
Welcome	to	Amazon	S3
Topics

Who	Should	Read	this	Guide
How	to	Give	Us	Feedback
How	This	Guide	Is	Organized
Amazon	S3	Resources

Amazon	S3	is	a	web	service	that	enables	you	to	store	data	in	the	cloud.	You	can
then	download	the	data	or	use	the	data	with	other	AWS	services,	such	as
Amazon	Elastic	Cloud	Computer	(EC2).

This	section	describes	who	should	read	this	guide,	how	the	guide	is	organized,
and	other	resources	related	to	Amazon	S3.

We	hope	you	find	the	service	to	be	easy-to-use,	reliable,	and	inexpensive.	If	you
want	to	provide	feedback	to	the	Amazon	S3	development	team,	please	post	a
message	to	the	Amazon	S3	Discussion	Forum	or	the	Feedback	link	at	the	top	of
every	page	in	the	HTML	version	of	this	guide.

http://developer.amazonwebservices.com/connect/forum.jspa?forumID=24

Who	Should	Read	this	Guide

This	guide	has	two	audiences:

Developers	creating	libraries	to	implement	the	Amazon	S3	API

This	audience	can	use	the	programming	guide	to	understand	the	concepts
and	functionality	of	Amazon	S3	and	the	API	reference	to	learn	how	the
HTTP	packets	should	look	for	particular	operations.

Developers	using	libraries	created	to	implement	the	Amazon	S3	API

This	audience	should	not	bother	reading	the	API	reference	but,	instead,
focus	on	the	concepts	and	functionality	of	Amazon	S3	so	that	you	can
better	understand	the	third-party	libraries	written	for	Amazon	S3.	These
developers	typically	build	applications	that	store	and	retrieve	data	across
the	Internet.

Required	Knowledge	and	Skills

Use	of	this	guide	assumes	you	are	familiar	with	the	following:

XML	(go	to	W3	Schools	XML	Tutorial)

Basic	understanding	of	web	services	(go	to	W3	Schools	Web	Services
Tutorial))

A	programming	language	for	consuming	a	web	service	and	any	related
tools

You	should	also	have	read	the	Amazon	S3	Getting	Started	Guide.	For	more
information,	go	to	Amazon	S3	Getting	Started	Guide.

http://www.w3schools.com/xml/default.asp
http://www.w3schools.com/webservices/default.asp
http://docs.amazonwebservices.com/AmazonS3/2006-03-01/gsg/index.html

How	to	Give	Us	Feedback

The	online	version	of	this	guide	provides	a	link	at	the	top	of	each	page	that
enables	you	to	enter	feedback	about	this	guide.	We	strive	to	make	our	guides	as
complete,	error	free,	and	easy	to	read	as	possible.	You	can	help	by	giving	us
feedback.	Thank	you	in	advance!

How	This	Guide	Is	Organized

This	guide	is	organized	into	several	major	sections	described	in	the	following
table.

Information Relevant	Sections

General	information	about	Amazon	S3 Introduction	to	Amazon	S3

Conceptual	information	about	Amazon	S3 Introduction	to	Amazon	S3

Information	about	making	requests Making	Requests

Information	about	how	to	use	the	Amazon	S3	REST
operations

Common	REST	API	Elements

Information	about	how	to	use	the	Amazon	S3	SOAP
operations

Common	SOAP	API	Elements

Information	about	using	DevPay	with	Amazon	S3 Using	Amazon	DevPay	with
Amazon	S3

Information	about	handling	errors Handling	Errors

Information	about	BitTorrent Using	BitTorrent	with	Amazon	S3

Typographic	and	symbol	conventions Document	Conventions

Each	section	is	written	to	stand	on	its	own,	so	you	should	be	able	to	look	up	the
information	you	need	and	go	back	to	work.	However,	you	can	also	read	through
the	major	sections	sequentially	to	get	in-depth	knowledge	about	the	Amazon	S3.

Amazon	S3	Resources

Following	is	a	table	that	lists	related	resources	that	you'll	find	useful	as	you	work
with	this	service.

Resource Description

Amazon	S3	Getting
Started	Guide

The	Getting	Started	Guide	provides	a	quick	tutorial	of	the	service	based	on	a
simple	use	case.	Examples	and	instructions	for	Java,	Perl,	PHP,	C#,	Python,
and	Ruby	are	included.

Amazon	S3	API
Reference

The	API	Reference	describes	Amazon	S3	operations	in	detail.

Amazon	S3Technical
FAQ

The	FAQ	covers	the	top	20	questions	developers	have	asked	about	this	product.

Amazon	S3	Release
Notes

The	Release	Notes	give	a	high-level	overview	of	the	current	release.	They
specifically	note	any	new	features,	corrections,	and	known	issues.

AWS	Developer
Resource	Center

A	central	starting	point	to	find	documentation,	code	samples,	release	notes,	and
other	information	to	help	you	build	innovative	applications	with	AWS.

AWS	Management
Console

The	console	allows	you	to	perform	most	of	the	functions	of	Amazon	S3without
programming.

Discussion	Forums A	community-based	forum	for	developers	to	discuss	technical	questions	related
to	Amazon	Web	Services.

AWS	Support	Center The	home	page	for	AWS	Technical	Support,	including	access	to	our	Developer
Forums,	Technical	FAQs,	Service	Status	page,	and	Premium	Support.

AWS	Premium
Support

The	primary	web	page	for	information	about	AWS	Premium	Support,	a	one-
on-one,	fast-response	support	channel	to	help	you	build	and	run	applications	on
AWS	Infrastructure	Services.

Amazon	S3	product
information

The	primary	web	page	for	information	about	Amazon	S3.

Contact	Us A	central	contact	point	for	inquiries	concerning	AWS	billing,	account,	events,
abuse	etc.

Conditions	of	Use Detailed	information	about	the	copyright	and	trademark	usage	at	Amazon.com
and	other	topics.

http://docs.amazonwebservices.com/AmazonS3/2006-03-01/gsg/index.html
http://docs.amazonwebservices.com/AmazonS3/2006-03-01/API/index.html
http://aws.amazon.com/s3/faqs/
http://developer.amazonwebservices.com/connect/kbcategory.jspa?categoryID=49
http://developer.amazonwebservices.com/connect/kbcategory.jspa?categoryID=59
http://aws.amazon.com/console/
http://developer.amazonwebservices.com/connect/forum.jspa?forumID=24
http://developer.amazonwebservices.com/connect/support.jspa
http://aws.amazon.com/premiumsupport
http://aws.amazon.com/s3
http://aws.amazon.com/contact-us/
http://www.amazon.com/gp/help/customer/display.html/104-5054883-7838319?ie=UTF8&%2AVersion%2A=1&nodeId=508088&%2Aentries%2A=0

What's	New
This	What's	New	is	associated	with	the	2006-03-01	release	of	Amazon	S3.	This
guide	was	last	updated	on	November	11,	2009.

The	following	table	describes	the	important	changes	since	the	last	release	of	the
Amazon	S3	Developer	Guide.

Change Description Date

AWS	SDK
for	.NET

AWS	now	provides	libraries,	sample	code,	tutorials,	and	other	resources	for
software	developers	who	prefer	to	build	applications	using	.NET	language-
specific	APIs	instead	of	REST	or	SOAP.	These	libraries	provide	basic	functions
(not	included	in	the	REST	or	SOAP	APIs),	such	as	request	authentication,
request	retries,	and	error	handling	so	that	it's	easier	to	get	started.	For	more
information	about	language-specific	libraries	and	resources,	see	AWS	Library
Support,	or	go	to	Working	With	Amazon	S3	in	the	Amazon	Simple	Storage
Service	Getting	Started	Guide.

2009-
11-11

Technical
documents
reorganized

The	API	reference	has	been	split	out	of	the	Amazon	S3	Developer	Guide.	Now,
on	the	documentation	landing	page,
http://developer.amazonwebservices.com/connect/entry.jspa?
externalID=123&categoryID=48	you	can	select	the	document	you	want	to	view.
When	viewing	the	documents	online,	the	links	in	one	document	will	take	you,
when	appropriate,	to	one	of	the	other	guides.

2009-
9-16

http://docs.amazonwebservices.com/AmazonS3/latest/gsg/index.html?WorkingWithS3.html
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=123&categoryID=48

Introduction	to	Amazon	S3
Topics

Overview	of	Amazon	S3
Advantages	to	Amazon	S3
Amazon	S3	Concepts
Paying	for	Amazon	S3
Related	Amazon	Web	Services

This	introduction	to	Amazon	S3	is	intended	to	give	you	a	detailed	summary	of
this	web	service.	After	reading	this	section,	you	should	have	a	good	idea	of	what
it	offers	and	how	it	can	fit	in	with	your	business.

Overview	of	Amazon	S3

Amazon	S3	is	storage	for	the	Internet.	It	is	designed	to	make	web-scale
computing	easier	for	developers.

Amazon	S3	has	a	simple	web	services	interface	that	can	be	used	to	store	and
retrieve	any	amount	of	data,	at	any	time,	from	anywhere	on	the	web.	It	gives	any
developer	access	to	the	same	highly	scalable,	reliable,	fast,	inexpensive	data
storage	infrastructure	that	Amazon	uses	to	run	its	own	global	network	of	web
sites.	The	service	aims	to	maximize	benefits	of	scale	and	to	pass	those	benefits
to	developers.

Advantages	to	Amazon	S3

Amazon	S3	is	intentionally	built	with	a	minimal	feature	set	that	focuses	on
simplicity	and	robustness.	Following	are	some	of	advantages	of	the	Amazon	S3
service:

Create	Buckets—Create	and	name	a	bucket	that	stores	data

Buckets	are	the	fundamental	container	in	Amazon	S3	for	data	storage.

Store	data	in	Buckets—Store	an	infinite	amount	of	data	in	a	bucket

Upload	as	many	objects	as	you	like	into	an	Amazon	S3	bucket.	Each	object
can	contain	up	to	5	GB	of	data.	Each	object	is	stored	and	retrieved	using	a
unique	developer-assigned	key.

Download	data—Download	your	data	or	enable	others	to

Download	your	data	any	time	you	like	or	allow	others	to	do	the	same.

Permissions—Grant	or	deny	access	to	others	who	want	to	upload	or
download	data	into	your	Amazon	S3	bucket

Grant	upload	and	download	permissions	to	three	types	of	users.
Authentication	mechanisms	to	ensure	that	data	is	kept	secure	from
unauthorized	access.

Standard	interfaces—Use	standards-based	REST	and	SOAP	interfaces
designed	to	work	with	any	Internet-development	toolkit.

Amazon	S3	Concepts

Topics

Buckets
Objects
Keys
Operations
Amazon	S3	Application	Programming	Interfaces	(API)
Amazon	S3	Data	Consistency	Model

This	section	describes	key	concepts	and	terminology	you	need	to	understand	to
use	Amazon	S3	effectively.	They	are	presented	in	the	order	you	will	most	like
encounter	them.

Buckets

A	bucket	is	simply	a	container	for	objects	stored	in	Amazon	S3.	Every	object	is
contained	within	a	bucket.	For	example,	if	the	object	named	photos/puppy.jpg
is	stored	in	the	johnsmith	bucket,	then	it	is	addressable	using	the	URL
http://johnsmith.s3.amazonaws.com/photos/puppy.jpg

Buckets	serve	several	purposes:	they	organize	the	Amazon	S3	namespace	at	the
highest	level,	they	identify	the	account	responsible	for	storage	and	data	transfer
charges,	they	play	a	role	in	access	control,	and	they	serve	as	the	unit	of
aggregation	for	usage	reporting.

For	more	information	about	buckets,	see	Working	with	Amazon	S3	Buckets.

Objects

Objects	are	the	fundamental	entities	stored	in	Amazon	S3.	Objects	consist	of
object	data	and	metadata.	The	data	portion	is	opaque	to	Amazon	S3.	The
metadata	is	a	set	of	name-value	pairs	that	describe	the	object.	These	include
some	default	metadata	such	as	the	date	last	modified,	and	standard	HTTP
metadata	such	as	Content-Type.	The	developer	can	also	specify	custom	metadata
at	the	time	the	Object	is	stored.

Keys

A	key	is	the	unique	identifier	for	an	object	within	a	bucket.	Every	object	in	a
bucket	has	exactly	one	key.	Since	a	bucket	and	key	together	uniquely	identify
each	object,	Amazon	S3	can	be	thought	of	as	a	basic	data	map	between	"bucket
+	key"	and	the	object	itself.	Every	object	in	Amazon	S3	can	be	uniquely
addressed	through	the	combination	of	the	web	service	endpoint,	bucket	name,
and	key,	as	in	http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl,	where
"doc"	is	the	name	of	the	bucket,	and	"2006-03-01/AmazonS3.wsdl"	is	the	key.

Operations
Amazon	S3	offers	APIs	in	REST	and	SOAP.	Following	are	the	most	common
operations	you'll	execute	through	the	API.

Common	Operations

Create	a	Bucket—Create	and	name	your	own	bucket	in	which	to	store
your	objects.

Write	an	Object—Store	data	by	creating	or	overwriting	an	object.

When	you	write	an	object,	you	specify	a	unique	key	in	the	namespace	of
your	bucket.	This	is	also	a	good	time	to	specify	any	access	control	you	want
on	the	object.

Read	an	Object—Read	data	back.

You	can	choose	to	download	the	data	via	HTTP	or	BitTorrent.

Deleting	an	Object—Delete	some	of	your	data.

Listing	Keys—List	the	keys	contained	in	one	of	your	buckets.

You	can	filter	the	key	list	based	on	a	prefix.

Details	on	this	and	all	other	functionality	are	described	in	detail	later	in	this
guide.

Amazon	S3	Application
Programming	Interfaces	(API)
The	Amazon	S3	architecture	is	designed	to	be	programming	language-neutral,
using	our	supported	interfaces	to	store	and	retrieve	objects.

Amazon	S3	provides	a	REST	and	a	SOAP	interface.	They	are	similar,	but	there
are	some	differences.	For	example,	in	the	REST	interface,	metadata	is	returned
in	HTTP	headers.	Because	we	only	support	HTTP	requests	of	up	to	4	KB	(not
including	the	body),	the	amount	of	metadata	you	can	supply	is	restricted.

The	REST	Interface

The	REST	API	is	an	HTTP	interface	to	Amazon	S3.	Using	REST,	you	use
standard	HTTP	requests	to	create,	fetch,	and	delete	buckets	and	objects.

You	can	use	any	toolkit	that	supports	HTTP	to	use	the	REST	API.	You	can	even
use	a	browser	to	fetch	objects,	as	long	as	they	are	anonymously	readable.

The	REST	API	uses	the	standard	HTTP	headers	and	status	codes,	so	that
standard	browsers	and	toolkits	work	as	expected.	In	some	areas,	we	have	added
functionality	to	HTTP	(for	example,	we	added	headers	to	support	access
control).	In	these	cases,	we	have	done	our	best	to	add	the	new	functionality	in	a
way	that	matched	the	style	of	standard	HTTP	usage.

The	SOAP	Interface

The	SOAP	API	provides	a	SOAP	1.1	interface	using	document	literal	encoding.
The	most	common	way	to	use	SOAP	is	to	download	the	WSDL	(go	to
http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl),	use	a	SOAP	toolkit
such	as	Apache	Axis	or	Microsoft	.NET	to	create	bindings,	and	then	write	code
that	uses	the	bindings	to	call	Amazon	S3.

Amazon	S3	Data	Consistency	Model

http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl

Updates	to	a	single	key	are	atomic.	For	example,	if	you	PUT	to	an	existing	key,	a
subsequent	read	might	return	the	old	data	or	the	updated	data,	but	it	will	never
write	corrupted	or	partial	data.

Amazon	S3	achieves	high	availability	by	replicating	data	across	multiple	servers
within	Amazon's	data	centers.	After	a	"success"	is	returned,	your	data	is	safely
stored.	However,	information	about	the	changes	might	not	immediately	replicate
across	Amazon	S3	and	you	might	observe	the	following	behaviors:

A	process	writes	a	new	object	to	Amazon	S3	and	immediately	attempts	to
read	it.	Until	the	change	is	fully	propagated,	Amazon	S3	might	report	"key
does	not	exist."

A	process	writes	a	new	object	to	Amazon	S3	and	immediately	lists	keys
within	its	bucket.	Until	the	change	is	fully	propagated,	the	object	might	not
appear	in	the	list.

A	process	replaces	an	existing	object	and	immediately	attempts	to	read	it.
Until	the	change	is	fully	propagated,	Amazon	S3	might	return	the	prior
data.

A	process	deletes	an	existing	object	and	immediately	attempts	to	read	it.
Until	the	deletion	is	fully	propagated,	Amazon	S3	might	return	the	deleted
data.

A	process	deletes	an	existing	object	and	immediately	lists	keys	within	its
bucket.	Until	the	deletion	is	fully	propagated,	Amazon	S3	might	list	the
deleted	object.

Note
Amazon	S3	does	not	currently	support	object	locking.	If	two	puts	are
simultaneously	made	to	the	same	key,	the	put	with	the	latest	time	stamp	wins.	If
this	is	an	issue,	you	will	need	to	build	an	object-locking	mechanism	into	your
application.

Updates	are	key-based;	there	is	no	way	to	make	atomic	updates	across	keys.	For
example,	you	cannot	make	the	update	of	one	key	dependent	on	the	update	of
another	key	unless	you	design	this	functionality	into	your	application.

Related	Amazon	Web	Services

Once	we	load	your	data	into	AWS	you	can	use	it	with	all	AWS	services.	The
following	services	are	the	ones	you	might	use	most	frequently:

Amazon	ElasticCompute	Cloud—This	web	service	provides	virtual
compute	resources	in	the	cloud.

For	more	information,	go	to	Amazon	ElasticCompute	Cloud.

Amazon	Elastic	MapReduce—This	web	service	enables	businesses,
researchers,	data	analysts,	and	developers	to	easily	and	cost-effectively
process	vast	amounts	of	data.

It	utilizes	a	hosted	Hadoop	framework	running	on	the	web-scale
infrastructure	of	Amazon	Elastic	Compute	Cloud	(Amazon	EC2)	and
Amazon	Simple	Storage	Service	(Amazon	S3).	For	more	information,	go	to
Amazon	Elastic	MapReduce.

Amazon	Import/Export—This	service	enables	you	to	mail	a	storage
device,	such	as	a	RAID	drive,	to	Amazon	so	that	we	can	upload	your
(terabytes)	of	data	onto	Amazon	S3.	For	more	information,	go	to	AWS
Import/Export	Developer	Guide>.

http://aws.amazon.com/ec2/
http://aws.amazon.com/elasticmapreduce/
http://docs.amazonwebservices.com/AWSImportExport/latest/DG/

Paying	for	Amazon	S3
Pricing	for	Amazon	S3	is	designed	so	that	you	don't	have	to	plan	for	the	storage
requirements	of	your	application.	Most	storage	providers	force	you	to	purchase	a
pre-determined	amount	of	storage	and	network	transfer	capacity:	If	you	exceed
that	capacity,	your	service	is	shut	off	or	you	are	charged	high	overage	fees.	If
you	do	not	exceed	that	capacity,	you	pay	as	though	you	used	it	all.

Amazon	S3	charges	you	only	for	what	you	actually	use,	with	no	hidden	fees	and
no	overage	charges.	This	gives	developers	a	variable-cost	service	that	can	grow
with	their	business	while	enjoying	the	cost	advantages	of	Amazon's
infrastructure.

Before	storing	anything	in	Amazon	S3,	you	need	to	register	with	the	service	and
provide	a	payment	instrument	that	will	be	charged	at	the	end	of	each	month.
There	are	no	set-up	fees	to	begin	using	the	service.	At	the	end	of	the	month,	your
payment	instrument	is	automatically	charged	for	that	month's	usage.

For	information	about	paying	for	Amazon	S3	storage,	go	to	the	AWS	Resource
Center.

http://aws.amazon.com/s3

Making	Requests
Topics

AWS	Language	Support
Request	Endpoints
Using	the	REST	API
Using	the	SOAP	API

This	section	describes	how	to	make	requests	using	REST	and	SOAP.

AWS	Language	Support
AWS	provides	libraries,	sample	code,	tutorials,	and	other	resources	for	software
developers	who	prefer	to	build	applications	using	language-specific	APIs	instead
of	Amazon	S3's	SOAP	and	REST	APIs.	These	libraries	provide	basic	functions
(not	included	in	Amazon	S3's	SOAP	and	REST	APIs),	such	as	request
authentication,	request	retries,	and	error	handling	so	that	it's	easier	to	get	started.
For	more	information	about	language-specific	libraries	and	resources,	go	to:

Java

PHP

Ruby

Windows	and	.NET

For	libraries	and	sample	code	in	all	languages,	go	to	Sample	Code	&	Libraries.

http://aws.amazon.com/java
http://aws.amazon.com/php
http://aws.amazon.com/ruby
http://aws.amazon.com/net
http://aws.amazon.com/code

Request	Endpoints
An	endpoint	is	a	URL	that	is	the	entry	point	for	a	web	service.	Every	web
service	request	contains	an	endpoint.	Amazon	S3	REST	requests	use	the
following	SSL	secured	or	unsecured	endpoints:

http://s3.amazonaws.com

https://s3.amazonaws.com

The	Amazon	S3	SOAP	endpoints	are	the	same	except	that	you	append	/soap,	for
example,	http://http://s3.amazonaws.com/soap.

Using	the	REST	API
Topics

Common	REST	API	Elements
Authenticating	REST	Requests
REST	Access	Control	Policy
Virtual	Hosting	of	Buckets
Request	Redirection	and	the	REST	API
Browser-Based	Uploads	Using	POST

This	section	contains	information	specific	to	the	Amazon	S3	REST	API.	The
examples	in	this	guide	use	the	newer	virtual	hosted-style	method	for	accessing
buckets	instead	of	the	path-style.	Although	the	path-style	is	still	supported	for
legacy	applications,	we	recommend	using	the	virtual-hosted	style	where
applicable.	For	more	information,	see	Working	with	Amazon	S3	Buckets

For	a	list	of	REST	endpoints,	see	How	to	Select	a	Region	for	Your	Buckets.

Following	is	an	example	of	a	virtual	hosted-style	request	to	delete	the	puppy.jpg
file	from	the	mybucket	bucket.

DELETE	/puppy.jpg	HTTP/1.1
User-Agent:	dotnet
Host:	mybucket.s3.amazonaws.com
Date:	Tue,	15	Jan	2008	21:20:27	+0000
x-amz-date:	Tue,	15	Jan	2008	21:20:27	+0000
Authorization:	AWS	0PN5J17HBGZHT7JJ3X82:k3nL7gH3+PadhTEVn5EXAMPLE

Following	is	an	example	of	a	path-style	version	of	the	same	request.

DELETE	/mybucket/puppy.jpg	HTTP/1.1
User-Agent:	dotnet
Host:	s3.amazonaws.com
Date:	Tue,	15	Jan	2008	21:20:27	+0000
x-amz-date:	Tue,	15	Jan	2008	21:20:27	+0000
Authorization:	AWS	0PN5J17HBGZHT7JJ3X82:k3nL7gH3+PadhTEVn5EXAMPLE

Common	REST	API	Elements
Amazon	S3	REST	Operations	are	HTTP	requests,	as	defined	by	RFC	2616
(http://www.ietf.org/rfc/rfc2616.txt).	This	section	describes	how	Amazon	S3
uses	HTTP	and	the	parts	of	HTTP	requests	and	responses	that	Amazon	S3	REST
operations	have	in	common.	Detailed	descriptions	of	individual	operations	are
provided	later	in	this	guide.

All	REST	requests	use	a	common	set	of	endpoints.	For	information,	see	Request
Endpoints.

A	typical	REST	operation	consists	of	a	sending	a	single	HTTP	request	to
Amazon	S3,	followed	by	waiting	for	an	HTTP	response.	Like	any	HTTP	request,
a	request	to	Amazon	S3	contains	a	request	method,	a	URI,	request	headers,	and
sometimes	a	query	string	and	request	body.	The	response	contains	a	status	code,
response	headers,	and	sometimes	a	response	body.

Following	is	an	example	that	shows	how	to	get	an	object	named	"Nelson"	from
the	"quotes"	bucket.

Sample	Request

GET	/Nelson	HTTP/1.1
Host:	quotes.s3.amazonaws.com
Date:	Wed,	01	Mar		2006	12:00:00	GMT
Authorization:	AWS	15B4D3461F177624206A:xQE0diMbLRepdf3YB+FIEXAMPLE=

Sample	Response

HTTP/1.1	200	OK
x-amz-id-2:	qBmKRcEWBBhH6XAqsKU/eg24V3jf/kWKN9dJip1L/FpbYr9FDy7wWFurfdQOEMcY
x-amz-request-id:	F2A8CCCA26B4B26D
Date:	Wed,	01	Mar		2006	12:00:00	GMT
Last-Modified:	Sun,	1	Jan	2006	12:00:00	GMT
ETag:	"828ef3fdfa96f00ad9f27c383fc9ac7f"
Content-Type:	text/plain
Content-Length:	5
Connection:	close
Server:	AmazonS3

ha-ha

Common	Request	Headers

Amazon	S3	REST	requests	include	headers	which	contain	basic	information
about	the	request.	Following	is	a	table	that	describes	common	headers	for
Amazon	S3	REST	requests.

Header	Name Description Required

Content-

Length
Length	of	the	message	(without	the	headers)	according	to	RFC	2616.

Condition:	Required	for	PUTs	and	operations	that	load	XML,	such	as
logging	and	ACLs.

Conditional

Content-Type The	content	type	of	the	resource.	Example:	text/plain No

Date The	current	date	and	time	according	to	the	requester.	Example:	Wed,
01	Mar	2006	12:00:00	GMT

Yes

Host Normally,	the	value	of	Host	is	s3.amazonaws.com.	A	Host	header	with
a	value	other	than	s3.amazonaws.com	selects	the	bucket	for	the	request
as	described	in	Virtual	Hosting	of	Buckets.

Condition:	Required	for	HTTP	1.1	(most	toolkits	add	this	header
automatically);	optional	for	HTTP/1.0	requests.

Conditional

Authorization The	information	required	for	request	authentication.	For	more
information,	see	The	Authentication	Header	for	details	about	the
format.

Yes

x-amz-

security-

token

The	security	tokens	for	operations	that	use	Amazon	DevPay.	Each
request	that	uses	Amazon	DevPay	requires	two	x-amz-security-token
headers:	one	for	the	product	token	and	one	for	the	user	token.

Condition:	Required	for	requests	that	use	Amazon	DevPay.

Note
When	Amazon	S3	receives	an
authenticated	request,	it	compares
the	computed	signature	with	the
provided	signature.	Improperly
formatted	multi-value	headers
used	to	calculate	a	signature	can
cause	authentication	issues.	To
ensure	the	signature	is	calculated
properly,	follow	the	instructions	in

Conditional

the	Constructing	the
CanonicalizedResource	Element
section.

Authenticating	REST	Requests
Topics

The	Authentication	Header
Request	Canonicalization	for	Signing
Constructing	the	CanonicalizedResource	Element
Constructing	the	CanonicalizedAmzHeaders	Element
Positional	versus	Named	HTTP	Header	StringToSign	Elements
Time	Stamp	Requirement
Authentication	Examples
REST	Request	Signing	Problems
Query	String	Request	Authentication	Alternative

Authentication	is	the	process	of	proving	your	identity	to	the	system.	Identity	is
an	important	factor	in	Amazon	S3	access	control	decisions.	Requests	are	allowed
or	denied	in	part	based	on	the	identity	of	the	requester.	For	example,	the	right	to
create	buckets	is	reserved	for	registered	developers	and	(by	default)	the	right	to
create	objects	in	a	bucket	is	reserved	for	the	owner	of	the	bucket	in	question.	As
a	developer,	you'll	be	making	requests	that	invoke	these	privileges	so	you'll	need
to	prove	your	identity	to	the	system	by	authenticating	your	requests.	This	section
shows	you	how.

Note
The	content	in	this	section	does	not	apply	to	HTTP	POST.	For	more	information,
see	Browser-Based	Uploads	Using	POST.

The	Amazon	S3	REST	API	uses	a	custom	HTTP	scheme	based	on	a	keyed-
HMAC	(Hash	Message	Authentication	Code)	for	authentication.	To	authenticate
a	request,	you	first	concatenate	selected	elements	of	the	request	to	form	a	string.
You	then	use	your	AWS	Secret	Access	Key	to	calculate	the	HMAC	of	that
string.	Informally,	we	call	this	process	"signing	the	request,"	and	we	call	the
output	of	the	HMAC	algorithm	the	"signature"	because	it	simulates	the	security
properties	of	a	real	signature.	Finally,	you	add	this	signature	as	a	parameter	of
the	request,	using	the	syntax	described	in	this	section.

When	the	system	receives	an	authenticated	request,	it	fetches	the	AWS	Secret
Access	Key	that	you	claim	to	have,	and	uses	it	in	the	same	way	to	compute	a
"signature"	for	the	message	it	received.	It	then	compares	the	signature	it
calculated	against	the	signature	presented	by	the	requester.	If	the	two	signatures
match,	then	the	system	concludes	that	the	requester	must	have	access	to	the
AWS	Secret	Access	Key,	and	therefore	acts	with	the	authority	of	the	principal	to
whom	the	key	was	issued.	If	the	two	signatures	do	not	match,	the	request	is
dropped	and	the	system	responds	with	an	error	message.

Example	Authenticated	Amazon	S3	REST	Request

GET	/photos/puppy.jpg	HTTP/1.1
Host:	johnsmith.s3.amazonaws.com
Date:	Mon,	26	Mar	2007	19:37:58	+0000

Authorization:	AWS	0PN5J17HBGZHT7JJ3X82:frJIUN8DYpKDtOLCwo//yllqDzg=

The	Authentication	Header

The	Amazon	S3	REST	API	uses	the	standard	HTTPAuthorization	header	to
pass	authentication	information.	(The	name	of	the	standard	header	is
unfortunate,	sinceit	carries	authentication	information,	not	authorization).Under
the	Amazon	S3	authentication	scheme,	the	Authorization	header	has	the
following	form.

