server	6.5
using	sp_addmessage	are	not	converted	to	SQL	Server	2000.	To	retain
these	custom	messages,	manually	copy	the	messages	added	in	SQL
Server	6.5	to	your	installation	of	SQL	Server	2000.

See	Also

Troubleshooting	the	SQL	Server	Upgrade	Wizard

Completing	the	SQL	Server	Upgrade	Wizard

Upgrade	Log	Files

Upgrading	to	SQL	Server	2000	FAQ

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

SQL	Server	Setup	Help

How	to	change	the	size	of	tempdb	in	SQL	Server	6.5
(ISQL/w)
To	change	the	size	of	tempdb	in	SQL	Server	6.5

1.	 On	the	Start	menu,	point	to	Programs/Microsoft	SQL	Server	6.5,
and	then	click	ISQL/w.

2.	 Enter	the	sa	password,	and	then	click	Connect.

3.	 Execute	a	DISK	INIT	command	to	increase	the	size	of	the	tempdb
device	to	at	least	25	MB.

4.	 Execute	an	ALTER	DATABASE	command	to	increase	the	size	of	the
tempdb	database	to	at	least	25	MB.

Examples

--Increase	the	size	of	the	tempdb	device
DISK	INIT	name	=	'tempdb1',physname	=	'c:\mssql\data\tempdb1.DAT',vdevno	=	100,	size	=	12800
GO
--Increase	the	size	of	tempdb
ALTER	DATABASE	tempdb	ON	tempdb1	=	25
	

SQL	Server	Setup	Help

How	to	change	to	the	current	server	name	in	the	SQL
Server	6.5	master	database	(ISQL/w)
To	change	to	the	current	server	name	in	the	SQL	Server	6.5	master
database

1.	 Start	Microsoft®	SQL	Server™	in	minimal	configuration	mode.	In	a
command	prompt	window,	from	the	\Mssql\Binn	directory,	run:
sqlservr	-f

2.	 On	the	Start	menu,	point	to	Programs	/Microsoft	SQL	Server	6.5,
and	then	click	ISQL/w.

3.	 Enter	the	sa	password,	and	then	click	Connect.

4.	 Execute	SELECT	@@SERVERNAME	to	retrieve	the	former	server
name.

5.	 Execute	sp_dropserver	to	drop	the	former	server.

6.	 Execute	sp_addserver	to	add	the	current	server.

7.	 Stop	SQL	Server.	In	the	command	prompt	window,	press	Ctrl+C.

8.	 Restart	SQL	Server.

9.	 Execute	SELECT	@@SERVERNAME	to	verify	the	current	server
name.

Examples

--Start	SQL	Server	in	minimal	configuration	mode.
--Retrieve	the	former	server	name.
SELECT	@@SERVERNAME
--Drop	the	server	returned	from	the	previous	select.
sp_dropserver	'SERVER6X'
--Add	the	current	server.
sp_addserver	'SERVER70',	local
--Stop	SQL	Server.
--Restart	SQL	Server	in	minimal	configuration	mode.
--Verify	the	current	server	name.
SELECT	@@SERVERNAME

SQL	Server	Setup	Help

How	to	update	the	device	file	locations	in	the	SQL
Server	6.5	master	database	(ISQL/w)
To	update	the	device	file	locations	in	the	SQL	Server	6.5	master	database

1.	 On	the	Start	menu,	point	to	Programs/Microsoft	SQL	Server	6.5,
and	then	click	ISQL/w.

2.	 Enter	the	sa	password,	and	then	click	Connect.

3.	 Select	from	sysdevices	in	the	master	database	to	view	the	old	device
file	locations.

4.	 Execute	sp_configure	to	allow	updates	to	the	system	tables,	and	then
reconfigure	with	override.

5.	 Update	the	device	file	locations	that	have	changed.

6.	 Execute	sp_configure	to	disallow	updates	to	the	system	tables,	and
then	reconfigure	with	override.

Examples

--View	the	old	device	file	locations
SELECT	phyname	FROM	sysdevices

--Allow	updates	to	the	system	tables
sp_configure	'allow	updates',1
GO
RECONFIGURE	WITH	OVERRIDE
GO

--Update	device	file	locations	that	have	changed
UPDATE	sysdevices
SET	phyname	=	"E:\Data\HR\HR1.dat"
WHERE	name	=	"HumanResources1"
GO
UPDATE	sysdevices
SET	phyname	=	"E:\Data\HR\HR1Log.dat"
WHERE	name	=	"HumanResources1Log"
GO
--Disallow	updates	to	the	system	tables
sp_configure	'allow	updates',0
GO
RECONFIGURE	WITH	OVERRIDE
GO
	

SQL	Server	Setup	Help

How	to	estimate	the	disk	space	required	for	an
upgrade	from	SQL	Server	version	6.5	to	SQL	Server
2000	(SQL	Server	Upgrade	Wizard)
Note		To	run	the	SQL	Server	Upgrade	Wizard,	you	must	have	an	instance	of
Microsoft®	SQL	Server™	2000	already	installed	on	your	computer.

To	estimate	the	disk	space	required	for	an	upgrade

1.	 On	the	Start	menu,	point	to	Programs/Microsoft	SQL	Server-
Switch,	click	SQL	Server	Upgrade	Wizard,	and	then	click	Next.

2.	 Select	Named	pipe;	then	click	Next.

3.	 In	Export	server	(6.5),	in	the	Server	name	box,	enter	the	name	of	the
local	or	remote	computer	on	which	SQL	Server	6.5	resides.

4.	 In	the	Administrator	password	('sa')	box,	enter	the	sa	password	for
SQL	Server	6.5,	and	then	click	Next.

Unless	you	have	changed	it,	the	system	administrator	password	for
SQL	Server	2000	is	blank.

5.	 Include	the	databases	to	upgrade.	Move	any	database	not	to	include	in
the	disk	space	estimation	to	the	Exclude	list,	and	then	click	Next.

6.	 Select	Use	the	default	configuration	or	edit	the	default;	then	click
Edit.

The	SQL	Server	Upgrade	Wizard	layout	utility	appears,	showing	the
proposed	layout	of	the	SQL	Server	2000	data	files.

7.	 Click	Advanced.

8.	 Click	an	object	in	the	Proposed	database	layout	box	to	view	details
in	the	Object	details	box.

9.	 The	Drive	summary	box	shows	the	estimated	size	of	all	SQL	Server
2000	data	files	and	the	free	disk	space	left	on	all	of	the	local	fixed
disks.	On	the	Options	menu,	select	Freespace	includes	6.5	files	to
view	the	free	space	that	would	exist	if	the	SQL	Server	6.5	data	files
were	deleted.

10.	 Click	Accept	to	return	to	the	Database	Creation	dialog	box.

11.	 Click	Cancel	to	quit	the	SQL	Server	Upgrade	Wizard.

SQL	Server	Setup	Help

How	to	edit	the	default	database	configuration	(SQL
Server	Upgrade	Wizard)
Note		To	run	the	SQL	Server	Upgrade	Wizard,	you	must	have	an	instance	of
Microsoft®	SQL	Server™	2000	already	installed	on	your	computer.

To	edit	the	default	database	configuration

1.	 In	the	Database	Creation	dialog	box	of	the	SQL	Server	Upgrade
Wizard,	click	Edit.

2.	 Click	Advanced	to	view	object	details	and	drive	summaries.

3.	 In	the	Proposed	database	layout	box,	double-click	a	database	file.

4.	 Change	any	database	file	attributes,	and	then	click	OK.

5.	 View	the	changes	to	the	drive	summary.

6.	 When	all	changes	have	been	made,	click	Accept	to	save	the	database
configuration.

See	Also

Proposed	Database	Layout

SQL	Server	Setup	Help

How	to	perform	a	SQL	Server	version	6.5	to	SQL
Server	2000	upgrade	using	a	direct	pipeline	(SQL
Server	Upgrade	Wizard)
Note		To	run	the	SQL	Server	Upgrade	Wizard,	you	must	have	an	instance	of
Microsoft®	SQL	Server™	2000	already	installed	on	your	computer.

To	perform	a	SQL	Server	version	6.5	to	SQL	Server	2000	upgrade	by
named	pipe

1.	 On	the	Start	menu,	point	to	Programs/Microsoft	SQL	Server-
Switch,	click	SQL	Server	Upgrade	Wizard,	and	then	click	Next.

2.	 In	the	Data	and	Object	Transfer	screen,	accept	the	default	selections,
including	Named	pipe,	and	then	click	Next.	Verification	options	are
recommended,	but	not	required.	Click	Help	for	information.

3.	 On	the	Logon	screen,	in	the	Server	name	box	in	the	Export	server
(6.5)	group	box,	enter	the	name	of	the	local	or	remote	computer	on
which	Microsoft	SQL	Server	version	6.5	is	installed.

In	the	Administrator	password	('sa')	box,	enter	the	sa	password	for
SQL	Server	6.5,	and	then	click	Next.	Unless	you	have	changed	it,	the
system	administrator	password	for	SQL	Server	2000	is	blank.

For	Import	Server	(2000),	the	server	name	is	filled	in.	Enter	the
optional	startup	arguments,	if	you	want.	Click	Help	for	information.
When	you	are	finished	setting	options,	click	Next.

4.	 In	the	message	box	asking	if	you	want	to	continue,	click	Yes	if	you	are
ready	to	upgrade.	The	SQL	Server	Upgrade	Wizard	shuts	down	SQL
Server	6.5	and	starts	SQL	Server	2000.

5.	 In	the	Code	Page	Selection	screen,	accept	or	change	the	default
settings,	and	then	click	Next.

6.	 In	the	Database	Selection	screen,	include	the	databases	to	upgrade.
Move	any	databases	you	do	not	want	upgraded	at	this	time	to	the
Exclude	list,	and	then	click	Next.

Converting	all	databases	is	recommended.

7.	 In	the	Database	Creation	dialog	box,	select	Use	the	default
configuration	or	edit	the	default,	and	then	click	Next.

Click	Edit	to	examine	and	make	changes	to	the	proposed	disk
configuration	within	the	layout	utility.	In	the	Proposed	Database
Layout	box,	make	changes	as	needed.	Click	Advanced	to	view
Object	Details	and	Drive	Summary.	When	you	are	finished,	click
Accept	to	return	to	the	SQL	Server	Upgrade	Wizard.

8.	 In	the	System	Configuration	screen,	in	System	objects	to	transfer,
select	the	object	types	to	transfer	from	SQL	Server	6.5	to	SQL	Server
2000:

Server	configuration

Login	and	remote	login	registrations	and	server	configuration
options	relevant	to	SQL	Server	2000	are	transferred	as	part	of
the	version	upgrade.

Replication	settings

All	articles,	subscriptions	and	publications	of	each	selected
database,	plus	the	distribution	database,	if	any,	are	transferred
and	upgraded.

SQL	Executive	settings

All	tasks	scheduled	by	SQL	Executive	are	transferred	and
upgraded	so	that	SQL	Server	2000	can	schedule	and	run	those
tasks	in	SQL	Server	Agent.

9.	 In	the	System	Configuration	screen,	in	Advanced	settings,	for	ANSI
Nulls,	select:

Off,	if	ANSI	nulls	should	not	be	used	when	stored	procedures

are	created.	This	is	the	default.

On,	if	ANSI	nulls	should	be	used	when	stored	procedures	are
created.

10.	 In	Quoted	identifiers,	select	one	of	these	options,	and	then	click
Next:

Mixed	(or	don't	know),	if	some	of	your	objects	were	created
with	QUOTED_IDENTIFIER	set	to	ON	and	others	with	it	set
to	OFF,	or	if	you	are	not	sure	how	they	were	created.

Off,	if	all	objects	should	be	compiled	with
QUOTED_IDENTIFIER	set	to	OFF.

On,	if	all	objects	should	be	compiled	with
QUOTED_IDENTIFIER	set	to	ON.

11.	 In	the	Completing	the	SQL	Server	Wizard	screen,	view	the
summary	of	choices	you	have	made.	Click	View	warnings	and
choices	in	notepad	to	open	a	text	version	of	the	upgrade	script.	If	all
options	are	correct,	click	Finish.

The	SQL	Server	Upgrade	Script	Interpreter	screen	appears,	with	information
on	the	progress	of	the	upgrade.

See	Also

Order	of	Upgrade	Using	a	Direct	Pipeline	or	Tape	Drive

SQL	Server	Setup	Help

How	to	perform	a	SQL	Server	version	6.5	to	SQL
Server	2000	upgrade	using	a	tape	drive	(SQL	Server
Upgrade	Wizard)
Note		To	run	the	SQL	Server	Upgrade	Wizard,	you	must	have	an	instance	of
Microsoft®	SQL	Server™	2000	already	installed	on	your	computer.

To	perform	a	SQL	Server	version	6.5	to	SQL	Server	2000	upgrade	using	a
tape	drive

1.	 On	the	Start	menu,	point	to	Programs/Microsoft	SQL	Server-
Switch,	click	SQL	Server	Upgrade	Wizard,	and	then	click	Next.

2.	 In	the	Data	and	Object	Transfer	screen,	click	Tape,	and	then	click
Next.	Verification	options	are	recommended,	but	not	required.	Click
Help	for	information.

3.	 On	the	Logon	screen,	in	the	Server	name	box	in	the	Export	server
(6.5)	group	box,	enter	the	name	of	the	computer	on	which	Microsoft
SQL	Server	version	6.5	is	installed.

In	the	Administrator	password	('sa')	box,	enter	the	sa	password	for
SQL	Server	6.5,	and	then	click	Next.

Unless	you	have	changed	it,	the	sa	password	for	SQL	Server	2000	is
blank.

For	Import	Server	(2000),	the	server	name	is	filled	in.	Enter	optional
startup	arguments,	if	you	want.	Click	Help	for	information.	When	you
are	finished	setting	options,	click	Next.

4.	 In	the	message	box	asking	if	you	want	to	continue,	click	Yes	if	you	are
ready	to	upgrade.	The	SQL	Server	Upgrade	Wizard	switches	to	the
SQL	Server	2000	server.

5.	 In	the	Code	Page	Selection	screen,	accept	or	change	the	default
settings,	and	then	click	Next.

6.	 In	the	Database	Selection	screen,	include	the	databases	to	upgrade.
Move	any	database	not	to	be	upgraded	at	this	time	to	the	Exclude	list,
and	then	click	Next.

7.	 In	Device	for	data	transfer,	specify	the	location	of	the	tape	drive.

8.	 In	6.5	device	backup	options,	select	Backup	6.5	devices	before
exporting	data	if	you	have	not	backed	up	the	databases	already.

Prior	to	creating	the	SQL	Server	2000	databases,	the	SQL	Server
Upgrade	Wizard	either	prompts	you	to	back	up	the	SQL	Server	6.5
devices	or	copies	the	devices	for	you	automatically.

9.	 Select	Delete	6.5	devices	before	importing	data	if	necessary	due	to
lack	of	disk	space,	and	then	click	Next.

After	objects	and	data	are	exported,	and	before	creating	databases	in
SQL	Server	2000,	the	SQL	Server	Upgrade	Wizard	deletes	the	SQL
Server	6.5	devices	to	reclaim	disk	space.

10.	 Select	Use	the	default	configuration	or	edit	the	default,	and	then
click	Next.

Click	Edit	to	examine	and	make	changes	to	the	proposed	disk
configuration	within	the	layout	utility.	In	the	Proposed	Database
Layout	box,	make	changes	as	needed.	Click	Advanced	to	view
Object	Details	and	Drive	Summary.	When	you	are	finished,	click
Accept	to	return	to	the	SQL	Server	Upgrade	Wizard.

11.	 In	System	objects	to	transfer,	select	the	object	types	to	transfer	from
SQL	Server	6.5	to	SQL	Server	2000:

Server	configuration

Login	and	remote	login	registrations	and	server	configuration
options	relevant	to	SQL	Server	2000	are	transferred	as	part	of

the	version	upgrade.

Replication	settings

All	articles,	subscriptions,	and	publications	of	each	selected
database,	plus	the	distribution	database,	if	any,	are	transferred
and	upgraded.

SQL	Executive	settings

All	tasks	scheduled	by	SQL	Executive	are	transferred	and
upgraded	so	that	SQL	Server	2000	can	schedule	and	run	those
tasks	in	SQL	Server	Agent.

12.	 In	ANSI	Nulls,	select:

Off,	if	ANSI	nulls	should	not	be	used	when	stored	procedures
are	created.	This	is	the	default.

On,	if	ANSI	nulls	should	be	used	when	stored	procedures	are
created.

13.	 In	Quoted	Identifiers,	select	one	of	these	options,	and	then	click
Next:

Mixed	(or	don't	know),	if	some	of	your	objects	were	created
with	QUOTED_IDENTIFIER	set	to	ON	and	others	with	it	set
to	OFF,	or	if	you	are	not	sure	how	they	were	created.

Off,	if	all	objects	should	be	compiled	with
QUOTED_IDENTIFIER	set	to	OFF.

On,	if	all	objects	should	be	compiled	with
QUOTED_IDENTIFIER	set	to	ON.

14.	 In	the	Completing	the	SQL	Server	Wizard	screen,	view	the
summary	of	choices	you	have	made.	Click	View	warnings	and
choices	in	notepad	to	open	a	text	version	of	the	upgrade	script.	If	all
options	are	correct,	click	Finish.

The	SQL	Server	Upgrade	Script	Interpreter	screen	appears	with
information	about	the	progress	of	the	upgrade.

See	Also

Order	of	Upgrade	Using	a	Direct	Pipeline	or	Tape	Drive

SQL	Server	Setup	Help

Database	Architecture
Microsoft®	SQL	Server™	2000	data	is	stored	in	databases.	The	data	in	a
database	is	organized	into	the	logical	components	visible	to	users.	A	database	is
also	physically	implemented	as	two	or	more	files	on	disk.

When	using	a	database,	you	work	primarily	with	the	logical	components	such	as
tables,	views,	procedures,	and	users.	The	physical	implementation	of	files	is
largely	transparent.	Typically,	only	the	database	administrator	needs	to	work
with	the	physical	implementation.

Each	instance	of	SQL	Server	has	four	system	databases	(master,	model,
tempdb,	and	msdb)	and	one	or	more	user	databases.	Some	organizations	have
only	one	user	database,	containing	all	the	data	for	their	organization.	Some
organizations	have	different	databases	for	each	group	in	their	organization,	and
sometimes	a	database	used	by	a	single	application.	For	example,	an	organization
could	have	one	database	for	sales,	one	for	payroll,	one	for	a	document
management	application,	and	so	on.	Sometimes	an	application	uses	only	one
database;	other	applications	may	access	several	databases.

It	is	not	necessary	to	run	multiple	copies	of	the	SQL	Server	database	engine	to
allow	multiple	users	to	access	the	databases	on	a	server.	An	instance	of	the	SQL
Server	Standard	or	Enterprise	Edition	is	capable	of	handling	thousands	of	users
working	in	multiple	databases	at	the	same	time.	Each	instance	of	SQL	Server
makes	all	databases	in	the	instance	available	to	all	users	that	connect	to	the
instance,	subject	to	the	defined	security	permissions.

When	connecting	to	an	instance	of	SQL	Server,	your	connection	is	associated
with	a	particular	database	on	the	server.	This	database	is	called	the	current
database.	You	are	usually	connected	to	a	database	defined	as	your	default
database	by	the	system	administrator,	although	you	can	use	connection	options
in	the	database	APIs	to	specify	another	database.	You	can	switch	from	one
database	to	another	using	either	the	Transact-SQL	USE	database_name
statement,	or	an	API	function	that	changes	your	current	database	context.

SQL	Server	2000	allows	you	to	detach	databases	from	an	instance	of	SQL
Server,	then	reattach	them	to	another	instance,	or	even	attach	the	database	back
to	the	same	instance.	If	you	have	a	SQL	Server	database	file,	you	can	tell	SQL
Server	when	you	connect	to	attach	that	database	file	with	a	specific	database
name.

See	Also

Database	Design	Considerations

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Logical	Database	Components
The	data	in	a	Microsoft®	SQL	Server™	2000	database	is	organized	into	several
different	objects.	These	objects	are	what	a	user	can	see	when	they	connect	to	the
database.

In	SQL	Server	2000,	these	components	are	defined	as	objects:

Constraints Tables
Defaults Triggers
Indexes User-defined	data	types
Keys User-defined	functions
Stored	procedures Views

SQL	Server	Setup	Help

Data	Types	and	Table	Structures
All	the	data	in	Microsoft®	SQL	Server™	2000	databases	is	contained	in	objects
called	tables.	Each	table	represents	some	type	of	object	meaningful	to	the	users.
For	example,	in	a	school	database	you	would	find	tables	such	as	a	class	table,	an
instructor	table,	and	a	student	table.

SQL	Server	tables	have	two	main	components:

Columns

Each	column	represents	some	attribute	of	the	object	modeled	by	the
table,	such	as	a	parts	table	having	columns	for	ID,	color,	and	weight.

Rows

Each	row	represents	an	individual	occurrence	of	the	object	modeled	by
the	table.	For	example,	the	parts	table	would	have	one	row	for	each	part
carried	by	the	company.

Data	Types
Because	each	column	represents	one	attribute	of	an	object,	the	data	in	each
occurrence	of	the	column	is	similar.	One	of	the	properties	of	a	column	is	called
its	data	type,	which	defines	the	type	of	data	the	column	can	hold.	SQL	Server
has	several	base	data	types	that	can	be	specified	for	columns:

binary Bigint bit Char datetime
decimal Float image Int Money

nchar Ntext nvarchar Numeric Real
smalldatetime smallint smallmoney sql_variant sysname
text timestamp tinyint varbinary varchar
uniqueidentifier 	 	 	 	

SQL	Server	2000	also	supports	a	table	base	data	type,	which	can	be	used	to
store	the	result	set	of	an	SQL	statement.	The	table	data	type	cannot	be	used	for
columns	in	a	table.	It	can	only	be	used	for	Transact-SQL	variables	and	the	return
values	of	user-defined	functions.	For	more	information,	see	Using	Special	Data.

Users	can	also	create	their	own	user-defined	data	types,	for	example:

--	Create	a	birthday	data	type	that	allows	nulls.
EXEC	sp_addtype	birthday,	datetime,	'NULL'
GO
--	Create	a	table	using	the	new	data	type.
CREATE	TABLE	employee
			(emp_id									char(5),
			emp_first_name			char(30),
			emp_last_name			char(40),
			emp_birthday						birthday)

A	user-defined	data	type	makes	a	table	structure	more	meaningful	to
programmers	and	helps	ensure	that	columns	holding	similar	classes	of	data	have
the	same	base	data	type.

SQL	Server	provides	several	data	type	synonyms	to	help	support	SQL-92	data
type	names	not	included	as	base	data	types,	such	as	national	character	and
character	varying.	When	a	synonym	is	specified	in	a	CREATE	TABLE
statement,	the	column	is	assigned	the	base	data	type	associated	with	the
synonym.	For	more	information,	see	Data	Type	Synonyms.

A	domain	is	the	set	of	all	allowable	values	in	a	column.	It	includes	not	only	the
concept	of	enforcing	data	types,	but	also	the	values	allowed	in	the	column.	For
example,	a	part	color	domain	would	include	both	the	data	type,	such	as	char(6),
and	the	character	strings	allowed	in	the	column,	such	as	Red,	Blue,	Green,
Yellow,	Brown,	Black,	White,	Teal,	Grey,	and	Silver.	Domain	values	can	be
enforced	through	mechanisms	such	as	CHECK	constraints	and	triggers.

JavaScript:hhobj_1.Click()

When	a	column	has	been	assigned	a	data	type,	all	values	placed	into	the	column
must	be	of	that	data	type.	SQL	statements	can	specify	that	values	of	different
data	types	be	used	as	the	source	value	only	if	SQL	Server	can	implicitly	convert
the	source	value	data	type	to	the	data	type	of	the	column.	For	example,	SQL
Server	supports	the	implicit	conversion	of	int	values	to	decimal;	therefore,	SQL
statements	can	specify	int	values	as	the	value	to	be	assigned	to	a	decimal
column.

The	SQL	Server	2000	sql_variant	data	type	is	a	special	data	type	that	allows
you	to	store	values	of	multiple	base	data	types	in	the	same	column.	For	example,
you	can	store	nchar	values,	int	values,	and	decimal	values	in	the	same	column.
For	more	information,	see	Using	sql_variant	Data.

Null	Values
Columns	can	either	accept	or	reject	null	values.	NULL	is	a	special	value	in
databases	that	represents	the	concept	of	an	unknown	value.	NULL	is	not	the
same	as	a	blank	character	or	0.	Blank	is	actually	a	valid	character,	and	0	is	a
valid	number.	NULL	simply	represents	the	idea	that	we	do	not	know	what	this
value	is.	NULL	is	also	different	from	a	zero-length	string.	If	a	column	definition
contains	the	NOT	NULL	clause,	you	cannot	insert	rows	having	the	value	NULL
for	that	row.	If	the	column	definition	has	only	the	NULL	keyword,	it	accepts
NULL	values.

Allowing	NULL	values	in	a	column	can	increase	the	complexity	of	any	logical
comparisons	using	the	column.	The	SQL-92	standard	states	that	any	comparison
against	a	NULL	value	does	not	evaluate	to	TRUE	or	FALSE,	it	evaluates	to
UNKNOWN.	This	introduces	three-value	logic	to	comparison	operators,	which
can	be	difficult	to	manage	correctly.

System	Tables
SQL	Server	stores	the	data	defining	the	configuration	of	the	server	and	all	its
tables	in	a	special	set	of	tables	known	as	system	tables.	Users	should	not	query
or	update	the	system	tables	directly	unless	there	is	no	other	way	to	get	the	data
required	by	the	application.	Only	SQL	Server	should	reference	the	system	tables
in	response	to	administration	commands	issued	by	users.	The	system	tables	can
change	from	version	to	version;	applications	referencing	system	tables	directly
may	have	to	be	rewritten	before	they	can	be	upgraded	to	a	newer	version	of	SQL

JavaScript:hhobj_2.Click()

Server	with	a	different	version	of	the	system	tables.	SQL	Server	exposes	most	of
the	information	from	the	system	tables	through	other	means.	For	more
information,	see	System	Tables.

Temporary	Tables
SQL	Server	supports	temporary	tables.	These	tables	have	names	that	start	with	a
number	sign	(#).	If	a	temporary	table	is	not	dropped	when	a	user	disconnects,
SQL	Server	automatically	drops	the	temporary	table.	Temporary	tables	are	not
stored	in	the	current	database;	they	are	stored	in	the	tempdb	system	database.

There	are	two	types	of	temporary	tables:

Local	temporary	tables

The	names	of	these	tables	begin	with	one	number	sign	(#).	These	tables
are	visible	only	to	the	connection	that	created	them.

Global	temporary	tables

The	names	of	these	tables	begin	with	two	number	signs	(##).	These
tables	are	visible	to	all	connections.	If	the	tables	are	not	dropped
explicitly	before	the	connection	that	created	them	disconnects,	they	are
dropped	as	soon	as	all	other	tasks	stop	referencing	them.	No	new	tasks
can	reference	a	global	temporary	table	after	the	connection	that	created
it	disconnects.	The	association	between	a	task	and	a	table	is	always
dropped	when	the	current	statement	completes	executing;	therefore,
global	temporary	tables	are	usually	dropped	soon	after	the	connection
that	created	them	disconnects.

Many	traditional	uses	of	temporary	tables	can	now	be	replaced	with	variables
that	have	the	table	data	type.

Working	with	Tables
Users	work	with	the	data	in	tables	using	data	manipulation	language	(DML)
SQL	statements:

--	Get	a	list	of	all	employees	named	Smith:
SELECT	emp_first_name,	emp_last_name

JavaScript:hhobj_3.Click()

FROM	employee
WHERE	emp_last_name	=	'Smith'

--	Delete	an	employee	who	quit:
DELETE	employee
WHERE	emp_id	=	'OP123'

--	Add	a	new	employee:
INSERT	INTO	employee
VALUES	('OP456',	'Dean',	'Straight',	'01/01/1960')

--	Change	an	employee	name:
UPDATE	employee
SET	emp_last_name	=	'Smith'
WHERE	emp_id	=	'OP456'

See	Also

Specifying	a	Column	Data	Type

Tables

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

SQL	Server	Setup	Help

SQL	Views
A	view	can	be	thought	of	as	either	a	virtual	table	or	a	stored	query.	The	data
accessible	through	a	view	is	not	stored	in	the	database	as	a	distinct	object.	What
is	stored	in	the	database	is	a	SELECT	statement.	The	result	set	of	the	SELECT
statement	forms	the	virtual	table	returned	by	the	view.	A	user	can	use	this	virtual
table	by	referencing	the	view	name	in	Transact-SQL	statements	the	same	way	a
table	is	referenced.	A	view	is	used	to	do	any	or	all	of	these	functions:

Restrict	a	user	to	specific	rows	in	a	table.

For	example,	allow	an	employee	to	see	only	the	rows	recording	his	or
her	work	in	a	labor-tracking	table.

Restrict	a	user	to	specific	columns.

For	example,	allow	employees	who	do	not	work	in	payroll	to	see	the
name,	office,	work	phone,	and	department	columns	in	an	employee
table,	but	do	not	allow	them	to	see	any	columns	with	salary	information
or	personal	information.

Join	columns	from	multiple	tables	so	that	they	look	like	a	single	table.

Aggregate	information	instead	of	supplying	details.

For	example,	present	the	sum	of	a	column,	or	the	maximum	or
minimum	value	from	a	column.

Views	are	created	by	defining	the	SELECT	statement	that	retrieves	the	data	to	be
presented	by	the	view.	The	data	tables	referenced	by	the	SELECT	statement	are
known	as	the	base	tables	for	the	view.	In	this	example,	titleview	in	the	pubs
database	is	a	view	that	selects	data	from	three	base	tables	to	present	a	virtual
table	of	commonly	needed	data:

CREATE	VIEW	titleview
AS
SELECT	title,	au_ord,	au_lname,	price,	ytd_sales,	pub_id
FROM	authors	AS	a

					JOIN	titleauthor	AS	ta	ON	(a.au_id	=	ta.au_id)
					JOIN	titles	AS	t	ON	(t.title_id	=	ta.title_id)

You	can	then	reference	titleview	in	statements	in	the	same	way	you	would
reference	a	table:

SELECT	*
FROM	titleview

A	view	can	reference	another	view.	For	example,	titleview	presents	information
that	is	useful	for	managers,	but	a	company	typically	discloses	year-to-date
figures	only	in	quarterly	or	annual	financial	statements.	A	view	can	be	built	that
selects	all	the	titleview	columns	except	au_ord	and	ytd_sales.	This	new	view
can	be	used	by	customers	to	get	lists	of	available	books	without	seeing	the
financial	information:

CREATE	VIEW	Cust_titleview
AS
SELECT	title,	au_lname,	price,	pub_id
FROM	titleview

Views	can	be	used	to	partition	data	across	multiple	databases	or	instances	of
Microsoft®	SQL	Server™	2000.	Partitioned	views	can	be	used	to	distribute
database	processing	across	a	group	of	servers.	The	group	of	servers	has	the	same
performance	benefits	as	a	cluster	of	servers,	and	can	be	used	to	support	the
processing	needs	of	the	largest	Web	sites	or	corporate	data	centers.	An	original
table	is	subdivided	into	several	member	tables,	each	of	which	has	a	subset	of	the
rows	from	the	original	table.	Each	member	table	can	be	placed	in	databases	on
separate	servers.	Each	server	also	gets	a	partitioned	view.	The	partitioned	view
uses	the	Transact-SQL	UNION	operator	to	combine	the	results	of	selects	against
all	the	member	tables	into	a	single	result	set	that	behaves	exactly	like	a	copy	of
the	full	original	table.	For	example,	a	table	is	partitioned	across	three	servers.	On
the	first	server	you	define	a	partitioned	view	similar	to	this:

CREATE	VIEW	PartitionedView	AS
SELECT	*
				FROM	MyDatabase.dbo.PartitionTable1

UNION	ALL
SELECT	*
				FROM	Server2.MyDatabase.dbo.PartitionTable2
UNION	ALL
SELECT	*
				FROM	Server3.MyDatabase.dbo.PartitionTable3

You	define	similar	partitioned	views	on	each	of	the	other	servers.	With	these
three	views,	any	Transact-SQL	statements	on	any	of	the	three	servers	that
reference	PartitionedView	will	see	the	same	behavior	as	from	the	original	table.
It	is	as	if	a	copy	of	the	original	table	exists	on	each	server,	when	in	fact	there	is
only	one	member	table	and	a	partitioned	view	on	each	table.	For	more
information,	see	Scenarios	for	Using	Views.

Views	in	all	versions	of	SQL	Server	are	updatable	(can	be	the	target	of
UPDATE,	DELETE,	or	INSERT	statements),	as	long	as	the	modification	affects
only	one	of	the	base	tables	referenced	by	the	view,	for	example:

--	Increase	the	prices	for	publisher	'0736'	by	10%.
UPDATE	titleview
SET	price	=	price	*	1.10
WHERE	pub_id	=	'0736'
GO

SQL	Server	2000	supports	more	complex	types	of	INSERT,	UPDATE,	and
DELETE	statements	that	reference	views.	INSTEAD	OF	triggers	can	be	defined
on	a	view	to	specify	the	individual	updates	that	must	be	performed	against	the
base	tables	to	support	the	INSERT,	UPDATE,	or	DELETE	statement.	Also,
partitioned	views	support	INSERT,	UDPATE,	and	DELETE	statements	that
modify	multiple	member	tables	referenced	by	the	view.

Indexed	views	are	a	SQL	Server	2000	feature	that	greatly	improves	the
performance	of	complex	views	of	the	type	usually	found	in	data	warehouses	or
other	decision	support	systems.

Views	are	called	virtual	tables	because	the	result	set	of	a	view	is	us	not	usually
saved	in	the	database	The	result	set	for	a	view	is	dynamically	incorporated	into
the	logic	of	the	statement	and	the	result	set	is	built	dynamically	at	run	time.	For

JavaScript:hhobj_1.Click()

more	information,	see	View	Resolution.

Complex	queries,	such	as	those	in	decision	support	systems,	can	reference	large
numbers	of	rows	in	base	tables,	and	aggregate	large	amounts	of	information	into
relatively	concise	aggregates	such	as	sums	or	averages.	SQL	Server	2000
supports	creating	a	clustered	index	on	a	view	that	implements	such	a	complex
query.	When	the	CREATE	INDEX	statement	is	executed	the	result	set	of	the
view	SELECT	is	stored	permanently	in	the	database.	Future	SQL	statements	that
reference	the	view	will	have	substantially	better	response	times.	Modifications	to
the	base	data	are	automatically	reflected	in	the	view.

The	SQL	Server	2000	CREATE	VIEW	statement	supports	a
SCHEMABINDING	option	that	prevents	the	tables	referenced	by	the	view	being
changed	without	adjusting	the	view.	You	must	specify	SCHEMABINDING	for
any	view	on	which	you	create	an	index.

See	Also

CREATE	INDEX

CREATE	TRIGGER

CREATE	VIEW

Designing	an	Indexed	View

Views

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

SQL	Server	Setup	Help

SQL	Stored	Procedures
A	stored	procedure	is	a	group	of	Transact-SQL	statements	compiled	into	a	single
execution	plan.

Microsoft®	SQL	Server™	2000	stored	procedures	return	data	in	four	ways:

Output	parameters,	which	can	return	either	data	(such	as	an	integer	or
character	value)	or	a	cursor	variable	(cursors	are	result	sets	that	can	be
retrieved	one	row	at	a	time).

Return	codes,	which	are	always	an	integer	value.

A	result	set	for	each	SELECT	statement	contained	in	the	stored
procedure	or	any	other	stored	procedures	called	by	the	stored	procedure.

A	global	cursor	that	can	be	referenced	outside	the	stored	procedure.

Stored	procedures	assist	in	achieving	a	consistent	implementation	of	logic	across
applications.	The	SQL	statements	and	logic	needed	to	perform	a	commonly
performed	task	can	be	designed,	coded,	and	tested	once	in	a	stored	procedure.
Each	application	needing	to	perform	that	task	can	then	simply	execute	the	stored
procedure.	Coding	business	logic	into	a	single	stored	procedure	also	offers	a
single	point	of	control	for	ensuring	that	business	rules	are	correctly	enforced.

Stored	procedures	can	also	improve	performance.	Many	tasks	are	implemented
as	a	series	of	SQL	statements.	Conditional	logic	applied	to	the	results	of	the	first
SQL	statements	determines	which	subsequent	SQL	statements	are	executed.	If
these	SQL	statements	and	conditional	logic	are	written	into	a	stored	procedure,
they	become	part	of	a	single	execution	plan	on	the	server.	The	results	do	not
have	to	be	returned	to	the	client	to	have	the	conditional	logic	applied;	all	of	the
work	is	done	on	the	server.	The	IF	statement	in	this	example	shows	embedding
conditional	logic	in	a	procedure	to	keep	from	sending	a	result	set	to	the
application:

IF	(@QuantityOrdered	<	(SELECT	QuantityOnHand

																		FROM	Inventory
																		WHERE	PartID	=	@PartOrdered))
			BEGIN
			--	SQL	statements	to	update	tables	and	process	order.
			END
ELSE
			BEGIN
			--	SELECT	statement	to	retrieve	the	IDs	of	alternate	items
			--	to	suggest	as	replacements	to	the	customer.
			END

Applications	do	not	need	to	transmit	all	of	the	SQL	statements	in	the	procedure:
they	have	to	transmit	only	an	EXECUTE	or	CALL	statement	containing	the
name	of	the	procedure	and	the	values	of	the	parameters.

Stored	procedures	can	also	shield	users	from	needing	to	know	the	details	of	the
tables	in	the	database.	If	a	set	of	stored	procedures	supports	all	of	the	business
functions	users	need	to	perform,	users	never	need	to	access	the	tables	directly;
they	can	just	execute	the	stored	procedures	that	model	the	business	processes
with	which	they	are	familiar.

An	illustration	of	this	use	of	stored	procedures	is	the	SQL	Server	system	stored
procedures	used	to	insulate	users	from	the	system	tables.	SQL	Server	includes	a
set	of	system	stored	procedures	whose	names	usually	start	with	sp_.	These
system	stored	procedures	support	all	of	the	administrative	tasks	required	to	run	a
SQL	Server	system.	You	can	administer	a	SQL	Server	system	using	the
Transact-SQL	administration-related	statements	(such	as	CREATE	TABLE)	or
the	system	stored	procedures,	and	never	need	to	directly	update	the	system
tables.

Stored	Procedures	and	Execution	Plans
In	SQL	Server	version	6.5	and	earlier,	stored	procedures	were	a	way	to	partially
precompile	an	execution	plan.	At	the	time	the	stored	procedure	was	created,	a
partially	compiled	execution	plan	was	stored	in	a	system	table.	Executing	a
stored	procedure	was	more	efficient	than	executing	an	SQL	statement	because
SQL	Server	did	not	have	to	compile	an	execution	plan	completely,	it	only	had	to

finish	optimizing	the	stored	plan	for	the	procedure.	Also,	the	fully	compiled
execution	plan	for	the	stored	procedure	was	retained	in	the	SQL	Server
procedure	cache,	meaning	that	subsequent	executions	of	the	stored	procedure
could	use	the	precompiled	execution	plan.

SQL	Server	2000	and	SQL	Server	version	7.0	incorporate	a	number	of	changes
to	statement	processing	that	extend	many	of	the	performance	benefits	of	stored
procedures	to	all	SQL	statements.	SQL	Server	2000	and	SQL	Server	7.0	do	not
save	a	partially	compiled	plan	for	stored	procedures	when	they	are	created.	A
stored	procedure	is	compiled	at	execution	time,	like	any	other	Transact-SQL
statement.	SQL	Server	2000	and	SQL	Server	7.0	retain	execution	plans	for	all
SQL	statements	in	the	procedure	cache,	not	just	stored	procedure	execution
plans.	The	database	engine	uses	an	efficient	algorithm	for	comparing	new
Transact-SQL	statements	with	the	Transact-SQL	statements	of	existing	execution
plans.	If	the	database	engine	determines	that	a	new	Transact-SQL	statement
matches	the	Transact-SQL	statement	of	an	existing	execution	plan,	it	reuses	the
plan.	This	reduces	the	relative	performance	benefit	of	precompiling	stored
procedures	by	extending	execution	plan	reuse	to	all	SQL	statements.

SQL	Server	2000	and	SQL	Server	version	7.0	offer	new	alternatives	for
processing	SQL	statements.	For	more	information,	see	Query	Processor
Architecture.

Temporary	Stored	Procedures
SQL	Server	2000	also	supports	temporary	stored	procedures	that,	like	temporary
tables,	are	dropped	automatically	when	you	disconnect.	Temporary	stored
procedures	are	stored	in	tempdb	and	are	useful	when	connected	to	earlier
versions	of	SQL	Server.	Temporary	stored	procedures	can	be	used	when	an
application	builds	dynamic	Transact-SQL	statements	that	are	executed	several
times.	Rather	than	have	the	Transact-SQL	statements	recompiled	each	time,	you
can	create	a	temporary	stored	procedure	that	is	compiled	on	the	first	execution,
and	then	execute	the	precompiled	plan	multiple	times.	Heavy	use	of	temporary
stored	procedures,	however,	can	lead	to	contention	on	the	system	tables	in
tempdb.

Two	features	of	SQL	Server	2000	and	SQL	Server	7.0	eliminate	the	need	for
using	temporary	stored	procedures:

JavaScript:hhobj_1.Click()

Execution	plans	from	prior	SQL	statements	can	be	reused.	This	is
especially	powerful	when	coupled	with	the	use	of	the	new
sp_executesql	system	stored	procedure.

Natively	support	for	the	prepare/execute	model	of	OLE	DB	and	ODBC
without	using	any	stored	procedures.

For	more	information	about	alternatives	to	using	temporary	stored	procedures,
see	Execution	Plan	Caching	and	Reuse.

Stored	Procedure	Example
This	simple	stored	procedure	example	illustrates	three	ways	stored	procedures
can	return	data:

1.	 It	first	issues	a	SELECT	statement	that	returns	a	result	set
summarizing	the	order	activity	for	the	stores	in	the	sales	table.

2.	 It	then	issues	a	SELECT	statement	that	fills	an	output	parameter.

3.	 Finally,	it	has	a	RETURN	statement	with	a	SELECT	statement	that
returns	an	integer.	Return	codes	are	generally	used	to	pass	back	error
checking	information.	This	procedure	runs	without	errors,	so	it	returns
another	value	to	illustrate	how	returned	codes	are	filled.

USE	Northwind
GO
DROP	PROCEDURE	OrderSummary
GO
CREATE	PROCEDURE	OrderSummary	@MaxQuantity	INT	OUTPUT	AS
--	SELECT	to	return	a	result	set	summarizing
--	employee	sales.
SELECT	Ord.EmployeeID,	SummSales	=	SUM(OrDet.UnitPrice	*	OrDet.Quantity)
FROM	Orders	AS	Ord
					JOIN	[Order	Details]	AS	OrDet	ON	(Ord.OrderID	=	OrDet.OrderID)

JavaScript:hhobj_2.Click()

GROUP	BY	Ord.EmployeeID
ORDER	BY	Ord.EmployeeID

--	SELECT	to	fill	the	output	parameter	with	the
--	maximum	quantity	from	Order	Details.
SELECT	@MaxQuantity	=	MAX(Quantity)	FROM	[Order	Details]

--	Return	the	number	of	all	items	ordered.
RETURN	(SELECT	SUM(Quantity)	FROM	[Order	Details])
GO

--	Test	the	stored	procedure.

--	DECLARE	variables	to	hold	the	return	code
--	and	output	parameter.
DECLARE	@OrderSum	INT
DECLARE	@LargestOrder	INT

--	Execute	the	procedure,	which	returns
--	the	result	set	from	the	first	SELECT.
EXEC	@OrderSum	=	OrderSummary	@MaxQuantity	=	@LargestOrder	OUTPUT

--	Use	the	return	code	and	output	parameter.
PRINT	'The	size	of	the	largest	single	order	was:	'	+
																	CONVERT(CHAR(6),	@LargestOrder)
PRINT	'The	sum	of	the	quantities	ordered	was:	'	+
																	CONVERT(CHAR(6),	@OrderSum)
GO

The	output	from	running	this	sample	is:

EmployeeID		SummSales																		
-----------	--------------------------	
1											202,143.71																	

2											177,749.26																	
3											213,051.30																	
4											250,187.45																	
5											75,567.75																		
6											78,198.10																		
7											141,295.99																	
8											133,301.03																	
9											82,964.00																		
The	size	of	the	largest	single	order	was:	130	
The	sum	of	the	quantities	ordered	was:	51317

See	Also

Stored	Procedures

JavaScript:hhobj_3.Click()

SQL	Server	Setup	Help

SQL	User-Defined	Functions
Functions	in	programming	languages	are	subroutines	used	to	encapsulate
frequently	performed	logic.	Any	code	that	must	perform	the	logic	incorporated
in	a	function	can	call	the	function	rather	than	having	to	repeat	all	of	the	function
logic.

Microsoft®	SQL	Server™	2000	supports	two	types	of	functions:

Built-in	functions

Operate	as	defined	in	the	Transact-SQL	Reference	and	cannot	be
modified.	The	functions	can	be	referenced	only	in	Transact-SQL
statements	using	the	syntax	defined	in	the	Transact-SQL	Reference.	For
more	information	about	these	built-in	functions,	see	Using	Functions.

User-defined	functions

Allow	you	to	define	your	own	Transact-SQL	functions	using	the
CREATE	FUNCTION	statement.	For	more	information	about	these
built-in	functions,	see	User-defined	Functions.

User-defined	functions	take	zero	or	more	input	parameters,	and	return	a	single
value.	Some	user-defined	functions	return	a	single,	scalar	data	value,	such	as	an
int,	char,	or	decimal	value.

For	example,	this	statement	creates	a	simple	function	that	returns	a	decimal:

CREATE	FUNCTION	CubicVolume
--	Input	dimensions	in	centimeters.
			(@CubeLength	decimal(4,1),	@CubeWidth	decimal(4,1),
				@CubeHeight	decimal(4,1))
RETURNS	decimal(12,3)	--	Cubic	Centimeters.
AS
BEGIN
			RETURN	(@CubeLength	*	@CubeWidth	*	@CubeHeight)
END

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

This	function	can	then	be	used	anywhere	an	integer	expression	is	allowed,	such
as	in	a	computed	column	for	a	table:

CREATE	TABLE	Bricks
			(
				BrickPartNmbr			int	PRIMARY	KEY,
				BrickColor						nchar(20),
				BrickHeight					decimal(4,1),
				BrickLength					decimal(4,1),
				BrickWidth						decimal(4,1),
				BrickVolume	AS
														(
															dbo.CubicVolume(BrickHeight,
																									BrickLength,	BrickWidth)
)
)

SQL	Server	2000	also	supports	user-defined	functions	that	return	a	table	data
type:

A	function	can	declare	an	internal	table	variable,	insert	rows	into	the
variable,	and	then	return	the	variable	as	its	return	value.

A	class	of	user-defined	functions	known	as	in-line	functions,	return	the
result	set	of	a	SELECT	statement	as	a	variable	of	type	table.

These	functions	can	be	used	in	places	where	table	expressions	can	be	specified.
For	more	information	about	the	table	data	type,	see	Using	Special	Data.

User-defined	functions	that	return	a	table	can	be	powerful	alternatives	to	views.
A	user-defined	function	that	returns	a	table	can	be	used	where	table	or	view
expressions	are	allowed	in	Transact-SQL	queries.	Views	are	limited	to	a	single
SELECT	statement;	however,	user-defined	functions	can	contain	additional
statements	that	allow	more	powerful	logic	than	is	possible	in	views.

A	user-defined	function	that	returns	a	table	can	also	replace	stored	procedures
that	return	a	single	result	set.	The	table	returned	by	a	user-defined	function	can

JavaScript:hhobj_3.Click()

be	referenced	in	the	FROM	clause	of	a	Transact-SQL	statement,	whereas	stored
procedures	that	return	result	sets	cannot.	For	example,	fn_EmployeesInDept	is
a	user-defined	function	that	returns	a	table	and	can	be	invoked	by	a	SELECT
statement:

SELECT	*
FROM	tb_Employees	AS	E,
					dbo.fn_EmployeesInDept('shipping')	AS	EID
WHERE	E.EmployeeID	=	EID.EmployeeID

This	is	an	example	of	a	statement	that	creates	a	function	in	the	Northwind
database	that	will	return	a	table:

CREATE	FUNCTION	LargeOrderShippers	(@FreightParm	money)
RETURNS	@OrderShipperTab	TABLE
			(
				ShipperID					int,
				ShipperName			nvarchar(80),
				OrderID							int,
				ShippedDate			datetime,
				Freight							money
)
AS
BEGIN
			INSERT	@OrderShipperTab
								SELECT	S.ShipperID,	S.CompanyName,
															O.OrderID,	O.ShippedDate,	O.Freight
								FROM	Shippers	AS	S
													INNER	JOIN	Orders	AS	O	ON	(S.ShipperID	=	O.ShipVia)
								WHERE	O.Freight	>	@FreightParm
			RETURN
END

In	this	function,	the	local	return	variable	name	is	@OrderShipperTab.
Statements	in	the	function	build	the	table	result	returned	by	the	function	by

inserting	rows	into	the	variable	@OrderShipperTab.	External	statements
invoke	the	function	to	reference	the	table	returned	by	the	function:

SELECT	*
FROM	LargeOrderShippers($500)

SQL	Server	Setup	Help

Constraints,	Rules,	Defaults,	and	Triggers
Table	columns	have	properties	other	than	data	type	and	size.	These	other
properties	are	an	important	part	in	ensuring	the	integrity	of	data	in	a	database:

Data	integrity	refers	to	each	occurrence	of	a	column	having	a	correct
data	value.

The	data	values	must	be	of	the	right	data	type	and	in	the	correct	domain.

Referential	integrity	indicates	that	the	relationships	between	tables	have
been	properly	maintained.

Data	in	one	table	should	only	point	to	existing	rows	in	another	table;	it
should	not	point	to	rows	that	do	not	exist.

Objects	used	to	maintain	both	types	of	integrity	include:

Constraints

Rules

Defaults

Triggers

SQL	Server	Setup	Help

Constraints
Constraints	allow	you	to	define	the	way	Microsoft®	SQL	Server™	2000
automatically	enforces	the	integrity	of	a	database.	Constraints	define	rules
regarding	the	values	allowed	in	columns	and	are	the	standard	mechanism	for
enforcing	integrity.	Using	constraints	is	preferred	to	using	triggers,	rules,	and
defaults.	The	query	optimizer	also	uses	constraint	definitions	to	build	high-
performance	query	execution	plans.

Classes	of	Constraints
SQL	Server	2000	supports	five	classes	of	constraints.

NOT	NULL	specifies	that	the	column	does	not	accept	NULL	values.

CHECK	constraints	enforce	domain	integrity	by	limiting	the	values	that
can	be	placed	in	a	column.

A	CHECK	constraint	specifies	a	Boolean	(evaluates	to	TRUE	or
FALSE)	search	condition	that	is	applied	to	all	values	entered	for	the
column;	all	values	that	do	not	evaluate	to	TRUE	are	rejected.	You	can
specify	multiple	CHECK	constraints	for	each	column.	This	sample
shows	the	creation	of	a	named	constraint,	chk_id,	that	further	enforces
the	domain	of	the	primary	key	by	ensuring	that	only	numbers	within	a
specified	range	are	entered	for	the	key.

CREATE	TABLE	cust_sample
				(
				cust_id																int								PRIMARY	KEY,
				cust_name												char(50),
				cust_address												char(50),
				cust_credit_limit				money,
				CONSTRAINT	chk_id	CHECK	(cust_id	BETWEEN	0	and	10000)
)

UNIQUE	constraints	enforce	the	uniqueness	of	the	values	in	a	set	of
columns.

No	two	rows	in	the	table	are	allowed	to	have	the	same	not	null	values
for	the	columns	in	a	UNIQUE	constraint.	Primary	keys	also	enforce
uniqueness,	but	primary	keys	do	not	allow	null	values.	A	UNIQUE
constraint	is	preferred	over	a	unique	index.

PRIMARY	KEY	constraints	identify	the	column	or	set	of	columns
whose	values	uniquely	identify	a	row	in	a	table.

No	two	rows	in	a	table	can	have	the	same	primary	key	value.	You
cannot	enter	a	NULL	for	any	column	in	a	primary	key.	NULL	is	a
special	value	in	databases	that	represents	an	unknown	value,	which	is
distinct	from	a	blank	or	0	value.	Using	a	small,	integer	column	as	a
primary	key	is	recommended.	Each	table	should	have	a	primary	key.

A	table	may	have	more	than	one	combination	of	columns	that	could
uniquely	identify	the	rows	in	a	table;	each	combination	is	a	candidate
key.	The	database	administrator	picks	one	of	the	candidate	keys	to	be
the	primary	key.	For	example,	in	the	part_sample	table	both
part_nmbr	and	part_name	could	be	candidate	keys,	but	only
part_nmbr	is	chosen	as	a	primary	key.

CREATE	TABLE	part_sample
												(part_nmbr								int												PRIMARY	KEY,
												part_name								char(30),
												part_weight								decimal(6,2),
												part_color								char(15))

FOREIGN	KEY	constraints	identify	the	relationships	between	tables.

A	foreign	key	in	one	table	points	to	a	candidate	key	in	another	table.
Foreign	keys	prevent	actions	that	would	leave	rows	with	foreign	key
values	when	there	are	no	candidate	keys	with	that	value.	In	the
following	sample,	the	order_part	table	establishes	a	foreign	key
referencing	the	part_sample	table	defined	earlier.	Usually,	order_part
would	also	have	a	foreign	key	against	an	order	table,	but	this	is	a	simple
example.

CREATE	TABLE	order_part
								(order_nmbr								int,
								part_nmbr								int
												FOREIGN	KEY	REFERENCES	part_sample(part_nmbr)
																ON	DELETE	NO	ACTION,
								qty_ordered								int)
GO

You	cannot	insert	a	row	with	a	foreign	key	value	(except	NULL)	if
there	is	no	candidate	key	with	that	value.	The	ON	DELETE	clause
controls	what	actions	are	taken	if	you	attempt	to	delete	a	row	to	which
existing	foreign	keys	point.	The	ON	DELETE	clause	has	two	options:

NO	ACTION	specifies	that	the	deletion	fails	with	an	error.

CASCADE	specifies	that	all	the	rows	with	foreign	keys
pointing	to	the	deleted	row	are	also	deleted.

The	ON	UPDATE	clause	defines	the	actions	that	are	taken	if	you
attempt	to	update	a	candidate	key	value	to	which	existing	foreign	keys
point.	It	also	supports	the	NO	ACTION	and	CASCADE	options.

Column	and	Table	Constraints

Constraints	can	be	column	constraints	or	table	constraints:

A	column	constraint	is	specified	as	part	of	a	column	definition	and
applies	only	to	that	column	(the	constraints	in	the	earlier	samples	are
column	constraints).

A	table	constraint	is	declared	independently	from	a	column	definition
and	can	apply	to	more	than	one	column	in	a	table.

Table	constraints	must	be	used	when	more	than	one	column	must	be	included	in
a	constraint.

For	example,	if	a	table	has	two	or	more	columns	in	the	primary	key,	you	must

use	a	table	constraint	to	include	both	columns	in	the	primary	key.	Consider	a
table	that	records	events	happening	in	a	computer	in	a	factory.	Assume	that
events	of	several	types	can	happen	at	the	same	time,	but	that	no	two	events
happening	at	the	same	time	can	be	of	the	same	type.	This	can	be	enforced	in	the
table	by	including	both	the	type	and	time	columns	in	a	two-column	primary	key.

CREATE	TABLE	factory_process
			(event_type			int,
			event_time			datetime,
			event_site			char(50),
			event_desc			char(1024),
CONSTRAINT	event_key	PRIMARY	KEY	(event_type,	event_time))

See	Also

CREATE	TABLE

Creating	and	Modifying	a	Table

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

Rules
Rules	are	a	backward-compatibility	feature	that	perform	some	of	the	same
functions	as	CHECK	constraints.	CHECK	constraints	are	the	preferred,	standard
way	to	restrict	the	values	in	a	column.	CHECK	constraints	are	also	more	concise
than	rules;	there	can	only	be	one	rule	applied	to	a	column,	but	multiple	CHECK
constraints	can	be	applied.	CHECK	constraints	are	specified	as	part	of	the
CREATE	TABLE	statement,	while	rules	are	created	as	separate	objects	and	then
bound	to	the	column.

This	example	creates	a	rule	that	performs	the	same	function	as	the	CHECK
constraint	example	in	the	preceding	topic.	The	CHECK	constraint	is	the
preferred	method	to	use	in	Microsoft®	SQL	Server™	2000.

CREATE	RULE	id_chk	AS	@id	BETWEEN	0	and	10000
GO
CREATE	TABLE	cust_sample
			(
			cust_id												int
			PRIMARY	KEY,
			cust_name									char(50),
			cust_address									char(50),
			cust_credit_limit			money,
)
GO
sp_bindrule	id_chk,	'cust_sample.cust_id'
GO

See	Also

CREATE	TABLE

Creating	and	Modifying	a	Table

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

Defaults
Defaults	specify	what	values	are	used	in	a	column	if	you	do	not	specify	a	value
for	the	column	when	inserting	a	row.	Defaults	can	be	anything	that	evaluates	to	a
constant,	such	as:

Constant

Built-in	function

Mathematical	expression

There	are	two	ways	to	apply	defaults:

Create	a	default	definition	using	the	DEFAULT	keyword	in	CREATE
TABLE	to	assign	a	constant	expression	as	a	default	on	a	column.

This	is	the	preferred,	standard	method.	It	is	also	the	more	concise	way
to	specify	a	default.

Create	a	default	object	using	the	CREATE	DEFAULT	statement	and
bind	it	to	columns	using	the	sp_bindefault	system	stored	procedure.

This	is	a	backward	compatibility	feature.

This	example	creates	a	table	using	one	of	each	type	of	default.	It	creates	a
default	object	to	assign	a	default	to	one	column,	and	binds	the	default	object	to
the	column.	It	then	does	a	test	insert	without	specifying	values	for	the	columns
with	defaults	and	retrieves	the	test	row	to	verify	the	defaults	were	applied.

USE	pubs
GO
CREATE	TABLE	test_defaults
			(keycol						smallint,
			process_id			smallint	DEFAULT	@@SPID,			--Preferred	default	definition
			date_ins			datetime	DEFAULT	getdate(),			--Preferred	default	definition

			mathcol						smallint	DEFAULT	10	*	2,			--Preferred	default	definition
			char1						char(3),
			char2						char(3)	DEFAULT	'xyz')	--Preferred	default	definition
GO
/*	Illustration	only,	use	DEFAULT	definitions	instead.*/
CREATE	DEFAULT	abc_const	AS	'abc'
GO
sp_bindefault	abc_const,	'test_defaults.char1'
GO
INSERT	INTO	test_defaults(keycol)	VALUES	(1)
GO
SELECT	*	FROM	test_defaults
GO

The	output	of	this	sample	is:

Default	bound	to	column.

(1	row(s)	affected)

keycol	process_id	date_ins																				mathcol	char1	char2	
------	----------	---------------------------	-------	-----	-----	
1						7										Oct	16	1997		8:34PM									20						abc			xyz			

(1	row(s)	affected)

See	Also

CREATE	TABLE

Creating	and	Modifying	a	Table

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

Triggers
Microsoft®	SQL	Server™	2000	triggers	are	a	special	class	of	stored	procedure
defined	to	execute	automatically	when	an	UPDATE,	INSERT,	or	DELETE
statement	is	issued	against	a	table	or	view.	Triggers	are	powerful	tools	that	sites
can	use	to	enforce	their	business	rules	automatically	when	data	is	modified.
Triggers	can	extend	the	integrity	checking	logic	of	SQL	Server	constraints,
defaults,	and	rules,	although	constraints	and	defaults	should	be	used	instead
whenever	they	provide	all	the	needed	functionality.

Tables	can	have	multiple	triggers.	The	CREATE	TRIGGER	statement	can	be
defined	with	the	FOR	UPDATE,	FOR	INSERT,	or	FOR	DELETE	clauses	to
target	a	trigger	to	a	specific	class	of	data	modification	actions.	When	FOR
UPDATE	is	specified,	the	IF	UPDATE	(column_name)	clause	can	be	used	to
target	a	trigger	to	updates	affecting	a	particular	column.

Triggers	can	automate	the	processing	for	a	company.	In	an	inventory	system,
update	triggers	can	detect	when	a	stock	level	reaches	a	reorder	point	and
generate	an	order	to	the	supplier	automatically.	In	a	database	recording	the
processes	in	a	factory,	triggers	can	e-mail	or	page	operators	when	a	process
exceeds	defined	safety	limits.

The	following	trigger	generates	an	e-mail	whenever	a	new	title	is	added	in	the
pubs	database:

CREATE	TRIGGER	reminder
ON	titles
FOR	INSERT
AS
			EXEC	master..xp_sendmail	'MaryM',
						'New	title,	mention	in	the	next	report	to	distributors.'

Triggers	contain	Transact-SQL	statements,	much	the	same	as	stored	procedures.
Triggers,	like	stored	procedures,	return	the	result	set	generated	by	any	SELECT
statements	in	the	trigger.	Including	SELECT	statements	in	triggers,	except
statements	that	only	fill	parameters,	is	not	recommended.	This	is	because	users

do	not	expect	to	see	any	result	sets	returned	by	an	UPDATE,	INSERT,	or
DELETE	statement.

You	can	use	the	FOR	clause	to	specify	when	a	trigger	is	executed:

AFTER

The	trigger	executes	after	the	statement	that	triggered	it	completes.	If
the	statement	fails	with	an	error,	such	as	a	constraint	violation	or	syntax
error,	the	trigger	is	not	executed.	AFTER	triggers	cannot	be	specified
for	views,	they	can	only	be	specified	for	tables.	You	can	specify
multiple	AFTER	triggers	for	each	triggering	action	(INSERT,	UPDATE,
or	DELETE).	If	you	have	multiple	AFTER	triggers	for	a	table,	you	can
use	sp_settriggerorder	to	define	which	AFTER	trigger	fires	first	and
which	fires	last.	All	other	AFTER	triggers	besides	the	first	and	last	fire
in	an	undefined	order	which	you	cannot	control.

AFTER	is	the	default	in	SQL	Server	2000.	You	could	not	specify
AFTER	or	INSTEAD	OF	in	SQL	Server	version	7.0	or	earlier,	all
triggers	in	those	versions	operated	as	AFTER	triggers.

INSTEAD	OF

The	trigger	executes	in	place	of	the	triggering	action.	INSTEAD	OF
triggers	can	be	specified	on	both	tables	and	views.	You	can	define	only
one	INSTEAD	OF	trigger	for	each	triggering	action	(INSERT,
UPDATE,	and	DELETE).	INSTEAD	OF	triggers	can	be	used	to
perform	enhance	integrity	checks	on	the	data	values	supplied	in
INSERT	and	UPDATE	statements.	INSTEAD	OF	triggers	also	let	you
specify	actions	that	allow	views,	which	would	normally	not	support
updates,	to	be	updatable.

See	Also

Enforcing	Business	Rules	with	Triggers

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Collations
The	physical	storage	of	character	strings	in	Microsoft®	SQL	Server™	2000	is
controlled	by	collations.	A	collation	specifies	the	bit	patterns	that	represent	each
character	and	the	rules	by	which	characters	are	sorted	and	compared.

SQL	Server	2000	supports	objects	that	have	different	collations	being	stored	in	a
single	database.	Separate	SQL	Server	2000	collations	can	be	specified	down	to
the	level	of	columns.	Each	column	in	a	table	can	be	assigned	different	collations.
Earlier	versions	of	SQL	Server	support	only	one	collation	for	each	instance	of
SQL	Server.	All	databases	and	database	objects	created	in	an	instance	of	SQL
Server	7.0	or	earlier	have	the	same	collation.

How	Character	Data	Is	Stored
In	a	computer,	characters	are	represented	by	different	patterns	of	bits	being	either
ON	or	OFF.	There	are	8	bits	in	a	byte,	and	the	8	bits	can	be	turned	ON	and	OFF
in	256	different	patterns.	A	program	that	uses	1	byte	to	store	each	character	can
therefore	represent	up	to	256	different	characters	by	assigning	a	character	to
each	of	the	bit	patterns.	There	are	16	bits	in	2	bytes,	and	16	bits	can	be	turned
ON	and	OFF	in	65,536	unique	patterns.	A	program	that	uses	2	bytes	to	represent
each	character	can	represent	up	to	65,536	characters.

Single-byte	code	pages	are	definitions	of	the	characters	mapped	to	each	of	the
256	bit	patterns	possible	in	a	byte.	Code	pages	define	bit	patterns	for	uppercase
and	lowercase	characters,	digits,	symbols,	and	special	characters	such	as	!,	@,	#,
or	%.	Each	European	language,	such	as	German	or	Spanish,	has	its	own	single-
byte	code	page.	Although	the	bit	patterns	used	to	represent	the	Latin	alphabet
characters	A	through	Z	are	the	same	for	all	the	code	pages,	the	bit	patterns	used
to	represent	accented	characters	such	as	'é'	and	'á'	vary	from	one	code	page	to	the
next.	If	data	is	exchanged	between	computers	running	different	code	pages,	all
character	data	must	be	converted	from	the	code	page	of	the	sending	computer	to
the	code	page	of	the	receiving	computer.	If	the	source	data	has	extended
characters	that	are	not	defined	in	the	code	page	of	the	receiving	computer,	data	is
lost.	When	a	database	serves	clients	from	many	different	countries,	it	is	difficult
to	pick	a	code	page	for	the	database	that	contains	all	the	extended	characters
required	by	all	the	client	computers.	Also,	there	is	a	lot	of	processing	time	spent

doing	the	constant	conversions	from	one	code	page	to	another.

Single-byte	character	sets	are	also	inadequate	to	store	all	the	characters	used	by
many	languages.	For	example,	some	Asian	languages	have	thousands	of
characters,	so	must	use	two	bytes	per	character.	Double-byte	character	sets	have
been	defined	for	these	languages.	Still,	each	of	these	languages	have	their	own
code	page,	and	there	are	difficulties	in	transferring	data	from	a	computer	running
one	double-byte	code	page	to	a	computer	running	another.

SQL	Server	2000	supports	these	code	pages.

Code	page Description
1258 Vietnamese
1257 Baltic
1256 Arabic
1255 Hebrew
1254 Turkish
1253 Greek
1252 Latin1	(ANSI)
1251 Cyrillic
1250 Central	European
950 Chinese	(Traditional)
949 Korean
936 Chinese	(Simplified)
932 Japanese
874 Thai
850 Multilingual	(MS-DOS	Latin1)
437 MS-DOS	U.S.	English

To	address	the	character	conversion	and	interpretation	problems	that	occur	when
trying	to	support	multiple	code	pages	in	a	network,	the	ISO	standards
organization	and	a	group	called	the	Unicode	Consortium	defined	the	Unicode
standard.	Unicode	uses	two	bytes	to	store	each	character.	Because	65,536
characters	are	enough	to	cover	all	the	commonly	used	characters	from	all	the
languages	of	the	world,	all	major	languages	are	covered	by	the	Unicode
standard.	If	all	the	computers	and	programs	in	a	network	use	Unicode,	there	is
no	need	for	any	character	conversions,	each	user	will	see	exactly	the	same

characters	as	all	other	users,	and	no	loss	of	characters	will	occur.

On	computers	running	Microsoft	Windows®	operating	systems,	the	code	page
used	by	the	operating	system	and	Windows	applications	is	defined	by	the
Windows	locale.	The	locale	is	selected	when	the	operating	system	is	installed.
Windows	applications	interpret	character	data	using	the	code	page	defined	by	the
Windows	locale.	Windows	applications	also	support	wide	character,	or	Unicode,
data.

SQL	Server	2000	supports	two	categories	of	character	data	types:

The	Unicode	data	types	nchar,	nvarchar,	and	ntext.	These	data	types
use	the	Unicode	character	representation.	Code	pages	do	not	apply	to
these	data	types.

The	non-Unicode	character	data	types	char,	varchar,	and	text.	These
data	types	use	the	character	representation	scheme	defined	in	a	single	or
double-byte	code	page.

For	more	information	about	how	character	data	is	stored	and	the	operation	of
code	pages,	Unicode,	and	sort	orders,	see	Developing	International	Software	for
Windows	95	and	Windows	NT	4.0	in	the	MSDN®	page	at
http://msdn.microsoft.com.

International	Data	and	Unicode
Storing	data	in	multiple	languages	within	one	database	is	difficult	to	manage
when	using	only	character	data	and	code	pages.	It	is	difficult	to	find	one	code
page	for	the	database	that	can	store	all	the	required	language-specific	characters.
It	is	also	difficult	to	ensure	the	proper	translation	of	special	characters	when
being	read	or	updated	by	different	clients	running	various	code	pages.	Databases
that	support	international	clients	should	always	use	Unicode	data	types	instead
of	non-Unicode	data	types.

For	example,	a	database	of	customers	in	North	America	has	to	handle	three
major	languages:

Spanish	names	and	addresses	for	Mexico.

http://msdn.microsoft.com/default.asp

French	names	and	addresses	for	Quebec.

English	names	and	addresses	for	the	rest	of	Canada	and	the	United
States.

When	you	use	only	character	columns	and	code	pages,	care	has	to	be	taken	to
ensure	the	database	is	installed	with	a	code	page	that	will	handle	the	characters
of	all	three	languages.	More	care	must	be	taken	to	ensure	the	proper	translation
of	characters	from	one	of	the	languages	when	read	by	clients	running	a	code
page	for	another	language.

With	the	growth	of	the	Internet,	it	is	becoming	more	important	than	ever	before
to	support	many	client	computers	running	different	locales.	It	is	difficult	to	pick
a	code	page	for	character	data	types	that	will	support	all	of	the	characters
required	by	a	worldwide	audience.

The	easiest	way	to	manage	character	data	in	international	databases	is	to	always
use	the	Unicode	nchar,	nvarchar,	and	ntext	data	types	in	place	of	their	non-
Unicode	equivalents	(char,	varchar,	and	text).	If	all	the	applications	that	work
with	international	databases	also	use	Unicode	variables	instead	of	non-Unicode
variables,	character	translations	do	not	have	to	be	performed	anywhere	in	the
system.	All	clients	will	see	exactly	the	same	characters	in	data	as	all	other
clients.

For	systems	that	could	use	single-byte	code	pages,	the	fact	that	Unicode	data
needs	twice	as	much	storage	space	as	non-Unicode	character	data	is	at	least
partially	offset	by	eliminating	the	need	to	convert	extended	characters	between
code	pages.	Systems	using	double-byte	code	pages	do	not	have	this	issue.

SQL	Server	2000	stores	all	textual	system	catalog	data	in	columns	having
Unicode	data	types.	The	names	of	database	objects	such	as	tables,	views,	and
stored	procedures	are	stored	in	Unicode	columns.	This	allows	applications	to	be
developed	using	only	Unicode,	which	avoids	all	issues	with	code	page
conversions.

Sort	Order
A	sort	order	specifies	the	rules	used	by	SQL	Server	to	interpret,	collate,	compare,
and	present	character	data.	For	example,	a	sort	order	defines	whether	'a'	is	less

than,	equal	to,	or	greater	than	'b'.	A	sort	order	defines	whether	the	collation	is
case-sensitive,	for	example	whether	'm'	is	equal	or	not	equal	to	'M'.	It	also
defines	if	the	collation	is	accent-sensitive,	for	example	whether	'á'	is	equal	or	not
equal	to	'ä'.

SQL	Server	2000	uses	two	sort	orders	with	each	collation,	one	for	Unicode	data
and	another	for	the	character	code	page.

Many	SQL	Server	collations	use	the	same	code	page,	but	have	a	different	sort
order	for	the	code	page.	This	allows	sites	to	choose:

Whether	characters	will	simply	be	sorted	based	on	the	numeric	value
represented	by	their	bit	patterns.	Binary	sorting	is	fastest	because	SQL
Server	does	not	have	to	make	any	adjustments	and	can	use	fast,	simple
sorting	algorithms.	Binary	sort	orders	are	always	case-sensitive.
Because	the	bit	patterns	in	a	code	page	may	not	be	arranged	in	the	same
sequence	as	defined	by	the	dictionary	rules	for	a	specific	language,
binary	sorting	sometimes	does	not	sort	characters	in	a	sequence	users
who	speak	that	language	might	expect.

Between	case-sensitive	or	case-insensitive	behavior.

Between	accent-sensitive	or	accent-insensitive	behavior.

See	Also

Collation	Options	for	International	Support

SQL	Server	Collation	Fundamentals

Unicode	Data

Using	Unicode	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

SQL	Server	Collation	Fundamentals
Microsoft®	SQL	Server™	2000	supports	several	collations.	A	collation	encodes
the	rules	governing	the	proper	use	of	characters	for	either	a	language,	such	as
Macedonian	or	Polish,	or	an	alphabet,	such	as	Latin1_General	(the	Latin
alphabet	used	by	western	European	languages).

Each	SQL	Server	collation	specifies	three	properties:

The	sort	order	to	use	for	Unicode	data	types	(nchar,	nvarchar,	and
ntext).	A	sort	order	defines	the	sequence	in	which	characters	are	sorted,
and	the	way	characters	are	evaluated	in	comparison	operations.

The	sort	order	to	use	for	non-Unicode	character	data	types	(char,
varchar,	and	text).

The	code	page	used	to	store	non-Unicode	character	data.

Note		You	cannot	specify	the	equivalent	of	a	code	page	for	the	Unicode
data	types	(nchar,	nvarchar,	and	ntext).	The	double-byte	bit	patterns
used	for	Unicode	characters	are	defined	by	the	Unicode	standard	and
cannot	be	changed.

SQL	Server	2000	collations	can	be	specified	at	any	level.	When	you	install	an
instance	of	SQL	Server	2000,	you	specify	the	default	collation	for	that	instance.
Each	time	you	create	a	database,	you	can	specify	the	default	collation	used	for
the	database.	If	you	do	not	specify	a	collation,	the	default	collation	for	the
database	is	the	default	collation	for	the	instance.	Whenever	you	define	a
character	column,	variable,	or	parameter,	you	can	specify	the	collation	of	the
object.	If	you	do	not	specify	a	collation,	the	object	is	created	with	the	default
collation	of	the	database.

If	all	of	the	users	of	your	instance	of	SQL	Server	speak	the	same	language,	you
should	pick	the	collation	that	supports	that	language.	For	example,	if	all	of	the
users	speak	French,	choose	the	French	collation.

If	the	users	of	your	instance	of	SQL	Server	speak	multiple	languages,	you	should
pick	a	collation	that	best	supports	the	requirements	of	the	various	languages.	For
example,	if	the	users	generally	speak	western	European	languages,	choose	the
Latin1_General	collation.	When	you	support	users	who	speak	multiple
languages,	it	is	most	important	to	use	the	Unicode	data	types,	nchar,	nvarchar,
and	ntext,	for	all	character	data.	Unicode	was	designed	to	eliminate	the	code
page	conversion	difficulties	of	the	non-Unicode	char,	varchar,	and	text	data
types.	Collation	still	makes	a	difference	when	you	implement	all	columns	using
Unicode	data	types	because	it	defines	the	sort	order	for	comparisons	and	sorts	of
Unicode	characters.	Even	when	you	store	your	character	data	using	Unicode	data
types	you	should	pick	a	collation	that	supports	most	of	the	users	in	case	a
column	or	variable	is	implemented	using	the	non-Unicode	data	types.

A	SQL	Server	collation	defines	how	the	database	engine	stores	and	operates	on
character	and	Unicode	data.	After	data	has	been	moved	into	an	application,
however,	character	sorts	and	comparisons	done	in	the	application	are	controlled
by	the	Windows	locale	selected	on	the	computer.	The	collation	used	for
character	data	by	applications	is	one	of	the	items	controlled	by	the	Windows
locale	(a	locale	also	defines	other	items,	such	as	number,	time,	date,	and
currency	formats).	For	Microsoft	Windows	NT®	4.0,	Microsoft	Windows®	98,
and	Microsoft	Windows	95,	the	Windows	locale	is	specified	using	the	Regional
Settings	application	in	Control	Panel.	For	Microsoft	Windows	2000,	the	locale	is
specified	using	the	Regional	Options	application	in	Control	Panel.	For	more
information	about	Windows	locales,	see	Developing	International	Software	for
Windows	95	and	Windows	NT	4.0	in	the	MSDN®	page	at	Microsoft	Web	site.

Multiple	collations	can	use	the	same	code	page	for	non-Unicode	data.	For
example,	the	1251	code	page	defines	a	set	of	Cyrillic	characters.	This	code	page
is	used	by	several	collations,	such	as	Cyrillic_General,	Ukrainian,	and
Macedonian.	Although	all	of	these	collations	use	the	same	set	of	bits	to	represent
non-Unicode	character	data,	the	sorting	and	comparison	rules	they	apply	are
slightly	different	to	handle	the	dictionary	definitions	of	the	correct	sequence	of
characters	in	the	language	or	alphabet	associated	with	the	collation.

Because	SQL	Server	2000	collations	control	both	the	Unicode	and	non-Unicode
sort	orders,	you	do	not	encounter	problems	caused	by	specifying	different
sorting	rules	for	Unicode	and	non-Unicode	data.	In	earlier	versions	of	SQL
Server,	the	code	page	number,	the	character	sort	order,	and	the	Unicode	collation
are	specified	separately.	Earlier	versions	of	SQL	Server	also	support	varying

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

numbers	of	sort	orders	for	each	code	pages,	and	for	some	code	pages	support
sort	orders	not	available	in	Windows	locales.	In	SQL	Server	7.0,	it	is	also
possible	to	specify	a	Unicode	sort	order	that	is	different	from	the	sort	order
chosen	for	non-Unicode	data.	This	can	cause	ordering	and	comparison
operations	to	return	different	results	when	working	with	Unicode	data	as
opposed	to	non-Unicode	data.

See	Also

COLLATE

Collation	Options	for	International	Support

Collations

Unicode	Data

Using	Unicode	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

SQL	Server	Setup	Help

Selecting	Collations
In	Microsoft®	SQL	Server™	2000,	you	specify	a	single	collation	name	that
controls	all	three	collation	attributes:	the	Unicode	sort	order,	the	non-Unicode
code	page,	and	the	non-Unicode	sort	order.	None	of	the	SQL	Server	2000
collations	allow	different	comparison	and	sorting	rules	for	Unicode	and	non-
Unicode	character	data.	There	are	two	groups	of	SQL	Server	2000	collations:
Windows	collations	and	SQL	collations.

Windows	Collations
Windows	collations	are	collations	defined	for	SQL	Server	to	support	Microsoft
Windows®	locales.	By	specifying	a	Windows	collation	for	SQL	Server,	the
instance	of	SQL	Server	uses	the	same	code	pages	and	sorting	and	comparison
rules	as	an	application	running	on	a	computer	for	which	you	have	specified	the
associated	Windows	locale.	For	example,	the	French	Windows	collation	for	SQL
Server	matches	the	collation	attributes	of	the	French	locale	for	Windows.

There	are	more	Windows	locales	than	there	are	SQL	Server	Windows	collations.
The	names	of	Windows	locales	are	based	on	a	language	and	territory,	for
example	French	(Canada).	Several	languages,	however,	share	common	alphabets
and	rules	for	sorting	and	comparing	characters.	For	example,	33	Windows
locales,	including	all	of	the	Portuguese,	and	English	Windows	locales,	use	the
Latin1	code	page	(1252)	and	follow	a	common	set	of	rules	for	sorting	and
comparing	characters.	The	SQL	Server	Windows	collation	based	on	the
Latin1_General	code	page	and	sorting	rules	supports	all	33	of	these	Windows
locales.	Also,	Windows	locales	specify	attributes	not	covered	by	SQL	Server
Windows	collations,	such	as	currency,	date,	and	time	formats.	Because	countries
such	as	Great	Britain	and	the	United	States	have	different	currency,	date,	and
time	formats,	they	require	different	Windows	collations.	They	do	not	require
different	SQL	Server	collations	because	they	have	the	same	alphabet	and	rules
for	sorting	and	comparing	characters.

SQL	Collations
SQL	collations	are	a	compatibility	option	to	match	the	attributes	of	common

combinations	of	code	page	number	and	sort	orders	that	have	been	specified	in
earlier	versions	of	SQL	Server.	For	example,	for	mapping	a	SQL	Server	2000
SQL	collation	to	what	is	specified	in	earlier	versions	of	SQL	Server,	the	SQL
Server	2000	SQL	collation	SQL_Latin1_General_CP1_CI_AS	matches	the	SQL
Server	version	7.0	default	specification	of:

The	ISO	code	page	1252.

The	dictionary	order,	case-insensitive	character	sort	order.

The	General	Unicode	collation.

The	SQL	collations	available	in	SQL	Server	2000	do	not	match	all	combinations
that	can	be	specified	in	earlier	versions	of	SQL	Server.	For	example,	no	SQL
Server	2000	SQL	collation	supports	a	case-sensitive	sort	order	for	non-Unicode
data	and	case-insensitive	sort	order	for	Unicode	data.	The	earlier	SQL	collations
that	cannot	be	exactly	specified	in	SQL	Server	2000	are	called	obsolescent	SQL
collations.

In	SQL	Server	2000,	you	should	primarily	use	Windows	collations.	You	should
use	SQL	collations	only	to	maintain	compatibility	with	existing	instances	of
earlier	versions	of	SQL	Server,	or	to	maintain	compatibility	in	applications
developed	using	SQL	collations	in	earlier	versions	of	SQL	Server.

Collation	Comparison	and	Ordering	Rules
Most	of	the	comparison	and	ordering	rules	defined	in	a	collation	are	governed	by
the	dictionary	definition	of	the	correct	sequence	of	characters	for	the	alphabet	or
language.	The	attributes	you	can	control	are	whether	comparisons	and	sorts	of
character	and	Unicode	data	should	be:

Based	on	the	dictionary	conventions	that	define	the	correct	sequence	of
characters	in	the	language	or	alphabet	associated	with	the	collation,	or
based	on	the	sequence	of	the	binary	bit	patterns	representing	the
different	characters.

Case-sensitive	or	case-insensitive.	For	example,	defining	whether	'a'	is

equal	or	not	equal	to	'A'.	If	you	choose	case-insensitive,	comparisons
always	ignore	case,	so	the	uppercase	version	of	a	character	evaluates	to
being	equal	to	the	lowercase	version	of	the	character.	When	you	choose
case-insensitivity,	the	relative	sequence	in	which	uppercase	and
lowercase	are	sorted	is	undefined	unless	you	also	specify	uppercase
preference.	Uppercase	preference	affects	only	sort	operations	and
specifies	that	uppercase	versions	of	a	character	come	earlier	in	the	sort
sequence	than	lowercase	versions	of	the	same	character.	Uppercase
preference	has	no	affect	on	comparisons,	so	'A'	still	evaluates	to	being
equal	to	'a'	when	uppercase	preference	is	on.	Uppercase	preference	can
be	specified	only	in	SQL	collations,	not	in	Windows	collations.

Sensitive	or	insensitive	to	accented	characters,	also	known	as	extended
characters.	Accented	characters	are	those	characters	that	have	a
diacritical	mark,	such	as	the	German	umlaut	(ë)	or	the	Spanish	tilde	(~).
For	example,	accent	sensitivity	defines	whether	'a'	is	equal	or	not	equal
to	'ä'.

When	you	choose	a	collation,	you	can	specify	if	you	want	binary	behavior,	or
dictionary	sorting	that	is	sensitive	or	insensitive	to	case	and	accents:

In	binary	collations,	comparisons	and	sorting	are	based	strictly	on	the
bit	pattern	of	the	characters.	This	is	the	fastest	option.	Because
uppercase	characters	are	stored	with	different	bit	patterns	than	their
corresponding	lowercase	characters,	and	accented	characters	have
different	bit	patterns	than	characters	without	accents,	binary	sort	orders
are	always	case-sensitive	and	accent	sensitive.	Binary	collations	also
ignore	dictionary	sequences	that	have	been	defined	for	specific
languages.	They	simply	order	the	characters	based	on	the	relative	value
of	the	bit	patterns	that	represent	each	character.	While	the	bit	patterns
defined	for	Latin	characters,	such	as	'A'	or	'z',	are	such	that	binary
sorting	yields	the	correct	results,	the	bit	patterns	for	some	extended
characters	in	some	code	pages	may	be	different	than	the	ordering
sequence	defined	in	dictionaries	for	the	language	associated	with	a
collation.	This	can	lead	to	occasional	ordering	and	comparison	results
that	are	different	than	what	a	speaker	of	the	language	might	expect.

If	you	do	not	specify	a	binary	collation,	SQL	Server	uses	the	dictionary
ordering	of	the	collation	you	have	chosen.	Dictionary	order	means
characters	are	not	sorted	or	compared	based	only	on	their	bit	patterns.
The	collation	follows	the	conventions	of	the	associated	language
regarding	the	proper	sequence	for	characters.	For	example,	case-
insensitive	sort	orders	must	use	dictionary	rules	to	determine	which
lowercase	and	uppercase	bit	patterns	are	equal.

Although	the	bit	patterns	in	a	code	page	generally	yield	the	correct
comparison	and	ordering	results	for	any	language	that	uses	the	code
page,	the	conventions	for	some	of	the	languages	may	require	different
results	than	are	generated	for	the	bit	patterns	of	a	small	number	of
characters.	For	example,	the	Czech,	Hungarian,	and	Polish	collations
use	the	same	code	page,	1250,	which	was	designed	for	the	Slavic
languages.	Each	of	these	languages,	however,	use	slightly	different
conventions	for	the	sequence	in	which	accented	characters	should	be
sorted.

If	you	do	not	specify	binary	sorting,	all	SQL	Server	operations	follow
the	dictionary	conventions	for	sorting	and	comparing	characters.	When
the	dictionary	order	is	used,	you	can	specify	whether	you	want	the
collation	to	be	sensitive	or	insensitive	to	both	case	and	accented
characters.

Case-sensitivity	applies	to	SQL	identifiers	and	passwords	as	well	as	to	data.	If
you	specify	a	binary	or	case-sensitive	default	sort	order	for	an	instance	of	SQL
Server	or	database,	all	references	to	objects	must	use	the	same	case	with	which
they	were	created.	For	example,	consider	this	table:

CREATE	TABLE	MyTable	(PrimaryKey	int	PRIMARY	KEY,	CharColumn	nchar(10))

If	the	CREATE	TABLE	statement	is	executed	on	an	instance	of	SQL	Server	or
database	that	has	a	case-sensitive	or	binary	sort	order,	all	references	to	the	table
must	use	the	same	case	that	was	specified	in	the	CREATE	TABLE	statement:

--	Object	not	found	error	because	case	is	not	correct:
SELECT	*	FROM	MYTABLE
--	Invalid	column	name	error	because	case	is	not	correct
--	for	the	WHERE	clause	reference	to	the	PrimaryKey	column.

SELECT	*
FROM	MyTable
WHERE	PRIMARYKEY	=	123
--	Correct	statement:
SELECT	CharColumn
FROM	MyTable
WHERE	PrimaryKey	=	123

See	Also

Collation	Options	for	International	Support

Specifying	Collations

Unicode	Data

Using	Unicode	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

Specifying	Collations
Microsoft®	SQL	Server™	2000	collations	can	be	specified	at	several	levels,
including	the	following:

When	you	install	an	instance	of	SQL	Server,	you	can	specify	the	default
collation	for	that	instance	during	setup.	The	default	collation	for	the
instance	also	becomes	the	default	collation	of	the	system	databases:
master,	model,	tempdb,	msdb,	and	Distribution.

When	you	create	a	database,	you	can	use	the	COLLATE	clause	of	the
CREATE	DATABASE	statement	to	specify	the	default	collation	of	the
database.	You	can	also	specify	a	collation	when	you	create	a	database
using	SQL	Server	Enterprise	Manager.	If	you	do	not	specify	a	collation,
the	database	is	assigned	the	default	collation	of	the	model	database.	The
default	collation	of	the	model	database	is	the	same	as	the	default
collation	of	the	instance	of	SQL	Server.

When	you	create	a	table,	you	can	specify	collations	for	each	character
string	column	using	the	COLLATE	clause	of	the	CREATE	TABLE
statement.	You	can	also	specify	a	collation	when	you	create	a	table
using	SQL	Server	Enterprise	Manager.	If	you	do	not	specify	a	collation,
the	column	is	assigned	the	default	collation	of	the	database.

You	can	also	use	the	database_default	option	in	the	COLLATE	clause	to
specify	that	a	column	in	a	temporary	table	use	the	collation	default	of
the	current	user	database	for	the	connection	instead	of	tempdb.

When	you	specify	a	literal	string,	you	can	use	the	COLLATE	clause	to
specify	the	collation.	If	you	do	not	specify	a	collation,	the	literal	is
assigned	the	database	default	collation.

In	SQL-DMO	you	can	use	the	Collation	property	to	specify	collations
for	instances,	databases,	and	columns.	For	more	information,	see

Collation	Property.

Parameters	for	stored	procedures	or	functions,	user-defined	data	types,
and	variables	are	assigned	the	default	collation	of	the	database:

The	collation	of	an	identifier	depends	on	the	level	at	which	it	is	defined.
Identifiers	of	instance-level	objects,	such	as	logins	and	database	names,	are
assigned	the	default	collation	of	the	instance.	Identifiers	of	objects	within	a
database,	such	as	tables,	views,	and	column	names,	are	assigned	the	default
collation	of	the	database.	Variables,	GOTO	labels,	temporary	stored	procedures,
and	temporary	tables	can	be	created	when	the	connection	context	is	associated
with	one	database,	and	then	referenced	when	the	context	has	been	switched	to
another	database.	Because	of	this,	the	identifiers	for	variables,	GOTO	labels,	and
temporary	tables	are	in	the	default	collation	of	the	instance.

Specifying	collations	for	columns	or	literals	can	be	done	only	for	the	char,
varchar,	text,	nchar,	nvarchar,	and	ntext	data	types.

Collations	are	generally	identified	by	a	collation	name.	There	are	two	classes	of
names:	Windows	collation	names	for	the	new	collations	aligned	with	Windows
locales,	and	SQL	collation	names	for	the	compatibility	mode	collations	that
result	when	upgrading	from	earlier	versions	of	SQL	Server.	For	more
information,	see	Windows	Collation	Name),	and	SQL	Collation	Name.

The	exception	to	specifying	collation	names	is	in	Setup:

You	do	not	specify	a	collation	name	for	Windows	collations,	but	instead
specify	the	collation	designator,	and	then	select	check	boxes	to	specify
binary	sorting	or	dictionary	sorting	that	is	either	sensitive	or	insensitive
to	either	case	or	accents.

You	do	not	specify	SQL	collation	names,	but	instead	select	a	collation
based	on	a	longer,	more	human-readable	display	name.

You	can	execute	the	system	function	fn_helpcollations	to	retrieve	a	list	of	all	the
valid	collation	names	for	Windows	collations	and	SQL	collations,	for	example:

SELECT	*

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

FROM	::fn_helpcollations()

You	can	also	use	the	SQL-DMO	ListCollations	method	to	get	a	list	of	the	valid
collation	names.	For	more	information,	see	ListCollations	Method.

The	system	catalog	stored	procedures	have	been	enhanced	to	report	the	collation
of	all	SQL	Server	objects	that	have	a	collation.

SQL	Server	can	support	only	code	pages	that	are	supported	by	the	underlying
operating	system.	When	you	perform	an	action	that	depends	on	collations,	the
SQL	Server	collation	used	by	the	referenced	object	must	use	a	code	page
supported	by	the	operating	system	running	on	the	computer.	These	actions	can
include:

Specifying	a	default	collation	for	an	instance	of	SQL	Server.

Specifying	a	default	collation	for	a	database	when	you	create	the
database.

Restoring	a	database	backup.	Windows	must	support	the	code	page	of
the	default	collation	used	by	the	database.

Attaching	a	database.	Windows	must	support	the	code	page	of	the
default	collation	used	by	the	database.

Specifying	a	collation	for	a	column	when	creating	a	table.

Specifying	a	collation	when	creating	a	user-defined	data	type.

Specifying	a	collation	when	declaring	a	character-string	constant.

If	the	collation	specified	or	the	collation	used	by	the	referenced	object,	uses	a
code	page	not	supported	by	the	Microsoft	Windows®	operating	systems,	SQL
Server	issues	error	2775:

"Code	page	codepagenumber	is	not	supported	by	the	system."

JavaScript:hhobj_4.Click()

Your	response	to	this	message	depends	on	the	version	of	the	Windows	operating
system	installed	on	the	computer:

Microsoft	Windows	2000	supports	all	of	the	code	pages	used	by	SQL
Server	collations,	so	the	error	message	will	not	occur.

Microsoft	Windows	NT®	4.0	may	require	that	you	install	a	language
pack	to	support	some	code	pages.	For	more	information	about	installing
a	Windows	NT	language	pack,	see	the	Windows	NT	Help.

Microsoft	Windows	98	supports	only	one	code	page	on	a	computer.	You
must	choose	a	SQL	Server	collation	that	uses	the	same	code	page	used
by	Windows	98.

See	Also

ALTER	TABLE

Collation	Options	for	International	Support

Collations

Constants

CREATE	DATABASE

CREATE	TABLE

DECLARE	@local_variable

table

Using	Unicode	Data

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()

SQL	Server	Setup	Help

Specifying	the	Default	Collation	for	an	Instance	of
SQL	Server
The	default	collation	for	an	instance	of	Microsoft®	SQL	Server™	2000	is
defined	during	setup.	If	you	choose	the	minimal	or	typical	setup	options,	then
Setup	installs	these	collations:

If	you	upgrade	a	default	instance	of	SQL	Server	version	6.5	or	SQL
Server	version	7.0	to	SQL	Server	2000,	or	if	you	install	a	default
instance	of	SQL	Server	2000	that	will	be	version	switched	with	a
default	instance	of	SQL	Server	version	6.5,	SQL	Server	Setup	carries
forward	the	same	collation	used	in	the	existing	instance	of	SQL	Server
version	6.5	or	SQL	Server	version	7.0,	including	obsolescent	collations.

In	all	other	cases,	Setup	chooses	the	Windows	collation	that	supports
the	Windows	locale	of	the	computer	on	which	the	instance	of	SQL
Server	2000	is	being	installed.

Note		The	Setup	program	does	not	set	the	instance	default	collation	to	the
Windows	collation	Latin1_General_CI_AS	if	the	computer	is	using	the	U.S.
English	locale.	Instead,	it	sets	the	instance	default	collation	to	the	SQL	collation
SQL_Latin1_General_Cp1_CI_AS.	This	may	change	in	a	future	release.

If	you	choose	the	Custom	setup	option,	Setup	uses	the	same	logic	as	in	the
minimal	and	typical	options	to	set	the	collation	that	is	selected	when	the
Character	Set	/	Sort	Order	/	Windows	Collation	window	is	displayed.	You
should	not	use	the	selected	collation	in	these	cases:

If	the	instance	will	be	included	in	a	replication	scheme,	all	instances	of
SQL	Server	involved	in	the	replication	scheme	(Publishers,	Subscribers,
and	Distributors)	should	use	the	same	code	page.	You	should	make	sure
the	collation	selected	by	Setup	uses	the	same	code	page	as	the	other
instances	of	SQL	Server	in	the	replication	scheme.

If	the	primary	language	that	the	instance	must	support	is	different	than

the	Windows	locale	of	the	computer	on	which	the	instance	is	being
installed.

For	a	table	showing	which	collation	designator	to	specify	for	a	Windows	locale,
see	Windows	Collation	Names	Table.

During	setup,	the	master,	model,	tempdb,	msdb,	and	Distribution	system
databases	are	assigned	the	same	default	collation	as	the	default	collation	chosen
for	the	instance.

See	Also

Collation	Options	for	International	Support

SQL	Server	Setup	Help

Mixed	Collation	Environments
Compatibility	issues	can	have	an	impact	on	organizations	that	use	multiple
collations	to	store	their	data.	Most	organizations	use	the	same	collation	for	all	of
their	Microsoft®	SQL	Server™	2000	databases,	thereby	eliminating	all	collation
compatibility	issues.	Other	organizations,	however,	must	store	data	viewed	by
users	who	speak	various	languages	and	want	to	do	so	with	a	minimum	of
collation	compatibility	issues.

All	character	and	Unicode	objects	(such	as	columns,	variables,	and	constants)
have	a	collation.	Whenever	you	work	with	objects	that	have	different	collations
and	code	pages,	you	must	code	your	queries	to	comply	with	the	rules	of	collation
coercion.	When	you	code	a	complex	expression	that	uses	operators	to	combine
multiple	simple	expressions	that	have	different	collations,	all	of	the	collations
must	be	implicitly	convertible,	or	explicitly	converted	using	the	COLLATE
clause.	For	more	information	about	collation	coercion,	see	Collation	Precedence.

If	you	do	not	specify	a	collation	in	a	character	or	Unicode	expression,	the	default
collation	may	vary	depending	on	the	current	database	setting	for	the	connection.
For	example,	if	you	do	not	specify	a	COLLATE	clause	on	a	character	or
Unicode	constant,	the	constant	is	assigned	the	default	collation	of	the	current
database.	This	means	that	the	result	of	a	Transact-SQL	statement	may	have
different	collations	when	executed	in	the	context	of	different	databases.

If	you	are	setting	up	replication,	all	of	the	databases	involved	in	a	replication
network,	including	Publishers,	Subscribers,	and	Distributors,	must	have	the	same
code	page.

The	bulk	copy	functions,	BULK	INSERT,	and	the	bcp	command	prompt	utility
support	column	collations.	For	more	information,	see	Copying	Data	Between
Different	Collations.

Minimizing	Collation	Issues
If	you	must	store	character	data	that	reflects	multiple	languages,	you	can
minimize	collation	compatibility	issues	by	always	using	the	Unicode	nchar,
nvarchar,	and	ntext	data	types	instead	of	the	char,	varchar,	text	data	types.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Using	the	Unicode	data	types	eliminates	code	page	conversion	issues.

Another	recommendation	that	minimizes	collation	compatibility	issues	is	to
standardize	your	site	as	either	sensitive	or	insensitive	to	case	and	accented
characters.	If	you	always	choose	collations	with	the	same	case	and	accent
sensitivity,	end	users	experience	consistent	behavior	across	all	systems.	Most
SQL	Server	2000	sites	choose	to	be	case-insensitive	and	accent-sensitive.	Case
sensitivity	also	applies	to	the	names	of	SQL	Server	objects;	therefore,	if	you
specify	case-sensitive	collations,	all	users	must	specify	the	correct	case	when
querying	the	database.	For	example,	if	you	have	a	case-sensitive	server	and
create	a	table	named	Employees,	all	queries	must	refer	to	the	table	as
Employees.	References	that	do	not	use	the	correct	case,	such	as	EMPLOYEES
or	employees,	are	invalid.

Collations	and	tempdb
The	tempdb	database	is	built	each	time	SQL	Server	is	started,	and	has	the	same
default	collation	as	the	model	database,	which	is	typically	the	same	as	the
default	collation	of	the	instance.	If	you	create	a	user	database	and	specify	a
different	default	collation	than	model,	the	user	database	has	a	different	default
collation	than	tempdb.	All	temporary	stored	procedures	or	temporary	tables	are
created	and	stored	in	tempdb,	which	means	that	all	implicit	columns	in
temporary	tables	and	all	coercible-default	constants,	variables,	and	parameters	in
temporary	stored	procedures	have	different	collations	than	comparable	objects
created	in	permanent	tables	and	stored	procedures.

This	can	lead	to	problems	with	the	text	data	type,	which	does	not	support	code
page	conversions.	For	example,	an	instance	of	SQL	Server	2000	defaults	to	the
Latin1_General_CS_AS	collation,	and	you	execute	these	statements:

CREATE	DATABASE	TestDB	COLLATE	Estonian_CS_AS
USE	TestDB
CREATE	TABLE	TestPermTab	(PrimaryKey	int	PRIMARY	KEY,	TextCol	text)

In	this	system,	the	tempdb	database	uses	the	Latin1_General_CS_AS	collation
with	code	page	1252,	and	TestDB	and	TestPermTab.TextCol	use	the
Estonian_CS_AS	collation	with	code	page	1257.	If	you	then	execute:

USE	TestDB

GO
--	Create	a	temporary	table	with	the	same	column	declarations
--	as	TestPermTab
CREATE	TABLE	#TestTempTab	(PrimaryKey	int	PRIMARY	KEY,	TextCol	text)
--	This	statement	gets	an	code	page	conversion	not	allowed	error
--	because	the	temporary	table	is	created	in	tempdb,	which	has	a	
--	different	default	collation	than	TestDB.
INSERT	INTO	#TestTempTab
									SELECT	*	FROM	TestPermTab
GO

To	eliminate	the	error	you	can	use	one	of	these	alternatives:

Use	the	Unicode	data	type	ntext	instead	of	text	for	the	two	TextCol
columns.

Specify	that	the	temporary	table	column	use	the	default	collation	of	the
user	database,	not	tempdb.	This	allows	the	temporary	table	to	work
with	similarly	formatted	tables	in	multiple	databases,	if	that	is	a
requirement	of	your	system.
CREATE	TABLE	#TestTempTab
			(PrimaryKey	int	PRIMARY	KEY,
				TextCol	text	COLLATE	database_default
)

Specify	the	correct	collation	for	the	#TestTempTab	column:
CREATE	TABLE	#TestTempTab
			(PrimaryKey	int	PRIMARY	KEY,
				TextCol	text	COLLATE	Estonian_CS_AS
)

Collations	in	BACKUP	and	RESTORE

If	you	restore	a	database,	RESTORE	uses	the	collation	of	the	source	database
that	was	recorded	in	the	backup	file.	The	restored	database	has	the	same

collation	as	the	original	database	that	was	backed	up.	Individual	objects	within
the	database	that	have	different	collations	also	retain	their	original	collation.	The
database	can	be	restored	even	if	the	instance	on	which	you	run	restore	has	a
different	default	collation	than	the	instance	on	which	BACKUP	was	run.

If	there	is	already	a	database	with	the	same	name	on	the	target	server,	the	only
way	to	restore	from	the	backup	is	to	specify	REPLACE	on	the	RESTORE
statement.	If	you	specify	REPLACE,	the	existing	database	is	completely
replaced	with	the	contents	of	the	database	on	the	backup	file,	and	the	restored
version	of	the	database	will	have	the	same	collation	recorded	in	the	backup	file.

If	you	are	restoring	log	backups,	the	destination	database	must	have	the	same
collation	as	the	source	database.

Collations	and	text	column
If	you	create	a	table	with	a	text	column	that	has	a	different	code	page	than	the
code	page	of	the	database's	default	collation,	there	are	only	two	ways	you	can
specify	data	values	to	be	inserted	into	the	column,	or	update	existing	values.	You
can:

Specify	a	Unicode	constant.

Select	a	value	from	another	column	with	the	same	code	page.

Assume	the	following	database	and	table:

--	Create	a	database	with	a	default	of	code	page	1252.
CREATE	DATABASE	TestDB	COLLATE	Latin1_General_CS_AS
--	Create	a	table	with	a	different	code	page,	1253.
CREATE	TABLE	TestTab
			(PrimaryKey	int	PRIMARY	KEY,
				TextCol	text	COLLATE	Greek_CS_AS
)

--	This	INSERT	statement	successfully	inserts	a	Unicode	string.
INSERT	INTO	TestTab	VALUES	(1,	N'abc')

--	This	INSERT	statement	successfully	inserts	data	by	selecting
--	from	a	similarly	formatted	table	in	another	database	that	uses
--	uses	the	Greek	1253	code	page	as	its	default.
INSERT	INTO	TestTab
					SELECT	*	FROM	GreekDatabase.dbo.TestTab

SQL	Server	Setup	Help

Changing	Collations
You	can	change	the	collation	of	a	column	by	using	the	ALTER	TABLE
statement:

CREATE	TABLE	MyTable
		(PrimaryKey			int	PRIMARY	KEY,
			CharCol						varchar(10)	COLLATE	French_CI_AS	NOT	NULL
)
GO
ALTER	TABLE	MyTable	ALTER	COLUMN	CharCol
												varchar(10)COLLATE	Latin1_General_CI_AS	NOT	NULL
GO

You	cannot	alter	the	collation	of	a	column	that	is	currently	referenced	by:

A	computed	column.

An	index.

Distribution	statistics,	either	generated	automatically	or	by	the	CREATE
STATISTICS	statement.

A	CHECK	constraint.

A	FOREIGN	KEY	constraint.

You	can	also	use	the	COLLATE	clause	on	an	ALTER	DATABASE	to	change	the
default	collation	of	the	database:

ALTER	DATABASE	MyDatabase	COLLATE	French_CI_AS

Altering	the	default	collation	of	a	database	does	not	change	the	collations	of	the

columns	in	any	existing	user-defined	tables.	These	can	be	changed	with	ALTER
TABLE.	The	COLLATE	CLAUSE	on	an	ALTER	DATABASE	statement
changes:

The	default	collation	for	the	database.	This	new	default	collation	is
applied	to	all	columns,	user-defined	data	types,	variables,	and
parameters	subsequently	created	in	the	database.	It	is	also	used	when
resolving	the	object	identifiers	specified	in	SQL	statements	against	the
objects	defined	in	the	database.

Any	char,	varchar,	text,	nchar,	nvarchar,	or	ntext	columns	in	system
tables	to	the	new	collation.

All	existing	char,	varchar,	text,	nchar,	nvarchar,	or	ntext	parameters
and	scalar	return	values	for	stored	procedures	and	user-defined
functions	to	the	new	collation.

The	char,	varchar,	text,	nchar,	nvarchar,	or	ntext	system	data	types,
and	all	user-defined	data	types	based	on	these	system	data	types,	to	the
new	default	collation.

After	a	collation	has	been	assigned	to	any	object	other	than	a	column	or
database,	you	cannot	change	the	collation	except	by	dropping	and	re-creating	the
object.	This	can	be	a	complex	operation.	To	change	the	default	collation	for	an
instance	of	Microsoft®	SQL	Server™	2000	you	must:

Make	sure	you	have	all	of	the	information	or	scripts	needed	to	re-create
your	user	databases	and	all	of	the	objects	in	them.

Export	all	of	your	data	using	a	tool	such	as	bulk	copy.

Drop	all	of	the	user	databases.

Rebuild	the	master	database	specifying	the	new	collation.

Create	all	of	the	databases	and	all	of	the	objects	in	them.

Import	all	of	your	data.

Note		Instead	of	changing	the	default	collation	of	an	instance	of	SQL
Server	2000,	you	can	specify	a	default	collation	for	each	new	database
you	create.

SQL	Server	Setup	Help

SQL	Indexes
A	Microsoft®	SQL	Server™	2000	index	is	a	structure	associated	with	a	table	or
view	that	speeds	retrieval	of	rows	from	the	table	or	view.	An	index	contains	keys
built	from	one	or	more	columns	in	the	table	or	view.	These	keys	are	stored	in	a
structure	that	allows	SQL	Server	to	find	the	row	or	rows	associated	with	the	key
values	quickly	and	efficiently.

SQL	Server	Setup	Help

Table	Indexes
Microsoft®	SQL	Server™	2000	supports	indexes	defined	on	any	column	in	a
table,	including	computed	columns.

If	a	table	is	created	with	no	indexes,	the	data	rows	are	not	stored	in	any
particular	order.	This	structure	is	called	a	heap.

The	two	types	of	SQL	Server	indexes	are:

Clustered

Clustered	indexes	sort	and	store	the	data	rows	in	the	table	based	on	their
key	values.	Because	the	data	rows	are	stored	in	sorted	order	on	the
clustered	index	key,	clustered	indexes	are	efficient	for	finding	rows.
There	can	only	be	one	clustered	index	per	table,	because	the	data	rows
themselves	can	only	be	sorted	in	one	order.	The	data	rows	themselves
form	the	lowest	level	of	the	clustered	index.

The	only	time	the	data	rows	in	a	table	are	stored	in	sorted	order	is	when
the	table	contains	a	clustered	index.	If	a	table	has	no	clustered	index,	its
data	rows	are	stored	in	a	heap.

Nonclustered

Nonclustered	indexes	have	a	structure	completely	separate	from	the
data	rows.	The	lowest	rows	of	a	nonclustered	index	contain	the
nonclustered	index	key	values	and	each	key	value	entry	has	pointers	to
the	data	rows	containing	the	key	value.	The	data	rows	are	not	stored	in
order	based	on	the	nonclustered	key.

The	pointer	from	an	index	row	in	a	nonclustered	index	to	a	data	row	is
called	a	row	locator.	The	structure	of	the	row	locator	depends	on
whether	the	data	pages	are	stored	in	a	heap	or	are	clustered.	For	a	heap,
a	row	locator	is	a	pointer	to	the	row.	For	a	table	with	a	clustered	index,
the	row	locator	is	the	clustered	index	key.

The	only	time	the	rows	in	a	table	are	stored	in	any	specific	sequence	is	when	a
clustered	index	is	created	on	the	table.	The	rows	are	then	stored	in	sequence	on

the	clustered	index	key.	If	a	table	only	has	nonclustered	indexes,	its	data	rows
are	stored	in	a	unordered	heap.

Indexes	can	be	unique,	which	means	no	two	rows	can	have	the	same	value	for
the	index	key.	Otherwise,	the	index	is	not	unique	and	multiple	rows	can	share	the
same	key	value.

There	are	two	ways	to	define	indexes	in	SQL	Server.	The	CREATE	INDEX
statement	creates	and	names	an	index.	The	CREATE	TABLE	statement	supports
the	following	constraints	that	create	indexes:

PRIMARY	KEY	creates	a	unique	index	to	enforce	the	primary	key.

UNIQUE	creates	a	unique	index.

CLUSTERED	creates	a	clustered	index.

NONCLUSTERED	creates	a	nonclustered	index.

When	you	create	an	index	on	SQL	Server	2000,	you	can	specify	whether	the
keys	are	stored	in	ascending	or	descending	order.

SQL	Server	2000	supports	indexes	defined	on	computed	columns,	as	long	as	the
expression	defined	for	the	column	meets	certain	restrictions,	such	as	only
referencing	columns	from	the	table	containing	the	computed	column,	and	being
deterministic.

A	fill	factor	is	a	property	of	a	SQL	Server	index	that	controls	how	densely	the
index	is	packed	when	created.	The	default	fill	factor	usually	delivers	good
performance,	but	in	some	cases	it	may	be	beneficial	to	change	the	fill	factor.	If
the	table	is	going	to	have	many	updates	and	inserts,	create	an	index	with	a	low
fill	factor	to	leave	more	room	for	future	keys.	If	the	table	is	a	read-only	table	that
will	not	change,	create	the	index	with	a	high	fill	factor	to	reduce	the	physical
size	of	the	index,	which	lowers	the	number	of	disk	reads	SQL	Server	uses	to
navigate	through	the	index.	Fill	factors	are	only	applied	when	the	index	is
created.	As	keys	are	inserted	and	deleted,	the	index	will	eventually	stabilize	at	a
certain	density.

Indexes	not	only	speed	up	the	retrieval	of	rows	for	selects,	they	also	usually
increase	the	speed	of	updates	and	deletes.	This	is	because	SQL	Server	must	first
find	a	row	before	it	can	update	or	delete	the	row.	The	increased	efficiency	of
using	the	index	to	locate	the	row	usually	offsets	the	extra	overhead	needed	to
update	the	indexes,	unless	the	table	has	a	lot	of	indexes.

This	example	shows	the	Transact-SQL	syntax	for	creating	indexes	on	a	table.

USE	pubs
GO
CREATE	TABLE	emp_sample
			(emp_id						int									PRIMARY	KEY	CLUSTERED,
			emp_name						char(50),
			emp_address			char(50),
			emp_title			char(25)						UNIQUE	NONCLUSTERED)
GO
CREATE	NONCLUSTERED	INDEX	sample_nonclust	ON	emp_sample(emp_name)
GO

Deciding	which	particular	set	of	indexes	will	optimize	performance	depends	on
the	mix	of	queries	in	the	system.	Consider	the	clustered	index	on
emp_sample.emp_id.	This	works	well	if	most	queries	referencing	emp_sample
have	equality	or	range	comparisons	on	emp_id	in	their	WHERE	clauses.	If	the
WHERE	clauses	of	most	queries	reference	emp_name	instead	of	emp_id,
performance	could	be	improved	by	instead	making	the	index	on	emp_name	the
clustered	index.

Many	applications	have	a	complex	mix	of	queries	that	is	difficult	to	estimate	by
interviewing	users	and	programmers.	SQL	Server	2000	provides	an	Index
Tuning	Wizard	to	help	design	indexes	in	a	database.	The	easiest	way	to	design
indexes	for	large	schemas	with	complex	access	patterns	is	to	use	the	Index
Tuning	Wizard.

You	provide	the	Index	Tuning	Wizard	with	a	set	of	SQL	statements.	This	could
be	a	script	of	statements	you	build	to	reflect	a	typical	mix	of	statements	in	the
system,	but	it	is	usually	a	SQL	Profiler	trace	of	the	actual	SQL	statements
processed	on	the	system	during	a	period	of	time	that	reflects	the	typical	load	on
the	system.	The	Index	Tuning	Wizard	analyzes	the	workload	and	the	database,

and	then	recommends	an	index	configuration	that	will	improve	the	performance
of	the	workload.	You	can	choose	to	either	replace	the	existing	index
configuration,	or	to	keep	the	existing	index	configuration	and	implement	new
indexes	to	improve	the	performance	of	a	slow-running	subset	of	the	queries.

See	Also

Indexes

Parallel	Operations	Creating	Indexes

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

View	Indexes
Microsoft®	SQL	Server™	2000	supports	defining	indexes	on	views.	Views	are
sometimes	called	virtual	tables	because	the	result	set	returned	by	the	view	has
the	same	general	form	as	a	table	with	columns	and	rows,	and	views	can	be
referenced	the	same	way	as	tables	in	SQL	statements.	The	result	set	of	a	non-
indexed	view	is	not	stored	permanently	in	the	database.	Each	time	a	query
references	the	view,	SQL	Server	dynamically	merges	the	logic	needed	to	build
the	view	result	set	into	the	logic	needed	to	build	the	complete	query	result	set
from	the	data	in	the	base	tables.	The	process	of	building	the	view	results	is	called
materializing	the	view.	For	more	information,	see	View	Resolution.

For	a	nonindexed	view,	the	overhead	of	dynamically	building	the	result	set	for
each	query	that	references	a	view	can	be	substantial	for	views	that	involve
complex	processing	of	large	numbers	of	rows.	Examples	include	views	that
aggregate	large	amounts	of	data,	or	join	many	rows.	If	such	views	are	frequently
referenced	in	queries,	you	can	improve	performance	by	creating	a	unique
clustered	index	on	the	view.	When	a	unique	clustered	index	is	created	on	a	view,
the	view	is	executed	and	the	result	set	is	stored	in	the	database	in	the	same	way	a
table	with	a	clustered	index	is	stored.	For	more	information	about	the	structure
used	to	store	clustered	indexes,	see	Clustered	Indexes.

Another	benefit	of	creating	an	index	on	a	view	is	that	the	optimizer	starts	using
the	view	index	in	queries	that	do	not	directly	name	the	view	in	the	FROM
clause.	Existing	queries	can	benefit	from	the	improved	efficiency	of	retrieving
data	from	the	indexed	view	without	having	to	be	recoded.

Creating	a	clustered	index	on	a	view	stores	the	result	set	built	at	the	time	the
index	is	created.	An	indexed	view	also	automatically	reflects	modifications
made	to	the	data	in	the	base	tables	after	the	index	is	created,	the	same	way	an
index	created	on	a	base	table	does.	As	modifications	are	made	to	the	data	in	the
base	tables,	the	data	modifications	are	also	reflected	in	the	data	stored	in	the
indexed	view.	The	requirement	that	the	view's	clustered	index	be	unique
improves	the	efficiency	with	which	SQL	Server	can	find	the	rows	in	the	index
that	are	affected	by	any	data	modification.

You	must	have	set	specific	SET	options	before	you	can	create	an	index	on	a

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

view.	The	query	optimizer	will	not	consider	the	index	for	any	subsequent	SQL
statements	unless	the	connection	executing	the	statement	has	the	same	option
settings.	For	more	information,	see	SET	Options	That	Affect	Results.

Indexed	views	can	be	more	complex	to	maintain	than	indexes	on	base	tables.
You	should	create	indexes	only	on	views	where	the	improved	speed	in	retrieving
results	outweighs	the	increased	overhead	of	making	modifications.	This	usually
occurs	for	views	mapped	over	relatively	static	data,	that	process	many	rows,	and
are	referenced	by	many	queries.

The	first	index	created	on	a	view	must	be	a	unique	clustered	index.	After	the
unique	clustered	index	has	been	created,	you	can	create	additional	nonclustered
indexes.	The	naming	conventions	for	indexes	on	views	are	the	same	as	for
indexes	on	tables.	The	only	difference	is	that	the	table	name	is	replaced	with	a
view	name.

All	indexes	on	a	view	are	dropped	if	the	view	is	dropped.	All	nonclustered
indexes	on	the	view	are	dropped	if	the	clustered	index	is	dropped.	Nonclustered
indexes	can	be	dropped	individually.	Dropping	the	clustered	index	on	the	view
removes	the	stored	result	set,	and	the	optimizer	returns	to	processing	the	view
like	a	standard	view.

Although	only	the	columns	that	make	up	the	clustered	index	key	are	specified	in
the	CREATE	UNIQUE	CLUSTERED	INDEX	statement,	the	complete	result	set
of	the	view	is	stored	in	the	database.	As	in	a	clustered	index	on	a	base	table,	the
b-tree	structure	of	the	clustered	index	contains	only	the	key	columns,	but	the
data	rows	contain	all	of	the	columns	in	the	view	result	set.

See	Also

CREATE	INDEX

Creating	an	Indexed	View

Using	Indexes	on	Views

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

SQL	Server	Setup	Help

Maximum	Size	of	Index	Keys
Microsoft®	SQL	Server™	2000	retains	the	900-byte	limit	for	the	maximum	size
of	an	index	key	but	changes	the	algorithm	used	by	CREATE	INDEX	to	check	if
the	specified	index	key	exceeds	the	maximum	allowable	key	size	of	900	bytes.
The	new	CREATE	INDEX	algorithm	is	similar	to	the	row	size	algorithm	used
for	CREATE	TABLE.

Microsoft	SQL	Server	version	7.0	and	earlier	always	used	the	maximum	size	of
variable	columns	when	checking	whether	the	key	specified	in	a	CREATE
INDEX	statement	exceeded	900	bytes,	for	example:

CREATE	TABLE	TestTable
				(PrimaryKey						int	PRIMARY	KEY,
					VarCharCol1					varchar(500),
					VarCharCol2					varchar(500)
)
--	This	statement	fails	because	the	maximum	sizes
--	of	the	two	columns	exceeds	900	bytes:
CREATE	INDEX	TestIdx	ON	TestTable(VarCharCol1,	VarCharCol2)

In	SQL	Server	2000,	the	preceding	CREATE	INDEX	statement	succeeds	with	a
warning	message,	unless	one	or	more	rows	of	data	will	generate	a	key	whose
value	exceeds	900	bytes.

The	SQL	Server	2000	CREATE	INDEX	statement	uses	these	algorithms:

If	the	size	of	all	fixed	columns	plus	the	maximum	size	of	all	variable
columns	specified	in	the	CREATE	INDEX	statement	is	less	than	900
bytes,	the	CREATE	INDEX	statement	completes	successfully	with	no
warnings	or	errors.

If	the	size	of	all	fixed	columns	plus	the	maximum	size	of	all	variable
columns	exceeds	900,	but	the	size	of	all	fixed	columns	plus	the
minimums	of	the	variable	columns	is	less	than	900,	the	CREATE

INDEX	statement	succeeds	with	a	warning	that	a	subsequent	INSERT
or	UPDATE	statement	may	fail	if	it	specifies	values	that	generates	a	key
value	larger	than	900	bytes.	The	CREATE	INDEX	statement	fails	if
existing	data	rows	in	the	table	have	values	that	generate	a	key	larger
than	900	bytes.	A	subsequent	INSERT	or	UPDATE	statement	that
specifies	data	values	that	generates	a	key	value	longer	than	900	bytes
fails.

The	CREATE	INDEX	statement	fails	if	the	size	of	all	fixed	columns
plus	the	minimum	size	of	all	variable	columns	specified	in	the	CREATE
INDEX	statement	exceeds	900	bytes.

This	table	shows	the	results	of	creating	indexes	where	the	keys	contain	only
fixed	or	only	variable-length	columns.

Index	Columns 	 	 	

Size	of	the
fixed-data
column(s)

Maximum
size	of
variable-
length
column(s)

MAX	of
the	SUM	of
the	index
key	column
lengths*

Index
created Message

INSERT	or
UPDATE	run-
time	error	due
to	oversized
index	key	value

>	900	bytes None Not	relevant No Error No	index	present
to	generate	error.

<	=	900
bytes

None Not	relevant Yes None No

None <	=	900
bytes

Not	relevant Yes None No

None >	900	bytes >	900	bytes No Error No	index	present
to	generate	error.

None >	900	bytes <	=	900
bytes

Yes Warning Only	if	the	sum
of	current	lengths
of	all	index
columns	is
greater	than	900
bytes.

*	None	of	the	rows	in	the	table	at	time	the	CREATE	INDEX	statement	is	executed	can	have	index	key
values	whose	total	lengths	exceed	900	bytes.

This	table	shows	the	results	of	creating	indexes	where	the	keys	contain	a	mixture
of	fixed	and	variable-length	columns.

Index	Columns 	 	 	
Minimum
size	of
variable-
length
column(s)	+
Size	of	the
fixed-data
column(s)

Maximum
size	of
variable-
length
column(s)	+
Size	of	the
fixed-data
column(s)

MAX	of
the	SUM
of	the
index	key
column
lengths	*

Index
created Message

INSERT	or
UPDATE	run-
time	error	due
to	oversized
index	key
value

>	900	bytes Not	relevant Not
relevant

No Error No	index
present	to
generate	error.

<	=	900	bytes <	=	900	bytes Not
relevant

Yes None No.

<	=	900	bytes >	900	bytes <	=	900
bytes

Yes Warning Only	if	the	sum
of	current
lengths	of	all
index	columns
is	greater	than
900	bytes.

<=	900	bytes >	900	bytes >	900
bytes

No Error No	index
present	to
generate	error.

*	None	of	the	rows	in	the	table	at	time	the	CREATE	INDEX	statement	is	executed	can	have	index	key
values	whose	total	lengths	exceed	900	bytes.

See	Also

CREATE	INDEX

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Property	Management
Microsoft®	SQL	Server™	2000	introduces	extended	properties	that	users	can
define	on	various	objects	in	a	database.	These	extended	properties	can	be	used	to
store	application-specific	or	site-specific	information	about	the	database	objects.
Because	the	property	is	stored	in	the	database,	all	applications	reading	the
property	can	evaluate	the	object	in	the	same	way.	This	helps	enforce	consistency
in	how	data	is	treated	by	all	of	the	programs	in	the	system.

Each	extended	property	has	a	user-defined	name	and	value.	The	value	of	an
extended	property	is	a	sql_variant	that	can	contain	up	to	7500	bytes	of	data.
Individual	database	objects	can	have	multiple	extended	properties.

Extended	properties	are	managed	using	three	system	stored	procedures:
sp_addextendedproperty,	sp_updateextendedproperty,	and
sp_dropextendedproperty.	You	can	read	the	value	of	an	existing	extended
property	using	the	system	function	FN_LISTEXTENDEDPROPERTY.

There	is	no	convention	or	standard	for	defining	extended	properties.	The
database	designer	sets	the	rules	specifying	the	property	names	and	contents
when	the	database	is	designed,	and	then	the	applications	accessing	the	database
have	to	be	coded	to	follow	those	rules	or	conventions.

See	Also

Using	Extended	Properties	on	Database	Objects

fn_listextendedproperty

sp_addextendedproperty

sp_dropextendedproperty

sp_updateextendedproperty

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

SQL	Server	Setup	Help

Full-Text	Catalogs	and	Indexes
A	Microsoft®	SQL	Server™	2000	full-text	index	provides	efficient	support	for
sophisticated	word	searches	in	character	string	data.	The	full-text	index	stores
information	about	significant	words	and	their	location	within	a	given	column.
This	information	is	used	to	quickly	complete	full-text	queries	that	search	for
rows	with	particular	words	or	combinations	of	words.

Full-text	indexes	are	contained	in	full-text	catalogs.	Each	database	can	contain
one	or	more	full-text	catalogs.	A	catalog	cannot	belong	to	multiple	databases	and
each	catalog	can	contain	full-text	indexes	for	one	or	more	tables.	A	table	can
only	have	one	full-text	index,	so	each	table	with	a	full-text	index	belongs	to	only
one	full-text	catalog.

Full-text	catalogs	and	indexes	are	not	stored	in	the	database	to	which	they
belong.	The	catalogs	and	indexes	are	managed	separately	by	the	Microsoft
Search	service.

A	full-text	index	must	be	defined	on	a	base	table;	it	cannot	be	defined	on	a	view,
system	table,	or	temporary	table.	A	full-text	index	definition	includes:

A	column	that	uniquely	identifies	each	row	in	the	table	(primary	or
candidate	key)	and	does	not	allow	NULLs.

One	or	more	character	string	columns	covered	by	the	index.

The	full-text	index	is	populated	with	the	key	values.	The	entry	for	each	key	has
information	about	the	significant	words	(noise-words	or	stop-words	are	stripped
out)	that	are	associated	with	the	key,	the	column	they	are	in,	and	their	location	in
the	column.

Formatted	text	strings,	such	as	Microsoft®	Word™	document	files	or	HTML
files,	cannot	be	stored	in	character	string	or	Unicode	columns	because	many	of
the	bytes	in	these	files	contain	data	structures	that	do	not	form	valid	characters.
Database	applications	may	still	have	a	need	to	access	this	data	and	apply	full-
text	searches	to	it.	Many	sites	store	this	type	of	data	in	image	columns,	because
image	columns	do	not	require	that	each	byte	form	a	valid	character.	SQL	Server
2000	introduces	the	ability	to	perform	full-text	searches	against	these	types	of

data	stored	in	image	columns.	SQL	Server	2000	supplies	filters	that	allow	it	to
extract	the	textual	data	from	Microsoft	Office™	files	(.doc,	.xls,	and	.ppt	files),
text	files	(.txt	files),	and	HTML	files	(.htm	files).	When	you	design	the	table,	in
addition	to	the	image	column	that	holds	the	data,	you	include	a	binding	column
to	hold	the	file	extension	for	the	format	of	data	stored	in	the	image	column.	You
can	create	a	full-text	index	that	references	both	the	image	column	and	the
binding	column	to	enable	full-text	searches	on	the	textual	information	stored	in
the	image	column.	The	SQL	Server	2000	full-text	search	engine	uses	the	file
extension	information	from	the	binding	column	to	select	the	proper	filter	to
extract	the	textual	data	from	the	column.

Full-text	indexing	is	the	component	that	implements	two	Transact-SQL
predicates	for	testing	rows	against	a	full-text	search	condition:

CONTAINS

FREETEXT

Transact-SQL	also	has	two	functions	that	return	a	set	of	rows	that	match	a	full-
text	search	condition:

CONTAINSTABLE	

FREETEXTTABLE

Internally,	SQL	Server	sends	the	search	condition	to	the	Microsoft	Search
service.	The	Microsoft	Search	service	finds	all	the	keys	that	match	the	full-text
search	condition	and	returns	them	to	SQL	Server.	SQL	Server	then	uses	the	list
of	keys	to	determine	which	table	rows	are	to	be	processed.

See	Also

Full-text	Indexes

Full-Text	Query	Architecture

Full-text	Querying	SQL	Server	Data

Microsoft	Search	Service

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

SQL	Server	Setup	Help

Logins,	Users,	Roles,	and	Groups
Logins,	users,	roles,	and	groups	are	the	foundation	for	the	security	mechanisms
of	Microsoft®	SQL	Server™	2000.	Users	that	connect	to	SQL	Server	must
identify	themselves	using	a	specific	login	identifier	(ID).	Users	can	then	only	see
the	tables	and	views	they	are	authorized	to	see,	and	can	only	execute	the	stored
procedures	and	administrative	functions	they	are	authorized	to	execute.	This
system	of	security	is	based	on	the	IDs	used	to	identify	users.

See	Also

Managing	Security

SQL	Server	Setup	Help

Logins
Login	identifiers	(Ids)	are	associated	with	users	when	they	connect	to
Microsoft®	SQL	Server™	2000.	Login	IDs	are	the	accounts	that	control	access
to	the	SQL	Server	system.	A	user	cannot	connect	to	SQL	Server	without	first
specifying	a	valid	login	ID.	Members	of	the	sysadmin	fixed	server	role	define
login	IDs.

sp_grantlogin	authorizes	a	Microsoft	Windows®	network	account	(either	a
group	or	a	user	account)	to	be	used	as	a	SQL	Server	login	for	connecting	to	SQL
Server	using	Windows	Authentication.	sp_addlogin	defines	a	login	account	for
SQL	Server	connections	using	SQL	Server	Authentication.

See	Also

Logins

sp_addlogin

sp_grantlogin

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

Users
A	user	identifier	(ID)	identifies	a	user	within	a	database.	All	permissions	and
ownership	of	objects	in	the	database	are	controlled	by	the	user	account.	User
accounts	are	specific	to	a	database;	the	xyz	user	account	in	the	sales	database	is
different	from	the	xyz	user	account	in	the	inventory	database,	even	though	both
accounts	have	the	same	ID.	User	IDs	are	defined	by	members	of	the	db_owner
fixed	database	role.

A	login	ID	by	itself	does	not	give	a	user	permissions	to	access	objects	in	any
databases.	A	login	ID	must	be	associated	with	a	user	ID	in	each	database	before
anyone	connecting	with	that	login	ID	can	access	objects	in	the	databases.	If	a
login	ID	has	not	been	explicitly	associated	with	any	user	ID	in	a	database,	it	is
associated	with	the	guest	user	ID.	If	a	database	has	no	guest	user	account,	a
login	cannot	access	the	database	unless	it	has	been	associated	with	a	valid	user
account.

When	a	user	ID	is	defined,	it	is	associated	with	a	login	ID.	For	example,	a
member	of	the	db_owner	role	can	associate	the	Microsoft®	Windows®	2000
login	NETDOMAIN\Joe	with	user	ID	abc	in	the	sales	database	and	user	ID	def
in	the	employee	database.	The	default	is	for	the	login	ID	and	user	ID	to	be	the
same.

This	example	shows	giving	a	Windows	2000	account	access	to	a	database	and
associating	the	login	with	a	user	in	the	database:

USE	master
GO
sp_grantlogin	'NETDOMAIN\Sue'
GO
sp_defaultdb	@loginame	=	'NETDOMAIN\Sue',	defdb	=	'sales'
GO
USE	sales
GO
sp_grantdbaccess	'NETDOMAIN\Sue',	'Sue'

GO

In	the	sp_grantlogin	statement,	the	Windows	2000	user	NETDOMAIN\Sue	is
given	access	to	Microsoft	SQL	Server™	2000.	The	sp_defaultdb	statement
makes	the	sales	database	her	default	database.	The	sp_grantdbaccess	statement
gives	the	login	NETDOMAIN\Sue	access	to	the	sales	database	and	sets	her	user
ID	within	sales	to	Sue.

This	example	shows	defining	a	SQL	Server	login,	assigning	a	default	database,
and	associating	the	login	with	a	user	in	the	database:

USE	master
GO
sp_addlogin	@loginame	=	'TempWorker',	@password	=	'fff',	defdb	=	'sales'
GO
USE	sales
GO
sp_grantdbaccess	'TempWorker'
GO

The	sp_addlogin	statement	defines	a	SQL	Server	login	that	will	be	used	by
various	temporary	workers.	The	statement	also	specifies	the	sales	database	as	the
default	database	for	the	login.	The	sp_grantdbaccess	statement	grants	the
TempWorker	login	access	to	the	sales	database;	because	no	username	is
specified,	it	defaults	to	TempWorker.

A	user	in	a	database	is	identified	by	their	user	ID,	not	their	login	ID.	For
example,	sa	is	a	login	account	mapped	to	the	special	user	account	dbo	(database
owner)	in	every	database.	All	the	security-related	Transact-SQL	statements	use
the	user	ID	as	the	security_name	parameter.	The	administration	and
understanding	of	permissions	is	less	confusing	if	the	members	of	the	sysadmin
fixed	server	role	and	the	db_owner	fixed	database	role	set	up	the	system	such
that	the	login	ID	and	user	ID	of	each	user	are	the	same,	but	it	is	not	a
requirement.

The	guest	account	is	a	special	user	account	in	SQL	Server	databases.	If	a	user
enters	a	USE	database	statement	to	access	a	database	in	which	they	are	not
associated	with	a	user	account,	they	are	instead	associated	with	the	guest	user.

See	Also

guest	User

sp_addlogin

sp_defaultdb

sp_grantdbaccess

sp_grantlogin

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

SQL	Server	Setup	Help

Roles
Roles	are	a	powerful	tool	that	allow	you	to	collect	users	into	a	single	unit	against
which	you	can	apply	permissions.	Permissions	granted	to,	denied	to,	or	revoked
from	a	role	also	apply	to	any	members	of	the	role.	You	can	establish	a	role	that
represents	a	job	performed	by	a	class	of	workers	in	your	organization	and	grant
the	appropriate	permissions	to	that	role.	As	workers	rotate	into	the	job,	you
simply	add	them	as	a	member	of	the	role;	as	they	rotate	out	of	the	job,	remove
them	from	the	role.	You	do	not	have	to	repeatedly	grant,	deny,	and	revoke
permissions	to	or	from	each	person	as	they	accept	or	leave	the	job.	The
permissions	are	applied	automatically	when	the	users	become	members	of	the
role.

Microsoft®	Windows	NT®	and	Windows®	2000	groups	can	be	used	in	much
the	same	way	as	roles.	For	more	information,	see	Groups.

It	is	easy	to	manage	the	permissions	in	a	database	if	you	define	a	set	of	roles
based	on	job	functions	and	assign	each	role	the	permissions	that	apply	to	that
job.	You	can	then	simply	move	users	between	roles	rather	than	having	to	manage
the	permissions	for	each	individual	user.	If	the	function	of	a	job	changes,	it	is
easier	to	simply	change	the	permissions	once	for	the	role	and	have	the	changes
applied	automatically	to	all	members	of	the	role.

In	Microsoft®	SQL	Server™	2000	and	SQL	Server	version	7.0,	users	can	belong
to	multiple	roles.

The	following	script	shows	adding	a	few	logins,	users,	and	roles,	and	granting
permissions	to	the	roles.

USE	master
GO
sp_grantlogin	'NETDOMAIN\John'
GO
sp_defaultdb	'NETDOMAIN\John',	'courses'
GO
sp_grantlogin	'NETDOMAIN\Sarah'

GO
sp_defaultdb	'NETDOMAIN\Sarah',	'courses'
GO
sp_grantlogin	'NETDOMAIN\Betty'
GO
sp_defaultdb	'NETDOMAIN\Betty',	'courses'
GO
sp_grantlogin	'NETDOMAIN\Ralph'
GO
sp_defaultdb	'NETDOMAIN\Ralph',	'courses'
GO
sp_grantlogin	'NETDOMAIN\Diane'
GO
sp_defaultdb	'NETDOMAIN\Diane',	'courses'
GO
USE	courses
GO
sp_grantdbaccess	'NETDOMAIN\John'
GO
sp_grantdbaccess	'NETDOMAIN\Sarah'
GO
sp_grantdbaccess	'NETDOMAIN\Betty'
GO
sp_grantdbaccess	'NETDOMAIN\Ralph'
GO
sp_grantdbaccess	'NETDOMAIN\Diane'
GO
sp_addrole	'Professor'
GO
sp_addrole	'Student'
GO
sp_addrolemember	'Professor',	'NETDOMAIN\John'
GO

sp_addrolemember	'Professor',	'NETDOMAIN\Sarah'
GO
sp_addrolemember	'Professor',	'NETDOMAIN\Diane'
GO
sp_addrolemember	'Student',	'NETDOMAIN\Betty'
GO
sp_addrolemember	'Student',	'NETDOMAIN\Ralph'
GO
sp_addrolemember	'Student',	'NETDOMAIN\Diane'
GO
GRANT	SELECT	ON	StudentGradeView	TO	Student
GO
GRANT	SELECT,	UPDATE	ON	ProfessorGradeView	TO	Professor
GO

This	script	gives	the	professors	John	and	Sarah	permission	to	update	students'
grades,	while	the	students	Betty	and	Ralph	can	only	select	their	grades.	Diane
has	been	added	to	both	roles	because	she	is	teaching	one	class	while	taking
another.	The	view	ProfessorGradeView	should	restrict	professors	to	the	rows
for	students	in	their	classes,	while	StudentGradeView	should	restrict	students	to
selecting	only	their	own	grades.

There	are	several	fixed	roles	defined	in	SQL	Server	2000	and	SQL	Server
version	7.0	during	setup.	Users	can	be	added	to	these	roles	to	pick	up	the
associated	administration	permissions.	These	are	server-wide	roles.

Fixed	server	role Description
sysadmin Can	perform	any	activity	in	SQL	Server.
serveradmin Can	set	serverwide	configuration	options,	shut

down	the	server.
setupadmin Can	manage	linked	servers	and	startup

procedures.
securityadmin Can	manage	logins	and	CREATE	DATABASE

permissions,	also	read	error	logs	and	change
passwords.

processadmin Can	manage	processes	running	in	SQL	Server.
dbcreator Can	create,	alter,	and	drop	databases.
diskadmin Can	manage	disk	files.
bulkadmin Can	execute	BULK	INSERT	statements.

You	can	get	a	list	of	the	fixed	server	roles	from	sp_helpsrvrole,	and	get	the
specific	permissions	for	each	role	from	sp_srvrolepermission.

Each	database	has	a	set	of	fixed	database	roles.	While	roles	with	the	same	names
exist	in	each	database,	the	scope	of	an	individual	role	is	only	within	a	specific
database.	For	example,	if	Database1	and	Database2	both	have	user	IDs	named
UserX,	adding	UserX	in	Database1	to	the	db_owner	fixed	database	role	for
Database1	has	no	effect	on	whether	UserX	in	Database2	is	a	member	of	the
db_owner	role	for	Database2.

Fixed	database	role Description
db_owner Has	all	permissions	in	the	database.
db_accessadmin Can	add	or	remove	user	IDs.
db_securityadmin Can	manage	all	permissions,	object	ownerships,

roles	and	role	memberships.
db_ddladmin Can	issue	ALL	DDL,	but	cannot	issue	GRANT,

REVOKE,	or	DENY	statements.
db_backupoperator Can	issue	DBCC,	CHECKPOINT,	and	BACKUP

statements.
db_datareader Can	select	all	data	from	any	user	table	in	the

database.
db_datawriter Can	modify	any	data	in	any	user	table	in	the

database.
db_denydatareader Cannot	select	any	data	from	any	user	table	in	the

database.
db_denydatawriter Cannot	modify	any	data	in	any	user	table	in	the

database.

You	can	get	a	list	of	the	fixed	database	roles	from	sp_helpdbfixedrole,	and	get
the	specific	permissions	for	each	role	from	sp_dbfixedrolepermission.

Every	user	in	a	database	belongs	to	the	public	database	role.	If	you	want
everyone	in	a	database	to	be	able	to	have	a	specific	permission,	assign	the
permission	to	the	public	role.	If	a	user	has	not	been	specifically	granted
permissions	on	an	object,	they	use	the	permissions	assigned	to	public.

See	Also

Adding	a	Member	to	a	Predefined	Role

sp_dbfixedrolepermission

sp_helpdbfixedrole

sp_helpsrvrole

sp_srvrolepermission

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

SQL	Server	Setup	Help

Groups
There	are	no	groups	in	Microsoft®	SQL	Server™	2000	or	SQL	Server	version
7.0.	You	can,	however,	manage	SQL	Server	security	at	the	level	of	an	entire
Microsoft	Windows	NT®	or	Microsoft	Windows®	2000	group.

If	you	use	sp_grantlogin	and	specify	the	name	of	a	Windows	NT	or	Windows
2000	group,	all	members	of	the	group	can	then	connect	to	SQL	Server	using
Windows	Authentication.

After	the	group	has	been	authorized	to	connect,	you	can	use	sp_grantdbaccess
to	associate	the	group	members	with	a	user	identifier	(ID)	in	each	database	they
need	to	access.	You	can	use	two	methods:

Associate	the	group	with	a	user	ID	in	the	database.

In	this	case,	all	members	of	the	group	will	be	associated	with	that	user
ID	when	they	reference	the	database.

Associate	an	individual	user	account	in	the	Windows	NT	or	Windows
2000	group	with	a	user	ID	in	the	database.

This	individual	will	be	associated	with	the	user	ID	when	they	reference
the	database.	None	of	the	other	individuals	in	the	group	will	be
associated	with	the	user	ID.	They	will	be	assigned	the	user	ID
associated	with	the	group	login.

Consider	a	Windows	NT	or	Windows	2000	group	NETDOMAIN\Managers
with	three	members:	NETDOMAIN\Sue,	NETDOMAIN\Fred,	and
NETDOMAIN\Mary.	The	following	Transact-SQL	statements	add	the
Windows	NT	or	Windows	2000	group	as	both	a	login	and	a	user	in	the	sales
database,	and	then	associate	NETDOMAIN\Sue	with	a	specific	user	ID:

USE	master
GO
--	Authorize	all	members	of	NETDOMAIN\Managers	to	connect
--	using	Windows	Authentication.
sp_grantlogin	'NETDOMAIN\Managers'

GO
--	Make	sales	the	default	database	for	all	members.
sp_dbdefault	'NETDOMAIN\Managers',	'sales'
USE	sales
GO
--	Grant	all	members	of	the	group	access	to	sales
--	No	user	ID	is	specified,	so	SQL	Server	creates
--	one	named	'NETDOMAIN\Managers'
sp_grantdbaccess	'NETDOMAIN\Managers'
GO
--	Grant	a	specific	member	of	the	group	access	to
--	sales	with	a	specific	user.
sp_grantdbaccess	'NETDOMAIN\Sue',	'Sue'

Permissions	can	now	be	granted	to	either	user	NETDOMAIN\Managers	or	user
Sue:

USE	sales
GO
GRANT	SELECT	ON	SalesTable	TO	NETDOMAIN\Managers
GO
GRANT	UPDATE	ON	SalesTable	to	NETDOMAIN\Sue

The	permissions	applied	to	NETDOMAIN\Sue	are	the	union	of	the	permissions
granted,	revoked,	or	denied	to	both	the	NETDOMAIN\Managers	or	Sue	users.
Any	DENY	permission	overrides	any	corresponding	GRANT	permissions.