Authorization:	AWS	AWSAccessKeyId:Signature

Developers	are	issued	an	AWS	Access	Key	ID	and	AWS	SecretAccess	Key
when	they	register.	For	request	authentication,	theAWSAccessKeyId	element
identifies	the	secret	key	that	was	used	to	compute	the	signature,	and(indirectly)
the	developer	making	the	request.

The	Signature	element	is	the	RFC	2104HMAC-SHA1	of	selected	elements
from	the	request,	and	so	theSignature	part	of	the	Authorization	header	will	vary
from	request	to	request.	If	the	request	signature	calculated	by	the	system
matches	theSignature	included	with	the	request,then	the	requester	will	have
demonstrated	possession	to	the	AWSSecret	Access	Key.	The	request	will	then	be
processed	under	the	identity,	and	with	the	authority,	of	the	developer	to	whom
the	key	was	issued.

Following	is	pseudo-grammar	that	illustrates	the	construction	of	the
Authorization	request	header	(\nmeans	the	Unicode	code	point	U+000A
commonly	called	newline).

Authorization	=	"AWS"	+	"	"	+	AWSAccessKeyId	+	":"	+	Signature;

Signature	=	Base64(HMAC-SHA1(UTF-8-Encoding-Of(YourSecretAccessKeyID,	StringToSign)));

StringToSign	=	HTTP-Verb	+	"\n"	+
	 Content-MD5	+	"\n"	+
	 Content-Type	+	"\n"	+
	 Date	+	"\n"	+
	 CanonicalizedAmzHeaders	+
	 CanonicalizedResource;

CanonicalizedResource	=	["/"	+	Bucket]	+

	 <HTTP-Request-URI,	from	the	protocol	name	up	to	the	query	string>	+
	 [sub-resource,	if	present.	For	example	"?acl",	"?location",	"?logging",	or	"?torrent"];

CanonicalizedAmzHeaders	=	<described	below>

HMAC-SHA1	is	an	algorithm	defined	by	RFC	2104	(go	to	RFC	2104	-	Keyed-
Hashing	for	Message	Authentication).	The	algorithm	takes	as	input	two	byte-
strings:	a	key	and	a	message.	For	Amazon	S3	Request	authentication,	use	your
AWS	Secret	Access	Key	(YourSecretAccessKeyID)	as	the	key,	and	the	UTF-8
encoding	of	the	StringToSign	as	the	message.	The	output	of	HMAC-SHA1	is
also	a	byte	string,	called	the	digest.	The	Signature	request	parameter	is
constructed	by	Base64	encoding	this	digest.

http://www.ietf.org/rfc/rfc2104.txt

Request	Canonicalization	for	Signing

Recall	that	when	the	system	receives	an	authenticated	request,	it	compares	the
computed	request	signature	with	the	signature	provided	in	the	request.	In	order
for	the	system-computed	signature	to	match	the	developer-computed	signature,
the	StringToSign	for	a	request	must	be	constructed	by	both	parties	in	exactly
the	same	way.	We	call	the	process	of	putting	a	request	in	an	agreed-upon	form
for	signing	"canonicalization".

Constructing	the	CanonicalizedResource	Element

CanonicalizedResource	represents	the	Amazon	S3	resource	targeted	by	the
request.	Construct	it	for	a	REST	request	as	follows:

Launch	Process

1 Start	with	the	empty	string	("").

2 If	the	request	specifies	a	bucket	using	the	HTTP	Host	header	(virtual	hosted-style),	append	the
bucket	name	preceded	by	a	"/"	(e.g.,	"/bucketname").	For	path-style	requests	and	requests	that
don't	address	a	bucket,	do	nothing.	For	more	information	on	virtual	hosted-style	requests,	see
Virtual	Hosting	of	Buckets.

3 Append	the	path	part	of	the	un-decoded	HTTP	Request-URI,	up-to	but	not	including	the	query
string.

4 If	the	request	addresses	a	sub-resource,	like	?location,	?acl,	or	?torrent,	append	the	sub-
resource	including	question	mark.

Elements	of	the	CanonicalizedResource	that	come	from	the	HTTP	Request-URI
should	be	signed	literally	as	they	appear	in	the	HTTP	request,	including	URL-
Encoding	metacharacters.

The	CanonicalizedResource	might	be	different	than	the	HTTP	Request-URI.	In
particular,	if	your	request	uses	the	HTTP	Host	header	to	specify	a	bucket,	the
bucket	does	appear	in	the	HTTP	Request-URI.	However,	the
CanonicalizedResource	continues	to	include	the	bucket.	Query	string
parameters	other	than	sub-resource	flags	(e.g.,	"?acl",	"?location",	"?logging",	or
"?torrent")	will	also	appear	in	the	Request-URI	but	are	not	included	in
CanonicalizedResource.	For	more	information,	see	Virtual	Hosting	of	Buckets.

Constructing	the	CanonicalizedAmzHeaders	Element

To	construct	the	CanonicalizedAmzHeaders	part	of	StringToSign,	select	all
HTTP	request	headers	that	start	with	'x-amz-'	(using	a	case-insensitive
comparison)	and	use	the	following	process.

CanonicalizedAmzHeaders	Process

1 Convert	each	HTTP	header	name	to	lower-case.	For	example,	'X-Amz-Date'	becomes	'x-amz-date'.

2 Sort	the	collection	of	headers	lexicographically	by	header	name.

3 Combine	header	fields	with	the	same	name	into	one	"header-name:comma-separated-value-list"
pair	as	prescribed	by	RFC	2616,	section	4.2,	without	any	white-space	between	values.	For
example,	the	two	metadata	headers	'x-amz-meta-username:	fred'	and	'x-amz-meta-username:
barney'	would	be	combined	into	the	single	header	'x-amz-meta-username:	fred,barney'.

4 "Unfold"	long	headers	that	span	multiple	lines	(as	allowed	by	RFC	2616,	section	4.2)	by	replacing
the	folding	white-space	(including	new-line)	by	a	single	space.

5 Trim	any	white-space	around	the	colon	in	the	header.	For	example,	the	header	'x-amz-meta-
username:	fred,barney'	would	become	'x-amz-meta-username:fred,barney'

6 Finally,	append	a	new-line	(U+000A)	to	each	canonicalized	header	in	the	resulting	list.	Construct	the
CanonicalizedResource	element	by	concatenating	all	headers	in	this	list	into	a	single	string.

Positional	versus	Named	HTTP	Header	StringToSign
Elements

The	first	few	header	elements	of	StringToSign	(Content-Type,	Date,	and
Content-MD5)	are	positional	in	nature.	StringToSign	does	not	include	the
names	of	these	headers,	only	their	values	from	the	request.	In	contrast,	the	'x-
amz-'	elements	are	named;	Both	the	header	names	and	the	header	values	appear
in	StringToSign.

If	a	positional	header	called	for	in	the	definition	of	StringToSign	is	not	present
in	your	request,	(Content-Type	or	Content-MD5,	for	example,	are	optional	for
PUT	requests,	and	meaningless	for	GET	requests),	substitute	the	empty	string
("")	in	for	that	position.

Time	Stamp	Requirement

A	valid	time	stamp	(using	either	the	HTTP	Date	header	or	an	x-amz-date
alternative)	is	mandatory	for	authenticated	requests.	Furthermore,	the	client
time-stamp	included	with	an	authenticated	request	must	be	within	15	minutes	of
the	Amazon	S3	system	time	when	the	request	is	received.	If	not,	the	request	will
fail	with	the	RequestTimeTooSkewed	error	status	code.	The	intention	of	these
restrictions	is	to	limit	the	possibility	that	intercepted	requests	could	be	replayed
by	an	adversary.	For	stronger	protection	against	eavesdropping,	use	the	HTTPS
transport	for	authenticated	requests.

Some	HTTP	client	libraries	do	not	expose	the	ability	to	set	the	Date	header	for	a
request.	If	you	have	trouble	including	the	value	of	the	'Date'	header	in	the
canonicalized	headers,	you	can	set	the	time-stamp	for	the	request	using	an	'x-
amz-date'	header	instead.	The	value	of	the	x-amz-date	header	must	be	in	one	of
the	RFC	2616	formats	(http://www.ietf.org/rfc/rfc2616.txt).	When	an	x-amz-
date	header	is	present	in	a	request,	the	system	will	ignore	any	Date	header	when
computing	the	request	signature.	Therefore,	if	you	include	the	x-amz-date
header,	use	the	empty	string	for	the	Date	when	constructing	the	StringToSign.
See	the	next	section	for	an	example.

Authentication	Examples

The	examples	in	this	section	use	the	(non-working)	credentials	in	the	following
table.

Parameter Value

AWSAccessKeyId 0PN5J17HBGZHT7JJ3X82

AWSSecretAccessKey uV3F3YluFJax1cknvbcGwgjvx4QpvB+leU8dUj2o

In	the	example	StringToSigns,	formatting	is	not	significant	and	\n	means	the
Unicode	code	point	U+000A	commonly	called	newline.

Example	Object	GET

This	example	gets	an	object	from	the	johnsmith	bucket.

Request StringToSign

GET	/photos/puppy.jpg	HTTP/1.1
Host:	johnsmith.s3.amazonaws.com
Date:	Tue,	27	Mar	2007	19:36:42	+0000

Authorization:	AWS	0PN5J17HBGZHT7JJ3X82:

xXjDGYUmKxnwqr5KXNPGldn5LbA=

GET\n
\n
\n

Tue,	27	Mar	2007	19:36:42	+0000\n
/johnsmith/photos/puppy.jpg

Note	that	the	CanonicalizedResource	includes	the	bucket	name,	but	the	HTTP
Request-URI	does	not	(it	is	specified	by	the	Host	header)

Example	Object	PUT

This	example	puts	an	object	into	the	johnsmith	bucket.

Request StringToSign

PUT	/photos/puppy.jpg	HTTP/1.1
Content-Type:	image/jpeg
Content-Length:	94328
Host:	johnsmith.s3.amazonaws.com
Date:	Tue,	27	Mar	2007	21:15:45	+0000

Authorization:	AWS	0PN5J17HBGZHT7JJ3X82:

hcicpDDvL9SsO6AkvxqmIWkmOuQ=

PUT\n
\n
\n
image/jpeg\n

Tue,	27	Mar	2007	21:15:45	+0000\n
/johnsmith/photos/puppy.jpg

Note	the	Content-Type	header	in	the	request	and	in	the	StringToSign.	Also	note
that	the	Content-MD5	is	left	blank	in	the	StringToSign	since	it	is	not	present	in
the	request.

Example	List

This	example	lists	the	content	of	the	johnsmith	bucket.

Request StringToSign

GET	/?prefix=photos&max-keys=50&marker=puppy	HTTP/1.1
User-Agent:	Mozilla/5.0
Host:	johnsmith.s3.amazonaws.com
Date:	Tue,	27	Mar	2007	19:42:41	+0000

Authorization:	AWS	0PN5J17HBGZHT7JJ3X82:jsRt/rhG+Vtp88HrYL706QhE4w4=

GET\n
\n
\n
Tue,	27	Mar	2007	19:42:41	+0000\n

/johnsmith/

Note	the	trailing	slash	on	the	CanonicalizedResource,	and	the	absence	of	query
string	parameters.

Example	Fetch

This	example	fetches	the	access	control	policy	sub-resource	for	the	'johnsmith'
bucket.

Request StringToSign

GET	/?acl	HTTP/1.1
Host:	johnsmith.s3.amazonaws.com
Date:	Tue,	27	Mar	2007	19:44:46	+0000

Authorization:	AWS	0PN5J17HBGZHT7JJ3X82:thdUi9VAkzhkniLj96JIrOPGi0g=

GET\n
\n
\n

Tue,	27	Mar	2007	19:44:46	+0000\n
/johnsmith/?acl

Notice	how	the	sub-resource	query	string	parameter	is	included	in	the
CanonicalizedResource.

Example	Delete

This	example	deletes	an	object	from	the	'johnsmith'	bucket	using	the	path-style
and	Date	alternative.

Request StringToSign

DELETE	/johnsmith/photos/puppy.jpg	HTTP/1.1
User-Agent:	dotnet
Host:	s3.amazonaws.com
Date:	Tue,	27	Mar	2007	21:20:27	+0000

x-amz-date:	Tue,	27	Mar	2007	21:20:26	+0000
Authorization:	AWS	0PN5J17HBGZHT7JJ3X82:k3nL7gH3+PadhTEVn5Ip83xlYzk=

DELETE\n
\n
\n
\n

x-amz-date:Tue,	27	Mar	2007	21:20:26	+0000\n
/johnsmith/photos/puppy.jpg

Note	how	we	used	the	alternate	'x-amz-date'	method	of	specifying	the	date
(because	our	client	library	prevented	us	from	setting	the	date,	say).	In	this	case
the	field	for	the	actual	'Date'	header	is	left	blank	in	the	StringToSign.

Example	Upload

This	example	uploads	an	object	to	a	CNAME	style	virtual	hosted	bucket	with
metadata.

Request StringToSign

PUT	/db-backup.dat.gz	HTTP/1.1
User-Agent:	curl/7.15.5
Host:	static.johnsmith.net:8080
Date:	Tue,	27	Mar	2007	21:06:08	+0000

x-amz-acl:	public-read
content-type:	application/x-download
Content-MD5:	4gJE4saaMU4BqNR0kLY+lw==
X-Amz-Meta-ReviewedBy:	joe@johnsmith.net
X-Amz-Meta-ReviewedBy:	jane@johnsmith.net
X-Amz-Meta-FileChecksum:	0x02661779
X-Amz-Meta-ChecksumAlgorithm:	crc32
Content-Disposition:	attachment;	filename=database.dat
Content-Encoding:	gzip
Content-Length:	5913339

Authorization:	AWS	0PN5J17HBGZHT7JJ3X82:

C0FlOtU8Ylb9KDTpZqYkZPX91iI=

PUT\n
4gJE4saaMU4BqNR0kLY+lw==\n
application/x-download\n
Tue,	27	Mar	2007	21:06:08	+0000\n

x-amz-acl:public-read\n
x-amz-meta-checksumalgorithm:crc32\n
x-amz-meta-filechecksum:0x02661779\n
x-amz-meta-reviewedby:
joe@johnsmith.net,jane@johnsmith.net\n
/static.johnsmith.net/db-backup.dat.gz

Notice	how	the	'x-amz-'	headers	are	sorted,	white-space	trimmed,	converted	to
lowercase,	and	multiple	headers	with	the	same	name	have	been	joined	using	a
comma	to	separate	values.

Note	how	only	the	Content-Type	and	Content-MD5	HTTP	entity	headers	appear
in	the	StringToSign.	The	other	Content-*	entity	headers	do	not.

Again,	note	that	the	CanonicalizedResource	includes	the	bucket	name,	but	the
HTTP	Request-URI	does	not	(the	bucket	is	specified	by	the	Host	header).

Example	List	All	My	Buckets

Request StringToSign

GET	/	HTTP/1.1 GET\n

Host:	s3.amazonaws.com
Date:	Wed,	28	Mar	2007	01:29:59	+0000

Authorization:	AWS	0PN5J17HBGZHT7JJ3X82:Db+gepJSUbZKwpx1FR0DLtEYoZA=

\n
\n
Wed,	28	Mar	2007	01:29:59	+0000\n
/

Example	Unicode	Keys

Request StringToSign

GET	/dictionary/fran%C3%A7ais/pr%c3%a9f%c3%a8re	HTTP/1.1
Host:	s3.amazonaws.com
Date:	Wed,	28	Mar	2007	01:49:49	+0000
Authorization:	AWS	0PN5J17HBGZHT7JJ3X82:

dxhSBHoI6eVSPcXJqEghlUzZMnY=

GET\n
\n
\n
Wed,	28	Mar	2007	01:49:49	+0000\n
/dictionary/fran%C3%A7ais/pr%c3%a9f%c3%a8re

Note
The	elements	in	StringToSign	that	were	derived	from	the	Request-URI	are	taken
literally,	including	URL-Encoding	and	capitalization.

REST	Request	Signing	Problems

When	REST	request	authentication	fails,	the	system	responds	to	the	request	with
an	XML	error	document.	The	information	contained	in	this	error	document	is
meant	to	help	developers	diagnose	the	problem.	In	particular,	the	StringToSign
element	of	the	SignatureDoesNotMatch	error	document	tells	you	exactly	what
request	canonicalization	the	system	is	using.

Some	toolkits	silently	insert	headers	that	you	do	not	know	about	beforehand,
such	as	adding	the	header	Content-Type	during	a	PUT.	In	most	of	these	cases,
the	value	of	the	inserted	header	remains	constant,	allowing	you	to	discover	the
missing	headers	using	tools	such	as	Ethereal	or	tcpmon.

Query	String	Request	Authentication	Alternative

You	can	authenticate	certain	types	of	requests	by	passing	the	required
information	as	query-string	parameters	instead	of	using	the	Authorization
HTTP	header.	This	is	useful	for	enabling	direct	third-party	browser	access	to
your	private	Amazon	S3	data,	without	proxying	the	request.	The	idea	is	to
construct	a	"pre-signed"	request	and	encode	it	as	a	URL	that	an	end-user's
browser	can	retrieve.	Additionally,	you	can	limit	a	pre-signed	request	by
specifying	an	expiration	time.

Following	is	an	example	query	string	authenticated	Amazon	S3	REST	request.

GET	/photos/puppy.jpg
?AWSAccessKeyId=0PN5J17HBGZHT7JJ3X82&Expires=1141889120&Signature=vjbyPxybdZaNmGa%2ByT272YEAiv4%3D	HTTP/1.1
Host:	johnsmith.s3.amazonaws.com
Date:	Mon,	26	Mar	2007	19:37:58	+0000

The	query	string	request	authentication	method	doesn't	require	any	special	HTTP
headers.	Instead,	the	required	authentication	elements	are	specified	as	query
string	parameters:

Query	String
Parameter
Name

Example	Value Description

AWSAccessKeyId 0PN5J17HBGZHT7JJ3X82 Your	AWS	Access	Key	Id.	Specifies	the
AWS	Secret	Access	Key	used	to	sign	the
request,	and	(indirectly)	the	identity	of	the
developer	making	the	request.

Expires 1141889120 The	time	when	the	signature	expires,
specified	as	the	number	of	seconds	since
the	epoch	(00:00:00	UTC	on	January	1,
1970).	A	request	received	after	this	time
(according	to	the	server),	will	be	rejected.

Signature vjbyPxybdZaNmGa%2ByT272YEAiv4%3D The	URL	encoding	of	the	Base64	encoding
of	the	HMAC-SHA1	of	StringToSign.

The	query	string	request	authentication	method	differs	slightly	from	the	ordinary

method	but	only	in	the	format	of	the	Signature	request	parameter	and	the
StringToSign	element.	Following	is	pseudo-grammar	that	illustrates	the	query
string	request	authentication	method.

Signature	=	URL-Encode(Base64(HMAC-SHA1(YourSecretAccessKeyID,	UTF-8-Encoding-Of(StringToSign))));

StringToSign	=	HTTP-VERB	+	"\n"	+
				Content-MD5	+	"\n"	+
				Content-Type	+	"\n"	+
				Expires	+	"\n"	+
				CanonicalizedAmzHeaders	+
				CanonicalizedResource;				

YourSecretAccessKeyID	is	the	AWS	Secret	Access	Key	ID	Amazon	assigns	to
you	when	you	sign	up	to	be	an	Amazon	Web	Service	developer.	Notice	how	the
Signature	is	URL-Encoded	to	make	it	suitable	for	placement	in	the	query-
string.	Also	note	that	in	StringToSign,	the	HTTP	Date	positional	element	has
been	replaced	with	Expires.	The	CanonicalizedAmzHeaders	and
CanonicalizedResource	are	the	same.

Example	Query	String	Request	Authentication

Request StringToSign

GET	/photos/puppy.jpg?AWSAccessKeyId=0PN5J17HBGZHT7JJ3X82&
				Signature=rucSbH0yNEcP9oM2XNlouVI3BH4%3D&
				Expires=1175139620	HTTP/1.1

Host:	johnsmith.s3.amazonaws.com

GET\n
\n
\n
1175139620\n

/johnsmith/photos/puppy.jpg

We	assume	that	when	a	browser	makes	the	GET	request,	it	won't	provide	a
Content-MD5	or	a	Content-Type	header,	nor	will	it	set	any	x-amz-	headers,	so
those	parts	of	the	StringToSign	are	left	blank.

REST	Access	Control	Policy
Topics

Existing	Buckets	or	Objects
Canned	Access	Policies

There	are	two	ways	to	set	the	access	control	policy	with	REST.	You	can	set	the
access	control	policy	(ACP)	for	an	existing	bucket	or	object	by	requesting	a	PUT
to	/bucket?acl	or	/bucket/key?acl.	Or,	at	the	time	you	are	writing	a	bucket	or
object	you	can	include	an	x-amz-acl	header	with	your	PUT	request	that	stores	a
canned	ACP	with	the	written	resource.

Existing	Buckets	or	Objects

You	can	set	the	ACL	on	an	existing	bucket	or	object	with	an	HTTP	PUT	to
/bucket?acl,	or	/bucket/key?acl,	where	the	body	of	the	operation	is	the	new
ACL.	To	edit	an	existing	ACL,	fetch	/bucket?acl	or	/bucket/key?acl	to	get
the	existing	ACL,	edit	it	locally,	and	then	PUT	the	modified	version	back	to	?acl.

Example

Following	is	an	example	that	demonstrates	how	to	set	an	existing	object	ACL	so
that	only	the	owner	has	full	access	to	the	object.

First,	we	get	the	owner's	canonical	user	grant	information.

GET	/Neo?acl	HTTP/1.1

Host:	quotes.s3.amazonaws.com

Date:	Wed,	01	Mar		2006	12:00:00	GMT

Authorization:	AWS	15B4D3461F177624206A:xQE0diMbLRepdf3YB+FIEXAMPLE=

HTTP/1.1	200	OK

<AccessControlPolicy	xmlns="http://s3.amazonaws.com/doc/2006-03-01/">

		<Owner>

				<ID>314133b66967d86f031c7249d1d9a80249109428335cd0ef1cdc487b4566cb1b</ID>

				<DisplayName>s3-nickname</DisplayName>

		</Owner>

		<AccessControlList>

				<Grant>

						<Grantee	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	xsi:type="CanonicalUser">

								<ID>314133b66967d86f031c7249d1d9a80249109428335cd0ef1cdc487b4566cb1b</ID>

								<DisplayName>s3-nickname</DisplayName>

						</Grantee>

						<Permission>FULL_CONTROL</Permission>

				</Grant>

		</AccessControlList>

</AccessControlPolicy>

Then,	we	set	an	existing	object	ACL	so	that	only	the	owner	has	full	access	to	the
object.

PUT	/Neo?acl	HTTP/1.1

Host:	quotes.s3.amazonaws.com

Content-Length:	214

Date:	Wed,	01	Mar		2006	12:00:00	GMT

Authorization:	AWS	15B4D3461F177624206A:xQE0diMbLRepdf3YB+FIEXAMPLE=

<AccessControlPolicy>

		<Owner>

				<ID>a9a7b886d6fd24a52fe8ca5bef65f89a64e0193f23000e241bf9b1c61be666e9</ID>

				<DisplayName>chriscustomer</DisplayName>

		</Owner>

		<AccessControlList>

				<Grant>

						<Grantee	xsi:type="CanonicalUser">

								<ID>a9a7b886d6fd24a52fe8ca5bef65f89a64e0193f23000e241bf9b1c61be666e9</ID>

								<DisplayName>chriscustomer</DisplayName>

						</Grantee>

						<Permission>FULL_CONTROL</Permission>

				</Grant>

		</AccessControlList>

</AccessControlPolicy>

Canned	Access	Policies

Because	of	restrictions	in	what	can	be	sent	via	http	headers,	Amazon	S3	supports
the	concept	of	canned	access	policies	for	REST.	A	canned	access	policy	can	be
included	with	the	x-amz-acl	header	as	part	of	a	PUT	operation	to	provide
shorthand	representation	of	a	full	access	policy.	When	Amazon	S3	sees	the	x-
amz-acl	header	as	part	of	a	PUT	operation,	it	will	assign	the	respective	access
policy	to	the	resource	created	as	a	result	of	the	PUT.	If	no	x-amz-acl	header	is
included	with	a	PUT	request,	then	the	bucket	or	object	is	written	with	the	private
access	control	policy	(even	if,	in	the	case	of	an	object,	the	object	already	exists
with	some	other	pre-existing	access	control	policy).

Following	are	canned	ACLs	that	are	supported	for	REST.

private—Owner	gets	FULL_CONTROL.

No	one	else	has	access	rights	(default).

public-read—Owner	gets	FULL_CONTROL	and	the	anonymous	principal	is
granted	READ	access.

If	this	policy	is	used	on	an	object,	it	can	be	read	from	a	browser	with	no
authentication.

public-read-write—Owner	gets	FULL_CONTROL,	the	anonymous	principal	is
granted	READ	and	WRITE	access.

This	can	be	a	useful	policy	to	apply	to	a	bucket,	but	is	generally	not
recommended.

authenticated-read—Owner	gets	FULL_CONTROL,	and	any	principal
authenticated	as	a	registered	Amazon	S3	user	is	granted	READ	access.

Following	is	an	example	that	shows	how	to	write	data	to	an	object	and	makes	the
object	readable	by	anonymous	principals.

Sample	Request

PUT	/Neo	HTTP/1.1

x-amz-acl:	public-read

Content-Length:	4

Host:	quotes.s3.amazonaws.com

Date:	Wed,	01	Mar		2006	12:00:00	GMT

Content-Type:	text/plain

Authorization:	AWS	15B4D3461F177624206A:xQE0diMbLRepdf3YB+FIEXAMPLE=

woah

Sample	Response

HTTP/1.1	200	OK

x-amz-id-2:	LriYPLdmOdAiIfgSm/F1YsViT1LW94/xUQxMsF7xiEb1a0wiIOIxl+zbwZ163pt7

x-amz-request-id:	0A49CE4060975EAC

Date:	Wed,	01	Mar		2006	12:00:00	GMT

ETag:	"aba878a8"

Content-Length:	0

Connection:	close

Server:	AmazonS3

Virtual	Hosting	of	Buckets
Topics

HTTP	Host	Header	Bucket	Specification
Examples
Customizing	Amazon	S3	URLs	with	CNAMEs
Limitations
Backward	Compatibility

Virtual	Hosting,	in	general,	is	the	practice	of	serving	multiple	web	sites	from	a
single	web	server.	One	way	to	differentiate	sites	is	by	using	the	apparent	host
name	of	the	request	instead	of	just	the	path	name	part	of	the	URI.	An	ordinary
Amazon	S3	REST	request	specifies	a	bucket	using	the	first	slash	delimited
component	of	the	Request-URI	path.	Alternatively,	using	Amazon	S3	Virtual
Hosting,	you	can	address	a	bucket	in	a	REST	API	call	using	the	HTTP	Host
header.	In	practice,	Amazon	S3	interprets	Host	as	meaning	that	most	buckets	are
automatically	accessible	(for	limited	types	of	requests)	at
http://bucketname.s3.amazonaws.com.	Furthermore,	by	naming	your	bucket
after	your	registered	domain	name	and	by	making	that	name	a	DNS	alias	for
Amazon	S3,	you	can	completely	customize	the	URL	of	your	Amazon	S3
resources,	for	example:	http://my.bucketname.com/

Besides	the	attractiveness	of	customized	URLs,	a	second	benefit	of	virtual
hosting	is	the	ability	to	publish	to	the	'root	directory'	of	your	bucket's	virtual
server.	This	can	be	important	because	many	existing	applications	search	for	files
in	this	standard	location.	For	example,	favicon.ico,	robots.txt,
crossdomain.xml,	are	all	expected	to	be	found	at	the	root.

HTTP	Host	Header	Bucket	Specification

As	long	as	your	GET	request	does	not	use	the	SSL	endpoint,	you	can	specify	the
bucket	for	the	request	using	the	HTTP	Host	header.	The	Host	header	in	a	REST
request	is	interpreted	as	follows:

If	the	Host	header	is	omitted	or	its	value	is	's3.amazonaws.com',	the	bucket
for	the	request	will	be	the	first	slash-delimited	component	of	the	Request-
URI,	and	the	key	for	the	request	will	be	the	rest	of	the	Request-URI.	This	is
the	ordinary	method,	as	illustrated	by	the	first	and	second	example	in	the
following	table.	Note	that	omitting	the	Host	header	is	only	legal	for	HTTP
1.0	requests.

Otherwise,	if	the	value	of	the	Host	header	ends	in	'.s3.amazonaws.com',
then	the	bucket	name	is	the	leading	component	of	the	Host	header's	value
up	to	'.s3.amazonaws.com'.	The	key	for	the	request	is	the	Request-URI.
This	interpretation	exposes	buckets	as	sub-domains	of	s3.amazonaws.com,
and	is	illustrated	by	the	third	and	fourth	example	in	the	following	table.

Otherwise,	the	bucket	for	the	request	will	be	the	lower-cased	value	of	the
Host	header	and	the	key	for	the	request	is	the	Request-URI.	This
interpretation	is	useful	when	you	have	registered	the	same	DNS	name	as
your	bucket	name,	and	have	configured	that	name	to	be	a	CNAME	alias	for
Amazon	S3.	The	procedure	for	registering	domain	names	and	configuring
DNS	is	outside	the	scope	of	this	document,	but	the	result	is	illustrated	by
the	final	example	in	the	following	table.

Examples

This	section	provides	example	URLs	and	requests.

Example	Path	Style	Method

This	example	uses	johnsmith.net	as	the	bucket	name	and	homepage.html	as	the
key	name.