Unless	their	Windows	NT	or	Windows	2000	account	has	been	associated	with	a
specific	user,	members	of	a	group	are	subject	to	the	permissions	assigned	to	the
user	associated	with	the	group.	If	a	member	of	the	group	creates	an	object,
however,	the	owner	name	of	the	object	is	their	Windows	NT	or	Windows	2000
account	name,	not	the	group	name.	Consider	the	NETDOMAIN\Manager
account.	If	NETDOMAIN\Fred	connects	to	the	sales	database,	he	can	see	all
tables	for	which	NETDOMAIN\Managers	has	been	granted	SELECT
permission.	If	NETDOMAIN\Fred	executes	the	following	statement,	the	table
is	created	as	sales.NETDOMAIN\Fred.TableX,	not

sales.NETDOMAIN\Managers.TableX:

CREATE	TableX	(cola	INT	PRIMARY	KEY,	colb	CHARACTER(200))

See	Also

sp_grantdbaccess

sp_grantlogin

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

Owners	and	Permissions
Every	object	in	Microsoft®	SQL	Server™	2000	is	owned	by	a	user.	The	owner
is	identified	by	a	database	user	identifier	(ID).	When	an	object	is	first	created,
the	only	user	ID	that	can	access	the	object	is	the	user	ID	of	the	owner	or	creator.
For	any	other	user	to	access	the	object,	the	owner	must	grant	permissions	to	that
user.	If	the	owner	wants	only	specific	users	to	access	the	object,	the	owner	can
grant	permissions	to	those	specific	users.

For	tables	and	views,	the	owner	can	grant	INSERT,	UPDATE,	DELETE,
SELECT,	and	REFERENCES	permissions,	or	ALL	permissions.	A	user	must
have	INSERT,	UPDATE,	DELETE,	or	SELECT	permissions	on	a	table	before
they	can	specify	it	in	INSERT,	UPDATE,	DELETE,	or	SELECT	statements.	The
REFERENCES	permission	lets	the	owner	of	another	table	use	columns	in	your
table	as	the	target	of	a	REFERENCES	FOREIGN	KEY	constraint	from	their
table.	The	following	example	illustrates	granting	SELECT	permissions	to	a
group	named	Teachers	and	REFERENCES	permissions	to	another	development
user:

GRANT	SELECT	ON	MyTable	TO	Teachers
GRANT	REFERENCES	(PrimaryKeyCol)	ON	MyTable	to	DevUser1

The	owner	of	a	stored	procedure	can	grant	EXECUTE	permissions	for	the	stored
procedure.	If	the	owner	of	a	base	table	wants	to	prevent	users	from	accessing	the
table	directly,	they	can	grant	permissions	on	views	or	stored	procedures
referencing	the	table,	but	not	grant	any	permissions	on	the	table	itself.	This	is	the
foundation	of	the	SQL	Server	mechanisms	to	ensure	that	users	do	not	see	data
they	are	not	authorized	to	access.

Users	can	also	be	granted	statement	permissions.	Some	statements,	such	as
CREATE	TABLE	and	CREATE	VIEW,	can	only	be	executed	by	certain	users	(in
this	case,	the	dbo	user).	If	the	dbo	wants	another	user	to	be	able	to	create	tables
or	views,	they	must	grant	the	permission	to	execute	these	statements	to	that	user.

SQL	Server	Setup	Help

Session	Context	Information
Microsoft®	SQL	Server™	2000	introduces	the	ability	to	programmatically
associate	up	to	128	bytes	of	binary	information	with	the	current	session	or
connection.	Session	context	information	enables	applications	to	set	binary	values
that	can	be	referenced	in	multiple	batches,	stored	procedures,	triggers,	or	user-
defined	functions	operating	on	the	same	session,	or	connection.	You	can	set	a
session	context	by	using	the	new	SET	CONTEXT_INFO	statement,	and	then
you	can	retrieve	the	context	string	from	the	new	context_info	column	in	the
master.dbo.sysprocesses	table.

Session	context	information	differs	from	Transact-SQL	variables,	whose	scope	is
limited	to	the	current	batch,	stored	procedure,	trigger,	or	function.	Session
context	information	can	be	used	to	store	information	specific	to	each	user	or	the
current	state	of	the	application,	which	can	then	be	used	to	control	the	logic	in
Transact-SQL	statements.

The	SET	CONTEXT_INFO	statement	supports:

A	constant,	with	a	maximum	of	128	bytes,	that	is	either	binary	or	a	data
type	that	can	be	implicitly	converted	to	binary.

The	name	of	a	varbinary(128)	or	binary(128)	variable.

SET	CONTEXT_INFO	cannot	be	specified	in	a	user-defined	function.	You
cannot	supply	a	null	value	to	SET	CONTEXT_INFO	because	the	sysprocesses
table,	where	the	information	is	stored,	does	not	allow	null	values.

To	get	the	current	session	context	for	the	current	connection,	select	the
context_info	column	from	the	master.dbo.sysprocesses	row	whose	SQL	Server
Process	ID	(SPID)	is	equal	to	the	SPID	for	the	connection.	The	SPID	for	the
current	connection	is	returned	by	the	@@SPID	function:

SELECT	context_info
FROM	master.dbo.sysprocesses
WHERE	spid	=	@@SPID

The	value	in	the	context_info	column	is	initialized	to	128	bytes	of	binary	zeros
if	SET	CONTEXT_INFO	has	not	yet	been	executed	for	the	current	connection.
If	SET	CONTEXT_INFO	has	been	executed,	the	context_info	column	contains
the	value	set	by	the	last	execution	of	SET	CONTEXT_INFO	for	the	current
connection.	The	context_info	column	is	a	varbinary(128)	column.

This	is	an	example	of	using	session	context	information:

--	Set	context	information	at	start.
SET	CONTEXT_INFO	0x1256698456
GO
--	Perform	several	non-related	batches.
sp_who
GO
USE	Northwind
GO
SELECT	CustomerID
FROM	Customers
WHERE	City	=	'London'
GO
--	Select	context	information	set	several	batches	earlier.
SELECT	context_info
FROM	master.dbo.sysprocesses
WHERE	spid	=	@@spid
GO

SET	CONTEXT_INFO	does	not	support	referencing	expressions	other	than
constants	or	variable	names,	such	as	functions.	If	you	need	to	set	the	context
information	to	the	result	of	a	function	call,	you	must	first	place	the	function	call
result	in	a	binary	or	varbinary	variable:

DECLARE	@BinVar	varbinary(128)
SET	@BinVar	=	CAST(REPLICATE(0x20,	128)	AS	varbinary(128))
SET	CONTEXT_INFO	@BinVar

See	Also

SET	CONTEXT_INFO

sysprocesses

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

Relational	Database	Components
The	database	component	of	Microsoft®	SQL	Server™	2000	is	a	Structured
Query	Language	(SQL)–based,	scalable,	relational	database	with	integrated
Extensible	Markup	Language	(XML)	support	for	Internet	applications.	Each	of
the	following	terms	describes	a	fundamental	part	of	the	architecture	of	the	SQL
Server	2000	database	component:

Database

A	database	is	similar	to	a	data	file	in	that	it	is	a	storage	place	for	data.	Like	a
data	file,	a	database	does	not	present	information	directly	to	a	user;	the	user
runs	an	application	that	accesses	data	from	the	database	and	presents	it	to	the
user	in	an	understandable	format.

Database	systems	are	more	powerful	than	data	files	in	that	data	is	more
highly	organized.	In	a	well-designed	database,	there	are	no	duplicate	pieces
of	data	that	the	user	or	application	must	update	at	the	same	time.	Related
pieces	of	data	are	grouped	together	in	a	single	structure	or	record,	and
relationships	can	be	defined	between	these	structures	and	records.

When	working	with	data	files,	an	application	must	be	coded	to	work	with	the
specific	structure	of	each	data	file.	In	contrast,	a	database	contains	a	catalog
that	applications	use	to	determine	how	data	is	organized.	Generic	database
applications	can	use	the	catalog	to	present	users	with	data	from	different
databases	dynamically,	without	being	tied	to	a	specific	data	format.

A	database	typically	has	two	main	parts:	first,	the	files	holding	the	physical
database	and	second,	the	database	management	system	(DBMS)	software
that	applications	use	to	access	data.	The	DBMS	is	responsible	for	enforcing
the	database	structure,	including:

Maintaining	relationships	between	data	in	the	database.

Ensuring	that	data	is	stored	correctly,	and	that	the	rules	defining	data
relationships	are	not	violated.

Recovering	all	data	to	a	point	of	known	consistency	in	case	of	system
failures.

Relational	Database

Although	there	are	different	ways	to	organize	data	in	a	database,	relational
databases	are	one	of	the	most	effective.	Relational	database	systems	are	an
application	of	mathematical	set	theory	to	the	problem	of	effectively
organizing	data.	In	a	relational	database,	data	is	collected	into	tables	(called
relations	in	relational	theory).

A	table	represents	some	class	of	objects	that	are	important	to	an	organization.
For	example,	a	company	may	have	a	database	with	a	table	for	employees,
another	table	for	customers,	and	another	for	stores.	Each	table	is	built	of
columns	and	rows	(called	attributes	and	tuples	in	relational	theory).	Each
column	represents	some	attribute	of	the	object	represented	by	the	table.	For
example,	an	Employee	table	would	typically	have	columns	for	attributes
such	as	first	name,	last	name,	employee	ID,	department,	pay	grade,	and	job
title.	Each	row	represents	an	instance	of	the	object	represented	by	the	table.
For	example,	one	row	in	the	Employee	table	represents	the	employee	who
has	employee	ID	12345.

When	organizing	data	into	tables,	you	can	usually	find	many	different	ways
to	define	tables.	Relational	database	theory	defines	a	process	called
normalization,	which	ensures	that	the	set	of	tables	you	define	will	organize
your	data	effectively.

Scalable

SQL	Server	2000	supports	having	a	wide	range	of	users	access	it	at	the	same
time.	An	instance	of	SQL	Server	2000	includes	the	files	that	make	up	a	set	of
databases	and	a	copy	of	the	DBMS	software.	Applications	running	on
separate	computers	use	a	SQL	Server	2000	communications	component	to
transmit	commands	over	a	network	to	the	SQL	Server	2000	instance.	When
an	application	connects	to	an	instance	of	SQL	Server	2000,	it	can	reference
any	of	the	databases	in	that	instance	that	the	user	is	authorized	to	access.	The
communication	component	also	allows	communication	between	an	instance
of	SQL	Server	2000	and	an	application	running	on	the	same	computer.	You
can	run	multiple	instances	of	SQL	Server	2000	on	a	single	computer.

SQL	Server	2000	is	designed	to	support	the	traffic	of	the	largest	Web	sites	or
enterprise	data	processing	systems.	Instances	of	SQL	Server	2000	running	on
large,	multiprocessor	servers	are	capable	of	supporting	connections	to
thousands	of	users	at	the	same	time.	The	data	in	SQL	Server	tables	can	be
partitioned	across	multiple	servers,	so	that	several	multiprocessor	computers
can	cooperate	to	support	the	database	processing	requirements	of	extremely
large	systems.	These	groups	of	database	servers	are	called	federations.

Although	SQL	Server	2000	is	designed	to	work	as	the	data	storage	engine	for
thousands	of	concurrent	users	who	connect	over	a	network,	it	is	also	capable
of	working	as	a	stand-alone	database	directly	on	the	same	computer	as	an
application.	The	scalability	and	ease-of-use	features	of	SQL	Server	2000
allow	it	to	work	efficiently	on	a	single	computer	without	consuming	too
many	resources	or	requiring	administrative	work	by	the	stand-alone	user.
The	same	features	allow	SQL	Server	2000	to	dynamically	acquire	the
resources	required	to	support	thousands	of	users,	while	minimizing	database
administration	and	tuning.	The	SQL	Server	2000	relational	database	engine
dynamically	tunes	itself	to	acquire	or	free	the	appropriate	computer	resources
required	to	support	a	varying	load	of	users	accessing	an	instance	of	SQL
Server	2000	at	any	specific	time.	The	SQL	Server	2000	relational	database
engine	has	features	to	prevent	the	logical	problems	that	occur	if	a	user	tries
to	read	or	modify	data	currently	used	by	others.

Structured	Query	Language

To	work	with	data	in	a	database,	you	have	to	use	a	set	of	commands	and
statements	(language)	defined	by	the	DBMS	software.	Several	different
languages	can	be	used	with	relational	databases;	the	most	common	is	SQL.
The	American	National	Standards	Institute	(ANSI)	and	the	International
Standards	Organization	(ISO)	define	software	standards,	including	standards
for	the	SQL	language.	SQL	Server	2000	supports	the	Entry	Level	of	SQL-92,
the	SQL	standard	published	by	ANSI	and	ISO	in	1992.	The	dialect	of	SQL
supported	by	Microsoft	SQL	Server	is	called	Transact-SQL	(T-SQL).	T-SQL
is	the	primary	language	used	by	Microsoft	SQL	Server	applications.

Extensible	Markup	Language

XML	is	the	emerging	Internet	standard	for	data.	XML	is	a	set	of	tags	that	can
be	used	to	define	the	structure	of	a	hypertext	document.	XML	documents	can
be	easily	processed	by	the	Hypertext	Markup	Language,	which	is	the	most

important	language	for	displaying	Web	pages.

Although	most	SQL	statements	return	their	results	in	a	relational,	or	tabular,
result	set,	the	SQL	Server	2000	database	component	supports	a	FOR	XML
clause	that	returns	results	as	an	XML	document.	SQL	Server	2000	also
supports	XPath	queries	from	Internet	and	intranet	applications.	XML
documents	can	be	added	to	SQL	Server	databases,	and	the	OPENXML
clause	can	be	used	to	expose	data	from	an	XML	document	as	a	relational
result	set.

SQL	Server	Setup	Help

Database	Applications	and	Servers
Microsoft®	SQL	Server™	2000	is	designed	to	work	effectively	as:

A	central	database	on	a	server	shared	by	many	users	who	connect	to	it
over	a	network.	The	number	of	users	can	range	from	a	handful	in	one
workgroup,	to	thousands	of	employees	in	a	large	enterprise,	to	hundreds
of	thousands	of	Web	users.

A	desktop	database	that	services	only	applications	running	on	the	same
desktop.

Server	Database	Systems

Server-based	systems	are	constructed	so	that	a	database	on	a	central	computer,
known	as	a	server,	is	shared	among	multiple	users.	Users	access	the	server
through	an	application:

In	a	multitier	system,	such	as	Windows®	DNA,	the	client	application
logic	is	run	in	two	or	more	locations:

A	thin	client	is	run	on	the	user's	local	computer	and	is	focused
on	displaying	results	to	the	user.

The	business	logic	is	located	in	server	applications	running	on
a	server.	Thin	clients	request	functions	from	the	server
application,	which	is	itself	a	multithreaded	application	capable
of	working	with	many	concurrent	users.	The	server	application
is	the	one	that	opens	connections	to	the	database	server.	The
server	application	can	be	running	on	the	same	server	as	the
database,	or	it	can	connect	across	the	network	to	a	separate
server	operating	as	a	database	server.	In	complex	systems,	the
business	logic	may	be	implemented	in	several	interconnected
server	applications,	or	in	multiple	layers	of	server	applications.

This	is	a	typical	scenario	for	an	Internet	application.	For

example,	a	multithreaded	server	application	can	run	on	a
Microsoft®	Internet	Information	Services	(IIS)	server	and
service	thousands	of	thin	clients	running	on	the	Internet	or	an
intranet.	The	server	application	uses	a	pool	of	connections	to
communicate	with	one	or	more	instances	of	SQL	Server	2000.
The	instances	of	SQL	Server	2000	can	be	on	the	same
computer	as	IIS,	or	they	can	be	on	separate	servers	in	the
network.

In	a	two-tier	client/server	system,	users	run	an	application	on	their	local
computer,	known	as	a	client	application,	that	connects	over	a	network	to
an	instance	of	SQL	Server	2000	running	on	a	server	computer.	The
client	application	runs	both	business	logic	and	the	code	to	display
output	to	the	user,	so	this	is	sometimes	referred	to	as	a	thick	client.

Advantages	of	Server	Database	System

Having	data	stored	and	managed	in	a	central	location	offers	several	advantages:

Each	data	item	is	stored	in	a	central	location	where	all	users	can	work
with	it.

Separate	copies	of	the	item	are	not	stored	on	each	client,	which
eliminates	problems	with	users	having	to	ensure	they	are	all	working
with	the	same	information.	Their	system	does	not	need	to	ensure	that	all
copies	of	the	data	are	updated	with	the	current	values,	because	there	is
only	one	copy	in	the	central	location.

Business	and	security	rules	can	be	defined	one	time	on	the	server	and
enforced	equally	among	all	users.

Rule	enforcement	can	be	done	in	a	database	through	the	use	of
constraints,	stored	procedures,	and	triggers.	Rules	can	also	be	enforced
in	a	server	application,	since	these	applications	are	also	central
resources	accessed	by	many	thin	clients.

A	relational	database	server	optimizes	network	traffic	by	returning	only
the	data	an	application	needs.

For	example,	if	an	application	working	with	a	file	server	needs	to

display	a	list	of	the	names	of	sales	representatives	in	Oregon,	it	must
retrieve	the	entire	employee	file.	If	the	application	is	working	with	a
relational	database	server,	it	sends	this	command:

SELECT	first_name,	last_name
FROM	employees
WHERE	emp_title	=	'Sales	Representative'
		AND	emp_state	=	'OR'

The	relational	database	sends	back	only	the	names	of	the	sales
representatives	in	Oregon,	not	all	of	the	information	about	all
employees.

Hardware	costs	can	be	minimized.

Because	the	data	is	not	stored	on	each	client,	clients	do	not	have	to
dedicate	disk	space	to	storing	data.	The	clients	also	do	not	need	the
processing	capacity	to	manage	data	locally,	and	the	server	does	not	need
to	dedicate	processing	power	to	displaying	data.

The	server	can	be	configured	to	optimize	the	disk	I/O	capacities	needed
to	retrieve	data,	and	clients	can	be	configured	to	optimize	the	formatting
and	display	of	data	retrieved	from	the	server.

The	server	can	be	stored	in	a	relatively	secure	location	and	equipped
with	devices	such	as	an	Uninterruptable	Power	Supply	more
economically	than	fully	protecting	each	client.

Maintenance	tasks	such	as	backing	up	and	restoring	data	are	simplified
because	they	can	focus	on	the	central	server.

Advantages	of	SQL	Server	2000	as	a	Database	Server

Microsoft	SQL	Server	2000	is	capable	of	supplying	the	database	services	needed
by	extremely	large	systems.	Large	servers	may	have	thousands	of	users
connected	to	an	instance	of	SQL	Server	2000	at	the	same	time.	SQL	Server	2000
has	full	protection	for	these	environments,	with	safeguards	that	prevent
problems,	such	as	having	multiple	users	trying	to	update	the	same	piece	of	data
at	the	same	time.	SQL	Server	2000	also	allocates	the	available	resources

effectively,	such	as	memory,	network	bandwidth,	and	disk	I/O,	among	the
multiple	users.

Extremely	large	Internet	sites	can	partition	their	data	across	multiple	servers,
spreading	the	processing	load	across	many	computers,	and	allowing	the	site	to
serve	thousands	of	concurrent	users.

Multiple	instances	of	SQL	Server	2000	can	be	run	on	a	single	computer.	For
example,	an	organization	that	provides	database	services	to	many	other
organizations	can	run	a	separate	instance	of	SQL	Server	2000	for	each	customer
organization,	all	on	one	computer.	This	isolates	the	data	for	each	customer
organization,	while	allowing	the	service	organization	to	reduce	costs	by	only
having	to	administer	one	server	computer.

SQL	Server	2000	applications	can	run	on	the	same	computer	as	SQL	Server
2000.	The	application	connects	to	SQL	Server	2000	using	Windows	Interprocess
Communications	(IPC)	components,	such	as	shared	memory,	instead	of	a
network.	This	allows	SQL	Server	2000	to	be	used	on	small	systems	where	an
application	must	store	its	data	locally.

The	illustration	shows	an	instance	of	SQL	Server	2000	operating	as	the	database
server	for	both	a	large	Web	site	and	a	legacy	client/server	system.

The	largest	Web	sites	and	enterprise-level	data	processing	systems	often	generate
more	database	processing	than	can	be	supported	on	a	single	computer.	In	these
large	systems,	the	database	services	are	supplied	by	a	group	of	database	servers
that	form	a	database	services	tier.	SQL	Server	2000	does	not	support	a	load-
balancing	form	of	clustering	for	building	a	database	services	tier,	but	it	does
support	a	mechanism	that	can	be	used	to	partition	data	across	a	group	of
autonomous	servers.	Although	each	server	is	administered	individually,	the
servers	cooperate	to	spread	the	database-processing	load	across	the	group.	A
group	of	autonomous	servers	that	share	a	workload	is	called	a	federation	of
servers.	For	more	information,	see	Designing	Federated	Database	Servers.

Desktop	Database	Systems
Although	SQL	Server	2000	works	effectively	as	a	powerful	database	server,	the

JavaScript:hhobj_1.Click()

same	database	engine	can	also	be	used	in	applications	that	need	stand-alone
databases	stored	locally	on	the	client.	SQL	Server	2000	can	configure	itself
dynamically	to	run	efficiently	with	the	resources	available	on	a	client	desktop	or
laptop	computer,	without	the	need	to	dedicate	a	database	administrator	to	each
client.	Application	vendors	can	also	embed	SQL	Server	2000	as	the	data	storage
component	of	their	applications.

When	clients	use	local	SQL	Server	2000	databases,	applications	connect	to	local
instances	of	the	database	engine	in	much	the	same	way	they	connect	across	the
network	to	a	database	engine	running	on	a	remote	server.	The	primary	difference
is	that	local	connections	are	made	through	local	IPCs	such	as	shared	memory,
and	remote	connections	must	go	through	a	network.

The	illustration	shows	using	SQL	Server	2000	in	a	desktop	database	system.

SQL	Server	Setup	Help

Logins
To	connect	to	an	instance	of	Microsoft®	SQL	Server™	2000,	you	typically	give
an	application	only	two	or	three	pieces	of	information:

The	network	name	of	the	computer	on	which	the	SQL	Server	instance	is
running.

The	name	of	the	instance	(optional,	required	only	if	you	are	connecting
to	a	named	instance).

Your	login	identifier	(ID).

A	login	ID	is	the	account	identifier	that	controls	access	to	any	SQL	Server	2000
system.	SQL	Server	2000	does	not	complete	a	connection	unless	it	has	first
verified	that	the	login	ID	specified	is	valid.	Verification	of	the	login	is	called
authentication.

One	of	the	properties	of	a	login	is	the	default	database.	When	a	login	connects	to
SQL	Server,	this	default	database	becomes	the	current	database	for	the
connection,	unless	the	connection	request	specifies	that	another	database	be
made	the	current	database.

A	login	ID	only	enables	you	to	connect	to	an	instance	of	SQL	Server.
Permissions	within	specific	databases	are	controlled	by	user	accounts.	The
database	administrator	maps	your	login	account	to	a	user	account	in	any
database	you	are	authorized	to	access.	For	more	information,	see	Logins,	Users,
Roles,	and	Groups.

Authenticating	Logins
Instances	of	SQL	Server	must	verify	that	the	login	ID	supplied	on	each
connection	request	is	authorized	to	access	the	instance.	This	process	is	called
authentication.	SQL	Server	2000	uses	two	types	of	authentication:	Windows
Authentication	and	SQL	Server	Authentication.	Each	has	a	different	class	of
login	ID.

Windows	Authentication

A	member	of	the	SQL	Server	2000	sysadmin	fixed	server	role	must	first
specify	to	SQL	Server	2000	all	the	Microsoft	Windows	NT®	or	Microsoft
Windows®	2000	accounts	or	groups	that	can	connect	to	SQL	Server	2000.
When	using	Windows	Authentication,	you	do	not	have	to	specify	a	login	ID
or	password	when	you	connect	to	SQL	Server	2000.	Your	access	to	SQL
Server	2000	is	controlled	by	your	Windows	NT	or	Windows	2000	account	or
group,	which	is	authenticated	when	you	log	on	to	the	Windows	operating
system	on	the	client.

When	you	connect,	the	SQL	Server	2000	client	software	requests	a	Windows
trusted	connection	to	SQL	Server	2000.	Windows	does	not	open	a	trusted
connection	unless	the	client	has	logged	on	successfully	using	a	valid
Windows	account.	The	properties	of	a	trusted	connection	include	the
Windows	NT	and	Windows	2000	group	and	user	accounts	of	the	client	that
opened	the	connection.	SQL	Server	2000	gets	the	user	account	information
from	the	trusted	connection	properties	and	matches	them	against	the
Windows	accounts	defined	as	valid	SQL	Server	2000	logins.	If	SQL	Server
2000	finds	a	match,	it	accepts	the	connection.	When	you	connect	to	SQL
Server	2000	using	Windows	2000	Authentication,	your	identification	is	your
Windows	NT	or	Windows	2000	group	or	user	account.

The	Microsoft	Windows	98	operating	system	does	not	support	the	server	side
of	the	trusted	connection	API.	When	SQL	Server	is	running	on	Windows	98,
it	does	not	support	Windows	Authentication.	Users	must	supply	a	SQL
Server	login	when	they	connect.	When	SQL	Server	is	running	on	Windows
NT	or	Windows	2000,	Windows	95	and	Windows	98	clients	can	connect	to	it
using	Windows	2000	Authentication.

SQL	Server	Authentication

A	member	of	the	sysadmin	fixed	server	role	first	specifies	to	SQL	Server	2000
all	the	valid	SQL	Server	2000	login	accounts	and	passwords.	These	are	not
related	to	your	Microsoft	Windows	account	or	network	account.	You	must
supply	both	the	SQL	Server	2000	login	and	password	when	you	connect	to	SQL
Server	2000.	You	are	identified	in	SQL	Server	2000	by	your	SQL	Server	2000
login.

SQL	Server	Authentication	Modes
When	SQL	Server	2000	is	running	on	Windows	NT	or	Windows	2000,	members
of	the	sysadmin	fixed	server	role	can	specify	one	of	two	authentication	modes:

Windows	Authentication	Mode

Only	Windows	Authentication	is	allowed.	Users	cannot	specify	a	SQL
Server	2000	login	ID.	This	is	the	default	authentication	mode	for	SQL
Server	2000.	You	cannot	specify	Windows	Authentication	Mode	for	an
instance	of	SQL	Server	running	on	Windows	98,	because	the	operating
system	does	not	support	Windows	Authentication.

Mixed	Mode

If	users	supply	a	SQL	Server	2000	login	ID	when	they	log	on,	they	are
authenticated	using	SQL	Server	Authentication.	If	they	do	not	supply	a
SQL	Server	2000	login	ID,	or	request	Windows	Authentication,	they	are
authenticated	using	Windows	Authentication.

These	modes	are	specified	during	setup	or	with	SQL	Server	Enterprise	Manager.

Login	Delegation
If	you	use	Windows	Authentication	to	log	on	to	an	instance	of	SQL	Server	2000
running	on	Windows	2000,	and	the	computer	has	Kerberos	support	enabled,
SQL	Server	2000	can	pass	your	Windows	login	credentials	to	other	instances	of
SQL	Server.	Delegation	of	your	credentials	from	one	instance	to	another	is
sometimes	called	impersonation,	typically	when	both	instances	of	SQL	Server
are	running	on	the	same	computer.

For	example,	if	Instance	A	and	Instance	B	are	running	on	separate	computers
using	Windows	2000,	you	can	connect	to	Instance	A	and	execute	a	distributed
query	that	references	tables	on	Instance	B.	When	Instance	A	connects	to	Instance
B	to	retrieve	the	required	data,	Instance	A	can	use	your	Windows	account
credentials	for	the	connection.	Instance	B	has	visibility	to	your	specific	account,
and	can	validate	your	individual	permissions	to	access	the	data	requested.

Without	delegation,	administrators	have	to	specify	the	login	that	Instance	A	uses
to	connect	to	Instance	B	(or	any	other	instance).	This	login	is	used	regardless	of
which	user	executes	a	distributed	query	on	Instance	A,	and	prevents	Instance	B

from	having	any	knowledge	of	the	actual	user	executing	the	query.	The
administrators	of	Instance	B	cannot	define	permissions	specific	to	individual
users	coming	in	from	Instance	A,	they	must	define	a	global	set	of	permissions
for	the	login	account	used	by	Instance	A.	The	administrators	also	cannot	audit
which	specific	users	perform	actions	in	Instance	B.	Using	delegation	with
Windows	Authentication	on	Windows	2000	allows	administrators	greater	control
over	user	permissions	and	gives	auditors	greater	visibility	to	the	actions	of
individual	users.

Connections	that	use	delegation	are	authenticated	using	a	Kerberos	ticket.	Each
ticket	has	a	timeout	period	defined	by	the	Windows	2000	security	administrator.
If	a	connection	remains	idle	for	a	long	period	and	the	Kerberos	ticket	times	out,
all	subsequent	attempts	to	execute	a	distributed	query	will	fail	until	the	user
disconnects	and	reconnects.

See	Also

Managing	Security

Security	Account	Delegation

SQL	Server	Setup	Help

Client	Components
Clients	do	not	access	Microsoft®	SQL	Server™	2000	directly;	instead,	clients
use	applications	written	to	access	the	data	in	SQL	Server.	These	can	include
utilities	that	come	with	SQL	Server	2000,	third-party	applications	that	access
SQL	Server	2000,	in-house	applications	developed	by	programmers	at	the	SQL
Server	2000	site,	or	Web	pages.	SQL	Server	2000	can	also	be	accessed	through
COM,	Microsoft	ActiveX®,	or	Windows®	DNA	components.

SQL	Server	2000	supports	two	main	classes	of	applications:

Relational	database	applications	that	send	Transact-SQL	statements	to
the	database	engine;	results	are	returned	as	relational	result	sets.

Internet	applications	that	send	either	Transact-SQL	statements	or	XPath
queries	to	the	database	engine;	results	are	returned	as	XML	documents.

Relational	Database	APIs

Relational	database	applications	are	written	to	access	SQL	Server	2000	through
a	database	application	programming	interface	(API).	A	database	API	contains
two	parts:

The	language	statements	passed	to	the	database.

The	language	by	relational	SQL	Server	2000	applications	is	Transact-
SQL.	Transact-SQL	supports	all	SQL-92	Entry	Level	SQL	statements
and	many	additional	SQL-92	features.	It	also	supports	the	ODBC
extensions	to	SQL-92	and	other	extensions	specific	to	Transact-SQL.

A	set	of	functions	or	object-oriented	interfaces	and	methods	used	to
send	the	language	statements	to	the	database	and	process	the	results
returned	by	the	database.

Native	API	Support

Native	API	support	means	the	API	function	calls	are	mapped	directly	to	the

network	protocol	sent	to	the	server.	There	is	no	intermediate	translation	to
another	API	needed.	SQL	Server	2000	provides	native	support	for	two	main
classes	of	database	APIs:

OLE	DB

SQL	Server	2000	includes	a	native	OLE	DB	provider.	The	provider
supports	applications	written	using	OLE	DB,	or	other	APIs	that	use
OLE	DB,	such	as	ActiveX	Data	Objects	(ADO).	Through	the	native
provider,	SQL	Server	2000	also	supports	objects	or	components	using
OLE	DB,	such	as	ActiveX,	ADO,	or	Windows	DNA	applications.

ODBC

SQL	Server	2000	includes	a	native	ODBC	driver.	The	driver	supports
applications	or	components	written	using	ODBC,	or	other	APIs	using
ODBC,	such	as	DAO,	RDO,	and	the	Microsoft	Foundation	Classes
(MFC)	database	classes.

An	example	of	nonnative	support	for	an	API	would	be	a	database	that	does	not
have	an	OLE	DB	provider,	but	does	have	an	ODBC	driver.	An	OLE	DB
application	could	use	the	OLE	DB	provider	for	ODBC	to	connect	to	the	database
through	an	ODBC	driver.	This	provider	maps	the	OLE	DB	API	function	calls
from	the	application	to	ODBC	function	calls	it	sends	to	the	ODBC	driver.

Additional	SQL	Server	API	Support
SQL	Server	2000	also	supports:

DB-Library

DB-Library	is	an	API	specific	to	SQL	Server	2000	and	Microsoft	SQL
Server.	SQL	Server	2000	supports	DB-Library	applications	written	in	C.
DB-Library	has	not	been	extended	beyond	the	functionality	it	had	in
Microsoft	SQL	Server	version	6.5.	Existing	DB-Library	applications
developed	against	earlier	versions	of	Microsoft	SQL	Server	can	be	run
against	SQL	Server	2000,	but	many	features	introduced	in	SQL	Server
2000	and	SQL	Server	version	7.0	are	not	available	to	DB-Library
applications.

Embedded	SQL

SQL	Server	2000	includes	a	C	precompiler	for	the	Embedded	SQL	API.
Embedded	SQL	applications	use	the	DB-Library	DLL	to	access	SQL
Server	2000.

XML	Access

Internet	applications	retrieve	results	in	the	form	of	XML	documents	rather	than
relational	result	sets.	The	applications	execute	either	XPath	queries	or	Transact-
SQL	statements	that	use	the	FOR	XML	clause	to	specify	that	results	be	returned
as	XML	documents.	If	you	define	a	virtual	root	on	a	Microsoft	Internet
Information	Server	(IIS)	that	points	to	an	instance	of	SQL	Server	2000,	IIS
applications	can	use	three	mechanisms	for	executing	XPath	queries	or	Transact-
SQL	statements:

Execute	a	Uniform	Resource	Locator	(URL)	that	references	the	virtual
root	and	contains	an	XPath	query	or	Transact-SQL	statement	with	FOR
XML.

Use	the	ADO	API	to	execute	an	XPath	query	to	Transact-SQL
statement	with	FOR	XML.

Use	the	OLE	DB	API	to	execute	an	XPath	query	to	Transact-SQL
statement	with	FOR	XML.

Client	Communications

The	Microsoft	OLE	DB	Provider	for	SQL	Server	2000,	the	SQL	Server	2000
ODBC	driver,	and	DB-Library	are	each	implemented	as	a	DLL	that
communicates	to	SQL	Server	2000	through	a	component	called	a	client	Net-
Library.

See	Also

Application	Development	Architecture

Overview	of	Building	SQL	Server	Applications

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

Communication	Components
Microsoft®	SQL	Server™	2000	supports	several	methods	of	communicating
between	client	applications	and	the	server.	When	the	application	is	on	the	same
computer	as	an	instance	of	SQL	Server	2000,	Windows	Interprocess
Communication	(IPC)	components,	such	as	local	named	pipes	or	shared
memory,	are	used.	When	the	application	is	on	a	separate	client,	a	network	IPC	is
used	to	communicate	with	SQL	Server.

An	IPC	has	two	components:

Application	Programming	Interface	(API)

The	API	is	a	definition	of	the	set	of	functions	software	uses	to	send
requests	to	and	retrieve	results	from	the	IPC.

Protocol

The	protocol	defines	the	format	of	the	information	sent	between	any
two	components	communicating	through	the	IPC.	In	the	case	of	a
network	IPC,	the	protocol	defines	the	format	of	the	packets	sent
between	two	computers	using	the	IPC.

Some	network	APIs	can	be	used	over	multiple	protocols.	For	example,	the
Named	Pipes	API	and	the	Microsoft	Win32®	RPC	API	can	both	be	used	with
several	protocols.	Other	network	APIs,	such	as	the	Banyan	VINES	API,	can	be
used	with	only	one	protocol.

The	SQL	Server	2000	client	communication	components	require	little	or	no
administration	when	they	connect	to	SQL	Server	2000.	Although	the	actual
implementation	of	the	communication	components	is	more	complex	than	in
earlier	versions	of	SQL	Server,	SQL	Server	2000	users	are	shielded	from	this
when	connecting	to	instances	of	SQL	Server	2000.	The	SQL	Server	2000	client
software	dynamically	determines	the	network	address	needed	to	communicate
with	any	instance	of	SQL	Server	2000.	All	the	client	software	needs	is	the
network	name	of	the	computer	on	which	the	SQL	Server	2000	instance	is
running,	and	the	name	of	the	instance	if	connecting	to	a	named	instance.	There
are	very	few	reasons	for	SQL	Server	2000	users	to	manage	the	client
communications	components	using	the	Client	Network	Utility.

System	Area	Networks
SQL	Server	2000	Enterprise	Edition	introduces	support	for	System	Area
Network	(SAN)	protocols	built	using	the	Virtual	Interface	Architecture	(VIA).	A
SAN	is	a	high-speed,	highly	reliable	network	for	interconnecting	servers	or
clusters	of	servers.	A	multi-tier,	distributed	system	can	generate	extremely	high
levels	of	network	traffic	between	servers.	Gaining	high	performance	in	such	a
system	is	possible	only	if	message	transmissions	are	fast	enough	to	minimize	the
time	the	servers	spend	processing	messages	and	waiting	for	replies.	Compared	to
local	area	networks	(LANs)	or	wide	area	networks	(WANs),	SANs	support	high
levels	of	messaging	traffic	by	lowering	CPU	loads	and	message	latency.	SANs
are	also	more	reliable	than	LANs	or	WANs,	and	are	implemented	in	groups	or
clusters	of	servers	that	are	located	close	together,	such	as	in	the	same	computer
room.

Compaq®,	Intel®,	Microsoft,	and	other	companies	have	defined	Virtual
Interface	Architecture	(VIA)	as	a	generic	definition	of	a	SAN	that	allows	many
possible	hardware	implementations.	The	Virtual	Interface	Architecture	allows	a
VIA	provider	to	implement	a	flexible,	scalable,	robust	messaging	component
built	at	low	cost	using	standard	components.	VIA	SANs	can	support	the	intense
messaging	requirements	of	large	Web	servers.

The	Virtual	Interface	Architecture	defines	both	an	API	and	a	protocol.	The	API
is	referred	to	as	the	VIA	API,	and	protocol	is	referred	to	as	the	VIA	protocol.

SANs	are	well	suited	for	these	uses	with	SQL	Server	2000:

The	application	servers	forming	the	business	services	tier	can	use	the
SAN	for	high-speed	communications	with	the	data	services	tier.	This	is
done	when	the	application	servers	and	database	servers	are	at	the	same
physical	location.

SQL	Server	2000	servers	can	use	the	SAN	to	improve	the	performance
of	distributed	queries,	distributed	transactions,	and	data	replication
between	database	servers	at	the	same	location.	A	SAN	can	improve	the
distributed	queries	needed	to	support	the	distributed	views	used	to
implement	federations	of	computers	running	SQL	Server.

SQL	Server	2000	supports	the	Giganet	VIA	SAN	implementation.	Because

SANs	are	intended	to	support	the	high	communications	bandwidth	between
servers,	SQL	Server	2000	only	supports	the	VIA	Net-Libraries	on	the	Windows
NT®	Server,	Windows	2000	Data	Center,	Advanced	Server,	and	Server
operating	systems.

SQL	Server	Setup	Help

Client	and	Server	Net-Libraries
Microsoft®	SQL	Server™	2000	uses	components	called	client	Net-Libraries	to
shield	the	OLE	DB	Provider	for	SQL	Server	2000,	the	SQL	Server	2000	ODBC
driver,	and	the	DB-Library	DLL,	from	the	details	of	communicating	with
different	Interprocess	Communication	(IPC)	components.	Server	Net-Libraries
perform	the	same	function	for	the	database	engine.

The	following	components	manage	communications	between	SQL	Server	2000
and	its	clients	in	this	sequence:

1.	 The	client	application	calls	the	OLE	DB,	ODBC,	DB-Library,	or
Embedded	SQL	API.	This	causes	the	OLE	DB	provider,	ODBC	driver,
or	DB-Library	DLL	to	be	used	for	SQL	Server	communications.

2.	 The	OLE	DB	provider,	ODBC	driver,	or	DB-Library	DLL	calls	a
client	Net-Library.	The	client	Net-Library	calls	an	IPC	API.

3.	 The	client	calls	to	the	IPC	API	are	transmitted	to	a	server	Net-Library
by	the	underlying	IPC.	If	it	is	a	local	IPC,	calls	are	transmitted	using	a
Windows	operating	IPC	such	as	shared	memory	or	local	named	pipes.
If	it	is	a	network	IPC,	the	network	protocol	stack	on	the	client	uses	the
network	to	communicate	with	the	network	protocol	stack	on	the	server.

4.	 The	server	Net-Library	passes	the	requests	coming	from	the	client	to
the	instance	of	SQL	Server	2000.

Replies	from	SQL	Server	2000	to	the	client	follow	the	reverse	sequence.

This	illustration	shows	the	communication	path	when	a	SQL	Server	application
runs	on	the	same	computer	as	an	instance	of	SQL	Server.

This	is	a	simplified	illustration	of	the	communication	path	when	a	SQL	Server
application	connects	through	a	LAN	or	WAN	to	an	instance	of	SQL	Server	2000
on	a	separate	computer.	Although	the	illustration	shows	the	OLE	DB	Provider
for	SQL	Server	2000,	SQL	Server	2000	ODBC	driver,	and	DB-Library	DLL
using	specific	Net-Libraries,	there	is	nothing	that	limits	these	components	to
these	Net-Libraries.	The	provider,	driver,	and	DB-Library	can	each	use	any	of
the	SQL	Server	Net-Libraries.

SQL	Server	2000	classifies	the	Net-Libraries	as	primary	or	secondary	Net-
Libraries.	The	OLE	DB	Provider	for	SQL	Server	2000,	the	SQL	Server	2000
ODBC	driver,	the	DB-Library	DLL,	and	the	database	engine	communicate
directly	with	only	the	two	primary	Net-Libraries:

By	default,	local	connections	between	an	application	and	an	instance	of
SQL	Server	2000	on	the	same	computer	use	the	Shared	Memory
primary	Net-Library.	This	path	is	shown	in	the	illustration	above.

Intercomputer	connections	communicate	through	the	Super	Socket
primary	Net-Library.	The	Super	Socket	Net-Library	has	two
communication	paths:

If	you	choose	a	TCP/IP	Sockets	connection	or	an	NWLINK
IPX/SPX	connection,	the	Super	Socket	Net-Library	directly
calls	the	Windows	Socket	2	API	for	the	communication
between	the	application	and	the	instance	of	SQL	Server	2000.

If	a	Named	Pipes,	Virtual	Interface	Architecture	(VIA)	SAN,

Multiprotocol,	AppleTalk,	or	Banyan	VINES	connection	is
chosen,	a	subcomponent	of	the	Super	Socket	Net-Library,
called	the	Net-Library	router,	loads	the	secondary	Net-Library
for	the	chosen	protocol	and	routes	all	Net-Library	calls	to	it.

This	illustration	shows	in	more	detail	the	communication	paths	through	the
client	and	server	Net-Libraries	for	network	connections	between	a	computer
running	the	SQL	Server	2000	client	components	and	an	instance	of	SQL	Server
2000.

The	server	Super	Socket	Net-Library	is	implemented	as	Ssnetlib.dll,	and	the
client	Super	Socket	Net-Library	is	implemented	as	Dbnetlib.dll.

This	table	shows	how	the	Net-Libraries	relate	to	the	IPC	APIs	and	protocols
used	to	make	connections.

Protocol
specified	in
network
utilities

Client	Net-
Library	used

Server	Net-
Library	used

IPC	API
called	by
Net-
Library

Protocols
supporting	the
IPC	API

TCP/IP
Sockets

Dbnetlib.dll Ssnetlib.dll Windows
Socket	2

TCP/IP

Named	Pipes Dbnetlib.dll
routes	to
Dbnmpntw.dll

Ssnetlib.dll
routes	to
Ssnmpn70.dll
(Microsoft
Windows	NT®
and	Windows®
2000	only)

Windows
Named
Pipes

File	system
(local)
TCP/IP
NetBEUI
NWLink

NWLink
IPX/SPX

Dbnetlib.dll Ssnetlib.dll Windows
Socket	2

NWLink

VIA	GigaNet
SAN

Dbnetlib.dll
routes	to
Dbmsgnet.dll
(Microsoft
Windows	NT
and	Windows
2000	only)

Ssnetlib.dll
routes	to
Dbmsgnet.dll
(Microsoft
Windows	NT
and	Windows
2000	only)

Virtual
Interface
Architecture
(VIA)

Virtual
Interface
Architecture
(VIA)

Multiprotocol Dbnetlib.dll
routes	to
Dbmsrpcn.dll

Ssnetlib.dll
routes	to
Ssmsrpc.dll
(default	instance
only)

Windows
RPC

File	system
(local)
TCP/IP
NetBEUI
NWLink

AppleTalk Dbnetlib.dll
routes	to

Ssnetlib.dll
routes	to

AppleTalk
ADSP

AppleTalk

Dbmsadsn.dll Ssmsad70.dll
(default	instance
only)

Banyan	Vines Dbnetlib.dll
routes	to
Dbmsvinn.dll

Ssnetlib.dll
routes	to
Ssmsvi70.dll
(default	instance
only)

Banyan
VINES	SPP

Banyan	VINES

Instances	of	SQL	Server	2000	running	on	Microsoft	Windows®	98	do	not
support	the	server	Named	Pipes	and	Banyan	VINES	Net-Libraries,	because	the
Windows	98	operating	system	does	not	support	the	server	part	of	these	APIs.
SQL	Server	2000	also	does	not	support	the	server	NWLink	IPX/SPX	Net-
Library	on	Windows	98.	SQL	Server	2000	does	support	the	client	side	of	these
Net-Libraries	on	Windows	98;	therefore,	applications	running	on	Windows	98
can	use	the	Net-Libraries	to	connect	to	instances	of	SQL	Server	on	Microsoft
Windows	NT	or	Microsoft	Windows	2000.	Applications	running	on	Windows	95
can	also	make	connections	using	the	client	side	of	these	Net-Libraries.

The	AppleTalk	Net-Library	does	not	run	on	computers	running	Windows	95	or
Windows	98.

VIA	networks	are	designed	to	support	the	high	levels	of	messaging	traffic
between	servers	in	the	same	data	center,	such	as	in	a	Web	site	implemented	as
one	or	more	Internet	Information	Services	application	servers	connected	to	one
or	more	database	servers	running	SQL	Server.	VIA	networks	are	not	used	to
connect	individual	workstations.	Both	the	client	and	server	SQL	Server	VIA	Net-
Libraries	are	supported	only	on	Windows	NT	Server	and	Advanced	Server,	and
Windows	2000	Server,	Advanced	Server,	and	Data	Center.

Named	instances	of	SQL	Server	2000	support	only	the	Named	Pipes,	TCP/IP
Sockets,	NWLink	IPX/SPX,	and	Shared	Memory	Net-Libraries.	Named
instances	do	not	support	the	Multiprotocol,	AppleTalk,	or	Banyan	VINES	Net-
Libraries.	To	maintain	compatibility	with	earlier	versions	of	SQL	Server,	default
instances	support	all	server	Net-Libraries.

Some	of	the	Net-Libraries	support	only	one	type	of	protocol	stack.	For	example,

the	AppleTalk	Net-Library	requires	an	AppleTalk	protocol	stack.	Other	Net-
Libraries,	such	as	the	Named	Pipes	and	Multiprotocol	Net-Libraries	support
several	protocol	stacks.

The	Microsoft	SQL	Server	Net-Libraries	have	been	tested	intensively	with	the
Microsoft	protocol	stacks	and	are	supported	with	these	stacks.	Protocol	stacks
from	other	vendors	should	work,	provided	that	the	stacks	fully	support	the	APIs
used	by	the	Microsoft	SQL	Server	Net-Libraries.

When	the	Named	Pipes	or	Multiprotocol	Net-Libraries	are	used	to	connect	an
application	to	an	instance	of	SQL	Server	on	the	same	computer,	and	the
computer	does	not	have	a	protocol	stack,	the	IPC	APIs	are	implemented	by	the
file	system.

SQL	Server	Setup	Help

Controlling	Net-Libraries	and	Communications
Addresses
After	installing	Microsoft®	SQL	Server™	2000,	you	define	the	behaviors	of	the
client	Net-Libraries	by	using	the	Client	Network	Utility	and	server	Net-Libraries
by	using	the	Server	Network	Utility.

Each	instance	of	SQL	Server	2000	can	be	listening	on	any	combination	of	the
server	Net-Libraries	at	one	time.	There	is	one	set	of	server	Net-Libraries	for	each
set	of	database	engine	executable	files.	The	server	Net-Libraries	are	installed	in:
C:\Program	Files\Microsoft	SQL	Server\MSSQL$n,	where	n	is	the	number
associated	with	this	set	of	database	engine	executable	files.

All	of	the	server	Net-Libraries	are	installed	during	the	server	portion	of	SQL
Server	Setup,	but	some	of	them	may	not	be	active.	The	person	running	the	Setup
program	can	choose	which	combination	of	Net-Libraries	is	active	for	the
instance	being	installed.	The	table	shows	the	default	server	Net-Libraries	that	are
activated	by	SQL	Server	Setup	for	the	Microsoft	Windows	NT®,	Microsoft
Windows®	2000,	and	Microsoft	Windows	98	operating	systems.

Windows	NT	and	Windows	2000 Windows	98
TCP/IP	Sockets TCP/IP	Sockets
Shared	Memory Shared	Memory
Named	Pipes 	

Disabling	and	Enabling	Net-Libraries
After	setup,	you	can	disable	and	enable	individual	server	Net-Libraries	for	each
instance	of	SQL	Server	on	a	database	computer	using	the	Server	Network
Utility.	When	a	server	Net-Library	is	disabled	for	a	specific	instance,	the
database	engine	for	the	instance	does	not	load	the	server	Net-Library	and	does
not	accept	connections	using	that	Net-Library.	The	server	Net-Library	remains
installed	and	can	be	enabled	for	other	instances	sharing	the	same	set	of
executable	files.	For	more	information,	see	SQL	Server	Network	Utility.

There	is	always	one	set	of	the	client	Net-Library	DLLs	installed	on	any
computer	running	SQL	Server	2000	client	components.	The	client	Net-Library

JavaScript:hhobj_1.Click()

DLLs	are	installed	in	the	C:\Windows\System32	or	C:\Windows\System
directory.	All	of	the	client	Net-Libraries	are	installed	when	you	install	the	SQL
Server	2000	client	utilities.	You	can	enable	and	disable	the	various	client	Net-
Libraries	using	the	Client	Network	Utility.	When	a	client	Net-Library	is	disabled
it	remains	installed	but	is	not	considered	for	any	connections.	You	can:

Specify	the	sequence	in	which	client	Net-Libraries	are	considered	for	all
connections	except	those	that	use	a	server	alias.

Enable	or	disable	specific	client	Net-Libraries.

As	a	compatibility	option,	define	server	aliases	that	define	specific	Net-
Libraries	and	connection	parameters	to	use	when	connecting	to
instances	of	SQL	Server	version	7.0	or	earlier.

For	more	information,	see	Configuring	Client	Net-Libraries.

Connecting	to	SQL	Server	2000
For	a	client	to	connect	to	a	server	running	SQL	Server	2000,	the	client	must	use
a	client	Net-Library	that	matches	one	of	the	server	Net-Libraries	the	server	is
currently	listening	on.	Also,	both	the	client	and	server	must	be	running	a
protocol	stack	supporting	the	network	API	called	by	the	Net-Library	being	used
for	the	connection.	For	example,	if	the	client	tries	using	the	client	Multiprotocol
Net-Library,	and	the	server	is	listening	on	the	server	Multiprotocol	Net-Library,
but	the	server	is	running	with	the	TCP/IP	protocol	while	the	client	computer	is
running	only	with	the	IPX/SPX	protocol	stack,	the	client	cannot	connect	to	the
server.	Both	the	client	and	the	server	must	be	using	the	same	Net-Library	and
running	the	same	protocol	stack.

Each	instance	of	SQL	Server	on	a	computer	must	listen	on	different	network
addresses	so	that	applications	can	connect	to	specific	instances.	Default
instances	of	SQL	Server	2000	listen	on	the	same	default	network	addresses	as
earlier	versions	of	SQL	Server	so	that	existing	client	computers	can	continue	to
connect	to	the	default	instance.	The	table	shows	the	default	network	addresses
that	instances	of	SQL	Server	2000	listen	on.

JavaScript:hhobj_2.Click()

Net-
Library

Default	instance	network
address Named	instance	network	address

TCP/IP
Sockets

TCP	Port	1433 A	TCP	port	is	chosen	dynamically	the	first	time	the
MSSQL$instancename	service	is	started.

Named
Pipes

\\computername\pipe\sql\query \\computername\pipe\MSSQL$instancename

NWLink
IPX/SPX

Port	33854 First	available	port	after	33854	for	each	instance.

VIA
Giganet
SAN

VIA	Port	0:1433 VIA	Port	0:1433

The	VIA	server	Net-Libraries	assign	the	same	default	address	to	both	default	and
named	instances.	The	system	administrator	must	use	the	Server	Network	Utility
to	assign	unique	port	addresses	to	each	instance	on	a	computer.

You	can	use	the	SQL	Server	2000	Server	Network	Utility	to	find	out	what
specific	set	of	network	address	each	instance	of	SQL	Server	is	listening	on	for
client	connections.

When	the	SQL	Server	2000	client	Net-Libraries	connect	to	an	instance	of	SQL
Server	2000,	only	the	network	name	of	the	computer	running	the	instance	and
the	instance	name	are	required.	When	an	application	requests	a	connection	to	a
remote	computer,	Dbnetlib.dll	opens	a	connection	to	UDP	port	1434	on	the
computer	network	name	specified	in	the	connection.	All	computers	running	an
instance	of	SQL	Server	2000	listen	on	this	port.	When	a	client	Dbnetlib.dll
connects	to	this	port,	the	server	returns	a	packet	listing	all	the	instances	running
on	the	server.	For	each	instance,	the	packet	reports	the	server	Net-Libraries	and
network	addresses	the	instance	is	listening	on.	After	the	Dbnetlib.dll	on	the
application	computer	receives	this	packet,	it	chooses	a	Net-Library	that	is
enabled	on	both	the	application	computer	and	on	the	instance	of	SQL	Server,	and
makes	a	connection	to	the	address	listed	for	that	Net-Library	in	the	packet.	The
connection	attempt	fails	only	if:

The	requested	instance	of	SQL	Server	2000	is	not	running.

None	of	the	Net-Libraries	that	the	instance	of	SQL	Server	2000	is
listening	on	is	active	on	the	application	computer.

When	Dbnetlib.dll	compares	the	network	protocols	enabled	on	the	application
computer	against	those	enabled	on	the	instance	of	SQL	Server	2000,	the
sequence	of	the	comparison	is	specified	using	the	Client	Network	Utility	on	the
application	computer.	For	example,	assume	an	application	computer	has	three
client	Net-Libraries	enabled	and	specifies	that	the	comparison	sequence	is
TCP/IP	Sockets	first,	NWLink	IPX/SPX	second,	and	named	pipes	third.	If	the
application	computer	attempts	a	connection	to	an	instance	of	SQL	Server	2000
that	has	enabled	only	the	NWLink	IPX/SPX,	named	pipes	and	Multiprotocol
server	Net-Libraries,	the	connection	is	made	using	NWLink	IPX/SPX.	For	more
information	about	configuring	the	comparison	sequence,	see	Configuring	Client
Net-Libraries.

You	cannot	assign	UDP	port	1434	to	an	application	other	than	SQL	Server	on
computers	running	instances	of	SQL	Server	2000.	Network	administrators
managing	network	filters	must	allow	communications	on	UDP	port	1434	to
enable	SQL	Server	2000	connections	to	pass	through	the	filter.

When	running	an	application	on	the	same	computer	as	a	default	instance	of	SQL
Server,	you	can	use	these	names	to	reference	the	default	instance.

Windows	NT	and	Windows	2000 Windows	98	and	Windows	95
Computer	name Computer	name
(local)* (local)*
.* 	
*Where	"(local)"	is	the	word	local	in	parentheses	and	"."	is	a	period,	or	dot.	"."	is	valid	only	in	SQL	Server
utilities,	such	as	SQL	Query	Analyzer	and	osql;	it	cannot	be	specified	in	API	connection	requests.

Do	not	use	either	(local)	or	.	to	connect	to	a	virtual	server	implemented	using
failover	clustering.

Using	the	computer	name	is	recommended.	These	connections	will	be	made	with
the	Shared	Memory	Net-Library.	DB-Library	does	not	support	using	(local).

Connecting	to	Earlier	Instances	of	SQL	Server
When	applications	using	the	SQL	Server	2000	client	components	connect	to

JavaScript:hhobj_3.Click()

instances	of	SQL	Server	version	7.0	or	earlier,	the	communications	between	the
instance	and	the	application	function	the	same	as	they	did	in	the	earlier	versions
of	SQL	Server.	Applications	using	SQL	Server	version	7.0	or	earlier	client
components	to	connect	to	default	instances	of	SQL	Server	2000	also
communicate	as	they	did	in	earlier	versions	of	SQL	Server.	In	both	of	these	cases
you	must	administer	the	network	addresses	the	way	they	were	administered	in
earlier	versions	of	SQL	Server.	For	more	information	about	configuring	a	client
in	earlier	versions	of	SQL	Server,	see	Managing	Clients.

SQL	Server	version	6.5	and	earlier	supported	Windows	Authentication	(called
Integrated	Security	in	those	versions)	only	on	the	Named	Pipes	and
Multiprotocol	Net-Libraries.	SQL	Server	2000	and	SQL	Server	version	7.0
support	Windows	Authentication	on	all	Net-Libraries.	Existing	SQL	Server
version	6.5	or	7.0	applications	that	use	the	default	Named	Pipes	Net-Library	can
be	used	to	open	Windows	Authentication	connections	to	instances	of	SQL	Server
version	6.5.	However,	if	you	upgrade	the	SQL	Server	client	utilities	on	the
application	computer	to	SQL	Server	2000,	the	default	Net-Library	changes	to
TCP/IP,	and	any	attempt	to	open	a	Windows	Authentication	connection	to
instances	of	SQL	Server	version	6.5	fails.	To	resolve	this,	you	can	use	the	Client
Network	Utility	to	put	the	Named	Pipes	Net-Library	at	the	top	of	the	Net-
Library	list,	thereby	establishing	it	as	the	default	Net-Library.

See	Also

Managing	Clients

Managing	Servers

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

SQL	Server	Setup	Help

Tabular	Data	Stream	Protocol
Microsoft®	SQL	Server™	2000	uses	an	application-level	protocol	called
Tabular	Data	Stream	(TDS)	for	communication	between	client	applications	and
SQL	Server.	The	TDS	packets	are	encapsulated	in	the	packets	built	for	the
protocol	stack	used	by	the	Net-Libraries.	For	example,	if	you	are	using	the
TCP/IP	Sockets	Net-Library,	then	the	TDS	packets	are	encapsulated	in	the
TCP/IP	packets	of	the	underlying	protocol.

The	contents	of	the	packets	that	send	result	sets	back	to	the	application	depends
on	whether	FOR	XML	is	specified	in	the	Transact-SQL	statement	transmitted	to
the	database	engine:

If	FOR	XML	is	not	specified,	the	database	engine	sends	a	relational
result	set	back	to	the	application.	The	TDS	packets	contain	the	rows	of
the	result	set,	with	each	row	comprised	of	one	or	more	columns,	as
specified	in	the	select	list	of	the	SELECT	statement.

If	FOR	XML	is	specified,	the	database	engine	streams	an	XML
document	back	to	the	application.	The	XML	document	is	formatting	in
the	TDS	packets	as	if	it	were	a	single,	long	Unicode	value,	with	each
packet	being	approximately	4	KB	in	size.

You	can	configure	the	SQL	Server	packet	size,	which	is	the	size	of	the	TDS
packets.	The	size	of	the	TDS	packets	defaults	to	4	KB	on	most	clients	(DB-
Library	applications	default	to	512	bytes),	which	testing	has	shown	to	be	the
optimal	TDS	packet	size	in	almost	all	scenarios.	The	size	of	the	TDS	packets	can
be	larger	than	the	size	of	the	packets	in	the	underlying	protocol.	If	this	is	the
case,	the	protocol	stack	on	the	sending	computer	disassembles	the	TDS	packets
automatically	into	units	that	fit	into	the	protocol	packets,	and	the	protocol	stack
on	the	client	computer	reassembles	the	TDS	packets	on	the	receiving	computer.

SQL	Server	Setup	Help

Net-Library	Encryption
Microsoft®	SQL	Server™	2000	can	use	the	Secure	Sockets	Layer	(SSL)	to
encrypt	all	data	transmitted	between	an	application	computer	and	a	SQL	Server
instance	on	a	database	computer.	The	SSL	encryption	is	performed	within	the
Super	Socket	Net-Library	(Dbnetlib.dll	and	Ssnetlib.dll)	and	applies	to	all	inter-
computer	protocols	supported	by	SQL	Server	2000.	When	SSL	encryption	is
active,	the	Super	Socket	Net-Library	performs	the	SSL	encryption	before
calling:

The	Windows	Socket	2	API	to	transmit	TCP/IP	Sockets	or	NWLink
IPX/SPX	packets.

The	Net-Library	router	to	send	a	packet	to	the	Named	Pipe,
Multiprotocol,	AppleTalk,	or	Banyan	VINES	Net-Libraries.

SSL	encryption	works	only	with	instances	of	SQL	Server	2000	running	on	a
computer	that	has	been	assigned	a	certificate	from	a	public	certification
authority.	The	computer	on	which	the	application	is	running	must	also	have	a
root	CA	certificate	from	the	same	authority.

The	Net-Library	encryption	is	implemented	using	the	Secure	Sockets	Layer	API.
The	level	of	encryption,	40-bit	or	128-bit,	depends	on	the	version	of	the
Microsoft	Windows®	operating	system	that	is	running	on	the	application	and
database	computers.

Enabling	encryption	slows	the	performance	of	the	Net-Libraries.	Encryption
forces	these	actions	in	addition	to	all	of	the	work	for	an	unencrypted	connection:

An	extra	network	round	trip	is	required	at	connect	time.

All	packets	sent	from	the	application	to	the	instance	of	SQL	Server	must
be	encrypted	by	the	client	Net-Library	and	decrypted	by	the	server	Net-
Library.

All	packets	sent	from	the	SQL	Server	instance	to	the	application	must

be	encrypted	by	the	server	Net-Library	and	decrypted	by	the	client	Net-
Library.

Shared	memory	Net-Library	communications	are	inherently	secure	without	the
need	for	encryption.	The	shared	memory	Net-Library	never	participates	in	inter-
computer	communications.	The	area	of	memory	shared	between	the	application
process	and	the	database	engine	process	cannot	be	accessed	from	any	other
Windows	process.

For	compatibility	with	earlier	versions	of	SQL	Server,	the	Multiprotocol	Net-
Library	continues	to	support	its	own	encryption.	This	encryption	is	specified
independently	of	the	SSL	encryption	and	is	implemented	by	calling	the	Windows
RPC	encryption	API.	It	does	not	require	the	use	of	certificates.	The	level	of	RPC
encryption,	40-bit	or	128-bit,	depends	on	the	version	of	the	Windows	operating
system	that	is	running	on	the	application	and	database	computers.	The
Multiprotocol	Net-Library	is	not	supported	by	named	instances.

SQL	Server	Setup	Help

Server	Components
In	addition	to	the	server	Net-Libraries,	Microsoft®	SQL	Server™	2000
incorporates	these	main	server	components:

SQL	Server	database	engine	(MSSQLServer	service)

SQL	Server	Agent	(SQLServerAgent	service)

Microsoft	Search	service

Microsoft	Distributed	Transaction	Coordinator	(MS	DTC	service)

The	server	components	are	supported	on	computers	running	the	Microsoft
Windows	NT®,	Windows®	2000,	and	Windows	98	operating	systems.	The
server	components	are	not	supported	on	computers	running	Microsoft	Windows
95.	When	SQL	Server	is	running	on	Windows	NT	or	Windows	2000,	the	SQL
Server	database	engine,	SQL	Server	Agent,	and	MS	DTC	are	implemented	as
Windows	NT	or	Windows	2000	services.	On	Windows	98,	the	server
components	are	not	implemented	as	services	because	the	operating	system	does
not	support	services.	The	Microsoft	Search	service	is	not	available	on	Windows
95	or	Windows	98.

The	server	components	can	be	stopped	and	started	several	ways:

Windows	NT	and	Windows	2000	can	start	each	service	automatically
when	the	operating	system	is	starting.

Use	SQL	Server	Service	Manager	to	start	or	stop	the	service.

Use	SQL	Server	Enterprise	Manager	to	start	or	stop	the	service.

On	Windows	NT	or	Windows	2000,	use	the	net	start	and	net	stop
command	prompt	commands	to	stop	or	start	each	service	(except	for	a

virtual	server	in	a	failover	cluster).

SQL	Server	2000	supports	multiple	instances	of	SQL	Server	on	computers
running	Windows	NT	or	Windows	2000.	Each	instance	has	its	own	copy	of	the
SQL	Server	service	and	the	SQL	Server	Agent	Service.	There	are	only	single
copies	of	the	Microsoft	Search	service	or	the	MS	DTC	service,	whose	services
are	shared	among	the	multiple	instances	of	SQL	Server	running	on	the	computer.

SQL	Server	Setup	Help

SQL	Server	Service
The	Microsoft®	SQL	Server™	2000	database	engine	runs	as	a	service	on	the
Microsoft	Windows	NT®	or	Microsoft	Windows®	2000	operating	systems.	It
does	not	run	as	a	service	on	Microsoft	Windows	98	because	this	operating
system	does	not	support	services.	SQL	Server	can	also	run	as	an	executable	file
on	Windows	NT	and	Windows	2000,	although	it	is	usually	run	as	a	service.

When	multiple	instances	of	SQL	Server	are	run	on	the	same	computer,	each
instance	has	its	own	SQL	Server	service.	The	service	name	for	the	default
instance	is	named	MSSQLServer,	the	service	name	for	named	instances	is
MSSQL$InstanceName.	For	more	information,	see	Multiple	Instances	of	SQL
Server.

The	SQL	Server	service	manages	all	of	the	files	that	comprise	the	databases
owned	by	an	instance	of	SQL	Server.	It	is	the	component	that	processes	all
Transact-SQL	statements	sent	from	SQL	Server	client	applications.	SQL	Server
also	supports	distributed	queries	that	retrieve	data	from	multiple	sources,	not
only	SQL	Server.

The	SQL	Server	service	allocates	computer	resources	effectively	between
multiple	concurrent	users.	It	also	enforces	business	rules	defined	in	stored
procedures	and	triggers,	ensures	the	consistency	of	the	data,	and	prevents	logical
problems	such	as	having	two	people	trying	to	update	the	same	data	at	the	same
time.

SQL	Server	Setup	Help

SQL	Server	Agent	Service
SQL	Server	Agent	supports	features	allowing	the	scheduling	of	periodic
activities	on	Microsoft®	SQL	Server™	2000,	or	the	notification	to	system
administrators	of	problems	that	have	occurred	with	the	server.	The	SQL	Server
Agent	components	that	implement	this	capability	are:

Jobs

Defined	objects	consisting	of	one	or	more	steps	to	be	performed.	The
steps	are	Transact-SQL	statements	that	can	be	executed.	Jobs	can	be
scheduled,	for	example,	to	execute	at	specific	times	or	recurring
intervals.

Alerts

Actions	to	be	taken	when	specific	events	occur,	such	as	a	specific	error,
errors	of	certain	severities,	or	a	database	reaching	a	defined	limit	of	free
space	available.	The	alert	can	be	defined	to	take	such	actions	as	sending
an	e-mail,	paging	an	operator,	or	running	a	job	to	address	the	problem.

Operators

People	identified	through	their	network	account	or	e-mail	identifier	(ID)
who	can	address	problems	with	the	server.	They	can	be	the	targets	of
alerts,	either	through	e-mail,	a	pager,	or	a	net	send	network	command.

The	service	name	of	SQLServerAgent	applies	only	to	the	Agent	service
associated	with	a	default	instance.	SQL	Server	Agent	services	associated	with
named	instances	are	named	SQLAgent$InstanceName.

Managing	Scheduled	Operations
The	illustration	shows	the	primary	components	that	are	used	in	the	definition	and
operation	of	jobs,	alerts,	and	operators.

Jobs,	alerts,	and	operators	are	specified	using:

SQL	Server	Enterprise	Manager.

Applications	that	use	SQL	Distributed	Management	Objects
(SQL-DMO).

Applications	that	use	Transact-SQL	and	a	standard	database
API.

The	definitions	are	stored	by	SQL	Server	in	the	msdb	system	database.

When	the	SQLServerAgent	service	is	started,	it	queries	the	system
tables	in	the	msdb	database	to	determine	what	jobs	and	alerts	to	enable.

SQL	Server	Agent	executes	jobs	at	their	scheduled	time.

SQL	Server	passes	any	events	that	occur	to	the	SQL	Server	Agent.

SQL	Server	Agent	executes	any	alerts,	or	sends	SQL	Mail	requests	to
SQL	Server,	or	sends	net	send	commands	to	Windows.

SQL	Server	2000	is	more	highly	automated	than	SQL	Server	version	6.5	and
earlier,	and	more	efficiently	tunes	itself	to	meet	processing	demands.	These
features	lower	the	potential	for	exception	conditions	that	would	trigger	alerts.
Scheduled	jobs	remain	a	good	feature	for	implementing	recurring	tasks	such	as
backup	procedures.

See	Also

Automating	Administrative	Tasks

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Microsoft	Search	Service
The	Microsoft	Search	service	is	a	full-text	indexing	and	search	engine.

The	SQL-92	standard	defines	only	basic	character-search	capabilities:

For	a	character	value	equal	to,	less	than,	or	greater	than	a	character
constant.

For	a	character	value	containing	a	string	pattern.

Using	the	Microsoft	Search	service	allows	Microsoft®	SQL	Server™	2000	and
SQL	Server	version	7.0	to	support	more	sophisticated	searches	on	character
string	columns.

The	Microsoft	Search	service	has	two	roles:

Indexing	support

Implements	the	full-text	catalogs	and	indexes	defined	for	a	database.
Accepts	definitions	of	full-text	catalogs,	and	the	tables	and	columns
comprising	the	indexes	in	each	catalog.	Implements	requests	to	populate
the	full-text	indexes.

Querying	support

Processes	full-text	search	queries.	Determines	which	entries	in	the	index
meet	the	full-text	selection	criteria.	For	each	entry	that	meets	the
selection	criteria,	it	returns	the	identity	of	the	row	plus	a	ranking	value
to	the	SQL	Server	service,	where	this	information	is	used	to	construct
the	query	result	set.	The	types	of	queries	supported	include	searching
for:

Words	or	phrases.

Words	in	close	proximity	to	each	other.

Inflectional	forms	of	verbs	and	nouns.

The	full-text	engine	runs	as	a	service	named	Microsoft	Search	on	Microsoft
Windows	NT®	or	Microsoft	Windows®	2000.	It	is	installed	when	the	Full-Text
Search	feature	is	selected	during	custom	installation.	The	Microsoft	Search
service	itself	is	not	installed	on	Microsoft	Windows	95	or	Microsoft	Windows
98,	although	Windows	95	and	Windows	98	clients	can	make	use	of	the	service
when	connected	to	a	SQL	Server	installation	running	on	Windows	NT	or
Windows	2000.

The	Microsoft	Search	service	runs	in	the	context	of	the	local	system	account.
During	setup,	SQL	Server	adds	itself	as	an	administrator	of	the	Microsoft	Search
service.	To	ensure	this	relationship	is	maintained	correctly,	all	changes	to	the
SQL	Server	service	account	information	must	be	made	using	the	Properties	tab
of	the	SQL	Server	Properties	dialog	box	in	SQL	Server	Enterprise	Manager.