Following	is	the	example	URL.

http://s3.amazonaws.com/johnsmith/homepage.html

Following	is	the	example	request.

GET	/johnsmith/homepage.html	HTTP/1.1
Host:	s3.amazonaws.com

Following	is	the	example	request	with	HTTP	1.0	omitting	the	host	header.

GET	/johnsmith/homepage.html
HTTP/1.0
Host:	s3.amazonaws.com

EU	bucket	names	must	be	DNS	compatible	and	therefore	do	not	support	the	path
style	method.	Non-EU	bucket	names	do	not	have	to	be	DNS	compatible	and
therefore	can	support	the	path	style	method.	Non-EU	buckets	can	be	named,
http://s3.amazonaws.com/[bucket-name]/[key],	for	example,
http://s3.amazonaws.com/images.johnsmith.net/mydog.jpg.

For	more	information	about	DNS	compatible	names,	see	Limitations.	For	more
information	about	keys,	see	Keys.

Example	Virtual	Hosted	Style	Method

This	example	uses	johnsmith.net	as	the	bucket	name	and	homepage.html	as	the

key	name.

Following	is	the	example	URL.

http://johnsmith.s3.amazonaws.com/homepage.html

Following	is	the	example	request.

GET	/homepage.html	HTTP/1.1
Host:	johnsmith.s3.amazonaws.com

Following	is	the	example	request	with	the	incorrect	case.	Notice	that	sentence
case	is	irrelevant.	However,	uppercase	buckets	are	not	accessible	using	this
method.

GET	/homepage.html	HTTP/1.1
Host:	JohnSmith.s3.amazonaws.com

Example	CNAME	Method

This	example	uses	www.johnsmith.net	as	the	bucket	name	and	homepage.html
as	the	key	name.	To	use	this	method,	you	must	configure	your	DNS	name	as	a
CNAME	alias	for	bucketname.s3.amazonaws.com.

Following	is	the	example	URL.

http://www.johnsmith.net/homepage.html

Following	is	the	example	request.

GET	/homepage.html	HTTP/1.1
Host:	www.johnsmith.net

Customizing	Amazon	S3	URLs	with	CNAMEs

Depending	on	your	needs,	you	might	not	want	"s3.amazonaws.com"	to	appear
on	your	web	site	or	service.	For	example,	if	you	host	your	web	site's	images	on
Amazon	S3,	you	might	prefer	http://images.johnsmith.net/	as	opposed	to
http://johnsmith-images.s3.amazonaws.com/.

Any	bucket	with	a	DNS	compatible	name	may	be	referenced	as	follows:
http://[BucketName].s3.amazonaws.com/[Filename],	for	example,
http://images.johnsmith.net.s3.amazonaws.com/mydog.jpg.	Using
CNAME	you	can	map	images.johnsmith.net	to	an	Amazon	S3	host	name	so
the	previous	URL	could	become:	http://images.johnsmith.net/mydog.jpg.

The	CNAME	DNS	record	should	alias	your	domain	name	to	the	appropriate
virtual	hosted	style	host	name.	For	example,	if	your	bucket	name	(and	domain
name)	is	images.johnsmith.net,	the	CNAME	record	should	alias	to
images.johnsmith.net.s3.amazonaws.com.

images.johnsmith.net	CNAME		 	 	 images.johnsmith.net.s3.amazonaws.com.

Setting	the	alias	target	to	s3.amazonaws.com	also	works	but	may	result	in	extra
HTTP	redirects.

Note
Amazon	S3	only	sees	the	original	host	name	and	is	unaware	of	the	CNAME
mapping	used	to	resolve	the	request.

To	associate	a	host	name	with	an	Amazon	S3	bucket	using	CNAMEs

1.	 Select	a	host	name	that	belongs	to	a	domain	you	control.

This	example	uses	the	images	subdomain	of	the	johnsmith.net	domain.

2.	 Create	a	bucket	that	matches	the	host	name.

In	this	example,	the	host	and	bucket	names	are	images.johnsmith.net.

Note

Your	bucket	name	must	exactly	match	the	host	name.

3.	 Create	a	CNAME	record	that	defines	the	host	name	as	an	alias	for	the
Amazon	S3	bucket.	For	example:

images.johnsmith.net	CNAME

images.johnsmith.net.s3.amazonaws.com

Important
For	request	routing	reasons,	the	CNAME	record	must	be	defined	exactly
as	shown	in	the	preceding	example.	Otherwise,	it	might	appear	to	operate
correctly,	but	will	eventually	result	in	unpredictable	behavior.

Note
The	exact	procedure	for	configuring	DNS	depends	on	your	DNS	server	or
DNS	provider	and	is	beyond	scope	of	this	document.

Limitations

Because	DNS	names	are	case	insensitive,	only	lower-case	buckets	are
addressable	using	the	virtual	hosting	method.	For	more	information,	see	Bucket
Restrictions	and	Limitations.

Specifying	the	bucket	for	the	request	using	the	HTTP	Host	header	is	supported
for	non-SSL	requests	and	when	using	the	REST	API.	You	cannot	specify	the
bucket	in	SOAP	by	using	a	different	endpoint.

Backward	Compatibility

Early	versions	of	Amazon	S3	incorrectly	ignored	the	HTTP	Host	header.
Applications	that	depend	on	this	undocumented	behavior	must	be	updated	to	set
the	Host	header	correctly.	Because	Amazon	S3	determines	the	bucket	name	from
Host	when	present,	the	most	likely	symptom	of	this	problem	is	to	receive	an
unexpected	NoSuchBucket	error	result	code.

Request	Redirection	and	the	REST
API
Topics

Redirects	and	HTTP	User-Agents
Redirects	and	100-Continue
Redirect	Example

This	section	describes	how	to	handle	HTTP	redirects	using	REST.	For	general
information	about	Amazon	S3	redirects,	see	Request	Redirection	and	the	REST
API.

Redirects	and	HTTP	User-Agents

Programs	that	use	the	Amazon	S3	REST	API	should	handle	redirects	either	at
the	application	layer	or	the	HTTP	layer.	Many	HTTP	client	libraries	and	user
agents	can	be	configured	to	correctly	handle	redirects	automatically.	However,
many	others	have	incorrect	or	incomplete	redirect	implementations.

Before	relying	on	a	library	to	fulfill	the	redirect	requirement,	test	the	following
cases:

Launch	Process

1 Verify	all	HTTP	request	headers	are	correctly	included	in	the	redirected	request	(the	second	request
after	receiving	a	redirect)	including	HTTP	standards	such	as	Authorization	and	Date.

2 Verify	non-GET	redirects,	such	as	PUT	and	DELETE,	work	correctly.

3 Verify	large	PUT	requests	follow	redirects	correctly.

4 Verify	PUT	requests	follow	redirects	correctly	if	the	100-continue	response	takes	a	long	time	to
arrive.

HTTP	user-agents	that	strictly	conform	to	RFC2616	might	require	explicit
confirmation	before	following	a	redirect	when	the	HTTP	request	method	is	not
GET	or	HEAD.	It	is	generally	safe	to	follow	redirects	generated	by	Amazon	S3
automatically,	as	the	system	will	only	issue	redirects	to	hosts	within	the
amazonaws.com	domain	and	the	effect	of	the	redirected	request	will	be	the	same
as	the	original	request.

Redirects	and	100-Continue

To	simplify	redirect	handling,	improve	efficiencies,	and	avoid	the	costs
associated	with	sending	a	redirected	request	body	twice,	configure	your
application	to	use	100-continues	for	PUT	operations.	When	your	application
uses	100-continue,	it	does	not	send	the	request	body	until	it	receives	an
acknowledgement.	If	the	message	is	rejected	based	on	the	headers,	the	body	of
the	message	is	not	sent.	For	more	information	about	100-continue,	go	to	RFC
2616	Section	8.2.3

Note
According	to	RFC	2616,	when	using	Expect:	Continue	with	an	unknown	HTTP
server,	you	should	not	wait	an	indefinite	period	before	sending	the	request	body.
This	is	because	some	HTTP	servers	do	not	recognize	100-continue.	However,
Amazon	S3	does	recognize	if	your	request	contains	an	Expect:	Continue	and
will	respond	with	a	provisional	100-continue	status	or	a	final	status	code.
Additionally,	no	redirect	error	will	occur	after	receiving	the	provisional	100
continue	go-ahead.	This	will	help	you	avoid	receiving	a	redirect	response	while
you	are	still	writing	the	request	body.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.2.3

Redirect	Example

This	section	provides	an	example	of	client-server	interaction	using	HTTP
redirects	and	100-continue.

Following	is	a	sample	PUT	to	the	quotes.s3.amazonaws.com	bucket.

PUT	/nelson.txt	HTTP/1.1
Host:	quotes.s3.amazonaws.com
Date:	Mon,	15	Oct	2007	22:18:46	+0000

Content-Length:	6
Expect:	100-continue

Amazon	S3	returns	the	following:

HTTP/1.1	307	Temporary	Redirect
Location:	http://quotes.s3-4c25d83b.amazonaws.com/nelson.txt?rk=8d47490b
Content-Type:	application/xml
Transfer-Encoding:	chunked
Date:	Mon,	15	Oct	2007	22:18:46	GMT

Server:	AmazonS3

<?xml	version="1.0"	encoding="UTF-8"?>
<Error>
		<Code>TemporaryRedirect</Code>
		<Message>Please	re-send	this	request	to	the
		specified	temporary	endpoint.	Continue	to	use	the
		original	request	endpoint	for	future	requests.
		</Message>
		<Endpoint>quotes.s3-4c25d83b.amazonaws.com</Endpoint>
		<Bucket>quotes</Bucket>
</Error>

The	client	follows	the	redirect	response	and	issues	a	new	request	to	the
quotes.s3-4c25d83b.amazonaws.com	temporary	endpoint.

PUT	/nelson.txt?rk=8d47490b	HTTP/1.1
Host:	quotes.s3-4c25d83b.amazonaws.com
Date:	Mon,	15	Oct	2007	22:18:46	+0000

Content-Length:	6
Expect:	100-continue

Amazon	S3	returns	a	100-continue	indicating	the	client	should	proceed	with
sending	the	request	body.

HTTP/1.1	100	Continue

The	client	sends	the	request	body.

ha	ha\n

Amazon	S3	returns	the	final	response.

HTTP/1.1	200	OK
Date:	Mon,	15	Oct	2007	22:18:48	GMT

ETag:	"a2c8d6b872054293afd41061e93bc289"
Content-Length:	0
Server:	AmazonS3

Browser-Based	Uploads	Using	POST
Topics

HTML	Forms
Upload	Examples
POST	with	Adobe	Flash

Amazon	S3	supports	POST,	which	allows	your	users	to	upload	content	directly
to	Amazon	S3.	POST	is	designed	to	simplify	uploads,	reduce	upload	latency,	and
save	you	money	on	applications	where	users	upload	data	to	store	in	Amazon	S3.

The	following	figure	shows	an	upload	using	Amazon	S3	POST.

Uploading	Using	POST

1 The	user	opens	a	web	browser	and	accesses	your	web	page.

2 Your	web	page	contains	an	HTTP	form	that	contains	all	the	information	necessary	for	the	user	to
upload	content	to	Amazon	S3.

3 The	user	uploads	content	directly	to	Amazon	S3.

Note
Query	string	authentication	is	not	supported	for	POST.

HTML	Forms
Topics

HTML	Form	Encoding
HTML	Form	Declaration
HTML	Form	Fields
Policy	Construction
Constructing	a	Signature
Redirection

When	communicating	with	Amazon	S3,	you	normally	use	the	REST	or	SOAP
APIs	to	perform	put,	get,	delete,	and	other	operations.	With	POST,	users	upload
data	directly	to	Amazon	S3	through	their	browsers,	which	do	not	understand
SOAP	APIs	or	how	to	make	a	REST	PUT	request.

To	allow	users	to	upload	content	to	Amazon	S3	using	their	browsers,	you	use
HTML	forms.	HTML	Forms	consist	of	a	form	declaration	and	form	fields.	The
form	declaration	contains	high	level	information	about	the	request.	The	form
fields	contain	detailed	information	about	the	request	as	well	as	the	policy	that	is
used	to	authenticate	it	and	make	sure	that	it	meets	conditions	that	you	specify.

Note
The	form	data	and	boundaries	(excluding	the	contents	of	the	file)	cannot	exceed
20K.

This	section	describes	how	to	use	HTML	forms.

HTML	Form	Encoding

The	form	and	policy	must	be	UTF-8	encoded.	You	can	apply	UTF-8	encoding	to
the	form	by	specifying	it	in	the	HTML	heading	or	as	a	request	header.

Note
The	HTML	form	declaration	does	not	accept	query	string	authentication
parameters.	For	information	about	query	string	authentication,	see	Query	String
Authentication.

Following	is	an	example	of	UTF-8	encoding	in	the	HTML	heading.

<html>

		<head>

				...

				<meta	http-equiv="Content-Type"	content="text/html;	charset=UTF-8"	/>

				...

		</head>

		<body>

Following	is	an	example	of	UTF-8	encoding	in	a	request	header.

Content-Type:	text/html;	charset=UTF-8

HTML	Form	Declaration

The	form	declaration	has	three	components:	the	action,	the	method,	and	the
enclosure	type.	If	any	of	these	values	is	improperly	set,	the	request	fails.

The	action	specifies	the	URL	that	processes	the	request,	which	must	be	set	to	the
URL	of	the	bucket.	For	example,	if	the	name	of	your	bucket	is	"johnsmith",	the
URL	is	"http://johnsmith.s3.amazonaws.com/".

Note
The	key	name	is	specified	in	a	form	field.

The	method	must	be	POST.

The	enclosure	type	(enctype)	must	be	specified	and	must	be	set	to
multipart/form-data	(go	to	RFC	1867)	for	both	file	uploads	and	text	area
uploads.

Example

This	is	a	form	declaration	for	the	bucket	"johnsmith".

<form	action="http://johnsmith.s3.amazonaws.com/"	method="post"

enctype="multipart/form-data">

http://www.ietf.org/rfc/rfc1867.txt

HTML	Form	Fields

Following	is	a	table	that	describes	a	list	of	fields	that	can	be	used	within	a	form.

Note
The	variable	${filename}	is	automatically	replaced	with	the	name	of	the	file
provided	by	the	user	and	is	recognized	by	all	form	fields.	If	the	browser	or	client
provides	a	full	or	partial	path	to	the	file,	only	the	text	following	the	last	slash	(/)
or	backslash	(\)	will	be	used	(e.g.,	"C:\Program	Files\directory1\file.txt"	will	be
interpreted	as	"file.txt").	If	no	file	or	filename	is	provided,	the	variable	is	replaced
with	an	empty	string.

Element	Name Description Required

AWSAccessKeyId The	AWS	Access	Key	ID	of	the	owner	of	the	bucket	who
grants	an	Anonymous	user	access	for	a	request	that
satisfies	the	set	of	constraints	in	the	Policy.	This	is
required	if	a	policy	document	is	included	with	the	request.

Conditional

acl Specifies	an	Amazon	S3	access	control	list.	Options
include	private,	public-read,	public-read-write,
authenticated-read.

The	default	setting	is	private.

If	an	invalid	access	control	list	is	specified,	an	error	is
generated.

For	more	information	on	ACLs,	see	Access	Control	Lists.

No

Cache-Control,	Content-

Type,	Content-

Disposition,	Content-

Encoding,	Expires

REST-specific	headers.

For	more	information,	see	RESTObjectPUT.

No

key The	name	of	the	uploaded	key.

To	use	the	filename	provided	by	the	user,	use	the
${filename}	variable.	For	example,	if	the	user	Betty
uploads	the	file	the	file	lolcatz.jpg	and	you	specify
/user/betty/${filename},	the	file	is	stored	as
/user/betty/lolcatz.jpg.

For	more	information,	see	Keys.

Yes

policy Security	Policy	describing	what	is	permitted	in	the	request.
Requests	without	a	security	policy	are	considered
anonymous	and	only	work	on	publicly	writable	buckets.

Yes

http://docs.amazonwebservices.com/AmazonS3/2006-03-01/API/index.html?RESTObjectPUT.html

For	more	information,	see	Policy	Construction
success_action_redirect,

redirect
The	URL	to	which	the	client	is	redirected	upon	successful
upload.

If	success_action_redirect	is	not	specified,	Amazon	S3
returns	the	empty	document	type	specified	in	the
success_action_status	field.

If	Amazon	S3	cannot	interpret	the	URL,	it	acts	as	if	the
field	is	not	present.

If	the	upload	fails,	Amazon	S3	displays	an	error	and	does
not	redirect	the	user	to	a	URL.

For	more	information,	see	Redirection.

Note
The	redirect	field	name
is	deprecated	and
support	for	the	redirect
field	name	will	be
removed	in	the	future.

No

success_action_status The	status	code	returned	to	the	client	upon	successful
upload	if	success_action_redirect	is	not	specified.

Accepts	the	values	200,	201,	or	204	(default).

If	the	value	is	set	to	200	or	204,	Amazon	S3	returns	an
empty	document	with	a	200	or	204	status	code.

If	the	value	is	set	to	201,	Amazon	S3	returns	an	XML
document	with	a	201	status	code.	For	information	on	the
content	of	the	XML	document,	go	to	RESTObjectPUT.

If	the	value	is	not	set	or	if	it	is	set	to	an	invalid	value,
Amazon	S3	returns	an	empty	document	with	a	204	status
code.

Note
Some	versions	of	the
Adobe	Flash	player	do
not	properly	handle
HTTP	responses	with	an
empty	body.	To	support

No

http://docs.amazonwebservices.com/AmazonS3/2006-03-01/API/index.html?RESTObjectPUT.html

uploads	through	Adobe
Flash,	we	recommend
setting
success_action_status

to	201.

signature The	HMAC	signature	constructed	using	the	secret	key	of
the	provided	AWSAccessKeyId.

For	more	information,	see	Policy	Construction	and
Authentication	and	Access	Control.

Conditional

x-amz-security-token Amazon	DevPay	security	token.

Each	request	that	uses	Amazon	DevPay	requires	two	x-
amz-security-token	form	fields:	one	for	the	product
token	and	one	for	the	user	token.

For	more	information,	see	Using	Amazon	DevPay	with
Amazon	S3.

No

Other	field	names	prefixed
with	x-amz-meta-

User-specified	metadata.

Amazon	S3	does	not	validate	or	use	this	data.

For	more	information,	see	RESTObjectPUT.

No

file File	or	text	content.

The	file	or	content	must	be	the	last	field	in	the	form.

You	cannot	upload	more	than	one	file	at	a	time.

Yes

http://docs.amazonwebservices.com/AmazonS3/2006-03-01/API/index.html?RESTObjectPUT.html

Policy	Construction

Topics

Expiration
Conditions
Condition	Matching
Character	Escaping

The	policy	is	a	UTF-8	and	Base64	encoded	JSON	document	that	specifies
conditions	which	the	request	must	meet	and	is	used	to	authenticate	the	content.
Depending	on	how	you	design	your	policy	documents,	you	can	use	them	per-
upload,	per-user,	for	all	uploads,	or	according	to	other	designs	that	meet	your
needs.

Note
Although	the	policy	document	is	optional,	we	highly	recommend	it	over	making
a	bucket	publicly	writable.

Following	is	an	example	of	a	policy	document.

{	"expiration":	"2007-12-01T12:00:00.000Z",

		"conditions":	[

				{"acl":	"public-read"	},

				{"bucket":	"johnsmith"	},

				["starts-with",	"$key",	"user/eric/"],

]

}

The	policy	document	contains	the	expiration	and	conditions.

Expiration

The	expiration	specifies	the	expiration	date	of	the	policy	in	ISO8601	GMT	date
format.	For	example,	"2007-12-01T12:00:00.000Z"	specifies	that	the	policy	is
not	valid	after	12:00	GMT	on	2007-12-01.

Conditions

The	conditions	in	the	policy	document	are	used	to	validate	the	contents	of	the
uploaded	object.	Each	form	field	that	you	specify	in	the	form	(except
AWSAccessKeyId	,	signature,	file,	policy,	and	field	names	that	have	an	x-
ignore-	prefix)	must	be	included	in	the	list	of	conditions.

Note
If	you	have	multiple	fields	with	the	same	name,	the	values	must	be	separated	by
commas.	For	example,	if	you	have	two	fields	named	"x-amz-meta-tag"	and	the
first	one	has	a	value	of	"Ninja"	and	second	has	a	value	of	"Stallman",	you	would
set	the	policy	document	to	Ninja,Stallman.

All	variables	within	the	form	are	expanded	prior	to	validating	the	policy.
Therefore,	all	condition	matching	should	be	against	the	expanded	fields.	For
example,	if	you	set	the	key	field	to	user/betty/${filename},	your	policy	might
be	["starts-with",	"$key",	"user/betty/"].	Do	not	enter	["starts-
with",	"$key",	"user/betty/${filename}"].	For	more	information,	see
Condition	Matching.

Policy	document	conditions	are	described	in	the	following	table.

Element	Name Description

acl Specifies	conditions	the	ACL	must	meet.

Supports	exact	matching	and	starts-with.

content-length-range Specifies	the	minimum	and	maximum	allowable	size	for	the	uploaded
content.

Supports	range	matching.

Cache-Control,
Content-Type,	Content-
Disposition,	Content-
Encoding,	Expires

REST-specific	headers.

Supports	exact	matching	and	starts-with.

key The	name	of	the	uploaded	key.

Supports	exact	matching	and	starts-with.

success_action_redirect,
redirect

The	URL	to	which	the	client	is	redirected	upon	successful	upload.

Supports	exact	matching	and	starts-with.

success_action_status The	status	code	returned	to	the	client	upon	successful	upload	if
success_action_redirect	is	not	specified.

Supports	exact	matching.

x-amz-security-token Amazon	DevPay	security	token.

Each	request	that	uses	Amazon	DevPay	requires	two	x-amz-security-
token	form	fields:	one	for	the	product	token	and	one	for	the	user	token.	As	a
result,	the	values	must	be	separated	by	commas.	For	example,	if	the	user
token	is	eW91dHViZQ==	and	the	product	token	is	b0hnNVNKWVJIQTA=,	you	set
the	policy	entry	to:	{	"x-amz-security-token":
"eW91dHViZQ==,b0hnNVNKWVJIQTA="	}.

For	more	information	about	Amazon	DevPay,	see	Using	Amazon	DevPay
with	Amazon	S3.

Other	field	names
prefixed	with	x-amz-
meta-

User-specified	metadata.

Supports	exact	matching	and	starts-with.

Note
If	your	toolkit	adds	additional	fields	(e.g.,	Flash	adds	filename),	you	must	add
them	to	the	policy	document.	If	you	can	control	this	functionality,	prefix	x-
ignore-	to	the	field	so	Amazon	S3	ignores	the	feature	and	it	won't	affect	future
versions	of	this	feature.

Condition	Matching

Following	is	a	table	that	describes	condition	matching	types.	Although	you	must
specify	one	condition	for	each	form	field	that	you	specify	in	the	form,	you	can
create	more	complex	matching	criteria	by	specifying	multiple	conditions	for	a
form	field.

Condition Description

Exact
Matches

Exact	matches	verify	that	fields	match	specific	values.	This	example	indicates	that	the
ACL	must	be	set	to	public-read:

{"acl":	"public-read"	}

This	example	is	an	alternate	way	to	indicate	that	the	ACL	must	be	set	to	public-read:

["eq",	"$acl",	"public-read"]

Starts	With If	the	value	must	start	with	a	certain	value,	use	starts-with.	This	example	indicates	that
the	key	must	start	with	user/betty:

["starts-with",	"$key",	"user/betty/"]

Matching
Any	Content

To	configure	the	policy	to	allow	any	content	within	a	field,	use	starts-with	with	an
empty	value.	This	example	allows	any	success_action_redirect:

["starts-with",	"$success_action_redirect",	""]

Specifying
Ranges

For	fields	that	accept	ranges,	separate	the	upper	and	lower	ranges	with	a	comma.	This
example	allows	a	file	size	from	1	to	10	megabytes:

["content-length-range",	1048579,	10485760]

Character	Escaping

Characters	that	must	be	escaped	within	a	policy	document	are	described	in	the
following	table.

Escape	Sequence Description

\\ Backslash

\$ Dollar	symbol

\b Backspace

\f Form	feed

\n New	line

\r Carriage	return

\t Horizontal	tab

\v Vertical	tab

\uxxxx All	Unicode	characters

Constructing	a	Signature

Step Description

1 Encode	the	policy	using	UTF-8.

2 Encode	those	UTF-8	bytes	using	Base64.

3 Sign	the	policy	with	your	Secret	Access	Key	using	HMAC	SHA-1.

4 Encode	the	SHA-1	signature	using	Base64.

For	information	about	constructing	the	policy,	see	Policy	Construction.	For
general	information	about	authentication,	see	Authentication	and	Access
Control.

Redirection

This	section	describes	how	to	handle	redirects.

General	Redirection

On	completion	of	the	POST,	the	user	is	redirected	to	the	location	that	you
specified	in	the	success_action_redirect	field.	If	Amazon	S3	cannot	interpret	the
URL,	it	ignores	the	success_action_redirect	field.

If	success_action_redirect	is	not	specified,	Amazon	S3	returns	the	empty
document	type	specified	in	the	success_action_status	field.

If	the	POST	fails,	Amazon	S3	displays	an	error	and	does	not	provide	a	redirect.

Pre-Upload	Redirection

If	your	bucket	was	created	using	<CreateBucketConfiguration>,	your	end-users
might	require	a	redirect.	If	this	occurs,	some	browsers	might	handle	the	redirect
incorrectly.	This	is	relatively	rare,	but	is	most	likely	to	occur	right	after	a	bucket
is	created.

Upload	Examples
Topics

File	Upload
Text	Area	Upload

File	Upload

This	example	shows	the	complete	process	for	constructing	a	policy	and	form	to
upload	a	file	attachment.

Policy	and	Form	Construction

Following	is	a	policy	that	supports	uploads	to	Amazon	S3	for	the	johnsmith
bucket.

{	"expiration":	"2007-12-01T12:00:00.000Z",

		"conditions":	[

				{"bucket":	"johnsmith"},

				["starts-with",	"$key",	"user/eric/"],

				{"acl":	"public-read"},

				{"success_action_redirect":	"http://johnsmith.s3.amazonaws.com/successful_upload.html"},

				["starts-with",	"$Content-Type",	"image/"],

				{"x-amz-meta-uuid":	"14365123651274"},

				["starts-with",	"$x-amz-meta-tag",	""]

]

}

This	policy	requires	the	following:

The	upload	must	occur	before	12:00	GMT	on	2007-12-01

The	content	must	be	uploaded	to	the	johnsmith	bucket

The	key	must	start	with	"user/eric/"

The	ACL	is	set	to	public-read

The	success_action_redirect	is	set	to
http://johnsmith.s3.amazonaws.com/successful_upload.html

The	object	is	an	image	file

The	x-amz-meta-uuid	tag	must	be	set	to	14365123651274

The	x-amz-meta-tag	can	contain	any	value

Following	is	a	Base64	encoded	version	of	this	policy.

eyAiZXhwaXJhdGlvbiI6ICIyMDA3LTEyLTAxVDEyOjAwOjAwLjAwMFoiLAogICJjb25kaXRpb25zIjogWwogICAgeyJidWNrZXQiOiAiam9obnNtaXRoIn0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiRrZXkiLCAidXNlci9lcmljLyJdLAogICAgeyJhY2wiOiAicHVibGljLXJlYWQifSwKICAgIHsic3VjY2Vzc19hY3Rpb25fcmVkaXJlY3QiOiAiaHR0cDovL2pvaG5zbWl0aC5zMy5hbWF6b25hd3MuY29tL3N1Y2Nlc3NmdWxfdXBsb2FkLmh0bWwifSwKICAgIFsic3RhcnRzLXdpdGgiLCAiJENvbnRlbnQtVHlwZSIsICJpbWFnZS8iXSwKICAgIHsieC1hbXotbWV0YS11dWlkIjogIjE0MzY1MTIzNjUxMjc0In0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiR4LWFtei1tZXRhLXRhZyIsICIiXQogIF0KfQo=

The	secret	key	ID	is	uV3F3YluFJax1cknvbcGwgjvx4QpvB+leU8dUj2o,	so
0RavWzkygo6QX9caELEqKi9kDbU=	is	the	signature	for	the	preceding	Policy
document.

Following	is	a	form	that	supports	a	POST	to	the	johnsmith.net	bucket	using	this
policy.

<html>

		<head>

				...

				<meta	http-equiv="Content-Type"	content="text/html;	charset=UTF-8"	/>

				...

		</head>

		<body>

		...

		<form	action="http://johnsmith.s3.amazonaws.com/"	method="post"	enctype="multipart/form-data">

				Key	to	upload:	<input	type="input"	name="key"	value="user/eric/"	/>

				<input	type="hidden"	name="acl"	value="public-read"	/>

				<input	type="hidden"	name="success_action_redirect"	value="http://johnsmith.s3.amazonaws.com/successful_upload.html"	/>

				Content-Type:	<input	type="input"	name="Content-Type"	value="image/jpeg"	/>

				<input	type="hidden"	name="x-amz-meta-uuid"	value="14365123651274"	/>

				Tags	for	File:	<input	type="input"	name="x-amz-meta-tag"	value=""	/>

				<input	type="hidden"	name="AWSAccessKeyId"	value="15B4D3461F177624206A"	/>

				<input	type="hidden"	name="Policy"	value="POLICY"	/>

				<input	type="hidden"	name="Signature"	value="SIGNATURE"	/>

				File:	<input	type="file"	name="file"	/>	

				<!--	The	elements	after	this	will	be	ignored	-->

				<input	type="submit"	name="submit"	value="Upload	to	Amazon	S3"	/>

		</form>

		...

</html>

Sample	Request

This	request	assumes	that	the	image	uploaded	is	117,108	bytes;	the	image	data	is
not	included.