The	full-text	catalogs	and	indexes	are	not	stored	in	a	SQL	Server	database.	They
are	stored	in	separate	files	managed	by	the	Microsoft	Search	service.	The	full-
text	catalog	files	are	accessible	only	to	the	Microsoft	Search	service	and	the
Windows	NT	or	Windows	2000	system	administrator.

See	Also

Full-Text	Catalogs	and	Indexes

Full-Text	Query	Architecture

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

MSSQLServerADHelper	Service
The	MSSQLServerADHelper	service	performs	two	functions:

It	adds	and	removes	the	objects	used	to	register	instances	of	Microsoft®
SQL	Server™	2000	relational	database	engine	or	Analysis	server	in	the
Microsoft	Windows®	2000	Active	Directory™.

It	ensures	that	the	Windows	account	under	which	a	SQL	Server	service
is	running	has	permissions	to	update	all	of	the	Active	Directory	objects
for	the	instance,	as	well	as	any	replication	publications	and	databases
for	that	instance.

The	service	is	dynamically	started	by	an	instance	of	SQL	Server	or	the	Analysis
Manager	when	needed.	The	service	is	stopped	as	soon	as	it	has	completed	its
work.

Active	Directory	objects	in	a	computer	container	can	be	created	or	removed	only
by	programs	that	have	been	assigned	either	domain	administration	rights	or	that
are	running	under	the	localsystem	Windows	account.	Few	sites	run	their	SQL
Server	service	under	either	of	these	types	of	accounts.	A	service	application	that
does	not	perform	network	administration,	such	as	SQL	Server,	is	rarely	granted
full	domain	administration	rights.	The	localsystem	account	cannot	be	given	any
privileges	on	remote	computers;	therefore,	running	SQL	Server	under	this
account	would	prevent	much	of	the	SQL	Server	distributed	functionality	from
working.	The	MSSQLServerADHelper	service	is	run	under	the	localsystem
account	so	that	it	can	add	and	remove	objects	registering	SQL	Server	entities	in
the	Active	Directory.

There	is	only	one	MSSQLServerADHelper	service	on	a	computer.	The	single
service	handles	the	Active	Directory	objects	for	all	instances	of	the	SQL	Server
relational	database	engine	and	all	Analysis	Manager	applications	running	on	the
computer.

Registering	SQL	Server	Analysis	Servers
Analysis	servers	are	registered	from	the	Analysis	Manager,	which	is	a	Microsoft

Management	Console	(MMC)	application.	When	users	of	Analysis	Manager
request	that	an	Analysis	server	be	registered	in	the	Active	Directory,	the
application	dynamically	starts	the	MSSQLServerADHelper	service	and
requests	that	it	create	an	MS-SQL-OLAPServer	object	in	the	Active	Directory.
The	helper	service	is	stopped	after	the	object	has	been	completed,	and	the
Analysis	Manager	finishes	filling	in	the	information	for	the	object.	For	more
information,	see	Using	Active	Directory	with	Analysis	Services.

Registering	SQL	Server	Relational	Components
All	management	of	the	registrations	of	instances	of	SQL	Server,	and	the
databases	and	replication	publications	in	each	instance,	are	made	using	system
stored	procedures	on	the	instance	of	SQL	Server.	SQL	Server	Enterprise
Manager	calls	the	system	stored	procedures	when	users	specify	Active	Directory
actions	in	the	user	interface.	The	procedures	used	are:

sp_ActiveDirectory_SCP.	Manages	the	registration	of	an	instance	of
the	relational	database	engine.

sp_addpublication,	sp_addmergepublication,	sp_changepublication,
or	sp_changemergepublication.	Manage	the	registration	of	replication
publications.

sp_ActiveDirectory_Obj.	Manages	the	registration	of	a	database.

Each	of	these	system	stored	procedures	internally	call	an	internal	component	that
use	the	Active	Directory	Services	Interface	(ADSI)	to	manage	the	objects.	When
an	MS-SQL-SQLServer	object	must	be	added	or	removed	from	the	Active
Directory,	or	permissions	granted,	the	SQL	Server	ADSI	component	calls	the
MSSQLServerADHelper	service	to	perform	the	task.	The	SQL	Server	service
uses	the	SQL	Server	ADSI	component	to	dynamically	start	the
MSSQLServerADHelper	service	as	needed.

The	SQL	Server	service	dynamically	calls	the	MSSQLServerADHelper	service
at	these	times:

When	an	MS-SQL-SQLServer	object	must	be	created	in	the	Active
Directory	to	register	an	instance	of	SQL	Server,	the	SQL	Server	service

JavaScript:hhobj_1.Click()

calls	MSSQLServerADHelper	to	create	the	object.
MSSQLServerADHelper	creates	the	object	and	gives	update
permissions	to	the	Windows	account	under	which	the	SQL	Server
service	is	running,	and	then	MSSQLServerADHelper	stops.	The	SQL
Server	service	now	has	the	permissions	needed	to	maintain	the	object
until	it	is	removed.	These	permissions	include	creating	MS-SQL-
SQLPublication	and	MS-SQL-SQLDatabase	objects	as	children	of
the	MS-SQL-SQLServer	object.

If	an	administrator	changes	the	Windows	account	under	which	the	SQL
Server	service	runs,	the	SQL	Server	service	detects	this	the	next	time	it
attempts	to	update	any	information	in	objects	that	existed	in	the	Active
Directory	before	the	account	change.	The	SQL	Server	service
automatically	starts	MSSQLServerADHelper.	That	service	reassigns
update	permissions	on	the	all	the	objects	related	to	the	current	instance
of	SQL	Server	to	the	new	Windows	account.

When	a	request	is	made	to	delete	an	MS-SQL-SQLServer	object,	the
SQL	Server	ADSI	component	calls	the	MSSQLServerADHelper
service	to	delete	the	object	and	any	children	that	are	still	present.

The	SQL	Server	service	must	be	run	under	a	Windows	account	that	has
permissions	to	start	the	MSSQLServerADHelper	service.	By	default,	members
of	the	local	Power	Users	and	local	Administrator's	groups	have	this	permission.

SQL	Server	Setup	Help

MS	DTC	Service
The	Microsoft	Distributed	Transaction	Coordinator	(MS	DTC)	is	a	transaction
manager	that	allows	client	applications	to	include	several	different	sources	of
data	in	one	transaction.	MS	DTC	coordinates	committing	the	distributed
transaction	across	all	the	servers	enlisted	in	the	transaction.

An	installation	of	Microsoft®	SQL	Server™	can	participate	in	a	distributed
transaction	by:

Calling	stored	procedures	on	remote	servers	running	SQL	Server.

Automatically	or	explicitly	promoting	the	local	transaction	to	a
distributed	transaction	and	enlist	remote	servers	in	the	transaction.

Making	distributed	updates	that	update	data	on	multiple	OLE	DB	data
sources.

If	these	OLE	DB	data	sources	support	the	OLE	DB	distributed
transaction	interface,	SQL	Server	can	also	enlist	them	in	the	distributed
transaction.

The	MS	DTC	service	coordinates	the	proper	completion	of	the	distributed
transaction	to	ensure	that	either	all	of	the	updates	on	all	the	servers	are	made
permanent,	or,	in	the	case	of	errors,	all	erased.

SQL	Server	applications	can	also	call	MS	DTC	directly	to	start	a	distributed
transaction	explicitly.	One	or	more	servers	running	SQL	Server	can	then	be
instructed	to	enlist	in	the	distributed	transaction	and	coordinate	the	proper
completion	of	the	transaction	with	MS	DTC.

See	Also

Distributed	Transactions

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Multiple	Instances	of	SQL	Server
Microsoft®	SQL	Server™	2000	supports	multiple	instances	of	the	SQL	Server
database	engine	running	concurrently	on	the	same	computer.	Each	instance	of
the	SQL	Server	database	engine	has	its	own	set	of	system	and	user	databases	that
are	not	shared	between	instances.	Applications	can	connect	to	each	SQL	Server
database	engine	instance	on	a	computer	in	much	the	same	way	they	connect	to
SQL	Server	database	engines	running	on	different	computers.

There	are	two	types	of	instances	of	SQL	Server:

Default	Instances

The	default	instance	of	the	SQL	Server	2000	database	engine	operates	the
same	way	as	the	database	engines	in	earlier	versions	of	SQL	Server.	The
default	instance	is	identified	solely	by	the	name	of	the	computer	on	which
the	instance	is	running,	it	does	not	have	a	separate	instance	name.	When
applications	specify	only	the	computer	name	in	their	requests	to	connect	to
SQL	Server,	the	SQL	Server	client	components	attempt	to	connect	to	the
default	instance	of	the	database	engine	on	that	computer.	This	preserves
compatibility	with	existing	SQL	Server	applications.

There	can	only	be	one	default	instance	on	any	computer,	the	default	instance
can	be	any	version	of	SQL	Server.

Named	Instances

All	instances	of	the	database	engine	other	than	the	default	instance	are
identified	by	an	instance	name	specified	during	installation	of	the	instance.
Applications	must	provide	both	the	computer	name	and	the	instance	name	of
any	named	instance	to	which	they	are	attempting	to	connect.	The	computer
name	and	instance	name	are	specified	in	the	format
computer_name\instance_name.

There	can	be	multiple	named	instances	running	on	a	computer,	but	only	the
SQL	Server	2000	database	engine	can	operate	as	a	named	instance.	The
database	engines	from	earlier	versions	of	SQL	Server	cannot	operate	as	a
named	instance.

Instances	apply	primarily	to	the	database	engine	and	its	supporting	components,

not	to	the	client	tools.	When	you	install	multiple	instances,	each	instance	gets	a
unique	set	of:

System	and	user	databases.

The	SQL	Server	and	SQL	Server	Agent	services.	For	default	instances,
the	names	of	the	services	remain	MSSQLServer	and	SQLServerAgent.
For	named	instances,	the	names	of	the	services	are	changed	to
MSSQL$instancename	and	SQLAgent$instancename,	allowing	them	to
be	started	and	stopped	independently	of	the	other	instances	on	the
server.	The	database	engines	for	the	different	instances	are	started	and
stopped	using	the	associated	SQL	Server	service.	The	SQL	Server
Agent	services	manage	scheduled	events	for	the	associated	instances	of
the	database	engine.

The	registry	keys	associated	with	the	database	engine	and	the	SQL
Server	and	SQL	Server	Agent	services.

Network	connection	addresses	so	that	applications	can	connect	to
specific	instances.

Shared	Components

The	following	components	are	shared	between	all	of	the	instances	running	on	the
same	computer:

There	is	only	one	SQL	Server	2000	program	group	(Microsoft	SQL
Server)	on	the	computer,	and	only	one	copy	of	the	utility	represented	by
each	icon	in	the	program	group.	There	is	only	one	copy	of	SQL	Server
Books	Online.

The	versions	of	the	utilities	in	the	program	group	are	from	the	first
version	of	SQL	Server	2000	installed	on	the	computer.	For	example,	if
you	install	the	French	version	of	SQL	Server	2000	as	a	default	instance
and	then	the	U.S.	English	version	of	SQL	Server	2000	as	a	named
instance,	there	is	one	SQL	Server	2000	program	group.	All	of	the	utility
icons	and	the	SQL	Server	Books	Online	icon	in	the	program	group	start

the	French	versions	of	the	tools.

All	of	the	SQL	Server	2000	utilities	work	with	multiple	instances.	You
can	start	and	stop	each	of	the	instances	from	a	single	copy	of	the	SQL
Server	2000	Service	Manager.	You	can	use	a	single	copy	of	the	SQL
Server	2000	SQL	Server	Enterprise	Manager	to	control	objects	in	all
instances	on	the	computer,	and	use	a	single	copy	of	the	SQL	Server
2000	Server	Network	Manager	to	manage	the	network	addresses	with
which	all	of	the	instances	on	the	computer	communicate.

There	is	only	one	copy	of	the	MSSearchService	that	manages	full-text
searches	against	all	of	the	instances	of	SQL	Server	on	the	computer.

There	is	only	one	copy	each	of	the	English	Query	and	Microsoft	SQL
Server	2000	Analysis	Services	servers.

The	registry	keys	associated	with	the	client	software	are	not	duplicated
between	instances.

There	is	only	one	copy	of	the	SQL	Server	development	libraries
(include	and	.lib	files)	and	sample	applications.

Default	Instances

Configurations	that	can	operate	as	a	default	instance	include:

A	default	instance	of	SQL	Server	2000.

An	installation	of	SQL	Server	version	7.0	operates	as	a	default	instance.

An	installation	of	SQL	Server	version	6.5	operates	as	a	default	instance.

A	default	instance	of	SQL	Server	2000	that	can	be	version	switched
with	an	installation	of	SQL	Server	version	6.5	using	the	SQL	Server
2000	vswitch	utility.

An	installation	of	SQL	Server	version	7.0	that	can	be	version	switched
with	an	installation	of	SQL	Server	version	6.5	using	the	SQL	Server
version	7.0	vswitch	utility.

Note		You	must	apply	SQL	Server	6.5	Service	Pack	5	to	any	instance	of
SQL	Server	6.5	before	installing	instances	of	SQL	Server	2000	on	the
same	computer.

Switching	Between	Versions	of	SQL	Server

You	cannot	version	switch	between	an	installation	of	SQL	Server	version	7.0	and
a	default	instance	of	SQL	Server	2000.

You	can	have	any	number	of	named	instances	of	SQL	Server	2000	in	addition	to
the	default	instance.	You	are	not	required	to	run	a	default	instance	on	a	computer
before	you	can	run	named	instances.	You	can	run	named	instances	on	a	computer
that	has	no	default	instance.	SQL	Server	version	6.5	and	SQL	Server	7.0	cannot
operate	as	named	instances,	only	as	default	instances.

Microsoft	does	not	support	more	than	16	instances	on	a	single	computer	or
failover	cluster.

If	you	run	SQL	Server	version	6.5	as	a	default	instance	and	run	one	or	more
named	instances	of	SQL	Server	2000	on	a	single	computer,	the	computer	has
two	SQL	Server	program	groups	instead	of	one	SQL	Server	program	group:

A	SQL	Server	2000	program	group	executes	the	SQL	Server	2000	tools.

A	SQL	Server	version	6.5	program	group	runs	the	SQL	Server	6.5	tools.

If	you	are	running	SQL	Server	version	7.0	with	SQL	Server	2000,	the	icons	in
the	SQL	Server	7.0	program	group	will	execute	the	SQL	Server	2000	tools.

Note		You	must	apply	SQL	Server	6.5	Service	Pack	5	to	any	instance	of	SQL
Server	6.5	before	installing	instances	of	SQL	Server	2000	on	the	same	computer.

Multiple	Instances	of	SQL	Server	on	a	Failover	Cluster

You	can	run	only	one	instance	of	SQL	Server	on	each	virtual	server	of	a	SQL
Server	failover	cluster,	although	you	can	install	up	to	16	virtual	servers	on	a
failover	cluster.	The	instance	can	be	either	a	default	instance	or	a	named
instance.	The	virtual	server	looks	like	a	single	computer	to	applications
connecting	to	that	instance	of	SQL	Server.	When	applications	connect	to	the
virtual	server,	they	use	the	same	convention	as	when	connecting	to	any	instance
of	SQL	Server;	they	specify	the	virtual	server	name	of	the	cluster	and	the
optional	instance	name	(only	needed	for	named	instances):
virtualservername\instancename.	For	more	information	about	clustering,	see
Failover	Clustering	Architecture.

SQL	Server	Setup	Help

Communicating	with	Multiple	Instances
Each	instance	of	Microsoft®	SQL	Server™	2000	listens	on	a	unique	set	of
network	address	so	that	applications	can	connect	to	different	instances.	SQL
Server	2000	clients	do	not	have	to	be	configured	to	connect	to	an	instance	of
SQL	Server	2000.	The	SQL	Server	2000	client	components	query	a	computer
running	instances	of	SQL	Server	2000	to	determine	the	Net-Libraries	and
network	addresses	for	each	instance.	The	client	components	then	transparently
choose	a	supported	Net-Library	and	address	for	the	connection	without	having	to
be	configured	on	the	client.	The	only	information	the	application	must	supply	is
the	computer	name	and	instance	name.	For	more	information,	see	Controlling
Net-Libraries	and	Communications	Addresses.

A	default	instance	of	SQL	Server	2000	listens	on	the	same	network	addresses	as
earlier	versions	of	SQL	Server;	therefore,	applications	using	the	client
connectivity	components	of	SQL	Server	version	7.0	or	earlier	can	continue	to
connect	to	the	default	instance	with	no	change.	Named	instances	listen	on
alternative	network	addresses,	and	client	computers	using	the	client	connectivity
components	of	SQL	Server	version	7.0	or	earlier	must	be	set	up	to	connect	to	the
alternative	addresses.

SQL	Server	Setup	Help

Using	Multiple	Instances
Although	running	multiple	instances	of	Microsoft®	SQL	Server™	2000	on	a
single	computer	expands	the	capabilities	of	SQL	Server,	the	recommended
configuration	for	most	production	databases	servers	is	to	use	a	single	instance	of
SQL	Server	with	multiple	databases.

Using	a	single	instance	of	SQL	Server	on	a	production	server	offers	these
benefits:

Only	one	instance	needs	to	be	administered.

There	is	no	duplication	of	components	or	processing	overhead,	such	as
having	to	run	multiple	database	engines	on	the	same	computer.	This
means	that	the	overall	performance	of	a	server	with	a	single	instance
may	be	higher	than	a	server	running	multiple	instances.

A	single	instance	of	SQL	Server	2000	is	capable	of	handling	the
processing	growth	requirements	of	the	largest	Web	sites	and	enterprise
data-processing	systems,	especially	when	it	is	part	of	a	federation	of
database	servers.	For	more	information,	see	Federated	SQL	Server	2000
Database	Servers.

Running	multiple	instances	of	SQL	Server	on	a	single	computer	is	best:

When	you	must	support	different	systems	that	have	to	be	securely
isolated	from	each	other,	such	as	when	a	service	bureau	has	a	large
server	and	must	create	a	separate	instance	of	SQL	Server	for	each
customer.

When	you	need	to	support	multiple	test	and	development	databases,	and
the	most	economical	configuration	is	to	run	these	as	separate	instances
of	SQL	Server	on	a	single	large	server.

When	you	need	to	run	multiple	applications	on	a	desktop,	and	each
application	installs	a	separate	instance	of	SQL	Server	2000	Desktop
Engine.

SQL	Server	Setup	Help

Working	with	Multiple	Instances
Although	multiple	instances	of	Microsoft®	SQL	Server™	2000	can	run	on	a
single	computer,	there	is	no	direct	connection	between	instances.	Each	instance
operates	in	many	ways	as	if	it	is	on	a	separate	server.	An	application	connected
to	one	instance	cannot	access	objects	in	databases	created	in	another	instance,
except	through	distributed	queries.	Databases	and	database	files	cannot	be
shared	between	instances.

Named	instances	of	SQL	Server	2000	database	engines	have	almost	the	same
behaviors	as	default	instances.	The	main	difference	is	that	you	must	supply	both
the	computer	name	and	instance	name	to	identify	a	named	instance.	When	you
specify	only	computername,	you	work	with	the	default	instance.	When	you
specify	computername\instancename	you	work	with	the	named	instance.

Service	Manager.

When	you	specify	only	computername	in	Service	Manager,	you	can
stop	and	start	the	default	instance.	When	you	specify
computername\instancename	you	can	stop	and	start	the	named	instance.
When	a	specific	instance	is	started,	any	database	created	in	that	instance
is	available	to	any	application	that	connects	to	the	instance	using	an
authorization	ID	that	has	permissions	to	access	the	database.

SQL	Server	Enterprise	Manager.

Using	SQL	Server	Enterprise	Manager	you	can	register	each	instance
for	which	you	have	permissions.	After	an	instance	is	registered,	you	can
create,	edit,	and	drop	objects	in	the	databases	associated	with	that
instance,	subject	to	the	permissions	granted	to	you.	You	can	also	create,
edit,	and	drop	Data	Transformation	Services,	Replication,	and	SQL
Server	Agent	objects	for	that	instance.

Applications.

In	an	application,	when	you	specify	computername	as	the	server	name
parameter	in	a	connection	request,	you	are	connected	to	the	default
instance	on	the	computer.	You	can	access	any	databases	in	the	default

instance	that	you	have	permissions	to	access.	If	you	specify
computername\instancename	as	the	server	name	parameter,	you	are
connected	to	the	named	instance.	You	can	access	any	databases	in	that
named	instance	that	you	have	permissions	to	access.	When	you	are
connected	to	a	specific	instance,	objects	in	databases	in	other	instances
can	be	accessed	only	through	distributed	queries,	just	as	objects	in
databases	on	other	servers	can	be	accessed	only	through	distributed
queries.	Applications	specify	the	instance	name	in	different	ways:

ADO	applications	specify
"Server=computername\instancename"	in	the	provider	string.
For	more	information,	see	Connecting	to	Multiple	Instances	of
SQL	Server.

OLE	DB	applications	specify
"Server=computername\instancename"	in	the	provider	string.
They	can	alternatively	set	DBPROP_INIT_DATASOURCE	to
computername\\instancename	(the	backslash	must	be	escaped
with	a	second	backslash).	For	more	information,	see
Establishing	a	Connection	to	a	Data	Source.

ODBC	applications	specify
"Server=computername\instancename"	in	the	connection	string
specified	on	SQLDriverConnect.	They	can	alternatively
specify	computername\\instancename	for	the	ServerName
parameter	on	SQLConnect,	or	connect	through	a	data	source
that	has	computername\instancename	specified	for	the	server
name.	For	more	information,	see	Support	for
SQLDriverConnect	and	SQLConfigDataSource.

SQL	DMO	applications	can	manage	instances	of	SQL	Server
2000	using	the	SQLServer2	object.	For	more	information,	see
SQLServer2	Object.

DB-Library	and	Embedded	SQL	for	C	do	not	support	multiple

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

instances.

Distributed	queries	and	linked	servers.

Distributed	queries	and	linked	server	definitions	use
computername\instancename	to	identify	named	instances	and
computername	to	identify	default	instances.	For	more	information,	see
Distributed	Queries	on	Multiple	Instances	of	SQL	Server.

Command	prompt	utilities.

When	you	use	the	command	prompt	utilities,	you	can	use	the	Server
switch	to	specify	an	instance	by	using	computername\instancename,	for
example:

osql	-E	-Scomputer1\instance1
sqlservr	/Sinstance1

The	isql	utility	does	not	support	named	instances.

SQL	Server	2000	client	components.

Applications	using	SQL	Server	2000	client	components	can	enumerate
the	instances	available	for	connections:

The	OLE	DB	Provider	for	SQL	Server	2000	returns	instance
names	using	ISourcesRowset::GetSourcesRowset.	The
names	of	named	instances	are	returned	as	the	data	source	name
in	the	format	computername\instancename,	where
computername	can	be	either	the	name	of	a	single	computer	or
the	virtual	server	name	of	a	failover	cluster.	The	names	of
default	instances	are	returned	as	the	data	source	name	in	the
format	computername,	with	no	instance	name.

The	SQL	Server	2000	ODBC	driver	supports	extensions	to
SQLBrowseConnect	and	SQLSetConnectAttr	that	allow
applications	to	enumerate	instances	on	a	server.	ODBC
applications	can	also	determine	whether	the	computername	is
the	name	of	a	single	computer	or	a	virtual	server	name	for	a
failover	cluster.	For	more	information,	see

JavaScript:hhobj_6.Click()

SQLBrowseConnect.

SQL-DMO	applications	can	enumerate	instances	using	the
SQLServer2	object.	The	SQLServer2	object	also	presents
information	such	as	the	names	of	the	SQL	Server	and	SQL
Server	Agent	services	for	the	instance,	or	whether	the	instance
is	running	on	a	single	computer	or	a	failover	cluster.	For	more
information,	see	SQLServer2	Object.

DB-Library	and	Embedded	SQL	for	C	do	not	support	named
instances.

Identifying	Instances

Performance	Monitor	counters,	Profiler	events,	and	Windows	events	in	the	Event
Viewer	Application	Log	all	identify	the	instance	of	SQL	Server	with	which	they
are	associated.

The	string	returned	by	the	@@SERVERNAME	function	identifies	the	name	of
the	instance	in	the	form	servername\instancename	if	you	are	connected	to	a
named	instance.	If	connected	to	a	default	instance	@@SERVERNAME	returns
only	servername.	For	more	information,	see	@@SERVERNAME.

The	SERVERPROPERTY	function	INSTANCENAME	property	reports	the
instance	name	of	the	instance	to	which	you	are	connected.	INSTANCENAME
returns	NULL	if	connected	to	a	default	instance.	In	addition,	the
SERVERNAME	property	returns	the	same	format	string	returned	by
@@SERVERNAME	and	will	have	the	format	servername\instancename	when
connected	to	a	named	instance.	For	more	information,	see	SERVERPROPERTY.

Although	the	strings	reported	by	@@SERVERNAME	and	SERVERNAME	use
the	same	format,	the	information	they	report	can	be	different,	for	example:

The	string	returned	by	@@SERVERNAME	is	affected	by	the	actions	of
sp_addserver	and	sp_dropserver,	and	the	string	reported	by
SERVERNAME	is	not.

JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()

SERVERNAME	automatically	reports	changes	in	the	network	name	of
the	computer,	and	@@SERVERNAME	does	not,	unless	sp_dropserver
and	sp_addserver	are	used	to	change	the	name	it	reports.

SQL	Server	Setup	Help

Federated	SQL	Server	2000	Servers
Microsoft®	SQL	Server™	2000	databases	can	be	spread	across	a	group	of
autonomous	database	servers	capable	of	supporting	the	processing	growth
requirements	of	the	largest	Web	sites	and	enterprise	data-processing	systems
built	with	Microsoft	Windows®	DNA.

Windows	DNA	divides	the	processing	units	of	a	data	processing	system	into
logical	tiers:

User	services	tier

Presents	the	interface	seen	by	the	users,	and	typically	calls	the	second
tier	for	business	logic	processing.

Business	services	tier

Contains	the	business	logic	that	controls	the	operation	of	the	Web	site,
and	uses	the	persistent	data	storage	provided	by	the	third	tier.

Data	services	tier

Stores	the	persistent	data	required	to	run	the	Web	site.

Scaling	refers	to	the	process	of	adding	resources	to	a	tier	so	that	it	can	handle
increased	workloads.	Scaling	can	be	done	in	one	of	two	ways:

Scale	up

Increases	the	processing	power	of	a	server	by	using	a	more	powerful
computer.

Scale	out

Increases	the	processing	power	of	a	system	designed	in	a	modular
fashion,	such	as	becoming	a	cluster	of	computers,	by	adding	one	or
more	additional	computers,	or	nodes,	to	the	system.

The	growth	requirements	of	the	largest	Web	sites	generate	processing	loads	that
exceed	the	capacity	of	large	individual	servers.	In	these	cases,	scaling	out	may
be	the	best	option	for	increasing	the	processing	capacity	of	the	system.

Microsoft	Windows	2000	COM+	components	are	designed	to	be	used	in	clusters
of	Windows	2000	application	servers	to	form	a	clustered	business	services	tier.
Each	server	has	identical	sets	of	COM+	components,	and	Windows	2000
balances	the	cluster	processing	load	by	sending	new	requests	to	the	server	that
has	the	least	processing	load.	This	forms	an	easily	administered	cluster	that	can
quickly	scale	out	by	simply	adding	a	new	server.

SQL	Server	2000	does	not	support	this	type	of	clustering.	However,	SQL	Server
2000	does	support	updatable	distributed	partitioned	views	used	to	transparently
partition	data	horizontally	across	a	group	of	servers.	Although	these	servers
cooperate	in	managing	the	partitioned	data,	they	operate	autonomously.	Each
server	is	managed	independently,	has	separate	operational	rules,	and	can	support
independent	processes	and	data.	A	group	of	autonomous	servers	that	cooperate
to	process	a	workload	is	known	as	a	federation.	Although	SQL	Server	2000
delivers	very	impressive	performance	when	scaled	up	on	servers	with	eight	or
more	processors,	it	can	support	huge	processing	loads	when	partitioned	across	a
federation.	A	federation	of	servers	running	SQL	Server	2000	is	capable	of
supporting	the	growth	requirements	of	any	Web	site,	or	of	the	largest	enterprise
systems.

SQL	Server	Setup	Help

Partitioning	Data
The	first	step	in	building	a	set	of	federated	database	servers	is	to	horizontally
partition	the	data	in	a	set	of	tables	across	multiple	servers.	Horizontally
partitioning	a	table	refers	to	dividing	a	table	into	multiple	smaller	tables,	called
member	tables.	Each	member	table	has	the	same	format	as	the	original	table,	but
only	part	of	the	rows.	Each	table	is	placed	on	a	separate	resource	(files	or
servers)	to	spread	the	processing	load	across	the	resources.	For	example,	a
company	assigns	customer	identifiers	(IDs)	from	1	through	9999999.	The
Customers	table	may	be	partitioned	into	three	member	tables,	with	each
member	table	having	an	equal	customer	ID	range.

If	used	without	views,	horizontal	partitioning	would	require	applications	to	have
logic	to	determine	which	member	tables	have	the	data	requested	by	the	user	and
dynamically	build	SQL	statements	referencing	the	tables.	The	application	would
require	complex	queries	joining	the	member	tables.	Changing	the	member	tables
would	also	involve	recoding	the	application.	Views	solve	the	problem	by	making
the	member	tables	look	like	one	table.	The	SQL	UNION	operator	combines
result	sets	with	identical	formats	into	one.	Because	all	the	member	tables	have
the	same	format,	the	result	of	SELECT	*	statements	for	each	table	have	the	same
format,	and	can	be	combined	using	the	UNION	clause	to	form	a	single	result	set
that	operates	similarly	to	the	original	table.	For	example,	the	Customers	table
has	been	partitioned	across	three	servers	(Server1,	Server2,	and	Server3).	The
distributed	partitioned	view	defined	on	Server1	is:

CREATE	VIEW	Customers
AS
SELECT	*	FROM	Customers_33
			UNION	ALL
SELECT	*	FROM	Server2.CustomerDB.dbo.Customers_66
			UNION	ALL
SELECT	*	FROM	Server3.CustomerDB.dbo.Customers_99

This	view	makes	the	actual	location	of	the	data	transparent	to	an	application.
When	a	SQL	statement	is	executed	on	Server1	that	references	the	Customers

partitioned	view,	the	application	has	no	visibility	to	where	the	data	is	located.	If
some	of	the	rows	required	to	complete	the	SQL	statement	reside	on	Server2	or
Server3,	the	instance	of	SQL	Server	on	Server1	automatically	generates	a
distributed	query	that	pulls	in	the	required	rows	from	the	other	servers.	This
transparency	allows	database	administrators	to	repartition	tables	without
recoding	applications.	If	the	Customers	view	is	updatable,	the	behavior	of	the
view	is	the	same	as	a	table	named	Customers.

Local	partitioned	views	reference	member	tables	on	one	server.	Distributed
partitioned	views	reference	member	tables	on	multiple	servers.	A	server
containing	a	member	table	is	called	a	member	server,	and	a	database	containing
a	member	table	is	called	a	member	database.	Each	member	server	contains	one
member	table	and	a	distributed	partitioned	view.	An	application	that	references
the	partitioned	view	on	any	of	the	servers	gets	the	same	results	as	if	a	complete
copy	of	the	original	table	were	present	on	each	server.

Microsoft	SQL	Server	2000	and	Microsoft	SQL	Server	version	7.0	support
partitioned	views;	however,	SQL	Server	2000	introduces	key	features	that	allow
the	views	to	scale	out	and	form	federations	of	database	servers:

SQL	Server	2000	partitioned	views	are	updatable.	This	is	crucial	for
distributing	data	so	that	the	location	of	the	data	is	transparent	to	the
application.	Updatable	views	support	the	full	behavior	of	the	original
table;	nonupdatable	views	are	like	read-only	copies.

The	SQL	Server	2000	query	optimizer	supports	new	optimizations	that
minimize	the	amount	of	distributed	data	that	has	to	be	transferred.	The
distributed	execution	plans	generated	by	SQL	Server	2000	result	in
good	performance	for	a	larger	set	of	queries	than	the	plans	generated	by
SQL	Server	version	7.0.

SQL	Server	2000	partitioned	views	are	best	suited	for	the	types	of	SQL
statements	generated	by	Web	sites	and	online	transaction	processing	(OLTP)
systems.

Partitioning	a	Database
To	build	an	effective	federation	of	database	servers:

Create	multiple	databases,	each	on	a	different	member	server	running	an
instance	of	SQL	Server	2000.

Partition	the	individual	tables	in	the	original	database	so	that	most
related	data	is	placed	together	on	a	member	server.	This	may	require
different	methods	of	distributing	the	data	in	the	various	tables	across	all
the	member	databases;	partitioning	some	tables;	making	complete
copies	of	other	tables	in	each	member	database;	and	leaving	some	tables
intact	on	the	original	server.

Devise	data	routing	rules	that	can	be	incorporated	in	the	business
services	tier,	so	that	applications	can	send	each	SQL	statement	to	the
member	server	that	stores	most	of	the	data	required	by	the	statement.

The	most	important	goal	is	to	minimize	distributed	processing	in	such	a	system.
You	must	be	able	to	collocate	related	data	on	the	same	member	server,	and	then
route	each	SQL	statement	to	a	member	server	that	contains	most,	if	not	all,	of	the
data	required	to	process	the	statement.	For	example,	you	may	find	that	all	the
sales,	customer,	sales	personnel,	and	inventory	tables	in	a	database	can	be
partitioned	by	sales	region,	and	that	most	SQL	statements	only	reference	data	in
a	single	region.	You	can	then	create	member	servers	where	each	server	has	the
horizontally	partitioned	data	for	one	or	more	regions.	If	applications	can	identify
the	region	currently	referenced	in	the	user's	input,	the	application	can	submit	any
generated	SQL	statement	to	the	member	server	containing	the	data	for	that
region.	The	only	SQL	statements	that	will	generate	distributed	queries	are	those
that	reference	data	from	multiple	regions.

SQL	Server	Setup	Help

Failover	Clustering	Architecture
Microsoft®	SQL	Server™	2000	failover	clustering	increases	server	availability
by	allowing	a	system	to	automatically	switch	the	processing	for	an	instance	of
SQL	Server	from	a	failed	server	to	a	working	server.	For	example,	an	instance	of
SQL	Server	can	quickly	restore	database	services	to	a	Web	site	or	enterprise
network	even	if	the	server	running	the	instance	fails.	SQL	Server	2000
implements	failover	clustering	based	on	the	failover	clustering	features	of	the
Microsoft	Clustering	Service	(MSCS)	in	Windows	NT®	4.0	and	Windows®
2000.

The	type	of	MSCS	failover	cluster	used	by	SQL	Server	2000	consists	of	multiple
server	computers	(two	on	Windows	NT	4.0,	up	to	four	on	Windows	2000
Datacenter	Server)	that	share	a	common	set	of	cluster	resources,	such	as	disk
drives.	Each	server	in	the	cluster	is	called	a	node.	Each	server,	or	node,	is
connected	to	the	network,	and	each	node	can	communicate	with	each	other	node.
Each	node	runs	the	same	version	of	MSCS.

The	shared	resources	in	the	failover	cluster	are	collected	into	cluster	groups.	For
example,	if	a	failover	cluster	has	four	clustered	disk	drives,	two	of	the	drives	can
be	collected	in	one	cluster	group	and	the	other	two	in	a	second	cluster	group.
Each	cluster	group	is	owned	by	one	of	the	nodes	in	the	failover	cluster,	although
the	ownership	can	be	transferred	between	nodes.

Applications	can	be	installed	on	the	nodes	in	the	failover	cluster.	These
applications	are	typically	server	applications	or	distributed	COM	objects	that
users	access	through	network	connections.	The	application	executables	and	other
resources	are	typically	stored	in	one	or	more	of	the	cluster	groups	owned	by	the
node.	Each	node	can	have	multiple	applications	installed	on	it.

The	failover	cluster	nodes	periodically	send	each	other	network	messages	called
heartbeat	messages.	If	the	MSCS	software	detects	the	loss	of	a	heartbeat	signal
from	one	of	the	nodes	in	the	cluster,	it	treats	the	server	as	a	failed	server.	MSCS
then	automatically	transfers	the	cluster	groups	and	application	resources	of	that
node	to	the	other	nodes	in	the	network.	The	cluster	administrator	specifies	the
alternate	nodes	to	which	cluster	groups	are	transferred	when	any	given	node
fails.	The	other	nodes	then	continue	processing	user	network	requests	for	the
applications	transferred	from	the	failed	server.

For	more	information	about	MSCS,	see	the	Windows	NT	Server,	Windows	2000
Server,	Windows	2000	Advanced	Server,	or	Windows	2000	Datacenter
documentation.

SQL	Server	Setup	Help

SQL	Server	2000	Failover	Clusters
You	can	install	up	to	16	instances	of	Microsoft®	SQL	Server™	2000	in	a
Microsoft	Clustering	Service	(MSCS)	failover	cluster.

You	install	an	instance	of	SQL	Server	2000	by	running	SQL	Server	Setup	on	one
of	the	nodes	of	the	cluster.	The	Setup	program	installs	the	instance	on	the	nodes
of	the	failover	cluster	that	you	specify	during	setup.	The	SQL	Server	2000
executable	files	are	installed	on	the	local	disk	drives	of	each	node	in	the	failover
cluster.	This	means	that	each	node	must	have	a	local	hard	drive	that	is	assigned
the	same	drive	letter	as	on	all	the	other	nodes,	and	that	drive	letter	must	be	in	the
path	of	the	location	you	specify	for	the	SQL	Server	executable	files	during	setup.
For	example,	if	you	specify	C:\Program	Files\Microsoft	SQL	Server	as	the
location	in	which	to	install	the	SQL	Server	executables,	each	node	in	the	cluster
must	have	drive	letter	C	mapped	to	a	local	drive.	The	registry	information	for	the
instance	is	also	stored	in	the	registry	of	each	node	in	the	failover	cluster.

An	MSCS	cluster	group	is	a	collection	of	clustered	resources,	such	as	clustered
disk	drives,	which	are	owned	by	one	of	the	failover	cluster	nodes.	The
ownership	of	the	group	can	be	transferred	from	one	node	to	another,	but	each
group	can	only	be	owned	by	one	node	at	a	time.	The	database	files	for	an
instance	of	SQL	Server	2000	are	placed	in	a	single	MSCS	cluster	group	owned
by	the	node	on	which	you	install	the	instance.	If	a	node	running	an	instance	of
SQL	Server	fails,	MSCS	switches	the	cluster	group	containing	the	data	files	for
that	instance	to	another	node.	Since	the	new	node	already	has	the	executable
files	and	registry	information	for	that	instance	of	SQL	Server	on	its	local	disk
drive,	it	can	start	up	the	instance	of	SQL	Server	and	start	accepting	connection
requests	for	that	instance.

Because	the	executable	files	and	registry	information	for	each	instance	of	SQL
Server	2000	is	stored	in	each	node,	the	SQL	Server	2000	limit	of	16	instances
per	computer	also	applies	to	each	failover	cluster.	Each	instance	in	the	failover
cluster	must	either	have	a	unique	instance	name	or	be	a	default	instance.	There
can	only	be	one	default	instance	per	failover	cluster.

The	MSCS	cluster	group	that	holds	the	database	files	for	an	instance	is
associated	with	a	SQL	Server	virtual	server	name	during	SQL	Server	setup.

There	can	only	be	one	instance	per	virtual	server,	which	also	means	that	there
can	only	be	one	instance	associated	with	any	cluster	group.

When	an	application	attempts	to	connect	to	an	instance	of	SQL	Server	2000
running	on	a	failover	cluster,	the	application	must	specify	both	the	virtual	server
name	and	the	instance	name.	The	application	does	not	have	to	specify	an
instance	name	only	if	the	instance	associated	with	the	virtual	server	is	a	default
instance	that	does	not	have	a	name.

For	example:

A	Windows	cluster	administrator	creates	a	failover	cluster	with	two
nodes:	NodeA	and	NodeB.	Each	node	maps	the	drive	letter	C	to	a	local
hard	drive.

There	is	one	shared	disk	in	the	cluster.	The	cluster	administrator	creates
ClusterGroupA	to	hold	the	drive,	and	assigns	it	to	NodeA.

The	SQL	Server	system	administrator	runs	the	Setup	program	to	install
a	default	instance	of	SQL	Server	on	NodeA.	During	setup,	the
administrator	specifies	a	SQL	Server	virtual	server	name	of
VirtualServerX,	and	specifies	that	the	database	files	be	placed	on	the
drive	in	ClusterGroupA.	Setup	installs	the	SQL	Server	executable	files
on	the	local	drives	of	both	NodeA	and	NodeB,	and	places	the	database
files	in	ClusterGroupA.

Applications	attempting	to	connect	to	the	default	instance	only	need	to
specify	the	virtual	server	name	VirtualServerA.	The	default	instance
normally	runs	on	NodeA.	Should	NodeA	fail,	however,	the	MSCS
clustering	will	transfer	ownership	of	ClusterGroupA	to	NodeB	and
will	restart	the	default	instance	on	NodeB.	Applications	will	still
connect	to	the	default	instance	by	specifying	the	virtual	server	name
VirtualServerX.

See	Also

Failover	Clustering

Installing	a	Virtual	Server	Configuration

SQL	Server	Setup	Help

Active	Directory	Integration
The	Microsoft®	Windows®	2000	Active	Directory™	operates	as	a	secure
central	resource	for	storing	information	about	the	users,	devices,	and	services
available	on	a	Windows	2000	network.	Microsoft	SQL	Server™	2000	supports
registering	instances	of	the	SQL	Server	relational	engine,	databases,	replication
publications,	and	Analysis	servers	in	the	Active	Directory.	The	SQL	Server	tools
also	provide	a	dialog	box	that	supports	browsing	for	replication	publications
registered	in	the	Active	Directory.

SQL	Server	Objects	in	the	Active	Directory	Hierarchy
The	Active	Directory	uses	a	hierarchy	to	represent	the	relationships	between
network	entities	such	as	users,	services,	and	devices	(such	as	computers,
scanners,	or	printers).	The	hierarchy	starts	from	a	single	root	node	at	the	top	and
branches	down	to	leaf	nodes	representing	individual	entities	in	the	network.	The
intermediate	nodes	in	the	hierarchy	are	containers	that	hold	references	to
multiple	entities.	For	example,	several	Windows	users	can	be	collected	into	a
group	for	administrative	purposes.	Each	node	is	implemented	as	an	Active
Directory	object	that	represents	the	specific	entity	for	that	node.

When	you	register	an	instance	of	the	SQL	Server	relational	database	engine	in
the	Active	Directory,	an	MS-SQL-SQLServer	object	is	added	as	a	Service
Connection	Point	(SCP)	object	in	the	container	for	the	computer	on	which	the
instance	is	running.	An	SCP	is	the	type	of	Active	Directory	object	that	represents
services	available	on	the	network.	An	SCP	object	records	information	about	the
service,	such	as	connection	information.	An	Analysis	server	is	also	registered	as
an	SCP	of	the	computer	on	which	the	Analysis	server	is	running.

After	registering	an	instance	of	the	SQL	Server	relational	database	engine	in	the
Active	Directory,	you	can	also	register	the	replication	publications	that	reside	in
the	instance.	The	publications	are	registered	as	children	of	the	instance.	After
registering	replication	publications	in	the	Active	Directory,	the	Create	Pull
Subscription	Wizard	supports	a	dialog	box	that	allows	users	to	search	for
registered	publications	in	the	Active	Directory.	For	more	information,	see	Active
Directory	Services.

JavaScript:hhobj_1.Click()

After	registering	an	instance	of	the	relational	database	engine	in	the	Active
Directory,	you	can	also	register	any	databases	in	that	instance.	In	SQL	Server
Enterprise	Manager,	right-click	the	database	and	select	Properties.	The	Options
tab	has	a	check	box	at	the	bottom	that	controls	whether	the	database	is	registered
in	the	Active	Directory.	When	you	select	the	checkbox,	the	database	is	registered
in	the	Active	Directory	when	you	close	the	Properties	dialog	box.	After	the
check	box	is	selected,	the	database	object	in	the	Active	Directory	is	refreshed
each	time	you	close	the	Properties	dialog	box,	provided	the	check	box	is
selected	when	you	open	the	Properties	dialog	box	and	remains	checked	when
you	click	OK	to	close	the	dialog	box.	You	can	also	use	the
sp_ActiveDirectory_Obj	stored	procedure	to	register	databases	from	Transact-
SQL	scripts	or	applications.

You	can	register	Analysis	servers	in	the	Active	Directory.	For	more	information,
see	Using	Active	Directory	with	Analysis	Services.	The	SQL	Server	2000	tools
do	not	provide	any	facilities	for	browsing	the	Active	Directory	for	instances	of
the	relational	database	engine,	Analysis	servers,	or	relational	databases.
Applications	can	be	coded	to	browse	the	Active	Directory	for	the	objects	used	to
register	these	SQL	Server	entities.

The	Active	Directory	class	objects	supported	by	SQL	Server	2000	are	defined	in
the	Windows	2000	Active	Directory	schema:

Active	Directory	Object	Name SQL	Server	Entity
MS-SQL-SQLServer An	instance	of	SQL	Server
MS-SQL-SQLPublication A	replication	publication	defined	in

an	instance	of	SQL	Server.
MS-SQL-SQLDatabase A	database	in	an	instance	of	SQL

Server.
MS-SQL-OLAPServer An	instance	of	the	SQL	Server

Analysis	server.

SQL	Server	2000	makes	no	extensions	to	the	definitions	of	these	objects;	SQL
Server	uses	the	objects	as	defined	in	the	Windows	2000	Active	Directory
schema.	Users	can	also	code	Active	Directory	Service	Interfaces	(ADSI)
applications	that	browse	the	Active	Directory	for	registered	instances	of	SQL
Server,	Analysis	servers,	publications,	and	databases,	For	more	information
about	ADSI	and	the	structure	of	Active	Directory	schema	objects,	see	the

JavaScript:hhobj_2.Click()

MSDN®	Library	at	Microsoft	Web	site.

Note		SQL	Server	2000	does	not	use	the	MS-SQL-OLAPCube,	MS-SQL-
OLAPDatabase,	or	MS-SQL-SQLRepository	class	objects	defined	in	the
Windows	2000	Active	Directory	schema.

See	Also

MSSQLServerADHelper	Service_mssqlserveradhelper_service

sp_ActiveDirectory_SCP_sp_activedirectory_scp

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

SQL	Server	Setup	Help

SQL	Server	and	XML	Support
Extensible	Markup	Language	(XML)	is	a	hypertext	programming	language	used
to	describe	the	contents	of	a	set	of	data	and	how	the	data	should	be	output	to	a
device	or	displayed	in	a	Web	page.	Markup	languages	originated	as	ways	for
publishers	to	indicate	to	printers	how	the	content	of	a	newspaper,	magazine,	or
book	should	be	organized.	Markup	languages	for	electronic	data	perform	the
same	function	for	electronic	documents	that	can	be	displayed	on	different	types
of	electronic	gear.

Both	XML	and	the	Hypertext	Markup	Language	(HTML)	are	derived	from
Standard	Generalized	Markup	Language	(SGML).	SGML	is	a	very	large,
complex	language	that	is	difficult	to	fully	use	for	publishing	data	on	the	Web.
HTML	is	a	more	simple,	specialized	markup	language	than	SGML,	but	has	a
number	of	limitations	when	working	with	data	on	the	Web.	XML	is	smaller	than
SGML	and	more	robust	than	HTML,	so	is	becoming	an	increasingly	important
language	in	the	exchange	of	electronic	data	through	the	Web	or	intracompany
networks.

In	a	relational	database	such	as	Microsoft®	SQL	Server™	2000,	all	operations
on	the	tables	in	the	database	produce	a	result	in	the	form	of	a	table.	The	result	set
of	a	SELECT	statement	is	in	the	form	of	a	table.	Traditional	client/server
applications	that	execute	a	SELECT	statement	process	the	results	by	fetching
one	row	or	block	of	rows	from	the	tabular	result	set	at	a	time	and	mapping	the
column	values	into	program	variables.	Web	application	programmers,	on	the
other	hand,	are	more	familiar	with	working	with	hierarchical	representations	of
data	in	XML	or	HTML	documents.

SQL	Server	2000	introduces	support	for	XML.	These	new	features	include:

The	ability	to	access	SQL	Server	through	a	URL.

Support	for	XML-Data	schemas	and	the	ability	to	specify	XPath	queries
against	these	schemas.

The	ability	to	retrieve	and	write	XML	data:

Retrieve	XML	data	using	the	SELECT	statement	and	the	FOR
XML	clause.

Write	XML	data	using	the	OpenXML	rowset	provider.

Enhancements	to	the	Microsoft	SQL	Server	2000	OLE	DB	provider
(SQLOLEDB)	that	allow	XML	documents	to	be	set	as	command	text
and	to	return	result	sets	as	a	stream.

See	Also

XML	and	Internet	Support	Overview

Accessing	SQL	Server	Using	a	URL

Creating	XML	Views	Using	Annotated	Schemas

Using	XPath	Queries

Retrieving	and	Writing	XML	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

SQL	Server	Setup	Help

Managing	Clients
A	client	is	a	front-end	application	that	uses	the	services	provided	by	a	server.
The	computer	that	hosts	the	application	is	referred	to	as	the	client	computer.
Client	software	enables	computers	to	connect	to	an	instance	of	Microsoft®	SQL
Server™	on	a	network.

SQL	Server	clients	can	include	applications	of	various	types,	such	as:

OLE	DB	consumers.

These	applications	use	the	Microsoft	OLE	DB	Provider	for	SQL	Server
or	the	Microsoft	OLE	DB	Provider	for	ODBC	to	connect	to	and
converse	with	instances	of	SQL	Server.	The	OLE	DB	providers	serve	as
intermediaries	between	an	instance	of	SQL	Server	and	client
applications	that	consume	SQL	Server	data	as	OLE	DB	rowsets.

ODBC	applications.

These	include	client	utilities	installed	with	SQL	Server,	such	as	SQL
Server	Enterprise	Manager	and	SQL	Query	Analyzer,	as	well	as	other
applications	that	use	the	SQL	Server	ODBC	driver	to	connect	to	and
converse	with	an	instance	of	SQL	Server.

DB-Library	clients,	including	the	SQL	Server	isql	command	prompt
utility	and	clients	written	to	DB-Library.

Regardless	of	the	type	of	application,	managing	a	client	consists	mainly	of
configuring	its	connection	with	the	server	components	of	SQL	Server.
Depending	on	the	requirements	of	your	site,	client	management	can	range	from
little	more	than	entering	the	name	of	the	server	computer	to	building	a	library	of
custom	configuration	entries	to	accommodate	a	diverse	multiserver	environment.

SQL	Server	Setup	Help

How	to	start	the	Client	Network	Utility	(Windows)
To	start	the	Client	Network	Utility

On	the	Start	menu,	point	to	Programs/Microsoft	SQL	Server,	and
then	click	Client	Network	Utility.

SQL	Server	Setup	Help

How	to	display	the	network	library	version	numbers
(Client	Network	Utility)
To	display	the	library	version	numbers

Click	the	Network	Libraries	tab.

The	network	library,	library	file	name,	version,	file	date,	and	size	are
displayed.

SQL	Server	Setup	Help

How	to	set	DB-Library	conversion	preferences	(Client
Network	Utility)
Note		This	procedure	applies	to	Microsoft®	Windows®	32-bit	operating	system
clients.

To	set	the	DB-Library	conversion	preferences

1.	 Click	the	DB-Library	Options	tab.

2.	 Select	or	clear	the	Automatic	ANSI	to	OEM	conversion	check	box.

3.	 Select	or	clear	the	Use	international	settings	check	box.

SQL	Server	Setup	Help

How	to	add	a	network	library	configuration	(Client
Network	Utility)
To	add	a	network	library	configuration

1.	 Click	the	Alias	tab,	and	then	click	Add.

2.	 In	the	Add	Network	Library	Configuration	dialog	box,	under
Network	libraries,	select	one	of	the	network	libraries.

3.	 Enter	the	server	alias	and	any	required	parameter	information	for	the
network	library	selected.

SQL	Server	Setup	Help

How	to	edit	a	network	library	configuration	(Client
Network	Utility)
To	edit	a	network	library	configuration

1.	 Click	the	Alias	tab,	and	then	click	the	network	protocol	configuration
to	edit.

2.	 Click	Edit.

3.	 In	the	Edit	Network	Library	Configuration	dialog	box,	edit	the
information	to	change.

SQL	Server	Setup	Help

How	to	delete	a	network	library	configuration	(Client
Network	Utility)
To	delete	a	network	library	configuration

1.	 Click	the	Alias	tab,	and	then	click	the	network	library	configuration	to
delete.

2.	 Click	Remove.

SQL	Server	Setup	Help

How	to	alias	a	client	to	an	alternate	pipe	(Client
Network	Utility)
To	alias	a	client	to	an	alternate	pipe

1.	 Click	the	Alias	tab,	and	then	click	Add.

2.	 In	the	Add	Network	Library	Configuration	dialog	box,	click
Named	Pipes.

3.	 In	the	Server	alias	box,	enter	the	server	alias.

4.	 Under	Connection	parameters,	in	the	Pipe	name	box,	type	the	name
of	the	alternate	pipe	name	(for	example,	\\myserver\pipe\altpipe).

SQL	Server	Setup	Help

How	to	configure	a	client	to	use	the	Multiprotocol
Net-Library	(Client	Network	Utility)
Note		Before	creating	a	Multiprotocol	client	configuration,	make	sure	your
computer	has	at	least	one	IPC	protocol	loaded	under	Multiprotocol	on	the	server
(Named	Pipes,	NWLink	IPX/SPX,	TCP/IP,	or	Windows	Sockets).

To	configure	a	client	to	use	the	Multiprotocol	Net-Library

1.	 	Click	the	Alias	tab,	and	then	click	Add.

2.	 In	the	Add	Network	Library	Configuration	dialog	box,	click
Multiprotocol.

3.	 In	the	Server	alias	box,	enter	the	name	of	the	instance	of	Microsoft®
SQL	Server™	listening	on	the	Multiprotocol	Net-Library.

4.	 Leave	the	Additional	parameters	box	empty,	unless	the	server
requires	specific	parameters.	Verify	with	your	network	administrator
before	entering	parameters.

SQL	Server	Setup	Help

How	to	configure	a	client	to	use	TCP/IP	(Client
Network	Utility)
To	configure	a	client	to	use	TCP/IP

1.	 Click	the	General	tab,	and	then	click	Add.

2.	 In	the	Add	Network	Library	Configuration	dialog	box,	click
TCP/IP.

3.	 In	the	Server	alias	box,	enter	the	alias	of	the	instance	of	Microsoft®
SQL	Server™	listening	on	the	Windows	Sockets	Net-Library.

With	TCP/IP,	you	can	also	specify	the	server	with	its	IP	address
instead	of	its	name.

4.	 Do	one	of	the	following:

Select	the	Dynamically	determine	port	check	box	to
automatically	determine	the	port.

Clear	the	Dynamically	determine	port	check	box	to	set	the
port	manually,	and	then	in	the	Port	number	box,	type	the
port	number.

For	more	information	about	other	TCP/IP	protocols	that	support	Windows
Sockets,	see	the	TCP/IP	documentation.

SQL	Server	Setup	Help

How	to	configure	a	client	to	use	the	NWLink	IPX/SPX
network	library	(Client	Network	Utility)
To	configure	a	client	to	use	the	NWLink	IPX/SPX	network	library

1.	 Click	the	Alias	tab,	and	then	click	Add.

2.	 In	the	Add	Network	Library	Configuration	dialog	box,	click
NWLink	IPX/SPX.

3.	 In	the	Server	alias	box,	enter	the	alias	of	the	instance	of	Microsoft®
SQL	Server™	listening	on	the	NWLink	IPX/SPX	Net-Library.

4.	 Under	Connection	parameters,	click	either	Service	name	or
Network	address,	and	then	do	one	of	the	following:

If	you	clicked	Service	name,	enter	the	service	name.

Service	name	is	the	Microsoft	Windows	NT®	4.0	or
Windows®	2000	computer	name	under	which	an	instance	of
SQL	Server	is	running.	This	name	is	stored	in	the	Bindery	of
the	server	computer.

If	you	clicked	Network	address,	enter	the	address	(the	MAC
address),	port	(socket	number),	and	network	(NetWare
network	number).

SQL	Server	Setup	Help

How	to	configure	a	client	to	use	the	AppleTalk
network	library	(Client	Network	Utility)
To	configure	a	client	to	use	the	AppleTalk	network	library

1.	 Click	the	Alias	tab,	and	then	click	Add.

2.	 In	the	Add	Network	Library	Configuration	dialog	box,	click
AppleTalk.

3.	 In	the	Server	alias	box,	enter	the	name	of	the	instance	of	Microsoft®
SQL	Server™	listening	on	the	AppleTalk	Net-Library.

4.	 Under	Connection	parameters,	type	the	AppleTalk	object	name	and
optional	zone	identifiers.

SQL	Server	Setup	Help

How	to	configure	a	client	to	use	the	Banyan	VINES
network	library	(Client	Network	Utility)
To	configure	a	client	to	use	the	Banyan	VINES	network	library

1.	 Click	the	Alias	tab,	and	then	click	Add.

2.	 In	the	Add	Network	Library	Configuration	dialog	box,	click
Banyan	VINES.

3.	 In	the	Server	alias	box,	enter	the	alias	of	the	instance	of	Microsoft®
SQL	Server™	listening	on	the	Banyan	VINES	Net-Library.

4.	 Under	Connection	parameters,	type	the	service	and	the	VINES
organization.	You	can	use	the	default	value	of	MSSQL	for	group.

SQL	Server	Setup	Help

How	to	configure	a	client	to	use	the	VIA	network
library	(Client	Network	Utility)
To	configure	a	client	to	use	the	Banyan	VINES	network	library

1.	 Click	the	Alias	tab,	and	then	click	Add.

2.	 In	the	Add	Network	Library	Configuration	dialog	box,	click	VIA.

3.	 In	the	Server	alias	box,	enter	the	alias	of	the	instance	of	Microsoft®
SQL	Server™	listening	on	the	VIA	Net-Library.

4.	 Under	Connection	parameters,	type	the	server	name	and	server	port
number.

SQL	Server	Setup	Help

How	to	configure	a	client	to	use	a	nonstandard
network	library	(Client	Network	Utility)
To	configure	a	client	to	use	a	nonstandard	network	library

1.	 Click	the	Alias	tab,	and	then	click	Add.

2.	 In	the	Add	Network	Library	Configuration	dialog	box,	click	Other.

3.	 In	the	Server	alias	box,	enter	the	alias	of	the	instance	of	Microsoft®
SQL	Server™	listening	on	the	Net-Library	you	plan	to	install.

4.	 Under	Connection	parameters,	type	the	file	name	(file	must	be	a
DLL)	of	the	installed	Net-Library.	Do	not	enter	the	DLL	extension.

5.	 If	necessary,	enter	any	additional	information	in	the	Parameters	box
(such	as	user	name	and	password).	Use	comma	separators	between
parameters.

SQL	Server	Setup	Help

How	to	verify	that	SQL	Server	is	listening	on
AppleTalk	and	can	accept	a	client	connection	(Client
Network	Utility)
To	verify	that	SQL	Server	is	listening	on	AppleTalk	and	can	accept	a	client
connection

1.	 Copy	the	client	AppleTalk	Net-Library	(Dbmsadsn.dll)	from	the
\WINNT\system32	directory	of	the	server	to	the	same	directory	of	a
remote	computer	running	Microsoft®	Windows	NT®	or	Microsoft
Windows®	2000	Services	for	Macintosh.

2.	 On	the	remote	workstation,	start	SQL	Server	Client	Configuration.

3.	 If	AppleTalk	is	listed	in	the	Disabled	protocols	list,	click	AppleTalk,
and	then	click	Enable.

4.	 In	the	Enabled	protocols	by	order	list,	click	AppleTalk,	and	then
click	the	up	button	until	AppleTalk	is	at	the	top	of	the	list.

5.	 Click	OK.

6.	 Attempt	an	ISQL	connection	with	the	AppleTalk	service	object	name.

For	example,	at	the	command	line,	type:

isql	-Usa	-P	-Sservicename

If	you	can	connect	with	ISQL	and	execute	queries,	the	server	is
configured	properly	and	is	accepting	connections.

Note		The	Microsoft	Win32®	AppleTalk	(ADSP)	client	side	Net-

Library	(Dbmsadsn.dll)	is	included	for	testing	ADSP	connections	and
troubleshooting	AppleTalk	connections	between	Macintosh	clients	and
Microsoft	SQL	Server™.	This	Net-Library	is	intended	to	be	used	only
when	testing	a	connection	from	a	remote	client	to	an	instance	of	SQL
Server.	If	you	attempt	to	make	local	connections	through	the	ADSP
Net-Library	to	an	instance	of	SQL	Server	listening	on	AppleTalk,	you
will	receive	the	following	network	error:		Net-Library	error	11:
getsockopt().

SQL	Server	Setup	Help

How	to	check	the	ODBC	SQL	Server	driver	version
(Windows)
Note		You	can	follow	these	steps	only	if	you	are	running	the	Microsoft®
Windows	NT®	4.0	operating	system.

To	check	the	ODBC	SQL	Server	driver	version	(32-bit	ODBC)

1.	 In	Control	Panel,	double-click	ODBC	Data	Sources.

2.	 Click	the	Drivers	tab.

Information	for	the	Microsoft	SQL	Server™	entry	is	displayed	in	the
Version	column.

SQL	Server	Setup	Help

Using	the	Copy	Database	Wizard
The	Copy	Database	Wizard	allows	you	to	copy	or	move	databases	between
servers.	You	can	move	and	copy	databases	between	different	instances	of
Microsoft®	SQL	Server™	2000,	and	you	can	upgrade	databases	from	SQL
Server	version	7.0	to	SQL	Server	2000.	For	more	information,	see	Database
Upgrade	from	SQL	Server	7.0	(Copy	Database	Wizard).

To	upgrade	databases	online	using	the	Copy	Database	Wizard

SQL	Server	Setup	Help

Managing	Security
A	database	must	have	a	solid	security	system	to	control	which	activities	can	be
performed	and	which	information	can	be	viewed	and	modified.	A	solid	security
system	ensures	the	protection	of	data,	regardless	of	how	users	gain	access	to	the
database.

This	section	describes	the	security	tools	built	into	Microsoft®	SQL	Server™
2000	and	includes	information	about:

Security	Architecture

Planning	Security

Creating	Security	Accounts

Managing	Security	Accounts

Managing	Permissions

Advanced	Security	Topics

Auditing	SQL	Server	Activity

SQL	Server	Setup	Help

Security	Architecture
The	architecture	of	a	security	system	is	based	on	users	and	groups	of	users.	The
following	illustration	shows	how	users	and	local	and	global	groups	in
Microsoft®	Windows	NT®	4.0	and	Windows®	2000	can	map	to	security
accounts	in	Microsoft	SQL	Server™,	and	how	SQL	Server	can	handle	security
accounts	independently	of	the	accounts	in	Windows	NT	4.0	and	Windows	2000.

The	CORPUSERS	local	group	contains	two	users	and	a	global	group,	Mktg,
which	also	contains	two	users.	SQL	Server	allows	Windows	NT	4.0	and
Windows	2000	local	and	global	groups	to	be	used	directly	to	organize	its	user
accounts.	Additionally,	the	Windows	NT	4.0	users	Fred	and	Jerry,	not	part	of	a
Windows	NT	4.0	group,	can	be	added	to	an	instance	of	SQL	Server	either
directly	as	a	Windows	NT	4.0	user	(Fred	for	example),	or	as	a	SQL	Server	user
(Jerry).

SQL	Server	extends	this	model	further	with	the	use	of	roles.	Roles	are	groups	of
users	organized	for	administrative	purposes,	like	Windows	NT	4.0	or	Windows
2000	groups,	but	are	created	in	SQL	Server	when	an	equivalent	Windows	NT	4.0

or	Windows	2000	group	does	not	exist.	For	example,	the	Managers	role
contains	the	Windows	NT	4.0	Mktg	global	group	and	the	Windows	NT	4.0	users
Frank	and	Fred.

SQL	Server	also	provides	security	at	the	application	level	through	the	use	of
individual	database	application	roles.

For	more	information,	see	the	Windows	NT	4.0	or	Windows	2000
documentation.

See	Also

Creating	Security	Accounts

SQL	Server	Setup	Help

Planning	Security
A	security	plan	identifies	which	users	can	see	which	data	and	perform	which
activities	in	the	database.	To	developing	a	security	plan:

1.	 List	all	the	items	and	activities	in	the	database	that	must	be	controlled
through	security.

2.	 Identify	the	individuals	and	groups	in	the	company.

3.	 Cross-reference	the	two	lists	to	identify	which	users	can	see	which	sets
of	data	and	perform	which	activities	in	the	database.

See	Also

Single	Person	Security	Example

Small	Company	Security	Example

Corporate	Environment	Security	Example

SQL	Server	Setup	Help

Single	Person	Security	Example
In	the	simplest	possible	security	system,	a	single	person	is	responsible	for	all
aspects	of	the	database	and	will	be	its	sole	user.	This	hypothetical	user	(Tom
Brown	in	London)	must	be	able	to:

Create	the	database	and	its	tables.

Write	programs	that	interface	with	the	data.

Load	and	maintain	data.

Produce	reports.

The	users-to-activity	map	for	this	example	lists	the	single	user	and	the	activities
he	needs	to	perform.

User	account Activity
LONDON\tombrown All	database	access

The	first	step	in	creating	a	security	system	is	to	add	a	Microsoft®	SQL	Server™
login	for	LONDON\tombrown,	allowing	him	access	to	SQL	Server.	Because
the	predefined	sysadmin	role	contains	all	permissions	necessary	for	this	user,	the
LONDON\tombrown	SQL	Server	login	should	be	added	as	a	member	of	the
sysadmin	role.	When	LONDON\tombrown	connects	to	an	instance	of	SQL
Server,	SQL	Server	calls	back	to	Microsoft	Windows	NT®	4.0	or	Windows®
2000	to	authenticate	the	connection.	If	it	is	validated,	the	connection	is	accepted,
and	he	is	allowed	to	perform	activities	based	on	the	permissions	associated	with
the	sysadmin	role.

If	Tom	Brown	did	not	have	a	Windows	NT	4.0	or	Windows	2000	login,	he	could
be	given	a	SQL	Server	login.	In	this	case,	an	instance	of	SQL	Server	would	need
to	be	running	under	Mixed	Mode,	which	allows	users	to	log	in	under	Windows
NT	4.0,	Windows	2000,	or	SQL	Server	logins.	A	login	named	tombro	could	be

added	to	SQL	Server	independent	of	the	Windows	NT	4.0	or	Windows	2000
login,	and	tombro	could	then	be	added	to	the	sysadmin	role.	When	the	user	logs
into	Windows	NT	4.0	or	Windows	2000	and	attempts	to	connect	to	an	instance
of	SQL	Server,	he	must	specify	the	tombro	login	name	and	password	that	SQL
Server	knows.

SQL	Server	Setup	Help

Small	Company	Security	Example
In	a	moderately	complex	security	system,	multiple	people	perform	various	tasks
in	the	database.	For	example,	a	database	administrator	is	responsible	for	the
database	environment:	creating	the	database,	tables,	and	security	accounts,
performing	backups,	and	tuning	the	database.	Two	developers	are	responsible	for
writing	client	applications	to	provide	an	interface	to	the	data.	Managers	prepare
information	reports	from	the	database	and	so	need	access	to	all	available	data.
The	administrative	staff	performs	customer	and	sales	data	entry	and	must	be	able
to	view	all	data.

The	users-to-activity	map	for	this	example	is	slightly	more	complicated	than	a
single	user	database.

User	account Activity
LONDON\joetuck All	database	access.
LONDON\marysmith,
LONDON\billb

Full	access	to	data	and	the	ability	to	create
procedures.

LONDON\managers Full	access	to	all	data.
LONDON\admins Full	access	to	customer	data	and	sales.	Read-only

access	for	all	other	data.

The	first	step	in	installing	the	security	for	this	example	is	to	add	login	rights	for
LONDON\joetuck.	Then,	because	the	LONDON\joetuck	login	requires	full
access,	the	next	step	is	to	add	this	user	to	the	sysadmin	role.

Login	rights	should	be	added	for	the	developers,	too.	One	way	to	do	this	is	to
grant	individual	developers	(LONDON\marysmith	and	LONDON\billb)
permissions	to	access	data.	But	if	another	developer	(or	another	10	developers)
joined	the	project,	separate	permissions	would	have	to	be	added	to	each	new
person,	a	time-consuming	task.	A	better	solution	is	to	add	a	SQL	Server	database
role	named	Developers,	granting	permissions	to	access	data	and	creating
procedures	to	the	role.	When	LONDON\marysmith	and	LONDON\billb,	or
accounts	for	other	new	developers,	are	added	to	the	Developers	role,	their	user
accounts	get	the	permissions	granted	to	the	role.

Roles	are	only	applicable	at	the	database	level.	That	is,	roles	solve	the	problem

of	controlling	database	user	access.	Instead	of	individually	granting	database
access	to	10	developers,	you	can	create	a	role,	add	the	10	developers	to	it,	and
grant	the	role	database	access.

Finally,	login	rights	must	be	added	to	SQL	Server	for	LONDON\managers	and
LONDON\admins.	When	a	manager	connects,	she	is	recognized	as	a	member
of	an	existing	Microsoft	Windows	NT®	4.0	and	Windows®	2000	group	and
allowed	to	perform	activities	based	on	the	permissions	granted	to	that	group.	The
same	is	true	for	LONDON\admins.

SQL	Server	Setup	Help

Corporate	Environment	Security	Example
In	a	large	corporate	security	system,	there	is	a	complex	web	of	users	who
perform	specialized,	exclusive	tasks.

A	single	person	is	responsible	for	all	aspects	of	the	database	application.	A	few
people	are	responsible	for	creating	databases	and	tables,	but	they	must	not	be
allowed	to	see	sensitive	personnel	information	about	their	coworkers	(or	even
themselves).	An	evening	team	backs	up	data,	but	these	workers	need	not	see	the
data,	nor	create	tables	and	databases.	The	Personnel	department	must	have
access	to	general	employee	information,	and	a	few	select	individuals	in	this
department	are	the	only	people	in	the	company	with	access	to	confidential	and
sensitive	employee	information.	Also,	customer	service	employees	need	to	see
but	not	change	product	specifications	in	response	to	customer	inquiries.

The	users-to-activity	map	for	this	example	is	fairly	complex.

User	account Activity
LONDON\annej All	database	access
LONDON\dbadmins Create	databases
LONDON\dboperations Perform	evening	backups
LONDON\personnel Full	access	to	general	employee	data
LONDON\mikebo,
LONDON\marym,
LONDON\billsm

Full	access	to	confidential	data

LONDON\custservice Read-only	access	to	product	information

The	LONDON\annej	user	account	must	be	granted	login	rights	to	Microsoft®
SQL	Server™	and	added	to	the	sysadmin	role	because	the	sysadmin	role	has
full	permissions	across	the	server.	The	LONDON\dbadmins	Microsoft
Windows	NT®	4.0	and	Windows®	2000	group	user	account	must	be	added	in
SQL	Server	and	granted	permission	to	create	databases.	The
LONDON\operations	Windows	NT	4.0	group	should	be	added	also	and	granted
only	the	BACKUP	DATABASE	permissions	to	allow	them	to	perform	backups.

The	LONDON\personnel	Windows	NT	4.0	and	Windows	2000	group	should	be
added	and	granted	the	permissions	to	see	only	the	nonsensitive	columns	in	the

employees	table,	as	well	as	the	permissions	to	see	other	tables.