POST	/	HTTP/1.1

Host:	johnsmith.s3.amazonaws.com

User-Agent:	Mozilla/5.0	(Windows;	U;	Windows	NT	5.1;	en-US;	rv:1.8.1.10)	Gecko/20071115	Firefox/2.0.0.10

Accept:	text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language:	en-us,en;q=0.5

Accept-Encoding:	gzip,deflate

Accept-Charset:	ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive:	300

Connection:	keep-alive

Content-Type:	multipart/form-data;	boundary=9431149156168

Content-Length:	2661134

--9431149156168

Content-Disposition:	form-data;	name="key"

user/eric/MyPicture.jpg

--9431149156168

Content-Disposition:	form-data;	name="acl"

public-read

--9431149156168

Content-Disposition:	form-data;	name="success_action_redirect"

http://johnsmith.s3.amazonaws.com/successful_upload.html

--9431149156168

Content-Disposition:	form-data;	name="Content-Type"

image/jpeg

--9431149156168

Content-Disposition:	form-data;	name="x-amz-meta-uuid"

14365123651274

--9431149156168

Content-Disposition:	form-data;	name="x-amz-meta-tag"

Some,Tag,For,Picture

--9431149156168

Content-Disposition:	form-data;	name="AWSAccessKeyId"

15B4D3461F177624206A

--9431149156168

Content-Disposition:	form-data;	name="Policy"

eyAiZXhwaXJhdGlvbiI6ICIyMDA3LTEyLTAxVDEyOjAwOjAwLjAwMFoiLAogICJjb25kaXRpb25zIjogWwogICAgeyJidWNrZXQiOiAiam9obnNtaXRoIn0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiRrZXkiLCAidXNlci9lcmljLyJdLAogICAgeyJhY2wiOiAicHVibGljLXJlYWQifSwKICAgIHsic3VjY2Vzc19hY3Rpb25fcmVkaXJlY3QiOiAiaHR0cDovL2pvaG5zbWl0aC5zMy5hbWF6b25hd3MuY29tL3N1Y2Nlc3NmdWxfdXBsb2FkLmh0bWwifSwKICAgIFsic3RhcnRzLXdpdGgiLCAiJENvbnRlbnQtVHlwZSIsICJpbWFnZS8iXSwKICAgIHsieC1hbXotbWV0YS11dWlkIjogIjE0MzY1MTIzNjUxMjc0In0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiR4LWFtei1tZXRhLXRhZyIsICIiXQogIF0KfQo=

--9431149156168

Content-Disposition:	form-data;	name="Signature"

0RavWzkygo6QX9caELEqKi9kDbU=

--9431149156168

Content-Disposition:	form-data;	name="file";	filename="MyFilename.jpg"

Content-Type:	image/jpeg

...file	content...

--9431149156168

Content-Disposition:	form-data;	name="submit"

Upload	to	Amazon	S3

--9431149156168--

Sample	Response

HTTP/1.1	303	Redirect

x-amz-request-id:	1AEE782442F35865

x-amz-id-2:	cxzFLJRatFHy+NGtaDFRR8YvI9BHmgLxjvJzNiGGICARZ/mVXHj7T+qQKhdpzHFh

Content-Type:	application/xml

Date:	Wed,	14	Nov	2007	21:21:33	GMT

Connection:	close

Location:	http://johnsmith.s3.amazonaws.com/successful_upload.html?bucket=johnsmith&key=user/eric/MyPicture.jpg&etag="39d459dfbc0faabbb5e179358dfb94c3"

Server:	AmazonS3

Text	Area	Upload

Topics

Policy	and	Form	Construction
Sample	Request
Sample	Response

This	example	shows	the	complete	process	for	constructing	a	policy	and	form	to
upload	a	text	area.	This	is	useful	for	submitting	user-created	content	such	as	blog
postings.

Policy	and	Form	Construction

Following	is	a	policy	that	supports	text	area	uploads	to	Amazon	S3	for	the
johnsmith	bucket.

{	"expiration":	"2007-12-01T12:00:00.000Z",

		"conditions":	[

				{"bucket":	"johnsmith"},

				["starts-with",	"$key",	"user/eric/"],

				{"acl":	"public-read"},

				{"success_action_redirect":	"http://johnsmith.s3.amazonaws.com/new_post.html"},

				["eq",	"$Content-Type",	"text/html"],

				{"x-amz-meta-uuid":	"14365123651274"},

				["starts-with",	"$x-amz-meta-tag",	""]

]

}

This	policy	requires	the	following:

The	upload	must	occur	before	12:00	GMT	on	2007-12-01

The	content	must	be	uploaded	to	the	johnsmith	bucket

The	key	must	start	with	"user/eric/"

The	ACL	is	set	to	public-read

The	success_action_redirect	is	set	to
http://johnsmith.s3.amazonaws.com/new_post.html

The	object	is	HTML	text

The	x-amz-meta-uuid	tag	must	be	set	to	14365123651274

The	x-amz-meta-tag	can	contain	any	value

Following	is	a	Base64	encoded	version	of	this	policy.

eyAiZXhwaXJhdGlvbiI6ICIyMDA3LTEyLTAxVDEyOjAwOjAwLjAwMFoiLAogICJjb25kaXR

pb25zIjogWwogICAgeyJidWNrZXQiOiAiam9obnNtaXRoIn0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiRrZXkiLCAidXNlci9lcmljLyJd

LAogICAgeyJhY2wiOiAicHVibGljLXJlYWQifSwKICAgIHsic3VjY2Vzc19hY3Rpb25fcmVkaXJlY3QiOiAiaHR0cDovL2pvaG5zbWl0a

C5zMy5hbWF6b25hd3MuY29tL25ld19wb3N0Lmh0bWwifSwKICAgIFsiZXEiLCAiJENvbnRlbnQtVHlwZSIsICJ0ZXh0L2h0bWwiXSwKI

CAgIHsieC1hbXotbWV0YS11dWlkIjogIjE0MzY1MTIzNjUxMjc0In0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiR4LWFtei1tZXRhLXRhZy

IsICIiXQogIF0KfQo=

The	secret	key	ID	is	uV3F3YluFJax1cknvbcGwgjvx4QpvB+leU8dUj2o,	so
qA7FWXKq6VvU68lI9KdveT1cWgE=	is	the	signature	for	the	preceding	Policy
document.

Following	is	a	form	that	supports	a	POST	to	the	johnsmith.net	bucket	using	this
policy.

<html>

		<head>

				...

				<meta	http-equiv="Content-Type"	content="text/html;	charset=UTF-8"	/>

				...

		</head>

		<body>

		...

		<form	action="http://johnsmith.s3.amazonaws.com/"	method="post"	enctype="multipart/form-data">

				Key	to	upload:	<input	type="input"	name="key"	value="user/eric/"	/>

				<input	type="hidden"	name="acl"	value="public-read"	/>

				<input	type="hidden"	name="success_action_redirect"	value="http://johnsmith.s3.amazonaws.com/new_post.html"	/>

				<input	type="hidden"	name="Content-Type"	value="text/html"	/>

				<input	type="hidden"	name="x-amz-meta-uuid"	value="14365123651274"	/>

				Tags	for	File:	<input	type="input"	name="x-amz-meta-tag"	value=""	/>

				<input	type="hidden"	name="AWSAccessKeyId"	value="15B4D3461F177624206A"	/>

				<input	type="hidden"	name="Policy"	value="POLICY"	/>

				<input	type="hidden"	name="Signature"	value="SIGNATURE"	/>

				Entry:	<textarea	name="file"	cols="60"	rows="10">

Your	blog	post	goes	here.

				</textarea>

				<!--	The	elements	after	this	will	be	ignored	-->

				<input	type="submit"	name="submit"	value="Upload	to	Amazon	S3"	/>

		</form>

		...

</html>

Sample	Request

This	request	assumes	that	the	image	uploaded	is	117,108	bytes;	the	image	data	is
not	included.

POST	/	HTTP/1.1

Host:	johnsmith.s3.amazonaws.com

User-Agent:	Mozilla/5.0	(Windows;	U;	Windows	NT	5.1;	en-US;	rv:1.8.1.10)	Gecko/20071115	Firefox/2.0.0.10

Accept:	text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language:	en-us,en;q=0.5

Accept-Encoding:	gzip,deflate

Accept-Charset:	ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive:	300

Connection:	keep-alive

Content-Type:	multipart/form-data;	boundary=178521717625888

Content-Length:	5299

--178521717625888

Content-Disposition:	form-data;	name="key"

user/eric/NewEntry.html

--178521717625888

Content-Disposition:	form-data;	name="acl"

public-read

--178521717625888

Content-Disposition:	form-data;	name="success_action_redirect"

http://johnsmith.s3.amazonaws.com/new_post.html

--178521717625888

Content-Disposition:	form-data;	name="Content-Type"

text/html

--178521717625888

Content-Disposition:	form-data;	name="x-amz-meta-uuid"

14365123651274

--178521717625888

Content-Disposition:	form-data;	name="x-amz-meta-tag"

Interesting	Post

--178521717625888

Content-Disposition:	form-data;	name="AWSAccessKeyId"

15B4D3461F177624206A

--178521717625888

Content-Disposition:	form-data;	name="Policy"

eyAiZXhwaXJhdGlvbiI6ICIyMDA3LTEyLTAxVDEyOjAwOjAwLjAwMFoiLAogICJjb25kaXRpb25zIjogWwogICAgeyJidWNrZXQiOiAiam9obnNtaXRoIn0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiRrZXkiLCAidXNlci9lcmljLyJdLAogICAgeyJhY2wiOiAicHVibGljLXJlYWQifSwKICAgIHsic3VjY2Vzc19hY3Rpb25fcmVkaXJlY3QiOiAiaHR0cDovL2pvaG5zbWl0aC5zMy5hbWF6b25hd3MuY29tL25ld19wb3N0Lmh0bWwifSwKICAgIFsiZXEiLCAiJENvbnRlbnQtVHlwZSIsICJ0ZXh0L2h0bWwiXSwKICAgIHsieC1hbXotbWV0YS11dWlkIjogIjE0MzY1MTIzNjUxMjc0In0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiR4LWFtei1tZXRhLXRhZyIsICIiXQogIF0KfQo=

--178521717625888

Content-Disposition:	form-data;	name="Signature"

qA7FWXKq6VvU68lI9KdveT1cWgE=

--178521717625888

Content-Disposition:	form-data;	name="file"

...content	goes	here...

--178521717625888

Content-Disposition:	form-data;	name="submit"

Upload	to	Amazon	S3

--178521717625888--

Sample	Response

HTTP/1.1	303	Redirect

x-amz-request-id:	1AEE782442F35865

x-amz-id-2:	cxzFLJRatFHy+NGtaDFRR8YvI9BHmgLxjvJzNiGGICARZ/mVXHj7T+qQKhdpzHFh

Content-Type:	application/xml

Date:	Wed,	14	Nov	2007	21:21:33	GMT

Connection:	close

Location:	http://johnsmith.s3.amazonaws.com/new_post.html?bucket=johnsmith&key=user/eric/NewEntry.html&etag=40c3271af26b7f1672e41b8a274d28d4

Server:	AmazonS3

POST	with	Adobe	Flash
This	section	describes	how	to	use	POST	with	Adobe	Flash.

Adobe	Flash	Player	Security

By	default,	the	Adobe	Flash	Player	security	model	prohibits	Adobe	Flash
Players	from	making	network	connections	to	servers	outside	the	domain	that
serves	the	SWF	file.

To	override	the	default,	you	must	upload	a	public-readable	crossdomain.xml	file
to	the	bucket	that	will	accept	POST	uploads.	Following	is	a	sample
crossdomain.xml	file.

<?xml	version="1.0"?>

<!DOCTYPE	cross-domain-policy	SYSTEM

"http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd">

<cross-domain-policy>

		<allow-access-from	domain="*"	secure="false"	/>

</cross-domain-policy>

Note
For	more	information	about	the	Adobe	Flash	security	model,	go	to	the	Adobe
web	site.

Adding	the	crossdomain.xml	file	to	your	bucket	allows	any	Adobe	Flash	Player
to	connect	to	the	crossdomain.xml	file	within	your	bucket.	However,	it	does	not
grant	access	to	the	actual	Amazon	S3	bucket.

http://www.adobe.com

Other	Adobe	Flash	Considerations

The	FileReference	API	in	Adobe	Flash	adds	the	Filename	form	field	to	the
POST	request.	When	building	Adobe	Flash	applications	that	upload	to
Amazon	S3	using	the	FileReference	API,	include	the	following	condition	in	your
policy:

['starts-with',	'$Filename',	'']

Some	versions	of	the	Adobe	Flash	Player	do	not	properly	handle	HTTP
responses	that	have	an	empty	body.	To	configure	POST	to	return	a	response	that
does	not	have	an	empty	body,	set	success_action_status	to	201.	When	set,
Amazon	S3	returns	an	XML	document	with	a	201	status	code.	For	more
information,	go	to	RESTObjectPUT.

http://docs.amazonwebservices.com/AmazonS3/2006-03-01/API/index.html?RESTObjectPUT.html

Using	the	SOAP	API
Topics

Common	SOAP	API	Elements
Authenticating	SOAP	Requests
Setting	Access	Policy	with	SOAP

This	section	contains	information	specific	to	the	Amazon	S3	SOAP	API.

Common	SOAP	API	Elements
You	can	interact	with	Amazon	S3	using	SOAP	1.1	over	HTTP.	The	Amazon	S3
WSDL,	which	describes	the	Amazon	S3	API	in	a	machine-readable	way,	is
available	at:	http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl.	The
Amazon	S3	schema	is	available	at	http://doc.s3.amazonaws.com/2006-03-
01/AmazonS3.xsd.

Most	users	will	interact	with	Amazon	S3	using	a	SOAP	toolkit	tailored	for	their
language	and	development	environment.	Different	toolkits	will	expose	the
Amazon	S3	API	in	different	ways.	Please	refer	to	your	specific	toolkit
documentation	to	understand	how	to	use	it.	This	section	illustrates	the
Amazon	S3	SOAP	operations	in	a	toolkit-independent	way	by	exhibiting	the
XML	requests	and	responses	as	they	appear	"on	the	wire."

http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl
http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.xsd

Common	Elements

You	can	include	the	following	authorization-related	elements	with	any	SOAP
request:

AWSAccessKeyId:	The	AWS	Access	Key	ID	of	the	requester

Timestamp:	The	current	time	on	your	system

Signature:	The	signature	for	the	request

For	information	about	endpoints,	see	Request	Endpoints.

Authenticating	SOAP	Requests
Every	non-anonymous	request	must	contain	authentication	information	to
establish	the	identity	of	the	principal	making	the	request.	In	SOAP,	the
authentication	information	is	put	into	the	following	elements	of	the	SOAP
request:

AWSAccessKeyId:	Your	AWS	Access	Key	ID

Timestamp:	This	must	be	a	dateTime	(go	to
http://www.w3.org/TR/xmlschema-2/#dateTime)	in	the	Coordinated
Universal	Time	(Greenwich	Mean	Time)	time	zone,	such	as	2006-01-
01T12:00:00.000Z.	Authorization	will	fail	if	this	timestamp	is	more	than
15	minutes	away	from	the	clock	on	Amazon	S3	servers.

Signature:	The	RFC	2104	HMAC-SHA1	digest	(go	to
http://www.ietf.org/rfc/rfc2104.txt)	of	the	concatenation	of	"AmazonS3"	+
OPERATION	+	Timestamp,	using	your	AWS	Secret	Access	Key	as	the	key.
For	example,	in	the	following	CreateBucket	sample	request,	the	signature
element	would	contain	the	HMAC-SHA1	digest	of	the	value
"AmazonS3CreateBucket2006-01-01T12:00:00.000Z":

For	example,	in	the	following	CreateBucket	sample	request,	the	signature
element	would	contain	the	HMAC-SHA1	digest	of	the	value
"AmazonS3CreateBucket2006-01-01T12:00:00.000Z":

Example

<CreateBucket	xmlns="http://doc.s3.amazonaws.com/2006-03-01">
		<Bucket>quotes</Bucket>
		<Acl>private</Acl>
		<AWSAccessKeyId>1D9FVRAYCP1VJEXAMPLE=</AWSAccessKeyId>
		<Timestamp>2006-01-01T12:00:00.000Z</Timestamp>
		<Signature>Iuyz3d3P0aTou39dzbqaEXAMPLE=</Signature>
</CreateBucket>

Note
Authenticated	SOAP	requests	must	be	sent	to	Amazon	S3	over	SSL.	Only
anonymous	requests	are	allowed	over	non-SSL	connections.

http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.ietf.org/rfc/rfc2104.txt

Important
Due	to	different	interpretations	regarding	how	extra	time	precision	should	be
dropped,	.NET	users	should	take	care	not	to	send	Amazon	S3	overly	specific	time
stamps.	This	can	be	accomplished	by	manually	constructing	DateTime	objects
with	only	millisecond	precision.

For	more	information,	see	the	sample	.NET	SOAP	libraries	for	an	example	of
how	to	do	this.

http://developer.amazonwebservices.com/connect/entry.jspa?externalID=129&categoryID=47

Setting	Access	Policy	with	SOAP
Access	control	can	be	set	at	the	time	a	bucket	or	object	is	written	by	including
the	"AccessControlList"	element	with	the	request	to	CreateBucket,
PutObjectInline,	or	PutObject.	The	AccessControlList	element	is	described	in
Authentication	and	Access	Control.	If	no	access	control	list	is	specified	with
these	operations,	the	resource	is	created	with	a	default	access	policy	that	gives
the	requester	FULL_CONTROL	access	(this	is	the	case	even	if	the	request	is	a
PutObjectInline	or	PutObject	request	for	an	object	that	already	exists).

Following	is	a	request	that	writes	data	to	an	object,	makes	the	object	readable	by
anonymous	principals,	and	gives	the	specified	user	FULL_CONTROL	rights	to
the	bucket	(Most	developers	will	want	to	give	themselves	FULL_CONTROL
access	to	their	own	bucket).

Example

Following	is	a	request	that	writes	data	to	an	object	and	makes	the	object	readable
by	anonymous	principals.

Sample	Request

<PutObjectInline	xmlns="http://doc.s3.amazonaws.com/2006-03-01">
		<Bucket>quotes</Bucket>
		<Key>Nelson</Key>
		<Metadata>
				<Name>Content-Type</Name>
				<Value>text/plain</Value>
		</Metadata>
		<Data>aGEtaGE=</Data>
		<ContentLength>5</ContentLength>
		<AccessControlList>
				<Grant>
						<Grantee	xsi:type="CanonicalUser">
								<ID>a9a7b886d6fd24a52fe8ca5bef65f89a64e0193f23000e241bf9b1c61be666e9</ID>
								<DisplayName>chriscustomer</DisplayName>
						</Grantee>
						<Permission>FULL_CONTROL</Permission>
				</Grant>
				<Grant>
						<Grantee	xsi:type="Group">
								<URI>http://acs.amazonaws.com/groups/global/AllUsers<URI>

						</Grantee>
						<Permission>READ</Permission>
				</Grant>
		</AccessControlList>
		<AWSAccessKeyId>1D9FVRAYCP1VJEXAMPLE=</AWSAccessKeyId>
		<Timestamp>2006-03-01T12:00:00.183Z</Timestamp>
		<Signature>Iuyz3d3P0aTou39dzbqaEXAMPLE=</Signature>
</PutObjectInline>

Sample	Response

<PutObjectInlineResponse	xmlns="http://s3.amazonaws.com/doc/2006-03-01">
		<PutObjectInlineResponse>
				<ETag>"828ef3fdfa96f00ad9f27c383fc9ac7f"</ETag>
				<LastModified>2006-01-01T12:00:00.000Z</LastModified>
		</PutObjectInlineResponse>
</PutObjectInlineResponse>

The	access	control	policy	can	be	read	or	set	for	an	existing	bucket	or	object
using	the	GetBucketAccessControlPolicy,	GetObjectAccessControlPolicy,
SetBucketAccessControlPolicy,	and	SetObjectAccessControlPolicy
methods.	For	more	information,	see	the	detailed	explanation	of	these	methods.

Working	with	Amazon	S3
Components
Topics

Working	with	Amazon	S3	Buckets
Working	with	Amazon	S3	Objects

This	section	describes	buckets	and	objects:

Note
The	Authentication	and	Access	Control	section	describes	access	control	in	detail.

Working	with	Amazon	S3	Buckets
Topics

Bucket	Restrictions	and	Limitations
Bucket	Configuration	Options
Requester	Pays	Buckets
Buckets	and	Access	Control
Billing	and	Reporting	of	Buckets
Bucket	Configuration	Errors

Every	object	stored	in	Amazon	S3	is	contained	in	a	bucket.	Buckets	partition	the
namespace	of	objects	stored	in	Amazon	S3	at	the	top	level.	Within	a	bucket,	you
can	use	any	names	for	your	objects,	but	bucket	names	must	be	unique	across	all
of	Amazon	S3.

Buckets	are	similar	to	Internet	domain	names.	Just	as	Amazon	is	the	only	owner
of	the	domain	name	Amazon.com,	only	one	person	or	organization	can	own	a
bucket	within	Amazon	S3.	Once	you	create	a	uniquely	named	bucket	in
Amazon	S3,	you	can	organize	and	name	the	objects	within	the	bucket	in	any	way
you	like	and	the	bucket	will	remain	yours	for	as	long	as	you	like	and	as	long	as
you	have	the	Amazon	S3	account.

The	similarities	between	buckets	and	domain	names	is	not	a	coincidence—there
is	a	direct	mapping	between	Amazon	S3	buckets	and	subdomains	of
s3.amazonaws.com.	Objects	stored	in	Amazon	S3	are	addressable	using	the
REST	API	under	the	domain	bucketname.s3.amazonaws.com.	For	example,	if
the	object	homepage.html	is	stored	in	the	Amazon	S3	bucket	mybucket	its
address	would	be	http://mybucket.s3.amazonaws.com/homepage.html.	For
more	information,	see	Virtual	Hosting	of	Buckets.

To	determine	whether	a	bucket	name	exists	using	REST,	use	HEAD,	specify	the
name	of	the	bucket,	and	set	max-keys	to	0.	To	determine	whether	a	bucket	name
exists	using	SOAP,	use	ListBucket	and	set	MaxKeys	to	0.	A	NoSuchBucket
response	indicates	that	the	bucket	is	available,	a	AccessDenied	response
indicates	that	someone	else	owns	the	bucket,	and	a	Success	response	indicates

that	you	own	the	bucket	or	have	permission	to	access	it.

Bucket	Configuration	Errors

The	following	list	shows	the	errors	Amazon	S3	can	return	in	response	to	bucket
configuration	requests.

MalformedXML

MissingRequestBodyError

http://docs.amazonwebservices.com/AmazonS3/2006-03-01/API/index.html?ErrorCodeList.html
http://docs.amazonwebservices.com/AmazonS3/2006-03-01/API/index.html?ErrorCodeList.html

Bucket	Restrictions	and	Limitations
A	bucket	is	owned	by	the	AWS	account	(identified	by	AWS	Access	Key	ID)	that
created	it.	Each	AWS	account	can	own	up	to	100	buckets	at	a	time.	Bucket
ownership	is	not	transferable.	However,	if	a	bucket	is	empty,	it	can	be	deleted
and	its	name	can	be	reused.

Note
If	you	are	using	Amazon	DevPay,	each	of	your	customers	can	have	up	to	100
buckets	for	each	Amazon	DevPay	product	they	use.	For	more	information,	see
Using	Amazon	DevPay	with	Amazon	S3.

To	comply	with	Amazon	S3	requirements,	bucket	names:

Can	contain	lowercase	letters,	numbers,	periods	(.),	underscores	(_),	and
dashes	(-)

Must	start	with	a	number	or	letter

Must	be	between	3	and	255	characters	long

Must	not	be	formatted	as	an	IP	address	(e.g.,	192.168.5.4)

To	conform	with	DNS	requirements,	we	recommend	following	these	additional
guidelines	when	creating	buckets:

Bucket	names	should	not	contain	underscores	(_)

Bucket	names	should	be	between	3	and	63	characters	long

Bucket	names	should	not	end	with	a	dash

Bucket	names	cannot	contain	two,	adjacent	periods

Bucket	names	cannot	contain	dashes	next	to	periods	(e.g.,
"my-.bucket.com"	and	"my.-bucket"	are	invalid)

Note

Buckets	with	names	containing	uppercase	characters	are	not	accessible	using	the
virtual	hosted-style	request	(e.g.,
http://yourbucket.s3.amazonaws.com/yourobject)

If	you	create	a	bucket	using	<CreateBucketConfiguration>,	you	must	follow	the
additional	guidelines.

If	you	create	a	bucket	using	<CreateBucketConfiguration>,	applications	that
access	your	bucket	must	be	able	to	handle	307	redirects.	For	more	information,
see	Request	Redirection	and	the	REST	API.

When	using	virtual	hosted-style	buckets	with	SSL,	the	SSL	wildcard	certificate
only	matches	buckets	that	do	not	contain	periods.	To	work	around	this,	use	HTTP
or	write	your	own	certificate	verification	logic.

There	is	no	limit	to	the	number	of	objects	that	can	be	stored	in	a	bucket	and	no
variation	in	performance	when	using	many	buckets	or	just	a	few.	You	can	store
all	of	your	objects	in	a	single	bucket	or	organize	them	across	several	buckets.

Buckets	cannot	be	nested,	meaning	buckets	cannot	be	created	within	buckets.

The	high	availability	engineering	of	Amazon	S3	is	focused	on	get,	put,	list,	and
delete	operations.	Because	bucket	operations	work	against	a	centralized,	global
resource	space,	it	is	not	appropriate	to	make	bucket	create	or	delete	calls	on	the
high	availability	code	path	of	your	application.	It	is	better	to	create	or	delete
buckets	in	a	separate	initialization	or	setup	routine	that	you	run	less	often.

Note
If	your	application	automatically	creates	buckets,	choose	a	bucket	naming
scheme	that	is	unlikely	to	cause	naming	conflicts.	Additionally,	make	sure	your
application	has	logic	to	choose	a	different	bucket	name	if	a	bucket	name	is
already	taken.

Bucket	Configuration	Options
When	creating	buckets,	you	can	take	advantage	of	additional	Amazon	S3
features	by	attaching	the	<CreateBucketConfiguration>	XML	body	to	a	PUT
Bucket	request.	Currently,	you	can	select	a	location	constraint.	For	more
information,	see	How	to	Select	a	Region	for	Your	Buckets.

Buckets	created	with	<CreateBucketConfiguration>	are	subject	to	additional
restrictions:

You	cannot	make	a	request	to	a	bucket	created	with
<CreateBucketConfiguration>	using	a	path-style	request;	you	must	use
the	virtual	hosted-style	request.	For	more	information,	see	Virtual	Hosting
of	Buckets.

You	must	follow	additional	bucket	naming	restrictions.	For	more
information,	see	Bucket	Restrictions	and	Limitations.

How	to	Select	a	Region	for	Your
Buckets
You	can	choose	a	geographical	region	where	Amazon	S3	will	store	the	buckets
you	create.	For	example,	if	you	reside	in	Europe,	you	might	like	to	specify	that
the	buckets	you	create	(and	therefore	the	objects	stored	in	them)	reside	in
Europe.	You	specify	a	region	using	the	LocationConstraint	bucket	parameter.
If	you	do	not	specify	a	region,	Amazon	S3	hosts	your	buckets	on	servers	in	the
US	region.	The	other	region	you	can	constrain	a	bucket	to	is	EU	(Europe).

Note
The	SOAP	API	does	not	support	geographical	constraints.

Use	the	following	process	to	specify	a	bucket's	region.

Specifying	a	Bucket's	Region

1 In	a	bucket	creation	request,	set	the	LocationContraint	parameter	to	a	specific	region,	for
example,	CreateBucketConfiguration.LocationConstraint=EU.

Bucket	Access

To	access	Amazon	S3	buckets	and	objects	that	were	created	using
CreateBucketConfiguration,	you	must	use	the	virtual	hosted-style	request.	For
example:

http://yourbucket.s3.amazonaws.com/yourobject

You	cannot	use	the	path-style	request:

http://s3.amazonaws.com/yourbucket/yourobject

If	you	use	the	path-style	request,	you	receive	a	permanent	redirect.

Redirection

Amazon	supports	two	types	of	redirects:	temporary	and	permanent.

Temporary	redirects	automatically	redirect	users	that	do	not	have	DNS
information	for	the	requested	bucket.	This	occurs	because	DNS	changes	take
time	to	propagate	through	the	Internet.	For	example,	if	a	user	creates	a	bucket
with	a	location	constraint	and	immediately	stores	an	object	in	the	bucket,
information	about	the	bucket	might	not	distribute	throughout	the	Internet.
Because	the	bucket	is	a	sub	domain	of	s3.amazonaws.com,	Amazon	S3	redirects
it	to	the	correct	Amazon	S3	location.

Permanent	redirects	redirect	users	from	the	path-style	request	to	the	virtual
hosted-style	request	format	for	buckets	created	using
<CreateBucketConfiguration>.	Users	will	be	provided	with	the	correct	URL,	but
will	not	be	forwarded	to	the	correct	location.

Requester	Pays	Buckets
In	general,	bucket	owners	pay	for	all	Amazon	S3	storage	and	data	transfer	costs
associated	with	their	bucket.	A	bucket	owner,	however,	can	configure	a	bucket	to
be	a	Requester	Pays	bucket.	With	Requester	Pays	buckets,	the	requester	instead
of	the	bucket	owner	pays	the	cost	of	the	request	and	the	data	download	from	the
bucket.	The	bucket	owner	always	pays	the	cost	of	storing	data.

Typically,	you	configure	buckets	to	be	Requester	Pays	when	you	want	to	share
data	but	not	incur	charges	associated	with	others	accessing	the	data.	You	might,
for	example,	use	Requester	Pays	buckets	when	making	available	large	data	sets,
such	as	zip	code	directories,	reference	data,	geospatial	information,	or	web
crawling	data.

Important
If	you	enable	Requester	Pays	on	a	bucket,	anonymous	access	to	that	bucket	is	not
allowed.

You	must	authenticate	all	requests	involving	Requester	Pays	buckets.	The
request	authentication	enables	Amazon	S3	to	identify	and	charge	the	requester
for	their	use	of	the	Requester	Pays	bucket.

After	you	configure	a	bucket	to	be	a	Requester	Pays	bucket,	requesters	must
include	x-amz-request-payer	in	their	requests	either	in	the	header,	for	POST	and
GET	requests,	or	as	a	parameter	in	a	REST	request	to	show	that	they	understand
that	they	will	be	charged	for	the	request	and	the	data	download.

Requester	Pays	buckets	do	not	support	the	following.

Anonymous	requests

BitTorrent

SOAP	requests

You	cannot	use	a	Requester	Pays	bucket	as	the	target	bucket	for	end	user
logging,	or	vice	versa.	However,	you	can	turn	on	end	user	logging	on	a
Requester	Pays	bucket	where	the	target	bucket	is	a	non	Requester	Pays

bucket.

Setting	the	requestPayment	Bucket
Configuration
The	bucket	owner	and	only	the	bucket	owner	can	set	the
RequestPaymentConfiguration.payer	configuration	value	of	a	bucket	to
BucketOwner,	the	default,	or	Requester.	Setting	the	requestPayment	resource	is
optional.	If	you	don't,	the	bucket,	by	default,	is	a	non-Requester	Pays	bucket.

You	use	the	value,	BucketOwner,	to	revert	Requester	Pays	buckets	to	regular
buckets.	Typically,	you	would	use	BucketOwner	when	uploading	data	to	the
Amazon	S3	bucket,	then	set	the	value	to	Requester	before	publishing	the	objects
in	the	bucket.

To	set	requestPayment

Use	a	PUT	request	to	set	the	Payer	value	to	Requester	on	a	specified
bucket.

PUT	?requestPayment	HTTP/1.1
Host:	[BucketName].s3.amazonaws.com
Content-Length:	173
Date:	Wed,	01	Mar	2009	12:00:00	GMT
Authorization:	AWS	[Signature]

<RequestPaymentConfiguration	xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
<Payer>Requester</Payer>
</RequestPaymentConfiguration>

If	the	request	succeeds,	Amazon	S3	returns	a	response	similar	to	the	following.

HTTP/1.1	200	OK
x-amz-id-2:	[id]
x-amz-request-id:	[request_id]
Date:	Wed,	01	Mar	2009	12:00:00	GMT
Content-Length:	0
Connection:	close
Server:	AmazonS3
x-amz-request-charged:requester

Notice	that	you	can	only	set	Requester	Pays	at	the	bucket	level;	you	cannot	set
Requester	Pays	for	specific	objects	within	the	bucket.

You	can	freely	configure	a	bucket	to	be	BucketOwner	or	Requester	at	any	time.
Realize,	however,	that	there	might	be	a	small	delay,	on	the	order	of	minutes,	for
the	configuration	value	to	take	effect.

Note
Bucket	owners	who	give	out	pre-signed	URLs	should	think	twice	before
configuring	a	bucket	to	be	Requester	Pays,	especially	if	the	URL	has	a	very	long
expiry.	The	bucket	owner	is	charged	each	time	the	requester	uses	pre-signed
URLs	that	use	the	bucket	owner's	credentials.

Retrieving	requestPayment
Configuration
You	can	determine	the	Payer	value	set	on	a	bucket	by	requesting	the	resource
requestPayment.

To	return	the	requestPayment	resource

Use	a	GET	request	to	obtain	the	requestPayment	resource,	as	shown	in	the
following	request.

GET	?requestPayment	HTTP/1.1
Host:	[BucketName].s3.amazonaws.com
Date:	Wed,	01	Mar	2009	12:00:00	GMT
Authorization:	AWS	[Signature]

If	the	request	succeeds,	Amazon	S3	returns	a	response	similar	to	the	following.

HTTP/1.1	200	OK
x-amz-id-2:	[id]
x-amz-request-id:	[request_id]
Date:	Wed,	01	Mar	2009	12:00:00	GMT
Content-Type:	[type]
Content-Length:	[length]
Connection:	close
Server:	AmazonS3

<?xml	version="1.0"	encoding="UTF-8"?>
<RequestPaymentConfiguration	xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
<Payer>Requester</Payer>
</RequestPaymentConfiguration>

This	response	shows	that	the	payer	value	is	set	to	Requester.

Downloading	Objects	in	Requester
Pays	Buckets
Because	requesters	are	charged	for	downloading	data	from	Requester	Pays
buckets,	the	requests	must	contain	a	special	parameter,	x-amz-request-payer,
which	demonstrates	the	requester	knows	he	or	she	will	be	charged	for	the
download.	To	access	objects	in	Requester	Pays	buckets,	requests	must	include
one	of	the	following.

For	GET	and	POST	requests,	include	x-amz-request-payer	:	requester
in	the	header

For	signed	URLs,	include	x-amz-request-payer=requester	in	the	request

If	the	request	succeeds	and	the	requester	is	charged,	the	response	includes	the
header	x-amz-request-charged:requester.	If	x-amz-request-payer	is	not	in
the	request,	Amazon	S3	returns	a	403	error	and	charges	the	bucket	owner	for	the
request.

Note
Bucket	owners	do	not	need	to	add	x-amz-request-payer	to	their	requests.

Make	sure	to	include	x-amz-request-payer	and	its	value	in	your	signature
calculation.	For	more	information,	see	Constructing	the
CanonicalizedAmzHeaders	Element.

To	download	objects	from	a	Requester	Pays	bucket

Use	a	GET	request	to	download	an	object	from	a	Requester	Pays	bucket,	as
shown	in	the	following	request.

GET	/	[destinationObject]	HTTP/1.1
Host:	[BucketName].s3.amazonaws.com
x-amz-request-payer	:	requester
Date:	Wed,	01	Mar	2009	12:00:00	GMT
Authorization:	AWS	[Signature]

If	the	GET	request	succeeds	and	the	requester	is	charged,	the	response	includes
x-amz-request-charged:requester.

Amazon	S3	can	return	Access	Denied	errors	for	requests	trying	to	get	objects
from	Requester	Pays	buckets.	For	more	information,	go	to	ErrorCodeList.

http://docs.amazonwebservices.com/AmazonS3/2006-03-01/API/index.html?ErrorCodeList.html

DevPay	and	Requester	Pays
You	can	use	Amazon	DevPay	to	sell	the	content	stored	in	your	Requester	Pays
bucket.	For	more	information,	go	to	"Using	Amazon	S3	Requester	Pays	with
DevPay,"	in	the	Using	Amazon	S3	Requester	Pays	with	DevPay.

http://docs.amazonwebservices.com/AmazonDevPay/latest/DevPayDeveloperGuide/S3RequesterPays.html

Charge	Details
The	charge	for	successful	Requester	Pays	requests	is	straight	forward:	the
requester	pays	for	data	transfer	and	the	request;	the	bucket	owner	pays	for	the
data	storage.	However,	the	bucket	owner	is	charged	for	the	request	if:

The	requester	doesn't	include	the	parameter	x-amz-request-payer	in	the
header	(GET	or	POST)	or	as	a	parameter	(REST)	in	the	request	(HTTP
code	403)

Request	authentication	fails	(HTTP	code	403)

The	request	is	anonymous	(HTTP	code	403)

The	request	is	a	SOAP	request

Buckets	and	Access	Control
Each	bucket	has	an	associated	access	control	policy.	This	policy	governs	the
creation,	deletion	and	enumeration	of	objects	within	the	bucket.	For	more
information,	see	Authentication	and	Access	Control.

Billing	and	Reporting	of	Buckets
Fees	for	object	storage	and	network	data	transfer	are	always	billed	to	the	owner
of	the	bucket	that	contains	the	object	unless	the	bucket	was	created	as	a
Requester	Pays	bucket.

The	reporting	tools	available	at	the	Amazon	Web	Services	developer	portal
organize	your	Amazon	S3	usage	reports	by	bucket.

Working	with	Amazon	S3	Objects
Topics

Keys
Metadata
Getting	Objects
Copying	Amazon	S3	Objects

Amazon	S3	is	designed	to	store	objects.	Objects	are	stored	in	buckets	and	consist
of	a	value,	a	key,	metadata,	and	an	access	control	policy.

The	object	value	is	the	content	that	you	are	storing.	The	object	value	can	be	any
sequence	of	bytes,	but	must	be	smaller	than	five	gigabytes.	There	is	no	fixed
limit	to	the	number	of	objects	you	can	store	in	Amazon	S3.

The	key	is	the	handle	that	you	assign	to	an	object	that	allows	you	retrieve	it	later.

Metadata	is	a	set	of	key-value	pairs	with	which	you	can	store	information
regarding	the	object.

The	access	control	policy	controls	access	to	the	object.

Keys
Topics

Listing	Keys
Common	List	Request	Parameters
Common	List	Response	Elements
Iterating	Through	Multi-Page	Results
Listing	Keys	Hierarchically	using	Prefix	and	Delimiter

The	key	is	the	handle	that	you	assign	to	an	object	that	allows	you	retrieve	it	later.
A	key	is	a	sequence	of	Unicode	characters	whose	UTF-8	encoding	is	at	most
1024	bytes	long.	Each	object	in	a	bucket	must	have	a	unique	key.

Keys	can	be	listed	by	prefix.	By	choosing	a	common	prefix	for	the	names	of
related	keys	and	marking	these	keys	with	a	special	character	that	delimits
hierarchy,	you	can	use	the	list	operation	to	select	and	browse	keys	hierarchically.
This	is	similar	to	how	files	are	stored	in	directories	within	a	file	system.	For
more	information,	see	Listing	Keys.

Keys	often	have	a	suffix	that	describes	the	type	of	data	in	the	object.	For
example,	".jpg"	indicates	that	an	object	is	an	image.	Although	Amazon	S3
supports	key	suffixes,	they	are	not	required.

Listing	Keys
Amazon	S3	exposes	a	list	operation	that	lets	you	enumerate	the	keys	contained
in	a	bucket.	Keys	are	selected	for	listing	by	bucket	and	prefix.	For	example,
consider	a	bucket	named	'dictionary'	that	contains	a	key	for	every	English	word.
You	might	make	a	call	to	list	all	the	keys	in	that	bucket	that	start	with	the	letter
"q".	List	results	are	always	returned	in	lexicographic	(alphabetical)	order.

For	API	independent	information	about	composing	a	list	request,	see	Common
List	Request	Parameters.

Both	the	SOAP	and	REST	list	operations	return	an	XML	document	that	contains
the	names	of	matching	keys	and	information	about	the	object	identified	by	each
key.	This	common	XML	response	document	is	documented	in	detail.	For	more
information,	see	Common	List	Response	Elements.

You	can	iterate	through	large	collections	of	keys	by	making	multiple,	paginated,
list	requests.	For	example,	an	initial	list	request	against	the	dictionary	bucket
might	only	retrieve	information	about	the	keys	'quack'	through	'quartermaster.'
But	a	subsequent	request	would	retrieve	'quarters'	through	'quince',	and	so	on.

For	instructions	on	how	to	correctly	handle	large	list	result	sets,	see	Iterating
Through	Multi-Page	Results.

Groups	of	keys	that	share	a	prefix	terminated	by	a	special	delimiter	can	be
rolled-up	by	that	common	prefix	for	the	purposes	of	listing.	This	allows
applications	to	organize	and	browse	their	keys	hierarchically,	much	like	how	you
would	organize	your	files	into	directories	in	a	file	system.	For	example,	to
extend	the	dictionary	bucket	to	contain	more	than	just	English	words,	you	might
form	keys	by	prefixing	each	word	with	its	language	and	a	delimiter,	like
"French/logiciel".	Using	this	naming	scheme	and	the	hierarchical	listing	feature,
you	could	retrieve	a	list	of	only	French	words.	You	could	also	browse	the	top-
level	list	of	available	languages	without	having	to	iterate	through	all	the
lexicographically	intervening	keys.

For	more	information	on	this	aspect	of	listing,	see	Listing	Keys	Hierarchically
using	Prefix	and	Delimiter.

List	Implementation	Efficiency

List	performance	is	not	substantially	affected	by	the	total	number	of	keys	in	your
bucket,	nor	by	the	presence	or	absence	of	the	prefix,	marker,	maxkeys,	or
delimiter	arguments.

Common	List	Request	Parameters
Following	is	a	table	that	describes	common	list	request	parameters	that	are	used
by	both	SOAP	and	REST.

Parameter Description

Prefix Restricts	the	response	to	only	contain	results	that	begin	with	the	specified	prefix.	If	you
omit	this	optional	argument,	the	value	of	Prefix	for	your	query	will	be	the	empty	string.
In	other	words,	the	results	will	be	not	be	restricted	by	prefix.

Marker This	optional	parameter	enables	pagination	of	large	result	sets.	Marker	specifies	where	in
the	result	set	to	resume	listing.	It	restricts	the	response	to	only	contain	results	that	occur
alphabetically	after	the	value	of	marker.	To	retrieve	the	next	page	of	results,	use	the	last
key	from	the	current	page	of	results	as	the	marker	in	your	next	request.	For	more
information,	see	the	NextMarker	response	element.	If	Marker	is	omitted,	the	first	page	of
results	is	returned.

Delimiter If	this	optional,	Unicode	string	parameter	is	included	with	your	request,	then	keys	that
contain	the	same	string	between	the	prefix	and	the	first	occurrence	of	the	delimiter	will
be	rolled	up	into	a	single	result	element	in	the	CommonPrefixes	collection.	These	rolled-
up	keys	are	not	returned	elsewhere	in	the	response.

For	example,	with	Prefix="USA/"	and	Delimiter="/",	the	matching	keys
"USA/Oregon/Salem"	and	"USA/Oregon/Portland"	would	be	summarized	in	the
response	as	a	single	"USA/Oregon"	element	in	the	CommonPrefixes	collection.	If	an
otherwise	matching	key	does	not	contain	the	delimiter	after	the	prefix,	it	appears	in	the
Contents	collection.

Each	element	in	the	CommonPrefixes	collection	counts	as	one	against	the	MaxKeys
limit.	The	rolled-up	keys	represented	by	each	CommonPrefixes	element	do	not.

If	the	Delimiter	parameter	is	not	present	in	your	request,	keys	in	the	result	set	will	not	be
rolled-up	and	neither	the	CommonPrefixes	collection	nor	the	NextMarker	element	will
be	present	in	the	response.

MaxKeys This	optional	argument	limits	the	number	of	results	returned	in	response	to	your	query.
Amazon	S3	will	return	no	more	than	this	number	of	results,	but	possibly	less.	Even	if
MaxKeys	is	not	specified,	Amazon	S3	will	limit	the	number	of	results	in	the	response.
Check	the	IsTruncated	flag	to	see	if	your	results	are	incomplete.	If	so,	use	the	Marker
parameter	to	request	the	next	page	of	results.

For	the	purpose	of	counting	MaxKeys,	a	'result'	is	either	a	key	in	the	'Contents'
collection,	or	a	delimited	prefix	in	the	'CommonPrefixes'	collection.	So	for	delimiter
requests,	MaxKeys	limits	the	total	number	of	list	results,	not	just	the	number	of	keys.

While	the	SOAP	and	REST	list	parameters	are	substantially	the	same,	the

parameter	names	and	the	mechanics	of	submitting	the	request	are	different.	A
SOAP	list	request	is	an	XML	document,	with	the	parameters	as	elements,	while
a	REST	list	request	is	a	GET	on	the	bucket	resource,	with	parameters	in	the
query-string.	For	more	information,	see	these	API-specific	sections:

SOAPListBucket

RESTBucketGET

http://docs.amazonwebservices.com/AmazonS3/2006-03-01/API/index.html?SOAPListBucket.html
http://docs.amazonwebservices.com/AmazonS3/2006-03-01/API/index.html?RESTBucketGET.html

Access	Control

The	list	operation	requires	READ	permission	on	the	bucket	in	question.
Permission	to	list	is	conferred	for	any	value	of	Prefix,	Marker,	Delimiter	and
MaxKeys.

Common	List	Response	Elements
The	SOAP	and	REST	XML	list	response	share	the	same	structure	and	element
names.

Example

<?xml	version="1.0"	encoding="UTF-8"?>

<ListBucketResult	xmlns="http://s3.amazonaws.com/doc/2006-03-01">

		<Name>johnsmith</Name>

		<Prefix>photos/2006/</Prefix>

		<Marker/>

		<MaxKeys>1000</MaxKeys>

		<Delimiter>/</Delimiter>

		<IsTruncated>false</IsTruncated>

		<Contents>

				<Key>photos/2006/index.html</Key>

				<LastModified>2006-01-01T12:00:00.000Z</LastModified>

				<ETag>"ce1acdafcc879d7eee54cf4e97334078"</ETag>

				<Size>1234</Size>

				<Owner>

						<ID>214153b66967d86f031c7249d1d9a80249109428335cd08f1cdc487b4566cb1b</ID>

						<DisplayName>John	Smith</DisplayName>

				</Owner>

				<StorageClass>STANDARD</StorageClass>

		</Contents>

		<CommonPrefixes>

				<Prefix>photos/2006/January/</Prefix>

		</CommonPrefixes>

</ListBucketResult>

ListBucketResult	is	the	root	element	of	the	list	response	document.	To	make	the
list	response	self-describing,	ListBucketResult	echoes	back	the	list	request
parameters	that	generated	it.	ListBucketResult	also	contains	the	following
elements:

Element Description

IsTruncated A	flag	that	indicates	whether	or	not	all	results	of	your	query	were	returned	in	this
response.	If	your	results	were	truncated,	you	can	make	a	follow-up	paginated	request
using	the	Marker	parameter	to	retrieve	the	rest	of	the	results.

NextMarker A	convenience	element,	useful	when	paginating	with	delimiters.	The	value	of
NextMarker,	if	present,	is	the	largest	(alphabetically)	of	all	key	names	and	all
CommonPrefixes	prefixes	in	the	response.	If	the	IsTruncated	flag	is	set,	request	the	next
page	of	results	by	setting	Marker	to	NextMarker.	This	element	is	only	present	in	the
response	if	the	Delimiter	parameter	was	sent	with	the	request.

The	Contents	Element	(of	type	ListEntry)	contains	information	about	each	key
that	is	part	of	the	list	results.

Element Description

Key The	object's	key.

LastModified The	time	that	the	object	was	placed	into	Amazon	S3.

ETag The	object's	entity	tag	is	an	opaque	string	used	to	quickly	check	an	object	for	changes.
With	high	probability,	the	object	data	associated	with	a	key	is	unchanged	if	and	only	if
the	entity	tag	is	unchanged.	Entity	tags	are	useful	in	conditional	gets.

Size The	number	of	bytes	of	object	data	stored	under	this	key.	Size	does	not	include
metadata	or	the	size	of	the	key.

Owner This	element	represents	the	identity	of	the	principal	who	created	the	object.	It	is	only
present	if	you	have	permission	to	view	it.	For	more	information,	see	Access	Control.

StorageClass Always	has	the	value	STANDARD.

The	CommonPrefixes	element	might	be	present	when	you	make	a	list	request
with	the	delimiter	parameter.	Each	element	in	this	collection	represents	a	group
of	keys	that	share	a	common	prefix	terminated	by	the	specified	delimiter.	To
expand	the	list	of	keys	under	this	prefix,	make	a	new	list	request	formed	by
substituting	the	value	of	the	CommonPrefixes/Prefix	response	element	for	the
Prefix	request	parameter.

Access	Control

The	Owner	element	is	only	present	in	a	given	ListEntry	element	if	you	have
READ_ACP	permission	on	the	object	in	question,	or	if	you	own	the	containing
bucket.	Otherwise,	it	is	omitted.

Iterating	Through	Multi-Page	Results
As	buckets	can	contain	a	virtually	unlimited	number	of	keys,	the	complete
results	of	a	list	query	can	be	extremely	large.	To	manage	large	result	sets,
Amazon	S3	uses	pagination	to	split	them	into	multiple	responses.	Following	is	a
pseudo-code	procedure	that	demonstrates	how	to	iteratively	fetch	an	exhaustive
list	of	results,	given	a	prefix,	marker	and	delimiter.

function	exhaustiveList(bucket,	prefix,	marker,	delimiter)	:
				do	{
								result	=	AmazonS3.list(bucket,	prefix,	marker,	delimiter);
								//	...	work	with	incremental	list	results	...

								marker	=	max(result.Contents.Keys,	result.CommonPrefixes.Prefixes)
								//	or	more	conveniently,	when	delimiter	!=	null
								//	marker	=	result.NextMarker;
				}
while	(result.IsTruncated);

Listing	Keys	Hierarchically	using
Prefix	and	Delimiter
The	Prefix	and	Delimiter	parameters	limit	the	kind	of	results	returned	by	a	list
operation.	Prefix	limits	results	to	only	those	keys	that	begin	with	the	specified
prefix,	and	Delimiter	causes	list	to	roll-up	all	keys	that	share	a	common	prefix
into	a	single	summary	list	result.

The	purpose	of	the	prefix	and	delimiter	parameters	is	to	allow	you	to	organize,
and	then	browse,	your	keys	hierarchically.	To	do	this,	first	pick	a	delimiter	for
your	bucket,	say	slash	(/),	that	doesn't	occur	in	any	of	your	anticipated	key
names.	Next,	construct	your	key	names	by	concatenating	all	containing	levels	of
the	hierarchy,	separating	each	level	with	the	delimiter.

For	example,	if	you	were	storing	information	about	cities,	you	might	naturally
organize	them	by	continent,	then	by	country,	then	by	province	or	state.	Since
these	names	don't	usually	contain	punctuation,	you	might	select	slash	(/)	as	the
delimiter.	The	following	example	uses	a	slash	(/)	delimiter.

Europe/France/Aquitaine/Bordeaux

North	America/Canada/Quebec/Montreal

North	America/USA/California/San	Francisco

North	America/USA/Washington/Seattle

and	so	on.

If	you	stored	data	for	every	city	in	the	world	in	this	manner,	it	would	become
awkward	to	manage	a	flat	key	namespace.	But,	by	using	the	Prefix	and	Delimiter
parameters	with	the	list	operation,	you	can	list	using	the	hierarchy	you've	built
into	your	data.	For	example,	to	list	all	the	cities	in	California,	set	Delimiter='/'
and	Prefix='/North	America/USA/California/'.	To	list	all	the	provinces	in	Canada
for	which	you	have	data,	set	Delimiter='/'	and	Prefix='North	America/Canada/'

A	list	request	with	a	delimiter	lets	you	browse	your	hierarchy	at	just	one	level,
skipping	over	and	summarizing	the	(possibly	millions	of)	keys	nested	at	deeper

levels.

Metadata
Topics

Metadata	Size
Metadata	Interoperability

Each	Amazon	S3	object	has	a	set	of	key-value	pairs	with	which	it	is	associated.
There	are	two	kinds	of	metadata:	system	metadata,	and	user	metadata.

System	metadata	is	used	and	is	sometimes	processed	by	Amazon	S3.	System
metadata	behavior	depends	on	which	API	(REST	or	SOAP)	you	are	using.

User	metadata	entries	are	specified	by	you.	Amazon	S3	does	not	interpret	this
metadata—it	simply	stores	it	and	passes	it	back	when	you	ask	for	it.	Metadata
keys	and	values	can	be	any	length,	but	must	conform	to	US-ASCII	when	using
REST	and	UTF-8	when	using	SOAP	or	browser-based	uploads	through	POST.

Note
For	more	information	about	metadata	encodings,	go	to	sections	2	and	4.2	of
http://www.ietf.org/rfc/rfc2616.txt.

http://www.ietf.org/rfc/rfc2616.txt

Metadata	Size

For	both	REST	and	SOAP	requests	to	Amazon	S3,	user	metadata	size	is	limited
to	2k	bytes	for	the	total	length	of	all	values	and	keys.

Metadata	Interoperability

In	REST,	user	metadata	keys	must	begin	with	"x-amz-meta-"	to	distinguish	them
as	custom	HTTP	headers.	When	this	metadata	is	retrieved	via	SOAP,	the	x-amz-
meta-	prefix	is	removed.	Similarly,	metadata	stored	via	SOAP	will	have	x-amz-
meta-	added	as	a	prefix	when	it	is	retrieved	via	REST	or	HTTP,	except	the
Content-Type	header.

When	metadata	is	retrieved	through	the	REST	API,	Amazon	S3	combines
headers	that	have	the	same	name	(ignoring	case)	into	a	comma-delimited	list.	If
some	metadata	contains	unprintable	characters,	it	is	not	returned.	Instead,	the	"x-
amz-missing-meta"	header	is	returned	with	a	value	of	the	number	of	the
unprintable	metadata	entries.

Getting	Objects
Topics

Standard	Downloads
Chunked	and	Resumable	Downloads

You	get	objects	from	Amazon	S3	using	the	GET	operation.	This	operation	returns
the	object	directly	from	Amazon	S3.

Standard	Downloads
Following	is	an	example	of	a	REST	GET	request.

GET	/Nelson	HTTP/1.1
Host:	quotes.s3.amazonaws.com
Date:	Wed,	01	Mar		2006	12:00:00	GMT

Authorization:	AWS	15B4D3461F177624206A:xQE0diMbLRepdf3YB+FIEXAMPLE=

It	returns	the	following	response.

HTTP/1.1	200	OK
x-amz-id-2:	j5ULAWpFbJQJpukUsZ4tfXVOjVZExLtEyNTvY5feC+hHIegsN5p578JLTVpkFrpL
x-amz-request-id:	BE39A20848A0D52B
Date:	Wed,	01	Mar		2006	12:00:00	GMT

x-amz-meta-family:	Muntz
Last-Modified:	Sun,	1	Jan	2006	12:00:00	GMT
ETag:	"828ef3fdfa96f00ad9f27c383fc9ac7f"
Content-Type:	text/plain
Content-Length:	5
Connection:	close
Server:	AmazonS3

HA-HA

Chunked	and	Resumable	Downloads
To	provide	GET	flexibility,	Amazon	S3	supports	chunked	and	resumable
downloads.

This	allows	you	to	download	part	of	an	object	stored	in	Amazon	S3	so	you	can
break	large	downloads	into	smaller	chunks	or	design	your	applications	to	recover
from	failed	downloads.

You	can	select	a	method	from	the	following:

For	information	about	using	resumable	downloads	with	the	REST	API,	go
to	RESTObjectGET.

For	information	about	using	resumable	downloads	with	the	SOAP	API,	go
to	SOAPResumableDownloads.

http://docs.amazonwebservices.com/AmazonS3/2006-03-01/API/index.html?RESTObjectGET.html
http://docs.amazonwebservices.com/AmazonS3/2006-03-01/API/index.html?SOAPResumableDownloads.html

Copying	Amazon	S3	Objects
The	copy	operation	enables	you	to	copy	objects	within	Amazon	S3.	Using	the
copy	operation,	you	can:

Create	additional	copies	of	objects
Rename	objects	by	copying	them	and	deleting	the	original	ones
Move	objects	across	Amazon	S3	locations	(e.g.,	US	and	EU)
Update	object	metadata	by	copying	original	objects	to	new	ones	that
contain	new	metadata

Note
Copying	objects	across	locations	incurs	bandwidth	charges.

For	more	information	about	copy	requests,	see	RESTObjectCOPY	for	REST	and
SOAPCopyObject	for	SOAP.

http://docs.amazonwebservices.com/AmazonS3/2006-03-01/API/index.html?RESTObjectCOPY.html
http://docs.amazonwebservices.com/AmazonS3/2006-03-01/API/index.html?SOAPCopyObject.html

Example

This	example	describes	how	to	copy	an	object	using	REST.

This	example	copies	the	flotsam	object	from	the	pacific	bucket	to	the	jetsam
object	of	the	atlantic	bucket,	preserving	its	metadata.

PUT	/jetsam	HTTP/1.1
Host:	atlantic.s3.amazonaws.com
x-amz-copy-source:	/pacific/flotsam
Authorization:	AWS	15B4D3461F177624206A:ENoSbxYByFA0UGLZUqJN5EUnLDg=
Date:	Wed,	20	Feb	2008	22:12:21	+0000

The	signature	was	generated	from	the	following	information.

PUT\r\n
\r\n
\r\n
Wed,	20	Feb	2008	22:12:21	+0000\r\n

x-amz-copy-source:/pacific/flotsam\r\n
/atlantic/jetsam

Amazon	S3	returns	the	following	response	which	specifies	the	etag	of	the	object
and	when	it	was	last	modified.

HTTP/1.1	200	OK
x-amz-id-2:	Vyaxt7qEbzv34BnSu5hctyyNSlHTYZFMWK4FtzO+iX8JQNyaLdTshL0KxatbaOZt
x-amz-request-id:	6B13C3C5B34AF333
Date:	Date:	Wed,	20	Feb	2008	22:13:01	+0000

Content-Type:	application/xml
Transfer-Encoding:	chunked
Connection:	close
Server:	AmazonS3
<?xml	version="1.0"	encoding="UTF-8"?>

<CopyObjectResult>
			<LastModified>2008-02-20T22:13:01</LastModified>
			<ETag>"7e9c608af58950deeb370c98608ed097"</ETag>
</CopyObjectResult>

Related	Resources

Access	Control	Lists

Authentication	and	Access	Control
Topics

Authentication
Access	Control	Lists
Query	String	Authentication

Authentication	is	the	process	of	verifying	the	identity	of	a	user	or	service	trying
to	access	an	Amazon	Web	Services	(AWS)	product.	Access	Control	defines	who
can	access	objects	and	buckets	within	Amazon	S3	and	the	type	of	access	(e.g.,
READ,	WRITE,	and	so	on).	Authentication	combined	with	access	control
prevents	unauthorized	users	from	accessing	your	data,	modifying	your	data,
deleting	your	data,	or	using	your	AWS	account	for	services	that	cost	you	money.