The	users	LONDON\mikebo,	LONDON\marym,	and	LONDON\billsm	are
members	of	the	LONDON\personnel	Windows	NT	4.0	group,	so	they	already
have	the	permissions	necessary	to	do	most	of	their	work.	However,	they	also
need	special	access	to	the	sensitive	employee	information	columns.	To	meet	this
need,	create	a	database	role	called	PersonnelSecure	in	SQL	Server	and	grant	the
permissions	required	to	see	the	sensitive	employee	information.	Individual	users
get	the	special	permissions	in	SQL	Server	when	added	to	the	role.	Or,	add	the
special	permissions	to	their	user	accounts	directly.

The	final	step	is	to	add	an	account	for	the	LONDON\custservice	Windows	NT
4.0	group	in	SQL	Server,	and	grant	it	permission	to	see	product	information.

SQL	Server	Setup	Help

Security	Levels
A	user	passes	through	two	stages	of	security	when	working	in	Microsoft®	SQL
Server™:	authentication	and	authorization	(permissions	validation).The
authentication	stage	identifies	the	user	using	a	login	account	and	verifies	only
the	ability	to	connect	to	an	instance	of	SQL	Server.	If	authentication	is
successful,	the	user	connects	to	an	instance	of	SQL	Server.	The	user	then	needs
permissions	to	access	databases	on	the	server,	which	is	done	by	granting	access
to	an	account	in	each	database,	mapped	to	the	user	login.	The	permissions
validation	stage	controls	the	activities	the	user	is	allowed	to	perform	in	the	SQL
Server	database.

SQL	Server	Setup	Help

Authentication	Modes
Microsoft®	SQL	Server™	can	operate	in	one	of	two	security	(authentication)
modes:

Windows	Authentication	Mode	(Windows	Authentication)

Windows	Authentication	mode	allows	a	user	to	connect	through	a
Microsoft	Windows	NT®	4.0	or	Windows®	2000	user	account.

Mixed	Mode	(Windows	Authentication	and	SQL	Server	Authentication)

Mixed	Mode	allows	users	to	connect	to	an	instance	of	SQL	Server	using
either	Windows	Authentication	or	SQL	Server	Authentication.	Users
who	connect	through	a	Windows	NT	4.0	or	Windows	2000	user	account
can	make	use	of	trusted	connections	in	either	Windows	Authentication
Mode	or	Mixed	Mode.

SQL	Server	Authentication	is	provided	for	backward	compatibility.	For
example,	if	you	create	a	single	Windows	2000	group	and	add	all
necessary	users	to	that	group	you	will	need	to	grant	the	Windows	2000
group	login	rights	to	SQL	Server	and	access	to	any	necessary	databases.

Windows	Authentication

When	a	user	connects	through	a	Windows	NT	4.0	or	Windows	2000	user
account,	SQL	Server	revalidates	the	account	name	and	password	by	calling	back
to	Windows	NT	4.0	or	Windows	2000	for	the	information.

SQL	Server	achieves	login	security	integration	with	Windows	NT	4.0	or
Windows	2000	by	using	the	security	attributes	of	a	network	user	to	control	login
access.	A	user's	network	security	attributes	are	established	at	network	login	time
and	are	validated	by	a	Windows	domain	controller.	When	a	network	user	tries	to
connect,	SQL	Server	uses	Windows-based	facilities	to	determine	the	validated
network	user	name.	SQL	Server	then	verifies	that	the	person	is	who	they	say
they	are,	and	then	permits	or	denies	login	access	based	on	that	network	user
name	alone,	without	requiring	a	separate	login	name	and	password.

Login	security	integration	operates	over	any	supported	network	protocol	in	SQL

Server.

Note		If	a	user	attempts	to	connect	to	an	instance	of	SQL	Server	providing	a
blank	login	name,	SQL	Server	uses	Windows	Authentication.	Additionally,	if	a
user	attempts	to	connect	to	an	instance	of	SQL	Server	configured	for	Windows
Authentication	Mode	by	using	a	specific	login,	the	login	is	ignored	and
Windows	Authentication	is	used.

Windows	Authentication	has	certain	benefits	over	SQL	Server	Authentication,
primarily	due	to	its	integration	with	the	Windows	NT	4.0	and	Windows	2000
security	system.	Windows	NT	4.0	and	Windows	2000	security	provides	more
features,	such	as	secure	validation	and	encryption	of	passwords,	auditing,
password	expiration,	minimum	password	length,	and	account	lockout	after
multiple	invalid	login	requests.

Because	Windows	NT	4.0	and	Windows	2000	users	and	groups	are	maintained
only	by	Windows	NT	4.0	or	Windows	2000,	SQL	Server	reads	information
about	a	user's	membership	in	groups	when	the	user	connects.	If	changes	are
made	to	the	accessibility	rights	of	a	connected	user,	the	changes	become
effective	the	next	time	the	user	connects	to	an	instance	of	SQL	Server	or	logs	on
to	Windows	NT	4.0	or	Windows	2000	(depending	on	the	type	of	change).

Note		Windows	Authentication	Mode	is	not	available	when	an	instance	of	SQL
Server	is	running	on	Windows	98	or	Microsoft	Windows	Millennium	Edition.

SQL	Server	Authentication
When	a	user	connects	with	a	specified	login	name	and	password	from	a

nontrusted	connection,	SQL	Server	performs	the	authentication	itself	by
checking	to	see	if	a	SQL	Server	login	account	has	been	set	up	and	if	the
specified	password	matches	the	one	previously	recorded.	If	SQL	Server	does	not
have	a	login	account	set,	authentication	fails	and	the	user	receives	an	error
message.

SQL	Server	Authentication	is	provided	for	backward	compatibility	because
applications	written	for	SQL	Server	version	7.0	or	earlier	may	require	the	use	of
SQL	Server	logins	and	passwords.	Additionally,	SQL	Server	Authentication	is
required	when	an	instance	of	SQL	Server	is	running	on	Windows	98	because
Windows	Authentication	Mode	is	not	supported	on	Windows	98.	Therefore,
SQL	Server	uses	Mixed	Mode	when	running	on	Windows	98	(but	supports	only
SQL	Server	Authentication).

Application	developers	and	database	users	may	prefer	SQL	Server
Authentication	because	they	are	familiar	with	the	login	and	password
functionality.	SQL	Server	Authentication	may	also	be	required	for	connections
with	clients	other	than	Windows	NT	4.0	and	Windows	2000	clients.

Note		When	connecting	to	an	instance	of	SQL	Server	running	on	Windows	NT
4.0	or	Windows	2000	using	Named	Pipes,	the	user	must	have	permission	to
connect	to	the	Windows	NT	Named	Pipes	IPC,	\\<computername>\IPC$.	If	the

user	does	not	have	permission	to	connect,	it	is	not	possible	to	connect	to	an
instance	of	SQL	Server	using	Named	Pipes	unless	either	the	Windows	NT	4.0	or
Windows	2000	guest	account	on	the	computer	is	enabled	(disabled	by	default),
or	the	permission	"access	this	computer	from	the	network"	is	granted	to	their
user	account.

To	set	up	Windows	Authentication	Mode	security

SQL	Server	Setup	Help

Security	Account	Delegation
Security	account	delegation	is	the	ability	to	connect	to	multiple	servers,	and	with
each	server	change,	to	retain	the	authentication	credentials	of	the	original	client.
For	example,	if	a	user	(LONDON\joetuck)	connects	to	ServerA,	which	then
connects	to	ServerB,	ServerB	knows	that	the	connection	security	identity	is
LONDON\joetuck.

To	use	delegation,	all	servers	that	you	are	connecting	to	must	be	running
Microsoft®	Windows®	2000,	with	Kerberos	support	enabled,	and	you	must	be
using	Microsoft	Active	Directory™,	the	directory	service	for	Windows	2000.
The	following	options	in	Active	Directory	must	be	specified	as	follows	in	order
for	delegation	to	work:

The	Account	is	sensitive	and	cannot	be	delegated	check	box	must	not
be	selected	for	the	user	requesting	delegation.

The	Account	is	trusted	for	delegation	check	box	must	be	selected	for
the	service	account	of	SQL	Server.

The	Computer	is	trusted	for	delegation	check	box	must	be	selected
for	the	server	running	an	instance	of	Microsoft	SQL	Server™.

To	use	security	account	delegation,	SQL	Server	must	have:

A	Service	Principal	Name	(SPN)	assigned	by	the	Windows	2000
account	domain	administrator.

The	SPN	must	be	assigned	to	the	service	account	of	the	SQL	Server
service	on	that	particular	computer.	Delegation	enforces	mutual
authentication.	The	SPN	proves	that	SQL	Server	is	verified	on	the
particular	server,	at	the	particular	socket	address,	by	the	Windows	2000
account	domain	administrator.	You	can	have	your	domain	administrator
establish	an	SPN	for	SQL	Server	with	the	setspn	utility	through	the
Windows	2000	Resource	Kit.

To	create	an	SPN	for	SQL	Server,	enter	the	following	code	at	a

command	prompt:

setspn	-A	MSSQLSvc/Host:port	serviceaccount

For	example:

setspn	-A	MSSQLSvc/server1.redmond.microsoft.com	sqlaccount

For	more	information	about	the	setspn	utility,	see	the	Windows	2000
documentation.

Before	enabling	delegation,	consider	the	following:

You	must	be	using	TCP/IP.	You	cannot	use	Named	Pipes,	because	the
SPN	targets	a	particular	TCP/IP	socket.	If	you	are	using	multiple	ports,
you	must	have	a	SPN	for	each	port.

You	can	also	enable	delegation	by	running	under	the	LocalSystem
account.	SQL	Server	will	self-register	at	service	startup	and
automatically	register	the	SPN.	This	option	is	easier	than	enabling
delegation	using	a	domain	user	account.	However,	when	SQL	Server
shuts	down,	the	SPNs	will	be	unregistered	for	the	LocalSystem
account.

Note		If	you	change	service	accounts	in	SQL	Server,	you	need	to	delete
any	previous	SPNs	and	create	new	ones.

Adding	an	SPN	to	SQL	Server

To	add	an	SPN	on	an	instance	of	SQL	Server	named	"myserver.microsoft.com",
for	an	instance	listening	on	port	1433,	using	service	account
MYDOMAIN\sqlsvc,	run	the	following	at	a	command	prompt:

setspn	-A	MSSQLSvc/myserver.microsoft.com:1433	sqlsvc

You	cannot	use	the	Netbios	name.	You	must	use	the	fully	qualified	DNS	name.
You	cannot	specify	the	domain	qualifier	for	the	service	account.	You	must	use
only	the	account	name.

To	change	and	use	the	LocalSystem	account,	enter	the	following	code	at	a
command	prompt	to	delete	the	previously	registered	SPN	:

setspn	-D	MSSQLSvc/myserver.microsoft.com:1433	sqlsvc

For	more	information	about	security	account	delegation,	see	the	Windows	2000
documentation.

SQL	Server	Setup	Help

Permissions	Validation
After	a	user	has	been	authenticated	and	allowed	to	log	in	to	an	instance	of
Microsoft®	SQL	Server™,	a	separate	user	account	is	required	in	each	database
the	user	must	access.	Requiring	a	user	account	in	each	database	prevents	users
from	connecting	to	an	instance	of	SQL	Server	and	accessing	all	the	databases	on
a	server.	For	example,	if	a	server	contains	a	personnel	database	and	a	recruiting
database,	users	who	should	be	able	to	access	the	recruiting	database	but	not	the
personnel	database	would	have	a	user	account	created	only	in	the	recruiting
database.

The	user	account	in	each	database	is	used	to	apply	security	permissions	for	the
objects	(for	example,	tables,	views,	and	stored	procedures)	in	that	database.	This
user	account	can	be	mapped	from	Microsoft	Windows	NT®	4.0	and	Windows®
2000	user	accounts,	Windows	NT	4.0	and	Windows	2000	groups	in	which	the
user	is	a	member,	or	SQL	Server	login	accounts.	If	there	is	no	account	mapped
directly,	the	user	may	be	allowed	to	work	in	a	database	under	the	guest	account,
if	one	exists.	The	activities	a	user	is	allowed	to	perform	are	controlled	by	the
permissions	applied	to	the	user	account	from	which	they	gained	access	to	a
database.

SQL	Server	accepts	commands	after	a	user	gains	access	to	a	database.	All
activities	a	user	performs	in	a	database	are	communicated	to	SQL	Server	through
Transact-SQL	statements.	When	an	instance	of	SQL	Server	receives	a	Transact-
SQL	statement,	it	ensures	the	user	has	permission	to	execute	the	statement	in	the
database.	If	the	user	does	not	have	permission	to	execute	a	statement	or	access
an	object	used	by	the	statement,	SQL	Server	returns	a	permissions	error.

SQL	Server	Setup	Help

Hierarchical	Security
The	security	environment	in	Microsoft®	SQL	Server™	is	stored,	managed,	and
enforced	through	a	hierarchical	system	of	users.	To	simplify	the	administration
of	many	users,	SQL	Server	uses	groups	and	roles:

A	group	is	an	administrative	unit	within	Microsoft	Windows	NT®	4.0
and	Windows®	2000	that	contains	Windows	NT	4.0	and	Windows	2000
users	or	other	groups.

A	role	is	an	administrative	unit	within	SQL	Server	that	contains	SQL
Server	logins,	Windows	NT	4.0	and	Windows	2000	logins,	groups,	or
other	roles.

Arranging	users	into	groups	and	roles	makes	it	easier	to	grant	or	deny
permissions	to	many	users	at	once.	The	security	settings	defined	for	a	group	are
applied	to	all	members	of	that	group.	When	a	group	is	a	member	of	a	higher-
level	group,	all	members	of	the	group	inherit	the	security	settings	of	the	higher-
level	group,	in	addition	to	the	security	settings	defined	for	the	group	itself	or
user	accounts.

The	organizational	chart	of	the	security	system	often	corresponds	to	the
organizational	chart	of	a	company.

These	two	organizational	charts	are	largely	compatible,	but	there	is	one	common
rule	for	a	company's	organizational	hierarchy	that	does	not	apply	to	the	security
model:	an	individual	reports	only	to	one	manager.	This	rule	implies	that	an
employee	can	fall	into	only	a	single	branch	of	the	hierarchical	model,	as	shown
in	the	diagram.

The	requirements	of	a	database	security	system	go	beyond	this	one-manager
limitation;	employees	belong	to	security	groups	that	do	not	fall	within	the	strict
organizational	plan	of	the	company.	For	example,	administrative	staff	exists	in
every	branch	of	the	company	and	require	security	permissions	regardless	of	their
organizational	branch.	To	support	this	broader	model,	the	security	system	in
Windows	NT	4.0,	Windows	2000,	and	SQL	Server	allows	groups	to	be	defined
across	a	hierarchy.	An	Administrative	group	can	be	created	to	contain
administrative	employees	for	every	branch	of	the	company	from	the	Corporate
group	to	the	Payroll	group.

This	hierarchical	system	of	security	groups	simplifies	management	of	security
settings.	It	allows	security	settings	to	be	applied	collectively	to	all	group
members,	without	having	to	be	defined	redundantly	for	each	person.	The
hierarchical	model	also	accommodates	security	settings	applied	only	to	a	single
user.

SQL	Server	Setup	Help

Creating	Security	Accounts
Each	user	must	gain	access	to	an	instance	of	Microsoft®	SQL	Server™	through
a	login	account	that	establishes	the	user's	ability	to	connect	(authentication).	This
login	then	has	to	be	mapped	to	a	SQL	Server	user	account,	which	is	used	to
control	activities	performed	in	the	database	(permissions	validation).	Therefore,
a	single	login	is	mapped	to	one	user	account	created	in	each	database	the	login	is
accessing.	If	no	user	account	exists	in	a	database,	the	user	cannot	access	the
database	even	though	the	user	may	be	able	to	connect	to	an	instance	of	SQL
Server.

The	login	is	created	in	Microsoft	Windows	NT®	4.0	or	Windows®	2000	rather
than	in	SQL	Server.	This	login	is	then	granted	permission	to	connect	to	an
instance	of	SQL	Server.	The	login	is	granted	access	within	SQL	Server.

SQL	Server	Setup	Help

Security	Rules
Microsoft®	SQL	Server™	logins,	users,	roles,	and	passwords	can	contain	from	1
through	128	characters,	including	letters,	symbols,	and	digits,	(for	example
Andrew-Fuller,	Margaret	Peacock,	or	139abc).	Therefore,	Microsoft
Windows	NT®	4.0,	Microsoft	Windows®	2000,	or	Microsoft	Windows	98	user
names	can	be	used	as	SQL	Server	logins.

However,	because	logins,	user	names,	roles,	and	passwords	are	often	used	in
Transact-SQL	statements,	certain	symbols	must	be	delimited	with	double
quotation	marks	("),	or	square	brackets	([]).	Use	delimiters	in	Transact-SQL
statements	when	the	SQL	Server	login,	user,	role,	or	password:

Contains,	or	begins	with,	a	space	character.

Begins	with	the	$	or	@	character.

Note		It	is	not	necessary	to	specify	delimiters	when	entering	logins,
users,	roles,	and	passwords	into	the	text	boxes	of	the	SQL	Server
graphical	client	tools,	such	as	SQL	Server	Enterprise	Manager.

Additionally,	a	SQL	Server	login,	user,	or	role	cannot:

Contain	a	backslash	(\)	character,	unless	referring	to	an	existing
Windows	NT	4.0	or	Windows	2000	user	or	group.	The	backslash
separates	the	Windows	NT	4.0	or	Windows	2000	computer	or	domain
name	from	the	user	name.

Already	exist	in	the	current	database	(or	master,	for	logins	only).

Be	NULL,	or	an	empty	string	("").

See	Also

Delimited	Identifiers

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Adding	a	Windows	User	or	Group
Microsoft®	Windows	NT®	4.0	and	Windows®	2000	accounts	(users	or	groups)
must	be	granted	permissions	to	connect	to	an	instance	of	Microsoft	SQL
Server™	before	they	can	access	a	database.	If	all	members	of	a	Windows	NT	4.0
or	Windows	2000	group	will	be	connecting	to	an	instance	of	SQL	Server,	you
can	grant	permission	to	the	group	as	a	whole.	Managing	group	permissions	is
much	easier	than	managing	permissions	for	individual	users.	If	the	group	should
not	be	granted	permission	collectively,	grant	permission	to	connect	to	an
instance	of	SQL	Server	for	each	individual	Windows	NT	4.0	or	Windows	2000
user.

Users
When	granting	a	Windows	NT	4.0	or	Windows	2000	user	access	to	connect	to	an
instance	of	SQL	Server,	specify	the	Windows	NT	4.0	or	Windows	2000	domain
or	computer	name	to	which	the	user	belongs,	followed	by	a	backslash,	and	then
the	user.	For	example,	to	grant	access	to	the	Windows	NT	4.0	or	Windows	2000
user	Andrew,	in	the	Windows	NT	4.0	or	Windows	2000	domain	LONDON,
specify	LONDON\Andrew	as	the	user	name.

Local	and	Global	Groups
There	are	several	types	of	Windows	NT	4.0	and	Windows	2000	groups,
including	global	and	local:

Global	groups	contain	user	accounts	from	the	Windows	NT	4.0	or
Windows	2000	domain	in	which	they	are	created.	Global	groups	cannot
contain	other	groups	or	users	from	other	domains	and	cannot	be	created
on	a	computer	running	Microsoft	Windows	NT	4.0	Workstation	or
Microsoft	Windows	2000	Professional.

Local	groups	can	contain	user	accounts	and	global	groups	from	the
domain	in	which	they	are	created	and	in	any	trusted	domain.	Local
groups	cannot	contain	other	local	groups.

Additionally,	Windows	NT	4.0	and	Windows	2000	have	predefined,	built-in
local	groups	(for	example,	Administrators,	Users,	and	Guests).

When	granting	a	Windows	NT	4.0	or	Windows	2000	local	or	global	group
access	to	connect	to	an	instance	of	SQL	Server,	specify	the	domain	or	computer
name	the	group	is	defined	on,	followed	by	a	backslash,	and	then	the	group	name.
For	example,	to	grant	access	to	a	global	group	called	SQL_Users,	in	the
LONDON	domain,	specify	LONDON\SQL_Users	as	the	group	name.

To	grant	access	to	a	Windows	NT	4.0	or	Windows	2000	built-in,	local	group,
specify	BUILTIN	instead	of	the	domain	or	computer	name.	To	grant	access	to
the	built-in	Windows	NT	4.0	and	Windows	2000	local	group	Administrators,
specify	BUILTIN\Administrators	as	the	group	name.

For	more	information	about	these	accounts,	see	the	Windows	NT	4.0	and
Windows	2000	documentation.

To	grant	a	Windows	user	or	group	login	access	to	SQL	Server

Transact-SQL

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Granting	a	Windows	User	or	Group	Access	to	a
Database
To	obtain	access	to	a	Microsoft®	SQL	Server™	database,	a	Microsoft	Windows
NT®	4.0	and	Windows®	2000	user	or	group	must	have	a	corresponding	user
account	in	each	database	they	need	to	access.	Additionally,	permissions	must	be
applied	to	this	user	account.

Although	possible,	it	is	not	necessary	to	add	an	individual	user	account	in	a
database	for	each	Windows	NT	4.0	and	Windows	2000	user	in	a	Windows	NT
4.0	and	Windows	2000	group	whose	members	all	perform	the	same	activities.
Accounts	can	be	added	for	groups	rather	than	for	each	individual	member.	When
the	group	members	need	to	work	in	a	database,	they	are	granted	access	through
their	membership	in	the	Windows	NT	4.0	and	Windows	2000	group;	there	is	not
a	specific	account	for	individual	users	within	the	group.	For	example,	a
Windows	NT	4.0	and	Windows	2000	group	London\Managers	contains	the
Windows	NT	4.0	and	Windows	2000	user	London\JoeB.	The	SQL	Server
system	administrator	grants	login	access	only	to	London\Managers.	The	owner
of	database	Accounts	grants	only	London\Managers	permission	to	access
Accounts.	Although	London\JoeB	does	not	have	explicit	permission	granted	to
connect	to	an	instance	of	SQL	Server	or	to	access	Accounts,	he	can	connect	to
the	instance	of	SQL	Server	and	access	Accounts	due	to	his	membership	in
London\Managers.

Add	individual	Windows	NT	4.0	and	Windows	2000	users	to	a	database	only	if
the	user	performs	activities	different	from	other	members	of	any	Windows	NT
4.0	or	Windows	2000	group	(for	example,	special	database	administrative
duties).

Note		Users	who	are	granted	access	to	an	instance	of	SQL	Server	through	their
memberships	in	a	Windows	NT	4.0	or	Windows	2000	group	do	not	have	entries
for	their	individual	Windows	NT	4.0	or	Windows	2000	user	accounts	in	the
system	tables.	However,	an	entry	is	created	for	their	individual	user	accounts	if
they	create	objects,	such	as	a	table	or	a	stored	procedure,	in	a	SQL	Server
database.

To	grant	a	Windows	user	or	group	access	to	a	database

Transact-SQL

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Adding	a	SQL	Server	Login
Add	Microsoft®	SQL	Server™	login	accounts	that	allow	a	connection	by	means
of	a	specified	login	name	and	password,	rather	than	through	a	Microsoft
Windows	NT®	4.0	or	Windows®	2000	user	or	group	account,	if:

SQL	Server	is	configured	to	operate	in	Mixed	Mode.

An	instance	of	SQL	Server	is	running	on	Microsoft	Windows	98.

Adding	SQL	Server	logins	is	required:

For	compatibility	with	applications	containing	data	imported	from	other
databases	vendors.

For	applications	designed	to	work	with	general	users	who	do	not	have
Windows	NT	4.0	or	Windows	2000	accounts.

To	connect	to	an	instance	of	SQL	Server	running	on	Windows	98
because	Windows	Authentication	is	not	available	on	Windows	98.

To	add	a	SQL	Server	login

Transact-SQL

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

System	Administrator	(sa)	Login
System	administrator	(sa)	is	a	special	login	provided	for	backward	compatibility.
By	default,	it	is	assigned	to	the	sysadmin	fixed	server	role	and	cannot	be
changed.	Although	sa	is	a	built-in	administrator	login,	do	not	use	it	routinely.
Instead,	make	system	administrators	members	of	the	sysadmin	fixed	server	role,
and	have	them	log	on	using	their	own	logins.	Use	sa	only	when	there	is	no	other
way	to	log	in	to	an	instance	of	Microsoft®	SQL	Server™	(for	example,	when
other	system	administrators	are	unavailable	or	have	forgotten	their	passwords).

Note		When	SQL	Server	is	installed,	SQL	Server	Setup	prompts	you	to	change
the	sa	login	password	if	you	request	Mixed	Mode	authentication.	It	is
recommended	that	the	password	be	assigned	immediately	to	prevent
unauthorized	access	to	an	instance	of	SQL	Server	using	the	sa	login.

See	Also

Assigning	an	sa	Password

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Granting	a	SQL	Server	Login	Access	to	a	Database
Add	a	Microsoft®	SQL	Server™	user	account	to	each	database	for	each	SQL
Server	login	that	requires	access	to	the	database.	If	a	user	is	not	created	in	the
database,	the	SQL	Server	login	cannot	access	the	database.

To	grant	a	SQL	Server	login	access	to	a	database,	the	SQL	Server	login	must
already	exist.	Furthermore,	SQL	Server	logins	must	be	granted	access	to	a
database	one	at	a	time.

To	grant	a	SQL	Server	login	access	to	a	database

Transact-SQL

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Database	Owner	(dbo)
The	dbo	is	a	user	that	has	implied	permissions	to	perform	all	activities	in	the
database.	Any	member	of	the	sysadmin	fixed	server	role	who	uses	a	database	is
mapped	to	the	special	user	inside	each	database	called	dbo.	Also,	any	object
created	by	any	member	of	the	sysadmin	fixed	server	role	belongs	to	dbo
automatically.

For	example,	if	user	Andrew	is	a	member	of	the	sysadmin	fixed	server	role	and
creates	a	table	T1,	T1	belongs	to	dbo	and	is	qualified	as	dbo.T1,	not	as
Andrew.T1.	Conversely,	if	Andrew	is	not	a	member	of	the	sysadmin	fixed
server	role	but	is	a	member	only	of	the	db_owner	fixed	database	role	and
creates	a	table	T1,	T1	belongs	to	Andrew	and	is	qualified	as	Andrew.T1.	The
table	belongs	to	Andrew	because	he	did	not	qualify	the	table	as	dbo.T1.

The	dbo	user	cannot	be	deleted	and	is	always	present	in	every	database.

Only	objects	created	by	members	of	the	sysadmin	fixed	server	role	(or	by	the
dbo	user)	belong	to	dbo.	Objects	created	by	any	other	user	who	is	not	also	a
member	of	the	sysadmin	fixed	server	role	(including	members	of	the	db_owner
fixed	database	role):

Belong	to	the	user	creating	the	object,	not	dbo.

Are	qualified	with	the	name	of	the	user	who	created	the	object.

See	Also

Delimited	Identifiers

sp_changedbowner

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

Database	Object	Owner
A	user	who	creates	a	database	object	(a	table,	index,	view,	trigger,	function,	or
stored	procedure)	is	called	a	database	object	owner.	Permission	to	create
database	objects	must	be	given	by	the	database	owner	or	system	administrator.
However,	after	these	permissions	are	granted,	a	database	object	owner	can	create
an	object	and	grant	other	users	permission	to	use	that	object.

Database	object	owners	have	no	special	login	IDs	or	passwords.	The	creator	of	a
database	object	is	granted	all	permissions	implicitly	but	must	give	explicit
permissions	to	other	users	before	they	can	access	the	object.

Referencing	database	objects
When	users	access	an	object	created	by	another	user,	the	object	should	be
qualified	with	the	name	of	the	object	owner;	otherwise,	Microsoft®	SQL
Server™	may	not	know	which	object	to	use	because	there	could	be	many	objects
of	the	same	name	owned	by	different	users.	If	an	object	is	not	qualified	with	the
object	owner	when	it	is	referenced	(for	example,	my_table	instead	of
owner.my_table),	SQL	Server	looks	for	an	object	in	the	database	in	the
following	order:

1.	 Owned	by	the	current	user.

2.	 Owned	by	dbo.

If	the	object	is	not	found,	an	error	is	returned.

For	example,	user	John	is	a	member	of	the	db_owner	fixed	database	role,	but
not	the	sysadmin	fixed	server	role,	and	creates	table	T1.	All	users,	except	John,
who	want	to	access	T1	must	qualify	T1	with	the	user	name	John.	If	T1	is	not
qualified	with	the	user	name	John,	SQL	Server	first	looks	for	a	table	named	T1
owned	by	the	current	user	and	then	owned	by	dbo.	If	the	current	user	and	dbo
do	not	own	a	table	named	T1,	an	error	is	returned.	If	the	current	user	or	dbo
owns	another	table	named	T1,	the	other	table	named	T1,	rather	than	John.T1,	is
used.

If	a	database	object	owner	must	be	removed	from	a	database,	the	owned	objects
must	be	dropped	first	or	their	ownership	transferred	to	another	user.

Note		SQL	Server	allows	a	role	or	Microsoft	Windows	NT®	4.0	or	Windows®
2000	group	to	be	specified	as	the	owner	of	an	object.	For	example,	to	create	the
table	group_table	owned	by	the	Windows	NT	4.0	or	Windows	2000	group
LONDON\Users,	specify	[LONDON\Users].group_table	as	the	qualified	table
name.	All	members	of	the	LONDON\Users	group	have	database	object	owner
permissions	on	group_table.

See	Also

Delimited	Identifiers

sp_changeobjectowner

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

guest	User
The	guest	user	account	allows	a	login	without	a	user	account	to	access	a
database.	A	login	assumes	the	identity	of	the	guest	user	when	both	of	the
following	conditions	are	met:

The	login	has	access	to	an	instance	of	Microsoft®	SQL	Server™	but
does	not	have	access	to	the	database	through	his	or	her	own	user
account.

The	database	contains	a	guest	user	account.

Permissions	can	be	applied	to	the	guest	user	as	if	it	were	any	other	user	account.
The	guest	user	can	be	deleted	and	added	to	all	databases	except	master	and
tempdb,	where	it	must	always	exist.	By	default,	a	guest	user	account	does	not
exist	in	newly	created	databases.

For	example,	to	add	a	guest	user	account	to	a	database	named	Accounts,	run	the
following	code	in	SQL	Query	Analyzer:

USE	Accounts
GO
EXECUTE	sp_grantdbaccess	guest

To	grant	a	SQL	Server	login	access	to	a	database

Transact-SQL

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Creating	User-Defined	SQL	Server	Database	Roles
Create	Microsoft®	SQL	Server™	database	roles	when	a	group	of	users	needs	to
perform	a	specified	set	of	activities	in	SQL	Server	and	one	of	the	following	is
true:

There	is	no	applicable	Microsoft	Windows	NT®	4.0	or	Windows®
2000	group.	

You	do	not	have	permissions	to	manage	Windows	NT	4.0	or	Windows
2000	user	accounts.

Note		Avoid	deep	levels	of	nested	roles	because	this	can	affect	performance.

For	example,	a	company	may	form	a	Charity	Event	Committee	involving
employees	from	different	departments	and	from	several	different	levels	in	the
organization.	These	employees	need	access	to	a	special	project	table	in	the
database.	There	is	no	existing	Windows	NT	4.0	or	Windows	2000	group	that
includes	just	these	employees,	and	there	is	no	other	reason	to	create	one	in
Windows	NT	4.0	or	Windows	2000.	A	custom	SQL	Server	database	role,
CharityEvent,	can	be	created	for	this	project	and	individual	Windows	NT	4.0
and	Windows	2000	users	added	to	the	database	role.	When	permissions	are
applied,	the	users	in	the	database	role	gain	table	access.	Permissions	for	other
database	activities	are	not	affected,	and	the	CharityEvent	users	are	the	only
ones	who	can	work	with	the	project	table.

SQL	Server	roles	exist	within	a	database	and	cannot	span	more	than	one
database.

The	advantages	of	using	database	roles	include:

For	any	user,	more	than	one	database	role	can	be	active	at	any	time.

SQL	Server	roles	can	contain	Windows	NT	4.0	or	Windows	2000
groups	and	users	and	SQL	Server	users	and	other	roles,	provided	that	all
users,	groups,	and	roles	exist	in	the	current	database.

A	user	can	belong	to	more	than	one	role	in	the	same	database.

A	scalable	model	is	provided	for	setting	up	the	correct	level	of	security
within	a	database.

Note		A	database	role	is	owned	by	either	the	user	explicitly	specified	as	the
owner	when	the	role	is	created,	or	the	user	who	created	the	role	when	no	owner
is	specified.	The	owner	of	the	role	determines	who	can	be	added	or	removed
from	the	role.	However,	because	a	role	is	not	a	database	object,	multiple	roles	of
the	same	name	in	the	same	database	owned	by	different	users	cannot	be	created.

To	create	a	SQL	Server	database	role

Transact-SQL

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Adding	a	Member	to	a	SQL	Server	Database	Role
When	you	add	a	new	user	account	in	Microsoft®	SQL	Server™	or	change	the
permissions	of	an	existing	user,	you	can	add	the	user	to	a	SQL	Server	database
role	rather	than	applying	permissions	directly	to	the	account.	Roles	can	simplify
security	administration	in	databases	with	a	large	number	of	users	or	with	a
complex	security	system.

SQL	Server	users,	Microsoft	Windows	NT®	4.0	or	Windows®	2000	users	and
groups,	and	other	SQL	Server	database	roles	all	can	be	added	as	a	member	of	a
role.	Because	a	role	is	restricted	to	a	single	database	and	cannot	be	added	from
one	database	to	another,	you	can	add	users,	groups,	and	roles	known	only	to	that
database.

Note		When	you	add	a	Windows	NT	4.0	or	Windows	2000	login	without	a	user
account	in	the	database	to	a	SQL	Server	database	role,	SQL	Server	creates	a	user
account	in	the	database	automatically,	even	if	that	Windows	NT	4.0	or	Windows
2000	login	cannot	otherwise	access	the	database.

A	user	account	can	be	a	member	of	any	number	of	roles	within	the	same
database	and	can	hold	permissions	appropriate	to	each	role.	For	example,	a	SQL
Server	user	can	be	a	member	of	the	admin	role	and	the	users	role	for	the	same
database,	with	each	role	granting	different	permissions.	The	permission	on	an
object	granted	to	a	member	of	more	than	one	role	are	the	cumulative	permissions
of	the	roles.	However,	a	denied	permission	in	one	role	has	precedence	over	the
same	permission	granted	in	another	role.	For	example,	the	admin	role	may	grant
access	to	a	table,	whereas	the	users	role	denies	access	to	the	same	table.	A
member	of	both	roles	is	denied	access	to	the	table	because	denied	access	is	more
restrictive	and	has	precedence.

Users	to	be	added	to	a	user-defined	database	role	must	already	have	permission
to	access	the	database	containing	the	user-defined	role.

To	add	a	member	to	a	SQL	Server	database	role

Transact-SQL

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Adding	a	Member	to	a	Predefined	Role
The	security	mechanism	in	Microsoft®	SQL	Server™	includes	several
predefined	roles	with	implied	permissions	that	cannot	be	granted	to	other	user
accounts.	If	you	have	users	who	require	these	permissions,	you	must	add	their
accounts	to	these	predefined	roles.	The	two	types	of	predefined	roles	are	fixed
server	and	fixed	database.

Fixed	Server	Roles
Fixed	server	roles,	which	cannot	be	created,	are	defined	at	the	server	level	and
exist	outside	of	individual	databases.	To	add	a	user	to	a	fixed	server	role,	the	user
must	have	a	SQL	Server	or	Microsoft	Windows	NT®	4.0	or	Windows®	2000
login	account.	Any	member	of	a	fixed	server	role	can	add	other	logins.

IMPORTANT		Windows	NT	4.0	or	Windows	2000	users	who	are	members	of	the
BUILTIN\Administrators	group	are	members	of	the	sysadmin	fixed	server
role	automatically.

The	following	table	describes	the	fixed	server	roles.

Fixed	server	role Description
sysadmin Performs	any	activity	in	SQL	Server.	The

permissions	of	this	role	span	all	of	the	other	fixed
server	roles.

serveradmin Configures	server-wide	settings.
setupadmin Adds	and	removes	linked	servers,	and	executes

some	system	stored	procedures,	such	as
sp_serveroption.

securityadmin Manages	server	logins.
processadmin Manages	processes	running	in	an	instance	of	SQL

Server.
dbcreator Creates	and	alters	databases.
diskadmin Manages	disk	files.
bulkadmin Executes	the	BULK	INSERT	statement.

The	securityadmin	has	permission	to	execute	the	sp_password	stored
procedure	for	all	users	other	than	members	of	the	sysadmin	role.

The	bulkadmin	fixed	server	role	has	permission	to	execute	BULK	INSERT
statements.	Members	of	the	bulkadmin	role	can	add	other	logins	to	the	role,	as
all	members	of	any	given	fixed	server	role	can	do.	However,	due	to	the	security
implications	associated	with	executing	the	BULK	INSERT	statement	(the	BULK
INSERT	statement	requires	read	access	to	any	data	on	the	network	and	machine
the	server	is	running	on),	it	may	not	be	desirable	for	members	of	the	bulkadmin
role	to	grant	permission	to	others.	The	bulkadmin	role	provides	members	of	the
sysadmin	fixed	server	role	with	a	method	to	delegate	tasks	requiring	execution
of	the	BULK	INSERT	statement,	without	granting	users	sysadmin	rights.
Members	of	the	bulkadmin	role	are	allowed	to	execute	the	BULK	INSERT
statement,	but	they	still	must	have	the	INSERT	permission	on	the	table	on	which
you	wish	to	insert	data.

To	add	a	member	to	a	fixed	server	role

Transact-SQL

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

public	Role
The	public	role	is	a	special	database	role	to	which	every	database	user	belongs.
The	public	role:

Captures	all	default	permissions	for	users	in	a	database.

Cannot	have	users,	groups,	or	roles	assigned	to	it	because	they	belong	to
the	role	by	default.

Is	contained	in	every	database,	including	master,	msdb,	tempdb,
model,	and	all	user	databases.

Cannot	be	dropped.

SQL	Server	Setup	Help

Using	the	Create	Login	Wizard
Although	the	steps	required	to	grant	login	access	to	Microsoft®	SQL	Server™
and	a	database	can	be	performed	separately,	the	Create	Login	Wizard	can
simplify	the	process.	The	Create	Login	Wizard	allows	you	to:

Choose	which	authentication	mode	to	use	to	connect	to	an	instance	of
SQL	Server	(Windows	Authentication	Mode	or	Mixed	Mode).

Add	a	Microsoft	Windows	NT®	4.0,	Windows®	2000	or	SQL	Server
login.

Add	a	Windows	NT	4.0,	Windows	2000	or	SQL	Server	user	to	a	fixed
server	role.

Add	a	Windows	NT	4.0,	Windows	2000	or	SQL	Server	user	to	one	or
more	databases,	thereby	granting	the	user	access	to	those	databases.

To	grant	SQL	Server	login	access	to	a	user	by	using	the	Create	Login
Wizard

SQL	Server	Setup	Help

Managing	Security	Accounts
After	security	accounts	have	been	added	to	Microsoft®	SQL	Server™,	you	can
modify	them	as	business	needs	change.	This	usually	involves	viewing,
modifying,	and	removing	the	security	accounts	in	the	database	to	fit	the	needs	of
your	business.

SQL	Server	Setup	Help

Viewing	Logins
View	Microsoft®	SQL	Server™	logins	to	determine	if	a	user	or	Microsoft
Windows	NT®	4.0	or	Windows®	2000	group	has	permission	to	connect	to	an
instance	of	SQL	Server,	and	to	identify	which	databases	the	login	can	access.
Also,	view	a	login	before	removing	it	to	see	which	database	users	must	be
removed;	it	is	not	possible	to	remove	a	login	without	first	removing	the
associated	users.

You	can	view:

Users	in	each	database	associated	with	the	login.

Default	database	and	language	the	login	uses	when	the	user	first
connects	to	an	instance	of	SQL	Server.

Windows	NT	4.0	or	Windows	2000	security	identifier	(SID).

Note		It	is	not	possible	to	view	the	password	of	any	login	unless	the	password	is
NULL.	Passwords	are	encrypted	when	stored	in	SQL	Server.

To	view	a	SQL	Server	login	or	Windows	user	or	group

Transact-SQL

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Modifying	Logins
After	a	login	has	been	created,	it	may	be	necessary	to	change	the	password,
default	database,	or	default	language.	For	example,	a	user	may	forget	her
password,	want	to	change	the	password	for	security	reasons,	need	to	use	a
different	database	on	a	regular	basis,	or	need	to	see	messages	in	a	different
language.

Note		If	a	user	forgets	a	password,	a	member	of	the	sysadmin	or	securityadmin
fixed	server	role	can	change	the	password	without	knowing	the	original
password.	A	user	cannot	change	a	password	if	he	has	forgotten	it.	Members	of
the	securityadmin	role	cannot	change	the	password	of	members	of	the
sysadmin	role.

To	change	the	password	of	a	SQL	Server	login

Transact-SQL

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Removing	Logins	and	Users
The	process	of	deactivating	security	accounts	(for	example,	when	an	employee
leaves	a	company)	is	similar	to	the	process	of	adding	a	new	user.	Update	the
security	mechanism	in	Microsoft®	Windows	NT®	4.0	or	Windows®	2000	by
first	removing	the	user's	Windows	NT	4.0	or	Windows	2000	user	account.	If	the
user	has	a	Microsoft	SQL	Server™	user	account,	removed	it	from	SQL	Server
along	with	any	SQL	Server	database	roles	specifically	defined	for	that	user.
Finally,	remove	any	SQL	Server	login.

Removing	a	SQL	Server	user	or	Windows	NT	4.0	or	Windows	2000	user	or
group	from	a	SQL	Server	database	automatically	removes	the	permissions
defined	for	the	user	or	group	and	prevents	that	user	from	using	the	database
under	the	old	security	account.	The	permissions	do	not	have	to	be	removed
separately.	However,	it	is	not	possible	to	remove	a	user	from	SQL	Server	if	that
user	currently	owns	objects	(tables,	procedures,	or	views)	within	a	database.	If
the	user	owns	objects,	then	either	drop	those	objects	before	removing	the	user	or
transfer	ownership	to	another	existing	user	by	using	the	sp_changeobjectowner
system	stored	procedure.

Removing	a	user	does	not	remove	a	login	automatically,	so	it	does	not	prevent
the	user	from	connecting	to	an	instance	of	SQL	Server.	After	being	removed,	the
user	can	log	in	to	the	databases	only	through	the	guest	account	and	perform
activities	under	those	permissions.	To	prevent	a	user	from	connecting	to	an
instance	of	SQL	Server,	remove	his	or	her	login.

If	a	linked	server	login	is	set	up	but	is	no	longer	required,	remove	it	to	prevent
unauthorized	access	to	the	linked	server	and	to	keep	the	security	system	as
simple	as	possible.

To	remove	a	user	or	group	from	a	database

Transact-SQL

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Denying	Login	Access	to	Windows	Accounts
When	a	Microsoft®	Windows	NT®	4.0	or	Windows®	2000	user	belongs	to	a
Windows	NT	4.0	or	Windows	2000	group	that	has	a	login	account	in	Microsoft
SQL	Server™,	the	user	is	allowed	to	connect	through	the	group	login.	However,
there	may	be	times	when	such	users	or	groups	need	to	be	prevented	from
connecting	to	an	instance	of	SQL	Server.	You	can	deny	login	access	to	any
Windows	NT	4.0	or	Windows	2000	user	or	group.	Users	cannot	connect	to	an
instance	of	SQL	Server	if	their	user	account,	or	any	group	in	which	they	are	a
member,	has	been	denied	login	access.

To	deny	login	access	to	a	Windows	user	or	group

Transact-SQL

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Viewing	Roles
When	creating	and	using	a	database,	you	may	need	to	find	information	about	a
Microsoft®	SQL	Server™	database	role	or	a	fixed	server	role.	For	example,	you
may	need	to	see	which	roles	exist	in	the	current	database,	or	list	the	fixed	server
roles.

To	view	the	roles	defined	in	the	current	database

Transact-SQL

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Viewing	and	Modifying	Role	Memberships
While	using	a	database,	you	may	need	to	list	the	members	of	a	database	role	or
fixed	server	role.	Or,	when	a	Microsoft®	SQL	Server™	user	no	longer	needs	the
permissions	from	a	user-defined,	fixed	database	or	server	role	of	which	she	is	a
member,	you	may	want	to	remove	the	user	from	the	role	to	keep	the	security
system	as	simple	as	possible.

To	view	the	members	of	a	database	role

Transact-SQL

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Removing	a	SQL	Server	Database	Role
The	changing	security	requirements	of	a	database	can	render	a	Microsoft®	SQL
Server™	database	role	obsolete.	Remove	roles	when	you	have	removed	all	users
and	are	certain	that	the	role	and	its	permissions	will	not	be	required	in	the	future.
Empty	roles	can	be	saved	if	the	permissions	may	be	required	for	a	new	user.
However,	from	an	administrative	perspective,	it	is	much	easier	to	work	with	a
security	system	that	is	not	cluttered	with	unnecessary	security	roles.	SQL	Server
operates	faster	with	a	simpler	security	system,	although	it	is	will	not	be	a
problem	unless	there	are	an	extremely	large	number	of	roles.

Note		It	is	not	possible	to	remove	fixed	server	roles	or	fixed	database	roles.

To	remove	a	SQL	Server	role

Transact-SQL

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Viewing	Database	Users
Viewing	a	Microsoft®	SQL	Server™	user	account	in	a	database	shows:

The	roles	of	which	the	user	is	a	member.

The	SQL	Server	login	associated	with	the	user.

The	default	database.

Use	this	information	to	understand	how	the	user	fits	into	the	security	system	of
the	database.

To	view	a	database	user

Transact-SQL

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Managing	Permissions
When	users	connect	to	an	instance	of	Microsoft®	SQL	Server™,	the	activities
they	can	perform	are	determined	by	the	permissions	granted	to:

Their	security	accounts.

The	Microsoft	Windows	NT®	4.0	or	Windows®	2000	groups	or	role
hierarchies	to	which	their	security	accounts	belong.

The	user	must	have	the	appropriate	permissions	to	perform	any	activity	that
involves	changing	the	database	definition	or	accessing	data.

Managing	permissions	includes	granting	or	revoking	user	rights	to:

Work	with	data	and	execute	procedures	(object	permissions).

Create	a	database	or	an	item	in	the	database	(statement	permissions).

Utilize	permissions	granted	to	predefined	roles	(implied	permissions).

Object	Permissions

Working	with	data	or	executing	a	procedure	requires	a	class	of	permissions
known	as	object	permissions:

SELECT,	INSERT,	UPDATE,	and	DELETE	statement	permissions,
which	can	be	applied	to	the	entire	table	and	view.

SELECT	and	UPDATE	statement	permissions,	which	can	be	selectively
applied	to	individual	columns	of	a	table	or	view.

SELECT	permissions,	which	may	be	applied	to	user-defined	functions.

INSERT	and	DELETE	statement	permissions,	which	affect	the	entire
row,	and	therefore	can	be	applied	only	to	the	table	and	view	and	not	to
individual	columns.

EXECUTE	statement	permissions,	which	affect	stored	procedures	and
functions.

Statement	Permissions

Activities	involved	in	creating	a	database	or	an	item	in	a	database,	such	as	a
table	or	stored	procedure,	require	a	different	class	of	permissions	called
statement	permissions.	For	example,	if	a	user	must	be	able	to	create	a	table
within	a	database,	then	grant	the	CREATE	TABLE	statement	permission	to	the
user.	Statement	permissions,	such	as	CREATE	DATABASE,	are	applied	to	the
statement	itself,	rather	than	to	a	specific	object	defined	in	the	database.

Statement	permissions	are:

BACKUP	DATABASE

BACKUP	LOG

CREATE	DATABASE

CREATE	DEFAULT

CREATE	FUNCTION

CREATE	PROCEDURE

CREATE	RULE

CREATE	TABLE

CREATE	VIEW

Implied	Permissions

Implied	permissions	control	those	activities	that	can	be	performed	only	by
members	of	predefined	system	roles	or	owners	of	database	objects.	For	example,
a	member	of	the	sysadmin	fixed	server	role	inherits	automatically	full
permission	to	do	or	see	anything	in	a	SQL	Server	installation.

Database	object	owners	also	have	implied	permissions	that	allow	them	to
perform	all	activities	with	the	object	they	own.	For	example,	a	user	who	owns	a
table	can	view,	add,	or	delete	data,	alter	the	table	definition,	or	control
permissions	that	allow	other	users	to	work	with	the	table.

See	Also

BACKUP	DATABASE

BACKUP	LOG

CREATE	DATABASE

CREATE	DEFAULT

CREATE	FUNCTION

CREATE	PROCEDURE

CREATE	RULE

CREATE	TABLE

CREATE	VIEW

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

SQL	Server	Setup	Help

Granting	Permissions
Grant	statement	and	object	permissions	that	allow	a	user	account	to:

Perform	activities	or	work	with	data	in	the	current	database.

Restrict	them	from	activities	or	information	not	part	of	their	intended
function.

For	example,	you	may	be	inclined	to	grant	SELECT	object	permission
on	the	payroll	table	to	all	members	of	the	personnel	role,	allowing	all
members	of	personnel	to	view	payroll.	Months	later,	you	may	overhear
members	of	personnel	discussing	management	salaries,	information	not
meant	to	be	seen	by	all	personnel	members.	In	this	situation,	grant
SELECT	access	to	personnel	for	all	columns	in	payroll	except	the
salary	column.

Note		It	is	possible	to	grant	permissions	only	to	user	accounts	in	the	current
database,	for	objects	in	the	current	database.	If	a	user	needs	permissions	to
objects	in	another	database,	create	the	user	account	in	the	other	database,	or
grant	the	user	account	access	to	the	other	database,	as	well	as	the	current
database.	System	stored	procedures	are	the	exception	because	EXECUTE
permissions	are	already	granted	to	the	public	role,	which	allows	everyone	to
execute	them.	However,	after	EXECUTE	has	been	issued,	the	system	stored
procedures	check	the	user's	role	membership.	If	the	user	is	not	a	member	of	the
appropriate	fixed	server	or	database	role	necessary	to	run	the	stored	procedure,
the	stored	procedure	will	not	continue.

To	allow	access	by	granting	permissions	(on	an	object)

Transact-SQL

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Denying	Permissions
Microsoft®	SQL	Server™	allows	Microsoft	Windows	NT®	4.0	or	Windows®
2000	users	and	groups,	SQL	Server	users,	and	SQL	Server	database	roles	to	be
members	of	other	roles.	This	results	in	a	hierarchical	security	system	that	allows
permissions	to	be	applied	through	several	levels	of	roles	and	members.	But	there
may	be	times	when	you	want	to	limit	the	permissions	of	a	user	or	role.	Denying
permissions	on	a	user	account:

Removes	permission	granted	previously	to	the	user,	group,	or	role.

Deactivates	permission	inherited	from	another	role(s).

Ensures	that	a	user,	group,	or	role	will	not	inherit	permission	from	a
higher	level	group	or	role	in	the	future.

For	example,	you	may	need	to	provide	all	tenured	employees	in	your	company
with	access	to	several	tables	in	a	database,	with	the	exception	of	a	few	new
employees	scattered	throughout	the	organization	who	you	want	to	prevent	from
seeing	the	CorporateSecrets	table.

Create	a	role	for	each	department	in	the	company	and	add	all	employees	to	their
department	role.	Then	create	a	company-wide	Corporate	role,	to	which	you	add
each	of	the	individual	department	roles	and	grant	permissions	to	view	the	tables.
At	this	point,	every	employee	in	the	company	can	see	all	the	tables	because	each
inherits	permission	from	the	Corporate	role	through	his	department	roles.

To	selectively	prevent	employees	from	seeing	CorporateSecrets,	create	a
Nonsecure	role,	and	add	the	individual	employees	who	should	not	see	the	table.
When	you	deny	permission	to	view	CorporateSecrets	to	Nonsecure,	this	access
is	removed	from	all	members	of	Nonsecure,	while	the	rest	of	the	employees	in
the	company	are	not	affected.

You	also	can	deny	permissions	to	an	individual	user.	In	the	previous	example,	a
nonemployee	may	have	a	Windows	NT	4.0	or	Windows	2000	account	while
working	on	a	short-term	project	in	the	database.	You	can	deny	the	permissions	to
see	CorporateSecrets	to	his	individual	user	account	without	creating	a	SQL

Server	database	role	for	the	purpose.

Note		You	can	deny	permissions	to	user	accounts	only	in	the	current	database,
for	objects	in	the	current	database.

To	prevent	access	by	denying	permissions	(on	an	object)

Transact-SQL

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Revoking	Permissions
You	can	revoke	a	permission	that	has	been	granted	or	denied	previously.
Revoking	is	similar	to	denying	in	that	both	remove	a	granted	permission	at	the
same	level.	However,	although	revoking	a	permission	removes	a	granted
permission,	it	does	not	prevent	the	user,	group,	or	role	from	inheriting	a	granted
permission	from	a	higher	level.	Therefore,	if	you	revoke	permission	for	a	user	to
view	a	table,	you	do	not	necessarily	prevent	the	user	from	viewing	the	table
because	permission	to	view	the	table	was	granted	to	a	role	to	which	he	belongs.

For	example,	removing	SELECT	access	on	the	Employees	table	from	the
HumanResources	role	revokes	permission	so	that	HumanResources	can	no
longer	use	the	table.	If	HumanResources	is	a	member	of	the	Administration
role.	If	you	later	grant	SELECT	permission	on	Employees	to	Administration,
members	of	HumanResources	can	see	the	table	through	their	membership	in
Administration.	However,	if	you	deny	permission	to	HumanResources,	the
permission	is	not	inherited	if	later	granted	to	Administration	because	the	deny
permission	cannot	be	undone	by	a	permission	at	a	different	level.

Similarly,	it	is	also	possible	to	remove	a	previously	denied	permission	by
revoking	the	deny	for	the	permission.	However,	if	a	user	has	other	denied
permissions	at	the	group	or	role	level,	then	the	user	still	is	denied	access.

Note		You	can	revoke	permissions	to	user	accounts	only	in	the	current	database,
for	objects	in	the	current	database.

To	revoke	permissions	on	an	object

Transact-SQL

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Resolving	Permission	Conflicts
The	permissions	granted	to	a	group	or	role	are	inherited	by	members	of	that
group	or	role.	Although	a	user	may	have	permission	granted	or	revoked	at	one
level,	conflicting	permissions	at	a	higher	level	(for	example,	due	to	role
membership)	can	prevent	or	allow	a	user	access	to	an	object.

Deny
A	denied	permission	always	takes	precedence.	Denied	permission	at	any	level
(user,	group,	or	role)	denies	the	permission	on	the	object	regardless	of	existing
granted	or	revoked	permissions	for	that	user.	For	example,	if	user	John,	who	as
a	member	of	the	sales	role	is	granted	SELECT	permissions	on	the	customer
table,	is	explicitly	denied	SELECT	permissions	on	the	customer	table,	he	can	no
longer	access	it.	Similarly,	if	the	sales	role	is	denied	access	to	customer,	but
John	is	granted	access,	he	is	denied	access.

Note		Microsoft®	SQL	Server™	always	processes	denied	permissions	first.	If
you	deny	permissions	to	public,	you	prevent	anyone	from	accessing	an	object,
including	the	issuer	of	the	DENY	statement.

Revoke
A	revoked	permission	removes	only	the	granted	or	denied	permission	at	the	level
revoked	(user,	group,	or	role).	The	same	permission	granted	or	denied	at	another
level	such	as	a	group	or	role	containing	the	user,	group,	or	role	still	applies.	For
example,	if	the	sales	role	is	granted	SELECT	permissions	on	the	customer	table,
and	John	(a	member	of	sales)	is	explicitly	revoked	SELECT	permissions	on	the
customer	table,	he	still	can	access	the	table	because	of	his	membership	in	the
sales	role.	To	prevent	John	from	accessing	the	customer	table,	do	one	of	the
following:

Revoke	permission	(assuming	no	other	permissions	have	been	granted
elsewhere).	

Deny	permission	to	the	sales	role	(preventing	all	members	of	sales	from
accessing	the	table).

Explicitly	deny	John	SELECT	permissions	on	customer.

Grant

A	granted	permission	removes	the	denied	or	revoked	permission	at	the	level
granted	(user,	group,	or	role).	The	same	permission	denied	at	another	level	such
as	group	or	role	containing	the	user	still	applies.	However,	although	the	same
permission	revoked	at	another	level	still	applies,	it	does	not	prevent	the	user
from	accessing	the	object.	For	example,	if	John	is	already	explicitly	denied
access	to	customer,	has	his	access	to	sales,	revoked,	and	then	is	explicitly
granted	access	to	customer,	he	now	can	access	customer	because	the	deny	is
removed.	The	revoke	permission	for	sales	joined	with	the	granted	permission	for
John	gives	John	a	granted	permission	overall.

Therefore,	a	user	receives	the	union	of	all	the	permissions	granted,	denied,	or
revoked	on	an	object,	with	any	denied	permissions	taking	precedence	over	the
same	permissions	granted	or	revoked	at	another	level.

The	following	diagram	shows	how	the	three	permission	management	activities
affect	the	state	of	a	permission	for	a	user	account.

Database	Access	vs.	Object	Access
As	an	example	of	a	permission	conflict,	a	Microsoft	Windows	NT®	4.0	user
LONDON\joe	belongs	to	the	LONDON\clerks	and	LONDON\secretaries
Windows	NT	4.0	groups.	LONDON\joe	can	log	in	to	an	instance	of	SQL	Server
because	the	LONDON\clerks	group	has	been	granted	permissions	to	connect	to
an	instance	of	SQL	Server.	Additionally,	LONDON\joe	can	access	the	secrets
database	because	the	LONDON\secretaries	group	has	been	granted	permissions
to	access	the	database.

Note		At	this	point	there	is	no	specific	entry	in	the	SQL	Server	system	tables,
sysusers	and	sysxlogins,	for	LONDON\joe.	These	system	tables	contain	only
entries	for	the	LONDON\clerks	and	LONDON\secretaries	groups.

LONDON\joe	creates	a	table,	joetable,	in	the	secrets	database.	At	this	point,	a
new	entry	is	created	in	the	sysusers	table	for	LONDON\joe	specifying	him	as
the	object	owner	but	not	granting	him	database	access.	If	LONDON\joe	is
dropped	from	the	LONDON\secretaries	group,	he	can	no	longer	access	the
secrets	database,	although	he	owns	an	object,	joetable,	in	the	database.

See	Also

Adding	a	Windows	NT	User	or	Group

SQL	Server	Setup	Help

Permissions	for	User-Defined	Functions
Functions	are	subroutines	made	up	of	one	or	more	Transact-SQL	statements	that
can	be	used	to	encapsulate	code	for	reuse.	Microsoft®	SQL	Server™	2000
allows	users	to	create	their	own	user-defined	functions.

User-defined	functions	are	managed	through	the	following	statements:

CREATE	FUNCTION,	which	creates	a	user-defined	function.

ALTER	FUNCTION,	which	modifies	user-defined	functions.

DROP	FUNCTION,	which	drops	user-defined	functions.

Each	fully	qualified	user-defined	function	name
(database_name.owner_name.function_name)	must	be	unique.

You	must	have	been	granted	CREATE	FUNCTION	permissions	to	create,	alter,
or	drop	user-defined	functions.	Users	other	than	the	owner	must	be	granted
EXECUTE	permission	on	a	function	(if	the	function	is	scalar-valued)	before
they	can	use	it	in	a	Transact-SQL	statement.	If	the	function	is	table-valued,	the
user	must	have	SELECT	permissions	on	the	function	before	referencing	it.	If	a
CREATE	TABLE	or	ALTER	TABLE	statement	references	a	user-defined
function	in	a	CHECK	constraint,	a	DEFAULT	clause,	or	a	computed	column,	the
table	owner	must	also	own	the	function.	If	the	function	is	being	schema-bound,
you	must	have	REFERENCE	permission	on	tables,	views,	and	functions
referenced	by	the	function.

REFERENCE	permissions	can	be	granted	through	the	GRANT	statement	to
views	and	user-defined	functions	in	addition	to	tables.

See	Also

User-Defined	Functions

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Using	Ownership	Chains
Views	and	stored	procedures	provide	a	secondary	method	of	giving	users	access
to	data	and	the	ability	to	perform	activities.	They	provide	users	with	access	to
underlying	items	in	the	database	and	bypass	the	permissions	defined	directly	for
specific	objects	and	statements.

Views	can	depend	on	other	views	or	tables.	Procedures	can	depend	on	other
procedures,	views,	or	tables.	These	dependencies	can	be	thought	of	as	an
ownership	chain.	Ownership	chains	only	apply	to	SELECT,	INSERT,	UPDATE,
and	DELETE	statements.

Typically,	the	owner	of	a	view	also	owns	the	underlying	objects	(other	views	or
tables),	and	the	owner	of	a	stored	procedure	often	owns	all	the	referenced
procedures,	tables,	and	views.	Also,	views	and	underlying	objects	are	usually	all
in	the	same	database,	as	are	stored	procedures	and	all	the	objects	referenced.
When	temporary	objects	are	created	within	a	stored	procedure,	they	are	owned
by	the	procedure	owner	and	not	by	the	user	currently	executing	the	procedure.

When	a	user	accesses	a	view,	Microsoft®	SQL	Server™	does	not	check
permissions	on	any	of	the	view's	underlying	objects	if	these	objects	and	the	view
are	all	owned	by	the	same	user,	and	if	the	view	and	all	its	underlying	objects	are
in	the	same	database.	If	the	same	user	owns	a	stored	procedure	and	all	the	views
or	tables	it	references,	and	if	the	procedure	and	objects	are	all	in	the	same
database,	SQL	Server	checks	only	the	permissions	on	the	procedure.

If	the	ownership	chain	of	a	procedure	or	view	is	broken	(not	all	the	objects	in	the
chain	are	owned	by	the	same	user),	SQL	Server	checks	permissions	on	each
object	in	the	chain	whose	next	lower	link	is	owned	by	a	different	user.	In	this
way,	SQL	Server	allows	the	owner	of	the	original	data	to	retain	control	over	its
accessibility.

Usually,	a	user	who	creates	a	view	has	to	grant	permissions	only	on	that	view.
For	example,	Mary	has	created	a	view	called	auview1	on	the	authors	table,
which	she	also	owns.	If	Mary	grants	Sue	permission	to	use	auview1,	SQL
Server	allows	Sue	access	to	it	without	checking	permissions	on	authors.

A	user	who	creates	a	view	or	stored	procedure	that	depends	on	an	object	owned
by	another	user	must	be	aware	that	any	permissions	he	or	she	grants	depend	on

the	permissions	allowed	by	the	other	owner.

For	example,	Joe	creates	a	procedure	called	procedure1,	which	depends	on
procedure2	(also	owned	by	Joe),	and	procedure3	(owned	by	Sue).	These
procedures	in	turn	depend	on	other	tables	and	views	owned	by	Joe	and	Sue.

Joe	grants	Mary	permission	to	use	procedure1.	SQL	Server	checks	the
permissions	on	procedure1,	procedure3,	view2,	table2,	and	table3	to	check
that	Mary	is	allowed	to	use	them.

SQL	Server	Setup	Help

Using	Views	as	Security	Mechanisms
Views	can	serve	as	security	mechanisms	by	restricting	the	data	available	to
users.	Some	data	can	be	accessible	to	users	for	query	and	modification,	while	the
rest	of	the	table	or	database	is	invisible	and	inaccessible.	Permission	to	access
the	subset	of	data	in	a	view	must	be	granted,	denied,	or	revoked,	regardless	of
the	set	of	permissions	in	force	on	the	underlying	table(s).

For	example,	the	salary	column	in	a	table	contains	confidential	employee
information,	but	the	rest	of	the	columns	contain	information	that	should	be
available	to	all	users.	You	can	define	a	view	that	includes	all	of	the	columns	in
the	table	with	the	exception	of	the	sensitive	salary	column.	As	long	as	table	and
view	have	the	same	owner,	granting	SELECT	permissions	on	the	view	allows
the	user	to	see	nonconfidential	columns	in	the	view	without	having	any
permissions	on	the	table	itself.

By	defining	different	views	and	granting	permissions	selectively	on	them,	users,
groups,	or	roles	can	be	restricted	to	different	subsets	of	data.	For	example:

Access	can	be	restricted	to	a	subset	of	the	rows	of	a	base	table.	For
example,	define	a	view	that	contains	only	rows	for	business	and
psychology	books	and	keep	information	about	other	types	of	books
hidden	from	users.

Access	can	be	restricted	to	a	subset	of	the	columns	of	a	base	table.	For
example,	define	a	view	that	contains	all	the	rows	of	the	titles	table	but
omits	the	royalty	and	advance	columns	because	this	information	is
sensitive.

Access	can	be	restricted	to	a	row-and-column	subset	of	a	base	table.

Access	can	be	restricted	to	the	rows	that	qualify	for	a	join	of	more	than
one	base	table.	For	example,	define	a	view	that	joins	the	titles,	authors,
and	titleauthor	tables	to	display	the	names	of	authors	and	books	they

have	written.	This	view	hides	personal	data	about	the	authors,	and
financial	information	about	the	books.

Access	can	be	restricted	to	a	statistical	summary	of	data	in	a	base	table.
For	example,	define	a	view	that	contains	only	the	average	price	of	each
type	of	book.

Access	can	be	restricted	to	a	subset	of	another	view	or	of	some
combination	of	views	and	base	tables.

Permissions	and	ALTER	VIEW

Use	the	ALTER	VIEW	Transact-SQL	statement	to	change	the	definition	of	a
view	without	having	to	drop	the	view	and	reapply	permissions.	Any	permissions
applied	to	a	column	in	the	view	are	based	on	the	column	name	defined	in	the
view,	rather	than	the	underlying	column	in	the	table.	Therefore,	changing	the
definition	of	the	view	with	ALTER	VIEW	by	using	the	same	column	name	but	a
different	underlying	column	in	a	table	results	in	the	same	permissions	for	the
new	column.	This	example	assumes	the	user	Fred	exists	in	the	pubs	database:

USE	pubs
GO
CREATE	VIEW	v1	AS	SELECT	title_id,	title	FROM	titles
GO
GRANT	SELECT(title_id)	ON	v1	TO	Fred
GO
ALTER	VIEW	v1	AS	SELECT	qty	AS	'title_id'	FROM	sales
GO

Although	the	view	is	altered	so	that	the	title_id	column	name	refers	to	the	qty
column	in	the	sales	table,	rather	than	the	title_id	column	in	the	titles	table,	the
SELECT	permissions	granted	to	Fred	on	the	title_id	column	name	still	apply.

See	Also

ALTER	VIEW

CREATE	VIEW

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

Using	Stored	Procedures	as	Security	Mechanisms
Stored	procedures,	commonly	used	as	an	interface	to	perform	complex	activities,
can	be	used	to	customize	security	permissions	in	much	the	same	way	as	views.

For	example,	in	an	archiving	scenario,	stored	procedures	can	copy	data	older
than	a	specified	interval	into	an	archive	table	and	then	delete	it	from	the	primary
table.	Permissions	can	be	used	to	prevent	users	from	deleting	the	rows	from	the
primary	table	directly	or	from	inserting	rows	into	the	archive	table	without
deleting	them	from	the	primary	table.	You	can	create	a	procedure	to	ensure	that
both	of	these	activities	are	performed	together,	and	then	grant	users	permissions
to	execute	the	procedure.

See	Also

CREATE	PROCEDURE

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Advanced	Security	Topics
The	security	topics	presented	here	go	beyond	the	basic	use	of	security	in
Microsoft®	SQL	Server™	and	provide	more	detail	for	specialized	applications.

SQL	Server	Setup	Help

Establishing	Application	Security	and	Application
Roles
The	security	system	in	Microsoft®	SQL	Server™	is	implemented	at	the	lowest
level:	the	database	itself.	This	is	the	best	method	for	controlling	user	activities
regardless	of	the	application	used	to	communicate	with	SQL	Server.	However,
sometimes	security	controls	must	be	customized	to	accommodate	the	special
requirements	of	an	individual	application,	especially	when	dealing	with	complex
databases	and	databases	with	large	tables.

Additionally,	you	may	want	users	to	be	restricted	to	accessing	data	only	through
a	specific	application	(for	example	using	SQL	Query	Analyzer	or	Microsoft
Excel)	or	to	be	prevented	from	accessing	data	directly.	Restricting	user	access	in
this	way	prohibits	users	from	connecting	to	an	instance	of	SQL	Server	using	an
application	such	as	SQL	Query	Analyzer	and	executing	a	poorly	written	query,
which	can	negatively	affect	the	performance	of	the	whole	server.

SQL	Server	accommodates	these	needs	through	the	use	of	application	roles.
Application	roles	are	different	than	standard	roles	in	that:

Application	roles	contain	no	members.

Microsoft	Windows	NT®	4.0	or	Windows®	2000	groups,	users,	and
roles	cannot	be	added	to	application	roles;	the	permissions	of	the
application	role	are	gained	when	the	application	role	is	activated	for	the
user's	connection	through	a	specific	application	or	applications.	A	user's
association	with	an	application	role	is	due	to	his	ability	to	run	an
application	that	activates	the	role,	rather	than	his	being	a	member	of	the
role.

Application	roles	are	inactive	by	default	and	require	a	password	to	be
activated.

Application	roles	bypass	standard	permissions.

When	an	application	role	is	activated	for	a	connection	by	the
application,	the	connection	permanently	loses	all	permissions	applied	to
the	login,	user	account,	or	other	groups	or	database	roles	in	all	databases

for	the	duration	of	the	connection.	The	connection	gains	the	permissions
associated	with	the	application	role	for	the	database	in	which	the
application	role	exists.	Because	application	roles	are	applicable	only	to
the	database	in	which	they	exist,	the	connection	can	gain	access	to
another	database	only	through	permissions	granted	to	the	guest	user
account	in	the	other	database.	Therefore,	if	the	guest	user	account	does
not	exist	in	a	database,	the	connection	cannot	gain	access	to	that
database.	If	the	guest	user	account	does	exist	in	the	database	but
permissions	to	access	an	object	are	not	explicitly	granted	to	guest,	the
connection	cannot	access	that	object,	regardless	of	who	created	the
object.	The	permissions	the	user	gained	from	the	application	role
remain	in	effect	until	the	connection	logs	out	of	an	instance	of	SQL
Server.

To	ensure	that	all	the	functions	of	the	application	can	be	performed,	a
connection	must	lose	default	permissions	applied	to	the	login	and	user
account	or	other	groups	or	database	roles	in	all	databases	for	the
duration	of	the	connection	and	gain	the	permissions	associated	with	the
application	role.	For	example,	if	a	user	is	usually	denied	access	to	a
table	that	the	application	must	access,	then	the	denied	access	should	be
revoked	so	the	user	can	use	the	application	successfully.	Application
roles	overcome	any	conflicts	with	user's	default	permissions	by
temporarily	suspending	the	user's	default	permissions	and	assigning
them	only	the	permissions	of	the	application	role.

Application	roles	allow	the	application,	rather	than	SQL	Server,	to	take	over	the
responsibility	of	user	authentication.	However,	because	SQL	Server	still	must
authenticate	the	application	when	it	accesses	databases,	the	application	must
provide	a	password	because	there	is	no	other	way	to	authenticate	an	application.