Every	interaction	with	Amazon	S3	is	authenticated	or	anonymous.	When	you
sign	up	for	an	AWS	account,	you	are	provided	with	an	AWS	Access	Key	ID	and
a	Secret	Access	Key.	When	you	perform	a	request	with	Amazon	S3,	you
assemble	the	request,	perform	a	hash	on	the	request	using	your	Secret	Access
Key,	attach	the	Signature	(hash)	to	the	request,	and	forward	it	to	Amazon	S3.
Amazon	S3	verifies	the	Signature	is	a	valid	hash	of	the	request	and,	if
authenticated,	processes	the	request.

To	allow	selected	users	to	access	objects	or	buckets	in	your	Amazon	S3	account,
you	can	use	access	control	lists	(ACLs)	or	query	string	authentication.

ACLs	allow	you	grant	access	to	specific	AWS	users,	all	AWS	users,	or	any	user
through	anonymous	access.	When	granting	access	to	a	specific	AWS	user,	the
user	must	have	an	Amazon	account	and	must	be	signed	up	for	AWS	and
Amazon	S3.	This	will	enable	the	user	to	access	any	allowed	buckets	or	objects
using	his	AWS	Access	Key	ID	and	Secret	Access	Key.	When	you	grant	access	to
all	AWS	users,	any	AWS	user	will	be	able	to	access	allowed	buckets	or	objects
using	an	AWS	Access	Key	ID	and	Secret	Access	Key.	When	you	grant
anonymous	access,	any	user	will	be	able	to	access	allowed	buckets	or	objects	by
omitting	the	AWS	Access	Key	ID	and	Signature	from	a	request.

Any	user	that	is	granted	access	to	an	object	or	bucket	can	construct	an	HTTP
URL	that	can	be	used	to	access	that	object	or	bucket	through	the	query	string
authentication	mechanism.	This	HTTP	URL	can	be	distributed	to	any	user	with	a
web	client	or	embedded	in	a	web	page.

Note
All	HTTP	queries	have	an	expiration	parameter	that	allows	you	to	set	how	long
the	query	will	be	valid.	For	example,	you	can	configure	a	web	page	graphic	to
expire	after	a	very	long	period	of	time	or	a	software	download	to	only	last	for	24
hours.

Authentication
When	you	create	an	AWS	account,	AWS	assigns	your	AWS	access	key
identifiers,	a	pair	of	related	credentials:

Access	Key	ID	(a	20-character,	alphanumeric	string).	For	example:
022QF06E7MXBSH9DHM02

Secret	Access	Key	(a	40-character	string).	For	example:
kWcrlUX5JEDGM/LtmEENI/aVmYvHNif5zB+d9+ct

Important
Your	Secret	Access	Key	is	a	secret	and	should	be	known	only	by	you	and	AWS.
It	is	important	to	keep	it	confidential	to	protect	your	account.	Never	include	it	in
your	requests	to	AWS	and	never	e-mail	it	to	anyone.	Do	not	share	it	outside	your
organization,	even	if	an	inquiry	appears	to	come	from	AWS	or	Amazon.com.	No
one	who	legitimately	represents	Amazon	will	ever	ask	you	for	your	Secret
Access	Key.

The	Access	Key	ID	uniquely	identifies	an	AWS	account.	You	include	it	in	AWS
service	requests	to	identify	yourself	as	the	sender	of	the	request.

To	prove	that	you	are	the	owner	of	the	account	making	the	request,	you	must
include	a	signature.	For	all	requests,	you	calculate	the	signature	with	your	Secret
Access	Key.	AWS	uses	the	Access	Key	ID	in	the	request	to	look	up	your	Secret
Access	Key	and	then	calculates	a	signature	with	the	key.	If	the	calculated
signature	matches	the	signature	you	sent,	the	request	is	considered	authentic.
Otherwise,	the	request	fails	authentication	and	is	not	processed.

Viewing	Your	Credentials

Your	Access	Key	ID	and	Secret	Access	Key	are	displayed	when	you	create	your
AWS	account.	They	are	not	e-mailed	to	you.	If	you	need	to	see	them	again,	you
can	view	them	at	any	time	from	your	AWS	account.

To	view	your	AWS	access	identifiers

1.	 Go	to	the	Amazon	Web	Services	web	site	at	http://aws.amazon.com.

2.	 Point	to	Your	Web	Services	Account	to	display	a	list	of	options.

3.	 Click	View	Access	Key	Identifiers	and	log	in	to	your	AWS	account.

Your	Access	Key	ID	and	Secret	Access	Key	are	displayed	on	the	resulting	AWS
Access	Identifiers	page.

Using	HMAC-SHA1	Signatures

When	accessing	Amazon	S3	using	REST	and	SOAP,	you	must	provide	the
following	items	so	the	request	can	be	authenticated:

Request	Elements

AWS	Access	Key	Id—Your	AWS	account	is	identified	by	your	Access	Key
ID,	which	AWS	uses	to	look	up	your	Secret	Access	Key.

Signature—Each	request	must	contain	a	valid	request	signature,	or	the
request	is	rejected.

A	request	signature	is	calculated	using	your	Secret	Access	Key,	which	is	a
shared	secret	known	only	to	you	and	AWS.

Time	stamp—Each	request	must	contain	the	date	and	time	the	request	was
created,	represented	as	a	string	in	UTC.

The	format	of	the	value	of	this	parameter	is	API-specific.

Date—Each	request	must	contain	the	time	stamp	of	the	request.

Depending	on	the	API	you're	using,	you	can	provide	an	expiration	date	and
time	for	the	request	instead	of	or	in	addition	to	the	time	stamp.	See	the
authentication	topic	for	the	particular	API	to	determine	what	the	API
requires.

Following	are	the	general	steps	for	authenticating	requests	to	AWS.	It	is	assumed
you	have	already	created	an	AWS	account	and	received	an	Access	Key	ID	and
Secret	Access	Key.

1 Construct	a	request	to	AWS.

2 Calculate	a	keyed-hash	message	authentication	code	(HMAC)	signature	using	your	Secret	Access
Key.

3 Include	the	signature	and	your	Access	Key	ID	in	the	request,	and	then	send	the	request	to	AWS.
AWS	performs	the	next	three	steps.

4 AWS	uses	the	Access	Key	ID	to	look	up	your	Secret	Access	Key.

5 AWS	generates	a	signature	from	the	request	data	and	the	Secret	Access	Key	using	the	same
algorithm	you	used	to	calculate	the	signature	you	sent	in	the	request.

6 If	the	signature	generated	by	AWS	matches	the	one	you	sent	in	the	request,	the	request	is
considered	authentic.	If	the	comparison	fails,	the	request	is	discarded,	and	AWS	returns	an	error
response.

Detailed	Authentication	Information

For	detailed	information	about	REST	and	SOAP	authentication,	see
Authenticating	REST	Requests	and	Authenticating	SOAP	Requests.

Using	Base64	Encoding

HMAC	request	signatures	must	be	Base64	encoded.	Base64	encoding	converts
the	signature	into	a	simple	ASCII	string	that	can	be	attached	to	the	request.	Two
characters,	plus	(+)	and	forward	slash	(/),	cannot	be	used	directly	and	must	be
encoded	if	used	in	a	URI.	For	example,	if	the	authentication	code	includes	a	plus
(+)	sign,	encode	it	as	%2B;	in	the	request.	Encode	a	forward	slash	as	%2F;.

For	examples	of	Base64	encoding,	refer	to	the	Amazon	S3	code	samples.

Access	Control	Lists
Topics

Grantees
Permissions
Using	ACLs

Each	bucket	and	object	in	Amazon	S3	has	an	ACL	that	defines	its	access	control
policy.	When	a	request	is	made,	Amazon	S3	authenticates	the	request	using	its
standard	authentication	procedure	and	then	checks	the	ACL	to	verify	sender	was
granted	access	to	the	bucket	or	object.	If	the	sender	is	approved,	the	request
proceeds.	Otherwise,	Amazon	S3	returns	an	error.

An	ACL	is	a	list	of	grants.	A	grant	consists	of	one	grantee	and	one	permission.
ACLs	only	grant	permissions;	they	do	not	deny	them.

Note
Bucket	and	object	ACLs	are	completely	independent;	an	object	does	not	inherit
the	ACL	from	its	bucket.	For	example,	if	you	create	a	bucket	and	grant	write
access	to	another	user,	you	will	not	be	able	to	access	the	user’s	objects	unless	the
user	explicitly	grants	access.	This	also	applies	if	you	grant	anonymous	write
access	to	a	bucket.	Only	the	user	"anonymous"	will	be	able	to	access	objects	the
user	created	unless	permission	is	explicitly	granted	to	the	bucket	owner.

Important
We	highly	recommend	that	you	do	not	grant	the	anonymous	group	write	access	to
your	buckets	as	you	will	have	no	control	over	the	objects	others	can	store	and
their	associated	charges.	For	more	information,	see	Grantees	and	Permissions

Grantees

Following	are	five	types	of	grantees	that	can	access	a	bucket	or	object	within
Amazon	S3.

Owner

User	by	E-mail

User	by	Canonical	Representation

AWS	User	Group

Anonymous	Group

Owner

Every	bucket	and	object	in	Amazon	S3	has	an	owner,	the	user	that	created	the
bucket	or	object.	The	owner	of	a	bucket	or	object	cannot	be	changed.	However,
if	the	object	is	overwritten	by	another	user	(deleted	and	rewritten),	the	new
object	will	have	a	new	owner.

Note
Even	the	owner	is	subject	to	the	ACL.	For	example,	if	an	owner	does	not	have
READ	access	to	an	object,	the	owner	cannot	read	that	object.	However,	the
owner	of	an	object	always	has	write	access	to	the	access	control	policy
(WRITE_ACP)	and	can	change	the	ACL	to	read	the	object.

User	by	E-mail

You	can	grant	access	to	buckets	and	objects	within	your	Amazon	S3	account	to
anyone	with	an	Amazon	Web	Services	account.	Any	users	that	you	grant	access
will	be	able	to	access	buckets	and	objects	using	their	AWS	Access	Key	IDs	and
Secret	Access	Keys.

Following	is	an	example	that	shows	the	XML	format	for	granting	access	to	a
user	through	an	Amazon	customer	e-mail	address.

<Grantee	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	xsi:type="AmazonCustomerByEmail">
		<EmailAddress>chriscustomer@email.com</EmailAddress>
</Grantee>

E-mail	grants	are	internally	converted	to	the	CanonicalUser	representation	when
you	create	the	ACL.	If	the	grantee	changes	his	or	her	e-mail	address,	it	will	not
affect	the	existing	Amazon	S3	permissions.

Adding	a	grantee	by	e-mail	address	only	works	if	exactly	one	Amazon	account
corresponds	to	the	specified	e-mail	address.	If	multiple	Amazon	accounts	are
associated	with	the	e-mail	address,	an	AmbiguousGrantByEmail	error	message
is	returned.	This	is	rare	but	usually	occurs	if	a	user	created	an	Amazon	account
in	the	past,	forgot	the	password,	and	created	another	Amazon	account	using	the
same	e-mail	address.	If	this	occurs,	the	user	should	contact	Amazon.com
customer	service	to	have	the	accounts	merged	or	you	should	grant	user	access
specifying	the	CanonicalUser	representation.

User	by	Canonical	Representation

You	can	grant	access	to	buckets	and	objects	within	your	Amazon	S3	account	to
anyone	with	an	Amazon	Web	Services	account.	Any	users	that	you	grant	access
will	be	able	to	access	buckets	and	objects	using	their	AWS	Access	Key	IDs	and
Secret	Access	Keys.

Note
To	locate	the	CanonicalUser	ID	for	a	user,	the	user	must	perform	the
ListAllMyBuckets	operation	in	his	or	her	Amazon	S3	account	and	copy	the	ID
from	the	Owner	XML	object.

Following	is	an	example	that	example	shows	the	XML	format	for	granting
access	to	a	user	through	an	Amazon	customer	CanonicalUser	ID.

<Grantee	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	xsi:type="CanonicalUser">
		<ID>a9a7b886d6fd24a52fe8ca5bef65f89a64e0193f23000e241bf9b1c61be666e9</ID>
		<DisplayName>chriscustomer</DisplayName>
</Grantee>

The	ID	string	specifies	the	CanonicalUser	ID	and	must	exactly	match	the	ID	of

the	user	that	you	are	adding.	The	DisplayName	element	is	read-only.	If	you
specify	a	DisplayName,	it	will	be	ignored	and	replaced	with	the	name	stored	by
Amazon.	We	recommend	that	you	match	your	DisplayName	to	your	Forum
name.

AWS	User	Group

You	can	grant	access	to	buckets	or	objects	to	anyone	with	an	Amazon	AWS
account.	Although	this	inherently	insecure	as	any	AWS	user	who	is	aware	of	the
bucket	or	object	will	be	able	to	access	it,	you	might	find	this	authentication
method	useful.

All	AWS	users	can	be	specified	as	a	grantee	using	the	following	example	XML
representation.

<Grantee	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	xsi:type="Group">
		<URI>http://acs.amazonaws.com/groups/global/AuthenticatedUsers<URI>
</Grantee>

AllUsers	Group

You	can	grant	anonymous	access	to	any	Amazon	S3	object	or	bucket.	Any	user
will	be	able	to	access	the	object	by	omitting	the	AWS	Key	ID	and	Signature
from	a	request.

AllUsers	can	be	specified	as	a	grantee	using	the	following	example	XML
representation:

<Grantee	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	xsi:type="Group">
	<<URI>http://acs.amazonaws.com/groups/global/AllUsers<URI>
</Grantee>

Permissions

The	permission	in	a	grant	describes	the	type	of	access	to	be	granted	to	the
respective	grantee.	Following	are	permissions	that	are	supported	by	Amazon	S3.

Elements

READ—when	applied	to	a	bucket,	grants	permission	to	list	the	bucket.

When	applied	to	an	object,	this	grants	permission	to	read	the	object	data
and/or	metadata.

WRITE—when	applied	to	a	bucket,	grants	permission	to	create,	overwrite,
and	delete	any	object	in	the	bucket.

This	permission	is	not	supported	for	objects.

READ_ACP—grants	permission	to	read	the	ACL	for	the	applicable	bucket
or	object.

The	owner	of	a	bucket	or	object	always	has	this	permission	implicitly.

WRITE_ACP—gives	permission	to	overwrite	the	ACP	for	the	applicable
bucket	or	object.

The	owner	of	a	bucket	or	object	always	has	this	permission	implicitly.

Granting	this	permission	is	equivalent	to	granting	FULL_CONTROL
because	the	grant	recipient	can	make	any	changes	to	the	ACP.

FULL_CONTROL—provides	READ,	WRITE,	READ_ACP,	and
WRITE_ACP	permissions.

It	does	not	convey	additional	rights	and	is	provided	only	for	convenience.

Using	ACLs

An	ACL	can	contain	up	to	100	grants.	If	no	ACL	is	provided	when	a	bucket	is
created	or	an	object	written,	a	default	ACL	is	created.	The	default	ACL	consists
of	a	single	grant	that	gives	the	owner	(i.e.,	the	creator)	the	FULL_CONTROL
permission.	If	you	overwrite	an	existing	object,	the	ACL	for	the	existing	object
is	overwritten	and	will	default	to	FULL_CONTROL	for	the	owner	if	no	ACL	is
specified.

You	can	change	the	ACL	of	a	resource	without	changing	the	resource	itself.
However,	like	Amazon	S3	objects,	there	is	no	way	to	modify	an	existing	ACL—
you	can	only	overwrite	it	with	a	new	version.	Therefore,	to	modify	an	ACL,	read
the	ACL	from	Amazon	S3,	modify	it	locally,	and	write	the	entire	updated	ACL
back	to	Amazon	S3.

Note
The	method	of	reading	and	writing	ACLs	differs	depending	on	which	API	you
are	using.	For	more	information,	see	the	API-specific	documentation	for	details.

Regardless	of	which	API	you	are	using,	the	XML	representation	of	an	ACL
stored	in	Amazon	S3	(and	returned	when	the	ACL	is	read)	is	the	same.	In	the
following	example	ACL,	the	owner	has	the	default	FULL_CONTROL,	the
"Frank"	and	"Jose"	users	both	have	WRITE	and	READ_ACP	permissions,	and
all	users	have	permission	to	READ.

<AccessControlPolicy>
		<Owner>
				<ID>a9a7b886d6fd24a52fe8ca5bef65f89a64e0193f23000e241bf9b1c61be666e9</ID>
				<DisplayName>chriscustomer</DisplayName>
		</Owner>
		<AccessControlList>
				<Grant>
						<Grantee	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	xsi:type="CanonicalUser">
								<ID>a9a7b886d6fd24a52fe8ca5bef65f89a64e0193f23000e241bf9b1c61be666e9</ID>
								<DisplayName>chriscustomer</DisplayName>
						</Grantee>
						<Permission>FULL_CONTROL</Permission>
				</Grant>
				<Grant>
						<Grantee	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	xsi:type="CanonicalUser">

								<ID>79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be</ID>
								<DisplayName>Frank</DisplayName>
						</Grantee>
						<Permission>WRITE</Permission>
				</Grant>
				<Grant>
						<Grantee	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	xsi:type="CanonicalUser">
								<ID>79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be</ID>
								<DisplayName>Frank</DisplayName>
						</Grantee>
						<Permission>READ_ACP</Permission>
				</Grant>
				<Grant>
						<Grantee	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	xsi:type="CanonicalUser">
								<ID>e019164ebb0724ff67188e243eae9ccbebdde523717cc312255d9a82498e394a</ID>
								<DisplayName>Jose</DisplayName>
						</Grantee>
						<Permission>WRITE</Permission>
				</Grant>
				<Grant>
						<Grantee	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	xsi:type="CanonicalUser">
									<ID>e019164ebb0724ff67188e243eae9ccbebdde523717cc312255d9a82498e394a</ID>
								<DisplayName>Jose</DisplayName>
				</Grantee>
							<Permission>READ_ACP</Permission>
				</Grant>
				<Grant>
						<Grantee	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	xsi:type="Group">
								<URI>http://acs.amazonaws.com/groups/global/AllUsers</URI>
						</Grantee>
						<Permission>READ</Permission>
				</Grant>
		</AccessControlList>
</AccessControlPolicy>

Note
When	you	write	an	ACL	to	Amazon	S3	that	AmazonCustomerByEmail	grantees,
they	will	be	converted	to	the	CanonicalUser	type	prior	to	committing	the	ACL.

Query	String	Authentication
Query	string	authentication	is	useful	for	giving	HTTP	or	browser	access	to
resources	that	would	normally	require	authentication.

When	using	query	string	authentication,	you	create	a	query,	specify	an	expiration
time	for	the	query,	sign	it	with	your	signature,	place	the	data	in	an	HTTP	request,
and	distribute	the	request	to	a	user	or	embed	the	request	in	a	web	page.

Query	string	authentication	requests	require	an	expiration	date.	You	can	specify
any	future	expiration	time	in	epoch	or	UNIX	time	(number	of	seconds	since
January	1,	1970).	For	example,	a	query	URL	is	similar	to	the	following	example.

http://quotes.s3.amazonaws.com/nelson?AWSAccessKeyId=44CF9590006BF252F707&Expires=1177363698&Signature=vjbyPxybdZaNmGa%2ByT272YEAiv4%3D

Request	Routing
Topics

Request	Redirection	and	the	REST	API
DNS	Considerations

Programs	that	make	requests	against	buckets	created	using	the
<CreateBucketConfiguration>	API	must	support	redirects.	Additionally,	some
clients	that	do	not	respect	DNS	TTLs	might	encounter	issues.

This	section	describes	routing	and	DNS	issues	to	consider	when	designing	your
service	or	application	for	use	with	Amazon	S3.

Request	Redirection	and	the	REST
API

Overview

Amazon	S3	uses	the	Domain	Name	System	(DNS)	to	route	requests	to	facilities
that	can	process	them.	This	system	works	very	effectively.	However,	temporary
routing	errors	can	occur.

If	a	request	arrives	at	the	wrong	Amazon	S3	location,	Amazon	S3	responds	with
a	temporary	redirect	that	tells	the	requester	to	resend	the	request	to	a	new
endpoint.

If	a	request	is	incorrectly	formed,	Amazon	S3	uses	permanent	redirects	to
provide	direction	on	how	to	perform	the	request	correctly.

Important
Every	Amazon	S3	program	must	be	designed	to	handle	redirect	responses.	The
only	exception	is	for	programs	that	work	exclusively	with	buckets	that	were
created	without	<CreateBucketConfiguration>.	For	more	information	on
location	constraints,	see

How	to	Select	a	Region	for	Your	Buckets.

DNS	Routing

DNS	routing	routes	requests	to	appropriate	Amazon	S3	facilities.

The	following	figure	shows	an	example	of	DNS	routing.

1 The	client	makes	a	DNS	request	to	get	an	object	stored	on	Amazon	S3.

2 The	client	receives	one	or	more	IP	addresses	for	facilities	that	can	process	the	request.

3 The	client	makes	a	request	to	Amazon	S3	Facility	B.

4 Facility	B	returns	a	copy	of	the	object.

Temporary	Request	Redirection

A	temporary	redirect	is	a	type	of	error	response	that	signals	to	the	requester	that
he	should	resend	his	request	to	a	different	endpoint.

Due	to	the	distributed	nature	of	Amazon	S3,	requests	can	be	temporarily	routed
to	the	wrong	facility.	This	is	most	likely	to	occur	immediately	after	buckets	are
created	or	deleted.	For	example,	if	you	create	a	new	bucket	and	immediately
make	a	request	to	the	bucket,	you	will	receive	a	temporary	redirect.	After
information	about	the	bucket	propagates	through	DNS,	redirects	will	be	rare.

Temporary	redirects	contain	a	URI	to	the	correct	facility	which	you	can	use	to
immediately	resend	the	request.

Important
Do	not	reuse	an	endpoint	provided	by	a	previous	redirect	response.	It	might
appear	to	work	(even	for	long	periods	of	time),	but	might	provide	unpredictable
results	and	will	eventually	fail	without	notice.

The	following	figure	shows	an	example	of	a	temporary	redirect.

1 The	client	makes	a	DNS	request	to	get	an	object	stored	on	Amazon	S3.

2 The	client	receives	one	or	more	IP	addresses	for	facilities	that	can	process	the	request.

3 The	client	makes	a	request	to	Amazon	S3	Facility	B.

4 Facility	B	returns	a	redirect	indicating	the	object	is	available	from	Location	C.

5 The	client	resends	the	request	to	Facility	C.

6 Facility	C	returns	a	copy	of	the	object.

Permanent	Request	Redirection

A	permanent	redirect	indicates	that	your	request	addressed	a	resource
inappropriately.	For	example,	permanent	redirects	occur	if	you	use	a	path-style
request	to	access	a	bucket	that	was	created	using
<CreateBucketConfiguration>.	For	more	information,	see	Using
CreateBucketConfiguration.

To	help	you	find	these	errors	during	development,	this	type	of	redirect	does	not
contain	a	Location	HTTP	header	that	allows	you	to	automatically	follow	the
request	to	the	correct	location.	Consult	the	resulting	XML	error	document	for
help	using	the	correct	Amazon	S3	endpoint.

Example	REST	API	Redirect

HTTP/1.1	307	Temporary	Redirect
Location:	http://johnsmith.s3-gztb4pa9sq.amazonaws.com/photos/puppy.jpg?rk=e2c69a31
Content-Type:	application/xml
Transfer-Encoding:	chunked
Date:	Fri,	12	Oct	2007	01:12:56	GMT
Server:	AmazonS3

<?xml	version="1.0"	encoding="UTF-8"?>
<Error>
		<Code>TemporaryRedirect</Code>
		<Message>Please	re-send	this	request	to	the	specified	temporary	endpoint.
		Continue	to	use	the	original	request	endpoint	for	future	requests.</Message>
		<Endpoint>johnsmith.s3-gztb4pa9sq.amazonaws.com</Endpoint>
</Error>

Example	SOAP	API	Redirect

<soapenv:Body>
		<soapenv:Fault>
				<Faultcode>soapenv:Client.TemporaryRedirect</Faultcode>
				<Faultstring>Please	re-send	this	request	to	the	specified	temporary	endpoint.
				Continue	to	use	the	original	request	endpoint	for	future	requests.</Faultstring>
				<Detail>
						<Bucket>images</Bucket>
						<Endpoint>s3-gztb4pa9sq.amazonaws.com</Endpoint>
				</Detail>

		</soapenv:Fault>
</soapenv:Body>

DNS	Considerations
One	of	the	design	requirements	of	Amazon	S3	is	extremely	high	availability.
One	of	the	ways	we	meet	this	requirement	is	by	updating	the	IP	addresses
associated	with	the	Amazon	S3	endpoint	in	DNS	as	needed.	These	changes	are
automatically	reflected	in	short-lived	clients,	but	not	in	some	long-lived	clients.
Long-lived	clients	will	need	to	take	special	action	to	re-resolve	the	Amazon	S3
endpoint	periodically	to	benefit	from	these	changes.	For	more	information	about
virtual	machines	(VMs).	refer	to	the	following:

For	Java,	Sun's	JVM	caches	DNS	lookups	forever	by	default;	go	to	the
"InetAddress	Caching"	section	of	the	InetAddress	documentation	for
information	on	how	to	change	this	behavior.

For	PHP,	the	persistent	PHP	VM	that	runs	in	the	most	popular	deployment
configurations	caches	DNS	lookups	until	the	VM	is	restarted.	Go	to	the
getHostByName	PHP	docs.

http://java.sun.com/j2se/1.5.0/docs/api/java/net/InetAddress.html
http://us2.php.net/manual/en/function.gethostbyname.php#64070

Performance	Optimization
Topics

TCP	Window	Scaling
TCP	Selective	Acknowledgement

Amazon	S3	provides	new	features	that	support	high	performance	networking.
These	include	TCP	window	scaling	and	selective	acknowledgements.

Note
For	more	information	on	high	performance	tuning,	go	to
http://www.psc.edu/networking/projects/tcptune/.

http://www.psc.edu/networking/projects/tcptune/

TCP	Window	Scaling
TCP	window	scaling	allows	you	to	improve	network	throughput	performance
between	your	operating	system	and	application	layer	and	Amazon	S3	by
supporting	window	sizes	larger	than	64	KB.	At	the	start	of	the	TCP	session,	a
client	advertises	its	supported	receive	window	WSCALE	factor,	and	Amazon	S3
responds	with	its	supported	receive	window	WSCALE	factor	for	the	upstream
direction.

Although	TCP	window	scaling	can	improve	performance,	it	can	be	challenging
to	set	correctly.	Make	sure	to	adjust	settings	at	both	the	application	and	kernel
level.	For	more	information	about	TCP	window	scaling,	refer	to	your	operating
system's	documentation	and	go	to	RFC	1323.

http://www.ietf.org/rfc/rfc1323.txt

TCP	Selective	Acknowledgement
TCP	selective	acknowledgement	is	designed	to	increase	recovery	time	after	a
large	number	of	packet	losses.	TCP	selective	acknowledgement	is	supported	by
most	newer	operating	systems,	but	might	have	to	be	enabled.	For	more
information	about	TCP	selective	acknowledgements,	refer	to	the	documentation
that	accompanied	your	operating	system	and	go	to	RFC	2018.

http://www.ietf.org/rfc/rfc2018.txt

Using	BitTorrent	with	Amazon	S3
Topics

How	You	are	Charged	for	BitTorrent	Delivery
Using	BitTorrent	to	Retrieve	Objects	Stored	in	Amazon	S3
Publishing	Content	Using	Amazon	S3	and	BitTorrent

BitTorrent™	is	an	open,	peer-to-peer	protocol	for	distributing	files.	You	can	use
the	BitTorrent	protocol	to	retrieve	any	publicly-accessible	object	in	Amazon	S3.
This	section	describes	why	you	might	want	to	use	BitTorrent	to	distribute	your
data	out	of	Amazon	S3	and	how	to	do	so.

Amazon	S3	supports	the	BitTorrent	protocol	so	that	developers	can	save	costs
when	distributing	content	at	high	scale.	Amazon	S3	is	useful	for	simple,	reliable
storage	of	any	data.	The	default	distribution	mechanism	for	Amazon	S3	data	is
via	client/server	download.	In	client/server	distribution,	the	entire	object	is
transferred	point-to-point	from	Amazon	S3	to	every	authorized	user	who
requests	that	object.	While	client/server	delivery	is	appropriate	for	a	wide	variety
of	use	cases,	it	is	not	optimal	for	everybody.	Specifically,	the	costs	of
client/server	distribution	increase	linearly	as	the	number	of	users	downloading
objects	increases.	This	can	make	it	expensive	to	distribute	popular	objects.

BitTorrent	addresses	this	problem	by	recruiting	the	very	clients	that	are
downloading	the	object	as	distributors	themselves:	Each	client	downloads	some
pieces	of	the	object	from	Amazon	S3	and	some	from	other	clients,	while
simultaneously	uploading	pieces	of	the	same	object	to	other	interested	"peers."
The	benefit	for	publishers	is	that	for	large,	popular	files	the	amount	of	data
actually	supplied	by	Amazon	S3	can	be	substantially	lower	than	what	it	would
have	been	serving	the	same	clients	via	client/server	download.	Less	data
transferred	means	lower	costs	for	the	publisher	of	the	object.

How	You	are	Charged	for	BitTorrent
Delivery
There	is	no	extra	charge	for	use	of	BitTorrent	with	Amazon	S3.	Data	transfer	via
the	BitTorrent	protocol	is	metered	at	the	same	rate	as	client/server	delivery.	To
be	precise,	whenever	a	downloading	BitTorrent	client	requests	a	"piece"	of	an
object	from	the	Amazon	S3	"seeder,"	charges	accrue	just	as	if	an	anonymous
request	for	that	piece	had	been	made	using	the	REST	or	SOAP	protocol.	These
charges	will	appear	on	your	Amazon	S3	bill	and	usage	reports	in	the	same	way.
The	difference	is	that	if	a	lot	of	clients	are	requesting	the	same	object
simultaneously	via	BitTorrent,	then	the	amount	of	data	Amazon	S3	must	serve	to
satisfy	those	clients	will	be	lower	than	with	client/server	delivery.	This	is
because	the	BitTorrent	clients	are	simultaneously	uploading	and	downloading
amongst	themselves.