If	ad	hoc	access	to	a	database	is	not	required,	users	and	Windows	NT	4.0	or
Windows	2000	groups	do	not	need	to	be	granted	any	permissions	because	all
permissions	can	be	assigned	by	the	applications	they	use	to	access	the	database.
In	such	an	environment,	standardizing	on	one	system-wide	password	assigned	to
an	application	role	is	possible,	assuming	access	to	the	applications	is	secure.

There	are	several	options	for	managing	application	role	passwords	without	hard-
coding	them	into	applications.	For	example,	an	encrypted	key	stored	in	the
registry	(or	a	SQL	Server	database),	for	which	only	the	application	has	the

decryption	code,	can	be	used.	The	application	reads	the	key,	decrypts	it,	and	uses
the	value	to	set	the	application	role.	Using	the	Multiprotocol	Net-Library,	the
network	packet	containing	the	password	can	also	be	encrypted.	Additionally,	the
password	can	be	encrypted,	before	being	sent	to	an	instance	of	SQL	Server,
when	the	role	is	activated.

When	an	application	user	connects	to	an	instance	of	SQL	Server	using	Windows
Authentication	Mode,	an	application	role	can	be	used	to	set	the	permissions	the
Windows	NT	4.0	or	Windows	2000	user	has	in	a	database	when	using	the
application.	This	method	allows	Windows	NT	4.0	or	Windows	2000	auditing	of
the	user	account	and	control	over	user	permissions,	while	she	uses	the
application,	to	be	easily	maintained.

If	SQL	Server	Authentication	is	used	and	auditing	user	access	in	the	database	is
not	required,	it	can	be	easier	for	the	application	to	connect	to	an	instance	of	SQL
Server	using	a	predefined	SQL	Server	login.	For	example,	an	order	entry
application	authenticates	users	running	the	application	itself,	and	then	connects
to	an	instance	of	SQL	Server	using	the	same	OrderEntry	login.	All	connections
use	the	same	login,	and	relevant	permissions	are	granted	to	this	login.

Note		Application	roles	work	with	both	authentication	modes.

Example
As	an	example	of	application	role	usage,	a	user	Sue	runs	a	sales	application	that
requires	SELECT,	UPDATE,	and	INSERT	permissions	on	the	Products	and
Orders	tables	in	database	Sales	to	work,	but	she	should	not	have	any	SELECT,
INSERT,	or	UPDATE	permissions	when	accessing	the	Products	or	Orders
tables	using	SQL	Query	Analyzer	or	any	other	tool.	To	ensure	this,	create	one
user-database	role	that	denies	SELECT,	INSERT,	or	UPDATE	permissions	on
the	Products	and	Orders	tables,	and	add	Sue	as	a	member	of	that	database	role.
Then	create	an	application	role	in	the	Sales	database	with	SELECT,	INSERT,
and	UPDATE	permissions	on	the	Products	and	Orders	tables.	When	the
application	runs,	it	provides	the	password	to	activate	the	application	role	by
using	sp_setapprole,	and	gains	the	permissions	to	access	the	Products	and
Orders	tables.	If	Sue	tries	to	log	in	to	an	instance	of	SQL	Server	using	any	tool
except	the	application,	she	will	not	be	able	to	access	the	Products	or	Orders
tables.

To	create	an	application	role

Transact-SQL

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Allowing	Other	Accounts	to	Grant	Object
Permissions
When	you	grant	an	object	permission	to	a	user	account	in	a	database,	you	can
optionally	specify	the	WITH	GRANT	OPTION	clause,	which	allows	the	user
account	to	grant	that	object	permission	to	others.	A	user	account	can	be	a
Microsoft®	Windows	NT®	4.0	or	Windows®	2000	user	or	group	or	a	Microsoft
SQL	Server™	user	or	role.

For	example,	if	you	use	the	WITH	GRANT	OPTION	clause	when	you	grant
permissions	on	the	salaries	table	to	the	user	user_a,	user_a	is	able	to	grant	the
same	permissions	on	the	table	to	any	other	user	account	in	the	database.	For
groups	and	roles,	if	you	grant	permissions	on	the	salaries	table	to	role	role_a
specifying	the	WITH	GRANT	OPTION	clause,	each	member	of	role_a	can
grant	the	object	permission	to	any	other	user	account,	provided	that	the	AS
clause	of	the	GRANT	statement	is	specified.	For	more	information,	see	GRANT.

IMPORTANT		When	you	use	the	WITH	GRANT	OPTION	clause,	you	have	no
future	control	over	which	security	accounts	will	receive	that	permission.

When	you	revoke	a	permission	granted	using	the	WITH	GRANT	OPTION
clause,	specify	the	CASCADE	clause	to	have	the	permissions	revoked	from	the
user	account	as	well	as	any	other	accounts	that	received	the	permission	from	the
initial	account.

For	example,	you	have	granted	a	permission	specifying	WITH	GRANT
OPTION	to	the	user	user_a.	User_a	granted	the	permission	specifying	WITH
GRANT	OPTION	to	the	user	user_b,	and	user_b	granted	the	permission	to	the
user	user_c.	User_a	has	left	the	company,	but	SQL	Server	does	not	allow	you	to
remove	a	user	account	if	it	has	granted	a	permission	specifying	the	WITH
GRANT	OPTION	clause	to	another	account.	Specifying	the	WITH	GRANT
OPTION	clause	has	created	a	chain	from	user_a	through	user_b	to	user_c.	You
cannot	remove	the	account	for	user_a	until	the	permissions	are	revoked	for
user_b	and	user_c.	When	you	revoke	the	permission	from	user_a	and	specify
the	CASCADE	option,	the	permission	is	removed	from	the	user_a,	user_b,	and
user_c	accounts.	You	then	may	remove	the	user_a	account.

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Creating	SQL	Server	File	Permissions
Microsoft®	SQL	Server™	must	create	and	access	files	in	order	to	store
databases,	database	backups,	error	logs,	and	so	on.	This	SQL	Server	process
must	run	in	the	context	of	a	security	account	with	the	necessary	permissions	to
create	and	access	these	files,	whether	these	files	exist	on	the	local	computer	or	a
network	drive	on	a	remote	computer.	The	security	account	SQL	Server	uses
depends	on	the	method	used	to	start	the	instance	of	SQL	Server.	If	an	instance	of
SQL	Server	is	started:

As	a	service	on	Microsoft	Windows	NT®	4.0	or	Windows®	2000	using
the	Service	Control	Manager,	SQL	Server	uses	the	security	account
assigned	to	the	SQL	Server	service.

At	the	command	prompt,	independent	of	the	Service	Control	Manager,
SQL	Server	uses	the	security	account	of	the	logged	on	user.

In	Microsoft	Windows	98	and	Microsoft	Windows	Millennium	Edition,
SQL	Server	uses	the	security	account	of	the	logged	on	user.

The	security	account	used	by	SQL	Server	requires	full	access	permissions	to	the
file	system	to	create,	read,	write,	delete,	and	execute	files.	For	example,	using
the	NTFS	file	system,	the	security	account	used	by	SQL	Server	requires
authority	to	create	files	with	NTFS	Full	Control	permission.

To	prevent	unauthorized	access	to	the	files	used	by	SQL	Server,	adjust	the
permissions	on	the	files	directly	to	allow	only	the	security	account	used	by	SQL
Server	access	to	the	files.

Note		If	SQL	Server	uses	the	Windows	NT	4.0	and	Windows	2000	LocalSystem
built-in	security	account,	file	permissions	must	be	granted	to	the	SYSTEM
account	of	the	local	computer	running	an	instance	of	SQL	Server.

Securing	the	Windows	NT	Registry
SQL	Server	Setup	removes	write	permissions	from	the

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Providers
key	in	the	Windows	2000	registry	for	users	who	are	not	SQL	Server	system
administrators.	This	prevents	nonadministrator	users	from	setting	the	provider
options	for	linked	server	definitions	when	using	SQL	Server	Enterprise	Manager.

See	Also

Setting	up	Windows	Services	Accounts

Starting	SQL	Server

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Using	Encryption	Methods
Encryption	is	a	method	for	keeping	sensitive	information	confidential	by
changing	data	into	an	unreadable	form.	Encryption	ensures	that	data	remains
secure	by	keeping	the	information	hidden	from	everyone,	even	if	the	encrypted
data	is	viewed	directly.	Decryption	is	the	process	of	changing	encrypted	data
back	into	its	original	form	so	it	can	be	viewed	by	authorized	users.

Microsoft®	SQL	Server™	encrypts	or	can	encrypt:

Login	and	application	role	passwords	stored	in	SQL	Server.

Any	data	sent	between	the	client	and	the	server	as	network	packets.

Stored	procedure	definitions.

User-defined	function	definitions.

View	definitions.

Trigger	definitions.

Default	definitions.

Rule	definitions.

Note		If	you	are	running	Microsoft	Windows®	2000	and	want	to	use	the
Windows	2000	Encrypted	File	System	to	encrypt	any	SQL	Server	files,	you	must
unencrypt	the	files	before	you	can	change	the	SQL	Server	service	accounts.	If
you	do	not	unencrypt	the	files	and	then	reset	the	SQL	Server	service	accounts,
you	cannot	unencrypt	the	files.

Login	and	Application	Role	Passwords
Login	and	application	role	passwords	stored	in	the	SQL	Server	system	tables	are
always	encrypted.	This	prevents	users,	including	system	administrators,	from
viewing	any	passwords,	including	their	own.	Additionally,	application	role
passwords	can	be	encrypted	when	the	application	role	is	activated	before	they
are	sent	over	the	network.

Note		Using	the	sp_addlogin	system	stored	procedure,	SQL	Server	logins	can	be
added	without	encrypting	the	password,	if	required.	However,	this	is	not
recommended	unless	the	passwords	are	already	encrypted	because	they	are	being
imported	from	another	instance	of	SQL	Server.

Data	in	Network	Packets
SQL	Server	allows	data	sent	between	the	client	and	the	server	to	be	encrypted.
This	ensures	that	any	application	or	user	intercepting	the	data	packets	on	the
network	cannot	view	confidential	or	sensitive	data	(for	example,	passwords	sent
across	the	network	as	a	user	logs	into	an	instance	of	SQL	Server).	SQL	Server
can	use	the	Secure	Sockets	Layer	(SSL)	to	encrypt	all	data	transmitted	between
an	application	computer	and	an	instance	of	SQL	Server.	The	SSL	encryption	is
performed	within	the	Super	Socket	Net-Library	(Dbnetlib.dll	and	Ssnetlib.dll)
and	applies	to	all	inter-computer	protocols	supported	by	SQL	Server	2000.
Enabling	encryption	slows	the	performance	of	the	Net-Libraries.	Encryption
forces	the	following	actions	in	addition	to	all	of	the	work	for	an	unencrypted
connection:

An	extra	network	round	trip	is	required	at	connect	time.

All	packets	sent	from	the	application	to	the	instance	of	SQL	Server	must
be	encrypted	by	the	client	Net-Library	and	decrypted	by	the	server	Net-
Library.

All	packets	sent	from	the	instance	of	SQL	Server	to	the	application	must
be	encrypted	by	the	server	Net-Library	and	decrypted	by	the	client	Net-
Library.

Shared	memory	Net-Library	communications	are	inherently	secure	without	the

need	for	encryption.	The	shared	memory	Net-Library	does	not	participates	in
inter-computer	communications.	The	area	of	memory	shared	between	the
application	process	and	the	database	engine	process	cannot	be	accessed	from	any
other	Windows	process.

For	compatibility	with	earlier	versions	of	SQL	Server,	the	Multiprotocol	Net-
Library	continues	to	support	its	own	encryption.	This	encryption	is	specified
independently	of	the	SSL	encryption	and	is	implemented	by	calling	the	Windows
RPC	encryption	API.	It	does	not	require	the	use	of	certificates.	The	level	of	RPC
encryption,	40-bit	or	128-bit,	depends	on	the	version	of	the	Windows	operating
system	that	is	running	on	the	application	and	database	computers.	The
Multiprotocol	Net-Library	is	not	supported	by	named	instances.	For	more
information	about	SSL,	see	Net-Library	Encryption.

Configuring	a	Multiprotocol	Alias
When	you	configure	a	multiprotocol	alias,	enable	encryption.	This	encryption
feature	applies	only	to	the	Multiprotocol	Net-Library.	This	encryption	feature	is
offered	only	for	compatibility	with	existing	applications.	SQL	Server	clients
should	use	the	SSL	encryption	specified	on	the	General	tab	in	the	Enable
protocol	encryption	check	box	of	the	Client	Network	Utility.	For	more
information	on	the	Client	Network	Utility,	see	Configuring	Client	Net-Libraries.

To	start	the	Client	Network	Utility

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Revealing	SQL	Server	on	a	Network
When	you	install	Microsoft®	SQL	Server™,	SQL	Server	Setup	makes	an	entry
in	the	Microsoft	Windows®	2000	registry	that	enables	Named	Pipes	clients	to
see	SQL	Server	in	a	server	enumeration	box	in	SQL	Query	Analyzer.	SQL
Server	automatically	announces	itself	as	a	service	over	Named	Pipes	to	make	it
easier	to	locate	servers	running	an	instance	of	SQL	Server.	However,	if	you	are
using	Active	Directory™,	the	directory	service	included	in	Windows	2000,	this
functionality	is	no	longer	necessary.

Stop	SQL	Server	from	announcing	itself	over	Named	Pipes	by	running	the	NET
CONFIG	SERVER	command	with	the	switch	as	/HIDDEN:YES.	You	can	reveal
the	server	at	any	time.

To	reveal	or	cancel	the	announcement	of	SQL	Server	on	a	network

SQL	Server	Setup	Help

Scripting	Data	Access	Controls	in	Internet	Explorer
Microsoft®	SQL	Server™	ships	with	several	data	access	controls:

SQL	Namespace	(SQL-NS)

SQL	Distribution	control	(replication)

SQL	Merge	control	(replication)

These	controls	are	signed	and	marked	"safe	for	initialization	and	scripting"	and
can	be	used	in	Microsoft	Internet	Explorer	5	or	later.

Before	deploying	controls	that	can	connect	to	data	sources,	you	should
thoroughly	understand	the	security	implications.	When	you	use	any	of	the	SQL
Server	controls,	the	primary	security	concern	is	the	ability	to	run	under	the
authorized	user's	account	through	a	Windows	Authentication	login	to	an	instance
of	SQL	Server.	A	Web	page	with	a	scripted	control	runs	with	the	network
identity	of	the	user	browsing	the	page.	If	the	data	source	connection	is	based	on
the	connected	user's	network	identity	(using	Windows	Authentication	login),	the
control	can	access	any	data	that	the	user	browsing	the	page	can	access.	If	a	Web
page	using	the	control	is	sent	to	a	user,	the	control	has	the	permissions	of	the
user	browsing	the	Web	page.	The	control	can	then	read	or	make	changes	to
databases	without	the	user's	knowledge.

To	prevent	unauthorized	access	or	changes	to	a	database,	all	the	data	access
controls	that	are	marked	as	"safe	for	scripting"	take	into	account	security	zones
settings	when	being	loaded	in	Internet	Explorer	version	4.0	or	later.	If	a	control
is	not	marked	safe	for	scripting,	it	can	run	a	script	inside	of	Internet	Explorer
only	at	the	Low	security	mode	of	Internet	Explorer,	and	even	then	only	after	the
user	responded	to	a	message	stating	that	a	script	will	be	run.	Another	way	to	deal
with	the	issue	is	to	remove	the	user's	ability	to	use	a	Windows	Authenticated
login.

Internet	Explorer	4.0	does	not	provide	an	explicit	security	option	for	data	access.
Therefore,	all	the	controls	marked	safe	for	scripting	allow,	prompt,	or	disallow
scripting	based	on	the	security	zone	being	used.	The	following	table	shows	the

Internet	Explorer	4.0	settings.

Security	zone Internet	Explorer	4.0	notification
Local	computer	zone Controls	can	be	initialized	or	scripted	regardless

of	data	source	or	scripts.
Local	intranet	zone User	is	warned	of	potential	safety	violation	prior

to	loading	the	page.	User	can	accept	or	reject
initialization	or	scripting.

Trusted	sites	zone Controls	can	be	initialized	or	scripted	regardless
of	data	source	or	scripts.

Internet	zone User	is	warned	of	potential	safety	violation	prior
to	loading	the	page.	User	can	accept	or	reject
initialization	or	scripting.

Restricted	sites	zone Scripting	errors	occur	if	user	attempts	to	view
page	and	execute	script.

In	contrast	to	Internet	Explorer	4.0,	Internet	Explorer	5	supports	an	explicit
security	option	for	data	access	called	"Access	data	sources	across	domains."	This
option	can	be	customized,	and	the	setting	of	this	action	is	used	to	determine	how
the	controls	behave	when	they	are	run	in	Internet	Explorer	5.	The	default	settings
in	Internet	Explorer	5	are	the	same	as	the	programmed	settings	in	Internet
Explorer	4.0.

As	with	all	security	concerns,	you	must	take	specific	actions	to	safeguard	your
system.	SQL	Server	is	protected	from	security	problems	only	if	users	with	the
ability	to	use	Windows	Authenticated	logins	configure	the	security	settings
correctly,	and	answer	all	security	prompts	correctly.

Note		These	general	steps	to	safeguard	your	system	apply	to	any	scripting	host,
including	Microsoft	Excel	spreadsheets	or	Microsoft	Word	documents.	Users
who	have	the	ability	to	use	Windows	Authenticated	logins	should	always	enable
the	macro	warning	feature	or	similar	security	setting	of	an	application	to	detect
and	prevent	any	attacks	on	data.

See	Also

Developing	SQL-DMO	Applications

Programming	SQL-NS	Applications

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

Auditing	SQL	Server	Activity
Microsoft®	SQL	Server™	2000	provides	auditing	as	a	way	to	trace	and	record
activity	that	has	happened	on	each	instance	of	SQL	Server	(for	example,
successful	and	failed	logins).	SQL	Server	2000	also	provides	an	interface,	SQL
Profiler,	for	managing	audit	records.	Auditing	can	only	be	enabled	or	modified
by	members	of	the	sysadmin	fixed	security	role,	and	every	modification	of	an
audit	is	an	auditable	event.

There	are	two	type	of	auditing:

Auditing,	which	provides	some	level	of	auditing	but	does	not	require
the	same	number	of	policies	as	C2	auditing.	

C2	auditing,	which	requires	that	you	follow	very	specific	security
policies.	For	more	information	about	C2	auditing,	see	C2	Auditing.

Both	types	of	auditing	can	be	done	by	using	SQL	Profiler.

Using	SQL	Profiler
SQL	Profiler	provides	the	user	interface	for	auditing	events.	There	are	several
categories	of	events	that	can	be	audited	using	SQL	Profiler,	such	as:

End	user	activity	(all	SQL	commands,	logout/login,	enabling	of
application	roles).

DBA	activity	(DDL,	other	than	grant/revoke/deny	and	security	events,
Configuration	(DB	or	server).

Security	events	(grant/revoke/deny,	login	user/role
add/remove/configure).

Utility	events	(backup/restore/bulk	insert/BCP/DBCC	commands.

Server	events	(shutdown,	pause,	start).

Audit	events	(add	audit,	modify	audit,	stop	audit).

For	more	information	about	what	categories	of	events	can	be	monitored,	see
Security	Audit	Event	Category.

It	is	possible	to	audit	the	following	aspects	of	SQL	Server	through	SQL	Profiler:

Date	and	time	of	event.

User	who	caused	the	event	to	occur.

Type	of	event.

Success	or	failure	of	the	event.

The	origin	of	the	request	(for	example,	the	Microsoft	Windows	NT®
4.0	computer	name).

The	name	of	the	object	accessed.

Text	of	the	SQL	statement	(passwords	replaced	with	****).

If	you	are	a	member	of	the	sysadmin	or	securityadmin	fixed	server
role	and	you	reset	your	own	password	by	using	sp_password	with	all
three	arguments	specified	('old_password',	'new_password',	'login'),	the
audit	record	will	reflect	that	you	are	changing	someone	else's	password.

Auditing	can	have	a	significant	performance	impact.	If	all	audit	counters	are
turned	on	for	all	objects,	the	performance	impact	could	be	high.	It	is	necessary	to
evaluate	how	many	events	need	to	be	audited	compared	to	the	resulting
performance	impact.	Audit	trail	analysis	can	be	costly,	so	it	is	recommended	that
audit	activity	be	run	on	a	server	separate	from	the	production	server.

JavaScript:hhobj_1.Click()

Note		If	SQL	Server	is	started	with	the	-f	flag,	auditing	will	not	run.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

Using	Audit	Logs
SQL	Profiler	system	stored	procedures	support	file	rollover.	The	maximum	file
size	for	the	audit	log	is	fixed	at	200	megabytes	(MB).	When	the	audit	log	file
reaches	200	MB,	a	new	file	will	be	created	and	the	old	file	handle	will	be	closed.
If	the	directory	fills	up	(for	example,	if	the	disk	quota	for	the	user	of	the	service
account	has	filled	up	or	the	disk	is	full),	then	the	instance	of	Microsoft®	SQL
Server™	is	stopped.	The	system	administrator	needs	to	either	free	up	disk	space
for	the	audit	log	before	restarting	the	instance	of	SQL	Server	or	restart	the
instance	of	SQL	Server	(if	auditing	is	not	configured	to	start	automatically).

Use	file	rollover	to	prevent	the	audit	trace	from	failing	because	the	audit	log
filled	up.	However,	SQL	Server	will	not	shut	down	unless	the	user	specifically
requested	this	feature	when	they	created	the	trace.	An	audit	failure	produces	an
entry	in	the	Microsoft	Windows®	event	log	and	the	SQL	Server	error	log.

It	is	strongly	recommended	that	during	SQL	Server	Setup	you	create	a	new
directory	to	contain	your	audit	files.	\mssql\audit	is	the	suggested	path.	If	you	are
running	SQL	Server	on	a	named	instance,	the	suggested	path	is
MSSQL$Instance\audit.

SQL	Server	Setup	Help

C2	Auditing
C2	auditing	is	necessary	if	you	are	running	a	C2	certified	system.	A	C2	certified
system	meets	a	government	standard	that	defines	the	security	level.	To	have	a	C2
certified	Microsoft®	SQL	Server™,	you	must	configure	SQL	Server	in	the
evaluated	C2	configuration.	For	more	information	about	C2	certification,	see	the
C2	Administrator's	and	User's	Security	Guide.

SQL	Server	Setup	Help

Managing	Security
To	ensure	that	data	and	objects	stored	in	Microsoft®	SQL	Server™	are	accessed
only	by	authorized	users,	security	must	be	set	up	correctly.	Security	elements
that	may	have	to	be	set	up	include	authentication	modes,	logins,	users,	roles,
granting,	revoking,	and	denying	permissions	on	Transact-SQL	statements	and
objects,	and	data	encryption.

SQL	Server	Setup	Help

How	to	set	up	Windows	Authentication	Mode	security
(Enterprise	Manager)
To	set	up	Windows	Authentication	Mode	security

1.	 Expand	a	server	group.

2.	 Right-click	a	server,	and	then	click	Properties.

3.	 On	the	Security	tab,	under	Authentication,	click	Windows	only.

4.	 Under	Audit	level,	select	the	level	at	which	user	accesses	to
Microsoft®	SQL	Server™	are	recorded	in	the	SQL	Server	error	log:

None	causes	no	auditing	to	be	performed.

Success	causes	only	successful	login	attempts	to	be	audited.

Failure	causes	only	failed	login	attempts	to	be	audited.

All	causes	successful	and	failed	login	attempts	to	be	audited.

See	Also

Authentication	Modes

SQL	Server	Setup	Help

How	to	set	up	Mixed	Mode	security	(Enterprise
Manager)
To	set	up	Mixed	Mode	security

1.	 Expand	a	server	group.

2.	 Right-click	a	server,	and	then	click	Properties.

3.	 Click	the	Security	tab.

4.	 Under	Authentication,	click	SQL	Server	and	Windows.

5.	 Under	Audit	level,	select	the	level	at	which	user	accesses	to
Microsoft®	SQL	Server™	are	recorded	in	the	SQL	Server	error	log:

None	causes	no	auditing	to	be	performed.

Success	causes	only	successful	login	attempts	to	be	audited.

Failure	causes	only	failed	login	attempts	to	be	audited.

All	causes	successful	and	failed	login	attempts	to	be	audited.

See	Also

Authentication	Modes

SQL	Server	Setup	Help

How	to	grant	a	Windows	user	or	group	login	access	to
SQL	Server	(Enterprise	Manager)
To	grant	a	Windows	NT	4.0	or	Window	2000	user	or	group	login	access	to
SQL	Server

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	right-click	Logins,	and	then	click	New	Login.

3.	 In	the	Name	box,	enter	the	Microsoft®	Windows	NT®	4.0	or
Windows®	2000	account	(in	the	form	DOMAIN\User)	to	be	granted
access	to	Microsoft	SQL	Server™.

4.	 Under	Authentication,	click	Windows	Authentication.

5.	 Optionally:

In	Database,	click	the	default	database	to	which	the	user	is
connected	after	logging	into	an	instance	of	SQL	Server.

In	Language,	click	the	default	language	in	which	messages
are	displayed	to	the	user.

See	Also

Adding	a	Windows	NT	User	or	Group

SQL	Server	Setup	Help

How	to	grant	a	Windows	user	or	group	access	to	a
database	(Enterprise	Manager)
To	grant	a	Windows	NT	4.0	or	Windows	2000	user	or	group	access	to	a
database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	to	which	the	user	or
group	will	be	granted	access.

3.	 Right-click	Users,	and	then	click	New	Database	User.

4.	 In	the	Login	name	box,	type	or	select	the	Microsoft®	Windows	NT®
4.0	or	Windows®	2000	user	or	group	name	to	which	database	access
will	be	granted.

5.	 Optionally,	in	User	name,	enter	the	user	name	that	the	login	is	known
by	in	the	database.	By	default,	it	is	set	to	the	login	name.

6.	 Optionally,	select	database	role	memberships	to	be	granted	to	the	user
or	group	in	addition	to	public,	the	default.

See	Also

Granting	a	Windows	NT	User	or	Group	Access	to	a	Database

SQL	Server	Setup	Help

How	to	add	a	SQL	Server	login	(Enterprise	Manager)
To	add	a	SQL	Server	login

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	right-click	Logins,	and	then	click	New	Login.

3.	 In	Name,	enter	a	name	for	the	Microsoft®	SQL	Server™	login.

4.	 Under	Authentication,	select	SQL	Server	Authentication.

5.	 Optionally,	in	Password,	enter	a	password.

6.	 Optionally:

In	Database,	click	the	default	database	to	which	the	login	is
connected	after	logging	into	an	instance	of	SQL	Server.

In	Language,	click	the	default	language	in	which	messages
are	displayed	to	the	user.

See	Also

Adding	a	SQL	Server	Login

SQL	Server	Setup	Help

How	to	add	a	linked	server	login	(Enterprise
Manager)
To	add	a	linked	server	login

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	click	Linked	Servers.

3.	 In	the	details	pane,	right-click	the	linked	server	to	which	the	login	will
be	added,	and	then	click	Properties.

4.	 On	the	Security	tab,	click	the	local	login	to	add.

5.	 Optionally,	select	the	Impersonate	check	box	if	the	local	login	should
connect	to	the	linked	server	using	its	own	user	security	credentials.

6.	 Enter	the	remote	user	and	remote	password	with	which	the	local	login
should	connect	to	the	linked	server	when	not	using	the	user's	security
credentials	(Impersonate	not	selected).

See	Also

Establishing	Security	for	Linked	Servers

How	to	set	up	a	linked	server	(Enterprise	Manager)

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

How	to	grant	a	SQL	Server	login	access	to	a	database
(Enterprise	Manager)
To	grant	a	SQL	Server	login	access	to	a	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	to	which	the	login
will	be	granted	access.

3.	 Right-click	Users,	and	then	click	New	Database	User.

4.	 In	the	Login	name	box,	click	the	Microsoft®	SQL	Server™	login	to
which	database	access	will	be	granted.

5.	 Optionally,	in	User	name,	enter	the	user	name	that	the	login	is	known
by	in	the	database.	By	default,	it	is	set	to	the	login	name.

6.	 Optionally,	select	database	role	memberships	in	addition	to	public,	the
default.

See	Also

Granting	a	SQL	Server	Login	Access	to	a	Database

guest	User

SQL	Server	Setup	Help

How	to	create	a	SQL	Server	database	role	(Enterprise
Manager)
To	create	a	SQL	Server	database	role

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	in	which	to	create	a
role.

3.	 Right-click	Roles,	and	then	click	New	Database	Role.

4.	 In	the	Name	box,	enter	the	name	of	the	new	role.

5.	 Optionally,	click	Add	to	add	members	to	the	Standard	role	list,	and
then	click	a	user	or	users	to	add.	

Only	users	in	the	selected	database	can	be	added	to	the	role.

See	Also

Creating	User-Defined	SQL	Server	Database	Roles

SQL	Server	Setup	Help

How	to	add	a	member	to	a	SQL	Server	database	role
(Enterprise	Manager)
To	add	a	member	to	a	SQL	Server	database	role

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	in	which	the	role
exists.

3.	 Click	Roles.

4.	 In	the	details	pane,	right-click	the	role	to	which	the	user	will	be	added,
and	then	click	Properties.

5.	 Click	Add,	and	then	click	a	user	or	users	to	add.

Only	users	in	the	selected	database	can	be	added	to	the	role.

See	Also

Adding	a	Member	to	a	Predefined	Role

Adding	a	Member	to	a	SQL	Server	Database	Role

SQL	Server	Setup	Help

How	to	add	a	member	to	a	fixed	server	role
(Enterprise	Manager)
To	add	a	member	to	a	fixed	server	role

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	click	Server	Roles.

3.	 In	the	details	pane,	right-click	the	role,	and	then	click	Properties.

4.	 On	the	General	tab,	click	Add,	and	then	click	the	logins	to	add.

See	Also

Adding	a	Member	to	a	Predefined	Role

SQL	Server	Setup	Help

How	to	grant	SQL	Server	login	access	to	a	user	by
using	the	Create	Login	Wizard	(Enterprise	Manager)
To	grant	SQL	Server	login	access	to	a	user	by	using	the	Create	SQL	Server
Login	Wizard

1.	 On	the	Tools	menu,	click	Wizards.

2.	 In	the	Select	Wizard	dialog	box,	expand	Database,	and	then	double-
click	Create	Login	Wizard.

3.	 Complete	the	steps	in	the	wizard.

See	Also

Using	the	Create	Login	Wizard

SQL	Server	Setup	Help

How	to	view	a	SQL	Server	login	or	Windows	user	or
group	(Enterprise	Manager)
To	view	a	SQL	Server	login	or	Windows	NT	4.0	or	Windows	2000	user	or
group

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	click	Logins.

3.	 In	the	details	pane,	right-click	the	login	to	view,	and	then	click
Properties.

See	Also

Viewing	Logins

SQL	Server	Setup	Help

How	to	view	a	database	user	(Enterprise	Manager)
To	view	a	database	user

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	to	which	the	user
belongs.

3.	 Click	Users.

4.	 In	the	details	pane,	right-click	the	user	to	view,	and	then	click
Properties.

See	Also

Viewing	Database	Users

SQL	Server	Setup	Help

How	to	change	the	password	of	a	SQL	Server	login
(Enterprise	Manager)
To	change	the	password	of	a	SQL	Server	login

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	click	Logins.

3.	 In	the	details	pane,	right-click	the	login	to	modify,	and	then	click
Properties.

4.	 In	the	Password	box,	on	the	General	tab,	enter	a	new	password.

5.	 Confirm	the	password.

See	Also

Modifying	Logins

SQL	Server	Setup	Help

How	to	change	the	default	database	of	a	login
(Enterprise	Manager)
To	change	the	default	database	of	a	login

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	click	Logins.

3.	 In	the	details	pane,	right-click	the	login	to	modify,	and	then	click
Properties.

4.	 In	the	Database	list,	on	the	General	tab,	click	the	new	default
database	to	which	the	login	is	connected	after	logging	into	an	instance
of	Microsoft®	SQL	Server™.

See	Also

Modifying	Logins

SQL	Server	Setup	Help

How	to	change	the	default	language	of	a	login
(Enterprise	Manager)
To	change	the	default	language	of	a	login

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	click	Logins.

3.	 In	the	details	pane,	right-click	the	login	to	modify,	and	then	click
Properties.

4.	 In	the	Language	list,	on	the	General	tab,	click	the	new	default
language	in	which	messages	are	to	be	displayed	to	the	user.

See	Also

Modifying	Logins

SQL	Server	Setup	Help

How	to	remove	a	user	or	group	from	a	database
(Enterprise	Manager)
To	remove	a	user	or	group	from	a	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	to	which	the	user	or
group	belongs.

3.	 Click	Users.

4.	 In	the	details	pane,	right-click	the	user	or	group	to	remove,	and	then
click	Delete.

5.	 Confirm	the	deletion.

See	Also

Removing	Logins	and	Users

SQL	Server	Setup	Help

How	to	remove	a	SQL	Server	login	(Enterprise
Manager)
To	remove	a	SQL	Server	login

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	click	Logins.

3.	 In	the	details	pane,	right-click	the	login	to	remove,	and	then	click
Delete.

4.	 Confirm	the	deletion.

See	Also

Removing	Logins	and	Users

SQL	Server	Setup	Help

How	to	revoke	a	Windows	user	or	group	login	access
from	SQL	Server	(Enterprise	Manager)
To	revoke	a	Windows	NT	4.0	or	Windows	2000	user	or	group	login	access
from	SQL	Server

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	click	Logins.

3.	 In	the	details	pane,	right-click	the	Microsoft®	Windows	NT®	4.0	or
Windows®	2000	user	or	group	to	revoke,	and	then	click	Delete.

4.	 Confirm	the	deletion.

See	Also

Removing	Logins	and	Users

SQL	Server	Setup	Help

How	to	deny	login	access	to	a	Windows	user	or	group
(Enterprise	Manager)
To	deny	login	access	to	a	Windows	NT	4.0	or	Windows	2000	user	or	group

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	click	Logins.

3.	 In	the	details	pane,	right-click	the	Microsoft®	Windows	NT®	4.0	or
Windows®	2000	user	or	group	to	deny,	and	then	click	Properties.

4.	 Under	Authentication,	click	Deny	access.

See	Also

Denying	Login	Access	to	Windows	NT	Accounts

How	to	grant	a	Windows	NT	user	or	group	login	access	to	SQL	Server
(Enterprise	Manager)

SQL	Server	Setup	Help

How	to	remove	a	linked	server	login	(Enterprise
Manager)
To	remove	a	linked	server	login

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	click	Linked	Servers.

3.	 In	the	details	pane,	right-click	the	linked	server	to	which	the	linked
server	login	to	be	removed	is	mapped,	and	then	click	Properties.

4.	 On	the	Security	tab,	under	Local	login,	click	the	linked	server	login	to
remove,	and	then	select	the	blank	login	at	the	top	of	the	list.

See	Also

Removing	Logins	and	Users

SQL	Server	Setup	Help

How	to	view	the	roles	defined	in	the	current	database
(Enterprise	Manager)
To	view	the	roles	defined	in	the	current	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	to	view.

3.	 Click	Roles.

See	Also

Viewing	Roles

SQL	Server	Setup	Help

How	to	view	the	fixed	server	roles	(Enterprise
Manager)
To	view	the	fixed	server	roles

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	click	Server	Roles.

See	Also

Viewing	Roles

SQL	Server	Setup	Help

How	to	view	the	members	of	a	database	role
(Enterprise	Manager)
To	view	the	members	of	a	database	role

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	to	which	the	user
belongs.

3.	 Click	Roles.

4.	 In	the	details	pane,	right-click	the	role	to	view,	and	then	click
Properties	to	view	members.

See	Also

Viewing	and	Modifying	Role	Memberships

SQL	Server	Setup	Help

How	to	remove	a	user	account	from	a	database	role
(Enterprise	Manager)
To	remove	a	user	account	from	a	database	role

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	in	which	the	role
exists.

3.	 Click	Roles.

4.	 In	the	details	pane,	right-click	the	role	to	which	the	user	account
belongs,	and	then	click	Properties.

5.	 Select	the	user	to	remove,	and	then	click	Remove.

See	Also

Viewing	and	Modifying	Role	Memberships

SQL	Server	Setup	Help

How	to	view	the	members	of	a	fixed	server	role
(Enterprise	Manager)
To	view	the	members	of	a	fixed	server	role

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	click	Server	Roles.

3.	 In	the	details	pane,	right-click	the	server	role	to	view,	and	then	click
Properties.

See	Also

Viewing	and	Modifying	Role	Memberships

SQL	Server	Setup	Help

How	to	remove	a	login	from	a	fixed	server	role
(Enterprise	Manager)
To	remove	a	login	from	a	fixed	server	role

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	click	Server	Roles.

3.	 In	the	details	pane,	right-click	the	server	role	to	modify,	and	then	click
Properties.

4.	 On	the	General	tab,	select	the	login	to	remove,	and	then	click
Remove.

See	Also

Viewing	and	Modifying	Role	Memberships

SQL	Server	Setup	Help

How	to	remove	a	SQL	Server	role	(Enterprise
Manager)
To	remove	a	SQL	Server	role

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	in	which	the	role
exists.

3.	 Click	Roles.

4.	 In	the	details	pane,	right-click	the	role,	and	then	click	Delete.

Note		You	must	drop	all	role	members	before	you	can	delete	the	role.
Fixed	roles	cannot	be	deleted.

Confirm	the	deletion.

See	Also

Removing	a	SQL	Server	Database	Role

SQL	Server	Setup	Help

How	to	allow	access	by	granting	permissions
(Enterprise	Manager)
To	allow	access	by	granting	permissions	(on	an	object)

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	to	which	the	object
belongs.

3.	 Depending	on	the	type	of	object,	click	one	of	the	following:

Tables	

Views

Stored	Procedures

4.	 In	the	details	pane,	right-click	the	object	on	which	to	grant
permissions,	point	to	All	Tasks,	and	then	click	Manage	Permissions.

5.	 Click	List	all	users/user-defined	database	roles/public,	and	then
select	the	permission	to	grant	each	user.

A	check	indicates	a	granted	permission.	Only	permissions	applicable
to	the	object	are	listed.

See	Also

Granting	Permissions

SQL	Server	Setup	Help

How	to	grant	statement	permissions	to	users	within	a
database	(Enterprise	Manager)
To	grant	statement	permissions	to	users	within	a	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	right-click	the	database	containing	the	users	to
whom	statement	permissions	will	be	granted,	and	then	click
Properties.

3.	 On	the	Permissions	tab,	select	the	statement	permission	to	grant	each
user.

A	check	indicates	a	granted	permission.

See	Also

Granting	Permissions

SQL	Server	Setup	Help

How	to	grant	permissions	on	multiple	objects	to	a
user,	group,	or	role	(Enterprise	Manager)
To	grant	permissions	on	multiple	objects	to	a	user,	group,	or	role

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	to	which	the	user,
group,	or	role	belongs.

3.	 Depending	on	the	type	of	user,	group,	or	role	to	which	permissions
will	be	granted,	click	either	Users	or	Roles.

4.	 In	the	details	pane,	right-click	the	user,	group,	or	role	to	which
permissions	will	be	granted,	point	to	All	Tasks,	and	then	click
Manage	Permissions.

5.	 Click	List	all	objects,	and	then	select	the	permission	to	grant	each
object.

A	check	indicates	a	granted	permission.	Only	permissions	applicable
to	the	object	are	listed.

See	Also

Granting	Permissions

SQL	Server	Setup	Help

How	to	prevent	access	by	denying	permissions
(Enterprise	Manager)
To	prevent	access	by	denying	permissions	(on	an	object)

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	to	which	the	object
belongs.

3.	 Depending	on	the	type	of	object	to	which	access	will	be	denied,	click
one	of	the	following:

Tables

Views

Stored	Procedures

4.	 In	the	details	pane,	right-click	the	object	to	which	access	will	be
denied,	point	to	All	Tasks,	and	then	click	Manage	Permissions.

5.	 Click	List	all	users/user-defined	database	roles/public,	and	then
select	the	permission	to	deny	each	user.

An	'X'	indicates	a	denied	permission.	Only	permissions	applicable	to
the	object	are	listed.

See	Also

Denying	Permissions

SQL	Server	Setup	Help

How	to	deny	statement	permissions	from	users	within
a	database	(Enterprise	Manager)
To	deny	statement	permissions	from	users	within	a	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	right-click	the	database	containing	the	users	to
whom	statement	permissions	will	be	denied,	and	then	click
Properties.

3.	 On	the	Permissions	tab,	select	the	statement	permission	to	deny	each
user.

An	'X'	indicates	a	denied	permission.

See	Also

Denying	Permissions

SQL	Server	Setup	Help

How	to	deny	permissions	on	multiple	objects	to	a	user,
group,	or	role	(Enterprise	Manager)
To	deny	permissions	on	multiple	objects	to	a	user,	group,	or	role

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	to	which	the	user,
group,	or	role	belongs.

3.	 Depending	on	the	type	of	user,	group,	or	role	to	which	permissions
will	be	denied,	click	either	Users	or	Roles.

4.	 In	the	details	pane,	right-click	the	user	or	group	to	which	permissions
will	be	denied,	point	to	All	Tasks,	and	then	click	Manage
Permissions.	If	you	are	denying	permission	to	a	role,	right-click	the
role	to	which	permissions	will	be	denied,	click	Properties,	and	then
click	Permissions.

5.	 Click	List	all	objects,	and	then	select	the	permission	to	deny	for	each
object.

An	'X'	indicates	a	denied	permission.	Only	permissions	applicable	to
the	object	are	listed.

See	Also

Denying	Permissions

SQL	Server	Setup	Help

How	to	revoke	permissions	on	an	object	(Enterprise
Manager)
To	revoke	permissions	on	an	object

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	to	which	the	object
belongs.

3.	 Depending	on	the	type	of	object	to	which	access	will	be	revoked,	click
one	of	the	following:

Tables

Views

Stored	Procedures

4.	 In	the	details	pane,	right-click	the	object	to	which	access	will	be
revoked,	point	to	All	Tasks,	and	then	click	Manage	Permissions.

5.	 Click	List	all	users/user-defined	database	roles/public,	and	then
select	the	permission	to	revoke	from	each	user.

An	empty	box	indicates	a	revoked	permission.	Only	permissions
applicable	to	the	object	are	listed.

See	Also

Revoking	Permissions

SQL	Server	Setup	Help

How	to	revoke	statement	permissions	from	users	in	a
database	(Enterprise	Manager)
To	revoke	statement	permissions	from	users	in	a	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	right-click	the	database	containing	the	users	from
whom	statement	permissions	will	be	revoked,	and	then	click
Properties.

3.	 On	the	Permissions	tab,	select	the	statement	permission	to	revoke
from	each	user.

An	empty	box	indicates	a	revoked	permission.

See	Also

Revoking	Permissions

SQL	Server	Setup	Help

How	to	revoke	permissions	on	multiple	objects	from	a
user,	group,	or	role	(Enterprise	Manager)
To	revoke	permissions	on	multiple	objects	from	a	user,	group,	or	role

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	to	which	the	user,
group,	or	role	belongs.

3.	 Depending	on	the	type	of	user,	group,	or	role	from	which	permissions
will	be	revoked,	click	either	Users	or	Roles.

4.	 In	the	details	pane,	right-click	the	user	or	group	from	which
permissions	will	be	revoked,	point	to	All	Tasks,	and	then	click
Manage	Permissions.	If	you	are	revoking	permission	from	a	role,
right-click	the	role	to	which	permissions	will	be	denied,	click
Properties,	and	then	click	Permissions.

5.	 Click	List	all	objects,	and	then	select	the	permission	to	revoke	for
each	object.

An	empty	box	indicates	a	revoked	permission.	Only	permissions
applicable	to	the	object	are	listed.

See	Also

Revoking	Permissions

SQL	Server	Setup	Help

How	to	create	an	application	role	(Enterprise
Manager)
To	create	an	application	role

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	in	which	to	create	a
role.

3.	 Right-click	Roles,	and	then	click	New	Database	Role.

4.	 In	the	Name	box,	enter	the	name	of	the	new	application	role.

5.	 Under	Database	role	type,	click	Application	role,	and	then	enter	a
password.

See	Also

Establishing	Application	Security	and	Application	Roles

SQL	Server	Setup	Help

How	to	remove	an	application	role	(Enterprise
Manager)
To	remove	an	application	role

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	in	which	the
application	role	exists.

3.	 Click	Roles.

4.	 In	the	details	pane,	right-click	the	application	role	to	remove,	and	then
click	Delete.

5.	 Confirm	the	deletion.

See	Also

Establishing	Application	Security	and	Application	Roles

SQL	Server	Setup	Help

How	to	reveal	or	cancel	announcement	of	SQL	Server
on	a	network	(Windows)
To	reveal	or	cancel	announcement	of	SQL	Server	on	a	network

1.	 In	Control	Panel,	double-click	Network.

2.	 Click	the	Services	tab.

3.	 In	the	Network	Services	list,	click	Server,	and	then	click	Properties.

4.	 Select	Make	Browser	Broadcasts	to	LAN	Manager	2.x	Clients	to
reveal	the	server,	or	clear	the	check	box	to	hide	the	server.

See	Also

Revealing	SQL	Server	on	a	Network

SQL	Server	Setup	Help

How	to	grant,	deny,	or	revoke	permissions	on	multiple
objects	to	a	user-defined	role	(Enterprise	Manager)
To	grant,	deny,	or	revoke	permissions	on	multiple	objects	to	a	user-defined
role

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	to	which	the	role
belongs.

3.	 Click	Roles.

4.	 In	the	details	pane,	right-click	the	user-defined	role	to	which
permissions	will	be	granted,	denied,	or	revoked,	and	then	click
Properties.

5.	 Under	Names,	click	Permissions.

6.	 Click	List	all	objects,	and	then	select	the	permission	to	grant,	deny,	or
revoke	on	each	object.

A	checkmark	indicates	a	granted	permission;	an	'X'	indicates	a	denied
permission;	and	an	empty	box	indicates	a	revoked	permission.	Only
permissions	applicable	to	the	object	are	listed.

SQL	Server	Setup	Help

How	to	start	the	default	instance	of	SQL	Server
(Service	Manager)
To	start	the	default	instance	of	SQL	Server

1.	 In	the	Services	box,	click	SQL	Server.

If	the	service	is	a	remote	service,	type	the	name	of	the	remote	server	in
the	Server	box.

2.	 Click	Start/Continue.

See	Also

Starting	SQL	Server	Manually

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

How	to	start	a	clustered	instance	of	SQL	Server
(Service	Manager)
To	start	a	clustered	instance	of	SQL	Server

1.	 Type	the	name	of	the	virtual	SQL	Server	in	the	Server	box.	If	it	is	a
default	instance,	you	only	need	to	specify	the	virtual	server	name.	If	it
is	a	named	instance,	you	must	enter	VIRTUALSERVER\Instance.

2.	 In	the	Services	box,	click	SQL	Server.

3.	 Click	Start/Continue.

See	Also

Starting	SQL	Server	Manually

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

How	to	start	a	named	instance	of	SQL	Server	(Service
Manager)
To	start	a	named	instance	of	SQL	Server

1.	 In	the	Server	box,	select	the	name	of	the	server	and	the	named
instance	of	Microsoft®	SQL	Server™	2000,	or	type	the	name	of	the
remote	server.

2.	 In	the	Services	box,	click	SQL	Server,	and	then	click
Start/Continue.

SQL	Server	Setup	Help

How	to	start	the	default	instance	of	SQL	Server
(Windows)
To	start	the	default	instance	of	SQL	Server

1.	 In	Control	Panel,	double-click	Services.

2.	 In	the	Services	dialog	box,	click	MSSQLSERVER,	and	then	click
Start.

SQL	Server	Setup	Help

How	to	start	a	named	instance	of	SQL	Server
(Windows)
To	start	a	named	instance	of	SQL	Server

1.	 In	Control	Panel,	double-click	Services.

2.	 In	the	Services	dialog	box,	click	the	named	instance	of	Microsoft®
SQL	Server™	2000	you	want	to	start,	and	then	click	Start.

SQL	Server	Setup	Help

How	to	start	the	default	instance	of	SQL	Server
(Command	Prompt)
To	start	the	default	instance	of	SQL	Server	from	a	command	prompt

From	a	command	prompt,	enter:

sqlservr.exe	-c

Note		You	must	switch	to	the	appropriate	directory	(for	the	instance	of
Microsoft®	SQL	Server™	you	want	to	start)	in	the	command	window
before	starting	sqlservr.exe.

See	Also

Starting	SQL	Server	Manually

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

How	to	start	a	named	instance	of	SQL	Server
(Command	Prompt)
To	start	a	named	instance	of	SQL	Server	from	a	command	prompt

From	a	command	prompt,	enter	this	command:

sqlservr.exe	-c	-s	{instancename}

Note		You	must	switch	to	the	appropriate	directory	(for	the	instance	of
Microsoft®	SQL	Server™	2000	you	want	to	start)	in	the	command	window
before	starting	sqlservr.exe.	For	example,	if	Instance1	uses	\mssql$Instance1	to
store	its	binaries,	you	must	be	in	the	\mssql$Instance1\binn	directory	to	start
sqlservr.exe.

SQL	Server	Setup	Help

How	to	start	the	default	instance	of	SQL	Server	in
single-user	mode	(Command	Prompt)
To	start	the	default	instance	of	SQL	Server	in	single-user	mode	from	a
command	prompt

From	a	command	prompt,	enter:

sqlservr.exe	-c	-m

Note		You	must	switch	to	the	appropriate	directory	(for	the	instance	of
Microsoft®	SQL	Server™	you	want	to	start)	in	the	command	window
before	starting	sqlservr.exe.

See	Also

Starting	SQL	Server	in	Single-User	Mode

Using	Startup	Options

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

How	to	start	a	named	instance	of	SQL	Server	in
single-user	mode	(Command	Prompt)
To	start	a	named	instance	of	SQL	Server	in	single-user	mode	from	a
command	prompt

From	a	command	prompt,	enter:

sqlservr.exe	-c	-	m	-s	{instancename}

Note		You	must	switch	to	the	appropriate	directory	(for	the	instance	of
Microsoft®	SQL	Server™	2000	you	want	to	start)	in	the	command
window	before	starting	sqlservr.exe.

SQL	Server	Setup	Help

How	to	start	the	default	instance	of	SQL	Server	with
minimal	configuration	(Command	Prompt)
To	start	the	default	instance	of	SQL	Server	with	minimal	configuration

From	a	command	prompt,	enter	the	following	command	to	start	the
default	instance	of	Microsoft®	SQL	Server™	as	a	service:

sqlservr	-c	-f

Note		You	must	switch	to	the	appropriate	directory	(for	the	instance	of
SQL	Server	you	want	to	start)	in	the	command	window	before	starting
sqlservr.exe.

See	Also

Starting	SQL	Server	Manually

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

How	to	start	a	named	instance	of	SQL	Server	with
minimal	configuration	(Command	Prompt)
To	start	a	named	instance	of	SQL	Server	with	minimal	configuration

From	a	command	prompt,	enter	the	following	command	to	start	a
named	instance	of	Microsoft®	SQL	Server™	2000	as	a	service:

sqlservr	-c	-f	-s	{instancename}

Note		You	must	switch	to	the	appropriate	directory	(for	the	instance	of
SQL	Server	you	want	to	start)	in	the	command	window	before	starting
sqlservr.exe.

SQL	Server	Setup	Help

How	to	pause	and	resume	the	default	instance	of	SQL
Server	(Service	Manager)
To	pause	and	resume	the	default	instance	of	SQL	Server

1.	 In	the	Services	box,	click	SQL	Server.

If	the	service	is	a	remote	service,	type	the	name	of	the	remote	server.

2.	 Click	Pause,	and	then	click	Start/Continue.

See	Also

Pausing	and	Resuming	SQL	Server

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

How	to	stop	a	clustered	instance	of	SQL	Server
(Service	Manager)
To	stop	a	clustered	instance	of	SQL	Server

1.	 Type	the	name	of	the	virtual	Microsoft®	SQL	Server™	in	the	Server
box.	If	it	is	a	default	instance,	you	only	need	to	specify	the	virtual
server	name.	If	it	is	a	named	instance,	you	must	enter
VIRTUALSERVER\Instance.

2.	 In	the	Services	box,	click	SQL	Server.

3.	 Click	Stop.	This	pauses	the	cluster	resource,	and	then	stops	the	SQL
Server	service,	which	does	not	cause	a	failover	of	SQL	Server.

See	Also

Stopping	SQL	Server

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

How	to	pause	and	resume	a	named	instance	of	SQL
Server	(Service	Manager)
To	pause	and	resume	a	named	instance	of	SQL	Server

1.	 In	the	Server	box,	select	the	name	of	the	server	and	the	named
instance	of	Microsoft®	SQL	Server™	2000,	or	type	the	name	of	the
remote	server.	

2.	 In	the	Services	box,	click	SQL	Server.

3.	 Click	Pause,	and	then	click	Start/Continue.

SQL	Server	Setup	Help

How	to	pause	and	resume	the	default	instance	of	SQL
Server	(Windows)
To	pause	and	resume	the	default	instance	of	SQL	Server

1.	 In	Control	Panel,	double-click	Services.

2.	 In	the	Services	dialog	box,	click	MSSQLSERVER.

3.	 Click	Pause	or	Continue.

SQL	Server	Setup	Help

How	to	pause	and	resume	a	named	instance	of	SQL
Server	(Windows)
To	pause	and	resume	a	named	instance	of	SQL	Server

1.	 In	Control	Panel,	double-click	Services.

2.	 In	the	Services	dialog	box,	click	the	named	instance	of	Microsoft®
SQL	Server™	2000	you	want	to	pause.

3.	 Click	Pause	or	Continue.

SQL	Server	Setup	Help

How	to	pause	and	resume	the	default	instance	of	SQL
Server	(Command	Prompt)
To	pause	and	resume	the	default	instance	of	SQL	Server

From	a	command	prompt,	enter	either:

net	pause	mssqlserver

-or-

net	continue	mssqlserver

An	instance	of	Microsoft®	SQL	Server™	can	be	paused	or	resumed
only	if	it	was	started	as	a	Microsoft	Windows	NT®	4.0	or	Windows®
2000	service.

See	Also

Pausing	and	Resuming	SQL	Server

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

How	to	pause	and	resume	a	named	instance	of	SQL
Server	(Command	Prompt)
To	pause	and	resume	a	named	instance	of	SQL	Server

From	a	command	prompt,	enter	either:

net	pause	mssql$instancename

-or-

net	continue	mssql$instancename

SQL	Server	Setup	Help

How	to	broadcast	a	shutdown	message	(Command
Prompt)
To	broadcast	a	shutdown	message

From	a	command	prompt,	enter:

net	send	/users	"message"

For	example:

net	send	/users	"SQL	Server	is	going	down	in	20	minutes.	
Disconnect	within	15	minutes."

Note		The	shutdown	message	can	be	broadcast	only	if	an	instance	of
Microsoft®	SQL	Server™	is	running	on	Microsoft	Windows	NT®	4.0
or	Windows®	2000.	The	users	option	specifies	that	the	message	be	sent
to	all	users	connected	to	the	server.	For	information	about	other	net
send	options,	see	the	Windows	NT	4.0	and	Windows	2000
documentation.

See	Also

Stopping	SQL	Server

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

How	to	stop	the	default	instance	of	SQL	Server
(Windows)
To	stop	the	default	instance	of	SQL	Server

1.	 In	Control	Panel,	double-click	Services.

2.	 In	the	Services	dialog	box,	click	MSSQLSERVER,	and	then	click
Stop.

SQL	Server	Setup	Help

How	to	stop	a	named	instance	of	SQL	Server
(Windows)
To	stop	a	named	instance	of	SQL	Server

1.	 In	Control	Panel,	double-click	Services.

2.	 In	the	Services	dialog	box,	click	the	named	instance	of	Microsoft®
SQL	Server™	2000	you	want	to	stop,	and	then	click	Stop.

SQL	Server	Setup	Help

How	to	stop	the	default	instance	of	SQL	Server
(Command	Prompt)
To	stop	the	default	instance	of	SQL	Server

From	a	command	prompt,	enter:

net	stop	mssqlserver

Note		Stopping	a	default	instance	of	Microsoft®	SQL	Server™	using	SQL
Server	Enterprise	Manager	or	the	net	stop	mssqlserver	command	causes	SQL
Server	to	perform	a	checkpoint	in	all	databases.	Then	a	SHUTDOWN	WITH
NOWAIT	is	done	to	flush	all	committed	data	from	the	data	cache	and	to	stop	the
server	immediately.	Stopping	a	default	instance	of	SQL	Server	from	the
command	prompt	works	only	if	you	are	running	Microsoft	Windows	NT®	4.0	or
Windows®	2000.

See	Also

Stopping	SQL	Server

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

How	to	stop	a	named	instance	of	SQL	Server
(Command	Prompt)
To	stop	a	named	instance	of	SQL	Server

From	a	command	prompt,	enter:

net	stop	mssql$instancename

Note		Stopping	a	named	instance	of	Microsoft®	SQL	Server™	2000	using	SQL
Server	Enterprise	Manager	or	the	net	stop	mssql$instancename	command
causes	SQL	Server	to	perform	a	checkpoint	in	all	databases.	Then	a
SHUTDOWN	WITH	NOWAIT	is	done	to	flush	all	committed	data	from	the	data
cache	and	to	stop	the	server	immediately.	Stopping	a	named	instance	of	SQL
Server	2000	from	the	command	prompt	works	only	if	you	are	running	Microsoft
Windows	NT®	4.0	or	Windows®	2000.

SQL	Server	Setup	Help

How	to	log	in	to	the	default	instance	of	SQL	Server
(Command	Prompt)
To	log	in	to	the	default	instance	of	SQL	Server

From	a	command	prompt,	enter	either:

osql	/U	[login_id]	/P	[password]	/S	[servername]

-or-

isql/U	[login_id]/P	[password]	/S	[servername]

See	Also

osql	Utility

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

How	to	log	in	to	a	named	instance	of	SQL	Server
(Command	Prompt)
To	log	in	to	a	named	instance	of	SQL	Server

From	a	command	prompt,	enter	either:

osql	/	U	login_id	/P	password	/S	servername\instancename

-or-

isql/U	login_id/P	password	/S	servername\instancename

SQL	Server	Setup	Help

How	to	change	the	default	service	(Service	Manager)
To	change	the	default	service

1.	 Right-click	SQL	Server	Service	Manager,	and	then	click	Options.

2.	 In	the	Default	Service	box,	select	the	new	default	service	to	view
through	SQL	Server	Service	Manager.	When	you	restart	the	computer,
the	service	that	appears	is	the	new	default.	For	example,	if	you	change
the	default	service	to	SQLServerAgent	service	and	then	shut	down	the
computer,	the	next	time	you	start	it,	SQLServerAgent	service	will	be
displayed	in	Service	Control	Manager.	You	can	only	change	the
default	service	for	the	local	machine.

SQL	Server	Setup	Help

Installing	Analysis	Services
This	section	contains	information	about	installing	Microsoft®	SQL	Server™
2000	Analysis	Services	only.	It	does	not	contain	information	about	installing
other	components	of	SQL	Server	2000.	For	more	information	about	installing
other	components,	such	as	English	Query,	see	Getting	Started	with	SQL	Server
Books	Online.

This	section	contains	the	following	topics.

Topic Description
Hardware	and	Software
Requirements	for	Installing
Analysis	Services

Provides	the	hardware	and	software
requirements	for	installing	and	running
Analysis	Services.

Running	Setup Provides	step-by-step	instructions	to
install	Analysis	Services.

Setup	Parameters	and	Silent
Installation

Describes	the	parameters	for	the
Analysis	Services	Setup	program
(Setup.exe).

Reinstalling	Analysis	Services Describes	how	to	reinstall	Analysis
Services.

Removing	Analysis	Services Describes	how	to	remove	Analysis
Services.

Upgrading	from	an	Earlier	Version Describes	how	to	upgrade	from	an
earlier	version	of	Analysis	Services.

Backward	Compatibility Provides	information	about
compatibility	with	previous	versions	of
Analysis	Services	(formerly	called
OLAP	Services).

Related	Documents
The	Readme.html	file	in	the	root	directory	of	the	SQL	Server	2000	CD-ROM
contains	information	about	Analysis	Services.	You	can	also	view	the	release
notes	by	clicking	Read	the	Release	Notes	on	the	SQL	Server	2000	Setup

JavaScript:hhobj_1.Click()

program	(Autorun.exe)	menu.

SQL	Server	Setup	Help

Hardware	and	Software	Requirements	for	Installing
Analysis	Services
Before	you	can	install	Microsoft®	SQL	Server	2000™	Analysis	Services,	your
computer	must	meet	the	following	requirements.

Hardware/software Requirements
Computer Intel®	or	compatible	(Pentium	133	MHz	or	higher,

Pentium	PRO,	Pentium	II,	or	Pentium	III)
Memory	(RAM) 32	megabytes	(MB)	minimum	(64	MB

recommended)
Disk	drive CD-ROM	drive
Hard	disk	space	(1) 50	–	90	MB	(130	MB	for	all	components	including

common	files	and	samples),	12	MB	for	the	client
only

Operating	system Microsoft	Windows®	2000	Server	(3)

-or-

Microsoft	Windows	NT®	Server	4.0	with	Service
Pack	5	or	later	(3)

For	client	components	on	client	computers	only,	the
following	systems	also	qualify:

Windows	2000	Professional
Windows	NT	Workstation	4.0	with	Service	Pack	5
Windows	98
Windows	95	+	DCOM95
Windows	95	OSR2	+	DCOM95

Network	software Windows	2000,	Windows	NT	4.0,	Windows	98,	or
Windows	95	built-in	network	software;	and	TCP/IP
(included	with	Windows).

Online	product
documentation	viewer

Microsoft	Internet	Explorer	version	5.0	or	later	(2).
You	must	install	Windows	NT	4.0	Service	Pack	5	or
later	before	you	install	Internet	Explorer	version	5.0.

Access	permissions To	install	the	services	for	Analysis	server,	you	must
be	logged	on	to	the	server	with	Administrator
permissions.

1				Setup	installs	a	number	of	components	that	can	be	shared	by	other	applications	and	may	already	exist	on
the	computer.
2				Internet	Explorer	is	required	for	Microsoft	Management	Console	(MMC)	and	HTML	Help.	A	minimal
installation	is	sufficient,	and	Internet	Explorer	does	not	need	to	be	your	default	browser.	Internet	Explorer	is
not	required	for	the	client-only	installation.
3				Analysis	Services	should	not	be	installed	on	a	domain	controller;	this	installation	configuration	is	not
supported.

For	more	information	about	supported	hardware,	see	the	Microsoft	Windows
Hardware	Compatibility	List	at	the	Microsoft	Web	site.	For	more	information
about	Windows	2000-compatible	hardware,	use	the	Microsoft	Windows	2000
compatible	hardware	devices	search	tool	at	the	Microsoft	Web	site.

http://www.microsoft.com/isapi/redir.dll?prd=Hardware Compatibility List&Pver=1.0&AR=/hwtest/hcl/
http://www.microsoft.com/isapi/redir.dll?prd=Win2000HCL&pver=1

SQL	Server	Setup	Help

Running	Setup
This	topic	describes	how	to	install	Microsoft®	SQL	Server™	2000	Analysis
Services.

If	you	are	upgrading	from	an	earlier	version	of	Analysis	Services	(formerly
called	OLAP	Services),	you	should	take	certain	steps	before	performing	the
following	procedure.	For	more	information,	see	Upgrading	from	an	Earlier
Version.

If	you	are	reinstalling	Analysis	Services,	you	should	take	certain	steps	before
and	after	performing	the	following	procedure.	For	more	information,	see
Reinstalling	Analysis	Services.

Although	Analysis	Services	can	connect	to	multiple	instances	of	SQL	Server
running	on	a	single	computer,	you	cannot	install	multiple	instances	of	Analysis
Services	on	a	single	computer.

To	install	Analysis	Services,	use	the	Analysis	Services	Setup	program	or	the
SQL	Server	2000	Setup	program.

To	install	Analysis	Services

1.	 Exit	all	Microsoft	Windows®	applications.

2.	 Insert	the	SQL	Server	2000	CD	into	the	CD-ROM	drive.	This	starts
the	SQL	Server	2000	Setup	program.	If	the	Setup	program	does	not
start	automatically,	run	the	Autorun.exe	program	in	the	root	directory
of	the	CD-ROM.

3.	 Click	Install	SQL	Server	2000	Components.

4.	 Click	Analysis	Services	to	start	the	Analysis	Services	Setup	program.

5.	 In	the	Welcome	step,	click	Next.

6.	 In	the	Software	License	Agreement	step,	read	the	license	agreement,
and	then	do	one	of	the	following:

To	accept	the	license	agreement,	click	Yes.	You	must	select
this	option	to	install	Analysis	Services.

To	reject	the	license	agreement,	click	No.	If	you	select	this
option,	the	program	will	ask	you	to	confirm	exiting.	If	you
select	Exit	Setup,	the	program	closes	and	the	installation	is
canceled.	To	continue	Setup,	click	Resume.

7.	 The	Setup	program	prompts	you	to	enter	the	CD	key.	Type	the	10-digit
CD	key	for	the	product,	and	then	click	OK.

8.	 The	Setup	program	displays	the	complete	product	ID,	which	you	can
record	for	future	reference.	After	you	record	the	product	ID,	click	OK.

9.	 In	the	Select	Components	step,	select	the	components	you	want	to
install.	All	of	the	options	are	selected	by	default.	You	cannot	clear	the
check	box	of	any	component	on	which	another	selected	component
depends.

Unless	you	are	installing	the	client	components	on	a	client	computer,
installing	all	components	is	recommended.	The	following	components
are	available	for	installation.

Component Description
Analysis	server Binary	executables	and	other	server-

related	files	required	for	an	installation
of	an	Analysis	server.	Includes	the
FoodMart	2000	sample	database	used
by	the	tutorial.	Requires	the	client
components.

Analysis	Manager Binary	executables	and	other	files	that
support	the	user	interface	for
administering	the	Analysis	server.
Includes	the	MDXSample	executable

file.	Requires	Decision	Support	Objects
(DSO)	and	the	client	components.

Decision	Support
Objects

The	object	model	for	administering	the
Analysis	server	and	managing	meta	data.
Requires	the	client	components.

Client	components Binary	executables	and	related	files	for
the	Analysis	Services	client.	Client
components	include	PivotTable®
Service.

Sample	applications Sample	applications	include	the
MDXSample	source	files,	the	FoodMart
2000	database,	and	programming
samples.	Requires	the	client	components.

Books	Online The	entire	documentation	set	for	SQL
Server	2000,	including	Analysis
Services.	This	file	is	approximately	30
megabytes	(MB).	If	space	is	at	a
premium,	you	can	choose	not	to	install
Books	Online.	However,	product
documentation	will	not	be	available	in
the	user	interface	until	it	is	reinstalled.

To	change	the	destination	drive	or	folder,	click	Browse.	Although
remote	network	drives	are	listed	in	these	dialog	boxes,	installation	to
locations	on	remote	network	drives	is	not	supported.

Space	Required	and	Space	Available	indicate	disk	drive	space	and
help	you	determine	what	components	to	install.	If	your	current	disk
drive	does	not	have	enough	space	available,	you	can	click	Disk	Space
to	determine	which	disks	on	your	computer	have	enough	space	to
install	Analysis	Services.

After	you	select	the	components	to	install,	click	Next.	The	steps	that
follow	may	change	depending	on	which	components	you	selected	to
install.

10.	 In	the	Data	Folder	Location	step,	you	can	change	the	location	of	the

Data	folder,	which	is	the	data	storage	location	of	the	Analysis	server.

The	default	location	for	the	Data	folder	is	C:\Program	Files\Microsoft
Analysis	Services\Data	(unless	you	specified	another	location	for
Analysis	Services	in	the	previous	step).	You	can	specify	a	different
location	by	clicking	Browse.	If	you	change	the	default	folder	or	drive,
be	sure	to	enter	a	fully	qualified	path.	To	specify	a	data	storage
location	other	than	the	computer	on	which	the	server	is	installed,	you
must	have	full	control	access	permissions	on	that	computer.

IMPORTANT		The	Data	folder	stores	security	files	that	control	end	users'
access	to	objects	on	the	Analysis	server.	For	this	reason,	the	Data
folder	must	be	secured	against	unauthorized	access.

After	you	select	the	location	of	the	Data	folder,	click	Next.

11.	 In	the	Select	Program	Folder	step,	accept	the	default	program	folder
name	or	enter	a	new	one.	This	determines	the	location	of	the	Analysis
Services	menu	items	on	the	Start	menu.	Click	Next.

12.	 Analysis	Services	installation	begins.	After	Setup	notifies	you	that	the
installation	is	complete,	click	Finish.

13.	 If	you	are	prompted	to	restart	your	computer,	do	one	of	the	following:

Click	Yes,	I	want	to	restart	my	computer	now,	and	then
click	Finish.

Click	No,	I	will	restart	my	computer	later,	and	then	click
Finish.	If	you	select	this	option,	the	installation	is	not
complete	until	after	you	restart	the	computer.

14.	 If	you	are	finished	installing	SQL	Server	2000	components,	click	Exit
in	the	SQL	Server	2000	Setup	program.

If	in	Step	10	you	specified	a	data	storage	location	other	than	the	computer	on
which	the	server	is	installed,	you	must	configure	your	Analysis	server	service
(MSSQLServerOLAPService)	to	log	on	as	your	user	account,	instead	of	the

default,	which	is	to	log	on	as	the	system	account.	To	do	this,	use	the	Services
application,	which	is	in	Control	Panel	in	Windows	NT®	4.0	or	the
Administrative	Tools	folder	in	Control	Panel	in	Windows	2000.

SQL	Server	Setup	Help

Setup	Parameters	and	Silent	Installation
You	can	start	the	Analysis	Services	Setup	program	(\Msolap\Install\Setup.exe	on
the	SQL	Server	CD-ROM)	with	the	following	optional	command	line
parameters:

-r

This	option	causes	Setup.exe	to	automatically	generate	a	silent	response	file
(.iss),	which	is	a	record	of	the	installation	input,	in	the	systemroot	folder
(typically	C:\WinNT).

-s

This	option	performs	a	silent	(unattended)	installation.

-f1<path\ResponseFile>

This	option	allows	you	to	specify	the	alternate	location	and	name	of	the
response	file	(.iss	file).	If	the	-f1	switch	is	not	used	when	you	run	silent
installation,	Setup	searches	for	the	response	file	Setup.iss	in	the	same	folder
as	Setup.exe.

-f2<path\LogFile>

This	option	allows	you	to	specify	an	alternate	location	and	name	of	the	log
file.	By	default,	the	Setup.log	log	file	is	created	and	stored	in	the	systemroot
folder	(typically	C:\Winnt).

If	you	use	the	-r	option	you	can	create	a	record	of	any	installation	scenario.	You
can	use	this	record	to	perform	a	silent	(unattended)	installation.	For	example,	the
following	command	initiates	a	silent	installation	of	the	components	specified	in
the	Setup.iss	response	file	previously	recorded	when	you	used	the	-r	option:

Setup.exe	-s	-f1C:\temp\setup.iss	

-z

Prevents	Setup.exe	from	checking	the	available	memory	during	initialization.
This	switch	is	necessary	when	running	Setup	on	a	computer	with	more	than
256	megabytes	(MB)	of	memory.	If	it	is	not	used,	Setup.exe	reports

insufficient	memory	and	exits.

SQL	Server	Setup	Help

Reinstalling	Analysis	Services
To	reinstall	Microsoft®	SQL	Server™	2000	Analysis	Services,	follow	these
steps:

1.	 If	you	have	made	changes	to	the	FoodMart	2000	sample	database	and
want	to	preserve	changes,	back	up	FoodMart2000.mdb,	which	is
installed	by	default	to:	C:\Program	Files\Microsoft	Analysis
Services\Samples.	Otherwise,	this	file	is	overwritten	during	the
installation	process.	

2.	 Install	Analysis	Services.	For	more	information,	see	Running	Setup.

Note		Reinstalling	Analysis	Services	does	not	delete	the	Analysis	Services
repository	(Msmdrep.mdb),	which	contains	Analysis	Services	meta	data.
However,	you	must	process	all	cubes	in	the	repository	after	reinstallation.	If	you
have	backed	up	the	FoodMart	2000	sample	database	before	reinstallation,
restore	FoodMart2000.mdb	to	recover	your	changes	to	the	file.

SQL	Server	Setup	Help

Stopping	or	Removing	Analysis	Services
To	stop	Microsoft®	SQL	Server™	2000	Analysis	Services,	follow	these	steps:

1.	 Open	Control	Panel.

2.	 If	your	computer's	operating	system	is	Windows®	2000,	open	the
Administrative	Tools	folder,	and	then	double-click	Services.

If	your	computer's	operating	system	is	Windows	NT®	4.0,	double-
click	Services.

3.	 Select	MSSQLServerOLAPService,	and	then	on	the	Action	menu
click	Stop.

4.	 Wait	until	the	application	notifies	you	that	the	service	has	stopped.

To	remove	Analysis	Services,	use	the	Add/Remove	Programs	application	in
Control	Panel.	Removing	Analysis	Services	does	not	delete	the	Analysis
Services	repository	(Msmdrep.mdb),	which	contains	Analysis	Services	meta
data,	or	the	query	log	(Msmdqlog.mdb).	If	you	want	to	fully	remove	Analysis
Services,	you	must	delete	these	files	manually.

SQL	Server	Setup	Help

Upgrading	from	an	Earlier	Version
To	upgrade	from	an	earlier	version	of	Microsoft®	SQL	Server™	2000	Analysis
Services	(previously	OLAP	Services),	perform	the	following	actions:

Back	up	the	Analysis	Services	repository	and	query	log.

Before	you	install	Analysis	Services,	as	a	precaution	against	data	loss,
back	up	the	Analysis	Services	repository	(Msmdrep.mdb),	which
contains	Analysis	Services	meta	data,	and	the	query	log
(Msmdqlog.mdb).	These	files	are	located	in	the	Bin	folder	in	the
Analysis	Services	folder.Run	Setup.

Install	Analysis	Services	by	running	the	Analysis	Services	Setup
program.	For	more	information,	see	Running	Setup.

When	you	upgrade	from	an	earlier	version,	Setup	does	not	delete	or	replace	the
Analysis	Services	repository	or	the	query	log.

Note		The	default	location	for	Analysis	Services	has	changed	from	C:\Program
Files\OLAP	Services	in	earlier	versions	of	Analysis	Services	to	C:\Program
Files\Microsoft	Analysis	Services	in	this	version	of	Analysis	Services.

SQL	Server	Setup	Help

Backward	Compatibility
Microsoft®	SQL	Server™	2000	Analysis	Services	is	compatible	with	SQL
Server	version	7.0	OLAP	Services.	Cubes	that	were	created	in	SQL	Server	7.0
OLAP	Services	need	to	be	migrated	to	the	updated	meta	data	repository	format
and	reprocessed.	Otherwise,	the	existing	structures	for	cubes,	roles,	shared
dimensions,	and	so	on	do	not	need	to	be	changed.	For	more	information	about
migrating	the	SQL	Server	7.0	OLAP	Services	repository	to	SQL	Server	2000
Meta	Data	Services,	see	Migrating	Analysis	Services	Repositories.

The	following	sections	concern	backward	compatibility	with	SQL	Server	7.0
OLAP	Services.

Administration	of	Analysis	Services
Analysis	Manager	is	backward	compatible	with	SQL	Server	7.0	OLAP	Services.
It	is	capable	of	administering	both	OLAP	servers	(the	server	that	ships	with	SQL
Server	7.0	OLAP	Services),	and	Analysis	servers	(the	server	that	ships	with	SQL
Server	2000	Analysis	Services)	concurrently.	When	administering	an	OLAP
server,	the	OLAP	Services	portion	of	SQL	Server	7.0	Service	Pack	2	code	is
used	to	assure	complete	backward	compatibility.	The	add-in	programs	in	Service
Pack	2	are	now	integrated	with	Analysis	Manager	and	do	not	need	to	be	installed
to	administer	OLAP	servers.

Client	and	Local	Cube	Support
Some	features	in	SQL	Server	2000	Analysis	Services	are	not	supported	by	the
SQL	Server	7.0	OLAP	Services	client	components	or	in	a	local	cube.	For	more
information,	including	a	list	of	features,	see	7.0	Analysis	Services	Client	and
Local	Cube	Support.

Decision	Support	Objects
Analysis	Services	now	includes	an	updated	version	of	Decision	Support	Objects
(DSO),	which	is	automatically	installed	during	Setup.	Programs	must	use	this
updated	version	of	DSO	when	administering	an	Analysis	server	(the	server	that
ships	with	SQL	Server	2000	Analysis	Services).	No	other	change	to	these

JavaScript:hhobj_1.Click()

programs	is	necessary.	Programs	that	use	the	updated	version	of	DSO	are
compatible	with	and	can	administer	OLAP	servers	(the	server	that	ships	with
SQL	Server	7.0	OLAP	Services);	however,	new	features	will	not	be	available	on
the	OLAP	server.

PivotTable	Service
SQL	Server	2000	Analysis	Services	includes	an	updated	version	of	PivotTable®
Service.	Client	applications	that	use	PivotTable	Service	do	not	need	to	use	this
new	version	when	connecting	to	an	Analysis	server	unless	you	need	access	to
objects	that	include	new	features.	The	objects	that	use	these	new	features	(such
as	data	mining	models	and	cubes	that	include	parent-child	dimensions)	are	not
seen	by	the	client	applications	that	use	the	earlier	version	of	PivotTable	Service.
Client	applications	that	use	the	updated	version	of	PivotTable	Service	can
connect	to	any	server,	regardless	of	its	version.	Client	applications	that	use	the
updated	version	of	PivotTable	Service	can	configure	their	compatibility	settings
using	the	following	properties:

MDX	Compatibility	property

MDX	Unique	Name	Style	property

Secured	Cell	Value	property

Visual	Mode	property

Custom	Add-in	Programs

Custom	add-in	programs	that	were	developed	for	use	with	SQL	Server	7.0
OLAP	Services	will	continue	to	work	with	SQL	Server	2000	Analysis	Services.
No	changes	are	necessary	to	use	them.

Archiving,	Restoring,	and	Migrating	Data
Analysis	Services	supports	some	but	not	all	permutations	of	archiving	and
restoring	databases	and	migrating	repositories	between	versions	of	the	product.

For	information	about	supported	migration	paths,	see	Supported	Migration	Paths
for	Analysis	Services	Repositories.	For	information	about	archiving	and
restoring	data	between	versions	of	the	product,	see	Archiving	and	Restoring
Databases	Between	Versions	of	Analysis	Services.

SQL	Server	Setup	Help

7.0	Analysis	Services	Client	and	Local	Cube	Support
This	table	shows	support	for	new	server	features	by	the	Microsoft®	SQL
Server™	7.0	OLAP	Services	client	components	and	in	a	SQL	Server	2000
Analysis	Services	local	cube.	When	a	feature	may	cause	data	to	be	translated
incorrectly	by	a	7.0	client	application,	the	server	prevents	the	cube	from	being
visible	and	prevents	the	client	connection	to	the	cube.	If	the	absence	of	a	feature
in	a	local	cube	might	change	data	values	presented	to	the	user,	then	a	local	cube
using	the	feature	cannot	be	created.

For	each	feature	listed	here,	the	table	shows	whether	a	cube	containing	a	feature
is	visible	on	a	7.0	client	application	and	if	the	cube	is	visible	whether	the	feature
itself	is	available	on	the	7.0	client	application.	For	each	feature,	the	table	also
shows	whether	a	local	cube	can	be	created	using	the	feature	and	whether	the
feature	itself	is	supported	in	a	local	cube.

Feature

Cube	is
visible	on
7.0	client

Feature
available	on
7.0	client

Can	create
local	cube
using	feature

Supported
in	a	local
cube

Actions Yes No Yes No
Additional
authentication
methods

Yes Yes Yes (2)

Calculated	cells No No No No
Changing	dimensionsYes No Yes No
Custom	member
formulas

No No No No

Custom	rollup
formulas

No No No No

Default	members No No Yes Yes
Dimension	security No No No No
DistinctCount No No No No
Drillthrough Yes No Yes No
Enhanced	cell
Security

Yes Yes Yes No

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

Enhanced	virtual
dimensions(1)

Yes Yes Yes Not
applicable

Exceeding	7.0
Limits(3)

No No Yes Yes

Linked	cubes Yes Not
applicable

Yes No

Member	groups Yes Yes Yes Yes
Members	with	data Yes Yes Yes Yes
New	MDX	functions Yes No Yes (4)

Parent-child
dimensions

No No Yes Yes

Ragged	dimensions Yes Yes Yes Yes
ROLAP	dimensions Yes Not

applicable
Yes No

Siblings	with	same
names

No No Yes Yes

Write-enabled
dimensions

Yes No Yes No

1				The	earlier	limit	of	760	members	in	a	virtual	dimension	does	not	apply.
2				Cell	security	is	not	supported	on	local	cubes.
3				Exceeding	127	measures	in	a	cube,	63	dimensions	in	a	cube,	or	128	levels	in	a	cube.	For	information
about	SQL	Server	2000	Analysis	Services	limits,	see	Specifications	and	Limits.
4				For	the	SQL	Server	7.0	OLAP	Services	client,	new	Multidimensional	Expressions	(MDX)	functions	are
not	supported.	For	local	cubes,	new	MDX	functions	are	available,	except	for	LookUpCube.	Calculated
members	using	LookUpCube	in	local	cubes	are	not	created.

JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()
JavaScript:hhobj_17.Click()

SQL	Server	Setup	Help

Supported	Migration	Paths	for	Analysis	Services
Repositories
You	can	migrate	a	Microsoft®	SQL	Server™	2000	Analysis	Services	repository
from	the	default	Microsoft	Access	(Microsoft	Jet	3.5	or	4.0)	database	to	a	SQL
Server	database	on	the	same	or	a	different	computer.	You	cannot	migrate	a	SQL
Server	repository	to	a	Microsoft	Access	repository.	You	can	change	the	format
from	native	to	SQL	Server	2000	Meta	Data	Services	format	when	you	migrate	a
database.	To	migrate	a	SQL	Server	database	repository	between	native	and	Meta
Data	Services	formats,	you	must	migrate	it	from	one	SQL	Server	database	to
another.	The	following	table	shows	supported	migration	paths	for	repository
databases.

	 	 To	native 	 To	MDS

	 	 Jet	3.5/4.0
SQL	Server
7.0/2000 SQL	Server	2000

From	native Jet	3.5/4.0 No Yes Yes
	 SQL	Server

7.0/2000
No Yes(2) Yes(2)

From	MDS(1) SQL	Server
2000

No Yes(2) Yes(2)

1				MDS	represents	the	Meta	Data	Services	(previously	named	Microsoft	Repository)	format	supported	by
SQL	Server	2000.
2				Source	and	destination	must	be	different	databases.

See	Also

Migrating	Analysis	Services	Repositories

OLE	DB	Provider	for	Jet

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

Archiving	and	Restoring	Databases	Between	Versions
of	Analysis	Services
On	an	Analysis	server	(the	server	that	ships	with	Microsoft	SQL	Server	2000
Analysis	Services),	you	can	restore	databases	that	were	archived	using	an	OLAP
server	(the	server	that	ships	with	SQL	Server	7.0	OLAP	Services)	or	an	Analysis
server.	The	following	table	shows	all	the	restoration	paths	supported	for
databases	archived	while	in	SQL	Server	7.0	OLAP	Services	or	SQL	Server	2000
Analysis	Services	using	native	or	SQL	Server	2000	Meta	Data	Services	formats
with	SQL	Server	or	the	Microsoft	Jet	3.5	or	4.0	OLE	DB	provider.

	 	 	 To	native 	 	 	 To	MDS
	 	 	

Jet	3.5/4.0 	
SQL
Server

	 SQL
Server

	 	 	 7.0 2000 7.0 2000 2000
From
native(1)

Jet	3.5/4.0 7.0 Yes Yes Yes Yes Yes

	 	 2000 No(3) Yes No(3) Yes Yes
	 SQL

Server
7.0 Yes Yes Yes Yes Yes

	 	 2000 No(3) Yes No(3) Yes Yes
From
MDS(2)

SQL
Server

2000 No(3) Yes No(3) Yes Yes
1				From	specifies	the	repository	format,	database	engine,	and	version	of	OLAP	Services	or	Analysis
Services	that	archives	a	database;	To	specifies	the	repository	format,	database	engine,	and	version	of	OLAP
Services	or	Analysis	Services	that	restores	a	database.
2				MDS	represents	the	Meta	Data	Services	(previously	named	Microsoft	Repository)	format	supported	by
SQL	Server	2000.
3				OLAP	servers	do	not	support	restoration	of	Analysis	Services	databases.

See	Also

Archiving	and	Restoring	Databases

OLE	DB	Provider	for	Jet

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

Microsoft	SQL	Server	2000	Copyright	and	Disclaimer
This	document,	including	sample	applications	herein,	is	provided	for
informational	purposes	only	and	Microsoft	makes	no	warranties,	either	express
or	implied,	in	this	document.	Information	in	this	document,	including	samples,
URL	and	other	Internet	Web	site	references,	is	subject	to	change	without	notice.
The	entire	risk	of	the	use	or	the	results	of	the	use	of	this	document	remains	with
the	user.

The	primary	purpose	of	a	sample	is	to	illustrate	a	concept,	or	a	reasonable	use	of
a	particular	statement	or	clause.	Most	samples	do	not	include	all	of	the	code	that
would	normally	be	found	in	a	full	production	system,	as	a	lot	of	the	usual	data
validation	and	error	handling	is	removed	to	focus	the	sample	on	a	particular
concept	or	statement.	Technical	support	is	not	available	for	these	samples	or	for
the	provided	source	code.

Unless	otherwise	noted,	the	example	companies,	organizations,	products,	people,
and	events	depicted	herein	are	fictitious	and	no	association	with	any	real
company,	organization,	product,	person,	or	event	is	intended	or	should	be
inferred.	Complying	with	all	applicable	copyright	laws	is	the	responsibility	of
the	user.	Without	limiting	the	rights	under	copyright,	no	part	of	this	document
may	be	reproduced,	stored	in	or	introduced	into	a	retrieval	system,	or	transmitted
in	any	form	or	by	any	means	(electronic,	mechanical,	photocopying,	recording,
or	otherwise),	or	for	any	purpose,	without	the	express	written	permission	of
Microsoft	Corporation.

Microsoft	may	have	patents,	patent	applications,	trademarks,	copyrights,	or	other
intellectual	property	rights	covering	subject	matter	in	this	document.	Except	as
expressly	provided	in	any	written	license	agreement	from	Microsoft,	the
furnishing	of	this	document	does	not	give	you	any	license	to	these	patents,
trademarks,	copyrights,	or	other	intellectual	property.

©1996-2000	Microsoft	Corporation.	All	rights	reserved.

Active	Directory,	ActiveX,	BackOffice,	CodeView,	Developer	Studio,	FoxPro,
JScript,	Microsoft,	Microsoft	Press,	Microsoft	SQL	Server,	MSDN,	MS-DOS,
Outlook,	PivotChart,	PivotTable,	PowerPoint,	Visual	Basic,	Visual	C++,	Visual
Studio,	Win32,	Windows	2000,	Windows,	and	Windows	NT	are	either	registered

trademarks	or	trademarks	of	Microsoft	Corporation	in	the	United	States	and/or
other	countries.

The	names	of	actual	companies	and	products	mentioned	herein	may	be	the
trademarks	of	their	respective	owners.

Version:	8.00.000

SQL	Server	Setup	Help

Additional	SQL	Server	Resources
This	table	provides	Internet	resources	for	information	about	Microsoft®	SQL
Server™	and	related	products	and	technologies.

Resource Address
Microsoft	Product	Support
Services	Web

http://support.microsoft.com/directory

Microsoft	Usenet news://msnews.microsoft.com/
Microsoft	Windows®
Hardware	Compatibility
List

http://www.microsoft.com/hcl

MSDN® http://msdn.microsoft.com
Meta	Data	Services
(formerly	known	as
Microsoft	Repository)

http://msdn.microsoft.com

Professional	Association
for	SQL	Server

http://www.sqlpass.org/

Microsoft	SQL	Server
Developer	Center

http://msdn.microsoft.com

SQL	Server	Magazine http://www.sqlmag.com/
Microsoft	SQL	Server
Support

http://support.microsoft.com/support/sql

TechNet	Site www.Microsoft.com/technet
Microsoft	Accessibility
Web	site

http://www.microsoft.com/enable

Microsoft	SQL	Server
Web	site

http://www.microsoft.com/sql

Microsoft	SQL	Server
Web	site,	English	Query
page

http://www.microsoft.com/sql

Microsoft	SQL	Server
Web	site,	Analysis
Services	page

http://www.microsoft.com/sql

http://www.Microsoft.com/isapi/redir.dll?prd=productsupport
news://msnews.microsoft.com/
http://www.microsoft.com/isapi/redir.dll?prd=hardware compatibility list&ar=hwtest/hcl
http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red
http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red
http://www.sqlpass.org/
http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red
http://www.sqlmag.com/
http://www.Microsoft.com/isapi/redir.dll?prd=support&ar=sql/support/p51745.htm
http://www.microsoft.com/isapi/redir.dll?prd=technet
http://www.microsoft.com/isapi/redir.dll?prd=accessibility&ar=enable
http://www.microsoft.com/isapi/redir.dll?Prd=SQL&ar=home
http://www.microsoft.com/isapi/redir.dll?Prd=SQL&ar=eq
http://www.microsoft.com/isapi/redir.dll?Prd=SQL&ar=home

XML	Developer	Center http://www.msdn.microsoft.com/xml/default.asp

http://www.microsoft.com/isapi/redir.dll?prd=xml

SQL	Server	Setup	Help

Backup	and	Restore	(Level	1)
Because	backups	are	not	compatible	between	servers	running	Microsoft®	SQL
Server™	2000	and	servers	running	earlier	versions	of	SQL	Server,	SQL	Server
6.x	database	dumps	(backups)	cannot	be	restored	onto	a	SQL	Server	2000	server.
For	more	information	about	upgrading	your	databases	to	SQL	Server	2000,	see
Upgrading	Databases	from	SQL	Server	6.5	(Upgrade	Wizard).

SQL	Server	6.x SQL	Server	2000
The	VOLUME	clause	of	the
DUMP	and	LOAD	statements
indicated	the	volume	ID	for	a
dump	device.

The	VOLUME	keyword	has	been
replaced	by	the	MEDIANAME	clause.
Use	of	the	VOLUME	clause	results	in
an	error.

Remove	all	references	of	the	VOLUME
keyword	in	all	BACKUP,	DUMP,
LOAD,	or	RESTORE	statements	and
replace	with	references	to
MEDIANAME.

The	DUMP	and	LOAD	statements
supported	the	use	of	diskettes.

Backing	up	to	diskette	is	not	supported.

Back	up	to	hard	disk,	and	then	copy	the
backup	file	to	one	or	more	diskettes.

The	sysbackuphistory,
sysbackupdetail,
sysrestorehistory,	and
sysrestoredetail	system	tables
tracked	DUMP	and	LOAD	history
information.

The	DUMP	and	LOAD	history	tracking
system	tables	have	been	removed	and
replaced	by	a	new	set	of	system	tables.

Remove	all	references	to
sysbackuphistory,	sysbackupdetail,
sysrestorehistory,	and
sysrestoredetail.	Because	the	structure
and	contents	of	the	backup	system
tables	have	changed	significantly,
familiarize	yourself	with	these	new
system	tables	before	referencing	them:

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

backupfile,	backupmediafamily,
backupmediaset,	backupset,
restorefile,	restorefilegroup,	and
restorehistory.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()

SQL	Server	Setup	Help

Configuration	Options	(Level	1)
Administrative	scripts	may	have	used	these	configuration	options.	For	more
information	about	configuration	options,	see	Setting	Configuration	Options.

SQL	Server	6.x SQL	Server	2000
backup	buffer	size	specified	the	size
of	the	dump	and	load	buffer	(used	to
increase	backup	speed).

Removed;	no	longer	supported.
Remove	all	references	to	backup
buffer	size.

backup	threads	specified	the
number	of	threads	to	be	reserved	for
striped	dump	and	load	operations.

Removed;	no	longer	supported.
Remove	all	references	to	backup
threads.

database	size	set	the	default	number
of	megabytes	(MB)	allocated	to	each
new	user	database.

Removed;	no	longer	supported.
Remove	all	references	to	database
size.

free	buffers	determined	the
threshold	of	free	buffers	available	to
the	system.

Removed;	no	longer	supported.
Remove	all	references	to	free
buffers.

hash	buckets	set	the	number	of
buckets	used	for	hashing	pages	to
buffers	in	memory.

Removed;	no	longer	supported.
Remove	all	references	to	hash
buckets.

LE	threshold	maximum	determined
the	maximum	number	of	page	locks
to	hold	before	escalating	to	a	table
lock.

Removed;	no	longer	supported.
Remove	all	references	to	LE
threshold	maximum.

LE	threshold	minimum	determined
the	minimum	number	of	page	locks
required	before	escalating	to	a	table
lock.

Removed;	no	longer	supported.
Remove	all	references	to	LE
threshold	minimum.

LE	threshold	percent	specified	the
percentage	of	page	locks	needed	on	a
table	before	a	table	lock	is	requested.

Removed;	no	longer	supported.
Remove	all	references	to	LE
threshold	percent.

logwrite	sleep	specified	the	number
of	milliseconds	that	a	write	to	the	log

Removed;	no	longer	supported.
Remove	all	references	to	logwrite

JavaScript:hhobj_1.Click()

will	be	delayed	if	the	buffer	is	not
full.

sleep.

max	lazywrite	IO	tuned	the	priority
of	batched	asynchronous	I/O
operations	performed	by	the	lazy
writer.

Removed;	no	longer	supported.
Remove	all	references	to	max
lazywrite	IO.

memory	set	the	size	of	available
memory,	in	2K	units.

Removed;	no	longer	supported.
Memory	is	configured	automatically
based	on	need	and	available	memory.
To	control	the	range	of	memory
configured	automatically,	use	the
min	server	memory	and	max	server
memory	options.	Remove	all
references	to	memory.

open	databases	set	the	maximum
number	of	databases	that	can	be	open
at	one	time	on	SQL	Server.

Removed;	no	longer	supported.
Remove	all	references	to	open
databases.

procedure	cache	specified	the
percentage	of	memory	allocated	to
the	procedure	cache	after	the	SQL
Server	memory	needs	are	met.

Removed;	no	longer	supported.
Remove	all	references	to	procedure
cache.

RA	cache	hit	limit	specified	the
number	of	cache	hits	that	a	read-
ahead	request	could	have	before	it
was	canceled.

Removed;	no	longer	supported.
Remove	all	references	to	RA	cache
hit	limit.

RA	cache	miss	limit	specified	the
number	of	cache	misses	that	occurred
during	a	horizontal	traversal	before
read-ahead	started	for	that	command.

Removed;	no	longer	supported.
Remove	all	references	to	RA	cache
miss	limit.

RA	delay	specified	the	delay	of	read-
ahead,	in	milliseconds.

Removed;	no	longer	supported.
Remove	all	references	to	RA	delay.

RA	pre-fetches	determined	how	far
ahead	the	read-ahead	manager	read
(on	an	extent	basis)	before	the	pre-
fetch	manager	idled.

Removed;	no	longer	supported.
Remove	all	references	to	RA	pre-
fetches.

RA	slots	per	thread	specified	the
number	of	simultaneous	requests
each	read-ahead	service	thread
managed.

Removed;	no	longer	supported.
Remove	all	references	to	RA	slots
per	thread.

RA	worker	threads	specified	the
number	of	threads	used	to	service
read-ahead	requests.

Removed;	no	longer	supported.
Remove	all	references	to	RA	worker
threads.

recovery	flags	determined	what
information	SQL	Server	displayed	in
the	error	log	during	recovery.

Removed;	no	longer	supported.
Remove	all	references	to	recovery
flags.

remote	conn	timeout	specified	a
time	limit	to	break	a	server-to-server
connection.

Removed;	no	longer	supported.
Remove	all	references	to	remote
conn	timeout.

SMP	concurrency	specified	the
maximum	number	of	CPUs	that
would	be	used	by	SQL	Server.

Removed;	no	longer	supported.
Remove	all	references	to	SMP
concurrency.

sort	pages	specified	the	maximum
number	of	pages	to	be	allocated	to
sorting	per	user.

Replaced	by	min	memory	per
query.	For	more	information	about
the	min	memory	per	query	option,
see	Server	Memory	Options.

Replace	all	references	of	sort	pages
with	min	memory	per	query	and
index	create	memory.

tempdb	in	ram	placed	the	tempdb
database	in	RAM,	if	needed.

No	longer	supported	because	SQL
Server	2000	has	been	optimized	for
maximum	performance.

Remove	all	references	to	tempdb	in
ram.

trace	flag	204	supported	queries
containing	sort	columns	in	the
ORDER	BY	clause	not	included	in
the	select	list	when	the	DISTINCT
keyword	was	supplied.

No	longer	supported.	Remove	all
references	to	trace	flag	204.	For
more	information	about	supported
trace	flags,	see	Trace	Flags.

user	connections	set	the	maximum Now	an	advanced	option.	Default

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

number	of	simultaneous	connections
to	SQL	Server	allowed.

value	of	0	indicates	automatic
growth.	Remove	all	references	to
user	connections.

For	more	information	about	other	changes	to	configuration	options,	see	SQL
Server	2000	and	SQL	Server	version	7.0.

SQL	Server	Setup	Help

Custom	Sort	Orders	(Level	1)

SQL	Server	6.x SQL	Server	2000
Custom	sort	orders	were
installed	from	definition	files
(usually	with	an	.srt	file
extension).

Removed;	no	longer	available	or
supported.	Remove	all	references	to
custom	sort	orders.	During	installation	of
SQL	Server	2000,	select	an	appropriate	sort
order.	For	more	information,	see	Windows
Collation	Sorting	Styles.

SQL	Server	Setup	Help

Databases	(Level	1)

SQL	Server	6.x SQL	Server	2000
The	ON	database_device	=	size
clause	of	ALTER	DATABASE
specified	the	amount	of	space,	in
megabytes	(MB),	allocated	to
the	database	extension	and	could
be	used	following	DISK	INIT	to
alter	the	database	device	size.

If	the	file	was	not	created	originally	by
DISK	INIT,	the	ON	database_device	=
size	syntax	cannot	be	specified	with
ALTER	DATABASE.	Instead,	use	the
MODIFY	FILE	clause	of	ALTER
DATABASE	to	alter	the	size	of	a
database	file.	Remove	all	references	of
the	ON	database_device	=	size	clause	of
ALTER	DATABASE.	For	more
information,	see	ALTER	DATABASE.

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Database	Options	(Level	1)
Administrative	scripts	may	have	used	these	database	options.	In	SQL	Server
2000,	database	options	should	be	set	with	the	ALTER	DATABASE	statement
rather	than	the	sp_dboption	stored	procedure.	For	more	information	about
database	options,	see	Setting	Database	Options	and	ALTER	DATABASE.

SQL	Server	6.x SQL	Server	2000
The	subscribe	option	of	sp_dboption
enabled	or	disabled	a	database	for
subscriptions.

Removed;	no	longer	available.	Use
sp_addsubscription	to	enable	or
disable	a	database	for	subscriptions.

The	no	chkpt.	on	recovery	option	of
sp_dboption	defined	whether	or	not	a
checkpoint	record	was	added	to	a
database	recovered	during	a	SQL
Server	startup.

Removed;	no	longer	available.
When	using	a	warm	standby	server,
use	the	WITH	STANDBY	clause	of
the	RESTORE	statement.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

SQL	Server	Setup	Help

Data	Access	Objects	(DAO)	(Level	1)

SQL	Server	6.x SQL	Server	2000
Version	3.x	of	the	Data	Access
Objects	(DAO)	functioned
properly	when	accessing	SQL
Server	version	6.x	servers.

Because	the	ODBC	driver	that	ships	with
SQL	Server	2000	exposes	new	GUID	and
Unicode	data	types	when	connecting	to
SQL	Server,	DAO	version	3.x	does	not
work	properly	with	SQL	Server	2000.
However,	the	odbccmpt	Utility	is
provided	to	enable	SQL	Server	version
6.x	ODBC	compatibility	for	a	DAO
application.

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

DBCC	(Level	1)

SQL	Server	6.x SQL	Server	2000
DBCC	DBREINDEX	used	the
SORTED_DATA	and
SORTED_DATA_REORG
clauses.	The	SORTED_DATA
clause	eliminated	the	sort
performed	when	a	clustered	index
was	created	and	physically
reorganized	the	data.	The
SORTED_DATA_REORG	clause
eliminated	the	sort	performed
when	a	clustered	index	was
created.

Removed;	no	longer	supported.	Remove
all	references	to	either	the
SORTED_DATA	or	the
SORTED_DATA_REORG	clauses	of
DBCC	DBREINDEX	and	replace	with
references	to	the	DROP_EXISTING
clause	of	CREATE	INDEX.

DBCC	SHRINKDB	either
returned	the	minimum	size	to
which	a	database	could	shrink,	or
shrank	the	size	of	the	specified
database	to	the	specified	value.

Removed;	no	longer	supported	or
available.	Remove	all	references	of
DBCC	SHRINKDB	and	replace	with
references	to	DBCC
SHRINKDATABASE.	Consider
shrinking	databases	automatically	by
using	the	AUTO_SHRINK	option	of
ALTER	DATABASE.

DBCC	MEMUSAGE	provided
detailed	reports	on	memory	use.

Removed;	no	longer	supported	or
available.	Remove	all	references	of
DBCC	MEMUSAGE	and	replace	with
references	to	these	Performance
Monitor	counters.

Performance	Monitor	object
name Performance	Monitor	counter	name
SQL	Server:	Buffer	Manager
Object

Procedure	Cache	Pages	In	Use

	 Procedure	Cache	Size	(pages)

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

SQL	Server:	Cache	Manager
Object

Procedure	Cache	Hit	Ratio

	 Procedure	Cache	Pages
	 Procedure	Cache	Object	Counts*
*	These	counters	are	available	for	various	categories	of	cache	objects	including	ad	hoc	sql,	prepared	sql,
procedures,	triggers,	and	so	on.

JavaScript:hhobj_5.Click()

SQL	Server	Setup	Help

DB-Library	(Level	1)

SQL	Server	6.x SQL	Server	2000
DB-Library's	two-phase	commit
special	library	managed
transactions	distributed	across	two
or	more	servers.

The	DB-Library	two-phase	commit	is
no	longer	supported.	Use	Microsoft
Distributed	Transaction	Coordinator
(MS	DTC)	to	accomplish	simultaneous
updates	on	two	servers.	Remove	all
references	to	DB-Library's	two-phase
commit.

DB-Library	applications	could	be
developed	in	Microsoft®	Visual
Basic®.

The	development	libraries	for	DB-
Library	for	Visual	Basic	are	not
supplied.	Existing	DB-Library	for
Visual	Basic	applications	will	run
against	SQL	Server	2000,	but	must	be
maintained	using	the	development
libraries	for	SQL	Server	6.5.	All	new
Visual	Basic	applications	written	to
access	SQL	Server	should	use	the	Visual
Basic	data	APIs	such	as	ActiveX	Data
Objects	(ADO)	and	Remote	Data
Objects	(RDO).

SQL	Server	Setup	Help

DECnet	Network	Library	(Level	1)

SQL	Server	6.x SQL	Server	2000
For	Intel-based,	MIPS-based,	and
Alpha	AXP-based	computers,	server
DECnet	Sockets	Net-Libraries
provided	connectivity	with
PATHWORKS	networks	by	allowing
clients	running	on	VMS	to	connect	to
SQL	Server.

Removed;	no	longer	supported.
Remove	all	references	to	the
DECnet	Sockets	Net-Libraries.

SQL	Server	Setup	Help

Disk	Commands	(Level	1)

SQL	Server	6.x SQL	Server	2000
DISK	REINIT	and	DISK
REFIT	restored	usage
information	from	system	tables
when	a	device	existed	(the	file
was	present)	but	the	entries	in
sysusages	no	longer	existed.

Removed;	no	longer	supported	or
available.	Remove	all	references	to	DISK
REINIT.	Replace	all	references	of	DISK
REFIT	with	references	to	ALTER
DATABASE,	which	adds	and	drops
filegroups	included	in	a	database,	and
modifies	the	size	of	each	database
filegroup.

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Disk	Mirroring	(Level	1)

SQL	Server	6.x SQL	Server	2000
DISK	MIRROR,	DISK
REMIRROR,	and	DISK
UNMIRROR	performed	SQL
Server	disk	mirroring.

No	longer	supported	because	SQL	Server
mirroring	is	no	longer	supported.	Use
Microsoft	Windows	NT®	or	hardware-
based	RAID.	For	more	information,	see
your	Windows	NT	or	hardware
documentation.

SQL	Server	Setup	Help

Indexes	(Level	1)

SQL	Server	6.x SQL	Server	2000
The	SORTED_DATA_REORG
clause	of	CREATE	INDEX
eliminated	the	sort	performed
when	a	clustered	index	was
created.

Replaced	by	the	DROP_EXISTING
clause	of	CREATE	INDEX.	Remove	all
references	to	the
SORTED_DATA_REORG	clause	of
CREATE	INDEX	and	replace	with
references	to	DROP_EXISTING.

The	SORTED_DATA	clause	of
CREATE	INDEX	eliminated	the
sort	performed	when	a	clustered
index	was	created	and	physically
reorganized	the	data.

Removed;	no	longer	available.	Remove
all	references	to	the	SORTED_DATA
clause	of	CREATE	INDEX.

bcp	could	import	an	already
sorted	data	file	into	a	SQL	Server
table.	Creating	a	clustered	index
on	an	ordered	table	could	be
optimized	by	using	the
SORTED_DATA	clause	of
CREATE	INDEX.	The
SORTED_DATA	clause	forced
SQL	Server	not	to	sort	or
reorganize	the	previously	ordered
table.

SQL	Server	returns	an	error	message
stating	that	the	SORTED_DATA	clause
of	CREATE	INDEX	is	ignored	and	no
longer	supported.	Remove	all	references
to	the	SORTED_DATA	clause	of
CREATE	INDEX.	Consider	creating	the
clustered	index	before	using	bcp	to
import	the	data.	bcp	uses	improved
index	maintenance	strategies	to	make
data	importation	with	a	preexisting
index	faster	than	earlier	releases	and
avoids	resorting	of	data	after
importation.

The	ALLOW_DUP_ROW	and
IGNORE_DUP_ROW	clauses	of
the	CREATE	INDEX	statement
allowed	data	to	be	updated	into
tables	with	a	unique	index	and
without	having	to	filter	out
duplicates	first.

No	longer	supported.	Using	either
ALLOW_DUP_ROW	or
IGNORE_DUP_ROW	in	the	CREATE
INDEX	statement	generates	a	warning
message.	If	there	is	no	unique	clustered
index	and	there	is	a	need	to	avoid
duplicate	rows,	create	a	unique

JavaScript:hhobj_1.Click()

constraint	on	one	or	more	columns	other
than	the	clustering	key.

SQL	Server	Setup	Help

Open	Data	Services	(Level	1)
In	SQL	Server	2000,	Open	Data	Services,	now	called	extended	stored
procedures,	no	longer	supports	gateway	applications.

SQL	Server	6.x SQL	Server	2000
The	ODBC	client	driver	for
Open	Data	Services	gateways
(ODSGT32.DLL)	and	associated
resource	files	were	used	by
ODBC	clients	to	connect	to
Open	Data	Services	gateway
servers.

Not	shipped	with	SQL	Server	2000.	The
SQL	Server	version	6.x	ODSGT32.DLL
and	associated	resource	files	work	against
an	Open	Data	Services	gateway
recompiled	with	SQL	Server	version	7.0
headers	and	libraries.	Use	the	SQL	Server
version	6.x	ODBC	client	driver	for	Open
Data	Services	(ODSGT32.DLL)	and
associated	resource	files	to	connect	from
an	ODBC	client	to	an	Open	Data	Services
gateway.

Consider	redesigning	your	application
using	Windows	NT	Component	Services.

Open	Data	Services	data
structures	such	as
SRV_CONFIG,	SRV_PROC,
and	SRV_SERVER	were
exposed	in	the	Open	Data
Services	header	file.

These	data	structures	are	no	longer
exposed,	and	the	data	structure	members
have	changed.	Applications	that	reference
these	data	structures	directly	or	their
members	must	be	changed	and
recompiled	using	the	SQL	Server	7.0
Open	Data	Services	header	file	(srv.h)
and	relinked	using	the	SQL	Server	7.0
Open	Data	Services	library	file
(opends60.lib).	These	changes	should	be
made	to	avoid	the	possibility	of	server
failures.

Earlier	versions	of	SQL	Server
could	make	remote	stored
procedure	calls	against	gateways

SQL	Server	2000	does	not	support	remote
stored	procedure	calls	against	gateways
compliant	with	6.x	and	4.x	versions	of

compliant	with	6.x	or	4.x
versions	of	Open	Data	Services.

Open	Data	Services.	SQL	Server	2000
does	support	remote	stored	procedure
calls	against	gateways	compliant	with
SQL	Server	2000.	Gateways	compiled
and	linked	with	earlier	versions	of	Open
Data	Services	should	be	recompiled	with
SQL	Server	7.0	version	of	Open	Data
Services.	Consider	using	distributed
query	if	your	target	data	source	has	an
ODBC	or	an	OLE	DB	provider	on
Windows	NT	or	Windows	95/98.

SQL	Server	Setup	Help

Program	Group	Tools	and	Utilities	(Level	1)
In	Microsoft®	SQL	Server™	2000,	these	tools	have	been	renamed	or	replaced.

SQL	Server	6.x SQL	Server	2000
ISQL_w SQL	Query	Analyzer
MS	Query N/A
SQL	Client	Configuration Client	Network	Utility
SQL	Enterprise	Manager SQL	Server	Enterprise	Manager
SQL	Help N/A
SQL	Security	Manager N/A
SQL	Trace SQL	Server	Profiler
SQL	Performance
Monitor

N/A.	SQL	Server	performance	counters	are
added	to	the	Windows	2000	System	Monitor	or
the	Windows	NT	4.0	Performance	Monitor.

SQL	Service	Manager SQL	Server	Service	Manager
SQL	Setup N/A

SQL	Server	Setup	Help

Replication	(Level	1)

SQL	Server	6.x SQL	Server	2000
Restricted	publications	could	be
created	through	the	user	interface
and	used	in	replicating	data.

Restricted	publications	cannot	be
created	through	the	user	interface	and
are	no	longer	supported.	Remove	all
references	to	restricted	publications.	A
replacement	for	restricted	publications
will	be	available	in	a	later	release.	For
more	information,	see	Replication
Overview.

Publish	and	subscribe	properties
could	be	set	using	the	DBOption
object.

No	longer	available.	Remove	all
references	to	the	DBOption	object	and
replace	with	references	to	the
EnablePublishing	property	of	the
ReplicationDatabase	object.

The	repl_publisher	login	allowed
replication	processes	on	the
distributor	to	connect	to	a
subscription	server	and	replicated
table	schema	and	data	to
destination	databases.

No	longer	available.	Remove	all
references	to	the	repl_publisher	login
and	replace	with	references	to	a	login	in
a	publication	access	list	(PAL).	For
more	information	about	PALs,	see
Publication	Access	Lists.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

SQL	Server	Setup	Help

Security	(Level	1)

SQL	Server	6.x SQL	Server	2000
DENY	was	not	a	reserved
keyword	and	could	be	used	as
an	object	identifier.

DENY	is	a	reserved	keyword.	Rename
any	object	named	DENY.	Change	all
Transact-SQL	statements	and	scripts
referencing	the	object	to	use	the	new
object	name.	If	DENY	is	retained	as	an
object	identifier,	all	references	to	the
object	must	use	Delimited	Identifiers.

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Segments	(Level	1)

SQL	Server	6.x SQL	Server	2000
Indexes	could	be	placed	on
segments	using	the	CREATE
INDEX	statement.

Segments	are	no	longer	supported.
However,	CREATE	INDEX	can	create
an	index	on	a	filegroup.	Remove	all
references	to	segments	and	replace	with
references	to	filegroups	within	a
CREATE	INDEX	statement.

Tables	could	be	created	on	a
particular	segment	by	using	the
CREATE	TABLE	statement.

CREATE	TABLE	references	files	and
filegroups	instead	of	segments.	Remove
all	references	to	segments	and	replace
with	references	to	files	and	filegroups
within	a	CREATE	TABLE	statement.

User-defined	segments	allowed
the	placement	of	database	objects
on	certain	devices	for
performance	reasons.

Segments	are	no	longer	supported.
Multidisk	RAID	devices	generally
provide	a	greater	increase	in
performance	with	a	lower	associated
administrative	cost.	Use	filegroups	for
user-defined	placement	of	data,	indexes,
or	text.	Remove	all	references	to	these
segment-related	system	stored
procedures:

sp_addsegment
sp_dropsegment
sp_extendsegment
sp_helpsegment

Create,	modify,	or	drop	files	and
filegroups;	and	place	indexes	on	files	or
filegroups	using	CREATE	TABLE,
CREATE	DATABASE,	ALTER
DATABASE,	and	CREATE	INDEX.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

SQL	Server	Setup	Help

Services	(Level	1)

SQL	Server	6.x SQL	Server	2000
SQL	Executive	provided	the	SQL
Server	scheduling	engine.	SQL
Executive	offered	extensive	and
varied	task	scheduling	and
alerting	abilities,	and	was	capable
of	handling	large	client/server
environments.

SQL	Executive	tasks	are	now	performed
by	SQL	Server	Agent.	Use	SQL	Server
Agent	for	scheduling	purposes.	For
more	information,	see	Configuring	the
SQL	Server	Agent	Service.

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

SET	DISABLE_DEF_CNST_CHK	(Level	1)

SQL	Server	6.x SQL	Server	2000
The	SET
DISABLE_DEF_CNST_CHK
setting	controlled	interim
constraint	checking.

Removed;	no	longer	available.	Remove
all	references	to	SET
DISABLE_DEF_CNST_CHK.

SQL	Server	Setup	Help

SET	SHOWPLAN	(Level	1)

SQL	Server	6.x SQL	Server	2000
SET	SHOWPLAN	generated	a
description	of	the	processing
plan	for	the	query	and
processed	it	immediately
unless	the	SET	NOEXEC
setting	was	enabled.

SET	SHOWPLAN	has	been	replaced	with
SET	SHOWPLAN_ALL	and	SET
SHOWPLAN_TEXT.	The	SET
SHOWPLAN_ALL	and	SET
SHOWPLAN_TEXT	statements	return
only	query	or	statement	execution	plan
information	and	do	not	execute	the	query
or	statement.	To	execute	the	query	or
statement,	turn	the	appropriate	showplan
statement	OFF.	The	query	or	statement	will
then	execute.

Remove	all	references	to	either	SET
SHOWPLAN	ON	or	SET	SHOWPLAN
OFF	and	replace	with	references	to	either
SET	SHOWPLAN_ALL	ON,	SET
SHOWPLAN_TEXT	ON,	SET
SHOWPLAN_ALL	OFF,	or	SET
SHOWPLAN_TEXT	OFF.	Expect
differences	in	behavior	as	compared	to
earlier	versions	of	SQL	Server.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

SQL	Alerter	(Level	1)

SQL	Server	6.x SQL	Server	2000
SQL	Alerter,	SQLALRTR.exe,
was	used	to	integrate	the	alert
engine	with	the	Windows	NT
Performance	Monitor	alerter.

Removed;	no	longer	supported	or
available.	Replaced	by	SQL	Server
performance	condition	alerts.	Remove
all	references	to	SQL	Alerter	and
replace	with	references	to	SQL	Server
performance	condition	alerts.	For	more
information,	see	Defining	Alerts.

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

SQL-DMO	(Level	1)
SQL-DMO	applications	are	administrative	tools	and	should	be	updated	to	work
with	SQL	Server	2000.	It	is	recommended	that	code	be	recompiled	and	any	error
messages	returned	from	the	build	process	be	used	to	track	any	necessary
changes.

SQL	Server	6.x SQL	Server	2000
SQL-DMO	is	implemented	in
Sqlole.dll.	The	SQL-DMO	objects
exhibit	properties,	methods,	and
events	that	automate
administrative	tasks	for	SQL
Server	version	6.5	and	earlier.
SQL-DMO,	implemented	in
Sqlole.dll,	cannot	connect	to	and
operate	against	SQL	Server	2000
or	SQL	Server	7.0.

SQL-DMO	is	implemented	in
Sqldmo.dll.	These	SQL-DMO	objects
expose	the	properties,	methods,	and
events	that	automate	administrative
tasks	for	SQL	Server.	They	cannot	be
used	to	connect	to	and	operate	against	a
SQL	Server	version	6.5	(or	earlier)
server.	Therefore,	it	is	recommended
that	you	rewrite	SQL-DMO
applications.

If	the	application	must	operate	against
both	SQL	Server	2000	and	version	6.5
or	earlier	of	SQL	Server,	reference	both
Sqldmo.dll	and	Sqlole.dll	components
in	the	application.	Develop	new,
separate	subroutines	referencing	the
SQL	Server	2000	SQL-DMO	objects
from	the	existing	subroutines.

If	the	application	will	work	against	SQL
Server	2000	only,	rewrite	existing
subroutines	to	reference	SQL	Server
2000	SQL-DMO	objects.

If	the	application	will	not	be	used
against	your	new	SQL	Server	2000
server(s),	continue	to	use	the	application
unchanged.

SQL	Server	Setup	Help

System	Stored	Procedures	(General	Extended	Procedures)	(Level
1)

SQL	Server	6.x SQL	Server	2000
xp_snmp_getstate	returned	the	state
of	the	SQL	Server	Simple	Network
Management	Protocol	(SNMP)
agent.	xp_snmp_raisetrap	permitted
a	client	to	define	and	send	a	trap	(an
SNMP	alert)	to	an	SNMP	client.

Removed;	no	longer	available.
Remove	all	references	to	either
xp_snmp_getstate	or
xp_snmp_raisetrap.

SQL	Server	Setup	Help

System	Stored	Procedures	(Replication)	(Level	1)

SQL	Server	6.x SQL	Server	2000
sp_replica	remotely	set	(on	a
Subscriber)	a	sysobjects	category
bit	that	marked	the	table	as	a	replica.

Removed;	no	longer	supported	or
available.	Remove	all	references	to
sp_replica.

sp_replsync	acknowledged
completion	of	a	manual
synchronization	when	used	from	a
Subscriber.

Removed;	no	longer	supported	or
available.	Remove	all	references	to
sp_replsync.

sp_helppublicationsync	provided
information	about	a	scheduled
synchronization	task	for	a
publication.

No	longer	supported.	An	error
message	is	returned	if	this	stored
procedure	is	used.	Remove	all
references	to
sp_helppublicationsync.

sp_subscribe	and	sp_unsubscribe
remotely	added	or	canceled	a
subscription	to	a	particular	article
within	a	publication,	to	a	whole
publication,	or	to	all	publications.

No	longer	supported.	An	error
message	is	returned	if	this	stored
procedure	is	used.	Remove	all
references	to	either	sp_subscribe	or
sp_unsubscribe,	or	use	the
@@ERROR	function	to	test	for
errors.

name	value	parameter	of
sp_changepublication	was	used	to
provide	the	new	publication	name.

Removed;	no	longer	supported	or
available.	Remove	all	references	to
the	name	value	parameter	of
sp_changepublication.

sp_addpublisher	added	a	Publisher
at	the	Subscriber	and	added	a
Distribution	Publisher	at	the
Distributor.

Replaced	by	sp_adddistpublisher.
Remove	all	references	to
sp_addpublisher	and	replace	with
references	to	sp_adddistpublisher.

sp_droppublisher	dropped	a
publication	server.

Removed;	no	longer	supported	or
available.	Remove	all	references	to
sp_droppublisher.	To	drop	a
Publisher	at	a	Distributor,	use

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

sp_dropdistpublisher.
sp_distcounters	was	used	to	query
for	delivered	or	undelivered
commands	as	used	by	Performance
Monitor,	which	no	longer	uses	this
procedure.

No	longer	supported.	The	new	view
MSdistribution_status	presents
much	of	the	same	information.

sp_helpreplicationdb	was	used	to
return	information	about	a	specified
database	or	a	list	of	all	publication
databases	on	the	server.

Removed;	no	longer	supported.
Remove	all	references	to
sp_helpreplicationdb	and	replace
with	references	to
sp_helpreplicationdboption.

sp_replstatus	updated	the	internal
table	structure	for	replication.

Removed;	no	longer	supported.
Remove	references	to	sp_replstatus.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

SQL	Server	Setup	Help

System	Stored	Procedures	(System)	(Level	1)

SQL	Server	6.x SQL	Server	2000
Several	system	stored	procedures
were	used	for	documenting	keys.

Removed;	no	longer	supported	or
available.	Use	declarative	referential
integrity	by	implementing	keys	and
constraints	with	either	ALTER
TABLE	or	CREATE	TABLE.
Remove	all	references	to	these
system	stored	procedures	and	replace
with	references	to	either	sp_help	or
sp_helpconstraint:

sp_commonkey
sp_dropkey	
sp_foreignkey
sp_helpjoins
sp_helpkey
sp_primarykey

sp_placeobject	put	future	space
allocations	for	a	table	or	index	on	a
particular	segment.

sp_placeobject	is	no	longer
available	because	segments	no	longer
exist.	Use	the	ON	FILEGROUP
syntax	of	the	CREATE	TABLE
statement	to	place	table	or	index
information	about	a	separate
filegroup.	Remove	all	references	of
sp_placeobject	and	replace	with
references	to	the	ON	FILEGROUP
clause	of	the	CREATE	TABLE
statement.

sp_dbinstall	installed	a	database	and
its	devices,	and	was	used	for
removable	media.

Removed;	no	longer	supported	or
available.	Remove	all	references	to
sp_dbinstall	and	replace	with
references	to	sp_attach_db.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

sp_makestartup	and
sp_unmakestartup	set	a	stored
procedure	for	auto	execution	and
discontinued	auto	execution	of	the
stored	procedure,	respectively.

Removed;	no	longer	supported	or
available.	Remove	all	references	of
either	sp_makestartup	or
sp_unmakestartup	and	replace	with
references	to	sp_procoption.

The	sp_helplogins,	sp_helprotect,
and	sp_tableoption	system	stored
procedures	supported	pattern
matching	(using	wildcard	characters),
which	allowed	flexibility	in	specific
parameters.

Pattern	matching	using	the	wildcard
characters	is	no	longer	supported	in
these	system	stored	procedures
because	any	system	stored	procedure
identifier	may	contain	a	pattern
matching	character.	Remove	all
references	to	pattern	matching	in
sp_helplogins,	sp_helprotect,	and
sp_tableoption.

The	fallback	option	of
sp_serveroption	indicated	a	fallback
server.

The	fallback	option	of
sp_serveroption	is	no	longer
available	because	the	fallback	option
is	no	longer	supported.	Remove	all
references	to	the	fallback	option	of
sp_serveroption.

sp_setlangalias	assigned	or	changed
the	alias	for	an	alternate	language.

Removed;	no	longer	supported.	Use
the	aliases	provided	in	syslanguages.
Remove	all	references	to
sp_setlangalias.

sp_droplanguage	dropped	an
alternate	language	from	the	server
and	removed	its	row	from
master.dbo.syslogins.

Removed;	no	longer	supported.
Remove	all	references	to
sp_droplanguage.

Fallback	support	was	provided	by
executing	system	stored	procedures
that	shifted	control	of	databases	and
devices	from	a	broken	primary	server
to	a	fallback	server.

Fallback	support	is	no	longer
supported	using	the	fallback	system
stored	procedures.	Support	for
fallback	servers	is	supported	using
Microsoft	Windows	NT	Clustering
Service.	Remove	all	references	to
these	fallback	system	stored
procedures:

JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()

sp_fallback_activate_svr_db,
sp_fallback_deactivate_svr_db,
sp_fallback_enroll_svr_db,
sp_fallback_help,
sp_fallback_permanent_svr,
sp_fallback_upd_dev_drive,
sp_fallback_withdraw_svr_db.

sp_devoption	displayed	or	set	device
status.

Removed;	no	longer	available.
Remove	all	references	to
sp_devoption.

sp_diskdefault	set	a	database	device
status	to	indicate	whether	the	device
can	be	used	for	database	storage
when	the	user	does	not	specify	a
database	device	or	specifies
DEFAULT	with	the	CREATE
DATABASE	or	ALTER	DATABASE
statements.

Removed;	no	longer	available.
Remove	all	references	to
sp_diskdefault.

sp_helplog	reported	the	name	of	the
device	that	contains	the	first	page	of
the	log	in	the	current	database.

Removed;	no	longer	available.
Remove	all	references	to	sp_helplog.

sp_helpstartup	reported	a	listing	of
all	auto-start	stored	procedures.

Removed;	no	longer	available.
Remove	all	references	to
sp_helpstartup	and	replace	with
references	to	sp_procoption.

sp_sqlexec	provided	a	convenient
way	for	SQL	Server	database	clients
and	servers	to	send	a	language
statement	of	any	format	to	an	Open
Data	Services	server	application.

Removed;	no	longer	available.
Remove	all	references	to	sp_sqlexec.

sp_helprevdatabase	analyzed	an
existing	database	and	created	a	script
that	could	be	used	to	replicate	the
database	structure	on	another	server.

Removed;	no	longer	available.	If
applicable,	use	the	SQL-DMO	Script
Method	of	the	Database	Object	to
generate	similar	information.
Remove	all	references	to
sp_helprevdatabase.

JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()

sp_addlanguage	added	an	alternate
language	to	a	server.

Removed;	no	longer	available.
Remove	all	references	to
sp_addlanguage.

SQL	Server	Setup	Help

System	Stored	Procedures	(Tasks)	(Level	1)
Replace	the	following	unsupported	Microsoft®	SQL	Server™	6.x	task-related
system	stored	procedures	with	the	corresponding	SQL	Server	2000	job-related
system	stored	procedures.

SQL	Server	6.x SQL	Server	2000
sp_addalert sp_add_alert
sp_addnotification sp_add_notification
sp_addoperator sp_add_operator
sp_dropalert sp_delete_alert
sp_dropnotification sp_delete_notification
sp_dropoperator sp_delete_operator
sp_helpalert sp_help_alert
sp_helphistory sp_help_jobhistory
sp_helpnotification sp_help_notification
sp_helpoperator sp_help_operator
sp_purgehistory sp_purge_jobhistory
sp_runtask sp_start_job
sp_stoptask sp_stop_job
sp_updatealert sp_update_alert
sp_updatenotification sp_update_notification
sp_updateoperator sp_update_operator

Task	management	has	been	changed	to	job	management.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()

SQL	Server	Setup	Help

System	Tables	(Level	1)

SQL	Server	6.x SQL	Server	2000
System	tables	were	used
internally	by	SQL	Server	for	a
wide	range	of	uses,	including
maintaining	the	list	of
character	sets	that	SQL	Server
could	use	and	containing
information	about	active	locks.

System	tables	have	changed	significantly.
Most	SQL	Server	6.x	system	tables	will
continue	to	work	properly.	Views	provided
allow	applications	referencing	SQL	Server
6.x	system	tables	to	continue	functioning
properly.	However,	some	SQL	Server	2000
data	cannot	be	referenced	through	these
views.	Use	the	provided	Information
Schema	Views	or	ODBC	catalog	system
stored	procedures	to	obtain	system	table
information.	Modify	scripts	as	appropriate.
Any	scripts	referencing	SQL	Server	6.x
system	tables	will	not	be	converted
properly.

sysdevices	contained	one	row
for	each	disk	dump,	tape	dump,
and	database	device.

The	mirrorname	and	stripeset	columns
have	been	removed.	sysdevices	is	retained
only	for	dump	devices	and	also	for
backward	compatibility	(supporting	DISK
INIT	and	SQL	Server	6.x	CREATE
DATABASE	syntax).	Remove	all
references	to	the	mirrorname	and
stripeset	columns	of	sysdevices.

syshistory	contained	one	row
for	each	scheduled	event,	alert,
or	task	that	occurred.

Replaced	by	sysjobhistory.	Remove	all
references	to	syshistory	and	replace	with
references	to	sysjobhistory.

sysindexes	contained	one	row
for	each	clustered	index	and
one	row	for	each	nonclustered
index.

The	distribution,	segment,	rowpage,
keys1,	and	keys2	columns	have	been
removed.	Remove	all	references	to	the
distribution,	segment,	rowpage,	keys1,
and	keys2	columns	of	sysindexes.

In	addition,	soid	is	reserved3,	and	csid	is

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

reserved4.

syskeys	used	for	objects Removed;	no	replacement.	Remove	all
references	to	syskeys.

syslocks	contained	information
about	active	locks.

Removed;	replaced	by	syslockinfo.
Remove	all	references	to	syslocks	and
replace	with	references	to	syslockinfo.

syslogs	contained	the
transaction	log.

Removed;	no	replacement.	The	database
log	is	now	an	operating	system	file.
Remove	all	references	to	syslogs.

sysprocesses	contained
information	about	SQL	Server
processes.

The	gid	column	has	been	removed.	In	SQL
Server,	the	suid	column	has	been	removed.
Remove	all	references	to	these	columns	of
sysprocesses.

sysprocedures	contained
entries	for	each	view,	default,
rule,	trigger,	CHECK
constraint,	DEFAULT
constraint,	and	stored
procedure.

Removed;	replaced	by	syscomments.	SQL
Server	obtains	procedure	text	from
syscomments	when	procedures	need	to	be
compiled.	Remove	all	references	to
sysprocedures	and	replace	with	references
to	syscomments.

syssegments	contained	one
row	for	each	segment	(named
collection	of	disk	fragments).

Removed;	no	replacement.	Segments	are
no	longer	supported.	Use	filegroups
instead.	Remove	all	references	to
syssegments.	Use	filegroups	instead	by
using	CREATE	DATABASE,	ALTER
DATABASE,	CREATE	TABLE,	ALTER
TABLE,	and	CREATE	INDEX.

systasks	contained	one	row	for
every	scheduled	task.

Removed;	replaced	by	sysjobs,
sysjobsteps,	and	sysjobservers.	Remove
all	references	to	systasks	and	replace	with
references	to	sysjobs,	sysjobsteps,	and
sysjobservers	as	appropriate.

sysusages	contained	one	row
for	each	disk-allocation	piece
assigned	to	a	database.

Removed;	no	replacement.	SQL	Server
relies	on	sysdevices	for	database	file
information.	Filegroups	are	supported,	and
the	sysfiles	and	sysfilegroups	system
tables	are	added.	These	system	tables

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()

reside	in	every	database	and	describe
database	files	and	filegroups.	Remove	all
references	to	sysusages.	

master.dbo.spt
_datatype_info

Removed;	no	replacement.	Remove	all
references	to
master.dbo.spt_datatype_info.

For	more	information,	see	System	Tables.

JavaScript:hhobj_17.Click()

SQL	Server	Setup	Help

Transactions	(Level	1)

SQL	Server	6.x SQL	Server	2000
A	data	type	conversion	error	not	inside	a
transaction	returned	an	error	to	SQL
Server.	If	the	data	type	conversion	was
inside	a	transaction,	the	transaction
continued.	For	example:
USE	pubs
CREATE	TABLE	test	(c1	int)
GO
BEGIN	TRANSACTION
GO
INSERT	INTO	test	VALUES	(1)
GO
INSERT	INTO	test	VALUES	('aaa')
GO
COMMIT	TRANSACTION
GO
SELECT	*
FROM	test

SQL	Server	returns	an	error	when
an	attempted	data	type	conversion
fails.	If	the	data	type	conversion
error	occurs	inside	a	transaction,
the	transaction	is	terminated.
Expect	differences	in	behavior	as
compared	to	earlier	versions	of
SQL	Server	if	a	data	type
conversion	fails	inside	a
transaction.

SQL	Server	Setup	Help

Utilities	(Level	1)

SQL	Server	6.x SQL	Server	2000
The	probe	login,	which	required	no
password,	was	used	by	DB-Library
and	Windows	NT	Performance
Monitor.	The	DB-Library	two-phase
commit	library	used	the	probe	login
to	check	on	the	status	of	distributed
transactions.	It	was	also	used	by
Windows	NT	Performance	Monitor
to	get	statistics	from	SQL	Server.

The	probe	login	has	been	eliminated.
Windows	NT	Performance	Monitor
will	always	use	Windows	NT
Authentication,	known	earlier	as
integrated	security,	to	connect	to
SQL	Server.	Ensure	that	your
Windows	NT	username	and
password	have	the	appropriate
privileges	to	use	Windows	NT
Performance	Monitor.

SQL	Server	Setup	Help

Backup	and	Restore	(Level	2)

SQL	Server	6.x SQL	Server	2000
Using	the	SKIP	and	INIT	clauses
of	the	DUMP	statement	together
overwrote	the	contents	of	the
backup	device	unconditionally.

The	SKIP	and	INIT	clauses	of	the
BACKUP	statement	preserve	the
Microsoft	Tape	Format	media	header.	In
some	situations,	this	prevents
overwriting	the	backup	contents.	The
FORMAT	clause	overwrites	the	media
unconditionally,	generating	a	new
header,	and	is	required	for	media	used
for	the	first	time	or	when	necessary	to
overwrite	the	media	header.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	If	the
media	is	empty,	SKIP	and	INIT	act	the
same	as	the	FORMAT	clause	of	the
BACKUP	or	DUMP	statements	and
write	a	new	media	header.	If	the	media
is	not	empty,	SKIP	and	INIT	do	not
write	a	new	media	header.

The	LOAD	statement	did	not
create	the	database	automatically
when	restoring	the	database
backup.

It	is	no	longer	necessary	to	create	the
database	before	restoring	it.	The
RESTORE	statement	re-creates	the
database	automatically,	including	all
files.	However,	database	devices	are	not
re-created	in	sysdevices.	These	devices
are	supported	only	for	backward
compatibility.	After	restoration,
databases	originally	created	using
devices	(DISK	INIT)	appear	as	if	they
had	been	created	using	SQL	Server
2000	file	syntax.

JavaScript:hhobj_1.Click()

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Consider
using	the	new	syntax	in	CREATE
DATABASE	and	ALTER	DATABASE
for	specifying	files.

The	NO_LOG	clause	of	DUMP
was	used	only	when	you	ran	out
of	space	in	the	database	and	could
not	use	DUMP	TRANSACTION
WITH	TRUNCATE_ONLY	to
purge	the	log.	The	NO_LOG
clause	removes	the	inactive	part
of	the	log	without	making	a
backup	copy	of	it,	and	saves	space
by	not	logging	the	operation.	The
TRUNCATE_ONLY	clause	of	the
DUMP	statement	removed	the
inactive	part	of	the	log	without
making	a	backup	copy	of	it.

The	NO_LOG	and	TRUNCATE_ONLY
clauses	of	RESTORE	are	synonyms.
Both	clauses	of	BACKUP	now	remove
the	inactive	part	of	the	log	without
making	a	backup	copy	of	it	and	truncate
the	log.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Expect
the	NO_LOG	and	TRUNCATE_ONLY
clauses	of	the	BACKUP	or	DUMP
statements	to	behave	identically.

Recovery	of	multiple	transaction
logs	could	be	performed	without
special	keywords	in	the	LOAD
statement.

It	is	no	longer	possible	to	restore
multiple	transaction	logs	without	using
the	WITH	clauses	of	the	RESTORE
statement.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Use	the
appropriate	RESTORE	syntax	for
restoring	a	database	with	multiple
transaction	logs	as	shown	in	the
following	examples.	All	but	the	last
RESTORE	statement	should	specify	the
NORECOVERY	clause.

When	loading	a	database,	all
database	options	of	sp_dboption
were	unaffected	and	had	to	be	set
manually.

Changes	to	all	sp_dboption	database
settings	(except	the	offline,	merge
publish,	published,	and	subscribed
settings)	are	logged,	like	any	other

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

change.	When	a	database	is	restored	and
recovered,	all	database	options	of
sp_dboption	are	rolled	forward.	Every
database	option	will	be	in	its	expected
state	at	the	time	when	recovery	finished,
consistent	with	the	remainder	of	the
database.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	It	is	no
longer	necessary	to	reset	the	database
options	after	a	RESTORE	operation.

Examples
A.				Restore	a	database	by	applying	a	full	database	backup	and	multiple
transaction	logs

This	example	restores	a	database	with	multiple	transaction	log	backups.

RESTORE	DATABASE	mydb
FROM	mydb
WITH	NORECOVERY

RESTORE	LOG	mydb
FROM	mydb_log1
WITH	NORECOVERY

RESTORE	LOG	mydb
FROM	mydb_log2
WITH	RECOVERY

SQL	Server	6.x SQL	Server	2000
A	warm	standby	server	could	be
brought	up	in	read-only	mode
between	recovery	of	each

A	warm	standby	server	can	be	brought
up	in	read-only	mode	between
transaction	log	restore	operations	if	an

transaction	log,	provided	that	the
no	chkpt.	on	recovery	option	of
sp_dboption	was	enabled.

undo	file	is	used.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Use	an
undo	file	for	a	warm	standby	server
using	the	STANDBY	clause	of
RESTORE,	as	shown	in	the	following
example.

B.				Restore	a	database	using	the	STANDBY	clause	and	an	undo	file

This	example	brings	the	server	up	to	allow	write	operations	on	the	databases	by
using	a	final,	necessary	RESTORE	statement.

RESTORE	DATABASE	mydatabase	
FROM	mydb_backup
WITH	NORECOVERY

RESTORE	LOG	mydb
FROM	mydb_log1
WITH	RECOVERY	STANDBY	(FILENAME	=	'c:\mssql\data\mydbundo.dat')

RESTORE	LOG	mydb
FROM	mydb_log2
WITH	RECOVERY	STANDBY	(FILENAME	=	'c:\mssql\data\mydbundo.dat')

RESTORE	DATABASE	mydb
WITH	RECOVERY

JavaScript:hhobj_6.Click()

SQL	Server	Setup	Help

Bulk	Copy	(Level	2)

SQL	Server	6.x SQL	Server	2000
The	bcp	utility	(using	DB-
Library)	could	import	datetime	or
smalldatetime	values	in
character-mode	data	files	using:

The	default	format	used
by	DB-Library	(mmm	dd
yyy	hh:mmXX	where
XX	is	either	A.M.	or
P.M.).

Any	format	supported	by
dbconvert	except	the
ODBC	format.

bcp	exported	character-mode	data
files	with	datetime	and
smalldatetime	values	by	using
the	default	DB-Library	format.

The	bcp	utility	(which	uses	ODBC)	can
import	datetime	and	smalldatetime
values	in	character-mode	data	files
using:

The	default	format	used	by	DB-
Library.

The	format	used	by	ODBC
(yyyy-mm-dd	hh:mm:ss[.f...]).

However,	bcp	does	not	use	other
formats	supported	by	dbconvert.

bcp	exports	datetime	and
smalldatetime	values	using	the	ODBC
default	format.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	To	bulk
copy	data	in	character	mode	between
SQL	Server	6.x	and	SQL	Server	2000
servers,	use	the	same	bcp	version	(either
SQL	Server	6.x	or	SQL	Server	2000)	for
both	importing	and	exporting	data.

To	export	data	from	a	SQL	Server	2000
server	into	a	character-mode	data	file
and	later	import	that	data	using	a	DB-
Library	bulk	copy	application,	use	the
SQL	Server	6.x	version	of	bcp.

For	existing	datetime	or	smalldatetime
values	in	a	character-mode	data	file	in	a

JavaScript:hhobj_1.Click()

format	other	than	the	DB-Library
default:

Change	the	values	to	the	DB-
Library	default	format	for
continued	use	with	SQL	Server
6.x	and	SQL	Server	2000	bcp.

Change	the	values	to	the
ODBC	format	for	use	with
SQL	Server	2000	bcp.

bcp	exported	money	values	in
character	mode	data	files	using
digit	grouping	symbols	(for
example,	the	comma	in	the	United
States	when	using	the	U.S.
version	of	SQL	Server,	the	US
version	of	Microsoft	Windows
NT,	and	US	settings)	and	two
digits	after	the	decimal	point.

bcp	exports	money	values	in	character
mode	data	files	without	digit	grouping
symbols,	but	with	four	digits	after	the
decimal	point.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.

To	read	character	files	created	by
version	6.x	DB-Library	bcp	in	SQL
Server	2000,	use	the	-V	switch.	For
more	information,	see	bcp	Utility.

JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

Configuration	Options	(Level	2)
Administrative	scripts	may	have	used	these	configuration	options.	For	more
information	about	configuration	options,	see	sp_configure	and	Setting
Configuration	Options.

SQL	Server	6.x SQL	Server	2000
open	objects	set	the	maximum
number	of	database	objects	that
can	be	open	at	one	time	on	SQL
Server.

Now	an	advanced	option.	Default	value
of	0	indicates	automatic	growth.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Remove
all	references	to	open	objects.	For	more
information,	see	open	objects	Option.

user	connections	set	the
maximum	allowed	number	of
simultaneous	connections	to	SQL
Server.

Now	an	advanced	option.	Default	value
of	0	indicates	automatic	growth.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Remove
all	references	to	user	connections
Option.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

SQL	Server	Setup	Help

Database	Pages	and	Extents	(Level	2)

SQL	Server	6.x SQL	Server	2000
A	database	extent	consisted
of	eight	2	KB	pages.

A	database	extent	consists	of	eight	8	KB
pages.	Different	objects	can	now	share	an
extent	or	an	object	can	have	its	own	extent.
A	table	and	index	both	have	a	minimum	of
two	pages.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Adjust	disk
space	requirements	for	adequate	database
storage.	For	more	information,	see	Pages	and
Extents.

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Data	Types	(Level	2)

SQL	Server	6.x SQL	Server	2000
Conversion	of	binary	or
varbinary	to	decimal	or
numeric	was	explicit.

This	conversion	is	implicit.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Expect
conversions	of	binary	or	varbinary	to
decimal	or	numeric	to	be	implicit.	For
more	information	about	data	type
conversions,	see	CAST	and	CONVERT.
For	more	information	about	system-
supplied	data	types,	see	Data	Types.

Conversion	of	binary	or
varbinary	to	smallmoney	was
not	allowed.

This	conversion	is	allowed.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Use	as
appropriate.

Conversion	of	datetime	or
smalldatetime	to	decimal,
numeric,	float,	real,	int,
smallint,	tinyint,	money,
smallmoney,	or	bit	was	not
allowed.

This	conversion	is	allowed.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Use	as
appropriate.

Conversion	of	float	or	real	to
binary	or	varbinary	was	not
allowed.

This	conversion	is	allowed.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Use	as
appropriate.

Conversion	of	money	or
smallmoney	to	char	or	varchar
was	implicit.

This	conversion	is	explicit.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Expect
conversions	of	money	or	smallmoney	to
char	or	varchar	to	be	explicit.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Conversion	of	bit	to	money	or
smallmoney	was	not	allowed.