The	data	transfer	savings	achieved	from	use	of	BitTorrent	can	vary	widely
depending	on	how	popular	your	object	is.	Less	popular	objects	require	heavier
use	of	the	"seeder"	to	serve	clients,	and	thus	the	difference	between	BitTorrent
distribution	costs	and	client/server	distribution	costs	might	be	small	for	such
objects.	In	particular,	if	only	one	client	is	ever	downloading	a	particular	object	at
a	time,	the	cost	of	BitTorrent	delivery	will	be	the	same	as	direct	download.

Using	BitTorrent	to	Retrieve	Objects
Stored	in	Amazon	S3
Any	object	in	Amazon	S3	that	can	be	read	anonymously	can	also	be	downloaded
via	BitTorrent.	Doing	so	requires	use	of	a	BitTorrent	client	application.	Amazon
does	not	distribute	a	BitTorrent	client	application,	but	there	are	many	free	clients
available.	The	Amazon	S3BitTorrent	implementation	has	been	tested	to	work
with	the	official	BitTorrent	client	(go	to	http://www.bittorrent.com/).

The	starting	point	for	a	BitTorrent	download	is	a	.torrent	file.	This	small	file
describes	for	BitTorrent	clients	both	the	data	to	be	downloaded	and	where	to	get
started	finding	that	data.	A	.torrent	file	is	a	small	fraction	of	the	size	of	the	actual
object	to	be	downloaded.	Once	you	feed	your	BitTorrent	client	application	an
Amazon	S3	generated	.torrent	file,	it	should	start	downloading	immediately	from
Amazon	S3	and	from	any	"peer"	BitTorrent	clients.

Retrieving	a	.torrent	file	for	any	publicly	available	object	is	easy.	Simply	add	a
"?torrent"	query	string	parameter	at	the	end	of	the	REST	GET	request	for	the
object.	No	authentication	is	required.	Once	you	have	a	BitTorrent	client
installed,	downloading	an	object	using	BitTorrent	download	might	be	as	easy	as
opening	this	URL	in	your	web	browser.

There	is	no	mechanism	to	fetch	the	.torrent	for	an	Amazon	S3	object	using	the
SOAP	API.

Example

This	example	retrieves	the	Torrent	file	for	the	"Nelson"	object	in	the	"quotes"
bucket.

Sample	Request

GET	/quotes/Nelson?torrent	HTTP/1.0
Date:	Wed,	01	Mar		2006	12:00:00	GMT

Sample	Response

http://www.bittorrent.com/

HTTP/1.1	200	OK
x-amz-request-id:	7CD745EBB7AB5ED9
Date:	Wed,	01	Mar		2006	12:00:00	GMT
Content-Disposition:	attachment;	filename=Nelson.torrent;
Content-Type:	application/x-bittorrent
Content-Length:	537
Server:	AmazonS3

<body:	a	Bencoded	dictionary	as	defined	by	the	BitTorrent	specification>

Publishing	Content	Using	Amazon	S3
and	BitTorrent
Every	anonymously	readable	object	stored	in	Amazon	S3	is	automatically
available	for	download	using	BitTorrent.	The	process	for	changing	the	ACL	on
an	object	to	allow	anonymous	READ	operations	is	described	in	Authentication	and
Access	Control.

You	can	direct	your	clients	to	your	BitTorrent	accessible	objects	by	giving	them
the	.torrent	file	directly	or	by	publishing	a	link	to	the	?torrent	URL	of	your
object.	One	important	thing	to	note	is	that	the	.torrent	file	describing	an
Amazon	S3	object	is	generated	on-demand,	the	first	time	it	is	requested	(via	the
REST	?torrent	resource).	Generating	the	.torrent	for	an	object	takes	time
proportional	to	the	size	of	that	object.	For	large	objects,	this	time	can	be
significant.	Therefore,	before	publishing	a	?torrent	link,	we	suggest	making	the
first	request	for	it	yourself.	Amazon	S3	might	take	several	minutes	to	respond	to
this	first	request,	as	it	generates	the	.torrent	file.	Unless	you	update	the	object	in
question,	subsequent	requests	for	the	.torrent	will	be	fast.	Following	this
procedure	before	distributing	a	?torrent	link	will	ensure	a	smooth	BitTorrent
downloading	experience	for	your	customers.

To	stop	distributing	a	file	using	BitTorrent,	simply	remove	anonymous	access	to
it.	This	can	be	accomplished	by	either	deleting	the	file	from	Amazon	S3,	or
modifying	your	access	control	policy	to	prohibit	anonymous	reads.	After	doing
so,	Amazon	S3	will	no	longer	act	as	a	"seeder"	in	the	BitTorrent	network	for
your	file,	and	will	no	longer	serve	the	.torrent	file	via	the	?torrent	REST	API.
However,	after	a	.torrent	for	your	file	is	published,	this	action	might	not	stop
public	downloads	of	your	object	that	happen	exclusively	using	the	BitTorrent
peer	to	peer	network.

Using	Amazon	DevPay	with
Amazon	S3
Topics

Amazon	S3	Customer	Data	Isolation
Amazon	DevPay	Token	Mechanism
Amazon	S3	and	Amazon	DevPay	Authentication
Amazon	S3	Bucket	Limitation
Amazon	S3	and	Amazon	DevPay	Process
Additional	Information

Amazon	DevPay	enables	you	to	charge	customers	for	using	your	Amazon	S3
product	through	Amazon's	authentication	and	billing	infrastructure.	You	can
charge	any	amount	for	your	product	including	usage	charges	(storage,
transactions,	and	bandwidth),	monthly	fixed	charges,	and	a	one-time	charge.

Once	a	month,	Amazon	bills	your	customers	for	you.	AWS	then	deducts	the
fixed	Amazon	DevPay	transaction	fee	and	pays	you	the	difference.	AWS	then
separately	charges	you	for	the	Amazon	S3	usage	costs	incurred	by	your
customers	and	the	percentage-based	Amazon	DevPay	fee.

If	your	customers	do	not	pay	their	bills,	AWS	turns	off	access	to	Amazon	S3
(and	your	product).	AWS	handles	all	payment	processing.

Amazon	S3	Customer	Data	Isolation
Amazon	DevPay	requests	store	and	access	data	on	behalf	of	the	users	of	your
product.	The	resources	created	by	your	application	are	owned	by	your	users;
unless	you	modify	the	ACL,	you	cannot	read	or	modify	the	user's	data.

Data	stored	by	your	product	is	isolated	from	other	Amazon	DevPay	products	and
general	Amazon	S3	access.	Customers	that	store	data	in	Amazon	S3	through
your	product	can	only	access	that	data	through	your	product.	The	data	cannot	be
accessed	through	other	Amazon	DevPay	products	or	through	a	personal	AWS
account.

Two	users	of	a	product	can	only	access	each	other's	data	if	your	application
explicitly	grants	access	through	the	ACL.

Example

The	following	figure	illustrates	allowed,	disallowed,	and	conditional
(discretionary)	data	access.

Betty's	access	is	limited	as	follows:

She	can	access	Lolcatz	data	through	the	Lolcatz	product.	If	she	attempts	to
access	her	Lolcatz	data	through	another	product	or	a	personal	AWS
account,	her	requests	will	be	denied.

She	can	access	Alvin's	eScrapBook	data	through	the	eScrapBook	product	if
access	is	explicitly	granted.

Amazon	DevPay	Token	Mechanism
To	enable	you	to	make	requests	on	behalf	of	your	customers	and	ensure	that	your
customers	are	billed	for	use	of	your	application,	your	application	must	send	two
tokens	with	each	request:	the	product	token	and	the	user	token.

The	product	token	identifies	your	product;	you	must	have	one	product	token	for
each	Amazon	DevPay	product	that	you	provide.	The	user	token	identifies	a	user
in	relationship	to	your	product;	you	must	have	a	user	token	for	each	user/product
combination.	For	example,	if	you	provide	two	products	and	a	user	subscribes	to
each,	you	must	obtain	a	separate	user	token	for	each	product.

For	information	on	obtaining	product	and	user	tokens,	refer	to	the	Amazon
DevPay	Developer	Guide.

Amazon	S3	and	Amazon	DevPay
Authentication
Although	the	token	mechanism	uniquely	identifies	a	customer	and	product,	it
does	not	provide	authentication.

Normally,	your	applications	communicate	directly	with	Amazon	S3	using	your
Access	Key	ID	and	Secret	Access	Key.	For	Amazon	DevPay,	Amazon	S3
authentication	works	a	little	differently.

If	your	Amazon	DevPay	product	is	a	web	application,	you	securely	store	the
Secret	Access	Key	on	your	servers	and	use	the	user	token	to	specify	the
customer	for	which	requests	are	being	made.

However,	if	your	Amazon	S3	application	is	installed	on	your	customers'
computers,	your	application	must	obtain	an	Access	Key	ID	and	a	Secret	Access
Key	for	each	installation	and	must	use	those	credentials	when	communicating
with	Amazon	S3.

The	following	figure	shows	the	differences	between	authentication	for	web
applications	and	user	applications.

Amazon	S3	Bucket	Limitation
Each	of	your	customers	can	have	up	to	100	buckets	for	each	Amazon	DevPay
product	that	you	sell.	For	example,	if	a	customer	uses	three	of	your	products,	the
customer	can	have	up	to	300	buckets	(100	*	3)	plus	any	buckets	outside	of	your
Amazon	DevPay	products	(i.e.,	buckets	in	Amazon	DevPay	products	from	other
developers	and	the	customer's	personal	AWS	account).

Amazon	S3	and	Amazon	DevPay
Process
Following	is	a	high-level	overview	of	the	Amazon	DevPay	process.

Launch	Process

1 A	customer	signs	up	for	your	product	through	Amazon.

2 The	customer	receives	an	activation	key.

3 The	customer	enters	the	activation	key	into	your	application.

4 Your	application	communicates	with	Amazon	and	obtains	the	user's	token.	If	your	application	is
installed	on	the	user's	computer,	it	also	obtains	an	Access	Key	ID	and	Secret	Access	Key	on	behalf
of	the	customer.

5 Your	application	provides	the	customer's	token	and	the	application	product	token	when	making
Amazon	S3	requests	on	behalf	of	the	customer.	If	your	application	is	installed	on	the	customer's
computer,	it	authenticates	with	the	customer's	credentials.

6 Amazon	uses	the	customer's	token	and	your	product	token	to	determine	who	to	bill	for	the
Amazon	S3	usage.

7 Once	a	month,	Amazon	processes	usage	data	and	bills	your	customers	according	to	the	terms	you
defined.

8 AWS	deducts	the	fixed	Amazon	DevPay	transaction	fee	and	pays	you	the	difference.	AWS	then
separately	charges	you	for	the	Amazon	S3	usage	costs	incurred	by	your	customers	and	the
percentage-based	Amazon	DevPay	fee.

Additional	Information
For	information	about	using,	setting	up,	and	integrating	with	Amazon	DevPay,
refer	to	the	Amazon	DevPay	Developer	Guide.

Handling	Errors
Topics

The	REST	Error	Response
The	SOAP	Error	Response
Amazon	S3	Error	Best	Practices

This	section	describes	REST	and	SOAP	errors	and	how	to	handle	them.

The	REST	Error	Response
If	a	REST	request	results	in	an	error,	the	HTTP	reply	has:

An	XML	error	document	as	the	response	body

Content-Type:	application/xml

An	appropriate	3xx,	4xx,	or	5xx	HTTP	status	code

Following	is	an	example	of	a	REST	Error	Response.

<?xml	version="1.0"	encoding="UTF-8"?>
<Error>
		<Code>NoSuchKey</Code>
		<Message>The	resource	you	requested	does	not	exist</Message>
		<Resource>/mybucket/myfoto.jpg</Resource>	
		<RequestId>4442587FB7D0A2F9</RequestId>
</Error>

For	more	information	about	Amazon	S3	errors,	go	to	ErrorCodeList.

http://docs.amazonwebservices.com/AmazonS3/2006-03-01/API/index.html?ErrorCodeList.html

Response	Headers

Following	are	response	headers	returned	by	all	operations:

x-amz-request-id:	A	unique	ID	assigned	to	each	request	by	the	system.	In
the	unlikely	event	that	you	have	problems	with	Amazon	S3,	Amazon	can
use	this	to	help	troubleshoot	the	problem.
x-amz-id-2:	A	special	token	that	will	help	us	to	troubleshoot	problems.

Error	Response
Topics

Error	Code
Error	Message
Further	Details

When	an	Amazon	S3	request	is	in	error,	the	client	receives	an	error	response.
The	exact	format	of	the	error	response	is	API	specific:	For	example,	the	REST
error	response	differs	from	the	SOAP	error	response.	However,	all	error
responses	have	common	elements.

Error	Code
The	error	code	is	a	string	that	uniquely	identifies	an	error	condition.	It	is	meant
to	be	read	and	understood	by	programs	that	detect	and	handle	errors	by	type.
Many	error	codes	are	common	across	SOAP	and	REST	APIs,	but	some	are	API-
specific.	For	example,	NoSuchKey	is	universal,	but	UnexpectedContent	can
occur	only	in	response	to	an	invalid	REST	request.	In	all	cases,	SOAP	fault
codes	carry	a	prefix	as	indicated	in	the	table	of	error	codes,	so	that	a	NoSuchKey
error	is	actually	returned	in	SOAP	as	Client.NoSuchKey.

Error	Message
The	error	message	contains	a	generic	description	of	the	error	condition	in
English.	It	is	intended	for	a	human	audience.	Simple	programs	display	the
message	directly	to	the	end	user	if	they	encounter	an	error	condition	they	don't
know	how	or	don't	care	to	handle.	Sophisticated	programs	with	more	exhaustive
error	handling	and	proper	internationalization	are	more	likely	to	ignore	the	error
message.

Further	Details
Many	error	responses	contain	additional	structured	data	meant	to	be	read	and
understood	by	a	developer	diagnosing	programming	errors.	For	example,	if	you
send	a	Content-MD5	header	with	a	REST	PUT	request	that	doesn't	match	the
digest	calculated	on	the	server,	you	receive	a	BadDigest	error.	The	error	response
also	includes	as	detail	elements	the	digest	we	calculated,	and	the	digest	you	told
us	to	expect.	During	development,	you	can	use	this	information	to	diagnose	the
error.	In	production,	a	well-behaved	program	might	include	this	information	in
its	error	log.

The	SOAP	Error	Response
In	SOAP,	an	error	result	is	returned	to	the	client	as	a	SOAP	fault,	with	the	HTTP
response	code	500.	If	you	do	not	receive	a	SOAP	fault,	then	your	request	was
successful.	The	Amazon	S3	SOAP	fault	code	is	comprised	of	a	standard	SOAP
1.1	fault	code	(either	"Server"	or	"Client")	concatenated	with	the	Amazon	S3-
specific	error	code.	For	example:	"Server.InternalError"	or
"Client.NoSuchBucket".	The	SOAP	fault	string	element	contains	a	generic,
human	readable	error	message	in	English.	Finally,	the	SOAP	fault	detail	element
contains	miscellaneous	information	relevant	to	the	error.

For	example,	if	you	attempt	to	delete	the	object	"Fred",	which	does	not	exist,	the
body	of	the	SOAP	response	contains	a	"NoSuchKey"	SOAP	fault.

Example

<soapenv:Body>
		<soapenv:Fault>
				<Faultcode>soapenv:Client.NoSuchKey</Faultcode>
				<Faultstring>The	specified	key	does	not	exist.</Faultstring>
				<Detail>
						<Key>Fred</Key>
				</Detail>
		</soapenv:Fault>
</soapenv:Body>

For	more	information	about	the	errors,	go	to	ErrorCodeList.

http://docs.amazonwebservices.com/AmazonS3/2006-03-01/API/index.html?ErrorCodeList.html

Amazon	S3	Error	Best	Practices
When	designing	an	application	for	use	with	Amazon	S3,	it	is	important	to	handle
Amazon	S3	errors	appropriately.	This	section	describes	issues	to	consider	when
designing	your	application.

Retry	InternalErrors

Internal	errors	are	errors	that	occur	within	the	Amazon	S3	environment.

Requests	that	receive	an	InternalError	response	might	not	have	processed.	For
example,	if	a	PUT	request	returns	InternalError,	a	subsequent	GET	might
retrieve	the	old	value	or	the	updated	value.

If	Amazon	S3	returns	an	InternalError	response,	retry	the	request.

Tune	Application	for	Repeated	SlowDown	errors

As	with	any	distributed	system,	S3	has	protection	mechanisms	which	detect
intentional	or	unintentional	resource	over-consumption	and	react	accordingly.
SlowDown	errors	can	occur	when	a	high	request	rate	triggers	one	of	these
mechanisms.	Reducing	your	request	rate	will	decrease	or	eliminate	errors	of	this
type.	Generally	speaking,	most	users	will	not	experience	these	errors	regularly;
however,	if	you	would	like	more	information	or	are	experiencing	high	or
unexpected	SlowDown	errors,	please	post	to	our	Amazon	S3	developer	forum
http://developer.amazonwebservices.com/connect/forum.jspa?forumID=24	or
sign	up	for	AWS	Premium	Support	http://aws.amazon.com/premiumsupport/.

http://developer.amazonwebservices.com/connect/forum.jspa?forumID=24
http://aws.amazon.com/premiumsupport/

Isolate	Errors

Amazon	S3	provides	a	set	of	error	codes	that	are	used	by	both	the	SOAP	and
REST	API.	The	SOAP	API	returns	standard	Amazon	S3	error	codes.	The	REST
API	is	designed	to	look	like	a	standard	HTTP	server	and	interact	with	existing
HTTP	clients	(e.g.,	browsers,	HTTP	client	libraries,	proxies,	caches,	and	so	on).
To	ensure	the	HTTP	clients	handle	errors	properly,	we	map	each	Amazon	S3
error	to	an	HTTP	status	code.

HTTP	status	codes	are	less	expressive	than	Amazon	S3	error	codes	and	contain
less	information	about	the	error.	For	example,	the	NoSuchKey	and	NoSuchBucket
Amazon	S3	errors	both	map	to	the	HTTP	404	Not	Found	status	code.

Although	the	HTTP	status	codes	contain	less	information	about	the	error,	clients
that	understand	HTTP,	but	not	the	Amazon	S3	API,	will	usually	handle	the	error
correctly.

Therefore,	when	handling	errors	or	reporting	Amazon	S3	errors	to	end	users,	use
the	Amazon	S3	error	code	instead	of	the	HTTP	status	code	as	it	contains	the
most	information	about	the	error.	Additionally,	when	debugging	your
application,	you	should	also	consult	the	human	readable	<Details>	element	of
the	XML	error	response.

Server	Access	Logging
Topics

Server	Access	Logging	Configuration	API
Delivery	of	Server	Access	Logs
Server	Access	Log	Format
Setting	Up	Server	Access	Logging

Important
This	section	describes	Beta	functionality	that	is	subject	to	change	in	future
releases.	Please	provide	feedback	on	this	functionality	in	the	Amazon	S3
Developer	Forum.

An	Amazon	S3	bucket	can	be	configured	to	create	access	log	records	for	the
requests	made	against	it.	An	access	log	record	contains	details	about	the	request
such	as	the	request	type,	the	resource	with	which	the	request	worked,	and	the
time	and	date	that	the	request	was	processed.	Server	access	logs	are	useful	for
many	applications,	because	they	give	bucket	owners	insight	into	the	nature	of
requests	made	by	clients	not	under	their	control.

By	default,	server	access	logs	are	not	collected	for	a	bucket.	To	learn	how	to
enable	server	access	logging,	see	Server	Access	Logging	Configuration	API.

Once	logging	is	enabled	for	a	bucket,	available	log	records	are	periodically
aggregated	into	log	files	and	delivered	to	you	via	an	Amazon	S3	bucket	of	your
choosing.	For	a	detailed	description	of	this	process,	see	Delivery	of	Server
Access	Logs.

For	information	on	how	to	interpret	the	contents	of	log	files,	see	Server	Access
Log	Format.

To	walk	through	the	process	of	enabling	logging	for	your	bucket,	see	Setting	Up
Server	Access	Logging.

Note
There	is	no	extra	charge	for	enabling	the	server	access	logging	feature	on	an

http://developer.amazonwebservices.com/s3/forums

Amazon	S3	bucket,	however	any	log	files	the	system	delivers	to	you	will	accrue
the	usual	charges	for	storage	(you	can	delete	the	log	files	at	any	time).	No	data
transfer	charges	will	be	assessed	for	log	file	delivery,	but	access	to	the	delivered
log	files	is	charged	for	data	transfer	in	the	usual	way.

Server	Access	Logging	Configuration
API

Important
This	section	describes	Beta	functionality	that	is	subject	to	change	in	future
releases.	Please	provide	feedback	on	this	functionality	in	the

Amazon	S3	Developer	Forum.

Each	Amazon	S3	bucket	has	an	associated	XML	sub-resource	that	you	can	read
and	write	in	order	to	inspect	or	change	the	logging	status	for	that	bucket.	The
XML	schema	for	the	bucket	logging	status	resource	is	common	across	SOAP
and	REST.

The	BucketLoggingStatus	element	has	the	following	structure.

Example

<?xml	version="1.0"	encoding="UTF-8"?>
<BucketLoggingStatus	xmlns="http://doc.s3.amazonaws.com/2006-03-01">
				<LoggingEnabled>
								<TargetBucket>mylogs</TargetBucket>
								<TargetPrefix>access_log-</TargetPrefix>
								<TargetGrants>
	 				<Grant>
	 								<Grantee	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	xsi:type="AmazonCustomerByEmail">
	 												<EmailAddress>email_address</EmailAddress>
	 								</Grantee>
	 								<Permission>permission</Permission>
	 				</Grant>
								</TargetGrants>
				</LoggingEnabled>
</BucketLoggingStatus>
				

Following	is	a	list	of	elements	that	belong	to	the	BucketLoggingStatus	element.

LoggingEnabled

The	presence	of	this	element	indicates	that	server	access	logging	is	enabled

http://developer.amazonwebservices.com/s3/forums

for	the	bucket.	The	absence	of	this	element	(and	all	nested	elements)
indicates	that	logging	is	disabled	for	the	bucket.

TargetBucket

This	element	specifies	the	bucket	where	server	access	logs	will	be
delivered.	You	can	have	your	logs	delivered	to	any	bucket	that	you	own,
including	the	same	bucket	that	is	being	logged.	You	can	also	configure
multiple	buckets	to	deliver	their	logs	to	the	same	target	bucket.	In	this	case
you	should	choose	a	different	TargetPrefix	for	each	source	bucket	so	that
the	delivered	log	files	can	be	distinguished	by	key.

Note
The	source	and	the	target	buckets	must	be	in	the	same	location.	For	more
information	about	bucket	location	constraints,	see	How	to	Select	a	Region
for	Your	Buckets

TargetPrefix

This	element	lets	you	specify	a	prefix	for	the	keys	that	the	delivered	log
files	will	be	stored	under.	For	information	on	how	the	key	name	for	log	files
is	constructed,	see	Delivery	of	Server	Access	Logs.

TargetGrants

The	bucket	owner	is	automatically	granted	FULL_CONTROL	to	all	logs
delivered	to	the	bucket.	This	optional	element	enables	you	grant	access	to
others.	Any	specified	TargetGrants	are	added	to	the	default	ACL.	For	more
information	about	ACLs,	see	Access	Control	Lists.

To	enable	server	access	logging,	Set	or	PUT	a	BucketLoggingStatus	with	a
nested	LoggingEnabled	element.	To	disable	server	access	logging,	Set	or	PUT	an
empty	BucketLoggingStatus	element.

In	REST,	the	address	of	the	BucketLoggingStatus	resource	for	a	bucket
'mybucket'	is	http://s3.amazonaws.com/mybucket?logging.	The	PUT	and	GET
methods	are	valid	for	this	resource.	For	example,	the	following	request	fetches
the	BucketLoggingStatus	resource	for	mybucket.

GET	?logging	HTTP/1.1

Host:	mybucket.s3.amazonaws.com
Date:	Wed,	01	Mar		2006	12:00:00	GMT
Authorization:	AWS	YOUR_AWS_ACCESS_KEY_ID:YOUR_SIGNATURE_HERE

HTTP/1.1	200	OK
Date:	Wed,	01	Mar		2006	12:00:00	GMT
Connection:	close
Server:	AmazonS3

<?xml	version="1.0"	encoding="UTF-8"?>
<BucketLoggingStatus	xmlns="http://doc.s3.amazonaws.com/2006-03-01">
		<LoggingEnabled>
				<TargetBucket>mybucketlogs</TargetBucket>
				<TargetPrefix>mybucket-access_log-/</TargetPrefix>
								<TargetGrants>
	 				<Grant>
	 								<Grantee	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	xsi:type="AmazonCustomerByEmail">
	 												<EmailAddress>user@company.com</EmailAddress>
	 								</Grantee>
	 								<Permission>READ</Permission>
	 				</Grant>
								</TargetGrants>
				
		</LoggingEnabled>
</BucketLoggingStatus>

In	SOAP,	you	can	work	with	BucketLoggingStatus	resource	using	the
SOAPSetBucketLoggingStatus	and	SOAPGetBucketLoggingStatus	operations.

Amazon	S3	checks	the	validity	of	the	proposed	BucketLoggingStatus	when	you
try	to	Set	or	PUT	to	it.	If	the	TargetBucket	does	not	exist,	is	not	owned	by	you,
or	does	not	have	the	appropriate	grants,	you	will	receive	the
InvalidTargetBucketForLogging	error.	If	your	proposed
BucketLoggingStatus	document	is	not	well-formed	XML	or	does	not	match	our
published	schema,	you	will	receive	the	MalformedXMLError.

http://docs.amazonwebservices.com/AmazonS3/2006-03-01/API/index.html?SOAPSetBucketLoggingStatus.html
http://docs.amazonwebservices.com/AmazonS3/2006-03-01/API/index.html?SOAPGetBucketLoggingStatus.html

BucketLoggingStatus	Changes	Take	Effect	Over	Time

Changes	to	the	logging	status	for	a	bucket	are	visible	in	the	configuration	API
immediately,	but	they	take	time	to	actually	affect	the	delivery	of	log	files.	For
example,	if	you	enable	logging	for	a	bucket,	some	requests	made	in	the
following	hour	might	be	logged,	while	others	might	not.	Or,	if	you	change	the
target	bucket	for	logging	from	bucket	A	to	bucket	B,	some	logs	for	the	next	hour
might	continue	to	be	delivered	to	bucket	A,	while	others	might	be	delivered	to
the	new	target	bucket	B.	In	all	cases,	the	new	settings	will	eventually	take	effect
without	any	further	action	on	your	part.

Delivery	of	Server	Access	Logs

Important
This	section	describes	Beta	functionality	that	is	subject	to	change	in	future
releases.	Please	provide	feedback	on	this	functionality	in	the

Amazon	S3	Developer	Forum.

Server	access	logs	are	written	to	the	bucket	of	your	choice,	which	can	be	the
bucket	from	which	the	logs	originate	or	a	different	bucket.	If	you	choose	a
different	bucket,	it	must	have	the	same	owner	as	the	source	bucket.	Otherwise,
no	logs	will	be	delivered.

Note
The	source	and	the	target	buckets	must	be	in	the	same	location.	For	more
information	about	bucket	location	constraints,	see	How	to	Select	a	Region	for
Your	Buckets.

When	a	log	file	is	delivered	to	the	target	bucket,	it	is	stored	under	a	key	in	the
following	format.

				TargetPrefixYYYY-mm-DD-HH-MM-SS-UniqueString

				

In	the	key,	YYYY,	mm,	DD,	HH,	MM	and	SS	are	the	digits	of	the	year,	month,
day,	hour,	minute,	and	seconds	(respectively)	when	the	log	file	was	delivered.

A	log	file	delivered	at	a	specific	time	can	contain	records	written	at	any	point
before	that	time.	There	is	no	way	to	know	whether	all	log	records	for	a	certain
time	interval	have	been	delivered	or	not.

The	TargetPrefix	component	of	the	key	is	a	string	provided	by	the	bucket	owner
using	the	logging	configuration	API.	For	more	information,	see	Server	Access
Logging	Configuration	API.

The	UniqueString	component	of	the	key	carries	no	meaning	and	should	be

http://developer.amazonwebservices.com/s3/forums

ignored	by	log	processing	software.

The	system	does	not	delete	old	log	files.	If	you	do	not	want	server	logs	to
accumulate,	you	must	delete	them	yourself.	To	do	so,	use	the	List	operation	with
the	prefix	parameter	to	locate	old	logs	to	delete.	For	more	information,	see
Listing	Keys.

Access	Control	Interaction

Log	files	will	be	written	to	the	target	bucket	under	the	identity	of	a	member	of
the	http://acs.amazonaws.com/groups/s3/LogDelivery	group.	These	writes
are	subject	to	the	usual	access	control	restrictions.	Therefore,	logs	will	not	be
delivered	unless	the	access	control	policy	of	the	target	bucket	grants	the	log
delivery	group	WRITE	access.	To	ensure	log	files	are	delivered	correctly,	the	log
delivery	group	must	also	have	READ_ACP	permission	on	the	target	bucket.	For
more	information	about	access	control	lists	and	groups,	see	Authentication	and
Access	Control.	For	more	information	about	correctly	configuring	your	target
bucket's	access	control	policy,	see	the	Setting	Up	Server	Access	Logging.

Log	files	created	in	the	target	bucket	have	an	access	control	list	entry	that
consists	of	a	FULL_CONTROL	grant	to	the	bucket	owner	and	grants	to	any
users	specified	through	the	TargetGrants	element.

Best	Effort	Server	Log	Delivery

The	server	access	logging	feature	is	designed	for	best	effort.	You	can	expect	that
most	requests	against	a	bucket	that	is	properly	configured	for	logging	will	result
in	a	delivered	log	record,	and	that	most	log	records	will	be	delivered	within	a
few	hours	of	the	time	that	they	were	recorded.

However,	the	server	logging	feature	is	offered	on	a	best-effort	basis.	The
completeness	and	timeliness	of	server	logging	is	not	guaranteed.	The	log	record
for	a	particular	request	might	be	delivered	long	after	the	request	was	actually
processed,	or	it	might	not	be	delivered	at	all.	The	purpose	of	server	logs	is	to
give	the	bucket	owner	an	idea	of	the	nature	of	traffic	against	his	or	her	bucket.	It
is	not	meant	to	be	a	complete	accounting	of	all	requests.

Usage	Report	Consistency

It	follows	from	the	best-effort	nature	of	the	server	logging	feature	that	the	usage
reports	available	at	the	AWS	portal	might	include	usage	that	does	not	correspond
to	any	request	in	a	delivered	server	log.

Server	Access	Log	Format

Important
This	section	describes	Beta	functionality	that	is	subject	to	change	in	future
releases.	Please	provide	feedback	on	this	functionality	in	the

Amazon	S3	Developer	Forum.

The	log	files	consist	of	a	sequence	of	new-line	delimited	log	records.	Log
records	appear	in	no	particular	order.	Each	log	record	represents	one	request	and
consists	of	space	delimited	fields	described	in	the	following	table.

Field
Name

Example	Entry Notes

Bucket
Owner 314159b66967d86f031c7249d1d9a8024

																9109428335cd0ef1cdc487b4566cb1b

The	canonical	user	id	of	the	owner
of	the	source	bucket.

Bucket
mybucket

The	name	of	the	bucket	that	the
request	was	processed	against.	If
the	system	receives	a	malformed
request	and	cannot	determine	the
bucket,	the	request	will	not	appear
in	any	server	access	log.

Time
[04/Aug/2006:22:34:02	+0000]

The	time	at	which	the	request	was
received.	The	format,	
strftime()	terminology,	is
[%d/%B/%Y:%H:%M:%S	%z]

Remote
IP 72.21.206.5

The	apparent	Internet	address	of
the	requester.	Intermediate	proxies
and	firewalls	might	obscure	the
actual	address	of	the	machine
making	the	request.

Requester
314159b66967d86f031c7249d1d9a80

																249109428335cd0ef1cdc487b4566cb1b

The	canonical	user	id	of	the
requester,	or	the	string
"Anonymous"	for	unauthenticated
requests.	This	identifier	is	
one	used	for	access	control
purposes.

Request The	request	ID	is	a	string

http://developer.amazonwebservices.com/s3/forums

ID
3E57427F33A59F07

generated	by	Amazon	
uniquely	identify	each	request.

Operation
SOAP.CreateBucket

or

REST.PUT.OBJECT

Either	SOAP.operation
REST.HTTP_method

Key
/photos/2006/08/puppy.jpg

The	"key"	part	of	the	request,	URL
encoded,	or	"-"	if	the	operation
does	not	take	a	key	parameter.

Request-
URI "GET	/mybucket/photos/2006/08/

																puppy.jpg?x-foo=bar"

The	Request-URI	part	of	the	HTTP
request	message.

HTTP
status 200

The	numeric	HTTP	status	code	of
the	response.

Error
Code NoSuchBucket

The	Amazon	S3	
if	no	error	occurred.

Bytes
Sent 2662992

The	number	of	response	bytes	sent,
excluding	HTTP	
overhead,	or	"-"	if	zero.

Object
Size 3462992

The	total	size	of	the	object	in
question.

Total
Time 70

The	number	of	milliseconds	the
request	was	in	flight	
server's	perspective.	This	value	is
measured	from	the	
request	is	received	to	the	time	that
the	last	byte	of	the	response	is	sent.
Measurements	made	from	the
client's	perspective	might	be	longer
due	to	network	latency.

Turn-
Around 10

The	number	of	milliseconds	that
Amazon	S3	spent	processing	your

Time request.	This	value	is	measured
from	the	time	the	last	byte	of	your
request	was	received	until	the	time
the	first	byte	of	the	response	was
sent.

Referrer
"http://www.amazon.com/webservices"

The	value	of	the	HTTP	Referrer
header,	if	present.	HTTP	
agents	(e.g.	browsers)	typically	set
this	header	to	the	
linking	or	embedding	page	when
making	a	request.

User-
Agent "curl/7.15.1"

The	value	of	the	HTTP	User-Agent
header.

Any	field	can	be	set	to	"-"	to	indicate	that	the	data	was	unknown	or	unavailable,
or	that	the	field	was	not	applicable	to	this	request.

Custom	Access	Log	Information

You	can	include	custom	information	to	be	stored	in	the	access	log	record	for	a
request	by	adding	a	custom	query-string	parameter	to	the	URL	for	the	request.
Amazon	S3	will	ignore	query-string	parameters	that	begin	with	"x-",	but	will
include	those	parameters	in	the	access	log	record	for	the	request,	as	part	of	the
Request-URI	field	of	the	log	record.	For	example,	a	GET	request	for
"s3.amazonaws.com/mybucket/photos/2006/08/puppy.jpg?x-user=johndoe"	will
work	the	same	as	the	same	request	for
"s3.amazonaws.com/mybucket/photos/2006/08/puppy.jpg",	except	that	the	"x-
user=johndoe"	string	will	be	included	in	the	Request-URI	field	for	the	associated
log	record.	This	functionality	is	available	in	the	REST	interface	only.

Extensible	Server	Access	Log	Format

From	time	to	time,	we	might	extend	the	access	log	record	format	by	adding	new
fields	to	the	end	of	each	line.	Code	that	parses	server	access	logs	must	be	written
to	handle	trailing	fields	that	it	does	not	understand.

Setting	Up	Server	Access	Logging

Important
This	section	describes	Beta	functionality	that	is	subject	to	change	in	future
releases.	Please	provide	feedback	on	this	functionality	in	the

Amazon	S3	Developer	Forum.

The	Amazon	S3	server	access	logging	feature	lets	you	generate	access	log	files
for	buckets	that	you	own.	These	log	files	are	delivered	to	you	by	writing	them
into	a	(possibly	different)	bucket	that	you	own.	Once	delivered,	the	access	logs
are	ordinary	objects	that	you	can	read,	list	or	delete	at	your	convenience.

These	instructions	assume	that	you	want	to	enable	server	access	logging	on	one
of	your	pre-existing	buckets,	and	that	you	want	to	have	those	logs	delivered	into
a	new	bucket	you	will	create	just	for	logging.	We	suppose	that	the	bucket	you
want	to	log	access	to	is	called	'mybucket'	and	the	new	bucket	you	will	create	to
hold	your	access	logs	is	called	'mylogs'.	This	makes	'mybucket'	the	source
bucket	for	logging	and	'mylogs'	the	target	bucket	for	logging.	Whenever	you	see
'mybucket'	or	'mylogs'	in	the	example,	replace	them	with	the	name	of	your
bucket	that	you	want	to	log,	and	the	bucket	you	want	to	store	your	access	logs,
respectively.

This	tutorial	makes	use	of	s3curl	(go	to	s3curl.pl	sample	program)	to	work	with
the	Amazon	S3	REST	API.	Make	sure	you	use	the	most	recent	version	of	s3curl,
as	it	has	been	updated	to	support	this	tutorial.	After	invoking	s3curl,	always
check	for	a	200	OK	HTTP	response.	If	you	get	some	other	response	code,	refer	to
the	XML	error	response	which	likely	contains	information	about	what	went
wrong.

http://developer.amazonwebservices.com/s3/forums
http://developer.amazonwebservices.com/connect/entry.jspa?categoryID=47&externalID=128

Preparing	the	Target	Bucket

To	prepare	the	target	bucket

1.	 First,	decide	if	you	want	your	logs	delivered	to	an	existing	bucket,	or	if	you
want	to	create	a	new	bucket	just	for	access	log	files.	Following	is	a
command	that	creates	a	new	target	bucket	for	logging.	Notice	the	canned
ACL	argument	that	grants	the	system	permission	to	write	log	files	to	this
bucket.

Note
The	source	and	the	target	buckets	must	be	in	the	same	location.	For	more
information	about	bucket	location	constraints,	see	How	to	Select	a	Region
for	Your	Buckets

$./s3curl.pl	--id	YOUR_AWS_ACCESS_KEY_ID	--key	YOUR_AWS_SECRET_ACCESS_KEY	--acl	log-delivery-write	--put	/dev/null	--	-s	-v	http://s3.amazonaws.com/

2.	 If	you	just	created	a	new	bucket	for	logging,	skip	to	the	next	section.
Otherwise,	to	have	your	access	logs	files	delivered	to	an	existing	bucket,
you	must	modify	the	access	control	policy	of	that	bucket	by	hand.	Fetch	the
?acl	sub-resource	of	the	target	bucket	and	save	it	to	a	local	file:

$./s3curl.pl	--id	YOUR_AWS_ACCESS_KEY_ID	--key	YOUR_AWS_SECRET_ACCESS_KEY	--	-s	-v	'http://s3.amazonaws.com/

3.	 Now	open	the	local	copy	of	the	logging	resource	in	your	favorite	text	editor
and	insert	a	new	<Grant>	element	to	the	<AccessControlList>	section	that
gives	the	log	delivery	group	WRITE	and	READ_ACP	permission	to	your
bucket.

<Grant>

				<Grantee	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	xsi:type="Group">

								<URI>http://acs.amazonaws.com/groups/s3/LogDelivery</URI>

				</Grantee>

				<Permission>WRITE</Permission>

</Grant>

<Grant>

				<Grantee	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	xsi:type="Group">

								<URI>http://acs.amazonaws.com/groups/s3/LogDelivery</URI>

				</Grantee>

				<Permission>READ_ACP</Permission>

</Grant>

4.	 Finally,	apply	the	modified	access	control	policy	by	writing	it	back	to
Amazon	S3.

$./s3curl.pl	--id	YOUR_AWS_ACCESS_KEY_ID	--key	YOUR_AWS_SECRET_ACCESS_KEY	--put	mylogs.acl	--	-s	-v	'http://s3.amazonaws.com/

Enabling	Server	Access	Logging	on	the	Source	Bucket

Now	that	the	target	bucket	can	accept	log	files,	we'll	update	the	?logging	sub-
resource	of	the	source	bucket	to	turn	on	server	access	logging.	Remember	that
you	must	be	the	bucket	owner	to	read	or	write	this	resource.

Fetch	the	?logging	sub-resource	for	modification	using	the	command	shown	in
the	following	example.

Example

$./s3curl.pl	--id	YOUR_AWS_ACCESS_KEY_ID	--key	YOUR_AWS_SECRET_ACCESS_KEY	--	-s	-v	'http://s3.amazonaws.com/

Open	mybucket.logging	in	your	favorite	text	editor	and	uncomment	the
<LoggingSettings>	section.	Replace	the	contents	of	the	<TargetBucket>	and
<TargetPrefix>	with	'mylogs'	and	'mybucket-access_log-'	respectively.

Additionally,	to	grant	users	access	to	log	files	within	the	bucket,	you	can	specify
one	or	more	users	in	the	<TargetGrants>	section,	You	can	specify	users	through
their	e-mail	address	(EmailAddress)	or	canonical	user	ID	(CanonicalUser).
Permissions	include	READ,	WRITE,	and	FULL_CONTROL.	The	result	should
be	similar	to	the	following.

Example

<?xml	version="1.0"	encoding="UTF-8"?>

<BucketLoggingStatus	xmlns="http://doc.s3.amazonaws.com/2006-03-01">

				<LoggingEnabled>

								<TargetBucket>mylogs</TargetBucket>

								<TargetPrefix>mybucket-access_log-/</TargetPrefix>

												<TargetGrants>

	 								<Grant>

	 								<Grantee	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	xsi:type="AmazonCustomerByEmail">

	 												<EmailAddress>user@company.com</EmailAddress>

	 								</Grantee>

	 								<Permission>READ</Permission>

	 				</Grant>

								</TargetGrants>

				</LoggingEnabled>

</BucketLoggingStatus>

Note
For	general	information	about	authentication,	see	Authentication	and	Access
Control.

Now	apply	your	modifications	by	writing	the	document	back	to	the	?logging
sub-resource	in	Amazon	S3.

Example

$./s3curl.pl	--id	YOUR_AWS_ACCESS_KEY_ID	--key	YOUR_AWS_SECRET_ACCESS_KEY	--put	mybucket.logging	--	-s	-v	'http://s3.amazonaws.com/

You	can	confirm	your	changes	by	fetching	the	?logging	sub-resource	and
comparing	it	to	what	you	just	wrote.

Server	access	logging	should	now	be	enabled.	Make	a	few	requests	against	the
source	bucket	now,	and	your	access	logs	should	begin	to	be	delivered	to	the
target	bucket	within	the	next	few	hours.

Disabling	Server	Logging	for	a	Bucket

Fetch,	modify,	and	apply	the	?logging	sub	resource	in	the	same	way	as
described	in	the	preceding	procedure,	except	use	your	text	editor	to	remove	the
<LoggingEnabled>	element.

Note
Log	changes	do	not	take	effect	immediately;	logs	will	be	delivered	for	a	while
after	disabling	logging.

Glossary

100-continue

A	method	that	enables	a	client	to	see	if	a	server	can	accept	a	request	before
actually	sending	it.	For	large	PUTs,	this	can	save	both	time	and	bandwidth
charges.

account

AWS	account	associated	with	a	particular	developer.

authentication

The	process	of	proving	your	identity	to	the	system.

bucket

A	container	for	objects	stored	in	Amazon	S3.	Every	object	is	contained
within	a	bucket.	For	example,	if	the	object	named	photos/puppy.jpg	is
stored	in	the	johnsmith	bucket,	then	it	is	addressable	using	the	URL
http://johnsmith.s3.amazonaws.com/photos/puppy.jpg

canned	access	policy

A	standard	access	control	policy	that	you	can	apply	to	a	bucket	or	object.
Options	include:	private,	public-read,	public-read-write,	authenticated-read.

canonicalization

The	process	of	converting	data	into	a	standard	format	that	will	be
recognized	by	a	service	such	as	Amazon	S3.

consistency	model

The	method	through	which	Amazon	S3	achieves	high	availability,	which
involves	replicating	data	across	multiple	servers	within	Amazon's	data
centers.	After	a	"success"	is	returned,	your	data	is	safely	stored.	However,
information	about	the	changes	might	not	immediately	replicate	across
Amazon	S3.

key

The	unique	identifier	for	an	object	within	a	bucket.	Every	object	in	a	bucket
has	exactly	one	key.	Since	a	bucket	and	key	together	uniquely	identify	each
object,	Amazon	S3	can	be	thought	of	as	a	basic	data	map	between	"bucket
+	key"	and	the	object	itself.	Every	object	in	Amazon	S3	can	be	uniquely
addressed	through	the	combination	of	the	web	service	endpoint,	bucket
name,	and	key,	as	in	http://doc.s3.amazonaws.com/2006-03-
01/AmazonS3.wsdl,	where	"doc"	is	the	name	of	the	bucket,	and	"2006-03-
01/AmazonS3.wsdl"	is	the	key.

metadata

The	metadata	is	a	set	of	name-value	pairs	that	describe	the	object.	These
include	default	metadata	such	as	the	date	last	modified	and	standard	HTTP
metadata	such	as	Content-Type.	The	developer	can	also	specify	custom
metadata	at	the	time	the	Object	is	stored.

object

The	fundamental	entities	stored	in	Amazon	S3.	Objects	consist	of	object
data	and	metadata.	The	data	portion	is	opaque	to	Amazon	S3.

service	endpoint

The	host	and	port	with	which	you	are	trying	to	communicate	within	the
destination	URL.	For	virtual	hosted-style	requests,	this	is
mybucket.s3.amazonaws.com.	For	path-style	requests,	this	is
s3.amazonaws.com

Document	Conventions
This	section	lists	the	common	typographical	and	symbol	use	conventions	for
AWS	technical	publications.

Typographical	Conventions

This	section	describes	common	typographical	use	conventions.

Convention Description/Example

Call-outs A	call-out	is	a	number	in	the	body	text	to	give	you	a	visual	reference.	The	reference	point	is	for
further	discussion	elsewhere.

You	can	use	this	resource	regularly.

Code	in	text Inline	code	samples	(including	XML)	and	commands	are	identified	with	a	special	font.

You	can	use	the	command	java	-version.

Code	blocks Blocks	of	sample	code	are	set	apart	from	the	body	and	marked	accordingly.

#	ls	-l	/var/www/html/index.html
-rw-rw-r--		1	root	root	1872	Jun	21	09:33	/var/www/html/index.html
#	date
Wed	Jun	21	09:33:42	EDT	2006

Emphasis Unusual	or	important	words	and	phrases	are	marked	with	a	special	font.

You	must	sign	up	for	an	account	before	you	can	use	the	service.

Internal
cross
references

References	to	a	section	in	the	same	document	are	marked.

For	more	information,	see	Document	Conventions.

Logical
values,
constants,
and	regular
expressions,
abstracta

A	special	font	is	used	for	expressions	that	are	important	to	identify,	but	are	not	code.

If	the	value	is	null,	the	returned	response	will	be	false.

Product	and
feature
names

Named	AWS	products	and	features	are	identified	on	first	use.

Create	an	Amazon	Machine	Image	(AMI).

Operations In-text	references	to	operations.

Use	the	GetHITResponse	operation.

Parameters In-text	references	to	parameters.

The	operation	accepts	the	parameter	AccountID.

Response
elements

In-text	references	to	responses.

A	container	for	one	CollectionParent	and	one	or	more	CollectionItems.

Technical
publication
references

References	to	other	AWS	publications.	If	the	reference	is	hyperlinked,	it	is	also	underscored.

For	detailed	conceptual	information,	refer	to	the	Amazon	Mechanical	Turk	Developer	Guide

User
entered
values

A	special	font	marks	text	that	the	user	types.

At	the	password	prompt,	type	MyPassword.

User
interface
controls	and
labels

Denotes	named	items	on	the	UI	for	easy	identification.

On	the	File	menu,	click	Properties.

Variables When	you	see	this	style,	you	must	change	the	value	of	the	content	when	you	copy	the	text	of	a
sample	to	a	command	line.

%	ec2-register	<your-s3-bucket>/image.manifest

See	also	the	following	symbol	convention.

Symbol	Conventions

This	section	describes	the	common	use	of	symbols.

Convention Symbol Description/Example

Mutually
exclusive
parameters

(Parentheses	|	and	|
vertical	|	bars)

Within	a	code	description,	bar	separators	denote	options
from	which	one	must	be	chosen.

%	data	=	hdfread	(start	|	stride	|	edge)

Optional
parameters

XML	variable	text

[square	brackets] Within	a	code	description,	square	brackets	denote
completely	optional	commands	or	parameters.

%	sed	[-n,	-quiet]

Use	square	brackets	in	XML	examples	to	differentiate	them
from	tags.

<CustomerId>[ID]</CustomerId>

Variables <arrow	brackets> Within	a	code	sample,	arrow	brackets	denote	a	variable	that
must	be	replaced	with	a	valid	value.

%	ec2-register	<your-s3-bucket>/image.manifest

Index

Symbols

100-continue,	Redirects	and	100-Continue

A

access	control,	Authentication	and	Access	Control
access	logs,	Delivery	of	Server	Access	Logs
access	policy

REST,	REST	Access	Control	Policy
SOAP,	Setting	Access	Policy	with	SOAP

Adobe	Flash,	Browser-Based	Uploads	Using	POST
Amazon	DevPay,	Using	Amazon	DevPay	with	Amazon	S3
API,	Amazon	S3	Application	Programming	Interfaces	(API)

REST,	The	REST	Interface,	Using	the	REST	API
SOAP,	The	SOAP	Interface,	Using	the	SOAP	API

audience,	Who	Should	Read	this	Guide
authentication,	Authentication	and	Access	Control

debugging,	REST	Request	Signing	Problems
REST,	Authenticating	REST	Requests
SOAP,	Authenticating	SOAP	Requests

authentication	header,	The	Authentication	Header

B

billing,	Paying	for	Amazon	S3
BitTorrent,	Using	BitTorrent	with	Amazon	S3

charges,	How	You	are	Charged	for	BitTorrent	Delivery
publishing,	Publishing	Content	Using	Amazon	S3	and	BitTorrent
retrieving	objects,	Using	BitTorrent	to	Retrieve	Objects	Stored	in
Amazon	S3

browser	uploads,	Browser-Based	Uploads	Using	POST
buckets,	Buckets,	Working	with	Amazon	S3	Buckets

access	control,	Buckets	and	Access	Control
billing,	Billing	and	Reporting	of	Buckets

configuration,	Bucket	Configuration	Options
location	selection,	How	to	Select	a	Region	for	Your	Buckets
restrictions,	Bucket	Restrictions	and	Limitations
virtual	hosting,	Virtual	Hosting	of	Buckets

C

CanonicalizedAmzHeaders	element,	Constructing	the
CanonicalizedAmzHeaders	Element
changes,	What's	New
charges,	Paying	for	Amazon	S3
chunked	downloads,	Chunked	and	Resumable	Downloads
components,	Amazon	S3	Concepts
concepts

API,	Amazon	S3	Application	Programming	Interfaces	(API)
buckets,	Buckets
components,	Amazon	S3	Concepts
keys,	Keys
objects,	Objects
operations,	Operations
REST	API,	The	REST	Interface
SOAP	API,	The	SOAP	Interface

configuring	logging,	Server	Access	Logging	Configuration	API
consistency	model,	Amazon	S3	Data	Consistency	Model
copying	objects,	overview,	Copying	Amazon	S3	Objects
costs,	Paying	for	Amazon	S3

D

data	model,	Amazon	S3	Data	Consistency	Model
delimiter,	Common	List	Request	Parameters,	Listing	Keys	Hierarchically	using
Prefix	and	Delimiter
DevPay,	Using	Amazon	DevPay	with	Amazon	S3
DNS,	DNS	Considerations
DNS	routing,	DNS	Routing,	Temporary	Request	Redirection,	Permanent
Request	Redirection
downloads,	chunked	and	resumable,	Chunked	and	Resumable	Downloads

E

elements
REST,	Common	REST	API	Elements
SOAP,	Common	SOAP	API	Elements

errors,	Error	Code
details,	Further	Details
isolation,	Isolate	Errors
messages,	Error	Message
response,	Error	Response
REST	response,	The	REST	Error	Response
SlowDown,	Tune	Application	for	Repeated	SlowDown	errors
SOAP	response,	The	SOAP	Error	Response

F

features,	Advantages	to	Amazon	S3
file	size,	maximum,	Advantages	to	Amazon	S3
Flash,	Adobe,	Browser-Based	Uploads	Using	POST

G

glossary,	Glossary
guide	organization,	How	This	Guide	Is	Organized

H

HTTP	user	agents,	Redirects	and	HTTP	User-Agents

I

introduction,	Introduction	to	Amazon	S3
IsTruncated,	Common	List	Response	Elements

J

Java,	DNS	Considerations
JVM	cache,	DNS	Considerations

K

keys,	Keys
listing,	Listing	Keys
listing	hierarchically,	Listing	Keys	Hierarchically	using	Prefix	and
Delimiter
multi-page	results,	Iterating	Through	Multi-Page	Results
request	parameters,	Common	List	Request	Parameters
responses,	Common	List	Response	Elements
using,	Keys

L

listing	keys,	hierarchically,	Listing	Keys	Hierarchically	using	Prefix	and
Delimiter
location	constraints,	How	to	Select	a	Region	for	Your	Buckets
logs,	Server	Access	Logging

best	effort	delivery,	Best	Effort	Server	Log	Delivery
changing	settings,	BucketLoggingStatus	Changes	Take	Effect	Over	Time
configuration,	Server	Access	Logging	Configuration	API
delivery,	Delivery	of	Server	Access	Logs
format,	Server	Access	Log	Format
setting	up,	Setting	Up	Server	Access	Logging

M

marker,	Common	List	Request	Parameters
MaxKeys,	Common	List	Request	Parameters
metadata,	using,	Metadata
model,	Amazon	S3	Data	Consistency	Model

N

NextMarker,	Common	List	Response	Elements

O

object	size,	maximum,	Advantages	to	Amazon	S3

objects,	Objects
copying,	Copying	Amazon	S3	Objects
getting,	Getting	Objects
using,	Working	with	Amazon	S3	Objects

operations,	Operations
organization	of	guide,	How	This	Guide	Is	Organized
overview,	Overview	of	Amazon	S3

P

pagination,	Iterating	Through	Multi-Page	Results
paying,	Paying	for	Amazon	S3
performance	optimization,	Performance	Optimization
PHP	virtual	machine,	DNS	Considerations
POST,	Browser-Based	Uploads	Using	POST
prefix,	Common	List	Request	Parameters,	Listing	Keys	Hierarchically	using
Prefix	and	Delimiter

R

redirection,	Request	Redirection	and	the	REST	API
permanent,	Permanent	Request	Redirection
request,	Request	Redirection	and	the	REST	API
temporary,	Temporary	Request	Redirection

referrer,	Server	Access	Log	Format
region,	Common	SOAP	API	Elements,	How	to	Select	a	Region	for	Your	Buckets
request	redirection,	Request	Redirection	and	the	REST	API

access	policy,	Request	Redirection	and	the	REST	API
request	routing,	Request	Routing
resources,	related,	Amazon	S3	Resources
REST

access	policy,	REST	Access	Control	Policy
API,	Using	the	REST	API
authentication,	Authenticating	REST	Requests

examples,	Authentication	Examples
header,	The	Authentication	Header

debugging	authentication,	REST	Request	Signing	Problems
elements,	Common	REST	API	Elements

POST,	Browser-Based	Uploads	Using	POST
StringToSign,	Positional	versus	Named	HTTP	Header	StringToSign
Elements
time	stamp,	Time	Stamp	Requirement

restrictions,	Bucket	Restrictions	and	Limitations
resumable	downloads,	Chunked	and	Resumable	Downloads
routing,	Request	Routing

DNS,	DNS	Routing

S

server	access	logs,	Server	Access	Logging,	Delivery	of	Server	Access	Logs
SetObjectAccessControlPolicy

SOAP,	Using	BitTorrent	with	Amazon	S3
size,	object,	Advantages	to	Amazon	S3
SOAP

access	policy,	Setting	Access	Policy	with	SOAP
API,	Using	the	SOAP	API
authentication,	Authenticating	SOAP	Requests
elements,	Common	SOAP	API	Elements
error	response,	The	SOAP	Error	Response

storage	limit,	Advantages	to	Amazon	S3
StringToSign,	Positional	versus	Named	HTTP	Header	StringToSign	Elements
system	metadata,	Metadata

T

TCP	optimization,	Performance	Optimization
time	stamp,	Time	Stamp	Requirement
TTLs,	clients,	DNS	Considerations

U

uploads,	browser,	Browser-Based	Uploads	Using	POST
user	metadata,	Metadata

V

virtual	hosted	buckets,	Virtual	Hosting	of	Buckets
virtual	machines,	DNS	Considerations

	Welcome to AmazonÂ S3
	What's New
	Introduction to AmazonÂ S3
	Paying for AmazonÂ S3

	Making Requests
	AWS Language Support
	Request Endpoints
	Using the REST API
	Common REST API Elements
	Authenticating REST Requests
	REST Access Control Policy
	Virtual Hosting of Buckets
	Request Redirection and the REST API
	Browser-Based Uploads Using POST
	HTML Forms
	Upload Examples
	POST with Adobe Flash

	Using the SOAP API
	Common SOAP API Elements
	Authenticating SOAP Requests
	Setting Access Policy with SOAP

	Working with AmazonÂ S3 Components
	Working with AmazonÂ S3 Buckets
	Bucket Restrictions and Limitations
	Bucket Configuration Options
	How to Select a Region for Your Buckets

	Requester Pays Buckets
	Setting the requestPayment Bucket Configuration
	Retrieving requestPayment Configuration
	Downloading Objects in Requester Pays Buckets
	DevPay and Requester Pays
	Charge Details

	Buckets and Access Control
	Billing and Reporting of Buckets

	Working with AmazonÂ S3 Objects
	Keys
	Listing Keys
	Common List Request Parameters
	Common List Response Elements
	Iterating Through Multi-Page Results
	Listing Keys Hierarchically using Prefix and Delimiter

	Metadata
	Getting Objects
	Standard Downloads
	Chunked and Resumable Downloads

	Copying AmazonÂ S3 Objects

	Authentication and Access Control
	Authentication
	Access Control Lists
	Query String Authentication

	Request Routing
	Request Redirection and the REST API
	DNS Considerations

	Performance Optimization
	TCP Window Scaling
	TCP Selective Acknowledgement

	Using BitTorrent with AmazonÂ S3
	How You are Charged for BitTorrent Delivery
	Using BitTorrent to Retrieve Objects Stored in AmazonÂ S3
	Publishing Content Using AmazonÂ S3 and BitTorrent

	Using Amazon DevPay with AmazonÂ S3
	AmazonÂ S3 Customer Data Isolation
	Amazon DevPay Token Mechanism
	AmazonÂ S3 and Amazon DevPay Authentication
	AmazonÂ S3 Bucket Limitation
	AmazonÂ S3 and Amazon DevPay Process
	Additional Information

	Handling Errors
	The REST Error Response
	Error Response
	Error Code
	Error Message
	Further Details

	The SOAP Error Response
	AmazonÂ S3 Error Best Practices

	Server Access Logging
	Server Access Logging Configuration API
	Delivery of Server Access Logs
	Server Access Log Format
	Setting Up Server Access Logging

	Glossary
	Document Conventions
	Index