This	conversion	is	allowed.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Use	as
appropriate.

sysname	data	type	was
varchar(30).

sysname	data	type	is	nvarchar(128),
which	allows	for	128	Unicode	characters.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Expect
any	columns	or	local	variables	defined	as
sysname	to	allow	Unicode	data.	For	more
information	about	sysname,	see	Data
Types.

No	direct	support	for	the	nchar,
nvarchar,	and	ntext	Unicode
data	types	because	maximum
storage	was	255	bytes	for	char,
binary,	varchar,	and	varbinary
data	types.

The	maximum	number	of	bytes	that	can
be	stored	in	char,	binary,	varchar,	and
varbinary	data	types	is	increased	to
8,000.	SQL	Server	2000	clients	fully
support	the	nchar,	nvarchar,	and	ntext
data	types.	SQL	Server	6.x	clients
accessing	SQL	Server	2000	with	these
Unicode	data	types	will	experience	these
results:

nvarchar	data	is	returned	as	varchar	and
nchar	data	is	returned	as	char.	nvarchar
and	nchar	values	longer	than	255	double-
byte	characters	are	truncated	to	255
single-byte	characters.

Attempting	to	access	ntext	data	causes
SQL	Server	to	issue	a	4004	error.	ntext
data	cannot	be	sent	to	version	6.x	clients.

char,	varchar,	binary,	and	varbinary
values	longer	than	255	bytes	are	truncated
to	255	bytes.

JavaScript:hhobj_3.Click()

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Expect
changes	in	data	when	accessing	SQL
Server	2000	data	from	version	6.x	clients.
To	eliminate	these	differences,	upgrade
the	clients	to	SQL	Server	2000	client
software.

Using	CONVERT	to	convert	an
empty	string	to	int
(CONVERT(int,	''))	or	float
(CONVERT(float,	''))	returned	a
zero.

Using	CAST	or	CONVERT	to	convert	an
empty	string	to	int	(CAST(''	AS	int))	or
float	(CAST(''	AS	float))	returns	an	error
message.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.

SQL	Server	Setup	Help

DB-Library	(Level	2)

SQL	Server	6.x SQL	Server	2000
When	connected	to	a	version	6.x
SQL	Server,	a	call	to
dbcursorfetchex	resulting	in	a
cursor	position	after	the	end	of	the
cursor	result	set	returned:

FAIL,	with	either	a
keyset	or	an	insensitive
cursor.	

SUCCEED,	with	all	row
status	indicators	set	to	0,
with	either	a	dynamic	or
forward	cursor.

A	call	to	dbcursorfetchex	resulting	in	a
cursor	position	after	the	end	of	the
cursor	result	set	returns	SUCCEED.	All
row	status	indicators	are	set	to	0.	This
behavior	applies	to	all	types	of	cursors.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Expect
different	results,	compared	to	SQL
Server	6.x,	when	a	call	to
dbcursorfetchex	results	in	a	cursor
position	after	the	end	of	the	cursor	result
set.	To	achieve	SQL	Server	6.x
behavior,	use	compatibility	level	65.

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Empty	Strings	(Level	2)

SQL	Server	6.x SQL	Server	2000
An	empty	string	could	be
interpreted	as	either	a	NULL	or	a
single	blank	character.

Interpretation	of	an	empty	string	is
controlled	by	the	compatibility	level,
which	is	set	with	the	sp_dbcmptlevel
system	stored	procedure.	If	the
compatibility	level	is	65	or	lower,	SQL
Server	interprets	empty	strings	as	single
spaces.	If	the	compatibility	level	is	70	or
80,	SQL	Server	interprets	empty	strings
as	empty	strings.	For	more	information,
see	sp_dbcmptlevel.

Expect	differences	in	interpretation	of
empty	strings	compared	to	earlier
versions	of	SQL	Server.	Transact-SQL
functions	and	statements	affected	by	the
setting	of	sp_dbcmptlevel	include
CHARINDEX,	DATALENGTH,	LEFT,
LTRIM,	PATINDEX,	REPLICATE,
RIGHT,	RTRIM,	SPACE,	SUBSTRING,
and	UPDATETEXT.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()

SQL	Server	Setup	Help

Indexes	(Level	2)

SQL	Server	6.x SQL	Server	2000
The	DROP	INDEX	statement
dropped	the	pages	holding	the
clustered	index	B-tree	when	used
on	a	clustered	index.

On	a	clustered	index,	the	DROP
INDEX	statement	must	rebuild	all
nonclustered	indexes.	SQL	Server	must
also	replace	the	clustered	index	keys	in
the	nonclustered	leaf	rows	with	row
pointers.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Use	the
DROP_EXISTING	clause	of	the
CREATE	INDEX	statement	if,	for
example,	dropping	or	re-creating
clustered	indexes	to	set	a	new	fill	factor
value.

SQL	Server	Setup	Help

INSERT	(Level	2)

SQL	Server	6.x SQL	Server	2000
An	INSERT	x	SELECT	INTO	Y
statement	ignored	table	Y	and
inserted	the	SELECT	results	into
table	X,	as	shown.
INSERT	X
SELECT	select_list	INTO	Y

The	INSERT...SELECT	INTO	syntax	is
retained	only	when	the	compatibility
setting	is	equal	to	60	or	65.	If	the
compatibility	setting	is	70	or	80	and	a
similar	query	is	executed,	SQL	Server
returns	a	syntax	error.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Set	the
compatibility	setting	to	60	or	65	by
executing	sp_dbcmptlevel	to	retain
version	6.x	functionality	for	queries
using	INSERT	...SELECT	INTO	syntax.
Otherwise,	use	a	compatibility	setting	of
80.

In	an	INSERT	statement,	a
SELECT	statement	returning	a
scalar	value	was	allowed	in	the
VALUES	clause.

The	INSERT	statement	cannot	have	a
SELECT	statement	in	the	VALUES
clause	as	one	of	the	values	to	be
inserted.	The	version	6.x	supportability
is	available	only	when	the	compatibility
setting	is	equal	to	60	or	65.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Set	the
compatibility	setting	to	60	or	65	by
executing	sp_dbcmptlevel	to	retain
version	6.x	functionality	for	using	a
SELECT	statement	in	the	VALUES
clause	of	an	INSERT	statement.
Otherwise,	use	a	compatibility	setting	of
80.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

A	ROLLBACK	statement	in	a
stored	procedure	referenced	in	an
INSERT	table	EXEC	procedure
statement	caused	the	INSERT	to
be	rolled	back,	but	the	batch
continued.

A	ROLLBACK	statement	in	the	stored
procedure	referenced	by	an
INSERT...EXEC	statement	causes	the
entire	transaction	to	be	rolled	back	and
the	batch	stops	executing.	The	version
6.x	supportability	is	available	only	when
the	compatibility	setting	is	equal	to	60
or	65.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Set	the
compatibility	setting	to	60	or	65	by
executing	sp_dbcmptlevel	to	retain
version	6.x	functionality	for
ROLLBACK	statement	behavior	inside
an	INSERT...EXEC	statement.
Otherwise,	use	a	compatibility	setting	of
80.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

SQL	Server	Setup	Help

Keyset	Cursors	(Level	2)

SQL	Server	6.x SQL	Server	2000
When	using	a	keyset	cursor,	a
row	deletion	followed	by	a	row
insertion	using	the	same	key	as
the	deleted	row	caused	the
inserted	row	to	occupy	the	slot
of	the	original	row.

When	using	a	keyset	cursor,	a	row	deletion
followed	by	a	row	insertion	with	the	same
key	as	the	deleted	row	allows	the	original
row	to	remain	empty	and	the	newly
inserted	row	to	be	inserted	at	the	end.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Expect	a
change	in	behavior	when	inserting	and
deleting	rows	with	the	same	key	values
when	using	keyset	cursors.

SQL	Server	Setup	Help

LTRIM	and	RTRIM	Trimming	Functions	(Level	2)

SQL	Server	6.x SQL	Server	2000
The	LTRIM	and	RTRIM	functions	returned
NULL	in	queries	using	zero-length	strings:
SELECT	RTRIM('')

SELECT	DATALENGTH(RTRIM(''))

Zero-length	strings	are
supported.	The	queries	shown
return	nonnull	values;	the	first
returns	''	and	the	second
returns	0.

Expect	different	results	as
compared	to	earlier	versions	of
SQL	Server.	LTRIM	and
RTRIM	provide	different
output	from	earlier	versions	of
SQL	Server.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

ODBC	(Level	2)

SQL	Server	6.x SQL	Server	2000
SQL_ERROR	was	returned	by
SQLExecute,	SQLExecDirect,	or
SQLParamData	when	extended
stored	procedures	or	batches	met	the
following	criteria:

The	first	data-returning
statement	caused	an	error
(either	by	a	run-time	error	or	a
RAISERROR	statement	with
severity	greater	than	or	equal
to	11).

There	was	data	from	any	other
statement,	even	a	simple
RETURN	statement,	after	the
error-causing	statement.

Due	to	the	SQL_ERROR	return	code,
the	statement	handle	was	available	for
use	immediately.

SQL_SUCCESS_WITH_INFO	is
returned	when	an	ODBC	3.x
application	uses	the	ODBC	SQL
Server	3.51-compliant	driver
included	with	this	release	(using
SQLExecute,	SQLExecDirect,	or
SQLParamData).

Due	to	the
SQL_SUCCESS_WITH_INFO
return	code,	process	the	results	for
that	statement	handle	before	it	is
available	for	use.

Expect	different	results	as
compared	to	earlier	versions	of
SQL	Server.	Handle
SQL_SUCCESS_WITH_INFO
using	SQLGetDiagRec,	and	then
call	SQLMoreResults	to	process
the	remaining	results,	as
appropriate.

SQL	Server	Setup	Help

RIGHT	(Level	2)

SQL	Server	6.x SQL	Server	2000
RIGHT	was	a	reserved	word. RIGHT	is	a	reserved	keyword	and	should

not	be	used	for	database	object	names
(unless	using	identifiers).	For	more
information	about	SQL	Server	2000	reserved
keywords,	see	Using	Reserved	Keywords.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server	because
RIGHT	is	now	a	reserved	keyword.	For
more	information	about	using	RIGHT	with
identifiers,	see	Using	Identifiers.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

Security	(Level	2)

SQL	Server	6.x SQL	Server	2000
The	GRANT	and	REVOKE
statements	granted	and	revoked
permissions,	respectively.	The
REVOKE	statement	denied	a
permission	to	a	single	user	that
was	granted	to	the	user's	group.

The	security	model	uses	DENY	in
addition	to	GRANT	and	REVOKE.
REVOKE	has	changed	to	remove	a
previously	granted	or	denied
permission.	DENY	creates	an	entry	in
the	security	system	that	denies	a
permission	from	a	security	account	and
prevents	the	user,	group,	or	role	from
inheriting	the	permission	through	its
group	and	role	memberships.	The
REVOKE	statement	can	no	longer	be
used	to	deny	permission	to	a	user	whose
group	has	permission.	Use	the	DENY
statement	to	deny	permissions	explicitly
to	a	specific	user	or	group.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.
Recognize	that	scripts	using	the	SQL
Server	6.x	security	model	using
GRANT	and	REVOKE	behave
differently	than	scripts	using	the	current
model	of	GRANT,	REVOKE,	and
DENY	if	REVOKE	was	used	to	deny
permissions	to	selected	members	of	a
group.

When	executing	an	RPC,	logins
using	integrated	security	mode
referred	to	an	internal	login	name
with	the	backslashes	(\)	translated
to	underscores	(_).	For	example,
\Domain\Joe	was	translated	to

Those	servers	upgraded	to	SQL	Server
that	execute	RPC	calls	no	longer
translate	backslashes	to	underscores
when	using	Windows	NT
Authentication.	To	use	the	SQL	Server
version	6.x	naming	convention	for	login

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Domain_Joe. names,	use	sp_addlinkedsrvlogin	to
map	the	backslash	version	of	the
username	to	an	underscore	version.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Add
references	for	sp_addlinkedsrvlogin	to
translate	backslash	version	login	names
to	underscore	versions	to	maintain
version	6.x	login	translations	when	the
sending	server	of	an	RPC	uses	SQL
Server	2000.

Examples

A.				Map	specific	backslash	login	to	underscore	login
This	example	maps	the	\LONDON1\nancyd	login	name	to	LONDON1_nancyd:

sp_addlinkedsrvlogin	'receiving_server_name',	
			false,	
			'LONDON1\nancyd',	
			'LONDON1_nancyd',	NULL

B.				Map	specific	backslash	login	to	sa	login
This	example	maps	Nancy's	LONDON1	login	to	the	sa	login,	because	Nancy's
domain	login	is	part	of	the	built-in	administrators	group:

sp_addlinkedsrvlogin	'receiving_server_name',	
			false,	
			'LONDON1\nancyd',	
			'sa',	NULL
	

JavaScript:hhobj_4.Click()

SQL	Server	Setup	Help

SELECT	(Level	2)

SQL	Server	6.x SQL	Server	2000
A	SELECT	statement	without
an	ORDER	BY	clause	returned
the	rows	in	an	apparent	ordered
set.

An	explicit	ORDER	BY	clause	for	a
SELECT	statement	is	required	to	ensure
any	useful	ordering	of	data.	In	addition,
the	exact	results	depend	upon	the	collation
being	used.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Add	an
explicit	ORDER	BY	clause	to	all	SELECT
statements	needing	to	produce	ordered
rows.

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

SET	SHOWPLAN	(Level	2)

SQL	Server	6.x SQL	Server	2000
When	SET	SHOWPLAN	was
set	ON,	SQL	Server	executed
Transact-SQL	statements.

When	set	ON,	the	SET	SHOWPLAN_ALL
and	SET	SHOWPLAN_TEXT	statements,
which	replace	SET	SHOWPLAN,	do	not
execute	Transact-SQL	statements.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Expect	a
difference	in	behavior	when	SET
SHOWPLAN_ALL	or	SET
SHOWPLAN_TEXT	are	set	to	ON.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

System	Tables	(Level	2)

SQL	Server	6.x SQL	Server	2000
System	tables	were	used	internally
by	SQL	Server	for	a	wide	range	of
uses.

Some	system	tables	have	had	minor
changes,	while	others	have	been
replaced	by	Information	Schema	Views
that	provide	the	same	information.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Use	the
provided	Information	Schema	Views	or
ODBC	catalog	system	stored	procedures
to	obtain	system	catalog	information.

The	logptr	column	of
sysdatabases	was	a	pointer	to	the
transaction	log.

The	logptr	column	has	been	renamed	to
status2.	Remove	all	references	of	the
logptr	column	of	sysdatabases	and
replace	with	references	to	the	status2
column.

The	dumptrdate	column	of
sysdatabases	was	the	date	of	the
last	DUMP	TRANSACTION.

This	column	is	now	Reserved.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Remove
all	references	to	the	dumptrdate
column	of	sysdatabases.

The	langid	column	of
sysmessages	contained	the	SQL
Server	message	group	ID.

The	langid	column	has	been	renamed	to
msglangid.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Remove
all	references	of	the	langid	column	of
sysmessages	and	replace	with
references	to	the	msglangid	column.

A	NULL	value	for	the	language
column	of	the	syslogins	table	was

A	NULL	value	for	the	language	column
is	no	longer	equivalent	to	us_english.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

equivalent	to	specifying
us_english.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Remove
all	NULL	values	for	the	language
column	of	syslogins	and	replace	with
the	name	of	the	language	to	be	used.

System	tables	obtained	their
column	values	by	insertion	of	a
specific	value	(SQL	Server	2000
uses	computed	columns	in	many
system	and	user-defined	tables.)

System	tables	(and	user-defined	tables)
can	now	use	computed	columns.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	SQL
Server	version	6.5	queries	involving
table	hints	and	system	tables	may	still
produce	the	same	result	set,	but	may
behave	differently	in	SQL	Server	2000.
For	example,	the	query	may	still	wait
for	some	locks	even	if	the	NOLOCK
table	hint	has	been	specified	in	the
query's	FROM	clause.

JavaScript:hhobj_6.Click()

SQL	Server	Setup	Help

Table	Hints	(Level	2)

SQL	Server	6.x SQL	Server	2000
These	table	hints	(previously	called
optimizer	hints)	could	be	specified
as	just	the	keyword	following	the
FROM	clause:

FASTFIRSTROW,	
HOLDLOCK,	
INDEX,	
NOLOCK,	
PAGLOCK,	
TABLOCK,	
TABLOCKX,	
and	UPDLOCK.

Table	hints	must	be	specified
following	the	FROM	clause	using	a
WITH	clause.	Table	hints	must	be
enclosed	in	parentheses.

Expect	different	results	as	compared
to	earlier	versions	of	SQL	Server.	For
more	information,	see	DELETE,
FROM,	INSERT,	SELECT,	and
UPDATE.	

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

SQL	Server	Setup	Help

Transactions	(Level	2)

SQL	Server	6.x SQL	Server	2000
When
CURSOR_CLOSE_ON_COMMIT
was	set	OFF,	a	ROLLBACK
statement	did	not	close	a	Transact-
SQL	cursor	defined	with	the
DECLARE	CURSOR	statement.
Server	cursors	opened	through
database	API	functions	were	also
left	open	after	a	ROLLBACK
statement.

When
CURSOR_CLOSE_ON_COMMIT	is
set	OFF,	a	ROLLBACK	statement
closes	any	Transact-SQL	cursor	defined
with	the	SQL-92	form	of	the
DECLARE	CURSOR	statement,	unless
the	DECLARE	CURSOR	statement
contains	either	the	INSENSITIVE	or
STATIC	keywords.	All	API	server
cursors	are	also	closed	unless	they	have
been	defined	as	STATIC	cursors	(such
as	using	the	ODBC
SQL_CURSOR_STATIC	attribute).

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Reopen
all	cursors	after	issuing	a	ROLLBACK
statement.

The	REPEATABLE	READ	clause
of	the	SET	TRANSACTION
ISOLATION	LEVEL	statement
behaved	identically	to	the
SERIALIZABLE	clause.	There
was	no	way	to	ensure	repeatable
reads	without	also	protecting
against	phantoms	(after	a	rollback,
the	value	read	logically	never
existed).	Transactions	that	required
REPEATABLE	READ	semantics
had	to	pay	the	additional
concurrency	penalty	of
serializability.

The	REPEATABLE	READ	clause	now
does	not	necessarily	protect	against
phantoms.	Serializable	transactions,	set
using	the	SERIALIZABLE	clause	of
SET	TRANSACTION	ISOLATION
LEVEL,	allow	less	concurrency	than
the	REPEATABLE	READ	clause
because	they	protect	against	phantoms.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Many
applications	only	need	REPEATABLE
READ	semantics	for	correct	operation.
Use	the	REPEATABLE	READ	clause

of	SET	TRANSACTION	ISOLATION
LEVEL	for	applications	requiring
REPEATABLE	READ	semantics	but
that	do	not	need	phantom	protection.	If
phantom	protection	is	required,	use	the
SERIALIZABLE	clause.

Here	is	a	summary	of	phantom	protection	for	both	SQL	Server	versions	6.5	and
SQL	Server	2000	using	SET	TRANSACTION	ISOLATION	LEVEL.

Phantom	protection SQL	Server	6.5 SQL	Server	2000
REPEATABLE	READ Yes No
SERIALIZABLE Yes Yes

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Triggers	and	System	Stored	Procedures	(Level	2)

SQL	Server	6.x SQL	Server	2000
sp_helpsql	provided	syntax	for
Transact-SQL	statements,	system
stored	procedures,	and	other
special	topics.

sp_helpsql	is	included,	but	no	longer
returns	syntax	information	for	Transact-
SQL	statements	or	system	stored
procedures.	Executing	sp_helpsql
produces	a	message	that	recommends
obtaining	syntax	information	from
Online	Help.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Use	SQL
Server	Books	Online	for	the	syntax	of
Transact-SQL	statements	and	system
stored	procedures.

Only	one	trigger	for	each	data
modification	event	(INSERT,
UPDATE,	or	DELETE)	was
allowed	for	each	table.	If	a	new
trigger	was	created	for	a	specific
data	modification	event,	it
replaced	the	previous	trigger.

Microsoft®	SQL	Server™	allows
multiple	triggers	to	be	created	for	each
data	modification	event	(DELETE,
INSERT,	or	UPDATE).	For	example,	if
CREATE	TRIGGER	FOR	UPDATE	is
executed	for	a	table	that	already	has	an
UPDATE	trigger,	an	additional
UPDATE	trigger	is	created.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Enable
multiple	triggers	by	setting	the
compatibility	level	to	80	in
sp_dbcmptlevel.	Retain	SQL	Server	6.x
behavior	by	setting	the	compatibility
level	to	60	or	65.	For	more	information,
see	sp_dbcmptlevel	and	CREATE
TRIGGER.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

If	a	trigger	modified	the	table	on
which	it	was	defined,	the	triggers
were	not	invoked	recursively	for
that	modification.

SQL	Server	allows	recursive	invocation
of	triggers.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Enable
recursive	triggers	by	setting	the
RECURSIVE_TRIGGERS	database
option.	For	more	information	about
recursive	and	nested	triggers,	see	Nested
Triggers.

Several	parameters	of
sp_create_removable	referred	to
devices.

Devices	have	been	replaced	with	files
and	filegroups.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Replace
all	device	references	in
sp_create_removable	with	references
to	filegroups

References	to	text	or	image
columns	in	either	the	inserted	or
deleted	tables	appeared	as	NULL.

References	to	text	or	image	columns	in
both	the	inserted	and	deleted	tables	are
no	longer	allowed	unless	the
compatibility	level	setting	of
sp_dbcmptlevel	is	60	or	65.

Expect	a	difference	in	behavior	when
referring	to	text	or	image	columns	in
inserted	and	deleted	tables	when	using
CREATE	TRIGGER,	depending	on	the
setting	of	sp_dbcmptlevel.

SQL	Server	searched	the	current
database	followed	by	a	search	in
master	for	a	stored	procedure
using	the	sp_	prefix.

Stored	procedures	with	the	prefix	sp_
are	first	looked	up	in	master.	If	a	user-
defined	stored	procedure	has	the	same
name	as	a	system-supplied	stored
procedure	residing	in	master,	SQL
Server	always	finds	the	system-supplied
stored	procedure.

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Expect	a
difference	in	behavior	when	calling
user-defined	stored	procedures	with	the
sp_	prefix.	Either	explicitly	qualify	the
name	of	the	user-defined	stored
procedure,	or	rename	the	user-defined
stored	procedure.

The	settings	of	SET
ANSI_NULLS	and	SET
QUOTED_IDENTIFIER
statements	were	active	only
during	the	session	that	changed
either	option.

The	settings	of	both	SET
QUOTED_IDENTIFIER	and	SET
ANSI_NULLS	are	saved	when	a	stored
procedure	is	created	or	altered.	These
original	settings	are	enabled	when	the
stored	procedure	is	executed,	and	any
client	session	settings	are	restored
afterward.	Within	the	stored	procedure,
any	changes	to	SET	ANSI_NULLS	do
not	take	effect	until	after	the	stored
procedure	executes.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Develop
databases	or	applications	with	one
setting	for	SET
QUOTED_IDENTIFIER,	SET
ANSI_NULLS,	and	all	other	pertinent
SET	options.	If	a	client	session	changes
SET	options,	do	so	outside	of	stored
procedures.

When	executing	remote	stored
procedures,	these	procedures	may
have	assumed	non-standard
behavior	for	the	options	set	by
SET	ANSI_DEFAULTS.	In
addition,	remote	stored	procedures
may	not	have	explicitly	set	these

When	executing	remote	stored
procedures,	these	procedures	are
executed	with	SET	ANSI_DEFAULTS
set	to	ON.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Expect	a
difference	in	behavior	when	executing

JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

options	(set	by	SET
ANSI_DEFAULTS)	to	OFF.

remote	stored	procedures	if	non-
standard	settings	were	used	with	SET
ANSI_DEFAULTS,	or	if	options	were
not	explicitly	set	to	OFF.

JavaScript:hhobj_9.Click()

SQL	Server	Setup	Help

UPDATE	(Level	2)

SQL	Server	6.x SQL	Server	2000
When	ARITHABORT	was	set	to
OFF,	an	UPDATE	statement
encountering	an	arithmetic
overflow	condition	would	set	the
updated	value	to	NULL,	or	skip
the	update	if	the	value	belonged
to	a	nonnull	column.

When	SET	ARITHABORT	is	OFF	and
an	INSERT,	UPDATE,	or	DELETE
statement	encounters	an	arithmetic	error,
SQL	Server	inserts	or	updates	a	NULL
value.	If	the	target	column	is	not
nullable,	the	insert	or	update	action	fails
and	the	user	receives	an	error.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Use	the
@@ERROR	function	to	test	for	errors
after	UPDATE	or	INSERT	statements.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

SQL	Server	Setup	Help

UPDATETEXT	(Level	2)

SQL	Server	6.x SQL	Server	2000
UPDATETEXT	initialized
text	columns	to	NULL,
allocating	a	full	2K	page.

If	the	compatibility	level	setting	of
sp_dbcmptlevel	is	65,	UPDATETEXT
initializes	text	columns	to	NULL.	However,
if	the	compatibility	level	setting	is	70	or	80,
WRITETEXT	initializes	text	columns	to
NULL;	UPDATETEXT	initializes	text
columns	to	an	empty	string.

Expect	differences	in	behavior	when
initializing	text	values	to	NULL	(using
UPDATETEXT	or	WRITETEXT)
depending	on	the	compatibility	level	setting
of	sp_dbcmptlevel.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

SQL	Server	Setup	Help

Views	(Level	2)

SQL	Server	6.x SQL	Server	2000
Updatable	views	were
restricted	to	modifications	that
affected	only	one	table.

Updatable	views	can	modify	more	than	one
table	involved	in	the	view.	The	DELETE,
INSERT,	and	UPDATE	statements	can
reference	a	view	as	long	as	SQL	Server	can
translate	the	user's	update	request
unambiguously	to	updates	in	the	base
tables	referenced	in	the	view's	definition.

Expect	differences	in	behavior	when
working	with	updatable	views	with	more
than	one	table	involved	in	the	DELETE,
INSERT,	or	UPDATE	statements.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

SQL	Server	Setup	Help

Backup	and	Restore	(Level	3)

SQL	Server	6.x SQL	Server	2000
The	DUMP	statement	created
database	or	transaction	log
backups	(dumps).

The	DUMP	DATABASE	and	DUMP
TRANSACTION	statements	are
synonymous	with	BACKUP	DATABASE
and	BACKUP	LOG	statements.	Support
for	the	DUMP	DATABASE	and	DUMP
TRANSACTION	statements	may	be
removed	in	a	future	release.

Consider	removing	all	references	of
DUMP	DATABASE	and	replacing	with
references	to	BACKUP	DATABASE.
Consider	removing	all	references	of
DUMP	TRANSACTION	and	replacing
with	references	to	BACKUP	LOG.

The	LOAD	statement	restored
or	loaded	database	or
transaction	log	backups
(dumps).

The	LOAD	DATABASE	and	LOAD
TRANSACTION	statements	are
synonymous	with	the	RESTORE
DATABASE	and	RESTORE	LOG
statements.	Support	for	the	LOAD
DATABASE	and	LOAD	TRANSACTION
statements	may	be	removed	in	a	future
release.

Consider	removing	all	references	of
LOAD	DATABASE	and	replacing	with
references	to	RESTORE	DATABASE.
Consider	removing	all	references	of
LOAD	TRANSACTION	and	replacing
with	references	to	RESTORE	LOG.	For
more	information	about	RESTORE
DATABASE,	see	RESTORE.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

The	CREATE	DATABASE
...FOR	LOAD	statement	syntax
created	a	destination	database
before	its	restoration	from	a
database	backup	and	prevented
anyone	from	using	the	database
between	the	CREATE
DATABASE,	ALTER
DATABASE,	and	LOAD
statements.

The	CREATE	DATABASE	...FOR	LOAD
syntax	is	supported	for	backward
compatibility	only.	However,	because	SQL
Server	now	creates	the	destination
database	within	a	restore	operation,	it	is
recommended	that	the	destination
database	not	be	created	before	executing
the	restore	operation.

Do	not	create	the	database	prior	to
restoring	it.

SQL	Server	Setup	Help

Database	Options	(Level	3)

SQL	Server	6.x SQL	Server	2000
The	publish	option	of
sp_dboption	enabled	or	disabled
publishing	in	a	database.

sp_replicationdboption	should	be
used	to	enable	or	disable	publishing	in
a	database.

Remove	all	references	of	sp_dboption
publish	and	replace	with	references	to
sp_replicationdboption.

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

DBCC	(Level	3)

SQL	Server	6.x SQL	Server	2000
DBCC	NEWALLOC	checked	data
and	index	pages	against
corresponding	extent	structures.

DBCC	NEWALLOC	is	supported	for
backward	compatibility	only	and	is
identical	to	DBCC	CHECKALLOC.

Consider	removing	all	references	of
DBCC	NEWALLOC	and	replacing
with	references	to	DBCC
CHECKALLOC.

DBCC	ROWLOCK	dynamically
enabled	Insert	Row	Locking	(IRL)
operation	on	tables.

Row-level	locking	is	automatic.
DBCC	ROWLOCK	available	for
backward	compatibility	only.

Consider	removing	all	references	of
DBCC	ROWLOCK.

DBCC	TEXTALL	selected	tables	in
the	database	that	had	text	or	image
columns	and	ran	DBCC
TEXTALLOC	on	them.

DBCC	CHECKDB	checks	the
consistency	of	text,	ntext,	and	image
columns	in	a	database.	DBCC
TEXTALL	is	available	for	backward
compatibility	only.

Consider	removing	all	references	of
DBCC	TEXTALL	and	replacing	with
references	to	DBCC	CHECKDB.

DBCC	TEXTALLOC	checked	the
allocation	of	text	or	image	columns
for	a	table.

DBCC	CHECKTABLE	checks	the
integrity	of	the	data,	index,	text,	ntext,
and	image	pages	for	the	specified
table.	DBCC	TEXTALLOC	is
available	for	backward	compatibility
only.

Consider	removing	all	references	of
DBCC	TEXTALLOC	and	replacing

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

with	references	to	DBCC
CHECKTABLE.

DBCC	DBREPAIR	dropped	the
specified,	and	usually	damaged,
database.

Use	DROP	DATABASE	to	drop	or
remove	a	SQL	Server	database.	DBCC
DBREPAIR	is	available	for	backward
compatibility	only.

Consider	removing	all	references	of
DBCC	DBREPAIR	and	replacing	with
references	to	DROP	DATABASE.

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

SQL	Server	Setup	Help

Devices	(Level	3)
The	database	architecture	of	Microsoft®	SQL	Server™	2000	differs	from	the
database	architecture	of	SQL	Server	6.x.	In	SQL	Server	2000:

Operating	system	files	replace	database	devices.

Data	files	and	transaction	logs	cannot	co-exist	on	the	same	operating
system	file.

A	single	operating	system	file	cannot	be	shared	by	multiple	databases.

For	more	information	about	database	architecture,	see	Overview	of	SQL	Server
Architecture.

SQL	Server	6.x SQL	Server	2000
DISK	INIT	created	database	or
transaction	log	devices.	When
DISK	INIT	followed	either	a
CREATE	DATABASE	or
ALTER	DATABASE	statement,
SQL	Server	used	the	specified
devices	for	storing	the	specified
database	or	transaction	log.

The	CREATE	DATABASE	statement
syntax	and	ALTER	DATABASE	statement
syntax	both	allow	the	creation	of	separate
data	and	log	files.	Both	CREATE
DATABASE	and	ALTER	DATABASE
create	operating	system	files	and	databases
in	a	single	step	(generating	a	log	file
automatically,	if	none	is	specified	with	the
LOG	ON	clause).

Consider	removing	all	references	to	DISK
INIT	and	replacing	with	references	to
either	CREATE	DATABASE	or	ALTER
DATABASE.

DISK	INIT	has	limited	support	in	SQL
Server	2000.	Existing	scripts	will	run	as
long	as	they	do	not	have	data	and	log
sharing	of	the	same	data	files.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

DISK	REINIT	restored	device
entries	to	appropriate	system
tables	when	the	device	entry
was	missing	from	sysdevices.

Removed;	no	replacement.

Consider	removing	all	references	to	DISK
REINIT.

sp_logdevice	put	syslogs
(contains	the	transaction	log)	on
a	separate	database	device.	To
add	another	log	segment	to	a
database	with	an	existing	log
segment,	it	was	necessary	to
execute	DISK	INIT	followed	by
sp_logdevice.

Removed.	The	CREATE	DATABASE
statement	creates	a	log	file	on	a	new
operating	system	file.

Consider	removing	all	references	to
sp_logdevice	and	replacing	with
references	to	CREATE	DATABASE.	SQL
Server	6.x	scripts	using	the	LOG	ON
clause	of	CREATE	DATABASE	will	work
as	expected.	Scripts	without	the	LOG	ON
clause	of	CREATE	DATABASE	will	have
a	log	file	generated	automatically.

Devices	created	using	DISK
INIT	and	CREATE
DATABASE	could	be	dropped
only	by	using	sp_dropdevice.

Databases	created	without	DISK	INIT
before	CREATE	DATABASE	can	be
dropped	with	DROP	DATABASE;
otherwise,	use	sp_dropdevice.

Use	sp_dropdevice	when	using	DISK
INIT,	followed	by	CREATE	DATABASE.

Examples

A.	Use	both	DISK	INIT	and	CREATE	DATABASE	syntax
This	example	uses	DISK	INIT	and	CREATE	DATABASE	and	works	in	SQL
Server	version	6.5	and	SQL	Server	2000:

DISK	INIT	name	=	'testdb_data',	
			physname	=	'c:\testdb_data.dat',	
			vdevno	=	9,	
			size	=	10240

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

DISK	INIT	name	=	'testdb_log',	
			physname	=	'c:\testdb_log.dat',	
			vdevno	=	8,	
			size	=	10240
CREATE	DATABASE	testdb	
			ON	testdb_data	=	10	
			LOG	ON		testdb_log	=	10
GO

B.	Use	of	sp_logdevice	and	CREATE	DATABASE	in	SQL	Server
2000	fails
In	earlier	versions	of	SQL	Server,	this	script	created	a	20	MB	database
consisting	of	the	two	files	named	testdb_data	and	testdb_log.	This	script	also
moved	the	transaction	log	to	the	testdb_log	device	by	using	sp_logdevice.

Note		Scripts	like	this	one	were	usually	generated	by	the	SQL	Server	6.5
sp_help_revdatabase	system	stored	procedure,	which	used	sp_logdevice	to
ensure	the	proper	device	layout	for	database	restores.	Because	SQL	Server	2000
creates	the	database	when	it	is	restored,	scripts	such	as	these	are	no	longer
necessary.

--	SQL	Server	6.x	example.
DISK	INIT	name	=	'testdb_data',	
			physname	=	'c:\testdb_data.dat',	
			vdevno	=	9,	
			size	=	10240
DISK	INIT	name	=	'testdb_log',	
			physname	=	'c:\testdb_log.dat',	
			vdevno	=	8,	
			size	=	10240
CREATE	DATABASE	testdb	on	testdb_data	=	10,	testdb_log	=	10
--	Use	sp_logdevice	to	move	the	log	to	the	testdb_log	device.
EXEC	sp_logdevice	testdb,	testdb_log	

In	SQL	Server	2000,	the	above	script	does	not	work	the	same	as	in	SQL	Server

6.x	because	sp_logdevice	no	longer	exists.

In	SQL	Server	2000,	this	script	creates	a	20	MB	database	consisting	of	the	two
files	named	testdb_data	and	testdb_log.	In	addition,	SQL	Server	generates	a
log	file	automatically,	which	is	25	percent	of	the	database	size.	In	the	following
script	(using	the	devices	created	earlier),	a	10	MB	log	file	is	generated
automatically:

CREATE	DATABASE	testdb	on	testdb_data	=	10,	testdb_log	=	10

C.	Use	CREATE	DATABASE	syntax	only
Using	the	SQL	Server	2000	CREATE	DATABASE	syntax,	the	database	from	the
earlier	example	could	be	created	as	follows:

CREATE	DATABASE	testdb	ON	(name	=	'testdb_data',
			filename	=	'd:\testdb_data.dat',	size	=	10)
			LOG	ON	(name	=	'testdb_log',	filename	=	'd:\testdb_log.dat',	
			size	=	10)

SQL	Server	Setup	Help

Open	Data	Services	(Level	3)
The	Open	Data	Services	gateway	functions,	macros,	and	events	listed	in	the
table	are	no	longer	supported.

Function/macro	name
srv_ackattention
srv_config
srv_config_alloc
srv_errhandle
srv_event
srv_eventdata
srv_getconfig
srv_handle
srv_init
srv_langcpy
srv_langlen
srv_langptr
srv_log
srv_post_handle
srv_pre_handle
srv_run
srv_setevent
srv_terminatethread

SQL	Server	Setup	Help

Query	Performance	(Level	3)

SQL	Server	6.x SQL	Server	2000
Queries	could	include	a	server
user	ID	(SUID)	without
performance	implications,	as
shown	in	the	following	table.

Queries	using	SUIDs	continue	to	run	and
produce	the	same	results	as	in	earlier
versions	of	SQL	Server.	However,	there	is
a	severe	performance	penalty	because
SUIDs	are	no	longer	native	to	the	new
security	design.

Consider	removing	all	references	to	SUIDs
and	replacing	with	references	to	security
identification	numbers	(SIDs)	(as	shown	in
the	following	table)	to	avoid	degradation	in
query	performance.

SQL	Server	6.x	SUID Replace	with	SQL	Server	2000	SID
SUSER_ID SUSER_SID,	which	returns	a	SID
SUSER_NAME SUSER_SNAME,	which	accepts	a	SID	as

input
syslogins.suid syslogins.sid
sysdatabases.suid sysdatabases.sid
sysremotelogins.suid sysremotelogins.sid
sysusers.suid sysusers.sid
sysalternates.suid sysusers.isaliased
sysalternates.altsuid sysusers.isaliased

Examples
A.	Use	SIDs	and	SUIDs	to	display	login	names	of	users	in	sysusers

This	example	shows	SQL	Server	6.x	queries	that	displayed	the	login	names	of	all
users	in	sysusers:

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

SELECT	L.name	
FROM	master.dbo.syslogins	L,	sysusers	U	
WHERE	L.suid	=	U.suid
--	Or
SELECT	suser_name(suid)	AS	name
FROM	sysusers

Here	are	the	queries	rewritten	to	use	SIDs	rather	than	SUIDs:

SELECT	L.loginname	
FROM	master.dbo.syslogins	L,	sysusers	U	
WHERE	L.sid	=	U.sid
--	Or
SELECT	suser_sname(sid)	AS	name
FROM	sysusers
	

SQL	Server	Setup	Help

Security	(Level	3)

SQL	Server	6.x SQL	Server	2000
The	ON	{table	|	view}	(column
[,...n])	syntax	for	the	GRANT
statement	assigned	the	specified
permissions	to	the	columns	given
for	the	specified	table	or	view.

The	ON	{table	|	view}	(column	[,...n])
syntax	for	the	GRANT	statement	is
supported	for	backward	compatibility
only.

Consider	using	the	SQL-92	standard
GRANT	syntax	for	object	permissions
and	placing	the	column	list	before	the
ON	clause.

The	term	integrated	security
allowed	a	SQL	Server	to	use
Windows	NT	Authentication
mechanisms	to	validate	logins	for
all	connections.	Standard	security
used	SQL	Server's	own	login
validation	process	for	all
connections.	Mixed	security
allowed	login	requests	to	be
validated	using	either	integrated
or	standard	security.

The	terms	Windows	Authentication	and
Mixed	Mode	replace	integrated	security
and	mixed	security,	respectively.
Standard	security	no	longer	exists.

Consider	using	the	terms	Windows
Authentication	and	Mixed	Mode	rather
than	integrated	security	and	mixed
security.	Do	not	refer	to	standard
security.	For	more	information	about
security	modes,	see	Authentication.

The	SETUSER	statement
allowed	a	database	owner	to
impersonate	another	user.

SETUSER	is	included	in	Microsoft®
SQL	Server™	2000	for	backward
compatibility	only,	and	is	not
recommended.	This	statement	may	no
longer	be	supported	in	a	future	release	of
SQL	Server.

Consider	removing	all	references	to
SETUSER.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

SELECT	(Level	3)

SQL	Server	6.x SQL	Server	2000
The	FASTFIRSTROW	optimizer
hint	caused	the	optimizer	to	use
the	nonclustered	index	if	one
matches	the	ORDER	BY	clause.

The	OPTION	(FAST	n)	query	hint
replaces	FASTFIRSTROW.	However,
FASTFIRSTROW	is	maintained	for
backward	compatibility	only.

Consider	removing	all	references	to
FASTFIRSTROW	in	SELECT	statements
and	replacing	with	references	to	OPTION
(FAST	n).

The	INDEX	=	syntax	specified
one	or	more	indexes	to	use	for	a
table	hint.

Supported	for	backward	compatibility
only.

Consider	removing	all	references	to
INDEX	=	and	replacing	(when	using
multiple	index	hints)	with	references	to
INDEX(index,	index...)	as	shown	in
SELECT.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

SET	SHOWPLAN	(Level	3)

SQL	Server	6.x SQL	Server	2000
The	SET	SHOWPLAN
statement	returned	output	as
informational	messages
through	SQLGetDiagRec	in
ODBC,	or	through	the	message
handler	in	DB-Library
applications.

The	SET	SHOWPLAN	statement	is	no
longer	supported.	It	has	been	replaced	by
SET	SHOWPLAN_TEXT	and	SET
SHOWPLAN_ALL.	The	output	of	SET
SHOWPLAN_TEXT	and	SET
SHOWPLAN_ALL	is	returned	not	as
informational	messages,	but	as	a	result	set.

Consider	removing	all	references	of	SET
SHOWPLAN	and	replacing	with
references	to	either	SET
SHOWPLAN_TEXT	(to	display	readable
text)	or	SET	SHOWPLAN_ALL	(to
display	output	that	can	be	parsed	more
easily	by	an	application	building	a	report	of
showplan	output).	The	application	needs	to
process	the	output	as	part	of	the	result	set,
not	as	messages	returned	through	the
ODBC	SQLGetDiagRec	function	or	the
DB-Library	message	handler.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

System	Stored	Procedures	(Extended)	(Level	3)

SQL	Server	6.x SQL	Server	2000
xp_grantlogin	and
xp_revokelogin	granted	or
revoked	SQL	Server	access	to	a
Windows	NT-based	group	or	user.

Use	sp_grantlogin	and	sp_revokelogin
even	though	xp_grantlogin	and
xp_revokelogin	are	supported	for
backward	compatibility	only.

Consider	removing	all	references	of
xp_grantlogin	and	xp_revokelogin	and
replacing	with	references	to
sp_grantlogin	and	sp_revokelogin,
respectively.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

System	Stored	Procedures	(System)	(Level	3)

SQL	Server	6.x SQL	Server	2000
Job	management	was	called	task
management,	and	several	system
stored	procedures	allowed
system	administrators	to	create
and	manage	tasks.

The	task	management	system	stored
procedures	are	no	longer	documented	and
are	included	for	backward	compatibility
only.

Even	though	Microsoft®	SQL	Server™
2000	supports	the	task	management
system	stored	procedures	(sp_addtask,
sp_droptask,	sp_helptask,
sp_reassigntask,	and	sp_updatetask)	for
scheduling	and	managing	SQL	Server
jobs,	consider	using	either	SQL	Server
Enterprise	Manager	or	the	job-related
system	stored	procedures	listed	in	the
following	table	for	managing	jobs.

The	task-related	stored	procedures	listed	in	the	SQL	Server	6.x	column	below
have	been	replaced	by	the	corresponding	job-related	stored	procedures	shown	in
the	SQL	Server	2000	column.

SQL	Server	6.x SQL	Server	2000
sp_addtask sp_add_job

sp_add_jobstep
sp_add_jobschedule
sp_start_job

sp_droptask sp_delete_job
sp_delete_jobstep
sp_delete_jobschedule

sp_helptask sp_help_jobhistory
sp_help_jobschedule
sp_help_jobstep

sp_reassigntask sp_purge_jobhistory

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()

sp_stop_job
sp_updatetask sp_update_job

sp_update_jobstep
sp_update_jobschedule

JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()

SQL	Server	Setup	Help

Aliases	(Level	4)

SQL	Server	6.x SQL	Server	2000
An	alias	allowed	a	user	to
temporarily	assume	the	identity
of	another	user	within	a	database
and	perform	actions	as	the
aliased	user.	For	example,	the
database	owner	could	be	aliased
to	a	user	so	they	could	act	as	that
user,	if	the	user	were	on
vacation.

Roles	have	replaced	aliases.	Because	a
user	can	belong	to	more	than	one	role	at	a
time,	it	is	no	longer	necessary	to	assume
the	identity	of	another.	Users	belonging	to
the	same	roles	have	the	same	permissions
automatically,	assuming	permissions	are
only	applied	at	the	role	level,	not	the	user
level.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Use	roles
instead	of	aliases.	For	more	information
about	database	roles,	see	Managing
Permissions.

SQL	Server	Setup	Help

Backup	and	Restore	(Level	4)

SQL	Server	6.x SQL	Server	2000
The	LOAD	HEADERONLY
statement	retrieved	a	result
set	detailing	the	header
information	from	a	database
dump.

The	result	set	has	changed.	Expect	a
different	result	set	from	RESTORE
HEADERONLY,	compared	to	LOAD
HEADERONLY	in	earlier	versions	of	SQL
Server.	For	more	information	about
RESTORE	HEADERONLY,	see	RESTORE
HEADERONLY.

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Configuration	(Level	4)
Administration	scripts	may	have	used	these	configuration	options.	For	more
information	about	configuration	options,	see	sp_configure	and	Setting
Configuration	Options.

SQL	Server	6.x SQL	Server	2000
Administration	scripts	may	have
used	the	nonadvanced	media
retention	option	to	set	the
number	of	days	to	retain	each
backup	medium	after	it	is	used
for	a	database	or	transaction	log
dump.

media	retention	is	now	an	advanced
option.

Expect	different	results	as	compared	to
earlier	versions	of	Microsoft®	SQL
Server™.	Expect	the	media	retention
configuration	option	to	appear	only	if
you	have	enabled	the	advanced
configuration	options	of	sp_configure.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

SQL	Server	Setup	Help

CREATE	PROCEDURE	(Level	4)

SQL	Server	6.x SQL	Server	2000
CREATE	PROCEDURE	statements
failed	if	they	contained	a	CREATE
TABLE	or	SELECT	INTO	statement
creating	a	temporary	table	with	the
same	name	as	a	temporary	table	that
existed	at	the	time	the	CREATE
PROCEDURE	statement	was
executed.

The	CREATE	PROCEDURE
statement	succeeds.

Recode	any	logic	that	depended	on
the	earlier	behavior.

SQL	Server	Setup	Help

Data	Types	(Level	4)

SQL	Server	6.x SQL	Server	2000
The	decimal	and	numeric	data
types	could	use	anywhere	from	2
through	17	bytes	to	store	a	value,
depending	on	the	precision	of	the
stored	value.

numeric	and	decimal	now	use	5,	9,	13,
or	17	bytes	of	storage.

Expect	different	results	as	compared	to
earlier	versions	of	Microsoft®	SQL
Server™.	Be	sure	that	databases	using
the	numeric	or	decimal	data	types	have
sufficient	storage	for	the	change	in
storage	bytes.

Results	that	were	too	small	to
display,	called	floating	point
underflow,	returned	inconsistent
results	for	some	mathematical
operators	and	functions.

SQL	Server	now	returns	0.0	and	no
error	message	for	all	instances	of
floating	point	underflow.

Because	of	the	fixed	size	of	floating
point	numbers	like	the	float	and	real
data	types,	approximate	numeric	data
have	intrinsic	precision	and	ranges	of
values.	In	cases	of	floating	point
underflow,	a	result	of	0.0	will	be
returned	and	no	error	message	will	be
displayed.	For	example,	the
mathematical	calculation	of	2	to	the
-100.0	power	would	have	a	result	0.0.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Expect
different	results	with	floating	point
underflow	with	the	mathematical
functions	or	operators.	For	more
information,	see	Using	Mathematical
Functions.

+	(Add)	-	(Subtract)

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

*	(Multiply)
/	(Divide)
ATN2
AVG
CONVERT
EXP
POWER
RADIANS
SUM

A	negative	second	parameter
equal	to	the	number	of	digits	in
the	ROUND	expression	returned	a
value	of	0	for	integer,	float,	and
money	data	types.	When	the
second	parameter	was	negative
and	less	than	the	number	of	digits
in	the	ROUND	expression,
ROUND	returned	a	value	that
rounded	the	right-most	digit	down
to	0.

When	the	second	parameter	in	the
ROUND	function	is	a	negative	value
(for	all	numeric	data	types)	that	is	less
than	the	number	of	digits	in	the
expression,	SQL	Server	returns	a	value
that	is	rounded	up	to	the	next	digit
position.

Expect	different	results	with	the
ROUND	function,	compared	to	earlier
versions	of	SQL	Server,	when	the
second	parameter	is	negative.

The	DATEADD	and	DATEDIFF
functions	returned	a	date	value
when	adding	or	subtracting	date
values.

Direct	date	value	addition	and
subtraction	operations	are	supported	for
datetime	and	smalldatetime	using	the	+
(Add)	and	-(Subtract)	operators.

For	simple	date	arithmetic,	you	can	also
use	addition	(+	(Add))	or	subtraction	(
-	(Subtract))	instead	of	DATEADD	and
DATEDIFF.

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()
JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()

SQL	Server	Setup	Help

DATEPART	and	SET	DATEFIRST	(Level	4)

SQL	Server	6.x SQL	Server	2000
The	SET	DATEFIRST	setting
of	the	DATEPART	function
had	no	effect	on	the	week
datepart.

The	week	datepart	may	give	values
different	from	earlier	versions	of
Microsoft®	SQL	Server™.	However,	any
difference	will	appear	only	if	the	SET
DATEFIRST	setting	is	not	the	default	(the
U.S.	English	default	is	7).

If	the	year	provided	in	the	DATEPART
function	has	366	days,	a	week	value	of	54
can	be	returned	if	the	first	week	of	the	year
starts	on	a	Saturday,	and	the	year	ends	on
the	same	day	of	the	week	with	the	first	day
of	the	week	counted	from	Sunday.

When	using	the	ISO	8601	standard,	week
values	are	always	from	1	through	53,	as	the
first	week	of	the	year	is	guaranteed	to	have
a	minimum	of	4	days.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Use	the
default	value	for	SET	DATEFIRST	so	that
DATEPART	returns	the	expected	results
for	the	week	datepart.	Otherwise,
DATEPART	values	will	be	one	less	than
expected.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

DBCC	(Level	4)

SQL	Server	6.x SQL	Server	2000
Each	DBCC	statement	had	a
certain	output	format.

The	output	formats	of	many	DBCC
statements	have	changed.

Expect	different	results	as	compared	to
earlier	versions	of	Microsoft®	SQL
Server™.

The	DBCC	PERFMON	and
DBCC	SQLPERF	statements
documented	SQL	Server
performance	statistics	used	for
studying	SQL	Server
performance.

No	longer	documented.	These	statements
may	change	in	a	future	release	of	SQL
Server.

Use	the	Windows	2000	System	Monitor
Windows	NT	4.0	Performance	Monitor
to	monitor	the	performance	counters	for
SQL	Server.	For	more	information,	see
Monitoring	with	Windows	Performance
Monitor.

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

DBCS	String	Comparisons	(Level	4)

SQL	Server	6.x SQL	Server	2000
When	comparing	DBCS	space
characters,	the	Unicode	A140
space	character	(U-A140)	was
not	equal	to	the	Unicode	0020
(U-0020)	space	character.

Comparisons	involving	the	Unicode
A140	space	character	(U-A140)	are	now
equivalent	to	the	Unicode	0020	(U-0020)
space	character.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server	when
comparing	DBCS	space	characters.

SQL	Server	Setup	Help

DELETE	and	SELECT	(Level	4)

SQL	Server	6.x SQL	Server	2000
Duplicate	table	names	in	the	FROM	clause
of	Microsoft®	SQL	Server™	version	6.0
DELETE	or	SELECT	statement	caused	SQL
Server	to	treat	both	table	references	as	the
same	table.	SQL	Server	discarded	the
reference	to	the	second	authors	table	in	this
SELECT	example:
USE	pubs
GO
SELECT	*	
FROM	authors,	authors
GO

However,	if	the	table	names	specified	in	the
FROM	clause	of	the	DELETE	or	SELECT
were	not	identical,	SQL	Server	version	6.0
treated	the	two	table	references	as	two
different	tables	as	in	this	SELECT	example:

USE	pubs
GO
SELECT	*	
FROM	pubs..authors,	pubs.dbo.authors
GO

Duplicate	table	names	in	the	FROM	clause	of	a	DELETE	or
SELECT	statement	generate	errors	in	SQL	Server.	Rewrite
statements	using	aliases.	Here	is	a	SELECT	example:
SELECT	*
FROM	pubs..authors	AS	a1,	pubs.dbo.authors	AS	a2

USE	pubs
SELECT	*
FROM	authors	AS	au1,	authors	AS	au2

Expect	different	results	as	compared	to	SQL	Server	version
6.0.	Rewrite	DELETE	and	SELECT	statements	to	use
aliases	in	the	FROM	clause	when	referring	to	more	than	one
instance	of	the	same	table.

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Devices	(Level	4)

SQL	Server	6.x SQL	Server	2000
The	DISK	RESIZE	statement
altered	the	size	of	a	database
device.

The	DISK	RESIZE	statement	is
supported,	but	may	not	be	supported	in
future	releases.	In	addition,	the	DISK
RESIZE	statement	does	not	alter	the	size
of	the	database.	Instead,	use	ALTER
DATABASE.

Expect	different	results	as	compared	to
earlier	versions	of	Microsoft®	SQL
Server™.	Use	the	MODIFY	FILE	clause
of	the	ALTER	DATABASE	statement	to
alter	the	size	of	a	database.

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Functions	(Level	4)

SQL	Server	6.x SQL	Server	2000
The	@@DBTS	global	variable
was	incremented	any	time	any
page	in	the	database	was	modified
in	any	way.

The	value	returned	by	the	@@DBTS
function	changes	only	if	a	row
containing	a	timestamp	column	is
modified.

Expect	different	results	as	compared	to
earlier	versions	of	Microsoft®	SQL
Server™	when	using	@@DBTS.

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Global	Variables	(Level	4)

Pre-SQL	Server	7.0 SQL	Server	7.0
Global	variables	were	system-supplied,
predeclared	variables	that	were
distinguished	from	local	variables	by
having	two	at	symbols	(@@)	preceding
their	names.

Transact-SQL	global	variables	are
a	form	of	function	and	are	now
referred	to	as	functions.

For	more	information,	see
Functions.

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

ODBC	(Level	4)

SQL	Server	6.x SQL	Server	2000
In	the	version	2.65	ODBC	driver,	the	long-
running	query	interval,	specified	by	calling
SQLSetConnectOption	with	the	driver-
specific	connection	option
SQL_COPT_SS_PERF_QUERY_INTERVAL,
was	specified	in	seconds.

The
SQL_COPT_SS_PERF_QUERY_INTERVAL
value	is	specified	in	milliseconds.

Expect	different	results	as	compared	to	earlier
versions	of	Microsoft®	SQL	Server™.
Multiply	the	value	of
SQL_COPT_SS_PERF_QUERY_INTERVAL
by	1,000	to	convert	the	number	of	seconds	to
milliseconds.	For	more	information	about
SQL_COPT_SS_PERF_QUERY_INTERVAL,
see	SQLSetConnectAttr.

For	earlier	versions	of	the	ODBC	SQL	Server
driver,	messages	from	consecutive	PRINT,
RAISERROR,	DBCC,	or	similar	statements
(in	a	batch	or	stored	procedure)	were
combined	into	a	single	result	set.

For	the	ODBC	SQL	Server	3.51-compliant
driver	(included	with	SQL	Server	2000),
messages	from	consecutive	PRINT,
RAISERROR,	DBCC,	or	similar	statements
(in	a	batch	or	stored	procedure)	are	returned	in
a	separate	result	set	for	each	statement.

Expect	different	results	as	compared	to	earlier
versions	of	SQL	Server.	Call
SQLMoreResults	to	process	the	result	set
from	each	statement.

Earlier	versions	of	the	ODBC	SQL	Server
driver	returned	SQL_SUCCESS	when
executing	a	searched	UPDATE	or	DELETE
statement	that	affects	no	rows	(using
SQLExecute,	SQLExecDirect,	or
SQLParamData).	SQLRowCount	returned
zero.

When	an	ODBC	version	3.x	application	uses
the	ODBC	SQL	Server	3.5	driver	included
with	this	release,	it	returns	SQL_NO_DATA
when	executing	a	searched	UPDATE	or
DELETE	statement	that	affects	no	rows	(using
SQLExecute,	SQLExecDirect,	or
SQLParamData).	SQLRowCount
returns	zero.

Expect	different	results	as	compared	to	earlier

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Expect	different	results	as	compared	to	earlier
versions	of	SQL	Server.	Handle
SQL_NO_DATA	appropriately.

SQL	Server	Setup	Help

Rebuilding	the	master	Database	(Level	4)

SQL	Server	6.x SQL	Server	2000
Executing	SQL	Server	Setup
rebuilt	the	master	database.

No	longer	supported.	SQL	Server
includes	the	Rebuild	Master	(rebuildm)
utility.

Use	the	Rebuild	Master	(rebuildm)
Utility	located	in	the	x:\Program
Files\Microsoft	SQL
Server\80\Tools\Binn	folder	to	rebuild	the
master	database.

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

Rebuilding	the	Registry	(Level	4)
Note		In	Microsoft®	SQL	Server™	2000,	this	utility	is	replaced	by	the	setup
option,	Registry	Rebuild.

Pre-SQL	Server	7.0 SQL	Server	7.0
Executing	this	SQL	Server	Setup
statement	rebuilt	the	registry:
setup/t	RegistryRebuild	=	On.

No	longer	supported.	Instead,	use
Setup	to	rebuild	the	registry.

SQL	Server	Setup	Help

Replication	(Level	4)

SQL	Server	6.x SQL	Server	2000
Subscriptions	to	one	or	more
articles	in	a	publication	were
created	either	through	SQL
Server	Enterprise	Manager	or
through	the	appropriate	system
stored	procedures.

SQL	Server	Enterprise	Manager	no	longer
allows	subscription	to	one	or	more	articles.
Subscribing	to	one	or	more	articles	of	a
publication	can	be	done	only	by	using	the
appropriate	replication	system	stored
procedures.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Use	the
replication	system	stored	procedures	to
subscribe	to	one	or	more	articles	of	a
publication.	When	using	SQL	Server
Enterprise	Manager,	it	is	necessary	to
subscribe	to	the	entire	publication.

Replication	functions	differently	between	SQL	Server	2000	and	SQL	Server
version	6.5	servers.	In	addition,	SQL	Server	2000	offers	enhanced	scripting
ability	after	your	replication	topology	is	created	in	the	user	interface.	This
enhanced	scripting	allows	mass	implementation	of	replication	topology	with	a
minimum	of	time	and	effort.

SQL	Server	Setup	Help

Security	(Level	4)

SQL	Server	6.x SQL	Server	2000
The	SYSTEM_USER	niladic
function	returned	nulls	for	any
Microsoft	Windows	NT®	login.

The	appropriate	domain	and	login
names	are	returned	if	Windows
Authentication	is	used	with	the
SYSTEM_USER	function.

Expect	a	different	result,	as	compared	to
earlier	versions,	when	using
SYSTEM_USER	with	Windows
Authentication.

JavaScript:hhobj_1.Click()

SQL	Server	Setup	Help

SELECT	(Level	4)

SQL	Server	6.x SQL	Server	2000
The	left	outer	join	(*=)	and
right	outer	join	(=*)	operators
were	used	in	SELECT
statements	to	produce	left	and
right	outer	joins,	respectively.

The	SQL-92-standard	syntax	of	LEFT
OUTER	JOIN	and	RIGHT	OUTER	JOIN
is	preferred.	However,	join	operators
supported	in	earlier	versions	of
Microsoft®	SQL	Server™	are	supported.

It	is	recommended	that	you	remove	all
references	of	the	left	outer	join	(*=)	and
right	outer	join	(=*)	operators	in	all
SELECT	statement	FROM	clauses	and
replace	with	references	to	the	SQL-92-
standard	syntax	RIGHT	OUTER	JOIN
and	LEFT	OUTER	JOIN.	Future	versions
of	SQL	Server	will	support	only	the	SQL-
92-standard	syntax.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Setup	Help

Triggers	and	System	Stored	Procedures	(System)	(Level	4)

SQL	Server	6.x SQL	Server	2000
Returned	values	were	not	always
correct	for	text	or	image	columns
in	either	the	inserted	or	deleted
tables	when	either	table	was	used
in	a	CREATE	TRIGGER
statement.

NULL	values	are	returned	for	text	or
image	column	references	in	the
inserted	or	deleted	tables	in	CREATE
TRIGGER.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Remove
all	references	to	either	the	text	or	image
columns	of	the	inserted	or	deleted
tables	when	used	in	CREATE
TRIGGER	statements.

Direct	recursion	of	triggers	(the
ability	of	a	trigger	to	call	itself)
was	not	supported,	but	indirect
recursion	was	allowed.

Direct	trigger	recursion	is	enabled	with
the	RECURSIVE_TRIGGERS	option	of
ALTER	DATABASE.	Indirect	recursion
is	enabled	with	the	nested	triggers
configuration	option.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.

Server-to-server	communication
existed	between	version	4.x	and
version	6.x	servers	when
initialized	by	either	side.

Version	4.x	or	6.x	servers	can
communicate	with	SQL	Server	2000
servers.	However,	server-to-server
communication	is	not	supported	from
SQL	Server	2000	servers	to	4.x	servers.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Upgrade
the	4.x	server	to	either	SQL	Server	6.x
or	SQL	Server	2000

sp_tableoption	set	option	values
for	user-defined	tables,	including

The	Insert	Row	Locking	(IRL)
parameters	in	sp_tableoption	are	not

JavaScript:hhobj_1.Click()

the	use	of	Insert	Row	Locking
(IRL).

supported	but	have	been	replaced	with
complete	row-level	locking.

Expect	different	results	as	compared	to
earlier	versions	of	SQL	Server.	Remove
all	references	to	IRL	actions
implemented	using	sp_tableoption	and
use	the	built-in	row-level	locking	of
SQL	Server	2000	instead.	Applications
calling	sp_tableoption	should	continue
to	work	properly;	the	IRL	parameters
will	be	ignored.

The	@message	parameter	of
xp_readmail	was	varchar(255).
The	@message	and	@query
parameters	of	xp_sendmail	were
varchar(255).

The	@message	and	@query	parameters
are	now	varchar(8000).

Expect	differences	in	behavior	as
compared	to	earlier	versions	of	SQL
Server	when	using	the	@message
parameter	of	xp_readmail	and	the
@message	and	@query	parameters	of
xp_sendmail.

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

SQL	Server	Setup	Help

UPDATE	(Level	4)

SQL	Server	6.x SQL	Server	2000
In	Microsoft®	SQL	Server™	version	6.0,	the
following	UPDATE	statement,	using	two	different
table	aliases	for	the	same	base	table,	was	allowed:
CREATE	TABLE	t1	(c1	int)
GO
INSERT	t1	VALUES	(1)
INSERT	t1	VALUES	(2)
GO
UPDATE	t1	
SET	c1	=	50
FROM	t1	a1,	t1	a2
WHERE	a1.c1	=	1	AND
a2.c1	=	2
GO

Syntax	no	longer	supported.	Use	the	alias,	rather	than	the	table	name,	after	the
UPDATE	keyword.	The	UPDATE	statement	would	be	rewritten	to:
UPDATE	a1	
SET	c1	=	50
FROM	t1	a1,	t1	a2
WHERE	a1.c1	=	1	AND
a2.c1	=	2

Expect	differences	in	behavior	as	compared	to	SQL	Server	version	6.0.

This	UPDATE	statement	with	table	and	alias
references	worked.
USE	pubs
GO
UPDATE	titles
SET	t.ytd_sales	=	t.ytd_sales	+	s.qty
FROM	titles	t,	sales	s
WHERE	t.title_id	=	s.title_id
AND	s.ord_date	=	
(SELECT	MAX(sales.ord_date)	FROM	sales)
GO

The	alias	specified	after	the	UPDATE	keyword	must	match	the	alias	specified
following	the	SET	keyword.	Without	this	change,	the	compatibility	level	setting
must	be	changed	to	65	for	this	UPDATE	statement	to	function	as	it	did	in	version
6.x.

Here	is	the	same	UPDATE	statement	rewritten:

USE	pubs
GO
UPDATE	t	
				SET	t.ytd_sales	=	t.ytd_sales	+	s.qty
								FROM	titles	t,	sales	s
											WHERE	t.title_id	=	s.title_id
												AND	s.ord_date	=	(SELECT	MAX(sales.ord_date)	FROM	sales)
GO

Expect	differences	in	behavior	as	compared	to	SQL	Server	version	6.
different	table	references	following	the	UPDATE	keyword	of	the	UPDATE
statement	and	the	SET	keyword	of	the	UPDATE	statement.

SQL	Server	Setup	Help

Utilities	(Level	4)

SQL	Server	6.x SQL	Server	2000
isql/w	used	DB-Library.	The
SQL-92	settings,	like
ANSI_WARNINGS,	were	set	off,
by	default.

SQL	Query	Analyzer	uses	the	SQL
Server	ODBC	driver,	which,	by	default,
sets	these	SQL-92	options	on:	SET
ANSI_WARNINGS,	SET
ANSI_PADDING,	and	SET
ANSI_NULLS.	Any	errors	returned	are
formatted	as	ODBC	errors	rather	than
DB-Library	errors.

Expect	different	results	as	compared	to
earlier	versions	of	Microsoft®	SQL
Server™.	Expect	different	results	with
SQL	Query	Analyzer,	compared	to	the
isql	utility	or	the	SQL	Server	6.5
version	of	isql/w.

isql/w	used	the	ANSI-ISO	code
pages.	When	connected	to	a	server
using	OEM	code	page	850	or	437,
ANSI	to	OEM	character
translation	had	to	be	explicitly
enabled.	Otherwise,	data	with
extended	characters	appeared
garbled.

The	SQL	Server	2000	ODBC	driver
automatically	detects	the	need	for	and
sets	up	automatic	ANSI	to	OEM
conversion.	In	addition,	when	SQL
Query	Analyzer	connects,	automatic
detection	is	enabled.

Expect	a	change	in	behavior	when	using
SQL	Query	Analyzer	with	international
or	extended	characters.

For	additional	information	about	changes	to	SQL	Query	Analyzer,	see	the
discussion	"Default	Connection	Option	Settings	in	SQL	Query	Analyzer"	in
SQL	Server	2000	and	SQL	Server	version	7.0.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

	Overview of Installing SQL Server 2000
	Preparing to Install SQL Server 2000
	Hardware and Software Requirements for Installing SQL Server 2000
	SQL Server 2000: Editions and Components
	Installing English Query
	Installing Analysis Services

	Setting up Windows Services Accounts
	File Paths for SQL Server 2000
	Upgrading an Existing Installation of SQL Server

	Basic Installation Options
	Entering Information in Basic Setup Screens
	Computer Name
	Installation Selection
	Existing Installation Options
	Installation Definition
	User Information
	Instance Name
	Setup Type: Typical, Minimum, or Custom
	Select Components
	Server Components
	Management Tools
	Client Connectivity
	Books Online
	Development Tools
	Code Samples

	Network Libraries
	Services Accounts
	Authentication Mode
	Choose Licensing Mode
	Installing a Remote Configuration
	Remote Setup Information

	Advanced Installation Options
	Installing a Virtual Server Configuration
	Failover Clustering: Defining the Virtual Server
	Cluster Management Screen
	Cluster Disk Selection Screen
	Quorum Disk Selection Warning
	Modify Node List Warning

	Performing an Unattended Installation
	Creating a Setup File Manually
	Setup Initialization File Details
	Installing SQL Server Using SMS

	Rebuilding the Registry

	Working with Named and Multiple Instances of SQL Server 2000
	Naming Conventions for Instances of SQL Server 2000
	Network Protocols for Named Instances
	File Locations for Multiple Instances of SQL Server
	Removing Multiple Instances of SQL Server 2000

	Working with Instances and Versions of SQL Server
	Using SQL Server 6.5 with SQL Server 2000
	Running SQL Server 7.0 Along with a Named Instance of SQL Server 2000
	Working with Three Versions of SQL Server

	Failover Clustering
	Failover Clustering Support
	Creating a Failover Cluster
	Failover Clustering Example

	Upgrading to a SQL Server 2000 Failover Cluster
	Handling a Failover Cluster Installation
	Before Installing Failover Clustering
	Installing Failover Clustering
	Failover Clustering Dependencies

	Maintaining a Failover Cluster
	Using SQL Server Tools with Failover Clustering
	Failover Cluster Troubleshooting

	Collation Options for International Support
	Collation Settings in Setup
	Windows Collation Sorting Styles
	Windows Collation Designators
	Using SQL Collations
	Examples of SQL Collations
	Selecting a SQL Collation
	Setting Client Code Pages
	Upgrading Character Set, Sort Order, and Collation
	Changing Collation Settings After Installing

	After Installing or Upgrading to SQL Server 2000
	Using the Start Menu
	System and Sample Databases
	Locating Directories and Files
	Changing Passwords and User Accounts
	Renaming a Server
	Deploying SQL Server After Initial Installation
	Installing Full-Text Search and Indexing Tools
	Configuring SQL Server 2000 After Upgrading
	Switching Between SQL Server 6.5 and SQL Server 2000
	Removing SQL Server 7.0 or SQL Server 6.5 After Upgrading
	Removing SQL Server 2000

	Upgrading to SQL Server 2000: Overview
	Hardware and Software Requirements for Upgrading
	Upgrading from SQL Server 7.0 to SQL Server 2000
	Replication and Upgrading
	Upgrading Databases from SQL Server 7.0 (Copy Database Wizard)
	Upgrading Databases from SQL Server 6.5 (Upgrade Wizard)
	Preparing to Upgrade from SQL Server 6.5
	Estimating the Disk Space Required for Upgrading
	Data and Object Transfer
	Order of Upgrade Using a Direct Pipeline or Tape Drive
	Upgrading Using One or Two Computers (Logon Screen)
	Selecting a Scripting Code Page
	Selecting Databases to Upgrade
	Database Configuration
	Proposed Database Layout
	Tape Upgrade Transfer Options
	System Configuration
	Completing the SQL Server Upgrade Wizard
	Upgrade Script Interpreter

	Backward Compatibility
	SQL Server 2000 and SQL Server version 7.0
	SQL Server 2000 and SQL Server version 6.5
	SQL Server Backward Compatibility Details
	SetHostName property not used in SQL Server 2000
	Level 1: Handling Discontinued Functionality
	Level 2: Handling Major Changes to Behavior
	Level 3: Updating to Improve Earlier Functionality
	Level 4: Handling Minor Changes to Behavior

	Installing Analysis Services
	Hardware and Software Requirements for Installing Analysis Services
	Running Setup
	Setup Parameters and Silent Installation
	Reinstalling Analysis Services
	Stopping or Removing Analysis Services
	Upgrading from an Earlier Version
	Backward Compatibility
	7.0 Analysis Services Client and Local Cube Support
	Supported Migration Paths for Analysis Services Repositories
	Archiving and Restoring Databases Between Versions of Analysis Services

	Microsoft SQL Server 2000 Copyright and Disclaimer
	Additional SQL Server Resources

